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Synopsis 

This study was designed to determine the regulatory network that controls expression 

from two Escherichia coli K-12 promoters, pyeaR and pogt, during anaerobic growth. These 

promoters were identified from transcriptomic studies as being positively regulated by NarL 

independently of FNR, the master regulator of anaerobic respiration. Biochemical and genetic 

analyses presented in this study confirmed that expression from both the yeaR and ogt 

promoters is dependent upon NarL, which binds to a single site in the yeaR promoter and two 

sites in the ogt promoter. The nucleoid-associated protein, Fis, repressed transcription from 

both promoters, especially in rich medium, by binding to sites that overlap the NarL site, 

excluding the essential activator.  

Both promoters were more active in the absence of functional FNR. However, 

mutational analysis revealed that FNR does not bind to the yeaR promoter region, so this effect 

is indirect. How the absence of functional FNR might affect NarL-dependent nitrite signalling 

was investigated.  

The Ogt protein is known function as an O6-alkyguanine methyltransferase. However, 

the functions of the gene products of yeaR-yoaG and another operon implicated in nitrosative 

stress management, hcp-hcr, were unknown. Strains carrying a chromosomal yeaR-yoaG 

deletion were not more sensitive to nitric oxide or hydroxylamine compared with the parental 

strain, suggesting that the products of this operon are not essential for dealing with these toxic 

nitrogen species. Conversely, a strain deleted in hcp-hcr was shown to be slightly more 

sensitive to both nitric oxide and hydroxylamine, implicating Hcp and Hcr in nitrosative stress 

management.  
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Chapter 1  

Introduction 

The facultatively anaerobic bacterium Escherichia coli, and its life in the 

mammalian gut 

The Gram-negative enterobacterium, Escherichia coli, is found in many diverse 

environments including the mammalian gut (Drasar et al., 1966). As a result of its lifestyle, E. 

coli must be able to adapt from the aerobic environment outside the host to the anaerobic 

environment in the gastro-intestinal tract (Cole, 1996). Within the host, E. coli uses an array of 

alternative electron acceptors in order to respire efficiently in the absence of oxygen 

(Richardson, 2000). The two most powerful oxidants available in the mammalian gut are 

nitrate (NO3
-) and nitrite (NO2

-), which E. coli can reduce readily to ammonia (reviewed by 

Cole, 1996; Saul et al., 1981). When inhabiting the gastrointestinal tract, E. coli must be able to 

protect itself from host defences, which generate an array of cytotoxic nitrogen-based 

chemicals to destroy the bacterium, as well as the toxic intermediates E. coli and other bacteria 

sharing the gastro-intestinal tract produce during anaerobic nitrate respiration (Bogdan et al., 

2000; Nathan, 1997; Nathan and Shiloh, 2000). Several systems have been identified in E. coli 

that reduce or detoxify nitric oxide. However, many other genes, some of unknown function, 

have been implicated as being involved in nitrosative stress management (Constantinidou et 

al., 2006). This study aims to discover how E. coli regulates the expression of genes of 

unknown function that are implicated in nitrosative stress tolerance. Therefore, this chapter will 

describe: how and when E. coli is likely to encounter nitric oxide while growing in an 

anaerobic environment; how the bacterium is able to detect nitric oxide and its precursor 

molecules; the mechanisms by which E. coli can detoxify NO or repair the damage it has 

caused and how E. coli regulates the expression of specific genes at the transcription level.  
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The environmental nitrogen cycle 

The element nitrogen is an essential component of many biological molecules, most 

importantly in proteins and nucleic acids. It is present in the environment in redox states from 

+5 to -3 and is inter-converted between these states by highly specialised enzymes, many of 

which contain metal iron cofactors (reviewed by Richardson and Watmough, 1999). The inter-

conversion of nitrogen between varying oxidation states, facilitated by biological, geological 

and chemical catalysts, forms the basis of the global nitrogen cycle. Within this complex cycle, 

bacteria play a key role. Assimilation of di-nitrogen gas (N2) into organic matter, otherwise 

known as nitrogen fixation, is facilitated by a more limited number of bacterial species, which 

possess nitrogenase enzymes. Denitrification, or the reduction of nitrate and nitrite to nitric 

oxide (NO), nitrous oxide (N2O) and di-nitrogen (N2), is a conserved respiratory pathway 

utilised by denitrifying bacteria (reviewed by Berks et al., 1995a; Ferguson, 1998).  

The reduction of nitrate to nitrite and the successive reduction of nitrite to other 

nitrogen oxides play a key role in the loss of fixed nitrogen from the environment. The 

eventual production of nitrous oxide, a greenhouse gas, from the reduction of nitric oxide by 

bacteria has led to world wide interest in the biogeochemical nitrogen cycle and the 

introduction of control on the use of N-fertilisers in agriculture (Butler, 2003; Lane, 2007).  

The enteric bacterium E. coli is able to use a number of enzymes to capitalise on the 

presence of nitrate and other alternative electron acceptors. Using these alternatives, either in 

the host or in the environment, E. coli is able to respire efficiently in the absence of oxygen 

(Richardson, 2000). The ability of E. coli to switch from aerobic to anaerobic growth is 

fundamental to its life as an intestinal pathogen as well as an environmental bacterium, and is 

therefore the subject of intense study (Cole, 1996; Lundberg et al., 2004). Although the 

regulation and function of many aspects of nitrate metabolism are well understood, recent 

insights into the endogenous generation of nitric oxide and other toxic nitrogen species during 

nitrite reduction has raised interest in the subject. One key aspect, which is the focus of this 
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study, is how E. coli is able to detoxify or remove the cytotoxic reactive nitrogen species such 

as nitric oxide that it generates itself during anaerobic nitrite metabolism (Corker and Poole, 

2003). The resistance of pathogenic E. coli to reactive nitrogen species may also play a part in 

the resistance of the bacterium to host phagocytic cells that generate NO to kill engulfed 

bacteria (Bogdan et al., 2000; Fang, 2004; Nathan and Shiloh, 2000).  

Anaerobic nitrate respiration in E. coli 

In order to respire efficiently, the bacterium must find a suitable alternative electron 

acceptor in order to generate energy in the form of proton motive force (reviewed by 

Richardson, 2000). These alternatives include nitrate, nitrite, TMAO, DMSO and fumarate. 

The most powerful oxidant, when oxygen in unavailable, is nitrate, which can be reduced via 

specific enzymes known as the nitrate reductases (Bonnefoy and Demoss, 1994; Ferguson, 

1998; Richardson, 2000). The chromosome of E. coli encodes three distinct nitrate reductases 

that all catalyse the reduction of nitrate to nitrite but are synthesised under different conditions 

(Blattner et al., 1997). This study is concerned mainly with dissimilatory nitrate reductases, 

which generate energy via the coupling of nitrate reduction to the generation of ∆p, or proton 

motive force, and generate reactive nitrogen species as a consequence. E. coli has three 

dissimilatory nitrate reductases: two homologous membrane bound reductases, NAR, and one 

soluble periplasmic reductase, NAP (Philippot and Hojberg, 1999)(fig. 1.1). 

The nitrate reductase, NarGHI 

The membrane bound nitrate reductase A (NRA), also known as NarGHI, is composed 

of three major protein subunits: α, β and γ (encoded by narG, H and I, respectively) as well the 

auxiliary subunit, NarJ. The γ-subunit, encoded by narI, is a transmembrane protein that inserts 

into the cytoplasmic membrane of the cell and anchors the rest of the nitrate reductase to the 

membrane (Berks et al., 1995b). The γ-protein is able to accept electrons donated by reduced 

NADH, via the quinol pool, using a high potential b-type haem group co-ordinated in the γ 



 4 

P
e
ri

p
la

s
m

M
e
m

b
ra

n
e

C
y
to

p
la

s
m

N
O

2
-

N
O

3
-

N
O

2
-

N
O

2
-

N
O

3
-

N
O

2
-

N
H

4
+

N
H

4
+

N
a
rG

/Z

N
a

rH
/Y

N
a
rI

/V
N

a
p

C N
a
p

H
N

a
p

F

N
a

p
G

N
a
p

A

N
a
p

B

N
rf

A

N
rf

B

N
rf

C
N

rf
D

N
ir

D

N
ir

B

P
e
ri

p
la

s
m

M
e
m

b
ra

n
e

C
y
to

p
la

s
m

N
O

2
-

N
O

3
-

N
O

2
-

N
O

2
-

N
O

3
-

N
O

2
-

N
H

4
+

N
H

4
+

N
a
rG

/Z

N
a

rH
/Y

N
a
rI

/V
N

a
p

C N
a
p

H
N

a
p

F

N
a

p
G

N
a
p

A

N
a
p

B

N
rf

A

N
rf

B

N
rf

C
N

rf
D

N
ir

D

N
ir

B

F
ig

u
re

 1
.1



 5 

Figure 1.1 Anaerobic nitrate ammonification in the cytoplasm and periplasm of 

E. coli

Two pathways for nitrate ammonification via nitrite are present in E. coli. The first, 

cytoplasmic pathway includes the nitrate reductase A encoded by narGHI, which 

reduces nitrate to nitrite in the cytoplasm, and the soluble, cytoplasmic, NADH-

dependent nitrite reductase, NirB. Nitrate reduction by this pathway is coupled to 

energy generation by the expulsion of protons by NarGHI, however, NirB-

dependent nitrite reduction is not coupled to proton translocation. The second 

pathway reduces nitrate to ammonia in the periplasm via the nitrate reductase, Nap, 

and the c-type cytochrome nitrite reductase, NrfA. A third nitrate reductase 

homologous to NarGHI, NarZYW, is also able to reduce nitrate to nitrite in the 

cytoplasm.
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 subunit (Hackett and Bragg, 1983). The reduction of the haem group and the subsequent 

oxidation of the quinol pool leads to the expulsion of two protons (H+) into the periplasmic 

space, resulting in the generation of ∆p (Garland et al., 1975). This gradient of protons across 

the cytoplasmic membrane drives the production of ATP via ATPase (Garland et al., 1975). 

Electrons are then passed to a lower potential haem group in the γ subunit before eventually 

being passed, via two iron-sulphur centres in the β subunit, to the catalytic subunit, NarG. The 

large globular β-subunit contains 4 iron-sulphur centres, 1 [3Fe-4S] centre and 3 [4Fe-4S] 

centres. The two electrons, donated by the quinol pool and passed from the γ-subunit through 

the β-subunit, are donated to an iron-sulphur cluster present in the α-subunit, NarG. The 

electrons are then donated to a covalently bound molybdopterin cofactor that catalyses the 

reduction of nitrate to nitrite according to the following equation: 2H+ + NO3
- + 2e- � NO2

- + 

H2O. This coupling of nitrate reduction with the generation of ∆p allows E. coli to respire 

efficiently (fig 1.2).  

The nitrate reductase, NarZWY 

The second membrane-bound nitrate reductase, nitrate reductase Z (NRZ), is a 

homologue of the NarGHI and is thus termed NarZYW (Iobbi et al., 1987). This nitrate 

reductase shows considerable similarity to NarGHI and has been shown to have a similar αβγ-

subunit arrangement (Blasco et al., 1990). NarZYW has also been shown to contain a 

molybdopterin cofactor and an iron-sulphur centre in the α- subunit, similar to NarG (Blasco et 

al., 1990). The action of the two enzymes has been shown to be functionally similar by 

creating a protein ‘chimera’ by associating the β and γ subunits of NarZYW with the α-subunit 

of NarGHI to give an active and functional membrane bound nitrate reductase (Blasco et al., 

1992). Unlike the expression of the major nitrate reductase-encoding genes, narGHI, the 

expression of narZYW is insensitive to the presence or absence of oxygen or nitrate and is 

synthesised at a low level during exponential growth (Iobbi et al., 1987). However, this
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Figure 1.2. Electron transfer and nitrate reduction by the nitrate 

reductase, NarGHI

Electrons donated from NADH via the quinol pool are passed to the γ-subunit 

of the nitrate reductase A. These electrons are then transported via the two b-

type haems contained in the γ-subunit, through the iron-sulphur centres of the 

β-subunit to the molybdopterin cofactor of the catalytic α-subunit, NarG. 

Nitrate reduction to nitrite occurs in the cytoplasm and is coupled to the 

expulsion of 2H+ into the periplasm and the generation of ∆p.



 9 

expression is increased upon entry into stationary phase and is highly, but not entirely 

dependent upon the alternative sigma factor, RpoS, suggesting that this nitrate reductase might 

be synthesised to allow the bacterium to utilise nitrate under stress-associated conditions 

(Chang et al., 1999). 

The periplasmic nitrate reductase, Nap 

The third, soluble, nitrate reductase of E. coli is the periplasmic nitrate reductase, Nap. 

Although the chemical reduction of nitrate to nitrite is conserved, the structure of the protein 

and the mechanism of the reduction are considerably different. This protein is widespread 

among bacteria that inhabit vastly different environments in soil and sediment (Carter et al., 

1995), as well as in a number of denitrifiers, non-sulphur photosynthetic bacteria and 

enterobacteria (Potter et al., 2001). The periplasmic nitrate reductase is a molybdenum-

containing enzyme complex that is active in the periplasm of E. coli (Potter and Cole, 1999). 

All of the nap genes are encoded by the operon napFDAGHBC and are expressed in the 

presence of low levels of nitrate (Wang et al., 1999). The nap operon is followed immediately 

on the chromosome by the ccm operon, which encodes the machinery essential for c-type 

cytochrome maturation (Tanapongpipat et al., 1998). The catalytic subunit of Nap, NapA, has 

also been shown to contain an essential Mo-bis-MGD cofactor and a [4Fe-4S] iron-sulphur 

centre (Gates et al., 2003). The mechanism of nitrate reduction by Nap is not directly coupled 

to the generation of ∆p in E. coli and therefore it is suggested that Nap could fulfil a role in 

dissipating excess reducing power when growing on very reduced carbon substrates (Brondijk 

et al., 2004; Sears et al., 1997).  

One consequence of the anaerobic, cytoplasmic reduction of nitrate is the production of 

toxic nitrite, which quickly accumulates in nitrate-respiring bacteria (Cole, 1996). To counter 

this effect, the regulation of nitrate reductase A is coupled with the regulation of narK, which 

encodes a nitrite efflux protein that actively pumps nitrite out of the cell (Clegg et al., 2002; 
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DeMoss and Hsu, 1991). Alternatively, E. coli can reduce any nitrite present, whether nitrite is 

encountered as a side-product of nitrate reduction or free in the environment. 

The soluble cytoplasmic, NADH-dependent nitrite reductase, NirB 

As with nitrate reduction, E. coli has evolved two independent enzymes that are capable 

of the 6-electron reduction of nitrite to ammonia, nrfA and nirB (shown below).  

NO2
- + 6e- + 8H+ � NH4

+ + 2H2O 

This duplication is not a case of genetic redundancy as the enzymes are differentially regulated, 

mechanistically distinct and fulfil different physiological roles (Page et al., 1990; Wang and 

Gunsalus, 2000). The soluble cytoplasmic nitrite reductase, NirB, is a sirohaem-containing 

enzyme that can catalyse the 6e- reduction of nitrite to ammonia. NirB activity is dependent 

upon the coordinate oxidation of NADH, which donates the required electrons to NirB. The 

role of NirB is suggested to be the detoxification of accumulated nitrite during nitrate 

reduction, due to the coordinate regulation of nirB with narGHI in high levels of nitrate (Wang 

and Gunsalus, 2000). The regulation of nirB by oxygen and nitrate, via FNR and the two 

component regulators NarXL and NarQP, will be discussed later in the chapter. Due to the 

soluble, cytoplasmic nature of NirB, no membrane potential (∆p) is generated by the NADH-

dependent reduction of nitrite (Page et al., 1990).  

The periplasmic cytochrome-c nitrite reductase, NrfA 

The second membrane-bound, cytochrome-c nitrite reductase, NrfA, couples the 

reduction of nitrite with the oxidation of formate. The catalytic subunit of the Nrf reductase, 

NrfA, is dependent upon the coordination of 5 covalently-bound haem groups (Eaves et al., 

1998). The Nrf enzyme complex consists of a periplasmic facing, pentahaem c-type 

cytochrome (NrfA) clustered with a periplasmic pentahaem cytochrome (NrfB), a periplasmic 

iron-sulphur protein containing 4 [4Fe-4S] centres (NrfC) and a membrane-bound quinol 

dehydrogenase (NrfD) (Hussain et al., 1994). The reduction of nitrite by Nrf and the coordinate 
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oxidation of formate via the quinol pool leads to the generation of a proton gradient, 

conserving energy. 

Nitric oxide formation and nitrosative stress 

The production of endogenous nitric oxide in E. coli is generally attributed to the 

activity of both nitrite reductases, NirB and NrfA (Corker and Poole, 2003; Weiss, 2006). 

Nitric oxide is generated by the 1-electron reduction of nitrite according to the equation: NO2
- 

+ 2H+ + 1e- � NO. + H2O. E. coli may also encounter nitric oxide produced by other 

gastrointestinal bacteria as well as nitric oxide produced chemically from nitrite in an acidified 

environment (Benjamin et al., 1994; McKnight et al., 1997). The systems used by E. coli to 

remove or detoxify NO may also represent significant virulence factors in pathogenic strains as 

nitric oxide is also a key bactericidal molecule generated by macrophages to kill bacteria 

(reviewed by Fang, 2004).  

Nitric oxide is highly reactive and will react with other chemicals present in the cell to 

make secondary toxic intermediates as well as with metal centres, including iron, to form 

nitrosyl adducts. The iron-sulphur centres of metabolic enzymes, such as aconitase B and 

fumarase A, and iron-dependent transcriptional regulators such as FNR and Fur, can be de-

activated by nitric oxide by the formation of iron-nitrosyl adducts (Cruz-Ramos et al., 2002; 

D'Autreaux et al., 2004; Justino et al., 2007; Kennedy et al., 1997). Iron-sulphur centres 

involved in electron transport in respiratory chains seem unaffected by NO and it is possible 

that NO can bind only to iron-sulphur centres that are accessible at the active sites of enzymes 

with substrate channels. 

 The related reactive nitrogen species NO, NO- and NO+, all have unique chemistries 

and react differently in the cell (Hughes, 1999). Nitrosation of cellular components such as 

nucleotides and thiols involves the transfer of the nitrosyl cation, NO+. The nitrosyl cation is 

generated from NO in the presence of a metal ion or oxygen and can be transferred to a 
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nucleophile with a lone pair of electrons, for instance sulphur or nitrogen. Nitric oxide cannot 

nitrosate thiols directly in the absence of either oxygen or a metal ion (Pullan et al., 2007). 

Glutathione present in the cell can become nitrosated under specific conditions and will itself 

trans-nitrosate many cell components including thiols. Indeed, S-nitrosoglutathione or GSNO 

is often used as a source of nitrosative stress in investigations. However, the biological effects 

of these two compounds are likely to be different. Some evidence has been presented that 

shows decomposition of S-nitrosothiols, in the presence of thiols, leads to the generation of 

hydroxylamine and nitrous oxide (Arnelle and Stamler, 1995). This is particularly interesting 

as the source of cytotoxic hydroxylamine is not well understood and hydroxylamine produced 

enzymatically by the nitrite reductases, NirB and NrfA, is not thought to escape the active site 

before being reduced to ammonia (Jackson et al., 1981).  Nitric oxide can also react with 

superoxide radicals to produce the highly reactive and toxic product peroxynitrite (ONOO-) 

(Hughes, 1999). As NO and superoxide are made concomitantly by the innate immune 

response, the toxicity of peroxynitrite and the ability of bacteria to deal with it may be relevant 

to the pathogenicity of E. coli and other related species (Fang, 2004). 

Nitric oxide can also indirectly damage DNA and has been shown to be a potent 

mutagen in E. coli during nitrate metabolism (Weiss, 2006). During nitrosative stress 

conditions, it is thought that an unidentified endogenous DNA-methylating species, most likely 

a nitrosamine, is produced, leading to DNA damage (Taverna and Sedgwick, 1996). 

Endogenous N-nitrosamines have been shown to be produced from secondary amines and 

nitrite by resting E. coli B cells (Kunisaki and Hayashi, 1979). N-nitrosamines have also been 

shown to be potent DNA-methylating agents and a cause of increased carcinogenesis in rats 

(Swann and Magee, 1968). It is most likely that N-nitrosamines are the endogenous 

methylating species that cause DNA-damage when E. coli are exposed to nitrosative stress.  

The complexity of nitric oxide chemistry and the many toxic secondary reactive 

nitrogen species made from it (summarised in fig 1.3) mean that it is likely that E. coli would 
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Figure 1.3 Targets of NO and its fate. Taken from Pullan et al. (2007)

(Left panel) Unreacted NO appears primarily as nitrite after oxidation or as peroxynitrite

after reaction with superoxide. (Lower left panel) The detoxification mechanisms employed 

by enterobacteria involve primarily the aerobic conversion to nitrate by flavohemoglobin

(Hmp) and the one-electron reduction to the nitroxyl anion (NO–) catalyzed by 

flavorubredoxin (NorVW). (Right panel) The redox requirements for S nitrosation of thiols

(RS–) are met by transition metals (M) or O2. Transnitrosation (i.e., transfer of the NO group 

to R2S) is directed by nitrosation motifs and/or protein hydrophobic environments
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 need different enzymes and pathways to deal with and repair the diverse damage to many 

cellular components that would be caused by these reactive nitrogen species, as well as with 

the reactive nitrogen species themselves.  

Nitric oxide detoxification in E. coli by the flavohaemoglobin, HmpA 

To counter the toxicity of nitric oxide and related nitrosative stresses, E. coli has 

developed a number of systems that can reduce or detoxify nitric oxide or repair the damage 

caused by its action. In most cases, the synthesis of these systems is regulated by nitric oxide 

itself or by the presence of metabolic precursors such as nitrate (Browning et al., 2006; Poole 

et al., 1996; Tucker et al., 2005). Several systems for reducing or detoxifying nitric oxide have 

been characterised in E. coli. However, how the bacterium repairs damage caused by nitric 

oxide is less well understood.  

The three dimensional structure of HmpA has been resolved and characterised by X-ray 

crystallography. HmpA belongs to a family of ancient flavohaemoglobins that are well 

represented in both prokaryotic and eukaryotic phyla (Poole and Hughes, 2000). These proteins 

usually consist of an N-terminal haem-binding domain associated with a flavin-binding 

reductase domain, which together are functionally active (Hernandez-Urzua et al., 2003). 

HmpA was first implicated as a nitric oxide protection system when it was noticed that 

expression of HmpA was greatly increased in the presence of nitric oxide (Poole et al., 1996), 

an implication that was later confirmed by the increased sensitivity of a hmpA mutant strain of 

Salmonella enterica to a nitric-oxide releasing reagent (Stevanin et al., 2002). Aerobically, 

HmpA is able to convert nitric oxide to nitrate through dioxygenase activity (Hernandez-Urzua 

et al., 2003). HmpA is also able to reduce nitric oxide, in the absence of oxygen, to nitrous 

oxide (N2O) (Corker and Poole, 2003; Poole, 2005). However, the reaction rate of this 

reduction is very low and is unlikely to protect the bacterium from endogenously created NO 

during nitrite metabolism (Gardner and Gardner, 2002). 
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The hmpA promoter is repressed by active FNR, which binds over the -10 component 

of the hmpA promoter and inhibits RNAP binding (Poole et al., 1996). As described in later 

sections, FNR is de-activated by the presence of oxygen that degrades the co-ordinate iron-

sulphur centres of the FNR dimer. Through investigation of hmpA expression, a novel 

mechanism for FNR regulation by nitrosative stress was demonstrated. In this case the iron-

sulphur centres of the FNR dimer are attacked by nitric oxide, which leads to the de-repression 

of hmpA in response to the nitric oxide signal (Cruz-Ramos et al., 2002).  

The methionine biosynthesis regulator, MetR, has been implicated in the regulation of 

hmpA when the reactive nitrogen species S-nitrosoglutathione is present in the environment 

demonstrating a further level of complexity in the regulation of these stress responses. MetR 

binds to two operators in the hmpA promoter region and, when occupying both sites, represses 

transcription. The mechanism leading to the activation of MetR is thought to occur via the 

nitrosation of homocysteine (Hcy), the MetR cofactor. This leads to a depletion of Hcy and 

decreased levels of activated MetR resulting in the binding of MetR to only one of the operator 

sites, which is able to then activate hmpA (Membrillo-Hernandez et al., 1998). Furthermore, 

the hmpA promoter region has been identified as containing a functional NsrR-binding motif 

and has been shown to be under the control of NsrR, the regulator of nitrosative stress, by 

microarray analysis (Bodenmiller and Spiro, 2006; Filenko et al., 2007; Rodionov et al., 2005). 

Nitric oxide reduction by the flavorubredoxin and associated flavo-protein, 

NorVW 

An alternative nitric oxide protection system, a dedicated nitric oxide reductase (NOR), 

has also been identified in E. coli. This protein belongs to the A-type flavoprotein family which 

is widespread amongst prokaryotes. In contrast to the nitric oxide reductases of denitrifying 

bacteria, which contain haem-copper ligands, the NOR of E. coli has been shown to contain a 

non-haem di-iron active ligand (Gomes et al., 2002). The nitric oxide reduction system consists 

of the  flavorubredoxin NorV and an associated flavoprotein NorW, which together are able to 
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detoxify nitric oxide in anaerobic conditions through NADH-dependent NO reductase activity 

(D'Autreaux et al., 2005). The protein is able to reduce nitric oxide to nitrous oxide 

anaerobically at a much higher rate than that of HmpA (Gomes et al., 2002), making NorVW 

the most likely candidate for detoxifying nitric oxide created from nitrite metabolism.  

Expression of the flavorubredoxin and its associated flavoprotein, NorVW, has been 

shown to be absolutely dependent on the function of a novel nitric oxide responsive regulator, 

NorR, which is expressed divergently from the norVW promoter (Hutchings et al., 2002).  The 

expression of norVW is co-dependent on the NorR activator and sigma 54 (σ54). Transcription 

is totally abolished by mutation of norR (Gardner et al., 2003) showing an absolute 

requirement for NorR at the norVW promoter. Active NorR, which binds to three recognition 

sequences in the promoter region of norVW, is required to initiate transcription and has led to 

the proposal that active NorR functions as a trimer (Justino et al., 2005a). NorR was viewed as 

a unique transcriptional regulator in E. coli for its ability to respond directly to the inducer 

molecule, nitric oxide. However, as mentioned, NsrR may also represent an NO-sensitive 

transcription factor (Bodenmiller and Spiro, 2006; D'Autreaux et al., 2005). 

NorR is a three domain protein that contains a C-terminal helix-turn-helix DNA-

binding domain, an N-terminal iron-containing GAF domain and a central AAA+ domain, 

which exhibits ATPase activity. NorR has been shown to respond to the presence of NO via the 

non-haem mononuclear iron containing GAF domain, which reversibly binds nitric oxide and 

changes the conformation of the regulator. This allows for ATPase activity from the AAA+ 

domain and results in the isomerisation of σ54 and transcription activation (D'Autreaux et al., 

2005). This mechanism represents an unprecedented mechanism of NO-sensing via a mono-

nitrosyl iron interaction (D'Autreaux et al., 2005). The mechanism of NorR activation allows 

for expression of nitric oxide detoxification machinery in direct response to the presence of 

toxic nitric oxide without regulatory intermediates.  
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Nitric oxide reduction by the nitrite reductase, NrfA: an auxiliary role in 

detoxification 

Previously in this chapter, the c-type cytochrome NrfA has been described as a nitrite 

reductase that reduces nitrite to ammonia and produces the toxic side product nitric oxide 

during anaerobic respiration. However, in vitro studies have shown that the Nrf protein can 

also reduce nitric oxide at a higher rate at the same active site for nitrite reduction (Poock et al., 

2002; van Wonderen et al., 2008). The physiological role of NrfA in nitric oxide reduction has 

also been shown to be significant in vivo, by assessing the sensitivity of nrf mutant strains to 

NO (Poock et al., 2002). This study also assessed the reduction of nitric oxide directly by using 

an NO-specific electrode, and showed that nrfA contributes significantly to the rate of 

reduction of NO in intact cells (Poock et al., 2002). The authors postulated from this 

information and the manner in which nrfA is regulated, that NrfA could afford some respiratory 

protection from NO in oxygen-limited environments (Poock et al., 2002). 

The roles that NrfA, as well as HmpA and NorVW, play in nitric oxide detoxification 

are not yet fully understood. However, it is unlikely that these three systems are redundant and 

are most likely to fulfil distinct roles dependent on the exact environment the bacterium is in at 

any given time. 

The E. coli hybrid cluster protein, HCP 

The hybrid cluster protein of E. coli is highly expressed in cells growing anaerobically 

in the presence of nitrate or nitrite (Filenko et al., 2005; van den Berg et al., 2000). In E. coli, 

the gene encoding Hcp is co-expressed as a two gene operon with the NADH-dependent Hcp 

reductase, Hcr, in contrast with obligate anaerobic bacteria where hcr is absent (van den Berg 

et al., 2000). Due to the presence of Hcp in cells growing anaerobically on nitrate or nitrite, a 

role in reactive nitrogen processing has been proposed (Wolfe et al., 2002). In E. coli, the 

expression of Hcp is dependent on FNR, which binds to a site centered at position -72.5 with 

respect to the transcription start site. Initial investigations into the regulation of the hcp 
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promoter suggested that NarL and NarP enhanced the expression of the promoter in response to 

nitrate and nitrite. In vitro binding of NarL and NarP proteins to a site centered around -72.5 

with respect to the transcription start site was demonstrated (Filenko et al., 2005). However, 

recent unpublished data has shown that the apparent nitrate and nitrite regulation of phcp was 

actually dependent upon de-repression of NsrR, which binds to a site overlapping the -35 

promoter element, repressing transcription, and was independent of NarL or NarP (Filenko et 

al., 2007)(Dave Chismon, unpublished results).   

The hybrid cluster protein, previously known as the prismane protein, was first 

identified in the obligate anaerobic sulphate reducing bacteria, Desulfovibrio desulfuricans and 

Desulfovibrio vulgaris, and a crystal structure for these proteins was determined (Moura et al., 

1992; Stokkermans et al., 1992). The hybrid cluster proteins of the Desulfovibrio species were 

shown to contain two iron-sulfur clusters, one a standard [4Fe-4S] cubane cluster and the other 

an unusual [4Fe-2S-2O] cluster or ‘hybrid cluster’ (Stokkermans et al., 1992) (fig. 1.4). The 

hybrid-cluster protein of E. coli has been shown to contain the same [4Fe-2O-2S] cluster but 

only a [2Fe-2S] cluster in place of the cubane cluster (van den Berg et al., 2000). The Hcr 

protein expressed in E. coli was also shown to contain FAD and a [2Fe-2S] cluster as cofactors 

(van den Berg et al., 2000). In Salmonella enterica, the expression of hcp was shown to be up-

regulated in bacteria extracted from activated macrophages, suggesting that in this species HCP 

may be involved in nitrosative stress management (Kim et al., 2003). Finally, an in vitro study, 

using purified Hcp, showed that Hcp can reduce hydroxylamine to ammonia in a 1:1 ratio with 

a Km for hydroxylamine of ~25 mM at pH 7 and ~5 mM at pH 9 (Wolfe et al., 2002). Due to 

the apparent low affinity of Hcp for hydroxylamine, the physiological relevance of the 

hydroxylamine reductase activity of Hcp in vivo is still in question and was investigated during 

this project. 
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Figure 1.4 The structure of the hybrid cluster protein

The structure of the hybrid cluster protein purified from Desulphovibrio vulgaris. 

Both the coordinated cubane [4Fe-4S] and hybrid [4Fe-2O-2S] iron-sulphur 

centres are visible and labelled. Protein structural coordinates, accession number, 

1E1D, were downloaded from RSCB protein data base and modelled using 

PyMOL modelling software. 
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The bacterial RNA polymerase 

At every stage of production, the synthesis of protein from DNA can be regulated. 

However, for reasons of energy economy, the key step to be regulated is transcription 

(Browning and Busby, 2004). The key player in transcription of DNA to RNA in E. coli is the 

multiple subunit, DNA-dependent RNA polymerase (Browning and Busby, 2004). The core 

enzyme of RNA polymerase (RNAP) consists of two α-subunits, the large β and β’ subunits 

and a small subunit, ω, which is not essential for transcription initiation but is thought to bind 

β’ and assists in RNAP assembly (Darst et al., 1989; Minakhin et al., 2001). The core enzyme 

is competent for RNA synthesis from DNA but is unable to initiate transcription from 

promoters. In order for RNAP to recognise and bind the promoter, an additional subunit or σ 

factor must associate with the core-RNA polymerase to make the RNAP holo-enzyme (Burgess 

et al., 1969; Ishihama et al., 1973). The chromosome of E. coli encodes seven different σ 

factors that are functional under certain conditions dependent upon the environment that the 

bacterium is in (Gross et al., 1998; Ishihama, 1999). All E. coli sigma factors share common 

features with the exception of the sigma factor, σ54 (Merrick, 1993). The holo-enzyme is then 

able to recognise and bind to specific target DNA sequences and initiate transcription. E. coli 

encodes seven different sigma factors that compete for the RNAP core enzyme in response to 

different stimuli (Gruber and Gross, 2003). The major sigma factor or ‘house-keeping’ sigma 

factor is σ70, also referred to as σD, encoded by the rpoD gene. Sigma 70 regulates expression 

of around 1000 transcrpition units in E. coli (Ishihama et al., 1973). Each sigma factor 

recognises a different promoter sequence and activates transcription of different sets of genes. 

The four specific promoter elements that allow for promoter recognition by σ70 RNAP-

holoenzyme have been identified and include: the -10 and -35 elements, an extended -10 

sequence and an UP-element. The -10 and -35 elements, which are positioned 10 and 35 

nucleotides upstream of the transcription start site, are recognised by domain 2 and 4 of the 
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RNAP σ factor, respectively (Campbell et al., 2002). The consensus sequence of the -10 and -

35 elements have been determined and are TATAAT and TTGACA, respectively. The 

extended -10 sequence, which is found upstream of the -10 motif, consists of a TG doublet at 

positions -13 and -14 that is recognised by domain 3 of the σ factor (Barne et al., 1997). The 

fourth promoter element or UP-element, consisting of an AT-rich region of approximately 20 

bp, is found upstream of the -35 element and is recognised by the α-carboxy-terminal domain 

of the RNA polymerase enzyme (Gourse et al., 2000).  

The central dogma of transcription regulation is that the supply of RNA polymerase is 

limited. Many of the RNA polymerase complexes present in the cell are used continuously for 

the transcription of stable RNAs, meaning that the amount of RNAP free for transcription of 

the 4000-5000 protein-coding genes in E. coli is severely limited. For this reason the action of 

RNAP and the genes that it transcribes must be prioritised and directed to ensure that genes are 

expressed at the right time in response to a changing environment. Several factors regulate the 

distribution of RNA polymerase across the chromosome; these include promoter DNA 

sequences, chromosomal folding, competition for σ factors, small ligands and transcription 

factors (reviewed by Browning and Busby, 2004).  

Transcription factors 

Transcription factors are sequence-specific DNA-binding proteins that control the 

expression from target promoters. In most cases, transcription factors respond to an 

environmental signal that changes their DNA-binding affinity, allowing them to bind to 

specific target sequences and up- or down-regulate transcription (Browning and Busby, 2004). 

To date, around 300 transcription factors have been found to be encoded on the E. coli 

chromosome (Perez-Rueda and Collado-Vides, 2000). Many of these transcription factors 

regulate transcription at only one target promoter, while others have been found to alter the 

gene expression profile of a vast number of genes and are therefore referred to as global 
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transcription factors. Many E. coli transcription factors can function as both activators and 

repressors depending on the position at which they bind in the promoter region. Activation can 

occur by recruitment of the RNAP to the promoter region or by facilitating open complex 

formation. Alternatively repression can occur by several mechanisms including steric 

hindrance of RNAP, binding over or proximal to the promoter, DNA looping or repression by 

interfering with the interaction between RNAP and an activator, sometimes referred to as anti-

activation (Browning and Busby, 2004).  

Transcription activation 

Simple activation occurs at promoters by three distinct mechanisms (Browning and 

Busby, 2004). In Class I-activated promoters, an activator binds to a specific target sequence 

upstream of the -35 promoter element and the UP-element. Due to the flexible nature of the 

linker region of the protein that joins the α-carboxy-terminal domain and the α- amino-terminal 

domain of the RNAP, class I activators can bind at several distances with relation to the 

transcription start site. When bound in this configuration, the transcription activator can make 

contact with the RNAP enzyme. At class II activated promoters, the transcription factor binds 

to a specific target sequence, upstream of the -35 element but downstream of the UP-element 

or α-CTD binding sequence. In this case several contacts can be made between the 

transcription factor and the RNA polymerase. At class III dependent promoters, two or more 

transcription factors are required to bind to the promoter region and make several contacts with 

RNA polymerase (Busby and Savery, 2007). The best understood E. coli transcription factors 

are the cyclic-AMP receptor protein (CRP) and it homologue, the regulator of fumarate and 

nitrate reduction FNR. When FNR functions as a class I activator, it typically binds to a target 

sequence upstream of the -35 promoter element. When bound in this position, FNR makes 

specific protein-protein contacts with the proximally-bound α-CTD of RNAP (Barnard et al., 

2004; Lee et al., 2000; Williams et al., 1997). The region of FNR that makes contact with the 
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α-CTD of RNAP polymerase is termed activating region 1 (AR1) and is essential for 

transcription activation. At class II, FNR dependent promoters, FNR typically binds to a site 

centred at -41.5 with respect to the transcription start site. When bound at this position, FNR 

makes three specific protein-protein interactions with the proximally-bound RNA polymerase. 

The upstream half of the FNR dimer makes contact with the upstream-bound α-CTD of RNAP 

at AR 1 (fig 1.5) Two specific contacts are made between the downstream subunit of the FNR 

dimer and RNAP with AR2 of FNR contacting the α-NTD of RNAP and AR3 contacting 

domain 4 of the RNAP associated σ factor (fig. 1.5) (Li et al., 1998). The locations of 

activating regions 1, 2 and 3 on the FNR protein are similar to those found in the homologue, 

CRP. However, activating region 2 of FNR is not essential for class II activation by FNR and 

conversely, activating region 3 of CRP is not required for CRP-dependent class II activation 

(Li et al., 1998). 

The regulation of anaerobic respiration by FNR 

The transition from aerobic to anaerobic respiration is regulated at many operons by the 

global transcription factor FNR. No crystal structure of FNR has been published to date. The 

amino acid sequence of FNR has been shown to have considerable similarity with CRP, 

exhibiting a very similar C-terminus that contains a helix-turn-helix motif that directly contacts 

DNA in CRP (Shaw et al., 1983). However, the two proteins differ at the N-terminus, as FNR 

contains a cysteine rich N-terminal extension of which four cysteine residues are vital to its 

function (Green et al., 1993). The role of the cysteine residues, Cys20; Cys23; Cys29 and Cys122, 

is to co-ordinate an iron-sulphur centre at the N-terminus of the FNR monomer that facilitates 

the response to oxygen levels (Crack et al., 2008a). The iron-sulphur centre of FNR exists 

predominantly in two forms, namely a reduced [4Fe-4S]2+ in the active dimeric form of the 

protein, and an oxidised [2Fe-2S]2+ in the inactive monomeric form (fig 1.6). According to this 

information it has been suggested that equilibrium between the two forms exists, dependent on 

the oxygen concentration in the environment (Kiley and Beinert, 2003). The inter-conversion 
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Figure 1.5 Class I and Class II transcription activation by FNR in Escherichia coli

A. Class I activation. FNR binds to an upstream site, typically centered at position -61.5 and 

contacts the αCTD of RNA polymerase via AR1, activating transcription. 

B. Class II activation. FNR binds to a target proximal to the promoter –35 element and the bound 

activator interacts with the αCTD of RNA polymerase via AR1, the αNTD of RNA polymerase via 

AR2 and domain 4 of σ70 via activating region 3. The FNR dimer typically binds at a position 

centered at position -41.5.
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contacts the αCTD of RNA polymerase via AR1, activating transcription. 

B. Class II activation. FNR binds to a target proximal to the promoter –35 element and the bound 

activator interacts with the αCTD of RNA polymerase via AR1, the αNTD of RNA polymerase via 

AR2 and domain 4 of σ70 via activating region 3. The FNR dimer typically binds at a position 

centered at position -41.5.
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Fig. 1.6 Oxygen-sensing by FNR

In the presence of oxygen, FNR exists as an inactive monomer that is unable to bind 

DNA. When oxygen is depleted, the coordinated iron-sulphur centre of FNR is reduced 

to a [4Fe-4S] centre causing a change in conformation, allowing for protein 

dimerisation. As a dimer, FNR is able to bind DNA at specific target sequences and 

activate or repress transcription. During prolonged exposure to oxygen, the coordinated 

iron-sulphur centre can become completely degraded leading to inactive apo-FNR. 
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between the [4Fe-4S]2+ state and the [2Fe-2S] 2+ cluster occurs in two stages via a [3Fe-3S] 1+ 

intermediate, the first being a rapid oxygen-dependent step, the second a slower oxygen-

independent step (Crack et al., 2008a). Active FNR can also act as a repressor, switching off 

genes involved in aerobic respiration or fermentation as well as auto-repressing the fnr gene 

(Spiro and Guest, 1990).  

Some significant evidence has also shown that the function of FNR can be negated by 

the binding of nitric oxide to the coordinate iron-sulphur centre as an S-nitroso adduct (Crack 

et al., 2008b; Cruz-Ramos et al., 2002). FNR has been shown to repress the transcription of the 

gene encoding the NO detoxifying flavohaemoglobin, HmpA, by binding to a position centred 

around +5.5 in the hmp promoter, and this binding can be overcome with the addition of NO 

(Cruz-Ramos et al., 2002). The sensitivity of FNR to NO as well as oxygen has far-reaching 

implications for global gene regulation in response to nitrosative stress. 

The dual-acting, two-component regulators, NarXL and NarQP 

Many of the genes involved in anaerobic nitrate and nitrite respiration are co-regulated 

by FNR and two similar two-component regulator systems, NarQP and NarXL, that respond to 

the presence of nitrate and nitrite (Stewart, 1993). The Nar two-component systems conform to 

the model of a transmembrane histidine protein kinase (NarX/ Q) paired with a cytoplasmic 

response regulator (NarL/ P). In both cases, the histidine protein kinase (HPK) component 

auto-phosphorylates at a conserved histidine residue in response to an environmental signal, 

such as nitrate, expending ATP in the process (Cavicchioli et al., 1995). The HPK domain is 

then de-phosphorylated by the response regulator and the phosphate group is passed from the 

conserved histidine of the HPK to a conserved aspartate on the response regulator (Egan and 

Stewart, 1991). The phosphorylated active form of the response regulator is then able to bind 

DNA at specific target sites and alter expression from those promoters (fig. 1.7). 
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Figure 1.7 The dual-acting two-component regulators NarXL and NarQP

The dual-acting two-component regulators, NarXL and NarQP, activate and repress 

target promoters in the presence of nitrate and nitrite. The presence of nitrate or 

nitrite in the periplasm causes the sensor components NarX and NarQ to 

autophosphorylate. The phosphate group is then passed through a phospho-relay 

system to the DNA-binding components, NarL and NarP, which in turn bind to 

specific promoter sequences, enhancing or repressing transcription. The sensitivity 

and response of NarX and NarQ to the different anions, nitrate and nitrite, differs 

allowing for differential control of target promoters dependent upon the 

environmental signal.
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The sensor kinases, NarX and NarQ, show 32% identity and 68% similarity to each other with 

most of the highly conserved regions located in the cytoplasmic domains (Cavicchioli et al., 

1995). The periplasmic domains of the two sensor kinases are relatively dissimilar with the 

exception of a conserved, 17 amino acid region designated the P-box, which is almost identical 

in the two sensors (Cavicchioli et al., 1996). The P-box domain is essential to protein function 

and is proposed to detect nitrate and nitrite in the periplasm and modulate signal transduction 

to the response regulator through the cytoplasmic domain (Cavicchioli et al., 1996). Both NarX 

and NarQ contain two conserved histidines and one conserved asparagine, His399, His513 and 

Asn509 in NarX; His370, His484 and Asn480 in NarQ, which are vital for phosphorylation of NarL 

(Cavicchioli et al., 1995). Only His399 of NarX was necessary for NarL-phoshate 

dephosphorylation (Cavicchioli et al., 1995).  It is proposed that His399 and His370 of NarX and 

NarQ, respectively, are the site of autokinase activity in response to nitrate (Cavicchioli et al., 

1995). 

 It is generally accepted that NarX plays a key role in the differential response between 

nitrate and nitrite. NarX autokinase activity has been shown to be 100 times more sensitive to 

the presence of nitrate than nitrite (Lee et al., 1999).  In response to the presence of nitrate, 

NarX phosphorylates both NarL and NarP but in response to nitrite, NarX phosphorylates NarP 

while acting as a NarL phosphatase (Williams and Stewart, 1997). This leads to a differential 

gene expression in response to nitrate and nitrite, synthesising the enzymes best suited to utilise 

the available oxidants (Goh et al., 2005; Unden and Bongaerts, 1997). 

The response regulators, NarL and NarP are both 24 kDa proteins that share 44% 

identity and 64% similarity in their amino acid sequence. In response to nitrate in the 

periplasm, NarL and NarP can be phosphorylated by either NarX or NarQ and, once 

phosphorylated, can bind to DNA at specific target sequences (Egan and Stewart, 1991). NarL 

and NarP both contain a conserved aspartate residue, Asp59 in both proteins, which must be 

phosphorylated for the protein to bind DNA in vivo (Egan and Stewart, 1991). The solution of 
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the crystal structure of the response regulator, NarL, revealed that the tertiary structure of the 

protein consisted of the N-terminal receiver domain, the site of phosphorylation, which is 

folded into a five-strand β sheet flanked by five helices similar to that seen in the chemotaxis 

protein CheY (Baikalov et al., 1996). The C-terminal DNA-binding domain of the protein 

consisted of four compacted α-helices, two of which formed a helix-turn-helix motif, typical of 

DNA-binding proteins (Baikalov et al., 1996). The two functional domains are linked by a 13-

residue flexible tether that is not visible in the crystal structure. In the crystal structure, which 

resolved the non-phosphorylated form of the protein, the C-terminal domain is rotated against 

the N-terminal receiver domain in such a way that DNA binding would be negated (Baikalov et 

al., 1996). Investigations into changes in the NarL protein structure caused by phosphorylation 

indicated that when the conserved aspartate residue is phosphorylated, it triggers a change in 

conformation of the protein and a domain separation that allows for DNA binding at target 

promoters (Zhang et al., 2003) (fig1.8). 

Both regulator proteins (NarP/ L) bind to a heptameric DNA target sequence in the 

regulatory region of target genes. The heptameric binding sequence for both regulator proteins 

was shown to be TACXXYT, where X can be T or C, and Y can be A or C (Tyson et al., 

1994). However, NarP has been shown to only bind to target sites where the heptameric 

sequence is arranged in an inverted repeat conformation with a two bp spacer, also referred to 

as the 7-2-7 conformation, whereas NarL will bind to 7-2-7 sequences as well as other 

arrangements (Darwin et al., 1997). 

The differentiation between anions by the sensor kinases, NarX and Q, and the 

differential binding of NarL and P to target sequences allows E. coli to discriminate between 

oxygen alternatives and synthesise proteins of alternate metabolic pathways to utilize them. At 

the start of this project, all promoters known to be activated by either NarL or NarP were 

dependent upon co-activation by FNR. 
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Figure 1.8 Phosphorylation of NarL leads to domain separation that allows DNA binding

A. This figure shows a cartoon ribbon representation of the X-ray crystal structure of NarL (PDB 

code 1RNL) to a resolution of 2.40 Å. The protein is organised into two distinct domains joined 

by a flexible linker. The N-terminal receiver domain is folded into a 5-strand β-sheet surrounded 

by 5 α helices and contains the site of protein phosphorylation, Asp59. The C-terminal domain 

consists of four compacted α helices. In the unphosphorylated form of the protein the C-terminal 

is rotated against the N-terminal in such a way that DNA binding by the helix-turn-helix motif, 

formed by α8 and α9, would be inhibited.

B. This figure shows a theoretical structure of the phosphorylated form of NarL. When NarL 

becomes phosphorylated at Asp59, a domain separation is triggered, most likely through a hinge-

bending motion that leaves the distinct N and C-terminal domains in tact. This predicted 

conformation change was modelled by rotating the psi and phi bonds of Gly126 in the flexible 

linker, leading to domain separation. This figure was interpreted from the results of Zhang et al. 

(2003) using PyMOL modelling software.
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Regulation of transcription by the nucleoid associated protein, Fis 

The small DNA-binding protein, Fis, or the Factor for Inversion Stimulation, is one of a 

small family of DNA-binding proteins that aid in structuring the compacted E. coli 

chromosome (McLeod and Johnson, 2001). Unlike the eukaryotic equivalents, histones, the 

nucleoid associated proteins of bacteria form relatively unstable associations with DNA 

(McLeod and Johnson, 2001). Fis was identified as being an essential stimulus of DNA-

inversion catalysed by site specific recombinases in bacteriophage, Mu and P1 (Haffter and 

Bickle, 1987; Johnson and Simon, 1985). However, Fis has also been shown to have an effect 

on the structuring of the E. coli chromosome, DNA replication and, more recently, 

transcription regulation (Filutowicz et al., 1992; Ishihama, 1999; McLeod and Johnson, 2001). 

As with all nucleoid-associated proteins, Fis binds DNA non-specifically at high physiological 

levels but has been shown to bind preferentially to a core consensus sequence of 15 bp, reading 

GNtYAaWWWtTRaNC, where Y= C or T, W= A or T, R= G or A and N= any base. (Hengen 

et al., 1997). Depending upon the DNA sequence flanking the Fis binding site, the protein can 

contact up to 27 bp of DNA and introduce bends into the DNA structure ranging from less that 

50° to greater than 90° (Pan et al., 1996). The activity of Fis is regulated predominantly by the 

relative abundance of the protein in the cell at any given growth phase (McLeod and Johnson, 

2001). Fis levels during stationary phase are negligible but increase to between 25,000 and 

40,000 copies per cell during early exponential phase (Ali Azam et al., 1999). Fis levels are 

also affected by medium composition and are greatest in rich media (Ball et al., 1992). Fis has 

been shown to have a diverse role in the E. coli cell and controls the expression of several 

genes that encode enzymes required for anaerobic nitrate or nitrite reduction. The regulation 

ofthese genes will be detailed in later sections.  
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The regulator of nitrosative stress, NsrR 

Further complexity in the regulation of nitric oxide metabolism was uncovered in a 

recent computational biology study (Rodionov et al., 2005). The authors of this study used 

comparative sequence analysis of the upstream regions of the hcp gene (hybrid cluster protein), 

a gene known to be regulated by anaerobiosis and nitrate or nitrite. In the sulphur-reducing 

bacterium, Desulfovibrio vulgaris, the regulation of hcp is controlled by an FNR/ CRP-like 

transcription factor, HCR. However, no such regulator exists in E. coli.  By aligning the 

promoter regions of the hcp gene from several obligate anaerobic bacteria, a conserved 

palindromic consensus sequence was identified that was shown to be a candidate binding site 

for an unknown transcription factor (Rodionov et al., 2005). The consensus sequence, 

gATGyAT-(N5)-ATrCATc, was also reported in the promoter regions of hmpA, ytfE, and 

ygbA; genes that have been confirmed or implicated in nitric oxide stress management (Justino 

et al., 2005b; Rodionov et al., 2005). In addition to the sites identified in Rodionov et al 

(2005), a potential site has also been identified in the promoter of the operon of unknown 

function, yeaR-yoaG, and a 4-fold, NsrR-dependent repression effect was observed in a 

microarray analysis of the NsrR regulon (Filenko et al., 2007). It is suggested that the NsrR 

protein of E. coli is directly responsive to nitric oxide (Bodenmiller and Spiro, 2006). NsrR 

belongs to the Rrf2 family of transcription regulators that includes the iron-sulphur containing 

transcription regulator, IscR. The mechanism by which NsrR is able to detect nitric oxide has 

not been determined in E. coli but the sequence similarity to IscR and the presence of a number 

of conserved cysteine residues suggests that an iron-sulphur centre may be coordinated in the 

protein (Tucker et al., 2008). The NsrR proteins of other bacteria have been purified and 

analysed and it has been demonstrated that the proteins often coordinate an NO-sensitive iron-

sulphur centre of some form. The NsrR protein of the human pathogen, Neisseria gonorrhoeae, 

has been shown to contain an NO-sensitive [2Fe-2S] centre that binds NO, limiting the DNA-

binding activity of the protein to target DNA sites in vitro (Isabella et al., 2009). Similarly, the 
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NsrR protein of the Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis, have 

been shown to contain NO-sensitive [2Fe-2S] and [4Fe-4S] centres, respectively (Tucker et al., 

2008; Yukl et al., 2008). When the purified NsrR protein of Streptomyces coelicolor is exposed 

to exogenous nitric oxide the cluster is nitrosylated, resulting in the loss of DNA-binding 

activity in vitro (Tucker et al., 2008). It is likely that NsrR might be a global repressor of nitric 

oxide metabolism and its role in the regulation of genes that are known to be or implicated in 

nitric oxide stress management will be investigated during this study.  

The regulation of anaerobic respiration 

The major nitrate reductase, NarGHI, and the soluble, NADH-dependent nitrite 

reductase, NirB, are both expressed during anaerobic growth in the presence of high 

environmental concentrations of nitrate. The promoter of narGHI is dependent upon the 

binding of the global regulator FNR at a position centred around -41.5, where FNR functions 

as a class II activator, contacting RNA polymerase (Dong et al., 1992). Full activation of 

pnarGHI in response to nitrate is dependent upon phospho-NarL. The narG promoter region 

contains up to nine NarL operators arranged in two groups: one proximal to the transcription 

start site, around -80 and one distal, grouped around -200 (Dong et al., 1992; Li et al., 1994; 

Walker and DeMoss, 1994). However, only two of these NarL operators are absolutely 

required for full expression: a single heptamer centered at -195 and a single heptamer centered 

around -80  (Darwin et al., 1996). The activity of the narG promoter has also been shown to be 

dependent on the binding of the nucleoid-associated protein IHF (integration host factor), 

which binds in a position between -106 and -144 with respect to the transcription start site, in 

between the binding site of FNR and NarL. When bound in this position it is proposed that IHF 

introduces a bend in the DNA, which may bring the upstream bound NarL into closer 

proximity with the bound FNR (Schroder et al., 1993).  
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Similarly, the activity from the nir promoter is maximal during anaerobic growth in the 

presence of high concentrations of nitrate. Expression of nir requires the binding of FNR to a 

site centred at -41.5 and the binding of either phosphor-NarL or NarP to a proximal site centred 

around -69.5 with respect to the transcription start site (Browning et al., 2000; Jayaraman et al., 

1989; Tyson et al., 1993). Expression of nir has also been shown to be repressed by the 

nucleoid-associated proteins, FIS and IHF, which bind to sites centred around -142 (FIS I) and 

+23 (FIS II) and -88 (IHF I) (Browning et al., 2000). More recently a second site for IHF 

binding, centred around -115 (IHF II) and a third FIS site, centred around -97 (FIS III) have 

been identified and it was shown that FIS, IHF and FNR can all bind simultaneously to form a 

multi protein-DNA complex (Browning et al., 2004b). It has been postulated that the binding 

of NarL and NarP at the nir promoter is needed to overcome the repression caused by FIS and 

IHF, and that observed NarL activation is a result of the relief of the distortion of nucleoid-

protein structure, allowing for FNR-dependent transcription activation (Browning et al., 

2004b). Finally, nir expression is also regulated in response to catabolite availability by the 

Catabolite Repressor Activator protein, Cra, which represses the nir promoter in minimal 

medium (Tyson et al., 1997). This regulatory network ensures that Nir is synthesised only in 

rich medium in the presence of high environmental nitrate.  

The co-regulation of NarG and NirB by anaerobiosis and high nitrate strongly suggest 

that both enzymes are part of the same pathway to optimally reduce nitrate to ammonia. When 

high nitrate concentrations are available in the environment, NarG-dependent nitrate reduction 

would generate energy through the coupling of reduction with proton translocation, while NirB 

would reduce the toxic nitrite that would be generated by NarG, but would not conserve energy 

from nitrite reduction.  

The regulation of the periplasmic nitrate reductase, Nap, and the cytochrome-c nitrite 

reductase, Nrf are coordinated in a similar fashion. Both operons are maximally expressed 

during anaerobic growth in the presence of low levels of nitrate and nitrite. Regulation of the 
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nap promoter is dependent upon the binding of FNR at a position centered around -62.5, a site 

typical of class II activated promoters (Darwin et al., 1998; Wang et al., 1999). Maximal 

expression of nap is also dependent upon the binding of phospho-NarP to a 7-2-7 inverted 

repeat sequence found in an unusual position, -44.5, between the -35 promoter element and the 

upstream FNR (Darwin et al., 1998). NarP bound at this position is required for maximal 

promoter expression. The NarP homologue, NarL, is also able to bind to this heptameric 

inverted repeat sequence but represses transcription when bound at this position, leading some 

to postulate that NarP and FNR activate transcription synergistically and that NarL antagonizes 

NarP binding (Darwin et al., 1998). This means that nap can only be expressed when very low 

levels of nitrate or nitrite are available, as high nitrate would induce NarL activity. 

The promoter of nrf is also active under anaerobic conditions where nitrate and nitrite 

are available in limited concentration. As with other nitrate and nitrite reductases discussed, nrf 

expression is totally dependent upon FNR, which binds to a position centered at -41.5 with 

respect to the transcription start site, typical of a class II dependent promoter. The promoter 

also contains a number of NarL and NarP operator sequences, for which NarL and NarP bind 

with different affinities (Browning et al., 2005). A 7-2-7 inverted repeat sequence, an operator 

site for NarL and NarP, is situated upstream of the FNR binding site, centered around -74.5. 

The promoter region also contains several single heptamers that NarL binds with low affinity 

(Browning et al., 2006). In the presence of low nitrite or nitrate, NarL and NarP are 

phosphorylated and bind to the high affinity NarL/ P site in the nrf promoter, enhancing 

expression. However, in high concentrations of nitrate, NarL is phosphorylated and occupies 

the lower-affinity binding sites, repressing transcription (Wang and Gunsalus, 2000). 

Regulation at the nrf promoter is complicated by the binding of nucleoid-associated proteins, 

FIS and IHF, to the promoter. Current opinion is that IHF suppresses transcription when bound 

to a site centered around -54 with respect to the transcription start site, but that the promoter is 

insulated from the suppression effect of IHF bound at -54 by the binding of NarL or NarP to 
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the proximal site (Browning et al., 2006). In contrast to the expression of the alternative nitrite 

reductase, nir, expression from the nrf promoter is unaffected by Cra (Tyson et al., 1997).  

The regulation of nap and nrf, in response to anaerobiosis and low levels of nitrate, 

ensures that both enzymes are synthesized concomitantly. It is thought that the purpose of these 

enzymes is to scavenge any available nitrate and nitrite when it is available in low 

concentrations in the environment, and coordinate their reduction with the translocation of 

protons to conserve energy (Potter et al., 2001).  

As can be seen in the case of anaerobic nitrate and nitrite reduction, enzymes involved 

in similar pathways under similar environmental conditions are often regulated by the same 

transcription factors in response to the same environmental signals. This fact was exploited 

during this study to investigate the function of genes of unknown function that are regulated 

under specific growth conditions.  

The identification of genes implicated in nitrosative stress management by their 

regulation 

Over the last four years, several micro-array studies have attempted to define the 

number of genes that are expressed in response to nitric oxide or other compounds known to 

cause nitrosative stress such as S-nitrosoglutathione and nitrite (Constantinidou et al., 2006; 

Flatley et al., 2005; Justino et al., 2005b; Mukhopadhyay et al., 2004). Due to the different 

nature of each of these experiments, there were some discrepancies in the number and identity 

of the genes shown to be up-regulated. In all five of these independent studies, the expression 

of three genes, norV, norW and hmpA, was shown to be consistent. The products of these genes 

are known to be involved in nitrosative stress management (summarized in table 1.1). The 

expression of these genes under all conditions in which nitrosative stress can occur suggests a 

ubiquitous role for these proteins under all conditions tested. The fact that both HmpA and 

NorVW have been shown conclusively to reduce or oxidize NO under different conditions is 

consistent with the suggestion that despite the differences in the type of nitrosylative stress  
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Table 1.1 Genes up-regulated in response to different sources of nitrosative stress in 

independent microarray studies. 

 
Table 1.1 shows the up-regulation of genes in response to different sources of nitrosylative 

stress. The column, nitrite*, shows genes that were up-regulated by nitrite in a strain lacking 

functional FNR, indicating unusual regulation [4]. Genes in group 1 have been shown to be up-

regulated in all conditions of nitrosylative stress in two or more independent studies. Genes in 

group 2 have been shown to be up-regulated in response to pure nitric oxide and the source of 

endogenous NO, nitrite, by two or more independent studies. Genes in group 3 were shown to 

be up-regulated only in the presence of nitrite but in an FNR-independent manner. The studies 

summarized in this table and a brief description of the conditions they tested are: 

1. Transcriptional responses of E. coli to S-nitrosoglutathione under chemostat conditions 

(Flatley et al., 2005) 

2.  Transcriptional responses of E. coli to nitric oxide (Justino et al., 2005b) 

3.  Transcriptional responses of E. coli to nitrite and GSNO (Mukhopadhyay et al., 2004) 

4.  The FNR regulon of E. coli and the effect of nitrate and nitrite on expression 

(Constantinidou et al., 2006) 

5.  The transcriptional response of E. coli to nitric oxide under chemostat conditions 

(Pullan et al., 2007) 

  Up-regulation (√) in response to nitrosative stress    

  Source of nitrosative stress  

 Gene GSNO Nitric 
oxide 

Nitrite Nitrite* Reference 

Group 1 norV √ √ √ √ [1,2,3,4,5] 
 norW √ √ √ √ [1,2,3,4,5] 
 hmpA √ √ √ √ [1,2,3,4,5] 
 hcp-hcr √ √ √ √ [4,5] 
 ytfE √ √ √ √ [2,3,4,5] 
 ygbA √ √ √ √ [3,4,5] 
       

Group 2 yeaR  √ √ √ [2,4] 
       

Group 3 yibIH   √ √ [4] 
 ogt   √ √ [4] 
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applied in these experiments, NO is produced or present during the detoxification of all of 

these chemicals. 

 In addition to these three genes of known function, six genes of unknown function 

were also up-regulated in response to several types of nitrosative stress in two or more of the 

independent studies (table 1.1, group 2). These genes of unknown function include the 

‘prismane’ or hybrid cluster protein, Hcp, and its reductase, Hcr, which have long been 

associated with nitrosative stress and has been designated as a hydroxylamine reductase, albeit 

in physiologically irrelevant conditions (Kim et al., 2003; Wolfe et al., 2002). The most 

significantly up-regulated gene of unknown function in three out of four of the micro-array 

studies was ytfE. The protein, YtfE, and its gonococcal homologue, DnrN, have been shown to 

repair nitrosylated iron-sulphur centers in both metabolic enzymes and transcription factors, 

which will be discussed in more detail in the following sections (Justino et al., 2007; Overton 

et al., 2008). The final two genes of unknown function, whose expression was up-regulated in 

two or more of the micro-array studies, were the two-gene operon, yeaR-yoaG, and the 

predicted gene, ygbA. One significant aspect of the regulation of these two genes was the fact 

that up-regulation was highest in the presence of nitrite, a known source of nitric oxide, when 

expression in a strain lacking functional FNR was compared to the expression in the isogenic 

parent strain (Constantinidou et al., 2006). Several other genes were shown to be regulated in a 

similar way by this study but were not up-regulated in response to other sources of nitrosative 

stress (table 1, group 3). These include the operon of unknown function, yibIH, and the gene 

encoding the O6-alkylguanine transferase DNA repair enzyme, ogt (Constantinidou et al., 

2006). This raises three interesting possibilities: first, that these genes are regulated in a novel, 

FNR-independent mechanism in response to nitrate and nitrite; secondly, that the gene 

products are involved in a stress response when nitrosative stress is so severe that FNR has 

been deactivated; and thirdly, that the regulatory response, and the different array of genes 

expressed in response to these different sources of nitrosative stress, may indicate the existence 



 39 

of independent pathways for the detoxification of these very different reactive nitrogen species, 

and the different damage they cause in the cell including DNA repair. 

The response of the bacterium, UPEC (Uropathogenic Escherichia coli), the primary 

cause of urinary tract infections, to acidified nitrite have been investigated by micro-array 

analysis. In response to acidified nitrite, a source of exogenous NO, a group of genes were up-

regulated that included the genes of known function, norV, hmpA, ytfE,and hcp-hcr but more 

significantly, yeaR-yoaG (Bower et al., 2009). The transcript encoding yeaR has also been 

shown to be one of the top 50 genes up-regulated during urinary tract infection in bacteria 

isolated from human volunteers (Snyder et al., 2004). Exposure of UPEC bacteria to RNS 

enhances colonization of the host’s urinary tract and can therefore be considered as important 

to the pathogenicity of this pathotype (Bower et al., 2009). 

For these reasons, the regulation and physiological function of yeaR-yoaG and ogt, as 

well as further investigation into the physiological function of HCP, will be investigated.  

The role of YtfE in the repair of nitric oxide damaged iron-sulphur centres 

The ytfE gene has been shown to be expressed in response to nitrosative stress, as 

discussed previously. Recent investigation has shown that ytfE expression is repressed by 

NsrR, the regulator of nitrosative stress, and is predicted to be activated by NarL in response to 

nitrate or nitrite (Constantinidou et al., 2006; Filenko et al., 2007). Physiological study of YtfE 

has shown that it fulfills an essential role in repair of proteins that contain iron-sulphur centres, 

including the citric acid cycle enzymes, aconitase B and fumarase A, as well as the 

transcription factor, FNR, in diverse bacterial species (Justino et al., 2007; Overton et al., 

2008). How this protein functions and the mechanism by which it repairs Fe-NO adducts is not 

fully understood. It is possible that ytfE and other genes, such as yeaR-yoaG, that are regulated 

under similar environmental conditions could code for proteins involved in several parts of a 

single repair pathway for dealing with damaged iron-sulphur centers. Alternatively, they might 
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be involved in independent pathways, repair different damaged proteins or deal with the many 

side-products of NO chemistry discussed earlier.  

Aims of this project 

The aims of this project were to understand the regulatory response of E. coli to 

reactive nitrogen species and how the bacterium is able to deal with nitric oxide and the toxic 

secondary products generated from NO, and to repair the damage to cellular components that 

both NO and its derivatives can cause. Micro-array analysis has indicated that some of the 

genes implicated in nitrosative stress management may be regulated in a novel way, a necessity 

due to the effect of NO on essential transcription factors such as FNR. How these genes, in 

particular yeaR-yoaG and ogt, are regulated and the involvement of transcription factors such 

as FNR, NarL/P and NsrR at the yeaR-yoaG promoter was the main focus of this investigation.  

As has been demonstrated, the chemistry of nitric oxide and the damage it causes is 

complex and may involve several pathways for repair and protection. The regulation of the 

genes hcp-hcr and yeaR-yoaG, as well as ogt and yibIH, by environmental conditions where 

nitric oxide would be abundant has implicated them as being involved with one or several 

pathways for nitric oxide detoxification. The physiological function of these genes, in 

particular hcp-hcr and yeaR-yoaG, and the mechanism by which they function was investigated 

during this project in an attempt to understand the ability of E. coli to persist and grow under 

conditions of nitrosative stress. 
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Chapter 2 

Materials and methods 

Materials 

Suppliers 

Unless otherwise stated, all chemicals and media were supplied by Sigma Aldrich or 

Oxoid. Oligodeoxynucleotides were supplied by Alta Biosciences at the University of 

Birmingham. Restriction endonucleases, calf intestinal alkaline phosophatase, T4 DNA ligase 

and T4 polynucleotide kinase were purchased from New England Biolabs. PCR Supermix and 

glycogen were supplied by Invitrogen. Reverse transcriptase was supplied by Promega and 

RNAP holo-σ70 enzyme was purchased from Epicentre Biotechnologies. All radionucleotides 

were obtained from Perkin Elmer or MP Biomedical. DNase I enzyme was purchased from 

Roche and all pressurised gases were purchased from BOC Specialist Gases. All enzymes were 

used according to the manufacturer’s instructions and in the buffers provided by the supplier. 

Purified Fis protein, which was purified by the method described previously (Osuna et al., 

1991), was kindly donated by Professor Rick Gourse (University of Wisconsin).  

Media 

Lennox broth (LB) contained 20 g l-1 tryptone, 10 g l-1 yeast extract and 10 g l-1 NaCl. 

Minimal salts medium (MS) contained 30 mM KH2PO4, 60 mM K2HPO4, 7.5 mM (NH4)2SO4, 

200 µM MgSO4.7H2O, 2 mM trisodium citrate and was supplemented with 10 ml ammonium 

molybdate (1 mM), 10 ml sodium selenate (1 mM) and 10 ml of E. coli sulphur free salts per 

litre. The composition of E. coli sulphur free salts was: 0.3 M MgSO4
.7H2O; 50 mM 

MnCl2
.4H2O; 20 mM FeCl2

.6H2O and 5 mM CaCl2
.6H2O, supplemented with 20 ml of 

concentrated HCl per litre of distilled water. All medium was dissolved fully, adjusted to pH 

7.0 then sterilised by autoclaving at 121 °C and 15 psi for 15 min. Unless otherwise stated, 
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minimal medium was supplemented with 5% LB, 20 mM fumarate, 20 mM TMAO and 0.4% 

(v/v) glycerol as a carbon source.  

Solid medium 

Nutrient agar plates contained 28 g l-1 of nutrient agar (Oxoid) in distilled water. 

MacConkey lactose agar contained 40 g l-1 of MacConkey lactose agar dissolved in distilled 

water. LB agar contained 20 g l-1 tryptone, 10 g l-1 yeast extract, 10 g l-1 NaCl and 1.25% (m/v) 

bacteriological agar. All solid medium was autoclaved and cooled to 60 °C before the addition 

of antibiotics. Agar plates were prepared by pouring ~20 ml of cooled, molten agar into a 30 

ml petri dish and allowed to solidify at room temperature. Plates were stored at 4 °C for 4 

weeks and dried for 30 min. at 60 °C immediately prior to use. 

Antibiotics 

Stock antibiotics were added to solid and liquid medium to give the final working 

concentrations: 80 µg ml-1 ampicillin (Amp); 30 µg ml-1 chloramphenicol (Cm); 35 µg ml-1 

tetracycline (Tet) and 50 µg ml-1 kanamycin (Kan). Ampicillin and kanamycin were prepared 

by dissolving powdered antibiotic in distilled water and filter sterilising. Solutions were stored 

at 4°C for 4 weeks. Chloramphenicol was dissolved in 100% ethanol, filter sterilised and stored 

at -20°C for 4 weeks and tetracycline was prepared by dissolving in a 50% (v/v) solution of 

ethanol in distilled water, filter sterilised and stored at -20°C for 4 weeks.  

Buffers and solutions 

Buffers for β-galactosidase activity assay 

ONPG (o-nitrophenyl-β-D-galactopyranoside) was dissolved in ‘A buffer’ to give a 

working concentration of 13 mM. ‘A’ buffer consisted of 0.1 M K2HPO4 and 0.1 M KH2PO4 at 

pH 7. Assay buffer (Z-buffer) consisted of 10 mM KCl, 1 mM MgSO4.7H2O, 60 mM 

Na2HPO4, 30 mM NaH2PO4.2H2O supplemented with 2.7 ml β-mercaptoethanol per litre of 

distilled water, adjusted to pH 7.  
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Buffers for electrophoresis of DNA 

Stock 5X TBE was prepared in distilled water and contained 0.445 M Tris (pH 8), 

0.445 M boric acid and 10 mM EDTA. For agarose gel electrophoresis, a 5-fold dilution was 

made to give 1X TBE and for polyacrylamide DNA electrophoresis a 20-fold dilution was 

made to give 0.25X TBE. Agarose gels for DNA electrophoresis were prepared by dissolving 

0.8% type II agarose (Sigma) in 1X TBE and boiling gently in a microwave. DNA blue loading 

sample dye consisted of 0.025% (w/v) bromo-phenol blue, 10% (v/v) glycerol, 10 mM tris-HCl 

at pH 7.5 and 1 mM EDTA in distilled water. For polyacrylamide gel electrophoresis of DNA, 

a stock solution of  7.5% acylamide was made consisting of 125 ml 30% (w/v) acrylamide, 

0.8% bisacrylamide stock solution, 100 ml 5xTBE, 20 ml glycerol made up to 500 ml with 

distilled water. For a small gel 10 ml of the 7.5% acrylamide stock solution was mixed with 

100 µl ammonium persulphate and 10 µl TEMED (N,N,N’,N’,-Tetramethylethylenediamine) 

and poured between two spaced glass plates. 

Denaturing gel electrophoresis of proteins 

Precast NuPAGE Novex 4-12% Bis-Tris gels were purchased from Invitrogen and used 

in a XCell SureLock™ Mini-Cell system as per manufacturer’s instructions. SDS-PAGE 

loading buffer consisted of 2 g SDS, 20 ml glycerol, 5 mg bromphenol blue, made up to 92 ml 

using 0.1 x stacking gel buffer. Stacking gel buffer consisted of 1.25 M Tris, 1% (m/v) SDS 

and 5 ml l-1 TEMED adjusted to pH 6.8. Prior to use, 87 µl β-mercaptoethanol was added to a 1 

ml aliquot of loading buffer stock.   

Buffers for Coomassie staining of protein gels  

Coomassie stain solution contained 50% (v/v) methanol, 10% (v/v) acetic acid and 2 g 

l-1 Coomassie brilliant blue. Fast de-stain solution contained 40% (v/v) methanol, 10% (v/v) 

acetic acid and shrink solution consisted of 48% (v/v) methanol, 2% (v/v) glycerol. 
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Buffers for silver staining of protein gels 

All buffers for silver staining were supplied as part of the SilverQuest™ Silver Staining 

Kit supplied by Invitrogen. All buffers were used as per manufacturer’s instructions. 

Extraction and purification of nucleic acids 

Phenol/ chloroform was purchased from Fischer Scientific and was composed of a 

25:24:1 ratio of phenol, chloroform and isoamyl alcohol at pH 8.0. Ethanol was used at 100% 

and 70% by volume and kept ice-cold at all times. 

Buffers and solutions for electromobility shift assay 

FNR binding buffer, which was used for all electromobility shift assay binding 

reactions, consisted of 1 M potassium glutamate, 10 mM EDTA, 100 mM K2HPO4, 100 mM 

KH2PO4 at pH 7.5 and 500 µM DTT. Fix solution consisted of 10% (v/v) methanol and 10% 

acetic acid (v/v) in distilled water. DNA fragments were radiolabelled using [γ32P]-ATP:  3000 

Ci mmol-1, 10 mCi ml-1 (Perkin Elmer). Unincorporated radionucleotide was removed using 

G50 Sephadex, consisting of 5 g Sephadex G-50 (Pharmacia Biotech) autoclaved in 100 ml TE 

buffer. Sephadex was washed three times in 150 ml TE buffer and finally suspended in 50 ml 

TE buffer and stored at 4 °C until needed. 

Solutions for DNase footprints 

DNA fragments were radiolabelled using [γ32P]-ATP (7000 Ci mmol-1, 100 mCi ml-1) 

(MP Biomedical). Binding buffer for footprint reactions contained 20 mM Hepes pH 8.0, 5 

mM MgCl2, 50 mM potassium glutamate, 30 µg ml-1 herring sperm DNA, 0.5 mg ml-1 BSA 

and 1 mM DTT, dissolved in sterile water. DNase I dilution buffer contained 20 mM Hepes pH 

8.0, 7.5 mM MgCl2, 5 mM CaCl2, 25 mM potassium glutamate and 62.5 mM KCl dissolved in 

sterile water. Stop solution contained 0.3 M sodium acetate and 10 mM EDTA. Gel loading 

buffer consisted of 40% deionised formamide, 5 M urea, 5 mM NaOH, 1 mM EDTA, 0.025% 

bromophenol blue and 0.025% xylene cyanole dissolved in sterile water.  
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Buffers for potassium permanganate footprinting 

DNA fragments were radiolabelled using [γ32P]-ATP (7000 Ci mmol-1, 100 mCi ml-1) 

(MP Biomedicals). Binding buffer (10X) for footprint reactions contained 200 mM Hepes pH 

8.0, 50 mM MgCl2 and 500 mM potassium glutamate in a total volume of 20 µl per reaction. 

RNA polymerase was diluted to working concentration with transcription buffer containing 40 

mM Tris-HCl (pH 7.9), 10 mM MgCl2, 50 mM KCl and 1 mM DTT. Potassium permanganate 

solution was prepared fresh for each at a concentration of 200 mM. Reaction stop solution 

contained 3 M ammonium acetate, 0.1 mM EDTA and 1.5 M β-mecaptoethanol. Gel loading 

buffer consisted of 95% v/v deionized formamide, 20 mM EDTA, 0.05% bromophenol blue 

and 0.05% xylene cyanole FF. 

Buffers for Western blotting 

Transfer buffer contained 40 mM glycine, 50 mM Tris base and 5% (v/v) methanol, 

adjusted to pH 8.3. Tris buffered saline at ten times strength (10 x TBS) consisted of 200 mM 

Tris and 1.4 M NaCl, adjusted to pH 7.6. Blocking buffer contained 0.1 % (v/v) Tween-20 and 

5% (m/v) non-fat dry milk in 1 x TBS.  Wash buffer (TBS/T) contained 0.1% (v/v) Tween-20 

in 1 x TBS.  

Buffers for protein pull down and DNA-protein sampling experiments 

Extraction buffer consisted of 50 mM Tris (pH 7.5), 50 mM NaCl, 10% (v/v) glycerol, 

2 mM MgCl2, 200 µg ml-1 phenylmethylsulfonyl fluoride (PMSF) and 4 µg ml-1 pepstatin. One 

complete Mini EDTA-free protease tablet (Roche) was added per 10 ml extraction buffer. This 

solution was supplemented with 500 µg ml-1lysozyme, 0.2% (v/v) Tween-20 and 0.2% (v/v) 

Triton X100 after cells were resuspended. For DNA-sampling reactions 500 µg ml-1 RNAse 

was included, for protein pull downs 500 µg ml-1 RNase and 20 mg ml-1 DNase was included. 

Wash buffer contained 20 mM Hepes-Na (pH 7.4), 150 mM NaCl and 0.1% (v/v) Tween-20 in 

distilled water. Elution buffer consisted of 0.3 M NH4OH and 0.5 M EDTA (pH 8). Gel 
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loading dye consisted of 10 mM tris(2-carboxymethyl)phosphine-HCl (TCEP-SB) (Sigma). 

After heating samples, 50 mM iodoacetemide was added to the sample mixture. 

Buffers for de-staining, trypsinisation and FT-ICR mass spectrometry preparation 

For Coomassie stained gels, de-stain solution consisted of 50% (v/v) methanol and 100 

mM ammonium bicarbonate (ABC). For silver stained gels, de-stain solutions were supplied as 

part of the SilverQuest silver staining kit (Invitrogen) and used according to manufacturers 

instructions. Gel slice wash buffer contained 100 mM ammonium bicarbonate and 30% (v/v) 

acetonitrile in ultrapure water. Digestion buffer contained 50 mM ammonium bicarbonate and 

5-10 ng µl-1 porcine trypsin (Promega). Peptide extraction buffer contained 50% (v/v) 

acetonitrile and 0.1% triflouroacetic acid (TFA).  

Solutions for NADH-dependent nitrite reductase activity assay 

All buffers for the preparation of cell extract containing NirB and the assay of NirB 

activity contained 50 mM Tris HCl and 5 mM EDTA at pH 8 (TE). This buffer was 

supplemented with 5 mM ascorbate (TEA); 5 m M ascorbate and 1 mM NO2
- (TEA-NO2) ; 5 

mM ascorbate and 10 µM FAD (TEA-FAD) or 5 mM ascorbate, 1 mM NO2
- and 10 µM FAD 

(TEA-NO2
- FAD) dependent upon the requirements at each stage.  

Preparation of nitric oxide saturated water 

Pure nitric oxide gas was used to saturate a sealed vial of sterile distilled water, adjusted 

to pH 3 using HCl. The vial was first sparged with nitrogen to remove dissolved oxygen from 

the water. Nitric oxide gas was scrubbed first through a 2 M solution of sodium hydroxide to 

remove impurities and secondly through distilled water to remove aerosolised sodium 

hydroxide before entering the saturation vial. After exiting the saturation vial, excess nitric 

oxide was scrubbed through a 2 M solution of potassium permanganate to limit release into the 

atmosphere. The concentration of stock nitric oxide saturated water (NOSW) was 2 mM.   
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Bacterial methods 

Strains 

Bacterial strains used in this study are listed in table 2.1. Bacteria were purified by 

streaking to single colony on nutrient agar plates supplemented with appropriate antibiotics. 

Plates were incubated overnight at 37°C unless otherwise stated. Bacteria on plates were stored 

at 4°C for up to six weeks. For longer storage, 0.75 ml of an overnight liquid culture was 

mixed with 0.25 ml of a sterile 60% (v/v) solution of glycerol and stored at -70°C.  

Plasmids 

Plasmids used in this study are listed in table 2.2 and represented diagrammatically in 

figure. 2.1 to 2.9 

Growth of bacteria 

A single colony from a freshly streaked plate was used to inoculate 1 to 5 ml of LB, 

supplemented with appropriate antibiotics, and aerated vigorously at 37°C overnight. 

Growth experiments in the presence of nitrosative stress 

For measurement of the effect of nitrosative stress, 100 ml of minimal medium 

supplemented with 5% LB, 0.4% glycerol, 20 mM fumarate and 20 mM TMAO in a 100 ml 

conical flask was inoculated with 1% of an overnight culture. The culture was incubated at 

37°C without shaking until an optical density of 0.3 was reached, at which point the culture 

was stressed with either nitric oxide saturated water or hydroxylamine. The effect of nitrosative 

stress was monitored by the effect on growth compared to an isogenic, untreated culture. 

 β-galactosidase activity assay 

The substrate for the measurement of β-galactosidase activity was the colourless lactose 

analogue, ortho-nitrophenyl-β-galactopyranoside (ONPG), which is converted to the yellow 

product o-nitrophenol by the enzyme β-galactosidase. The bacterial strains used for the
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Table 2.1 All E. coli K-12 stains used in this study 

Strain Description Reference or source 

DJS100 Derivative of MG1656 engineered to 
express a 3xFLAG tagged NarL 
protein 

This study 

DJS101 JCB387∆narL-flag::KanR Transduce JCB387 to KanR with P1 
phage propagated on DJS100 

DJS102 ∆fnr::Cm
R
 ∆narL-FLAG::KanR 

derivative of JCB387 
Transduce JCB3911 to KanR with P1 
phage propagated on DJS100 

JCB1001 ∆fnr::CmR derivative of MG1655 (Browning et al., 2000) 

JCB387  E. coli RV ∆nir ∆lac (Page et al., 1990) 

JCB3871 ∆fis::StrR
 derivative of JCB387 (Wu et al., 2004) 

JCB38712 ∆fnr::CmR derivative of JCB3871 Transduce JCB3901 to CmR with 
phage P1 propagated on JCB3911 

JCB3875 ∆narP252::Tn10d(Cm) derivative of 
JCB387 

(Page et al., 1990) 

JCB3883 ∆narL derivative of JCB387 (Tyson et al., 1994) 

JCB3884 narL narP252::Tn10(Cm) derivative 
of JCB387 

(Tyson et al., 1994) 

JCB3886 ∆narX::KanR derivative of JCB387 Transduce JCB387 to KanR with 
phage propagated on JWK1213-1 

JCB38860 ∆fnr
S ∆narX::KanR derivative of 

JCB387 
Transduce ∆fnr

s to KanR with phage 
propagated on JWK1213-1 

JCB3887 ∆narQ::CmR derivative of JCB387 Transduce JCB387 to CmR with 
phage propagated on 
RK4353∆narZ::StrR ∆narQ::CmR 

JCB38870 ∆fnr
S  ∆narQ::CmR derivative of 

JCB387 
Transduce ∆fnr

s to CmR with phage 
propagated on RK4353∆narZ::StrR 
∆narQ::CmR 

JCB3888 ∆narX::KanR  ∆narQ::CmR derivative 
of JCB387 

Transduce JCB387 ∆narX::KanR  to 
CmR with phage propagated on 
JWK1213-1 

JCB38880 ∆fnr
S ∆narX::KanR  ∆narQ::CmR 

derivative of JCB387 
Transduce ∆fnr ∆narX::kan

R to CmR 
with phage propagated on 
RK4353∆narZ::StrR ∆narQ::CmR 

JCB3901 ∆nsrR::KmR derivative of JCB387 Transduce JCB387 to KanR with 
phage P1 propagated on JOEY 60 

JCB3902 ∆fnr::CmR derivative of JCB3901 Transduce JCB3901 to CmR with 
phage P1 propagated on JCB3911 

JCB3911 ∆fnr::CmR derivative of JCB387 Transduce JCB387 to CmR with 
phage P1 propagated on JCB1001 
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JCB39110 ∆fnr
S derivative of JCB387 ‘Cured’ chloramphenicol resistance 

of JCB3911 with pCP20  

JCB3983 ∆nsrR::KanR derivative of JCB3883 Transduce JCB3883 to KanR with 
phage P1 propagated on JOEY 60 

JCB3984 ∆nsrR::KanR derivative of JCB3884 Transduce JCB3884 to KanR with 
phage P1 propagated on JOEY 60 

JCB4983 ∆nsrR::KanR
 ∆fnr::CmR derivative of 

JCB3883 
Transduce JCB3983 to CmR with 
phage propagated on JCB3911 

JCB4984 ∆nsrR::KanR
 ∆fnr::CmR derivative of 

JCB3884 
Transduce JCB3984 to CmR with 
phage propagated on JCB3911 

JCB4999 RK4353∆hcp::cat (Filenko, N. PhD Thesis 2005 
University of Birmingham) 

JCB5000 RK4353∆hcp (Filenko, N. PhD Thesis 2005 
University of Birmingham) 

JCB5100 RK4353∆yeaR-yoaG::cat Constructed by Lesley Griffiths for 
this study  

JM109 lacZ recA Promega 

JOEY 60 araD139 (ara-leu) (codB-lacI) 
galK16 galE15 relA1 rpsL spoT1 

nsrR::KanR
 

(Bodenmiller and Spiro, 2006) 

JWK1213-1 ∆narX::KanR
 derivative of MG1655 H. Aiba 

MG1655lacI-

3xFLAG 
derivative of MG1655 engineered to 
express a 3xFLAG tagged version of 
LacI 

Dave Lee (University of 
Birmingham) unpublished data 

RK4353 E. coli K-12 ∆lacU169 ara139 rpsL 

gyrA 

(Stewart and MacGregor, 1982) 

XL1-Blue  recA1 endA1 gyrA96 thi-1 hsdR17 Stratagene 
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Table 2.2 All plasmids and promoter fragments used in this study 

Name Description Source 

Plasmids   

pACBSR-
DL1 

Derivative of pACBSR encoding the yeast 
meganuclease, SceI and the λ Red recombinase system 
(gam only) under the control of the ara promoter. 
Confers CmR (fig 2. 4). 

(Butala et al., 
2009) 

pCP20 Confers AmpR and CmR resitance and a temperature 
sensitive origin of replication. Expresses the FLP 
recombinase.  

(Cherepanov and 
Wackernagel, 
1995) 

pDJS901 The vector pRW902 carrying the yeaR100 promoter 
fragment for use in promoter DNA sampling 
experiments (fig 2.8) 

This study 

pDOC-F Encodes a 3 X FLAG tag and kanamycin resistance for 
use as a template for Datsenko and Wanner 
mutagenesis. Also contains Flp sites necessary for 
antibiotic ‘curing’ (fig 2.6). 

(Lee et al., in 
submission) 

pGEM-
Teasy©  

The vector was used for direct cloning of PCR products 
and blue/ white screening of recombinants. (fig 2.3)  

Promega 

pKD46 Encodes the bacteriophage lambda red recombinase 
system under the control of the arabinose inducible 
araBAD promoter. Encodes ampicillin resistance (bla). 
(fig 2.9) 

(Datsenko and 
Wanner, 2000) 

pRW50 Broad-host-range lacZ fusion vector for cloning 
promoters as EcoRI-HindIII fragments: contains the 
RK2 origin of replication and encodes TetR (see fig.2.1). 
Used for all β-galactosidase assays in this study unless 
otherwise stated (fig 2.1) 

(Lodge et al., 
1992) 

pRW902 Derivative of pRW50 modified in the linker region to 
contain 5-LacI operator sequences immediately 
upstream of an EcoRI- HindIII cloning site, flanked by 
SceI sites. Encodes TetR (fig 2.5) 

(Butala et al., 
2009) 

pSR High copy number pBR322 derivative, which carries the 
Lambda oop terminator. Used for cloning EcoRI-
HindIII promoter fragments for use in in vitro 

transcription reactions (ampicillin resistant) (fig. 2.2) 

(Kolb et al., 
1995) 

pYEAR100 The vector pRW50 carrying the yeaR100 promoter 
fragment cloned as a transcriptional fusion (fig 2.7) 

This study 
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Promoter 

Fragments 

(All EcoR1-HindIII fragments)  

ogt100 E. coli ogt promoter fragment carrying nucleotide 
sequences from -269 to +51 

(Squire et al., 
2009) 

ogt101 Fragment ogt100 carrying C to T, T to A, C to G and T 
to G mutations at positions -80, -77, 75 and -73 

Meng Xu (PhD 
Thesis) 

ogt102 Fragment ogt100 carrying C to G and T to C mutations 
at positions -84 and -73 

(Squire et al., 
2009) 

ogt104 Fragment ogt100 carrying T to G and G to C mutations 
at positions -51 and -40 

(Squire et al., 
2009) 

yeaR100 E. coli yeaR promoter fragment carrying nucleotide 
sequences from -294 to +96 

This study 

yeaR102 Fragment yeaR100 carrying A to C; T to A; C to T and 
A to T mutations at positions -20, -19, -18 and -17, 
respectively. 

This study 

yeaR200 Fragment yeaR100 carrying T to A; G to T; C to T and 
T to C mutations at positions -81, -80, -79 and -78, 
respectively. 

This study 
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EcoRI (1) HindIII(33)

pUC9

linker

trpBA

lacZ

lacY

lacAtrfA

trfB

oriV

tetR

pRW50
16.9 kb

Figure 2.1 Diagram of the lacZ fusion vector, pRW50

EcoRI-HindIII promoter fragments are cloned into the pUC9 linker (shaded grey) as 

operon fusions to the lacZYA operon (coloured blue), such that expression of the lac genes 

is dependent on the cloned promoter.  Also shown are the tetracycline resistance gene 

(tetR), the origin of replication (oriV), the plasmid replication genes trfA and trfB, and 

trpBA, which forms an operon with lacZYA.
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Figure 2.2 The multi-copy cloning vector, pSR

The figure shows a map of pSR-TB10, which carries an EcoRI-HindIII melR promoter 

fragment.  EcoRI-HindIII promoter fragments are cloned upstream of the lambda oop

terminator. pSR can be used in in vitro transcription reactions, in which transcription initiates 

at the cloned promoter and terminates at the lambda terminator, to produce a discrete 

transcript of a defined length.  Also shown are the RNAI gene, which produces a control 

transcript during in vitro transcription, the ampicillin resistance marker (ampR) and the origin 

of replication (ori).
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Figure 2.3 The high-copy number cloning vector, T-easy©

The plasmid pGEM-T Easy was used for cloning of PCR products for amplification, and blue/ 

white screening of recombinants. The plasmid is approximately 3 kb in size and carries an 

ampicillin resistance marker. The plasmid is supplied in a linear form with a β-galactosidase gene 

interrupted by a poly-linker with an oligo-dT tail on either end. This enable the direst cloning of 

PCR products with oligo-dA tails directly into the vector. The insertion of a PCR fragment causes 

an interuption of the plasmid-encoded lacZ gene allowing for the selection of transformants with 

correct insert through blue/ white screening. 
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Figure 2.4 The plasmid, pACBSR-DL1

A schematic representation of the DNA-sampling plasmid pACBSR-DL1, a derivative of pACBSR

available from Scarab Genomics (Butala et al. 2009). This plasmid encodes the yeast 

meganuclease I-SceI and the λ-Red recombinase gene, gam, under the control of an arabinose 

inducible promoter, para. The plasmid also encodes resistance to chloramphenicol. The araC gene 

encodes an activator of para. 

araC
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Figure 2.5 The DNA-sampling plasmid pRW902

A schematic representation of the plasmid pRW902, a derivative of pRW50 carrying a 

modified cloning region. The construct carries five LacI operator sites flanked on either 

side by a upstream of the cka promoter region, which is flanked by two target sites for 

the yeast meganuclease I-SceI. Promoters regions to be sampled are cloned into the 

EcoRI and HindIII restriction sites, replacing the cka promoter region.
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Figure 2.6 The template plasmid, pDOC-F, used for creating Flag-tag 

chromosomal mutations using the Datsenko and Wanner method

A schematic representation of the plasmid pDOC-F, encoding a 3 X Flag tag and a 

kanamycin resistance cassette. FLP recombinase sites are included either side of the 

Kan cassette to allow for ‘curing’ of the antibiotic resistance. The plasmid is used as a 

template for PCR generation of linear fragments. The flanking SceI meganuclease sites 

facilitate ‘gene gorging’ if Datsenko and Wanner mutagenesis is unsuccessful.  
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Figure 2.7 The yeaR promoter-lacZ fusion plasmid, pYEAR100

A schematic diagram of the lacZ-promoter fusion pYEAR100, constructed by 

cloning the yeaR100 promoter fragment into pRW50 as an EcoRI/ HindIII 

fragment at the multiple cloning site. The yeaR promoter fragment includes 

sequence from -294 to +96 with respect to the yeaR transcription start site and 

includes coding DNA from yeaR and the upstream gene leuE flanked by 

introduced EcoRI and HindIII sites.  This construct is used throughout this study 

for measuring yeaR promoter-driven expression of lacZ.
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Figure 2.8 The yeaR promoter DNA-sampling plasmid, pDJS901

A schematic diagram of the yeaR promoter DNA-sampling plasmid, pDJS901, 

constructed by cloning the yeaR100 promoter fragment into pRW902 as an 

EcoRI/ HindIII fragment at the multiple cloning site. This places the yeaR100

promoter fragment immediately downstream of 5 LacI operator and flaked either 

side by an SceI meganuclease site. This construct can be used for identifying 

unknown promoter-bound proteins using the DNA-sampling technique. 
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Figure 2.9 The λ Red recombinase encoding plasmid, pKD46

A schematic diagram of the plasmid, pKD46, which encodes the bacteriophage 

Lambda red recombinase system under the control of the arabinose inducible 

araBAD promoter. The plasmid encodes ampicillin resistance (bla) and 

contains the oriR101 origin of replication. The plasmid is used to recombine 

linear fragments of DNA into the E. coli chromosome.  
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determination of β-galactosidase activity were grown overnight in LB supplemented with the 

appropriate antibiotics as described previously. For aerobic growth, 50 µl of the overnight 

culture was used to inoculate 10 ml of fresh sterile LB in a 50 ml conical flask. Cultures were 

aerated vigorously until an optical density of 0.19 to 0.3 had been reached. For anaerobic 

growth experiments, the overnight culture was diluted 20-fold in either 10 ml of sterile medium 

in a test tube or 100 ml of medium in a 100 ml conical flask. For all anaerobic growth assays, 

the medium consisted of MS (minimal salts medium) supplemented with 5% LB, 0.4% 

glycerol, 20 mM fumarate and 20 mM trimethylamine N-oxide (TMAO) unless otherwise 

stated (Constantinidou et al., 2006). If nitrate or nitrite dependent activity was to be measured, 

the medium was supplemented with either 20 mM nitrate or 2.5 mM nitrite. Anaerobic cultures 

were grown until the desired optical density was reached, at which point 2 ml of culture was 

removed to a sterile test tube and lysed using 20 µl of 1% (w/v) sodium deoxycholate and 20 µl 

toluene. The lysates were then incubated at 37°C for 30 min. to evaporate the toluene. Between 

100 µl and 500 µl of each lysate was added to 2 fresh tubes per sample, containing the 

appropriate amount of Z-buffer to make a total volume 2 ml. The same amount of lysate was 

added to a third tube per sample, with the appropriate volume of Z-buffer to make the overall 

volume 2.5 ml, this tube was used as a control. The assay tubes were pre-warmed to 37°C 

before the reaction was initiated. The assay was started with the addition of 500 µl of pre-

warmed ONPG (13 mM) to the two assay tubes. The samples were mixed by vortexing and the 

time taken for a yellow colour to develop was recorded. Once sufficient yellow colour had 

developed the reaction was stopped with the addition of 1 ml of 1 M sodium carbonate, which 

raises the pH over pH 9 and deactivated the β-galactosidase enzyme. The OD420 of the control 

tube containing no ONPG was subtracted from the average OD420 of the two sample tubes. The 

activity of each lysate was then calculated using the following equation: 
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 β-galactosidase activity
650

420

.5.4

5.35.21000

ODxVtx

xDxxxOD
=  

Key:  

2.5 = the conversion factor to convert the OD650 of the bacterial culture to mg dry cell 

mass on the assumption that an OD650 of 1 corresponds to 0.4 mg dry cell mass. ml-1 

3.5 = Total assay volume 

4.5 = the molar extinction coefficient of ONP at 420nm 

D = Dilution factor if lsyate was diluted (for high activity lysates) 

OD420 = absorbance of the reaction at 420nm 

OD650 = the absorbance of the culture at lysis point measured at 650 nm 

t = time taken for yellow colour to develop (min) 

V = volume of lysate used (ml) 

 

Units are expressed as: nmol ONPG hydrolysed min-1 (mg dry cell mass) -1 

Large scale growth of bacteria 

For preparation of cytoplasmic extracts for the measurement of NirB dependent NADH 

oxidation, a large volume of cells was needed. A 5 ml overnight culture was transferred to 100 

ml of LB in a 500 ml conical flask per strain, which was aerated at 37°C for 8 hours. 20 ml 

from each culture were used to inoculate 3 flasks per strain containing 2 l of LB supplemented 

with 0.4 % glucose (w/v) and 20 mM nitrate. These flasks were then grown at 37°C without 

shaking until an OD650 of 0.3 was obtained. At this point 2 flasks were treated with a specific 

concentration of hydroxylamine and the third was harvested by centrifugation at 1000 g for 5 

min. The pellet was mixed to slurry in an equal volume of TEA buffer and stored on ice. After 

2 hours a second flask per strain was harvested in the same way and the third flask per strain at 

5 hours post-stress. Once all pellets were harvested, resuspended and washed in TEA, bacteria 
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were again pelleted at 1000g for 5 min. before being mixed to slurry with an equal volume of 

TEA buffer. 

Preparation of cell extracts 

The bacterial slurry was broken in a French press pressure cell cooled to 4°C at a 

pressure of 60 Mpa (3.8 ton in-2). Cytoplasmic extract was separated by high speed 

centrifugation at 75000g for 2 hours in an 8 x 50 ml rotor of an MSE ‘superspeed 50’ 

centrifuge and decanted into clean test tubes. All fractions were kept at 4°C. 

Soluble protein quantification using the folin assay 

The soluble protein concentration was determined as described previously  (Lowry et 

al., 1951). Under high pH conditions the divalent copper ion forms a complex with peptide 

bonds in which it is reduced to a mono-valent form. Monovalent copper ions and the radical 

groups of tyrosine, tryptophan and cysteine react with Folin reagent to produce an unstable 

product that becomes reduced to tungsten blue. Standards were 20, 40, 60, 80 and 100 µg of 

bovine serum albumin (BSA) solution. Cytoplasmic extracts were diluted by 10 and 100-fold 

and 50 and 100 µl of each of the dilutions were used to determine the total protein 

concentration. Samples were diluted to 0.6 ml with distilled water and assayed in duplicate, A 

3 ml sample of Folin B solution was added to each tube and the samples were mixed by 

vortexing. Samples were incubated at room temperature for 10 min. before 0.3 ml of Folin 

reagent was added to all tubes. Samples were well mixed and incubated for a further 30 min. at 

room temperature after which time the absorbance at 750 nm was determined. For the 

standards, a line of best fit was determined from the absorbance at 740 nM and the equation y= 

ax+ b was used to calculate the amount of protein where: y= the amount of protein, x= the 

absorbance at 750 nm and a and b are the regression co-efficient.  
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NirB-dependent nitrite reduction assay 

Nitrite reductase activities were assayed using the method described previously 

(Coleman et al., 1978). The reaction was initiated by pipetting 50 µl of cytoplasmic extract 

directly into a 1 ml cuvette containing 950 µl of TEA buffer supplemented with 0.25 mM 

NADH, 1 mM NAD+ and 2 mM NaNO2. The decrease in absorption at 340 nm was observed 

over time using a spectrophotometer and a calibrated chart recorder. The rate of NADH 

oxidation in the absence of nitrite was also calculated and subtracted from the assay rate to give 

the NirB dependent NADH oxidation rate. The rate of NADH oxidation was calculated using 

the following equation: 

NirB activity = 
ψε ××

××∆
E

VA
310

 

Where: 

∆A= rate of change of NADH absorption per min. 

V= volume of reaction in ml 

ε= Molar extinction coefficient of NADH 

E= volume of enzyme added 

Ψ= protein concentration of cytoplasmic extract (mg ml-1) 

Units are expressed as nmol NADH oxidised min-1 mg cytoplasmic protein extract-1 

Creation of MG1655narL::3xFLAG tagged strain using Datsenko and Wanner 

chromosomal mutagenesis 

A chromosomal C-terminal narL::3xFLAG tagged mutant with a selectable kanamycin 

resistance cassette was constructed using a modified version of the Datsenko and Wanner 

(Datsenko and Wanner, 2000). The plasmid pDOC-F (fig 2.6) was used as a template to create 

a linear DNA fragment by PCR, using oligonucleotides DNarLFK fwd and DNarLFK rwd, 

listed in table 2.3. The upstream primer, DNarLFK, encoded the final 15 codons of narL 

excluding the stop codon followed immediately by the first codon of the 3xFLAG tag. The  
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Table 2.3 All oligonucleotide primers used in this study 

Primer Sequence (5’����3’) Purpose 

D10520 CCCTGCGGTGCCCCTCAAG Anneals upstream of the EcoRI site in 
pRW50. Used for sequencing and 
amplification of promoter inserts in this 
vector 

D36245 GGGTTATTGTCTCATGAGC
G 

Anneals upstream of the EcoRI site of pSR 
vector. Used for sequencing of inserts in this 
vector and dideoxy sequencing calibration 

D49724 GGTTGGACGCCCGGCATAG
TTTTTCAGCAGGTCGTTG 

Anneals 83 bp downstream of the HindIII 
site of pRW50. Used for synthesis of cDNA 
for use in primer extension assay 

D66220 CTGGATATCACCGAAAGCA
C 

Anneals to E. coli chromosome upstream of 
narL. Used to confirm introduction of 3xflag 
tag and kanamycin cassette onto 
chromosome.   

D66221 CAATCCCGTCGCGTTGAGT
C 

Complementary check primer to D66220, 
anneals downstream of narL.  

DNarLFK 
fwd 

GAATTCGTGGAAGCAGCGG
TATGGGTGCATCAGCAGCG
CATTTTCGACTACAAAGAC
CATGACGGTG 

Complementary to final 15 codons of narL 
excluding stop codon and 22 bp of pDOC-F 
vector sequence. Used to create NarL-
3xFLAG tagged KanR derivative of MG1655 

DNarLK 
rwd 

GCTAGCCGATGCATTGTCA
AACGACGAACTGCGCTGGG
AACCGTAAATGAATATCCT
CCTTAGTTC 

Complementary to 45 bp of E. coli 
chromosome, immediately downstream of 
narL and 21 bp of pDOC-F vector. Reverse 
primer paired with DNarLFK fwd used to 
create  NarL-3xFLAG tagged KanR 
derivative of MG1655 

DSpyeaR 
for 

 

ACCTGTGAATTCGCGACGC
TGGAACTGGTG 

  

Primer pair designed to amplify the promoter 
region of yeaR and engineer EcoR1/ HindIII 

sites into 5’ and 3’ ends, respectively, for 
sub-cloning 

DSpyeaR 
rev 

GTGAACAAGCTTCAGAAAG
GCGTTGAGCGCG 

 

DYEAR102 
for 

CTAAAAAGTAACCAATAAA
TGGTATTTAAAATGCAAAT
TCATTGGCGTACCCTGAAA
CGGCTG 

Mutagenic primer designed to introduce 
mutations into the downstream half site of 
FNR 1 in the yeaR-yoaG promoter 

DYEAR102 
rev 

CAGCCGTTTCAGGGTACGC
CAATGAATTTGCATTTTAA

Complementary mutagenic primer to 
DYEAR102 for 
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ATACCATTTATTGGTTACTT
TTTAG 

DYEAR200 
for 

TCCTCCCTGATTCTTCGCTG
ATATGGATCCAAAAAGTAA
CCAATAAATGGTATTT 

Mutagenic primer designed to introduce a 
BamHI site at the position of FNR 2 in the 
yeaR-yoaG promoter 

DYEAR200 
rev 

TAAATACCATTTATTGGTTA
CTTTTTGGATCCATATCAGC
GAAGAATCAGGGAGGA 

Complementary primer to DYEAR200for 

T-easy 
FWD 

GACGTCGCATGCTCCCGC Primer designed to anneal upstream of the 
blunt-end cloning site of T-Easy for 
sequencing of ligated fragments. 
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downstream primer, DNarLFK, encoded 45 bp of the E. coli chromosome immediately 

downstream of the NarL stop codon and 21 bp of sequence homologous to the region of 

pDOC-F, downstream of the kanamycin resistance cassette. These plasmids were used with the 

pDOC-F plasmid to generate a linear fragment consisting of a region of DNA homologous to 

narL tagged to a 3xFLAG tag encoding region, followed by a kanamycin cassette and finally 

by a second region of DNA homologous to the sequence downstream of narL. This linear 

fragment was purified using a Qiagen PCR clean up kit, digested with DpnI overnight to 

remove methylated template DNA, checked for purity and quantified by electrophoresis on a 

0.8% agarose gel.  

An overnight culture of strain MG1655, transformed with pKD46, was used to 

inoculate two 10 ml aliquots of sterile LB in 50 ml conical flasks. These cultures were shaken 

vigorously at 30°C until an OD650 of 0.3 was reached. At this point the culture was split 

between 4 sterile test tubes. Three of the cultures were treated with 0.4% L-arabinose, the 

fourth was left un-induced as a control. Tubes were incubated at 37°C with vigorous shaking 

for 1 hour and cells were harvested by centrifugation at 13, 000 r.p.m for 1 min. The 

supernatant was discarded and pellets were resuspended in 1 ml of 10% (v/v) ice-cold sterile 

glycerol. This wash was repeated three times. After the final centrifugation, the supernatant 

was discarded and cells were resuspended in the residual glycerol (~30 µl). Approximately 200 

ng of the purified linear DNA fragment was added to three out of the four tubes, as described 

bellow, mixed gently and transferred to an electroporation cuvette. 

Tube Arabinose DNA 

1 + 200 ng of PCR product 

2 + 200 ng of PCR product 

3 + - 

4 - 200 ng of PCR product 
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 Cells were transformed by electroporation, transferred to sterile tubes containing 2 ml 

sterile LB and shaken at 37°C for 2 hours. Transformants were plated on nutrient agar 

supplemented with kanamycin and incubated overnight. Candidates were screened using 

primers D66220 and D66221, that were designed to flank the narL gene, and mutants were 

identified by size. Confirmed mutations were transferred back into the original strain, 

MG1655, and strains JCB387 and JCB3911 (JCB387∆fnr::Cm
R), by P1 transduction and 

selected for kanamycin resistance to eliminate the risk of secondary mutations introduced 

during mutagenesis. These strains were designated, DJS100, DJS101 and DJS102, 

respectively.  

Transfer of chromosomal mutations using P1 phage transduction 

E. coli phage P1 is able to infect bacteria and produce viral particles that contain host 

DNA in place of viral DNA. This host-DNA-containing phage can then transfect other bacteria 

and, through homologous recombination with the recipient chromosome, transfer genetic 

information This makes them ideal vectors for the transfer of chromosomal mutations 

containing selectable markers between strains. Chromosomal mutations in isogenic strains 

were transferred to compatible strains to create double and triple mutants, using P1 

transduction and antibiotic selection. Donor mutants, carrying an antibiotic resistance marker, 

were aerated at 37°C overnight in 1 ml LB supplemented with 2 mM CaCl2. The next day, the 

culture was freshened by removing 0.5 ml of the culture and adding 0.5 ml fresh LB (2 mM 

CaCl2) and aerating at 37°C for 3 hours. During this time, Lennox agar was prepared, 

autoclaved, cooled to 58°C and supplemented with 0.2% (w/v) glucose and 2 mM CaCl2. 

While still warm, 1 ml of this agar was removed and added to sterile test tube containing 2 ml 

of pre-warmed LB (2 mM CaCl2), vortexed immediately and placed in a 30°C water bath. The 

remaining agar was then used to pour thick agar plates which were set but not dried. Stock P1 

was serially diluted from 10-1 to 10-6 in LB (2 mM CaCl2). Once donor bacteria were ready, 0.1 
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ml of diluted P1 was added to the 3 ml of agar in the water bath, followed immediately by 0.1 

ml of donor bacteria. The tube was then vortexed immediately and poured onto one of the agar 

plates to create a soft overlay of agar. This process was repeated for all dilutions of P1 to 

ensure a phage titre number that will give effective transduction without excessive bacterial 

lysis. Plates were then incubated at 37°C overnight and P1 was harvested by adding 2 ml of 

sterile LB (2 mM CaCl2) and homogenising the soft agar layer, containing grown bacteria. 

Bacterial slurry was mixed with 1ml of ice-cold chloroform in a cooled hand homogeniser. 

Once homogenous, the slurry was centrifuged at 8,000 g and the P1 containing supernatant was 

retained for transduction.  The recipient bacterium was then aerated overnight in 1 ml LB 

(CaCl2), after which time it was tipped into 20 ml of sterile LB (2 mM Cacl2) and aerated at 

37°C for 4 hours. When grown the recipient culture was separated into three sterile tubes, spun 

down to a pellet and re-suspended in 0.5 ml LB (2 mM CaCl2). To these three tubes were 

added either: 0.1 ml Undiluted P1, 0.1 ml 10-1 P1 or nothing to the control tube. The cells were 

then incubated at 37°C to allow for efficient infection, before the addition of 1 ml of sterile MS 

medium. Cells were spun down, supernatant discarded and re-suspended in 4 ml sterile MS. 

This process was repeated 4 times to ensure excess P1 was washed away. Finally, pellets were 

re-suspended in 2 ml LB and aerated for 1 hour before being pelleted once more and re-

suspended in 0.2 ml MS. The entire suspension was then plated onto a dry agar plate 

supplemented with appropriate antibiotics. Plates were incubated at 37°C overnight. After 

incubation candidates were selected and purified onto a second antibiotic plate, spread for 

single colonies, and grown overnight. Once grown the presence of the antibiotic resistance 

cassette was confirmed using PCR and primers designed specifically to flank the insertion site 

of the cassette in the target gene.   
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Preparation of competent cells of Escherichia coli  

Calcium chloride competent cells were prepared as described previously  (Maniatis, 

1983).  A single healthy colony was used to inoculate 1 ml of sterile LB in a test tube. This 

tube was aerated overnight at 37°C unless otherwise stated. A 100 ml conical flask containing 

20 ml of sterile LB was then inoculated with 500 µl of the overnight culture and further aerated 

at 37°C for 3 to 4 hours. The bacteria were then separated in to two sterile centrifuge tubes and 

pelleted by centrifugation at 8, 000g for 3 min. The supernatant was discarded and the pellet re-

suspended in 2.5 ml of ice-cold, sterile 0.1 M CaCl2. Bacteria were then stored on ice for at 

least 20 min. before being  pelleted and re-suspended in a 100 µl volume of ice cold CaCl2. 

Competent bacteria were used for transformation straight away or stored in sterile microfuge 

tubes at -80°C until needed. Calcium chloride competent cells were used for transformations 

involving high-copy number plasmids with a high transformation frequency. For 

transformations involving low-copy number plasmids with low transformation efficiency, a 

modified protocol using rubidium chloride, available at www.Qiagen.com, was used. In this 

protocol cells were grown to an OD650 of 0.5, cooled on ice for 10 min and pelleted in two 10 

ml falcon tubes by centrifugation. The supernatant was carefully discarded and the pellets were 

resuspended in 3 ml per tube of ice-cold buffer TFB 1. The buffer TFB1 consisted of 100 mM 

RbCl, 50 mM MnCl2 30 mM potassium acetate, 10 mM CaCl2 and 15% (v/v) glycerol, 

adjusted to pH 5.8 and filter sterilised. The resuspended cells were incubated on ice for a 

further 90 min, collected by centrifugation and the supernatant was discarded. Pellets were 

carefully resuspended in 1 ml ice-cold TFB2, which consisted of 0.1 mM CaCl2 and 15% (v/v) 

glycerol, and separated into aliquots of 100-200 µl. Cells were ‘snap frozen’ in liquid nitrogen 

and stored at -80°C until needed.  

Transformation of Escherichia coli with plasmid DNA 

Competent cells were transformed with plasmid DNA by adding 1 to 3 µl of plasmid 

DNA to a 50 µl volume of competent cells and incubated on ice for 1 hour. Cells were then 
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heat shocked at 42°C for 2 min. to facilitate the uptake of DNA, followed by the immediate 

addition of 1 ml of sterile LB. Transformation mixtures were transferred to a sterile test tube 

and incubated at 37°C for one hour with vigorous shaking to allow expression of selective 

genes such as antibiotic resistance. The transformation mixture was then plated on agar plates 

supplemented with appropriate selective antibiotics.  

Deletion of ‘Datsenko and Wanner’ mutant antibiotic resistance cassette using 

pCP20 

All of the plasmids that are required to utilise this technique were kindly donated by 

Professor B. Wanner (Purdue University, Indiana). The antibiotic resistance gene carried by the 

strain to be cured was eliminated through transformation with the plasmid pCP20, which has a 

temperature sensitive origin of replication and encodes the FLP recombinase. Strains were 

transformed, as standard, but were selected on ampicillin containing plates grown at 30°C. 

Suitable candidates were selected, purified and re-grown at 42°C overnight to inhibit pCP20 

replication and thus eliminate it from the bacterium. After heat treatment single colonies were 

replica plated to test for the elimination of chromosomal cassette and plasmid encoded 

ampicillin resistance.  

DNA and RNA techniques 

Agarose gel electrophoresis of DNA or RNA 

DNA fragments of greater than 500 bp were separated by agarose gel electrophoresis. 

Agarose gels were prepared by dissolving 0.8% agarose (m/v) in TBE buffer and boiling 

briefly in a microwave. Gels were formed from liquid agarose using standard gel/well forming 

equipment and allowed to cool and set for 5 min. DNA/RNA samples were mixed in a 5:1 ratio 

with gel loading buffer and loaded into the gel. Gels were run in 1XTBE buffer supplemented 

with 0.5 µg ml-1 ethidium bromide at 100 V for 20-50 min. For analysis of RNA all agarose, 

sample buffers and TBE were prepared in DEPC treated water. Gels were visualised using a 

UV-transilluminator. 
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Polyacrylamide gel electrophoresis of DNA 

DNA fragments smaller that 500 bp were analysed using polyacrylamide gel 

electrophoresis. Polyacrylamide gels contained 7.5% (w/v) stock acrylamide, 4% glycerol and 

1 x TBE, and were polymerized by adding 0.01 volumes of 10% (w/v) ammonium persulphate 

and 0.001 volumes TEMED (N,N,N′,N′-Tetramethylethylenediamine). DNA samples were 

mixed in a 5:1 ratio with sample loading buffer and loaded onto the polyacrylamide gel. Gels 

were run in 1 x TBE at 30 mA for 20-30 min. then stained in a 0.5 µg ml-1 solution of ethidium 

bromide and visualised using a UV-transilluminator. 

Sequencing polyacrylamide gel electrophoresis 

For analysis of DNA footprint reactions and primer extension reactions, samples were 

seperated on thin denaturing 6% polyacrylamide sequencing gels (40 cm x 30 cm x 0.4 mm), 

prepared using the SequaGel sequencing system following the manufacturer’s instructions. 

Gels were pre-run prior to loading for 2 hours at 60 W in 1 x TBE buffer. DNA samples were 

denatured at 95°C for 5 min in loading buffer before being loaded on the gel and run in 1 x 

TBE at 60 W for ~2 hours. Gels were fixed using a solution of 10% (v/v) acetic acid and 10% 

(v/v) methanol for 10 min, transferred to filter paper and dried under vacuum at 80°C for 30 to 

40 min. Dried gels were visualised by exposing to a Fugi imaging phosphor screen, scanned 

using a  Bio-Rad Molecular Imager FX and analysed using QuantityOne software (BioRad). 

Phenol-chloroform extraction 

In order to remove protein contamination, DNA samples were treated with an equal 

volume of phenol-chloroform, vortexed for 15 seconds and centrifuged for 3 min. The aqueous 

layer that contains the DNA was transferred into a clean tube. Where the volume of DNA 

sample was less than 200 µl, a volume of water equal to that of the aspirated aqueous layer was 

added to the phenol-chloroform for back-extraction, and the tube was vortexed for 15 seconds 
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and centrifuged for 3 min. The second aqueous layer was extracted and combined with the 

aqueous layer from the first extraction. 

Ethanol precipitation of DNA 

A 10% volume of 3 M sodium acetate (pH 5.2) and 3 volumes of ice cold 100% ethanol 

were added to the DNA sample and the solution was incubated at -20°C for 30 min. or longer. 

After 15 min. of centrifugation at 4°C, the supernatant was removed and the pellet was washed 

in 1 ml of ice cold 70% ethanol and centrifuged for 10 min. The supernatant was removed and 

the pellet was dried for 10 to 15 min. in a vacuum dryer. The DNA pellet was resuspended in 

10 to 50 µl of sterile distilled water. 

DNA purification using a QIAquick PCR purification kit 

PCR products or restriction digestions were purified using the QIAquick PCR 

purification kit (QIAGEN) according to the manufacturer’s instructions.  

Extraction of DNA from agarose gels using QIAquick gel extraction kit 

DNA bands were excised from 0.8% agarose gels using a sterile scalpel under UV 

illumination. DNA was eluted using a QIAquick gel extraction kit following manufaturer’s 

instructions. 

Small scale extraction of plasmid DNA using QIAprep spin miniprep kit 

An overnight culture of a strain carrying the desired plasmid was grown in 2 ml of LB 

supplemented with appropriate antibiotics. Plasmid DNA was then extracted form the culture 

using the QIAprep miniprep spin kit following the manufacturer’s instructions. For low copy 

number plasmids, such as pRW50, 20 µl of elution buffer, pre-warmed to 50°C, was used to 

elute DNA from the column.  
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Construction of the EcoRI/ HindIII yeaR100 promoter fragment by polymerase 

chain reaction 

The intergenic region between yeaR-yoaG and the upstream gene leuE (yeaS) was 

amplified from MG1655 chromosomal template using colony PCR and primers, DSpyeaRfor 

and DSpyeaRrev (table 2.3). These primers introduced an EcoRI site and a HindIII site at the 5′ 

and 3′ end of the fragment, respectively. DNA products were purified using agarose gel 

electrophoresis on a 0.8% agarose gel and extracted using a Qiagen gel extraction kit following 

manufacturer’s instructions. Purified PCR products were digested with EcoRI and HindIII, 

purified using the QIAGEN PCR purification kit and quantified by gel electrophoresis on a 

0.8% agarose gel. The PCR fragment was also ligated directly into a T-easy (promega) vector 

and transformed into supplied super competent cells following manufacturer’s instructions. 

Cloning of promoter fragments into pRW50 

Promoter fragments were prepared by PCR as described above, digested with EcoRI 

and HindIII, purified by gel electrophoresis and extracted. Vector DNA was isolated from a 

transformant using a Qiagen mini-prep kit. Purified plasmid was digested with EcoRI and 

HindIII, treated with alkaline phosphatase and purified by phenol/chloroform extraction and 

ethanol precipitation. Insert DNA was ligated into EcoRI-HindIII digested vector using T4 

DNA ligase for 5 hours or overnight at 10°C. A 5 µl aliquot of the ligation mixture was used to 

transform competent cells prepared by the rubidium chloride method, as described, and 

selected on MacConkey-lactose agar supplemented with tetracycline. Candidates were 

screened for the presence of an insert by EcoRI/ HindIII digest and PCR using primers that 

flank the cloning linker. Candidates that showed a positive result for an insert were sequenced 

by the functional genomics centre operated by the University of Birmingham.   

Purification of total RNA using the RNeasy Mini kit (Qiagen) 

An overnight culture of the strain of interest was grown in 5 ml of LB medium 

supplemented with appropriate antibiotics. A 100 ml culture of MS medium supplemented with 
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5% LB, 0.4% glycerol and 20 mM nitrate was inoculated with 1 ml of the overnight culture 

and grown at 37°C without shaking until an OD of 0.4-0.5 was reached. At this point three 2.5 

ml aliquots of culture were mixed with 4.5 ml of RNA later (Ambion), incubated at room 

temperature for 5 min. and pelleted by centrifugation for 20 min. at 4000 rpm. The supernatant 

was decanted and the pellets were stored at -80°C until required. For RNA extraction, all 

pellets were resuspended in 200 µl of DEPEC-TE buffer containing 40 µg ml-1 lysosyme and 

incubated for 15 min. at room temperature. RNA was extracted from the cell lysates according 

to the manufacturer’s instructions.  

To remove all DNA contamination, RNA preparations were treated with 5 µl of Turbo 

DNase buffer and 1 µl Turbo DNase (Ambion) and incubated at 37°C for 30 min. After this 

time 6.1 µl DNase inactivating reagent was added and samples were incubated for a further 2 

min. at room temperature. Samples were centrifuged for 2 min. at 10, 000 rpm and the 

supernatant was transferred to a fresh tube. RNA concentration was determined using an 

Eppendorf Biophotometer. RNA samples were stored at -80°C. 

Polymerase chain reaction 

Polymerase chain reaction is used to replicate DNA between two short oligonucleotide 

primers using a thermostable DNA polymerase.  

Primers were synthesised by Alta Biosciences (University of Birmingham) and are 

listed in table 2.3. Primers were supplied as a dry solid and were subsequently resuspended in 

sterile distilled water to a stock concentration of 100 µM prior to use. For PCR reactions, 

Invitrogen supermix PCR mix was used according to manufacturer’s instructions. If plasmid 

DNA was used as a template, 3 µl of a 1 in 50 dilution of a mini-prep sample was used. For 

colony PCR a single colony was picked from an agar plate and resuspended in 100 µl of sterile 

distilled water. This suspension was then heated to 95°C for 10 min., centrifuged for 2 min. 

and 5 µl of the supernatant was used as a template. Each PCR reaction contained 40 µl PCR 
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supermix, 1 µl of each primer at 10 µM concentration, 5 µl of template and 4 µl sterile distilled 

water.  

The PCR reaction consists of three stages. The first stage uses high temperature to melt 

the template DNA and separate the two strands (denaturation). The second stage involves 

cooling the reaction to a temperature optimal for primer binding (annealing). Thirdly the 

temperature is increased to the optimal temperature for DNA polymerase activity and the 

template strand is replicated (elongation). This cycle is repeated 30 times. For each reaction the 

optimal temperature for primer annealing was specific for each set of primers. To calculate the 

annealing temperature of each oligonucleotide the following equation was used. Tm= 64.9 + 

(G% + C%)*0.41-600/n, where G and C are the percentages of guanidine and cytosine in the 

oligonucleotide and n is the total length in nucleotides of the primer. For Invitrogen supermix 

polymerase the elongation temperature was 72°C.  A typical reaction programme for 

amplification of a 1 kb product using primers with a 56°C annealing temperature would be as 

follows: Step one, 95°C for 30 s for denaturing, 30 s at 54°C for primer annealing and 90 s at 

72°C for extension, repeated for 30 cycles. Step two would consist of a single cycle of 95°C for 

30s for denaturing, 30 s at 54°C for primer annealing and 10 min. at 72°C for final extension.  

DNA sequencing 

DNA was sequenced by the functional genomics suite at the University of Birmingham. 

Plasmid DNA was sequenced using a modified Sanger sequencing protocol using the BigDye® 

sequencer. This system incorporates fluorescent modified terminator nucleotides into a 

growing strand that is then separated by capillary electrophoresis. For sequencing templates 6.8 

µl of plasmid miniprep was mixed with 3.2 µl of 1 µM sequencing primer and submitted for 

sequencing. 
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QuickChange site-directed mutaganesis 

Mutations were made in plasmid DNA using the QuickChange site directed mutagensis 

kit (Stratagene). This method involves the use of inverse-PCR to generate plasmid DNA with 

the desired mutations incorporated. Oligonucleotides are designed to anneal to both strands of 

the plasmid DNA in the region to be mutagenised. The site to be mutagenised is incorporated 

in the primer surrounded by 10 to 50 nt of specific sequence that will anneal to the plasmid 

template. A PCR reaction with a total volume of 50 µl was set up to contain 10% (v/v) reaction 

buffer, 5-50 ng of plasmid template, 125 mg of each mutagenic oligonucleotide primer, 1 µl of 

dNTP mixture and 1 µl of Pfu Turbo DNA polymerase (supplied in the kit). The PCR reaction 

was designed to the following parameters. Step one a single cycle of 95°C for 30 s for 

denaturing followed immediately by 18 cycles of 95°C for 30s for denaturing, 60 s at 54°C for 

primer annealing and 72°C for ‘X’ s, where x is equal to 2 min. per kilobase of plasmid 

template to be replicated. In each cycle the first step denatures the plasmid template, the second 

step allows oligonucleotide annealing and the third step allows for the entire plasmid to be 

copied, incorporating the mutagenic primers into the growing strand. 

Following the PCR reaction, the reaction mixture contained a mixture of non-

mutagenised template DNA and newly synthesised mutagenised plasmid. The reaction mixture 

was treated with the enzyme DpnI, which specifically digests the parental methylated DNA but 

does not digest the newly synthesised non-methylated plasmid, containing the desired 

mutation. E. coli strain, XL1-Blue ultracompetent bacteria, were then transformed with the 

treated DNA and the resultant transformants were selected and purified on agar plates 

containing the appropriate antibiotics. All mutagenic primers used in this study are listed in 

table 2.6. 

Restriction digest of DNA 

Restriction enzymes were used to cut DNA at specific target sites according to the 

manufacturer’s instructions. DNA was mixed with one unit of restriction enzyme and the 
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manufacturer’s buffer, appropriate for each enzyme. The restriction mixture was incubated at 

37°C for two hours. 

Treatment of restriction digests with calf intestinal alkaline phosphatase (CIAP) 

This enzyme helps to limit plasmid re-circularization during ligation by removing the 5′ 

phosphate group from the digested DNA molecule. After digestion with restriction enzymes, 

vector DNA was treated with 10 units of CIAP and incubated for 1 hour at 37°C. CIAP was 

also used to remove the 5′ phosphate group from promoter fragments to be used in 

electromobility shift assays and footprinting experiments following the same protocol. 

T4 DNA ligase 

This enzyme was used to ligate two pieces of digested DNA together by the formation 

of a phosphodiester bond between the 5′ phosphate of one strand and the 3′ hydroxyl group of 

the other strand. DNA strands to be ligated were incubated at 10°C for 8 hours or overnight 

with 1 unit of T4 DNA ligase and the appropriate buffer (supplied with enzyme).  

Radio-labelling of promoter DNA 

Promoter fragments to be used in electromobility shift assays were radio-labelled using 

T4 polynucleotide kinase (NEB) and radioactive γ-phosphate from [γ32P]-ATP (Amersham). 

Promoter fragments were prepared by digestion with appropriate restriction enzymes, treated 

with CIAP to remove the 5′ phosphate group of the digested fragment and purified by agarose 

gel electrophoresis and gel extraction. A reaction mixture containing 50 ng of purified 

promoter DNA, 1 µl of stock [γ32P]-ATP, 1 unit of T4 polynucleotide kinase, and 2 µl of 

appropriate buffer in a total volume of 20 µl was incubated at 37°C for 30 min. Unincorporated 

nucleotides were removed from the reaction mixture using a G50 Sephadex spin column (Bio-

Rad). 
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Protein purification and analysis 

Denaturing gel electrophoresis of proteins 

Protein samples were separated and analysed using NuPAGE 12% Bis-Tris pre-cast 

gels (Invitrogen). Cells were grown in conditions of interest, to an OD650 ~0.5, at which point 

500 µl of culture was harvested by centrifugation at 13, 000 r.p.m for 1 min and resuspended in 

a volume of sample buffer 50 x the OD650 (i.e. for an OD of 0.5, 250 µl of sample buffer was 

added). Pellets were heated to 95°C for 5 min., vortexed for 10 s, centrifuged for 15 s at 13,000 

rpm and loaded onto the gel. Gels were run following manufacturer’s instructions in an XCell 

SureLock electrophoresis system (Invitrogen) in 1 x MES SDS running buffer (Invitrogen) at 

140 V for approx 1 h. Gels were stained with either Coomasie stain or SilverQuest (Invitrogen) 

silver stain according to manufacturer’s instructions. For Coomassie staining, gels were 

incubated in Coomassie stain solution for 30 min with constant agitation and de-stained for 1 

hour with agitation in fast de-stain solution. Gels were soaked in shrink solution and dried 

between two sheets of cellophane.  

Western blotting 

Western blotting was used for semi-quantitative determination of specific cellular 

proteins such as NarL. Cultures were grown anaerobically in minimal medium supplemented 

with 20 mM fumarate, 20 mM TMAO, 2.5 mM nitrite and 0.4% glycerol as a carbon source. 

When cultures reached mid-exponential phase, the exact OD650 was taken and used to calculate 

the amount of sample buffer needed for lysis (OD650 x 50) before samples were harvested by 

centrifugation at 13, 000 rpm for 1 min. Pellets were resuspended in the appropriate amount of 

sample buffer, heated to 95°C for 5 min. then re-centrifuged for 1 min. at 13,000 rpm. Samples 

were then diluted 10 or 100 fold in sample buffer and loaded on a NuPAGE 12% Bis-Tris pre-

cast gels (Invitrogen). Gels were run following manufacturer’s instructions in an XCell 

SureLock electrophoresis system (Invitrogen) in 1 x MES SDS running buffer (Invitrogen) at 
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140 V for approximately 1 h. Gels were not stained at this point but were soaked for 10 min. in 

transfer buffer. Meanwhile, a piece of Hybond-ELC nitrocellulose membrane (Amersham 

scientific) and 8 pieces of filter paper, the same size as the gel, were soaked for 5 min. in 

distilled water then 5 min. in transfer buffer. Care was taken at all times not to touch the gel or 

membrane and forceps were used for all handling procedures. The gel, membrane and pre-

soaked filter paper were assembled in an XCell II blot module (Invitrogen) according to 

manufaturer’s instructions and all bubbles were carefully removed using a clean glass Pasteur 

pipette. The transfer module was filled with transfer buffer and run at 30 V for 3 hours at room 

temperature. Following transfer, the nitrocellulose membrane was washed twice in 25 ml of 1x 

TBS for 5 min and once in 25 ml blocking buffer for 1 hour at room temperature with constant 

shaking. The filter was washed three times for 5 min. in 25 ml of TBS/T with vigorous shaking 

then incubated overnight in a sealed polythene bag in 10 ml of blocking buffer containing an 

appropriate dilution of the primary anti-body (for mouse anti-NarL: 1 µl in 10 ml blocking 

buffer). After incubation, the membrane was washed 4 times for 5 min. in 25 ml TBS/T then 

incubated for 1 hour in a sealed bag in 10 ml blocking buffer containing an appropriate amount 

of the secondary HRP-conjugated antibody. The membrane was washed three times for 5 min. 

with 25 ml TBS/T with constant shaking, drained of excess solution and placed protein side up 

on a piece of polythene wrap. Secondary antibody binding was visualised using the Amersham 

ECL Plus Western blotting detection reagents (GE Healthcare), as described in the 

manufacturer’s protocol, and imaged using autoradiography film and an X-ograph imager 

operated by the functional genomics suite at the University of Birmingham. 

Protein preparations 

The NarL-MBP protein fusion (maltose-binding protein) was purified and kindly 

donated by Dr Douglas Browning (University of Birmingham) following the method described 

previously (Li et al., 1994). Prior to use in all experiments the mature NarL was used after 
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MBP moiety had been cleaved from MBP-NarL using factor Xa (NEB). Purified NarL and 

NarP proteins were phosphorylated prior to use by incubating the protein with 500 µM acetyl 

phosphate for 30 mins at 37°C. The D154A FNR protein was prepared, purified and kindly 

donated by Dr David Lee following the method described previously (Wing et al., 2000).  

In vitro techniques 

Electro-mobility shift assay (EMSA) 

For each EMSA, a known concentration of either NarL or FNR protein was diluted in 

Hepes buffer (1 µg ml-1 BSA) and incubated for 30 min. at 37°C with 0.2 ng of P32-labelled 

promoter DNA, 1 µl FNR binding buffer, 1 µl of 50% (v/v) glycerol, 5 µg of BSA and 250 ng 

of herring sperm DNA in a final volume of 10 µl. In gel retardation experiments involving 

NarL or NarP, the proteins were pre-phosphorylated by incubating the protein for 30 min in 50 

mM acetyl phosphate (final concentration). After incubation, DNA-protein complexes were run 

in 0.25 X TBE (Tris/borate/EDTA; 1 x TBE = 45 mM Tris/borate and 1 mM EDTA) on a 6% 

polyacrylamide gel containing 2 % glycerol. Gels were run at a constant voltage of 12 V cm-1 

gel for approximately 2 hours.  

Following electrophoresis the gel was fixed with a solution containing 10% (v/v) 

methanol and 10% (v/v) acetic acid for 10 min. and vacuum dried on Whatman 3MM paper for 

30 min. The radio-labelled DNA fragments were visualised using a phosphor screen (Fuji) and 

scanned using Molecular Imager FX and QuantityOne software available at the functional 

genomics suite at the University of Birmingham.    

Mapping of transcription start site by primer extension 

The transcription start site of EcoRI-HindIII promoter fragments, cloned into pRW50, 

was determined using the primer, D49724 (table 2.3), which anneals 83 bp downstream of the 

HindIII cloning site of pRW50. Primer D49724 was end-labelled by mixing 0.5 µl of 100 µM 

primer with 1 µl of [γ32P]-ATP (Perkin Elmer) and 1 µl of T4 polynucleotide kinase (NEB) in a 
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final volume of 20 µl polynucleotide kinase buffer (NEB). After 30 min. incubation at 37 °C, 

the reaction was heated to 68°C for 10 min. to deactivate the enzyme.  

For preparation of mRNA, cultures of strain, JCB387, transformed with the plasmid, 

pYEAR100, were grown at 37°C without shaking in 100 ml of defined medium, in a 100 ml 

conical flask, supplemented with 0.4% (v/v) glycerol and 20 mM NaNO3. At mid-exponential 

growth phase, cells were mixed with RNA-later (Ambion), harvested by centrifugation and 

stored at -80°C. The mRNA was extracted using an RNAeasy kit (QIAGEN) following 

manufacturers instructions and the quality and concentration of mRNA was determined using a 

spectrophotometer. Between 20 and 30 ng of purified RNA was mixed with 1 µl of 32P-labelled 

primer and ethanol precipitated by adding 10% volume of 3 M sodium acetate (pH 7) and 2.5 

volumes ice cold 100% ethanol. Samples were incubated at -80°C for 10 min. to precipitate the 

RNA before the sample was centrifuged at 13, 000 rpm for 10 min. at 4°C and washed in 1 ml 

of 70% ethanol. The RNA primer mix was then pelleted by centrifugation at 13, 000 rpm. at 

4°C for 5 min. before being vacuum dried and resuspended in 30 µl of hybridization buffer by 

vortexing for 5 min. The hybridization mixture was incubated at 75°C for 15 min. then at 50°C 

for 3 hours to anneal the primer to the RNA template. After incubation, 75 µl of 100% ethanol 

was added, the solution was votexed and were incubated at -80°C overnight. The annealed 

primer/ RNA was pelleted by centrifugation at 13,000 rpm for 10 min., washed with 1 ml of 

70% ethanol and centrifuged at 13,000 rpm for 5 min. before being vacuum dried and 

resuspended in 30 µl RNase-free water. To this sample, 10 µl of 5 x reverse transcriptase buffer 

(Promega), 1 µl 50 mM DTT, 5 µl 10 mM dNTPs, 2.5 µl AMV reverse transcriptase (Promega) 

and 0.6 µl of Rnasin (Promega) were added and the reverse transcription reaction was 

incubated for 1 h at 37°C. The reaction mixture was heated to 72°C for 10 min. to inactivate 

the enzyme, before 1 µl of 10 mg ml-1 RNase was added and the sample was incubated for 30 

min at 37°C. After this time, 5 µl of 4 M ammonium acetate pH 4.8 and 125 µl cold 100% 

ethanol were added to precipitate the cDNA, and the solution was centrifuged at 13,000 rpm at 
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4°C for 10 min. The pellet was washed with 1 ml of cold 70% ethanol and centrifuged for a 

further 5 min. at 13,000 rpm at 4°C. The pellet was then completely dried under vacuum and 

resuspended in 4 µl of stop solution from the T7 sequencing kit (USB)  

From this reaction mixture, 3 µl of each primer extension reaction was loaded onto a 

6% acrylamide sequencing gel, together with 3 µl each of the G, A, T and C sequencing 

reactions prepared using the USB T7 sequencing kit as described in the next section. The gel 

was run at 60 W for approximately 2 h, then fixed for 10 min. in a 10% methanol, 10% acetic 

acid (v/v) solution. The gel was vacuum dried or 30 min. and exposed on a phosphor-screen 

(Fugi imaging) for 4 hours or overnight. The image on the phosphor-screen was visualised 

using Molecular Imager FX and QuantityOne software (Bio-Rad) available at the functional 

genomics suite at the University of Birmingham. 

Dideoxy chain termination DNA sequencing 

DNA sequencing reactions, used for the size calibration of primer extension gels, were 

prepared by dideoxy sequencing reactions using the USB T7 sequencing kit. Template plasmid 

(pSR) DNA was prepared using a Qiagen Miniprep kit. To prepare single stranded plasmid 

template, 15 µl of miniprep plasmid DNA was mixed with 15 µl of sterile water and 3 µl of 2 

M sodium hydroxide and incubated at room temperature for 15 min. The single-stranded DNA 

was precipitated by adding 3 µl of 5 M ammonium acetate, pH 4.8, and 75 µl of ice cold 

ethanol, incubating for 15 min. at -20°C and centrifuging at 13,000 rpm for 15 min. The pellet 

was washed with 1 ml of 70% ice-cold ethanol and centrifuged at 13,000 rpm at 4°C for a 

further 5 min. The pellet was dried under vacuum and resuspended in 10 µl of sterile water. 

The 10 µl single stranded DNA template was mixed with 2 µl 4 µM sequencing primer, 

D36245, and 2 µl annealing buffer (USB T7 sequencing kit), incubated for 20 min. at 37°C and 

cooled to room temperature for 10 min. Sequencing reactions were continued according to 

manufacturers instructions using [α32P]-dATD (Perkin Elmer) and the ‘read short’ conditions 
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described in the USB T7 sequencing kit. In a modification to the manufacturer’s instructions, 

12 µl of stop solution was added to terminate the reaction and sequencing reactions were stored 

at -20°C.  

DNase I footprinting 

A master reaction mix was set up containing, per footprinting reaction, 0.2 µl of a 400 

nM radiolabelled fragment, 2 µl of binding buffer, 1 mg ml-1 BSA in a total volume of 20 µl 

sterile distilled water. This solution was aliquoted into separate micro-centrifuge tubes. The 

appropriate protein dilution was pipetted into each tube and mixed by ‘flick-spinning’ before 

being incubated for 20 min. at 37°C. DNase I was added directly to the sample and mixed by 

gentle stirring for 15 seconds. The reaction was stopped by the addition of 200 µl DNase I stop 

solution and thorough mixing. Digested DNA fragments were extracted by the addition 200 µl 

phenol, vortexed for 15 seconds and centrifuged at 13,000 rpm for 2 min. Approximately 190 

µl of the aqueous layer was removed and placed in a fresh micro-centrifuge tube. This sample 

was treated with 1 µl of 20 mg ml-1 glycogen and 400 µl of ice-cold 100% ethanol, mixed well 

and incubated at -80°C for 15 min. The DNA was pelleted by centrifugation for 15 min. at 

13,000 rpm, washed with 1 ml of 70% ethanol and re-centrifuged for 10 min. at 4°C. All 

solutions were treated as radioactive waste and discarded appropriately. The pellet was dried 

under vacuum at 45°C and resuspended in 8 µl of DNase I loading buffer. All samples were 

heated to 90°C for 2 min. prior to loading 4 µl of each sample onto a denaturing 

polyacrylamide gel (6% acrylamide and 8% urea) and calibrated with the products of a 

Maxam-Gilbert ‘G+A’ sequencing reaction. Gels were run at 60 W for approximately 2 hours, 

fixed for 10 min. in a solution of 10% (v/v) methanol and 10% (v/v) acetic acid in distilled 

water and visualised by exposure to a phosphor-imaging screen (Fuji). Footprint images were 

analysed using Molecular Imager FX and QuantityOne software (Bio-Rad) available at the 

functional genomics suite at the University of Birmingham. 
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Potassium permanganate footprinting 

Potassium permanganate reaction mixtures were set up with the following constituents 

per reaction: 0.2 µl of end-labelled fragment; 2 µl of 10X hepes buffer, 1 µl 10 mg ml-1 BSA; 1 

µl 20 mM DTT and the appropriate concentration of protein(s) of interest to a final volume of 

20 µl. RNA polymerase was always added with a final concentration of 50 nM diluted in 

transcription buffer. Once the addition of protein had been made, reactions were incubated for 

30 min. at 37°C before the addition of 1 µl of freshly prepared 200 mM KMnO4 per tube and a 

further incubation for 4 min. at 37°C. The reaction was stopped with the addition of 50 µl of 

potassium permanganate stop solution and thorough mixing. Sterile water was added to make 

the total volume up to 200 µl, which was then added to an equal volume of phenol-chloroform 

and mixed well. The mixture was centrifuged for 3 min. at 13,000 rpm and the aqueous layer 

was removed and placed in a fresh microcentrifuge tube. DNA was extracted by ethanol 

precipitation by adding 400 µl of ice-cold 100% ethanol and 1 µl of 20 mg ml-1 glycogen and 

incubating at -70°C for 15 min. DNA was pelleted by centrifugation, washed with 1 ml of ice-

cold 70% ethanol and re-pelleted. The pellet was dried under vacuum and re-suspended in 40 

µl of 1 M piperidine. The reactions were incubated at 90°C for 30 min. before the addition of 

10 µl of 3M sodium acetate (pH 5.2), 1 µl of 20 mg ml-1 glycogen and 70 µl sterile distilled 

water. DNA was precipitated by standard ethanol precipitation and the pellet was resuspended 

in 8 µl of loading buffer. Fragments were separated by PAGE on a standard 6% Sequa-gel and 

were calibrated with the products of a Maxam-Gilbert ‘G+A’ sequencing reaction. Gels were 

run at 60 W for approximately 2 hours, fixed for 10 min. in a solution of 10% (v/v) methanol 

and 10% (v/v) acetic acid in distilled water and visualised by exposure to a phosphor-imaging 

screen (Fuji). Footprint images were analysed using Molecular Imager FX and QuantityOne 

software (Bio-Rad) available at the functional genomics suite at the University of Birmingham. 
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Preparation of Maxam-Gilbert ‘G+A’ sequencing reaction 

Radiolabelled AatII-HindIII promoter fragments were used to create ‘G+A’ sequencing 

ladders for the calibration of DNA footprinting gels. 3-4 µL of radiolabelled DNA were diluted 

with sterile distilled water to a working volume of 12 µl, treated with 50 µl formic acid, and 

incubated at room temperature for 90 s. The reaction was stopped by adding 200 µl of 0.3 M 

sodium acetate (pH 7.0) and 700 µl of ice-cold 100% ethanol and DNA was purified by ethanol 

precipitation and dried under vacuum as described earlier. DNA was resuspended in 100 µl 1 

M piperidine, vortexed well and incubated at 90°C for 30 min. DNA was purified by ethanol 

precipitation, resuspended in 20 µl of denaturing gel loading buffer, and heated to 90°C before 

loading 2 µl onto footprinting gels. All stages involving piperidine were carried out in a fume 

hood. 

DNA sampling experiments: Strain preparation and DNA-protein isolation 

E. coli strain MG1655 encoding a 3 x FLAG-tagged LacI was co-transformed with 

pDJS901 and pACBSR-DL1. A single colony of transformant was used to inoculate 1 ml of 

LB, which was grown at 37°C with shaking for 2 h then added to 2 l sterile pre-warmed 

minimal medium in a 2 l conical flask, supplemented with 20 mM fumarate, 20 mM TMAO, 

2.5 mM nitrite and 0.4% glycerol as a carbon source. This culture was grown at 37°C without 

shaking. When cultures reached an OD650 of 0.6, 0.4% l-arabinose was added to induce 

expression of the I-SceI meganuclease and the bacteriophage lambda Gam protein. Cultures 

were allowed to grow for 40 min post-induction before being harvested by centrifugation (15 

min, 8000 r.p.m, room temperature). Cell pellets were resuspended in 20 ml of extraction 

buffer (50 mM Tris-Hcl (pH 7.5), 100 mM NaCl, 10% (v/v) glycerol, 2 mM MgCl2, 0.1% (v/v) 

Triton X-100, 200 µg ml-1 phenylmethylsulfonyl fluoride, 4 µg ml-1 pepstatin and a Roche 

diagnostics EDTA-free protease tablet) supplemented with 300 µg ml-1 RNAse and 400 µg ml-1 

lysozyme. After 10 min incubation at room temperature, the mixture was cooled on ice and 
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sonicated for three periods of 30 s. Samples were centrifuged at 18,000 r.p.m for 20 min at 4°C 

to obtain a clear lysate. 

To obtain DNA-protein complexes the lysates were mixed with 25 mg of Dynabeads 

(M270-epoxy; Invitrogen) that had been previously cross-linked to mouse anti-FLAG antibody 

(F3165, Sigma), and incubated on ice for 10 min. Antibody conjugated Dynabeads were kindly 

donated by Dr David Lee, University of Birmingham. Dynabeads were then collected with a 

magnet, washed 5 times with wash buffer (see materials and methods) in 2 ml unsiliconized 

tubes (Eppendorf). DNA-protein complexes were eluted from the anti-FLAG antibodies by 

thorough mixing of the beads with 500 µl of elution buffer see materials and methods), which 

was then separated from the beads with a magnet and removed to a fresh tube. Samples were 

dried under vacuum, dissolved in SDS-PAGE loading buffer containing 10 mM tris(2-

carboxymethyl)phosphine–HCl (Sigma), heated at 95°C for 5 min and then alkylated by 

addition of 50 mM iodoacetamide (Sigma) for 30 min at room temperature. Proteins in the 

sample were resolved by SDS–PAGE in 4–12% gradient gels (Invitrogen), and visualized by 

SilverQuestTM silver staining (Invitrogen). The relative size and intensity of bands in each 

sample were compared to each other and standard Invitrogen SeeBlue Plus 2 protein markers.  

Excision of bands of interest, de-staining and trypsinisation 

To identify proteins of interest in SDS-PAGE gels, gel slices of approximately 1 mm 

were excised, placed in clean eppindorf tubes and destained using the de-stain solutions 

included in the SilverQuest silver staining kit. Gel slices were dehydrated for 10 min in 100 µl 

of 100 % methanol, partially rehydrated in 100 µl 30% (v/v) methanol for 5 min and washed 

twice in 200 µl of ultrapure water. Gel slices were then washed three times for 10 min with 100 

µl of wash solution containing 100 mM ammonium bicarbonate and 30% (v/v) acetonitrile. 

After the final wash gel slices were cut into small fragments (~1 mm2) and washed in 100 µl 

ultra pure water for 10 min. and dried in a SpeedVac for 30 min. Gel slices were resuspended 
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in 50 µl of digestion buffer (50 mM ammonium bicarbonate) containing 5-10 ng/µl porcine 

trypsin and incubated overnight at 37°C. To extract peptides, gel slices were centrifuged at 

maximum speed and the supernatant was carefully removed to a fresh eppindorf tube. 

Pepetides were extracted by adding 20 µl of 50% (v/v) acetonitrile containing 0.1% (v/v) 

triflouroacetic acid, incubating at room temperature for 20 min. Extract from this step was 

combined with the supernatant obtained from centrifugation and the sample was concentrated 

to 4-5 µl in a SpeedVac. Samples were then sent for analysis on a Thermo-Finnegan FT-ICR 

mass spectrometer using a NanoMate chip-based electrospray system operated by the 

functional genomics suite at the University of Birmingham.    

NarL-3xFLAG tagged protein pull-down 

A single colony of each strain carrying the chromosomal-encoded NarL-3xFLAG 

tagged protein was grown in sterile LB for 2 hours at 37°C with constant shaking. This culture 

was used to inoculate 2 l of sterile pre-warmed minimal medium in a 2 l conical flask, 

supplemented with 20 mM fumarate, 20 mM TMAO, 2.5 mM nitrite and 0.4% glycerol as a 

carbon source. Cultures were grown at 37°C without shaking overnight or until an OD650 of 0.5 

was reached. At this point cells were collected by centrifugation (15 min, 8000 r.p.m, room 

temperature). Cell pellets were resuspended in 20 ml of extraction buffer (50 mM Tris-HCl 

(pH 7.5), 100 mM NaCl, 10% (v/v) glycerol, 2 mM MgCl2, 0.1% (v/v) Triton X-100, 200 µg 

ml-1 phenylmethylsulfonyl fluoride, 4 µg ml-1 pepstatin and a Roche diagnostics EDTA-free 

protease tablet) supplemented with 300 µg ml-1 RNAse, 20 µg ml-1 DNAse and 400 µg ml-1 

lysozyme. Cells suspensions were lysed by sonification for 3 periods of 30 s and a clear lysate 

was obtained by centrifugation at 18,000 r.p.m for 20 min at 4°C. Lysates were then mixed 

with 25 mg of Dynabeads that had been pre-conjugated with anti-FLAG antibodies and NarL-

FLAG was isolated and eluted by the same method described for DNA sampling experiments. 

Extracted NarL-FLAG protein was separated by SDS-PAGE, silver stained, excised and 
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digested with porcine trypsin as described for DNA sampling. Peptides were extracted by 

adding 20 µl of 50% (v/v) acetonitrile containing 0.1% (v/v) triflouroacetic acid, incubating at 

room temperature for 20 min. Extract from this step was combined with the supernatant 

obtained from centrifugation and the sample was concentrated to 4 to 5 µl in a SpeedVac. 

Samples were then sent for analysis on a Thermo-Finnegan FT-ICR mass spectrometer using a 

NanoMate chip-based electrospray system operated by the functional genomics suite at the 

University of Birmingham.    
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Chapter 3 

Results 

Studies on the physiological role of the genes of unknown function hcp and 

yeaR-yoaG and their implication in nitrosative stress management 

Introduction 

During its life as a gastro-intestinal pathogen, E. coli will often come into contact with 

reactive nitrogen species, such as nitric oxide and other secondary products, that are highly toxic to 

the bacterium. Nitric oxide is produced by macrophages, as part of the host innate immune response 

to damage invading bacteria, produced endogenously by E. coli when respiring nitrite, generated by 

other bacteria that share its ecological niche, and generated chemically from nitrite in an acidified 

environment (Corker and Poole, 2003; Crawford and Goldberg, 1998; Fang, 2004).  Nitric oxide is 

highly reactive and can cause damage to many cell components including DNA, proteins and thiol-

groups (Arnelle and Stamler, 1995; Kunisaki and Hayashi, 1979; Sedgwick, 1997; Taverna and 

Sedgwick, 1996; Weiss, 2006). Nitric oxide also forms adducts with iron-sulphur centres, which 

constitute essential co-factors of many enzymes, electron transfer chains and the sensing 

components of transcription factors (Cruz-Ramos et al., 2002; D'Autreaux et al., 2002; Justino et 

al., 2007).  Several transcriptomic studies have identified a number of genes that are expressed in 

reponse to the presence of nitric oxide or nitric oxide related molecules, generated by degradation 

of NO-releasing products (Constantinidou et al., 2006; Flatley et al., 2005; Justino et al., 2005b; 

Mukhopadhyay et al., 2004; Pullan et al., 2007). A group of genes were identified by one of these 

studies as being upregulated by the presence of nitrate, which would be degraded via nitrite to 

generate nitric oxide, and were therefore implicated as candidate genes involved in nitrosative 

stress management. Two of the operons identified as being upregulated in conditions where 

nitrosative stress is likely were hcp-hcr, an operon encoding the hybrid cluster protein, Hcp, and its 

cognate NADH oxidoreductase, Hcr, as well as the operon of unknown function yeaR-yoaG. Both 
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of these operons were also identified as being regulated by the regulator of nitrosative stress, NsrR, 

which is thought to be a nitric oxide sensitive repressor (Bodenmiller and Spiro, 2006; Filenko et 

al., 2007; Partridge et al., 2009; Tucker et al., 2008).   

A possible role of the hybrid cluster protein in hydroxylamine reduction has previously been 

proposed. However, all reduction rates were calculated in vitro using purified Hcp (Wolfe et al., 

2002). The Km of Hcp for the substrate hydroxylamine was shown to be high in physiologically 

relevant conditions (~40 mM), which is clearly irrelevant in vivo as a concentration of 1 mM is 

sufficient to cause cell death (data not shown). Hydroxylamine is produced by the nitrite reductases, 

NirB and NrfA, as an enzyme-bound reduction intermediate during the 6-electron reduction of 

nitrite to ammonia (Jackson et al., 1981). However, whether this hydroxylamine escapes the active 

sites of the nitrite reductases is not known.  

In order to investigate the possible roles of the hybrid cluster protein and the products of the 

operon of unknown function, yeaR-yoaG, in nitrosative stress management, the growth 

characteristics of knock-out mutants for each of the genes was investigated during growth in the 

presence of both hydroxylamine and nitric oxide. 

Anaerobic growth of a hcp null mutant in alternative electron acceptors 

To characterize the role of Hcp during anaerobic growth and nitrosative stress, a 

chromosomal hcp-hcr deletion mutation was created by replacing the coding region of hcp-hcr 

with a chloramphenicol resistance cassette using the lambda red method described previously 

(Datsenko and Wanner, 2000). The ability of this mutant to grow anaerobically in the presence 

of alternative electron acceptors was compared to the parental strain, RK4353 (fig.3.1). When 

grown in minimal medium supplemented with fumarate, TMAO, DMSO or nitrate, alternative 

electron acceptors that E. coli can respire in place of oxygen, the hcp null mutant showed a 

slight anaerobic growth defect in all conditions. The defect was most pronounced during 

growth with fumarate as terminal electron acceptor. Surprisingly however, the growth defect  
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Figure 3.1 Anaerobic growth of the parental strain, RK4353, and a hcp null 

derivative, JCB5000, in the presence of alternative electron acceptors

An overnight culture of each strain was used to inoculate 100 ml of minimal salts 

medium supplemented with 5% LB, 0.4% glycerol and: A: 20 mM fumarate; B: 20 mM 

DMSO; C: 20 mM TMAO or D: 20 mM NO3
-. The cultures were incubated without 

shaking at 37°C and the growth of the  parental strain (RED) and the hcp null derivative 

(BLUE) was monitored for seven hours post inoculation. These data represent a typical 

result of three or more repeated experiments.
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was least pronounced in the presence of nitrate (fig. 3.1 D), when toxic nitrogen species are 

most likely to be produced. Due to the growth defect being present in all conditions, even when 

reactive nitrogen species are unlikely to be produced (fumarate, TMAO and DMSO), the defect 

was not attributed to an inability of the hcp mutant to deal with any reactive nitrogen species 

present in the medium.  

Nitric oxide inhibition of anaerobic growth rate in an hcp mutant 

Previous transcriptomic investigations have identified a putative role for the nitric oxide 

sensitive repressor, NsrR, in regulation of hcp-hcr transcription, implicating an involvement of 

the gene products of this operon in nitrosative stress management. Therefore, the effect of 

nitric oxide on the growth of the hcp-hcr mutant, JCB5000, was compared with that of the 

parental strain, RK4353. Both strains were grown anaerobically in the presence of alternative 

electron acceptors, TMAO and fumarate, before being treated with 0, 10 or 40 µM nitric oxide. 

The effects of nitric oxide on the parental strain and hcp mutant were compared by the decrease 

of the exponential growth constant, µ, due to the mutation (fig 3.2). The greatest inhibition of 

the mutant in comparison to the parental strain was in the presence of 10 µM NO, where the 

growth rate of the mutant was inhibited by ~45% compared to 25% in the parental strain. The 

growth inhibition of the mutant by 40 µM NO was approximately equal to that of the parental 

strain, probably due to the fact that at this concentration of NO the parental strain was almost 

fully inhibited as well. This result indicated that Hcp may have some role in dealing with nitric 

oxide or a secondary product caused by nitric oxide toxicity. 

The effect of hydroxylamine on the anaerobic growth yield of E. coli, with or 

without nitrite adaptation 

To assess the effect of Hcp on the growth yield of E. coli, the parental strain, RK4353 

and an hcp-hcr mutant, JCB5000, were grown anaerobically in the presence of 500 µM 

hydroxylamine (fig. 3.3). The addition of hydroxylamine caused a temporary growth inhibition 

of both strains. After 40 hours, growth of both strains was evident but the optical density of the 
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Fig. 3.3 Anaerobic growth yield of parental strain, RK4353, and the hcp mutant, 

JCB5000, after stress with 0.5 mM hydroxylamine with or without nitrite 

adaptation

In this and all subsequent experiments, unless otherwise stated, strains were pre-cultured 

overnight in LB medium at 37°C with aeration. A 5% inoculum of each strain was used 

to inoculate 10 ml of MS 5% LB supplemented with 0.4% glycerol, 20 mM TMAO, 20 

mM fumarate and 0.5 mM hydroxylamine (blue and burgundy). Half of the tubes were 

also supplemented with 2.5 mM nitrite (red and green). The growth of RK4353 (blue and 

red) and the hcp null derivative, JCB5000 (burgundy and green), was monitored for 66 

hours.  
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 parental stain was approximately double that of the mutant. Similarly, for all time points up to 

66 hours of growth, growth yield of the hcp mutant was lower than that of the parental strain, 

indicating greater sensitivity of the mutant to hydroxylamine. The slow growth of the parental 

strain and mutant strain when exposed to 500 µM hydroxylamine, a concentration 80-fold 

lower that the reported Km of Hcp for hydroxylamine, suggests that even this low concentration 

is sufficient to greatly inhibit growth and places more doubt on the significance of Hcp-Hcr in 

hydroxylamine reduction. Initial investigations into the regulation of the hcp promoter 

suggested that transcription of hcp was activated by nitrite, via NarXL (Filenko et al., 2005). 

However, more recent unpublished data has shown that the apparent up-regulation of hcp in 

response to nitrite is due solely to de-repression of NsrR and is independent of NarXL 

(Chismon, D unpublished data). In order to assess the effect of nitrite-dependent NsrR de-

repression on hydroxylamine resistance a tandem experiment was designed to pre-adapt the 

strains to nitrosative stress by including nitrite in the medium. The nitrite present should induce 

expression of hcp-hcr by activating NarL and de-repressing NsrR, leading to an increased 

resistance to hydroxylamine in the parental strain, if Hcp contributes towards hydroxylamine 

resistance. In the parental strain a greater growth yield at 40 hours indicated that nitrite 

adaptation did lead to an increased resistance to hydroxylamine stress. However, nitrite 

adaptation also led to an increase in hydroxylamine resistance of the Hcp mutant, indicating 

that there are other systems that are up-regulated by nitrite adaptation that enable E. coli to 

resist the toxic effects of hydroxylamine. 

The role of the Hcp in hydroxylamine resistance in sub-cultured bacteria 

Simple test-tube growth yield experiments, detailed above, showed that there was a 

long lag in the recovery of both the parental strain and the hcp mutant when grown in the 

presence of hydroxylamine. Small differences in the growth yield of the two strains at 40-hours 

post inoculation suggested that there might be a slight increase in the sensitivity of the hcp 
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mutant to hydroxylamine. To investigate this effect further, an experiment was designed to 

determine the effect of a sub-lethal concentration of hydroxylamine on the parental and hcp 

null strains when growing at comparable rates (fig. 3.4). Strains were first grown aerobically in 

rich medium and then sub-cultured into minimal medium, without shaking, to adapt the 

bacteria to anaerobic growth before applying hydroxylamine stress. This culture was grown for 

approximately 12 hours, then used to inoculate a large volume of medium for each strain. This 

culture was grown to mid-exponential point before being split into three equal volumes, two of 

which were treated with 500 µM hydroxylamine and one was left untreated. This experimental 

design led to a resolution of the temporal difference in recovery from growth inhibition by 

hydroxylamine between the parental strain and mutant. In the parental strain, growth was 

inhibited for 5 hours post-treatment with hydroxylamine, but after this time the growth rate 

quickly recovered and the eventual yield after 8 hours was approximately equal to the untreated 

culture, indicating that the culture had become nutrient limited. In contrast, the hcp null mutant 

cultures only began to recover 8 hours after hydroxylamine addition. This result suggests that 

Hcp does confer some resistance to hydroxylamine stress, but that there is some other system 

present in E. coli that eventually allows the Hcp mutant to recover.  The phenotype of the hcp 

null mutant during hydroxylamine stress was slight but highly reproducible, suggesting there 

was a real difference in the ability of the mutant to deal with the toxic effects of 

hydroxylamine, or another related toxic product. 

The activity of the NADH dependent nitrite reductase, NirB, in an Hcp mutant 

during hydroxylamine stress 

The regulation of hcp-hcr in response to nitrite and nitric oxide, via NsrR, suggests that 

Hcp expression is concomitant with the expression of the NADH-dependent nitrite reductase, 

Nir (Constantinidou et al., 2006). As it has been shown previously that Nir can reduce 

hydroxylamine to ammonia and has a much lower Km for hydroxylamine at pH 7 than Hcp 

(Jackson et al., 1981; Wolfe et al., 2002). Hcp expression would be redundant if the two  
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Fig. 3.4

Fig. 3.4 Anaerobic growth inhibition of RK4353 and a hcp mutant strain, 

JCB5000, by hydroxylamine after sub-culture

Strains RK4353 (red) and JCB5000 (blue) were aerated at 37°C in 5 ml of Lennox 

broth for 8 hours. This culture was then used to inoculate 100 ml of MS supplemented 

with 5% LB, 0.4% glycerol, 20 mM TMAO and 20 mM fumarate in a 100 ml conical 

flask. These cultures were then incubated at 30°C without shaking for ~12 hours. A 

10% inoculum of the overnight cultures was used to inoculate 500 ml of MS 5% LB 

supplemented with 0.4% glycerol, 20 mM TMAO and 20 mM fumarate in a 250 ml 

conical flask that was incubated at 37°C without shaking until an optical density of 

~0.3 was obtained. At this point (time point 0) the large cultures were split into three 

sterile, pre-warmed 100 ml conical flasks per strain, two containing 500 µM

hydroxylamine (filled triangles) and the other containing an equal volume of sterile 

water (filled squares). Growth of all cultures was monitored for 8 hours post-shock. 

Error bars represent one standard deviation of the mean of the two treated cultures per 

strain
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proteins were co-ordinately expressed. However, Hcp might fulfil a role in modulating NirB 

activity to direct it to reduce hydroxylamine if this toxic intermediate accumulates, or 

alternatively repair damage to NirB caused by nitrosative stress. In order to measure the 

activity of NirB in the parental strain and hcp mutant before, during and after hydroxylamine 

stress, a large volume of culture for each strain in each condition was harvested and the 

bacteria were broken in the French press.  The cytoplasmic fraction, which contained the 

soluble nitrite reductase, NirB, was separated by ultra-centrifugation and was assayed for NirB-

dependent nitrite reduction, by measuring the nitrite-dependent oxidation of NADH by 

spectrophotometry at 340 nm (fig. 3.5). No significant decrease in either the parental strain or 

the mutant strain was observed after treatment with hydroxylamine, indicating not only that 

NirB activity is unaffected by the presence of hydroxylamine, but also that Hcp does not 

modulate the function of NirB.   

The effect of a yeaR-yoaG mutation on anaerobic growth in the presence of nitric 

oxide 

As will be discussed in the next chapter, the yeaR-yoaG operon is maximally expressed 

in the presence of nitrate in the absence of functional FNR. The ability of FNR to function is 

governed by a coordinated iron-sulphur centre that is reduced to a [4Fe-4S] centre in the 

absence of oxygen allowing for protein dimerisation and DNA binding. It will be demonstrated 

in chapter 5 of this study, that the effect of functional FNR on the yeaR-yoaG promoter is 

indirect. However, the effect on expression is still dramatic, suggesting that it is under 

conditions when FNR function is negated that YeaR-YoaG is synthesized. Previous studies 

have shown that FNR is not only sensitive to oxygen, but is also deactivated by nitric oxide, 

which binds to the iron atoms of the iron-sulphur centre to cause the formation of S-nitroso 

adducts (Cruz-Ramos et al., 2002). This evidence, taken with the fact that transcription of 

yeaR-yoaG is regulated by the nitric oxide sensitive repressor, NsrR, suggests that YeaR-YoaG 

may be required when nitrate reduction has led to overproduction of nitric oxide and caused 



 100 

0

50

100

150

200

250

300

350

400

450

before during after

Fig. 3.5

Fig. 3.5 The effect of HCP on NirB dependent nitrite reductase activity before, during 

and after hydroxylamine stress

Strains RK4353 (red) and JCB5000 (blue) were aerated at 37°C in 20 ml Lennox broth for 8 

hours. This culture was then used to inoculate three flask per strain consisting of 1000 ml of 

LB supplemented with 0.8% glucose and 2.5 mM nitrite in a 1000 ml conical flask. Cultures 

were incubated at 37°C without shaking until an optical density of ~0.3 was obtained. At this 

point a the bacteria from one flask of each strain was harvested (before) and 200 µM 

hydroxylamine was added to the remaining cultures. After 2 hours of growth in the presence 

of hydroxylamine, a further flask of each strain was harvested (during) and finally after 8 

hours of growth the remaining cultures were harvested (after). All cells were then lysed by 

french press, cytoplasm preps were obtained by ultra-centrifugation and activity of NirB in 

the cytoplasmic extracts was determined by measuring NADH oxidation via spectroscopic 

absorption at 540 nM.
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Fig. 3.5 The effect of HCP on NirB dependent nitrite reductase activity before, during 

and after hydroxylamine stress

Strains RK4353 (red) and JCB5000 (blue) were aerated at 37°C in 20 ml Lennox broth for 8 

hours. This culture was then used to inoculate three flask per strain consisting of 1000 ml of 

LB supplemented with 0.8% glucose and 2.5 mM nitrite in a 1000 ml conical flask. Cultures 

were incubated at 37°C without shaking until an optical density of ~0.3 was obtained. At this 

point a the bacteria from one flask of each strain was harvested (before) and 200 µM 

hydroxylamine was added to the remaining cultures. After 2 hours of growth in the presence 

of hydroxylamine, a further flask of each strain was harvested (during) and finally after 8 

hours of growth the remaining cultures were harvested (after). All cells were then lysed by 

french press, cytoplasm preps were obtained by ultra-centrifugation and activity of NirB in 

the cytoplasmic extracts was determined by measuring NADH oxidation via spectroscopic 

absorption at 540 nM.
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 damage to FNR.  

In order to assess the effect of YeaR-YoaG on anaerobic growth in the presence of 

nitric oxide, a chromosomal deletion was constructed in which the coding region of yeaR-yoaG 

was replaced with a chloramphenicol resistance cassette using the lambda red system 

(Datsenko and Wanner, 2000). This mutant, designated JCB5100 was grown, in tandem with 

the parental strain, RK4353, overnight in 5 ml of LB. These cultures were used to inoculate 

three 100 ml conical flasks per strain, containing 100 ml of MS supplemented with 5% LB, 

0.4% glycerol, 20 mM TMAO, and 20 mM fumarate (fig. 3.6). The cultures were grown at 

37°C without shaking until mid-exponential growth stage (OD650 ~0.3) was reached, at which 

point two flasks per culture were treated with 100 µM NO and the third flask was treated with 

sterile water only (time point 0). The growth of the cultures was monitored for 5 hours post-

stress and the effect on growth of the strains was observed. Both strains grew at very similar 

rates in the absence of any nitric oxide, indicating that YeaR-YoaG is not required for normal 

growth under these conditions. After addition of nitric oxide, the growth of both strains was 

equally inhibited for the same period of time and normal growth resumed in both strains after 1 

hour post-shock. This suggests that YeaR-YoaG does not influence the growth rate in the 

presence of NO under the conditions tested.   

The effect of a yeaR-yoaG mutation on anaerobic growth in the presence of 

hydroxylamine 

As has already been discussed, hydroxylamine is produced when E. coli respires nitrite 

and it is also possible that hydroxylamine is produced as a secondary product of nitric oxide 

toxicity. As yeaR-yoaG expression is maximal during growth in the presence of nitrate, when 

endogenous nitric oxide and hydroxylamine are likely to be produced, the effect of 

hydroxylamine on the growth of a yeaR-yoaG null mutant was determined (fig. 3.7). The yeaR-

yoaG mutant and the parental strain, RK4353, were grown overnight in LB. A 5% inoculum of 

this culture was used to inoculate three 100 ml conical flasks per strain containing 100 ml of  
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Fig. 3.6

Fig. 3.6 The effect of YeaR-YoaG on anaerobic growth during nitric oxide stress

Overnight cultures of the parental strain, RK4353 (red), and a yeaR-yoaG mutant, 

RK4353∆yeaR-yoaG (blue), were used to inoculate three 100 ml conical flasks per culture,

containing 100 ml of MS medium supplemented with 5% LB, 0.4% glycerol, 20 mM TMAO 

and 20 mM fumarate. Cultures were incubated without shaking at 37°C until they reached 

mid-exponential growth phase (OD650 ~0.3) at which point a single pulse of 100 µM nitric 

oxide was introduced to two flasks per strain (open squares), without exposing the NOSW to 

the air (time point 0) while the remaining culture was treated with sterile water only (filled 

squares). The y-axis error bars represent one standard deviation of the mean of the two treated 

flasks per strain.
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Fig. 3.7

Fig. 3.7 The effect of YeaR-YoaG on anaerobic growth during hydroxylamine  stress

Overnight cultures of the parental strain, RK4353 (red), and a yeaR-yoaG mutant, 

RK4353∆yeaR-yoaG (blue), were used to inoculate three 100 ml conical flasks per culture,

containing 100 ml of MS 5% LB medium supplemented with 0.4% glycerol, 20 mM TMAO 

and 20 mM fumarate. Cultures were incubated without shaking at 37°C until they reached 

mid-exponential growth phase (OD650 ~0.3) at which point 100 µM of hydroxylamine was 

introduced (time point 0) to two flasks per strain (open squares) while the remaining culture 

was treated with sterile water only (filled squares). The error bars represent one standard 

deviation of the mean of the two treated cultures per strain.
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MS supplemented with 5% LB, 0.4% glycerol, 20 mM TMAO and 20 mM fumarate. All 

cultures were grown at 37°C without shaking until an OD650 of ~0.3 was reached. At this point, 

two flasks per strain were treated with 100 µM hydroxylamine and the third flask per strain 

was treated with an equal volume of sterile water only. The growth of all cultures was 

monitored for a further 5 hours. In both the parental strain and the mutant, a transient inhibition 

of growth was observed when hydroxylamine was introduced. The growth rate of both the 

parental strain and the mutant was entirely inhibited for 1 hour post-treatment, before 

recovering to a normal growth rate after 3 hours. After 5 hours, the growth yield of both the 

parental strain and mutant treated cultures had reached that of the untreated cultures, which had 

entered stationary phase after 3 hours due to nutrient limitation. This result suggests that YeaR 

and YoaG are not required for growth in the presence of hydroxylamine. 

Discussion 

From these experiments, it is still not clear what the function of either Hcp-Hcr or 

YeaR-YoaG might be, but it does appear that neither operon is absolutely necessary for 

anaerobic growth in the presence of nitric oxide or hydroxylamine. It is clear that the most 

likely condition where these proteins will function is when their coding genes are maximally 

expressed. Micro-array studies have implicated both Hcp-Hcr and YeaR-YoaG in dealing with 

nitrosative stress, due to their increased expression in the presence of nitrate and nitrite and 

their apparent regulation by the nitric oxide responsive regulator, NsrR (Constantinidou et al., 

2006; Filenko et al., 2007). However, only a minor phenotype has been observed following 

deletion of hcp-hcr and no growth phenotype after delection of yeaR-yoaG. It is therefore 

prudent to try and fully understand the regulation of these gene products to attempt to ascertain 

the specific conditions when maximal expression occurs. 

The regulation of phcp has been studied in detail and is known to be FNR-dependent, 

and enhanced by the presence of nitrite via de-repression of NsrR (Filenko et al., 2007; Filenko 



 105 

et al., 2005). This fact certainly indicates that Hcp-Hcr is involved in anaerobic nitrate 

metabolism in some capacity. In contrast, expression of yeaR-yoaG appears to be FNR 

independent, activated in response to nitrate and nitrite and is repressed by NsrR (Filenko et 

al., 2007). Other than this, very little is known about the regulation of yeaR-yoaG from sources 

other that microarray analysis and thus it is essential, if the function of YeaR-YoaG is to be 

identified, that the regulatory mechanisms that control the yeaR promoter are determined. 
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Chapter 4  

Results 

The regulation of the genes of unknown function, yeaR-yoaG and comparative 

studies of the ogt promoter 

Introduction 

The enteric bacterium, Escherichia coli, is able to respire both aerobically and 

anaerobically utilizing an array of terminal electron acceptors, including nitrate and nitrite 

(Cole, 1996). During the switch from aerobic to anaerobic growth, E. coli must synthesize the 

specific enzymes necessary to utilize any electron acceptors available in their environment. 

The synthesis of these enzymes is controlled mainly at the transcription level by a hierarchical 

system of transcription regulators (Goh et al., 2005), which sense the chemical state of the 

environment and bring about a response to utilize the most powerful oxidant first (Stewart, 

1993). Transcription is often controlled by a complex network of protein factors that respond to 

external signals and regulate promoter activity. Often, several factors are needed to bind 

together at a promoter in order to activate transcription (Salgado et al., 2006). The major 

regulator of anaerobiosis is the global transcription regulator, FNR, which senses the absence 

of oxygen via a coordinated iron-sulphur centre (Khoroshilova et al., 1997; Kiley and Beinert, 

2003). When active, FNR is able to bind to DNA and act as either a transcription activator or a 

repressor (Constantinidou et al., 2006). A further level of control is provided by the dual acting 

two-component regulators, NarXL and NarQP. The inner membrane-bound sensor kinases, 

NarX and NarQ, autophosphorylate in response to the presence of nitrate and nitrite in the 

periplasm and, in turn, phosphorylate the cognate response regulators, NarL and NarP. When 

phosphorylated, NarL and NarP bind DNA as either transcription activators or as repressors 

(Stewart, 1993; Stewart and Bledsoe, 2003) 

In many cases, the transcription of genes for anaerobic respiratory enzymes requires the 

binding of both FNR and phospho-NarL/P for maximal expression (Stewart, 1993). The 



 107 

expression of the nitrate reductase, narGHI, and the nitrite reductases, nirB and nrfABCD, 

require coordinate binding of both FNR and NarL to the promoter region. In the case of 

narGHI, FNR binds to the promoter region at a position centred between 41 and 42 bp 

upstream of the transcription start point, often defined as position -41.5. When bound in this 

position, FNR contacts the RNA polymerase holoenzyme and activates transcription in a class 

II manner (Schroder et al., 1993). At the narGHI promoter, the binding of phospho-NarL to 

DNA in the upstream region of the promoter increases expression to maximal levels, but it is 

not thought that NarL contacts the RNAP directly (Stewart, 1993). At the promoter of nirBDC, 

encoding the NADH-dependent  nitrite reductase (Peakman et al., 1990), FNR and NarL also 

act co-ordinately (Jayaraman et al., 1987; Wu et al., 1998), In this case FNR binds at position -

41.5, but in order for FNR-dependent transcription to proceed, NarL is required to overcome 

complex nucleoid folding, caused by IHF, by binding competitively at a site positioned at -61.6 

(Browning et al., 2004b). Transcription activation occurs by a similar mechanism at the 

nrfABCD promoter (Browning et al., 2005). These and several other promoters require a 

concomitant binding of FNR and NarL for maximal expression. At the start of this project there 

were no examples of NarL dependent activation independent of FNR that had been confirmed 

by extensive study. However, a number of candidate genes were identified by transcriptomic 

analysis (Constantinidou et al., 2006).  

In a reassessment of the extent of the FNR regulon, a group of genes were identified as 

being upregulated by NarL in response to nitrate, even in an FNR null strain (Constantinidou et 

al., 2006).  Of these genes, the most dramatically activated by nitrate in a FNR null strain was 

the operon of unknown function, yeaR-yoaG. The relative expression levels of yeaR-yoaG in 

wild type and an FNR null strain would even suggest a possible FNR repression effect 

(Constantinidou et al., 2006). A simultaneous transcriptomic study showed that yeaR-yoaG 

was one of a small group of genes shown to be upregulated by nitric oxide (Justino et al., 

2005b). Nitric oxide is generated endogenously as a by-product of nitrite reduction by both the 
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cytochrome-c nitrite reductase, NrfA, and the NADH–dependent nitrite reductase, NirB 

(Corker and Poole, 2003; Weiss, 2006) as well as by the innate immune response of infected 

hosts (Fang, 2004). Recently, the gene product of yjeB, NsrR, has been identified as a nitric 

oxide responsive transcription regulator (Bodenmiller and Spiro, 2006; Rodionov et al., 2005)  

and has subsequently been shown to control transcription of a small array of genes including 

yeaR-yoaG, where NsrR is thought to act as a repressor (Filenko et al., 2007). The 

transcriptomic study also predicted the putative NsrR site in the intergenic region between 

yeaR-yoaG and the upstream gene leuE (yeaS). However, as the promoter region was 

uncharacterized, it was not known whether the NsrR site overlaps the promoter region, as it has 

been shown to do at other promoters (Bodenmiller and Spiro, 2006; Filenko et al., 2007). A 

second E. coli promoter that was identified as a possible candidate for NarL dependent 

activation, independent of FNR, from transcriptomic studies, was the ogt promoter 

(Constantinidou et al., 2006). Again, this promoter was shown to be upregulated by the 

presence of nitrate, even in a strain in which FNR was not functional. This was highly 

significant as previous studies have shown that ogt encodes for the O6-alkylguanine DNA 

alkyltransferase, a protein that removes alkyl groups from chemically damaged guanine 

residues (Margison et al., 1985; Potter et al., 1987). This implicated ogt in repairing damage 

caused to DNA by nitrosative stress generated while the bacterium is respiring nitrate. During 

this project, a tandem study by Meng Xu (PhD thesis, University of Birmingham) 

demonstrated that induction of the ogt promoter by nitrate ions is NarL-dependent. and that 

NarL bound directly to the promoter region in at least one site. It was also demonstrated that 

Fis binds to the promoter region (Meng Xu, thesis. University of Birmingham). However, 

characterisation of the promoter was not fully completed at the end of this study so the ogt 

promoter was used as a comparative promoter for study of NarL dependent activation in this 

project.   
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During this project an independent study confirmed the findings of the FNR regulon 

investigation, by in vivo promoter investigation, that the operon yeaR-yoaG is regulated in a 

NarL-dependent, FNR-independent manner (Lin et al., 2007). In most results, the study by Lin 

et al., (2007) was comparible to this study and, where different, was discussed. However, this 

study aimed to further characterise the yeaR promoter and to define the interactions of the 

relevant transcription factors with the promoter DNA.  

Determination of the yeaR-yoaG transcription start site 

In order to facilitate the analysis of the yeaR promoter region, it was necessary to map 

the position of the transcription start point (+1). The method of reverse transcription primer 

extension was chosen to identify the transcription start point. The strain, JCB387, was 

transformed with the yeaR100 promoter fragment, cloned as a promoter-lacZ fusion in pRW50, 

and grown anaerobically in the presence of 20 mM nitrate, conditions optimal for yeaR-yoaG 

expression. At mid-exponential growth phase, the cells were harvested and total RNA was 

extracted. The yeaR-yoaG mRNA was used as a template for the synthesis of cDNA using 

reverse transcriptase and an oligonucleotide primer, specific for a region of the pRW50 vector 

sequence 83-nt downstream of the vector HindIII site. The cDNA product was separated by 

PAGE alongside a di-deoxy termination sequence ladder, generated by sequencing plasmid 

pSR using primer D36245, for size comparison (Fig. 4.1). Primer extension revealed a single, 

abundant transcript. The size of this transcript was mapped onto the sequence of the cloned 

promoter fragment (Fig 4.2). The calculated transcription start site, nucleotide G, is labelled 

+1. A putative σ70-RNA polymerase -10 promoter element, which showed 3 out of 6 nt 

sequence similarity to the consensus sequence (TATAAT) was identified and annotated on the 

sequence. The sequence of the putative -35 promoter element also showed 4 out of 6 nt 

similarity to the consensus sequence (TTGACA). The -10 and -35 promoter elements are 
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Figure 4.1 Transcription start site mapping using primer extension

E. coli strain JCB387 was transformed with pRW50 plasmid, carrying the yeaR100 promoter 

fragment, and grown anaerobically at 37°C, without stirring, in 100 ml of minimal salts medium 

supplemented with 5% LB, 0.4% glycerol and 20 mM NaNO3 in a 100 ml conical flask. At the 

mid-exponential phase growth, OD650 ~0.7, bacteria were harvested and total cellular mRNA was 

extracted. The cellular mRNA was then used as a template for cDNA synthesis using reverse 

transcriptase and a radio-labeled oligonucleotide (D49724), which binds specifically to a region 

of the pRW50 vector 85-nt downstream from the HindIII site. The cDNA product was then 

separated by polyacrylamide electrophoresis and its size was determined by comparison with a 

di-deoxy sequence ladder generated from pSR vector DNA. The size of the fragment was shown 

to be 178 nt, which places the transcription start site 95 nt upstream of the first base of the 

HindIII site.  
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spaced 17 nt apart, a distance optimal for promoter activiy. This transcription start site was also 

identified by RACE by Lin et al., (2007). 

In silico identification of putative promoter elements 

Once the transcription start site had been identified, and the promoter elements mapped, 

the inverted repeat of the NsrR binding site (Filenko et al., 2007) was located on the promoter 

sequence. As with other promoters repressed by NsrR (Filenko et al., 2007), the NsrR binding 

sequence overlapped the putative -10 and -35 promoter elements (Fig 4.2). Further sequence 

analysis, using the online bioinfromatic tools, FUZZNUC and SRS, revealed several putative 

NarL heptamers, which had a 5 out of 7 or better match with the consensus sequence 

TACYNMT. A single 7-2-7 inverted repeat sequence, the optimal binding configuration for 

NarL and NarP, with acceptable sequence similarity (3 mismatches) to the consensus sequence 

was also found at a position -43.5 nt upstream with respect to the transcription start site (Fig 

4.2). Two further putative NarL sites were identified downstream of the translation start site of 

yeaR, within the coding region. In addition, several putative binding sites for the nucleoid 

associated protein, Fis, were identified in the promoter region, overlapping the putative NarL 

site.  

Phospho-NarL is required for transcription activation at the yeaR promoter 

To analyse the dependence of pyeaR activity on functional NarL/ P, the yeaR promoter 

fragment, yeaR100, was cloned as an EcoRI-HindIII fragment into the low copy lacZ-fusion 

vector, pRW50. The resultant plasmid, pYEAR100, was transformed into a parental E. coli 

strain, JCB387, and NarP, NarL and NarLP null derivatives: JCB3875, JCB3883 and JCB3884, 

respectively. In this experiment, and all subsequent β-galactosidase activity assays, all 

transformants were grown anaerobically in minimal medium supplemented with 5% LB, 

glycerol (0.4%), fumarate (20 mM), TMAO (20 mM) and in the presence or absence of either 

nitrate (20 mM) or nitrite (2.5 mM) unless otherwise stated. When cultures reached the mid- 
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Figure 4.2 Bio-informatic determination of the promoter structure

Using the experimentally determined transcription start site (lower case g), the 

predicted -10 and -35 promoter elements were identified (bold underlined sequence). 

The yeaR-yoaG promoter sequence was checked for putative transcription factor 

binding sites using online bio-informatic tools, fuzznuc and SRS. A number of putative 

sites were identified in the promoter region, including NarL (purple arrows) NarL/ P 

(purple arrows in 7-2-7 inverted repeat configuration), Fis (green boxed sequence) and

NsrR (red, italic, bold text). 
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exponential phase of growth, cells were harvested, lysed and assayed for β-galactosidase 

activity (table 4.1). In the parental strain, maximal promoter activity was observed in the 

presence of nitrate. Transcription induction was also observed in the parental strain in the 

presence of nitrite, but to a lesser extent. In the NarP null strain, JCB3875, activation by nitrate 

was only slightly diminished, suggesting that NarP has, at most, a limited role at this promoter. 

The effect of a NarP mutation in the presence of nitrite also reflects this. Conversely, a total 

loss of transcription activation in the presence of either nitrate or nitrite was observed in the 

NarL mutant suggesting an absolute requirement for functional NarL for transcription 

activation at the yeaR promoter. This conclusion is further supported by the activity in the 

NarLP double mutant.  These data suggest that NarL is absolutely required for maximal 

activity from the yeaR promoter in response to the presence of nitrate. Similar results were 

resported by Lin et al., (2007)  

Phospho-NarL binds directly to the yeaR promoter 

In order to ascertain whether the dependence of yeaR on NarL is due to direct binding 

of NarL to the promoter region, the yeaR100 promoter fragment was purified and end-labelled 

using γP32dATP for use in an electromobility shift assay. The promoter fragment was incubated 

with purified NarL that had been phosphorylated with acetyl phosphate. Subsequent DNA-

protein complexes were separated by PAGE and visualized by phospho-imaging (Fig 4.3). Two 

bandshifts can be observed as the concentration of phospho-NarL was increased, suggesting 

that there are two binding sites for NarL, one high affinity site and one low affinity site. 

The high affinity binding site for NarL is located within 148 bp upstream of the 

yeaR transcription start site 

The full length yeaR100 promoter fragment not only contained the intergenic region 

between yeaR-yoaG and the upstream gene leuE (yeaS), but also included ≈170 bp of the leuE 

open reading frame. To show whether this region, which also contained candidate NarL 

binding sites, binds NarL in vitro, a second gel retardation assay was designed in which the full  



 114 

Table 4.1 The activity of the yeaR-yoaG promoter is NarL dependent. 

Expression from the yeaR promoter, cloned as a promoter-lacZ fusion in pRW50, was 
measured by β-galactosidase activity assay. All E. coli K-12 strains were transformed and 
grown anaerobically in minimal medium in the presence and absence of nitrate (20 mM) or 
nitrite (2.5 mM). All values represent the average of at least three independent assays and are 
expressed in units of nmol ONPG hydrolysed min-1 mg-1 dry cell mass. Error is represented as 
one standard deviation from the mean. 
 
  Growth conditions 

Strain Relevant mutations Anaerobic Anaerobic + NO3
- Anaerobic + NO2

- 

JCB387 narL
+
 narP

+  96 ± 32 2204 ± 89 1032 ± 35 
JCB3875 narL

+
 narP  69 ± 0 1430 ± 196 239 ±  6 

JCB3883 narL narP
+  166 ± 69 160 ± 108 113 ± 7 

JCB3884 narL narP  75 ± 5 88 ± 3 102 ± 7 
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Fig. 4.3 Phospho-NarL binds to the yeaR-yoaG promoter

The EcoRI-HindIII, yeaR-yoaG, promoter fragment was 

incubated with increasing concentrations of NarL and protein-DNA 

complexes were separated by polyacrylamide electrophoresis. NarL was 

phosphorylated prior to mixing with yeaR promoter DNA by incubating 

with 500 µM acetyl-phosphate for 20 minutes at 37°C. Lane 1 contains 

yeaR-yoaG promoter DNA only while lanes 2-6 contain 0.2, 0.4, 0.8, 1.6 

and 3.2 µM [acetyl phosphate-treated NarL] respectively. 
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incubated with increasing concentrations of NarL and protein-DNA 

complexes were separated by polyacrylamide electrophoresis. NarL was 

phosphorylated prior to mixing with yeaR promoter DNA by incubating 

with 500 µM acetyl-phosphate for 20 minutes at 37°C. Lane 1 contains 
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length fragment was digested with BglI before being incubated with NarL (fig. 4.4). This 

enzyme cut the fragment at only one site, generating two fragments of different sizes. The 

smaller fragment, upstream of the BglI site, contained the majority of the leuE ORF and the 

larger fragment downstream of the BglI site contained the intergenic region. The digested 

fragments were incubated with NarL protein and the DNA-protein complexes were separated 

by PAGE. The larger of the BglI digested fragments showed a band shift at the same NarL 

concentration as the high affinity NarL shift in the full length fragment. This suggests that the 

high affinity NarL binding site is located in the intergenic region between yeaR and leuE, 

within 148 bp upstream of the yeaR-yoaG transcription start site.  

NarL binds to the 7-2-7 binding site centred around -47.5 with respect to the yeaR 

transcription start site 

DNase I footprinting was used to identify the in vitro binding site for phospho-NarL at 

the yeaR promoter (Fig. 4.5). The yeaR100 AatI-HindIII promoter fragment was end labelled 

with γP32dATP and incubated with increasing concentrations of phospho-NarL before being 

treated with DNase I, which digests unprotected DNA. Digested fragments were separated by 

PAGE and calibrated using Maxam-Gilbert ‘G+A’ sequencing reactions, generated from the 

radio-labelled yeaR100 fragment. At 0.8 µM NarL, a zone of protection or footprint can be 

seen in the region of the promoter between positions -51 and -21 with respect to the 

transcription start site. As protein concentration increases to 1.6 and 3.2 µM a clear footprint 

can be seen in this region centred at position -43.5 with respect to the transcription start site, 

the same site identified in bioinformatic analysis of the promoter region (fig 4.2). At high 

concentrations of NarL, several hypersensitive sites can be seen where NarL may bind to other 

sites, changing the conformation of the DNA and inducing digestion. However, no secondary 

footprint was observed despite an apparent second electromobility shift with NarL (fig. 4.4). 

The positioning of NarL at a site centred at position -43.5 with respect to the transcription start 

site is similar to the positioning of FNR at class II activated promoters. 
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Fig. 4.4 The high affinity NarL binding site is located in the intergenic region 

between yeaR-yoaG and leuS

The EcoRI-HindIII, yeaR-yoaG, promoter fragment was end-labelled (1-3) then 

digested with BglI (4 and 5), which cut once at a position 148 nt upstream of the 

transcription start site to produce two fragments of different sizes. Both fragments 

were incubated with NarL, which had been phosphorylated with 500 µM acetyl 

phosphate, and DNA-protein complexes were separated by PAGE. Lanes 1 and 4 

contain no protein. Lanes 2 and 5 contain 1.6 µM and lane 3 contains 3.2 µM NarL. 
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The EcoRI-HindIII, yeaR-yoaG, promoter fragment was end-labelled (1-3) then 

digested with BglI (4 and 5), which cut once at a position 148 nt upstream of the 

transcription start site to produce two fragments of different sizes. Both fragments 

were incubated with NarL, which had been phosphorylated with 500 µM acetyl 

phosphate, and DNA-protein complexes were separated by PAGE. Lanes 1 and 4 

contain no protein. Lanes 2 and 5 contain 1.6 µM and lane 3 contains 3.2 µM NarL. 
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Figure 4.5. NarL binds to a single 7-2-7 site at  the yeaR promoter. 

An in vitro DNase I footprint experiment with purified NarL was used to identify the 

binding site of phospho-NarL at the yeaR-yoaG promoter. End-labelled pyeaR AatII-

HindIII fragment was incubated with increasing concentrations of NarL, which had been 

phosphorylated with acetyl phosphate prior to use, and subjected to DNase I digestion. The 

concentration of NarL was: lane 1, no protein; lane 2, 0.2 µM; lane 3, 0.4 µ M; lane 4, 0.8 

µM; lane 5, 1.6 µM and lane 6, 3.2 µM. DNA digest fragments were separated by PAGE 

and gels were calibrated using Maxam-Gilbert ‘G+A’ sequencing reactions. Relevant 

DNA positions are indicated. The location of the NarL binding site is shown as a shaded 

box.
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Purified NarP does not bind to the yeaR promoter 

When the activity of the yeaR-lacZ promoter fusion was assayed in a strain lacking 

functional NarP, a slight decrease in overall promoter activity was observed in comparison to 

the parental strain (table 4.1). This effect was less dramatic than that of a narL mutation, which 

caused a loss of all promoter activation. DNase footprint analysis revealed that the NarL 

operator in the yeaR promoter region was arranged as a 7-2-7 inverted repeat sequence, which 

can also be an operator for NarP (Darwin et al., 1997). An EMSA was designed in order to 

ascertain whether purified phospho-NarP could bind to the yeaR promoter region in vitro. The 

 yeaR100 promoter fragment was end-labelled using γP32-ATP and incubated with increasing 

concentrations of phosphorylated NarP protein. DNA-protein complexes were separated by 

PAGE and visualised by phospho-imaging (fig 4.6). No No bandshift was observed at any 

concentration of NarP tested, which suggests that NArP does not bind directly to the yeaR 

promoter, which is inconsistent with the results in table 4.1 and has not been explained.  

In vivo transcription activation of pyeaR is repressed by FNR and NsrR 

Due to the apparent repression of pyeaR by FNR and NsrR, revealed by micro-array 

analysis (Constantinidou et al., 2006; Filenko et al., 2007), the activity of the yeaR100-lacZ 

fusion in pRW50 was assayed in the presence and absence of functional FNR and NsrR  

(Figure 4.7). The yeaR100-lacZ promoter fusion was transformed into the parental strain, 

JCB387, and derivatives lacking in functional NsrR, FNR and both FNR and NsrR. The 

activity of the promoter during anaerobic growth, in the presence and absence of nitrate or 

nitrate, was determined using a β-galactosidase assay. In the absence of functional NsrR, 

activity of the yeaR promoter was 20% higher than the parental strain in the presence of nitrate 

and 2-fold higher in the absence of either nitrate or nitrite. However, the activity in the 

presence of nitrite was unchanged. Conversely, activity of pyeaR in the FNR null derivative 
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Fig. 4.6 Phospho-NarP does not bind to the yeaR-yoaG promoter

The EcoRI-HindIII, yeaR-yoaG, promoter fragment was incubated with 

increasing concentrations of purified NarP, and protein-DNA complexes were separated 

by polyacrylamide electrophoresis. Lane 1 contains yeaR-yoaG promoter DNA only while 

lanes 2-6 contain 0.4, 0.8, 1.6, 3.2 and 6.4 µM [NarP] respectively. NarP was 

phosphorylated prior to mixing with yeaR promoter DNA by incubating with 500 µM 

acetyl-phosphate for 20 minutes at 37°C. 
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Figure 4.7 The effect of FNR and NsrR on transcription activation at the yeaR-yoaG

promoter 

Expression from the yeaR100 promoter fragment, cloned as a promoter::lacZ fusion in 

pRW50 was measured by β-galactosidase activity assay in the parental strain JCB387 

(green), JCB387∆nsrR (burgundy), JCB387∆fnr (red) and JCB387∆fnr∆nsrR (blue). At an 

OD650 of 0.6, cells were harvested, lysed and assayed for β-galactosidase activity. In this 

and all subsequent figures, β-galactosidase activity is expressed as nmol ONPG hydrolysed 

min-1 mg-1 dry cell mass. Data shown are means from at least 3 independent experiments 

with error bars shown as one standard deviation from the mean.
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was 2-fold higher in the presence of nitrate and over 5-fold higher in the presence of nitrite, 

suggesting a strong effect of FNR function on the activity of pyeaR. In the fnr nsrR double 

mutant, the activity of the yeaR promoter was further increased in the presence of nitrate, but 

was unchanged in the presence of nitrite when compared to the FNR null mutant, suggesting 

that the effect of FNR in these conditions was more significant than that of NsrR. Interestingly, 

in the absence of nitrate or nitrite, the promoter was much more active in the fnr nsrR double 

mutant than in the parental strain. However, transcription was still induced by nitrate or nitrite. 

In the case of NsrR, a putative binding site in the yeaR promoter has been identified in this 

study and previously (Filenko et al., 2007). However, despite promoter activity being higher in 

the fnr mutant, no convincing putative FNR binding sites have been identified in the promoter 

region. The apparent repression of pyeaR by FNR could therefore be indirect and will be 

investigated in detail in chapter 5. These results were anaomalous to the findings of Lin et al., 

(2007) who did report that FNR and NsrR, but observed higher fold repression by NsrR.  

The nucleoid-associated protein, Fis, represses transcription of yeaR-yoaG in vivo 

In recent studies, using chromatin immuno-precipitation run on chip (ChIP-chip), the 

distribution of DNA-binding proteins across the entire chromosome has been investigated. An 

investigation of the distribution of nucleoid-associated protein binding sites using this method, 

identified a possible binding signal for Fis in the yeaR-yoaG promoter region (Grainger et al., 

2006). The effect of Fis on the activity of pyeaR was therefore determined. The yeaR100 

promoter-lacZ fusion plasmid was transformed into the parental strain, JCB387, and the Fis 

null derivative, JCB3871, and the subsequent transformants were grown in both rich medium 

(LB) and minimal medium (MS), both in the presence and absence of nitrate. Results show that 

nitrate-induced activity from the yeaR promoter is severely restricted during growth in rich 

medium (Lennox broth) supplemented with glucose and that this suppression is relieved in the 

∆fis derivative (fig. 4.8). A similar trend of activity was observed for cultures grown in
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Fig. 4.8 The effect of Fis on transcription activation at the yeaR-yoaG promoter 

Expression from the yeaR100 promoter fragment, cloned as a promoter::lacZ fusion in 

pRW50, was measured by β-galactosidase assay in strains JCB387 (parental strain) (red) 

and JCB387∆fis (blue) . Transformants were grown in in rich medium (Lennox broth) and 

minimal medium (MS) anaerobically in the presence or absence of nitrate (20 mM). At an 

OD650 of 0.6, cells were harvested, lysed and assayed for β-galactosidase activity.
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Fig. 4.8 The effect of Fis on transcription activation at the yeaR-yoaG promoter 

Expression from the yeaR100 promoter fragment, cloned as a promoter::lacZ fusion in 

pRW50, was measured by β-galactosidase assay in strains JCB387 (parental strain) (red) 

and JCB387∆fis (blue) . Transformants were grown in in rich medium (Lennox broth) and 

minimal medium (MS) anaerobically in the presence or absence of nitrate (20 mM). At an 

OD650 of 0.6, cells were harvested, lysed and assayed for β-galactosidase activity.
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 minimal medium supplemented with glycerol. The strong repression effect of Fis on the 

activity of the yeaR promoter and the evidence from ChIP-chip analysis argue that Fis is a 

direct repressor of yeaR-yoaG expression. 

NarL and Fis compete for a binding site in the yeaR-yoaG promoter region 

The two possible binding sites for Fis, identified by bio-informatic searching (fig. 4.2), 

both overlapped the experimentally determined NarL binding site (fig. 4.6). It was therefore 

prudent to identify the binding site of Fis, in vitro, and to assess the effect of competitive 

binding between NarL and Fis at the yeaR promoter. The yeaR100, AatI-HindIII fragment was 

end-labelled with γP32 dATP and incubated with increasing concentrations of Fis, in the 

presence and absence of NarL at a concentration shown previously to cause a footprint at the 

yeaR promoter. Protein-DNA complexes were then treated with DNase I and the resultant 

fragments were separated by PAGE and calibrated by comparison to a Maxam-Gilbert ‘G+A’ 

sequencing reaction, generated from the radio-labelled yeaR100 fragment (fig. 4.9a). In the 

presence of Fis alone, two binding sites were observed and are indicated by shaded boxes. The 

first high affinity Fis site, Fis I, was visible after the addition of 0.22 µM Fis and was shown to 

be centred around -55 with respect to the transcription start site. At higher concentrations of Fis 

(0.45 µM) a second lower affinity site, Fis II, was observed, centred around -31 with respect to 

the transcription start site. A single hypersensitivity site caused by Fis binding was identified at 

position -29 (■). The location of the experimentally determined Fis binding sites matched the 

position of the bio-informatically predicted Fis sites (fig. 4.2). When the promoter region was 

incubated with increasing concentrations of Fis in the presence of a fixed concentration of 

NarL (lanes 6-10), a competition for overlapping binding sites for Fis and NarL was observed. 

In the absence of Fis, NarL causes a footprint centred around -43.5 with respect to the 

transcription start site and introduces two characteristic hypersensitivity sites at positions -50 

and -40 with respect to the transcription start site (□). At high concentrations of Fis, (lanes 9  
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Figure 4.9
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Figure 4.9 NarL and Fis compete for binding at the yeaR promoter. 

A. End-labelled yeaR100 AatII-HindIII fragment was incubated with increasing concentrations 

of Fis in the presence and absence of a fixed concentration of NarL and subjected to DNase I 

footprint analysis. The concentration of Fis was lanes: 1 and 6, no protein; lanes 2 and 7, 0.22 

mM; lanes 3 and 8, 0.45 mM; lanes 4 and 9, 0.90 mM; lanes 5 and 10, 1.8 mM. The 

concentration of NarL was lanes 1-5, no protein; lanes 6-10, 1.6 mM. Gels were calibrated 

using Maxam-Gilbert ‘G+A’ sequencing reactions and relevant positions are indicated. The 

location of the NarL and Fis binding sites are shown by boxes. Hypersensitive sites at positions 

-52 and -40, which are induced by NarL binding are indicated by the open boxes, whereas the 

hypersensitive site at position -29, which is induced by Fis binding, is marked by the filled 

boxes. Purified NarL was pre-treated with 500 µM acetyl phosphate before being used in these 

experiments.

B. Quantity-one software (BIORAD) was used to quantify Fis and NarL binding. A lane profile 

was generated for lane 5 (Fis only), lane 6 (NarL only) and lane 10 (NarL and Fis) based on the 

relative intensity of bands in the region containing both the Fis and NarL binding sites. This 

data was exported to Excel (microsoft) to generate histogram traces. Hypersensitive sites at 

positions -52 and -40, which are induced by NarL binding are indicated by the club symbol, 

whereas the hypersensitive site at position -29, which is induced by Fis binding, is marked by a 

spade symbol.

.
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and 10) a reduction in the binding of NarL was observed concomitantly with an increase in the 

binding of Fis, suggesting there is a dynamic competition for binding at the yeaR promoter. It 

was concluded that Fis represses the binding of the transcription activator, NarL, by steric 

hindrance. The apparent change from a NarL footprint to a Fis footprint with increasing 

concentrations of Fis was visualised by comparing the band intensities of lanes 5 (Fis only (i)), 

lane 6 (NarL only (ii)) and lane 10 (NarL + Fis (iii)), using the lane quantify tool in Quantity-

one software (BioRad) (fig 4.9b). This information is displayed as a densitometry trace of 

relative intensity compared to distance travelled and clearly shows the appearance of Fis 

dependent hypersensitivity sites (■) and the loss of NarL dependent hypersensitivity sites (□) 

when both proteins are incubated with the yeaR100 promoter fragment.  

NarL enhances yeaR promoter opening in vitro while Fis represses 

As NarL had been shown to activate yeaR-yoaG expression in vivo, the effect of NarL 

on promoter opening was investigated by potassium permanganate footprinting. The AatI-

HindIII yeaR100 promoter fragment was end-labelled and incubated with a fixed concentration 

of RNAP σ70 holo-enzyme and increasing concentrations of NarL (fig. 4.10a). DNA-protein 

complexes were then treated with potassium permanganate, which attacks DNA in an open 

conformation and causes base modifications that are prone to cleavage. In the absence of NarL, 

RNAP facilitated promoter opening in a region between -2 and -11 with respect to the 

transcription start site (lane 1). This opening was increased in the presence of NarL, seen in 

lane 3 as a 1.4-fold increase in intensity of bands generated by DNA cleavage. This increase in 

open complex formation was more evident when the band intensities were quantified using 

Quantity-one software (BioRad) and displayed as a densitometry trace (fig 4.10b). An increase 

in intensity caused by the increase in NarL-dependent open-complex formation in lane 3 (red 

trace) could be seen clearly when compared to the intensity in the absence of NarL in lane 1 

(green trace). This suggested that NarL directly activate transcription at the yeaR promoter. 
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Figure 4.10 NarL enhances promoter opening at the yeaR promoter, while Fis represses

A. An in vitro potassium permanganate footprint experiments with purified NarL and Fis 

proteins was designed to show promoter opening in the presence and absence of DNA binding 

proteins. The end-labelled yeaR100 AatII-HindIII promoter fragment was incubated with 50 

nM of RNA polymerase (lanes 1 to 9)  and varying concentrations of NarL and Fis purified 

protein and then subjected to potassium permanganate footprinting. The concentration of NarL 

in lanes 1-3 was 0, 0.2, and 0.4 µM, respectively, while NarL was present in lanes 7, 8 and 9 at 

0.4 µM. The concentration of Fis was as follows: lane 4 and 7, 0.11 µM; lane 5 and 8, 0.22 µM 

and lane 6 and 9, 0.45 µM respectively. End-labelled yeaR100 AatII-HindIII fragment was 

incubated with holo-RNA polymerase (RNAP) and Fis protein and subjected to potassium

permanganate footprinting. Gels were calibrated using Maxam-Gilbert ‘G+A’ sequencing 

reactions and the location of cleavage sites produced by potassium permanganate footprinting 

are shown. In the absence of RNAP, no promoter opening was observed (data not shown).

B. Increased promoter opening in the presence of NarL was quantified by the measuring the 

increase in relative intensities of the bands located between positions -11 and -5, using 

Quantity-one software (BIORAD). Lanes one, two and three are represented by the green, blue 

red traces respectively.
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 Conversely, when the yeaR100 promoter fragment was incubated with RNAP in the absence 

of NarL, but in the presence of increasing concentrations of Fis (lanes 4-6), a decrease in 

promoter opening is observed, suggesting that Fis inhibits the formation of the open complex 

by RNAP. This is probably due to the exclusion of RNAP, as Fis binding site II overlaps the -

35 promoter element (fig. 4.2). The suggestion that Fis and NarL regulate the yeaR promoter 

by competing for binding was consistent with the decrease in open-complex formation when 

the promoter fragment was incubated with RNAP, a fixed concentration of NarL (0.4 µM) and 

increasing concentrations of Fis (lane 7-9). The formation of the open-complex is clearly 

inhibited as Fis is titrated into the reaction, confirming that Fis represses yeaR in competition 

with NarL activation. 

The evidence provided by both in vivo and in vitro experiments, investigating the effect 

of NarL and Fis at the yeaR promoter, suggests that transcription initiation is controlled by a 

dynamic competition between the essential activator, NarL, which binds to a position proximal 

to the -35 element of the promoter, and a repressor, Fis, which binds to two overlapping sites. 

Steric hindrance excludes both the activator, NarL, and RNA polymerase from binding to the 

promoter. 

Decreased nitrate activation of the yeaR promoter in aerobic conditons 

As the activition of the yeaR promoter had been shown to be NarL-dependent, but 

independent of FNR, it was postulated NarL-dependent nitrate activation would lead to high 

expression from the yeaR promoter in aerobic cultures. To test this hypothesis, the yeaR 

promoter-lacZ fusion was transformed into the parental strain, JCB387, fnr and fis null 

derivatives and an fnr fis double mutant. Transformants were grown at 37°C in minimal 

medium, in the presence and absence of nitrate and nitrite. At all times cultures were aerated by 

vigorous shaking and were lysed and assayed at an OD650 of less than 0.3 to ensure that 

cultures were still growing aerobically (fig 4.11). Surprisingly, despite observing some nitrate 
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Figure 4.11 The effect of FNR and Fis on aerobic nitrate and nitrite transcription 

activation at the yeaR promoter

Expression from the yeaR100 promoter, cloned as a promoter::lacZ fusion in pRW50, was 

measured by β-galactosidase activity assay in strains JCB387 (parental strain) (green), 

JCB387∆fis (red), JCB387∆fnr (blue) and JCB387∆fnr∆fis (yellow). Transformants were 

grown in minimal medium in the presence or absence of nitrate (20 mM) or nitrite (2.5 mM). 

At an OD650 of 0.6, cells were harvested, lysed and assayed for β-galactosidase activity.
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 and nitrite induction, the overall activity of the promoter was approximately 10-fold lower in 

aerobic conditions compared to anaerobic (see table 4.1). Interestingly, the deletion of fnr had a 

similar effect on the aerobic expression pattern of yeaR as in anaerobic conditions leading to an 

increase in the nitrite activation, but the overall activity of the promoter was still very low. The 

deletion of fis led to a similar increase in activity, but levels remained low, indicating that the 

suppression of promoter activity in exponentially growing aerobic cultures was not due to 

greater Fis repression. Finally, the double fnr fis mutant showed a similar increase in 

expression of the promoter in nitrate and nitrite as observed in anaerobic cultures, but again 

activity was approximately 10-fold lower in comparison to anaerobic promoter activity. In all 

strains and conditions tested, the activity of the yeaR promoter in aerobic conditions was 

between 10 and 20 fold lower than in anaerobic conditions. 

The effect of NsrR on the activity of the yeaR promoter in aerobic conditions 

A surprising difference in the overall activity of the yeaR promoter in aerobic and 

anaerobic conditions was observed. During aerobic growth, the global regulator of anaerobic 

growth, FNR, is inactive due to the oxidised redox state of its coordinated iron-sulphur centre. 

This means that no FNR-dependent promoters would be expressed in the presence of oxygen. 

These FNR-dependent promoters include those that control the expression of the nitrate and 

nitrite reductases, which would therefore not be expressed. This would mean hat no nitrite 

would be reduced and, as a consequence, no endogenous NO would be produced. As the yeaR 

promoter has been shown to be repressed by NsrR, the nitric oxide sensitive repressor, in 

transcriptomic investigations, it was reasoned that in aerobic cultures, when nitrite is not 

reduced, no endogenous NO is produced and therefore NsrR is not de-repressed. This might 

account for the lack of aerobic yeaR promoter activity.  

To test this hypothesis, the β-galactosidase activity expressed from the yeaR-lacZ 

promoter fusion was measured in the parental strain, JCB387, and the nsrR null derivative, 
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JCB3901 (figure 4.12). Cultures were grown in minimal medium in the presence and absence 

of nitrate. Cultures were aerated by vigorous shaking at 37°C and harvested at an OD650 of less 

than 0.3. The activity of the promoter in the parental strain, in aerobic conditions, was again 

shown to be 40 fold lower than in anaerobic conditions (table 4.1). The deletion of nsrR led to 

a 6-fold increase in promoter activity in both the presence and absence of nitrate in comparison 

to the parental strain. However, as with other strains, the activity of the promoter in aerobic 

conditions was 10-fold lower than in anaerobic conditions in the presence of nitrate, showing 

that NsrR is not responsible for the apparent aerobic repression of pyeaR. This result was 

anaomalous to the findings of Lin et al., (2007), who reported nitrate-dependent aerobic 

promoter activity, in an nsrR mutant, at comparable levels to anaerobic conditions in the 

presence of nitrate. The results of Lin et al., (2007) would suggest that NsrR controls anaerobic 

expression of yeaR in response to anaerobically produced NO. However, this conclusion is not 

reflected by the results of this study. 

Aerobic nitrate activation of pyeaR is NarL-dependent 

Although it was demonstrated that the overall activity of the yeaR promoter was 

approximately 10-fold during aerobic growth, a 6-fold activation was observed when nitrate 

was included in the aerobic growth medium. This suggested that NarL still activated the yeaR 

promoter in aerobic cultures. To test that this effect was NarL dependent, the yeaR-lacZ 

promoter fusion was used to transform the parental stain, JCB387, and derivatives mutated in 

narL, narP and a narLP double mutant. Transformants were grown in aerated minimal medium 

in the presence and absence of nitrate, lysed and assayed at an OD650 of less than 0.3 (figure 

4.13). A 4 to 5 fold increase in promoter activity was observed in the parental strain when 

nitrate was added to the medium. A similar effect was seen in the narP null derivative, 

suggesting that NarP is not required for activation of this promoter. Conversely, in the narL 

and narLP null derivatives, activity of the promoter was not increased in the presence of 
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Figure 4.12 NsrR repression of  aerobic nitrate activation of the yeaR promoter 

The activity of the yeaR-lacZ promoter fusion was measured by β-galactosidase activity 

assay in strains JCB387 (green), and JCB3901 (JCB387∆nsrR) (claret) grown aerobically in 

the absence and presence of 20 mM nitrate. The cultures were lysed and assayed at an OD650

of < 0.3 to ensure oxygen was still abundant in the culture. 
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Figure 4.12 NsrR repression of  aerobic nitrate activation of the yeaR promoter 

The activity of the yeaR-lacZ promoter fusion was measured by β-galactosidase activity 

assay in strains JCB387 (green), and JCB3901 (JCB387∆nsrR) (claret) grown aerobically in 

the absence and presence of 20 mM nitrate. The cultures were lysed and assayed at an OD650

of < 0.3 to ensure oxygen was still abundant in the culture. 
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Figure 4.13 NarL-dependent aerobic nitrate activation of the yeaR promoter 

The activity of the yeaR-lacZ promoter fusion was measured by β-galactosidase activity 

assay in strains JCB387 (green), JCB3875 (∆narP) (red), JCB3883 (∆narP) (blue) and 

JCB3884 (∆narLP) (yellow). Transformants were grown aerobically in the absence and 

presence of 20 mM nitrate. At an OD650 < 0.3, cells were harvested, lysed and assayed for 

β-galactosidase activity.
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Figure 4.13 NarL-dependent aerobic nitrate activation of the yeaR promoter 

The activity of the yeaR-lacZ promoter fusion was measured by β-galactosidase activity 

assay in strains JCB387 (green), JCB3875 (∆narP) (red), JCB3883 (∆narP) (blue) and 

JCB3884 (∆narLP) (yellow). Transformants were grown aerobically in the absence and 

presence of 20 mM nitrate. At an OD650 < 0.3, cells were harvested, lysed and assayed for 

β-galactosidase activity.
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 nitrate, confirming that NarL is still required for aerobic nitrate activation of the yeaR 

promoter.  

Nitrate activation of the E. coli ogt promoter is NarL dependent 

In order to confirm the findings of Meng Xu (PhD thisis, Birmingham), that expression 

from the ogt promoter in response to nitrate is NarL dependent, the ogt100 fragment was 

cloned as a promoter-lacZ fusion into the plasmid, pRW50. This construct was then 

transformed into the parental strain, JCB387, and a ∆narL derivative, JCB3883. Transformants 

were grown anaerobically at 37°C in minimal medium in the presence and absence of nitrate 

until they reached mid-exponential growth phase. At this point the cells were harvested, lysed 

and assayed for β-galactosidase activity (fig 4.14). In the absence of nitrate, a low basal level 

of activity was observed in both the parental and mutant strain. In the presence of nitrate there 

was a dramatic 4.5-fold increase in promoter activity in the parental strain. However, this 

increase was not observed in the narL mutant confirming that activation of this promoter is 

NarL-dependent. 

Transcription activation of the ogt promoter in response to nitrate is dependent on 

NarL binding to two sites in the promoter region 

 Previous studies by Meng Xu had identified a single binding site for NarL in the ogt 

promoter region and had shown, using EMSA and DNase I assays, that NarL binds directly to 

the promoter region at a site centred at position -78.5 with respect to the transcription start site 

(NarL I). Further investigation into the promoter structure using DNase I footprinting by 

Douglas Browning (University of Birmingham), identified a second binding site for NarL 

centred around -45.5 with respect to the transcription start site (NarL II). In order to determine 

the dependence of ogt promoter activity on these two NarL binding sites, a number of mutated 

derivative promoters were constructed in which specific residues had been altered in either the 

NarL I (ogt102) or the NarL II (ogt104) binding site, to decrease the similarity of the site to the 

consensus sequence, and therefore reduce NarL binding to the promoter region. These 
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Fig 4.14 Nitrate induced expression of the ogt promoter is NarL dependent

The ogt100 fragment was cloned as a promoter-lacZ fusion in the plasmid pRW50and 

used to transform strains JCB387 (parental strain) ( red) and JCB3883 (JCB387∆narL)

(blue). Transformants were grown in minimal medium (MS) anaerobically in the 

presence or absence of nitrate (20 mM). At an OD650 ≈0.6, cells were harvested, lysed 

and assayed for β-galactosidase activity. 
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Fig 4.14 Nitrate induced expression of the ogt promoter is NarL dependent

The ogt100 fragment was cloned as a promoter-lacZ fusion in the plasmid pRW50and 

used to transform strains JCB387 (parental strain) ( red) and JCB3883 (JCB387∆narL)

(blue). Transformants were grown in minimal medium (MS) anaerobically in the 

presence or absence of nitrate (20 mM). At an OD650 ≈0.6, cells were harvested, lysed 

and assayed for β-galactosidase activity. 
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 constructs were then cloned as lacZ-promoter fusions into pRW50. The activity of the 

promoter was measured after anaerobic growth in the presence and absence of nitrate and 

compared to that of the wild-type promoter-lacZ fusion, ogt100 (fig 4.15). The nitrate 

dependent activity of the ogt promoter clearly requires binding of NarL to both sites as 

mutations that disrupt either site results in the loss of nitrate induction. The binding positions 

for NarL at -78.5 and -45.5 with respect to the transcription start site, and the dependence upon 

both sites for promoter activity, suggest that the ogt promoter is a class III NarL-dependent 

promoter and demonstrates the apparent versatility of NarL as a transcription activator.  

The nucleoid associated protein, Fis, represses transcription from the ogt 

promoter in vivo 

As with the yeaR promoter, a difference in activity from the ogt promoter was observed 

when the promoter activity was assayed in rich versus minimal medium, implicating Fis as a 

regulator of this promoter (fig 4.16). To assess the role of Fis at the ogt promoter, the pogt-lacZ 

fusion was compared in the parental strain, JCB387, and the ∆fis derivative, JCB3871 (fig 

4.16). Results show that nitrate-induced activity from the ogt promoter is severely restricted 

during growth in rich medium (Lennox broth) supplemented with glucose and that this 

suppression is relieved in the fis null derivative. A similar trend of activity was observed for 

cultures grown in minimal medium supplemented with glycerol, indicating that Fis binds to 

and represses this promoter in vivo. Further in vitro investigations by Meng Xu and Douglas 

Browning have shown that Fis does indeed bind specifically to the ogt promoter at a single site 

centred around -82 with respect to the transcription start site (Squire et al., 2009). The position 

of the Fis binding site at the ogt promoter overlaps the upstream binding site for NarL, NarL I, 

suggesting that pogt and pyeaR are regulated by a shared transcriptional mechanism, whereby 

NarL activation of the promoters, in response to nitrate, is repressed by Fis via competition for 

overlapping binding sites. Furthermore, the comparison of these two promoters show that NarL  
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Fig. 4.15 Transcription from the ogt promoter is dependent upon NarL binding to two sites in 

the promoter region

A. Two mutant derivatives of the ogt100 promoter fragment were created by Doug Browning 

(University of Birmingham) using mega primer PCR. Specific, conserved residues in the two NarL 

binding sites were changed to decrease the similarity of the NarL binding site to the consensus 

sequence. The promoter fragment that was mutated in the upstream NarL site, NarL I, was 

designated ogt102 while the promoter fragment that was mutated in the downstream NarL binding 

site, NarL II, was designated ogt104. 

B. Mutated ogt promoter derivatives, ogt102 (burgundy) and ogt104 (red), were cloned as lacZ-

promoter fusions in pRW50. These were then used alongside the wild-type promoter fusion, ogt100 

(blue), to transform parental strain JCB387. Transformants were grown at 37°C without shaking to 

an O.D650 of approximately 0.6, in minimal medium in the presence and absence of 20 mM nitrate, 

at which point cells were lysed and assayed for β-galactosidase activity. 
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Fig. 4.15 Transcription from the ogt promoter is dependent upon NarL binding to two sites in 

the promoter region

A. Two mutant derivatives of the ogt100 promoter fragment were created by Doug Browning 

(University of Birmingham) using mega primer PCR. Specific, conserved residues in the two NarL 

binding sites were changed to decrease the similarity of the NarL binding site to the consensus 

sequence. The promoter fragment that was mutated in the upstream NarL site, NarL I, was 

designated ogt102 while the promoter fragment that was mutated in the downstream NarL binding 

site, NarL II, was designated ogt104. 

B. Mutated ogt promoter derivatives, ogt102 (burgundy) and ogt104 (red), were cloned as lacZ-

promoter fusions in pRW50. These were then used alongside the wild-type promoter fusion, ogt100 

(blue), to transform parental strain JCB387. Transformants were grown at 37°C without shaking to 

an O.D650 of approximately 0.6, in minimal medium in the presence and absence of 20 mM nitrate, 

at which point cells were lysed and assayed for β-galactosidase activity. 
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Fig. 4.16 The effect of Fis on transcription activation at the ogt promoter 

Expression from the ogt100 promoter fragment, cloned as a promoter::lacZ fusion in 

pRW50, was measured by β-galactosidase assay in strains JCB387 (parental strain) 

(blue) and JCB387∆fis (yellow) . Transformants were grown in in rich medium (Lennox 

broth) and minimal medium (MS) anaerobically in the presence or absence of nitrate 

(20 mM). At an OD650 of 0.6, cells were harvested, lysed and assayed for β-

galactosidase activity.
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Fig. 4.16 The effect of Fis on transcription activation at the ogt promoter 

Expression from the ogt100 promoter fragment, cloned as a promoter::lacZ fusion in 

pRW50, was measured by β-galactosidase assay in strains JCB387 (parental strain) 

(blue) and JCB387∆fis (yellow) . Transformants were grown in in rich medium (Lennox 

broth) and minimal medium (MS) anaerobically in the presence or absence of nitrate 

(20 mM). At an OD650 of 0.6, cells were harvested, lysed and assayed for β-

galactosidase activity.
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is apparently able to function as both a class II transcription activator at pyeaR and a class III 

transcription activator at pogt. 
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Chapter 5  

Results 

Indirect FNR regulation of NarL dependent promoters, yeaR and ogt. 

Introduction 

It has been previously established that the regulation of anaerobic nitrate and nitrite 

reduction in E. coli usually requires the activity of the global regulator of anaerobiosis, FNR, 

and the nitrate and nitrite responsive dual acting two component systems NarXL and NarQP. 

At all previously studied promoters, FNR and the response regulator components, NarL and 

NarP, work synergistically to activate transcription at target promoters. The anaerobic activity 

of FNR is governed by the redox state of an associated iron-sulphur cluster, which is sensitive 

to oxygen and the reactive nitrogen species, nitric oxide (Crack et al., 2008a; Cruz-Ramos et 

al., 2002). Further control of the synthesis of the nitrate and nitrite reductase genes is provided 

by the response regulators, NarL and NarP, whose activity is dependent upon the action of the 

associated sensor kinases, NarX and NarQ, which auto-phosphorylate in response to the 

presence of nitrate and nitrite (Stewart, 1993). During its life cycle, E. coli has to be able to 

detect and respond to not only the presence and absence of oxygen, nitrate and nitrite, but also 

be sensitive to the relative abundance of these alternatives. The ability to ‘fine tune’ expression 

of nitrate and nitrite-dependent promoters is attributed in many cases to the action of the sensor 

kinase components, NarX and NarQ, which demonstrate different sensitivities to both nitrate 

and nitrite, and elicit different effects in response to both the species of nitrogen-oxide and the 

concentration at which it is present (Lee et al., 1999; Stewart, 1993). However, the most 

significant property of the sensor-kinase, NarX, is that in the presence of nitrite, it has been 

shown to reverse its function and actively dephosphorylate phospho-NarL, counteracting the 

NarL-kinase activity of NarQ, resulting in lower levels of NarL dependent gene expression 

(Stewart, 1993).  
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Two promoters driving the expression of the gene, ogt, and the operon, yeaR-yoaG, 

have been shown in the previous chapter to be activated in response to nitrate and nitrite by a 

NarL dependent mechanism. In both cases, the activation by NarL is countered by the nucleoid 

associated protein, Fis, which antagonizes NarL activity competing with NarL for overlapping 

binding sites at both promoters (Squire et al., 2009). In all conditions tested, nitrate and nitrite 

induced activity of both the yeaR and ogt promoters required functional NarL, however under 

certain conditions, the absolute activity of the promoter changed in response to the presence or 

absence of functional FNR, which had been predicted by transcriptomic studies to be a 

repressor of the yeaR promoter (Constantinidou et al., 2006). Initial investigations into the 

activity of the yeaR promoter, in the absence of functional FNR, showed that NarL-dependent 

activation of the promoter was FNR independent, but nitrite induction of the promoter was 

increased 5-fold in the FNR null strain (fig 4.7). Despite the apparent regulation of yeaR by 

FNR in both this study and transcriptomic studies, no putative binding site for FNR, with 

significant similarity to the consensus sequence, has been identified in the yeaR promoter 

region.  

In this chapter, the role of FNR in increased NarL-dependent nitrite induction of the 

yeaR promoter, and whether this effect was caused by direct binding of FNR to the promoter 

region or another indirect mechanism, was investigated. 

Purified FNR binds to the yeaR promoter region with low affinity 

It has been previously demonstrated that the activity of the yeaR promoter is 3 to 4-fold 

higher in the presence of nitrite, when assayed in an FNR null derivative, when compared to 

the parental strain (fig 4.6). In order to determine whether this is a direct effect of FNR binding 

to the yeaR promoter region, the yeaR100 EcoRI-HindIII promoter fragment was radio-labelled 

for use in an electro-mobility shift assay. Purified promoter DNA was incubated with 

increasing concentrations of purified FNR D154A and DNA-protein complexes were separated 
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by PAGE (Fig 5.1). At FNR concentrations of 1 µM and above, some DNA-protein complexes 

formed, causing a band shift. However, the affinity of FNR for this promoter was very low. As 

there was some indication that FNR could bind to pyeaR with low affinity, the promoter 

sequence was re-investigated in 

 an attempt to identify any putative FNR binding sites with some resemblance to the consensus 

sequence. Subsequently, two putative FNR binding sites, with 6 bases out of 10 that matched 

the consensus sequence and were located in likely repressor positions, were identified in the 

promoter region. These FNR sites were identified proximal to the NarL binding site and were 

centred at positions -22.5 and -63.5 with respect to the transcription start site, and were 

designated sites FNR 1 and FNR 2 respectively.  

Site directed mutagenesis of putative FNR sites 1 and 2 

Site directed mutagenesis was used to remove any resemblance of the putative FNR 

sites to the FNR consensus sequence. At FNR site 1, the downstream half site ATCAG, which 

matched the consensus sequence, ATCAA, at 4 out of 5 bases was mutagenised to CATTG to 

remove all similarity to the consensus sequence (Fig 5.2). In the case of FNR 2, specific 

nucleotide changes were made to destroy simultaneously the putative FNR site and create a 

truncated promoter fragment by introducing a BamHI site at FNR 2. These mutagenised 

promoters, designated YEAR102 and YEAR200 respectively, were digested with EcoRI-

HindIII (YEAR102) or BamHI-HindIII (YEAR200), and ligated into the lacZ fusion vector, 

pRW50, to make plasmids pYEAR102 and pYEAR200, respectively. 

FNR represses the yeaR-yoaG indirectly in vivo  

The mutagenised promoter-lacZ fusions, pYEAR102 and pYEAR200 were transformed into 

the wild type strain, JCB387, and its FNR null derivative, JCB3911, and grown anaerobically in the 

presence and absence of nitrate or nitrite. The activity of each promoter in each strain was 

determined by β-galactosidase activity assay (Fig 5.3ai and bi). Destroying putative FNR site 1
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End-labelled yeaR-yoaG fragment was incubated with increasing 

concentrations of FNR D154A and protein-DNA complexes were separated by 

polyacrylamide gel electrophoresis. The concentration of FNR D154A in lanes 1-6 

was 0 µM, 0.25 µM, 0.5 µM, 1 µM, 2 µM and 3 µM respectively.

1      2      3      4      5      6

-

Free DNA

FNR-DNA 

complexes

1      2      3      4      5      6

-

Free DNA

1      2      3      4      5      6

-

Free DNA

FNR-DNA 

complexes

Figure 5.1 FNR binds to the yeaR-yoaG promoter with low affinity

End-labelled yeaR-yoaG fragment was incubated with increasing 

concentrations of FNR D154A and protein-DNA complexes were separated by 

polyacrylamide gel electrophoresis. The concentration of FNR D154A in lanes 1-6 

was 0 µM, 0.25 µM, 0.5 µM, 1 µM, 2 µM and 3 µM respectively.

[FNR D154A]



 147 

G
C
G
T
T
G
T
C
G
C
G
G
G
C
T
T
C
C
C
A
T
C
T
A
T
A
A
T
C
C
T
C
C
C
T
G
A
T
T
C
T
T
C
G
C
T
G
A
T
A
T
G
G
T
G
C
T
A
A
A
A
A

G
T
A
A
C
C
A
A
T
A
A
A
T
G
G
T
A
T
T
T
A
A
A
A
T
G
C
A
A
A
T
T
A
T
C
A
G
G
C
G
T
A
C
C
C
T
G
A
A
A
C
G
g
C
T
G

C
T

G
A

T
A

T
G

G
T

G
C

T
A

C
T

G
A

T
A

T
G

G
A

T
T

C
A

y
e
a
R

2
0

0

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

F
N

R
 1

F
N

R
 2

F
ig

u
re

 5
.2

 M
u

ta
g
en

es
is

 o
f 

p
u

ta
ti

v
e 

F
N

R
 b

in
d

in
g

 s
it

es
, 

F
N

R
1
 a

n
d

 F
N

R
 2

 i
n

 t
h

e 
ye

a
R

-y
o
a

G
p

ro
m

o
te

r 
r
eg

io
n

T
w

o 
pu

ta
tiv

e 
FN

R
 b

in
di

ng
 s

it
es

 w
ith

 6
0%

 id
en

tit
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e 
w

er
e 

id
en

tif
ie

d 
in

 th
e 

ye
a

R
-y

o
a

G
pr

om
ot

er
 r

eg
io

n.
 T

he
  p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
22

.5
nt

 w
ith

 r
es

pe
ct

 to
 th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 1
. T

he
 p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
62

.5
 w

ith
 

re
sp

ec
t t

o 
th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 2
. U

si
ng

 s
ite

-d
ir

ec
te

d 
m

ut
ag

en
es

is
, s

pe
ci

fi
c 

m
ut

at
io

ns
 w

er
e 

in
tr

od
uc

ed
 to

 e
ac

h
si

te
 to

 d
es

tr
oy

 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e.
 A

t F
N

R
 2

, s
pe

ci
fi

c
m

ut
at

io
ns

 w
er

e 
in

tr
od

uc
ed

 to
 b

ot
h 

ha
lf

-s
ite

s 
to

 r
em

ov
e 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 

co
ns

en
su

s 
se

qu
en

ce
 a

nd
 c

on
cu

rr
en

tl
y 

in
tr

od
uc

e 
a 

B
a

m
H

I s
ite

, p
ro

du
ci

ng
 a

 tr
un

ca
te

d 
pr

om
ot

er
 f

ra
gm

en
t.

T
he

 -
10

 a
nd

 -
35

 p
ro

m
ot

er
 e

le
m

en
ts

, N
ar

L
 

bi
nd

in
g 

si
te

 a
nd

 F
is

bi
nd

in
g 

si
te

s 
ar

e 
in

di
ca

te
d 

by
 th

e 
bl

ac
k 

bo
xe

s,
 p

ur
pl

e 
ar

ro
w

s 
an

d 
bo

ld
 te

xt
, r

es
pe

ct
iv

el
y.

-1
0

-3
5

N
a

rL

G
C
G
T
T
G
T
C
G
C
G
G
G
C
T
T
C
C
C
A
T
C
T
A
T
A
A
T
C
C
T
C
C
C
T
G
A
T
T
C
T
T
C
G
C
T
G
A
T
A
T
G
G
T
G
C
T
A
A
A
A
A

G
T
A
A
C
C
A
A
T
A
A
A
T
G
G
T
A
T
T
T
A
A
A
A
T
G
C
A
A
A
T
T
A
T
C
A
G
G
C
G
T
A
C
C
C
T
G
A
A
A
C
G
g
C
T
G

C
T

G
A

T
A

T
G

G
T

G
C

T
A

C
T

G
A

T
A

T
G

G
A

T
T

C
A

y
e
a
R

2
0

0

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

F
N

R
 1

F
N

R
 2

F
ig

u
re

 5
.2

 M
u

ta
g
en

es
is

 o
f 

p
u

ta
ti

v
e 

F
N

R
 b

in
d

in
g

 s
it

es
, 

F
N

R
1
 a

n
d

 F
N

R
 2

 i
n

 t
h

e 
ye

a
R

-y
o
a

G
p

ro
m

o
te

r 
r
eg

io
n

T
w

o 
pu

ta
tiv

e 
FN

R
 b

in
di

ng
 s

it
es

 w
ith

 6
0%

 id
en

tit
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e 
w

er
e 

id
en

tif
ie

d 
in

 th
e 

ye
a

R
-y

o
a

G
pr

om
ot

er
 r

eg
io

n.
 T

he
  p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
22

.5
nt

 w
ith

 r
es

pe
ct

 to
 th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 1
. T

he
 p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
62

.5
 w

ith
 

re
sp

ec
t t

o 
th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 2
. U

si
ng

 s
ite

-d
ir

ec
te

d 
m

ut
ag

en
es

is
, s

pe
ci

fi
c 

m
ut

at
io

ns
 w

er
e 

in
tr

od
uc

ed
 to

 e
ac

h
si

te
 to

 d
es

tr
oy

 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e.
 A

t F
N

R
 2

, s
pe

ci
fi

c
m

ut
at

io
ns

 w
er

e 
in

tr
od

uc
ed

 to
 b

ot
h 

ha
lf

-s
ite

s 
to

 r
em

ov
e 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 

co
ns

en
su

s 
se

qu
en

ce
 a

nd
 c

on
cu

rr
en

tl
y 

in
tr

od
uc

e 
a 

B
a

m
H

I s
ite

, p
ro

du
ci

ng
 a

 tr
un

ca
te

d 
pr

om
ot

er
 f

ra
gm

en
t.

T
he

 -
10

 a
nd

 -
35

 p
ro

m
ot

er
 e

le
m

en
ts

, N
ar

L
 

bi
nd

in
g 

si
te

 a
nd

 F
is

bi
nd

in
g 

si
te

s 
ar

e 
in

di
ca

te
d 

by
 th

e 
bl

ac
k 

bo
xe

s,
 p

ur
pl

e 
ar

ro
w

s 
an

d 
bo

ld
 te

xt
, r

es
pe

ct
iv

el
y.

G
C
G
T
T
G
T
C
G
C
G
G
G
C
T
T
C
C
C
A
T
C
T
A
T
A
A
T
C
C
T
C
C
C
T
G
A
T
T
C
T
T
C
G
C
T
G
A
T
A
T
G
G
T
G
C
T
A
A
A
A
A

G
T
A
A
C
C
A
A
T
A
A
A
T
G
G
T
A
T
T
T
A
A
A
A
T
G
C
A
A
A
T
T
A
T
C
A
G
G
C
G
T
A
C
C
C
T
G
A
A
A
C
G
g
C
T
G

C
T

G
A

T
A

T
G

G
T

G
C

T
A

C
T

G
A

T
A

T
G

G
A

T
T

C
A

y
e
a
R

2
0

0

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

F
N

R
 1

F
N

R
 2

G
C
G
T
T
G
T
C
G
C
G
G
G
C
T
T
C
C
C
A
T
C
T
A
T
A
A
T
C
C
T
C
C
C
T
G
A
T
T
C
T
T
C
G
C
T
G
A
T
A
T
G
G
T
G
C
T
A
A
A
A
A

G
T
A
A
C
C
A
A
T
A
A
A
T
G
G
T
A
T
T
T
A
A
A
A
T
G
C
A
A
A
T
T
A
T
C
A
G
G
C
G
T
A
C
C
C
T
G
A
A
A
C
G
g
C
T
G

C
T

G
A

T
A

T
G

G
T

G
C

T
A

C
T

G
A

T
A

T
G

G
A

T
T

C
A

y
e
a
R

2
0

0

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

G
C
G
T
T
G
T
C
G
C
G
G
G
C
T
T
C
C
C
A
T
C
T
A
T
A
A
T
C
C
T
C
C
C
T
G
A
T
T
C
T
T
C
G
C
T
G
A
T
A
T
G
G
T
G
C
T
A
A
A
A
A

G
T
A
A
C
C
A
A
T
A
A
A
T
G
G
T
A
T
T
T
A
A
A
A
T
G
C
A
A
A
T
T
A
T
C
A
G
G
C
G
T
A
C
C
C
T
G
A
A
A
C
G
g
C
T
G

C
T

G
A

T
A

T
G

G
T

G
C

T
A

C
T

G
A

T
A

T
G

G
A

T
T

C
A

y
e
a
R

2
0

0

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

A
T

G
C

A
A

A
T

T
C

A
T

T
G

A
T

G
C

A
A

A
T

T
A

T
C

A
G

y
e
a
R

1
0
2

F
N

R
 1

F
N

R
 2

F
ig

u
re

 5
.2

 M
u

ta
g
en

es
is

 o
f 

p
u

ta
ti

v
e 

F
N

R
 b

in
d

in
g

 s
it

es
, 

F
N

R
1
 a

n
d

 F
N

R
 2

 i
n

 t
h

e 
ye

a
R

-y
o
a

G
p

ro
m

o
te

r 
r
eg

io
n

T
w

o 
pu

ta
tiv

e 
FN

R
 b

in
di

ng
 s

it
es

 w
ith

 6
0%

 id
en

tit
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e 
w

er
e 

id
en

tif
ie

d 
in

 th
e 

ye
a

R
-y

o
a

G
pr

om
ot

er
 r

eg
io

n.
 T

he
  p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
22

.5
nt

 w
ith

 r
es

pe
ct

 to
 th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 1
. T

he
 p

ut
at

iv
e 

FN
R

 s
ite

 c
en

te
re

d 
ar

ou
nd

 -
62

.5
 w

ith
 

re
sp

ec
t t

o 
th

e 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

 w
as

 d
es

ig
na

te
d 

FN
R

 2
. U

si
ng

 s
ite

-d
ir

ec
te

d 
m

ut
ag

en
es

is
, s

pe
ci

fi
c 

m
ut

at
io

ns
 w

er
e 

in
tr

od
uc

ed
 to

 e
ac

h
si

te
 to

 d
es

tr
oy

 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 c

on
se

ns
us

 s
eq

ue
nc

e.
 A

t F
N

R
 2

, s
pe

ci
fi

c
m

ut
at

io
ns

 w
er

e 
in

tr
od

uc
ed

 to
 b

ot
h 

ha
lf

-s
ite

s 
to

 r
em

ov
e 

an
y 

si
m

il
ar

it
y 

to
 th

e 
FN

R
 

co
ns

en
su

s 
se

qu
en

ce
 a

nd
 c

on
cu

rr
en

tl
y 

in
tr

od
uc

e 
a 

B
a

m
H

I s
ite

, p
ro

du
ci

ng
 a

 tr
un

ca
te

d 
pr

om
ot

er
 f

ra
gm

en
t.

T
he

 -
10

 a
nd

 -
35

 p
ro

m
ot

er
 e

le
m

en
ts

, N
ar

L
 

bi
nd

in
g 

si
te

 a
nd

 F
is

bi
nd

in
g 

si
te

s 
ar

e 
in

di
ca

te
d 

by
 th

e 
bl

ac
k 

bo
xe

s,
 p

ur
pl

e 
ar

ro
w

s 
an

d 
bo

ld
 te

xt
, r

es
pe

ct
iv

el
y.

-1
0

-3
5

N
a

rL



 148 

yeaR102

[FNR]

yeaR200

[FNR]

0

1000

2000

3000

4000

5000

6000

7000

Anaerobic Anaerobic + Nitrate Anaerobic + Nitrite

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Anaerobic Anaerobic + Nitrate Anaerobic + Nitrite

pyeaR102

pyeaR200

1

2 3

2 3

1

Fig. 5.3 A and B.  FNR repression of the yeaR-yoaG promoter is indirect

Fig 5.3Ai and 5.3Bi. Strains JCB387 (green) and JCB3911 (∆fnr) (red) were transformed with 

mutagenised plasmids, pyeaR102 (Ai) and pyeaR200 (Bi) and grown in defined minimal medium 

anaerobically in the presence and absence of nitrate (20 mM) or nitrite (2.5 mM). At an OD650 ≈0.6, 

cells were harvested, lysed and assayed for β-galactosidase activity. Units are expressed as nmol ONPG 

hydrolysed min-1 mg-1 dry cell mass.

Fig 5.3Aii and 5.3Bii. Mutagenised promoter fragments yeaR102 and yeaR200 were digested with 

EcoRI-HindIII and BamHI-HindIII respectively, and end-labeled. Fragments were incubated with 

increasing concentrations of FNR D154A and protein-DNA complexes were separated by 

polyacrylamide gel electrophoresis. Lanes 1, 2 and 3 contain zero, 1 and 3 µM FNR D154A 

respectively.
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Fig 5.3Ai and 5.3Bi. Strains JCB387 (green) and JCB3911 (∆fnr) (red) were transformed with 

mutagenised plasmids, pyeaR102 (Ai) and pyeaR200 (Bi) and grown in defined minimal medium 

anaerobically in the presence and absence of nitrate (20 mM) or nitrite (2.5 mM). At an OD650 ≈0.6, 

cells were harvested, lysed and assayed for β-galactosidase activity. Units are expressed as nmol ONPG 

hydrolysed min-1 mg-1 dry cell mass.

Fig 5.3Aii and 5.3Bii. Mutagenised promoter fragments yeaR102 and yeaR200 were digested with 

EcoRI-HindIII and BamHI-HindIII respectively, and end-labeled. Fragments were incubated with 

increasing concentrations of FNR D154A and protein-DNA complexes were separated by 

polyacrylamide gel electrophoresis. Lanes 1, 2 and 3 contain zero, 1 and 3 µM FNR D154A 

respectively.
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 (pYEAR102) caused an overall increase in activity in all anaerobic conditions when compared to the 

wild type promoter in a wild-type strain (data not shown). However the activity of pYEAR102 still 

exhibited the same pattern of increased activity as the wild type promoter (significant increase in the 

presence of nitrite) when assayed in an FNR mutant (Fig 5.3ai). This suggested that FNR 1 is not the 

binding site for FNR at the yeaR-yoaG promoter. The increase in overall promoter activity observed 

when FNR site 1 was mutagenised may be due to interference with the overlapping repression site 

for Fis. When assayed in a wild type bacterium, the activity of pYEAR200, the yeaR-yoaG promoter 

mutated and truncated at FNR 2, was comparable to the wild-type promoter, pYEAR100 (data not 

shown). This suggested that the truncated promoter includes all necessary promoter elements for 

transcription activation. However, the truncated promoter still showed an increase in activity in all 

conditions, most dramatically during growth in the presence of nitrite, when assayed in an FNR 

mutant strain, suggesting that FNR does not bind at putative FNR site 2, and any FNR effect on the 

truncated promoter was indirect as the truncated promoter behaves in the same way as the natural 

promoter in the parental strain (fig. 5.3bi). 

Purified FNR does not bind to FNR 1 or FNR 2 in vitro 

The mutagenised yeaR-yoaG promoter fragments, YEAR102 and YEAR200 were end-

labelled and incubated with FNR D154A. The YEAR102 fragment, mutagenised at FNR 1, still 

bound FNR at concentrations comparable to the wild type promoter. This evidence suggests that 

FNR does not bind at putative FNR site, FNR 1 (Fig. 5.3Aii). Finally the truncated, end-labelled 

YEAR200 fragment (BamHI-HindIII) was incubated with purified FNR D154A and protein DNA 

complexes were separated by PAGE. No band shift was observed at any concentration tested, 

confirming the conclusion that FNR does not bind within the truncated promoter (fig. 5.3bii). By 

interpreting the in vivo and in vitro data together it can be concluded that any FNR repression effect 

on the activity of the yeaR-yoaG promoter is likely to be indirect. 
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A common feature of increased nitrite induction of NarL-dependent promoters in 

an FNR mutant strain 

In the previous chapter, it was established that the yeaR and ogt promoters were co-

regulated by a common mechanism in response to nitrate. The activity of both yeaR and ogt 

was entirely dependent upon functional NarL and the activation by NarL was countered by the 

binding of Fis by competitive binding for overlapping sites and the exclusion of an essential 

activator. Comprehensive studies of the yeaR promoter have shown that the activation in 

response to nitrite is 3-fold higher in a strain lacking functional FNR, suggesting an FNR 

repression effect at the promoter; however this effect has been shown to be indirect. As the ogt 

promoter is regulated in a very similar fashion to the yeaR promoter, the effect of an FNR 

mutation on the nitrite induction of both promoters was compared. 

The yeaR100 and ogt100 promoter-lacZ fusions were used to transform a parental 

strain, JCB387, and an fnr null derivative strain, JCB3911. Transformants were grown 

anaerobically in minimal medium in the presence and absence of nitrate (20 mM) and nitrite 

(2.5 mM) until cultures reached mid-exponential growth phase. At this point the cells were 

harvested, lysed and assayed for promoter-driven β-galactosidase activity (fig 5.4). In the case 

of the yeaR promoter (A), the activity of the promoter in response to nitrite was 5-fold higher 

in the absence of functional FNR than in the wild-type strain. The same effect was seen at the 

ogt promoter, albeit at lower absolute levels (B), where a 4-fold increase in promoter activity in 

response to nitrite was observed in the FNR null derivative. The fact that both promoters, 

which have shared regulatory features, are affected in the same way in response to nitrite in an 

FNR null strain suggests a common indirect mechanism that increases NarL-dependent 

promoter activity in these conditions.  
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Figure 5.4 The effect of an fnr mutation on nitrate and nitrite activation of the yeaR 

and ogt promoters.

Strains JCB387 (parental strain) (green) and JCB3911 (JCB387∆fnr) (red), were 

transformed with plasmid YEAR100 (Chart A) and OGT100 (Chart B) and grown in 

minimal medium (MS), anaerobically in the presence or absence of nitrate (20 mM) or 

nitrite (2.5 mM). At an OD650 ≈0.5, cells were harvested, lysed and assayed for β-

galactosidase activity. For all β-galactosidase activity assays, units are expressed as nmol

ONPG hydrolysed min-1 mg-1 dry cell mass. In this and all subsequent experiments, all 

assays were duplicated: data are the mean and standard error of the mean from three 

independent cultures.
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Increased nitrite dependent activation of the yeaR promoter in an FNR mutant is 

NarL dependent. 

In vivo and in vitro investigation of the yeaR promoter region has established that NarL 

was required for promoter activation. NarL has been shown to bind to the yeaR promoter to a 

7-2-7 inverted repeat sequence located at -43.5 with respect to the transcription start site. 

Surprisingly, despite the 7-2-7 binding arrangement of the NarL site, a conformation that 

should allow for binding of the homologous response regulator, NarP, no binding of NarP to 

the promoter has been shown and little effect on promoter activity in a narP null strain was 

observed (table 4.1). This was especially surprising as, in the presence of nitrite, levels of 

phospo-NarL in comparison to phospho-NarP would be reduced by NarX-phosphatase activity. 

Although very little effect of an nsrR mutation on promoter activity in vivo was observed in 

this study (fig 4.7), transcriptomic studies do infer a repression effect of NsrR at the yeaR 

promoter and a putative binding site has been identified in the promoter region. It was 

postulated that under conditions where nitrite alone is present, nitric oxide would build up to a 

level that would de-activate NsrR and FNR and only under these specific conditions it could be 

possible, though unlikely, for NarP to activate the yeaR promoter.  

In order to confirm that the increase in nitrite-induction of the yeaR promoter in a FNR 

null strain was not due to increased NarP activity, the yeaR promoter-lacZ fusion was used to 

transform a wild type strain and strains lacking in functional fnr, narL, narLP, fnr nsrR narL, 

and fnr nsrR narLP. Transformants were grown anaerobically in minimal medium in the 

presence or absence of nitrate or nitrite until mid-exponential growth phase was reached. At 

this point cells were harvested, lysed and assayed for β-galactosidase activity (fig 5.5). As in 

previous experiments, the effect of an fnr mutation was an increase in the observed nitrite 

induction of the yeaR promoter (pink bars) in comparison to the wild-type (red bars). In strains 

lacking in NarL, but where FNR and NsrR are still functional (green and navy) the promoter 

was un-inducible in any condition, confirming that NarL is required for activation of this
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Figure 5.5 Nitrate and nitrite activation of the yeaR promoter in an fnr mutant 

requires NarL

The yeaR100 promoter fragment was cloned as a lacZ-promoter fusion in pRW50 and 

transformed into the parental strain, JCB387 (green), and strains lacking functional fnr

nsrR (pink), narL (claret), narLP (navy), fnr nsrR narL (yellow) and fnr nsrR narLP

(turquoise). Transformants were grown anaerobically in the presence and absence of 

nitrate or nitrite, harvested, lysed and assayed for β-galactosidase activity
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 promoter in these conditions. When fnr and nsrR are mutated (yellow and turquoise), the 

activity of the promoter was not increased by the presence of nitrate or nitrite through the 

action of NarP (yellow) demonstrating that yeaR promoter activity and the apparent FNR effect 

are absolutely dependent upon NarL. 

Increased NarL dependent nitrite induction of the yeaR promoter in an FNR null 

mutant is not due to a secondary Fis effect 

The previous chapter established the mechanism for the regulation of the yeaR 

promoter by competition between NarL dependent activation and Fis dependent repression. It 

has been established that cellular Fis levels fluctuate considerably during growth and peak 

during early-exponential growth phase (Ali Azam et al., 1999). As would be expected, the 

growth of the fnr null mutant strain was severely inhibited during anaerobic growth in the 

presence of nitrate and nitrite, even when alternative electron acceptor TMAO was present in 

the medium (the expression of the TMAO reductases is FNR independent), meaning that the 

relative Fis levels in the fnr null strain may differ from the wild-type at the point at which 

promoter activity is measured due to growth rate differences.  

In order to ascertain whether the increased nitrite-dependent activation of the yeaR 

promoter in an fnr null strain is due to a secondary Fis effect, a double fnr
-
 fis strain was 

constructed by transducing the JCB387∆fnr::CmR
 mutant, JCB3911, to streptomycin resistance 

with P1 phage propagated on the JCB387∆fis::StpR
 strain, JCB3871. The wild type (green), fis 

(blue), fnr (red) and fis fnr (yellow) strains were transformed with the yeaR100 promoter-lacZ 

fusion and grown anaerobically in minimal medium in the presence and absence of nitrate and 

nitrite (fig 5.6). All cultures were grown to an optical density (650 nm) of 0.5 (± 0.05) at which 

point cells were harvested, lysed and assayed for β-galactosidase activity. In the wild type 

strain (green), the normal profile for promoter activity was observed, with highest promoter 

activity reported in the presence of nitrate and only limited activity in the presence of nitrite. 

As observed previously, the absolute activity of the promoter in the absence of functional Fis  
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Figure 5.6 The effect of Fis on enhanced nitrite activation of pyeaR in an fnr mutant.

The yeaR100 promoter fragment, cloned as a promoter-lacZ fusion in pRW50, was used to 

transform a parental E. coli strain, JCB387 (green) and strains mutated in the genes fis (blue), 

fnr (red) and fis fnr (yellow) respectively. Transformants were grown anaerobically in minimal 

medium in the presence or absence of nitrate (20 mM) or nitrite (2.5 mM), collected, lysed and 

assayed for promoter-driven β-galactosidase activity.

n
m

o
l
O

N
P

G
 h

y
d

ro
ly

s
e
d

 m
in

-1
 m

g
-1

 d
ry

 c
e
ll

 m
a
s

s



 156 

(blue) was higher than in the wild type in all conditions but highest promoter activity in the 

presence of nitrate was higher than in the presence of nitrite, following the expression profile 

of the wild type strain. This was not the case for the fnr null strain (red) that shows 

considerably higher activity in the presence of nitrite than in the presence of nitrate, which was 

a reversal of the normal promoter activity profile, a phenomenon previously described in this 

chapter as ‘the FNR effect’. When both functional Fis and FNR were absent (yellow), the 

overall activity of the promoter in the presence of nitrite was further increased in comparison to 

the wild type and either single mutant, but the pattern of gene expression was similar to that of 

the fnr single mutant and the fis mutation appeared to have only an additive effect to the 

absolute promoter activity. Due to this evidence it was concluded that the increase in NarL 

dependent nitrite activation in the absence of FNR was not due to a secondary Fis effect.  

Increased nitrite activation of the yeaR promoter in an fnr
-
mutant is not due to 

increased cellular NarL levels 

It has been established that the increased activity of the yeaR promoter in response to 

nitrite in an fnr mutant is not a direct effect of FNR binding to the promoter, nor a secondary 

effect of cellular Fis levels in strains with different growth rates. The simplest remaining 

explanation is that the absolute levels of NarL in an fnr null mutant are increased, thereby 

leading to an increase in all NarL-dependent, FNR-independent promoter activity. Published 

evidence on the regulation of the two-component regulator systems, NarXL and NarQP, using 

promoter-lacZ fusions has shown that although maximal expression of the unlinked genes, 

narQ and narP, requires anaerobiosis, activation of these genes was FNR and ArcA 

independent. In the case of the operon narXL, an fnr mutation has no effect on the anaerobic 

expression of narX but did cause an increase in absolute levels observed in anaerobic 

conditions in the presence of nitrite. This presumably leads to an increase in the levels of 

expression of the downstream-linked gene NarL, whose expression is driven both from the 
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inducible narXL promoter and at a constitutive low level from the narL promoter situated 

inside the narX reading frame (Darwin and Stewart, 1995; Egan and Stewart, 1990). 

A Western blot was designed to ascertain whether the absolute cellular levels of NarL 

protein are increased in an fnr mutant strain in the presence of nitrite. The wild type control 

strain, JCB387, and the fnr null derivative, JCB3911, were grown anaerobically in the presence 

of nitrite. Strains mutated in narL, narLP, and narX (upstream of pnarL) were also included as 

a negative control, to confirm NarL anti-body specificity and to confirm that narL is still 

expressed from the constitutive narL promoter in a narX mutant respectively. All strains were 

grown to an OD650 nm of ~0.5, at which point they were harvested and lysed in cracking buffer 

(see materials and methods). Equal biomass of cell lysates were separated by SDS-PAGE and 

transferred to nitrocellulose for Western analysis with rabbit anti-NarL antibody (anti-

NarL1916) and horseradish-peroxidase anti-rabbit IgG secondary antibody (fig5.7). 

Results confirm that the anti-NarL antibody, 1916, is specific to NarL only and does not 

cross-react with the NarL homologue, NarP (lanes 1-3). Comparison of the intensity of lanes 1 

and 5, the wild-type strain and fnr null derivative respectively, indicate that the absolute 

cellular level of NarL in the fnr mutant was considerably lower than that of the wild type strain 

when corrected for biomass. This experiment mirrors the findings of a more intensive tandem-

study of cellular-NarL levels in different strain and conditions, using Western analysis, 

completed by Meng Xu of the University of Birmingham (PhD thesis, 2009). To date, the 

reason for the lower expression of NarL in the fnr null strain has not been explained. Taken 

together this evidence suggests that any effect of an fnr mutation on the activity of the yeaR 

and ogt promoters is not due to an increase in the cellular levels of NarL protein. 

NarL-dependent nitrate and nitrite activation of the yeaR promoter requires either 

sensor kinase, NarX or NarQ 

In wild-type E. coli cells, it is accepted that the dual-acting two component systems, 

NarXL and NarQP govern the response of the bacterium to the presence of nitrate or nitrite in 
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Figure 5.7 Western analysis of relative cellular quantities of NarL in mutant strains.

Samples 1, 2, 3, 4 and 5 were taken from strains JCB387 (parental strain), JCB3883 

(narL), JCB3884 (narLP), JWK1213-1 (narX) and JCB3911 (fnr) respectively, grown in 

anaerobic conditions in the presence of 20 mM nitrate. Equal biomass of cell lysates were 

separated by SDS-PAGE and transferred to nitrocellulose for Western analysis with

rabbit anti-NarL antibody and horseradish-peroxidase-labelled anti-rabbit IgG secondary 

antibody.
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 the environment. The fact that there is a significant difference in the sensitivity of sensor 

components, NarX or NarQ, to anions, nitrate or nitrite, and the fact that both response 

regulators, NarL and NarP can be phosphorylated by either sensor kinase means that there is a 

great deal of complexity in the control of nitrate and nitrite metabolism and significant cross 

talk between the systems. This is further complicated by the fact that in the presence of nitrite, 

NarX function reverses and NarL-phosphate is rapidly de-phosphorylated by NarX. Cross talk 

between the two-component systems has not only been observed in the case of NarXL and 

NarQP however, and some evidence has suggested histidine kinases (HK’s) of unrelated two-

component systems in the cell may cross-communicate with non-cognate response regulators 

(Yamamoto et al., 2005). 

To determine whether the NarL dependent activation of the yeaR promoter in response 

to nitrate or nitrite was dependent upon NarX, NarQ or another unidentified HK, a number of 

strains were constructed that were mutated to remove narX, narQ or narXQ. In all cases where 

the gene for narX had been disrupted, the expression of the downstream narL gene from pnarL 

was confirmed by Western analysis using anti-NarL antibody (data not shown). The 

constructed strains, along with a wild type control, were transformed with the yeaR100 

promoter-lacZ fusion plasmid and grown anaerobically in the presence and absence of nitrate 

and nitrite. At mid-exponential growth phase the cells were harvested, lysed and assayed for β-

galactosidase activity (fig 5.8). In the wild-type strain (red), the established expression profile 

was observed with high activity in the presence of nitrate and some increased activity in the 

presence of nitrite. Activity of the promoter in the absence of NarQ (blue) was unaffected in 

the conditions tested suggesting that NarQ is not required for the Nar-L-dependent activation 

of the yeaR promoter if NarX still functions. Similarly, nitrate induction of the yeaR promoter 

by nitrate in the narX mutant was unaffected (green), however, a reduction promoter activity in 

the presence of nitrite was observed in the narX mutant. This was especially surprising as 

established dogma would lead to the prediction that activity of a NarL-dependent promoter  
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Figure 5.8 NarL dependent nitrate and nitrite activation of the yeaR 

promoter requires the sensor kinases NarX and NarQ

The yeaR100 promoter fragment, cloned as a promoter-lacZ fusion in pRW50, 

was used to transform a parental E. coli strain, JCB387 (green) and strains 

mutated in the genes coding for narX (light blue), narQ (claret) and narXQ

(pink) respectively. Transformants were grown anaerobically in minimal 

medium supplemented with nitrate or nitrite, harvested, lysed and assayed for 

β-galactosidase activity.
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would be higher in the absence of NarX  but the presence of NarQ when the strain is grown in 

nitrite, as NarX would normally dephosphorylate NarL under these conditions. Activity of the 

promoter in the narXQ double mutant (yellow) was un-inducible in all conditions tested 

proving that at least one of the sensor kinases, NarX or NarQ, wis required for activation of 

this promoter. 

Increased NarL-dependent nitrite activation of the yeaR promoter in an fnr 

mutant is not due to FNR modulation of NarX phosphatase activity 

The previous experiment demonstrated that the NarL-dependent activity of the yeaR 

promoter is dependent upon phosphorylation of NarL by either NarX or NarQ and that 

maximal promoter activity in the presence of nitrate was possible in the absence of NarX or 

NarQ indicating that both histidine kinases are able to sufficiently phosphorylate NarL in these 

conditions. As stated, one unique feature of the NarX protein is that in the presence of nitrite, 

NarX actively dephosphorylates NarL (Rabin and Stewart, 1993). The structural basis for the 

function of NarX in these conditions is not fully understood, however, one unique structural 

feature of the NarX protein sequence is the presence of an additional amino acid region in the 

central region of the protein, between the conserved Y-box and Q-linker (from His259 to Ile343 

in NarX). This region is heterogeneous in both length and sequence to that of NarQ and 

contains a conspicuous pattern of conserved cysteine residues (Stewart, 2003)(Fig5.9). This led 

some to speculate that this region may co-ordinate an iron-sulphur centre that may influence 

the activity of NarX in response to oxygen. However later investigations have shown that in 

fact it is NarQ activity, which contains no conserved cysteine residues in this region, that is 

affected by culture aeration and it is the central region that determines this response (Stewart et 

al., 2003). This study also confirmed, using sensor kinase chimeras, that it is the sensory 

domain or ‘P-box’ of NarX and NarQ that governs the  differential response of the sensor 

kinases to nitrate and nitrite, not the central region. Although there is no established evidence 

for a direct protein-protein interaction between FNR and NarX and NarQ, the indirect effect of  
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Fig 5.9 The domain organisation of the Sensor Kinase, NarX

This figure illustrates the NarX amino acid sequence with specific 

domains vital to its function highlighted. The approximate sequence 

of the two trans- membrane helices, TM I and TMII, the conserved P-

Box, the HAMP-linker and the central region are highlighted in the 

purple, green, blue and yellow shaded boxes respectively. The 

additional sequence in the central region, which is unique to NarX, is 

highlighted in the boxed sequence and the conspicuous cysteine 

residues are shown in red underlined text.
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FNR on nitrite activation of the yeaR and ogt promoters does indicate that there is some 

difference in signalling to NarL in an FNR mutant and, as shown previously (fig 5.8), all NarL 

dependent activation of the yeaR- promoter is NarX/ NarQ dependent. As in these conditions 

NarX would be expected to reduce NarL dependent activation through NarL-P phosphatase 

activity, it was postulated that FNR may directly modulate the phosphatase activity of NarX in 

response to nitrite, perhaps by interaction between cysteine rich regions present in both 

proteins. 

To determine whether the absence of functional FNR has any effect on the signalling from 

NarX or NarQ, a number of mutants were constructed that had been disrupted in the genes fnr 

narX, fnr narQ, and fnr narX narQ. These strains, the parental strain, JCB387, and the fnr 

mutant strain, JCB3911, were transformed with the yeaR100 promoter-lacZ fusion plasmid and 

grown anaerobically in the absence and presence of nitrate and nitrite. At mid-exponential 

phase the cells were harvested, lysed and assayed for β-galactosidase activity (fig 5.10). The 

activity of the wild-type strain (green) and fnr null mutant (red) followed established patterns, 

with the fnr mutant exhibiting increased promoter activity in response to nitrite. Promoter 

activity in the fnr narX mutant derivative (blue) was increased 1.6-fold in response to nitrate, 

4-fold in response to nitrite and some increase in the basal level of the promoter was observed 

in the absence of nitrate or nitrite, compared to the parental strain. This suggested that NarX 

might indeed cause a reduction of phospho-NarL in an fnr null mutant. However, although 

overall activity of the promoter in a fnr narX background was higher, the same FNR effect of 

increase nitrite activation was observed in the fnr
-
 narQ mutant derivative (yellow) indicating 

that the ‘FNR effect’ was not NarX dependent and NarQ-dependent NarL activation was also 

effected by the availability of FNR. Finally the activity of the promoter in the triple mutant, fnr 

narZ narQ was uninducible in any condition (mauve bars), proving that any effects of FNR on 

the activity of the yeaR promoter were NarXQ dependent. 
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Figure 5.10 Increased NarL dependent nitrite activation of pyeaR in fnr null strains 

requires the sensor kinase NarX or NarQ.

Expression from the yeaR100 promoter fragment, cloned as a promoter-lacZ fusion in 

pRW50,  was measured in a parental E. coli strain, JCB387 (green) and strains mutated in 

the genes fnr (red), fnr narX (blue), fnr narQ (yellow) and fnr narXQ (mauve), respectively. 

Transformants were grown anaerobically in minimal medium in the presence or absence of 

nitrate (20 mM) or nitrite (2.5 mM). At mid-exponential growth phase cells were collected, 

lysed and assayed for promoter-driven β-galactosiade activity
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These experiments have demonstrated that there is a complex relationship between 

FNR, NarX, NarQ and the apparent levels of NarL signalling in the cell that is not caused by 

the modulation of the normal function of the sensor kinases. 

Identification of yeaR-promoter binding elements using DNA-sampling method 

Investigation of the FNR transcriptome has revealed that the expression of many more 

genes than previously identified, including yeaR-yoaG, ogt and many other genes of unknown 

function, are regulated directly or indirectly by the action of FNR (Constantinidou et al., 2006). 

These hypothetical proteins could include putative transcription factors or DNA binding 

proteins that have so far been unidentified. In order to determine whether any other factors, 

with known or unknown function, bind to the yeaR promoter region, a recently developed  

DNA-sampling technique was utilised (Butala et al., 2009). This method allows for rapid 

isolation of specific DNA fragments together with attached proteins, directly from E. coli K-12 

cells grown in any condition. The yeaR100 EcoRI-HindIII promoter fragment was ligated into 

a low-copy number plasmid, pWR901, at a site adjacent to multiple operator binding sites 

(LacO) for the LacI repressor and between two sites for the yeast Sce-I meganuclease. This 

plasmid, pDJS902 was co-transformed with the multi-copy plasmid, pACBSR-DL1 into the 

strains, JCB387∆lacI::FLAG and the fnr null derivative, JCB3911∆lacI::FLAG, by 

electroporation The multi-copy plasmid pACBSR-DL1 is a derivative of pACBSR (Scarab 

genomics), which encodes the modified lambda red system (encoding only the Gam protein) 

and the I-SceI meganuclease under arabinose inducible promoters (Butala et al., 2009). This 

method allows for the isolation of promoter DNA-protein complexes by ustilising affinity 

isolation using anti-FLAG antibodies directed towards FLAG-tagged LacI, which will bind 

upstream of the promoter fragment of interest at the multiple Lac operator sites (fig. 5.11). 

Transformants were grown anaerobically to mid-exponential growth phase in the presence of 
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Figure 5.11 Outline of the DNA-sampling method for probing protein binding at 

bacterial promoters described in materials and methods and by Butala et al., 

(2009). 
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 nitrite. At this point cells were treated with 0.4% arabinose, which induces the expression of 

SceI from pACBSR-DL1. The action of SceI then excises protein-DNA complex, consiting of 

the linear promoter fragment, bound at the lac operators by LacI-FLAG and any promoter 

bound proteins. After lysis, protein-DNA complexes are isolated by the affinity isolation 

method described in materials and methods, resolved by SDS-PAGE before bands of interest 

are extracted, digested with trypsin and identified by mass spectrometry. 

Comparison of the protein-band profile of the wild-type and fnr mutant strain identified 

at least seven candidate proteins that were either unique to particular strains or present in 

significantly different quantities in each sample (fig 5.12). These bands were excised, 

destained, digested with trypsin and resultant peptides were extracted and analysed on a 

Thermo-Finnigan FT-ICR mass spectrometer using a NanoMate chip-based electrospray 

system operated by the University of Birmingham Functional Genomics and Proteomics Unit. 

Candidate proteins 1-3 were identified as nucleoid associated proteins, H-NS, IHF and HU 

respectively. As IHF was known to bind to the extreme upstream region of the yeaR100 

fragment, outside of the promoter region (data not shown), this candidate was disregarded. The 

effects of H-NS and HU on activity of the yeaR promoter have not been determined. All other 

candidate bands were found to contain degradation products of LacI-FLAG and were also 

disregarded. 

From this experiment it did not appear that an unidentified transcription factor binds to 

the yeaR promoter in the presence or absence of FNR and repress or enhance activity 

accordingly. 
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Fig 5.12 Isolation of yeaR-promoter binding proteins using the DNA-sampling method

Strains JCB387lacI-flag and JCB3911lacI-flag were co-transformed with the plasmids 

pYEAR901 and pACBSR-DL1, grown anaerobically to an OD650 of 0.5 in the presence of 

2.5 mM nitrite and induced with 0.4% arabinose. Cells were harvested, lysed by sonication

and pure extract was obtained. Promoter DNA-protein complexes were isolated by 

incubation with anti-FLAG conjugated magnetic beads, washed and eluted. Proteins were

separated by SDS-PAGE on a 4-12% gradient gel, calibrated for size with SeeBlue®

prestained protein markers. 

Protein bands observed in different abundance when samples were compared were extracted, 

de-stained, digested with trypsin and analysed on a Thermo-Finnigan FT-ICR mass 

spectrometer using a NanoMate chip-based electrospray system.
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Chapter 6 

Discussion 

The regulation of NarL dependent promoters 

Transcription activation by NarL in Escherichia coli 

Transcription activation in E. coli often requires the binding of transcription factors 

proximal to the RNA polymerase binding site and protein-protein contact between the 

transcription factor and RNA polymerase. Transcription activators can function in a class I, 

class II or class III manner, either by binding upstream of the α-CTD binding site and making a 

single contact with the RNAP enzyme (class I), binding between the -35 promoter element and 

the α-CTD binding site and contacting two or more elements of the RNAP holo-enzyme (class 

II), or in a combinations of these two arrangemnents (class III) (Browning and Busby, 2004). 

The global transcription activator, FNR, can function as both a class I and a class II activator 

(Li et al., 1998). At many FNR dependent promoters, the transcription activators, NarL and 

NarP, also bind to the promoter region and enhance promoter activity (Stewart, 1993). 

However, at the start of this project, no promoter had been shown to be activated by NarL 

independently of FNR. Data generated during this study and in a parallel independent study 

(Lin et al., 2007) have shown that the expression of the operon of unknown function, yeaR-

yoaG, is dependent only on NarL for transcription activation both in vivo and in vitro. 

Measurements of transcription activation in vivo revealed that yeaR promoter activity is totally 

dependent upon NarL (table 4.1). The activation of pyeaR by NarL in vivo was also shown to 

be independent of FNR, suggesting that NarL is capable of activating transcription without the 

need for co-activation by FNR (fig. 4.7).  

Investigation of the in vitro binding of NarL to the yeaR-yoaG promoter has revealed 

that NarL binds to a site centred around 47.5 bp upstream of the transcription start site (fig 4.5), 
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and leads to an approximately two-fold increase in promoter opening by RNAP in vitro (fig. 

4.10). The total dependence upon NarL for in vivo activation of yeaR-yoaG and the binding 

position of NarL at the promoter strongly suggest that NarL is able to function independently 

as a class II transcription activator at this promoter.  

In a parallel study by Meng Xu (University of Birmingham), the activity of the ogt 

promoter was also shown to be dependent upon NarL for activation and is independent of FNR. 

In vitro investigation revealed that the ogt promoter region contained two binding sites for 

NarL of equal affinity, centred at positions -45.5 and -78.5 with respect to the transcription 

start site (Squire et al., 2009). Mutagenesis revealed that activity of the promoter is dependent 

upon NarL binding to both of these operators, although co-operative binding was not ruled out. 

The dependence upon both NarL sites for promoter activity and the positioning of the NarL 

operator sites relative to the transcription start site suggest that the ogt promoter is activated by 

NarL via a class III mechanism.  

The ability of NarL to independently activate transcription by both a class II and class 

III mechanism at multiple promoters shows that not only is NarL a competent transcription 

activator, but that it also demonstrates versatility in the mechanisms of transcription activation 

(fig 6.1). 

Future investigation: the activating regions of NarL 

When FNR functions as a class I activator it binds to a site, typically centred at position 

-61.5, and makes a single contact with the α-CTD of RNA polymerase at a specific region 

known as activating region 1. At promoters where FNR activates via a class II mechanism, 

FNR binds to a site centred at position -41.5 and makes contact with the RNAP holo-enzyme at 

three specific regions: Activating region 1 contacts the upstream bound α-CTD of RNAP; 

activating region 2 contacts the α-NTD of RNAP; and activating region 3 contacts domain 4 of 

sigma factor of the RNAP holo-enzyme (fig.1.7). The activating regions of FNR have been  
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shown to be essential for both classes of transcription activation by mutating specific amino 

acids within these regions (Li et al., 1998). Due to the fact that NarL has never been shown to 

function as an independent transcription activator, how or where NarL contacts RNA 

polymerase is unknown. 

An investigation to identify the activating regions of NarL would be necessary for 

understanding how NarL is able to function as a transcription activator. One method for 

identifying the specific regions of the NarL protein that are essential for activation comes from 

the work of Lee et al (2000). This study identified the essential residues of RNAP required for 

interaction with FNR at class I promoters by utilising suppression genetics and an existing 

alanine-scan library of the αCTD domain of RNA polymerase (Murakami et al., 1996). By 

determining the ‘patches’ of residues in RNAP that are essential for activation by FNR, the 

residues that interact during transcription activation could be identified. By using pyeaR as a 

reporter of NarL-dependent transcription activation and the α-CTD alanine scan method, the 

residues of the RNA polymerase α-CTD that are essential for activation of pyeaR by NarL 

could be identified and mapped onto the experimentally determined structure of the α-CTD. 

From this information it is likely that a number of essential ‘patches’ will be identified. By 

combining information on the properties of the essential amino acids in the α-CTD, such as 

charge and hydrophobicity, with the determined structure of NarL, it might be possible to 

identify candidate residues in the structure of NarL that can then be targeted for mutagenesis. 

This should lead to the discovery of how and where NarL contacts RNA polymerase at the 

yeaR and ogt promoters in order to activate transcription. The structure of the DNA-binding C-

terminal domain of NarL bound to oligonucleotides containing NarL operators from the nir and 

nar promoter DNA sequences has been resolved (fig 6.2) (Maris et al., 2005). This information 

could also aid in the understanding of how NarL functions as a transcription activator. 
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Fig 6.2 X-ray crystal structure of NarL-CTD DNA binding domain complexed with 

oligonucleotides containing NarL target sequences.

A. Co-crystallisation of the NarL C-terminal domain with DNA oligonucleotides containing NarL 

binding sequences revealed that dimerisation of NarL at the nirB promoter occurred independently of 

the N-terminal sensor domain (accession number 1ZG1)(Maris et al., 2005). The dimeristaion occurs 

via the C-terminus helix (box i.) while the DNA recognition helix facilitates sequence recognition (box 

ii.). 

B. Predicted positively (blue) and negatively (red) charged regions of the NarL-CTD protein dimer

when complexed with DNA. These exposed charged regions may be important in protein-protein 

interactions with the RNAP α-CTD.

A.

B.

i.

ii.
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NarL binding site positioning and promoter strength 

In contrast to the yeaR promoter, which requires binding of NarL to only one site for 

transcription activation, activation at the ogt promoter requires binding of NarL to two sites in 

the promoter region. One explanation for this is the fact that binding of NarL to the ogt 

promoter has been shown to be ~10 times weaker than binding at the yeaR promoter in vitro 

(Squire et al., 2009). This could account for the difference in overall promoter activity in 

response to nitrate and the lack of nitrite induction of ogt when phospho-NarL levels would be 

lower. Furthermore, the positioning of the yeaR NarL binding site at -43.5 is 2 bp closer to the 

-35 promoter element than is the downstream NarL binding site at ogt, which is centred around 

-45.5. It was initially postulated that the change in positioning of the downstream NarL 

operator at pogt might affect the strength of the ogt promoter. This might explain the 

requirement for a second upstream NarL binding site at the class III activated ogt promoter in 

comparison to the class II NarL-dependent yeaR promoter. The requirement for two sites in the 

ogt promoter has been demonstrated (fig 4.15). However, to date, it has not been demonstrated 

whether the binding of NarL to the two sites in the ogt promoter is co-operative and whether 

mutagenesis of one site leads to a loss of binding at both sites. To determine whether this is the 

case, a DNase I footprint with the two mutagenised ogt promoter fragments OGT102 and 

OGT104 could be used. If NarL still binds to one site when the other site has been 

mutagenised, it will prove that NarL binding at each site is independent and suggest that NarL 

makes multiple contacts with RNAP at the ogt promoter. However, if loss of binding at one 

mutagenised site causes loss of all binding of NarL to the ogt promoter, this would suggest co-

operative binding of NarL and would require further investigation. 

Initial investigations by David Chismon (unpublished results) into the properties of the 

NarL operator sequence and positioning in the yeaR and ogt promoter regions yielded some 

unexpected results. When the NarL operator from the yeaR promoter was transplanted into the 

ogt promoter to replace the ogt NarL operator (-45.5), ogt promoter activity was increased to 
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approximately the same level as the yeaR promoter in response to nitrate. Conversely, when 2 

bp of promoter DNA between the -35 promoter element and the downstream ogt NarL operator 

was deleted, to reposition the ogt NarL-operator in the yeaR promoter position (-43.5), it led to 

a total loss of ogt promoter activity in response to nitrate. This evidence suggests that it is the 

sequence of the yeaR NarL operator, and therefore the binding affinity of NarL, that governs 

the overall activity of the promoter, and not the position of the operator relative to the -35 and -

10 promoter elements. However, this experiment also reveals that the exact spacing of the 

NarL operator with respect to the ogt transcription start site is vital to promoter function. 

The NarP independence of yeaR promoter activity  

As has been demonstrated in this study and previous investigations, the binding sites 

for NarL at the yeaR and ogt promoters are arranged as 7-2-7 inverted repeat sequences (Lin et 

al., 2007; Squire et al., 2009). This arrangement is usually sufficient for binding of both NarL 

and the homologous response regulator, NarP (Darwin et al., 1997; Tyson et al., 1994). 

However, thorough investigation of both pyeaR and pogt has shown that NarP has little or no 

effect at either of these promoters: NarP does not bind to either promoter in vitro (fig 4.6) and 

very little effect on promoter activity is seen in vivo (table 4.1). This phenomenon is not 

believed to be due to a difference in affinity for the operator sequences, as even at high 

concentrations of NarP, no binding was observed in EMSA experiments with the yeaR 

promoter fragment. 

The NarL and NarP amino acid sequences ar 44% identical, 64% similar and differ in 

length by a single amino acid (fig 6.3). Although the structure of NarP has not been solved, 

based on its amino acid sequence it is presumed to have a similar three-dimensional structure 

to that of NarL. The amino acid sequences of NarL and NarP are most similar in the sensor 

domains and the DNA binding helix-turn-helix domains, but differences in other regions could 

account for the inability of NarP to function as an FNR-independent transcription activator. 
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Figure 6.3 Alignment of the amino acid sequences of the homologous response 

regulators, NarL and NarP

The amino acid sequences of the homologous response regulator proteins, NarL and 

NarP, were aligned using the ClustalW tool at http://www.ebi.ac.uk/Tools/clustalw2. 

Residues that are identical in the two proteins are marked with a star, while residues 

with side chains with very similar or related properties are marked with a colon or full 

stop, respectively. The helix-turn-helix DNA binding motif, formed by helices α8 and 

α9, and the conserved apsartate (the site for phosphorylation) are indicated. 

α9

α8

α9

α8

P

Figure 6.3
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 The physiological relevance of yeaR and ogt regulation by NarL but not NarP is not fully 

understood, especially when the effect of an fnr mutation on increased NarL dependent nitrite 

activation is considered. 

The role of NsrR at the yeaR promoter 

The expression of yeaR has been shown in various transcriptomic studies to be 

increased in response to nitric oxide and other reactive nitrogen species (see table 1.1). This 

response is largely attributed to the presence of an NsrR binding site in the yeaR promoter 

region that overlaps the -35 promoter element. An investigation into the NsrR regulon showed 

a 4-fold increase in the transcription of yeaR in conditions where NsrR repression had been 

relieved by repressor titration (Filenko et al., 2007). However, during this study, the repression 

effect of NsrR on pyeaR has been found to be weak (fig 4.7).  It is difficult to determine the 

extent of NsrR repression at the yeaR promoter using in vivo promoter-lacZ fusion assays due 

to the requirement for nitrate activation via NarL. When nitrate is present, NarL activates 

transcription from the yeaR promoter and, presumably, NsrR represses until nitric oxide is 

produced. However, nitric oxide is already presumably being produced by the bacterium as a 

result of nitrate and nitrite reduction, meaning that NsrR is already de-repressed. Indeed, the 

introduction of an nsrR mutation has very little effect on the overall promoter activity in these 

conditions, suggesting that promoter activity is maximal and NsrR is already de-repressed.  

In order to elucidate what role the NsrR protein has in regulation of the yeaR promoter, 

it would be necessary to use both in vivo and in vitro techniques. Some success using crude cell 

lysates of strains over expressing functional NsrR for EMSA experiments has been recorded by 

Doug Browning and David Chismon (University of Birmingham). These experiments have 

shown that the promoter fragments of nrf and hcp, which both contain NsrR operators, are 

bound by a protein, presumed to be NsrR, changing the electromobility of the promoter 
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fragment (unpublished data). This approach could be used to ascertain whether NsrR does bind 

to the yeaR promoter.  

More recent evidence has shown that it is possible to purify NsrR from other bacterial 

species and to use the purified protein in EMSA experiments (Tucker et al., 2008). If this 

approach can be used in E. coli, it would be more desirable to use purified protein than crude 

cell extract. However, all purifications and subsequent reactions using the NsrR protein must 

be carried out in an anaerobic cabinet. 

A further method for determining the role of NsrR in the regulation of yeaR would be 

the use of ‘star’ or ‘locked on’ mutants of NarL. If the activity of NarL is made independent of 

the presence of nitrate or nitrite, the activity of the yeaR promoter could be assayed in the 

absence of nitrate in strains with and without functional NsrR. This would allow the effect of 

NsrR to be measured in the absence of any source of reactive nitrogen species, while NarL is 

still fully active. Although a ‘locked on’ NarL mutant is not currently available, it has been 

shown previoulsy that if the NarQ sensor kinase from Neisseria gonorrhoeae is introduced into 

E. coli, it continually phosphorylates E. coli NarL even in the absence of nitrate or nitrite 

(Overton et al., 2006; Whitehead and Cole, 2006). This would provide a suitable alternative 

method for testing the role of NsrR at the yeaR promoter in the absence of sources of nitric 

oxide. 

Aerobic inhibition of the yeaR promoter 

Once it was established that the activity of the yeaR promoter is activated by NarL in 

the presence of nitrate, independently of FNR, it was presumed that the activity of the promoter 

would be induced equally in the presence of nitrate under aerobic growth conditions. Initial 

experiments demonstrated that this was not the case, and that the activity of the promoter under 

aerobic conditions was approximately 10-fold lower than the absolute level observed in 

anaerobic conditions (fig. 4.7, 4.12, 4.13 and 4.14). The initial explanation for this 
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phenomenon was that, in aerobic conditions, the nitrate and nitrite reductases, whose 

expression is FNR dependent, are not synthesised. This would mean that there would be no 

endogenous source of nitric oxide in the cells during aerobic growth to relieve repression by 

NsrR, leading to low promoter activity. However, this was shown to be incorrect, as the 

introduction of a chromosomal nsrR mutation had very little effect and the promoter activity 

remained low. This result is contradictory to the findings of a parallel study on the regulation 

of yeaR, which showed a similar pattern of aerobic inhibition but greater overall promoter 

activity in aerated cultures in the presence of nitrate (Lin et al., 2007). Lin et al (2007) also 

showed that by mutagenising the NsrR operator in the yeaR promoter they were able to 

drastically increase promoter activity in both aerated and non-aerated cultures. 

The reason for this anomalous result is not clear, but it could be due to differences in 

the methods used in this study and that of Lin et al (2007). First, all promoter-lacZ fusions in 

this study were constructed in the low-copy number plasmid (2-5 copies per cell), pRW50, 

whereas Lin et al used single-copy chromosomal promoter-lacZ fusions at the bacteriophage λ 

insertion site. The difference in the overall effect of NsrR at the yeaR promoter between the 

two studies could also be due to the use of plasmid-based promoter-lacZ fusions, as NsrR has 

been shown to be prone to repressor titration (Bodenmiller and Spiro, 2006; Filenko et al., 

2007). This could mean that the yeaR promoter is already partially de-repressed with regards to 

NsrR, in all experiments in this study, due to the presence of multiple NsrR operators and 

repressor titration. 

NarX dependent NarL phosphorylation in response to nitrite 

The dependence of NarL-activation at pyeaR on the sensor kinases, NarX and NarQ, 

was determined during this project (fig 5.8). It was determined that either NarX or NarQ was 

required for full activation of the promoter by NarL. However, a surprising anomaly was 

observed when the activity of the yeaR promoter was measured in a narX null derivative in the 
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presence of nitrite. Existing evidence, outlined in chapter five, would suggest that under these 

conditions, the activity of a NarL dependent promoter would be higher than in the parental 

strain where NarX is functional. This would be because of the antagonistic action of NarX 

phosphatase activity in the presence of nitrite, which would limit the cellular levels of NarL, 

phosphorylated by NarQ (Rabin and Stewart, 1993). When NarX is absent, it would be 

expected that NarQ would phosphorylate NarL unimpeded by the action of NarX, leading to an 

increase in NarL-dependent promoter activity. This was clearly not the case in this study and 

remains unexplained but represents a further aspect of interest in the anaerobic nitrate 

respiration regulatory network. 

The action of Fis at NarL-dependent promoters 

The activity of both the yeaR and ogt promoters was similarly repressed when assayed 

in rich medium, and this effect was shown to be due to the nucleoid associated protein, Fis 

(figs 4.8 & 4.16). Fis was shown to bind to two sites in the yeaR promoter and a single site in 

the ogt promoter. Remarkably, at both promoters it appeared that Fis was able to repress 

transcription by binding to one or more sites that overlapped the NarL operator, effectively 

excluding an essential activator. 

It is not entirely clear as to why the cell would opt out of expressing yeaR and ogt in 

times of rapid growth in rich medium, conditions when Fis levels would be high. However, it is 

well established that E. coli represses the transcription of many essential genes during rapid 

growth due to the limited supply of RNA polymerase, which is diverted to the promoters of 

genes encoding the protein synthesis and cell replication machinery (Ishihama, 2000). In 

several cases, this repression effect is facilitated by Fis by various different mechanisms 

(Browning et al., 2004a; Browning et al., 2005; Grainger et al., 2008). This study provides 

further evidence of the diversity of roles of the nucleoid associated protein, Fis. 
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Indirect repression of NarL dependent promoters by FNR in response to nitrite 

Increased levels of NarL phosphate in the absence of functional FNR 

The activity of the NarL-dependent yeaR promoter was shown, in this investigation, to 

be increased relative to the parental strain in response to nitrite in the absence of functional 

FNR (fig 5.4). This result, as well as results of previous micro-array studies, suggested that 

FNR may act as a repressor of this promoter (Constantinidou et al., 2006). However, in vitro 

investigation showed that purified FNR protein does not bind specifically to the yeaR promoter 

region, meaning that any observed effect on promoter activity must be via an indirect 

mechanism. Western analysis of the cellular levels of NarL showed that the increase in yeaR 

promoter activity in an fnr mutant was not due to an increase in total cellular NarL content, 

which was in fact lower in an fnr null derivative (fig 5.7). Chapter 5 of this study investigated 

this phenomenon in detail and established that the effect of an fnr mutation was not due to 

modulation of NarX phosphatase activity, as NarQ-dependent NarL activity was also shown to 

be affected by an fnr mutation (fig 5.10). Furthermore, the apparent ‘FNR effect’ was observed 

in the case of the ogt promoter, indicating that this is a general effect of FNR on NarL-

dependent promoters (fig 5.4).   

Taking into account all of the evidence gathered during this investigation, it was 

postulated that, by some unidentified mechanism, there is an increase in the cellular levels of 

NarL-phosphate in response to nitrite in an fnr mutant strain. In order to test this hypothesis, an 

experiment was attempted to determine the ratio of NarL-phosphate: total NarL, using highly 

sensitive mass spectroscopy. This method would require the identification of the peptide 

containing the phosphorylation site Asp59 (fig 6.4). A strain was constructed, in which the 

chromosomal narL gene was replaced with a gene encoding a C-terminal 3xFLAG fusion of 

NarL. This strain was grown anaerobically in the presence of nitrite and total cellular NarL-

FLAG was extracted using anti-FLAG antibodies conjugated to magnetic beads. This  
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Figure 6.4 In silico trypsin digestion of NarL and identification of phospho-

peptide

The NarL polypeptide, when treated with trypsin, would yield a number of 

peptides, including a 5.3 kDa peptide (bold boxed sequence) that contains the 

protein phosphorylation site, Asp 59 (red underlined). This in silico peptide 

digest was generated using PeptideCutter, available at 

http://www.expasy.ch/tools/peptidecutter

Figure 6.4
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procedure was identical to the protocol used for the DNA-sampling experiment described in 

chapter 5, with the addition of DNAse to the lysis buffer. 

All attempts at this experimental method yielded high quantities of NarL-FLAG 

protein, which was separated by SDS-PAGE and visualised using SilverQuest® silver staining 

(Invitrogen)(figure 6.5). Proteins were then destained, digested with trypsin and eluted from 

the gel. Eluted peptides were analysed on a Thermo-Finnigan FT-ICR mass spectrometer using 

a NanoMate chip-based electrospray system operated by the University of Birmingham 

Functional Genomics and Proteomics Unit. On all occasions, the protein purified was identified 

as NarL by its peptide sequence (data not shown). However, despite several attempts, it was 

not possible to identify the peptide containing the phosphorylation site, most likely due to its 

relatively large size (5.2 kDa).  

This experiment may be a good way of determining whether FNR indirectly regulates 

NarL dependent promoter activity by modulating NarL-phosphate levels. However, 

modifications will need to be made in order to maximise the chance of identifying the correct 

peptide. In the future, site directed mutagenesis could be used to introduce a recombinant 

trypsination site proximal to Asp59, to facilitate the identification of the phospho-peptide. 

 

The physiological roles of the gene products of yeaR-yoaG, ogt and hcp-hcr 

Nitrate regulation of DNA repair 

The physiological role of Ogt has been widely and thoroughly studied. It is accepted 

that the ogt gene encodes an O6-alkylguanine DNA-alkyltransferase that removes methyl 

groups from alkylated DNA (Margison et al., 1985; Potter et al., 1987). However, this study 

and the work of Meng Xu (PhD thesis) provide the first evidence of nitrate regulation of ogt 

expression, and hence of DNA repair (Squire et al., 2009). The rationale for this unprecedented 

regulation comes from the fact that RNS, in particular NO, are known to cause an indirect  
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Figure 6.5

Fig 6.5 Affinity-directed isolation of NarL-3xFLAG

Strain JCB387∆narL-3xFLAG was grown anaerobically to an OD650 of 0.5 in the 

presence of 2.5 mM nitrite. Cells were harvested, lysed by sonication and cell extract 

was obtained. Promoter NarL-FLAG protein was isolated by incubation with anti-

FLAG conjugated magnetic beads, washed and eluted. Proteins were separated by 

SDS-PAGE on a 4-12% gradient gel, calibrated for size with SeeBlue® prestained

protein markers.

A single high intensity band, with the correct molecular weight for NarL-3xFLAG, 

was excised, de-stained, and digested with porcine trypsin. Peptides were then eluted 

and analysed on a Thermo-Finnigan FT-ICR mass spectrometer using a NanoMate

chip-based electrospray system, run by the Functional Genomics Suite at the 

University of Birmingham.
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increase in DNA mutation rates (Weiss, 2006). In the presence of NO, lysine, other amino 

acids and other chemicals, such as methylamine, can become potent DNA methylating agents 

(Kunisaki and Hayashi, 1979; Swann and Magee, 1968; Taverna and Sedgwick, 1996). The 

regulation of ogt in response to nitrate, via NarL alone, indicates that Ogt is synthesised as part 

of a prophylactic response to endogenous RNS that are generated during anaerobic nitrate and 

nitrite metabolism (Squire et al., 2009; Weiss, 2006). Surprisingly, S-adenosyl methionine 

(SAM) was shown not to be the major DNA-methylating mutagen in these nitrosative stress 

conditions (Taverna and Sedgwick, 1996). 

Repair of iron-sulphur centres damaged by nitric oxide 

The product of the E. coli ytfE gene has been shown to have an important role in 

resistance to nitric oxide stress (Justino et al., 2005b; Justino et al., 2007). Like yeaR-yoaG, 

ytfE has been shown to be repressed by NsrR (Filenko et al., 2007). Bioinformatic analysis of 

the promoter region has also identified a putative FNR binding site that overlaps the RNA 

polymerase binding site. The expression patterns of ytfE and yeaR-yoaG were also very similar 

in two independent transcriptomic studies that measured the expression of genes in response to 

nitrate, nitrite or nitric oxide (Constantinidou et al., 2006; Justino et al., 2005b). The fact that 

both of these genes are regulated in a very similar fashion by a very similar set of transcription 

factors suggests that the products of both genes may be involved in similar or even the same 

pathways. 

Much of the physiological data published on the growth phenotypes of a ytfE null 

mutant and its ability to grow under different anaerobic conditions is now being reviewed due 

to the identification of a chromosomal deletion of approximately 100 genes in the ytfE mutant 

strain (Claire Vine. unpublished data). However, the gene homologue of ytfE in Neisseria 

gonorrhoeae, dnrN, has been shown to be involved in the repair of the transcription factor, 

FNR, after damage by nitric oxide (Overton et al., 2008). Published evidence shows that 
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purified YtfE can repair the metabolic enzymes, Aconitase B and Fumarase A, after nitric 

oxide damage (Justino et al., 2006). However, whether this repair is due to the reduction or 

removal of NO from the iron-sulphur centres of these proteins, or the re-insertion of an entirely 

new iron-sulphur centre, remains to be proven. Whether YtfE is able to repair iron-sulphur 

centre containing transcription factors, such as FNR, in E. coli is currently being investigated. 

A previous investigation into the repair of the iron-sulphur containing E. coli ferredoxin, 

following nitrosative stress, revealed that the restoration of ferredoxin function was not due to 

de novo synthesis but to the repair of the damaged dinitrosyl iron cluster. Furthermore, this 

repair was shown to be dependent upon the availability of cellular L-cysteine (Rogers and 

Ding, 2001). 

When E. coli encounters nitric oxide, damage to the cell is inevitable due to the highly 

reactive nature of nitric oxide. Amongst the many biological components to which nitric oxide 

can bind are iron-sulphur centres that are essential components of many enzymes, involved in 

all aspects of metabolism. When nitric oxide binds to iron-sulphur centres, a nitrosyl adduct is 

formed (fig 6.6). How these damaged iron-sulphur centres are repaired is unknown, but it could 

involve either the reduction of the nitrosyl adduct in situ or the excision or transfer of the 

nitrosyl group to another recipient. If the nitroso-adduct was reduced in situ, while still bonded 

to the iron atom, it is possible that several reduction steps, catalysed by several enzymes might 

be required to remove the NO group entirely. One scheme proposed is that the nitrosyl adduct 

would be reduced to a metal-bound hydroxamate adduct by an enzyme-catalysed 2 electron 

reduction, before being reduced to hydroxylamine by a further reduction, possibly involving a 

second enzyme (fig.6.7). The hydroxylamine produced from this reduction could then be 

reduced by Hcp or another unknown enzyme. Alternatively, a transferase enzyme could 

catalyze the removal of the NO adduct entirely to another protein, most likely a thiol-

containing enzyme, in a process known as transnitrosation (Arnelle and Stamler, 1995). Under 

the right physiological conditions, transnitrosation of the metal bound nitroso-adduct is  
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possible, but this would still leave the cell with the problem of having to remove the nitrosyl 

adduct from a different protein. One possible, but metabolically unfavourable, mechanism of 

NO removal would be for the cell to synthesise a protein that would be used as an ‘NO-

sponge’, acting as a target for nitrosation by NO or transnitrosation before being degraded 

entirely. Any protein synthesized during conditions of nitrosative stress could fulfil this role. 

However, a highly expressed protein, especially one containing an iron-sulphur, centre such as 

Hcp, would be an ideal candidate.   

Structural domain similarity of YeaR and TehB 

Bio-informatic analysis of the YeaR protein sequence, using domain specific BLAST 

searching, PSI-BLAST, revealed the presence of a DUF1971 superfamily domain in the YeaR 

amino acid sequence. This domain is most often found in the tellurite resistance protein, TehB, 

from several organisms. The highest similarity score for a protein of known structure was 

TehB of Vibrio fischeri ES114 with a hit score of 85.5 and an e value of 2e-16. This result is 

considered to be significant for elucidating the function of YeaR for several reasons. As has 

been shown in previous sections, nitric oxide toxicity often involves the binding of NO to 

metal groups, or the conversion of NO to secondary RNS in the presence of metals. How TehB 

functions to remove tellurium from the cytoplasm is not known, but the protein has been 

shown to contain a conserved motif known as the S-adenosylmethionine (SAM)-dependent 

non-nucleic acid methyltransferase motif, and site-directed mutagenesis of conserved residues 

cause loss of tellurite resistance. TehB over-expressed from a plasmid has been shown to 

facilitate the loss of TeO3
2- from an assay mixture, but the reaction end-product is not known 

(Liu et al., 2000). Whether or not YeaR possesses this same SAM-binding motif has not been 

determined at present. Tellurium is found in the same group of the periodic table as the 

essential element, selenium, which is incorporated into the modified amino acid, seleno-

cysteine. The similar chemical properties of these two elements might suggest that YeaR could 
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be involved in the processing of selenium in response to NO stress. How cellular selenium 

levels are affected by NO, or the reaction products that occur, are not known but would be of 

interest to this study. In some bacterial species, YeaR is present as an amino-terminal extension 

of TehB and thus is often referred to as TehB or TehB^ (Lin et al., 2007; Rodionov et al., 

2005). In the Vibrionales and some Enterobacteria, tehB or tehB^ are encoded on the 

chromosome immediately downstream of the nitric oxide reductase encoding genes, norVW, 

and are presumed to be co-ordinately expressed in response to nitric oxide (Rodionov et al., 

2005). Finally, the cryptic tellurite resistance protein of E. coli, TehB, which shows only 

limited similarity to YeaR, was shown to be upregulated in the presence of NO and also nitrite 

(Constantinidou et al., 2006; Justino et al., 2005b). A putative NsrR binding site was identified 

in the promoter of TehB, situated in a position that overlaps the transcription start site 

(Bodenmiller and Spiro, 2006). Why tellurite resistance or related cell processes might be 

regulated by nitric oxide stress is not understood, but offers new possibilities for the function of 

YeaR and YoaG.  

Nitrogen isotope, N
15

, tracer experiments to identify nitric oxide detoxification 

pathways 

In a recent investigation into the properties and function of the nitrate and nitrite 

transporter in E. coli, NarU, the heavy isotope N15 was used to track the accumulation of nitrite 

and ammonia inside and outside the cell during growth in the presence of nitrate (Jia et al., 

2009). Using highly accurate mass spectrometry, the heavier, non-radioactive, isotope can be 

identified even in chemically different species, such as nitrate and nitrite, by the difference in 

molecular mass. This procedure could be used to identify the pathway for nitric oxide 

detoxification, especially from iron-NO adducts, as have been discussed earlier. The isotope, 

N15, is not available in the form of nitric oxide gas but N15 nitric oxide could be generated from 

N15 nitrite (Sigma Aldrich) in an acidic environment, as has been shown previously (Kim et al., 

2003). The accumulation of different pathway products, such as hydroxylamine and 



 192 

hydroxamates, could then be investigated in mutants lacking one or more of the genes 

implicated in NO detoxification. This technique could lead to the identification of the 

physiological function of one or more genes of unknown function in the resistance of E. coli to 

reactive nitrogen species.   

The hypothetical function of YeaR-YoaG and its role in nitrosative stress 

This study has presented clear evidence that the operon of unknown function yeaR-

yoaG and the gene ogt are regulated in response to nitrate, via NarL, by an FNR independent 

mechanism. As has been discussed, nitrate and nitrite reduction, which are utilised by the 

bacterium to survive in anaerobic conditions, can lead to the generation of highly cytotoxic 

nitric oxide (Corker and Poole, 2003). The generation of nitric oxide from nitrate and nitrite 

metabolism would undoubtedly disrupt the cell and would eventually de-activate the global 

response regulator, FNR, by binding to the essential iron-sulphur centre and forming a stable 

dinitrosyl adduct (Cruz-Ramos et al., 2002). Under these conditions, it would be expected that 

a number of SOS proteins would be synthesised in order to deal with the nitric oxide present 

and the damage it has caused (Constantinidou et al., 2006; Justino et al., 2005b). A mechanism 

of direct regulation by NO, via FNR, has already been proven at the hmpA promoter, which 

encodes the flavohaemaglobin, Hmp, a nitric oxide detoxification system. Active FNR binds to 

the hmp promoter and represses transcription (Cruz-Ramos et al., 2002). When nitric oxide is 

produced, it deactivates FNR, leading to Hmp synthesis and nitric oxide detoxification. In 

contrast to phmp, the regulation of yeaR is only indirectly effected by FNR, suggesting that 

YeaR-YoaG might be synthesised as a prophylactic response to the nitric oxide precursor, 

nitrate. 

The role of NsrR at the yeaR promoter is vital to understanding whether the gene is 

expressed in response to, or in preparation for, nitrosative stress. A single binding site for NsrR 

exists in the promoter region of yeaR, and a 4-fold effect of NsrR repression on yeaR 
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transcription was reported (Filenko et al., 2007; Lin et al., 2007). However, this study has 

demonstrated that the apparent role of NsrR in vivo is relatively weak. The experiments 

suggested earlier in this discussion, to ascertain whether NsrR binds to the yeaR promoter, 

would be vital to identifying the physiological role of the YeaR-YoaG proteins. 

In general, when studying bacterial physiology, understanding the regulation of a gene 

is key to understanding the function of the encoded proteins. The conditions when proteins are 

maximally expressed tend to be the conditions where the encoded protein is most active and 

most needed. Furthermore, groups of proteins that are required in response to different 

environmental conditions are often co-regulated and under the control of similar transcription 

factors (Browning and Busby, 2004; Constantinidou et al., 2006). These assumptions suggest 

that yeaR-yoaG, which is expressed in response to nitrate, and is co-regulated with genes 

known to be involved in nitrosative stress management, forms part of a response to nitrosative 

stress.  

Despite the implication that yeaR-yoaG forms part of an SOS response to deal with 

nitric oxide, no clear growth inhibition phenotype of a yeaR-yoaG null strain by nitric oxide 

has been observed. This suggests that the function of YeaR-YoaG is not vital to the ability of 

E. coli to grow in these conditions. This apparent redundancy appears to be common 

throughout nitrosative stress responses, as the E. coli chromosome encodes three proteins with 

known nitric oxide reductase capabilities (HmpA, NorVW and NrfA). It is not likely that these 

systems are functionally redundant, but that they are synthesised under subtly different 

conditions, for example, when exogenous nitric oxide is encountered as opposed to endogenous 

NO. However, the presence of several ‘back-up’ systems, even if differently expressed, makes 

the identification of clean growth phenotypes in response to nitric oxide difficult. In order to 

understand the contribution that each of these systems makes to nitric oxide reduction/ 

detoxification it would be necessary to construct mutants that are deficient in all combinations 

of these known systems, as well as genes implicated in nitrosative stress management. A 
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systematic investigation into the contribution of, HmpA, NorVW, NrfA, NirB, Hcp and YeaR-

YoaG to the rate of nitric oxide reduction by E coli grown in different anaerobic conditions is 

being undertaken by Claire Vine of the University of Birmingham, which will aid in the 

discovery of the function of YeaR-YoaG. 

The existence genes encoding of several other systems for nitric oxide reduction on the 

E. coli chromosome and the lack of growth phenotype during nitrosative stress lead to the 

proposal that YeaR-YoaG is not a further nitric oxide reductase. One other possible indication 

of the function of YeaR-YoaG comes from the regulation of hmpA. The promoter region of 

hmpA contains two operators for the MetR transcriptional regulator, a global regulator that 

controls genes involved in methionine biosynthesis. The DNA-binding affinity of MetR is 

controlled by the availability of homocysteine, which binds to the MetR regulator and modifies 

its activity (Urbanowski, 1989). In the presence of homocysteine, MetR binds to both of the 

operators in the hmp promoter region and represses transcription (Membrillo-Hernandez et al., 

1998). When homocysteine levels are depleted, only the MetR site proximal to the -35 of phmp 

is occupied and transcription from phmp is activated. The cellular levels of the MetR cofactor, 

homocysteine, and the synthesis of methionine are dramatically effected by the addition of 

GSNO, a potent NO releasing compound, which nitrosates homocysteine to form S-

nitrosohomocysteine (Flatley et al., 2005). 

The dependence of Hmp expression on homocysteine availability raises a possible route 

of investigation for the function of YeaR-YoaG. Homocysteine is an integral component of the 

cyclical methionine biosynthetic pathway (fig 6.8). This pathway also involves the formation 

of S-adenosylmethionine (SAM), a potent methylating agent. As noted previously, it has been 

demonstrated that YeaR shares significant sequence and domain similarity with the tellurite 

resistance protein, TehB, whch is also appears to be regulated by nitrosative stress 

(Constantinidou et al., 2006; Justino et al., 2005b). The function of TehB and related proteins 

in many bacteria is thought to be dependent upon the methylation of tellurite by TehB and the 
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 protein bound co-factor SAM. It could be feasible that YeaR is also able to coordinate SAM, 

or another structurally related product, that accumulates during growth in nitrosative stress 

conditions due to the disruption of the methionine biosynthetic pathway. An investigation into 

the cellular levels of homocysteine, SAM and methionine, as well as other metabolites such as 

N5-methyl tetrahydrofolate, during nitrosative stress might aid in the discovery of YeaR-YoaG 

function. The use of chemostat cultures and small molecule metabolomics might offer an 

insight into the downstream effects of nitrosative stress on bacterial metabolism. 

The structure of YeaR has recently been resolved by X-ray crystallography by the 

Northeast Structural Genomics Consortium (http://www.nesg.org/). The protein exists as a 

tetramer with a propeller-like structure, with each YeaR protein chain incorporating a zinc ion 

as a chemical ligand (fig 6.9). This information might assist in the determination of YeaR 

function in the cell.  

Final conclusions 

The conclusions of this study are that the regulatory mechanisms of yeaR and ogt offer 

new insights into the possible functions of the proteins encoded by these genes in nitrosative 

stress tolerance. The ability of E. coli to resist the damaging effects of nitric oxide and other 

reactive nitrogen species is vital to its ability to thrive in the environment and in the gut of 

mammals. The activation of these proteins by NarL, independent of FNR, reveals a new level 

of complexity in how E. coli is able to respond to the changing environment it encounters 

during infection, and might offer new insight into the pathogenicity of E. coli strains. Although 

several possible explanations for the increased nitrite-dependent yeaR promoter activity in the 

absence of functional FNR have been inverstigated, and future experiments suggested, it most 

likely that this effect is due to a lack of nitrate and nitrite metabolism in an fnr null mutant, 

leading to an abundance of inducer molecule (nitrite) and thefore increase NarL activity.
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 However, this would indicate that pyeaR and pogt are subject to unusal transcriptional control 

by NarL, which would normally be de-phosphorylated by NarX in response to nitrite. 

Despite the lack of a growth phenotype during nitrosative stress, it is certain that YeaR 

and other proteins expressed in these conditions, such as Hcp, have a very important role in 

dealing with the damage and disruption caused to the cell by nitric oxide, if not detoxifying the 

molecule itself. It is proposed that the function of YeaR is to deal with a downstream effect of 

nitric oxide, rather than to reduce nitric oxide directly. This could involve the repair of iron-

sulphur centres, the removal of NO from thiol groups, or the regeneration of a nitrosylated 

metabolite such as homocysteine. This study also prompts many other lines of investigation 

into how E. coli regulates transcription during stress conditions, and how these transcriptional 

networks affect the lifestyle of E. coli. 



 199 

 

References 

Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999) Growth phase-
dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 
181: 6361-6370. 

Arnelle, D.R., and Stamler, J.S. (1995) NO+, NO, and NO- donation by S-nitrosothiols: 
implications for regulation of physiological functions by S-nitrosylation and 
acceleration of disulfide formation. Arch Biochem Biophys 318: 279-285. 

Baikalov, I., Schroder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R.P., and 
Dickerson, R.E. (1996) Structure of the Escherichia coli response regulator NarL. 
Biochemistry 35: 11053-11061. 

Ball, C.A., Osuna, R., Ferguson, K.C., and Johnson, R.C. (1992) Dramatic changes in Fis 
levels upon nutrient upshift in Escherichia coli. J Bacteriol 174: 8043-8056. 

Barnard, A.M., Lloyd, G.S., Green, J., Busby, S.J., and Lee, D.J. (2004) Location of the 
Escherichia coli RNA polymerase alpha subunit C-terminal domain at an FNR-
dependent promoter: analysis using an artificial nuclease. FEBS Lett 558: 13-18. 

Barne, K.A., Bown, J.A., Busby, S.J., and Minchin, S.D. (1997) Region 2.5 of the Escherichia 

coli RNA polymerase sigma70 subunit is responsible for the recognition of the 
'extended-10' motif at promoters. Embo J 16: 4034-4040. 

Benjamin, N., O'Driscoll, F., Dougall, H., Duncan, C., Smith, L., Golden, M., and McKenzie, 
H. (1994) Stomach NO synthesis. Nature 368: 502. 

Berks, B.C., Ferguson, S.J., Moir, J.W., and Richardson, D.J. (1995a) Enzymes and associated 
electron transport systems that catalyse the respiratory reduction of nitrogen oxides and 
oxyanions. Biochim Biophys Acta 1232: 97-173. 

Berks, B.C., Page, M.D., Richardson, D.J., Reilly, A., Cavill, A., Outen, F., and Ferguson, S.J. 
(1995b) Sequence analysis of subunits of the membrane-bound nitrate reductase from a 
denitrifying bacterium: the integral membrane subunit provides a prototype for the 
dihaem electron-carrying arm of a redox loop. Mol Microbiol 15: 319-331. 

Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V., and Chippaux, M. (1990) Nitrate 
reductases of Escherichia coli: sequence of the second nitrate reductase and comparison 
with that encoded by the narGHJI operon. Mol Gen Genet 222: 104-111. 

Blasco, F., Nunzi, F., Pommier, J., Brasseur, R., Chippaux, M., and Giordano, G. (1992) 
Formation of active heterologous nitrate reductases between nitrate reductases A and Z 
of Escherichia coli. Mol Microbiol 6: 209-219. 

Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-
Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., 
Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., and Shao, Y. (1997) The 
complete genome sequence of Escherichia coli K-12. Science 277: 1453-1474. 

Bodenmiller, D.M., and Spiro, S. (2006) The yjeB (nsrR) gene of Escherichia coli encodes a 
nitric oxide-sensitive transcriptional regulator. J Bacteriol 188: 874-881. 

Bogdan, C., Rollinghoff, M., and Diefenbach, A. (2000) The role of nitric oxide in innate 
immunity. Immunol Rev 173: 17-26. 

Bonnefoy, V., and Demoss, J.A. (1994) Nitrate reductases in Escherichia coli. Antonie Van 

Leeuwenhoek 66: 47-56. 
Bower, J.M., Gordon-Raagas, H.B., and Mulvey, M.A. (2009) Conditioning of uropathogenic 

Escherichia coli for enhanced colonization of host. Infect Immun 77: 2104-2112. 
Brondijk, T.H., Nilavongse, A., Filenko, N., Richardson, D.J., and Cole, J.A. (2004) NapGH 

components of the periplasmic nitrate reductase of Escherichia coli K-12: location, 



 200 

topology and physiological roles in quinol oxidation and redox balancing. Biochem J 
379: 47-55. 

Browning, D.F., Cole, J.A., and Busby, S.J. (2000) Suppression of FNR-dependent 
transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: 
modulation of transcription initiation by a complex nucleo-protein assembly. Mol 

Microbiol 37: 1258-1269. 
Browning, D.F., Beatty, C.M., Sanstad, E.A., Gunn, K.E., Busby, S.J., and Wolfe, A.J. (2004a) 

Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by 
nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol 

Microbiol 51: 241-254. 
Browning, D.F., and Busby, S.J. (2004) The regulation of bacterial transcription initiation. Nat 

Rev Microbiol 2: 57-65. 
Browning, D.F., Cole, J.A., and Busby, S.J. (2004b) Transcription activation by remodelling of 

a nucleoprotein assembly: the role of NarL at the FNR-dependent Escherichia coli nir 
promoter. Mol Microbiol 53: 203-215. 

Browning, D.F., Grainger, D.C., Beatty, C.M., Wolfe, A.J., Cole, J.A., and Busby, S.J. (2005) 
Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in 
catabolite repression. Mol Microbiol 57: 496-510. 

Browning, D.F., Lee, D.J., Wolfe, A.J., Cole, J.A., and Busby, S.J. (2006) The Escherichia coli 
K-12 NarL and NarP proteins insulate the nrf promoter from the effects of integration 
host factor. J Bacteriol 188: 7449-7456. 

Burgess, R.R., Travers, A.A., Dunn, J.J., and Bautz, E.K. (1969) Factor stimulating 
transcription by RNA polymerase. Nature 221: 43-46. 

Busby, S., and Savery, N.J. (2007) Transcription activation at bacterial promoters. 
Encyclopedia of Life sciences (online), John Wiley and Sons, Chichester, 

http://www.els.net/ [doi: 10.1002/978047001.5902.a0000855.pub2]. 
Butala, M., Busby, S.J., and Lee, D.J. (2009) DNA sampling: a method for probing protein 

binding at specific loci on bacterial chromosomes. Nucleic Acids Res 37: e37. 
Butler, A., Nicholson, R (2003) Life, death and nitric oxide. Cambridge: The Royal Society of 

Chemistry. 
Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., Trester-

Zedlitz, M.L., and Darst, S.A. (2002) Structure of the bacterial RNA polymerase 
promoter specificity sigma subunit. Mol Cell 9: 527-539. 

Carter, J.P., Hsaio, Y.H., Spiro, S., and Richardson, D.J. (1995) Soil and sediment bacteria 
capable of aerobic nitrate respiration. Appl Environ Microbiol 61: 2852-2858. 

Cavicchioli, R., Schroder, I., Constanti, M., and Gunsalus, R.P. (1995) The NarX and NarQ 
sensor-transmitter proteins of Escherichia coli each require two conserved histidines for 
nitrate-dependent signal transduction to NarL. J Bacteriol 177: 2416-2424. 

Cavicchioli, R., Chiang, R.C., Kalman, L.V., and Gunsalus, R.P. (1996) Role of the 
periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-
dependent signal transduction and gene regulation. Mol Microbiol 21: 901-911. 

Chang, L., Wei, L.I., Audia, J.P., Morton, R.A., and Schellhorn, H.E. (1999) Expression of the 
Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is 
controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 34: 756-766. 

Cherepanov, P.P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and 
KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance 
determinant. Gene 158: 9-14. 

Clegg, S., Yu, F., Griffiths, L., and Cole, J.A. (2002) The roles of the polytopic membrane 
proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite 
transporters. Mol Microbiol 44: 143-155. 



 201 

Cole, J. (1996) Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for 
survival during oxygen starvation? FEMS Microbiol Lett 136: 1-11. 

Coleman, K.J., Cornish-Bowden, A., and Cole, J.A. (1978) Purification and properties of 
nitrite reductase from Escherichia coli K12. Biochem J 175: 483-493. 

Constantinidou, C., Hobman, J.L., Griffiths, L., Patel, M.D., Penn, C.W., Cole, J.A., and 
Overton, T.W. (2006) A reassessment of the FNR regulon and transcriptomic analysis 
of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from 
aerobic to anaerobic growth. J Biol Chem 281: 4802-4815. 

Corker, H., and Poole, R.K. (2003) Nitric oxide formation by Escherichia coli. Dependence on 
nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol 

Chem 278: 31584-31592. 
Crack, J.C., Jervis, A.J., Gaskell, A.A., White, G.F., Green, J., Thomson, A.J., and Le Brun, 

N.E. (2008a) Signal perception by FNR: the role of the iron-sulfur cluster. Biochem Soc 

Trans 36: 1144-1148. 
Crack, J.C., Le Brun, N.E., Thomson, A.J., Green, J., and Jervis, A.J. (2008b) Reactions of 

nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global 
transcriptional regulator, during anaerobic growth of Escherichia coli. Methods 

Enzymol 437: 191-209. 
Crawford, M.J., and Goldberg, D.E. (1998) Role for the Salmonella flavohemoglobin in 

protection from nitric oxide. J Biol Chem 273: 12543-12547. 
Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M.N., Scott, C., Thomson, A.J., Green, J., and 

Poole, R.K. (2002) NO sensing by FNR: regulation of the Escherichia coli NO-
detoxifying flavohaemoglobin, Hmp. Embo J 21: 3235-3244. 

D'Autreaux, B., Touati, D., Bersch, B., Latour, J.M., and Michaud-Soret, I. (2002) Direct 
inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via 
nitrosylation of the iron. Proc Natl Acad Sci U S A 99: 16619-16624. 

D'Autreaux, B., Horner, O., Oddou, J.L., Jeandey, C., Gambarelli, S., Berthomieu, C., Latour, 
J.M., and Michaud-Soret, I. (2004) Spectroscopic description of the two nitrosyl-iron 
complexes responsible for fur inhibition by nitric oxide. J Am Chem Soc 126: 6005-
6016. 

D'Autreaux, B., Tucker, N.P., Dixon, R., and Spiro, S. (2005) A non-haem iron centre in the 
transcription factor NorR senses nitric oxide. Nature 437: 769-772. 

Darst, S.A., Kubalek, E.W., and Kornberg, R.D. (1989) Three-dimensional structure of 
Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. 
Nature 340: 730-732. 

Darwin, A.J., and Stewart, V. (1995) Expression of the narX, narL, narP, and narQ genes of 
Escherichia coli K-12: regulation of the regulators. J Bacteriol 177: 3865-3869. 

Darwin, A.J., Li, J., and Stewart, V. (1996) Analysis of nitrate regulatory protein NarL-binding 
sites in the fdnG and narG operon control regions of Escherichia coli K-12. Mol 

Microbiol 20: 621-632. 
Darwin, A.J., Tyson, K.L., Busby, S.J., and Stewart, V. (1997) Differential regulation by the 

homologous response regulators NarL and NarP of Escherichia coli K-12 depends on 
DNA binding site arrangement. Mol Microbiol 25: 583-595. 

Darwin, A.J., Ziegelhoffer, E.C., Kiley, P.J., and Stewart, V. (1998) Fnr, NarP, and NarL 
regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon 
transcription in vitro. J Bacteriol 180: 4192-4198. 

Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in 
Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640-6645. 

DeMoss, J.A., and Hsu, P.Y. (1991) NarK enhances nitrate uptake and nitrite excretion in 
Escherichia coli. J Bacteriol 173: 3303-3310. 



 202 

Dong, X.R., Li, S.F., and DeMoss, J.A. (1992) Upstream sequence elements required for NarL-
mediated activation of transcription from the narGHJI promoter of Escherichia coli. J 

Biol Chem 267: 14122-14128. 
Drasar, B.S., Hughes, W.H., Williams, R.E., and Shiner, M. (1966) Bacterial flora of the 

normal intestine. Proc R Soc Med 59: 1243. 
Eaves, D., Grove, J., Staudenmann, W., James, P., Poole, R., White, S., Griffiths, L., and Cole, 

J. (1998) The nrfEFG gene products are required for the activity of the cytochrome 
c552 nitrite reductase from Escherichia coli. Biochem Soc Trans 26: S216. 

Egan, S.M., and Stewart, V. (1990) Nitrate regulation of anaerobic respiratory gene expression 
in narX deletion mutants of Escherichia coli K-12. J. Bacteriol. 172: 5020-5029. 

Egan, S.M., and Stewart, V. (1991) Mutational analysis of nitrate regulatory gene narL in 
Escherichia coli K-12. J Bacteriol 173: 4424-4432. 

Fang, F.C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and 
controversies. Nat Rev Microbiol 2: 820-832. 

Ferguson, S.J. (1998) Nitrogen cycle enzymology. Current Opinion in Chemical Biology 2: 
182-193. 

Filenko, N., Spiro, S., Browning, D.F., Squire, D., Overton, T.W., Cole, J., and 
Constantinidou, C. (2007) The NsrR regulon of Escherichia coli K-12 includes genes 
encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J 

Bacteriol 189: 4410-4417. 
Filenko, N.A., Browning, D.F., and Cole, J.A. (2005) Transcriptional regulation of a hybrid 

cluster (prismane) protein. Biochem Soc Trans 33: 195-197. 
Filutowicz, M., Ross, W., Wild, J., and Gourse, R.L. (1992) Involvement of Fis protein in 

replication of the Escherichia coli chromosome. J Bacteriol 174: 398-407. 
Flatley, J., Barrett, J., Pullan, S.T., Hughes, M.N., Green, J., and Poole, R.K. (2005) 

Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined 
chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 
280: 10065-10072. 

Gardner, A.M., and Gardner, P.R. (2002) Flavohemoglobin detoxifies nitric oxide in aerobic, 
but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric 
oxide-scavenging activity. J Biol Chem 277: 8166-8171. 

Gardner, A.M., Gessner, C.R., and Gardner, P.R. (2003) Regulation of the nitric oxide 
reduction operon (norRVW) in Escherichia coli. Role of NorR and sigma54 in the nitric 
oxide stress response. J Biol Chem 278: 10081-10086. 

Garland, P.B., Downie, J.A., and Haddock, B.A. (1975) Proton translocation and the 
respiratory nitrate reductase of Escherichia coli. Biochem J 152: 547-559. 

Gates, A.J., Hughes, R.O., Sharp, S.R., Millington, P.D., Nilavongse, A., Cole, J.A., Leach, 
E.R., Jepson, B., Richardson, D.J., and Butler, C.S. (2003) Properties of the periplasmic 
nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in 
tungsten-supplemented media. FEMS Microbiol Lett 220: 261-269. 

Goh, E.B., Bledsoe, P.J., Chen, L.L., Gyaneshwar, P., Stewart, V., and Igo, M.M. (2005) 
Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-
responsive NarX-NarL regulatory system represses synthesis of the fumarate-
responsive DcuS-DcuR regulatory system. J Bacteriol 187: 4890-4899. 

Gomes, C.M., Giuffre, A., Forte, E., Vicente, J.B., Saraiva, L.M., Brunori, M., and Teixeira, 
M. (2002) A Novel Type of Nitric-oxide Reductase. Escherichia coli flavorubredoxin. 
J. Biol. Chem. 277: 25273-25276. 

Gourse, R.L., Ross, W., and Gaal, T. (2000) UPs and downs in bacterial transcription 
initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. 
Mol Microbiol 37: 687-695. 



 203 

Grainger, D.C., Hurd, D., Goldberg, M.D., and Busby, S.J. (2006) Association of nucleoid 
proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic 

Acids Res 34: 4642-4652. 
Grainger, D.C., Goldberg, M.D., Lee, D.J., and Busby, S.J. (2008) Selective repression by Fis 

and H-NS at the Escherichia coli dps promoter. Mol Microbiol 68: 1366-1377. 
Green, J., Sharrocks, A.D., Green, B., Geisow, M., and Guest, J.R. (1993) Properties of FNR 

proteins substituted at each of the five cysteine residues. Mol Microbiol 8: 61-68. 
Gross, C.A., Chan, C., Dombroski, A., Gruber, T., Sharp, M., Tupy, J., and Young, B. (1998) 

The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb 

Symp Quant Biol 63: 141-155. 
Gruber, T.M., and Gross, C.A. (2003) Multiple sigma subunits and the partitioning of bacterial 

transcription space. Annu Rev Microbiol 57: 441-466. 
Hackett, N.R., and Bragg, P.D. (1983) Membrane cytochromes of Escherichia coli grown 

aerobically and anaerobically with nitrate. J Bacteriol 154: 708-718. 
Haffter, P., and Bickle, T.A. (1987) Purification and DNA-binding properties of FIS and Cin, 

two proteins required for the bacteriophage P1 site-specific recombination system, cin. 
J Mol Biol 198: 579-587. 

Hengen, P.N., Bartram, S.L., Stewart, L.E., and Schneider, T.D. (1997) Information analysis of 
Fis binding sites. Nucleic Acids Res 25: 4994-5002. 

Hernandez-Urzua, E., Mills, C.E., White, G.P., Contreras-Zentella, M.L., Escamilla, E., 
Vasudevan, S.G., Membrillo-Hernandez, J., and Poole, R.K. (2003) Flavohemoglobin 
Hmp, but not its individual domains, confers protection from respiratory inhibition by 
nitric oxide in Escherichia coli. J Biol Chem 278: 34975-34982. 

Hughes, M.N. (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and 
peroxynitrite. Biochim Biophys Acta 1411: 263-272. 

Hussain, H., Grove, J., Griffiths, L., Busby, S., and Cole, J. (1994) A seven-gene operon 
essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol 

Microbiol 12: 153-163. 
Hutchings, M.I., Mandhana, N., and Spiro, S. (2002) The NorR protein of Escherichia coli 

activates expression of the flavorubredoxin gene norV in response to reactive nitrogen 
species. J Bacteriol 184: 4640-4643. 

Iobbi, C., Santini, C.L., Bonnefoy, V., and Giordano, G. (1987) Biochemical and 
immunological evidence for a second nitrate reductase in Escherichia coli K12. Eur J 

Biochem 168: 451-459. 
Isabella, V.M., Lapek, J.D., Jr., Kennedy, E.M., and Clark, V.L. (2009) Functional analysis of 

NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol Microbiol 
71: 227-239. 

Ishihama, A., Fukuda, R., and Ito, K. (1973) Subunits of RNA polymerase in function and 
structure. IV. Enhancing role of sigma in the subunit assembly of Escherichia coli RNA 
polymerase. J Mol Biol 79: 127-136. 

Ishihama, A. (1999) Modulation of the nucleoid, the transcription apparatus, and the translation 
machinery in bacteria for stationary phase survival. Genes Cells 4: 135-143. 

Ishihama, A. (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev 

Microbiol 54: 499-518. 
Jackson, R.H., Cole, J.A., and Cornish-Bowden, A. (1981) The steady-state kinetics of the 

NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and 
hydroxylamine reduction. Biochem J 199: 171-178. 

Jayaraman, P.S., Peakman, T.C., Busby, S.J., Quincey, R.V., and Cole, J.A. (1987) Location 
and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of 
Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. J Mol Biol 
196: 781-788. 



 204 

Jayaraman, P.S., Cole, J.A., and Busby, S.J. (1989) Mutational analysis of the nucleotide 
sequence at the FNR-dependent nirB promoter in Escherichia coli. Nucleic Acids Res 
17: 135-145. 

Jia, W., Tovell, N., Clegg, S., Trimmer, M., and Cole, J. (2009) A single channel for nitrate 
uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in 
nitrite export and uptake. Biochem J 417: 297-304. 

Johnson, R.C., and Simon, M.I. (1985) Hin-mediated site-specific recombination requires two 
26 bp recombination sites and a 60 bp recombinational enhancer. Cell 41: 781-791. 

Justino, M.C., Goncalves, V.M., and Saraiva, L.M. (2005a) Binding of NorR to three DNA 
sites is essential for promoter activation of the flavorubredoxin gene, the nitric oxide 
reductase of Escherichia coli. Biochem Biophys Res Commun 328: 540-544. 

Justino, M.C., Vicente, J.B., Teixeira, M., and Saraiva, L.M. (2005b) New genes implicated in 
the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 
280: 2636-2643. 

Justino, M.C., Almeida, C.C., Goncalves, V.L., Teixeira, M., and Saraiva, L.M. (2006) 
Escherichia coli YtfE is a di-iron protein with an important function in assembly of 
iron-sulphur clusters. FEMS Microbiol Lett 257: 278-284. 

Justino, M.C., Almeida, C.C., Teixeira, M., and Saraiva, L.M. (2007) Escherichia coli di-iron 
YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol 

Chem 282: 10352-10359. 
Kennedy, M.C., Antholine, W.E., and Beinert, H. (1997) An EPR investigation of the products 

of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J Biol Chem 
272: 20340-20347. 

Khoroshilova, N., Popescu, C., Munck, E., Beinert, H., and Kiley, P.J. (1997) Iron-sulfur 
cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] 
conversion with loss of biological activity. Proc Natl Acad Sci U S A 94: 6087-6092. 

Kiley, P.J., and Beinert, H. (2003) The role of Fe-S proteins in sensing and regulation in 
bacteria. Current Opinion in Microbiology 6: 181-185. 

Kim, C.C., Monack, D., and Falkow, S. (2003) Modulation of virulence by two acidified 
nitrite-responsive loci of Salmonella enterica serovar Typhimurium. Infect Immun 71: 
3196-3205. 

Kolb, A., Kotlarz, D., Kusano, S., and Ishihama, A. (1995) Selectivity of the Escherichia coli 
RNA polymerase E sigma 38 for overlapping promoters and ability to support CRP 
activation. Nucleic Acids Res 23: 819-826. 

Kunisaki, N., and Hayashi, M. (1979) Formation of N-nitrosamines from seconday amines and 
nitrite by resting cells of Escherichia coli B. Appl Environ Microbiol 37: 279-282. 

Lane, N. (2007) Climate change: what's in the rising tide? Nature 449: 778-780. 
Lee, A.I., Delgado, A., and Gunsalus, R.P. (1999) Signal-dependent phosphorylation of the 

membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: 
nitrate elicits a superior anion ligand response compared to nitrite. J Bacteriol 181: 
5309-5316. 

Lee, D.J., Wing, H.J., Savery, N.J., and Busby, S.J. (2000) Analysis of interactions between 
Activating Region 1 of Escherichia coli FNR protein and the C-terminal domain of the 
RNA polymerase alpha subunit: use of alanine scanning and suppression genetics. Mol 

Microbiol 37: 1032-1040. 
Li, B., Wing, H., Lee, D., Wu, H.C., and Busby, S. (1998) Transcription activation by 

Escherichia coli FNR protein: similarities to, and differences from, the CRP paradigm. 
Nucleic Acids Res 26: 2075-2081. 

Li, J., Kustu, S., and Stewart, V. (1994) In vitro interaction of nitrate-responsive regulatory 
protein NarL with DNA target sequences in the fdnG, narG, narK and frdA operon 
control regions of Escherichia coli K-12. J Mol Biol 241: 150-165. 



 205 

Lin, H.Y., Bledsoe, P.J., and Stewart, V. (2007) Activation of yeaR-yoaG operon transcription 
by the nitrate-responsive regulator NarL is independent of oxygen- responsive regulator 
Fnr in Escherichia coli K-12. J Bacteriol 189: 7539-7548. 

Liu, M., Turner, R.J., Winstone, T.L., Saetre, A., Dyllick-Brenzinger, M., Jickling, G., Tari, 
L.W., Weiner, J.H., and Taylor, D.E. (2000) Escherichia coli TehB requires S-
adenosylmethionine as a cofactor to mediate tellurite resistance. J Bacteriol 182: 6509-
6513. 

Lodge, J., Fear, J., Busby, S., Gunasekaran, P., and Kamini, N.R. (1992) Broad host range 
plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol 

Lett 74: 271-276. 
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with 

the Folin phenol reagent. J Biol Chem 193: 265-275. 
Lundberg, J.O., Weitzberg, E., Cole, J.A., and Benjamin, N. (2004) Nitrate, bacteria and 

human health. Nat Rev Microbiol 2: 593-602. 
Maniatis, T., Fritsch E., Sambrook, J. (1983) Molecular cloning. A laboratory Manual. New 

York: Cold Spring Harbour Press. 
Margison, G.P., Cooper, D.P., and Brennand, J. (1985) Cloning of the E. coli O6-

methylguanine and methylphosphotriester methyltransferase gene using a functional 
DNA repair assay. Nucleic Acids Res 13: 1939-1952. 

Maris, A.E., Kaczor-Grzeskowiak, M., Ma, Z., Kopka, M.L., Gunsalus, R.P., and Dickerson, 
R.E. (2005) Primary and secondary modes of DNA recognition by the NarL two-
component response regulator. Biochemistry 44: 14538-14552. 

McKnight, G.M., Smith, L.M., Drummond, R.S., Duncan, C.W., Golden, M., and Benjamin, 
N. (1997) Chemical synthesis of nitric oxide in the stomach from dietary nitrate in 
humans. Gut 40: 211-214. 

McLeod, S.M., and Johnson, R.C. (2001) Control of transcription by nucleoid proteins. Curr 

Opin Microbiol 4: 152-159. 
Membrillo-Hernandez, J., Coopamah, M.D., Channa, A., Hughes, M.N., and Poole, R.K. 

(1998) A novel mechanism for upregulation of the Escherichia coli K-12 hmp 
(flavohaemoglobin) gene by the 'NO releaser', S-nitrosoglutathione: nitrosation of 
homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol 

Microbiol 29: 1101-1112. 
Merrick, M.J. (1993) In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma 

N). Mol Microbiol 10: 903-909. 
Minakhin, L., Bhagat, S., Brunning, A., Campbell, E.A., Darst, S.A., Ebright, R.H., and 

Severinov, K. (2001) Bacterial RNA polymerase subunit omega and eukaryotic RNA 
polymerase subunit RPB6 are sequence, structural, and functional homologs and 
promote RNA polymerase assembly. Proc Natl Acad Sci U S A 98: 892-897. 

Moura, I., Tavares, P., Moura, J.J., Ravi, N., Huynh, B.H., Liu, M.Y., and LeGall, J. (1992) 
Direct spectroscopic evidence for the presence of a 6Fe cluster in an iron-sulfur protein 
isolated from Desulfovibrio desulfuricans (ATCC 27774). J Biol Chem 267: 4489-
4496. 

Mukhopadhyay, P., Zheng, M., Bedzyk, L.A., LaRossa, R.A., and Storz, G. (2004) Prominent 
roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to 
reactive nitrogen species. Proc Natl Acad Sci U S A 101: 745-750. 

Murakami, K., Fujita, N., and Ishihama, A. (1996) Transcription factor recognition surface on 
the RNA polymerase alpha subunit is involved in contact with the DNA enhancer 
element. EMBO J 15: 4358-4367. 

Nathan, C. (1997) Inducible nitric oxide synthase: what difference does it make? J Clin Invest 
100: 2417-2423. 



 206 

Nathan, C., and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the 
relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U 

S A 97: 8841-8848. 
Osuna, R., Finkel, S.E., and Johnson, R.C. (1991) Identification of two functional regions in 

Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not 
lambda excision. Embo J 10: 1593-1603. 

Overton, T.W., Whitehead, R., Li, Y., Snyder, L.A., Saunders, N.J., Smith, H., and Cole, J.A. 
(2006) Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification 
pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-
NarP. J Biol Chem 281: 33115-33126. 

Overton, T.W., Justino, M.C., Li, Y., Baptista, J.M., Melo, A.M., Cole, J.A., and Saraiva, L.M. 
(2008) Widespread distribution in pathogenic bacteria of di-iron proteins that repair 
oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 190: 2004-2013. 

Page, L., Griffiths, L., and Cole, J.A. (1990) Different physiological roles of two independent 
pathways for nitrite reduction to ammonia by enteric bacteria. Arch Microbiol 154: 
349-354. 

Pan, C.Q., Finkel, S.E., Cramton, S.E., Feng, J.A., Sigman, D.S., and Johnson, R.C. (1996) 
Variable structures of Fis-DNA complexes determined by flanking DNA-protein 
contacts. J Mol Biol 264: 675-695. 

Partridge, J.D., Bodenmiller, D.M., Humphrys, M.S., and Spiro, S. (2009) NsrR targets in the 
Escherichia coli genome: new insights into DNA sequence requirements for binding 
and a role for NsrR in the regulation of motility. Mol Microbiol 73: 680-694. 

Peakman, T., Crouzet, J., Mayaux, J.F., Busby, S., Mohan, S., Harborne, N., Wootton, J., 
Nicolson, R., and Cole, J. (1990) Nucleotide sequence, organisation and structural 
analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 
chromosome. Eur J Biochem 191: 315-323. 

Perez-Rueda, E., and Collado-Vides, J. (2000) The repertoire of DNA-binding transcriptional 
regulators in Escherichia coli K-12. Nucleic Acids Res 28: 1838-1847. 

Philippot, L., and Hojberg, O. (1999) Dissimilatory nitrate reductases in bacteria. Biochim 

Biophys Acta 1446: 1-23. 
Poock, S.R., Leach, E.R., Moir, J.W., Cole, J.A., and Richardson, D.J. (2002) Respiratory 

detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. 
J Biol Chem 277: 23664-23669. 

Poole, R.K., Anjum, M.F., Membrillo-Hernandez, J., Kim, S.O., Hughes, M.N., and Stewart, 
V. (1996) Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene 
expression in Escherichia coli K-12. J Bacteriol 178: 5487-5492. 

Poole, R.K., and Hughes, M.N. (2000) New functions for the ancient globin family: bacterial 
responses to nitric oxide and nitrosative stress. Mol Microbiol 36: 775-783. 

Poole, R.K. (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 
33: 176-180. 

Potter, L., Angove, H., Richardson, D., and Cole, J. (2001) Nitrate reduction in the periplasm 
of gram-negative bacteria. Adv Microb Physiol 45: 51-112. 

Potter, L.C., and Cole, J.A. (1999) Essential roles for the products of the napABCD genes, but 
not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344 

: 69-76. 
Potter, P.M., Wilkinson, M.C., Fitton, J., Carr, F.J., Brennand, J., Cooper, D.P., and Margison, 

G.P. (1987) Characterisation and nucleotide sequence of ogt, the O6-alkylguanine-
DNA-alkyltransferase gene of E. coli. Nucleic Acids Res 15: 9177-9193. 

Pullan, S.T., Gidley, M.D., Jones, R.A., Barrett, J., Stevanin, T.M., Read, R.C., Green, J., and 
Poole, R.K. (2007) Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr 



 207 

and other global regulators: unaltered methionine biosynthesis indicates lack of S 
nitrosation. J Bacteriol 189: 1845-1855. 

Rabin, R.S., and Stewart, V. (1993) Dual response regulators (NarL and NarP) interact with 
dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression 
in Escherichia coli K-12. J Bacteriol 175: 3259-3268. 

Richardson, D.J., and Watmough, N.J. (1999) Inorganic nitrogen metabolism in bacteria. Curr 

Opin Chem Biol 3: 207-219. 
Richardson, D.J. (2000) Bacterial respiration: a flexible process for a changing environment. 

Microbiology 146: 551-571. 
Rodionov, D.A., Dubchak, I.L., Arkin, A.P., Alm, E.J., and Gelfand, M.S. (2005) 

Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of 
transcriptional networks. PLoS Comput Biol 1: e55. 

Rogers, P.A., and Ding, H. (2001) L-cysteine-mediated destabilization of dinitrosyl iron 
complexes in proteins. J Biol Chem 276: 30980-30986. 

Salgado, H., Santos-Zavaleta, A., Gama-Castro, S., Peralta-Gil, M., Penaloza-Spinola, M.I., 
Martinez-Antonio, A., Karp, P.D., and Collado-Vides, J. (2006) The comprehensive 
updated regulatory network of Escherichia coli K-12. BMC Bioinformatics 7: 5. 

Saul, R.L., Kabir, S.H., Cohen, Z., Bruce, W.R., and Archer, M.C. (1981) Reevaluation of 
nitrate and nitrite levels in the human intestine. Cancer Res 41: 2280-2283. 

Schroder, I., Darie, S., and Gunsalus, R.P. (1993) Activation of the Escherichia coli nitrate 
reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J Biol 

Chem 268: 771-774. 
Sears, H.J., Spiro, S., and Richardson, D.J. (1997) Effect of carbon substrate and aeration on 

nitrate reduction and expression of the periplasmic and membrane-bound nitrate 
reductases in carbon-limited continuous cultures of Paracoccus denitrificans Pd1222. 
Microbiology 143: 3767-3774. 

Sedgwick, B. (1997) Nitrosated peptides and polyamines as endogenous mutagens in O6-
alkylguanine-DNA alkyltransferase deficient cells. Carcinogenesis 18: 1561-1567. 

Shaw, D.J., Rice, D.W., and Guest, J.R. (1983) Homology between CAP and Fnr, a regulator 
of anaerobic respiration in Escherichia coli. J Mol Biol 166: 241-247. 

Snyder, J.A., Haugen, B.J., Buckles, E.L., Lockatell, C.V., Johnson, D.E., Donnenberg, M.S., 
Welch, R.A., and Mobley, H.L. (2004) Transcriptome of uropathogenic Escherichia 

coli during urinary tract infection. Infect Immun 72: 6373-6381. 
Spiro, S., and Guest, J.R. (1990) FNR and its role in oxygen-regulated gene expression in 

Escherichia coli. FEMS Microbiol Rev 6: 399-428. 
Squire, D.J., Xu, M., Cole, J.A., Busby, S.J., and Browning, D.F. (2009) Competition between 

NarL-dependent activation and Fis-dependent repression controls expression from the 
Escherichia coli yeaR and ogt promoters. Biochem J 420: 249-257. 

Stevanin, T.M., Poole, R.K., Demoncheaux, E.A., and Read, R.C. (2002) Flavohemoglobin 
Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related 
killing by human macrophages. Infect Immun 70: 4399-4405. 

Stewart, V., and MacGregor, C.H. (1982) Nitrate reductase in Escherichia coli K-12: 
involvement of chlC, chlE, and chlG loci. J Bacteriol 151: 788-799. 

Stewart, V. (1993) Nitrate regulation of anaerobic respiratory gene expression in Escherichia 

coli. Mol Microbiol 9: 425-434. 
Stewart, V. (2003) Biochemical Society Special Lecture. Nitrate- and nitrite-responsive sensors 

NarX and NarQ of proteobacteria. Biochem Soc Trans 31: 1-10. 
Stewart, V., and Bledsoe, P.J. (2003) Synthetic lac operator substitutions for studying the 

nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory 
systems of Escherichia coli K-12. J Bacteriol 185: 2104-2111. 



 208 

Stewart, V., Chen, L.L., and Wu, H.C. (2003) Response to culture aeration mediated by the 
nitrate and nitrite sensor NarQ of Escherichia coli K-12. Mol Microbiol 50: 1391-1399. 

Stokkermans, J.P., Pierik, A.J., Wolbert, R.B., Hagen, W.R., Van Dongen, W.M., and Veeger, 
C. (1992) The primary structure of a protein containing a putative [6Fe-6S] prismane 
cluster from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 208: 435-442. 

Swann, P.F., and Magee, P.N. (1968) Nitrosamine-induced carcinogenesis. The alklylation of 
nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethyl 
sulphate and methyl methanesulphonate. Biochem J 110: 39-47. 

Tanapongpipat, S., Reid, E., Cole, J.A., and Crooke, H. (1998) Transcriptional control and 
essential roles of the Escherichia coli ccm gene products in formate-dependent nitrite 
reduction and cytochrome c synthesis. Biochem J 334: 355-365. 

Taverna, P., and Sedgwick, B. (1996) Generation of an endogenous DNA-methylating agent by 
nitrosation in Escherichia coli. J Bacteriol 178: 5105-5111. 

Tucker, N., D'Autreaux, B., Spiro, S., and Dixon, R. (2005) DNA binding properties of the 
Escherichia coli nitric oxide sensor NorR: towards an understanding of the regulation 
of flavorubredoxin expression. Biochem Soc Trans 33: 181-183. 

Tucker, N.P., Hicks, M.G., Clarke, T.A., Crack, J.C., Chandra, G., Le Brun, N.E., Dixon, R., 
and Hutchings, M.I. (2008) The transcriptional repressor protein NsrR senses nitric 
oxide directly via a [2Fe-2S] cluster. PLoS ONE 3: e3623. 

Tyson, K., Busby, S., and Cole, J. (1997) Catabolite regulation of two Escherichia coli operons 
encoding nitrite reductases: role of the Cra protein. Arch Microbiol 168: 240-244. 

Tyson, K.L., Bell, A.I., Cole, J.A., and Busby, S.J. (1993) Definition of nitrite and nitrate 
response elements at the anaerobically inducible Escherichia coli nirB promoter: 
interactions between FNR and NarL. Mol Microbiol 7: 151-157. 

Tyson, K.L., Cole, J.A., and Busby, S.J. (1994) Nitrite and nitrate regulation at the promoters 
of two Escherichia coli operons encoding nitrite reductase: identification of common 
target heptamers for both NarP- and NarL-dependent regulation. Mol Microbiol 13: 
1045-1055. 

Unden, G., and Bongaerts, J. (1997) Alternative respiratory pathways of Escherichia coli: 
energetics and transcriptional regulation in response to electron acceptors. Biochim 

Biophys Acta 1320: 217-234. 
van den Berg, W.A., Hagen, W.R., and van Dongen, W.M. (2000) The hybrid-cluster protein 

('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster 
protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of 
an associated NADH oxidoreductase containing FAD and [2Fe-2S]. Eur J Biochem 
267: 666-676. 

van Wonderen, J.H., Burlat, B., Richardson, D.J., Cheesman, M.R., and Butt, J.N. (2008) The 
nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J 

Biol Chem 283: 9587-9594. 
Walker, M.S., and DeMoss, J.A. (1994) NarL-phosphate must bind to multiple upstream sites 

to activate transcription from the narG promoter of Escherichia coli. Mol Microbiol 14: 
633-641. 

Wang, H., Tseng, C.P., and Gunsalus, R.P. (1999) The napF and narG nitrate reductase 
operons in Escherichia coli are differentially expressed in response to submicromolar 
concentrations of nitrate but not nitrite. J Bacteriol 181: 5303-5308. 

Wang, H., and Gunsalus, R.P. (2000) The nrfA and nirB nitrite reductase operons in 
Escherichia coli are expressed differently in response to nitrate than to nitrite. J 

Bacteriol 182: 5813-5822. 
Weiss, B. (2006) Evidence for mutagenesis by nitric oxide during nitrate metabolism in 

Escherichia coli. J Bacteriol 188: 829-833. 



 209 

Whitehead, R.N., and Cole, J.A. (2006) Different responses to nitrate and nitrite by the model 
organism Escherichia coli and the human pathogen Neisseria gonorrhoeae. Biochem 

Soc Trans 34: 111-114. 
Williams, S.B., and Stewart, V. (1997) Nitrate- and nitrite-sensing protein NarX of Escherichia 

coli K-12: mutational analysis of the amino-terminal tail and first transmembrane 
segment. J Bacteriol 179: 721-729. 

Williams, S.M., Savery, N.J., Busby, S.J., and Wing, H.J. (1997) Transcription activation at 
class I FNR-dependent promoters: identification of the activating surface of FNR and 
the corresponding contact site in the C-terminal domain of the RNA polymerase alpha 
subunit. Nucleic Acids Res 25: 4028-4034. 

Wing, H.J., Green, J., Guest, J.R., and Busby, S.J. (2000) Role of activating region 1 of 
Escherichia coli FNR protein in transcription activation at class II promoters. J Biol 

Chem 275: 29061-29065. 
Wolfe, M.T., Heo, J., Garavelli, J.S., and Ludden, P.W. (2002) Hydroxylamine reductase 

activity of the hybrid cluster protein from Escherichia coli. J Bacteriol 184: 5898-5902. 
Wu, G., Corker, H., Orii, Y., and Poole, R.K. (2004) Escherichia coli Hmp, an "oxygen-

binding flavohaemoprotein", produces superoxide anion and self-destructs. Arch 

Microbiol 182: 193-203. 
Wu, H., Tyson, K.L., Cole, J.A., and Busby, S.J. (1998) Regulation of transcription initiation at 

the Escherichia coli nir operon promoter: a new mechanism to account for co-
dependence on two transcription factors. Mol Microbiol 27: 493-505. 

Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. (2005) 
Functional characterization in vitro of all two-component signal transduction systems 
from Escherichia coli. J Biol Chem 280: 1448-1456. 

Yukl, E.T., Elbaz, M.A., Nakano, M.M., and Moenne-Loccoz, P. (2008) Transcription Factor 
NsrR from Bacillus subtilis Senses Nitric Oxide with a 4Fe-4S Cluster. Biochemistry. 

Zhang, J.H., Xiao, G., Gunsalus, R.P., and Hubbell, W.L. (2003) Phosphorylation triggers 
domain separation in the DNA binding response regulator NarL. Biochemistry 42: 
2552-2559. 

 
 



 210 

Publications 

 

1. Filenko, N., Spiro, S., Browning, D.F., Squire, D., Overton, T.W., Cole, J., and 
Constantinidou, C. (2007) The NsrR regulon of Escherichia coli K-12 includes genes 
encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J 

Bacteriol 189: 4410-4417 

2. Squire, D.J., Xu, M., Cole, J.A., Busby, S.J., and Browning, D.F. (2009) Competition 
between NarL-dependent activation and Fis-dependent repression controls expression 
from the Escherichia coli yeaR and ogt promoters. Biochem J 420: 249-257. 

http://jb.asm.org



