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ABSTRACT 

Aquaculture is an essential developing sector for world food production, however the 

attainment of sexual maturity during commercial on-growing is a major bottleneck to 

industry expansion. Sexual maturation brings a commercial loss due to reduced growth 

performance as well as reduced immune function. Furthermore, serious concerns exist 

over potential genetic interaction with native stocks through broadcast spawning or 

spawning interaction by escapees. In the north Atlantic region, the Atlantic cod (Gadus 

morhua) and Atlantic halibut (Hippoglossus hippoglossus) are key aquaculture species in 

which industry expansion is limited by pre-harvest sexual maturation. However, through 

a species specific combination of modern technologies and refinement in management 

practices it is possible that this sexual maturation can be controlled and on-growing 

potential enhanced. Thus the overall aim of this thesis was to conduct novel research that 

will improve our understanding of the underlying mechanisms that regulate sexual 

maturation, whilst also advancing the optimisation of technologies for the management 

of maturation in cod and halibut. 

In Atlantic cod, owing to the inconsistent inhibition of maturation in commercial 

conditions, ever increasing intensities of light and in some cases narrow spectrum 

technologies are being used to try to combat this problem. Firstly, this PhD project 

investigated the potential welfare impacts of high intensity artificial lighting which have 

not been studied to date (Chapter 2). The work specifically investigated the effect of 

traditional metal halide and novel green cathode lighting on the stress response, innate 

immunity, retina structure, feeding activity and light perception of Atlantic cod. Results 

indicated that although acute responses to light were observed, there were no clear 

significant long term effects of any of the lighting treatments on these parameters. 

Regarding light perception, interestingly even when subjected to high intensity constant 
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lighting (metal halide mean tank intensity: 16.6 watts m
-2

), cod still demonstrated a 

day/night rhythm in melatonin release which suggests perception of the overlying 

ambient photoperiod. The second trial of this PhD project investigated the efficacy of 

shading of ambient photoperiod in addition to constant lighting to inhibit maturation of 

cod outdoors (Chapter 3). This aimed at improving the performance of artificial lighting 

regimes in the open cage system during commercial on-growing by reducing the relative 

difference between day/night light intensities. The trial was conducted over a one year 

period where a low and high shade treatment were tested in outdoor tanks. Shading 

increased the relative night time illumination to 6.6% and 31.3% of daytime levels 

respectively, compared to <2% in an unshaded set-up. Both shading treatments were 

effective at suppressing sexual development in cod as confirmed through measurements 

of gonadosomatic index, histological analysis of gonadal development, oocyte diameter 

measurements and sex steroid profiles as well as measurements of growth. In addition to  

research at the applied level in Atlantic cod, this thesis has also extended to the 

fundamental level and explored one of the potential mechanisms relaying photoperiod 

signal to the endogenous regulation of sexual maturation in cod, namely the kisspeptin 

system (Chapter 4). Partial sequences for the signal peptide Kiss2 and its receptor Kissr4 

were isolated and described showing similarity to other teleost species such as the 

medaka, Oryzias latipes and stickleback, Danio rerio. Novel molecular qPCR assays 

were designed and developed to measure the expression of both genes in male and 

female cod over a maturation cycle and compared to cod under constant lighting which 

remained immature. Interestingly, expression patterns of kiss2 and kissr4 did not reveal 

any clear association with season or photoperiod treatment. However, pituitary 

expression of gonadotropins (FSH, follicle stimulating hormone; LH, luteinising 

hormone) did show a differential expression in relation to treatment from early winter 
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approximately 4-6 months after the photoperiod change. These new results are in 

contradiction with the hypothesis that the kisspeptin system would be involved in the 

initiation of gametogenesis, as shown in mammals. However, the FSH/LH data defines a 

window during which time kisspeptin or another GnRH stimulating mechanism must be 

active, this compels the need further investigation.   

In Atlantic halibut farming, all-female production removes the concerns of 

production losses through sexual maturation. Accordingly, this thesis investigated the 

potential/feasibility of generating monosex populations by FACS (fluorescence activated 

cell sorting) semen sexing based on cellular DNA content, as proven in terrestrial 

agriculture.  Results however did not show any clear differences between the DNA of 

sperm in a range of species tested (Atlantic halibut, cod, sea bass, perch) suggesting that 

this technique may not be applicable in such species. The project also focussed on the 

production of a population of sex reversed halibut broodstock (neomales) that will 

generate, in the long term, a basis for traditional monosex population generation in the 

UK. Two in feed MDHT (17α-methyldihydrotestosterone) treatments were tested with 

the aim to reduce the use of hormone. Results were very successful with a hormone 

treatment of 5ppm MDHT generating a 97% phenotypic male population thus suggesting 

the presence of sex-reversed halibut which can be used for future monosex production. 

Overall, this work aimed to develop and/or refine potential remediation 

techniques for sexual maturation in two key commercially important farmed marine fish 

species, cod and halibut, as well as further our understanding on the regulation of 

puberty. The knowledge gained from this work provides a means to optimise the 

techniques employed in the industry and has the potential to increase production and 

profitability without compromising farmed animal welfare, thus ultimately promoting 

the sustainable expansion of the Atlantic cod and halibut aquaculture.  



Mairi Cowan ABSTRACT 

VI 

Keywords: Atlantic cod, Gadus morhua, Atlantic halibut, Hippoglossus hippoglossus, 

artificial light, kisspeptin, maturation, monosex, stress, shading, semen sexing, sex 

reversal, sex steroids 

  



Mairi Cowan ACKNOWLEDGEMENTS 

VII 

ACKNOWLEDGEMENTS 

Firstly, I must express my sincerest gratitude to my principal supervisors Dr. Herve 

Migaud and Dr. Andrew Davie for their secure guidance and willing help throughout this 

PhD project. Their office doors were always wide open and no question was ever too big 

or too small, what‘s more they were always up for coming to help with field sampling no 

matter the time of day or night. In particular, I value their enthusiasm and their rapid, 

high quality feedback which has continually broadened and helped fuel the momentum 

of this project. I feel privileged to have worked with such confident, dependable, 

productive and inspiring supervisors. 

Particular thanks also goes to Dr. David Penman for his supervision and 

assistance in the latter section of this thesis regarding the monosex production of 

Atlantic halibut. Also to Dr. John Taylor for his helpful advice with respect to the set up 

of the 11-ketotestosterone radioimmunoassay. 

Regarding funding, I am most grateful to the Scottish Aquaculture Research 

Forum (SARF) and the British Marine Finfish Association (BMFA) who have financed 

and made this project possible.  

Along the way I have had valuable assistance from the staff at Machrihanish 

Marine Environmental Research Laboratory and I thank them very much for taking care 

of the fish throughout the experimental trials. In particular I would like to mention Dr. 

Bill Roy and Chessor Matthews along with Simon Barnet, Dr. Andy Tildesley and Sally 

Boyd. A warm thank you also goes to the staff at Otter Ferry Seafish, specifically 

Alastair Barge for supplying the halibut and David Patterson for the husbandry and more 

than willing help during sampling. Thanks also goes to Robert Halley for his assistance 

in husbandry  

I have also had considerable help from my colleagues and peers during sampling, 



Mairi Cowan ACKNOWLEDGEMENTS 

VIII 

particularly Rania Ismail, Eric Leclercq, Luisa Vera, Elsbeth McStay and Cristian 

Martinez. To them and to the others with whom I have shared an office and many hours 

of writing with, especially Matthijs Metselaar and Sean Monaghan, thank you. I have 

treasured your company and friendship. 

Finally, special thanks must go to my family. Not merely for being there for me 

all of the time but also for their considerable encouragement and moral and practical 

support. So my heartfelt thanks goes to my parents, John and Lesley, to my sister Emma 

and her husband Tom and my two brothers George and William and also to my 

grandmother Vera Nixon for her lively texts and phone conversations. All of these have 

stood side by side with me throughout this adventure. I thank them for their love and 

their wisdom and understanding - wherever the currents have taken me.... 

 



Mairi Cowan CONTENTS  

IX 

TABLE OF CONTENTS 

List of Abbreviations .................................................................................................... 1 

 

CHAPTER 1. General Introduction ......................................................................... 5 

1. Overview of Atlantic cod and Atlantic halibut life history and commercial   

    exploitation ......................................................................................................... 6 

1.1 Atlantic cod, Gadus morhua ......................................................................... 6 

1.2 Atlantic halibut, Hippoglossus hippoglossus ................................................ 8 

2. Fish sex differentiation and puberty .............................................................. 10 

2.1 Sex determination and differentiation ......................................................... 10 

2.2 Fish puberty ................................................................................................ 13 

2.3 Fish reproductive cycle ............................................................................... 14 

2.3.1 Female reproductive development (oogenesis) ................................... 14 

2.3.2 Male reproductive development (spermatogenesis) ...........................  17 

2.4 Neuroendocrine regulation of sexual maturation ........................................ 18 

2.4.1 Brain neuropeptides and neurotransmitters regulating reproduction .. 20 

2.4.1.1 Gonadotropin releasing hormone (GnRH) neurons .................... 20 

2.4.1.2 Kisspeptins and other brain neurotransmitters ............................ 21 

2.4.2 Gonadotroph cells in the pituitary ....................................................... 24 

2.4.3 Sex steroids and the control of gametogenesis ................................... 27 

3. Control of sexual maturation in aquaculture ................................................ 29 

3.1 Strategies to suppress sexual maturation in aquaculture............................. 29 

3.1.1 Photoperiodic manipulation ................................................................ 29 

3.1.2 Monosex production............................................................................ 30 

3.1.3 Sterility ................................................................................................ 31 

3.1.4 Selective breeding ............................................................................... 33 

3.1.5 Feed management ................................................................................ 34 

3.1.6 Drivers behind selection of a strategy ................................................. 34 

3.2 Photoperiodic regulation of puberty ........................................................... 37 

3.2.1 Photoneuroendocrine system .............................................................. 37 

3.2.2 Species specific photoperiodic regimes .............................................. 40 

3.2.3 Fish light sensitivity and lighting technology ..................................... 41 

3.2.4 Artificial light and welfare in fish ....................................................... 44 



Mairi Cowan CONTENTS  

X 

3.3 Monosex production ................................................................................... 46 

3.3.1 Endocrine therapy ............................................................................... 47 

3.3.2 Gynogenesis. ......................................................................................  48 

3.3.3 Semen sexing ...................................................................................... 49 

3.3.4 Environmental sex manipulation......................................................... 50 

4. Aims of the thesis ............................................................................................. 51 

 

CHAPTER 2. The effect of metal halide and novel green cathode lights on the 

stress response, innate immunity, eye structure and feeding activity of Atlantic 

cod, Gadus morhua L................................................................................................ 54 

Abstract .................................................................................................................. 55 

1. Introduction ....................................................................................................... 56 

2. Materials and methods ....................................................................................... 58 

3. Results ............................................................................................................... 65 

4. Discussion .......................................................................................................... 72 

Acknowledgements ............................................................................................... 76 

 

CHAPTER 3. The effect of combining shading and continuous lighting on the 

suppression of sexual maturation in outdoor reared Atlantic cod, 

 Gadus morhua .......................................................................................................... 77 

Abstract .................................................................................................................. 78 

1. Introduction ....................................................................................................... 79 

2. Materials and methods ....................................................................................... 81 

3. Results ............................................................................................................... 89 

4. Discussion ........................................................................................................ 101 

Acknowledgements ............................................................................................. 107 

 

  



Mairi Cowan CONTENTS  

XI 

CHAPTER 4. Photoperiod effects on the expression of kisspeptin and  

gonadotropin genes in Atlantic cod, Gadus morhua, during first maturation .. 108 

Abstract ................................................................................................................ 109 

1. Introduction ..................................................................................................... 110 

2. Materials and methods ..................................................................................... 113 

3. Results ............................................................................................................. 121 

4. Discussion ........................................................................................................ 131 

Acknowledgements ............................................................................................. 136 

 

CHAPTER 5. Research on the methodologies for the production of monosex 

Atlantic halibut, Hippoglossus hippoglossus, in the UK ...................................... 137  

Abstract ................................................................................................................ 138 

1. Introduction ..................................................................................................... 139 

2. Materials and methods ..................................................................................... 142 

3. Results ............................................................................................................. 148 

4. Discussion ........................................................................................................ 156 

Acknowledgements ............................................................................................. 160 

 

CHAPTER 6. Summary of findings ..................................................................... 161 

CHAPTER 7. General discussion ......................................................................... 164 

REFERENCES ....................................................................................................... 178 

PUBLICATIONS AND CONFERENCES ........................................................... 215 

APPENDIX ............................................................................................................. 219



Mairi Cowan ABBREVIATIONS 

1 

LIST OF ABBREVIATIONS 

AANAT  Arylalkylamine N-acetyltransferase 

ANOVA Analysis of variance 

ARP  Acidic ribosomal protein 

BCL  Biploar cell layer 

BLAST Basic local alignment search tool 

BPG  Brain-pituitary-gonad 

BSA  Bovine serum albumin  

CA   Cortical alveoli 

cAMP  Cyclic adenosine monophosphate 

cDNA  Complementary deoxyribonucleic acid   

CL  Cathode light 

DA  Dopamine 

Dio2  Type 2 iodothyronine deodinase gene 

DHP  17, 20-dihydroxy-4-pregnen-3-one 

DNA  Deoxyribonucleic acid 

Dnd  Dead end 

dNTP  Deoxyribonucleotide triphosphate 

E2   17β-estradiol 

e.g.   For example 

ESD  Environmental sex determination 

EST  Expressed sequence tag   

EV  Early vitellogenesis 

EXP  Exponential function 

FACS  Fluorescence activated cell sorting  

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=603267
http://www.medterms.com/script/main/art.asp?articlekey=3328
http://www.google.co.uk/url?sa=t&source=web&cd=9&sqi=2&ved=0CFkQFjAI&url=http%3A%2F%2Fwww.antibodybeyond.com%2Fapplications%2Ffacs.htm&ei=l_JoTbbbDoaAhQeCy5TtDg&usg=AFQjCNFzCOdvqjYBIvxrR2AZokwe3sxa6A


Mairi Cowan ABBREVIATIONS 

2 

FSH  Follicle stimulating hormone 

FWHM Full width at half maximum 

GABA  Gamma aminobutyric acid  

GLM  General linear model 

GnRH  Gonadotropin releasing hormone 

GPR54  G-coupled protein receptor 54 

GSI  Gonadosomatic index 

GSD  Genetic sex determination  

GTH  Gonadotropin hormone 

GVBD  Germinal vesicle breakdown 

i.e.  That is 

IgfI  Insulin-like growth factor I 

IMM   Immature 

IPL  Inner plexiform layer 

Kiss  Kisspeptin 

Kissr  Kisspeptin receptor 

L  Length 

LED  Light emitting diode 

LF  Fork length 

LH  Luteinising hormone 

LL    Continuous light 

LN  Natural logarithm  

LV  Late vitellogenesis  

M   Moles 

MDHT  17α-methyldihydrotestosterone 



Mairi Cowan ABBREVIATIONS 

3 

MERL  Machrihanish marine environmental research laboratory 

MH   Metal halide 

MIQE Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments 

mRNA  Messanger ribonucleic acid 

n  Number 

NPY   Neuropeptide Y 

NVT  Nucleus ventralis tuberis  

ONL  Outer nuclear layer;  

OPL  Outer plexiform layer; 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 

PE  Pigment epithelium  

PGC  Primordial germ cell 

PI  Propidium iodide 

PIT  Passive integrated transponder 

PNES  Photoneuroendocrine system  

PR  Photopreceptor layer 

qPCR  Quantitative polymerase chain reaction 

QTL  Quantitative trait locus   

RAD  Restriction site associated DNA 

RNA  Ribonucleic acid  

SARF  Scottish aquaculture research forum 

SCN   Suprachiasmatic nucleus 

SD  Standard deviation 



Mairi Cowan ABBREVIATIONS 

4 

SEM  Standard error of the mean 

SGR  Specific growth rate 

SNP  Simulated natural photoperiod 

SPW  Spawning 

SPT  Spent 

Std   Standard 

T  Testosterone 

T3   Triiodothyronine  

T4   Thyroxine  

TGC  Thermal growth coefficient  

UTR  Untranslated region 

UV  Ultraviolet 

VTG  Vitellogenesis 

W  Weight  

11KT  11-ketotestosterone 

  



Mairi Cowan CHAPTER 1: General introduction 

5 

CHAPTER 1  
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CHAPTER 1. GENERAL INTRODUCTION 

1.  Overview of Atlantic cod and Atlantic halibut life history and commercial     

     exploitation  

1.1 Atlantic cod, Gadus morhua 

The Atlantic cod belongs to the family Gadidae within the order Gadiformes. This 

species is distributed in both temperate and polar regions extending across the Atlantic 

Ocean from the North American coast in the West to the Barents Sea in the East (Cohen, 

1990). Cod are considered as a demersal species and are generally found within 

continental shelf areas to depths of around 150-200 m although they have also been 

found at depths of over 600 m (Cohen et al., 1990). The reproductive cycle of cod is 

seasonal, with annual batch spawning typically occurring between January and April 

although this depends on the stock (Brander, 2005). Hatching of eggs is temperature 

dependent but usually occurs at around 80-100 degree days post fertilisation (Laurence 

& Rogers, 1976; Brown et al., 2003). Hatched larvae are pelagic and resorption of their 

yolk reserve takes only 6-8 days at a temperature of 6-7
o
C (Walden, 2001) after which 

time they must resort to exogenous feeding, mainly zooplankton (Brown et al., 2003). 

Through the first few months after hatch larvae undergo metamorphosis and by 4-5 

months they have developed into juveniles with a more demersal mode of behaviour, 

feeding on invertebrates including crustaceans and polychaete worms. As cod grow, fish 

begin to form a more regular component of their diet (Cohen et al., 1990). Young cod 

are thought to inhabit shallow nursery grounds and then move to deeper waters to join 

adults at feeding grounds approximately one year after hatching. Adult cod populations 

can exhibit annual migrations between feeding and spawning grounds (Windle & Rose, 

2005). In general, wild cod reach puberty and undergo their first reproduction at three 
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years of age at the earliest but this is dependent on stock and location (Berg & Albert, 

2003).  

Atlantic cod has been fished ever since man began to exploit the seas in Europe 

and it is amongst the most important of all commercial fishes earning the name "beef of 

the sea‖ (Kurlansky, 1998). Throughout the last century however global capture has 

dramatically declined (from 1,833,877 to 764,582 tonnes, 1950-2008, FAO, 2010) and 

this has spurred an interest in cod aquaculture with multinational salmon producers keen 

to diversify into such a species. Substantial efforts have therefore been made over the 

last few decades to develop the farming of this species into a sustainable industry with 

production in Norway increasing from 200 tonnes in 1998 to over 18,000 tonnes in 2008 

(Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Total aquaculture production of Atlantic cod from 1998-2008 (FAO, 2010). 
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1.2. Atlantic halibut, Hippoglossus hippoglossus 

The Atlantic halibut is a member of the family Pleuronectinae within the order 

Pleuronectiformes and is the largest of the right-eyed flatfish. It is widely distributed 

throughout the North Atlantic Ocean and parts of the Arctic Ocean and typically found at 

depths of 100-700 m (Haug, 1990). Like Atlantic cod, halibut are annual batch spawners 

and spawning takes place at discrete spawning grounds between December and April 

(Haug, 1990). Around 18 days (90 degree days) after fertilisation, eggs hatch giving rise 

to early undeveloped larvae which are approximately 7 mm long with a yolk sac and 

non-functional eyes and mouth, these are dependent on transportation to the photic zone 

where first feeding occurs. The yolk sac stage is long and can last up to 50 days (300 

degree days), during this time the eyes, mouth and intestine become functional and at 

around 200-290 degree days, there is a transition to exogenous feeding. Following the 

yolk sac stage, halibut larvae metamorphose into a flatfish shape, the left eye migrates 

round to the right side and the fish becomes pigmented (Sæle et al., 2004). At this time 

the larvae settles as a benthic juvenile. The diet of halibut varies depending on size/age, 

younger fish (~30 cm in length) feed almost exclusively on invertebrates whereas large 

adult fish (greater than 80 cm) feed mainly on fish (Kohler, 1967). Atlantic halibut show 

a distinct sex specific growth pattern and age at puberty. In the wild, males normally 

mature around 4-5 years of age (1.7 kg), whereas females mature around 7-8 years old 

(18 kg) (Jakupsstovu & Haug, 1988).  

Atlantic halibut is a highly prized fish with a high market value. As with cod, 

global landings of Atlantic halibut have declined over the last century (from 21,644 to 

5,239 tonnes, 1950-2008, FAO, 2010) and with a public demand exceeding this 

diminished wild catch, aquaculture of this species has also been of great interest. 

Accordingly commercial efforts have been undertaken in the farming of this species 
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Figure 2. Total aquaculture production of Atlantic halibut from 1998-2008 (FAO, 2010). 
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2. Fish sex differentiation and puberty  

In order for fish to reproduce they must successfully complete two key processes: sex 

differentiation during which individuals differentiate into the male or female phenotype 

followed by puberty during which individuals become reproductively functional. Both 

processes are under the influence of genetic and environmental drivers and are regulated 

by a complex neuroendocrine system. In most teleosts, gonadal differentiation 

progresses down a distinct developmental pathway to yield a direct and complete 

differentiation into a female or male phenotype which remains throughout the lifetime of 

the species, these individuals are named gonochorists (Nakamura et al., 1998; Penman & 

Piferrer, 2008). Such a gender system is found in both species of interest investigated in 

the present thesis: Atlantic cod (Chiasson et al., 2008) and halibut (Luckenbach et al., 

2009) as well as in most other commercially important aquaculture species including 

salmonids and sea bass, Dicentrarchus labrax.  However, an alternative gender system, 

hermaphroditism, exists in fish species such as grouper, wrasse and bream, in which 

individuals first differentiate into a given sex before switching to the opposite sex under 

the control of environmental or social cues (Devlin & Nagahama, 2002). 

2.1 Sex determination and differentiation 

Functional sex in fish is expressed though the differentiation of cell types and organs 

unique to the ovaries or testes in conjunction with interactions with neighbouring 

somatic cells and specialised tissues in other organs (Devlin & Nagahama, 2002). This 

expression is the outcome of two processes: sex determination and sex differentiation 

(Piferrer, 2001). Determination is used to describe the genetic and environmental 

influences that control sex differentiation, and differentiation is the physical realisation 

in terms of testicular or ovarian development in accordance with Devlin & Nagahama 

(2002).  
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There are two principle types of sex determination: (1) genotypic sex 

determination (GSD), where sex is determined at fertilisation by genetic differences 

between the sexes (e.g. salmonids) and (2) environmental sex determination (ESD), 

where factors of the environment can determine the sex of individuals following 

fertilisation (e.g. Sea bass and Atlantic silverside, Menidia menidia; Penman & Piferrer, 

2008; Valenzuela, 2008; Luckenbach et al., 2009). Mechanisms of GSD vary greatly and 

range from minor sex factor control (polygenic) to dominant sex determining factors in 

conjunction with autosomal controls to highly evolved sex chromosomes with 

heterogametic males (XY) or heterogametic females  (ZW), of which the former is more 

common (Devlin & Nagahama, 2002). Out of the 1700 species of fish which have been 

characterized cytogenetically only 10.4% contain morphologically distinct sex 

chromosomes, although this figure has been suggested to be higher if calculations 

considered only studies where sex chromosomes were specifically looked for (Devlin & 

Nagahama, 2002). No sex chromosomes have been detected in Atlantic cod or Atlantic 

halibut however they have been shown to have a clear XX/XY sex determining system 

with female homogameity (Tvedt et al., 2006; Haugen et al., 2011). Currently it is 

unknown where genetic sex-determination mechanisms mediate in gonadal 

developmental programs to instigate distinct pathways of steroid production and 

differentiation into the sexes. However it has been suggested that gene/allele differences 

that exist between the sexes will alter the biochemistry of the individual at a number of 

different levels including biochemical conversion, receptor sensitivity and signal 

transduction, and up/down regulation of gene complexes involved in the sex-

determination cascade (Nakamura et al., 1998; Devlin & Nagahama, 2002). In 

mammalian systems for example, in the primordial gonad, cell migration patterns are 

directed by the Sry gene located on the Y chromosome. This gene acts by signalling 
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recruitment of mesonephric cells into the gonad of males (Brennan & Capel, 2004). 

Thereafter, the somatic cells of the testis which are surrounding the primordial germs 

cells (PGCs), differentiate into seminiferous tubules and testis specific cells. With recent 

genomic methods it is feasible to characterise the sex determining regions of fish 

genomes and it would be of great interest to do this for Atlantic cod and halibut.  

Regarding environmental sex determination (ESD), there are no sex specific 

genetic differences and thus sex is determined after conception (Valenzuela, 2008). A 

number of species appear to have a combination of GSD and ESD (Lagomarsino & 

Conover, 1993), thus it is not clear if GSD and ESD are distinct systems (Valenzuela et 

al., 2003) or interactive (Sarre et al., 2004). For example, European sea bass have a 

genetic basis for sex determination however they can produce variable sex ratios 

depending on the environmental temperature (Vandeputte et al., 2007; Baroiller et al., 

2009). Temperature is the most common cue but factors such as population density and 

pH can also have an influence (Baroiller et al., 2009). In cod and halibut, sex 

determination appears to be primarily genetic (Hughes et al., 2008; Haugen et al., 2011), 

however to our knowledge the direct effects of environmental factors such as 

temperature on functional sex expression have not been comprehensively studied in 

these species.  

Sex differentiation refers to the process by which PGCs in the gonad start to 

proliferate and differentiate into oogonia in females and spermatogonia in males, this 

generally occurs earlier in females than males (Piferrer, 2001). Development (growth 

and differentiation) of sex-specific gonads requires communication with non-

neighbouring cells, and this is done by endocrine signalling which is distinct for the two 

sexes (Nagahama, 1994). This endocrine signalling works through the brain-pituitary-

gonad (BPG) axis where ultimately sex steroids (i.e. 17-estradiol, 11 ketotestosterone, 
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testosterone etc.) have local, direct effects on germ cell development in the gonads and 

also influence other cells and organs involved in sex differentiation (Bieniarz & Epler, 

1992; Kime, 1993; Zohar et al., 2010). Many fish are labile in their phenotypic sex and 

treatment with sex steroids in the time preceding sex differentiation can influence the 

developmental processes over-riding sex determination, this plasticity can be exploited 

for monosex production. 

2.2 Fish puberty 

Following sex differentiation, puberty refers to the process by which an immature 

individual develops into a reproductively functional adult (Okuzawa, 2002), this is 

characterised by gonadal differentiation and gametogenesis if the nutritional status and 

environmental conditions are suitable (Bromage et al., 2001; Coward et al., 2002). In 

culture, fish usually reach puberty at an earlier age than their wild counterparts due to the 

favourable farming conditions this however results in great commercial loss to the 

industry. The harvest goal for Atlantic cod is 3-4 kg (2.5 - 3 years from hatch) however 

100% maturation is observed at 2 years of age or less in culture (Davie et al., 2007a). In 

Atlantic halibut the harvest goal is 8 kg or greater (+ 4 years from hatch) however males 

can reach puberty at 3 years of age (circa 20-30% of population at 3 years reaching 50% 

at 4 years, Norberg et al., 2001). Puberty onset has significant negative impacts on a 

number of important production traits such as growth, product quality and welfare. This 

is because sexual development requires the diversion of energy resources into gonadal 

growth which leads to a reduction in somatic growth and flesh quality (Porter et al., 

1999; Endal et al., 2000; Hansen et al., 200; Hemre et al., 2004) and also a reduction in 

appetite with Atlantic cod showing decreased feeding approximately one month prior to 

and during the spawning season (Fordham & Trippel, 1999). Pubertal cohorts in 

comparison to immature cohorts can show a weight loss of up to 60% in cod (Davie et 
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al., 2007a) and 17% in male halibut (Norberg et al., 2001). Pubertal fish have also been 

reported to have reduced immunocompetence (Cuesta et al., 2007) as well as a greater 

sensitivity to environmental stressors like changes in water temperature and low oxygen 

levels (Makino et al., 2007). Furthermore, broadcast spawning during cod on-growing 

leading to the release of potentially fertilized eggs into the surrounding environment 

creates the potential risk of genetic interaction with wild fish stocks (Taranger et al., 

2010). For all of these reasons, the control of puberty during on-growing of cod and 

halibut stocks is a priority for fish farmers to optimise fish performance, shorten the 

production cycle and improve overall profitability. This is a common problem to most 

cultured fish species and so a number of strategies have been developed to help prevent 

or suppress sexual maturation which will be discussed further below (see section 3.1). 

2.3 Fish reproductive cycle 

Once fish have sexually differentiated and are reproductively competent and 

environmental and/or nutritional and/or social cues are suitable, then individuals can 

proceed through a reproductive cycle and produce gametes. 

2.3.1 Female gonadal development (oogenesis)  

In females, in terms of gonad morphology and development, the mature ovaries are 

paired structures which contain oogonia, oocytes, follicle cells, supporting tissue, and 

vascular/nerve tissue (Nagahama, 1994; Coward et al., 2002). There is no set 

classification system for the stages of development of female gametes from oogonia to 

mature oocytes and the number divisions along the scale of maturity varies between 

studies. In Atlantic cod, Tomkiewicz et al. (2003) classed ovarian development (based 

on histological analysis) into six main phases: 1) juvenile, 2) preparation, 3) ripening, 4) 

spawning, 5) regeneration, 6) degeneration (Table 1). This general main trend of 

development can also be applied to halibut and other teleost species (Coward et al., 
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2002). During ripening, vitellogenesis is the main event responsible for oocyte growth 

and this involves the synthesis of vitellogenin (VTG) by the hepatic system which is 

released into the bloodstream, taken up by the oocytes and packaged into its yolk 

derivatives to form a nutrient source (Coward et al., 2002). During the later stage of 

ripening and into the spawning phase, the process of oocyte maturation is essential prior 

to ovulation and involves continued VTG sequestration such that yolk globules fill the 

entire ooplasm, furthermore, germinal vesicle migration and germinal vesicle breakdown 

(GVBD) must take place (Coward et al., 2002). The Atlantic cod and halibut are annual 

batch spawners with group-sychronous oocyte development (Wallace & Selman, 1981), 

female cod may release 9 to 20 pelagic egg batches at intervals of 60 to 70 hours 

(Trippel, 1998) throughout the spawning period, halibut females release eggs 

approximately every 72-80 hours over a period of 3-6 weeks (Norberg et al., 1991). In 

cod, vitellogenesis has been found to commence during the late autumn/early winter 

(November/December) prior to spawning in January (Kjesbu, 1991). In halibut, 

vitellogenesis has been found to commence around August/September time, 5 months 

prior to the start of spawning (Methven et al., 1992).  
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Phase Stage Histological criteria Oocyte Diameter  (µm) 

Juvenile I Oocytes are in perinuclear stage with large circular nuclei and peripheral nucleoli in most 

progressed ovaries.  

Up to 80 µm 

Preparation II Oocytes with circumnuclear ring and nuclei with attached nucleoli.  90-160 

Ripening III Oocyte recruitment: oocytes with cortical alveoli, initial chorion and detached peripheral 

nucleoli progressing to vitellogenesis, but yolk granules not entirely filling the cytoplasm. 

170-290 

 IV Late vitellogenesis: yolk granules entirely filling the cytoplasm and expand oocytes. Nucleus 

central circular to slightly eccentric, irregular. Enlarged chorion. 

300-530 

Spawning V Initiation of spawning: abundant vitellogenic oocytes as in IV, but round and larger; single 

oocytes in final maturation, hydrating oocytes or post-ovulatory follicles exist. 

500-970 

 VI Main spawning period: vitellogenic oocytes as V, oocytes in final maturation, oocytes in 

hydration and postovulatory follicles abundant. 

510-1000 

 VII Cessation of spawning: postovulatory follicles abundant, final maturation and hydrating 

oocytes frequent, vitellogenic oocytes scarce or absent. 

450-930 

Regeneration VIII Spent: postovulatory follicles  abundant among perinuclear or circumnuclear stage oocytes, 

residual eggs or atretic vitellogenic oocytes may be present. 

110-140 

 IX Resting: oocytes in perinuclear or circumnuclear stage as in II, but residual eggs or atretic 

vitellogenic oocytes present. 

140-170 

Degeneration X Malfunction owing to high density of residual eggs encapsulated by fibroblast and 

macrophages among normal developing oocytes. Other abnormalities. 

- 

Table 1. Stages of ovarian development in Atlantic cod based on histological analysis (taken from Tomkiewicz et al. 2003). Oocyte diameters 

are given however these may vary between studies and fish stocks and according to shrinkage during fixation. 
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2.3.2 Male gonadal development (spermatogenesis) 

In males, the testis is a paired organ consisting of two lobes. In general, these lobes are 

organised into branching lobules containing a germinal compartment which projects into 

the collective efferent duct. The germinal compartments of the lobules contain 

spermatocysts which comprise a clone of germ cells (i.e all at the same stage) 

surrounded by somatic Sertoli cells. The Sertoli cells provide physical support and 

factors necessary for proliferation, differentation and survival of the germ cells 

(Weltzien et al., 2004; Schultz et al., 2010). The tubules themselves are embedded in 

connective tissue containing fibroblast cells, blood vessels and Leydig cells, the latter of 

which are the site of sex steroid production for germ cell maturation and the 

development of secondary sexual characteristics. At the final stages of maturation, the 

spermatocysts release their spermatozoa into the central lumen of the lobules. These then 

travel through the efferent sperm duct and are released through the urogenital pore 

(Weltzien et al., 2004). The process of spermatogenesis which refers to the development 

of spermatogonial stem cells into mature spermatozoa can be divided into three key 

stages (Nagahama, 1994; Schultz et al., 2010). The first stage involves the mitotic 

proliferation of stem cells to produce more stem cells and differentiation into 

spermatogonia and at this stage the number of Sertoli cells enclosing these stem cells 

also increases by mitotic proliferation. Stage two involves the differentiation of 

spermatogonia into primary then secondary spermatids by meiosis. The third stage 

involves spermiogenesis whereby haploid spermatids differentiate into flagellated 

spermatozoa. Thereafter spermiation takes place which refers to the process whereby 

spermatocysts break open releasing the spermatozoa into the sperm duct (Nagahama, 

1994; Almeida et al., 2008). Male sexual development generally occurs earlier than 

oogenesis in females. This is especially clear in Atlantic halibut where males can mature 
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up to three years before females (Norberg et al., 2001). In cod, although at a smaller 

scale, males have still been seen to develop up to a month or two in advance of females 

with meiosis and spermiogenesis being seen from October and free spermatozoa 

recorded in gonads in December (Almeida et al., 2008).  

2.4 Neuroendocrine regulation of sexual maturation 

In teleosts, it is the neuroendocrine brain-pituitary gonadal (BPG) axis which acts as the 

endogenous master controller of puberty and adult reproductive cycles (Zohar et al., 

2010). This axis is organised around; 1) the hypothalamus of the brain which releases 

neuropeptides and neurotransmitters which influence, 2) the pituitary (gonadotroph 

cells), which synthesises and releases gonadotropins (follicle stimulating hormone, FSH; 

luteinising hormone, LH) which are transferred through the bloodstream and stimulate 3) 

the gonads to produce sex steroids (androgens, oestrogens and progestagens) necessary 

for gametogenesis and positive/negative feedback regulation of reproduction (Fig. 3). All 

three major regulators of the BPG axis integrate with growth/energy (leptin, growth 

hormone, Igf1) pathways to regulate reproductive processes in synchrony with life stage 

and the surrounding environment to ensure spawning in favourable conditions (Migaud 

et al., 2010).  
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Figure 3. Schematic representation of regulatory pathways in the BPG axis during 

puberty in teleosts (adapted from Taranger et al., 2010; Migaud et al., 2010). Sites of 

light perception are indicated by grey arrows. Endogenous clocks (broken wave form) 

are located throughout the system although their roles and interaction with the 

reproductive cascade remain unclear. 
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2.4.1 Brain neuropeptide and neurotransmitters regulating reproduction 

2.4.1.1 Gonadotropin releasing hormone (GnRH) neurons 

At the level of the brain (hypothalamus), the activation of the gonadotropin releasing 

hormone (GnRH) neurons and subsequent release of GnRH into the pituitary has 

traditionally been described as the starting point of the BPG axis controlling the onset of 

puberty in fish. Many studies have focused on the characterisation of the GnRH system 

(identification, localisation, pharmacology) in a range of teleosts and it has emerged to 

be more complex and diverse than first thought. To date, up to 24 distinct forms of 

GnRH have been identified in a variety of species ranging from invertebrates to humans, 

and this includes eight variants isolated from fish brains (see Table 2, Kah et al., 2007). 

Based on phylogenetic analysis of sequences and associated sites of expression, variants 

have been segregated into three branches named type 1, type 2 and type 3 (White et al., 

1998; Lethimonier et al., 2004). The first branch of GnRH forms, GnRH-1, has been 

suggested to be the major hypophysiotropic hormone in perciformes (Powell et al., 1994; 

Holland et al., 1998; González-Martínez et al., 2002; 2004 a, b) whereas the significance 

of the GnRH-2 and GnRH-3 remains unclear. GnRH-3 immunoreactive nerve fibers 

have been seen to innervate the pituitary of the sea bass although at a lesser extent than 

GnRH-1 (González-Martínez et al., 2002; 2004a). In terms of the physiological role of 

GnRHs, in the European sea bass, GnRH-3 and GnRH-1 mRNAs have been seen to 

increase along with the GnRH receptor and follicle stimulating hormone gene expression 

during sexual differentiation (Moles et al., 2007) indicating that these GnRHs may play 

a role in the BPG axis during sexual differentiation. The majority of research over the 

past decades has focused on sea bass, salmonids, catfish and eels which means that there 

is limited data available on Atlantic cod and halibut. In cod, GnRH ligand cDNAs have 

been isolated for all three forms with research on the mRNA expression patterns ongoing 
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to further understand the regulatory role of GnRH system in this species (Sandvik et al., 

2007). In Atlantic halibut, to our knowledge, no studies on the characterisation of GnRH 

genes have been published yet. However studies have been performed on other  

pleuronectiforms such as turbot, Scophthalmus maximus, and barfin flounder, Verasper 

moseri in which the three different GnRH forms have been identified (Andersson et al., 

2001; Amano et al., 2002a, 2002b; Weltzien et al., 2004).  

2.4.1.2 Kisspeptins and other brain neurotransmitters 

Originally it was believed that GnRH was acting as the top of the BPG axis to control 

the endogenous reproductive cascade however, recent research in mammals has brought 

to light the importance of a number of upstream signal peptides that regulate GnRH 

expression (kisspeptin & neurokinin B) or neurotransmitters that work in association 

with GnRH‘s actions to regulate gonadotropin synthesis e.g. dopamine, neuropeptide Y 

(NPY) and gamma aminobutyric acid (GABA) (Mananos et al., 1999; Vidal et al., 2004; 

Zohar et al., 2010). Research in teleosts is somewhat behind that of mammals, however, 

the identification of upstream regulators is as equally important and there have been a 

number of advances in our understanding of the kisspeptin system in particular. While 

only one signal peptide kisspeptin 1 (KISS1) and receptor (KISSR1, formerly referred to 

as G-coupled protein receptor 54 (GPR54)) are present in mammals, in silico analysis of 

the sequenced teleost genomes supported by functional analysis studies have revealed 

two forms of both the signal peptide (Kiss1 & Kiss2) and receptor (Kissr2 & Kissr4) in 

fish (Felip et al., 2009; Lee et al., 2009, Akazome et al., 2010). It is believed that 

kisspeptin performs similar roles in fish as have been reported in mammals. For example 

it has been associated with the onset of puberty (Filby et al., 2008; Martinez-Chavez et 

al., 2008), shown to have similar GnRH regulatory abilities (Elizur, 2009) as well as 

being susceptible to sex steroid feedback (Kanda et al., 2008). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VNH-4BKN4N3-2&_user=241825&_coverDate=03%2F31%2F2004&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1610888197&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=ae1c3fd9df7e7e1717e13e926b09eb3d&searchtype=a#bbib7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VNH-4BKN4N3-2&_user=241825&_coverDate=03%2F31%2F2004&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1610888197&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=ae1c3fd9df7e7e1717e13e926b09eb3d&searchtype=a#bib4
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Table 2. Structure of the 24 known GnRH variants taking mGnRH as the reference (Kah et al., 2007). 

 

 

 

 

 

 

  

 1 2 3 4 5 6 7 8 9 10 

Mammalian (mGnRH) pGlu His Trp Ser Tyr Gly Leu Arg Pro Gly-NH2 

Chicken I (cGnRH-I) - - - - - - - Gln - - 

Frog GnRH (frGnRH) - - - - - - - Trp - - 

Seabream (GnRH) - - - - - - - Ser - - 

Salmon (sGnRH) - - - - - - Trp Leu - - 

Whitefish (whGnRH) - - - - - - Met Asn - - 

Guinea pig (gpGnRH) - Tyr - - - - Val  - - 

Medaka (mdGnRH) - - - - Phe - - Ser - - 

Chicken II (cGnRH-II) - - - - His - Trp Tyr - - 

Catfish (cfGnRH) - - - - His - - Asn - - 

Herring (hgGnRH) - - - - His - - Ser - - 

Dogfish (dfGnRH) - - - - His - Trp Leu - - 

Lamprey I (lGnRH) - - - - His Asp Phe Lys - - 

Lamprey III(lGnRH-III) - - Tyr - Leu Glu Trp Lys - - 

           

Tunicate I (tGnRH-I) - - - - Asp Tyr Phe Lys - - 

Tunicate II - - - - Leu Cys His Ala - - 

Tunicate III - - - - - Glu Phe Met - - 

Tunicate IV - - - - Asn Gln - Thr - - 

Tunicate V - - - - - Glu Tyr Met - - 

Tunicate VI - - - - Lys - Tyr Ser - - 

Tunicate VII - - - - - Ala - Ser - - 

Tunicate VIII - - - - Leu Ala - Ser - - 

Tunicate IX - - - - Asn Lys - Ala - - 

Octopus - Asn Tyr - - - Asn - Trp His - - 
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Studies on its temporal expression in fish species such as the female grey mullet, Mugil 

cephalus (Nocillado et al., 2007) have shown high levels of kissr4 gene expression in the 

brain during early puberty correlated with high expression levels of the three main 

GnRH types. Similar results have been found in zebrafish, Danio rerio (van Aerle et al., 

2008) and Nile tilapia (Parhar et al., 2004; Martinez-Chavez et al., 2008) where 

expression levels of kissr4 in the brain have been found to increase during the onset of 

puberty. Likewise, in terms of kisspeptin expression, an increase in kisspeptin at the 

onset of puberty has been recorded in tilapia (Parhar et al., 2004), grey mullet (Nocillado 

et al., 2007), fathead minnow, Pimephales promelas (Filby et al., 2008), and zebrafish 

(Kitahashi et al., 2009). These findings have led a number of authors to suggest an 

important role played by the kisspeptin system in the activation of the BPG axis in fish. 

This research area is attracting increasing attention due to its potential application in fish 

farming as a tool to understand how various regulatory signals like photoperiod and/or 

nutritional status are integrated to entrain the BPG axis. However, despite their potential 

value, to the authors knowledge, no research to date has described the sequences or 

characterised the expression of kisspeptin system related genes in either Atlantic cod or 

halibut. 

In addition to kisspeptin, other neurotransmitters have been demonstrated to work 

in association with GnRH‘s actions to regulate gonadotropin synthesis including 

dopamine, NPY and GABA. Dopamine (DA) is known to play an inhibitory role in the 

neuroendocrine regulation of reproduction in a number of fish species (see review by 

Dufour et al., 2010). Neuroanatomical investigations in the goldfish, Carassius auratus 

and European eel, Anguilla anguilla have shown that inhibitory DA neurons which 

originate in the brain project directly into the pituitary where gonadotroph cells are 

located and exert inhibitory effects on gonadotrophin production (Kah et al., 1987a; 
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Chang et al., 1990; Vidal et al., 2004). This hypophysiotropic DA activity has been 

shown to vary with reproductive stage (Saligaut et al., 1999) and is controlled by 

endogenous factors such as sex steroid feedback (Weltzien et al., 2006) as well as 

environmental cues (Sebert et al., 2008). This involvement of DA neurons in the 

neuroendocrine control of reproduction provides a further pathway for the investigation 

of the link between external and internal cues. Neuropeptide tyrosine (NPY) is strongly 

associated with feeding control in fish.  Studies in the goldfish have revealed that NPY 

stimulates growth hormone and gonadotropin release (Kah et al., 1989; Breton et al., 

1991; Peng et al., 1993a, 1993b) which could therefore suggest a link between feeding, 

growth and control of the reproductive axis (Zohar et al., 2010). Gama-aminobutyric 

acid (GABA) is an inhibitory neurotransmitter which has been shown to have 

stimulatory effects on gonadotropin secretion in fish. Initial research demonstrated the 

abundance of GABA immunoreactive fibers in the goldfish pituitary (Kah et al., 1987b) 

and this lead to the discovery of its role in the stimulation of LH secretion including 

GnRH release and inhibition of dopamine in the species (Kah et al., 1992; Sloley et al., 

1992). It has been hypothesised that gonadotropic stimulation by GABA can be 

mediated through GnRH following in vitro work on the goldfish pituitary where GABA 

was seen to cause a dose-dependent in GnRH release (Kah et al., 1992). In the rainbow 

trout, GABA has been seen to stimulate both basal and GnRH-induced gonadotropin 

secretion from pituitary cells (Mananos et al., 1999). Sex, reproductive stage and 

ultimately sex steroid have all been shown to affect the stimulatory action of GABA on 

gonatropin secretion in fish (Trudeau et al., 1997). 

2.4.2 Gonadotroph cells in the pituitary 

In the pituitary of fish, as in other vertebrates, gonadotroph cells (FSH/LH synthesising 

cells) are located in the anterior lobe (pars distalis). Unlike mammals, gonadotroph and 
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other important cells including somatotrophs, corticotrophs and mammotrophs cells, are 

generally arranged together in specialised masses (Olivereau & Ball, 1964). These cells 

are innervated (directly or indirectly depending on the fish species) by the 

neurosecretory fibers (i.e. GnRH neurons, dopaminergic neurons) which release 

neurohormones that originate from the hypothalamus of the brain (Zohar et al., 2010). 

The distribution of GnRH immunoreactive fibers have been shown to be co-localised 

with gonadotroph cells in the anterior pituitary of sea bass (Gonzalez-Martinez et al., 

2002; Zmora et al., 2002; Yaron et al., 2003). The functional role of GnRH on 

gonadotropin release has been demonstrated in many teleost species including the striped 

sea bass, Morone saxatilis  (Hassin et al., 1998), the European sea bass (Mateos et al., 

2002) and the common carp, Cyprinus carpio (Kandel-kfir et al., 2002). It is well known 

that pituitary gonadotropins play a key role in the regulation of sex steroid hormones 

produced by steroidogenic gonadal cells and the production of gametes in both male and 

female teleosts. The importance of gonadotropins in reproduction was first demonstrated 

in fish following removal of the pituitary gland (Khan et al., 1986, 1987) and 

subsequently confirmed through loss of function studies in mammals (Krishnamurthy et 

al., 2000). The measurement of circulating gonadotropins was then identified as an 

important tool when investigating vertebrate reproductive physiology (Weltzien et al., 

2004) as shown by correlative analysis of the timing of gonadotropin expression levels 

(Mittelholzer et al., 2009b). There are two main forms of gonadotropins in teleosts as in 

most other vertebrates (Redding & Patino, 1993): follicle stimulating hormone (FSH, 

also referred to as GTH I) and luteinising hormone (LH, also referred to as GTH II). In 

salmonids, these have been shown to share a common α subunit and a hormone specific 

 subunit which explain their specific roles in the gonads and are therefore produced at 

different stages of the reproductive cycle (Prat et al., 1996; Planas et al., 2000). 
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Expression of pituitary gonadotropin β subunits during puberty have been investigated in 

a number of fish species. In females spawning single batches of eggs such as rainbow 

trout, gonadotropic regulation of gametogenesis is generally characterised by an 

elevation in FSH during early oocyte growth and vitellogenesis whereas LH is associated 

with final oocyte maturation and ovulation (Prat et al., 1996; Gomez et al., 1999; 

Hassain et al., 1999). Alternatively in multiple batch spawners such as Atlantic halibut, 

gilthead sea bream (Sparus aurata), goldfish, Japanese flounder (Paralichthys 

olivaceus), pituitary gonadotropin subunit expression has been seen to increase 

simultaneously (Sohn et al., 1999; Kajimura et al., 2001; Weltzien et al., 2003a, b; Meiri 

et al., 2004) as the oocytes are developing at different rates. Interestingly, expression of 

Atlantic cod gonadotropin mRNAs showed elements similar to both single spawner and 

batch spawner profiles (Mittelholzer et al., 2009b). LHβ expression increased through 

the reproductive cycle and peaked in February-March at spawning time, FSHβ 

expression also increased but peaked in December (2 months preceding spawning) then 

decreased and peaked again at spawning (Mittelholzer et al., 2009b). Mittelholzer et al. 

(2008b) thus speculated that the first FSHβ increase (September onwards) stimulates the 

onset of vitellogenesis whereas the second peak may be associated with ongoing 

vitellogenesis that runs in parallel with final oocyte maturation and ovulation during 

production of several batches of eggs. It has been suggested that the sequential 

gonadotropic activation of ovarian follicle growth and maturation in repetitive spawners 

is probably regulated by modulating the temporal expression of the gonadotropin 

receptors in the follicle (Kobayashi et al., 2008).  In the Nile tilapia and zebrafish,  the 

expression of the FSH receptor (FSH-R) and LH receptor (LH-R) mRNA expression are 

mainly associated with different phases of oocyte development with FSH-R mostly 

expressed during vitellogenesis and LH-R playing a role during final oocyte maturation 
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(Hirai et al., 2002; Kwok et al., 2005). Results on follicular expression in Atlantic cod 

and halibut are consistent with these. In Atlantic cod, analysis of GTH-R mRNA 

expression throughout a reproductive cycle showed a moderate increase in FSH-R during 

gonadal growth and a peak of expression in LH-R mRNA expression at spawning 

(Mittelholzer et al., 2009a). All these results therefore strongly indicate that the two 

receptors differ in numbers depending on the follicular stage. It has therefore been 

speculated that asynchronous oogenesis is regulated by different temporal profiles of the 

ovarian GTH-Rs that result in differential follicular responsiveness to circulating 

gonadotropins (Kobayashi et al., 2008). In male fish, FSH has been described to play a 

role in spermatogenesis whereas LH is associated with spermiation (Carillo et al., 2010). 

In Atlantic cod Almeida et al. (2009a) demonstrated high FSH-R mRNA expression at 

the start of testicular development (July) while at the more advanced stages of 

spermatogenesis and during spermiation (March-April), significantly high LH mRNA 

expression was recorded in parallel with elevated androgen levels (i.e. testosterone and 

11KT).   

2.4.3 Sex steroids and the control of gametogenesis 

The BPG axis ends with the production of sex steroids at the gonadal level. There are 

three main types of steroids: androgens, oestrogens and progestagens. Androgens 

including testosterone (T) and 11-ketotestosterone (11KT), produced in the Leydig cells 

within the testis, are the dominant sex steroids involved in spermatogenesis in male 

teleosts (Kime, 1993; Borg, 1994; Weltzien et al., 2004). In particular, 11KT is 

considered as the main androgen (Borg, 1994), it can induce all stages of 

spermatogenesis as shown in the Japanese eel Anguilla japonica, through organ culture 

experiments (Miura et al., 1991a). In male Atlantic halibut, three stages in the endocrine 

control of spermatogenesis were characterised (Norberg et al., 2001; Weltzien et al., 
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2002). In the first stage of spermatogenesis consisting of spermatogonial proliferation 

and meiosis with the formation of spermatocytes, T and 11KT levels remained low. In 

the second stage, increasing T and 11KT levels marked the presence of haploid germ 

cells including spermatozoa. In the third stage with regressing testis and Sertoli cells 

displaying signs of phagocytotic activity, T and 11KT levels returned to low levels. In 

Atlantic cod, plasma T levels have been found to increase from spermatogonial 

proliferation to meiosis whereas 11KT levels increased during spermiogenesis and 

spermiation (Almeida et al., 2009b). In females, although levels of 11KT are generally 

considerably lower than in males, seasonal changes can still be measured (Mayer et al., 

1992). Females also display a marked increase in T towards the spawning season (Mayer 

et al., 1992). T is a precursor to the oestrogen 17β-estradiol (E2) which plays an 

important role in the female teleost reproductive cycle (Kime, 1993). As ovarian 

recrudescence begins E2 is secreted by the ovarian follicle and stimulates the hepatic 

synthesis and secretion of vitellogenin which is taken up by the oocyte (Nagahama, 

1994). Oestrogens are considered as a ‗female‘ hormone but are also found in male 

teleosts and it has been suggested that they have an important role in regulating gene 

expression in the testis (Schulz et al., 2010). Progestagens have been shown to play a 

major role during advanced stages of gametogenesis in both male and female teleosts. In 

females, progestagens such as 17, 20-dihydroxy-4-pregnen-3-one (also called DHP) 

have been found to play an important role in final oocyte maturation, namely germinal 

vesicle breakdown (GVBD) (Nagahama et al., 1987; Nagahama, 1994) which is an 

essential process prior to ovulation. In males, high plasma levels of DHP have been 

found in salmonid species during spermiation such as rainbow trout (Ueda et al., 1984) 

and it is thought to be involved in the acquisition of sperm motility (essential for 

fertilisation) by increasing the pH of the sperm duct thus increasing cAMP in sperm and 
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facilitating motility (Miura et al., 1991b). Furthermore precocious spermiation can be 

induced by an injection of DHP (Nagahama et al., 1994). As well as their role in 

gametogenesis and secondary sexual characteristics, sex steroids are of prime 

importance in the feedback control of reproductive development and provide an 

indicator to the brain and pituitary as to the reproductive state of the animal (Zohar et al., 

2010). Both the brain and pituitary have been found to contain high densities of estrogen 

and androgen receptors (Navas et al., 1995; Blazquez & Piferrer, 2005). Whether 

feedback is positive or negative depends on the physiological status of the individual and 

the species itself (Zohar et al., 2010). For example, a negative effect of estradiol on FSH 

synthesis was found in salmonids (Saligaut et al., 1998) whereas in goldfish estradiol 

resulted in a positive increase in FSH expression (Huggard-Nelson et al., 2002).    

3. Control of sexual maturation in aquaculture 

3.1 Strategies to suppress sexual maturation in aquaculture 

Five strategies have been identified and/or commercially implemented to prevent, 

suppress and/or avoid sexual maturation during on-growing: 1) environmental 

manipulations, 2) monosex production, 3) sterility, 4) selective breeding and 5) feed 

management. Due to the diversity of reproductive strategies employed by fish, it is 

necessary to tailor the management strategy for each species as will be outlined below.  

3.1.1 Photoperiodic manipulation  

In temperate fish species, reproduction is generally entrained by seasonal variations in 

environmental conditions (namely photoperiod and water temperature) (Bromage et al., 

2001) with photoperiod being the principal proximate cue entraining sexual development 

in most temperate teleosts (Bromage et al., 2001; Migaud et al., 2010). Thus photoperiod 

manipulation through the application of artificial lighting can be used to control the 

timing of seasonal reproductive patterns in fish and is now widely adopted in 
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aquaculture to alter spawning season, delay/prevent maturation during on-growing and 

stimulate growth (Pankhurst & Porter, 2003; Rad et al., 2006; Migaud et al., 2010; 

Taranger et al., 2010). It is now standard practice in the salmon farming industry 

(Taranger et al., 1999) and protocols have been established for cod in enclosed tank 

systems (Hansen et al., 2001; Norberg et al., 2004; Davie et al., 2007a). In Atlantic 

halibut however, photoperiod manipulation to inhibit sexual maturation prior to harvest 

has not been very successful to date.  Norberg et al. (2001) suggested that environmental 

factors will need to be addressed in the early stages of  halibut life as this may determine 

when the fish enters puberty. While considered as a ―less invasive‖ technique than some 

of the other potential strategies, photoperiod manipulation has a number of problems 

such as the power costs of running such systems and potential welfare effects of high 

intensity lighting (see section 3.2.4).  

In temperate environments, water temperature has also been shown to factor in the 

regulation of fish reproduction (Peter & Yu, 1997). In female halibut for example, 

ovulation can be inhibited by exposing fish to temperatures of 6
0
C or higher (Brown et 

al., 2006). Rather than playing a role in directing puberty however, temperature is 

thought to play a more permissive ultimate role in complement to dominant control by 

photoperiod (Taranger et al., 2010). Furthermore it cannot be easily controlled during 

on-growing and therefore is not used as part of the photoperiod strategy to suppress 

puberty.  

3.1.2 Monosex production 

In a number of important aquaculture species, sexual dimorphism exists in which one 

sex grows faster which is usually related to differences in the timing of puberty between 

the sexes. It is therefore desirable to culture only the sex that grows best. Effective 

techniques for monosex production involve the generation of monosex gametes by either 
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endocrine manipulation during early development or a combination of endocrine and 

genetic technologies (Donaldson, 1996), these are discussed in detail in section 3.3. 

Protocols to produce monosex stocks are already available and commercially 

implemented for rainbow trout, Oncorhynchus mykiss (all-female production, Bye & 

Lincoln, 1986) and tilapia, Oreochromis niloticus (all male production). Atlantic halibut 

also exhibit such a sexual dimorphism with females showing better growth with a later 

age at maturation which means they can be harvested well in advance of maturation 

(Hendry et al., 2002; Hendry et al., 2003; Tvedt et al., 2006). Clearly the farming of all 

female halibut would be advantageous and infact this has already been successfully 

achieved in Canada with the commercial production of monosex female juveniles. This 

has not yet been done in Europe due to a combination of consumer perception of 

hormone treatments and lack of secure protocols for the generation of neomales. 

3.1.3 Sterility  

In species where both sexes mature before reaching harvest size, the production of sterile 

populations is a possible approach. The methodologies are however limited and while 

they focus mainly on the manipulation of ploidy there has also been research into 

vaccines that inhibit sexual maturation as well as transgenic approaches. Triploidy 

describes individuals which have three sets of chromosomes unlike normal diploids 

which have two (Maxime, 2008; Piferrer et al., 2009). This additional chromosome set 

results in abnormal meiotic division during gametogenesis (Tiwary et al., 2004) and thus 

female triploids are considered sterile as they have small undeveloped gonads and don‘t 

lose body weight as a result of maturation as seen in dipoids. Males on the other hand 

can develop large gonads and secondary sexual characteristics however the sperm is 

often recorded as aneuploid thus can not fertilise an oocyte (Tiwary et al., 2004; Feindel 

et al., 2010). The production of all-female triploid populations thus appears to be a more 
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effective technique. Triploidy can be artificially induced for commercial purposes by 

physically shocking newly fertilised eggs to suppress meiosis II to retain the second 

polar body (Malison et al., 1996; Felip et al., 2001; Maxime, 2008). Physical induction 

includes pressure shocking, which has been successfully applied in rainbow trout (Taylor 

et al., 2007), Atlantic salmon (Leclercq et al., 2010b), sea bass (Peruzzi et al., 2004) and 

thermal (heat or cold) shock which has been successfully applied in Atlantic cod 

(Peruzzi et al., 2007), Atlantic halibut (Holmefjord & Refstie, 1997) turbot, Psetta 

maxima (Piferrer et al. 2003), sea bass (Peruzzi & Chatain, 2000) and Eurasian perch, 

Perca fluviatilis (Rougeot et al., 2003) among others. Triploidy is already successfully 

applied in the rainbow trout industry and is under extensive testing in the Atlantic 

salmon and sea bass industry (Peruzzi et al., 2000, 2001; Zanuy et al., 2001; Taylor et 

al., in press). In Atlantic halibut, although triploidy has been sucessfully induced 

(Holmefjord & Refstie, 1997) to our knowledge no further investigations have been 

carried out in this species. In commercial conditions, it is important to consider that 

triploidy can only be applied following manual stripping and fertilisation. Thus in 

species like Atlantic cod, juvenile production methods will have to be radically changed 

in species where the current standard hatchery production is reliant on mass spawning in 

tanks. 

Despite production protocols being in place there currently remains some 

scepticism within the industry as to the performance of triploids in comparison to 

diploids (Benfey, 1999). The performance of triploids has been extensively reviewed by 

Benfey (1999) and more recently Tiwary (2004) and Maxime (2008). In salmonids, in 

which triploidy has been studied more extensively than in other teleosts, a number of 

morphological deformities have been reported and triploid tolerance and survival under 

sub-optimal conditions is suggested to be poorer (Ojolick et al., 1995; Hyndman et al., 



Mairi Cowan   CHAPTER 1: General introduction 

33 

2003a; Atkins & Benfey, 2008), although metabolic and physiological mechanisms and 

pathways do not necessarily differ (Stillwell & Benfey, 1996; Sadler et al., 2000; 

Hyndman et al., 2003b; Leggat et al., 2006). In terms of growth, results are variable, 

triploid growth has been shown as being reduced (Withler et al., 1995), equal to 

(Galbreath & Thorgaard, 1995; McGeachy et al., 1995; Taylor et al., 2007) and 

improved relative to diploids (Oppedal et al., 2003; Taylor et al., in press). It is clear that 

the effects of triploidy vary between species, families and strains and more studies are 

needed.  

In addition to triploidy, other techniques such as transgenics and vaccines have 

also been tested for the production of sterile fish. The theory behind transgenics for the 

production of sterile fish is to knock out the genomic copies of a gene whose product is 

crucial to sexual development and gonad formation. In zebrafish, Weidinger et al. (2003) 

demonstrated that interception in the expression of the dead end (dnd) gene affects the 

migration of primordial germ cells leading to apoptosis and germ cell deficient gonads. 

In Tilapia, the GnRH and gonadotropin genes are considered as good candidates for 

knock-out or knock down expression (Maclean et al., 2002). Regarding vaccines, Riley 

& Secombes (1993) demonstrated that injection of rainbow trout with conjugates of 

gonadotropin releasing hormone (GnRH) coupled to protein carriers elicited antibody 

production, they suggested that such anti-GnRH formation could prevent fish maturation 

by neutralisation of endogenous GnRH. Currently these techniques have not yet been 

commercially applied in the industry. 

3.1.4 Selective breeding  

The technique to delay puberty in farmed fish by selective breeding has only been 

employed in a few farmed fish species so far (Taranger et al., 2010). Although selective 

breeding programs have been shown to effectively delay age at puberty and thereby 
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increase body size in Atlantic salmon for example (Gjøen & Bentsen, 1997; Gjedrem, 

2000), care must be taken as improvements to feed and feeding protocols can result in 

rapid growth improvement which can counteract the results of breeding programs due to 

the strong phenotypic link between growth rate and early puberty (Taranger et al., 2010). 

To date, while the inheritance of such traits have not been examined in halibut, in 

Atlantic cod, positive genetic correlations between spinal deformity, body weight and 

sexual maturation have been observed which represents a challenge for a selective 

breeding program (Kolstad et al., 2006). So far breeding programs in Atlantic cod 

haven‘t been fully efficient however these have only been running for 2 generations 

(Kolstad et al., 2006). 

3.1.5 Feed management  

The potential of restricted feeding in affecting the age at puberty has been investigated in 

a number of fish species in the belief that a reduction in energy and adiposity will impact 

on sexual recruitment. For example, Shearer et al. (2006) demonstrated that a restricted 

feed ration and ultimately reduced body weight reduced the incidence of maturing male 

Chinook salmon, Oncorhynchus tshawytscha. In Atlantic cod however the various 

starvation regimes which have been tested have been ineffective at reducing fecundity 

and age at puberty (Kjesbu & Holm, 1994; Karlsen et al., 1995). Taranger et al. (2010) 

suggested that this technique may only be effective for species with more limited energy 

reserves. Furthermore, if this technique is to be successfully applied in the industry in 

species which are sensitive to dietary manipulation, impacts on the health and welfare of 

fish must be taken into consideration (Damsgård et al., 2004). 

3.1.6 Drivers behind selection of a strategy 

The methods used for puberty control are species specific and the technique of choice is 
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determined by the current understanding of the target species underlying biology (Table 

3). Environmental control, namely photoperiod manipulation, requires species with a 

seasonal reproductive cycle whose reproduction is predominantly determined by 

daylength and a manageable generation time such as in Atlantic cod (Davie et al., 

2007a). Monosex production requires species where a sex advantage is conferred such as 

in Atlantic halibut (Hagen et al., 2006). Production of single sex populations in cod 

would not in itself remove production loss through male sexual maturation. If however 

maturation were to be inhibited through photoperiod manipulation, female populations 

would display an improved growth performance over male cohorts of around 10% 

(Davie et al., 2007b). In this respect monosex female production would be of some 

value. In terms of sterility, triploidy induction is the only method that can be applied in a 

commercial scale currently; however there are concerns that it may compromise fish 

welfare and production performance (Benfey, 2001; Felip 2001; Hulata, 2001) and 

furthermore it can only be applied following manual stripping and fertilisation. Other 

maturation management strategies include breeding programs and feed management. 

Breeding programs usually take multiple generations to reduce the problems associated 

with early puberty however and they are costly. Feed management likely requires 

species with limited energy reserves and a small body size. For these reasons, the most 

viable stratagies for our target species are photoperiod manipulation in Atlantic cod and 

monosex production in Atlantic halibut. While these methods have already been 

explored and infact implemented in commercial culture in some locations there remains 

a number of concerns/challenges relating to their effective implementation which are 

explored further in the following sections.  
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Table 3. Drivers behind the selection of methodology for control of puberty in teleosts 

during on-growing. Examples of species in which protocols have already been 

implemented commercially (bold) or have been developed (underlined) or only tested 

(italic) given. 

  

Methodology Underlying biological 

requirements 

Species 

Environmental  

(photoperiod) 

manipulation 

 

 Seasonal species 

 Short to medium 

generation time 

Atlantic salmon (Taranger et al., 1999) 

Atlantic cod (Davie et al., 2007a) 

European sea bass (Felip et al., 2009) 

 

Monosex 

production 

 One sex exhibits more 

favourable 

characteristics for 

culture 

Atlantic halibut  (Hendry et al., 2003) 

Rainbow trout (Bye & Lincoln, 1986) 

Tilapia (Phelps & Popma, 2000) 

Atlantic cod (Haugen et al., 2011) 

Sterility: 

triploidy 

 

 Available supply of 

good quality eggs i.e. 

eggs which can easily 

be stripped from 

broodstock 

Atlantic salmon (O’Flynn et al., 1997; 

Oppedal et al., 2003) 

Rainbow trout (Oliva-Teles & Kaushik, 

1990) 

Sea bass (Peruzzi et al., 2000) 

Atlantic halibut (Holmefjord & Refstie, 

1997) 

Atlantic cod (Peruzzi et al., 2008) 

Selective 

Breeding 

 Genetic variation is 

associated with 

important traits  

 Good heritability rates 

of desirable traits i.e. 

growth 

Atlantic salmon (Gjøen & Bentsen, 1997) 

Rainbow trout (Kause et al., 2003) 

Tilapia (Ponzoni et al., 2011) 

Atlantic cod (Kolstad et al., 2006) 

 

Feed 

Management 

 Individuals which are 

sensitive to dietary 

manipulation i.e. with 

limited energy 

reserves 

Chinook salmon (Shearer et al., 2006) 

Rainbow trout (Bromage & Jones, 1991) 

Atlantic salmon (Bromage et al., 2001) 
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3.2 Photoperiodic regulation of puberty 

While the principle of photoperiod manipulation is conceptually a simple process, the 

mechanism which connects the perception of environmental signals to the entrainment of 

the reproductive axis is complex. However such knowledge is essential to ensure that 

manipulations are effective and can not be considered to harm the target animals. 

3.2.1 Photoneuroendocrine system 

Current knowledge on the photoneuroendocrine system (PNES) through which 

photoperiod rhythm regulates reproduction and physiological processes in fish has 

recently been reviewed by Migaud et al. (2010). The first step in this PNES is the 

circadian axis, which regulates the perception of light and transduction into a biological 

signal to act as a relay of ‗time‘ to target areas and entrains biological rhythms (Falcon, 

1999; Foster & Hankins, 2002). In mammals, light is perceived by the retina and this 

information is then relayed to the suprachiasmatic nucleus (SCN) of the brain which 

contains the ―master‖ circadian clock (Simmoneux & Ribelayga, 2003). Subsequently 

this master clock controls mechanisms that regulate melatonin synthesis and secretion 

from the pineal (Schomerus & Korf, 2005). In teleosts, light perception is more complex, 

as well as photoreception by the eyes, the pineal gland also appears to be directly 

photosensitive in most teleosts studied unlike in mammals (Forsell et al., 2001; Falcon et 

al., 2010) and it is also believed that deep brain photoreceptors may play a role in light 

reception in teleosts as for other vertebrates (Menaker et al., 1997). The photosensitivity 

of each component and their relative importance differs between species, for example in 

tropical species such as the Nile tilapia, melatonin release has been shown to be 

exclusively dependent on photoreception from the eyes (Martinez-Chavez et al., 2009). 

In contrast, a combination of photic information from the eyes and the pineal are 

necessary for typical plasma melatonin production in Atlantic cod and sea bass while 
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only the pineal regulates melatonin production in salmonids (Bayarri et al., 2003; 

Migaud et al., 2007b). The presence of a central ―master‖ clock in teleosts remains an 

open question as despite much circumstantial evidence for its presence (Holmqvist et al., 

1992; Falcon et al., 2007), in-situ studies of clock gene expression in species like 

zebrafish have not defined any such localised expression (Whitmore et al., 1998, 2000). 

The principle output of the circadian axis is the indoleamine hormone melatonin which 

displays day (low) and night (high) rhythms. It is now widely known that this profile of 

synthesis and release is down to the degradation of the enzyme arylalkylamine N-

acetyltransferase (AANAT) which plays a key role by catalyzing the conversion of 

serotonin to N-acetylserotonin which is ultimately methylated to produce melatonin 

(Klein et al., 1997). High levels of melatonin are produced during darkness, with the 

duration of this release proportional to night length, whereas lower levels are produced 

during daylight (Bromage et al., 2001; Migaud et al., 2010; Falcon et al., 2010). Thus 

melatonin release acts as an endocrine rhythm providing information on both the time of 

day and seasonal date to the fish. Measurement of melatonin is therefore a valuable tool 

to interpret perception of photoperiod regimes. While melatonin analysis has helped 

define light perception in fish, the functional link between plasma melatonin levels and 

the endogenous control of maturation through the BPG axis remains unclear (Migaud et 

al., 2010). In contrast, in mammals melatonin has been shown to act at various sites such 

as the pituitary, SCN and hypothalamus depending on the species to stimulate the 

reproductive axis (Goldman, 2001). In the pituitary, melatonin is thought to act either 

independently or through the clock gene system to entrain prolactin cycling which in 

turn controls a number of key functions during sexual development (Bachelot & Binart, 

2007; Dardente, 2007; Dupré et al., 2008). In the hypothamus, it is thought that 

melatonin stimulates kisspeptin expression which in turn regulates GnRH function 
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(Revel et al., 2006a; 2007). It is also thought to stimulate the expression of type 2 

iodothyronine deodinase (Dio2) which converts thyroxine (T4) to the active form 

triiodothyronine (T3) which regulates functions such as sensitivity of steroid feedback 

during reproduction (Yasuo et al., 2007; Morgan & Hazlerigg, 2008). In fish, melatonin 

appears to play a more detached role in reporting timing and synchronizing reproduction. 

However, interestingly, a recent study by Servilli et al., (2010) in sea bass discovered 

that the pineal organ receives GnRH-2 immunoreactive fibers originating from the 

synencephalic GnRH-2 neurons. Furthermore in vitro and in vivo experiments 

demonstrated stimulatory effects of GnRH-2 on nocturnal melatonin secretion by the sea 

bass pineal organ. This data showed, for the first time in a vertebrate species, converging 

evidence supporting a role of GnRH-2 in the modulation of fish pineal function. 

However, the lack of clear support for melatonin regulating reproduction in teleosts 

suggests that other driving forces might also be in place. For example, it has been 

suggested that the clock-gene system in fish is associated with the entrainment of 

reproduction from observations of the maintenance of endogenous cycles in reproduction 

in species such Atlantic cod (Norberg et al., 2004), sea bass (Carillo et al., 1995) and 

rainbow trout (Randall et al., 1998). In addition, in a QTL study, Leder et al. (2006), 

mapped the genes Clock and Per1 to quantitative trait loci that explained up to 50% of 

the variance in spawning time, while other candidate genes including components of the 

melatonin synthesis pathway (AANAT-1 and AANAT-2) were not significantly 

associated. It is believed that the interplay of seasonally changing environmental cues 

regulate the entrainment of melatonin and possibly clocks to entrain reproductive cycles 

although the functional link is yet to be found (Migaud et al., 2010). Furthermore, with 

the knowledge of the kisspeptin system as discussed earlier, it is believed that this too 

could act as a missing link between the environmental and endogenous control of 
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reproduction. In summary so far, while elements of the PNES have been described in 

teleosts, a clear description of the completed pathway remains to be presented. However, 

popular consensus is focusing on the interface of the PNES outputs like melatonin & 

clock-genes with initiators of the BPG like kisspeptin to finally complete such a 

description (Migaud et al., 2010).  

3.2.2 Species specific photoperiodic regimes 

Once the photoperiodic signals that entrain reproduction are defined in a species (Table 

4), it is possible to design artificial regimes to manipulate reproduction. Such regimes 

can be used to either produce out-of-season spawning from broodstock through adjusted 

seasonal cycles or suppress puberty (early maturation) during on-growing through either 

the masking of the natural photoperiod cycle (e.g. cod, Davie et al., 2007a; Taranger et 

al., 2010) or using advancing regimes (e.g. salmon, Taranger et al., 1999; Migaud et al., 

2010,) to skip spawning. In enclosed conditions (indoors/tanks), the management of 

lighting regimes is relatively easy. For example, low intensity lighting (i.e. tungsten 

filament or halogen bulbs) has been demonstrated to effectively manipulate photoperiod 

thus controlling maturation in a range of species including Atlantic cod (Hansen et al., 

2001; Norberg et al., 2004; Davie et al., 2007a), Atlantic halibut  (Norberg et al., 2001), 

Atlantic salmon (Oppedal et al., 1997; Porter et al., 1999; Taranger et al., 1999), pink 

salmon, Oncorhynchus gorbuscha  (Beacham et al., 1993), masu salmon, Oncorhynchus 

masou (Takashima et al., 1984), rainbow trout (Davies et al., 1999), turbot (Imsland et 

al., 2003) and sea bass (Zanuy et al., 1995). However, in open cage systems, owing to 

the overlying ambient photoperiod, light management is more difficult and success is 

dependent on species and rearing system. In Atlantic salmon, application of constant 

artificial lighting using metal halide technology in on-growing cages from winter solstice 

onwards for several months successfully prevents maturation (Oppedal et al., 1997; 
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Porter et al., 1999; Taranger et al., 1999; Peterson & Harmon, 2005; Schulz et al., 2006). 

In such a regime, the artificial lighting effectively ‗masks‘ the ambient prevalent 

photoperiod, this has been indicated by permanently suppressed nocturnal and diel 

melatonin levels in salmon under such conditions (Porter et al., 1999). Photoperiod 

manipulation in salmon on-growing cages is therefore now standard practice in the 

salmon farming industry. On the contrary, in Atlantic cod, photoperiod manipulation 

using metal halide in cage systems has not been fully effective with at best a 4 month 

delay in spawning (Taranger et al., 2006). Due to the failure of these manipulations in 

open cage systems it was proposed that cod were able to perceive changes in the ambient 

photoperiod over and above the artificial lighting, described as relative photoreception 

(Taranger et al., 2006; Davie et al., 2007a; Vera et al., 2010). This has required 

extensive research into non visual light perception and the lighting technologies used. 

3.2.3 Fish light sensitivity and lighting technology 

When employing photoperiod manipulation for the prevention of spawning, it is 

important to take into account species biological differences not only in terms of 

seasonality (i.e. timing of regime application) but also light sensitivity, behaviour and to 

consider the environment in which these regimes are to be applied (i.e. seawater). In 

terms of light sensitivty, in-vivo as well as in-vitro pineal studies in a number of teleost 

species have shown a gradual suppression of melatonin in response to night-time 

illumination depending on the spectrum and intensity of light exposure (Ekstrom & 

Meissl, 1997; Migaud et al., 2006). For example, in vitro and in vivo experiments on 

salmon and sea bass have demonstrated the effectiveness of shorter wavelengths (blue-

green) in reducing melatonin levels, in comparison to longer wavelengths (red) (Bayarri 

et al., 2002). Also these wavelengths have been proven to penetrate seawater more 

efficiently than longer wavelengths (Leclercq et al., in press). Regarding light intensity, 
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a study on pineal light sensitivity by Vera et al. (2010) suggested that cod are 10,000 

times more sensitive to light than salmon. Furthermore they demonstrated that this 

sensitivity depends on preceeding light exposure. For example, suppression of night-time 

melatonin levels depends on the intensity of light perceived during the day this is defined 

as ―relative photoreception‖. This generates the theory that if daytime lighting is reduced 

then the threshold light intensity required to suppress night-time melatonin levels is also 

reduced and could be tested in outdoor conditions using shading. Thus potentially 

preventing fish from perceiving a report of daylength. When considering light sensitivity 

in fish species it is also important to take into account the difference in photic behaviour 

between species. For example salmon show attraction to light whereas cod do not. This 

has implications for the implementation of lighting regimes in aquaculture. 

At present, metal halide lighting is the predominant lighting system used in 

marine fish on-growing cages to manipulate photoperiod. Such systems were originally 

developed for salmon and they have been very successful in this respect despite being 

associated with high running costs. However, it is thought that their biological efficiency 

(i.e. reduced prevalence of maturing fish) and energy consumption could be improved 

using alternative technologies (e.g. light emitting diode) (Leclercq et al., 2010). Metal 

halogen units emit a broad spectrum of light with a series of discrete peak wavelengths 

throughout the visible spectrum and a significant proportion of it (towards the red end of 

the spectrum) is absorbed within the first few meters of the water column (Migaud et al., 

2007a). Consequently, multiple units are required in order to expose whole cage volumes 

to high light intensities (which are still often inadequate in the case of cod) which results 

in excessively high energy running costs. New lighting technologies: Cathode Lighting 

(CL) and Light Emitting Diodes (LED), now available, will help to address this problem 

as they can be tuned to emit narrow bandwidths of light specific to the photic properties  
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Table 4. Seasonal environmental temperate cues in temperate teleost species (taken from Migaud et al., 2010). 

 

 

Species 

Initiation Window  Completion window 

References 
Prevailing 

Daylength 

Specific 

thermal 

requirement 

Gametogenesis 

onset 

 Prevailing 

daylength 

Specific 

thermal 

requirement 

Time of 

spawning 

Gadus morhua Decrease No June-Dec  Increase Yes Feb-June Davie et al. (2007a) 

Hippoglossus 

hippoglossus 

Increase No Jan-June  Decrease Yes Dec-April Haug (1990) Norberg 

et al. (2001) 

Salmo salar Increase No Jan-Apr  Decrease Yes Oct-Dec Taranger et al. (1999) 

Dicentrarchus 

labrax 

Decrease Yes June-Dec  Increase Yes Jan-June Moretti et al. (1999) 
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of the water body and also fish light sensitivities. However, there is limited information 

regarding the potential ‗welfare‘ impact of such artificial lighting technologies on fish. 

3.2.4 Artificial light and welfare in fish 

There is growing awareness that good welfare equates to greater production success. 

With the increasing number of light units of escalating power and efficiency and new 

narrow bandwidth technologies which are being introduced to the aquaculture industry, 

it is essential to understand the potential adverse impacts of artificial lighting properties 

on the ‗welfare‘ of fish in order to promote health and growth whilst aiming to prevent 

maturation (Pickering, 1993; Ashley, 2007; Bowden, 2008). High intensity point sources 

of artificial light in combination with daylight, present levels of lighting beyond which a 

fish would be exposed in its natural environment. Furthermore, narrow bandwidth 

emission designed to target a species specific light sensitivity may act to increase the risk 

of light damage. Short wavelengths of light are considered to be much more harmful in 

higher vertebrates than long wavelengths (Young, 1988; Dawson et al., 2001; Migaud et 

al., 2007a). The general framework for evaluating welfare and suffering in both 

terrestrial animals and farmed fish is based on the Five Freedoms (FAWC, 1979). These 

include freedom from hunger and thirst, freedom from discomfort, freedom from pain, 

injury or disease, freedom to express normal behaviour and freedom from fear and 

distress, a variety of indicators are used to assess impairment of these freedoms (Table 

5). The framework recognises that animal welfare is complex, reflected in many 

physiological and behavioural traits, thus a combination of different indicators offers a 

much more useful assessment than relying on a single indicator (FSBI, 2002; Lembo & 

Zupa, 2009). Such indicators in fish may include measurement of the stress response 

(cortisol, glucose), immune function and organ damage, feed intake and swimming 

behaviour. In the past, the issue of welfare with regard to artificial lighting in fish has not 
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been investigated, recent work however has been conducted to directly address such 

concerns, with attention focussed more on the stress and pathological effects of high 

intensity lighting on fish, relating to freedom from fear and distress, freedom from 

discomfort and freedom from pain, injury or disease. Migaud et al. (2007a) studied the 

effect of high intensity blue LED light on post-smolt salmon and recorded an acute stress 

response (short-term peak in cortisol and glucose) following onset of exposure to 

constant high intensity blue LED light, however, there was no recorded significant effect 

of constant artificial lighting on the immune system specifically lysozyme activity. They 

also studied the visual system, extensive examination of Atlantic salmon retina following 

exposure to artificial light revealed no signs of light induced damage, this was thought to 

be due to highly efficient protective mechanisms (melanin granule migration) recorded 

in retina from this trial. The fish eye is known to be vulnerable to artificial light (Dawson 

et al., 2001; Vihtelic et al., 2000, 2006; Vera et al., 2009) due to the absence of eyelids 

(palpebra) and a fixed pupil aperture (Ferguson, 2006) thus high intensity regimes could 

result in retinal damage potentially impacting feeding behaviour in visual feeding fish 

such as Atlantic salmon. Vera et al. (2009) demonstrated that the cod retina is much 

more susceptible to artificial light damage than the salmon and sea bass retina with 

earlier signs of retinal damage and a greater reduction in the thickness of the 

photoreceptor layer which parallels the previous findings on pineal sensitivity (Vera et 

al., 2010). This clearly warrants further investigation. 

It‘s important to note that studies investigating the welfare impact of artificial 

lighting on fish have clearly highlighted species and environment specific light 

sensitivity. This emphasizes the need to determine the light sensitivity of specific species 

intended for photoperiod manipulation, not only to tune lighting set-ups to their 

perceptive range but to limit potential light-induced adverse effects on welfare. 
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3.3. Monosex production  

In Atlantic halibut, monosex production is the technique of choice and the production of 

all female halibut stocks would represent a significant boost to the profitability of the 

industry. However this is only achievable through an advanced understanding of the 

mechanisms by which sex is expressed (see section 2.1). With such an understanding it 

is possible to then employ a number of different methodologies to influence the gender 

Five Freedoms of Animal Welfare Indicators 

1  Freedom from hunger and thirst  Feed intake, growth rates, condition factor  

2  Freedom from discomfort   Physical damage: fin condition, 

cataracts, lesions  

 Immune responses (e.g. lysozyme 

activity, respiratory burst activity, 

phagocytic activity)  

3  Freedom from pain, injury or disease   Environmental monitoring: water 

quality monitoring (dissolved oxygen, 

ammonia, pH, carbon dioxide, 

suspended solids)  

 Targeted sampling of fish: gill condition 

and checking for parasite infestation  

4  Freedom to express normal behaviour  Abnormal behaviour: swimming and 

feeding behaviour, distribution of the fish 

within a system (eg. clumping around 

inflows), response of fish to an approaching 

farmer  

5  Freedom from fear and distress  Measuring primary and secondary stress 

responses: plasma, cortisol, glucose, lactate, 

muscular activity  

Table 5. The five freedoms of animal welfare and the indicators used to assess 

impairment from these freedoms (taken from Lembo & Zupa, 2009).  
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of stocks for on-growing. While some of these methods are long established in 

aquaculture, gender control is a problem common to most agricultural systems which 

means novel technologies are always being developed which have the potential to 

radically change management practice if they can be effectively translated into the 

aquaculture environment. 

3.3.1 Endocrine therapy 

The manipulation of sexual phenotype can be achieved by exposing sexually 

undifferentiated fish during the labile period to exogenous sex steroids in order to direct 

the process of sex differentiation towards the desired sex (Donaldson, 1996). The labile 

window varies between species (See review by Piferrer, 2001), for example in Atlantic 

halibut phenotypic sex can be affected up to 30mm total length (Hendry et al., 2002) and 

in Atlantic cod the window lasts up to 25mm (Haugen et al., 2011). For the production 

of monosex populations, it is important to determine the time window of sex 

differentiation in order to identify the sex steroid window to alter phenotypic sex. On 

occasion, sex reversal by exogenous steroids has been reported to be short-lived i.e. fish 

revert back to their original sexual phenotype (Olito & Brock, 1991), however generally 

the effects are permanent. Monosex populations can be produced by either direct or 

indirect sex reversal. Direct sex reversal refers to the exposure of mixed sex larvae to sex 

steroids in order to directly generate the selected single sex population. In Nile Tilapia, 

treatment with synthetic testosterone (in-feed, immersion) successfully masculinises a 

population (Gale et al., 1996; Kwon et al., 2000; Wassermann et al., 2003). The use of 

direct hormone therapies in food fish production is banned in the EU (Directorate 

general for health and consumers, 2003) however thus methods have been developed to 

control sex while not directly treating fish destined for human consumption. Indirect sex 

reversal involves the hormonal treatment of juvenile fish that are then used as 
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broodstock in order to produce progeny of the desired sex. This works on the basis that 

the application of exogenous steroids changes only the phenotype of the individual and 

not the genotype. For example in halibut, with an XY genetic sex determination system 

and where all-female populations are the primary production goal, masculinised female 

broodstock (XX genotype, referred as ‗neomales‘) obtained by 17α-

methyldihydrotestosterone (MDHT) treatment prior to sex differentiation, are crossed 

with normal females (XX) to naturally produce all-female progeny (Hendry et al., 2003; 

Tvedt et al., 2006). Hendry et al. (2003) have successfully developed a protocol to 

produce all-female Atlantic halibut populations using this technique. Other species in 

which indirect sex reversal has produced all-female stocks include the rainbow trout 

(Bye & Lincoln, 1986), Atlantic salmon (Johnstone & Youngson, 1984), the yellow 

perch, Perca flavescens (Malison et al., 1996) and Nile tilapia (Mair et al., 1991). The 

advantage of this method is that fish intended for consumption have not been in direct 

contact with the synthetic hormones. However this method is time consuming as it 

involves more than one generation (Piferrer, 2001). Furthermore it is important to 

understand the genetic determination system of the species in mind in order to produce 

effective broodstock. For example, in Atlantic halibut, in order to produce all-female 

populations using masculinised females, it is necessary that the female is the 

homogametic sex. Monosex Atlantic halibut are already produced commercially in 

Canada however it has not been yet commercially performed in the UK. 

3.3.2 Gynogenesis  

An alternative means to produce monosex populations is by parthenogenetic 

(uniparental) reproduction, a process which does not require the use of exogenous 

hormones (Komen & Thorgaard, 2007). Androgenesis refers to the process whereby 

offspring inherit only paternal DNA, this can be achieved by fertilising eggs with sperm 
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which has been irradiated with UV radiation to destroy their nuclear content (Thorgaard, 

1992; Marengoni & Onoue, 1998). Gynogenesis is a similar process where offspring 

inherit only maternal genetic material (Felip et al., 2001; Piferrer, 2001). Gynogenesis 

can be induced by stimulating an egg to divide using genetically inactive (i.e. UV or 

gamma irradiated) spermatozoa, thus there is no genetic contribution of the sperm. The 

haploid embryo is then temperature or pressure shocked to prevent polar body expulsion 

and thus restore diploidy (Piferrer, 2001). Induced gynogenesis has been used 

commercially as a technique for monosex production of Silver barb, Puntius gonionotus, 

in Thailand (Pongthana et al., 1999) and it has been successfully performed in Atlantic 

halibut (Tvedt et al., 2006). However due to the significantly lower viability of 

gynogenetic embryos, in combination with the fact that a proportion of these females 

usually possess abnormal ovaries (Piferrer et al., 1994) all of which is perhaps a 

consequence of inbreeding, means that females obtained through induced gynogenesis 

are not generally suitable for direct production and thus at present gynogenesis is more 

commonly performed on species for research purposes (Piferrer, 2001).  

3.3.3 Semen sexing 

Current techniques for monosex production have disadvantages such as long timeframes 

required to produce stocks (e.g. >5 years in Halibut) as well as public health concerns 

over the use of hormones. Owing to these problems, a potential new avenue for monosex 

production would be ‗semen sexing‘. In terrestrial agricultural systems, successful 

protocols based on identifying and isolating ‗sexed‘ sperm cells have already been 

established for monosex production (Garner, 2001). The technique involves using flow 

cytometry to differentiate between X and Y sperm based on DNA content and is only 

possible in species where males are the heterogametic sex. These sperm cells can then be 

automatically sorted and the desired sex of spermatozoa collected and used to fertilise 
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egg batches (Garner, 2001). To date there has been no research on this field with teleost 

spermatozoa which is primarily due to the fact that success may be limited since there is 

a limited data suggesting that the DNA content between male and female teleost species 

differs (Devlin & Nagahama, 2002). However if proven to work it has the potential to 

radically shorten the time to generate monosex stocks fit for human consumption which 

warrants its consideration as a new technology to be employed. 

3.3.4 Environmental sex manipulation 

A final ―natural‖ way to influence sex ratios in production stocks is by manipulation of 

environmental factors such as temperature, pH, stocking density and social interaction 

(Baroiller & D‘Cotta, 2001; Penman & Piferrer, 2008). In species such as the medaka, 

Oryzias latipes, and sea bass, temperature has been shown to influence sex during the 

sexually labile period (Hattori et al., 2007; Koumoundouros et al., 2002; Saillant et al., 

2002) with higher temperatures yielding male skewed populations and lower 

temperatures favouring the formation of females in the latter species (Pavlidis et al., 

2000). However, rather than temperature playing a dominant role in determining the sex 

of fish it is thought to act as an adaptive value interacting with genetic sex determination 

(Baroiller & D‘Cotta, 2001; Ospina-Álverez & Piferrer, 2008). In sea bass, females grow 

faster than males in farmed populations it is therefore of great interest to develop 

monosex female sea bass populations. In order to do this it is important to understand the 

basis of sex determination in this species considering both genetic and environmental 

influences. Saillant et al. (2002) demonstrated that genotype-temperature interactions 

modulated the sex-ratio of sea bass and suggested that the effects of temperature in 

monosex production may be eliminated by selecting non sensitive breeders (Saillant et 

al., 2002). In halibut, the effects of rearing temperature on juvenile sex ratios were tested 

during the time of gonadal differentiation however there appeared to be no signifcant 
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influence on sex ratios (Hughes et al., 2008). Potential temperature effects on sex ratio 

earlier in development (prior to gonadal differentiation) have been recorded (van Nes & 

Andersen, 2006) however hormone treatments applied after this time generate successful 

sex reversed populations. In the rearing of putative monosex progeny (from a neomale 

parent) it may be considered that temperature during early development could cause a 

deviation from the expected 100% female outcome. 

4. Aims of the thesis  

Early puberty is a major problem during the on-growing stage of fish farming and in 

order for the industry to expand, a delay or cessation in puberty is crucial. Currently 

there are five management techniques which exist for the control of this problem as 

described above. However, there are major limitations in the commercial use of these. 

With the proposed expansion of the Atlantic cod and halibut industry it is of great 

importance to optimise management techniques for the control of puberty in these 

species. Photoperiod manipulation is currently the technique of choice in Atlantic cod as 

it exhibits a temperate reproductive cycle and has no clear sex advantage, furthermore it 

undergoes spontaneous mass spawning in tanks thus making timely stripping for 

triploidy production difficult. Photoperiod manipulation in cod works effectively in 

tanks however in the outdoor environment even with the application of constant artificial 

lighting, large differences in day and night light intensity still exist thus maturation is not 

effectively inhibited. For these reasons fish are being exposed to ever increasing 

intensities of light and narrow wavelengths are being introduced, the potential adverse 

impacts of this lighting on cod welfare however are unknown. At the same time the 

potential of shading of ambient light during the daytime is coming to the forefront 

however this has not been scientifically tested to date. This lack of effective control, in 

part, is due to our continued lack of understanding of the neuroendocrine mechanisms 



Mairi Cowan   CHAPTER 1: General introduction 

52 

which control the onset and completion of puberty. While it is known that puberty is 

sensitive to environmental factors, the underlying physiological mechanisms which relay 

this information are still to be elucidated. In this context, the role of kisspeptin has 

recently come to light in fishes and it is thought it may act as part of the missing link 

between the environmental and neuroendocrine control of reproduction which could then 

help scientists and farmers better understand and then control maturation during farming. 

 In halibut, the clear dimorphism in sex makes monosex production of females an 

obvious strategy to prevent early puberty becoming a problem. Monosex production has 

successfully been performed in Canada by indirect sex reversal however it has not yet 

been applied in Europe. The time required to monosex populations using indirect sex 

reversal is time consuming, so advances in methodologies like semen sexing which is 

standard practice in the cattle industry, potentially offers a faster approach if it can be 

proven to be effective in the target species. 

In summary, detailed scientific knowledge is required regarding stock on-growing 

management techniques to improve the sustainability and profitability of the aquaculture 

industry and ensure a higher quality product is readily available to the customers. The 

overall aim of this thesis was to research and further develop management strategies to 

be adopted by the UK marine finfish farming sector for the control of maturation in 

Atlantic cod and halibut.  

The specific objectives of this thesis were as follows: 

1. To investigate the effect of artificial lighting on the welfare (stress response, 

innate immunity, eye structure and feeding activity) of Atlantic cod (Chapter 2). 

2. To investigate the effect of combining shading and continuous lighting on the 

suppression of sexual maturation in outdoor reared Atlantic cod (Chapter 3). 
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3. To investigate the expression of kisspeptin and gonadotropin genes in Atlantic 

cod  (Chapter 4). 

4. Research the methodologies for the production of monosex Atlantic halibut in the 

UK (Chapter 5).  
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Abstract 

High intensity constant lighting is routinely used for photoperiod manipulation in the 

aquaculture industry in order to prevent early maturation. The potential welfare impacts 

of this technology however have not been extensively studied to date, and with the 

implementation of more efficient narrow bandwidth lighting technologies (cathode, light 

emitting diodes), definitions of species specific sensitivities are becoming essential. The 

objective of this study was to investigate the impact of traditional metal halide and novel 

green cathode lighting on the welfare (stress response, innate immunity, retina structure, 

feeding activity) and light perception of Atlantic cod over a four week period. Results 

indicated that although acute responses to light were observed, there were no clear 

significant long term effects of any of the lighting treatments on stress levels (plasma 

cortisol, glucose), innate immune function (lysozyme activity), retina structure and 

population feeding activity (acute drop under all light treatments, most pronounced in 

fish exposed to higher illumination but normal feeding activity was resumed within 8 

days following light onset). Regarding light perception, interestingly even when 

subjected to high intensity constant lighting (metal halide mean tank intensity: 16.6 watts 

m
-2

), cod still demonstrated a day-night rhythm in melatonin release which suggests 

perception of the overlying ambient photoperiod.  
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1. Introduction  

Sexual maturation is a major welfare concern and economic burden during the on-

growing of marine finfish as energy is directed into gonadal development resulting in a 

loss in growth and product quality. Furthermore, during final maturation there is an 

increased sensitivity to disease, reduction in feeding activity, and concerns exist over 

potential genetic interaction with native stocks through broadcast spawning or spawning 

interaction by escapees (Bromage et al., 2001). Photoperiod manipulation is an efficient 

tool used to suppress early maturation in a number of commercially important marine 

teleosts, especially temperate species such as Atlantic cod, Gadus morhua L. (Hansen et 

al., 2001; Davie et al., 2003; Davie et al., 2007a), Atlantic salmon, Salmo salar L. 

(Endal et al., 2000) and European sea bass, Dicentrarchus labrax L. (Bayarri et al., 

2003; Felip et al., 2009) where seasonal changes in day-length act as the principal 

regulator of puberty onset (Bromage et al., 2001). It is believed that the indoleamine 

melatonin acts as the key light perception hormone and is released by the photosensitive 

pineal gland (Bromage et al., 2001; Falcon et al., 2009), with high levels of melatonin 

produced during darkness and lower levels produced during daylight (Porter et al., 1999; 

Porter et al., 2000; Bromage et al., 2001; Bayarri et al., 2002) thus providing an 

entraining endocrine message. As such, plasma melatonin measurements are routinely 

used to assess an individual fish‘s perception of lighting systems (Porter et al., 2000; 

Migaud et al., 2006). At present, photoperiod is manipulated in commercial, open cage 

systems through the use of metal halide (MH) light units. These systems however are not 

specifically designed for aquaculture and thus new, more cost effective technologies, 

(e.g. Cathode Lighting (CL) and Light Emitting Diodes (LED)) which allow the 

refinement of spectral content and reduce energy requirement are now being used to 

develop species and environment specific lighting systems. In vitro and in vivo 
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experiments in a number of species including sea bass and zebrafish, Danio rerio, have 

demonstrated the effectiveness of shorter wavelengths (blue-green) in reducing 

melatonin levels, in comparison to longer wavelengths (red) (Bayarri et al., 2002; Ziv et 

al., 2007). These shorter wavelengths are also known to penetrate seawater more 

efficiently (Lalli & Parsons, 1993). Currently however, there is almost no published 

scientific information available regarding the technical performance of such systems in 

the marine environment. Likewise, there is limited information regarding the potential 

‗welfare‘ impact of these artificial lighting technologies on fish. 

It is well known that aquaculture practices including stocking density, diet, 

feeding technique and management procedures may act as stressors in aquaculture and 

have strong effects on the health and performance of the fish (Pickering, 1993; 

Wendelaar Bonga, 1997; Schreck et al., 2001). It is essential, therefore, that work is 

conducted on the effects of an abrupt change in lighting conditions and continuous (LL) 

high intensity light on fish to avoid or mediate detrimental implications (Ashley, 2007; 

Bowden, 2008). Regarding welfare and the five freedoms framework (FAWC, 2009), 

there is a combination of possible physiological and behavioural processes that artificial 

illumination could influence including the stress response, the immune system, eye 

damage and feeding activity. To date, only Migaud et al. (2007) have directly considered 

the welfare impact of artificial blue LED lighting on Atlantic salmon. While the authors 

reported no chronic effects in this case, it is important to consider that species specific 

sensitivities to light do exist (Migaud et al., 2006). Recent in vitro pineal studies have 

revealed that cod, in comparison to salmon and sea bass, have a much higher sensitivity 

to light (Vera et al., 2010). In addition, the cod retina has also been recently 

demonstrated to be more sensitive to light induced damage than salmon and sea bass 

retina (Vera & Migaud, 2009). Importantly, in cod on-growing, an increasing number of 
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light units of escalating power and efficiency are being used in commercial cages as 

photoperiodic regimes used to date (MH systems) have failed to fully suppress early 

maturation and at best only caused a 4 month delay (Taranger et al., 2006). However, so 

far no studies have been performed to investigate welfare indicators in cod, regarding the 

effects of these increasingly high intensity constant regimes.  

The objective of our study was thus to investigate the potential welfare impact of 

two different types of artificial lighting (CL and traditional MH) currently being used to 

suppress maturation in commercial cod aquaculture through analysis of the stress 

response, innate immunity, retinal structure, feeding activity, and also to determine cod 

light perception of these systems. 

2. Materials and Methods 

2.1 Fish stock and initial rearing conditions 

The trial was conducted at the Machrihanish Marine Environmental Research Laboratory 

(MERL, 55:44
0
N, 5:44

0
W) between 6

th
 June and 16

th
 August, 2007. Groups of 50 

mixed-sex juvenile Atlantic cod produced by MERL (mean wet weight ± SEM = 142 ± 

3g) previously reared in tanks under simulated natural photoperiod and ambient 

temperature regimes, were randomly stocked into ten white 2 m diameter, covered tanks 

(volume 1.6 m
3 

, 0.5 m deep, approx. initial stocking density: 4.4 kg m
-3

). Within each 

population, 20 individuals were selected at random and implanted with a passive 

integrated transponder tag (Avid Plc, Uckfield, UK). All tanks were supplied with fresh 

seawater, filtered to 60µm, at a flow rate of approximately 50 L min
-1

 and drained to 

waste. Water temperature during the trial was 14 ± 1
0
C.  
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2.2 Experimental conditions 

Fish were initially maintained on a 6-week acclimation period under a control simulated 

natural photoperiod regime (SNP, experimental light units were fitted in tanks but 

remained off). This control lighting was provided by two 9W fluorescent bulbs (Osram 

Dulux, S G23 energy saver, St Helens, UK) that were located on the underside of tank 

lids. Their operation was regulated by digital timers which were adjusted weekly to 

match the ambient photoperiod throughout the trial. Intensity measured at the water 

surface was 0.32 watts m
-2

 when illuminated. Intensity measurements (watts m
-2

) were 

performed using a single channel light sensor set to a wavelength range of 400-740 nm 

(Skye Instruments Ltd., UK) and calibrated to National Physics Laboratory (UK) 

standards. Spectral content was recorded using a portable spectroradiometer (Model EPP 

2000c, Stellarnet Inc., Tampa, USA). 

Following acclimation, fish were randomly assigned to one of five light 

treatments (duplicated) for 4 weeks. Control lighting was provided by fluorescent bulbs 

(as during acclimation) and experimental lighting was provided by green cathode (CL, 

40W, Intravision Aqua, Oslo, Norway) or metal halide (MH, 400W, BGB engineering, 

Grantham, UK) units. Experimental treatments were designed to mimic the intensities 

that fish would be exposed to if they were to remain in close proximity to the lighting 

systems in a cage environment (≤ 1.5 m) and were set to a continuous light (LL) or a 

simulated natural photoperiod (SNP) regime, daylength for SNP treatments ranged from 

16 hours at the start of the test period (19
th

 July) to 15 hours at the end (16
th

 August). 

Treatments were as follows: 1) Control (SNP), 2) Low CL (1 unit, LL), 3) High CL (4 

units, LL), 4) MH-LL (1 unit), 5) MH-SNP (1 unit). An SNP metal halide treatment was 

included in the trial in order to determine if there was an effect of darkness following the 
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highest intensity day-time lighting (Table 1, see Appendix 1 for a schematic diagram of 

light unit set-up).  

 

 

 

 

 

Regarding wavelength, the green cathode units emitted a clear prominent green peak 

(546 nm) whereas metal halide units emitted a broader range of wavelength throughout 

the visible spectrum (Fig.1).  

Fish were fed to satiation on commercial cod feed (Start/Pearl diet, Biomar, 

Grangemouth, UK) according to the manufacturer‘s guidelines via clockwork belt-

feeders throughout the ambient daylight period. In order to obtain data on population 

feed intake, tanks were also hand-fed to satiation four times (9:30,12:00,14:30,17:00) 

throughout the daylight period over five days prior to light onset (baseline feeding 

activity) and 11 days following.  

  

Treatment Photoperiod Light Intensity 

(watts m
-2

) 

Position mimicked in 

a cage (distance from 

unit, m) 

Control SNP 0.08 ± 0.03 - 

Low CL LL 0.47 ± 0.18 1.5 

High CL LL 0.82 ± 0.15 1 

MH (LL + SNP) 16.58 ± 8.77 1 

Table 1. Mean light intensities recorded in tanks (watts m
-2

) and the distance mimicked 

from the respective light unit in a cage. Data presented as mean ± SEM (n = 12). 
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2.3 Sampling procedure 

Five un-tagged fish per tank were sacrificed at 6 time-points during the experiment: pre-

light exposure (3 and 2 weeks prior to exposure to the light treatments, during 

acclimation) and post-light exposure (3 hours, 1, 2 and 4 weeks). At each time-point, fish 

were culled by lethal anaesthesia (MS222, 80 ppm, Pharmaq, Fordingbridge, UK). 

Immediately after death, a heparinised syringe was used to withdraw blood from the 

caudal vein for cortisol and glucose analyses: fish were then measured for whole body 

weight (± 0.1 g) and total length (± 1 mm) then a sample of head kidney was removed 

and frozen at -70 
0
C for lysozyme analysis and both eyes were removed and fixed in 

bouins fixative (Bios Europe, Lancashire, UK). Blood was sampled within 5 minutes of 

netting, stored on ice, centrifuged at 1200 g for 15 min and resulting plasma was 

aliquoted and stored at -70 
0
C until analysis. At the end of the trial, 5 fish were sacrificed 

during night and 5 during day from all tanks: 2 ml of blood withdrawn and plasma 

melatonin content analysed.  

2.4 Plasma analysis 

Plasma cortisol levels were determined by radioimmunoassay according to North et al. 

(2006) and validated in Atlantic cod by comparing serial dilutions of pooled cod plasma 

to check it was immunologically comparable to purified standards (data not presented). 

The tritiated label (TRK407) was supplied by Amersham Pharmacia Biotech (Little 

Chafont, Buckinghamshire, UK) and a sheep anti-cortisol antibody from Diagnostic 

Scotland (Carluke, UK). Intra- and inter-coefficients of variation were 6.85% and 

21.33% respectively (n = 4), with a minimum sensitivity of 0.38 ng.ml
-1

. Glucose 

concentration was analysed colourimetrically using Infinity
TM

 Glucose Oxidase 

diagnostic kits (Alphalabs, Hampshire, UK). Melatonin was analysed by 

radioimmunoassay according to Porter et al. (2000).  
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2.5 Lysozyme analysis 

Lysozyme activity was analysed by a modified version of the lysoplate method as 

described by Osserman & Lawlor (1966). The method is based on lysis of the bacterium 

Micrococcus lysodeikticus in l % agarose prepared in 0.05 M sodium phosphate buffer 

pH = 6.2. Micrococcus lysodeikticus is a gram-positive cocci particularly susceptible to 

the lytic action of lysozyme. The diameter of the lysed zone was visualized by lack of 

colour in contrast to the white unlysed area. The mean diameter (n = 2) of each zone was 

measured (± 0.5mm) using a ruler. 

2.6 Eye histology 

Once the eye was removed, a small incision was made in the sclera 90° to the right of the 

choroid fissure to allow fixative penetration. Eyes were fixed overnight in Bouin‘s 

fixative (less than 24 hours) and then washed and transferred twice into fresh 70 % 

ethanol where they remained until processing. Eyes were oriented using the location of 

the ventral choroid fissure and trimmed in a dorsal-ventral plane to include the optic 

nerve. Subsequent processing to paraffin wax was routine and sections were stained 

using haematoxylin and eosin. 

Retinal measurements were conducted using image analysis software (Image Pro 

Plus, v. 4.5, Media Cybernectics Inc., Silver Spring, MD, USA) and taken at the central 

region of the retina ventral to the optic nerve. Two parameters were measured: 1) the 

thickness of the outer nuclear layer (ONL) (n = 5 measurements/ fish) and 2) the number 

of ONL nuclei in a 50 µm band (n = 2 counts/fish) (Fig. 2).  Measurements were 

conducted on retina from the 2 and 4 week light exposure time-points. 
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2.7 Population feed intake 

Population feed intake (% body weight / day) was determined by hand-feeding tanks to 

satiation and dividing total consumption by number of fish. 

2.8 Specific growth rate  

Specific growth rate (SGR) for all tagged individuals over the 4 week test period was 

calculated as follows: 

SGR= ((EXP(((LN(weight end)-LN(weight start))/no. days)))-1)*100 

2.9 Statistical analysis 

Statistical analysis was performed with MINITAB 
®
 version 15.0 (Minitab Ltd., 

Coventry, UK). All data sets were tested for normality using the Kolmogorov–Smirnov 

test and homogeneity of variances using Bartlett‘s test, and if necessary were log 

transformed. All data expressed as a percentage was arcsine transformed prior to 

analysis. The effect of light treatment over time on all dependent variables was 

Figure 2. Histological section of Atlantic cod retina kept for 2 weeks under control 

conditions. Section illustrates different retinal layers: PE, pigment epithelium; PR, 

photopreceptor layer; ONL, outer nuclear layer; OPL, outer plexiform layer; BCL, 

biploar cell layer; IPL, inner plexiform layer.  
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compared by analysis of variance (ANOVA) manipulated using a General Linear Model 

that included a comparison of treatment replicates (n=2) nested within the fixed 

treatment effect. When no significant replicate difference was found, the model analysed 

treatment differences only, however for the SGR data only where a replicate difference 

was present, analysis was performed between replicates independently of treatment. In 

all cases a significance level of p<0.05 was set with significant interactions being 

analysed by Tukey post hoc test.  

3. Results 

3.1 Cortisol, glucose and lysozyme 

There were no significant differences between light treatments in plasma cortisol (Fig. 

3a) and glucose (Fig. 3b) levels. Although there was a significant elevation from 

baseline observed in cortisol (Low CL at 1 week) this deviation was transitory with a 

return to baseline levels 2 weeks after light onset. There were no significant differences 

in lysozyme activity between treatments or timepoints, mean activity (measured by 

clearance zone) ranged from 3.95 ± 0.25 to 5.45 ± 0.02 (mean ± SD, n = 2, 5 

fish/replicate, data not shown). 
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Figure 3. Plasma A.) cortisol and B.) glucose levels in Atlantic cod kept under control  

conditions, green cathode light (Low CL and High CL) and metal halide (MH-LL and 

MH-SNP) light. Data presented as mean ± SD (n = 2, 5 fish/replicate). Significant 

differences between baseline and post-light onset values are indicated by *. See 

appendices 2 and 3 for detailed tables of results.  
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3.2 Eye histology 

No differences in ONL thickness or ONL nuclei number were observed between fish 

under different treatments after two or four weeks of light exposure (Table 2). ONL 

thickness ranged from 29.40 ± 3.75 to 37.09 ± 0.06 (mean  ± SD, n = 2, 5 fish/replicate) 

and the number of ONL nuclei ranged from 98 ± 19.94 to 126 ± 1.48 (mean  ± SD, n = 

2, 5 fish/replicate). 

3.3 Feeding intake  

Population feed intake analyses indicated no long term effects on the feeding activity of 

cod in any of the light treatments (Fig. 4). There was however a significant reduction in 

feed intake following light onset in all experimental treatments with this being most 

pronounced in fish exposed to metal halide lighting. Prior to light onset cod were feeding 

at ≥ 0.98 % body weight per day; however following light onset, in the MH-LL 

treatment, this dropped to  0.2 %. By days 8 and 10 onwards however, feeding rates were 

no different from baseline levels. For the two CL treatments, feeding intake dropped to 

0.5 % (High CL) and 0.6 % (Low CL) with fish feeding normally once more after just 

five days. For control fish there was no drop immediately following light onset, however 

feed intake was significantly reduced on day 3.  
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 Parameter  Time 

(weeks) 

Treatment 

  

Control Low CL High CL MH-LL MH-SNP 

ONL 

Thickness 

 

2 37.09 ± 0.06
 

34.12 ± 0.61
 

33.71 ± 0.58
 

30.95 ± 0.43
 

29.40 ± 3.75
 

4 36.77 ± 1.47 36.46 ± 1.70 31.80 ± 2.09 34.14 ± 2.53 32.89 ± 0.42 

ONL 

Nuclei 

 

2 116 ± 15.95
 

111 ± 11.24
 

115 ± 0.00
 

102 ± 11.83
 

103 ± 18.21
 

4 126 ± 1.48 107.58 ± 7.53 104 ± 4.79 106 ± 4.97 98 ± 19.94 

Table 2. Retinal morphometric measurements (central region) performed in Atlantic cod kept under control 

conditions, green cathode light (Low CL and High CL) and metal halide light (MH-SNP and MH-LL) for two and 

four weeks following light onset. Parameters measured include the thickness (µm) of the outer nuclear layer 

(ONL) and the number of ONL nuclei / 50 µm. Data is presented as the mean ± SD (n = 2, 5 fish / replicate).  
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Figure 4. Population feeding behaviour in Atlantic cod kept under different lighting 

treatments. Data presented as mean feed rate (% body weight/day) per tank (n = 2) ± 

SD. Dark bars indicate baseline feeding levels, light bars indicate a significant reduction 

from baseline levels.  
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3.4 Melatonin 

While no significant differences between treatments were observed in melatonin levels 

during the daytime, there was a significant night-time elevation in plasma melatonin 

levels in fish under all treatments except Low CL (Fig. 5). Day-time and night-time Low 

CL levels of melatonin did not significantly differ from other treatments at those 

timepoints however.  
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Figure 5. Plasma melatonin levels sampled at day and night in Atlantic cod under 

control  conditions, green cathode light (Low CL and High CL) and metal halide (MH-

LL and MH-SNP) light. Data presented as mean ± SD (n = 2, 5 fish/replicate). 

Significant differences between day-time and night-time values are indicated by *. 

Significant differences between light treatments at a given time-point are indicated by 

different superscripts. 
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3.5 Survival and SGR 

Survival rate over the trial period was 100%. No significant differences were found 

between treatments for SGR (Table 3), mean SGR ranged between -0.05 ± 0.1 (MH-LL) 

and 0.58 ± 0.14 % day 
-1

 (Control). 

 

 

Treatment SGR 

Replicate 1 Replicate 2 

Control 0.33 ± 0.06 0.58 ± 0.14 

Low CL 0.38 ± 0.06 0.16 ± 0.12 

High CL 0.30 ± 0.11 0.21 ± 0.10 

MH-LL -0.05 ± 0.10 0.27 ± 0.09 

MH-SNP* 0.37 ± 0.12 0.16 ± 0.06 

Table 3. Specific growth rate (% body weight / day) of Atlantic cod kept under 

different lighting treatments for four weeks. Data presented as treatment replicate 

mean ± SE (n = 20). Treatments which exhibit a significant replicate difference are 

indicated by *.  
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4. Discussion 

Photoperiod manipulation is used extensively throughout the aquaculture industry to 

induce out of season spawning, to control the timing and completion of smoltification in 

salmonids and suppress early maturation (Endal et al., 2000; Bromage et al., 2001; 

Davie et al., 2007a; Norberg et al., 2004). However, whilst considered to be less 

invasive than other techniques used to control puberty such as hormonal sex reversal for 

monosex production (Piferrer, 2001; Hendry et al., 2003; Taranger et al., 2010) or 

chromosome manipulation for sterility induction (Benfey, 2001; Tiwary et al., 2004; 

Maxime, 2008), studies investigating the potential ‗welfare‘ impacts of such technology 

on fish are lacking. This is especially important in Atlantic cod which are being exposed 

to increasingly higher light intensities during on-growing in open cage systems owing to 

the relatively unsuccessful outcomes of photoperiodic manipulations (Taranger et al., 

2006) in comparison to tank based studies where 100% suppression has been 

demonstrated (Davie et al., 2007a). 

Lighting treatments tested in the current study were designed to recreate the light 

intensities within a 1.5 m distance from a light source in a cage environment. MH lights 

delivered a much brighter light intensity (x 20) across a broad range of wavelengths in 

comparison to the CL technology. Surprisingly, no significant differences between 

treatments were observed in the stress response (cortisol and glucose) following light 

onset however cortisol did increase significantly with respect to basal levels in the CL 

treatment (at 1 week). Although treatment differences were not apparent, it must be 

recognised that the large variability observed between individuals in conjunction with 

the limited sampling size may have prevented the detection of further differences. When 

the current levels of cortisol are compared to other studies however, it could be 

concluded that their range is not indicative of stress. The maximum mean cortisol value 
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recorded was 12.3 ng ml
-1

 (Low CL treatment) which when compared to studies by King 

& Berlinsky (2006a), King et al. (2006b) and Perez-Casanova et al. (2008a) is far below 

the level representative of stress in cod. Although there are no studies specifically 

addressing the effect of light on stress levels of cod of a similar size, studies of stressors 

such as netting, transport and grading on smaller cod (~40 g) have been found to elicit a 

peak in plasma cortisol concentration of over 60 ng ml
-1

 after 30-60 minutes, with a 

return to basal levels after 24 hours (King, 2006a). Also a temperature rise of up to 16
0
C 

resulted in cortisol levels of over 50 ng ml
-1 

(Perez-Casanova et al, 2008b). These results 

are similar to cortisol levels reported in other teleosts subjected to similar stressors 

(Barton & Iwama., 1991). Migaud et al. (2007) observed cortisol levels in Atlantic 

salmon following light onset reached a peak value > 100 ng ml
-1

. In haddock, 

Melanogrammus aeglefinus L., a 30 second net stressor resulted in a peak of 86 ng.ml
-1

 

plasma cortisol after 6 hours (King et al., 2006b). This said however, in our study it must 

be considered that since measurements were performed at 3 hours following light onset, 

a temporary elevation within this window could have been missed (King et al., 2006b). 

It would be of interest to Glucose levels also showed large variability. According to 

Perez-Casanova et al. (2008a), the maximum mean value recorded in our present study 

(74.91 mg dL
-1

, control) was within the basal range (60-100 mg dL
-
1) for cod maintained 

under their control conditions. The relevance of glucose as a reliable indicator of stress 

in gadoids has been questioned however (Perez-Casanova et al., 2008b). 

Light treatments tested in this current study also appeared to have no significant 

effects on the innate immune response, studied through lysozyme activity. In fish, 

lysozyme activity is usually measured by the turbidity assay adapted from Lygren et al. 

(1999) however due to difficulties encountered with this methodology when used with 

cod, an agar plate (lyso-plate) method was developed and refined from Osserman & 
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Lawlor (1966). Very few studies have been performed so far specifically looking at the 

immune response in this species, and it is therefore difficult to interpret results when no 

baseline levels have been published (Bowden, 2008). Regarding literature relating to the 

effects of stressors on lysozyme activity, results are very variable. For example, Migaud 

et al. (2007) demonstrated that constant high light intensity had no effect on lysozyme 

activity in Atlantic salmon. In contrast however, Demers & Bayne (1997) found that an 

elevation in plasma lysozyme was the typical immediate response of rainbow trout, 

Oncorhynchus mykiss (Walbaum), to acute handling stress. Also, Taylor et al. (2007) 

demonstrated elevated plasma lysozyme activity in rainbow trout following seawater 

transfer. Clearly the type and duration of an environmental change/stressor and the fish 

species involved, will determine if there is a consequent change in lysozyme activity. 

Future studies of interest may involve performing direct measurements of the immune 

system following bacterial challenge in order to assess welfare issues such as reduced 

immune function as a consequence of lighting treatments (Dautremepuits et al., 2006). 

In terms of retinal morphology, there were no significant differences in outer 

nuclear layer (ONL) thickness or ONL nuclei in any of the treatments, a reduction in 

ONL thickness or number of nuclei could be considered a sign of retinal damage (Allen 

& Hallows, 1997; Vihtelic & Hyde, 2000; Dawson et al., 2001) however this was not 

apparent in these fish following light exposure. 

Regarding feeding activity, acute effects of the light treatments on population 

feeding response were characterised by a transient reduction in feeding, in all treatments, 

though normal feeding resumed within a few days (approximately 8 days in fish exposed 

to MH light). Interestingly, the time needed to return to normal feeding behaviour 

appeared to be related to the light intensity of the treatments taking 5, 6 and 8 days under 

the CL treatments (0.5, 0.8 watts m
-2

), MH-LL (16.6 watts m
-2

) and MH-SNP treatments, 
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respectively. It must be noted that although feeding activity remained steady 

immediately following light onset in control fish (SNP treatment), a reduction at day 3 

was observed that can not be explained and might simply reflect natural patterns of 

variation in feed intake (Kadri et al., 1996; Lokkeborg, 1998). 

Interestingly, with respect to the perception of the light by the cod populations, 

under the metal halide and High CL treatments, a day/night rhythm of plasma melatonin 

levels was still maintained, probably resulting from increased light intensities at day due 

to ambient light pollution entering the tanks through the feeding hatch. These results 

confirm previously obtained in vitro pineal results on the effects of day/night ratio on 

melatonin production (Vera et al., 2010). The potential entrainment of melatonin rhythm 

by internal clocks was ruled out as when Atlantic cod were subjected to constant lighting 

in fully light-proofed tanks on the same site: melatonin levels remained constant (Davie, 

2005). 

As a whole, results from this study indicate that the light treatments tested, which 

mimicked cod light exposure at night time in an open cage system when maintained 

within 1.5 m of the light unit, did not have any clear chronic effects on the stress 

response, immune function, retinal structure and feeding activity of cod. These are 

important physiological parameters described in the five freedoms of welfare (FAWC, 

2009) and have relevant implications for cod culture where increasing light intensities 

are being used in an attempt to make the response to photoperiod management more 

consistent. Further studies should be carried out to determine if there are light intensity 

thresholds above which the welfare of fish could be compromised as well as testing the 

effects of various spectral profiles.  
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Abstract 

Sexual maturation of Atlantic cod, Gadus morhua, is a major problem during 

commercial on-growing as fish divert energy away from growth into gonadal 

development. While the photoperiod regimes that inhibit maturation are well described, 

when manipulations are applied in a commercial cage setting, using standard lighting 

technology, maturation is not completely inhibited. It has been hypothesised that  the 

enhanced light sensitivity of cod allows it to perceive ambient illumination over the 

artificial lighting. Therefore, a 13 month trial was conducted to determine the 

effectiveness of net shading ambient photoperiod in addition to constant lighting to 

suppress maturation of cod in outdoor conditions. By reducing the relative difference 

between day and night light intensities, it was hypothesised that maturation in cod could 

be inhibited as fish could not perceive, and thus use the ‗ambient daylength‘ signal to 

entrain their reproductive cycle. Two outdoor tanks were covered in either a low density 

(70% reduction in ambient illumination) or high density (90% reduction in ambient 

illumination) shade netting and then illuminated continuously by cathode lighting. These 

were compared to two indoor tanks in which ambient light was excluded and instead 

were illuminated by similar lighting running either under a simulated natural 

photoperiod or continuous illumination. The study demonstrated that shade netting could 

improve the relative performance of artificial lighting outdoors from <2% in a non 

shaded system to 6.6% (low shade treatment) and 31.3% (high shade treatment) of the 

day light intensity. Importantly, both shading treatments in combination with constant 

light were effective at suppressing sexual development as confirmed through histology 

and reduced gonadosomatic index (female mean ≤ 2.18%, male mean ≤ 1.39%), oocyte 

diameter (mean <400µm) and sex steroid profiles (female 17β-estradiol mean ≤ 0.24 

ng.ml
-1

, male 11-ketotestosterone mean ≤3.35 ng.ml
-1

) as well as enhanced growth. 
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These results are a promising demonstration of the potential value of shading systems to 

enhance the efficacy of photoperiod control.  

1. Introduction 

Sexual maturation during on-growing is a major problem in Atlantic cod farming as fish 

allocate considerable amounts of energy into gonadal development which results in 

reduced flesh quality, increased mortality and severely impeded growth (Hansen et al., 

2001; Karlsen et al., 2006; Davie et al., 2007b) as seen in other temperate species like 

Atlantic salmon, Salmo salar (Oppedal et al., 1997; Endal et al., 2000). Furthermore, 

broadcast spawning of on-growing cod in cages results in the release of gametes into the 

surrounding environment that could lead to genetic interaction with native stocks 

(Jorstad et al., 2008). Prevention of sexual maturation is thus crucial to the profitability 

and sustainability of cod farming.  

 Wild cod stocks have been found to mature from two to four years of age or even 

later depending on location (Cook et al., 1999; Berg & Albert, 2003) while under the 

favourable conditions experienced in culture (i.e. high food abundance) cod are capable 

of maturing at the end of their first year (Davie  et al., 2007a). Photoperiod manipulation 

appears to be the only commercially viable strategy to combat this culture-related 

―precocious‖ maturation (Davie et al., 2007a; Taranger et al., 2006, 2010) although 

sterility through triploidisation is being explored as an alternative solution (Trippel et al., 

2008). In temperate latitudes, the seasonally changing pattern of daylength is generally 

accepted to be the key environmental regulator of puberty in gadoids, salmonids, bass, 

breams and flatfish (Bromage et al., 2001; Carrillo et al., 2009; Migaud et al., 2010). In 

cod, it is the decreasing daylength from summer solstice (Davie et al., 2007a) which acts 

as the ‗proximate‘ cue for individuals to enter into puberty through stimulation of the 

brain pituitary gonadal (BPG) axis which in turn regulates gonadal development 
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(Migaud et al., 2010). Research has shown that exposure of  fish to continuous light 

from the summer solstice prior to likely maturation, effectively masking the daylength 

decrease, leads to full suppression of puberty in cod in enclosed tanks (Hansen et al., 

2001; Davie et al., 2007a). However, such treatments are far less efficient when applied 

outdoors using standard submersible lighting systems and maturation may at best be 

delayed by four to five months (Taranger et al., 2006). In contrast, when such 

photoperiod manipulations are applied to farmed Atlantic salmon (Endal et al., 2000; 

Hansen et al., 2008), they have been consistently shown to arrest maturation and are thus 

routinely applied in the industry. Similarly, photoperiod regimes have been designed for 

European sea bass, Dicentrarchus labrax (Begtashi et al., 2004; Rodríguez et al., 2005) 

and Senegalese sole, Solea senegalensis (García López et al., 2006). This differential 

response between species led to the hypothesis that cod might have an enhanced 

sensitivity to light (Davie et al., 2007a) as compared to other commercially important 

species. This was confirmed by Vera et al. (2010) who studied the response of the cod 

pineal gland to light ex vivo and showed that cod would be 100 times more ―sensitive‖ to 

light in comparison to European sea bass and 10,000 times more ―sensitive‖ than 

Atlantic salmon. However, more importantly, the same authors demonstrated that this 

light sensitivity in cod is not a definable single intensity, rather it appears that the 

minimum detection of light is dependent on the intensity of light experienced during the 

day in a process the authors referred to as ―relative photoreception‖. If daylight intensity 

is reduced, so the threshold of night is also reduced which opens an interesting 

possibility when this relationship is translated into the cage farming context. If ambient 

daylight intensity is reduced, for example by shading, so the efficacy of artificial light 

may be improved at night as the difference between the two intensities, i.e. day vs. 

artificial light, is reduced. 
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 Therefore, the aim of this study was to investigate the efficacy of two different 

levels of net shading to suppress daylight in combination with constant artificial lighting 

in an outdoor culture system on the prevention of sexual maturation in two-year old 

Atlantic cod. The effects of shading were assessed through measurement of a series of 

parameters including growth performance, gonadal development and plasma sex steroid 

levels. 

2. Materials and Methods 

2.1 Fish Stock and Initial Rearing Conditions 

The trial was conducted at the Machrihanish Marine Environmental Research Laboratory 

(MERL, Scotland, 55:44
0
N, 5:44

0
W) between the 18

th
 June 2008 and the 24

th
 August 

2009. Groups of immature (before 1
st
 maturation) mixed sex Atlantic cod, produced by 

MERL (411 ± 5.59 g, mean wet weight ± SEM) previously reared in tanks under 

simulated natural photoperiod (SNP) and natural temperature regimes, were randomly 

stocked into two indoor and two outdoor circular tanks (10.6 m
3
, 9.4m circumference, 

water depth of 1.5 m). 187 cod were stocked into each of the two indoor tanks and 97 

cod were stocked into each of the two outdoor tanks (18
th

 June 2008). Owing to fish 

availability, it was not possible to stock as many fish in the outdoor tanks, and it was 

thus decided that high resolution sampling was more important in the indoor tanks to 

provide a clear benchmark of maturing and immature populations. Within each of the 

four populations, 20 individuals were selected at random and implanted with a passive 

integrated transponder tag (Avid Plc, Uckfield, UK). Tanks were supplied with fresh 

seawater, filtered to 60µm, at a flow rate of approximately 50 L min
-1

. Surface skimming 

egg collectors as described in Thorsen et al. (2003) were fitted at the outflow of all four 

tanks from 28
th

 January until 30
th

 June 09 and were inspected daily.  
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2.2 Experimental Conditions 

Fish were initially acclimated for 5 weeks under an SNP regime, at this time indoor and 

outdoor tanks were fitted with lids and lighting was provided by two 9W fluorescent 

bulbs (Osram Dulux, S G23 energy saver, UK) located on the underside of the tank lids. 

Their operation was regulated by digital timers which were adjusted weekly to match the 

ambient sunrise/sunset times through the course of the trial. Intensity measured at the 

water surface was 0.32 watts m
-2

 when illuminated. Experimental light units were 

positioned in tanks across the centre on the water surface and secured at their ends 

however these remained off during acclimation.  

 Experimental treatments commenced on the 24th July and were maintained for 

13 months. The four treatments tested were: 1) Indoor simulated natural photoperiod 

(indoor SNP), 2) Indoor constant light (indoor LL), 3) Outdoor, LL and 70 % shade 

(outdoor low shade LL) and 4) Outdoor, LL and 94 % shade (outdoor high shade LL). 

Lids remained on the indoor tanks to light-proof them from any extraneous ambient 

illumination while the lids were removed from the outdoor tanks and shade netting was 

stretched over their open surface and secured around the edge (see Appendix 4 for a 

schematic diagram of shading and light unit set-up). In both cases the shade netting was 

a knitted polyethylene monofilament mesh, however the measurement of shading effect 

differed from the manufacturers specifications with the low shade netting being provided 

by LBS Garden Houseware, Colne, UK (marketed as 40% shading) while the high shade 

netting was provided by Aaask, Glasgow, UK, (marketed as 90% shading).  Lighting in 

all cases was provided by one green cathode light unit per tank (232W, Intravision Aqua, 

Oslo, Norway). The wavelength of peak emission was 546 nm and the full width at half 

maximum (FWHM: description of the range in light wavelength with an intensity half 

that of the peak wavelength) was 8.5nm. 
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 Light intensity in the tanks was measured during the daytime at solar noon and at 

midnight on the 24th July 2008. Down-welling intensity measurements (1.5 m below the 

water surface) were taken beneath the light source, mid way between the light and the 

tank edge (1.5 m from centre) and at the tank edge (3 m from centre). Light intensity 

(watts·m
-2

) was measured using a single channel light sensor with a non biased spectral 

range of 400-740 nm (Skye Instruments Ltd., Powys, UK) and calibrated to National 

Physics Laboratory (UK) standards. The proportion of night-time illumination relative to 

day in each treatment was calculated as follows: Night-time illumination = (mean night 

intensity / mean day intensity) *100. In the outdoor low shade LL tank, night-time 

illumination (1.55 ± 1.14 watts m
-2

) represented 6.6% that of daytime light levels (23.5 ± 

9.56 watts m
-2

) whereas in the outdoor high shade tank LL, night levels (1.49 ± 1.11 

watts m
-2

) were equal to 31.3 % of the day levels (4.77 ± 1.70 watts m
-2

). In the absence 

of shading, night levels (1.55± 0.66 watts m
-2

) were equal to only 2% of the day levels 

(78.93 ± 2.02 watts m
-2

). In the indoor tanks illumination was at 0.54 ± 0.32 watts m
-2

 

during the day in both the LL and SNP tanks and 0.57 ± 0.38 watts m
-2

 or 0 ± 0 watts m
-2 

at night in the LL and SNP tanks respectively. 

 Fish were fed to satiation on commercial cod diet (Biomar, Grangemouth, UK) 

according to the manufacturer‘s guidelines via clockwork belt-feeders throughout the 

ambient daylight period. Owing to an outbreak of furunculosus in the indoor treatment 

tanks at the start of the trial an oral antibiotic treatment was prescribed by a veterinarian 

(oxytetracyline, 100 mg/kg fish weight) and administered for 5 days on, 5 days off, 5 

days on, starting on the 27
th

 August 2008. All procedures were performed in accordance 

with the Animals (Scientific Procedures) Act, UK, 1986 under the approval of the local 

ethical review board. 
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2.3 Sampling Procedure 

A basal (pre-treatment) sample was taken on the 24
th

 July 2008 where 20 fish were 

sacrificed at random (7♀, 13♂). Blood was withdrawn from the blood vessels in the 

caudal peduncle using a 2 ml syringe and 23G sterile hypodermic needle, round weight 

(± 0.1g) was measured and gonads were removed and fixed for histological assessment. 

The data from these fish was applied to all treatments. Then in August and every two 

months thereafter PIT-tagged fish were anaesthetised (1:10,000 concentration of 2-

phenoxyethanol, Sigma-Aldrich Co Ltd, Poole, UK) prior to blood being sampled and 

round weight and total length being measured. PIT-tagged fish which died during the 

trial were removed from the dataset (data from 4 to 8 individuals/sex/treatment were 

analysed, Table 1). TGCw was calculated for tagged fish every two months from August 

2008 until the following August 2009 according to the equation: (( weightend - 

 weightstart)*1000)/degree days. Furthermore at these time-points, 10-12 fish (un-

tagged) were sacrificed at random from each indoor and outdoor tank.  On the 

intervening months, an additional 12 fish were sampled from the two indoor tanks.  Due 

to the lack of clear external sexual dimorphism it was not always possible to get a 

balanced sex ratio (Table 1). Sacrificed fish were blood sampled and measured for whole 

body weight (± 0.1 g) and total length (± 1 mm) before having their gonads dissected 

and weighed and a sample taken and fixed in 10 % neutral buffered formalin. In all cases 

the chilled blood samples were later centrifuged at 1200 g for 15 min and the resulting 

plasma was aliquoted and stored at -70 
0
C for subsequent steroid analyses. In addition, 

10-18 fish were blood sampled in August 2009 in each experimental tank at day 

(between 10:00-14:00 pm) and night (between 01:00 – 03:00 am) for melatonin analysis. 

Night samples in the indoor SNP population were performed under the illumination of 

dim red light.   
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2.4 Analyses 

Plasma levels of testosterone and 17β-estradiol (E2) were measured by 

radioimmunoassay (RIA) according to Duston & Bromage (1987). Plasma levels of 11-

ketotestosterone (11-KT) were measured by RIA according to Fostier et al. (1982), 

following a parallelism test to confirm that serial dilutions of cod plasma extracts and 

hormone standards were immunologically comparable. In order to assess how fish 

perceived the light regimes and potential differences between day and night light 

intensities, melatonin was analysed by radioimmunoassay adapted from Fraser et al. 

(1983) and validated for use in cod by Porter et al. (2000). Intra- and inter-assay 

coefficients of variation were 3.73, 3.97, 3.13 and 17.02%, and 17.25, 5.08, 10.88 and 

23.33% for T, E2, 11-KT and melatonin respectively (n=2 to 8 assays for each hormone). 

 The diameter of dissociated, fixed oocytes was measured by image analysis using 

a protocol adapted from Thorsen & Kjesbu (2001). Measurements (mean of 2/oocyte) 

were done in a random sample of circa 50 oocytes/fish gonad using a digital image 

processing software (Image Pro Plus
TM

, Media Cybernectics, Silver Spring, Maryland, 

USA). From this sample the mean ± SEM of the 10 largest oocytes was calculated and 

designated as the leading cohort or G1 oocytes (Thorsen & Kjesbu 2001). It was not 

possible to perform measurements of oocyte diameter before September 2008 or after 

June 2009 as oocytes were too small to be processed accurately (< 152µm). Sections of 

the same ovarian tissue sample, following fixation in 10 % neutral buffered formalin, 

were also dehydrated and embedded in paraffin wax, 5 µm sections were then cut and 

stained using haemotoxylin and eosin. Sections were examined under a light microscope 

classified into one of seven stages (see Table 2) with reference to Dahle et al. (2003) and 

Tomkiewicz et al. (2003). Male development was not considered due to the complicated 
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gradient of spermatogonial development in the species preventing easy classification of a 

specific developmental stage (Almeida et al., 2008). 

2.5 Data and statistical analyses 

Statistical analysis was performed with MINITAB 
®
 version 15.0 (Minitab Ltd., 

Coventry, UK). All data sets were tested for normality using the Kolmogorov–Smirnov 

test and homogeneity of variances using Bartlett‘s test, and if necessary were log or 

arcsine-transformed when normality and/or homogeneity of variance was violated. Two 

sets of data were analysed differently: data obtained from PIT-tagged fish (weight and 

sex steroid data) were analysed using a General Linear Model using individuals as a 

covariate followed by Tukey post hoc test to analyse time by treatment interaction; data 

from sacrificed fish (not tagged, weight, GSI, sex steroid and melatonin) were analysed 

by one way ANOVA to test for treatment effects. In all cases a significance level of 

p<0.05 was set. Baseline data (collected in July 2008) were pooled according to sex for 

weight, histology and sex steroid profiles. Data are presented as mean ± SE of the mean.   
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Indoor SNP Indoor  LL 

Outdoor Low Shade 

LL 

Outdoor High Shade 

LL 

 Sacrificed Tagged Sacrificed Tagged Sacrificed Tagged Sacrificed Tagged 

 ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

Jul 20 fish sacrificed (7 females, 13 males) 

Aug 6 6 6 6 6 6 6 5 3 7 7 7 3 7 3 8 

Sep 6 6   6 6           

Oct 6 6 6 6 8 6 6 4 5 5 6 7 5 5 3 8 

Nov 6 6   6 6           

Dec 6 6 6 6 6 7 6 5 6 4 6 7 5 5 3 8 

Jan 6 6   6 6           

Feb 6 6 6 6 10 4 6 5 5 5 6 7 6 4 2 8 

Mar 7 6   6 6           

Apr 2 9 6 6 7 3 6 5 4 6 7 7 5 5 3 8 

May 1 8   8 1           

Jun 2 8 6 5 3 7 5 5 2 8 7 7 6 4 3 7 

Aug 6 6 5 6 6 5 6 5 11 10 7 7 3 8 3 8 

Table 1. Number of female and male cod sampled at each timepoint over the trial period, both the numbers 

of sacrificed fish and tagged fish are displayed. Data for fish sacrificed in July was pooled according to sex.  
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Stage Description 

1  Immature Oocytes are small, transparent and pre-vitellogenic with a round circumnuclear ring (cr) and attached peripheral 

nucleoli.  

2  Cortical alveoli 

(CA) 

 

Cortical alveoli present, cr has moved to the outer part of the cell and is gradually disintegrating and nucleoli are 

becoming detached. 

3  Early vitellogenesis Yolk granules are present but not filling the cytoplasm entirely. Nucleus becoming irregular in shape.  

4  Late vitellogenesis Cytoplasm is entirely filled by yolk granules. Nucleus is migrating to the animal pole. Thickening of chorion. 

5  Spawning Hydrated oocytes, postovulatory follicles (POFs) and late vitellogenic oocytes present. 

6  Spent Residual (atretic) oocytes are being reabsorbed. Abundance of POFs. Small pre-vitellogenic oocytes present.  

7  Regressing Atresia of developing oocytes.  

Table 2. Classification stages of female ovarian development with reference to Dahle et al. (2003) and Tomkiewicz et al. (2003). 

 

 



Mairi Cowan         CHAPTER 3: Effect of shading and constant light on cod maturation 

89 

Aug-Oct Oct-Dec Dec-Feb Feb-Apr Apr-Jun Jun-Aug

T
h

er
m

a
l 

G
ro

w
th

 C
o
ef

fi
ci

en
t

-1

0

1

2

3

2008 2009

a

a

ab

b

a

ab

b

b

Indoor SNP

Indoor LL

Outdoor Low Shade LL

Outdoor High Shade LL

3. Results 

3.1 Growth performance and mortality  

There were no treatment differences in TGC prior to February 2008 (Fig. 1). In the 

period from February to April 2009, individuals under indoor SNP showed significantly 

lower TGCw than the indoor LL treatment and outdoor high shade treatments. From 

April to June 2009, the TGCw of individuals under SNP increased and was significantly 

higher from that of low and high shade treatments however in the last three months of 

the trial all treatments showed comparable TGCw.  

Figure 1. Mean thermal growth coefficient (TGCw) ± SEM for tagged individuals 

(gender pooled, 10-19 individuals/time point/treatment/sex) maintained under indoor 

simulated natural photoperiod (Indoor SNP), indoor constant lighting (Indoor LL), low 

shade with constant lighting (Outdoor Low shade LL) and high shade with constant 

lighting (Outdoor High shade LL). Data presented for every two month interval. 

Differences between treatments at a given timepoint are indicated by superscripts. 
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With regard to female weight (Fig. 2), all treatments were comparable at the start of the 

trial however the weights of females under the indoor SNP treatment were significantly 

lower than the high shade treatment in April and the indoor LL treatment in May 

(sacrificed fish). By the end of the trial, weights of females under the indoor SNP and 

outdoor high shade treatment appeared to be higher than the SNP treatment (tagged fish, 

sacrificed fish) (Fig. 2 A and B). The weights of males under all treatments were 

comparable at the start of the trial however in males under the indoor SNP treatment, 

weights were significantly lower in comparison to the indoor LL treatment in December, 

March and May and the outdoor low shade treatment in December and April (sacrificed 

fish) (Fig. 2 C and D). By the end of the trial both shading treatments and the idoor SNP 

treatment appeared to reach a higher mean weight than the SNP treatment (tagged fish, 

sacrificed fish) (Fig. 2 C and D). 

 At the start of the trial (July – August 2008) an outbreak of furunculosis struck 

the high shade and indoor SNP tanks which led to 16% and 14% mortality losses 

respectively in this period. An in-feed antibiotic treatment prevented further mortality or 

spread to other treatments and growth (TGCw and weight) remained comparable when 

compared to indoor LL and the low shade treatments at this time. Losses were not 

replaced as photoperiod treatments had already begun. Over the remaining course of the 

trial mortality rates ranged between 5% (high shade) and 13% (low shade).   
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Figure 2. Wet weight of female (A-tagged, B-sacrificed) and male (C-tagged, D-sacrificed) fish maintained under indoor (SNP or 

LL) or outdoor (low/high shade) lighting treatments. Data are presented as mean ± SEM for every two month interval. On the 

intervening months, only sacrificed fish from the two indoor treatments are displayed (see Table 1 for number of fish sampled). 

Differences between treatments at each time point are indicated by superscripts (GLM and one way ANOVA for tagged and 

sacrificed fish respectively). Grey bar indicates period of spawning in the indoor SNP treatment. See appendices 5-8 for detailed 

tables of results. 
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3.2 Gonadal Development 

Gamete release was observed in the indoor SNP treatment with eggs being collected 

from February 5
th

 to May 11th and peak activity recorded during March and April. No 

spawned eggs were collected from the indoor LL treatment or the two outdoor shading 

treatments however two spermiating males were observed in February in the indoor LL 

treatment.  

 Females under indoor SNP showed a significant increase in GSI in November 

(with respect to indoor LL) with a maximum mean value reached in March 2009 (21.49 

± 6.29 %) (Fig. 3A). Male GSI increased in December with the highest mean reached in 

February (6.9 ± 2.4 %)(Fig. 3B). Male and female GSI remained low in the indoor LL 

and outdoor low shade and high shade treatments (<1.35 %, <2.14 %, respectively).  

 G1 oocyte diameters were comparable in all treatments up to October 2008, 

thereafter diameter in individuals under the indoor SNP treatment increased from 

November 2008 onwards with all individuals having vitellogenic oocytes >350µm from 

December 2008 onwards (Fig. 4). In March 2009, all indoor SNP individuals contained 

oocytes with a large diameter, indicating hydration and spawning. An indoor SNP 

individual with large oocyte diameter (1636 µm) was also recorded in May 2009, 

however histology and GSI measurements confirmed that this individual was mainly 

spent with only some remaining large oocytes. Limited numbers of individuals from the 

high shade and low shade treatments had early vitellogenic oocytes from December to 

June 2009 (mean G1 diameters ≤ 383µm).  A number of indoor LL individuals also had 

early vitellogenic oocytes in January and April 2009 (G1 diameters ≤ 426 µm). There 

was however no clear full commitment to maturation in fish under the shading and 

indoor LL treatments, and no significant differences in oocyte diameter were recorded 

between these three treatments. 
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 Histological examination of ovarian development supported the G1 oocyte 

diameter analysis (Figure 5). Individuals under the indoor SNP treatment displayed a 

typical reproductive cycle with the majority of individuals spawning in March. Spent 

gonads were then observed from April onwards. There were indications of early stages 

of vitellogenesis in the other treatments (indoor LL, low shade, high shade) and even one 

female with hydrated oocyte in the indoor LL in April and one female with late 

vitellogenic oocytes in the high shade treatment in February. However there was also 

evidence of regression (atresia) from December onwards in the LL and low shade 

treatments and in February in the high shade treatment. 
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Figure 3. Female (A) and male (B) mean individual GSI ± SEM for sacrificed 

individuals maintained under one of four lighting treatments (see Table 1 for number of 

fish sampled). Differences between treatments at a given timepoint are indicated by 

superscripts. Grey bar indicates period of spawning in the indoor SNP treatment. See 

appendices 9 and 10 for detailed tables of results. 
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Figure 4. Mean oocyte diameter of leading cohort ± SE (see Table 1 for number of fish 

sacrificed). Grey indicates period of spawning in the indoor SNP treatment. Development 

size classifications are in reference with the definitions of Kjesbu (1991). See appendix 

11 for a detailed tables of results. 

 

 



Mairi Cowan        CHAPTER 3: Effect of shading and constant light on cod maturation 

96 

 

  
Figure 5. Gonadal staging of sacrificed female individuals maintained under all 

lighting treatments (A-D) (see Table 1 for number of fish analysed). Grey bar 

indicates period of spawning in the indoor SNP treatment. 
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3.3 Sex steroid profiles 

In indoor SNP females, plasma testosterone (T) levels began to rise in September 2008 

and significantly peaked in December (tagged fish, circa 1.4 ng.ml
-1

) or from November 

to March (sacrificed fish, circa 0.8-1 ng.ml
-1

) with respect to the LL treatment (Fig. 6A 

and B). T levels in SNP fish then decreased by the end of trial. Significant differences 

were also observed between indoor SNP and outdoor shading treatments in tagged fish 

(high shade treatment in October) and in sacrificed fish (from October to March except 

in December). Plasma 17β-estradiol (E2) levels showed a significant elevation in both 

tagged and sacrificed SNP females with peak levels of circa 1.2-2.3 ng.ml
-1

 in February 

and from January to March respectively (Fig. 6C and D). E2 levels in indoor LL fish 

remained <0.25 ng.ml
-1

 and there were no significant differences between these and the 

outdoor shading treatments throughout the period of indoor SNP spawning. However, a 

significant rise was observed in June in the outdoor low shade treatment relative to 

indoor SNP and LL treatments. In indoor SNP males, plasma T levels started to increase 

in October and reached peak levels in February (tagged fish, circa 2.2 ng.ml
-1

) and 

January to March (sacrificed fish, circa 2-3 ng.ml
-1

) before returning to basal levels from 

May onwards (Fig. 7A and B). In tagged fish, T levels in the indoor SNP treatment were 

significantly higher than the outdoor high shade treatment in October and both shade 

treatments in February. In sacrificed fish, T levels in SNP fish remained significantly 

higher than all other treatments from September to March. There was no difference in 

plasma 11-ketotestosterone (11-KT) concentrations between any treatments until 

February (tagged fish, circa 7 ng.ml
-1

) and January to March (sacrificed fish, circa 4-6 

ng.ml
-1

) when levels in the indoor SNP population significantly peaked compared to 

outdoor shading treatments (Fig. 7C and D).  
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Figure 6. Plasma testosterone (A-tagged, B-sacrificed) and 17β-estradiol (C-tagged, D-

sacrificed) levels in female fish maintained under indoor (SNP or LL) or outdoor 

(low/high shade) lighting treatments. Data are presented as mean ± SEM for every two 

month interval. On the intervening months, only sacrificed fish from the two indoor 

treatments were measured (see Table 1 for number of fish sampled). Significant 

differences between treatments at each time point are indicated by superscripts (GLM 

and one way ANOVA for tagged and sacrificed fish respectively). Grey bar indicates 

period of spawning in the indoor SNP treatment. See appendices 12-15 for detailed 

tables of results. 
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Figure 7. Plasma testosterone (A-tagged, B-sacrificed) and 11-ketotestosterone (C-

tagged, D-sacrificed) levels in male fish maintained under indoor (SNP or LL) or 

outdoor (low/high shade) lighting treatment. Data are presented as mean ± SEM for 

every two month interval. On the intervening months, only sacrificed fish from the two 

indoor treatments were measured (see Table 1 for number of fish sampled). Significant 

differences between treatments at each time point are indicated by superscripts (GLM 

and one way ANOVA for tagged and sacrificed fish respectively). Grey bar indicates 

period of spawning in the indoor SNP treatment. See appendices 16-19 for detailed 

table of results. 
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3.4 Melatonin  

Indoor SNP fish showed a significant night-time elevation in plasma melatonin (40.67 ± 

4.91 and 69.22 ± 11.09 pg·ml
-1

 for day and night respectively)(Fig. 8). There were no 

significant differences between day or night plasma concentrations in melatonin 

observed in fish maintained under the indoor LL or either outdoor shading treatments 

(mean melatonin/treatments ≤ 43.86 pg.ml
-1

). 

 

 

 

  

Figure 8. Plasma melatonin levels (mean ± SE, n = 10-18 for day and night) in fish 

maintained under four different lighting treatments. Significant night-time elevations 

relative to day are indicated by an asterix. 
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4. Discussion 

This current study is the first to demonstrate that shading in combination with 

continuous artificial lighting in outdoor conditions can successfully suppress sexual 

maturation in 2 year old Atlantic cod. Both the outdoor high and low shading treatments 

tested were shown to be effective at suppressing sexual maturation when compared to 

the two indoor populations which either fully matured (SNP) or remained immature (LL) 

during the course of the experiment.  

 As expected, all fish exposed to the indoor SNP photoperiod regime matured and 

spawned as demonstrated by fertilised eggs collected in the tank outflow from February 

to May 2009. Such a spawning season is comparable to that reported for wild cod (Vitale 

et al., 2005) and past studies of captive cod reared in sea cages (Taranger et al., 2006) 

and tanks (Kjesbu, 1989; Norberg et al., 2004; Davie et al., 2007a). The temporal 

increase in GSI observed in our study is in accordance with previous reported data 

although our absolute female GSI values were higher (~12 % in Davie et al., 2007a) 

which could be a reflection of sampling female ovaries that contain hydrated oocytes. 

With the exception of two spermiating males and one female with hydrated oocytes in 

the indoor LL treatment, no spawning activity was observed in individuals under any of 

the indoor or outdoor LL treatments. Accordingly female mean GSI values remained 

below a mean of 2.2 %, male values remained below a mean of 1.4 %. These values are 

significantly lower than those recorded in spawning siblings and are in keeping with 

levels reported for immature cod in previous light manipulation studies (Hansen et al., 

2001; Karlsen et al., 2006; Davie et al., 2007a).  

 Histological analysis of ovarian development (both measurement of leading 

cohort oocyte diameters and histology) was used to classify the reproductive 

development within each of the treatment populations. In the indoor SNP females, 
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measurements of G1 oocyte diameter showed a steady increase in vitellogenic oocytes 

from December onwards, peaking in March, which correlated with the spawning activity 

recorded. Conversely mean oocyte diameter did not exceed 400 µm in the indoor LL and 

outdoor shading treatments. It appears from the literature that the threshold for 

vitellogenic oocytes lies somewhere between 350 and 400 µm (Kjesbu 1991; Taranger et 

al., 2006) thus oogenesis would not have been initiated in all LL treatments. It must be 

acknowledged that in the present study, oocyte measurements were not corrected for the 

possible shrinkage owing to fixation (Kjesbu, 1994; Dahle et al., 2003). However, as this 

shrinkage is usually in the region of 5%, the current figures will still give an accurate 

comparison of oocyte development between females. Histological examination of the 

ovarian development confirmed normal development in indoor SNP females following 

the basic teleost pattern (Coward et al., 2002). Vitellogenesis (early and late) 

corresponding to the critical period of oocyte growth, was apparent in females in 

November and continued through to March after which all females sampled displayed 

spent ovaries containing oocytes and post-ovulatory follicles in resorption accompanied 

by primary growth oocytes (Kjesbu & Kryvi 1989). In contrast, the majority of females 

exposed to LL treatments did not progress beyond the cortical alveoli phase and from 

December 2008 onwards, a number of females under the LL conditions had ovaries 

dominated by atretic oocytes characterised by a hypertrophy of the follicular cells and 

irregular shape. This indicates that early phases of oogenesis may have been initiated but 

were then arrested with developing oocytes undergoing subsequent resorption (Miranda 

et al., 1999; Rideout et al., 2000). 

 A cycle in testosterone (♂ + ♀), 17β-estradiol (♀) and 11-ketotestosterone (♂) 

levels was observed under indoor SNP conditions with levels increasing up to the 

spawning window and decreasing to reach basal values thereafter. Treatment differences 
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were more apparent in fish which were sacrificed and had not been handled at previous 

timepoints. The repeated handling of tagged fish involving anaesthesia, weight/length 

and blood sampling throughout the trial may have had an effect on sex steroid levels. 

Furthermore sampling of tagged individuals from indoor SNP and LL fish was at lower 

resolution (every two months) than those sacrificed from these treatments (every month) 

thus peaks in sex steroid levels may have been missed. Sex steroids are known to play a 

key role in the control of gametogenesis in fish including the synthesis of vitellogenin by 

the liver which then accumulates in the oocytes (Silversand et al., 1993), and the 

multiplication of spermatogonia at the onset of spermatogenesis (11-KT, Schulz et al., 

2010). In addition, T is known to serve as a precursor for estrogens in female teleosts 

(Tanaka et al., 1992, Schulz & Miura, 2002) and potentially other androgens such as 11-

KT in male teleosts (Young et al., 2005). The T and 11-KT results (amplitudinal 

changes, peak levels and overall profiling) match previous sex steroid data however, 

absolute E2 levels measured in the current study were significantly lower than those 

previously reported for cod (Davie et al., 2007a; Norberg et al., 2004 ). This said, the 

relative change (circa 10 fold change from basal to peak levels) and profile of change 

was consistent with previous observations (Dahle et al., 2003; Norberg et al., 2004; 

Almeida et al., 2009b). The lower absolute E2 levels could be a reflection of the 

analytical methodology, age, size and/or origin of the stocks studied. In contrast to the 

indoor SNP population, sex steroid levels in fish reared under LL treatments (indoor LL 

and outdoor low & high shade LL) in general remained low. There was one notable 

difference however in June 09 where E2 (♀) in the low shade population showed a 

significant elevation with respect to indoor (both SNP and LL) levels. This hormonal 

change did not appear to correlate with GSI values measured as no significant increase 

was observed. In fact the large proportion of fish that showed atretic oocytes under the 
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LL conditions confirmed that some gonadal development had been initiated but then 

arrested which would probably be due to the lack of suitable hormonal stimulation. A 

number of authors have shown that the incidence of atresia decreases as sex steroid 

levels start to rise both in mammals (Woolveridge et al., 1999) and teleosts (Almeida et 

al., 2009b), thus in our study the lack of sex steroid surge could explain the restricted 

gonadal recruitment in the LL fish followed by apoptosis and regression.  

 The efficacy of the LL treatments was inferred by the lack of observed spawning 

in any of the three LL populations. However, the E2 fluctuation under the low shade 

treatment paralleled by the higher proportion of ―regressing‖ ovarian samples suggests 

that perhaps the relative difference within this setup was closer to a theoretical threshold 

of sensitivity than in the high shade setup. At this stage, it must be acknowledged that no 

outdoor control LL treatment (without shade netting) could be tested due to limitations 

in facility availability. Thus the effects of shading on the efficacy of the LL regime in an 

open system could not be directly confirmed especially under the increased night-time 

illumination achieved in this study (1.5 watts m
-2

) as compared to previous commercial 

trials performed in UK standard cage set up (0.13 watts m
-2

 in 25x25x15 m square pen 

when using 15x400 W metal halogen units, Migaud, per. com.). This said, the actual 

night levels relative to daylight in a control outdoor LL tank (without shade) would have 

been similar to a commercial set up previously tested depending on the cod swimming 

depth (2 % vs. 0.05-3.4 % respectively).  Based on previous tank and cage studies as 

well as industry reports, it is therefore to be expected that fish exposed to LL in an 

outdoor tank without shade would have spawned with a 3-4 month delay as seen 

previously (Taranger et al., 2006). 

 Ultimately a key outcome of such photoperiod manipulations is an improvement 

of growth performance during culture. Whilst it must be acknowledged that the 
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experimental design led to differences in stocking densities between treatments, the 

maximum densities (10 kg/m
3
 indoor vs. 7 kg/m

3
 outdoor) did not exceed levels reported 

as compromising growth performance in the species (Lambert & Dutil 2001) which 

allows for a valid comparison of performance. The improved growth, observed in the 

present study, in fish exposed to the indoor LL and outdoor high shade regimes is 

believed to be principally due to the suppression of maturation rather than direct 

photostimulation of the somatic growth axis as was proposed by Davie et al. (2007b). 

Interestingly, females from the low shade LL treatment did not show any weight 

enhancement as compared to SNP. This is surprising as although some females showed 

signs of gonadal development and sex steroid increases especially in June, no fish fully 

matured. One possible explanation could be that sexual maturation under the low shade 

LL treatment could have been delayed as described in previous cage on-growing studies 

(Taranger et al. 2006). However, while the trial could not be continued past August, due 

to limitations in stock availability, the histological analysis of females in this treatment at 

the trials end recorded a G1 oocyte diameter <300µm and showed no evidence of 

vitellogenesis that means no likelihood of spawning for at least the next 3-4 months 

(Kjesbu 1994). As for males, no significant differences in weight were observed between 

the high shade treatment and the SNP treatment however both the high shade treatment 

and the low shade treatment appeared to reach a higher wet weight than the SNP fish by 

the end of the trial. Growth rates differed between sexes in all treatments, and expecially 

in the indoor LL and outdoor high shade LL treatments with females from treatments 

being in the region of 40% bigger than males. This is in accordance with results from 

Davie et al. (2007b) in immature cod and has also been reported in turbot, Scopthalmus 

maximus (Imsland et al., 1997). Such sex differences in growth are not fully understood 

but may involve different sex specific windows of muscle fibre recruitment (Johnston et 
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al., 2003). In light of these results, the production of monosex female populations 

together with light and shading control of early maturation could become a valuable 

strategy for farmers to realise maximum growth potential of their stock, however, robust 

maturation control would be essential.  

 Plasma melatonin levels measured in this study provided as expected a day night 

rhythm present only in the indoor SNP population. There was no night-time elevation 

observed in the indoor LL or shading treatments and this is in accordance with past in 

vitro and in vivo pineal studies on cod which have shown that LL effectively suppresses 

melatonin rhythms (Porter et al., 2000; Vera et al. 2010).  

 In summary, this study demonstrated that by reducing the ambient daylight 

intensity using shade netting in combination with constant artificial light, the maturation 

of cod can be fully suppressed compared to controls reared under SNP. Both outdoor 

shade LL treatments were equally effective at suppressing gonadal development as 

shown by the GSI data. This suggests that such a difference in light intensity between 

daylight and artificial light during the subjective night was too weak a signal for the 

recruitment of cod into a reproductive cycle. However, data also suggest the low shade 

treatment (6.6%) to be closer to the threshold as shown by rise in steroid towards the end 

of the trial. Therefore, a cautious approach, prior further confirmation of the current data, 

would be to recommend using night-time illumination ≥31% of daylight (high shade 

treatment) to suppress cod maturation in outdoor set ups. This preliminary benchmark 

must be tested in a commercial setting and further refined to accurately define a cut-off 

threshold to be applied within the industry. However, as field data reveals that current 

submersible lighting technology can only achieve levels of 1-2% then the current 

findings provide a compelling argument for the development and testing of robust 

commercial scale shading to make such thresholds achievable. Another key advantage of 
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using shade netting to reduce ambient light would also be a potential reduction in the 

amount of artificial light needed to suppress maturation. This is especially important as 

increasing intensities are being used during cod on-growing in cages through higher 

number of more powerful lighting systems in attempts to reduce the rate of fish 

maturing.  
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Abstract 

The kisspeptin system has recently been identified as a key regulator of sexual 

maturation in mammals and it is believed that this system is conserved in fish. In order 

to investigate the potential role of the kisspeptin system in the entrainment of 

reproduction in Atlantic cod, Gadus morhua, qPCR assays were developed and validated 

for the Atlantic cod homologue of kisspeptin (Kiss2) and its receptor (Kissr4). 

Expression was characterised in the brain over 13 months (July 2008-August 2009) in 2 

populations of males and females: 1) a maturing population (exposed to simulated 

natural photoperiod, SNP) and 2) a maturation inhibited population (exposed to constant 

light, LL). In the initial 8 months of the trial corresponding to the onset of puberty, 

pituitary expression of gonadotropin subunit mRNA (fshβ and lhβ) was also measured. 

Results from this study indicated no clear pattern in expression of kiss2 or kissr4 

mRNAs in either population of cod, acute elevations did occur in maturing individuals 

however, namely an elevation in kiss2 in females (January) and an elevation kissr4 in 

males (November). Gonadotropin mRNA expression displayed strong amplitudinal 

changes over time, as expected, with fshβ and lhβ mRNA expression increasing towards 

spawning in maturing individuals while no significant elevations were recorded in 

immature individuals. These results do not clearly support the hypothesis that the 

kisspeptin system would play a key role in the initiation of gametogenesis, as shown in 

mammals and suggested in other fish species, by stimulating the brain pituitary gonadal 

axis at the gonadotropin releasing hormone (GnRH) level which would result in 

recruitment of fish into maturation. This work therefore opens up interesting new 

avenues to unravel the role of kisspeptins in teleost reproductive physiology.  
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1. Introduction 

In teleosts, it is well known that puberty and subsequent gonadal development are under 

the neuroendocrine control of the brain pituitary gonadal (BPG) axis (Weltzien et al., 

2004; Zohar et al., 2010). While the BPG cascade is well described in vertebrates, the 

initiation and subsequent regulation of reproduction by external factors such as 

environmental changes or adiposity remains to be defined. However, in recent years 

genetic analysis of idiopathic hypogonadotropic hypogonadism in humans has identified 

two new candidate neuropeptides, Kisspeptin and Neurokinin B, which have both been 

shown to regulate GnRH neuron activity and ultimately sexual maturation (Oakley et al., 

2009; Wakabayashi et al., 2010). Kisspeptin, in particular, has seen extensive 

investigation across several disciplines and while it appears its regulatory role in puberty 

is conserved across most of the vertebrate classes, a clear description of its mode of 

action remains to be presented (Akazome et al., 2010; Lehman et al., 2010).

 Kisspeptin (Kiss) and its receptor (Kissr), formally called G-coupled protein 

receptor-54 (GPR54), have been subjected to duplication events in the early vertebrate 

lineage with at least two isoforms of both being present in teleosts and amphibians as 

well as the platypus, a monotreme mammal (Um et al., 2010), which complicates the 

functional characterisation of this system. The two paralogous genes of kisspeptin (kiss1 

and kiss2) have been reported in a number of teleost species including Zebrafish (Danio 

rerio), Medaka, (Oryzias Latipes), Fugu (Takifugu rubripes), Goldfish (Carassius 

auratus) and European Seabass (Dicentrarchus labrax) (Felip et al., 2009; Lee et al., 

2009; Akazome et al., 2010). However, it appears that some species, like the three 

spined Stickleback (Gasterosteus aculeatus), have lost one isoform (kiss1) from their 

genome. While 4 different isoforms of Kissr (1-4) have been described in vertebrates 

only Kissr2 & 4 have been reported in teleosts with Kissr4 being the most prevalent 
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(Akazome et al., 2010). In order to discuss expression patterns and physiological 

functions of these kisspeptin forms from studies on different animal and fish species, 

systematic nomenclature in accordance with Akazome et al. (2010) has been adopted 

throughout this paper.  

Functional studies of Kisspeptin in zebrafish have revealed that the peptide-

receptor relationship appears to be rather promiscuous with both Kiss1 and Kiss2 shown 

to activate both types of kisspeptin receptors with different potencies (Lee et al., 2009). 

However, Felip et al. (2009) demonstrated that Kiss2 was a more potent inducer of 

gonadotopin expression than Kiss1 in European seabass, which has led to the suggestion 

that Kiss2 is functionally more important in fish. With regards to the receptors, studies 

performed to date have focussed on the Kissr4 with Kissr2 only found in a few species, 

leading to the suggestion that the Kissr4 form would be functionally more important . 

Parhar et al. (2004) were the first to report co-localization of kissr4 (cited as kiss1r) and 

GnRH expression in the Nile Tilapia, Oreochromis niloticus. Later studies have all 

supported this finding with significant positive correlatation between kissr4 and GnRH 

gene expression as documented in tropical species such as the zebrafish (Kitashi et al., 

2009) and cobia, Rachycentron canadum (Mohammed et al., 2007) and temperate 

species including grey mullet, Mugil cephalus (Nocillado et al., 2007), fathead minnow, 

Pimephales promelas (Filby et al., 2008) and chub mackerel, Scomber japonicus 

(Selvaraj et al., 2010).  

Interestingly, a number of studies performed in seasonal mammals have shown 

correlations between kisspeptin expression, sexual development and photoperiod (Revel 

et al., 2006a; Grieves et al., 2007; Mason et al., 2007). For example, in the Syrian 

hamster, a spring breeder, transfer from a long day to short day photoperiod inhibits 

sexual development and results in down regulation of Kiss1 expression (Revel et al., 
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2006a; 2006b, Grieves et al., 2007). Similar results were obtained in Soay sheep, an 

Autumn breeder, when transferred from a short to long day photoperiod (Wagner et al., 

2007). As in mammals,  puberty and subsequent reproduction of temperate teleosts is 

typically in tune with the seasonal environmental changes and more specifically 

photoperiod (Bromage et al., 2001). In Atlantic cod it has been demonstrated that the 

decreasing daylength after the summer solstice acts as the proximate cue to recruit 

individuals into a reproductive cycle (Davie et al., 2007a). However the cascade of 

events from seasonal perception to stimulation of the BPG has not been clearly described 

yet. Differential gene expression of the gonadotropin, follicle stimulating hormone 

(fshβ), was shown from September onwards in male cod exposed to either a continuous 

(LL) or simulated natural photoperiod (SNP) regime (Almeida et al., 2009a). This would 

suggest that between the switch of photoperiod at the summer solstice and the fshβ gene 

expression surge seen in September the GnRH neurons would have been stimulated by a 

signal peptide which is as yet unidentified, potentially kisspeptin?  

This study aimed to investigate the expression profiles of kisspeptin genes (kiss2 

and kissr4) in the brain in correlation with gonadotropin genes (fshβ, lhβ) in the pituitary 

in reproductively active (exposed to SNP) or suppressed (exposed to LL) Atlantic cod 

populations. The objective being to test the hypothesis that the kisspeptin system could 

act as a marker for the decision to commit to sexual maturation and thus differential 

expression patterns will be evident between the SNP and LL treatments prior to the onset 

of gametogenesis.  
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2. Materials and Methods 

2.1 Fish and sample collection 

The trial was conducted at the Machrihanish Marine Environmental Research Laboratory 

(MERL, Scotland, 55:44
0
N, 5:44

0
W). Prepubescent mixed sex Atlantic cod (411.0 ± 5.6 

g, mean wet weight ± SEM) were randomly allocated into two indoor tanks (10.6 m
3
, 9.4 

m circumference, 1.5 m running depth, 187 fish/tank) which were fully covered with 

light proof lids. These fish had been previously reared on site under simulated natural 

photoperiod (SNP) and ambient temperature regimes. Fish were acclimatised to their 

experimental tanks during 5 weeks (18
th

 June – 24
th

 July). On the 24
th

 July 2009, a 

baseline sample of 13 fish (6 males, 7 females) was taken before the populations were 

subjected to their experimental treatments for 13 months. Two treatments were set up: 1) 

SNP (stimulating reproduction) and 2) LL (inhibiting reproduction) with lighting in all 

cases being provided by one green cathode light unit (232 W, peak wavelength: 546 nm, 

Intravision Aqua, Oslo, Norway) per tank located across the centre of the tank and 

suspended on the water surface. Downwelling light intensity (at 1.5m, maximum tank 

depth) measured in July 2008, was 0.54 ± 0.32 watts m
-2

 (n= 3 measurements/tank) 

during the solar noon for both tanks and 0 watts m
-2

 and 0.57 ± 0.38 watts m
-2

 for the 

SNP and LL tank respectively, at midnight. Light intensity (watts.m
-2

) was measured 

using a single channel light sensor with a non biased wavelength range of 400-740 nm 

(Skye Instruments Ltd., Powys, UK). 

Every month from 24
th

 July 08 to the 24
th

 August 09, up to 12 fish were 

sacrificed from each treatment (individuals were chosen at random when sex could not 

be externally identified, Table 1). No samples were taken in July 2009, instead fish were 

maintained for an additional month and sampled in August 2009. At each time-point, 

fish were culled by lethal anaesthesia (MS222, 80ppm, Pharmaq, Fordingbridge, UK), 
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blood was withdrawn from the blood vessels in the caudal peduncle using a 2 ml syringe 

and 23G sterile hypodermic needle and stored on ice for later processing (see below). 

Cod whole brains and pituitaries were dissected and then frozen separately, within 1 

minute of dissection, over liquid nitrogen vapour before transferring to a -70°C freezer. 

Gonads were then dissected from sacrificed fish, weighed and a sample taken and fixed 

in 10 % neutral buffered formalin for histological examination.  

2.2 RNA extraction and cDNA synthesis 

RNA was extracted from whole brain samples for analysis of kiss2 and kissr4 expression 

and from pituitary samples for analysis of fshβ and lhβ expression. Extraction consisted 

in thawing brain and pituitary samples in 1 ml TRIzol® Reagent (Invitrogen, UK) per 

100 mg of tissue before being homogenized over ice. RNA was extracted in accordance 

with guidelines (Invitrogen, UK) with RNA pellets being reconstituted in 50 µl of 

MilliQ water. RNA quality checks were performed with a ND-1000 Nanodrop 

spectrophotometer (Labtech Int., East Sussex, UK). cDNA was synthesized from 1 µg of 

DNase treated (DNA-Free, Ambion, UK) total RNA using a 2 µl blend of random 

primers, 0.8 µl of 100 mM dNTPs, 1 µl of multiscribe
TM

 reverse transcriptase (50 U/µl) 

with provided buffers and nuclease free H20 in a final volume of 20 µl (High-Capacity 

cDNA Archive Kit - Applied Biosystems, UK). Thermal cycling conditions consisted of 

10 minutes at 25
0
C, 120 minutes at 37

0
C and 5 minutes at 85

0
C. 

2.3 Molecular cloning of Atlantic cod kiss2, kissr4, fshβ & lhβ  

Partial cDNA sequences for each target gene were generated by designing primers 

(Table 2) using one of the following strategies: designed on an expressed sequence tag 

clone identified by BLAST analysis of published sequences (kiss2); designed on highly 

conserved regions of sequences from other teleost species already published (kissr4); 
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designed on previously published sequences for Atlantic cod (fshβ, lhβ & ARP). Partial 

cDNA sequences were generated by PCR using 0.5 µM of primers (Eurofins MWG 

Operon, Edersberg, Germany) (Table 2) one fortieth of the original cDNA synthesis 

reaction, Klear Taq polymerase with supplied buffer (Kbiosciences, UK), and 1 mM 

MgCl2 in a final volume of 20 µl using a routine PCR strategy: 15 min 95 °C followed 

by 30 cycles of 95 °C 20 s, X °C 20 s, 72 °C 1 min. The annealing temperature is 

denoted as X °C in the description as it varied with the different primer pairs (see Table 

2). All primer pairs generated a single PCR product and those products which were to be 

used for qPCR standards were cloned into a pGEM-T Easy vector (Promega, UK) and 

sequenced (CEQ-8800 Beckman Coulter Inc., Fullerton, USA). The identities of the 

cloned PCR products were then verified (100% overlapping) using BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/). Sequencing was performed using a Beckman 

8800 autosequencer. Lasergene SEQman software (DNASTAR, www.dnastar.com) was 

used to edit and assemble DNA sequences. ClustalW (Thompson et al., 2000) was used 

to generate multiple alignments of deduced protein sequences. MEGA version 4 was 

used (Tamura et al., 2007) to deduce and bootstrap phylogenetic trees using the neighbor 

joining method (Saitou & Nei, 1987).  

2.4 Quantitative PCR 

Expression of the genes of interest was measured by absolute quantification with all 

samples being normalised with Acidic ribosomal protein (ARP) mRNA expression as 

this was previously shown to be the most stable candidate reference gene in Atlantic cod 

brain cDNA (Olsvik et al. 2008). All cDNA for qPCR were synthesised as described 

previously and qPCR primers (Table 2) were used at 0.5 µM, with one twentieth of the 

total cDNA synthesis reaction and SYBR-green qPCR mix which consists of Thermo-

Start
TM

 DNA polymerase, a propietary reaction buffer, dNTP‘s and SYBR Green I with 

http://www.dnastar.com/
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Mg
++

 at a concentration of 3 mM in the final 1X reaction (ABsolute
TM

 QPCR SYBR 

Green Mix, ABgene, UK), the total reaction volume was 20 µl. The thermal cycling 

protocol run in a Techne Quantica thermocycler (Techne, Quantica, Cambridge, UK) 

consisted of 15 min at 95 °C followed by 45 cycles of 95 °C for 15 s, X °C for 15 s and 

72 °C for 30 s followed by a temperature ramp from 70 to 90 °C for melt-curve analysis. 

The annealing temperature (X) was changed in accordance with the primer pair (Table 

2). Melt-curve analysis verified the primer sets for each qPCR assay generated one 

single product and no primer-dimer artefacts. Quantification was achieved by a parallel 

set of reactions containing standards consisting of serial dilution of 

spectrophotometrically determined, linearised plasmid containing partial cod cDNA 

sequences generated as described above. All samples were run in duplicate together with 

non-template controls.  

2.5 Validation procedures 

All sample extraction and qPCR assays were conducted where practically possible 

according to MIQE (minimum information for publication of quantitative real-time PCR 

experiments) guidelines (Bustin et al., 2009). In order to validate the qPCR assays, a 

serial dilution of linearised plasmid for each gene was tested and details on assay 

validation including linear dynamic range, PCR efficiency and repeatability are 

presented in table 3. It was not possible to perform RNA contamination assessment as 

there was no access to an agilent bioanalyser, the A260/A280 ratio (range: 1.82-2.13) 

provided an indication of RNA purity however.  

2.5 Analysis of gonadal stage and sex steroids 

Histology was performed on the ovaries only. Sections of ovarian tissue, following 

fixation in 10 % neutral buffered formalin, were dehydrated and embedded in paraffin 
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wax, 5 µm sections were then cut and stained using haemotoxylin and eosin. Sections 

were examined under a light microscope and classified into one of five stages of 

development (according to Tomkiewicz et al., 2003, see Chapter 3 for a description of 

histological stages). Testes were not analysed due to the differential stages of 

development within each lobe (Almeida et al., 2008).  

2.6 Data analysis 

qPCR data were analysed by Techne Quansoft version 1.1.21. using a fit points approach 

with the number of fit points set at 2 and standard deviations above the average of 

readings set in the range 3-10 for fsh, lh and ARP and 3-14 for kiss2 and kissr4. 

Statistical analysis of data sets was performed with MINITAB 
®
 version 15.0 

(Minitab Ltd., Coventry, UK). All data sets were tested for normality using the 

Kolmogorov–Smirnov test and homogeneity of variances using Bartlett‘s test, and if 

necessary were log or arcsine-transformed prior to analysis. Gene expression data were 

analysed by analysis of variance (ANOVA) manipulated using a general linear model. In 

all cases a significance level of p<0.05 was set with significant interactions being 

analysed by Tukey post hoc test. Baseline data (collected in July 2008) was pooled 

according to sex. 
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Table 1. Number of fish sampled at each month over the trial period from the 

simulated natural photoperiod (SNP) and constant light (LL) treatments.   

 

 

 

 SNP LL 

 Female Male Female Male 

July 7 5 7 5 

August 6 6 6 6 

September 6 6 6 6 

October 6 4 8 6 

November 6 6 6 6 

December 6 6 6 5 

January 6 6 6 6 

February 6 6 5 4 

March 7 6 6 6 

April 2 9 7 3 

May 1 8 8 1 

June 2 8 3 7 

August 6 5 6 6 



 

 

Table 2. Primer name, procedure for which the primers were used, sequence, predicted amplicon size, annealing temperature and 

accession number for the different genes studied. 

 

Name Procedure Sequence 
Product 

size 

Annealing 

temperature 

(X°C) 

Accession 

Number 

kiss2F Cloning & 

qPCR std 

5‘-CTGAGAGGGAACGACGAG-3‘ 317 bp 59°C  

 

FG321938 
kiss2R 5‘-CAAGATTGTAAAAGATGGGATAG-3‘ 

kiss2qPCRF qPCR 5‘-TGAGAGGGAACGACGAGCAG-3‘ 78 bp 59°C 

kiss2qPCRR 5‘-GGAGCCCGAACGGATTGTAG-3‘ 

kissr4F Cloning & 

qPCR std 

5‘-TATGAGTGGAGACCGCTGTTACG-3‘ 556 bp 59°C  

To be 

registered 

 

kissr4R 5‘-CTATGGGGTTGACAGAGGAGTTG-3‘ 

kissr4qPCRF qPCR 5‘-CATCAGCATACGGAGCAAGGTGTC-3‘ 123 bp 62°C 

kissr4qPCRR 5‘-TTGGGCTGGTACTGGGGATAGAAG-3‘ 

fshF Cloning, 

qPCR std & 

qPCR 

5‘-CGCCCGACCCCGACCACCATT-3‘ 236 bp 68°C DQ402373 

 fshR 5‘-TTGCTGCTCTGACACAGGGAACAC-3‘ 

lhF Cloning & 

qPCR std 

5‘-CTCCGTGGAGAAGAAGGGCTGTC-3‘ 300 bp 68°C  

 

DQ402374 

  

lhR 5‘-GCTGAGTGCGGCGGGGTAGTGGAC-3‘ 

lhqPCRF qPCR 5‘-CCCGCGGCTCAGCAAGGTGGTG-3‘ 114 bp 62°C 

lhqPCRR 5‘-GCTGAGTGCGGCGGGGTAGTGGAC-3‘ 

ARPF Cloning & 

qPCR std 

5‘- AGGTGCTCGGTTCTTCATCTG-3‘ 400 bp 59°C  

 

EX741373 
ARPR 5‘- TCGTCCTTCTTCTCCTCTTTCTTC-3‘ 

ARPqPCRF qPCR 5‘-TAGCACCGTTAAATTTAGGCATCC-3‘ 90 bp 59°C 

ARPqPCRR 5‘-AGCAGAGTAAATACAAGCGAGTTC-3‘ 
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Table 3. Details on validation assays for qPCR of fsh, lh, kiss2, kissr4 and ARP. Details include the quantification cycle (Cq) number of no 

template controls (NTC), specifics of the standard curve including slope and Y intercept, qPCR efficiency calculated from the slope and r
2
 value  

and the linear dynamic range including Cq variation at the lower limit. 

 

 

Assay Cq NTC 

(mean ± standard 

deviation) 

Slope Y intercept Efficiency (%) r
2
 Linear range Lower limit Cq variation 

(coefficient of variation, %) 

fsh 29.59 ± 0.34 -3.433 35.87 96 0.99 10-10
8
 1.2 

lh 28.81 ± 0.19 -3.465 38.33 94 1 10
4
-10

8
 0.4 

kiss2 

 

35.12 ± 0.76 -3.358 36.01 98.5 1 10-10
8
 0.6 

kissr4 34.21 ± 0.34 -3.329 35.66 99.7 0.99 10-10
8
 0.5 

ARP 35.28 ± 1.32 -3.099 34.85 94.9 0.99 10-10
8
 0.1 
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3. Results 

3.1 Atlantic cod kiss2 and kissr4 partial cDNA sequences and phylogenetic analyses  

BLAST analysis of Atlantic cod EST clones registered in public databases identified a 

single sequence (Accession no: FG321938) with high homology to other teleost kiss2 

sequences. This 479 bp partial sequence consists of a 329 bp coding sequence (cds) and 

150 bp 3‘untranslated region (UTR), importantly the cds contains the decapeptide 

epitope kiss-10 sequence that defines the gene (Fig. 1). The deduced amino acid (aa) 

sequence for this epitope is ―FNYNPFGLRF‖ which has 100 % identity with the kiss2 

epitope in zebrafish, medaka and goldfish though is one amino acid different, Tyrosine 

(Y) in place of Phenylalanine (F), from European seabass and Orange spotted Grouper, 

Epinephelus coioides (Fig. 1). Phylogenetic analysis of the deduced aa sequence in 

relation to other teleost kisspeptins shows the fragment grouped within the Kiss2 cluster 

(Fig. 2) having the greatest identity with European seabass Kiss2 (60 %) and in the order 

of 50-60 % identity with all other teleost Kiss2 sequences.  

Primer pair kissr4 F/R generated a 556 bp product from cod brain cDNA samples 

(Fig. 3). This fragment covers 50 % of the target gene cds which spans five of the 

receptor‘s seven trans-membrane domains. Phylogenetic analysis of the deduced aa 

sequence for Kissr4 in relation to other teleost kisspeptins shows the fragment grouped 

within the Kissr4 cluster having >80 % identity with all other teleost kissr4 sequences 

(Fig. 4).  
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Figure 1. A.) Partial nucleotide and deduced amino acid sequence of Atlantic cod 

kiss2 (FG321938). The predicted kisspeptin-10 eptitope is underlined. * marks the 

stop codon. B.) Alignment of the deduced protein sequence for Atlantic cod, Medaka, 

zebrafish, Goldfish, European Seabass and Orange spot grouper kiss2 in comparison 

with zebrafish kiss1. The conserved amino acid residues are shaded. The kisspeptin-

10 epitope is boxed. 

 

A.) 
 

2     TCG AGC TCT GCG GAG TGG CCC CTC GCG ACA GGT TGC GGA CCG ACC   46 

1      S   S   S   A   E   W   P   L   A   T   G   C   G   P   T    15 

 

47    AGT TTC TCA GAG CTG ACG GTG GCC AAG AGG ACG GAT TTA ACG GAC   91 

16     S   F   S   E   L   T   V   A   K   R   T   D   L   T   D    30 

 

92    ATC TTA CCG GAG AAC CAC AAC CCG TGC ATC TCC CTG AGA GGG AAC   136 

31     I   L   P   E   N   H   N   P   C   I   S   L   R   G   N    45 

 

137   GAC GAG CAG CGT CAA CTG CTC TGC AAC GAC CGG CGG AGT CCG TTC   181 

46     D   E   Q   R   Q   L   L   C   N   D   R   R   S   P   F    60 

 

182   AAC TAC AAT CCG TTC GGG CTC CGC TTC GGG AAA CGG TTT CTG CCC   226 

61     N   Y   N   P   F   G   L   R   F   G   K   R   F   L   P    75 

 

227   GTG AAA ACC GAC CGC TTG TCT CAA GGA AGT CTC GCG AGA CCG AGG   271 

76     V   K   T   D   R   L   S   Q   G   S   L   A   R   P   R    90 

 

272   ACG ATA ACT TTT TTA CCC GTT TTC CTC AAC CCG CGA GAT TTG GAA   316 

91     T   I   T   F   L   P   V   F   L   N   P   R   D   L   E    105 

 

317   ATC ACG ACC TAA TGA AGT AGC CGT GTC CGC CTG TCC AGC AGT TTT   361 

106    I   T   T   *                 109 

 

362   CGC GTT GCA AGT CAA ATA TTT TAA ATT AAT GTC GTT AAC TTC ACG   406 

407   ATT TGT GAT ATT CCT ATC CCA TCT TTT ACA ATC TTG TGT TAT TTT   451 

452   TTC CCA TGA ATA AAC CTT TTG TAC CGT                    478 

 

 

B.) 

 
A. Cod        -------------------S--SSAEWPLATGCGPTSFSE--LTVAKRTDLTDILPENHNPCISLRGNDEQ-------RQ  

Medaka        MTRAVVLVLCALIAAQDGGR--AAAGLAARDSGRGTHATG-VLWILRR-SEDDSAAGGAGLCSSLREDDE---------Q  

Zebrafish (2) MNTRALILFMSAMVSQSTAMRAILTDMDTP--EPMPDPKPRFLSMERRQFEEPSASDDASLCFFIQEKDET-------SQ  

Goldfish      MKIKALILFMSAMICQSTALRASFTDMDISDSEPVPDSKQHYLSVERRQFDEPSSSDDASLCFFFQEKDES-------TH  

E. Seabass    MRLVALVVVCGLILGQDGGS--VGAALPELDSAQRTGATGSLLSALRRRTAGEFFGEDSSPCFSLRENEEQ-------RQ  

Grouper       MRLVTLVVVCGLIVGQDGDS--VGAALPGFDSAQRTHATESILSALRRRSTGEFVAEDTSPCLSLRENEEQ-------RQ  

Zebrafish (1) MMLLTVILMLSVARVHTNPS---GHFQYYLEDETPEETSLRVLRGTDTRPTDGSPPSKLSALFSMGAGPQKNTWWWSPES  

 

 

A. Cod        LLCNDR--RSPFNYNPFGLRFGKRFLPVKTDRLSQGSLARPRTITFLPVFLNPRDLEITTX  

Medaka        LLCADR--RSKFNYNPFGLRFGKRAP-------PPRGAHRARAMKLPLMSLFQ---EVPTX  

Zebrafish (2) ISCKHRLARSKFNYNPFGLRFGKRNE------ATTSDSDRLKHKHLLPMMLYLRKQLETSX  

Goldfish      ISCQHRLPRGKFNYNPFGLRFGKRNE------APT---DRPKHKHLLPMMIYLRKQSETTX  

E. Seabass    LLCNDR--RSKFNFNPFGLRFGKRY-------IYRRALKRARTNRFSPLFLFSRELEVPTX  

Grouper       LLCNDR--RSKFNFNPFGLRFGKRYNGY----IYRRAVKTARTNKFSPFSLFSRELEVPS-  

Zebrafish (1) PYTKRRQNVAYYNLNSFGLRYGKREQ-----------DMLTRLKQKSPVKX----------  
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Figure 2. Phylogenetic tree analysis of teleost kiss2 genes. The evolutionary history 

was inferred using the Neighbor-Joining method. The evolutionary distances were 

computed using the Maximum Composite Likelihood method and are in the units of 

the number of base substitutions per site. Phylogenetic analyses were conducted in 

MEGA4. 
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Figure 3. A.) Nucleotide and deduced amino acid sequence of Atlantic cod kissr4 

partial cDNA fragment. Predicted transmembrane domains as defined in Tilapia by 

Parhar et al. (2004) are underlined. B.) Alignment of the deduced protein sequence for 

Atlantic cod, Medaka, zebrafish, Nile tilapia, Atlantic halibut, Flathead mullet and 

Orange spot grouper kissr4 in comparison with zebrafish kissr2. The conserved amino 

acid residues are shaded. Predicted transmembrane domains as defined by Parhar et al. 

(2004) are boxed. 

 

A.) 
2     ATG AGT GGA GAC CGC TGT TAC GTC ACC GTG TAC CCG CTC AAG TCG   46 

1      M   S   G   D   R   C   Y   V   T   V   Y   P   L   K   S    15 

 

47    CTC CGT CAC CGC ACG CCG AGG GTG GCC ATG ATC GTC AGC GTC TGC   91 

16     L   R   H   R   T   P   R   V   A   M   I   V   S   V   C    30 

 

92    ATT TGG ATA GGT TCC TTC ATC CTT TCC ATT CCC ATC TTC CTG TAC   136 

31     I   W   I   G   S   F   I   L   S   I   P   I   F   L   Y    45 

 

137   CAA CAC ATC GAG GAG GGC TAC TGG TAC GGT CCC AGG CAG TAC TGC   181 

46     Q   H   I   E   E   G   Y   W   Y   G   P   R   Q   Y   C    60 

 

182   GTG GAC AGG TTC CCC AGC AAG ACG CAC GAG AGG GCC TAC ATC CTC   226 

61     V   D   R   F   P   S   K   T   H   E   R   A   Y   I   L    75 

 

227   TAC CAG TTC ATA GCC GCC TAC CTG CTC CCC GTC CTC ACC ATC TCC   271 

76     Y   Q   F   I   A   A   Y   L   L   P   V   L   T   I   S    90 

 

272   TTC TGC TAC ACG CTG ATG GTG AAG AGG GTA GGG CGG CCC ACC GTG   316 

91     F   C   Y   T   L   M   V   K   R   V   G   R   P   T   V    105 

 

317   GAG CCA GTA GAC AAC AAC TAC CAG GTC AAC CTG CTG TCG GAG AGG   361 

106    E   P   V   D   N   N   Y   Q   V   N   L   L   S   E   R    120 

 

362   ACC ATC AGC ATA CGG AGC AAG GTG TCC AGG ATG GTG GTG GTG ATC   406 

121    T   I   S   I   R   S   K   V   S   R   M   V   V   V   I    135 

 

407   GTC CTT CTG TTC ACC GTG TGC TGG GGT CCC ATC CAG TTC TTC GTC   451 

136    V   L   L   F   T   V   C   W   G   P   I   Q   F   F   V    150 

 

452   CTC TTT CAG TCC TTC TAT CCC CAG TAC CAG CCC AAC TAC GCC ACA   496 

151    L   F   Q   S   F   Y   P   Q   Y   Q   P   N   Y   A   T    165 

 

497   TAC AAG ATC AAG ACG TGG GCC AAC TGC ATG TCC TAC GCC AAC TCC   541 

166    Y   K   I   K   T   W   A   N   C   M   S   Y   A   N   S    180 

 

542   TCT GTC AAC CCC ATA   556 

181    S   V   N   P   I   

B.) 
A. Cod        --------------------------------------------------------------------------------  

Medaka        MHLDE------------------------------DEEEGDQHPF-LTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQ  

Zebrafish(r4) MFSGED-WNSSE--LLNGSFR----------NSSMEDSEDGEHPF-LTDAWLVPLFFSLIMLVGLIGNSLVIYVISKHRQ  

Tilapia       MYSSEELWNSTEQVWINGS-GTNFSLGRH--EDD-EEEEGDKHPF-FTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQ  

A. Halibut    MFSSEEPWNSTEQVWLNGSERANFSLGRRGSDDHEEEEDGDQHPF-LTDAWLVPLLFSLIMLVGVVGNSLVIYVISKHRQ  

Mullet        MHSSEEPWNSSEHVWVNGS-EANFSLGRRRVDEEKEEEEGGQHPF-LTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQ  

Grouper       MYSSEELWNSTEQVWINGS-RANFSLGRQ--GDDYDEKEGDQHPF-LTDAWLVPLFFSLIMLVGLVGNSLVIYVISKHRQ  

Zebrafish(r2) MAETNSTGDAAEHIMCNYDAN--------IYQCNQTDLMRFQSPVPLTDTWLVPLFFTLIMFVGLVGNLIVIYVVIKNQQ  

 

 

A. Cod        ---------------------------------------------------------------MSGDRCYVTVYPLKSLR  

Medaka        MRTATNFYIANLAATDIIFLVCCVPFTATLYPLPGWIFGTFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLR  

Zebrafish(r4) MRTATNFYIANLAATDIIFLLCCVPFTATLYPLPGWIFGDFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLH  

Tilapia       MRTATNFYIANLAATDIIFLVCCVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLR  

A. Halibut    MRTATNFYAANLAATDIIFLVCCVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYITIYPLKSLR  

Mullet        MRTATNFYIANLAATDIIFLVCCVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLR  

Grouper       MRTATNFYIANLAATDIIFLVCCVPFTATLYPLPGWIFGNFMCKFVAFLQQVTVQATCITLTAMSGDRCYVTVYPLKSLR  

Zebrafish(r2) MKTVTNLYIVNLATTDILFLVCCVPFTATVYVLPSWIFGDFMCRLVNYLQQVTAQATCITLSAMSVDRFYVTVYPLQSLH  

 

 

A. Cod        HRTPRVAMIVSVCIWIGSFILSIPIFLYQHIEEGYWYGPRQYCVDRFPSKTHERAYILYQFIAAYLLPVLTISFCYTLMV  

Medaka        HRTPKVAMIVSICIWISSFILSSPILIYQRLEEGYWYGPRQYCVERFPSKLHERAFILYQFIAAYLLPVLTISFCYTLMV  

Zebrafish(r4) HRTPRVAMIVSICIWIGSFILSIPIFLYQRLEDGYWYGPRKYCMERFPSKTHEKAFILYQFIAVYLLPVITISFCYSFML  

Tilapia       HRTPKVAMIVSICIWIGSFVLSTPILMYQRIEEGYWYGPRQYCMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMV  

A. Halibut    HRTPRVAMIVSICIWIGSFILSTPILMYQRIEEGYWYGPRQYCMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMV  

Mullet        HRTPKVAMIVSVCIWIGSFILSTPILMYQRIEEGYWYGPRQYCMERFPSKTHERAFILYQFIAAYLLPVLTITFCYTLMV  

Grouper       HRTPRVAMIVSICIWIGSFILSTPILMYQRIEEGYWYGPRQYCMERFPSKTHERAFILYQFIAAYLLPVLTISFCYTLMV  

Zebrafish(r2) HRTPQMALSVCTTIWICSSLLSVPIALYQHTESSYWFGPQTYCTETFPSVIHKRVYLLYSFLAVYLLPLITICMCYTFML  

 

 

A. Cod        KRVGRPTVEPVDNNYQVNLLS--ERTISIRSKVSRMVVVIVLLFTVCWGPIQFFVLFQSFYPQ-YQPNYATYKIKTWANC  

Medaka        KRVGQPTVEPIDHHYQVNLLS--ERTISIRSKVSKMVVVIVLLFAICWGPIQIFVLFQSFYPN-YRPNYTTYKIKTWANC  

Zebrafish(r4) KRVGQASVEPVDNNHQVHLLS--ERTISIRSKISKMVVVIVVLFTICWGPIQIFVLFQSFYPN-FKANYATYKIKTWANC  

Tilapia       KRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAICWGPIQIFVLFQSFYPN-YQPNYATYKIKTWANC  

A. Halibut    KRVGQPTVEPVDNNYQVNLLS--ERTLSIRSKVSRMVVVIVLLFAICWGPIQIFVLFQSFHPN-YRPNYVTYKIKTWANC  

Mullet        KRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAVCWGPIQIFVLFQSFYPN-YQPNYATYKIKTWANC  

Grouper       KRVGQPTVEPVDNNYQVNLLS--ERTISIRSKVSKMVVVIVLLFAICWGPIQIFVLFQSFYPN-YQPNYATYKIKTWANC  

Zebrafish(r2) KRMAQATVQPVQGCNQISLQTSSERAEAVRSRVSRMVVVMVLLFLLCWGPIQILILLQAFCAEDVSRSYTLYKLKIWAHG  

 

 

A. Cod        MSYANSSVNPI------------------------------------------------------  

Medaka        MSYANSSVNPIIYGFMGASFQKSFRKIFPFLFKHKVRDSSMASRTANAEIKFVAAEDGNNNDX--  

Zebrafish(r4) MSYANSSINPIVYGFMGASFRKSFRKTFPFLFRHKVRDSSVASRTANAEIKL-------------  

Tilapia       MSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAVN  

A. Halibut    MSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTGNAEIKFVAAEEGNNNNAVN  

Mullet        MSYANSSVNPIVYGFMGASFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAVN  

Grouper       MSYANSSVNPIVYGFMGATFQKSFRKTFPFLFKHKVRDSSMASRTANAEIKFVAAEEGNNNNAMN  

Zebrafish(r2) MSYSNSSINPVIYAFMGANFRKAFRSVCPLIFK---RRSTEPLATYNREMNFLSSX---------  
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Figure 4. Phylogenetic tree analysis of teleost kissr4 genes. The evolutionary history 

was inferred using the Neighbor-Joining method. The evolutionary distances were 

computed using the Maximum Composite Likelihood method and are in the units of the 

number of base substitutions per site. Phylogenetic analyses were conducted in 

MEGA4. 
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3.2 Sexual maturation 

A fuller description of the effects of light treatment on sexual maturation including 

detailed descriptions of gonad morphology/histology and plasma sex steroid levels has 

previously been described in Chapter 3. In brief, females and males under SNP 

(simulated natural photoperiod) conditions matured whereas those under LL (constnat 

light) conditions remained immature as shown by gonadosomatic index (GSI) 

measurements (Fig. 5a, b). In SNP females, GSI showed an increase in November and 

peaked in March corresponding to spawning of individuals with fertilised eggs being 

collected in the outflow from February 5
th

 to May 11
th

. In males under SNP conditions, 

GSI increased in December with the highest mean reached in February.  

3.3 Pituitary expression of fshβ and lhβ 

Levels of fshβ mRNA in females under SNP increased significantly over the first 8 

month period of the trial with a 5 to 6-fold elevation from September 2008 to January 

2009, these levels were significantly higher than those in fish under LL which showed 

no temporal variation (Fig. 5a). Maximum mean fshβ mRNA expression levels in SNP 

females were 2 to 3-fold greater than LL males. In males under SNP, there was no 

significant temporal variation in fshβ mRNA expression or significant elevation relative 

to fish under LL due to large individual variability however SNP males still showed a 

circa 2 fold increase in expression from October to December 2008 (Fig. 5b). lhβ mRNA 

expression in females under SNP showed a 10.5 fold increase from November 2008 to 

February 2009 (Fig. 5c), with levels significantly higher than that of LL individuals who 

showed no significant temporal variation. In SNP males, temporal variation in lhβ 

mRNA was not significant and there were no differences between these and LL males. 

Again maximum mean lhβ mRNA expression levels in SNP females were greater than in 

SNP males (~3-fold). 
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According to stage of gonadal development, both fshβ and lhβ gene expression 

increased during gametogenesis in SNP females (Fig. 7a, b). Expression levels started to 

rise significantly in females at the early vitellogenic stage and peaked during late 

vitellogenesisa. The only spawning individual showed reduced fshβ expression and 

steady high lhβ expression.  

3.4 Brain expression of kiss2 and kissr4  

There were no significant differences in kiss2 or kissr4 expression in either male or 

females over the course of the trial nor was there any significant effect of treatments 

(Figure 6). In general there was no greater than a 2 fold variation in expression level 

across the course of the experiment. Furthermore there was no clear correlation between 

kiss2 or kissr4 mRNA levels and stage of gonadal development in SNP females (Fig. 7c, 

d). 
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Figure 5. Absolute mRNA expression levels and gonadosomatic index (GSI) from July 2008 to February 2009 in Atlantic cod exposed to 

simulated natural photoperiod (SNP) or constant light (LL). A.) GSI (bars) and fshβ (line) expression in the pituitary of females, B.) GSI 

(bars) and fshβ (line) expression in the pituitary of males, C.) lhβ expression in the pituitary of females, D.) lhβ expression in the pituitary of 

males. Data is normalised to ARP and presented as treatment mean ± SE. Significant differences in mRNA expression between months for the 

SNP treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. Graphs are labelled as 

non-significant (NS) where no significant time or treatment differences in expression were apparent. See appendices 20-23 for detailed tables 

of results. 
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Figure 6. Absolute mRNA expression levels and gonadosomatic index (GSI) from July 2008 to September 2009 in Atlantic cod exposed to 

simulated natural photoperiod (SNP) and constant light (LL). A.) GSI (bars) and kiss2 (line) expression in the pituitary of females, B.) GSI 

(bars) and kiss2 (line) expression in the pituitary of males, C.) kissr4 expression in the pituitary of females, D.) kissr4 expression in the 

pituitary of males. Data is normalised to ARP and presented as treatment mean ± SE. Graphs are labelled as non-significant (NS) where no 

significant time or treatment differences in expression were apparent. See appendices 24-27 for detailed tables of results. 
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Figure 7. Relative fshβ (A.), lhβ (B.), kiss2 (C.) and kissr4 (D.) expression in females 

under the SNP lighting treatment, classed according to stage of maturity (IMM: 

immature, CA: cortical alveoli, EV: early vitellogenesis, LV: late vitellogenesis, SPW: 

spawning, SPT: spent). Data presented as mean ± SE. Numbers above the bars indicate 

the number of fish corresponding to each stage. 
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4. Discussion 

To the authors knowledge this is the first description of partial cDNA sequences coding 

for kisspeptin and its receptor in Atlantic cod. Expression analysis indicated that there 

was no clear seasonality in expression of kiss2 or kissr4 mRNA transcripts in relation to 

puberty in Atlantic cod and no significant differences between these and individuals 

exposed to a constant lighting regime, while gonadotropin expression did show a time 

and treatment effect. Morphological (GSI, oocyte diameter, histological staging) and 

endocrine (sex steroid profiles) assessment showed that individuals exposed to simulated 

natural photoperiod (SNP) underwent a typical seasonal reproductive cycle with 

spawning from February to May (Vitale et al., 2005; Taranger et al., 2006; Davie et al., 

2007a) whereas individuals exposed to LL remained immature. In the present study, 

SNP female fshβ and lhβ expression showed an increase towards spawning in line with 

previous studies of seasonal expression on gonadotropin and gonadotropin receptor 

expression in Atlantic cod (Almeida et al., 2009a; Mittelholzer et al., 2009a, 2009b). 

Levels of expression of male fshβ and lhβ also showed a seasonal pattern in expression 

however with a larger variability between individuals. Classification of SNP female 

gonadotropin expression with stage of gonadal development demonstrated that fshβ  and 

lhβ expression are most closely associated with vitellogenesis and spawning. 

Analysis of the deduced amino acid sequence of the kiss2 gene in Atlantic cod 

and in particular the kisspeptin-10 epitope with other fish species indicated high 

sequence homology, this suggests the gene has been conserved during evolution which 

may be a reflection of its important functional role in cod (Eipper et al., 1992; Kitahashi 

et al., 2009). The reduced identity (circa 50-60 %) out with the eptitope with other 

species is a common feature of kisspeptins as it is proposed that due to post translational 

modifications of the propeptide these regions are cleaved off to leave the highly 
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conserved signal peptide (Oakley et al. 2009). Analysis of the predicted amino acid 

sequence of the Atlantic cod kissr4 revealed high structural similarity with other teleost 

Kissr4s such as the medaka, stickleback and tilapia. Clearly full length descriptions of 

both partial fragments should be completed to formally describe both genes, which at the 

same time may help further our understanding of the regulation of their expression 

through examination of their untranslated regions. However, of greater priority will be 

localisation studies to provide some spatial definitions of expression that will help focus 

future works. 

Significant seasonal patterns in kiss2 mRNA were not evident, however in the 

female dataset, the treatment by time interaction was close to significance (p = 0.087). 

The restricted sample size in conjunction with the apparent limited range in expression 

will have contributed to this perceived lack of effect, however one point of interest is the 

kiss2 expression increase in females sampled in January. Under the SNP conditions, 

mean expression was approximately 3 fold higher than the LL treatment. Examination of 

the data at this time reveals that 3 individuals had expression levels ranging from 4 – 

8000 copies per µg total RNA, while three individuals had expression levels ranging 

from 16 – 28000 copies per µg total RNA which is approximately 3-5 fold above basal 

levels.  This heterogeneous spread could be a reflection of pulsatile release of kisspeptin 

as has been described in mammals (Keen et al. 2008). These authors demonstrated in 

pubertal monkeys, that hypothalamus KISS1 protein release pulsed with a spike 

approximately every hour which matched closely similar pulses in GnRH release. If such 

a signal mechanism was in place in cod and repeated at the mRNA level then the current 

sampling regime could easily have sampled individuals at different states of signalling 

resulting in such a heterogeneous sample. Thus a more focused study of expression in 

the late stages of maturation may be warranted. Increases in kiss2 expression late in the 
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reproduction cycle have already been reported in the grass puffer, Takifugu niphobles 

(Shahjahan et al., 2010) and also in male European sea bass, a repeat spawner, together 

with high levels of gonadotropins and sex steroids (Cowan et al., 2010).   

When looking at the kisspeptin receptor, the present study showed no clear 

seasonal profile in brain kissr4 expression over time in SNP females or males. However 

males did show an elevation in expression in November prior to GSI and sex steroid 

peaks (refer to Chapter 3 for assessment of maturation). Interestingly, no such receptor 

expression increase was seen in LL males at this time. It is possible that this variation 

may be related to the later stages of spermatogenesis in accordance with the suggestions 

of  Nocillado et al. (2007) who studied the temporal expression of kissr4 in grey mullet 

and found that it significantly increased from the intermediate stage of puberty rather 

than the early stages. Equally however it could be that the receptor does not show 

significant variations in expression and that the only notable increase is that associated 

with the development of reproductive competence during early development (Martinez-

Chavez et al. 2008) 

Since there was no clear seasonal expression evident in our maturing male and 

female populations, it was difficult to unravel the effect of the LL regime. Revel et al. 

(2006a) have shown that pineal ablation in the Syrian hamster prevented the expected 

down regulation of Kiss1 expression following transfer to short day photoperiod. This 

appeared to be melatonin dependent knowing that the pineal is the sole source of 

circulating melatonin in mammals, however, it remains unclear whether melatonin acts 

directly on Kiss1 neurons (Revel et al. 2006a). Localisation studies of kisspeptin genes 

in Atlantic cod may help to elucidate their possible sensitivity to photoperiod. It is 

important to note that our study only investigated gene expression in whole brain 

samples, although this is still believed to reveal a pattern if one exists, as seen in 
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Martinez-Chavez et al. (2008) and Cowan et al. (2010). Recent studies on the anatomical 

distribution of kisspeptin neurons have shown interesting localisation patterns in sea bass 

(Aguirre et al., 2010) and zebrafish (Servili et al., 2010). In sea bass, cells expressing 

kiss1 and kiss2 were found in the mediobasal hypothalamus suggesting their 

involvement in GnRH signalling however kiss1 genes alone were also expressed in the 

habenular region (Aguirre et al., 2010). In zebrafish, localisation showed two separated 

neuronal systems with kiss2 expressed in cells mostly in the mediobasal hypothalamus 

and kiss1 neurons localised in the habenular region (Servili et al., 2010). These findings 

strongly suggest that kiss1 neurons may be linked to light perception because the 

habenula receives pineal and parapineal projections (Kitahashi et al., 2009). In addition, 

in medaka, photoperiod was shown to have an effect on the number of nucleus ventralis 

tuberis (NVT) Kiss1 neurons, with increased kiss1 expression under long day conditions 

(necessary for reproductive development) (Kanda et al., 2008).  

While there was no clear association between kisspeptin and photoperiod 

observed in the present study, clear effects on gonadotropin signalling were found. In 

males and females in particular, both fshβ and lhβ gene expression increased under SNP 

but not the LL treatment from December and arguably as early as October which reflects 

previous findings of gonadotropin signalling in photoperiod treated male cod (Almedia 

2009). It therefore appears that there must be some, as yet, unknown signalling pathway 

that integrates photoperiod signals to stimulate fsh/lh expression in early winter. The 

original hypothesis driving this work was that kisspeptin genes (kiss2, kissr4) may be 

playing a role at the onset of maturation during the ‗window of decision‘ between July 

and October. Results did not however support this role in the cod even though it has 

been suggested in several other fish species including tilapia (Parhar et al., 2004; 

Martinez-Chavez et al., 2008), fathead minnow (Filby et al., 2008) and zebrafish 
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(Kitahashi et al., 2009). Considering the presence of two forms of both kisspeptin (Kiss1 

& Kiss2) and its receptor (Kissr4 & Kissr2) in fish (Lee et al., 2009; Akazome et al., 

2010), it is possible that one subtype may be more potent in the control of reproduction 

in cod than the other. Akazome et al. (2010) have highlighted the distinct expression 

patterns and activities of multiple forms of kisspeptins suggesting that the 

KISS1/KISSR1 system has functionally diverged, this can lead to differences in function 

and potency between the sexes and species. Functional studies for example have shown 

that in goldfish, administration with kiss1 but not kiss2 stimulates LH secretion (Li et 

al., 2009). In contrast, in zebrafish, Kiss2 but not Kiss1 significantly increased the 

expression of fshβ and lhβ transcripts in the pituitary inferring that Kiss2 is the more 

potent activator for gonadotropins in the female zebrafish (Kitahashi et al., 2009). 

Likewise in pre-pubertal sea bass, kiss2 administration was more potent in stimulating 

FSH and LH secretion in comparison to kiss1 (Felip et al., 2009). The absence of any 

clear seasonal expression pattern of kiss2 in the present study suggests that another 

subtype of kisspeptin ie. kiss1 may play a more functional role in puberty/gonadal 

maturation in Atlantic cod. Likewise, it is possible that Kissr2 may play a more 

functional role than Kissr4 in cod although, to date, most studies performed in fish 

focused on Kissr4 (Oakley et al., 2009). It is important to note that the sampling 

resolution (once a month) and number of individuals sampled (6 fish/sex/time point) 

combined with clear intra population variability, might have not allowed to detect 

potential acute peaks. Alternatively it is possible that kisspeptin role in the regulation of 

cod reproduction might not be as important as originally believed. Interestingly, in avian 

species nether the kiss1 or kiss2 have been found, their absence is thought to be due to 

gene loss during evolution (Um et al., 2010). Thus alternative signalling pathway(s) 

must be operating in avian species which could well be present in fish. 
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In conclusion, the present study did not reveal any strong correlations between 

puberty and the kisspeptin system in contrast with previous findings obtained in other 

teleost species. It is difficult at this stage therefore to conclude on the functional role of 

these genes at the onset of puberty. Localisation studies of kisspeptin neurons and 

pharmacological studies of the kisspeptin receptor in Atlantic cod should help to shed 

light on the importance of this system in cod reproductive physiology 
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Abstract 

The attainment of sexual maturity during commercial on-growing of marine species 

brings a commercial loss due to reduced growth potential and poor flesh quality. Female 

Atlantic halibut, Hippoglossus hippoglossus, mature later and grow faster than males and 

can be harvested before maturation becomes a problem, monosex female production is 

therefore an important strategy to increase the profitability of the UK halibut farming 

industry. A pilot study was conducted to examine the feasibility of generating a monosex 

population using  semen sexing through based on cellular DNA content by flow 

cytometry that is routinely used in terrestrial agriculture. Semen from a range of teleost 

species including Atlantic halibut, Atlantic cod, Gadus morhua, sea bass, Dicentrarchus 

labrax, and perch, Perca fluviatilis were collected and tested. Results did not show any 

clear sex related size differences in the DNA of sperm analysed in any of the species and 

therefore demonstrated that semen sexing based on total DNA content may not be an 

applicable technique for monosex production of such species. The second part of this 

study involved the development of a population of sex reversed halibut broodstock 

(neomales) that will generate, in the long term, a basis for traditional monosex female 

population generation. To do so, halibut juveniles were fed a diet supplemented with 

17α-methyldihydrotestosterone (MDHT) according to a previously published protocol. 

Two in-feed treatments were tested (5ppm for 6 weeks versus 10ppm for 3 weeks) with 

the aim to reduce the window of exposure to the hormone. Results were very successful 

with the 6 week treatment yielding a 97% male population (based on the sex ratio of a 

sub-sample of fish). The growth of halibut thereafter was monitored up until they 

reached an age of 36 months, at the time of first male maturation. 
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1. Introduction 

Monosex production is an effective management technique used to address the problem 

of early maturation in a number of commercially important aquaculture species which 

exhibit sexual dimorphism in growth and age at first maturation (Pandian & Kirankumar, 

2003; Piferrer, 2001). In Atlantic halibut, Hippoglossus hippoglossus, it is the females 

which grow faster and larger than males and reach market size before maturation 

(Bjornsson, 1995; Imsland & Jonassen, 2005). Bjornsson (1995) demonstrated that 

female halibut reared in tanks under natural photoperiod matured at a mean weight of 

12.7 kg whereas males matured at just 3.2 kg. Furthermore females showed a higher 

growth rate during the period of male maturation, 3.2 versus 1.4 kg/year for females and 

males respectively. Maturation is a major problem during on-growing as energy is 

shifted into sexual development resulting in a loss in somatic growth and flesh quality 

and increased susceptibility to disease. Thus monosex production of female Atlantic 

halibut clearly holds great commercial and economic benefit for the industry. However, 

to date, little research has been done into the implementation of a monosex strategy in 

the European halibut industry as opposed to Canada where research led to the 

publication of a protocol for farmers to produce monosex commercially (Hendry et al., 

2003).  

Traditional techniques for the production of single sex stocks such as indirect sex 

reversal in fish are time-consuming taking a minimum of two generations to confirm the 

success of the technique (Piferrer, 2001), in the case of halibut this represents a 

minimum of 4-5 years. Thus the identification of an alternative and faster approach 

would help realise the commercial benefit far sooner. In the terrestrial livestock industry, 

semen sexing is used for the production of monosex populations in order to increase 

efficiency in producing meat or milk (Joerg et al., 2004). Semen sexing is based on 
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sorting of X and Y-bearing spermatozoa according to differences in DNA content using 

flow cytometry (Joerg et al., 2004). Sex related differences of 4.2% have been recorded 

in cattle (Johnson, 1992) and differences of as much as 7.5% have been recorded in 

chinchillas (Johnson et al., 1987). Fluorescence activated cell sorting (FACs) is then 

used to apply a charge to the droplets containing the desired cells and these are 

subsequently sorted into male and female populations. The sexed semen stocks can then 

be cryopreserved, stored and used when necessary for artificial insemination (Seidel, 

2009). This technique of semen sexing could be of great advantage to the aquaculture 

industry giving major benefits in the production of monosex populations. However, 

although sex related differences have been found in some fish species such as the 

ninespine stickleback, Pungitis pungitis, where chromosome number 1 is found to be 

longer in males, no percentage difference was reported (Ocalewicz et al., 2008a). 

Furthermore, sex chromosomes have not been detected (by karyotype analysis) in most 

commercially important species including Atlantic halibut (Ocalewicz et al., 2008b) and 

cod, Gadus morhua (Klinkhardt, 1994) (see review by Devlin and Nagahama, 2002). 

This said, to our knowledge, semen sexing has never been scientifically tested, or at least 

reported in teleosts. 

The current most common way to produce all female fish populations is by 

indirect sex reversal and the use of ‗neomales‘ (masculinised females) (Devlin & 

Nagahama, 2002). This technique requires that females are the homogametic sex. This is 

true in the case of Atlantic halibut where the gamete of the heterogametic male 

determines the sex of offspring at fertilisation although no specific sex chromosomes 

have been found yet (Hendry et al., 2002; Tvedt et al., 2009). Indirect sex reversal for 

the production of all-female populations is a two step process. The first consists of 

hormone treating juveniles with testosterone during the labile period which is the 
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window following genetic sex determination but before phenotypic differentiation, when 

gonads are still in an undifferentiated state. Exposure of individuals to exogenous 

steroids is aimed to over-ride natural endocrine signalling. Hormone treatment results in 

a predominantly male phenotypic sex population containing both normal males and 

masculinised females called ‗neomales‘ which are genetically female fish but with testes 

and sperm, the sperm being carriers of only the female genotype. The second step of the 

process involves crossing these neomales (carrying the female genotype) with normal 

broodstock females to produce progeny consisting only of females. Indirect sex reversal 

has been successfully demonstrated in halibut in a study by Hendry et al. (2003), halibut 

lend themselves well to this as they start to differentiate after weaning at the time of first 

feeding, thus hormones can be administered in the feed (Hendry et al., 2003). Results 

from Hendry et al. (2002) indicated that halibut are sexually ‗labile‘ from prior to hatch 

and the first signs of ovarian cavity formation appear at 38 mm fork length (LF). In their 

study, male development was much later than females and there was still no 

differentiation of testis by 43.5 mm LF, by 74 mm LF spermatogonia started to appear 

along with interstitial tissue. Hendry et al. (2003) have demonstrated that treatment with 

in feed 17α-methylhydrotestosterone (MDHT) for six weeks at a mean size of 30 mm LF 

successfully masculinised halibut. Monosex production by indirect sex reversal has 

already been successfully implemented in the commercial production of rainbow trout, 

Oncorhynchus mykiss (Kuzminski & Dobosz, 2010) and tilapia, Oreochromis niloticus 

(McAndrew, 1993). 

The objective of this study was 1) to test the feasibility of semen sexing in a 

variety of teleost fish species compared to a mammalian control semen (bull) and 2) to 

establish the first UK population of broodstock neomales for the production of monosex 

(all-female) halibut populations by indirect sex reversal based on the published protocol 
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by Hendry et al. (2003) and to test the efficacy of a higher hormonal treatment for a 

shorter period of time with the aim to reduce handling time of the hormone. 

2. Materials and Methods 

2.1 Semen sexing feasibility study 

2.1.1. Sperm collection and fixation 

Semen samples were collected by stripping male broodstock, samples from Atlantic cod, 

Gadus morhua and sea bass, Dicentrarchus labrax (Machrihanish Marine Environmental 

Research Laboratory, MERL, Machrihanish, UK), Atlantic halibut (Ardtoe Marine 

Laboratory, Acharacle, UK) and perch, Perca fluviatilis (Niall Bromage Freshwater 

Research Laboratory, Stirling, UK). Ninespine stickleback, Pungitis pungitis testes 

samples previously fixed in 80% ethanol were kindly donated by Konrad Ocalewicz 

(Poland) and cryopreserved bull semen samples were donated by the Sustainable 

Livestock System group at the Scottish Agricultural College (Edinburgh, UK). 

For fixation, fish and bull semen samples were divided into 500 µl aliquots, 1000 

µl PBS (filtered to 0.45 µm) was then added and the contents of the tube centrifuged for 

10 minutes at 430 g. Supernatant was then removed and 1000 µl of 80 % ethanol 

(filtered to 0.45 µm) added to the pelleted spermatozoa, contents were mixed gently and 

then stored at 4
0
C until staining (Johnson et al., 1987). The stickleback whole testes 

were gently minced in 1000 µl PBS, filtered through 74 µm mesh to remove large 

particulate matter and then centrifuged for 10 minutes at 430 g, with the pelleted cell 

debris being prepared as above. 
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2.1.2. Staining 

Sperm were recovered from fixation by centrifugation for 5 minutes at 400 g (4
0
C). 

Ethanol was then removed and 1400 µl  PBS/1 % BSA buffer (filtered to 0.45 µm, BSA 

included to help prevent coagulation) added, contents were gently mixed by pipetting 

and the sample was left on ice for 5 minutes. Sample was then centrifuged (5 minutes at 

400 g), supernatant removed and the PBS/1 % BSA wash repeated. Following the wash, 

900 µl of PBS/ 1 % BSA was added, and samples gently mixed by pipetting to obtain a 

homogenous suspension of spermatozoa. 500 µl of this suspension was then added to a 

fresh aliquot of 500 µl PBS/1 % BSA and filtered twice through 30 µm mesh attached to 

a syringe and ejected through a 23G needle. 

Following filtration, 300 µl of filtrate was added to 600 µl lysing buffer (0.1 % 

triton X100 and 0.1 % sodium citrate) along with 6 µl of 10 mg/ml Propidium Iodide 

(PI, Sigma Aldrich, UK), samples were left at 4
0
C for one hour before flow cytometry. 

During the one hour staining period, subsamples from the different species were 

examined by microscopy to confirm purity and the concentration of the sperm. Volume 

of buffers used during the staining preparation of the sperm samples were slightly 

modified if necessary depending on species in order to yield an optimal final 

concentration of ~1 x 10
6 

spermatozoa / ml for flow cytometry, however the ratio of 

sperm suspension:lysing buffer and PI stain remained consistent.  

2.1.3. Flow cytometry 

The fluorescence of the stained sperm (a total of 10,000 cells / sample) was measured 

using a standard fluorescence activated cell analyser (FACsCalibur
TM

, Becton 

Dickinson, BD Biosciences, California, USA) and analysed using CellQuest 3.3 

software. Fluorescent light emitted by individual spermatozoa nuclei was recorded 

through a combination of forward scattered and right angle scattered laser light 
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(Chilmonczyk & Monge, 1999). Populations of cells were gated according to the pulse 

width of cells versus the total cell fluorescence in order to remove aggregates and debris 

(neither of which was present in abundance), and the DNA content of these gated cells 

was then analysed through frequency distributions of total cell fluorescence. The 

frequency distributions in this paper have been displayed as a moving average in order to 

highlight the data trend of DNA content and indicate if there is unimodal or bimodal 

pattern of distribution. 

2.2 Sex reversal experiment 

2.2.1. Fish stock and initial rearing conditions 

Weaned mixed sex halibut larvae (mean total length ± SE of 40.1 ± 0.2 mm, mean wet 

weight  ±  SE of 0.5 ± 0.01 g) were obtained from a commercial halibut hatchery and 

transferred to MERL (55:44
0
N, 5:44

0
W) for hormonal treatment. Six tanks were 

prepared, each with 230 halibut juveniles. Tanks were part of a seawater flow-through 

system with water running at a flow rate of approximately 50 L min
-1

 at ambient 

temperatures and filtered to 60 µm.  

2.2.2. Experimental conditions 

In-feed hormone treatments started on the 16
th

 August 2007 (one day following transfer) 

and continued for a maximum of 6 weeks, until the 28
th

 September 2007. Three 

treatments were tested in duplicate: 1) 6 weeks steroid free diet (control conditions), 2) 6 

weeks MDHT in-feed (5 ppm) and 3) 3 weeks MDHT in-Feed (10 ppm) followed by 3 

weeks steroid-free diet.  Food was provided by automated feeders which were 

programmed to shake pellets into the tanks every 12 minutes throughout the 24 hour 

cycle to ensure that fish could feed to satiation. 
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To incorporate steroids into the manufactured feed, two stock solutions of 17α-

methyldihydrotestosterone (MDHT: Sigma–Aldritch Co Ltd, Poole, UK) dissolved in 

100% ethanol) were made up at 5ppm (based on published protocol) and 10ppm 

(experimental protocol) (Hendry et al., 2003). Trays containing manufactured feed (Low 

Energy Marine Larval diet, EWOS, West Lothian, UK) were prepared and covered in the 

appropriate MDHT solution (2.5 ml solution/g feed). These were then left in a fume 

extraction cupboard overnight to facilitate evaporation of the ethanol. Dividers were 

placed between the trays to prevent any potential steroid contamination. The same 

process was conducted with the control diets but with steroid free ethanol.  

2.2.3. Sampling regime 

Five sampling time-points were conducted throughout the 6 week hormonal treatment 

period, these included: baseline sample (pre-treatment, day 0), 12, 22, 33 and 43 day 

post treatment onset. At each sampling point, for each tank, 10 fish were culled by lethal 

anaesthesia and weight/length taken. Length was then taken for another 50 halibut/tank 

which were anaesthetised (1:10,000 concentration of 2-phenoxyethanol, Sigma-Aldrich 

Co Ltd, Poole, UK) and then returned back to respective tanks. Water, feed and fish 

samples were also taken for analysis of MDHT content by high performance liquid 

chromatography (HPLC) however the sensitivity of the analytical technique employed 

did not have a high enough senstivity to allow detection of MDHT in the samples. 

Halibut were transported to a commercial fish farm on the 17
th

 of October (3 weeks 

later) for on-growing and sex determination.  

2.2.4 On-growing of MDHT treated fish and sex determination  

Halibut have been maintained in commercial on-growing facilities (Otterferry Seafish 

Ltd., Argyll, UK) and monitored for growth performance. Fish were initially maintained 
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in separate tanks according to their respective treatment replicates however once they 

had reached a mean weight of 28.4 ± 0.4 g (mean ± SE) they were marked with panjet 

dye and replicates were pooled according to treatment (3 tanks in total, approximately 

300 fish/tank, 6
th

 December, 2007) due to limitation in on farm facilities. The panjet 

mark was re-applied approximately every 1.5 months to retain the identity of fish 

treatments. Once halibut had reached a weight of 79 ± 2.95 g (mean ± SE) (14
th

 February 

2008), 20 individuals from each treatment were sampled for histological determination 

of sex to ensure that gonadal differentiation had occurred. The posterior gut cavity 

(containing the region of gonadal development) was dissected from individuals, fixed in 

10% neutral buffered formalin, processed by histology and stained using haemotoxylin 

and eosin. Following confirmation that sex could be determined at this stage, a further 60 

individuals / treatment were sacrificed and sexed (21
st
 March 2008). Thus a mean total 

of 80 individuals per treatment were sampled for sex determination however, due to a 

loss during processing or difficulty in sex identification owing to the small size of 

gonads, 3-4 samples per treatment could not be assessed (see table 2 for exact numbers 

of individuals per treatment). 

On the 15
th

 of May 2008, at a mean size of 180.8 ± 3.1 g (mean ± SE), 60 control 

fish (30 / replicate) and 150 5ppm fish (75 / replicate) were tagged with a passive 

integrated transponder tag (Fish Eagle Co., Lechlade, UK) and only these individuals 

were monitored for weight/length thereafter. All the remaining fish from these 

treatments and those from the 10 ppm treatment were culled. At the subsequent sampling 

points, tagged individuals were selected at random, anaesthetised and their weight and 

length taken, a minimum of 20 individuals/treatment were sampled. At the final 

sampling point on 8
th

 April 2010 all tagged fish were measured and owing to the 

presence of maturing males, individuals were classified into maturing or immature 
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cohorts (Table 1). The specific growth rate (SGR) of immature individuals has been 

calculated retrospectively for tagged fish in the months leading up to 8
th

 April 2010. 

SGR was calculated according to the equation: SGR = (e
g
 – 1) x 100, where g = 

[LN(weightend)- LN(weightstart)] x number of days.  

2.2.5. Statistical analysis and data presentation 

For sex ratio determination, divergence from the expected 1:1 sex ratio were evaluated 

statistically using a Chi-square (χ
2
) formula, with an χ

2 
value of 3.84 (p < 0.05). All data 

were analysed using MINITAB 
®
 version 15.0 (Minitab Ltd., Coventry, UK) statistical 

software. Length and weight (L/W) data were initially tested for normality using the 

Kolmogorov–Smirnov test and homogeneity of variances using Bartlett‘s test. L/W data 

throughout the hormone treatment period were compared by analysis of variance 

(ANOVA) manipulated using a General Linear Model (GLM) that included a 

comparison of treatment replicates (n=2) nested within the fixed treatment effect. L/W 

during on-growing was compared between treatments (with replicates pooled as there 

were no significant differences between each) at each time point using a GLM.  
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3. Results 

3.1 Semen sexing feasibility study 

Total cell fluorescence measurements of bull sperm produced fluorescence frequency 

distributions with two peaks (Fig. 1a) indicating a bimodal distribution of DNA content, 

which according to the literature is due to the presence of X and Y chromosome bearing 

sperm cells. This validated that the methodology and instrumentation used in this study 

was sensitive to the sex difference in DNA content of bull (approx 4% difference). 

Analysis of all fish samples tested did not however show distinct peaks (Fig. 1 b-e), with 

fluorescence data showing a unimodal population distribution, thus suggesting no 

measurable differences of the DNA content between the two sexes of these fish sperm 

tested. Unfortunately we were unable to test or demonstrate this difference in the 

Ninespine stickleback due to difficulty in recovering sperm from the testes. The tissue 

samples were too small to recover a suitable volume of a good quality suspension of 

sperm cells preventing a robust analysis from being completed.  

  Immature Mature 

Year Date Control 5 ppm Control 5 ppm 

2008 15
th

 May 56 47 4 12 

9
th

 October 18 34 2 8 

2009 24
th

 April 21 40 0 13 

12
th

 November 18 31 2 10 

2010 8
th

 April 53 105 4 33 

Table 1. Number of tagged control and 5 ppm fish sampled at each time point. Fish 

have been classed into a maturing or immature group according to their maturation 

status in April 2010.  
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Figure 1. Flow cytometric DNA analysis of mammalian (A. bull) and several fish 

species ( B. Atlantic halibut, C. Atlantic cod, D. European sea bass and E. Eurasian 

perch) sperm nuclei, stained with propidium iodide. Graphs present a moving average 

of the number of sperm/fluorescence bin (total cell fluorescence/sperm has been 

grouped into bins of 10, number of sperm = 10,000).  
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3.2 Sex reversal experiment 

3.2.1. Sex ratios 

The control population exhibited the expected 1:1 phenotypic male to female sex ratio 

(52% male: 48 % female) whereas 97 % of the 5 ppm population and 70 % of the 10 

ppm populations were confirmed as phenotypic males (Table 2). Chi square analysis 

confirmed that both in feed treatments significantly altered the natural sex ratio in favour 

of the male phenotype. 

  

 Control 5 ppm 10 ppm 

 Obs. Exp. Obs. Exp. Obs. Exp. 

N 77 77 77 77 76 76 

Male 40 38.5 75 38.5 53 38 

Female 37 38.5 2 38.5 23 38 

χ
2 

0.12 69.2 11.8 

P > 0.05 < 0.001 < 0.001 

df 1 1 1 

Sex Ratio 52 % male 97 % male 70 % male 

Table 2. Results of chi-squared analyses comparing control group sex ratios with MDHT 

(5 ppm and 10 ppm) treatments (Obs., observed sex ratio; Exp., expected sex). 
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3.2.2. Growth performance and maturation 

Throughout the hormone treatment period, there were no significant differences in length 

and weight of halibut between tank treatments over time (Fig. 2). Following the hormone 

treatment period, the growth of halibut remained comparable up until November 2009 at 

which point individuals from the 5 ppm treatment showed a reduced length and weight 

in comparison to control individuals (Fig. 3). By April 2010 the 5ppm fish were 84% of 

the mean weight of control fish (1968.26 ± 47 g and 2331.44 ± 81 g respectively, mean ± 

SE). Also at this timepoint, a number of maturing males were observed in the control 

(7%, 4 out of 60 individuals) and 5 ppm populations (21%, 32 out 150 individuals). 

Retrospective analysis of growth performance of the mature versus immature cohorts 

showed growth was comparable until April 2010, at which point their weight and length 

were significantly lower (Fig. 4). This was more pronounced in those under the control 

treatment which were just 66% of the mean weight of immature fish (1586 ± 277 g 

versus 2388 ± 80 g mature and immature mean weights ± SE respectively), in the 5 ppm 

treatment the mature individuals were equivalent to 71% of the immature mean weight  

(1508 ± 59g versus 2113 ± 51g). There were no significant differences in the SGR of 

tagged individuals that remained immature throughout the period measured, from May 

2008 - April 2010 (Table 3). 
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Figure 2. Length (a) and weight (b) of halibut treated (5 or 10 ppm) or not (control) 

with MDHT throughout the period of hormone treatment. Length and weight data 

presented as mean ± SD (n = 2, 60 or 10 individuals / replicate respectively). No 

significant differences were recorded between treatments. 
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Figure 3. Length (a) and weight (b) of halibut treated (5 or 10 ppm) or not (control) 

with MDHT during ongrowing (data displayed from the last hormone treatment 

sampling on 28
th

 Sep 2007 to the latest PIT-tag sample on 8th April 2010). Data for 

replicates is pooled and presented as treatment mean ± SE (10 ppm n = 20-100, 5 ppm 

n = 20-138, control ppm n = 20-83 individuals / treatment). Significant differences 

between treatments at each timepoint is indicated by an asterix. 
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(control or 5 ppm). Data is presented as treatment mean ± SE (number of 

fish/timepoint is presented in table 1). Significant differences between treatments and 

maturation status are indicated by superscripts. 
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Date 

Treatment 

Control 5 ppm 

May 08-Oct 08 0.69 ± 0.04 0.73 ± 0.02 

Oct 08-Apr 09 0.38 ± 0.03 0.37 ± 0.02 

Apr 09-Nov 09 0.25 ± 0.01 0.20 ± 0.02 

Nov 09-Apr 10 0.16 ± 0.03 0.14 ± 0.02 

Table 3. Specific growth rate of tagged halibut which have remained immature 

throughout the sampling points so far. Data is presented as treatment mean ± SE (n = 

6-31).  
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4. Discussion 

Semen sexing by flow cytometry is standard practice in the cattle industry (Joerg et al., 

2004) and is based on the difference in DNA content of X- and Y-bearing spermatozoa 

(Siedel et al., 2002). Results from the current trial have shown that the flow cytometry 

instrumentation and technique employed was sensitive enough to identify a bimodal 

distribution in DNA content of bovine semen based on their sex-specific chromosome 

differences. Regarding the commercial fish species tested however, no such bimodal 

distribution was recorded suggesting that semen sexing based on DNA content is not 

feasible for these species either because a difference doesn‘t exist or because the 

detection threshold is not at a high enough resolution. It is possible that there was not a 

measureable sex difference between the spermatozoa DNA content of the commercial 

fish species tested as explained for the halibut (Azevedo et al., 2007; Ocalewicz et al., 

2008b). Although recent work on chromosome morphology has demonstrated sex-

related differences in chromosome size in sperm cells of the ninespine stickleback 

(which could not be tested in this current study), based on a sex-related length 

heteromorphism of chromosome one (Ocalewicz et al., 2008a), this difference appears to 

be species specific. Unlike a large variety of mammalian species which do display sex–

related DNA differences, ranging from 2.8% in humans, 4.2 % in cattle (Johnson, 1992; 

Johnson & Welch, 1999; O‘Brein et al., 2002) to 7.5 % in the chinchilla (Johnson et al.,  

1987), differences in fish sperm may not be so widely common (Martínez et al., 2009). It 

could also be argued that the instrumentation employed for this trial may not have been 

sensitive enough to pick up potentially finer differences between the fish sperm cells. 

Research in the livestock industry has focussed on the design of flow cytometry nozzles 

in order to maintain proper orientation of cells (sperm head to laser excitation) as they 

pass through the laser beam (Rens et al., 1999). Since sperm heads are flat in shape, 
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fluorescence can be affected by their orientation through the flow cytometer i.e. high 

emission of light from the narrow edge due to a high index of refraction (Dean et al., 

1978). Thus only sperm which are oriented correctly can be accurately analysed. Rens et 

al. (1999) described that novel nozzel designs compared to the original bevelled needle 

system can increase correct orientation rates within bull/boar sperm samples from 20-

30% to over 60%. Thus the precision of our instrumentation used may have been 

hindered partly by misorietation of a proportion of the cells thereby preventing the 

detection of more subtle differences in DNA, below the level of that found in mammals. 

It can be concluded from this trial that there was no detectable sex specific DNA 

differences between the sperm cells of the fish species tested. While it is possible that the 

methodology could be refined to improve the sensitivity there is no evidence to date to 

suggest that a morphological difference in sex chromosomes exist in any commercially 

important fish species that could be differentiated by flow cytometery. Thus it appears 

that the potential for semen sexing based on DNA content by flow cytometry is limited 

and is not a viable approach for producing monosex populations for the aquaculture 

industry. However, this system could potentially be used if sex specific markers were 

identified and then non-destructive fluorescent labels developed against these. 

Indirect sex reversal is a standard and accepted method for the production of 

monosex populations in aquaculture (Pandian & Kirankumar, 2003; Piferrer, 2001). 

Based on a published protocol by Hendry et al. (2003), this study has demonstrated the 

effective direct masculinisation of Atlantic halibut for the production of the first UK 

neomale population which can be used as future broodstock to generate monosex female 

populations. This will have significant benefit to the industry, removing the problem of 

male maturation prior to harvest. Our results suggested that the 5ppm treatment for 6 

weeks was the most effective and this supports the study by Hendry et al. (2003) 
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confirming that hormone treatment can be conducted when the halibut move from 

weaning onto the first feeding diet (Pandian & Sheela, 1995). In our study, hormone 

treatments commenced with halibut at a size of 40 mm, which was later than planned 

due to difficulties with facility access, according to Hendry et al. (2002) ovarian cavity 

formation has begun by 38 mm. However, this did not appear to affect our results as we 

effectively generated a male skewed population under both hormone treatments, this 

suggests that the opportunity for hormonal sex reversal may extend to a later period than 

previously thought. It is clearly not necessary to treat the halibut immediately from first 

feeding and this is true for other species with research being focussed on identifying the 

most sensitive period for steroid action prior to morphological sex differentiation 

(Kavumpurath & Pandian, 1993). Interestingly, the 10 ppm treatment was less effective, 

this may suggest that a longer period of treatment is required to induce masculinisation. 

Alternatively it may just be a reflection of the intra-population variability in 

developmental stage. It is unlikely that all individuals within the population will be at a 

uniform stage of development therefore it is understandable that a minimum period of 

hormone treatment is required to effectively sex reverse the majority of target 

individuals. 

In terms of growth, no differences in length and weight were found between 

treatments during the in-feed hormone period. By April 2010, maturing males were 

evident in both treatments and these clearly showed a lower mean weight in comparison 

to immature individuals. This was expected since as males enter maturation, resources 

are diverted into reproduction. Hagen et al. (2006) reported a cessation in muscle fibre 

recruitment from November to April in male halibut undergoing maturation. 

Interestingly in November and April 2010, immature individuals in the 5 ppm treatment 

consistently showed lower weight than the control individuals. This can not be attributed 
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to maturation and is more likely due to body size dimorphism with a higher female 

proportion in the control population (circa 50 % female) as compared to the 5 ppm 

population (97% phenotypic male). Studies with 1-2 kg halibut have shown that females 

have a 1.9 fold higher fast myotomal muscle fiber number than males (Hagen et al., 

2006, 2008) reflecting the larger ultimate body size in females. The coefficient of 

variation however was not different between treatments suggesting that there didn‘t 

appear to be distinct population differences between the 5 ppm and control population at 

this stage. Furthermore although the muscle fiber recruitment rates of males and females 

appear to differ, the sexual dimorphism in weight between gender generally only became 

apparent at the start of male maturation (Hagen et al., 2006). The precise physiological 

mechanisms regulating differences in muscle fiber recruitment between male and female 

fish showing a sexual dimorphism in body size are unknown (Hagen et al., 2008), thus 

weight differences cannot be attributed to genetics or phenotype alone. The SGR of 

tagged immature fish did not vary between treatments, as expected. Halibut growth is 

generally calculated on the basis of yearly weight gain due to the seasonal changes 

associated with sexual maturation (Imsland & Jonassen, 2005), furthermore since SGR 

reduces as weight increases, it makes the evaluation of growth difference difficult 

(Bjornsson, 1995), yearly weight gain will be calculated in the future after the halibut 

have been monitored for greater then 3 years 

In order to determine neomales within our 5 ppm treatment, as a pilot study, 

fertilisation crosses have been performed with four of the early maturing 5 ppm putative 

neomales (spring 2010) and sex determination (identification of monosex female 

progeny) will be conducted on the progeny once they have obtained a suitable size (~80 

g) (Spring 2011). Large scale fertilisation crosses will take place when halibut have 

reached four years of age (Spring 2011) at which point a greater percentage of males 
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should be maturing (Jákupsstovu & Haug, 1998) and from this, broodstock for future 

monosex production will be selected. In order to promote the chances of selecting a 

neomale, as many individuals as possible should be tested and the ability to pool 

progeny from different putative neomales would greatly help in this respect. Work is 

currently being directed into investigating genetic marker (microsatellite) variation 

between potential male broodstock (taking into account the females to which they are 

crossed) with the aim to identify their offspring within pooled progeny. Moreover, the 

ability to determine the genetic sex of halibut would greatly facilitate and fast-track the 

process of monosex production i.e.  neomales could be identified at maturation. 
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CHAPTER 6: MAIN FINDINGS 

In this section, the main findings of each research chapter are summarised: 

Chapter 2. The effect of metal halide and novel green cathode lights on the stress 

response, innate immunity, eye structure and feeding activity of Atlantic cod, Gadus 

morhua L. 

 There were no clear significant long term effects of any of the lighting treatments 

on stress levels (plasma cortisol, glucose), innate immune function (lysozyme 

activity), retina structure and population feeding activity. 

 A transient reduction in feeding occurred following light onset, most pronounced 

in fish exposed to higher illumination however this resumed to normal activity 

after 8 days.   

 Even under high intensity constant lighting, cod still demonstrated a day-night 

rhythm in melatonin release suggesting perception of the overlying ambient 

photoperiod. 

 

Chapter 3. The impact of combining shading and continuous lighting on the 

suppression of sexual maturation in outdoor reared Atlantic cod, Gadus morhua. 

 Shading treatments in conjunction with continuous lighting were effective at 

suppressing sexual development in male and female Atlantic cod, confirmed 

through histology, reduced GSI, oocyte diameter and sex steroid profiles.  

 No significant differences in day/night melatonin levels were observed in fish 

under the shading treatments and continuous light regime. 
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Chapter 4. Photoperiod effects on the expression of kisspeptin and gonadtropin genes 

in Atlantic cod, Gadus morhua, during first maturation. 

 Expression patterns of kiss2 and kissr4 did not reveal any clear association with 

season or photoperiod treatment.  

 Pituitary expression of FSH and LH showed a differential expression in relation 

to photoperiod treatment from December onwards. 

 

Chapter 5. Research on methodologies for the production of monosex Atlantic 

halibut, Hippoglossus hippoglossus, in the UK. 

 Flow cytometry of fish species sperm cells did not reveal any clear sex related 

size difference in DNA of species tested thus demonstrating that semen sexing 

may not be an applicable technique for monosex production of such species. 

 Indirect sex reversal was successfully performed in Atlantic halibut yielding a 

male-skewed population and thus potential neomales for all-female production. 
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CHAPTER 7: GENERAL DISCUSSION 

The overall objective of this thesis was to improve the management of sexual maturation 

in Atlantic cod and halibut with the aim to promote the sustainability and expansion of 

their commercial culture. A targeted approach was adopted whereby a specific 

management technique for the control of maturation in each species was investigated: 1) 

photoperiod manipulation during cod on-growing in cages and 2) monosex production in 

juvenile halibut. Research was conducted at both the applied and fundamental levels to 

provide valuable information for the optimisation and implementation of these 

techniques within the cod and halibut industry. This general discussion will expand on 

the wider implications of the main findings from the thesis, discuss the limitations of the 

experimental studies performed and identify current research priorities for future 

development in these fields of investigation. 

1. Photoperiodic control of puberty in Atlantic cod 

Photoperiod manipulation has been demonstrated to be fully effective at suppressing 

puberty in indoor tanks but not in outdoor commercial rearing systems. In an experiment 

by Taranger et al. (2006) only a four month delay at best was recorded using four 150W 

metal halide units. Recent commercial trials using as many as twenty 1000W metal 

halide units in a single cage showed improved results with signs of partial inhibition 

however maturation was still not inhibited in 100% of the population (CodLight–Tech, 

6
th

 EU Framework Programme project). This latter set-up was considered as ―over-kill‖ 

and serious concerns were raised regarding the potential impacts of such high light 

wattage on the general health and welfare of the fish. Importantly, an increase in the 

number of light units in a cage does not appear as a viable option for the future due to 

technical and economical limitations. This PhD project therefore focussed on two key 
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aspects of the use of high intensity lighting regimes in commercial on-growing of cod: 1) 

potential welfare impacts (Chapter 2) and 2) the potential of shade netting systems to 

improve the efficiency of systems (Chapter 3). Furthermore, this project also 

investigated the interface between the perception of light signals and the endogenous 

regulation of the brain-pituitary-gonadal axis by firstly developing molecular tools for 

key targets of the kisspeptin system and then comparing their seasonal profile of 

expression in ambient vs. photoperiod manipulated cod populations (Chapter 4). 

1.1 Welfare impacts of artificial lighting 

Research into the potential adverse impacts of artificial lighting regimes in aquaculture is 

seriously lacking despite the clear importance of these regimes in the industry especially 

in the case of cod farming where fish are exposed to extremely high light intensities in 

comparison to other commercially important species (e.g. salmon). Findings from our 

present work are promising and suggest that high light intensity regimes do not 

compromise cod juveniles in the long run in terms of the parameters measured including 

stress indicators (cortisol, glucose), feeding behaviour and aspects of the non specific 

immune system such as lysozyme activity. It is acknowledged that our experiment was 

conducted in indoor tanks and therefore ambient conditions especially the additive effect 

of natural daylight were not encompassed. In particular the UV component of the 

daylight spectrum has been shown to be damaging to the teleost eye when applied at 

high intensity (Cullen & Monteith-McMaster, 1993; Chen et al., 1999). Furthermore our 

study was only performed on a small scale (1.6 m
3 

volume of water) and for a short 

duration (up to 4 weeks). This said, the objective of this trial was to mimick the ‗worst-

case‘ scenario of artificial lighting conditions that fish would be exposed to in a 

commercial cage, based on the different lighting systems which are employed by the 

industry. Our findings came as a surprise considering the levels of light tested (a mean of 
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16.6 watts m
-2

 in the metal halide treatment), the proximity of fish to the light units (fish 

were within 1m of the light unit) and the light units themselves (metal halide and narrow 

bandwidth green lighting, peak emission of 546 nm). This demonstrates the ability of 

cod to cope and adapt to acute changes in their photic environment. Of particular interest 

was the lack of observed morphological eye damage following the sudden onset of the 

constant high intensity lighting. Since the teleost eye does not possess eyelids and has a 

fixed pupil aperture (Ferguson, 2006) it may be conceived that they are more susceptible 

to light-induced damage than other vertebrate species. However, mechanisms to protect 

the retinal photoreceptors from high illumination are present in fish and include the 

migration of melanosomes to enshroud the photoreceptors and photoreceptor motility. 

These appear to be highly effective in cod. In a previous study, Vera et al. (2009) 

showed that morphological damage of the retinal layers does occur above a certain light 

intensity although the threshold remains to be determined. Retinal damage indicated by a 

reduced photoreceptor layer and a reduction in the number of outer nulear layer nuclei, 

was shown in cod, salmon and sea bass after 3 days of exposure to illuminations of 51-

380 watts m
-2

. What is remarkable is the ability of the teleost retina to regenerate 

thereafter, this is a known feature of fish retina (Cameron & Easter, 1995) which was 

confirmed by Vera et al (2009). In contrast, retinal regeneration does not occur in higher 

vertebrates and humans and death of photoreceptors can result in permanent loss in 

vision. With this in mind and in light of our results, clearly the teleost retina is a very 

interesting model for understanding mechanisms of retinal cell apoptosis and 

regeneration in relation to light-induced damage. This work could prove very interesting 

to study ocular disease and develop therapies for the human eye (Easter & Hitchcock, 

2000). Further work in teleosts should be conducted to test the effect of narrow bandwith 

light especially high energy wavelengths (blue light, 400-500 nm) on the retina. Indeed, 
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these shorter wavelengths are known to be harmful to the eyes of mammals (Young, 

1988; Dawson et al., 2001) and are considered as the most efficient at penetrating the 

seawater column thus having an increasing potential in the aquaculture industry as 

compared to metal halide broad spectrum technologies (Lalli & Parsons, 1995). In 

addition, fish have been shown to be more sensitive to short rather than longer 

wavelengths (Vera et al., 2010). Blue LED lighting (peak wavelength of 424 nm) has 

been tested in Atlantic salmon and had no clear effects (Migaud et al., 2007) but it 

remains to be tested in cod, a more light sensitive species (Vera et al., 2009; 2010).  

Although there were no clear long term effects of lighting in our study, a 

transient reduction in feeding was observed. This has also been recorded in Atlantic 

salmon on many commercial sites following the onset of lighting in on-growing cages 

and is referred to as the ―growth dip‖. It is thus possible that lighting is having an effect 

at the physiological level which in turn affects feeding activity. It must also be 

acknowledged that the lighting regimes may have also had an effect on other parameters 

not measured in our study. For example, it would be interesting to study the effects of 

artificial lighting on skin pigmentation, organisation and mucus production. Although 

UV radiation is not a component of the artificial lighting used, it is known that it can 

have damaging effects on the skin of teleosts such as a reduction in epidermial goblet 

and mucous cells, alteration in mucous production, epidermis sloughing (Blazer et al., 

1997; Leclercq et al., 2010a) it would therefore also be of interest to investigate the 

effects of high intensity narrow bandwidth light. Light-induced skin effects could not 

only be an indicator of poor health but also affect the marketability of fish. To date, it 

appears that no studies have been performed to answer these important questions. 

Furthermore it would be of interest to study the effect of lighting on swimming 

behaviour and if this results in increased allocation of energy. Atlantic salmon for 
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example are known to be attracted to light, this said, cod did not show such photo 

attraction however neither did they show an avoidance. It is also important to note that 

light sensitivity may vary depending on the age of the fish, for example it is known that 

the wavelength sensitivity of fish species such as the Atlantic salmon changes 

throughout its life history (Kusmic et al., 2003), it is therefore possible that in cod, the 

repertoire of photoreceptors in the retina may change throughout its life history thus also 

affecting its susceptibility to light.  

In summary, this study provides very interesting preliminary information on the 

effect of high intensity light on the welfare of cod. It is important to acknowledge 

however that animal welfare is complex, and this may be reflected in many physiological 

and behavioural traits, thus although we have assessed a number of different indicators 

to provide a broad assessment with respect to the five freedoms of welfare (FAWC, 

2009) a variety of other parameters including swimming behaviour, could be measured 

to provide an even more comprehensive study of potential welfare impacts. Welfare 

assessment is of particular importance considering the prevalence of lighting 

intervention and associated concerns in commercial cod farming, and the desire of 

regulators to steer best practice. Currently welfare standards are only available for 

Atlantic salmon and these are very simplistic with respect to light (RSPCA, 2010). The 

research conducted in this study and other studies by Vera et al. (2009; 2010) suggest 

that these standards should be reconsidered. 

1.2 Efficacy of shading - day/night light ratio perception 

Research into the non visual light perception in cod in-vitro brought to the forefront the 

concept of ―relative photoreception‖ (Vera et al., 2010) which suggests that by reducing 

daylight intensities, the impact of night time illumination may be improved such that fish 

cannot perceive daylength seasonal changes. The study in chapter 3 exploited this 
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concept by investigating the impact of shading of ambient daylight in addition to 

constant lighting to suppress maturation in cod on-growing. Positive results from the 

study revealed that the shading treatments in combination with constant light, effectively 

suppressed maturation and this was shown through a comprehensive analysis of growth, 

gonadal development and sex steroid data. It is suggested therefore that the efficacy of 

artificial lighting systems employed to control sexual maturation can be improved 

through the use of shade netting. Unfortunately no outdoor control with constant lighting 

and no shading could be tested in this study due to limitations in facility/fish availability. 

However it must be remembered that the important concept in this study is that a 

reduction in daylight ratio can effectively suppress maturation in outdoor tanks and this 

reduction was achieved by combining shading with constant artificial light. It is 

acknowledged that these results are preliminary and require further confirmation in 

commercial cage systems before implementation can be done across the industry. 

Unfortunately, validation of these results at a commercial scale, originally planned as 

part of the project, could not be performed during the time course of the PhD project due 

to the collapse of the UK cod industry in 2009. However, such implementation is not 

straightforward and two key areas must be considered for future research. Firstly, the 

definition of the night-time illumination threshold needs to be set. The concept of 

―relative photoreception‖ recently proposed in fish (Vera et al., 2010) was based on in 

vitro pineal studies and melatonin analyses alone. Although results were extrapolated to 

in vivo conditions by considering the skull light transmittance of cod, it is important to to 

take into account the circadian organisation in the species with respect to the control of 

melatonin. Indeed, the pineal gland is only one of the photosensory structures that form 

the light perception network which also include the retina and deep brain photoreceptors 

(Migaud et al., 2010). Future experiments should therefore try to validate further the 
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concept of ―relative photoreception‖ in vivo. Furthermore, although Vera et al. (2010) 

tested a number of different wavelengths of light (blue, green and red) other components 

of the daylight such as ultraviolet wavelengths may have an important influence. For 

example, juvenile salmonids when reared in freshwater present UV cones which 

suggests that they may play an important role in this fish species at this age (Kusmic & 

Gualtieri, 2000). Thus definitions based on isolated wavelengths and intensities alone 

may not be an accurate benchmark for commercial implementation. It also remains to be 

determined how the photic information is relayed to the BPG axis. Although melatonin 

release is known to reflect daylength and theoretically light perception in fish species, no 

direct link to the BPG axis has been demonstrated yet (Migaud et al., 2010). To help 

elucidate this, the expression of key genes involved in the initiation of the BPG axis and 

their response to photoperiod need to be determined such as those encoding for 

kisspeptin (Chapter 4) and GnRH subtypes. Furthermore localisation studies of these 

genes will help identify their potential sensitivity to photic stimuli, for example are they 

co-localised with key light perception centres centrally and peripherally?  

The second area that needs to be investigated prior to any implementation of 

shading systems in the industry is the technical challenges associated with their 

development. Shade netting might not sufficiently reduce the light intensity throughout 

the entirety of the cage thus importantly, relative night time illumination intensities 

might be lower than levels achieved in the experimental tanks. All of these might 

interact and impact on the end result. Shading systems must also meet the physical 

demands and absorb the physical/environmental impacts subjected to cages in the marine 

environment. In the past, pilot application gave poor results with nets blown away during 

winter storms when not robust enough or compromising the cage structure when rigid 

shade netting was used. Furthermore, systems must be user-friendly so not impede on 
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routine husbandry (e.g. feeding, monitoring,..). Thus although shading could prove to be 

an effective component in photoperiod manipulation, the engineering of shading systems 

must be researched. If confirmed commercially, this would have very significant 

implications for the cod on-growing industry that desperately needs to control puberty to 

improve profitability. 

Another concept to reduce the day/night ratio is the use of submersible cages, this 

would immediately decrease the amount of ambient daylight to which fish are exposed 

creating a more constant environment for the fish. However this said, cod naturally 

inhabit deepwater thus they must still be receiving a cue such as daylength which drives 

their seasonality. Although offshore submersible cages are not commercially practiced at 

a large scale presently in cod aquaculture due to the need for development of supporting 

technologies for autonomous operation of tasks such as feeding (Langan, R., 2010), 

preliminary results have indicated that cod may be well suited to this rearing system 

(Chambers & Howell, 2006).  

1.3. Photoperiodic effects on the expression of kisspeptin and gonadotropin genes  

Despite photoperiod effects having been extensively studied in fish, the pathways by 

which photoperiod control the neuroendocrine systems and regulate puberty still remain 

unknown. The kisspeptin system in mammals is known to play a crucial role in the 

activation of the BPG axis however little work has been carried out on the importance of 

the kisspeptin system on fish reproduction and its potential link to photoperiod. In 

Chapter 4 we reported on the identification of cod specific transcripts for the signal 

peptide Kiss2 and its receptor kissr4 which lead to the development of quantitative 

assays to measure their expression for the first time in Atlantic cod. Interestingly, results 

indicated that there was no clear seasonality in the selected kisspeptin genes measured in 

cod that underwent a typical reproductive cycle. This contrasted with our original 
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hypothesis that kisspeptin expression would display a clear association with sexual 

development as already suggested in other fish species and mammals (Oakley et al., 

2009; Filby et al., 2008). It is acknowledged that in our study, expression was only 

measured once a month therefore a higher resolution profile may have captured a peak in 

expression. However, when expression was presented according to gonad developmental 

stages, there was no evidence of clear patterns of expression. The data obtained conflicts 

with the previously suggested mode of action of the kisspeptin system and requires more 

work before any firm conclusions can be made. There are however a number of 

interesting questions emerging from this work. First of all, perhaps other subtypes of 

kisspeptin (e.g. Kiss1) and receptor (Kissr2) if proven to exist in cod could play a more 

important role in the control of reproduction of this species (Akazome et al., 2010). 

However, irrespective of signal peptide/receptor subtype, in all cases, there is a need for 

co-localisation studies such as those conducted in zebrafish and sea bass (Aguirre et al., 

2010; Servili et al., 2010). In such studies, the presence of Kiss1 neurons in the habenula 

region suggest that they might be linked to photoreception, whereas the presence of kiss2 

in the hypothalamus suggest that it is directly involved in the BPG axis. Similar studies 

performed in cod will help elucidate the sites of action of the kisspeptin peptide and 

identify candidate targets for further expression studies relating to the light perception 

and BPG axis regulation. Regarding regulation of the BPG axis, the role of GnRH in cod 

also needs to be elucidated. Although the coding sequences of GnRH genes have been 

published (Accession numbers: GU332296, GnRH1; GU332294, GnRH2; GU332295, 

GnRH3), to our knowledge no localisation or expression studies have been performed to 

date. Again it is of importance to determine the localisation of these subtypes as has been 

done in the sea bass (Kah et al., 2007) to help identify which subtypes appear to play a 

role in the regulation of the BPG axis and provide neuroanatomical evidence between 
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kisspeptin and GnRH neurons (Tena-Sempere et al., 2010). Results obtained so far in 

fish clearly indicate species specific adaptations with variation in the subtypes of 

kisspeptin and GnRHs which play an active role, this emphasises the need for 

comparative studies to be performed.  

Also in light of our results, there is the possibility that the kisspeptin system may 

not play such an important role in the entrainment of sexual maturation in cod as was 

first hypothesised. Interestingly, neither kisspeptin or its receptor have been isolated in 

the avian lineage (Um et al., 2010) which suggests that another signalling pathway must 

be operating in avian species which could very well be present in fish. What our work 

did show was that a differential response in gonadotropin signalling was present from 

December onwards between the maturing population under SNP and the immature 

population under LL thus an undescribed pathway is at work during this time. With high 

throughput transcriptomic/proteomic methodologies becoming available and the cod 

genome soon to be fully sequenced, target tissues such as the hypothalamus of the brain 

and the pituitary could be screened to identify candidate genes involved in the photic 

regulation of puberty. For example, microarray and/or based gene expression profiling 

could be used to identify genes whose expression changes in response to photoperiod 

treatment and maturity status. 

An understanding of the underlying control of reproduction is of key importance 

in order to fully exploit the seasonal control of puberty. The development of molecular 

assays to measure genes indicating maturity status will be of great use in helping to 

design and validate the efficacy of lighting regimes. In a wider context, such tools could 

be used to look at maturation in wild fish stocks and potentially assess population 

reproduction status and dynamics of population growth.  
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2. Methodologies for the production of monosex Atlantic halibut 

Monosex production is a key remediation technique to the problem of early maturation 

in Atlantic halibut as the production of all-female populations prevents the problem of 

early maturation as females reach a suitable harvest size before undergoing maturation. 

Based on an established form of monosex production in the cattle industry the 

potential of semen sexing by flow cytometry in fish species was explored (Chapter 5). 

This technique however was not able to differentiate cells into discrete populations based 

on total DNA content. It is possible that the sensitivity of the instrumentation employed 

was not at a high enough resolution to detect differences in the DNA content however it 

is more likely that there were no detectable differences in the DNA supported by the fact 

that there remains a lack of reported morphological differentiation between male and 

female sex chromosomes in most teleost species (Devlin & Nagahama, 2002; Tvedt et 

al., 2006). However advances in DNA analysis techniques have facilitated the search for 

sex linked and sex specific markers (Penman and Piferrer, 2008) even in the absence of 

apparent sex chromosomes. Should robust markers be identified in halibut then the 

fluorescent based cell sorting could be re-employed with non destructive fluorescent 

labels developed against these targets.  

A second methodology for the production of monosex populations is the 

approach of indirect sex reversal. In this study, the initial steps of the traditional method 

of indirect sex reversal were successfully completed with the production of potential 

neomales for the first UK female monosex halibut population. Importantly, a shorter 

duration of hormone treatment was tested with the intention to reduce overall handling 

time of the hormone however this was not as effective as the longer treatment. This 

highlights the importance of setting a minimum treatment time for the commercial 

production of juveniles. This may be a reflection of the amount of time an individual 
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must receive hormones to over-ride its natural steroid signalling profile. Alternatively it 

may be an indication of the heterogeneous development rates present in a batch of 

juveniles for treatment which ultimately means a blanket period of treatment is necessary 

to capture all individuals during the labile period prior to sexual differentiation. The 

drawback to indirect sex reversal is the time taken to firstly generate neomales which is 

then further compounded by the additional time required to validate the broodstocks 

genotype by progeny testing. In our study, crosses between potential neomales and 

normal females have been conducted (Spring 2010) however it will take one year 

following these crosses (Spring 2011) before progeny have reached a size in which they 

can be sexed through histology by their phenotype. Only then can the neomales with an 

XX genotype be identified. For the future sustainability of this indirect sex reversal for 

monosex production, it is important that tools are developed that will help identify 

genotype by other means than progeny testing.  To this end, as with the semen sexing, 

the identification and validation of sex related/specific markers are a priority goal. 

Recent advances in DNA technologies such as linkage mapping or Restriction site 

Associated DNA marker tagging (so called ―RAD‖ tagging) could be used to identify 

such markers. This means that juveniles could be sexed at a much earlier age and thus 

hormone treatments for the production of neo-broodstock confirmed as successful or not 

(based on population sex ratios). Furthermore neoparents could be identified as if their 

genotype is known then all that remains, is to determine their sexual phenotype. 

Furthermore, hatcheries selling juveniles marketed as monosex populations could benefit 

from the technology by screening and confirming population sex prior to sale.  

3. Conclusions 

This thesis presents novel research investigating the management of sexual maturation in 

Atlantic cod and halibut. In cod, not only has it assessed serious concerns regarding the 
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welfare impacts of artificial lighting but it is the first to experimentally document and 

positively support the concept of shading to improve the efficiency of photoperiod 

manipulations in outdoor conditions. Furthermore it has ventured into the mechanisms 

behind the photoperiodic modulation of the BPG axis stimulation and is the first to 

describe expression of kisspeptin genes in Atlantic cod. In halibut, this project tested the 

alternative practice of producing monosex populations by semen sexing and has 

produced putative neomale halibut for the first UK production of monosex female 

halibut. These latter studies have emphasised the need for the development of sex 

specific/linked markers in such a species. Importantly the valuable information 

generated from this PhD project can be used in a species targeted approach to optimise 

and enhance the control of maturation in each and promote sustainable expansion. It may 

also be considered in a broader sense for the control of maturation in other fish species. 

As a whole, sustainable expansion of the aquaculture industry is vital in a world where 

wild fish stocks are diminishing yet food demand is accelerating rapidly. 
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Appendix I. Schematic representation of the light unit set-up in tanks in Chapter 2. Lights were either 

programmed to a continous light regime (LL) or a simulated natural photoperiod (SNP). Set-ups are 

displayed as follows: a) control (SNP), b) low intensity green cathode light (1 unit, LL), c) high 

intensity green cathode light (4 units, LL), and d) metal halide (1 unit, SNP and LL treatments). 

Cathode light units were secured to tank lids and remained clear of the water surface. Metal halide 

units were secured to the tank lid and submerged into the water. Tanks were opaque and lids remained 

closed throughout the trial. 

A.) Control  (SNP) 

 
B.) Low intensity green cathode light (LL) 

 

C.) High intensity green cathode light (LL) D.) Metal halide (LL and SNP treatments) 

4 green cathode 

light units 

1 metal halide 

unit submerged in 

water 

Tank lid 

 

Main tank body 

1 green cathode light unit  
1 fluorescent bulb  
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Appendix 2. Plasma cortisol levels (ng ml
-1

) in Atlantic cod kept under control 

conditions, green cathode light (Low CL and High CL) and metal halide (MH-LL and 

MH-SNP) light. Mean and standard deviation (SD) are presented (n=2, 5 fish per 

replicate). Significant differences between baseline and post-light onset values are 

indicated by *. 

 

Treatment 

 

Baseline 3 Hour 1 Week 2 Week 4 Week 

Control Mean      5.21 4.99 2.72 7.61 7.91 

 

SD 0.14 4.19 2.26 5.33 4.38 

Low CL Mean 2.41 6.58 12.30* 3.59 3.90 

 

SD      0.57 3.75 5.00 2.76 2.63 

High CL Mean 4.92 12.39 9.52 13.08 4.99 

 

SD 0.58 4.11 5.23 9.51 0.33 

MH-LL Mean 2.94 12.28 5.89 6.06 8.16 

 

SD 1.37 2.57 4.67 3.64 7.37 

MH-SNP Mean 5.04 8.53 2.54 8.84 3.64 

 

SD 2.72 6.45 0.08 5.77 0.23 
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Appendix 3. Plasma glucose levels (mg dl
-1

) in Atlantic cod kept under control 

conditions, green cathode light (Low CL and High CL) and metal halide (MH-LL and 

MH-SNP) light. Mean and standard deviation (SD) are presented (n=2, 5 fish per 

replicate). 

 

 

 

 

  

Treatment 

 

Baseline 3 Hour 1 Week 2 Week 4 Week 

Control Mean 42.63 47.92 54.72 74.91 60.19 

 

SD 9.46 6.01 11.16 15.87 19.95 

Low CL Mean 32.42 60.31 39.89 55.33 51.73 

 

SD 5.24 0.90 9.62 9.16 9.50 

High CL Mean 40.85 48.06 58.41 49.83 55.77 

 

SD 3.76 3.59 15.68 16.14 20.00 

MH-LL Mean 45.27 68.76 51.84 53.83 51.52 

 

SD 0.81 0.13 8.42 10.58 4.81 

MH-SNP Mean 39.85 51.60 61.87 61.44 59.36 

 

SD 8.09 11.73 17.48 6.96 28.65 
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Appendix 4. Schematic representation of the shading and light unit set-up in 

Chapter 3. Shaded tanks were opaque and shade netting was stretched across their 

open surface. The cathode light unit was positioned to float on the water surface and 

secured to the tank by its ends.  

Opaque tank sides 

Shade netting 

Cathode light unit on 

water surface 

Ambient photoperiod 
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Appendix 5. Weights (g) of tagged female fish maintained under indoor (SNP or LL) or 

outdoor (low or high shade) lighting treatments. Mean, standard error of the mean 

(SEM) and number (n) of fish are presented for every two month interval.  

 

  

Aug'08 Oct Dec Feb'09 Apr Jun Aug 

Indoor SNP Mean 723.67 911.67 1142.50 1395.83 1190.83 1400.00 1627.00 

 

SEM 69.07 82.53 126.12 156.71 103.38 133.70 117.53 

 

n 6 6 6 6 6 6 5 

Indoor LL Mean 628.33 816.67 1014.17 1283.33 1635.00 1984.00 1938.33 

 

SEM 72.92 78.06 91.13 135.45 177.54 171.12 172.33 

 

n 6 6 6 6 6 5 6 

Outdoor low 

shade LL 
Mean 615.14 681.67 914.17 1135.00 1475.00 1575.00 1615.00 

 

SEM 36.95 33.13 48.28 61.98 128.80 132.00 127.37 

 

n 7 6 6 6 7 7 7 

Outdoor high 

shade LL 
Mean 645.00 811.67 1076.67 1460.00 1950.00 1940.00 1956.67 

 

SEM 13.23 25.87 56.00 105.00 137.69 140.21 79.29 

 

n 3 3 3 2 3 3 3 
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Appendix 6. Weights (g) of sacrificed female fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting treatments. Mean, standard 

error of the mean (SEM) and number (n) of fish are presented for every two month interval. Significant differences between treatments at each timepoint are 

indicated by superscipts (statistical analysis: one-way ANOVA). 

  

Jul'08 Aug Sep Oct Nov Dec Jan'09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 572.14 591.25 594.17 665.00 920.00 830.83 1193.33 1221.67 930.00 875.00
b 930.00

b 1085.00 1627.00 

 

SEM 36.72 63.33 56.18 25.50 55.53 138.21 205.61 147.13 130.92 80.00 - 135.00 117.53 

 

n 7 6 6 6 6 6 6 6 7 2 1 2 6 

Indoor LL Mean 572.14 747.50 717.86 727.50 979.17 1068.33 879.17 1238.64 1140.83 1499.29
ab 1729.38

a 1729.38 1938.33 

 

SEM 36.72 64.61 69.53 81.93 169.25 173.62 84.95 111.12 122.30 130.55 108.89 443.14 172.33 

 

n 7 6 6 8 6 6 6 10 6 7 8 3 6 

Outdoor low  

shade LL 
Mean 572.14 386.67 - 680.00 - 1044.17 - 1386.00 - 1428.75

ab - 1982.50 1615.00 

 

SEM 36.72 72.19 - 38.08 - 147.49 - 108.72 - 221.54 - 312.50 127.37 

 

n 7 3 - 5 - 6 - 5 - 4 - 2 11 

Outdoor high  

shade LL 
Mean 572.14 563.33 - 848.00 - 880.00 - 1235.00 - 1847.00

a - 1887.50 1956.67 

 

SEM 36.72 43.33 - 42.80 - 163.52 - 160.90 - 206.24 - 110.64 79.29 

 

n 7 3 - 5 - 5 - 6 - 5 - 6 3 
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Appendix 7. Weights (g) of tagged male fish maintained under indoor (SNP or LL) or outdoor 

(low or high shade) lighting treatments. Mean, standard error of the mean (SEM) and number (n) 

of fish are presented for every two month interval.  

 

 

  

Aug'08 Oct Dec Feb'09 Apr Jun Aug 

Indoor SNP Mean 476.67 579.17 710.00 746.67 777.50 957.00 1094.17 

 

SEM 44.72 62.11 101.55 81.53 67.41 94.20 123.47 

 

n 6 6 6 6 6 5 6 

Indoor LL Mean 540.00 668.75 754.00 896.00 1039.00 1156.00 1215.00 

 

SEM 52.44 63.72 45.56 102.82 91.93 60.22 126.39 

 

n 5 4 5 5 5 5 5 

Outdoor low 

shade LL 
Mean 574.57 740.71 931.71 1122.14 1366.43 1401.71 1395.00 

 

SEM 31.69 56.55 101.55 127.46 162.42 151.47 166.52 

 

n 7 7 7 7 7 7 7 

Outdoor high 

shade LL 
Mean 471.88 595.00 754.38 1155.63 1264.38 1409.29 1415.00 

 

SEM 43.60 59.40 97.19 165.93 204.75 221.50 173.88 

 

n 8 8 8 8 8 7 8 
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Appendix 8. Weights (g) of sacrificed male fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting treatments. Mean, standard 

error of the mean (SEM) and number (n) of fish are presented for every two month interval. Significant differences between treatments at each timepoint are 

indicated by superscipts (statistical analysis: one-way ANOVA). 

  

Jul'08 Aug Sep Oct Nov Dec Jan'09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 430.00 460.33 549.17 659.17 645.83 644.17
b 846.67 925.00 735.83

b 862.78
b 948.13

b 1031.88 1094.17 

 

SEM 30.94 22.23 49.49 20.14 80.63 55.31 72.72 72.26 57.47 80.71 75.62 87.45 123.47 

 

n 13 6 6 6 6 6 6 6 6 9 8 8 6 

Indoor LL Mean 430.00 467.50 428.33 585.00 773.33 977.14
a 1043.33 1186.25 1218.33

a 1248.33
ab 1590.00

a 1456.43 1215.00 

 

SEM 30.94 60.87 49.49 75.40 124.82 86.91 122.69 93.15 110.23 134.24 - 137.59 126.39 

 

n 13 6 6 6 6 7 6 4 6 3 1 7 5 

Outdoor low 

shade LL 
Mean 430.00 446.43 - 687.00 - 1052.50

a - 1059.00 - 1275.83
a - 1181.88 1395.00 

 

SEM 30.94 53.23 - 75.92 - 94.48 - 74.10 - 73.57 - 168.92 166.52 

 

n 13 7 - 5 - 4 - 5 - 6 - 8 10 

Outdoor high 

shade LL 
Mean 430.00 448.57 - 444.00 - 768.00

ab - 997.50 - 1195.00
ab - 1247.50 1415.00 

 

SEM 30.94 62.75 - 62.76 - 92.41 - 92.41 - 153.60 - 87.14 173.88 

 

n 13 7 - 5 - 5 - 4 - 5 - 4 8 
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Appendix 9. Female mean individual GSI for sacrificed individuals maintained under one of four lighting treatments. Mean, standard error of the 

mean (SEM) and number of fish are presented. Differences between treatments at a given timepoint are indicated by superscripts.  

 

  

Aug'08 Sep Oct Nov Dec Jan'09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 0.94 1.07 1.59 3.00
a 4.92

a 5.71
a 8.18

a 21.49
a 2.14 2.35 1.80 2.13 

 

SEM 0.17 0.22 0.22 0.17 0.70 0.66 0.90 2.38 0.42 - 0.54 0.25 

 

n 6 6 6 6 6 6 6 7 2 1 2 6 

Indoor LL Mean 0.67 0.90 0.87 0.99
b 1.10

b 1.56
b 1.57

b 1.30
b 1.34 1.32 1.00 1.45 

 

SEM 0.11 0.10 0.12 0.04 0.14 0.49 0.29 0.16 0.17 0.25 0.10 0.30 

 

n 6 6 8 6 6 6 10 6 7 8 3 6 

Outdoor low 

shade LL 
Mean 1.25 - 1.15 - 1.34

b - 2.03
b - 2.18 - 2.05 1.46 

 

SEM 0.73 - 0.29 - 0.20 - 0.19 - 0.44 - 0.27 0.14 

 

n 3 - 5 - 6 - 5 - 4 - 2 11 

Outdoor high 

shade LL 
Mean 1.18 - 1.04 - 1.37

b - 1.82
b - 1.25 - 0.91 1.26 

 

SEM 0.35 - 0.20 - 0.31 - 0.63 - 0.24 - 0.27 0.15 

 

n 3 - 5 - 5 - 6 - 5 - 6 3 
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Appendix 10. Male mean individual GSI for sacrificed individuals maintained under one of four lighting treatments. Mean, standard error of the 

mean (SEM) and number (n) of fish are presented. Differences between treatments at a given timepoint are indicated by superscripts.  

 

 

  

  

Aug'08 Sep Oct Nov Dec Jan'09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 0.50 0.21 0.97 1.45 6.20
a 6.16

a 6.86
a 6.25

a 2.18
a 1.39 0.26 0.27 

 

SEM 0.22 0.02 0.24 0.65 0.42 0.40 0.97 0.61 0.44 0.42 0.03 0.02 

 

n 6 6 6 6 6 6 6 6 9 8 8 6 

Indoor LL Mean 0.49 0.22 0.22 0.15 0.26
b 0.34

b 0.58
b 1.35

b 0.59
b 0.10 0.70 0.23 

 

SEM 0.34 0.04 0.05 0.04 0.04 0.07 0.17 0.40 0.43 - 0.31 0.04 

 

n 6 6 6 6 7 6 4 6 3 1 7 5 

Outdoor low 

shade LL 
Mean 0.31 - 0.31 - 0.30

b - 0.20
b - 0.61

b - 1.39 1.08 

 

SEM 0.18 - 0.17 - 0.05 - 0.05 - 0.27 - 0.57 0.36 

 

n 7 - 5 - 4 - 5 - 6 - 8 10 

Outdoor high 

shade LL 
Mean 0.50 - 0.21 - 0.36

b - 0.32
b - 1.16

ab - 1.21 0.45 

 

SEM 0.24 - 0.09 - 0.06 - 0.05 - 0.19 - 0.80 0.12 

 

n 7 - 5 - 5 - 4 - 5 - 4 8 
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Appendix 11. Oocyte diameter of leading cohort of sacrificed females maintained under one of four lighting treatments. Mean, standard error of 

the mean (SEM) and number of fish are presented. Development size classifications are with reference to the definitions by Kjesbu (1991). 

Differences between treatments at a given timepoint are indicated by superscripts. 

 

  

Sep’08 Oct Nov Dec Jan'09 Feb Mar Apr May Jun 

Indoor SNP Mean 216.32 243.22 343.31
a 419.37

a 555.05
a 675.06

a 1162.39
a 174.70 1635.71

a 179.62 

 

SEM 9.92 20.02 16.44 18.38 40.16 34.72 110.82 4.12 - 4.44 

 

n 6 6 6 6 6 6 7 2 1 2 

Indoor LL Mean 244.20 178.16 208.59
b 222.13

b 300.73
b 295.24

b 266.47
b 426.20 275.73

b 208.90 

 

SEM 67.09 7.82 18.92 11.39 69.38 21.14 20.36 147.93 24.10 3.03 

 

n 6 8 6 6 6 10 6 7 8 3 

Outdoor low 

shade LL 
Mean - 290.36 - 287.78

b - 378.93
b - 382.54 - 266.42 

 

SEM - 64.04 - 26.17 - 38.44 - 16.64 - 93.39 

 

n - 5 - 6 - 5 - 4 - 2 

Outdoor high 

shade LL 
Mean - 237.24 - 309.22

ab - 301.37
b - 333.12 - 277.37 

 

SEM - 67.18 - 57.92 - 45.09 - 32.59 - 32.21 

 

n - 5 - 5 - 6 - 5 - 6 
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Appendix 12. Plasma testosterone (ng/ml) in tagged female fish maintained under 

indoor (SNP or LL) or outdoor (low or high shade) lighting treatments. Mean, standard 

error of the mean (SEM) and number (n) of fish are presented for every two month 

interval. Significant differences between treatments at each timepoint are indicated by 

superscipts (Statistical analysis: GLM).     

 

Treatment 

 

Aug ‘08 Oct Dec Feb’09 Apr Jun Aug 

Indoor SNP Mean 0.14 0.38
a 1.35

a 0.85 0.50 0.71 0.22 

 

SEM 0.04 0.10 0.29 0.11 0.10 0.09 0.03 

 

n 6 6 6 6 6 6 5 

Indoor LL Mean 0.07 0.03
b 0.14

b 0.24 0.63 0.80 0.32 

 

SEM 0.02 0.01 0.03 0.03 0.11 0.03 0.07 

 

n 6 6 6 6 6 5 6 

Outdoor low 

shade LL 
Mean 0.23 0.19

ab 0.62
ab 0.35 0.60 1.25 0.44 

 

SEM 0.06 0.06 0.29 0.03 0.17 0.20 0.09 

 

n 7 6 6 6 7 7 7 

Outdoor high 

shade LL 
Mean 0.12 0.03

b 0.34
ab 0.30 0.46 0.72 0.41 

 

SEM 0.04 0.02 0.06 0.01 0.04 0.07 0.10 

 

n 3 3 3 2 3 3 3 
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Appendix 13. Plasma testosterone (ng/ml) in sacrificed female fish maintained under indoor (SNP or LL) or outdoor (low or high shade) 

lighting treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented. Significant differences between treatments at 

each timepoint are indicated by superscipts (statistical analysis: one way ANOVA).     

 

 

 

 

  

Treatment 

 

Jul ‘08 Aug Sep Oct Nov Dec Jan ‘09 Feb Mar Apr May Jun Aug  

Indoor SNP Mean 0.04 0.02 0.37
a 0.44

a 0.90
a 0.75 1.01

a 0.94
a 0.88

a 0.25 0.08
a 0.44 0.22

b 

 

SEM 0.02 0.01 0.09 0.06 0.14 0.11 0.16 0.09 0.11 0.07 - 0.04 0.03 

 

n 7 6 6 6 6 6 6 6 7 2 1 2 6 

Indoor LL Mean 0.04 0.03 0.11
b 0.07

b 0.22
b 0.29 0.28

b 0.43
b 0.21

b 0.38 0.44
b 0.48 0.32

ab 

 

SEM 0.02 0.02 0.05 0.02 0.03 0.07 0.09 0.06 0.07 0.08 0.04 0.03 0.07 

 

n 7 6 6 8 6 6 6 10 6 7 8 3 6 

Outdoor low 

shade LL 
Mean 0.04 0.01 - 0.12

b - 0.66 - 0.35
b - 0.61 - 0.37 0.53

a 

 

SEM 0.02 0.00 - 0.05 - 0.18 - 0.04 - 0.04 - 0.37 0.07 

 

n 7 3 - 5 - 6 - 5 - 4 - 2 11 

Outdoor high 

shade LL 
Mean 0.04 0.02 - 0.03

b - 0.27 - 0.38
b - 0.60 - 0.35 0.41

ab 

 

SEM 0.02 0.01 - 0.02 - 0.09 - 0.04 - 0.18 - 0.04 0.10 

 

n 7 3 - 5 - 5 - 6 - 5 - 6 3 
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Appendix 14. Plasma 17β-estradiol (ng/ml) in tagged female fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting 

treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented. Significant differences between treatments at each 

timepoint are indicated by superscipts (statistical analysis: GLM).     

 

 

  

Treatment 

 

Aug ‘08 Oct Dec Feb ‘09 Apr Jun Aug  

Indoor SNP Mean 0.06 0.21 0.12 2.32
a 0.15 0.01

b 0.01 

 

SEM 0.02 0.07 0.03 0.24 0.05 0.00 0.00 

 

n 6 6 6 6 6 6 5 

Indoor LL Mean 0.08 0.04 0.13 0.16
b 0.22 0.02

b 0.09 

 

SEM 0.01 0.00 0.06 0.03 0.06 0.00 0.03 

 

n 6 6 6 6 6 5 6 

Outdoor low 

shade LL 
Mean 0.14 0.11 0.13 0.11

b 0.07 0.30
a 0.09 

 

SEM 0.03 0.02 0.04 0.02 0.03 0.11 0.06 

 

n 7 6 6 6 7 7 7 

Outdoor high 

shade LL 
Mean 0.09 0.09 0.33 0.10

b 0.07 0.04
ab 0.04 

 

SEM 0.02 0.03 0.27 0.01 0.02 0.01 0.02 

 

n 3 3 3 2 3 3 3 
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Appendix 15. Plasma 17β-estradiol (ng/ml) in sacrificed female fish maintained under indoor (SNP or LL) or outdoor (low or high shade) 

lighting treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented. Significant differences between treatments at 

each timepoint are indicated by superscipts (statistical analysis: one-way ANOVA). 

 

Treatment 

 

Jul ‘08 Aug Sep Oct Nov Dec Jan ‘09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 0.09 0.09 0.12
a 0.11

a 0.42
a 0.45

a 1.22
a 1.08

a 1.11
a 0.06 0.09 0.09 0.01 

 

SEM 0.02 0.01 0.02 0.01 0.08 0.07 0.35 0.12 0.22 0.00 - 0.01 3.43E-03 

 

n 7 6 6 6 6 6 6 6 7 2 1 2 6 

Indoor LL Mean 0.09 0.07 0.08
b 0.05

b 0.05
b 0.06

b 0.11
b 0.07

b 0.06
b 0.27 0.09 0.06 0.10 

 

SEM 0.02 0.01 0.00 0.01 0.01 0.01 0.03 0.02 0.21 0.21 0.04 0.02 0.03 

 

n 7 6 6 8 6 6 6 10 6 7 8 3 6 

Outdoor low 

shade LL 
Mean 0.09 0.09 - 0.04

b - 0.13
b - 0.11

b - 0.14 - 0.17 0.09 

 

SEM 0.02 0.00 - 0.01 - 0.05 - 0.06 - 0.02 - 0.12 0.06 

 

n 7 3 - 5 - 6 - 5 - 4 - 2 11 

Outdoor high 

shade LL 
Mean 0.09 0.09 - 0.05

b - 0.12
b - 0.11

b - 0.06 - 0.09 0.04 

 

SEM 0.02 0.00 - 0.00 - 0.09 - 0.06 - 0.03 - 0.03 0.02 

 

n 7 3 - 5 - 5 - 6 - 5 - 6 3 
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Appendix 16. Plasma testosterone (ng/ml) in tagged male fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting 

treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented for every two month interval. Significant differences 

between treatments at each timepoint are indicated by superscipts (statistical analysis: GLM).     

 

 

Treatment 

 

Aug’08 Oct Dec Feb’09 Apr Jun Aug 

Indoor SNP Mean 0.38 1.09
a 1.66 2.29

a 0.80 0.78 0.52 

 

SEM 0.03 0.38 0.55 0.33 0.14 0.08 0.13 

 

n 6 6 6 6 6 5 6 

Indoor LL Mean 0.39 0.56
ab 0.63 0.89

ab 0.76 0.97 0.60 

 

SEM 0.08 0.17 0.29 0.35 0.08 0.09 0.14 

 

n 5 4 5 5 5 5 5 

Outdoor low 

shade LL 
Mean 0.32 0.35

ab 0.52 0.40
b 0.74 1.96 1.19 

 

SEM 0.08 0.06 0.09 0.11 0.10 0.44 0.16 

 

n 7 7 7 7 7 7 7 

Outdoor high 

shade LL 
Mean 0.20 0.33

b 0.42 0.40
b 0.57 1.41 0.85 

 

SEM 0.03 0.11 0.05 0.06 0.04 0.16 0.12 

 

n 8 8 8 8 8 7 8 
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Appendix 17. Plasma testosterone (ng/ml) in sacrificed male fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting 

treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented. Significant differences between treatments at each 

timepoint are indicated by superscipts (statistical analysis: one way ANOVA).     

 Treatment 

 

Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 0.13 0.06 0.62
a 0.89

a 1.06
a 1.42

a 3.10
a 1.87

a 2.98
a 0.54 0.37

a 0.44
b 0.47 

 

SEM 0.04 0.04 0.12 0.11 0.23 0.17 0.37 0.26 0.44 0.13 0.04 0.03 0.12 

 

n 13 6 6 6 6 6 6 6 6 9 8 8 6 

Indoor LL Mean 0.13 0.34 0.27
b 0.24

b 0.25
b 0.45

b 0.50
b 0.72

b 1.41
b 0.52 0.82

b 0.78
ab 0.60 

 

SEM 0.04 0.29 0.06 0.01 0.05 0.08 0.03 0.13 0.36 0.05 - 0.05 0.14 

 

n 13 6 6 6 6 7 6 4 6 3 1 7 5 

Outdoor low 

shade LL 
Mean 0.13 0.10 - 0.36

b - 0.58
b - 0.51

b - 1.01 - 1.05
a 0.87 

 

SEM 0.04 0.05 - 0.12 - 0.09 - 0.07 - 0.15 - 0.16 0.13 

 

n 13 7 - 5 - 4 - 5 - 6 - 8 10 

Outdoor high 

shade LL 
Mean 0.13 0.06 - 0.20

b - 0.34
b - 0.57

b - 1.12 - 0.65
ab 0.86 

 

SEM 0.04 0.03 - 0.05 - 0.04 - 0.07 - 0.23 - 0.08 0.10 

 

n 13 7 - 5 - 5 - 4 - 5 - 4 8 
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Appendix 18. Plasma 11-ketotestosterone (ng/ml) in tagged male fish maintained under indoor 

(SNP or LL) or outdoor (low or high shade) lighting treatments. Mean, standard error of the 

mean (SEM) and number (n) of fish are presented for every two month interval. Significant 

differences between treatments at each timepoint are indicated by superscipts (statistical 

analysis: GLM).     

 

 

Treatment 

 

Aug’08 Oct Dec Feb’09 Apr Jun Aug 

Indoor SNP Mean 1.39 2.02 1.79 7.16
a 2.24 1.27 1.94 

 

SEM 0.26 0.16 1.18 1.32 0.53 0.23 0.32 

 

n 6 6 6 6 6 5 6 

Indoor LL Mean 1.52 1.88 1.53 3.98
ab 0.88 1.68 1.94 

 

SEM 0.41 0.57 0.30 1.33 0.20 0.39 0.35 

 

n 5 4 5 5 5 5 5 

Outdoor low 

shade LL 
Mean 1.33 1.48 1.46 2.22

b 2.47 4.58 1.62 

 

SEM 0.05 0.20 0.14 0.57 0.20 0.75 0.19 

 

n 7 7 7 7 7 7 7 

Outdoor high 

shade LL 
Mean 1.13 2.09 1.79 1.10

b 2.08 3.59 2.38 

 

SEM 0.10 0.53 0.46 0.21 0.16 0.36 0.16 

 

n 8 8 8 8 8 7 8 
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Appendix 19. Plasma 11-ketotestosterone (ng/ml) in tagged male fish maintained under indoor (SNP or LL) or outdoor (low or high shade) lighting 

treatments. Mean, standard error of the mean (SEM) and number (n) of fish are presented. Significant differences between treatments at each timepoint are 

indicated by superscipts (statistical analysis: one way ANOVA).     

 

 

  

Treatment 

 

Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

Indoor SNP Mean 1.35 1.17 1.34 1.03
a 0.85 0.58 5.42

a 5.01
a 4.02

a 0.55 0.29
a 0.65

b 1.94 

 

SEM 0.18 0.18 0.22 0.14 0.21 0.21 0.58 0.56 0.51 0.30 0.13 0.08 0.32 

 

n 13 6 6 6 6 6 6 6 6 9 8 8 6 

Indoor LL Mean 1.35 1.71 1.03 0.35
b 0.51 0.41 1.26

b 1.16
b 1.70

b 1.05 1.05
b 1.54

ab 1.94 

 

SEM 0.18 0.64 0.36 0.07 0.15 0.15 0.14 0.05 0.46 0.18 - 0.30 0.35 

 

n 13 6 6 6 6 7 6 4 6 3 1 7 5 

Outdoor low 

shade LL 
Mean 1.35 1.30 - 0.51

ab - 0.38 - 0.98
b - 1.45 - 1.99

a 2.06 

 

SEM 0.18 0.12 - 0.30 - 0.38 - 0.17 - 0.12 - 0.24 0.23 

 

n 13 7 - 5 - 4 - 5 - 6 - 8 10 

Outdoor high 

shade LL 
Mean 1.35 1.00 - 0.34

b - 0.06 - 0.81
b - 1.43 - 1.57

ab 2.38 

 

SEM 0.18 0.17 - 0.12 - 0.06 - 0.13 - 0.33 - 0.11 0.16 

 

n 13 7 - 5 - 5 - 4 - 5 - 4 8 
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Appendix 20. Absolute fshβ mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in 

female Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for 

the SNP treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

 

  

 Treatment Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb 

fshβ SNP (In) Mean 1.82E+08
a
 3.81E+08

ab
 1.61E+08

a
 1.67E+08

ab
 2.69E+08

ab
 4.78E+08

ab
 9.10E+08

b*
 6.43E+08

b
 

 

 SEM 1.06E+08 8.44E+07 4.46E+07 3.38E+07 3.54E+07 8.04E+07 2.24E+08 2.01E+08 

 

 n 7 6 6 6 6 6 6 6 

 

LL (In) Mean 1.82E+08 1.67E+08 1.92E+08 1.39E+08 2.41E+08 1.26E+08 9.00E+07 1.01E+08 

 

 SEM 1.06E+08 3.08E+07 6.17E+07 4.43E+07 1.18E+08 3.26E+07 1.96E+07 1.24E+07 

 

 n 7 6 6 8 6 6 6 5 

GSI SNP (In) Mean - 0.94 1.07 1.59 3 4.92 5.71 8.18 

 

 SEM - 0.17 0.22 0.22 0.17 0.7 0.66 0.9 

 

 n - 6 6 6 6 6 6 6 

 

LL (In) Mean - 0.67 0.9 0.87 0.99 1.1 1.56 1.57 

 

 SEM - 0.11 0.1 0.12 0.04 0.14 0.49 0.29 

 

 n - 6 6 8 6 6 6 5 
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Appendix 21. Absolute fshβ mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in male 

Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP 

treatment are denoted by lowercase lettering.  

 

            

           

 Treatment Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb 

fshβ SNP (In) Mean 9.12E+07 1.78E+08 7.22E+07 4.61E+08 5.59E+08 6.00E+08 3.95E+08 1.10E+08 

  SEM 4.47E+07 5.40E+07 7.15E+06 1.40E+08 1.90E+08 1.74E+08 1.05E+08 2.40E+07 

  n 6 6 6 4 6 6 6 6 

 LL (In) Mean 9.12E+07 2.46E+08 6.03E+07 1.40E+08 1.06E+08 1.02E+08 2.30E+08 9.86E+07 

  SEM 4.47E+07 8.10E+07 2.78E+07 3.31E+
7 1.53E+07 2.09E+07 5.0E+07 4.96E+06 

  n 6 6 6 6 6 5 6 4 

GSI SNP (In) Mean - 0.50 0.21 0.97 1.45 6.20 6.16 6.86 

  SEM - 0.22 0.02 0.24 0.65 0.42 0.40 0.97 

  n - 6 6 4 6 6 6 6 

 LL (In) Mean - 0.49 0.22 0.22 0.15 0.26 0.34 0.58 

  SEM - 0.34 0.04 0.05 0.04 0.04 0.07 0.17 

  n - 6 6 6 6 5 6 4 
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Appendix 22. Absolute lhβ mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in female 

Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP 

treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

 

  

  

Treatment Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb 

SNP  Mean 8.77E+07
a
 9.12E+07

ab
 6.23E+07

a
 9.87E+07

a
 7.58E+07

a
 1.73E+08

ab
 4.84E+08

bc
* 7.95E+08

b
* 

 

SEM 4.02E+07 1.94E+07 2.09E+07 2.46E+07 9.27E+06 3.68E+07 9.83E+07 1.25E+08 

 

n 7 6 6 6 6 6 6 6 

LL Mean 8.77E+07 4.59E+07 9.16E+07 5.95E+07 6.94E+07 1.05E+08 7.50E+07 1.52E+08 

 

SEM 4.02E+07 9.59E+06 2.21E+07 1.40E+07 1.64E+07 5.62E+07 1.88E+07 2.85E+07 

 

n 7 6 6 8 6 6 6 5 
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Appendix 23. Absolute lhβ mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in male 

Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP 

treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

 

  

Treatment Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb 

SNP  Mean 2.88E+07 9.50E+07 3.44E+07 1.62E+08 9.45E+07 1.93E+08 2.49E+08 2.80E+08 

 

SEM 1.15E+07 2.80E+07 5.90E+06 4.87E+07 1.54E+07 4.90E+07 7.67E+07 5.53E+07 

 

 n 6 6 6 4 6 6 6 6 

LL Mean 2.88E+07 8.77E+07 3.42E+07 6.23E+07 7.51E+07 1.15E+08 1.00E+08 1.38E+08 

 

SEM 1.15E+07 2.60E+07 9.85E+06 1.81E+07 3.27E+07 5.52E+07 1.67E+07 1.46E+07 

 

 n 6 6 6 6 6 5 6 4 
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Appendix 24. Absolute kiss2 mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in 

female Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for 

the SNP treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

 

  

 

 

 

Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

kiss2 SNP Mean 7030.65 4742.63 4990.72 6412.76 4724.83 5618.40 13722.35 6383.34 4834.74 6268.56 8146.10 6208.34 9068.36 

 

 SEM 713.74 557.32 679.87 633.14 411.65 822.51 4006.46 1068.26 968.83 2570.11 0.00 356.48 1564.10 

 

 n 7 6 6 6 6 6 6 6 7 2 1 2 6 

 

LL Mean 7030.65 4412.49 5589.62 4936.43 4079.93 4221.06 4394.68 6682.01 3308.67 4559.11 6305.32 7115.55 6081.26 

 

 SEM 713.74 805.16 382.43 652.19 350.22 865.99 633.78 856.66 430.77 433.33 656.64 1628.34 682.82 

 

 n 7 6 6 8 6 6 6 5 6 7 8 3 6 

GSI SNP Mean - 0.94 1.07 1.59 3.00 4.92 5.71 8.18 21.49 2.14 2.35 1.80 2.13 

 

 SEM - 0.17 0.22 0.22 0.17 0.70 0.66 0.90 2.38 0.42 - 0.54 0.25 

 

 n - 6 6 6 6 6 6 6 7 2 1 2 6 

 

LL Mean - 0.67 0.90 0.87 0.99 1.10 1.56 1.57 1.30 1.34 1.32 1.00 1.45 

 

 SEM - 0.11 0.10 0.12 0.04 0.14 0.49 0.29 0.16 0.17 0.25 0.10 0.30 

 

 n - 6 6 8 6 6 6 5 6 7 8 3 6 
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Appendix 25. Absolute kiss2 mRNA expression levels (copy no./µg total RNA) and gonadosomatic index (GSI, %) from July 2008 to February 2009 in male 

Atlantic cod exposed to simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP 

treatment are denoted by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

  

  

 Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

kiss2 SNP Mean 8047.12 5958.90 6413.29 4446.44 5136.65 5435.13 3574.78 7594.26 3246.80 4811.66 4075.83 7891.10 7341.46 

  

SEM 856.23 948.56 1727.70 920.37 1009.88 726.10 616.52 969.26 457.72 592.68 203.49 855.78 1406.96 

  

n 6 6 6 4 6 6 6 6 6 9 8 8 6 

 

LL Mean 8047.12 4389.03 5543.24 4664.46 4931.28 4756.42 6279.38 5196.18 3493.88 3794.02 4544.85 5545.26 8004.10 

  

SEM 856.23 81.01 652.68 328.90 710.73 529.33 1897.19 900.20 124.62 280.81 0.00 801.96 978.40 

  

n 6 6 6 6 6 5 6 4 6 3 1 7 5 

GSI SNP Mean - 0.50 0.21 0.97 1.45 6.20 6.16 6.86 6.25 2.18 1.39 0.26 0.27 

  

SEM - 0.22 0.02 0.24 0.65 0.42 0.40 0.97 0.61 0.44 0.42 0.03 0.02 

  

n - 6 6 4 6 6 6 6 6 9 8 8 6 

 

LL Mean - 0.49 0.22 0.22 0.15 0.26 0.34 0.58 1.35 0.59 0.10 0.70 0.23 

  

SEM - 0.34 0.04 0.05 0.04 0.04 0.07 0.17 0.40 0.43 0.00 0.31 0.04 

  

n - 6 6 6 6 5 6 4 6 3 1 7 5 



Mairi Cowan                                                                                                      APPENDIX  

245 

Appendix 26. Absolute kissr4 mRNA expression levels (copy no./µg total RNA) from July 2008 to February 2009 in female Atlantic cod exposed to 

simulated natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP treatment are denoted 

by lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

  

Treatment  Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

SNP Mean 115000 88400 79000 71700 96100 102000 60100 69100 113000 69600 80700 97500 89700 

 

SEM 11200 4670 6620 9590 13700 10700 9400 9130 21200 4130 - 24900 10400 

 

n 7 6 6 6 6 6 6 6 7 2 1 2 6 

LL Mean 115000 87300 73700 78300 70900 55600 54100 61700 81500 79100 114000 81400 86800 

 

SEM 11200 10100 6400 7820 10900 2900 2460 15300 10500 12600 12500 5930 4360 

 

n 7 6 6 8 6 6 6 5 6 7 8 3 6 
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Appendix 27. Absolute kissr4 mRNA expression levels (copy no./µg total RNA) from July 2008 to February 2009 in male Atlantic cod exposed to simulated 

natural photoperiod (SNP) or constant light (LL). Significant differences in mRNA expression between months for the SNP treatment are denoted by 

lowercase lettering. Significant treatment differences at each month are indicated by *. 

 

 

 

 

Treatment  Jul’08 Aug Sep Oct Nov Dec Jan’09 Feb Mar Apr May Jun Aug 

SNP Mean 94800 96600 63500 61500 115000 85000 66000 74800 72900 74000 82700 83800 84600 

 

SE 7420 10100 9050 9430 7920 17500 10700 10800 5380 7010 10500 3000 9450 

 

n 6 6 6 4 6 6 6 6 6 9 8 8 6 

LL Mean 94800 84200 98400 69800 73400 69600 59900 56600 102000 54300 120000 102000 96000 

 

SE 7420 6740 14600 10300 12000 11500 3830 6120 13900 1650 - 7800 10000 

 

n 6 6 6 6 6 5 6 4 6 3 1 7 5 


