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Abstract

In the course of this thesis, several different applications of data assimilation will
be looked at. In each case, a rigorous mathematical framework will be constructed,
in a Bayesian context, to enable the use of various types of data to infer on various
infinite dimensional parameters of the system that has been observed. After careful
consideration of the forward problem, well-defined posterior distributions on function
space are constructed. Using MCMC methods which are defined on these function
spaces themselves, we can construct Markov chains whose invariant measures are the
posterior of interest. From this point, we can implement these methods on a computer,
having finally discretised the problem.

The philosophy that we adhere to throughout, is the idea that numerical methods
formulated on function space are robust under discretisation, and do not suffer from
the curse of dimensionality typically suffered by sampling methods formulated after
disretisation.

The first few chapters (after the introductory chapter) will focus on various
aspects of data assimilation of observations of Stokes flow dynamics. Chapter 2 will
focus on Eulerian data where direct observations of the velocity of the fluid at various
points in time and space will be made. Chapter 3 will concentrate on data assimilation
of indirect observations of the field, in the form of the positions of passive tracers in the
flow. In these two chapters we will assume that the forcing of the system is known and
that we are merely trying to recover the initial condition of the flow field.

In chapter 4 we will consider both Eulerian and Lagrangian data assimilation,
with the added complexity of trying to use the data to not only infer on the initial
condition but also on the space-time dependant forcing of the system.

In chapter 5 we will try to show how these smoothing methods could be adapted
into a filtering algorithm, and a simple example will be presented.

In the final chapter, 6, this Bayesian framework on function space will be applied
to a shape matching problem with applications in the biomedical sciences.
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Chapter 1

Introduction and Mathematical

Preliminaries

1.1 Introduction

Applied mathematicians are constantly striving to better approximate phenomena and

systems that describe the world around us. Whether it be the currents of an ocean

that distribute warmer water and marine life around the globe, or the dynamics of a

mixture of reacting chemicals, mathematics has a diverse range of tools available for

trying to understand these systems and for attempting to reconstruct this behaviour on

a computer.

In many applications the systems of interest are infinite dimensional in nature.

From potential functions derived from our knowledge of nuclear/atomic forces, to flow

fields in the air around us, the functions that describe these systems can never be stored

completely on a computer. These functions belong to infinite dimensional function

spaces. A computer, however, has a finite amount of memory and computing power,
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and so these functions can only be approximated finite dimensionally, usually amounting

to discretizing the system onto grids in time and space, or alternatively truncating infinite

sums that converge to the functions of interest.

In this thesis, we aim to demonstrate how formulating algorithms on function

spaces, as opposed to already discretized spaces, can lead to better, more efficient and

robust methods. We will apply this philosophy to a range of subjects in data assimilation.

1.1.1 Data Assimilation

Data assimilation is the act of blending a mathematical model of a system with informa-

tive observations, to give a better understanding of that system’s state either during the

window of observations, or even to create forecasts of what is going to happen in the fu-

ture. The various methods associated with this area have many important applications,

and as such there is a huge amount of literature on the subject from meteorologists,

oceanographers and geophysicists to name a few.

We will focus, in chapters 2-4, on data assimilation problems in fluid dynamics.

Using satellite data of the atmosphere, or GPS tracker data from ocean floats, we aim

to reconstruct the underlying velocity field that was present at the time of observation.

We will however use simulated data in our algorithms in a bid to assess the algorithm’s

ability to find the information we wish to ascertain in simple systems, so that these

methods could possibly be applied to real data sets.

There is a great deal of literature on this subject, particularly from the perspec-

tive of data assimilation in weather forecasting. Since in this field the aim is to provide a

forecast of what is to come, speed and efficiency in algorithms is particularly important.

Data arrives on a regular basis, and using the prior knowledge of the system since the

last forecast, this data is assimilated and a new forecast produced, before the whole
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procedure starts again straight away. This form of data assimilation, termed filtering,

dominates the meteorological community[48, 54, 3, 52, 31]. However, smoothing algo-

rithms, where a whole data set is used to infer on the initial condition of the velocity

field at the beginning of the assimilation window, are also commonly used offline to

analyse discrepancies between the model and the dynamical system, or model error, or

to estimate parameters. This is sometimes termed reanalysis or hindcasting. In [6] the

basic concepts in variational data assimilation are introduced. Importantly though, this

approach is then extended to the statistical perspective that we will be interested in

for the purposes of this thesis, pointing out that the cost functionals can actually be

considered to be the log probability densities of a probability measure on velocity fields.

The paper [30] considers data assimilation in the case where data is sparse, with a view

to oil recovery problems in geophysics, similarly looks to a Bayesian framework and it’s

relationship to Tikhonov regularisation techniques in variational frameworks.

There are many other applications of data assimilation across applications in

science and engineering. Not least in the field of oil recovery[44], where sparse mea-

surements taken from oil wells during excavation of oil are used to ascertain various

properties of the porosity of the rock, for example, to give indications of where might be

best to drill to maximise the output of oil from the location[59, 58, 38]. This problem

is often tackled by using ensemble Kalman filters. Other sources of information, such

as 4D seismic data can also be used to better quantify the properties of the rock and

the oil below[28].

The paper [34] highlights the practical demands on medium range forecasts

which dictate the choice of data assimilation algorithms. In the vast majority of practical

applications, variational methods are used where the problem is framed in such a way that

the solution is given to be the flow field which minimises a particular functional which
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includes a term to ensure that the observations are assimilated, and a regularisation term

to ensure minimal amounts of regularity of that field. In [34] the 4DVAR algorithm (an

example of a smoothing data assimilation algorithm) is utilised. They go on to explain

the demands of medium range forecasting, where the state space is approximated by

7 × 109 degrees of freedom, and where data is added every 6-12 hours. In those 12

hour cycles, only two hours is given to data assimilation, so the methods need to be

quick and accurate, not least because the calculations of the forward model in the

algorithm are very expensive due to the huge number of degrees of freedom. In [33]

the 4DVAR algorithm is again used, this time for the Lagrangian data assimilation of

chemical species in the atmosphere.

With the large dimension of the state space in some applications in mind, many

methods that are proposed aim to approximate the solutions as best as possible with as

little computational effort as possible. For example, in [49], two different incremental

4DVAR methods are introduced. One uses the tangential linear model (TLM) where the

forward model is approximated by a linearisation, and the other uses a suitable inexact

linear model which if carefully chosen, can yield similar results at much less cost. It is

in fact shown that the error incurred when using the inexact model can be less than if

you simply reduced the resolution of the TLM to give the same level of computational

cost.

In these variational methods, where we wish to find the minimisation of a func-

tional on the velocity field’s state space, gradient descent-type methods are often utilised

to find the solution. In [90], examples are given where the explicit gradient of the ob-

servation operator can’t be found (for example Burgers equation, or in satellite radiance

data assimilation). It is shown, however, how generalisations of gradient-based methods

can be derived for non-differentiable observation operators.
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Variational methods are not the only area of discussion with regards to data as-

similation however, and in [4, 12] a Bayesian framework is explored, along with various

Monte Carlo Markov chain (MCMC) methods which allow us to sample from complex

probability distributions without knowing their explicit densities. This will be the ap-

proach that is adopted in this thesis. The important thing to notice here is that the

MCMC methods discussed here are framed on function space, meaning that they are

robust under all discretisations. The advantages of this are highlighted in [11] where

various MCMC methods are bench marked against each other for sampling diffusion

bridges, which are themselves in function space. The MCMC method framed on func-

tion space is compared to another which is not, for a range of different mesh sizes.

It is shown conclusively that as the mesh is refined, that the efficiency of the stan-

dard MCMC method on discretized space decreases as the mesh is refined, whereas the

MCMC method posed on function space is unaffected. This is a key discovery behind the

philosophy of building methods on function space on which we base this entire thesis.

1.1.2 Filtering

Variational smoothing techniques such as 4DVAR are important in long range forecast-

ing, and for reanalysis of data in an attempt to better understand error in the model.

However for most short range forecasting applications, filtering methods are the order

of the day, as they can be continually updated with short bursts of data to reassess

the weather conditions and improve forecasts. 3DVAR, a popular choice of variational

filtering algorithm, is mentioned in brief in [6]. Another choice of algorithm called the

maximum likelihood ensemble filter (MLEF) equations are also used in [90]. In actual

fact there are a myriad of options available to anyone who wishes to conduct filtering on

a given constantly concatenated data set. [54] gives a comprehensive review of recent
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methods for a range of different scenarios; sparse/plentiful observations, addition of

model error terms, linear and nonlinear models/dynamics to name but a few. Together

with numerics for a selection of these schemes, a broad overview of the various methods’

advantages and disadvantages are presented.

A great deal of filtering algorithms are based, in some part, on the Kalman

filter[3, 31]. This method[46], for filtering data from linear models, requires a prior

mean and error covariance matrix in each assimilation “window” (often calculated as

the forecast from the previous window). Then by assimilating the data from that window,

an analysis state and error covariance are calculated, via the Kalman gain matrix, which

essentially applies Bayes’ theorem. This analysis is then pushed forward in time through

the dynamics to the end of the window to create the forecast state and error covariance,

which is then in turn used as the prior for the next window. A nonlinear equivalent, the

extended Kalman filter, can be used, where the nonlinear model is approximated in each

window by a linearisation. This can of course cause problems if the window length is

too long, or if the system is highly nonlinear.

However, these methods can still be too computationally expensive to calculate

on-line as the data comes in, and further approximations must be made. One commonly

used method in this regard is the ensemble Kalman filter (EnKF), where the forward

model on a distribution is approximated by calculating the paths of an ensemble of

particles in the system, from which a mean and covariance are approximated. A subclass

of such a method, termed square root filter (SRF) are analysed in more detail in [52].

In this method, the EnKF approach is used to approximate the mean and the square

root of the analysis covariance, to avoid negative diagonal entries and to ensure that

the matrix is positive definite. The subsequently calculated forecast covariance is then

post-multiplied by an orthogonal matrix. [52] gives conditions on this matrix to ensure
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that the analysis ensemble mean will be equal to the analysis state estimate.

Other methods, such as particle filter methods, are also a subject of great inter-

est. In these methods, an ensemble of particles is moved forwards in the dynamics, and

then, based on a window of observations, those particles are given importance weights.

Those weights are equivalent to an approximation of the posterior distribution at that

point in time. The process is then iterated. One of the main issues with many types of

particle filters, is a phenomena called sample impoverishment, where the weights on the

particles will often be centred on only a small handful of particles, therefore rendering

our approximation of the distribution to be very coarse. This can be addressed by pe-

riodically resampling the particles according to the current distribution approximation

so that the weights are more evenly distributed once again. [48] presents one particular

particle filter method, the Diffusion Kernel Filter, and compares it against another, the

Bootstrap Filter, on a highly nonlinear system, the Lorenz-63 equations. There are many

different versions of particle filters, and many different ways of addressing problems such

as sample impoverishment. An important point of note with particle filters is that in

theory, as the number of particles included in the algorithm increases, that the approxi-

mated distribution converges to the target distribution. This is in contrast to EnKF, for

which no such result exists, where Gaussian approximations are made. Particle filters

are a way of capturing non-linear and non-Gaussian behaviour in a distribution. They

do, however, suffer from the curse of dimensionality, as shown in [9, 13, 72].

1.1.3 Generalised Polynomial Chaos

An alternative approach to MCMC methods, which can be extremely expensive, can be

to approximate the forward model, with random inputs, by generalised polynomial chaos

(gPC)[88]. By discretizing the random space and calculating the forward model at each
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of the grid points in that discretization, the forward model can then be approximated by

a polynomial in the random inputs, in a process called stochastic collocation[56]. This

has the advantage that once the approximating polynomial has been found, evaluating

that approximation is almost trivial. Once we have this approximation, it can then be

fed into any of the other methods we have been discussing, for instance the ensemble

Kalman filter[51]. These types of methods have also been considered in the field of data

assimilation of incompressible flows[89]. One drawback to these methods is the curse

of dimensionality. For each additional dimension in the state space, many more forward

models must be run to incorporate that degree of freedom into the polynomial expansion.

At the time of writing of [88], only forward models with 50 degrees of freedom had been

attempted, and although this figure will undoubtedly be larger now due to the continuing

improvement in computing power, this method still remains completely unfeasible for

the size of state spaces that the meteorological community deals with, for example.

1.1.4 Lagrangian Data Assimilation

In chapters 3 and 4 we will also be considering data assimilation of Lagrangian data.

Lagrangian data, where the position of a tracer in a flow is observed noisily, has the

added complication that even if the underlying dynamics of the flow is linear or close to

linear, the dynamics of the tracer itself are highly nonlinear. In paper [43] a choice of

extended Kalman filter is suggested, using a tangent linear model, where the positions

of the Lagrangian tracers are included in the state vector, along with the vector field.

There are many references in the literature to attempts to assimilate Lagrangian data[4,

12, 5, 6, 68, 69, 33, 18]. The paper [68] details a particle filter methodology for tackling

Lagrangian data assimilation, which is then implemented in numerics that appear in

[69]. It also highlights the problems with this kind of data, where hyperbolic points in
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the flow can lead to bimodal distributions of the tracers (“filter divergence”), which are

not at all compatible with Gaussian approximations, which many methods rely on.

Much of the literature on Lagrangian data assimilation is concerned with various

problems in oceanography. However this is not the only application where Lagrangian

data is collected, as shown in [14, 15, 87], where atmospheric chemical-transport models

are used to approximate the movement of various pollutants in the air. This can be

with a view to trying to find the source of a particular pollutant, or to recover the

concentration field of that pollutant over a wide area, or even to create forecasts of

levels of pollutant levels.

The paper [5] presents a Bayesian framework with which to work with Lagrangian

data. It then discusses and implements different finite-dimensional MCMC methods with

which to sample from well defined posterior measures, and then compares these results

with approximations given by an implementation of EnKF, which is shown to break down

when there are long gaps between observations. This is closer to the approach that we

will take in 3, although we will be formulating our methods on function spaces.

1.1.5 Shape Registration

There are also plenty of other applications that data assimilation can be applied to,

not least in the biomedical sciences. In chapter 6, we apply the general framework

used in the previous chapters, on a shape matching problem with a view to applications

in biomedical imaging from prenatal scans. The problem of finding distances between

shapes in shape space is also an area with a great deal of literature, although not so much

from a statistical Bayesian point of view. Other methods which find geodesic paths in

shape space between two images often take on a variational format, with various choices

of functional, with some based on elastic energies in deformations [29, 67, 86, 85, 2].
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By adding various terms to the functional with differing properties, and giving different

weightings to those terms, different geodesic paths can be calculated. Alternatively

spline-based techniques can be used[62] to find these paths.

The approach that we will take in this thesis is more similar to that found in

[78, 8, 36], where the deformation of one shape to another is defined by a velocity field

which flows shape A at time t = 0, to another shape B at time t = 1. The distance

along any given path is then defined by the integral of the norm of that flow field over

time in some Hilbert or Sobolev space. However, we will also be putting this into a

Bayesian statistical setting, an approach which is not mentioned in any of the above

references.

1.2 Summary of the Thesis

After introducing some basic concepts, theory and techniques in chapter 1, in chapter

2 we will consider the problem of data assimilation in the context of Stokes flow. We

will frame this in a Bayesian context, and show that, by analysing the forward problem,

enabling us to make the correct choice of prior, the posterior is absolutely continuous with

respect to that prior. Using the Radon-Nikodym derivative that this absolute continuity

induces, we shall show how Markov chains can be constructed on function space whose

invariant measure is the posterior measure of interest. We will then implement such

a method. This chapter is very much a way of benchmarking our methods, since it is

in fact simple, with the observation operator being linear and the prior a Gaussian, to

calculate the posterior distribution, which is also Gaussian, explicitly. We will calculate

these analytic posterior distributions for some simple low-dimensional examples, and

look at the effect of varying a range of parameters.

Knowing this explicit distribution is useful as we are then able to look at the
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convergence of our Markov chain Monte Carlo(MCMC) methods, and then these meth-

ods can then be applied to nonlinear problems where the posterior is not Gaussian, or

other problems, such as Eulerian data assimilation with model error, where the posterior

distribution is not so easily analytically calculated.

Importantly, we will compare the efficiency of the standard MCMC methods, as

opposed to those framed on function space. This is central to the philosophy that we

adhere to throughout this entire thesis.

We will also consider some issues to do with mismatch in the system that we

are observing and the model on our computer, before going on to some numerics where

the amount of informative observations increases. Our hope being here that as our

information increases, the posterior distribution converges to an increasingly peaked (or

in the limit a Dirac delta measure) on the system state which was actually present when

the observations were made.

In chapter 3, an identical approach is taken for the problem of Lagrangian data

assimilation in Stokes flow, where passive (inertia-less) particles are advected by a fluid

current, and noisy observations are made of those particles’ positions. This problem

is highly nonlinear, despite the linearity of the underlying fluid motion equations. This

gives us an opportunity to show the algorithms working in a scenario where the poste-

rior cannot be calculated explicitly, due to the non linearity of the particle’s dynamics.

Equivalent numerical results as those presented in chapter 2 (bar the convergence of the

posterior to the analytical posterior) are presented in this case also.

In chapter 4, we consider both Eulerian and Lagrangian data types, but will

add some uncertainty into the model itself. We will use the data to infer not only on

the initial condition of the assimilation window, but also on the space-time dependant

forcing, which we now assume that we don’t know. Once again we will analyse the
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forward model to inform the correct choice of prior on the initial condition and on the

forcing, and then invoke the Bayesian framework to enable numerical sampling from

the well-defined posterior distribution. After presenting some numerics, we will then

analyse what we are able to garner about the forcing inherent in the system through

these two different data types. As we did in chapters 2 and 3, we will once again look

at what happens to the posterior distribution as we increase the number of informative

observations to be assimilated.

In chapter 5, a short example will be made of how these methods could be

applied to filtering. Instead of using a gain matrix or a particle filter, the analysis for

each assimilation window will be computed via the statistical methods we have used

throughout chapters 2-4. This method would certainly be too computationally expen-

sive to be practically useful at this point (in meteorological applications for instance),

and the problem of moving the posterior distribution through time is still a point of

concern. In this simple example, where Eulerian data assimilation without model error

is considered, various Gaussian approximations of the analysis will be made, which can

then be propagated through time exactly in the linear dynamics. Since this case could

be analytically solved exactly, we also present a small set of results where a deterministic

filter is implemented.

In chapter 6 we move away from the application of data assimilation in fluid

mechanics, and turn our attentions to a shape matching problem with applications

in the biomedical sciences. We once again frame this problem as a Bayesian inverse

problem, and in the mode of the previous chapters, analyse the forward problem which

maps one member of shape space continuously to another, in a way which minimises

the energy of the deformation in a particular Hilbert space norm. Using this analysis

we are able to pick a prior for which the posterior will be absolutely continuous. We
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are then able to implement our methods to draw samples from these distributions, and

we present results with increasing numbers of observations with the data created from

a deformation from the prior distribution, and then we consider some cases with shapes

of “real” objects.

In the remaining sections in this chapter we introduce mathematical concepts

and algorithms which will be used frequently through the whole thesis.

1.3 Function Space Settings

Firstly, we will introduce some basic mathematical concepts that we will use throughout.

The Sobolev space W k,p(U) is often used as the function space setting when dealing

with PDEs. First we define weak derivatives.

Definition 1.3.1. [50] Suppose u, v ∈ L1
loc(U), and α is a multiindex. We say that v

is the αth-weak partial derivative of u, written

Dαu = v,

provided ∫
U
uDαφdx = (−1)|α|

∫
U
vφdx

for all test functions φ ∈ C∞c (U). Note that here, |α| is not defined in terms of the

Euclidean norm, but in fact as follows: |α| := ∑d
i=1 αi.

Definition 1.3.2. [50] k, p, d ∈ N. The Sobolev space

W k,p(Ω)

consists of all locally summable functions u : Ω → Rd such that for each multiindex

α ∈ Nd with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω). In the case

that p = 2, this space is a Hilbert space.
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1.3.1 Function Space Setting For The Stokes Problem

Later in the thesis we will be considering solutions to the Stokes problem on the two-

dimensional torus. Solutions to this problem represent incompressible fluid motion, and

at the very least the velocity field is square integrable. We introduce for this problem

the space H = {u ∈ L2(Ω) : ∇.u = 0,
∫

Ω udx = 0}, armed with the usual L2 norm,

‖ · ‖22 =
∑

k〈·, φk〉2, where φk is an orthonormal basis of the space H. More specifically,

{ψk} is an orthonormal basis of L2(T2), where

ψk(x) = exp(2πik.x). (1.1)

For a function u =
∑

k ukψk ∈ L2 to also be divergence free we require the condition

that uk.k = 0. This motivates the choice of φk, so that we set

φk =
k⊥

|k|ψk. (1.2)

This defines an orthonormal basis of H.

Similarly, we define Hs = {u ∈ W s,2(Ω) : ∇.u = 0
∫

Ω u = 0}, with norm

‖ · ‖2s =
∑

k |k|2s〈·, φk〉2. If we define the Leray projector P to be the projection of

functions onto H, ie such that Pf =
∑

k〈f, φk〉φk, then we can alternatively define Hs

(where H = H0) to be

Hs = PW s,2(Ω).

In terms of notation, when we are dealing with a function u ∈ H, we shall assume that

u =
∑
k

ukφk,

where uk = 〈u, φk〉.

14



1.4 Solutions to the Stokes Problem

Stokes flow is traditionally framed as a PDE in the following way[74];

∂tu− ν∆u+∇p = f, t ≥ 0 (1.3)

∇.u = 0, t ≥ 0 (1.4)

u(x, 0) = u0(x), x ∈ Ω, (1.5)

We consider solutions of (1.3 - 1.5), with Ω = T2 a unit square in two dimensions with

periodic boundary conditions. We expand u, p and f in terms of the ψk as defined in

1.1 to give

u(x, t) =
∑

k∈Z2\{0}

uk(t)ψk(x), uk(t) ∈ C2,

p(x, t) =
∑

k∈Z2\{0}

pk(t)ψk(x), pk(t) ∈ C,

f(x, t) =
∑

k∈Z2\{0}

fk(t)ψk(x), fk(t) ∈ C2.

(1.3) applied to the uk gives

duk
dt

+ ν4π2|k|2uk = −2πikpk + fk. (1.6)

Taking the dot product of (1.6) with uk, while using the fact that uk.k = 0 (in

order to satisfy 1.4, and rearranging for pk gives

pk =
fk.k

2πi|k|2 .

We can now substitute this back into our equation (1.6) to give

duk
dt

+ ν4π2|k|2uk =
(
I − k ⊗ k

|k|2
)
fk.

Here a⊗ b denotes the outer product, defined by (a⊗ b)c := a(b.c).

15



Solving this ODE gives us a set of equations for the evolution of the uk, which

in the case that the fk are constant gives

uk(t) =
1

4π2ν|k|2
(
I − k ⊗ k

|k|2
)
fk + exp(−ν4π2|k|2t)uk(0). (1.7)

So given a suitable initial condition u0 and forcing term f , we have an analytical solution

to the Stokes equations on our periodic domain Ω = T2.

Alternatively, we can consider a Helmholtz decomposition[35, 32] of L2(T2).

That is, splitting our basis B =


1

0

 e2πik.x,

0

1

 e2πik.x : k ∈ Z2

 into two sets,

one being divergence-free and the other being curl-free. Since

∇.u = 0⇐⇒ uk.k = 0,

we can redefine our basis ψk = e2πik.x into two bases that form orthogonal subspaces:

E = Span
{
ek =

k⊥

|k| e
2πik.x : k ∈ Z2\{0}

}
,

D = Span
{
dk =

k

|k|e
2πik.x : k ∈ Z2\{0}

}
.

E is divergence-free, and D is curl-free. We will now consider a normal expansion of u

in terms of the L2 Fourier basis B,

u =
∑

k∈Z2\{0}

uke
2πik.x

=
∑

k∈Z2\{0}

ωkek + τkdk,

for ωk, τk ∈ C. So therefore uk = ωkk
⊥+τkk
|k| .

If we similarly expand p and f such that

p =
∑

k∈Z2\{0}

pkek + p⊥k dk, pk, p
⊥
k ∈ C

f =
∑

k∈Z2\{0}

fkek + f⊥k dk, fk, f
⊥
k ∈ C,
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and substitute these expansions into (1.3), then we get

∑
k

dωk
dt

ek +
dτk
dt
dk = ν

∑
k

−4π2|k|2ωkek − 4π2|k|2τkdk −
∑
k

2πi|k|p⊥k dk

+
∑
k

fkek + f⊥k dk.

Notice that the pk terms disappear as they are orthogonal to k. Once again taking the

dot product of this with k, we are left with an equation for p⊥k .

So

p⊥k =
f⊥k

2πi|k| .

Effectively this means that the pressure has removed the part of f which is not divergence

free.

So we end up with two sets of ordinary differential equations,

dωk
dt

= −4νπ2|k|2ωk + fk,

dτk
dt

= 0.

Since we set u0 to be divergence free, then τk = 0∀t ≥ 0. As for the ωk, we get

ωk =
1

4νπ2|k|2 fk +
(
ωk(0)− fk

4νπ2|k|2
)

exp(−4νπ2|k|2t)

=
1− exp(−4νπ2|k|2)

4νπ2|k|2 fk − ωk(0) exp(−4νπ2|k|2t).

Note that this holds only if f is constant in time. This is equivalent to finding weak

solutions u ∈ H which satisfy the ODE on H given by;

du

dt
+Au = Pf = g, t > 0 (1.8)

u(0) = u0 ∈ H. (1.9)
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In this setting, it is much simpler to solve these equations. The solution, for u(0) =∑
k ukφk and g =

∑
k gkφk, is given by

u(t) = exp(−νAt)u(0) +
∫ t

0
exp(−A(t− s))g(s)ds

=
∑
k

exp(−νakωkt)uk +
∫ t

0
exp(−akωk(t− s))gk(s)ds.

Note here that no assumption that f is constant is made. Sums such as these can

be quickly computed numerically using a Fast Fourier Transform (FFT)[60], which are

implemented in packages such as FFTW (Fastest Fourier Transform in the West) [70].

1.5 The Stokes Operator

Throughout chapters 2-5 we will be performing various types of data assimilation on data

observed from a dynamical system termed Stokes flow. Moreover, we will be sampling

Gaussian random fields where the covariance operator is given as a power of the Stokes

operator. While not going into details of this in this section, these are motivations for

introducing here the Stokes operators and some properties which it possesses.

We define the Stokes operator A : H → H as follows. In [66] it is shown that

the Stokes operator, acting on H, is simply the Laplacian projected onto H. Therefore,

we can define the Stokes operator using the Leray projector P;

A = −P∆.

We now look to find the eigenvalues and eigenfunctions of A. If we define the

domain of our functions to be the unit torus T2 = [0, 1]× [0, 1] with periodic boundary

conditions, as we will be doing throughout chapters 2-5, then this is a relatively simple

task. Let k ∈ Z2\{0}. If k =

k1

k2

, define k⊥ :=

 k2

−k1

, which is perpendicular to

k and is the same size in the Euclidean norm.
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We now define our eigenfunctions;

φk(x) =
e2πik.x

|k| k⊥. (1.10)

These satisfy the equality φk.k = 0 which we require for them to be divergence free.

The corresponding eigenvalues, with respect to the Stokes operator, are

ak = 4νπ2|k|2. (1.11)

These eigenfunctions form an orthonormal basis of H, and will be used throughout

chapters 2-5.

1.6 Estimate on solutions of Stokes Flow

In analysing the forward problem, we will need to use various estimates on the solution

to the Stokes problem. In this section we present two lemmas that we will need in doing

this.

Lemma 1.6.1. Let u ∈ Hr for some r ≥ 0. Then for any s ≥ r

‖e−Atu‖s ≤ Ct−(s−r)/2‖u‖r, ∀t > 0.

Proof. Using the fact that e−xxα is bounded on R+ for any α > 0 we have that

‖e−Atu‖2s =
∑
k

e−c|k|
2t|uk|2|k|2s

=
1

(ct)s−r
∑
k

e−c|k|
2t|k|2(s−r)(ct)s−r|uk|2|k|2r

≤ C

ts−r

∑
k

|uk|2|k|2r

≤ C

ts−r
‖u‖2r

Taking the square root gives the result.
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Lemma 1.6.2. Let u0 ∈ H l for l ≥ 0 and f ∈ C(0, T ;Hr) for some r ≥ 0. Then for

l ≤ s < r + 2, then

‖u(t)‖s ≤ C
( ‖u0‖l
t(s−l)/2

+ ‖f‖C(0,T ;Hr)

)
.

Proof. The solution map of Stokes flow is given by the variation of constants formula[39]:

u(t) = exp(−At)u(0) +
∫ t

0
exp(−A(t− s))f(s)ds.

Using lemma 1.6.1,

‖u(t)‖s ≤ ‖e−Atu0‖s +
∥∥∥∥∫ τ

0
e−A(t−τ)f(τ)dτ

∥∥∥∥
s

≤ C

t(s−l)/2
‖u0‖l + I,

where

I ≤
∫ t

0
‖e−A(t−τ)‖L(Hr,Hs)‖f(τ)‖rdτ

≤ ‖f‖C(0,T ;Hr)

∫ t

0
‖e−A(t−τ)‖L(Hr,Hs)dτ.

Using the definition of the operator norm and lemma 1.6.1 once again we get that

‖e−At‖2L(Hr,Hs) = sup
u

‖e−Atu‖2s
‖u‖2r

≤ C

ts−r
sup
u

‖u‖2r
‖u‖2r

.

Therefore

‖e−At‖2L(Hr,Hs) ≤
C

t(s−r)/2

which is integrable if and only if s− r < 2. Putting this all together we have that

‖u(t)‖s ≤ C
(

1
t(s−l)/2

‖u0‖l + ‖f‖C(0,T ;Hr)

)
.
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We will also need Grönwall’s inequality[20]. Here we present the integral form

of the lemma, taken from [84].

Lemma 1.6.3. Let α, β and w be real-valued functions defined on the interval [0, T ].

Assume that β and w are continuous and that the negative part of α is integrable on

every closed and bounded sub interval of [0, T ]. If

w(t) ≤ α(t) +
∫ t

0
β(s)w(s)ds, ∀t ∈ [0, T ],

then

w(t) ≤ α(t) +
∫ t

0
α(s)β(s) exp

(∫ t

s
β(r)dr

)
ds, ∀t ∈ [0, T ].

If in addition α is a constant in time then

w(t) ≤ α exp
(∫ t

0
β(s)ds

)
∀t ∈ [0, T ].

1.7 Random Field Sampling

In the chapters that follow, we will formulate several MCMC algorithms on function

space (more specifically vector fields). In these algorithms, we will be required to make

proposals of vector fields, which are a linear combination of the current accepted state,

and a draw from the prior distribution, a measure on a space of random fields[80]. These

prior distributions will be Gaussian distributions on function space. In this section we will

discuss how we can go about drawing samples from such a distribution. The following

definition is taken from [73].

Definition 1.7.1. A Gaussian random field u : H × Ω0 → Rn is one where, for any

integer q ≥ 1, and any set of points {xk}qk=1 in H, the random vector

(u(x1; ·)∗, . . . , u(xq; ·)∗)∗ ∈ Rnq
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is a Gaussian random vector. The mean function of a Gaussian random field is m(x) =

Eu(x). The covariance function is c(x, y) = E(u(x)m(x))(u(y)m(y))∗. For Gaussian

random fields this function, together with the mean function, completely specify the joint

probability distribution for (u(x1; ·)∗, . . . , u(xq; ·)∗)∗ ∈ Rnq. Furthermore, if we view the

Gaussian random field as a Gaussian measure on L2(H; Rn) then the covariance operator

can be defined from the covariance function as follows:

(Cφ)(x) =
∫
H
c(x, y)φ(y)dy.

It is shown in [61] that any Gaussian distribution on a Hilbert space is defined

in this way by some function m ∈ H and covariance operator C ∈ L(H,H) where C is

trace class, non-negative and self-adjoint. Moreover, any function m ∈ H and operator

C ∈ L(H,H) satisfying these conditions has a Gaussian distribution associated with it.

One way to go about drawing a sample from this is to create a Fourier series

using random coefficients with specific distributions.

Definition 1.7.2. Let {λk}∞k=1 and {φk}∞k=1 be the eigenvalues and eigenfunctions

respectively, of the covariance operator C, such that m = mkφk. Then we define the

Karhunen Loeve expansion to be

u =
∞∑
k=1

√
λkξkφk, ξk iid, ξ1 ∼ N (0, 1).

Then u ∈ H, and u ∼ N (0, C). So to draw a sample from our desired distribution, note

that

u+m = v ∼ N (m, C).

As long as we are able to characterise the spectrum of a given covariance operator

C, we are able to approximate samples from N (m, C) via truncation of the sum. In
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practise this means picking N ∈ N as large as our computational capacity will allow, in

order to keep the truncation error∥∥∥∥∥
∞∑

k=N+1

(mk +
√
λkξk)φk

∥∥∥∥∥ ,
as small as possible. We now wish to ascertain certain different regularity conditions of

draws from such a distribution, dependent on the choice of covariance operator C.

1.8 Regularity of Gaussian Random Fields

In this section we will look at the regularity of draws from a particular family of Gaussian

random field distributions that we will be using later in the thesis. In general, excluding

chapter 6, we will be considering two-dimensional domains for our random fields. How-

ever, since in chapter 6 we will be required to sample random fields in one dimension,

we aim to keep this section as general as possible, and the parameter d ∈ N will denote

the dimension of the domain. Consider the distribution

N (m,A−α)

for some α ∈ R. We wish to ascertain for what values of α will a draw from this

distribution be in certain function spaces, for instance H or Hs.

Since φk is an orthogonal basis in L2(Ω), we can say ∀u ∈ L2(Ω), ∃uk such that

u =
∑
k

ukφk.

Therefore we can define our norm to be ‖u‖2s =
∑

k(1 + |k|2s)u2
k. This is equivalent to

saying that both u,Ku ∈ L2(Ω) where K is some s-fold differential operator.

Lemma 1.8.1. Suppose v ∼ N (0, δA−α) for some α > s + d
2 for some s ≥ 0. Then

v ∈ Hs.

23



Proof. Suppose v ∼ N (0, δA−α), then by the Karhunen-Loeve expansion,

v =
∑
k

√
λkφkξk, ξk ∼ N (0, 1) i.i.d.

This implies that

E(‖v‖2s) = E

(∑
k

(1 + |k|2s)λkξ2
k

)
=

∑
k

(1 + |k|2s)λk.

Here the bigger s is, the faster the λk must decay if the sum is to converge to a finite

limit.

Observe the following:

E(‖v‖2s) <∞ =⇒ ‖v‖s <∞ a.s.

If is this wasn’t the case, then there would be a set of non-zero measure on which ‖v‖s
was infinite. However this leads us to the conclusion that the expectation of ‖v‖2s would

be infinite, leading to a contradiction. So by this argument, we have that E(‖v‖2s) <∞
is sufficient to show that v ∈ Hs(Ω) almost surely.

E(‖v‖2s) =
∑
k

(1 + |k|2s)λk

∝
∑
k

(1 + |k|2s)|k|−2α

≤ C∑k |k|2(s−α).

By comparison to integrals it follows that for v to be in Hs we require α > s+ d
2 .

Now that we know for which values of α we are in Hs for differing values of

s, we can now consider the Sobolev embedding theorem, as described in [50] which is

generalised for fractional Hilbert spaces in [66] as summarised by the following theorem.
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Theorem 1.8.1. Sobolev Embedding Theorem: Let Ω be a bounded Ck domain in Rd,

and suppose that u ∈ Hk.

(i) If k < d/2 then u ∈ L2d/(d−2k)(Ω), and there exists a constant C such that

‖u‖L2d/(d−2k)(Ω) ≤ C‖u‖Hk(Ω).

(ii) If k = d/2 then u ∈ Lp(Ω) for every 1 ≤ p <∞, and for each p there exists

a constant C = C(p) such that

‖u‖Lp(Ω) ≤ C‖u‖Hk(Ω).

(iii) If k > j + (d/2) then u ∈ Cj(Ω̄), and there exists a constant C such that

‖u‖Cj(Ω̄) ≤ C‖u‖Hk(Ω).

Note that since Ω is bounded, it follows trivially in part (iii) that u ∈ Lp(Ω) for

every 1 ≤ p ≤ ∞.

Applying these theorems, we get the following 3 cases;

Case 1: 1 < α ≤ 2

As shown before, u ∈ Hs for s < α − 1. For this range of values of α, we have that

0 < s < 1, and therefore that s < n
2 = 1. We can now apply part (i) of the Sobolev

embedding theorem (1.8.1).

Therefore in this case, u ∈ L 2n
n−2s for s < α− 1.

Case 2: s = n
p

Next we consider the borderline case where sp = n. If α = 2, then we are in the case as

described above, and we are in some Lp for a finite p. How ever if α = 2 + ε for some
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ε > 0, then we can show, as we will in the next case, that u is Hölder continuous. So

therefore this borderline case is pretty irrelevant.

In this case −L 1
2u ∈ L2(Ω). So therefore, u ∈ H1

0 (Ω). We can use the Sobolev

embedding theorem. Since sp = n we are in case (ii) of (1.8.1), so we can say that for

this value of α, u ∈ Lϕ(Ω). However as described before this does not actually occur

as if we have α ≤ 2 we are in case 1, and if α > 2 we are in case 3.

Case 3: α > 2

For this range of values of α, we can say something much stronger about the regularity

of u. Since s < α − 1, we have that for this range of α we can guarantee that s > p
n

so that we can apply part (iii) of (1.8.1). So if s > j + n
2 for j ∈ N

⋃{0}, then u is

continuous and j-times differentiable.

Using this information, we are able to create Gaussian random fields which are

(almost surely) in a whole range of useful function spaces. This will be crucial later in

thesis.

1.9 Absolute Continuity of Gaussian Measures

In certain situations we will need to show absolute continuity of Gaussian measures with

respect to another. Let us consider the Feldman-Hajek theorem, which is presented in

[61], but here we present the version given in [73].

Theorem 1.9.1. Two Gaussian measures µi = N (mi, Ci), i = 1, 2, on a Hilbert space

H are either singular or equivalent. They are equivalent if and only if the following three

conditions hold:

• Im(C
1
2
1 ) = Im(C2)

1
2 := E;
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• m1 −m2 ∈ E;

• the operator T :=
(
C− 1

2C
1
2
2

)(
C− 1

2C
1
2
2

)∗
− I is Hilbert-Schmidt in Ē.

For example, we may apply this theorem to the two Gaussian measures

µ1 = N (0, (−∆)−α) (1.12)

µ2 = N (0, (`I −∆)−α) (1.13)

for some ` > 0, α > 1
2 , on H = L2(Ω) where Ω = [0, 1) with periodic boundary

conditions. To show this, we first need the following lemma.

Lemma 1.9.1. For any two positive-definite, self-adjoint, bounded linear operators Ci
on a Hilbert space H, i = 1, 2, the condition Im(C

1
2
1 ) ⊂ Im(C

1
2
2 ) holds if and only if

there exists a constant K > 0 such that

〈h, C1h〉 ≤ K〈h, C2h〉 ∀h ∈ H.

Corollary 1.9.1. The Gaussian measures µ1 and µ2 as defined by (1.12-1.13) are equiv-

alent.

Proof. We conduct the proof by showing each of the conditions in theorem 1.9.1 are

met.

• The two covariance operators share the same eigenfunctions,

φk(x) = exp(2πik.x),

and have the eigenvalues

λ1
k = (4π2|k|2)−α, λ2

k = (`+ 4π2|k|2)−α,
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respectively. Therefore, for any h =
∑

k〈h, φk〉φk =
∑

k hkφk ∈ H,(
4π2

`+ 4π2

)−α
≤ 〈h, C2h〉
〈h, C1h〉 =

∑
k(`+ 4π2k2)−αh2

k∑
k(4π2k2)−αh2

k

≤ 1.

Therefore, by lemma 1.9, the first condition is met.

• The second condition is met trivially.

• Note that

T = C−
1
2

2 C2C−
1
2

1 − I

is diagonalised in the same basis as the Ci and has eigenvalues

1
(4|k|2π2)α

.

These are square summable if α > 1
2 , and so the final condition is met.

1.10 Bayesian Statistics

We cannot discuss Bayesian statistics without first stating Bayes’ theorem. We will first

consider the case that the state space is finite dimensional.

Theorem 1.10.1 (Bayes’ Theorem). Given a probability space (Ω,F ,P), for A,B ∈ F ,

P(A|B) =
P(B|A)P(A)

P(B)
.

Proof. Result follows from definition of conditional probabilities, namely that

P(A|B) =
P(A ∩B)

P(B)
.
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This elementary result is pivotal in many areas of science and technology. In

chapters 2-5 we will be using this theory to attack various data assimilation problems,

in which we wish to use noisy observations of a system to infer on the initial state of

that system u0. Suppose that B is the event that we have made observations y of

our dynamical system. A is the event that the initial condition of the system that was

observed was equal to u0. Our aim is to use this data to statistically infer on the initial

condition u0; that is, garner information about the probability measure P(u0|y). Using

this, we can informally show that

P(u0|y) =
P(y|u0)P(u0)

P(y)

∝ P(y|u0)P(u0),

since P(y) is a constant.

Therefore, given prior information about u0, in the form of a probability dis-

tribution µ0 = P(u0), and a likelihood density that y was created with any given u0,

P(y|u0), we are able to analyse the measure of interest, µ = P(u0|y).

We now consider the case that the state space is a function space, and therefore

infinite dimensional. In this case, we cannot calculate the densities explicitly. We

can, however, calculate the Radon-Nikodym derivative, if µ (the posterior measure)

is absolutely continuous with respect to µ0 (the prior measure). Then the infinite

dimensional analogue of Bayes’ theorem is given by:

dµ

dµ0
∝ P(y|u0). (1.14)

Since the right hand side is non-negative, a function Φ(·) can be found such that

P(y|u0) ∝ exp(−Φ(u0)), meaning that the Radon Nikodym derivative is given by

dµ

dµ0
∝ exp(−Φ(·)). (1.15)
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This function is related to the likelihood function.

We wish to calculate how likely it is that a given initial condition u0 will produce

our noisy observations, y. This is encoded in the likelihood function of the data given

u0.

We assume that the noise on our observations is Gaussian such that

y = G(u0) + ξ, ξ ∼ N (0,Σ),

for some covariance matrix Σ, where G : H → RN denotes our observation operator. So

the likelihood that we will observe y given that we have initial condition u(0, x) = u0(x)

is simply given by

P(y|u0) ∝ exp
(
−‖ξ‖

2

2

)
= exp

(
−1

2
‖y − G(u0)‖2Σ

)
:= exp

(
−1

2
(y − G(u0))TΣ−1(y − G(u0))

)
.

Therefore, by Bayes’ law (1.14), assuming µ is µ0-measurable, the Radon-

Nikodym derivative is given by

dµ(u0)
dµ0

= exp
(
−1

2
‖y − G(u0)‖2Σ

)
. (1.16)

The next task is to find an appropriate prior Gaussian distribution µ0 = P(u0) with

enough regularity to ensure that µ = P(u0|y) is µ0-measurable.

Theorem 1.10.2. If G : H → RN is µ0 measurable then the posterior measure µ(dx) =

P(dx|y) is absolutely continuous with respect to the prior measure µ0(dx) and has

Radon-Nikodym derivative given by (1.16).

Proof. Proof given in Theorem 2.1 in [24].
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Corollary 1.10.1. If G : H → RN is continuous on a function space X and µ0(X) = 1,

then the posterior measure µ(dx) = P(dx|y) is absolutely continuous with respect to

the prior measure µ0(dx) and has Radon-Nikodym derivative given by (1.16).

Proof. Result follows since if G is continuous on X, then it is measurable on X, and

therefore is almost surely µ0-measurable.

1.11 Relationship with Tikhonov Regularisation

One approach to data assimilation is to try to find the minimiser of the following ex-

pression:

min
u
‖G(u)− y‖2Σ.

Solutions to this problem can, however, be very rough and have undesirable properties,

or the solution may not be unique or even exist. Therefore it may be appropriate to

add a penalty term to this minimisation to ensure minimal amounts of regularity in the

solution, so that we are trying to minimise J where

J(u) = min
u

1
2
‖G(u)− y‖2Σ +

1
2
‖u‖2X

for some function space X. This is termed Tikhonov regularisation[45]. If X is the

Cameron-Martin space for some Gaussian measure µ0, for which the measure µ = P(u|y)

is absolutely continuous, then this problem is equivalent to trying to maximise the

probability density from the Bayesian posterior we have previously defined. As such, the

theorems that we will go onto describe for the various situations in chapters 2-4 are also

applicable to those wishing to attempt these types of variational approach, as they give

insight into good choices of penalty term to ensure existence of global minima of J .
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1.12 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are a family of methods which allow us

to sample from complex distributions which are hard to characterise analytically. In

essence, we create a Markov chain whose invariant measure is the measure we wish to

characterise. Then, assuming the chain is ergodic, the Markov chain should converge in

distribution to the desired measure. By taking statistics of a sufficiently large number

of samples, we can accurately estimate the statistics of this target measure. In other

words, if the Xn are the states of our Markov chain, f is an observable function of the

Xn, and π is the invariant density of the Markov chain, then assuming ergodicity, we

have that ∫
Ω
f(X)dπ = lim

n→∞

1
N

N∑
n=1

f(Xn).

1.12.1 MCMC methods on finite space

The following algorithm is the basis for all Metropolis Hastings based MCMC methods

for sampling from a given measure µ with density π on Rn[76, 19]. q is a transition

density, which can be a function of both y, the proposal, and xi−1, the previously

accepted state of the chain.

1: x = x0

2: for i = 1 : N do

3: Sample y ∼ q(xi−1, .), y ∈ Rn

4: α(xi−1, y) = min
{

1, π(y)q(y,xi−1)
π(xi−1)q(xi−1,y)

}
5: Sample u ∼ U([0, 1))

6: if u < α(x, y) then

7: xi = y
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8: else

9: xi = x

10: end if

11: end for

The function α is termed the acceptance probability, and this is determined completely

by the target density π and the transition density q.

Note here that each draw from a random distribution, at steps 3 and 5 are

independent of each other, and independent for each iteration i.

These algorithms are defined when the target and proposal have densities π(·)
and q(x, ·) with respect to Lebesgue measure. For us it is important to generalise this

setting to situations where densities are defined with respect to Gaussian measures.

The Independence Sampler

The independence sampler is so named due to the fact that the transition density

is independent of the currently accepted state. In independence samplers it is more

important to carefully choose your transition density if you want a sampler that ex-

plores the state space of the target measure efficiently. The algorithm works as fol-

lows:

1: x = x0

2: for i = 1 : N do

3: Sample y ∼ q(·) ∈ Rn

4: α(xi−1, y) = min
{

1, π(y)q(xi−1)
π(xi−1)q(y)

}
5: Sample u ∼ U([0, 1))

6: if u < α(x, y) then

7: xi = y
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8: else

9: xi = x

10: end if

11: end for

This algorithm only works efficiently if a good choice of the transition density q is chosen.

Moreover it will not converge to π if the support of π is not contained within the support

of q.

The Standard Random Walk Metropolis Hastings Algorithm

In the following two methods we are aiming to sample from a target density π which sat-

isfies π(·) ∝ exp(−Ψ(·)) for some function Ψ. Consider the following finite dimensional

SDE:

dX = −γA∇Φ(X) +
√

2AdW (1.17)

With γ = 1 this SDE has invariant measure π. The discretization of this SDE with γ = 0

gives us the proposal for the Standard Random Walk Metropolis Hastings (SRWMH)

algorithm.

In the SRWMH method, commonly used in many applications, the proposal den-

sity is chosen to be a Gaussian centred on the currently accepted state, with covariance

related to the prior density π0 which is also a Gaussian. Let π0 ∼ N (m,C) and without

loss of generality let m = 0. In this example we assume that the target measure is

change of measure from this Gaussian, ie Ψ(·) = Φ(·) + 1
2 |C1/2 · |2. Then the algorithm

is as follows;

1: x = x0

2: for i = 1 : N do
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3: Sample y = xi−1 + βw, where w ∼ π0

4: α(xi−1, y) = min
{

1, exp(Φ(xi−1)− Φ(y) + 1
2 |C1/2xi−1|2 − 1

2 |C1/2y|2}
5: Sample u ∼ U([0, 1))

6: if u < α(x, y) then

7: xi = y

8: else

9: xi = x

10: end if

11: end for

This algorithm does however suffer from the curse of dimensionality. For a fixed value

of β, but with increasing resolutions (ie more terms in the Fourier series are non-zero),

the average acceptance probabilities decrease in such a way as to cause the complexity

of the algorithm to be O(n) where n is the number of degrees of freedom in the state

space. It has been shown in [63, 65] that the optimal average acceptance probability for

this algorithm is approximately 23.4%.

The Standard Metropolis Adjusted Langevin Algorithm

This method, once again commonly used in many applications, is similar in many ways

to the random walk method described in the previous section. Similarly, we aim to

draw samples from the target distribution with density π ∝ exp(−Φ(·)). However,

in this algorithm gradient information about the posterior measure is included in the

proposal, to allow for more efficient exploration of the state space. The proposal

comes from the discretization of the SDE (1.17) with γ = 1, with time step ∆t.

A preconditioner matrix A can be chosen to be I or any positive symmetric matrix

C.
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1: x = x0

2: for i = 1 : N do

3: Sample y such that y−xi−1

∆t = −A∇Φ(xi−1) +
√

2A
∆tξi, where ξi ∼ N (0, I)

4: ρ(xi−1, y) = Φ(xi−1) + ∆t
4 |A1/2Φ(xi−1)|2 + 1

2〈y − x,∇Φ(xi−1)〉
5: α(xi−1, y) = min {1, exp(ρ(xi−1, y)− ρ(y, xi−1)}
6: Sample u ∼ U([0, 1))

7: if u < α(x, y) then

8: xi = y

9: else

10: xi = x

11: end if

12: end for

This algorithm does again suffer from the curse of dimensionality. However, the in-

creased efficiency of including gradient information means that the order of complexity

is reduced to O(n1/3). We also have the extra condition here that the function Φ must

be differential on the support of the proposal distribution. In [64] it is shown that the

optimal acceptance rate for this scheme is 57.4%.

1.12.2 MCMC methods on function spaces

We will now consider equivalent MCMC methods which instead of acting on a finite di-

mensional space, act on spaces of functions. These algorithms have the great advantage

of not being affected by the curse of dimensionality, and so are robust under refinement

of discretisations. We will show later in the thesis what effect this has in a practical

sense.
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The Independence Sampler

In a function space setting we are not able to define the probability densities as these

quantities are not available to us or are infinite. Instead, we define the problem through

the Radon-Nikodym derivative of our target measure µ with respect to a reference

measure, or a prior measure. In the case of the independence sample, we choose a

proposal measure ν. As in the finite dimensional case it is important that the support of

the target measure is contained within the support of the proposal measure, but we also

have the added condition now that the proposal density must be absolutely continuous

with respect to the target density. The acceptance probabilities are then defined in terms

of the Radon Nikodym which exists due to this condition, namely

dν

dµ
.

1: x = x0

2: for i = 1 : N do

3: Sample y ∼ ν
4: α(xi−1, y) = min

{
1, dνdµ(xi−1)/ dνdµ(y)

}
5: Sample u ∼ U([0, 1))

6: if u < α(x, y) then

7: xi = y

8: else

9: xi = x

10: end if

11: end for
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As in the finite dimensional version, this algorithm only works efficiently if a good choice

of the proposal measure ν is chosen.

The Random Walk Metropolis Hasting Algorithm

In the following two sections we will consider target measures µ which are absolutely

continuous with respect to a prior measure µ0, as in many Bayesian applications such as

those addressed in this thesis, with Radon Nikodym derivative given by (1.15) for some

function Φ.

Consider the SDE

du

ds
= K(Lu− γ∇Φ(u)) +

√
2Kdb

ds
, (1.18)

where b is a cylindrical Brownian motion, K is a positive, symmetric pre-conditioning

operator. L = (−C)−1, C is the covariance operator as described in prior distribution

on u0 (this will be discussed in further detail in later chapters), and γ ∈ {0, 1}.
For γ = 1, this SDE has invariant measure µ, the distribution that we wish to

sample from. For γ = 0, it has invariant density µ0, the prior distribution on u.

If our proposal distribution is closer to that of our target distribution, then we

are able to make larger changes in that proposal and still be able to accept samples,

so that we explore the state space quicker and more thoroughly. Therefore if we make

proposals based on a discretization of this SDE we will have a more efficient MCMC

algorithm.

If we discretize (1.18) using the theta method with θ = 1
2 , and with time incre-

ment ∆t, we get the following.

un+1 − un
∆s

=
1
2
K(Lun + Lun+1)− γK∇Φ(un) +

√
2K
∆s

ξ0, (1.19)
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where ξ0 ∼ N (0, I).

This gives us a construct in which we can define our transition probabilities on

the state space. In essence, given that our current state is u, we make the proposal for

our next state to be v where

v − u
∆s

=
1
2
K(Lu+ Lv)− γK∇Φ(u) +

√
2K
∆s

ξ0. (1.20)

The parameter ∆s can be tuned to give a sensible acceptance rate. For example,

if we were to have too large a value for ∆t, the proposal would be quite far away from

the currently accepted state, and may be in the tails of the target distribution. If this

is the case, the acceptance probability would be very small, and the proposal would be

rejected the majority of the time, and we would not explore the state space efficiently.

Conversely, if we choose ∆t too small, the proposal would be very close to the

current state. As such the acceptance probability would be very high, but as we have

not moved very far, we once again will not explore the state space efficiently. An optimal

scheme with well chosen ∆t will have an acceptance rate neither close to 1 nor 0. The

optimal acceptance probability changes depending on our choice of proposal.

The algorithm, when γ = 1, is termed the MCMC-adapted Langevin algorithm.

This algorithm requires Φ to have a derivative which is measurable with respect to the

prior measure on u, and as such we will not be using this version of the algorithm in

this thesis. This algorithm is useful if you can show this though, as including gradient

information in the proposal allows the state space to be explored more efficiently.

Instead, we will use this algorithm with γ = 0, which is termed the Random Walk

Metropolis Hasting (RWMH) algorithm. We will be using the preconditioned version of

this algorithm with K = C, giving us the proposal;
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v − u
∆s

= −1
2

(u+ v) +

√
2C
∆s

ξ0.

This can be rearranged, with a substitution of parameters, to read as

v = (1− β2)1/2u+ βw, (1.21)

where β ∈ [0, 1] scales the size of steps made in the proposal, and w ∼ N (0, C). The

acceptance probability of moving from the current state u to a proposed state from the

transition kernel defined by 1.21 is given by

α(u, v) = exp(Φ(u)− Φ(v)).

To demonstrate why this is the case, consider the following informal calculation.

Proposal state: v = (1− β2)
1
2 + βC 1

2 ξ, ξ ∼ N (0, 1), β ∈ (0, 1].

Target measure density:

π(u) = exp(−Φ(u)) exp(
1
2
〈u,Lu〉)

= exp(−Φ(u)) exp
(
−1

2
|C− 1

2u|2
)
.

Transition kernel: q(u, v) = exp
(
− 1

2β2 |C− 1
2 (v − (1− β2)

1
2u)|2

)
.

All we need to show is that if we set π(u)q(u, v) = exp(−Φ(u)) × A(u, v),

and show that A(u, v) is symmetric in u and v, then we have shown that α(u, v) =

exp
(∫

Ω Ψ(u)−Ψ(v)dx
)
.

−2 log(A) = |C− 1
2u|2 +

1
β2
|C− 1

2 (v − (1− β2)
1
2u|2

= |C− 1
2u|2 +

1
β2
|C− 1

2 (v − (1− β2)
1
2u|2

= |C− 1
2u|2 +

1
β2
|C− 1

2 v|2 +
1− β2

β2
|C− 1

2u|2 − 2(1− β2)
1
2

β2
〈C− 1

2u, C− 1
2 v〉

=
1
β2
|C− 1

2 v|2 +
1
β2
|C− 1

2u|2 − 2(1− β2)
1
2

β2
〈C− 1

2u, C− 1
2 v〉,
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which is symmetric, since 〈u, v〉 = 〈v, u〉 ∀u, v ∈ H.

Unlike the SRWMH algorithm, this acceptance probability is completely indepen-

dent of the number of degrees of freedom that you allow to be non-zero in the Fourier

truncation. This means that the method is robust under refinements of mesh. This will

be demonstrated in later chapters.

To clarify, the RWMH algorithm is defined as follows.

1: x = x0

2: for i = 1 : N do

3: Sample y = (1− β2)1/2xi−1 + βw, where w ∼ π0

4: α(xi−1, y) = min {1, exp(Φ(xi−1)− Φ(y)}
5: Sample u ∼ U([0, 1))

6: if u < α(x, y) then

7: xi = y

8: else

9: xi = x

10: end if

11: end for

In the numerics that follow later, we allow a ‘burn-in’ period where we run the

Markov chain for a period of time, and wait for it hopefully to converge in distribution

to its invariant measure, π. During this period we can tune the parameter ∆t to give

the Markov chain an average acceptance rate that is close to the optimal value. In

[63] it is shown that for high dimensional SRWMH algorithms, the optimal acceptance

probability is 23.4%. This method however is different. However it is still pretty safe to

expect the optimal average acceptance probability for this algorithm to be somewhere

between 20-60%.
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Before considering a result concerned with the acceptance probabilities, let us

define a set of assumptions on Φ.

Assumptions 1. The function Φ : X × Rm → R satisfies the following:

1. there exists p > 0 and for every r > 0 a K = K(r) > 0 such that, for all u ∈ X
and all y : |y| < r,

0 ≤ Φ(u; y) ≤ K(r)
(
1 + ‖u‖pX);

2. for every r > 0 there is K(r) > 0 such that, for all u, v ∈ X and y ∈ Rm with

max{|y|, ‖u‖X, ‖v‖X} < r,

|Φ(u; y)− Φ(v; y)| ≤ K(r)‖u− v‖X;

3. there is q > 0 and for every r > 0 a K = K(r) > 0 such that, for all u ∈ X and

all y1, y2 ∈ Rm with max{|y1|, |y2|} < r,

|Φ(u; y1)− Φ(u; y2)| ≤ K(r)
(
1 + ‖u‖qX

)|y1 − y2|.

Consider the following theorem regarding acceptance probabilities, adapted from

a result that appears in [23].

Theorem 1.12.1. Let µ0 be a Gaussian measure on a Hilbert space (X, ‖ · ‖X) with

µ0(X) = 1 and let µ be a second measure on X given by the Radon-Nikodym derivative

(1.16), satisfying assumptions 1;

Then the preconditioned random walk algorithm with fixed β are defined on X

and, furthermore, the acceptance probability satisfies

lim
β→0

Eηa(u, v) = 1.

It is important to point out here that whilst it is not expected that an acceptance

probability close to 1 is optimal for MCMC methods, it is still desirable to be able to

tune the acceptance probability arbitrarily in [0, 1], as can be done in finite dimensions.
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The Metropolis Adjusted Langevin Algorithm

Similarly, there is a function space equivalent to the MALA method. This method uses

a proposal derived from a discretization of (1.18) with time step ∆t, partially using the

theta method with θ = 1
2 . We present here the preconditioned version with A = C, the

covariance of the prior distribution µ0 ∼ N (0, C).

1: x = x0

2: for i = 1 : N do

3: Sample (2+∆t)y = (2−∆t)xi−1−2∆C∇Φ(xi−1)+
√

8C∆tξ, where ξ ∼ N (0, I)

4: ρ(xi−1, y) = Φ(xi−1) + 1
2〈y − xi−1,∇Φ(xi−1)〉 + ∆t

4 〈xi−1 + y,∇Φ(xi−1)〉 +

∆t
4 ‖C−1/2∇Φ(xi−1)‖2

5: α(xi−1, y) = min {1, exp(ρ(xi−1, y)− ρ(y, xi−1)}
6: Sample u ∼ U([0, 1))

7: if u < α(x, y) then

8: xi = y

9: else

10: xi = x

11: end if

12: end for

As in the finite-dimensional case, this algorithm requires fewer samples to give an accu-

rate approximation of the target distribution than the random walk method. However,

Φ must be shown to be differentiable on the support of µ0. The calculation of ∇Φ is

also far from trivial, requiring computation of the adjoint problem alongside that of the

forward problem for each proposed state y, so that the computational cost per sample

is increased.
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For the purposes of this thesis, we will deal exclusively with the RWMH algorithm,

with a view to attempting to implement the Langevin algorithms at some point in the

future.

1.13 Computer Generation of (Pseudo-) Random Numbers

When dealing with the generation of very large numbers of random numbers computa-

tionally, as we will be doing throughout the whole thesis, it is very important to think

carefully about what algorithms we are using to create these numbers. The built-in ran-

dom number generators in many languages, including C, are often thought to be inade-

quate for applications such as MCMC methods. Therefore, we have chosen a “Mersenne

Twister” algorithm from the GNU GSL library to produce uniformly distributed numbers

in all computations throughout this thesis, which has a period of 219937 − 1, plenty big

enough for our needs [1]. These are then converted into normally distributed random

numbers via the Box-Müller[75] algorithm. These two algorithms used together produce

high-quality random numbers which have passed standardised statistical tests such as

“DIE HARD” [55].

1.14 Interpolation Methods

In section 1.4 it was shown how the Stokes problem can be solved analytically in Fourier

space. In practise, we cannot compute this value for infinite dimensional functions, but

instead we aim to compute this as accurately as we can on a truncated set of Fourier

modes, that we then evaluate in real space through an FFT calculation. This returns an

approximation of the value of the function on a set of grid points. However, we may wish

to know the value of the function in between these grid points. We can approximate
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these values through interpolating the values of the nearest neighbour grid points.

1.14.1 Bilinear Interpolation

Consider Figure 1.1 where we wish to approximate the value of u(P ), where P is a point

inside a square between points Q1,1, Q1,2, Q2,1, and Q2,2.

Figure 1.1: Bilinear Interpolation on a mesh, from [83]

Bilinear interpolation suggests that we take the approximation by first taking the

linear interpolation in the x-direction. This yields

ui(R1) ≈ x2 − x
x2 − x1

ui(Q11) +
x− x1

x2 − x1
ui(Q21) where R1 = (x, y1),

ui(R2) ≈ x2 − x
x2 − x1

ui(Q12) +
x− x1

x2 − x1
ui(Q22) where R2 = (x, y2).

We proceed by interpolating in the y-direction.

ui(x, y) ≈ y2 − y
y2 − y1

u(R1) +
y − y1

y2 − y1
u(R2).

If we re-label Q1,1 = (0, 0) and Q2,2 = (∆,∆), then we can consider this simply
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to be the bilinear form:

ui((x, y), t) ≈
(

1− x x

)u((0, 0), t) u((0,∆), t)

u((∆, 0), t) u((∆,∆), t)


1− y

y


To calculate an approximation of the vector u(x, y), we simply calculate this for

i ∈ {1, 2}. We then have an approximation for the value of our vector field within our

whole state space T2, so we can successfully numerically approximate the solution of

the Stokes problem with initial condition u0 and forcing g = Pf . Therefore, we are

also able to approximate the observation operator GE , and in turn, calculate relative

densities of any two initial conditions with respect to well-defined posterior distributions

satisfying corollary 2.5.3.

1.14.2 Bicubic Interpolation

We could alternatively use higher order interpolation methods which would give more

accurate results, but at a higher computational cost. For example, we could use a

bicubic interpolation[17] which approximates the function in the x and y directions by

two cubic functions. This requires extra computational effort as the value of 3 different

partial derivatives are required at each of the four corners of the cell. These could be

calculated using finite difference methods - but these will add significant error on a

course grid. Alternatively, these derivatives can be found easily in Fourier space, and

the extra computational effort goes into computing 3 extra FFTs, essentially multiplying

the complexity of the algorithm by a factor of 4. For further details of the algorithm,

see [82].

There are of course many other higher order methods which we omit here, but

their computational cost eventually outweighs the improvement in accuracy of the al-

gorithm.
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For the vast majority of the numerics that will follow later in the thesis, we will

employ the bilinear method, but we will also briefly explore the impact that a higher

order interpolation method can have on the results.
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Chapter 2

Eulerian Data Assimilation

2.1 Motivation

Collecting and analysing Eulerian data is crucially important for the weather forecasting

community. Very often, this is satellite data comprising of observations of the flow of

the atmosphere at fixed points in space. There are huge amounts of such data collected

every day, with the intention of using it to find the current state of the atmosphere, in

an effort to make more accurate predictions about the state of the atmosphere in the

future.

These observations are of course not perfect, so a big part of this problem is

also to ascertain a reasonable noise scenario for the model. We will, for the purposes

of this thesis, assume that all observation errors are mean-zero Gaussian with known

covariance, although the techniques which are described herein are perfectly adaptable

to being used in other scenarios.

This type of inverse problem, where we have noisy observations of a system of

which we wish to ascertain it’s state, is termed data assimilation in meteorological[47]
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and oceanographic[10] circles. These problems, when undertaken in an optimisation

context, are often ill posed. That is, if we simply find the vector field which minimises

the covariance-weighted distance between our observations and the observation operator

applied to the vector field, then our solutions may be rough, undifferentiable and even

discontinuous. This problem lies in the damping out of high frequency behaviour in

dissipative fluid models. Therefore, the inverse map, which takes vector fields backwards

through time, causes these frequencies to blow up. With the addition of noise, the least

squares solution may cause many of these frequencies to have non-trivial values, causing

us a problem if we try to regress this solution backwards in time.

The approach that is often taken in the optimisation community, is to enforce

some kind of regularisation condition on the family of possible solutions. This can be

done by using Tikhonov regularisation, or truncated iterative methods, or many others,

as discussed in [45]. This is just one way that we can make this problem well posed.

In the following chapter, we will show how this ill posed optimisation problem can

be translated into a well posed Bayesian inverse problem. We will analyse the forward

problem in detail, so that we may determine prior measures with respect to which our

observation operator is measurable. As discussed in section 1.11, this also gives insight

into good choices of penalty term in a Tikhonov regularisation to ensure existence of

global minima of the functional which we would wish to minimise.

We will then describe MCMC methods which are formulated on function space,

that allow us to sample from well defined posterior measures. We will then present

numerical results showing that these methods are valid, and then use these methods to

probe the types of posterior distribution that we are interested in.

Let us note here that since this is a linear problem, and we intend to apply

a Gaussian prior to the initial condition of the velocity field, u0, that the posterior is
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Gaussian and can be calculated explicitly. This means that in fact it is not necessary to

estimate this distribution through implementation of MCMC methods. However, it is

an excellent test of our methods, and is used here as a simple test-bed. Once we have

shown that these methods work on this simple case, we will be able to extend their use

to non-linear and harder problems such as those presented in chapters 3 and 4.

2.2 The Model: Stokes flow

We consider a much simplified version of the real world problem. In reality the flow

of geophysical fluids is highly non-linear, and can be best described by a solution u ∈
{L∞(0, T ;H) ∩ L2(0, T ;H) ∩ ∇.u = 0} to the Navier-Stokes equations (where γ = 1

below):

∂tu− νδu+ γ(u.∇)u+∇p = f, t ≥ 0 (2.1)

∇.u = 0, t ≥ 0 (2.2)

u(x, 0) = u0(x), x ∈ Ω, (2.3)

The domain of solution in applications is also often complex, whether it be the atmo-

sphere we are modelling where we need to consider the shape of mountain ranges etc,

or in ocean dynamics where we need to consider the shape of coastlines and the varying

depth of the water.

Solving these types of problems also gives us severe theoretical problems, not

least because a theory of global solutions to the Navier-Stokes equations does not exist in

three dimensions. Since we wish to build up a sound theoretical framework on which to

do data assimilation, and we want to be able to compute numerics quickly and efficiently

to demonstrate how this frameworks and can be implemented, we will need to simplify

these equations and the domain Ω.
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If γ = 0, then the equations (2.1)-(2.3) are termed the Stokes equations. In [24],

Eulerian data assimilation problems concerning the Navier-Stokes equations are tackled

in detail, from a theoretical standpoint. In this thesis, however, we will consider only

the Stokes equations. We do this simply because by removing the nonlinear term from

the equations, they become far easier to solve numerically. A fully spectral numerical

method can be invoked easily when dealing with a linear problem, meaning that solving

the equations is as simple as running a Fast Fourier Transform (FFT) each time you

wish to know the value of the solution at any point in time. Spectral methods have been

widely used in fluid mechanics as an alternative method to finite difference methods and

finite element methods[27, 42].

We also simplify the geometry of our domain significantly, picking it to be Ω =

(0, 1)2 ⊂ R2 with periodic boundary conditions. That is, we are dealing with the unit

torus T2. These simplifications make analysing the forward model a great deal more

straightforward, yet there is still plenty of complexity in formulating the problem.

For the purposes of this chapter, we will also be assuming that f is known.

We will consider the case where f is unknown in chapter 4. In this chapter, we will

discuss how we can formulate an MCMC method to sample from a well defined posterior

measure which marries the observed data with our prior knowledge and the model to

infer upon only the initial condition u0 ∈ H.

Since we are making Eulerian observations, given an initial condition u0 we

merely need to evaluate the weak solution to the equations (2.1-2.3) (with γ = 0) at a

given discrete set of points over a discrete set of times. Given sufficient regularity of u0

and f , we can find the unique strong solution for u for t > 0.

As shown in section 1.4, this problem is actually equivalent to solving the fol-
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lowing ODE on H;

du

dt
+Au = Pf = g, t > 0 (2.4)

u(0) = u0 ∈ H, (2.5)

where P is the Leray projector onto the divergence-free space H.

2.3 Observational Noise Model

We make the assumption that our Eulerian observations are given by

yj,k = u(xj , tk) + ξj,k, k ∈ {1 . . . N} ξj,k ∼ N (0,Σ), iid.

That is, Eulerian observations are simply point-wise evaluations of the solution to the

Stokes equations. We have assumed here that our observations are noisy, and that the

noise is additive and mean zero Gaussian, with known covariance. We will adopt a

vector notation,

y = GE(u0) + ξ ∈ R2JK .

where GE : H → R2JK is the Eulerian observation operator. GE takes as its argument

the initial condition u0 ∈ H and returns the values of the weak solution of the Stokes

equations at the observation points in space and time that are specified.

We wish to use these observations to gain information about the initial state of

the vector field u(x, 0) = u0. We will do this by constructing a probability distribution

on function space for u0, conditioned on the Eulerian observations. We can then sample

from this by using Monte Carlo methods.
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2.4 Prior Distribution of u0

The prior distribution represents our prior knowledge of the velocity field, and our level

of uncertainty in that knowledge. In the case where we have no specific knowledge

about the initial condition prior to the data assimilation process, then the equilibrium

distribution for the dynamical system is often used.

We will employ a Gaussian prior on u0, with covariance specified in terms of

the stokes operator A. This choice is merely illustrative, but allows us to easily control

regularity of the prior, which is necessary for analysis later on. To do this we must

discover what the eigenfunctions and eigenvalues of the Stokes operator are, with a

view to constructing samples from the prior using the Karhunen-Loeve expansion.

We wish to sample u0 from a Gaussian measure µ0 on which we have defined

the covariance operator C. In this case we choose

C = δA−α,

where δ, α > 0. Since A is a smoothing operator, the larger the value of α, the smoother

the distribution N (0, δC) is. This is the reason for choosing such a prior distribution,

as we now have complete control of the regularity of the samples that are drawn from

it. This is important, as we will show later, for ensuring measurability of the likelihood

with respect to the prior.

The eigenfunctions of C are φk given by (1.10), and the eigenvalues are λk = a−αk

where the ak are given by (1.11). For further details on these and other matters relating

to the Stokes’ operator, see section 1.5. If we wish to sample u0 ∼ N (0, δC), we use
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the Karhunen-Loeve expansion, so that

u0 =
∑

k∈Z2\{0}

√
δλkφkξk, ξk ∈ C, ξk ∼ N (0, 1),

=
∑

k∈Z2\{0}

√
δ

(4π2|k|2)α/2
k⊥

|k| e
2πik.xξk.

Definition 2.4.1. Consider a complex Gaussian random variable ξ = X + iY , where X

and Y are real and independent Gaussian variables with equal variances σ2. The density

of the joint variables is then

1
2πσ2

e−(x2+y2)/(2σ2).

Then as Var(Z) := E(|Z|2) = 2σ2, where |.| is the complex modulus, if we wish to

have Z ∼ N (0, I), we let σ = 1√
2

.

So now we are able to draw samples from µ0 for our initial condition on the

vector field, u0. Samples from µ0 can be made as rough or smooth as we like, by

changing the parameter α. In practise, when implementing this on a computer, it is also

necessary to truncate the number of Fourier modes.

2.5 The Posterior Distribution

Before we can choose appropriate parameters for the prior distribution, we must analyse

the forward problem, and more specifically the observation operator, to ascertain what

regularity the prior distribution must have to ensure that the posterior measure µ is µ0-

measurable so that theorem 1.10.2 holds. One way to ensure that GE is µ0-measurable

is to show that it is continuous on a set X which has full measure with respect to µ0,

as shown in corollary 1.10.1. We can do this by bounding the operator in certain ways,

and then applying Sobolev embedding theorems.
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In chapter 4 we will be considering an Eulerian observation operator GEN which

is a function of not only the initial condition but also the time dependent forcing η which

is assumed to be unknown. Since the estimates require the same calculation, we define

here the observation operator GE(·, ·) which is a function of the initial condition and

the time dependent forcing f which drives the Stokes equations. We will then, in this

chapter, set GE(u0) = GE(u0, f = known).

2.5.1 Bounds on GE

Lemma 2.5.1. Assume that u0 ∈ H and that f ∈ L2(0, T,Hr) for some r > 0. There

exists a constant C independent of u0 and f such that,

|GE(u0, f)| ≤ C (‖u0‖+ ‖f‖L2(0,T ;Hr)

)
.

Proof. Result follows from lemma 1.6.2.

Lemma 2.5.2. . Suppose u0, v0 ∈ H, and f, g ∈ L2(0, T ;H). Then

|GE(u0, f)−GE(v0, g)| ≤ ‖u0 − v0‖+ C‖f − g‖L2(0,T ;Hr)

Proof. Proof follows from linearity of GE and application of lemma 2.5.1.

|GE(u0, f)−GE(v0, f)| = |GE(u0 − v0, 0)|

≤ ‖u0 − v0‖.

We can now use these bounds on GE to calculate equivalent bounds of GE ,

where f is known.
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Corollary 2.5.1. Assume that u0 ∈ H and that f ∈ L2(0, T,Hr) for some r > 0.

There exists a constant C independent of u0 and f such that,

|GE(u0)| ≤ C‖u0‖.

Proof. Follows from 2.5.1 with f known.

Corollary 2.5.2. . Suppose u0, v0 ∈ H, and f ∈ L2(0, T ;H). Then

|GE(u0)− GE(v0)| ≤ ‖u0 − v0‖.

Proof. Follows from 2.5.2 with f = g known.

Thus, we have a space X = H on which GE is continuous, and therefore mea-

surable with respect to any measure on which X has full measure. We can now combine

this with lemma 1.8.1 to give the following result.

Corollary 2.5.3. Let µ0 = N (0, δA−α) for α > 1. Then GE is measurable with respect

to µ0, and the posterior measure µ is absolutely continuous with respect to µ0, with

Radon-Nikodym derivative given by (1.16).

Proof. Result follows by corollary 1.10.1, lemma 1.8.1, and corollaries 2.5.1 and 2.5.2.

2.6 The Random Walk Metropolis Hastings Algorithm

For the numerics that follow in this chapter, we will consider only the preconditioned

RWMH algorithm, which we described in subsection 1.12.2. That is, given a currently

accepted state in the chain un, we propose a new state v where

v = (1− β2)1/2un + βw, w ∼ µ0, (2.6)
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where µ0 is the prior measure that we have prescribed on the initial condition u0. Recall

that the acceptance probability in this algorithm is given by

α(u, v) = exp(Φ(u)− Φ(v)),

where Φ(·) = 1
2‖GE(·)− y‖2Σ.

2.7 Explicit Solutions to Eulerian Data Assimilation

We now have all the tools we need to begin sampling from approximations of well-

defined posterior distributions, in the case of Eulerian data assimilation. However, since

the problem is a linear one, and the prior we have chosen is Gaussian, our posterior dis-

tribution is itself a Gaussian, with mean and covariance that are calculable explicitly. In

this section we will calculate these, and using this knowledge, analyse certain properties

of these distributions.

Let us truncate our function space so that it is spanned by only two basis func-

tions, for example φ0,1 and φ2,2. This calculation can also be carried out for any number

of basis functions, but for computational ease we shall keep this number small for now.

The solution u to (2.4-2.5) with f ≡ 0 is given by

u(x, t) = a1e
−λ1,0tφ0,1 + a2e

−λ2,2tφ2,2.

Let us define some notation for this special case. Let x =

a1

a2

. Let B ∈ R2N×2,

such that Bx =


u(x1, t

∗)
...

u(xN , t∗)

, where the xi are the positions at which we are making

the observations, and t∗ is the observation time.
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If we let the prior distribution have density π0(u) = N (m0,Σ0), our posterior

distribution is given by

π(x) ∝ exp
(
− 1

2σ2
|y −Bx|2 − 1

2
|Σ−1/2

0 (x−m0)|2
)
.

This distribution is also Gaussian, so we should be able to find m ∈ R2 and Σ ∈ R2×2

such that π ∼ N (m,Σ). Let us consider the following.

−2 log(π) =
1
σ2
|y −Bx|2 + |Σ−1/2

0 (x−m0)|2

=
1
σ2
〈y −Bx, y −Bx〉+ 〈Σ−1/2

0 (x−m0),Σ−1/2
0 (x−m0)〉

=
1
σ2
〈y, y〉+

1
σ2
〈Bx,Bx〉 − 2

σ2
〈y,Bx〉+ 〈Σ−1/2

0 x,Σ−1/2
0 x〉

+〈Σ−1/2
0 m0,Σ

−1/2
0 m0〉 − 2〈Σ−1/2

0 x,Σ−1/2
0 m0〉

=
〈
x,

(
B∗B

σ2
+ Σ−1

0

)
x

〉
− 2

〈
x,Σ−1

0 m0 +
B∗

σ2
y

〉
+ ρ,

where ρ is independent of x. Similarly,

−2 log(π) = |Σ−1/2(x−m)|2

= 〈x,Σ−1x〉 − 2〈x,Σ−1m〉+ 〈m,Σ−1m〉.

Therefore, by comparing coefficients, we can conclude that

Σ−1 =
B∗B

σ2
+ Σ−1

0

m =
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗

σ2
y

)
Suppose we wish to calculate the Kalman “gain matrix”. That is the matrix K

such that

m = m0 +K(y −Bm0).

To calculate this we will need a particular identity. First note that

B∗

σ2
(σ2 +BΣ0B

∗) =
(
B∗B

σ2
+ Σ−1

0

)
Σ0B

∗,
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since Σ0 is positive definite. Since B∗B
σ2 +Σ1

0 and σ2 +BΣ0B
∗ are both positive definite

as well, we can conclude that(
B∗B

σ2
+ Σ−1

0

)−1 B∗

σ2
= Σ0B

∗(σ2 +BΣ0B
∗)−1.

Consider the following,

m =
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗

σ2
y

)
=

(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗B

σ2
m0 +

B∗

σ2
y − B∗B

σ2
m0

)
= m0 +

(
B∗B

σ2
+ Σ−1

0

)−1 B∗

σ2
(y −Bm0)

= m0 + Σ0B
∗(σ2 +BΣ0B

∗)−1(y −Bm0)

Therefore the Kalman gain matrix is given by

K = Σ0B
∗(σ2 +BΣ0B

∗)−1.

Similarly, for the covariance matrix,

Σ =
(
B∗B

σ2
+ Σ−1

0

)−1

=
(
B∗B

σ2
+ Σ−1

0

)−1(B∗B
σ2

Σ0 + Σ−1
0 Σ0 − B∗B

σ2
Σ0

)
= Σ0 −

(
B∗B

σ2
+ Σ−1

0

)−1 B∗B

σ2
Σ0

= Σ0 − Σ0B
∗(σ2 +BΣ0B

∗)−1BΣ0

= Σ0 −KBΣ0

This Kalman gain matrix K could be used in a Kalman filter. We will briefly look at

filtering problems in chapter 5.
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2.7.1 Properties of the Eulerian Analytic Posterior

Now that we have a way of exploring Eulerian posteriors exactly, or at least very simple

ones, we can change certain parameters, and the quantity of observations to see how

this affects the posterior distribution.

For example, let us consider what happens in the two limits, σ → 0 and σ →
∞. As an example we choose 5 randomly placed observation stations, with a single

observation being made at each station at time T = 0.1, with only u0,1 and u2,2

non-zero. Specifically we set u0,1 =
√

2(a1 − ib1) and u2,2 =
√

2(a2 − ib2), with

a1 = 1, b1 = −0.7, a2 = −0.2, and b2 = 0.1. We then look at the analytical posterior

distribution with varying σ.
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Figure 2.1: The mean values of {ai, bi} in the posterior distribution with varying. σ

Figure 2.1 shows that as σ → 0, the mean values of the {ai, bi} converge to a

value close but not exactly the same as the actual values that created the field that the

observations were taken from. They are converging, in fact to the least squares solution
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of the functional J where

J(u) =
1
2
‖G(u)− y‖2Σ.

It also shows that as σ → ∞, the mean values of the {ai, bi} converge to their mean

values in the prior distribution, which in this case are all zeros.
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Figure 2.2: Difference in the mean of the posterior from the least squares solution

Figure 2.2 shows the difference in the mean of the posterior from the least squares

solution. That is, specifically, the solution of

minx
{‖GE(x)− y‖2} .

As σ tends to infinity, as shown in Figure 2.1, the mean of the posterior tends to the

zero vector. Hence in 2.2, as σ gets large, the relative difference with the least squares

solution tends to 1. As σ tends to zero however, the mean converges to the least squares

solution.
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Figure 2.3: The diagonal dominance of the covariance matrix in the posterior distribution
with varying σ

Figure 2.3 shows how the diagonal dominance of the covariance matrix of the

posterior distribution changes as we vary σ. We quantify this by comparing Σ with

D = diag(Σ), where

diag(Σ)i,j =


Σi,j if i = j,

0 if i 6= j.

Then we can find out how diagonally dominant the matrix is relatively by calculating

‖Σ−D‖F
‖D‖F

where ‖A‖F =
√

Tr(ATA) is the Frobenius norm.

Figure 2.4 shows how the posterior covariance converges to that of the prior as

σ →∞.

Now let us consider what happens as we increase the number of observations,

and let σ be fixed. The observations are made at points on a grid of varying refinement.
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Figure 2.4: Convergence of the posterior covariance to the covariance of the prior
distribution as σ →∞

Figure 2.5 shows the mean values of the {ai, bi} in the posterior distribution with in-

creasing number of observations, where the dashed lines represent the actual values that

created the field from which we made the observations. As the number of observations

increases, the mean values become closer to the actual values of the coefficients present

in the field.

Figure 2.6 shows how the Frobenius norm of the posterior distribution’s covari-

ance matrix decreases exponentially with the number of observations made. Figures

2.5 and 2.6 together show how as we increase the number of observations, our pos-

terior measure is converging to a Dirac measure on the field of which we made our

observations.

Further to this, let us consider a set of observations made at a single time, made

at a random set of points that are increasing in number. Figure 2.7 shows that as the

number of observations increase, our mean is converging to the actual Fourier modes
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Figure 2.5: Mean values of {ai, bi} in the posterior as number of observations is increased
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Figure 2.6: Frobenius norm of the posterior covariance with varying number of obser-
vations
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present in the field at time t = 0. Figure 2.8 shows that as the number of observations

increases, the posterior is converging to a Dirac measure.
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Figure 2.7: Relative difference with the actual Fourier modes of the norm of the posterior
mean with varying number of observations

Now we fix the observation on a 5 by 5 grid, and look at what happens at

posterior as we increase the number of observations times. Similarly, Figures 2.9 and

2.10 show that as we increase the number of observation times, our posterior measure

is converging to a Dirac measure on the actual underlying vector field that we wish to

understand.

It is worth noticing that the graphs in Figures 2.7 and 2.9 are not linear and seem

to be affected by the noise in their observations. We can eliminate this by considering

the analytic form of m, given that y = BX + ξ, where X denotes the true Fourier

components in the initial condition of the vector field.

65



0 2 4 6 8 10 12
−18

−16

−14

−12

−10

−8

−6

log(Number of Observations)

lo
g(

||!
|| F)

Figure 2.8: Frobenius norm of the posterior covariance with varying number of obser-
vations
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Figure 2.9: Relative difference with the actual Fourier modes of the norm of the posterior
mean with varying number of observation times
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Figure 2.10: Frobenius norm of the posterior covariance with varying number of obser-
vation times

m =
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗B

σ2
X +

B∗ξ

σ2

)
, (2.7)

⇒ E(m) =
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗B

σ2
X

)
. (2.8)

The expectation of the mean of the posterior distribution, as given above, is no

longer dependant on the observations themselves, and should give us a cleaner result.

Figures 2.11 and 2.12 show how the expectation of the posterior mean converges to the

vector X as we increase the number of observations in time and space respectively.

Note that in Figures 2.10 and 2.12 there is a nonlinear effect for small numbers

of observation times. This is simply due to the fact that as we are splitting the time

interval [0, 1] into n equal parts, at first all of the observation times are greater than

t = 0.1. At times greater than this, we do not gain much information at all about the

higher frequency Fourier modes (we shall demonstrate this later in the chapter), and so

therefore our error in the mean is higher, as is the uncertainty, which is reflected in a
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Figure 2.11: Relative difference with the actual Fourier modes of the norm of the
expectation of the posterior mean with varying number of observations
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Figure 2.12: Frobenius norm of the expectation of the posterior covariance with varying
number of observation times
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larger Frobenius norm of the covariance matrix.

As the number of observation times increases, we have many more observation

times less than t = 0.1, so we observe the higher frequency modes much better and so

we settle into a steadier exponential decay.

2.7.2 Using the Analytical Eulerian Posterior to Assess Information Con-

tained in Observations

We are now in a position to investigate further into what information is actually con-

tained in Eulerian data. We will continue to use the initial vector field as described

before, with x =
(

1 −0.7 −0.2 0.1

)′
.

We consider 25 observations, made on a grid, at a variable time t = T . We can

then look at the analytic posterior distributions for each time, and compare how much

data we have about the Fourier coefficients of the initial condition of the vector field.

Figure 2.13(a) shows the values of the Fourier coefficients in the mean of the posterior,

with 25 observations made at varying time T . This graph shows that after quite a short

time, the information relating to the higher frequency Fourier modes quickly disappears

and reverts to the prior. Figure 2.13(b) shows that on a larger time scale the information

about the low frequencies also decays. These are things that we will explicitly proved

later in the thesis.

Let Σ(i,j) be the truncated matrix, containing only the entries such that Σ(i,j) =Σi,i Σi,j

Σj,i Σj,j

. The Frobenius norm of Σ(i,j) is an indicator of how much information

we have about the values of the ith and jth Fourier coefficients. The smaller this norm,

the closer our distribution is to a Dirac on these Fourier coefficients, and therefore the

more information we have about them.
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Figure 2.13: Values of the Fourier coefficients in mean of the posterior, with 25 obser-
vations made at time T, 2 different timescales
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Figure 2.14: Frobenius norm of Σ(3,4) with 25 observations made at time T
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Figure 2.14 shows how the information about the higher frequency Fourier modes

decays as the observation time increase. Notice that the value of the norm hits the ceiling

of the value of (Σ0)(3,4) as the information vanishes and Σ(3,4) has reverted to the prior

distribution. An identical situation is present for Σ(1,2), but on a larger timescale, but I

have omitted it here.

The value of
‖Σ(3,4)‖F
‖Σ(1,2)‖F

is an indicator of how much information is available in

the posterior about m(1) and m(2) in comparison with m(3) and m(4). Figure 2.15

presents an interesting phenomena. Since the information in Eulerian data is encoded

in how different Fourier modes decay at different rates, observations at small times tell

you more about the value of the high frequency modes (which are decaying quickly)

than the low frequency modes. As these high frequencies are damped out and the effect

of them on the solution becomes negligible, the relative amount of information about

the low frequency Fourier modes increases, until the damping effect damps these modes

out to negligible levels as well.

2.8 General Setup

We now consider numerical results in situations where the true posterior is not so easily

available. We describe here the general setup for all of the numerics that follow. We

will engage in simulation studies in which the data is itself produced by employing the

numerical simulation of a forward PDE model. However it is important in what follows

to make a distinction between the algorithm that created the data which will be used

by the data assimilation algorithm (MCMC method), and the model that is used within

the assimilation algorithm itself. In particular we do not necessarily assume that our

model is perfect; there may be some mismatch between the forward model used for data

generation and for data assimilation. These issues will be covered in subsection 2.11.
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Figure 2.15: Relative amount of information available in m(1) and m(2) compared to
m(3) and m(4) in posterior with variable observation time

However, in all the numerics described in subsection 2.10, the data was created using

the same resolution and noise environment as the numerical model used by the data

assimilation algorithm itself.

For now we describe the set-up used in subsection 2.10 and for the experiments

in section 2.12; slight variations apply in subsection 2.11. In each example, the same

initial velocity field is used for creation of the data, which is itself a draw from the prior

distribution N (0, δA−α), with δ = 400 and α = 2. Note also that this choice ensures

that the conditions on the prior for the initial condition required in Theorem 2.5.3 hold.

It is assumed that the covariance matrix for the observational noise is diagonal, and

equal to σ2I, with σ = 0.01.

The approximation of the vector fields are truncated to 100 Fourier modes1 in

1Here by number of Fourier modes, we mean the dimension of the Fourier space approximation, ie
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both the creation of the data, and for the assimilation algorithm. For the purposes of

this chapter the forcing in the system is assumed to be f ≡ 0 in the data, and in the

assimilation model. For problems with model error, where f is unknown, see chapter 4.

In each experiment, the positions of the observation stations are given on a grid.

Observation times are evenly spaced, with the final observation time given by T = 1.

2.9 Limitations of the Standard RWMH method

In this section we aim to show the advantages of the RWMH posed on function space

as opposed to the SRWMH method which works on a discretized space.

These methods were outlined in sections 1.12.1 and 1.12.2. The key thing to

notice here is the differences in their respective acceptance probabilities. The method

framed on function space has proposal given by

v = (1− β2)1/2u+ βw, w ∼ N (0, C),

where u is the currently accepted state in the chain. The acceptance probability is then

given by

a(u, v) = min{1, exp(Φ(u) = Φ(v))},

where Φ = 1
2‖G(·)−y‖2Σ. This acceptance probability does not contain any dependence

on the dimension of the state space, which in practical terms will have to be finite.

On the other hand, the SRWMH has the simpler proposal given by

v = u+ βw, w ∼ N (0, C).

The acceptance probability is given by

α(u, v) = min
{

1, exp(Φ(u)− Φ(v) +
1
2
|C1/2u|2 − 1

2
|C1/2v|2

}
,

the number of grid points used in approximation of the velocity field
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which in function space would be infinite. The reasoning behind this is simple. The

state u is a linear combination of draws from the prior. Any draw from the prior is given

by

w = C−1/2ξ, ξ ∼ N (0, I).

Therefore

E
1
2
|C1/2w|2 =

1
2

E|ξ|2

=
1
2

∑
k

E|ξk|2.

Since each E|ξk|2 = 1 by definition, this sum is infinite. In practical terms, this is not

the case since we truncate the Fourier expansion to some number N . However, this

does mean that as the mesh is refined and more non-zero terms are added to the Fourier

expansion, this term in the acceptance probability increases, and is in fact O(N). In

turn, this reduces the average acceptance probabilities for a given fixed step size β.

In the following graphs we aim to show this happening in practise. In both

cases, the same data set was taken which consists of 9 Eulerian observations stations

on a grid with one observation time T = 0.1. A draw from the prior was taken as the

initial condition in the data creation process. Markov chains were started with a range

of values of β for both the RWMH and SRWMH method. The average acceptance

probabilities were taken until they had converged sufficiently. This process was repeated

for a range different grid sizes, with ∆x ∈ { 1
10 ,

1
20 ,

1
50 ,

1
100 ,

1
200 ,

1
500

}
. The results are

presented in Figures 2.16 and 2.17.

Figure 2.16 shows clearly the degeneration of the algorithm as the grid is refined.

As the Fourier truncation has more non-zero terms, the average acceptance probability

for a given value of β reduces. This means that as we increase the number of Fourier

modes, we are unable to make such large steps in state space. This means that we
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Figure 2.16: Average acceptance probabilities for a range of different step sizes β and
grid sizes, SRWMH

explore the state space slower and the method becomes increasingly inefficient.

In contrast, Figure 2.17 shows the same plots for the RWMH method framed on

function space, whose acceptance probabilities have no dependence on the dimension

of the discretisation. This independence is borne out in the results which clearly show

that as the mesh is refined, the average acceptance probabilities stay exactly the same

for a given step size β, allowing us to make larger steps in state space in comparison to

the SRMH method.

These results are an indictment of the SRWMH algorithm, and show the ad-

vantages of formulating methods on function space before discretising. As a result,

the RWMH posed on function space is the algorithm that we will use throughout this

chapter, and indeed through later chapters in this thesis.
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Figure 2.17: Average acceptance probabilities for a range of different step sizes β and
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2.10 Validating the Random Walk Algorithm

In this section we aim to verify numerically that the MCMC algorithm that we have

described (i) converges to an exact analytical solution; (ii) converges from different

initial states to the same solution; (iii) converges for different β to the same solution.

We can use the fact that we know exactly the form of the posterior distribution in the

Eulerian case to verify that our MCMC algorithm is drawing samples correctly.

Consider the case where we have 25 observation points on a 5 by 5 grid, and

where we have once again truncated the possible velocity fields to those with two non-

zero complex Fourier modes, with frequencies k1 = (0, 1) and k2 = (2, 2). We let

the observation points be on the grid points of our discretized domain so that we can

eliminate any error from interpolation. We observe the vector field at all of these points

at the time t = 0.1, with initial velocity field equal to
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u(x, 0) =
∑
k

ak
k⊥

|k|
√

2 sin(2πik.x) + bk
k⊥

|k|
√

2 cos(2πik.x)

=
∑
k

√
2(bk − iak)k

⊥

|k| e
2πik.x,

with a0,1 = 1, b0,1 = −0.7, a2,2 = −0.2, b2,2 = 0.1 and all other values equal to zero.

Figure 2.18 shows the evolution of the error of the ergodic average in the Markov

chain of the Fourier coefficients with respect to that of our analytic solution. Similarly

2.19 shows the evolution of the error of the covariance matrix of the Fourier coefficients.
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Figure 2.18: Relative 2-norm error of the ergodic average of the vector x =
(a1, b1, a2, b2)

These graphs show us that our Markov chain seems to be converging in distri-

bution to our analytic solution as we take more samples, in this situation. Let us now

consider what happens to our numerics as we increase the number of observations that

we make at one time, T = 0.1, on a grid. Figures 2.20(a)-2.20(f) show a selection of
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Figure 2.19: Relative Frobenius-norm error of the running covariance matrix (Cij) of
the vector x = (a1, b1, a2, b2)

the results showing the numerics converging to our analytic distributions.

We should next check that if we introduce more observation times, that our code

is still drawing samples from the corresponding analytic distribution. Figures 2.21 and

2.22 show an example with 32 observation times, which is converging to the correct

distribution. All of these tests show that the code appears to be drawing samples from

the correct distribution.

These figures verify numerically that as we increase the number of MCMC sam-

ples the empirical measure generated by the preconditioned random walk method with

proposal (6.9) converges to the true Gaussian posterior distribution. Figure 2.23 shows

how the value of one particular Fourier mode of the initial condition in the Markov

chains with different starting states all converge to the same distribution, in the case of

Eulerian data. A large amount of data is used so that we see how the chains quickly
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Figure 2.20: Convergence of numerics to analytic distributions
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converge to the area of high probability in the state space. The Markov chains appear

to converge to a single value, but actually the posterior is just very concentrated around

this value due to the high volume of data, leading to low levels of uncertainty.
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Figure 2.23: Convergence of Markov chains with different initial states, with Eulerian
data

Similarly, it has been verified numerically that Markov chains with different values

of β in the random walk proposal converge to the same distribution, although they do

converge at different rates. Figure 2.24 shows the different rates of convergence of the

algorithm with different values of β. βopt here is the value of β which gives an acceptance

rate of approximately 50%. With β too small, the algorithm accepts proposed states

often, but these changes in state are too small so the algorithm does not explore the state

space efficiently. This can be seen in the diagram in the trace which is approximately a

straight line with a small fixed negative gradient.

In contrast, with β too big, larger jumps are possible. However, having large

proposals often means that the algorithm is attempting to jump to a state that has
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Figure 2.24: Convergence of Markov chains with different values of β

much smaller probability density, and so the algorithm will often reject proposals, and

therefore will not explore the state space efficiently. This can be seen in the diagram in

the trace which looks like a step function.

Our aim is to pick a β which makes big enough steps to allow us to move quickly

enough away from the present state, but also one which is small enough so that we don’t

reject proposals all of the time [65]. Such a choice can be seen in the diagram in the

trace which moves quickly to a region around 0.6, and then explores the measure which

is centred around this value.

We may also wish to consider the possibility of having a random β, with a

distribution which is chosen in such a way that we still have a decent rate of convergence.

The theoretical justification for this is given in [23]. This has the potential advantage of

including the possibility of large and small steps in the proposal. This would allow us to
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Figure 2.25: Marginal distributions with and without random β

make occasional large jumps to other parts of the state space, and smaller moves that

allow us to explore the immediate neighbourhood. In the following example, a value of

β was first found that yields approximately a 50% acceptance probability in the sampler

run with a given set of data, which we will denote as βopt.

Two instances of the sampler were run with the same data, one with a static

value of β = βopt, and one with β ∼ U([0.1 × βOPT, 1.9 × βOPT]). The marginal

distributions for both Markov chains are shown in Figure 2.25. The two computed

distributions are very close indeed. In this case, where the posterior distribution is a

very Gaussian-looking mono-modal distribution both of these methods converged in

approximately the same amount of time. However, it is conceivable that if the posterior

distribution had more than one mode, that the variable-β method might be better suited

and converge quicker, allowing transitions between modes.
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Figure 2.26: Distribution of the accepted β

Figure 2.26 shows the distribution of the β for which the proposed state was

accepted. As you would expect, the initial uniform distribution is skewed as proposals

with smaller jumps are more likely to be accepted.

The numerical experiments in this section demonstrate that the implementa-

tion of the preconditioned random walk algorithm that we have used is successfully

sampling from the posterior distribution for the data assimilation problems of inter-

est. The amount of Monte Carlo steps that are required to give results of this quality

varies depending on the form of the observation operator G. For small numbers of

observations with large amounts of uncertainty, where the posterior distribution is rela-

tively close to the prior distribution, the chain will converge very quickly in a matter of

O(104 − 105) steps. However, if there are a large amount of observations, sometimes

up to O(107 − 108) iterations are required before the samples are representative of the
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distribution we are interested in.

2.11 Inverse Crimes

When testing algorithms to tackle inverse problems, we must always be certain that

we test it in a fair and objective way. Namely, we must not assume the model in our

algorithm is a perfect match for the dynamics of the system that we are observing. It

is potentially problematic to study only experiments where the data and assimilation

algorithm use the same model and parameters. This is sometimes referred to as an

inverse crime [45]. Here we further test the algorithms by using data created with

different parameters, resolutions, observation noise models, and time step sizes, to ensure

that we are not committing such a crime.

It is important to consider the effect of differing resolutions in our data creation

algorithm and in the sampling algorithm. In reality, of course, the true dynamical system

is infinite dimensional, so we consider the case where our data is created using a much

higher resolution than we use for the sampling method. In all of the following figures

(apart from those that specify a lower resolution) the data was created using a grid

for the vector field of 1000 × 1000 points (or 5 × 105 complex Fourier modes). The

data assimilation algorithm was run with varying numbers of grid points for the velocity

field approximation, running through 16, 100, 196 and finally 400 points. Figure 2.27

shows that as the number of grid points used in the velocity field approximation for the

algorithm is increased, the marginal distribution for this particular Fourier mode appears

to converge to a limit. The noise levels and quantity of data are such that the posterior

is not a peaked distribution on the true Fourier mode which was present in the initial

condition that created the data. For more details on the convergence of the posterior

as the mesh used in the forward problem is refined, see [25].
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Figure 2.27: Re(u0,1(t)): Increasing resolution in model, high resolution data, Eulerian
data.

An in depth discussion of what can happen when there is a mismatch in the

forcing functions for the dynamical system between the data environment and the algo-

rithm for both Eulerian and Lagrangian data can be found in chapter 4, so we shall skip

over this particular area in this section.

We now consider several different cases of a mismatch in the actual noise in our

observations, and the noise model that we use in the likelihood function in the algorithm.

First we consider the case of low variance noise in our observations, with Σ = 0.001I,

where we use a larger variance of varying size in the likelihood function.

Figure 2.28 shows that as we increase the variance of Σ, the influence of the

observations decreases, until we are sampling from a distribution that is very close to

the marginal prior distribution for this Fourier mode. This makes perfect sense, as if we

assume more uncertainty in our data, then we can draw less information from it, and

have to rely on our prior beliefs.
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Figure 2.28: Re(u0,1(t)): Increasing variance in the noise model of the algorithm, low
actual noise, Eulerian case

We may also consider the case where the observational noise in our data has

much larger variance than the variance we use in our likelihood. Figure 2.29 shows what

happens in this case. This scenario can cause a great deal of problems, as we are trying

to infer accurately using poor data with a high signal to noise ratio (SNR). Essentially,

this shows that the algorithm still works in this case, but the results may be poor.

We may also consider the case in which we use a very low resolution model for

creating our data. This is not realistic in terms of data that is collected in the field, but

gives us another opportunity to show how the algorithm copes with a mismatch between

model and data.

Figure 2.30 shows the marginal distributions of one Fourier mode with Eulerian

data created with a 4 × 4 grid, with a varying number of grid points used in the

assimilation model. The resolution in the algorithm which gets closest to the correct

answer is actually the lowest resolution, with 16 grid points on which the velocity field is
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Figure 2.29: Re(u0,1(t)): Decreasing variance in the noise model of the algorithm, high
variance actual noise, Eulerian case

approximated. This is not surprising given that this is the resolution at which the data

was created.

So in conclusion, we have demonstrated numerically that if we increase the

resolution of the approximation of the velocity field in our algorithm, that the posterior

converges in distribution. We have also presented how various mismatches in data

creation and model used in the algorithm can affect the results.

2.12 Properties of the Posterior Measure

Now that we have a successful implementation of an MCMC method that allows us to

draw samples from well defined posterior distributions, we can analyse exactly what kind

of information is present in different data scenarios, and what happens to the posterior

in the limit of large amounts of informative data. In the following figures we display
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Figure 2.30: Re(u0,1(t)): Increasing resolution in model, low resolution data, Eulerian
case

only the marginal distribution of the Fourier mode Re(u0,1) for the initial condition of

the vector field. Other low wave-number Fourier modes behave similarly to this mode.

(However high wave number modes are not greatly influenced by the data, and remain

close to their prior distribution). For simplicity, we also assume that there is no forcing

in the system, setting f = 0.

In each of the following Figures we demonstrate posterior consistency of the low

wave-number modes: we show that increasing the amount of data in sensible ways leads

to posterior measures which approach a Dirac measure on the true value of the Fourier

mode that was present in the initial condition of the vector field that created the data.

In our first example, the observations are made at 100 evenly spaced times, on

an evenly spaced grid with an increasing number of points. Figure 2.31 shows how the

posterior distribution on Re(u0,1) changes as we increase the number of points in space

at which we make Eulerian observations of the velocity field. This plot shows that the
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Figure 2.31: Increasing numbers of observations in space, Eulerian.

chains have converged in their marginal distribution to approximate Gaussian curves on

Re(u0,1). We also see that we have posterior consistency, since as the number of spatial

observations increases, the posterior distribution on Re(u0,1) appears to be converging

to an increasingly peaked distribution on the value that was present in the true initial

condition, denoted by the solid line.

Now, if we instead have a fixed number of 25 observations in space on a grid,

made at an increasing number of times evenly spaced on the unit interval, we arrive at

Figure 2.32. This plot shows posterior consistency for an increase in temporal observa-

tions, giving us a sequence of increasingly peaked approximate Gaussian curves centred

closely to the value that we wish to recover.
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Figure 2.32: Increasing numbers of observations in time, Eulerian.

2.12.1 Decay of Eulerian Data in Time

We are also interested in how much information about the entire state of the vector field

is actually contained within the observation that we are making. The following experi-

ments were made with observations from 9 paths/stations, with one observation made

a time T . We would like to know how the information we get about the initial condition

varies as we take Eulerian observations further into the future from the starting time.

Figure 2.33 shows histogram plots for Eulerian Markov chains with varying observation

time T .

Figure 2.33 shows that as the time at which we make our observations increases,

the information we have about the initial condition of the velocity field eventually decays,

after initially improving, mirroring the effect that we saw in Figure 2.15 in section 2.7.2.

Before we can prove a theorem showing the (eventual) decay, we need the following

lemma.
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Figure 2.33: PDFs For Eulerian Data, 9 Stations, Varying T

Lemma 2.12.1. The function f(x) = e−xxs with s ≥ 0, is bounded above on R+,

since

f(x) ≤ e−sss ∀x ≥ 0.

Proof.

df

dx
= e−xxs−1(s− x).

Therefore we have the following two cases.

(i) If s ≤ 1, we have 1 critical point at x = s.

(ii) If s > 1, we have 2 critical points, at x = s, 0.

Since f(x) ≥ 0 on R+, is continuous, and f(0) = f(∞) = 0, the critical point

x = s must be a maximum. Therefore

f(x) ≤ e−sss ∀x ≥ 0.
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We can use this result to prove the following theorem.

Theorem 2.12.1. Given a weak solution u ∈ Hα to the Stokes equations (2.4-2.5),

with α > 1, f = 0, then u is decaying exponentially.

Proof. Since u ∈ H, ∃{uk} s.t.

u(x, t) =
∑

k∈Z2\{0}

φk(x)uke−λkt, λk = 4νπ2|k|2.

By using part (iii) of theorem 1.8.1, and lemma 2.12.1, we have that

‖u‖2L∞ ≤ C‖u‖2Hα

= C
∑
k

|uk|2e−2λkt|k|2α

= C
∑
k

|uk|2e−λkt e
−4νπ2|k|2t(4νπ2|k|2)α

(4νπ2t)α

≤ C
∑
k

|uk|2 e−λkt

(4νπ2t)α

< C
∑
|uk|2e−λkt for t >

1
4νπ2

,

≤ Ce−λ0,1t
∑
k

|uk|2 since λ0,1 ≤ λk∀k ∈ Z2\{0}.

Since we have an exponential bound on the maximum velocity in the field, we

can see that the velocity field tends to zero everywhere. Therefore in finite time, the

noise on our Eulerian observation will dominate the actual velocity field that is present,

rendering the observation useless. So therefore the information in Eulerian observations

eventually decays as the time of observation increases.

Suppose now we introduce a time-independent forcing to the system, with f =∑
k fkφk.
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u1(x,t)

u(x,0)

B(0,delta)

u2(x,t)

Figure 2.34: Sketch to show decay of u(x, t) into a δ-ball when f ≡ 0

Theorem 2.12.2. Given a weak solution u ∈ Hα to the Stokes equations (2.4-2.5), with

α > 1, f =
∑

k fkφk ∈ Hα−2, where fk ∈ R are constants, then ‖u‖L∞ is bounded. In

particular, for any δ > 0, ∃Tδ s.t. ∀t > Tδ,

‖u(x, t)‖L∞ ≤ C[(4νπ2)−2‖f‖Hα−1 + δ].

Proof. The weak solution of this system is given by

u(x, t) =
∑
k

(
1− e−λkt

λk
fk + e−λktuk(0)

)
φk.

Therefore, for t > Tδ = 1
4νπ2 max

{
1, ln

(
C
δ

)}
,

‖u‖L∞ ≤ C‖u‖Hα

= C
∑
k

∣∣∣∣1− e−λktλk
fk + e−λktuk(0)

∣∣∣∣2 |k|2α
≤ C

(∑
k

∣∣∣∣ 1
λk
fk

∣∣∣∣2 |k|2α +
∑
k

e−2λkt|uk(0)|2|k|2α
)

= C(S1 + S2).
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By the proof of theorem 2.12.1, S2 < Ce−λ0,1t < δ.

S1 = (4νπ2)−2
∑
k

|fk|2 |k|
2α

|k|4

= (4νπ2)−2
∑
k

|fk|2|k|2(α−2)

= (4νπ2)−2‖f‖Hα−2 ∈ R+.

We can generalise to systems which have differing initial conditions but which

have the same (non-constant) forcing.

Theorem 2.12.3. Given two weak solutions u and v to the Stokes’ flow problem on the

torus with initial conditions u0, v0 ∈ H respectively, both forced by the same function

f =
∑
fk(t)φk ∈ L2([0, T ], H), then

‖u− v‖L∞ → 0,

as T →∞.

Proof. The weak solution of these systems are given by

u(x, t) =
∑
k

(
1− e−λkt

λk
fk + e−λktuk(0)

)
φk,

v(x, t) =
∑
k

(
1− e−λkt

λk
fk + e−λktvk(0)

)
φk.

Both of these solutions converge to the same solution as T →∞ since

‖u− v‖2L∞ =

∥∥∥∥∥∑
k

e−λkt(uk(0)− vk(0))φk

∥∥∥∥∥
2

L∞

≤ e−2λ0,1t
∑
k

|uk(0)− vk(0)|2

= e−2λ0,1t‖u0 − v0‖2.

Since u0, v0 ∈ H, the result follows.
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Since after a period of time, the two solutions are almost indistinguishable despite

having different initial conditions, we can conclude that Eulerian information about the

initial condition decays in time.

2.13 Conclusions and Future Directions

By careful analysis of the forward problem, we have been able to formulate a well-posed

Bayesian inverse problem regarding Eulerian data of the Stokes’ flow dynamical system.

We have shown that the likelihood function is continuous with respect to a space that

has full measure with respect to a specified choice of Gaussian prior measure. Using

this, we have shown how to draw samples from well defined posterior distributions on

function space using the RWMH MCMC sampler. We have then implemented this

algorithm in C, and gained insight into what kind of information is available in Eulerian

data. We have also shown how the standard RWMH method loses efficiency as the grid

is refined, and that the method framed on function space does not. We have also verified

the algorithm by checking against explicit posterior distributions that are calculable in

certain situations, as well as showing that we are mindful of committing inverse crimes.

This chapter demonstrates a method of tackling inverse problems that we will

be using in several different scenarios throughout the thesis. The core to the philosophy

underlying these methods is the belief that formulating numerical methods on infinite

dimensional spaces and only discretizing once we choose to implement such a method

gives us better algorithms that are robust under different discretisations and refinements.

This subject could be extended in many directions, some of which will be ad-

dressed in later chapters. We could also look to implement this problem for the full

Navier-Stokes equations, which would then capture the non-linear behaviour that is

hugely important in real life applications of data assimilation in fluid mechanics. The
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necessary theoretical results concerning framing data assimilation of the Navier-Stokes

equations has already been addressed in [24]. Implementing this problem for real life ap-

plications would also involve formulating the problem on approximations of real domains,

as opposed to the torus domain that we have picked for ease in this simple example.

The sampling method can also be improved. If an adjoint to the forward model

were to be implemented, we would be able to calculate the gradient of the observation

operator. This would allow us to include gradient information in the proposal distribu-

tion, as in, for example, the Metropolis adjusted Langevin algorithm (MALA) presented

in section 1.12.2. Moreover, we could also replace the burn-in with a deterministic

method to find an approximation to the state of highest probability density, via an

equivalent Tikhonov regularisation to the smoothing that the prior exerts (see section

1.11). Many of the deterministic methods used for these variational problems also use

the gradient to find the solution, for example the gradient descent or conjugate gradient

methods.

Another alternative, which could reduce the cost of the problem, would be to

replace the forward model with a gPC approximation, as discussed in section 1.1. This

would in all probability work quite well for the size of problem we have considered in

the majority of the numerics in this chapter, where the state space has 100 degrees of

freedom. However, if we were to increase this dimension for practical applications, the

costs would soon become unfeasible, as unlike the MCMC method we have presented

here, gPC approximations suffer from the curse of dimensionality.

In the next chapter, we will consider a very similar scenario in data assimilation

of data observed from a Stokes’ flow system. This time, however, the observations will

be Lagrangian in nature.
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Chapter 3

Lagrangian Data Assimilation

3.1 Motivation

We now consider a similar problem with a different data type informing us about the state

of the velocity field. Hundreds of GPS floaters (which float on the surface of the ocean)

and drifters (which submerge to a given depth at which they are transported by the flow

of the water) are currently distributed throughout the planet’s oceans in an attempt

to better understand these complex dynamical systems. Periodically transmitting their

position, as well as other data concerning salinity and temperature of the water amongst

other things, these Lagrangian tracers create huge banks of data.

Figure 3.1 shows an example of such a data set, in the form of a spaghetti

diagram. We wish to infer, from this data, the entire state of the vector field in question,

just as we did in the Eulerian case. The main difference between these two forms of data,

is that in the Eulerian case, the observation operator is linear, as we are making direct

observations of a linear system. In the case of Lagrangian dynamics, the observation

operator is highly nonlinear. Moreover, the dynamics of the tracers themselves can
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Figure 3.1: Spaghetti diagram of 20-day drifter trajectory segments. Colours give the
mean drift direction (legend in upper-right corner). Taken from [53]

display chaotic behaviour[7]. Herein we will explore the differences between these two

observation operators, and then using the same approach as in the previous chapter, we

will describe Monte Carlo methods with which we can sample from well defined posterior

distributions which give us information about the flow of the dynamical system.

3.2 The Model

The evolution of the vector field in the Lagrangian case mirrors that of the Eulerian

case. The only difference is the way in which we observe this vector field, this time

indirectly through the positions of a set of tracers in the flow. Once we have a weak

solution u to the Stokes problem, we can follow the paths of J particles {zj}Jj=1 with

initial positions at time t = 0 given by {xj}Jj=1, by solving the following set of ordinary

differential equations,

dzj(t)
dt

= u(zj(t), t) (3.1)

zj(0) = xj . (3.2)
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We then observe the particles at K times, {tk}Kk=1. We then define the Lagrangian

observation operator GL to be defined as follows;

GL(u0, f) = {zj(tk)}J,Kj,k=1.

For GL to be well defined we need the paths of these particles to exist and be

unique. We refer to the main result of [26].

Theorem 3.2.1. Let Ω be an open bounded subset of Rd, d = 2, 3, with a suffi-

ciently smooth boundary. Consider u ∈ L∞(0, T ;H(d/2)−1(Ω))
⋂
L2(0, T ;Hd/2(Ω)),

a unique solution of the Navier-Stokes equations with u0 ∈ H(d/2)−1(Ω) and f ∈
L2(0, T ;H(d/2)−1(Ω)). Then the ordinary differential system

X(t) =
∫ t

0
u(X(t), t)dt+X(0), X(0) = a,

has a unique solution X ∈ C([0, t],Rd.

This theorem can trivially be adapted to uniqueness of paths in Stokes flow, and

shows that our operator GL is indeed well defined, providing we have sufficient regularity

of u0 and f . We can now use this to define a likelihood function on u0, conditional on

the noisy observations y, equivalent to Eulerian example in the previous chapter. Once

again, we assume that our observations are noisy, and that f = 0 is known, with

y = GL(u0) + ξ, ξ ∼ N (0,Σ),

for some known covariance matrix Σ. Then the likelihood function is given by

P(y|u0, f) ∝ exp(−1
2
‖GL(u0)− y‖2Σ.
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3.3 The Posterior Distribution

As in the Eulerian case, for the desired posterior distribution to be well defined, we require

the observation operator to be continuous on a set with full measure with respect to the

prior measure. To choose an appropriate prior measure, we must first consider results

concerning bounds on this operator, given in the next section. Our aim is to find an

appropriate prior measure µ0 such that the posterior measure µ is absolutely continuous

with respect to µ0, with Radon-Nikodym derivative given by

dµ

dµ0
= exp

(
−1

2
‖GL(u0)− y‖2Σ

)
. (3.3)

Analogously to the previous chapter on Eulerian data assimilation, we now invoke Bayes’

theorem, giving us the posterior distribution we desire to explore. However, we must

once again place certain conditions on our choice of prior distribution to ensure that the

posterior distribution is absolutely continuous with respect to this choice of prior. As we

did before, we look to the properties of the forward problem, namely of the observation

operator GL.

In chapter 4 we will be considering an Lagrangian observation operator GLN
which is a function of not only the initial condition but also the time dependent forcing

η which is assumed to be unknown. Since the estimates require the same calculation, we

define here the observation operator GL(·, ·) which is a function of the initial condition

and the time dependent forcing f which drives the Stokes equations. We will then, in

this chapter, set GL(u0) = GL(u0, f = known).

3.3.1 Bounds on GL

Using the results from section 1.6 we can now consider estimates on the observation

operator itself.
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Lemma 3.3.1. Assume that u0 ∈ H and that f ∈ C(0, T,Hr) for any r > 0. Then

there exists a constant C independent of u0 and f such that

|GL(u0)| ≤ |z(0)|+ C(‖u0‖+ ‖f‖C(0,T ;Hr)).

Proof. Using the Sobolev embedding theorem and lemma 1.6.2, for 1 < s < 2

|GL(u0)| = |z(t)|

≤ |z(0)|+
∫ t

0
‖u(τ)‖L∞dτ

≤ |z(0)|+ C

∫ t

0
‖u(τ)‖sdτ

≤ |z(0)|+ C

(
1
ts/2
‖u0‖+ ‖f‖C(0,T ;Hr)

)
.

Now we consider the following lemma, which we require to prove that the oper-

ator GL is Lipschitz.

Lemma 3.3.2. Assume that u0, v0 ∈ H l where l ∈ (0, r+2), and that f ∈ C((0, T ), Hr)

for r > 0. Then there exists C such that

|GL(u0)−GL(v0)| ≤ C(‖u‖l, ‖f‖C(0,T ;Hr))(‖u0 − v0‖l + ‖f − g‖C(0,T ;H1/2)).

Proof. Let v(t) be a solution of the Stokes equations (2.4 - 2.5) with initial condition

v0 ∈ H l and driving force g. Let y(t) be the trajectory of the particle initially at a ∈ Ω

and moving under the velocity field v(t) according to the following ODE:

dy

dt
= v(y, t), y(0) = a.

z is as we have previously defined, with respect to u0, f and z(0). We assume without
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loss of generality that z(0) = y(0). Then we have that for 1 < s < 1 + l

|GL(u0)−GL(v0)| = |z(t)− y(t)|

≤ |z(0)− y(0)|+
∫ t

0
|u(z(τ), τ)− v(y(τ), τ)|dτ

≤
∫ t

0
‖Du(·, τ)‖L∞ |z(τ)− y(τ)|dτ

+
∫ t

0
‖u(·, τ)− v(·, τ)‖L∞dτ

≤
∫ t

0
‖u(·, τ)‖1+s|z(τ)− y(τ)|dτ +

∫ t

0
‖u(·, τ)− v(·, τ)‖sdτ

≤
∫ t

0
C
( 1
τ (1+s−l)/2 ‖u0‖l + ‖f‖C([0,T ];Hr)

)
|z(τ)− y(τ)|dτ

+
∫ t

0
C
( 1
τ (s−l)/2 ‖u0 − v0‖l + ‖f − g‖C([0,T ];Hr)

)
dτ.

The singularities here are integrable. Furthermore, using Grönwall’s lemma (lemma

1.6.3) with w(t) = |z(t) − y(t)|, β = C(‖u0‖l + ‖f‖C(0,T ;H1/2)) and α = C(‖u0 −
v0‖l + ‖f − g‖C(0,T ;H1/2)) gives us that

|z(t)− y(t)| ≤ α ≤ α exp
(∫ t

0
β(s)ds

)
≤ C(‖u‖l, ‖f‖C(0,T ;Hr))(‖u0 − v0‖l + ‖f − g‖C(0,T ;H1/2)).

We can now use these bounds on GL to calculate equivalent bounds of GE ,

where f is known.

Corollary 3.3.1. Assume that u0 ∈ H and that f ∈ C(0, T,Hr) for any r > 0. Then

there exists a constant C independent of u0 and f such that

|GL(u0)| ≤ |z(0)|+ C(‖u0‖+ 1).
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Proof. Result from Lemma 3.3.1 with f known.

Corollary 3.3.2. Assume that u0, v0 ∈ H l where l ∈ (0, r + 2), and that f ∈
C((0, T ), Hr) for r > 0. Then there exists C such that

|GL(u0)− GL(v0)| ≤ C(‖u‖l)‖u0 − v0‖l.

Proof. Result from Lemma 3.3.2 with f known.

Using these results, we can make the following assertions.

Corollary 3.3.3. Let µ0 = N (0, δA−α) for α > 1. Then GL is measurable with respect

to µ0, and the posterior measure µ is absolutely continuous with respect to µ0, with

Radon-Nikodym derivative given by (3.3).

Proof. Result follows by corollary 1.10.1, lemma 1.8.1, and corollaries 3.3.1 and 3.3.2.

3.4 Numerical Approximation of the Operator GL

Suppose we now have a weak solution of (2.4-2.5) and we wish to calculate GL(u0), the

Lagrangian observation operator. We assume that we are observing J passive tracers

{zj(t)} in the velocity field, with initial positions {xj}, and observing each of these

tracers noisily at K times {tk}. We now wish to numerically approximate the solutions

to the set of ODEs given by

dzj
dt

= u(zj(t), t) ∀t > 0, (3.4)

zj(0) = xj . (3.5)

We can approximate this by discretizing in time. We choose ∆t � sup{u(x, t), t ∈
R, x ∈ Ω}. Suppose we are calculating the path of a tracer whose initial condition is
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z0, at some time T . We calculate iteratively for 1 ≤ k ≤ T
∆t

z((k + 1)∆t) = z(k∆t) + ∆tu(z(k∆t), k∆t).

This approximation has O(∆t) error. Moreover, since we only have the value of the

field u on a grid on the space, we also incur more error when interpolating these values

to points in the space between grid points. This makes up a significant part of the error

in calculating GL, as we shall show later.

There is also another source of error in approximating the trajectories of La-

grangian tracers in this manner. In order to be able to work with this problem on a

computer, we are required to approximate the infinite dimensional function u by a finite

dimensional vector. Since we only know the value of the velocity field on a grid, we

incur further error through the interpolation of these values to any point in the domain.

As discussed in section 1.14, there are various methods for interpolating the

values of the velocity field on the grid points to any point in the domain. For the

numerics that follow, we choose to forgo the improvement in accuracy that the bicubic

interpolation algorithm provides in favour of the simpler bilinear interpolation, due to

the factor of four increase on the computational cost that it requires.

Now that we can approximate the value of the observation operator G, we can

calculate the likelihood function,

P(y|u0) ∝ exp
(
−1

2
‖G(u0)− y‖2Σ

)
.

We are now ready to use MCMC methods to sample from the well defined posterior

distribution, combining prior knowledge, mathematical model, and observations.
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3.5 General Setup

We once again implement a RWMH sampler as we did in the previous chapter. To recap,

given currently accepted state (initial condition of the vector field) un, we propose v,

where

v = (1− β2)1/2un + βw,

and w ∼ µ0 = N (0, δA−α). With probability

a(u, v) = exp(Φ(un)− Φ(v)),

where Φ(·) = 1
2‖GL(·) − y‖2Σ, un+1 = v. Otherwise un+1 = un. This algorithm gives

us a Markov chain whose invariant distribution is the posterior distribution that we

are interested in. For all of the numerics that follow, the general setup described in

subsection 2.8 still holds.

Moreover, since we have shown Lipschitz continuity of the observation operator

as shown in lemma 3.3.2, theorem 1.12.1 holds, so we can scale β appropriately to give

larger average acceptance probabilities. Furthermore, a time step size of ∆t = 0.01 will

be used throughout all the numerics that follow in this chapter.

3.6 Limitations of the Standard RWMH method

As we did in section 2.9, in this section we aim to show the advantages of the RWMH

posed on function space as opposed to the standard RWMH method which works on

discretized space.

In the following graphs we aim to show this happening in practise. In both

cases, the same data set was taken which consists of 9 Lagrangian particles whose

initial positions are placed on a grid, each of which follow the flow of the velocity field
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and are observed at one time T = 0.1. A draw from the prior was taken as the initial

condition in the data creation process. Markov chains were started with a range of values

of β for both the RWMH and SRWMH method. The average acceptance probabilities

were taken until they had converged sufficiently. This process was repeated for a range

different grid sizes, with ∆u ∈ { 1
10 ,

1
20 ,

1
50 ,

1
100 ,

1
200 ,

1
500

}
. The results are presented in

Figures 3.2 and 3.3.
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Figure 3.2: Average acceptance probabilities for a range of different step sizes β and
grid sizes, SRWMH

Figure 3.2 shows clearly the degeneration of the SRWMH algorithm as the grid

is refined. As the Fourier truncation has more non-zero terms, the average acceptance

probability for a given value of β reduces. This means that as we increase the number

of Fourier modes, we are unable to make such large steps in state space. This means

that we explore the state space slower and the method becomes increasingly inefficient.

In contrast, Figure 3.3 shows the same plots for the RWMH method framed on
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Figure 3.3: Average acceptance probabilities for a range of different step sizes β and
grid sizes, RWMH

function space, whose acceptance probabilities have no dependence on the dimension

of the discretization. This independence is borne out in the results which clearly show

that as the mesh is refined, the average acceptance probabilities stay exactly the same

for a given step size β, allowing us to make large steps in state space even if we have a

very refined grid.

These results are consistent with those in section 2.9 and show exactly why the

MCMC method posed on function space is superior to that which is posed on a problem

which is already discretized.

3.7 Validating the Random Walk Algorithm

In the Eulerian case, we were able to calculate explicitly without sampling error the

distribution that we were trying to characterise due to the linearity of the observation
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operator. In the Lagrangian case we can no longer do this, however we can still check

that the algorithm behaves as we would expect.

Equivalently to Figure 2.23 in subsection 2.10, Figure 3.4 shows how the value of

one particular Fourier mode of the initial condition in the Markov chains with different

starting states all converge to the same distribution, in the case of Lagrangian data. A

large amount of data is used so that we see how the chains quickly converge to the area

of high probability in the state space. The Markov chains appear to converge to a single

value, but actually the posterior is just very concentrated around this value due to the

high volume of data, leading to low levels of uncertainty.
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Figure 3.4: Convergence of Markov chains with different initial states, with Lagrangian
data

As in the Eulerian case, the value of β has no bearing on the posterior distribu-

tion, but merely on the speed of convergence of the Markov chain. We omit numerical

examples of this here, but equivalent results can be seen in section 2.10, in Figures 2.24

and 2.25.
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3.8 Inverse Crimes

As we did in section 2.11, we further test the algorithms by using data created with

different parameters, resolutions, observation noise models, and time step sizes, to ensure

that we are not committing inverse crimes.

In all of the following figures (apart from those that specify a lower resolution)

the data was created using a grid for the vector field of 1000× 1000 points (or 5× 105

complex Fourier modes). The data assimilation algorithm was run with varying numbers

of grid points for the velocity field approximation, running through 16, 100, 196 and

finally 400 points. Figure 3.5 shows that as the number of grid points used in the

velocity field approximation for the algorithm is increased, the marginal distribution

for this particular Fourier mode appears to converge to a limit. (The noise levels and

quantity of data are such that the posterior is not a peaked distribution on the true

Fourier mode).

An in depth discussion of what can happen when there is a mismatch in the

forcing functions for the dynamical system between the data environment and the algo-

rithm for both Eulerian and Lagrangian data can be found in chapter 4, so we shall skip

over this particular area in this section.

Figure 3.6 shows how the posterior changes if we have low noise the data, and

gradually increase the variance of the noise in the likelihood function in the model. As

we increase our uncertainty in the data, the posterior measure converges to the prior

distribution.

Figure 3.7 shows the marginal distributions of one Fourier mode with Lagrangian

data created with a 4 × 4 grid, with a varying number of grid points used in the

assimilation model. The resolution in the algorithm which gets closest to the correct

answer is actually the lowest resolution, with 16 grid points on which the velocity field is
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Figure 3.5: Re(u0,1(t)): Increasing resolution in model, high resolution data, Lagrangian
data.

approximated. This is not surprising given that this is the resolution at which the data

was created.

So in conclusion, we have demonstrated numerically that if we increase the

resolution of the approximation of the velocity field in our algorithm, that the posterior

converges in distribution. We have also presented how various mismatches in data

creation and model used in the algorithm can affect the results.

3.9 Properties of the Posterior Measure

We now consider analogous experiments in the Lagrangian case to those presented

in section 2.12 with Eulerian data. Consider an example where we have 100 evenly

spaced times at which we observe a set of passive tracers, whose initial positions at time

t = 0 are evenly spaced on a grid. Figure 3.8 shows that the chains have converged to
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Figure 3.6: Re(u0,1(t)): Increasing variance in the noise model of the algorithm, low
actual noise, Lagrangian case

approximate Gaussian distributions. Moreover, we once again have posterior consistency

as we increase the number of tracers that we are observing. Unlike the case for Eulerian

data, we cannot verify that these distributions are correct as the non-linearity of the

observation operator causes the posterior to be non-Gaussian. However, the fact that

the chains have converged, and exhibit posterior consistency, strongly suggest that the

algorithm is working well.

Next, we consider an example where we have a fixed number of 25 tracers, whose

initial positions are evenly spaced on a grid. We observe each tracer at an increasing

number of times evenly spaced on the unit interval. Figure 3.9 shows that the marginal

distributions for Re(u0,1) have converged to approximate Gaussian distributions, and

exhibit posterior consistency as the number of temporal observations increases.
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Figure 3.7: Re(u0,1(t)): Increasing resolution in model, low resolution data, Lagrangian
case

3.10 Growth of Data in Time

In the Lagrangian case where we set f ≡ 0, since the velocity field is decaying, we would

expect the passive tracers to slow down to arbitrarily slow speeds in finite time. This

leads us to a theorem regarding passive tracers in Stokes’s flow.

Theorem 3.10.1. Given a weak solution u ∈ H to the Stokes equations (2.4-2.5) with

f = 0, and δ > 0, ∃Tδ s.t for any passive tracer z(t) satisfying the ODE

dz

dt
= u(z(t), t), t > 0,

z(0) = x ∈ Ω,

for any x ∈ Ω, then

|z(Tδ)− z(t)| < δ ∀t > Tδ
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Figure 3.8: Increasing numbers of observations in space, Lagrangian.

Proof. From theorem 2.12.1, we have an exponential bound on

‖u(x, t)‖L∞ < Ce−at,

for some a > 0, as long as t > 1
4νπ2 . So therefore, for Tδ > max

{
1

4νπ2 ,
1
a ln

(
C
aδ

)}
|z(Tδ)− z(t)| =

∣∣∣∣∫ t

Tδ

u(z(s), s)ds
∣∣∣∣

≤
∫ t

Tδ

|u(z(s), s)|ds

< C

∫ t

Tδ

e−asds

= −C
a

[
e−as

]t
Tδ

=
C

a

(
e−aTδ − e−at)

<
C

a
e−aTδ

< δ.
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Figure 3.9: Increasing numbers of observations in space, Lagrangian.

In Figure 3.10, it shows that for Lagrangian observations, the information im-

proves as you take observations further into the future, up to a point, after which the

information stays pretty much the same. This improvement is due to the fact that if we

observe the tracer further in the future, it has had longer to be influenced by (particularly

the low frequency) Fourier modes of the initial condition of the velocity field, allowing it

to accrue more information about them. The information no longer improves once the

position of the tracer is confined within a δ-ball that has a significantly smaller radius

than the variance of the additive noise, which then dominates, or in the case where

forcing is present, where the value the initial condition has only negligible effect on the

current value of the velocity field, as shown in theorem 2.12.3.

Let us consider an initial condition of the velocity field with u0,1 = 1, u2,2 =
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Figure 3.11: Sketch to show confinement of z(t) into a δ-ball
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−0.2, with all other Fourier modes zero. Running the sampler with observations being

made on a grid at one varying time T results in Figures 3.12 and 3.13.
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Figure 3.12: PDFs Of u0,1 For Lagrangian Data, Varying Observation Time, With Only
u0,1 And u2,2 Present

We see in both of these figures that the information for both the high and low

frequency Fourier modes improves as the observation time increases. In the case of

Figure 3.13, this improvement hits a maximum as the influence on the path of the

particle of this Fourier mode becomes insignificant. After around t = 0.3, as it’s value

has reduced to

−0.2× e−0.3∗4∗ν∗π2(22+22) ≈ −0.00175,

the effect of this Fourier mode on the trajectory of the tracer is very small indeed.

However, the information gained from making observations of the tracers about this

mode does not decay, it simply remains at this level, as it has already influenced the

trajectory of the tracer.
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Figure 3.13: PDFs Of u2,2 For Lagrangian Data, Varying Observation Time, With Only
u0,1 And u2,2 Present

The position of the particle remains sensitive to the initial conditions of the

velocity field for all time. This is in stark comparison to Eulerian data.

3.11 Conclusions and Future Directions

By careful analysis of the forward problem, we have been able to formulate a well-

posed Bayesian inverse problem regarding Lagrangian data of the Stokes’ flow dynamical

system. We have shown that the likelihood function is continuous with respect to a

space that has full measure with respect to a specified choice of Gaussian prior measure.

Using this, we have shown how to draw samples from well defined posterior distributions

on function space using the RWMH MCMC sampler. We have then implemented this

algorithm in C, and gained insight into what kind of information is available in Lagrangian

data. We have also shown how the standard RWMH method loses efficiency as the grid
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is refined, and that the method framed on function space does not. We have also verified

the algorithm behaves as we would expect in a range of situations and have shown that

we are mindful of committing inverse crimes.

This chapter demonstrates again our philosophy underlying these methods; the

belief that formulating numerical methods on infinite dimensional spaces and only dis-

cretizing once we choose to implement such a method gives us better algorithms that

are robust under different discretisations and refinements. This time however, we have

demonstrated that the algorithm works in a non-linear data environment where the

solution we are looking for cannot be found via analytical techniques.

This subject could be extended in many directions, some of which will be ad-

dressed in later chapters. We could (similarly to the future work suggestions in the

previous chapter) implement the full Navier-Stokes equations, the MALA algorithm and

deterministic burn-in (requiring the implementation of an adjoint to the forward model

for calculation of the gradient of the observation operator), and gPC approximations of

the forward model.

In the next chapter, we shall consider an extension to chapters 2 and 3 where

we add uncertainty in the model itself, in the form of model error. We will attempt

to recover not only the initial condition of the velocity field but also the space-time

dependant forcing that was present during the entire assimilation window, from both

Eulerian and Lagrangian observations.
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Chapter 4

Data Assimilation of Model Error

4.1 Motivation

The models inherent in oceanography and meteorology are incredibly complex, and are

constantly being refined and updated. As such, reanalysis of data to try to quantify

the differences between computational models and the actual dynamical system are of

great interest to both communities. In thinking about this problem in this chapter we

will consider both data scenarios that we have discussed in the previous two chapters;

Eulerian and Lagrangian.

The method which we set out herein could be used in reanalysis of data sets to

try to learn more about these discrepancies, or model error as they are often termed.

This problem is equivalent, assuming that your model is a reasonable description of the

real world dynamics, to finding an external forcing function to the system.

In the following section, we will analyse what can happen if your model is not

representative of the environment from which your observations are made. More specif-

ically we look at a low dimensional Eulerian problem enabling us to calculate the exact
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posterior distribution as we did in subsection 2.7. We will then go on to show some

results from the algorithms in chapters 2 and 3 with mismatched forcing in algorithmic

model and the actual data environment.

4.2 Mismatched Statistical Model and Data Environment

Suppose that we model our velocity field using model A, with the following equations,

du

dt
+Au = f(t), ∀t > 0 (4.1)

u(0) = u0, (4.2)

but that in fact the dynamical system we are looking at, model B, is governed by the

equations

du

dt
+Au = g(t), ∀t > 0 (4.3)

u(0) = u0, (4.4)

It is important to understand how a discrepancy in the model such as this could affect the

results of the data assimilation algorithm described in chapter 2. For example, suppose

we set f ≡ 0, and g =
∑

k gkφk a constant function in time. Let uA be the solution to

(4.1-4.2), and uB be the solution to (4.3-4.4) with uA(0) = uB(0) = u0 =
∑

k ukφk.

Then they are given by

uA(t) =
∑
k

uk exp(−4νπ2|k|2t)φk,

uB(t) =
∑
k

(
gk

4νπ2|k|2 (1− exp(−4νπ2|k|2t)) + uk exp(−4νπ2|k|2t)
)
φk.

The difference between these two functions is then given by

uB(t)− uA(t) =
∑
k

(
gk

4νπ2|k|2 (1− exp(−4νπ2|k|2t))φk
)
.

121



This will naturally drastically alter both Eulerian and Lagrangian data, depending on the

choice of the {gk}. Let us consider a case with only a finite number of Fourier modes

being non-zero so that we may once again calculate the analytical posterior distribution

as we did in subsection 2.7. Using the same notation as subsection 2.7, we define our

initial condition by letting a1 = 1, b1 = −0.7, a2 = −0.2, and b2 = 0.1. Similarly, to

define the forcing g, we let gk1 = 0.1, hk1 = −0.1, gk2 = 0.05, hk2 = 0.05, and all

other gk, hk = 0, where

g =
∑
k

gk
√

2 sin(2π(k.x)) + hk
√

2 cos(2π(k.x)).

We now look at the analytical posterior distribution if we take observations from this

system and naively use them with the model using equations (4.1-4.2).

Since the field in (4.1-4.2) converges to the steady state

usteady =
∑
k

gk
4νπ2|k|2φk,

but our chosen model expects the velocity field to decay exponentially in each Fourier

mode, we would expect to see a big mismatch in this situation. Let us look at the

posterior distributions when 100 observations are made on a grid at a time t. Figure

4.1 shows how the mean values for the low frequency modes change as we vary the

observation time t. This shows how, due to the forcing, we overestimate the initial

condition of the velocity field. However, as time increase, the prior becomes more and

more dominant and overrides this effect. Figure 4.2 shows the same thing for the higher

frequency modes. The prior becomes dominant sooner in time for the higher frequency

modes. Figure 4.3 shows how the posterior covariance also converges to the prior as

t→∞.

This dominance of the prior as t→∞ is easily explained by looking at the form

of the analytical mean and covariance of the posterior. First we note the behaviour of B
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Figure 4.1: Analytical posterior mean values using model A with data from model B,
low frequency modes, observation time increasing

(the observation matrix) as the observation time increases. Let us denote k = (0, 1)T,

and k′ = (2, 2)T, and the positions of the observation stations {xi}N1 . Let us also define

ck(x) =
√

2 cos(2π(k.x)) and sk(x) =
√

2 sin(2π(k.x)). Since

B =



e−λktsk(x1) k2|k| e−λktck(x1) k2|k| e−λk′ tsk′(x1) k
′
2
|k′| e−λk′ tck′(x1) k

′
2
|k′|

e−λktsk(x1)−k1|k| e−λktck(x1)−k1|k| e−λk′ tsk′(x1)−k
′
1

|k′| e−λk′ tck′(x1)−k
′
1

|k′|

e−λktsk(x2) k2|k| e−λktck(x2) k2|k| e−λk′ tsk′(x2) k
′
2
|k′| e−λk′ tck′(x2) k

′
2
|k′|

e−λktsk(x2)−k1|k| e−λktck(x2)−k1|k| e−λk′ tsk′(x2)−k
′
1

|k′| e−λk′ tck′(x2)−k
′
1

|k′|
...

...
...

...


,

each term is bounded by e−λk′ t, since λk < λk′ . Therefore, B converges exponentially

to the zero matrix as t→∞. With this is in mind, we can see that

Σ−1 =
B∗B

σ2
+ Σ−1

0 −→ Σ−1
0 ,
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Figure 4.2: Analytical posterior mean values using model A with data from model B,
high frequency modes, observation time increasing

and similarly

m =
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗

σ2
y

)
−→ Σ0(Σ−1

0 )m0 = m0,

as t→∞.

A consequence of this is that if we assume that there is no forcing in our system,

no matter how far our observations are from zero, if they are made at a large time t,

our model will return the prior distribution.

The effects of an overestimation of the initial condition in the least squares

solution, and the eventual domination of the prior distribution as the observation time

t increases leaves us the effect seen in Figure 4.1.

Notice that the plots in this graph are still affected by the noise in the observa-

tions. We can remedy this as we did before, by calculating the expectation of the mean
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of posterior. First note that

y = Bx+BF f + η,

where f = (0.1,−0.1, 0.05,−0.05)T and

BF = 

sk(x1)υ k2|k| ck(x1)υ k2|k| sk′(x1)υ′ k
′
2
|k′| ck′(x1)υ′ k

′
2
|k′|

sk(x1)υ−k1|k| ck(x1)υ−k1|k| sk′(x1)υ′ −k
′
1

|k′| ck′(x1)υ′ −k
′
1

|k′|

sk(x2)υ k2|k| ck(x2)υ k2|k| sk′(x2)υ′ k
′
2
|k′| ck′(x2)υ′ k

′
2
|k′|

sk(x2)υ−k1|k| ck(x2)υ−k1|k| sk′(x2)υ′ −k
′
1

|k′| ck′(x2)υ′ −k
′
1

|k′|
...

...
...

...


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where υ = (1− e−λkt) and υ′ = (1− e−λ′kt). Therefore,

E(m) = E
(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗

σ2
y

)
=

(
B∗B

σ2
+ Σ−1

0

)−1(
Σ−1

0 m0 +
B∗

σ2
(Bx+BF f)

)
.

Using this we can produce graphs which show much more clearly what is hap-

pening. Figure 4.4 shows the same behaviour as in Figure 4.1, with the noise removed.
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Figure 4.4: Expectation of analytical posterior mean values using model A with data
from model B, low frequency modes

Using the expectation of the mean of posterior distribution gives us a much better

chance to see what is happening in the high frequencies. Figure 4.5 shows the evolution

of m3(t) and m4(t) on a faster timescale. Bearing in mind that in our example, the

forcing is of the same sign as the initial condition for the low frequency modes and of the

opposite sign for this higher frequency, we can see how both m3 and m4 swap signs very

quickly, reaching a peak, and then decaying as the prior distribution begins to dominate.
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This reinforces the fact that the forcing is dominating our results in comparison to the

initial condition after a relatively short amount of time. Therefore, if our model and our

data are mismatched in terms of their underlying dynamical systems, then our data is

only useful for inferring on the condition of the vector field at times close to the time

of the observation.
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Figure 4.5: Expectation of analytical posterior mean values using model A with data
from model B, high frequency modes

Let us next consider a forcing which is no longer simply a constant and is de-

pendant on time. For example, consider the case when

f = cos (2πt)



0.1

−0.1

0.05

−0.05


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First off we must consider the solution of the following ODE to find the rate of

change of each of the Fourier modes with respect to time,

dak
dt

= −4νπ2|k|2ak + fk(t).

Using the integration factor e4νπ2|k|2t, we obtain

d

dt
(ake4νπ2|k|2t) = e4νπ2|k|2tfk(t) = e4νπ2|k|2t cos(2πt)fk(0).

Integrating both sides gives us

ak(t) = ak(0)e−4νπ2|k|2t + gk(t)e−4νπ2|k|2t,

where, if we set λk = 4νπ2|k|2,

gk(t) =
∫ t

0
eλksfk(s)ds

= −
∫ t

0

λk
2π
eλks sin(2πs)ds+

1
2π

sin(2πt)eλkt

= −
∫ t

0

λ2
k

(2π)2
eλks cos(2πs)ds+

1
2π

sin(2πt)eλkt − λke
λkt

(2π)2
cos(2πt)

=
(

1 +
λ2
k

(2π)2

)−1( 1
2π

sin(2πt)eλkt − λke
λkt

(2π)2
cos(2πt)

)
Therefore, if E(m) =

(
B∗B
σ2 + Σ−1

0

)−1 (
Σ−1

0 m0 + B∗

σ2 (Bx+BF f)
)
, where

f = (0.1,−0.1, 0.05,−0.05)T,

then

BF =



sk(x1)gk(t)e−λkt k2|k| ck(x1)gk(t) k2|k| sk′(x1)gk′(t)
k′2
|k′| ck′(x1)gk′(t)

k′2
|k′|

sk(x1)gk(t)−k1|k| ck(x1)gk(t)−k1|k| sk′(x1)gk′(t)
−k′1
|k′| ck′(x1)gk′(t)

−k′1
|k′|

sk(x2)gk(t) k2|k| ck(x2)gk(t) k2|k| sk′(x2)gk′(t)
k′2
|k′| ck′(x2)gk′(t)

k′2
|k′|

sk(x2)gk(t)−k1|k| ck(x2)gk(t)−k1|k| sk′(x2)gk′(t)
−k′1
|k′| ck′(x2)gk′(t)

−k′1
|k′|

...
...

...
...


.
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Figure 4.6: Analytical posterior mean values using model A with data from model B,
low frequency modes. Forcing dependent on time

Figures 4.6 and 4.7 show how the mean of the analytical posterior varies as a

function of time with data from a system that is forced in this way. Once again, as the

oscillatory nature of the posterior mean shows, the forcing is dominant in the posterior

mean, and we are not inferring accurately on the initial condition of the velocity field.

Notice that this oscillatory nature is not so evident in the high frequency modes, purely

because the prior becomes dominant before the effect can be seen.

We will now consider some results produced using data from a Stokes’ system

with non-zero constant forcing, but with the algorithmic model assuming that there is

no forcing, so that f ≡ 0. We attempt to explain the data arising from a forced model

through the initial condition for an unforced model. Figure 4.8 and Figure 4.9 show the

marginal distributions of one Fourier mode in such a situation, in the case of Eulerian and

Lagrangian data respectively, and where we steadily increase the number of observation
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Figure 4.7: Analytical posterior mean values using model A with data from model B,
high frequency modes. Forcing dependent on time

times. Two things are noteworthy: (i) the posterior tends towards a peaked distribution

as the amount of data increases; (ii) this peak is not located at the true initial condition

(marked with a black line). This incorrect estimate of the initial condition is, of course,

because of the mismatch between model used for the assimilation and for the data

generation. In particular the energy in the posterior on the initial condition is increased

in an attempt to compensate for the model error in the forcing.

What we can conclude from all of this is that if we do not accurately represent

the true dynamics of the system into our model then we run into very serious problems.

Data assimilation is a marriage of data and model, and without high enough quality

of either, our conclusions will be useless. We look to solve this problem by inferring

from our data not only on the initial condition, but also on the force that is driving the

system.
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Figure 4.8: Re(u0,1(t)): Increasing number of observation times, unmatched forcing in
data and model, Eulerian data
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Figure 4.9: Re(u0,1(t)): Increasing number of observation times, unmatched forcing in
data and model, Lagrangian data
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4.3 The Noisy Stokes Equations

We may wish to make sense of the Stokes equations driven by a noise process η:

∂tu− ν4u+∇p = η, ∀(x, t) ∈ T2 × (0,∞) (4.5)

∇.u = 0, ∀t ∈ (0,∞) (4.6)

u(x, 0) = u0(x), x ∈ T2. (4.7)

Alternatively, this can be formulated as an ODE on the Hilbert space H as

follows;

du

dt
+Au = Pη, t > 0 (4.8)

u(0) = u0 ∈ H, (4.9)

From herein we shall abuse notation and denote η = Pη. We let

|η|2 =
∫ T

0
‖η(t)‖2dt, (4.10)

|η|2l =
∫ T

0
‖η(t)‖2l dt, (4.11)

denote the norms on H := L2(0, T,H) and Hl := L2(0, T,H l) respectively.

We now define two operators, GEN and GLN , the Eulerian and Lagrangian ob-

servation operators for the equations (4.5-4.7).

Definition 4.3.1. Suppose that we have initial condition for the velocity field u0 ∈ H
and forcing function η ∈ H. Let u denote the solution with these inputs of the noisy

Stokes equations. Then, given observation station positions {xj}Jj=1 and observation

times {tk}Kk=1, the observation operator GEN is defined to be the vector

GEN (u0, η) = {u(xj , tk)}J,Kj,k=1.
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Definition 4.3.2. Suppose that we have initial condition for the velocity field u0 ∈ H
and forcing function η ∈ H. Let u denote the solution with these inputs of the noisy

Stokes equations. Then, given initial Lagrangian tracer positions {xj}Jj=1, consider the

solutions to the set of ODEs given below;

dzj
dt

= u(zj(t), t)

zj(0) = xj .

Then, given observation times {tk}Kk=1, the observation operator GLN is defined to be

the vector

GLN (u0, η) = {zj(tk)}J,Kj,k=1.

4.4 The Prior Distribution

As in the previous two chapters, we will adopt a Gaussian prior on the initial condition,

namely N (0, δA−α) for some α, δ ∈ R. We wish to choose a prior on the model error

η =
∑

k ηk(t)φk which allows us to similarly control this function’s regularity. Consider

the following infinite dimensional Ornstein-Uhlenbeck (OU) process.

dη

dt
= −Γη +

√
Λ
dβ

dt
, t ∈ [0, T ], (4.12)

where β is a canonical Brownian motion. η(t), for any t ≥ 0, is then a mean-zero

Gaussian random variable, with variance

Eη(t)2 =
Λ
2Γ
.

If we enforce that Λ
2Γ = δA−α, and set η(0) ∼ N (0, δA−α), then we have ensured that

for all times t ≥ 0, η(t) ∼ N (0, δA−α). This is desirable since we already have results

about the regularity of this distribution. Therefore, we can pick the invariant measure

of this SDE as the prior measure on the model error function η.
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Theorem 4.4.1. Let µ0 denote the product measure N (0, δA−α) × χ where χ is the

invariant measure on time valued functions in H of the SDE (4.12) such that for all times

t ≥ 0, η(t) ∼ N (0, δA−α). Suppose α > s + 1, then almost surely for (u0, η) ∼ µ0,

u0 ∈ Hs and η ∈ C([0, T ], Hs).

Proof. Proof mainly comes from lemma 1.8.1, which gives us that u0, η(t) ∈ Hs. Since

the solution to the SDE (4.12) has a continuous solution, and we have shown that

η(t) ∈ Hs for all t ≥ 0, we are done.

Note that you could require different amounts of regularity in u0 and η, and this

is perfectly possible.

4.5 Bounds on Observation Operators

As we did in the two previous chapters, we once again wish to consider bounds on GEN
and GLN to allow us to show that the posterior with Radon-Nikodym derivative

dµ

dµ0
∝ exp

(
−1

2
‖G(u, η)− y‖2Σ

)
(4.13)

is well defined.

4.5.1 Bounds on GEN

Lemma 4.5.1. Consider the noisy Stokes equations (4.5-4.7). Assume that u0 ∈ H

and that η ∈ L2(0, T,Hr) for some r > 0. Then there exists a constant C = C(t0)

independent of u0 and η such that for any s ∈ (1, r + 1]

|GEN (u0, η)| ≤ C (‖u0‖+ ‖η‖L2(0,T ;Hr)

)
provided that mink tk > t0 > 0.
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Proof. The result follows from Lemma 2.5.1, with f = η.

We also later require Lipschitz continuity of this operator to ensure that theorem

1.12.1 holds.

Lemma 4.5.2. Suppose u0, v0 ∈ H, and η, ξ ∈ L2(0, T ;H). Then

|GEN (u0, η)− GEN (v0, ξ)| ≤ C(‖u0 − v0‖+ ‖η − ξ‖L2(0,T ;H)).

Proof. By linearity of GEN , and by lemma 4.5.1,

|GEN (u0, η)− GEN (v0, ξ)| = |GEN (u0 − v0, η − ξ)|

≤ C(‖u0 − v0‖+ ‖η − ξ‖L2(0,T ;H)).

Corollary 4.5.1. Let µ0 be the prior on (u0, η) as described in section 4.4 for α > 1.

Then GEN is measurable with respect to µ0, and the posterior measure µ is absolutely

continuous with respect to µ0, with Radon-Nikodym derivative given by (4.13).

Proof. Result follows by corollary 1.10.1, lemmas 4.4.1, 4.5.1 and 4.5.2.

4.5.2 Bounds on GLN

Lemma 4.5.3. Assume that u0 ∈ H and that η ∈ C(0, T,Hr) for any r > 0. Then

there exists a constant C independent of u0 and f such that

|GLN (u0)| ≤ |z(0)|+ C(‖u0‖+ ‖η‖C(0,T ;Hr)).

Proof. Follows from lemma 3.3.1 with f = η.

We also later require Lipschitz continuity of this operator to ensure that theorem

1.12.1 holds.
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Lemma 4.5.4. Assume that u0, v0 ∈ H l where l ∈ (0, r + 2), and that η, ξ ∈
C((0, T ), Hr). Then there exists C such that

|GLN (u0)− GLN (v0)| ≤ C(‖u‖l, ‖f‖C(0,T ;Hr))(‖u0 − v0‖l + ‖η − ξ‖C(0,T ;H1/2))

Proof. The result follows from lemma 3.3.2.

Corollary 4.5.2. Let µ0 be the prior on (u0, η) as described in section 4.4 for α > 1.

Then GLN is measurable with respect to µ0, and the posterior measure µ is absolutely

continuous with respect to µ0, with Radon-Nikodym derivative given by (4.13).

Proof. Result follows by corollary 1.10.1, lemmas 4.4.1, 4.5.3 and 4.5.4.

4.6 Sampling Model Error

To draw a sample from our prior distribution for the model error function η(x, t) =∑
k ηk(t)φk(x) ∈ H = L2([0, T ], H), we must calculate an approximation of a solution

to the set of ODEs on H given by

dηk
dt

= −γkηk +
√
λk
dβk
dt

,

where the {βk} are iid Brownian motions. We can approximate solutions to this by

discretizing in time,

ηk(t+ ∆t) = e−γk∆tηk(t) +
√
λk

∫ t+∆t

t
e−γk(s−t)dw(s)

= e−γk∆tηk(t) + ξ,

where ξ is a mean-zero Gaussian random variable, with variance

Eξ2 = λ

∫ t+∆t

t
e−2γ(s−t)ds

=
λ

2γ
(1− e−2γ∆t).
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Given a particular instance of η, defined on a discrete set of times {0,∆t, . . . , T −
∆t, T}, we can approximate the vector field u that satisfies (4.8-4.9), using a trapezoidal

approximation of η. That is, if we assume

η(s) = (η(t)− η(t+ ∆t))
(
t+ ∆t− s

∆t

)
+ η(t+ ∆t) s ∈ [t, t+ ∆t],

then each uk is given by the iteration

uk(t+ ∆t) = e−ak∆tuk(t) +
∫ t+∆t

t
e−ak(t+∆t−s)ηk(s)ds,

where ak = 4νπ2|k|2. This integral can be calculated using integration by parts, so that∫ t+∆t

t
e−ak(t+∆t−s)ηk(s)ds =

(
ηn+1
k +

t+ ∆t
∆t

(ηnk − ηn+1
k )

)∫ t+∆t

t
e−ak(t+∆t−s)ds

+
ηn+1
k − ηnk

∆t

∫ t+∆t

t
se−ak(t+∆t−s)ds

=
(
ηn+1
k +

t+ ∆t
∆t

(ηnk − ηn+1
k )

)
I1 +

ηn+1
k − ηnk

∆t
I2,

where

I1 =
1
ak

(1− e−ak∆t),

I2 =
t(1− e−ak∆t) + ∆t− I1

ak
.

We now have the tools we require to draw samples from the prior distribution,

which the posterior is absolutely continuous with respect to. We can also approximate

both the observation operators GEN and GLN , which allows us to calculate likelihoods

of those samples.

4.7 Value of Data in Assimilation in Model Error

After some initial numerics, it became obvious that Eulerian data was not particularly

informative about the value of the model error function η at any given time. This is
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mainly due to the form of the solution map for Stokes flow. The following theorem

formalises this.

Theorem 4.7.1. Suppose our observation operator returns observations at a sequence of

times 0 < t1 ≤ t2 ≤ . . . ≤ tN ≤ T . Then given an initial condition and forcing (u0, η) ∈
H × L2((0, T ), H), there exists an infinite number of alternative η′ ∈ ×L2((0, T ), H)

with η 6= η′ almost everywhere, such that

GE(u0, η
′) = GE(u0, η).

Proof. We assume that we have found a ψ ∈ L2((0, tl−1), H) which is piecewise linear

on each interval (ti1 , ti) for i ∈ {1, . . . , l − 1}, with

ψ(t) =
ti − t
ti − ti−1

bi−1 +
t− ti−1

ti − ti−1
bi ∀t ∈ [ti−1, ti].

We assume that {b0, b1, . . . , bl−1} ⊂ H with b0 chosen arbitrarily, t0 = 0, and that∫ t1

0
e−A(t1−s)ψ(s)ds = 0∫ t2

0
e−A(t2−s)ψ(s)ds = 0∫ t3

0
e−A(t3−s)ψ(s)ds = 0

...∫ tl−1

0
e−A(tl−1−s)ψ(s)ds = 0.

We aim to show that ∃bl ∈ H s.t if ψ is extended so that it is linear on [tl−1, tl) with

ψ(tl) = bl, then ∫ tl

0
e−A(tl−s)ψ(s)ds = 0.
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Therefore we require that∫ tl

0
e−A(tl−s)ψ(s)ds =

∫ tl−1

0
e−A(tl−s)ψ(s)ds+

∫ tl

tl−1

e−A(tl−s)
(

tl − s
tl − tl−1

bl−1

)
ds

+
∫ tl

tl−1

e−A(tl−s)
(
s− tl−1

tl − tl−1
bl
)
ds

= hl +Blb
l.

We calculate the Eigenvalues of Bl:

Blφk =
∫ tl

tl−1

e−A(tl−s)
(
s− tl−1

tl − tl−1
φk

)
ds

=
1

ak(tl − tl−1)

(
tl − tl−1e

−ak(tl−tl−1) − 1− eak(tl−tl−1)

ak

−tl−1(1− e−ak(tl−tl−1))
)
φk

= λkφk.

If we wish to find bl = −B−1
l hl ∈ H, then we need to show that

∑
k

(
hlk
λk

)2

< ∞,

where

hl =
l∑

i=1

∫ ti

ti−1

e−A(tl−s)
(

ti − s
ti − ti−1

)
bi−1ds+

l−1∑
i=1

∫ ti

ti−1

e−A(tl−s)
(
s− ti−1

ti − ti−1

)
bids.

Therefore,

blk = (tl − tl−1)
(
a−1
k (1− e−ak(tl−tl−1))− (tl − tl−1)

)−1

(
l∑

i=1

bi−1
k

ti − ti−1
(a−1
k (e−ak(tl−ti) − e−ak(tl−ti−1))− (ti − ti−1)e−ak(tl−ti−1))

+
l−1∑
i=1

bik
ti − ti−1

((ti − ti−1)e−ak(tl−ti) − a−1
k (e−ak(tl−ti) − e−ak(tl−ti−1)))

)
.
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It now only remains to show that bl ∈ H, where

bl =
∑
k∈K

blkφk

= (tl − tl−1)
(
A−1(I − e−A(tl−tl−1))− (tl − tl−1)

)−1

(
l∑

i=1

bi−1

ti − ti−1
(A−1(e−A(tl−ti) − e−A(tl−ti−1))− (ti − ti−1)e−A(tl−ti−1))

+
l−1∑
i=1

bi

ti − ti−1
((ti − ti−1)e−A(tl−ti) −A−1(e−A(tl−ti) − e−A(tl−ti−1)))

)
.

We do this by bounding |blk|,

|blk| ≤ max
i∈{1,...,l}

{
tl − tl−1

ti − ti−1

}
(

l∑
i=1

|bi−1
k |

∣∣∣∣∣a−1
k (e−ak(tl−ti) − e−ak(tl−ti−1))− (ti − ti−1)e−ak(tl−ti−1)

a−1
k (1− e−ak(tl−tl−1))− (tl − tl−1)

∣∣∣∣∣
+

l−1∑
i=1

|bik|
∣∣∣∣∣(ti − ti−1)e−ak(tl−ti) − a−1

k (e−ak(tl−ti) − e−ak(tl−ti−1))
a−1
k (1− e−ak(tl−tl−1))− (tl − tl−1)

∣∣∣∣∣
)

= C(t1, . . . , tl)

(
|gl1(ak)||bl−1

k |+
l−1∑
i=1

|gi1(ak)||bi−1
k |+ |gi2(ak)||bik|

)
,

where

gi1(x) =
(e−x(tl−ti) − e−x(tl−ti−1))− x(ti − ti−1)e−x(tl−ti−1)

(1− e−x(tl−tl−1))− x(tl − tl−1)

gi2(x) =
(e−x(tl−ti) − e−x(tl−ti−1))− x(ti − ti−1)e−x(tl−ti)

(1− e−x(tl−tl−1))− x(tl − tl−1)
.

The transcendental equation f(x) = (1 − e−x(tl−tl−1)) − x(tl − tl−1) = 0 has only

one solution on R+ since f ′(x) > 0 on R+, and f(0) = 0. Therefore gi1 and gi2 are
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continuous on [mink∈K ak,∞), and

lim
x→∞

gi1(x) = 0 ∀i ∈ {1, . . . , l}

lim
x→∞

gi2(x) = 0 ∀i ∈ {1, . . . , l − 1}.

Therefore gi1 and gi2 are bounded on [mink∈K ak,∞) by a constant independent of k,

but dependent on choice of {t1, . . . , tl}, for the required range of i. Therefore

|blk| ≤ C(t1, . . . , tl)
l−1∑
i=0

|bik|.

Since {bi}l−1
i=0 ⊂ H and the constant C is independent of k, we have shown that

bl = −B−1
l hl ∈ H.

Corollary 4.7.1. If we discretize η in time and truncate the number of Fourier modes

k that we assume are non-zero, and assume that {ηn} is linear between time steps,

and that observations of the vector field are only made at time steps, then there are an

infinite number of discrete {η′n} with ηn 6= η′n almost everywhere, such that

GE(u0, {ηn}) = GE(u0, {η′n}).

Proof. The construction of the proof is identical to that of the previous theorem.

Therefore, Eulerian data is far more informative about the value of

F (tk) =
∫ tk

0
exp(−νA(tk − s))η(s)ds,

where {tk}Kk=1 are the observation times. This is simply the contribution of the forcing

to the solution map of Stokes’ flow. We will demonstrate this in the numerics that

follow.

141



Note that this theorem is not applicable in the Lagrangian case. A Lagrangian

particle’s position at any observation time tk is dependent on it’s initial position, and

the value of the vector field at it’s current position at each point in time for all time.

So any difference in the value of any of the Fourier modes of η for any period of time

with non-zero measure will result in different final position of most Lagrangian particles,

except those particles that happen to lie at the points in the field which are zeros of the

Fourier mode which has been changed. In other words, Lagrangian data is informative

about the value of the model error function for all 0 ≤ t ≤ tK , where tK is the final

observation time. This does, however, make a random walk proposal for the model error

function much harder to accept, as we will go on to explain. We now look to numerical

simulations of Eulerian and Lagrangian data assimilation with model error.

4.8 Properties of the Posterior Measure

4.8.1 Eulerian Data Assimilation With Model Error

In the previous section we showed that In the Eulerian case, parts of the forcing are

unobservable and cannot be determined by the data. To state this precisely, define

F (t2) =
∫ t2

0
exp(−νA(t2 − t1)η(t)dt.

This is the term in the solution map of the Stokes equations which is dependent on the

forcing term η. If the observations are made at times {ti}Ki=1 then the data is informative

about F := {F (tj)}Kj=0, rather than about η itself since infinitely many functions η can

give rise to the same vector F , and therefore to the same velocity field at each of the

observation times. Because of this, we expect that the posterior measure will give much

greater certainty to estimates of F than η.
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This basic analytical fact is manifest in the numerical results which we now

describe. Firstly there are infinitely many functions compatible with the observed data

so that obtaining a converged posterior on η is a computationally arduous task; secondly

the prior measure plays a significant role in weighting the many possible forcing functions

which can explain the data.

As in the non-model error case of chapter 2, we look at a set of experiments where

the observations are made at one hundred evenly spaced times, with the observation

stations evenly spaced on a grid with an increasing number of points. Once again, as can

be seen in Figure 4.10, as we increase the number of observation stations, we are able

to recover the value of any given Fourier mode in the initial condition with increasing

accuracy and certainty as we increase the amount of data. As for all of the results

that follow, a step size of ∆t = 0.01 is used for the model error problems, where we

approximate functions in L2([0, T ], H) by piecewise linear functions, which are linear on

each interval [n∆t, (n+ 1)∆t).
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Figure 4.10: Re(u0,1): Increasing numbers of observations in space, Eulerian Model
Error Case.
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Figure 4.11: Re(η0,1(0.5)): Increasing numbers of observations in space, Eulerian Model
Error Case.

Figures 4.11 and 4.12 show the marginal posterior distributions on Re(η0,1(0.5))

and on Re(F0,1(0.5)) given an increasing number of observation stations. The first

figure shows that, even with a large amount of data the standard deviation about the

posterior mean for Re(η0,1(0.5)) is comparable in magnitude to the posterior mean itself.

In contrast, for Re(F0,1(0.5)) and for a large amount of data, the standard deviation

around the posterior mean is an order of magnitude smaller than the mean value itself.

The data is hence much more informative about F than it is about η.

Figure 4.13 shows an example trace of the value of Re(η0,1(0.5)) in the Markov

chain. Although the chain gives us a decent ballpark estimate of the point-wise value of

the forcing, the trace shows the hallmarks of random walk behaviour, and has certainly

not converged in distribution after the 107 samples that have been calculated here. In

contrast to Figure 4.13, Figure 4.14 shows how well the value of Re(F0,1(0.5)) converges

in distribution in the Markov chain. The whole trace stays within a reasonably tight
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Figure 4.12: Re(F0,1(0.5)): Increasing numbers of observations in space, Eulerian Model
Error Case.

band around the ergodic average, and does not display the random walk behaviour of

Figure 4.13.

Figure 4.15 shows the expectation of the entire function Re(F0,1(t)), given an

increasing number of points in the vector field to be observed. As the number of

observations increases, the expectation of Re(F0,1(t)) nears the true value, given by the

solid line.

If we now look at the posterior mean of the initial condition with a varying

number of observation stations, and compare this to the true initial condition, we get

an error curve as shown in Figure 4.16. This shows that, as the number of observation

stations increases in a sensible way, the posterior mean of the initial condition converges

to the true initial condition.

Similarly, if we look at the L2(0, T ;H)-norm of the difference between the poste-

rior mean of the time-dependent forcing, and the true forcing that created the data, we
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Figure 4.13: Value of Re(η0,1(0.5)) in the Markov chain

get an error curve as shown in Figure 4.17. This shows that as the number of observa-

tion stations increases in a sensible way, that the posterior mean of the time-dependent

forcing converges to the true initial condition. Notice however, that the convergence is

slower in this quantity than in that given in Figure 4.18.

Figure 4.18 shows the L2(0, T ;H)-norm of the difference between the posterior

mean of F =
∫ t

0 exp(−ak(t−s))η(s)ds and the F created from the forcing present in the

creation of the data. Again, this shows that as we increase the number of observation

stations, the posterior mean converges to the true answer. The convergence of this

quantity is much quicker than that of η, but slower than that of u0.

We now consider a similar experiment in which we keep the number of paths or

observation stations constant, on a 20 by 20 grid, and increase the number of evenly

spaced observation times, the last of which being T = 1. Figure 4.19 shows the marginal

distributions on one particular Fourier mode of the initial condition converging to a Dirac

measure on the true value as the number of observation times increases.
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Figure 4.14: Value of Re(F0,1(0.5)) in the Markov chain

Similarly to Figure 4.11, Figure 4.20 again shows that due to theorem 4.7.1, our

Markov chain will not be able to ascertain the value of the forcing at any one point

in time. Due to this, in Figure 4.21 we once again look to the marginal distribution

of F =
∫ tk

0 e−A(tk−s)η(s)ds in the Markov chain. As the number of observation times

increases, the marginal distribution of Re(F0,1(0.5)) appears to be converging to an

increasingly peaked distribution on the true value.

Figure 4.22 shows the expectation of the entire function Re(F0,1(t)) with an

increasing number of observation times. As the number of observations in time increases,

the expectation comes closer to the true function that created the data.
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Figure 4.16: ‖E(u) − uAct‖L2 : Increasing numbers of observations in space, Eulerian
Model Error Case. uAct is actual initial condition that created the data.
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Figure 4.17: ‖E(η)− ηAct‖L2(0,T ;H): Increasing numbers of observations in space, Eu-
lerian Model Error Case. ηAct is the actual forcing functions that created the data.
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Figure 4.18: ‖E(F ) − FAct‖L2(0,T ;H) : Increasing numbers of observations in space,
Eulerian Model Error Case. FAct is the actual forcing functions that created the data.
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Figure 4.19: Re(u0,1): Increasing numbers of observations in time, Eulerian Model Error
Case.
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Figure 4.20: Re(η0,1(0.5)): Increasing numbers of observations in time, Eulerian Model
Error Case.
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Figure 4.21: Re(F0,1(0.5)): Increasing numbers of observations in time, Eulerian Model
Error Case.
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Figure 4.22: Re(F0,1(t)): Increasing numbers of observations in time, Eulerian Model
Error Case.
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We may also be interested in understanding how well we are able to characterise

high frequency (in space) forcing from Eulerian data. In the following experiment, all

Fourier modes in the forcing that created the data were set to zero, apart from two high

frequency modes for k = (5, 5) and k = (4, 5). An increasing number of observation

stations were placed on a grid, with observations made at 100 evenly spaced times up

to T = 1. In the following graphs, the top graph in each pair (Figures 4.23, 4.25

and 4.27) shows the mean forcing function (an average over all the realisations in the

Markov chain) for particular Fourier modes, as a function of time. The actual values

that were present in the forcing that created the data are indicated by the solid line.

The bottom graph in each pair (Figures 4.24, 4.26 and 4.28) shows the absolute value

of the difference between the mean function and the true value that created the data.
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Figure 4.23: Re(η0,1(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, high frequency forcing

In each Fourier mode, the more observations in space that are assimilated, the

better the estimate. Moreover, the variance in these estimates (omitted here) reduces
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Figure 4.24: Re(η0,1(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, high frequency forcing
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Figure 4.25: Re(η4,5(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, high frequency forcing

153



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

|E
(R

e(
4,

5(t)
)) 

 tr
ut

h(
t)|

 

 

9 Observations
36 Observations
100 Observations
900 Observations

Figure 4.26: Re(η4,5(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, high frequency forcing
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Figure 4.27: Re(η5,5(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, high frequency forcing
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Figure 4.28: Re(η5,5(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, high frequency forcing

as the amount of information increases, leading to peaked distributions on the forcing

function which created the data.

Note that high frequency modes require more spacial observations to be able

to make accurate estimates than the low frequency modes. This is simply due to the

fact that with few spacial observations, no matter how many observations we have in

time, our information about the high frequency Fourier modes is under-determined, and

aliasing leads to a great deal of uncertainty about this modes.

So far we have only considered examples where the model error forcing that

created the data is constant in time. In the following experiment we take a draw from

the model error prior as the forcing function that is used in the creation of the data.

This means that we have non-zero forcing in all of the Fourier modes, and this value is

constantly changing at each time step also.

Similarly to the last experiment we present pairs of graphs where the first (Figures
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4.29 and 4.33) shows the estimates (with varying numbers of spatial observations with a

fixed number of 100 observations in time) of the forcing function for a particular Fourier

mode, along with the actual forcing function that created the data. In the second graph

in each pair (Figures 4.30 and 4.30) the absolute value of the difference between the

estimates and the function that created the data are plotted.
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Figure 4.29: Re(η0,1(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, forcing function taken from prior

These graphs show that as we increase the number of spatial observations, the

estimates of the forcing functions converge to the function which created the data.

Similarly more spatial observations are required before we get good estimates of the

values of the high frequency Fourier modes.

4.8.2 Lagrangian Data Assimilation With Model Error

The Lagrangian equivalent of the model error problem is much harder to sample from in

comparison with the Eulerian case. This is due to the fact that the position of a passive
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Figure 4.30: Re(η0,1(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, forcing function taken from prior
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Figure 4.31: Re(η2,2(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, forcing function taken from prior
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Figure 4.32: Re(η2,2(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, forcing function taken from prior
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Figure 4.33: Re(η5,5(t)): Increasing numbers of observations in space, Eulerian Model
Error Case, forcing function taken from prior

158



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

Time t

|E
(R

e(
5,

5(t)
)) 

 tr
ut

h(
t)|

 

 
9 Observations
36 Observations
100 Observations
900 Observations

Figure 4.34: Re(η5,5(t)): Absolute value of the difference between the mean and truth,
Eulerian Model Error Case, forcing function taken from prior

tracer is dependent upon the entire history of the vector field up to the observation time.

Moreover, a small change in the forcing function can result in the small displacement of

hyperbolic points in the flow, which in turn can drastically alter the trajectory of one or

more tracers. This makes it hard to move in the Lagrangian model error state space. As

a consequence a simple random walk proposal is highly unlikely to be accepted. Indeed,

this was borne out in our initial results, which showed that even after very large amounts

of samples, the Markov chains were far from converged, as the value of β in the proposal

(6.9) that is required to give reasonable acceptance probabilities was simply too small

to allow efficient exploration of the state space in a reasonable time.

One way to tackle this is to alter the likelihood to allow freer exploration of the

state space. The data was created with observational noise with variance σ2I, but if

we were to increase the size of variance σ2 used in the likelihood, then the acceptance

probabilities increase, allowing larger steps in the proposal to be accepted more of the
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time.

The results that follow in this section use data that was created with σ2 = 10−4,

but use a covariance operator of σ̂2I in the likelihood, with σ̂2 = 25 so that

P(y|u0, f) ∝ exp
(
− 1

50
‖GL(u0, f)− y‖

)
.

We will show that, despite the huge size of σ̂σ , it is possible to obtain reasonable estimates

of the true forcing and initial condition. In particular, for large data sets, the posterior

mean of these functions is close to the true values which generated the data. However,

because σ̂
σ is large, the variance around the mean is much larger than in previous sections

where σ̂ = σ.

Equivalently to the Eulerian case, we first consider the scenario where we have

100 equally spaced observation times up to time T = 1, at which we observe the passive

tracers, whose initial positions are given on a grid with an increasing number of points.

Figure 4.35 shows how the marginal distributions on Re(u0,1(0)) change as we increase

the number of tracers to be observed. This figure indicates that as the number of spatial

observations is increased in a sensible way, the marginal distribution on this particular

Fourier mode is converging to an increasingly peaked distribution on the true value that

created the data.

Figure 4.36 shows how the marginal distributions on Re(η0,1(0.5)) changes as we

increase the number of paths to be observed. In comparison to the Eulerian case, we are

able to determine much more about the point-wise value of the forcing function, here

using the idea of inflated observational noise variance in the statistical model. Notice

that, as in the Eulerian case, the uncertainty in the point-wise value of the forcing is far

greater than that for the initial condition of the dynamical system.

Figure 4.37 shows distributions of Re(F0,1(0.5)) and demonstrates convergence

to a sharply peaked distribution on the true value that created the data in the limit of
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Figure 4.35: Re(u0,1): Increasing numbers of observations in space, Lagrangian Model
Error Case.

large data sets. The uncertainty in this quantity is less than for the point-wise value of

the forcing, as in the Eulerian case, but the discrepancy is considerably less than in the

Eulerian case.

Figure 4.38 shows the expectation of the entire function Re(F0,1(t)), given an

increasing number of points in the vector field to be observed. As the number of paths

to be observed increases, the approximation does improve in places. However, since

we altered the likelihood to make it possible to sample from this distribution, this also

vastly increased the variance in each of the marginal distributions as there is relatively

more influence from the prior. Therefore the expectation of this function does not tell

the whole story. This picture does show us however that it is certainly possible to get

ballpark estimates for these functions given Lagrangian data.

We now consider a scenario in which we have a fixed number of 400 paths whose

initial conditions are on a 20 by 20 grid. We observe these paths on an increasing number
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Figure 4.36: Re(η0,1(0.5)): Increasing numbers of observations in space, Lagrangian
Model Error Case.

of evenly spaced observation times, the last of which is made at T = 1. The marginal

distributions of Re(u0,1) as shown in Figure 4.39 show that as we increase the number

of observation times, we converge to an increasingly peaked distribution on the true

value that created the data.

Figure 4.40 shows the marginal distributions on Re(η0,1(0.5)) as we increase the

number of temporal observations. As we accrue more information, we can be more

certain about the value of this quantity which created the data.

Figure 4.41 shows that as we increase the number of observation times, we are

able to recover better information about the true value of Re(F0,1(0.5)) that created

the data.

And finally, Figure 4.42 shows the expectation of the entire function Re(F0,1(t)),

given an increasing number of observation times. Once again, the fits are not fantastic

to the true values that created the data, but the variances of the marginal distributions
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Figure 4.37: Re(F0,1(0.5)): Increasing numbers of observations in space, Lagrangian
Model Error Case.

of the value of this function for each time are very large. It does certainly gives us a

decent indicator as to what the forcing present in the system may be however.

4.9 Conclusions

By careful analysis of the forward problem, we have been able to formulate a well-posed

Bayesian inverse problem regarding Eulerian and Lagrangian data of the Stokes’ flow

dynamical system, with model error. We have shown that the likelihood function is

continuous with respect to a space that has full measure with respect to a specified

choice of Gaussian prior measure. Using this, we have shown how to draw samples from

well defined posterior distributions on function space using the RWMH MCMC sampler.

We have then implemented this algorithm in C, and gained insight into what kind of

information is available in Eulerian and Lagrangian data regarding the forcing in the

system. We have also verified the algorithm behaves as we would expect in a range of
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Figure 4.38: Re(F0,1(t)): Increasing numbers of observations in space, Lagrangian
Model Error Case.

situations in the limit of a large amount of data.

This chapter demonstrates again our philosophy underlying these methods; the

belief that formulating numerical methods on infinite dimensional spaces and only dis-

cretizing once we choose to implement such a method gives us better algorithms that

are robust under different discretisations and refinements.

The future directions suggested in sections 2.13 and 3.11 also hold here, with

the addition of some others. Since we now have a framework with which to quantify the

difference between the dynamical system of interest and the model on our computer,

we should in theory be able to attempt to assimilate data which comes from fluid

dynamical systems in the real world, for instance the oceans. Lagrangian float data is

readily available on the internet, and by naively placing this data in the framework we

have described, we should be able to recovery the nonlinear behaviour of the system

through the model error term. The viscosity of the ocean is, in comparison with the
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Figure 4.39: Re(u0,1): Increasing numbers of observations in time, Lagrangian Model
Error Case.

contribution from the advection term in the full Navier-Stokes equations, very small.

Assimilating this data in this way should mean that the model error term we recover

will mainly describe that advection, which would be an interesting task to undertake.

To do this accurately, however, we would first need to tackle the problem of being

able to explore the Lagrangian model error state-space without altering the covariance in

the likelihood function. Since one of the main advantages of MCMC, other than being

able to characterise non-Gaussian distributions, is to be able to accurately quantify

uncertainty, it is important not to distort the distribution in this way. Otherwise one

might as well implement other variational methods instead.

In the next section, we will briefly consider how the methods we have consider

in chapters 3 and 4 and particularly chapter 2, can be built into a filtering framework.
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Figure 4.40: Re(η0,1(0.5)): Increasing numbers of observations in time, Lagrangian
Model Error Case.
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Figure 4.41: Re(F0,1(0.5)): Increasing numbers of observations in time, Lagrangian
Model Error Case.
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Figure 4.42: Re(F0,1(t)): Increasing numbers of observations in time, Lagrangian Model
Error Case.
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Chapter 5

Filtering in Data Assimilation

5.1 Motivation

In many applications, particularly in weather forecasting, our data does not arrive at one

time. We may wish to take our current best guess as to what the state of the system

is, and then as the data comes in, we may wish to be able to improve that guess via

Bayesian inference using that data. This then becomes our next best guess until more

data comes in. This online analysis of data in real time is crucial to making regular

accurate forecasts. This is referred to as filtering, as opposed to the method of using all

of the data in one go, which is termed smoothing, of which we have demonstrated one

approach in chapters 2-4. The approach that we have taken so far in these chapters is

termed offline data assimilation or reanalysis.

In this chapter, we will briefly explain how we might go about applying the

concepts we have discussed to a filtering algorithm in the scenario of Eulerian data

assimilation with no model error. We will also look at filtering using the fact that in

the Eulerian case of data assimilation in Stokes’ flow we are able to explicitly determine
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the Gaussian posterior at each step of the filtering. For the purposes of this chapter,

we will assume that there is no stochastic forcing of the system, and that f ≡ 0 in the

governing Stokes’ flow equations (2.4)-(2.5).

5.2 Sequential Sampling

Firstly, we must think about the data scenario that we are intending to perform filtering

on. We divide the time line into intervals, with data about each time interval being

made available as we reach the end of that time interval. Each interval starts at a time

Tk and ends at Tk+1. For each iteration of the filtering algorithm, we will have a prior

distribution (which is our best guess) on the value of the velocity field at the time Tk.

We will then perform data assimilation as described before in chapter 2 or 3, with the

only difference being that we now introduce a non-zero mean for our prior distribution

on uk, the state of the velocity field at time Tk, which we shall denote mk.

In the Eulerian case, we know that the posterior will be Gaussian, so we can

characterise this distribution completely from the mean and covariance operator. In this

case, given mean and covariance at a time Tk, we can calculate how this distribution

would behave when pushed forward to time Tk+1 in Stokes’ flow. This then gives us the

prior distribution for the next iteration of the filtering process.

In the case that we have a non-linear observation operator, the posterior will not

be Gaussian. However, in certain scenarios, the distribution will be close to Gaussian,

and in others it is simply the best approximation that we can easily use. We make the

approximation to a Gaussian, and then similarly evolve this distribution up to time Tk+1.

The main thing that has changed in this setup, apart from it’s iterative nature,

is the fact that we now have a non-zero mean for our prior distribution. We need

to consider how we might go about sampling from this new distribution, which has
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Radon-Nikodym derivative given by

dµ(u)
dµ0

= exp(−Φ(u)), µ0 ∼ N (m, C),

where Φ(·) = 1
2‖G(·) − y‖. If we are to use the same proposal scheme as we have

previously, so that

v = (1− β2)1/2u+ βξ, ξ ∼ N (0, C)

then the acceptance probabilities are given by

a(v, u) = exp(Φ(u)− Φ(v) + 〈C−1/2m, C−1/2(v − u)〉.

This follows from the following informal calculation.

Proposal state: v = (1 + β2)
1
2u+ βC 1

2 ξ, ξ ∼ N (0, I), β ∈ (0, 1].

Target measure density:

π(u) = exp(−Φ(u)) exp(
1
2
〈(u−m),L(u−m)〉)

= exp(−Φ(u)) exp
(
−1

2
|C− 1

2 (u−m)|2
)
.

Transition kernel: q(u, v) = exp
(
− 1

2β2 |C− 1
2 (v − (1− β2)

1
2u)|2

)
.

Let π(u)q(u, v) = exp(−Φ(u))A(u, v). Then,

−2 log(A) = |C−1/2(u−m)|2 +
1
β2
|C−1/2

(
v − (1− β2)1/2u

)
|2

= |C−1/2u|2 +
1
β2
|C−1/2

(
v − (1− β2)1/2u

)
|2 + |C−1/2m|2

−2〈C−1/2m, C−1/2u〉

=
1
β2
|C− 1

2 v|2 +
1
β2
|C− 1

2u|2 − 2(1− β2)
1
2

β2
〈C− 1

2u, C− 1
2 v〉

+|C−1/2m|2 − 2〈C−1/2m, C−1/2u〉,

Therefore the acceptance probabilities are given by

a(v, u) = exp(Φ(u)− Φ(v) + 〈C−1/2m, C−1/2(v − u)〉).
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Since the acceptance probability contains terms which would be infinite on function

space, this method is not well-defined on function spaces and would lose efficiency as

the mesh is refined.

Alternatively, we could sample w = u0 − m. Therefore the Radon-Nikodym

derivative is given by

dµ(w)
dµ0

= exp(−Φ(w +m)), µ0 ∼ N (0, C),

where the prior is now on w,not on u0 = m+w. If we let our proposal for wn+1, given

currently accepted state wn, be equal to

wn+1 = (1− β2)1/2wn + βξ, ξ ∼ N (0, C),

then the acceptance probabilities are given by

a(wn+1, wn) = exp(Φ(wn +m)− Φ(wn+1 +m)),

by a very similar argument to those shown in section 1.12.1. This method is far superior

to the one which we previously described, as the acceptance probabilities are independent

of the discretisation used, and the method is well defined on function space. This is the

much more efficient choice for our sampling method.

The idea of this sequential sampler is, on each time interval, to approximate the

posterior measure on the initial condition of that section by a Gaussian measure, and

then push this measure forwards in time to create a prior measure on the value of the

velocity field at the beginning of the next time interval. So far we have only considered

updating the mean of the Gaussian measure. We will now set out how we could also

push forwards the covariance operator. Consider the following system:

du

dt
+Au = 0, u(0) ∼ C(m,Σ).
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Since u(t) = e−Atu(0), therefore

Eu(t) = e−AtEu(0) = e−Atm.

Similarly,

E(u(t)− e−Atm)(u(t)− e−Atm)T =

Ee−Atu(0)u(0)Te−At − e−AtmmTe−At =

Ee−At(u(0)u(0)T −mmT)e−At =

Ee−AtΣe−At.

So if we run the sampler on a given section that starts at time Ti and finishes at time

Ti+1, we will keep a note of the mean and variance of the Fourier modes, which we

denote by mi and Σi respectively. Then the Gaussian approximation of ui = u(·, Ti)
is ui ∼ N (mi,Σi). We then push this forward to give us a prior distribution on ui+1

given by µi+1 ∼ N (e−A(Ti+1−Ti)mi, e
−A(Ti+1−Ti)Σie

−A(Ti+1−Ti)).

We shall now compare three different sequential samplers. With the first (SS1),

we shall apply exactly the same prior on each section, namely µi = N (0,A−α), so that

no information is passed forwards to the next section. We would expect this sampler

not to work too well.

The second sampler (SS2) will update the mean of the prior, but not the covari-

ance operator. Therefore, the prior for each section is given by

µi = N (e−A(Ti−Ti−1)mi−1,A−α)

.

The third (SS3) will update the mean in the same fashion, and approximate

the covariance operator as follows. We will approximate the covariance operator by a
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diagonal matrix. That is, in each section, we will calculate the variance of each Fourier

mode, and put these into a diagonal matrix, Σi−1. Then our prior distribution on ui is

given by µi = N (e−A(Ti−Ti−1)mi−1, e
−A(Ti−Ti−1)Σie

−A(Ti−Ti−1)).

The following figures show both the values of Fourier coefficients that we are

trying to recover (blue crosses), and the error which we made in their estimation (red

crosses).

Figures 5.1(a), 5.1(c) and 5.1(e) below are virtually identical, as with only one

section there is no update of the prior, and so the experiments are all the same. Similarly,

Figures 5.1(b), 5.1(d) and 5.1(f) are also the same, being the first section of a two section

run. Each of these figures is made with the same prior distribution and with the same

data, meaning their results differ only because of the use of a different set of random

numbers.

Figures 5.2(a), 5.2(c) and 5.2(e) show the results of the 2nd section, with varying

updates on the prior distribution of the initial condition of the section, u1 = u(·, 0.5).

For 5.2(a) and 5.2(c), which do not update the covariance matrix as 5.2(e) does, we

see that although the red crosses lie below the blue crosses for the first two values of

|k|, the errors quickly become far larger as |k| increases, comparatively to the value of

the Fourier coefficients we are trying to recover.

However, in 5.2(e), the errors now decay in the same way as the Fourier coef-

ficients that we are trying to recover. The red crosses are also slightly lower than the

blue crosses for at least the first 5 values of |k|, which is significant on this logarithmic

scale. Figures 5.2(b), 5.2(d) and 5.2(f) are once again very similar as they are the first

section of a 5 section sequential sampler.

Figures 5.2(a), 5.2(c) and 5.2(e) show the errors in the final section of the 5

section sequential sampler. As was shown in Figures 5.2(a), 5.2(c) and 5.2(e), updating
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Figure 5.1: Results of different filtering approaches

174



0 0.5 1 1.5 2 2.5 3 3.5 4
−400

−350

−300

−250

−200

−150

−100

−50

0

log(|k|)

lo
g(

|u
k|)

Section2/2, Error=0.6127, Relative Error=0.8783

 

 
U0k
Error

(a) SS1, 2 Sections, 2nd Section, Fourier
Mode Errors

0 0.5 1 1.5 2 2.5 3 3.5 4
−12

−10

−8

−6

−4

−2

0

2

log(|k|)

lo
g(

|u
k|)

Section1/5, Error=1.4865, Relative Error=0.7399

 

 
U0k
Error

(b) SS1, 5 Sections, 1st Section, Fourier
Mode Errors

0 0.5 1 1.5 2 2.5 3 3.5 4
−400

−350

−300

−250

−200

−150

−100

−50

0

log(|k|)

lo
g(

|u
k|)

Section2/2, Error=0.4086, Relative Error=0.5857

 

 
U0k
Error

(c) SS2, 2 Sections, 2nd Section, Fourier
Mode Errors

0 0.5 1 1.5 2 2.5 3 3.5 4
−12

−10

−8

−6

−4

−2

0

2

log(|k|)

lo
g(

|u
k|)

Section1/5, Error=1.3137, Relative Error=0.6538

 

 
U0k
Error

(d) SS2, 5 Sections, 1st Section, Fourier
Mode Errors

0 0.5 1 1.5 2 2.5 3
−400

−350

−300

−250

−200

−150

−100

−50

0

log(|k|)

lo
g(

|u
k|)

Section2/2, Error=0.3114, Relative Error=0.4463

 

 
U0k
Error

(e) SS3, 2 Sections, 2nd Section, Fourier
Mode Errors

0 0.5 1 1.5 2 2.5 3 3.5 4
−12

−10

−8

−6

−4

−2

0

2

log(|k|)

lo
g(

|u
k|)

Section1/5, Error=0.4178, Relative Error=0.8394

 

 
U0k
Error

(f) SS3, 5 Sections, 1st Section, Fourier
Mode Errors

Figure 5.2: Results of different filtering approaches
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the covariance matrix and the mean makes a huge difference to the quality of the results.

Figures 5.2(b), 5.2(d) and 5.2(f) show plots of the errors for each section in a

20 section sequential sampler. In each plot, the red line shows the L2-error. The blue

line denotes the relative error, that is

‖Error‖L2

‖ui‖L2

.

There is no consistency in the way the errors in Figures 5.2(b) and 5.2(d) change through

time. However, interestingly the relative error appears to converge to a single value in

Figure 5.2(f). This is not altogether surprising, as earlier plots showed that the errors

appear to decay in the same way as the Fourier modes themselves.

In summary we can conclude that updating the mean and approximating the

covariance operator as a diagonal matrix is well worthwhile for very little computational

effort. There is no doubt that approximating the full covariance matrix would give

further improvements.

5.3 Analytical Posteriors in Eulerian Sequential Sampling

We can also apply the concepts of subsection 2.7 to the case of Eulerian sequential

sampling. To recap, in each section, starting at time Tk and ending at Tk+1, we

consider the observations in that time interval only. Incorporating the prior distribution

µk0 on uk, the state of the velocity field at time Tk, and the data, we arrive at a Gaussian

distribution µk on uk ∼ N (mk,Σk). Since in the case of Eulerian data, our observation

operator is linear and therefore the posterior is Gaussian, there is no need to approximate

this posterior as we have done previously in the Lagrangian case.

We can then “push-forward” this posterior distribution in time using the dy-

namics of the model, to arrive at a prior distribution πk+1
0 on uk+1, the state of the
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Figure 5.3: Results of different filtering approaches
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vector field at time Tk+1. Using (2.7-2.8) we can calculate analytically the posterior

distributions explicitly for each section in the sequence.

In the following results, each of these posterior distributions has been “pushed

back” to become distributions on the initial condition of the velocity field. Let us

consider a situation where we have 25 observation stations in space, making 1000 ob-

servations over 10 units of time. Suppose now we break these data sets into 100 equally

sized sections, and apply a sequential algorithm as previously described. We can now

look at the analytical posteriors on the initial condition as a function of the amount

of data that has been considered. Let mn, Σn denote the nth analytical mean and

covariance respectively. That is, the posterior distribution on the initial condition given

the information up to t = n
10 .
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Figure 5.4: Convergence of mn to the analytical mean of the posterior using the whole
data set

Figures 5.4 and 5.5 show how as more information is included, the analytical
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posterior distributions converge to the analytical posterior distribution of the whole data

set. Also included here are exactly the same plots for the algorithm implemented previ-

ously with the covariance matrix approximated by a diagonal matrix. As the covariance

matrices in this particular example are very strongly diagonally dominated, the red and

blue plots are almost indistinguishable. Both of these error curves hit the floor of ma-

chine epsilon. Note here that these results, even if were able to calculate the analytic

posteriors, would not be mirrored in the Lagrangian case. The non-linear nature of the

problem means that with each Gaussian approximation we would create further errors.
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5.4 Conclusions

In this chapter, we have very briefly introduced a way in which the smoothing methods

described in chapters 2-4 could be adapted into a filtering algorithm.

However, current computational limits dictate that these methods cannot be

currently used in the context which these methods are often used - atmospheric fore-

casting. The forward models in these cases are far more complex than the simple linear

example we have been looking at so far, and to run this forward model enough times

to have a converged chain in a short enough time that the forecast is still relevant is

simply not possible yet. This is not to say that this may not become possible with more

powerful computers in the future. When/if this ever happens, then this approach may

become relevant to people who currently are interested in filtering methods, and may

be worth addressing again.

This chapter concludes our analysis of data assimilation problems involving noisy

observations of Stokes’ flow. In the next chapter we introduce another data assimilation

problem with applications in the biomedical sciences.
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Chapter 6

A Data Assimilation Problem in

Shape Registration

6.1 Motivation

There are many applications of shape registration, the process of comparing two shapes,

particularly in the biomedical sciences. For example, after completing an antenatal

ultrasound scan, you might wish to check whether the shape of the foetus’ organs show

traits which are common in foeti with certain congenital conditions. This would first

involve segmentation of the image to isolate that organ’s boundary, and then matching

that shape against a library of organ shapes of prime examples of those congenital

conditions. At this point, we need a measure on how “far apart” two shapes are.

In this chapter, we will first define this problem in the framework of a minimisa-

tion problem over solutions of a PDE. We will then show how this minimisation problem

can be translated into a data assimilation problem on function space. At this point, we

will be able to utilise the data assimilation framework that we have introduced in previous
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chapters to compute numerical results which incorporate estimates of uncertainty.

The use of flow fields to describe deformation of shapes is a commonly used

method [8]. However other techniques, such as elastic matching [29, 67, 85], and spline

methods[62] also exist.

The method that we will describe herein relates closely to the Lagrangian data

assimilation application addressed in chapter 3, in the sense that we are trying to find a

flow field which has advected one curve into another, guide by noisy observations of the

final curve. Thus we construct a very similar approach, once again framed on function

space. We go on to prove results regarding the forward problem which then allow us

to frame the ill-posed inverse problem as a well-posed Bayesian inverse problem with

well-defined posterior measures for which we have already demonstrated algorithms with

which we are able to draw samples. We will then go on to present numerical results

from the algorithm.

6.2 Equations of motion for the curve matching problem

We derive the equations of motion for curves in the plane acted on by geodesics in the

diffeomorphism group. We parametrise the curve as a continuous function q from a

space S (such as the circle, S1) into R2 (all of this can be easily extended to surfaces

in R3 which is a problem which provides many applications in medicine, for example)

i.e., q ∈ C0(S1,R2). The motion of the curve is written as q(s, t), where s ∈ S is the

parameter around the curve, and t ∈ [0, 1] is the time parameter. We wish to find the

geodesic that takes the “template” curve ΓA (parametrised by qA(s)) to the “target”

curve ΓB (parametrised by qB(s)). However, we do not wish to enforce that any specific
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point qA(s) gets mapped to any specific point on ΓB, so the boundary conditions are

q(s, 0) = qA(η(s)), q(s, 1) = qB(s), (6.1)

where η ∈ Diff+(S), the orientation-preserving subgroup of the diffeomorphism group

Diff(S) on S. We shall minimise over all reparametrisations η to obtain a parameter-

independent description of the curves. This is equivalent to finding geodesics on closed

components of C0(S,R2)/Diff+(S), in particular the component Emb(S)1/Diff(S),

often referred to as “shape space”. However, it is more convenient computationally to

work with the unreduced functions q, as we shall do here.

Following the methodology of [57, 37, 79] we constrain the motion of the curve

q(s, t) to the action of diffeomorphisms by requiring that

∂

∂t
q(s, t) = u(q(s, t), t) (6.2)

where u(x, t) is a time-parametrised family of vector fields on R2. This guarantees that

the topology of the curve is preserved (i.e. there are no overlaps or cavitations). If the

boundary conditions 6.1 are satisfied, we say that u describes a path between ΓA and

ΓB. We select a function space B for vector fields, and define the distance along the

path as ∫ 1

0

1
2
‖u‖2B dt. (6.3)

For simplicity we assume that B is a Hilbert space and that there exists an operator A

such that

‖u‖2B = 〈u,Au〉L2 .

The shortest path between ΓA and ΓB is defined by minimising (6.3) over u

and η subject to (6.2) and the boundary conditions (6.1). See [40] chapter 2 for other

1Space of smooth maps between S and R2 which are homeomorphisms onto their images
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examples of how to tackle optimisation problems with PDE constraints. To obtain

the equations of motion, we introduce Lagrange multipliers p(s, t) (which we call the

“momentum”) to enforce (6.2), and seek extrema of the action

S =
∫ 1

0

1
2
‖u‖2B + 〈p, q̇ − u(q)〉 dt.

We obtain the weak form of the equations of motion by variational calculus. Define δ

to be such that for a functional L,

δL[φ] = lim
ε→0

=
L[φ+ εδφ]− L[φ]

ε
,

where δφ is an arbitrary test function from the domain of L. Then δL is the Gâteux

derivative of L. Applying this definition to S we get that

δS = δ

∫ 1

0

1
2
‖u‖2B + 〈p, q̇ − u(q)〉 dt,

=
∫ 1

0
〈δu,Au〉L2 + 〈δp, q̇ − u(q)〉+ 〈p, δq̇ − δu(q)−∇u(q) · δq〉 dt,

=
∫ 1

0
〈δu,Au〉L2 − 〈p, δu(q)〉L2 + 〈δp, q̇ − u(q)〉

+〈−ṗ− (∇u(q))T p, δq〉 dt+ [〈p, δq〉]10,

At time t = 1, δq = 0, since the boundary condition for q is fixed. At time t = 0,

δq = δqA ◦ η =
∂qA

∂s
◦ ηδη =

∂q

∂s
|t=0

ν ◦ η
∂η
∂s

.

Here δη = ν ◦ η, where ν is a vector field on S (see [41] for a review of how to perform

variational calculus on Lie groups such as Diff(S1)). The boundary term becomes

0 =

〈
p|t=1,

∂q

∂s

ν ◦ η
∂η
∂s

〉
=
〈
p|t=1 ◦ η−1 · ∂q

∂s
◦ η−1|t=0, ν(s)

〉
, (6.4)

for an arbitrary test function ν(s). As discussed in [21], the quantity p · ∂q/∂s is a con-

served quantity of the dynamics (since the action principle is invariant under reparametri-

sations), and hence we obtain

p · ∂q
∂s

= 0, ∀t ∈ [0, 1].
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The condition states that the momentum p is normal to the shape, and guarantees that

we have obtained the minimum over all reparametrisations.

This all leads to the equations of motion in weak form:

〈δu,Au〉L2 − 〈p, δu(q)〉L2 = 0, (6.5)∫ 1

0

〈
δp,

∂q

∂t
− u(q)

〉
dt = 0, (6.6)∫ 1

0

〈
p,
∂δq

∂t
− (∇u(q))δq

〉
dt = 0, (6.7)

where δp and δq are space-time test functions, with

w, u ∈ B, p, δp ∈ L2, q, δq ∈ H1.

These equations can be solved numerically using the method described in [21]. We

define the mapping Ψ as

q|t=1 = Ψ(p|t=0, q|t=0),

where p and q satisfy equations (6.5-6.7), and we seek the solution (p0, η) of

qB(η(s)) = Ψ(p0n, q
A),

where p0 is the normal component of p and n is the normal to the curve, which guar-

antees the condition

p(s, 0) · ∂q
A

∂s
(s) = 0,

which in turn guarantees that we have obtained the minimum over all reparametrisations.

The problem of finding geodesics between ΓA and ΓB can be solved as a shooting

problem for q in which one has to find initial conditions for the normal component of p

such that the end condition for q at time t = 1 is satisfied.

In the case in which one has only observed a finite number of points on qB (e.g.

when qB is obtained from a segmentation of a medical image), it is not convenient to
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compute with this reparametrised condition. However, since the reparametrisation oper-

ation commutes with the forward model (see [22]), we can apply the reparametrisation

first, choosing

q(s, 0) = qA(η−1(s)).

We construct η from a vector field ν(s) on S, so that

∂

∂t
χ(s, t) = ν(χ(s, t)) = ν ◦ χ, χ(s, 0) = s, η(s) = χ(s, 1).

This is to preserve the ordering of the points on S under the reparametrisation. It is then

necessary to choose a transformation of p such that (6.5) holds for the reparametrisation

(p, q) 7→ (p̄, q̄) where q̄ = q ◦ η.

This transformation can easily be obtained by writing the formula for ū:

〈w,Au〉 = 〈p, w(q)〉,

= 〈p, w(q̄ ◦ η)〉,

=
〈
p ◦ η∂η

∂s
◦ η, w(q̄)

〉
,

= 〈p̄, w(q̄)〉,

= 〈w,Aū〉,

where w ∈ B is an arbitrary test function. This gives us the weak form of p̄, given by

〈p̄, γ〉L2 = 〈p, γ ◦ η−1〉L2 , ∀w ∈ B.

We write the reparametrisation operator (which does not change the velocity fields and

hence does not change the flow map) as

(p̄, q̄) = R(p, q, ν).

Hence to find the optimum path over all reparametrisations, we solve

qB = Ψ ◦ R(p0n, q
A, ν).
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The normal component of p0 then characterises the shape of the target curve ΓB relative

to the curve ΓA, whilst the generator variable ν merely describes the reparametrisation

of the target curve which is obtained at the minimum.

6.3 Prior Distribution on (p0, ν)

As in the previous chapters, we will pick prior distributions on the unknowns to enforce

regularity conditions. In these other examples, a mean zero Gaussian prior was chosen

with covariance operator δA−α = δ(−P∆)−α where P is the Leray projector onto

divergence-free spaces. This was adequate in this context, as we defined our fields to be

(among other things) mean zero, meaning that we did not have to consider the variance

for the constant Fourier mode.

This is not the case in the scenario presented in this chapter, where our un-

known functions are also only one dimensional, and where both the momentum and the

reparametrisation can have a constant term in their Fourier expansions. Therefore we

need to consider another choice of covariance operator, which is defined for frequency

k = 0. With this in mind, let us consider the Helmholtz operator

H = `I −∆,

where ` ∈ R defines the length scale. This is a positive definite operator with the same

smoothing properties as the Stokes operator. However, unlike the Stokes operator it’s

inverse is well-defined on constant functions.

Lemma 6.3.1. Functions drawn from N (0, (−∆)−α) and N (0,H−α) have the same

regularity properties. In particular u ∈ Hs if s < α− 1
2 in one dimension.

Proof. Proof by measure equivalence, given by corollary 1.9.1.
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The length scale parameter ` ∈ R+ allows us to control at which scale the

smoothing properties of the Laplacian take effect. With a larger value of `, a larger

value of |k| is required before the effect of the Laplacian becomes dominant. Likewise,

as `→ 0, H → −∆, meaning that the Laplacian is dominant on all scales. The choice

of this value, however, does not affect the overall regularity of samples drawn from the

distribution N (0,H−α).

6.4 The Observational Noise Model

As we have previously shown in the thesis, we assume that observations y of the quantity

of interest are noisy in nature, satisfying:

y = G(p0, ν) + ξ, ξ ∼ N (0,Σ),

where Σ is assumed to be known, and where G is defined to be the observation operator

given by

G(p0, ν) =
{

Ψ ◦ R (p0n, q
A(si), ν

)}n
i=1

This allows us to compute the likelihood that y was observed with a given (p0, ν):

P(y|p0, ν) ∝ exp
(
−1

2
‖G(p0, ν)− y‖2Σ

)
,

where ‖x‖2Σ := xTΣ−1x is the covariance weighted norm. We now have all the compo-

nents that we require to define the posterior distribution on (p0, ν).

6.5 The Posterior Distribution

By Bayes law the Radon-Nikodym derivative of the posterior with respect to the prior,

assuming µ is µ0-measurable, is given by a function proportional to the likelihood.
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That is, in our case, the measure with Radon-Nikodym derivative, assuming µ is µ0-

measurable, given by

dµ(p0, ν)
dµ0

∝ exp
(
−1

2
‖y − G(p0, ν)‖2Σ

)
. (6.8)

We now need to consider for what values of α do samples from the prior Gaussian

distribution µ0 with covariance operator C = H−α have sufficient regularity to ensure

that µ = P(p0, ν|y) is measurable with respect to µ0 = P(p0, ν). This require analysis

of the forward problem, which we will undertake in the next section.

6.5.1 Properties of the Observation Operator

In this section we define the observation operator for Ψ ◦ R(p0n, q
Aν), and prove that

it is global Lipschitz in p0 and ν.

When the curve is observed from a segmentation from a grey scale image (for

example), the observed data is an ordered list of points {qi}ni=1. We seek (p0, ν) such

that

Ψ ◦ R (p0n, q
A(si), ν

)
= qi, i = 1, . . . , n,

with {si}ni=1 is a monotonic and distinct sequence of points in S. This guarantees to

preserve the ordering since the curve is mapped by a diffeomorphism. Hence we define

the observation operator G : L2 ×H3 by

G(p0, ν) =


Ψ ◦ R (p0n, q

A(s1), ν
)

...

Ψ ◦ R (p0n, q
A(sn), ν

)

 .

To show that G is Lipschitz, we first prove existence, uniqueness and Lipschitz continuity

for the maps Ψ and R. This is then used to show that the observation operator is

Lipschitz continuous with respect to the normal component p0 of the initial conditions
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p and the generator variable ν. For an arbitrary u ∈ B, we define the time-t flow map

φt : R2 → R2 of u, as the solution of the differential equation

∂

∂t
φt(x) = u(φt(x), t), φ0(x) = x.

First we state two lemmas which show that if B is sufficiently smooth, then the flow

map is a diffeomorphism with smooth inverse, and that the flow map is Lipschitz. We

define the norm

‖u‖1,T =
(∫ T

0
‖u‖B dt

)
.

Lemma 6.5.1. If k ≥ 1 and B is embedded in Ck0 (Ω,Rk), then, for all flows u ∈
L1([0, T ],Ω), Φ, the corresponding flow map, is k-times differentiable. Moreover, there

exists constants C such that for all u ∈ L1([0, T ],Ω),

sup
t∈[0,T ]

‖φt‖Ck ≤ CeC‖u‖1,T , sup
t∈[0,T ]

‖φ−1
t ‖Ck ≤ CeC‖u‖1,T .

Proof. See lemmas 7 and 9 in appendix C of [77].

Lemma 6.5.2. Assume that B is continuously embedded in Ck0 (Ω). Let φt and φ′t be

the time-t flow maps for u and u′ respectively, where u, u′ ∈ L2([0, T ], B). Then, for

t ≤ T we have

‖ (φt − φ′t) ‖Ck−1 ≤ C‖u− u′‖1,teC(‖u‖1,t+‖u′‖1,t).

Proof. See lemma 11 in Appendix C of [77].

First we prove existence and uniqueness for the equations (6.5-6.7).

Theorem 6.5.1 (Existence and uniqueness of solutions). Let B be continuously em-

bedded into C1
0 . Given initial conditions p0 ∈ L2, q0 ∈ H1, equations (6.5-6.7) have a

unique solution for all times t > 0.
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Proof. The proof follows the techniques developed in [77].

For any u ∈ L2([0, T ], B) (not necessarily satisfying equation (6.5)), and chosen

initial conditions p|t=0 = p0, q|t=0 = q0, we can write the solutions of equations (6.6-

6.7) as

q = φt ◦ q0, p =
((∇φ−1

t

) ◦ q) · p0.

This means that estimates of p and q can be written entirely in terms of estimates of

φt.

For u ∈ L2([0, T ], B), we define the function Ω : B → B by

Ω(u) = u−
∫
S
pG(x− q) ds,

When Ω(u) = 0 for all t < T then we have a solution of equations (6.5-6.7).

First we show that Ω maps B into B.

‖Ω(u)‖B ≤ sup
‖w‖B=1

〈
u−

∫
pG(x− q) ds, w

〉
B

= sup
‖w‖B=1

(〈u,w〉B − 〈p, w(q)〉L2)

≤ sup
‖w‖B=1

(‖u‖B‖w‖B + ‖p‖L2C‖w‖∞)

≤ sup
‖w‖B=1

(‖u‖B‖w‖B + ‖p‖L2C‖w‖B)

= ‖u‖B + C‖p‖L2

= ‖u‖B + C
∥∥(∇φ−1

t

) ◦ q · p0

∥∥
L2

≤ ‖u‖B + C
∥∥∇φ−1

t

∥∥
∞ ‖p0‖L2

≤ ‖u‖B + CeC‖u‖1,T ‖p0‖L2 ,

where we have used lemma 6.5.1. Hence, the B-norm of Ω is bounded provided that

p0 ∈ L2.
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To show that the solution exists and is unique, we show that Ω(u) is a contraction

mapping in B. For u and u′ in B, we define φt and φ′t as the time-t flow maps of u and

u′ respectively. Furthermore, we obtain p, q and p′, q′ from φt and φ′t respectively. We

write

Ω(u)− Ω(u′) = u− u′ −
∫
S

(p− p′)G(x− q) ds+
∫
S
p′
(
G(x− q)−G(x− q′)) ds.

Then

‖Ω(u)− Ω(u′)‖B ≤ sup
‖w‖B=1

〈
w, u− u′ −

∫
S

(p− p′)G(x− q) ds

+
∫
S
p′
(
G(x− q)−G(x− q′)) ds

〉
B

= sup
‖w‖B=1

(
〈w, u− u′〉B +

〈
Aw,

∫
S

(p− p′)G(x− q) ds
〉
L2

+
〈
Aw,

∫
S
p′
(
G(x− q)−G(x− q′)) ds

〉
L2

)
= sup

‖w‖B=1

(〈w, u− u′〉B + 〈p− p′, w(q)〉L2

+〈p′, w(q)− w(q′)〉L2

)
≤ sup

‖w‖B=1

(‖w‖B‖u− u′‖B + ‖p− p′‖L2C‖w‖∞

+‖p′‖L2C‖∇w‖∞‖q − q′‖L2

)
≤ sup

‖w‖B=1

(‖w‖B‖u− u′‖B + ‖p− p′‖L2C‖w‖B

+‖p′‖L2C‖w‖B‖q − q′‖L2

)
≤ ‖u− u′‖B + C‖p− p′‖L2 + C‖p′‖L2‖q − q′‖L2 .

It remains to find bounds for ‖p− p′‖L2 and ‖q − q′‖L2 .

For the bounds on q − q′ we have

‖q − q′‖L2 = ‖φt(q0)− φ′t(q0)‖L2

≤ C‖u− u′‖1,teC(‖u‖1,t+‖u′‖1,t)T ,
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where we have used lemma 6.5.2. To bound p− p′ we have

‖p− p′‖L2 =
∥∥∥((∇φ−1

t

) ◦ q − (∇φ′−1
t

)
◦ q′
)
· p0

∥∥∥
L2

≤ C‖u− u′‖1,teC(‖u‖1,t+‖u′‖1,t)T ‖p0‖L2 .

Hence we have

‖Ω(u)− Ω(u′)‖1,T ≤ C‖u− u′‖1,T eCT (‖u‖1,t+‖u′‖1,t),

where the constants C only depend on ‖q0‖L2 and ‖p0‖L2 . Hence, Ω is a contraction

mapping in B for all T sufficiently small.

Next we prove that there is in fact a unique solution for all T <∞. To do this,

we define T0 to be the largest value such that ΩT has a unique fixed point uT for all

T < T0. Aiming for a contradiction, we assume that T0 <∞.

Choose T < T0, and ε > 0. Given u′ ∈ L2([0, ε], B), we define v ∈ L2([0, T +

ε], B) by

v(x, t) =

 uT (x, t) t < T

v(x, t− T ) t > T

The proof of a unique solution for t < T + ε can be obtained using the same fixed

point argument, provided that ε < ε0 where ε0 is a function of ‖q‖L2 and ‖p‖L2 at time

T . These themselves can be bounded by a function of ‖u‖1,T multiplied by the initial

values ‖q0‖L2 and ‖p0‖L2 respectively. However, since ‖u‖2B is conserved along solution

trajectories (it is the conserved Hamiltonian), this means that ε0 can be uniformly

bounded for T < T0, hence a contradiction. This means that a unique solution exists

for all t.

Theorem 6.5.2. We fix the initial conditions (template) for qA ∈ C1. Let B be con-

tinuously embedded into C2
0 . Let (p̄0, q̄0) = R(p0, q

A, ν) and (p̄′0, q̄
′
0) = R(p′0, q

A, ν ′).
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Then let (u, q, p) and (u′, q′, p′) be solutions to equations (6.5-6.7) with initial condi-

tions p̄0 ∈ L2 and p̄′0 ∈ L2 respectively. Then, at time t = 1, there exists a constant C

which depends on ‖q̄0‖∞,‖q̄′0‖∞, ‖p̄0‖∞, ‖p̄′0‖∞ only, such that

‖q − q′‖∞ ≤ C
(‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖∞

)
,

and hence Ψ is Lipschitz continuous.

Proof. To show that the solution depends continuously on the initial conditions for p,

consider two solutions (q, p, u) and (q′, p′, u′) with initial conditions p̄0 and p̄′0 for p

respectively, with initial conditions q̄0 and q̄′0 for q. At time t the difference between u

and u′ in B is

‖u− u′‖B =
∥∥∥∥∫ p(s, t)G(x− q(s, t)) ds−

∫
p′(s, t)G(x− q′(s, t)) ds

∥∥∥∥
B

≤ sup
|w|=1

〈∫
p(s, t)G(x− q(s, t)) ds−

∫
p′(s, t)G(x− q′(s, t)) ds, w

〉
≤ sup

|w|=1

(〈p, w(q)〉 − 〈p′, w(q′)〉)
≤ sup

|w|=1

(〈p− p′, w(q)〉+ 〈p′, w(q)− w(q′)〉)
≤ sup

|w|=1

(‖p− p′‖L2‖w(q)‖L2 + ‖p′‖L2‖w(q)− w(q′)‖L2

)
≤ sup

|w|=1

(‖p− p′‖L2C‖w‖∞ + ‖p′‖L2C‖∇w‖∞‖q − q′‖L2

)
≤ sup

|w|=1

(‖p− p′‖L2C‖w‖B + ‖p′‖L2C‖w‖B‖q − q′‖L2

)
= C‖p− p′‖L2 + C‖p′‖L2‖q − q′‖L2

= C‖ (∇φ−1
t ◦ q

) · p̄0 −
(
∇φ′−1

t ◦ q′
)
· p̄′0‖L2

+C‖∇φ′−1
t ◦ q′ · p̄′0‖L2‖φt ◦ q̄0 − φ′t ◦ q̄′0‖L2
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= C‖ (∇φ−1
t ◦ q

) · (p̄0 − p̄′0) +
((∇φ−1

t ◦ q
)− (∇φ′−1

t ◦ q′
))
· p̄′0‖L2

+C‖∇φ′−1
t ◦ q′ · p̄′0‖L2‖φt ◦ q̄0 − φ′t ◦ q̄0 + φ′t ◦ q̄0 − φ′t ◦ q̄′0‖L2

= C‖ (∇φ−1
t ◦ q

) · (p̄0 − p̄′0)

+
((∇φ−1

t ◦ q
)− (∇φ−1

t ◦ q′
)

+
(∇φ−1

t ◦ q′
)− (∇φ′−1

t ◦ q′
))
· p̄′0‖L2

+C‖∇φ′−1
t ◦ q′ · p̄′0‖L2‖φt ◦ q̄0 − φ′t ◦ q̄0 + φ′t ◦ q̄0 − φ′t ◦ q̄′0‖L2

≤ C‖∇φ−1
t ‖∞‖p̄0 − p̄′0‖L2 +

(
‖φ−1

t ‖C2‖q − q′‖L2 + ‖φ−1
t − φ′−1

t ‖C1

)
‖p̄′0‖L2

+C‖∇φ′−1
t ‖∞‖p̄′0‖L2

(‖φt − φ′t‖∞ + ‖φ′t‖C1‖q̄0 − q̄′0‖L2

)
≤ C‖∇φ−1

t ‖∞‖p̄0 − p̄′0‖L2 +
(‖φ−1

t ‖C2(‖φt − φ′t‖∞ + ‖φ′t‖C1‖q̄0 − q̄′0‖L2)

+‖φ−1
t − φ′−1

t ‖C1

)
‖p̄′0‖L2 + C‖∇φ′−1

t ‖∞‖p̄′0‖L2

(‖φt − φ′t‖∞
+‖φ′t‖C1‖q̄0 − q̄′0‖L2

)
≤ C

(‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖L2 + ‖u− u′‖1,T
)
,

by using lemmas 6.5.1 and 6.5.2 with k = 2. Grönwall’s lemma implies that

‖u− u′‖B ≤ C
(‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖L2

)
,

Then the ∞-norm distance between q and q′ at time T is

‖q − q′‖∞ = ‖φt ◦ q̄0 − φ′t ◦ q̄′0‖∞

= ‖φt ◦ q̄0 − φ′t ◦ q̄0 + φ′t ◦ q̄0 − φ′t ◦ q̄′0‖∞

≤ ‖φt − φ′t‖∞ + ‖φ′t‖C1‖q̄0 − q̄′0‖∞

≤ C(‖u− u′‖1,T + ‖q̄0 − q̄′0‖∞)

≤ C
(‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖L2 + ‖q̄0 − q̄′0‖∞

)
≤ C

(‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖∞
)
.
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Lemma 6.5.3. Let D be continuously embedded in C1(S,R), and the initial template

parametrisation be qA ∈ C1(S,R2). Then for ν, ν ′ ∈ D and p0, p
′
0 ∈ L2(S,R), there

exists a constant C dependent only on ‖ν‖D, ‖ν ′‖D, ‖p0‖L2 , ‖p′0‖L2 and ‖qA‖C1 , and

where (p̄0, q̄0) = R(p0, q
A, ν) and (p̄0

′, q̄0
′) = R(p′0, q

A, ν ′),

‖p̄0 − p̄′0‖L2 + ‖q̄0 − q̄′0‖∞ ≤ C(‖p0 − p′0‖L2 + ‖ν − ν ′‖D).

Hence R is Lipschitz continuous.

Proof. We first attempt to find a bound for ‖q̄0− q̄′0‖∞. The reparametrisation formula

for q is:

q̄ = q ◦ η,

where q̄ is the reparametrised q. Using lemma 6.5.2 with k = 1, we get that

‖q̄0 − q̄′0‖∞ = ‖qA ◦ η − qA ◦ η′‖∞

≤ ‖qA‖C1‖η − η′‖∞

≤ C‖qA‖C1‖ν − ν ′‖1,1

= C‖qA‖C1‖ν − ν ′‖D,

since ν, ν ′ are constant in time. We now attempt to bound ‖p̄0−p̄′0‖L2 . The reparametri-

sation formula for p is defined weakly:

〈p̄, γ〉L2 = 〈p, γ ◦ η−1〉L2 ,

for all vector-valued functions γ : S1 7→ R2.
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Hence, to bound |p̄− p̄′|:

‖p̄− p̄′‖L2 = sup
‖γ‖L2=1

〈p̄− p̄′, γ〉L2

= sup
‖γ‖L2=1

(〈p, γ ◦ η−1〉L2 − 〈p′, γ ◦ (η′)−1〉L2

)
= sup

‖γ‖L2=1

(〈p− p′, γ ◦ η−1〉L2 + 〈p′, γ ◦ η−1 − γ ◦ (η′)−1〉L2

)
≤ sup

‖γ‖L2=1

(‖p− p′‖L2‖γ ◦ η−1‖L2 + ‖p′‖L2‖γ ◦ η−1 − γ ◦ (η′)−1‖L2

)
= sup

‖γ‖L2=1

(
‖p− p′‖L2

√∫
S1

(γ ◦ η−1)2 ds

+‖p′‖L2

√∫
S1

(γ ◦ η−1 − γ ◦ (η′)−1)2 ds

)

= sup
‖γ‖L2=1

(
‖p− p′‖L2

√∫
S1

(γ(s′))2
∂η

∂s′
(s′) ds′

+‖p′‖L2

√∫
S1

(γ ◦ η−1)2 − 2γ ◦ η−1γ ◦ (η′)−1 + (γ ◦ (η′)−1)2 ds

)

= sup
‖γ‖L2=1

(
‖p− p′‖L2

√∫
S1

(γ(s′))2
∂η

∂s′
(s′) ds′

+‖p′‖L2

(∫
S1

(γ)2 ∂η

∂s′
ds′ − 2

∫
S1

γ
(
γ ◦ (η′)−1 ◦ η) ∂η

∂s′
ds′

+(γ)2∂η
′

∂s′
ds′
)1/2

)

≤ sup
‖γ‖L2=1

(
‖p− p′‖L2

√∫
S1

(γ(s′))2
∂η

∂s′
(s′) ds′

+‖p′‖L2

(
‖γ‖2L2

∥∥∥∥∂η∂s
∥∥∥∥
L2

+ 2‖γ‖L2‖γ ◦ ((η′)−1 ◦ η)‖L2

∥∥∥∥∂η∂s
∥∥∥∥
L2

+‖γ‖2L2

∥∥∥∥∂η′∂s
∥∥∥∥
L2

)

)1/2)
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≤ sup
‖γ‖L2=1

(
‖p− p′‖L2

√∫
S1

(γ(s′))2
∂η

∂s′
(s′) ds′

+‖p′‖L2

(
‖γ‖2L2

∥∥∥∥∂η∂s
∥∥∥∥
L2

+ 2‖γ‖2L2

∥∥∥∥ ∂∂s((η′)−1 ◦ η)
∥∥∥∥
L2

∥∥∥∥∂η∂s
∥∥∥∥
L2

+‖γ‖2L2

∥∥∥∥∂η′∂s
∥∥∥∥
L2

)1/2)

≤ ‖p− p′‖L2

√∥∥∥∥∂η∂s
∥∥∥∥
L2

+‖p′‖L2

(∥∥∥∥∂η∂s
∥∥∥∥
L2

+ 2
∥∥∥∥ ∂∂s((η′)−1 ◦ η)

∥∥∥∥
L2

∥∥∥∥∂η∂s
∥∥∥∥
L2

+
∥∥∥∥∂η′∂s

∥∥∥∥
L2

)1/2

.

To bound ((η′)−1 ◦ η), we note that this map can be obtained by first applying the

time-1 flow map of ν, and then the time-1 flow map of −ν ′. An application of lemma

6.5.1 gives

‖((η′)−1 ◦ η)‖Ck ≤ C‖ν − ν ′‖D,

where C depends only on ‖ν‖D. Moreover, since

‖η‖C1 ≤ C‖ν‖D,

the result follows.

Theorem 6.5.3. Let B be continuously embedded in C2
0 , and D be continuously em-

bedded in C1
0 . Then for p0 ∈ L2 and ν ∈ D, the observation operator G is Lipschitz

continuous.

Proof. The observation operator is the composition of three Lipschitz continuous func-

tions, R (by lemma 6.5.3, Ψ (by lemma 6.5.2, and the projection

q →


q(s1)

...

q(sn)

 .
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Corollary 6.5.1. Let µ0(p0, ν) = N (0, δ1H−α1
1 ) ×N (0, δ2H−α2

2 ) for α1 >
1
2 , α2 > 2,

δ1, δ2 6= 0, and where Hi = (`iI − ∆) where `i ∈ R+ for i ∈ {1, 2}. Then G is

measurable with respect to µ0, and the posterior measure µ is absolutely continuous

with respect to µ0, with Radon-Nikodym derivative given by (6.8).

Proof. Result follows by theorems 1.10.2 and 1.8.1, lemmas 1.8.1, 6.3.1, 6.5.1 and

theorem 6.5.3.

6.6 RWMH with Deterministic Burn-In

Using the results in the previous section, we are now able to use our RWMH method

as previously described in section 1.12.2 to sample from well-defined posterior measures

on function spaces, conditioned on our observations of a shape.

One problem with this particular application, however, is that the forward model

is more expensive computationally than the simple linear PDE model of Stokes flow.

This means that, in particular, the usual burn-in period where we start the chain at zero

(which will usually be in the tales of the distribution of interest) and iterate until we

feel the chain has entered stationarity, is also rather drawn out and expensive.

To combat this, deterministic methods can be utilised to start the chain closer

to the region of state space which has higher probability density. In particular, we

might want to solve the Tikhonov regularisation problem which relates to maximising

the probability density of the posterior measure. That is finding the solution to:

min
p0∈L2,ν∈H2

L(p0, ν) = min
p0∈L2,ν∈H2

1
2
‖G(p0, ν)− y‖2Σ +

1
2
‖(p0, ν)‖2µ0

where ‖(·, ·)‖µ0 is the equivalent penalty term to that induced in the posterior mea-

sure by the choice of prior measure µ0, or the Cameron-Martin norm corresponding to
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µ0. For more details on the relationship between the Bayesian approach and Tikhonov

regularisation, see section 1.11. In particular, if (as is the case for our purposes)

µ0(p0, ν) = N (0, δ1H−α1)×N (0, δ2H−α2), then

‖(p0, ν)‖2µ0
=

∑
k

δ1|pk|2(`1 − |k|2)α1 + δ2|νk|2(`2 − |k|2)α2

Various hill-climbing methods can be used to try to find local minima of this

quantity. Most of these methods incorporate gradient information of some type to

attempt to search for the minima in appropriate directions. These methods include

steepest descent and conjugate gradient among others.

The method that we will utilise in our numerics is called the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method[16, 71]. This method uses the gradient information

from the last two states in the chain to approximate a Hessian matrix, which is then used

to choose an appropriate direction in which to search for the local minimum. When the

value of ∇L falls below a given threshold the algorithm is assumed to have converged

and terminates. In more detail (adapted from [81]):

1: From an initial guess x0 and an approximate Hessian matrix B0 the following steps

are repeated until x converges to the solution.

2: while |∇L(xk)| >tol do

3: Obtain a direction pk by solving: Bkpk = −∇L(xk)

4: Perform a line search to find an acceptable step size αk in the direction found in

the first step, then update xk+1 = xk + αkpk

5: Set sk = αkpk

6: yk = ∇L(xk+1)−∇L(xk)

7: Bk+1 = Bk + yky
T
k

yTk sk
− Bksk(Bksk)T

sTkBksk

8: end while
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By running this deterministic solver before the adaptive burn-in period (where

different proposal step sizes are tried to attempt to optimise the MCMC algorithm), we

can hope that we are not in the tails of the posterior distribution, and therefore that

the burn-in process can be completed with far fewer evaluations of the forward model.

From this point onwards the same RWMH MCMC algorithm can be imple-

mented. That is, given a currently accepted state in the chain xn = (p0, ν)n, we

propose a new state z where

z = (1− β2)1/2xn + βw, w ∼ µ0, (6.9)

Recall that the acceptance probability in this algorithm is given by

α(x, z) = exp(Φ(x)− Φ(z)),

where Φ(·) = 1
2‖G(·, ·)− y‖2Σ.

6.7 Numerical Approximation of G

For the purposes of this thesis, we will not go into the details of how the forward

model is approximated numerically, but will instead treat the process as a “black box”

(particularly as the software for calculating this forward model was provided for the

author). This particle mesh method is drawn directly from [21].

6.8 General Setup

In this section we describe the scenarios in which we will numerically test the algorithm

in the next section. The first thing to address is our choice of template shape ΓA and

the parametrisation that we use for this shape qA(s). Since we are only considering

closed curves, it seems natural to choose a circle for this to keep things as simple as
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possible. We also wish to choose a nice smooth parametrisation for this shape, centred

in the middle of our domain T2 = [0, 2π)2 so we pick

qA(s) = (cos(s) + π, sin(s) + π), s ∈ [0, 2π). (6.10)

We will engage in simulation studies in which the data is itself produced by employing

the numerical simulation of a forward PDE model. This will involve picking a (p0, ν)

from the prior and using the numerical approximation of the observation operator to

create our data. We will also use data from recognisable shapes to show that when

there are enough observations the algorithm is able to explore the probability measure

whose mean can recreate a shape close to that from which the data was taken.

In all the numerics, we assume that the noise ξ through which we make the

observations

y = G(p0, ν) + ξ, ξ ∼ N (0,Σ),

has a diagonal covariance matrix Σ = σ2I for some σ > 0.

The prior distributions on p0 and ν are N (0, δ1H−α1) and N (0, δ1H−α1) respec-

tively, with α1 = 0.55, α2 = 3.05, δ1 = 40 and δ2 = 0.3. Note that these parameters

are sufficient to ensure that corollary 6.5.1 holds.

In terms of the approximation of the forward model in the algorithm, 50 time

steps are used. The curves themselves are approximated by 100 points, and with a

64 × 64 grid approximating the underlying velocity field. The values of sj at which

observations are made are given by
{

2πsj
N

}N−1

j=0
. These parameters are used in the

model to create the data, and in the implementation of the statistical algorithm.

202



6.9 Numerical Results

We now present some numerical results to show that the algorithm is successfully drawing

samples from the posterior distribution.

6.9.1 Posterior Consistency

It seems reasonable to expect that as we increase the amount of informative data that

we are using in our inference, the closer our posterior mean will be to the functions

that created the data, and that at the same time the uncertainty in that estimation will

decrease. In this set of numerical experiments, we take a draw (p0, ν) from the prior

measure, and using our approximation of the forward model, create data y such that

y =
{
qB
(

2πn
N

)}N−1

n=0

+ ξ, ξ ∼ N (0,Σ),

with increasing N .

In the following graphs we look at the marginal distributions for the two lowest

frequency Fourier modes of both p0 and ν as estimated by our MCMC method, for

N = 10, 50, 100. We choose the low frequencies as these are the Fourier modes which

are most informed by our observations.

Figures 6.1 and 6.2 show how as we increase the number of observations, the

marginal distributions on these two particular Fourier modes become increasingly peaked

and centred near the value of that Fourier which was present in the p0 which created

the data.

Similarly Figures 6.3 and 6.4 show that as we increase the number of ob-

servations, the marginal distributions on these two particular Fourier modes of the

reparametrisation function ν also become increasingly peaked on the values which were

present in the function that created the data.
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Figure 6.1: Marginal distributions on p0(0) with increasing numbers of observations
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Figure 6.2: Marginal distributions on p1(0) with increasing numbers of observations
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Figure 6.3: Marginal distributions on ν0 with increasing numbers of observations
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Figure 6.4: Marginal distributions on ν1 with increasing numbers of observations
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Figure 6.5: Distributions of acceptance probabilities in the MCMC method with increas-
ing numbers of observations, average acceptance probability tuned to ≈ 25%

Figure 6.5 shows the distribution of acceptance probabilities for the different

Markov chains with varying numbers of observations. Since the step size β has been

tuned is such a way that the average acceptance probability is approximately 25%, we

would expect these distributions to be similar, and this is borne out in this figure.

Figure 6.6 shows the distribution of Φ(·) = 1
2‖G(·)− y‖2Σ in each of the Markov

chains with varying numbers of observations. These distribution differ in this way since

the dimension of the observation spaces are different.

Figure 6.7 shows the same plot, but with the norm divided by the number

of observations made. This shows that as the number of observations increase, the

contribution to the norm from each observation decreases.
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Figure 6.6: Distribution of Φ(·) = 1
2‖G(·)− y‖2Σ in the MCMC method with increasing

numbers of observations
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Figure 6.7: Distribution of 1
NΦ(·) = 1

2N ‖G(·)−y‖2Σ in the MCMC method with increas-
ing numbers of observations

207



6.9.2 “Real Life” Data

In this section we attempt to use the algorithm on a recognisable shape for which we do

not know the value of (p0, ν) which morphs our initial template parametrisation qA(·)
given by (6.10) into the shape for which we have data.

The Christmas Tree

In our first experiment, we attempt to find which pair of functions (p0, ν) are required

to morph our initial circle into a shape close to the observations, plotted in Figure 6.8.

2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

Figure 6.8: Christmas tree shape data

The main issue with this data is that it contains several sharp edges. Since the

initial shape is completely smooth, it would require a discontinuity in the flow fields to

cause a sharp edge in the final shape. Since we have enforced that the deformation is

continuous, this cannot occur. This complexity was verified in the deterministic burn-in

process. The solver found a local minima of the functional, such that when the MCMC

process was invoked, the chain quickly moved away from this state.
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Figure 6.9: Marginal distributions on p0(0) with increasing numbers of observations
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Figure 6.10: Marginal distributions on p1(0) with increasing numbers of observations
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Figures 6.9 and 6.10 show the marginal distributions of the first two Fourier

modes of p0 in the posterior. It can clearly be seen that these distributions are non-

Gaussian. This is due in no small part to the spiky nature of the data. Since the result

of the deformations is always smooth, only one edge of a sharp corner in the data can

be satisfied close to that corner at a time, giving us a multi-modal distribution. Given

many sharp corners, as in this example, we get quite a complex distribution, which took

a great deal of samples to converge.
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Figure 6.11: Marginal distributions on ν0 with increasing numbers of observations

In comparison Figures 6.11 and 6.12 show very smooth marginal distributions

on the Fourier modes of ν. The distribution of the observation points is not affected in

the same way by these singularities as the flow field itself. The next two plots represent

the forward model of the mean values in that distribution.

As can be seen particularly in Figure 6.14, the effect of the assimilation process

has very much been to smooth off the harsh edges in the data.
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Figure 6.12: Marginal distributions on ν1 with increasing numbers of observations
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Figure 6.13: Representations of the mean functions
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Figure 6.14: Mesh deformation for the forward model of the mean functions. Original
data included for comparison in the left hand frame

The Face

In an attempt to use some data that is a little closer in shape to a circle than the

previous example, we now consider some data of the outline of a face.

There are still some sharp corners in this data, around the ears and at the hair

parting, so we would expect to see some significant smoothing of these features again,

due to our choice of ΓA.

Figures 6.16 and 6.17 show the marginal distributions of the first two Fourier

modes of p0 in the posterior. These distributions would appear to be slightly non-

symmetrical, with Figure 6.16 having a heavier tail to the right than the left, and Figure

6.17 having the opposite.

As in the previous example, in comparison Figures 6.18 and 6.19 show marginal

distributions on the Fourier modes of ν which on first glance would appear to be sym-

metric and approximately Gaussian. The following two plots represent the forward model
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Figure 6.15: Face shaped data
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Figure 6.16: Marginal distributions on p0(0) with increasing numbers of observations
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Figure 6.17: Marginal distributions on p1(0) with increasing numbers of observations
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Figure 6.18: Marginal distributions on p0(0) with increasing numbers of observations
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Figure 6.19: Marginal distributions on p1(0) with increasing numbers of observations

of the mean values in that distribution.

As can be seen particularly in Figure 6.21, the effect of the assimilation process

has very much been to smooth off the harsh edges in the data, due to the mismatch in

the template shape and the data. This would be an issue if it wasn’t for the fact that

in the application that we are aspiring to, we would be attempting to match images of

two organs, which would have the same kind of topology and smoothness as each other

on the whole.

6.10 Conclusions

By careful analysis of the forward problem, we have been able to formulate a well-

posed Bayesian inverse problem regarding shape matching of a curve with a set of noisy

observations of another. We have shown that the likelihood function is continuous with

respect to a space that has full measure with respect to a specified choice of Gaussian

prior measure. Using this, we have shown how to draw samples from well defined
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Figure 6.20: Representations of the mean functions
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Figure 6.21: Mesh deformation for the forward model of the mean functions. Original
data included for comparison in the left hand frame

216



posterior distributions on function space using the RWMH MCMC sampler. We have

then implemented this algorithm, and presented briefly some initial numerics. In these

numerics we have shown that, using a draw from the prior to create our target data,

that as we increase the number of informative observations, the marginal distributions

on both p0 and ν become increasingly peaked on the functions that created the data.

Moreover, we have presented two examples of matching a circle with some “real

life” data. We have discussed the effect that a mismatch in the differentiability of the

template shape and target data can cause on the posterior.

Although only still in the early stages of development, this chapter presents a

Bayesian approach to shape registration which takes into account that observations of

organs’ shapes are not exact, and gives a distribution on the shortest distance in shape

space between the template shape to the observed shape. The sampling method is

framed on function space in line with the philosophy of this whole thesis, and so is

robust under refinements of discretization.

Since we already have at our disposal an implementation of the adjoint problem

so that we can calculate the gradient of the observation operator (which we use for the

deterministic burn-in), we can very simply adapt the MCMC method from RWMH to

MALA, which includes gradient information in the proposal distribution. This would

increase the efficiency of the algorithm markedly. Further analytical results would be

needed, however, to ensure that the gradient of the observation operator is continuous on

a space which has full measure with respect to an appropriately chosen prior distribution.

Certainly another excellent test of this algorithm would be to attempt to use it

on some genuine images taken and segmented from scans of bodily organs.

Another idea would be to also make the problem translation, rotation and scale

invariant, so that any misalignment of the imaging equipment has a negligible effect on
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the results. This would involve adding parameters into the state space to allow for these

types of operations.

One might also consider the case where the template shapes themselves are only

noisily observed, so that we are trying to find a distribution on the length of geodesic

paths in shape space between two noisily observed shapes. This might be a little closer

to the scenario in the application, where the template shapes themselves will simply

have come from scans of organs with a particular condition.
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