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Summary 

In many practical situations when analyzing a dependence of one or more explana­
tory variables on a response variable it is essential to assume that the relationship 

of interest obeys certain shape constraints, such as monotonicity or monotonicity and 

convexity/concavity. In this thesis a new approach to shape preserving smoothing 

within generalized additive models has been developed. In contrast with previous 
quadratic programming based methods, the project develops intermediate rank penal­
ized smoothers with shape constrained restrictions based on re-parameterized B-splines 
and penalties based on the P-spline ideas of Eilers and Marx (1996). Smoothing under 
monotonicity constraints and monotonicity together with convexity/concavity for uni­
variate smooths; and smoothing of bivariate functions with monotonicity restrictions 
on both covariates and on only one of them are considered. 

The proposed shape constrained smoothing has been incorporated into generalized 

additive models with a mixture of unconstrained and shape restricted smooth terms 
(mono-GAM). A fitting procedure for mono-GAM is developed. Since a major challenge 

of any flexible regression method is its implementation in a computationally efficient 
and stable manner, issues such as convergence, rank deficiency of the working model 
matrix, initialization, and others have been thoroughly dealt with. A question about 
the limiting posterior distribution of the model parameters is solved, which allows us 
to construct Bayesian confidence intervals of the mono-GAM smooth terms by means 
of the delta method. The performance of these confidence intervals is examined by 

assessing realized coverage probabilities using simulation studies. 
The proposed modelling approach has been implemented in an R package monogam. 

The model setup is the same as in mgcv(gam) with the addition of shape constrained 

smooths. In order to be consistent with the unconstrained GAM, the package provides 
key functions similar to those associated with mgcv(gam). Performance and timing 

comparisons of mono-GAM with other alternative methods has been undertaken. The 

simulation studies show that the new method has practical advantages over the al­
ternatives considered. Applications of mono-GAM to various data sets are presented 

which demonstrate its ability to model many practical situations. 
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Chapter 1 

Introduction 

1.1 Motivation 

A significant problem in applied statistics is to analyze the relationship between a 

response variable and one or more explanatory variables. Various regression models 
have been proposed to solve this problem in the literature. Since there are many 

practical situations when a parametric form of a regression function may not be easily 

specified, nonparametric smoothing, that is fitting a nonlinear smooth curve to noisy 

observations, has become very appealing in a wide range of diverse applications. A large 

amount of statistical literature is devoted to nonparametric smoothing techniques which 

are based on, for example, kernel smoothing, smoothing splines, or local polynomials. 
In many studies it is natural to assume that the relationship of interest obeys certain 

shape restrictions. Hence, it is desirable to impose shape constraints on that relation­
ship, since unconstrained fitting might be too flexible and give implausible results. A 

common requirement in many practical situations is a monotonic relationship between 

an explanatory variable and the response variable. For example, the growth of children 

over time is known to be increasing, tree height declines with altitude but increases 
with tree age. Dose-response curves in medicine, the cognitive development of children 

in social and behavioral sciences research (Bollaerts et al., 2006b), the relationships 
between price and quantity produced, between daily mortality and air pollution con­
centration (Leitenstorfer and Tutz, 2007), between body mass index and incidence of 
heart disease (Dunson, 2005) are other examples where a monotonic relationship is 
required. 

Also in some research areas monotonicity should be assumed together with con­
vexity or concavity. For example, the effect of labour input on quantity produced and 

the effect of temperature summed over days of the vegetation period on tree height 
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are assumed to be monotone increasing and concave. Though modelling a monotonic 

dependence between one explanatory variable and the response variable is of interest 
on its own, there are many areas of application where the univariate response variable 

is modelled as a sum of several smooth functions of explanatory variables, only some 

of which are assumed to be shape constrained. In particular, such problems are very 

common in ecological and environmental studies. 
Various shape constrained smoothing techniques have been proposed in the sta­

tistical literature and some of them are briefly described in Section 1.2. Almost all 
the known algorithms are either complex and computationally intensive or the model 
smoothness selection is not fully satisfactory. Also computer codes of algorithms are 

not always available and it might not be straightforward to implement them. In this 
thesis a new approach to shape constrained smoothing is presented. The new method 

has been developed within the context of generalized additive models (GAM), and an 

R package monogam implementing it has been written. 

1.2 Literature review 

The pool adjacent violators algorithm (PAVA) which solves the problem of isotonic 

regression seems to be the first technique for producing a monotone regression function 

(Barlow et al., 1972). Kruskal (1965) suggested the isotonic regression technique for 
determining a monotone transformation of the response variable in linear regression. 
Due to the way the PAVA method is implemented, isotonic regression may not result 
in a smooth function. Friedman and Tibshirani (1984) instead proposed a method for 
exploring a scatterplot by a smooth monotonic function. Their procedure involves a 

combination of isotonic regression using PAVA and local averaging. 
Analogous to Friedman and Tibshirani (1984) a number of authors have come up 

with methods which are based on two-stage procedures: unconstrained smoothing and 

monotonization. One of the modifications of the monotone smoothing approach pro­
posed by Friedman and Tibshirani (1984) was developed by Mammen (1991). He 

applied a kernel estimator for unconstrained smoothing and used the PAVA to get a 

monotone fit. Asymptotic equivalency of this estimator with another one obtained by 

interchanging smoothing and monotonization steps has also been shown (Mammen, 
1991). Other types of shape restrictions were considered by Mammen and Thomas-
Agnan (1999). Mammen et al. (2001) developed a framework in which a monotone 

smoother of a regression function is defined as projection of an unconstrained estima­
tor onto the constrained subset of functions. Ghosh (2007) concentrated on a binary 

regression model with a single monotone smooth term plus a parametric component. 
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The two-step fitting procedure suggested in this paper consists of unconstrained fitting 

using the likelihood-based approach of generalized linear mixed models and isotonizing 

the fitted curve using the PAVA algorithm. As an alternative to two-stage procedures 
Pal and Banerjee (2008) developed a direct algorithm to fit a single monotone smooth 

generalized regression model by a piecewise linear function. The approach of Mukerjee 

(1988) has the reverse procedure, firstly, it isotonizes the data and then smooths the 

resulted curve using a suitable kernel. 
Smoothing by spline functions forms a basis for other procedures for estimating 

functions with monotonicity restrictions. Most methods use linearly constrained opti­
mization in order to secure monotonicity. Ramsay (1988) introduced integrated splines 
which yield a monotone smoother when the spline coefficients are nonnegative. This 
nonnegativity can be imposed by setting linear inequality constraints in an optimiza­
tion algorithm. A penalized minimization for fitting data by monotonic cubic smooth­
ing splines based on a piecewise polynomial representation was presented in Wood 

(1994). In this approach the sufficient conditions for monotonicity of a cubic spline 

were used as linear constraints in quadratic programming. Assuming that an unknown 

smooth function, f(x), has thrice continuous derivatives Zhang (2004) rewrote f(x) 
in terms of its derivative, f �(x), with the integrated square of the third derivative 

taken as a penalty. Such a representation allows imposition of non-negativeness or 
non-positiveness on f �(x) to get the monotonicity constraint. Using full rank cubic 

smoothing splines f �(x) is estimated directly, and f(x) indirectly in this approach. In 

1998, Ramsay suggested another technique for estimating a twice differentiable strictly 

monotonic function by solution of a homogeneous linear differential equation. The 

procedure is unconstrained and includes a penalty term of similar form to the cubic 

spline smoothing penalty, with the smoothing parameter selected by cross validation. 
However, the optimization algorithm considered there is computationally expensive and 

the technique for smoothing parameter selection is not satisfactory. Wang (2000) has 
extended the monotone smoothing method of Ramsay (1988, 1998) to a single smooth 

generalized regression model. The fitting procedure developed by Wang is a modifica­
tion of iteratively reweighted least squares consisting of two steps for estimating two 

types of model coefficients arising from the smooth specification of Ramsay (1998). 
Schipper and Taylor (2008) proposed a generalized single monotone functional mixed 

model with constraints imposed on a smooth specification which can be fitted by max­
imum likelihood. An extension of monotone regression splines proposed in Ramsay 

(1998) to cubic monotone and convex constraints has been introduced in Meyer (2008). 
Since the B-spline basis attracts a lot of interest in nonparametric smoothing, due 

to its flexibility and local support (de Boor, 1978, Eilers and Marx, 1996), several 
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B-spline monotone regression approaches have been suggested. An appealing feature 

of B-splines is that to obtain monotone increasing (decreasing) spline it is sufficient 
to guarantee a nondecreasing (nonincreasing) sequence of spline coefficients. The first 
method based on B-splines was proposed by Kelly and Rice (1990). The authors 
appeal for a nondecreasing sequence of spline coefficients as constraints in quadratic 

programming. However, this work selects the level of smoothness on the ad hoc basis 
of examining graphical displays of data. Another procedure built on a constrained 

linear programming algorithm and least absolute deviation fit criterion was proposed 

by He and Shi (1998). It is based only on quadratic B-splines, in order to obtain linear 
constraints for the proposed linear programming. The smoothness of the fitted function 

is determined by knot selection using a stepwise knot deletion process. Rousson (2008) 
implemented the monotone B-splines of Ramsay (1988) with a knot selection algorithm 

based on a sequence of F -statistics (Friedman and Silverman, 1989) which led to a least 
squares problem with linear inequality constraints. The recent idea of Bollaerts et al. 
(2006b) was to set additional asymmetric discrete penalties on nth- order differences 
of the model coefficients in P-spline regression, in order to restrict the sign of the nth-
order derivative of the smooth function. The method, described further in Section 

2.7.2, allows placement of different shape constraints on the fitted curve by penalizing 

differences reflecting nth- order derivatives, but the selection of the constraint weights 
is not discussed and neither is the computational cost involved. 

A Bayesian version of P-splines has been proposed in Lang and Brezger (2004). 
Following this Bayesian approach Brezger and Steiner (2008) developed monotone 

Bayesian P-splines by introducing indicator function to truncate the prior distribu­
tion of spline coefficients in order to achieve an ordered sequence of coefficients. This 
method has been implemented in the free software package BayesX (Brezger et al., 
2005). Monotonic regression within the Bayesian framework has also been considered 

by Holmes and Heard (2003); Dunson and Neelon (2003), and Dunson (2005). Dunson 

and Neelon (2003) proposed a Bayesian approach for meeting monotonicity constraints 
in generalized linear models only. Their approach is based on isotonic transformation 

of draws from an unconstrained posterior density. A Bayesian isotonic regression for 
a piecewise-constant model has been introduced in Holmes and Heard (2003). The 

authors suggested placing a prior distribution on the number and location of change 

points in the model and use Markov Chain Monte Carlo simulation to sample the 

unconstrained model space, which then is reduced to a monotonic model space. An 

alternative Bayesian approach for count data, with a prior distribution specification 

that imposes nondecreasing constraints, has been proposed by Dunson (2005). 
There are other approaches to non(semi)parametric regression which focus on con­
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ditional quantile functions rather than on conditional mean functions. A few papers 
have developed methods to incorporate monotonicity in quantile regression (Koenker 
et al., 1994; Takeuchi et al., 2006; Bollaerts et al., 2006a). To meet the monotonicity 

or convexity constraints Koenker et al. (1994) proposed to add corresponding linear 
inequality constraints to an L1 fitting problem (minimization of the sum of absolute 

deviations). R package quantreg implements an extension of this approach to additive 

quantile regression models. In Takeuchi et al. (2006) monotonicity was obtained by 

imposing additional constraints on the derivative of the smooth term in a quadratic 

programming method for quantile estimation. Analogous to the P-splines with addi­
tional asymmetric discrete penalties approach, proposed by Bollaerts et al. (2006b) for 
ordinary regression, Bollaerts et al. (2006a) suggested including asymmetric penalties 
in terms of absolute values of the nth- order differences of the spline coefficients into 

the L1 - norm of quantile regression. He and Ng (1999) developed a constrained B-
spline smoothing algorithm in the context of the quantile regression based on the L1 

projection ideas of He and Shi (1994, 1998). This algorithm has been implemented in 

an R package cobs99 and uses only linear and quadratic splines. An improved version 

of this package, cobs, has been developed by Ng and Maechler (2007). 
Alternative techniques are based on non-spline methods. For example, they include 

those of Antoniadis et al. (2007) who focused on a penalized wavelet regression which 

leads to a convex optimization problem with linear constraints. Constrained nonpara­
metric kernel regression techniques have been considered by, for example, Hall and 

Huang (2001); Dette et al. (2006). Dette and Pilz (2006) also discussed and compared 

different monotone kernel regressors. 
Besides statistics, the problem of shape constrained smooth curve representation 

has also aroused interest in Computer Science, Operations Research, Numerical Analy­
sis, Management Science, Biology, etc (see, for example, Sarfraz, 2000, 2003; Matzkin, 
1991; Elfving and Andersson, 1988; Dent, 1973; Demetriou, 2004a,b; Vassiliou and 

Demetriou, 2005; Beatson, 1982; Kopotun et al., 2008, and references therein). Var­
ious authors have worked in the area of shape-preserving interpolation, see, e.g., An­
dersson and Elfving (1987); Hornung (1980); Irvine et al. (1986); Sarfraz (2000, 2003); 
McAllister and Roulier (1981); Lahtinen (1996) among others. An algorithm which 

uses piecewise rational cubic functions was introduced by Sarfraz (2000), while Sarfraz 

(2003) suggested an alternative approach reducing to a rational quadratic interpolant. 
McAllister and Roulier (1981) and Lahtinen (1996) have utilized quadratic interpolation 

methods for shape-constrained curves. A Newton-type procedure for the interpolation 

problem with constraints on curve derivatives has been proposed in Andersson and 

Elfving (1987). Other numerical algorithms for constrained interpolation can be found 
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in Hornung (1980) and Irvine et al. (1986). 
Other authors in the non-statistical literature have solved shape constrained ap­

proximation problem using smoothing splines, such as B-splines or others. A Newton 

type algorithm for obtaining convex and convex plus monotone smoothers which made 

use of linear B-splines was introduced in Elfving and Andersson (1988). Demetriou 

(1991); Vassiliou and Demetriou (2005); and Demetriou (2004b) addressed smoothing 

problems with different constraints by applying B-spline bases and developing quadratic 

programming methods. A convex programming method for piecewise convex-concave 

approximation was suggested by Demetriou (2004a). Schmidt and Scholz (1990) formu­
lated an unconstrained dual problem for convex-concave smoothing using cubic splines. 
Other smoothing algorithms to fit constrained splines based on Jackson type estimates 
have been suggested in Beatson (1982) and Kopotun et al. (2008). 

In spite of the diverse existing approaches to shape preserving smoothing, there 

is still a need for a flexible modelling approach which is able to describe practical 
situations, has a straightforward underlying theory for fitting, smoothness selection 

and interval estimation, and is implemented in a user-friendly way in a programming 

language standard for practical statistical analysis, such as R. The purpose of this 
project was to attempt to meet these requirements. 

1.3 The main achievements of the thesis 

The following summarizes the main achievements of the thesis. 

1.	 A penalized smoother with monotonicity restriction based on B-splines is pro­
posed. A penalized likelihood maximization method for fitting a generalized 

regression model subject to monotonicity constraint is developed, based on a 

Newton-Raphson method. 

2.	 A smoothing method is proposed under other shape constraints such as, mono­
tonicity (monotone increasing and decreasing) together with convexity/concavity 

for a smooth function of a single covariate. Smooths of two covariates with 

monotonicity constraints, where monotonicity may be assumed on only one of 
the covariates (single monotonicity) or on both of them (double monotonicity), 
is developed. 

3.	 The proposed shape constrained smoothing is extended to generalized additive 

models with a mixture of unconstrained and shape constrained smooth terms 
(mono-GAM). A fitting procedure for a mono-GAM is developed. It is based on 

an outer quasi-Newton iteration to update multiple smoothing parameters, with 
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each step of this procedure requiring an inner, Newton based, penalized iteratively 

reweighted least squares scheme to obtain model coefficients. We propose an 

efficient way for calculating derivatives of the coefficients with respect to the 

smoothing parameters by extending the approach introduced in Wood (2011). 
Since a major challenge of any flexible regression approach is its implementation 

in a computationally efficient and stable manner, such issues as convergence, rank 

deficiency of the model matrix, initialization, and others are thoroughly discussed. 

4.	 Bayesian confidence intervals for the shape constrained terms of mono-GAM are 

derived using the delta method. The performance of the proposed confidence 

intervals has been examined by simulation studies. The realized coverage proba­
bilities were taken as a measure of their performance. 

5.	 An R package, monogam, which implements the proposed shape constrained mod­
elling within GAM has been written. 

6.	 Performance and timing comparisons of mono-GAM with other alternative meth­
ods is undertaken. The simulation studies have shown that the new method has 
practical advantages over the considered alternatives. 

7.	 We demonstrate the efficacy and practicality of mono-GAM in real applications. 
Three data sets with sample sizes ranging from 44 to 29,324 have been successfully 

analyzed. 

1.4 The structure of the thesis 

The current introduction chapter continues with a brief overview of generalized additive 

models (GAM) which serves as a background to the proposed mono-GAM. 
In Chapter 2 smoothing under monotone increasing constraint, based on B-spline 

basis functions with a ‘wiggliness’ penalty based on the P-spline ideas of Eilers and 

Marx (1996) is introduced. A stable and efficient method for penalized likelihood 

estimation of monotone generalized regression model is developed, with a degree of 
model smoothness selected by direct minimization of the generalized cross validation 

or similar criteria. Some illustrative simulated data examples are presented in the last 
section of this chapter. Also in Section 2.7 we briefly discuss two alternative approaches 
to monotone smoothing: A constrained quadratic programming approach (Kelly and 

Rice, 1990; Wood, 1994) and P-spline regression with additional asymmetric penalties 
(Bollaerts et al., 2006b). Mono-GAM will be compared with these alternatives in 

Chapter 7. 
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In Chapter 3 penalized smoothing under other shape constraints such as, monotone 

decreasing constraint and mixed constraints (monotonicity plus convexity/concavity) 
for smooths of a single covariate is introduced. Then smoothing of bivariate func­
tions with monotonicity restrictions on both covariates (double monotonicity) and on 

only one of them (single monotonicity) is developed based on tensor product smooths. 
Penalties for all these shape-preserving smoothers are obtained. To show the perfor­
mance of the proposed smoothers several simulation examples are presented at the end 

of the chapter. 
Chapter 4 generalizes the proposed approach to generalized additive models with 

shape constraints on some terms (mono-GAM). For simplicity of presentation, the dis­
cussion starts with an additive model with monotonicity constraint imposed only on 

one smooth term, and only B-spline bases are used for representation of unconstrained 

smooth terms. This is extended to a more general structure of mono-GAM, which 

can incorporate any available penalized regression spline basis to represent each uncon­
strained term, including multivariate terms, and includes bivariate terms with mono­
tonicity constraints. The fitting procedure of a mono-GAM is thoroughly discussed. 
Some simulated examples are given in the last section of this chapter, to illustrate the 

performance of mono-GAM. 
In Chapter 5 a question about the limiting distribution of the model parameters is 

solved, which allows construction of Bayesian confidence intervals of the mono-GAM 

smooth terms by means of the delta method. The performance of the proposed confi­
dence intervals is examined by assessing realized coverage probabilities of the proposed 

intervals using simulation studies. 
Chapter 6 describes the design and usage of the R package monogam which imple­

ments the proposed generalized additive modelling with monotonicity restrictions on 

some smooth terms. The model setup is similar to mgcv(gam) with the addition of 
shape constrained smooths. In order to be consistent with the unconstrained GAM 

the package provides similar key functions to mgcv, which are demonstrated on some 

simulation examples. 
A more extensive simulation study is presented in Chapter 7, to illustrate the per­

formance of mono-GAM. Comparison with unconstrained GAM, the quadratic pro­
gramming approach to shape preserving smoothing (Wood, 1994), and constrained 

P-splines regression (Bollaerts et al., 2006b) is undertaken here. Simulated examples 
on univariate single smooth term models, bivariate single smooth models, and additive 

models with a mixture of unconstrained and monotone smooth terms are considered 

for evaluation of the performance of the four different approaches, and for timing com­
parisons. 
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Chapter 8 presents applications of mono-GAM to various data sets. In the first 
example a small sample of 44 spatial data is analyzed. The goal of this analysis is to 

investigate whether proximity to municipal incinerators in Great Britain increases the 

risk of stomach cancer (Shaddick et al., 2007). The second application uses data from 

the National Morbidity, Mortality, and Air Pollution Study (Peng and Welty, 2004). 
The relationship between daily death rate in Chicago and air pollution levels is inves­
tigated. There are about 5000 daily measurements in the second data set. Modelling 

these data assumes that death rate increases with increase in levels of ozone, sulphur 
dioxide, and levels of particular matter. The third example studies a prediction of tree 

height as a function of tree diameter and additional tree-stand-level parameters. The 

large cross-sectional sample of these data (29 324 tree observations) is from the North­
west German Forest Research Institute, Department of Forest Growth, Göttingen, Ger­
many, and was kindly made available by Dr. Matthias Schmidt. The height-diameter 
model introduced in this chapter includes strictly parametric model components and 

both monotonic and unconstrained smooth terms. 
Throughout the thesis matrices and vectors are boldfaced. 

1.5 GAM overview 

Unconstrained generalized additive models (GAM) (Hastie and Tibshirani, 1986, 1990; 
Wood, 2006a) are used extensively in practical applications for modelling nonlinear 
relationships between a response variable and multiple covariates. As a new approach 

to shape constrained smoothing, proposed in this thesis, is merged with a GAM frame­
work, a brief overview of GAM is needed for later reference. 

Suppose, Yi, i = 1, . . . , n, are independent observations of a response variable from 

an exponential family distribution and x1i, x2i, . . . , xpi are possible explanatory vari­
ables. Generalized additive modelling suggests that the mean value of Yi is linked to 

an additive, possibly nonlinear, effect of explanatory variables through a known link 

function. The model may be written as follows 

p

g(µi) = X∗
i δ + 

� 
fj (xji), (1.1) 

j=1 

where g is a known smooth monotone link function, µi = E(Yi), X∗
i is the ith row of a 

model matrix for any strictly parametric effects, with corresponding unknown vector 
of parameters δ = (δ1, δ2, . . . , δq0 )

T , and fj (xji) are smooth unknown functions of the 

covariates, xji may be a vector quantity. The right-hand side of (1.1) is called the 

linear predictor and is usually denoted as g(µi) = ηi. 
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Under the model it is assumed that Yi are independent random variables from the 

exponential family of distributions with the probability density function 

fθi (yi) = exp [{yiθi − bi(θi)} /ai(φ) + ci(yi, φ)] , (1.2) 

where ai, bi, and ci are arbitrary functions, φ an arbitrary ‘scale’ parameter, and θi a 

‘canonical parameter’ of the distribution related to η(x) via the relationship E(Yi) = 

b�(θi) (see Wood, 2006a). The scale parameter φ is assumed to be constant for all 
observations. 

In comparison with parametric regression, model (1.1) allows for much more flex­
ibility in building the relationship between the response and explanatory variables. 
Many practical situations exist where strictly parametric model specifications do not 
provide an appropriate fit to the data. However, if when fitting a parametric model we 

have one task which is to estimate unknown model coefficients, two additional tasks 
arise in a nonparametric regression such as GAM: how to represent smooth functions 
fi, and how to choose their smoothness. 

Different approaches to fitting a GAM have been developed: 

The ‘backfitting’ technique, • 

The generalized smoothing spline approach, • 

The penalized regression smoothing spline approach, • 

The Bayesian P-spline approach to GAM. • 

The first method was proposed by Hastie and Tibshirani (1986, 1990) where GAM 

originated. Their ‘backfitting’ technique is an iterative procedure of smoothing partial 
residuals in order to estimate each smooth model component. Hastie and Tibshi­
rani (2000) also proposed a Bayesian backfitting procedure to GAM. The generalized 

smoothing spline approach (Wahba, 1990; Gu, 2002) is another alternative for GAM 

estimation. The underlying theory of this method is not as straightforward to un­
derstand as it is for penalized regression smoothing splines. The theory of penalized 

regression smoothers and their practical applications are given in Wood (2006a). The 

Bayesian framework to GAM has been also developed (e.g. Fahrmeir et al., 2004; Lang 

and Brezger, 2004). While this approach has fully Bayesian inference and uses Markov 

chain Monte Carlo techniques, the representation of GAM components has been built 
on penalized smoother ideas. 

In this project the penalized regression spline approach is employed which can be 

split into three stages: i) representation of smooth model terms using penalized regres­
sion splines, ii) model coefficient estimation by penalized log likelihood maximization, 
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and iii) smoothness selection by minimization of the generalized cross validation score 

(or similar criteria). This framework for unconstrained GAM has been developed and 

thoroughly discussed in Wood (2006a). The rest of this section will briefly outline the 

basic ideas of this approach. 
To solve the first problem of representing the smooth functions in (1.1), various 

penalized regression smoothers are available, such as cubic regression splines and P-
splines, for representing smooths of a single covariate; or thin plate regression splines 
and tensor product smooths for smooth of several covariates. The idea is to specify a 

basis for each function and choose an appropriate set of basis functions, Bjk, so that 
the jth smooth function can be represented as 

qj

fj (xj ) = 
� 

Bjk(xj )βjk, 
k=1 

where βjk are coefficients to be estimated, and qj is a number of basis functions. In 

vector-matrix notation each smooth term may be written as 

fj = Xj βj , 

where fj is a vector with fji = fj (xji), βj = (βj1, βj2, . . . , βjqj )
T , and the ith row of the 

model matrix Xj is Xji = 
�
Bj1(xji), Bj2(xji), . . . , Bjqj (xji)

� 
. 

The model (1.1) is usually not identifiable. In order to deal with the identifiabil­
ity problem a ‘centering’ constraint (Wood, 2006a) may be imposed on each smooth. 
This problem will also be discussed in Section 4.1.1. Having solved the identifiability 

problem, the model can be written as 

g(µi) = Xiβ, (1.3) 

where βT = 
�
δT , β1 

T , β2 
T , . . . , βT 

� 
, and X = [X∗ : X1 : X2 : . . . : Xp] is the n × q model p 

matrix with q less than n. 

Since the model (1.3) is represented now as a generalized linear model (GLM), β can 

be estimated by likelihood maximization, which in practice is solved by iteratively re-
weighted least squares. However, before coming to the details of coefficient estimation, 
we should solve the problem of controlling the smoothness of each smooth term. If too 

many basis functions are taken for fj representation (qj is large), then the model may 

be overfitted, and conversely, too small number of qj may result in underfitting. That is 
why a ‘wiggliness‘ measure, or penalty, is used for each smooth term so that the model 
coefficients are estimated by penalized likelihood maximization. The penalty may be 
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expressed, for example, in terms of the integrated squared second-order derivative of 
the smooth. Most commonly the penalty is expressed in a quadratic form of the full 
coefficient vector. For example, the penalty for the jth smooth may be written as 
βT Sj β, where Sj is a matrix with some known elements. 

After setting the penalties for each smooth function, the penalized log likelihood 

function can be defined as 
1 

lp(β) = l(β) − βT Sβ, (1.4)
2

where l(β) is the log likelihood of the model, S = 
�

j
p 
=1 λj Sj , and λj are smoothing 

parameters which now control the model smoothness (the fraction of 1/2 is taken for 
a convenient representation of the derivatives). Given the values λj , β is estimated by 

maximizing the penalized log likelihood lp(β). 
Therefore, we now have two questions, how to maximize (1.4) w.r.t. β, and how to 

choose λj . Firstly, suppose that the values of λj are given and consider the problem of 
β estimation. 

To find β, a score vector up(β), a vector of the first order derivatives of lp(β) 
w.r.t. β, should be equated to zero. The equations up(β) = 0 are non-linear and 

generally have no analytical solution, so some numerical methods should be applied. 
In practice, a penalized iteratively re-weighed least squares (P-IRLS) scheme based on 

Fisher scoring is used to solve these equations. If β[k] is the current estimate of β, then 

the next Fisher scoring estimate is 

β[k+1] = β[k] + I(β[k])−1up(β[k]), (1.5) 

where I(β) = −E(H(β)) is the Fisher information matrix, and H(β) is the Hessian of 
the penalized log likelihood function which is not difficult to derive from (1.4). 

After substituting the analytical expressions of I(β) and up(β) into (1.5) and apply­
ing simple mathematical operations, (1.5) becomes a penalized weighted least squares 
equation. That is, β[k+1] minimizes the following penalized weighted sum of squares 

[k]�
�

W[k] 
�
z − Xβ

� 
� 2 + βT Sβ, (1.6) 

where z[k] is a vector of pseudodata with zi 
[k] = g�(µ[

i
k])(yi − µ[

i
k]) + Xiβ

[k], and W[k] is 
a diagonal matrix with diagonal elements 

[k] 1 
wi = , 

V (µi 
[k])g�(µi 

[k])2 

where V (µi)φ = var(Yi). 
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Therefore, given the smoothing parameters λ, to obtain the maximum penalized 

likelihood estimates, β̂ the following Fisher scoring algorithm is iterated to convergence: 

[0] [0] [0]1.	 Set initial values: µi = yi, ηi = g(µi ), and set k = 0. 

2.	 Evaluate z[k] and W[k] using the current values of µ[k] and η[k]. 

3.	 Minimize (1.6) w.r.t β to find β[k+1], and therefore η[k+1] = Xiβ
[k+1] and µ[k+1]. 

Increment k. 

4.	 Repeat steps 2 and 3 until convergence. 

This algorithm is referred to as a P-IRLS scheme (Wood, 2006a). It should be noted 

that the canonical link function is g(µi) = b�−1(µi) and under the canonical link, the 

canonical parameter of the exponential family distribution equals the linear predictor, 
θi = ηi = g(µi). Then, it is not difficult to show that I(β) = −H(β) and hence, for the 

canonical link, Fisher scoring and Newton-Raphson method are equivalent. 
In order to select values of the smoothing parameters, λj , a separate criterion, 

V(λ), expressed as a function of λ, can be directly optimized. Various criteria have 

been developed in the literature. One possibility is to minimize criteria based on model 
prediction error ideas. Such a criterion for the model with a known scale parameter, 
φ, is the Un-Biased Risk Estimator (UBRE) (Craven and Wahba, 1979; Wood, 2006a; 
Mallows, 1973). For unknown φ, the generalized cross validation score (GCV) may 

be used (Craven and Wahba, 1979; Hastie and Tibshirani, 1990). Another alternative 

for λj selection is to optimize a likelihood based criteria such as maximum marginal 
likelihood (Anderssen and Bloomfield, 1974) or restricted maximum likelihood (Wahba, 
1985; Wood, 2011). Comprehensive discussion and references on smoothness selection 

criteria are given in (Wood, 2011). 
Given an appropriate V(λ), a computational method for its optimization should be 

developed. There are two ways of implementing λ estimation. One alternative known 

as a ‘performance oriented iteration’ is to update λ̂ at each P-IRLS step. The main 

problem with this approach is divergence or cycling of the P-IRLS scheme (Gu, 2002; 
Wood, 2004, 2006a). Another alternative is based on nested or outer iterations (Wood, 
2008, 2011). In this case each step of the V(λ) optimization scheme requires inner 
P-IRLS iterations to convergence to find β̂ for the current λ̂. Usually in practice, a 

Newton or quasi-Newton method is used for V(λ) optimization. In this project an outer 
quasi-Newton iteration is used for minimizing UBRE/GCV to update λ̂, and each step 

of this procedure will require an inner Newton-Raphson based P-IRLS to obtain β̂, 

given λ̂ (Section 4.3). 
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Chapter 2 

Single smooth models with 

monotonicity constraint 

This chapter introduces smoothing under monotone increasing constraint based on B-
spline basis functions with a ‘wiggliness’ penalty based on the P-spline ideas of Eilers 
and Marx (1996). A stable and efficient method for penalized likelihood estimation 

of a monotone generalized regression model is developed, with the degree of model 
smoothness selected by direct minimization of the generalized cross validation score or 
similar criteria. Some illustrative simulated data examples are presented in the last 
section of this chapter. 

2.1 Monotonic P-splines 

As was mentioned in the introduction, various techniques of nonparametric monotone 

smoothing have been developed for a single term Gaussian model. However, models, for 
example, with binary or count response variables, which assume Binomial or Poisson 

distributions, are less-discussed in the literature, despite the fact that there are many 

ecological, economical, and social problems where these models may be applied. In this 
section a single smooth generalized monotone regression model will be set up using B-
spline basis functions. The method will be extended to the GAM context in Chapter 
4. 

Consider a single smooth generalized regression model 

g(µi) = f(xi), i = 1, . . . , n, (2.1) 

where 

µi = E(Yi), Yi ∼ some exponential family distribution, 
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Yi are independent response variables, xi is a covariate, f(xi) is a smooth function that 
satisfies a monotonicity constraint 

f(xi) > f(xj ) if xi > xj 

(for the monotone increasing function) 1, and g is a known smooth monotonic ‘link 

function’. For simplicity of presentation, only the monotone increasing case will be 

considered in this chapter. Smoothing under other shape constraints will be discussed 

in the next chapter. The probability density function of Yi, in canonical form, can be 

written as 
fθi (yi) = exp [{yiθi − bi(θi)} /ai(φ) + ci(yi, φ)] , (2.2) 

where ai, bi, and ci are arbitrary functions, φ an arbitrary ‘scale’ parameter, and θi a 

‘canonical parameter’ of the distribution related to f(x) via the relationship E(Yi) = 

b�(θi) (see Wood, 2006a). While the functions ai, bi, and ci may vary with i, the scale 

parameter φ is assumed to be constant for all observations. 
To estimate the smooth function f(x) in (2.1) a penalized regression spline basis can 

be used. In this project the B-spline basis functions are used to represent an unknown 

monotone smooth function. The B-splines are very attractive due to their smooth 

interpolation property, flexibility - splines of different orders can be represented, and 

their local support - the B-spline basis takes positive values between (m + 3) adjacent 
knots, where (m + 1) is the order of the B-spline, and zero values otherwise. Given 

a sequence of evenly spaced knots, k1 < k2 < . . . < kq+m+2, where q is a number of 
basis functions and the spline should be evaluated within the interval [km+2, kq+1], an 

(m + 1)th order B-spline can be represented as (see De Boor, 1978; Wood, 2006a) 

q

Bmf(x) = 
� 

j (x)γj , 
j=1 

where 

Bm(x) = 
x − kj 

Bm−1(x) + 
kj+m+2 − x

Bm−1(x), j = 1, . . . , q, (2.3)j j j+1kj+m+1 − kj kj+m+2 − kj+1 

� 
1, kj ≤ x ≤ kj+1

Bj
−1(x) = 

0, otherwise 

and γj are unknown parameters. The B-spline of order (m + 1) is made up of (m + 

1Since the main purpose of the paper is to develop an efficient computational method of the mono­
tone smoothing, the difference between the strict signs of inequalities (>, <) and not strict (≥, ≤) is 
not meaningful 
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Figure 2-1: Spline regression using the 3rd order B-spline bases. 

2) polynomial sections of the (m + 1)th order, joined together so that the spline is 
continuous to mth derivative. And for any value x within [km+2, kq+1], 

q� 
Bj

m(x) = 1. 
j=1 

It is possible to space knots unevenly but the interpretation of the penalties, which are 

described at the end of this section, is less clear in such a case. 
The left panels of Figures 2-1 and 2-2 illustrate eight B-splines basis functions 

of the third and forth orders correspondingly. The grey vertical dashed lines show 

the knot locations. In the right panels the B-spline basis functions multiplied by the 

corresponding coefficients are illustrated by thin curves. The splines obtained by the 

summation of the basis functions multiplied by the coefficients are represented by the 

thick solid lines. 
Following De Boor (1978) the first order derivative of the B-spline with equally 

spaced knots is 
q

f �(x) = 
1 � 

Bj
m−1(x)�1γj ,

h 
j=2 
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Figure 2-2: Spline regression using the 4th order B-spline bases. 

where �1γj is the first order difference of the model parameters, and h is the distance 

between two adjacent knots. Since all B-spline basis functions are nonnegative by 

definition, a sufficient condition for f �(x) > 0 is 

�1γj = γj − γj−1 > 0 . (2.4) 

Therefore, an increasing sequence of all model parameters γj , j = 1, . . . , q, will 
produce a monotonically increasing function. It should be mentioned that the mono­
tonic smoothers of Kelly and Rice (1990), Bollaerts et al (2006), and Leitenstorfer and 

Tutz (2007) were developed on the same concept. 
In this project, to achieve (2.4), the constrained model coefficients, γj , are redefined 

as 
j

γ1 = β1, γj = β1 + 
� 

exp(βi), j = 2, . . . , q, (2.5) 
i=2 

where the βi’s are unknown unconstrained parameters. In Figure 2-3 one can see the 

representation of the monotone increasing smooth curves using eight B-spline basis 
functions of the third (on the left panel of the figure) and fourth (on the right panel of 
the figure) orders. 
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Figure 2-3: Illustration of the monotone increasing smooth curves using the third (left 
panel) and fourth (right panel) order B-spline bases. 

Then the corresponding monotone smooth generalized model may be written as 

g(µi) = XiΣβ̃, (2.6) 

where ηi = XiΣβ̃ is called the linear predictor, 

Xi = 
�
B1 

m(xi), B2 
m(xi), ..., Bq

m(xi)
� 

is the ith row of the model matrix X, 

⎛
⎜
⎜⎜⎜⎜⎜

1 0 0 . . . 0 

1 1 0 . . . 0 

⎞
⎟
⎟⎟⎟⎟⎟

Σ = 1 1 1 . . . 0 (2.7)


⎝
 . . . . . . . . . . .


1 1 1 . . . 1
⎠


is a q × q matrix, and 

β̃ = (β1, exp(β2), exp(β3), ..., exp(βq))T . (2.8) 
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� � 

Throughout this thesis, β̃ is referred to as a vector of the model parameters (or co­
efficients), while β = (β1, β2, . . . , βq)T is referred to as a vector of the unconstrained 

working model parameters or just a vector of the working parameters (coefficients). 
Given y, a vector of observations of the mutually independent response variables 

Yi, maximum likelihood estimation of β is possible. The log likelihood function of β 

to be optimized is 
n n

l(β) = log
 (yi) = log fθi (yi),fθi 

i=1 i=1 

where the probability density function fθi (yi) was defined in (2.2). However, when using 

intermediate rank smoothers, such as B-splines, a question about the degree of model 
smoothness arises. The degree of smoothing here is controlled by the basis dimension, q. 
To overcome the problem of overfitting with too many B-splines or underfitting when 

there is insufficient number of basis functions, B-splines with a ‘wiggliness’ penalty 

based on the P-spline ideas of Eilers and Marx (1996) may be used with a ‘generous’ 
number of basis functions. 

P-splines are intermediate rank penalized smoothers with a kth- order difference 

penalty applied directly to the working parameters βj . For the monotone P-splines the 

first-order difference penalty starting with the second working parameter is used 

1−q� 

j=2 

(βj+1 − βj )2 = βT Sβ, (2.9)P =


where
 ⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟

0 0 0 0 . . 

0 1 −1 0 . . 

0 −1 2 −1 . . 

0 2 
S =
 .
 (2.10)


0
 −1
 . .


⎝
 . . . . . .


. . . . . .

⎠


Such a penalization is intuitively sensible, since by keeping unconstrained parame­
ters close to each other (starting with the second one), we have similar increments in the 

model coefficients, γj (see (2.5)), and the resulted B-spline becomes a linear function. 
On the other hand, having a generous number of basis functions, q, and making no 

restrictions on βj , we get an un-penalized curve with the greatest ‘wiggliness’ possible 

for the given construction. Hence, rather than estimating β by maximizing l(β), it can 
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be estimated by maximizing the penalized log likelihood function 

1 
lp(β) = l(β) − λβT Sβ,	 (2.11)

2

where λ is called as a smoothing parameter since it balances the trade off between 

the model fit and model smoothness. Thus, by varying the values of the smoothing 

parameter between λ = 0 and λ → ∞ the estimate for f(x) changes from a straight 
line fit to an un-penalized estimate. Since the first coefficient, γ1 = β1, is the model 
intercept, the penalization is started from β2. Figure 2-4 illustrates how smoothness of 
the monotone fit of the simulated data changes for five different values of the smoothing 

parameter, λ1 = 1e − 4, λ2 = 0.005, λ3 = 0.01, λ4 = 0.1, and λ5 = 100. Twenty five 

B-spline basis functions of the third order were used for this example. 
So, given λ, the penalized regression spline fitting problem is to maximize the 

penalized log likelihood function (2.11) with respect to β (the constant 1/2 is included 

for later convenience). 
The estimation of the smoothing parameter will be discussed in Section 2.6. For the 

next three sections λ is treated as known and the problem of β estimation by penalized 

likelihood maximization is considered. 

2.2	 A Newton method for penalized likelihood estimation 

of monotone smooth generalized regression models 

This section describes a Newton (Newton-Raphson) method for maximizing the pe­
nalized likelihood of a monotone smooth generalized regression model. As was men­
tioned in the introduction, for the unconstrained GAM the P-IRLS based on Fisher 
scoring, rather than a Newton method, is usually used for the penalized likelihood es­
timation. However, initial investigations on a proposed monotone model showed that 
Fisher scoring may require step length reductions at the end of the iterative procedure 

and converge very slowly. This is possibly due to the non-linearity of the objective 

in the working model coefficients and the presence of the non-canonical link function. 
The same problem may arise while fitting the common unconstrained GAM with a 

non-canonical link function (Wood, 2011). So, a full Newton method is applied to 

optimize the penalized log-likelihood function (2.11) in order to obtain β̂. The details 
of the fitting procedure described below may look complex but it is based on simple 

basic ideas. 
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Figure 2-4: Illustration of the monotone P-splines for five values of the smoothing 
parameter: λ1 = 1e−4 (long dashed curve), λ2 = 0.005 (short dashed curve), λ3 = 0.01 
(dotted curve), λ4 = 0.1 (dot-dashed curve), and λ5 = 100 (two dashed curve). The 
true curve is represented as a solid line and dots are the simulated data. 
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The penalized log likelihood function to be maximized w.r.t. β is 

1 
lp(β) = l(β) − λβT Sβ,

2

where from (2.2) the log likelihood of β is 

n

l(β) =
 [{yiθi − bi(θi)} /ai(φ) + ci(φ, yi)] . (2.12) 
i=1 

The distribution parameters θi depend on the working model parameters βj via the link 

between the mean of Yi and θi, E(Yi) = b�i(θi). Recall that the smoothing parameter λ 

is considered to be fixed while estimating β. Consider only cases where ai(φ) = φ/ωi, 

and ωi is a known constant, which usually equals 1. Almost all probability distributions 
of interest from the exponential family are covered by such a limitation. Then 

n

l(β) =
 [ωi {yiθi − bi(θi)} /φ + ci(φ, yi)] 
i=1 

and the first order derivative of l(β) w.r.t. βj is 

n
∂lp =

1 ∂θi ∂θi 
i∂βj 

− b�(θi) − λSj β,ωi yi
∂βj φ 

i=1 
∂βj 

where (for this chapter only) Sj is the jth row of the matrix S, and 

∂θi = 
∂θi ∂µi 

. 
∂βj ∂µi ∂βj 

Taking the first order derivatives from the both sides of the linking equation E(Yi) = 

b�i(θi), we get 
∂µi ∂θi 1 

= b��i (θi) = ,
∂θi 

⇒ 
∂µi b��i (θi)

n

b��ii=1 

∂lp =

1


∂βj φ 

�(θi)}i

(θi)/ωi 

{yi − b ∂µi 

∂βj 
− λSj β. (2.13)


Since 

g(µi) = XiΣβ̃, i = 1, . . . , n, 

then 

g�(µi) 
∂µi = [XΣ]i1 , g�(µi) 

∂µi = [XΣ]ij exp(βj ), for j = 2, . . . , q. 
∂β1 ∂βj 
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Hence

∂µi [XΣ]i1 ∂µi [XΣ]ij exp(βj ) 

= , = , for j = 2, . . . , q. 
∂β1 g�(µi) ∂βj g�(µi) 

Another key point of the exponential family concerns the variance 

var(Yi) = b��i (θi)ai(φ) = b��i (θi)φ/ωi, 

which is represented in the theory of GLMs in terms of µi as var(Yi) = V (µi)φ, where 

V (µi) = b��i (θi)/ωi. 

Let G and W1 be n × n diagonal matrices with the diagonal elements Gi = g�(µi) 
and 

ωi 
w1i = ,

V (µi)g�2(µi)

and let C be a q × q diagonal matrix with 

diag(C) = (1, exp(β2), . . . , exp(βq)). 

Then a penalized score vector may be written as 

up(β) = 
∂lp = 

1
(XΣC)T W1G(y − µ) − λSβ. (2.14)

∂β φ

To find the working model parameters estimates, β̂, one needs to solve up(β) = 0. 

These equations are non-linear and have no analytical solution, so some numerical 
methods should be applied. In the case of unconstrained GAM the penalized iteratively 

reweighed least squares (P-IRLS) scheme based on Fisher scoring is used to solve these 

equations (see Introduction). 
To proceed the Hessian of the log-likelihood function is derived from (2.14) 

H(β) = 

� 
∂2lp 

� 

= − 
1
(XΣC)T WXΣC +

1 
E − λS, (2.15)

∂βj ∂βk φ φ 

where W is a diagonal matrix with 

wi = 
V (µ

ω

i)
i

g

α
�2
i 

(µi)
, and αi = 1 + (yi − µi) 

�
V

V 

�

(
(
µ

µ

i

i

)
) 

+ 
g

g

��
�(
(
µ

µ

i

i

)
)
� 

, (2.16) 

E is a q × q diagonal matrix with 

n

E1 = 0 and Ej = 
� ωi [XΣC]ij (yi − µi), j = 2, . . . , q. (2.17) 
i=1 

V (µi)g�(µi)
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Note that for the model with a canonical link function, the second term of αi is equal 
to zero, since in this case 

V �(µi)/V (µi) + g��(µi)/g�(µi) = 0. 

Therefore, αi = 1 and the matrices W1 and W are identical. 
So, using the Newton method, if β[k] is the current estimate of β, then the next 

estimate is 

β[k+1] = β[k]+ 
�

(XΣC[k])T W[k]XΣC[k] − E[k] + λS
�−1 �

(XΣC[k])T W[k]G[k](y − µ[k]) − λSβ[k]
� 

,1 

(2.18) 

where the scale parameter φ is absorbed into the smoothing parameter λ. 

To use (2.18) directly for β estimation is not efficient since explicit formation of the 

Hessian would square the condition number of the working model matrix, 
√

WXΣC 

(Golub and van Loan, 1996). The condition number is the ratio of the largest to the 

smallest eigenvalues which allows determination of whether a system is ill-conditioned 

(large condition number) and it is desirable to develop a solution method that keeps the 

condition number as low as possible. Before considering efficient and stable evaluation 

of β̂, it should be noted that the Hessian matrix also appears in an expression for the 

effective degrees of freedom (edf) of the fitted model (used later for the smoothing 

parameter selection). 

2.3 Degrees of freedom 

An un-penalized model would have as many degrees of freedom as the number of 
unconstrained model parameters. However, the use of penalties decreases the number 
of degrees of freedom so that a model with λ →∞ would have the degrees of freedom 

near 1. Using the concept of the divergence of the maximum likelihood estimator, the 

effective degrees of freedom of the penalized fit can be found as (Meyer and Woodroofe, 
2000; Wood, 2001) 

n

τ = div( µ̂) = 
� ∂

µ̂i(y). 
∂yii=1 

Substituting (2.18) into (2.6) and taking first-order derivatives with respect to yi, we 

get 
∂µ̂i = 

�
XΣC 

�
(XΣC)T WXΣC − E + λS

�−1 
(XΣC)T W1

� 
,

∂yi ii 
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where the right-hand-side of this expression is the ith diagonal element of the matrix 

written in the square brackets. 
Therefore, 

τ = tr(F), (2.19) 

where 

F = 
�
(XΣC)T WXΣC − E + λS

�−1 
(XΣC)T W1XΣC 

and the matrices W, W1, C, and E are evaluated at convergence. Note that F is the 

expected Hessian of l(β), pre-multiplied by the inverse of the Hessian of lp(β). 

2.4 Stable and efficient evaluation of β̂ and τ 

This section proposes an efficient and stable method for the evaluation of the working 

parameter estimates, β̂. In the case of the unconstrained model (Wood, 2006a) a stable 

solution for β̂ is based on a QR decomposition of 
√

WX augmented with 
√

λB, where 

BT B = S. The same approach can be applied here for the monotone model, i.e. use 

a QR decomposition of the augmented 
√

WXΣC. However, the values of W can be 

negative when a non-canonical link function is assumed, so firstly, the issue with these 

negative weights has to be handled. 
The approach applied here is similar to that given in Section 3.3 of Wood (2011). 

Let W denote a diagonal matrix with the elements wi , and W− be a diagonal matrix | | | |
with � 

0, if wi ≥ 0 
wi
− = −wi, otherwise. 

Then 

(XΣC)T WXΣC = (XΣC)T |W|XΣC − 2(XΣC)T W−XΣC. 

Now the QR decomposition may be used for the augmented matrix, 

� �
W XΣC 

�
| √

λ

|
B 

= QR, (2.20) 

and 
�
|W|XΣC = Q1R, where Q1 is the first n rows of Q. 

Therefore 

(XΣC)T WXΣC + λS − E = RT R − 2(XΣC)T W−XΣC − E 

T = RT 
�
I − 2R−T (XΣC) W−XΣCR−1 − R−T ER−1

� 
R 

T = RT 
�
I − 2Q1 I

−Q1 − R−T ER−1
� 
R, 
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where I− is an n × n diagonal matrix with 

� 
0, if wi ≥ 0 

Ii
− = 

1, otherwise. 

The eigen-decomposition 

2QT 
1 I
−Q1 + R−T ER−1 = UΛUT 

gives 
(XΣC)T WXΣC + λS − E = RT 

�
I − UΛUT 

� 
R = RT U (I − Λ) UT R. 

Defining � 
(yi − µi)g�(µi)/αi, if wi ≥ 0 

z̃i = −(yi − µi)g�(µi)/αi, otherwise, 

then 

β[k+1] = β[k] + R−1U(I − Λ)−1UT QT 
1 

�
|W|z̃− λR−1U(I − Λ)−1UT R−T Sβ[k]. (2.21) 

By denoting 

P = R−1U(I − Λ)−1/2 and K = Q1U(I − Λ)−1/2 (2.22) 

(2.21) may be written as 

β[k+1] = β[k] + PKT 
�
|W|z̃− λPPT Sβ[k]. (2.23) 

The last expression has roughly the square root of the condition number of (2.18) for 
the unpenalized likelihood maximization problem, since the condition number of R−1 

equals the condition number of 
�
|W|XΣC. 

Note that in case of the canonical link function αi = 1 for any i, and therefore, 
|W| = W. 

Now, given the value of the smoothing parameter, λ, the following Newton algorithm 

should be iterated to convergence, and at convergence β̂ maximizes the penalized log 

likelihood function: 

1. Set initial values β[0] of β̂ and set k = 0. 

2. Evaluate µ[k], z̃[k], W [k], P[k], and K[k], at the current values of β[k].| |

3. Calculate β[k+1] = β[k] + P[k]K[k]T 
�
|W|[k]z̃[k] − λP[k]P[k]T Sβ[k]. Increment k. 

4. Repeat steps 2 and 3 until convergence. 
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The penalized deviance may be used for the convergence test. 
Using the approach and notations of this section, the effective degrees of freedom 

(2.19) can also be obtained in a stable manner. If G = (XΣC)T WXΣC − E + λS, 

and introducing n × n diagonal matrices I+ with 

� 
1, if wi ≥ 0 

I+ = i −1, otherwise, 

and L = diag(. . . , 1/αi, . . .), then the expression for the effective degrees of freedom 

(2.19) becomes 

tr(F) = tr 
��

|W|XΣCG−1(XΣC)T 
�
|W|LI+

� 

(2.24) 
= tr(KKT LI+). 

The next section addresses several implementational issues for the above algorithm, 
such as initialization of the model parameters, column rank deficiency of the model 
matrix, and choice of the basis dimension. 

2.5 Some optimization issues 

2.5.1 Initialization 

To start the iteration one needs to set β[0] so that the initial fitted curve goes through 

the data. It is suggested to take µ[0] = y, η[0] = g(y), as initial values, and given, 
the value of the smoothing parameter, to solve the following penalized least squares 
problem 

�η[0] − XΣβ̃�2 + λβ̃
T 
Sβ̃, 

using the quadratic programming approach (see Section 2.7.1) with linear inequality 

constraints, β̃j > 0, j = 2, . . . , q. Then β1
[0] = β̃1

[0]
, βj 

[0] = log( β̃j 
[0]), j = 2, . . . , q. This 

can be implemented using the pcls() function from the R package mgcv. 

2.5.2 Stability 

When dealing with a complex smoothing regression model, numerical instability may 

arise due to column rank deficiency of the Hessian of the log likelihood function (2.15) 
whose inverse should be calculated to obtain a Newton estimate of β (2.18). This may 

cause problems with parameter estimation. To detect the rank deficiency of the fitting 

problem one may use the QR decomposition (2.20) with pivoting. The rank deficiency 

problem can be dealt with by deleting the redundant columns of Q and corresponding 
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rows and columns of R. Then 
� 

R−1U(I − Λ)−1/2 
� 

P = ,
0 

where zeroes stand for unidentifiable parameters. 
Another way of dealing with the ill-conditioning is to form the singular value de­

composition instead of the QR decomposition. 

√
λB

˜
� �

|W|XΣC 
� 

= UDV
T 
, (2.25) 

where the diagonal matrix of the singular values, D, reveals this deficiency (Golub and 
˜van Loan, 1996; Wood, 2006a). By setting Q = U and R = DVT , the expression for P 

and K will be the same as in (2.22), but R−1 = VD−, where D− is a diagonal matrix 

with d−j = 1/dj (inverse singular values), j = 1, . . . , q, or d−j = 0 if dj is ‘too small’. 
Then the expression for the working parameter estimates may be written in the same 

way as in (2.23) 
β[k+1] = β[k] + PKT 

�
|W|z̃ − λPPT Sβ[k]. 

For the Newton method there is a requirement that G = (XΣC)T WXΣC−E+λS 

is a positive semi-definite matrix, so that Λj ≤ 1. The requirement might not be met for 
some steps of the iterative procedure. To avoid indefiniteness problem in the Newton 

iteration, a Fisher scoring should be substituted if Λj > 1 for any j. In this situation � 
R−1 

� 

one should set αi = 1, i = 1, . . . , n, so that wi ≥ 0 for any i, while P = and 
0 

K = Q1. Then β[k+1] = PKT 
√

Wz, where z = G(y − µ) + XΣCβ[k]. For the singular 
value decomposition 

β[k+1] = VD−1ŨT 
1 

√
Wz. 

One more consideration should be mentioned here. For a sufficiently non-linear mono­
tonic smooth function, f(x), divergence of the proposed iterative scheme may occasion­
ally occur. Reduction of the parameter step length taken will stabilize fitting in this 
circumstance. 

2.5.3 Basis dimension 

Another question for any smoothing by penalized regression splines concerns the choice 

of the basis dimension, q. Using low rank penalized smoothers allows reduced computa­
tional effort in comparison with full rank smoothers. Moreover, the choice of the basis 
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dimension is not crucial, since the smoothing parameter controls the actual effective 

degrees of freedom. Therefore, it is required to set only an upper bound on the model 
flexibility by choosing q. The recommendation for the proposed mono-GAM would be 

as following: at first, to use an unconstrained GAM to decide on the number of basis 
functions, and then to chose q for mono-GAM at least as much as that for unconstrained 

case. If not running the unconstrained case first, based on general results from a series 
of simulation studies, it is suggested to use q at least 15–20. The monotonic terms 
require higher q because the monotonicity constraint “uses up” degrees of freedom. 

2.6 Smoothing parameter selection 

For estimating working model coefficients, β, by penalized likelihood maximization the 

smoothing parameter, λ, should be given, so this section describes how the smoothing 

parameter can be estimated for a single smooth model with monotonicity constraint. 
When the scale parameter φ is known, λ can be estimated by minimizing the Un-
Biased Risk Estimator (UBRE) (Craven and Wahba, 1979; Wood, 2006a), which is 
also Mallows’ Cp (Mallows, 1973) 

Vu =
1 
D(β̂) − φ +

2 
φγτ, (2.26) 

n n 

where γ ≥ 1 is an ad hoc tuning parameter which can be used to force smoother models. 
D(β̂) is the model deviance 

D(β̂) = 2(lmax − l(β̂))φ, (2.27) 

with lmax denoting the maximum likelihood of the saturated model with one parameter 
for every observation. 

If the scale parameter is unknown, the generalized cross validation (GCV) can be 

minimized with respect to the smoothing parameter λ (Craven and Wahba, 1979; Hastie 

and Tibshirani, 1990) 
nD(β̂) Vg = (n − γτ)2 . (2.28) 

Since there is no direct analytical method for minimizing (2.28) and (2.26), some numer­
ical method should be developed to optimize it. For the model with a single smoothing 

parameter, which is the case considered in this chapter, the simplest method is to apply 

the direct grid search for the GCV/UBRE optimal smoothing parameter, which means 
that the model fitting algorithm must be iterated for each value of the smoothing pa­
rameter from the grid. Multiple smoothing parameter selection for an additive model 
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will be discussed in Section 4.3. 

2.7 Other approaches to monotone smoothing 

As previously stated, B-spline basis functions are very attractive in nonparametric 

smoothing due to their flexibility, local support, and an useful property of spline coeffi­
cients. So, several other B-spline monotone regression approaches have been developed. 
Almost all of them require an increasing sequence of spline coefficients to impose the 

monotonicity constraint. This section briefly describes the two main competitive ap­
proaches: constrained quadratic programming (Kelly and Rice, 1990; Wood, 1994) and 

P-spline regression with additional asymmetric penalties (Bollaerts et al., 2006b). 

2.7.1 Quadratic programming 

In Section 2.1 it was shown that a sufficient condition for a monotone increasing spline 

function is that the sequence of the B-spline coefficients should be of increasing size. 
So, to achieve monotonicity one may set up an increasing coefficient size constraint as 
linear inequality constraints in quadratic programming. Firstly, consider a Gaussian 

regression model with monotonicity constraint: 

yi = f(xi) + �i, i = 1, . . . , n, 

where the �i are i.i.d. normally distributed random variables with parameters (0, σ2), 
f(x) is an unknown smooth monotone increasing function. To estimate such a model 
we can use a B-spline basis for the smooth function with the degree of smoothness 
controlled by second-order difference penalties (Eilers and Marx, 1996), then the model 
can be written as 

yi = Xiβ + �i, 

Xi is the ith row of the model matrix consisting of B-spline basis functions (2.3) and 

β = (β1, β2, . . . , βq)T . Then a penalized likelihood for the model can be defined as 

1 
lp(β) = l(β) − λβT Sβ,

2
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where l(β) is a Gaussian log likelihood and the penalty matrix S = PT P, 

⎛
⎜
⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

1 −2 1 0 0 . . 

0 1 −2 1 0 . . 

1P = 0 0
 −2 1 . . .


⎝
 . . . . . . .


. . . . . . .


⎠


It is known that the penalized likelihood for the unconstrained model can be max­
imized by penalized least squares (e.g., Wood, 2006a); i.e. by minimization of 

Sp = �y − Xβ�2 + λβT Sβ (2.29) 

with respect to β. The monotonicity condition of an increasing sequence of the model 
coefficients can be written as linear inequality constraints 

Aβ > 0, (2.30) 

where
 ⎛
⎜
⎜⎜⎜

⎞
⎟
⎟⎟⎟

−1 1 0 0 0 . 

0 −1 1 0 0 . 

0 
A =


0
 −1 1 0 .

,


⎝
 ⎠

. . . . . . 

and 0 is a vector of zeros of dimension q − 1. Then, given the smoothing parameter λ, 

the model coefficients β can be estimated by minimizing (2.29) subject to (2.30) which 

is a quadratic programming problem. The solution for this problem can be obtained 

using the algorithm given in, for example, Gill et al. (1981) or Nocedal and Wright 
(2006). The mgcv package provides an R routine pcls(), which can be used to solve 

this problem. 
For the generalized regression model (2.1) 

g(µi) = f(xi), 

the monotonicity constraint may be achieved by setting the quadratic programming 

problem within a P-IRLS loop. The following scheme is applied to fit the model: 

1. Set initial values for µ[0]. 

[k] [k] [k] [k]2. Given the current µ , evaluate the weights wi = ωi/ 
�
V (µi )g�2(µi )

� 
and 

pseudodata zi 
[k] = g�(µ[

i
k])(yi − µ[

i
k]) + Xiβ

[k]. 

36 



(Notice that to start the iteration one does not need the initial values of β[0], but 
rather Xiβ

[0] which equals η[0] = g(µ[0]).) 

3. Minimize the following quadratic programming problem w.r.t. β to find β[k+1]: 

[k]min 
���
�

W[k] 
�
z − Xβ

����
2 
+ λβT Sβ, (2.31) 

subject to Aβ > 0. 

Calculate the linear predictor η[k+1] = Xβ[k+1] and fitted values 
µi 

[k+1] = g−1(ηi 
[k+1]). 

4. Repeat steps 2 and 3 until convergence. 

For the above procedure of β estimation the smoothing parameter λ should be given. 
Since it is plausible that the degree of smoothness for f(x) will be similar for both 

unconstrained and monotonic fits, λ can be chosen via GCV or UBRE from the un­
constrained model fit. 

2.7.2 P-splines with additional asymmetric penalties 

Bollaerts et al. (2006b) proposed another way of achieving an increasing order of the 

spline coefficients to meet the monotonicity constraint. The idea is to use the second-
order differences of the coefficients as a ‘wiggliness’ penalty as before and to set ad­
ditional asymmetric discrete penalties on the first-order differences of the coefficients 
in order to secure an increasing sequence. So, the penalized least squares for the sin­
gle monotone smooth generalized regression model (2.1) may be represented as the 

following: 

q q

Sp = 
���
√

W (z − Xβ)
���

2 
+ λ 

���2βj 
�2 + k 

� 
vj (β)(�1βj )2 , (2.32) 

j=3 j=2 

where the second term represents the ‘wiggliness’ penalty with the smoothing parameter 
λ, �2βj = βj − 2βj−1 + βj−2. The third item is a penalty reflecting the monotonicity 

constraint where 

vj (β) = 

� 
0, if βj − βj−1 ≥ 0 

1, otherwise, 

�1βj = βj − βj−1, and k is a user-defined constant parameter which is suggested to be 

chosen sufficiently high, say 106 , to ensure that the monotonicity assumption will be 

satisfied. 
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Hence, to estimate β we can use the P-IRLS scheme as in the quadratic program­
ming approach, but instead of minimizing a quadratic programming problem (2.31), 
minimize (2.32) with respect to β at the current values of z[k] and w[k] to obtain the 

next β[k+1]. Replacing �1βj by the nth−order differences allows to restrict the sign of 
the nth−order derivative of f(x), therefore, it is possible to set other shape constraints 
on the smooth function f(x). It should be noted that Bollaerts et al. (2006b) do not 
suggest an efficient method of smoothing parameter selection. 

Chapter 7 presents some simulation studies on performance of the proposed mono­
tonic P-splines in comparison with the above mentioned approaches. 

2.8 Illustrative simulations 

To illustrate the performance of the proposed modelling approach with parameters esti­
mation by the Newton based method and smoothness selection by direct minimization 

of the GCV/UBRE scores, some simulated data examples are presented here. In this 
section simulated examples on a single smooth monotone generalized regression model 
with a response variable Yi that is Gaussian, Poisson, or Gamma are considered: 

g(µi) = f(xi), i = 1, . . . , n, 

where E(Yi) = µi. For the Gamma model the non-canonical log link function is taken 

and for the others the link function is canonical. 
Example 1.1 : In the first example consider a Gaussian model yi = f(xi)+ �i, where 

f(x) is a monotonic function and �i are i.i.d. N(µ = 0, σ2) random variables. 
The following function was investigated 

f(x) = exp(4x)/ {1 + exp(4x)} . 

One hundred values of the covariate, xi, were simulated from a uniform distribution on 

[−1, 3], and the function f(x) was applied to these covariate values to obtain the true 

response mean. The response data, yi, were simulated from the normal distribution 

with that mean at each of three noise levels, σ = 0.05, 0.1, and 0.2. 
Each of three data sets was modeled using q = 15 basis functions of the proposed 

monotonic P-spline, and a cubic spline (m = 2) was used in each case. The smoothing 

parameter was selected by direct minimization of the GCV score (2.28) with γ = 1. 
The GCV optimal models are shown in Figure 2-5. The effective degrees of freedom, 
τ, of the monotone and unconstrained fits and the corresponding minimal GCV scores 
are given in Table 2.1. 
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Figure 2-5: The best fits of one term Gaussian models with monotonicity constraints 
(dashed line), the true function (solid line), the unconstrained fit (dot dashed line), 
and simulated data points. (a) σ = 0.05, (b) σ = 0.1, (c) σ = 0.2. 
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Table 2.1: The effective degrees of freedom and minimal GCV scores for the one-
dimensional Gaussian model 

σ = 0.05 σ = 0.1 σ = 0.2 
τ Vg τ Vg τ Vg 

Monotone model 4.68 3.596 · 10−3 4.18 0.01311 3.70 0.05223 
Unconstrained model 8.19 3.801 · 10−3 8.54 0.01330 8.13 0.05306 

The figure shows the best fits to the constrained model (solid line), the true mono­
tonic function (dashed line), the unconstrained fit (long dash line), and the simulated 

observations. It should be noticed that unconstrained GAM does not reproduce the 

monotone curve on the plateau regions of the function for all three noise levels, em­
phasizing the advantage of the monotone smooth. 

From the table one may see that the effective degree of freedom of the monotone fit 
is less than that of the unconstrained fit for all three values of σ. This is in accordance 

with the visual appearance of the smoothness. 
Example 1.2 : Consider a Poisson model with log link function, 

log(µi) = f(xi), i = 1, . . . , n, 

where µi = E(Yi), Yi ∼ Pois [exp {f(xi)}] . 
The test function was as in the previous Gaussian model but with an additional 

constant d to control the strength of the signal 

f(xi) = d × exp(4xi)/ {1 + exp(4xi)} . 

The xi were drawn from a Unif(−1, 3) distribution, n = 100. The values of d were taken 

as 2, 3, and 4. 

The data set was modeled using the cubic P-spline of the dimension q = 15, fitted 

by penalized likelihood maximization with λ chosen by UBRE. Figure 2-6 illustrates 
the optimal fitted curve of the estimated mean values, µ̂i = exp{f̂(xi)}, as a dashed 

line, the true curve of mean values, µi = exp {f(xi)} , as a solid line, the unconstrained 

curve as a dot dashed line, and the simulated points for three values of d. For this 
example the true curve of mean values µi should also be monotone increasing, but the 

unconstrained model does not reflect this fact. 
Table 2.2 shows the effective degrees of freedom of the fits and the minimal UBRE 

scores. 
Example 1.3 : In the third example a Gamma model with a non-canonical log link 
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Figure 2-6: The best fits of one term Poisson models with monotonicity constraints 
(dashed line), the true function (solid line), the unconstrained fit (dot dashed line), 
and simulated data points. (a) d = 2, (b) d = 3, (c) d = 4. 
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Table 2.2: The effective degrees of freedom and minimal UBRE scores for the one-
dimensional Poisson regression 

d = 2 d = 3 d = 4 
τ Vu τ Vu τ Vu 

Monotone model 3.30 -0.0843 4.78 0.1039 4.87 0.1351 
Unconstrained model 4.80 -0.0612 12.99 0.1467 6.55 0.1586 

function is fitted 

log(µi) = f(xi), i = 1, . . . , n, 

where Yi ∼ Gamma [ν = 1, θ = exp{f(xi)}]2, with a shape parameter ν and a scale 

parameter θ. 

f(xi) = d × exp {5((xi − 1) + 0.05)} / [1 + exp {5((xi − 1) + 0.01)}] , 

Let xi ∼ Unif(0, 4), n = 200. Three values of the signal strength were taken, d = 1.5, 

2, and 3.5. For both the monotone P-spline and the common unconstrained P-splines, 
q = 20 basis functions were used with m = 2. The optimal fitted curves by the GCV 

score minimization are illustrated in Figure 2-7 with τ and the GCV score presented 

in Table 2.3. 

Table 2.3: The effective degrees of freedom and minimal GCV scores for the one-
dimensional Gamma regression 

d = 1.5 d = 2 d = 3.5 
τ Vg τ Vg τ Vg 

Monotone model 3.99 1.11622 4.22 1.11799 4.66 1.12198 
Unconstrained model 5.76 1.11794 6.49 1.12083 7.57 1.12694 

As in the previous examples the unconstrained GAM exhibits non-monotonic fluc­
tuations, especially on the plateau region of the function. The GCV/UBRE scores 
of the monotone models of the examples are less than the GCV/UBRE scores of the 

unconstrained fit for all three levels of the signal strength. This is probably due to 

the very small or even negligible increment in the parameters of the monotone fit on 

the plateau regions of the function which leads to tiny contribution to the effective 

degrees of freedom (edf) from those parameters. Hence, the smaller value of the overall 
2The probability density function of a gamma distributed random variable Y is f(y; ν, θ) = 

ν−1 exp(−y/θ)y 
θν Γ(ν) for y, ν, θ > 0. E(Y ) = νθ, var(Y ) = νθ2 . 
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Figure 2-7: The best fits of one term Gamma models with monotonicity constraints 
(dashed line), the true function (solid line), the unconstrained fit (dot dashed line), 
and simulated data points. (a) d = 1.5, (b) d = 2, (c) d = 3.5. 
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degrees of freedom of the fitted monotone model in comparison with the edf of the 

unconstrained model lowers the GCV/UBRE scores of the monotone fit. 
The above simulated examples are given only for illustration of the mono-GAM 

performance. A more extensive simulation study will be introduced in Chapter 7. 
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Chapter 3 

Extensions to other shape 

preserving smoothing and 

bivariate monotonicity 

In the previous chapter only models with a monotone increasing smooth term have 

been considered. This chapter will introduce univariate smoothing under other shape 

constraints such as, a monotone decreasing constraint and monotonicity together with 

convexity/concavity. Based on tensor product smooths, smoothing of bivariate func­
tions with monotonicity restrictions on both covariates (double monotonicity) and on 

only one of them (single monotonicity) will also be developed. Penalties for these 

shape - preserving smoothers will be obtained. To show the performance of the pro­
posed smoothers, several simulation examples will be presented in the last section of 
this chapter. 

3.1 Monotone decreasing smoothing 

Consider the same one-smooth model as in Section 2.1 

g(µi) = f(xi), i = 1, . . . , n, (3.1) 

but now the smooth function f(xi) is assumed to be monotone decreasing, that is 

f(xi) < f(xj ) if xi > xj . 

Using the arguments given in Section 2.1, we may conclude that a sufficient condi­
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� 

tion for f �(xi) < 0 is 
� 1γj = γj − γj−1 < 0, 

where the γj are unknown parameters of the B-spline, j = 1, . . . , q. 

Therefore, the sequence of all model parameters γj , should be decreasing. To satisfy 

this condition the model coefficients for the monotone decreasing constraint are defined 

in terms of working coefficients, β, as follows, 

j

exp(βi), j = 2, . . . , q.γ1 = β1, γj = β1 − 
i=2 

If the matrix Σ is
 ⎛
⎜
⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

1	 0 0 . . . 0 

1	 −1 0 . . . 0 

−1Σ = 1
 −1 . . . 0
 (3.2)


⎝
 . . . . . . . . . . . . . . .


1 −1 −1 . . . −1


⎠


for the decreasing case, then the model (3.1) will be written as for the monotone 

increasing smooth term model 
g(µi) = XiΣβ̃, 

where 

β = (β1, exp(β2), exp(β3), ..., exp(βq))T . 

Figure 3.1 illustrates the monotone decreasing smooths obtained by using eight 
B-splines basis functions of the third and fourth orders. 

To control function ‘wiggliness’ the same penalty as for the monotone increasing 

smooth can be applied here. 

3.2 P-splines with mixed constraints 

In some research areas a monotonicity constraint may be assumed, together with con­
vexity or concavity. For instance, in forest research it is assumed that a tree’s height 
depends on an aridity index which is calculated as a fraction of the precipitation sum 

per year over mean temperature per year plus 10. This dependence is expected to 

be monotone increasing and concave. Meyer (2008) considered smoothing of yield as 
a function of planting density of onions where the relationship was supposed to be 

decreasing and convex. For references and different approaches to shape constrained 

smoothing, see, for example, Meyer (2008), Ng and Maechler (2007), Turlach (2005), 
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Figure 3-1: Illustration of monotone decreasing smooth curves using third (left panel) 
and fourth (right panel) order B-spline bases. 

Elfving and Andersson (1988). In this section mixed constrained P-splines are pre­
sented which in fact differ from the monotone P-splines only in the representation of 
the matrix Σ and a small change in the penalty matrix. 

Consider again the single smooth model 

g(µi) = f(xi), i = 1, . . . , n, (3.3) 

but now assume that the smooth function f(xi) is monotone increasing (or decreasing) 
and convex (or concave). Using P-splines it is possible to re-parameterize the model 
coefficients in such a way that sufficient conditions for monotonicity and convexity are 

satisfied. 
From De Boor (1978) the second order derivative of the B-spline with equally spaced 

knots is 
1 

q

f ��(xi) = 
h2 

� 
Bj

m−2(xi)�2γj , 
j=3 

where �2γj is the second order difference of the model parameters. Then a sufficient 
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condition for f ��(xi) > 0 (or < 0) is 

� 2γj = γj − 2γj−1 + γj−2 > 0 (< 0). 

Therefore, to construct P-splines with mixed constraints the following two conditions 
should be satisfied simultaneously: 

� 1γj > 0 (< 0) and � 2γj > 0 (< 0), j = 1, . . . , q. (3.4) 

To achieve (3.4) the model parameters γ are parameterized such that γ = Σβ̃, where 

β̃ = (β1, exp(β2), exp(β3), ..., exp(βq))T and Σ is a q × q matrix with the following 

elements for four different types of the mixed constraints: 

1. For a monotone increasing and convex smooth: 

⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟

1 0 0 0 . . . 0 

1 1 0 0 . . . 0 

1 2 1 0 . . . 0
Σ =


1 3 2 1 . . . 0


. . . . . . . . . . . . . . . . . . . . . .


1 q − 1 q − 2 q − 3 . . . 1

⎝
 ⎠


2. For a monotone increasing and concave smooth:


⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟

1 0 0 0 . . . 0 0 0 

1 1 1 1 . . . 1 1 1 

1 2 2 2 . . . 2 2 1
Σ =


1 3 3 3 . . . 3 2 1


. . . . . . . . . . . . . . . . . . . . . . . . . . .


1 q − 1 q − 2 q − 3 . . . 3 2 1

⎝
 ⎠


3. For a monotone decreasing and convex smooth:


⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟

1 0 0 0 . . . 0 0 0


1 −1 −1 −1 . . . −1 −1 −1 

1 −2 −2 −2 . . . −2 −2 −1 

−3 −3 −3 −3 −2 −1 
Σ =


1
 . . .


⎝
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 −(q − 1) −(q − 2) −(q − 3) . . . −3 −2 −1 
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Figure 3-2: Illustration of monotone increasing and concave smooth curves using third 
(left panel) and fourth (right panel) order B-spline bases. 

4. For a monotone decreasing and concave smooth: 

⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜

1 0 0 0 . . . 0

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟

1 −1 0 0 . . . 0 

1 −2 −1 0 . . . 0 

−3 −2 
Σ =


1
 −1 . . . 0


⎝
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


1 −(q − 1) −(q − 2) −(q − 3) . . . −1

⎠


As in the monotone case, the model (3.3) can be now written as 

g(µi) = XiΣβ̃. (3.5) 

Figures 3-2 and 3-3 show smooths with mixed constraints which were constructed 

using B-splines of orders 3 and 4 with q = 8 for both cases. 
To control the degree of model smoothness, penalties based on the first-order dif­

ferences of the adjacent model coefficients are used. But for the P-splines with mixed 

constraints such penalties should be started from the third working coefficient, β3, 
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Figure 3-3: Illustration of monotone decreasing and convex smooth curves using third 
(left panel) and fourth (right panel) order B-spline bases. 

since the second working coefficient is responsible for the slope of the fitted curve. By 

allowing β1 and β2 to vary while keeping other parameters close to each other, such a 

penalization will lead to a quadratic function when λ →∞, which is proved in the next 
subsection. Therefore, the following penalty is used for the mixed constrained model: 

1−q� 

j=3 

P =
 (βj+1 − βj )2 = βT Sβ, (3.6) 

where
 ⎛
⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

0 0 0 0 0 . . 

0 0 0 0 0 . . 

0 0 1 −1 0 . . 

2S = 0 0 −1 

0 

. . .−1 

20 0
 −1
 . .


⎝
 . . . . . . .


. . . . . . .


⎠


Since the difference between the mixed constraint model and the monotone model 
of Section 2.1 is only in the representation of the matrix Σ, (3.5) can be estimated by 
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the same method used for the monotone P-splines. 

Form of mixed constraint P-splines when λ →∞ 

This section proves that the penalty (3.6), used for smooths with mixed constraints, 
produces a quadratic function when the smoothing parameter λ tends to infinity. Con­
sider first the case of mixed constraints, i.e. monotone increasing plus convexity. The 

mixed constrained P-spline of this type can be written as 

f(xi) = Xiγ, 

where γ = (γ1, γ2, . . . , γq)T , 

γ1 = β1 

γ2 = β1 + exp(β2) 

γ3 = β1 + 2 exp(β2) + exp(β3) 

γ4 = β1 + 3 exp(β2) + 2 exp(β3) + exp(β4) 

. . . 

γq = β1 + (q − 1) exp(β2) + (q − 2) exp(β3) + . . . + exp(βq). 

When λ → ∞ the penalty (3.6) keeps the model parameters close to each other 
starting with the third one, β3. In particular it restricts the values as follows, βk → 

β3, ∀k ≥ 4, so that, in the limit 

γ1 = β1


γ2 = β1 + exp(β2)


γ3 = β1 + 2 exp(β2) + exp(β3)


γ4 = β1 + 3 exp(β2) + 3 exp(β3)


γ5 = β1 + 4 exp(β2) + 6 exp(β3)


γ6 = β1 + 5 exp(β2) + 10 exp(β3)


. . .. 

In this case, as was shown in Section 2.1, the first order derivative of the B-spline with 

equally spaced knots is 
1 

q

f �(xi) = 
� 

Bj
m−1(xi)�1γj ,

h 
j=2 
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where the first order differences of the model parameters, �1γj , have the values below 

�1γ2 = exp(β2), �1γ3 = exp(β2) + exp(β3), �1γ4 = exp(β2) + 2 exp(β3), . . . , 

�1γq = exp(β2) + (q − 2) exp(β3). 

Similarly the second order derivative of f(xi) is


1 
q


f ��(xi) = 
h2 

� 
Bj

m−2(xi)� 2γj , 
j=3 

with �2γ3 = �2γ4 = . . . = �2γq = exp(β3). By induction the next derivative will be 

equal to zero. Therefore, the second order derivative, f ��(xi), is equal to a constant, 
from which it follows that f �(xi) is a linear function, and hence the mixed constrained P-
splines represents a quadratic function when the smoothing parameter goes to infinity. 

The same approach can be used for the smooths with the other mixed constraints. 
Moreover, it is also not difficult to prove that the penalty applied for the monotone 

P-splines results in a straight line when λ → ∞, although this can also be seen by 

inspection. 
Figures 3-4 - 3-7 provide illustrations of how the curves change with λ for each type 

of the mixed constraints. For all four cases, twenty five B-spline basis functions of the 

third order were used. 

3.3 Double monotonicity for smooths of two covariates 

In the previous sections shape constrained penalized regression smoothers based on 

univariate P-splines have been introduced for smooth functions of a single covariate. 
Using the concept of tensor product spline bases (De Boor, 1978; Wood, 2006a) it is not 
difficult to build up smooths of two covariates under monotonicity constraint, where 

monotonicity may be assumed on only one of the covariates (single monotonicity) or 
on both of them (double monotonicity). 

In the first section tensor products of two monotonic P-splines will be developed in 

order to achieve double monotonicity along both directions. Single monotonicity, that 
is monotonicity only along one direction, will be introduced in the second subsection. 

3.3.1 Tensor product with monotonic P-splines 

Consider the single smooth term model 

g(µi) = f(x1i, x2i), i = 1, . . . , n, (3.7) 

52 



0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

y

Figure 3-4: Illustration of the monotone increasing and concave smooth curves for four 
values of the smoothing parameter: λ1 = 1e − 7 (long dashed curve), λ2 = 1e − 4 (short 
dashed curve), λ3 = 5e − 4 (dotted curve), and λ4 = 10 (dot-dashed curve). The true 
curve is represented as a solid line and dots are the simulated data. 

Figure 3-5: Illustration of the monotone increasing and convex smooth curves for four 
values of the smoothing parameter: λ1 = 1e − 9 (long dashed curve), λ2 = 5e − 4 (short 
dashed curve), λ3 = 1e − 3 (dotted curve), and λ4 = 10 (dot-dashed curve). The true 
curve is represented as a solid line and dots are the simulated data. 
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Figure 3-6: Illustration of the monotone decreasing and convex smooth curves for four 
values of the smoothing parameter: λ1 = 1e − 7 (long dashed curve), λ2 = 1e − 4 (short 
dashed curve), λ3 = 5e − 4 (dotted curve), and λ4 = 10 (dot-dashed curve). The true 
curve is represented as a solid line and dots are the simulated data. 

Figure 3-7: Illustration of the monotone decreasing and concave smooth curves for four 
values of the smoothing parameter: λ1 = 1e − 7 (long dashed curve), λ2 = 5e − 4 (short 
dashed curve), λ3 = 1e − 3 (dotted curve), and λ4 = 10 (dot-dashed curve). The true 
curve is represented as a solid line and dots are the simulated data. 
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� � 

� � 
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where the unknown function f now depends on two covariates x1 and x2, and is subject 
to double monotonicity constraints. 

Consider two (m+1)th order B-splines with basis dimensions q1 and q2, as described 

in Section 2.1 for representing two smooth functions, each of single covariates 

q1 q2

f1(x1i) = Bm 
j (x1i)αj , f2(x2i) = Bm 

k (x2i)γk, 
j=1 k=1 

where Bj
m(x1) and Bk

m(xk) are B-spline basis functions, and αj and γk are parame­
ters. Then, to represent the smooth function of two covariates, parameters αj can be 

expressed as the B-spline of the second covariate (Wood, 2006a), hence 

q1 q2

f(x1i, x2i) = Bm 
jk(x1i, x2i)βjk, 

j=1 k=1 

with Bm (x1i, x2i) = Bm(x1i) Bm(x2i).jk j k· 
Using the matrix-vector notations the univariate smooth functions can be written 

as f1(x1i) = X1iα and f2(x2i) = X2iγ, where X1i and X2i are the ith rows of model 
matrices, consisting of evaluated B-spline basis functions, α = (α1, . . . , αq1 )

T , and 

γ = (γ1, . . . , γq2 )
T . Therefore, by denoting the model matrix of the smooth of two 

covariates as X we get 
Xi = X1i ⊗ X2i, 

where ⊗ denotes a Kronecker product, that is the ith row of the bivariate model matrix 

is the Kronecker product of two rows of univariate model matrices, so 

f(x1i, x2i) = Xiβ, 

and the vector of model parameters may be expressed in the following order 

β = (β11, β12, . . . , β1q2 , β21, . . . , β2q2 , . . . , βq1q2 )
T . 

For equally spaced knot locations for both covariates the first order derivative of 
the bivariate B-spline with respect to the first covariate is 

∂f(x1i, x2i) 1 
q q1 2� 

∂x1i h1 j=2 k=1 

Bk
m(x2i)Bj

m−1(x1i)�1
1βjk,=


where h1 is the distance between two adjacent knots of the first covariate, �1
1βjk = 

βjk − β(j−1),k is the first order difference of the model parameters with respect to the 
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� 

first index only. Similarly, the first order derivative with respect to x2i will be 

∂f(x1i, x2i) 1 
=


q1	 q2

∂x2i h2 

� 

j=1 k=2 

Bj
m(x1i)Bk

m−1(x2i)� 12βjk, 

where h2 is the distance between two adjacent knots of the second covariate, �2
1βjk = 

βjk − βj,(k−1) is the first order difference of the model parameters with respect to the 

second index. 
Therefore, sufficient condition for ∂f(x1i,x2i) > 0 is∂x1i 

�1
1βjk > 0, 

and sufficient condition for ∂f(x1i,x2i) > 0 is∂x2i 

�2
1βjk > 0. 

In order to achieve these conditions for double monotonicity the following re­
parametrizations of the model parameters are proposed: 

1.	 For the double monotone increasing bivariate function (monotone increasing with 

respect to both covariates): 

Let
 ⎛
⎜
⎜⎜⎜⎜⎜

1 0 0 . . . 0 

1 1 0 . . . 0 

⎞
⎟
⎟⎟⎟⎟⎟

Σ1 = 1 1 1 . . . 0	 (3.8) 

⎝
 . . . . . . . . . . .


1 1 1 . . . 1
⎠


be q1 × q1 matrix, and Σ2 is as (3.8) but of the dimension q2 × q2. Then for the 

bivariate B-spline with monotonicity constraint 

Σ = Σ1 ⊗ Σ2, (3.9) 

and model (3.7) can be written as 

g(µi) = XiΣβ̃, 

where 

β̃ = (β11, exp(β12), exp(β13), . . . , exp(β1q2 ), exp(β21), . . . , exp(β2q2 ), . . . , exp(βq1q2 ))
T 

(3.10) 
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2.	 For the double monotone decreasing bivariate function:


Let Σ1 and Σ2 be as above and let Σ� = −Σ1 ⊗ Σ2. Then


Σ = Σ�L,


where L is a diagonal matrix with


� 
if j = 1 

Ljj = 
−
1
1
,

, 

otherwise, 

that is Σ is a matrix Σ� with the first column replaced by the column of one’s. 

All the rest remains the same as in the double monotone increasing case. 

3.3.2 Single monotonicity along only one direction 

Consider at first the single monotonicity of the bivariate function along the x1 direction. 
As in the previous case the univariate marginal smooth functions are constructed using 

the B-spline basis functions. Hence, the bivariate smooth function is represented as 

q1 q2

Bmf(x1i, x2i) = 
�� 

j (x1i)Bk
m(x2i)βjk = Xiβ. 

j=1 k=1 

The ith row of the bivariate model matrix is Xi = X1i ⊗ X2i, where 

X1i = 
�
B1 

m(x1i), B2 
m(x1i), . . . , Bq

m 
1 
(x1i)

� 
, 

X2i = 
�
B1 

m(x2i), B2 
m(x2i), . . . , Bq

m 
2 
(x2i)

� 
. 

To satisfy single monotonicity along only x1 the first order derivative with respect 
to x1 should be considered 

∂f(x1i, x2i) 1 
q1 q2

Bm	 1= 
�� 

k (x2i)Bm−1(x1i)�1βjk,
∂x1i h1	

j 
j=2 k=1 

and obviously, the condition for a single monotone increasing bivariate function is 
therefore, 

1�1βjk > 0. 

Similarly, it is easy to see that the sufficient condition for the single monotonicity 

along the second covariate x2 is �2
1βjk > 0. 
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To satisfy the conditions for monotone increase or decrease (�1βjk < 0, l = 1, 2) inl 

each direction, the following four re-parameterizations are developed: 

1.	 For the single monotone increasing bivariate function along the x1 direction: 

Let Σ1 be the same as in (3.8) and I2 be an identity matrix of size q2, then 

Σ = Σ1 ⊗ I2,	 (3.11) 

and 

β̃ = (β11, β12, . . . , β1q2 , exp(β21), exp(β22), . . . ,	 exp(β2q2 ), . . . , 

exp(βq11), . . . , exp(βq1q2 ))
T . 

2. For the single monotone decreasing bivariate function along the x1 direction: 

The re-parametrization is the same as above except for the representation of the 

matrix Σ1 which is now the q1 × q1 matrix 

⎛
⎜
⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

1	 0 0 . . . 0 

1	 −1 0 . . . 0 

−1Σ1 = 1 −1 . . . 0
 .
 (3.12)


⎝
 . . . . . . . . . . . . . . .


1 −1 −1 . . . −1


⎠


3.	 For the single monotone increasing bivariate function along the x2 direction: 

Let I1 be an identity matrix of size q1, and let Σ2 be a q2 × q2 matrix of the type 

(3.8). Then 

Σ = I1 ⊗ Σ2, (3.13) 

and 

β̃ = (β11, exp(β12), . . . , exp(β1q2 ), β21,	 exp(β22), . . . , exp(β2q2 ), . . . , 

βq11, exp(βq12), . . . , exp(βq1q2 ))
T . 

4.	 For the single monotone decreasing bivariate function along the x2 direction: 

Everything is as in 3 except that Σ2 is a q2 × q2 matrix of type (3.12). 

Then the generalized regression model for all four considered situations is of the 

usual form 

g(µi) = XiΣ˜ (3.14)β, 
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where Σ and β̃ have the corresponding representations according to the required shape 

constraint. After construction of the monotonic tensor product smooth, the next step 

is to estimate the model parameters. As previously, to overcome the issues with basis 
dimensions selection, the penalized log likelihood function will be maximized when 

fitting the model, 
1 1 

lp(β) = l(β) − λ1β
T S1β − λ2β

T S2β,
2 2

but now the penalization works in both directions of the two covariates separately. 
λ1 and λ2 are the two smoothing parameters for penalization in each direction. The 

following section will develop the penalty matrices S1 and S2 for the double and single 

monotonicity cases. 

3.3.3 Penalties for double and single monotonicity 

For double monotonicity the penalties may be written as the following: 

q1−1 1−q q1 2� 

j=2 k=1 j=1 k=2 

q2�
1 
1βjk)2 + λ2 

1 
2βjk)2 ,
 (3.15)
P = λ1 

where 
1 1�1βjk = β(j+1),k − βjk, �2βjk = βj,(k+1) − βjk. 

In matrix notation 

P = λ1β
T S1β + λ2β

T S2β, 

where S1 = P1 
T P1 and S2 = P2 

T P2, 

P1 = Pm1 ⊗ I2 and P2 = I1 ⊗ Pm2, 

where
 ⎛
⎜
⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

0 0 0 0 . . . 0 

0 −1 1 0 . . . 0 

0Pmj = 0 −1 1 . . . 0
 (3.16)
,


⎝
 ⎠
. . . . . . . . . . . . . . . .


0 0 0 0 . . . 1


j = 1, 2, are (q1 − 1) × q1 and (q2 − 1) × q2 matrices for j = 1 and 2 correspondingly, 
and Ij are identity matrices of sizes q1 and q2 respectively. 

The penalties for single monotonicity along x1 is 

P = λ1β
T S1β + λ2β

T S̃2β, (3.17) 
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where S1 is defined as above. The degree of smoothness in the unconstrained di­
rection can be controlled by the second-order difference penalties applied to the non­
exponentiated working parameters β11, . . . , β1q2 , and by the first-order difference penal­
ties for the rest of the working parameters, 

q1 q2−1q2−2� 

k=1 

�� 2 �2 
2β1kβT S̃2β = (�2

1βjk)2+
 ,

j=2 k=1 

where �2
2β1k = β1,(k+2) − 2β1,(k+1) + β1k. The second-order difference penalties are 

applied to β11, . . . , β1q2 , since they achieve the same purpose as the first-order difference 

penalties for the exponentiated parameters, in that both penalizations result in straight 
lines when λ →∞. 

S̃2 can be represented as S̃2 = P̃T 
2 P̃2, where 

⎛
⎜
⎜⎜⎜⎜⎜

Pu2 0 0 . . . 0 

0 Ps2 0 . . . 0 

⎞
⎟
⎟⎟⎟⎟⎟

P̃2 = 0 0 Ps2 . . . 0 , 

⎝
 . . . . . . . . . . . . . . . 

0 0 0 . . . Ps2 

⎠


Pu2 and Ps2 are (q2 − 2) × q2 and (q2 − 1) × q2 matrices respectively of the following 

type 

⎛
⎜
⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

1 −2 1 0 . . . 0 

1 

⎛
⎜
⎜⎜⎜

⎞
⎟
⎟⎟⎟

−1 1 0 . . . 0 

0 −1 1 . . . 0

0
 −2 1 . . . 0 

1Pu2 =
 ,
 Ps2 =
0 0
 −2 . . . 0
 ,

. . . . . . . . . . . . . .


0 0 0 . . . 1

⎝
 ⎠
⎝
 ⎠
. . . . . . . . . . . . . . . . .


0 0 0 0 . . . 1


and 0 are null matrices of the corresponding dimensions. 
Tensor product penalties for the single monotonicity restriction on the second co­

variate can be obtained easily in a similar way. As for the univariate cases, the penalties 
will keep the parameter estimates close to each other, resulting in similar increments 
in the model coefficients of marginal smooths. When λj →∞ such penalization results 
in straight lines for marginal curves. 

Given the values of λ1 and λ2, to fit the model (3.14) the penalized log likelihood 

function lp(β) can be maximized using the approach described in Chapter 1. 
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3.4 Simulations 

To illustrate the performance of the proposed shape-preserving smoothers, several sim­
ulation examples are presented in this section. 

Example 1. Consider a single smooth term Gaussian model with mixed constraint 
restrictions, yi = f(xi) + �i, i = 1, . . . , n, where �i are i.i.d. random variables following 

N(µ = 0, σ2). Two mixed constraint functions were investigated 

f1(x1) = log(x1), f2(x2) = (x2 − 3)6 , 

where f1(x1) is subject to a monotone increase plus concavity constraint and f2(x2) is 
monotone decreasing and convex. 

One hundred values of the covariates, x1 and x2, were simulated from the uniform 

distribution on [1, 100] and [−1, 2] respectively, and the true values of the functions 
were calculated. Three noise levels were considered, σ = 0.05, 0.10, and 0.20, to 

generate the values of the response variable yi. To model the data, P-splines with a 

monotone increase plus concavity constraint for the first function, and P-splines with 

a monotone decrease and convexity constraint for the second one were used, q = 15 

in both cases. The models were fitted by penalized likelihood maximization with the 

smoothing parameter selected by GCV. The optimal models are shown in Figure 3­
8. The effective degrees of freedom of the mixed constrained and unconstrained fits 
and the minimal GCV scores are given in Tables 3.1 and 3.2. The apparent observed 

pattern in τ is due to the results presented being from a single realization of the single 

data set. 

Table 3.1: The effective degrees of freedom and minimal GCV scores for the one-
dimensional Gaussian model with monotone increase and concavity constraint, f1(x1). 

σ = 0.05 σ = 0.1 σ = 0.2 
τ Vg τ Vg τ Vg 

Monotone model 3.722 3.628 · 10−3 5.00 7.608 · 10−3 3.25 0.03794 
Unconstrained model 10.06 3.932 · 10−3 10.38 7.515 · 10−3 4.19 0.037834 

From the figures one may note that the unconstrained models do not reflect the 

shape constraints for both functions for all three levels of noise. As in the monotone 

case the shape constrained fits are smoother than the unconstrained models and the 

effective degrees of freedom of the latter are more than that of the constrained fits. 

Example 2. The next example considers a single term binomial model subject to a 
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Figure 3-8: (a)-(c) Illustration of single term Gaussian models subject to a monotone 
increase and concavity constraint for three noise levels. (a) f1, σ = 0.05, (b) f1, 
σ = 0.10, (c) f1, σ = 0.20. (d)-(f) Illustration of the single term Gaussian models 
subject to a monotone decrease and convexity constraint for three noise levels. (d) f2, 
σ = 0.05, (e) f2, σ = 0.10, (f) f2, σ = 0.20. The mixed constraint fits are represented as 
dashed lines, the unconstrained fits as solid lines, and the true functions as dot dashed 
lines. 
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Table 3.2: The effective degrees of freedom and minimal GCV scores for the one-
dimensional Gaussian model with monotone decrease and convexity constraint, f2(x2). 

σ = 0.05 σ = 0.1 σ = 0.2 
τ Vg τ Vg τ Vg 

Monotone model 2.98 3.607 · 10−3 2.55 0.01425 2.03 0.03351 
Unconstrained model 5.31 3.712 · 10−3 4.34 0.01457 4.12 0.03348 

monotone increase plus concavity constraint 

logit(µi) = f(xi), 

where logit(µi) = log {µi/(1 − µi)} , µi = E(Yi), Yi ∼ Bin(nb, µi), nb is a binomial 
denominator, f(xi) = log(xi). The n = 200 values of the covariate were simulated from 

the uniform distribution on [1, 100], and before proceeding further the function f was 
scaled such that, the binomial probabilities belong to the interval [0.02, 0.98]. Three 

levels of noise were selected by setting nb = 1, 2, and 4. 

The data set was modeled using a cubic P-spline with a monotone increase and 

concavity restriction and q = 20. The model was fitted by the penalized likelihood 

maximization with λ selected by UBRE. Also unconstrained fits were obtained for all 
noise levels using unconstrained P-splines, with the same number of basis functions. 
Figure 3-9 illustrates this example. It shows the advantage of the proposed mixed 

constraint smoother, which reproduces the monotone and concave curve while the un­
constrained fits tend to be too wiggly. Table 3.3 shows the edf of the fits together with 

the minimal UBRE scores. 

Table 3.3: The effective degrees of freedom and minimal UBRE scores for the one-
dimensional binomial model with monotone increase and concavity constraint. 

nb = 1 nb = 2 nb = 4 
τ Vu τ Vu τ Vu 

Monotone model 2.04 -0.44742 2.71 -0.62343 2.27 -0.75867 
Unconstrained model 7.77 -0.45045 2.98 -0.62945 2.97 -0.75105 

The single bivariate term models subject to double or single monotonicity are con­
sidered in the next two examples. 

Example 3. In this example the performance of the bivariate P-spline subject to a 
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Figure 3-9: Illustration of single term binomial models subject to monotone increase 
plus concavity constraint. (a)-(c) Illustration of the simulated points and the true 
function for three noise levels, (a) nb = 1, (b) nb = 2, (c) nb = 4. (d)-(f) Representation 
of the linear predictors: the true linear predictor (solid line), the mixed constrained 
fits on a linear predictor scale (dashed line), and the unconstrained fits on a linear 
predictor scale (dot dashed line), (d) nb = 1, (e) nb = 2, (f) nb = 4. 
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double monotone increase restriction is shown using the following model 

yi = f(x1i, x2i) + �i, �i ∼ N(µ = 0, σ), 

f(x1i, x2i) = exp(4x1i)/ {1 + exp(4x1i)} + 2 exp(2x2i − 2), 

where monotonicity is assumed along both directions, x1 and x2. The covariate values 
were generated from the uniform distributions on [−1, 3] and [0, 1] respectively. The 

function was scaled to have values on [0, 1], and the level of noise was σ = 0.10. 
For both bivariate P-splines (unconstrained and double monotone increasing) q1 = 

q2 = 10 marginal basis functions were used. The true function and optimal fitted 

smooths obtained by the GCV minimization are shown on Figure 3-10. From the 

bottom right panel it may be seen that the unconstrained smooth is not monotone. 
The τ of the double monotone fit was 7.2 with the value of the GCV score 0.01028, for 
the unconstrained fit: τ = 25.42 and Vg = 0.010443. 

Example 4. The last example illustrates bivariate term models subject to mono­
tonicity along one direction only. Consider the same model as in the previous example, 
but now 

f1(x1i, x2i) = − exp(4x1i)/ {1 + exp(4x1i)} + 2 sin(πx2i), 

for the case of a monotone decrease constraint along the first covariate x1. Secondly, 
consider 

f2(x3i, x4i) = 2 sin(πx3i) + exp(4x4i)/ {1 + exp(4x4i)} , 

which is monotone increasing along the second covariate x4. All covariate values were 

generated from uniform distributions, x2 and x3 on [0, 1], and x1 and x4 on [−1, 3]. Both 

functions were scaled to [0, 1], and the standard deviation of the Gaussian distribution 

was taken as σ = 0.10. Ten basis functions were used for the marginal constrained 

and unconstrained P-splines for both cases. The results of this simulated example are 

shown in Figure 3-11 and Figure 3-12. Table 3.4 shows the optimal GCV scores and 

the effective degrees of freedom of the fits. 

Table 3.4: The effective degrees of freedom and minimal GCV scores for the Gaussian 
models with single monotonicity. 

f1 f2 

τ Vg τ Vg 

Monotone model 7.91 0.010272 8.11 0.010284 
Unconstrained model 27.37 0.010426 29.68 0.010421 
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Figure 3-10: Illustration of the single bivariate term Gaussian model subject to double 
monotonicity. (a) Perspective plot of the true function. (b) Plot of the values of the 
true function against fitted values of the double monotonic fitted smooth. (c) Contour 
plots of the true function (dot dashed lines) and double monotonic fit (solid lines). (d) 
Contour plot of the unconstrained fit. 
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Figure 3-11: Illustration of the single bivariate term Gaussian model subject to single 
monotone decreasing constraint along the first covariate x1. (a) Perspective plot of 
the true function, f1(x1i, x2i). (b) Plot of the values of the true function against fitted 
values of the single monotone decreasing smooth. (c) Contour plots of the true function 
(dot dashed lines) and single monotonic fitted smooth (solid lines). (d) Contour plot 
of the unconstrained fit. 
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Figure 3-12: Illustration of the single bivariate term Gaussian model subject to single 
monotone increasing constraint along the second covariate x4. (a) Perspective plot of 
the true function, f2(x3i, x4i). (b) Plot of the values of the true function against fitted 
values of the single monotone increasing smooth. (c) Contour plots of the true function 
(dot dashed lines) and single monotonic smooth (solid lines). (d) Contour plot of the 
unconstrained fit. 

68 



The figures clearly show the advantage of the P-splines with monotonicity con­
straints. It should be mentioned that a general theory to monotone smoothing of func­
tions with any number of covariates can be developed using the approach of Section 

3.3. This can be a topic of further research. 
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Chapter 4 

Generalized additive models with


shape constraints on some terms


The previous two chapters were dealing with single smooth generalized regression mod­
els under shape constraint restrictions. This chapter generalizes the proposed approach 

to generalized additive models with shape constraints on some terms (mono-GAM). For 
simplicity of presentation, the discussion starts with an additive model with monotonic­
ity constraint imposed only on one smooth term, and only B-spline bases used for repre­
sentation of unconstrained smooth terms. Then it extends to a more general structure 

of mono-GAM which incorporates any available penalized regression splines for each un­
constrained term, including multivariate terms, and bivariate terms with monotonicity 

constraints. The fitting procedure of a mono-GAM is based on an outer quasi-Newton 

iteration to update the log of the multiple smoothing parameters, ρk = log(λk), and 

each step of this procedure requires an inner Newton based P-IRLS to obtain working 

model parameters, β, given λ. The chapter introduces an efficient way of calculating 

derivatives of the working parameters with respect to ρk by extending the approach 

proposed in Wood (2011). 

4.1 Penalized regression spline representation 

4.1.1	 Mono-GAM with monotonic and unconstrained univariate P-

splines 

Consider a generalized additive model of the following structure: 

g(µi) = X∗
i δ + f1(x1i) + f2(x2i) + . . . + fp(xpi), i = 1, . . . , n, (4.1) 
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where µi = E(Yi), g is a known link function, not necessarily canonical, and Yi ∼
some exponential family distribution with the probability density function as in (2.2). 
X∗

i is the ith row of a model matrix for strictly parametric model components (usually 

including the intercept), with corresponding vector of parameters δ = (δ1, δ2, . . . , δq0 )
T , 

fj are smooth functions of the covariates xj , j = 1, . . . , p. For simplicity, suppose that 
an additional monotonicity constraint is imposed only on the first function, f1(x1). 
After setting up the model with a monotonicity constraint on only one smooth function, 
extensions to a GAM with monotonicity or mixed constraints on several functions are 

not difficult. 
To estimate the model (4.1) one can specify B-spline bases for each smooth function. 

Given a sequence of evenly spaced knots, kj1 < kj2 < . . . < kj,qj +mj +2, where qj is the 

number of basis functions for the jth smooth, an (mj + 1)th order B-spline can be 

represented as: 
qj

mjfj (xj ) = 
� 

Bjl (xj )βjl, j = 2, . . . , p, 
l=1 

where 

mj xj − kjl mj −1 kj,l+mj +2 − xj mj −1
Bjl (xj ) = 

kj,l+mj +1 − kjl 
Bjl (xj ) + 

kj,l+mj +2 − kj,l+1 
Bj,l+1 (xj ), l = 1, . . . , qj , 

B−1(xj ) = 

� 
1, kjl ≤ xj ≤ kj,l+1 

jl 0, otherwise. 

The first monotonic term of the GAM has the representation introduced in Section 2.1: 

q1

f1(x1) = 
� 

B1
m
l 
1 (x1)γ1l, 

l=1 

where 
l

γ11 = β11, γ1l = β11 ± 
� 

exp(β1k), l = 2, . . . , q1. 
k=2 

The signs ‘+’ or ‘−’ in the coefficients γ1l of the monotone smooth stand for increasing 

or decreasing constraints respectively. 
Given the bases, the ith row of the model matrix for each smooth will be 

mj mj mjX�
j,i = 

�
Bj1 (xji), Bj2 (xji), ..., Bjqj 

(xji)
� 

, j = 1, . . . , p. 
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Then each unconstrained smooth may be written as: 

fj = X�
j βj

� , j = 2, . . . , p, 

where fj is the vector such that fji = fj (xji), and βj
� = 

�
βj1, βj2, . . . , βjqj 

�T 
. 

The constrained smooth can be represented as 

f1 = X�
1Σ1

� β̃1
� , 

where ⎛ 
1 0 0 ... 0 

⎞ 

1 0 ... 0⎜⎜⎜⎜⎜⎜

±1 
⎟⎟⎟⎟⎟⎟

Σ�
1 = 1 ±1 ±1 ... 0 (4.2) 

. . . . . . . . . . . . . .⎝ ⎠
1 ±1 ±1 ... ±1 

is a q1 × q1 matrix with the elements +1 for increasing case and −1 for decreasing case, 
and β̃1

� = (β11, exp(β12), . . . , exp(β1q1 ))
T . 

In order to deal with the identifiability problem of this model one may set a ‘cen­
tering constraint’ on each unconstrained smooth (Wood, 2006a), that is the sum of the 

values of the jth smooth is set to be zero 
�n

i=1 fji(xji) = 0 or 

1T Xj
�βj

� = 0, j = 2, . . . , p. 

To satisfy this restriction, first, find a matrix Zj , with qj −1 orthogonal columns, which 

satisfies 
1T X�

j Zj = 0. 

By setting βj
� = Zj βj , where βj is a vector of qj − 1 new parameters, the jth smooth 

can be written as fj = Xj βj with Xj = X�
j Zj . The centering constraint will be satisfied 

by this re-parametrization. 
To handle the identifiability problem of the monotone term one may constrain 

γ11 = β11 = 0, since this parameter is the ‘intercept’ term for the monotone smooth. 
Then the ith row of the model matrix of the first smooth is 

= 
�

Bm1 (x1i), Bm1 (x1i), ..., Bm1 (x1i)
� 

,X1,i 12 13 1q1 

and the parameter vector β̃1 = (exp(β12), exp(β13), . . . , exp(β1q1 ))
T . 

Having done this, the generalized additive model with monotonicity constraint 
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(mono-GAM) (4.1) may be written as: 

g(µi) = Xiβ̃, (4.3) 

where X = [X∗ : X1Σ1 : X2 : . . . : Xp], β̃T = 
�
δT , β̃1 

T , β2 
T , . . . , βp

T 
� 
, and Σ1 is the first 

q1 − 1 rows and columns of Σ� in (4.2).1 

To control the degree of smoothing, the smoothness penalties based on kth-order 
differences of the working model coefficients is applied to each smooth of the mono-
GAM. For the monotone smooth, as in the model with one monotone term (Section 

2.1), the first-order difference penalty is used 

q1−1

P1 = 
� 

(β1,l+1 − β1l)2 , 
l=2 

while for the unconstrained terms the degree of smoothness can be controlled by the 

second-order difference penalties 

qj −2 

Pj = 
� 

(βj,l+2 − 2βj,l+1 + βjl)2 , j = 2, . . . , p. 
l=1 

These penalties can be written in terms of the full working model coefficients vector 
βT = 

�
θT , β1 

T , . . . , βp
T 
� 
, 

Pj = βT Sj β, 

where Sj is a q × q matrix with zeros everywhere except for elements which correspond 

to the coefficients of the jth smooth, q = q0 + q1 + . . . + qp − p is the total number of 
the coefficients. The (qj − 1) × (qj − 1) submatrix of these nonzero elements for an 

unconstrained term is 
⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜

1 

−2 

1 

0 

−2 

5 

−4 

1 

1 

−4 

6 

−4 

0 

1 

−4 

6 

0 

0 

1 

−4 

0 

0 

0 

1 

. 

. 

. 

. 

. 

. 

. 

. 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟
, 

⎝ . . . . . . . . ⎠ 
. . . . . . . . 

while for the first term it is as in (2.10). It should be mentioned that higher-order

difference penalties are possible here. For convenience the total penalty is represented
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as a single matrix

p

S = 
� 

λkSk, 
k=1 

where λk is a smoothing parameter for the kth smooth, controlling its amount of 
smoothness. 

After setting the penalties for each function the penalized log likelihood for the 

mono-GAM can be defined as 

1 
lp(β) = l(β) − βT Sβ. (4.4)

2

Given the values of λk, to estimate β the penalized log likelihood (4.4) should be 

maximized. 

4.1.2 Mono-GAM of a general structure 

To illustrate the set up of mono-GAMs of a general structure this section considers a 

slightly more complicated example. A more general structure of the mono-GAM will 
now incorporate not only the P-splines but any available penalized regression splines 
for each unconstrained smooth term, including multivariate terms, and bivariate terms 
with monotonicity constraints. An example of the general mono-GAM may be written 

as 

g(µi) = X ( )+ ( )+ ( )+ ( )∗ +δ f f f fx x , x x x , x 1 1i 2 2i 3i 3 4i 4 5i 6ii x7i +. . . , i = 1, . . . , n, (4.5)·

where some of the smooth terms are subject to monotonicity or monotonicity and 

convexity constraints. An additional feature is multiplication of the smooth term by 

a covariate: such models are referred to as ‘variable coefficient models’ (Hastie and 

Tibshirani, 1993; Wood, 2006a), and variables such as x7 are sometimes known as ‘by’ 
variables. 

In order to see how to estimate a mono-GAM of a general structure, consider the 

model (4.5) but with only four smooth terms 

∗g(µi) = Xi δ + f1(x1i) + f2(x2i, x3i) + f3(x4i) + f4(x5i, x6i) · x7i, (4.6) 

where the first two functions f1(x1i) and f2(x2i, x3i) are considered to be unconstrained, 
f3(x4i) is assumed to be monotone increasing, f4(x5i, x6i) is subject to double monotone 

increase, and the smooth term f4 is multiplied by the ‘by’ variable x7. 

To estimate such a model each smooth function of the model can be specified by 

means of penalized regression splines and for representation of each monotone smooth 
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� � 

� 

� 

� 

� � � 

function monotone P-splines can be used. Having chosen an appropriate set of basis 
functions, the first unconstrained smooth functions may be represented as 

q1

f1(x1i) = B1j (x1i)β1
�
j . 

j=1 

The tensor product basis can be used for representing the second bivariate function 

q2 q3

f2(x2i, x3i) = B2j (x2i) B3j (x3i)β2
�
,jk.· 

j=1 k=1 

For the two monotone smooths the approach of the previous sections will be used 

q4

f3(x4i) = B4
m
j 
4 (x4i)γ3j , 

j=1 

� 
where 

l

γ31 = β31, γ3l = β31 + exp(β3k), l = 2, . . . , q4, 

q q5 6� 

k=2 

and 

f4(x5i, x6i) = B5j (x5i) B6j (x6i)γ4
�
,jk,· 

j=1 k=1 

where 

k

γ4,11 = β4,11, γ4,1k = β4,11 + exp(β4,1s), k = 2, . . . , q6, 
s=2 

k j k

s=2 l=2 s=1 

in the notations of Section 3.3.1. 
In the vector-matrix notations each smooth terms will be written as 

f1 = X1
� β1

� , f2 = X2
� β2

� , 

where X� = X2i ⊗ X3i,2i


f3 = X�
3Σ

�
3β̃3

� ,


and 

f4 = X�
4Σ

�
4β̃4

� , 
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γ4,jk = β4,11 + exp(β4,1s) + exp(β4,ls), j = 2, . . . , q5, k = 1, . . . , q6, 



� � �	 �

where X�
4i = X5i ⊗ X6i, Σ�

4 = Σ5 ⊗ Σ6. Σ�3, Σ5 and Σ6 are as (2.7) but of the 

corresponding dimensions. 
The model with smooth terms defined as above is not identifiable. To deal with 

the identifiability for the univariate smooths the same approach as in the previous 
section may be used. The ‘centering constraint’ can also be imposed on unconstrained 

smooth with more than one variable. How to handle the identifiability problem with 

the monotonic bivariate smooths will be covered in the next section. For now denote 

the re-parametrization matrix for f4(x5i, x6i) as Z. After imposing the corresponding 

identifiability constraints, the model (4.6) can be represented as in the previous section 

g(µi) = Xiβ̃, 

where now 

X = 
�
X∗ : X1 : X2 : X3Σ3 : Jx7 X

�
4Σ

�
4Z

� 
, 

β̃T = 
�
δT , β1 

T , β2 
T , β̃3 

T , β̃4 
T 
� 
, Jx7 is a diagonal matrix with the values of x7i on the main 

diagonal. 
For measuring the wiggliness of the functions the penalties for each smooth de­

scribed in the previous sections will be subtracted from the log-likelihood function for 
the model. 

4.1.3	 Identifiability constraint for tensor product with monotonic P-

splines 

Consider the bivariate smooth fp(xi, zi) = Xpi
� Σ�

pβ̃p
� , where the matrix Σp and vector 

β̃p have the representations described in Section 3.3 and the unconstrained working 

vector of parameters, βp
� , has the following arrangement 

β = 
�
βp,11, βp,12 . . . , β , . . . , βp,q11, βp,q12 . . . , β

�T 
.p

� �
p,1q2 

�
p,q1q2 

For the bivariate function with double monotonicity, by analogy with the univariate 

case we may set the first parameter β� = 0 as an identifiability constraint, since this p,11 

parameter works as an intercept for marginal univariate smooths in the tensor product. 
But for the single monotonicity a different constraint will be used, since β� is not an p,11 

intercept in this case. 
For the single monotonicity along x the identifiability constraint can be of the form: 

q2� 
β�	 = 0,p,1j 

j=1 
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that is the sum of non-exponentiated working parameters is set to be zero. This is rea­
sonable since every non-exponentiated parameter is an intercept of the corresponding 

marginal univariate smooth along the x. The same argument gives the identifiabil­
ity constraint for the single monotonicity along z, but in this case the summation is 
performed along the first index in our notations: 

�q1 β� = 0.k=1 p,k1 

These constraints can be imposed into the model by introducing a re-parametrization 

matrix Z, such that β̃p
� = Zβ̃p. For the single monotonicity along x, 

0 
�� 

Z�
Z = ,

0 I 

where ⎛ 
−1 0 0 0 . . . 0 

⎞ 

⎜
1 −1 0 0 . . . 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜
Z� = 

0 1 −1 0 . . . 0 

0 0 1 −1 . . . 0 

. . . . . . . . . . . . . . . . . . .⎝ 
0 0 0 0 . . . 1 

⎠ 

is a q2 × (q2 − 1) matrix, and the dimension of parameter vector β̃p is now one less 
than the dimension of β̃p

� . Hence, the bivariate smooth may be written as fp(xi, zi) = 

X�
piΣ

� Zβ̃p or fp(xi, zi) = Xpiβ̃, where Xpi = X� Σ�
pZ. By analogy it is not difficult top pi

find Z when the identifiability constraint is imposed on the function with monotonicity 

along z. 

4.2 Fitting mono-GAM 

The fitting procedure for the mono-GAM is analogous to the Newton based method 

presented in Sections 2.2 and 2.4. The only differences lie (i) in the notation of the 

penalty term of the penalized log likelihood, where λS in the single smooth term 
p

becomes S = 
� 

λkSk, (ii) in the fact that the model matrix X of the additive model 
k=1 

now includes the matrices of parameter summation/subtraction Σj , and (iii) in the 

definitions of the matrices C and E, which are now q × q diagonal matrices with the 

following diagonal elements 

˜
� 

exp(βj ), if βj is exponentiated in β 
Cj = 

1, otherwise 
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and 
n ωi[XC]ij

⎧ � 
(yi − µi), if βj is exponentiated in β̃⎨ 

V (µi)g�(µi)Ej = i=1 ⎩ 0, otherwise. 

Similarly to a single monotone model, for the additive case 
�
|W|XC is augmented by 

a matrix B, where BT B = S, when forming the QR decomposition 

� �
|W|XC 

� 

= QR.	 (4.7)
B 

Therefore, in the Newton algorithm, if β[k] is the current estimate of β, the next 
estimate is 

β[k+1] = β[k] + PKT 
�
|W|z̃− PPT Sβ[k] 

(where P, K, and z̃ are defined in Section 2.4). 
The matrix for the effective degrees of freedom is 

F = 
�
(XC)T WXC − E + S

�−1 
(XC)T W1XC. (4.8) 

Also, the same optimization issues as in Section 2.5 regarding the initialization 

of the model parameters, column rank deficiency of the model matrix, and the basis 
dimension, are relevant to the case of the mono-GAM. What differs in the mono-
GAM case, is that grid search is not a practical strategy for finding multiple smoothing 

parameters. The following section therefore presents a computationally efficient method 

for estimating the multiple smoothing parameters. 

4.3	 Multiple smoothing parameter selection 

based on GCV/UBRE 

Penalized likelihood maximization is used to estimate working model parameters, β, 

given smoothing parameters λ. This section discusses how to estimate multiple smooth­
ing parameters. Section 2.6 introduced two criteria which can be minimized to estimate 

λ : Mallows’s Cp/UBRE (2.26), used when the scale parameter, φ, is known, and GCV 

(2.28) for an unknown scale parameter. When dealing with a single smooth general­
ized regression model the grid search may be used for smoothing parameter selection. 
However, for multiple smoothing parameters a computationally efficient (and stable) 
method must be developed. 

One way to select the smoothing parameters of the GAM is to minimize the GCV or 
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UBRE scores for each working penalized linear model of the P-IRLS step. This method 

was proposed by Gu (1992) (see Wood, 2004 and 2006a, for further development) and 

is known as performance oriented iteration. The main problem with this approach 

is divergence or cycling of the P-IRLS scheme. Another alternative is to iterate the 

P-IRLS to convergence for each trial value of the smoothing parameter vector which 

is called ‘nested’ or ‘outer’ iteration. In this project an outer quasi-Newton iteration 

is used for minimizing UBRE/GCV to update ρ̂k = log(λ̂k) (log(λ̂k) is taken to avoid 

negative values of the smoothing parameter), and each step of this procedure will 
require an inner Newton based P-IRLS to obtain β̂, given λ̂ (Section 2.4). 

For implementing a quasi-Newton iteration first order derivatives of the GCV or 
UBRE score with respect to ρk should be calculated. Both scores depend on the 

model deviance, D(β̂), and effective degrees of freedom, τ. Therefore, to calculate the 

derivatives of D(β̂) and τ with respect to ρk, first of all the derivatives of the working 

parameter vector, ∂β̂/∂ρk, have to be obtained, which is the main challenge in this 
approach. 

Wood (2006a) suggested expressions for calculating the derivative vector ∂β̂/∂ρk 

for each iteration step of the P-IRLS scheme, and used finite differencing of the first 
derivatives to get the Hessian. A computationally efficient and reliable method was 
developed by Wood (2008) which introduced a separate iterative procedure for cal­
culation of β̂ derivatives. The first subsection presents an efficient way of obtaining 

derivatives of the model parameter estimates by extending the implicit function theo­
rem approach taken in Wood (2011). The rest of the section covers calculation of all 
the other derivatives required in order to obtain the derivatives of the GCV or UBRE 

scores required for a quasi-Newton step. 

4.3.1 Calculating the first derivatives of β̂ with respect to ρk 

Let the penalized deviance be denoted by Dp : 

Dp = D(β) + 
� 

e ρk βT Skβ. (4.9) 
k 

For convenience (4.9) can be re-written as 

Dp = D(β) + P, 

where P = 
� 

eρk βT Skβ. 
k 

Since maximizing the penalized log likelihood is the same as minimizing the penal­
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= 
� 

, 

ized deviance (4.9), the penalized maximum likelihood equations are equivalent to 

∂Dp = 0, j = 1, . . . , q, (4.10)
∂βj 

q is the total number of parameters, and β̂ is the solution of these equations. From the 

Newton based P-IRLS we know that 
� 

∂2Dp 
� 

= 2 
�
(XC)T WXC + S − E

� 

∂βj ∂βl 

is invertible at convergence. Hence, implicit differentiation may be applied in order to 

compute the derivatives ∂β̂/∂ρk. By differentiating both sides of the equations (4.10) 
with respect to ρk we get 

q� ∂2Dp ∂βl + 
∂Dp = 0. 

∂βj ∂βl ∂ρk ∂βj ∂ρk
l=1 

Therefore, 
∂β̂

= − 

� 
∂2Dp 

�−1 
∂�β Dp 

, (4.11)
∂ρk ∂βj ∂βl ∂ρk 

where 
∂�β Dp = 

∂�β P 
= 2e ρk Skβ. 

∂ρk ∂ρ 

Using the notation of Section 2.2 we have 

� 
∂2Dp 

�−1 

=
1
R−1U(I − Λ)−1UT R−T ,

∂βj∂βl 2

and, finally, 
∂β̂

∂ρk 
= −e ρk PPT Skβ̂. (4.12) 

The calculation of the other required derivatives will be presented in the next sec­
tions. 

4.3.2 Calculating the derivative of D(β̂) 

The first order partial derivatives of the deviance are 

∂D 
q

∂D ∂β̂j 

∂ρk ∂β̂j ∂ρkj=1 
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which requires the derivative with respect to β̂. From (2.27) and (2.12) it follows that 

n
∂D µi = −2 

� 
ωi 

yi − ˆ
[X]ij , if βj is not exponentiated in the parameter vector 

∂β̂j i=1 
V (µ̂i)g�(µ̂i) 

β̃, and 
n

∂D µi = −2 
� 

ωi 
yi − ˆ

[X]ij exp(β̂j ), otherwise. 
∂β̂j i=1 

V (µ̂i)g�(µ̂i) 

Let c be a vector with 

ci = −2ωi(yi − µ̂i)/{V (µ̂i)g�(µ̂i)}, i = 1, . . . , n, 

then the vector of the first order derivatives of D is ∂D/∂ β̂ = CXT c, and 

∂D 
�

∂D 
�T ∂β̂

∂ρ 
= 

∂β̂ ∂ρk 
. 

4.3.3 Calculating the derivatives of η̂i, ŵi, and E 

In order to find the derivatives of the effective degrees of freedom it is necessary to 
˜compute the derivatives of the linear predictor η̂i = Xiβ̂, weight matrix W (2.16), and 

the derivatives of the matrix E (2.17). The values of β̂, ŵ, µ̂, and η̂ are taken as 
fixed at their converged values from the full Newton based iterative scheme. Define the 

following constants: 

a1i =
(yi − µ̂i)g��(µ̂i) and a2i = 

ŵi 
2 �

V �(µ̂i)g�(µ̂i) + 2V (µ̂i)g��(µ̂i)
� 

. 
g�(µ̂i) ωi 

Then 
∂η̂i ∂β̂

= XiC ,
∂ρk ∂ρk 

∂ŵi ∂η̂i ωi ∂α̂i 

∂ρk 
= −a2iα̂i 

∂ρk 
+ 

V (µ̂i)g�2(µ̂i) ∂ρk 
, 

where 

∂α̂i 1 ∂η̂i 
�
V �(µ̂i) + 

g��(µ̂i)+

∂ρk 

= − 
g�(µ̂i) ∂ρk V (µ̂i) g�(µ̂i)
��

V �(µ̂i)
�2 �

g��(µ̂i)
�2 V ��(µ̂i) g���(µ̂i)

�� 

(yi − µ̂i) 
V (µ̂i)

+ 
g�(µ̂i) 

− 
V (µ̂i) 

− 
g�(µ̂i) 

, 
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and

∂ŵ1i ∂η̂i 

. 
∂ρk 

= −a2i 
∂ρk 

Now define a q × q diagonal matrix Nk with Nkj = ∂β̂j /∂ρk, if βj is exponentiated 

in β̃, and 0, otherwise. Also define the diagonal matrices 

� 
∂ŵi 1 

� � 
∂ŵ1i 1 

�
Tk = diag . . . , , . . . , and T1k = diag . . . , , . . . (4.13)

∂ρk ˆ ∂ρk ŵ1ii|w|

the derivatives of ŵi and ŵ1i will be given later. 
Finally, let A1, = diag(a1i), i = 1, . . . , n, and let C1 be a q × q diagonal matrix with 

the elements 
˜

� 
exp(β̂j ), if βj is exponentiated in β 

C1j = 
0, otherwise, 

then the derivative of the diagonal elements of the matrix E is 

∂diag(E) 
=Nk(XC1)T W1G(y − µ̂) + (XC1)T W1T1kG(y − µ̂)+

∂ρk (4.14)
∂η̂ ∂η̂

(XC1)T W1A1 
∂ρk 

− (XC1)T W1 . 
∂ρk 

4.3.4 Calculating the first order derivative of τ 

The final step is to find the derivative of the effective degrees of freedom, τ. From 

Section 2.3 τ = tr(F), where 

F = G−1(XC)T W1XC, 

G = (XC)T WXC − E + S (see (4.8)). 
Using (4.13), the following derivatives can be found 

∂W ∂W1 = WTkI+ and = WLT1k,
∂ρk ∂ρk 

where the matrices L and I+ have been defined in Section 2.4. 
Let E� denote the first derivative of the diagonal matrix E with respect to ρk. Noting 

that ∂C/∂ρk = CNk it follows that 

∂G−1 

= −G−1 �Nk(XC)T WXC + (XC)T WTkI+XC 
∂ρ 

+(XC)T WXCNk + e ρk Sk − E�
� 

G−1 . 
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Therefore, 

∂F 
= 

∂G−1 

(XC)T WLXC + G−1NkXCT WLXC 
∂ρk ∂ρk 

+ G−1(XC)T WLTkI+XC + G−1(XC)T WLXCNk. 

It should be pointed out that 

G−1 = PPT , G−1(XC)T 
�
|W| = PKT , and 

�
|W|(XC)G−1(XC)T 

�
|W| = KKT . 

Then it follows that 

∂tr(F)
= −tr(KPT NkR

T QT 
1 I

+KKT LI+) − tr(KKT TkKKT I+L)
∂ρk 

− tr(KKT I+Q1RNkPKT I+L) − e ρk tr(KPT Sk PKT I+L) + tr(KPT E�PKT I+L) (4.15) 

T T T T T + tr(KP NkR Q1 I
+L) + tr(KK I+LT1) + tr(NkPK LI+Q1R). 

Given those derivatives the GCV/UBRE criterions can be minimized by a quasi-
Newton algorithm such as the BFGS method (Dennis and Schnabel, 1996; Nocedal and 

Wright, 2006). 

4.4 Simulations 

In this section examples are considered, where only some terms are constrained to 

monotonicity or to convexity and monotonicity together. 
Example 3.1 : A gamma model with log link and a linear predictor consisting of the 

sum of three smooth functions, where the second function is assumed to be monotone 

increasing, was fitted 

log(µi) = ηi = f1(x1i) + f2(x2i) + f3(x3i), i = 1, . . . , n, (4.16) 

where µi = E(Yi), Yi ∼ Gamma {ν = 1, θ = exp(ηi)} . 

One hundred values for each of three covariates, X1, X2, and X3, were simulated in­
dependently from Unif(−3, 3) for the first and the third covariates and from Unif(−1, 3) 
for X2. The algebraic expressions of the functions in the linear predictor were taken 

from Leitenstorfer and Tutz (2007): 

f1(x) = 1.5 sin(1.5x), 

f2(x) = 1.5/ [1 + exp{−10(x + 0.75)}] + 1.5/ [1 + exp{−5(x − 0.75)}] , 
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Figure 4-1: The test functions, fk( ), k = 1, 2, 3, used in the simulation study of ·
Example 3.1. 

and 

f3(x) = 3 exp(−x 2). 

Figure 4-1 shows the graphs of these functions. 
Cubic P-splines of basis dimension q1 = q3 = 15 were used to fit the first and the 

third unconstrained terms, with penalties based on the second-order differences of the 

model coefficients. f2(x) was represented using a rank q2 = 30 monotone cubic P-
spline. The model was fitted by the proposed penalized likelihood maximization with 

the value of the multiple smoothing parameter λ = (λ1, λ2, λ3)T found by the GCV 

minimization method given in Section 4.3. The estimated values of λk, k = 1, 2, 3, 

were 11.227, 0.010, and 3.359 respectively, with a minimal GCV score of 1.3425. The 

estimated effective degrees of freedom for each term were τ1 = 4.70, τ2 = 3.03, and 

τ3 = 5.88. The simulation results are illustrated in Figure 4-2. The panel (a) shows 
the actual versus fitted values of y. The rest of the panels, (b), (c), and (d), illustrate 

the estimates of the three smooth functions, on the ‘centered’ linear predictor scale 

(dashed curves) together with the true functions (solid curves) and the corresponding 

partial residuals shown as points. The partial residuals are obtained by adding Pearson 

residuals to the smooth terms (Wood, 2006a) 

�partial �i
p ,k̂i = fk(xki) + ˆ i = 1, . . . , n, 
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Figure 4-2: The simulation results for three term mono-GAM, Example 3.1. 

where Pearson residuals are 
yi − µ̂i

î = �
V (µ̂i) 

.�p 

Example 3.2 : In this example the structure of the mono-GAM is the same as in 

the previous example (4.16). But now, Yi ∼ Pois {exp(ηi)} , where the linear predictor 
ηi is the sum of the unconstrained, monotone, and monotone-convex smooth terms: 

f1(x) = 3 exp(−x 2), 

f2(x) = exp(4x)/ {1 + exp(4x)} , 

and 

f3(x) = exp(−3x). 

Let X1i ∼ Unif(−3, 3), X2i ∼ Unif(−1, 3), and X3i ∼ Unif(−1, 2), i = 1, . . . , n, n = 200. 
The first smooth was fitted using q1 = 20 cubic B-spline basis functions with second-
order difference penalties. For the monotone term, f2(x), the monotone P-spline of rank 

q2 = 30 was used, and the third smooth function was fitted using a mixed-constraint 
P-spline of rank q3 = 30 described in Section 3.2. 

The three optimal fitted curves on the linear predictor scale are represented on 
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Figure 4-3: The simulation results for three term mono-GAM, Example 3.2. 

panels (b), (c), and (d) of Figure 4-3 as dashed lines together with the graphs of the 

true functions illustrated as solid lines. The dots on those panels are the corresponding 

partial residuals. The first panel, (a), shows the actual against fitted values of the 

response variable. 
The estimated degrees of freedom for each term were 7.64, 3.20, and 2.41. The values 

of the smoothing parameters selected by direct UBRE minimization were λ1 = 26.33, 
λ2 = 7.21 10−3 , and λ3 = 2.20 10−5 with the optimal Vu = 0.06995.· · 

For both examples the model estimation procedure includes two iterative proce­
dures: a quasi-Newton method to update log smoothing parameters and a Newton 

based P-IRLS to obtain β, given λ, which is called for each step of the former opti­
mization. The above simulated examples are given to illustrate the mono-GAM per­
formance. A more extensive simulation study will be presented in Chapter 7. 
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Chapter 5 

Confidence intervals for 

mono-GAM 

The previous sections have dealt with the maximum penalized likelihood estimates 
of the model parameters β obtained by the full Newton method. A question about 
confidence intervals of those estimates arises, and also it is of interest to construct 
confidence intervals of the mono-GAM terms. The distribution of the working uncon­
strained parameters will be derived using the same approach as for the parameters of the 

unconstrained GAM (Wood, 2006a) with the smoothing parameters treated as fixed. 
Since there is a need for a simple, transparent calculation of the confidence intervals 
without simulations, the limiting distribution of the exponentiated model coefficients 
will be approximated by means of the delta method. The possibility of high negative 

correlation between the intercept and other parameters of the constrained smooth term 

will be dealt with by post-fit modification of the model centering constraints, in order to 

obtain the narrowest possible intervals for mono-GAM components. The performance 

of the proposed confidence intervals will be examined by estimating realized coverage 

probabilities of the intervals from simulation studies. 

5.1 The delta method for deriving β̃ distribution 

Consider a general structure of the mono-GAM: 

g(µi) = X∗
i δ + f1(x1i) + f2(x2i) + . . . + fp(xpi), i = 1, . . . , n, (5.1) 

where Yi ∼ exponential family distribution, and some of the model smooth function, 
fk, are shape constrained. As we saw in Chapter 4 the mono-GAM can be written as 
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a penalized GLM of the form 

g(µi) = Xiβ̃, (5.2) 

where the components of the vector β̃ are either exp(βj ) for most coefficients of the 

constrained smooth terms or βj , otherwise. Given the values of the smoothing param­
eters, λk, the model parameters, β, are estimated by maximizing the penalized log 

likelihood using the full Newton method. 
Since the full Newton method and Fisher scoring result in the same estimate at 

their convergence, in order to get the distributional results on β we will deal with the 

expected values of the log likelihood Hessian as in case of the GAM (Wood, 2006a). 
That is the parameter estimates are considered to be of the form 

β[k+1] = β[k] + 
�

(XC[k])T W[k]XC[k] + S
�−1 �

(XC[k])T W[k]G[k](y − µ[k]) − Sβ[k]
� 

, 

(5.3) 
p

where S = 
� 

λkSk, and the diagonal values of W are wi = 1/ 
�
V (µi)g�(µi)2

� 
, i = 

k=1 

1, . . . , n. Then it can be easily shown that the expression for β[k+1] can be written as 

β[k+1] = 
�

(XC[k])T W[k]XC[k] + S
�−1 

(XC[k])T W[k] 
�
G[k](y − µ[k]) + XC[k]β[k]

� 
. 

Define z[k] = G[k](y − µ[k]) + XC[k]β[k], which is referred to as a vector of pseudodata 

in the P-IRLS scheme of the GAM. Hence, the parameter estimators at convergence 

become 

β̂ = 
�
(XC)T WXC + S

�−1 
(XC)T Wz. 

Since the variance of zi β is|

1
var(zi|β) = g�(µi)2V (µi)φ = 

wi 
φ, 

the corresponding covariance matrix of β̂ is 

Vβ̂ = 
�
(XC)T WXC + S

�−1 
(XC)T WXC 

�
(XC)T WXC + S

�−1 
φ. 

The confidence intervals constructed using Vβ̂ produce unsatisfactory realized cover­
age probabilities (Wood, 2006a). So a Bayesian approach will be used for obtaining 

the distribution (posterior) of the mono-GAM working coefficients. Bayesian interval 
estimates for smoothing spline models were proposed by Wahba (1983) and Silverman 

(1985). The extensions of their results to generalized additive models based on low 

rank penalized regression splines have been suggested by, for example, Lin and Zhang 
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(1999), Wood (2000), Wood and Augustin (2002), and Wood (2006b). In this project 
the Bayesian approach of Wood (2006b) has been applied. Section 5.1.1 will describe 

how it can be adopted for the mono-GAM. At the moment consider only the result of 
this procedure: the posterior parameter vector distribution can be written as 

β|v ∼ N 
�
β̂, Vβ

� 
, (5.4) 

where a Bayesian posterior covariance matrix for the parameters is 

Vβ = 
�
(XC)T WXC + S

�−1 
φ, (5.5) 

and v = (XC)T Wz. 

A simple and direct approach to approximating the distribution of β̃ used the delta 

method. The delta method is a general method for establishing the asymptotic distri­
bution of functions of a multinormally distributed random vector. In this project the 

delta method is used to construct a linear approximation of the exponential functions 
of parameters, β̃, and derive the approximate distribution and covariance matrix for 
that simpler linear function. 

Consider the Taylor series expansion of β̃ as a vector of functions of β 

˜ ˜̂ ˜̂ ˆ ˆ 2 ̃̂ ˆβ = β + diag 
�
�β

� 
(β − β) + diag(β − β)diag 

�
� β∗

� 
(β − β)/2 

(5.6)
ˆ ˆ≈ β̃ + diag 

�
�β̃

� 
(β − β̂), 

˜ ˆ̃where β̂ are β̃ estimators, diag 
�
�β

� 
is a diagonal matrix of size q, with the vector of 

the first order derivatives of β̃ with respect to β evaluated at β̂ on the main diagonal. 
diag(β − β̂) is a diagonal matrix with β − β̂ on the main diagonal. �2β̂̃∗ is a vector 
of second order derivatives of β̃ evaluated at β̂∗, some value between β̂ and β. In the 

ˆ̃notation of Section 2.2, diag 
�
�β

� 
= C. From (5.6) we have 

ˆ ˆ
β̃ − β̃ ≈ diag 

�
�β̃

� 
(β − β̂), 

which means that β̃ − β̂̃ is approximately a linear function of β. 

Finally, recalling that 
β|v ∼ N 

�
β̂, Vβ 

� 
, 

and that linear functions of the normally distributed random variables follow normal 
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� 

� 

distributions, the approximate distribution of β̃ (Rao, 1973; Davison, 2008) is 

˜	 ˜β ∼ N 
�
β̂, CVβC

� 
, 

where 

Vβ̃ = C 
�
(XC)T WXC + S

�−1 
Cφ. 

5.1.1	 Posterior distribution for the working parameters of a mono-

GAM 

In this section the posterior distribution for the mono-GAM working coefficients, β, 

will be derived by using the approach of Wood (2006b). Define a random vector v = 

(XC)T Wz. The covariance matrix of v β is cov(v β) = (XC)T W(XC)φ. Applying| |
the same arguments for examining the Lindeberg’s conditions for the validity of the 

Central Limit Theorem (Lindeberg, 1922) as in the case of the unconstrained GAM, 
it can be shown that with sample size n →∞ the distribution of v|β will tend to the 

multivariate normal with the following parameters 

v|β ∼ N 
�
(XC)T WXCβ, (XC)T WXCφ

� 
. 

Consider the following prior for β, 

fβ(β) e
−∝ 

1 
2
βT � Si β

τi ,


where τi is a parameter controlling the dispersion of the prior. Noting from the above 

that 

1 
2(v−(XC)T WXCβ)T [(XC)T WXC]−1(v−(XC)T WXCβ)/φ,
f(v β) e−| ∝ 

Bayes rule gives


�
vT [(XC)T WXC]−1 

v/φ−2vT [(XC)T WXC]−1 
(XC)T WXCβ/φ

�
1 
2f(β v) e

−| ∝ ×
�

βT (XC)T WXC[(XC)T WXC]−1 
(XC)T WXCβ/φ+βT � Si 

τi 
1 
2

β× e
− (5.7)


T β/φ+βT 

� 
(XC)T

φ 
WXC 

+
� S

τi

i 

�
β

�
1 
2
−2v−∝ e
 .


One may note that for 

α ∼ N 

��
(XC)T WXC + 

� 
λiSi

�−1 
v, 

�
(XC)T WXC + 

� 
λiSi

�−1 
φ

� 

, 
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fα(α) ∝ 

1 
��

α−[(XC)T WXC+
� 

λiSi]−1 
v
�T 

[(XC)T WXC+
� 

λiSi]
�
α−[(XC)T WXC+

� 
λiSi]−1 

v
�
/φ

� 

2 ∝ e
− 

1 
� � 

(XC)T WXC 
� 

λiSi 

� � 

∝ e− 
2
1 {αT [(XC)T WXC+

� 
λiSi]α/φ−2vT α/φ} = e

− 
2 −2vT α/φ+αT

φ + 
φ α

. 

(5.8) 

By setting τi = λ
φ 
i 

and examining (5.7) and (5.8) we recognize the posterior parameter 
distribution 

β|v ∼ N 
�
β̂, Vβ

� 
, 

with 

Vβ = 
�
(XC)T WXC + S

�−1 
φ. 

Due to the nature of the identifiability constraints imposed on the monotone in­
creasing (decreasing) terms in the additive models (see Section 4.1.1) an issue about the 

possible high negative (positive) correlations between the intercept and exponentiated 

parameters of the monotonic smooth terms arises. To deal with this issue it is proposed 

to apply the centering identifiability constraint in place of setting the first parameter 
of the monotone term to zero (‘zeroed intercept’ constraint) but to do so after fitting. 
Such re-parametrization reduces the correlation with the intercept, but it can not be 

used for the monotone smooths before fitting since it would destroy the monotonicity 

construction in that case. 

5.2 Imposing centering constraint 

This section explains how the centering constraint may be imposed on each shape 

constrained smooth term in order to overcome the problem with the high correlation 

between the parameters of these smooth terms and the intercept. 

Univariate smooth term with shape constraints 

Consider the univariate shape constrained function f(xi), that can be represented be­
fore an identifiability constraint was imposed as 

f(xi) = X�
iΣ

�β̃�, 

where β̃� = (β1, exp(β2), . . . , exp(βq))T . For simplicity of notation, the index denoting 

the order of the smooth term in the mono-GAM settings (5.1) and the covariate index 
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�


� � 

have been omitted. 
As an identifiability constraint for the shape constrained smooth it was proposed to 

set β1 = 0 (see Section 4.1.1), so by denoting β̃ = (0, exp(β2), . . . , exp(βq))T we have 

f(xi) = X�
iΣ

�β̃. (5.9) 

n

re-parametrization of β̃, with fa(xi) differing from f(xi) only by a constant. Such a 

centering constraint may be written as Aβ̃� = 0, A = 1T X�Σ�, where 1 is an n vector 
of ones. Now we should re-parameterize the smooth in terms of new parameters β̃a 

� 

i=1 

such that 
β̃� = Zaβ̃a. 

A general way of doing that is to find the matrix Za which satisfies 

1T X�Σ�Za = 0, (5.10) 

and has q − 1 orthogonal columns (Wood, 2006a). For this purpose, the QR decompo­
sition of AT can be used. Suppose 

After the fitting procedure a centering constraint
 fa(xi) = 0 may be imposed by 

� 
P

AT = Qa ,
0 

then Qa may be partitioned as Qa ≡ (D : Za), where D consists only of the first 
column and Za is of the dimension q × (q − 1). 

Now, since two fits obtained by using those two identifiability constraints (‘zeroed 

intercept’ and the centering constraint) will differ only by the constant, say c, we may 

write 

X�Σ�Zaβ̃a = X�Σ�β̃ + c, (5.11) 

where c is an n vector of the constant c. In order to find c one may sum up all n 

equations of (5.11), which results in 

n n

fa(xi) = f(xi) + nc, 
i=1 i=1 

� 
from which it follows that 

n1

c = −

n 
f(xi), 

i=1 

and since the centering constraint is imposed after the fitting procedure the value of c
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can be easily found. 
The next step is to find β̃a. Applying the QR decomposition, X�Σ� = QR, and 

multiplying both sides of the expression (5.11) by QT from the left, we get 

RZaβ̃a = Rβ̃ + QT c. (5.12) 

BmFrom the property of the B-splines (see Section 2.1) 
�q

j=1 j (xi) = 1, and since the 

first column of matrix Σ� is a column of ones for all shape constraints (see Sections 2.1, 
3.1, 3.2), the first column of the model matrix X�Σ� consists only of ones. Due to this 
property and the fact that the matrix R in the QR decomposition is upper triangular 
with the first element, say, R11, the elements of the first column of the matrix Q are 

equal to Qi1 = R
1 
11 

, i = 1, . . . , n. Hence, the first column of Q is constant, but Q is an 

orthogonal matrix, therefore, 
1T Q j = 0, (5.13)·

for any j > 1, where Q j denotes the jth column of Q. Moreover, by constructing the ·
first Householder matrix H1, when forming Q, it it easy to see that the elements of the 

first column of Q are 

Qi1 = 1/
√

n, 

where n is the number of observations. 
From (5.13) it follows that 

1. QT c = (c
√

n, 0, 0, . . . , 0)T ; 

2. the first row of RZa is a row of 0�s. This is because from (5.10) 

1T QRZa = 0, 

while 1T Q = (
√

n, 0, 0, . . . , 0) and to make the right-hand side of the above 

expression 0, the first row of RZa must consist only of 0�s. 

Taking these features into account from (5.12) we get 

β̃a = (R∗Za)−1R∗β̃, (5.14) 

where R∗ is the matrix R without its first row. 
It should be noted that using R functions for QR decomposition one may reduce the 

computational cost by not forming Za explicitly, since in fact Za is only pre-multiplied 

by R and post-multiplied by β̃a. 
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Figure 5-1: Illustration of the equivalency of the centering identifiability constraint 
with the monotonic identifiability constraint, Example 3.2. There are two coincided 
curves on each plot: curves with the ‘zeroed intercept’ (black dashed lines) and with 
the centering constraint (pink dotted lines). The curves with the centering constraint 
have a constant subtracted. 

Finally, the function f(xi) may be written as 

f(xi) = X�Σ�Za(R∗Za)−1R∗β̃ − c, (5.15)i

and correspondingly, the covariance matrix of this smooth is 

Vf = 
�
X�Σ�Za(R∗Za)−1R∗� 

Vβ̃

�
X�Σ�Za(R∗Za)−1R∗�T 

, 

where Vβ̃ was derived in the previous section by using the delta method, and to handle 

β1 = 0 it should be augmented with an initial row and column of zeros. 
Figure 5-1 shows the equivalency of the two types of identifiability constraints, the 

centering constraint and the ‘zeroed intercept’ constraint. Two fits for the second and 

third smooth terms of Example 3.2 were obtained by using the ‘zeroed intercept’ (5.9) 
and centering constraint (5.15). The coincidence of the dashed lines of the fits with 

the initial identifiability constraint and the dotted lines of the fits with the centering 

constraint supports the approach of this section. 
The 95% component-wise Bayesian confidence intervals for the mono-GAM of Ex­

ample 3.2 are illustrated in Figure 5-2, while Figure 5-3 shows an uncorrected version 
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Figure 5-2: Illustration of the corrected Bayesian confidence intervals, Example 3.2. 

of the confidence intervals without imposing centering constraints on the monotone 

smooth terms. The function estimates are given by the solid curves, the dashed curves 
are boundaries of the 95% confidence regions for each function. For the first uncon­
strained smooth the confidence interval is equivalent to the confidence interval obtained 

by the Bayesian approach of Wood (2006b), since in this case the part of the diago­
nal matrix, C, which corresponds to the first smooth becomes an identity matrix, and 

hence the covariance matrix (5.5) is the same as for the unconstrained GAM. The slight 
narrowing in the confidence intervals on the plateau regions of f̂2(x) and f̂3(x) is due 

to the insignificant increment in the model parameters when the corresponding βj tend 

to minus infinity and their variances are near zero. 

Bivariate smooth term with monotonicity restriction 

For the bivariate function with double monotonicity f(x1i, x2i) the same approach as 
above may be used, since in this case the identifiability constraint is analogous, β11 = 0 

(Section 4.1.3). But a different constraint is applied to the bivariate function with single 
q2

monotonicity, which is 
� 

β1j = 0 for single monotonicity along the first covariate and 
j=1 

q1� 
βi1 = 0 for monotonicity only along the second covariate (q1 and q2 are the numbers 

i=1 

95 



−3 −2 −1 0 1 2 3

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

f1
^(x)

x

f̂

−1 0 1 2 3

0
.0

0
.5

1
.0

1
.5

f2
^(x)

x

f̂

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

f3
^(x)

x

f̂

Figure 5-3: Illustration of the uncorrected Bayesian confidence intervals before impos­
ing centering constraints, Example 3.2. 

of basis functions of the marginal smooths). 
Using the tensor product construction described in Section 3.3.2 the bivariate func­

tion with single monotonicity may be written as f(x1i, x2i) = X�
iΣ

�β�. Let these iden­
tifiability constraints be denoted as β� = Zcβ̃c, where β̃c is a (q1 q2 − 1) vector of · 
unconstrained parameters, Zc was introduced in Section 4.1.3. Following the previous 
subsection we have 

RZaβ̃a = RZcβ̃c + QT c. 

Unfortunately, in this case 1T Q·j = 0� , for j > 1, therefore 

β̃a = 
�
(RZa)T RZa

�−1 
(RZa)T 

�
RZcβ̃c + cQT 1

� 
. (5.16) 

From (5.16) it follows 

f(x1i, x2i) = X�Σ Za 
�
(RZa)T RZa

�−1 
(RZa)T 

�
RZcβ̃c + cQT 1

� 
− c.i

�

Fortunately, for constructing the confidence intervals we only need the covariance ma­
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trix of f(x1i, x2i), which has almost the same representation as in the univariate case 

Vf = 
�
X�Σ�Za 

�
(RZa)T RZa

�−1 
(RZa)T RZc 

� 
Vβ̃

�
X�Σ�Za 

�
(RZa)T RZa

�−1 
(RZa)T RZc 

�T 
. 

5.3 Simulation from the posterior distribution 

It should be mentioned that there is another alternative for constructing the Bayesian 

confidence intervals for the monotonic smooth terms of the mono-GAM, which is based 

on simulation from the posterior distribution (5.4). After obtaining the simulated 

values of the model coefficients the values of the smooth terms can be evaluated and the 

quantiles of the approximate posterior cumulative distribution functions of the smooths 
will be used for the confidence intervals construction. While this sounds reasonable, 
in reality the non-linear dependence on the parameters results in large values of the 

posterior covariance matrix of β̃ and implausible confidence intervals for the monotone 

smooth terms. Figure 5-4 illustrates the problem with the Bayesian confidence intervals 
constructed by this approach. 

The Bayesian simulation confidence intervals for Example 3.2 were constructed 

here. Solid curves are the estimates of the functions, the dashed curves are boundaries 
of the 95% confidence regions for each function. Huge problems are visible in the 

case of the shaped constrained smooths f2(x) and f3(x). The large asymmetry and 

widening from the left to the right of these confidence intervals may be explained by 

the log normality of the exponentiated parameters and their summation (for monotone 

increasing smooth) or subtraction (for monotone decreasing and convex smooth) in the 

shape constrained P-spline settings. The variance of, for example, the first parameter 
of the second smooth, β20, in this settings is 1.0278, which is increased further for the 

exponentiated value. Moreover, there is a strong negative correlation between the first 
parameter, β1, and all except one parameters of f2(x), which ranges from −0.1243 till 
−4.72e − 4, as well as possible high positive correlation between β1 and parameters of 
the third smooth. 

So the delta method approach benefits from not only avoiding simulations but also 

in preventing the occurrence of the issues described above. The proposed Bayesian 

approach for confidence intervals construction makes a couple of assumptions. It uses 
the linear approximation of the exponentiated parameters, and in the case of non-
Gaussian models adopts large sample inference. Also the smoothing parameters are 

treated as fixed. The simulation study presented in the next section will examine 
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Figure 5-4: Illustration of the problems with the Bayesian confidence intervals for three 
term mono-GAM, Example 3.2. 

how these restrictions affect the performance of the confidence intervals. The realized 

coverage probabilities will be taken as a measure of their performance. 

5.4 Coverage probabilities 

5.4.1 Single smooth term models 

The simulation study of confidence interval performance is conducted in an analogous 
manner to Wood (2006b). 

The simulation study starts with the single term models. In the next section the 

effectiveness of the confidence intervals for mono-GAMs is investigated. Two univariate 

(monotone increasing and monotone decreasing) functions and one bivariate function, 
with a single monotone decreasing restriction along the first covariate, are examined: 

f1(x) =d [exp(4x)/ {1 + exp(4x)} + 2] , 

f2(x) =d(x − 3)6 , −1 ≤ x ≤ 2, 

f3(x1, x2) = − d [exp(4x1)/ {1 + exp(4x1)} + 2 sin(πx2)] , 
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Figure 5-5: Functions used for the simulation study of Section 5.4.1. 

where d is a constant which controls the noise level in, for example, Poisson error 
models (d = 1 for the Gaussian case). Figure 5-5 shows the shapes of these functions. 

The covariates were simulated from a uniform distribution: Unif(−1, 3) for the 

covariate of the first univariate function and Unif(−1, 2) for the second one; for the 

bivariate function f3(x1, x2) the covariate x1 was drawn from Unif(−1, 3) and x2 from 

Unif(0, 1)−distribution. Gaussian and Poisson models with three noise levels each 

were considered at two sample sizes, n = 200 and n = 500 in the univariate cases, and 

n = 400 for the bivariate function. The canonical link functions were applied for each 

of the models. For the Gaussian case the functions were rescaled to [0, 1], and three 

different values of the standard deviation were used (σ = 0.05, 0.1, and 0.2). In order 
to know the signal to noise ratio, R2 between the simulated data and the truth may be 

calculated, where �n (yi − fi)2 

R2 = 1 − �i
n 
=1

y)2 , (5.17) 
i=1(yi − ¯

yi are simulated data and ȳ is their mean value. The R2 values for the first function 

are 0.98, 0.93, and 0.76 for three different values of σ = 0.05, 0.1, and 0.2, respectively. 
For f2(x) the values are 0.96, 0.87, and 0.63. The signal to noise ratios of the third 

bivariate model are 0.96, 0.86, and 0.60. 
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Figure 5-6: Illustration of the simulated data for f1 and f2 with each of the three noise 
levels of the Gaussian distribution. (a) f1, σ = 0.05. (b) f1, σ = 0.10. (c) f1, σ = 0.20. 
(d) f2, σ = 0.05. (e) f2, σ = 0.10. (f) f2, σ = 0.20. Solid lines show the true functions. 

Three different values of d were taken for each of the three Poisson models, these 

values were d = 0.5, 1, 1.5 for f1 with the signal to noise ratio 0.09, 0.60, and 0.91 

respectively; d = 0.03, 0.05, 0.08 for f2 with R2 of 0.36, 0.80, and 0.98; and d = 1, 2, 2.5 

for the third function where R2 were 0.49, 0.92, 0.99. Illustrations of the single replicate 

data sets for the first two function are shown in Figure 5-6 in the Gaussian case and 

in Figure 5-7 in the Poisson. 
Fifteen basis functions of the cubic monotone P-splines were used to model the uni­

variate data sets. For the last function the bivariate P-spline with single monotonicity 

was employed with the marginal basis dimensions q1 = q2 = 10. The models were fitted 

by penalized likelihood maximization with smoothing parameter selected by GCV in 

the Gaussian case and by UBRE for the Poisson models. The illustration of the 95% 

confidence intervals for a typical replicate for the first two functions at each of three 

noise levels is shown in Figure 5-8 for the Gaussian case and in Figure 5-9 for the Pois­
son model. The contour plots of the confidence intervals for the the bivariate models 
are given in Figures 5-10 to 5-12 for the Gaussian models. 

N = 500 replicate data sets were simulated for each model, and three confidence 

levels were considered, 90%, 95%, and 99%. The realized coverage proportions were 

calculated for the values of the functions at each of the covariate values (‘across-the­
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Figure 5-7: Illustration of the simulated data for f1 and f2 with each of the three noise 
levels of the Poisson distribution. (a) f1, d = 0.5. (b) f1, d = 1. (c) f1, d = 1.5. (d) f2, 
d = 0.03. (e) f2, d = 0.05. (f) f2, d = 0.08. Solid lines show the true functions. 

function’ coverage proportion) for each of the three confidence levels, and the mean 

coverage probability and its standard error were obtained over 500 simulated data sets. 
The realized coverage probabilities for the univariate functions are presented in Figure 

5-13 for the normal case and in Figure 5-14 for the Poisson models. 
For the normal case the realized coverage probabilities are near the corresponding 

nominal values, and the larger sample size improves the standard errors as expected. 
The results for the Poisson models are quite good with the exception of the first Poisson 

model with the low signal strength, which may be explained by the fact that the optimal 
fit inclines toward a straight line model (Marra and Wood). The opposite situation 

occurs with the second decreasing model, the high signal to noise ratio produces the 

poor coverage. The reason for this lies in the shape of the true function which is much 

steeper and not smooth for the high signal strength (see Figure 5-7), so the current 
smoothing method for a non-smooth truth can produce poor fits, and the coverage 

proportion is much less than the nominal value. 
Figure 5-15 illustrates the realized coverage probabilities for the bivariate function 

f3(x1, x2) with the single monotonicity along the first covariate. The results for the 

Gaussian and Poisson error models shown in this figure are quite good, the realized 

coverage probabilities are comparative with the actual values. 
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Figure 5-8: Illustration of the 95% confidence intervals for a typical replicate of f1 and 
f2 with each of the three noise levels of the Gaussian distribution. a) f1, σ = 0.05. (b) 
f1, σ = 0.10. (c) f1, σ = 0.20. (d) f2, σ = 0.05. (e) f2, σ = 0.10. (f) f2, σ = 0.20. The 
sample size was 200. Solid lines show the true functions, dashed lines represent the 
fitted curves, and dot-dashed lines show the bounds of the 95% confidence regions. 
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Figure 5-9: Illustration of the 95% confidence intervals for a typical replicate of f1 and 
f2 with each of the three noise levels of the Poisson distribution. (a) f1, d = 0.5. (b) 
f1, d = 1. (c) f1, d = 1.5. (d) f2, d = 0.03. (e) f2, d = 0.05. (f) f2, d = 0.08. The 
sample size was 200. Solid lines show the true functions, dashed lines represent the 
fitted curves, and dot-dashed lines show the bounds of the 95% confidence regions. 
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Figure 5-10: Illustration of the 95% confidence intervals for a typical replicate of 
f3(x1, x2), Gaussian distribution with σ = 0.05. The sample size was 400. Solid lines 
show the contour plot of the fitted curve. Dashed lines show the contour plot of the 
lower bounds of 95% confidence region, the dotted lines - upper bounds of the 95% 
confidence region. 
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Figure 5-11: Illustration of the 95% confidence intervals for a typical replicate of 
f3(x1, x2), Gaussian distribution with σ = 0.10. The sample size was 400. Solid lines 
show the contour plot of the fitted curve. Dashed lines show the contour plot of the 
lower bounds of 95% confidence region, the dotted lines - upper bounds of the 95% 
confidence region. 
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Figure 5-12: Illustration of the 95% confidence intervals for a typical replicate of 
f3(x1, x2), Gaussian distribution with σ = 0.20. The sample size was 400. Solid lines 
show the contour plot of the fitted curve. Dashed lines show the contour plot of the 
lower bounds of 95% confidence region, the dotted lines - upper bounds of the 95% 
confidence region. 
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Figure 5-13: Realized coverage probabilities for confidence intervals from two single 
smooth term model simulation studies, for normal data for n = 200 (top panel) and 
n = 500 (bottom panel). Three noise levels are used for each function. The nominal 
coverage probabilities of 0.90, 0.95, and 0.99, are shown as horizontal dashed lines. 
� � indicates the average realized coverage probabilities over 500 replicate data sets. ◦
Vertical lines show twice standard error intervals of the mean coverage probabilities. 
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Figure 5-14: Realized coverage probabilities for confidence intervals from two single 
smooth term model simulation studies, for Poisson data for n = 200 (top panel) and 
n = 500 (bottom panel). Three noise levels are used for each function. The nominal 
coverage probabilities of 0.90, 0.95, and 0.99, are shown as horizontal dashed lines. 
� � indicates the average realized coverage probabilities over 500 replicate data sets. ◦
Vertical lines show twice standard error intervals of the mean coverage probabilities. 
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Figure 5-15: Realized coverage probabilities for confidence intervals from the bivariate 
smooth term model simulation studies, for Gaussian data (top panel) and Poisson data 
(bottom panel) for n = 400. Three noise levels are used for each function. The nominal 
coverage probabilities of 0.90, 0.95, and 0.99, are shown as horizontal dashed lines. 
� � indicates the average realized coverage probabilities over 500 replicate data sets. ◦
Vertical lines show twice standard error intervals of the mean coverage probabilities. 
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5.4.2 Mono-GAMs 

In this section the performance of the confidence intervals is investigated in two mono-
GAM settings in which the monotone and unconstrained smooth terms are added up 

to build the linear predictor. In the first simulation study unconstrained, monotone 

increasing, and monotone decreasing smooth terms make up the linear predictor: 

g(µi) = f1(x1i) + f2(x2i) + f3(x3i), i = 1, . . . , n, 

where 

f1(x1) = 3 exp(−x 2),1

f2(x2) = exp(4x2)/ {1 + exp(4x2)} + 2, 

f3(x3) = exp(−x3/4), 

for simulation. The graphs of these functions are illustrated in Figure 5-16. n values for 
each of three covariates were independently simulated from the uniform distributions 
on [−3, 3] for x1, [−1, 3] for x2, and on [−5, 5] for the third covariate x3. Each function 

was rescaled to [0, 1] before simulation. 
In the second set of the simulation study a monotone increasing and two uncon­

strained smooth functions with the following algebraic expressions were used for sim­
ulation: 

f1(x1) = 1.5/ [1 + exp {−10(x1 + 0.75)}] + 1.5/ [1 + exp {−5(x1 − 0.75)}] , 

f2(x2) = 1.5 sin(1.5x2), 

f3(x3) = 2 sin(πx3). 

Figure 5-17 shows the shapes of the functions. 
The n values of the first two covariates were drawn independently from Unif(−3, 3), 

while the third one from Unif(0, 1). As in the previous section the Gaussian and Poisson 

models with the identity and log link functions, respectively, were considered, at each 

of three noise levels and two sample sizes (n = 200, 500). Five hundred replicates for 
each generalized additive model with monotonicity constraints were fitted using the 

method described in Chapter 4. The unconstrained smooth terms were represented 

by penalized cubic regression splines while for the monotone smooths the monotone 

P-splines introduced in Sections 2.1 and 3.1 were used. To fit the models penalized 

likelihood maximization with the smoothing parameter selection by GCV (Gaussian 

models) or UBRE (Poisson models) was used. The confidence intervals were obtained 
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Figure 5-16: Shapes of the smooth terms used in the first simulation study of the 
mono-GAM. 
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Figure 5-17: Shapes of the smooth terms used in the second simulation study of the 
mono-GAM. 
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Figure 5-18: Illustration of the 95% confidence intervals for each of three component 
functions of a typical replicate of the Gaussian model of the first mono-GAM example. 
σ = 0.1, n = 200. Solid lines show the fitted curves, dotted curves represent the true 
functions, dashed lines show the bounds of the 95% confidence regions. 

for the overall linear predictor and for each component smooth term. The confidence 

intervals for each component function separately for a typical replicate of the Gaussian 

model are shown in Figure 5-18 for the first simulation study and in Figure 5-19 for 
the second one. The labels of the vertical axes show the covariate of the smooth term 

along with the estimated degrees of freedom of that term. 
For each replicate of each simulation study the 90%, 95%, and 99% confidence 

intervals were obtained, the ‘across-the-function’ coverage proportion was calculated 

for each case, and then averaged across all replicates. The results from the first mono-
GAM are shown in Figure 5-20 for the Gaussian case and in Figure 5-21 for the Poisson 

model. From these figures one may note that the coverage probabilities are close to 

the nominal, with an exception for the third component, f3(x3), of the Poisson case. 
The reason for this poor coverage is probably the same as the reason given for the poor 
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Figure 5-19: Illustration of the 95% component-wise confidence intervals for a typical 
replicate of the Gaussian model of the second mono-GAM example. σ = 0.1, n = 200. 
Solid lines show the fitted curves, dotted curves represent the true functions, dashed 
lines show the bounds of the 95% confidence regions. 
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Figure 5-20: Realized coverage probabilities for confidence intervals from the mono-
GAM simulation study of the first example, for normal data for n = 200 (top panel) 
and n = 500 (bottom panel). Three noise levels are used for each smooth term and 
for the overall model (“all”). The nominal coverage probabilities of 0.90, 0.95, and 
0.99, are shown as horizontal dashed lines. � � indicates the average realized coverage 
probabilities over 500 replicate data sets. 

◦
Vertical lines show twice standard error 

intervals of the mean coverage probabilities. 

coverage in the single monotone decreasing case of the previous section. It seems that at 
the low signal-to-noise ratio a straight line model is tending to be chosen by the UBRE 

criterion. The same features can be observed in Figures 5-22 and 5-23 which illustrate 

the realized coverage probabilities of the second example. The only departure from 

the above mentioned quality is noticeable on the coverage proportion of the monotone 

increasing smooth f1(x1) of the Gaussian model when n = 200. The worse coverage for 
the greater noise level of this situation may be accounted for by the ‘two-step’ shape 

of the function which is difficult to capture accurately from relatively few, noisy, data. 
The coverage probabilities are better for the larger sample size, as expected. 

The simulation studies show that the confidence intervals behave much better than 

might be expected, although there may be some extreme cases that produce over-
smoothed models and correspondingly poor coverage probabilities. 
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Figure 5-21: Realized coverage probabilities for confidence intervals from the mono-
GAM simulation study of the first example, for Poisson data for n = 200 (top panel) 
and n = 500 (bottom panel). Three noise levels are used for each smooth term and 
for the overall model (“all”). The nominal coverage probabilities of 0.90, 0.95, and 
0.99, are shown as horizontal dashed lines. � � indicates the average realized coverage 
probabilities over 500 replicate data sets. 

◦
Vertical lines show twice standard error 

intervals of the mean coverage probabilities. 
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Figure 5-22: Realized coverage probabilities for confidence intervals from the mono-
GAM simulation study of the second example, for normal data for n = 200 (top panel) 
and n = 500 (bottom panel). Three noise levels are used for each smooth term and 
for the overall model (“all”). The nominal coverage probabilities of 0.90, 0.95, and 
0.99, are shown as horizontal dashed lines. � � indicates the average realized coverage 
probabilities over 500 replicate data sets. 

◦
Vertical lines show twice standard error 

intervals of the mean coverage probabilities. 
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Figure 5-23: Realized coverage probabilities for confidence intervals from the mono-
GAM simulation study of the second example, for Poisson data for n = 200 (top panel) 
and n = 500 (bottom panel). Three noise levels are used for each smooth term and 
for the overall model (“all”). The nominal coverage probabilities of 0.90, 0.95, and 
0.99, are shown as horizontal dashed lines. � � indicates the average realized coverage 
probabilities over 500 replicate data sets. 

◦
Vertical lines show twice standard error 

intervals of the mean coverage probabilities. 
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Chapter 6 

R package monogam 

This chapter describes the design and usage of the R package monogam which imple­
ments generalized additive modelling with monotonicity restrictions on some smooth 

terms using the framework presented in the previous chapters. The model setup is the 

same as in mgcv(gam) with the added shape constrained smooths implemented by use 

of the mgcv constructor method function for smooth terms: smooth.construct. By 

using this approach the unconstrained smooths of one or more variables available in 

mgcv can be included in a model, as well as other user defined smooths. 
In order to be consistent with the unconstrained GAM the package provides many 

similar functions to mgcv. The key functions are listed in the following table with the 

last column pointing to the section where each function is described. 
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Function Description Section 

monogam the main function to fit a mono-GAM to data 6.1, 6.3 

print.monogam printing the basic fitting information 6.1 

plot.monogam plotting component smooth functions of 
the mono-GAM on the linear predictor scale 

6.2 

summary.monogam extracting the model fitting results 6.4 

monogam.check for plotting standard diagnostic information and 

printing information relating to a quasi-Newton 

optimization 

6.5 

predict.monogam producing predictions based on a new or 
the original set of values of the model covariates 

6.6 

These functions are almost clones of the corresponding mgcv library codes with 

some modifications to adopt shape preserving smooth terms introduced in Chapters 1 

and 2, and with differences in the construction of the Bayesian confidence intervals, 
which were described in Chapter 5. 

The first section provides information about the built-in smoothing bases with 

shape constraints. This is followed by the plot method for plotting the univariate and 

bivariate smooth terms with or without confidence intervals. There is also a description 

of the inclusion of a ‘by’ variable and parametric model terms in the mono-GAM setting. 
Separate sections are addressed to each of the rest key functions. 

6.1 Built-in shape constrained smoothers 

This section describes the shape constrained smoothing bases available in the monogam 

package. It starts with information about the univariate smoothers subject to mono­
tonicity and monotonicity plus convexity, which were proposed in Sections 2.1, 3.1, and 

3.2. Then the usage of bivariate smooths with monotonicity restrictions, introduced in 
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Section 3.3, is described. The section also illustrates the print method. The code for 
generating data sets of this section is given in Appendix A. 

Univariate shape constrained smoothers 

The second example of Chapter 4 may be implemented as follows: 

> b1 <- monogam(y~s(x1,k=20,bs="ps",m=2)+s(x2,k=30,bs="mpi",m=2)+ 

s(x3,k=30,bs="mdcx",m=2), family=poisson(link="log"),data=dat1, 

optimizer="bfgs") 

where the formula is similar to that used with function gam() from mgcv: y represents 
the response variable and the smooth terms of the relevant covariate are coded using s 

functions. s is an mgcv function which defines the smooth term within the generalized 

additive model, k is the basis dimension, bs denotes the type of penalized smoothing 

basis to be used for the smooth, and m is the order of the smoothing basis. For this ex­
ample the unconstrained penalized P-spline basis (bs="ps") is used for the first smooth 

term, a monotone increasing P-spline (bs="mpi") for the second smooth, and a mono­
tone decreasing plus convex P-spline (bs="mdcx") for the last one. The data argument 
of the monogam function is a list or data frame containing all the variables required by 

the formula. The default method for smoothing parameter selection is the BFGS algo­
rithm for GCV/UBRE minimization implemented in the monogam package, which uses 
the GCV/UBRE derivatives described in Section 4.3. The package also allows use of 
optim() or nlm() numerical optimization methods for smoothing parameter estimation 

by specifying the argument optimizer (optimizer="optim", optimizer="nlm", or 
optimizer="nlm.fd"). The last option uses the finite-difference approximation of the 

criterion derivatives. Each of the alternative methods built in to the optim() routine 

can be used for mono-GAM estimation by indicating it in the argument optim.method, 
consisting of two elements: the method itself as the first element and the second ele­
ment indicating whether the finite difference approximation should be used (“fd”) or 
analytical gradients (“grad”). The default is optim.method=c("Nelder-Mead","fd"). 

By typing b1 or print(b1) the short-form model summary is printed. 

> b1 

Family: poisson 

Link function: log 

Formula: 
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y ~	 s(x1, k = 20, bs = "ps", m = 2) + s(x2, k = 30, bs = "mpi", 

m = 2) + s(x3, k = 30, bs = "mdcx", m = 2) 

Estimated degrees of freedom: 

7.6355 3.2014 2.4047 total = 14.24153 

UBRE score: 0.06995077 

The print method displays the model distribution family together with the link 

function, formula, and the effective degrees of freedom for each term, the total edf 
includes also one degree of freedom of the model intercept. For this example the edf 
of the unconstrained smooth was 7.64, the monotone increasing term had 3.2 effective 

degrees of freedom, and the edf was 2.4 for the last smooth component. The UBRE 

score of the fitted model is reported at the end. 
Any unconstrained smoothing basis built in to the mgcv package such as, for ex­

ample, cubic regression splines, cyclic cubic regression splines, or cyclic P-splines, may 

be added to the linear predictor of the mono-GAM. Besides the two shape constrained 

smooths used in the above example, there are four other univariate shape preserving 

smoothing bases built in to monogam. The full list is shown in Table 6.1. 

Table 6.1: Univariate shape constrained smoothing bases available in the package 

Bases name


"mpi" 

"mpd" 

"micx" 

"micv" 

"mdcx" 

"mdcv" 

Description


Monotone increasing P-splines 

Monotone decreasing P-splines 

Monotone increasing and convex P-splines 

Monotone increasing and concave P-splines 

Monotone decreasing and convex P-splines 

Monotone decreasing and concave P-splines 
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Bivariate smooths with monotonicity restriction 

The tensor product bivariate smooths with double or single monotonicity, introduced 

in Section 3.3, can be added to the model via a model formula s() term. The built-in 

bivariate smoothing bases are displayed in Table 6.2. 

Table 6.2: Tensor product bivariate shape constrained smoothing bases available in the 
package 

Bases name


"tedmi" 

"tedmd" 

"tesmi1" 

"tesmi2" 

"tesmd1" 

tesmd2" 

Description


Tensor product smoothing constructor for a bivariate function 
subject to double monotone increasing constraint 

Tensor product smoothing constructor for a bivariate function 
subject to double monotone decreasing constraint 

Tensor product smoothing constructor for a bivariate function 
monotone increasing in the first covariate 

Tensor product smoothing constructor for a bivariate function 
monotone increasing in the second covariate 

Tensor product smoothing constructor for a bivariate function 
monotone decreasing in the first covariate 

Tensor product smoothing constructor for a bivariate function 
monotone decreasing in the second covariate 

As an example, the Gaussian model with double monotonicity of Example 3 of 
Section 3.4 

yi = f(x1i, x2i) + �i, �i ∼ N(0, σ), 

can be fitted by calling 

> b2 <- monogam(y~s(x1,x2,k=c(10,10),bs="tedmi",m=2), 

+ family=gaussian(link="identity"),data=dat2) 

> b2 

Family: gaussian 

Link function: identity 
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Formula:


y ~ s(x1, x2, k = c(10, 10), bs = "tedmi", m = 2)


Estimated degrees of freedom:


7.1962 total = 8.196193


GCV score: 0.01027492


It should be noted that the k argument of s() formula term is supplied as a vector 
denoting the marginal dimensions for each marginal basis. This is different to the 

unconstrained mgcv(gam) where k is the dimension of the basis used to represent the 

smooth term. If the dimensions are the same for both marginal bases, as in this 
example, then k can also be supplied as a constant, e.g., k=10. 

The next code demonstrates fitting of a bivariate smooth monotone increasing in 

the second covariate, x2 (see Example 4, Section 3.4). 

> b3 <- monogam(y~s(x1,x2,k=10,bs="tesmi2",m=2), 

+ family=gaussian(link="identity"), data=dat3) 

> b3 

Family: gaussian


Link function: identity


Formula:


y ~ s(x1, x2, k = 10, bs = "tesmi2", m = 2)


Estimated degrees of freedom:


16.186 total = 17.18597 

GCV score: 0.01022341 

In principal, unconstrained smooths of any number of covariates can be added to 

monogam model formula via smooths built in to gam, such as thin plate regression splines 
or tensor products of any unconstrained bases available. 
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6.2 Plot method 

This section illustrates the plot method for a fitted mono-GAM. The plot.monogam 

function is similar to plot.gam with differences in the construction of the Bayesian 

confidence intervals for the smooth shape-constrained model terms. It produces plots 
showing one and two-dimensional smooth components of the fitted model. Optionally, 
the partial residuals can be added to the one-dimensional plots and standard error lines 
to one and two-dimensional smooths. For convenience, and to aid understanding, all 
figures of this section are shown straight after the relevant code, without captions. 

Plots of one-dimensional smooths 

The results of the first univariate additive model can be checked by plotting the fitted 

model components. When the monogam object is passed to the plot() function, the 

plot method produces three curves for each fitted smooth component, on the linear 
predictor scale. 

> par(mfrow=c(2,2),mar=c(5,5,1,1)) 

> plot(b1,scale=0) 

The default plotting results in separate plots for the fitted curves of each smooth 

model component shown as solid lines, and the dashed lines indicate two standard 

errors about the fits. The option for confidence interval plotting can be switched off 
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by setting argument se=FALSE. It is also possible to supply a positive number for se 

in which case the standard errors are multiplied by this number when obtaining the 

confidence intervals of the model components. 
The default value of the scale argument is −1 which produces plots with the 

same y-axis scale for each component, 0 produces a different y-axis scale for each plot. 
The label of the vertical axis reports the illustrated smooth model component, the 

corresponding covariate, and the estimated degrees of freedom, which are given in the 

round brackets. 
In addition, it is possible to show the partial residuals for each smooth by using the 

residuals arguments. The following code illustrates this. 

> par(mfrow=c(2,2),mar=c(5,5,1,1)) 

> plot(b1,scale=0,residuals=TRUE) 

The plot method allows modification of the range of the axis scales on a plot by 

specifying xlim or ylim arguments of the plot() function. There are also arguments 
for specifying plot labels: xlab and ylab for axes labels, and main for a title. 

Plots of two-dimensional smooths 

The plot method provides two options for visualizing three-dimensional data. These 

are contour plots, for producing contours representing the value of the linear predictor, 
and perspective plots for producing 3D surfaces. The contour plot for two-dimensional 
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smooths can be plotted by passing the monogam object to the plot() function. This is 
illustrated on the second example from the previous section. 

> plot(b2) 

There are 3 contour plots: 
1) of the estimate (black), 
2) of the estimate plus 2 standard errors (green), 
3) of the estimate minus 2 standard errors (red). 

The next bit of code shows the contour plot of the bivariate model with single 

monotonicity along the x2 direction (see Section 6.1), where the se argument was 
supplied with the numerical value. 

> plot(b3,se=1) 
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The 3D surface of the same fit can be plotted by changing the default logical value 

of the pers argument to TRUE. 

> plot(b3, pers=TRUE) 

As for the persp() function, it is possible to change the viewing direction of the 

surface using the theta argument for azimuthal direction and phi the colatitude. The 

square root of the number of points used for construction of the 2D function estimates 
is controlled by the n2 argument, the default value is 40. The next line demonstrates 
the use of these arguments. 
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x2

s(x1,x2,16.19)

> plot(b3,theta = 50, phi = 20,pers=TRUE,n2=20)


It should be mentioned that, as for plot.gam(), the plot method for the monogam 

object can not produce plots of the smooths of more than two covariates. 

6.3	 Example with a ‘by’ variable and parametric model 

terms 

As for gam, monogam allows inclusion of a ‘by’ variable as well as parametric model 
terms. Therefore, it is not difficult to fit a mono-GAM of the general structure (4.5) 
introduced in Section 4.1.2. The current section illustrates two basic examples of mono-
GAM with a parametric term, and a variable coefficient model. 

Mono-GAM with a parametric model term 

For simplicity, consider the Poisson model mentioned at the beginning of this chapter, 
but now only the first two smooth terms are added in to the linear predictor and it 
includes a parametric term x3: 

log(µi) = ηi = x3i + f1(x1i) + f2(x2i), 

where µi = E(Yi), Yi ∼ Pois {exp(ηi)} . The following code shows the use of monogam 

to fit this model. 
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> b4 <- monogam(y~x3+s(x1,k=20,bs="ps")+s(x2,k=30,bs="mpi"), 

+ family=poisson(link="log"),data=dat) 

> b4 

Family: poisson


Link function: log


Formula:


y ~ x3 + s(x1, k = 20, bs = "ps") + s(x2, k = 30, bs = "mpi")


Estimated degrees of freedom:


8.1184 3.6589 total = 13.77727


UBRE score: 0.09896245


> par(mfrow=c(1,2),mar=c(10,5,7,2))


> plot(b4,scale=0)


The plot of the smooth terms are illustrated in Figure 6-1. As mentioned previously 

the argument scale=0 sets the different y-axis scale for each plot. The degrees of 
smoothness were selected by the UBRE criterion. Note that the total degrees of freedom 

equal the sum of the edf for two smooth terms plus two, since one degree of freedom is 
for the model intercept and one degree for the parametric term x3. 

Variable coefficient model 

The last example concerns a ‘by’ variable term, which is multiplied by the second 

monotonic smooth component of the linear predictor: 

log(µi) = f1(x1i) + f2(x2i)x3i, (6.1) 

where x3i ∼ Pois {exp(ηi)}. The following code fits the model (6.1). The print and 

plot methods are then called. 

> b5 <- monogam(y~s(x1,k=20,bs="ps")+s(x2,k=30,bs="mpi",by=x3), 

+ family=poisson(link="log"),data=dat) 

> b5 
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Figure 6-1: Plot of smooth model components of the Poisson model with a parametric 
term. 

Family: poisson


Link function: log


Formula:


y ~ s(x1, k = 20, bs = "ps") + s(x2, k = 30, bs = "mpi", by = x3)


Estimated degrees of freedom:


10.077 3.339 total = 14.41621 

UBRE score: 0.1842804 

> par(mfrow=c(1,2),mar=c(10,5,7,2)) 

> plot(b5,scale=0) 

This yields the plot displayed in Figure 6-2. The ‘by’ variable, x3, is included in the 

formula through the term s(), as an argument by. Section 4.1.2 explains how to 

estimate the ‘by’ variable model. 

6.4 Summary method 

More detailed fitting results can be obtained by using the summary method. The code 

summary.gam of the mgcv package is used for summary.monogam, with slight modifica­
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Figure 6-2: Plot of smooth model components of the Poisson model with a ‘by’ variable. 

tions to accept the exponentiated parameters of the monotone smooth terms and the 

corresponding covariance matrix described in Chapter 5. 
The summary method for the last model (6.1) of the previous section produces: 

> summary(b5)


Family: poisson


Link function: log


Formula:


y ~ s(x1, k = 20, bs = "ps") + s(x2, k = 30, bs = "mpi", by = x3)


Parametric coefficients:


Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.80791 0.06136 13.17 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Approximate significance of smooth terms: 

edf Ref.df Chi.sq p-value 

s(x1) 10.077 10.077 1206.6 <2e-16 *** 
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---

s(x2):x3 3.339 3.339 275.5 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

R-sq.(adj) = 0.932 Deviance explained = 90.8% 

UBRE score = 0.18428 Scale est. = 1 n = 200 

The only parametric coefficient for this example is a model intercept. The esti­
mated value of the intercept and its significance are given. Approximate significance is 
reported for each smooth component. The same approach as for gam is used to obtain 

all significance measures (Wood, 2006a). It should be mentioned that the p-values act 
properly for un-penalized models, however, since smoothing parameters should be es­
timated in most of the cases, but they are actually treated as fixed in the distributions 
used for testing, the p-values are not strictly correct. 

The adjusted r2 

�2 
2 

� 
î /(n − τ ) 

radj = 1 − �
(yi − ȳ)2/(n − 1)

, 

where (n − τ) is the residual degrees of freedom, indicates how the model works in ex­
plaining the variability in the response variable. Also the percentage deviance explained 

is presented which is calculated using the following: 

Deviance explained = 
�

Dnull − D(β̂)
� 

/Dnull, 

where the null deviance, Dnull, is the deviance for a model consisting of a single constant 
term, and D(β̂) is the deviance of the fitted model. When the scale parameter of the 

model is unknown, its estimate is reported, otherwise, the known value is printed out. 

6.5 Model checking 

After fitting the model, it is natural to check the model assumptions graphically. The 

monogam.check() function provides some standard residual plots and prints informa­
tion about convergence results of the numerical optimization method used to select 
smoothing parameters. This function is similar to the gam.check() routine of the 

mgcv library. For the model b5 the monogam.check() function produces the following: 

> monogam.check(b5) 

Method: UBRE Optimizer: bfgs 
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Figure 6-3: Model checking plots for the Poisson model with a ‘by’ variable. 

Number of iterations of smoothing parameter selection performed was 2 .


Full convergence.


Gradient range: [-2.764789e-10,5.248437e-07]


(score 0.1842804 & scale 1)


The optimal smoothing parameter(s): 3.58252 0.00725 .


The resulting plots are shown in Figure 6-3. The upper left panel is a normal 
quantile-quantile plot. If the assumption about model distribution is correct then this 
plot should look like a straight line relationship. The upper right panel is the residuals 
versus fitted values on a linear predictor scale which allows checking of the independence 

of the response variables: there should be no trend in the mean of the residuals; and 

also checking of the constant variance assumption: a trend in the variability of the 

residuals would violate this assumption. The histogram of residuals shown in the 

lower left panel provides another way of checking the model distribution assumption, 
it should be approximately consistent with the normal distribution, if the distribution 

is reasonable. The lower right panel is the response against fitted values. It shows a 

positive linear relationship and a sensible dispersion. 

134 



6.6 Prediction method 

Finally, it is possible to predict the expected values of the response variable at new sets 
of values for the model covariates. predict.monogam is the predict method function. 
The design, functionality, and layout of this function follow closely that of predict.gam 

in the mgcv library (Wood, 2006a), with the exception of some modifications to allow 

shape preserving smooth terms. The function produces predictions at new values of 
the model covariates or the original values, used for the model fit. Also it is possible to 

obtain standard errors of those predictions based on the posterior distribution of the 

model coefficients. 
To produce predictions on a new data set, the new values of covariates should be 

supplied as a data frame in an argument newdata. For the previous example, to make 

predictions in two new points, the following code can be called: 

> nd <- data.frame(x1=c(-0.5,1.5),x2=c(-0.85,0.95),x3=c(0.15,0.9)) 

> predict.monogam(b5,newdata=nd) 

1 2 

2.419149 1.150741 

The resulted predictions by default are the values of the linear predictor. The function 

argument type controls the type of prediction (type="link" by default). For predic­
tions on the scale of the response variable, this argument should be set to "response". 
Also the approximate standard errors may be returned by setting se=TRUE. 

> predict(b5,newdata=nd,type="response",se=TRUE) 

$fit 

1 2 

11.236294 3.160534 

$se.fit 

1 2 

0.9563697 0.4752105 

For an additive model it is useful to get predictions for each component of the linear 
predictor, excluding the intercept, with or without corresponding standard errors. The 

following code illustrates this. 

> predict(b5,newdata=nd,type="terms",se=TRUE) 

$fit 
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s(x1) s(x2):x3 

1 1.5992109 0.01202865 

2 -0.4887201 0.83155148 

$se.fit 

s(x1) s(x2):x3 

1 0.07881036 0.02863583 

2 0.13488008 0.04790978 

attr(,"constant") 

(Intercept) 

0.8079096 

If the data frame newdata is not supplied then the predictions are returned for all 
the original data used for fitting procedure. The following prints only the first three 

fitted values on the linear predictor scale, without standard errors: 

> predict(b5)[1:3] 

1 2 3 

1.20365266 0.08277808 1.91563910 

and with standard errors on the response scale: 

> pr <- predict(b5,type="response",se=TRUE) 

> pr$fit[1:3] 

1 2 3 

3.332266 1.086301 6.791278 

> pr$se[1:3] 

1 2 3 

0.4698944 0.1556089 0.6206724 

For simplicity only simulated examples have been considered in this chapter. Use of 
the monogam package for generalized additive modelling with monotonicity constraints 
of real data sets will be discussed in Chapter 8. 
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Chapter 7 

Simulations: comparison with 

alternative methods 

To illustrate the performance of the mono-GAM with parameter estimation by the 

Newton-Raphson based method and smoothness selection by direct minimization of 
the GCV/UBRE score based on the implicit function theorem, some simulation stud­
ies on various models were conducted. Comparison with unconstrained GAM, the 

quadratic programming approach to shape preserving smoothing (Wood, 1994), and 

constrained P-splines regression (Bollaerts et al., 2006b) was undertaken. Simulated 

examples on univariate single smooth term models, bivariate single smooth models, 
and additive models with a mixture of unconstrained and monotone smooth terms 
were considered for evaluation of the performance of the four different approaches, and 

for timing comparison. 

7.1 Single univariate monotone smooth term models 

In this section the performance of the proposed method is compared on a single smooth 

monotone generalized regression model 

g(µi) = f(xi), i = 1, . . . , n, 

where E(Yi) = µi and Yi follows a Gaussian or Poisson distribution. Both a gaussian 

model with an identity link function and a Poisson model with a logarithmic link were 

considered. 
The following simulation scheme was performed: 
Gaussian model: Sample of sizes n = 100 and n = 200 were simulated from 
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yi = ft(xi) + �i, where �i ∼ i.i.d. N(0, σ2) and the test function, ft(x), was 

ft(x) = exp(4x)/ {1 + exp(4x)} + 0.5. 

The covariate values, xi, were generated from the uniform distribution on [−1, 3] and 

the function ft(xi) was used to get the true mean µi. Three values of the standard 

deviation were taken to control the noise level, σ = 0.05, 0.1, and 0.2. The noise levels 
in these situations were such that the signal to noise ratios, R2 (5.17), were about 0.98, 
0.93, and 0.76 respectively. 300 replicate data sets were generated for this model each 

of three noise levels and for two sample sizes. 
Poisson model: Sample of sizes n = 100 and n = 200 were generated from log(µi) = 

ft(xi), where E(Yi) = µi and Yi ∼ Poi [exp {ft(xi)}] , 

ft(x) = d × [exp(4x)/ {1 + exp(4x)} + 0.5] . 

d was used to control the level of noise in this case: d = 2, 3, and 4, which correspond 

to signal to noise ratios of about 0.76, 0.95, and 0.99. As above, xi were generated 

from the uniform distribution on [−1, 3]. 400 replicates were produced for the Poisson 

distribution for three levels of noise and for two sample sizes. 

The mono-GAM approach was compared to unconstrained penalized regression 

splines as implemented in R package mgcv, the quadratic programming approach (QP) 
(see Section 2.7.1), and P-splines regression with additional discrete penalties (DPP) 
(see Section 2.7.2). For the implementation of the quadratic programming approach 

with linear inequality constraints to preserve monotonicity, R function pcls() of the 

mgcv library was used. This function solves a penalized least squares problem sub­
ject to linear equality and inequality constraints using quadratic programming by the 

algorithm given in Gill et al. (1981). Since no code was available for performing the 

approach of Bollaerts et al. (2006b), R routines were written for its implementation. 
For three alternative approaches, the smooth function f(x) was represented by a 

P-spline with q = 15, while monotonic P-splines were used for the mono-GAM method 

with the same basis dimension. Smoothing parameters were selected by GCV (2.28) 
for the Gaussian case and UBRE (2.26) for the Poisson model for each replicate. For 
mono-GAM a quasi-Newton algorithm, BFGS, with the derivatives calculation as pro­
posed in Section 4.3 was used to optimize the smoothing parameter estimation criterion. 
For better comparability a BFGS numerical optimization method was selected while 

running the gam(mgcv) function. Smoothing parameters for the quadratic program­
ming problems were chosen from the unconstrained GAM. Since there was no efficient 
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method for smoothing parameter estimation with the DPP models, direct grid search 

for the GCV/UBRE optimal smoothing parameter was applied in this case. 

Gaussian data 

The performance of the smoothing methods was evaluated by the mean sum of squared 

differences between the fitted, f̂(x), and true values of ft(x) in the case of a Gaussian 

distribution, 
n

MSE = n−1 
��

f̂(xi) − ft(xi)
�2 

. 
i=1 

The results are summarized in Figure 7-1. The simulation results show that the 

performance of the mono-GAM is better than that of the unconstrained GAM and the 

DPP approach for all considered levels of noise. There is also a slight advantage of the 

mono-GAM over the quadratic programming method. When comparing mono-GAM 

and QP we expect some differences because i) although the constraints are the same for 
both methods, the penalties are different and ii) QP uses ad hoc smoothing parameter 
selection and mono-GAM does not. Point ii) possibly explains the mono-GAM superior 
performance. The results also suggest that the monotone P-splines work better than 

other approaches for greater levels of noise. 
The new method has higher computational cost (see Figure 7-2) than the quadratic 

programming approach and the unconstrained GAM. This is mainly due to the expen­
sive singular value decompositions of the working model matrix. However, taking into 

account the optimality of the smoothness selection of the new method and the much 

less advantageous selection of λ from the unconstrained model in the quadratic pro­
gramming approach, the computational speed seems to be reasonable. Since separate 

boxplots for each of three noise levels did not give any additional information, the time 

distribution was illustrated for all three noise levels jointly. All computations were run 

on Intel(R) Pentium(R) Dual CPU, E2160 @ 1.80 GHz, 1.79 GHz, 1.98 GB of RAM, 
and performed with R 2.10.1 (R core development team, 2009). 

Poisson data 

Following Wood (2008) for the Poisson regression a predictive deviance loss (PDL) may 

be taken as a measure of the fitting method performance. In order to calculate the 

PDL, 10000 sets of new data were generated from the truth after fitting the model, 
and the mean value of the response variable, µ̂, was predicted using the fitted model. 
Then, 

PDL = D∗(y, µ̂) − D∗(y, µ), 
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Figure 7-1: MSE comparisons between mono-GAM (mg), GAM (g), quadratic pro­
gramming (qp), and P-splines with additional discrete penalty (dpp) approaches for 
the Gaussian distribution for each of three noise levels. The upper panel illustrates the 
results for n = 100, the lower for n = 200. Boxplots show the distributions of differences 
in relative MSE between each alternative method and mono-GAM. 300 replicates were 
used. Relative MSE was calculated by dividing the MSE value by the average MSE of 
mono-GAM for the given case. (Section 7.1, Gaussian data) 
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Figure 7-2: CPU time comparisons between mono-GAM (mg), GAM (g), and quadratic 
programming (qp) approaches for the Gaussian data. The upper panel illustrates the 
results for n = 100, the lower for n = 200. Boxplots show the distributions of log10 
CPU time in seconds for thee noise levels combined. (Section 7.1, Gaussian data) 

where D∗(y, µ̂) is the mean predictive deviance of the fitted model, D∗(y, µ) is the 

mean predictive deviance using the known true smooth. For the Poisson model 

n

D∗(y, µ) = 
1 ��

2yi log 

� 
yi 

� 

− 2(yi − µi)
� 

. 
n µii=1 

The results for 400 replications of the simulated data are given in Figure 7-3. Mono-
GAM outperforms the alternative methods for the cases with greater noise levels (d = 2, 

3), but when the signal to noise ration R2 = 0.99 the difference in the predictive 

deviance loss of the mono-GAM from the QP and DPP approaches are negligible. The 

distribution of the CPU time for the three methods combined is shown in Figure 7-4. 
However, note that in this case the mono-GAM was faster than quadratic programming 

for the case of the greatest noise level. 
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Figure 7-3: PDL comparisons between mono-GAM (mg), GAM (g), quadratic pro­
gramming (qp), and P-splines with additional discrete penalties (dpp) approaches for 
the Poisson distribution for each of three noise levels. The upper panel illustrates the 
results for n = 100, the lower for n = 200. Boxplots show the distributions of differences 
in relative PDL between each alternative method and mono-GAM. 400 replicates were 
used. Relative PDL was calculated by dividing the PDL value by the average PDL of 
mono-GAM for the given case. (Section 7.1, Poisson data) 

142 



mg gam qp

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

CPU time for the single smooth term Poisson model

lo
g

1
0
(C

P
U

_
ti
m

e
)

mg gam qp

−
0

.5
0

.5
1

.0
1

.5
2

.0

lo
g

1
0
(C

P
U

_
ti
m

e
)

Figure 7-4: CPU time comparisons between mono-GAM (mg), GAM (g), and quadratic 
programming (qp) approaches for the Poisson data. The upper panel illustrates the 
results for n = 100, the lower for n = 200. Boxplots show the distributions of log10 
CPU time per replicate in seconds for three noise levels combined. (Section 7.1, Poisson 
data) 

7.2 Single bivariate monotone smooth term models 

We consider a bivariate smooth term model under monotonicity constraint, 

g(µi) = f(x1i, x2i), i = 1, . . . , n, 

where E(Yi) = µi and Yi follow Gaussian or Poisson distribution as in the previous 
study. Suppose that the bivariate function f(x1, x2) is subject to a single monotone 

increasing constraint along the second covariate x2 only. 
The simulation scheme was as follows: 
Gaussian model: Data were simulated from yi = ft(x1i, x2i) + �i, where �i are 

independent normal random variables with parameters (0, σ2). The true function was 

ft(x1, x2) = 2 sin(πx1) + exp(4x2)/ {1 + exp(4x2)} . 

The shape of this function is shown in Figure 7-5. 30 values of each of the two co­
variates, x1i and x2i, were generated from the uniform distribution on [0, 1] and [−1, 3] 
correspondingly. For each combination of (x1i, x2i) the value of the function ft(x1i, x2i) 
was calculated to get the true mean µi. The function was scaled to have values on 
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Figure 7-5: Shape of the bivariate function used for the second simulation study. (Sec­
tion 7.2) 

[0.5, 1.5], and three values of the standard deviation were applied as previously, i.e. 
σ = 0.05, 0.1, and 0.2. These values of the standard deviation gave noise levels such 

that the signal to noise ratio, R2 , were about 0.96, 0.85, and 0.59 respectively. 300 

replicate data sets were produced for this model at each of three noise levels. 
Poisson model: Data were simulated from log(µi) = ft(x1i, x2i), where E(Yi) = µi 

and Yi ∼ Poi [exp {ft(x1i, x2i)}] . The true function was 

ft(x1, x2) = d × [2 sin(πx1) + exp(4x2)/ {1 + exp(4x2)}] , 

where the values of d were 0.7, 1.2, and 1.8, which correspond to R2 of about 0.47, 

0.88, and 0.98. 

30 values of each of the two covariates, x1i and x2i, were generated from the uniform 

distribution on [0, 1] and [−1, 3] correspondingly. For each combination of (x1i, x2i) the 

value of the function ft(x1i, x2i) was calculated to get the true linear predictor. 300 

replicate data sets were produced for this model at each of three noise levels. 

Since there was no advantage of the DPP approach over the mono-GAM for the 

univariate models and moreover, the direct grid search for multiple optimal smoothing 
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parameters is computationally expensive, (and it is time expensive to write R routines 
for the implementation of this method) the comparison for this example and for an 

example of the next section were performed only with the unconstrained GAM and 

quadratic programming approach. 
The tensor product bivariate smooth with single monotonicity introduced in Section 

3.3.2 with the marginal basis dimension q1 = q2 = 9 was used for the mono-GAM 

construction. The following code shows fitting by the mono-GAM approach with the 

data supplied as a data frame dat: 

b <- monogam(y~s(x1,x2,k=c(q1,q2),bs="tesmi2", family=gaussian, 

data=dat) 

For implementing the unconstrained GAM a tensor product of P-splines for both 

marginal bases was used, fitted by an ‘outer’ optimization method using BFGS for 
minimizing the smoothing parameter estimation criterion, GCV/UBRE. The following 

code illustrates this: 

b1 <- gam(y~te(x1,x2,bs=c("ps","ps"),k=c(q1,q2)), family=gaussian, 

data=dat, optimizer=c("outer","bfgs")) 

The BFGS method is not the default option for gam(), but it was used for better 
comparability with mono-GAM which uses BFGS for GCV/UBRE optimization. 

The same tensor product construction was used when performing the quadratic 

programming approach. In this case, firstly the unconstrained gam() function was 
called in order to estimate the smoothing parameters, then, the pcls() routine was 
applied to solve the quadratic programming problem with linear inequality constraints, 
given λ from the unconstrained fit. The single monotone increasing condition along x2 

(see Section 3.3.2) is 
1 �2βjk > 0, 

where �2
1βjk = βjk −βj,(k−1) for the vector of unconstrained working model parameters 

β expressed in the following order: 

β = (β11, β12, . . . , β1q2 , β21, . . . , β2q2 , . . . , βq1q2 )
T . 

The above condition of increasing subsequence of β can be written as linear inequality 

constraints: 
Aβ > 0, 
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where 0 is a vector of zeros of dimension q1(q2 −1), A = I1 ⊗P2 is a Kronecker product 
of an identity matrix I1 of size q1 and a (q2 − 1) × q2 matrix 

⎛
⎜
⎜⎜⎜

⎞
⎟
⎟⎟⎟

−1 1 0 0 0 . 

0 −1 1 0 0 . 

0 
P2 = .


⎝
 0
 −1 1 0 .
 ⎠

. . . . . . 

The QP approach can be implemented in R as follows: 

f.ug <- gam(y~te(x1,x2,bs=c("ps","ps"),k=c(q1,q2),np=FALSE),data=dat, 

optimizer=c("outer","bfgs")) 

# create a model and penalty matrices to be supplied into pcls()... 

s <- smooth.construct(te(x1,x2,bs=c("ps","ps"),k=c(q1,q2),np=FALSE), 

dat, knots=NULL) 

# create matrix of coefficients for linear inequality constraints... 

P <- diff(diag(q2),difference=1); I1 <- diag(q1); A <- I1%x%P 

# create a single list argument to pcls()... 

M <- list(X=s$X,p=rep(seq(0.1,1,length.out=q2),q1),C=matrix(0,0,0), 

sp=f.ug$sp,y=y,w=y*0+1) 

M$Ain <- A; M$bin <- rep(1e-12,q1*(q2-1)) 

M$off<- c(0,0); M$S <- s$S 

p <- pcls(M) # fit spline and get the estimated parameter vector 

fv <- Predict.matrix(s,data.frame(x1=x11,x2=x22))%*%p # constrained fit 

When fitting Poisson models by the QP approach the pcls() function should be 

incorporated in to a P-IRLS loop (see Section 2.7.1). 
Figure 7-6 illustrates the simulation results for Gaussian and Poisson data. For the 

Gaussian model the differences in MSE for both alternative methods are larger than 

those for the univariate model of the previous section. This is possibly because of the 

shape of the bivariate function which has a large plateau region, is not always captured 

by the unconstrained GAM. As before, for the Poisson distribution at the lowest noise 

level, mono-GAM, GAM, and QP approaches are almost indistinguishable. CPU time 

performance is shown in Figure 7-7. Mono-GAM was slower than unconstrained GAM 

and QP for the Gaussian data, but its time performance was better for the Poisson 

data. 
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Figure 7-6: Upper panel: MSE comparisons between mono-GAM (mg), GAM (g), 
and quadratic programming (qp) approaches for the Gaussian distribution for each of 
three noise levels. Lower panel: PDL comparisons for the Poisson data. The panels 
illustrates the results for 300 replicates of the sample size n = 900. Boxplots show the 
distributions of differences in relative MSE/PDL between each alternative method and 
mono-GAM. Relative MSE/PDL was calculated by dividing the MSE/PDL value by 
the average MSE/PDL of mono-GAM for the given case. (Section 7.2) 
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Figure 7-7: CPU time comparisons between mono-GAM (mg), GAM (g), and quadratic 
programming (qp) approaches for the Gaussian and Poisson bivariate data. Boxplots 
show the distributions of log10 CPU time per replicate in seconds. (Section 7.2) 

7.3 Additive models 

The last simulation study concerns an additive model with two smooth terms, one of 
which is subject to monotonicity constraint and the other is unconstrained: 

g(µi) = f1(x1i) + f2(x2i), i = 1, . . . , n, (7.1) 

where E(Yi) = µi, Yi ∼ Gaussian or Poisson distribution. Suppose that the first smooth 

term is subject to monotonicity but the second one is unconstrained. 
Samples of sizes n = 100 and n = 200 were generated from the next two expressions 

(Gaussian and Poisson models): 

yi = ft1(x1i) + ft2(x2i) + �i, �i ∼ N(0, σ2), 

log(µi) = d × {ft1(x1i) + ft2(x2i)} , µi = E(Yi), Yi ∼ Poi(µi), 

where d is used to control noise level for the Poisson distribution. The following true 

functions were used for this study: 

ft1(x1) = exp(4x1)/ {1 + exp(4x1)} , 
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Figure 7-8: Shape of the bivariate function used for the second simulation study. (Sec­
tion 7.3) 

ft2(x2) = 3 exp(−x 2).2

Figure 7-8 shows the shapes of these functions. 
The covariate values, x1i and x2i, were simulated from the uniform distribution on 

[−1, 3] and [−3, 3] respectively. The same values of the standard deviation, σ, as in the 

previous examples were used for the Gaussian data. The values of d for the Poisson 

model were 0.5, 0.7, and 1.2, which gave the signal to noise ratio about 0.58, 0.84, and 

0.99. 300 replicates were produced for both distributions at each of three levels of noise 

and for two sample sizes. 
For the mono-GAM implementation a monotone second order P-spline of the di­

mension q1 = 30 was used to represent the first monotonic smooth term and P-spline 

of the second order with q2 = 15 for the second unconstrained term. The same basis 
dimensions were applied for two other methods. For an unconstrained GAM, P-splines 
were used for both model components. The following code fits the mono-GAM and 

unconstrained GAM using mgcv package: 

b <- monogam(y~ s(x1,k=q1,bs="mpi")+s(x2,k=q2,bs="ps"), 

family=gaussian, data=dat) 

b1 <- gam(y~ s(x1,k=q1,bs="ps")+s(x2,k=q2,bs="ps"),family=gaussian, 
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data=dat, optimizer=c("outer","bfgs"))


Because of the identifiability constraints used for GAM, the simple increasing pa­
rameters constraint used in the one-dimensional case cannot be used here. There­
fore, for implementing the quadratic programming approach to monotonicity preserv­
ing constraint, linear inequality constraints for the QP problem were generated us­
ing a finite difference approximation to the first derivative of the smooth represented 

by cubic regression spline bases. To obtain the monotonicity condition on the first 
derivative f1

�(x1) > 0, both smooth terms were first represented by cubic regression 

splines (Wood, 2006a) so that the model (7.1) can be written as g(µi) = Xiβ, where 

X = [1 : X1 : X2], Xi is a model matrix for the ith smooth term, and βT = (β1 
T , β2 

T ). 
Then, a sequence x�1 of 100 evenly distributed values of the first covariate, x1, was 
generated over the range [−1, 3]. These were the points where the derivative f1

�(x1) 
should be evaluated. To get the linear inequality constraints two prediction matrices 
were created, X�

0 = [1 : X� � ] and X� = [1 : X� � ]. The first model matrix 01 : X02 1 11 : X12

for the first smooth term X� was constructed for the sequence x1
� , while X02 was build 01 

�

for a constant vector, say, x�2 = (0.5, . . . , 0.5)T . The same value of the second covariate, 
x2i, can be taken since only on the first smooth term is subject to monotonicity, so the 

finite differences should be applied only in the model matrix of the first smooth. For the 

prediction matrix X� a small increment ε, representing the finite difference interval, 11 

was added to each covariate value of the first smooth, i.e. x�1i + ε, where ε = 10−7 was 
taken for this study. The same constant vector x2

� was used for predicting X�
11. Finally, 

the monotonicity constraint based on finite difference approximation of f1
�(x1) can be 

written as linear inequality constraints for the QP problem: 

1 �
X�

1 − X�
0

� 
β > 0,

ε 

where 0 is a vector of zeros. R function pcls() was applied to solve the quadratic 

programming problem subject to these constraints to fit the additive model, given λ 

from the unconstrained fit. A description of the QP approach was given in Section 

2.7.1. It should be mentioned that cubic regression splines tend to have slightly better 
MSE performance than P-splines (Wood, 2006a) and moreover, the conditions built on 

finite differences are not only sufficient but also necessary for monotonicity. So this is 
a challenging test for mono-GAM. 

The simulation results on comparison of three alternative approaches to the additive 

model are illustrated in Figures 7-9 and 7-10. The results show that mono-GAM works 
better than the other two alternative methods. Note that for the Gaussian data the 
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performance of GAM was better than the performance of the QP approach, but the 

difference in MSE between mono-GAM and GAM is much less than that in the previous 
simulation studies. Also it can be noticed that in this case GAM reconstructed the truth 

better than the QP method. The explanation for that may lay in the fact that there 

was only one monotonic term, and both GAM and mono-GAM gave similar fits for the 

unconstrained term, f2. At lower noise level GAM might also reconstruct the monotone 

shape of f1 for some replicates. The worse performance of the QP than of GAM was 
due to the smoothing parameter estimation from the unconstrained fit which sometimes 
resulted in more wiggly tails of the smooth term than those of the unconstrained GAM. 

From Figure 7-10 one may note that for the Poisson data of the samples size n = 100 

all three methods worked similarly, but with an increase in sample size mono-GAM 

outperformed the other two approaches. As in the Gaussian case unconstrained GAM 

worked better than QP. 
As mentioned before, due to the singular value decomposition used for the working 

model matrix in the mono-GAM fitting procedure, mono-GAM fits slower than GAM 

and QP (see Figures 7-11 and 7-12). For the Poisson models the time for GAM was 
higher for QP which was unexpected, since the QP procedure fits an unconstrained 

GAM, first, for λ estimation. This happened because the default faster Newton method 

was applied when implementing QP, while a slower BFGS approach was used for GAM. 
To summarize, the simulation studies show that the new method to monotone 

smoothing may have practical advantage over the alternative methods considered. It 
is slower than unconstrained GAM and quadratic programming approaches. However, 
unconstrained GAM may not reflect monotonicity, while smoothing parameter selection 

for mono-GAM is well founded, in contrast to the ad hoc method of choosing λ from an 

unconstrained fit, and then refitting subject to constraint used with QP. Finally, the 

practical MSE performance of mono-GAM seems to be better than the alternatives. 
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Figure 7-9: MSE comparisons between mono-GAM (mg), GAM (g), and quadratic 
programming (qp) approaches for the Gaussian distribution for each of three noise 
levels. The upper panel illustrates the results for n = 100, the lower for n = 200. 
Boxplots show the distributions of differences in relative MSE between each alternative 
method and mono-GAM. 300 replicates were used. Relative MSE was calculated by 
dividing the MSE value by the average MSE of mono-GAM for the given case. (Section 
7.3) 
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Figure 7-10: PDL comparisons between mono-GAM (mg), GAM (g), and quadratic 
programming (qp) approaches for the Poisson distribution for each of three noise levels. 
The upper panel illustrates the results for n = 100, the lower for n = 200. Boxplots 
show the distributions of differences in relative PDL between each alternative method 
and mono-GAM. 300 replicates were used. Relative PDL was calculated by dividing 
the PDL value by the average PDL of mono-GAM for the given case. (Section 7.3) 
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Figure 7-11: CPU time comparisons between mono-GAM (mg), GAM (g), and 
quadratic programming (qp) approaches for the Gaussian additive data. The upper 
panel illustrates the results for n = 100, the lower for n = 200. Boxplots show the 
distributions of log10 CPU time in seconds for thee noise levels combined. (Section 7.3) 

Figure 7-12: CPU time comparisons between mono-GAM (mg), GAM (g), and 
quadratic programming (qp) approaches for the Poisson additive data. The upper 
panel illustrates the results for n = 100, the lower for n = 200. Boxplots show the dis­
tributions of log10 CPU time per replicate in seconds for three noise levels combined. 
(Section 7.3) 
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Chapter 8 

Application to real data 

This chapter presents three applications of mono-GAM to different data sets. The 

purpose of the first application is to investigate whether proximity to municipal incin­
erators in Great Britain increases the risk of stomach cancer (Shaddick et al., 2007). 
It is supposed that the risk of cancer is a decreasing function of distance from an in­
cinerator. The second application uses data from the National Morbidity, Mortality, 
and Air Pollution Study (Peng and Welty, 2004). The relationship between daily death 

rate in Chicago and air pollution levels is investigated. Modelling these data assumes 
that death rate increases with increase in levels of ozone, sulphur dioxide, and lev­
els of particular matter. The third example studies a prediction of tree height as a 

function of tree diameter and additional tree-stand-level parameters. The large sam­
ple of analyzed cross-sectional data are from the Northwest German Forest Research 

Institute, Department of Forest Growth, Göttingen, Germany. The proposed height-
diameter model includes strictly parametric model components and both monotonic 

and unconstrained smooth terms. 

8.1 Incinerator data 

In this section the mono-GAM is illustrated with an application to modelling cancer 
risk around municipal solid waste incinerators in Great Britain. The first large-scale 

study to investigate whether proximity to incinerators is associated with an increased 

risk of cancer was presented in Elliott et al. (1996). It analyzed data from 72 municipal 
solid waste incinerators in Great Britain. Decline in risk with distance from polluting 

source for a number of cancers was investigated. There was significant evidence for such 

a decline for stomach cancer, among several others. Diggle et al. (1997) reanalyzed the 

data on cancer of the stomach for three of those 72 incinerators which were selected 
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from the previous study to give a range of results. A parametric modelling approach 

based on a point process which assumed independence of the response variables was 
described in that paper. The assumption of independence of response variables might 
not always be credible especially for spatial data from close areas. A Poisson regression 

model that uses a latent process to incorporate correlation between response variables 
was proposed in Shaddick et al. (2007). In this approach a gamma distribution is used 

for the latent variable, instead of the more common log-normal distribution. Data 

from a single incinerator from those 72 sources, located in the northeast of England, 
were considered in this paper. This incinerator had a significant result for a test on 

monotone decreasing risk with distance from the polluting source (Elliott et al., 1996). 
The same data are analyzed using the mono-GAM approach in this section. 

The data are from 44 enumeration districts (census-defined administrative areas) 
whose centroids lay within 7.5 km of the incinerator. The response variables, Yi, i = 

1, . . . , 44, are observed numbers of cases of stomach cancer for each enumeration district. 
Estimates of the expected number of cases, Ei, are also available for risk determination, 
riski = Yi/Ei. The expected numbers were obtained using national rates for the whole 

of Great Britain, standardized for age and sex. The two covariates are a distance (km) 
from the incinerator and a deprivation score, the Carstairs score. Deprivation scores 
were calculated based on three socio-economic variables: unemployment, overcrowding, 
and social class of head of household. These three variables were first standardized to 

have zero mean and unit variance across Great Britain. Then a z-score for each of the 

three variables was determined for each ED. The ED deprivation score was a sum of 
the three z-scores. 

Under the model, it is assumed that, Yi are independent Poisson variables, Yi ∼
Poi(µi), where µi = λiEi, µi is the rate of the Poisson distribution with Ei the expected 

number of cases (in area i) and λi the relative risk. 
Shaddick et al. (2007) proposed a model under which the effect of a covariate, e.g., 

distancei, on cancer risk was linear through an exponential function, i.e. 

λi = exp(β0 + β1distancei). 

Since the risk of cancer is supposed to decrease with the distance from the incinerator, 
in this report a smooth monotone decreasing function, f(distancei), is suggested for 
modelling its relationship with the distance 

λi = exp {f(distancei)} . 
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Hence, the model can be represented as the following: 

� 
µi 

�
log(λi) = f(distancei) log = f(distancei)⇒ 

Ei 
⇒ 

log(µi) = log(Ei) + f(distancei), 

which is a single smooth generalized Poisson regression model under monotonicity 

constraint, where log(Ei) is treated as an offset (a variable with a model parameter 
equal to 1). Therefore, the mono-GAM approach can be applied to fit such a model. 
Carstairs score is known to be a good predictor of cancer rates (Elliott et al., 1996; 
Shaddick et al., 2007), so its effect can also be included into the modelling of cancer 
risk. The following four models have been considered for this application: 

Model 1: log {E(Yi)} = log(Ei) + f1(distancei), 

where f1(distancei) is subject to monotone decreasing constraint. 

Model 2: log {E(Yi)} = log(Ei) + f2(Carstairsi), 

where f2(Carstairsi) is expected to be monotone increasing. 

Model 3: log {E(Yi)} = log(Ei) + f1(distancei) + f2(Carstairsi). 

Model 4: log {E(Yi)} = log(Ei) + f3(−distancei, Carstairsi), 

where a bivariate function f3(−distancei, Carstairsi) is subject to double mono­
tone increasing constraint. 

The following code shows fitting of model 1 by monogam: 

> d1 <- monogam(y~ offset(log(E))+ s(dist,k=15,bs="mpd",m=2), 

+ family=poisson(link="log"),data=data) 

> d1 

Family: poisson


Link function: log


Formula:


y ~ offset(log(E)) + s(dist, k = 15, bs = "mpd", m = 2)


Estimated degrees of freedom:


2.2756 total = 3.275602
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Figure 8-1: Diagnostic plots for model d1 (incinerator data). 

UBRE score: 0.4026083 

The data were supplied as a list data. As the smooth term was assumed to be mono­
tone decreasing it had been represented using a monotone decreasing P-spline ("mpd"). 
The checking plots are given in Figure 8-1. Taking into account that for this appli­
cation there were only 44 data available, the diagnostic plots suggest that the model 
assumptions were not obviously wrong. 

The first model for comparison has been also fitted without constraint. 

> d1_gam <- gam(y~ offset(log(E))+ s(dist,k=15,bs="cr",m=2), 

+ family=poisson(link="log"),data=data,method="REML") 

> d1_gam 

Family: poisson


Link function: log


Formula:


y ~ offset(log(E)) + s(dist, k = 15, bs = "cr", m = 2)
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Estimated degrees of freedom: 

4.4344 total = 5.434434 

REML score: 77.85201 

The smoothing parameter of the unconstrained model was estimated by restricted 

maximum likelihood (REML) (Wood, 2011) since initial estimation by the UBRE used 

for mono-GAM resulted in an overfitted smooth. The estimated smooths and risk 

functions for both methods are illustrated in Figure 8-2. The estimate of the cancer 
risk function was obtained by 

ˆ µ̂i
riski = = exp 

�
f̂1(distancei)

� 
. 

Ei 

Note, that REML also resulted in a non-monotone smooth, which supports the mono-
GAM approach. The values of the adjusted r2 and percentage deviance explained (see 

Section 6.4) for the GAM were less than for mono-GAM. 
Model 2 describes the number of cases of stomach cancer through a smooth function 

of deprivation score. This function is assumed to be monotone increasing since it 
was shown (Elliott et al., 1996) that poor people (low Carstairs score) live closer to 

incinerators. Model 2 can be fitted as the following: 

d2 <- monogam(y~ offset(log(E)) + s(Carstairs,k=15,bs="mpi",m=2), 

family=poisson,data=data) 

The estimated results are shown in Figure 8-3. The UBRE value for this model 
was 0.5166, which is higher than for the previous model. The other two measures of 
the model performance, the adjusted r2 and the deviance explained, also gave slightly 

worse results for model 2: 
2 2 rd1 = 0.411, rd2 = 0.347, 

Deviance explainedd1 = 37.5%, Deviance explainedd2 = 31.8%. 

The third model incorporates both covariates, dist and Carstairs, assuming their 
additive effect. The next fits and prints some results of model 3. 

d3 <- monogam(y~ offset(log(E)) + s(dist,k=15,bs="mpd",m=2)+ 

s(Carstairs,k=15,bs="mpi",m=2),family=poisson,data=data) 
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Figure 8-2: The estimated smooth and cancer risk function for monotone and un­
constrained versions of model d1 (incinerator data). (a) - the estimated smooth of 
mono-GAM + 95% confidence interval; (b) - the mono-GAM estimated risk as the 
function of distance; (c) - the GAM estimated smooth + 95% confidence interval; (d) 
- the GAM estimated risk as the function of distance. Points show the observed data. 
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Figure 8-4: The estimated smooths of model d3 (incinerator data). 

The estimated effective degrees of freedom of f2(Carstairs) was about zero. This 
smoothing term was insignificant in this model, with all its coefficients near zero (see 

Figure 8-4). This can be explained by a high correlation between two covariates, 
(corr(distance, Carstairs) = −0.723). 

Considering a linear effect of Carstairs in place of the smooth function, f2, as it was 
proposed in Shaddick et al. (2007), 

log {E(Yi)} = log(Ei) + f1(distancei) + β Carstairsi,· 

also resulted in an insignificant value for β. 

The last model considers a bivariate function, f3(−distancei, Carstairsi). In order 
to impose double monotonicity with decrease for distance and increase for Carstairs, 
the first covariate of distance was taken with the negative sign. After such a transfor­
mation, a double monotone increasing constraint can be used via the smoothing basis 
"tedmi" of the monogam library (see Section 6.1). 

> y<- data$y; dist<- -data$dist; Carstairs<- data$Carstairs; E<- data$E 

> d4 <- monogam(y~offset(log(E))+s(dist,Carstairs,k=c(6,6),bs="tedmi"), 

+ family=poisson) 
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Figure 8-5: Perspective plot of the estimated bivariate smooths of model d4 (incinerator 
data). 

The perspective plot of the estimated smooth is illustrated in Figure 8-5. This plot 
also supports the previous result. The Carstairs score does not provide any additional 
information for modelling cancer risk when the explanatory variable is the distance. 
The graph of the estimated smooth has almost no increasing trend with respect to the 

second covariate. The measures of the model performance, such as UBRE, adjusted r2 , 

and the deviance explained are slightly better for the first model with only the effect 
of distance included than for the bivariate model. 

Comparing all four suggested models we may conclude that it is sufficient to consider 
only distance (model d1) as a predictor for the risk of stomach cancer. Moreover, there 

is evidence for decrease in risk of cancer of stomach with distance from the incinerator. 

8.2 Air pollution data 

The second application is concerned with an air pollution study which investigates 
the relationship between non-accidental daily mortality and air pollution. In Wood 

(2006a) such an analysis is discussed which uses Poisson additive models. The analyzed 
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� � 

shows application of mono-GAM to the same Chicago air pollution data. 
The preliminary modelling and examination of the data showed (Wood, 2006a) 

that the mortality rate at a given day could be better predicted if the aggregated air 
pollution levels and aggregated mean temperature were incorporated into the model, 
rather than levels of pollution and temperature on the day in question. For aggregating 

it was proposed to use the sum of each covariate except time, over the current day and 

air pollution data were from the National Morbidity, Mortality, and Air Pollution 

Study (Peng and Welty, 2004) which contains 5114 daily measurements on different 
variables for 108 United States cities. As an example a single city (Chicago) study was 
examined in Wood (2006a). The response variable was the daily death rate in Chicago 

( ) for the years 1987 – 1994. Four explanatory variables were considered: average death

daily temperature ( ), levels of ozone ( ), levels of particulate matter tempd o3median

( ), and Since it might be expected that mortality increases with pm10median time. 
increase in air pollution levels, modelling with mono-GAM may be useful. This section 

three preceding days. Hence, three aggregated predictors are as follows 

�i i i

tmpi = tempdj , o3i =
 o3medianj , pm10i =
 pm10medianj . 
j=i−3 j=i−3 j=i−3 

Assuming that the observed numbers of daily death are independent Poisson ran­
dom variables, the following additive model structure can be considered 

log {E(deathi)} = f1(timei) + f2(pm10i) + f3(o3i) + f4(tmpi), (8.1) 

where f1 − f4 are smooth functions and additional monotone increasing constraints 
are assumed on f2 and f3, since increase in air pollution levels is expected to increase 

mortality rate. The following code fits this model and prints fitting results. 

> p1 <- monogam(death ~ s(time,bs="cr",k=200)+s(pm10,bs="mpi",k=20)+ 

+ s(o3,bs="mpi",k=20)+s(tmp,bs="cr",k=20),family=poisson) 

> p1 

Family: poisson 

Link function: log 

Formula: 

death ~ s(time, bs = "cr", k = 200) + s(pm10, bs = "mpi", k = 20) + 

s(o3, bs = "mpi", k = 20) + s(tmp, bs = "cr", k = 20) 
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Figure 8-6: Diagnostic plots for model p1 (air pollution data). 

Estimated degrees of freedom:


145.4226 6.7548 1.0409 18.0328 total = 172.2510


UBRE score: 0.1629705 

Cubic regression splines have been used for unconstrained smooth terms. By de­
fault, the smoothing parameters have been selected using UBRE score. The checking 

plots are illustrated in Figure 8-6. There is no clear evidence to conclude that the 

model specification is wrong. Figure 8-7 shows the plots of the smooth estimates. 
Though the effect of the ozone level is only with one degree of freedom, it is positive 

and increasing (the bottom left plot of Figure 8-7). The rapid increase in the smooth of 
aggregated mean temperature (the bottom right plot) can be explained by four highest 
daily death rates occurred on four consecutive days of very high temperature and also 

high level of ozone. 200 data of that period plotted by calling 

> plot(tmp[3000:3200],death[3000:3200]) 

are shown in Figure 8-8. Note, there are four outliers on the right side of this plot 
corresponding to the highest death rates. 
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Figure 8-7: The estimates of the smooth terms of model p1 (air pollution data). 

Figure 8-8: Plot of the observed combinations of daily death rate and aggregated 
temperature for the period of the highest death rate. 
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Since high temperature together with high level of ozone might result in very high 

daily death rates, it is suggested to consider a bivariate smooth of these predictors. 
The following model is considered as the second alternative 

log {E(deathi)} = f1(timei) + f2(pm10i) + f3(o3i, tmpi), (8.2) 

where f2(pm10i) is a monotone increasing function and f3(o3i, tmpi) is subject to single 

monotonicity along the first covariate. A tensor product spline with single monotonic­
ity, "tesmi1", (Section 3.3.2) can be used for f3 representation. The following fits the 

model and checks it. 

p2 <- monogam(death ~ s(time,bs="cr",k=200)+s(pm10,bs="mpi",k=10)+ 

s(o3,tmp,k=c(10,10),bs="tesmi1",family=poisson) 

monogam.check(p2_1) 

Figure 8-9 shows the diagnostic plots of this model. It may be noted that there 

is a slight improvement in comparison to Figure 8-6. The estimates of the univariate 

smooths of model p2 are illustrated in Figure 8-10. The perspective plot of the esti­
mated bivariate smooth is shown in Figure 8-11. The second model also has a lower 
UBRE score (UBRE (p1) = 0.16297, UBRE (p2) = 0.14134) which implies that p2 is 
a preferable model. 

The current approach has been applied to air pollution data for Chicago only. 
It would be of interest to apply the same model to other cities, to see whether the 

relationship between non-accidental mortality and air pollution can be described by 

the proposed mono-GAM in other locations. 

8.3 Forest data 

8.3.1 Motivation 

Two of the main questions of forest management planning are what is the current 
status of forests and how forests will develop in future. To estimate forest stock and 

assortment for, for example, forest districts or federal states, a tree volume has to be 

predicted and then summed up to get timber volume estimates for a considered forest 
area. A tree volume evaluation is based on two tree parameters: tree height and tree 

diameter. Since measuring tree diameter at breast height (1.3 m), is relatively cheap, 
but measuring tree heights is cost intensive, it is desirable to model tree height as 
a function of tree diameter and some other tree-specific parameters. An important 
feature of the height-diameter relationship is that it develops over time and varies from 
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Figure 8-9: Diagnostic plots for model p2 (air pollution data). 

Figure 8-10: The estimates of the univariate smooth terms of model p2 (air pollution 
data). 
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Figure 8-11: Perspective plot of the estimated bivariate smooth terms of model p2 (air 
pollution data). 

stand to stand (Lappi, 1997; Mehtätalo, 2004) (stand is a group of growing trees in a 

given area). In Mehtätalo (2005) it is noted that trees reach maturity at different ages 
which depend on site conditions. It takes longer for trees to grow from samplings to a 

mature stand on poor sites than on rich sites. 
The study discussed in this section has been conducted by Dr. Matthias Schmidt 

at the Northwest German Forest Research Institute, Department of Forest Growth, 
Göttingen, Germany. There are several goals of the study. The first one is to develop 

site-sensitive prediction of tree height for the current status of forests in Germany. 
Also the model has to be valid for all regions of Germany taking into account the 

spatial variability of the height-diameter relationship. Since climate change has already 

affected forests in Central Europe and a heavier impact is anticipated in the future, 
the model should be applicable for prediction of future tree height development and be 

able to quantify the impact of climate change on height development and tree growth. 
Many studies of forest research have been devoted to modelling height-diameter 

relationship (see, e.g., Jayaraman and Lappi, 2001; Eerikäinen, 2003; Mehtätalo, 2004). 
Several approaches are available now for height predictions. In this study a random 

parameter height-diameter model developed by Lappi (1997) is used as a starting model. 
It is then extended to include some tree-specific and site-specific variables in the fixed 

parts of the model. As some of the fixed effects are supposed to be monotone, a mono-
GAM approach can be applied in the middle stage of the complete model development. 
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8.3.2 Data 

The data analyzed here are observations of 29 324 trees and some site-specific variables 
from the forest enterprise (district) inventories conducted in Lower-Saxony. Lower 
Saxony is the second largest federal state of Germany and is located in the north­
western part. Several reforms have been conducted so that the number of forest districts 
has decreased over time. Every year two or three state owned forest districts are 

inventoried. The data come from inventories in the time interval 1996 – 2008. There 

are almost no consecutive inventories (no longitudinal data), but all forest districts 
are inventoried, with the exception of a small area of the “Nationalpark Harz”. The 

data are a subset of a larger database for the whole of Germany. This larger data 

base consists of 199 915 single tree records, assessed by the Northwest German Forest 
Research Station. 

The surveyed trees are Norway spruce, the most common species in Europe. The 

response variable is a tree height measured in meters. Two types of covariates are 

considered: tree-specific and site-specific. The tree specific variables are tree diameter 
at breast height (dbh) measured in centimeters, tree age, year of germination, altitude, 
topex indices, northing, and easting. The year of germination variable serves as a proxy 

for the effect of observed growth trends in Europe, that are supposed to be mainly a 

result of increased nitrogen emission into the soil since 1950s. Also the mean quadratic 

diameter (dg) of a stand is used as a covariate describing the hierarchic position of a 

tree of a certain diameter within the stand. It is defined as the following 

n n

dg = 2 

���� 1 ��π 
dbhi 

2
� 

= 

���� 1 � 
dbhi 

2 ,
πn 4 

· 
n 

i=1 i=1 

where n is the number of inventoried trees in the stand. 
Topex index describes topographic exposure in the South-West direction and terrain 

morphology. A digital terrain model (DTM) with a resolution of 90 by 90 m was used 

for topex calculation. If a tree is located on a summit it is highly exposed and its 
topex index is negative, positive topex means that the location is in a valley, flat areas 
result in topex values near zero (see, e.g., Scott and Mitchell, 2005). Since exposure to 

the south west might result in drought stress, the topex index is used as a proxy for 
drought stress. 

The additional site-specific (climate) explanatory variables are temperature summed 

over days of the vegetation period (growing season), and De Martonne’s aridity index. 
An aridity index is a fraction of annual precipitation in millimeters over mean annual 
temperature in degrees Centigrade minus ten (P/T-10) (Thornthwaite, 1931). The 
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advantage of the site-specific covariates, compared to proxies is that they give an op­
portunity to assess the climate change impact on tree growth. Table 8.1 summarizes 
the data under study. 

Table 8.1: Forest data characteristics 

Min Median Max 
Tree height (m) 3.7 21.8 47.3 
dbh (cm) 7 30.45 104 
Tree age (years) 20 54 199 
Year of germination (Y) 1803 1948 1988 
Altitude (m) 0 307 947 
Topographic exposure on South-West direction 
(DTM 90 x 90) -84560 1489 89208 
Temperature sum over the vegetation period 833.55 1996.59 2456.80 
Aridity index 24.802 44.740 87.463 

8.3.3 Modelling approach 

This section describes an approach to modelling the longitudinal height-diameter (h-d) 
relationship. A difficulty with the h-d relationship is that it is not stable but varies 
from stand to stand and develops over time (Lappi, 1997; Mehtätalo, 2004). The 

development of the h-d model consists of several steps. The following gives a brief 
description of the model development. 

1.	 Initial specification of the height-diameter model as an exponential model with 

random parameters. Decomposition of the random parameters of the model into 

fixed effects, a random stand effect, and a random time effect. ‘A priori’ deter­
mination of non-linear model parameters. 

2.	 Estimation of the age effect only as a part of the fixed effect (using a subsample 

that originated from one measurement point in time). Estimation of other site-
specific and/or climate-specific effects on the trend. All one-dimensional effects 
are assumed to be monotonic smooth functions. 

3.	 Inclusion of the fixed effects into the complete model and its re-parametrization 

as a linear mixed model. 

The preliminary model selection step does not require use of mono-GAM. It is based 

on modelling approaches to height prediction commonly used in forest management. 
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The first subsection briefly describes the initial steps of the model development carried 

out by Dr. Matthias Schmidt at the Department of Forest Growth and Yield, the 

Northwest German Forest Research Station, Germany. The data base for the whole 

of Germany was applied for this ‘a priori’ estimation of specific model parameters. In 

the second stage, several additional predictors are incorporated into the model. As 
some of the predictors are supposed to have monotone effects on the height-diameter 
relationship, a mono-GAM approach can be applied at this step. The complete model is 
a linear mixed model which is shown in the last subsection. At the point of writing this 
thesis, the full data analysis has not been completed, and the collaboration with Dr. 
M. Schmidt is ongoing. But since the purpose of this chapter is only to demonstrate the 

use of mono-GAM, this section focuses on discussion of the middle step of the model 
development. 

Initial model development 

As a starting point, the following longitudinal height-diameter model known as the 

Korf function is used for the description of the relationship between tree height and 

diameter (Lappi, 1997): 

log(Hkti) = Akt − Bkt (dbhkti + λ)−Ckt + �kti, (8.3) 

where Hkti is a height of tree i on sample plot k at time t, dbhkti is a diameter at breast 
height of tree i on sample plot k at time t; �kti are gaussian errors; Akt, Bkt, λ, and Ckt 

are parameters of the model. Height-diameter curves differ for different plots and for 
different points of time, therefore, the model parameters vary over plots and with time. 
Since parameters Akt and Bkt are highly correlated, it is suggested to reparameterize 

dbh as follows (Jayaraman and Lappi, 2001): 

(dbhkti + λ)−Ckt − (30 + λ)−Ckt 

xkti = .
(10 + λ)−Ckt − (30 + λ)−Ckt 

The model (8.3) can now be written as 

log(Hkti) = Akt − Bktxkti + �kti, (8.4) 

where Akt and Bkt are not highly correlated and have biological meanings. Akt is the 

expected value of the log height of trees with diameter 30 cm for sample plot k at 
time t; and Bkt is the expected value of the difference in the ln(Hkti) between trees of 
diameters 30 cm and 10 cm for sample plot k at time t. These interpretations are very 

important since the parameters will be described as functions of additional tree and 
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stand-level covariates in the second step of the model development. 
The model (8.4) is linear with respect to Akt and Bkt. Taking into consideration 

the random stand effect and random time effect within stands these parameters can be 

represented at the first stage as 

Akt = A + αk + αkt, Bkt = B + βk + βkt, 

where A and B represent fixed effects which have to be estimated; αk and βk are 

random stand level effects with zero means and constant variance; and αkt and βkt are 

random time effects within stands with zero means but possibly not constant variance. 
It may be noted that (8.4) is overparameterized. Moreover, a model of that spec­

ification cannot be linearized with respect to the parameters λ and Ckt. Therefore, it 
is suggested firstly to estimate λ and Ckt. These parameters were selected by testing a 

variety of combinations of λ and C when fitting a linear mixed model 

log(Hkti) = A + Bxkti + αk + αkt − (βk + βkt)xkti + �kti, b ∼ N(0, D), 

where b is a vector of random stand and time effects. R library nlme was used for 
this procedure. The combination of the parameters with the lowest error variance was 
λ = 7 and C = 1.225. There were no clear trends found in λ and C over different mean 

stand age and the models were not very sensitive to the value C. 
The next step is to estimate the fixed effects of the h-d model, A and B. Since the 

model should be used not only for height estimation for a given point of time but also 

for predicting future height development, first, A and B are described as functions of 
tree age. Tree age is highly correlated with year of germination and their effects on tree 

height cannot be separated feasibly. That is why for an ‘a priori’ estimation of the age 

effect on the intercept A, only tree age was integrated into the model as a covariate. 
The age effect on the slope B was assumed to be linear (Lappi, 1997; Mehtätalo, 2004). 
For estimating the age effect, a subsample of 98 274 tree records of the same year of 
inventory, 1987, was analyzed. Because of the large data set it was performed only on a 

computer with 32 Gigabytes memory and no random time effect could be incorporated. 
The following additive mixed model was fitted using gamm(mgcv): 

log(Hkti) = f1a(Agekti) − pobxkti − p1b Agekti · xki + αk − βkxkti + �kti.· 

The resulted age effect was not monotone increasing as it should be, so it was 
approximated by a parametric function using parameters of the Chapman-Richards 

173




function (Richards, 1959) 

�
1 − e−p3aAgekt 

�p4af1a(Agekti) = p1a + p2a , (8.5) 

with only the parameter p2a to be refitted later, when including several other predictors 
(effects) and using the whole data base. 

One of the model requirements is to predict tree heights of a forest stand. Since 

every stand has different characteristics, additional measured stand variables should 

be incorporated into the h-d model. These additional covariates are assumed to have 

fixed additive effects on the model together with the estimated age effect. The next 
subsection describes different ways of estimating several other tree-specific, and also 

climate-specific, effects on the trend of the h-d curve using a mono-GAM approach. 

Estimating non-linear model effects using mono-GAM 

After estimating the age effect on the h-d curve, additional fixed effects can be estimated 

such as altitude, year of germination, topographic exposure, and others. The following 

model is considered: 

p4a

log(Hkti) = p̂1a + p2a 

�
1 − e−p̂3aAlt

�ˆ
+ f2a(dg.neu) + f3a(Topex567) + f4a(HNN)


+ f5a(keimjahr) + f6a(Rechtswert, Hochwert) − p0b xkti + p1b Alt xkti · · · 
+ p2b HNN xkti + �kti,· · 

where the the Chapman-Richards parameters (8.5) were used as constants except of 
p2a which has to be re-estimated. dg.neu denotes the mean quadratic diameter within 

a stand, Alt is a tree age, Topex567 is a topographic exposure to South-West, HNN is an 

altitude, keimjahr is a year of germination, f6a(Rechtswert, Hochwert) is a bivariate 

function of easting and northing. The age trend from the inventory 1987 was fixed and 

transferred into this model. The notation of the covariates are the same as in the data 

base kindly provided by the the Northwest German Forest Research Institute. 
p4aBy introducing a variable zkt = 

�
1 − e−p̂3aAlt

�ˆ and denoting A1 = p̂1a the above 

model may be re-written as 

log(Hkti) = A1 + p2azkt + f2a(dg.neu) + f3a(Topex567) + f4a(HNN) + f5a(keimjahr) 

+ f6a(Rechtswert, Hochwert) − p0b xkti + p1b Alt xkti · · · 
+ p2b HNN xkti + �kti,· · 

(8.6) 
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The model assumes a linear combination of the covariates effects. Since, from 

expert knowledge, the effects of some of the covariates are known to be monotone, the 

mono-GAM approach can be applied at this stage of the model development. 
For estimating the non-linear model effects, three different additive models with 

monotonicity constraints are considered here. The first mono-GAM is the model (8.6) 
with monotonicity restrictions on one-dimensional smooth components. A more com­
plicated model with variable coefficients is proposed as the second alternative. Since 

the purpose of the height-diameter model is not only to predict tree height for the cur­
rent status of forests but also to make site (climate) sensitive prediction for the future 

status, several site-specific covariates are incorporated in the last mono-GAM. All three 

models were fitted to the data recorded in Lower-Saxony (29 324 tree records). 

MODEL 1: 

Model 1 is the model (8.6) with monotonicity restrictions on four one-dimensional 
smooth terms. The effect of dg.neu is expected to be monotone increasing since the 

larger the mean quadratic diameter compared to the diameter of a tree, the more the 

tree is suppressed and has to invest more into height growth than into diameter growth 

to struggle for the light. The effect of Topex567 should be monotone increasing since 

an exposure to the south west might result in drought stress. From expert knowledge, 
the effect of HNN should be monotone decreasing since the growth conditions become 

worse with increasing altitude. The function of keimjahr should be increasing with 

the tree age already integrated into the model, because of increased nitrogen emission 

into the soil since 1950s. 
Monotone P-splines with 20 basis functions were used for representation of the 

monotone smooths of (8.6). Since the bivariate function f6a(Rechtswert, Hochwert) 
is a function of geographic co-ordinates, it was represented by a thin plate regression 

spline (Wood, 2006a) which is in some sense an optimal smoother when the isotropy 

of the wiggliness penalty (treating wiggliness in all directions equally) is a desirable 

feature. The following fits and checks the model: 

> m1 <- monogam(log(h)~-1+offset(A1) + s(dg.neu,k=20,bs="mpi",m=2) + 

s(Topex567,k=20,bs="mpi",m=2) + s(HNN,k=20,bs="mpd",m=2) + 

s(keimjahr,k=20,bs="mpi",m=2)+s(Rechtswert,Hochwert)+zkt+xkti+ 

Alt_xkti+HNN_xkti,data=dat.full, family=gaussian) 

> monogam.check(m1) 

Method: GCV Optimizer: bfgs


Number of iterations of smoothing parameter selection performed was 5 .
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Full convergence.


Gradient range: [-3.125233e-09,2.628042e-07]


(score 0.01915454 & scale 0.01911566)


The constant A1 = p̂1a represents an intercept of this model to guarantee a plausible 

effect of the year of germination. The checking plots are shown in Figure 8-12. These 

diagnostic plots confirm the overall height-diameter model specification as a mixed 

model. When estimating the trend functions the random effects have not been taken 

into account, so the residual plots reveal this problem. Lappi (1997) found out that the 

variance var(�kti) had a decreasing trend, especially for trees with large diameters. He 

proposed an expression for the variance as a decreasing function of the diameter. On 

the residuals versus linear predictor plot of Figure 8-12 (an upper right plot) a clear 
decreasing trend in the variance can be seen. 

Figure 8-13 illustrates the estimated smooth terms for model m1 obtained by calling 

the plot function 

plot(m1, pages=1, scale=0) 

In the previous approach for estimating the same trend functions, first, gam(mgcv) 

was used and then monotonicity of the estimated smooths were achieved by parametric 

approximations. This step has now been skipped by applying the monogam. All the 

estimated smooths are in agreement with the previous results, taking into account that 
for the current results, only the data from Lower-Saxony were analyzed. The upper 
right plot of Figure 8-13 shows that the effect of Topex567 is not very strong: that is 
probably because the digital terrain model used for it has a low resolution of 90 × 90m. 

The effect of the year of germination, keimjahr, is quite unstable for 1980 and later 
due to high correlation with tree age. Also the soil reached a steady state by 1980, 
being saturated with nitrogen. 

More detailed fitting results were obtained by using the summary method. 

> summary(m1)


Family: gaussian


Link function: identity


Formula:


log(h) ~ -1 + offset(A1) + s(dg_neu, k = 20, bs = "mpi", m = 2) +
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Figure 8-12: Model checking plots for model 1, note the heavier-than-Gaussian tails. 
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Figure 8-13: The estimated smooth terms of model 1. 
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s(Topex567, k = 20, bs = "mpi", m = 2) + s(HNN, k = 20, bs = "mpd", 

m = 2) + s(keimjahr, k = 20, bs = "mpi", m = 2) + s(Rechtswert, 

Hochwert) + zkt + xkti + HNN_xkti + Alt_xkti 

Parametric coefficients: 

Estimate Std. Error t value Pr(>|t|) 

zkt 1.266e+00 4.248e-02 29.811 < 2e-16 *** 

xkti 5.173e-01 1.184e-02 43.701 < 2e-16 *** 

HNN_xkti 4.043e-05 1.024e-05 3.949 7.85e-05 *** 

Alt_xkti 2.774e-03 1.799e-04 15.418 < 2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Approximate significance of smooth terms: 

edf Ref.df F p-value 

s(dg_neu) 5.909 5.909 43.59 <2e-16 *** 

s(Topex567) 1.000 1.000 72.13 <2e-16 *** 

s(HNN) 11.422 11.422 122.57 <2e-16 *** 

s(keimjahr) 9.061 9.061 27.22 <2e-16 *** 

s(Rechtswert,Hochwert) 28.131 28.131 60.69 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1


R-sq.(adj) = 0.905 Deviance explained = 97%


GCV score = 0.019155 Scale est. = 0.019116 n = 29324


The significance of every parameter of the parametric term is given together with 

the significance of the smooth terms. All the terms were significant in this case. As 
was noted before, the effective degrees of freedom of the Topex567 smooth was only 1. 

MODEL 2: with variable coefficients 

A more complicated model with variable coefficients is considered as model 2. In 

the previous case the age effect on the slope B of the h-d curve was assumed to be 

linear as was the effect of altitude. Now, suppose that both predictors have non-linear 
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effects on B. Then the model becomes: 

log(Hkti) =A1 + p2a zkt + f2a(dg.neu) + f3a(Topex567) + f4a(HNN)· 
+ f5a(keimjahr) + f6a(Rechtswert, Hochwert) − p0b xkti · 
+ p1b f1b(Alt) xkti + p2b f2b(HNN) xkti + �kti,· · · · 

where the non-linear effects of age and altitude are represented by the smooth functions 
f1b(Alt) and f2b(HNN), and both of them are assumed to be monotone increasing. Such 

a model can be fitted using ‘by’ variables (see Sections 4.1.2 and 6.3). The next lines 
fit the model and give summary results. 

> m2 <- monogam(log(h)~-1+offset(A1)+s(dg_neu,k=20,bs="mpi",m=2)+ 

s(Topex567,k=20,bs="mpi",m=2)+ 

s(HNN,k=20,bs="mpd",m=2)+s(keimjahr,k=20,bs="mpi",m=2)+ 

s(Rechtswert,Hochwert)+zkt+xkti+s(HNN,k=20,bs="mpi",m=2,by=xkti)+ 

s(Alt,k=20,bs="mpi",by=xkti),data=dat.full, 

family=gaussian(link="identity")) 

> summary(m2) 

Family: gaussian


Link function: identity


Formula: 

log(h) ~ -1 + offset(A1) + s(dg_neu, k = 20, bs = "mpi", m = 2) + 

s(Topex567, k = 20, bs = "mpi", m = 2) + s(HNN, k = 20, bs = "mpd", 

m = 2) + s(keimjahr, k = 20, bs = "mpi", m = 2) + s(Rechtswert, 

Hochwert) + zkt + xkti + s(HNN, k = 20, bs = "mpi", m = 2, 

by = xkti) + s(Alt, k = 20, bs = "mpi", by = xkti) 

Parametric coefficients: 

Estimate Std. Error t value Pr(>|t|) 

zkt 1.20896 0.04574 26.431 < 2e-16 *** 

xkti 0.50162 0.07032 7.134 9.99e-13 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Approximate significance of smooth terms: 

edf Ref.df F p-value 
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s(dg_neu) 5.965 5.965 45.52 <2e-16 *** 

s(Topex567) 1.001 1.001 71.85 <2e-16 *** 

s(HNN) 11.425 11.425 113.41 <2e-16 *** 

s(keimjahr) 6.885 6.885 19.89 <2e-16 *** 

s(Rechtswert,Hochwert) 28.024 28.024 58.47 <2e-16 *** 

s(HNN):xkti 1.026 1.026 69.42 <2e-16 *** 

s(Alt):xkti 9.318 9.318 28.52 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

R-sq.(adj) = 0.906 Deviance explained = 97%


GCV score = 0.019109 Scale est. = 0.019067 n = 29324


The summary results suggest that both terms with variable coefficients are signifi­
cant. The GCV score for this model is slightly less than for model 1. Since the checking 

plots of this model and for the next considered model 3 are similar to those of model 1 

they are not shown. The estimated smooth components are illustrated in Figure 8-14. 
The last two plots show the plausible effects of age and altitude. 

MODEL 3: with site-sensitive covariates 

The previous two models are not sensitive to site conditions: only proxy variables 
were incorporated there. Since one of the requirements for the model is to be able to 

predict future tree height development and assess the impact of climate change, two 

site-specific predictors are used in model 3. They are temperature summed over days 
of the vegetation period/growing season (temp.veg) and De Martonne’s aridity index 

(ari). Both predictors are supposed to have monotone increasing effects on the h-d 

curve. The following model is considered: 

log {E(Hkti)} =A1 + p2a zkt + f2a(rel.d) + f3a(keimjahr) + f4a(temp.veg)· 
+ f5a(ari) + f6a(Rechtswert, Hochwert) − p0b · xkti 

+ p1b Alt xkti + p2b HNN xkti,· · · · 

where rel.d denotes a relative diameter at breast height, rel.d = dbhi/dg, the expres­
sion for the mean quadratic diameter of a stand dg was shown previously. The relative 

diameter is a measure of the ranking of a tree within the population of a stand. That 
means that two trees with the same dbhi, but from the different stands, will have dif­
ferent rankings if other trees within the stand differ. Also to avoid the transformation 
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Figure 8-14: The estimated smooth terms of model 2 with variable coefficients.
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bias gaussian distribution with the log link function is used here instead of the identity 

link for the log height. The next code shows the use of monogam to fit this model and 

get fitting results: 

> m3	 <- monogam(h~-1+offset(A1.fit)+s(rel_d,k=30,bs="mpd")+ 

s(keimjahr,k=30,bs="mpi")+ s(temp_veg_mgcv,k=30,bs="mpi")+ 

s(ari,k=30,bs="mpi")+ s(Rechtswert,Hochwert)+zkt+xkti+HNN_xkti+ 

Alt_xkti, data=BI_climate[ind,], family=gaussian(link=’log’), 

optimizer="optim", optim.method=c("BFGS","fd")) 

> summary(m3) 

Family: gaussian 

Link function: log 

Formula: 

h ~	 -1 + offset(A1.fit) + s(rel_d, k = 30, bs = "mpd") + s(keimjahr, 

k = 30, bs = "mpi") + s(temp_veg_mgcv, k = 30, bs = "mpi") + 

s(ari, k = 30, bs = "mpi") + s(Rechtswert, Hochwert) + zkt + 

xkti + HNN_xkti + Alt_xkti 

Parametric coefficients: 

Estimate Std. Error t value Pr(>|t|) 

zkt 1.571e+00 5.431e-02 28.932 < 2e-16 *** 

xkti 5.296e-01 9.209e-03 57.507 < 2e-16 *** 

HNN_xkti 8.195e-05 1.423e-05 5.758 8.59e-09 *** 

Alt_xkti 5.001e-03 1.559e-04 32.076 < 2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Approximate significance of smooth terms: 

edf Ref.df F p-value 

s(rel_d) 8.111 8.11 81.50 <2e-16 *** 

s(keimjahr) 15.452 15.45 37.23 <2e-16 *** 

s(temp_veg_mgcv) 22.892 22.89 13.98 <2e-16 *** 

s(ari) 17.909 17.91 16.81 <2e-16 *** 

s(Rechtswert,Hochwert) 28.904 28.90 94.21 <2e-16 *** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 
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R-sq.(adj) = 0.909 Deviance explained = 96.3%


GCV score = 5.7992 Scale est. = 5.7799 n = 29326


For GCV minimization the optim() numerical optimization method with the finite-
difference approximation of the derivatives was used as an alternative to the default 
BFGS method. It may be noted that the GCV score of this model is higher than for 
models 1 and 2. Figure 8-15 shows the estimates of the components of model 3. Both 

site predictors displayed credible monotone effects on the tree height. 
Despite of the fact that the full data analysis has not been completed yet (at the 

point of writing this thesis), it can be seen that the second step of the h-d model 
development has been simplified and improved by using the mono-GAM approach. 

Final re-parameterization as a linear mixed model 

In the previous subsections the first two steps of the h-d model development were 

shown. After estimating the smooth (monotonic) model effects, they can be included 

into the complete model which is then re-parameterized as a linear mixed model: 

log(Hkti) =A1 + p2a zkt + m1f2̂a(rel.d) + m2f3̂a(keimjahr) + m3f4̂a(temp.veg)· 
+ m4f5̂a(ari) + m5f6̂a(Topex567) + m6f7̂a(HNN) 

+ m7f8̂a(Rechtswert, Hochwert) − p0b xkti + p1b Alt xkti · · · 
+ p2b HNN xkti + (αk + αkt) − (βk − βkt)xkti + �kti,· · 

where the previously obtained estimates of the non-linear parameters are used as fixed 

constants and only linear parameters have to be re-estimated. 

Summary 

The data applications have demonstrated the efficacy and practicality of mono-GAM. 
Data sets with sample sizes ranging from 44 to 29 324 have been successfully analyzed. 
It has been demonstrated that mono-GAM may be useful in ecological and environ­
mental studies in which monotone effects of some explanatory variables are expected 

from expert knowledge. Examples of such presumed monotone relationships can also 

be found in other research areas such as growth curves and dose-response curves in 

medicine, production functions (e.g., effect of labour input on quantity produced is 
assumed to be monotone increasing and concave) in economics, or the relationship 

between price and quantity demanded in business. 
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Figure 8-15: The estimated smooth terms of model 3 with the site-sensitive covariates. 
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Appendix A 

R code used for data generating 

This appendix provides the code for generating data used for the simulation examples 
of Section 6.1. 

The following code generates data for the Poisson model with log link and a linear 
predictor which is the sum of unconstrained, monotone, and monotone plus convex 

smooth terms (model b1 of Section 6.1). 

set.seed(4) 

n <- 200 

x1 <- runif(n)*6-3 

f1 <- 3*exp(-x1^2) # unconstrained term 

x2 <- runif(n)*4-1; 

f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth 

x3 <- runif(n)*3-1; 

f3 <- exp(-3*x3)/15 # monotone decreasing and convex smooth 

f <- f1+f2+f3 

y <- rpois(n,exp(f)) 

dat1 <- data.frame(x1=x1,x2=x2,x3=x3,y=y) 

The next code shows the data simulation for the Gaussian model with double mono­
tonicity, b2. 

set.seed(2)


n <- 30


x1 <- sort(runif(n)*4-1); x2 <- sort(runif(n))


f1 <- matrix(0,n,n)


for (i in 1:n) for (j in 1:n){


f1[i,j] <- exp(4*x1[i])/(1+exp(4*x1[i])) + 2*exp(2*x2[j]-2)} 

f0 <- as.vector(t(f1)); f <- (f0-min(f0))/(max(f0)-min(f0)) 
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y <- f+rnorm(length(f))*0.1 

x11 <- matrix(0,n,n); x11[,1:n] <- x1; 

x11 <- as.vector(t(x11)); x22 <- rep(x2,n) 

dat2 <- list(x1=x11,x2=x22,y=y) 

Finally, the last bit of code generates data for b3, the single bivariate smooth 

regression model monotone increasing in the second covariate. 

set.seed(2)


n <- 30


x1 <- runif(n)*1; x2 <- runif(n)*4-1


f1 <- matrix(0,n,n)


for (i in 1:n) for (j in 1:n){


f1[i,j] <- 2*sin(pi*x1[i])+ exp(4*x2[j])/(1+exp(4*x2[j]))} 

f0 <- as.vector(t(f1)); f <- (f0-min(f0))/(max(f0)-min(f0)) 

y <- f+rnorm(length(f))*0.1 

x11 <- matrix(0,n,n) 

x11[,1:n] <- x1; x11 <- as.vector(t(x11)) 

x22 <- rep(x2,n) 

dat3 <- list(x1=x11,x2=x22,y=y) 
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