
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/3831

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

Intelligent Data Mining using Artificial Neural

Networks and Genetic Algorithms: Techniques

and Applications

By

Jianhua Yang

A dissertation submitted in fulfilment of the

requirements for the degree of Doctor of Philosophy

University of Warwick, School of Engineering

02/05/2010

Contents

List of Figures .. 6

List of Tables ... 9

Acknowledgements .. 10

Declaration ... 11

List of Author's Publications ... 12

Abstract .. 14

Abbreviations ... 16

Chapter 1 An Introduction to Intelligent Data Mining 18

1.1 Data Mining.. 18

1.1.1 Procedures and Tasks .. 20

1.1.2 Challenges and Scope .. 22

1.2 Intelligent Data Mining ... 24

1.2.1 Artificial Neural Networks (ANNs) .. 25

1.2.2 Genetic Algorithms (GAs)... 36

1.3 Research Objectives ... 44

1.4 Thesis Outline... 45

References ... 46

Chapter 2 Hybrid Intelligent System Data Mining Techniques and
the Genetic Neural Mathematical Method 58

2.1 Introduction ... 58

2.2 Hybrid Intelligent System Data Mining Techniques 59

2.2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 59

2.2.2 Evolving Fuzzy Neural Network (EFuNN) .. 60

2.2.3 Fuzzy ARTMAP ... 63

2.2.4 Cartesian Genetic Programming (CGP)... 64

2.3 The Genetic Neural Mathematical Method (GNMM) 66

2.3.1 Step 1 – Genetic Algorithm for Input Optimization 69

2.3.2 Step 2 – Multi-Layer Perceptron Modelling 77

2.3.3 Step 3 – Rule Extraction using Mathematical Programming 88

2.4 Summary .. 90

References ... 92

Contents 4

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in
Rivers .. 99

3.1 Introduction ... 99

3.2 Background .. 100

3.3 Datasets and Pre-processing .. 105

3.3.1 Datasets .. 105

3.3.2 Data Pre-processing ... 105

3.3.3 Division into Training and Testing Data .. 107

3.4 GNMM Implementation ... 110

3.4.1 Variable Selection .. 110

3.4.2 MLP Training ... 117

3.4.3 Rule Extractions ... 120

3.5 Discussions ... 123

3.5.1 Principal Component Analysis .. 123

3.5.2 Self-Organizing Map .. 127

3.6 Summary .. 130

References ... 132

Chapter 4 Channel Selection and Classification of EEG Signals .. 135

4.1 Introduction ... 135

4.2 Background .. 136

4.3 Data III – Two-Class Motor Imagery .. 140

4.3.1 Experiment Setup .. 140

4.3.2 Pre-processing ... 141

4.3.3 Channel Selection .. 143

4.3.4 Classification Results ... 144

4.4 Data IV – Response Priming Paradigm .. 147

4.4.1 The Experiment ... 147

4.4.2 Pre-processing ... 149

4.4.3 Channel Selection and Pattern Classification 150

4.4.4 Rule Extraction .. 155

4.5 Summary .. 157

References ... 159

Chapter 5 Optimising the Number of Electronic Nose Sensors .. 162

5.1 Introduction ... 162

5.2 Background – Multisensor Data Fusion .. 163

5.3 Intelligent System Techniques Applied to MDF Problems 166

5.4 Data V – Eye Bacteria Species ... 170

5.5 GNMM Results and Discussions .. 171

5.6 Summary .. 177

References ... 178

Contents 5

Chapter 6 Classification of the Pima Indians Diabetes Database182

6.1 Introduction ... 182

6.2 Dataset ... 183

6.3 GNMM Results ... 184

6.4 Other Hybrid IS DM Techniques ... 186

6.4.1 ANFIS ... 186

6.4.2 EFuNN ... 191

6.4.3 Fuzzy ARTMAP ... 194

6.4.4 CGP ... 195

6.5 GA Parameter ... 199

6.5.1 Interactions among GA Parameters ... 200

6.5.2 Determine the Parameter Set .. 201

6.5.3 Ranges and Step Sizes .. 203

6.5.4 Results ... 204

6.5.5 Discussions .. 208

6.6 Summary .. 209

References ... 211

Chapter 7 Conclusions and Future Work 217

7.1 Results Overview .. 217

7.1.1 GNMM Steps ... 217

7.1.2 Case Study Results ... 218

7.1.3 Advantages/Disadvantages .. 220

7.2 Future research directions.. 222

References ... 224

Appendix A Data I – UK Environmental Agency Data 225

Appendix B Data II – US Dispersion Data 232

Appendix C Matlab Programme for GNMM 234

Appendix D VBA Programme for GNMM 257

Appendix E RMSE and Winning Variables for Case 7 of Data I ... 261

Appendix F Appearance Percentage of Data III 262

List of Figures

Figure 1-1: The evolution of database system technology (adapted from
Han and Kamber 2006) .. 19

Figure 1-2: Data mining as a step in the process of knowledge discovery 21

Figure 1-3: Data mining as a confluence of many disciplines (adapted
from Tan, Steinbach et al. 2006) .. 23

Figure 1-4: Schematic diagram of a biological neuron 26

Figure 1-5: Illustration of an artificial neuron ... 26

Figure 1-6: Architecture of ANNs. (a) Multilayer Feedforward Neural
Network; (b) Self-Organizing Map; (c) Multilayer Recurrent
Neural Network; (d) Cellular Neural Network 28

Figure 1-7: Global optimization approaches (adapted from Coello Coello,
Lamont et al. 2007) .. 37

Figure 1-8: Evolutionary Computation components 38

Figure 2-1: Adaptive Neuro-Fuzzy Inference System 61

Figure 2-2: Architecture of Evolving Fuzzy Neural Network (adapted
from Kasabov 2007) ... 61

Figure 2-3: Architecture of Fuzzy ARTMAP (adapted from Xu, Xuan et al.
2009) ... 63

Figure 2-4: A possible CGP genotype and corresponding phenotype for a
2-bit parallel multiplier circuit (adapted from Walker and
Miller 2008) ... 65

Figure 2-5: Interactions between GNMM components. (a) The GNMM
algorithm; (b) A Simple Genetic Algorithm; (c) A three-layer
MLP ... 68

Figure 2-6: Binary coding chromosome .. 70

Figure 2-7: Genetic operators .. 70

Figure 2-8: Adaptive mutation rate .. 74

Figure 2-9: Sample activation functions ... 82

Figure 2-10: The Back-Propagation training algorithm 84

Figure 2-11: GNMM extracts regression rules from trained MLPs 89

Figure 3-1: RMSE and winning variables for Data II training subset in
Case 2 .. 111

Figure 3-2: Appearance percentage for Case 2 of Data II training subset 113

Figure 3-3: Appearance percentage for Data I training subset 114

Figure 3-4: Appearance percentage for Data II training subset 114

Figure 3-5: Comparison of performance using all variables and selected
variables for Data I training subset for a single run 116

Figure 3-6: Comparison of performance using all variables and selected
variables for Data II training subset for a single run 116

Figure 3-7: Predicted and measured longitudinal dispersion coefficients
for Data I ... 118

List of Figures 7

Figure 3-8: Predicted and measured longitudinal dispersion coefficients
for Data II... 118

Figure 3-9: Percentage of the first 7 principal components in Data I 124

Figure 3-10: Projections of Data I points and variables onto the first two
principal components .. 124

Figure 3-11: Percentage of the first 5 principal components in Data II 126

Figure 3-12: Projections of Data II points and variables onto the first two
principal components .. 126

Figure 3-13: SOM analysis of Data I .. 128

Figure 3-14: SOM analysis of Data II ... 130

Figure 4-1: Data III – two-class imaginary movements (Adapted from Lal,
Hinterberger et al. 2005) ... 141

Figure 4-2: Least square approximation for a signal segment in Data III 142

Figure 4-3: Target and predicted values for Data III training/validation
set ... 146

Figure 4-4: Schematic representation of stimulus material and trial
structure in Data IV experiments ... 148

Figure 4-5: Position of EEG electrodes used in Data IV experiments
arranged by: (a) position and (b) number 148

Figure 4-6: EEG signal of channel Cz for the first epoch of Data IV event
No.1 and its LS approximations across different time
windows .. 149

Figure 4-7: Appearance percentage distribution around the scalp for
Data IV subsets .. 152

Figure 4-8: Classification accuracy for different subsets in Data IV 153

Figure 4-9: Target and predicted values for subset O1 154

Figure 4-10: Histogram of extracted regression rules from Data IV subset
O1 .. 156

Figure 5-1: Schematic architecture of an electronic nose 164

Figure 5-2: Statistics of the dataset .. 171

Figure 5-3: Appearance of each sensor in Data V for a single case ((a), (b)
and (c)) and the mean appearance for all cases (d) 174

Figure 5-4: Comparisons of the RMSE for the last 50 generations for
each case ... 175

Figure 6-1: Appearance percentage for each attribute in Data VI 185

Figure 6-2: Structure of ANFIS generated for Data VI 187

Figure 6-3: Target/predicted class values and ANFIS prediction error for
Data VI ... 187

Figure 6-4: ANFIS rule viewer applied to Data VI .. 189

Figure 6-5: Rules extracted from the ANFIS system for Data VI 189

Figure 6-6: Membership functions for Attri5 .. 190

Figure 6-7: Rules surface the ANFIS system for Data VI 190

Figure 6-8: Target and EFuNN prediction class values for Data VI 192

Figure 6-9: Rules extracted from the EFuNN system for Data VI 192

Figure 6-10: EFuNN MFs for the first two attributes of Data VI 193

List of Figures 8

Figure 6-11: Target/predicted class values and Fuzzy ARTMAP prediction
error for Data VI .. 194

Figure 6-12: CGP settings and simulation results for Data VI 196

Figure 6-13: Arithmetic rules extracted from CGP for Data VI 196

Figure 6-14: Fitness values for 4 different population sizes 205

Figure 6-15: Fitness values for 4 different crossover probabilities 205

Figure 6-16: Fitness values for 5 different mutation probabilities................. 206

Figure 6-17: Fitness value decreases as generation increases 206

Figure 6-18: Appearance percentage calculated from GAs that were
used to determine the optimal population number (a),
crossover probability (b), mutation probability (c), and
generation number (d)... 208

List of Tables

Table 3-1: Variables in Data I and II .. 106

Table 3-2: Data I statistics .. 109

Table 3-3: Data II statistics ... 109

Table 3-4: GA parameters and CPU speeds/time .. 111

Table 3-5: Comparison of Data IIs (testing subset) results when using 4
different methods. For GNMM, the mean RMSE of 5 runs are
given along with the standard deviations 119

Table 3-6: Rules fired for Data I .. 122

Table 3-7: Rules fired for Data II ... 122

Table 4-1: Configuration of GAs for Data III channels selection 143

Table 4-2: Classification results for Data III, which shows the results for
training/validation and testing subset respectively 146

Table 4-3: EEG channels selected for each subset in Data IV 153

Table 5-1: GNMM configurations for the Data V .. 171

Table 6-1: Data VI statistics .. 183

Table 6-2: 10 most significant rules fired for Data VI 185

Table 6-3: Comparison of classification results for Data VI 198

Table 6-4: GA initial parameter range and step size 203

Table 6-5: Optimal GA parameters for Data VI ... 208

Table 6-6: Feature comparison of GNMM with other IS DM techniques 210

Table 7-1: A summary of case study data and results 219

Acknowledgements

I would like to thank my supervisors, Prof. Evor L. Hines and Dr. Daciana D.

Iliescu, for their wonderful support, excellent supervision and endless

guidance through the research and writing of this thesis. Their constant

enthusiasm for my work was tireless and inspirational.

I would also like to thank my wife, Shan, for her support and tolerance of this

work, as well as all night companionship during the final phase of this work.

Special thanks go to all my family and friends for the help and support that

they have given me in so many ways.

Thanks also go to Dr. Mark S Leeson, Prof. Ian Guymer, Prof. Nigel G. Stocks,

Mr. Harsimrat Singh, Mr. Xu-Qin Li, Mr. John Erik Sloper, Ms Rachel Corke at

the School of Engineering, and Dr. Friederike Schlaghecken at the Department

of Psychology, University of Warwick, for all your support, guiding, discussions

etc. in one way or another. I am also grateful for the encouragement I received

over the years from Prof. Gregory P. King at the University of Lisbon.

Last but not least, I thank the financial support from the Warwick

Postgraduate Research Fellowship (WPRF) and UK Overseas Research Students

Awards Scheme (ORSAS).

Declaration

The work described in this thesis was conducted by the author, except where

stated otherwise, in the School of Engineering, University of Warwick between

the dates of October 2006 and September 2009. No part of this work has been

previously submitted to the University of Warwick or any other academic

institution for admission to a higher degree. All publications to date arising

from this thesis are listed in the next section.

List of Author's Publications

Edited Book

E. L. Hines, M. S. Leeson, M. Martínez-Ramón, M. Pardo, E. Llobet, D. D. Iliescu
and J. Yang (2008), ‘Intelligent Systems: Techniques and Applications’, Shaker
Publishing, ISBN 978-90-423-0345-4

Book Chapters

X-Q Li, M. S. Leeson, E. L. Hines, D. S. Huang, J. Yang, D. D. Iliescu (2010),
‘Neural Networks for Solving Linear and Quadratic Programming Problems
with Modified Newton's and Levenberg-Marquardt Methods’, in ‘Advances in
Mathematics Research’, Volume 11, Editors: A. R. Baswell, Nova Publishers,
ISBN 978-16-087-6970-4

J. Yang, E. L. Hines, I. Guymer, D. D. Iliescu, M. S. Leeson, G. P. King and X-Q Li
(2008), ‘A Genetic Algorithm-Artificial Neural Network Method for the
Prediction of Longitudinal Dispersion Coefficient in Rivers’, in ‘Advancing
Artificial Intelligence through Biological Process Applications’, Editors: A. Porto,
A. Pazos and W. Buño, Idea Group Inc., ISBN 978-15-990-4996-0

J. Yang, E. L. Hines, D. D. Iliescu, M. S. Leeson and P. Boilot (2008), ‘Optimising
the Number of Electronic Nose Sensors needed using Genetic Algorithms and
Neural Networks’, in ‘Intelligent Systems: Techniques and Applications’,
Editors: E. L. Hines, M. S. Leeson, M. Martínez-Ramón, M. Pardo, E. Llobet, D. D.
Iliescu and J. Yang, Shaker Publishing, ISBN 978-90-423-0345-4

J. Yang, E. L. Hines, I. Guymer, D. D. Iliescu and M. S. Leeson (2008), ‘Multi-
input Optimisation of River Flow Parameters and Rule Extraction Using
Genetic-Neural Technique’, in ‘Intelligent Systems: Techniques and
Applications’, Editors: E. L. Hines, M. S. Leeson, M. Martínez-Ramón, M. Pardo,
E. Llobet, D. D. Iliescu and J. Yang, Shaker Publishing, ISBN 978-90-423-0345-4

Journal Papers

J. Yang, E. L. Hines, J. E. Sloper, D. D. Iliescu, M. S. Leeson, (2010, under review).
‘A Comparative Study of Hybrid Machine Learning Methods in the
Classification of the Pima Indians Diabetes Database’, Engineering Applications
of Artificial Intelligence, ISSN 0952-1976

J. Yang, H. Singh, E. L. Hines, F. Schlaghecken, D. D. Iliescu, M. S. Leeson, and N.
G. Stocks (2009, under review). ‘Channel Selection and Classification of EEG

List of Author's Publications 13

Signals: A Neural Network and Genetic Algorithm–based approach’, Neural
Computing and Applications, ISSN 0941-0643

G. P. King, J. Yang, J. Dias and N. Serra (2006), ‘EOF Analysis of Seasonal and
Interannual Variability of the Surface Circulation along the West Iberian Coast
from 1995-2005’, Geophysical Research Abstracts, Vol. 8, 03127, ISSN 1607-
7962

Conference Papers

H. Singh, J. Yang, E. L. Hines, N. G. Stocks (2009), ‘Channel selection for multi
channel multi trial invasive BCI data’ in International Conference on Electronic
Design and Signal Processing (ICEDSP), Manipal Institute of Technology,
Karnataka, India

J. Yang, E. L. Hines, I. Guymer, D. D. Iliescu and M. S. Leeson (2008), ‘A Genetic
Algorithm-Based Input Determination Method for Neural Networks’ in IEEE
Workshop and Summer School on Evolutionary Computing Lecture Series by
Pioneers (WSSEC), Derry, Northern Ireland

J. Yang, E. L. Hines, I. Guymer, D. D. Iliescu, M. S. Leeson and G. P. King (2007),
‘Prediction of Longitudinal Dispersion Coefficient in Rivers using Variables
Identified by Genetic Algorithms’, in the Fifth International Symposium on
Environmental Hydraulics (ISEH V), Tempe, Arizona

J. Yang, E. L. Hines, D. D. Iliescu and M. S. Leeson (2007), ‘GNMM and Accurate
Longitudinal Dispersion Coefficient Prediction’, in the Seventh UK Chinese
Association of Resource and Environment (CARE) Annual Meeting, Greenwich,
London, ISBN 978-09-551-9652-2

Other Publications

J. Yang, E. L. Hines, F. Schlaghecken, D. D. Iliescu, and M. S. Leeson (2009),
‘Neural Network-based EEG Classification and Rule Extraction’, CCNS (Centre
for Cognitive & Neural Systems) Seminar Series, Warwick Digital Laboratory,
University of Warwick, UK

E. L. Hines, J. Yang, P. Boilot, M. S. Leeson, D. D. Iliescu and J.W. Gardner
(2007), ‘Intelligent Systems for Gas Sensing’, in the Joint Sensors,
Instrumentation and Nanotechnology KTN Event, National Physical Laboratory,
Teddington, UK

F. Schlaghecken, E. L. Hines, M. S. Leeson, D. D. Iliescu and J. Yang (2008),
‘Genetic Algorithm-Artificial Neural Network Methods for the Identification
and Prediction of Dynamic Functional Links in Human Cortical Activity
Associated with Cognitive Control Processes’, report to the Warwick Institute
of Advanced Study (IAS)

Abstract

Data Mining (DM) refers to the analysis of observational datasets to find
relationships and to summarize the data in ways that are both understandable
and useful. Many DM techniques exist. Compared with other DM techniques,
Intelligent Systems (ISs) based approaches, which include Artificial Neural
Networks (ANNs), fuzzy set theory, approximate reasoning, and derivative-free
optimization methods such as Genetic Algorithms (GAs), are tolerant of
imprecision, uncertainty, partial truth, and approximation. They provide
flexible information processing capability for handling real-life situations. This
thesis is concerned with the ideas behind design, implementation, testing and
application of a novel ISs based DM technique. The unique contribution of this
thesis is in the implementation of a hybrid IS DM technique (Genetic Neural
Mathematical Method, GNMM) for solving novel practical problems, the
detailed description of this technique, and the illustrations of several
applications solved by this novel technique.

GNMM consists of three steps: (1) GA-based input variable selection, (2) Multi-
Layer Perceptron (MLP) modelling, and (3) mathematical programming based
rule extraction. In the first step, GAs are used to evolve an optimal set of MLP
inputs. An adaptive method based on the average fitness of successive
generations is used to adjust the mutation rate, and hence the
exploration/exploitation balance. In addition, GNMM uses the elite group and
appearance percentage to minimize the randomness associated with GAs. In
the second step, MLP modelling serves as the core DM engine in performing
classification/prediction tasks. An Independent Component Analysis (ICA)
based weight initialization algorithm is used to determine optimal weights
before the commencement of training algorithms. The Levenberg-Marquardt
(LM) algorithm is used to achieve a second-order speedup compared to
conventional Back-Propagation (BP) training. In the third step, mathematical
programming based rule extraction is not only used to identify the premises of
multivariate polynomial rules, but also to explore features from the extracted
rules based on data samples associated with each rule. Therefore, the
methodology can provide regression rules and features not only in the
polyhedrons with data instances, but also in the polyhedrons without data
instances.

A total of six datasets from environmental and medical disciplines were used
as case study applications. These datasets involve the prediction of
longitudinal dispersion coefficient, classification of electrocorticography
(ECoG)/Electroencephalogram (EEG) data, eye bacteria Multisensor Data
Fusion (MDF), and diabetes classification (denoted by Data I through to Data

Abstract 15

VI). GNMM was applied to all these six datasets to explore its effectiveness,
but the emphasis is different for different datasets. For example, the emphasis
of Data I and II was to give a detailed illustration of how GNMM works; Data III
and IV aimed to show how to deal with difficult classification problems; the
aim of Data V was to illustrate the averaging effect of GNMM; and finally Data
VI was concerned with the GA parameter selection and benchmarking GNMM
with other IS DM techniques such as Adaptive Neuro-Fuzzy Inference System
(ANFIS), Evolving Fuzzy Neural Network (EFuNN), Fuzzy ARTMAP, and
Cartesian Genetic Programming (CGP). In addition, datasets obtained from
published works (i.e. Data II & III) or public domains (i.e. Data VI) where
previous results were present in the literature were also used to benchmark
GNMM’s effectiveness.

As a closely integrated system GNMM has the merit that it needs little human
interaction. With some predefined parameters, such as GA’s crossover
probability and the shape of ANNs’ activation functions, GNMM is able to
process raw data until some human-interpretable rules being extracted. This is
an important feature in terms of practice as quite often users of a DM system
have little or no need to fully understand the internal components of such a
system. Through case study applications, it has been shown that the GA-based
variable selection stage is capable of: filtering out irrelevant and noisy
variables, improving the accuracy of the model; making the ANN structure less
complex and easier to understand; and reducing the computational complexity
and memory requirements. Furthermore, rule extraction ensures that the MLP
training results are easily understandable and transferrable.

Abbreviations

AI Artificial Intelligence

AN artificial neuron

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

ART Adaptive Resonance Theory

BCI Brain-Computer Interface

BN biological neuron

BNS biological neural system

BP Back-Propagation

CGP Cartesian Genetic Programming

CNN Cellular Neural Network

CSP common spatial patterns

DDR Data Dimensionality Reduction

DM data mining

EC Evolutionary Computation

ECoG electrocorticography

EDA Exploratory Data Analysis

EEG Electroencephalogram

EFuNN Evolving Fuzzy Neural Network

EN electronic nose

ERS/ERD event-related synchronization/desynchronization

FCM fuzzy c-means

FIS fuzzy inference system

FNN Feedforward Neural Network

FS Feature Selection

GA Genetic Algorithm

GNMM Genetic Neural Mathematical Method

GP Genetic Programming

ICA Independent Component Analysis

IS Intelligent System

Abbreviations 17

KDD Knowledge Discovery from Data

LM Levenberg-Marquardt

LS least square

MDF Multisensor Data Fusion

MF membership function

MLP Multi-Layer Perceptron

MP McCulloch-Pitts

MSE Mean Square Error

PCA Principal Components Analysis

PDF Probability Density Function

PDGP Parallel Distributed Genetic Programming

PE processing element

PNN Probabilistic Neural Network

PR Pattern Recognition

RBF Radial Basis Function

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

RT reaction time

SA Simulated Annealing

SBS Sequential Backward Selection

SC Soft Computing

SFS Sequential Forward Selection

SGA Simple Genetic Algorithm

SOM Self-Organizing Map

STD standard deviation

SVD Singular Value Decomposition

SVM Support Vector Machine

Chapter 1 An Introduction to Intelligent Data

Mining

1.1 Data Mining

Data mining (DM) refers to the analysis of observational datasets to find

relationships and to summarize the data in ways that are both understandable

and useful to the data owner (2001). The first book on DM appeared in 1991

(Piatetsky-Shapiro and Frawley 1991). However, the idea is not totally new –

people have been seeking patterns in data since human life began: Hunters

looked for patterns in animal migration behaviour, farmers looked for patterns

in crop growth, politicians seek patterns in voter opinion, and lovers seek

patterns in their partners’ responses (Chakrabarti 2009).

In recent years DM has attracted great attention in the information industry

and in society as a whole. This is because, on the one hand, modern computers

and other piece of equipment are able to produce and store virtually unlimited

datasets characterizing a complex system. In fact, database and information

technology has been evolving systematically from primitive file processing

Chapter 1 An Introduction to Intelligent Data Mining 19

Figure 1-1: The evolution of database system technology (adapted from Han and
Kamber 2006)

Data Collection and Database Creation
(1960s and earlier)

 Primitive file processing

Database Management Systems
(1970s—early 1980s)

 Hierarchical and network database systems

 Relational database systems

 Data modeling tools: entity-relational models, etc.

 Indexing and accessing methods: B-trees, hashing, etc.

 Query languages: SQL, etc.

 User interfaces, forms and reports

 Query processing and query optimization

 Transactions, concurrency control and recovery

 On-line transaction processing (OLTP)

Advanced Database
Systems
(mid-1980s—present)

 Advanced data
models: extended
relational, object-
relational, etc.

 Advanced
applications: spatial,
temporal,
multimedia, active,
stream and sensor,
scientific and
engineering,
knowledge-based

Advanced Data Analysis:
Data Warehousing and Data Mining
(late 1980s—present)

 Data warehouse and OLAP

 Data mining and knowledge
discovery: generalization,
classification, association,
clustering, frequent pattern and
structured pattern analysis,
outlier analysis, trend and
deviation analysis, etc.

 Advanced data mining
applications: stream data mining,
bio-data mining, time-series
analysis, text mining, Web
mining, intrusion detection, etc.

 Data mining and society: privacy-
preserving data mining

New Generation of Integrated
Data and Information Systems
(present-future)

Web-based databases
(1990s—present)

 XML-based
database systems

 Integration with
information
retrieval

 Data and
information
integration

Chapter 1 An Introduction to Intelligent Data Mining 20

systems to sophisticated and powerful database systems as shown in Figure

1-1. On the other hand, however, there is no concise set of parameters that

can fully describe the state of real-world complex systems studied nowadays

by engineers, psychologists, economists, etc. (Busygin, Prokopyev et al. 2008).

These on the contrary inspire the development of advanced DM which may

employ techniques such as Artificial Neural Networks (ANNs), Genetic

Algorithms (GAs), Support Vector Machines (SVMs), and fuzzy logic etc.

1.1.1 Procedures and Tasks

The aim of DM may be defined in many ways depending on the applications.

For example the extraction of implicit, possibly previously unknown and

potentially useful patterns and models from data, to uncover knowledge

within the data associated with different processes and models (Charaniya, Hu

et al. 2008; Elleithy 2008). From this point of view, DM is often set in the

broader context of Knowledge Discovery from Data (KDD) (Tan, Steinbach et al.

2006). The KDD process involves several stages from data integration to

knowledge interpretation of DM results, as shown in Figure 1-2.

It may also be inferred from Figure 1-2 that although the DM algorithms are

central to knowledge discovery, the pre-processing of the data and the

interpretation (as opposed to the blind use) of the results are both of great

importance (Bramer 2007). This is due to the fact that pre-processing steps

have a direct impact on the quality of the data that go into the DM engine;

Chapter 1 An Introduction to Intelligent Data Mining 21

while the interpretation of DM results may limit the its application and

implementation.

There are different ways of categorizing DM tasks. For example, some

researchers divide them into two categories – predictive tasks and descriptive

tasks (Tan, Steinbach et al. 2006); while some others argue that there are

more groups other than the two mentioned previously, e.g. Exploratory Data

Analysis (EDA), discovering patterns and rules etc. (Hand, Mannila et al. 2001).

This thesis adapts the categorization that captures the processes of a DM

activity, i.e., data pre-processing, DM modelling, and knowledge description,

as follows (Wang and Fu 2005):

 Data Dimensionality Reduction (DDR)

 Classification and Clustering

 Rule Extraction

KnowledgePrepared Data

D
a

ta
 S

o
u

rc
e

s

Extracted InformationData Warehouse

Integration
Selection &

Pre-processing
Data Mining

Interpretation

& Assimilation

Figure 1-2: Data mining as a step in the process of knowledge discovery

Chapter 1 An Introduction to Intelligent Data Mining 22

DDR often involves feature extraction or feature selection, where new features

are derived from the original data in order to reduce dimensionality and hence

increase computational efficiency and classification accuracy. DDR utilizes

techniques such as GAs, Principal Components Analysis (PCA), Sequential

Forward Selection (SFS), and Sequential Backward Selection (SBS) etc.

Classification and clustering is the process that connects DDR and rule

extraction where various statistical and machine learning methods can be

applied (e.g. linear regression, Radial Basis Function i.e. RBF). Rule extraction

aims to present classification/clustering results in such a way that the data are

easily understandable and knowledge gained from the data are transferable.

1.1.2 Challenges and Scope

Since its conception DM has achieved tremendous success. However, many

new problems have emerged and there is still a lack of timely exchange of

important topics in the community as a whole. In October 2005, Yang and Wu

(2006) took the initiative to identify 10 challenging problems in data mining

research, including the following:

 Developing a unifying theory of DM

 Scaling up for high dimensional data and high speed data streams

 DM for biological and environmental problems

 Mining complex knowledge from complex data

Chapter 1 An Introduction to Intelligent Data Mining 23

Figure 1-3: Data mining as a confluence of many disciplines (adapted from Tan,
Steinbach et al. 2006)

Among the problems listed above, the first comes from the fact that DM is an

inter-disciplinary field drawn upon disciplines such as statistics, machine

learning, Pattern Recognition (PR), Artificial Intelligence (AI), database

technology, and other areas as in Figure 1-3. Although Figure 1-3 shows a

distinction between various techniques, in practice it is sometimes difficult to

determine which discipline a specific technique belongs to. For example,

decision tree is often regarded as a standard DM technique (Maimon 2007).

However, Tan, Steinbach et al. (2006) treat it as a statistical classification

method; Witten and Frank (2005) treat it as a kind of knowledge

representation; Berthold and Hand (2003) use it in a so-called ‘fuzzy decision

tree’, which makes it some sort of a hybrid between DM and AI techniques.

This demonstrates the diversity of disciplines contributing to DM and that DM

systems can be categorized according to various criteria such as the kinds of

techniques utilized or the kinds of knowledge mined (Han and Kamber 2006).

Artificial
Intelligence,

Machine
Learning, and

Pattern
Recognition

Statistics

Data Mining

Database Technology, Parallel Computing, Distributed Computing

Chapter 1 An Introduction to Intelligent Data Mining 24

1.2 Intelligent Data Mining

A common feature of all DM techniques is that they are all, to a certain extent,

data analysis methods and can support/interact with each other. However,

each discipline has its own distinct attributes that make it particularly useful

for certain types of problems and situations. For example, the most

fundamental difference between classical statistical applications and data

mining may be suggested to be the size of the dataset. Statistical techniques

alone may not be sufficient to address some of the more challenging issues in

data mining, especially those arising from very large datasets (Hand, Mannila

et al. 2001). On the other hand, an Intelligent System (IS) is all about learning

rules and patterns from the data (Thuraisingham 1999). With the help of

available computational power in IS tools, there is a great potential for

significant advances in both theoretical and applied research in this DM area.

The term Intelligent Systems (ISs) is used interchangeably with Soft Computing

(SC) in this thesis. It is a collection of methodologies that works synergistically

and provides, in one form or another, flexible information processing

capability for handling real-life situations. It differs from conventional data

analysis (e.g. statistical methods) in that it is tolerant of imprecision,

uncertainty, partial truth, and approximation (Venugopal 2009). It aims to

exploit the tolerance for imprecision, uncertainty, approximate reasoning, and

partial truth in order to achieve tractability, robustness, and low-cost solutions.

The guiding principle is to devise methods of computation that lead to an

Chapter 1 An Introduction to Intelligent Data Mining 25

acceptable solution at low cost, by seeking for an approximate solution to an

imprecisely or precisely formulated problem (Mitra and Acharya 2003).

1.2.1 Artificial Neural Networks (ANNs)

IS techniques consist of several computing paradigms, including ANNs, fuzzy

set theory, approximate reasoning, and derivative-free optimization methods

such as GAs and Simulated Annealing (SA) (Jang, Sun et al. 1997). It is well

known that biological neural systems (BNSs) can perform extraordinarily

complex computations without recourse to explicit quantitative operations,

and are capable of learning over time. This property is thought to reflect the

ability of large ensembles of neurons to learn through exposure to external

stimuli and to generalize across related instances of the signal (Berthold and

Hand 2007). Such properties of BNSs make them attractive as a model for IS

methods. In fact, ANNs are distributed, adaptive, generally nonlinear means of

learning comprised of different processing elements (PEs) called neurons

(Bishop 1995). They are based on a computing model similar to the underlying

structure of the human brain, the aim being to model the brain’s ability to

learn and/or adapt in response to external inputs.

1.2.1.1 Biological Roots

The basic building blocks of BNSs are nerve cells, referred to hereafter as

biological neurons (BNs). A BN typically consists of a cell body, dendrites and

an axon, as shown in Figure 1-4. From the cell body protrudes a number of

Chapter 1 An Introduction to Intelligent Data Mining 26

Axon
Dendrites

Cell body

Synapse

Figure 1-4: Schematic diagram of a biological neuron

∑
Input

Signals

Weights





Bias
Activation

Function

Output

Signal

Figure 1-5: Illustration of an artificial neuron

branches called dendrites; the cell body and dendrites constitute the input to

the neuron. There also extrudes from the cell body a long fibre called the axon

(Arbib 2003). Neurons are massively interconnected, where an

interconnection is between the axon of one neuron and one or more dendrites

of one or more other neurons. This connectivity is referred to as a synapse.

Signals propagate from the dendrites, through the cell body to the axon; from

where the signals are propagated to all connected dendrites.

An artificial neuron (AN), also sometimes called PE, is a model of a BN.

Although various types of ANs are being used in current research, the most

Chapter 1 An Introduction to Intelligent Data Mining 27

widely used is the McCulloch-Pitts (MP) model (Engelbrecht 2007). Figure 1-5

is a representation of an MP neuron. Each AN receives signals from the

environment, or other ANs, gathers these signals and, when fired, transmits a

signal to all connected ANs. Input signals are inhibitory or excitatory through

negative and positive weights associated with each connection to the AN. The

firing of an AN and the strength of the input signal are controlled via a function

(i.e. activation function). Each neuron typically receives signals from outside,

or from other neurons. When fired, these neurons compute a net input signal

as a function of the respective weights. The net signal serves as input to the

activation function using which the neuron then determines the output signal.

1.2.1.2 Fundamentals – Architectures and Training Algorithms

There are many different types of ANN models rather than a single type. Each

form of ANN has different characteristics for a specific set of conditions,

analogous to the functional specificity associated with different regions of the

brain (Berthold and Hand 2007). However, all ANN models are specified in

terms of three basic entities: models of the neurons themselves, models of

synaptic interconnections and structures, and the training rules for updating

the connecting weights (Lin and Lee 1996).

An ANN consists of a number of highly connected ANs such that each AN is

connected to other ANs or to itself. According to the architecture, ANNs can be

roughly classified into Feedforward Neural Networks (FNNs), Recurrent Neural

Chapter 1 An Introduction to Intelligent Data Mining 28

(a) (b)

(c) (d)

Figure 1-6: Architecture of ANNs. (a) Multilayer Feedforward Neural Network;
(b) Self-Organizing Map; (c) Multilayer Recurrent Neural Network; (d) Cellular

Neural Network

Networks (RNNs), and their combinations. Some popular network topologies

including fully connected FNNs, RNNs, Self-Organizing Maps (SOMs), and

Cellular Neural Networks (CNNs) are shown in Figure 1-6.

Figure 1-6 (a) shows a typical architecture of a FNN – ANs are arranged in

layers, and each AN is connected to all ANs in adjacent layers. There is no

connection between the neurons within each layer. The information flows in

away whereby each AN takes inputs from all the nodes in the preceding layer

and sends its single output value to all the nodes in the next layer. The

leftmost layer (i.e. the input layer) is provided with input by the user, and the

Chapter 1 An Introduction to Intelligent Data Mining 29

output from the rightmost layer (i.e. the output layer) is the output which is

finally used to do something useful (Millington 2006).

Popular FNNs include Multi-Layer Perceptrons (MLPs) and RBF networks,

which are both fully connected layered FNNs. The MLP is the most popular

arrangement of ANs (Haykin 1994; Hagan, Demuth et al. 1996; Jang, Sun et al.

1997). It has been shown (Cybenko 1989) that MLPs can approximate virtually

any function with any desired accuracy, provided that there are enough

hidden neurons in the network and that a sufficient amount of data is

available. An MLP usually consists of three layers – an input layer, a hidden

layer and an output layer. The number of input neurons is typically determined

to correspond to the dimension of the input vector. The number of neurons in

the hidden layer is determined experimentally and the dimension of the

output vector to be modelled or the number of classes to be classified

generally determines the number of output neurons. Each neuron has a

number of inputs (from outside the neural network or the previous layer) and

a number of outputs (leading to the subsequent layer or out of the neural

network). A neuron computes its output response based on the weighted sum

of all its inputs according to an activation function. Data flows in one direction

through this kind of neural network starting from external inputs into the first

layer, which are transmitted through the hidden layer(s), and then passes on

to the output layer from which the external outputs are obtained.

Chapter 1 An Introduction to Intelligent Data Mining 30

RBF networks are supervised learning paradigms very similar to MLP except

that they use radial basis transfer functions for the hidden layer rather than

linear or sigmoidal ones. The RBF’s operational principle is that it paves the

input space with overlapping receptive fields, as they classify data using hyper-

spheres rather than hyper-planes (Lin and Lee 1996).

The SOM is a feed forward unsupervised learning network (Kohonen 2001). It

typically contains a two-dimensional single layer of neurons in addition to an

input layer of branched nodes, as illustrated in Figure 1-6 (b). SOM neurons

have two different types of connections. There are forward connections from

the neurons in the input layer to the neurons in the output layer, and also

lateral connections between neurons in the output layer. The lateral

connections are used to create a competition between neurons.

FNNs can have loops: connections that lead from a later layer back to earlier

layer(s). This architecture is known as a recurrent network. The architecture of

Figure 1-6 (c) shows a typical RNN – the neurons are arranged in a grid, and

connections are made between themselves and neighbouring points in the

grid. FNNs such as the Hopfield network represent an auto-associative type of

memory. However, they can have very complex and unstable behaviour and

are typically much more difficult to control (Millington 2006).

Chapter 1 An Introduction to Intelligent Data Mining 31

A CNN consists of regularly spaced neurons that communicate only with the

neurons in its immediate neighbourhood. Adjacent ANs are connected by

mutual interconnections. Each AN is excited by its own signals and by signals

flowing from its adjacent cells (Du and Swamy 2006). The architecture of a

CNN is shown in Figure 1-6 (d).

In general, ANN training algorithms can be classified into two broad categories:

parameter learning and structure learning. The former is concerned with the

updating of the connecting weights in an ANN; and the latter deals with the

network topology and their inter-connections (Lin and Lee 1996). Although

there are numerous training algorithms depending on the type of AN and ANN

architecture, the Back-Propagation (BP) algorithm (Bryson and Ho 1975) is

currently the most popular for performing supervised learning tasks. It is not

only used to train FNNs such as MLPs, but has also been adapted to RNNs (Du

and Swamy 2006).

In BP, for a given input-output pair, the algorithm performs two phases of data

flow. First, the input pattern is propagated from the input layer to the output

layer and, as a result of this forward flow of data, it produces an actual output.

Then the error signals resulting from any difference between the expected and

actual outputs are back-propagated from the output layer to the previous

layers for them to update their weights until the input layer is reached.

Chapter 1 An Introduction to Intelligent Data Mining 32

Training algorithms for unsupervised ANNs are different as there is no desired

output. For example, SOM training is based on a competitive learning strategy:

measured based on the Euclidean distance, the best neuron learns by shifting

its weights from inactive connections to active ones. In other words, the

neuron with the largest activation level among all neurons in the output layer

becomes the winner (the winner-takes-all neuron). This neuron is the only

neuron that produces an output signal. The activity of all other neurons is

suppressed in the competition. Neurons close to the winner are also updated

according to the neighbourhood relationships. In this way, SOMs effectively

cluster the input vectors through a competitive learning process, while

maintaining the topological structure of the input space.

1.2.1.3 Advantages and Challenges

The idea of DM – extracting information from data – has existed for decades.

However, what makes DM tasks extremely challenging nowadays is the

development of computer processing and storage/database technologies,

which allow for example gigabytes of data to remain offline or even online for

further analysis. ANNs are a computing methodology whose fundamental

purpose is to recognize patterns in data (Bigus 1996). Due to its biological

roots, the advantages of ANNs have made them one of the key methodologies

used for modern DM. ANNs have also been used for many applications such as

pattern classification, time series analysis, prediction, and clustering (Ye 2003).

In terms of DM, several important and yet distinct features of ANNs are:

Chapter 1 An Introduction to Intelligent Data Mining 33

 ANNs do not require a priori knowledge about the data, which is often the

opposite to traditional statistical model-based methods. ANNs are highly

adaptive and the network is largely determined by the characteristics or

patterns the network learned from the data (Maimon 2007). This feature

makes ANN a data-driven approach which is ideal for real world problems

where the data size is large but the meaningful patterns or underlying

structure are yet to be discovered and may not be possible to determine

in advance.

 ANNs have robustness and fault-tolerant capability. ANNs can handle

incomplete or noisy data. Since the whole network consists of many

parallel ANs, it is a distributed information system and information is

stored in a distributed manner by the network structure. Thus, the overall

performance does not degrade significantly when the information at

some node is lost or some connections in the network are damaged (Du

and Swamy 2006). On the other hand, ANNs are capable of improving

their performance by updating the connection weights using the learning

rules.

 ANNs can perform nonlinear modelling. Depending on the activation

functions being used, a single AN can be linear or nonlinear. Thus,

networks that connect these ANs can process nonlinear data. Moreover,

the nonlinearity is of a special kind in the sense that it is distributed

throughout the network (Haykin 1999). This capability is extremely useful

Chapter 1 An Introduction to Intelligent Data Mining 34

in case, for example, the underlying physical mechanism responsible for

generation of the data is inherently nonlinear.

 ANNs are typically structured as parallel-processing structures. ANNs are

usually made up of a number of ANs, each of which performs simple

addition, multiplication, division, and threshold operations. This parallel

structure has the advantage of, for example, relatively higher calculation

speed and also allows for highly parallel software and hardware

implementations. This feature makes ANNs well suited for

implementation using very-large-scale-integrated (VLSI) technology. One

particular beneficial virtue of VLSI is that it provides a means of capturing

truly complex behaviour in a highly hierarchical fashion.

ANNs have a so-called ‘black-box’ nature – even though they are successfully

trained, no information is available from them in symbolic form, suitable for

verification or interpretation by humans (Mitra, Pal et al. 2002). By design,

ANNs learn according to their training algorithms. After successful training,

depending on its specific type, some networks are fixed while others are

allowed to adapt during operation (Taylor and Darrah 2005). Thus, it is a

challenge to understand how the network will handle unknown input.

There has been quite a lot of work aimed at extracting knowledge from trained

networks in the form of symbolic rules (Du and Swamy 2006; Mantas, Puche et

al. 2006; Chow and Cho 2007; Kahramanli and Allahverdi 2009). In general,

Chapter 1 An Introduction to Intelligent Data Mining 35

algorithms for rule extraction from ANNs can be grouped into three categories

(Kahramanli and Allahverdi 2009; Ozbakir, Baykasoglu et al. 2009):

 Decompositional approaches involve rule extraction at the level of hidden

and output units. This involves the extraction of rules from a network in a

neuron-by-neuron series of steps. The advantage of this approach is that

they can generate a complete set of rules for the trained ANNs. However,

the process can be tedious and result in large and complex descriptions.

 Pedagogical approaches try to map inputs directly into outputs and views

ANNs as black-boxes. The aim is to extract symbolic rules which map the

input-output relationship as closely as possible. The number of these

rules and their form do not directly correspond to the number of weights

or the architecture of the ANN.

 Eclectic approaches incorporate elements of both decompositional and

pedagogical techniques.

As more and more databases become available DM techniques such as rule

extraction from ANNs has become a popular research topic. However, another

equally important issue (e.g. in terms of their impact on the implementation of

ANNs) – ANN input selection – has not invoked much of an interest. The fact

that little attention was given to the matter of whether or not the inputs used

to train the ANN are the most appropriate ANN inputs is basically due to the

fact that not all of the available variables are necessarily equally informative

Chapter 1 An Introduction to Intelligent Data Mining 36

(since some may be correlated, noisy or have no significant relationship with

the output variable(s) of interest) (Maier and Dandy 2000; Bowden, Dandy et

al. 2005). According to Alexandridis, Patrinos et al. (2005) and Bowden, Dandy

et al. (2005), the lack of input determination for ANNs may result in the

following consequences:

 Irrelevant variables may add extra noise which has consequential impact

on the accuracy of the model.

 Understanding complex models may be more difficult than understanding

simple models that give comparable results.

 As input dimensionality increases, the computational complexity and

memory requirements of the model increase.

1.2.2 Genetic Algorithms (GAs)

The second IS technique introduced in the current chapter is the GA.

Techniques that are concerned with the determination of ANN inputs may be

described differently in the literature (Yao 1999; Maier and Dandy 2000;

Ramadan, Song et al. 2001; Alexandridis, Patrinos et al. 2005; Grivas and

Chaloulakou 2006; Gualdron, Llobet et al. 2006). From the point of view of

optimization, selecting appropriate inputs for ANNs can be treated as an

optimization problem. That is, optimizing ANN inputs such that it achieves

better performance. In a broader sense, a GA is a stochastic optimization

methodology that belongs to the Evolutionary Computation (EC) family. Thus,

Chapter 1 An Introduction to Intelligent Data Mining 37

considerations of GAs are firstly given in the context of stochastic optimization.

1.2.2.1 Stochastic Optimization and Evolutionary Computation

Generally speaking, optimization techniques are classified into three

categories (see Figure 1-7): enumerative, deterministic and stochastic (Coello

Coello, Lamont et al. 2007). An enumerative search is deterministic but it does

not employ any heuristics. This technique is inefficient as it tests each possible

solution. Deterministic algorithms such as greedy and hill-climbing algorithms

incorporate problem domain knowledge. However, they are often ineffective

when applied to NP-Complete or other high-dimensional problems. On the

other hand, stochastic optimization seeks to search the space more thoroughly

without being trapped in a local optimum (Chang 2007). These techniques are

useful when the search space is too large and has too complicated a structure

to be best tackled with a method from the gradient descent family.

Figure 1-7: Global optimization approaches (adapted from Coello Coello,
Lamont et al. 2007)

Global Search & Optimization

Enumerative Deterministic

 Greedy

 Hill-Climbing

 Branch & Bound

 Depth-First

 Breadth-First

 Calculus-Based

Stochastic

 Random Search/Walk

 Simulated Annealing

 Monte Carlo

 Tabu Search

 Evolutionary Computation

 Mathematical Programming

Chapter 1 An Introduction to Intelligent Data Mining 38

 Population – A set of

individual solutions

 Inheritance – Offspring

resemble their parents

 Fitness – A measure of an

individual’s ability to

survive/reproduce

 Generation – Successively

created generations

Figure 1-8: Evolutionary Computation components

EC is the most widely used stochastic technique. It is based on Darwinian

evolutionary systems and includes, for example, GAs and Genetic

Programming (GP). In general, EC systems will incorporate (as in Figure 1-8):

one or more populations of individuals competing for limited resources; the

notion of dynamically changing populations due to the birth and death of

individuals; a concept of fitness which reflects the ability of an individual to

survive and reproduce; and a concept of variational inheritance: offspring

closely resemble their parents, but are not identical (De Jong 2006). Compared

to other stochastic methods ECs have the advantage that they can be

Chapter 1 An Introduction to Intelligent Data Mining 39

parallelized with little effort (Rojas 1996). Since the calculations of the fitness

function for each chromosome of a population are independent from each

other, they can be carried out using several processors. Thus ECs are

inherently parallel. ECs can be particularly effective in finding solutions where

the individual pieces of the solution are important in combination, or where a

sequence is important.

1.2.2.2 Genetic Algorithms (GAs)

The basic idea of a GA is to maintain a population of chromosomes,

representing candidate solutions to the problem being solved. The possible

solutions are generally coded as binary strings and these strings are equivalent

to biological chromosomes. Other non-binary codings have proven to be useful

in some applications (Damousis, Bakirtzis et al. 2004; Pendharkar and Rodger

2004; Gardner, Boilot et al. 2005; Srinivasa, Venugopal et al. 2007). Each bit of

the binary string (chromosome) is referred to as a gene. A GA starts off with a

population of randomly generated chromosomes and advances towards better

chromosomes by applying genetic operators that are based on genetic

processes occurring in nature (i.e. selection, crossover and mutation) (Mitchell

1996; Haupt and Haupt 2004).

The search is initialized with a random population of chromosomes, each

representing a possible solution. Next, each chromosome in the population is

decoded into a solution and its fitness is evaluated using an objective function.

Chapter 1 An Introduction to Intelligent Data Mining 40

During successive iterations, or generations, the adaptation or associated

fitness of chromosomes in the population is quantified by means of fitness

functions. Chromosomes for the new population are selected with a

probability proportional to their fitness, related to the purpose of the

application. Once the chromosomes have been selected, a crossover

procedure is used to partially exchange genetic information between two

parent chromosomes. Chromosomes from the parent pool are randomly

paired up and are tested to determine if an exchange will take place based on

a crossover probability. If an exchange is to take place, a crossover site is

selected at random for the two chromosomes and the genetic material (genes)

after the crossover site is then exchanged between the two parent strings. In

so doing, two child chromosomes are produced, which form the members of a

new population. If an exchange is not to take place (i.e. the crossover

probability is less than the crossover probability parameter), then the two

parents enter the new population unchanged. Mutation has the purpose of

keeping the population diverse and preventing the GA from prematurely

converging onto a local minimum. Each chromosome is tested on a probability

basis to determine if it will be mutated. In the most commonly used form of

mutation, the probability that each bit in the chromosome will be mutated is

determined by the mutation probability parameter. If a bit is to be mutated,

then this occurs by flipping its value (i.e. a ‘0’ will become a ‘1’ and vice versa).

The application of the mutation operator marks the end of one GA cycle. The

GA is usually allowed to run for a specified number of generations, or until

Chapter 1 An Introduction to Intelligent Data Mining 41

some stopping criterion is met; such as convergence of the population to a

single solution.

A GA differs from many other optimisation methods by virtue of the fact that a

population, or collection of possible solutions, is used rather than a single

solution. It does not need knowledge of the problem domain, but it requires a

fitness function to evaluate the fitness of a solution. A comprehensive

description of GAs can be found in Goldberg (1989) and Holland (1992).

1.2.2.3 GAs for Feature Selection

Feature Selection (FS)is a concept used in PR that implies reduction of the

input dimensionality while at the same time retaining as much as possible of

their class discriminatory information. , these techniques can be classified into

three broad categories: SBS, SFS, and stochastic selection (Theodoridis and

Koutroumbas 2003).

SBS and SFS have been the subject of variable selection for many years

(Gualdron, Llobet et al. 2006). Although the most frequently applied variable

selection techniques so far are SBS and SFS, these two techniques are seldom

used alone. This is because, according to Gardner, Boilot et al. (2005) and Scott,

James et al. (2006), they will only explore a small fraction of the whole set of

configurations and can become trapped in local minima.

Chapter 1 An Introduction to Intelligent Data Mining 42

Stochastic approaches, such as GAs and SAs, have been shown to be superior

compared with SBS/SFS and have many successful applications (Guo and Uhrig

1992; Weller, Summers et al. 1995; Alexandridis, Patrinos et al. 2005; Gardner,

Boilot et al. 2005). For example, Gardner, Boilot et al. (2005) applied a

modified GA to find a good subset of sensors within an array of 32 carbon-

black polymer resistors to be used in Probabilistic Neural Network (PNN)

classifiers. The methods were shown to be accurate and fast at determining

the sensors that should be used to discriminate bacteria. Alexandridis, Patrinos

et al. (2005) presented a two-stage input selection method for RBF using a

multi-objective optimization approach: in the first stage, a specially designed

GA minimizes the prediction error with the aid of a monitoring dataset, while

in the second stage a SA technique is used to try to reduce the number of

explanatory variables. The efficiency of their method was also illustrated

through its application to a number of benchmark problems.

GAs have also been used to evolve the architecture of ANNs (Guo and Uhrig

1992; Weller, Summers et al. 1995; Yao 1999; Kasabov 2001; Rivero, Dorado et

al. 2009). For example, earlier work done by Guo and Uhrig (1992) has used

GAs to select proper input variables for neural networks from hundreds of

possible variables for nuclear power plants fault diagnosis. Work by Weller,

Summers et al. (1995) used a GA to evolve the optimum set of inputs for ANNs

in the prediction of nuclear reactor parameters under fault conditions. Recent

work done by Kasabov (2001) employed the principle behind GAs to

Chapter 1 An Introduction to Intelligent Data Mining 43

dynamically adjust fuzzy neural networks’ internal connections (e.g. weights).

However, in these studies domain knowledge was often combined into the

fitness function, and hence the method is not generic and has not been widely

tested. In addition, some authors introduced ANN input deduction ratio into

the fitness function. The problem with this is that higher inputs may produce

less training error, and the balancing between the input deduction and ANN

training error is always problem-specific.

A FS technique similar to GA is SA – although SA is not biologically based, SAs

and GAs share very similar theoretical roots (Davis 1987), and it also has many

successful applications (Gualdron, Llobet et al. 2006; Jansen and Wegener

2007; Llobet, Gualdron et al. 2007). However, compared to SA, GAs are

population-based approaches, where there is the concept of competition (i.e.

selection) between candidate solutions to a given problem. Furthermore, SAs

generate new candidate points in the neighbourhood of the current point,

while GAs allow the examination of points in the neighbourhood of two (or

more) candidate solutions via the use of genetic operators such as crossover

(De Castro 2006). Therefore, a GA tends to improve the solution consistently

when given more time.

In summary, randomized FSs such as GAs are useful when the space of all

possible feature subsets is prohibitively large and the choices of feature

subsets are often difficult to evaluate (Liu and Motoda 2008). In addition,

Chapter 1 An Introduction to Intelligent Data Mining 44

these techniques necessarily depend on the ability to produce a sequence of

random numbers and the sampling technique that is used (Sikora and

Piramuthu 2007; Wang and Huang 2009).

1.3 Research Objectives

Each of IS techniques contributes a distinct methodology for addressing

problems in its domain. This may be done in a cooperative, rather than a

competitive, manner. The result is a more intelligent and robust system

providing a human-interpretable, low-cost, approximate solution, as compared

to traditional techniques (Mitra and Acharya 2003).

The unique contribution of this thesis is in the implementation of a hybrid IS

DM technique for solving novel practical problems, the detailed description of

this technique (Genetic Neural Mathematical Method, GNMM), and the

illustrations of several applications solved by this novel technique.

The primary objective of this work is to design an IS system that can be applied

effectively to some DM tasks such as those listed in Section 1.1.1 Procedures

and Tasks:

 The system performs DDR so that computational burden is reduced;

 It also achieves high prediction/classification accuracy;

 The system is able to extract rules.

Chapter 1 An Introduction to Intelligent Data Mining 45

In the literature various approaches have been proposed to solve the above

DM tasks. However, most of them treat these tasks separately i.e. they either

just solve one task or they solve all tasks but there is no inter-connections

between them. The current thesis addresses the approach that aims to

accomplish all these tasks using a systematic approach, which simplifies the

process in terms of applications.

The thesis also aims to explore the possibilities of applying this hybrid IS DM

technique to environmental and biological applications. These two fields have

attracted a lot of attention recently, which is not only because of the

complexity of the problem, but also because of the massive quantities of the

data that are available and increasing. However, from an environmental

manager/biological scientist point of view, making sense of/from large

datasets without knowing much about DM techniques remains a problem. This

thesis will explore the solution of such problems using newly-proposed

systematic approach.

1.4 Thesis Outline

The current chapter is a brief introduction to intelligent DM concepts and an

outline of the overall structure of the thesis. In Chapter 2, we introduce some

hybrid IS DM techniques, and give a detailed description of the Genetic Neural

Mathematical Method (GNMM); Chapter 3 is concerned with the application

of GNMM in the prediction of longitudinal dispersion coefficient; Chapter 4 is

Chapter 1 An Introduction to Intelligent Data Mining 46

concerned with the application to Brain-Computer Interface (BCI) data;

Chapter 5 is concerned with the application to Electronic Nose (EN) data; and

Chapter 6 is the application of GNMM to diabetes classification problem. Some

well-studied datasets from published works/resources were used in these

application chapters. In this way, the effectiveness of our DM technique can be

compared with established techniques. Chapter 6 also presents benchmarking

between GNMM and various hybrid IS DM techniques. And finally in Chapter 7

we present our conclusions and suggestions for future works.

References

Alexandridis, A., P. Patrinos, et al. (2005). "A two-stage evolutionary algorithm

for variable selection in the development of RBF neural network

models." Chemometrics and Intelligent Laboratory Systems 75(2): 149-

162.

Arbib, M. A. (2003). The handbook of brain theory and neural networks.

Cambridge, Mass., MIT Press.

Berthold, M. and D. J. Hand (2003). Intelligent data analysis: an introduction.

Berlin ; New York, Springer.

Berthold, M. and D. J. Hand (2007). Intelligent data analysis: an introduction.

Berlin; New York, Springer.

Bigus, J. P. (1996). Data mining with neural networks: solving business

problems--from application development to decision support. New

York, McGraw-Hill.

Chapter 1 An Introduction to Intelligent Data Mining 47

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, Oxford

University Press.

Bowden, G. J., G. C. Dandy, et al. (2005). "Input determination for neural

network models in water resources applications. Part 1--background

and methodology." Journal of Hydrology 301(1-4): 75-92.

Bramer, M. A. (2007). Principles of data mining. London, Springer.

Bryson, A. E. and Y. C. Ho (1975). Applied optimal control, John Wiley & Sons.

Busque, M. and M. Parizeau (1997). "A Comparison of Fuzzy ARTMAP and

Multilayer Perceptron for Handwritten Digit Recognition." Universite

Laval, listopad.

Busygin, S., O. Prokopyev, et al. (2008). "Biclustering in data mining."

Computers and Operations Research 35(9): 2964-2987.

Cannas, B., A. Fanni, et al. (2006). "Data preprocessing for river flow

forecasting using neural networks: Wavelet transforms and data

partitioning." Time Series Analysis in Hydrology 31(18): 1164-1171.

Carpenter, G. A., S. Grossberg, et al. (1992). "Fuzzy ARTMAP: A neural network

architecture for incremental supervised learning of analog

multidimensional maps." IEEE Transactions on Neural Networks 3(5):

698-713.

Carpenter, G. A., S. Grossberg, et al. (1991). "Fuzzy ART. Fast stable learning

and categorization of analog patterns by an adaptive resonance

system." Neural Networks 4(6): 759-771.

Chapter 1 An Introduction to Intelligent Data Mining 48

Chakrabarti, S. (2009). Data mining: know it all. Burlington, MA,

Elsevier/Morgan Kaufmann Publishers.

Chang, C.-I. (2007). Hyperspectral data exploitation: theory and applications.

Hoboken, N.J., Wiley-Interscience.

Charaniya, S., W.-S. Hu, et al. (2008). "Mining bioprocess data: opportunities

and challenges." Trends in Biotechnology 26(12): 690-699.

Chow, T. W. S. and S.-Y. Cho (2007). Neural networks and computing: learning

algorithms and applications. London; Hackensack, NJ, Imperial College

Press; Distributed by World Scientific.

Coello Coello, C. A., G. B. Lamont, et al. (2007). Evolutionary algorithms for

solving multi-objective problems. New York ; London, Springer.

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal

function." Mathematics of Control, Signals, and Systems 2: 303-314.

Damousis, I., A. Bakirtzis, et al. (2004). "A solution to the unit-commitment

problem using integer-coded genetic algorithm." IEEE Transactions on

Power Systems 19(2): 1165-1172.

Davis, L. (1987). Genetic algorithms and simulated annealing. London; Los

Altos, Calif., Pitman ; Morgan Kaufmann Publishers.

De Castro, L. N. (2006). Fundamentals of natural computing basic concepts,

algorithms, and applications. Boca Raton, Chapman & Hall/CRC.

De Jong, K. A. (2006). Evolutionary computation: a unified approach.

Cambridge, Mass., MIT Press.

Chapter 1 An Introduction to Intelligent Data Mining 49

del-Hoyo, R., B. Martín-del-Brío, et al. (2009). "Computational intelligence

tools for next generation quality of service management."

Neurocomputing In Press, Corrected Proof.

Du, K. L. and M. N. S. Swamy (2006). Neural networks in a softcomputing

framework. London, Springer.

Elleithy, K. (2008). Innovations and advanced techniques in systems,

computing sciences and software engineering. Dordrecht, Springer.

Engelbrecht, A. P. (2007). Computational intelligence: an introduction.

Chichester, England; Hoboken, NJ, John Wiley & Sons.

Gardner, J. W., P. Boilot, et al. (2005). "Enhancing electronic nose performance

by sensor selection using a new integer-based genetic algorithm

approach." ISOEN 2003 - Selected Papers from the 10th International

Symposium on Olfaction and Electronic Noses. 106(1): 114-121.

Georgiopoulos, M., J. Huang, et al. (1994). "Properties of learning in ARTMAP."

Neural Networks 7(3): 495-506.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and

Machine Learning. Boston, MA, USA, Addison-Wesley Longman

Publishing Co., Inc.

Grivas, G. and A. Chaloulakou (2006). "Artificial neural network models for

prediction of PM10 hourly concentrations, in the Greater Area of

Athens, Greece." Atmospheric Environment 40(7): 1216-1229.

Chapter 1 An Introduction to Intelligent Data Mining 50

Gualdron, O., E. Llobet, et al. (2006). "Coupling fast variable selection methods

to neural network-based classifiers: Application to multisensor

systems." Sensors and Actuators B: Chemical 114(1): 522-529.

Guo, Z. and R. E. Uhrig (1992). Using genetic algorithms to select inputs for

neural networks. 92TH0435-8), Baltimore, MD, USA, IEEE Comput. Soc.

Press.

Hagan, M. T., H. B. Demuth, et al. (1996). Neural network design. Boston, PWS

Pub.

Han, J. and M. Kamber (2006). Data mining: concepts and techniques.

Amsterdam; London, Elsevier.

Hand, D. J., H. Mannila, et al. (2001). Principles of data mining. Cambridge,

Mass., MIT Press.

Harding, S. (2008). Evolution of image filters on graphics processor units using

cartesian genetic programming, Hong Kong, China, Inst. of Elec. and

Elec. Eng. Computer Society.

Haupt, R. L. and S. E. Haupt (2004). Practical genetic algorithms. Hoboken, N.J.,

John Wiley.

Haykin, S. S. (1994). Neural networks : a comprehensive foundation. New York,

Maxwell Macmillan International.

Haykin, S. S. (1999). Neural networks: a comprehensive foundation. Upper

Saddle River, N.J., Prentice Hall.

Holland, J. H. (1992). Adaptation in natural and artificial systems. MA, USA,

MIT Press Cambridge.

Chapter 1 An Introduction to Intelligent Data Mining 51

Jang, J.-S. R. (1993). "ANFIS: adaptive-network-based fuzzy inference system."

IEEE Transactions on Systems, Man and Cybernetics 23(3): 665-685.

Jang, J.-S. R., C.-T. Sun, et al. (1997). Neuro-fuzzy and soft computing : a

computational approach to learning and machine intelligence. Upper

Saddle River, NJ, Prentice Hall.

Jang, J.-S. R., C.-T. Sun, et al. (1997). Neuro-fuzzy and soft computing: a

computational approach to learning and machine intelligence. Upper

Saddle River, NJ, Prentice Hall.

Jansen, T. and I. Wegener (2007). "A comparison of simulated annealing with a

simple evolutionary algorithm on pseudo-boolean functions of

unitation." Theoretical Computer Science 386(1-2): 73-93.

Kahramanli, H. and N. Allahverdi (2009). "Rule extraction from trained

adaptive neural networks using artificial immune systems." Expert

Systems with Applications 36(2, Part 1): 1513-1522.

Karray, F. O. and C. W. De Silva (2004). Soft computing and intelligent systems

design : theory, tools, and applications. Harlow, England ; New York,

Pearson/Addison Wesley.

Kasabov, N. (1998). "Evolving Fuzzy Neural Networks-Algorithms, Applications

and Biological Motivation." Methodologies for the Conception, Design

and Application of Soft Computing, World Scientific: 271-274.

Kasabov, N. (2001). "Evolving fuzzy neural networks for

supervised/unsupervised online knowledge-based learning." IEEE

Chapter 1 An Introduction to Intelligent Data Mining 52

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics

31(6): 902-918.

Kasabov, N. (2008). "Evolving Intelligence in Humans and Machines:

Integrative Evolving Connectionist Systems Approach." Computational

Intelligence Magazine, IEEE 3(3): 23-37.

Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge

engineering approach. London, Springer.

Kohonen, T. (2001). Self-organizing maps. Berlin ; New York, Springer.

Lin, C. T. and C. S. G. Lee (1996). Neural fuzzy systems: a neuro-fuzzy synergism

to intelligent systems, London : Prentice-Hall International.

Liu, H. and H. Motoda (2008). Computational methods of feature selection.

Boca Raton, Chapman & Hall/CRC.

Liu, P. and H.-X. Li (2004). Fuzzy neural network theory and application. River

Edge, NJ, World Scientific.

Llobet, E., O. Gualdron, et al. (2007). "Efficient feature selection for mass

spectrometry based electronic nose applications." Chemometrics and

Intelligent Laboratory Systems 85(2): 253-261.

Maier, H. R. and G. C. Dandy (2000). "Neural networks for the prediction and

forecasting of water resources variables: A review of modelling issues

and applications." Environmental Modelling and Software 15(1): 101-

124.

Maimon, O. (2007). Soft computing for knowledge discovery and data mining.

New York, Springer.

Chapter 1 An Introduction to Intelligent Data Mining 53

Mantas, C. J., J. M. Puche, et al. (2006). "Extraction of similarity based fuzzy

rules from artificial neural networks." International Journal of

Approximate Reasoning 43(2): 202-221.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution

programs. Berlin, Springer-Verlag.

Miller, J. F. and P. Thomson (2000). "Cartesian Genetic Programming." Lecture

notes in computer science.(1802): 121-132.

Millington, I. (2006). Artificial intelligence for games. Amsterdam; Boston;

Morgan Kaufmann, Elsevier.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.,

MIT Press.

Mitra, S. and T. Acharya (2003). Data mining: multimedia, soft computing, and

bioinformatics. Hoboken, NJ, John Wiley.

Mitra, S., S. K. Pal, et al. (2002). "Data mining in soft computing framework: A

survey." IEEE Transactions on Neural Networks 13(1): 3-14.

Ozbakir, L., A. Baykasoglu, et al. (2009). "TACO-miner: An ant colony based

algorithm for rule extraction from trained neural networks." Expert

Systems with Applications In Press, Corrected Proof.

Pendharkar, P. and J. Rodger (2004). "An empirical study of impact of

crossover operators on the performance of non-binary genetic

algorithm based neural approaches for classification." Computers and

Operations Research 31(4): 481-498.

Chapter 1 An Introduction to Intelligent Data Mining 54

Piatetsky-Shapiro, G. and W. Frawley (1991). Knowledge discovery in

databases. Menlo Park, Calif., AAAI Press: MIT Press.

Poli, R. (1997). Parallel distributed genetic programming applied to the

evolution of natural language recognisers, Berlin, Germany, Springer-

Verlag.

Ramadan, Z., X.-H. Song, et al. (2001). "Variable selection in classification of

environmental soil samples for partial least square and neural network

models." Analytica Chimica Acta 446(1-2): 231-242.

Reeves, C. R. and J. E. Rowe (2003). Genetic algorithms : principles and

perspectives : a guide to GA theory. Boston, Kluwer Academic

Publishers.

Rivero, D., J. Dorado, et al. (2009). "Modifying genetic programming for

artificial neural network development for data mining." Soft Computing

13(3): 291-305.

Rojas, R. (1996). Neural networks: a systematic introduction. Berlin; New York,

Springer-Verlag.

Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms.

Heidelberg, Springer.

Scott, S. M., D. James, et al. (2006). "Data analysis for electronic nose

systems." Microchimica Acta 156(3-4): 3-4.

Sikora, R. and S. Piramuthu (2007). "Framework for efficient feature selection

in genetic algorithm based data mining." European Journal of

Operational Research 180(2): 723-737.

Chapter 1 An Introduction to Intelligent Data Mining 55

Sloper, J. E., G. L. Miotto, et al. (2008). "Dynamic Error Recovery in the ATLAS

TDAQ System." Nuclear Science, IEEE Transactions on 55(1): 405-410.

Soyguder, S. and H. Alli (2009). "An expert system for the humidity and

temperature control in HVAC systems using ANFIS and optimization

with Fuzzy Modeling Approach." Energy and Buildings 41(8): 814-822.

Srinivasa, K. G., K. R. Venugopal, et al. (2007). "A self-adaptive migration model

genetic algorithm for data mining applications." Information Sciences

177(20): 4295-4313.

Tan, P.-N., M. Steinbach, et al. (2006). Introduction to data mining. Boston,

Pearson Addison Wesley.

Tan, S. C., M. V. C. Rao, et al. (2008). "Fuzzy ARTMAP dynamic decay

adjustment: An improved fuzzy ARTMAP model with a conflict resolving

facility." Applied Soft Computing 8(1): 543-554.

Taylor, B. J. and M. A. Darrah (2005). Rule extraction as a formal method for

the verification and validation of neural networks, Montreal, QC,

Canada, Institute of Electrical and Electronics Engineers Inc.

Theodoridis, S. and K. Koutroumbas (2003). Pattern recognition. Amsterdam ;

Boston, Academic Press.

Thuraisingham, B. M. (1999). Data mining: technologies, techniques, tools, and

trends. Boca Raton, CRC Press.

Venugopal, K. r. (2009). Soft computing for data mining applications. New York,

Springer.

Chapter 1 An Introduction to Intelligent Data Mining 56

Walker, J. A. and J. F. Miller (2008). "The automatic acquisition, evolution and

reuse of modules in Cartesian genetic programming." IEEE Transactions

on Evolutionary Computation 12(4): 397-417.

Wang, C.-M. and Y.-F. Huang (2009). "Evolutionary-based feature selection

approaches with new criteria for data mining: A case study of credit

approval data." Expert Systems with Applications 36(3, Part 2): 5900-

5908.

Wang, L. and X. Fu (2005). Data mining with computational intelligence. Berlin;

New York, Springer.

Weller, P. R., R. Summers, et al. (1995). Using a genetic algorithm to evolve an

optimum input set for a predictive neural network. Proceedings of 1st

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, Sheffield, UK, IEE.

Wilson, G. and W. Banzhaf (2008). A comparison of cartesian genetic

programming and linear genetic programming, Naples, Italy, Springer

Verlag.

Witten, I. H. and E. Frank (2005). Data mining: practical machine learning tools

and techniques. Amsterdam; Boston, MA, Morgan Kaufman.

Xu, Z., J. Xuan, et al. (2009). "Application of a modified fuzzy ARTMAP with

feature-weight learning for the fault diagnosis of bearing." Expert

Systems with Applications 36(6): 9961-9968.

Chapter 1 An Introduction to Intelligent Data Mining 57

Yang, Q. and X. Wu (2006). "10 challenging problems in data mining

resesarch." International Journal of Information Technology and

Decision Making 5(4): 597-604.

Yao, X. (1999). "Evolving artificial neural networks." Proceedings of the IEEE

87(9): 1423-1447.

Ye, N. (2003). The handbook of data mining. Mahwah, N.J., Lawrence Erlbaum

Associates, Publishers.

Chapter 2 Hybrid Intelligent System Data

Mining Techniques and the Genetic Neural

Mathematical Method

2.1 Introduction

Chapter 1 provides some theoretical background to IS DM techniques such as

ANNs and GAs, and outlines the structure of the thesis. . This chapter

introduces some hybrid IS DM techniques, which will be used for

benchmarking studies in the thesis, and the Genetic Neural Mathematical

Method (hereafter called GNMM). GNMM is a pattern classifier and analyser

based on GAs and MLPs. It inherits the advantages (e.g. robustness and

nonlinearity) of ANN. Furthermore, it also incorporates a GA and mathematical

programming to achieve input selection and rule extraction. By utilizing the GA,

GNMM is able to automatically optimise the number of inputs to the MLP,

which serves as the core DM engine. Employing a mathematical programming

method, GNMM is also capable of identifying regression rules extracted from

the trained MLP.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 59

2.2 Hybrid Intelligent System Data Mining Techniques

Each IS technique addresses problems in its domain. However, hybridizations

of IS techniques typically enjoy the generic and application-specific merits of

the individual SC tools that they integrate (Mitra and Acharya 2003). DM

functions modelled by such hybrid systems include rule extraction, data

compression, clustering, incorporation of domain knowledge, and partitioning.

Although conventional ANNs are one of the key technologies used for DM, the

influences of these hybrid systems on the ANN field have shown great

potential. Let us now consider some in turn:

2.2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Since the invention of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in

1993 (Jang), it has become a standard technique that has been widely used in

many applications (Lin and Lee 1996; Jang, Sun et al. 1997). It uses a hybrid-

learning algorithm to identify parameters for Sugeno-type fuzzy inference

systems. It applies a combination of the least-squares method and the

gradient descent method for training membership function (MF) parameters

to emulate a given training dataset (Karray and De Silva 2004; Soyguder and

Alli 2009).

ANFIS is a multilayer feed forward network where each node performs a

particular function on incoming signals. It is normally represented by a six-

layer feedforward neural network as shown in Figure 2-1. To perform a desired

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 60

input-output mapping, adaptive learning parameters are updated based on

gradient learning rules (Jang ; Soyguder and Alli 2009). Both square and circle

node symbols in Figure 2-1 are used to represents different properties of

adaptive learning, among which the rule layer represents a set of fuzzy rules.

The ANFIS model is one of the implementation of a first order Sugeno fuzzy

inference system, and the rules are of the form:

 IF x1 is A1 AND x2 is A2, THEN y = px1 + qx2 + r

where x1 and x2 are inputs corresponding to the A1 and A2 term set, y is

output, p, q, and r are constants.

2.2.2 Evolving Fuzzy Neural Network (EFuNN)

The Evolving Fuzzy Neural Network (EFuNN) proposed by Kasabov (1998; 2007;

2008) implements a strategy of dynamically growing and pruning the

connectionist (i.e. ANN) architecture and parameter values. It consists of five

layers (Figure 2-2): the input layer only represents the input variables; the

second layer of nodes (fuzzy input neurons or fuzzy inputs) represents the

fuzzyfication of each variable of the input space. These nodes can use Gaussian,

triangular or other MFs; we have used triangular ones in order to reduce the

computing complexity. The third layer is made up of rule nodes, evolving

through time in a supervised way. The fourth layer represents the rule weights.

And finally the last layer implements the output variable, providing the system

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 61

x1

x2

Input layer

Fuzzification

layer

Rule layer

∑ y

Normalisation

layer

N

N

N

N

Defuzzification

layer

x1 x2

Aggregation

layer

∏

∏

∏

∏

Figure 2-1: Adaptive Neuro-Fuzzy Inference System

x1 x2

W1

W2

W3

W4

rMax
(t)

A1
(t)

W0

Outputs

Fuzzy Outputs

Rule (base) Layer

Fuzzy Input Layer

Input Layer

Inputs

A1
(t−1)

rMax
(t−)

Figure 2-2: Architecture of Evolving Fuzzy Neural Network (adapted from
Kasabov 2007)

output (Kasabov 1998; del-Hoyo, Martín-del-Brío et al. 2009). EFuNN is

implemented in the NeuCom package1 developed at Auckland University of

Technology.

1

The NeuCom Project, http://www.aut.ac.nz/research/research-institutes/kedri/research-
centres/centre-for-data-mining-and-decision-support-systems/neucom-project-home-page

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 62

EFuNN learns by associating (learning) new data points (vectors) to a rule node

rj: the centres of this node’s hyperspheres (i.e. W1(rj) and W2(rj)) adjust in the

fuzzy input space depending on the distance between the new input vector

and the rule node through a learning rate lj , and in the fuzzy output space

depending on the output error through the Widrow-Hoff least mean square

delta algorithm:

    ))(W1.(W1W1)()()1(t

jfj

t

j

t

j rxlrr  (2.1)

      )()()1(A2).A1.(W2W2 t

jfj

t

j

t

j rylrr  (2.2)

where xf and yf are fuzzy input and output vectors respectively;

(W2.A1)A2 2f is the activation vector of the fuzzy output neurons in the

EFuNN structure when x is presented;    ),W1((A1)(

2

)(

f

t

j

t

j xrDfr  is the

activation of the rule node)(t

jr . In other words, both weight vectors are

iteratively adjusted – W1 through unsupervised training based on a similarity

measure and W2 through supervised learning based on output error.

Furthermore, EFuNN allows for the construction of fuzzy rules from the

network weights, and hence knowledge extraction. Similar to ANFIS, there is a

rule layer in EFuNN to represent fuzzy rules. Thus, once the training is finished,

fuzzy rules can be extracted from the system.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 63

2.2.3 Fuzzy ARTMAP

Fuzzy ARTMAP is a competitive learning model based on the Adaptive

Resonance Theory (ART). It is an extension of ART1 (for binary inputs) and

ART2 (for continuous inputs) for fuzzy inputs (Carpenter, Grossberg et al. 1991;

Carpenter, Grossberg et al. 1992; Georgiopoulos, Huang et al. 1994). Fuzzy

ARTMAP consists of two ART modules, i.e. ARTa and ARTb, and an inter-ART

map field Fab, as in Figure 2-3. Both ARTa and ARTb are fuzzy ARTs (i.e.

accepting fuzzy inputs), each of which is comprised of three layers:

normalization layer F0, input layer F1 and recognition layer F2. The main

purpose of the map field Fab is to classify a fuzzy pattern into the given class, or

re-start the matching procedure (Liu and Li 2004).

Fuzzy ARTMAP implements supervised learning and processes fuzzy

information and transforms it in terms of hyper-rectangles. Learning in Fuzzy

ARTMAP encompasses the recruitment of new hyper-rectangular prototypes

and expansion of the boundary of existing prototypes in the feature space.

ay

a
ρ

a

ax

a

jw

0

aF

1

aF

2

aF
by

b
ρ

b

bx

b

kw

0

bF

1

bF

2

bF

abx

ab
ρ

aART bART

ab

jkw

abF

(,)cA a a (,)cB b b

Figure 2-3: Architecture of Fuzzy ARTMAP (adapted from Xu, Xuan et al. 2009)

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 64

Like other incremental ANNs, the Fuzzy ARTMAP growth criterion is subject to

a similarity measure between the input pattern and the prototypes stored in

the network (Busque and Parizeau 1997; Tan, Rao et al. 2008). The Matlab

package implementation of Fuzzy ARTMAP is available from the lab led by

Carpenter2 (1992).

2.2.4 Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming (CGP) was originally developed by Miller and

Thomson (2000) for the purpose of evolving digital circuits. CGP represents a

program using a directed indexed graph as opposed to the tree representation

normally used in conventional GP. The genotype is a fixed length

representation consisting of a list of integers which encode the function and

connections of each node in the directed graph. However, CGP uses a

genotype-phenotype mapping that does not require all of the nodes to be

connected to each other. As a result, the phenotype is bounded but has

variable length. This allows areas of the genotype to be inactive and have no

influence on the phenotype, leading to a neutral effect on genotype fitness

called neutrality. An example of a CGP genotype and the corresponding

phenotype that arose in the evolution of a 2-bit parallel multiplier is shown in

Figure 2-4.

2 CNS Tech Lab, Boston University, http://techlab.bu.edu/resources/software

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 65

4 5 109876

DCBA131211

OR

6

XOR

9

XOR

12

4

AND

5

AND

AND

8

7

AND

13

11

10

AND

AND

Input A

Input D

Input C

Input B

0

1

2

3

Output A

Output D

Output C

Output B

XOR

002 003 269257013012345

13129401182118057

Figure 2-4: A possible CGP genotype and corresponding phenotype for a 2-bit
parallel multiplier circuit (adapted from Walker and Miller 2008)

A benefit of CGP is that it allows the implicit reuse of nodes, as a node can be

connected to the output of any previous node in the graph, thereby allowing

the repeated reuse of sub-graphs. This is an advantage over tree-based GP

representations where identical sub-trees have to be constructed

independently (Walker and Miller 2008). The CGP technique has some

similarities with Parallel Distributed Genetic Programming (PDGP) (Poli 1997).

PDGP directly represents the graphs using a two-dimensional grid topology, in

which each row of the grid is executed in parallel in the direction of data flow,

with the program output being taken from the final row of the grid. This allows

the formation of efficient programs by reusing partial results. Originally, CGP

also used a program topology defined by a rectangular grid of nodes with a

user defined number of rows and columns. However, later work on CGP

showed that it was more effective when the number of rows is chosen to be

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 66

one (Harding 2008; Wilson and Banzhaf 2008). This one-dimensional topology

is used throughout the thesis.

Due to its GP nature, rule extraction in CGP is straight forward – as the whole

program is evolving arithmetic operators, the set of operators minimizing the

training error can thus be used to present arithmetic rules. The CGP used here

was implemented using the package developed by Sloper, Miotto et al. (2008).

Compared with other hybrid IS DM techniques described above, CGP is solely

based on EC. However, due to its built-in capability for rule extraction, it is also

included in the current section and will also be used for benchmarking

purposes.

2.3 The Genetic Neural Mathematical Method (GNMM)

The hybrid IS DM techniques described above have all been successfully

applied to various problems. Although these techniques are used for

benchmarking in the current context, it is not within the scope of the thesis to

discuss advantages/disadvantages of a particular method over another. Due to

their merits of ANNs and GAs as shown in Chapter 1, a novel way of combining

these two techniques and at the same time overcoming their disadvantages is

proposed (i.e. the GNMM method). Overall, GNMM is implemented in three

steps:

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 67

(1) In the first step, GAs are used to evolve an optimal set of MLP inputs. The

SGA technique is used in GNMM with binary chromosome codings, which

represent the presence of an input as ‘1’ and absence as ‘0’. Within SGA

operators, the roulette wheel selection, single point crossover and

mutation are used. GA parameters have to be selected carefully as these

potentially have a great impact on performance and results. GNMM also

utilizes an adaptive method to adjust the mutation rate based on the

average fitness of successive generations. In addition, GNMM uses the

elite group and appearance percentage to minimize the randomness,

which is a problem associated with all stochastic optimizations.

(2) MLPs are used in GNMM both as the fitness function and the core DM

engine – input variables found by GAs in the previous step are redirected

into an MLP to perform the final modelling. The MLPs’ pre-processing

includes projecting the input data onto a small range so that training is

more efficient. K-fold cross-validation is also used to avoid over fitting. In

order to accelerate the training process, an ICA based weight initialization

algorithm is used to determine optimal weights before the

commencement of any training algorithms. The LM algorithm is used to

achieve a second-order speedup compared to conventional BP training.

(3) In the third step, GNMM utilizes a mathematical programming based

method to extract regression rules from trained MLPs. The method is not

only used to identify the premises of multivariate polynomial rules, but

also to explore features from the extracted rules based on data samples

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 68

associated with each rule. Therefore, the methodology can provide

regression rules and features not only in the polyhedrons with data

instances, but also in the polyhedrons without data instances.

The GNMM algorithm and interactions between GNMM components are

illustrated in Figure 2-5. In the following sections, detailed descriptions of

Step 1. GA Channel Selection

Step 2. MLP Training

Are training

results satisfied?

Yes

No

Are differences between

variables evident?

No

Yes

Start

Stop

Data Pre-processing

Step 3. Rule Extraction

Is the termination

 criterion satisfied?

Yes

No

Stop

Decoding

Evaluate fitness

Initialise population

Select fittest chromosomes

Crossover

Mutation

Start
Input signals

Error signals

3w

2wj

3θ y

X1

X2

X3

Xi

Input

layer

Hidden

layer

Output

layer

2θ1

2θ2

2θ3

2θj

(a)

(b) (c)

Figure 2-5: Interactions between GNMM components. (a) The GNMM
algorithm; (b) A Simple Genetic Algorithm; (c) A three-layer MLP

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 69

these three steps will be presented, which is followed by a summary of the

whole chapter.

2.3.1 Step 1 – Genetic Algorithm for Input Optimization

The GA technique used in GNMM is often referred to as the Simple Genetic

Algorithm (SGA) (Holland 1975; Vose 1999; Reeves and Rowe 2003). After first

introduced and investigated by Holland (1975), SGA has numerous variants

(Bäck, Fogel et al. 1997; Chambers 2001). In general, a SGA exhibits the

following features: finite population, bit representation, one-point crossover,

bit-flip mutation and roulette wheel selection. However, alternative genetic

operators have been introduced in the literature to alter the behaviour of GA,

such as tournament selection, uniform crossover, and inorder

mutation.Specifically designed GAs can be obtained by using different

combinations of genetia operators, and are suitable for a particular range of

problems. For the purpose of the current thesis, SGA is used due to its

suitability to a wide range of problems and its solid theoretical basis.

2.3.1.1 Procedures

The general processes of SGA are shown in Figure 2-5 (a). SGA begins by

generating initial population, and it ends, like any other optimization algorithm,

by testing for stopping criteria, e.g. convergence. In between, SGA will decode

each chromosome (i.e. solution) and evaluate their fitness for the problem

under investigation. Based on these fitness values, these chromosomes will be

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 70

processed by genetic operators (i.e. selection, crossover and mutation) in

order to produce the next generation.

Figure 2-6: Binary coding chromosome

(a) Selection

Figure 2-7: Genetic operators

0 1 0 0
0 1 1

0 1 0
0 1

1
0

0 1 0 0 1 1 0 1 0 0 1 1 0 1

(b) Crossover

(c) Mutation

0 1 0 0 0 …… 1

b genes

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 71

Let us assume there are two datasets X = {x(1,1) ,…, x(a,b)} and Y = {y1 ,…, ya},

where X is the input data, Y is the dataset to be modelled/predicted

(assuming Y is a one-dimension dataset for simplicity), a is the number of data

samples and b denotes possible ANN inputs (i.e. available variables). GNMM

starts off by randomly generating an initial population of chromosomes of size

Np. In nature, chromosomes are structures of compact intertwined molecules

of DNA (Figure 2-6) (Engelbrecht 2007). In the context of GNMM, each

chromosome represents a candidate solution to the input selection problem. A

chromosome consists of b genes, each representing an input variable. The

encoding of a gene is binary, meaning that a particular variable is considered

as an input variable (represented by ‘1’) or not (represented by ‘0’), as shown

in Figure 2-6.

The GA fitness function is always problem-specific. For GNMM, the assessment

of the fitness of a chromosome is the MSE when a three-layer MLP is being

trained with the input variable subset Xi and output target Y for a certain

number of epochs Ne. Provided that there are enough hidden neurons in the

network and that a sufficient amount of data is available, MLPs can

approximate virtually any function with any desired accuracy (Cybenko 1989).

However, in the current stage the number of neurons in the hidden layer is set

to a small fixed number. The reason for doing this is that the purpose of the

current stage is only to explore the effectiveness of different input parameter

combinations; such settings simplify the GA implementation and reduce the

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 72

computational burden.

Based on their fitness values, chromosomes will be processed by genetic

operators such as selection, crossover, and mutation, as shown in Figure 2-7,

to form the next generation; until a stopping criterion is met. Selection is one

of the main operators in GAs, and relates directly to the Darwinian concept of

survival of the fittest. The selection operator used in GNMM is roulette wheel

selection; also sometimes referred to as proportional selection (Figure 2-7 (a)).

In roulette wheel selection, a probability distribution proportional to the

fitness is created, and the higher the fitness value, the more chance a

chromosome has to be selected. Figure 2-7 (b) and (c) depict the crossover and

mutation operators, in which two chromosomes exchange part of their genes

or a random gene flips to its other possible value.

2.3.1.2 Parameters

Stopping criteria in GA include, like other optimization techniques, e.g.

convergence and a set of pre-defined parameters such as Np, Ne, generation

size Ng, crossover probability pc and mutation probability pm. In fact, selecting

GA parameters is very difficult due to the many possible combinations in the

algorithm. In addition, a GA relies on random number generators for creating

the population, selection, crossover and mutation. A different random number

seed produces different results. As such, selecting GA parameters is always

problem-specific.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 73

Generally speaking, large population sizes are used to allow thorough

exploration of complicated fitness surfaces. Crossover is then the operator of

choice to exploit promising regions of fitness space by combining information

from promising solutions. Mutation in the less critical genes may result in

further exploitation of the current region.

Schaffer, Caruana et al. (1989) have reported results on optimum parameter

settings for SGA. Their approach used the five cost functions in the De Jong’s

test function suite (De Jong 1975; Haupt and Haupt 2004). They used discrete

sets of parameter values Np = 10, 20, 30, 50, 100, 200; pm = 0.001, 0.002, 0.005,

0.01, 0.02, 0.05, 0.10; pc = 0.05 to 0.95 in increments of 0.10; and 1 or 2

crossover points, which means that there were a total of 8400 possible

combinations. Each combination was averaged over 10 independent runs.

These authors found the best performance resulted for the following

parameter settings: Np = 20 to 30, pc = 0.75 to 0.95, pm = 0.005 to 0.01.

Generally, parameter settings for GNMM will follow this range except that

under some circumstances, for instance, when possible ANN inputs b is very

large, we will have to increase the population size Np accordingly. The issue of

optimal parameters will be addressed in Section 6.5 GA Parameter.

Based on the above initial value ranges, GNMM also incorporates an adaptive

mutation rate (Reeves and Rowe 2003; Yuen and Chow 2009). The algorithm

for updating the mutation rate is depicted in Figure 2-8. In summary, when the

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 74

Figure 2-8: Adaptive mutation rate

population has higher fitness (i.e. lower MSE), the mutation rate reduces to

encourage exploitation of what has been found. Conversely, when we have a

lower fitness, we increase the mutation rate to try to force further exploration.

In this way, the GA optimisation process is realised by altering the mutation

rate.

It should be noted that these parameters interact with each other so as to

affect the behaviour of GNMM in complex, nonlinear ways. This means that no

one particular choice for these parameter values is likely to be universally

optimal. For a detailed discussion of GA parameters, please refer to Reeves

and Rowe (2003) and De Jong (2006).

𝒇 𝟏

1 //Initial mutation rate
pm = 0.005

2 //Compute average fitness of first generation

3 //Iterate through the rest of generations
FOR t = 2:Np

 // Compute average fitness of the nth generation

 𝒇 𝒕
 // Switch depending on whether average fitness increases

 IF
𝒇 𝒕

𝒇 𝒕−𝟏
≤ 𝟎.𝟏

 pm = pm × 0.1
 ELSE

 pm = pm × (log10(
𝒇 𝒕

𝒇 𝒕−𝟏
) + 1)

 END IF
END FOR

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 75

2.3.1.3 The Elite Group and Appearance Percentage

As a stochastic algorithm, randomness plays an essential role in GAs – all

genetic operators need random procedures. As a result, two runs (i.e. an

entire set of generations) with different random−number seeds will generally

produce different detailed behaviour. Furthermore, in GNMM the fitness

function is the training error of an MLP trained with the selected input

variables and target outputs. The MLP parameters (e.g. weights and thresholds)

are initialized randomly as well, which adds another level of uncertainty to the

optimization problem. In GNMM, the randomness problem can be addressed

by applying two techniques: one is introducing an elite group into GAs (Haupt

and Haupt 2004); the other is what we call the appearance percentage (Yang,

Hines et al. 2008).

The elite group is a collection of chromosomes that performed best and were

made exempt from crossover and mutation and are retained in the next

generation. Introducing the elite group into GAs strengthens the ability to

search, which can be explained as exploitational with respect to high yielding

regions and explorative with respect to other regions.

Another characteristic of GNMM that introduces randomness is that it uses

MLPs’ training error as the fitness function. As a result, even if the same

winning chromosomes are found in successive generations, they may not yield

the same performance within a certain number of epochs. In this case the

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 76

fitness value is not the only criteria for the evaluation of a schema. Thus,

GNMM introduces the concept of appearance percentage (Yang, Hines et al.

2008).

GA researchers often report statistics, such as the best fitness found in a run

and the generation at which the individual with that best fitness was

discovered, averaged over many different runs of the GA on the same problem

(Mitchell 1996). In GNMM, the averaging is extended to not only calculate

different runs, but also different generations within the same run. A gene’s (i.e.

possible ANN inputs) appearance percentage is defined as a gene’s

accumulated appearance in the winning chromosome of each generation

divided by the total number of generations. For example, if the 2nd gene

appeared twice in the winning chromosome in a total of 20 generations, then

the appearance percentage for this gene is 10%. In this way, although the GA’s

search evolves successively towards better generations, each generation is

treated separately. Hence, the uncertainty associated with the randomness of

the fitness function is minimized. Due to the fact that in GNMM the coding is

binary, correspondence between genes and input variables can be easily found.

As a result of the input selection procedure, the input variables which occur

most frequently throughout all the populations can therefore be identified.

The final subset formed by these variables (denoted by Xf) is the subset that

produces the minimal error within a given number of epochs.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 77

2.3.2 Step 2 – Multi-Layer Perceptron Modelling

In GNMM, MLPs serve both as the fitness function in the input optimization

process and as the core DM engine. However, in both roles GNMM utilizes

some different techniques compared to conventional MLPs such as the

Independent Component Analysis (ICA)-based weight initialization algorithm

and the Levenberg-Marquardt (LM) algorithm.

2.3.2.1 Pre-processing

Pre-processing includes scaling Xf and Y into the range *−1, 1+ before passing

them into the ANN to make the MLP training more efficient. For example,

consider xn to be an element of the n-th column vector (xn) in Xf, the mapping

is carried out as follows:

𝑥𝑛
′ =

2 × (𝑥𝑛 − xmin)

(xmax − xmin)
− 1 (2.3)

where xn' denotes the mapped value, xmin and xmax are the minimum and

maximum values in xn. After the ANN has been trained, the settings from

Eq.(2.3) are used to transform any future inputs that are applied to the

network. Thus, xmin and xmax effectively become a part of the network, just like

the network weights and biases.

GNMM also utilizes a K-fold cross-validation technique to define the training

and validation data. Each time a small randomly selected portion of X and Y

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 78

(e.g. 10%×a) is set aside for validation before any training in order to avoid

over-fitting (Lin and Lee 1996), and the rest are used for the training. As a

consequence of cross-validation, the MLP does not necessarily reach its final

epoch Ne.

2.3.2.2 Weight Initialization

The weight initialization of ANN plays a significant role in the convergence of a

training method. It is common practice to initialize MLP weights and

thresholds with small random values. However, this method is ineffective

because of the lack of prior information on the mapping function between the

input and output data samples (Du and Swamy 2006). There are several

approaches (Yam and Chow 2000; Yam, Leung et al. 2002; Chow and Cho 2007)

to estimate optimal values for the initial weights so that the number of

training iterations is reduced. GNMM utilizes the ICA-based weight

initialization algorithm proposed by Yam, Leung et al. (2002). The algorithm is

able to initialize the hidden layer weights that extract the salient feature

components from the input data. The initial output layer weights are

evaluated in such a way that the output neurons are kept inside the active

region.

ICA is a statistical and computational technique for revealing hidden factors

that underlie sets of random variables, measurements, or signals (Hyvarinen,

Karhunen et al. 2001). Suppose M is a zero-mean random variable that can be

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 79

observed (i.e. mixed signals), and S is its linear transform (i.e. source signals).

Then the ICA problem is to determine a constant matrix A

𝑺 = 𝑨𝑴 (2.4)

so that components of the linearly transformed signals S are statistically

independent from each other. The statistically independence is defined such

that the joint probability density of S equals the product of the marginal

densities of the individual components.

Yam, Leung et al.’s weight initialization approach utilizes the FastICA

algorithm3 (Hyvarinen 1999) to perform the actual calculations, which is

summarized below:

 First, the mixture signals M are whitened

𝑼 = 𝑽𝑇𝑴 (2.5)

where V
T is a whitening matrix, U denotes whitened signals and

E(UU
T)=I, which means that components of the whitened signals are

uncorrelated and their variances equal to unity. E is the expectation

operator and I is the identity matrix. The whitening matrix is computed

3
 Laboratory of Computer and Information Science, the Helsinki University of Technology,

http://www.cis.hut.fi/projects/ica/fastica/.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 80

using the Singular Value Decomposition (SVD) of the covariance matrix

E(XX
T). Thus, the separating matrix A is factorized by

𝑨 = 𝑩𝑇𝑽𝑇 (2.6)

where B is the orthogonal separating matrix.

 Next, matrix B is initialized randomly, and the whitened signal U will be

used to iterate through the following steps to reach for convergence,

which is defined as when the old and new values of B point in the same

direction

(1) Let 𝐁+ = 𝐸 𝐔g(𝐁T𝐔)} − 𝐸 g′(𝐁T𝐔)}𝐁;

(2) 𝐁 = 𝐁+ 𝐁+ ;

(3) Convergence test.

where g and g’ are respectively a nonlinear function and its derivative.

To put it simply, Yam, Leung et al.’s weight initialization method computes the

seperating matrix A from the ANN’s input data using the above FastICA

algorithm. And the optimal initial weights Wini and thresholds θini are

determined as

𝑾𝑖𝑛𝑖 = 𝛿A (2.7)

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 81

𝜽𝒊𝒏𝒊 = −𝛿𝑨 < 𝑋 > (2.8)

where δ is the scaling factor to keep the output of hidden neurons in the active

region, and <X> is the mean vector of the input data. GNMM uses the

hyperbolic tangent function in the hidden neurons and linear function in the

output neurons. The active region is assumed to be the region in which the

derivative of the hyperbolic tangent function is greater than 50% of its

maximum derivative (i.e. maximum inputs to hidden neurons no greater than

0.8814).

It has been shown that Yam, Leung et al.’s weight initialization method is

capable of speeding up the MLP learning process effectively (Yam, Leung et al.

2002). However, it should be noted that in GNMM the method is only applied

to input-hidden connections as the output neurons use the linear activation

function and random weights are used.

2.3.2.3 Choice of Activation Function

Generally speaking, the activation or squashing function is usually a nonlinear

function that suppresses the range of the output of the neuron to a range of

values (Zhang 2009). The purpose of the activation function is to introduce

nonlinearity into the network and limit the output value of each neuron so

that the behaviour of ANNs is not affected by extreme values produced by

divergent neurons (Wang 2003). Transfer functions are applied to process the

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 82

weighted and biased inputs, among which five basic and widely adapted

activation functions are illustrated in Figure 2-9.

The most commonly used activation function is the sigmoid function or logistic

function (see Figure 2-9) (Bourg and Seemann 2004). It transforms the input,

Sigmoid function

X

sigmoid

e
Y




1

1

X

Y

0

1

−1

Tan-Sigmoid function

X

X
sig

e

e
Y

2

2
tan

1

1









X

Y

0

1

−1

Linear function

XY linear 

X

Y

0

1

−1

Sign function










01

01

X

X
Y sign

X

Y

0

1

−1

Step function










00

01

X

X
Y step

X

Y

0

1

−1

Figure 2-9: Sample activation functions

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 83

which can have any value between plus and minus infinity, into a reasonable

value in the range between 0 and 1. It is also important to note that no matter

how large (positive or negative) the input gets, the sigmoid function will never

actually reach 0 or 1; it asymptotes to these values. The hyperbolic tangent

function (i.e. tan-sigmoid) behaves in a similar way apart from the fact that it

speeds up training (Bourg and Seemann 2004; Yu 2007).

Taking a closer look at the sigmoid and hyperbolic tangent transfer functions,

it can be seen that when the weighted sum of all the inputs is near 0, then

these functions are a close approximation of a linear function. As the

magnitude of the weighted sum gets larger, these transfer functions gradually

saturate. This behaviour corresponds to a gradual movement from a linear

model of the input to a nonlinear model. In short, they have the ability to do a

good job of modelling on three types of problems: linear problems, near-linear

problems, and nonlinear problems (Berry and Linoff 2004). Due to these

properties, the hyperbolic tangent function

𝑌𝑡𝑎𝑛𝑠𝑖𝑔 =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
=

2

1 + 𝑒−2𝑥
− 1 (2.9)

is chosen to be the activation function in the MLP’s hidden layer.

The step and sign activation functions, also called hard limit functions, are

often used in decision-making neurons for classification and PR tasks

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 84

(Negnevitsky 2005). The linear activation function means that the output of a

neuron is simply the net input, which implies that input-output rule extraction

is not necessary. Employing such a linear output neuron is useful when the

output does not need to be confined to an interval between 0 and 1. Thus, it is

used as the activation function for output neurons in GNMM.

2.3.2.4 Training Algorithm

In the standard BP, learning iterations (i.e. epochs) consists of two phases: in

the feedforward pass, the actual output values of the network for each

training pattern are calculated; in the backward propagation, any error signal

is propagated back from the output layer toward the input layer. Weights are

then adjusted as functions of the error signal.

wjk
wij

1

2

i

n

1

2

j

m

1

2

k

l

X1

X2

Xi

Xn

y1

y2

yk

yl

Input signals

Error signals

Input

layer

Hidden

layer

Output

layer

























Figure 2-10: The Back-Propagation training algorithm

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 85

The MLP illustrated in Figure 2-10 consists of three layers: input layer, hidden

layer and output layer. Let x = {x1, x2, …, xi, …, xn} and y = {y1, y2, …, yk, …, yl} be

input and output signals respectively. Let indices j and m denote neurons in

the hidden layer, wij and wjk denote the weight for the connection between

neurons i, j and j, k. Thus, the actual output of the kth neuron in the output

layer can be formulated as:

)(
1

k

m

j

jkjOk wyfy  


 (2.10)

where

)(
1

j

n

i

ijiHj wxfy  


 (2.11)

where fO and fH are the activation function for the output and hidden layer

respectively, yj is the output of the jth neuron in the hidden layer, and θ

denotes bias. Let yd = {y1
d, y2

d, …, yk
d, …, yl

d} be the desired output from the

output layer, and the objective function for optimization is defined as the

Mean Square Error (MSE) between the actual output y and the desired output

y
d. Thus, for a given training dataset x and y

d, the average error E(w) is

defined as:

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 86





l

k

k

d

k yyE
1

2)(
2

1
)(w (2.12)

where the vector w is a set of weights (treating the bias θ as a weight too) that

describes the neurons in this network, and the aim of the training algorithm is

to minimize E(w). According to the gradient-descent method, the weights in

the hidden-to-output connections are updated by

jk

jk
w

E
w




  (2.13)

where η is the learning rate or step size, provided that it is a sufficiently small

positive number.

Applying the chain rule, the derivative in Eq.(2.13) can be expressed as

jOkjkOk

d

k

jk

k

k

k

k

jk yyXfyy
w

X

X

y

y

E
w  















)]()[((2.14)

where
k

m

j

jkjk wyX  
1

 is the net weighted input to the kth neuron, and δOk

is called the error gradient and defined as)]()[(kOk

d

kk Xfyy


 . For the

weight update on the input-to-hidden connections, it can be obtained in a

similar manner:

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 87

iHjij xw  (2.15)

where 





l

k

jkOkjHHj wXf
1

)]([ .

The above description is the BP algorithm in its simplest form. It is a supervised

gradient-descent technique, wherein the MSE between the actual output of

the network and the desired output is minimized. For a detailed description of

the BP method, there are many excellent resources available (Lin and Lee 1996;

Haykin 1999; Negnevitsky 2005; Huang, Hung et al. 2006).

The main potential drawbacks of the standard BP algorithm are that they quite

often suffer from becoming stuck in a local minimum and they may require

long learning periods in order to encode the training patterns (Hoya 2005).

Methods to overcome these include training with different initial random

weights, allowing extra hidden neurons, and lowering the gain term etc (Du

and Swamy 2006). GNMM uses the LM algorithm (Du and Swamy 2006; Huang,

Hung et al. 2006) to train MLPs. The LM method is a variation of the standard

BP based on the computation of the Hessian matrix. Compared with

conventional BP algorithm, it achieves a second-order speedup.

Note that MLPs are used in GNMM both as the fitness function and the core

DM engine. However, the training settings are different for the two stages. For

example, when serving as the fitness function, the learning rate α has to be

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 88

sufficiently small (e.g. 0.01) in order to avoid network oscillation; but when

being used as the final modeller, α can have a relatively greater value (e.g.

0.04) to accelerate the learning process. In addition, the number of neurons in

the hidden layer can be different as well. Generally speaking, an ANN performs

better with an increased number of hidden neurons. However, when MLP is

used as the fitness function, GNMM limits its hidden neurons in a way that it

equals a fixed number Nh (i.e. Nh = number of hidden neurons) to make the

input selection fairer. For example, consider two cases: one is three inputs

with three hidden neurons, the other is the same three inputs with four

hidden neurons. Given enough iterations, the second case will almost always

produce higher accuracy. But does it mean the second input combination is

better than the first? The exception is that when the input variables are too

few (e.g. number of input variables < Nh), in that case the number of hidden

neurons are set to be the same as the number of inputs.

2.3.3 Step 3 – Rule Extraction using Mathematical Programming

GNMM utilizes a mathematical programming methodology proposed by Tsaih

and Chih-Chung (2004) for identifying and examining regression rules

extracted from MLPs. Let xm = {x(m,1) ,…, x(m,i)} denote the m-th row vector in Xf,

where 0 < m < a, 0 < i < b, 2wj = {2w1j ,…, 2wij } stand for the weights between

the j-th hidden neuron and the input layer, 2θj stands for the threshold of the

j-th hidden neuron (see Figure 2-11). Returning to Eq.(2.9), the output of the j-

th hidden neuron for xm can be written as

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 89

3w

2wj

2θ1

2θ2

2θ3

2θj

X1

X2

X3

Xi

Input signals

Error signals

Input

layer

Hidden

layer

Output

layer









3θ
y

Figure 2-11: GNMM extracts regression rules from trained MLPs

𝑕𝑚 𝑗 = 𝑓(xmwj
′ + 𝜃2 𝑗) (2.16)

It has been shown (Tsaih and Chih-Chung 2004) that the following function g(t)

can be used to approximate tanh (Eq.(2.9))

𝑔 𝑡 =

1 𝑡 ≥ 𝜅
𝛽1𝑡 + 𝛽2𝑡

2 0 ≤ 𝑡 ≤ 𝜅

𝛽1𝑡 − 𝛽2𝑡
2 −𝜅 ≤ 𝑡 ≤ 0

−1 𝑡 ≤ −𝜅

(2.17)

in which β1 = 1.0020101308531, β2 = −0.251006075157012, κ =

1.99607103795966. Letting tj = xmwj' and substituting t = tj + 2θj into Eq.(2.17),

we get the following

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 90

𝑔 𝑡𝑗 + 𝜃𝑗2 =

1 𝑡𝑗 ≥ 𝜅 − 𝜃𝑗2

(𝛽1 𝜃𝑗2 + 𝛽2 𝜃𝑗
2)2

 +(𝛽1 + 2𝛽2 𝜃𝑗2)𝑡𝑗 − 𝜃𝑗2 ≤ 𝑡𝑗 ≤ 𝜅 − 𝜃𝑗2

 +𝛽2𝑡𝑗
2

(𝛽1 𝜃𝑗2 − 𝛽2 𝜃𝑗
2)2

 +(𝛽1 − 2𝛽2 𝜃𝑗2)𝑡𝑗 −𝜅 − 𝜃𝑗2 ≤ 𝑡 ≤ − 𝜃𝑗2

 −𝛽2𝑡𝑗
2

−1 𝑡𝑗 ≤ −𝜅 − 𝜃𝑗2

(2.18)

Thus for the j-th hidden neuron, the output value is approximated with a

polynomial form of single variable tj in each of four separate polyhedrons in

the xm space. For example, if xm ∈ {xm: −2θj ≤ xmwj' ≤ κ − 2θj }w, then tanh (xmwj'

+ 2θj) is approximated with β12θj + β22θj
2 + (β1 + 2β22θj)tj + β2tj

2. Because the

activation function for the output layer is a linear function, a comprehensible

regression rule associated with a trained ANN with i hidden neurons is thus:

 IF xm ∈ {xm: −2θj ≤ xmwj' ≤ κ − 2θj for all j}

 THEN 𝑦 ′ = 𝜃3 + 𝑤3 𝑗 (𝛽1 𝜃𝑗2 + 𝛽2 𝜃𝑗
2

2
𝑖
𝑗 =1 +(𝛽1 + 2𝛽2 𝜃𝑗2)𝑡𝑗 + 𝛽2𝑡𝑗

2)

Thus, once the training is done the neural network simulated output for x can

be easily obtained. In other words, regression rules associated with the trained

MLP can be derived.

2.4 Summary

The current chapter has briefly reviewed a selection of hybrid IS DM

techniques including ANFIS, EFuNN, Fuzzy ARTMAP, as well as CGP. These

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 91

techniques have been successfully applied to a range of applications, and

variations based on these techniques have been introduced in the literature to

suit different needs. A simple fact is that, for example, using ANFIS as a

keyword to search in fields ‘Subject/Title/Abstract’, database Compendex4

returned a total of 1161 records after year 2000 (retrieved 30th July 2009). Due

to this reason, this thesis will concentrate on these techniques in the most

widely accepted forms, which are also the forms that have the greatest impact,

rather than specific variations. Benchmarking studies using these techniques

will be carried out in Chapter 6.

This chapter also gives a detailed description of GNMM, which is a general

pattern classifier and modeller. It uses MLP as the core engine to perform data

modelling/classification tasks, and hence inherits advantages that are built-in

with the ANN techniques e.g. robustness and noise-tolerance. GNMM also

employs the GA technique to perform MLP input optimization, which not only

simplifies the MLP structure, accelerates the training process, but also makes

the rule extraction more efficient and effective. Rule extraction eliminates

MLP’s ‘black-box’ nature, and makes knowledge extracted from GNMM more

understandable.

In the following chapters (i.e. Chapter 3 to Chapter 5), we will show some

applications of GNMM, in which we will demonstrate its implementation

4 Compendex & Ei Backfile, http://www.ei.org/compendex.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 92

details through case studies. And finally in Chapter 6, we will do a

benchmarking study using GNMM against some hybrid IS DM methods, in

which we will compare and summarize its relative advantages/disadvantages.

References

Bäck, T., D. B. Fogel, et al. (1997). Handbook of evolutionary computation.

Bristol ; Philadelphia

New York, Institute of Physics Pub. ;

Oxford University Press.

Berry, M. J. A. and G. Linoff (2004). Data mining techniques: for marketing,

sales, and customer relationship management. Indianapolis, Ind., Wiley

Pub.

Bourg, D. M. and G. Seemann (2004). AI for game developers. Sebastopol, CA,

O'Reilly.

Busque, M. and M. Parizeau (1997). "A Comparison of Fuzzy ARTMAP and

Multilayer Perceptron for Handwritten Digit Recognition." Universite

Laval, listopad.

Carpenter, G. A., S. Grossberg, et al. (1992). "Fuzzy ARTMAP: A neural network

architecture for incremental supervised learning of analog

multidimensional maps." IEEE Transactions on Neural Networks 3(5):

698-713.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 93

Carpenter, G. A., S. Grossberg, et al. (1991). "Fuzzy ART. Fast stable learning

and categorization of analog patterns by an adaptive resonance

system." Neural Networks 4(6): 759-771.

Chambers, L. (2001). The practical handbook of genetic algorithms :

applications. Boca Raton, Fla., Chapman & Hall/CRC.

Chow, T. W. S. and S.-Y. Cho (2007). Neural networks and computing: learning

algorithms and applications. London; Hackensack, NJ, Imperial College

Press; Distributed by World Scientific.

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal

function." Mathematics of Control, Signals, and Systems 2: 303-314.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems.

De Jong, K. A. (2006). Evolutionary computation: a unified approach.

Cambridge, Mass., MIT Press.

del-Hoyo, R., B. Martín-del-Brío, et al. (2009). "Computational intelligence

tools for next generation quality of service management."

Neurocomputing In Press, Corrected Proof.

Du, K. L. and M. N. S. Swamy (2006). Neural networks in a softcomputing

framework. London, Springer.

Engelbrecht, A. P. (2007). Computational intelligence: an introduction.

Hoboken, N.J., John Wiley.

Georgiopoulos, M., J. Huang, et al. (1994). "Properties of learning in ARTMAP."

Neural Networks 7(3): 495-506.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 94

Harding, S. (2008). Evolution of image filters on graphics processor units using

cartesian genetic programming, Hong Kong, China, Inst. of Elec. and

Elec. Eng. Computer Society.

Haupt, R. L. and S. E. Haupt (2004). Practical genetic algorithms. Hoboken, N.J.,

John Wiley.

Haykin, S. S. (1999). Neural networks: a comprehensive foundation. Upper

Saddle River, N.J., Prentice Hall.

Holland, J. H. (1975). Adaptation in natural and artificial systems : an

introductory analysis with applications to biology, control, and artificial

intelligence. Ann Arbor, University of Michigan Press.

Hoya, T. (2005). Artificial mind system : Kernel memory approach. Berlin New

York, Spinger.

Huang, Y.-M., C.-M. Hung, et al. (2006). "Evaluation of neural networks and

data mining methods on a credit assessment task for class imbalance

problem." Nonlinear Analysis: Real World Applications 7(4): 720-747.

Hyvarinen, A. (1999). "Fast and robust fixed-point algorithms for independent

component analysis." IEEE Transactions on Neural Networks 10(3): 626-

634.

Hyvarinen, A., J. Karhunen, et al. (2001). Independent component analysis.

New York, J. Wiley.

Jang, J.-S. R. (1993). "ANFIS: adaptive-network-based fuzzy inference system."

IEEE Transactions on Systems, Man and Cybernetics 23(3): 665-685.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 95

Jang, J.-S. R., C.-T. Sun, et al. (1997). Neuro-fuzzy and soft computing: a

computational approach to learning and machine intelligence. Upper

Saddle River, NJ, Prentice Hall.

Karray, F. O. and C. W. De Silva (2004). Soft computing and intelligent systems

design : theory, tools, and applications. Harlow, England ; New York,

Pearson/Addison Wesley.

Kasabov, N. (1998). "Evolving Fuzzy Neural Networks-Algorithms, Applications

and Biological Motivation." Methodologies for the Conception, Design

and Application of Soft Computing, World Scientific: 271-274.

Kasabov, N. (2008). "Evolving Intelligence in Humans and Machines:

Integrative Evolving Connectionist Systems Approach." Computational

Intelligence Magazine, IEEE 3(3): 23-37.

Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge

engineering approach. London, Springer.

Lin, C. T. and C. S. G. Lee (1996). Neural fuzzy systems: a neuro-fuzzy synergism

to intelligent systems, London : Prentice-Hall International.

Lin, C. T. and C. S. G. Lee (1996). Neural fuzzy systems: a neuro-fuzzy synergism

to intelligent systems. NJ, USA, Prentice-Hall, Inc. Upper Saddle River.

Liu, P. and H.-X. Li (2004). Fuzzy neural network theory and application. River

Edge, NJ, World Scientific.

Miller, J. F. and P. Thomson (2000). "Cartesian Genetic Programming." Lecture

notes in computer science.(1802): 121-132.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 96

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.,

MIT Press.

Mitra, S. and T. Acharya (2003). Data mining: multimedia, soft computing, and

bioinformatics. Hoboken, NJ, John Wiley.

Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems.

Harlow, England; New York, Addison-Wesley.

Poli, R. (1997). Parallel distributed genetic programming applied to the

evolution of natural language recognisers, Berlin, Germany, Springer-

Verlag.

Reeves, C. R. and J. E. Rowe (2003). Genetic algorithms: principles and

perspectives: a guide to GA theory. Boston, Kluwer Academic

Publishers.

Schaffer, J. D., R. A. Caruana, et al. (1989). "A study of control parameters

affecting online performance of genetic algorithms for function

optimization." Proceedings of the third international conference on

Genetic algorithms: 51-60.

Sloper, J. E., G. L. Miotto, et al. (2008). "Dynamic Error Recovery in the ATLAS

TDAQ System." Nuclear Science, IEEE Transactions on 55(1): 405-410.

Soyguder, S. and H. Alli (2009). "An expert system for the humidity and

temperature control in HVAC systems using ANFIS and optimization

with Fuzzy Modeling Approach." Energy and Buildings 41(8): 814-822.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 97

Tan, S. C., M. V. C. Rao, et al. (2008). "Fuzzy ARTMAP dynamic decay

adjustment: An improved fuzzy ARTMAP model with a conflict resolving

facility." Applied Soft Computing 8(1): 543-554.

Tsaih, R. and L. Chih-Chung (2004). The layered feed-forward neural networks

and its rule extraction. Proceedings, International Symposium on

Neural Networks, Dalian, China, Springer-Verlag.

Vose, M. D. (1999). The simple genetic algorithm : foundations and theory.

Cambridge, Mass., MIT Press.

Walker, J. A. and J. F. Miller (2008). "The automatic acquisition, evolution and

reuse of modules in Cartesian genetic programming." IEEE Transactions

on Evolutionary Computation 12(4): 397-417.

Wang, S.-C. (2003). Interdisciplinary computing in Java programming. Boston,

Kluwer Academic.

Wilson, G. and W. Banzhaf (2008). A comparison of cartesian genetic

programming and linear genetic programming, Naples, Italy, Springer

Verlag.

Xu, Z., J. Xuan, et al. (2009). "Application of a modified fuzzy ARTMAP with

feature-weight learning for the fault diagnosis of bearing." Expert

Systems with Applications 36(6): 9961-9968.

Yam, J. Y. F. and T. W. S. Chow (2000). "A weight initialization method for

improving training speed in feedforward neural network."

Neurocomputing 30(1-4): 219-232.

Chapter 2 Hybrid IS DM Techniques and the GNMM Method 98

Yam, Y.-F., C.-T. Leung, et al. (2002). "An independent component analysis

based weight initialization method for multilayer perceptrons."

Neurocomputing 48(1-4): 807-818.

Yang, J., E. L. Hines, et al. (2008). A Genetic Algorithm-Artificial Neural Network

Method for the Prediction of Longitudinal Dispersion Coefficient in

Rivers. Advancing Artificial Intelligence through Biological Process

Applications. A. Porto, A. Pazos and W. Buño, Idea Group Inc.: 358-374.

Yu, L. (2007). Foreign-exchange-rate forecasting with artificial neural networks.

New York, Springer.

Yuen, S. Y. and C. K. Chow (2009). "A genetic algorithm that adaptively mutates

and never revisits." IEEE Transactions on Evolutionary Computation

13(2): 454-472.

Zhang, M. (2009). Artificial higher order neural networks for economics and

business. Hershey, Information Science Reference.

Chapter 3 Prediction of Longitudinal

Dispersion Coefficient in Rivers

3.1 Introduction

In previous chapters we reviewed DM concepts, theoretical backgrounds of IS

DM techniques (Chapter 1), and proposed the GNMM method (Chapter 2).

This is the first chapter in terms of GNMM’s applications/case studies. It is

followed by two other application chapters (Chapter 4 and Chapter 5) and one

benchmarking chapter (Chapter 6) before conclusions are drawn. This chapter

involves the application of GNMM in the field of Civil Engineering, specifically

in the prediction of longitudinal dispersion coefficient in rivers. The aim of the

current chapter is to provide an insightful analysis of GNMM’s implementation

in the context of longitudinal dispersion coefficient prediction. This is achieved

by a detailed comparative study of GNMM’s input determination and rule

extraction process based on very well-studied classic and representative sets

of data (Yang, Hines et al. 2007; Yang, Hines et al. 2008). Furthermore, PCA

and SOM analysis are performed to cross-validate the GA input variable

selection results.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 100

3.2 Background

An important application of environmental hydraulics is the prediction of the

fate and transport of pollutants that are released into watercourses, either as

a result of accidents or as regulated discharges. Such predictions are primarily

dependent on the water velocity, longitudinal mixing, and chemical/physical

reactions etc, of which longitudinal dispersion coefficient is a key variable for

the description of the longitudinal spreading in a river. After being first

introduced in Taylor (1954), extensive studies have been made based on

experimental and field data for predicting the dispersion coefficient (Jobson

1997; Seo and Cheong 1998; Deng, Singh et al. 2001; Wallis and Manson 2004;

Boxall and Guymer 2007). The majority of such work has used the Advection-

Dispersion Equation approach because strong physical basis makes it more

amenable to predicting conditions in rivers and streams for which no model

has previously been calibrated (Wallis and Manson 2004).

The concept of longitudinal dispersion coefficient was first introduced in Taylor

(1954). Based on this work, the following integral expression was developed

(Fischer, List et al. 1979; Seo and Cheong 1998) and generally accepted:

𝐾 = −
1

𝐴
 𝑕𝑢′

1

𝜀𝑡𝑕

𝑦

0

𝐵

0

 𝑕𝑢′𝑑𝑦𝑑𝑦𝑑𝑦
𝑦

0

 (3.1)

where K = longitudinal dispersion coefficient; A = cross-sectional area; B =

channel width; h = local flow depth; u' = deviation of local depth mean flow

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 101

velocity from cross-sectional mean; y = coordinate in the lateral direction; and

εt = local (depth averaged) transverse mixing coefficient. An alternative

approach utilises field tracer measurements and applies the method of

moments. It is also well documented in the literature (Rutherford 1994;

Guymer 1999; Rowinski, Piotrowski et al. 2005) and defines K as

𝐾 =
𝑈𝑐

2

2

𝜎𝑡

2 𝑥2 − 𝜎𝑡
2 𝑥1

𝑡 2 − 𝑡 1
 (3.2)

where Uc = mean velocity, x1 and x2 denotes upstream and downstream

measurement sites, 𝑡 = centroid travel time, ζt
2
(x) = temporal variance.

However, owing to the requirement for detailed transverse profiles of both

velocity and cross-sectional geometry, Eq.(3.1) is rather difficult to use.

Furthermore, Eq.(3.2), called the method of moments (Wallis and Manson

2004), requires measurements of concentration distributions and can be

subject to serious errors due to the difficulty of evaluating the variances of the

distributions caused by elongated and/or poorly defined tails. As a result,

extensive studies have been made based on experimental and field data for

predicting the dispersion coefficient (Jobson 1997; Seo and Cheong 1998; Deng,

Singh et al. 2001; Wallis and Manson 2004).

For example, employing 59 hydraulic and geometric datasets measured in 26

rivers in the United States, Seo and Cheong (1998) used dimensional analysis

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 102

and applied the one-step Huber method, a nonlinear multi-regression method,

to derive the following equation:

𝐾 = 5.915(𝐻𝑢∗)
𝐵

𝐻

0.62

𝑈

𝑢∗

1.428

 (3.3)

in which u
* = shear velocity. This technique uses the easily measureable

hydraulic variables B, H and U, together with a frequently used parameter,

extremely difficult to accurately quantify in field applications, u*, to estimate

the dimensionless dispersion coefficient K from Eq.(3.3). Another empirical

equation developed by Deng et al. (2001) is a more theoretically based

approximation of Eq.(3.1), which not only includes the conventional

parameters of (B/H) and (U/u
*) but also the effects of the transverse mixing εt0,

as follows:

𝐾 = 0.15
𝐻𝑢∗

8𝜀𝑡0

𝐵

𝐻

5 3

𝑈

𝑢∗

2

 (3.4)

where

𝜀𝑡0 = 0.145 +
1

3520.0

𝐵

𝐻

1.38

𝑈

𝑢∗
 (3.5)

These equations are easy to use, assuming measurements or estimates of the

bulk flow parameters are available. However, they may be unable to capture

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 103

the complexity of the interactions of the fundamental transport and mixing

mechanisms, particularly those created by non-uniformities across the wide

range of channels encountered in nature. In addition, the advantage of one

expression over another is often just a matter of the selection of data and the

manner of their presentation. Regardless of the expression applied, one may

easily find an outlier in the data, which definitely does not support the

applicability of a particular formula. An expectation that, in spite of the

complexity of the river reach, the dispersion coefficient may be represented by

one of the empirical formulae seems exaggerated (Rowinski, Piotrowski et al.

2005).

Furthermore, most of the studies have been carried out based on specific

assumptions and channel conditions and therefore the performance of the

equations varies widely for the same stream and flow conditions. For instance,

Seo and Cheong (1998) used 35 of the 59 measured datasets to establish

Eq.(3.3) and the remaining 24 for verifying their model. While the model of

Deng et al. (2001) (Eq.(3.4) and Eq.(3.5)) is limited to straight and uniform

rivers. They also assume that the river has a width-to-depth ratio greater than

10. Therefore, a model that has greater general applicability is desirable.

Recently ANN modelling approaches have been embraced enthusiastically by

practitioners in water resources, as they are perceived to overcome some of

the difficulties associated with traditional statistical approaches, e.g. making

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 104

assumptions with regard to stream geometry or flow dynamics (Maier and

Dandy 1998). They offer an effective approach for handling large amounts of

dynamic, non-linear and noisy data, especially when the underlying physical

relationships are not fully understood (Haykin 1994; Hagan, Demuth et al.

1996; Cannas, Fanni et al. 2006).

In specific terms, several authors (Kashefipour, Falconer et al. 2002; Rowinski,

Piotrowski et al. 2005; Tayfur and Singh 2005; Piotrowski, Rowinski et al. 2006;

Tayfur 2006) have reported successful applications of ANNs to the prediction

of dispersion coefficient. For example, in the case of Tayfur and Singh (2005)

the ANN was trained and tested using 71 data samples of hydraulic and

geometric variables and dispersion coefficients measured on 29 streams and

rivers in the United States, with the result that 90% of the dispersion

coefficient was explained. Rowinski, Piotrowski et al. (2005) applied an MLP

with the LM Algorithm to three different datasets which have been explored in

the literature. The lowest percentage of training data mean error was found to

be 7.02%. However, there is a lack of a suitable input determination

methodology for ANN models in these applications. Moreover, without further

interpretation of the trained network, their results are not easily transferable.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 105

3.3 Datasets and Pre-processing

3.3.1 Datasets

In the last decade, regions within the UK Environment Agency (EA) have

completed a number of dye tracing studies and more than one hundred

different tracing studies were analysed to obtain estimates of the mean travel

velocity and longitudinal dispersion. A database of travel times and dispersion

was developed (Guymer 1999) comprising the tracing works cited. The

database (denoted by Data I) contains 196 data samples from 27 different

rivers and includes information relevant to the traces; including geographical

and physical attributes of the river reaches as well as optimized Advection-

Dispersion Model (ADE) and Aggregated Dead Zone Model (ADZ) travel times,

velocities, ADE longitudinal dispersion coefficients and ADZ dispersive fractions.

The second dataset, Data II, contains 71 sets of measurements from 29 rivers

in the United States. This dataset has previously been very well studied in the

literature (Seo and Cheong 1998; Deng, Singh et al. 2001; Rowinski, Piotrowski

et al. 2005; Tayfur and Singh 2005).

3.3.2 Data Pre-processing

Usually data pre-processing of GNMM includes scaling the inputs and targets

so that they fall within a specified range. However, since there are a total of 49

variables available in Data I, the prior objective of data pre-processing is to

reduce the dimensionality of the original set of inputs by eliminating

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 106

Table 3-1: Variables in Data I and II

Data I (16 variables) Data II (8 variables)

Start location:
Cs (km

2), Ds (km)

Ms (m
3/s), Qs (m

3/s)
Independent:

B (m), H (m)

U (m/s), u* (m/s), α

End location:
Ce (km

2), De (km)

Me (m
3/s), Qe (m

3/s)

Reach: S, L (m), Dr (m)

Dependent: B/H, U/u
*, β

Gauging station:

Cg (km
2), A (m3/s)

Mg (m3/s), Qg (m3/s)

I (m3/s)

redundant and/or dependant variables. This will result in a set of independent

inputs that are not necessarily related to the dispersion coefficient. This subset

of inputs can then be used in GNMM to determine which of these inputs are

most appropriate for mapping to the output.

Among the 49 available variables in Data I, non-numerical variables such as

river name, flow excedence/category, and start location grid reference are

removed first of all. These variables are valuable in terms of dye tracing

studies but do not provide useful information in the current context. Secondly,

dependant variables are discarded. For example, start and end position of the

river location elevation are discarded, while reach slope is kept; reach

sinuosity is removed while reach length and straight distance are kept. After

being processed, Data I contains 16 variables which belong to 4 categories in

the original dataset, e.g. start/end location, reach, and gauging station. These

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 107

variables are: for the start/end location (subscripts s/e), catchment area (C),

distance from injection point (D), theoretical mean flow (M), and theoretical

Q95 flow (Q); for the reach in question, slope (S), reach length (L), and straight

distance (Dr); for the gauging station, catchment area (Cg), average daily flow

(A), daily mean flow (Mg), theoretical Q95 flow (Qg), instant flow (I). All these

variables are listed in Table 3-1.

Data II contains 8 variables apart from the longitudinal dispersion coefficient.

There are five independent variables: channel width (B), flow depth (H),

velocity (U), shear velocity (u*) and river sinuosity (α = channel length/valley

length). Dependant variables are width-to-depth ratio (B/H), relative shear

velocity (U/u
*) and channel shape variable (β= ln(B/H)). Data II variables are

listed in Table 3-1 too. It is worth noting that dependent variables exist in Data

II (B/H, U/u
*), which indicates that eliminating redundant and/or dependant

variables is not always necessary in GNMM. Since the aim of this step is to

reduce the dimensionality of the data by eliminating redundant and/or

dependant variables, obviously in Data II the dimensionality is not a main issue.

On the other hand, as we will show later, Data II can be treated as an example

of how GNMM handles dependent variables.

3.3.3 Division into Training and Testing Data

Before the start of GA variable selection, it is necessary to divide the dataset

into training and testing subsets. This is to avoid over fitting when

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 108

chromosomes are being evaluated in an MLP (Lin and Lee 1996). The division is

achieved by selecting representative sets for both of the training and testing

data:

(1) Among the 196 data samples contained in Data I, some contain a high

percentage of missing values, or indications that the data recorded is

inaccurate. In order to obtain reliable results, these data are removed. As

a result, the final dataset contains 127 data samples (see Appendix A).

After division, the training subset, denoted by Data It, contains 102

samples; while the testing subset, denoted by Data Is, consists of the

remaining 25.

(2) Similarly, Data II (see Appendix B) is divided into two subsets, Data IIt and

Data IIs for training and testing respectively. Data IIt contains 49 datasets

out of 71, while Data IIs consists of the remaining 22.

Normally when we have a large quantity of data we would typically use more

data for training and less for testing. With small datasets we may repeat the

process several times by randomly generating training and testing data to

ensure that our results are reliable for the dataset. Table 3-2 and Table 3-3

show statistics of these subsets respectively. Note that in these tables, Avg,

Avgt and Avgs mean the average for the whole dataset, training and testing

subset average correspondingly.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 109

Table 3-2: Data I statistics

Start Location End Location

Cs (km

2) Ds (km) Ms (m
3/s) Qs (m

3/s) Ce (km
2) De (km) Me (m

3/s) Qe (m
3/s)

Max 3314.75 41.50 49.55 9.47 3315.25 46.50 49.55 9.47

Min 16.00 1.00 0.18 0.02 9.25 3.40 0.39 0.03

Avg 714.51 9.82 13.04 2.10 858.97 16.43 15.15 2.45

Avgt 643.05 8.49 13.57 1.97 838.79 16.27 17.10 2.61

Avgs 732.15 10.15 12.90 2.13 863.91 16.47 14.63 2.41

Reach Gauging Station

S L (m) Dr (m) Cg (km

2) A (m3/s) Mg (m3/s) Qg (m3/s) I (m3/s)

Max 0.0244 14697.0 12133.50 3314.80 47.14 75.00 6.60 75.00

Min 0.0000 1058.00 915.57 20.00 0.44 0.48 0.06 0.50

Avg 0.0023 6037.06 4342.88 792.39 12.38 10.08 1.93 10.20

Avgt 0.0030 6775.73 4834.09 736.99 13.48 11.33 1.83 11.29

Avgs 0.0022 5856.02 4222.49 805.96 12.11 9.78 1.95 9.93

Table 3-3: Data II statistics

B (m) H (m) U (m/s) u

* (m/s) B/H U/u
* β α K (m2/s)

Max 711.2 19.94 1.74 0.553 156.5 19.63 5.05 2.54 892.0

Min 11.9 0.22 0.03 0.002 13.8 1.29 2.62 1.08 1.9

Avg 83.0 1.70 0.54 0.088 51.7 7.62 3.79 1.39 107.7

Avgt 62.9 1.31 0.49 0.084 51.4 7.13 3.79 1.37 98.4

Avgs 127.6 2.55 0.66 0.097 52.4 8.72 3.77 1.42 128.4

When forming these two subsets, the present work follows that of Tayfur and

Singh (2005), in order to compare results. However, as mentioned in Tayfur

and Singh (2005): ‘In choosing the datasets for training and testing, special

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 110

attention was paid to ensure that we have representative sets so as to avoid

bias in model prediction’ (p. 993).

For example, in Data II the range for the dispersion coefficient (K) varies from

1.9 to 892 m2/s, and K is greater than 100 m2/s in 21 cases, which counts for

about 30% of all available measured coefficient values. The range for the

width-to-depth ratio (B/H) of the datasets varies from 13.8 to 156.5 and (B/H)

is greater than 50 in 26 cases (37%). After division the percentages of K > 100

m
2/s and B/H > 50 are also comparable for both Data IIt and Data IIs. For

example, in Data IIs 25% of K is greater than 100 m/s2 (this ratio is 31% in Data

IIt), also, in Data IIs 40% of B/H is greater than 50 (this ratio is 31% in Data IIt).

3.4 GNMM Implementation

3.4.1 Variable Selection

GNMM is mainly implemented in MATLAB (v7.2)5 (see Appendix C), using the

Genetic Algorithm and Direct Search Toolbox, as well as the Neural Network

Toolbox (GNMM also includes a VBA script to visually select outstanding

variables, see Appendix D). GA parameters are set as follows: pc = 0.8, pm =

0.01, the learning rate α = 0.01, the elite group size Ne = 2. Other settings for

each GA run are as shown in Table 3-4, along with CPU speed and CPU time. It

should be noted that Ne in Table 3-4 stands for ‘number of epochs per

chromosome’.

5 The MathWorks, http://www.mathworks.com/.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 111

Table 3-4: GA parameters and CPU speeds/time

 Case Np Ng Ne (/chrom.) CPU Speed CPU Time (s)

D
at

a
I

1 200 100 100 3.2 GHz (Pentium 4) 22760.52

2 200 100 50 2.66 GHz (Celeron D) 34992.37

3 400 100 100 900 MHz (UltraSPARC III) 139491.91

4 400 200 20 3.2 GHz (Pentium 4) 34608.08

5 400 400 20 900 MHz (UltraSPARC III) 216925.95

6 200 200 20 2.66 GHz (Celeron D) 40111.13

7 400 100 300 3.2 GHz (Pentium 4) 127634.52

D
at

a
II

1 200 100 100 3.20 GHz (Pentium 4) 17830.33

2 200 100 50 2.66 GHz (Celeron D) 31772.62

3 400 100 100 3.20 GHz (Pentium 4) 33600.17

4 200 200 20 2.66 GHz (Celeron D) 45690.86

5 200 200 100 3.20 GHz (Pentium 4) 39280.16

Figure 3-1: RMSE and winning variables for Data II training subset in Case 2.
RMSE errors are show as dotted-lines, and the corresponding component

variables of the winning chromosome are shown below the line

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

R
M

S
E

Generations

α

β

U/u*

B/H

u * (m/ s)

U (m/s)

H (m)

B (m)

RMSE

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 112

As described previously in Section 2.3.1.3 The Elite Group and Appearance

Percentage, in order to minimize the randomness in the MLP initialization, we

introduced the elite group and appearance percentage into GNMM. We will

now consider these two techniques through the following example. For the

purpose of easier visual presentation, Data II is chosen because it contains

fewer variables than Data I (see Appendix E RMSE and Winning Variables for

Case 7 of Data I). However, similar results can be found in all cases listed in

Table 3-4.

Figure 3-1 illustrates the RMSE of the winning chromosome and its component

variables for each generation of Data II training subset in Case 2. It can be seen

that although the overall trend of the RMSE is decreasing, it is not necessarily

the case that later generations produce lower RMSE than earlier ones. This is a

distinct feature of GNMM. For ordinary GA optimization problems, there is no

randomness associated with the fitness function. Thus, for a certain

chromosome, it will always evaluate to a fixed fitness value. However, this is

not the case for GNMM as the fitness function in GNMM is the training error

of an MLP. Although we apply the ICA based weight initialization method to

minimize the randomness, the ICA coefficient is still based on random

numbers. Therefore, in GNMM it is possible that the same chromosome may

still produce a different fitness value; this is the reason why we introduced the

concept of appearance percentage.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 113

Figure 3-2: Appearance percentage for Case 2 of Data II training subset

It is also evident from Figure 3-1 that the changing range of the RMSE is

narrowing too. This implies that the GA has identified a high yielding region

and was searching exploitationally, since the GA has already found several

variable combinations (e.g. U, H, and B) that produce a smaller error and was

further exploring different combinations of these variables. Several successive

generations around the 50th yield the same winning chromosome. This is the

effect of the elite group. As mentioned before, chromosomes which

performed best are protected so that they can compete in the next generation.

Apparently, these chromosomes were kept as survivors in the next generation.

Compared to Figure 3-1, which depicts component variables in each winning

chromosome, Figure 3-2 shows some statistical information for all the

variables by means of appearance percentage. It can be seen that the most

frequently appearing variables are U (100%), B (95%) and H (82%), followed by

u
* (26%), U/u

* (9%), whereas β, α and B/H are all less than 1%. These results

B

H

U

u *

B/H

U/u*

β α
0

20

40

60

80

100

120

A
p
p
e
a
ra

n
c
e
 (

%
)

Variable Name

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 114

seem promising as there is a clear distinction between different input variables;

however, GNMM does not rely on a single run. This is because GA operations

are based on random number generators. Once the random number seed

changes, these results change accordingly. This also explains why there are 7

cases for Data I and 5 cases for Data II – more runs are needed to find a clear

distinction. The results are shown graphically in Figure 3-3 and Figure 3-4.

Figure 3-3: Appearance percentage for Data I training subset

Figure 3-4: Appearance percentage for Data II training subset

Cs Ds

Ms Qs Ce

De

Me
Qe S L Dr

Cg A

Mg

Qg

I

0

20

40

60

80

100

120

A
p
p
e
a
ra

n
c
e
 (

%
)

Variable

start
location

end
location

reach

gauging station

B

H

U

u*

B/H

U/u*

β α

0

20

40

60

80

100

120

A
p
p
e
a
ra

n
c
e
 (

%
)

Variable Name

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 115

After running the GA seven times for Data I and five times for Data II, a clear

distinction was evident between variables. The appearance percentage of the

input variables of these two datasets are shown in Figure 3-3 and Figure 3-4

respectively. Taking Figure 3-3 for example, it can be seen that the most

frequently appearing variables are gauging station daily mean flow (Mg, 98%),

and instant flow (I, 94%). The differences between the remaining variables are

not very significant. The variables with more than 20% appearance are gauging

station catchment area (Cg, 23%), end location catchment area (Ce, 22%), start

location theoretical mean flow (Ms, 22%), start location theoretical Q95 flow

(Qs, 21%), and end location theoretical Q95 flow (Qg, 20%). Variables with less

than 15% appearances are reach length and start/end location distance from

injection point (L, Ds and De, 14%, 13% and 13% respectively). As such, Mg and

I for Data I are kept during the next MLP training stage in GNMM, while the

rest of the variables are all removed. Similarly, it can be seen that the most

frequently appearing variables for Data II are U (99%), B (96%) and H (70%),

followed by u* (28%), U/u
* (26%), whereas β, α and B/H are all less than 2%.

Thus U, B and H for Data II are kept and the rest are removed.

It is interesting to note that Figure 3-4 has a very similar distribution to Figure

3-2. The only difference is that the high appearance percentage shown in

Figure 3-2 is slightly reduced in Figure 3-4; and vice versa for the low

appearance percentage. This is the averaging effect of the appearance

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 116

percentage technique. It should also be noted that dependant variables B/H,

U/u* and β are automatically filtered out.

Figure 3-5: Comparison of performance using all variables and selected
variables for Data I training subset for a single run

Figure 3-6: Comparison of performance using all variables and selected
variables for Data II training subset for a single run

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

10
0

10
1

Epochs

P
e
rf

o
rm

a
n
c
e
 (

M
S

E
)

All variables

Variables found by GAs

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

10
0

10
1

Epochs

P
e
rf

o
rm

a
n
c
e
 (

M
S

E
)

All variables

Variables found by GAs

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 117

The effect of such variable selection can clearly be seen in Figure 3-5 and

Figure 3-6. Within 200 epochs, the ‘selected variable combination’ of Data I

achieved a much smaller MSE than using them all (0.043 vs. 0.162). The same

is true for Data II (0.067 vs. 0.115).This further demonstrates that not all of the

potential input variables are equally informative since some may be noisy,

correlated or have no significant relationship with the longitudinal dispersion

coefficient.

3.4.2 MLP Training

As a result of the input variables selection process, Mg and I for Data I and U, B

and H for Data II are identified to be the ones most frequently occurring

throughout all the populations. Thus the subset formed by these variables,

which is the subset that produces the minimal error within a given number of

epochs, is utilised in the final training process.

By setting learning rate to α = 0.04, number of neurons in the hidden layer = 5

and 3 for Data I and Data II respectively, and running the MLP five times, the

minimum RMSE for Data It is 5.92, and the coefficient of determination (R2) is

0.83 at iteration Ne = 2217513. The corresponding number for Data IIt is RMSE

= 34.85, R2 = 0.96 at Ne = 19887. In both cases, these results imply that the

MLP model is satisfactorily trained. Figure 3-7 and Figure 3-8 show the

measured and predicted longitudinal dispersion coefficients for Data I and

Data II respectively. It is evident that the data is evenly distributed around the

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 118

Figure 3-7: Predicted and measured longitudinal dispersion coefficients for
Data I

Figure 3-8: Predicted and measured longitudinal dispersion coefficients for
Data II

10
0

10
1

10
0

10
1

Measured Disp. Coeff. (m2/s)

M
L
P

 p
re

d
ic

te
d
 D

is
p
.

C
o
e
ff

.
(m

2
/s

)

Training data, RMSE=5.92, R2=0.83

Testing data, RMSE=11.66, R2=0.72

y=x line

10
1

10
2

10
1

10
2

Measured Disp. Coeff. (m2/s)

M
L
P

 p
re

d
ic

te
d
 D

is
p
.

C
o
e
ff

.
(m

2
/s

)

Training data, RMSE=34.85, R2=0.96

Testing data, RMSE=80.39, R2=0.89

y = x line

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 119

Table 3-5: Comparison of Data IIs (testing subset) results when using 4
different methods. For GNMM, the mean RMSE of 5 runs are given along with

the standard deviations

Model (Reference) R2 RMSE(m2/s)

GNMM

128.5±23.9

MLP (Tayfur and Singh 2005) 0.70 193.0

Eq.(3.4) (Deng, Singh et al. 2001) 0.55 610.0

Eq.(3.3) (Seo and Cheong 1998) 0.50 812.0

 ‘y=x’ line. For Data Is, the trained MLP produced RMSE = 11.66 and R2 = 0.72.

For Data IIs, these numbers are R2 = 0.89 and RMSE = 80.39. This means that

MLPs have been successfully trained.

Since Data II is a well studied dataset, a comparison is made between Data II

results obtained using GNMM and other methods in the literature. In this case,

over these five runs the mean RMSE and standard deviations are 128.5 and

23.9 for Data IIs. Comparing the above results to those in Tayfur and Singh

(2005) (as in Table 3-5), GNMM performs better. Although MLPs are being

adopted in both applications, the difference lies in the fact that only a portion

of available variables are used in GNMM instead of using them all as in Tayfur

and Singh (2005). For the test data, a comparison has also been made with

some other models, as in Table 3-5, which also shows that GNMM produces

the best results, and ANN models (GNMM and MLP in Tayfur and Singh (2005))

generally perform better.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 120

3.4.3 Rule Extractions

An important feature of GNMM is that by eliminating redundant input data,

understanding complex models has been made simple. This can be illustrated

by applying mathematical-programming based rule extraction to trained MLPs.

For simplicity (less hidden neurons), we take Data II as an example. The final

weights and biases of the MLP (see Figure 3-8 (c)) that minimizes MSE are as

follows: 3θ = −0.6031, 2θ1 = 1.4022, 2θ2 = −0.0143, 2θ3 = −4.1393, 3w = (−1.7705,

0.8517, −1.2564), 2w1 = (4.1222, 0.9600, −1.5078), 2w2 = (5.7385, −4.3290,

1.1943), 2w3 = (−0.7147, −6.7842, 0.3987). Applying Eq.(2.18), we have

𝑡1 = 4.1222𝐵′ + 0.9600𝐻′ − 1.5078𝑈′ (3.6)

𝑡2 = 5.7385𝐵′ + 4.3290𝐻′ + 1.1943𝑈′ (3.7)

𝑡3 = −0.7147𝐵′ − 6.7842𝐻′ + 0.3987𝑈′ (3.8)

where B', H' and U' are scaled variables according to Eq.(2.3) and Table 3-3.

Also, we have

𝑔 𝑡1 =

1 𝑡1 ≥ 0.5939

0.9115 + 0.2981𝑡1 − 0.2510𝑡1
2 −1.4022 ≤ 𝑡1 ≤ 0.5939

1.8985 + 1.7059𝑡1 + 0.2510𝑡1
2 −3.3983 ≤ 𝑡1 ≤ −1.4022

−1 𝑡1 ≤ −3.3983

 (3.9)

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 121

𝑔 𝑡1 =

1 𝑡2 ≥ 2.0104

−0.1444 + 1.0092𝑡2 − 0.2510𝑡2
2 0.0143 ≤ 𝑡2 ≤ 2.0104

−0.0143 + 0.9948𝑡2 + 0.2510𝑡2
2 −1.9818 ≤ 𝑡2 ≤ 0.0143

−1 𝑡2 ≤ −1.9818

 (3.10)

𝑔 𝑡1 =

1 𝑡3 ≥ 6.1354

−8.4483 + 3.0800𝑡3 − 0.2510𝑡3
2 4.1396 ≤ 𝑡3 ≤ 6.1354

0.1531 − 1.0760𝑡3 + 0.2510𝑡3
2 2.1432 ≤ 𝑡3 ≤ 4.1396

−1 𝑡3 ≤ 2.1432

 (3.11)

Since the activation function in the output neuron is a linear function, we also

get

𝑦 ′ = −1.7705𝑔1 + 0.8517𝑔2 − 1.2564𝑔3 − 0.6031 (3.12)

Thus, regression rules are extracted from the trained MLP. Among these 64 (43)

potential rules, some are null and will never execute. Null rules can be

identified using the Simplex algorithm, see Tsaih and Chih-Chung (2004) for

details.

Rules fired for Data I and Data II are shown in Table 3-6 and Table 3-7

respectively, where the number of training and test data samples associated

with each rule is also listed. Recall that in Eq.(2.17) the input domain of hidden

neurons is divided into four sub-domains, this corresponds to the actual value

of the digits in each rule ranging from 1 to 4. On the other hand, the length of

each rule corresponds to the number of neurons in the hidden layer. Since 5

and 3 neurons were used in the hidden layer for Data I and Data II respectively,

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 122

Table 3-6: Rules fired for Data I

No. Rule Data It Data Is

1 24121 2 1

2 41342 2

3 41442 55 13

4 42341 18 5

5 42342 8

6 43241 7 2

7 43341

1

8 44131 3

9 44141 3 1

10 44241 1

11 44242 3 2

Table 3-7: Rules fired for Data II

No. Rule Data IIt Data IIs

1 112 1 2

2 113 24 6

3 123 3 1

4 124 6 6

5 133

2

6 213 3

7 214 2 1

8 223 5

9 224 1 1

10 233 4

11 431

1

12 441

1

13 442

1

hence the corresponding length of each rule set is 5 and 3.

The regression rules summarised above give us an idea of the importance of

each rule and the distribution of the data. These rules can also be written in

the antecedent/consequent format. For example, Rule 2 in Table 3-7, which is

executed most of the time for both the training and test data in Data II, can be

rewritten as

 IF t1 ≥ 0.5939

 AND t2 ≥ 2.0104

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 123

 AND 2.1432 ≤ t3 ≤ 4.1393

 THEN y' = −1.7143 + 1.3519t3 − 0.3154 t3
2

However, the above derived y' needs to be mapped back to the normal range

using the reverse function of Eq.(2.3) to obtain the GNMM simulated

dispersion coefficient y:

𝑦 =
(𝑦 ′ + 1) × (𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)

2
+ 𝐾𝑚𝑖𝑛 = 445.05 × 𝑦 ′ + 1 + 1.90 (3.13)

These regression rules could provide environmental managers or field

response teams with a rapid assessment tool for identifying values of the

longitudinal dispersion coefficients required for the prediction of contaminant

spread and concentrations immediately following an accidental spill.

3.5 Discussions

In the following sections, PCA and SOMs are applied to Data I and II to cross-

validate the input variables identified by GNMM.

3.5.1 Principal Component Analysis

PCA is a statistical technique used to transform a data space into a smaller

space of the most relevant features (Hand, Mannila et al. 2001; Engelbrecht

2002). The aim is to project the original data space onto a linear subspace such

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 124

Figure 3-9: Percentage of the first 7 principal components in Data I

Figure 3-10: Projections of Data I points and variables onto the first two
principal components

that the variance in the data is maximally explained within the smaller

subspace. Features (or inputs) that have little variance are thereby removed.

 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

Principal Component

V
a
ri
a
n
c
e
 E

x
p
la

in
e
d
 (

%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
s
 (km2)

D
s
 (km)

M
s
 (m3/s)

Q
s
 (m3/s)

S

L (m)

D
r
 (m)

C
e
 (km2)

D
e
 (km)

M
e
 (m3/s)

Q
e
 (m3/s)

C
g
 (km2)

A (m3/s)

M
g
 (m3/s)

Q
g
 (m3/s)

I (m3/s)

Component 1

C
o

m
p

o
n

e
n

t
2

S

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 125

The principal components of a dataset are found by calculating the covariance

(or correlation) matrix of the data patterns, and by selecting the minimal set of

orthogonal vectors (the eigenvectors) that span the space of the covariance

matrix. Given the set of orthogonal vectors, any vector in the space can be

constructed with a linear combination of the eigenvectors.

Figure 3-9 shows the percentage of the first 7 principal components in Data I.

It can be seen that the only clear break in the amount of variance accounted

for by each component is between the first and second components. However,

the first component by itself explains more than 60% of the variance; with the

second components, the variance explained is more than 70%. Therefore, it is

reasonable to assert that the first two components can be regarded as being

representative of Data I.

The projections of data samples and variables in Data I onto the first two

principal components are depicted in Figure 3-10. It is interesting to note that

the two variables selected by the GNMM (Mg and I) are clustered together

although they are not outstanding in terms of contributions to the first

principal component. Thus it may be appropriate to ask as to whether or not

GNMM was working properly. It should be noticed that the dimensionality

reduction achieved by PCA is realised by preserving as much of the relevant

information from the original data as possible. From Figure 3-3, it can been

seen that none of the variables apart from the two selected by GNMM has a

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 126

Figure 3-11: Percentage of the first 5 principal components in Data II

Figure 3-12: Projections of Data II points and variables onto the first two
principal components

high appearance percentage. Therefore, the judgement is that although the

first principal component preserves most information in Data I, it contains

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Principal Component

V
a

ri
a

n
ce

 E
xp

la
in

e
d

 (
%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

B (m)

H (m)

U (m/s)

u * (m/ s)

B/H

U/u*





Component 1

C
o

m
p

o
n

e
n

t
2

u* (m/s)

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 127

little information about the longitudinal dispersion coefficient. Moreover, the

fact that Mg and I are grouped together is the most important finding in Figure

3-10, since it is not necessary for any of the principal components to preserve

the information about the longitudinal dispersion.

Figure 3-11 shows the percentage of the first 5 principal components in Data II;

while Figure 3-12 illustrates the projections of data samples and variables in

Data II onto the first two principal components. It is evident that B and H are

grouped together, and they are the most important variables in the first

principal component, which counts for around 50% of the total variance.

Following a similar analysis to Data I, it can be concluded that the first principal

component represents most of the longitudinal dispersion information in Data

II.

3.5.2 Self-Organizing Map

The SOM is a multidimensional scaling method to project an input space onto

a discrete output space, effectively performing a compression of input space

onto a set of vectors. The output space is usually a two-dimensional grid. The

SOM uses the grid to approximate the probability density function of the input

space, while still maintaining the topological structure of the input space. That

is, if two vectors are close to one another in input space, so is the case for the

map representation. For a detailed description of SOM, please refer to (Haykin

1994; Engelbrecht 2002). In the present study, SOM analysis is performed

using the MATLAB SOM Toolbox 2.0 developed at the Helsinki University of

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 128

Technology6.

The effect of the SOM training process is to cluster together similar patterns,

while preserving the topology of the input space. Training results in a set of

trained weights with no explicit cluster boundaries. An additional step is

required to find these cluster boundaries. One way to determine and visualize

the cluster boundaries is to calculate the unified distance matrix (U-matrix),

which contains a geometrical approximation of the vector distribution in the

map. The U-matrix expresses the distance to the neighbouring vectors for each

neuron. Large values within the U-matrix indicate the position of cluster

boundaries.

Figure 3-13: SOM analysis of Data I

6
 Laboratory of Computer and Information Science, the Helsinki University of Technology,

http://www.cis.hut.fi/projects/somtoolbox/

0.351

1.67

2.99

d
53.7

1040

2020

d
4.03

13.1

22.1

d
0.635

17.3

34

d
0.0704

3.01

5.95

d
0.000378

0.00435

0.00832

d
2470

6550

10600

d
1980

4310

6630

d
127

1130

2130

d
6.72

20.2

33.7

d
0.741

19.7

38.8

d
0.0804

3.08

6.08

d
174

1220

2270

d
2.66

18.7

34.7

d
1.38

24.1

46.9

d
0.373

2.55

4.74

d
1.7

24.3

46.9

d
3.35

18.7

34.1

U-matrix

S L (m) D
r
 (m) C

e
 (km2)

D
s
 (km)

D
e
 (km)

M
e
 (m3/s) Q

e
 (m3/s)

C
s
 (km2)

C
g
 (km2)

Q
s
 (m3/s)M

s
 (m3/s)

Q
g
 (m3/s)

A (m3/s)

I (m3/s)

M
g
 (m3/s)

K
x
 (m2/s)

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 129

Figure 3-13 shows the results of SOM analysis of Data I. In the U-matrix, a

neuron’s colour represents the distance to its neuron neighbours – a low value

indicates a small distance between neurons. The ‘component planes’ show

what variable values the neurons have taken. This can be used to look for

relationships between individual variables. These plots will have the same

number of cells as there were neurons in the map. As each plot is a ‘slice’ of

the output if two plots appear to have a similar distribution of values then this

shows the variables to be related. Note that apart from the U-matrix and

individual variables, Figure 3-13 also indicates the longitudinal dispersion

coefficient (Kx), which is the training target. From Figure 3-13 it may be seen

that the pattern presented by the whole dataset (U-matrix) is quite different

from Kx, which corresponds to our analysis in Section 3.5.1 Principal

Component Analysis. This also indicates that too much irrelevant information

is contained in Data I. On the other hand, variables found by GNMM (Mg and I)

have similar representations to the training target (Kx). This means that the

patterns identified by SOM for these variables (i.e. Kx, Mg and I) share some

common feature, which validates our results for input determination for Data I.

Following similar steps as to the above, Figure 3-14 presents the results of

SOM analysis for Data II. Unlike Figure 3-13, in Figure 3-14 the whole dataset

and the training target have similar distributions. This is illustrated by

comparing patterns in the U-matrix and Kx. Furthermore, GNMM’s choices of

input variables (B, H and U) all present these similar patterns. This indicates

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 130

Figure 3-14: SOM analysis of Data II

that the patterns presented by the whole dataset are very similar to those of

the training target, which is also closely related to the variables selected by

GNMM. This from another point of view proves our variable selection

technique.

3.6 Summary

In the current chapter, the GNMM method has been applied to two datasets.

The first dataset contains 196 data samples from 27 different rivers measured

by the UK Environment Agency (EA). Using variables identified by GNMM (2

out of a total of 49), we achieved an accuracy of longitudinal dispersion

coefficient prediction of 0.72 for the coefficient of determination (R2) and

11.66 for the Root Mean Square Error (RMSE). The second dataset contains 71

sets of measurements from 29 rivers in the United States. GNMM selected 3

0.397

1.28

2.16

d
24.4

214

403

d
0.577

4.29

8

d
0.219

0.694

1.17

d
0.0439

0.133

0.221

d
21.3

66.8

112

d
3.44

9.28

15.1

d
3.02

3.85

4.67

d
1.26

1.77

2.27

d
23.9

262

501

U-matrix

B/H U/u* 



B (m) H (m) U (m/s)

u* (m/s)

K
x
 (m2/s)

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 131

variables out of 8. As a result, an R2 of 0.96 and RMSE of 34.85 were obtained.

Rules extracted from trained MLPs were also presented, which demonstrate

not only the importance of each rule and but also the distribution of the data.

Through a benchmarking case study, the effectiveness of GNMM has been

demonstrated by comparing the results generated by GNMM to those

presented in the literature. Compared with conventional methods that provide

longitudinal dispersion prediction (e.g. Eq.(3.3) and Eq.(3.4)), GNMM as a data

driven approach needs no a priori knowledge. Although a priori knowledge is

widely used in many ANN applications, they are dependent on expert

knowledge and hence very subjective and case dependent. This is particularly

true for complex problems, where the underlying physical mechanism is not

fully understood. Furthermore, GNMM is adaptive. This means that when new

data samples are applied to the system, the system is capable of self-learning

and thus adjusting its results and improving prediction accuracy. Another

advantage of GNMM over conventional methods is that, due to its ANN nature,

it can approximate virtually any function with any desired accuracy without

making assumptions with regard to stream geometry or flow dynamics.

In order to validate the effectiveness of GNMM’s input determination method,

we also provide an insightful analysis of the technique that uses GAs as an

ANN input variable optimization tool in the context of longitudinal dispersion

coefficient prediction. This is achieved by a detailed comparative study of the

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 132

GNMM’s input determination process. Moreover, PCA and SOM analysis are

performed to cross-validate the results of GA input variable selection.

References

Boxall, J. B. and I. Guymer (2007). "Longitudinal mixing in meandering channels:

New experimental data set and verification of a predictive technique."

Water Research 41(2): 341-354.

Cannas, B., A. Fanni, et al. (2006). "Data preprocessing for river flow

forecasting using neural networks: Wavelet transforms and data

partitioning." Time Series Analysis in Hydrology 31(18): 1164-1171.

Deng, Z. Q., V. P. Singh, et al. (2001). "Longitudinal dispersion coefficient in

straight rivers." Journal of Hydraulic Engineering 127(1): 919-927.

Engelbrecht, A. P. (2002). Computational intelligence : an introduction.

Chichester, England ; Hoboken, N.J., J. Wiley & Sons.

Fischer, H. B., E. J. List, et al. (1979). Mixing in inland and coastal waters. New

York, Academic Press.

Guymer, I. (1999). A National Database of Travel Time, Dispersion and

Methodologies for the Protection of River Abstractions. Environment

Agency R&D Technical Report P346.

Hagan, M. T., H. B. Demuth, et al. (1996). Neural network design. Boston, PWS

Pub.

Hand, D. J., H. Mannila, et al. (2001). Principles of data mining. Cambridge,

Mass., MIT Press.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 133

Haykin, S. S. (1994). Neural networks : a comprehensive foundation. New York,

Maxwell Macmillan International.

Jobson, H. E. (1997). "Predicting travel time and dispersion in rivers and

streams." Journal of Hydraulic Engineering 123(11): 971-978.

Kashefipour, S. M., R. A. Falconer, et al. (2002). "Modeling longitudinal

dispersion in natural channel flows using ANNs." River Flow 2002: 111-

116.

Lin, C. T. and C. S. G. Lee (1996). Neural fuzzy systems: a neuro-fuzzy synergism

to intelligent systems. NJ, USA, Prentice-Hall, Inc. Upper Saddle River.

Maier, H. R. and G. C. Dandy (1998). "Understanding the behaviour and

optimising the performance of back-propagation neural networks: an

empirical study." Environmental Modelling and Software 13(2): 179-

191.

Piotrowski, A., P. M. Rowinski, et al. (2006). Assessment of longitudinal

dispersion coefficient by means of different neural networks. 7th

International Conference on Hydroinformatics, Nice, FRANCE.

Rowinski, P. M., A. Piotrowski, et al. (2005). "Are artificial neural network

techniques relevant for the estimation of longitudinal dispersion

coefficient in rivers?" Hydrological Sciences Journal 50(1): 175-187.

Rutherford, J. C. (1994). River mixing. Chichester, Wiley.

Seo, I. W. and T. S. Cheong (1998). "Predicting longitudinal dispersion

coefficient in natural streams." Journal of Hydraulic Engineering 124(1):

25-32.

Chapter 3 Prediction of Longitudinal Dispersion Coefficient in Rivers 134

Tayfur, G. (2006). "Fuzzy, ANN, and regression models to predict longitudinal

dispersion coefficient in natural streams." Nordic Hydrology 37(2): 143-

164.

Tayfur, G. and V. P. Singh (2005). "Predicting longitudinal dispersion coefficient

in natural streams by artificial neural network." Journal of Hydraulic

Engineering 131(11): 991-1000.

Taylor, G. (1954). "The Dispersion of Matter in Turbulent Flow through a Pipe."

Proceedings of the Royal Society of London.Series A, Mathematical and

Physical Sciences 223(1155): 446-468.

Tsaih, R. and L. Chih-Chung (2004). The layered feed-forward neural networks

and its rule extraction. Advances in Neural Networks - ISNN 2004.

International Symposium on Neural Networks, Dalian, China, Springer-

Verlag.

Wallis, S. G. and J. R. Manson (2004). "Methods for predicting dispersion

coefficients in rivers." Water Management 157(3): 131-141.

Yang, J., E. L. Hines, et al. (2007). Prediction of Longitudinal Dispersion

Coefficient in Rivers using Variables Identified by Genetic Algorithms.

The Fifth International Symposium on Environmental Hydraulics (ISEH

V). Tempe, Arizona.

Yang, J., E. L. Hines, et al. (2008). A Genetic Algorithm-Artificial Neural Network

Method for the Prediction of Longitudinal Dispersion Coefficient in

Rivers. Advancing Artificial Intelligence through Biological Process

Applications. A. Porto, A. Pazos and W. Buño, Idea Group Inc.: 358-374.

Chapter 4 Channel Selection and Classification

of EEG Signals

4.1 Introduction

In Chapter 3 we applied GNMM to civil engineering datasets, where we

demonstrated GNMM’s implementation details and also cross-validated

GNMM’s input selection results using PCA and SOM. In this chapter, we will

apply GNMM to two Electroencephalogram (EEG) classification problems.

Compared to other naturally occurring dynamic patterns, EEG activity is not

only at least as complex, it has the added advantage that an almost unlimited

number of highly controlled variants can be created in an easy, cost-effective,

and straight-forward manner, by simply setting different task parameters and

giving different task instructions to the human participant. Therefore, EEG

measures are an ideal testing ground for developing novel DM techniques.

There are two datasets used in the current chapter, and the body of the

chapter splits into two parts accordingly. Firstly we will make use of a well

studied dataset (denoted by Data III) – 64-channel electrocorticography (ECoG)

Chapter 4 Channel Selection and Classification of EEG Signals 136

data for a two-class motor imagery, which have previously been used to

perform channel selection and pattern classification tasks (Lal, Hinterberger et

al. 2005); the other data (i.e. Data IV) are from a speeded 2-alternative forced-

choice manual response task, collected using a 32-channel EEG system

(Schlaghecken, Blagrove et al. 2008; Schlaghecken, Klapp et al. 2009).

4.2 Background

An EEG based BCI provides a possible means to implement a communication

channel between the human brain and a computer. Patients who suffer from

severe motor impairments (e.g., late stage of Amyothrophic Lateral Sclerosis

(ALS), severe cerebral palsy, head trauma and spinal injuries) may use such a

BCI system as an alternative form of communication through mental activity

(Guger, Schlogl et al. 1999). Most human BCIs are based on extracranial EEG.

Compared with invasive EEG (e.g., ECoG), this presents a great advantage in

that it does not expose the patient to the risks of brain surgery. On the other

hand, however, invasive EEG signals contain less noise.

According to Besserve et al. (2007), depending on the spatial extent of the

physiological phenomenon under investigation, the ongoing EEG signals can be

divided into two families: local or long range. Local measurements generally

provide a measure of task-related activity picked up at a single sensor or

electrode. By contrast, measurements of long range interactions quantify the

coupling between signals detected at two distinct sensors, possibly revealing

Chapter 4 Channel Selection and Classification of EEG Signals 137

information transfer between two distant neural ensembles. One of the

fundamental technical difficulties with using EEG measures to classify neural

activity results from spatiotemporal filtering, which limits the signal/noise ratio

of the time series and blurs the localization of the relevant neural generators

(Sanchez and Principe 2007).

Conventional neuroimaging analysis correlates external regressors such as task

condition with activity in specific areas of the brain. PR may be viewed as an

inversion of this methodology and instead predicts the external stimulus based

on neuroimaging data. Unlike conventional analyses, these pattern-based

analyses take into account the full spatial pattern of brain activity rather than

concentrating on specific regions (Wandell 2008), and represent a new way of

looking at neuroimaging data. A recent review by Haynes and Rees (2006)

discusses several studies that have successfully used statistical PR to decode a

person’s current thoughts from their brain activity alone. They concluded that

it was possible to correctly identify which object a subject is currently viewing,

even when several alternative categories are presented. Lotte et al. (2007),

presenting an exhaustive review of the algorithms already used for EEG-based

BCI, conclude that ANNs are the classifiers which are most frequently used in

BCI research.

ANNs as a PR technique are well established in BCI research and also have

numerous successful applications (Shuter, Hines et al. 1994; Robert, Gaudy et

Chapter 4 Channel Selection and Classification of EEG Signals 138

al. 2002; Robert, Karasinski et al. 2002; Singh, Li et al. 2007). For example,

Shuter et al. (1994) proposed a ANN-based system to process EEG data for the

monitoring of the depth of awareness under anaesthesia. They analyzed the

awareness states of patients undergoing clinical anaesthesia based on the

variations in their EEG signals using a three-layer BP network. The network

accurately mapped the frequency spectrum into the corresponding awareness

states for different patients and different amounts of anaesthetics. In a

recently published paper, Singh et al. (2007) investigated EEG data using a

combination of common spatial patterns (CSP) and MLPs to achieve feature

extraction and classification. Event-related synchronization/desynchronization

(ERS/ERD) maps were also used to investigate the spectral properties of the

data. As a result, they achieved an accuracy of 97 % for the training data and

86 % for the test data. Robert et al. (2002) have reviewed more than 100 ANN

applications concerned with EEG signal processing and classified these BCI-

related applications into two categories: prediction and classification. The

prediction class is usually concerned with estimating the possibility of

predicting the side of hand movements (left or right) using EEG records prior

to voluntary right or left hand movements. In some studies classification rates

were not very high (from 51 to 83%). However, classification accuracies as high

as 85-90% were achieved in others. In the classification category, neural

network-based systems were trained to classify movement intention of left

and right index finger or the foot using EEG autoregressive model parameters.

A correct recognition rate of 80% was achieved in some applications. Overall,

Chapter 4 Channel Selection and Classification of EEG Signals 139

the future for neural network-based BCI systems is very promising.

However depending on the application one of the drawbacks of conventional

ANNs is that there is no explicit input optimization mechanism. As such, all

available signals or features are typically fed into the network to accomplish

the PR task(s). This input optimization problem also exists when the NN input

data are signals collected by EEG electrodes. In terms of EEG classification,

signals can be very noisy and contaminated by various motion artifacts

produced at certain electrodes. The data acquisition task will also be made

much more efficient if the electrodes are only a minimum subset of all

available positions. In addition, algorithms for channel selection can identify

suitable recording sites for individual subjects even in the absence of prior

knowledge about the mental task. In fact, researchers have investigated

various methods to optimize EEG channels. For example, Tian, Erdogmus et al.

(2005) proposed a filter-based approach for EEG channel selection using

mutual information (MI) maximization. Lal, Hinterberger et al. (2005) recently

introduced a support vector feature selection method based on Recursive

Feature Elimination (RFE) for the special case of EEG data.

Unlike conventional ANNs which utilize all available EEG channels and let the

ANN adjust its internal connections, GNMM only concentrates on a subset of

available channels. This subset (i.e. selected EEG channels) is optimally

identified for dimensionality reduction using GAs. In this way, we combine the

Chapter 4 Channel Selection and Classification of EEG Signals 140

merits of both conventional neuroimaging analysis and PRs.

4.3 Data III – Two-Class Motor Imagery

The intracranial ECoG recording is explicitly selected to validate the technique

developed as it is expected to contain higher quality brain signals with low

values of impedances. The dataset, which was used in the BCI competition III

(Blankertz, Muller et al. 2006), comprises of a large number of labelled trials

which makes it advantageous for evaluation of performance measures for the

technique.

4.3.1 Experiment Setup

The experiments were performed in the department of epileptology of the

University of Bonn (Lal, Hinterberger et al. 2005). During the experiment, a

subject had to perform imagined movements of either the left small finger or

the tongue (Figure 4-1). The time series of the electrical brain activity was

picked up during these trials using an 8×8 ECoG platinum electrode grid which

was placed on the contralateral (right) motor cortex. The grid was assumed to

cover the right motor cortex completely, but due to its size (approx. 8×8cm2) it

also partly covered surrounding cortex areas. All recordings were performed

with a sampling rate of 1000Hz. After amplification, the recorded potentials

were stored as microvolt values. Every trial consisted of either an imagined

tongue or an imagined finger movement and was recorded for 3 seconds

duration. To avoid visually evoked potentials being reflected by the data, the

Chapter 4 Channel Selection and Classification of EEG Signals 141

recording intervals started 0.5 seconds after the visual cue had ended. The

whole dataset consists of 278 trials for training/validation and 100 trials for

testing respectively. Within each trial, there are 3000 data points per channel

(i.e. electrode) and a total of 64 channels available. The whole dataset is

available in Matlab format from the BCI competition web site7.

4.3.2 Pre-processing

A major difficulty in the processing of EEG data comes from the usually very

large size of the dataset due to the relatively high sampling frequency. To

reduce the data size we apply a least square (LS) approximation on a single

trial basis. In fact, partial least square (PLS) has been used as a regression

method to extract spatiotemporal patterns from EEG signals (Martínez-Montes,

Valdés-Sosa et al. 2004; Kovacevic and McIntosh 2007). The LS technique used

in the current work is the linear LS approximation of the EEG signal over a

Figure 4-1: Data III – two-class imaginary movements (Adapted from Lal,
Hinterberger et al. 2005)

7

 BCI Competition III, Intelligent Data Analysis Group, Fraunhofer FIRST,
http://ida.first.fraunhofer.de/projects/bci/competition_iii/.

Chapter 4 Channel Selection and Classification of EEG Signals 142

Figure 4-2: Least square approximation for a signal segment in Data III

specific time period. Let x(t, b) be the EEG signal measurements on channel b at

time t. Thus, a linear LS approximation for EEG signals on this particular

channel for a single trail may be formed thus:

 qptx  (4.1)

Also, the derivative of Eq. (4.1) gives:

 pdtdx / (4.2)

which is the slope of the linear LS approximation. This value p is indicative of

the changes in the signal for each channel during a specific time slot.

A linear LS approximation was performed on Data III on a single trial basis.

0 500 1000 1500 2000 2500 3000
-10

-5

0

5

10

15

20

25

30

Latency (ms)

P
o
te

n
ti
a
l
(

v
)

y = - 0.0045*x + 13

BCI data

linear least square

Chapter 4 Channel Selection and Classification of EEG Signals 143

Figure 4-2 shows the original data and its LS approximation for the signal

obtained from one electrode over an imaginary movement. It is clear that by

doing LS approximation, the data size is greatly reduced while significant

information (i.e. signal changing rate and direction over a specific time window)

still remains. As a result of pre-processing, the dimension of Data III was

reduced to 278×64 and 100×64 for the training/validation and testing sets

respectively. Target values of 1 and −1 were used for imaginary finger and

tongue movement.

4.3.3 Channel Selection

During channel selection, when a GA’s chromosome is being evaluated, a total

of 250 trials of the training set (~90%) were randomly selected for training and

the remaining 28 kept for validation purposes. The MLPs used for evaluating

purposes were configured so that the number of hidden neurons in the only

Table 4-1: Configuration of GAs for Data III channels selection

Case Np Ng Ne

1 400 400 20

2 200 200 50

3 400 100 50

4 400 200 100

5 600 100 50

6 200 100 200

7 400 100 150

Chapter 4 Channel Selection and Classification of EEG Signals 144

hidden layer equals four when the channels being evaluated are greater than

four and will otherwise be the same as the number of input neurons. An

output layer of only one neuron was used throughout channel selection and

the final pattern classification.

Seven iterations of the GA produced the best channel combinations to give the

least error. The various GA configurations are shown in Table 4-1. It was

observed that there existed 10 channels which appeared in more than 90% of

all the generations. Hence these were specifically selected as the input data

for the final classification. The channels being selected are [7 12 17 21 22 45 46

47 54 59], as in Appendix F. The other 54 less informative channels were thus

removed from further analysis.

4.3.4 Classification Results

The subset of only 10 channels was fed into a three-layer MLP and trained

using the LM algorithm to perform the final classification. The number of

neurons in the hidden layer was increased to ten to maximize the classification

rate. Furthermore, ten-fold cross validation was introduced to try to improve

the generalization. As a result of five runs, the lowest RMSE value was

calculated to be 0.4552, and the mean is 0.6382 and standard deviation is

0.165. Defining the coefficient of determination (R2) as

Chapter 4 Channel Selection and Classification of EEG Signals 145












a

i

i

a

i

ii

y

vy

R

1

2

1

2

2

)(

1 (4.3)

where y and v are the actual and predicted target class values, R
2 for the

training set was found to be 79.28% using the best trained network (i.e. lowest

RMSE). Target and predicted values for these 278 training/validation trials are

shown in Figure 4-3. Note that in Figure 4-3 shadowed areas denote the

training target value ±1±RMSE; data points represent the actual value

produced by the MLP model with 10 input channels.

Treating the mid-point of the two target classes, in which case is ‘0’, as the

dividing point of those predicted values, the MLP model with only ten channels

achieved an average classification rate of 83.39% with a standard deviation of

18.58. The above results compare favourably with those obtained by Lal,

Hinterberger et al. (2005) on the same data, where they used RFE for channel

selection and SVMs for pattern classification and achieved a minimum error of

about 25.7% (i.e. an accuracy of 74.3%). Moreover, taking into account only

those predicted values that fall into the range of the target ± RMSE (i.e.

shadowed areas in Figure 4-3), our model achieved an average accuracy of

72.30%; with the positive class having a slightly higher rate.

Training an MLP with the same number of hidden neurons and configurations

(e.g. learning rate, training algorithm etc.) but using all available 64 channels

Chapter 4 Channel Selection and Classification of EEG Signals 146

Figure 4-3: Target and predicted values for Data III training/validation set

Table 4-2: Classification results for Data III, which shows the results for
training/validation and testing subset respectively. RMSE and R2and are for the

best trained network. Classification rate is calculated over five runs

 RMSE R
2 Classification rate

Train/validation

Data (278 trials)

All channels 0.2305 94.69% 96.12%±7.52

10 selected channels 0.4552 79.28% 83.39%±18.58%

Testing data

(100 trials)

All channels 1.7984 * 58.04%±9.36

10 selected channels 1.3329 50.81%±4.74%

‘*’ means negative coefficient of determination, and hence were ignored.

for five times, we obtained a better classification rate: the lowest RMSE

decreased to 0.2305 and R
2 increased to 94.69%, as seen in Table 4-2. The

classification rate for five runs is 96.12%±7.52%. This is because one advantage

of using MLPs is that the internal connection (i.e. weights) can adjust itself in a

way that outperforming channels gain in weight while less-influential ones lose.

0 50 100 150 200 250

-1.5

-1

-0.5

0

0.5

1

1.5

Trial

T
a
rg

e
t/

p
re

d
ic

te
d
 V

a
lu

e

class 1: 105 predicted value
(out of 139) within RMSE

class -1: 96 predicted value
(out of 139) within RMSE

Chapter 4 Channel Selection and Classification of EEG Signals 147

However, the trade-off is that MLPs trained using all channels have a lower

generalization. This was ascertained through the fact that when classifying the

100 testing trials, the best trained MLP using the 10 selected channels

achieved a lower RMSE (1.3329 vs. 1.7984). An interesting point is that, in

terms of the testing set, the classification rate is higher for MLP trained using

all channels than using selected channels only. This is because although some

predicted values are on the ‘correct’ side of the axis, they scatter far from the

RMSE area. This on the other hand, demonstrates the generalization ability of

the MLP trained using selected channels.

4.4 Data IV – Response Priming Paradigm

Data IV were collected from a speeded 2-alternative forced-choice manual

response task using a 32-channel EEG system (Schlaghecken, Blagrove et al.

2008; Schlaghecken, Klapp et al. 2009).

4.4.1 The Experiment

In a 2-alternative speeded choice reaction time (RT) task, participants had to

execute a left-hand or right-hand button-press in response to briefly presented

arrow stimuli pointing to the left or right. Each arrow target was preceded by

an arrow prime, which could point either in the same or in the opposite

direction as the target. These primes were visually ‘masked’ and therefore

easy to ignore; see Schlaghecken and Eimer (2006) for a detailed description of

the masked prime procedure. Furthermore, target arrows were flanked by

Chapter 4 Channel Selection and Classification of EEG Signals 148

T
im

e
 (

m
s
)

Response

0

1743

Trigger

33ms

Prime

100ms

Mask

50ms

Blank

100ms

Target & Flanker

1460ms

Inter-Trial

Interval (ITI)

>>

>> >> >>

Figure 4-4: Schematic representation of stimulus material and trial structure in
Data IV experiments

(a)

(b)

Figure 4-5: Position of EEG electrodes used in Data IV experiments arranged
by: (a) position and (b) number

response irrelevant (to-be-ignored) distractor stimuli associated with either

the same response as the target or the opposite response, which added a

certain level of difficulty to response selection and execution (Eriksen flanker

task (Eriksen and Eriksen 1974)). The interval from one prime onset to the next

was fixed at 1743 ms. The experimental setup is illustrated in Figure 4-4.

AF3

F3

FC1FC5

C3

CP1CP5

P3 Pz

PO3 PO4

P4
P8

CP2

C4

FC2

F4
F8

AF4

Fz

Cz

Fp1

F7

T7

P7

O1 Oz
O2

CP6

T8

Fp2

FC6

2

4

56

8

910

12 13

14 18

19
20

2122

23

2526

27
28

29

31

32

1

3

7

11

15
16

17

24

30

Chapter 4 Channel Selection and Classification of EEG Signals 149

The experiment consisted of 96 randomized trials per block, and 10 blocks per

participant. EEG signals were measured using the BioSemi8 ActiveTwo 32-

channel EEG system. The electrode arrangement is shown in Figure 4-5. The

EEG was sampled at a frequency of 256 Hz. The recording data for all runs was

concatenated and converted into the BDF format (Schlogl 2003).

4.4.2 Pre-processing

The original data were triggered using the EEGLAB9 Matlab toolbox. The pre-

processing for Data IV involved a multi-time-windows LS approximation over a

single trial. In order to trace the development of response-related EEG signals

over time, the trial period was divided into 7 intervals spanning 250 ms each

(denoted by INT1 through to INT7). Additionally, analysis was conducted on

Figure 4-6: EEG signal of channel Cz for the first epoch of Data IV event No.1
and its LS approximations across different time windows

8
 BioSemi, http://www.biosemi.com/products.htm.

9
 Swartz Center for Computational Neuroscience, University of California San Diego,

http://sccn.ucsd.edu/eeglab/.

-200 0 200 400 600 800 1000 1200 1400 1600 1800
-15

-10

-5

0

5

10

Latency (ms)

P
o
te

n
ti
a
l
(

V
)

y=-0.0021407x-3.7263 (O1)

y=-0.030014x+0.81986 (INT1)

y=0.0081283x-8.905 (INT2)

y=0.003656x-8.0681 (INT3)

y=0.0059884x-10.4916 (INT4)

y=-0.0083282x+3.3937 (INT5)

y=0.010606x-19.7591 (INT6)

y=-0.013658x+13.9062 (INT7)

Chapter 4 Channel Selection and Classification of EEG Signals 150

one overarching time window spanning the whole length of a trial (denoted by

O1). Consequently, 8 features/parameters are extracted from each EEG

channel for each single trial. Figure 4-6 shows the EEG signal recorded on

channel Cz for the first epoch of event No.1 and its LS approximations during

different time slots. 8 LSs were calculated in total: 1 on the overall trial period

and 7 others, each of which was calculated over an interval of 250 ms starting

from latency = 0.

A specific difficulty that lies in Data IV is that the dataset can be divided into

eight categories: 2 target directions × 2 prime directions × 2 flanker directions.

Each of these can then be further divided into two sub-categories: correct or

incorrect responses. For the current purposes, the data were split according to

two criteria: (a) left or right hand response, and (b) correct or incorrect

response, resulting in four classification targets: right hand incorrect (Class1),

left hand incorrect (Class2), right hand correct (Class3), and left hand correct

(Class4).

These pre-processed data were fed into GNMM, and the effectiveness of

different time windows for channel selection and pattern classification was

investigated.

4.4.3 Channel Selection and Pattern Classification

GAs are configured to run four times to explore different combinations of

Chapter 4 Channel Selection and Classification of EEG Signals 151

input channels for each of those 8 sets until distinctions were evident between

these EEG channels for each of the eight datasets. Investigating appearance

percentage distribution for each channel yields not only the importance of

each channel in the final pattern classification, but also the energy distribution

around the scalp. The appearance percentage of each channel in the four GAs

for each of those 8 sets is illustrated in Figure 4-7. Overall, the appearance

distribution among channels is relatively smooth. In agreement with the to-be-

classified phenomenon, manual motor response, the channels located near

the hand-area of the left and right motor cortices (here, channels Cz, C3 and

C4) are the most likely, whereas occipital (i.e., visual) and fronto-polar

channels (Oz, O1/2, Fp1/2) are the least likely to be selected (see Figure 4-5

and Figure 4-7). Specifically, it seems that there are some connections

between O1 (the overall signal changing rate) and INT6 (the changing rate just

before the end of the trial). In these two cases, the area evenly distributed

around the conceptual horizontal line linking the two ears is more active than

the other areas. On the other hand, the distribution of INT3 is relatively sparse.

Since we know that EEG signals recorded on adjacent scalp locations are not

supposed to be very distinct, being sparse suggests that INT3 may not be an

appropriate feature for the whole EEG signal.

In order to select the most frequently appearing channels for all 8 parameter

subsets (INT1-7 and O1), the selection criterion was set to at least 80%

appearance. However, another consideration is that the number of channels

Chapter 4 Channel Selection and Classification of EEG Signals 152

Figure 4-7: Appearance percentage distribution around the scalp for Data IV
subsets. Colour indicates chances of a particular channel being selected by GAs

for final classification – the darker the better

selected for each parameter subset should be the same or at least similar, in

order to make comparisons possible. Therefore, the selection criterion was

increased for individual parameter subsets until for each only 12 channels (13

in the case of INT1 as a result of the fact that two channels’ appearance

percentage appear to be exactly the same) were selected. Most of these

appear more than 90% in the winning chromosomes (see Table 4-3).

Feeding the channels selected in Table 4-3 into MLPs and training with the LM

algorithm, we are able to compare the classification accuracy between

0.2

0.4

0.6

0.8

1

O1 INT1

INT2 INT3 INT4

INT5 INT6 INT7

Chapter 4 Channel Selection and Classification of EEG Signals 153

different datasets, as shown in Figure 4-8. It is evident that correct responses

(Class3 and 4) are more successfully classified. An interesting point here is that

the overall classification rate mimics the trends of Class3 and 4, which share a

similar pattern, and is inversely proportional to the rate of Class2. Although

Table 4-3: EEG channels selected for each subset in Data IV

Subset Channels Selected
Criteria

(appearance percentage)

O1 6 7 8 9 11 13 22 23 24 26 29 32 >=0.81

INT1 1 3 7 8 10 15 16 18 19 21 24 26 31 >=0.90

INT2 3 4 5 7 10 13 14 18 19 20 22 28 >=0.92

INT3 1 11 13 16 17 18 19 23 24 27 31 32 >=0.93

INT4 1 3 4 5 6 10 12 16 19 22 23 26 >=0.85

INT5 1 4 5 10 13 18 19 23 25 27 31 32 >=0.88

INT6 4 5 6 8 10 14 18 19 20 26 27 32 >=0.82

INT7 6 8 10 11 13 21 24 26 27 29 31 32 >=0.80

Figure 4-8: Classification accuracy for different subsets in Data IV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O1 INT1 INT2 INT3 INT4 INT5 INT6 INT7

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Data Sets

Class1 (right
hand, incorrect)
Class2 (left
hand, incorrect)
Class3 (right
hand, correct)
Class4 (left
hand, correct)
Overall

Chapter 4 Channel Selection and Classification of EEG Signals 154

presenting sparse patterns, INT3-5 accounts for the most successful

approximations for the classification of Class1. Another observation is that

although INT2 and INT7 do not have any classification accuracy for Class1 and

very low for Class2, their overall rates are among the highest. The discrepancy

between high classification accuracy for correct responses and low accuracy

for incorrect responses most likely is due to the fact that incorrect responses

only constituted 13% of the overall dataset. As a consequence, insufficient

information for the ANN to achieve reliable classification was present.

It should be noted that RTs (time from trial onset to the depression of a

response button beyond a certain threshold) in this task was approximately

500-550 ms. Therefore, the high classification accuracy in INT 1 and 2 (about

Figure 4-9: Target and predicted values for subset O1

0 100 200 300 400 500 600 700 800 900
1

1.5

2

2.5

3

3.5

4

4.5

Data Sample

T
a
rg

e
t/

p
re

d
ic

te
d
 V

a
lu

e

Target Class1

Simulated Class1 (0%)

Target Class2

Simulated Class2 (33%)

Target Class3

Simulated Class3 (89%)

Target Class4

Simulated Class4 (63%)

Chapter 4 Channel Selection and Classification of EEG Signals 155

80% for correct responses) reflects the rate of correct predictions of a yet-to-

be-executed response. Furthermore, correct error classification was achieved

with more than chance frequency (25%) only in the 500-1000 ms time-

windows, that is, after an incorrect response had been executed. In line with

recent neurophysiological studies (Vocat, Pourtois et al. 2008), this indicates

that the most distinguishing feature of response errors lies in cognitive post-

error processes, not in preceding ‘erroneous’ cognitive processes.

Figure 4-9 shows the target and predicted values for subset O1. It is evident

that ANNs classify Class3 and 4 quite well. In spite of the fact that no Class1

instances were correctly identified, most of them were classified as Class3.

Given that both Class1 and 3 denote right hand movement, this phenomenon

suggests that the system can properly identify right hand movement

regardless of outside stimuli. However, Class2, which present a low

classification rate, were also mostly classified as Class3. Recall that datasets

that have the highest rate for Class2 (INT3 and 4, see Figure 4-8) were very

sparse in terms of channel appearance distribution (Figure 4-7), and the

accuracy rate for Class4 is 63%, it can be concluded that the EEG signal for the

left hand movement for this particular patient is more complicated.

4.4.4 Rule Extraction

Rule extraction was not discussed for Data III as in that case the data was

obtained from a single subject with specific channel locations; while in the

Chapter 4 Channel Selection and Classification of EEG Signals 156

Figure 4-10: Histogram of extracted regression rules from Data IV subset O1

case of Data IV channel locations have been widely studied and rules can be

tested and extended to a wider range of participants. Taking the MLP trained

using O1 for instance, a total of 516 regression rules were extracted from

subset O1. O1 is being used here instead of other datasets because the time

interval for this set is much larger – it includes the whole trial period rather

than its segments. As a result, it is feasible in practice and provides more error-

tolerance. Histogram of rules extracted from O1 can be seen in Figure 4-10.

Considering that there are 12 input and 8 hidden neurons, which in theory

produces 65536 (48) possible rules, actual implemented rules are only a small

proportion. From this point of view, the data have been narrowed down to

some of the important rules rather than spread over the rule space.

0 5 10 15 20 25 30
0

100

200

300

400

500

Instances

N
u
m

b
e
r

o
f

R
u
le

s

Chapter 4 Channel Selection and Classification of EEG Signals 157

4.5 Summary

In the current chapter, we applied the GNMM method to the EEG channel

selection and classification problem. We have considered two datasets for our

data driven technique. We demonstrated that GNMM is able to perform

effective channel selections/reductions, which not only reduces the difficulty

of data collection, but also greatly improves the generalization of the classifier.

We have applied least square approximations to pre-process the data, and also

discuss the effects of time window positions.

Some key conclusions can be drawn, as follows:

 By applying GA to optimize channel combinations, the significance of each

channels relating to a specific task can be evaluated. Although the

functionality of brain areas has long been studied, the difference between

individuals can be vital in terms of EEG classification. This is especially true

for those neurological patients who suffer from cerebral dysfunctions.

 Generally, using a selected subset improves the generalization ability of

the model. This conclusion has also been reached by Lal, Hinterberger et

al. (2005). More importantly, using selected channel subset(s) can result

in a higher classification rate compared to using all available channels.

This is mostly because channels containing irrelevant/noisy data have

been removed.

 Another advantage of using a channel selection technique is that the

Chapter 4 Channel Selection and Classification of EEG Signals 158

classifier is easy to understand. In particular, GNMM reduces its possible

regression rules exponentially if the number of input neurons is reduced.

 In terms of LS pre-processing, it has greatly reduced the size of the

dataset and improved the effectiveness of GNMM. From the present case

studies, it seems that it is appropriate to use a combination of different

time windows to achieve a high classification rate for correct and

incorrect actual movement. However, establishing the precise number

and temporal extent of these time windows for optimal results requires

further investigation.

 In terms of both the topography of the selected channels and the time-

course of classification accuracy, the results correspond to the

neurophysiology of the processes under investigation, indicating that the

present method might be usefully applied not only as a BCI-tool, but to

basic neuroscientific research as well.

The selection of appropriate channels for EEG pattern classification has been

one of the biggest problems for this kind of large datasets. By applying GNMM

to two datasets, it is evident that GA based channel selection provides a

potential solution to this problem. Furthermore, real-world applications based

on a reduced number of EEG channels will be more feasible for patients that

suffer from motor impairments.

Chapter 4 Channel Selection and Classification of EEG Signals 159

References

Besserve, M., K. Jerbi, et al. (2007). "Classification methods for ongoing EEG

and MEG signals." Biol Res 40(4): 415-437.

Blankertz, B., K.-R. Muller, et al. (2006). "The BCI competition III: Validating

alternative approaches to actual BCI problems." IEEE Transactions on

Neural Systems and Rehabilitation Engineering 14(2): 153-159.

Eriksen, B. A. and C. W. Eriksen (1974). "Effects of noise letters upon

identification of a target letter in a nonsearch task." Perception and

Psychophysics 16(1): 143-149.

Guger, C., A. Schlogl, et al. (1999). "Design of an EEG-based brain-computer

interface (BCI) from standard components running in real-time under

Windows." Biomed. Technik 44: 12-16.

Haynes, J. D. and G. Rees (2006). "Decoding mental states from brain activity in

humans." Nature Reviews: Neuroscience 7(7): 523-534.

Kovacevic, N. and A. R. McIntosh (2007). "Groupwise independent component

decomposition of EEG data and partial least square analysis."

NeuroImage 35(3): 1103-1112.

Lal, T. N., T. Hinterberger, et al. (2005). "Methods Towards Invasive Human

Brain Computer Interfaces." Advances in neural information processing

systems.(17): 737-744.

Lotte, F., M. Congedo, et al. (2007). "A review of classification algorithms for

EEG-based brain-computer interfaces." Journal of Neural Engineering

4(2): 1-13.

Chapter 4 Channel Selection and Classification of EEG Signals 160

Martínez-Montes, E., P. A. Valdés-Sosa, et al. (2004). "Concurrent EEG/fMRI

analysis by multiway Partial Least Squares." NeuroImage 22(3): 1023-

1034.

Robert, C., J.-F. Gaudy, et al. (2002). "Electroencephalogram processing using

neural networks." Clinical Neurophysiology 113(5): 694-701.

Robert, C., P. Karasinski, et al. (2002). "Monitoring anesthesia using neural

networks: a survey." Journal of Clinical Monitoring and Computing

17(3-4): 259-67.

Sanchez, J. C. and J. C. Principe (2007). Optimal Signal Processing for Brain-

machine Interfaces. Handbook of Neural Engineering. M. Akay.

Hoboken, N.J., John Wiley: 3-28.

Schlaghecken, F., E. Blagrove, et al. (2008). "No difference between conscious

and nonconscious visuomotor control: Evidence from perceptual

learning in the masked prime task." Consciousness and cognition. 17(1):

84.

Schlaghecken, F. and M. Eimer (2006). "Active masks and active inhibition: A

comment on Lleras and Enns (2004) and on Verleger, Jaskowski,

Aydemir, van der Lubbe, and Groen (2004)." Journal of Experimental

Psychology: General 135(3): 484-494.

Schlaghecken, F., S. T. Klapp, et al. (2009). "Either or neither, but not both:

locating the effects of masked primes." Proceedings of the Royal

Society of London, Series B: Biological Sciences 276(1656): 515-522.

Schlogl, A. (2003). "BIOSIG-an open source software library for biomedical

Chapter 4 Channel Selection and Classification of EEG Signals 161

signal processing." Retrieved 03 July, 2008, from

http://biosig.sourceforge.net.

Shuter, M. L., E. L. Hines, et al. (1994). Monitoring patient awareness states via

neural network interpretation of EEG signals during anaesthesia trials.

Proceedings of the International Conference on Neural Networks and

Expert Systems in Medicine and Healthcare, Plymouth, UK, Univ.

Plymouth.

Singh, H., X. Q. Li, et al. (2007). "Classification and feature extraction strategies

for multi channel multi trial BCI data." International Journal of

Bioelectromagnetism 9(4): 233-236.

Tian, L., D. Erdogmus, et al. (2005). Salient EEG Channel Selection in Brain

Computer Interfaces by Mutual Information Maximization. Eng. Med.

Biol. Soc., IEEE-EMBS.

Vocat, R., G. Pourtois, et al. (2008). "Unavoidable errors: A spatio-temporal

analysis of time-course and neural sources of evoked potentials

associated with error processing in a speeded task." Neuropsychologia

46(10): 2545-2555.

Wandell, B. A. (2008). "What's in your mind?" Nature Neuroscience 11(4): 384.

http://biosig.sourceforge.net/

Chapter 5 Optimising the Number of

Electronic Nose Sensors

5.1 Introduction

In previous chapters, we have provided an insightful analysis of GNMM’s

implementations (i.e. Chapter 3), and demonstrated its effectiveness through

two complex EEG channel selection and classification problems (i.e. Chapter 4).

The current chapter is concerned with an application of GNMM to the problem

of optimal electronic nose (EN) sensor selection and pattern classification.

In terms of application, the use of EN and Multisensor Data Fusion (MDF) is

widespread. Military applications include automated target recognition (e.g.,

for smart weapons), guidance for autonomous vehicles, remote sensing,

battlefield surveillance, and automated threat recognition systems, such as

identification-friend-foe-neutral (IFFN) systems. Nonmilitary applications

include monitoring of manufacturing processes, condition-based maintenance

of complex machinery, robotics, and medical applications.

Chapter 5 Optimising the Number of Electronic Nose Sensors 163

5.2 Background – Multisensor Data Fusion

Odour classification systems used in machine olfaction, which are often called

electronic noses (ENs), have been gaining favour in a wide range of industrial

applications (Hines, Llobet et al. 1999; Llobet, Hines et al. 1999; Gardner, Shin

et al. 2000; Dutta, Hines et al. 2003). An EN is a device that is designed to

detect and discriminate among odours using a sensor array (Pearce, Schiffman

et al. 2003). Typically, it comprises three main functional components: a

sampling unit, a signal processing unit, and an odour classification unit

(Phaisangittisagul and Nagle 2007). The sampling unit, which is analogous to

biological olfactory receptors, typically consists of for example an array of gas

sensors. The basic architecture of an electronic nose is shown in Figure 5-1

with the signals from an array of chemical sensors being processed and the

‘smell fingerprint’ being identified against those fingerprints already held in a

knowledge base (i.e. a database for odours).

Usually the sensor element operates by measuring the physical property and

outputting an analog signal which is amplified, filtered and then converted to a

digital signal by the analog-to-digital (A/D) unit (Mitchell 2007). Unlike

traditional analytical methods, EN sensor responses do not provide

information on the nature of the compounds under investigation, but only give

a ‘digital fingerprint’ of the odour, which can be subsequently investigated by

means of data processing methods (Ulivieri, Distante et al. 2006). Thus, the

composition of the sensor array of an electronic olfactory system is a

Chapter 5 Optimising the Number of Electronic Nose Sensors 164

 Output

(Predictor)

Olfactory epithelium

 (Receptor cells)

Mammalian

 Nose
Olfactory bulb

 Brain

(Olfactory cortex)

Electronic

 Nose
Sensor array Analogue to Digital

 Converter

 Computer

 (Signal Processor &

Pattern Recognition Engine)

 SENSOR

 1

 SENSOR

 2

 SENSOR

 3

 SENSOR

 n

 ARRAY

PROCESSOR

 PARC

ENGINE

KNOWLEDGE

 BASE

 SENSOR

PROCESSOR

 SENSOR

PROCESSOR

 SENSOR

PROCESSOR

 SENSOR

PROCESSOR

TRAIN

ANALOGUE SENSING DIGITAL PROCESSING

V1j(t)

V2j(t)

V3j(t)

Vnj(t)

X1j

X2j

X3j

Xnj

Xj

 Input

(Odour)

TEST

Figure 5-1: Schematic architecture of an electronic nose showing an array of
chemical sensors, pre-processing, array processing and finally a supervised

pattern recognition system (Adapted from Gardner and Yinon 2004)

fundamental choice which impacts significantly on the effectiveness of the

overall system.

Sensors can be located in different ways (collocated, distributed, mobile)

producing measurements of the same or of different types. Among these, the

fusion of passive sensor data (e.g. electronic nose, EN), especially in the

context of defence and security, is of particular importance (Koch 2007). Due

to the emergence of new sensors, advanced processing techniques, and

improved processing hardware, the MDF technology has undergone rapid

growth since the late 1980s. In general, MDF is a technique by which data from

Chapter 5 Optimising the Number of Electronic Nose Sensors 165

a number of sensors are combined through a centralized data processor to

provide comprehensive and accurate information (Huang, Lan et al. 2007).

Another feature of MDF is that, due to recent advances in sensor

developments, feature extraction, and data processing techniques, users are

always provided with an increased amount of information using multi-sensor

arrays (Gardner, Boilot et al. 2005). Taking the MLP as an example, a fully

connected array of 10 sensors with 10 neurons in the hidden layer classifying 6

different odours would need 160 weights to be learnt. If the number of

sensors in this MLP increases by 1, the number of weights would increase by

10. As the number of sensors in an EN array increase, the number of weights

an MLP optimizes during training grows exponentially. On the other hand,

increasing the dimensionality rapidly leads to the point where there may not

be enough training data for the MLP to be trained optimally, in which case the

MLP may provide a very poor representation of the input/output mapping.

This is the phenomenon often referred to as the curse of dimensionality

(Bishop 1995; Bishop 2006; Scott, James et al. 2006).

Generally speaking, even if each sensor is linked to specific classes of

compounds, not all the sensors contribute to the characterisation of the odour

which is being analysed (Ballabio, Cosio et al. 2006). Furthermore, not all of

them are relevant to the particular PR classification task. Thus, the objective of

any sensor selection algorithm should be to reduce the dimensionality and

Chapter 5 Optimising the Number of Electronic Nose Sensors 166

also realise optimum PR accuracy, to eliminate redundant, noisy, or irrelevant

sensors and thus find an optimal subset from an array of high dimensionality.

By optimising the array size, the overall system performance can potentially be

increased by maximising the information content and hence increasing the

predictive accuracy.

5.3 Intelligent System Techniques Applied to MDF Problems

Hall and Llinas (2008) have identified three basic alternatives that can be used

for multisensor data: (1) direct fusion of sensor data; (2) representation of

sensor data via feature vectors, with subsequent fusion of the feature vectors;

or (3) processing of each sensor to achieve high-level inferences or decisions,

which are subsequently combined. However, due to the fact that sensor fusion

models heavily depend on the application, there are no generally accepted

models of sensor fusion – instead, there are numerous architectures and

models for sensor fusion (Elmenreich 2007). Correspondingly, MDF techniques

are drawn from, and bring together, a diverse set of more traditional

disciplines, including digital signal processing, statistical estimation, control

theory, and computer vision etc. Actually MDF itself is an interdisciplinary

subject.

Compared with statistical methods (e.g. PCA), which are parametric and based

on the assumption that the spread of the sensor data can be described by a

Probability Density Function (PDF), IS-based PR techniques, for example MLP,

Chapter 5 Optimising the Number of Electronic Nose Sensors 167

PNN, RBF, SOM, fuzzy inference systems (FISs), fuzzy c-means (FCM), fuzzy

ARTMAP, EFuNN, and Gas, offer advantages such as learning capabilities, self-

organization, generalization and noise tolerance (Hines, Boilot et al. 2003;

Scott, James et al. 2006).

IS based PR techniques have been reported in the literature that determine an

optimal subset of sensors for machine olfaction (Hines, Boilot et al. 2003;

Gardner, Boilot et al. 2005; Ballabio, Cosio et al. 2006; Gualdron, Llobet et al.

2006; Scott, James et al. 2006; Llobet, Gualdron et al. 2007). For example,

Gardner et al. (2005) introduced a modified GA called V-integer GA. In this V-

integer GA, each chromosome was used with integer values from one to a pre-

defined number of features/sensors representing the selected subset of

features, and evaluated using PNN classifiers within the population. They also

compared this V-integer GA with other search methods such as SFS or SBS and

normal (binary) GAs. For the data-set used in their work, SFS achieved over 89%

correct classification by selecting just three features, whereas SBS needed at

least five features to reach the same level. With binary genes GAs, the

dimensionality is reduced by 50–60% and the classification rates are on

average 91%. Considering eight, six or four features, the optimal subsets

returned by the V-integer genes GA selections have dimensionality reduced by

over 80% and on average achieve around 90% correct classification. These

results showed that the V-integer genes GA approach is an accurate search

method when compared to some other feature selection techniques such as

Chapter 5 Optimising the Number of Electronic Nose Sensors 168

SFS or SBS. However, in the V-integer GA, the number of sensors to be

selected has to be defined in advance – in other words, there is potentially a

lack of flexibility in some application scenarios.

On the other hand, Ballabio, Cosio et al. (2006) suggested a chemometric

approach based on a partial ordering technique and the Hasse matrix. In this

approach, the Hasse matrix can be obtained from each EN data sequence and

the similarity between two sequences can then be evaluated with the

definition of a distance between the corresponding Hasse matrices. Since all

the signals which are temporarily selected are intrinsically ordered, the data

provided by the EN can also be considered to be sequential data and can

consequently be characterized as such. In this way, a similarity/diversity

measure can thus be applied in order to characterize the class discrimination

capability of each EN sensor. The distance based on the Hasse matrix is then

used to link each EN time profile to a meaningful mathematical term (the

Hasse matrix), which can be subsequently explored using multivariate analysis.

However, in this model there is an absence of a proper classifier. The

consequence of this is that the results of sensor selection are not comparable.

In their case study, two sensors were selected out of a total of 15 to

distinguish two features. This result was also confirmed by PCA. However, if

the number of features increases, PCA may not be able to handle the problem

and thus the whole method may fail to work efficiently.

Chapter 5 Optimising the Number of Electronic Nose Sensors 169

Recently, a research group (Gualdron, Llobet et al. 2006; Llobet, Gualdron et al.

2007) have reported successful techniques for EN sensor selection. In the first

case (Gualdron, Llobet et al. 2006), by evaluating different variable selection

techniques (including deterministic and stochastic methods) coupled with

neural network-based classifiers, they proposed a two-step strategy for sensor

selection: a coarse selection based on a variance criterion followed by a SA

process based on either fuzzy ARTMAP or the PNN. As a result, a success rate

of 91.66% in simultaneous identification was obtained using only nine input

variables (out of the 120 available) in their application. However, in this

approach when computing the variance of each sensor, dependence (linear

and/or nonlinear) between two sensors was not considered, and as such the

selected subset may still contain redundant features and thus may not be the

optimal subset. In the second case (Llobet, Gualdron et al. 2007), a three-step

strategy for feature selection was presented: the first two steps were aimed at

removing noisy, non-informative and highly collinear features; the third step

makes use of a stochastic variable selection method (SA) to further reduce the

number of variables. However, in this approach the threshold values for the

discrimination ability and collinearity were both set heuristically. Therefore it

is still possible that irrelevant sensors are not filtered out; and vice versa.

In the following sections, we will apply GNMM to the data that have been

studied by Boilot, Hines et al. (2002) and Gardner, Boilot et al. (2005). On the

one hand, we will demonstrate the effectiveness of GNMM by comparing the

Chapter 5 Optimising the Number of Electronic Nose Sensors 170

results to those in the literature. Furthermore, GNMM’s averaging effect

during the variable selection stage will be studied.

5.4 Data V – Eye Bacteria Species

The EN dataset used (Data V) has previously been investigated by Boilot, Hines

et al. (2002) and Gardner, Boilot et al. (2005). The data were collected using a

Cyranose 32010 EN to sample three dilutions of six eye bacteria species. The EN

comprises an array of 32 sensors, and each dilution of these six bacteria was

measured ten times. This gives a total of 180 samples belonging to six

categories. For details about bacteria that cause eye infections and the

experimental protocol/methodology, please refer to Boilot, Hines et al. (2002).

The statistics of the dataset are shown in Figure 5-2, in which the standard

deviation (STD) is calculated according to 𝑥 − 𝑥 2 𝑛 − 1 , where x is the

data samples for each sensor and n is the total number of samples i.e. 180. It

can be seen in Figure 5-2 that the maximum value for each sensor varies

within a small range. This is because all the signals were produced by the same

type of carbon black polymer composite resistors. However, the minimum

values have a bigger variation, and so have the mean values, due to the fact

that the EN sensors react differently to different odours. This feature helps in

distinguishing odours using the EN data. It is noticeable that the STDs of

sensors 8, 23, 24 and 32 are considerably larger than the others. These

10 Smith Detection, www.smithsdetection.com.

Chapter 5 Optimising the Number of Electronic Nose Sensors 171

Figure 5-2: Statistics of the dataset

Table 5-1: GNMM configurations for the Data V

Case Np Ng Ne

1 30 100 20

2 30 100 50

3 30 150 20

4 30 150 50

5 30 200 20

6 30 200 50

findings may indicate sensors that would appear in the optimal subset of

sensors.

5.5 GNMM Results and Discussions

GNMM was implemented on a Sun workstation equipped with UltraSPARC III

(900 MHz) CPUs. As suggested in the literature (Schaffer, Caruana et al. 1989),

a relatively small population size and large mutation/crossover rate can

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sensor

Average

Max

Min

STD

Chapter 5 Optimising the Number of Electronic Nose Sensors 172

achieve thorough search in the search space. Thus the population size was

kept small (30) for all GNMM runs and the mutation/crossover rate was set to

be 0.8/0.01 respectively. GNMM was run six times for Data V, and the various

configurations are shown in Table 5-1.

The appearance percentage of these 32 sensors in each of these six cases is

shown in Figure 5-3 (a), (b) and (c), and the mean appearance percentage is

shown in (d). Apart from illustrating each sensor’s ability to be selected in the

winning chromosome (i.e. the sensor subset performing the most accurate

classification), Figure 5-3 also demonstrates the importance of repeating the

GA’s optimization processes. For example, sensor 6 performed quite well in

case 1, 2, 4 and 6; however, this is not the case for case 3 and 5. By calculating

an averaged ‘appearance’, we now know that the chance of sensor 6 being

selected in the optimal sensor subset is quite low (~60%). On the other hand,

sensor 19 approaches zero in case 3 and 5. But in Figure 5-3 (d) it can be seen

that sensor 19 is not the worst one. To summarise Figure 5-3, by calculating

the appearance percentage of each sensor, we smooth out the curve formed

from a single GNMM implementation, and thus minimize the randomness

associated with our GA and MLP.

Figure 5-3 (d) also indicates that the best sensors are not quite distinguishable.

However, a line can still be drawn to select the most important ones. By

drawing a line at appearance percentage = 95%, we identified 6 sensors, which

Chapter 5 Optimising the Number of Electronic Nose Sensors 173

(a)

(b)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31

A
p
p
e
a
ra

n
c
e
 (

%
)

Sensor

Case 1 Case 2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31

A
p
p
e
a
ra

n
c
e
 (

%
)

Sensor

Case 3 Case 4

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31

A
p
p
e
a
ra

n
c
e
 (

%
)

Sensor

Case 5 Case 6

Chapter 5 Optimising the Number of Electronic Nose Sensors 174

(d)

Figure 5-3: Appearance of each sensor in Data V for a single case ((a), (b) and
(c)) and the mean appearance for all cases (d)

are illustrated by solid black dots in Figure 5-3 (d). These sensors and their

mean appearance percentage are: 1 (96%), 8 (97%), 21 (97%), 23 (96%), 26

(97%) and 29 (96%). Reviewing the STDs of this sensor array, where sensor 8,

23, 24 and 32 are considerably higher than the others, it seems reasonable

that some sensors (8 & 23) which contain the most diverse data were included

in this optimal subset.

(a)

1 8 21 23 26 29

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 6 11 16 21 26 31

A
p
p
e
a
ra

n
c
e
 (

%
)

Sensor

0

2

4

6

8

10

12

14

16

18

20

51 56 61 66 71 76 81 86 91 96

R
M

S
E

 (
1
0
−

3
1
)

Generation

Case 1 Case 2

Chapter 5 Optimising the Number of Electronic Nose Sensors 175

(b)

(c)

(d)

Figure 5-4: Comparisons of the RMSE for the last 50 generations for each case

0

2

4

6

8

10

12

14

16

18

101 106 111 116 121 126 131 136 141 146

R
M

S
E

 (
1
0
−

3
1
)

Generation

Case 3 Case 4

0

2

4

6

8

10

12

14

16

18

151 156 161 166 171 176 181 186 191 196

R
M

S
E

 (
1
0
−

3
1
)

Generation

Case 5 Case 6

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26 31 36 41 46

R
M

S
E

 (
1
0
−

3
1
)

Generation (last 50)

Case 1 Case 3

Chapter 5 Optimising the Number of Electronic Nose Sensors 176

Figure 5-4 provides comparisons of the RMSE for the last 50 generations for

each case. These comparisons can help us understand GNMM’s optimization

process. Given that the other configurations are the same and only training

epochs for the MLP classifier vary, which is the case illustrated by Figure 5-4 (a),

(b) and (c), it is evident that larger number of epochs generally produce

smaller values and variation of the optimization error (see Table 5-1). On the

other hand, if the epochs are the same and the generations are different,

larger generations normally yield lower error as in Figure 5-4 (d). However, the

most outstanding feature in Figure 5-4 is the fact that later generations do not

necessarily generate better performance. This finding, from another point of

view, validates the importance of the mean appearance percentage.

In GNMM’s MLP training stage, all of Data V were randomly divided into two

subsets: one for training and one for validation. As a result, GNMM achieved

100% accuracy for both subsets. In order to test GNMM’s training results, the

data were again randomly divided into three equal subsets: one for training,

one for testing, and one for validation. Once again, GNMM achieved 100%

classification rate in recognizing the training and validation subsets. For the

test set, an accuracy of 93% was achieved.

The optimal subset selected by GNMM (1, 8, 21, 23, 26, 29) is different

compared with results obtained by (Boilot, Hines et al. 2002; Gardner, Boilot et

al. 2005) (i.e. 8, 11, 15, 23, 31, 32), who applied the so-called V-integer GA

Chapter 5 Optimising the Number of Electronic Nose Sensors 177

using PNN classification performance as the fitness function, as mentioned in

Section 5.3 Intelligent System Techniques Applied to MDF Problems. However,

in their work, there is an absence of a mechanism that minimizes the GA’s

randomness. As we already know from Figure 5-3 that a single run of a GA may

not be representative of its overall performance, it is therefore necessary to

run GA several times. Furthermore, a 100% and 93% classification rate

compares favourably with the results from the previous work (90.6%) using

the above six-sensor subset (i.e. 8, 11, 15, 23, 31, 32).

5.6 Summary

Recent advances in the field of ENs have led to new developments in sensor

design, feature extraction (pre-processing), and data processing techniques. As

a result, the user of EN systems is provided with an increased amount of

information for the discrimination of odours using multi-sensor arrays. The

dataset used in this chapter has previously been explored by other authors

(Boilot, Hines et al. 2002; Gardner, Boilot et al. 2005). The number of sensors

selected (i.e. 6) was deliberately made the same as those that have appeared

in the literature. By comparing the results generated by GNMM to those

presented in the literature, the effectiveness of GNMM is demonstrated.

GA researchers often report statistics, such as the best fitness found in a run

and the generation at which the individual with that best fitness was

discovered, averaged over many different runs of the GA on the same problem

Chapter 5 Optimising the Number of Electronic Nose Sensors 178

(Mitchell 1996). The root cause of this is the random nature built-in with GA,

which also holds true in the case of GNMM where averaging plays a vital role.

The current chapter analysed the averaging effect of GNMM by looking at the

GA implementation details.

It was found that the averaging performed in GNMM minimizes the

randomness associated with a particular GA run and the evaluation of the

fitness value. Furthermore, it also ensures that input variables are eventually

evaluated in terms of possibility rather than, for example, a spectacular

performance obtained in an extreme case.

References

Ballabio, D., M. S. Cosio, et al. (2006). "A chemometric approach based on a

novel similarity/diversity measure for the characterisation and

selection of electronic nose sensors." Analytica Chimica Acta 578(2):

170-177.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, Oxford

University Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York,

Springer.

Boilot, P., E. L. Hines, et al. (2002). "Classification of bacteria responsible for

ENT and eye infections using the cyranose system." IEEE Sensors

Journal 2(3): 247-252.

Chapter 5 Optimising the Number of Electronic Nose Sensors 179

Dutta, R., E. L. Hines, et al. (2003). "Non-destructive egg freshness

determination: An electronic nose based approach." Measurement

Science and Technology 14(2): 190-198.

Elmenreich, W. (2007). A review on system architectures for sensor fusion

applications. Software Technologies for Embedded and Ubiquitous

Systems. 5th IFIP WG 10.2 International Workshop, SEUS 2007. Revised

Papers. (Lecture Notes in Computer Science vol. 4761), Santorini Island,

Greece, Springer Verlag.

Gardner, J. W., P. Boilot, et al. (2005). "Enhancing electronic nose performance

by sensor selection using a new integer-based genetic algorithm

approach." Sensors and Actuators B: Chemical 106(1): 114-121.

Gardner, J. W., H. W. Shin, et al. (2000). "An electronic nose system for

monitoring the quality of potable water." Sensors and Actuators B:

Chemical 69(3): 336-341.

Gardner, J. W. and J. Yinon (2004). Electronic noses & sensors for the detection

of explosives. Dordrecht; Boston, Kluwer Academic Publishers:

Published in cooperation with NATO Scientific Affairs Division.

Gualdron, O., E. Llobet, et al. (2006). "Coupling fast variable selection methods

to neural network-based classifiers: Application to multisensor

systems." Sensors and Actuators B: Chemical 114(1): 522-529.

Hall, D. L. and J. Llinas (2008). Multisensor Data Fusion. Handbook of

multisensor data fusion: theory and practice. M. E. Liggins, D. L. Hall

and J. Llinas. Boca Raton, FL, CRC Press: 1-14.

Chapter 5 Optimising the Number of Electronic Nose Sensors 180

Hines, E. L., P. Boilot, et al. (2003). Pattern analysis for electronic noses.

Handbook of machine olfaction: electronic nose technology. T. C.

Pearce, S. S. Schiffman, H. T. Nagle and J. W. Gardner. Weinheim,

Wiley-VCH: 133-160.

Hines, E. L., E. Llobet, et al. (1999). "Neural network based electronic nose for

apple ripeness determination." Electronics Letters 35(10): 821-823.

Huang, Y.-b., Y.-b. Lan, et al. (2007). "Multisensor Data Fusion for High Quality

Data Analysis and Processing in Measurement and Instrumentation."

Journal of Bionic Engineering 4(1): 53-62.

Koch, W. (2007). Sensor Data Fusion: Methods, Applications, Examples

Advances and challenges in multisensor data and information

processing. E. Lefebvre. Amsterdam, IOS Press: 1-23.

Llobet, E., O. Gualdron, et al. (2007). "Efficient feature selection for mass

spectrometry based electronic nose applications." Chemometrics and

Intelligent Laboratory Systems 85(2): 253-261.

Llobet, E., E. L. Hines, et al. (1999). "Fuzzy ARTMAP based electronic nose data

analysis." Sensors and Actuators, B: Chemical B61(1-3): 183-190.

Mitchell, H. B. (2007). Multi-sensor data fusion: an introduction. Berlin,

Springer Verlag.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.,

MIT Press.

Pearce, T. C., S. S. Schiffman, et al. (2003). Handbook of machine olfaction :

electronic nose technology. Weinheim [Germany], Wiley-VCH.

Chapter 5 Optimising the Number of Electronic Nose Sensors 181

Phaisangittisagul, E. and H. T. Nagle (2007). "Enhancing multiple classifier

system performance for machine olfaction using odor-type signatures."

Sensors and Actuators B: Chemical 125(1): 246-253.

Schaffer, J. D., R. A. Caruana, et al. (1989). "A study of control parameters

affecting online performance of genetic algorithms for function

optimization." Proceedings of the third international conference on

Genetic algorithms: 51-60.

Scott, S. M., D. James, et al. (2006). "Data analysis for electronic nose

systems." Microchimica Acta 156(3-4): 3-4.

Ulivieri, N., C. Distante, et al. (2006). "IEEE1451.4: A way to standardize gas

sensor." Sensors and Actuators B: Chemical 114(1): 141-151.

Chapter 6 Classification of the Pima Indians

Diabetes Database

6.1 Introduction

In previous application chapters, we have benchmarked GNMM’s effectiveness

by comparing its prediction/classification results with those presented in the

literature using the same dataset. For example, Chapter 3 utilizes prediction

done by Tayfur and Singh (2005) based on Data II. Chapter 4 uses classification

results obtained by Lal, Hinterberger et al. (2005) based on Data III. While in

Chapter 5 GNMM results were compared against work done by Boilot, Hines et

al. (2002) on Data V. In the current chapter, studies will be conducted to

evaluate and compare the results obtained using GNMM with several widely

used IS techniques including ANFIS, EFuNN, Fuzzy ARTMAP, and CGP, the aim

being to further investigate GNMM’s features before any conclusions are

drawn in the final chapter (i.e. Chapter 7).

Furthermore, although GA parameter range was briefly discussed in Section

2.3.1.2 Parameters, it remains unclear as to whether different parameter

Chapter 6 Classification of the Pima Indians Diabetes Database 183

settings will result in different input variable selection results. The current

chapter will try to address this question using a widely studied dataset.

6.2 Dataset

The Pima Indian Diabetes database, i.e. Data VI, obtained from UC machine

learning repository11 is owned by the National Institute of Diabetes and

Digestive and Kidney Diseases (Smith, Everhart et al. 1988). It contains 768

instances, 8 input attributes and 1 target, which represents whether the data

shows signs of diabetes according to World Health Organization criteria (i.e., if

the 2 hour post-load plasma glucose was at least 200 mg/dl found in any

survey examination or during routine medical care (Lin and Soo 1997)).

Attributes in Data VI are the number of times pregnant, plasma glucose

concentration, diastolic blood pressure (mm Hg), triceps skin fold thickness

(mm), 2-hour serum insulin (mu U/ml), body mass index (kg/m2), diabetes

pedigree function, and age denoted by Attr1 to Attr8 respectively. 268

instances of the data are positive, which is 34.9% of the database. There is no

missing value instance. Some statistics of Data VI are shown in Table 6-1.

Table 6-1: Data VI statistics

Attr1 Attr2 Attr3 Attr4 Attr5 Attr6 Attr7 Attr8

Max 17 199 122 99 846 67.1 2.42 81

Min 0 0 0 0 0 0 0.078 21

Avg 3.85 120.89 69.11 20.54 79.80 32.00 0.47 33.24

11 Machine Learning Repository, UC Irvine, http://archive.ics.uci.edu/ml/index.html.

Chapter 6 Classification of the Pima Indians Diabetes Database 184

Data VI has been widely investigated previously in the literature (Smith,

Everhart et al. 1988; Carpenter and Tan 1995; Lin and Soo 1997; Eggermont,

Kok et al. 2004; Kahramanli and Allahverdi 2008), thus it is used to make

comparisons in the current chapter. For example, Smith, Everhart et al. (1988)

have applied ADAP, a feedforward neural network model, to this dataset using

576 training data and 192 testing data and achieved 76% accuracy. Eggermont,

Kok et al. (Eggermont, Kok et al. 2004) achieved about 26% misclassification

using GPs. In the recent work done by Kahramanli and Allahverdi (2008) a

hybrid neural network that includes ANN and fuzzy neural network (FNN) was

developed and they achieved an accuracy of 84.24%.

6.3 GNMM Results

First of all, an MLP was trained using Data VI with all available attributes using

the LM algorithm. As a result, within 23 epochs it achieved an RMSE of 0.37

with an accuracy of 79.95%. Applying GNMM to Data VI, the four most

significant attributes were found – Attr2, 6, 7, and 8 have the highest

appearance percentage, as shown in Figure 6-1. Training the subset formed by

these four attributes (denoted by Data VIgnmm) and the classification target,

with an MLP with four hidden neurons we achieved a classification RMSE of

0.38 with an accuracy of 79.30%. Hence by using 4 attributes out of 8 we

achieved a similar accuracy. This implies that the model was successfully

trained to achieve the PR tasks.

Chapter 6 Classification of the Pima Indians Diabetes Database 185

Figure 6-1: Appearance percentage for each attribute in Data VI

Table 6-2: 10 most significant rules fired for Data VI

No. Data VIt Data VIs

1441 114 17

4141 64 8

2441 44 6

3441 35 1

4441 33 0

1411 27 3

4241 25 2

1421 24 2

4341 22 2

1431 17 5

The 10 most significant rules (out of a total of 75) extracted from Data VI are

shown in Table 6-2, in which Data VIt stands for the training subset, and Data

VIs denotes the validation subset. From Table 6-2 it is evident that the

validation set is representative – while the most significant rule for Data VIt is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

A
p
p
e
a
ra

n
c
e
 (

%
)

Attributes

Chapter 6 Classification of the Pima Indians Diabetes Database 186

rule No.1441, the same is true for Data VIt. This means that in general most

data samples reside within the sub-spaces represented by this rule and the

number gradually decreases as data sample move further away from it. In this

way, GNMM not only determines the number of rules associated with each

data sample, but also determines the importance of the sub-spaces and the

distribution of data samples.

6.4 Other Hybrid IS DM Techniques

6.4.1 ANFIS

Applying ANFIS to Data VI (all 8 attributes used), with the default grid

partitioning of the input space (Leondes 1999; Karray and De Silva 2004), the

system soon ends up with the problem of the curse of dimensionality, as it

produces as many as 256 (i.e. 28) rules when two MFs are used for each input,

which is clearly an unacceptable number of rule permutations. However, if the

ANFIS structure is generated using FCM clustering, which considerably reduces

the number of rules (4 vs 256), ANFIS did achieve a good classification as will

be shown in the next paragraph.

Figure 6-2 shows the ANFIS structure, in which case there are four

membership functions for each input attribute and a total of four rule nodes.

Within 100 epochs, the RMSE was reduced to 0.42 with a classification

accuracy of 56.64%. The target/prediction class labels and prediction error for

each sample are shown in Figure 6-3. From Figure 6-3 it is evident that the

Chapter 6 Classification of the Pima Indians Diabetes Database 187

Figure 6-2: Structure of ANFIS generated for Data VI

Figure 6-3: Target/predicted class values and ANFIS prediction error for Data VI

0 100 200 300 400 500 600 700

0

0.5

1

T
a
rg

e
t/

P
re

d
ic

ti
o
n
 c

la
s
s

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

1.5

Sample

P
re

d
ic

ti
o
n
 e

rr
o
r

Target class

Predicted class

Chapter 6 Classification of the Pima Indians Diabetes Database 188

error distribution is quite random, which implies that a first-order Sugeno-type

FIS may not be suitable for this problem. Compared with the GNMM results,

this error is slightly higher (0.42 vs 0.38). However, ANFIS converges much

faster, due to its hybrid learning and the ability to construct reasonably good

input MFs (Ozkan 2006).

The rule viewer results from ANFIS are shown in Figure 6-4. A total of four

rules are extracted from the system. However, each of these four rules has an

antecedent consisting of 8 parts (i.e. 8 attributes). In terms of interpretability,

this is not easily interpretable. Also note that the rule antecedent and

consequent parts remain unchanged throughout training, as shown in Figure

6-5. It is also evident that no membership degrees are displayed. For the

consequent part, each rule represents a single MF (i.e. the number of rules is

equal to the number of output MFs) with the same unit weights, there is no

rule sharing in the ANFIS system. Thus, the ANFIS training adjusts parameters

such as MFs and network weights instead of manipulating rules and network

structures as in some other systems such as EFuNN.

The MFs associated with Attr5 are shown in Figure 6-6, and the rule surface

formed by the first two attributes is shown in Figure 6-7. From Figure 6-6 and

Figure 6-7 it is clear that the concept representation learned by ANFIS is easier

to understand (Boilot, Hines et al. 2000). This can be seen from the fact that

inputs to the ANFIS rule space are attribute outputs; whereas inputs to GNMM

Chapter 6 Classification of the Pima Indians Diabetes Database 189

Figure 6-4: ANFIS rule viewer applied to Data VI

Figure 6-5: Rules extracted from the ANFIS system for Data VI

Chapter 6 Classification of the Pima Indians Diabetes Database 190

Figure 6-6: Membership functions for Attri5

Figure 6-7: Rules surface the ANFIS system for Data VI

Chapter 6 Classification of the Pima Indians Diabetes Database 191

are values to first-layer neurons. However, due to its fuzzy nature, ANFIS does

not provide an insight into the data distribution and rule importance, as each

input belongs to different sets to different degrees. On the other hand, GNMM

gives an idea of the importance of each rule by determining data samples that

fall into the rule space.

Furthermore, ANFIS has a fixed structure that cannot adapt to the data in hand,

therefore it has limited abilities for incremental, online learning (Kasabov

2007). Whereas in GNMM, the ANN structure can easily be adopted to take

additional inputs.

6.4.2 EFuNN

Applying EFuNN to Data VI the system achieved an RMSE of 0.51, as depicted

in Figure 6-8. In addition, the system produces 453 rules, each of which has 8

antecedent parts, as depicted in Figure 6-9. It is evident that too many rules

affect the interpretability of the system.

The results show that the EFuNN rules are quite different from the ANFIS rules

as shown in Figure 6-5. As opposed to the case in ANFIS where simple grid

partitioning is applied and where training is performed mainly to adjust MF

parameter, in EFuNN the aim of training is to find connection nodes that

associate fuzzy inputs and outputs. Thus, EFuNN rules are given in the form of

membership degrees that each input/output belongs to. Take rule No. 453,

Chapter 6 Classification of the Pima Indians Diabetes Database 192

Figure 6-8: Target and EFuNN prediction class values for Data VI

Figure 6-9: Rules extracted from the EFuNN system for Data VI

Chapter 6 Classification of the Pima Indians Diabetes Database 193

Figure 6-10: EFuNN MFs for the first two attributes of Data VI

which is highlighted in Figure 6-9, for an example. Basically it states that if

input1 belongs to its 1st/2nd/3rd MF to a degree of 0.374/0.626/0.000

respectively etc., then the fuzzy output is [0.909 0.091 0]. Based on these fuzzy

output values, aggregations can be performed to produce predicted class

values.

Figure 6-10 shows the MFs used for the first two inputs. Another popular

choice for input MFs are Gaussian functions. As these MFs do not change as

iterations proceed, choices have to be made before training starts. However,

this highlights a potentially important disadvantage of EFuNN, i.e. the

determination of the network parameters. There are many parameters in

EFuNN such as number and type of MF for each input variable, sensitivity

threshold, error threshold and the learning rates etc (see Figure 6-8). Even

though a trial and error approach is practical, when the problem becomes

more complicated (large numbers of input variables) determining the optimal

parameters may be computationally expensive (Abraham and Nath 2001).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Input1

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input2

D
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

Chapter 6 Classification of the Pima Indians Diabetes Database 194

6.4.3 Fuzzy ARTMAP

Applying Fuzzy ARTMAP to Data VI, the system achieved an RMSE of 0.48 with

an accuracy of 76.82% using 38 committed coding nodes. The

target/prediction class values and the prediction error are depicted in Figure

6-11. From Figure 6-11 it is clear that unlike in previous cases where the

predicted values can be non-integers, in the case of Fuzzy ARTMAP all

predicted values are integers. Thus although for most data samples the system

correctly performs the classification, a few incorrectly classified samples

results in a relatively large RMSE error.

Compared with GNMM, the Fuzzy ARTMAP network has the advantage of

being fast and requiring no fine tuning of parameters. It also retains all the

information that it has been trained for and does not suffer from temporal

Figure 6-11: Target/predicted class values and Fuzzy ARTMAP prediction error
for Data VI

0 100 200 300 400 500 600 700
1

1.2

1.4

1.6

1.8

2

T
a
rg

e
t/

P
re

d
ic

ti
o
n
 c

la
s
s

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

Sample

P
re

d
ic

ti
o
n
 e

rr
o
r

Target class

Predicted class

Chapter 6 Classification of the Pima Indians Diabetes Database 195

instability during on-line training (Mahadevan and Raghavendra 1997). The

drawback of Fuzzy ARTMAP is that it is only a predictor and not a generalizer

(e.g. it does not provide non-integer values for Data VI); whereas GNMM can

be a universal modeller. Another disadvantage of Fuzzy ARTMAP is that it is

very sensitive to the order of presentation of the training data. It is also

extremely sensitive to the selection of the vigilance parameter, which controls

the size of the hyper-box, and finding the optimal value for the vigilance

parameters can be quite challenging (Vilakazi and Marwala 2009).

In terms of interpretability, in the original work done by Carpenter, Grossberg

et al. (1992) Fuzzy ARTMAP does not extract rules form the trained system. In

successive research different authors have proposed methods to extract rules

from trained Fuzzy ARTMAP (Carpenter and Tan 1995; Andres-Andres, Gomez-

Sanchez et al. 2005; Tian, Liu et al. 2006), most of which rely on investigating

clusters formed by committed nodes. However, the dilemma is that

interpretability of Fuzzy ARTMAP increases with fewer committed nodes;

whereas the system performance error tends to grow as the number of

committed nodes decreases (Connolly, Granger et al. 2008; Granger, Connolly

et al. 2008).

6.4.4 CGP

Applying CGP to Data VI, after running the programme five times the best

results were obtained using setting depicted in Figure 6-12. The system

Chapter 6 Classification of the Pima Indians Diabetes Database 196

achieved a classification accuracy of 61.98%. However, the system produced as

many as 396 ‘infinity’ prediction values (out of 768), as a result of zero

dividend, as opposed to the target value ‘1’. This makes the calculation of

RMSE impossible.

Figure 6-12: CGP settings and simulation results for Data VI

Figure 6-13: Arithmetic rules extracted from CGP for Data VI

Chapter 6 Classification of the Pima Indians Diabetes Database 197

Arithmetic rules extracted from CGP are shown in Figure 6-13. Since 15 nodes

were used with the level of connections being 14 (in Figure 6-12), Figure 6-13

shows 15 arithmetic expressions. However, not all nodes were used to

calculate the final results e.g. node 12. Furthermore, not all input attributes

were used to calculate the final results – as shown in Figure 6-13, only

attributes 2, 3, 4, 6, 7, and 8 were used.

Compared with GNMM, CGP achieved an automatic input variable deduction

without an explicit input selection step. This was realized by evolving different

input variables combined with various arithmetic operators. Furthermore, due

to its GP nature, rule extraction from the CGP system is straight forward.

However, one of the main disadvantages of CGP, which also holds true for any

EA based techniques, is that it can be very computer intensive, often requiring

extensive computing power (Hughes and Ruprai 1999). Furthermore, functions

that can be constructed by the algorithm need to be selected carefully

(Schmutter 2002). One the one hand, the number of possible functions is

immense; on the other hand, fewer functions will increase the efficiency of the

algorithm.

A summary of classification results is given in Table 6-3, where comparisons

are made based on the best result for each individual technique. Instead of

computing average performance over several runs as in previous chapters, in

the current chapter the best performance is used. This is because rules derived

Chapter 6 Classification of the Pima Indians Diabetes Database 198

Table 6-3: Comparison of classification results for Data VI. Results for GNMM,
ANFIS, Fuzzy ARTMAP, and CGP are the best results out of 5 independent runs.
FFuNN’s results do not vary with the same settings, due to its way of random

number generation

Method Accuracy RMSE Number of rules

Various GPs in Eggermont, Kok et al. (2004) 74-72% n/a n/a

Hybrid ANN in Kahramanli and Allahverdi

(2008)
84.24% n/a

No rule

extraction

GNMM 79.30% 0.38 75

ANFIS 56.64% 0.42 4

EFuNN 49.76% 0.51 453

Fuzzy ARTMAP 76.82% 0.48 n/a

CGP 61.98% n/a 1

from the training are directly associated with training results. From this point

of view, the number of rules and their antecedents/consequents are fixed

once the training is done. From a practical viewpoint, only the best training

results will be implemented in an engineering practice. Hence, the best results

are a critical factor in determining the performance of different techniques.

Compared with classifiers such as Fuzzy ARTMAP, which produces discrete

output class values, GNMM produces continuous outputs which results in a

smaller RMSE. In contrast to fuzzy-space-mapping approaches such as EFuNN,

GNMM has an input selection step which results in much fewer numbers of

rules. Furthermore, GNMM’s MLP basis ensures that it achieves higher

classification accuracy than GP methods and first-order FISs. Overall, although

Chapter 6 Classification of the Pima Indians Diabetes Database 199

there exists methods that can achieve higher classification rate (e.g. methods

in Kahramanli and Allahverdi (2008)), it is evident that GNMM achieved a

balance between classification accuracy and reduction of number of rules

generated – GA-based input deduction allows the elimination of input

variables, and MLP modelling achieved a high classification rate.

6.5 GA Parameter

Section 2.3.1.2 Parameters has briefly discussed the GA parameter selection

problem by introducing a good range of parameters proposed in the literature

(Schaffer, Caruana et al. 1989; Haupt and Haupt 2004). In previous chapters of

this thesis although different GA parameters have been used for different

datasets, most falls into that range. In addition, these parameter settings

follow certain rules, e.g. larger populations and generations for datasets with

more input variables. However, one might still ask:

 Are these optimal parameter settings for the corresponding problem?

 Will the GNMM input selection results be different if another set of

parameters were used?

The following sections explore the answers to these questions in the context

of Data VI.

Chapter 6 Classification of the Pima Indians Diabetes Database 200

6.5.1 Interactions among GA Parameters

Over the years researchers have been trying to understand the mechanics of

GA parameter interactions by using various techniques (Deb and Agrawal

1999). However, it still remains an open question as to whether there exists an

optimal set of parameters for GA in general (De Jong 2007). The reason for this

is two-fold: on the one hand conventional genetic operators can have various

forms and control parameters and recent development in GA theory have also

introduced many more parameters to be set (Fogel, Bäck et al. 2000; De Jong

2005); on the other hand achieving the exploration/exploitation balance

involves adjusting these parameters simultaneously and is limited to the

problem being dealt with (Maturana and Saubion 2008).

Techniques for assigning values to parameters can be classified according to

the taxonomy proposed by Eiben, Michalewicz et al. (2007). In general, they

are classified into two categories: one is parameter tuning, where parameters

are fixed before the run; the other is parameter control, where parameters are

modified during the run. Regardless of categories these techniques belong to,

the interaction among GA parameters follow some general rules (Deb and

Agrawal 1999; De Jong 2006; Lobo, Lima et al. 2007):

 GA parameters interact with each other so as to affect the behaviour of

the system in complex, nonlinear ways.

 For a given problem the selected parameter values are not necessarily

Chapter 6 Classification of the Pima Indians Diabetes Database 201

optimal, even if the effort made to set them was significant.

 GAs with both crossover and mutation operators perform better than

only crossover or mutation based GAs for simple problems.

 Large mutation steps can be good in the early generations, helping the

exploration of the search space, and small mutation steps might be

needed in the later generations to help fine-tune the suboptimal

chromosomes.

GNMM incorporates some techniques that correspond to these rules, such as

the adaptive mutation rate as detailed in Figure 2-8 and including both

selection and mutation operators. For a detailed discussion about different GA

parameter settings, please refer to De Jong (2006) and Lobo, Lima et al. (2007).

6.5.2 Determine the Parameter Set

The question of whether a particular set of GA parameter is optimal is largely

dependent on the aim of GA optimization results. Depending on the nature of

the problem being investigated, some researchers used the best fitness value

as the criteria for evaluating GA parameters (e.g. in Costa, MacIel et al. (2005)

and Cakir, Butun et al. (2006)); while some others also combined this with the

time when the best solution was found (Vajda, Eiben et al. 2008). In GNMM,

however, using the best fitness value is not ideal because for the winning

chromosome it may have different fitness values due to MLP’s randomness.

For the same reason, the time when the best chromosome was found cannot

Chapter 6 Classification of the Pima Indians Diabetes Database 202

be used either. In GNMM the use of GA is to accumulate the appearance of

each input variable in the winning chromosome so that the possibility of that

variable appearing in the finial training can be determined. Statistical property

that best describe GA’s behaviour with this regard is its mean fitness value

over the entire generation. Therefore, this is used as the criteria to evaluate

the performance of different GA parameters.

When studying the effect of different GA parameters, one could try all

different combinations systematically. However, this approach is practically

impossible as GA parameters are not independent. A frequently used method

is to adjust one variable while keeping all others constant (Schaffer, Caruana et

al. 1989; Sun, Hines et al. 2005). Therefore, setting initial range for each

parameter is vitally important. Setting step sizes for each parameter also

needs careful considerations. On the one hand, large step size may result in

selected parameters being very coarse; on the other hand, small step size may

result in the test being very time-consuming. For example, Schaffer, Caruana

et al. (1989) spent over a year of CPU time systematically testing a wide range

of parameter combinations. The approach adopted here to determine GA

parameter ranges and step sizes will follow those in Schaffer, Caruana et al.

(1989) and Sun, Hines et al. (2005).

Chapter 6 Classification of the Pima Indians Diabetes Database 203

6.5.3 Ranges and Step Sizes

Sun, Hines et al. (2005) have studied initial parameter values suggested in

Goldberg (1989), Michael Johnson and Rahmat-Samii (1997), and Man, Tang et

al. (1999) and given a good range of initial values as in Table 6-4. The

parameter set suggested by Schaffer, Caruana et al. (1989) (i.e. Np = 20 to 30,

pc = 0.75 to 0.95, pm = 0.005 to 0.01 in Section 2.3.1.2 Parameters), which is

also the set being used in most case studies, falls into this range. Therefore,

the following initial values will be used in our studies: population size 25,

generations 100, crossover probability 0.6, and mutation probability 0.01, as in

Table 6-4.

For the step sizes, Sun, Hines et al. (2005) used 25 for population size, 0.1 for

crossover probability, these values seem reasonable and are thus adopted in

the current study. For the mutation rate, GNMM uses adaptive mutation rate

as detailed in Figure 2-8. However, in order to make fair comparisons, these

Table 6-4: GA initial parameter range and step size

 Population

size

Number of

generations

Crossover

probability

Mutation

probability

Suggested in Sun,

Hines et al. (2005)
25 – 100 100 – 500 0.6 – 0.9 0.01 – 0.1

Initial value 25 100 0.6 0.01

Step size 25 0.1 0.02

Chapter 6 Classification of the Pima Indians Diabetes Database 204

values are kept constant in the current study with an incremental step of 0.02.

Special attention is paid to the number of generations. Due to the fact that the

performance criteria used in the current study is the mean fitness value over

the entire generation, it is therefore expected that GA runs with larger

generation tend to have smaller mean fitness value (lower MSE). Hence,

during the first stage the number of generations is set to be 100, and the

effect of the number of generations will be studied after optimal values for the

rest parameters are found. The step sizes are also listed in Table 6-4.

6.5.4 Results

Figure 6-14 shows the fitness values over 100 generations for 4 different

population sizes (i.e. 25, 50, 75, and 100). Note that in Figure 6-14 fitness

means the average fitness value over the entire generation, as mentioned in

Section 6.5.2 Determine the Parameter Set. It is clear that although the curve

for different GA runs varies slightly, the overall trend is that the fitness value

decrease dramatically during the first 10 generations and then oscillates

around 0.62 as the GA evolves. Furthermore, the best fitness values achieved

by different GA runs are very close – there is no significant difference between

the curves after generation 10. This means that in the case of Data VI GAs have

found similar best fitness values and hence achieved similar performance. It

also implies that the population size does not affect the simulation results

much as long as the GA runs over some generations. However, for population

size 50, the curve is lower and more stable than the rest, hence 50 is selected

to be the optimal population size.

Chapter 6 Classification of the Pima Indians Diabetes Database 205

Figure 6-14: Fitness values for 4 different population sizes

Figure 6-15: Fitness values for 4 different crossover probabilities

0 10 20 30 40 50 60 70 80 90 100

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Generations

F
it
n
e
s
s
 v

a
lu

e

N
p
=25

N
p
=50

N
p
=75

N
p
=100

0 10 20 30 40 50 60 70 80 90 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Generations

F
it
n
e
s
s
 v

a
lu

e

p
c
=0.6

p
c
=0.7

p
c
=0.8

p
c
=0.9

Chapter 6 Classification of the Pima Indians Diabetes Database 206

Figure 6-16: Fitness values for 5 different mutation probabilities

Figure 6-17: Fitness value decreases as generation increases

0 10 20 30 40 50 60 70 80 90 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Generations

F
it
n
e
s
s
 v

a
lu

e

p
m

=0.01

p
m

=0.03

p
m

=0.05

p
m

=0.07

p
m

=0.09

0 10 20 30 40 50 60 70 80 90 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72

Generations

F
it
n
e
s
s
 v

a
lu

e

1st run

2nd run

3rd run

4th run

Chapter 6 Classification of the Pima Indians Diabetes Database 207

GA performance for different crossover/mutation probabilities are shown in

Figure 6-15 and Figure 6-16 respectively. Similar to the case of population, it is

evident that in both figures the fitness value decreases significantly in the first

generations and then oscillates around 0.62 as the GA evolves. In Figure 6-15

crossover rate 0.9 produces the lowest fitness value and hence is used as the

optimal value. For different mutation probabilities in Figure 6-16, the

oscillation is more obvious. However, mutation rate 0.05 appears to produce

the lowest RMSE and hence is used as the optimal value.

Generally speaking, increasing the generation number improves the GAs’

performance. This can be seen in Figure 6-17, which depicts the decrease of

fitness value as generation increases with other parameters being set.

According to Figure 6-17, it can be seen that before the point around 30th

generation, the fitness value drops sharply; and after the 30th generation,

although the general trend is that the fitness value decreases gradually it

oscillates too. Figure 6-17 illustrates that if the generation number exceeds 30,

it will not have any substantial impact on the performance of the GA.

Therefore, 30 is chosen as the optimal generation number.

Therefore, it is decided that the optimal parameter set for Data VI are 50 for

population size, 30 for generation size, 0.9 for crossover probability, and 0.05

for mutation probability, which are also summarised in Table 6-5. Comparing

with the initial range in Table 6-4, it is evident that the optimal set is mainly in

Chapter 6 Classification of the Pima Indians Diabetes Database 208

the middle of the original range.

6.5.5 Discussions

Once the optimal parameter set is determined, the next step is to investigate

the averaging effect and whether different parameter sets leads to different

input variable selection results. The appearance percentages calculated from

GA runs that were used to determine the optimal parameter set in the

previous section are shown in Figure 6-18. From these figures it is quite

Table 6-5: Optimal GA parameters for Data VI

Population

Size

Number of

Generations

Crossover

Probability

Mutation

Probability

50 30 0.9 0.05

Figure 6-18: Appearance percentage calculated from GAs that were used to
determine the optimal population number (a), crossover probability (b),

mutation probability (c), and generation number (d)

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8

A
p
p
e
a
ra

n
c
e
 (

%
)

Attributes

(a)

(b)

(c)

(d)

Chapter 6 Classification of the Pima Indians Diabetes Database 209

obvious that although the exact appearance percentage number for each

attribute varies for different cases, they all present a similar patter, i.e. Attr2,

Attr6, Attr7, and Attr8 are the most often appearing attributes. These variable

selection results also confirm our previous results presented in Section 6.3

GNMM Results.

To conclude the current section, the optimal set of GA operators for Data VI

was determined experimentally. However, even if the optimal parameter set is

being used, the variable selection results are the same as in cases where GA

uses non-optimal parameter sets. It is worth noticing that in GNMM GAs are

used to accumulate the possibility of a particular input variable to be in the

variable combination that produces the minimum error. Therefore, the

emphasis is to allow many possible variable combinations to evaluate and

evolve and then a possibility can be formed. As long as different input variable

combinations are evolving based on different initial random conditions (i.e.

different GA runs and different initial MLP settings), the effect of GA

parameters can be minimized in GNMM’s input selection.

6.6 Summary

In the current chapter, the Pima Indian Diabetes database was used to

compare features of GNMM with some other IS DM techniques. A summary of

classification results is given in Table 6-3 and feature comparisons of GNMM

and these techniques are shown in Table 6-6. The purposes of the current

Chapter 6 Classification of the Pima Indians Diabetes Database 210

Table 6-6: Feature comparison of GNMM with other IS DM techniques

 Core technique
Structure Training

Rule extraction
Input Output Method Cross-validation

GNMM MLP
GA optimization

needed
No limits

ICA weights initialization

and LM
Yes By dividing input space

ANFIS Sugeno-type FIS Fixed Fixed to 1*
LS estimator and the

gradient descent
Yes Fuzzy rules, no rule sharing

EFuNN Mamdani-type FIS
Can evolve over

iterations

Can evolve over

iterations

Hybrid unsupervised and

supervised learning
No

Fuzzy rules, increase dramatically

when more data presented

Fuzzy

ARTMAP
ART Fuzzy inputs No limits

Incremental

supervised
Yes

Rule extraction based on

committed nodes

CGP GP Fixed No limits
Darwinian evolution

theory
No

Arithmetic operators from a pre-

defined set

*later research have shown systems based on ANFIS that have multiple outputs, e.g. in Guney and Sarikaya (2008).

Chapter 6 Classification of the Pima Indians Diabetes Database 211

chapter are to summarise features of GNMM in the context of hybrid IS DM

techniques. Although a comprehensive study would be required to benchmark

the performance of GNMM against others, the current study will suffice to

review its outstanding characteristics. From Table 6-6 it is evident that

compared with FIS based systems such as ANFIS, which has a fixed number of

inputs/outputs, GNMM’s ANN nature make it fault-tolerant and can have

variable or missing inputs/outputs. Compared to other ANN based approaches

e.g. EFuNN and Fuzzy ARTMAP, GNMM presents the advantage of producing

fewer rules. One obvious drawback of GNMM is that it is very computationally

expensive, which also holds true for the other EC technique in comparison i.e.

the CGP. However, the merit of GNMM compared with CGP is that CGP does

not have a way to cross-validate the training process. Hence it may suffer from

the problem of over-fitting.

In the current chapter, the influences of GA parameter settings in GNMM’s

variable selection stage were also studied. We have identified the optimal GA

parameter set for Data VI. However, it has been shown that the influences of

GA parameter can be minimized as long as different input variable

combinations can be tested and evolve towards a better fitness value

References

Abraham, A. and B. Nath (2001). "A neuro-fuzzy approach for modelling

electricity demand in Victoria." Applied Soft Computing 1(2): 127-138.

Chapter 6 Classification of the Pima Indians Diabetes Database 212

Andres-Andres, A., E. Gomez-Sanchez, et al. (2005). Incremental rule pruning

for fuzzy ARTMAP neural network, Warsaw, Poland, Springer Verlag.

Boilot, P., E. L. Hines, et al. (2000). "Knowledge Extraction from Electronic Nose

Data Sets Using Hybrid Neuro-fuzzy Systems." Sensors Update 8(1): 73-

94.

Boilot, P., E. L. Hines, et al. (2002). "Classification of bacteria responsible for

ENT and eye infections using the cyranose system." IEEE Sensors

Journal 2(3): 247-252.

Cakir, M., E. Butun, et al. (2006). "Effects of genetic algorithm parameters on

trajectory planning for 6-DOF industrial robots." Industrial Robot 33(3):

205-215.

Carpenter, G. A., S. Grossberg, et al. (1992). "Fuzzy ARTMAP: A neural network

architecture for incremental supervised learning of analog

multidimensional maps." IEEE Transactions on Neural Networks 3(5):

698-713.

Carpenter, G. A. and A. H. Tan (1995). "Rule Extraction: From Neural

Architecture to Symbolic Representation." Connection Science 7(1): 3-3.

Connolly, J.-F., E. Granger, et al. (2008). Supervised incremental learning with

the fuzzy ARTMAP neural network, Paris, France, Springer Verlag.

Costa, C. B. B., M. R. W. MacIel, et al. (2005). "Factorial design technique

applied to genetic algorithm parameters in a batch cooling

crystallization optimisation." Computers and Chemical Engineering

29(10): 2229-2241.

Chapter 6 Classification of the Pima Indians Diabetes Database 213

De Jong, K. (2005). "Genetic algorithms: A 30 year perspective." Perspectives

on Adaptation in Natural and Artificial Systems: 11.

De Jong, K. (2007). Parameter Setting in EAs: a 30 Year Perspective. Parameter

Setting in Evolutionary Algorithms: 1-18.

De Jong, K. A. (2006). Evolutionary computation: a unified approach.

Cambridge, Mass., MIT Press.

Deb, K. and S. Agrawal (1999). "Understanding interactions among genetic

algorithm parameters." Foundations of Genetic Algorithms 5: 265-286.

Eggermont, J., J. N. Kok, et al. (2004). Genetic programming for data

classification: Partitioning the search space, Nicosia, Cyprus,

Association for Computing Machinery.

Eiben, A., Z. Michalewicz, et al. (2007). Parameter Control in Evolutionary

Algorithms. Parameter Setting in Evolutionary Algorithms: 19-46.

Fogel, D. B., T. Bäck, et al. (2000). Evolutionary computation. Bristol;

Philadelphia, Institute of Physics Publishing.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and

machine learning. Reading, Mass., Addison-Wesley Pub. Co.

Granger, E., J. F. Connolly, et al. (2008). A comparison of fuzzy ARTMAP and

Gaussian ARTMAP neural networks for incremental learning. Neural

Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational

Intelligence). IEEE International Joint Conference on.

Guney, K. and N. Sarikaya (2008). "Multiple adaptive-network-based fuzzy

inference system for the synthesis of rectangular microstrip antennas

Chapter 6 Classification of the Pima Indians Diabetes Database 214

with thin and thick substrates." International Journal of RF and

Microwave Computer-Aided Engineering 18(4): 359-375.

Haupt, R. L. and S. E. Haupt (2004). Practical genetic algorithms. Hoboken, N.J.,

John Wiley.

Hughes, J. and B. Ruprai (1999). Distributed genetic programming, Google

Patents.

Kahramanli, H. and N. Allahverdi (2008). "Design of a hybrid system for the

diabetes and heart diseases." Expert Systems with Applications 35(1-2):

82-89.

Karray, F. O. and C. W. De Silva (2004). Soft computing and intelligent systems

design : theory, tools, and applications. Harlow, England ; New York,

Pearson/Addison Wesley.

Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge

engineering approach. London, Springer.

Lal, T. N., T. Hinterberger, et al. (2005). "Methods Towards Invasive Human

Brain Computer Interfaces." Advances in neural information processing

systems.(17): 737-744.

Leondes, C. T. (1999). Fuzzy theory systems : techniques and applications. San

Diego, CA, Academic Press.

Lin, T.-H. and V.-W. Soo (1997). Pruning fuzzy ARTMAP using the minimum

description length principle in learning from clinical databases,

Newport Beach, CA, USA, IEEE.

Chapter 6 Classification of the Pima Indians Diabetes Database 215

Lobo, F. G., C. F. Lima, et al. (2007). Parameter setting in evolutionary

algorithms. Berlin; New York, Springer.

Mahadevan, I. and C. Raghavendra (1997). Admission Control in ATM

Networks using Fuzzy-ARTMAP, Lawrence Erlbaum.

Man, K. F., K. S. Tang, et al. (1999). Genetic algorithms: concepts and designs.

London; New York, Springer.

Maturana, J. and F. Saubion (2008). A Compass to Guide Genetic Algorithms.

Parallel Problem Solving from Nature – PPSN X: 256-265.

Michael Johnson, J. and Y. Rahmat-Samii (1997). "Genetic algorithms in

engineering electromagnetics." IEEE Antennas and Propagation

Magazine 39(4): 7-25.

Ozkan, C. (2006). Surface interpolation by adaptive neuro-fuzzy inference

system based local ordinary kriging, Hyderabad, India, Springer Verlag.

Schaffer, J. D., R. A. Caruana, et al. (1989). "A study of control parameters

affecting online performance of genetic algorithms for function

optimization." Proceedings of the third international conference on

Genetic algorithms: 51-60.

Schmutter, P. (2002). Object oriented ontogenetic programming: breeding

computer programms that work like multicellular creatures. Dortmund,

Univ., Systems Analysis Research Group.

Smith, J., J. Everhart, et al. (1988). Using the ADAP learning algorithm to

forecast the onset ofdiabetes mellitus. Proceedings of the Symposium

on Computer Applications and Medical Care, Computer Society Press.

Chapter 6 Classification of the Pima Indians Diabetes Database 216

Sun, L., E. L. Hines, et al. (2005). "Quarter-wave phase-compensating

multidielectric lens design using genetic algorithms." Microwave and

Optical Technology Letters 44(2): 165-169.

Tayfur, G. and V. P. Singh (2005). "Predicting longitudinal dispersion coefficient

in natural streams by artificial neural network." Journal of Hydraulic

Engineering 131(11): 991-1000.

Tian, D., Y. Liu, et al. (2006). SLNN: A neural network for fuzzy neural network's

structure learning, Jinan, China, Inst. of Elec. and Elec. Eng. Computer

Society.

Vajda, P., A. Eiben, et al. (2008). Parameter Control Methods for Selection

Operators in Genetic Algorithms. Parallel Problem Solving from Nature

– PPSN X: 620-630.

Vilakazi, C. B. and T. Marwala (2009). Computational Intelligence Approach to

Condition Monitoring: Incremental Learning and Its Application.

Intelligent Engineering Systems and Computational Cybernetics: 161-

171.

Chapter 7 Conclusions and Future Work

This chapter summarises the main findings of this research and presents the

conclusions that have been formed. It also includes suggestions for further

work.

7.1 Results Overview

7.1.1 GNMM Steps

The GNMM method consists of three main steps: (1) A GA-based input variable

selection; (2) MLP-based input/output mapping/classification; and (3)

mathematical programming based regression rule extraction. The functionality

of GNMM can be summarized as follows:

(1) Utilizing GAs to optimize input variables, this simplifies the MLP structure

in GNMM, and makes the training process more efficient. The evaluation

of the fitness for each input variable combination is determined via the

training error (RMSE) when such an input combination is used in an MLP

to perform the classification/prediction task. Since weights and thresholds

for the MLP are randomly generated, GAs have to be run several times

Chapter 7 Conclusions and Future Work 218

until a clear distinction is evident between input variables as far as

possible.

(2) The input variables found by the GA in conjunction with the associated

targets are then used to develop an MLP. As in the previous step, the

training has to be repeated several times in order to get satisfactory

results due to its ‘random’ starting point. However, the learning rate can

be set to a relatively large value in order to accelerate the training process.

(3) Extracting regression rules from the trained MLP neural network, which

makes the training results much more transferable. Since the original data

have been mapped into a specific range in pre-processing before the MLP

is trained, rules extracted from the trained MLP have to reflect this

feature (i.e. reversely map the rule results into normal ranges).

7.1.2 Case Study Results

A total of six datasets were used in the case study part of the thesis to

illustrate the implementation and demonstrate the usefulness of GNMM. A

summary of these case study data and results are shown in Table 7-1. These

datasets belong to two categories i.e. environmental and medical, and are

concerned with prediction and classification.

Data I & II are concerned with the prediction of longitudinal dispersion

coefficients, which was dealt with in Chapter 3. Data III and IV are concerned

Chapter 7 Conclusions and Future Work 219

Table 7-1: A summary of case study data and results

 Dataset GNMM results Benchmarking literature

 Nature
Dimension

(attribute × sample)

Input

selection

Best results (testing

data)

Rule

extraction
Methods

Results

(classification rate)

En
vi

ro
n

m
en

ta
l

d
at

a

I
Longitudinal dispersion

coefficient prediction
49 × 196 2 out of 49 72% (R2) 11 rules N/A N/A

II
Longitudinal dispersion

coefficient prediction
8 × 71 3 out of 8 89% (R2) 13 rules

MLP (Tayfur and Singh

2005)
70% (R2)

M
ed

ic
al

 d
at

a

III ECoG classification 64 × 834000 10 out of 64 95.32% 431 rules
RFE and SVM (Lal,

Hinterberger et al. 2005)
74.3%

IV EEG classification 32 × 428360 12 out of 32 80% 516 rules N/A N/A

V
Eye bacteria species

classification
32 × 180 6 out of 32 93% 87 rules

Integer based GA (Boilot,

Hines et al. 2002)
90.6%

VI Diabetes classification 8 × 268 4 out of 8 79.30% 75 rules
ANFIS, EFuNN, Fuzzy

ARTMAP, CGP
See Table 6-3

Chapter 7 Conclusions and Future Work 220

with EEG classification problems and was discussed in Chapter 4. Chapter 5

deals with EN sensed eye bacteria data. And finally Chapter 6 is concerned

with a diabetes classification problem.

Although GNMM was applied to all six data sets, the emphasis is different for

different chapters. For example, the emphasis of Chapter 3 was to give a

detailed illustration of how GNMM works; Chapter 4 shows how to deal with

difficult classification problems; the aim of Chapter 5 was to illustrate the

averaging effect of GNMM; and finally Chapter 6 was concerned with

comparing GNMM with other IS DM techniques. Datasets obtained from

published works (i.e. Data II & III) or public domains (i.e. Data VI) where

previous results are present in the literature were also used to summarise

GNMM’s features.

7.1.3 Advantages/Disadvantages

The idea of combining GAs with ANNs is not novel. What is novel about GNMM

is that it also combines the mathematical programming based rule extraction

as well as recent developments in the field such as ICA-based weight

initialization. All these elements make GNMM an effective system that is

capable of handling large amount of noisy data especially when the underlying

relationships within the data are not fully understood.

GNMM is distinct from other solely ANN-based methods by also incorporating

Chapter 7 Conclusions and Future Work 221

variable selection and rule extraction. It benefits from GA’s randomness – by

setting different initial conditions the optimization starts from an arbitrary

point in the search space. In this way each input variable accumulates its

possibility to appear in the winning chromosome. The GA-based variable

selection stage is capable of:

 Filtering out irrelevant and noisy variables, improving the accuracy of the

model.

 Making the ANN structure less complex and easier to understand.

 Reducing the computational complexity and memory requirements.

Rule extraction is the attempt to overcome the ‘black box’ reputation that

comes with ANNs. Such a process not only provides a facility that may help to

explain the internal behaviour of an ANN, may help in understanding the

underlying physical phenomena, but may also make the training results easily

applicable/transferable.

As opposed to the above analysis which looks into GNMM’s individual steps, as

a closely integrated system GNMM has the merit that it needs little human

interaction. With some predefined parameters, such as GA’s crossover

probability and the shape of ANNs’ activation functions, GNMM is able to

process raw data until some human-interpretable rules being extracted. This is

an important feature in terms of practice as quite often users of a DM system

Chapter 7 Conclusions and Future Work 222

have little or no need to fully understand the internal components of such a

system.

However, based on the analysis and case study applications throughout the

thesis, it is the opinion of the author that GNMM as an IS DM technique has

disadvantages depending, for example, on the problem being solved. An

obvious problem is that determining the parameter values for GA is always

data-dependent. Although the general guidelines exist, for example, small

population is to be combined with large generation. However, to what extend

a population number is sufficiently small is still arguable.

Furthermore, the GA optimization is based on iterations and hence very

computationally expensive. The power of GAs (or stochastic

optimization/randomized FS) will overtake that of non-random research only

when the search space is large. However, as the name suggests, GAs have to

be given enough time to ‘evolve’ their solutions to an optimal or sub-optimal.

In case of small input space, GNMM may not be efficient in determining the

optimal input subset of its MLP modelling.

7.2 Future research directions

In GNMM, rule extraction is based on the approximation of the hidden

neurons’ hyperbolic tangent activation function. Such an approximation is

derived through the numerical analysis of Sequential Quadratic Programming.

Chapter 7 Conclusions and Future Work 223

As in any approximation, there are always associated errors. Thus, methods

that extract regression rules from ANN with higher accuracy are desirable.

Since neural networks are low-level computational structures that perform

well when dealing with raw data, while fuzzy logic deals with reasoning on a

higher level, using linguistic information acquired from domain experts, rule

extraction from such a hybrid neuro-fuzzy system would be easier and more

accurate. In particular, for example the EFuNN proposed by Kasabov (2001)

implements a strategy of dynamically growing and pruning the connectionist

(i.e. ANN) architecture. Therefore, a system that integrates GNMM and EFuNN

would offer a promising approach to data modelling and rule extraction.

Moreover, GNMM as a data driven method relies heavily on the quality of the

data. Typically, real-life data must not only be cleaned of errors and

redundancy, but must also be organized in a fashion that makes sense in the

context of the application. There exist problems in raw input data needed for

knowledge acquisition, mainly due to uncertainty, vagueness, and

incompleteness. While incompleteness arises due to missing or unknown data,

uncertainty (or vagueness) can be caused by errors in physical measurements

due to incorrect measuring devices or by a mixture of noisy and pure signals

(Mitra and Acharya 2003). Thus, future works may also include applications of

GNMM to some incomplete and highly noisy data.

Chapter 7 Conclusions and Future Work 224

References

Boilot, P., E. L. Hines, et al. (2002). "Classification of bacteria responsible for

ENT and eye infections using the cyranose system." IEEE Sensors

Journal 2(3): 247-252.

Kasabov, N. (2001). "Evolving fuzzy neural networks for

supervised/unsupervised online knowledge-based learning." IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics

31(6): 902-918.

Lal, T. N., T. Hinterberger, et al. (2005). "Methods Towards Invasive Human

Brain Computer Interfaces." Advances in neural information processing

systems.(17): 737-744.

Mitra, S. and T. Acharya (2003). Data mining: multimedia, soft computing, and

bioinformatics. Hoboken, NJ, John Wiley.

Tayfur, G. and V. P. Singh (2005). "Predicting longitudinal dispersion coefficient

in natural streams by artificial neural network." Journal of Hydraulic

Engineering 131(11): 991-1000.

Appendix A Data I – UK Environmental Agency

Data

A.1 PART I

ID Cs Ds Ms Qs S L Dr

SW_12 0 1 0 0 1.27E-05 1058 915.57

SW_13 0 1.5 0 0 1.27E-05 1058 915.57

SW_12 0 1.5 0 0 2.15E-05 1058 915.57

SW_13 0 1.5 0 0 0.000118 1101.83 993

SW_10 0 1.5 0 0 0.000154 1472.13 1282

SW_11 0 2.2 0 0 0.000154 1472.13 1282

SW_14 0 2.2 0 0 0.000154 1977.5 1506

SW_02 0 2.2 0 0 0.000154 2127 1506

SW_11 0 2.5 0 0 0.000176 2127 1506

SW_14 0 3 0 0 0.000176 2186.24 1935.43

SW_02 0 3.4 0 0 0.000179 2208.5 2005

SW_14 0 3.4 0 0 0.000179 2208.5 2005

SW_06 0 3.5 0 0 0.000179 2208.5 2017.8

SW_18 0 3.5 0 0 0.000186 2412 2039.11

SW_07 0 3.5 0 0 0.000197 2412 2039.11

SW_21 0 3.5 0 0 0.000198 2969.12 2039.11

SW_21 0 4 0 0 0.000198 2969.12 2060

MID_04 0 4 0 0 0.000253 3016.57 2067

MID_05 0 4 0 0 0.000269 3016.57 2067

MID_06 0 4 0 0 0.000269 3230 2296.8

MID_12 0 4 0 0 0.000349 3253 2296.8

MID-01 0 4 0 0 0.000349 3287.56 2296.8

MID-01 0 4 0 0 0.00041 3287.56 2331

SW_22 0 4 0 0 0.00041 3343.2 2331

MID_04 0 4 0 0 0.000426 3530.1 2612

MID_05 0 4 0 0 0.000426 3538.7 2757

MID_04 16 4 0 0 0.000426 3538.7 2757

MID_06 34.5 4 0 0 0.000464 3538.7 2757

MID_04 78.75 4 0 0 0.000464 3728.37 2770

MID_05 92.6 4 0 0 0.000492 4034.28 2770

MID_06 106 4 0 0 0.000508 4083.59 2907

AN_13 106.25 4.4 0.183 0.0208 0.000512 4268.68 2907

NE_47 106.25 4.5 0.211 0.0255 0.000512 4293.44 2920

NE_59 106.25 4.5 0.296 0.0479 0.000512 4293.44 2946

Appendix A Data I – UK Environmental Agency Data 226

NE_63 113.25 4.5 0.76 0.074 0.000535 4293.44 2956.5

NE_62 113.25 4.5 0.76 0.074 0.000535 4398 3015

NE_32 113.25 4.5 1.091 0.127 0.000544 4591.85 3015

NE_47 123.5 5 1.196 0.14 0.000544 4591.85 3477

NE_59 132.75 5 1.359 0.163 0.000567 4650.52 3555.6

NE_61 132.75 5 1.631 0.166 0.000606 4658 3555.6

NE_47 149.4 5 1.631 0.166 0.000606 4658 3600

NE_59 149.4 5.1 1.631 0.166 0.000618 4658 3602

NE_61 153 5.1 1.736 0.171 0.000618 4658.4 3602

NE_29 153 5.1 1.736 0.171 0.000618 4692 3617.23

NE_30 158.5 6 1.736 0.171 0.000618 4692 3686.43

NE_32 158.5 6 1.76 0.192 0.00068 4692 3728

AN_12 189 6 2.048 0.192 0.000706 4738.6 3728

AN_13 189 6 2.048 0.215 0.000706 4969 3817

NE_42 191.7 6 2.049 0.215 0.000706 5093.44 3817

NE_45 193.25 6 2.049 0.221 0.000719 5093.44 3817

NE_58 193.25 6 2.103 0.221 0.000719 5093.44 3880.2

NE_29 221 6.2 2.103 0.311 0.000761 5093.44 3930

NE_30 262 6.5 2.868 0.342 0.000898 5319 3942.6

NE_42 262 6.5 2.868 0.342 0.000904 5319 3942.6

NE_45 269.25 6.5 2.917 0.347 0.000904 5596.46 4007

NE_42 269.25 6.5 2.917 0.347 0.000904 5596.46 4007

NE_45 269.25 7 4.335 0.463 0.001006 5596.46 4007

NE_33 269.25 7 4.335 0.463 0.001094 5599 4007.4

NE_33 269.25 7.5 6.076 0.725 0.001116 5599 4007.4

NE_01 272 7.5 6.924 0.847 0.001116 5599 4007.4

NE_02 282.25 7.5 6.924 0.879 0.001116 5738.34 4022.29

NE_41 299.5 7.5 7.658 0.886 0.001125 5738.34 4196.75

NE_49 299.5 7.5 7.679 0.886 0.001239 5747.8 4196.75

NE_01 307.75 8.5 7.679 0.965 0.001319 5747.8 4196.75

NE_07 338.5 8.5 7.679 0.965 0.001342 5931.38 4196.75

NE_13 338.5 8.5 8.265 0.965 0.001342 5931.38 4271.67

NE_03 338.5 9 8.265 1.134 0.001402 6124.27 4271.67

NE_06 338.5 9.2 8.265 1.153 0.001481 6124.27 4271.67

NE_12 338.5 9.2 8.295 1.179 0.001481 6184.28 4271.67

NE_34 343 9.5 8.38 1.179 0.001505 6184.28 4271.67

NE_50 343 9.5 8.38 1.197 0.001595 6184.28 4418.29

NE_34 370 10 8.426 1.197 0.001692 6184.28 4465.7

NE_35 370 10 9.553 1.197 0.001766 6184.28 4465.7

NE_36 407.5 10 9.553 1.259 0.001766 6414.4 4465.7

NE_37 407.5 10 9.553 1.259 0.001856 6468.39 4476.32

NE_38 407.5 10 9.553 1.357 0.001856 6468.39 4476.32

NE_39 407.5 10 9.553 1.393 0.001856 6497.3 4486.5

NE_35 460 10 10.003 1.393 0.002264 6497.3 4504.4

NE_36 485 10 10.003 1.393 0.002264 6497.3 4516.7

NE_37 485 10 11.182 1.393 0.002264 6497.3 4688.2

NE_38 485 10.1 11.182 1.393 0.002522 6960.6 4688.2

NE_39 489.75 10.2 11.182 1.501 0.002534 6960.6 4688.2

NE_09 489.75 10.5 11.182 1.501 0.002534 6960.6 4688.2

NE_35 505.75 10.5 11.182 1.501 0.00261 6960.6 4755

NE_36 505.75 10.5 11.218 1.501 0.00261 7005.7 4755

NE_37 505.75 10.5 12.034 1.501 0.002749 7005.7 4910

Appendix A Data I – UK Environmental Agency Data 227

NE_38 525.75 10.5 12.478 1.621 0.002749 7005.7 4910

NE_31 525.75 11 12.478 1.621 0.002749 7074.8 4910

NE_49 563.5 11 12.478 1.621 0.002749 7074.8 4980

NE_49 617 11.25 12.478 1.621 0.002857 7093.8 4980

NE_22a 658.5 11.25 13.754 1.686 0.002857 7313.7 5110.4

NE_22a 676.5 12 16.487 1.927 0.003165 7586.5 5110.4

NE_17 851.25 12 16.487 2.898 0.003396 7586.5 5110.4

NE_19 898.25 12.5 16.487 3.086 0.003396 7596.8 5110.4

NE_20 901.5 12.5 16.487 3.364 0.003396 7690.74 5118.4

NE_21 913.25 12.5 16.546 3.364 0.003396 7690.74 5118.4

NE_22a 913.25 13 16.546 3.364 0.003396 7690.74 5760

NE_17 913.25 14.5 16.546 3.364 0.003647 7690.74 5760

NE_20 925.75 14.7 18.284 3.409 0.003647 7690.74 5796.3

NE_21 925.75 15 18.284 3.409 0.00365 7700 6027.87

NE_17 1116 15 18.284 3.409 0.00365 7700 6027.87

NE_20 1116 15 18.671 3.498 0.00365 8037.8 6027.87

NE_21 1116 16 18.671 3.59 0.0038 8037.8 6027.87

NE_08 1116 16.5 18.671 3.59 0.004031 8090.7 6027.87

NE_40 1126.75 16.5 18.671 3.59 0.004031 8199.6 6205.4

NE_17 1126.75 16.5 19.485 3.615 0.004031 8199.6 6315

NE_19 1126.75 16.7 19.485 3.615 0.004031 8453.62 6376.4

NE_20 1164.5 17.5 19.652 3.615 0.004031 8560 6376.4

NE_21 1361.25 17.5 20.042 3.615 0.004146 9133.4 6454.6

NE_08 1361.25 17.5 20.042 3.717 0.004146 9243.43 6560

NE_08 1361.25 17.5 20.042 3.717 0.004209 9402.3 6635.11

NE_22b 1417 17.5 20.077 3.722 0.004721 9627.2 6762.6

NE_24 1417 17.5 20.11 3.787 0.004721 9627.2 6762.6

NE_26 1417 19 20.11 4.117 0.004726 10017.4 6780

NE_27 1417 19 20.37 4.337 0.004726 10255.6 6825.6

NE_23 1879.5 19.25 20.502 4.337 0.004726 10255.6 6839.19

NE_43 1879.5 19.5 20.663 4.337 0.00485 10255.6 6839.19

NE_23 1908.75 20 22.002 4.38 0.005036 10518.4 6987.57

NE_23 1944.25 20 24.165 4.38 0.006028 10525.16 7200

NE_24 1944.25 20 39.57813 4.575 0.006281 10705.7 7200

NE_26 1982.5 20 39.57813 4.575 0.00644 10967.35 7406.6

NE_14 2135.25 22.5 39.691 4.866 0.007049 10967.35 8668.6

NE_24 2179 28 44.159 4.977 0.007963 12516 8668.6

NE_06 2480.5 28.5 44.159 8.079468 0.012405 12516 8700.6

NE_12 2480.5 33 46.442 8.079468 0.013051 12886.68 8904.8

NE_16 2501 34.5 46.86 8.111 0.013051 13777.2 9334.18

NE_15 3314.75 41.5 49.547 9.473 0.024371 14697 12133.5

A.2 PART II

ID Ce De Me Qe Cg A Mg Qg I

Appendix A Data I – UK Environmental Agency Data 228

SW_12 9.25 3.4 0 0 20 0.444 0 0.06 0.5

SW_13 20.2 3.4 0 0 47.6 0.664 0
0.07

4
0.575

SW_12 20.2 3.4 0 0 74.9 0.664 0 0.1 0.575

SW_13 27.5 3.5 0 0 74.9 1.093 0
0.10

6
0.6

SW_10 34 4.5 0 0 112.7 1.21 0
0.10

6
0.636

SW_11 42.25 4.5 0 0 120 1.21 0
0.10

6
0.684

SW_14 43 4.5 0 0 120 1.423 0 0.15 0.753

SW_02 45.75 5.1 0 0 120 1.423 0 0.15 0.753

SW_11 113.25 5.1 0 0 149.4 1.423 0 0.21 0.753

SW_14 113.25 6 0 0 171.9 1.429 0 0.21 0.753

SW_02 113.25 6 0 0 171.9 1.7 0 0.21 1.28

SW_14 123.5 6.5 0 0 178.5 1.7 0 0.21 1.28

SW_06 132.75 6.5 0 0 178.5 2.091 0 0.21 1.3

SW_18 132.75 6.5 0 0 262 2.091 0
0.23

1
1.45

SW_07 132.75 7 0 0 262 2.091 0 0.3 1.75

SW_21 158.5 7.5 0 0 262 2.095 0 0.3 1.75

SW_21 158.5 7.5 0 0 262 2.095 0
0.31

1
1.806

MID_04 178 7.63 0 0 262 2.391 0
0.31

1
1.806

MID_05 178 8 0 0 262 3.16 0.477 0.48 1.806

MID_06 181.75 8.5 0 0 262 3.16 0.477 0.48 2.08

MID_12 191.7 8.5 0 0 262 3.16 0.527
0.49

8
2.082

MID-01 193.25 8.5 0 0 262 3.16 0.753
0.56

4
2.082

MID-01 193.25 9.25 0 0 262 3.16 0.753
0.56

4
2.082

SW_22 262 9.5 0 0 287.3 3.28 0.753
0.56

4
2.1

MID_04 262 9.5 0 0 287.3 3.28 0.753
0.56

4
2.1

MID_05 262 9.5 0 0 287.3 3.28 1.28
0.56

4
2.1

MID_04 283 9.5 0 0 287.3 3.65 1.28
0.56

4
2.219

2

MID_06 283 10 0 0 287.3 3.65 1.3
0.56

4
2.219

2

MID_04 283 10 0 0 299.5 3.674 1.423
0.56

4
2.242

MID_05 299.5 10 0 0 299.5 3.684 1.423
0.56

4
2.242

MID_06 299.5 10 0 0 299.5 3.684 1.423
0.56

4
2.242

AN_13 307.75 10 0 0 299.5 3.684 1.45
0.56

4
2.3

NE_47 329.75 10 0.393
0.02554

4
299.5 3.684 1.75

0.56
4

2.3

NE_59 329.75 10.1 0.461
0.02554

4
299.5 4.208 1.75

0.56
4

2.8

NE_63 338.5 10.5 1.359 0.0591 299.5 5.026 2.08
0.56

4
2.8

NE_62 338.5 10.5 1.736 0.0599 299.5 5.026 2.082 1.1 2.8

NE_32 338.5 10.5 1.736 0.163 299.5 5.026 2.082 1.1 2.807

NE_47 338.5 10.5 1.736 0.171 299.5 5.026 2.082 1.1 2.807

Appendix A Data I – UK Environmental Agency Data 229

NE_59 338.5 10.5 1.76 0.171 299.5 5.026 2.091 1.1 3

NE_61 370 10.5 1.76 0.171 299.5 5.026 2.091 1.1 3

NE_47 370 11 1.968 0.192 299.5 5.026 2.091 1.1 3.681

NE_59 407.5 11 2.048 0.192 299.5 5.026 2.1 1.1 3.681

NE_61 407.5 11 2.048 0.192 370 5.026 2.1 1.1 3.681

NE_29 407.5
11.2

5
2.048 0.221 370 5.026 2.209 1.1 3.733

NE_30 407.5
11.2

5
2.103 0.221 378 5.026 2.209 1.1 3.733

NE_32 407.5
11.2

5
2.103 0.233

422.7
5

5.026 2.242 1.24 3.733

AN_12 409 11.5
2.59097

2
0.311

422.7
5

5.026 2.242 1.24 3.736

AN_13 425.5 12
2.59097

2
0.311

422.7
5

5.026 2.242 1.24 3.736

NE_42 431.25 12 2.917 0.347
422.7

5
7.415 2.3 1.25 3.736

NE_45 431.25 12.5 2.917 0.347
422.7

5
7.415 2.3 1.25 4.723

NE_58 431.25 13 3.664 0.413
422.7

5
7.415 2.8 1.25 4.951

NE_29 431.25 13 3.664 0.413
422.7

5
7.415 2.8 1.25 4.951

NE_30 460 14.5 3.664 0.413
422.7

5
7.415 2.8

1.31
7

5.297

NE_42 498 14.5 4.335 0.463
422.7

5
7.415 2.807

1.31
7

5.297

NE_45 499 14.5 4.335 0.463
422.7

5
7.415 2.807

1.31
7

5.297

NE_42 499 14.7 4.644 0.495
422.7

5
7.71 3.681

1.31
7

5.297

NE_45 525.75 15 4.644 0.495
422.7

5
7.71 3.681

1.31
7

5.3

NE_33 525.75 15 7.658 0.879
422.7

5
7.71 3.681

1.31
7

5.418

NE_33 525.75 15
8.22207

2
1.104

422.7
5

8.38 3.684
1.31

7
5.418

NE_01 563.5 15
8.22207

2
1.134 455 8.38 3.684

1.47
4

5.418

NE_02 563.5 15 8.38 1.134 455 8.38 3.684
1.57

2
5.46

NE_41 563.5 15.5 8.38 1.134 455 8.38 3.684
1.57

2
5.46

NE_49 591 15.5 8.38 1.153 499 11.17 3.736
1.57

2
5.487

NE_01 596.25 15.9 8.426 1.161 499
13.33

7
3.736

1.57
2

5.487

NE_07 611.6 15.9 8.426 1.19478 499
13.33

7
3.736

1.57
2

5.487

NE_13 611.6 16 8.426 1.19478 499
13.33

7
4.208

1.57
2

5.544

NE_03 617 16 8.699 1.259 499
13.64

7
4.723

1.57
2

5.544

NE_06 617 16 9.355 1.259 499
13.64

7
4.951

1.57
2

5.7

NE_12 621.1 16 11.182 1.259 499
13.64

7
4.951

1.57
2

6.138

NE_34 621.1 16.5 11.182 1.357
514.7

5
13.64

7
5.3

1.57
2

6.411

NE_50 621.1 16.5 11.182 1.357
514.7

5
13.64

7
5.418

1.57
2

7.5

NE_34 640.7 16.5 11.182 1.409
514.7

5
13.64

7
5.418

1.57
2

7.51

Appendix A Data I – UK Environmental Agency Data 230

NE_35 660.5 16.5 11.182 1.501 569.8
13.64

7
5.418

1.57
2

8

NE_36 670.7 16.7 11.218 1.501 569.8
13.64

7
5.46

1.57
2

8

NE_37 676.5 17 11.218 1.501 569.8
13.64

7
5.46 1.63 10

NE_38 774.75 17 11.551 1.501 569.8
13.64

7
5.487 2.01 10

NE_39 852 17.5 12.034 1.501 591
13.64

7
5.487 2.3 10

NE_35 854.75 17.5 12.478 1.621 657.8
13.64

7
5.487 2.3 10.21

NE_36 901.5 17.5 12.478 1.621
851.2

5
13.64

7
5.544 2.39 10.33

NE_37 925.75 17.5 12.478 1.621 852
13.64

7
5.544 2.39 10.33

NE_38 925.75 17.5 12.478 1.621 852
14.45

3
5.7 2.39 10.33

NE_39 925.75 17.5 12.478 1.621 915
14.45

3
6.138

2.77
9

10.33

NE_09 979.75 17.5 12.499 1.629 915
14.45

3
6.411

2.77
9

10.46
7

NE_35 986 19 12.812 1.663 915
14.45

3
7.5

2.77
9

10.46
7

NE_36 986 19 12.812 1.663 915 17 10
2.77

9
10.46

7

NE_37
1017.2

5
19 12.812 1.663 915 17 10

2.77
9

10.46
7

NE_38
1126.7

5
19 12.812 1.663 915 17 10

2.77
9

11

NE_31
1126.7

5
19.4 14.316 1.809

1007.
5

17 10.21 2.9 11

NE_49
1126.7

5
19.5 16.546 1.927

1007.
5

17 10.33 2.9 11

NE_49
1126.7

5
19.5 16.546 2.224

1007.
5

17 10.33 2.9 11

NE_22
a

1229.5 19.6 16.546 3.086 1360 17 10.33 2.9 11

NE_22
a

1283 20 16.546 3.353 1360 17 10.33 2.9 11.5

NE_17 1283 20 18.284 3.409 1360 17
10.46

7
2.9 11.5

NE_19
1361.2

5
20 18.284 3.409 1360 17

10.46
7

2.9 11.5

NE_20
1361.2

5
20.5 18.284 3.409 1360 17

10.46
7

2.9
12.03

6

NE_21
1361.2

5
20.5 18.671 3.409 1360

17.56
4

10.46
7

2.9
12.03

6
NE_22

a
1417 21.5 18.671 3.509 1360

19.57
6

11.5 2.9
12.48

5

NE_17 1417 21.5 18.671 3.59 1360
19.57

6
11.5 2.9

12.48
5

NE_20 1417 22.5 18.911 3.59 1360
19.57

6
11.5 3.02

12.48
5

NE_21 1452 22.5 18.911 3.59 1360
19.57

6
12.03

6
3.02 12.5

NE_17 1452 22.5 18.911 3.615 1360
19.57

6
12.03

6
3.02 12.5

NE_20 1452 22.5 18.911 3.615 1360
19.57

6
12.48

5
3.02

13.92
7

NE_21
1462.7

5
22.5 19.652 3.615 1360

19.57
6

12.48
5

3.02 15

NE_08
1462.7

5
22.5 19.652 3.722 1360

19.57
6

12.48
5

3.02 15

Appendix A Data I – UK Environmental Agency Data 231

NE_40
1462.7

5
22.5 20.077 3.722 1552

19.57
6

12.5 3.02 18

NE_17
1462.7

5
22.5 20.11 3.755 1552

19.57
6

12.5 3.02
18.59

5

NE_19 1612 23.3 20.11 3.755 1552
19.57

6
13.92

7
3.02

18.59
5

NE_20 1612 23.9 20.11 3.755 1552
19.57

6
15 3.02

18.59
5

NE_21 1617 25 20.179 3.755 1552
19.57

6
15 3.02

18.59
5

NE_08 1617 25.4 20.37 3.787 1552
19.57

6
18 3.02 19

NE_08 1671 26 20.663 3.82 1552 19.9
18.59

5
3.02 19

NE_22
b

1908.7
5

26.5 21.55 4.114 1552 20.31
18.59

5
3.02 20

NE_24
1908.7

5
26.5 22.019 4.38 1552 20.31

18.59
5

3.56
5

20

NE_26 1982.5 26.5 22.159 4.38 1552 20.31
18.59

5
3.56

5
20

NE_27
2000.7

5
26.5 24.454 4.38 1552

21.96
9

19
3.56

5
20

NE_23
2135.2

5
27

39.5781
3

4.866 1586
21.96

9
19

3.57
6

20

NE_43
2135.2

5
28

39.5781
3

4.866 1586
21.96

9
20

3.57
6

20

NE_23 2179 28.5 39.691 4.977 1586
21.96

9
26.03

7
3.57

6
26.03

7

NE_23 2275
30.7

5
39.691 5.099 1586

21.96
9

26.03
7

3.57
6

26.03
7

NE_24 2480.5 31
40.6101

8
8.07946

8
1706

21.96
9

26.03
7

5.84
26.03

7

NE_26 2480.5 33
40.6101

8
8.07946

8
2175.

6
44.38 35.69 5.84 35.69

NE_14 2501 38
40.6101

8
8.111

2175.
6

44.38
37.55

2
5.84

37.55
2

NE_24 2501 38.5 46.442 8.111
2175.

6
44.38

37.74
7

5.84
37.74

7

NE_06 2678.5 41.5 46.442
8.14873

9
2175.

6
44.38

37.74
7

6.13
1

37.74
7

NE_12 2678.5 41.5 46.86
8.14873

9
3314.

8
47.13

6
75

6.13
1

75

NE_16 2678.5 42 47.615
8.14873

9
3314.

8
47.13

6
75

6.13
1

75

NE_15
3315.2

5
46.5 49.549 9.472

3314.
8

47.13
6

75 6.6 75

Appendix B Data II – US Dispersion Data

Stream B (m)
H

(m)

U

(m/s)

u *

(m/ s)
B/H U/u* β α

Kx

(m2/s)

Antietam Creek, Md. 12.8 0.3 0.42 0.057 42.7 7.37 3.8 1.4 17.5

Antietam Creek, Md. 24.1 0.98 0.59 0.098 24.6 6.02 3.2 2.3 101.5

Antietam Creek, Md. * 11.9 0.66 0.43 0.085 18 5.06 2.9 2.3 20.9

Antietam Creek, Md. 21 0.48 0.62 0.069 43.8 8.99 3.8 1.3 25.9

Monocacy River, Md.* 48.7 0.55 0.26 0.052 88.5 5 4.5 1.3 37.8

Monocacy River, Md. * 93 0.71 0.16 0.046 131 3.48 4.9 1.3 41.4

Monocacy River, Md. 51.2 0.65 0.62 0.044 78.8 14.09 4.4 1.3 29.6

Monocacy River, Md. 97.5 .1.15 0.32 0.058 84.8 5.52 4.4 1.6 119.8

Monocacy River, Md. 40.5 0.41 0.23 0.04 98.8 5.75 4.6 1.6 66.5

Conococheague Creek,

Md.
42.2 0.69 0.23 0.064 61.2 3.59 4.1 2.3 40.8

Conococheague Creek,

Md.
49.7 0.41 0.15 0.081 121 1.85 4.8 2.3 29.3

Conococheague Creek,

Md. *
43 1.13 0.63 0.081 38.1 7.78 3.6 1.3 53.3

Chattahoochee River,

Ga. *
75.6 1.95 0.74 0.138 38.8 5.36 3.7 1.3 88.9

Chattahoochee River,

Ga.
91.9 2.44 0.52 0.094 37.7 5.53 3.6 1.6 166.9

Salt Creek, Neb. 32 0.5 0.24 0.038 64 6.32 4.2 1.4 52.2

Diffcult Run, Va. 14.5 0.31 0.25 0.062 46.8 4.03 3.9 1.1 1.9

Bear Creek*, Colo. 13.7 0.85 1.29 0.553 16.1 2.33 2.8 1.1 2.9

Little Pincy Creek, Md. 15.9 0.22 0.39 0.053 72.3 7.36 4.3 1.1 7.1

Bayou Anacoco, La. 17.5 0.45 0.32 0.024 38.9 13.33 3.7 1.4 5.8

Bayou Anacoco, La. 25.9 0.94 0.34 0.067 27.6 5.07 3.3 1.4 32.5

Bayou Anacoco, La. 36.6 0.91 0.4 0.067 40.2 5.97 3.7 1.4 39.5

Comite River, La. 15.7 0.23 0.36 0.039 68.3 9.23 4.2 1.3 69

Bayou Bartho1omew,

La.
33.4 1.4 0.2 0.031 23.9 6.45 3.2 2.5 54.7

Tickfau River, La. 15 0.59 0.27 0.08 25.4 3.38 3.2 1.8 10.3

Tangipahoa River, La. 31.4 0.81 0.48 0.072 38.8 6.67 3.7 1.5 45.1

Tangipahoa River, La.

*
29.9 0.4 0.34 0.02 74.8 17 4.3 1.5 44

Red River, La. 253.6 1.62 0.61 0.032 157 19.06 5.1 1.2 143.8

Red River, La. 161.5 3.96 0.29 0.06 40.8 4.83 3.9 1.4 130.5

Red River, La. 152.4 3.66 0.45 0.057 41.6 7.89 3.7 1.4 227.6

Red River, La. 155.1 1.74 0.47 0.036 89.1 13.06 4.5 1.2 177.7

Sabina River, La. 116.4 1.65 0.58 0.054 70.5 10.74 4.3 1.2 131.3

Sabina River, La. * 160.3 2.32 1.06 0.054 69.1 19.63 4.2 1.2 308.9

Sabina River*, Tex. 14.2 0.5 0.13 0.037 28.4 3.51 3.4 2.5 12.8

Sabina River*, Tex. 12.2 0.51 0.23 0.03 23.9 7.67 3.2 2.1 14.7

Sabina River*, Tex. 21.3 0.93 0.36 0.035 22.9 10.29 3.1 1.5 24.2

Mississippi River, La:* 711.2 19.94 0.56 0.041 35.7 13.66 3.6 1.4 237.2

Appendix B Data II – US Dispersion Data 233

Mississippi River, Mo.
*

533.4 4.94 1.05 0.069 108 15.22 4.7 1.4 457.7

Mississippi River, Mo.* 537.4 8.9 1.51 0.097 60.4 15.57 4.1 1.4 374.1

Wind/Big. River, Wyo. 44.2 1.37 0.99 0.142 32.3 6.97 3.5 1.6 184.6

Wind/Big. River, Wyo. 85.3 2.38 1.74 0.153 35.8 11.37 3.6 1.6 464.6

Wind/Big. River,

Wyo.*
59.4 1.1 0.88 0.119 54 7.39 4 1.2 41.8

Wind/Big. River, Wyo. 68.6 2.16 1.55 0.168 31.8 9.23 3.5 1.2 162.6

Copper Creep, Va. 16.7 0.49 0.2 0.08 34.1 2.5 3.5 2.5 16.8

Clinch River, Va. 48.5 1.16 0.21 0.069 41.8 3.04 3.7 1.3 14.8

Clinch River, Va.* 28.7 0.61 0.35 0.069 47 5.07 3.9 1.1 10.7

Clinch River, Va. 57.9 2.45 0.75 0.104 23.6 7.21 3.2 1.1 40.5

Clinch River, Va.* 53.2 2.41 0.66 0.107 22.1 6.17 3.1 1.1 36.9

Copper Creek, Va. 18.3 0.38 0.15 0.116 48.2 1.29 3.9 2.5 20.7

Copper Creek, Va. 16.8 0.47 0.24 0.08 35.7 3 3.6 2.5 24.6

Powell River, Tenn. * 36.8 0.87 0.13 0.054 42.3 2.41 3.7 2.2 15.5

Copper River, Va. 19.6 0.84 0.49 0.101 23.3 4.85 3.2 1.3 20.8

Nooksack River, Wash. 64 0.76 0.67 0.268 84.2 2.5 4.4 1.3 34.8

John Day River, Ore.* 25 0.58 1.01 0.14 43.1 7.21 3.8 1.1 13.9

John Day River, Ore.* 34.1 2.47 0.82 0.18 13.8 4.56 2.6 1.9 65

Yadkin River, N.C. 70.1 2.35 0.43 0.101 29.8 4.26 3.4 2.2 111.5

Yadkin River, N.C. 71.6 3.84 0.76 0.128 18.6 5.94 2.9 2.2 260.1

Minnesota River 80 2.74 0.034 0.0024 29.2 14.17 3.4 22.3

Minnesota River 80 2.74 0.14 0.0097 29.2 14.43 3.4 34.9

Amita River 37 0.81 0.29 0.07 45.7 4.14 3.8 23.2

Amita River 42 0.8 0.42 0.069 52.5 6.09 4 30.2

White River* 67 0.59 0.35 0.044 114 7.95 4.7 30.2

Nooksack River 86 2.93 1.2 0.53 29.4 2.26 3.4 1.3 153

Susquehanna River 203 1.35 0.39 0.065 150 6 5 1.1 92.9

Bayou Anacoco 20 0.42 0.29 0.045 47.6 6.44 3.9 1.4 13.9

Muddy River 13 0.81 0.37 0.081 16 4.57 2.8 13.9

Muddy River 20 1.2 0.45 0.099 16.7 4.55 2.8 32.5

Comite River 13 0.26 0.31 0.044 50 7.05 3.9 1.3 7

Comite River 16 0.43 0.37 0.056 37.2 6.61 3.6 1.3 13.9

Missouri River 183 2.33 0.89 0.066 78.5 13.48 4.4 1.4 465

Missouri River 201 3.56 1.28 0.084 56.5 15.24 4 1.4 837

Missouri River* 197 3.11 1.53 0.078 63.3 19.62 4.2 1.4 892

Appendix C Matlab Programme for GNMM

C.1 gnmm_ga

Contents

 Function reference
 Defining variables and checking input arguments
 Loading data file
 Generating training and validation sets
 FastICA toolbox path
 Recording training configuration & progress
 GA's initial run
 GA's successive iterations
 Recording training progress and saving results
 Reporting programme termination
 Fitness function for GNMM's GA process
 ICA weight initialization

function [] = gnmm_ga(data_file, output_file, varargin)

Function reference

 Using GAs to find variable combinations that produce the

 minimum error when training input/target data in a three-layer

 MLP.

Syntax

 [] = gnmm_ga(data_file, output_file);

 [] = gnmm_ga(data_file, output_file, [argID, value, ...])

Description

 [] = gnmm_ga(data_file, output_file) takes two input

 arguments, as below.

 data_file (string)

 The file name that contains training & target data. It has

 to be in the '.mat' format and contain the matrix called

 'train_data'. The matrix has to be arranged such that data

Appendix C Matlab Programme for GNMM 235

 samples are in rows and and variables in columns; training

 targets to the right of training inputs.

 output_file (string)

 The file name that will be used as GA's output and

 training records. It consists of two files: one is the

 'output_file.mat' contaiing a copy of the latest/final

 Matlab workspace; the other is the 'output_file.txt'

 recording function inputs and the programme

 starting/finishing time. The output_file name is

 preferably contructed as follows: 'ga_*_[123]', where '*'

 stands for the name of the data (e.g. k3b), while [123] is

 the order of the gnmm_ga's implementation.

 [] = gnmm_ga(data_file, output_file, [argID, value, ...])

 takes several optional input arguments in the format of

 [argID, value] pairs. 'argID' will always be the type of

 'string', but 'value' may vary as detailed below. In the

 absence of these optional arguments, gnmm_ga will use the

 default values.

 'ANN_POCH' (string), value (int)

 Number of epochs for each chromosome during the MLP

 training. Default (20).

 'NEURON_H' (string), value (int)

 Number of neurons in the MLP's hidden layer. (8).

 'NEURON_O' (string), value (int)

 Number of neurons in the MLP's output layer. (1).

 'ANN_REPEAT' (string), value (int)

 Number of repeating times in the MLP training when

 evaluating a single chromosome. (10).

 'ICA_USED' (string), value (bool)

 Whether FastICA toolbox will be used. (true).

 'pop_size' (string), value (int)

 Population size. (30).

 'genrs' (string), value (int)

 Generation size. (100).

 'm_alter' (string), value (bool)

 Whether mutation rate will be altered. (true).

 'm_rate' (string), value (double)

 (Initial) mutation rate. (0.05).

 'training_per' (string), value (double)

 Training data percentage. (0.9).

 'valid_per' (string), value (double)

 Validation data percentage. (0.1).

Examples

 [] = gnmm_ga('class4_train_k3b.mat',...

 'ga_k3b_2', 'ANN_POCH', 20);

Notes

 In order to use the FastICA toolbox, the toolbox has to

 be placed in the parent folder, i.e. the toolbox folder and

 the current folder share the same parent folder. The current

 function is checked to be compatible with FastICA 2.5.

 The current version of the function works with Matlab R2008a

 (7.6).

Appendix C Matlab Programme for GNMM 236

See Also

 gnmm_ga_write, gnmm_ann

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK

Defining viriables and checking input arguments

error(nargchk(1, Inf, nargin));

if mod(nargin, 2) ~= 0

 error('Inputs got to be pairs')

end

% global ANN_POCH NEURON_H NEURON_O ANN_REPEAT ICA_USED

ANN_POCH = 20;

NEURON_H = 4;

NEURON_O = 1;

ANN_REPEAT = 10;

ICA_USED = false;

pop_size = 30;

genrs = 100;

m_alter = true;

m_rate = 0.05;

training_per = 0.9;

valid_per = 0.1;

i=1;

while i <= length(varargin)

 if ischar(varargin{ i })

 switch varargin{ i }

 case 'ANN_POCH'

 i = i + 1;

 ANN_POCH = varargin{ i };

 case 'NEURON_H'

 i = i + 1;

 NEURON_H = varargin{ i };

 case 'NEURON_O'

 i = i + 1;

 NEURON_O = varargin{ i };

 case 'ANN_REPEAT'

 i = i + 1;

 ANN_REPEAT = varargin{ i} ;

 case 'ICA_USED'

 i = i + 1;

 ICA_USED = varargin{ i };

 case 'pop_size'

 i = i + 1;

 pop_size = varargin{ i };

 case 'genrs'

 i = i + 1;

 genrs = varargin{ i };

 case 'm_alter'

 i = i + 1;

 m_alter = varargin{ i };

 case 'm_rate'

 i = i + 1;

 m_rate = varargin{ i };

Appendix C Matlab Programme for GNMM 237

 case 'training_per'

 i = i + 1;

 training_per = varargin{ i };

 case 'valid_per'

 i = i + 1;

 valid_per = varargin{ i };

 otherwise

 error('Wrong argID.')

 end

 else

 error('Input argument pair has to start with strings')

 end

 i = i + 1;

end

Loading data file

data_saved = load(data_file);

raw_data = data_saved.train_data;

raw_data = raw_data';

[data_std, std_record] = mapstd(raw_data);

Generating training and validation sets

[total_para total_files] = size(data_std);

files_train = ceil(total_files * training_per);

files_val = floor(total_files * valid_per);

random_position = randperm(total_files);

train_serial = random_position(1 : files_train);

valid_serial = random_position(files_train + 1 :...

 files_train + files_val);

% global TRAIN_DATA TRAIN_TARGET VAL

TRAIN_DATA = data_std(1 : total_para - NEURON_O, train_serial);

TRAIN_TARGET = data_std(total_para - NEURON_O + 1 :...

 total_para, train_serial);

VAL.P = data_std(1 : total_para - NEURON_O, valid_serial);

VAL.T = data_std(total_para - NEURON_O + 1 :...

 total_para, valid_serial);

chr_length = total_para - NEURON_O;

FastICA toolbox path

if ICA_USED == true

 current_sys = computer;

 switch current_sys

 case { 'SOL2', 'GLNX86' }

 dir_sep = '/';

 case 'PCWIN'

 dir_sep = '\';

 otherwise

 disp('Unknown OS.')

 end

 current_p = pwd;

 ica_path = strcat(current_p(1 :...

 max(strfind(current_p, dir_sep))), 'FastICA_25');

 addpath(ica_path)

Appendix C Matlab Programme for GNMM 238

end

Recording training config & progress

t = cputime;

start_time = datestr(now);

fid1 = fopen(strcat(output_file, '.txt'), 'w');

fprintf(fid1, 'Programme starts @ %10s\n\n', start_time);

fprintf(fid1, 'NO. of epoches for each chromosome %6.0f\n',...

 ANN_POCH);

fprintf(fid1, 'NO. of hidden neurons %6.0f\n',...

 NEURON_H);

fprintf(fid1, 'Neurons in the output layer %6.0f\n',...

 NEURON_O);

fprintf(fid1, 'NO. of trainings each chromosome %6.0f\n',...

 ANN_REPEAT);

fprintf(fid1, 'Is FastICA used? %6.0f\n',...

 ICA_USED);

fprintf(fid1, 'Population size %6.0f\n',...

 pop_size);

fprintf(fid1, 'Total generations %6.0f\n',...

 genrs);

fprintf(fid1, 'Is mutation rate altered %6.0f\n',...

 m_alter);

fprintf(fid1, 'Mutation rate %6.2f\n',...

 m_rate);

fprintf(fid1, 'Training data percentage %6.2f\n',...

 training_per);

fprintf(fid1, 'Validation data

percentage %6.2f\n\n',...

 valid_per);

fprintf(fid1, 'Current generation:\n');

GA's initial run

options1 = gaoptimset('Generations', 1, 'PopulationType',...

 'bitstring', 'MutationFcn', { @mutationuniform, m_rate },...

 'PopulationSize', pop_size);

[x fval reason output population scores] = ...

 ga(@ann_fitness, chr_length, [], [], [], [], [],...

 [], [], options1);

fprintf(fid1,...

 'Generation: %3.0f Best results (MSE): %6.5f;\n',...

 1, fval);

record_input(1, :) = x;

scores_mean = mean(scores);

switch m_alter

 case true

 record_output(1, :) = [fval scores_mean m_rate];

 case false

 record_output(1, :) = [fval scores_mean];

 otherwise

 disp('Wrong ''m_alter''.')

end

Appendix C Matlab Programme for GNMM 239

GA's sussessive iterations

for n =2:genrs

 options2 = gaoptimset('Generations', 1, 'PopulationType',...

 'bitstring', 'MutationFcn', { @mutationuniform, ...

 m_rate }, 'PopulationSize', pop_size, 'InitialPop',...

 double(population));

 [x fval reason output population scores] = ...

 ga(@ann_fitness, chr_length, [], [], [], [], [],...

 [], [], options2);

 record_input(n, :) = x;

 scores_mean = mean(scores);

 switch m_alter

 case true

 record_output(n, :) = [fval scores_mean m_rate];

 m_ratio = scores_mean / record_output(n - 1, 2);

 if m_ratio <= 0.1

 m_rate = m_rate * 0.1;

 else

 m_rate = m_rate * (log10(m_ratio) + 1);

 if m_rate > 1

 m_rate = 1;

 end

 end

 case false

 record_output(n, :) = [fval scores_mean];

 end

 fprintf(fid1,...

 'Generation: %3.0f Best results (MSE): %6.5f;\n',...

 n, fval);

end

Recording training progress and saving results

finish_time = datestr(now);

cpu_time = cputime - t;

fprintf(fid1, '\n\n\n');

fprintf(fid1, 'programme finishes @ %10s\n', finish_time);

fprintf(fid1, 'total CPU time %6.2f (s)', cpu_time);

fclose(fid1);

%save(output_file, 'record_input', 'record_output')

save(output_file)

Reporting programme termination

if strcmp(eval('computer'), 'SOL2')

 %eval(['! echo "' output_file...

 % '" | mail j.yang.3@warwick.ac.uk'])

 eval(['! echo "' output_file...

 ' done" | /usr/lib/sendmail esrebt@eagle'])

end

Appendix C Matlab Programme for GNMM 240

Fitness function for GNMM's GA process

Nested function. Evaluating each chromosome's fitness acccording to its

training error in an MLP.

 function scores = ann_fitness(pop)

 % global ANN_POCH NEURON_H NEURON_O ANN_REPEAT

 % global ICA_USED TRAIN_DATA TRAIN_TARGET VAL

 train_row = find(pop);

 scores_accu = 0;

 if isempty(train_row)

 scores = 100;

 else

 for j = 1: ANN_REPEAT

 train_input = TRAIN_DATA(train_row, :);

 val.P = VAL.P(train_row, :);

 val.T = VAL.T;

 net = newff(minmax(train_input),

[NEURON_H,...

 NEURON_O], { 'tansig', 'purelin' },...

 'trainlm');

 net.trainParam.epochs = ANN_POCH;

 net.trainParam.show = NaN;

 net.trainParam.showWindow = false;

 net = init(net);

 if length(train_row) >= NEURON_H && ICA_USED

 net = ica_wi(net, train_input, TRAIN_TARGET);

 end

 [net, tr]=train(net, train_input, ...

 TRAIN_TARGET, [], [], val);

 x = size(tr.perf, 2);

 scores_accu = scores_accu + tr.perf(x);

 end

 scores = scores_accu / ANN_REPEAT;

 end

ICA weight initialization

Nested function. Weight initialization using FastICA 2.5.

 function net = ica_wi(net, train_input, TRAIN_TARGET)

 ica_inputs = train_input;

 inputs_mean_rec = mean(ica_inputs, 2);

 inputs_mean = repmat(inputs_mean_rec,...

 [1 size(ica_inputs, 2)]);

 inputs_mean_moved = ica_inputs - inputs_mean;

 [inputs_source, A, W] = ...

 fastica(inputs_mean_moved,...

 'verbose', 'off', 'numOfIC',...

 net.layers{ 1 }.size, 'displayMode', 'off',...

Appendix C Matlab Programme for GNMM 241

 'stabilization', 'on');

 % 50% of maximum direvative for 'tansig'

 fifty_active = log(3 + 2 * 2 ^.5) / 2;

 input_wt_co = fifty_active /...

 max(max(abs(inputs_source)));

 input_wt = input_wt_co * W;

 input_thr = -1 * input_wt_co * W* inputs_mean_rec;

 net.IW{ 1, 1 } = input_wt;

 net.b{ 1, 1 } = input_thr;

 hidden_out = tansig(input_wt_co * inputs_source);

 out_wt = lscov(hidden_out', TRAIN_TARGET')';

 net.LW{ 2, 1 } = out_wt;

 end

 end

end

Published with MATLAB® 7.8

C.2 gnmm_ga_write

Contents

 Function reference
 Checking input arguments
 Loading training records and results
 Writing results onto an excel file
 Converting numbers into excel column characters.

function [] = gnmm_ga_write(results_file, excel_file, ...

 worksheet_name)

Function reference

 Reading results obtained by 'gnmm_ga' (i.e. sample_file.txt

 and sample_file.mat), and writing these results into an Excel

 file.

Syntax

 [] = gnmm_ga(results_file, [], []);

 [] = gnmm_ga(results_file, excel_file, []);

 [] = gnmm_ga(results_file, excel_file, worksheet_name);

Description

Appendix C Matlab Programme for GNMM 242

 [] = gnmm_ga(results_file, [], []) takes a single input

 arguments:

 results_file (string)

 The file comes in two parts. The '.mat' file contains the

 final/latest copy of the GA's evolutionary results, in

 which matrices 'record_input' and 'record_output' together

 contains the winning chromosome and corresponding training

 error, mean error over the whole population, and mutation

 rate (in case of mutaion rate altering). The '.txt' part

 records 'gnmm_ga.m's funciton inputs and information of

 its implementation.

 [] = gnmm_ga(results_file, excel_file, []) takes an

 additional input arguments, excel_file (string), which holds

 the whole data.

 In gnmm_ga(results_file, excel_file, worksheet_name), the

 worksheet_name (string) specifies the worksheet that holds the

 perticular gnmm results.

Examples

 [] = gnmm_ga_write('ga_k3b_1', [], []);

 [] = gnmm_ga_write('ga_k3b_1', 'results', []);

 [] = gnmm_ga_write('ga_k3b_1', 'results', '1st');

Notes

 In order to use the FastICA toolbox, the toolbox has to

 be placed in the parent folder, i.e. the toolbox folder and

 the current folder share the same parent folder. The current

 function is checked to be compatible with FastICA 2.5.

 The current version of the function works with Matlab R2008a

 (7.6).

See Also

 gnmm_ga, gnmm_ann

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK

Checking input arguments

error(nargchk(1, 3, nargin));

if isempty(results_file)

 error('The ''results_file'' input must not be empty')

end

results_txt = [results_file '.txt'];

results_mat = [results_file '.mat'];

imple_number = strfind(results_file, '_');

if isempty(excel_file)

 excel_file = results_file(1: imple_number(end) - 1);

 excel_file = ['result_' excel_file '.xls'];

end

Appendix C Matlab Programme for GNMM 243

if isempty(worksheet_name)

 imple_case = results_file(imple_number(end) + 1 : end);

 switch imple_case

 case '1'

 worksheet_name = '1st';

 case '2'

 worksheet_name = '2nd';

 case '3'

 worksheet_name = '3rd';

 otherwise

 worksheet_name = [imple_case 'th'];

 end

end

excel_pres = exist(excel_file, 'file'); %either 0 or 2

if excel_pres

 [typ, desc] = xlsfinfo(excel_file);

end

Loading training records and results

eval(['load ' results_mat ' ''record_input''

''record_output'''])

record_fields = { 'ANN_POCH', 'NEURON_H', 'NEURON_O',...

 'ANN_REPEAT', 'ICA_USED', 'pop_size', 'genrs',...

 'm_alter', 'training_per','valid_per', 'm_rate',...

 'start_time', 'finish_time', 'cpu_time'};

record_length = length(record_fields);

for i = 1 : record_length

 load (results_mat, record_fields{ i });

 if exist(record_fields{ i }, 'var')

 record_value{ i } = eval(record_fields{ i });

 else

 % older version of 'gnmm_ga.m'

 fid = fopen(results_txt, 'r');

 record_texts = textscan(fid, '%s');

 record_texts = record_texts{ 1 };

 % finish_location = strfind(record_texts, 'finishes');

 % finish_location =...

 % find(~cellfun(@isempty, finish_location));

 record_value{ i } = [record_texts{ end - 6 }...

 ' ' record_texts{ end - 5 }];

 record_value{ i + 1 } = str2double(record_texts{ end-

1 });

 fclose(fid);

 break

 end

end

if m_alter == true

 output_fields = { 'fval', 'scores_mean', 'm_rate' };

else

 output_fields = { 'fval', 'scores_mean' };

end

var_num = num2str((1 : size(record_input, 2))');

var_name = repmat('Var', size(record_input, 2), 1);

input_fields = cellstr([var_name var_num])';

Appendix C Matlab Programme for GNMM 244

results_sheet = [input_fields output_fields;...

 num2cell([record_input record_output])];

Writing results onto an excel file

xlswrite(excel_file, results_sheet, worksheet_name)

field_end = xls_num2col(record_length + 1);

if ~excel_pres

 xlswrite(excel_file, { 'Sheet' }, 'config', 'A1')

 title_range = ['B1:' field_end '1'];

 xlswrite(excel_file, record_fields, 'config', title_range)

 exist_sheets = '2';

else

 exist_sheets = num2str(length(desc) + 1);

end

xlswrite(excel_file, { worksheet_name },...

 'config', ['A' exist_sheets])

config_range = ['B' exist_sheets ':' field_end exist_sheets];

xlswrite(excel_file, record_value, 'config', config_range)

function xls_col = xls_num2col(xls_num)

Converting numbers into excel column characters.

if xls_num < 27

 xls_col = char(xls_num + 64);

 return;

end

first = floor(xls_num / 26);

if first < 27

 xls_col = char(first + 64);

else

 error('Too many input variables');

end

second = rem(xls_num, 26);

xls_col = [xls_col char(second + 64)];

Published with MATLAB® 7.8

C.3 gnmm_ann_cv

Contents

 Function reference
 Defining variables and checking input arguments

Appendix C Matlab Programme for GNMM 245

 Loading data file
 FastICA toolbox path
 Recording training configuration & progress
 MLP's iterations
 Recording training progress
 Reporting programme termination
 ICA weight initialization

function gnmm_ann_cv(data_file, col_to_use, varargin)

Function reference

 Using ANNs to model input/output relationships between input

 variables found by GAs and output targets.

Syntax

 [] = gnmm_ann_cv(data_file, col_to_use);

 [] = gnmm_ann_cv(data_file, col_to_use, output_file);

 [] = gnmm_ann_cv(data_file, col_to_use, [argID, value, ...])

Description

 [] = gnmm_ann_cv(data_file, col_to_use) takes two input

 arguments, as below.

 data_file (string) The file name that contains training &

 target data. It has to be in the '.mat' format and contain

 the matrix called 'train_data'. The matrix has to be

 arranged such that data samples are in rows and and

 variables in columns; training targets to the right of

 training inputs.

 col_to_use (vector) A row vector that contains the

 variable numbers that appear most when being trained by

 GNMM's GA process.

 [] = gnmm_ann_cv(data_file, col_to_use, output_file), takes

 an optional argument 'output_file' (string), which specifies

 the name of the 'mat' file that holds the ANN training

 results.

 [] = gnmm_ann_cv(data_file, col_to_use, [argID, value, ...

]) takes several optional input arguments in the format of

 [argID, value] pairs. 'argID' will always be the type of

 'string', but 'value' may vary as detailed below. In the

 absence of these optional arguments, gnmm_ann_cv will use the

 default values.

 'output_file' (string) The name of the 'mat' file that

 holds the ANN training results.

 'ANN_POCH' (string), value (int) Number of epochs for the

 MLP training. Default (30000). Increasing this number will

 increase the memory usage dramatically.

 'NEURON_H' (string), value (int) Number of neurons in the

 MLP's hidden layer. (12).

 'NEURON_O' (string), value (int) Number of neurons in the

 MLP's output layer. (4).

 'ICA_USED' (string), value (bool) Whether FastICA toolbox

Appendix C Matlab Programme for GNMM 246

 will be used. (false).

 'iterations' (string), value (int) Number of iterations

 for each MLP's implementation. (2000)

 'l_rate' (string), value (double) The learning rate.

 (0.04).

 'training_per' (string), value (double) Training data

 percentage. (0.9).

 'valid_per' (string), value (double) Validation data

 percentage. (0.1).

 'valid_num' (string), value (double) The number of k-fold

 cross validation. (10).

Examples

 [] = gnmm_ann_cv('data_l1b', [3 4 8 20 26 28 29 31 32 36 45

48

 52 56 60]);

Notes

 In order to use the FastICA toolbox, the toolbox has to be

 placed in the parent folder, i.e. the toolbox folder and the

 current folder share the same parent folder. The current

 function is checked to be compatible with FastICA 2.5.

 The current version of the function works with Matlab R2008a

 (7.6).

See Also

 gnmm_ga, gnmm_ga_write, gnmm_rules

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK

Add k-fold cross validation

Defining viriables and checking input arguments

error(nargchk(1, Inf, nargin));

switch version('-release')

 case {'2008b', '2009a'}

 p = inputParser; % Create an instance of the class.

 p.addRequired('data_f', @ischar);

 p.addRequired('col_use', ...

 @(x) sum(x - double(int32(x))) == 0);

 p.addOptional('output_f', ...

 ['ann' data_file(strfind(data_file, '_'): ...

 end)], @ischar);

 p.addParamValue('ANN_POCH', 3000, ...

 @(x) x > 0 && mod(x, 1) == 0);

 p.addParamValue('NEURON_H', 10, ...

 @(x) x > 0 && mod(x, 1) == 0);

 p.addParamValue('NEURON_O', 1, ...

 @(x) x > 0 && mod(x, 1) == 0);

Appendix C Matlab Programme for GNMM 247

 p.addParamValue('ICA_USED', false, @islogical);

 p.addParamValue('iterations', 100, ...

 @(x) x > 0 && mod(x, 1) == 0);

 p.addParamValue('training_per', 0.9, @(x) x<= 1);

 p.addParamValue('valid_per', 0.1, @(x) x <= 1);

 p.addParamValue('l_rate', 0.04, @(x) x <= 1);

 p.addParamValue('valid_num', 10, ...

 @(x) x > 0 && mod(x, 1) == 0);

 % Parse and validate all input arguments.

 p.parse(data_file, col_to_use, varargin{ : });

 case '2006a'

 if mod(nargin, 2) ~= 0

 error('Inputs got to be pairs')

 end

 p.Results.data_f = data_file;

 p.Results.col_use = col_to_use;

 p.Results.output_f = ...

 ['ann' data_file(strfind(data_file, '_'): end)];

 p.Results.ANN_POCH = 3000;

 p.Results.NEURON_H = 4;

 p.Results.NEURON_O = 1;

 p.Results.ICA_USED = false;

 p.Results.iterations = 1000;

 p.Results.training_per = 0.9;

 p.Results.valid_per = 0.1;

 p.Results.l_rate = 0.04;

 p.Results.valid_num = 10;

 i=1;

 while i <= length(varargin)

 if ischar(varargin{ i })

 switch varargin{ i }

 case 'output_file'

 i = i + 1;

 p.Results.output_f = varargin{ i };

 case 'ANN_POCH'

 i = i + 1;

 p.Results.ANN_POCH = varargin{ i };

 case 'NEURON_H'

 i = i + 1;

 p.Results.NEURON_H = varargin{ i };

 case 'NEURON_O'

 i = i + 1;

 p.Results.NEURON_O = varargin{ i };

 case 'ICA_USED'

 i = i + 1;

 p.Results.ICA_USED = varargin{ i };

 case 'iterations'

 i = i + 1;

 p.Results.iterations = varargin{ i };

 case 'training_per'

 i = i + 1;

 p.Results.training_per = varargin{ i };

 case 'valid_per'

 i = i + 1;

 p.Results.valid_per = varargin{ i };

Appendix C Matlab Programme for GNMM 248

 case 'l_rate'

 i = i + 1;

 p.Results.l_rate = varargin{ i };

 otherwise

 error('Wrong argID.')

 end

 else

 error(['Input argument pair has ' ...

 'to start with strings'])

 end

 i = i + 1;

 end

 otherwise

 error(['Check to see if this version of ' ...

 'Matlab support ''inputParser''.'])

end

Loading data file

data_saved = load(p.Results.data_f);

raw_data = data_saved.train_data;

clear data_saved

raw_data = raw_data';

[data_std, std_record] = mapstd(raw_data);

clear raw_data

FastICA toolbox path

if p.Results.ICA_USED == true

 current_sys = computer;

 switch current_sys

 case { 'SOL2', 'GLNX86' }

 dir_sep = '/';

 case 'PCWIN'

 dir_sep = '\';

 otherwise

 disp('Unknown OS.')

 end

 current_p = pwd;

 ica_path = strcat(current_p(1 :...

 max(strfind(current_p, dir_sep))), 'FastICA_25');

 addpath(ica_path)

end

Recording training config & progress

t = cputime;

start_time = datestr(now);

fid1 = fopen(strcat(p.Results.output_f, '.txt'), 'w');

fprintf(fid1, 'GNMM''s ANN training process\n');

fprintf(fid1, 'Programme starts @ %10s\n\n', start_time);

fprintf(fid1, 'Total iterations %6.0f\n',...

 p.Results.iterations);

fprintf(fid1, 'NO. of epoches in each iteration %6.0f\n',...

 p.Results.ANN_POCH);

fprintf(fid1, 'NO. of hidden neurons %6.0f\n',...

Appendix C Matlab Programme for GNMM 249

 p.Results.NEURON_H);

fprintf(fid1, 'Neurons in the output layer %6.0f\n',...

 p.Results.NEURON_O);

fprintf(fid1, 'Is FastICA used? %6.0f\n',...

 p.Results.ICA_USED);

fprintf(fid1, 'Training data percentage %6.2f\n',...

 p.Results.training_per);

fprintf(fid1, 'Validation data percentage %6.2f\n',...

 p.Results.valid_per);

fprintf(fid1, 'Learning rate %6.2f\n',...

 p.Results.l_rate);

fprintf(fid1, 'K-fold cross validation %6.0f\n',...

 p.Results.valid_num);

fprintf(fid1, 'Variables slected %6.0f\n',...

 p.Results.col_use);

fprintf(fid1, 'Current iteration:\n\n');

MLP's iterations

[total_para total_files] = size(data_std);

files_train = ceil(total_files * p.Results.training_per);

files_val = floor(total_files * p.Results.valid_per);

error_record = [];

for j = 1 : p.Results.iterations

 start_time1 = datestr(now);

 % Generating training and validation sets

 for k = 1 : p.Results.valid_num

 random_position = randperm(total_files);

 train_serial = random_position(1 : files_train);

 valid_serial = random_position(files_train + 1 :...

 files_train + files_val);

 TRAIN_DATA = data_std(p.Results.col_use, train_serial);

 TRAIN_TARGET = data_std(total_para - ...

 p.Results.NEURON_O + 1 : total_para, train_serial);

 VAL.P = data_std(p.Results.col_use, valid_serial);

 VAL.T = data_std(total_para - p.Results.NEURON_O +

1 :...

 total_para, valid_serial);

 if k == 1

 net = newff(minmax(TRAIN_DATA),

[p.Results.NEURON_H, ...

 p.Results.NEURON_O], {'tansig', 'purelin'},

'trainlm');

 net.trainParam.epochs = p.Results.ANN_POCH;

 net.trainParam.show = NaN;

 net.trainParam.showWindow = false;

 net.trainParam.lr = p.Results.l_rate;

 net = init(net);

 if p.Results.ICA_USED

 net = ica_wi(net, TRAIN_DATA, TRAIN_TARGET);

 end

 end

 [net, tr]=train(net, TRAIN_DATA, TRAIN_TARGET, ...

 [], [], VAL);

 sim_error = tr.perf(size(tr.perf, 2));

Appendix C Matlab Programme for GNMM 250

 end

 finish_time1 = datestr(now);

 if j == 1

 error_record = sim_error;

 fprintf(fid1, ['Initial training MSE

' ...

 '%6.4e\n'], error_record);

 fprintf(fid1, ['Iteration starts

' ...

 '%6s\n'], start_time1);

 fprintf(fid1, ['Iteration finishes

' ...

 '%6s\n\n'], finish_time1);

 end

 if sim_error < error_record

 error_record = sim_error;

 fprintf(fid1, ['training MSE @%6.0fth iteration ' ...

 '%12.4e\n'], j, error_record);

 fprintf(fid1, ['iteration starts

' ...

 '%6s\n'], start_time);

 fprintf(fid1, ['iteration finishes

' ...

 '%6s\n\n'], finish_time1);

 save(p.Results.output_f, 'net', 'train_serial', ...

 'valid_serial', 'col_to_use', 'data_std')

 end

end

Recording training progress

finish_time = datestr(now);

cpu_time = cputime - t;

fprintf(fid1, '\n\n\n');

fprintf(fid1, 'programme finishes @ %10s\n', finish_time);

fprintf(fid1, 'total CPU time %6.2f (s)', cpu_time);

fclose(fid1);

Reporting programme termination

if strcmp(eval('computer'), 'SOL2')

 %eval(['! echo "' p.Results.output_f...

 % '" | mail j.yang.3@warwick.ac.uk'])

 eval(['! echo "' p.Results.output_f...

 ' done" | /usr/lib/sendmail esrebt@eagle'])

end

ICA weight initialization

Nested function. Weight initialization using FastICA 2.5.

 function net = ica_wi(net, TRAIN_DATA, TRAIN_TARGET)

 ica_inputs = TRAIN_DATA;

Appendix C Matlab Programme for GNMM 251

 inputs_mean_rec = mean(ica_inputs, 2);

 inputs_mean = repmat(inputs_mean_rec,...

 [1 size(ica_inputs, 2)]);

 inputs_mean_moved = ica_inputs - inputs_mean;

 [inputs_source, A, W] = fastica(inputs_mean_moved,...

 'verbose', 'off', 'numOfIC',...

 net.layers{ 1 }.size, 'displayMode', 'off',...

 'stabilization', 'on');

 % 50% of maximum direvative for 'tansig'

 fifty_active = log(3 + 2 * 2 ^.5) / 2;

 input_wt_co = fifty_active /...

 max(max(abs(inputs_source)));

 input_wt = input_wt_co * W;

 input_thr = -1 * input_wt_co * W* inputs_mean_rec;

 net.IW{ 1, 1 } = input_wt;

 net.b{ 1, 1 } = input_thr;

 hidden_out = tansig(input_wt_co * inputs_source);

 out_wt = lscov(hidden_out', TRAIN_TARGET')';

 net.LW{ 2, 1 } = out_wt;

 end

end

Published with MATLAB® 7.8

C.4 gnmm_rules

Contents

 Function reference
 Define some constants and load previously saved variables
 Define the data matrix
 Nested function.

function [rules_train, rules_val] = gnmm_rules(results_file)

Function reference

 Extract regression rules from trained MLPs.

Syntax

 [rules_train, rules_val] = gnmm_rules(results_file);

Description

Appendix C Matlab Programme for GNMM 252

 [rules_train, rules_val] = gnmm_rules(results_file) takes

 a singgle input argument 'results_file', which is the 'mat'

 file name that holds GNMM's ANN training results.

 'rules_train' and 'rules_val' each contains two columns, and

 as many rows as the number of rules fired for the training and

 validation sub data set. The first column is the actual rule

 being fired, the second column is the corresponding number of

 data samples

Examples

 [rules_train, rules_val] = gnmm_rules('ann_l1b');

Notes

 The current version of the function only works with MLPs whose

 output layer only contains a single neuron. See References for

 details.

See Also

 gnmm_ga, gnmm_ga_write, gnmm_ann

Copyright (c) 2006-2008 J. Yang, ISEL, Warwick University, UK

Define some constants and load previously saved variables

beta1=1.0020101308531; beta2=-0.251006075157012;

kupa=1.99607103795966;

col_to_use = [];

train_serial = [];

valid_serial = [];

data_std = [];

net = [];

eval(['load ' results_file ' ''net'' ''train_serial'''...

 ' ''valid_serial'' ''col_to_use'' ''data_std'''])

% eval(['load ' results_file])

theta = net.b{ 1 }';

condi = [];

for i=1:length(theta)

 condi(i, 1) = - kupa - theta(i);

 condi(i, 2) = - theta(i);

 condi(i, 3) = kupa - theta(i);

end

Define the data matrix

data = data_std(col_to_use, :);

data_tran = (net.IW{ 1, 1 } * data)';

data_t = data_tran(train_serial, :);

data_v = data_tran(valid_serial, :);

Appendix C Matlab Programme for GNMM 253

rules_train = rule_find(data_t, train_serial);

rules_val = rule_find(data_v, valid_serial);

Nested function.

Calculate the actual rule numbers and the each rule's execution.

 function rule_list = rule_find(data_sub, serial_sub)

 %temp = []; this means double, WRONG!!

 %base2dec('444', 5)=124

 rule_count = zeros(1, base2dec(num2str(ones(1, ...

 length(theta)) * 4, '%1.0f'), 5));

 for k = 1 : length(serial_sub)

 data_ind = data_sub(k, :);

 for o = 1 : length(theta)

 if data_ind(o) >= condi(o, 3)

 temp(o) = '4';

 else if data_ind(o) < condi(o, 3) && ...

 data_ind(o) >= condi(o, 2)

 temp(o) = '3';

 else if data_ind(o) < condi(o, 2) && ...

 data_ind(o) >= condi(o, 1)

 temp(o) = '2';

 else temp(o) = '1';

 end

 end

 end

 end

 inde = base2dec(temp, 5);

 rule_count(inde) = rule_count(inde) + 1;

 end

 rules_real = find(rule_count ~= 0);

 for p = 1 : length(rules_real)

 rule_list(p, 1) = str2double(dec2base(...

 rules_real(p), 5));

 rule_list(p, 2) = rule_count(rules_real(p));

 end

 end

end

Published with MATLAB® 7.8

Appendix C Matlab Programme for GNMM 254

C.5 gnmm_TestData

Contents

 Function reference
 Defining variables and checking input arguments
 Loading data file and training results
 Compute the rmse/r^2 and display results

function gnmm_TestData(data_file, result_mat, varargin)

Function reference

 Apply trained ANNs to training/test data to perform the

 pattern recognition task. Also shows the 'coefficient of

 determination' for the original and test data.

Syntax

 [] = gnmm_TestData(data_file, result_mat);

 [] = gnmm_TestData(data_file, result_mat, test_data)

Description

 [] = gnmm_TestData(data_file, result_mat) takes

 two input arguments, as below.

 data_file (string) The file name that contains training &

 target data. It has to be in the '.mat' format and contain

 the matrix called 'train_data'. The matrix has to be

 arranged such that data samples are in rows and and

 variables in columns; training targets to the right of

 training inputs.

 result_mat (string) The workspace saved as in '.mat'

 format from the previous ANN training stage using

 parameters selected by GAs.

 [] = gnmm_TestData(data_file, result_mat, test_data), takes

 an optional argument 'test_data' (string), which specifies the

 name that contains test data. It has to be in the '.mat'

 format and contain the matrix called 'test_data'. Format

 requirement is the same as in data_file.

Examples

 gnmm_TestData('2class_new', 'ann_new3', '2class_test');

See Also

 gnmm_ga, gnmm_ga_write, gnmm_rules

Appendix C Matlab Programme for GNMM 255

Copyright (c) 2006-2009 J. Yang, ISEL, Warwick University, UK Revision: 1

$ $Date: 12/02/2009 15:05:22 $

Defining viriables and checking input arguments

error(nargchk(1, Inf, nargin));

% data_file = '2class_new';

% result_mat = 'ann_new3';

% test_data = '2class_test';

% varargin = {};

switch version('-release')

 case '2008b'

 p = inputParser; % Create an instance of the class.

 p.addRequired('data_f', @ischar);

 p.addRequired('result_m', @ischar);

 p.addOptional('data_t', 'data_t', @ischar);

 % Parse and validate all input arguments.

 p.parse(data_file, result_mat, varargin{ : });

 case '2006a'

 p.Results.data_f = data_file;

 p.Results.result_m = result_mat;

 if length(varargin) == 0

 p.Results.data_t = 'data_t';

 else if length(varargin) == 1

 p.Results.data_t = varargin{ 1 };

 else

 error('Too many inputs');

 end

 end

 p.Results.data_t = test_data;

 otherwise

 error(['Check to see if this version of ' ...

 'Matlab support ''inputParser''.'])

end

Loading data file and training results

data_saved = load(p.Results.data_f);

raw_data = data_saved.train_data';

[data_std, std_record] = mapstd(raw_data);

data_saved = load(p.Results.result_m);

net = data_saved.net;

% train_serial = data_saved.train_serial; valid_serial =

% data_saved.valid_serial;

col_to_use = data_saved.col_to_use;

% data_std = data_saved.data_std;

presence_test = ~strcmp(p.Results.data_t , 'data_t');

if presence_test

 data_saved = load(p.Results.data_t);

 test_data = data_saved.test_data';

Appendix C Matlab Programme for GNMM 256

 test_std = mapstd('apply', test_data, std_record);

end

clear data_saved

% map the simulated value back to original range according y =

% (x-xmean)*(ystd/xstd) + ymean;;

target_std = std_record.xstd(end);

target_mean = std_record.xmean(end);

map_back = @(x) (target_mean + x*target_std);

r_square = @(tar, pred) (1 - sum((pred - tar).^2)/sum(tar.^2));

Compute the rmse/r^2 and display results

This is done by mapping trained data back to its original range for the training

data

train_orig = raw_data(end, :);

train_simed = sim(net, data_std(col_to_use, :));

train_simed_orig = map_back(train_simed);

train_rmse = mse(train_simed_orig - train_orig)^.5;

train_r2 = r_square(train_orig, train_simed_orig);

disp('---');

fprintf('training R-squared %6.4f\n', train_r2);

fprintf('training RMSE %6.4f\n', train_rmse);

% for the testing data

if presence_test

 test_orig = test_data(end, :);

 test_simed = sim(net, test_std(col_to_use, :));

 test_simed_orig = map_back(test_simed);

 test_rmse = mse(test_simed_orig - test_orig)^.5;

 test_r2 = r_square(test_orig, test_simed_orig);

 disp('---');

 fprintf('testing R-squared %6.4f\n', test_r2);

 fprintf('testing RMSE %6.4f\n', test_rmse);

end

Published with MATLAB® 7.8

Appendix D VBA Programme for GNMM

Attribute VB_Name = "Module1"

Option Explicit

Sub GNMM_Analyse()
 'Analyse GNMM's GA results file (Excel 2007 format, 'xlsx'),

 'pick up mostly appeared variables

 Dim Sheet_Number As Integer
 Dim Var_Number As Integer

 Dim Count As Integer
 Dim Genes_Number As Integer
 Dim Rows_Done As Integer
 Dim First_Sheet As Boolean
 Dim Summary_Sht As Worksheet
 Dim Input_Area As Range
 Dim DataRange As Range
 Dim Formula_Sum As String

 Dim App_Per As Chart

 Application.ScreenUpdating = False

 Sheet_Number = Worksheets.Count
 'MsgBox "Total number of worksheets in the current file: " & Sheet_Number

 Var_Number = InputBox("Key in the total number of variables", _

 "GNMM user input")
 'Var_Number = 60

 First_Sheet = True

 For Count = 1 To Sheet_Number
 If Worksheets(Count).Name = "summary" Then
 MsgBox "This macro may have already been implemented." _

 & " If not, rename worksheet 'summary'."
 Exit Sub
 End If
 Next Count

 For Count = 1 To Sheet_Number
 If Worksheets(Count).Name <> "config" Then

 If First_Sheet Then
 Set Summary_Sht = _
 Worksheets.Add(After:=Sheets(Sheet_Number))
 Summary_Sht.Name = "summary"
 With Worksheets(Count)
 .Range(.Range("A1"), _
 .Range("A1").Offset(0, Var_Number - 1)).Copy _
 Summary_Sht.Range("B1")

 End With

Appendix D VBA Programme for GNMM 258

 Summary_Sht.Range("A1") = "Sheet"
 First_Sheet = False

 End If

 Worksheets(Count).Activate
 'The actual gene number is the number below - 1

 Genes_Number = Range("A1").CurrentRegion.Rows.Count

 Set Input_Area = _
 Range(Range("A1").Offset(Genes_Number, 0), _

 Range("A1").Offset(Genes_Number, Var_Number - 1))

 Formula_Sum = "= AVERAGE(R[" & _
 1 - Genes_Number & "]C : R[-1]C)"

 'For Each cell In Input_Area

 ' cell.FormulaR1C1 = Formula_Sum

 ' cell.Interior.Color = RGB(128, 60, 90)

 'Next cell

 Input_Area.FormulaR1C1 = Formula_Sum
 Input_Area.Interior.Color = RGB(128, 60, 90)
 Input_Area.Copy

 Summary_Sht.Activate

 Rows_Done = Range("A1").CurrentRegion.Rows.Count
 With Summary_Sht.Range("A1")
 .Offset(Rows_Done, 1).PasteSpecial _
 xlPasteValues, xlPasteSpecialOperationNone
 .Offset(Rows_Done, 0) = Worksheets(Count).Name
 End With
 End If
 'MsgBox "Worksheet " & Worksheets(Count).Name & " has been processed."

 Next Count

 'If the following contains "= AVERAGE (R[" &..." (space inside)

 'it produces an error

 Set DataRange = Summary_Sht.Range("B1", _
 Range("B1").Offset(0, Var_Number - 1)).Offset(Sheet_Number, 0)

 DataRange.FormulaR1C1 = "= AVERAGE(R[" & _
 1 - Sheet_Number & "]C : R[-1]C)"
 Range("A1").End(xlDown).Offset(1, 0).Value = "Average"

 Set App_Per = Charts.Add
 App_Per.Name = "App Per"
 App_Per.SetSourceData Source:=DataRange

 ActiveChart.ChartType = xlColumnClustered

 Summary_Sht.Activate
 With Summary_Sht.Range("A1")
 .CurrentRegion.Copy
 .End(xlDown).Offset(2, 0).PasteSpecial Transpose:=True
 .End(xlDown).Offset(2, 0).CurrentRegion.Select
 End With

Appendix D VBA Programme for GNMM 259

 ActiveSheet.ListObjects.Add(xlSrcRange, _
 Selection, , xlYes).Name = "Table1"

End Sub

Sub GNMM_Record()
 'Write the mostly appeared variable number into a cell

 Dim rngData As Range
 Dim rngRow As Range
 Dim Picked_C As Range
 Dim Picked_R As Range

 Dim Ind_Num As String
 Dim Total_Num As String
 Dim Count As Integer
 Dim Row_Ext As Integer

 'Locate datarows

 Set rngData = ActiveSheet.ListObjects("Table1").DataBodyRange

 Total_Num = "["
 Count = 0
 'Loop through all data rows

 For Each rngRow In rngData.Rows
 'Only process visible rows

 If rngRow.EntireRow.Hidden = False Then
 'Check calculation

 Ind_Num = rngRow.Cells(1).Value
 Total_Num = Total_Num & " " & Right(Ind_Num, 2)
 Count = Count + 1
 End If
 Next rngRow
 Total_Num = Total_Num & "]"

 Set Picked_C = Range("A1").End(xlDown).Offset(2, 0). _
 End(xlToRight).Offset(0, 2)
 Set Picked_R = Picked_C.CurrentRegion

 Row_Ext = Picked_R.Rows.Count
 If Row_Ext = 1 Then
 Picked_C = "Criteria"

 Picked_C.Offset(0, 1) = "Count"
 Picked_C.Offset(0, 2) = "Lists"
 End If
 Picked_C.Offset(Row_Ext, 0) = ActiveSheet.ListObjects(1). _
 AutoFilter.Filters(rngData.Columns.Count).Criteria1
 Picked_C.Offset(Row_Ext, 1) = Count
 Picked_C.Offset(Row_Ext, 2) = Total_Num

 MsgBox Total_Num

 With ActiveSheet.ListObjects("Table1").Range
 .AutoFilter Field:=.Columns.Count
 End With

 'If ActiveSheet.ListObjects(1).ShowAutoFilter Then

Appendix D VBA Programme for GNMM 260

 'If ActiveSheet.ListObjects(1).AutoFilter.Filters(4).On Then

 'MsgBox ActiveSheet.ListObjects(1).AutoFilter.Filters(4).Criteria1

 'ActiveSheet.ListObjects("Table1").ShowAutoFilter = True

 'End If

 'End If

End Sub

Appendix E RMSE and Winning Variables for Case 7 of Data I

0

0.01

0.02

0.03

0.04

0.05

0.06

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

R
M

S
E

Generations

I (m3/s)

Qg (m3/s)

Mg (m3/s)

A (m3/s)

Cg (km2)

Dr (m)

L (m)

S

Qe (m3/s)

Me (m3/s)

De (km)

Ce (km2)

Qs (m3/s)

Ms (m3/s)

Ds (km)

Cs (km2)

RMSE

Appendix F Appearance Percentage of Data III

Selected channels are [7 12 17 21 22 45 46 47 54 59].

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

A
p
p
e
a
ra

n
c
e
 (

%
)

Channel Number

