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ABSTRACT 

 

Crop wild relatives have been identified as ecologically and economically 

important plant genetic resources but are often a neglected resource. The recognition of 

the need for their specific conservation and their value for future use has been 

strengthened by the Convention on Biological Diversity and the International Treaty on 

Plant Genetic Resources for Food and Agriculture, both of which have been ratified by 

the UK. 

This thesis provides a detailed view of the ecological, geographic and genetic 

background to three crop wild relative species, Trifolium dubium, T. pratense and T. 

repens, of which the latter two are amongst some of the most economically important 

legume species in the UK. Assessments of ecogeography, amplified fragment 

polymorphism and single nucleotide polymorphism markers were employed to 

investigate the distribution of variation in these species across the UK, including 

outlying island sites. Based on this information it was possible to look for isolation by 

distance in populations in UK; identify areas containing unique variation; assess the 

conservation importance of island sites surrounding the UK and speculate on the causes 

of the observed patterns of diversity. 

Conservation recommendations were based on the cumulative data from this 

research to identify how the recommendations change with an increased focus on 

genetic diversity. These results provide insights into the use of different types of 

background information when setting conservation plans in widespread species, 

contributing to the development of conservation strategies for widespread species in 

general. 
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Chapter 1. GENERAL INTRODUCTION  

1.1 WHAT IS DIVERSITY AND WHY CONSERVE IT?   

The definition of biodiversity put forward during the CBD is the most generally 

accepted, defining biodiversity as the “variability among living organisms from all 

sources…and the ecological complexes of which they are part; this includes diversity within 

species, between species and of ecosystems” (UNCED, 1992). The final part of this definition, 

“within species diversity” or genetic diversity will be the main focus of this assessment, and 

one that is generally less well studied than the ecosystem and species level of diversity.  

Many authors underline the link between the level of genetic diversity and the 

persistence of populations (Frankel & Soulé, 1981; Gilpin & Soulé, 1986). Low variation can 

lead to increased extinction risk and lower fitness through the effects of genetic drift and 

inbreeding depression in the short term and the inability to adapt to a changing environment 

in the longer term (Höglund, 2009). Whilst genetic variation is not the only cause of 

population fluctuations, extinctions or species persistence, when in conjunction with 

demographic factors, genetic diversity studies provide an important insight into species 

persistence and viability. These insights are thus imperative to the conservation of species in 

light of the increasing risks to species from threats such as habitat loss and fragmentation, and 

in particular due to the potential effects of a changing climate. The loss of diversity, and thus 

the loss of the genes, species and ecosystems that provide the basis for future adaptation, will 

have major economic and social costs (Heywood, 1995). 

1.2 BIODIVERSITY CRISIS AND UK  COMMITMENTS  

The loss of the world‟s diversity is occurring on a vast scale, however the rate of loss is 

ultimately pitted against the few resources available for conservation. Only by assessing 
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where, why and how species survive can we start to assess what conservation action is 

required, in order to create more efficient and effective conservation plans.  

The UN Convention on Biological Diversity (CBD) held in 1992 represented a 

significant landmark in the field of conservation biology. The CBD brought the importance of 

biodiversity loss to the attention of governments, research communities and the public by 

defining the challenge and highlighting the cooperation necessary to reverse the loss of the 

world‟s resources. By ratifying the CBD the parties, including the UK, committed themselves 

to specific targets in biodiversity conservation, in particular to “achieve by 2010 a significant 

reduction of the current rate of biodiversity loss” (CBD, 2002). Within the overall 2010 

framework, target 3.1, to “promote the conservation of genetic diversity” and target 8.2 to 

“maintain biological resources that support sustainable livelihoods, local food security and 

health care” will be addressed in this study. 

1.3 GENETIC RESOURCES AND CROP WILD RELATIVES 

In addition to the CBD, the UK has ratified the International Treaty on Plant Genetic 

Resources for Food and Agriculture (FAO, 2001), which outlines, amongst others, the 

objective to “survey and inventory plant genetic resources for food and agriculture, taking 

into account the status and degree of variation in existing populations, including those that 

are of potential use.” 

The term “plant genetic resources” encompasses all plant genetic material, which are 

often described in terms of their actual or potential use for agriculture. Interbreeding with wild 

relatives provides a new source of genetic variation both for the improvement of crops and the 

development of new varieties (Jain, 1975; Schoen & Brown, 1993; Tanksley & McCouch, 

1997). IPGRI (1993) defines plant genetic resources as “genetic material of plants which is of 

value as a resource for the present and future generation of people”. Therefore, in addition to 
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crops themselves, related crop or wild species that can be interbred with crop species are of 

particular value (Maxted et al., 2006; Heywood et al., 2007). 

Harlan and de Wet (1971) attempted to quantify the degree of relatedness between wild 

relatives and their associated crop with the gene pool concept, which enabled priorities for 

conservation to be inferred from the proximity to socio-economically important species. 

Harlan and de Wet (1971) propose three gene pools, from a primary gene pool containing the 

cultivated and wild forms of the crop species to the tertiary gene pool where gene transfer is 

very difficult or impossible. With the increasing use of biotechnological techniques in gene 

transfer these groupings have become less distinct, with Maxted and Hawkes (1997) 

proposing the „gene sea‟ concept, visualising the gene sea as a network of interrelational gene 

pools. This gene sea concept is important for use in determining conservation priorities, and 

highlights the significance of conserving total genetic diversity, including wild species, for 

future potential use (Tanksley & McCouch, 1997). 

Crop wild relative (CWR) conservation has been the subject of many reviews (e.g. 

Maxted, 2003; Meilleur & Hodgkin, 2004), with their prioritisation in conservation policies 

increasing significantly in recent years. Indeed the FAO‟s Global Plan of Action for the 

Conservation and Sustainable Utilisation of Plant Genetic Resources for Food and Agriculture 

(1996) highlights CWRs in priority 4: ‘Promoting in situ conservation of wild crop relatives 

and wild plants for food production.’ The genetic material present in CWRs, and even in less 

closely related taxa, can contribute to both the long term persistence of domesticated species 

through crop improvement and, through natural genetic exchange, contribute to the 

productivity of agro-ecosystems (Meilleur & Hodgkin, 2004). Wild relatives deriving from 

different environmental conditions provide a wide pool of resources, including pest and virus 

resistance, resistance to abiotic stresses, increased yield and improved quality (Hajjar & 

Hogkin, 2007; Maxted & Kell, 2008). The values of such wild relatives can be high with 
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Prescott-Allen and Prescott-Allen (1986) calculating their value to the North American 

economy as $340 million a year. Pimentel et al. (1997) in a more recent assessment of the 

input of genetic resources to the North American economy estimated their value to be $20 

billion per year based on increased crop yields. 

The species that will be assessed in this study include two crop species Trifolium repens 

L. and T. pratense L., as well as a wild relative of T. repens, T. dubium Sibth. (Bulińska-

Radomska, 2000), which has not, until the acknowledgement of CWR importance, been 

considered of high conservation value. 

1.4 BACKGROUND TO THE CURRENT STUDY  

In light of the UKs objectives for genetic conservation, finding more effective sampling 

strategies have become of high importance. A collaboration between researchers at the 

Millennium Seed Bank (the Royal Botanic Gardens, Kew), Horticultural Research 

International (Wellesbourne), the Institute of Grassland and Environmental Research 

(Aberystwyth) and the University of Birmingham assessed the relationship between 

ecogeographic (ecological and genetic) and genetic diversity data in various UK socio-

economically important species, attempting to determine the importance of ecogeography in 

defining the patterns of genetic diversity (Maxted et al., unpublished results). Of the eight 

species assessed, three species; Beta vulgaris subsp. maritima (L.) Arcang., Lolium perenne 

L. and T. repens, were found to have no correlation between genetic diversity and 

ecogeographic factors. Therefore, for these taxa, it was concluded that sampling based on 

ecogeographic factors would not necessarily capture maximum genetic diversity; instead prior 

genetic diversity assessments would be required. 

However, a recent assessment of T. repens populations on St Kilda, an island group 

found 64km west of the Outer Hebrides, found that the populations were highly genetically 
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distinct from one reference mainland population (Hirano, 2005). Using AFLPs, five 

populations from St Kilda were compared to two landraces and one „wild‟ population. In 

accordance with other published genetic diversity studies in this species, T. repens showed 

high levels of within population variation, with little difference in the levels of within 

population variation between mainland and island populations. Principle component analysis 

indicated the uniqueness of the island group in terms of genetic diversity (see Figure 1.1).  

 

Figure 1.1. Principal component analysis of white clover populations and landraces based on 351 AFLP markers. 
„wild‟ population (Rye), English Dutch landrace (ED), Kent Wild White landrace (KWW), populations from St 
Kilda (K1-K5) (Hirano, 2005). 

 

The study highlighted populations that have avoided the introgression that has affected 

much of the UK‟s T. repens population, whether through geographic or agricultural isolation 

or both. This undoubtedly provides a valuable insight in terms of defining a reservoir for 

future breeding programs and conservation activities in the UK. It was proposed to expand 

this study to include species with a different cultivation history and to more island groups 
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surrounding the UK, to assess both the distribution of variation and the impact of genetic 

pollution on the inherent patterns of genetic diversity in these species and in related taxa.  

All three target taxa used in this study, T. dubium, T. pratense and T. repens, are 

widespread across the UK and as such often occur within protected area limits; however due 

to their ubiquitous nature do not often specifically feature in management plans. The 

assessment of the distribution of diversity will identify areas of distinct variation, allowing the 

prioritisation of areas for in situ conservation and ex situ collections, as well as highlighting 

the need for specific management in selected sites of these otherwise common species.  

1.5 A  GENERAL INTRODUCTION TO GENETIC DIVERSITY STUDIES  

The use of molecular markers to assess and quantify genetic variation is one of the core 

themes in molecular ecology and conservation genetics, with the continuing development of 

molecular markers helping to increase the impact of molecular genetics on ecology. The 

continuous adoption of new technologies, from isozymes, RAPDs and RFLPs through to 

AFLPs and microsatellites, has generated thousands of genetic diversity studies focusing on 

population genetics and conservation (for reviews see for example Parker et al., 1998; Ouborg 

et al., 1999; Sunnucks, 2000; Vignal et al., 2002; Avise, 2004). Appropriate measurements of 

diversity can elucidate the type, extent and partitioning of variation in a species, which 

provides valuable information on species identity, diagnostics and relationships for 

conservation and breeding strategies (Westman & Kresovich, 1997). 

Traditionally, analyses of diversity centred on quantifying the expression of phenotypic 

traits (famously studied by Mendel and his peas) and have expanded to include biochemical, 

and now DNA-based methodologies (Ouborg et al., 1999). The ever increasing number of 

DNA-based techniques have overtaken other methodologies due to limitations centred around 

the environmental influence in phenotypic analyses and a need for higher levels of resolution 
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than that determined by biochemical analyses (Höglund, 2009). Although biochemical 

analyses marked a large improvement in diversity studies, there is the assumption that protein 

and isozyme variation directly reflect heritable changes, whereas DNA-based methodologies 

allow a direct analysis of the genome (Ouborg et al., 1999).  

DNA-based methodologies are based on sequence variation and often use molecular 

markers, with some techniques able to detect differences as small as one base pair between 

two genotypes. Among the many molecular marker techniques; amplified fragment length 

polymorphism (AFLP) and microsatellites stand out as the most commonly used today, with 

single nucleotide polymorphisms (SNPs) identified as a potential molecular marker for the 

future (Vignal et al., 2002). Of the many different markers and techniques for the analysis of 

genetic diversity, no one technique is universally correct, with usage dependant on the 

research question, data required, and resource availability (Ouborg et al., 1999). 

1.5.1 MICROSATELLITES 

Microsatellite markers have remained one of the most popular methods in conservation 

genetic methods since their adoption (e.g. Jarne & Lagoda, 1996; Ellegren, 2004). They 

consist of tandem repeats of nucleotides, which are found in a relatively high frequency in 

most taxa, and can be known as simple sequence repeats (SSRs), variable number tandem 

repeats (VNTRs) and short tandem repeats (STRs) (Selkoe & Toonen, 2006). The flanking 

regions of microsatellites are used as primer binding sites to amplify the region. It is the 

variation in the number of repeats of these microsatellites that provides the variation between 

individuals required for analysis, with di-, tri- and tetra-nucleotide repeats the most frequently 

used for analysis (Li et al. 2002). With the high level of mutation in these regions (between 

10-2 and 10-6) these regions provide a high number of allelic differences between individuals, 

which is highly beneficial to genetic studies (Ellegren, 2004; Selkoe & Toonen, 2006). 
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Microsatellite markers provide a very useful tool for conservation genetic analysis, due 

to both a high information content of each locus – perhaps consisting of up to 20 alleles (Jarne 

& Lagoda, 1996) and their codominnant nature. The power of a large multi-locus 

microsatellite study is perhaps unrivalled, compared to the most commonly used genetic 

marker methods (Selkoe & Toonen, 2006), with Gerber (2000) showing that 159 AFLP 

markers had the equivalent power as just under 6 multi-locus microsatellites in parentage 

analysis. 

However, while powerful, one of the major downfalls of microsatellites is in their 

detection, finding microsatellites is both time-consuming and expensive. This method is also 

complicated by the possibility of homoplasy (identically sized but differing alleles), which 

can overinflate estimates of gene flow and lower estimates of allelic diversity (Selkoe & 

Toonin, (2006). In addition, due to the specificity or the PCR reaction, once found these 

primers are almost entirely species specific (Sunnocks, 2000). Thus in nonmodel organisms, 

and where studies are resource-constrained, this method is less often used.  

1.5.2 FOCUS ON AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP) 

AFLP is a more recent approach to restriction fragment analysis incorporating the 

power of PCR (Vos et al., 1995). DNA is digested by two restriction enzymes before the 

addition of adapters that incorporate the primer sites for PCR. The fragments can be 

selectively amplified by extending the primers into the original fragment, and performing 

multiple PCRs. 

The large number of polymorphisms that are generated by AFLP analysis is one of the 

major advantages of this method with Geleta et al. (2006) finding AFLP analysis 14 times 

more efficient at detecting polymorphisms than microsatellites. In addition, AFLP assays are 

reportedly robust, with a study across eight laboratories finding highly comparable results for 
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AFLP assays, in comparison to the low reproducibility of RAPD assays (Jones et al., 1997). 

No prior sequence information is required before using this technique, as opposed to 

microsatellite and RFLPs where prior characterisation of the genome is required. With 

increasing sequencing studies this advantage will diminish, however, in terms of less well 

studied species, the minimal preliminary work offers a major advantage. 

Due to the dominant nature of AFLPs it has been suggested that 2-10 times more 

individuals need to be sampled than when using co-dominant markers (Lynch & Milligan, 

1994). However Krauss and Peakall (1998) suggest that the large number of polymorphisms 

generated in AFLP analysis may overcome the problem of using a dominant marker.  

Many of the disadvantages of AFLPs are similar to those of other types of molecular 

marker assays and are reviewed in detail by Robinson and Harris (1999). One of the greatest 

problems in AFLP analysis is homology. Scoring co-migrating non-homologous bands can 

lead to an over-estimate of similarity, although many researchers argue that the probability of 

co-migrating bands being dissimilar is very small. However, Robinson and Harris (1999) 

point out that in a mapping study of Solanum, when sequencing 20 putatively homologous 

bands, 19 were found to be nearly identical, leaving 5% that are dissimilar. This problem with 

homology could point to problems with its use above the species level in determining 

phylogenies.  

High correlations have been found between AFLP assays and the more resource costly 

RFLP and microsatellite assays (Powell et al., 1996; Geleta et al., 2006). With the 

reproducibility, low preliminary work and minimal time needed to generate large number of 

polymorphic markers AFLPs will be one of the methods adopted in this study. 
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1.5.3 FOCUS ON SNPS  

At present, the potential for single nucleotide polymorphisms (SNPs) to be used as 

molecular markers in molecular ecology and conservation genetic studies is gaining 

momentum (van Tienderen et al., 2002; Morin et al., 2004; Ouborg et al., 2010a). While the 

assessment of DNA sequence variation to provide molecular markers is not entirely novel as 

previous marker methods have been underpinned by sequence variation (restriction fragment 

length polymorphism, RFLP and amplified fragment length polymorphism, AFLP), 

technological progress in DNA sequencing including next generation sequencing is enabling 

researchers to analyse the underlying sequence variation hinted at by earlier molecular marker 

approaches (Brookes, 1999; Vignal et al., 2002; Schlötterer, 2004). 

The interest in using SNPs as molecular markers for ecology and conservation studies 

derives from such polymorphisms overcoming many of the limitations of conventional 

marker systems, as well as their increasing impact and use in human disease and other model 

species studies (e.g. Cho et al., 1999; Gabriel et al., 2002; Zhu et al., 2003; Samani et al., 

2007). In comparison to other markers, SNPs are known to be highly abundant and 

widespread throughout many species genomes, whereas microsatellites, the previous marker 

of choice for population genetic studies, are thought to occur once in every 6-7kb, as well as 

being difficult to isolate in some species (Cardle et al., 2000; Morin et al., 2004). Indeed, 

where other molecular marker systems have shown little diversity in a particular species, the 

potential abundance of SNPs renders them highly attractive, as seen in Coffea arabica where 

SNP identification was found to be the most appropriate marker to detect polymorphism in 

this low diversity species (Zarate et al., 2010). The higher mutation rate of microsatellites also 

requires caution, particularly when comparing distant lineages; those loci identical in size can 

be different in descent (homoplasy), while the lower mutation rate for SNPs and their simpler 

mutation model makes analysis easier (Vignal, 2002; Morin et al., 2004; Payseur & Cutter, 
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2006). Finally, high-throughput, cost effective methods are increasingly available for SNP 

detection following SNP identification and validation (Gupta et al., 2001; Syvänen, 2001).  

The choice of marker to use in a particular study is most often a question of precision 

against convenience (Sunnocks, 2000). Nevertheless with the potential advantages of using 

SNPs as molecular markers, and with the increasing availability of high-throughput methods 

for sequencing and genotyping assays, SNPs provide an exciting prospect for answering 

ecological and conservation questions. Particularly in plants, the application of SNPs to these 

types of questions is still in its infancy (Morin et al., 2004; Seddon et al. 2005; Ganal et al., 

2009). Here, I review research on SNPs in conservation and ecology, particularly focusing on 

what has been learnt from SNP discovery in model organisms and animal species and how 

such knowledge can be applied to SNP discovery in non-model plant species.  

SNP basics 

Single nucleotide polymorphisms (SNPs) refer to single base pair differences in DNA 

between normal individual members of a given population(s). Both Brookes (1999) and 

Vignal et al. (2002) suggest that for such single base pair positions to be considered SNPs the 

least frequent allele should have a frequency of 1% or greater. However many authors 

describe any differing locus as a SNP, most often due to a lack of frequency information or a 

small sample size (Brookes, 1999). Sequence polymorphisms are frequent in the genome, 

with SNP frequency in humans found to be 1/300-1,000 base pairs when comparing two 

human chromosomes (Aitken et al., 2004). Frequencies identified in some plant species can 

be higher, with reports of 1/23bp on average in Vitis vinifera (16 cultivars, Dong et al., 2010), 

1/31 in non-coding regions and 1/124 in coding regions of the highly diverse Zea mays (36 

inbred lines, Ching et al., 2002) and 1/130 on average across coding and non-coding regions 
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in Beta vulgaris (2 inbred lines, Schneider et al., 2001), with lower levels of diversity, 1/504 

on average, in Glycine max (9 genotypes, Van et al., 2004). 

Although in principle all base variants should be possible at one position in a DNA 

sequence (Figure 1.2a), SNPs are generally known as biallelic markers because tri- and tetra-

allelic variants are rare, particularly in humans (Brookes, 1999). This prevalence in bi-allelic 

SNP types results in part from a bias in mutation types, as well as local and regional base pair 

composition (Morton, 1995; Vignal et al., 2002). Mutation types consist of transitions and 

transversions (Figure 1.2b), and as there are twice as many possible transversions to 

transitions the expected ratio of transitions to transversions should be 0.5, assuming all 

substitutions are random (Vignal et al., 2002).  

 

 
Figure 1.2. SNP basics; a) Image depicting a tetra-allelic SNP position b) Types of nucleotide substitutions 
between the four possible bases. Transitions only occur between the two purines (A & G) and between the two 
pyrimidines (C & T). 

In practice however there is often a bias towards transitions in eukaryote genomes (but 

see Keller et al., 2007). While this transition/transversion ratio holds in humans, in plants 

more variability is reported, with ratios from 0.23 in Coffea arabica (Zarate et al., 2010) and 

1.2 found in genes of wild Lycopersicon (Frankel et al., 2003), to around 1.7 in genes of 

Arabidopsis thaliana (Martínez-Castilla & Alvarez-Buylla, 2003) and 1.82 in Populus 

a) b) 
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tremula (Ingvarsson, 2008). A ratio as high as 3.6 has been reported in Vitis vinifera (Dong et 

al., 2010). Transition/transversion ratios vary between species and within species with 

different study designs finding both a transition bias, and equal transition/transversion rates in 

different gene regions of the same plant species (Zhu et al., 2003; Van et al., 2005).  

In addition to the unequal transition/transversion ratio, the low rate of mutation may 

contribute to the bi-allelic nature of SNPs, as the possibility of two independent changes at the 

same position will be rare (Vignal et al., 2002). The majority of published nuclear substitution 

rates concern mammalian genomes; most likely due to difficulties arising from complex 

orthologous relationships in species where there is high gene duplication such as that seen in 

plant species (DeRose-Wilson & Gaut, 2007). Commonly quoted nucleotide substitution rates 

in mammals are around 1-2 x 10-8 substitutions per nucleotide per generation in humans 

(Crow, 1994), and between 1 x 10-9 and 5 x 10-9 per nucleotides per year at neutral positions 

in mammals generally (Vignal et al., 2002). Comparing nucleotide substitution rates among 

plant nuclear genes, Wolfe et al. (1987) determined rates of around 5-30 x 10-9 for 

synonymous substitutions per site per year, but suggest that the most accurate estimations are 

nearer the lower bound, giving similar rates to that determined in mammals. Gaut (1998) in a 

comparison of genes between rice and maize found rates of 6.03 x 10-9 and 9.43 x 10-10 for 

synonymous and non-synonymous substitutions respectively, similar to that found by Wolfe 

et al. (1987). Previously, considerable attention has been paid to chloroplast genes when 

comparing plant lineages as they are not limited by multiple copies inherent in the nuclear 

genome or by the slow evolution of the mitochondrial genome. However both nuclear and 

mitochondrial genomes are now becoming of more interest to evolutionary biologists, as 

questions of population biology and molecular genetics can be answered by comparing the 

evolution across the three genomes (Muse, 2000).  
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Considerations for SNP genetic variation studies  

Number of loci and DNA polymorphism 

Although abundant, SNPs, because of their bi-allelic nature yield a lower information 

content per locus than microsatellites, where each locus can number over 20 alleles (e.g. 

Poteaux et al., 1999). For this reason a larger number of SNPs is required when measuring 

population genetic parameters to compensate for their lower information content (Brumfield 

et al., 2003; Aitken et al., 2004; Morin et al., 2004). Indeed, Varshney et al. (2007), when 

comparing marker systems in Hordeum determined that SNP markers are less suitable for 

diversity studies when compared to AFLP or microsatellite markers when comparing equal 

numbers of SNP and microsatellite markers. 

Studies using DNA sequences to determine optimal sampling strategies for coalescent 

based estimates of population genetic parameters such as θ, the proportion of polymorphic 

sites in a population (see Carling & Brumfield, 2007) found that, as one would expect, the 

accuracy of estimates was improved with increasing numbers of independently segregating 

SNP loci (Pluzhnikov & Donnelly, 1996; Felsenstein, 2006). However, Carling and 

Brumfield (2007) found that increasing the number of loci to above 25 had little effect on 

overall accuracy of the estimate of θ, as 81% of the total improvement was explained by 

increasing the number of loci from 1 to 5, and 98% when increasing to 25 loci. When 

determining optimum sampling strategies under a cost-per-base or cost-per-read scenario, 

both Pluzhnikov & Donnelly (1996) and Felsenstein (2006) determined that the addition of 

independent loci will increase accuracy over extending the individual locus sequence length. 

Carling and Brumfield (2007) indicated that while the more-loci-shorter-sequence strategy 

holds in most cases, where θ is low, longer sequences are required to increase the accuracy of 
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the estimate over increasing the number of loci. In any case Kuhner et al. (2000) point out that 

in cases of very low θ, extremely large numbers of SNPs will be required. 

Using simulations Mariette et al. (2002) found that at least four times as many bi-allelic 

markers were as efficient at elucidating gene diversity in natural populations as one co-

dominant, multi-allelic marker, but at least 10 were required when migration is high and 

heterogeneity within populations is low. However, the bi-allelic markers compared in this 

study were AFLPs, dominant markers in contrast to co-dominant SNPs; hence fewer SNPs 

than AFLPs per study would be required to reveal the same level of population differentiation 

(Morin et al., 2004). The differences in the perceived number of marker loci required can be 

large, with Ryynänen et al. (2007) indicating that up to 100 SNPs have been quoted as the 

number that may be required for pedigree reconstruction (Anderson & Garza, 2006), while 

just 3 microsatellites have proven sufficient for parentage assignment studies. Glaubitz et al. 

(2003) in a simulation study found that around five times as many SNPs as microsatellites are 

required to reliably determine population genetic relationships, while in the case of linkage 

map construction, around three moderately polymorphic SNP loci are equivalent to every 

microsatellite (Kruglyak, 1997), which Brumfield et al. (2003) propose may be similar to the 

relative number required for population genetic studies. More recently a comparison of 

microsatellite and SNP markers has corroborated the suggestion of Brumfield et al. (2003) 

with three times as many SNPs required for the same information content in poultry and cattle 

(Schopen et al., 2008). It is important to note that, while these studies often reflect an 

optimum number of SNPs, the number of loci and sample size will necessarily be both a 

function of the trade-off between cost, information content and the evolutionary context of the 

question asked. Narum et al. (2008), in a study in Chinook salmon, Oncorhynchus 

tshawytscha, found that random microsatellites were more informative markers for 

assignment tests than random SNPs overall, corroborating similar findings in studies in 
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humans (Rosenberg et al., 2003; Liu et al., 2005). However, in this study 7 out of the top 10 

most informative markers were SNPs, and SNPs had 20% higher assignment accuracy than 

microsatellites in 4 of the 29 populations studied. Thus Narum et al. (2008) advocate a more 

complementary strategy of using a suite of marker types for population genetic studies. 

Indeed, while emphasizing that a large number loci should be preferable, Ryynänen et al. 

(2007) found that in some cases a relatively small number of SNPs could provide concordant 

results with that of microsatellite markers in Salmo salar. 

Ascertainment bias 

Along with numbers of samples and loci to be used, a critical concern when designing 

SNP surveys is their ascertainment (Kuhner et al., 2000; Wakeley et al., 2001; Brumfield et 

al., 2003; Nielsen & Signorovitch, 2003; Clark et al., 2005). Ascertainment bias can be 

particularly prevalent in SNP studies, arising from researcher influenced criteria for SNP 

determination and selection of the individuals and/or loci sampled, culminating in results that 

are not representative of the total population. Any statistical analyses that depend upon the 

determination of accurate allele frequencies will be affected. The criteria for a polymorphism 

being designated a SNP can lead to an ascertainment bias. For example using a low-frequency 

cut-off to avoid sequencing errors will lose resolution of the pattern of diversity (Brumfield et 

al., 2003). Using a SNP discovery panel of a small subset of individuals will lead to an 

ascertainment bias if only those SNPs defined by the panel are subsequently genotyped, with 

SNPs present in the rest of the population remaining undetected (Brumfield et al., 2003). As 

another example, the preferential choice of high frequency alleles would allow the 

phenomenon of population expansion to go undetected, as the large number of low frequency 

alleles resulting from the expansion may not be assessed (Nielsen, 2000). The statistical 

impact of the problems associated with ascertainment bias is well documented (e.g. Kuhner et 
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al., 2000; Wakeley et al., 2001; Nielsen et al., 2004). Kuhner et al. (2000) determine that the 

impact of misrepresenting panel designated SNPs as sample SNPs can result in a 10-fold 

difference in the results, with the magnitude of the effect dependent on the ascertainment 

method and model chosen. Panel based ascertainment is however often necessary, but the 

ascertainment bias must be reduced through the use of a geographically widespread panel 

(Morin et al., 2004). In the case of ecology and conservation based studies ascertainment bias 

may be exacerbated where samples come from complex (or unknown) population structures, 

making the designation of the panel more difficult, and thus more variation is likely to go 

undetected (Rosenblum & Novembre, 2007). However, while ascertainment bias is 

undoubtedly a problem in analyses that require a random genetic sample, using an 

ascertainment set from a wide variety of populations can actually provide additional power to 

population assignment and genetic differentiation analyses (Morin et al., 2004). Beyond the 

ascertainment set, locus selection automatically introduces bias by the non-random coverage 

of the genome. Therefore, while searches for SNPs in candidate genes give some idea of 

functionality and enables adaptive diversity to be considered, studies requiring unbiased 

estimates of genomic variation would benefit from methods that sequence random sections of 

the genome.  

Ascertainment bias can be corrected for in some analyses if information about the panel 

and criteria for designating sites as SNPs is retained (e.g. Kuhner et al., 2000, Nielsen & 

Signorovitch, 2003). As such it is vital that researchers retain and publish information 

attaining to SNP discovery so that results can be correctly interpreted. 

Heterozygote ascertainment 

Another consideration of particular importance for conservation and ecology based 

studies arises from haplotype and heterozygote ascertainment, with wild natural populations 
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more likely to contain heterozygotes than crop plants derived from inbreeding. For example, 

Hyten et al. (2006) found the wild progenitor of cultivated Glycine max, G. soja, contains 

twice as much nucleotide diversity per base pair as elite cultivars.  

Two of the most common methods to determine heterozygotes are cloning PCR 

products and the comparison of signal intensities. Cloning PCR products will produce 

unambiguous haplotypes from obligate outcrossing species (Edwards et al., 2007). However 

the high cost of cloning and large amount of sequencing required can render this method less 

attractive. An alternative method uses differences in sequence traces to infer heterozygotes 

from signal intensity, due to a reduction in intensity at around ~50% of the height of a 

heterozygous peak compared to surrounding homozygous peaks (Brumfield et al., 2003). 

However Zhang & Hewitt (2003) indicate that two or more heterozygous positions in one 

sequence read can make this method unreliable. Other methods include likelihood approaches 

to statistically phase DNA sequences, and computer programs have been developed for this 

process (Stephens et al., 2001; Stephens & Donelly, 2003; Scheet & Stephens, 2006; 

Templeton, 2006; Wang & Xu, 2003). As no statistical approach can work accurately when 

the original dataset consists of ambiguous genotypes both Zhang and Hewitt (2003) and 

Templeton (2006) discuss the need for experimental methods to be used in conjunction with 

the latest statistical approaches to determine haplotypes with the greatest accuracy. 

The problem of ploidy 

Polyploidy, the result of more than two complete genomes per cell, occurs in many 

taxonomic groups (Soltis & Soltis, 2000; Otto & Whitton, 2000; Legatt & Iwama, 2003), but 

is particularly prevalent in plant species, with most estimates suggesting that 60-70% of 

angiosperms have a polyploid ancestry (Blanc & Wolfe 2004; Tang et al., 2004; Cui et al. 

2006). Polyploids can be divided into two groups on the basis of their origin, with those 
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polyploids derived from the multiplication of a single genome termed autopolyploids, or if 

derived from combination of the genomes of two distinct species, allopolyploids. A further 

classification in polyploids can be made on the basis of their mode of inheritance. In recent 

autopolyploids the homologous and/or homeologous chromosomes pair at random and can 

also form multivalents at meiosis, (Bever & Felber, 1992; Obbard et al. 2006), a process 

termed polysomic inheritance. For allopolyploids the differentiated sets of chromosomes may 

pair separately as in their diploid progenitors, a process known as disomic inheritance. 

However, while allopolyploids can be generally thought of as disomic and autopolyploids as 

polysomic, both types of inheritance actually represent two extremes at the ends of a 

continuum. For allopolyploids, intermediate modes of inheritance can occur where meiotic 

pairing occurs between closely related parental genotypes; hence crossing over occurs 

between homeologous chromosomes, a process that can homogenise the genome over time 

(Sybenga, 1996). In autopolyploids the four homologous chromosomes can differentiate to 

form two pairs of chromosomes (diploidisation), eventually leading to disomic inheritance 

(Wolfe, 2001; Ramsey & Schemske 2002). In fact even in recent allo- and autopolyploids 

intermediate modes of inheritance are seen, with either closely related parental genotypes 

allowing multivalent formation, or small genomes and low chiasma frequencies in 

autopolyploids leading to disomic inheritance (Sybenga, 1999; Otto & Whitton, 2000; De 

Silva et al., 2005; Obbard et al., 2006). 

The presence of polyploidy and the complexities described above can cause difficulties 

when quantifying genetic variation and population differentiation, unlike in the more simple 

cases of diploid genomes. Instead of the simple presence/absence associated with SNP 

detection in diploids, polyploids would require a frequency measure of each base in each 

genotype. For example a diploid individual heterozygous at a particular allele will have the 

allelic phenotype AB. In the case of a heterozygous tetraploid, the genotype may be AAAB, 
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AABB, ABBB, depending on the copy number of each allele, known as allele dosage. In 

polyploids with low numbers of genomes, particularly tetraploids, allele dosage can be 

estimated when using certain types of markers by looking at band intensity on gels or peak 

heights/areas (e.g. Prober et al., 1998; Hardy & Vekemans, 2001; García-Verdugo et al., 

2009) on electropherograms. Using this method in autopolyploids it is then possible to 

estimate the genotype from the allelic phenotype, and if the inheritance is known to be 

polysomic general population genetic statistics can be adapted to enable analysis (Obbard et 

al., 2006). A more complex issue arises when the species has disomic inheritance, in 

allopolyploids and in diploidised autotetraploids. In these cases it is not clear which alleles are 

associated with which of the duplicate loci, or isoloci. A tetraploid that is heterozygous at a 

particular locus may be homozygous at both isoloci or heterozygous at both, or just one locus. 

Where allele dosage can be scored it is possible to calculate gene frequencies at isoloci and 

then use this information to calculate genetic diversity statistics (Obbard et al., 2006). Both 

Waples (1988) and more recently De Silva et al. (2005) propose ways to estimate allele 

dosage information from microsatellite markers in allotetraploid species to enable further 

analysis, although both methods use fully disomic species, which as outlined above is often an 

extreme, with natural polyploids often showing an intermediate form of inheritance.  

Due to the relatively recent use of SNPs for generating molecular marker data there 

have been fewer attempts to produce statistical programs that can analyse SNP data from 

polyploids, particularly as cloning can directly determine haplotypes and allele dosages 

without the ambiguities associated with estimating allele dosage. While cloning can produce 

unambiguous results for SNP discovery and genotyping, a large number of clones need to be 

sequenced from a PCR pool to be sure of obtaining each homoeologous variant at an 

allotetraploid locus with a high probability of success (Tiffin & Gaut, 2001; Caldwell et al., 

2004; Simko, 2004). Hand et al. (2008) for example sampled 24 individual clones from each 
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T. repens (allotetraploid) individual, thus for the large numbers of individuals required for 

population genetic and conservation analyses this method will be unrealistically limiting. 

SNP studies in allopolyploid plant species have mostly used the progenitor comparison 

approach, where data are separated into isoloci using pedigree analysis or parental genotypes 

(although see also Ching et al., 2002). As an example of this approach, Hand et al. (2008) 

used information from Trifolium occidentale and T. pallescens as the most related species to 

the diploid progenitors of T. repens to separate the allotetraploid genome for further analysis. 

Cotton species, Gossypium hirsutum and G. barbadense, are split into their constituent A and 

D genomes for further analysis (Small et al., 1999). This method enables researchers to 

calculate diversity statistics directly from the two separate progenitor genomes. 

It is clear that SNP detection and subsequent analysis in polyploid plant species, 

particularly allopolyploid species, is both more resource intensive, and requires more detailed 

information on the progenitors of the species than will be available for most conservation 

studies. 

SNP identification methods in non-model organisms 

SNP identification is possible by comparing the sequence information for a locus from 

several individuals, with many methods having been described (Gupta et al., 2001; Rafalski, 

2002; Edward et al., 2008; Ganal et al., 2009). Whilst a thorough assessment of all SNP 

discovery methods is beyond the scope of this review, direct SNP discovery and validation in 

non-model organisms generally falls into 2 themes dependent on prior information 

availability. 

No prior sequence information - Whole genomic shotgun sequencing 

This approach uses a genomic library derived from a mixture of DNA from a number of 

individuals, enabling the sequencing of random segments of the genome (Gupta et al., 2001). 
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The method is disadvantaged because of the expense involved and the probability of over-

representation of repetitive sequences (Primmer et al., 2002). Nonetheless, in the complete 

absence of sequencing information large amounts of high quality sequence data can be 

produced for non-model species. Further, unlike locus specific amplification, the method 

sequences random segments of the genome and produces haplotype information, removing 

some of the problems of ascertainment bias associated with locus selection as well as 

heterozygote assignment. 

No prior sequence information - Reduced representation shotgun (RRS) 

While this method is similar to the whole genome shotgun sequencing approach above, 

it relies on using a subset of each individual‟s genome to reduce the amount of re-sequencing 

required to discover SNPs (Altshuler et al., 2000). It consists of mixing the DNA of several 

individuals, and selecting from those a subset of the genome to create a library for further 

sequencing, with the subset criteria based on for example restriction fragments size, 

methylation, or copy number (Barbazuk et al., 2005). This selection ensures that a similar 

subset of fragments from different individuals is selected for sequencing, increasing the 

efficiency of SNP identification. Hyten et al. (2010) used this method in conjunction with 

next generation sequencing to identify 7,108 to 25,047 putative SNPs in Glycine max. 

No prior sequence information - SNPs by AFLP (SBA) 

This approach is particularly applicable to non-model organisms, with AFLP often the 

marker of choice for genetic diversity studies in species with no prior genetic information. 

This method makes further use of the ligation of the primer site following AFLP 

amplification, to sequence random homologous bands from different individuals (Nicod & 

Largiader, 2003; Roden et al., 2009). Further, highly informative markers or potentially 

adaptive markers can be selected by choosing markers that show specific differences among 
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populations or groups in the AFLP study (Bensch et al., 2002). However, Edward et al. 

(2008) note that sequencing fragments derived from AFLP analysis is complicated where 

multiple copies of the target sequence are present in a genome, through either polyploidy or 

where the AFLP fragments represent a member of a repetitive element family. 

No prior sequence information - Next generation sequencing 

It is highly likely that the sequencing of non-model organisms will greatly benefit from 

the large advances being made in sequencing technology. Next-generation sequencing 

technologies can generate high quality sequence information of 20-30 mbp in one run 

relatively cheaply, compared to around 67,000 bp per hour using traditional Sanger 

sequencing methods (Margulies et al., 2005; Vera et al., 2008). While this new technology 

can greatly increase the speed at which sequences are generated, the average length of 

sequences may only be around 100bp, compared to the average of 700bp generated from 

traditional sequencing methods (Margulies et al., 2005). However, the higher level of 

redundant coverage of genes can specifically lend this method to SNP discovery when 

sequencing a diverse array of individuals in non-model species. A next generation sequencing 

run made up of sequencing a pool of diverse individuals is likely to generate thousands of 

SNPs, in addition to providing thousands of contigs that can be compared to available 

sequencing information for annotation (Vera et al., 2008; Gompert et al., 2010; Ouborg et al., 

2010). Thus, this technology is likely to provide one of the most feasible methods for SNP 

discovery in non-model plant species (Ouborg et al., 2010). Recently published studies show 

the potential of this method, with Vera et al. (2008), Gompert et al. (2010) and Van Bers et 

al. (2010) discovering a large number of novel SNPs in species where little prior genomic 

information was available. The potential to assemble the short sequence reads into contigs is 

noted to be difficult in the absence of a published assembly reference genome (Trombetti et 
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al., 2007; Vera et al., 2008). Therefore the ability to determine the potential adaptive 

significance of these SNPs by identifying coding and non-coding regions of the genomes can 

be made more complex in non-model species where only distantly related species data are 

available for use as a reference guide to assembly. Further, Gompert et al. (2010) note that the 

large amount of unassembled reads generated provide no information for genetic variation 

studies, and thus sequence assembly into contigs is vital to the use of such data for addressing 

population and conservation questions.  

A further limitation may be the higher error rate in next generation sequencing 

compared to Sanger sequencing, with the potential to overestimate the level of polymorphism 

in the sample (Margulies et al., 2005; Harismendy et al., 2009). High error rate in these 

sequences will overinflate nucleotide diversity and this will be evident in an excess of rare 

alleles (Pool et al., 2010). Validation of 454 Life Sciences (http://www.454.com) identified 

SNPs, using cloning and traditional Sanger sequencing has been shown in some cases to be 

relatively high, with Barbazuk et al. (2007) reporting >88% SNP detection accuracy in Zea 

mays. 

Prior sequence information available- In silico SNP discovery 

Nucleotide databases can be used to identify potential primers by aligning sequences 

derived from different individuals (Picoult-Newberg et al., 1999). In particular large numbers 

of ESTs have now been generated for various crop plants and it is possible to mine this 

information using various tools to discover SNPs (e.g. Buetow et al., 1999; Gorbach et al., 

2009). However, large-scale in silico SNP discovery efforts require a large number of 

sequences from a diverse set of individuals, and thus for the majority of non-model species 

this will not be the case. A small amount of sequence data in the target species or any closely 

related species can be used to aid SNP discovery in targeted areas, as detailed below. 

http://www.454.com/
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Prior sequence information available- Locus specific amplification 

With the presence of sequence data, specific genic regions can be selected and amplified 

by PCR (e.g. Arabidopsis thaliana, Brock et al., 2007; Hordeum vulgare ssp. spontaneum, 

Lin et al., 2001; Zea mays ssp. parviglumis, Moeller & Tiffin, 2008). The sequences of 

several individuals can be compared to discover novel SNP sites (see Figure 1.3 for a flow 

diagram of decision-making for SNP detection using a candidate gene approach). Even in the 

absence of annotated gene fragments for the species in question, this method is increasingly 

being used to compare nucleotide databases of the target species with that of species where 

more genetic information is available to discover candidate genes of interest (Eveno et al., 

2008; Hand et al., 2008). 

 



1 General introduction 

 

26 
 

 

Figure 1.3. Decision making flow chart for SNP detection using candidate genes. 

 

In the presence of comparative sequences of the target locus in other species, alignments 

can highlight areas of conserved nucleotides in which to site primers. Within this overall 

approach several different methods have been proposed. Amongst the most common is 
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comparative anchor tagged sequences (CATS) or exon priming intron crossing (EPIC) where 

highly conserved exon regions are used to design primers to amplify unconserved intron 

sequences (Palumbi & Baker, 1994; Lyons et al., 1997). Aitken et al. (2004) used this 

approach to sequence targeted geneic regions and from there to discover SNPs across a 

selection of mammal taxa, with 50% of primers successfully amplifying putative homologues 

in around half of the species analysed. When using methods such as this, there needs to be 

some caution - members of gene families and genes with recognised pseudogenes need to be 

excluded to reduce the extent to which multiple genome fragments are amplified (Primmer et 

al., 2002). Thus, using these methods in plant species may prove difficult due to the high 

levels of gene duplication and polyploidy. Ryynänen & Primmer (2006) expand on this idea 

to produce intron-primed exon crossing (IPEC) to reduce the probability of amplifying 

duplicated genes, siting primers in more variable genomic regions. From this method, 95% of 

loci were successfully amplified, providing a clean single PCR product for sequencing in 

Salmo salar, compared to 30% success rate using the EPIC strategy. Clearly in the absence of 

any sequencing information for closely related taxa this method becomes limited, as design of 

primers based on more closely-related rather than more distantly related species are more 

likely to provide a higher rate of success (Housley et al., 2006). Indeed SNP discovery studies 

in non-sequenced species have proven highly successful when using sequence information 

from closely related taxa (Adams et al., 2006; Sacks & Louie, 2008). 

In the absence of sequence from even distantly related taxa, regions of conserved 

nucleotides can become patchy, requiring the need for degenerate primer design, and using a 

pool of primers to amplify a selected locus (Kwok et al., 1994). Specifically, degenerate 

oligonucleotide primed (DOP)-PCR uses primers with 5‟ G/C rich anchors and unique 3‟ 

nucleotides, confining degenerate nucleotides (approximately one third of the primer length) 
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to the centre of the primer, which has increased the efficiency of the degenerate PCR reaction 

(Jordan et al., 2002; Janiak et al., 2008).  

However multiple cloning and sequencing of the same PCR product remains as a major 

potential problem in some cases, with Janiak et al. (2008) indicating that ploidy and genome 

duplication in plant genomes can render degenerate PCR unsuitable for SNP discovery. 

Whilst more technically complex than other methods mentioned above, some authors have 

successfully managed to use degenerate PCR to discover SNPs in plant species, particularly 

.in studies of genic regions that are highly conserved between species. For example, 

degenerate primers designed to amplify resistance genes in Glycine max (Kanazin, 1996), 

have been used successfully to amplify the same region in Zingiber officianalis (Nair & 

Thomas, 2007) and degenerate primers designed from conserved resistance regions of Oryza 

sativa and Lycopersicon were used to design primers for amplification in citrus species (Deng 

& Gmitter, 2003). 

 

A promising future for SNPs in conservation studies? 

 

The likely effect of climate change, coupled with the expanding ecological footprint of 

an ever increasing human population portends significant future environmental change. 

Species persistence in a changing environment is dependent on its vulnerability to these 

changes and its ability to adapt. While most studies of genetic variation to date have focused 

on neutral diversity, this is by no means always an efficient surrogate for adaptive diversity 

(Reed & Frankham, 2001). While neutral diversity has provided a large amount of 

information for conservation genetics, the relationship between variation and ecologically 

important traits may be untested (Ouborg et al., 2010). Whilst adaptive or environmental 

change can be shown by monitoring the changes in variation indicated by neutral markers, 
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variation is affected only after a population size decrease or a change to gene flow (Hoffmann 

& Willi, 2008). 

SNPs provide an exciting prospect for studies of ecologically important traits, providing 

markers that can be directly tested for selection, and thus increasing the knowledge of the 

effects of selection on functional traits in wild populations and the ability of these species to 

adapt to future changes. In terms of conservation, the potential to identify both those 

populations most threatened by environmental changes and those containing the highest 

diversity in functionally important genes is a clear advantage for future conservation efforts 

(van Tienderen, 2002; Hoffmann & Willi, 2008). 

It is possible that, due to data quality, wide genome coverage, high variability and the 

potential to identify genes under selection, SNP markers may become the most popular 

marker in ecological and conservation genetics studies. However, for non-model species the 

methods described above indicate the high level of resources and/or prior information 

required to identify enough SNPs to successfully carry out a conservation genetic study (see 

also Morin et al., 2004). Despite the interest in SNPs as molecular markers there have been 

few studies assessing ecological and conservation based questions in non-model species. The 

majority of SNP studies focus on humans and other model organisms, with only six species 

accounting for over 90% of all the submissions to dbSNP as at August 2010 (Sherry et al., 

2010). With the availability of large sequencing datasets with information from different 

individuals, much of the SNP detection in model organisms can be completed in silico. 

However, despite the growing number of complete or near complete genomes and large 

numbers of sequences currently available (see Figure 1.4), for the vast majority of species 

sequence data is limited or nonexistent.  
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Figure 1.4. The increase in the availability of sequence data on the World Wide Web (data taken from the EMBL 
nucleotide sequence database, Kanz et al., 2001).  

 

For non-model organisms, this lack of available sequencing information provides a 

major technical and economic obstacle to SNP discovery. While the high potential for SNPs 

use is confirmed by crop plant studies in adaptation and diversity, resource constraints mean 

that studies in non-model plant species are lagging behind (but see Novaes et al., 2008, Beatty 

et al., 2010 and Friesen et al., 2010 for examples). Indeed Schlötterer (2004) questioned 

whether, in small population sizes of the type typically used for conservation studies, 

microsatellites may provide a more cost effective marker. Until recently the cost of SNP 

development, in addition to the lower information content per locus, suggested that resource 

constraints in non-model species will restrict marker choice to the more traditional methods, 

as the traditional markers such as AFLPs and microsatellites still provide excellent tools to 

assess demographic processes. The potential shown in their use in model species, and the 

likely increase in discovery as more sequences are made available still suggests that SNPs 

will become the marker of choice for future studies, particularly in light of next generation 

sequencing technology. However, until larger numbers of sequences are made available for a 
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more diverse set of organisms, the choice of marker in conservation studies for non-model 

species is still very much a question of finding the most cost-effective marker for both the 

study design and question being asked. Consequently in the meantime more traditional 

methods will provide the most informative markers where resources are limiting. 

 

1.6 QUANTIFYING GENETIC DIFFERENCES  

A basic concept underlying most neutral genetic theories, where the marker measured is 

neutral to selection, is that genetic diversity is positively correlated to effective population 

size (Ne) at equilibrium. Hence, it follows that smaller population sizes will be more prone to 

loss of rare alleles and have lower average expected heterozygosity (He) than those with larger 

Ne values (Beebee & Rowe, 2004). In a review of plant and animal taxa, Frankham (1996) 

found that this relationship held in the vast majority of cases. This relationship is useful in 

terms of a single random breeding population; however population subdivision is a feature of 

most naturally occurring populations.  

Measuring and partitioning genetic diversity between subdivided populations, and using 

this information to infer population structure, has had a long history, from Wright‟s F 

statistics (1951) to high powered statistical computer programs used to produce multivariate 

analyses of genetic diversity assessments (e.g. Labate, 2000). There have been several 

addendums to the initial F statistics, with Nei (1973) addressing the complication of multiple 

alleles and Weir and Cockerham (1984) addressing unequal sample sizes. The most frequently 

used genetic distance measure, a measure of dissimilarity between populations, was 

developed by Nei (1987) and can be used to infer phylogenetic relationships between species.  
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1.7 GENE FLOW AND GENETIC DIVERSITY  

In any discussion on gene flow it is important to establish certain definitions. „Gene 

flow‟ describes the movement of alleles between distinct populations due to the dispersal of 

gametes and zygotes. However, it has become increasing clear that the emphasis should not 

be just on gene flow, rather on the incorporation and stabilisation of alleles into the recipient 

genepool. This „incorporation and stabilisation‟ of alleles is a factor often missed in 

discussions on gene flow (Arriola, 2005), and has led to the term „introgression‟; a 

consequence of gene flow where introgressed alleles have become a permanent and stable part 

of the recipient populations genepool (Stewart et al., 2003; Arriola, 2005).  

The term „genetic pollution‟ came into use with the increasing concern over GM crops, 

and as such is a rather controversial term, emoting unfavourable consequences. With the 

current discussion concerning its use in science, this will not be used further.  

1.7.1 THE CONSEQUENCE OF INTROGRESSION IN CONSERVATION  

One of the main causes of debate in the dispute over genetically modified crops 

concerns the introgression of transgenes from genetically modified (GM) crops into their wild 

relatives, which has stimulated much research in this area. This work has not only highlighted 

the potential introgression between GM crops and their wild relatives, but also into natural 

introgression between traditionally bred crops and their wild relatives.  

Levels of natural introgression are higher than historically thought, with Ellstrand et al. 

(1999) in a review finding that 12 of the 13 most economically important crop species 

hybridise with wild relatives. Stewart et al. (2003) point out that the current estimates of 

confirmed introgressions are likely to be the very minimum, with less recent hybridisations 

and those between closely related species more likely to go undiscovered.  
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However, the extent and therefore the impact of introgression varies among species, 

populations and even years (Ellstrand et al., 1999). The level of importance in evolution is 

species and situation dependant; for example Ehrlich and Raven (1969) point out that 

sufficiently strong selection pressures could overcome the uniformity associated with 

introgression. It is nonetheless a potent force in the homogenisation of a species, the 

consequences for genetic diversity and evolution lying in its ability to sustain the evenness of 

species geno- and phenotypes, counteracting the factors leading to divergence in species (e.g. 

Mayr, 1970; Slatkin, 1985). Moreover, introgression contributes to genetic swamping, where 

a rapid increase in one genotype (or allele) replacing local ecotypes, leading to the decrease in 

genetic diversity of the species. The implication for conservationists being that the effects of 

introgression will serve to eradicate the genetic diversity that they are attempting to conserve. 

In terms of this study the rates of gene flow and introgression are a factor in the 

availability of local adaptation and genetic variability between populations. Greene et al. 

(2004) found a relationship between environmental variation and genetic diversity in 

Trifolium pratense, but only for populations that were geographically isolated. Detecting 

population subdivision, with an idea of the rates and barriers of gene flow is the basis for 

defining units of evolutionary and conservational importance, a must for the effective 

management of genetic diversity (Manel et al., 2003). Furthermore, attempting to estimate 

levels of gene flow in species of varying levels of cultivation history will provide a valuable 

insight into the influence of agriculture on patterns of gene flow. 

1.7.2 MEASUREMENTS OF GENE FLOW 

The importance of introgression is clear; however measurements are extremely difficult. 

Direct measurements of gene flow and dispersal are resource expensive and as a consequence 

limited in time and space, not reflecting stochastic events and often biased against long-
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distance dispersal events (Whitlock & McCauley, 1999). In addition introgression itself is 

often not measured, as direct measures of organism movement are not synonymous with the 

incorporation of alleles in the recipient population. 

In light of this, indirect measures are most often used to infer rates of gene flow and 

consequently introgression, using comparisons of genetic data between populations to model 

rates of gene flow. The derivation of many of these models and their use in estimating gene 

flow has been the subject of many reviews (e.g. Slatkin, 1985; Neigel, 1997). Wright (1931) 

put forward the island model to transform his measure of population subdivision, FST, into Nm, 

a measure of the number of migrants coming into a population, hence a quantification of gene 

flow. The concept of an „island‟ model, with each separate component of a metapopulation 

perceived as an „island‟, has been the basis of many measurements of gene flow (Neigel, 

1997). Of particular interest to this study are the isolation-by-distance models (Wright, 1943) 

and stepping-stone-models (Kimura & Weiss, 1964) which correlate genetic variation 

between populations with geographical distance.  

Although it will be possible to infer levels of gene flow from FST, it is difficult to test 

these methods and there is considerable controversy about the usefulness of these indirect 

measures of gene flow and indeed whether these methods can be misleading (Neigel, 1997; 

Bohonak et al. 1998; Bossart & Powell; 1998a; Whitlock & McCauley, 1999). The 

assumptions of the population model on which these indirect methods base their estimations 

of gene flow are the basis for much of the controversy. For example the most well known of 

the models, the Wright (1931) island model, assumes no selection, no mutation, equal 

population size, equal immigration/emigration rates and random migration (Hutchinson & 

Templeton, 1999; Whitlock & McCauley, 1999), which is clearly a too simplified version of 

the intricacies inherent in biological systems. It is likely that FST will respond to changes in 
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migration rate, but may take many generations to do so, hence the value obtained may reflect 

past levels of migration but is unlikely to reflect current migration rates (Latta, 2006).  

However, although caution must be taken in analysing these results, it is important to 

note that until the much called for advances occur, these analyses do provide an insight into 

the gene flow between populations, albeit with large degrees of error. The prevailing 

conclusion in the literature is that, as long as the limitations of the underlying population 

models are understood and the results critically evaluated, they provide useful inferences on 

gene flow and genetic boundaries (Neigel, 1997; Bossart & Prowell; 1998b; Whitlock & 

McCauley, 1999). 

One of the points highlighted is a need for more realistic models in order to advance, 

which will be possible with the provision of more detailed information. Whitlock and 

McCauley (1999) note that by comparing contrasting elements of a metapopulation e.g. 

“mainland vs. island” populations, a comparison that will be addressed in this study, 

theoreticians will gain more insight into the importance of these factors in creating genetic 

patterns. Recent literature has given an increasing emphasis on landscape genetics, the 

explanation of genetic variation by comparison with landscape variables (Sork et al., 1999; 

Manel et al., 2003).  

1.7.3 LANDSCAPE GENETIC ANALYSIS AND ITS IMPLICATIONS FOR POPULATION GENETICS 

Quantification of the level of genetic diversity goes only part way to answering the 

question of how to assess the status, viability and threats for species in terms of conservation 

biology (Escudero et al., 2003). Landscape genetics, a discipline that “endorses those studies 

that combine population genetic data, adaptive or neutral, with data on landscape compostion 

and configuration” (Holderegger & Wagner, 2006), attempts to bridge the gap between 

population genetic assessments and landscape ecology. Recent developments in the field of 
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landscape genetics have integrated the spatial and genetic patterns of this diversity, defining 

how the configuration of the landscape interacts with population genetics. Landscape genetics 

incorporate the fields of population genetics and landscape ecology allowing population 

geneticists to determine processes based on landscape composition, not just on spatial 

distance (Holderegger & Wagner, 2006; Storfer et al., 2007). 

Conservation biologists face many difficulties in correlating the complexity of the real 

landscape to the genetics of the species contained within it. Barriers to gene flow, the number 

of distinct populations in a defined area, the underlying cryptic patterns of genetic diversity 

and the effects of habitat heterogeneity can all be identified by landscape genetic tools (Manel 

et al., 2003). The Mantel (1967) test, a test of the correlation between two matrices, is a 

cornerstone of landscape genetic analyses and has been widely applied in population genetics 

studies. Classically Mantel tests are used to test for isolation by distance (IBD), by comparing 

a matrix of genetic distance with one of geographic distance i.e. are populations in close 

proximity more genetically related than those that are geographically further apart? While the 

Mantel test remains a robust technique for population geneticists its main limitation lies in its 

ability to detect only linear patterns of spatial correlation (Escudero et al., 2003). To 

compensate for this limitation, if there is an expectation of non-linear population structure, 

non-linear distance metrics can be used; however this method requires a priori knowledge of 

population substructure (Heywood, 1991). 

An extension to the Mantel test is the partial Mantel test, a comparison of three 

matrices, in essence comparing a response matrix to a predictor matrix while controlling for 

the effect of a third variable (Smouse et al., 1986). In this way the relative importance of 

environmental factors can be tested, while controlling for patterns resulting from spatial 

distance (Still et al., 2005; Storfer et al., 2007). Whilst this test has been used in population 

genetic studies and remains a useful indicator of environmental impacts on genetic diversity 
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patterns there has been some controversy over the statistical validity of this test (Raufaste & 

Rousset, 2001; Castellano & Balletto, 2002; Rousset, 2002). 

Aside from matrix correlations the majority of landscape genetic literature now focuses 

on several statistical techniques; assignment tests, autocorrelation/correlograms, dispersal 

route analysis, combined GIS approaches and ordination (Manel et al., 2003; Storfer et al., 

2007). Dispersal route analysis tests the relationship between genetic distance and alternate 

paths through habitats, for example; along a river or shortest straight line paths through 

suitable habitat (Michels et al., 2001; Coulon et al., 2004; Poissant et al., 2005). For more 

complex landscapes, these types of analyses can explain more variation in gene flow than 

traditional straight line Euclidean distance measures (Storfer et al., 2007).  

Traditional population genetics often uses a priori population delimitation; however 

population assignment methods allow populations to be defined within a continuous habitat. 

Bayesian clustering approaches allow random mating individuals to be assigned to sets 

(populations) within the total dataset, based on the grouping of individuals that minimize 

Hardy Weinberg and gametic disequilibrium (Manel et al., 2003). Using this method authors 

have been able to ascertain genetic discontinuities in populations that are spatially continuous, 

exposing the dispersal patterns and fragmented landscapes more difficult to detect using 

traditional methods (He et al., 2004; Prentice et al., 2006; Grivet et al., 2008). Allocation 

procedures can be extended to determine the population of origin, i.e. the source population to 

which the genotype is most likely to belong (Duchesne & Bernatchez, 2002). Although these 

types of analyses have huge potential for population genetic research, they are limited in that, 

by assuming random mating, they preclude the use of selfing and partially selfing species. 

Spatial autocorrelograms quantify the genetic relatedness between pairs of individuals 

and geographical distance, with no prior knowledge of spatial structure assumed (Sokal & 

Oden, 1978; Heywood, 1991; Manel et al., 2003). These techniques assess whether the 
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genotype of one individual at a known location is independent of that from another at a 

neighbouring locality (Escudero et al., 2003; Manel et al., 2003; Storfer et al., 2007). The 

results provide a graphical depiction of the association over geographical distance classes 

defining the spatial scale of the genetic pattern of diversity (Heuertz et al., 2003; Ishihama et 

al., 2005; Tero et al., 2005). Although spatial autocorrelation can define the scale of the 

pattern in a continuous population, this method needs to be coupled with other landscape 

genetic methods to determine which landscape boundaries create the observed genetic 

discontinuities. 

Ordination methods such as canonical analysis (CA) can be used in a landscape genetics 

context to investigate relationships between environmental variables and the spatial patterns 

of genetic diversity (Storfer et al., 2007). In particular spatial coordinates can be incorporated 

as covariables to determine the extent of genetic variation explained by habitat related 

variables while accounting for the variation explained by geographic distance (Geffen et al., 

2004, 2007; Smith et al., 2008). Due to the controversy surrounding partial mantel tests, 

canonical analysis, in particular distance based redundancy analysis (dbRDA), provides an 

alternative to traditional methods to enable population geneticists to quantify variation 

explained by environmental variables (Anderson, 2003). 

Analysis at the landscape level has intuitive criticisms, namely that any landscape will 

rarely remain constant and that, although the spatial pattern of diversity is defined, the 

processes that cause an observed pattern of diversity may still be uncertain. Landscape genetic 

methods, as with many population genetic analyses, require assumptions that are likely to be 

violated in natural populations, however the extent to which the violations impact the 

reliability of the conclusions drawn is uncertain (Storfer et al., 2007).  

Nevertheless the use of landscape genetics remains an exciting possibility for 

population geneticists, going some way to answer the questions associated with patterns of 
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gene flow and spatial patterns of genetic diversity. Although landscape genetics itself requires 

large scale random sampling strategies, many of its methods can be applied more generally to 

population genetics studies to help reveal genetic discontinuities and the landscape and 

environmental features that create them. In terms of conservation the results of such analyses 

are vital for evidence based approaches to conservation management in real landscapes. 

1.8 MAINLAND VERSUS ISLAND POPULATIONS  

The importance of islands in overall species diversity is well acknowledged, with 

speciation following long periods of isolation giving rise to endemic species, as well as many 

islands acting as repositories for many of the worlds threatened taxa (e.g. Darwin, 1859; 

Paulay, 1994; Myers et al., 2000). Less well recognised is the importance of islands in terms 

of genetic diversity below the species level, with the isolation of island populations likely to 

create reservoirs of distinct variation compared to mainland populations.  

Extinction of species has long been a focus of island literature and a clear indicator of 

loss of diversity on islands, occurring more readily in island ecosystems as a response to a 

small overall area, greater reactions to stochastic processes, genetic drift and lower levels of 

immigration. These same processes affect island populations of non-endemic species, and 

indicate the real importance of the conservation of island biotas.  

Islands themselves represent an interesting paradigm containing fewer species than the 

same area on the mainland as a function of their lower overall area, following MacArthur and 

Wilson‟s (1967) model of island biogeography, and typically contain lower levels of diversity 

than their mainland counterparts (Frankham, 1997). Nonetheless it is the rarity of both the 

species and genetic diversity on islands that defines their conservation potential. 
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1.8.1 PREVIOUS STUDIES OF DIVERSITY IN MAINLAND VERSUS ISLAND POPULATIONS 

The importance of islands in speciation and evolution was recognised by Darwin, with 

islands acting as natural experiments in evolution (MacArthur & Wilson, 1967) and as such 

they have been the focus of many studies and models particularly in terms of studies into 

adaptive radiation.  

Frankham (1997) defines island isolation, size and life history traits as factors 

determining the scale of difference in diversity between island and mainland populations, with 

higher differences found when assessing smaller, isolated islands and for species with low 

dispersal rates and low adaptability. In terms of this study, the genetic variation on the islands 

will be greatly impacted by the life history traits of the species (i.e. modes of pollenisation) 

and the isolation of the islands, with distance from the mainland complicated by the 

surrounding islands in the archipelago and intermediate islands between the island of study 

and the mainland.  

In a review of island diversity versus mainland diversity, the majority of island 

populations were found to be significantly different to mainland populations (see Frankham, 

1997). In addition, the level of genetic diversity within populations has been found to be 

significantly lower in insular populations than in mainland populations (Frankham, 1997). 

Inoue and Kawahara (1990) report a negative correlation between the total genetic diversity of 

islands and distance from the mainland for Campanula punctata, indicating the more distant 

island groups are likely to contain lower levels of genetic diversity. 

Crop species, or those strongly complicated by trade and human movement have been 

excluded from review (Frankham, 1997). However in an assessment of the genetic variation 

of cotton (Gossypium hirsutum L.), although low in comparison to non-cultivated species, 

both geographic and human factors were found to impact its genetic variation (Wendel et al., 

1992). It is suggested that the genetic grouping of islands that were previously under British 
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colonial rule is likely due to germplasm exchange, although other genetic clusters are more 

influenced by geographic proximity (Wendel et al., 1992).  

This difference in genetic diversity between islands and mainland populations, with 

clear relationships between geography, genetic variation, and cultivation history has major 

implications for both conservation priorities and future breeding programs (see Inoue & 

Kawahara, 1990; Wendel & Percy, 1990; Shapcott, 1994). As such this study will focus on 

the islands surrounding the UK to try to identify hotspots of unique variation in comparison to 

reference mainland sites. 

1.9 THESIS OUTLINE  

This thesis attempts to analyse the utility of, and best methods for genetic diversity 

studies in three species of Trifolium across the UK and its associated islands, with a review of 

genetic diversity methods and studies given in Chapter 2. In order to successfully analyse 

these species, a comprehensive evaluation of the ecogeographic background of the taxa and 

the sites was conducted to define the areas targeted for collection. The results of this survey in 

understanding the social and economic importance of the species and in determining 

conservation priorities in the absence of genetic information are outlined in Chapter 3. 

Following the collection of the target species based on the information shown in Chapter 3, a 

genetic diversity study of all three species was conducted in order to calculate the levels of 

diversity using AFLP markers. Analysis of the levels of diversity and their relationship to 

environmental variables is also incorporated into the analysis, which is discussed in Chapter 

4. Single nucleotide polymorphisms (SNPs) are purported to become increasingly important 

as markers in genetic diversity assessments and this potential is reviewed in detail in Chapter 

5. The utility of SNPs as genetic markers is assessed in Chapter 6, which defines the 

identification and analysis of new SNPs in wild populations of T. pratense. 
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These assessments were designed to provide an assessment of genetic diversity in these 

three Trifolium species, but may also provide some information to help the in the study and 

conservation of widespread species. The implications of the findings in the previous chapters 

are discussed in Chapter 7. 
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Chapter 2. AN ECOGEOGRAPHIC BACKGROUND TO THREE 

TRIFOLIUM  SPECIES IN THE UK 

2.1 ECOGEOGRAPHY AS A TOOL FOR CONSERVATION ANALYSES  

In order to be able to assess the background of target taxa and to optimise any collection 

activity it is imperative that researchers have as much prior information as possible. 

Ecogeographic analysis is a process of synthesising background information on both the 

target area and the species involved in the study, including taxonomic, ecological, 

geographical and historical data, using the results to predict collection and conservation 

strategies (Maxted & Guarino, 1997). Ecogeographic surveys will not only show patterns of 

infra-specific diversity, but also where and within what environmental constraints the species 

survives and the population fluctuations of the target taxon. This information can be used to 

highlight potential areas for collection and conservation, either choosing those habitats which 

represent heterogenous environments within the taxon‟s range, those habitats at the greatest 

risk from genetic erosion or those areas underrepresented in conservation collections. Hence 

ecogeographic surveys are a vital decision-making tool in both conservation planning and 

overall conservation success. 

2.2 AIMS OF ECOGEOGRAPHIC SURVEY  

This chapter aims to conduct a survey based on available literature to create 

conservation strategies. 

Specifically this chapter aims to: 

 provide a background to the target taxa; Trifolium dubium, T. pratense and T. repens 

including taxonomy, distribution and ecology information 

 produce an assessment of the vegetation history of the target island sites 
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 reveal the natural distribution of target taxa within the UK 

 assess current conservation status and strategies for the target Trifolium species within the 

UK 

2.3 TARGET TAXA  

Leguminosae Juss. (Fabaceae Rchb.) is a cosmopolitan family of flowering plants, one 

of the largest in the world and second only to the grasses in terms of adaptation to wide ranges 

of habitat diversity (Adams & Pipoly, 1980; Graham & Vance, 2003) and economic 

importance (Heywood, 1985). Within the legume family, the genus Trifolium contains 

between 250-300 species, and includes some of the most economically important species 

within the legumes (Williams, 1987; Lewis et al., 2008). The centre of origin of Trifolium is 

generally accepted as the Mediterranean region due to the higher species diversity found in 

this area, with a secondary centre of distribution in north-eastern America, and is now widely 

distributed throughout the temperate and subtropical regions of the world (Zohary & Heller, 

1984; Caradus, 1995).  

Of the circa 250 species of Trifolium only 16 are known to have been cultivated on a 

commercial scale (Taylor & Quesenberry, 1996) including white and red clover (T. repens 

and T. pratense), the two most economically important pasture legumes in the UK. Trifolium 

was chosen as the target genus for this study in light of both available taxon expertise in this 

area and previous analysis indicating the use of species of Trifolium as model taxa for analysis 

of ecogeographic diversity effects on genetic diversity patterns. Many undercollected 

Trifolium species have been identified as priorities for evaluation, collection and conservation, 

including T. pratense and T. repens (IBPGR, 1985; Francis, 1999). The increasing interest in 

sustainable farming and organic fertilisers has highlighted the need to conserve the genetic 

diversity of clover species. T. pratense and T. repens, as the most cultivated forms of clover in 

the UK, have been chosen as target species for this study in light of their growing importance 
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to UK agriculture and their ubiquitous distribution across the UK (see Figure 2.1). In addition 

T. dubium, a widespread wild relative of T. repens (Bulińska-Radomska, 2000) is included to 

help distinguish affects on genetic diversity patterns from cultivation. 

2.4 TRIFOLIUM  GENETICS  

Within the Trifolium genus, T. pratense, T. repens and T. subteranneum L. are the most 

studied in terms of genetic diversity. Morphological (Bennett, 2000; Pecetti & Piano, 2002) 

and isozyme (e.g. Martins & Jain, 1980; Rossiter & Collins, 1989; Hagen & Hamrick, 1998; 

Lange & Schifino-Wittmann, 2000; Yu et al., 2001; Mosjidis et al., 2004) analysis has been 

widely used to evaluate genetic diversity in Trifolium species, with more limited studies 

published that use molecular markers for this type of analysis. 

Less economically important Trifoleae have been assessed to a smaller extent, with a 

recent study by Malaviya et al. (2005) providing an isozyme study across 25 species and 

Rizza et al. (2007) using ISSR markers to study six species of clover for genetic diversity and 

DNA content. Chandra (2008) has recently proposed a set of 43 microsatellites obtained from 

Medicago truncatula and T. repens that can be used with relative success across species and 

genera, paving the way for future microsatellite studies across less well studied members of 

the Trifoliae. T. dubium has had no prior genetic diversity assessment to the authors 

knowledge (although see Caradus & Mackay, 1989). However, the vast majority of diversity 

studies across of members of the Trifoliae have shown a generally high level of diversity 

within populations, even among other inbreeding species such as T. subterraneum (Pecetti & 

Piano, 2002; Piluzza et al., 2005). In an assessment of five species of Trifolium in Turkey, the 

edaphic and geographic range of the species was found to be the most important factor 

determining the distribution of variation. Much of this variation has been found to be 

correlated to environmental factors, with widely distributed species showing higher levels of 
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variation (Bennett, 2000). There have been mixed results in relating genetic diversity between 

Trifolium populations to geographic distances, as will be attempted in this study, with some 

finding little correlation (Pecetti & Piano, 2002; Greene et al., 2004) and others finding that 

incorporating topographic and geographic barriers when interpreting the results explained 

much of the distribution of variation (Mosjidis et al., 2004). 

2.4.1 TRIFOLIUM REPENS GENETIC DIVERSITY 

Much of the previous work into the diversity of T. repens populations uses either 

morphology to infer genetic diversity (e.g. Burdon, 1980; Jahufer et al., 1997), isozyme 

analysis (Hamrick & Godt, 1989; Lange & Schifino-Wittmann, 2000) or RAPDs (Gustine & 

Huff, 1999; Gustine et al., 2002; Bortolini et al., 2006). Recently there has been a shift 

towards AFLPs and microsatellites, for example by van Treuren et al. (2005), and Kölliker et 

al. (2001) who promote bulked AFLP analysis for analysing T. repens cultivars in genebanks, 

or Dolanska and Curn (2004) and George et al. (2006) who promote the use of microsatellites 

for assessing cultivar genetic diversity. Most recently authors have focused on the 

identification and validation of SNPs in T. repens for use in marker-assisted selection (e.g. 

Cogan et al., 2007; Hand et al., 2008; Lawless et al., 2009) and it is possible that these 

polymorphisms may also be useful for genetic diversity studies.  

In terms of population genetic diversity in T. repens, the literature defines a surprisingly 

high genetic variation within populations and within very small areas for a species that is 

known to reproduce clonally (e.g. Cahn & Harper, 1976; Ennos, 1985; Gustine & Sanderson, 

2001; Kölliker et al., 2001; van Treuren et al. 2005). In an assessment on a pasture in north 

Wales, Burdon (1980) attributes the maintenance of high within population diversity to 

selection pressures occurring on a micro-scale, for example neighbouring plant size, 

associated species and sheep grazing pressures. 
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The persistence of T. repens in pastures is attributed to both the establishment of new 

plants via seedling recruitment and spreading via stolons, with traditionally the greatest 

importance placed upon regeneration from rooted stolons for spread of T. repens (Turkington 

et al. 1979). Seedling recruitment and establishment in grasslands is rare (Burdon, 1983; Cahn 

& Harper, 1976), leaving vegetative spread to be the primary method of persistence in 

grassland swards. However, following population diversity analysis of T. repens in grasslands 

it has been found that genetic diversity is high regardless of its clonal nature. The relative 

importance of clonal propagation leading to the persistence of one successful genotype and 

restricting high levels of genetic diversity is therefore perhaps less than originally thought. 

Gustine and Huff‟s (1999) temporal analysis shows a genetic shift in one population 

between collecting seasons, with significant differentiation between summer and autumn. 

This work has been followed by Gustine and Sanderson (2001) who analysed the importance 

of clonal reproductive growth on genetic variation between two growing seasons. They have 

attributed this temporal change in genetic diversity to the death/dormancy of clones, seedling 

recruitment, sampling methodologies and most importantly to ecotypes responses to micro-

environmental change over seasons. Seedling recruitment throughout the growing season has 

been stated as a potential factor, perhaps in response to grazing, however as stated above 

seedling recruitment is generally low, with few seedlings becoming established (Burdon, 

1983). However, another explanation for this observation could be due to the differences in 

age of the plant at collection and hence variation in DNA extraction leading to the observed 

differential results. DNA isolation and quality are negatively affected by the build up of 

chemical defences that can accumulate with age (Katterman and Shattuck, 1983; Moreira & 

Oliveira, 2011), with cyanogenic glucosides and phenolic concentrations shown to increase 

with age in T. repens (Horrill & Richards, 1986).  
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This within population variation does not equate to between population variation, with 

little variation found between populations (Gustine & Huff, 1999; Gustine & Sanderson, 

2001; Gustine et al., 2002; Sousa-Correia, 2002). The out-breeding, insect pollinated nature of 

T. repens could account for the lack of between population variation with gene flow and 

migration leading to the homogenised spread of variation. 

This study will focus on naturalised, semi-wild populations in the UK, in comparison to 

the few molecular marker analyses on T. repens which are based on managed swards in north 

America (Gustine & Huff, 1999; Gustine & Sanderson, 2001). Due to the longer period of 

naturalisation and proximity to the centre of diversity, UK populations may provide even 

higher levels of diversity than that shown by North American populations which have most 

likely undergone a more pronounced founder effect.  

2.4.2 TRIFOLIUM PRATENSE GENETIC DIVERSITY 

Many methods have been used to assess genetic diversity in T. pratense, with published 

studies using morphological (Kouamé & Quesenberry, 1993; Kongkiatngam et al., 1995), 

RFLP (Milligan, 1991), isozyme (Hagen & Hamrick 1998; Yu et al., 2001; Mosjidis et al., 

2004; Dias et al., 2008), RAPD (Campos-de-Quiroz & Ortega-Klose, 2001; Greene et al., 

2004; Dias et al., 2008), inter simple sequences repeat (ISSR) (Rizza et al., 2007), 

microsatellite (Dias et al., 2008) and AFLP markers (Kolliker et al., 2003; Hermann et al., 

2005). 

As an outbreeding and perennial species, similar in life history traits to T. repens, it has 

been shown to contain relatively high levels of within population diversity compared to most 

other plant species, with low levels of population divergence (Hagen & Hamrick, 1998; 

Campos-de-Quiroz & Ortega-Klose, 2001; Mosjidis et al., 2004).  
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The obligate out-crossing nature of T. pratense and the ability to colonise a wide 

geographic range may account for much of the increased variability in this species, although 

other species with similar traits have lower levels of genetic diversity than T. pratense 

(Hamrick & Godt, 1996). Hagen and Hamrick (1998) suggest this could be due to the 

intentional maintenance of diversity in crop species, with Kongkiatngam et al. (1995) and Yu 

et al. (2001) finding high levels of genetic diversity within T. pratense cultivars.  

Low levels of population divergence is mostly attributed to introgression sensu Arriola 

(2005), with the potential seed transfer by animals, humans, birds and farm machinery used to 

suggest that high levels of gene flow is responsible for the homogenous spread of variation 

between populations (Hagen & Hamrick, 1998). Mosjidis et al. (2004) studied wild T. 

pratense populations from the Caucasus and correlated genetic diversity with topographical 

features to better understand the relationship between genetic diversity and introgression. 

Geographical barriers were found to influence gene flow, with the predications on the 

distribution of genetic diversity made from the use of GIS-derived maps corresponding to 

isozyme analysis in every case. 

Similar findings to those on T. repens indicated that year to year variation is 

surprisingly high, with Hagen and Hamrick (1998) suggesting that this is due to the high 

turnover of plants in naturalised grasslands, hence collections should be made within the same 

year where possible. 
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Figure 2.1. 10km grid square distribution map of target species across the UK (a) Trifolium pratense (b) T. repens (c) T. dubium. Taken from Preston et al., 2002. 

a. b. c. 
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2.5 TRIFOLIUM  DUBIUM  SIBTH.  

Section Chronosemium 
Annuals. Inflorescence many-flowered and then capitulate-globular to ovoid, rarely few-flowered and –racemed. 

Flowers shortly pedicellate, reflexed in fruit. Bracts minute to 0. Calyx often campanulate, not growing in fruit, 

5-nerved; throat glabrous, open; calyx teeth unequally long, the 2 posterior ones distinctly shorter than the three 

anterior ones. Petals yellow, purple or pink (never white), persistent turning scarious in fruit with spoon- or boat-

shaped standard. Pod stipulate, hidden in fruiting corolla, 1-2-seeded (Zohary & Heller, 1984). 

Subsection Filiformia 

Accepted name 

Trifolium dubium Sibth., Fl. Oxon. 231 (1794) 

Synonyms 

Chrysaspis dubia (Sibth.) E.H. Greene 

Chrysaspis dubia (Sibth.) Desv.  

Trifolium filiforme sensu auct.  

Trifolium filiforme L. var. dubium (Sibth.)Fiori & Paol.  

Trifolium filiforme L. subsp. dubium (Sibth.)Gams 

Trifolium minus Sm.  

Trifolium praticola Sennen 

Trifolium procumbens sensu auct.  

Trifolium procumbens L. 

Common names (UK) 

Suckling Clover, Least Hop Clover, Lesser Hop Clover, Lesser Yellow Trefoil, Red Suckling 

Clover, Yellow Suckling Clover, Lesser Trefoil, Shamrock. 

Description 
Annual, glabrous or sparingly hairy, 20-40cm. Stems many, often brownish, slightly furrowed, somewhat 

flexous, erect to ascending, poorly branching. Leaves very short-petioled; stipules herbaceous, ovate, acute, 

short-adnate to petioles, 3-5mm long; leaflets 0.8-1 x 0.4-0.7cm, obovate, cuneate at base, rounded or slightly 

notched at apex, dentate around upper part, bluish-green, terminal ones long petiolulate. Peduncles axillary, 

filiform, much longer than subtending leaves. Heads 8-9 x 6-7 mm, rather dense, 3-20-flowered, hemispherical. 

Pedicels 1mm or less, erect, later recurved. Calyx 1.5-2mm; tube campanulate, 5-nerved, glabrous; lower teeth 
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almost twice as long as tube, upper ones shorter than tube. Corolla about 4mm, yellow, becoming brownish in 

fruit; standard ovate, smooth, conduplicate with funnel-shaped bundle or nerves in each half, entire or obscurely 

denticulate; wings clawed, shorter than standard. Ovary long-stipitate, longer than style. Pod 1-seeded, with 

style one-third to one-fourth the length of pod. Seed ellipsoidal, 1.3 mm long, light brown (Zohary & Heller, 

1984). See Figure 2.2. 

Flowering and fruiting time 

May - October (Zohary & Heller, 1984). 

Chromosome Number 

2n = 4x = 30. This species has been recently shown to be of allotetraploid origin, combining 

the genomes of T. campestre Schreb. (Hop trefoil, 2n = 2x = 14) and T. micranthum Viv. 

(Slender trefoil, 2n = 2x = 16) (Ansari et al., 2008, see also Ellison et al., 2006).  

Distribution 

Holland, Scandinavia, Belgium, British Isles, France, Portugal, Spain, Italy, Hungary, Poland, 

Romania, Czechoslovakia, Balkan Peninsula, Turkey, Cyprus, Israel, south and central 

Russia, Caucasus. Introduced into the USA and Canada (Zohary & Heller, 1984; Gillett & 

Taylor, 2001). See Figure 2.3. 

Habitat 

Sandy places, edges of pastures, roadsides from 100 to 1300 m (Zohary & Heller, 1984; 

Gillett, 1985; Gillett & Taylor, 2001). Frame (2005) asserts that T. dubium is able to 

naturalise in dry areas, however in very dry areas such as western Australia, Fortune et al. 

(1995) found that T. dubium was one of the most common annual species in wetter pastures. 

Soil 

Shallow coarse-textured soils (Frame, 2005). 

Reproduction 

Self-pollinated (Gillett & Taylor, 2001). 



2 Ecogeographic background 

 

53 
 

Genepool 

There is little reference to T. dubium in the literature in terms of genetic relationships to other 

species, however, in a recent morphological assessment of 15 Trifolium species T. dubium 

was found to group most closely with T. hybridum L., T. repens, T. strepens Cr., T. campestre 

Schreb., T. patens Schreb. and T. fragiferum L. (Bulińska-Radomska, 2000). 

Uses 

Essentially a wild species, T. dubium is little cultivated due to its low competitivity in highly 

managed swards, and low/medium tolerance to prolonged drought. However, in terms of 

grazing utility T. dubium adds to early sward yield and can be an important part of seed 

mixtures to be used in heterogenous sites, and as such been used as a minor part of seed 

mixtures in sandy soils in dry areas of the USA (Frame, 2005). In fact Hermann (1953) 

records T. dubium as one of a group of minor species of Trifolium adapted to cultivation in the 

USA and Canada. In addition, T. dubium is listed as one of the Trifolium species used in 

honey production (Woodgate et al., 1999). Of 13 Trifolium species evaluated by Caradus 

(1995), T. dubium was one of the most frost tolerant species, indicating potential for use in 

breeding programs. As a close relative of T. repens, (Bulińska-Radomska, 2000) T. dubium is 

a potential gene donor to this economically important crop species. 

 



2 Ecogeographic background 

 

54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Trifolium dubium a) Line drawing (Zohary & Heller, 1984); b) Flower (http://popgen.unimaas.nl) and c) Entire plant (http://www2.uni-jena.de). 

c. 

b. a. 

http://www2.uni-jena.de/
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Figure 2.3 World distribution of Trifolium dubium. Data taken from ILDIS World Database of Legumes (Bisby et al., 2010).  
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2.6 TRIFOLIUM  PRATENSE  L. 

Section Trifolium 
Annuals or perennials. Heads falsely terminal or axillary, sessile or pedunculate. Flowers bractless, very rarely 

with few bracts at the base of head. Calyx 10-20-nerved, hairy or rarely glabrous with unequal or equal teeth; 

throat usually closed by bilabiate callosity, if open then provided with hairy ring or narrowed by protruding ring. 

Corolla mostly partly united. Pod included in calyx tube, 1-, very rarely 2-seeded. Dispersal by single fruiting 

calyces or by entire fruiting heads (Zohary & Heller, 1984). 

Subsection Pratensia  

Accepted name 

Trifolium pratense L., Sp. Pl. 768 (1753) 

Synonyms 

Trifolium borysthenicum Gruner 

Trifolium bracteatum Schousb. 

Trifolium lenkoranicum (Grossh.) Roskov 

Trifolium pratense L. var. lenkoranicum Grossh  

Trifolium ukrainicum Opperman 

Common names (UK) 

Red clover 

Description 
Perennial with fusiform root and short stock but without runners, patulous- to apressed-pubescent or glabrescent 

(with hairs whitish, often arising from tubercules), 20-60cm. Stems many, arising from basal leaves, simple or 

branched, erect or ascending or decumbent, furrowed to angular. Lower leaves long-petioled, middle and upper 

ones short-petioled, uppermost ones subsessile; stipules ovate-lanceolate, adnate to petioles, membranous, with 

green or red nerves, hairy or glabrescent, free portion abruptly mucronulate or cuspidate, usually much smaller 

than lower part; leaflets very short, petiolulate, mostly 1.5-3(-5) x 0.7-1.5cm, obovate to obovate-oblong or 

broadly elliptical, rarely (and in upper leaves only) oblong-lanceolate, obtuse or acutish or retuse, almost 

toothless, appressed hairy on both faces or only beneath, often spotted. Heads terminal, solitary or in pairs, 

globular or ovoid, mostly involucrate by the stipules of reduced leaves, rarely pedunculate. Flowers many, 

usually 1.5-1.8 cm long, dense. Calyx tubular-campanulate, 10-nerved, whitish-green, sometimes with a reddish 

tint, often appressed- or patulous-hairy (rarely tube glabrous); throat with slight annular (epidermal not callous), 

hairy thickening; teeth unequal, erect, subulate, blunt, often ciliate or patulous hairy, the lower one longer than 

tube and others. Corolla reddish-purple to pink, rarely yellowish-white or white; standard longer than wings and 
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keel, notched. Ovary 2(1)-ovuled. Pod ovoid, membranous cartilaginous, shiny upper part. Seed 1, oblong-ovoid, 

tuberculate, yellow, brownish or violet (Zohary & Heller, 1984). See Figure 2.4. 

Flowering and fruiting time 

March - September (Zohary & Heller, 1984) 

Chromosome Number 

2n = 2x = 14 (Sato et al., 2005). 

Distribution 

Distributed across Europe (except the extreme north), western Asia and the Mediterranean 

region (except its south east part). Introduced into USA, Australasia and eastern Asia. Very 

widespread and mostly cultivated throughout the northern hemisphere and elsewhere (Zohary 

& Heller, 1984; Gillett & Taylor, 2001). See Figure 2.5. 

Habitat 

Meadows, grassy plots, roadsides, near water, glades, borders of fields and forest margins 

(Zohary & Heller, 1984; Gillett & Taylor, 2001).  

Reproduction 

Cross-pollinated by both Bombus sp. and A. mellifera (Gillett & Taylor, 2001). T. pratense 

has a gametophytic self-incompatibility system, with populations consisting of heterozygous 

individuals (Townsend & Taylor, 1985), however some recently bred tetraploid individuals do 

have self-compatibility (Frame et al., 1998). T. pratense does not proliferate by stolons, with 

seed most important for spread on a local scale. Seed is important in the colonisation of new 

areas for T. pratense, spread on a local scale by dehiscence, tramping and to a minor extent 

wind, and on a larger spatial scale by grazers and birds (Hagen & Hamrick, 1998). Due to the 

impermeable testa of most legumes, seed has high longevity, with life spans of T. pratense 

seeds recorded up to 81 years (Gillett & Smith, 1985). 
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Gene pool 

Closely related species are listed as T. diffusum Ehrh., T. pallidum Waldst. and T. sarosiense 

Hazsl., with studies showing that T. pratense is more closely related to annual species than 

perennials (Cleveland, 1985; Caradus & Williams, 1995).  

Soil 

T. pratense tolerates many soil types and environmental conditions throughout temperate 

zones, however wet, acid and shallow soils are limiting for this species (Frame, 2005). Grows 

best on loam soil with good drainage, and while it grows best on soils of pH 6.6-7.6, is better 

adapted than other forage crops such as Medicago sativa at lower levels of pH (Duke, 1981). 

Uses 

Due to its vigorous growth and high nutritive value, especially in the first year of sowing 

(Frame, 2005), T. pratense is one of the most cultivated species of Trifolium used in both 

monocultures and mixed swards. In addition, due to the deeper tap root of T. pratense it is an 

efficient utiliser of soil water, hence can persist in drier areas in comparison to most other 

species of Trifolium. Originally from south-eastern Europe (Fergus & Hollowell, 1960), the 

first cultivation of T. pratense in northern Europe occurred around 1650, quickly followed by 

the trading of seed (Merkenschlager, 1934). Historically, due to both its high nutritive value 

and adaption to wide environmental conditions, the cultivation of T. pratense has been high, 

however production has declined due to high intensity farming systems and the reliance on 

nitrogen fertilisers (Frame, 2005). However, in light of the recent interest in sustainable, low-

put and organic farming as well as its use in medicinal products, there has been a rejuvenation 

of T. pratense cultivation (Frame, 2005). 

In addition to its use as forage, T. pratense is described as a folk medicine, being used as a 

diuretic or a sedative, with Native Americans said to use the plant for burns and sore eyes 

(Duke, 1981). 
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Figure 2.4: Trifolium pratense a) Line drawing (Zohary & Heller, 1984); b) Flower (http://www.naturedirect2u.com) and c) Entire plant (http://www.missouriplants.com). 

c. 

a. b. 

http://www.missouriplants.com/
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Figure 2.5 World distribution of Trifolium pratense. Data taken from ILDIS World Database of Legumes (Bisby et al., 2010).  
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2.7 TRIFOLIUM  REPENS  L. 

Section Lotoidea 
Annuals or perennials. Stems simple or branched, some rhizomatous or scapose. Leaves 3-5(-9)-foliate. 

Inflorescences umbellate, capitate or spicate, sometimes scape-like. Bracts entire, bifid or crenulated, rarely 

inconspicuous or absent (in Subsect. Neolagopus). Pedicels long or short, rarely absent. Calyx normally 10-

nerved, rarely 5- or 20- nerved; calyx throat naked, open; calyx teeth generally equal, sometimes unequal. 

Corolla variously coloured, marcescent. Ovary with 1-12 ovules, sessile, rarely stipulate. Pod indehiscent or 

opening by ventral suture or also by both sutures (Zohary & Heller, 1984). 

Subsection Lotoidea, series Lotoidea 

Accepted name 

Trifolium repens L. Sp. Pl. 767 (1753) 

Synonyms 

Amoria repens (L.) Presl, Symb. Bot.1:47 (1830) 

Common names (UK) 

White Clover, Dutch Clover, Ladino Clover. 

Description 
Perennial, glabrous or glabrescent, 10-30cm. Stems rhizomatous, prostrate, long-creeping and rooting from 

nodes. Leaves long-petioled, sometimes petioles hairy; stipules broad at base, ovate-lanceolate, with subulate 

upper part, scarious with reddish or green nerves; leaflets 0.6-2.5(-4) x 1-1.5cm, broadly obovate to orbicular, 

obcordate, mostly emarginated, margin sharply serrulate, with parallel, lateral veins (featuring light or dark 

marks) forked towards margin. Inflorescences 1.5-3.5cm in diam., umbellate, 20- to many flowered, rather loose, 

nearly globular. Peduncles as long as or much longer than subtending leaves, weak. Bracts shorter than pedicels, 

ovate-oblong, acuminate. Pedicels as long as or longer than the calyx tube, somewhat deflexed from early 

flowering, strongly deflexed after anthesis, glabrous or hairy. Calyx 3-5mm, glabrous; tube campanulate, 6-10-

nerved; teeth about as long as tube, somewhat unequal, triangular-lanceolate. Corolla 4-13mm long, white, 

yellow or pink; standard ovate-lanceolate, oblong, rounded at apex; wings somewhat spreading. Pod 4-5mm, 

usually 3-4 seeded, linear-oblong, constricted between seed. Seeds ovoid to reniform, brownish (Zohary & 

Heller, 1984). See Figure 2.6. 

Flowering and fruiting time 

March - September (Zohary & Heller, 1984; Gillett & Taylor, 2001). 
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Chromosome Number 

2n = 4x = 32 (Hand et al., 2008). Prior to 2006 the identification of the progenitors of T. 

repens has been inconclusive. However a recent phylogenetic study on the genus implicates T. 

pallescens (2n=16) and T. occidentale (2n=16) as the potential progentitors (Ellison et al., 

2006). 

Distribution 

Widely distributed in moist temperate zones Europe, central and northern Asia, all 

Mediterranean countries and north Africa (Frame, 2005). Introduced in north America, 

southern Latin America, Australasia and Japan (Zohary & Heller, 1984; Frame, 2005). See 

Figure 2.7. 

Habitat 

Damp and swampy soils, also on lawns, grassy places, roadsides, pastures etc (Zohary & 

Heller, 1984). This species is able to grow in most habitats, and is able to tolerate poor 

conditions better than other species of Trifolium (Duke, 1981). 

Reproduction 

Outcrossing species pollinated primarily by Bombus sp., Apis mellifera, and to a lesser extent 

some Lepidoptera. As a general rule T. repens is self-incompatible, with the few inbred 

individuals setting little seed and suffering from high levels of inbreeding depression 

(Atwood, 1940). Propogation is thought to be primarily through stolons under grazing 

management, forming large clonal patches, as seedlings in long-term pastures are rare, often 

not becoming established (Burdon, 1983; Chapman, 1987). Over longer distances seed 

becomes important in spread, on a local scale by dehiscence, tramping and to a minor extent 

wind, and on a larger spatial scale by grazers and birds (Williams, 1987). 
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Gene pool 

T. repens is closely related to T. uniflorum L., T. occidentale Coombe and T. nigrescens Viv 

due to the ease of hybridisation with these three species. Hybridisation is difficult but possible 

with three other species, T. ambiguum M.B., T. isthmocarpum Brot. and T. hybridum L. 

(Cleveland, 1985; Williams, 1987). 

Soil 

Grows vigorously across a wide range of soils and environmental conditions, but less well in 

poorly drained soils or drought prone soils (Duke, 1981). Adequate pH (5.8-6.0 on mineral 

soils and 5.5-5.8 on peaty soils) is required (Frame, 2005). 

Uses 

T. repens is one of the most nutritious and widely distributed forage legumes crops in the 

world, used both alone or in mixtures to provide feed and as a cover crop for soil stabilisation 

(Duke, 1981). In the UK the most economically important forage legume is T. repens, 

although cultivation has been fairly recent, with its first known domestication in the 

Netherlands in the 16th century, with seed widely traded since the 17th century (Caradus, 

1995). Much of the T. repens seed sown in the UK in the early 1900s was European varieties 

(mainly Dutch varieties with some New Zealand varieties) until the superiority of English 

wild varieties was recognised, generally superseding the foreign varieties (Caradus, 1995). T. 

repens has a high nutritive value and is tolerant to medium intensity grazing and as such is 

one of the economically important species of pasture legume in moist temperate regions of the 

world (Frame, 2005). Its use has declined in Europe since the 1950s due the preference for 

grass swards intensively fertilised with nitrogen however the recently this has been 

reappraised due to its potential for use in low intensity and low input farming systems (Frame 

et al., 1998). In addition to its use as forage crop, T. repens is used as a folk medicine for such 

ailments as gout and rheumatism (Duke, 1981). 
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Figure 2.6. Trifolium repens a) Line drawing (Zohary & Heller, 1984); b) Flower (http://www.plant-identification.co.uk) and c) Entire plant (http://webup.univ-perp.fr). 

c. 

a.  b. 
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Figure 2.7 World distribution of Trifolium repens. Data taken from ILDIS World Database of Legumes (Bisby et al., 2010).  
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2.8 TARGET ISLAND SITE -  ISLES OF SCILLY 

The Isles of Scilly are a group of 

around 200 low lying islands and rocks found 

45km from the coast of Lands End, the south-

western tip of England. The largest of the 

islands; St Mary's, Tresco, St Martin's, St 

Agnes, Bryher and Gugh are inhabited with a 

total population of 2,153 (Office for National 

Statistics, 2001).  

The Isles of Scilly are formed of a 

granite cupola, submerged by rising sea 

levels to become the archipelago seen today 

(Thomas, 1985). The Isles of Scilly went 

through several stages of submergence, and is thought to have been known to the Romans as 

sindos diiaros, the land, describing a large island that remains now as St Mary‟s, Samson, 

Bryher, Tresco, St Helens, St Martins and the Eastern Isles (Thomas, 1985). 

Deep water is sometimes found close to shore and, with prevailing strong winds from 

the south west, the outside of the archipelago is highly exposed to the sea (Cooper, 2006). In 

comparison, the shores inside the archipelago are protected by warm, shallow straits, with the 

eastern coasts between islands having very sheltered conditions (English Nature Report, 

NA113).  

The influence of the sea modifies the climate with the range as little as 9°C between the 

winter and summer months, much lower than that of much of inland UK (see Figure 2.8). The 

Isle of Scilly‟s mild climate is characterised by a rarity of frosts and a higher sunshine record 

 

Latitude 49° 55‟ N 

Longitude 6° 19‟ W 

Distance from mainland 45 km 

Total area 16 km2 
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in comparison to most of the UK, however the proximity to the sea, along with the 

topography and south-westerly winds limits extremely high temperatures with average 

temperatures of 19°C in July and August (Met Office, 2005).  

The lack of frosts, the maritime influence and the high sunshine record defines a unique 

environment in the UK, and hence provides potential for novel genetic diversity on these 

islands. 

 

 

Figure 2.8. Climate of St. Mawgans, average 1971-2000. Source: Met Office data. 

 

2.8.1 ENVIRONMENTAL HISTORY 

When man first arrived on the Isles of Scilly is subject to much debate, however most 

are in line with Thomas (1985), who identified 2000 BC when remaining neolithic peoples, 

who had been in contact with early Bronze Age cultures, crossed to the islands. This suggests 

that seed, and potentially farming methods, will have been transferred from this time, with 
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reconstructions of Bronze Age boats showing them capable of not only transferring seed but 

also animals. From this time transfer between the Isles of Scilly and mainland is likely to have 

been frequent, with the high incidence of Roman goods indicating the Isles were used as a 

trade route in Roman times (Ashbee, 1974).  

At the time of the first settlers, the Isles of Scilly consisted of a wooded landscape, 

interspersed with heath and little grassland, with pollen analysis of the two remaining peat 

areas on St Mary‟s defining an early history of oak climax community (Dimbleby et al., 

1981). The island will have had little resemblance to the archipelago seen today, as some 

report that the islands still may have been joined as little as 1000 years ago (Cooper, 2006).  

From 17th century references describe a treeless Scilly, freeing the land for cultivation 

and pasture. The timescale of the deforestation is unclear, but there was likely to have been 

fluctuations with some woodland left until the 1st millennium, with pollen analyses showing 

the persistence of woodland, although with a more restricted number of species (Dimbleby et 

al., 1981). Moreover Ashbee (1974) suggests that cultivation and grazing animals played a 

secondary role to hunting and collecting for the early settlers. The clearance to produce 

grassland allowed the growth of cattle and sheep numbers on the islands, known to be present 

from early in the 2nd millennium, coming with the first settlers, however early records also 

describe the early use of seaweed as forage (Ashbee, 1974; Thomas, 1985). The quality of the 

soils of the grazing land may have tempered the population expansion after colonisation, with 

the resources consisting of poor acidic soil, worsened by desiccation and sand blows.  

The situation of the Isles on the western tip of England, and therefore their strategic 

importance during wars and for pirates made life on the islands a hardship. A turbulent history 

of human colonisations and recolonisations of the islands throughout the subsequent history is 

described in detail by Thomas (1985) and Ashbee (1974). 
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Pollen analyses of the upper level of peats show a decrease in arboreal taxa and an 

increase in herbaceous taxa, indicating an increase in agriculture (Dimbleby et al., 1981). The 

lack of Leguminosae pollen in the analyses is most likely not due to a lack of the taxa, but due 

to the pollen being frail and difficult to identify, so an increase in herbaceous pollen has to act 

as a surrogate indicator for Leguminosae taxa (Dimbleby et al., 1981). 

During the Iron age, cultivation and grazing land persisted on the Isles, even in the face 

of intense soil degradation, which limited farmland to lowland areas. This farmland remained 

until the advent of flower farming, which overtook most of the farming land on the Isles. 

Recent history 

The main economy for the Isles is now in the tourist industry (85%), with farming 

currently the sixth largest employer on the Isles (Office for National Statistics, 2001). The 

closing of the abattoir and dairy signalled the end to the open habitats on the island (Isle of 

Scilly Wildlife Trust, 2006). This decline in farming and grazing has led to gorse and bracken 

overtaking many of the old coastland fields, with grazing in a drastic decline. In the most 

recent assessment, there are 1.6 km2 of permanent grassland and 10.48 km2 of rough grazing 

land associated with farms on the Isles of Scilly (Defra, 2005). 

2.8.2 CONSERVATION  

Conservation designations 

The Isles of Scilly are the UKs smallest area of outstanding natural beauty at 16 km2.  

Of the 26 Sites of Special Scientific Interest (SSSI) located on the Isles of Scilly 

(covering a total of around 5.50 km2), 4 SSSI‟s namely Annet, Big Pool and Browarth Point 

(St. Agnes), Higher Moors and Porth Hellick Pool (St. Mary's) and Tean are defined as 

covering „neutral grassland – lowland‟ (0.67 km2). 
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The entire archipelago is designated a Special Area of Conservation (SAC) however the 

designation is based upon intertidal zones. 

Current threats to diversity 

The Isles of Scilly provides a large range of habitats, from intertidal, to grassy heaths 

and arable lands and is unique to the UK in terms of its isolation, situation and warm maritime 

climate, which indicates the importance of conservation of plant genetic resources on the Isles 

of Scilly in UK priorities.  

The increase in flower farming and general decline in livestock farming has led to the 

loss of much of the grassland habitat, in addition to the lack of grazing which has allowed the 

invasion of scrub and heath of many of the wild grassland sites. One current conservation 

project involves the reintroduction of grazing to wild sites in an attempt to reduce scrub 

invasion and maintain grasslands. The Isles of Scilly Wildlife Trust has already reintroduced 

livestock to areas of Bryher, St. Agnes and St. Mary‟s for wild grazing (Isles of Scilly 

Wildlife Trust, 2006). 

2.8.3 PRESENCE OF SPECIES 

The Isles of Scilly, more so than the other islands covered by this assessment contain a 

high diversity of Trifolium species, 26 species in total. All three target species are known to 

be present on the Isles, with both T. repens and T. dubium common to all islands (Stace et al., 

2003). T. pratense is less common on the Isles and now survives in isolated patches, most 

likely to have arisen from introductions and escapes from cultivation (Parslow, R. 2007, pers. 

comm. 7 March). T. repens is frequent across all islands and in some areas occurs in a form 

described as var. townsendii, with purple flowers (Lousley, 1971).  
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2.9 TARGET ISLAND SITE -  OUTER HEBRIDES  

The Outer Hebrides or the Long Isle lies to the North West of Scotland, running for 

200km from Lewis in the north to Barra Head in the south. A rising sea level has led to the 

interruption of the island arc forming a sweeping archipelago of around 119 named islands 

(Ritchie, 1991). The main islands in the Outer Hebrides; Lewis, Harris, North Uist, 

Benbecula, South Uist and Barra are surrounded by numerous smaller islands, including St 

Kilda, Flannan Islands and Sula Sgeir, totalling 3022 km2 (General Register Office Scotland, 

1991). 

The Outer Hebrides are mostly 

composed of rocks from the 

Precambrian age, comprising of 

mostly metamorphic gneisses and 

igneous rocks, named Lewisian from 

the Isle of Lewis where they were 

first described (Gribble, 1991). 

Lewisian rocks date from between 

2800 mya to 1600 mya and are some 

of the oldest rocks in Britain 

(Hudson, 1991). The soil on the Outer 

Hebrides however is much younger, 

formed after the last glacial period, 

with some soils such as peat and 

sandy soils (Machair) formed even 

more recently. The areas of gently 

 
Latitude 56° 48‟ - 58° 31‟ N  

Longitude 6° 8‟ - 7° 40‟ W 

Distance from mainland 64.37 km 

Total area 3022 km2 
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undulating Machair that predominate on the western coastlines of the southern islands, 

provide fertile grazing land amongst the mostly boggy and rocky areas throughout the rest of 

the islands (Ritchie, 1991). Indeed, the Outer Hebrides provide an area of geographic 

contrasts, with the islands of Lewis and north Harris in the north of the chain having 

mountains of an average of 550m high, whilst those on the southern islands, found along the 

eastern edges rarely top 300m. Whilst Machair covers around 10% of the area in the Uists, the 

majority of the vegetation in the northern isles is composed of infertile blanket bog and 

moorland formed on peat soils, providing a distinction in vegetation types between the north 

and south of the archipelago (Ritchie, 1991). 

 

 

Figure 2.9. Climate of Stornoway, average 1971-2000. Source: Met Office data. 

 

The cool wet climate of the Outer Hebrides is highly influenced by the sea, with the 

warmest months (July and August) reflecting the highest sea temperatures, rather than the 

sunniest months (May and June) (Angus, 1991). The coldest months (January and February) 
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are similarly affected by the lag in temperatures produced by sea temperatures and, as 

buffered by the sea, the temperature range in the Outer Hebrides (8.8°C) is one of the smallest 

in the UK (see Figure 2.9). This low range in temperatures corresponds to both relatively 

frost-free winters and long periods without frost equalled only by the Isles of Scilly and the 

southern Inner Hebrides, leading some authors to consider this the basis for the persistence of 

plants that are more commonly found in more southern areas (Angus, 1991) The oceanic 

climate leads to higher and more evenly distributed precipitation, and higher humidity and 

wind speeds, with these islands noted as having the most oceanic climate of Eurasia (Birse, 

1971). 

2.9.1 ENVIRONMENTAL HISTORY 

Due to the lack of unambiguous glacial deposits in the Outer Hebrides, there are no 

accepted records for vegetation history prior to the last glaciation (Birks, 1991). However, 

detailed mapping indicates that part of northern Lewis was ice free during the last glaciations, 

and as such some authors have proposed that there is the possibility that some plants may 

have survived the last ice age (Harrison, 1939, 1953; Dahl, 1955). Fossil-assemblages on 

Lewis and Hirta suggest a herb dominated landscape between around 14,000- 27,000 before 

present (BP) (Birks, 1991). Pollen spectra from the late glacial period (13,500-10-000BP) 

reflects species poor, subalpine regions of Norway, although it is likely the vegetation is more 

diverse than is seen today, potentially due to the fertile deposits left in the wake of the 

retreating glaciers (Birks, 1991). The reconstruction of the floristic history of the islands over 

the last glacial period suggests that there was never any extensive or continuous tree cover on 

the Outer Hebrides, rather that trees existed in localised areas. Instead species-rich grasslands 

dominated by ferns and tall herbs gave way to an increase in acid grasslands, bogs and heaths, 

(Birks, 1991). Signs of human influence on vegetation history are known from 5000BP, with 
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the influence adding to the expansion of grassland and pastures, with some evidence of cereal 

cultivation at around 1700BP, coinciding with the colonisation of the Isles by Scots. Birks 

(1991) defines the vegetational history of the Outer Hebrides as one of “progressive 

impoverishment”, with the cumulative effects of acidic bed rock, bog development, distance 

from the mainland, limited habitat range, increasing storm frequency and human impact has 

led to the extinction of many species previously identified on the Outer Hebrides and the 

species poor islands that are found today. 

2.9.2 CONSERVATION  

Conservation designations 

The Outer Hebrides consist of 55 Sites of Special Scientific Interest (SSSI) and 13 

Special Areas of Conservation (SAC). Of these SACs, seven focus specifically on the 

conservation of grassland, Machair or cliff vegetation, areas that contain the target species of 

this study. 

Current threats to diversity 

Machair, lowland low intensity grassland, provides some of the most diverse and fertile 

land on the Outer Hebrides. Machair itself has a long history of management by local 

communities, with recent practices involving intensive seasonal grazing with periods of low 

input rotational cropping of local barley, oats and potatoes (Ritchie, 1991). This management 

sustains the mixture of plants and communities that are found on the Machair and as such 

conservation plans incorporate the involvement of managers to maintain traditional farming 

practices to preserve the Machair. With the current trend moving away from a system of 

agriculture that is only just economically viable, conservationists are working to promote 

traditional cropping practices to retain the Machair systems in their current highly diverse 

state (Angus & Hansom, 2010). 



2 Ecogeographic background 

 

75 
 

Between 1960 and 1980, areas of re seeding have taken place on the Outer Hebrides, 

mostly on Lewis but in some eastern hill areas of the Uists (Boyd & Boyd, 1990; Angus & 

Elliott, 1992). Shell-sand (Machair) has been transported to these areas and, with the addition 

of fertiliser and seed, has produced fertile arable pasture land. Surveys in 1975 of 101 re-

seeded pastures in Lewis fond that Trifolium repens makes up over 20% of these reseeded 

areas (Boyd & Boyd, 1990) While re seeding is acknowledged as a concern in terms of 

conservation as it can reduce species diversity and habitat diversity on a larger scale (UK 

Biodiversity Group, 1999), only recently have the effects on genetic diversity through 

reseeding been acknowledged as a threat, with farmers now urged to re seed from local 

harvests (Machair Life+, 2010). However, much of this is confined to maintaining the local 

varieties of cereal crops, with no comments on the effects of reseeding to populations of 

clover and other grassland species. 

2.9.3 PRESENCE OF SPECIES 

The Outer Hebrides contain seven Trifolium species, of which only four are native, 

including the three target taxa included in this study. All three species are native and found 

throughout the main isles of the Outer Hebrides, from Barra to Lewis. Local plant lore names 

the Seamrag or clover as a weather indicator, “Tha‟n t-seamrag a‟ pasgadh a cómhdaich ro 

thuiteam dóirteach” (The shamrock is folding its garments before a heavy downpour) 

indicating the long history of clover on the islands, as well as the significance to the people 

(Bennett, 1991). T. repens is found all over the Outer Hebrides and is common throughout, as 

is T. pratense, with both species found in the Machair and grasslands. T. dubium is found 

throughout the main island chain but is mostly restricted to roadsides (Mullin & Pankhurst, 

1991).  
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2.10 TARGET ISLAND SITE -  SHETLAND ISLES  

Shetland comprises over a hundred islands covering a total of 1440 km2, extending from 

Muckle Fugga in the north to Sumburgh head in the south, in addition to the Fair Isle 39km to 

the south, which lies between Orkney and Shetland (Ritchie, 1997). Shetland lies at the same 

latitude and southern Greenland, 

just 292 km from the west of 

Norway, and 150km north of the 

Scottish mainland, the 

northernmost isles of the British 

Isles. The main islands; 

Mainland, Yell, Unst, Fetlar, 

Whalsay and Bressay, in addition 

to Burra, Tronda, Papa Stour, 

Muckle Roe, Fair Isles and 

Foula, are all permanently 

inhabited.  

Glaciation moulded much 

of Shetlands landscape, 

responsible for the deepening of 

the valleys, moraine deposits and 

the creation of numerous lakes, 

with the glacier at its most 

extreme covering all except the 

tops of some hills (Small, 1983). 

 

Latitude 60° 18‟ N 

Longitude 1° 20‟ E 

Distance from the mainland 150 km 

Total area 1440 km2 
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At the time of glacial retreat, Shetland was not joined by land to either Scotland or to northern 

Europe, hence all flora and fauna will have colonised the land from 15,000 to 20,000 years 

ago (Berry & Johnston, 1980a). The core of the Shetland landscape consists of Palaeozoic 

shists and gneisses, contributing the rolling, mainly moor and peat-bog covered landscape, 

rising in places to over 450m (Small, 1983; Scott & Palmer, 1987). Wide valleys in the 

central mainland, Yell and Unst arise from limestone bands, providing some of the most 

continuous fertile soil in Shetland (Small, 1983). Relatively fertile, gently undulating areas 

occur in the west on the Devonian red sandstone. Scott and Palmer (1987) note Fetlar and 

Unst and north Ronas Hill as areas with drier heathy habitat, and as such valuable 

environmental diversity for Shetlands plant communities.  

 

 

Figure 2.10. Climate of Lerwick, average 1971-2000. Source: Met Office data. 

 

Shetland is extremely exposed and as such is subject to considerable erosion, sand 

deposition and gales (Small, 1983; Scott & Palmer, 1987). Branching inlets or „voes‟ extend 
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long distances inland, and prevent any place in Shetland from being more than 5km from the 

sea (Scott & Palmer, 1987). 

The prevailing winds are south-westerly and contribute, along with north Atlantic drift 

to the relatively warm winters for the latitude. Latitude contributes to the climates, with 

sunshine hours just over 5 hours on the shortest day, but up to 18 hours in midsummer. The 

warmer winters, but cool limited summers restrict the variety of cultivation in the Shetland 

Isles. The generally low relief of the islands contributes to lower rainfall than other such 

exposed islands, with precipitation over 248 days a year, but totalling only 1025mm (see 

Figure 2.10). 

2.10.1 ENVIRONMENTAL HISTORY 

Orkney to the south of Shetland acted as a stepping stone, allowing the early settlers to 

arrive around 3,000 BC, with the first evidence of settlement in the Shetland Isles stone age 

cairns, unique to Scotland (Small, 1983). Around this time there existed a crofting type 

economy, with the remains of oxon, sheep and large quantities of grain (Small, 1983). The 

scrub cover of mainly birch and hazel entered a drastic decline from around the time of the 

first settlers, with consequent spread of moorland species, according the pollen analysis, 

suggesting clearances undertaken by the first inhabitants of Shetland (Scott & Palmer, 1987).  

Orkney, with flatter and more fertile soils consisted of a dispersed agricultural 

landscape, however the less fertile soils and more extreme climate of Shetland gave rise to the 

clustering of houses near the few fertile arable areas, surrounded by the large expanses of 

grazing areas. Large scale migration occurred in the fifth and sixth centuries BC attributed to 

food shortages throughout Europe, however due to the climate and limited resources, this 

movement didn‟t alter the subsistence economy present on the Isles which had persisted for 

over 2000 years. At around 800 AD the arrival of the Vikings heralded the biggest change in 
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the Shetlands anthropomorphic history, with Shetland as the closest land to the source of the 

newcomers increasing its importance and subsequently population to over 20,000, around 

which it remains today. 

Recent history 

Under increasing influence from Scotland‟s language and customs, Shetland came 

under Scottish rule in 1469, signed over as dowry in the marriage of James III to Margaret of 

Denmark. Oil exploration in the 1960s and 70s found oil off the Shetland coast, improving the 

economic state and halting the decline of population. In a recent assessment, the main 

contributors to the economy are fisheries and oil production, with agriculture and tourism 

contributing just a tenth of that generated by the former two industries (Shetlands Island 

Council, 2005). However, agricultural land is still a major constituent of the Shetland 

landscape with 1230.67 km2 of rough or common grazing. 

2.10.2 CONSERVATION  

Conservation designations 

Conservation areas on Shetland consist of 3 National Nature Reserves (NNR), 81 Sites 

of Special Scientific Interest (SSSI), 12 Special Protection Areas (SPA) and 12 Special Areas 

of Conservation (SAC) mainly designated as bird breeding grounds. Two SSSIs, namely Aith 

Meadows and Breckon are designated on the basis of their grassland habitat covering a total 

of 0.82 km2 along with one SAC, the Keen of Hamar covering 0.39 km2. 

Current threats to diversity 

Shetland, due to its isolation and extreme environment, supports a fragile ecosystem of 

small populations with little potential for the replacement of lost genetic and species diversity 

(Berry & Johnston, 1980b). The flora of Shetland is distinctly impoverished in species terms, 
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with just 568 established species in comparison to the around 3000 species in the total British 

flora (Stace, 1991; Scott & Palmer, 1987). 

According to Scott and Palmer (1987) sheep overgrazing is contributing to the loss of 

rare species and habitat decline, with some of the most diverse pastures reduced to barren 

ground or to the same moorland that covers most of Shetland. The problem of the remaining 

crofting lifestyle on Shetland and the lack of available grazing land contribute to the 

conservation dilemma. Scott and Palmer (1987) note that areas of the Unst serpentine and 

North Roe have been reseeded with a mixture of both Lolium perenne and T. repens, 

damaging both the species heterogeneity of the sites and the potential genetic diversity of 

these species in the Shetland Isles. This reseeding has been undertaken to improve grazing 

sites across many of the upland heaths of Shetland, and are identifiable as fenced geometric 

patches of green on the otherwise heath covered hillsides. 

2.10.3 PRESENCE OF TARGET SPECIES 

All three of the target species are listed as present in the Shetland Isles. T. repens is 

common, occurring in pastures and dry sandy soils and also in some damper areas such as 

marshes. Scott and Palmer (1987) notes the use of T. repens in improving some of the 

unusable peat tracts in the Shetland Isles. T. pratense occurs on Shetland in dry pastures, sea 

cliffs and roadsides. Both species are listed as native, with Mouat and Barclay (1793) 

providing the first written evidence of existence on the Isles (Unst) stating that „there is little 

or no sown grass, but the meadows are rich in red and white clover‟. T. dubium is listed as 

rare, and is recorded as a firmly established colonist, possibly native, with the first evidence a 

collection in 1924 from Scousburgh (Scott & Palmer, 1987). T. dubium persists in sandy areas 

and arable ground around the Bay of Quendale (SSSI) and in disturbed areas throughout the 
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rest of Shetland, formerly existing near the airport in Sumburgh before runway expansion 

(Scott & Palmer, 1987). 

 

2.11 TARGET ISLAND SITE -  SKYE,  INNER HEBRIDES  

The Isle of Skye is the largest island in the Inner Hebrides, which lie close to the west 

coast of Scotland, running for 240km from Skye in the north to Islay in the south. The main 

islands in the Inner Hebrides; Skye, Mull, Jura and Islay are surrounded by numerous smaller 

islands, with the isles of Raasay, South Rona and the Small Isles included in Skye‟s parishes, 

totalling 1736.83 km2 (Darling, 1955). 

The predominant 

geology of Skye was formed 

around 60 million years ago, 

when the Cuillins in the 

south and the northern and 

central basalt plateau were 

formed. The geology of the 

Isle was subsequently 

moulded by the ice sheets, 

which divided Rassay from 

Skye and Skye from the 

mainland (Armit, 1996). The 

basalt plateau in the north of 

Skye forms brown loam soils which, to the west, produce the Glens of Totternish, Glen 

Haultin, Glen Romesdal, Glen Hinnisdal and Glen Uig which are some of the best pasture 

 

Latitude 57° 16‟ N 

Longitude 6° 12‟ W 

Total area 1736.83 km2 
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grounds for cattle and sheep on Skye (Darling, 1955). In areas such as the Vaternish 

peninsula, Duirnish and Bracadale the basalt creates relatively fertile grazing land, however 

here is a greater cover of peat than in the steeply sloping Totternish. The Cuillins, a 

spectacular hill chain, form the central part of Skye and are composed of Gabbro and red 

granites. The southern part of the islands consists of limestones and gneiss rocks which, 

where the drainage is good, yield valuable agricultural land, especially west of Sleat at Ord 

(Darling, 1955). Raasay, lying between Skye and the mainland, is one of the few areas in the 

Western Isles with deep soils, especially on the east of the island, however this deep soil has 

afforded both deep tilling and direct reseeding of the Glam of Raasay (Darling, 1955). 

 

Figure 2.11. Climate of Tirree, average 1971-2000. Source: Met Office data. 

 

The Isle of Skye has a cool oceanic climate, tempered slightly by North Atlantic drift 

which maintains the relatively mild climate over the year (Birks, 1973). The coast of Skye is 

deeply indented with no part of the island more than 8km from the sea, underlining the 

maritime influence on the Isle (see Figure 2.11). Both high winds and rainfall dominate the 
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Hebridean climate, with the steep hills of parts of Skye impacting local conditions, increasing 

precipitation and lowering temperatures (Armit, 1996; Birks, 1973). Where the high 

precipitation and humidity coincide with poor drainage peat rapidly forms, as seen in the 

southern part of the island. 

2.11.1 ENVIRONMENTAL HISTORY 

By the late Devensian and early Flandrian, initial hazel and birch scrub was succeeded 

by dense birch-pine and hazel woodlands, enriching the remaining soils, allowing the 

colonisation of herbaceous species. Birks (1973) comprehensive pollen analysis indicates that, 

within this colonising herbaceous flora, Trifolium pollen can be identified from the peat strata, 

although at a very low level.  

The first permanent inhabitants to extensive areas of Scotland are likely to have arrived 

in the Mesolithic (7000 BC), with some of the best evidence of their habitation found on sites 

in the Inner Hebrides, including An Corran on Skye (Armit, 1996). Evidence for the first 

farming communities on Skye remain elusive, however the close proximity to the mainland 

suggests that Neolithic farmers arrived at a similar time to those of western Scotland after 

4000 BC. Around this time deforestation started on the Inner Hebrides contributing to peat 

spread and soil impoverishment, and the treeless nature is still prevalent on Skye, with trees 

surviving only in small sheltered bays, along with a few recent plantations (Birks, 1973).  

Following these first colonisations, the Hebrides came under various influences, for 

example becoming part of the Pictish state, before coming under Viking rule in 800 AD, 

however in terms of the environment the people of the Hebrides were likely to have continued 

with a farming lifestyle, cultivating small areas with fishing, cattle rearing and fowling 

contributing significantly to the economy (Armit, 1996). Skye, in comparison to the other 
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islands in this study is in close proximity to the mainland, and as such is likely to have high 

levels of population movement, likely to bring with it novel farming practices and resources. 

Evidence indicates that there were a relatively large number of pre-eigthteenth century 

pre-crofting structures on Skye, reflecting the increase in population at this time (Armit, 

1996). By the end of the 18th century the population reached a high of over 230000, with the 

economy focused on crofters, fishing and kelp-burning (Birks, 1973). After 1840 sheep 

farming was introduced, accelerating tree loss, with many crofters forced to leave their land as 

part of the highland clearances (Birks, 1973), however Skye lays claim to the Battle of the 

Braes, a rebellion against the landlords, culminating in Parliament passing laws to give 

crofters more security. 

Recent history 

The population of Skye has continued to decrease due in part to the impoverished 

agricultural land, resulting from deforestation and over-grazing leading to the spread of 

bracken in many areas reduces grazing potential (Barclay & Darling, 1955). Now, most land 

on Skye is upland hill pasture grazed mainly by sheep, with higher densities found on the 

fertile Trotternish Peninsula (Birks, 1973). The main focus of the economy now based on 

tourism and pastoral agriculture, with crofting settlements still the main type of townships in 

the area (Stanton, 1996). The increasing role of tourism on Skye has started to increase 

population numbers on the Isle and will likely impact on the environment, already seen in the 

increase of traffic and widening of the small numbers of roads, although at present 

development remains small-scale (Stanton, 1996). 
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2.11.2 CONSERVATION  

Conservation designations 

Skye contains 27 Sites of Special Scientific Interest (SSSI) and 10 Special Areas of 

Conservation (SAC), however of these only one SAC, Totternish Ridge, specifically focuses 

on the conservation of grassland, covering 31.70 km2. 

Current threats to diversity 

Grazing is one on the primary concerns for species diversity on Skye with over-grazing 

small areas leading to loss of species diversity, and a reduction in sheep numbers contributing 

to the spread of heath areas. Overgrazing, along with muirbum (heather burning) and 

afforestation contribute to erosion which is seen in areas around crofting areas and on 

moderate to steep slopes. In addition, the recent increase in tourism will likely impact on the 

environment of Skye (Stanton, 1996). 

2.11.3 PRESENCE OF SPECIES 

Traditionally the agriculture of Skye followed a seven year rotational system, with the 

last three years dedicated to hay conservation or grazing, however since the early 1970s there 

has been a move from this system to a greater grassland production for grazing (Grant & 

MacLeod, 1983). A comprehensive assessment of the flora of Skye places T. repens as a 

major constituent of 11 of the 65 recognised communities, with T. pratense listed as a 

secondary constituent of many communities (Birks, 1973). All three taxa are currently listed 

as present in the Inner Hebrides, with T. dubium less frequent, however correspondence with 

the Biological Society of the British Isles (BSBI) recorder defines its presence on areas within 

Skye and particularly on the south west coast of Raasay, nearest to Skye (Bungard, S. 2007, 

pers. comm.1 May, 2008). 
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2.12 TARGET ISLAND SITE -  ST KILDA,  OUTER HEBRIDES  

The St Kilda archipelago consists of four main islands, lying 160km north-west of the 

Scottish mainland, 64km to the west of the Outer Hebrides. In addition to Hirta, Boreray, 

Soay and Dun there are numerous sea stacs, of which Stac an Armin and Stac Lee (191 m and 

165 m high respectively) are the highest in the British Isles (Buchanan, 1995). The largest, 

and perhaps only until recently permanently habitable of the islands, Hirta, covers 6.28 km2 

and contains the remains of the 

village evacuated in 1930. The 

village is situated in a 

horseshoe bay surrounded by a 

ring of five hills, which acts as 

an entrance to the grassy slopes 

and cliffs that encompass much 

of the remainder of the island. 

To the south of Hirta lies Dun 

(0.32 km2), consisting of a 

narrow ridge, protecting the 

village from the prevailing 

south-westerly winds. To the 

north west of Hirta lies Soay, 

with a central plateau 

surrounded by steep cliffs (0.97 

km2). Boreray (0.87 km2) lies 

apart from the islands to the 

 

Latitude 57° 49‟ N 

Longitude 08° 33‟ W 

Distance from the mainland 160 km 

Total area 8.44 km2 
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north east of Hirta, and whose steep rocky nature makes it home to one of the largest colonies 

of North Atlantic gannets.  

The islands are what remain of an extinct volcano ring, with the centre of the volcano, 

lying between Boreray and Hirta, having collapsed inwards (Coates, 1990). The jagged cliffs 

of Dun and Boreray display the gabbro rocks produced during early volcanic activity, with the 

smoother island contours of Hirta defined by the granophyre rock produced from later phases 

of volcanic activity around 55 million years ago (Harding et al., 1984; Buchanan, 1995). 

The oceanic climate, modified by the steep cliffs of the islands, creates high rainfall 

(1400 mm pa) (Small, 1979), and a high frequency of gales (Clutton-Brock et al., 2004). 

Winter temperatures are higher than that expected for the latitude due to the contribution of 

North Atlantic drift, with winters alternatively warm and wet to drier and colder. Fluctuations 

in the climate are strongly linked to the fluctuations over the North Atlantic, which affect 

much of this region, with Post and Stenseth (1999) and Clutton-Brock et al. (2004) finding 

the North Atlantic oscillations responsible for earlier and longer flowering times and grass 

availability. 

Although St Kilda has a mainly oceanic climate, the driest period falls between April 

and June, coinciding with anti-cyclones approaching from the Atlantic (St Kilda Management 

Plan, 2003). In addition, to the generally high humidity of the archipelago, sea spray is a 

major contributing factor to the flora, with halophytic Plantago swards to be found hundreds 

of meters above sea level. 

The flora itself is similar to that found on the Outer Hebrides, with no evidence of 

geographical subspeciation as there is scarce difference in the climates between the two 

archipelagos (Poore & Robertson, 1948). The moorland vegetation covering much of the 

upland areas bears a high resemblance to that of the Hebrides, with some notable species 

missing, illustrating the niche expansion prevalent in the St Kildan flora. The other two main 
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vegetation classes on Hirta are maritime grassland found around the edges of the island, and 

the now Holcus-Agrostis grassland found on the formerly cultivated area around village bay, 

both displaying a distinct lack of species in comparison to Hebridean and mainland 

grasslands.  

In terms of grazing, concentrated before the evacuation around the village and Gleann 

Mor to the north, the numbers of sheep have been steadily increasing from the original 

introduction of 107 sheep from Soay after the evacuation (Poore & Robertson, 1948). 

The most highly productive grazing area of Holcus-Agrostis dominated vegetation that 

occupies the area above the head dyke on the formerly cultivated land is the most frequented 

by the Soay sheep that now freely roam Hirta (Jones et al., 2006). This area of previously 

cultivated land, around 0.15 to 0.3 km2 was intensively manured to improve the formerly poor 

soils of the area with large amounts of peat ash and both human and seabird waste. Recent 

assessments of the soils of Hirta, in light of the unique manuring practices of these isles, have 

discovered high levels of Pb and Zn contaminants (Meharg et al., 2006). 

The oceanic nature of the archipelago, situated to withstand the full force of the 

Atlantic, produces a site of high natural and historical significance, and in terms of genetic 

diversity is of great interest, being the most isolated archipelago in the United Kingdom. 

2.12.1 ENVIRONMENTAL HISTORY 

Dating of the first habitation of the islands tends to centre on the European Bronze age 

(Campbell, 1974), however some authors suggest that, as the archipelago can be viewed from 

the Outer Hebrides on clear days, foraging trips may have been made to islands earlier, during 

the Neolithic era (Harman, 1995).  

The Outer Hebrides, the origin of the first settlers, was not an isolated culture with 

many influences, including agricultural, from both the mainland and Orkney and Shetland 
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Islands (Fleming, 2005). The first settlers would have encountered a graminae-plantago 

dominated sward, much as it is seen today (Walker, 1984). Anthropomorphic effects on the 

vegetation of St Kilda appear to have been secondary to the impact of regional climatic 

disturbances, which resulted in the temporal variation seen in the composition of St Kilda‟s 

grassy swards. The decrease in the already small proportion of woody pollen in the pollen 

assemblage could be attributed to small scale clearances, although this remains speculative 

(Walker, 1984). In terms of sheep grazing, the removal of the improved breeds in 1934 

contributed to the spread of Calluna in the upland areas, and decrease in Nardus grassland 

(Gwynne et al., 1974) indicating the impact grazing has on the islands recent vegetational 

history.  

Acid, peaty soil predominate on the islands (Gwynne et al., 1974) with blanket peats 

found on the flat areas on Hirta, Mullach Mor and on the west side of Gleann Mor. The soils 

of Hirta were fertile, although in the 0.32 km2 under cultivation in 1758 in the immediate 

vicinity of the village the fertility was aided by the addition of bird remains, urine and ashes 

to the compost (Macaulay, 1764), with hill pastures common and used for sheep and cattle 

grazing (Seton, 1878).  

The isolation of St Kilda was a main factor in its anthropomorphic history, with one of 

the earliest accounts of the peoples of St Kilda, made in 1697 when the only means of 

transport to island was an open long boat during calm weather (Martin, 1981). There are many 

accounts of the islanders exporting produce during the late 18th and 19th century, in particular 

from the large seabird colonies, as well as producing hand tilled barley and oats. There are 

records of yearly visits from the minister from the Hebrides visiting the islands, as well as the 

factor, to collect rent, in addition to tourists from 1834. Hence, trips to and from the mainland 

and Hebrides, and conceivably material transfer, will have been necessary, but most likely 

infrequent. 
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Cattle were kept on Hirta, along with imported black faced sheep on Hirta and Boreray, 

mainly providing produce for the islanders‟ use, although the population remained small, with 

the earliest record of population size numbering just 180 (Martin, 1981). Many of the earliest 

accounts of the islands refer to the large number of sheep on the islands, indicating the high 

intensity of grazing pressure on Hirta (Buchanan, 1995; Fleming, 2005). 

Recent history 

An 18th century outbreak of smallpox reduced the population to 30, which then climbed 

to 100 following repopulation from Skye and Harris at which it remained until the late 18th 

century (Fleming, 1999; Clutton-Brock et al., 2004). Following a large emigration to 

Australia, the population continued to lessen, culminating in a requested evacuation of the 

population and domesticated animals when numbers were too few to till the fields and 

maintain the islands boat.  

The islands were bought after the evacuation by Lord Dumfries in 1931, later the fifth 

Marquess of Bute, which he designated as a bird reserve and permitted visits from limited 

numbers of tourists and naturalists (Harman, 1995). In his will he bequeathed the islands to 

the National Trust for Scotland, keen to preserve the history and the fauna of the islands. 

 

2.12.2 CONSERVATION  

Conservation designations 

In 1957 the ownership was passed to the National Trust for Scotland. At this time, just 

after the Second World War, the archipelago also became home to a radar station, so human 

occupation of Hirta, though small, returned to the archipelago.  

St Kilda was designated a National Nature Reserve (NNR) in 1964, and a world 

heritage site in 1986, under the management of the Nature Conservancy Council, leased by 
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the National Trust for Scotland. In addition, St Kilda was designated as a Site of Special 

Scientific Interest (SSSI) in 1984, and has been designated a Special Area of Conservation 

(SAC) due in part to its severe maritime environment and hence the extreme forms of Atlantic 

maritime vegetation.  

Currently St Kilda comes under shared management between the National Trust for 

Scotland, Scottish Natural Heritage (previously the Nature Conservancy Council), and the 

Ministry of Defence (previously the Air Ministry).  

Current threats to diversity 

In terms of diversity St Kilda provides an interesting dichotomy, suffering from „niche 

expansion‟, where a smaller number of species occupy a wider niche space, whilst 

simultaneously acting as a potential refuge from introgression due to its extreme isolation 

from the mainland. 

Due to the protected area designations of the archipelago the entire area falls under a 

series of management plans, limiting the threats to the island, with, in terms of flora diversity, 

grazing regimes and natural processes continuing without intervention, strict limits to the 

number of visitors and prescriptions in place to avoid the introduction of alien species and 

genotypes (St Kilda Management Plan, 2003). Most recently however, the Ministry of 

Defence (MoD) which mans a radar station on Hirta has announced plans to remotely manage 

the station, a plan that the National Trust say will be to the detriment of St Kilda (BBC, 

2009). Plans are in their early stages, so it remains to be seen whether the removal of the MoD 

presence will have a negative impact on the management of St Kilda. 

2.12.3 PRESENCE OF TARGET SPECIES 

One of the earliest mentions of Trifolium comes from Macaulay (1764), describing a 

valley on the north west of the Island, where “one may see intermixed with the more common 
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kinds of grass, a great and beautiful variety of the richest plants, clover white and red”. 

Interestingly, in relation to pollination of the target species, Martin (1981) asserts that “…nor 

is ever a bee seen at any time”. 

In the most recent assessment of the flora of St Kilda (Crawley, 2004), the only 

recorded Trifolium present on St Kilda are T. repens and T. pratense. Leguminosae in general 

is limited with the only other species noted to have occurred on St Kilda as Vicia sepium and 

V. hirsuta, both of which may now only exist in the seed bank (Crawley, 2004). T. repens is 

recorded as abundant in fertile grasslands within the Head Dyke, as frequent in the village, the 

army base and in the vicinity of cleit doors, as well as in Plantago swards and short seaside 

turf, and finally as occasional in heaths and drier heathy grasslands. T. pratense however, is 

noted as rare and found only in the fertile grasslands within the Head Dyke (within village 

bay). 

 

2.13 CURRENT THREAT STATUS 

The level of threat to a species is most often linked to the risk of extinction with rarity, 

decline and habitat fragmentation often used as indicators of the level of threat (Hartley & 

Kunin, 2003). In terms of rarity, in particular in relation to the International Union for the 

Conservation of Nature (IUCN) Red List assessment, rarity is most often used to describe the 

geographic extent of a species and/or the number of individuals within that range (Hartley & 

Kunin, 2003). However, it should be noted here that it does not always follow that a rare 

species is threatened, as some species are able to persist in low numbers (Mace & Kershaw, 

1997). The IUCN (2001) Red List (see Table 2.1) is an attempt to provide an international, 

transparent and rigorous set of criteria to assess the conservation status of species.  
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Table 2.1 IUCN categories system, version 3.1 (IUCN, 2001). 

Classification  
  

Extinct (EX)  A taxon is Extinct when there is no reasonable doubt that the last 
individual has died.  

  

Extinct in the 
wild (EW)  

A taxon is Extinct in the Wild when it is known only to survive in 
cultivation, in captivity or as a naturalized population (or populations) 
well outside the past range.  

  

Critically 
endangered (CR)  

A taxon is Critically Endangered when the best available evidence 
indicates that it meets any of the criteria A to E for Critically Endangered 
and it is therefore considered to be facing an extremely high risk of 
extinction in the wild. 

  

Endangered (EN)  A taxon is Endangered when the best available evidence indicates that it 
meets any of the criteria A to E for Endangered and it is therefore 
considered to be facing a very high risk of extinction in the wild. 

  

Vulnerable (VU)  A taxon is Vulnerable when the best available evidence indicates that it 
meets any of the criteria A to E for Vulnerable and it is therefore 
considered to be facing a high risk of extinction in the wild.  

  

Near threatened 
(NT)  

A taxon is Near Threatened when it has been evaluated against the criteria 
but does not qualify for Critically Endangered, Endangered or Vulnerable 
now, but is close to qualifying for or is likely to qualify for a threatened 
category in the near future. 

  

Least concern 
(LC)  

A taxon is Least Concern when it has been evaluated against the criteria 
and does not qualify for Critically Endangered, Endangered, Vulnerable 
or Near Threatened. Widespread and abundant taxa are included in this 
category. 

  

Data deficient 
(DD)  

A taxon is Data Deficient when there is inadequate information to make a 
direct, or indirect, assessment of its risk of extinction based on its 
distribution and/or population status.  

  

Not evaluated 
(NE)  

A taxon is Not Evaluated when it is has not yet been evaluated against the 
criteria. 

 

The quantification of range sizes and numbers of individuals form a large part of the 

Red List assessment, measuring the extent of occurrence and area of occupancy, in addition to 

basing classifications on available information on population size, and levels of habitat 

fragmentation. While the IUCN (2008) promote the use of information that quantifies 

population viability, the lack of this type information means that the majority of assessments 

will not use this criterion. This, in addition to defining rarity by either extent of occurrence or 
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area of occupancy, provides some obvious questions about the methodology of the red list 

assessments, with rarity relating to habitat specificity, ephemerality and genetic diversity not 

incorporated into the criteria for assessment.  

Table 2.2 Summary of the five criteria (A-E) used to evaluate if a taxon belongs in a threatened category 
(Critically Endangered, Endangered or Vulnerable).Taken from IUCN (2008). 

Use any of the criteria A-E  Critically Endangered  Endangered  Vulnerable 
A. Population reduction  Declines measured over the longer of 10 years or 3 generations 

A1  > 90% > 70% > 50% 
A2, A3 & A4  > 80% > 50%  > 30% 

A1. Population reduction observed, estimated, inferred, or suspected in the past where the causes of the 
reduction are clearly reversible AND understood AND ceased based on and specifying any of the following: 
 (a) direct observation 
 (b) an index of abundance appropriate to the taxon 
 (c) a decline in area of occupancy (AOO), extent of occurrence (EOO) and/or habitat quality 
 (d) actual or potential levels of exploitation 
 (e) effects of introduced taxa, hybridisation, pathogens, pollutants, competitors or parasites. 
A2. Population reduction observed, estimated, inferred, or suspected in the past where the causes of reduction 
may not have ceased OR may not be understood OR may not be reversible, based on any of (a) to (e) under A1 
A3. Population reduction projected or suspected to be met in the future (up to a maximum of 100 years) based on 
any of (b) to (e) under A1. 
A4. An observed, estimated, inferred, projected or suspected population reduction (up to a maximum of 100 
years) where the time period must include both the past and the future, and where the causes of reduction may 
not have ceased OR may not be understood OR may not be reversible, based on any of (a) to (e) under A1. 
 

B. Geographic range in the form of either B1 (extent of occurrence) OR B2 (area of occupancy) 
B1. Either extent of occurrence  < 100 km2  < 5,000 km2  < 20,000 km2 
B2. or area of occupancy  < 10 km2  < 500 km2  < 2,000 km2 

and 2 of the following 3:    
(a) severely fragmented or # locations  =1 ≤ 5 ≤ 10 
(b) continuing decline in (i) extent of occurrence (ii) area of occupancy, (iii) area, extent and/or quality of 
habitat,(iv) number of locations or subpopulations and (v) number of mature individuals. 
(c) extreme fluctuations in any of (i) extent of occurrence, (ii) area of occupancy, (iii) number of locations or 
subpopulations and (iv) number of mature individuals. 
    

C. Small population size and decline    
Number of mature individuals  < 250  < 2,500  < 10,000 
and either C1 or C2:    
C1. An estimated continuing decline of at least up to 
a maximum of 100 years  

25% in 3 years  
or 1 generation  

20% in 5 years 
 or 2 generations 

10% in 10 years 
or 3 generations 

C2. A continuing decline and (a) and/or (b)    
(a i) # mature individuals in largest subpopulation  < 50  < 250  < 1,000 
(a ii) or % mature individuals in one subpopulation =  90-100%  95-100%  100% 
(b) extreme fluctuations in the number of mature individuals 
 

D. Very small or restricted population 
Either (1) number of mature individuals  < 50  < 250  < 1,000 
or (2) restricted area of occupancy  na na typically: 

AOO < 20km2 or 
# locations ≤5 

    

E. Quantitative Analysis    
Indicating the probability of extinction in the wild 50% in 10 years 20% in 20 years 10% in 100 years 
to be at least or 3 generations or 5 generations  
 (100 years max) (100 years max)  
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For our purposes here however the Red List assessment for these target taxa, based on 

available information in a regional context, provides an interesting base line for conservation 

planning, and will serve as a comparison for conservation strategies based on genetic diversity 

assessments. 

Within the UK there is evidence of habitat fragmentation of grasslands (Fuller, 1987) 

and as such the potential for population decline (Criterion A) however there is no quantitative 

information on decline on these three species. Indeed for T. repens and T. pratense it may be 

the case that natural wild populations are being replaced by semi-natural populations derived 

from cultivation, but this is both difficult to assess without a frame of reference and in any 

case would not be assessed under the IUCN criteria. For T. dubium, there does appear to be 

anecdotal evidence that the populations in the extreme north are in decline, however it is also 

suggested that these populations fall outside of its natural range and represent introductions 

(Bungard, S. 2007, pers. comm.1 May, 2008). 

Using the criteria defined in Table 2.2 and categorising under a regional framework, all 

three species cover the whole of the United Kingdom totalling 242,514 km2 (Office of 

National Statistics, 2004), with the area of occupancy only just under that of their extent of 

occurrence (Figure 2.1). Therefore the three target taxa, T. dubium, T. pratense and T. repens, 

as widespread and abundant species can be categorised as Least Concern under the Red List 

categories for a UK wide regional assessment (see also Dines et al., 2005). 

2.14 CONSERVATION STATUS ON THE BASIS OF ECOGEOGRAPHIC 

INFORMATION  

The widespread occurrence and abundant nature of the three target taxa ensures that 

many populations will exist within protected areas within the UK (Hawker & Hawker, 2005). In 

addition, this high area of occupancy ensures that the three taxa are categorised as Least Concern 
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under the Red List classification. Basing a conservation strategy purely on the ecogeographic 

information above, it could be suggested that the abundance of the three species across a wide range of 

habitat types and therefore their increased ability to cope with threats to their habitats signifies that 

specific conservation measures are little required. However, does abundance necessarily mean that 

these species require no conservation action compared to more rare species? While the taxa 

are present in protected areas, this does not necessarily equate to taxon specific management 

activities designed for their conservation, as widespread and abundant species they are often 

not priority species and thus not specifically managed. Indeed management activities within 

protected areas designed to maintain other species can have negative effects on Trifolium, for 

example re-seeding or over and undergrazing. The nature of the three target species as crop 

wild relatives highlights their value and thus their need for conservation. The widespread use 

of cultivated T. repens and T. pratense indicates the potential for genetic erosion or swamping 

of the wild species genomes, giving species such as these, grown alongside a conspecific 

crop, high priority for conservation, even if it is little acknowledged in the classic 

conservation literature. Thus while these species are little threatened at the species level of 

diversity in the UK, they may require different conservation strategies on the basis of genetic 

diversity, a question that is addressed in the following chapters. 

 



3 AFLP study 

 

97 
 

Chapter 3. GENETIC STRUCTURE OF THREE TRIFOLIUM  

SPECIES IN THE UK  USING AFLP 

3.1 INTRODUCTION  

The conservation of natural resources is often limited by the lack of technical, scientific 

and financial resources. Consequently researchers are forced to prioritise biodiversity for 

conservation based on a scientifically sound assessment of the „value‟ of each component of 

biodiversity, whether at the ecosystem level, the species or the genetic level of diversity. 

Within a species these limited conservation resources dictate which populations should 

be prioritised for conservation. When the aim is to conserve the maximum diversity of a 

widespread species, genetic diversity is typically a major determinant of the value of 

populations for conservation. Spatial structuring of diversity has been found to occur in 

natural populations of plant species, through both the non-random mating of genotypes and 

the occupation of heterogeneous environments (Heywood, 1991). This spatial genetic 

structure can produce high levels of variation within populations, with resultant conservation 

priority lying in those populations that contain the highest levels of diversity. 

Measures of diversity alone are not adequate when prioritising populations. Selecting 

more than one population for conservation will require additional assessments of the 

distinctiveness of the populations to allow for redundancy in the dataset (Petit et al., 1998). A 

further dimension to population selection also lies in the ability to retain diversity in the 

population through isolation and the provision of management. Priority populations can thus 

be defined as a function of their diversity, their divergence and their isolation from factors 

that threaten their biodiversity (Petit et al., 1998; Gaston et al., 2002; Margules et al., 2002).
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Island populations could be identified in advance as priority areas for conservation 

through their potential for isolation, and as such, potential for unique diversity compared to 

mainland populations. The process of divergence, not always at the level of speciation but at 

the population level, can lead to island populations being both phenotypically and 

genotypically distinct from their corresponding mainland populations (Whittaker & 

Fernández-Palacios, 2007). Island isolation can also create a refuge for genetic diversity, 

shielding insular populations against the possible gene flow and genetic swamping from 

introduced or cultivated varieties that may be prevalent in their mainland counterparts. 

Islands provide an interesting dichotomy in terms of conservation, both forming a 

refuge whilst simultaneously restricting the overall size of populations. Extinctions occur 

more readily on islands as a consequence of small overall area and associated population size 

restriction, i.e. through a greater reaction to stochastic processes, genetic drift and lower levels 

of immigration (Frankham 1995, 1997; Whittaker & Fernández-Palacios, 2007). Hence, the 

conservation importance of island biotas lies both in their potential uniqueness, and their 

susceptibility for diversity loss. 

In this chapter, the spatial genetic structure and the factors that affect it are assessed 

using three species of Trifolium; T. dubium Sibth., T. pratense L. and T. repens L. in order to 

indicate priority areas for conservation in the UK including the surrounding islands. T. 

dubium is an annual, inbreeding species native to Europe and western Asia, which has spread 

to many parts of the world (Zohary & Heller, 1984; Frame, 2005). Although characterized in 

terms of morphological and flowering variation (Caradus & Mackay, 1989), to the author‟s 

knowledge this is the first report of a population genetic study in T. dubium. T. pratense is a 

perennial self-incompatible species widely distributed across temperate zones of the world, 

and cultivated throughout the northern hemisphere (Williams & Williams, 1947; Zohary & 

Heller, 1984). T. pratense is characterized by large genetic variation within and between 
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populations, with large numbers of locally adapted genotypes permitting its persistence in 

many diverse parts of the world (Joshi et al., 2001; Dias et al., 2008). T. repens L. was chosen 

as a model native species which has historically been cultivated across most of the UK, with 

seed traded since the 17th century across Europe (Caradus, 1995). In the UK, T. repens a 

long-lived mixed-mating perennial, is found in a diverse range of grassy habitats, in either 

sown mixtures in pastures or as wild and semi-natural populations in uncultivated areas 

(Zohary & Heller, 1984; Frame, 2005). This adaptation of T. repens to a broad range of 

habitats highlights the high inherent genetic diversity of the species (Gustine & Huff, 1999; 

Kölliker et al., 2001). All three species are ubiquitous within the UK and as such are often 

given little conservation importance; however this lack of conservation priority may be 

mistaken. Differentiation through isolation, across all types of geographic barriers can occur 

in widespread species, creating unique pockets of genetic diversity of importance for both 

future conservation and breeding programs. 

This study aims to: 1) evaluate the spatial pattern of diversity in T. dubium, T. pratense 

and T. repens across the UK; 2) compare the patterns of diversity between the three related 

species; 3) assess the importance of island groups of the UK for genetic isolation and 

conservation; and 4) indicate priority areas for conservation. For T. repens this study also 

aims to answer the following question: Can wild populations of T. repens remain genetically 

distinct from cultivated varieties of the same species, and do some UK islands offer refugia 

from crop gene flow?  
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3.2 METHODS  

3.2.1 POPULATION SAMPLING 

The most effective sampling strategy would be designed on the basis of prior 

knowledge of the genetic variation within a species and within populations (Namkoong, 1988; 

Gapare et al., 2008). In the absence of such prior information, as is the case in many wild 

species, theoretical models have been developed to define effective sampling strategies (e.g. 

Kimura & Crow, 1964; Brown & Marshall, 1995; Lawrence et al., 1995a). The most effective 

of these models has been the subject of considerable debate, particularly in terms of the 

number of individuals to collect per site (notably Allard, 1970; Marshall & Brown, 1975, 

1983; Yonezawa, 1985; van Reehan et al., 1993; Lawrence et al., 1995a, b). Controversy 

arises from some authors advocating the increase in the number of individuals to include the 

collection of, or more correctly to increase probability of, collecting rare alleles that are likely 

to be missed when using a more pragmatic approach (Krusche & Geburek, 1991; van Reehan 

et al., 1993; Lawrence et al., 1995a). However, any plant collecting strategy must be 

ultimately constrained by limiting resources; with Brown and Marshall (1995) noting that in 

terms of the resources required by a collector, the increase in alleles per individual plant 

collected is directly proportional to sample size. An efficient and cost effective strategy is 

clearly vital due both to the need to design conservation strategies before the loss of diversity 

becomes too great, as well as due to the cost of maintaining and assessing large samples of 

redundant germplasm (Richards et al., 2007). 

In the present study the aim of the collection was to collect a representative sample from 

each selected area to assess the genetic diversity in Trifolium species across the UK. The 

collection would then act as a baseline study for future collections of genetic material of these 

species for use in breeding programs. Marshall and Brown (1999) define a representative 
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sample as the number of plants required to collect, with a 95% certainty, a copy of all the 

common alleles in that population with a frequency of over 0.05. This number varies 

according to breeding system with those from a fully outbreeding species, such as T. pratense 

and T. repens, numbering around 30 random plants per population. In a self-fertilising 

species, such as T. dubium, the suggested optimum sample size is increased to 59 random 

individuals (Brown & Marshall, 1995). While this is a more pragmatic approach compared to 

the larger numbers quoted by other authors (Krusche & Geburek, 1991; Lawrence 1995a), 

increasing the certainty level to above 95% or ensuring the collection of extremely rare alleles 

would necessitate large increases in sample sizes, with diminishing returns per sample. As the 

aim of this collection is to collect a representative sample with limited resources, large sample 

sizes were not feasible (see Table 3.1 for sample sizes per site). In the absence of the presense 

of all three species at a site, potentially due to their varying niche requirements, collections 

were made in as close proximity as possible. 

Random sampling of genotypes is generally the most desirable method of sampling 

particularly in species which show little or no sub-population structure. Wild species however 

often show some sub-structure, with the available literature for T. repens and T. pratense 

indicating high genetic diversity within populations (Gustine & Huff, 1999; Mosjidis et al., 

2004; van Treuren et al., 2005; Dias et al., 2008). Hence, where a site showed clear habitat 

heterogeneity, a stratified random sampling method was used, sampling random individuals 

from selected micro-sites. Due to the small leaf size of T. dubium, entire plants were collected 

and placed in labelled zip lock bags with indicator silica gel. As T. dubium is largely a self-

fertilising species, individuals were collected a minimum distance apart (1.5m or more, 

dependent on total population area). All T. pratense individuals were collected as leaf samples 

and placed immediately in labelled zip lock bags with indicator silica gel. Where possible 
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individuals were chosen at random to avoid any bias associated with intermittent variation in 

a population (Brown & Briggs, 1991; Brown & Marshall, 1995).  

Two T. repens reference cultivars, English Dutch and Kent Wild White, were included 

in this study, chosen in consultation with clover specialists and taken from the gene bank at 

IGER, considering both history of the landraces and availability of seed. These represent 

historical landraces grown in the UK and can be considered forerunners of commercial 

cultivars used in Britain, with Kent Wild White still used commercially in the UK. The two 

cultivars were grown from seed and randomly chosen individuals were sampled from each of 

the two grown reference landraces. In wild populations individuals were collected >5m apart 

due to the clonal nature of T. repens. Patch size is known to range from <1 – 5m2, although in 

general 1.5 to 6 clones can be found per 10m2 (Harberd, 1963; Cahn & Harper, 1976). 

Sackville Hamilton and Chorlton (1995) describe populations that have consisted of just one 

or two clones, but these are postulated to occur at the limits of the species, e.g. in shrubland 

and tall grassland.  

Populations collected from Benbecula, St Kilda and Skye were collected as vegetative 

samples, bagged separately per site. The plants were potted in separate containers on return 

and kept at 16 hours daylight and 20/10°C. Each sample from populations in South Uist, 

Sussex, Devon and Dorset were collected and placed immediately in labelled zip lock plastic 

bags with indicator silica gel. Replicates were taken from the same stolon to ensure the same 

genotype was sampled. 

Collection sites were selected to represent wild, and in the case of T. repens semi-

natural, populations across the UK, encompassing both islands and mainland reference 

populations (see Table 3.1 and Figure 3.1, Figure 3.2 and Figure 3.3 for provenance 

information). As most genetic differentiation is related to geographic heterogeneity, Marshall 

and Brown (1999) advocate that when overall sample number is restricted the number of sites 
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should be increased over number of individuals per site. As such, three populations of 15 or 

more individuals were selected in each area, dependent on species availability. 
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Table 3.1 Collection site data for all populations. TD corresponds to T. dubium, TP to T. pratense and TR to T. repens. All collections made by Serene Hargreaves otherwise 
by 1S Hargreaves and David Jacoby; 2Nigel Maxted; 3Maria Scholten; 4S Hargreaves, Ian Thomas and Sue Dalton; 5I Thomas and S Dalton; 6Ryoko Hirano, I Thomas and S 
Dalton. 

Population Code Date Lat. Long. Site description No. collected 

      
TD TR TP 

Cultivated varieties 
     

 
  

English Dutch ED1 n/a n/a n/a n/a  24 
 

Kent Wild White KWW1 n/a n/a n/a n/a  24 
          

Wild/semi natural populations  
   

 
  

St Martins, Isles of Scilly1 IOS1 23/06/07 49.96669 -6.30043 Coastal grassland path around Tinkers point. 15 15 
 

St Mary's, Isles of Scilly1 IOS2 23/06/07 49.91805 -6.30167 Small walled grazed fields on Carn Morval point. 15 15 
 

Bryher, Isles of Scilly1 IOS3 24/06/07 49.95044 -6.3517 Path between pool and Stinking Porth. 15 15 
 

Bryher, Isles of Scilly1 IOS4 24/06/07 49.9504 -6.35088 Central Bryher, next to recently laid paths to Bay Hotel.   
 

15 
St Mary's, Isles of Scilly1 IOS5 26/06/07 49.90134 -6.30081 Path to Penennis head from Hugh Town.  

 
9 

         

Branscombe, Devon2 DEV1 11/01/07 50.69389 -3.15944 Around ramparts of hill fort between cliff and valley.  12 
 

Berry Head NNR, Devon  DEV2 17/08/07 50.40406 -3.48445 Cliftop paths on Berry Head. 15 
 

15 
Branscombe, Devon DEV3 17/08/07 50.68584 -3.11899 Gay's farm, upper fields overlooking sea. 15 

 
15 

Kingcombe NR, Dorset2 DOR1 13/01/07 50.78794 -2.63407 Wet meadows, permanent pasture.  14 
 

Abbotsbury Cast., Dorset2 DOR2 13/01/07 50.67736 -2.62834 Iron age hill fort, around ramparts. Permanent pasture.  22 
 

Lamberts Cast., Dorset2 DOR3 14/01/07 50.77713 -2.90908 SSSI, damp meadows, permanent pasture, many springs.  20 
 

Rye, East Sussex3 RYE1 02/07/04 50.9667 0.7683 Long established grazing marshes  21 
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Population Code Date Lat. Long. Site description No. collected 

      
TD TR TP 

N Walney Island, Cumbria LKD1 31/07/07 54.11775 -3.25211 Field to the right of the road before Walney airport.  
 

12 
N Walney Island, Cumbria LKD2 31/07/07 54.11775 -3.26681 Coastal path bordering Walney airport. 15 15 

 
Dobshell Wood, Cumbria LKD3 31/07/07 54.18539 -2.835 Lower pasture, off road to Arnside Knott.  

 
15 

Arnside Knott, Cumbria LKD4 31/07/07 54.18547 -2.835 Arnside Knott pasture, at the entrance to the Knott.  15 
 

Hutton Roof, Cumbria LKD5 01/08/07 54.18564 -2.65214 Path to Park Wood NNR from road. 15 
  

Hutton Roof, Cumbria LKD6 01/08/07 54.18506 -2.65267 Meadow at entrance to Park Wood NNR.  15 15 
         

Morvich, NW Scotland4 NWS1 24/10/06 57.2338 -5.3696 Entrance to Gleann Lichd, Wet boggy area beside path.  31 
 

Morvich, NW Scotland4 NWS2 24/10/06 57.2342 -5.3842 One of a number of small fields in a broad river valley.  30 
 

Ardelve, NW Scotland5 NWS3 24/10/06 57.2805 -5.5315 Path alongside shingle spit of sea loch.  27 
 

Nordie, north west Scotland NWS4 03/08/07 57.26825 -5.56844 On path side leading to houses and jetty.  
 

15 
         

Elgol, Skye4 SKY1 24/10/06 57.1457 -6.1061 Moorland opposite jetty, near stream. 15 32 
 

Torrin, Skye4 SKY2 24/10/06 57.2216 -6.0298 Near old sheep pens, between road and loch shore.   32 
 

Aird of Sleat, Skye SKY3 04/08/07 57.03347 -5.952 Road leading to Aird of Sleat from main road, last 100m. 15 
 

15 
Merkadale, Skye SKY5 05/08/07 57.28592 -6.3 B8009 leading to Merkadale, at end of Loch Harport. 15 

 
15 

Benbecula6 BEN1 27/06/05 57.60255 -7.52322 Balranald (RSPB reserve). Rough machair, near shore.  24 
 

Peninerine, South Uist3 UIS2 16/01/07 57.2903 -7.4201 Near Peninerine on machair/pasture.  20 
 

Howmore, South Uist3 UIS4 18/01/07 57.3028 -7.3978 Dunes north of Howmore, river estuary at top of dunes.  16 
 

Rhenigidale, Harris UIS5 06/08/07 57.91719 -6.66889 Roadside in Rhenigidale village.  
 

15 
Manish, Harris UIS6 06/08/07 57.78606 -6.86839 Manish, road leading to township from main road.  

 
15 
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Population Code Date Lat. Long. Site description No. collected 

      
TD TR TP 

Lochskipport, South Uist UIS7 08/08/07 57.31875 -7.28356 Road to Lochskipport, before turn off to Salmon farm. 15 
  

Gleann, Barra UIS8 09/08/07 56.95243 -7.45220 Road end (last 50m) and car park at end of road.  
 

15 
         

Glean Mor, St.Kilda6 STK1 29/06/05 57.81859 -8.59317 Site of old shealings used as shelters by sheep.   24 
 

Bagh a' Bhaile, St.Kilda6 STK2 30/06/05 57.81291 -8.57099 Former cultivated area near abandoned village.   24 
 

Tobar Childa, St.Kilda6 STK3 30/06/05 57.81471 -8.57166 Rocky ground between 'cleits' and walled enclosures.  24 
 

Ruabhal, St Kilda6 STK4 30/06/05 57.80448 -8.57944 Steeply sloping coastal promontory.  23 
 

Ruabhal, St Kilda6 STK5 30/06/05 57.80413 -8.57388 Grazed area on lower slopes of promontory.   23 
          

Whiteness Penins., Shetland SHT1 24/08/07 60.12628 -1.26034 East coast of Whiteness peninsula, coastal path.  15 
 

Whiteness Penins., Shetland SHT2 24/08/07 60.18585 -1.28511 End of road nearest to A491 - last 50m of roadside.  
 

15 
Nibon, Shetland SHT3 25/08/07 60.43591 -1.40248 Road to Nibon, before reaching Trolladale water.  15 

 
Brae, Shetland SHT4 25/08/07 60.43371 -1.38543 Road between Brae and Nibon.  

 
15 

Bay of Quendale, Shetland SHT5 25/08/07 59.88031 -1.31689 Dune flats to the east of Quendale Bay  15 
 

Bay of Quendale, Shetland SHT6 25/08/07 59.88566 -1.30271 Field next to public path to the east of Quendale Bay  
 

15 
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Figure 3.1 Locations of the 11 
T. dubium collection sites 
across the UK: a. Collections 
from the Inner and Outer 
Hebrides, b. Isles of Scilly 
collection sites. 
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Figure 3.2 Locations of the 16 T. 
pratense collection sites across the 
UK: a. Shetland collection sites, b. 
North West Scotland collections and 
associated islands, c. Isles of Scilly 
collection sites. 
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Figure 3.3 Locations of the 
27 T. repens collection 
sites across the UK: a. 
North West Scotland 
collections with associated 
islands, b. Shetland 
collection sites, c. St Kilda 
collection sites, d. Isles of 
Scilly collection sites. 
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3.2.2 AMPLIFIED FRAGMENT LENGTH POLYMORPHISM 

DNA was extracted from leaf material of T. repens (50 mg fresh weight, 10 mg dry 

weight) using the DNeasy 96 Plant Kit (Qiagen). The standard Qiagen protocol was slightly 

modified by increasing the incubation period at -20°C from 10 to 20 min to increase the DNA 

quality. Leaf material from T. dubium and T. pratense was extracted using a CTAB extraction 

protocol modified from Gawel and Jarret (1991), see Appendices 1 and 2 for full protocol and 

stock solution information. DNA was quantified on a NanoDrop ND-1000 Full-spectrum 

UV/Vis Spectrophotometer after extraction. 

The AFLP protocol used was based on that described by Vos et al. (1995) and adapted 

for capillary electrophoresis and fluorescent detection as described by Skøt et al. (2005). 

Around 110 ng of total genomic DNA was digested to completion with the restriction 

enzymes EcoRI and MseI, followed by ligation of EcoRI and MseI adapters, with incubation 

for 2 h at 37°C. Pre-amplification was carried out in 20 μl, including 4 μl of ligated DNA, 15 

μl AFLP Amplification Core Mix (ABI) and 1 μl Preselective Primer Mix (ABI) containing 

primers with one selective base (EcoRI-A and MseI-C). The selective amplification was 

carried out in 10 μl including 1.5 μl pre-amp product, 5.8 μl sterile distilled water, 1μl 10x 

Amplitaq buffer (ABI), 0.04 μl of 5 units/μl of Amplitaq Gold (ABI), 0.6 μl of 25 nM MgCl2, 

0.08 μl of 25 mM dNTPs mix, and 0.5 μl of unlabelled MseI and fluorescently labelled EcoRI 

selective primers. Primer pairs were selected for primer optimization on the basis of a 

literature search and previous AFLP analysis at IGER (Kölliker et al., 2003; Herrmann et al., 

2005; Hirano, 2005). Following optimization primer pairs were selected on the basis of 

highest polymorphism detected and peak detection quality (Table 3.2).  

Pre-amplification PCR was carried out in PE 9700 Gene Amp System for 2 min at 

72°C, followed by 20 cycles of 20 s of initial denaturation at 94°C, 30 s of annealing at 56°C, 
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2 min of extension at 72°C, and 45 min of elongation at 60°C. Selective amplification was for 

10 min of denaturation at 95°C, followed by 13 cycles of 20 s denaturation at 94°C, 30 s of 

annealing at 66-56°C (decreasing by 0.7°C per cycle), 2 min of extension at 72°C, followed 

by a further 20 cycles of 20 s of denaturation at 94°C, 30 s of annealing at 56°C and 2 min of 

extension at 72°C, followed by 30 min of elongation at 60°C. 10 μl of each reaction was run 

on a 1% agarose gel, stained with ethidium bromide to ensure amplification had occurred. All 

centrifugations were carried out on a Sigma Laboratory Centrifuge 4-15C (Qiagen).  

The selective amplification products were run on an ABI3130xl Genetic Analyzer 

(Applied Biosystems) and visualised with GENEMAPPER (version 4.0), typed as present or 

absent (above or below a threshold intensity). 

 

Table 3.2 Primer optimization, detailing the number of polymorphisms observed and peak detection quality for 
each primer pair across eight randomly chosen individuals. *Primer pairs chosen for further analysis. 

Species 
 

M
seI-C

A
C

 
/EcoR

I-A
A

C
 

M
seI-C

A
C

 
/EcoR

I-A
C

A
 

M
seI-C

A
C

 
/EcoR

I-A
C

T
 

 

M
seI-C

C
T

 
/EcoR

I-A
C

A
 

M
seI-C

G
A

 
/EcoR

I-A
C

T
 

M
seI-C

TA
 

/EcoR
I-A

C
T

 

M
seI-C

TA
 

/EcoR
I-A

G
A

 

M
seI-C

TA
 

/EcoR
I-A

G
T 

Trifolium dubium 24* n/a n/a 20 n/a 21 41* 29 
         

Peak detection quality High n/a n/a High n/a Medium High Medium 
         

Trifolium repensa n/a n/a 146* 205* n/a n/a n/a n/a 
         

Peak detection quality n/a Low High High Low n/a n/a n/a 
         

Trifolium pratense 42* n/a n/a 28 n/a 49 66* 36 
         

Peak detection quality  High n/a n/a High n/a Medium High High 
         

 

Presence (1) or absence (0) of AFLP markers was entered into a binary matrix. Bins 

were set to 1 base pair (bp) and profiles were assessed from 50 to 500 bp in size. All AFLP 

profiles were checked visually to correct any misinterpretations of the Genemapper output 

and only peaks and individuals that could be scored unambiguously were included in the 
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analysis. To assess the reproducibility of the AFLP genotyping, replicate AFLP profiles were 

produced from 20 randomly chosen individuals for each species and each primer pair. The 

duplicate AFLP fingerprints for both primer pairs were compared visually following the 

method outlined by (Bonin et al., 2004), with the results shown in Table 3.3.  

 

Table 3.3: AFLP error rate for three species of Trifolium based on the method outlined by Bonin et al. (2004).  

Species Differences Total comparisons Error rate 

Trifolium dubium 39 1401 2.78% 

Trifolium pratense 53 1421 3.73% 

Trifolium repens 58 1328 4.36% 
 

3.2.3 POPULATION GENETIC ANALYSIS 

Due to the dominant nature of AFLP, observed heterozygosity cannot be determined 

and expected heterozygosity cannot be determined directly, hence allele frequencies were 

estimated by a Bayesian method (Zhivotovsky, 1999), assuming both a non-uniform prior 

distribution of allele frequencies and Hardy-Weinburg proportions using AFLP-SURV (version 

1.0) (Vekemans, 2002). This method of estimating allele frequencies was chosen due to its 

relatively unbiased estimates compared to other methods; taking into account the sample sizes 

used in this study (see Krauss, 2000 for discussion; Isabel et al., 1999; Zhivotovsky, 1999). It 

should be noted that these methods are designed for a maximum of two alleles per locus, and 

using them in a tetraploid species such as T. dubium and T. repens can lead to an overestimate 

of allele frequencies and an underestimate of within-population genetic diversity (Lynch & 

Milligan, 1994; Krauss, 2000). However, as yet, there are no programs available that enable 

AFLP analysis in allotetraploid species. 

javascript:popRef('b23')
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Mating was assumed to be random in T. pratense and T. repens, and therefore not to 

deviate from Hardy-Weinburg proportions, due to their self-incompatibility systems (Atwood, 

1942, 1944; Williams & Williams, 1947; Lawrence, 1996). However, due to the potential of a 

mixed-mating system in T. repens through clonal reproduction, analyses were also carried out 

assuming an FIS of 0.5 to determine to what extent the results are dependent on the 

assumption of outbreeding. For T. dubium, a predominantly self-fertilising species, a measure 

of the fixed deviation from Hardy-Weinberg proportions (FIS) was used. In the absence of a 

published FIS value for this species, the self-fertilisation rate (s) of 0.97 (Dhar et al., 2006) 

was used to calculate the expected equilibrium value of FIS under a mixed mating model (see 

Hartl & Clark, 1989): 

 

Estimates of allele frequencies were used to calculate genetic diversity and population 

genetic structure following the methods outlined by Lynch and Milligan (1994). Notations 

follow Lynch and Milligan (1994), with Hj analogous to Nei‟s (1978) unbiased heterozygosity 

He and Hw analogous to Hs. Wright‟s (1951) FST was calculated for the overall sample to test 

for differentiation between populations, in which a test of significance was performed 

comparing observed FST with the distribution of FST assuming no genetic structure, obtained 

using 1000 permutations of individuals among groups. 

Allelic richness, a measure of genetic diversity identified as of high importance in 

prioritizing populations for conservation (Marshall & Brown, 1975; Petit et al., 1998), was 

determined using AFLPDIV (version 1.1) (Coart et al., 2005). Allelic richness is dependent on 

sample size, with uneven sample sizes biasing estimates. Larger sample sizes and intensively 

sampled regions may show a higher allelic richness or greater private alleles than smaller, less 

sampled populations and areas (Kalinowski, 2004). This bias can be overcome using 
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rarefaction methods to standardize allelic richness to a fixed sample size. In this study 

rarefaction was used to compare allelic richness at the smallest population size in each 

species.  

To determine how distinct island populations are compared to mainland populations 

within the UK, unweighted pair group method with arithmetic mean (UPGMA) analysis was 

conducted based on matrices of pairwise genetic distances based on Nei‟s (1972) measure of 

genetic distance after Lynch and Milligan (1994). Dendrograms were constructed using the 

NEIGHBOR program of PHYLIP (version 3.67) (Felsenstein, 2004). A majority rule consensus 

tree was constructed in the consense package in PHYLIP (Felsenstein, 2004), using 1000 

replicated matrices produced in AFLP-SURV (Vekemans, 2002). For T. repens a model-based 

Bayesian clustering method was used to assign individuals to populations by the program 

STRUCTURE (version 2.2) to further determine levels of gene flow between crop and wild 

species (Pritchard et al., 2000; Falush et al., 2003, 2007). This method identifies K (unknown) 

populations within a dataset and assigns each population/individual to one or more 

population/cluster if the individual is admixed. To determine the most probable number of K 

an admixture model with correlated allele frequencies was run fifteen times for each value of 

K, with a burn-in period of 103 for 106 iterations. Different levels of K were examined based 

on the number of collection groups/areas plus 2 (K = 2-10). The rate of change of the log 

probability between successive values of K (ΔK) was evaluated according to the method 

defined by Evanno et al. (2005) to determine the correct estimation of the number of clusters.  

Analysis of molecular variance was carried out using ARLEQUIN (version 2.0) 

(Schneider et al. 2000) to estimate the partition of variation among regions, among 

populations within regions and within populations. Population regions were identified as 

groups defined by clustering analysis. 
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3.2.4 ISOLATION BY DISTANCE 

To test for isolation by distance, pairwise FST values transformed to FST /(1- FST) were 

compared with log-transformed geographic distances in a Mantel test following Rousset 

(1997). Mantel tests were carried out in GENALEX (version 6.1) (Peakall & Smouse, 2006), 

with significance tested using 999 permutations. 

To further determine spatial structure, spatial autocorrelation was used to assess kinship 

over defined distance classes (using a distance matrix created in GENALEX). Kinship 

coefficients are most easily described as the probability of identity by descent of loci, with the 

use of kinship coefficients with dominant data discussed by Hardy (2003). Using this method, 

negative kinship coefficients can occur when two individuals are less related than two 

individuals taken at random (Hardy & Vekemans, 2003). In the absence of a consensus on the 

spatial scale at which to study genetic diversity patterns or at which to determine distance 

classes (see Escudero et al., 2003; Manel et al., 2003 for reviews), pairwise spatial distances 

(km) were grouped into classes taking into account the similarity of sample sizes in each class 

(see Appendix 3 for distance matrices). This method ensures that only pairs separated by less 

than half the maximum distance were considered in each distance class (Le Corre et al., 

1998). Significance of the spatial structure was tested using 1000 permutations, with analysis 

conducted using SPAGEDI (Hardy & Vekemans, 2002). This method follows the equal 

frequency method outlined by Escudero et al. (2003), a method comprising of unequal 

distance lags with equal pairwise data in each class. 

 

T. dubium: Average kinship coefficients Fij (Hardy, 2003) were computed for the 

following 5 distance classes; ≤40.60km, ≤378.36km, ≤509.05km, ≤787.03km and 

≤825.53km. An inbreeding coefficient (FIT) is required to compute an estimate of kinship 

coefficients between population groups using SPAGEDI (Hardy & Vekemans, 2002). As such 
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the inbreeding coefficient of 0.97 (FIS, Dhar et al., 2006) and calculated measure of FST 

(generated in AFLP-SURV) were used to calculate FIT as per Hamilton (2009). However Hardy 

and Vekemans (2002) note that the estimate of kinship coefficient is robust to some error in 

inbreeding coefficient. 

 

T. pratense: Average kinship coefficients Fij (Hardy, 2003) were computed for the 

following 8 distance classes; ≤39.75km, ≤208.28km, ≤397.81km, ≤429.45km, ≤521.82km, 

≤752.26km, ≤860.52km and ≤1211.33km.  

 

T. repens: Average kinship coefficients Fij (Hardy, 2003) were computed for the 

following 7 distance classes; ≤38.88km, ≤165.01km, ≤372.73km, ≤476.98km, ≤748.78km, 

≤863.62km and ≤1209.49km. 

 

Due the distribution of sample sites there are clearly uneven lags between the distance 

classes for all species. Manual manipulation of spatial classes to ensure similar distances are 

covered by each distance class (equal interval method) showed equivalent results. However, 

using this method numbers of pairwise comparisons within each interval were uneven and 

occasionally lower than the 30 pairs of data per class recommended by Legendre and Fortin 

(1989). 

 

3.2.5 ENVIRONMENTAL IMPACT ON GENETIC DIVERSITY 

To determine the extent to which environmental variables affect patterns of genetic 

diversity, over and above geographical distance, a distance based redundancy (dbRDA) 
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method was used (Legendre & Anderson, 1999; McArdle & Anderson, 2001; Anderson, 

2001). dbRDA, a method of multivariate multiple regression, can be performed directly on a 

distance or dissimilarity matrix. For this analysis two measures of genetic variation, Nei‟s 

genetic distance and FST, were used as response variables to various sets of environmental 

predictor variables, including geographic distance (see Table 3.4). Due to the relatively small 

number of populations, predictor variables were considered separately as it was not feasible to 

include all variables in a single regression model.  

Table 3.4 Variable sets used in dbRDA analyses. a Data obtained from nearest weather stations to collection sites, 
1971-2001 climate averages, however see text for air frost levels in Isles of Scilly (Met Office, 2010) b Data 
obtained from mapped climate averages of 1971-2001 weather data (Met Office, 2010).c Data not available for 
St Kilda populations. 

Set Variables included 
  
Response variable  
Nei‟s genetic distance Generated in AFLP-SURV 
FST Generated in AFLP-SURV 
  
Predictor variable  
Air frosta# Days where minimum temp <0 (days) 
Altitude Altitude in meters above sea level 
Distance Latitude (decimal degrees) 

Longitude (decimal degrees) 
Geographic distance  Latitude and longitude 
Grass minimum temperatureb Average annual temperature (°C):  

1 = 2-3; 2 = 3-4; 3 = 4-5; 4 = >5 
Island population Island population indicator: 

 0 = island population; 1 = mainland population 
pHc Soil pH of site 
Rainfalla Sum of annual rainfall (mm) 
Snowb Days of snow lying, annual average:  

1 = <5; 2 = 5-10; 3 = 10-20; 4 = 20-30 
Sunshine durationa Total sunshine (hours) 
Temperaturea 
 

Average of daily (09-09) maxima (°C) and average of daily 
(09-09) minima (°C) 

 

Two sets of analyses were conducted, i) marginal tests on all sets of predictor variables 

ii) conditional tests using geographical co-ordinates as covariables in the model to determine 

the extent that environmental variables can determine genetic distance when accounting for 



3 AFLP study 

 

118 
 

the variation explained by spatial distance. Significance of the model was determined by 

running 9999 permutations of the rows and columns of the residual matrix under the full 

model for both marginal and conditional tests (Anderson & Legendre, 1999). All dbRDA 

analyses were conducted using the program DISTLM (McArdle & Anderson, 2001). 

St Kilda climate data was available from 1999-2008 (J. Pemberton pers. comm. April, 

2008). A correlation was performed to compare available weather data from St Kilda with 

Stornoway weather data collected by the Meteorological (Met) Office, an island 

approximately 100km from St Kilda. Maximum and minimum daily temperature, 

precipitation, sunshine duration and days of air frost were averaged from weather stations on 

St Kilda and compared with equivalent data from Stornoway weather station (Table 3.5).  

 

Table 3.5 Correlation (r2) between Stornoway/St Kilda weather station data from 2000-2007 and Tirree/Skye and 
St Mawgan/Isles of Scilly weather data from 2001-2006. *** indicates significance level P<0.001. a Data not 
available; b See note in text about air frost days in Scilly. 

Comparison 
Maximum 

temperature 

(°C) 

Minimum 
temperature 

(°C) 

Precipitation 

(mm) 

Sun 

(hours/year) 

Air frost 

(days/year) 

St Kilda/Stornoway 95.3%*** 90.0%*** 74.5%*** 86.3%*** 57.1%*** 

Skye/Tirree 96.6%*** 97.7%*** 65.7%*** a a 

Isle of Scilly/St Mawgan 97.4%*** 97.5%*** 70.2%*** a b 
 

High significance between the two areas confirm that the Stornoway weather data 

captures local conditions closely and can be used as a surrogate for historic weather data from 

St Kilda (see also Hallett et al., 2004). Additional tests were performed for Skye and the Isles 

of Scilly as the nearest available weather station data was deemed to be potentially too far 

from the collection sites to be representative. Data was obtained direct from the Met Office 

for Skye (Lusa) and Isles of Scilly (St Mary‟s Airport) covering the years 2001 to 2006 and 

compared with corresponding years data from Tirree and St Mawgan respectively (see Table 
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3.5). Due to the high correlation the historical data available from these weather stations was 

deemed sufficient surrogate for historical data from either Skye or the Isles of Scilly. 

However, due to the lack of a correlation of air frost days between the available data for the 

Isles of Scilly and St Mawgan it was decided to use the published figure of an average of 2 

days per year for the Isles of Scilly (Met Office, 2010).  

 

3.2.6 ISLAND VERSUS MAINLAND HETEROZYGOSITY 

A comparison between island and mainland expected heterozygosity (Hj) was 

determined according to Frankham (1997). Following this method, in the presence of multiple 

mainland sites, mainland expected heterozygosity levels are averaged and compared to each 

island population to obtain a ratio of cases where mainland populations have a higher versus 

lower genetic variation than island populations. In addition allelic richness was compared 

between island and mainland populations, standardised to account for differences in sample 

size. Due to the proximity of Skye to the mainland, and therefore a lack of significant water 

barrier to gene flow, populations from Skye were included in mainland heterozygosity levels. 
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3.3 RESULTS -  TRIFOLIUM  DUBIUM  

3.3.1 DESCRIPTIVE POPULATION GENETICS 

A total of 127 loci were scored across 165 individuals of T. dubium, 70 from the MseI-

CAC/EcoRI-AAC primer pair and 57 from the MseI-CTA/EcoRI-AGA primer pair, with on 

average 41.87% polymorphic per population. The expected heterozygosity (Hj) ranged from 

0.059 (UIS7 population) to 0.216 (IOS3 population), with the average within population 

expected heterozygosity (Hw), 0.149 ± 0.015 over all populations. Detailed descriptive 

statistics for each population is given in Table 3.6. 

 

 

3.3.2 POPULATION SUBDIVISION 

Genetic differentiation among populations, with an FST value of 0.303 (P<0.001), 

indicates a moderately high and significant level of differentiation among populations. A three 

level AMOVA was used to partition the total variation into among groups (geographic 

Table 3.6 Population genetic analysis of T. dubium populations based on two AFLP primer pairs; a proportion of 
polymorphic loci with allelic frequencies lying within range 0.05 to 0.95.  

Population Sample size (n) Polymorphic 
loci (%) a 

Allelic richness 
(A15) 

Expected 
heterozygosity 

(Hj) 
S.E.(Hj) 

 

DEV2 15 52 1.575 0.186 0.017 
DEV3 15 42.5 1.512 0.167 0.018 
IOS1 15 50.4 1.504 0.184 0.017 
IOS2 15 52 1.52 0.193 0.018 
IOS3 15 62.2 1.622 0.216 0.017 
      LKD2 15 44.1 1.441 0.143 0.016 
LKD5 15 31.5 1.315 0.102 0.013 
SKY1 15 34.6 1.433 0.107 0.013 
SKY3 15 37.8 1.378 0.151 0.018 
SKY5 15 35.4 1.354 0.131 0.016 
UIS7 15 18.1 1.315 0.059 0.011 
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regions), among populations within regions and within populations (Table 3.7). Populations 

were separated into two geographic regions based on the clustering observed in the UPGMA 

tree; northern and southern UK. The largest component of total variation was found within 

populations (63.59%), with 25.92% found among populations.  

 

 

3.3.3 GENETIC RELATIONSHIPS AMONG POPULATIONS 

UPGMA analysis revealed some structure, dividing the populations into two geographic 

regions; the first including those populations from northern England and Scotland, with the 

second grouping the Isles of Scilly with southern England (Figure 3.4). The southern UK 

grouping shows clear delineation between the population clusters of the Isles of Scilly and 

Devon, while those populations from central and northern UK show no particular grouping 

according to geographic region.  

Table 3.7 Analysis of molecular variance (AMOVA) of variation across 165 T. dubium individuals conducted in 
ARLEQUIN (Schneider et al., 2000). Probability tested using 1000 permutations. 

Source of variation d.f. Sum of squares Variance 
components 

Percentage of 
variation P 

Among regions 1 171.85 1.42 10.48 <0.001 

Among populations within 
regions 9 540.79 3.52 25.92 <0.001 

Within populations 154 1293.69 8.63 63.59 <0.001 
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Figure 3.4 Unrooted unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on Nei‟s 
genetic distances after Lynch and Milligan (1994). Values at the nodes represent 1000 bootstrap values shown as 
percentages; only values over 50% are shown. 
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3.3.4 ISOLATION BY DISTANCE 

A significant relationship between pairwise FST and geographic distance was observed across 

all populations (r = 0.282, P<0.01) (Figure 3.5a). No significant relationship between genetic 

and geographic distance was detected in mainland populations, when excluding populations 

from the Isles of Scilly and Outer Hebrides (Figure 3.5b).  

 

a. 

 
b. 
 

 
Figure 3.5 Mantel tests of isolation by distance, plotting transformed FST (Rousset, 1997) against log 
transformed distance values; a all populations b all mainland populations (including Skye). 
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Spatial autocorrelation analysis produced a negative correlation with average kinship 

coefficients decreasing over increasing distance (Figure 3.6). Significant positive kinship 

coefficients were identified between individuals in the distance class less than 40.60km apart 

(with a mean distance 10.33km), suggesting that T. dubium may be able to form a related 

group within this distance. Clearly this distance reflects the sampling strategy used and 

therefore geographic distance between selected sampling sites and indicates only a 

preliminary genetic patch size, with further analysis on a continuously sampled population 

required for a more accurate representation of kinship. 

 

 

 

3.3.5 ENVIRONMENTAL IMPACTS ON PATTERNS OF GENETIC DIVERSITY 

Using dbRDA, marginal tests showed that a large proportion of variation in both FST 

and Nei‟s genetic distance is explained by deviation in spatial distribution in confirmation of 

 

Figure 3.6 Pairwise average kinship coefficient of 165 T. dubium individuals plotted against geographic distance 
(km) using SPAGEDI (Hardy & Vekemans 2002); * indicates significant deviation from random mating among 
individuals (P<0.05). 
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the above analysis. Further, marginal tests indicate the influence of various climatic factors on 

variance in genetic distance between populations (Table 3.8). 

 

 

Accounting for spatial distance (conditional tests); grass minimum temperature, rainfall, 

hours of sunshine and temperature become non significant, most likely due to their correlation 

to spatial distance in the areas studied for these species. By fitting spatial distance as 

covariables in the analysis only the distinction of island populations, differentiating 

Table 3.8 Redundancy based analysis of the effect of environmental factors on genetic differentiation in T. dubium 
populations. All marginal tests are shown on the left, with conditional tests on the right (including spatial distance as 
covariables in the analysis). Values in bold represent significant P values (<0.1). r2 values represent the proportion 
of variation explained by each environmental variable. 

Marginal tests  Conditional tests 

Variable set F P r2  Variable set F P r2  
      
Nei‟s genetic distance      
Distance 3.697 0.014 0.480      
Air frost 1.682 0.191 0.158  Air frost 2.857 0.102 0.151 
Altitude 1.111 0.382 0.101  Altitude 1.109 0.364 0.071 
Grass 4.397 0.023 0.328  Grass 1.832 0.216 0.108 
Island 1.499 0.230 0.143  Island 3.942 0.062 0.187 
pH 0.752 0.524 0.008  pH 0.641 0.569 0.044 
Rainfall 4.879 0.001 0.352  Rainfall 0.671 0.569 0.045 
Snow  2.784 0.060 0.236  Snow  0.461 0.656 0.032 
Sun hours 6.536 0.003 0.421  Sun hours 2.099 0.171 0.120 
Temperature 4.535 0.005 0.531  Temperature 1.867 0.194 0.199 
         
FST         
Distance 2.128 0.019 0.347      
Air frost 1.314 0.279 0.127  Air frost 2.321 0.086 0.163 
Altitude 1.148 0.346 0.113  Altitude 1.284 0.327 0.101 
Grass 2.308 0.041 0.204  Grass 1.913 0.153 0.140 
Island 1.436 0.205 0.138  Island 3.391 0.031 0.213 
pH 0.784 0.613 0.080  pH 0.703 0.630 0.060 
Rainfall 2.839 0.004 0.239  Rainfall 1.515 0.240 0.116 
Snow  1.708 0.115 0.160  Snow  0.123 0.399 0.090 
Sun hours 3.471 0.002 0.278  Sun hours 3.109 0.057 0.201 
Temperature 2.544 0.006 0.389  Temperature 1.961 0.140 0.258 
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populations separated by a significant water barrier, remains significant for GD, accounting 

for 21% of the variation. Geffen et al. (2004) suggest that variables with P-values lower than 

0.10 can be used to identify variables that may be significant to account for the small number 

of populations and therefore the potential lack of power in the analyses (see also Smith et al., 

2007). As such, both air frost and the number of sun hours may also show a significant 

relationship with genetic variation after accounting for geographic distance.  

3.3.6 ISLAND VERSUS MAINLAND HETEROZYGOSITY 

Island populations of T. dubium are shown to have, in general, higher expected 

heterozygosity and allelic richness than mainland populations, with all populations from the 

Isles of Scilly maintaining high heterozygosity levels. In contrast, the population from Uist 

has the lowest heterozygosity level per population (Table 3.9). However these results may be 

deceptive as they only relate to two island groups in the UK, and are biased towards the three 

populations collected from the Isles of Scilly. Populations were extremely rare on the other 

island groups visited in this study and further collections would be required to confirm these 

results. 

 

  

Table 3.9 Island versus mainland heterozygosity following the method outlined by Frankham (1997) for within 
population expected heterozygosity/allelic richness in T. dubium. a On the left are the number of occasions where 
mainland population expected heterozygosity/allelic richness is greater than island populations, on the right are 
occasions when island expected heterozygosity/allelic richness is greater than mainland populations. 

Average mainland heterozygosity (Hj) 0.141 
Average mainland allelic richness (A) 1.429 
 

Island population Hj M > Is: M < Isa A M > Is: M < Isa 
IOS1 0.184 0:1 1.504 0:1 
IOS2 0.193 0:1 1.52 0:1 
IOS3 0.216 0:1 1.622 0:1 
UIS7 0.059 1:0 1.315 1:0 
Total  1:3  1:3 
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3.4 RESULTS -  TRIFOLIUM  PRATENSE  

3.4.1 DESCRIPTIVE POPULATION GENETICS 

A total of 244 loci were scored across 231 individuals of T. pratense, 130 from the 

MseI-CAC/EcoRI-AAC primer pair and 114 from the MseI-CTA/EcoRI-AGA primer pair, 

with on average 44.81% polymorphic per population. The expected heterozygosity (Hj) 

ranged from 0.128 (SHT6 population) to 0.169 (LKD1 population). The average within 

population expected heterozygosity, Hw = 0.154 ±0.003 over all populations (for 

heterozygosity of each sample site see Table 3.10). 

 

 

Table 3.10 Population genetic analysis of T. pratense populations based on two AFLP primer pairs. a proportion of 
polymorphic loci with allelic frequencies lying within range 0.05 to 0.95. 

Population Sample size (n) Polymorphic 
loci (%) a 

Allelic richness 
(A9) 

Expected 
heterozygosity 

(Hj) 
S.E.(Hj) 

 

DEV2 15 43.4 1.443 0.154 0.011 
DEV3 15 48.8 1.445 0.160 0.011 
      
IOS4 15 44.3 1.423 0.153 0.011 
IOS5 9 52.9 1.475 0.169 0.011 
      LKD1 12 56.6 1.51 0.166 0.011 
LKD3 15 45.9 1.522 0.168 0.01 
LKD6 15 43.4 1.389 0.149 0.01 
      
NWS4 15 45.5 1.417 0.156 

 

0.011 

 
SKY3 15 46.3 1.426 0.157 0.010 
SKY5 15 45.1 1.46 0.159 0.011 
UIS5 15 45.5 1.429 0.154 0.011 
      
UIS6 15 38.1 1.398 0.153 0.012 
UIS8 15 44.7 1.419 0.161 0.011 
      
SHT2 15 40.2 1.403 0.147 0.011 
SHT4 15 37.3 1.336 0.128 0.011 
SHT6 15 38.9 1.355 0.128 0.011 
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3.4.2 POPULATION SUBDIVISION 

Genetic differentiation among populations, with an FST value of 0.099 (P<0.001), 

indicates moderate but significant differentiation among populations. A three level AMOVA 

was used to partition the total variation into among geographic regions), among populations 

within regions and within populations (Table 3.11). Populations were separated into the four 

geographic regions based on the clustering observed in the UPGMA tree, the first including 

southern England populations including those from the Isles of Scilly, the second including 

populations from North West Scotland (including UIS5), the third encompassing two 

populations from the Outer Hebrides and the fourth including populations from Shetland. The 

largest component of total variation was found within populations (78.82%), with only 

10.41% found among populations. This high level of variation within populations is in 

accordance with previous assessments of genetic diversity in T. pratense (Hagen & Hamrick, 

1998; Mosjidis et al., 2004). 

 

 

3.4.3 GENETIC RELATIONSHIPS AMONG POPULATIONS 

UPGMA analysis of T. pratense populations reveal the populations grouped according 

to geographic region, excluding one population from the Outer Hebrides which is more 

genetically similar to populations from the Inner Hebrides and the Lake District (Figure 3.7). 

Shetland remains the most unique of the geographic regions analysed, followed by two 

Table 3.11 Analysis of molecular variance (AMOVA) of variation across 231 T. pratense individuals conducted 
in ARLEQUIN (Schneider et al., 2000). Probability tested using 1000 permutations.  

Source of variation d.f. Sum of squares Variance 
components 

Percentage of 
variation P 

Among regions 3 517.65 2.44 10.77 <0.001 
Among populations within 
regions 12 588.92 2.36 10.41 <0.001 

Within populations 215 3459.97 17.88 78.82 <0.001 
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populations from the Outer Hebrides, with the rest of the populations grouped in the third 

cluster. This final group is separated along a north and south divide.  

 

Figure 3.7 Unrooted unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on Nei‟s 
genetic distances after Lynch and Milligan (1994). Values at the nodes represent 1000 bootstrap values shown as 
percentages; only values over 50% are shown. 
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3.4.4 ISOLATION BY DISTANCE 

A significant relationship between pairwise distance and distance was observed across 

all populations (r = 0.507, P≤0.001) (Figure 3.8a). Excluding populations from the Isles of 

Scilly, Outer Hebrides and Shetland significant isolation by distance (r = 0.789, P≤0.001) was 

observed between populations on the mainland (Figure 3.8b).  

 

a. 

 

b. 

 

Figure 3.8 Mantel tests of isolation by distance, plotting transformed FST (Rousset, 1997) against log 
transformed distance values; a all populations b all mainland populations (including Skye collections). 
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Spatial autocorrelation analysis produced a negative correlation with average kinship 

coefficient decreasing over increasing distance, confirming the above results (Figure 3.9). 

Significant kinship coefficients were identified between individuals less than 208.28km apart, 

suggesting that T. pratense may be able to form a related group up to this distance. Clearly 

this distance reflects the sampling strategy used and indicates only a preliminary genetic patch 

size, with further analysis on a continuously sampled population required for a more accurate 

representation of kinship. 

 

 

3.4.5 ENVIRONMENTAL IMPACTS ON PATTERNS OF GENETIC DIVERSITY 

As shown above, significant isolation by distance was determined across the 

populations sampled indicating a significant proportion of variation is explained by variation 

in geographic distance. Marginal dbRDA tests confirm this pattern across both the FST and 

Nei‟s genetic distance data sets with up to 51% of variation explained by differences in 

 

Figure 3.9 Pairwise average kinship coefficient of 231 T. pratense individuals plotted against geographic 
distance (km) using SPAGEDI (Hardy & Vekemans 2002); * indicates significant deviation from random mating 
among individuals (P<0.05). 
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latitude and longitude. In addition many environmental variables appear to explain significant 

proportions of variation in genetic diversity (Table 3.12). 

 

 

By accounting for variation explained by spatial distance in the form of covariables in 

the analysis (conditional tests) days of snow lying and grass minimum temperature become 

non significant, perhaps due to the correlation to latitude. Average monthly temperature and 

number of sun hours per year remain significant, indicating that these variables may be 

Table 3.12 Redundancy based analysis of the effect of environmental factors on genetic differentiation in T. 
pratense populations. All marginal tests are shown on the left, with conditional tests on the right (including spatial 
distance as covariables in the analysis). Values in bold represent significant P values (<0.1). r2 values represent the 
proportion of variation explained by each environmental variable. 

Marginal tests  Conditional tests 

Variable set F P r2  Variable set F P r2  
      
Nei‟s genetic distance      
Distance 6.705 0.000 0.508      
Air frost 1.199 0.349 0.079  Air frost 2.915 0.072 0.096 
Altitude 0.429 0.732 0.029  Altitude 0.935 0.472 0.036 
Grass 4.139 0.010 0.228  Grass 0.487 0.687 0.019 
Island 1.278 0.329 0.084  Island 4.575 0.017 0.136 
pH 1.982 0.135 0.124  pH 2.309 0.119 0.079 
Rainfall 2.192 0.113 0.135  Rainfall 2.146 0.073 0.075 
Snow  4.876 0.008 0.258  Snow  0.242 0.830 0.009 
Sun hours 5.754 0.004 0.291  Sun hours 2.559 0.083 0.087 
Temperature 3.042 0.017 0.319  Temperature 3.072 0.045 0.176 
         
FST         
Distance 6.375 0.000 0.495      
Air frost 1.226 0.324 0.081  Air frost 2.811 0.059 0.096 
Altitude 0.497 0.709 0.034  Altitude 1.045 0.419 0.041 
Grass 3.891 0.011 0.218  Grass 0.744 0.564 0.029 
Island 1.486 0.247 0.096  Island 4.541 0.009 0.139 
pH 1.774 0.161 0.113  pH 1.978 0.142 0.072 
Rainfall 2.013 0.125 0.126  Rainfall 1.891 0.105 0.069 
Snow  4.238 0.011 0.232  Snow  0.399 0.779 0.016 
Sun hours 5.291 0.004 0.274  Sun hours 2.507 0.066 0.087 
Temperature 3.035 0.010 0.318  Temperature 3.102 0.028 0.182 
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important in determining genetic dissimilarities between populations. By fitting spatial 

distance as covariables both air frost and the distinction of a population occurring on an island 

become significant factors in the structuring of genetic diversity accounting for 9 and 13% of 

the variation in genetic diversity respectively. The results of these tests show some relatively 

high F values whilst remaining insignificant in terms of P values. This may be due to the lack 

of statistical power involved in using small data sets with larger data sets required for the 

comprehensive rejection of the null hypotheses.  

3.4.6 ISLAND VERSUS MAINLAND HETEROZYGOSITY 

In agreement with Frankham‟s (1997) comprehensive review of mainland versus island 

heterozygosities T. pratense shows that mainland populations can maintain higher levels of 

heterozygosity within populations than island populations (Table 3.13). 

 

Table 3.13 Island versus mainland heterozygosity following the method outlined by Frankham (1997) for within 
population expected heterozygosity in T. pratense. a On the left are the number of occasions where mainland 
population expected heterozygosity/allelic richness is greater than island populations, on the right are occasions 
when island expected heterozygosity/allelic richness is greater than mainland populations. 

Average mainland heterozygosity (Hj) 0.159 
Average mainland allelic richness (A) 1.452 
 

Island population Hj M > Is: M < Isa A M > Is: M < Isa 
IOS4 0.153 1:0 1.423 1:0 
IOS5 0.169 0:1 1.475 0:1 
SHT2 0.147 1:0 1.403 1:0 
SHT4 0.128 1:0 1.336 1:0 
SHT6 0.128 1:0 1.355 1:0 
UIS5 0.154 1:0 1.429 1:0 
UIS6 0.153 1:0 1.398 1:0 
UIS8 0.161 0:1 1.419 1:0 
Total  6:2  7:1 
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3.5 RESULTS -  TRIFOLIUM  REPENS   

3.5.1 DESCRIPTIVE POPULATION GENETICS 

A total of 351 loci were scored across a total of 602 individuals of T. repens, 216 from 

the MseI-CCT/EcoRI-ACA primer pair and 135 from the MseI-CAC/EcoRI-ACT primer pair. 

The expected heterozygosity ranged from 0.082 (SHT1 population) to 0.118 (STK2 

population), with the mean gene diversity within populations (Hw) 0.107 ± 0.002, and 0.110 

when assuming inbreeding (Table 3.14). In general these values are lower than those found in 

comparative studies on dominant markers, where outcrossing, long-lived perennial species 

had on average slightly higher levels of genetic diversity with means of 0.242 for long-lived 

perennials and 0.260 for outcrossing species (Nybom & Bartish, 2000). 

3.5.2 POPULATION SUBDIVISION 

There was moderate differentiation among populations, FST = 0.108, P<0.001 and 

0.153, P<0.001 when assuming inbreeding. A three level AMOVA was used to partition the 

total variation into among groups (geographic regions), among populations within groups and 

within populations (Table 3.15). Populations were separated into four geographic regions 

based on the clustering observed in the UPGMA tree (Figure 3.10), the first comprising 

mainland English populations (DEV1, DOR1-3, LKD2, 4, 6 and RYE1), the Isles of Scilly 

(IOS1-3) and the two landraces (ED1 and KWW1), the second grouping from North West 

Scotland (NWS1-3) and the Hebrides (SKY1-2, BEN1, UIS2 and UIS4), the third grouping 

from Shetland (SHT1,3,5), and the fourth grouping made up of those from St Kilda (STK1-5). 

The most significant component of total variation was found within populations (78.82%), in 

concordance with other assessments of genetic diversity in T. repens (Gustine & Huff, 1999; 

Kölliker et al., 2001).  
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Table 3.14 Population genetic analysis of T. repens based on two AFLP primer pairs. Polymorphic loci and 
expected heterozygosity calculated in AFLP-SURV. a proportion of polymorphic loci with allelic frequencies lying 
within range 0.05 to 0.95. 

Population Sample size (n) Polymorphic 
loci (%) a 

Allelic richness 
(A12) 

Expected 
heterozygosity 

(Hj) 
S.E.(Hj) 

    

Cultivated varieties    
ED1 24 33.3 1.376 0.113 0.008 
KWW1 24 31.3 1.389 0.111 0.008 
Wild / semi natural varieties    
DEV1 12 25.1 1.35 0.099 0.008 
DOR1 14 27.9 1.405 0.106 0.008 
DOR2 22 31.3 1.382 0.103 0.008 
DOR3 20 35.6 1.393 0.110 0.008 
IOS1 15 32.2 1.385 0.111 0.008 
IOS2 15 33.0 1.452 0.114 0.008 
IOS3 15 31.9 1.388 0.113 0.008 
LKD2 15 33.9 1.39 0.114 0.008 
LKD4 15 29.1 1.364 0.103 0.008 
LKD6 15 29.9 1.391 0.104 0.008 
RYE1 21 39.6 1.398 0.113 0.008 
      

BEN1 24 30.5 1.356 0.114 0.009 
NWS1 31 35.0 1.374 0.113 0.008 
NWS2 30 36.2 1.405 0.114 0.008 
NWS3 27 30.2 1.335 0.102 0.008 
SKY1 32 31.1 1.365 0.112 0.008 
SKY2 32 32.8 1.376 0.113 0.008 
UIS2 20 35.9 1.375 0.112 0.008 
UIS4 16 33.0 1.342 0.110 0.008 
      

SHT1 15 24.5 1.266 0.082 0.007 
SHT3 15 25.1 1.286 0.085 0.008 
SHT5 15 26.5 1.322 0.092 0.008 
      

STK1 24 31.6 1.336 0.109 0.008 
STK2 24 33.3 1.333 0.118 0.009 
STK3 24 31.1 1.34 0.113 0.009 
STK4 23 26.2 1.275 0.093 0.008 
STK5 23 28.8 1.297 0.104 0.009 
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3.5.3 GENETIC RELATIONSHIPS AMONG POPULATIONS 

The UPGMA analysis revealed distinct clustering, dividing populations amongst four 

geographic regions; St Kilda, Shetland, North West Scotland and the Hebrides, and English 

mainland and reference cultivars, with the first separation formed of populations from St 

Kilda (Figure 3.10). There was no difference to population structure when assuming 

inbreeding in T. repens. The branch lengths among the St Kilda populations are longer than 

those separating other groups indicating a higher genetic distance between populations. The 

Isles of Scilly and mainland English wild populations and the two landraces, English Dutch 

and Kent Wild White cluster closely, with similar clustering shown between populations from 

the Scottish mainland and the Hebrides. 

The model-based Bayesian clustering analysis based on the AFLP data conducted in the 

program STRUCTURE found ΔK=6 (Figure 3.11). This grouping divides the populations into 

six groups, with generally a very low, but consistent level of admixture between groups as 

shown in Table 3.16. In particular, the outer island groups of Scotland, Shetland and St Kilda, 

show particularly low levels of admixture with the other genetic population groups. Further, 

the Bayesian analysis suggests that hybridisation between the populations in Scotland and the 

historically cultivated species assessed in this study is absent. This level of ΔK closely follows 

the structure shown in the UPGMA clustering analysis. It must be stated here that the authors 

Table 3.15 Analysis of molecular variance (AMOVA) of variation across 602 T. repens individuals conducted in 
ARLEQUIN (Schneider et al., 2000). Probability tested using 1000 permutations. 

Source of variation d.f. Sum of squares Variance 
components 

Percentage of 
variation P 

Among regions 3 1465.301 3.019 11.75 <0.001 

Among populations within 
regions 25 1760.287 2.424 9.43 <0.001 

Within populations 573 11606.868 20.246 78.82 <0.001 
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acknowledge that the underlying STRUCTURE model is not well suited to data where the 

individuals in question are under isolation by distance, as is the case in this study (Pritchard et 

al. 2007; Schwartz & McKelvey, 2009). Hence these results must be interpreted with caution. 

 

Figure 3.10 Unrooted unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on 
Nei‟s genetic distances after Lynch and Milligan (1994). Values at the nodes represent 1000 bootstrap values 
shown as percentages; only values over 50% are shown. 
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Table 3.16 Estimated membership coefficients for each population to each cluster as defined by STRUCTURE for 
K = 6, based on an admixture model with correlated allele frequencies (Pritchard et al., 2000). Highest 
membership coefficients for each population are emboldened for emphasis. 

Population Inferred cluster 
 1 2 3 4 5 6 
DEV1 0.821 0.129 0.009 0.022 0.012 0.008 
DOR1 0.872 0.021 0.019 0.014 0.063 0.011 
DOR2 0.956 0.017 0.008 0.005 0.01 0.004 
DOR3 0.939 0.018 0.023 0.01 0.007 0.004 
ED1 0.922 0.018 0.014 0.021 0.006 0.018 
KWW1 0.916 0.05 0.009 0.008 0.007 0.011 
RYE1 0.964 0.011 0.008 0.004 0.009 0.003 
       

IOS1 0.036 0.932 0.009 0.006 0.009 0.008 
IOS2 0.067 0.906 0.007 0.008 0.005 0.006 
IOS3 0.034 0.937 0.01 0.006 0.007 0.006 
LKD2 0.11 0.836 0.024 0.018 0.007 0.005 
LKD4 0.035 0.829 0.052 0.02 0.054 0.01 
LKD6 0.053 0.781 0.021 0.038 0.101 0.006 
       

BEN1 0.007 0.006 0.906 0.028 0.031 0.022 
UIS2 0.039 0.017 0.858 0.014 0.059 0.013 
UIS4 0.008 0.012 0.906 0.041 0.019 0.014 
       

NWS1 0.012 0.016 0.018 0.894 0.042 0.018 
NWS2 0.086 0.053 0.015 0.754 0.082 0.01 
NWS3 0.055 0.024 0.065 0.76 0.086 0.011 
SKY1 0.008 0.015 0.13 0.754 0.027 0.066 
SKY2 0.008 0.015 0.082 0.839 0.031 0.025 
       

SHT1 0.004 0.007 0.011 0.005 0.963 0.009 
SHT3 0.007 0.021 0.02 0.011 0.939 0.003 
SHT5 0.034 0.011 0.041 0.014 0.892 0.008 
       

STK1 0.01 0.063 0.014 0.011 0.01 0.892 
STK2 0.014 0.005 0.012 0.01 0.005 0.953 
STK3 0.009 0.007 0.015 0.008 0.004 0.957 
STK4 0.003 0.003 0.006 0.004 0.004 0.98 
STK5 0.005 0.005 0.115 0.019 0.014 0.843 
       

 

 

Figure 3.11 STRUCTURE analysis of AFLP data for T. repens across the UK. Values of ΔK (Evanno et al., 2005) 
are plotted against K=2-10. 
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3.5.4 ISOLATION BY DISTANCE 

A significant positive relationship was observed between pairwise genetic distance and 

geographic distance over total population samples (r = 0.416, P<0.001), excluding the two 

landraces. Significant isolation by distance was detected amongst all mainland UK 

populations (r = 0.804, P<0.001) and also amongst populations of the North West Scotland 

region (r = 0.876, P<0.001) (see Figure 3.12). No isolation by distance was detected between 

populations on Shetland or St Kilda (graphs not shown). 

 

 

a. 
 

 
b. 

 

 
Figure 3.12 Mantel tests of isolation by distance, plotting transformed FST (Rousset, 1997) against log 
transformed distance values; a all populations b all mainland populations (including Skye collections). 

y = 0.0467x + 0.0078
R² = 0.1731

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

F S
T

Log geographic distance (km)

y = 0.0488x - 0.0492
R² = 0.6458

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

F S
T

Log geographic distance (km)



3 AFLP study 

 

140 
 

Spatial autocorrelation analysis produced a negative correlation with average kinship 

coefficient decreasing over increasing distance (Figure 3.13). Significant kinship coefficients 

were identified between individuals less than 165.01km apart, suggesting that white clover 

may be able to form a related group up to this distance. Clearly these distances reflect the 

sampling strategy used and indicate only a preliminary genetic patch size, with further 

analysis on a continuously sampled population required for a more accurate representation of 

kinship. 

 

3.5.5 ENVIRONMENTAL IMPACTS ON PATTERNS OF GENETIC DIVERSITY 

Redundancy based analysis confirmed the importance of spatial distance on genetic 

diversity in T. repens with latitude and longitude explaining 64 and 69% of the variation in 

FST and Nei‟s genetic diversity (Table 3.17). 

In addition some climatic factors appear to explain a proportion of variation in genetic 

diversity. Accounting for variation explained by spatial distance (conditional tests), rainfall 

 

Figure 3.13 Pairwise average kinship coefficient of 602 T. repens individuals plotted against geographic distance 
(km) using SPAGEDI (Hardy & Vekemans 2002); * indicates significant deviation from random mating among 
individuals (P<0.05). 

 

*

*

*
*

*
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600 700 800 900 1000

F i
j

Distance (km)



3 AFLP study 

 

141 
 

becomes non significant, perhaps due to its orthogonal relationship to spatial distance. 

Temperature, grass minimum temperature and days of snow lying remain significant, 

indicating that these variables may be important in determining genetic dissimilarities 

between populations. By fitting spatial distance as covariables, altitude and the distinction of 

a water barrier become significant factors in determining a small proportion of genetic 

variation between populations of T. repens. 

 

 

Table 3.17 Redundancy based analysis of the effect of environmental factors on genetic differentiation in T. repens 
populations. All marginal tests are shown on the left, with conditional tests on the right (including spatial distance as 
covariables in the analysis). Values in bold represent significant P values (<0.1). r2 values represent the proportion 
of variation explained by each environmental variable. 

Marginal tests  Conditional tests 

Variable set F P r2  Variable set F P r2  
      
Nei‟s genetic distance      
Distance 26.077 0.000 0.685      
Air frost 1.423 0.231 0.054  Air frost 0.429 0.705 0.006 
Altitude 0.625 0.547 0.024  Altitude 5.772 0.005 0.063 
Grass 5.349 0.015 0.176  Grass 4.643 0.014 0.053 
Island 3.235 0.052 0.115  Island 3.157 0.036 0.038 
Rainfall 4.144 0.021 0.150  Rainfall 1.415 0.287 0.018 
Snow  8.429 0.001 0.252  Snow  4.569 0.014 0.052 
Sun hours 8.021 0.003 0.243  Sun hours 5.274 0.005 0.059 
Temperature 3.018 0.040 0.201  Temperature 1.955 0.099 0.048 
         
FST          
Distance 20.889 0.000 0.635      
Air frost 1.439 0.217 0.054  Air frost 0.510 0.711 0.008 
Altitude 0.753 0.498 0.029  Altitude 3.599 0.018 0.049 
Grass 5.046 0.013 0.168  Grass 3.560 0.026 0.049 
Island 3.129 0.044 0.111  Island 4.002 0.009 0.054 
Rainfall 4.115 0.020 0.141  Rainfall 1.593 0.199 0.024 
Snow  7.249 0.001 0.225  Snow  4.109 0.009 0.055 
Sun hours 7.212 0.004 0.224  Sun hours 5.166 0.001 0.067 
Temperature 3.075 0.030 0.204  Temperature 2.413 0.031 0.066 
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3.5.6 ISLAND VERSUS MAINLAND HETEROZYGOSITY 

Contrary to other studies of island versus mainland populations, T. repens is shown to 

maintain higher expected heterozygosity levels in island populations in comparison to average 

expected heterozygosity in mainland populations (Table 3.18). However, when accounting for 

differences in population size using the rarefaction method for allelic frequency mainland 

populations of T. repens contain higher levels of allelic richness than island populations. 

 

  

Table 3.18 Island versus mainland heterozygosity following the method outlined by Frankham (1997) for within 
population heterozygosity in T. repens. a On the left are the number of occasions where mainland population 
expected heterozygosity/allelic richness is greater than island populations, on the right are occasions when island 
expected heterozygosity/allelic richness is greater than mainland populations. 

Average mainland heterozygosity (Hj) 0.108 
Average mainland allelic richness (A) 1.379 
 

Island population Hj M > Is: M < Isa A M > Is: M < Isa 
BEN1 0.114 0:1 1.356 1:0 
IOS1 0.111 0:1 1.385 0:1 
IOS2 0.114 0:1 1.452 0:1 
IOS3 0.113 0:1 1.388 0:1 
SHT1 0.082 1:0 1.266 1:0 
SHT3 0.086 1:0 1.286 1:0 
SHT5 0.092 1:0 1.322 1:0 
STK1 0.109 0:1 1.336 1:0 
STK2 0.118 0:1 1.333 1:0 
STK3 0.113 0:1 1.340 1:0 
STK4 0.093 1:0 1.275 1:0 
STK5 0.104 1:0 1.297 1:0 
UIS2 0.112 0:1 1.375 1:0 
UIS4 0.110 0:1 1.342 1:0 

Total  5:9  11:3 
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3.6 DISCUSSION 

 

3.6.1 THE SPATIAL PATTERN OF DIVERSITY IN TRIFOLIUM SPECIES ACROSS THE UK  

Comprehensive reviews of allozyme diversity identify the link between the distribution 

of genetic diversity and life history traits of species (Gottlieb, 1977; Hamrick et al., 1979; 

Hamrick & Godt, 1989, 1996). Both breeding system (defined as selfing, mixed mating or 

outcrossing), and life form (annual, short-lived perennial or long-lived perennial) account for 

46% of the variation in population genetic diversity explained by life history traits (Hamrick 

& Godt, 1989). Inbreeding populations are in general homozygous, with complete inbreeding 

reducing the effective population size (Ne) by half (Pollak, 1987). Thus, through smaller Ne, 

and therefore greater susceptibility to drift and reduced gene flow, inbreeding species are 

predicted to show higher levels of genetic variation among populations and lower 

heterozygosity within populations than outcrossing species (Wright, 1951; Allard et al., 1968; 

Loveless & Hamrick, 1984). Differences in life form are thought to influence the partitioning 

in genetic variation as perennial species are less susceptible to the effects of drift and will lose 

genetic variation more slowly than short-lived species. Therefore longer-lived species are 

more likely to have higher levels of heterozygosity within populations and lower population 

divergence (Antonovics, 1968; Brown, 1979; Loveless & Hamrick, 1984). Nonetheless, in 

spite of its predominantly inbreeding nature, T. dubium was found to contain relatively high 

levels of diversity within some populations compared to the mixed mating and outbreeding 

species assessed in the study. This inconsistency may be in part due to the presence of 

differing life forms between the two species studied, as correlations between single traits and 

their associated effect on genetic diversity become complicated in the presence of 

combinations of several different life history characteristics (Hamrick & Godt, 1996). Indeed, 
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in two trait analyses of within species diversity, measures of diversity due to in- and 

outbreeding were shown to be affected by life form, with annual inbreeding species having 

equivalent levels of within species variation as outbreeding short-lived perennials and mixed-

mating long-lived perennials (Hamrick & Godt, 1996). Hence the high levels of diversity 

within some populations of T. dubium in comparison to T. pratense and T. repens may be 

attributable to both its annual life form and potentially a low level of outbreeding in natural 

populations. It should be noted here that these levels of expected heterozygosity are only high 

in comparison to the other species assessed in this study, as Nybom (2004), in a study of 

dominant marker data finds that the average value reported for Hw is 0.23, as such the values 

reported for all species are lower than could be expected.  

The highest level of expected heterozygosity is seen in only the southern populations of 

T. dubium included in this study, with northern populations containing lower within 

population diversity. This high variability in T. dubium within population diversity levels 

compared to the relatively stable within population heterozygosity of T. pratense and T. 

repens is in accordance with other studies comparing among population diversity with 

differing breeding systems (Schoen & Brown, 1991). In addition, Schoen & Brown (1991) 

found that, in some species, increased within population variation correlated with greater 

effective population size (Ne) in inbreeding populations, with low Ne corresponding to low 

levels of diversity. This effect is seen in the T. dubium populations assessed in this study as T. 

dubium, although distributed across the UK, is more restricted in its distribution in the north, 

where smaller populations were observed (see also Preston et al., 2002). These smaller 

populations were found to have both lower heterozygosity and allelic richness within 

populations than in southern areas where the species was found in greater numbers. This 

effect is most pronounced in northern islands of the UK, with the Outer Hebrides having the 

lowest within population diversity. The extremely low within population heterozygosity in 
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this population compared to the rest of those sampled suggests that this population could be 

derived from a single founder event. 

The spatial pattern of diversity in T. dubium conforms to the „abundant centre‟ model 

which dictates that species are expected to have the highest abundance at the centre of their 

ranges where optimum conditions occur for survival and reproduction (Brussard, 1984; Lesica 

& Allendorf, 1995; Eckert et al., 2008). Conversely populations at the edge of ranges become 

smaller and more isolated; often corresponding to a lower genetic diversity within 

populations. Hence, it is suggested that the non-continuous distribution of the species in the 

north and the pattern of increasing population diversity towards the south of the range may 

indicate that the north of the UK is the edge of the range for T. dubium in the UK. 

Alternatively, the potential edge of range observed here may be a consequence of glacial 

retreat in the UK (Hampe & Petit, 2005). As such the southern populations survive as 

genetically rich source populations that have given rise to a number of distinct marginal 

populations in a species that has not yet reached stability following glaciations. 

T. pratense and T. repens have a relatively consistent level of heterozygosity within 

populations, as expected in more outbreeding species (Schoen & Brown, 1991). Variability 

appears in the T. pratense dataset when including island populations, where allelic richness, 

normalized to account for differences in population size, shows on average lower values on 

island populations compared to mainland populations. In a widespread review of island versus 

mainland heterozygosity, island populations were shown to contain lower genetic diversity 

than mainland populations, resulting from founder effects and loss of diversity due to finite 

population size (Frankham, 1997). Only populations collected from the Isles of Scilly show 

higher diversity within populations than mainland populations for all three species, suggesting 

that populations on the Isles of Scilly may have sufficient population size and gene flow from 

the mainland to maintain levels of diversity. Island populations are shown to be more 
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diverged from their mainland counterparts in both T. pratense and T. repens due to their 

isolation, genetic drift and natural selection. However, northern islands are more diverged 

from their mainland counterparts than the southern island populations included in this study. 

This may support the previous assessment that gene flow between mainland and the Isles of 

Scilly has been more prevalent than in northern islands. 

Limited gene dispersal in inbreeding populations is likely to provide larger 

differentiation between populations than in outbreeding or mixed mating populations (Brown, 

1978; Hamrick & Godt, 1989; Schoen & Brown, 1991). Hence as expected population 

differentiation, measured by FST, was greater in T. dubium than in T. pratense and T. repens. 

However the values given here are lower overall than those identified by Nybom (2004) in a 

review of GST values (an analogue of FST) from dominant marker studies. Significant isolation 

by distance was confirmed in the species studied, both including and excluding island 

populations. Redundancy analysis confirms that geographic distance is the largest determinant 

of genetic distance for all species. Geographic distance is a clear obstacle to gene dispersal, 

but geographic distance may not be the sole cause of genetic differentiation and divergence 

between populations. The populations assessed here are located on a latitudinal gradient with 

associated climatic regime changes, shown in T. pratense and T. repens to be factors in 

determining spatial patterns of diversity, even when controlling for spatial distance. The only 

factor common to all species shown to have a significant impact on genetic diversity patterns 

outside of geographic diversity is whether the population is present on an island, and thus is 

separated by a significant water barrier, highlighting the importance of isolated populations to 

overall genetic diversity in species. 
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3.6.2 T. REPENS – GENETIC EXCHANGE IN A CROP-WILD SPECIES COMPLEX 

These results emphasise the unique genetic diversity of T. repens contained within the 

more remote (Shetland and St Kilda) UK islands. The moderate level of population 

subdivision and low genetic distance found between populations of T. repens, in conjunction 

with the widespread nature of the sampling sites, serves to suggest that overall there is a high 

homogenisation of the gene pool within the UK, especially in those populations within close 

proximity of each other. Analyses of isolation by distance (IBD) serve to show a highly 

significant IBD detected across all populations, across the North West Scotland region and 

across mainland UK populations. Vicariance, in relation to any geographic barrier is also 

more likely to be detected over increasing geographic distance, so the observed pattern of IBD 

is likely to be both a function of distance and geographic barriers. Nonetheless this observed 

IBD indicates that genetic differentiation is associated with geographic distance across the 

range of T. repens within the UK. Consequently fragmentation and ultimately geographic 

isolation can maintain levels of differentiation across the range of a native, widespread 

species.  

This fragmentation is reflected by the Bayesian clustering analyses where populations 

are split into geographic groups, as well as in the dendrogram topology where populations are 

clearly separated into four „regions‟: St Kilda, Shetland, North West Scotland and the 

Hebrides, and an English mainland grouping including the two reference landraces. The 

clustering of populations from North West Scotland suggests that, in the absence of long 

distance dispersal in this species over sea barriers, anthropomorphic dispersal will have 

contributed to the similarity between the Outer Hebrides and Scottish mainland populations. 

The absence of admixture between populations from Scotland and the cultivated forms used 

in this study suggests that the consequences of past crop-wild hybridization have been 

minimal or non-existent outside of the southern UK. It should be noted here that this 
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assessment is based on two landraces and further experimentation using a wider sample of 

cultivated species is needed to clarify this issue. The clustering of historically widely 

cultivated varieties with southern English mainland wild populations indicates their close 

genetic proximity, and points to gene flow from these crop varieties to wild species, although 

ancestral similarity between the populations as a result of common ancestry cannot be 

discounted. Genetic similarity through common ancestry cannot be easily differentiated from 

gene flow using AFLP analysis; however it does seem unlikely that crop-wild gene flow will 

not have occurred where native and cultivated forms occur in a sympatric distribution. 

Measurements of pollen flow in T. repens have shown that, in accordance with the IBD 

results, it is reduced over longer distances (Osborne et al., 2000). However, while bees 

regularly forage over small distances, honey bees have been found to forage over distances 

greater than 9.5 km when differences in forage patch size and quality are large (Beekman & 

Ratnieks, 2000). Thus habitat fragmentation and loss of unimproved grassland in the UK 

(Fuller, 1987) may lead to an increase in longer distance gene flow amongst bee-pollinated 

plants such as T. repens. In relation to long distance dispersal, both large herbivores and 

migratory birds are thought to be involved in T. repens seed dispersal (Williams, 1987), with 

T. repens seed identified as being carried by larger herbivores both in epi- and endozoochory 

(Couvreur et al., 2004, 2005). Nonetheless, human influence and transportation is surely a 

significant factor for seed dispersal in this cultivated species (Nathan et al., 2008). 

St Kilda maintains a lower level of allelic richness (when accounting for sample sizes) 

than mainland populations as would be expected in an island population (MacArthur & 

Wilson 1967; Frankham, 1997). However St Kilda provides a particularly interesting example 

of an island flora as the low level of genetic differentiation amongst populations in close 

geographic proximity is not reproduced within St Kilda, which maintains relatively high 

distinctiveness between populations irrespective of their close geographic relationship. The 
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distinction of the north Scottish island populations of Shetland and St Kilda indicates that in 

such a widespread and commonly cultivated „homogeneous‟ native species as T. repens, 

isolated areas in the UK can harbour reservoirs of substantial extant variation that may have 

once existed, but no longer can be found in mainland UK. 

3.6.3 PRIORITY AREAS FOR CONSERVATION 

Priority populations for conservation can be defined in terms of their value to 

biodiversity, through higher levels of diversity, divergence and isolation from threats that 

threaten diversity. In terms of levels of diversity, the Isles of Scilly and mainland UK 

populations contain the highest diversity across the UK, with northern island populations 

typically containing lower levels of variation than mainland populations. However, does it 

necessarily follow that these low diversity populations should be given a lower priority in 

terms of conservation? Whether peripheral populations of lower diversity should be given 

precedence in terms of conservation has been the subject of considerable debate, particularly 

when the populations are peripheral in relation to a political unit while remaining globally 

common (Hunter & Hutchinson, 1994; Lesica & Allendorf, 1995; Eckert et al., 2008). It is 

acknowledged that peripheral populations of plants, while often containing lower levels of 

genetic variation than central populations, can be important for conservation efforts in spite of 

their lower population size and frequency, through their value to overall diversity in terms of 

divergence and isolation. Unique diversity inherent in isolated populations may be important 

for species adaptation to environmental change, assuming that the level of variation observed 

is reflected in quantitative traits (Hunter & Hutchinson, 1994; Eckert et al., 2008). In addition, 

many authors consider isolated and peripheral populations to be the progenitors of speciation 

events contributing to the generation of biological diversity (Mayr, 1954; Levin, 1970, 1993). 

Hence, while island populations in this study show in general a lower diversity than mainland 
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populations, the importance of isolated island populations for conservation lies in their 

divergence and isolation from mainland populations, and their consequent potential for 

containing, and maintaining, unique diversity.  

This study has shown that T. repens has been able to maintain some level of genetic 

differentiation across its native range irrespective of widespread cultivation of the species 

since the 17th century (Caradus, 1995), however in England the relationship between 

geographic and genetic differentiation is less pronounced, in the authors opinion due to the 

likely homogenising effect of gene flow between cultivated germplasm and wild populations. 

As yet, the more isolated areas of the UK in north western Scotland remain differentiated 

from southern populations and the cultivated variants assessed in this study. With no direct 

management of T. repens genetic diversity it is unlikely that this will continue. Widespread 

use of cultivated forms in outbreeding and mixed-mating species that are closely genetically 

related to forms found in other parts of the country highlights the difficulties faced when 

defining conservation areas (Greene et al., 2008). In terms of conservation strategy, this 

would suggest that where native species commonly occur in close proximity to a con-specific 

crop, priority conservation sites for genetic diversity should be allocated to areas where little 

or no cultivation has occurred and may not in the future. The most remote of the UK islands 

in this study, St Kilda, holds the most unique genetic diversity in this species, and due to its 

isolation both through natural barriers and from human influence will be the most likely to be 

able to retain its diversity in the future. 

For T. pratense the potential major threat to wild diversity, like T. repens, comes from 

cultivation and the associated effects of genetic swamping and homogenization of the gene 

pool. Consequently, as for T. repens, it follows that the level of isolation of populations from 

these threats is an important determinant of conservation priority in this species. T. pratense 

maintains distinct island populations on Shetland and in some populations in the Outer 
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Hebrides compared to mainland populations. However, the genetic proximity of one 

population on the Outer Hebrides to populations from North West Scotland indicates the 

potential for gene flow, potentially through the re-seeding of areas in the Outer Hebrides. 

While sites in Shetland and protected sites in the Outer Hebrides could be designated as 

priority areas in terms of their divergence from mainland populations, other complementary 

areas will need to be included to maintain total genetic diversity. Both the presence of 

isolation by distance and the high diversity in the south suggests appropriate complementary 

areas should be situated in the south of the UK. The Isles of Scilly is a notable area for 

conservation in the south, as, while divergence is low, populations here maintain some of the 

highest diversity within populations. For T. dubium, as a wild species, both diversity and 

divergence levels become of more importance when assessing conservation priority; hence 

conservation precedence would necessarily focus on the genetically diverse southern UK 

populations. However, it is suggested that an appropriate strategy should include some of the 

populations located on its range edge, potentially vital in terms of adaption to environmental 

change.  

Defining conservation priorities and attaching any measure of value to populations is 

always problematic, balancing the integration of different fields of biology with limited 

resources, in addition to social concerns. Despite this, in any attempt to identify populations 

that deserve priority, this study highlights the importance of baseline genetic diversity 

assessments, with all species assessed in this study requiring differing strategies in response to 

their genetic diversity assessments, life form and cultivation history. Whether isolated 

populations should be given priority in the face of restricted funds is still contentious, 

however this study suggests that island populations provide an important opportunity for 

conservation, both protecting populations from threats that endanger diversity and allowing 
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populations to diverge from their mainland counterparts, providing the building blocks for 

future diversity. 
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Chapter 4. APPLYING SNPS TO CONSERVATION 

QUESTIONS;  A CASE STUDY OF T.  PRATENSE  IN THE UK 

4.1 INTRODUCTION  
 

The expansion of modern agriculture, where genetic uniformity has overtaken numerous 

diverse local varieties, has led to the erosion of the diversity in crop gene pools. With low 

levels of genetic diversity it is likely that crop yields will struggle to maintain current levels 

due the likely effects of a changing climate, a decline in pollinators from habitat 

fragmentation and the continual adaptation of pests (Ehrlich, 1988). This known vulnerability 

in our essential plant resources has underlined the need to identify and conserve progenitors 

of crop plants, their wild relatives and traditional landraces, the conservation of which will 

help to maintain a diverse gene pool to allow future breeding programs to adapt to the 

changing needs of farmers, consumers and the environment. 

A wide range of markers are available to study the genetic variation in wild species and 

landraces. Molecular markers have evolved since the first true molecular marker, allozymes, 

which measure the variation in enzymes, to markers that directly assess DNA variation. These 

markers include those that make use of restriction enzymes to amplify regions of the genome 

to assess variation such as restriction fragment polymorphisms (Botstein et al., 1980) and 

amplified fragment length polymorphisms (Vos et al., 1995), to microsatellites (Tautz, 1989; 

Weber & May, 1989) which measure the variation in repeat regions in the genome. Known 

limitations of these markers, which can limit further research development have highlighted 

the need to produce markers than have the potential to advance population genetic analyses 

(Zhang & Hewitt, 2003). Following the increased sequencing efforts in crop plants, 

particularly in producing expressed sequence tag (EST) databases, it has become possible to 

identify and assess polymorphisms directly, at the nucleotide level, using single nucleotide 
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polymorphisms or SNPs. Random neutral markers, both SNPs assessed in non-functional 

regions of the genome and more traditional markers, are of great importance to population 

genetics and evolutionary studies (Syvänen, 2001), allowing assessments on the impacts of 

gene flow, inbreeding and genetic drift (Ouborg et al., 2010a). However there are questions as 

to whether these neutral genetic markers can reliably reflect the differences in the underlying 

adaptive traits (for reviews see Hedrick, 2001; Reed & Frankham, 2001). Van Tienderen et al. 

(2002) note that there may be only a limited set of genes that enable an ecotype or species to 

survive in a particular niche, so the variation in neutral markers may not adequately reflect the 

variation in the traits of interest. This has signalled a move away from random genetic 

markers, towards more „functional markers‟, including SNPs within coding regions of a 

candidate gene, that can be causally related to a phenotypic trait. This movement is of 

considerable importance to the development of conservation genetics, directly examining the 

link between variation and the quantitative traits that are likely to be required to ensure future 

persistence of the gene pool. With the conservation questions to date often focusing on the 

effects of habitat fragmentation, the need for functional markers is even more relevant in light 

of the recognition of more, or greater, threats posed by environmental degradation, climate 

change and the deterioration of species-species interactions (Ouborg et al., 2010b). 

Andersen & Lübberstedt (2003) separate SNPs into gene-targeted and functional 

markers, where functional markers (FMs) define those where their affect on a phenotypic trait 

is experimentally determined, through association or mutant studies. Determining FMs is 

therefore an expensive and timely task, finding the trait of interest, identifying the traits 

involved and developing markers within or flanking the genes. Thus while FMs provide 

unequivocal evidence of how diversity affects traits of interest, for conservation questions this 

may not be a feasible method for diversity studies where financial and time constraints are 
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often limiting. However, gene-targeted markers (GTMs), those that are derived from 

polymorphisms within genes, provide markers within a candidate gene and thus can provide 

more information on adaption than more randomly assigned markers, although this 

relationship is more ambiguous than that defined by FMs. Patterns of selection in the data 

derived from GTMs can be assessed following genotyping using a number of different 

statistical techniques to filter out the imprints of selection from random patterns in the data 

(Schlötterer 2002; van Tienderen et al. 2002; Oleksyk et al., 2010). 

In this chapter GTMs are used to assess spatial genetic variation in a wild Trifolium 

species, T. pratense, to identify priority areas for conservation in the UK and surrounding 

islands. T. pratense is one of the most economically important forage crop species in the 

northern hemisphere and is widely cultivated throughout (Kölliker et al., 2003). To my 

knowledge this is the first study using SNPs as GTMs to assess variation in wild populations 

of Trifolium. This study aims to 1) generate GTMs in T. pratense; 2) evaluate the genetic 

diversity in T. pratense on the basis of these markers 3) assess the feasibility of using GTMs 

to assess the diversity in wild species such as T. pratense.  
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4.2 METHODS  

The study into adaptive variation in T. pratense was carried out at the University of 

Birmingham, UK and Aberystwyth University, Gogerddan Campus, UK, formerly the 

Institute of Grassland and Environmental Research (IGER). 

4.2.1  CANDIDATE GENE SELECTION 

To assess potential adaptive diversity in T. pratense nine gene loci were selected for 

further analysis, representing genes associated with drought-stress. From a preliminary survey 

conducted at IGER by Leif Skøt to find stress related genes in published T. pratense EST 

sequences, a total of 20 sequences were found to be of interest (see Table 4.1). Reference 

numbers for these 20 are reported as received from IGER. These consist of both Genbank 

accession numbers (those beginning BB) and TIGR Plant Transcript Assemblies accession 

numbers (those beginning TA) which describe large assembled transcripts of multiple ESTs 

(Appendix 4 contains further information on transcript assemblies used in this study). So as 

not to bias statistical analysis through unequal loci lengths, in addition to the increased 

likelihood of sequencing error with longer sequences, individual EST sequences were selected 

from each assembly for further analysis.  

Each locus received from IGER was compared with the available database of sequence 

information using BLAST (Basic Local Alignment Search Tool) (Zhang et al., 2000) to 

confirm the putative function of each locus, in conjunction with a review of the published 

information on each locus. The number of potential candidate loci was reduced to nine by 

confining candidate genes for further study to genes specifically related to drought stress (see 

Table 4.1). 
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Table 4.1 Blast search of nucleotide database (nr/nt) for candidate genes for putative T. pratense drought stress associated genes conducted on 28/6/09 using BLAST v2.2.21 
(Zhang et al., 2000). Underlined EST references indicate the nine loci selected for amplification. Bold and underlined EST references indiciate the five loci used for further 
analysis. EST reference numbers relate to Genbank (BB) and TIGR transcript assembly database (TA) accession numbers. a The number of alignments expected by chance (a 
reflection of the size of the database and scoring system used): b Indication of the proportion of the alignment that contain identical nucleotide pairs: c The percent of the query 
sequence that is matched by the aligned segments. d Obtained using Megablast; an algorithm optimised for highly similar sequences: e Obtained using blastn; an algorithm 
optimised for somewhat similar sequences. 

T. pratense 
EST 
reference 

Template gene  
Species Function BLAST ref E valuea Max 

identb 
(%) 

Query 
coveragec 

(%) 

Direct function in 
drought stress 

Potential 
function in 
drought stress 

References 

BB910055 Medicago 
sativa 

Sucrose-
phosphate 
synthase mRNA 

AF322116 0.0d 92 100 Preferential 
partitioning of 
carbon to sucrose 
occurs under 
osmotic stress 

 Quick et al., 
1989; Zrenner & 
Stitt, 1991 

BB914596 Arabidopsis 
thaliana 

SIP3 (SOS3-
interacting 
protein 3) 

NM119244 2e-93 d 80 81  Interacts with 
SOS3, a Ca2+ 
sensor involved 
in salt stress 

Halfter et al., 
2000 

BB914880 Arabidopsis 
thaliana 

C2H2 zinc-
finger protein 
SERRATE (SE) 
mRNA 

AF311221 2e-70e 79 55  Some zinc-
finger proteins 
have roles 
drought 
tolerance 

Prigge & 
Wagner 2001; 
Huang & Zhang, 
2007; Xu et al., 
2008; 

BB920885 Medicago 
sativa 

mRNA for heat 
shock protein 
(HSP) 

X58711 1e-174 d 86 96 Transcription of 
HSPs induced by 
osmotic shock 

 Gyorgyey et al. 
1991 
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T. pratense 
EST 
reference 

Template gene  
Species Function BLAST ref E valuea Max 

identb 
(%) 

Query 
coveragec 

(%) 

Direct function in 
drought stress 

Potential 
function in 
drought stress 

References 

BB922071 Lotus 
japonicus 

LjM3Kalpha 
mRNA for 
mitogen-
activated kinase 
kinase kinase 
alpha 

AB167408 6e-93 d 78 96  Some MaPKKK 
genes have roles 
in stress 
signalling 

Kim et al., 2003; 
Kinoshita et al. 
2004; Nakagami 
et al., 2004 

BB925852 Lycopersicon 
esculentum 

Ethylene 
overproducer-
like 1 (EOL1) 
mRNA 

DQ099681 2e-71 e 77 62 Abiotic stresses 
(including 
drought) increase 
ethlyene 
production 

 Wang et al., 
2002; Tanaka et 
al., 2005; Zhu, et 
al. 2007 

BB926818 Pisum 
sativum 

Heat shock 
transcription 
factor (HSFA) 

AJ010643 7e-162 d 86 98  Some HSFs 
have roles in 
drought 
signalling 

Sakuma et al., 
2006; von 
Koskull-Doering 
et al., 2007 

TA1010_ 
57577 
(BB924456) 

Pisum 
sativum 

PsEXT8 mRNA 
for xyloglucan 
endo-
transglucosylase 

AB270623 4e-115 d 89 58 Over-expression 
of XTHs increase 
drought tolerance 

 Bacon, 1999; 
Cosgrove, 2005; 
Cho et al., 2006;  

TA1106_ 
57577 

Arabidopsis 
thaliana 

LBD39 (Lateral 
organ domain 
containing 
protein 39) 
mRNA 

NM119918 9e-78 e 81 28  No known role 
in stress 
response 

Shuai et al., 
2002 
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T. pratense 
EST 
reference 

Template gene  
Species Function BLAST ref E valuea Max 

identb 
(%) 

Query 
coveragec 

(%) 

Direct function in 
drought stress 

Potential 
function in 
drought stress 

References 

TA1548_ 
57577 
(BB915621
) 

Lycopersicon 
esculentum 

Ethylene 
response factor 
4 (ERF4) 
mRNA 

AY192370 1e-34 e 77 37 ERF4 is induced 
by drought stress 

 Fujimoto et al., 
2000; Tournier 
et al. 2003; Yang 
et al., 2005 

TA3078_ 
57577 
(BB905957
) 

Trifolium 
repens 

Putative 
dehydration-
responsive 
element binding 
protein 
(DREB2-P') 
gene 

EU846195 2e-66 d 81 39 DREB2 confers 
drought resistance 
in transgenic 
plants 

 Chen et al., 
2007; Hand et 
al., 2008 

TA3611_ 
57577 

Glycine max GmFAD2-2a 
gene for 
microsomal 
omega-6 fatty 
acid desaturase 

AB188252 0.0 d 86 90  Contributes to 
drought 
resistance in 
Citrus 
reticulata, not in 
Arabidopsis or 
Populus 

Gimeno et al., 
2009 

TA3695_ 
57577 
(BB916074
) 

Populus x 
Canadensis 

mRNA for 
osmosensor 
histidine-
aspartate kinase 
(hk1 gene) 

AJ937747 2e-58 e 69 99 HK1 functions as 
a sensor to 
osmotic stress 

 Urao et al., 
1999; Chefdor et 
al., 2006 
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T. pratense 
EST 
reference 

Template gene  
Species Function BLAST ref E valuea Max 

identb 
(%) 

Query 
coveragec 

(%) 

Direct function in 
drought stress 

Potential 
function in 
drought stress 

References 

TA3981_ 
57577 

Medicago 
truncatula 

Respiratory 
burst oxidase 1 
mRNA 

AY821801 0.0 d 92 71  Reactive oxygen 
intermediates 
(ROIs) 
produced in 
response to both 
abiotic and 
biotic stresses 

Mittler, 2002 

TA555_ 
57577 
(BB926319
) 

Medicago 
truncatula 

Aquaporin 
protein PIP1;1 
mRNA 

AF386739 0.0 d 86 72 Overexpression of 
aquaporins can 
increase/decrease 
sensitivity to 
drought stress 

 Aharon et al., 
2003; Yu et al., 
2005; Aroca et 
al., 2006 

TA572_ 
57577 

Citrus 
sinensis 

psaDa mRNA 
for PSI reaction 
center subunit II 

AF322116 3e-127 e 83 51  No known role 
in drought stress 
response 

Giardi et al., 
1996; Kohzuma 
et al., 2009 

TA613_ 
57577 

Glycine max mRNA for 
peroxisomal 
ascorbate 
peroxidase 

NM119244 2e-32 d 86 23  Antioxidant 
function in 
response to 
stress including 
drought 

Mittler & 
Zilinskas, 1994; 
D'Arcy-Lameta 
et al., 2006; Arai 
et al., 2008;  

TA989_ 
57577 
(BB906196
) 

Trifolium 
pratense 

RNA for 
putative 
transcription 
factor EREBP 

AF311221 0.0 d 99 95 EREBP family 
implicated in the 
regulation of 
drought and cold 
tolerance genes 

 Kizis et al., 
2001; Isobe et 
al., 2003 
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4.2.2 LEAF MATERIAL AND DNA EXTRACTION 

Leaf material for T. pratense was collected and DNA extracted as detailed in Chapter 3. 

From the 15 individuals per population analysed in the previous AFLP study, five individuals 

per population were randomly selected using Microsoft Excel for further analysis. 

4.2.3  PRIMER DESIGN 

PRIMER3 version 0.4.0 (Rozen & Skaletsky, 2000) was used to design primers for each 

locus. Primer pair design details are given for each locus in Appendix 5. All primers were 

ordered from Eurofins MWG Operon and resuspended in 1 x TE buffer to a final volume of 

100pmol/µl, before storage at -20°C. Primers for each locus are given in Appendix 5. 

4.2.4 TRIAL SET 

One individual was randomly selected from three dispersed populations, Isles of Scilly, 

the Lake District and Skye for PCR optimisation and sequencing trials of T. pratense. To 

avoid some of the problems associated with ascertainment bias no locus was excluded from 

further analysis, even in the absence of observed SNPs. 

4.2.5 LOCUS AMPLIFICATION 

Following trials varying DNA quantity, Mg2+ concentration, thermocycling profiles and 

PCR adjuvants the PCR mix outlined in Table 4.2 was found to produce optimal and reliable 

results for all loci. The standard thermocycling profile consisted of an initial denaturation at 

94°C for 3min, followed by 35 cycles consisting of 94°C for 30s, annealing for 1 min and 

72°C for 1 min, with a final extension period of 5 min at 72°C. Annealing temperature was 

specific to each primer and is outlined in Table 4.3. 
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Table 4.2 Components of PCR mix to a final volume of 25µl per individual reaction. 

Reagents  
ReddyMixTM PCR Master Mix (2x) 12.5µl 
Forward primer 25pmol 
Reverse primer 25pmol 
DNA 10ng 
BSA 0.8µg 
SDW To a final volume of 25µl 

 
Amplification products were separated in 1.2% agarose gel (1 x TBE buffer). The 

desired fragments were excised from the gel and the DNA cleaned using QIAquick Gel 

Extraction Kit (Qiagen). The protocol outlined by Qiagen (2006) for gel extractions was 

followed, including the optional steps recommended for DNA that will be subjected to 

subsequent sequencing. In addition the ethanol wash stage was held for five minutes and 

repeated twice to ensure less contaminants remained in the DNA. See Appendices 1 and 2 for 

DNA extraction protocol and stock solution information. 

 
Table 4.3 Annealing temperature for each locus after PCR optimisation: a n/a amplification was unsuccessful. 

EST reference T. pratense 

BB910055 61 
BB920885 n/aa 
BB925852 60 
TA1010_57577  n/aa 
TA1548_57577 (BB915621) 61 
TA3078_57577  n/aa 
TA3695_57577 (BB916074) 61 
TA555_57577  n/aa 
TA989_57577 (BB906196) 60 

 

4.2.6 SEQUENCING 

Sequencing reactions were trialled in the Functional Genomics and Proteomics unit at 

the University of Birmingham, using an ABI 3730 DNA analyser. After trials gel extractions 
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were sent to the Institute of Biological, Evironmental and Rural Sciences (formerly IGER) at 

the University of Aberystwyth for sequencing on the ABI Prism 3130 sequencer. 

 

4.2.7 GENETIC DIVERSITY ANALYSIS – PROGRAMS USED FOR T. PRATENSE ANALYSIS 

File Preparation 

Sequences were manually edited and aligned using the software PROSEQ version 3 

(Filatov, 2002). Heterozygous sites in the unresolved dataset were manually coded using 

IUPAC (International Union of Pure and Applied Chemistry) notation. Singletons, those 

polymorphisms appearing in one individual, were removed from the dataset due to the 

potential for these to have derived from sequencing error. PDRAW32 (AcaClone software, 

http://www.acaclone.com) was used to image the loci amplified in this study. BLAST (Zhang 

et al., 2000), ORF Finder (http://www.ncbi.nlm.nih.gov/projects/gorf/), GenScan (Burge & 

Karlin, 1997) and a translation macro written in Excel were used to obtain putative coding 

regions for the amplified loci. 

Basic analyses and neutrality tests 

The PHASE algorithm (Stephens et al., 2001; Stephens & Donnelly 2003) was 

implemented within DNASP version 5 (Librado & Rozas, 2009) to resolve haplotype phase 

for the T. pratense individuals. Basic statistics, such as the number of variable sites for each 

locus, nucleotide diversity and haplotype diversity were generated from the resolved 

sequences using DNASP. Sites with alignment gaps, as in locus 22 at 383bp (Figure 4.1), and 

sites containing missing data are excluded from most analyses by the program. Nucleotide 

diversity (π) was assessed as the average number of nucleotide differences per site between 

two sequences (Nei, 1987). FST, a measure of population differentiation or genetic distance 

was also calculated for each locus using DNASP. 

http://www.acaclone.com/
http://www.ncbi.nlm.nih.gov/projects/gorf/
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Neutrality tests such as Tajimas D, Fay and Wu‟s H and the McDonald and Kreitman 

test were conducted to establish whether there are any departures from the neutral model of 

evolution (Kimura, 1983) which could bias further analyses that require loci to be in Hardy-

Weinburg equilibrium. Tajimas D (Tajima, 1989) is used to test whether mutations are 

selectively neutral by assessing the differences between the number of segregating sites and 

the average number of nucleotide differences. If the numbers are the same or similar then null 

hypothesis of neutrality cannot be rejected, however if the two values are significantly 

different then there is evidence for selection at loci. Positive values, a result of low numbers 

of low and high frequency SNPs indicate balancing selection or population decline, with 

negative values resulting from an excess of low frequency mutations, indicating purifying 

selection and/or population expansion. Fay and Wu‟s H (Fay & Wu, 2000) is similarly based 

on the distribution of alleles within populations, testing the average number of nucleotide 

differences between pairs of sequences and θH which is an estimator based on the frequency 

of derived variants. Significance was tested using 10,000 coalescent simulations within 

DNASP. A sequence from T. dubium was used as an outgroup for this test. Under neutrality 

this value should be near to 0, while significantly negative values indicate an excess of high 

frequency variants (non ancestral) , potentially indicative of positive selection. 

The above tests can be susceptible to underlying demographic factors, such as the 

presence of population structure or population growth (Nielsen, 2005). The McDonald and 

Kreitman test (MKT) was used to further test these loci for evidence of selection as this test is 

more robust to demographic assumptions (although see Egea et al., 2008). MKT compares 

synonymous and non-synonymous substitutions within and between species to test for 

selection, testing the idea that negative selection should decrease the level of non-synonymous 

mutations while positive selection increase it, with the effect stronger in divergence data than 
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within species (Nielsen, 2005; Egea et al., 2008). Significant values indicate a departure from 

neutral evolution. 

Isolation by distance 

Isolation by distance (IBD) was tested using a Mantel test of matrices of pairwise FST 

values transformed to FST/(1- FST) and log-transformed geographic distances Rousset (1997). 

One population was removed from the T21 locus analysis (SHT4) as it contains only one 

individual. Mantel tests were carried out in GENALEX version 6.1 (Peakall & Smouse, 2006), 

on FST matrices produced in DNASP, with significance tested using 999 permutations. A 

matrix of average FST values between populations was generated by averaging values from 

the locus specific matrices.  

Haplotype analysis and AMOVA 

Networks based on haplotype frequencies were produced using TCS version 1.21 

(Clement et al., 2000), using the default parameters. TCS uses the statistical parsimony (SP) 

method outlined in Templeton et al. (1992), which assesses the maximum number of 

differences that are the results of a single substitution, and then joins individuals that differ by 

one substitution, then two, then three etc until the maximum limit is reached or all the 

haplotypes are included in the network (Posada & Crandall, 2002). Thus, SP emphasizes 

similarities between haplotypes and gives weight to shorter branches (Joly et al., 2007). The 

relationship between haplotypes and geographical area was shown by grouping the haplotypes 

present in each region and using this data to produce a pie chart, displaying the chart on the 

appropriate region on the UK. 

Analysis of molecular variance (AMOVA) was carried out using ARLEQUIN (version 

2.0) (Schneider et al., 2000) on each locus to estimate the partition of variation among 
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regions, among populations within regions and within populations. Population regions were 

identified as groups defined by clustering analysis of AFLP markers (see Chapter 3). 

Linkage disequilibrium 

DNASP was used to calculate the degree of linkage disequilibrium (LD) between all 

informative sites within loci. Tri-allelic positions, such as those in locus 96, are excluded 

from linkage disequilibrium analysis by DNASP and therefore these two SNPs (positions 

103bp and 181bp) were removed from further analyses. R2 values (Hill & Robertson, 1968) 

generated in DNASP were chosen to provide values between 0 and 1 for graphing purposes. 

Data was transferred to Excel where triangular matrices were formatted to produce heatmaps 

to graphically display the data, with red squares indicating LD measures near to 1 and green 

used to indicate values near to 0. A Fisher‟s exact test, implemented in DNASP, was used to 

test whether associations between two SNP positions were significant. 

Analysis across all five loci 

An input file for analyses was created by coding the base pairs at each of the SNP 

positions at each locus as numerical codominant data. Using this input file genetic distance 

between populations was generated in GENALEX and the resulting matrix used to perform a 

principal coordinates analysis (PCA) within GENALEX. An unrooted dendrogram was 

constructed from the matrix using UPGMA within the NEIGHBOR program of the PHYLIP 

package (version 3.67) (Felsenstein, 2004). Model-based clustering analysis implemented in 

the program STRUCTURE version 2.3.3 (Pritchard et al., 2000) was used to further investigate 

population structure in the T. pratense individuals, without prior information on sampling 

areas. STRUCTURE identifies K (unknown) populations within the dataset and assigns each 

population/individual to one or more population/cluster. An admixture model with 

independent allele frequencies was run fifteen times for each value of K (K = 2-10), with a 
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burn-in period of 105 for 50x104 iterations. Runs using the correlated and independent options 

for allele frequencies showed equivalent results. The number of clusters was determined using 

the method outlined by Evanno et al. (2005). STRUCTURE plots were visualised using 

DISTRUCT version 1.1 (Rosenburg, 2004). 
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4.3 RESULTS 
 

4.3.1 DNA EXTRACTION AND SEQUENCING 

Good quality sequences were obtained for the five amplified loci; T21 (EST reference 

BB915621), T52 (BB925852), T55 (BB910055), T74 (BB916074) and T96 (BB906196), 

totalling 2,331bp. All sequence data was checked by eye before subsequent analysis. 

Sequence lengths and number of individuals sequenced for each locus are given in Table 4.4, 

with images of the regions sequenced in T. pratense given in Figure 4.1. 

 

Table 4.4 Number and types of polymorphisms found in the five loci for the 70 T. pratense individuals assessed 
in the study. * including one INDEL. ^ Two transitions were present in the coding region, and no transversion. # 
Only two tri-allelic SNPs were identified in the coding region and were not counted for transition/transversion 
ratios. 

Gene  T21 T52 T55 T74 T96 
Number of haploid sequences 104 124 134 130 124 
Total base pairs screened 426 547 437 492 429 

 Coding 354 294 437 408 196 

 Non-coding 72 253 0 83 233 

 5'UTR 0 0 0 0 0 

 Intron 0 83 0 83 0 

 3'UTR 72 170 0 0 233 
Polymorphism detected 7* 9 4 11 7 

 Coding 6 2 4 11 2# 

 Synonymous 3 2 1 5 1 

 Non-synonymous 3 0 3 6 1 

 Non-coding 1 7 0 0 5 

 5'UTR 0 0 0 0 0 

 Intron 0 2 0 0 0 

 3'UTR 1 5 0 0 5 
      
Transition/transversion ratio 1.0 2.0^ 3.0 0.833 n/a# 
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Figure 4.1 Pictorial representations of loci amplified from Trifolium pratense. Blue bars indicate areas 
homologous to sequences found during a BLAST search. Orange bars indicate those areas designated as ORFs 
using ORF Finder. a) T21, similar ERF4 b) T52, similar to EOL1 c) T55, similar to sucrose phosphate synthase 
d) T74, similar to HK1 e) T96, similar to EREBP. 

 

Total SNP frequency within the loci analysed is 1/63 base pairs (polymorphism 

frequency 1/61 base pairs), and 1/93 base pairs in the coding regions. The average ratio of 

transitions (purine/purine or pyrimidine/pyrimidine) to transversion (purine to pyrimidine and 

vica versa) is 1.71 indicating a transition bias in this species. The ratio found here is similar to 

d

d. 

 

e

e. 
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the values reported for other plant species, such as 1.72 for Arabidopsis thaliana and 1.82 in 

Populus tremula (Martinez-Castilla & Alvarez-Buyella, 2003; Ingvarsson, 2008). 

 

4.3.2 INTRASPECIFIC DIVERSITY AND NEUTRALITY ANALYSIS 

General diversity statistics are shown in Table 4.5. These results show a high level of 

variability in this species, with diversity measures varying between loci, as well as between 

populations for the same loci. Highest diversity across all individuals was found in the T21, 

T74 and T96 loci, with the lowest diversity found in the T55 locus. These results are reflected 

in the haplotypic diversity measures. While locus T21 has a high level of diversity this is 

restricted to some populations as two populations show little or no diversity for this locus 

(IOS4 and LKD3). Similarly for locus T55, only six of the 14 populations are polymorphic.  

 
Table 4.5 Summary polymorphism statistics for all five loci; a Nucleotide diversity in all sites; b Nucleotide 
diversity in synonymous sites; c nucleotide diversity in replacement sites; d nucleotide diversity in silent sites; e 
haplotype diversity; 1 no SNPs present; 2 Data from two or more individuals required to perform analyses; 
*values have been multiplied by 103. 

 Locus Samples Length Variable 
sites π alla* π 

synb* 
π 

repc* π sild* Hde Tajima's D 

T21 

All 52 426 6 4.42 7.56 4.62 4.09 0.771 1.375 
IOS4 3 420 0 0.00 0.00 0.00 0.00 0.000 n/a1 
IOS5 5 420 4 3.92 4.72 4.62 2.55 0.689 0.626 
LKD1 4 420 2 2.64 0.00 3.97 0.00 0.679 1.621 
LKD3 5 420 2 1.59 0.00 2.39 0.00 0.600 -0.184 
LKD6 5 420 3 2.54 4.73 2.55 2.55 0.356 0.021 
NWS4 5 420 4 3.65 9.42 2.95 5.10 0.511 1.375 
SKY3 3 420 4 5.56 7.98 6.22 4.31 0.733 1.799 
SKY5 3 420 5 5.08 11.51 4.54 6.22 0.800 -0.144 
UIS5 5 420 5 4.39 10.90 3.67 5.90 0.511 -0.247 
DEV2 5 420 3 3.39 4.72 3.83 2.55 0.711 1.227 
DEV3 5 420 2 2.12 7.56 4.62 4.09 0.622 0.830 
SHT2 n/a n/a n/a n/a n/a n/a n/a n/a n/a2 
SHT4 1 426 0 0.00 0.00 0.00 0.00 0.000 n/a2 
SHT6 3 420 3 3.81 7.08 3.83 3.83 0.800 1.124 
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 Locus Samples Length Variable 
sites π alla* π 

synb* 
π 

repc* π sild* Hde Tajima's D 

T52 

All 62 547 9 2.01 2.22 0.00 3.41 0.620 -0.822 
IOS4 4 547 3 2.02 0.00 0.00 3.43 0.607 -0.177 
IOS5 4 547 3 1.70 0.00 0.00 2.87 0.643 -0.812 
LKD1 5 547 5 2.97 0.00 0.00 5.02 0.733 -0.329 
LKD3 5 547 1 0.37 2.85 0.00 0.62 0.200 -1.112 
LKD6 5 547 3 1.67 0.00 0.00 2.82 0.511 -0.507 
NWS4 5 547 4 1.46 0.00 0.00 2.48 0.378 -1.667 
SKY3 5 547 3 1.95 5.07 0.00 3.30 0.622 0.021 
SKY5 5 547 5 2.11 5.07 0.00 3.58 0.644 -1.388 
UIS5 5 547 3 2.32 2.22 0.00 3.41 0.600 -0.822 
DEV2 5 547 4 1.95 6.65 0.00 3.30 0.711 -0.943 
DEV3 2 547 1 0.91 7.13 0.00 1.55 0.500 -0.612 
SHT2 4 547 1 0.46 0.00 0.00 0.77 0.250 -1.055 
SHT4 5 547 1 0.98 0.00 0.00 1.65 0.533 1.303 
SHT6 3 547 1 0.61 0.00 0.00 1.03 0.333 -0.933 

T55 

All 67 437 4 0.66 0.63 0.67 0.00 0.209 -1.143 
IOS4 5 437 2 1.68 5.72 0.59 0.00 0.600 0.120 
IOS5 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
LKD1 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
LKD3 5 437 2 1.63 0.00 2.08 0.00 0.356 0.019 
LKD6 5 437 2 0.92 0.00 1.17 0.00 0.200 -1.401 
NWS4 4 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
SKY3 4 437 1 0.98 0.00 1.25 0.00 0.429 0.334 
SKY5 5 437 1 0.81 0.00 1.04 0.00 0.356 0.015 
UIS5 4 437 3 2.37 0.00 3.03 0.00 0.679 -0.431 
DEV2 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
DEV3 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
SHT2 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
SHT4 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 
SHT6 5 437 0 0.00 0.00 0.00 0.00 0.000 n/a1 

 
 
 
 
 
 
 
T74 
 
 
 
 
 

All 65 492 11 4.68 16.20 2.57 8.51 0.732 0.348 
IOS4 5 492 5 3.97 14.03 2.11 7.37 0.778 0.427 
IOS5 4 492 4 3.12 12.06 1.36 6.33 0.607 -0.020 
LKD1 4 492 5 3.63 12.07 2.15 6.34 0.464 -0.335 
LKD3 5 492 6 5.78 17.40 3.94 9.14 0.711 1.411 
LKD6 5 492 9 6.96 19.38 5.20 10.17 0.822 0.332 
NWS4 5 492 4 3.66 13.79 1.69 7.24 0.644 1.048 
SKY3 5 492 5 4.20 17.43 1.48 9.15 0.778 0.679 
SKY5 5 492 4 4.20 16.69 1.69 8.77 0.733 1.772 
UIS5 4 492 5 3.63 9.32 2.94 4.90 0.464 -0.335 

DEV2 5 492 6 5.15 12.32 4.43 6.48 0.800 0.804 
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 Locus Samples Length Variable 
sites π alla* π 

synb* 
π 

repc* π sild* Hde Tajima's D 

T74 
 

DEV3 4 492 7 4.14 11.26 3.17 5.92 0.643 -1.170 
SHT2 5 492 1 0.72 3.86 0.00 2.03 0.356 0.015 
SHT4 4 492 4 2.03 8.17 0.79 4.29 0.250 -1.535 
SHT6 5 492 1 0.41 2.17 0.00 1.14 0.200 -1.112 

T96 

All 62 429 7 3.74 10.53 2.68 4.34 0.801 -0.090 
IOS4 4 429 3 3.08 5.81 0.00 4.79 0.679 0.585 
IOS5 5 429 5 3.94 4.65 0.00 6.12 0.933 -0.178 
LKD1 5 429 4 3.83 8.83 3.65 3.95 0.778 -0.279 
LKD3 4 429 2 2.25 10.03 3.52 1.55 0.607 0.932 
LKD6 5 429 4 3.42 4.67 3.50 3.38 0.889 0.143 
NWS4 5 429 1 1.30 0.00 3.65 0.00 0.556 1.464 
SKY3 2 429 3 3.50 11.72 3.28 3.63 0.500 -0.754 
SKY5 4 429 3 4.08 22.44 1.64 5.44 0.679 0.586 
UIS5 5 429 4 2.49 16.54 0.00 3.86 0.356 0.021 
DEV2 5 429 4 3.99 12.44 2.33 4.91 0.822 0.807 
DEV3 5 429 4 2.85 4.66 3.06 2.74 0.800 -0.521 
SHT2 5 429 3 2.75 0.00 3.06 2.58 0.689 0.398 
SHT4 4 429 2 1.83 5.83 3.52 0.91 0.679 0.069 
SHT6 4 429 3 2.58 0.00 1.64 3.11 0.607 -0.177 
 

Tests of neutrality were conducted on the data and the results given in Table 4.6, with 

some loci giving positive (indicating balancing selection or population decline) and some 

giving negative (indicating purifying selection or population expansion) Tajima‟s D values.  

 
Table 4.6 Neutrality tests in 5 Trifolium pratense loci. D = Tajimas D, H =Fay and Wu‟s H (normalisation). dS 
Number of synonymous nucleotide substitutions per synonymous site, dN number of non-synonymous sites per 
non-synonymous sites. dN and dS estimated with a T. dubium outgroup. Dn and Ds Jukes and cantor correction 
*Significant at the 0.05 level. 

Locus  D H 

22 1.375 0.261 
52 -0.822 -2.543* 
55 -1.143 -1.687* 
74 0.348 1.192 
96 -0.09 -0.579 

 

However, these results give no significant evidence of a departure from neutral 

expectations, except in two loci, T52 and T55 where Fay and Wu‟s H indicated that these loci 
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are putatively under positive selection. The McDonald and Kreitman test, a test for neutrality 

that is not as susceptible to bias due to population structure as Fay and Wu‟s H (Nielson, 

2005), showed no significant evidence of selection at any of the loci (tables not shown).  

 

4.3.3 GENETIC DIFFERENTIATION 

Values of FST for each locus are given in Figure 4.2, varying from 0.134 in locus T55 to 

0.225 in locus T74. 

 

 
Figure 4.2 FST values for five loci assessed in the study. 

 

4.3.4 ISOLATION BY DISTANCE 

A significant relationship between geographic and genetic distance was found in locus 

T52 and T74 (Figure 4.3 b. and Figure 4.3 d. respectively) as well as when grouping data for 

all loci. However, while these relationships are significant, only a small proportion of 

variation in genetic distance in these loci is described by geographic distance, as reflected in 

the R2 values. 
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a. b. 

  
c. d. 

  
e. f. 

  

 
Figure 4.3 Mantel tests of isolation by distance plotted using transformed FST (Rousset, 1997) against log 
transformed distance values; a T21 b T52 c T55 d T74 e T96 f all loci. 
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4.3.5 ANALYSIS OF MOLECULAR VARIATION 

AMOVA results revealed that the largest part of the variation is found within 

populations for all loci (Table 4.7). 

Table 4.7 AMOVA for the five loci assessed in the study. d.f., degrees of freedom; SS, sums of squares; Var, 
variance components; and %, percentage of variation. 

Locus Source of 
variation 

Among 
regions 

Among populations 
within regions 

Within 
populations Total 

T21 

d.f. 2 9 90 101 
SS 22.63 19.69 104.64 146.96 
Var 0.36 0.12 1.16 1.64 
% 21.96 7.19 70.85  

T52 

d.f. 2 11 110 123 
SS 4.72 14.68 48.38 67.77 
Var 0.03 0.10 0.44 0.57 
% 4.52 17.95 77.53  

T55 

d.f. 2 11 120 133 
SS 1.30 2.89 15.03 19.21 
Var 0.01 0.01 0.13 0.15 
% 6.32 9.63 84.05  

T74 

d.f. 2 11 116 129 
SS 24.44 17.90 106.10 148.43 
Var 0.26 0.08 0.91 1.25 
% 20.77 6.15 73.08  

T96 

d.f. 2 11 110 123 
SS 10.50 17.89 70.40 98.79 
Var 0.10 0.11 0.64 0.85 
% 11.33 13.19 75.47  

 

This pattern is similar to that found using AFLP markers for these populations in 

Chapter 3, where 84% of variation in these markers was found within populations along with 

other published studies of variation in T. pratense (Hagen & Hamrick 1998; Mosjidis et al., 

2004). Both locus T21 and locus T74, in comparison to the other loci in this study, show high 

variation among regions, 21.96% and 20.77% respectively. 
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4.3.6 GEOGRAPHIC HAPLOTYPE DIVERSITY 

Haplotypes generated from DNASP were grouped by regions and used to generate the 

maps shown in Figure 4.4 - Figure 4.8 to further evaluate the spatial genetic diversity in these 

loci. It should be noted that population numbers are not equivalent between regions, with the 

Outer Hebrides consisting of one population, the Isles of Scilly and Devon two populations, 

and the Lake District, North West Scotland and Shetland consisting of three populations. The 

haplotypic analysis for the T21 locus indicates that some haplotypes only occur in specific 

geographical regions (haplotypes T21g, T21h, T21i and T21j), while others have a much 

wider distribution. However haplotypes T21c and T21d are restricted to the north of the 

range. The T52 locus (Figure 4.5) shows little geographic segregation, although certain 

haplotypes T52e, T52f, T52h and T52j, are unique to single regions. T55 only consists of five 

haplotypes, of which haplotype T55a is found across the UK and T55b and T55c are restricted 

to the north of the region. T74 shows no clear patterns although T74g is found only in the 

south, in both Devon and the Isles of Scilly. T96 shows a more geographically segregated 

pattern, with only four of the 12 haplotypes found in Scotland, and the rest restricted to 

southern and central UK. The haplotype networks determine which polymorphisms define the 

differences between the haplotypes, with some polymorphisms shown to be restricted to 

geographic differences. For example, the haplotype network shown in Figure 4.6 for T55 

indicates that the C/T polymorphism is only present in North West Scotland. 
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a. 

 
b. 

 
Figure 4.4 T21 haplotype analysis. NOTE: The colours in a do not correspond to those in image b. a Haplotype 
map, representing the number and proportion of haplotypes present at each of the six geographic „regions‟ 
studied. b Haplotype network estimated using statistical parsimony in TCS (Clement et al., 2000). Node size 
represents number of haplotypes. Letters within nodes correspond to the haplotypes shown in a. DNA changes 
between haplotypes are indicated on the branches between the nodes. Coloured circles next to each node indicate 
which populations contain the given haplotype. 
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a. 

 
b. 

 
Figure 4.5 T52 haplotype analysis. NOTE: The colours in a do not correspond to those in image b. a Haplotype 
map, representing the number and proportion of haplotypes present at each of the six geographic „regions‟ 
studied. b Haplotype network estimated using statistical parsimony in TCS (Clement et al., 2000). Node size 
represents number of haplotypes. Letters within nodes correspond to the haplotypes shown in a. DNA changes 
between haplotypes are indicated on the branches between the nodes. Coloured circles next to each node indicate 
which populations contain the given haplotype. 
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a. 

 
b. 

 
Figure 4.6 T55 haplotype analysis. NOTE: The colours in a do not correspond to those in image b. a Haplotype 
map, representing the number and proportion of haplotypes present at each of the six geographic „regions‟ 
studied. b Haplotype network estimated using statistical parsimony in TCS (Clement et al., 2000). Node size 
represents number of haplotypes. Letters within nodes correspond to the haplotypes shown in a. DNA changes 
between haplotypes are indicated on the branches between the nodes. Coloured circles next to each node indicate 
which populations contain the given haplotype. 
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a. 

 
b. 

 
Figure 4.7 T74 haplotype analysis. NOTE: The colours in a do not correspond to those in image b. a Haplotype 
map, representing the number and proportion of haplotypes present at each of the six geographic „regions‟ 
studied. b Haplotype network estimated using statistical parsimony in TCS (Clement et al., 2000). Node size 
represents number of haplotypes. Letters within nodes correspond to the haplotypes shown in a. DNA changes 
between haplotypes are indicated on the branches between the nodes. Coloured circles next to each node indicate 
which populations contain the given haplotype. 
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a. 

 
b. 

 
Figure 4.8 T96 haplotype analysis. NOTE: The colours in a do not correspond to those in image b. a Haplotype 
map, representing the number and proportion of haplotypes present at each of the six geographic „regions‟ 
studied. b Haplotype network estimated using statistical parsimony in TCS (Clement et al., 2000). Node size 
represents number of haplotypes. Letters within nodes correspond to the haplotypes shown in a. DNA changes 
between haplotypes are indicated on the branches between the nodes. Coloured circles next to each node indicate 
which populations contain the given haplotype.  
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4.3.7 LINKAGE DISEQUILIBRIUM 

Linkage disequilibrium (LD) tests showed that there is a varying level of LD between 

the SNPs in these loci ( 

Figure 4.9). As a result of this analysis all pairs of polymorphisms that showed 

significant LD were removed from analyses involving all five loci. In total 15 loci were 

removed , namely SNPs at 47bp, 83bp and 279bp for the T21 locus, 414bp, 440bp and 525bp 

for the T52 locus, 337bp for the T55 locus, 287bp, 311bp, 359bp, 392bp, 447bp and 475bp 

for the T74 locus and 272bp and 389bp for the T96 locus. 
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Figure 4.9 Linkage disequilibrium heatmaps for five loci assessed in T. pratense. Colours represent r2 values on 
a scale from 0 to 1 with values nearer to 0 show as green and those nearer to 1 as red.; a T21; b T55; c T96; d T74; 
e T52. 
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4.3.8 ANALYSIS INVOLVING ALL LOCI: 

UPGMA analysis (Figure 4.10) of T. pratense populations revealed some population 

structure, similar to that found using the more numerous AFLP markers (Chapter 3).  

a 

 
b 
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Figure 4.10 Population structure of T. pratense populations; a UPGMA unrooted dendrogram based on the 
genetic distance matrix generated in GENALEX. Scale bar represents genetic distance measure; b PCA diagram 
showing the position of populations in relation to the measured genetic differences in the five loci. 

Shetland forms the most distinct cluster, as per the AFLP analysis, although this 

analysis includes a population from the Outer Hebrides (UIS5). The rest of the populations 

form a much closer cluster, with the Isles of Scilly forming one grouping, followed by a close 

grouping of populations from mainland England (Devon and the Lake District) and those 

from North West Scotland (SKY3, SKY5 and NWS4).  

a. 

 
b. 
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Figure 4.11 STRUCTURE results imaged in DISTRUCT for K=3; a Graph of individual membership coefficients for 
each of the three genetic populations determined by STRUCTURE; b Graph of the population membership 
coefficients for each of the three genetic populations. Population membership coefficients generated by 
averaging across individuals within a population. 

To further explore the population grouping a PCA was conducted on the matrix of 

genetic distances generated in GENALEX, (Figure 4.10b) where the two axes capture 81.08% of 

the total variation, 61.78% for axis 1 and 19.31% for axis 2. In this plot it can be seen that 

while UIS5 is genetically distant to the main grouping of populations, it is also distant from 

the populations from Shetland, separated by the variation explained by axis 2. 

Results of the STRUCTURE analyses for K=3 are shown in Figure 4.11, as determined by 

the method devised by Evanno et al. (2005). The graphs show that there is some distinction 

between three areas of the UK on the basis of this data; southern and central UK (including 

the Isles of Scilly, south England and LKD), north west Scotland (north west Scotland, Skye 

and the Outer Hebrides) and Shetland. The southern and central UK grouping shows a varying 

membership to cluster one (shown in Figure 4.11 in green) and two (purple) and a very low 

membership to cluster three (grey), excluding LKD6 which shows a slightly higher level of 

member ship to cluster three. The Shetland grouping by contrast shows the highest 

memberships to clusters one and three with very low membership to cluster two. The north 

west of Scotland grouping in more evenly apportioned between the three genetic clusters. 
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4.4 DISCUSSION 
 

Patterns of polymorphism and population structure in T. pratense using GTMs 

Observed nucleotide diversity across all five loci (3.102 x 10-3) was in general lower 

than other published values, for example 5.48 x 10-3 in Pinus pinaster (11 drought stress loci, 

20 to 30 individuals from 24 populations across Europe, Eveno et al., 2008) and 10.0 x 10-3 in 

wild annual outcrossing Zea mays (23 immunity loci, 8 to 18 individuals from six populations 

across Mexico, Moeller & Tiffin, 2008). Labate et al. (2009) in a study on Solanum 

lycopersicum landraces found a lower value (1.3 x 10-3) but they noted that studies on wild 

self-incompatible species within the same genus have a higher diversity 11.0 x 10-3 and 12.9 x 

10-3. It is known that diversity should theoretically be higher in wild, self-incompatible 

species such as T. pratense, and therefore the low nucleotide diversity demonstrated by these 

five loci does not fit the expected pattern. One possible explanation for this may be due to the 

particular loci chosen, with a lower level of diversity indicating a higher level of conservation 

in these loci across the UK. Another reason may be that singletons were removed from 

analysis, thus reducing overall diversity estimates. 

However, raw numbers of SNPs, (1/93bp in coding regions, 70 individuals) are higher 

than some values published, such as 1/158bp (coding and non-coding regions, 31 individuals) 

in Solanum lycopersicum (Labate et al., 2009), 1/124bp in Zea mays (Ching et al., 2002) and 

1/504 in Glycine max (Van et al., 2004), but much lower than that identified in wild Zea mays 

(1/18bp, 84 individuals) (Moeller & Tiffin, 2008). Taken on its own this high level of SNPs 

should indicate a relatively high level of diversity in this species. However in light of the 

nucleotide diversity estimates being lower than that reported for other species this indicates 

higher numbers of low frequency variants than in the other species discussed here. 
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This analysis, using GTMs, further underlined the differentiation between these 

population groups of T. pratense previously found using AFLPs. Haplotype analyses indicate 

that the differences between regions vary according to loci. T96 for instance indicates a higher 

diversity at this locus in the south and centre of the UK, with more northern populations 

showing more limited levels of haplotype diversity. T55 is a less diverse locus, with the lower 

diversity reflected by fewer haplotypes. However those haplotypes that differ from the 

majority in this locus are generally unique to geographic regions. It is important to note here 

that the haplotypes presented were generated from PHASE resolved heterozygous sequences 

and have not been experimentally confirmed. Therefore the complexities of some of the 

networks and maps may be attributed to errors during phase allocation and as such this area 

would benefit from further experimentation. 

While population level analyses on the individual loci produced differing patterns of 

variation, both between populations and between loci, analysis involving all loci (21 

polymorphisms) showed that the pattern of variation is linked to geographic area, confirmed 

by significant but small isolation by distance across all loci. Bayesian cluster analysis split the 

populations into three genetic groupings, with each geographic region (England, North West 

Scotland and Shetland) showing a different proportion of membership to the three groups. 

The UPGMA tree and PCA plot further highlight the distinction of the Shetland grouping 

from the rest of the populations studied here. In conservation terms these results show the 

geographically isolated T. pratense populations in Shetland are genetically distinct. This 

distinction shown in both STRUCTURE and the UPGMA analysis would suggest that this 

population should be treated as a separate management unit for conservation of the genetic 

diversity of this species.  
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Signatures of selection 

While it is possible to describe the variation in species across a landscape, a more 

difficult but perhaps more relevant question is to determine the processes that define the 

patterns of variation. Differentiation between regional types can be due to either restricted 

migration, or differential adaptation of populations to local conditions (Latta, 2006). Isolation, 

through restricted migration, will allow random genetic drift to differentiate populations in the 

absence of migration and/or selection. Conversely patterns of selection for ecologically 

relevant traits should be expected to be more evident between populations than patterns 

observed for neutrally evolving loci, known as „local adaptation‟ (Lewontin & Krakauer, 

1973). Therefore the difference between markers subject to selection and neutral markers 

would thus be expected to vary. The difference in patterns of variation between neutral and 

non-neutral markers under similar patterns of inheritance can be evaluated by comparing FST 

values; using such different markers can give some evidence of a departure from neutral 

expectations (Merilä & Crnokrak, 2001; van Tienderen et al. 2002; Latta, 2006). When 

comparing the FST values obtained in this analysis with those obtained from AFLP markers 

(0.1045, see Chapter 3), FST values for these gene-targeted markers are consistently higher, 

although the observed difference between values is small. When FST is higher in gene-

targeted markers (those markers within or flanking genes of interest) than in neutral areas 

(assuming that AFLPs represent neutral markers) this is indicative of divergent selection and 

local adaptation for the gene (van Tienderen et al., 2002). 

However, classical tests of selection comparing these polymorphic markers to neutral 

expectations found no significant evidence of selection at these loci. While two loci (T52 and 

T55) showed significant values for Fay and Wu‟s H, this value was not reflected in the other 

tests of neutrality. Nielson (2005) notes that population subdivision can lead to the rejection 

of the neutral model with a high probability and as such it can be difficult to interpret 
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significant results. However, for all these tests, the small number of accessions tested and the 

small segment of sequence analysed from the total coding region does mean that these tests 

are not absolute, and thus this section would benefit from further testing.  

Suitability of GTMs as markers for conservation questions 

SNP markers are thought to provide an improvement in many ways over conventional 

markers, through their relative abundance throughout the genome and the less complex mode 

of evolution (Morin et al., 2004). The potential to use markers that thus provide more and 

better quality information for subsequent analysis has provided the momentum behind SNP 

diversity studies, in addition to new and more improved technologies for SNP discovery and 

genotyping. Further, the implicit assumption that neutral markers can be related to 

functionally important variation does not always hold in a number of cases (see Reed & 

Frankham, 2001; Hedrick, 2002). Thus the use of SNPs in functional regions of the genome 

provides the possibility to answer fundamental questions of conservation genetics. While 

reliably determining the signatures of selection in natural populations is known to be a 

challenge (Ouborg et al., 2010a), it has been documented in a number of studies in plant 

species (for example Hordeum spontaneum, Cronin et al. 2007; Picea glauca, Namroud et al. 

2008; Zea mays ssp. parviglumis, Moeller & Tiffin, 2008; Arabidopsis thaliana, Clark et al., 

2007).  

The most convincing evidence of selection signatures from DNA level analysis come 

from two types of studies, those based on genome wide assessments of SNP diversity 

(Drosophila sp., Clark et al., 2007b; Homo sapiens, Nielsen et al., 2005; Pinus pinaster, 

Eveno et al., 2008; although see Hermisson, 2009) and those using the candidate gene 

approach alongside a reference set of loci (Moeller & Tiffin, 2008). These resource intensive 

methods underline the difficulty in applying these methods to non-model species, where 
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sequencing efforts have not reached the same levels as those in model species. While this 

study showed no significant evidence of selection in any of the loci studied, the higher level 

of differentiation between populations using GTMs compared to that found using AFLPs 

suggests that these loci could be further studied for signatures of selection. Indeed 

comparative studies with reference loci, those that are not under the same set of selection 

pressures as the drought-related genes studied here, could prove beneficial to understanding 

the selection pressures at these loci. However this possibility would require further 

sequencing efforts in this or closely related species. 

Alongside the difficulties in finding the evidence of selection in ecologically important 

traits, problems also arise in using this data for biodiversity assessments. Thus while there are 

huge advances being made to generate SNP data such as 454 sequencing (Roche), subsequent 

statistical approaches may be limiting. While statistical methods are available to calculate 

diversity, heterozygosity and population subdivision in markers that are at Hardy-Weinburg 

equilibrium, markers that have been affected by selection violate one of the main underlying 

assumptions of these methods. However Narum et al. (2008) suggest that the effects on SNP 

frequencies from selection may not be a significant problem for most population genetic 

analyses. In a paper on the feasibility of using these types of markers, Van Tienderen et al. 

(2002) note the lack of available statistical approaches to study diversity in markers that are 

putatively markers of functional variation and emphasize the need for these to be developed 

further. 

The results of this study prove an interesting insight into the use of SNPs as molecular 

markers to answer conservation questions in non-model species. While it has been possible to 

successfully use GTMs to assess the spatial pattern of genetic diversity in this species, a lower 

resolution of populations was found compared to that found in AFLPs (Chapter 3). This lower 

information content in SNP markers underlines the necessity of generating large numbers of 
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markers to successfully assess population differentiation questions for conservation. 

Additionally the difficulties in successfully ascribing signatures of selection to these loci 

made it difficult to fulfil the potential for these markers in determining whether this genetic 

variation is reflecting the selective environment. Ouborg et al. (2010a) suggest that, due to the 

large resources required for a conservation genomics approach, conservationists should focus 

on a smaller number of model conservation species, rather than using this approach in any 

threatened species. This method would thus focus on answering the wider questions not 

currently answered in conservation genetics, but is a difficult concept for conservationists 

currently tasked with saving individual species. Indeed for a biodiversity study in non-model 

species, it suggests that as yet, while these methods are still in their infancy, other more 

traditional methods of estimating genetic diversity may be more appropriate. Thus, for 

conservation, the choice of marker is still very much dependant on the conservation question 

being asked. 
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Chapter 5. ARE WIDESPREAD TRIFOLIUM  SPECIES 

REALLY OF LEAST CONCERN? 

In order to find more efficient sampling and conservation strategies it is imperative that 

studies evaluate the diversity in species at the genetic level in order to fulfil the UK‟s 

objectives, namely to achieve a significant reduction in the of the current rate of biodiversity 

loss and to promote the conservation of genetic diversity. As such three different methods 

have been evaluated throughout this assessment; genetic diversity assessments using two 

different types of genetic marker, SNPs and AFLPs, and using information already available 

to determine conservation priorities. 

Basing a conservation strategy on geographic and ecogeographic information alone would 

suggest that all three species are of „least concern‟ (IUCN, 2010), and as such require little 

conservation effort in relation to other species that are perhaps more at risk because of smaller 

population sizes. However assessing species according to such criteria does not implicitly take 

into account either the „value‟ of a particular species for future breeding programs or any 

genetic diversity information.  

The genetic diversity assessments on these three species given in the previous chapters bring 

new insights into this conservation strategy, with much wider implications for conservation 

than that shown by the more traditional methods of conservation planning. The issues relating 

to the potential for introgression and gene flow between cultivated and wild species highlight 

a major threat to both T. repens and T. pratense, which should be incorporated into future 

conservation plans, with the recommendation being for areas to be set aside for genetic 

reserves, isolated from crops. As such these populations within reserves would be protected 

from the import of outside seed to shelter them against future threats from an increasing level 

of gene flow. Further, the fact that the majority of variation is within, rather than among 
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populations in all three species, (as supported by both the AFLP analysis and SNP study), 

suggests that the number of genetic reserves may not need to be numerous, as conserving just 

a few populations may encompass sufficient genetic diversity. However, each species would 

require reserves sited in different areas with the most important areas shown to be St Kilda for 

T. repens, the Isles of Scilly for T. dubium and Shetland for T. pratense.  

While this study was not implicitly able to study adaptive diversity it is likely that further 

investigation using the SNP markers produced over wider areas and more individuals may 

provide some evidence of selection and adaptation. Indeed the strengths of the differences 

between individuals from different regions based on so few markers in the SNP study 

suggests that differential selection is acting on or has acted upon the selected loci. By 

comparing the AFLP results with the SNP results this study provides some insight into the 

ability of AFLP markers to detect underlying patterns of adaptation, and to act as a proxy 

measure of adaptive diversity. 

5.1 WIDER IMPLICATIONS FOR WIDESPREAD SPECIES CONSERVATION  

Two major assumptions are often made in conservation planning for both collecting missions 

and reserve placement in the absence of prior information, namely that genetic distance is 

associated with geographic distance and that neutral markers can be used as a proxy measure 

of genetic diversity as discussed in Chapter 1. There is some evidence that both of the above 

assumptions hold true for the three species in this study. However, this does not negate the 

need for genetic assessments in reserve placement as the distribution of genetic diversity 

across the sites varied markedly between the target species. Indeed, while geographic distance 

provided the major source of variation within each species when analysed at the population 

level, the majority of variation in all species was held within populations. This suggests that 

for species where there is thought to be high genetic diversity within populations, collecting 
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missions should focus on a larger number of individuals per population, rather than a larger 

number of target sites. 

Additionally this work raises questions for researchers using Red List Assessment data alone 

to determine conservation planning. It is clear that while widespread species may exist as 

large numbers of plants, there may be extensive threats to their genetic diversity that are being 

overlooked. The study in T. repens for example shows that, where wild species are grown 

alongside a conspecific crop or where there is the potential for the widespread movement of 

seed there may be implications in terms of genetic swamping and the homogenisation of the 

gene pool. Indeed, to define a species as „least concern‟ is somewhat dangerous where there is 

little information of the genetic instability underlying the large numbers of individuals. This is 

particularly relevant in light of the need to use the genetic diversity for future breeding 

programs in response to a widely changing environment. As such a recommendation based on 

this work should be the need for Red List Assessments to include criteria that incorporates 

genetic diversity assessment from the outset. 

5.2 A  COMPARISON OF THE EFFICIENCY OF AFLP  AND SNP  MARKERS 

IN TRIFOLIUM PRATENSE  

The information in the previous chapters outlines genetic assessments in T. pratense using 

two different types of molecular markers, AFLPs and SNPs. While the difficulties in SNP 

identification and assessment compared to other types of molecular marker system have been 

discussed in previous chapters, the relative efficiency of each marker system in T. pratense 

has not been examined. Both marker systems identify similar main themes in the partitioning 

of diversity, defining the main source of variation as that existing within populations, and in 

identifying Shetland as a region more distinct from the rest of the regions assessed in this 

study. However, both marker systems show subtle differences in the patterns of diversity 
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below the division of Shetland. In addition, both marker systems use very different numbers 

of loci to achieve similar results. In assessing the relative efficiencies of the two marker 

systems to elucidate underlying patterns of diversity across the UK, genetic distance amongst 

populations was compared for the two marker types using a Pearson correlation (Garcia et al., 

2004), shown in Figure 5.1. While the patterns of genetic distance distribution between 

populations remained similar between SNPs and AFLPs, SNPs provided much larger 

estimates of genetic distance. 

 

Figure 5.1. Pearson correlation coefficient (r) estimates between genetic distances (GD) obtained using amplified 
fragment length polymorphism (AFLP) and single nucleotide polymorphism (SNP) markers in Trifolium 
pratense. 

 r = 0.433 
P = < 0.001 
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These results indicate that the different marker systems provide consistent information on 

genetic diversity within T. pratense and produced highly comparable genetic distance 

estimates, despite the differences between the marker systems. The main outliers in Figure 

5.1, (i.e. those that show a higher genetic distance between populations using SNPs over 

AFLPs), are those that define distances between Shetland and the Outer Hebrides, and 

Shetland and the Isle of Scilly. This indicates that either the SNP markers assessed in this 

study are finding variation not shown by AFLP markers, or that the larger numbers of markers 

used in the AFLP study mask some of the underlying diversity at potentially useful loci. 

Polymorphic information content (PIC), a measure commonly used to measure polymorphism 

at marker loci, was assessed using the methods outlined in Stajner et al. (2009), where  

corresponds to presence of a band/allele and  corresponds to the absence of a band/presence 

of an alternate allele:  

 

Both marker systems provided relatively similar levels of information, but with all average 

PIC values less than 0.2 (Figure 5.2). These relatively low values (e.g. Stajner et al., 2009; 

Varshney et al., 2010), indicate that either the markers assessed in this study show low 

polymorphism, or the individuals studied are not diverse. It is important to note here however 

that when using this method, it is impossible for PIC values in AFLPs or in biallelic SNPs 

(those used for assessments in this study) to be over 0.5. 

While noting the dissimilarity in genetic distance calculations and in the number of 

individuals studied between the two marker systems (Chapter 3 and Chapter 4), differences in 

the genetic distance observed between populations using SNP may also be in part due to the 

selection of SNP loci that are likely to differ between geographic regions, compared to the 
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random set of loci assessed when using AFLP. Indeed the much smaller number of SNP loci 

used to elucidate similar patterns to those generated using AFLP loci, suggests this may be the 

case. Using SNP markers in the way outlined in Chapter 4 presents an exciting opportunity 

for future genetic diversity studies, providing the ability to actively select for polymorphism 

between populations enabling patterns of genetic diversity to be identified using a relatively 

small set of markers.  

 

 

 

 

Figure 5.2. Distribution of polymorphism information content (PIC) data for T. dubium (a.), T. pratense (b. and 
d.) and T. repens (c.). The data was obtained using amplified fragment length polymorphism (AFLP) (figures a-
c) and single nucleotide polymorphism (SNP) (d). SD = standard deviation. 

Mean = 0.134  
SD = 0.105 

Mean = 0.147 
SD = 0.159 

Mean = 0.198 
SD = 0.182 Mean = 0.179 

SD = 0.159  
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5.3 LIMITATIONS  
 

While the use of AFLPs can be recommended for work in species where there is little 

previous genetic information, their use in this study provided many problems. The existence 

of polyploidy in T. dubium and T. repens and the difficulty of clean DNA extraction in T. 

pratense meant that sequence traces were difficult to analyse and required considerable time 

and effort to clean traces in order to identify ambiguous peaks and remove traces/individuals 

that fell below the required standard. Whitlock et al. (2008) address this challenge by 

introducing a computer generated and unambiguous method to analyse sequence traces from 

AFLP, and future work could adopt this program to quantify error in AFLP traces. The 

dominant nature of AFLP reduced the significance of many of the assessments, as well as the 

increased likelihood of homoplasy when using this marker. Microsatellites provide additional 

information on gene flow that is difficult to ascertain from AFLP markers. As such, on the 

basis of using AFLP in this study, where there is the potential to use microsatellites generated 

in related species, they would be recommended for use due to the additional information on 

gene flow and the codominant information generated. 

Although the target species were chosen with a view of the available expertise and previous 

work, assessments of the two polyploid species, T. dubium and T. repens increased the 

uncertainty of the results and with hindsight, this work would have been improved by using 

species known to be diploid. However, with the prevalence of polyploidy in plant species it 

provides an interesting insight into the difficulties in polyploid analysis and potentially why 

most conservation genetic studies are conducted in either diploid, or previously well studied 

species.  
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5.4 FUTURE WORK  

1. Given further resources and more time, an interesting avenue of research would be to 

continue the SNP diversity assessments with the other two species of Trifolium assessed with 

AFLP markers, T. dubium and T. repens, using the loci amplified in T. pratense. An 

assessment such as this would help to determine the suitability of this method in polyploid 

species for conservation. While this was attempted in T. dubium, polyploidy made the 

identification of haplotypes difficult. T. dubium has an allotetraploid origin (Ansari et al., 

2008), but is known to be highly inbreeding (s = 0.97) (Dhar et al., 2006) and there is some 

evidence from work conducted in inbred lines of allotetraploid Zea mays that the difficulties 

associated with SNP discovery and haplotype assignment can be alleviated in the presence of 

inbreeding (Gaut & Doebley, 1997; Ching et al., 2002). After adapting the PCR protocol to 

use primers designed in T. pratense in T. dubium (see Appendix 5), it was possible to use 

differences in sequence traces to infer heterozygotes from signal intensity (Brumfield et al., 

2003). Allele dosage was then estimated from electropherogram peak heights using a method 

adapted from Nybom et al. (2004) which was designed for microsatellite allele counting. Peak 

heights replaced peak areas to adapt this method to produce allele dosages for sequence traces 

obtained from T. dubium, using ratios of average peak heights to correct the theoretical ratios 

for the two alleles. However, determining allele dosage in allotetraploid individuals only 

solved part of the ploidy issue, with analysis in allopolyploid species requiring variation to be 

assigned to one or both isoloci, similar to analysis with microsatellite loci. The consistent high 

levels of fixed heterozygosity for the vast majority of polymorphic positions in T. dubium 

meant that separating sequence data into both haplotypes and isoloci proved unfeasible. Thus 

it is recommended that further analysis of T. dubium would require using the progenitor 
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comparison approach, which would involve further sequencing of the parental genotypes, T. 

campestre and T. micranthum (Ansari, 2008). This small study into using SNPs in T. dubium 

highlights the difficulties involved when using SNP data to analyse polyploid species and the 

need for more programs to be made available to assist in the analysis, as has been made 

available for more commonly used genetic markers. 

2. Another interesting direction for this work would be to include the analysis of 

populations and cultivars from a wider geographic range, to ascertain whether the broad 

trends observed in this work apply on a larger scale. While landraces were chosen based on 

their history in the UK, more landraces and cultivars would be beneficial in the study of T. 

repens to clarify the results observed, and to further assess the effects of gene flow in this 

species.  

3. Foden (2008) define five traits that make species particularly susceptible to climate 

change; specialised habitat range, narrow environmental tolerance, poor ability to disperse, 

dependence on environmental cues for dispersal/breeding and dependence on interactions 

with other species. In light of this and following discussion with a researcher who has 

assessed climate change in UK species (J. Preston, pers comm. 2009), an assessment of 

climate change at the species level was deemed less important in T. repens and T. pratense 

due to their abundant and generalist nature across the UK. However, with the identification of 

the north of the UK as the potential northern limit of T. dubium, an assessment of the impacts 

of climate change in this species would be important to determine how climate change may 

affect the spread of this species in the UK and how those areas identified for future 

conservation work may be impacted. 

4. Finally, for any conservation work it is vital that the information is disseminated 

across the conservation network to inform future policy. It will be vital to inform those 

protected area managers within the regions identified as containing some of the most 
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genetically diverse populations to promote the potential for management of these sites as 

genetic reserves. 
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Appendix 1.  CTAB  DNA  EXTRACTION PROTOCOL  

1. Mill 20mg dried leaf material in milling machine to a fine powder. 

2. Add milled leaf material to 700 µl pre-heated extraction buffera. 

3. Incubate at 65°C for 30 min. Mix by inversion after 5 min. 

4. Add 700 µl of chloroform:isoamyl (24:1, v/v) and mix by inversion for 5 min. 

5. Centrifuge at 13000 rpm for 5 min. 

6. Remove supernatant and place in a new tube. 

7. Add 2 µl of RNase A (10µg/µl), vortex and incubate at 37°C for 30 min. 

8. Add 500 µl of ice cold isopropanol and mix by inversion. Incubate samples at -20°C 

overnight. 

9. Centrifuge at 13 000 rpm for 5 min. 

10. Remove supernatant and allow pellets to dry. 

11. Add 300 µl of 70% ethanol. 

12. Centrifuge at 13 000 rpm for 5 min. 

13. Remove supernatant and allow pellets to dry. 

14. Resuspend pellet in 120 µl TE buffera. 

 

aReagents: 

 Extraction buffer: 4% CTAB, 100mM Tris-HCL pH 8.0, 1.4M NaCl, 20mM EDTA,  
0.1% mercaptoethanol. Mercaptoethanol added immediately prior to use. 

 TE buffer: 10mM TRIS, 1.0 mM EDTA, pH 8.0. 
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Appendix 2:  COMPOSITION OF STOCK SOLUTIONS  

Extraction buffer 4% CTAB (TRIS 100mM, NaCl 1.4M, EDTA 20mM, 110mM) 

For 500ml of extraction buffer: 

 

 

Made up to 500ml with sterile distilled water and autoclaved. 

 

TE buffer (10mM Tris. 1mM EDTA) pH 8.0 

For 500ml of TE buffer: 

 

Made up to 500ml with sterile distilled water, pH 8.0 with HCl and autoclaved. 

 

TBE buffer (89mM Tris, 89mM Boric acid, 2mM EDTA) 

For 1 litre of TBE buffer: 

 

Made up to 1l with sterile distilled water. 

 

TRIS  6.057g 
NaCl  40.908g 
Na2EDTA 3.722g 
CTAB 20.00g 

TRIS 0.6057g 
Na2EDTA  0.1861g 

TRIS 10.8g 
Boric acid 5.5g 
Na2EDTA  0.93 
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Appendix  3.  DISTANCE MATRICES  
 
 
TABLE A3.1. T. dubium population distance matrix. Colours represent the 5 distance classes. 

DEV2 DEV3 IOS1 IOS2 IOS3 LKD2 LKD5 SKY1 SKY3 SKY5 UIS7  
0           DEV2 
40.603 0          DEV3 
206.294 239.561 0         IOS1 
207.819 241.61 5.409 0        IOS2 
210.302 243.631 4.089 5.078 0       IOS3 
413.209 381.743 505.949 510.965 509.052 0      LKD2 
424.277 390.442 531.098 535.98 534.359 40.733 0     LKD5 
769.028 744.282 798.372 803.781 800.24 380.876 393.919 0    SKY1 
754.697 729.703 786.126 791.534 788.038 365.454 378.36 15.569 0   SKY3 
787.028 762.581 813.861 819.269 815.675 400.188 413.386 19.478 35.047 0  SKY5 
807.915 785.799 820.054 825.442 821.599 435.707 452.971 73.428 86.298 59.193 0 UIS7 

 
 
 
 
 
 
 
  

Distance 
classes (km) 
 <40.60 
 ≤378.36 
 ≤509.05 
 ≤787.03 
 ≤825.52 
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TABLE A3.2. T. pratense population distance matrix. Colours represent the 8 distance classes. 

DEV2 DEV3 IOS4 IOS5 LKD1 LKD3 LKD6 NWS4 SHT2 SHT4 SHT6 SKY3 SKY5 UIS5 UIS6 UIS8 
 0.00 

             
  DEV2 

40.60 0.00 
            

  DEV3 
210.25 243.58 0.00 

           
  IOS4 

208.28 242.25 6.53 0.00 
          

  IOS5 
413.25 381.72 509.45 513.06 0.00 

         
  LKD1 

422.77 389.61 528.53 531.92 28.18 0.00 
        

  LKD3 
424.21 390.38 534.26 537.55 39.75 11.86 0.00 

       
  LKD6 

775.32 749.13 815.33 820.58 379.15 383.08 388.34 0.00 
      

  NWS4 
1096.4 1062.5 1182.0 1186.5 685.01 673.68 672.29 407.72 0.00 

     
  SHT2 

1122.9 1089.2 1206.7 1211.2 711.14 700.17 698.94 426.17 28.11 0.00 
    

  SHT4 
1063.2 1029.3 1150.0 1154.4 652.06 640.54 639.08 381.76 33.39 61.11 0.00 

   
  SHT6 

754.70 729.70 788.04 793.39 365.88 372.23 378.40 34.88 442.42 460.65 416.60 0.00 
  

  SKY3 
787.03 762.58 815.68 821.13 400.63 407.21 413.42 44.02 433.05 449.62 409.00 35.05 0.00 

 
  SKY5 

860.52 836.14 886.11 891.65 472.70 478.23 483.98 97.50 397.81 410.78 377.84 107.20 73.56 0.00   UIS5 
849.71 825.93 871.94 877.52 465.75 472.30 478.44 96.63 416.33 429.45 396.12 100.07 65.14 18.76 0.00  UIS6 
773.30 752.26 781.97 787.72 411.19 422.83 430.79 119.04 506.70 521.82 484.02 91.32 78.82 117.07 99.08 0.00 UIS8 
 

Distance classes (km) 
  <39.75   ≤521.82 
  ≤208.28   ≤752.26 
  ≤397.81   ≤860.52 
  ≤429.45   ≤1211.33 
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TABLE A3.3. T. repens population distance matrix. Colours represent the 7 distance classes. 

IO
S1 

IO
S2 

IO
S3 

D
EV

1 

D
EV

2 

D
EV

3 

D
EV

4 

R
Y

E1 

LK
D

2 

LK
D

4 

LK
D

6 

N
W

S1 

N
W

S2 

N
W

S3 

SK
Y

1 

SK
Y

2 

B
EN

1 

U
IS2 

U
IS4 

STK
1 

STK
2 

STK
3 

STK
4 

STK
5 

SH
T1 

SH
T3 

SH
T5 

 

0 
                          

IOS1 
5 0 

                  
Distance classes (km) 

 
IOS2 

4 5 0 
                 

 ≤39  ≤477   ≤1209 
 

IOS3 
237 239 241 0 

                
  ≤165   ≤749   

 
DEV1 

276 278 280 38 0 
               

  ≤373   ≤864   
 

DEV2 
272 274 276 37 12 0 

                     
DEV3 

257 259 261 20 19 23 0 
                    

DEV4 
512 514 516 277 240 241 259 0 

                   
RYE1 

506 511 509 381 373 385 372 444 0 
                  

LKD2 
525 530 529 389 378 390 379 433 29 0 

                 
LKD4 

531 536 534 390 378 390 379 426 41 12 0 
                

LKD6 
810 816 812 741 739 751 736 803 371 374 379 0 

               
NWS1 

810 816 812 742 739 751 736 803 371 375 380 1 0 
              

NWS2 
815 820 817 749 746 758 743 813 379 383 388 11 10 0 

             
NWS3 

798 804 800 743 742 754 738 820 381 388 394 45 45 38 0 
            

SKY1 
807 812 809 750 749 761 745 824 386 392 398 40 39 31 10 0 

           
SKY2 

853 858 854 819 821 833 816 912 470 479 486 135 134 124 99 99 0 
          

BEN1 
818 823 819 784 787 799 781 881 438 449 456 123 123 113 81 84 35 0 

         
UIS2 

819 824 820 785 788 800 782 882 438 449 456 122 121 112 80 83 34 2 0 
        

UIS4 
886 891 887 867 871 883 865 972 528 539 547 203 202 192 166 167 68 91 92 0 

       
STK1 

885 890 886 865 870 882 864 970 527 538 546 202 201 191 165 165 66 90 90 1 0 
      

STK2 
885 890 886 866 870 882 864 971 527 538 546 202 201 191 165 165 67 90 90 1 0 0 

     
STK3 

884 889 885 865 870 881 863 970 526 538 545 202 201 191 165 165 67 90 90 2 1 1 0 
    

STK4 
884 889 885 865 869 881 863 970 526 537 545 202 201 191 165 165 66 89 90 2 1 1 0 0 

   
STK5 

1174 1179 1176 1056 1042 1054 1045 1026 679 667 666 400 400 401 434 424 456 475 473 492 491 491 492 492 0 
  

SHT1 
1204 1209 1207 1089 1076 1088 1078 1062 711 700 699 423 423 423 455 446 471 492 490 503 502 502 503 503 35 0 

 
SHT3 

1147 1152 1149 1028 1014 1027 1017 1000 651 640 638 377 377 378 412 402 438 456 454 477 476 476 477 477 28 62 0 SHT5 
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Appendix  4:  TIGR  TRANSCRIPT ASSEMBLIES DATABASE  

TIGR plant transcript assemblies (TA) are developed from existing EST sequences and 

sequences available in the NCBI Genbank nucleotide database. TAs are produced using the 

TIGCL tool (Pertea et al., 2003) consisting of sequence clustering, performed using a 

modified version of Megablast (Zhang et al., 2000), and assembling using CAP3 (Huang & 

Madan, 1999). Criteria for assembly include a minimum 50bp match, which must contain at 

least 95% identity in the aligned region (Childs et al., 2007).  Plant transcript assembly 

diagrams for the loci used in this study are detailed below, with all images taken from the 

TIGR plant transcript assemblies database (http://plantta.jcvi.org).  

Specific ESTs for further analysis were selected from each TA dependent on preliminary 

amplification assessments and prior information on repeat sequences within the locus (see 

below). 

A4.1  TA1010_57577  TRANSCRIPT ASSEMBLY  

One putative microsatellite site is detailed in the TA database, from 76-91 bp so BB925453, 

BB924456 and BB924106 were excluded from further analysis to avoid the problems 

associated with the sequencing of heterozygous microsatellite regions. 

 

Figure A4.1. TA1010_57577 transcript assembly 

http://plantta.jcvi.org/
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A4.2   TA1548_57577  TRANSCRIPT ASSEMBLY  

Two putative microsatellites are described in the TA database, from 96-107bp and 790-799bp. 

BB924422 was selected to avoid amplifying these regions to avoid the problems associated 

with the sequencing of heterozygous microsatellite regions. 

 

Figure A4.2. TA1548_57577 transcript assembly 

 

A4.3  TA3078_57577  TRANSCRIPT ASSEMBLY  

No putative microsatellites are described for this locus in the TA database. 

 

Figure A4.3. TA3078_57577 transcript assembly 

 

A4.4  TA3695_57577  TRANSCRIPT ASSEMBLY  

No putative microsatellites are described for this locus in the TA database. 

 

Figure A4.4. TA3695_57577 transcript assembly 
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A4.5  TA555_57577  TRANSCRIPT ASSEMBLY  

Two putative microsatellite sites are detailed in the TA database, from 995-1012bp and 1088-

1099bp. Consequently BB916867, BB912536, BB914314, BB910324, BB922925, 

BB908687, BB903117 and BB914174 were excluded from further analysis to avoid the 

problems associated with the sequencing of heterozygous microsatellite regions. 

 

Figure A4.5. TA555_57577 transcript assembly 

 

A4.6  TA989_57577  TRANSCRIPT ASSEMBLY  

No putative microsatellites are described for this locus in the TA database. 
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Figure A4.6. TA989_57577 transcript assembly 
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Appendix 5:  PRIMER CHOICE  

Primer pairs were designed using PRIMER3 v0.4.0 (Rozen & Skaletsky, 2000). Default 

settings were used with the exception of product size, which was maximised where possible.  

BB910055  T.  PRATENSE  PRIMER DESIGN  

The primer pair used to amplify the selected loci is outlined below in Figure A5.1, with the 

characteristics summarized in Table A5.1. 

1           CGGGTACTTGACAATGGTCTGCTTGTAGACCCCCATGATCAGAAGTCTATTGCAGATGCT 
61         CTTTTGAAGCTTGTAAGCAACAAGCAACTGTGGGCAAAATGTAGACAGAATGGGTTGAAG 
121       AATATTCATTTATTTTCATGGCCTGAGCATTGTAAGACTTACCTGTCTAAAATAGCCACT 
181       TGCAAGCCAAGGCATCCTCAATGGCAACGAAGTGAGGATGGAGGCGAAAGTTCAGAATCA 
241       GAAGAATCACCTGGTGATTCATTGAGAGATATACATGACTTATCTCTGAACCTGAAGTTT 
301       TCATTGGATGGAGAGAAGAATGGGGATGGTGGAAATGATAATTCTTTCGATCCCAATGGA 
361       AATCCCGATGGAAATGCAACCGATAGAAGTGCAAAATTAGAAAATGCTGTTTTGTCATGG 
421       TCAAAGGGCATTTCCAAGGACTTACGCAGGGGTGGGTCTGCTGAAAAATCAGGTCAAAAT 
 481      TCAAATGTTGGTAAATTTCCGCCATTGAGGAGTAGAAATCGACTATTTGTTATTGCGGTG 
541       GATTGTGATACCACTTCAGGTCTTCTTGAAATGATTAAAG 
 

Figure A5.1: Primer pair design for BB910055. Bases highlighted in grey denote primer sites.  

 

Table A5.1: Primer3 output for BB910055. a Melting temperature of oligonucleotide: b Percentage of G and C 
nucleotides in sequence: c Self-complementarity score based on self annealing and secondary structures: d Self-
complementarity score based on tendency to form primer dimer with itself.  

 Start Length tm
a GC%b Ac 3‟

d Sequence 5‟ – 3‟ 
Left primer 20 20 60.34 50 4 3 TGCTTGTAGACCCCCATGAT 
Right primer 504 20 60.19 40 6 2 TGGCGGAAATTTACCAACAT 

        

Pair complementarity   4 3  
   

Total sequence size: 580 bp  Product size: 485 bp 
        

 

BB910055  T.  DUBIUM  PRIMER DESIGN  

Sequence data from species within the Leguminosae family were aligned to reveal conserved 

nucleotide regions (Figure A5.2). T. pratense primer pairs (see above) were checked against 
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the alignment to ensure these primer sequences were not found in large regions of 

unconserved nucleotides. In this case the primer pair outlined above for T. pratense was 

successful when used in T. dubium. 

 
BB910055_Trifolium_pratense       ----------------CGGGTACTTGACAATGGTCTGCTTGTAGACCCCC 

Medicago_truncatula_AC144540      TGATTGGTTACTAGTACAGGTACTTGACAATGGTCTGCTGGTAGATCCCC 

Medicago_sativa_AF322116          CTGTTGATATTCAT--CGGGTACTCGACAATGGCCTGCTTGTAGATCCCC 

Vicia_faba_Z56278                 CTGTTGATATTCAC--CGGGTTCTCGACAATGGTCTGCTTATAGATCCCC 

Glycine_max_EU039964              CTGTTGATATTCAT--AGGGTACTTGACAATGGTCTGCTCGTAGATCCCC 

Lotus_japonicus_AP004498          TGATGGGTTATCAACATAGGTACTTGACAATGGTGTGCTTGTAGATCCCC 

                                                    *** ** ********  ****  **** **** 

 

BB910055_Trifolium_pratense       ATGATCAGAAGTCTATTGCAGATGCTCTTTTGAAGCTTGTAAGCAACAAG 

Medicago_truncatula_AC144540      ATGATCAGCAGTCTATTGCAGATGCTCTTTTGAAGCTTGTTAGCAACAAG 

Medicago_sativa_AF322116          ACGATCAGAAGTCTATTGCAGACGCTCTTTTGAAGCTTGTTAGCAACAAG 

Vicia_faba_Z56278                 ATGATGAGAAGTCTATTGCAGATGCTCTTTTGAAGCTTGTCAGCAACAAG 

Glycine_max_EU039964              ATGATCAGCAGTCTATTGCTGATGCTCTTTTGAAGCTTGTTAGCAACAAA 

Lotus_japonicus_AP004498          ATGACCAGCAGTCTATTGCAGATGCCCTTTTGAAGCTTGTTAGCAATAAG 

                                  * **  ** ********** ** ** ************** ***** **  

 

BB910055_Trifolium_pratense       CAACTGTGGGCAAAATGTAGACAGAATGGGTTGAAGAATATTCATTTATT 

Medicago_truncatula_AC144540      CAACTGTGGGCAAAATGTAGACTGAATGGGTTGAAGAATATTCATTTATT 

Medicago_sativa_AF322116          CAACTGTGGGCAAAATGTAGACTGAATGGGTTGAAAAACATTCATTTATT 

Vicia_faba_Z56278                 CAACTGTGGGCAAAATGTAGACAGAATGGGTTGAAGAATATTCATTTATT 

Glycine_max_EU039964              CAACTTTGGGCAAAATGTAGACAGAATGGGTTAAAGAATATTCATTTATT 

Lotus_japonicus_AP004498          CAGCTTTGGGCGAAATGTAGACAGAATGGGTTGAAGAATATTCATTTATT 

                                  ** ** ***** ********** ********* ** ** *********** 

 

BB910055_Trifolium_pratense       TTCATGGCCTGAGCATTGTAAGACTTACCTGTCTAAAATAGCCACTTGCA 

Medicago_truncatula_AC144540      TTCATGGCCGGAGCACTGCAAGACTTACCTGTCTAAAATAGCCACTTGCA 

Medicago_sativa_AF322116          TTCATGGCCTGAGCACTGCAAGACTTACCTGTCTAAAATAGCCACTTGCA 

Vicia_faba_Z56278                 TTCATGGCCCGAGCATTGTAAGACTTACCTGTCTAAAATAGCCACTTGCA 

Glycine_max_EU039964              TTCATGGCCCGAGCACTGTAAGACTTACCTTTCTAAAATAGCCACTTGCA 

Lotus_japonicus_AP004498          TTCATGGCCTGAGCATTGTAAGACTTACCTGTCTAAAATTGCCACTTGCA 

                                  ********* ***** ** *********** ******** ********** 

 

BB910055_Trifolium_pratense       AGCCAAGGCATCCTCAATGGCAACGAAGTGAGGATGGAGGCGAAAGTTCA 

Medicago_truncatula_AC144540      AGCCAAGGCATCCTCAATGGCAGCGAAGTGAGGATGGAGGTGAAAGTTCA 

Medicago_sativa_AF322116          AGCCAAGGCATCCTCAATGGCAGCGAAGTGAGGATGGAGGTGAAAGTTCA 

Vicia_faba_Z56278                 AGCCAAGGCATCCTCAATGGCAGCGAAGCGAGGATGGAGGTGAAAGTTCA 

Glycine_max_EU039964              AGCCAAGGCATCCACAATGGCAGCGAAGTGAGGATGGAGGTGAAAGTTCA 

Lotus_japonicus_AP004498          AGCCAAGGCATCCACAATGGCTGCGAAATGAGGATGGAGGTGAAAGTTCA 

                                  ************* *******  ****  *********** ********* 

 

BB910055_Trifolium_pratense       GAATCAGAAGAATCACCTGGTGATTCATTGAGAGATATACATGACTTATC 

Medicago_truncatula_AC144540      GAATCAGAAGAATCACCTGGTGATTCACTGAGAGATATACATGACTTATC 

Medicago_sativa_AF322116          GAATCAGAAGAATCACCTGGTGATTCATTGAGAGATATACATGATTTATC 

Vicia_faba_Z56278                 GAGTCAGAAGAATCACCTGGTGATTCATTGAGAGATATACAAGACTTATC 

Glycine_max_EU039964              GAATCAG---ATTCACCAGGTGATTCCTTGAGAGATTTACAGGACTTGTC 

Lotus_japonicus_AP004498          GAATCAG---AATCACCGGGTGATTCCTTGAGAGATATACAGGACTTATC 

                                  ** ****   * ***** ********  ******** **** ** ** ** 

 

BB910055_Trifolium_pratense       TCTGAACCTGAAGTTTTCATTGGATGGAGAGAAGAATGGGGATGGTGGAA 

Medicago_truncatula_AC144540      TCTTAACCTGAAATTTTCAATGGACGGAGAGAGAAGTGGGGATAGTGGAA 

Medicago_sativa_AF322116          TCTTAACCTGAAATTTTCATTGGATGGAGAGAGGAGTGGGGATAGTGGAA 

Vicia_faba_Z56278                 TCTTAACCTGAAATTTTCATTGGATGGAGAGAGGAGCGGTGATAGTGGAA 

Glycine_max_EU039964              TCTAAATCTGAAGTTTTCATTAGATGGAGAGAAGAGTGAGGGTAGTGGAA 

Lotus_japonicus_AP004498          TCTTAATCTGAAGTTTTCATTGGATGGTGAAAGGAGTGGGGGTAGTGGAA 

                                  *** ** ***** ****** * ** ** ** *  *  *  * * ****** 

 

BB910055_Trifolium_pratense       ATGATAATTCTTTCGATCCCAATGGAAATCCCGATGGAAATGCAACCGAT 

Medicago_truncatula_AC144540      ATGATAATTCTTTGGA------------TCCCGATGGAAATGCAACAGAT 
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Medicago_sativa_AF322116          ATGATAATTCTTTGGA------------TCCCGATGGAAATGCAACTGAT 

Vicia_faba_Z56278                 ATGACAATTCTTTGGA------------TCCTGATGGAAATGCAACTGAT 

Glycine_max_EU039964              ATGACAATTCTTTGAA------------TTCTGATGGAAATGCTGCTGAT 

Lotus_japonicus_AP004498          ATGA---TTCTTTGGA------------TCTGGATGGAGTTGCGGCTGAT 

                                  ****   ******  *            *   ******  ***  * *** 

BB910055_Trifolium_pratense       AGAAGTGCAAAATTAGAAAATGCTGTTTTGTCATGGTCAAAGGGCATTTC 

Medicago_truncatula_AC144540      AGAAGTGCAAAATTAGAGAATGCTGTTTTATCTTGGTCAAAGGGCATTTC 

Medicago_sativa_AF322116          AGAAGTGCAAAAATAGAGAATGCTGTGTTATCATGGTCAAAGGGCATTTC 

Vicia_faba_Z56278                 AGAACTACAAAATTAGAGAATGCTGTTTTGTCATGGTCAAAGGGAATTTC 

Glycine_max_EU039964              AGAGGGGCAAAATTAGAGAATGCTGTTTTGTCATGGTCAAAGGGCATCTC 

Lotus_japonicus_AP004498          AGGAGTGCCAAATTAGAGAATGCTGTTTTGTCATGGTCGAAGGGCATCTC 

                                  **     * *** **** ******** ** ** ***** ***** ** ** 

 

BB910055_Trifolium_pratense       CAAGGACTTACGCAGGGGTGGGTCTGCTGAAAAATCAGGTCAAAATTCAA 

Medicago_truncatula_AC144540      TAAGGACGTACGCAAGGGTGGGACTGCTGAAAAATCCGGTCAAAATTCAA 

Medicago_sativa_AF322116          TAAAGATGTACGCAAGGGTGGGGCTGCTGAAAAATCAGGTCAAAATTCAA 

Vicia_faba_Z56278                 CAAGGACACACGCAGGGGTGGGGCTACTGAAAAATCAGGCCAAAATTCAA 

Glycine_max_EU039964              TAAGGACACACGCAGGGGTGGGGCTACAGAAAAATCCGATCAGAATCCAA 

Lotus_japonicus_AP004498          TAAGGACAATCGCAGGGGTGGGTCTGTTGAAAAATCAGATCAAA------ 

                                   ** **    **** ******* **   ******** *  ** *       

 

BB910055_Trifolium_pratense       ATGTTGGTAAATTTCCGCCATTGAGGAGTAGAAATCGACTATTTGTTATT 

Medicago_truncatula_AC144540      ATGTTGGTAAATTTCCGCCATTGAGGAGTAGAAATCGACTATTTGTGATT 

Medicago_sativa_AF322116          ATGTTGGTAAATTTCCGCCATTGAGGAGTAGAAATCGACTATTTGTGATT 

Vicia_faba_Z56278                 ATGTTGGTAAATTTCCGCCACTGAGGAGTAGAAATAGACTATTTGTGATT 

Glycine_max_EU039964              ATGTTGGTAAATTTCCTCCATTAAGGAGAAGAAAACATCTGTTTGTCATT 

Lotus_japonicus_AP004498          ---CTGGTAAATTTCCCCCCTTGAGGAGAAGAAAGCATCTATTTGTTATT 

                                      * ********** **  * ***** *****    ** ***** *** 

 

BB910055_Trifolium_pratense       GCGGTGGATTGTGATACCACTTCAGGTCTTCTTGAAATGATTAAAG---- 

Medicago_truncatula_AC144540      GCAGTGGATTGTGATACTACTTCAGGTCTTCTTGAAATGATTAAAGTAAT 

Medicago_sativa_AF322116          GCGGTGGATTGTGATACCACTTCAGGTCTTCTTGAAATGATTAAAGTAAT 

Vicia_faba_Z56278                 GCAGTGGATTGTGATACCACTTCAGGTCTTCTTGAAATGATTAAGCTAAT 

Glycine_max_EU039964              GCTGTGGATTGTGATACCACTTCAAGCCTTCTTGAAACTATTAAAGCCAT 

Lotus_japonicus_AP004498          GCTGTGGATTGTGATACCACTTCAGGTCTTCTTGATACCACTAAAGCAAT 

                                  ** ************** ****** * ******** *  * ***       

 

Figure A5.2: Multiple alignment of BB910055 EST with potential homologous sequences from related species 
(within the Leguminosae). Sequences are aligned in order of input. Grey highlighted bands denote primer 
sequences used for further analysis. Sequences were obtained using BLAST v2.2.21 (Zhang et al., 2000) and 
aligned using ClustalW v2.0.10 (Larkin et al., 2007). 
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BB925852  T.  PRATENSE PRIMER DESIGN  

The primer pair used to amplify the selected loci is outlined below in Figure A5.3, with the 

characteristics summarized in Table A5.2. 

1            GAAAGCAAAAAACAACGCGTCGGCGTATGAGAAGAGGTCTGAGTACGGTGATCGTGATCT 
61 TACAAAGGCAGATCTGGAGATGGTGACTAGACTAGATCCACTTCGCGTGTATCCTTATAG 
121 ATATCGAGCCGCAGTTTTGATGGACAACCATAGAGAACAAGAAGCCATTGCTGAGCTATC 
181 TAGAGCAATTGCATTTAAAGCTGATTTGCACCTCTTACATCTACGCGCAGCGTTCCATGA 
241 ACACAAAGGGGATGTCCTAAGTGCGCTAAGAGACTGTCGTGCTGCACTCTCGGTGGACCC 
301 AAACCACCAAGAAATGTTGGAACTTCACACTCGTGTTAATAGCCATGAACCGTGAGTTGA 
361 GTTTGCATGCTATATGAAAAATGAAGACGACAACATTTGTACACTCATCAGCCGTCATGA 
421 AAATTAAATTTGTAAATGCAAAGTATAGCTATGAACTGAATGATTAGAGCCGATGTATAC 
481 TCTGTTGTATGCCATGATATCATTTTCCTTTCTAAAAAGGGGGATGCCAAATTTTGTAAT 
541 TTATATTCTTGCTATAAGGTGATGTGATGAGA 
 

Figure A5.3: Primer pair design for BB925852. Bases highlighted in grey denote primer sites.  

 

Table A5.2: PRIMER3 output for BB925852. a Melting temperature of oligonucleotide: b Percentage of G and C 
nucleotides in sequence: c Self-complementarity score based on self annealing and secondary structures: d Self-
complementarity score based on tendency to form primer dimer with itself.  

 

 Start Length tm
a GC%b Ac 3‟

d Sequence 5‟ – 3‟ 
Left primer 20 20 60.36 55 3 2 TCGGCGTATGAGAAGAGGTC 
Right primer 532 20 60.49 40 4 2 ATTTGGCATCCCCCTTTTTA 

        

Pair complementarity   4 2  
   

Total sequence size: 572 bp  Product size: 513 bp 
        

 

BB925852  T.  DUBIUM  PRIMER DESIGN  

 

As only somewhat similar sequences were found when using BLAST, alignments produced 

contained little conserved sequence. Hence, the primer pair outlined above for T. pratense 

was trialled with T. dubium using lower annealing temperatures, which proved successful in 

amplifying the desired sequence.  
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TA1548_57577  T.  PRATENSE  PRIMER DESIGN (USING BB915621)   

The primer pair used to amplify the selected loci is outlined below in Figure A5.4, with the 

characteristics summarized in Table A5.3.  

1 TTTTTCCTTAACTTCACTTCATTGCTTTCATCAGAAAAATCTAAGTTGTATGTACATTTT 
61 TTTTTTGACAAAAATCTAAGTTGTATATTGAAAAGATATAATGTTTAAAATACTTTATAT 
121 AGAGTAACATTTCTCAACTTACAAACCGATTTTACAATGACGTCTAATATAAAAATCTAA 
181 TATGTTATCCATTCGGATCACCGACCATATTATTCACGCACCAACCCGATTTTAACATGC 
241 CTTAATTAACTTGAACTTGTAGCAGCATCTCTCTGATGTATTCTCTTTTTCCTTCCACTG 
301 ACACTGTTATTAGGCTTTGGATTAGCTTTACCAGCTTCCAAAGGAAAATTCAATATAGCT 
361 TTCTGACCTCTCATTCTGAAAGCTGCACAATCATAAGCCTTAGCAGCATCAATCTCATTG 
421 TTAAATGTTCCTAACCAAACCCTGCTTCCTTTCCTTGAAGGGTCACGAATCTCTGCAGCA 
481 AATTTACCCCATGGCCTTCTCCTCACTCCTCTGTAATGTTTTCCTCCATAACATCTTTGT 
541 TCCTTCTTCTCCAACACAATTGGTTCTGCGGAATTCGAGT 
 

Figure A5.4: Primer pair design for BB915621. Bases highlighted in grey denote primer sites.  

 

Table A5.3: PRIMER3 output for BB915621. a Melting temperature of oligonucleotide: b Percentage of G and C 
nucleotides in sequence: c Self-complementarity score based on self annealing and secondary structures: d Self-
complementarity score based on tendency to form primer dimer with itself.  

 

 Start Length tm
a GC%b Ac 3‟

d Sequence 5‟ – 3‟ 
Left primer 13 23 59.87 34.78 3 3 TTCACTTCATTGCTTTCATCAGA 
Right primer 481 20 60.14 50 6 3 TTGCTGCAGAGATTCGTGAC 

        

Pair complementarity   4 2  
   

Total sequence size: 580 bp  Product size: 469 bp 
        

 

TA1548_57577  T.  DUBIUM  PRIMER DESIGN (USING BB915621) 

 

As only somewhat similar sequences were found when using BLAST, alignments produced 

contained little conserved sequence. Hence, the primer pair outlined above for T. pratense 

was trialled with T. dubium using lower annealing temperatures. 
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TA3695_57577  T.  PRATENSE  PRIMER DESIGN (USING BB916074) 

The primer pair used to amplify the selected loci is outlined below in Figure A5.5, with the 

characteristics summarized in Table A5.4. 

1 ATGAATCATCTTTGCTTTGTAAAGAGGTTTGTTGACAGTTAGTATATGTCCTTTCTTGCG 
61 AAGCTCCGTCTTTACGTTATTGGACGAGTCATGGTTTTGTAACCATATGAATTTTGCTCT 
121 CGCGTAGTACTTGTGAAGGAAGTTAATCTGTTCCTTCCAAATATCTGTGCTCAAGTCAAG 
181 TAGATCAATGTCAACAGCAATTACAAATATAGGGTTTGTCAATTCTTGCAGACTCAGCAG 
241 TTTAGATTTCAGACCCCGATGAGCTGAATAATGTGCATCGAAGTCATTGTTATGAGTTGG 
301 AGTTTTGGCATGAAATAGTTCTTTTAGAACTTGTGTTAATCCATTCCATTCAGATGCTTC 
361 CATAGTGACCACGCCGTTTTTATTTAACCACTTAGATGTAATTAATCTACTCATGTTGCC 
421 ATGTAGTGCAAGAAGTACCACTAAGTTATTGTTAGCAAAATCGACTTGACAATGTTGTTC 
481 TGTGGCATCCACAGGTGCGGTGAGTCGCAGGTACAATCGCATTAGTGTTCCTGGGCCTTC 
541 CTTTTTGACAATCTTAATTTCTCCACCCATCT 
 

Figure A5.5: Primer pair design for BB916074. Bases highlighted in grey denote primer sites.  

 

Table A5.4: Primer3 output for BB916074. a Melting temperature of oligonucleotide: b Percentage of G and C 
nucleotides in sequence: c Self-complementarity score based on self annealing and secondary structures: d Self-
complementarity score based on tendency to form primer dimer with itself.  

 Start Length tm
a GC%b Ac 3‟

d Sequence 5‟ – 3‟ 
Left primer 47 20 60.66 50 4 2 TGTCCTTTCTTGCGAAGCTC 
Right primer 519 20 59.32 55 4 3 CGATTGTACCTGCGACTCAC 

        

Pair complementarity   3 1  
   

Total sequence size: 572 bp  Product size: 473 bp 
        

 

TA3695_57577  T.  DUBIUM  PRIMER DESIGN (USING BB916074) 

As only somewhat similar sequences were found when using BLAST, alignments produced 

contained little conserved sequence. Hence, the primer pair outlined above for T. pratense 

was trialled with T. dubium using lower annealing temperatures, which proved successful in 

amplifying the desired region.  
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TA989_57577  T.  PRATENSE PRIMER DESIGN (USING BB906196) 

The primer pair used to amplify the selected loci is outlined below in Figure A5.6, with the 

characteristics summarized in Table A5.5. 

1 AATCCAGAAACATCCTTATCCTTATAAACATCAAACATAAAAATCCTTAAAAAGGTTTTT 
61 GACAAGACAAATGATACCTAATAAAAACCTATAAATAATTTATTTTTGCCACAAGAGAAT 
121 AAAACTCCACGCTTAATTAAAGCTGGTAACTTGTTCTTGTTTCTGATTCCATCAACAATA 
181 TAAAAATAAACCAACAATCCTGAAAACAAAACAATTTAATTATCCACCTTGTAAAAACAA 
241 AATGAACCAAACCGAATGTAAACTGAAAGTTACTAACTTGTAGCTTTATTTACATAACCG 
301 GTGAGGCGAAAGTTGTTCAGAAAACTCCGCCTGCGATGGAAGGCAGGTCATCAAAGCTCC 
361 AAAGGTTCATTGTGTTTCCAGCATCCTGAGTTACATCAGCACCGAGCAAAGACGCAAGTG 
421 AAGCATCACTCCAGTTATCATCGAATGAGTTCTCGAAGAACTTCAGCTGGGATTCGATAT 
481 CTGCAAGCTCCTCAGAGAGTGTCTTTGCAGATTCAGCTTGCATAGGTAGCATATCCTGAG 
541 AGTTGTTAGACTGCATGTTCATCTGAGGTT1 
 

Figure A5.6: Primer pair design for BB906196. Bases highlighted in grey denote primer sites.  

 

Table A5.5: Primer3 output for BB906196. a Melting temperature of oligonucleotide: b Percentage of G and C 
nucleotides in sequence: c Self-complementarity score based on self annealing and secondary structures: d Self-
complementarity score based on tendency to form primer dimer with itself.  

 Start Length tm
a GC%b Ac 3‟

d Sequence 5‟ – 3‟ 
Left primer 45 25 59.96 32 8 3 CCTTAAAAAGGTTTTTGACAAGACA 
Right primer 522 20 60.28 45 5 2 TGCAAGCTGAATCTGCAAAG 
        

Pair complementarity   4 2  
   

Total sequence size: 570 bp  Product size: 478 bp 
        

 

TA989_57577  T.  DUBIUM PRIMER DESIGN (USING BB906196) 

 

Sequence data from species within the Leguminosae family were aligned to reveal conserved 

nucleotide regions (Figure A5.7). T. pratense primer pairs (see above) were checked against 

the alignment to ensure these primer sequences were not found in large areas of unconserved 

nucleotides. In this case the primer pair outlined above for T. pratense was successful when 

used in T. dubium. 
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BB906196_Trifolium_pratense       AATCCAGAAACATCCTTATCCTTATAAACATCAAACATAAAAATCCTTAA 

Trifolium_pratense_AB236754       -------------------------------------------------- 

Medicago_truncatula_AC151460      ---CCATAAACATA---AACCTTATAAACATCAAACTTAAAAATCCTCAA 

Medicago_sativa_EF462215          -------------------------------------------------- 

Galega_orientalis_FJ223566        -------------------CACTATAGGTTTTTTTTTTGACAGTCATGAT 

                                                                                     

 

BB906196_Trifolium_pratense       AAAGGTTTTTGACAAGACAAATGATACCTAATAAAAACCTATAAATAATT 

Trifolium_pratense_AB236754       -----------------------------AATAAAAACCTATAAATAATT 

Medicago_truncatula_AC151460      AA-GGTTTTTGACAAGACAAAAGG-ATTACCTAAGAATCTATAAATAATT 

Medicago_sativa_EF462215          -------------------------------------------------- 

Galega_orientalis_FJ223566        AA--AATTGCCATAATAATAAAAAGGAAGTTTACAATTATATAAGGAGCC 

                                                                                     

 

BB906196_Trifolium_pratense       TATTTTTGCCACAAGAGAATAAAACTCCACGCTTAA-TTAAAGCTGGTAA 

Trifolium_pratense_AB236754       TATTTTTGCCACAAGAGAATAAAACTCCACGCTTAAT-TAAAGCTGGTAA 

Medicago_truncatula_AC151460      TATT--GGCCACAAGAAAATAAAACTCCACGCTTTACTTAAAGCTGGTAA 

Medicago_sativa_EF462215          ------------------------------------C-TAAAGCTGGTAA 

Galega_orientalis_FJ223566        AAGACTGTCTCACATAGCATCCATAAACACAATCCTTATAAACATCAAAA 

                                                                        ****  *   ** 

 

BB906196_Trifolium_pratense       CTTGTTCTTGTTTCTGATTCCATCAACAATATAAAAATAAACCAAC---A 

Trifolium_pratense_AB236754       CTTGTTCTTGTTTCTGATTCCATCAACAATATAAAAATAAACCAAC---A 

Medicago_truncatula_AC151460      CTTCTTCTTGTT-CTGATTCCATCAACAATATTAAAA-AAACCAAC---A 

Medicago_sativa_EF462215          C---TTCTTGTT-CTGATTCCATCAACAATATAAAAA--AACCAAC---A 

Galega_orientalis_FJ223566        CATAAAAATCCTCAAAAGGTTTTTGACAATACCAAAGATAACCTAATAAA 

                                  *       *  *    *     *  ******  ***   **** *    * 

 

BB906196_Trifolium_pratense       ATCCTGAAAACAAAACA----------------ATTTAATTATCCACCT- 

Trifolium_pratense_AB236754       ATCCTGAAAACAAAACA----------------ATTTAATTATCCACCT- 

Medicago_truncatula_AC151460      ATCCTGAAAATGATTCATA------GTATGGTTAAACAACTATCCACCT- 

Medicago_sativa_EF462215          ATCCTGAAAATAGTTCATA------GTATGGTTAAACAACTATCCACCT- 

Galega_orientalis_FJ223566        AACCTATAAATAATTTATTTGCCACAAGAGAGTAATAAACTCCATGCTTA 

                                  * ***  ***      *                *   ** *     * *  

 

BB906196_Trifolium_pratense       -TGTAAAAACAAAATGAACCAAACC------GAAT---------GTAAAC 

Trifolium_pratense_AB236754       -TGTAAAAACAAAATGAACCAAACC------GAAT---------GTAAAC 

Medicago_truncatula_AC151460      -TATAGAAACAAAATTAACGAAACCAAAACCGAAT---------GTAAAA 

Medicago_sativa_EF462215          -TAAAGAAACAAAATTAACGAAACCAAAACCGAAT---------GTAAAA 

Galega_orientalis_FJ223566        CTAAAAGATGGTAACTTCTTGTTCTTGTTCTGATTCCATCAACAATATAA 

                                   *  *  *    **         *       ** *          ** *  

 

BB906196_Trifolium_pratense       TGAAAGTTACTAACTTGTAGCTTTATTTACATAACCGGTGAGGCGAAAGT 

Trifolium_pratense_AB236754       TGAAAGTTACTAACTTGTAGCTTTATTTACATAACCGGTGAGGCGAAAGT 

Medicago_truncatula_AC151460      TAAAAGTTACTAACTTGTAGCTTTATTTACATAACCGGCCAGGTGAC-GT 

Medicago_sativa_EF462215          TAAAAGTTACTAACTTGTAGCTTTATTTACATAACCGGCCAGGTGAC-GT 

Galega_orientalis_FJ223566        AAAAACCAACAATCTTGTAGCTTTATTTACATAACCAGCGAGACGAAGTT 

                                    ***   ** * *********************** *  **  **   * 

 

BB906196_Trifolium_pratense       TGTTCAGAAAACTCCGCCTGCGATGGAAGGCAGGTCATCAAAGCTCCAAA 

Trifolium_pratense_AB236754       TGTTCAGAAAACTCCGCCTGCGATGGAAGGCAGGTCATCAAAGCTCCAAA 

Medicago_truncatula_AC151460      TGTTTAGAAAACTCCGCCTGCGATGGAAGGCAGGTCATCGAAGTTCCAAA 

Medicago_sativa_EF462215          TGTTTAGAAAACATCGCCTGCGATGGAAGGCAGGTCATCGAAGTTCCAGA 

Galega_orientalis_FJ223566        TGTTCAGAAAACTCCGCCTGCAATGGAAGACATGTCATCAAAGCTCCAAA 

                                  **** *******  ******* ******* ** ****** *** **** * 

 

BB906196_Trifolium_pratense       GGTTCATTGTGTTTCCAGCATCCTGAGTTACATCAGCACCGAGCAAAGAC 

Trifolium_pratense_AB236754       GGTTCATTGTGTTTCCAGCATCCTGAGTTACATCAGCACCGAGCAAAGAC 

Medicago_truncatula_AC151460      GGTTCATTGTGTTTCCACCATCCTGAGTTGTATCTCCACTAAGCAAAGCA 

Medicago_sativa_EF462215          GGTTCATTGTGTTTCCACCATCCTGAGTTGTGTCTCCACCAAGCAAAGCA 

Galega_orientalis_FJ223566        GGTTCATTGCATTTCCACCATCCTGAGTTACATCTCCACCGAGCAAAGAT 

                                  *********  ****** ***********   **  ***  *******   

 

BB906196_Trifolium_pratense       GCAAGTGAAGCATCACTCCAGTTATCATCGAATGAGTTCTCGAAGAACTT 

Trifolium_pratense_AB236754       GCAAGTGAAGCATCACTCCAGTTATCATCGAATGAGTTCTCGAAGAACTT 

Medicago_truncatula_AC151460      GCCAATGAAGCATCACTCCAGTTATC---------GTTCTCGAAGAACTT 

Medicago_sativa_EF462215          GCCAATGAAGCATCACTCCAGTTATC---------GTTCTCGAAGAACTT 

Galega_orientalis_FJ223566        GCCAATGAAGCATCACCCCAGTTATCATCAAAAGAGTTCTCGAAGAACTT 

                                  ** * *********** *********         *************** 
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BB906196_Trifolium_pratense       CAGCTGGGATTCGATATCTGCAAGCTCCTCAGAGAGTGTCTTTGCAGATT 

Trifolium_pratense_AB236754       CAGCTGGGATTCGATATCTGCAAGCTCCTCAGAGAGTGTCTTTGCAGATT 

Medicago_truncatula_AC151460      CAGCTGGGATTCGATATCTGCGAGCTCTTCAGAGAGGGTCTTTGCAGAAT 

Medicago_sativa_EF462215          CAGCTGGGATTCGATATCTGCGAGCTCCTCAGAGAGGGTCTTTGCAGAAT 

Galega_orientalis_FJ223566        CAGCTGAGATTCGATATCTGCAAGCTCCTCAGAGAGTGTCTTTGCAGAAT 

                                  ****** ************** ***** ******** *********** * 

 

 

 

BB906196_Trifolium_pratense       CAGCTTGCATAGGTAGCATATCCTGAGAGTTGTTAGACTGCATGTTCATC 

Trifolium_pratense_AB236754       CAGCTTGCATAGGTAGCATATCCTGAGAGTTGTTAGACTGCATGTTCATC 

Medicago_truncatula_AC151460      CATTTTGCATAGGCAGCATATCCTGAGTGTTGTCAGACAGCATGTTCTTC 

Medicago_sativa_EF462215          CATTTTGCATAGGCAGCATATCCTGAGTGTTGTCAGACAGCATATTCGTC 

Galega_orientalis_FJ223566        CATCTTGC---------------TGATTAGCAGCAGCCTGCACA---AAC 

                                  **  ****               ***        ** * ***       * 

 

BB906196_Trifolium_pratense       TGAGGTT------------------------------------------- 

Trifolium_pratense_AB236754       TGAGGTTCAGCTTCGAGAGGAGCAG------AAAACACCGAGGAAATCTC 

Medicago_truncatula_AC151460      TGAGATTCACCTTCCATAGGAGCAGCAGCAGAAAACACAGAC-------- 

Medicago_sativa_EF462215          TGAGATTCGCCTTCCATAGGAGCAGCAGCAGAAAACACAGACGAAATCTC 

Galega_orientalis_FJ223566        TGAGGTTGAACTTGAAGAGGAGCAGGAGCAGAAAGCATGGATGTAATCTC 

                                  **** **                                            

 

Figure A5.7: Multiple alignment of BB906196 EST with potential homologous sequences from related species 
(within Leguminosae). Sequences are aligned in order of input. Grey highlighted bands denote primer sequences 
used for further analysis.   Sequences were obtained using BLAST version 2.2.21 (Zhang et al., 2000) and 
aligned using ClustalW version 2.0.10 (Larkin et al., 2007). 
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