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Abstract 

Data Mining (DM) refers to the analysis of observational datasets to find 
relationships and to summarize the data in ways that are both understandable 
and useful. Many DM techniques exist. Compared with other DM techniques, 
Intelligent Systems (ISs) based approaches, which include Artificial Neural 
Networks (ANNs), fuzzy set theory, approximate reasoning, and derivative-free 
optimization methods such as Genetic Algorithms (GAs), are tolerant of 
imprecision, uncertainty, partial truth, and approximation. They provide 
flexible information processing capability for handling real-life situations. This 
thesis is concerned with the ideas behind design, implementation, testing and 
application of a novel ISs based DM technique. The unique contribution of this 
thesis is in the implementation of a hybrid IS DM technique (Genetic Neural 
Mathematical Method, GNMM) for solving novel practical problems, the 
detailed description of this technique, and the illustrations of several 
applications solved by this novel technique.  

GNMM consists of three steps: (1) GA-based input variable selection, (2) Multi-
Layer Perceptron (MLP) modelling, and (3) mathematical programming based 
rule extraction. In the first step, GAs are used to evolve an optimal set of MLP 
inputs. An adaptive method based on the average fitness of successive 
generations is used to adjust the mutation rate, and hence the 
exploration/exploitation balance. In addition, GNMM uses the elite group and 
appearance percentage to minimize the randomness associated with GAs. In 
the second step, MLP modelling serves as the core DM engine in performing 
classification/prediction tasks. An Independent Component Analysis (ICA) 
based weight initialization algorithm is used to determine optimal weights 
before the commencement of training algorithms. The Levenberg-Marquardt 
(LM) algorithm is used to achieve a second-order speedup compared to 
conventional Back-Propagation (BP) training. In the third step, mathematical 
programming based rule extraction is not only used to identify the premises of 
multivariate polynomial rules, but also to explore features from the extracted 
rules based on data samples associated with each rule. Therefore, the 
methodology can provide regression rules and features not only in the 
polyhedrons with data instances, but also in the polyhedrons without data 
instances.  

A total of six datasets from environmental and medical disciplines were used 
as case study applications. These datasets involve the prediction of 
longitudinal dispersion coefficient, classification of electrocorticography 
(ECoG)/Electroencephalogram (EEG) data, eye bacteria Multisensor Data 
Fusion (MDF), and diabetes classification (denoted by Data I through to Data 
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VI). GNMM was applied to all these six datasets to explore its effectiveness, 
but the emphasis is different for different datasets. For example, the emphasis 
of Data I and II was to give a detailed illustration of how GNMM works; Data III 
and IV aimed to show how to deal with difficult classification problems; the 
aim of Data V was to illustrate the averaging effect of GNMM; and finally Data 
VI was concerned with the GA parameter selection and benchmarking GNMM 
with other IS DM techniques such as Adaptive Neuro-Fuzzy Inference System 
(ANFIS), Evolving Fuzzy Neural Network (EFuNN), Fuzzy ARTMAP, and 
Cartesian Genetic Programming (CGP). In addition, datasets obtained from 
published works (i.e. Data II & III) or public domains (i.e. Data VI) where 
previous results were present in the literature were also used to benchmark 
GNMM’s effectiveness. 

As a closely integrated system GNMM has the merit that it needs little human 
interaction. With some predefined parameters, such as GA’s crossover 
probability and the shape of ANNs’ activation functions, GNMM is able to 
process raw data until some human-interpretable rules being extracted. This is 
an important feature in terms of practice as quite often users of a DM system 
have little or no need to fully understand the internal components of such a 
system. Through case study applications, it has been shown that the GA-based 
variable selection stage is capable of: filtering out irrelevant and noisy 
variables, improving the accuracy of the model; making the ANN structure less 
complex and easier to understand; and reducing the computational complexity 
and memory requirements. Furthermore, rule extraction ensures that the MLP 
training results are easily understandable and transferrable. 
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Chapter 1 An Introduction to Intelligent Data 

Mining 

1.1 Data Mining 

Data mining (DM) refers to the analysis of observational datasets to find 

relationships and to summarize the data in ways that are both understandable 

and useful to the data owner (2001). The first book on DM appeared in 1991 

(Piatetsky-Shapiro and Frawley 1991). However, the idea is not totally new – 

people have been seeking patterns in data since human life began: Hunters 

looked for patterns in animal migration behaviour, farmers looked for patterns 

in crop growth, politicians seek patterns in voter opinion, and lovers seek 

patterns in their partners’ responses (Chakrabarti 2009). 

In recent years DM has attracted great attention in the information industry 

and in society as a whole. This is because, on the one hand, modern computers 

and other piece of equipment are able to produce and store virtually unlimited 

datasets characterizing a complex system. In fact, database and information 

technology has been evolving systematically from primitive file processing 
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Figure 1-1: The evolution of database system technology (adapted from Han and 
Kamber 2006) 

Data Collection and Database Creation 
(1960s and earlier) 

 Primitive file processing 

Database Management Systems 
(1970s—early 1980s) 

 Hierarchical and network database systems 

 Relational database systems 

 Data modeling tools: entity-relational models, etc. 

 Indexing and accessing methods: B-trees, hashing, etc. 

 Query languages: SQL, etc. 

 User interfaces, forms and reports 

 Query processing and query optimization 

 Transactions, concurrency control and recovery 

 On-line transaction processing (OLTP) 

Advanced Database 
Systems 
(mid-1980s—present) 

 Advanced data 
models: extended 
relational, object-
relational, etc. 

 Advanced 
applications: spatial, 
temporal, 
multimedia, active, 
stream and sensor, 
scientific and 
engineering, 
knowledge-based 

Advanced Data Analysis: 
Data Warehousing and Data Mining 
(late 1980s—present) 

 Data warehouse and OLAP 

 Data mining and knowledge 
discovery: generalization, 
classification, association, 
clustering, frequent pattern and 
structured pattern analysis, 
outlier analysis, trend and 
deviation analysis, etc. 

 Advanced data mining 
applications: stream data mining, 
bio-data mining, time-series 
analysis, text mining, Web 
mining, intrusion detection, etc. 

 Data mining and society: privacy-
preserving data mining 

New Generation of Integrated 
Data and Information Systems 
(present-future) 

Web-based databases 
(1990s—present) 

 XML-based 
database systems 

 Integration with 
information 
retrieval 

 Data and 
information 
integration 
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systems to sophisticated and powerful database systems as shown in Figure 

1-1. On the other hand, however, there is no concise set of parameters that 

can fully describe the state of real-world complex systems studied nowadays 

by engineers, psychologists, economists, etc. (Busygin, Prokopyev et al. 2008). 

These on the contrary inspire the development of advanced DM which may 

employ techniques such as Artificial Neural Networks (ANNs), Genetic 

Algorithms (GAs), Support Vector Machines (SVMs), and fuzzy logic etc. 

1.1.1 Procedures and Tasks 

The aim of DM may be defined in many ways depending on the applications. 

For example the extraction of implicit, possibly previously unknown and 

potentially useful patterns and models from data, to uncover knowledge 

within the data associated with different processes and models (Charaniya, Hu 

et al. 2008; Elleithy 2008). From this point of view, DM is often set in the 

broader context of Knowledge Discovery from Data (KDD) (Tan, Steinbach et al. 

2006). The KDD process involves several stages from data integration to 

knowledge interpretation of DM results, as shown in Figure 1-2. 

It may also be inferred from Figure 1-2 that although the DM algorithms are 

central to knowledge discovery, the pre-processing of the data and the 

interpretation (as opposed to the blind use) of the results are both of great 

importance (Bramer 2007). This is due to the fact that pre-processing steps 

have a direct impact on the quality of the data that go into the DM engine; 



Chapter 1 An Introduction to Intelligent Data Mining 21 

 

while the interpretation of DM results may limit the its application and 

implementation. 

There are different ways of categorizing DM tasks. For example, some 

researchers divide them into two categories – predictive tasks and descriptive 

tasks (Tan, Steinbach et al. 2006); while some others argue that there are 

more groups other than the two mentioned previously, e.g. Exploratory Data 

Analysis (EDA), discovering patterns and rules etc. (Hand, Mannila et al. 2001). 

This thesis adapts the categorization that captures the processes of a DM 

activity, i.e., data pre-processing, DM modelling, and knowledge description, 

as follows (Wang and Fu 2005): 

 Data Dimensionality Reduction (DDR) 

 Classification and Clustering 

 Rule Extraction 
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Figure 1-2: Data mining as a step in the process of knowledge discovery 
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DDR often involves feature extraction or feature selection, where new features 

are derived from the original data in order to reduce dimensionality and hence 

increase computational efficiency and classification accuracy. DDR utilizes 

techniques such as GAs, Principal Components Analysis (PCA), Sequential 

Forward Selection (SFS), and Sequential Backward Selection (SBS) etc. 

Classification and clustering is the process that connects DDR and rule 

extraction where various statistical and machine learning methods can be 

applied (e.g. linear regression, Radial Basis Function i.e. RBF). Rule extraction 

aims to present classification/clustering results in such a way that the data are 

easily understandable and knowledge gained from the data are transferable. 

1.1.2 Challenges and Scope 

Since its conception DM has achieved tremendous success. However, many 

new problems have emerged and there is still a lack of timely exchange of 

important topics in the community as a whole. In October 2005, Yang and Wu 

(2006) took the initiative to identify 10 challenging problems in data mining 

research, including the following: 

 Developing a unifying theory of DM 

 Scaling up for high dimensional data and high speed data streams 

 DM for biological and environmental problems 

 Mining complex knowledge from complex data 
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Figure 1-3: Data mining as a confluence of many disciplines (adapted from Tan, 
Steinbach et al. 2006) 

Among the problems listed above, the first comes from the fact that DM is an 

inter-disciplinary field drawn upon disciplines such as statistics, machine 

learning, Pattern Recognition (PR), Artificial Intelligence (AI), database 

technology, and other areas as in Figure 1-3. Although Figure 1-3 shows a 

distinction between various techniques, in practice it is sometimes difficult to 

determine which discipline a specific technique belongs to. For example, 

decision tree is often regarded as a standard DM technique (Maimon 2007). 

However, Tan, Steinbach et al. (2006) treat it as a statistical classification 

method; Witten and Frank (2005) treat it as a kind of knowledge 

representation; Berthold and Hand (2003) use it in a so-called ‘fuzzy decision 

tree’, which makes it some sort of a hybrid between DM and AI techniques. 

This demonstrates the diversity of disciplines contributing to DM and that DM 

systems can be categorized according to various criteria such as the kinds of 

techniques utilized or the kinds of knowledge mined (Han and Kamber 2006). 
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1.2 Intelligent Data Mining 

A common feature of all DM techniques is that they are all, to a certain extent, 

data analysis methods and can support/interact with each other. However, 

each discipline has its own distinct attributes that make it particularly useful 

for certain types of problems and situations. For example, the most 

fundamental difference between classical statistical applications and data 

mining may be suggested to be the size of the dataset. Statistical techniques 

alone may not be sufficient to address some of the more challenging issues in 

data mining, especially those arising from very large datasets (Hand, Mannila 

et al. 2001). On the other hand, an Intelligent System (IS) is all about learning 

rules and patterns from the data (Thuraisingham 1999). With the help of 

available computational power in IS tools, there is a great potential for 

significant advances in both theoretical and applied research in this DM area. 

The term Intelligent Systems (ISs) is used interchangeably with Soft Computing 

(SC) in this thesis. It is a collection of methodologies that works synergistically 

and provides, in one form or another, flexible information processing 

capability for handling real-life situations. It differs from conventional data 

analysis (e.g. statistical methods) in that it is tolerant of imprecision, 

uncertainty, partial truth, and approximation (Venugopal 2009). It aims to 

exploit the tolerance for imprecision, uncertainty, approximate reasoning, and 

partial truth in order to achieve tractability, robustness, and low-cost solutions. 

The guiding principle is to devise methods of computation that lead to an 
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acceptable solution at low cost, by seeking for an approximate solution to an 

imprecisely or precisely formulated problem (Mitra and Acharya 2003). 

1.2.1 Artificial Neural Networks (ANNs) 

IS techniques consist of several computing paradigms, including ANNs, fuzzy 

set theory, approximate reasoning, and derivative-free optimization methods 

such as GAs and Simulated Annealing (SA) (Jang, Sun et al. 1997).  It is well 

known that biological neural systems (BNSs) can perform extraordinarily 

complex computations without recourse to explicit quantitative operations, 

and are capable of learning over time. This property is thought to reflect the 

ability of large ensembles of neurons to learn through exposure to external 

stimuli and to generalize across related instances of the signal (Berthold and 

Hand 2007). Such properties of BNSs make them attractive as a model for IS 

methods. In fact, ANNs are distributed, adaptive, generally nonlinear means of 

learning comprised of different processing elements (PEs) called neurons 

(Bishop 1995). They are based on a computing model similar to the underlying 

structure of the human brain, the aim being to model the brain’s ability to 

learn and/or adapt in response to external inputs. 

1.2.1.1 Biological Roots 

The basic building blocks of BNSs are nerve cells, referred to hereafter as 

biological neurons (BNs). A BN typically consists of a cell body, dendrites and 

an axon, as shown in Figure 1-4. From the cell body protrudes a number of  
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Figure 1-4: Schematic diagram of a biological neuron 
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Figure 1-5: Illustration of an artificial neuron 

branches called dendrites; the cell body and dendrites constitute the input to 

the neuron. There also extrudes from the cell body a long fibre called the axon 

(Arbib 2003). Neurons are massively interconnected, where an 

interconnection is between the axon of one neuron and one or more dendrites 

of one or more other neurons. This connectivity is referred to as a synapse. 

Signals propagate from the dendrites, through the cell body to the axon; from 

where the signals are propagated to all connected dendrites. 

An artificial neuron (AN), also sometimes called PE, is a model of a BN. 

Although various types of ANs are being used in current research, the most 
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widely used is the McCulloch-Pitts (MP) model (Engelbrecht 2007). Figure 1-5 

is a representation of an MP neuron. Each AN receives signals from the 

environment, or other ANs, gathers these signals and, when fired, transmits a 

signal to all connected ANs. Input signals are inhibitory or excitatory through 

negative and positive weights associated with each connection to the AN. The 

firing of an AN and the strength of the input signal are controlled via a function 

(i.e. activation function). Each neuron typically receives signals from outside, 

or from other neurons. When fired, these neurons compute a net input signal 

as a function of the respective weights. The net signal serves as input to the 

activation function using which the neuron then determines the output signal. 

1.2.1.2 Fundamentals – Architectures and Training Algorithms 

There are many different types of ANN models rather than a single type. Each 

form of ANN has different characteristics for a specific set of conditions, 

analogous to the functional specificity associated with different regions of the 

brain (Berthold and Hand 2007). However, all ANN models are specified in 

terms of three basic entities: models of the neurons themselves, models of 

synaptic interconnections and structures, and the training rules for updating 

the connecting weights (Lin and Lee 1996). 

An ANN consists of a number of highly connected ANs such that each AN is 

connected to other ANs or to itself. According to the architecture, ANNs can be 

roughly classified into Feedforward Neural Networks (FNNs), Recurrent Neural  
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(a) (b)

(c) (d)
 

Figure 1-6: Architecture of ANNs. (a) Multilayer Feedforward Neural Network; 
(b) Self-Organizing Map; (c) Multilayer Recurrent Neural Network; (d) Cellular 

Neural Network 

Networks (RNNs), and their combinations. Some popular network topologies 

including fully connected FNNs, RNNs, Self-Organizing Maps (SOMs), and 

Cellular Neural Networks (CNNs) are shown in Figure 1-6. 

Figure 1-6 (a) shows a typical architecture of a FNN – ANs are arranged in 

layers, and each AN is connected to all ANs in adjacent layers. There is no 

connection between the neurons within each layer. The information flows in 

away whereby each AN takes inputs from all the nodes in the preceding layer 

and sends its single output value to all the nodes in the next layer. The 

leftmost layer (i.e. the input layer) is provided with input by the user, and the 
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output from the rightmost layer (i.e. the output layer) is the output which is 

finally used to do something useful (Millington 2006). 

Popular FNNs include Multi-Layer Perceptrons (MLPs) and RBF networks, 

which are both fully connected layered FNNs. The MLP is the most popular 

arrangement of ANs (Haykin 1994; Hagan, Demuth et al. 1996; Jang, Sun et al. 

1997). It has been shown (Cybenko 1989) that MLPs can approximate virtually 

any function with any desired accuracy, provided that there are enough 

hidden neurons in the network and that a sufficient amount of data is 

available. An MLP usually consists of three layers – an input layer, a hidden 

layer and an output layer. The number of input neurons is typically determined 

to correspond to the dimension of the input vector. The number of neurons in 

the hidden layer is determined experimentally and the dimension of the 

output vector to be modelled or the number of classes to be classified 

generally determines the number of output neurons. Each neuron has a 

number of inputs (from outside the neural network or the previous layer) and 

a number of outputs (leading to the subsequent layer or out of the neural 

network). A neuron computes its output response based on the weighted sum 

of all its inputs according to an activation function. Data flows in one direction 

through this kind of neural network starting from external inputs into the first 

layer, which are transmitted through the hidden layer(s), and then passes on 

to the output layer from which the external outputs are obtained.  
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RBF networks are supervised learning paradigms very similar to MLP except 

that they use radial basis transfer functions for the hidden layer rather than 

linear or sigmoidal ones. The RBF’s operational principle is that it paves the 

input space with overlapping receptive fields, as they classify data using hyper-

spheres rather than hyper-planes (Lin and Lee 1996).  

The SOM is a feed forward unsupervised learning network (Kohonen 2001). It 

typically contains a two-dimensional single layer of neurons in addition to an 

input layer of branched nodes, as illustrated in Figure 1-6 (b). SOM neurons 

have two different types of connections. There are forward connections from 

the neurons in the input layer to the neurons in the output layer, and also 

lateral connections between neurons in the output layer. The lateral 

connections are used to create a competition between neurons.  

FNNs can have loops: connections that lead from a later layer back to earlier 

layer(s). This architecture is known as a recurrent network. The architecture of 

Figure 1-6 (c) shows a typical RNN – the neurons are arranged in a grid, and 

connections are made between themselves and neighbouring points in the 

grid. FNNs such as the Hopfield network represent an auto-associative type of 

memory. However, they can have very complex and unstable behaviour and 

are typically much more difficult to control (Millington 2006). 
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A CNN consists of regularly spaced neurons that communicate only with the 

neurons in its immediate neighbourhood. Adjacent ANs are connected by 

mutual interconnections. Each AN is excited by its own signals and by signals 

flowing from its adjacent cells (Du and Swamy 2006). The architecture of a 

CNN is shown in Figure 1-6 (d).  

In general, ANN training algorithms can be classified into two broad categories: 

parameter learning and structure learning. The former is concerned with the 

updating of the connecting weights in an ANN; and the latter deals with the 

network topology and their inter-connections (Lin and Lee 1996). Although 

there are numerous training algorithms depending on the type of AN and ANN 

architecture, the Back-Propagation (BP) algorithm (Bryson and Ho 1975) is 

currently the most popular for performing supervised learning tasks. It is not 

only used to train FNNs such as MLPs, but has also been adapted to RNNs (Du 

and Swamy 2006).  

In BP, for a given input-output pair, the algorithm performs two phases of data 

flow. First, the input pattern is propagated from the input layer to the output 

layer and, as a result of this forward flow of data, it produces an actual output. 

Then the error signals resulting from any difference between the expected and 

actual outputs are back-propagated from the output layer to the previous 

layers for them to update their weights until the input layer is reached. 
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Training algorithms for unsupervised ANNs are different as there is no desired 

output. For example, SOM training is based on a competitive learning strategy: 

measured based on the Euclidean distance, the best neuron learns by shifting 

its weights from inactive connections to active ones. In other words, the 

neuron with the largest activation level among all neurons in the output layer 

becomes the winner (the winner-takes-all neuron). This neuron is the only 

neuron that produces an output signal. The activity of all other neurons is 

suppressed in the competition. Neurons close to the winner are also updated 

according to the neighbourhood relationships. In this way, SOMs effectively 

cluster the input vectors through a competitive learning process, while 

maintaining the topological structure of the input space. 

1.2.1.3 Advantages and Challenges 

The idea of DM – extracting information from data – has existed for decades. 

However, what makes DM tasks extremely challenging nowadays is the 

development of computer processing and storage/database technologies, 

which allow for example gigabytes of data to remain offline or even online for 

further analysis. ANNs are a computing methodology whose fundamental 

purpose is to recognize patterns in data (Bigus 1996). Due to its biological 

roots, the advantages of ANNs have made them one of the key methodologies 

used for modern DM. ANNs have also been used for many applications such as 

pattern classification, time series analysis, prediction, and clustering (Ye 2003). 

In terms of DM, several important and yet distinct features of ANNs are: 
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 ANNs do not require a priori knowledge about the data, which is often the 

opposite to traditional statistical model-based methods. ANNs are highly 

adaptive and the network is largely determined by the characteristics or 

patterns the network learned from the data (Maimon 2007). This feature 

makes ANN a data-driven approach which is ideal for real world problems 

where the data size is large but the meaningful patterns or underlying 

structure are yet to be discovered and may not be possible to determine 

in advance. 

 ANNs have robustness and fault-tolerant capability. ANNs can handle 

incomplete or noisy data. Since the whole network consists of many 

parallel ANs, it is a distributed information system and information is 

stored in a distributed manner by the network structure. Thus, the overall 

performance does not degrade significantly when the information at 

some node is lost or some connections in the network are damaged (Du 

and Swamy 2006). On the other hand, ANNs are capable of improving 

their performance by updating the connection weights using the learning 

rules.  

 ANNs can perform nonlinear modelling. Depending on the activation 

functions being used, a single AN can be linear or nonlinear. Thus, 

networks that connect these ANs can process nonlinear data. Moreover, 

the nonlinearity is of a special kind in the sense that it is distributed 

throughout the network (Haykin 1999). This capability is extremely useful 



Chapter 1 An Introduction to Intelligent Data Mining 34 

 

in case, for example, the underlying physical mechanism responsible for 

generation of the data is inherently nonlinear. 

 ANNs are typically structured as parallel-processing structures. ANNs are 

usually made up of a number of ANs, each of which performs simple 

addition, multiplication, division, and threshold operations. This parallel 

structure has the advantage of, for example, relatively higher calculation 

speed and also allows for highly parallel software and hardware 

implementations. This feature makes ANNs well suited for 

implementation using very-large-scale-integrated (VLSI) technology. One 

particular beneficial virtue of VLSI is that it provides a means of capturing 

truly complex behaviour in a highly hierarchical fashion. 

ANNs have a so-called ‘black-box’ nature – even though they are successfully 

trained, no information is available from them in symbolic form, suitable for 

verification or interpretation by humans (Mitra, Pal et al. 2002). By design, 

ANNs learn according to their training algorithms. After successful training, 

depending on its specific type, some networks are fixed while others are 

allowed to adapt during operation (Taylor and Darrah 2005). Thus, it is a 

challenge to understand how the network will handle unknown input.  

There has been quite a lot of work aimed at extracting knowledge from trained 

networks in the form of symbolic rules (Du and Swamy 2006; Mantas, Puche et 

al. 2006; Chow and Cho 2007; Kahramanli and Allahverdi 2009). In general, 
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algorithms for rule extraction from ANNs can be grouped into three categories 

(Kahramanli and Allahverdi 2009; Ozbakir, Baykasoglu et al. 2009):  

 Decompositional approaches involve rule extraction at the level of hidden 

and output units. This involves the extraction of rules from a network in a 

neuron-by-neuron series of steps. The advantage of this approach is that 

they can generate a complete set of rules for the trained ANNs. However, 

the process can be tedious and result in large and complex descriptions.  

 Pedagogical approaches try to map inputs directly into outputs and views 

ANNs as black-boxes. The aim is to extract symbolic rules which map the 

input-output relationship as closely as possible. The number of these 

rules and their form do not directly correspond to the number of weights 

or the architecture of the ANN. 

 Eclectic approaches incorporate elements of both decompositional and 

pedagogical techniques.  

As more and more databases become available DM techniques such as rule 

extraction from ANNs has become a popular research topic. However, another 

equally important issue (e.g. in terms of their impact on the implementation of 

ANNs) – ANN input selection – has not invoked much of an interest. The fact 

that little attention was given to the matter of whether or not the inputs used 

to train the ANN are the most appropriate ANN inputs is basically due to the 

fact that not all of the available variables are necessarily equally informative 
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(since some may be correlated, noisy or have no significant relationship with 

the output variable(s) of interest) (Maier and Dandy 2000; Bowden, Dandy et 

al. 2005). According to Alexandridis, Patrinos et al. (2005) and Bowden, Dandy 

et al. (2005), the lack of input determination for ANNs may result in the 

following consequences: 

 Irrelevant variables may add extra noise which has consequential impact 

on the accuracy of the model. 

 Understanding complex models may be more difficult than understanding 

simple models that give comparable results. 

 As input dimensionality increases, the computational complexity and 

memory requirements of the model increase. 

1.2.2 Genetic Algorithms (GAs) 

The second IS technique introduced in the current chapter is the GA. 

Techniques that are concerned with the determination of ANN inputs may be 

described differently in the literature (Yao 1999; Maier and Dandy 2000; 

Ramadan, Song et al. 2001; Alexandridis, Patrinos et al. 2005; Grivas and 

Chaloulakou 2006; Gualdron, Llobet et al. 2006). From the point of view of 

optimization, selecting appropriate inputs for ANNs can be treated as an 

optimization problem. That is, optimizing ANN inputs such that it achieves 

better performance. In a broader sense, a GA is a stochastic optimization 

methodology that belongs to the Evolutionary Computation (EC) family. Thus, 
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considerations of GAs are firstly given in the context of stochastic optimization. 

1.2.2.1 Stochastic Optimization and Evolutionary Computation 

Generally speaking, optimization techniques are classified into three 

categories (see Figure 1-7): enumerative, deterministic and stochastic (Coello 

Coello, Lamont et al. 2007). An enumerative search is deterministic but it does 

not employ any heuristics. This technique is inefficient as it tests each possible 

solution. Deterministic algorithms such as greedy and hill-climbing algorithms 

incorporate problem domain knowledge. However, they are often ineffective 

when applied to NP-Complete or other high-dimensional problems. On the 

other hand, stochastic optimization seeks to search the space more thoroughly 

without being trapped in a local optimum (Chang 2007). These techniques are 

useful when the search space is too large and has too complicated a structure 

to be best tackled with a method from the gradient descent family.  

 

Figure 1-7: Global optimization approaches (adapted from Coello Coello, 
Lamont et al. 2007) 
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 Population – A set of 

individual solutions

 Inheritance – Offspring 

resemble their parents

 Fitness – A measure of an 

individual’s ability to 

survive/reproduce

 Generation – Successively 

created generations

 

Figure 1-8: Evolutionary Computation components 

EC is the most widely used stochastic technique. It is based on Darwinian 

evolutionary systems and includes, for example, GAs and Genetic 

Programming (GP). In general, EC systems will incorporate (as in Figure 1-8): 

one or more populations of individuals competing for limited resources; the 

notion of dynamically changing populations due to the birth and death of 

individuals; a concept of fitness which reflects the ability of an individual to 

survive and reproduce; and a concept of variational inheritance: offspring 

closely resemble their parents, but are not identical (De Jong 2006). Compared 

to other stochastic methods ECs have the advantage that they can be 
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parallelized with little effort (Rojas 1996). Since the calculations of the fitness 

function for each chromosome of a population are independent from each 

other, they can be carried out using several processors. Thus ECs are 

inherently parallel. ECs can be particularly effective in finding solutions where 

the individual pieces of the solution are important in combination, or where a 

sequence is important. 

1.2.2.2 Genetic Algorithms (GAs) 

The basic idea of a GA is to maintain a population of chromosomes, 

representing candidate solutions to the problem being solved. The possible 

solutions are generally coded as binary strings and these strings are equivalent 

to biological chromosomes. Other non-binary codings have proven to be useful 

in some applications (Damousis, Bakirtzis et al. 2004; Pendharkar and Rodger 

2004; Gardner, Boilot et al. 2005; Srinivasa, Venugopal et al. 2007). Each bit of 

the binary string (chromosome) is referred to as a gene. A GA starts off with a 

population of randomly generated chromosomes and advances towards better 

chromosomes by applying genetic operators that are based on genetic 

processes occurring in nature (i.e. selection, crossover and mutation) (Mitchell 

1996; Haupt and Haupt 2004). 

The search is initialized with a random population of chromosomes, each 

representing a possible solution. Next, each chromosome in the population is 

decoded into a solution and its fitness is evaluated using an objective function. 



Chapter 1 An Introduction to Intelligent Data Mining 40 

 

During successive iterations, or generations, the adaptation or associated 

fitness of chromosomes in the population is quantified by means of fitness 

functions. Chromosomes for the new population are selected with a 

probability proportional to their fitness, related to the purpose of the 

application. Once the chromosomes have been selected, a crossover 

procedure is used to partially exchange genetic information between two 

parent chromosomes. Chromosomes from the parent pool are randomly 

paired up and are tested to determine if an exchange will take place based on 

a crossover probability. If an exchange is to take place, a crossover site is 

selected at random for the two chromosomes and the genetic material (genes) 

after the crossover site is then exchanged between the two parent strings. In 

so doing, two child chromosomes are produced, which form the members of a 

new population. If an exchange is not to take place (i.e. the crossover 

probability is less than the crossover probability parameter), then the two 

parents enter the new population unchanged. Mutation has the purpose of 

keeping the population diverse and preventing the GA from prematurely 

converging onto a local minimum. Each chromosome is tested on a probability 

basis to determine if it will be mutated. In the most commonly used form of 

mutation, the probability that each bit in the chromosome will be mutated is 

determined by the mutation probability parameter. If a bit is to be mutated, 

then this occurs by flipping its value (i.e. a ‘0’ will become a ‘1’ and vice versa). 

The application of the mutation operator marks the end of one GA cycle. The 

GA is usually allowed to run for a specified number of generations, or until 
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some stopping criterion is met; such as convergence of the population to a 

single solution. 

A GA differs from many other optimisation methods by virtue of the fact that a 

population, or collection of possible solutions, is used rather than a single 

solution. It does not need knowledge of the problem domain, but it requires a 

fitness function to evaluate the fitness of a solution. A comprehensive 

description of GAs can be found in Goldberg (1989) and Holland (1992). 

1.2.2.3 GAs for Feature Selection 

Feature Selection (FS)is a concept used in PR that implies reduction of the 

input dimensionality while at the same time retaining as much as possible of 

their class discriminatory information. , these techniques can be classified into 

three broad categories: SBS, SFS, and stochastic selection (Theodoridis and 

Koutroumbas 2003).  

SBS and SFS have been the subject of variable selection for many years 

(Gualdron, Llobet et al. 2006). Although the most frequently applied variable 

selection techniques so far are SBS and SFS, these two techniques are seldom 

used alone. This is because, according to Gardner, Boilot et al. (2005) and Scott, 

James et al. (2006), they will only explore a small fraction of the whole set of 

configurations and can become trapped in local minima.  
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Stochastic approaches, such as GAs and SAs, have been shown to be superior 

compared with SBS/SFS and have many successful applications (Guo and Uhrig 

1992; Weller, Summers et al. 1995; Alexandridis, Patrinos et al. 2005; Gardner, 

Boilot et al. 2005). For example, Gardner, Boilot et al. (2005) applied a 

modified GA to find a good subset of sensors within an array of 32 carbon-

black polymer resistors to be used in Probabilistic Neural Network (PNN) 

classifiers. The methods were shown to be accurate and fast at determining 

the sensors that should be used to discriminate bacteria. Alexandridis, Patrinos 

et al. (2005) presented a two-stage input selection method for RBF using a 

multi-objective optimization approach: in the first stage, a specially designed 

GA minimizes the prediction error with the aid of a monitoring dataset, while 

in the second stage a SA technique is used to try to reduce the number of 

explanatory variables. The efficiency of their method was also illustrated 

through its application to a number of benchmark problems. 

GAs have also been used to evolve the architecture of ANNs (Guo and Uhrig 

1992; Weller, Summers et al. 1995; Yao 1999; Kasabov 2001; Rivero, Dorado et 

al. 2009). For example, earlier work done by Guo and Uhrig (1992) has used 

GAs to select proper input variables for neural networks from hundreds of 

possible variables for nuclear power plants fault diagnosis. Work by Weller, 

Summers et al. (1995) used a GA to evolve the optimum set of inputs for ANNs 

in the prediction of nuclear reactor parameters under fault conditions. Recent 

work done by Kasabov (2001) employed the principle behind GAs to 
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dynamically adjust fuzzy neural networks’ internal connections (e.g. weights). 

However, in these studies domain knowledge was often combined into the 

fitness function, and hence the method is not generic and has not been widely 

tested. In addition, some authors introduced ANN input deduction ratio into 

the fitness function. The problem with this is that higher inputs may produce 

less training error, and the balancing between the input deduction and ANN 

training error is always problem-specific. 

A FS technique similar to GA is SA – although SA is not biologically based, SAs 

and GAs share very similar theoretical roots (Davis 1987), and it also has many 

successful applications (Gualdron, Llobet et al. 2006; Jansen and Wegener 

2007; Llobet, Gualdron et al. 2007). However, compared to SA, GAs are 

population-based approaches, where there is the concept of competition (i.e. 

selection) between candidate solutions to a given problem. Furthermore, SAs 

generate new candidate points in the neighbourhood of the current point, 

while GAs allow the examination of points in the neighbourhood of two (or 

more) candidate solutions via the use of genetic operators such as crossover 

(De Castro 2006). Therefore, a GA tends to improve the solution consistently 

when given more time.  

In summary, randomized FSs such as GAs are useful when the space of all 

possible feature subsets is prohibitively large and the choices of feature 

subsets are often difficult to evaluate (Liu and Motoda 2008). In addition, 
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these techniques necessarily depend on the ability to produce a sequence of 

random numbers and the sampling technique that is used (Sikora and 

Piramuthu 2007; Wang and Huang 2009). 

1.3 Research Objectives 

Each of IS techniques contributes a distinct methodology for addressing 

problems in its domain. This may be done in a cooperative, rather than a 

competitive, manner. The result is a more intelligent and robust system 

providing a human-interpretable, low-cost, approximate solution, as compared 

to traditional techniques (Mitra and Acharya 2003). 

The unique contribution of this thesis is in the implementation of a hybrid IS 

DM technique for solving novel practical problems, the detailed description of 

this technique (Genetic Neural Mathematical Method, GNMM), and the 

illustrations of several applications solved by this novel technique. 

The primary objective of this work is to design an IS system that can be applied 

effectively to some DM tasks such as those listed in Section 1.1.1 Procedures 

and Tasks:  

 The system performs DDR so that computational burden is reduced; 

 It also achieves high prediction/classification accuracy;  

 The system is able to extract rules. 
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In the literature various approaches have been proposed to solve the above 

DM tasks. However, most of them treat these tasks separately i.e. they either 

just solve one task or they solve all tasks but there is no inter-connections 

between them. The current thesis addresses the approach that aims to 

accomplish all these tasks using a systematic approach, which simplifies the 

process in terms of applications.  

The thesis also aims to explore the possibilities of applying this hybrid IS DM 

technique to environmental and biological applications. These two fields have 

attracted a lot of attention recently, which is not only because of the 

complexity of the problem, but also because of the massive quantities of the 

data that are available and increasing. However, from an environmental 

manager/biological scientist point of view, making sense of/from large 

datasets without knowing much about DM techniques remains a problem. This 

thesis will explore the solution of such problems using newly-proposed 

systematic approach. 

1.4 Thesis Outline 

The current chapter is a brief introduction to intelligent DM concepts and an 

outline of the overall structure of the thesis. In Chapter 2, we introduce some 

hybrid IS DM techniques, and give a detailed description of the Genetic Neural 

Mathematical Method (GNMM); Chapter 3 is concerned with the application 

of GNMM in the prediction of longitudinal dispersion coefficient; Chapter 4 is 
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concerned with the application to Brain-Computer Interface (BCI) data; 

Chapter 5 is concerned with the application to Electronic Nose (EN) data; and 

Chapter 6 is the application of GNMM to diabetes classification problem. Some 

well-studied datasets from published works/resources were used in these 

application chapters. In this way, the effectiveness of our DM technique can be 

compared with established techniques. Chapter 6 also presents benchmarking 

between GNMM and various hybrid IS DM techniques. And finally in Chapter 7 

we present our conclusions and suggestions for future works. 
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Chapter 2 Hybrid Intelligent System Data 

Mining Techniques and the Genetic Neural 

Mathematical Method 

2.1 Introduction 

Chapter 1 provides some theoretical background to IS DM techniques such as 

ANNs and GAs, and outlines the structure of the thesis. . This chapter 

introduces some hybrid IS DM techniques, which will be used for 

benchmarking studies in the thesis, and the Genetic Neural Mathematical 

Method (hereafter called GNMM). GNMM is a pattern classifier and analyser 

based on GAs and MLPs. It inherits the advantages (e.g. robustness and 

nonlinearity) of ANN. Furthermore, it also incorporates a GA and mathematical 

programming to achieve input selection and rule extraction. By utilizing the GA, 

GNMM is able to automatically optimise the number of inputs to the MLP, 

which serves as the core DM engine. Employing a mathematical programming 

method, GNMM is also capable of identifying regression rules extracted from 

the trained MLP.  
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2.2 Hybrid Intelligent System Data Mining Techniques 

Each IS technique addresses problems in its domain. However, hybridizations 

of IS techniques typically enjoy the generic and application-specific merits of 

the individual SC tools that they integrate (Mitra and Acharya 2003). DM 

functions modelled by such hybrid systems include rule extraction, data 

compression, clustering, incorporation of domain knowledge, and partitioning. 

Although conventional ANNs are one of the key technologies used for DM, the 

influences of these hybrid systems on the ANN field have shown great 

potential. Let us now consider some in turn: 

2.2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Since the invention of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in 

1993 (Jang), it has become a standard technique that has been widely used in 

many applications (Lin and Lee 1996; Jang, Sun et al. 1997). It uses a hybrid-

learning algorithm to identify parameters for Sugeno-type fuzzy inference 

systems. It applies a combination of the least-squares method and the 

gradient descent method for training membership function (MF) parameters 

to emulate a given training dataset (Karray and De Silva 2004; Soyguder and 

Alli 2009). 

ANFIS is a multilayer feed forward network where each node performs a 

particular function on incoming signals. It is normally represented by a six-

layer feedforward neural network as shown in Figure 2-1. To perform a desired 
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input-output mapping, adaptive learning parameters are updated based on 

gradient learning rules (Jang ; Soyguder and Alli 2009). Both square and circle 

node symbols in Figure 2-1 are used to represents different properties of 

adaptive learning, among which the rule layer represents a set of fuzzy rules. 

The ANFIS model is one of the implementation of a first order Sugeno fuzzy 

inference system, and the rules are of the form:  

 IF x1 is A1 AND x2 is A2, THEN y = px1 + qx2 + r 

where x1 and x2 are inputs corresponding to the A1 and A2 term set, y is 

output, p, q, and r are constants.  

2.2.2 Evolving Fuzzy Neural Network (EFuNN) 

The Evolving Fuzzy Neural Network (EFuNN) proposed by Kasabov (1998; 2007; 

2008) implements a strategy of dynamically growing and pruning the 

connectionist (i.e. ANN) architecture and parameter values. It consists of five 

layers (Figure 2-2): the input layer only represents the input variables; the 

second layer of nodes (fuzzy input neurons or fuzzy inputs) represents the 

fuzzyfication of each variable of the input space. These nodes can use Gaussian, 

triangular or other MFs; we have used triangular ones in order to reduce the 

computing complexity. The third layer is made up of rule nodes, evolving 

through time in a supervised way. The fourth layer represents the rule weights. 

And finally the last layer implements the output variable, providing the system  
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Figure 2-1: Adaptive Neuro-Fuzzy Inference System 
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Figure 2-2: Architecture of Evolving Fuzzy Neural Network (adapted from 
Kasabov 2007) 

output (Kasabov 1998; del-Hoyo, Martín-del-Brío et al. 2009). EFuNN is 

implemented in the NeuCom package1 developed at Auckland University of 

Technology. 

                                                        
1

The NeuCom Project, http://www.aut.ac.nz/research/research-institutes/kedri/research-
centres/centre-for-data-mining-and-decision-support-systems/neucom-project-home-page 
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EFuNN learns by associating (learning) new data points (vectors) to a rule node 

rj: the centres of this node’s hyperspheres (i.e. W1(rj) and W2(rj)) adjust in the 

fuzzy input space depending on the distance between the new input vector 

and the rule node through a learning rate lj , and in the fuzzy output space 

depending on the output error through the Widrow-Hoff least mean square 

delta algorithm: 

     ))(W1.(W1W1 )()()1( t

jfj

t

j

t

j rxlrr   (2.1) 
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where xf and yf are fuzzy input and output vectors respectively; 

(W2.A1)A2 2f  is the activation vector of the fuzzy output neurons in the 

EFuNN structure when x is presented;     ),W1((A1 )(

2

)(

f

t

j

t

j xrDfr   is the 

activation of the rule node )(t

jr . In other words, both weight vectors are 

iteratively adjusted – W1 through unsupervised training based on a similarity 

measure and W2 through supervised learning based on output error.  

Furthermore, EFuNN allows for the construction of fuzzy rules from the 

network weights, and hence knowledge extraction. Similar to ANFIS, there is a 

rule layer in EFuNN to represent fuzzy rules. Thus, once the training is finished, 

fuzzy rules can be extracted from the system. 
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2.2.3 Fuzzy ARTMAP 

Fuzzy ARTMAP is a competitive learning model based on the Adaptive 

Resonance Theory (ART). It is an extension of ART1 (for binary inputs) and 

ART2 (for continuous inputs) for fuzzy inputs (Carpenter, Grossberg et al. 1991; 

Carpenter, Grossberg et al. 1992; Georgiopoulos, Huang et al. 1994). Fuzzy 

ARTMAP consists of two ART modules, i.e. ARTa and ARTb, and an inter-ART 

map field Fab, as in Figure 2-3. Both ARTa and ARTb are fuzzy ARTs (i.e. 

accepting fuzzy inputs), each of which is comprised of three layers: 

normalization layer F0, input layer F1 and recognition layer F2. The main 

purpose of the map field Fab is to classify a fuzzy pattern into the given class, or 

re-start the matching procedure (Liu and Li 2004).  

Fuzzy ARTMAP implements supervised learning and processes fuzzy 

information and transforms it in terms of hyper-rectangles. Learning in Fuzzy 

ARTMAP encompasses the recruitment of new hyper-rectangular prototypes 

and expansion of the boundary of existing prototypes in the feature space.  

ay

a
ρ

a

ax

a

jw

0

aF

1

aF

2

aF
by

b
ρ

b

bx

b

kw

0

bF

1

bF

2

bF

abx

ab
ρ

aART bART

ab

jkw

abF

( , )cA a a ( , )cB b b

 

Figure 2-3: Architecture of Fuzzy ARTMAP (adapted from Xu, Xuan et al. 2009) 
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Like other incremental ANNs, the Fuzzy ARTMAP growth criterion is subject to 

a similarity measure between the input pattern and the prototypes stored in 

the network (Busque and Parizeau 1997; Tan, Rao et al. 2008). The Matlab 

package implementation of Fuzzy ARTMAP is available from the lab led by 

Carpenter2 (1992). 

2.2.4 Cartesian Genetic Programming (CGP) 

Cartesian Genetic Programming (CGP) was originally developed by Miller and 

Thomson (2000) for the purpose of evolving digital circuits. CGP represents a 

program using a directed indexed graph as opposed to the tree representation 

normally used in conventional GP. The genotype is a fixed length 

representation consisting of a list of integers which encode the function and 

connections of each node in the directed graph. However, CGP uses a 

genotype-phenotype mapping that does not require all of the nodes to be 

connected to each other. As a result, the phenotype is bounded but has 

variable length. This allows areas of the genotype to be inactive and have no 

influence on the phenotype, leading to a neutral effect on genotype fitness 

called neutrality. An example of a CGP genotype and the corresponding 

phenotype that arose in the evolution of a 2-bit parallel multiplier is shown in 

Figure 2-4. 

                                                        
2 CNS Tech Lab, Boston University, http://techlab.bu.edu/resources/software 
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Figure 2-4: A possible CGP genotype and corresponding phenotype for a 2-bit 
parallel multiplier circuit (adapted from Walker and Miller 2008)  

A benefit of CGP is that it allows the implicit reuse of nodes, as a node can be 

connected to the output of any previous node in the graph, thereby allowing 

the repeated reuse of sub-graphs. This is an advantage over tree-based GP 

representations where identical sub-trees have to be constructed 

independently (Walker and Miller 2008). The CGP technique has some 

similarities with Parallel Distributed Genetic Programming (PDGP) (Poli 1997). 

PDGP directly represents the graphs using a two-dimensional grid topology, in 

which each row of the grid is executed in parallel in the direction of data flow, 

with the program output being taken from the final row of the grid. This allows 

the formation of efficient programs by reusing partial results. Originally, CGP 

also used a program topology defined by a rectangular grid of nodes with a 

user defined number of rows and columns. However, later work on CGP 

showed that it was more effective when the number of rows is chosen to be 
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one (Harding 2008; Wilson and Banzhaf 2008). This one-dimensional topology 

is used throughout the thesis.  

Due to its GP nature, rule extraction in CGP is straight forward – as the whole 

program is evolving arithmetic operators, the set of operators minimizing the 

training error can thus be used to present arithmetic rules. The CGP used here 

was implemented using the package developed by Sloper, Miotto et al. (2008). 

Compared with other hybrid IS DM techniques described above, CGP is solely 

based on EC. However, due to its built-in capability for rule extraction, it is also 

included in the current section and will also be used for benchmarking 

purposes. 

2.3 The Genetic Neural Mathematical Method (GNMM) 

The hybrid IS DM techniques described above have all been successfully 

applied to various problems. Although these techniques are used for 

benchmarking in the current context, it is not within the scope of the thesis to 

discuss advantages/disadvantages of a particular method over another. Due to 

their merits of ANNs and GAs as shown in Chapter 1, a novel way of combining 

these two techniques and at the same time overcoming their disadvantages is 

proposed (i.e. the GNMM method). Overall, GNMM is implemented in three 

steps: 
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(1) In the first step, GAs are used to evolve an optimal set of MLP inputs. The 

SGA technique is used in GNMM with binary chromosome codings, which 

represent the presence of an input as ‘1’ and absence as ‘0’. Within SGA 

operators, the roulette wheel selection, single point crossover and 

mutation are used. GA parameters have to be selected carefully as these 

potentially have a great impact on performance and results. GNMM also 

utilizes an adaptive method to adjust the mutation rate based on the 

average fitness of successive generations. In addition, GNMM uses the 

elite group and appearance percentage to minimize the randomness, 

which is a problem associated with all stochastic optimizations. 

(2) MLPs are used in GNMM both as the fitness function and the core DM 

engine – input variables found by GAs in the previous step are redirected 

into an MLP to perform the final modelling. The MLPs’ pre-processing 

includes projecting the input data onto a small range so that training is 

more efficient. K-fold cross-validation is also used to avoid over fitting. In 

order to accelerate the training process, an ICA based weight initialization 

algorithm is used to determine optimal weights before the 

commencement of any training algorithms. The LM algorithm is used to 

achieve a second-order speedup compared to conventional BP training. 

(3) In the third step, GNMM utilizes a mathematical programming based 

method to extract regression rules from trained MLPs. The method is not 

only used to identify the premises of multivariate polynomial rules, but 

also to explore features from the extracted rules based on data samples 
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associated with each rule. Therefore, the methodology can provide 

regression rules and features not only in the polyhedrons with data 

instances, but also in the polyhedrons without data instances. 

The GNMM algorithm and interactions between GNMM components are 

illustrated in Figure 2-5. In the following sections, detailed descriptions of  
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Figure 2-5: Interactions between GNMM components. (a) The GNMM 
algorithm; (b) A Simple Genetic Algorithm; (c) A three-layer MLP 
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these three steps will be presented, which is followed by a summary of the 

whole chapter. 

2.3.1 Step 1 – Genetic Algorithm for Input Optimization 

The GA technique used in GNMM is often referred to as the Simple Genetic 

Algorithm (SGA) (Holland 1975; Vose 1999; Reeves and Rowe 2003). After first 

introduced and investigated by Holland (1975), SGA has numerous variants 

(Bäck, Fogel et al. 1997; Chambers 2001). In general, a SGA exhibits the 

following features: finite population, bit representation, one-point crossover, 

bit-flip mutation and roulette wheel selection. However, alternative genetic 

operators have been introduced in the literature to alter the behaviour of GA, 

such as tournament selection, uniform crossover, and inorder 

mutation.Specifically designed GAs can be obtained by using different 

combinations of genetia operators, and are suitable for a particular range of 

problems. For the purpose of the current thesis, SGA is used due to its 

suitability to a wide range of problems and its solid theoretical basis.  

2.3.1.1 Procedures 

The general processes of SGA are shown in Figure 2-5 (a). SGA begins by 

generating initial population, and it ends, like any other optimization algorithm, 

by testing for stopping criteria, e.g. convergence. In between, SGA will decode 

each chromosome (i.e. solution) and evaluate their fitness for the problem 

under investigation. Based on these fitness values, these chromosomes will be 
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processed by genetic operators (i.e. selection, crossover and mutation) in 

order to produce the next generation. 

 

Figure 2-6: Binary coding chromosome 
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Let us assume there are two datasets X = {x(1,1) ,…, x(a,b)} and Y = {y1 ,…, ya}, 

where X is the input data, Y is the dataset to be modelled/predicted 

(assuming Y is a one-dimension dataset for simplicity), a is the number of data 

samples and b denotes possible ANN inputs (i.e. available variables). GNMM 

starts off by randomly generating an initial population of chromosomes of size 

Np. In nature, chromosomes are structures of compact intertwined molecules 

of DNA (Figure 2-6) (Engelbrecht 2007). In the context of GNMM, each 

chromosome represents a candidate solution to the input selection problem. A 

chromosome consists of b genes, each representing an input variable. The 

encoding of a gene is binary, meaning that a particular variable is considered 

as an input variable (represented by ‘1’) or not (represented by ‘0’), as shown 

in Figure 2-6. 

The GA fitness function is always problem-specific. For GNMM, the assessment 

of the fitness of a chromosome is the MSE when a three-layer MLP is being 

trained with the input variable subset Xi and output target Y for a certain 

number of epochs Ne. Provided that there are enough hidden neurons in the 

network and that a sufficient amount of data is available, MLPs can 

approximate virtually any function with any desired accuracy (Cybenko 1989). 

However, in the current stage the number of neurons in the hidden layer is set 

to a small fixed number. The reason for doing this is that the purpose of the 

current stage is only to explore the effectiveness of different input parameter 

combinations; such settings simplify the GA implementation and reduce the 
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computational burden. 

Based on their fitness values, chromosomes will be processed by genetic 

operators such as selection, crossover, and mutation, as shown in Figure 2-7, 

to form the next generation; until a stopping criterion is met. Selection is one 

of the main operators in GAs, and relates directly to the Darwinian concept of 

survival of the fittest. The selection operator used in GNMM is roulette wheel 

selection; also sometimes referred to as proportional selection (Figure 2-7 (a)). 

In roulette wheel selection, a probability distribution proportional to the 

fitness is created, and the higher the fitness value, the more chance a 

chromosome has to be selected. Figure 2-7 (b) and (c) depict the crossover and 

mutation operators, in which two chromosomes exchange part of their genes 

or a random gene flips to its other possible value. 

2.3.1.2 Parameters 

Stopping criteria in GA include, like other optimization techniques, e.g. 

convergence and a set of pre-defined parameters such as Np, Ne, generation 

size Ng, crossover probability pc and mutation probability pm. In fact, selecting 

GA parameters is very difficult due to the many possible combinations in the 

algorithm. In addition, a GA relies on random number generators for creating 

the population, selection, crossover and mutation. A different random number 

seed produces different results. As such, selecting GA parameters is always 

problem-specific. 
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Generally speaking, large population sizes are used to allow thorough 

exploration of complicated fitness surfaces. Crossover is then the operator of 

choice to exploit promising regions of fitness space by combining information 

from promising solutions. Mutation in the less critical genes may result in 

further exploitation of the current region.  

Schaffer, Caruana et al. (1989) have reported results on optimum parameter 

settings for SGA. Their approach used the five cost functions in the De Jong’s 

test function suite (De Jong 1975; Haupt and Haupt 2004). They used discrete 

sets of parameter values Np = 10, 20, 30, 50, 100, 200; pm = 0.001, 0.002, 0.005, 

0.01, 0.02, 0.05, 0.10; pc = 0.05 to 0.95 in increments of 0.10; and 1 or 2 

crossover points, which means that there were a total of 8400 possible 

combinations. Each combination was averaged over 10 independent runs. 

These authors found the best performance resulted for the following 

parameter settings: Np = 20 to 30, pc = 0.75 to 0.95, pm = 0.005 to 0.01. 

Generally, parameter settings for GNMM will follow this range except that 

under some circumstances, for instance, when possible ANN inputs b is very 

large, we will have to increase the population size Np accordingly. The issue of 

optimal parameters will be addressed in Section 6.5 GA Parameter. 

Based on the above initial value ranges, GNMM also incorporates an adaptive 

mutation rate (Reeves and Rowe 2003; Yuen and Chow 2009). The algorithm 

for updating the mutation rate is depicted in Figure 2-8. In summary, when the  
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Figure 2-8: Adaptive mutation rate 

population has higher fitness (i.e. lower MSE), the mutation rate reduces to 

encourage exploitation of what has been found. Conversely, when we have a 

lower fitness, we increase the mutation rate to try to force further exploration. 

In this way, the GA optimisation process is realised by altering the mutation 

rate. 

It should be noted that these parameters interact with each other so as to 

affect the behaviour of GNMM in complex, nonlinear ways. This means that no 

one particular choice for these parameter values is likely to be universally 

optimal. For a detailed discussion of  GA parameters, please refer to Reeves 

and Rowe (2003) and De Jong (2006). 

𝒇  𝟏  

1 //Initial mutation rate  
pm = 0.005 

2 //Compute average fitness of first generation  

3 //Iterate through the rest of generations 
FOR t = 2:Np 

 // Compute average fitness of the nth generation 

 𝒇  𝒕  
  // Switch depending on whether average fitness increases 

  IF 
𝒇  𝒕 

𝒇  𝒕−𝟏 
≤ 𝟎.𝟏 

   pm = pm × 0.1 
  ELSE 

   pm = pm × (log10(
𝒇  𝒕 

𝒇  𝒕−𝟏 
) + 1) 

  END IF 
END FOR 
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2.3.1.3 The Elite Group and Appearance Percentage 

As a stochastic algorithm, randomness plays an essential role in GAs – all 

genetic operators need random procedures. As a result, two runs (i.e. an 

entire set of generations) with different random−number seeds will generally 

produce different detailed behaviour. Furthermore, in GNMM the fitness 

function is the training error of an MLP trained with the selected input 

variables and target outputs. The MLP parameters (e.g. weights and thresholds) 

are initialized randomly as well, which adds another level of uncertainty to the 

optimization problem. In GNMM, the randomness problem can be addressed 

by applying two techniques: one is introducing an elite group into GAs (Haupt 

and Haupt 2004); the other is what we call the appearance percentage (Yang, 

Hines et al. 2008). 

The elite group is a collection of chromosomes that performed best and were 

made exempt from crossover and mutation and are retained in the next 

generation. Introducing the elite group into GAs strengthens the ability to 

search, which can be explained as exploitational with respect to high yielding 

regions and explorative with respect to other regions. 

Another characteristic of GNMM that introduces randomness is that it uses 

MLPs’ training error as the fitness function. As a result, even if the same 

winning chromosomes are found in successive generations, they may not yield 

the same performance within a certain number of epochs. In this case the 
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fitness value is not the only criteria for the evaluation of a schema. Thus, 

GNMM introduces the concept of appearance percentage (Yang, Hines et al. 

2008).  

GA researchers often report statistics, such as the best fitness found in a run 

and the generation at which the individual with that best fitness was 

discovered, averaged over many different runs of the GA on the same problem 

(Mitchell 1996). In GNMM, the averaging is extended to not only calculate 

different runs, but also different generations within the same run. A gene’s (i.e. 

possible ANN inputs) appearance percentage is defined as a gene’s 

accumulated appearance in the winning chromosome of each generation 

divided by the total number of generations. For example, if the 2nd gene 

appeared twice in the winning chromosome in a total of 20 generations, then 

the appearance percentage for this gene is 10%. In this way, although the GA’s 

search evolves successively towards better generations, each generation is 

treated separately. Hence, the uncertainty associated with the randomness of 

the fitness function is minimized. Due to the fact that in GNMM the coding is 

binary, correspondence between genes and input variables can be easily found. 

As a result of the input selection procedure, the input variables which occur 

most frequently throughout all the populations can therefore be identified. 

The final subset formed by these variables (denoted by Xf) is the subset that 

produces the minimal error within a given number of epochs. 
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2.3.2 Step 2 – Multi-Layer Perceptron Modelling 

In GNMM, MLPs serve both as the fitness function in the input optimization 

process and as the core DM engine. However, in both roles GNMM utilizes 

some different techniques compared to conventional MLPs such as the 

Independent Component Analysis (ICA)-based weight initialization algorithm 

and the Levenberg-Marquardt (LM) algorithm. 

2.3.2.1 Pre-processing 

Pre-processing includes scaling Xf and Y into the range *−1, 1+ before passing 

them into the ANN to make the MLP training more efficient. For example, 

consider xn to be an element of the n-th column vector (xn) in Xf, the mapping 

is carried out as follows: 

𝑥𝑛
′ =

2 × (𝑥𝑛 − xmin)

(xmax − xmin)
− 1 (2.3) 

where xn' denotes the mapped value, xmin and xmax are the minimum and 

maximum values in xn. After the ANN has been trained, the settings from 

Eq.(2.3) are used to transform any future inputs that are applied to the 

network. Thus, xmin and xmax effectively become a part of the network, just like 

the network weights and biases. 

GNMM also utilizes a K-fold cross-validation technique to define the training 

and validation data. Each time a small randomly selected portion of X and Y 
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(e.g. 10%×a) is set aside for validation before any training in order to avoid 

over-fitting (Lin and Lee 1996), and the rest are used for the training. As a 

consequence of cross-validation, the MLP does not necessarily reach its final 

epoch Ne.  

2.3.2.2 Weight Initialization 

The weight initialization of ANN plays a significant role in the convergence of a 

training method. It is common practice to initialize MLP weights and 

thresholds with small random values. However, this method is ineffective 

because of the lack of prior information on the mapping function between the 

input and output data samples (Du and Swamy 2006). There are several 

approaches (Yam and Chow 2000; Yam, Leung et al. 2002; Chow and Cho 2007) 

to estimate optimal values for the initial weights so that the number of 

training iterations is reduced. GNMM utilizes the ICA-based weight 

initialization algorithm proposed by Yam, Leung et al. (2002). The algorithm is 

able to initialize the hidden layer weights that extract the salient feature 

components from the input data. The initial output layer weights are 

evaluated in such a way that the output neurons are kept inside the active 

region. 

ICA is a statistical and computational technique for revealing hidden factors 

that underlie sets of random variables, measurements, or signals (Hyvarinen, 

Karhunen et al. 2001). Suppose M is a zero-mean random variable that can be 
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observed (i.e. mixed signals), and S is its linear transform (i.e. source signals). 

Then the ICA problem is to determine a constant matrix A  

𝑺 = 𝑨𝑴 (2.4) 

so that components of the linearly transformed signals S are statistically 

independent from each other. The statistically independence is defined such 

that the joint probability density of S equals the product of the marginal 

densities of the individual components. 

Yam, Leung et al.’s weight initialization approach utilizes the FastICA 

algorithm3 (Hyvarinen 1999) to perform the actual calculations, which is 

summarized below: 

 First, the mixture signals M are whitened 

𝑼 = 𝑽𝑇𝑴 (2.5) 

where V
T is a whitening matrix, U denotes whitened signals and 

E(UU
T)=I, which means that components of the whitened signals are 

uncorrelated and their variances equal to unity. E is the expectation 

operator and I is the identity matrix. The whitening matrix is computed 

                                                        
3
 Laboratory of Computer and Information Science, the Helsinki University of Technology, 

http://www.cis.hut.fi/projects/ica/fastica/. 
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using the Singular Value Decomposition (SVD) of the covariance matrix 

E(XX
T). Thus, the separating matrix A is factorized by 

𝑨 = 𝑩𝑇𝑽𝑇  (2.6) 

where B is the orthogonal separating matrix. 

 Next, matrix B is initialized randomly, and the whitened signal U will be 

used to iterate through the following steps to reach for convergence, 

which is defined as when the old and new values of B point in the same 

direction 

(1) Let 𝐁+ = 𝐸 𝐔g(  𝐁T𝐔)} − 𝐸 g′(  𝐁T𝐔)}𝐁; 

(2) 𝐁 = 𝐁+  𝐁+  ; 

(3) Convergence test. 

where g and g’ are respectively a nonlinear function and its derivative. 

To put it simply, Yam, Leung et al.’s weight initialization method computes the 

seperating matrix A from the ANN’s input data using the above FastICA 

algorithm. And the optimal initial weights Wini and thresholds θini are 

determined as 

𝑾𝑖𝑛𝑖 = 𝛿A (2.7) 
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𝜽𝒊𝒏𝒊 = −𝛿𝑨 < 𝑋 > (2.8) 

where δ is the scaling factor to keep the output of hidden neurons in the active 

region, and <X> is the mean vector of the input data. GNMM uses the 

hyperbolic tangent function in the hidden neurons and linear function in the 

output neurons. The active region is assumed to be the region in which the 

derivative of the hyperbolic tangent function is greater than 50% of its 

maximum derivative (i.e. maximum inputs to hidden neurons no greater than 

0.8814). 

It has been shown that Yam, Leung et al.’s weight initialization method is 

capable of speeding up the MLP learning process effectively (Yam, Leung et al. 

2002). However, it should be noted that in GNMM the method is only applied 

to input-hidden connections as the output neurons use the linear activation 

function and random weights are used. 

2.3.2.3 Choice of Activation Function 

Generally speaking, the activation or squashing function is usually a nonlinear 

function that suppresses the range of the output of the neuron to a range of 

values (Zhang 2009). The purpose of the activation function is to introduce 

nonlinearity into the network and limit the output value of each neuron so 

that the behaviour of ANNs is not affected by extreme values produced by 

divergent neurons (Wang 2003). Transfer functions are applied to process the 
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weighted and biased inputs, among which five basic and widely adapted 

activation functions are illustrated in Figure 2-9. 

The most commonly used activation function is the sigmoid function or logistic 

function (see Figure 2-9) (Bourg and Seemann 2004). It transforms the input,  
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Figure 2-9: Sample activation functions 
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which can have any value between plus and minus infinity, into a reasonable 

value in the range between 0 and 1. It is also important to note that no matter 

how large (positive or negative) the input gets, the sigmoid function will never 

actually reach 0 or 1; it asymptotes to these values. The hyperbolic tangent 

function (i.e. tan-sigmoid) behaves in a similar way apart from the fact that it 

speeds up training (Bourg and Seemann 2004; Yu 2007). 

Taking a closer look at the sigmoid and hyperbolic tangent transfer functions, 

it can be seen that when the weighted sum of all the inputs is near 0, then 

these functions are a close approximation of a linear function. As the 

magnitude of the weighted sum gets larger, these transfer functions gradually 

saturate. This behaviour corresponds to a gradual movement from a linear 

model of the input to a nonlinear model. In short, they have the ability to do a 

good job of modelling on three types of problems: linear problems, near-linear 

problems, and nonlinear problems (Berry and Linoff 2004). Due to these 

properties, the hyperbolic tangent function  

𝑌𝑡𝑎𝑛𝑠𝑖𝑔 =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
=

2

1 + 𝑒−2𝑥
− 1 (2.9) 

is chosen to be the activation function in the MLP’s hidden layer. 

The step and sign activation functions, also called hard limit functions, are 

often used in decision-making neurons for classification and PR tasks 
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(Negnevitsky 2005). The linear activation function means that the output of a 

neuron is simply the net input, which implies that input-output rule extraction 

is not necessary. Employing such a linear output neuron is useful when the 

output does not need to be confined to an interval between 0 and 1. Thus, it is 

used as the activation function for output neurons in GNMM. 

2.3.2.4 Training Algorithm 

In the standard BP, learning iterations (i.e. epochs) consists of two phases: in 

the feedforward pass, the actual output values of the network for each 

training pattern are calculated; in the backward propagation, any error signal 

is propagated back from the output layer toward the input layer. Weights are 

then adjusted as functions of the error signal.  
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Figure 2-10: The Back-Propagation training algorithm  
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The MLP illustrated in Figure 2-10 consists of three layers: input layer, hidden 

layer and output layer. Let x = {x1, x2, …, xi, …, xn} and y = {y1, y2, …, yk, …, yl} be 

input and output signals respectively. Let indices j and m denote neurons in 

the hidden layer, wij and wjk denote the weight for the connection between 

neurons i, j and j, k. Thus, the actual output of the kth neuron in the output 

layer can be formulated as: 

)(
1

k

m

j

jkjOk wyfy  


 (2.10) 

where 

)(
1

j

n

i

ijiHj wxfy  


 (2.11) 

where fO and fH are the activation function for the output and hidden layer 

respectively, yj is the output of the jth neuron in the hidden layer, and θ 

denotes bias. Let yd = {y1
d, y2

d, …, yk
d, …, yl

d} be the desired output from the 

output layer, and the objective function for optimization is defined as the 

Mean Square Error (MSE) between the actual output y and the desired output 

y
d. Thus, for a given training dataset x and y

d, the average error E(w) is 

defined as: 
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where the vector w is a set of weights (treating the bias θ as a weight too) that 

describes the neurons in this network, and the aim of the training algorithm is 

to minimize E(w). According to the gradient-descent method, the weights in 

the hidden-to-output connections are updated by 

jk

jk
w

E
w




   (2.13) 

where η is the learning rate or step size, provided that it is a sufficiently small 

positive number. 

Applying the chain rule, the derivative in Eq.(2.13) can be expressed as 
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where 
k

m

j

jkjk wyX  
1

 is the net weighted input to the kth neuron, and δOk 

is called the error gradient and defined as )]()[( kOk

d

kk Xfyy


 . For the 

weight update on the input-to-hidden connections, it can be obtained in a 

similar manner: 
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



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k

jkOkjHHj wXf
1

)]([  . 

The above description is the BP algorithm in its simplest form. It is a supervised 

gradient-descent technique, wherein the MSE between the actual output of 

the network and the desired output is minimized. For a detailed description of 

the BP method, there are many excellent resources available (Lin and Lee 1996; 

Haykin 1999; Negnevitsky 2005; Huang, Hung et al. 2006).  

The main potential drawbacks of the standard BP algorithm are that they quite 

often suffer from becoming stuck in a local minimum and they may require 

long learning periods in order to encode the training patterns (Hoya 2005). 

Methods to overcome these include training with different initial random 

weights, allowing extra hidden neurons, and lowering the gain term etc (Du 

and Swamy 2006). GNMM uses the LM algorithm (Du and Swamy 2006; Huang, 

Hung et al. 2006) to train MLPs. The LM method is a variation of the standard 

BP based on the computation of the Hessian matrix. Compared with 

conventional BP algorithm, it achieves a second-order speedup. 

Note that MLPs are used in GNMM both as the fitness function and the core 

DM engine. However, the training settings are different for the two stages. For 

example, when serving as the fitness function, the learning rate α has to be 
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sufficiently small (e.g. 0.01) in order to avoid network oscillation; but when 

being used as the final modeller, α can have a relatively greater value (e.g. 

0.04) to accelerate the learning process. In addition, the number of neurons in 

the hidden layer can be different as well. Generally speaking, an ANN performs 

better with an increased number of hidden neurons. However, when MLP is 

used as the fitness function, GNMM limits its hidden neurons in a way that it 

equals a fixed number Nh (i.e. Nh = number of hidden neurons) to make the 

input selection fairer. For example, consider two cases: one is three inputs 

with three hidden neurons, the other is the same three inputs with four 

hidden neurons. Given enough iterations, the second case will almost always 

produce higher accuracy. But does it mean the second input combination is 

better than the first? The exception is that when the input variables are too 

few (e.g. number of input variables < Nh), in that case the number of hidden 

neurons are set to be the same as the number of inputs. 

2.3.3 Step 3 – Rule Extraction using Mathematical Programming 

GNMM utilizes a mathematical programming methodology proposed by Tsaih 

and Chih-Chung (2004) for identifying and examining regression rules 

extracted from MLPs. Let xm = {x(m,1) ,…, x(m,i)} denote the m-th row vector in Xf, 

where 0 < m < a, 0 < i < b, 2wj = {2w1j ,…, 2wij } stand for the weights between 

the j-th hidden neuron and the input layer, 2θj stands for the threshold of the 

j-th hidden neuron (see Figure 2-11). Returning to Eq.(2.9), the output of the j-

th hidden neuron for xm can be written as 
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Figure 2-11: GNMM extracts regression rules from trained MLPs 

𝑕𝑚 𝑗 = 𝑓(xmwj
′ + 𝜃2 𝑗 ) (2.16) 

It has been shown (Tsaih and Chih-Chung 2004) that the following function g(t) 

can be used to approximate tanh (Eq.(2.9)) 

𝑔 𝑡 =  

1 𝑡 ≥ 𝜅
𝛽1𝑡 + 𝛽2𝑡

2 0 ≤ 𝑡 ≤ 𝜅

𝛽1𝑡 − 𝛽2𝑡
2 −𝜅 ≤ 𝑡 ≤ 0

−1 𝑡 ≤ −𝜅

  
(2.17) 

in which β1 = 1.0020101308531, β2 = −0.251006075157012, κ = 

1.99607103795966. Letting tj = xmwj' and substituting t = tj + 2θj into Eq.(2.17), 

we get the following 
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(𝛽1 𝜃𝑗2 + 𝛽2 𝜃𝑗
2)2

   +(𝛽1 + 2𝛽2 𝜃𝑗2 )𝑡𝑗 − 𝜃𝑗2 ≤ 𝑡𝑗 ≤ 𝜅 − 𝜃𝑗2

   +𝛽2𝑡𝑗
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(𝛽1 𝜃𝑗2 − 𝛽2 𝜃𝑗
2)2

   +(𝛽1 − 2𝛽2 𝜃𝑗2 )𝑡𝑗 −𝜅 − 𝜃𝑗2 ≤ 𝑡 ≤ − 𝜃𝑗2

  −𝛽2𝑡𝑗
2

−1 𝑡𝑗 ≤ −𝜅 − 𝜃𝑗2

  
(2.18) 

Thus for the j-th hidden neuron, the output value is approximated with a 

polynomial form of single variable tj in each of four separate polyhedrons in 

the xm space. For example, if xm ∈ {xm: −2θj ≤ xmwj' ≤ κ − 2θj }w, then tanh (xmwj' 

+ 2θj) is approximated with β12θj + β22θj
2 + (β1 + 2β22θj)tj + β2tj

2. Because the 

activation function for the output layer is a linear function, a comprehensible 

regression rule associated with a trained ANN with i hidden neurons is thus: 

 IF xm ∈ {xm: −2θj ≤ xmwj' ≤ κ − 2θj for all j} 

 THEN 𝑦 ′ = 𝜃3 +  𝑤3 𝑗 (𝛽1 𝜃𝑗2 + 𝛽2 𝜃𝑗
2

2
𝑖
𝑗 =1 +(𝛽1 + 2𝛽2 𝜃𝑗2 )𝑡𝑗  + 𝛽2𝑡𝑗

2) 

Thus, once the training is done the neural network simulated output for x can 

be easily obtained. In other words, regression rules associated with the trained 

MLP can be derived. 

2.4 Summary 

The current chapter has briefly reviewed a selection of hybrid IS DM 

techniques including ANFIS, EFuNN, Fuzzy ARTMAP, as well as CGP. These 
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techniques have been successfully applied to a range of applications, and 

variations based on these techniques have been introduced in the literature to 

suit different needs. A simple fact is that, for example, using ANFIS as a 

keyword to search in fields ‘Subject/Title/Abstract’, database Compendex4 

returned a total of 1161 records after year 2000 (retrieved 30th July 2009). Due 

to this reason, this thesis will concentrate on these techniques in the most 

widely accepted forms, which are also the forms that have the greatest impact, 

rather than specific variations. Benchmarking studies using these techniques 

will be carried out in Chapter 6. 

This chapter also gives a detailed description of GNMM, which is a general 

pattern classifier and modeller. It uses MLP as the core engine to perform data 

modelling/classification tasks, and hence inherits advantages that are built-in 

with the ANN techniques e.g. robustness and noise-tolerance. GNMM also 

employs the GA technique to perform MLP input optimization, which not only 

simplifies the MLP structure, accelerates the training process, but also makes 

the rule extraction more efficient and effective. Rule extraction eliminates 

MLP’s ‘black-box’ nature, and makes knowledge extracted from GNMM more 

understandable. 

In the following chapters (i.e. Chapter 3 to Chapter 5), we will show some 

applications of GNMM, in which we will demonstrate its implementation 

                                                        
4 Compendex & Ei Backfile, http://www.ei.org/compendex. 
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details through case studies. And finally in Chapter 6, we will do a 

benchmarking study using GNMM against some hybrid IS DM methods, in 

which we will compare and summarize its relative advantages/disadvantages. 
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Chapter 3 Prediction of Longitudinal 

Dispersion Coefficient in Rivers 

3.1 Introduction 

In previous chapters we reviewed DM concepts, theoretical backgrounds of IS 

DM techniques (Chapter 1), and proposed the GNMM method (Chapter 2). 

This is the first chapter in terms of GNMM’s applications/case studies. It is 

followed by two other application chapters (Chapter 4 and Chapter 5) and one 

benchmarking chapter (Chapter 6) before conclusions are drawn. This chapter 

involves the application of GNMM in the field of Civil Engineering, specifically 

in the prediction of longitudinal dispersion coefficient in rivers. The aim of the 

current chapter is to provide an insightful analysis of GNMM’s implementation 

in the context of longitudinal dispersion coefficient prediction. This is achieved 

by a detailed comparative study of GNMM’s input determination and rule 

extraction process based on very well-studied classic and representative sets 

of data (Yang, Hines et al. 2007; Yang, Hines et al. 2008). Furthermore, PCA 

and SOM analysis are performed to cross-validate the GA input variable 

selection results. 
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3.2 Background 

An important application of environmental hydraulics is the prediction of the 

fate and transport of pollutants that are released into watercourses, either as 

a result of accidents or as regulated discharges. Such predictions are primarily 

dependent on the water velocity, longitudinal mixing, and chemical/physical 

reactions etc, of which longitudinal dispersion coefficient is a key variable for 

the description of the longitudinal spreading in a river. After being first 

introduced in Taylor (1954), extensive studies have been made based on 

experimental and field data for predicting the dispersion coefficient (Jobson 

1997; Seo and Cheong 1998; Deng, Singh et al. 2001; Wallis and Manson 2004; 

Boxall and Guymer 2007). The majority of such work has used the Advection-

Dispersion Equation approach because strong physical basis makes it more 

amenable to predicting conditions in rivers and streams for which no model 

has previously been calibrated (Wallis and Manson 2004). 

The concept of longitudinal dispersion coefficient was first introduced in Taylor 

(1954). Based on this work, the following integral expression was developed 

(Fischer, List et al. 1979; Seo and Cheong 1998) and generally accepted: 

𝐾 = −
1

𝐴
 𝑕𝑢′  

1

𝜀𝑡𝑕

𝑦

0

𝐵

0

 𝑕𝑢′𝑑𝑦𝑑𝑦𝑑𝑦
𝑦

0

 (3.1) 

where K = longitudinal dispersion coefficient; A = cross-sectional area; B = 

channel width; h = local flow depth; u' = deviation of local depth mean flow 
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velocity from cross-sectional mean; y = coordinate in the lateral direction; and 

εt = local (depth averaged) transverse mixing coefficient. An alternative 

approach utilises field tracer measurements and applies the method of 

moments. It is also well documented in the literature (Rutherford 1994; 

Guymer 1999; Rowinski, Piotrowski et al. 2005) and defines K as 

𝐾 =
𝑈𝑐

2

2
 
𝜎𝑡

2 𝑥2 − 𝜎𝑡
2 𝑥1 

𝑡 2 − 𝑡 1
  (3.2) 

where Uc = mean velocity, x1 and x2 denotes upstream and downstream 

measurement sites, 𝑡  = centroid travel time, ζt
2
(x) = temporal variance.  

However, owing to the requirement for detailed transverse profiles of both 

velocity and cross-sectional geometry, Eq.(3.1) is rather difficult to use. 

Furthermore, Eq.(3.2), called the method of moments (Wallis and Manson 

2004), requires measurements of concentration distributions and can be 

subject to serious errors due to the difficulty of evaluating the variances of the 

distributions caused by elongated and/or poorly defined tails. As a result, 

extensive studies have been made based on experimental and field data for 

predicting the dispersion coefficient (Jobson 1997; Seo and Cheong 1998; Deng, 

Singh et al. 2001; Wallis and Manson 2004). 

For example, employing 59 hydraulic and geometric datasets measured in 26 

rivers in the United States, Seo and Cheong (1998) used dimensional analysis 
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and applied the one-step Huber method, a nonlinear multi-regression method, 

to derive the following equation: 

𝐾 = 5.915(𝐻𝑢∗)  
𝐵

𝐻
 

0.62

 
𝑈

𝑢∗
 

1.428

 (3.3) 

in which u
* = shear velocity. This technique uses the easily measureable 

hydraulic variables B, H and U, together with a frequently used parameter, 

extremely difficult to accurately quantify in field applications, u*, to estimate 

the dimensionless dispersion coefficient K from Eq.(3.3). Another empirical 

equation developed by Deng et al. (2001) is a more theoretically based 

approximation of Eq.(3.1), which not only includes the conventional 

parameters of (B/H) and (U/u
*) but also the effects of the transverse mixing εt0, 

as follows: 

𝐾 = 0.15  
𝐻𝑢∗

8𝜀𝑡0
  

𝐵

𝐻
 

5 3 

 
𝑈

𝑢∗
 

2

 (3.4) 

where 

𝜀𝑡0 = 0.145 +  
1

3520.0
  

𝐵

𝐻
 

1.38

 
𝑈

𝑢∗
  (3.5) 

These equations are easy to use, assuming measurements or estimates of the 

bulk flow parameters are available. However, they may be unable to capture 
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the complexity of the interactions of the fundamental transport and mixing 

mechanisms, particularly those created by non-uniformities across the wide 

range of channels encountered in nature. In addition, the advantage of one 

expression over another is often just a matter of the selection of data and the 

manner of their presentation. Regardless of the expression applied, one may 

easily find an outlier in the data, which definitely does not support the 

applicability of a particular formula. An expectation that, in spite of the 

complexity of the river reach, the dispersion coefficient may be represented by 

one of the empirical formulae seems exaggerated (Rowinski, Piotrowski et al. 

2005). 

Furthermore, most of the studies have been carried out based on specific 

assumptions and channel conditions and therefore the performance of the 

equations varies widely for the same stream and flow conditions. For instance, 

Seo and Cheong (1998) used 35 of the 59 measured datasets to establish 

Eq.(3.3) and the remaining 24 for verifying their model. While the model of 

Deng et al. (2001) (Eq.(3.4) and Eq.(3.5)) is limited to straight and uniform 

rivers. They also assume that the river has a width-to-depth ratio greater than 

10. Therefore, a model that has greater general applicability is desirable. 

Recently ANN modelling approaches have been embraced enthusiastically by 

practitioners in water resources, as they are perceived to overcome some of 

the difficulties associated with traditional statistical approaches, e.g. making 
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assumptions with regard to stream geometry or flow dynamics (Maier and 

Dandy 1998). They offer an effective approach for handling large amounts of 

dynamic, non-linear and noisy data, especially when the underlying physical 

relationships are not fully understood (Haykin 1994; Hagan, Demuth et al. 

1996; Cannas, Fanni et al. 2006). 

In specific terms, several authors (Kashefipour, Falconer et al. 2002; Rowinski, 

Piotrowski et al. 2005; Tayfur and Singh 2005; Piotrowski, Rowinski et al. 2006; 

Tayfur 2006) have reported successful applications of ANNs to the prediction 

of dispersion coefficient. For example, in the case of Tayfur and Singh (2005) 

the ANN was trained and tested using 71 data samples of hydraulic and 

geometric variables and dispersion coefficients measured on 29 streams and 

rivers in the United States, with the result that 90% of the dispersion 

coefficient was explained. Rowinski, Piotrowski et al. (2005) applied an MLP 

with the LM Algorithm to three different datasets which have been explored in 

the literature. The lowest percentage of training data mean error was found to 

be 7.02%. However, there is a lack of a suitable input determination 

methodology for ANN models in these applications. Moreover, without further 

interpretation of the trained network, their results are not easily transferable. 
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3.3 Datasets and Pre-processing 

3.3.1 Datasets 

In the last decade, regions within the UK Environment Agency (EA) have 

completed a number of dye tracing studies and more than one hundred 

different tracing studies were analysed to obtain estimates of the mean travel 

velocity and longitudinal dispersion. A database of travel times and dispersion 

was developed (Guymer 1999) comprising the tracing works cited. The 

database (denoted by Data I) contains 196 data samples from 27 different 

rivers and includes information relevant to the traces; including geographical 

and physical attributes of the river reaches as well as optimized Advection-

Dispersion Model (ADE) and Aggregated Dead Zone Model (ADZ) travel times, 

velocities, ADE longitudinal dispersion coefficients and ADZ dispersive fractions. 

The second dataset, Data II, contains 71 sets of measurements from 29 rivers 

in the United States. This dataset has previously been very well studied in the 

literature (Seo and Cheong 1998; Deng, Singh et al. 2001; Rowinski, Piotrowski 

et al. 2005; Tayfur and Singh 2005). 

3.3.2 Data Pre-processing 

Usually data pre-processing of GNMM includes scaling the inputs and targets 

so that they fall within a specified range. However, since there are a total of 49 

variables available in Data I, the prior objective of data pre-processing is to 

reduce the dimensionality of the original set of inputs by eliminating 
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Table 3-1: Variables in Data I and II 

Data I (16 variables) Data II (8 variables) 

Start location:  
Cs (km

2), Ds (km) 

Ms (m
3/s), Qs (m

3/s) 
Independent: 

B (m), H (m) 

U (m/s), u* (m/s), α 

End location:  
Ce (km

2), De (km) 

Me (m
3/s), Qe (m

3/s) 
  

Reach: S, L (m), Dr (m) 

Dependent: B/H, U/u
*, β 

Gauging station: 

Cg (km
2), A (m3/s) 

Mg (m3/s), Qg (m3/s) 

I (m3/s) 

 

redundant and/or dependant variables. This will result in a set of independent 

inputs that are not necessarily related to the dispersion coefficient. This subset 

of inputs can then be used in GNMM to determine which of these inputs are 

most appropriate for mapping to the output. 

Among the 49 available variables in Data I, non-numerical variables such as 

river name, flow excedence/category, and start location grid reference are 

removed first of all. These variables are valuable in terms of dye tracing 

studies but do not provide useful information in the current context. Secondly, 

dependant variables are discarded. For example, start and end position of the 

river location elevation are discarded, while reach slope is kept; reach 

sinuosity is removed while reach length and straight distance are kept. After 

being processed, Data I contains 16 variables which belong to 4 categories in 

the original dataset, e.g. start/end location, reach, and gauging station. These 
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variables are: for the start/end location (subscripts s/e), catchment area (C), 

distance from injection point (D), theoretical mean flow (M), and theoretical 

Q95 flow (Q); for the reach in question, slope (S), reach length (L), and straight 

distance (Dr); for the gauging station, catchment area (Cg), average daily flow 

(A), daily mean flow (Mg), theoretical Q95 flow (Qg), instant flow (I). All these 

variables are listed in Table 3-1.  

Data II contains 8 variables apart from the longitudinal dispersion coefficient. 

There are five independent variables: channel width (B), flow depth (H), 

velocity (U), shear velocity (u*) and river sinuosity (α = channel length/valley 

length). Dependant variables are width-to-depth ratio (B/H), relative shear 

velocity (U/u
*) and channel shape variable (β= ln(B/H)). Data II variables are 

listed in Table 3-1 too. It is worth noting that dependent variables exist in Data 

II (B/H, U/u
*), which indicates that eliminating redundant and/or dependant 

variables is not always necessary in GNMM. Since the aim of this step is to 

reduce the dimensionality of the data by eliminating redundant and/or 

dependant variables, obviously in Data II the dimensionality is not a main issue. 

On the other hand, as we will show later, Data II can be treated as an example 

of how GNMM handles dependent variables. 

3.3.3 Division into Training and Testing Data 

Before the start of GA variable selection, it is necessary to divide the dataset 

into training and testing subsets. This is to avoid over fitting when 
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chromosomes are being evaluated in an MLP (Lin and Lee 1996). The division is 

achieved by selecting representative sets for both of the training and testing 

data: 

(1) Among the 196 data samples contained in Data I, some contain a high 

percentage of missing values, or indications that the data recorded is 

inaccurate. In order to obtain reliable results, these data are removed. As 

a result, the final dataset contains 127 data samples (see Appendix A). 

After division, the training subset, denoted by Data It, contains 102 

samples; while the testing subset, denoted by Data Is, consists of the 

remaining 25. 

(2) Similarly, Data II (see Appendix B) is divided into two subsets, Data IIt and 

Data IIs for training and testing respectively. Data IIt contains 49 datasets 

out of 71, while Data IIs consists of the remaining 22. 

Normally when we have a large quantity of data we would typically use more 

data for training and less for testing. With small datasets we may repeat the 

process several times by randomly generating training and testing data to 

ensure that our results are reliable for the dataset. Table 3-2 and Table 3-3 

show statistics of these subsets respectively. Note that in these tables, Avg, 

Avgt and Avgs mean the average for the whole dataset, training and testing 

subset average correspondingly. 
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Table 3-2: Data I statistics 

 

Start Location End Location 

 
Cs (km

2) Ds (km) Ms (m
3/s) Qs (m

3/s) Ce (km
2) De (km) Me (m

3/s) Qe (m
3/s) 

Max 3314.75 41.50 49.55 9.47 3315.25 46.50 49.55 9.47 

Min 16.00 1.00 0.18 0.02 9.25 3.40 0.39 0.03 

Avg 714.51 9.82 13.04 2.10 858.97 16.43 15.15 2.45 

Avgt 643.05 8.49 13.57 1.97 838.79 16.27 17.10 2.61 

Avgs 732.15 10.15 12.90 2.13 863.91 16.47 14.63 2.41 

 
Reach Gauging Station 

 
S L (m) Dr (m) Cg (km

2) A (m3/s) Mg (m3/s) Qg (m3/s) I (m3/s) 

Max 0.0244 14697.0 12133.50 3314.80 47.14 75.00 6.60 75.00 

Min 0.0000 1058.00 915.57 20.00 0.44 0.48 0.06 0.50 

Avg 0.0023 6037.06 4342.88 792.39 12.38 10.08 1.93 10.20 

Avgt 0.0030 6775.73 4834.09 736.99 13.48 11.33 1.83 11.29 

Avgs 0.0022 5856.02 4222.49 805.96 12.11 9.78 1.95 9.93 

 

Table 3-3: Data II statistics 

 
B (m) H (m) U (m/s) u

* (m/s) B/H U/u
* β α K (m2/s) 

Max 711.2 19.94 1.74 0.553 156.5 19.63 5.05 2.54 892.0 

Min 11.9 0.22 0.03 0.002 13.8 1.29 2.62 1.08 1.9 

Avg 83.0 1.70 0.54 0.088 51.7 7.62 3.79 1.39 107.7 

Avgt 62.9 1.31 0.49 0.084 51.4 7.13 3.79 1.37 98.4 

Avgs 127.6 2.55 0.66 0.097 52.4 8.72 3.77 1.42 128.4 

 

When forming these two subsets, the present work follows that of Tayfur and 

Singh (2005), in order to compare results. However, as mentioned in Tayfur 

and Singh (2005): ‘In choosing the datasets for training and testing, special 
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attention was paid to ensure that we have representative sets so as to avoid 

bias in model prediction’ (p. 993).  

For example, in Data II the range for the dispersion coefficient (K) varies from 

1.9 to 892 m2/s, and K is greater than 100 m2/s in 21 cases, which counts for 

about 30% of all available measured coefficient values. The range for the 

width-to-depth ratio (B/H) of the datasets varies from 13.8 to 156.5 and (B/H) 

is greater than 50 in 26 cases (37%). After division the percentages of K > 100 

m
2/s and B/H > 50 are also comparable for both Data IIt and Data IIs. For 

example, in Data IIs 25% of K is greater than 100 m/s2 (this ratio is 31% in Data 

IIt), also, in Data IIs 40% of B/H is greater than 50 (this ratio is 31% in Data IIt). 

3.4 GNMM Implementation 

3.4.1 Variable Selection 

GNMM is mainly implemented in MATLAB (v7.2)5 (see Appendix C), using the 

Genetic Algorithm and Direct Search Toolbox, as well as the Neural Network 

Toolbox (GNMM also includes a VBA script to visually select outstanding 

variables, see Appendix D). GA parameters are set as follows: pc = 0.8, pm = 

0.01, the learning rate α = 0.01, the elite group size Ne = 2. Other settings for 

each GA run are as shown in Table 3-4, along with CPU speed and CPU time. It 

should be noted that Ne in Table 3-4 stands for ‘number of epochs per 

chromosome’.  

                                                        
5 The MathWorks, http://www.mathworks.com/. 
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Table 3-4: GA parameters and CPU speeds/time 

 Case Np Ng Ne (/chrom.) CPU Speed  CPU Time (s) 

D
at

a 
I 

1 200 100 100 3.2 GHz (Pentium 4) 22760.52 

2 200 100 50 2.66 GHz (Celeron D) 34992.37 

3 400 100 100 900 MHz (UltraSPARC III) 139491.91 

4 400 200 20 3.2 GHz (Pentium 4) 34608.08 

5 400 400 20 900 MHz (UltraSPARC III) 216925.95 

6 200 200 20 2.66 GHz (Celeron D) 40111.13 

7 400 100 300 3.2 GHz (Pentium 4) 127634.52 

D
at

a 
II

 

1 200 100 100 3.20 GHz (Pentium 4) 17830.33 

2 200 100 50 2.66 GHz (Celeron D) 31772.62 

3 400 100 100 3.20 GHz (Pentium 4) 33600.17 

4 200 200 20 2.66 GHz (Celeron D) 45690.86 

5 200 200 100 3.20 GHz (Pentium 4) 39280.16 

 

 

Figure 3-1: RMSE and winning variables for Data II training subset in Case 2. 
RMSE errors are show as dotted-lines, and the corresponding component 

variables of the winning chromosome are shown below the line 
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As described previously in Section 2.3.1.3 The Elite Group and Appearance 

Percentage, in order to minimize the randomness in the MLP initialization, we 

introduced the elite group and appearance percentage into GNMM. We will 

now consider these two techniques through the following example. For the 

purpose of easier visual presentation, Data II is chosen because it contains 

fewer variables than Data I (see Appendix E RMSE and Winning Variables for 

Case 7 of Data I). However, similar results can be found in all cases listed in 

Table 3-4. 

Figure 3-1 illustrates the RMSE of the winning chromosome and its component 

variables for each generation of Data II training subset in Case 2. It can be seen 

that although the overall trend of the RMSE is decreasing, it is not necessarily 

the case that later generations produce lower RMSE than earlier ones. This is a 

distinct feature of GNMM. For ordinary GA optimization problems, there is no 

randomness associated with the fitness function. Thus, for a certain 

chromosome, it will always evaluate to a fixed fitness value. However, this is 

not the case for GNMM as the fitness function in GNMM is the training error 

of an MLP. Although we apply the ICA based weight initialization method to 

minimize the randomness, the ICA coefficient is still based on random 

numbers. Therefore, in GNMM it is possible that the same chromosome may 

still produce a different fitness value; this is the reason why we introduced the 

concept of appearance percentage. 
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Figure 3-2: Appearance percentage for Case 2 of Data II training subset 

It is also evident from Figure 3-1 that the changing range of the RMSE is 

narrowing too. This implies that the GA has identified a high yielding region 

and was searching exploitationally, since the GA has already found several 

variable combinations (e.g. U, H, and B) that produce a smaller error and was 

further exploring different combinations of these variables. Several successive 

generations around the 50th yield the same winning chromosome. This is the 

effect of the elite group. As mentioned before, chromosomes which 

performed best are protected so that they can compete in the next generation. 

Apparently, these chromosomes were kept as survivors in the next generation. 

Compared to Figure 3-1, which depicts component variables in each winning 

chromosome, Figure 3-2 shows some statistical information for all the 

variables by means of appearance percentage. It can be seen that the most 

frequently appearing variables are U (100%), B (95%) and H (82%), followed by 

u
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seem promising as there is a clear distinction between different input variables; 

however, GNMM does not rely on a single run. This is because GA operations 

are based on random number generators. Once the random number seed 

changes, these results change accordingly. This also explains why there are 7 

cases for Data I and 5 cases for Data II – more runs are needed to find a clear 

distinction. The results are shown graphically in Figure 3-3 and Figure 3-4. 

 

Figure 3-3: Appearance percentage for Data I training subset 

 

Figure 3-4: Appearance percentage for Data II training subset 
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After running the GA seven times for Data I and five times for Data II, a clear 

distinction was evident between variables. The appearance percentage of the 

input variables of these two datasets are shown in Figure 3-3 and Figure 3-4 

respectively. Taking Figure 3-3 for example, it can be seen that the most 

frequently appearing variables are gauging station daily mean flow (Mg, 98%), 

and instant flow (I, 94%). The differences between the remaining variables are 

not very significant. The variables with more than 20% appearance are gauging 

station catchment area (Cg, 23%), end location catchment area (Ce, 22%), start 

location theoretical mean flow (Ms, 22%), start location theoretical Q95 flow 

(Qs, 21%), and end location theoretical Q95 flow (Qg, 20%). Variables with less 

than 15% appearances are reach length and start/end location distance from 

injection point (L, Ds and De, 14%, 13% and 13% respectively). As such, Mg and 

I for Data I are kept during the next MLP training stage in GNMM, while the 

rest of the variables are all removed. Similarly, it can be seen that the most 

frequently appearing variables for Data II are U (99%), B (96%) and H (70%), 

followed by u* (28%), U/u
* (26%), whereas β, α and B/H are all less than 2%. 

Thus U, B and H for Data II are kept and the rest are removed.  

It is interesting to note that Figure 3-4 has a very similar distribution to Figure 

3-2. The only difference is that the high appearance percentage shown in 

Figure 3-2 is slightly reduced in Figure 3-4; and vice versa for the low 

appearance percentage. This is the averaging effect of the appearance 
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percentage technique. It should also be noted that dependant variables B/H, 

U/u* and β are automatically filtered out. 

 

Figure 3-5: Comparison of performance using all variables and selected 
variables for Data I training subset for a single run 

 

Figure 3-6: Comparison of performance using all variables and selected 
variables for Data II training subset for a single run 
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The effect of such variable selection can clearly be seen in Figure 3-5 and 

Figure 3-6. Within 200 epochs, the ‘selected variable combination’ of Data I 

achieved a much smaller MSE than using them all (0.043 vs. 0.162). The same 

is true for Data II (0.067 vs. 0.115).This further demonstrates that not all of the 

potential input variables are equally informative since some may be noisy, 

correlated or have no significant relationship with the longitudinal dispersion 

coefficient. 

3.4.2 MLP Training 

As a result of the input variables selection process, Mg and I for Data I and U, B 

and H for Data II are identified to be the ones most frequently occurring 

throughout all the populations. Thus the subset formed by these variables, 

which is the subset that produces the minimal error within a given number of 

epochs, is utilised in the final training process. 

By setting learning rate to α = 0.04, number of neurons in the hidden layer = 5 

and 3 for Data I and Data II respectively, and running the MLP five times, the 

minimum RMSE for Data It is 5.92, and the coefficient of determination (R2) is 

0.83 at iteration Ne = 2217513. The corresponding number for Data IIt is RMSE 

= 34.85, R2 = 0.96 at Ne = 19887. In both cases, these results imply that the 

MLP model is satisfactorily trained. Figure 3-7 and Figure 3-8 show the 

measured and predicted longitudinal dispersion coefficients for Data I and 

Data II respectively. It is evident that the data is evenly distributed around the  
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Figure 3-7: Predicted and measured longitudinal dispersion coefficients for 
Data I 

 

Figure 3-8: Predicted and measured longitudinal dispersion coefficients for 
Data II 
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Table 3-5: Comparison of Data IIs (testing subset) results when using 4 
different methods. For GNMM, the mean RMSE of 5 runs are given along with 

the standard deviations 

Model (Reference) R2 RMSE(m2/s)  

GNMM 
 

128.5±23.9  

MLP (Tayfur and Singh 2005) 0.70 193.0  

Eq.(3.4) (Deng, Singh et al. 2001) 0.55 610.0  

Eq.(3.3) (Seo and Cheong 1998) 0.50 812.0  

 

 ‘y=x’ line. For Data Is, the trained MLP produced RMSE = 11.66 and R2 = 0.72. 

For Data IIs, these numbers are R2 = 0.89 and RMSE = 80.39. This means that 

MLPs have been successfully trained. 

Since Data II is a well studied dataset, a comparison is made between Data II 

results obtained using GNMM and other methods in the literature. In this case, 

over these five runs the mean RMSE and standard deviations are 128.5 and 

23.9 for Data IIs. Comparing the above results to those in Tayfur and Singh 

(2005) (as in Table 3-5), GNMM performs better. Although MLPs are being 

adopted in both applications, the difference lies in the fact that only a portion 

of available variables are used in GNMM instead of using them all as in Tayfur 

and Singh (2005). For the test data, a comparison has also been made with 

some other models, as in Table 3-5, which also shows that GNMM produces 

the best results, and ANN models (GNMM and MLP in Tayfur and Singh (2005)) 

generally perform better. 
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3.4.3 Rule Extractions 

An important feature of GNMM is that by eliminating redundant input data, 

understanding complex models has been made simple. This can be illustrated 

by applying mathematical-programming based rule extraction to trained MLPs. 

For simplicity (less hidden neurons), we take Data II as an example. The final 

weights and biases of the MLP (see Figure 3-8 (c)) that minimizes MSE are as 

follows: 3θ = −0.6031, 2θ1 = 1.4022, 2θ2 = −0.0143, 2θ3 = −4.1393, 3w = (−1.7705, 

0.8517, −1.2564), 2w1 = (4.1222, 0.9600, −1.5078), 2w2 = (5.7385, −4.3290, 

1.1943), 2w3 = (−0.7147, −6.7842, 0.3987). Applying Eq.(2.18), we have  

𝑡1 = 4.1222𝐵′ + 0.9600𝐻′ − 1.5078𝑈′ (3.6) 

𝑡2 = 5.7385𝐵′ + 4.3290𝐻′ + 1.1943𝑈′ (3.7) 

𝑡3 = −0.7147𝐵′ − 6.7842𝐻′ + 0.3987𝑈′ (3.8) 

where B', H' and U' are scaled variables according to Eq.(2.3) and Table 3-3. 

Also, we have 

𝑔 𝑡1 =

 
 

 
1 𝑡1 ≥ 0.5939

0.9115 + 0.2981𝑡1 − 0.2510𝑡1
2 −1.4022 ≤ 𝑡1 ≤ 0.5939

1.8985 + 1.7059𝑡1 + 0.2510𝑡1
2 −3.3983 ≤ 𝑡1 ≤ −1.4022

−1 𝑡1 ≤ −3.3983

  (3.9) 
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𝑔 𝑡1 =

 
 

 
1 𝑡2 ≥ 2.0104

−0.1444 + 1.0092𝑡2 − 0.2510𝑡2
2 0.0143 ≤ 𝑡2 ≤ 2.0104

−0.0143 + 0.9948𝑡2 + 0.2510𝑡2
2 −1.9818 ≤ 𝑡2 ≤ 0.0143

−1 𝑡2 ≤ −1.9818

  (3.10) 

𝑔 𝑡1 =

 
 

 
1 𝑡3 ≥ 6.1354

−8.4483 + 3.0800𝑡3 − 0.2510𝑡3
2 4.1396 ≤ 𝑡3 ≤ 6.1354

0.1531 − 1.0760𝑡3 + 0.2510𝑡3
2 2.1432 ≤ 𝑡3 ≤ 4.1396

−1 𝑡3 ≤ 2.1432

  (3.11) 

Since the activation function in the output neuron is a linear function, we also 

get 

𝑦 ′ = −1.7705𝑔1 + 0.8517𝑔2 − 1.2564𝑔3 − 0.6031 (3.12) 

Thus, regression rules are extracted from the trained MLP. Among these 64 (43) 

potential rules, some are null and will never execute. Null rules can be 

identified using the Simplex algorithm, see Tsaih and Chih-Chung (2004) for 

details.  

Rules fired for Data I and Data II are shown in Table 3-6 and Table 3-7 

respectively, where the number of training and test data samples associated 

with each rule is also listed. Recall that in Eq.(2.17) the input domain of hidden 

neurons is divided into four sub-domains, this corresponds to the actual value 

of the digits in each rule ranging from 1 to 4. On the other hand, the length of 

each rule corresponds to the number of neurons in the hidden layer. Since 5 

and 3 neurons were used in the hidden layer for Data I and Data II respectively,  
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Table 3-6: Rules fired for Data I 

No. Rule Data It Data Is 

1 24121 2 1 

2 41342 2 
 

3 41442 55 13 

4 42341 18 5 

5 42342 8 
 

6 43241 7 2 

7 43341 
 

1 

8 44131 3 
 

9 44141 3 1 

10 44241 1 
 

11 44242 3 2 
 

Table 3-7: Rules fired for Data II 

No. Rule Data IIt Data IIs 

1 112 1 2 

2 113 24 6 

3 123 3 1 

4 124 6 6 

5 133 
 

2 

6 213 3 
 

7 214 2 1 

8 223 5 
 

9 224 1 1 

10 233 4 
 

11 431 
 

1 

12 441 

 

1 

13 442 

 

1 
 

  

hence the corresponding length of each rule set is 5 and 3. 

The regression rules summarised above give us an idea of the importance of 

each rule and the distribution of the data. These rules can also be written in 

the antecedent/consequent format. For example, Rule 2 in Table 3-7, which is 

executed most of the time for both the training and test data in Data II, can be 

rewritten as 

 IF t1 ≥ 0.5939 

 AND t2 ≥ 2.0104 
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 AND 2.1432 ≤ t3 ≤ 4.1393 

 THEN y' = −1.7143 + 1.3519t3 − 0.3154 t3
2 

However, the above derived y' needs to be mapped back to the normal range 

using the reverse function of Eq.(2.3) to obtain the GNMM simulated 

dispersion coefficient y: 

𝑦 =
(𝑦 ′ + 1) × (𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 )

2
+ 𝐾𝑚𝑖𝑛 = 445.05 ×  𝑦 ′ + 1 + 1.90 (3.13) 

These regression rules could provide environmental managers or field 

response teams with a rapid assessment tool for identifying values of the 

longitudinal dispersion coefficients required for the prediction of contaminant 

spread and concentrations immediately following an accidental spill. 

 

3.5 Discussions 

In the following sections, PCA and SOMs are applied to Data I and II to cross-

validate the input variables identified by GNMM. 

3.5.1 Principal Component Analysis 

PCA is a statistical technique used to transform a data space into a smaller 

space of the most relevant features (Hand, Mannila et al. 2001; Engelbrecht 

2002). The aim is to project the original data space onto a linear subspace such  
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Figure 3-9: Percentage of the first 7 principal components in Data I 

 

Figure 3-10: Projections of Data I points and variables onto the first two 
principal components 

that the variance in the data is maximally explained within the smaller 

subspace. Features (or inputs) that have little variance are thereby removed. 
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The principal components of a dataset are found by calculating the covariance  

(or correlation) matrix of the data patterns, and by selecting the minimal set of 

orthogonal vectors (the eigenvectors) that span the space of the covariance 

matrix. Given the set of orthogonal vectors, any vector in the space can be 

constructed with a linear combination of the eigenvectors.  

Figure 3-9 shows the percentage of the first 7 principal components in Data I. 

It can be seen that the only clear break in the amount of variance accounted 

for by each component is between the first and second components. However, 

the first component by itself explains more than 60% of the variance; with the 

second components, the variance explained is more than 70%. Therefore, it is 

reasonable to assert that the first two components can be regarded as being 

representative of Data I. 

The projections of data samples and variables in Data I onto the first two 

principal components are depicted in Figure 3-10. It is interesting to note that 

the two variables selected by the GNMM (Mg and I) are clustered together 

although they are not outstanding in terms of contributions to the first 

principal component. Thus it may be appropriate to ask as to whether or not 

GNMM was working properly. It should be noticed that the dimensionality 

reduction achieved by PCA is realised by preserving as much of the relevant 

information from the original data as possible. From Figure 3-3, it can been 

seen that none of the variables apart from the two selected by GNMM has a  
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Figure 3-11: Percentage of the first 5 principal components in Data II 

 

Figure 3-12: Projections of Data II points and variables onto the first two 
principal components 

high appearance percentage. Therefore, the judgement is that although the 

first principal component preserves most information in Data I, it contains 
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little information about the longitudinal dispersion coefficient. Moreover, the 

fact that Mg and I are grouped together is the most important finding in Figure 

3-10, since it is not necessary for any of the principal components to preserve 

the information about the longitudinal dispersion. 

Figure 3-11 shows the percentage of the first 5 principal components in Data II; 

while Figure 3-12 illustrates the projections of data samples and variables in 

Data II onto the first two principal components. It is evident that B and H are 

grouped together, and they are the most important variables in the first 

principal component, which counts for around 50% of the total variance. 

Following a similar analysis to Data I, it can be concluded that the first principal 

component represents most of the longitudinal dispersion information in Data 

II. 

3.5.2 Self-Organizing Map 

The SOM is a multidimensional scaling method to project an input space onto 

a discrete output space, effectively performing a compression of input space 

onto a set of vectors. The output space is usually a two-dimensional grid. The 

SOM uses the grid to approximate the probability density function of the input 

space, while still maintaining the topological structure of the input space. That 

is, if two vectors are close to one another in input space, so is the case for the 

map representation. For a detailed description of SOM, please refer to (Haykin 

1994; Engelbrecht 2002). In the present study, SOM analysis is performed 

using the MATLAB SOM Toolbox 2.0 developed at the Helsinki University of 
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Technology6. 

The effect of the SOM training process is to cluster together similar patterns, 

while preserving the topology of the input space. Training results in a set of 

trained weights with no explicit cluster boundaries. An additional step is 

required to find these cluster boundaries. One way to determine and visualize 

the cluster boundaries is to calculate the unified distance matrix (U-matrix), 

which contains a geometrical approximation of the vector distribution in the 

map. The U-matrix expresses the distance to the neighbouring vectors for each 

neuron. Large values within the U-matrix indicate the position of cluster 

boundaries.  

 

Figure 3-13: SOM analysis of Data I  

                                                        
6
 Laboratory of Computer and Information Science, the Helsinki University of Technology, 

http://www.cis.hut.fi/projects/somtoolbox/ 
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Figure 3-13 shows the results of SOM analysis of Data I. In the U-matrix, a 

neuron’s colour represents the distance to its neuron neighbours – a low value 

indicates a small distance between neurons. The ‘component planes’ show 

what variable values the neurons have taken. This can be used to look for 

relationships between individual variables. These plots will have the same 

number of cells as there were neurons in the map. As each plot is a ‘slice’ of 

the output if two plots appear to have a similar distribution of values then this 

shows the variables to be related. Note that apart from the U-matrix and 

individual variables, Figure 3-13 also indicates the longitudinal dispersion 

coefficient (Kx), which is the training target. From Figure 3-13 it may be seen 

that the pattern presented by the whole dataset (U-matrix) is quite different 

from Kx, which corresponds to our analysis in Section 3.5.1 Principal 

Component Analysis. This also indicates that too much irrelevant information 

is contained in Data I. On the other hand, variables found by GNMM (Mg and I) 

have similar representations to the training target (Kx). This means that the 

patterns identified by SOM for these variables (i.e. Kx, Mg and I) share some 

common feature, which validates our results for input determination for Data I. 

Following similar steps as to the above, Figure 3-14 presents the results of 

SOM analysis for Data II. Unlike Figure 3-13, in Figure 3-14 the whole dataset 

and the training target have similar distributions. This is illustrated by 

comparing patterns in the U-matrix and Kx. Furthermore, GNMM’s choices of 

input variables (B, H and U) all present these similar patterns. This indicates  
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Figure 3-14: SOM analysis of Data II  

that the patterns presented by the whole dataset are very similar to those of 

the training target, which is also closely related to the variables selected by 

GNMM. This from another point of view proves our variable selection 

technique. 
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variables out of 8. As a result, an R2 of 0.96 and RMSE of 34.85 were obtained. 

Rules extracted from trained MLPs were also presented, which demonstrate 

not only the importance of each rule and but also the distribution of the data. 

Through a benchmarking case study, the effectiveness of GNMM has been 

demonstrated by comparing the results generated by GNMM to those 

presented in the literature. Compared with conventional methods that provide 

longitudinal dispersion prediction (e.g. Eq.(3.3) and Eq.(3.4)), GNMM as a data 

driven approach needs no a priori knowledge. Although a priori knowledge is 

widely used in many ANN applications, they are dependent on expert 

knowledge and hence very subjective and case dependent. This is particularly 

true for complex problems, where the underlying physical mechanism is not 

fully understood. Furthermore, GNMM is adaptive. This means that when new 

data samples are applied to the system, the system is capable of self-learning 

and thus adjusting its results and improving prediction accuracy. Another 

advantage of GNMM over conventional methods is that, due to its ANN nature, 

it can approximate virtually any function with any desired accuracy without 

making assumptions with regard to stream geometry or flow dynamics. 

In order to validate the effectiveness of GNMM’s input determination method, 

we also provide an insightful analysis of the technique that uses GAs as an 

ANN input variable optimization tool in the context of longitudinal dispersion 

coefficient prediction. This is achieved by a detailed comparative study of the 
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GNMM’s input determination process. Moreover, PCA and SOM analysis are 

performed to cross-validate the results of GA input variable selection. 
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Chapter 4 Channel Selection and Classification 

of EEG Signals 

4.1 Introduction 

In Chapter 3 we applied GNMM to civil engineering datasets, where we 

demonstrated GNMM’s implementation details and also cross-validated 

GNMM’s input selection results using PCA and SOM. In this chapter, we will 

apply GNMM to two Electroencephalogram (EEG) classification problems. 

Compared to other naturally occurring dynamic patterns, EEG activity is not 

only at least as complex, it has the added advantage that an almost unlimited 

number of highly controlled variants can be created in an easy, cost-effective, 

and straight-forward manner, by simply setting different task parameters and 

giving different task instructions to the human participant. Therefore, EEG 

measures are an ideal testing ground for developing novel DM techniques. 

There are two datasets used in the current chapter, and the body of the 

chapter splits into two parts accordingly. Firstly we will make use of a well 

studied dataset (denoted by Data III) – 64-channel electrocorticography (ECoG) 
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data for a two-class motor imagery, which have previously been used to 

perform channel selection and pattern classification tasks (Lal, Hinterberger et 

al. 2005); the other data (i.e. Data IV) are from a speeded 2-alternative forced-

choice manual response task, collected using a 32-channel EEG system 

(Schlaghecken, Blagrove et al. 2008; Schlaghecken, Klapp et al. 2009).  

4.2 Background 

An EEG based BCI provides a possible means to implement a communication 

channel between the human brain and a computer. Patients who suffer from 

severe motor impairments (e.g., late stage of Amyothrophic Lateral Sclerosis 

(ALS), severe cerebral palsy, head trauma and spinal injuries) may use such a 

BCI system as an alternative form of communication through mental activity 

(Guger, Schlogl et al. 1999). Most human BCIs are based on extracranial EEG. 

Compared with invasive EEG (e.g., ECoG), this presents a great advantage in 

that it does not expose the patient to the risks of brain surgery. On the other 

hand, however, invasive EEG signals contain less noise. 

According to Besserve et al. (2007), depending on the spatial extent of the 

physiological phenomenon under investigation, the ongoing EEG signals can be 

divided into two families: local or long range. Local measurements generally 

provide a measure of task-related activity picked up at a single sensor or 

electrode. By contrast, measurements of long range interactions quantify the 

coupling between signals detected at two distinct sensors, possibly revealing 
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information transfer between two distant neural ensembles. One of the 

fundamental technical difficulties with using EEG measures to classify neural 

activity results from spatiotemporal filtering, which limits the signal/noise ratio 

of the time series and blurs the localization of the relevant neural generators 

(Sanchez and Principe 2007). 

Conventional neuroimaging analysis correlates external regressors such as task 

condition with activity in specific areas of the brain. PR may be viewed as an 

inversion of this methodology and instead predicts the external stimulus based 

on neuroimaging data. Unlike conventional analyses, these pattern-based 

analyses take into account the full spatial pattern of brain activity rather than 

concentrating on specific regions (Wandell 2008), and represent a new way of 

looking at neuroimaging data. A recent review by Haynes and Rees (2006) 

discusses several studies that have successfully used statistical PR to decode a 

person’s current thoughts from their brain activity alone. They concluded that 

it was possible to correctly identify which object a subject is currently viewing, 

even when several alternative categories are presented. Lotte et al. (2007), 

presenting an exhaustive review of the algorithms already used for EEG-based 

BCI, conclude that ANNs are the classifiers which are most frequently used in 

BCI research. 

ANNs as a PR technique are well established in BCI research and also have 

numerous successful applications (Shuter, Hines et al. 1994; Robert, Gaudy et 
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al. 2002; Robert, Karasinski et al. 2002; Singh, Li et al. 2007). For example, 

Shuter et al. (1994) proposed a ANN-based system to process EEG data for the 

monitoring of the depth of awareness under anaesthesia. They analyzed the 

awareness states of patients undergoing clinical anaesthesia based on the 

variations in their EEG signals using a three-layer BP network. The network 

accurately mapped the frequency spectrum into the corresponding awareness 

states for different patients and different amounts of anaesthetics. In a 

recently published paper, Singh et al. (2007) investigated EEG data using a 

combination of common spatial patterns (CSP) and MLPs to achieve feature 

extraction and classification. Event-related synchronization/desynchronization 

(ERS/ERD) maps were also used to investigate the spectral properties of the 

data. As a result, they achieved an accuracy of 97 % for the training data and 

86 % for the test data. Robert et al. (2002) have reviewed more than 100 ANN 

applications concerned with EEG signal processing and classified these BCI-

related applications into two categories: prediction and classification. The 

prediction class is usually concerned with estimating the possibility of 

predicting the side of hand movements (left or right) using EEG records prior 

to voluntary right or left hand movements. In some studies classification rates 

were not very high (from 51 to 83%). However, classification accuracies as high 

as 85-90% were achieved in others. In the classification category, neural 

network-based systems were trained to classify movement intention of left 

and right index finger or the foot using EEG autoregressive model parameters. 

A correct recognition rate of 80% was achieved in some applications. Overall, 



Chapter 4 Channel Selection and Classification of EEG Signals 139 

 

the future for neural network-based BCI systems is very promising. 

However depending on the application one of the drawbacks of conventional 

ANNs is that there is no explicit input optimization mechanism. As such, all 

available signals or features are typically fed into the network to accomplish 

the PR task(s). This input optimization problem also exists when the NN input 

data are signals collected by EEG electrodes. In terms of EEG classification, 

signals can be very noisy and contaminated by various motion artifacts 

produced at certain electrodes. The data acquisition task will also be made 

much more efficient if the electrodes are only a minimum subset of all 

available positions. In addition, algorithms for channel selection can identify 

suitable recording sites for individual subjects even in the absence of prior 

knowledge about the mental task. In fact, researchers have investigated 

various methods to optimize EEG channels. For example, Tian, Erdogmus et al. 

(2005) proposed a filter-based approach for EEG channel selection using 

mutual information (MI) maximization. Lal, Hinterberger et al. (2005) recently 

introduced a support vector feature selection method based on Recursive 

Feature Elimination (RFE) for the special case of EEG data.  

Unlike conventional ANNs which utilize all available EEG channels and let the 

ANN adjust its internal connections, GNMM only concentrates on a subset of 

available channels. This subset (i.e. selected EEG channels) is optimally 

identified for dimensionality reduction using GAs. In this way, we combine the 
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merits of both conventional neuroimaging analysis and PRs. 

4.3 Data III – Two-Class Motor Imagery 

The intracranial ECoG recording is explicitly selected to validate the technique 

developed as it is expected to contain higher quality brain signals with low 

values of impedances. The dataset, which was used in the BCI competition III 

(Blankertz, Muller et al. 2006), comprises of a large number of labelled trials 

which makes it advantageous for evaluation of performance measures for the 

technique. 

4.3.1 Experiment Setup 

The experiments were performed in the department of epileptology of the 

University of Bonn (Lal, Hinterberger et al. 2005). During the experiment, a 

subject had to perform imagined movements of either the left small finger or 

the tongue (Figure 4-1). The time series of the electrical brain activity was 

picked up during these trials using an 8×8 ECoG platinum electrode grid which 

was placed on the contralateral (right) motor cortex. The grid was assumed to 

cover the right motor cortex completely, but due to its size (approx. 8×8cm2) it 

also partly covered surrounding cortex areas. All recordings were performed 

with a sampling rate of 1000Hz. After amplification, the recorded potentials 

were stored as microvolt values. Every trial consisted of either an imagined 

tongue or an imagined finger movement and was recorded for 3 seconds 

duration. To avoid visually evoked potentials being reflected by the data, the 
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recording intervals started 0.5 seconds after the visual cue had ended. The 

whole dataset consists of 278 trials for training/validation and 100 trials for 

testing respectively. Within each trial, there are 3000 data points per channel 

(i.e. electrode) and a total of 64 channels available. The whole dataset is 

available in Matlab format from the BCI competition web site7. 

4.3.2 Pre-processing 

A major difficulty in the processing of EEG data comes from the usually very 

large size of the dataset due to the relatively high sampling frequency. To 

reduce the data size we apply a least square (LS) approximation on a single 

trial basis. In fact, partial least square (PLS) has been used as a regression 

method to extract spatiotemporal patterns from EEG signals (Martínez-Montes, 

Valdés-Sosa et al. 2004; Kovacevic and McIntosh 2007). The LS technique used 

in the current work is the linear LS approximation of the EEG signal over a 

 

Figure 4-1: Data III – two-class imaginary movements (Adapted from Lal, 
Hinterberger et al. 2005) 

                                                        
7

 BCI Competition III, Intelligent Data Analysis Group, Fraunhofer FIRST, 
http://ida.first.fraunhofer.de/projects/bci/competition_iii/. 
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Figure 4-2: Least square approximation for a signal segment in Data III 

specific time period. Let x(t, b) be the EEG signal measurements on channel b at 

time t. Thus, a linear LS approximation for EEG signals on this particular 

channel for a single trail may be formed thus: 

 qptx   (4.1) 

Also, the derivative of Eq. (4.1) gives: 

 pdtdx /  (4.2) 

which is the slope of the linear LS approximation. This value p is indicative of 

the changes in the signal for each channel during a specific time slot.  

A linear LS approximation was performed on Data III on a single trial basis. 
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Figure 4-2 shows the original data and its LS approximation for the signal 

obtained from one electrode over an imaginary movement. It is clear that by 

doing LS approximation, the data size is greatly reduced while significant 

information (i.e. signal changing rate and direction over a specific time window) 

still remains. As a result of pre-processing, the dimension of Data III was 

reduced to 278×64 and 100×64 for the training/validation and testing sets 

respectively. Target values of 1 and −1 were used for imaginary finger and 

tongue movement. 

4.3.3 Channel Selection 

During channel selection, when a GA’s chromosome is being evaluated, a total 

of 250 trials of the training set (~90%) were randomly selected for training and 

the remaining 28 kept for validation purposes. The MLPs used for evaluating 

purposes were configured so that the number of hidden neurons in the only 

Table 4-1: Configuration of GAs for Data III channels selection 

Case Np Ng Ne 

1 400 400 20 

2 200 200 50 

3 400 100 50 

4 400 200 100 

5 600 100 50 

6 200 100 200 

7 400 100 150 
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hidden layer equals four when the channels being evaluated are greater than 

four and will otherwise be the same as the number of input neurons. An 

output layer of only one neuron was used throughout channel selection and 

the final pattern classification. 

Seven iterations of the GA produced the best channel combinations to give the 

least error. The various GA configurations are shown in Table 4-1. It was 

observed that there existed 10 channels which appeared in more than 90% of 

all the generations. Hence these were specifically selected as the input data 

for the final classification. The channels being selected are [7 12 17 21 22 45 46 

47 54 59], as in Appendix F. The other 54 less informative channels were thus 

removed from further analysis. 

4.3.4 Classification Results  

The subset of only 10 channels was fed into a three-layer MLP and trained 

using the LM algorithm to perform the final classification. The number of 

neurons in the hidden layer was increased to ten to maximize the classification 

rate. Furthermore, ten-fold cross validation was introduced to try to improve 

the generalization. As a result of five runs, the lowest RMSE value was 

calculated to be 0.4552, and the mean is 0.6382 and standard deviation is 

0.165. Defining the coefficient of determination (R2) as 
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where y and v are the actual and predicted target class values, R
2 for the 

training set was found to be 79.28% using the best trained network (i.e. lowest 

RMSE). Target and predicted values for these 278 training/validation trials are 

shown in Figure 4-3. Note that in Figure 4-3 shadowed areas denote the 

training target value ±1±RMSE; data points represent the actual value 

produced by the MLP model with 10 input channels.  

Treating the mid-point of the two target classes, in which case is ‘0’, as the 

dividing point of those predicted values, the MLP model with only ten channels 

achieved an average classification rate of 83.39% with a standard deviation of 

18.58. The above results compare favourably with those obtained by Lal, 

Hinterberger et al. (2005) on the same data, where they used RFE for channel 

selection and SVMs for pattern classification and achieved a minimum error of 

about 25.7% (i.e. an accuracy of 74.3%). Moreover, taking into account only 

those predicted values that fall into the range of the target ± RMSE (i.e. 

shadowed areas in Figure 4-3), our model achieved an average accuracy of 

72.30%; with the positive class having a slightly higher rate.  

Training an MLP with the same number of hidden neurons and configurations 

(e.g. learning rate, training algorithm etc.) but using all available 64 channels  
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Figure 4-3: Target and predicted values for Data III training/validation set 

Table 4-2: Classification results for Data III, which shows the results for 
training/validation and testing subset respectively. RMSE and R2and are for the 

best trained network. Classification rate is calculated over five runs 

  RMSE R
2 Classification rate 

Train/validation  

Data (278 trials) 

All channels 0.2305 94.69% 96.12%±7.52 

10 selected channels 0.4552 79.28% 83.39%±18.58% 

Testing data  

(100 trials) 

All channels 1.7984 * 58.04%±9.36 

10 selected channels 1.3329  50.81%±4.74% 

‘*’ means negative coefficient of determination, and hence were ignored. 

 

for five times, we obtained a better classification rate: the lowest RMSE 

decreased to 0.2305 and R
2 increased to 94.69%, as seen in Table 4-2. The 

classification rate for five runs is 96.12%±7.52%. This is because one advantage 

of using MLPs is that the internal connection (i.e. weights) can adjust itself in a 

way that outperforming channels gain in weight while less-influential ones lose. 
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However, the trade-off is that MLPs trained using all channels have a lower 

generalization. This was ascertained through the fact that when classifying the 

100 testing trials, the best trained MLP using the 10 selected channels 

achieved a lower RMSE (1.3329 vs. 1.7984). An interesting point is that, in 

terms of the testing set, the classification rate is higher for MLP trained using 

all channels than using selected channels only. This is because although some 

predicted values are on the ‘correct’ side of the axis, they scatter far from the 

RMSE area. This on the other hand, demonstrates the generalization ability of 

the MLP trained using selected channels. 

4.4 Data IV – Response Priming Paradigm 

Data IV were collected from a speeded 2-alternative forced-choice manual 

response task using a 32-channel EEG system (Schlaghecken, Blagrove et al. 

2008; Schlaghecken, Klapp et al. 2009).  

4.4.1 The Experiment 

In a 2-alternative speeded choice reaction time (RT) task, participants had to 

execute a left-hand or right-hand button-press in response to briefly presented 

arrow stimuli pointing to the left or right. Each arrow target was preceded by 

an arrow prime, which could point either in the same or in the opposite 

direction as the target. These primes were visually ‘masked’ and therefore 

easy to ignore; see Schlaghecken and Eimer (2006) for a detailed description of 

the masked prime procedure. Furthermore, target arrows were flanked by 
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Figure 4-4: Schematic representation of stimulus material and trial structure in 
Data IV experiments 

 

(a) 

 

(b) 

Figure 4-5: Position of EEG electrodes used in Data IV experiments arranged 
by: (a) position and (b) number 

response irrelevant (to-be-ignored) distractor stimuli associated with either 

the same response as the target or the opposite response, which added a 

certain level of difficulty to response selection and execution (Eriksen flanker 

task (Eriksen and Eriksen 1974)). The interval from one prime onset to the next 

was fixed at 1743 ms. The experimental setup is illustrated in Figure 4-4.  
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The experiment consisted of 96 randomized trials per block, and 10 blocks per 

participant. EEG signals were measured using the BioSemi8 ActiveTwo 32-

channel EEG system. The electrode arrangement is shown in Figure 4-5. The 

EEG was sampled at a frequency of 256 Hz. The recording data for all runs was 

concatenated and converted into the BDF format (Schlogl 2003). 

4.4.2 Pre-processing 

The original data were triggered using the EEGLAB9 Matlab toolbox. The pre-

processing for Data IV involved a multi-time-windows LS approximation over a 

single trial. In order to trace the development of response-related EEG signals 

over time, the trial period was divided into 7 intervals spanning 250 ms each 

(denoted by INT1 through to INT7). Additionally, analysis was conducted on  

 

Figure 4-6: EEG signal of channel Cz for the first epoch of Data IV event No.1 
and its LS approximations across different time windows 

                                                        
8
 BioSemi, http://www.biosemi.com/products.htm. 

9
 Swartz Center for Computational Neuroscience, University of California San Diego, 

http://sccn.ucsd.edu/eeglab/. 
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one overarching time window spanning the whole length of a trial (denoted by 

O1). Consequently, 8 features/parameters are extracted from each EEG 

channel for each single trial. Figure 4-6 shows the EEG signal recorded on 

channel Cz for the first epoch of event No.1 and its LS approximations during 

different time slots. 8 LSs were calculated in total: 1 on the overall trial period 

and 7 others, each of which was calculated over an interval of 250 ms starting 

from latency = 0.  

A specific difficulty that lies in Data IV is that the dataset can be divided into 

eight categories: 2 target directions × 2 prime directions × 2 flanker directions. 

Each of these can then be further divided into two sub-categories: correct or 

incorrect responses. For the current purposes, the data were split according to 

two criteria: (a) left or right hand response, and (b) correct or incorrect 

response, resulting in four classification targets: right hand incorrect (Class1), 

left hand incorrect (Class2), right hand correct (Class3), and left hand correct 

(Class4). 

These pre-processed data were fed into GNMM, and the effectiveness of 

different time windows for channel selection and pattern classification was 

investigated. 

4.4.3 Channel Selection and Pattern Classification 

GAs are configured to run four times to explore different combinations of 
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input channels for each of those 8 sets until distinctions were evident between 

these EEG channels for each of the eight datasets. Investigating appearance 

percentage distribution for each channel yields not only the importance of 

each channel in the final pattern classification, but also the energy distribution 

around the scalp. The appearance percentage of each channel in the four GAs 

for each of those 8 sets is illustrated in Figure 4-7. Overall, the appearance 

distribution among channels is relatively smooth. In agreement with the to-be-

classified phenomenon, manual motor response, the channels located near 

the hand-area of the left and right motor cortices (here, channels Cz, C3 and 

C4) are the most likely, whereas occipital (i.e., visual) and fronto-polar 

channels (Oz, O1/2, Fp1/2) are the least likely to be selected (see Figure 4-5 

and Figure 4-7). Specifically, it seems that there are some connections 

between O1 (the overall signal changing rate) and INT6 (the changing rate just 

before the end of the trial). In these two cases, the area evenly distributed 

around the conceptual horizontal line linking the two ears is more active than 

the other areas. On the other hand, the distribution of INT3 is relatively sparse. 

Since we know that EEG signals recorded on adjacent scalp locations are not 

supposed to be very distinct, being sparse suggests that INT3 may not be an 

appropriate feature for the whole EEG signal.  

In order to select the most frequently appearing channels for all 8 parameter 

subsets (INT1-7 and O1), the selection criterion was set to at least 80% 

appearance. However, another consideration is that the number of channels  
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Figure 4-7: Appearance percentage distribution around the scalp for Data IV 
subsets. Colour indicates chances of a particular channel being selected by GAs 

for final classification – the darker the better 

selected for each parameter subset should be the same or at least similar, in 

order to make comparisons possible. Therefore, the selection criterion was 

increased for individual parameter subsets until for each only 12 channels (13 

in the case of INT1 as a result of the fact that two channels’ appearance 

percentage appear to be exactly the same) were selected. Most of these 

appear more than 90% in the winning chromosomes (see Table 4-3). 

Feeding the channels selected in Table 4-3 into MLPs and training with the LM 

algorithm, we are able to compare the classification accuracy between 
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different datasets, as shown in Figure 4-8. It is evident that correct responses 

(Class3 and 4) are more successfully classified. An interesting point here is that 

the overall classification rate mimics the trends of Class3 and 4, which share a 

similar pattern, and is inversely proportional to the rate of Class2. Although 

Table 4-3: EEG channels selected for each subset in Data IV 

Subset Channels Selected 
Criteria 

(appearance percentage) 

O1 6 7 8 9 11 13 22 23 24 26 29 32 >=0.81 

INT1 1 3 7 8 10 15 16 18 19 21 24 26 31 >=0.90 

INT2 3 4 5 7 10 13 14 18 19 20 22 28 >=0.92 

INT3 1 11 13 16 17 18 19 23 24 27 31 32 >=0.93 

INT4 1 3 4 5 6 10 12 16 19 22 23 26 >=0.85 

INT5 1 4 5 10 13 18 19 23 25 27 31 32 >=0.88 

INT6 4 5 6 8 10 14 18 19 20 26 27 32 >=0.82 

INT7 6 8 10 11 13 21 24 26 27 29 31 32 >=0.80 

 

 

Figure 4-8: Classification accuracy for different subsets in Data IV 
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presenting sparse patterns, INT3-5 accounts for the most successful 

approximations for the classification of Class1. Another observation is that 

although INT2 and INT7 do not have any classification accuracy for Class1 and 

very low for Class2, their overall rates are among the highest. The discrepancy 

between high classification accuracy for correct responses and low accuracy 

for incorrect responses most likely is due to the fact that incorrect responses 

only constituted 13% of the overall dataset. As a consequence, insufficient 

information for the ANN to achieve reliable classification was present. 

It should be noted that RTs (time from trial onset to the depression of a 

response button beyond a certain threshold) in this task was approximately 

500-550 ms. Therefore, the high classification accuracy in INT 1 and 2 (about  

 

Figure 4-9: Target and predicted values for subset O1 
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80% for correct responses) reflects the rate of correct predictions of a yet-to-

be-executed response. Furthermore, correct error classification was achieved 

with more than chance frequency (25%) only in the 500-1000 ms time-

windows, that is, after an incorrect response had been executed. In line with 

recent neurophysiological studies (Vocat, Pourtois et al. 2008), this indicates 

that the most distinguishing feature of response errors lies in cognitive post-

error processes, not in preceding ‘erroneous’ cognitive processes. 

Figure 4-9 shows the target and predicted values for subset O1. It is evident 

that ANNs classify Class3 and 4 quite well. In spite of the fact that no Class1 

instances were correctly identified, most of them were classified as Class3. 

Given that both Class1 and 3 denote right hand movement, this phenomenon 

suggests that the system can properly identify right hand movement 

regardless of outside stimuli. However, Class2, which present a low 

classification rate, were also mostly classified as Class3. Recall that datasets 

that have the highest rate for Class2 (INT3 and 4, see Figure 4-8) were very 

sparse in terms of channel appearance distribution (Figure 4-7), and the 

accuracy rate for Class4 is 63%, it can be concluded that the EEG signal for the 

left hand movement for this particular patient is more complicated. 

4.4.4 Rule Extraction 

Rule extraction was not discussed for Data III as in that case the data was 

obtained from a single subject with specific channel locations; while in the  
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Figure 4-10: Histogram of extracted regression rules from Data IV subset O1 

case of Data IV channel locations have been widely studied and rules can be 

tested and extended to a wider range of participants. Taking the MLP trained 

using O1 for instance, a total of 516 regression rules were extracted from 

subset O1. O1 is being used here instead of other datasets because the time 

interval for this set is much larger – it includes the whole trial period rather 

than its segments. As a result, it is feasible in practice and provides more error-

tolerance. Histogram of rules extracted from O1 can be seen in Figure 4-10. 

Considering that there are 12 input and 8 hidden neurons, which in theory 

produces 65536 (48) possible rules, actual implemented rules are only a small 

proportion. From this point of view, the data have been narrowed down to 

some of the important rules rather than spread over the rule space. 
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4.5 Summary 

In the current chapter, we applied the GNMM method to the EEG channel 

selection and classification problem. We have considered two datasets for our 

data driven technique. We demonstrated that GNMM is able to perform 

effective channel selections/reductions, which not only reduces the difficulty 

of data collection, but also greatly improves the generalization of the classifier. 

We have applied least square approximations to pre-process the data, and also 

discuss the effects of time window positions. 

Some key conclusions can be drawn, as follows: 

 By applying GA to optimize channel combinations, the significance of each 

channels relating to a specific task can be evaluated. Although the 

functionality of brain areas has long been studied, the difference between 

individuals can be vital in terms of EEG classification. This is especially true 

for those neurological patients who suffer from cerebral dysfunctions. 

 Generally, using a selected subset improves the generalization ability of 

the model. This conclusion has also been reached by Lal, Hinterberger et 

al. (2005). More importantly, using selected channel subset(s) can result 

in a higher classification rate compared to using all available channels. 

This is mostly because channels containing irrelevant/noisy data have 

been removed.  

 Another advantage of using a channel selection technique is that the 
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classifier is easy to understand. In particular, GNMM reduces its possible 

regression rules exponentially if the number of input neurons is reduced. 

 In terms of LS pre-processing, it has greatly reduced the size of the 

dataset and improved the effectiveness of GNMM. From the present case 

studies, it seems that it is appropriate to use a combination of different 

time windows to achieve a high classification rate for correct and 

incorrect actual movement. However, establishing the precise number 

and temporal extent of these time windows for optimal results requires 

further investigation. 

 In terms of both the topography of the selected channels and the time-

course of classification accuracy, the results correspond to the 

neurophysiology of the processes under investigation, indicating that the 

present method might be usefully applied not only as a BCI-tool, but to 

basic neuroscientific research as well. 

The selection of appropriate channels for EEG pattern classification has been 

one of the biggest problems for this kind of large datasets. By applying GNMM 

to two datasets, it is evident that GA based channel selection provides a 

potential solution to this problem. Furthermore, real-world applications based 

on a reduced number of EEG channels will be more feasible for patients that 

suffer from motor impairments.  
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Chapter 5 Optimising the Number of 

Electronic Nose Sensors 

5.1 Introduction  

In previous chapters, we have provided an insightful analysis of GNMM’s 

implementations (i.e. Chapter 3), and demonstrated its effectiveness through 

two complex EEG channel selection and classification problems (i.e. Chapter 4). 

The current chapter is concerned with an application of GNMM to the problem 

of optimal electronic nose (EN) sensor selection and pattern classification.  

In terms of application, the use of EN and Multisensor Data Fusion (MDF) is 

widespread. Military applications include automated target recognition (e.g., 

for smart weapons), guidance for autonomous vehicles, remote sensing, 

battlefield surveillance, and automated threat recognition systems, such as 

identification-friend-foe-neutral (IFFN) systems. Nonmilitary applications 

include monitoring of manufacturing processes, condition-based maintenance 

of complex machinery, robotics, and medical applications. 
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5.2 Background – Multisensor Data Fusion  

Odour classification systems used in machine olfaction, which are often called 

electronic noses (ENs), have been gaining favour in a wide range of industrial 

applications (Hines, Llobet et al. 1999; Llobet, Hines et al. 1999; Gardner, Shin 

et al. 2000; Dutta, Hines et al. 2003). An EN is a device that is designed to 

detect and discriminate among odours using a sensor array (Pearce, Schiffman 

et al. 2003). Typically, it comprises three main functional components: a 

sampling unit, a signal processing unit, and an odour classification unit 

(Phaisangittisagul and Nagle 2007). The sampling unit, which is analogous to 

biological olfactory receptors, typically consists of for example an array of gas 

sensors. The basic architecture of an electronic nose is shown in Figure 5-1 

with the signals from an array of chemical sensors being processed and the 

‘smell fingerprint’ being identified against those fingerprints already held in a 

knowledge base (i.e. a database for odours). 

Usually the sensor element operates by measuring the physical property and 

outputting an analog signal which is amplified, filtered and then converted to a 

digital signal by the analog-to-digital (A/D) unit (Mitchell 2007). Unlike 

traditional analytical methods, EN sensor responses do not provide 

information on the nature of the compounds under investigation, but only give 

a ‘digital fingerprint’ of the odour, which can be subsequently investigated by 

means of data processing methods (Ulivieri, Distante et al. 2006). Thus, the 

composition of the sensor array of an electronic olfactory system is a  
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Figure 5-1: Schematic architecture of an electronic nose showing an array of 
chemical sensors, pre-processing, array processing and finally a supervised 

pattern recognition system (Adapted from Gardner and Yinon 2004) 

fundamental choice which impacts significantly on the effectiveness of the 

overall system. 

Sensors can be located in different ways (collocated, distributed, mobile) 

producing measurements of the same or of different types. Among these, the 

fusion of passive sensor data (e.g. electronic nose, EN), especially in the 

context of defence and security, is of particular importance (Koch 2007). Due 

to the emergence of new sensors, advanced processing techniques, and 

improved processing hardware, the MDF technology has undergone rapid 

growth since the late 1980s. In general, MDF is a technique by which data from 
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a number of sensors are combined through a centralized data processor to 

provide comprehensive and accurate information (Huang, Lan et al. 2007).  

Another feature of MDF is that, due to recent advances in sensor 

developments, feature extraction, and data processing techniques, users are 

always provided with an increased amount of information using multi-sensor 

arrays (Gardner, Boilot et al. 2005). Taking the MLP as an example, a fully 

connected array of 10 sensors with 10 neurons in the hidden layer classifying 6 

different odours would need 160 weights to be learnt. If the number of 

sensors in this MLP increases by 1, the number of weights would increase by 

10. As the number of sensors in an EN array increase, the number of weights 

an MLP optimizes during training grows exponentially. On the other hand, 

increasing the dimensionality rapidly leads to the point where there may not 

be enough training data for the MLP to be trained optimally, in which case the 

MLP may provide a very poor representation of the input/output mapping. 

This is the phenomenon often referred to as the curse of dimensionality 

(Bishop 1995; Bishop 2006; Scott, James et al. 2006).  

Generally speaking, even if each sensor is linked to specific classes of 

compounds, not all the sensors contribute to the characterisation of the odour 

which is being analysed (Ballabio, Cosio et al. 2006). Furthermore, not all of 

them are relevant to the particular PR classification task. Thus, the objective of 

any sensor selection algorithm should be to reduce the dimensionality and 
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also realise optimum PR accuracy, to eliminate redundant, noisy, or irrelevant 

sensors and thus find an optimal subset from an array of high dimensionality. 

By optimising the array size, the overall system performance can potentially be 

increased by maximising the information content and hence increasing the 

predictive accuracy. 

5.3 Intelligent System Techniques Applied to MDF Problems 

Hall and Llinas (2008) have identified three basic alternatives that can be used 

for multisensor data: (1) direct fusion of sensor data; (2) representation of 

sensor data via feature vectors, with subsequent fusion of the feature vectors; 

or (3) processing of each sensor to achieve high-level inferences or decisions, 

which are subsequently combined. However, due to the fact that sensor fusion 

models heavily depend on the application, there are no generally accepted 

models of sensor fusion – instead, there are numerous architectures and 

models for sensor fusion (Elmenreich 2007). Correspondingly, MDF techniques 

are drawn from, and bring together, a diverse set of more traditional 

disciplines, including digital signal processing, statistical estimation, control 

theory, and computer vision etc. Actually MDF itself is an interdisciplinary 

subject. 

Compared with statistical methods (e.g. PCA), which are parametric and based 

on the assumption that the spread of the sensor data can be described by a 

Probability Density Function (PDF), IS-based PR techniques, for example MLP, 
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PNN, RBF, SOM, fuzzy inference systems (FISs), fuzzy c-means (FCM), fuzzy 

ARTMAP, EFuNN, and Gas, offer advantages such as learning capabilities, self-

organization, generalization and noise tolerance (Hines, Boilot et al. 2003; 

Scott, James et al. 2006). 

IS based PR techniques have been reported in the literature that determine an 

optimal subset of sensors for machine olfaction (Hines, Boilot et al. 2003; 

Gardner, Boilot et al. 2005; Ballabio, Cosio et al. 2006; Gualdron, Llobet et al. 

2006; Scott, James et al. 2006; Llobet, Gualdron et al. 2007). For example, 

Gardner et al. (2005) introduced a modified GA called V-integer GA. In this V-

integer GA, each chromosome was used with integer values from one to a pre-

defined number of features/sensors representing the selected subset of 

features, and evaluated using PNN classifiers within the population. They also 

compared this V-integer GA with other search methods such as SFS or SBS and 

normal (binary) GAs. For the data-set used in their work, SFS achieved over 89% 

correct classification by selecting just three features, whereas SBS needed at 

least five features to reach the same level. With binary genes GAs, the 

dimensionality is reduced by 50–60% and the classification rates are on 

average 91%. Considering eight, six or four features, the optimal subsets 

returned by the V-integer genes GA selections have dimensionality reduced by 

over 80% and on average achieve around 90% correct classification. These 

results showed that the V-integer genes GA approach is an accurate search 

method when compared to some other feature selection techniques such as 
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SFS or SBS. However, in the V-integer GA, the number of sensors to be 

selected has to be defined in advance – in other words, there is potentially a 

lack of flexibility in some application scenarios. 

On the other hand, Ballabio, Cosio et al. (2006) suggested a chemometric 

approach based on a partial ordering technique and the Hasse matrix. In this 

approach, the Hasse matrix can be obtained from each EN data sequence and 

the similarity between two sequences can then be evaluated with the 

definition of a distance between the corresponding Hasse matrices. Since all 

the signals which are temporarily selected are intrinsically ordered, the data 

provided by the EN can also be considered to be sequential data and can 

consequently be characterized as such. In this way, a similarity/diversity 

measure can thus be applied in order to characterize the class discrimination 

capability of each EN sensor. The distance based on the Hasse matrix is then 

used to link each EN time profile to a meaningful mathematical term (the 

Hasse matrix), which can be subsequently explored using multivariate analysis. 

However, in this model there is an absence of a proper classifier. The 

consequence of this is that the results of sensor selection are not comparable. 

In their case study, two sensors were selected out of a total of 15 to 

distinguish two features. This result was also confirmed by PCA. However, if 

the number of features increases, PCA may not be able to handle the problem 

and thus the whole method may fail to work efficiently. 
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Recently, a research group (Gualdron, Llobet et al. 2006; Llobet, Gualdron et al. 

2007) have reported successful techniques for EN sensor selection. In the first 

case (Gualdron, Llobet et al. 2006), by evaluating different variable selection 

techniques (including deterministic and stochastic methods) coupled with 

neural network-based classifiers, they proposed a two-step strategy for sensor 

selection: a coarse selection based on a variance criterion followed by a SA 

process based on either fuzzy ARTMAP or the PNN. As a result, a success rate 

of 91.66% in simultaneous identification was obtained using only nine input 

variables (out of the 120 available) in their application. However, in this 

approach when computing the variance of each sensor, dependence (linear 

and/or nonlinear) between two sensors was not considered, and as such the 

selected subset may still contain redundant features and thus may not be the 

optimal subset. In the second case (Llobet, Gualdron et al. 2007), a three-step 

strategy for feature selection was presented: the first two steps were aimed at 

removing noisy, non-informative and highly collinear features; the third step 

makes use of a stochastic variable selection method (SA) to further reduce the 

number of variables. However, in this approach the threshold values for the 

discrimination ability and collinearity were both set heuristically. Therefore it 

is still possible that irrelevant sensors are not filtered out; and vice versa. 

In the following sections, we will apply GNMM to the data that have been 

studied by Boilot, Hines et al. (2002) and Gardner, Boilot et al. (2005). On the 

one hand, we will demonstrate the effectiveness of GNMM by comparing the 
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results to those in the literature. Furthermore, GNMM’s averaging effect 

during the variable selection stage will be studied. 

5.4 Data V – Eye Bacteria Species 

The EN dataset used (Data V) has previously been investigated by Boilot, Hines 

et al. (2002) and Gardner, Boilot et al. (2005). The data were collected using a 

Cyranose 32010 EN to sample three dilutions of six eye bacteria species. The EN 

comprises an array of 32 sensors, and each dilution of these six bacteria was 

measured ten times. This gives a total of 180 samples belonging to six 

categories. For details about bacteria that cause eye infections and the 

experimental protocol/methodology, please refer to Boilot, Hines et al. (2002). 

The statistics of the dataset are shown in Figure 5-2, in which the standard 

deviation (STD) is calculated according to   𝑥 − 𝑥  2  𝑛 − 1  , where x is the 

data samples for each sensor and n is the total number of samples i.e. 180. It 

can be seen in Figure 5-2 that the maximum value for each sensor varies 

within a small range. This is because all the signals were produced by the same 

type of carbon black polymer composite resistors. However, the minimum 

values have a bigger variation, and so have the mean values, due to the fact 

that the EN sensors react differently to different odours. This feature helps in 

distinguishing odours using the EN data. It is noticeable that the STDs of 

sensors 8, 23, 24 and 32 are considerably larger than the others. These  

                                                        
10 Smith Detection, www.smithsdetection.com. 
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Figure 5-2: Statistics of the dataset 

Table 5-1: GNMM configurations for the Data V 

Case Np Ng Ne 

1 30 100 20 

2 30 100 50 

3 30 150 20 

4 30 150 50 

5 30 200 20 

6 30 200 50 

 

findings may indicate sensors that would appear in the optimal subset of 

sensors. 

5.5 GNMM Results and Discussions 

GNMM was implemented on a Sun workstation equipped with UltraSPARC III 

(900 MHz) CPUs. As suggested in the literature (Schaffer, Caruana et al. 1989), 

a relatively small population size and large mutation/crossover rate can 
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achieve thorough search in the search space. Thus the population size was 

kept small (30) for all GNMM runs and the mutation/crossover rate was set to 

be 0.8/0.01 respectively. GNMM was run six times for Data V, and the various 

configurations are shown in Table 5-1. 

The appearance percentage of these 32 sensors in each of these six cases is 

shown in Figure 5-3 (a), (b) and (c), and the mean appearance percentage is 

shown in (d). Apart from illustrating each sensor’s ability to be selected in the 

winning chromosome (i.e. the sensor subset performing the most accurate 

classification), Figure 5-3 also demonstrates the importance of repeating the 

GA’s optimization processes. For example, sensor 6 performed quite well in 

case 1, 2, 4 and 6; however, this is not the case for case 3 and 5. By calculating 

an averaged ‘appearance’, we now know that the chance of sensor 6 being 

selected in the optimal sensor subset is quite low (~60%). On the other hand, 

sensor 19 approaches zero in case 3 and 5. But in Figure 5-3 (d) it can be seen 

that sensor 19 is not the worst one. To summarise Figure 5-3, by calculating 

the appearance percentage of each sensor, we smooth out the curve formed 

from a single GNMM implementation, and thus minimize the randomness 

associated with our GA and MLP. 

Figure 5-3 (d) also indicates that the best sensors are not quite distinguishable. 

However, a line can still be drawn to select the most important ones. By 

drawing a line at appearance percentage = 95%, we identified 6 sensors, which 
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(d) 

Figure 5-3: Appearance of each sensor in Data V for a single case ((a), (b) and 
(c)) and the mean appearance for all cases (d) 

are illustrated by solid black dots in Figure 5-3 (d). These sensors and their 

mean appearance percentage are: 1 (96%), 8 (97%), 21 (97%), 23 (96%), 26 

(97%) and 29 (96%). Reviewing the STDs of this sensor array, where sensor 8, 

23, 24 and 32 are considerably higher than the others, it seems reasonable 

that some sensors (8 & 23) which contain the most diverse data were included 

in this optimal subset. 
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(b) 

 

(c) 

 

(d) 

Figure 5-4: Comparisons of the RMSE for the last 50 generations for each case 
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Figure 5-4 provides comparisons of the RMSE for the last 50 generations for 

each case. These comparisons can help us understand GNMM’s optimization 

process. Given that the other configurations are the same and only training 

epochs for the MLP classifier vary, which is the case illustrated by Figure 5-4 (a), 

(b) and (c), it is evident that larger number of epochs generally produce 

smaller values and variation of the optimization error (see Table 5-1). On the 

other hand, if the epochs are the same and the generations are different, 

larger generations normally yield lower error as in Figure 5-4 (d). However, the 

most outstanding feature in Figure 5-4 is the fact that later generations do not 

necessarily generate better performance. This finding, from another point of 

view, validates the importance of the mean appearance percentage. 

In GNMM’s MLP training stage, all of Data V were randomly divided into two 

subsets: one for training and one for validation. As a result, GNMM achieved 

100% accuracy for both subsets. In order to test GNMM’s training results, the 

data were again randomly divided into three equal subsets: one for training, 

one for testing, and one for validation. Once again, GNMM achieved 100% 

classification rate in recognizing the training and validation subsets. For the 

test set, an accuracy of 93% was achieved. 

The optimal subset selected by GNMM (1, 8, 21, 23, 26, 29) is different 

compared with results obtained by (Boilot, Hines et al. 2002; Gardner, Boilot et 

al. 2005) (i.e. 8, 11, 15, 23, 31, 32), who applied the so-called V-integer GA 
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using PNN classification performance as the fitness function, as mentioned in 

Section 5.3 Intelligent System Techniques Applied to MDF Problems. However, 

in their work, there is an absence of a mechanism that minimizes the GA’s 

randomness. As we already know from Figure 5-3 that a single run of a GA may 

not be representative of its overall performance, it is therefore necessary to 

run GA several times. Furthermore, a 100% and 93% classification rate 

compares favourably with the results from the previous work (90.6%) using 

the above six-sensor subset (i.e. 8, 11, 15, 23, 31, 32). 

5.6 Summary 

Recent advances in the field of ENs have led to new developments in sensor 

design, feature extraction (pre-processing), and data processing techniques. As 

a result, the user of EN systems is provided with an increased amount of 

information for the discrimination of odours using multi-sensor arrays. The 

dataset used in this chapter has previously been explored by other authors 

(Boilot, Hines et al. 2002; Gardner, Boilot et al. 2005). The number of sensors 

selected (i.e. 6) was deliberately made the same as those that have appeared 

in the literature. By comparing the results generated by GNMM to those 

presented in the literature, the effectiveness of GNMM is demonstrated. 

GA researchers often report statistics, such as the best fitness found in a run 

and the generation at which the individual with that best fitness was 

discovered, averaged over many different runs of the GA on the same problem 
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(Mitchell 1996). The root cause of this is the random nature built-in with GA, 

which also holds true in the case of GNMM where averaging plays a vital role. 

The current chapter analysed the averaging effect of GNMM by looking at the 

GA implementation details. 

It was found that the averaging performed in GNMM minimizes the 

randomness associated with a particular GA run and the evaluation of the 

fitness value. Furthermore, it also ensures that input variables are eventually 

evaluated in terms of possibility rather than, for example, a spectacular 

performance obtained in an extreme case.  
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Chapter 6 Classification of the Pima Indians 

Diabetes Database 

6.1 Introduction 

In previous application chapters, we have benchmarked GNMM’s effectiveness 

by comparing its prediction/classification results with those presented in the 

literature using the same dataset. For example, Chapter 3 utilizes prediction 

done by Tayfur and Singh (2005) based on Data II. Chapter 4 uses classification 

results obtained by Lal, Hinterberger et al. (2005) based on Data III. While in 

Chapter 5 GNMM results were compared against work done by Boilot, Hines et 

al. (2002) on Data V. In the current chapter, studies will be conducted to 

evaluate and compare the results obtained using GNMM with several widely 

used IS techniques including ANFIS, EFuNN, Fuzzy ARTMAP, and CGP, the aim 

being to further investigate GNMM’s features before any conclusions are 

drawn in the final chapter (i.e. Chapter 7). 

Furthermore, although GA parameter range was briefly discussed in Section 

2.3.1.2 Parameters, it remains unclear as to whether different parameter 
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settings will result in different input variable selection results. The current 

chapter will try to address this question using a widely studied dataset. 

6.2 Dataset 

The Pima Indian Diabetes database, i.e. Data VI, obtained from UC machine 

learning repository11 is owned by the National Institute of Diabetes and 

Digestive and Kidney Diseases (Smith, Everhart et al. 1988). It contains 768 

instances, 8 input attributes and 1 target, which represents whether the data 

shows signs of diabetes according to World Health Organization criteria (i.e., if 

the 2 hour post-load plasma glucose was at least 200 mg/dl found in any 

survey examination or during routine medical care (Lin and Soo 1997)). 

Attributes in Data VI are the number of times pregnant, plasma glucose 

concentration, diastolic blood pressure (mm Hg), triceps skin fold thickness 

(mm), 2-hour serum insulin (mu U/ml), body mass index (kg/m2), diabetes  

pedigree function, and age denoted by Attr1 to Attr8 respectively. 268 

instances of the data are positive, which is 34.9% of the database. There is no 

missing value instance. Some statistics of Data VI are shown in Table 6-1. 

Table 6-1: Data VI statistics 

 
Attr1 Attr2 Attr3 Attr4 Attr5 Attr6 Attr7 Attr8 

Max 17 199 122 99 846 67.1 2.42 81 

Min 0 0 0 0 0 0 0.078 21 

Avg 3.85 120.89 69.11 20.54 79.80 32.00 0.47 33.24 

                                                        
11 Machine Learning Repository, UC Irvine, http://archive.ics.uci.edu/ml/index.html. 
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Data VI has been widely investigated previously in the literature (Smith, 

Everhart et al. 1988; Carpenter and Tan 1995; Lin and Soo 1997; Eggermont, 

Kok et al. 2004; Kahramanli and Allahverdi 2008), thus it is used to make 

comparisons in the current chapter. For example, Smith, Everhart et al. (1988) 

have applied ADAP, a feedforward neural network model, to this dataset using 

576 training data and 192 testing data and achieved 76% accuracy. Eggermont, 

Kok et al. (Eggermont, Kok et al. 2004) achieved about 26% misclassification 

using GPs. In the recent work done by Kahramanli and Allahverdi (2008) a 

hybrid neural network that includes ANN and fuzzy neural network (FNN) was 

developed and they achieved an accuracy of 84.24%. 

6.3 GNMM Results 

First of all, an MLP was trained using Data VI with all available attributes using 

the LM algorithm. As a result, within 23 epochs it achieved an RMSE of 0.37 

with an accuracy of 79.95%. Applying GNMM to Data VI, the four most 

significant attributes were found – Attr2, 6, 7, and 8 have the highest 

appearance percentage, as shown in Figure 6-1. Training the subset formed by 

these four attributes (denoted by Data VIgnmm) and the classification target, 

with an MLP with four hidden neurons we achieved a classification RMSE of 

0.38 with an accuracy of 79.30%. Hence by using 4 attributes out of 8 we 

achieved a similar accuracy. This implies that the model was successfully 

trained to achieve the PR tasks. 
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Figure 6-1: Appearance percentage for each attribute in Data VI 

Table 6-2: 10 most significant rules fired for Data VI 

No. Data VIt Data VIs 

1441 114 17 

4141 64 8 

2441 44 6 

3441 35 1 

4441 33 0 

1411 27 3 

4241 25 2 

1421 24 2 

4341 22 2 

1431 17 5 

 

The 10 most significant rules (out of a total of 75) extracted from Data VI are 

shown in Table 6-2, in which Data VIt stands for the training subset, and Data 

VIs denotes the validation subset. From Table 6-2 it is evident that the 

validation set is representative – while the most significant rule for Data VIt is 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

A
p
p
e
a
ra

n
c
e
 (

%
)

Attributes



Chapter 6 Classification of the Pima Indians Diabetes Database 186 

 

rule No.1441, the same is true for Data VIt. This means that in general most 

data samples reside within the sub-spaces represented by this rule and the 

number gradually decreases as data sample move further away from it. In this 

way, GNMM not only determines the number of rules associated with each 

data sample, but also determines the importance of the sub-spaces and the 

distribution of data samples. 

6.4 Other Hybrid IS DM Techniques 

6.4.1 ANFIS 

Applying ANFIS to Data VI (all 8 attributes used), with the default grid 

partitioning of the input space (Leondes 1999; Karray and De Silva 2004), the 

system soon ends up with the problem of the curse of dimensionality, as it 

produces as many as 256 (i.e. 28) rules when two MFs are used for each input, 

which is clearly an unacceptable number of rule permutations. However, if the 

ANFIS structure is generated using FCM clustering, which considerably reduces 

the number of rules (4 vs 256), ANFIS did achieve a good classification as will 

be shown in the next paragraph. 

Figure 6-2 shows the ANFIS structure, in which case there are four 

membership functions for each input attribute and a total of four rule nodes. 

Within 100 epochs, the RMSE was reduced to 0.42 with a classification 

accuracy of 56.64%. The target/prediction class labels and prediction error for 

each sample are shown in Figure 6-3. From Figure 6-3 it is evident that the  
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Figure 6-2: Structure of ANFIS generated for Data VI 

 

Figure 6-3: Target/predicted class values and ANFIS prediction error for Data VI 
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error distribution is quite random, which implies that a first-order Sugeno-type 

FIS may not be suitable for this problem. Compared with the GNMM results, 

this error is slightly higher (0.42 vs 0.38). However, ANFIS converges much 

faster, due to its hybrid learning and the ability to construct reasonably good 

input MFs (Ozkan 2006). 

The rule viewer results from ANFIS are shown in Figure 6-4. A total of four 

rules are extracted from the system. However, each of these four rules has an 

antecedent consisting of 8 parts (i.e. 8 attributes). In terms of interpretability, 

this is not easily interpretable. Also note that the rule antecedent and 

consequent parts remain unchanged throughout training, as shown in Figure 

6-5. It is also evident that no membership degrees are displayed. For the 

consequent part, each rule represents a single MF (i.e. the number of rules is 

equal to the number of output MFs) with the same unit weights, there is no 

rule sharing in the ANFIS system. Thus, the ANFIS training adjusts parameters 

such as MFs and network weights instead of manipulating rules and network 

structures as in some other systems such as EFuNN. 

The MFs associated with Attr5 are shown in Figure 6-6, and the rule surface 

formed by the first two attributes is shown in Figure 6-7. From Figure 6-6 and 

Figure 6-7 it is clear that the concept representation learned by ANFIS is easier 

to understand (Boilot, Hines et al. 2000). This can be seen from the fact that 

inputs to the ANFIS rule space are attribute outputs; whereas inputs to GNMM  
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Figure 6-4: ANFIS rule viewer applied to Data VI 

 

Figure 6-5: Rules extracted from the ANFIS system for Data VI 
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Figure 6-6: Membership functions for Attri5 

 

Figure 6-7: Rules surface the ANFIS system for Data VI 
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are values to first-layer neurons. However, due to its fuzzy nature, ANFIS does 

not provide an insight into the data distribution and rule importance, as each 

input belongs to different sets to different degrees. On the other hand, GNMM 

gives an idea of the importance of each rule by determining data samples that  

fall into the rule space. 

Furthermore, ANFIS has a fixed structure that cannot adapt to the data in hand, 

therefore it has limited abilities for incremental, online learning (Kasabov 

2007). Whereas in GNMM, the ANN structure can easily be adopted to take 

additional inputs. 

6.4.2 EFuNN 

Applying EFuNN to Data VI the system achieved an RMSE of 0.51, as depicted 

in Figure 6-8. In addition, the system produces 453 rules, each of which has 8 

antecedent parts, as depicted in Figure 6-9. It is evident that too many rules 

affect the interpretability of the system.  

The results show that the EFuNN rules are quite different from the ANFIS rules 

as shown in Figure 6-5. As opposed to the case in ANFIS where simple grid 

partitioning is applied and where training is performed mainly to adjust MF 

parameter, in EFuNN the aim of training is to find connection nodes that 

associate fuzzy inputs and outputs. Thus, EFuNN rules are given in the form of 

membership degrees that each input/output belongs to. Take rule No. 453,  
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Figure 6-8: Target and EFuNN prediction class values for Data VI 

 

Figure 6-9: Rules extracted from the EFuNN system for Data VI 
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Figure 6-10: EFuNN MFs for the first two attributes of Data VI 

which is highlighted in Figure 6-9, for an example. Basically it states that if 

input1 belongs to its 1st/2nd/3rd MF to a degree of 0.374/0.626/0.000 

respectively etc., then the fuzzy output is [0.909 0.091 0]. Based on these fuzzy 

output values, aggregations can be performed to produce predicted class 

values. 

Figure 6-10 shows the MFs used for the first two inputs. Another popular 

choice for input MFs are Gaussian functions. As these MFs do not change as 

iterations proceed, choices have to be made before training starts. However, 

this highlights a potentially important disadvantage of EFuNN, i.e. the 

determination of the network parameters. There are many parameters in 

EFuNN such as number and type of MF for each input variable, sensitivity 

threshold, error threshold and the learning rates etc (see Figure 6-8). Even 

though a trial and error approach is practical, when the problem becomes 

more complicated (large numbers of input variables) determining the optimal 

parameters may be computationally expensive (Abraham and Nath 2001). 
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6.4.3 Fuzzy ARTMAP 

Applying Fuzzy ARTMAP to Data VI, the system achieved an RMSE of 0.48 with 

an accuracy of 76.82% using 38 committed coding nodes. The 

target/prediction class values and the prediction error are depicted in Figure 

6-11. From Figure 6-11 it is clear that unlike in previous cases where the 

predicted values can be non-integers, in the case of Fuzzy ARTMAP all 

predicted values are integers. Thus although for most data samples the system 

correctly performs the classification, a few incorrectly classified samples 

results in a relatively large RMSE error. 

Compared with GNMM, the Fuzzy ARTMAP network has the advantage of 

being fast and requiring no fine tuning of parameters. It also retains all the 

information that it has been trained for and does not suffer from temporal  

 

Figure 6-11: Target/predicted class values and Fuzzy ARTMAP prediction error 
for Data VI 
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instability during on-line training (Mahadevan and Raghavendra 1997). The 

drawback of Fuzzy ARTMAP is that it is only a predictor and not a generalizer 

(e.g. it does not provide non-integer values for Data VI); whereas GNMM can 

be a universal modeller. Another disadvantage of Fuzzy ARTMAP is that it is 

very sensitive to the order of presentation of the training data. It is also 

extremely sensitive to the selection of the vigilance parameter, which controls 

the size of the hyper-box, and finding the optimal value for the vigilance 

parameters can be quite challenging (Vilakazi and Marwala 2009). 

In terms of interpretability, in the original work done by Carpenter, Grossberg 

et al. (1992) Fuzzy ARTMAP does not extract rules form the trained system. In 

successive research different authors have proposed methods to extract rules 

from trained Fuzzy ARTMAP (Carpenter and Tan 1995; Andres-Andres, Gomez-

Sanchez et al. 2005; Tian, Liu et al. 2006), most of which rely on investigating 

clusters formed by committed nodes. However, the dilemma is that 

interpretability of Fuzzy ARTMAP increases with fewer committed nodes; 

whereas the system performance error tends to grow as the number of 

committed nodes decreases (Connolly, Granger et al. 2008; Granger, Connolly 

et al. 2008). 

6.4.4 CGP 

Applying CGP to Data VI, after running the programme five times the best 

results were obtained using setting depicted in Figure 6-12. The system 
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achieved a classification accuracy of 61.98%. However, the system produced as 

many as 396 ‘infinity’ prediction values (out of 768), as a result of zero 

dividend, as opposed to the target value ‘1’. This makes the calculation of 

RMSE impossible. 

 

Figure 6-12: CGP settings and simulation results for Data VI 

 

Figure 6-13: Arithmetic rules extracted from CGP for Data VI 
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Arithmetic rules extracted from CGP are shown in Figure 6-13. Since 15 nodes 

were used with the level of connections being 14 (in Figure 6-12), Figure 6-13 

shows 15 arithmetic expressions. However, not all nodes were used to 

calculate the final results e.g. node 12. Furthermore, not all input attributes 

were used to calculate the final results – as shown in Figure 6-13, only 

attributes 2, 3, 4, 6, 7, and 8 were used. 

Compared with GNMM, CGP achieved an automatic input variable deduction 

without an explicit input selection step. This was realized by evolving different 

input variables combined with various arithmetic operators. Furthermore, due 

to its GP nature, rule extraction from the CGP system is straight forward. 

However, one of the main disadvantages of CGP, which also holds true for any 

EA based techniques, is that it can be very computer intensive, often requiring 

extensive computing power (Hughes and Ruprai 1999). Furthermore, functions 

that can be constructed by the algorithm need to be selected carefully 

(Schmutter 2002). One the one hand, the number of possible functions is 

immense; on the other hand, fewer functions will increase the efficiency of the 

algorithm. 

A summary of classification results is given in Table 6-3, where comparisons 

are made based on the best result for each individual technique. Instead of 

computing average performance over several runs as in previous chapters, in 

the current chapter the best performance is used. This is because rules derived  



Chapter 6 Classification of the Pima Indians Diabetes Database 198 

 

Table 6-3: Comparison of classification results for Data VI. Results for GNMM, 
ANFIS, Fuzzy ARTMAP, and CGP are the best results out of 5 independent runs. 
FFuNN’s results do not vary with the same settings, due to its way of random 

number generation 

Method Accuracy RMSE Number of rules 

Various GPs in Eggermont, Kok et al. (2004) 74-72% n/a n/a 

Hybrid ANN in Kahramanli and Allahverdi 

(2008) 
84.24% n/a 

No rule 

extraction 

GNMM 79.30% 0.38 75 

ANFIS 56.64% 0.42 4 

EFuNN 49.76% 0.51 453 

Fuzzy ARTMAP 76.82% 0.48 n/a 

CGP 61.98% n/a 1 

 

from the training are directly associated with training results. From this point 

of view, the number of rules and their antecedents/consequents are fixed 

once the training is done. From a practical viewpoint, only the best training 

results will be implemented in an engineering practice. Hence, the best results 

are a critical factor in determining the performance of different techniques. 

Compared with classifiers such as Fuzzy ARTMAP, which produces discrete 

output class values, GNMM produces continuous outputs which results in a 

smaller RMSE. In contrast to fuzzy-space-mapping approaches such as EFuNN, 

GNMM has an input selection step which results in much fewer numbers of 

rules. Furthermore, GNMM’s MLP basis ensures that it achieves higher 

classification accuracy than GP methods and first-order FISs. Overall, although 
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there exists methods that can achieve higher classification rate (e.g. methods 

in Kahramanli and Allahverdi (2008)), it is evident that GNMM achieved a 

balance between classification accuracy and reduction of number of rules 

generated – GA-based input deduction allows the elimination of input 

variables, and MLP modelling achieved a high classification rate.  

6.5 GA Parameter 

Section 2.3.1.2 Parameters has briefly discussed the GA parameter selection 

problem by introducing a good range of parameters proposed in the literature 

(Schaffer, Caruana et al. 1989; Haupt and Haupt 2004). In previous chapters of 

this thesis although different GA parameters have been used for different 

datasets, most falls into that range. In addition, these parameter settings 

follow certain rules, e.g. larger populations and generations for datasets with 

more input variables. However, one might still ask: 

 Are these optimal parameter settings for the corresponding problem? 

 Will the GNMM input selection results be different if another set of 

parameters were used? 

The following sections explore the answers to these questions in the context 

of Data VI. 
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6.5.1 Interactions among GA Parameters 

Over the years researchers have been trying to understand the mechanics of 

GA parameter interactions by using various techniques (Deb and Agrawal 

1999). However, it still remains an open question as to whether there exists an 

optimal set of parameters for GA in general (De Jong 2007). The reason for this 

is two-fold: on the one hand conventional genetic operators can have various 

forms and control parameters and recent development in GA theory have also 

introduced many more parameters to be set (Fogel, Bäck et al. 2000; De Jong 

2005); on the other hand achieving the exploration/exploitation balance 

involves adjusting these parameters simultaneously and is limited to the 

problem being dealt with (Maturana and Saubion 2008). 

Techniques for assigning values to parameters can be classified according to 

the taxonomy proposed by Eiben, Michalewicz et al. (2007). In general, they 

are classified into two categories: one is parameter tuning, where parameters 

are fixed before the run; the other is parameter control, where parameters are 

modified during the run. Regardless of categories these techniques belong to, 

the interaction among GA parameters follow some general rules (Deb and 

Agrawal 1999; De Jong 2006; Lobo, Lima et al. 2007): 

 GA parameters interact with each other so as to affect the behaviour of 

the system in complex, nonlinear ways. 

 For a given problem the selected parameter values are not necessarily 
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optimal, even if the effort made to set them was significant. 

 GAs with both crossover and mutation operators perform better than 

only crossover or mutation based GAs for simple problems. 

 Large mutation steps can be good in the early generations, helping the 

exploration of the search space, and small mutation steps might be 

needed in the later generations to help fine-tune the suboptimal 

chromosomes. 

GNMM incorporates some techniques that correspond to these rules, such as 

the adaptive mutation rate as detailed in Figure 2-8 and including both 

selection and mutation operators. For a detailed discussion about different GA 

parameter settings, please refer to De Jong (2006) and Lobo, Lima et al. (2007). 

6.5.2 Determine the Parameter Set 

The question of whether a particular set of GA parameter is optimal is largely 

dependent on the aim of GA optimization results. Depending on the nature of 

the problem being investigated, some researchers used the best fitness value 

as the criteria for evaluating GA parameters (e.g. in Costa, MacIel et al. (2005) 

and Cakir, Butun et al. (2006)); while some others also combined this with the 

time when the best solution was found (Vajda, Eiben et al. 2008). In GNMM, 

however, using the best fitness value is not ideal because for the winning 

chromosome it may have different fitness values due to MLP’s randomness. 

For the same reason, the time when the best chromosome was found cannot 
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be used either. In GNMM the use of GA is to accumulate the appearance of 

each input variable in the winning chromosome so that the possibility of that 

variable appearing in the finial training can be determined. Statistical property 

that best describe GA’s behaviour with this regard is its mean fitness value 

over the entire generation. Therefore, this is used as the criteria to evaluate 

the performance of different GA parameters. 

When studying the effect of different GA parameters, one could try all 

different combinations systematically. However, this approach is practically 

impossible as GA parameters are not independent. A frequently used method 

is to adjust one variable while keeping all others constant (Schaffer, Caruana et 

al. 1989; Sun, Hines et al. 2005). Therefore, setting initial range for each 

parameter is vitally important. Setting step sizes for each parameter also 

needs careful considerations. On the one hand, large step size may result in 

selected parameters being very coarse; on the other hand, small step size may 

result in the test being very time-consuming. For example, Schaffer, Caruana 

et al. (1989) spent over a year of CPU time systematically testing a wide range 

of parameter combinations. The approach adopted here to determine GA 

parameter ranges and step sizes will follow those in Schaffer, Caruana et al. 

(1989) and Sun, Hines et al. (2005). 
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6.5.3 Ranges and Step Sizes 

Sun, Hines et al. (2005) have studied initial parameter values suggested in 

Goldberg (1989), Michael Johnson and Rahmat-Samii (1997), and Man, Tang et 

al. (1999) and given a good range of initial values as in Table 6-4. The 

parameter set suggested by Schaffer, Caruana et al. (1989) (i.e. Np = 20 to 30, 

pc = 0.75 to 0.95, pm = 0.005 to 0.01 in Section 2.3.1.2 Parameters), which is 

also the set being used in most case studies, falls into this range. Therefore, 

the following initial values will be used in our studies: population size 25, 

generations 100, crossover probability 0.6, and mutation probability 0.01, as in 

Table 6-4. 

For the step sizes, Sun, Hines et al. (2005) used 25 for population size, 0.1 for 

crossover probability, these values seem reasonable and are thus adopted in 

the current study. For the mutation rate, GNMM uses adaptive mutation rate 

as detailed in Figure 2-8. However, in order to make fair comparisons, these  

 

Table 6-4: GA initial parameter range and step size  

 Population 

size 

Number of 

generations 

Crossover 

probability 

Mutation 

probability 

Suggested in Sun, 

Hines et al. (2005) 
25 – 100 100 – 500 0.6 – 0.9 0.01 – 0.1 

Initial value 25 100 0.6 0.01 

Step size 25  0.1 0.02 
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values are kept constant in the current study with an incremental step of 0.02. 

Special attention is paid to the number of generations. Due to the fact that the 

performance criteria used in the current study is the mean fitness value over 

the entire generation, it is therefore expected that GA runs with larger 

generation tend to have smaller mean fitness value (lower MSE). Hence, 

during the first stage the number of generations is set to be 100, and the 

effect of the number of generations will be studied after optimal values for the 

rest parameters are found. The step sizes are also listed in Table 6-4. 

6.5.4 Results  

Figure 6-14 shows the fitness values over 100 generations for 4 different 

population sizes (i.e. 25, 50, 75, and 100). Note that in Figure 6-14 fitness 

means the average fitness value over the entire generation, as mentioned in 

Section 6.5.2 Determine the Parameter Set. It is clear that although the curve 

for different GA runs varies slightly, the overall trend is that the fitness value 

decrease dramatically during the first 10 generations and then oscillates 

around 0.62 as the GA evolves. Furthermore, the best fitness values achieved 

by different GA runs are very close – there is no significant difference between 

the curves after generation 10. This means that in the case of Data VI GAs have 

found similar best fitness values and hence achieved similar performance. It 

also implies that the population size does not affect the simulation results 

much as long as the GA runs over some generations. However, for population 

size 50, the curve is lower and more stable than the rest, hence 50 is selected 

to be the optimal population size. 
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Figure 6-14: Fitness values for 4 different population sizes 

 

Figure 6-15: Fitness values for 4 different crossover probabilities 
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Figure 6-16: Fitness values for 5 different mutation probabilities  

 

Figure 6-17: Fitness value decreases as generation increases 
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GA performance for different crossover/mutation probabilities are shown in 

Figure 6-15 and Figure 6-16 respectively. Similar to the case of population, it is 

evident that in both figures the fitness value decreases significantly in the first 

generations and then oscillates around 0.62 as the GA evolves. In Figure 6-15 

crossover rate 0.9 produces the lowest fitness value and hence is used as the 

optimal value. For different mutation probabilities in Figure 6-16, the 

oscillation is more obvious. However, mutation rate 0.05 appears to produce 

the lowest RMSE and hence is used as the optimal value. 

Generally speaking, increasing the generation number improves the GAs’ 

performance. This can be seen in Figure 6-17, which depicts the decrease of 

fitness value as generation increases with other parameters being set. 

According to Figure 6-17, it can be seen that before the point around 30th 

generation, the fitness value drops sharply; and after the 30th generation, 

although the general trend is that the fitness value decreases gradually it 

oscillates too. Figure 6-17 illustrates that if the generation number exceeds 30, 

it will not have any substantial impact on the performance of the GA. 

Therefore, 30 is chosen as the optimal generation number.  

Therefore, it is decided that the optimal parameter set for Data VI are 50 for 

population size, 30 for generation size, 0.9 for crossover probability, and 0.05 

for mutation probability, which are also summarised in Table 6-5. Comparing 

with the initial range in Table 6-4, it is evident that the optimal set is mainly in 
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the middle of the original range. 

6.5.5 Discussions  

Once the optimal parameter set is determined, the next step is to investigate 

the averaging effect and whether different parameter sets leads to different 

input variable selection results. The appearance percentages calculated from 

GA runs that were used to determine the optimal parameter set in the 

previous section are shown in Figure 6-18. From these figures it is quite  

Table 6-5: Optimal GA parameters for Data VI  

Population 

Size 

Number of 

Generations 

Crossover 

Probability 

Mutation 

Probability 

50 30  0.9 0.05 

 

 

Figure 6-18: Appearance percentage calculated from GAs that were used to 
determine the optimal population number (a), crossover probability (b), 

mutation probability (c), and generation number (d) 

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8

A
p
p
e
a
ra

n
c
e
 (

%
)

Attributes

(a)

(b)

(c)

(d)



Chapter 6 Classification of the Pima Indians Diabetes Database 209 

 

obvious that although the exact appearance percentage number for each 

attribute varies for different cases, they all present a similar patter, i.e. Attr2, 

Attr6, Attr7, and Attr8 are the most often appearing attributes. These variable 

selection results also confirm our previous results presented in Section 6.3 

GNMM Results. 

To conclude the current section, the optimal set of GA operators for Data VI 

was determined experimentally. However, even if the optimal parameter set is 

being used, the variable selection results are the same as in cases where GA 

uses non-optimal parameter sets. It is worth noticing that in GNMM GAs are 

used to accumulate the possibility of a particular input variable to be in the 

variable combination that produces the minimum error. Therefore, the 

emphasis is to allow many possible variable combinations to evaluate and 

evolve and then a possibility can be formed. As long as different input variable 

combinations are evolving based on different initial random conditions (i.e. 

different GA runs and different initial MLP settings), the effect of GA 

parameters can be minimized in GNMM’s input selection. 

6.6 Summary 

In the current chapter, the Pima Indian Diabetes database was used to 

compare features of GNMM with some other IS DM techniques. A summary of 

classification results is given in Table 6-3 and feature comparisons of GNMM 

and these techniques are shown in Table 6-6. The purposes of the current  
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Table 6-6: Feature comparison of GNMM with other IS DM techniques 

 Core technique 
Structure Training 

Rule extraction  
Input Output Method Cross-validation 

GNMM MLP 
GA optimization 

needed 
No limits 

ICA weights initialization 

and LM 
Yes By dividing input space 

ANFIS Sugeno-type FIS Fixed Fixed to 1* 
LS estimator and the 

gradient descent 
Yes Fuzzy rules, no rule sharing 

EFuNN Mamdani-type FIS 
Can evolve over 

iterations 

Can evolve over 

iterations 

Hybrid unsupervised and 

supervised learning 
No 

Fuzzy rules, increase dramatically 

when more data presented 

Fuzzy 

ARTMAP 
ART Fuzzy inputs No limits 

Incremental 

supervised 
Yes 

Rule extraction based on 

committed nodes 

CGP GP Fixed No limits 
Darwinian evolution 

theory 
No 

Arithmetic operators from a pre-

defined set 

*later research have shown systems based on ANFIS that have multiple outputs, e.g. in Guney and Sarikaya (2008). 
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chapter are to summarise features of GNMM in the context of hybrid IS DM 

techniques. Although a comprehensive study would be required to benchmark 

the performance of GNMM against others, the current study will suffice to 

review its outstanding characteristics. From Table 6-6 it is evident that 

compared with FIS based systems such as ANFIS, which has a fixed number of 

inputs/outputs, GNMM’s ANN nature make it fault-tolerant and can have 

variable or missing inputs/outputs. Compared to other ANN based approaches 

e.g. EFuNN and Fuzzy ARTMAP, GNMM presents the advantage of producing 

fewer rules. One obvious drawback of GNMM is that it is very computationally 

expensive, which also holds true for the other EC technique in comparison i.e. 

the CGP. However, the merit of GNMM compared with CGP is that CGP does 

not have a way to cross-validate the training process. Hence it may suffer from 

the problem of over-fitting. 

In the current chapter, the influences of GA parameter settings in GNMM’s 

variable selection stage were also studied. We have identified the optimal GA 

parameter set for Data VI. However, it has been shown that the influences of 

GA parameter can be minimized as long as different input variable 

combinations can be tested and evolve towards a better fitness value  
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Chapter 7 Conclusions and Future Work 

This chapter summarises the main findings of this research and presents the 

conclusions that have been formed. It also includes suggestions for further 

work. 

7.1 Results Overview 

7.1.1 GNMM Steps 

The GNMM method consists of three main steps: (1) A GA-based input variable 

selection; (2) MLP-based input/output mapping/classification; and (3) 

mathematical programming based regression rule extraction. The functionality 

of GNMM can be summarized as follows: 

(1) Utilizing GAs to optimize input variables, this simplifies the MLP structure 

in GNMM, and makes the training process more efficient. The evaluation 

of the fitness for each input variable combination is determined via the 

training error (RMSE) when such an input combination is used in an MLP 

to perform the classification/prediction task. Since weights and thresholds 

for the MLP are randomly generated, GAs have to be run several times 
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until a clear distinction is evident between input variables as far as 

possible. 

(2) The input variables found by the GA in conjunction with the associated 

targets are then used to develop an MLP. As in the previous step, the 

training has to be repeated several times in order to get satisfactory 

results due to its ‘random’ starting point. However, the learning rate can 

be set to a relatively large value in order to accelerate the training process. 

(3) Extracting regression rules from the trained MLP neural network, which 

makes the training results much more transferable. Since the original data 

have been mapped into a specific range in pre-processing before the MLP 

is trained, rules extracted from the trained MLP have to reflect this 

feature (i.e. reversely map the rule results into normal ranges). 

7.1.2 Case Study Results  

A total of six datasets were used in the case study part of the thesis to 

illustrate the implementation and demonstrate the usefulness of GNMM. A 

summary of these case study data and results are shown in Table 7-1. These 

datasets belong to two categories i.e. environmental and medical, and are 

concerned with prediction and classification. 

Data I & II are concerned with the prediction of longitudinal dispersion 

coefficients, which was dealt with in Chapter 3. Data III and IV are concerned 
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Table 7-1: A summary of case study data and results  

 Dataset GNMM results Benchmarking literature 

 Nature 
Dimension 

(attribute × sample) 

Input 

selection 

Best results (testing 

data) 

Rule 

extraction 
Methods 

Results 

(classification rate) 

En
vi

ro
n

m
en

ta
l 

d
at

a 

I 
Longitudinal dispersion 

coefficient prediction 
49 × 196 2 out of 49 72% (R2) 11 rules N/A N/A 

II 
Longitudinal dispersion 

coefficient prediction 
8 × 71 3 out of 8 89% (R2) 13 rules 

MLP (Tayfur and Singh 

2005) 
70% (R2) 

M
ed

ic
al

 d
at

a 

III ECoG classification 64 × 834000 10 out of 64 95.32% 431 rules 
RFE and SVM (Lal, 

Hinterberger et al. 2005) 
74.3% 

IV EEG classification 32 × 428360 12 out of 32 80% 516 rules N/A N/A 

V 
Eye bacteria species 

classification 
32 × 180 6 out of 32 93% 87 rules 

Integer based GA (Boilot, 

Hines et al. 2002) 
90.6% 

VI Diabetes classification 8 × 268 4 out of 8 79.30% 75 rules 
ANFIS, EFuNN, Fuzzy 

ARTMAP, CGP 
See Table 6-3 
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with EEG classification problems and was discussed in Chapter 4. Chapter 5 

deals with EN sensed eye bacteria data. And finally Chapter 6 is concerned 

with a diabetes classification problem.  

Although GNMM was applied to all six data sets, the emphasis is different for 

different chapters. For example, the emphasis of Chapter 3 was to give a 

detailed illustration of how GNMM works; Chapter 4 shows how to deal with 

difficult classification problems; the aim of Chapter 5 was to illustrate the 

averaging effect of GNMM; and finally Chapter 6 was concerned with 

comparing GNMM with other IS DM techniques. Datasets obtained from 

published works (i.e. Data II & III) or public domains (i.e. Data VI) where 

previous results are present in the literature were also used to summarise 

GNMM’s features.  

7.1.3 Advantages/Disadvantages 

The idea of combining GAs with ANNs is not novel. What is novel about GNMM 

is that it also combines the mathematical programming based rule extraction 

as well as recent developments in the field such as ICA-based weight 

initialization. All these elements make GNMM an effective system that is 

capable of handling large amount of noisy data especially when the underlying 

relationships within the data are not fully understood. 

GNMM is distinct from other solely ANN-based methods by also incorporating 
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variable selection and rule extraction. It benefits from GA’s randomness – by 

setting different initial conditions the optimization starts from an arbitrary 

point in the search space. In this way each input variable accumulates its 

possibility to appear in the winning chromosome. The GA-based variable 

selection stage is capable of: 

 Filtering out irrelevant and noisy variables, improving the accuracy of the 

model. 

 Making the ANN structure less complex and easier to understand. 

 Reducing the computational complexity and memory requirements. 

Rule extraction is the attempt to overcome the ‘black box’ reputation that 

comes with ANNs. Such a process not only provides a facility that may help to 

explain the internal behaviour of an ANN, may help in understanding the 

underlying physical phenomena, but may also make the training results easily 

applicable/transferable. 

As opposed to the above analysis which looks into GNMM’s individual steps, as 

a closely integrated system GNMM has the merit that it needs little human 

interaction. With some predefined parameters, such as GA’s crossover 

probability and the shape of ANNs’ activation functions, GNMM is able to 

process raw data until some human-interpretable rules being extracted. This is 

an important feature in terms of practice as quite often users of a DM system 
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have little or no need to fully understand the internal components of such a 

system. 

However, based on the analysis and case study applications throughout the 

thesis, it is the opinion of the author that GNMM as an IS DM technique has 

disadvantages depending, for example, on the problem being solved. An 

obvious problem is that determining the parameter values for GA is always 

data-dependent. Although the general guidelines exist, for example, small 

population is to be combined with large generation. However, to what extend 

a population number is sufficiently small is still arguable.  

Furthermore, the GA optimization is based on iterations and hence very 

computationally expensive. The power of GAs (or stochastic 

optimization/randomized FS) will overtake that of non-random research only 

when the search space is large. However, as the name suggests, GAs have to 

be given enough time to ‘evolve’ their solutions to an optimal or sub-optimal. 

In case of small input space, GNMM may not be efficient in determining the 

optimal input subset of its MLP modelling. 

7.2 Future research directions 

In GNMM, rule extraction is based on the approximation of the hidden 

neurons’ hyperbolic tangent activation function. Such an approximation is 

derived through the numerical analysis of Sequential Quadratic Programming. 
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As in any approximation, there are always associated errors. Thus, methods 

that extract regression rules from ANN with higher accuracy are desirable. 

Since neural networks are low-level computational structures that perform 

well when dealing with raw data, while fuzzy logic deals with reasoning on a 

higher level, using linguistic information acquired from domain experts, rule 

extraction from such a hybrid neuro-fuzzy system would be easier and more 

accurate. In particular, for example the EFuNN proposed by Kasabov (2001) 

implements a strategy of dynamically growing and pruning the connectionist 

(i.e. ANN) architecture. Therefore, a system that integrates GNMM and EFuNN 

would offer a promising approach to data modelling and rule extraction. 

Moreover, GNMM as a data driven method relies heavily on the quality of the 

data. Typically, real-life data must not only be cleaned of errors and 

redundancy, but must also be organized in a fashion that makes sense in the 

context of the application. There exist problems in raw input data needed for 

knowledge acquisition, mainly due to uncertainty, vagueness, and 

incompleteness. While incompleteness arises due to missing or unknown data, 

uncertainty (or vagueness) can be caused by errors in physical measurements 

due to incorrect measuring devices or by a mixture of noisy and pure signals 

(Mitra and Acharya 2003). Thus, future works may also include applications of 

GNMM to some incomplete and highly noisy data. 
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Appendix A Data I – UK Environmental Agency 

Data 

A.1 PART I 

ID Cs Ds Ms Qs S L Dr 

SW_12 0 1 0 0 1.27E-05 1058 915.57 

SW_13 0 1.5 0 0 1.27E-05 1058 915.57 

SW_12 0 1.5 0 0 2.15E-05 1058 915.57 

SW_13 0 1.5 0 0 0.000118 1101.83 993 

SW_10 0 1.5 0 0 0.000154 1472.13 1282 

SW_11 0 2.2 0 0 0.000154 1472.13 1282 

SW_14 0 2.2 0 0 0.000154 1977.5 1506 

SW_02 0 2.2 0 0 0.000154 2127 1506 

SW_11 0 2.5 0 0 0.000176 2127 1506 

SW_14 0 3 0 0 0.000176 2186.24 1935.43 

SW_02 0 3.4 0 0 0.000179 2208.5 2005 

SW_14 0 3.4 0 0 0.000179 2208.5 2005 

SW_06 0 3.5 0 0 0.000179 2208.5 2017.8 

SW_18 0 3.5 0 0 0.000186 2412 2039.11 

SW_07 0 3.5 0 0 0.000197 2412 2039.11 

SW_21 0 3.5 0 0 0.000198 2969.12 2039.11 

SW_21 0 4 0 0 0.000198 2969.12 2060 

MID_04 0 4 0 0 0.000253 3016.57 2067 

MID_05 0 4 0 0 0.000269 3016.57 2067 

MID_06 0 4 0 0 0.000269 3230 2296.8 

MID_12 0 4 0 0 0.000349 3253 2296.8 

MID-01 0 4 0 0 0.000349 3287.56 2296.8 

MID-01 0 4 0 0 0.00041 3287.56 2331 

SW_22 0 4 0 0 0.00041 3343.2 2331 

MID_04 0 4 0 0 0.000426 3530.1 2612 

MID_05 0 4 0 0 0.000426 3538.7 2757 

MID_04 16 4 0 0 0.000426 3538.7 2757 

MID_06 34.5 4 0 0 0.000464 3538.7 2757 

MID_04 78.75 4 0 0 0.000464 3728.37 2770 

MID_05 92.6 4 0 0 0.000492 4034.28 2770 

MID_06 106 4 0 0 0.000508 4083.59 2907 

AN_13 106.25 4.4 0.183 0.0208 0.000512 4268.68 2907 

NE_47 106.25 4.5 0.211 0.0255 0.000512 4293.44 2920 

NE_59 106.25 4.5 0.296 0.0479 0.000512 4293.44 2946 



Appendix A Data I – UK Environmental Agency Data 226 

 

NE_63 113.25 4.5 0.76 0.074 0.000535 4293.44 2956.5 

NE_62 113.25 4.5 0.76 0.074 0.000535 4398 3015 

NE_32 113.25 4.5 1.091 0.127 0.000544 4591.85 3015 

NE_47 123.5 5 1.196 0.14 0.000544 4591.85 3477 

NE_59 132.75 5 1.359 0.163 0.000567 4650.52 3555.6 

NE_61 132.75 5 1.631 0.166 0.000606 4658 3555.6 

NE_47 149.4 5 1.631 0.166 0.000606 4658 3600 

NE_59 149.4 5.1 1.631 0.166 0.000618 4658 3602 

NE_61 153 5.1 1.736 0.171 0.000618 4658.4 3602 

NE_29 153 5.1 1.736 0.171 0.000618 4692 3617.23 

NE_30 158.5 6 1.736 0.171 0.000618 4692 3686.43 

NE_32 158.5 6 1.76 0.192 0.00068 4692 3728 

AN_12 189 6 2.048 0.192 0.000706 4738.6 3728 

AN_13 189 6 2.048 0.215 0.000706 4969 3817 

NE_42 191.7 6 2.049 0.215 0.000706 5093.44 3817 

NE_45 193.25 6 2.049 0.221 0.000719 5093.44 3817 

NE_58 193.25 6 2.103 0.221 0.000719 5093.44 3880.2 

NE_29 221 6.2 2.103 0.311 0.000761 5093.44 3930 

NE_30 262 6.5 2.868 0.342 0.000898 5319 3942.6 

NE_42 262 6.5 2.868 0.342 0.000904 5319 3942.6 

NE_45 269.25 6.5 2.917 0.347 0.000904 5596.46 4007 

NE_42 269.25 6.5 2.917 0.347 0.000904 5596.46 4007 

NE_45 269.25 7 4.335 0.463 0.001006 5596.46 4007 

NE_33 269.25 7 4.335 0.463 0.001094 5599 4007.4 

NE_33 269.25 7.5 6.076 0.725 0.001116 5599 4007.4 

NE_01 272 7.5 6.924 0.847 0.001116 5599 4007.4 

NE_02 282.25 7.5 6.924 0.879 0.001116 5738.34 4022.29 

NE_41 299.5 7.5 7.658 0.886 0.001125 5738.34 4196.75 

NE_49 299.5 7.5 7.679 0.886 0.001239 5747.8 4196.75 

NE_01 307.75 8.5 7.679 0.965 0.001319 5747.8 4196.75 

NE_07 338.5 8.5 7.679 0.965 0.001342 5931.38 4196.75 

NE_13 338.5 8.5 8.265 0.965 0.001342 5931.38 4271.67 

NE_03 338.5 9 8.265 1.134 0.001402 6124.27 4271.67 

NE_06 338.5 9.2 8.265 1.153 0.001481 6124.27 4271.67 

NE_12 338.5 9.2 8.295 1.179 0.001481 6184.28 4271.67 

NE_34 343 9.5 8.38 1.179 0.001505 6184.28 4271.67 

NE_50 343 9.5 8.38 1.197 0.001595 6184.28 4418.29 

NE_34 370 10 8.426 1.197 0.001692 6184.28 4465.7 

NE_35 370 10 9.553 1.197 0.001766 6184.28 4465.7 

NE_36 407.5 10 9.553 1.259 0.001766 6414.4 4465.7 

NE_37 407.5 10 9.553 1.259 0.001856 6468.39 4476.32 

NE_38 407.5 10 9.553 1.357 0.001856 6468.39 4476.32 

NE_39 407.5 10 9.553 1.393 0.001856 6497.3 4486.5 

NE_35 460 10 10.003 1.393 0.002264 6497.3 4504.4 

NE_36 485 10 10.003 1.393 0.002264 6497.3 4516.7 

NE_37 485 10 11.182 1.393 0.002264 6497.3 4688.2 

NE_38 485 10.1 11.182 1.393 0.002522 6960.6 4688.2 

NE_39 489.75 10.2 11.182 1.501 0.002534 6960.6 4688.2 

NE_09 489.75 10.5 11.182 1.501 0.002534 6960.6 4688.2 

NE_35 505.75 10.5 11.182 1.501 0.00261 6960.6 4755 

NE_36 505.75 10.5 11.218 1.501 0.00261 7005.7 4755 

NE_37 505.75 10.5 12.034 1.501 0.002749 7005.7 4910 
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NE_38 525.75 10.5 12.478 1.621 0.002749 7005.7 4910 

NE_31 525.75 11 12.478 1.621 0.002749 7074.8 4910 

NE_49 563.5 11 12.478 1.621 0.002749 7074.8 4980 

NE_49 617 11.25 12.478 1.621 0.002857 7093.8 4980 

NE_22a 658.5 11.25 13.754 1.686 0.002857 7313.7 5110.4 

NE_22a 676.5 12 16.487 1.927 0.003165 7586.5 5110.4 

NE_17 851.25 12 16.487 2.898 0.003396 7586.5 5110.4 

NE_19 898.25 12.5 16.487 3.086 0.003396 7596.8 5110.4 

NE_20 901.5 12.5 16.487 3.364 0.003396 7690.74 5118.4 

NE_21 913.25 12.5 16.546 3.364 0.003396 7690.74 5118.4 

NE_22a 913.25 13 16.546 3.364 0.003396 7690.74 5760 

NE_17 913.25 14.5 16.546 3.364 0.003647 7690.74 5760 

NE_20 925.75 14.7 18.284 3.409 0.003647 7690.74 5796.3 

NE_21 925.75 15 18.284 3.409 0.00365 7700 6027.87 

NE_17 1116 15 18.284 3.409 0.00365 7700 6027.87 

NE_20 1116 15 18.671 3.498 0.00365 8037.8 6027.87 

NE_21 1116 16 18.671 3.59 0.0038 8037.8 6027.87 

NE_08 1116 16.5 18.671 3.59 0.004031 8090.7 6027.87 

NE_40 1126.75 16.5 18.671 3.59 0.004031 8199.6 6205.4 

NE_17 1126.75 16.5 19.485 3.615 0.004031 8199.6 6315 

NE_19 1126.75 16.7 19.485 3.615 0.004031 8453.62 6376.4 

NE_20 1164.5 17.5 19.652 3.615 0.004031 8560 6376.4 

NE_21 1361.25 17.5 20.042 3.615 0.004146 9133.4 6454.6 

NE_08 1361.25 17.5 20.042 3.717 0.004146 9243.43 6560 

NE_08 1361.25 17.5 20.042 3.717 0.004209 9402.3 6635.11 

NE_22b 1417 17.5 20.077 3.722 0.004721 9627.2 6762.6 

NE_24 1417 17.5 20.11 3.787 0.004721 9627.2 6762.6 

NE_26 1417 19 20.11 4.117 0.004726 10017.4 6780 

NE_27 1417 19 20.37 4.337 0.004726 10255.6 6825.6 

NE_23 1879.5 19.25 20.502 4.337 0.004726 10255.6 6839.19 

NE_43 1879.5 19.5 20.663 4.337 0.00485 10255.6 6839.19 

NE_23 1908.75 20 22.002 4.38 0.005036 10518.4 6987.57 

NE_23 1944.25 20 24.165 4.38 0.006028 10525.16 7200 

NE_24 1944.25 20 39.57813 4.575 0.006281 10705.7 7200 

NE_26 1982.5 20 39.57813 4.575 0.00644 10967.35 7406.6 

NE_14 2135.25 22.5 39.691 4.866 0.007049 10967.35 8668.6 

NE_24 2179 28 44.159 4.977 0.007963 12516 8668.6 

NE_06 2480.5 28.5 44.159 8.079468 0.012405 12516 8700.6 

NE_12 2480.5 33 46.442 8.079468 0.013051 12886.68 8904.8 

NE_16 2501 34.5 46.86 8.111 0.013051 13777.2 9334.18 

NE_15 3314.75 41.5 49.547 9.473 0.024371 14697 12133.5 

 

A.2 PART II 

ID Ce De Me Qe Cg A Mg Qg I 
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SW_12 9.25 3.4 0 0 20 0.444 0 0.06 0.5 

SW_13 20.2 3.4 0 0 47.6 0.664 0 
0.07

4 
0.575 

SW_12 20.2 3.4 0 0 74.9 0.664 0 0.1 0.575 

SW_13 27.5 3.5 0 0 74.9 1.093 0 
0.10

6 
0.6 

SW_10 34 4.5 0 0 112.7 1.21 0 
0.10

6 
0.636 

SW_11 42.25 4.5 0 0 120 1.21 0 
0.10

6 
0.684 

SW_14 43 4.5 0 0 120 1.423 0 0.15 0.753 

SW_02 45.75 5.1 0 0 120 1.423 0 0.15 0.753 

SW_11 113.25 5.1 0 0 149.4 1.423 0 0.21 0.753 

SW_14 113.25 6 0 0 171.9 1.429 0 0.21 0.753 

SW_02 113.25 6 0 0 171.9 1.7 0 0.21 1.28 

SW_14 123.5 6.5 0 0 178.5 1.7 0 0.21 1.28 

SW_06 132.75 6.5 0 0 178.5 2.091 0 0.21 1.3 

SW_18 132.75 6.5 0 0 262 2.091 0 
0.23

1 
1.45 

SW_07 132.75 7 0 0 262 2.091 0 0.3 1.75 

SW_21 158.5 7.5 0 0 262 2.095 0 0.3 1.75 

SW_21 158.5 7.5 0 0 262 2.095 0 
0.31

1 
1.806 

MID_04 178 7.63 0 0 262 2.391 0 
0.31

1 
1.806 

MID_05 178 8 0 0 262 3.16 0.477 0.48 1.806 

MID_06 181.75 8.5 0 0 262 3.16 0.477 0.48 2.08 

MID_12 191.7 8.5 0 0 262 3.16 0.527 
0.49

8 
2.082 

MID-01 193.25 8.5 0 0 262 3.16 0.753 
0.56

4 
2.082 

MID-01 193.25 9.25 0 0 262 3.16 0.753 
0.56

4 
2.082 

SW_22 262 9.5 0 0 287.3 3.28 0.753 
0.56

4 
2.1 

MID_04 262 9.5 0 0 287.3 3.28 0.753 
0.56

4 
2.1 

MID_05 262 9.5 0 0 287.3 3.28 1.28 
0.56

4 
2.1 

MID_04 283 9.5 0 0 287.3 3.65 1.28 
0.56

4 
2.219

2 

MID_06 283 10 0 0 287.3 3.65 1.3 
0.56

4 
2.219

2 

MID_04 283 10 0 0 299.5 3.674 1.423 
0.56

4 
2.242 

MID_05 299.5 10 0 0 299.5 3.684 1.423 
0.56

4 
2.242 

MID_06 299.5 10 0 0 299.5 3.684 1.423 
0.56

4 
2.242 

AN_13 307.75 10 0 0 299.5 3.684 1.45 
0.56

4 
2.3 

NE_47 329.75 10 0.393 
0.02554

4 
299.5 3.684 1.75 

0.56
4 

2.3 

NE_59 329.75 10.1 0.461 
0.02554

4 
299.5 4.208 1.75 

0.56
4 

2.8 

NE_63 338.5 10.5 1.359 0.0591 299.5 5.026 2.08 
0.56

4 
2.8 

NE_62 338.5 10.5 1.736 0.0599 299.5 5.026 2.082 1.1 2.8 

NE_32 338.5 10.5 1.736 0.163 299.5 5.026 2.082 1.1 2.807 

NE_47 338.5 10.5 1.736 0.171 299.5 5.026 2.082 1.1 2.807 
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NE_59 338.5 10.5 1.76 0.171 299.5 5.026 2.091 1.1 3 

NE_61 370 10.5 1.76 0.171 299.5 5.026 2.091 1.1 3 

NE_47 370 11 1.968 0.192 299.5 5.026 2.091 1.1 3.681 

NE_59 407.5 11 2.048 0.192 299.5 5.026 2.1 1.1 3.681 

NE_61 407.5 11 2.048 0.192 370 5.026 2.1 1.1 3.681 

NE_29 407.5 
11.2

5 
2.048 0.221 370 5.026 2.209 1.1 3.733 

NE_30 407.5 
11.2

5 
2.103 0.221 378 5.026 2.209 1.1 3.733 

NE_32 407.5 
11.2

5 
2.103 0.233 

422.7
5 

5.026 2.242 1.24 3.733 

AN_12 409 11.5 
2.59097

2 
0.311 

422.7
5 

5.026 2.242 1.24 3.736 

AN_13 425.5 12 
2.59097

2 
0.311 

422.7
5 

5.026 2.242 1.24 3.736 

NE_42 431.25 12 2.917 0.347 
422.7

5 
7.415 2.3 1.25 3.736 

NE_45 431.25 12.5 2.917 0.347 
422.7

5 
7.415 2.3 1.25 4.723 

NE_58 431.25 13 3.664 0.413 
422.7

5 
7.415 2.8 1.25 4.951 

NE_29 431.25 13 3.664 0.413 
422.7

5 
7.415 2.8 1.25 4.951 

NE_30 460 14.5 3.664 0.413 
422.7

5 
7.415 2.8 

1.31
7 

5.297 

NE_42 498 14.5 4.335 0.463 
422.7

5 
7.415 2.807 

1.31
7 

5.297 

NE_45 499 14.5 4.335 0.463 
422.7

5 
7.415 2.807 

1.31
7 

5.297 

NE_42 499 14.7 4.644 0.495 
422.7

5 
7.71 3.681 

1.31
7 

5.297 

NE_45 525.75 15 4.644 0.495 
422.7

5 
7.71 3.681 

1.31
7 

5.3 

NE_33 525.75 15 7.658 0.879 
422.7

5 
7.71 3.681 

1.31
7 

5.418 

NE_33 525.75 15 
8.22207

2 
1.104 

422.7
5 

8.38 3.684 
1.31

7 
5.418 

NE_01 563.5 15 
8.22207

2 
1.134 455 8.38 3.684 

1.47
4 

5.418 

NE_02 563.5 15 8.38 1.134 455 8.38 3.684 
1.57

2 
5.46 

NE_41 563.5 15.5 8.38 1.134 455 8.38 3.684 
1.57

2 
5.46 

NE_49 591 15.5 8.38 1.153 499 11.17 3.736 
1.57

2 
5.487 

NE_01 596.25 15.9 8.426 1.161 499 
13.33

7 
3.736 

1.57
2 

5.487 

NE_07 611.6 15.9 8.426 1.19478 499 
13.33

7 
3.736 

1.57
2 

5.487 

NE_13 611.6 16 8.426 1.19478 499 
13.33

7 
4.208 

1.57
2 

5.544 

NE_03 617 16 8.699 1.259 499 
13.64

7 
4.723 

1.57
2 

5.544 

NE_06 617 16 9.355 1.259 499 
13.64

7 
4.951 

1.57
2 

5.7 

NE_12 621.1 16 11.182 1.259 499 
13.64

7 
4.951 

1.57
2 

6.138 

NE_34 621.1 16.5 11.182 1.357 
514.7

5 
13.64

7 
5.3 

1.57
2 

6.411 

NE_50 621.1 16.5 11.182 1.357 
514.7

5 
13.64

7 
5.418 

1.57
2 

7.5 

NE_34 640.7 16.5 11.182 1.409 
514.7

5 
13.64

7 
5.418 

1.57
2 

7.51 
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NE_35 660.5 16.5 11.182 1.501 569.8 
13.64

7 
5.418 

1.57
2 

8 

NE_36 670.7 16.7 11.218 1.501 569.8 
13.64

7 
5.46 

1.57
2 

8 

NE_37 676.5 17 11.218 1.501 569.8 
13.64

7 
5.46 1.63 10 

NE_38 774.75 17 11.551 1.501 569.8 
13.64

7 
5.487 2.01 10 

NE_39 852 17.5 12.034 1.501 591 
13.64

7 
5.487 2.3 10 

NE_35 854.75 17.5 12.478 1.621 657.8 
13.64

7 
5.487 2.3 10.21 

NE_36 901.5 17.5 12.478 1.621 
851.2

5 
13.64

7 
5.544 2.39 10.33 

NE_37 925.75 17.5 12.478 1.621 852 
13.64

7 
5.544 2.39 10.33 

NE_38 925.75 17.5 12.478 1.621 852 
14.45

3 
5.7 2.39 10.33 

NE_39 925.75 17.5 12.478 1.621 915 
14.45

3 
6.138 

2.77
9 

10.33 

NE_09 979.75 17.5 12.499 1.629 915 
14.45

3 
6.411 

2.77
9 

10.46
7 

NE_35 986 19 12.812 1.663 915 
14.45

3 
7.5 

2.77
9 

10.46
7 

NE_36 986 19 12.812 1.663 915 17 10 
2.77

9 
10.46

7 

NE_37 
1017.2

5 
19 12.812 1.663 915 17 10 

2.77
9 

10.46
7 

NE_38 
1126.7

5 
19 12.812 1.663 915 17 10 

2.77
9 

11 

NE_31 
1126.7

5 
19.4 14.316 1.809 

1007.
5 

17 10.21 2.9 11 

NE_49 
1126.7

5 
19.5 16.546 1.927 

1007.
5 

17 10.33 2.9 11 

NE_49 
1126.7

5 
19.5 16.546 2.224 

1007.
5 

17 10.33 2.9 11 

NE_22
a 

1229.5 19.6 16.546 3.086 1360 17 10.33 2.9 11 

NE_22
a 

1283 20 16.546 3.353 1360 17 10.33 2.9 11.5 

NE_17 1283 20 18.284 3.409 1360 17 
10.46

7 
2.9 11.5 

NE_19 
1361.2

5 
20 18.284 3.409 1360 17 

10.46
7 

2.9 11.5 

NE_20 
1361.2

5 
20.5 18.284 3.409 1360 17 

10.46
7 

2.9 
12.03

6 

NE_21 
1361.2

5 
20.5 18.671 3.409 1360 

17.56
4 

10.46
7 

2.9 
12.03

6 
NE_22

a 
1417 21.5 18.671 3.509 1360 

19.57
6 

11.5 2.9 
12.48

5 

NE_17 1417 21.5 18.671 3.59 1360 
19.57

6 
11.5 2.9 

12.48
5 

NE_20 1417 22.5 18.911 3.59 1360 
19.57

6 
11.5 3.02 

12.48
5 

NE_21 1452 22.5 18.911 3.59 1360 
19.57

6 
12.03

6 
3.02 12.5 

NE_17 1452 22.5 18.911 3.615 1360 
19.57

6 
12.03

6 
3.02 12.5 

NE_20 1452 22.5 18.911 3.615 1360 
19.57

6 
12.48

5 
3.02 

13.92
7 

NE_21 
1462.7

5 
22.5 19.652 3.615 1360 

19.57
6 

12.48
5 

3.02 15 

NE_08 
1462.7

5 
22.5 19.652 3.722 1360 

19.57
6 

12.48
5 

3.02 15 
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NE_40 
1462.7

5 
22.5 20.077 3.722 1552 

19.57
6 

12.5 3.02 18 

NE_17 
1462.7

5 
22.5 20.11 3.755 1552 

19.57
6 

12.5 3.02 
18.59

5 

NE_19 1612 23.3 20.11 3.755 1552 
19.57

6 
13.92

7 
3.02 

18.59
5 

NE_20 1612 23.9 20.11 3.755 1552 
19.57

6 
15 3.02 

18.59
5 

NE_21 1617 25 20.179 3.755 1552 
19.57

6 
15 3.02 

18.59
5 

NE_08 1617 25.4 20.37 3.787 1552 
19.57

6 
18 3.02 19 

NE_08 1671 26 20.663 3.82 1552 19.9 
18.59

5 
3.02 19 

NE_22
b 

1908.7
5 

26.5 21.55 4.114 1552 20.31 
18.59

5 
3.02 20 

NE_24 
1908.7

5 
26.5 22.019 4.38 1552 20.31 

18.59
5 

3.56
5 

20 

NE_26 1982.5 26.5 22.159 4.38 1552 20.31 
18.59

5 
3.56

5 
20 

NE_27 
2000.7

5 
26.5 24.454 4.38 1552 

21.96
9 

19 
3.56

5 
20 

NE_23 
2135.2

5 
27 

39.5781
3 

4.866 1586 
21.96

9 
19 

3.57
6 

20 

NE_43 
2135.2

5 
28 

39.5781
3 

4.866 1586 
21.96

9 
20 

3.57
6 

20 

NE_23 2179 28.5 39.691 4.977 1586 
21.96

9 
26.03

7 
3.57

6 
26.03

7 

NE_23 2275 
30.7

5 
39.691 5.099 1586 

21.96
9 

26.03
7 

3.57
6 

26.03
7 

NE_24 2480.5 31 
40.6101

8 
8.07946

8 
1706 

21.96
9 

26.03
7 

5.84 
26.03

7 

NE_26 2480.5 33 
40.6101

8 
8.07946

8 
2175.

6 
44.38 35.69 5.84 35.69 

NE_14 2501 38 
40.6101

8 
8.111 

2175.
6 

44.38 
37.55

2 
5.84 

37.55
2 

NE_24 2501 38.5 46.442 8.111 
2175.

6 
44.38 

37.74
7 

5.84 
37.74

7 

NE_06 2678.5 41.5 46.442 
8.14873

9 
2175.

6 
44.38 

37.74
7 

6.13
1 

37.74
7 

NE_12 2678.5 41.5 46.86 
8.14873

9 
3314.

8 
47.13

6 
75 

6.13
1 

75 

NE_16 2678.5 42 47.615 
8.14873

9 
3314.

8 
47.13

6 
75 

6.13
1 

75 

NE_15 
3315.2

5 
46.5 49.549 9.472 

3314.
8 

47.13
6 

75 6.6 75 
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Stream  B (m)  
H 

(m)  

U 

(m/s)  

u * 

(m/ s)  
B/H  U/u*  β α 

Kx 

(m2/s)  

Antietam Creek, Md. 12.8 0.3 0.42 0.057 42.7 7.37 3.8 1.4 17.5 

Antietam Creek, Md.  24.1 0.98 0.59 0.098 24.6 6.02 3.2 2.3 101.5 

Antietam Creek, Md. * 11.9 0.66 0.43 0.085 18 5.06 2.9 2.3 20.9 

Antietam Creek, Md.  21 0.48 0.62 0.069 43.8 8.99 3.8 1.3 25.9 

Monocacy River, Md.*  48.7 0.55 0.26 0.052 88.5 5 4.5 1.3 37.8 

Monocacy River, Md. *  93 0.71 0.16 0.046 131 3.48 4.9 1.3 41.4 

Monocacy River, Md.  51.2 0.65 0.62 0.044 78.8 14.09 4.4 1.3 29.6 

Monocacy River, Md.  97.5 .1.15  0.32 0.058 84.8 5.52 4.4 1.6 119.8 

Monocacy River, Md.  40.5 0.41 0.23 0.04 98.8 5.75 4.6 1.6 66.5 

Conococheague Creek, 

Md.  
42.2 0.69 0.23 0.064 61.2 3.59 4.1 2.3 40.8 

Conococheague Creek, 

Md.  
49.7 0.41 0.15 0.081 121 1.85 4.8 2.3 29.3 

Conococheague Creek, 

Md. *  
43 1.13 0.63 0.081 38.1 7.78 3.6 1.3 53.3 

Chattahoochee River, 

Ga. *  
75.6 1.95 0.74 0.138 38.8 5.36 3.7 1.3 88.9 

Chattahoochee River, 

Ga.  
91.9 2.44 0.52 0.094 37.7 5.53 3.6 1.6 166.9 

Salt Creek, Neb.  32 0.5 0.24 0.038 64 6.32 4.2 1.4 52.2 

Diffcult Run, Va.  14.5 0.31 0.25 0.062 46.8 4.03 3.9 1.1 1.9 

Bear Creek*, Colo.  13.7 0.85 1.29 0.553 16.1 2.33 2.8 1.1 2.9 

Little Pincy Creek, Md.  15.9 0.22 0.39 0.053 72.3 7.36 4.3 1.1 7.1 

Bayou Anacoco, La.  17.5 0.45 0.32 0.024 38.9 13.33 3.7 1.4 5.8 

Bayou Anacoco, La.  25.9 0.94 0.34 0.067 27.6 5.07 3.3 1.4 32.5 

Bayou Anacoco, La.  36.6 0.91 0.4 0.067 40.2 5.97 3.7 1.4 39.5 

Comite River, La.  15.7 0.23 0.36 0.039 68.3 9.23 4.2 1.3 69 

Bayou Bartho1omew, 

La.  
33.4 1.4 0.2 0.031 23.9 6.45 3.2 2.5 54.7 

Tickfau River, La.  15 0.59 0.27 0.08 25.4 3.38 3.2 1.8 10.3 

Tangipahoa River, La.  31.4 0.81 0.48 0.072 38.8 6.67 3.7 1.5 45.1 

Tangipahoa River, La. 

*  
29.9 0.4 0.34 0.02 74.8 17 4.3 1.5 44 

Red River, La.  253.6 1.62 0.61 0.032 157 19.06 5.1 1.2 143.8 

Red River, La.  161.5 3.96 0.29 0.06 40.8 4.83 3.9 1.4 130.5 

Red River, La.  152.4 3.66 0.45 0.057 41.6 7.89 3.7 1.4 227.6 

Red River, La.  155.1 1.74 0.47 0.036 89.1 13.06 4.5 1.2 177.7 

Sabina River, La.  116.4 1.65 0.58 0.054 70.5 10.74 4.3 1.2 131.3 

Sabina River, La. *  160.3 2.32 1.06 0.054 69.1 19.63 4.2 1.2 308.9 

Sabina River*, Tex.  14.2 0.5 0.13 0.037 28.4 3.51 3.4 2.5 12.8 

Sabina River*, Tex.  12.2 0.51 0.23 0.03 23.9 7.67 3.2 2.1 14.7 

Sabina River*, Tex.  21.3 0.93 0.36 0.035 22.9 10.29 3.1 1.5 24.2 

Mississippi River, La:*  711.2 19.94 0.56 0.041 35.7 13.66 3.6 1.4 237.2 
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Mississippi River, Mo. 
*  

533.4 4.94 1.05 0.069 108 15.22 4.7 1.4 457.7 

Mississippi River, Mo.*  537.4 8.9 1.51 0.097 60.4 15.57 4.1 1.4 374.1 

Wind/Big. River, Wyo.  44.2 1.37 0.99 0.142 32.3 6.97 3.5 1.6 184.6 

Wind/Big. River, Wyo.  85.3 2.38 1.74 0.153 35.8 11.37 3.6 1.6 464.6 

Wind/Big. River, 

Wyo.*  
59.4 1.1 0.88 0.119 54 7.39 4 1.2 41.8 

Wind/Big. River, Wyo.  68.6 2.16 1.55 0.168 31.8 9.23 3.5 1.2 162.6 

Copper Creep, Va.  16.7 0.49 0.2 0.08 34.1 2.5 3.5 2.5 16.8 

Clinch River, Va.  48.5 1.16 0.21 0.069 41.8 3.04 3.7 1.3 14.8 

Clinch River, Va.*  28.7 0.61 0.35 0.069 47 5.07 3.9 1.1 10.7 

Clinch River, Va.  57.9 2.45 0.75 0.104 23.6 7.21 3.2 1.1 40.5 

Clinch River, Va.*  53.2 2.41 0.66 0.107 22.1 6.17 3.1 1.1 36.9 

Copper Creek, Va.  18.3 0.38 0.15 0.116 48.2 1.29 3.9 2.5 20.7 

Copper Creek, Va.  16.8 0.47 0.24 0.08 35.7 3 3.6 2.5 24.6 

Powell River, Tenn. *  36.8 0.87 0.13 0.054 42.3 2.41 3.7 2.2 15.5 

Copper River, Va.  19.6 0.84 0.49 0.101 23.3 4.85 3.2 1.3 20.8 

Nooksack River, Wash.  64 0.76 0.67 0.268 84.2 2.5 4.4 1.3 34.8 

John Day River, Ore.*  25 0.58 1.01 0.14 43.1 7.21 3.8 1.1 13.9 

John Day River, Ore.*  34.1 2.47 0.82 0.18 13.8 4.56 2.6 1.9 65 

Yadkin River, N.C.  70.1 2.35 0.43 0.101 29.8 4.26 3.4 2.2 111.5 

Yadkin River, N.C.  71.6 3.84 0.76 0.128 18.6 5.94 2.9 2.2 260.1 

Minnesota River  80 2.74 0.034 0.0024 29.2 14.17 3.4   22.3 

Minnesota River  80 2.74 0.14 0.0097 29.2 14.43 3.4   34.9 

Amita River  37 0.81 0.29 0.07 45.7 4.14 3.8   23.2 

Amita River  42 0.8 0.42 0.069 52.5 6.09 4   30.2 

White River*  67 0.59 0.35 0.044 114 7.95 4.7   30.2 

Nooksack River  86 2.93 1.2 0.53 29.4 2.26 3.4 1.3 153 

Susquehanna River  203 1.35 0.39 0.065 150 6 5 1.1 92.9 

Bayou Anacoco  20 0.42 0.29 0.045 47.6 6.44 3.9 1.4 13.9 

Muddy River  13 0.81 0.37 0.081 16 4.57 2.8   13.9 

Muddy River  20 1.2 0.45 0.099 16.7 4.55 2.8   32.5 

Comite River  13 0.26 0.31 0.044 50 7.05 3.9 1.3 7 

Comite River  16 0.43 0.37 0.056 37.2 6.61 3.6 1.3 13.9 

Missouri River  183 2.33 0.89 0.066 78.5 13.48 4.4 1.4 465 

Missouri River  201 3.56 1.28 0.084 56.5 15.24 4 1.4 837 

Missouri River*  197 3.11 1.53 0.078 63.3 19.62 4.2 1.4 892 

 

 

 

 

 



 

 

Appendix C Matlab Programme for GNMM 

C.1 gnmm_ga 

Contents 

 Function reference 
 Defining variables and checking input arguments 
 Loading data file 
 Generating training and validation sets 
 FastICA toolbox path 
 Recording training configuration & progress 
 GA's initial run 
 GA's successive iterations 
 Recording training progress and saving results 
 Reporting programme termination 
 Fitness function for GNMM's GA process 
 ICA weight initialization 

function [ ] = gnmm_ga( data_file, output_file, varargin ) 

Function reference 

 Using GAs to find variable combinations that produce the 

 minimum error when training input/target data in a three-layer 

 MLP. 

Syntax 

 [ ] = gnmm_ga( data_file, output_file ); 

 [ ] = gnmm_ga( data_file, output_file, [argID, value, ... ]) 

Description 

 [ ] = gnmm_ga( data_file, output_file ) takes two input 

 arguments, as below. 

     data_file (string) 

     The file name that contains training & target data. It has 

     to be in the '.mat' format and contain the matrix called 

     'train_data'. The matrix has to be arranged such that data 
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     samples are in rows and and variables in columns; training 

     targets to the right of training inputs. 

     output_file (string) 

     The file name that will be used as GA's output and 

     training records. It consists of two files: one is the 

     'output_file.mat' contaiing a copy of the latest/final 

     Matlab workspace; the other is the 'output_file.txt' 

     recording function inputs and the programme 

     starting/finishing time. The output_file name is 

     preferably contructed as follows: 'ga_*_[123]', where '*' 

     stands for the name of the data (e.g. k3b), while [123] is 

     the order of the gnmm_ga's implementation. 

 [ ] = gnmm_ga( data_file, output_file, [argID, value, ... ]) 

 takes several optional input arguments in the format of 

 [argID, value] pairs. 'argID' will always be the type of 

 'string', but 'value' may vary as detailed below. In the 

 absence of these optional arguments, gnmm_ga will use the 

 default values. 

     'ANN_POCH' (string), value (int) 

     Number of epochs for each chromosome during the MLP 

     training. Default (20). 

     'NEURON_H' (string), value (int) 

     Number of neurons in the MLP's hidden layer. (8). 

     'NEURON_O' (string), value (int) 

     Number of neurons in the MLP's output layer. (1). 

     'ANN_REPEAT' (string), value (int) 

     Number of repeating times in the MLP training when 

     evaluating a single chromosome. (10). 

     'ICA_USED' (string), value (bool) 

     Whether FastICA toolbox will be used. (true). 

     'pop_size' (string), value (int) 

     Population size. (30). 

     'genrs' (string), value (int) 

     Generation size. (100). 

     'm_alter' (string), value (bool) 

     Whether mutation rate will be altered. (true). 

     'm_rate' (string), value (double) 

     (Initial) mutation rate. (0.05). 

     'training_per' (string), value (double) 

     Training data percentage. (0.9). 

     'valid_per' (string), value (double) 

     Validation data percentage. (0.1). 

Examples 

 [ ] = gnmm_ga( 'class4_train_k3b.mat',... 

     'ga_k3b_2', 'ANN_POCH', 20 ); 

Notes 

 In order to use the FastICA toolbox, the toolbox has to 

 be placed in the parent folder, i.e. the toolbox folder and 

 the current folder share the same parent folder. The current 

 function is checked to be compatible with FastICA 2.5. 

 The current version of the function works with Matlab R2008a 

 (7.6). 
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See Also 

 gnmm_ga_write, gnmm_ann 

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK 

Defining viriables and checking input arguments 

error( nargchk( 1, Inf, nargin )); 

if mod( nargin, 2 ) ~= 0 

    error( 'Inputs got to be pairs' ) 

end 

 

% global ANN_POCH NEURON_H NEURON_O ANN_REPEAT ICA_USED 

ANN_POCH = 20; 

NEURON_H = 4; 

NEURON_O = 1; 

ANN_REPEAT = 10; 

ICA_USED = false; 

pop_size = 30; 

genrs = 100; 

m_alter = true; 

m_rate = 0.05; 

training_per = 0.9; 

valid_per = 0.1; 

 

i=1; 

while i <= length( varargin ) 

    if ischar( varargin{ i } ) 

        switch varargin{ i } 

            case 'ANN_POCH' 

                i = i + 1; 

                ANN_POCH = varargin{ i }; 

            case 'NEURON_H' 

                i = i + 1; 

                NEURON_H = varargin{ i }; 

            case 'NEURON_O' 

                i = i + 1; 

                NEURON_O = varargin{ i }; 

            case 'ANN_REPEAT' 

                i = i + 1; 

                ANN_REPEAT = varargin{ i} ; 

            case 'ICA_USED' 

                i = i + 1; 

                ICA_USED = varargin{ i }; 

            case 'pop_size' 

                i = i + 1; 

                pop_size = varargin{ i }; 

            case 'genrs' 

                i = i + 1; 

                genrs = varargin{ i }; 

            case 'm_alter' 

                i = i + 1; 

                m_alter = varargin{ i }; 

            case 'm_rate' 

                i = i + 1; 

                m_rate = varargin{ i }; 
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            case 'training_per' 

                i = i + 1; 

                training_per = varargin{ i }; 

            case 'valid_per' 

                i = i + 1; 

                valid_per = varargin{ i }; 

            otherwise 

                error( 'Wrong argID.' ) 

        end 

    else 

        error( 'Input argument pair has to start with strings' ) 

    end 

    i = i + 1; 

end 

Loading data file 

data_saved = load( data_file ); 

raw_data = data_saved.train_data; 

raw_data = raw_data'; 

[ data_std, std_record ] = mapstd( raw_data ); 

Generating training and validation sets 

[ total_para total_files ] = size( data_std ); 

files_train = ceil( total_files * training_per ); 

files_val = floor( total_files * valid_per ); 

random_position = randperm( total_files ); 

train_serial = random_position( 1 : files_train ); 

valid_serial = random_position( files_train + 1 :... 

    files_train + files_val ); 

 

% global TRAIN_DATA TRAIN_TARGET VAL 

TRAIN_DATA = data_std( 1 : total_para - NEURON_O, train_serial ); 

TRAIN_TARGET = data_std( total_para - NEURON_O + 1 :... 

    total_para, train_serial ); 

VAL.P = data_std( 1 : total_para - NEURON_O, valid_serial ); 

VAL.T = data_std( total_para - NEURON_O + 1 :... 

    total_para, valid_serial ); 

chr_length = total_para - NEURON_O; 

FastICA toolbox path 

if ICA_USED == true 

    current_sys = computer; 

    switch current_sys 

        case { 'SOL2', 'GLNX86' } 

            dir_sep = '/'; 

        case 'PCWIN' 

            dir_sep = '\'; 

        otherwise 

            disp( 'Unknown OS.' ) 

    end 

    current_p = pwd; 

    ica_path = strcat( current_p( 1 :... 

        max( strfind( current_p, dir_sep ))), 'FastICA_25' ); 

    addpath( ica_path ) 
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end 

Recording training config & progress 

t = cputime; 

start_time = datestr( now ); 

fid1 = fopen( strcat( output_file, '.txt' ), 'w' ); 

fprintf( fid1, 'Programme starts    @ %10s\n\n', start_time ); 

fprintf( fid1, 'NO. of epoches for each chromosome  %6.0f\n',... 

    ANN_POCH ); 

fprintf( fid1, 'NO. of hidden neurons               %6.0f\n',... 

    NEURON_H ); 

fprintf( fid1, 'Neurons in the output layer         %6.0f\n',... 

    NEURON_O ); 

fprintf( fid1, 'NO. of trainings each chromosome    %6.0f\n',... 

    ANN_REPEAT ); 

fprintf( fid1, 'Is FastICA used?                    %6.0f\n',... 

    ICA_USED ); 

fprintf( fid1, 'Population size                     %6.0f\n',... 

    pop_size ); 

fprintf( fid1, 'Total generations                   %6.0f\n',... 

    genrs ); 

fprintf( fid1, 'Is mutation rate altered            %6.0f\n',... 

    m_alter ); 

fprintf( fid1, 'Mutation rate                       %6.2f\n',... 

    m_rate ); 

fprintf( fid1, 'Training data percentage            %6.2f\n',... 

    training_per ); 

fprintf( fid1, 'Validation data 

percentage          %6.2f\n\n',... 

    valid_per ); 

fprintf( fid1, 'Current generation:\n' ); 

GA's initial run 

options1 = gaoptimset( 'Generations', 1, 'PopulationType',... 

    'bitstring', 'MutationFcn', { @mutationuniform, m_rate },... 

    'PopulationSize', pop_size ); 

[ x fval reason output population scores ] = ... 

    ga( @ann_fitness, chr_length, [ ], [ ], [ ], [ ], [ ],... 

    [ ], [ ], options1 ); 

 

fprintf(fid1,... 

    'Generation: %3.0f      Best results (MSE): %6.5f;\n',... 

    1, fval ); 

record_input( 1, : ) = x; 

scores_mean = mean( scores ); 

switch m_alter 

    case true 

        record_output( 1, : ) = [ fval scores_mean m_rate ]; 

    case false 

        record_output( 1, : ) = [ fval scores_mean ]; 

    otherwise 

        disp( 'Wrong ''m_alter''.' ) 

end 
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GA's sussessive iterations 

for n =2:genrs 

    options2 = gaoptimset( 'Generations', 1, 'PopulationType',... 

        'bitstring', 'MutationFcn', { @mutationuniform, ... 

        m_rate }, 'PopulationSize', pop_size, 'InitialPop',... 

        double(population)); 

    [ x fval reason output population scores ] = ... 

        ga( @ann_fitness, chr_length, [ ], [ ], [ ], [ ], [ ],... 

        [ ], [ ], options2 ); 

 

    record_input( n, : ) = x; 

    scores_mean = mean( scores ); 

    switch m_alter 

        case true 

            record_output( n, : ) = [ fval scores_mean m_rate ]; 

            m_ratio = scores_mean / record_output( n - 1, 2 ); 

            if m_ratio <= 0.1 

                m_rate = m_rate * 0.1; 

            else 

                m_rate = m_rate * ( log10( m_ratio ) + 1 ); 

                if m_rate > 1 

                    m_rate = 1; 

                end 

            end 

        case false 

            record_output( n, : ) = [ fval scores_mean ]; 

    end 

    fprintf(fid1,... 

        'Generation: %3.0f      Best results (MSE): %6.5f;\n',... 

        n, fval ); 

end 

Recording training progress and saving results 

finish_time = datestr( now ); 

cpu_time = cputime - t; 

fprintf( fid1, '\n\n\n' ); 

fprintf( fid1, 'programme finishes  @ %10s\n', finish_time ); 

fprintf( fid1, 'total CPU time        %6.2f (s)', cpu_time ); 

fclose( fid1 ); 

 

%save( output_file, 'record_input', 'record_output' ) 

save( output_file ) 

Reporting programme termination 

if strcmp( eval( 'computer' ), 'SOL2') 

    %eval( [ '! echo "' output_file... 

    %    '" | mail j.yang.3@warwick.ac.uk' ] ) 

    eval( [ '! echo "' output_file... 

        ' done" | /usr/lib/sendmail esrebt@eagle' ] ) 

end 
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Fitness function for GNMM's GA process 

Nested function. Evaluating each chromosome's fitness acccording to its 

training error in an MLP. 

    function scores = ann_fitness( pop ) 

        % global ANN_POCH NEURON_H NEURON_O ANN_REPEAT 

        % global ICA_USED TRAIN_DATA TRAIN_TARGET VAL 

 

        train_row = find( pop ); 

        scores_accu = 0; 

        if isempty( train_row ) 

            scores = 100; 

        else 

            for j = 1: ANN_REPEAT 

                train_input = TRAIN_DATA( train_row, : ); 

                val.P = VAL.P( train_row, : ); 

                val.T = VAL.T; 

 

                net = newff( minmax( train_input ), 

[ NEURON_H,... 

                    NEURON_O ], { 'tansig', 'purelin' },... 

                    'trainlm' ); 

                net.trainParam.epochs = ANN_POCH; 

                net.trainParam.show = NaN; 

                net.trainParam.showWindow = false; 

                net = init( net ); 

                if length( train_row ) >= NEURON_H && ICA_USED 

                    net = ica_wi(net, train_input, TRAIN_TARGET); 

                end 

 

                [ net, tr ]=train( net, train_input, ... 

                    TRAIN_TARGET, [ ], [ ], val ); 

                x = size( tr.perf, 2 ); 

                scores_accu = scores_accu + tr.perf( x ); 

            end 

            scores = scores_accu / ANN_REPEAT; 

        end 

ICA weight initialization 

Nested function. Weight initialization using FastICA 2.5. 

        function net = ica_wi( net, train_input, TRAIN_TARGET ) 

            ica_inputs = train_input; 

            inputs_mean_rec = mean( ica_inputs, 2 ); 

            inputs_mean = repmat( inputs_mean_rec,... 

                [ 1 size( ica_inputs, 2 )]); 

            inputs_mean_moved = ica_inputs - inputs_mean; 

 

            [ inputs_source, A, W ] = ... 

                fastica( inputs_mean_moved,... 

                'verbose', 'off', 'numOfIC',... 

                net.layers{ 1 }.size, 'displayMode', 'off',... 
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                'stabilization', 'on' ); 

            % 50% of maximum direvative for 'tansig' 

            fifty_active = log( 3 + 2 * 2 ^.5 ) / 2; 

            input_wt_co = fifty_active /... 

                max( max( abs( inputs_source ))); 

            input_wt = input_wt_co * W; 

            input_thr = -1 * input_wt_co * W* inputs_mean_rec; 

 

            net.IW{ 1, 1 } = input_wt; 

            net.b{ 1, 1 } = input_thr; 

 

            hidden_out = tansig( input_wt_co * inputs_source ); 

            out_wt = lscov( hidden_out', TRAIN_TARGET' )'; 

            net.LW{ 2, 1 } = out_wt; 

        end 

    end 

end 

 

Published with MATLAB® 7.8 

C.2 gnmm_ga_write 

Contents 

 Function reference 
 Checking input arguments 
 Loading training records and results 
 Writing results onto an excel file 
 Converting numbers into excel column characters. 

function [ ] = gnmm_ga_write( results_file, excel_file, ... 

    worksheet_name ) 

Function reference 

 Reading results obtained by 'gnmm_ga' (i.e. sample_file.txt 

 and sample_file.mat), and writing these results into an Excel 

 file. 

Syntax 

 [ ] = gnmm_ga( results_file, [ ], [ ] ); 

 [ ] = gnmm_ga( results_file, excel_file, [ ] ); 

 [ ] = gnmm_ga( results_file, excel_file, worksheet_name ); 

Description 
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 [ ] = gnmm_ga( results_file, [ ], [ ] ) takes a single input 

 arguments: 

     results_file (string) 

     The file comes in two parts. The '.mat' file contains the 

     final/latest copy of the GA's evolutionary results, in 

     which matrices 'record_input' and 'record_output' together 

     contains the winning chromosome and corresponding training 

     error, mean error over the whole population, and mutation 

     rate ( in case of mutaion rate altering). The '.txt' part 

     records 'gnmm_ga.m's funciton inputs and information of 

     its implementation. 

 [ ] = gnmm_ga( results_file, excel_file, [ ] ) takes an 

 additional input arguments, excel_file (string), which holds 

 the whole data. 

 In gnmm_ga( results_file, excel_file, worksheet_name ), the 

 worksheet_name (string) specifies the worksheet that holds the 

 perticular gnmm results. 

Examples 

 [ ] = gnmm_ga_write( 'ga_k3b_1', [ ], [ ] ); 

 [ ] = gnmm_ga_write( 'ga_k3b_1', 'results', [ ] ); 

 [ ] = gnmm_ga_write( 'ga_k3b_1', 'results', '1st' ); 

Notes 

 In order to use the FastICA toolbox, the toolbox has to 

 be placed in the parent folder, i.e. the toolbox folder and 

 the current folder share the same parent folder. The current 

 function is checked to be compatible with FastICA 2.5. 

 The current version of the function works with Matlab R2008a 

 (7.6). 

See Also 

 gnmm_ga, gnmm_ann 

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK 

Checking input arguments 

error( nargchk( 1, 3, nargin )); 

if isempty( results_file ) 

    error('The ''results_file'' input must not be empty') 

end 

 

results_txt = [ results_file '.txt' ]; 

results_mat = [ results_file '.mat' ]; 

 

imple_number = strfind( results_file, '_' ); 

if isempty( excel_file ) 

    excel_file = results_file( 1: imple_number( end ) - 1 ); 

    excel_file = [ 'result_' excel_file '.xls' ]; 

end 
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if isempty( worksheet_name ) 

    imple_case = results_file( imple_number( end ) + 1 : end ); 

    switch imple_case 

        case '1' 

            worksheet_name = '1st'; 

        case '2' 

            worksheet_name = '2nd'; 

        case '3' 

            worksheet_name = '3rd'; 

        otherwise 

            worksheet_name = [ imple_case 'th' ]; 

    end 

end 

 

excel_pres = exist( excel_file, 'file' ); %either 0 or 2 

if excel_pres 

    [ typ, desc ] = xlsfinfo( excel_file ); 

end 

Loading training records and results 

eval(['load ' results_mat ' ''record_input'' 

''record_output''' ]) 

record_fields = { 'ANN_POCH',   'NEURON_H',  'NEURON_O',... 

    'ANN_REPEAT', 'ICA_USED',  'pop_size',   'genrs',... 

    'm_alter',   'training_per','valid_per', 'm_rate',... 

    'start_time', 'finish_time',  'cpu_time'}; 

record_length = length( record_fields ); 

for i = 1 : record_length 

    load ( results_mat, record_fields{ i } ); 

    if exist( record_fields{ i }, 'var' ) 

        record_value{ i } = eval( record_fields{ i } ); 

    else 

        % older version of 'gnmm_ga.m' 

        fid = fopen( results_txt, 'r' ); 

        record_texts = textscan( fid, '%s' ); 

        record_texts = record_texts{ 1 }; 

        % finish_location = strfind( record_texts, 'finishes' ); 

        % finish_location =... 

        %    find( ~cellfun( @isempty, finish_location )); 

        record_value{ i } = [ record_texts{ end - 6 }... 

            ' ' record_texts{ end - 5 } ]; 

        record_value{ i + 1 } = str2double( record_texts{ end-

1 }); 

        fclose( fid ); 

        break 

    end 

end 

 

if m_alter == true 

    output_fields = { 'fval', 'scores_mean', 'm_rate' }; 

else 

    output_fields = { 'fval', 'scores_mean' }; 

end 

 

var_num = num2str( (1 : size( record_input, 2 ) )' ); 

var_name = repmat( 'Var', size( record_input, 2 ), 1 ); 

input_fields = cellstr([ var_name var_num ])'; 
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results_sheet = [input_fields output_fields;... 

    num2cell( [ record_input record_output ] ) ]; 

Writing results onto an excel file 

xlswrite( excel_file, results_sheet, worksheet_name ) 

 

field_end = xls_num2col( record_length + 1 ); 

if ~excel_pres 

    xlswrite( excel_file, { 'Sheet' }, 'config', 'A1' ) 

    title_range = [ 'B1:' field_end '1']; 

    xlswrite( excel_file, record_fields, 'config', title_range ) 

    exist_sheets = '2'; 

else 

    exist_sheets = num2str( length( desc ) + 1 ); 

end 

 

xlswrite( excel_file, { worksheet_name },... 

    'config', [ 'A' exist_sheets]) 

config_range = [ 'B' exist_sheets ':' field_end exist_sheets ]; 

xlswrite( excel_file, record_value, 'config', config_range ) 

function xls_col = xls_num2col( xls_num ) 

Converting numbers into excel column characters. 

if xls_num < 27 

    xls_col = char( xls_num + 64 ); 

    return; 

end 

 

first = floor( xls_num / 26 ); 

if first < 27 

    xls_col = char(first + 64); 

else 

    error('Too many input variables'); 

end 

second = rem( xls_num, 26 ); 

xls_col = [ xls_col char( second + 64 )]; 

 

Published with MATLAB® 7.8 

C.3 gnmm_ann_cv 

Contents 

 Function reference 
 Defining variables and checking input arguments 
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 Loading data file 
 FastICA toolbox path 
 Recording training configuration & progress 
 MLP's iterations 
 Recording training progress 
 Reporting programme termination 
 ICA weight initialization 

function gnmm_ann_cv( data_file, col_to_use, varargin ) 

Function reference 

 Using ANNs to model input/output relationships between input 

 variables found by GAs and output targets. 

Syntax 

 [ ] = gnmm_ann_cv( data_file, col_to_use ); 

 [ ] = gnmm_ann_cv( data_file, col_to_use, output_file ); 

 [ ] = gnmm_ann_cv( data_file, col_to_use, [argID, value, ...]) 

Description 

 [ ] = gnmm_ann_cv( data_file, col_to_use ) takes two input 

 arguments, as below. 

     data_file (string) The file name that contains training & 

     target data. It has to be in the '.mat' format and contain 

     the matrix called 'train_data'. The matrix has to be 

     arranged such that data samples are in rows and and 

     variables in columns; training targets to the right of 

     training inputs. 

     col_to_use (vector) A row vector that contains the 

     variable numbers that appear most when being trained by 

     GNMM's GA process. 

 [ ] = gnmm_ann_cv( data_file, col_to_use, output_file ), takes 

 an optional argument 'output_file' (string), which specifies 

 the name of the 'mat' file that holds the ANN training 

 results. 

 [ ] = gnmm_ann_cv( data_file, col_to_use, [argID, value, ... 

 ]) takes several optional input arguments in the format of 

 [argID, value] pairs. 'argID' will always be the type of 

 'string', but 'value' may vary as detailed below. In the 

 absence of these optional arguments, gnmm_ann_cv will use the 

 default values. 

     'output_file' (string) The name of the 'mat' file that 

     holds the ANN training results. 

     'ANN_POCH' (string), value (int) Number of epochs for the 

     MLP training. Default (30000). Increasing this number will 

     increase the memory usage dramatically. 

     'NEURON_H' (string), value (int) Number of neurons in the 

     MLP's hidden layer. (12). 

     'NEURON_O' (string), value (int) Number of neurons in the 

     MLP's output layer. (4). 

     'ICA_USED' (string), value (bool) Whether FastICA toolbox 
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     will be used. (false). 

     'iterations' (string), value (int) Number of iterations 

     for each MLP's implementation. (2000) 

     'l_rate' (string), value (double) The learning rate. 

     (0.04). 

     'training_per' (string), value (double) Training data 

     percentage. (0.9). 

     'valid_per' (string), value (double) Validation data 

     percentage. (0.1). 

     'valid_num' (string), value (double) The number of k-fold 

     cross validation. (10). 

Examples 

 [ ] = gnmm_ann_cv( 'data_l1b', [ 3 4 8 20 26 28 29 31 32 36 45 

48 

 52 56 60 ] ); 

Notes 

 In order to use the FastICA toolbox, the toolbox has to be 

 placed in the parent folder, i.e. the toolbox folder and the 

 current folder share the same parent folder. The current 

 function is checked to be compatible with FastICA 2.5. 

 The current version of the function works with Matlab R2008a 

 (7.6). 

See Also 

 gnmm_ga, gnmm_ga_write, gnmm_rules 

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK 

Add k-fold cross validation 

Defining viriables and checking input arguments 

error( nargchk( 1, Inf, nargin )); 

 

switch version( '-release' ) 

 

    case {'2008b', '2009a'} 

        p = inputParser;   % Create an instance of the class. 

        p.addRequired( 'data_f', @ischar ); 

        p.addRequired( 'col_use', ... 

            @( x ) sum( x - double( int32( x ))) == 0 ); 

        p.addOptional( 'output_f', ... 

            ['ann' data_file( strfind( data_file, '_' ): ... 

            end )], @ischar ); 

        p.addParamValue( 'ANN_POCH', 3000, ... 

            @( x ) x > 0 && mod( x, 1 ) == 0 ); 

        p.addParamValue( 'NEURON_H', 10, ... 

            @( x ) x > 0 && mod( x, 1 ) == 0 ); 

        p.addParamValue( 'NEURON_O', 1, ... 

            @( x ) x > 0 && mod( x, 1 ) == 0 ); 
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        p.addParamValue( 'ICA_USED', false, @islogical ); 

        p.addParamValue( 'iterations', 100, ... 

            @( x ) x > 0 && mod( x, 1 ) == 0 ); 

        p.addParamValue( 'training_per', 0.9, @( x ) x<= 1 ); 

        p.addParamValue( 'valid_per', 0.1, @( x ) x <= 1 ); 

        p.addParamValue( 'l_rate', 0.04, @( x ) x <= 1 ); 

        p.addParamValue( 'valid_num', 10, ... 

            @( x ) x > 0 && mod( x, 1 ) == 0 ); 

 

        % Parse and validate all input arguments. 

        p.parse( data_file, col_to_use, varargin{ : } ); 

 

    case '2006a' 

        if mod( nargin, 2 ) ~= 0 

            error( 'Inputs got to be pairs' ) 

        end 

 

        p.Results.data_f = data_file; 

        p.Results.col_use = col_to_use; 

        p.Results.output_f = ... 

            ['ann' data_file( strfind( data_file, '_' ): end )]; 

        p.Results.ANN_POCH = 3000; 

        p.Results.NEURON_H = 4; 

        p.Results.NEURON_O = 1; 

        p.Results.ICA_USED = false; 

        p.Results.iterations = 1000; 

        p.Results.training_per = 0.9; 

        p.Results.valid_per = 0.1; 

        p.Results.l_rate = 0.04; 

        p.Results.valid_num = 10; 

 

        i=1; 

        while i <= length( varargin ) 

            if ischar( varargin{ i } ) 

                switch varargin{ i } 

                    case 'output_file' 

                        i = i + 1; 

                        p.Results.output_f = varargin{ i }; 

                    case 'ANN_POCH' 

                        i = i + 1; 

                        p.Results.ANN_POCH = varargin{ i }; 

                    case 'NEURON_H' 

                        i = i + 1; 

                        p.Results.NEURON_H = varargin{ i }; 

                    case 'NEURON_O' 

                        i = i + 1; 

                        p.Results.NEURON_O = varargin{ i }; 

                    case 'ICA_USED' 

                        i = i + 1; 

                        p.Results.ICA_USED = varargin{ i }; 

                    case 'iterations' 

                        i = i + 1; 

                        p.Results.iterations = varargin{ i }; 

                    case 'training_per' 

                        i = i + 1; 

                        p.Results.training_per = varargin{ i }; 

                    case 'valid_per' 

                        i = i + 1; 

                        p.Results.valid_per = varargin{ i }; 
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                    case 'l_rate' 

                        i = i + 1; 

                        p.Results.l_rate = varargin{ i }; 

                    otherwise 

                        error( 'Wrong argID.' ) 

                end 

            else 

                error( ['Input argument pair has ' ... 

                    'to start with strings'] ) 

            end 

            i = i + 1; 

        end 

 

    otherwise 

        error( ['Check to see if this version of ' ... 

            'Matlab support ''inputParser''.'] ) 

end 

Loading data file 

data_saved = load( p.Results.data_f ); 

raw_data = data_saved.train_data; 

clear data_saved 

raw_data = raw_data'; 

[ data_std, std_record ] = mapstd( raw_data ); 

clear raw_data 

FastICA toolbox path 

if p.Results.ICA_USED == true 

    current_sys = computer; 

    switch current_sys 

        case { 'SOL2', 'GLNX86' } 

            dir_sep = '/'; 

        case 'PCWIN' 

            dir_sep = '\'; 

        otherwise 

            disp( 'Unknown OS.' ) 

    end 

    current_p = pwd; 

    ica_path = strcat( current_p( 1 :... 

        max( strfind( current_p, dir_sep ))), 'FastICA_25' ); 

    addpath( ica_path ) 

end 

Recording training config & progress 

t = cputime; 

start_time = datestr( now ); 

fid1 = fopen( strcat( p.Results.output_f, '.txt' ), 'w' ); 

fprintf( fid1, 'GNMM''s ANN training process\n' ); 

fprintf( fid1, 'Programme starts    @ %10s\n\n', start_time ); 

fprintf( fid1, 'Total iterations                    %6.0f\n',... 

    p.Results.iterations ); 

fprintf( fid1, 'NO. of epoches in each iteration    %6.0f\n',... 

    p.Results.ANN_POCH ); 

fprintf( fid1, 'NO. of hidden neurons               %6.0f\n',... 
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    p.Results.NEURON_H ); 

fprintf( fid1, 'Neurons in the output layer         %6.0f\n',... 

    p.Results.NEURON_O ); 

fprintf( fid1, 'Is FastICA used?                    %6.0f\n',... 

    p.Results.ICA_USED ); 

fprintf( fid1, 'Training data percentage            %6.2f\n',... 

    p.Results.training_per ); 

fprintf( fid1, 'Validation data percentage          %6.2f\n',... 

    p.Results.valid_per ); 

fprintf( fid1, 'Learning rate                       %6.2f\n',... 

    p.Results.l_rate); 

fprintf( fid1, 'K-fold cross validation             %6.0f\n',... 

    p.Results.valid_num); 

fprintf( fid1, 'Variables slected                   %6.0f\n',... 

    p.Results.col_use); 

fprintf( fid1, 'Current iteration:\n\n' ); 

MLP's iterations 

[ total_para total_files ] = size( data_std ); 

files_train = ceil( total_files * p.Results.training_per ); 

files_val = floor( total_files * p.Results.valid_per ); 

error_record = []; 

 

for j = 1 : p.Results.iterations 

    start_time1 = datestr(now); 

 

    % Generating training and validation sets 

    for k = 1 : p.Results.valid_num 

        random_position = randperm( total_files ); 

        train_serial = random_position( 1 : files_train ); 

        valid_serial = random_position( files_train + 1 :... 

            files_train + files_val ); 

        TRAIN_DATA = data_std( p.Results.col_use, train_serial ); 

        TRAIN_TARGET = data_std( total_para - ... 

            p.Results.NEURON_O + 1 : total_para, train_serial ); 

        VAL.P = data_std( p.Results.col_use, valid_serial ); 

        VAL.T = data_std( total_para - p.Results.NEURON_O + 

1 :... 

            total_para, valid_serial ); 

 

        if k == 1 

            net = newff( minmax( TRAIN_DATA ), 

[ p.Results.NEURON_H, ... 

                p.Results.NEURON_O ], {'tansig', 'purelin'}, 

'trainlm' ); 

            net.trainParam.epochs = p.Results.ANN_POCH; 

            net.trainParam.show = NaN; 

            net.trainParam.showWindow = false; 

            net.trainParam.lr = p.Results.l_rate; 

            net = init( net ); 

            if p.Results.ICA_USED 

                net = ica_wi( net, TRAIN_DATA, TRAIN_TARGET ); 

            end 

        end 

        [ net, tr ]=train( net, TRAIN_DATA, TRAIN_TARGET, ... 

            [ ], [ ], VAL ); 

        sim_error = tr.perf( size( tr.perf, 2 ) ); 
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    end 

 

    finish_time1 = datestr(now); 

    if j == 1 

        error_record = sim_error; 

        fprintf( fid1, ['Initial training MSE                

' ... 

            '%6.4e\n'], error_record ); 

        fprintf( fid1, ['Iteration starts                    

' ... 

            '%6s\n'], start_time1 ); 

        fprintf( fid1, ['Iteration finishes                  

' ... 

            '%6s\n\n'], finish_time1 ); 

    end 

    if sim_error < error_record 

        error_record = sim_error; 

        fprintf( fid1, ['training MSE  @%6.0fth iteration  ' ... 

            '%12.4e\n'], j, error_record); 

        fprintf( fid1, ['iteration starts                    

' ... 

            '%6s\n'], start_time ); 

        fprintf( fid1, ['iteration finishes                  

' ... 

            '%6s\n\n'], finish_time1 ); 

 

        save( p.Results.output_f, 'net', 'train_serial', ... 

            'valid_serial', 'col_to_use', 'data_std') 

    end 

end 

Recording training progress 

finish_time = datestr( now ); 

cpu_time = cputime - t; 

fprintf( fid1, '\n\n\n' ); 

fprintf( fid1, 'programme finishes  @ %10s\n', finish_time ); 

fprintf( fid1, 'total CPU time        %6.2f (s)', cpu_time ); 

fclose( fid1 ); 

Reporting programme termination 

if strcmp( eval( 'computer' ), 'SOL2') 

    %eval( [ '! echo "' p.Results.output_f... 

    %    '" | mail j.yang.3@warwick.ac.uk' ] ) 

    eval( [ '! echo "' p.Results.output_f... 

        ' done" | /usr/lib/sendmail esrebt@eagle' ] ) 

end 

ICA weight initialization 

Nested function. Weight initialization using FastICA 2.5. 

    function net = ica_wi( net, TRAIN_DATA, TRAIN_TARGET ) 

        ica_inputs = TRAIN_DATA; 
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        inputs_mean_rec = mean( ica_inputs, 2 ); 

        inputs_mean = repmat( inputs_mean_rec,... 

            [ 1 size( ica_inputs, 2 )]); 

        inputs_mean_moved = ica_inputs - inputs_mean; 

 

        [ inputs_source, A, W ] = fastica( inputs_mean_moved,... 

            'verbose', 'off', 'numOfIC',... 

            net.layers{ 1 }.size, 'displayMode', 'off',... 

            'stabilization', 'on' ); 

        % 50% of maximum direvative for 'tansig' 

        fifty_active = log( 3 + 2 * 2 ^.5 ) / 2; 

        input_wt_co = fifty_active /... 

            max( max( abs( inputs_source ))); 

        input_wt = input_wt_co * W; 

        input_thr = -1 * input_wt_co * W* inputs_mean_rec; 

 

        net.IW{ 1, 1 } = input_wt; 

        net.b{ 1, 1 } = input_thr; 

 

        hidden_out = tansig( input_wt_co * inputs_source ); 

        out_wt = lscov( hidden_out', TRAIN_TARGET' )'; 

        net.LW{ 2, 1 } = out_wt; 

    end 

end 

 

Published with MATLAB® 7.8 

C.4 gnmm_rules 

Contents 

 Function reference 
 Define some constants and load previously saved variables 
 Define the data matrix 
 Nested function. 

function [ rules_train, rules_val ] = gnmm_rules( results_file ) 

Function reference 

 Extract regression rules from trained MLPs. 

Syntax 

 [ rules_train, rules_val ] = gnmm_rules( results_file ); 

Description 



Appendix C Matlab Programme for GNMM 252 

 

 [ rules_train, rules_val ] = gnmm_rules( results_file ) takes 

 a singgle input argument 'results_file', which is the 'mat' 

 file name that holds GNMM's ANN training results. 

 'rules_train' and 'rules_val' each contains two columns, and 

 as many rows as the number of rules fired for the training and 

 validation sub data set. The first column is the actual rule 

 being fired, the second column is the corresponding number of 

 data samples 

Examples 

 [ rules_train, rules_val ] = gnmm_rules( 'ann_l1b' ); 

Notes 

 The current version of the function only works with MLPs whose 

 output layer only contains a single neuron. See References for 

 details. 

See Also 

 gnmm_ga, gnmm_ga_write, gnmm_ann 

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK 

Define some constants and load previously saved variables 

beta1=1.0020101308531; beta2=-0.251006075157012; 

kupa=1.99607103795966; 

col_to_use = []; 

train_serial = []; 

valid_serial = []; 

data_std = []; 

net = []; 

eval([ 'load ' results_file ' ''net'' ''train_serial'''... 

    ' ''valid_serial'' ''col_to_use'' ''data_std''' ]) 

% eval(['load ' results_file]) 

theta = net.b{ 1 }'; 

condi = [ ]; 

for i=1:length( theta ) 

    condi( i, 1 ) = - kupa - theta( i ); 

    condi( i, 2 ) = - theta( i ); 

    condi( i, 3 ) = kupa - theta( i ); 

end 

Define the data matrix 

data = data_std( col_to_use, : ); 

data_tran = ( net.IW{ 1, 1 } * data )'; 

data_t = data_tran( train_serial, : ); 

data_v = data_tran( valid_serial, : ); 
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rules_train = rule_find( data_t, train_serial ); 

rules_val = rule_find( data_v, valid_serial ); 

Nested function. 

Calculate the actual rule numbers and the each rule's execution. 

    function rule_list = rule_find( data_sub, serial_sub ) 

        %temp = []; this means double, WRONG!! 

        %base2dec('444', 5)=124 

        rule_count = zeros( 1, base2dec( num2str( ones( 1, ... 

            length( theta )) * 4, '%1.0f' ), 5 )); 

 

        for k = 1 : length( serial_sub ) 

            data_ind = data_sub( k, : ); 

            for o = 1 : length( theta ) 

                if data_ind( o ) >= condi( o, 3 ) 

                    temp( o ) = '4'; 

                else if data_ind( o ) < condi( o, 3 ) && ... 

                            data_ind( o ) >= condi( o, 2 ) 

                        temp( o ) = '3'; 

                    else if data_ind( o ) < condi( o, 2 ) && ... 

                                data_ind( o ) >= condi( o, 1 ) 

                            temp( o ) = '2'; 

                        else temp( o ) = '1'; 

                        end 

                    end 

                end 

            end 

            inde = base2dec( temp, 5 ); 

            rule_count( inde ) = rule_count( inde ) + 1; 

        end 

 

        rules_real = find( rule_count ~= 0 ); 

        for p = 1 : length( rules_real ) 

            rule_list( p, 1 ) = str2double( dec2base( ... 

                rules_real( p ), 5 )); 

            rule_list( p, 2 ) = rule_count( rules_real( p )); 

        end 

    end 

end 

 

Published with MATLAB® 7.8 
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C.5 gnmm_TestData 

Contents 

 Function reference 
 Defining variables and checking input arguments 
 Loading data file and training results 
 Compute the rmse/r^2 and display results 

function gnmm_TestData( data_file, result_mat, varargin ) 

Function reference 

 Apply trained ANNs to training/test data to perform the 

 pattern recognition task. Also shows the 'coefficient of 

 determination' for the original and test data. 

Syntax 

 [ ] = gnmm_TestData( data_file, result_mat ); 

 [ ] = gnmm_TestData( data_file, result_mat, test_data ) 

Description 

 [ ] = gnmm_TestData( data_file, result_mat) takes 

 two input arguments, as below. 

     data_file (string) The file name that contains training & 

     target data. It has to be in the '.mat' format and contain 

     the matrix called 'train_data'. The matrix has to be 

     arranged such that data samples are in rows and and 

     variables in columns; training targets to the right of 

     training inputs. 

     result_mat (string) The workspace saved as in '.mat' 

     format from the previous ANN training stage using 

     parameters selected by GAs. 

 [ ] = gnmm_TestData( data_file, result_mat, test_data ), takes 

 an optional argument 'test_data' (string), which specifies the 

 name that contains test data. It has to be in the '.mat' 

 format and contain the matrix called 'test_data'. Format 

 requirement is the same as in data_file. 

Examples 

 gnmm_TestData( '2class_new', 'ann_new3', '2class_test'); 

See Also 

 gnmm_ga, gnmm_ga_write, gnmm_rules 
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Copyright (c) 2006-2009 J. Yang, ISEL, Warwick University, UK Revision: 1 

$ $Date: 12/02/2009 15:05:22 $ 

Defining viriables and checking input arguments 

error( nargchk( 1, Inf, nargin )); 

% data_file = '2class_new'; 

% result_mat = 'ann_new3'; 

% test_data = '2class_test'; 

% varargin = {}; 

 

switch version( '-release' ) 

 

    case '2008b' 

        p = inputParser;   % Create an instance of the class. 

        p.addRequired( 'data_f', @ischar ); 

        p.addRequired( 'result_m', @ischar ); 

        p.addOptional( 'data_t', 'data_t', @ischar ); 

 

        % Parse and validate all input arguments. 

        p.parse(data_file, result_mat, varargin{ : } ); 

 

    case '2006a' 

        p.Results.data_f = data_file; 

        p.Results.result_m = result_mat; 

        if length( varargin ) == 0 

            p.Results.data_t = 'data_t'; 

        else if length( varargin ) == 1 

                p.Results.data_t = varargin{ 1 }; 

            else 

                error( 'Too many inputs' ); 

            end 

        end 

 

        p.Results.data_t = test_data; 

 

    otherwise 

        error( ['Check to see if this version of ' ... 

            'Matlab support ''inputParser''.'] ) 

end 

Loading data file and training results 

data_saved = load( p.Results.data_f ); 

raw_data = data_saved.train_data'; 

[ data_std, std_record ] = mapstd( raw_data ); 

data_saved = load( p.Results.result_m ); 

net = data_saved.net; 

% train_serial = data_saved.train_serial; valid_serial = 

% data_saved.valid_serial; 

col_to_use = data_saved.col_to_use; 

% data_std = data_saved.data_std; 

 

presence_test = ~strcmp(p.Results.data_t , 'data_t'); 

if presence_test 

    data_saved = load( p.Results.data_t ); 

    test_data = data_saved.test_data'; 
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    test_std = mapstd('apply', test_data, std_record); 

 

end 

clear data_saved 

 

% map the simulated value back to original range according y = 

% (x-xmean)*(ystd/xstd) + ymean;; 

target_std = std_record.xstd(end); 

target_mean = std_record.xmean(end); 

map_back = @(x) (target_mean + x*target_std); 

r_square = @(tar, pred) (1  - sum((pred - tar).^2)/sum(tar.^2)); 

Compute the rmse/r^2 and display results 

This is done by mapping trained data back to its original range for the training 

data 

train_orig = raw_data(end, :); 

train_simed = sim(net, data_std(col_to_use, :)); 

train_simed_orig = map_back(train_simed); 

train_rmse = mse(train_simed_orig - train_orig)^.5; 

train_r2 = r_square(train_orig, train_simed_orig); 

disp('---------------------------------------------'); 

fprintf('training R-squared          %6.4f\n', train_r2); 

fprintf('training RMSE               %6.4f\n', train_rmse); 

 

% for the testing data 

if presence_test 

    test_orig = test_data(end, :); 

    test_simed = sim(net, test_std(col_to_use, :)); 

    test_simed_orig = map_back(test_simed); 

    test_rmse = mse(test_simed_orig - test_orig)^.5; 

    test_r2 = r_square(test_orig, test_simed_orig); 

    disp('---------------------------------------------'); 

    fprintf('testing R-squared           %6.4f\n', test_r2); 

    fprintf('testing RMSE                %6.4f\n', test_rmse); 

end 
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Appendix D VBA Programme for GNMM 

Attribute VB_Name = "Module1" 

Option Explicit 
 
Sub GNMM_Analyse() 
    'Analyse GNMM's GA results file (Excel 2007 format, 'xlsx'), 

    'pick up mostly appeared variables 

    Dim Sheet_Number As Integer 
    Dim Var_Number As Integer 

    Dim Count As Integer 
    Dim Genes_Number As Integer 
    Dim Rows_Done As Integer 
    Dim First_Sheet As Boolean 
    Dim Summary_Sht As Worksheet 
    Dim Input_Area As Range 
    Dim DataRange As Range 
    Dim Formula_Sum As String 

    Dim App_Per As Chart 
     
    Application.ScreenUpdating = False 
         
    Sheet_Number = Worksheets.Count 
    'MsgBox "Total number of worksheets in the current file: " & Sheet_Number 

    Var_Number = InputBox("Key in the total number of variables", _ 

    "GNMM user input") 
    'Var_Number = 60 

    First_Sheet = True 
     
    For Count = 1 To Sheet_Number 
        If Worksheets(Count).Name = "summary" Then 
            MsgBox "This macro may have already been implemented." _ 

            & " If not, rename worksheet 'summary'." 
            Exit Sub 
        End If 
    Next Count 
     
    For Count = 1 To Sheet_Number 
        If Worksheets(Count).Name <> "config" Then 

            If First_Sheet Then 
                Set Summary_Sht = _ 
                Worksheets.Add(After:=Sheets(Sheet_Number)) 
                Summary_Sht.Name = "summary" 
                With Worksheets(Count) 
                    .Range(.Range("A1"), _ 
                    .Range("A1").Offset(0, Var_Number - 1)).Copy _ 
                    Summary_Sht.Range("B1") 

                End With 
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                Summary_Sht.Range("A1") = "Sheet" 
                First_Sheet = False 

            End If 
             
            Worksheets(Count).Activate 
            'The actual gene number is the number below - 1 

            Genes_Number = Range("A1").CurrentRegion.Rows.Count 
             
            Set Input_Area = _ 
            Range(Range("A1").Offset(Genes_Number, 0), _ 

            Range("A1").Offset(Genes_Number, Var_Number - 1)) 
             
            Formula_Sum = "= AVERAGE( R[" & _ 
            1 - Genes_Number & "]C : R[-1]C )" 
             
            'For Each cell In Input_Area 

            '   cell.FormulaR1C1 = Formula_Sum 

            '   cell.Interior.Color = RGB(128, 60, 90) 

            'Next cell 

            Input_Area.FormulaR1C1 = Formula_Sum 
            Input_Area.Interior.Color = RGB(128, 60, 90) 
            Input_Area.Copy 
             
            Summary_Sht.Activate 

            Rows_Done = Range("A1").CurrentRegion.Rows.Count 
            With Summary_Sht.Range("A1") 
                .Offset(Rows_Done, 1).PasteSpecial _ 
                xlPasteValues, xlPasteSpecialOperationNone 
                .Offset(Rows_Done, 0) = Worksheets(Count).Name 
            End With 
        End If 
        'MsgBox "Worksheet " & Worksheets(Count).Name & " has been processed." 

    Next Count 
     
    'If the following contains "= AVERAGE (R[ " &..." (space inside) 

    'it produces an error 

    Set DataRange = Summary_Sht.Range("B1", _ 
    Range("B1").Offset(0, Var_Number - 1)).Offset(Sheet_Number, 0) 
     
    DataRange.FormulaR1C1 = "= AVERAGE( R[" & _ 
    1 - Sheet_Number & "]C : R[-1]C )" 
    Range("A1").End(xlDown).Offset(1, 0).Value = "Average" 
     
    Set App_Per = Charts.Add 
    App_Per.Name = "App Per" 
    App_Per.SetSourceData Source:=DataRange 

    ActiveChart.ChartType = xlColumnClustered 
     
    Summary_Sht.Activate 
    With Summary_Sht.Range("A1") 
        .CurrentRegion.Copy 
        .End(xlDown).Offset(2, 0).PasteSpecial Transpose:=True 
        .End(xlDown).Offset(2, 0).CurrentRegion.Select 
    End With 
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    ActiveSheet.ListObjects.Add(xlSrcRange, _ 
    Selection, , xlYes).Name = "Table1" 

End Sub 
 
Sub GNMM_Record() 
    'Write the mostly appeared variable number into a cell 

    Dim rngData As Range 
    Dim rngRow As Range 
    Dim Picked_C As Range 
    Dim Picked_R As Range 

    Dim Ind_Num As String 
    Dim Total_Num As String 
    Dim Count As Integer 
    Dim Row_Ext As Integer 
 
    'Locate datarows 

    Set rngData = ActiveSheet.ListObjects("Table1").DataBodyRange 

 
    Total_Num = "[ " 
    Count = 0 
    'Loop through all data rows 

    For Each rngRow In rngData.Rows 
        'Only process visible rows 

        If rngRow.EntireRow.Hidden = False Then 
            'Check calculation 

            Ind_Num = rngRow.Cells(1).Value 
            Total_Num = Total_Num & " " & Right(Ind_Num, 2) 
            Count = Count + 1 
        End If 
    Next rngRow 
    Total_Num = Total_Num & " ]" 
 

    Set Picked_C = Range("A1").End(xlDown).Offset(2, 0). _ 
    End(xlToRight).Offset(0, 2) 
    Set Picked_R = Picked_C.CurrentRegion 
 
    Row_Ext = Picked_R.Rows.Count 
    If Row_Ext = 1 Then 
        Picked_C = "Criteria" 

        Picked_C.Offset(0, 1) = "Count" 
        Picked_C.Offset(0, 2) = "Lists" 
    End If 
    Picked_C.Offset(Row_Ext, 0) = ActiveSheet.ListObjects(1). _ 
    AutoFilter.Filters(rngData.Columns.Count).Criteria1 
    Picked_C.Offset(Row_Ext, 1) = Count 
    Picked_C.Offset(Row_Ext, 2) = Total_Num 

 
    MsgBox Total_Num 
 
    With ActiveSheet.ListObjects("Table1").Range 
        .AutoFilter Field:=.Columns.Count 
    End With 
 
    'If ActiveSheet.ListObjects(1).ShowAutoFilter Then 
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    'If ActiveSheet.ListObjects(1).AutoFilter.Filters(4).On Then 

    'MsgBox ActiveSheet.ListObjects(1).AutoFilter.Filters(4).Criteria1 

    'ActiveSheet.ListObjects("Table1").ShowAutoFilter = True 

    'End If 

    'End If 

End Sub 
 
 

 

 

 

 



 

 

Appendix E RMSE and Winning Variables for Case 7 of Data I 
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Appendix F Appearance Percentage of Data III 

 

Selected channels are [7 12 17 21 22 45 46 47 54 59]. 
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