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ABSTRACT

Crop wild relatives have been identified as ecologically and economically
important plant genetic resources but are often a neglected resource. The recognition of
the need for their specific conservation and their value for future use has been
strengthened by the Convention on Biological Diversity and the International Treaty on
Plant Genetic Resources for Food and Agriculture, both of which have been ratified by
the UK.

This thesis provides a detailed view of the ecological, geographic and genetic
background to three crop wild relative species, Trifolium dubium, T. pratense and T.
repens, of which the latter two are amongst some of the most economically important
legume species in the UK. Assessments of ecogeography, amplified fragment
polymorphism and single nucleotide polymorphism markers were employed to
investigate the distribution of variation in these species across the UK, including
outlying island sites. Based on this information it was possible to look for isolation by
distance in populations in UK; identify areas containing unique variation; assess the
conservation importance of island sites surrounding the UK and speculate on the causes
of the observed patterns of diversity.

Conservation recommendations were based on the cumulative data from this
research to identify how the recommendations change with an increased focus on
genetic diversity. These results provide insights into the use of different types of
background information when setting conservation plans in widespread species,
contributing to the development of conservation strategies for widespread species in

general.
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Chapter 1. GENERAL INTRODUCTION

1.1 WHAT IS DIVERSITY AND WHY CONSERVE IT?

The definition of biodiversity put forward during the CBD is the most generally
accepted, defining biodiversity as the “variability among living organisms from all
sources...and the ecological complexes of which they are part; this includes diversity within
species, between species and of ecosystems” (UNCED, 1992). The final part of this definition,
“within species diversity” or genetic diversity will be the main focus of this assessment, and
one that is generally less well studied than the ecosystem and species level of diversity.

Many authors underline the link between the level of genetic diversity and the
persistence of populations (Frankel & Soulé, 1981; Gilpin & Soulé, 1986). Low variation can
lead to increased extinction risk and lower fitness through the effects of genetic drift and
inbreeding depression in the short term and the inability to adapt to a changing environment
in the longer term (Hoglund, 2009). Whilst genetic variation is not the only cause of
population fluctuations, extinctions or species persistence, when in conjunction with
demographic factors, genetic diversity studies provide an important insight into species
persistence and viability. These insights are thus imperative to the conservation of species in
light of the increasing risks to species from threats such as habitat loss and fragmentation, and
in particular due to the potential effects of a changing climate. The loss of diversity, and thus
the loss of the genes, species and ecosystems that provide the basis for future adaptation, will

have major economic and social costs (Heywood, 1995).

1.2 BIODIVERSITY CRISIS AND UK COMMITMENTS
The loss of the world’s diversity is occurring on a vast scale, however the rate of loss is

ultimately pitted against the few resources available for conservation. Only by assessing
1
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where, why and how species survive can we start to assess what conservation action is
required, in order to create more efficient and effective conservation plans.

The UN Convention on Biological Diversity (CBD) held in 1992 represented a
significant landmark in the field of conservation biology. The CBD brought the importance of
biodiversity loss to the attention of governments, research communities and the public by
defining the challenge and highlighting the cooperation necessary to reverse the loss of the
world’s resources. By ratifying the CBD the parties, including the UK, committed themselves
to specific targets in biodiversity conservation, in particular to “achieve by 2010 a significant
reduction of the current rate of biodiversity loss” (CBD, 2002). Within the overall 2010
framework, target 3.1, to “promote the conservation of genetic diversity” and target 8.2 to
“maintain biological resources that support sustainable livelihoods, local food security and

health care” will be addressed in this study.

1.3 GENETIC RESOURCES AND CROP WILD RELATIVES

In addition to the CBD, the UK has ratified the International Treaty on Plant Genetic
Resources for Food and Agriculture (FAO, 2001), which outlines, amongst others, the
objective to “survey and inventory plant genetic resources for food and agriculture, taking
into account the status and degree of variation in existing populations, including those that
are of potential use.”

The term “plant genetic resources” encompasses all plant genetic material, which are
often described in terms of their actual or potential use for agriculture. Interbreeding with wild
relatives provides a new source of genetic variation both for the improvement of crops and the
development of new varieties (Jain, 1975; Schoen & Brown, 1993; Tanksley & McCouch,
1997). IPGRI (1993) defines plant genetic resources as “genetic material of plants which is of

value as a resource for the present and future generation of people”. Therefore, in addition to
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crops themselves, related crop or wild species that can be interbred with crop species are of
particular value (Maxted et al., 2006; Heywood et al., 2007).

Harlan and de Wet (1971) attempted to quantify the degree of relatedness between wild
relatives and their associated crop with the gene pool concept, which enabled priorities for
conservation to be inferred from the proximity to socio-economically important species.
Harlan and de Wet (1971) propose three gene pools, from a primary gene pool containing the
cultivated and wild forms of the crop species to the tertiary gene pool where gene transfer is
very difficult or impossible. With the increasing use of biotechnological techniques in gene
transfer these groupings have become less distinct, with Maxted and Hawkes (1997)
proposing the ,gene sea’ concept, visualising the gene sea as a network of interrelational gene
pools. This gene sea concept is important for use in determining conservation priorities, and
highlights the significance of conserving total genetic diversity, including wild species, for
future potential use (Tanksley & McCouch, 1997).

Crop wild relative (CWR) conservation has been the subject of many reviews (e.g.
Maxted, 2003; Meilleur & Hodgkin, 2004), with their prioritisation in conservation policies
increasing significantly in recent years. Indeed the FAO’s Global Plan of Action for the
Conservation and Sustainable Utilisation of Plant Genetic Resources for Food and Agriculture
(1996) highlights CWRs in priority 4: ‘Promoting in situ conservation of wild crop relatives
and wild plants for food production.” The genetic material present in CWRs, and even in less
closely related taxa, can contribute to both the long term persistence of domesticated species
through crop improvement and, through natural genetic exchange, contribute to the
productivity of agro-ecosystems (Meilleur & Hodgkin, 2004). Wild relatives deriving from
different environmental conditions provide a wide pool of resources, including pest and virus
resistance, resistance to abiotic stresses, increased yield and improved quality (Hajjar &

Hogkin, 2007; Maxted & Kell, 2008). The values of such wild relatives can be high with
3
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Prescott-Allen and Prescott-Allen (1986) calculating their value to the North American
economy as $340 million a year. Pimentel et al. (1997) in a more recent assessment of the
input of genetic resources to the North American economy estimated their value to be $20
billion per year based on increased crop yields.

The species that will be assessed in this study include two crop species Trifolium repens
L. and T. pratense L., as well as a wild relative of T. repens, T. dubium Sibth. (Bulinska-
Radomska, 2000), which has not, until the acknowledgement of CWR importance, been

considered of high conservation value.

1.4 BACKGROUND TO THE CURRENT STUDY

In light of the UKSs objectives for genetic conservation, finding more effective sampling
strategies have become of high importance. A collaboration between researchers at the
Millennium Seed Bank (the Royal Botanic Gardens, Kew), Horticultural Research
International (Wellesbourne), the Institute of Grassland and Environmental Research
(Aberystwyth) and the University of Birmingham assessed the relationship between
ecogeographic (ecological and genetic) and genetic diversity data in various UK socio-
economically important species, attempting to determine the importance of ecogeography in
defining the patterns of genetic diversity (Maxted et al., unpublished results). Of the eight
species assessed, three species; Beta vulgaris subsp. maritima (L.) Arcang., Lolium perenne
L. and T. repens, were found to have no correlation between genetic diversity and
ecogeographic factors. Therefore, for these taxa, it was concluded that sampling based on
ecogeographic factors would not necessarily capture maximum genetic diversity; instead prior
genetic diversity assessments would be required.

However, a recent assessment of 7. repens populations on St Kilda, an island group

found 64km west of the Outer Hebrides, found that the populations were highly genetically
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distinct from one reference mainland population (Hirano, 2005). Using AFLPs, five
populations from St Kilda were compared to two landraces and one ,wild” population. In
accordance with other published genetic diversity studies in this species, 7. repens showed
high levels of within population variation, with little difference in the levels of within
population variation between mainland and island populations. Principle component analysis

indicated the uniqueness of the island group in terms of genetic diversity (see Figure 1.1).

Figure 1.1. Principal component analysis of white clover populations and landraces based on 351 AFLP markers.
,wild’ population (Rye), English Dutch landrace (ED), Kent Wild White landrace (KWW), populations from St
Kilda (K1-K5) (Hirano, 2005).

The study highlighted populations that have avoided the introgression that has affected
much of the UK’s T. repens population, whether through geographic or agricultural isolation
or both. This undoubtedly provides a valuable insight in terms of defining a reservoir for
future breeding programs and conservation activities in the UK. It was proposed to expand

this study to include species with a different cultivation history and to more island groups
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surrounding the UK, to assess both the distribution of variation and the impact of genetic
pollution on the inherent patterns of genetic diversity in these species and in related taxa.

All three target taxa used in this study, 7. dubium, T. pratense and T. repens, are
widespread across the UK and as such often occur within protected area limits; however due
to their ubiquitous nature do not often specifically feature in management plans. The
assessment of the distribution of diversity will identify areas of distinct variation, allowing the
prioritisation of areas for in sifu conservation and ex situ collections, as well as highlighting

the need for specific management in selected sites of these otherwise common species.

1.5 A GENERAL INTRODUCTION TO GENETIC DIVERSITY STUDIES

The use of molecular markers to assess and quantify genetic variation is one of the core
themes in molecular ecology and conservation genetics, with the continuing development of
molecular markers helping to increase the impact of molecular genetics on ecology. The
continuous adoption of new technologies, from isozymes, RAPDs and RFLPs through to
AFLPs and microsatellites, has generated thousands of genetic diversity studies focusing on
population genetics and conservation (for reviews see for example Parker et al., 1998; Ouborg
et al., 1999; Sunnucks, 2000; Vignal et al., 2002; Avise, 2004). Appropriate measurements of
diversity can elucidate the type, extent and partitioning of variation in a species, which
provides valuable information on species identity, diagnostics and relationships for
conservation and breeding strategies (Westman & Kresovich, 1997).

Traditionally, analyses of diversity centred on quantifying the expression of phenotypic
traits (famously studied by Mendel and his peas) and have expanded to include biochemical,
and now DNA-based methodologies (Ouborg et al., 1999). The ever increasing number of
DNA-based techniques have overtaken other methodologies due to limitations centred around

the environmental influence in phenotypic analyses and a need for higher levels of resolution
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than that determined by biochemical analyses (Hoglund, 2009). Although biochemical
analyses marked a large improvement in diversity studies, there is the assumption that protein
and isozyme variation directly reflect heritable changes, whereas DNA-based methodologies
allow a direct analysis of the genome (Ouborg et al., 1999).

DNA-based methodologies are based on sequence variation and often use molecular
markers, with some techniques able to detect differences as small as one base pair between
two genotypes. Among the many molecular marker techniques; amplified fragment length
polymorphism (AFLP) and microsatellites stand out as the most commonly used today, with
single nucleotide polymorphisms (SNPs) identified as a potential molecular marker for the
future (Vignal et al., 2002). Of the many different markers and techniques for the analysis of
genetic diversity, no one technique is universally correct, with usage dependant on the

research question, data required, and resource availability (Ouborg et al., 1999).

1.5.1 MICROSATELLITES

Microsatellite markers have remained one of the most popular methods in conservation
genetic methods since their adoption (e.g. Jarne & Lagoda, 1996; Ellegren, 2004). They
consist of tandem repeats of nucleotides, which are found in a relatively high frequency in
most taxa, and can be known as simple sequence repeats (SSRs), variable number tandem
repeats (VNTRs) and short tandem repeats (STRs) (Selkoe & Toonen, 2006). The flanking
regions of microsatellites are used as primer binding sites to amplify the region. It is the
variation in the number of repeats of these microsatellites that provides the variation between
individuals required for analysis, with di-, tri- and tetra-nucleotide repeats the most frequently
used for analysis (Li et al. 2002). With the high level of mutation in these regions (between
10 and 10°°) these regions provide a high number of allelic differences between individuals,

which is highly beneficial to genetic studies (Ellegren, 2004; Selkoe & Toonen, 2006).
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Microsatellite markers provide a very useful tool for conservation genetic analysis, due
to both a high information content of each locus — perhaps consisting of up to 20 alleles (Jarne
& Lagoda, 1996) and their codominnant nature. The power of a large multi-locus
microsatellite study is perhaps unrivalled, compared to the most commonly used genetic
marker methods (Selkoe & Toonen, 2006), with Gerber (2000) showing that 159 AFLP
markers had the equivalent power as just under 6 multi-locus microsatellites in parentage
analysis.

However, while powerful, one of the major downfalls of microsatellites is in their
detection, finding microsatellites is both time-consuming and expensive. This method is also
complicated by the possibility of homoplasy (identically sized but differing alleles), which
can overinflate estimates of gene flow and lower estimates of allelic diversity (Selkoe &
Toonin, (2006). In addition, due to the specificity or the PCR reaction, once found these
primers are almost entirely species specific (Sunnocks, 2000). Thus in nonmodel organisms,

and where studies are resource-constrained, this method is less often used.

1.5.2 Focus ON AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP)

AFLP is a more recent approach to restriction fragment analysis incorporating the
power of PCR (Vos ef al., 1995). DNA is digested by two restriction enzymes before the
addition of adapters that incorporate the primer sites for PCR. The fragments can be
selectively amplified by extending the primers into the original fragment, and performing
multiple PCRs.

The large number of polymorphisms that are generated by AFLP analysis is one of the
major advantages of this method with Geleta et al. (2006) finding AFLP analysis 14 times
more efficient at detecting polymorphisms than microsatellites. In addition, AFLP assays are

reportedly robust, with a study across eight laboratories finding highly comparable results for
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AFLP assays, in comparison to the low reproducibility of RAPD assays (Jones et al., 1997).
No prior sequence information is required before using this technique, as opposed to
microsatellite and RFLPs where prior characterisation of the genome is required. With
increasing sequencing studies this advantage will diminish, however, in terms of less well
studied species, the minimal preliminary work offers a major advantage.

Due to the dominant nature of AFLPs it has been suggested that 2-10 times more
individuals need to be sampled than when using co-dominant markers (Lynch & Milligan,
1994). However Krauss and Peakall (1998) suggest that the large number of polymorphisms
generated in AFLP analysis may overcome the problem of using a dominant marker.

Many of the disadvantages of AFLPs are similar to those of other types of molecular
marker assays and are reviewed in detail by Robinson and Harris (1999). One of the greatest
problems in AFLP analysis is homology. Scoring co-migrating non-homologous bands can
lead to an over-estimate of similarity, although many researchers argue that the probability of
co-migrating bands being dissimilar is very small. However, Robinson and Harris (1999)
point out that in a mapping study of Solanum, when sequencing 20 putatively homologous
bands, 19 were found to be nearly identical, leaving 5% that are dissimilar. This problem with
homology could point to problems with its use above the species level in determining
phylogenies.

High correlations have been found between AFLP assays and the more resource costly
RFLP and microsatellite assays (Powell et al., 1996; Geleta et al., 2006). With the
reproducibility, low preliminary work and minimal time needed to generate large number of

polymorphic markers AFLPs will be one of the methods adopted in this study.
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1.5.3 Focus oN SNPs

At present, the potential for single nucleotide polymorphisms (SNPs) to be used as
molecular markers in molecular ecology and conservation genetic studies is gaining
momentum (van Tienderen et al., 2002; Morin et al., 2004; Ouborg et al., 2010a). While the
assessment of DNA sequence variation to provide molecular markers is not entirely novel as
previous marker methods have been underpinned by sequence variation (restriction fragment
length polymorphism, RFLP and amplified fragment length polymorphism, AFLP),
technological progress in DNA sequencing including next generation sequencing is enabling
researchers to analyse the underlying sequence variation hinted at by earlier molecular marker
approaches (Brookes, 1999; Vignal et al., 2002; Schlotterer, 2004).

The interest in using SNPs as molecular markers for ecology and conservation studies
derives from such polymorphisms overcoming many of the limitations of conventional
marker systems, as well as their increasing impact and use in human disease and other model
species studies (e.g. Cho et al., 1999; Gabriel et al., 2002; Zhu et al., 2003; Samani et al.,
2007). In comparison to other markers, SNPs are known to be highly abundant and
widespread throughout many species genomes, whereas microsatellites, the previous marker
of choice for population genetic studies, are thought to occur once in every 6-7kb, as well as
being difficult to isolate in some species (Cardle ef al., 2000; Morin et al., 2004). Indeed,
where other molecular marker systems have shown little diversity in a particular species, the
potential abundance of SNPs renders them highly attractive, as seen in Coffea arabica where
SNP identification was found to be the most appropriate marker to detect polymorphism in
this low diversity species (Zarate et al., 2010). The higher mutation rate of microsatellites also
requires caution, particularly when comparing distant lineages; those loci identical in size can
be different in descent (homoplasy), while the lower mutation rate for SNPs and their simpler

mutation model makes analysis easier (Vignal, 2002; Morin et al., 2004; Payseur & Cutter,
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2006). Finally, high-throughput, cost effective methods are increasingly available for SNP
detection following SNP identification and validation (Gupta et al., 2001; Syvanen, 2001).
The choice of marker to use in a particular study is most often a question of precision
against convenience (Sunnocks, 2000). Nevertheless with the potential advantages of using
SNPs as molecular markers, and with the increasing availability of high-throughput methods
for sequencing and genotyping assays, SNPs provide an exciting prospect for answering
ecological and conservation questions. Particularly in plants, the application of SNPs to these
types of questions is still in its infancy (Morin et al., 2004; Seddon ef al. 2005; Ganal et al.,
2009). Here, I review research on SNPs in conservation and ecology, particularly focusing on
what has been learnt from SNP discovery in model organisms and animal species and how

such knowledge can be applied to SNP discovery in non-model plant species.

SNP basics
Single nucleotide polymorphisms (SNPs) refer to single base pair differences in DNA

between normal individual members of a given population(s). Both Brookes (1999) and
Vignal et al. (2002) suggest that for such single base pair positions to be considered SNPs the
least frequent allele should have a frequency of 1% or greater. However many authors
describe any differing locus as a SNP, most often due to a lack of frequency information or a
small sample size (Brookes, 1999). Sequence polymorphisms are frequent in the genome,
with SNP frequency in humans found to be 1/300-1,000 base pairs when comparing two
human chromosomes (Aitken et al., 2004). Frequencies identified in some plant species can
be higher, with reports of 1/23bp on average in Vitis vinifera (16 cultivars, Dong et al., 2010),
1/31 in non-coding regions and 1/124 in coding regions of the highly diverse Zea mays (36

inbred lines, Ching et al., 2002) and 1/130 on average across coding and non-coding regions
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in Beta vulgaris (2 inbred lines, Schneider et al., 2001), with lower levels of diversity, 1/504
on average, in Glycine max (9 genotypes, Van et al., 2004).

Although in principle all base variants should be possible at one position in a DNA
sequence (Figure 1.2a), SNPs are generally known as biallelic markers because tri- and tetra-
allelic variants are rare, particularly in humans (Brookes, 1999). This prevalence in bi-allelic
SNP types results in part from a bias in mutation types, as well as local and regional base pair
composition (Morton, 1995; Vignal et al., 2002). Mutation types consist of transitions and
transversions (Figure 1.2b), and as there are twice as many possible transversions to
transitions the expected ratio of transitions to transversions should be 0.5, assuming all

substitutions are random (Vignal et al., 2002).

Figure 1.2. SNP basics; a) Image depicting a tetra-allelic SNP position b) Types of nucleotide substitutions
between the four possible bases. Transitions only occur between the two purines (A & G) and between the two
pyrimidines (C & T).

In practice however there is often a bias towards transitions in eukaryote genomes (but
see Keller et al., 2007). While this transition/transversion ratio holds in humans, in plants
more variability is reported, with ratios from 0.23 in Coffea arabica (Zarate et al., 2010) and
1.2 found in genes of wild Lycopersicon (Frankel et al., 2003), to around 1.7 in genes of

Arabidopsis thaliana (Martinez-Castilla & Alvarez-Buylla, 2003) and 1.82 in Populus
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tremula (Ingvarsson, 2008). A ratio as high as 3.6 has been reported in Vitis vinifera (Dong et
al., 2010). Transition/transversion ratios vary between species and within species with
different study designs finding both a transition bias, and equal transition/transversion rates in
different gene regions of the same plant species (Zhu et al., 2003; Van et al., 2005).

In addition to the unequal transition/transversion ratio, the low rate of mutation may
contribute to the bi-allelic nature of SNPs, as the possibility of two independent changes at the
same position will be rare (Vignal et al., 2002). The majority of published nuclear substitution
rates concern mammalian genomes; most likely due to difficulties arising from complex
orthologous relationships in species where there is high gene duplication such as that seen in
plant species (DeRose-Wilson & Gaut, 2007). Commonly quoted nucleotide substitution rates
in mammals are around 1-2 x 10 substitutions per nucleotide per generation in humans
(Crow, 1994), and between 1 x 10°and 5 x 10 per nucleotides per year at neutral positions
in mammals generally (Vignal et al., 2002). Comparing nucleotide substitution rates among
plant nuclear genes, Wolfe et al. (1987) determined rates of around 5-30 x 10 for
synonymous substitutions per site per year, but suggest that the most accurate estimations are
nearer the lower bound, giving simi