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ABSTRACT


Clostridium difficile infection (CDI) is a serious problem within 

the healthcare environment where the bacterium causes symptoms 

ranging from mild diarrhoea to life-threatening colitis. In addition to 

its principal virulent factors, Toxin A and Toxin B, some C. difficile 

strains produce a binary toxin (CDT) composed of two subunits 

namely CDTa and CDTb that are produced and secreted from the 

cell as two separate polypeptides. Once in the gut, these fragments 

have the potential to combine to form a potent cytotoxin whose role 

in the pathogenesis of CDI is presently unclear. This thesis is a step 

towards understanding structural and functional aspects of the 

binary toxin produced by C. difficile. 

The first half of this thesis (chapter I and II) provides a brief 

introduction to the method of structure determination of proteins 

molecules, i. e. X-ray crystallography and a detailed overview of C. 

difficile and the three known toxins from C. difficile namely – Toxin 

A, Toxin B and the binary toxin. Chapter II further focuses on C. 

difficile binary toxin and other related toxins. These toxins, known 

as the ADP-ribosylating toxins (ADPRTs) form a big family of potent 

toxins which includes Cholera, Pertussis and Diphtheria toxins and 

are capable of transferring the ADP-ribose part of NAD/NADPH to a 

varity of substrates in the target cell which ultimately results in cell 

death. 

The second half of the thesis comprises of experimental 

procedures that were carried out during the course of this study 

and their results. Cloning and expression methods for recombinant 

CDTa and CDTb in bacterial system followed by their purification 

are described with the abnormal behaviour exhibited by CDTb 

(chapter III). We show for the first time that purified CDTa and 

CDTb can combine to form an active CDT which is cytotoxic to Vero 

cells (Chapter IV). The purification processes described yielded 
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milligram quantities of binary toxin fragments of high purity that 

led to the successful crystallisation of the proteins (chapter IV) for 

further functional and structural studies. 

High resolution crystal structures of CDTa in its native form (at 

pH 4.0, 8.5 and 9.0) and in complex with the ADP ribose donors -

NAD and NADPH (at pH 9.0) have been determined (chapter V). The 

crystal structures of the native protein show ‘pronounced 

conformational flexibility’ confined to the active site region of the 

protein and ‘enhanced’ disorder at low pH while the complex 

structures highlight significant differences in ‘ligand specificity’ 

compared with the enzymatic subunit of a close homologue, 

Clostridium perfringens Iota toxin (Ia). These structural data provide 

the first detailed information on protein- donor substrate complex 

stabilisation in CDTa which may have implications in 

understanding CDT recognition. Crystallisation of CDTb yielded 

preliminary crystals. The optimisation of these crystallisation 

conditions is underway. The thesis concludes with some thoughts 

and discussion on future directions of this research. 
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INTRODUCTION TO MACROMOLECULAR
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Introduction 

Proteins are biomolecules of fundamental importance to any organism 

from unicellular to multicellular composition. They are one of the building 

blocks of the basic unit of life i. e. the cell. Proteins play a vital role in most of 

the cellular events such as cell growth and differentiation, signal transduction, 

providing mechanical strength to tissues, immune protection, storage and 

transport, coordinated motion of muscles and catalysis of metabolism. 

Structure determination of a protein molecule (and other biomolecules) at 

atomic resolution provides insight into its function, mechanism of recognition 

of substrates and the conformational changes they might undergo (Blow, 

2002). The area of protein crystallography is not only of academic relevance 

but it is also an important gateway to structure based drug design or 

development of therapeutics such as engineered antibodies and enzymes to 

alter functional capabilities of biomolecules. 

X-ray crystallography is one of the various scientific methods available 

to determine and study the three dimensional structures of small inorganic or 

organic molecules and large biological macromolecules (Nucleic acids, proteins 

and their complexes). However, amongst all available methods, X-ray 

crystallography is the most favoured method for studying biological 

macromolecular structures because of its unique advantage of providing 

details at almost atomic resolution, its accuracy and reproducibility. 

Why X-rays and Why Crystals 

Biological molecules are very tiny objects with their largest dimensions 

in Å (C-C bond is 1.54 Å, 1 Å = 10-8 cm). In principle, an object can be seen 

only if the wavelength of electromagnetic radiation used to see it is of the order 

of its size. Hence, the atomic details can not be resolved by using visible 

radiations (wavelength of 4000-7000 Å). X-rays have wavelength in the range 

of 100 to 0.1 Å and thus towards the lower side of their spectra, they fulfil the 

above requirement and can be used to visualise molecules up to a resolution 

that is of the order of bond lengths. Typical wavelengths used for X-ray 

crystallography experiments lie in the range of 1.0 to 1.54 Å. 

Direct result of an X-ray crystallography experiment is the diffraction 

pattern of a molecule. The diffraction pattern of any molecule is its 

characteristic property that depends on the number of electrons present, their 
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relative orientation in the molecule and their location in the crystal. Diffraction 

from a single molecule is not strong enough to be detected above the noice 

level on a detector. In a crystal, identical molecules of substance are arranged 

in a regular repetitive fashion and thus they all diffract the incident X-ray 

beam in an identical manner in all directions. Diffraction from millions of 

identical molecules in same direction adds up and the signal can be detected 

easily. In other words, crystals act as an amplifier to amplify diffraction 

intensities of reflected X-rays. 

Steps Involved in Structure Determination 

In principle, the process of structure determination by X-ray 

crystallography is carried out by following a series of steps essentially in an 

order as shown in figure 1.1. 

Figure 1.1: The steps involved in the structure determination process of 
proteins by X-ray crystallography. (Figure partly adopted from 
http://en.wikipedia.org/wiki/X-ray_crystallography). 

However, the process of structure determination is not as simple and 

straightforward as it is illustrated above. An image of the molecule can not be 

drawn directly because of the unavailability of a lens to focus and recollect all 

scattered X-rays from the object which is a must condition (Blow, 2002). 

Therefore, the image of the molecule is generated by indirect methods 
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involving complex mathematical operations with the help of very fast and 

modern computers. Each step involved in the process of crystallographic 

structure determination is explained below in detail. 

Cloning and Expression of Proteins 

The first and foremost requirement in X-ray crystallography is the 

availability of good quality crystals. The process of structure determination by 

means of X-ray crystallography starts with the availability of a large quantity 

of extremely pure (generally > 95 % pure) homogeneous protein. As a rule of 

thumb, the diffraction data quality, up to a large extent, depends on the 

quality of crystals which in turn basically depends on the quality (i. e. purity 

and homogeneity) of the protein in hand. 

Recombinant DNA technology provides excellent tools to produce a 

sufficient amount of protein in a cost and time effective manner. Discovery of 

several enzyme systems (and understanding of their mechanism of action) that 

play a vital role in the ‘essential to survive’ processes of central dogma (DNA, 

RNA and protein metabolism) have made molecular cloning almost a routine 

experiment in the laboratories these days. 

In brief, coding DNA for the target protein can be identified. The DNA 

can be isolated from living cells and amplified in vitro using polymerase chain 

reaction (PCR) with the help of suitable oligonucleotide (primer) sequences and 

DNA polymerising enzymes. As an alternative way, coding DNA sequence for 

any naturally existing or hypothetical peptide sequence can be synthesised 

chemically. Ends of the PCR amplified or commercially synthesized DNA can 

be modified according to the convenience in order to construct suitable 

expression clones. 

With the help of carefully chosen sequence specific restriction enzymes, 

this DNA fragment (called an insert or transgene) can be cut and inserted into 

a vector DNA that has compatible ends. These ends can then be sealed by 

using DNA ligase enzyme to produce a ‘chimeric or recombinant DNA’. 

Positioning of the insert into the vector backbone can be regulated precisely to 

ensure that the inserted DNA is read in the correct reading frame. It is 

necessary to avoid an immature termination of transcription (and translation) 

and therefore, production of a mis-sense or nonsense mRNA (and thus 

protein), in vivo. The recombinant DNA is then inserted into a suitable host 
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organism where it replicates, transcribes and translates itself by exploiting the 

host cell machinery in a ‘semi independent’ manner. 

Vector DNA is defined as a ‘cloning vehicle’ that has a property of self 

replication. Vectors, called expression vectors, are specific to carry out 

expression of the transgene in the host cell. These vectors generally have a 

promoter and other conserved sequences that are necessary for transcription 

of the transgene and translation of the resulting mRNA. Simpler vectors (called 

cloning vectors) can only replicate in the host cell but can not transcribe the 

gene and thus do not result in the expression of desired protein. Unlike 

expression vectors, cloning vectors are used only for in vivo amplification of 

the insert. 

Plasmids are the most widely used cloning vectors. They are double-

stranded, generally circular DNA sequences consisting of an ‘origin of 

replication’ that allows for a semi-independent replication of the plasmid in the 

host. Plasmids have a multiple cloning site (MCS) which consists of various 

restriction enzyme consensus sequences. The MCS provides freedom to choose 

a combination of available restriction sites for cloning purpose with a choice of 

reading frame to read the transgene. 

In addition to plasmids, many other cloning vehicles such as cosmids, 

phasmids, viral vectors, bacterial artificial chromosome (BAC) and Yeast 

artificial chromosome (YAC) are also available and are used when convenient. 

Each type of vector has its own set of advantages and disadvantages over 

others. 

Almost all vectors bear a positive selection marker usually in the form 

of a gene that translates for an antibiotic resistance. This property of a vector 

serves two elementary purposes. Firstly, it acts as a selection pressure on the 

host and only vector bearing cells (positive cells) can survive on a growth 

medium that contains that particular antibiotic. Secondly, in the presence of 

selection pressure (antibiotic containing medium) it becomes mandatory for 

the host to carry and maintain (replicate, transcribe and translate) the vector 

in order to survive against the applied selection pressure. Since the gene of 

interest is also contained by the vector, under favourable conditions, a good 

yield of recombinant protein is produced by the host. 

Expression vectors exhibit diversity in their expression patterns. It can 

either be constitutive (consistent expression) or inducible (expression only 
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under the influence of certain growth conditions or chemicals). Expression 

pattern is a characteristic of the promoter that is present in the vector. 

Inducible expression depends on promoters that respond to specific induction 

conditions. Inducers are added to the growth medium and taken up by the 

host cell in order to start transcription of the inserted gene and hence 

translation of the target protein. 

The next step is to select a suitable host organism for expression of the 

target protein. There are several different host systems available. They can be 

classified as animal cell, plant cell, yeast cells, insect cell and bacterial cell 

systems. It is possible to divert metabolism of the expression host towards 

overexpression of the target protein by providing it specific growth conditions 

such as substrates, aeration, effectors (inducers and enhancers) and 

temperature. However, the growth condition requirements of host systems 

differ from each other. The host system is chosen depending upon the nature 

of target protein. For example, if the target protein is of eukaryotic origin and 

requires heavy posttranslational modifications (an antibody molecule, for 

example), an eukaryotic expression system (animal cell, insect cells or yeast 

cell culture) is chosen whereas if the target protein is simple (for example a 

protein of bacterial origin) and does not require any post translational 

modification machinery, it can be expressed in prokaryotic expression 

systems. 

Plant cell cultures suffer from the disadvantage of very slow growth rate 

and hence are very rarely used systems. Animal cells are commonly used to 

express proteins of eukaryotic origin but respond to a narrow range of growth 

conditions such as substrate, pH and temperature. Bacterial expression 

systems and specially E. coli bacterial cells are the most widely used 

prokaryotic host systems. They are easy to manipulate genetically and provide 

a high expression rate due to their fast metabolism and short doubling time 

which is beneficial to produce a large amount of the target protein in a 

relatively short period of time. 

Generally, proteins are expressed as fusion proteins with a suitable ‘tag’ 

that is of great help in the down streaming processes. Fusion proteins are 

created by joining two or more genes which originally code for two separate 

proteins, one of which is the target protein. Translation of the fusion gene 

results in a single polypeptide with functional properties derived from each of 
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the original proteins. Production of proteins as ‘fusion proteins’ overcomes 

many of the expression-purification associated problems. Fusing the target 

protein to a suitable tag sometime enhances the fusion protein expression and 

may retain the expressed fusion protein in soluble form. Another important 

advantage of the tag is in purification as discussed in the next section. Both of 

the genes (tag and target) can be linked via a linker DNA region that codes for 

a peptide sequence which can be recognised by suitable protease. The fusion 

partner (tag) can then be cleaved off from the target protein by using these 

specific proteases at a carefully chosen suitable step during purification. 

Protein Purification 

As indicated earlier, quality of the protein to start with is one of the 

bottle necks in the process of crystallographic structure determination of 

proteins. No matter what expression system is used to overexpress the target 

protein, it would be expressed along with several of other proteins that are 

normally produced by the host. The aim of the purification process is to isolate 

the target protein from such a crude mixture of proteins. In principle, a 

protein should be more than 95 % pure for crystallisation purpose. 

The overexpressed protein can be released by lysing the host cells and 

purified either from the crude cell lysate (in the case of soluble proteins) or 

from inclusion bodies (aggregated form of proteins). There are several 

techniques available to break open the cells such as mechanical disruption, 

liquid homogenisation, sonication, freeze/thaw and the enzyme mediated cell 

lysis. The choice of cell lysis method depends on how sensitive the protein is, 

the amount to be processed, how sturdy the cells are and the location of the 

target protein (compartmentalisation). After extraction, soluble proteins can be 

separated from cell membranes, DNA and insoluble proteins by centrifugation, 

prior to their purification whereas insoluble proteins (inclusion bodies) need to 

be solubilised first and then refolded prior to or during the purification 

procedure. Sometimes, the target protein is released into the growth media by 

the expression host which is mostly the case with animal cell cultures. 

Ease of the purification process depends on the nature of 

compartmentalisation of the expressed protein as well as on the stability of the 

protein under the chosen physiochemical environment. Different 

physiochemical and biological properties of proteins can be used to develop 
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purification strategies ensuring high recovery of the purest form of 

homogeneous, stable and non-denatured protein. Listed in table 1.1 are four 

most basic properties that can be used. 

Table 1.1: Different properties of proteins that form the basis for different 
purification strategies. 

S. No Property Based on Example 

1 Biological activity specific interaction Affinity 

Chromatography 

2 Charge Net surface charge Ion exchange 

Chromatography 

3 Size Molecular weight Gel permeation 

Chromatography 

4 Solubility Hydrophobic 

interactions 

Reverse phase 

Chromatography 

All of the different chromatography processes described above rely on 

the distribution of target substance (protein) in two phases known as the 

stationary and the mobile phase. The mobile phase with substance (and 

impurities) is passed through the stationary phase where different components 

get separated based on their distribution coefficient between the two chosen 

phases. 

Affinity chromatography takes advantage of the biological activity and 

specificity exhibited by one molecule towards the other such as antibody-

antigen and enzyme–substrate systems. Generally to facilitate the purification 

using affinity chromatography, the target protein is expressed as a fusion 

protein with a tag at the N or the C terminal of the target protein (page 7). The 

most commonly used tags are poly-Histidine tag (His-tag), glutathione S-

transferase (GST) tag and maltose binding protein (MBP). These tags (and thus 

fusion proteins) bind to specific molecules that have been immobilised on a 

stationary support matrix and thus can be trapped. Release of the bound tag 

(or the fusion protein) can then be achieved by altering physiochemical 

conditions of the mobile phase so as to alter its (tag’s) affinity for the 

immobilised material or by using a substrate that competes with the tag to 

bind to the immobilised purification matrix. For example, proteins with a poly-
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Histidine extension (His tag) can be trapped by a nickel chelating matrix and 

the bound proteins can then be released from the matrix by passing imidazole 

through the matrix which competes with the His-tag for binding to nickel ions 

immobilised on the matrix because of the imidazole ring that is present in 

Histidine. 

Ion exchange chromatography exploits the charge property of the 

protein and is based on the coulombic interactions between the protein 

molecules and the stationary phase. Amino acids and hence proteins exhibit 

zwitter ion characterises. The isoelectric point (pI) of a zwitter ion is defined as 

the pH value at which it acquires a net zero charge. At any pH below its pI, the 

zwitter ion possesses a net positive charge whereas at a pH above its pI, it 

possesses a net negative charge. By choosing suitable buffer conditions, 

proteins can be forced to bind to an immobilised matrix of complementary 

charge (negatively charged proteins on a positively charged matrix and vice 

versa). The bound proteins can be released selectively by changing the pH or 

ionic strength of mobile phase and thus can be separated from each other. 

Size exclusion or Gel filtration chromatography (GFC) is a 

separation technique based on the hydrodynamic volume (size in solution) of 

the molecules and hence the separation is achieved on the basis of differences 

in their molecular size. A crude protein sample is passed through a porous 

stationary phase. Larger molecules that can not access the pores exit the 

column more rapidly. Smaller molecules penetrate into the porous structure 

and get trapped according to their size. Retention time of a molecule in the 

pores is indirectly proportional to its molecular weight (size). The smaller the 

molecule, the longer the retention time and thus the later the molecule is 

released from the matrix and vice versa. 

Hydrophobic interaction chromatography is another process, based 

on the hydrophobic interactions between the matrix and the protein molecules 

which can also be used effectively for purification. High pressure can be 

applied to drive the solute faster through a column, thereby improving the 

resolution. The most common form of High Pressure Liquid Chromatography 

(HPLC) (Regnier, 1983) is the “reverse phase” HPLC, where the column 

material is hydrophobic and proteins elute according to their hydrophobicity 

using a gradient of an organic solvent (such as acetonitrile). However, HPLC 
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often causes denaturation of proteins and is sometimes not appropriate for 

molecules that do not spontaneously refold. 

In most of the cases, purification is a multistep process. More than one 

of the strategies listed above are chosen carefully and employed in different 

combinations based on characteristics of the target protein and impurities 

present to achieve highest purity of the target protein. During the process of 

purification, the quality of purified protein is monitored by Sodium Dodecyl 

Sulphate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) or Western blotting 

analysis from time to time. The quantity of proteins can be monitored by one 

of the several available methods such as absorbance at 280 nm or other 

colorimetric methods like the Bradford’s method or the Lowry’s method. 

Growing Protein Crystals 

The process of crystallisation involves controlled precipitation of the 

protein from its supersaturated aqueous solution such that it does not form 

amorphous aggregates (Rhodes, 2000). The aim of the crystallisation process 

is to produce large diffraction quality crystals. 

Crystallisation of any substance occurs when the concentration of 

substance is higher than that of its saturation limit at that temperature. The 

state of supersaturation is a nonequilibrium state that results in precipitation 

of the substance from solution until the equilibrium state (saturation point) is 

reached. In principle, crystallisation is a two step process: nucleation and 

crystal growth (McPherson, 1999; McPherson, 2004). Nucleation is the step 

where protein molecules start aggregating in a supersaturated protein solution 

by overcoming an energy barrier under given experimental conditions. This is 

then followed by a growth step where more and more protein molecules 

aggregate on the formed nucleus resulting in sufficiently large crystals and the 

entire system attains the state of equilibrium. The process of crystal growth 

can be understood with the help of crystallisation phase diagram (Figure 1.2). 

The phase diagram shows the solubility of a protein in a solution as a 

function of concentration of the protein and the precipitant present. 

Nucleation takes place in the nucleation zone whereas the crystal growth 

occurs in the metastable zone. If the concentration of the protein and/or 

precipitant is not enough for supersaturation to enter in the nucleation zone, 

no crystals would grow. However, if supersaturation is attained too quickly 
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and continues beyond the nucleation zone into the precipitation zone, 

excessive nucleation or an amorphous precipitate may result. To prevent this 

from happening, a careful screening of crystallisation condition variables, such 

as starting protein concentration, crystallising agent (precipitant) 

concentration, pH of solutions and incubation temperature, is needed. This 

process usually requires setting up hundreds of different crystallisation 

conditions. 

Figure 1.2: The crystallisation phase diagram. Zones of undersaturation and 
oversaturations are shown in different colours. 

Though the mechanism of crystal growth is known very well, 

crystallisation is still the key limiting step in the success of structure 

determination process because of the involvement of a large number of 

variables. Each protein requires its own set of conditions to crystallise. Factors 

involved in the process can be classified into two categories. 

1- Controllable parameters – pH, concentration of protein, concentration of 

precipitants, temperature etc. 

2- Uncontrollable parameters – gravity, magnetic and electric field, 

vibrations, kinetics of reaction etc. 

Protein molecules are big in size and have irregular shape. They never 

crystallise without large solvent channels between molecules. The advantage of 

these solvent channels is that their presence provides us an excellent way to 

study ligand binding. Crystals can be soaked with the ligand solution and 
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ligand molecules can diffuse through these channels to the active site and 

bind there. Also, since proteins always remain in contact with the solvent 

while they are in the crystal, the effect of crystal packing is negligible on their 

overall structure and protein structures in crystals resemble their structures 

in free solution. However, the presence of these solvent channels makes 

protein crystals extremely fragile and highly sensitive to their physiochemical 

environment. 

Methods of Protein Crystallisation 

Following are the most commonly used methods of protein 

crystallisation. 

Batch crystallisation method is the most ancient method of 

crystallisation. A large volume of protein is directly mixed with the 

precipitating (crystallising) agent such that the state of supersaturation is 

reached immediately. The system is then left undisturbed for several days to 

achieve slow precipitation of the protein that results in the attainment of 

equilibrium state and thus yields crystals. A variation of this technique known 

as ‘Microbatch’ is also used where a small drop of a mixture of the protein and 

crystallising agent is left undisturbed under a layer of oil. Use of the oil 

prevents evaporation of volatile solvents from the drop. 

In the method of Dialysis, a protein solution is separated from a large 

volume of crystallising agent by the use of a semi permeable membrane. Slow 

movement of solvent through the membrane results in an increase in the 

protein concentration and ultimately leads to the crystal growth. This method, 

however, requires a large quantity of protein in comparison to other 

crystallisation methods. 

Vapour Diffusion technique is the most widely used technique. This 

technique can be used with two variations depending upon the mode of drop 

setting (Figure 1.3) – sitting drop vapour diffusion (SDVD) and hanging drop 

vapour diffusion (HDVD). More common among the two is the hanging drop 

method. A small volume of the protein and precipitant are mixed together and 

suspended over a reservoir of the precipitant in a close system. The precipitant 

concentration in the reservoir is maintained higher than that in the protein 

drop. Due to the concentration difference, the solvent molecules diffuse from 

the protein solution (drop) to the reservoir solution until the vapour pressure 
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of the drop attains equilibrium with the vapour pressure of the reservoir 

solution. This event leads to an increase in the precipitant and the protein 

concentration in the drop and thereby increasing the degree of saturation of 

the protein which, if the physiochemical conditions are chosen optimally, leads 

to the nucleation and then crystal growth. 

Figure 1.3: The two variants of vapour diffusion method of crystallisation – 
hanging drop (left) and sitting drop (right). The arrow shows direction of 
diffusion of vapours in the closed system. 

The process of crystal growth can be explained with the help of a phase 

diagram (Figure 1.2). Crystallisation is set up at point A where the protein and 

the crystallising agent are mixed such that the final protein concentration in 

the drop remains at undersaturation state. As the drop is allowed to 

equilibrate against a large volume of reservoir containing a higher 

concentration of crystallising agent (generally twice of that in the drop), volatile 

solvents start diffusing in the direction from the lower (drop) to the higher 

concentration (reservoir solution). As a result, the concentration of the protein 

and the crystallising agent in the drop starts increasing and the system 

reaches point B which is in the nucleation zone of the supersaturation state. 

This state is a nonequilibrium state and hence the protein molecules start 

aggregating together to form the nucleus for crystal growth. The protein 

concentration in the drop starts decreasing. More and more molecules of 

protein aggregate together to attain equilibrium and soon the system enters 

into the metastable zone where no more nucleation can occur but the protein 

still keeps aggregating on already formed nucleus to attain an equilibrium 

state. As a consequence, the size of the growing crystals increase till the 

protein concentration in the drop drops down to point C where it enters into 

the undersaturation state again and the crystal growth ceases. 
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Since conditions for nucleation and crystal growth phase may differ, 

sometimes seeding becomes necessary to grow protein crystals. The technique 

of seeding has been used successfully when either the condition that results in 

an excessive nucleation does not allow further crystal growth due to protein 

depletion following too much nucleation or to improve crystal quality when the 

originally grown crystals do not diffract up to the mark. A small fraction of 

nucleated crystals is transferred to a new drop under suitable growth 

conditions which may or may not differ from the nucleation condition. 

Depending upon how seeding is performed and the size and the number of 

seeds transferred, the seeding is categorised as macroseeding, microseeding or 

streak seeding. 

Crystals and Symmetry 

Crystals are a regular repetition of objects (protein molecules in this 

case) in three-dimensional space. The smallest unit of a crystal that repeats 

itself throughout the crystal purely by its translation in three dimensions is 

called the unit cell. A unit cell can be defined by six parameters – three edges 

a, b, c and three angles α, β and γ between them. The location of an atom 

within a unit cell is described by a set of three cartesian coordinates (x, y, z) 

with respect to the origin at one of the vertices of the cell. The smallest unit of 

a crystal that repeats itself throughout the crystal by its rotation and 

translation is called the asymmetric unit. The unit cell may contain more 

than one asymmetric unit arranged in patterns that are characteristic of what 

symmetry the crystal possesses. The geometry of the unit cell together with 

the possible symmetry operations defines the space group of the crystal. 

In addition to rotational and translational symmetry, the unit cell of a 

crystal can contain screw axis where the asymmetric unit is not only rotated 

around the axis, but also translated by a fraction of the unit cell length. Screw 

axis is denoted as a subscript number related to the fraction translation of the 

unit cell. For example, 21 is a two-fold rotation axis with a screw 

corresponding to the translation of half of the unit cell length. Furthermore, 

the asymmetric unit may consist of more than one molecule interrelated by 

the non-crystallographic symmetry (NCS). Figure 1.4 below illustrates a two 

dimensional lattice. 
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Figure 1.4: A hypothetical protein sitting in a two dimensional lattice, with a 2 
fold rotational symmetry, along the axis perpendicular to the plane of the paper. 
Each square block represents one unit cell and the shaded part represents the 
asymmetric unit. 

Symmetry poses restrictions on the shape of the unit cell. Crystals can 

be assigned to one of the 7 possible crystal systems which are further divided 

into 14 lattice types depending upon the position of lattice points within the 

unit cell (Figure 1.5 and Table 1.2). Primitive lattices are the crystal systems 

that contain one point at each corner of the unit cell and are designated by 

letter P. The Non-primitive lattices have additional points either at the centre 

of the unit cell faces (designated as face centred – C or F) or at the centre of 

the unit cell itself (designated as body centred – I). The seven primitive lattices 

along with the seven non-primitive lattices are called the Bravais lattices 

(Blundell & Johnson, 1976). 

Figure 1.5: The 7 Crystal systems and 14 Bravais lattices (P – primitive, C – 
centred, I – body centred, F – face centred) (adopted from 
http://perso.fundp.ac.be/~jwouters/DRX/diffraction.html). 
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Table 1.2: The fourteen Bravais Lattices and their associated symmetry point 
groups. 

Name Bravais 

lattice 

types 

Restrictions on unit cell Point 

groups 

Triclinic P a ≠ b≠ c; α ≠ β ≠ γ 1 

Monoclinic P, C a ≠ b≠ c; α = γ = 90° ≠ β 2 

Orthorhombic P, C, I, 

F 

a ≠ b ≠ c; α = β = γ = 90° 222 

Tetragonal P, I a = b ≠ c; α = β = γ = 90° 4, 422 

Trigonal P 

(or R) 

a = b ≠ c; α = β = 90°, γ = 120° 

a = b = c; α = β = γ < 120°, ≠ 90° 

3, 322 

Hexagonal P a = b ≠ c; α = β = 90°, γ = 120° 6, 6222 

Cubic P, I, F a = b = c; α = β = γ = 90° 23, 432 

Owing to the chiral nature of biological macromolecules, not all 230 

possible space groups are allowed for protein crystals as they can not possess 

mirror symmetry or inversion symmetry. Hence the allowed space groups for 

protein crystals are only 65 (Blundell & Johnson, 1976). 

Diffraction and Bragg’s Law 

When a crystal is exposed to a beam of X-rays, the incident beam is 

scattered in all possible directions. This scattering can be of two types-

coherent scattering and non-coherent scattering. Diffraction results from the 

coherent scattering whereas the non-coherent scattering leads to the 

absorption of energy by atoms in the crystal. Coherently scattered (diffracted) 

X-rays interfere constructively (‘in phase’ with each other) in certain directions 

and give rise to the observed diffraction pattern that is recorded on a detector. 

In 1913, the phenomenon of diffraction was explained by W. H. Bragg 

and W. L. Bragg. They considered diffraction as a result of simple reflection 

taking place from a plane mirror. Crystals are made up of several families of 

planes (called lattice planes or Bragg’s planes) passing through the lattice 

points (Figure 1.6). Any family of planes is identified by its Miller indices h, k, 
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and l which are integers representing how many times that particular plane 

repeats itself in a unit cell in all three x, y and z directions respectively. 

Figure 1.6: A representation of different families of Bragg’s planes through a 
two dimensional crystal lattice. 

For example, in figure 1.6, a family of planes shown in blue lines, 

repeats itself twice in the X direction and twice in the Y direction, in the unit 

cell (which is shown in thick lines). Hence, its miller indices will be h = 2, k = 2 

and this particular family of planes will be denoted as (2, 2). 

Braggs proved that for a given angle of incidence (θ) of X-rays on a 

plane, any family of planes would diffract (scatter coherently) the incident X-

rays only and only if the interplanar distance (d) between two consecutive 

planes in the family and the wavelength of incident X-rays obeys the following 

relation. 

2d sinθ = nλ ----------------------- (1) (Where n is an integer) 

Figure 1.7 below is a schematic representation of Bragg’s law. This law 

implies that for a given wavelength of X rays, reflections resulting from the 

diffraction of X-rays from closely spaced families of planes will be at a larger 

angle of reflection and thus will be recorded away from the centre of the 

detector and vice versa. 
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Figure 1.7: A schematic representation of Bragg’s law. D is the interplanar 
distance between two consecutive planes in the family and θ is the angle of 
incidence of X-rays on the plane. 

Reciprocal Lattice and Ewald’s Sphere 

Bragg’s law can give an exact estimation of the angle of diffraction but 

does not provide any information about the position of reflection with respect 

to the origin in 3-dimensional spaces. This piece of information is obtained 

from the reciprocal space concept and the Ewald’s sphere. 

The reciprocal space is an imaginary 3-dimensional space where the 

reflected spots (as a result of diffraction) are assumed to be situated. It is clear 

from the Bragg’s law (equation 1) that for a given wavelength of incident X-ray, 

a family of planes with a narrower interplanar distance would lead to a 

reflection observed at a wider angle on the detector and vice versa. An 

arbitrary origin is chosen and a perpendicular is drawn on any family of 

parallel planes (Bragg’s planes) with an interplanar distance d in the real 

space and a spot at a distance 1/d from the chosen origin is identified on this 

perpendicular. This spot is called reciprocal lattice point corresponding to that 

set of planes. This essentially means that one family of planes in the real 

space lattice produces only one spot in the reciprocal space. The position of 

any spot in the reciprocal space can be given by three indices h, k, l, known as 

Miller indices, which are none other than the indices of the set of planes that 

gives rise to that reciprocal point and hence that particular reflection on the 

detector. All such spots together constitute a reciprocal lattice corresponding 

to the real space lattice. 

The Ewald’s construction (Figure 1.8) is a geometrical representation of 

the reciprocal lattice. It is a sphere of radius 1/λ (where λ is the wavelength of 

incident X-ray) and the crystal is assumed to be situated at the centre of the 

sphere (point A). The origin of the reciprocal space is assumed at the point 

where the direct beam leaves the sphere (point O). 
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Figure 1.8: The Ewald’s sphere and the reciprocal lattice construction (adapted 
from Rhodes, 2000). Direct beam leaves the sphere at O (origin of the reciprocal 
lattice) and the crystal is situated at the centre A. Reciprocal lattice point B is in 
the diffracting condition and line AB shows the direction of the diffracted ray 
whereas the point C can be brought in the diffracting condition by rotating the 
sphere around the origin O. 

It can be shown with the simple laws of geometry and trigonometry that 

when a reciprocal point (point B) falls on the surface of the Ewald’s sphere, it 

fulfils the condition given by the Bragg’s law and thus gives rise to a reflection 

in the direction along the line joining the centre of the sphere to that 

reciprocal point on the surface of the sphere (along the line AB). In figure 1.8 

the reciprocal space point B is in the diffracting condition. 

However, in any particular orientation of the crystal (and thus of the 

reciprocal lattice) not all reciprocal points can be brought on the surface of the 

Ewald’s sphere to give rise to a diffracted reflection. This also means that in 

any particular orientation of the crystal in the beam (which, from Bragg’s law, 

essentially implies that at a particular angle of incidence of X-rays, θ) not all 

families of Bragg’s planes can be brought into the diffracting positions. To do 

so, the Ewald’s sphere has to be rotated with respect to the reciprocal lattice 

keeping the origin fixed in order to make all the reciprocal points fall on the 

surface of the Ewald’s sphere (in diffracting position) in one or the other 

orientation of the reciprocal lattice. This forms the basis of the most commonly 

used method of data collection – ‘the rotation method’. 

The higher the intensity of the incident ray, the more intense will be the 

reflections in the reciprocal space for a given time of exposure. Also, for a given 

intensity of the beam, higher the electron density corresponding to a set of 

planes in the real space, the more will be the number of waves that will be 
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coherently scattered from that particular set of planes and more intense the 

corresponding spot will be. Two pieces of information for any reflection (spot 

on detector) that can be drawn directly from the collected diffraction data are 

the position (h, k, l,) and the intensity (Ihkl) of the reflection. 

X-ray Generators and Detectors 

X-rays of wavelengths in the range of 1.0 – 1.54 Å are usually used for 

crystallography purposes and are obtained from one of the two types of x-ray 

generators. 

In laboratory (or home) sources, a beam of electrons originated at a 

cathode is focused onto a metal anode target through a strong electric 

potential. These high energy electrons cause transitions of the metal atoms at 

anode which result in the production of electromagnetic radiation of a wide 

range of energies and hence of varying wavelength, known as ‘white radiation’. 

This includes some strong characteristic radiations corresponding to the 

excitation of inner cell electrons of the metal. Copper is the most commonly 

used target metal and produces characteristic radiation of CuKα, (1.54 Å 

wavelength) and CuKβ (1.39 Å wavelength). Molybdenum may be used as an 

anode if X-rays of shorter wavelength are required (MoKα and CuKβ, 0.71 and 

0.63 Å wavelengths respectively) (Blundell & Johnson, 1976). Using 

appropriate filters, the white radiation can be converted to a monochromatic 

X-ray beam by removing the weaker (Kβ and other much weaker) radiation. A 

filter made of an element with atomic number Z-1 effectively blocks the Kβ 

radiation produced by a metal of atomic number Z (Ni is an effective CuKβ 

blocker) (Rhodes, 2000). Home sources can again be classified as ‘sealed tube’ 

(stationary anode) and ‘rotating anode’ generators. Although, in-house X-ray 

sources are very convenient and reliable, their use is limited by their low 

intensity beam and inability of tuning the wavelength. 

Tremendous advancements in technology in the past 25 years have 

made data collection much quicker. At synchrotron radiation sources, 

electrons are generated in an electron gun (Figure 1.9) and are accelerated 

with the energy of several giga-volts (Helliwell, 1997). These electrons, moving 

almost at the speed of light, under the influence of an electric field, are fed into 

an outer storage ring (Blow, 2002). In the storage ring, these fast moving 

electrons are forced to revolve in a circular path via a magnetic field and hence 
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to emit electromagnetic radiations in the line tangential to their path (Figure 

1.9). The emitted electromagnetic beam is then carried from the storage ring to 

the experimental area through a high vacuum beamline (Helliwell, 1992) 

collimated by the mirrors and filtered to make it a monochromatic beam. 

Synchrotrons have the advantage of fast data collection using highly intense 

beam. Another major advantage of synchrotron sources is the ability to tune 

the wavelength of the X-ray beam. 

Figure 1.9: A schematic representation of a Synchrotron source and its parts 
(adopted from http://www.warren.usyd.edu.au/bulletin/NO51/ed51art8.htm). 

Detection of the diffracted X-rays is a crucial part of an X-ray 

crystallography experiment. There are several types of detectors available to 

record the diffraction data. Recording the data on X-ray films is now an 

obsolete method. Charged couple device (CCD) detectors are the most 

advanced types of detectors. These detectors are characterised by their fast 

read out time and high noise reduction capability. 

Crystal Mounting and Data Collection 

For mounting in the beam, crystals can be loaded into a glass capillary 

with the crystallisation solution (the mother liquor), and sealed at both the 

ends. Another approach is to loop mount the crystals. Crystals are scooped 

into a tiny loop, made of nylon or plastic, supported by a solid rod and then 

held in the beam. 

The capillary or the loop containing crystals is then mounted on a 

goniometer, which allows it to be positioned accurately within the X-ray beam 

and rotated. Since both, the crystal and the beam are often very small, the 
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crystal must be centred within the beam. The most common type of 

goniometer is the "kappa goniometer", which offers three angles of rotation: 

the ω angle, which rotates about an axis perpendicular to the beam; the κ 

angle, about an axis at ~50° to the ω axis; and, the φ angle about the 

loop/capillary axis. The oscillations (rotation) carried out using the rotation 

method of data collection involve the ω axis only. 

The primary data quality plays an important role since data collection 

(Figure 1.10) is the last experimental step in X-ray crystallography (Dauter, 

1999). While collecting the data one needs to ensure that the collected data is 

complete as much as possible, 

1) – quantitatively, and


2) – qualitatively


Figure 1.10: Arrangement of a typical X-ray crystallographic data collection 
experiment. 

Factors that influence data collection can be classified into two classes. 

Quantitative factors (such as total rotation angle for which the data has to be 

collected and the wavelength of incident beam) ensure that we record as many 

reflections as possible. Quantitative factors basically depend on crystal 

geometry and the experimental set up. 

The wavelength of x-rays can be chosen based upon the nature of the 

experiment. Any wavelength is suitable for native data collection. Usually, a 

higher resolution can be obtained using a shorter wavelength X-rays. Shorter 

wavelength also reduces damage to the crystals due to the absorption of 

radiation, termed as radiation damage. 
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Exposure time affects the intensity of each spot (reflection) in the 

diffraction pattern. A shorter exposure time leads to the loss of high resolution 

weak reflections whereas a longer exposure may result in the saturation of 

low-resolution spots (termed as overloads). Hence, the exposure time should 

be chosen carefully to compensate the both. In addition, a longer exposure 

time increases radiation damage to the crystal. 

One image of the spots is insufficient to reconstruct the diffraction 

pattern of the whole crystal. Hence the crystal is rotated in the beam and 

many images are collected. The total angle of oscillation required to collect a 

complete data set depends on the symmetry of the unit cell. For a crystal 

possessing no symmetry (Triclinic, page 16), at least 1800 rotation data is 

needed to ensure completeness of the collected data. For higher symmetry 

space groups the total angle of rotation required is less, as there are more 

symmetry related reflections. Usually, data over a larger range of oscillation is 

collected to reduce the signal to noise ratio and to improve the redundancy of 

the data (Blundell & Johnson, 1976). The total range of oscillation is achieved 

in several steps of small angle of rotation per image (∆Φ, usually of 10 per 

image for protein crystals). ∆Φ is chosen depending upon the unit cell 

parameters and the arrangement of spots on the image to avoid overlapping of 

the spots or collecting too many of partially recorded spots. 

Crystal-to-detector distance determines the resolution of the collected 

data. The further the detector from the crystal, the lower will be the resolution 

(Figure 1.11) (Evans, 1999). 

Figure 1.11: Effect of the crystal to detector distance on resolution range (the 
larger the θ, the higher will be the resolution). 
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Mosaicity of the crystal refers to the internal disorder of the crystal. 

Ideal crystals are like a brick wall where bricks are arranged regularly. 

However, real crystal lattices can deviate from the ideal and are not the perfect 

lattices. High mosaicity can result in overlapping spots and data loss. High 

mosaicity can easily be detected on a diffraction pattern as broadened spots 

(more like a smear) than circular. 

Another factor that influences the data collection is the movement of 

incident radiation beam. X-rays are never ideally monochromic (single 

wavelength X-rays). This phenomenon is known as the beam divergence. 

Combined effects of the crystal mosaicity and the beam divergence can cause 

a particular reflection to be spread over a range of crystal rotations (same 

reflection appearing over more than 1 image, partially) (Dauter, 1999). 

On the other hand, qualitative factors (such as R factor and signal to 

noise ratio) indicate that the collected data is of the best possible quality 

under the given experimental conditions. These factors depend on the method 

employed in the data collection (Dauter, 1999) and are discussed in the data 

processing section on page 26. 

Cryogenic Data Collection 

The crystallographic data can be collected either at room temperature 

or at lower temperatures. Low temperature (at 100 K) data collection is more 

common. In theory, lowering the temperature increases molecular order in the 

crystal and thus improves the diffraction pattern. However, the crystal is 

soaked in a cryoprotectant before freezing it to avoid the formation of ice 

crystals during the data collection. 

Another advantage of maintaining the crystal at a cryogenic 

temperature is that it prevents diffusion of free radicals from the site of 

primary radiation damage in the crystal and thus saves the crystal from 

further damage called secondary radiation damage. It provides the crystal with 

a longer life span and allows the experimenter to collect more and more data 

without damaging the crystal in the beam. 

Cryogenic data collection, however, has some disadvantages as well. 

Selection of cryoprotectant is a trial and error method. The wrong choice of 

cryoprotectant may lead to cracking or even shattering of the crystal. 
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Sometimes, transferring the crystal to a low temperature may also result in an 

increased mosaicity. 

Concept of Resolution 

The amount of structural information that can be extracted from a 

crystal depends on the resolution to which the crystal diffracts the incident 

beam (Table 1.3). Being able to bring families of planes with narrower 

interplanar distances to the diffracting positions essentially means that being 

able to acquire higher resolution data for the crystal. 

Table 1.3: The structural information obtained from a crystal based on the 
resolution. 

Resolution (Å) Structural information that can be obtained 

6.0 Outline of the molecule and secondary structure features 

(e. g. helices, strands) can be identified. 

3.0 Course of the polypeptide chain can be traced and 

topology of the folding can be established. With the aid of 

the amino acid sequence, it is possible to place the side 

chains within the electron density map. 

2.0 Main chain conformations can be established with great 

accuracy. Details of the side chain conformations, bound 

water molecules, metal ions and cofactors can be 

identified. 

1.5 Individual atoms are almost resolved. It is possible to 

figure out almost all solvent molecules. 

1.0 Hydrogen atoms may become visible. 

A family of closely spaced planes diffracts at a higher angle of diffraction 

(Bragg’s law, θ α 1/λ). Hence, higher resolution spots are always collected far 

from the centre of the detector. Also, Bragg’s law clearly indicates that for a 

given angle of incidence, with a shorter wavelength of incident X-rays, families 

of planes with smaller interplanar distances can also be brought in the 

diffracting positions (d α λ) which means that a higher resolution can be 

obtained. A high resolution data gives information about the finer details of 

the structure. However, low resolution data is equally important for structure 
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determination as it contains information about the overall structure. For 

example, a 6 Å (low resolution) data set can provide information about outlines 

of the molecule and its secondary structure features while individual atoms 

can be easily fitted into higher resolution data (Table 1.3). 

Data Processing 

The crystallographic diffraction data is collected as two dimensional 

images full of diffracted reflections. To determine the structure of the 

molecule, this data needs to be processed. Data processing is a complex multi 

step process which includes – 

(1) - indexing of the data and measurement of cell parameters, 

(2) - refinement of cell and detector parameters, 

(3) - integration of the data, and 

(4) - scaling of the data. 

The first step in data processing is the determination of the unit cell 

dimensions and the crystal system. At this stage, based on the diffraction 

pattern, peaks are picked and indexing of the diffraction pattern is performed 

depending upon the position of peaks (Rossmann and van Beek, 1999). A 

complete search of all possible indices is performed. Finding values (integers) 

for one index (for example, h) for all reflections is equivalent to having found 

one real-space direction of the crystal axis (for example, a). After the search for 

the real space vectors is completed, the program finds three linearly 

independent vectors with minimal determinant (unit cell volume) that would 

index all the observed peaks to determine unit cell dimensions, Bravais lattice 

and the crystal orientation. 

This procedure usually provides with more than one choice for space 

group with their respective distortion coefficient which is an indication of to 

what extent the unit cell parameters for that particular space group have to be 

distorted in order to make it a perfect cell. The selected space group would be 

the one that has highest order of symmetry with lowest distortion coefficient. 

Further processing of the data proceeds using the initial estimates of cell 

parameters for selected space group as reference. Crystal to detector distance, 
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wavelength and oscillation range (phi values), are the input values needed in 

order to complete the process of autoindexing. 

Autoindexing is followed by refinement of cell and detector parameters 

and integration of whole data. Usually, autoindexing is done with only one or a 

few of the recorded images. Integration of data refers to the conversion of 

hundreds of collected images to one file consisting of the Miller indices and 

corresponding intensities for each reflection. 

Scaling is the final step in data processing. A scale factor is applied so 

that the intensities from all images of the data set can be related. The scaling 

of intensities is needed because the diffraction quality of the crystal degrades 

with time as it depends on mosaicity, air and crystal absorption, radiation 

damage etc. The first image usually has a scale factor of 1 and all the 

subsequent images will be scaled up to this (Smyth and Martin, 2000). The 

step of scaling averages the processed data while accounting for errors that 

occur during the data collection. The output of the scaling process is a list of 

reflections with systematic absences that is characteristic of the space group 

that had been chosen during indexing. 

The whole process of ‘processing the data’ produces a list of indices and 

their corresponding scaled intensities for all the recorded reflections and 

provides important statistical information about the quality of data such as 

completeness of data, signal to noise ratio and reliability factor. Each of the 

above steps involves many complex calculations. Therefore the entire process 

is carried out with the help of computer programs using sophisticated 

algorithms. The most frequently used programs are MOSFLM (Leslie, 1992) 

and HKL 2000 / HKL Package (Otwinowski and Minor, 1997). The quality of 

processed and scaled data can be assessed by following statistics: 

Completeness of data is the ratio of the number of unique reflections 

recorded to the total number of unique reflections possible. The higher the 

value, the more information can be obtained from the processed data. 

Rsym is an estimate of disagreement between the measured intensities of 

symmetry related reflections. A low Rsym value indicates less errors in the data 
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collection and hence more precision. If two or more data sets are scaled 

together, the R value is termed as Rmerge. For a typical data set of 2.0 Å, an 

Rsym of 10-12 % is within the acceptable limit (Blow, 2002). 

Signal to noise ratio (I / σI) is the ratio of intensity (I) to the error in 

recording that intensity (σI). This value is indicative of the accepted resolution 

of the data set as reflections with error ratio of (I/σI) < 2.0 can not be 

distinguished from the background noise and may contain errors. 

Redundancy, or multiplicity of the data refers to how many times all 

symmetry related reflections have been recorded. High redundancy is an 

indicative of accuracy in intensity measurement. 

Interpretation of Data – Diffraction to Structure 

Fourier proposed a method called Fourier Transformation (FT) to 

analyse complicated mathematical functions which are repetitive in nature. 

These complicated functions can be represented as a series of functions that 

are an integral multiple of a fundamental function. Since, crystals are also a 

repetitive function of a fundamental function i. e. the unit cell, they also can 

be analysed by applying the Fourier transform on them. More accurately, 

crystals are built from repetitive blocks of electron density. This electron 

density varies from point to point inside the unit cell but if we look at the 

crystal as a whole, this electron density repeats itself again and again in a 

regular fashion. Hence, by applying the Fourier transformation, the electron 

density at any point in a unit cell can be used to determine all its Fourier 

components (in case of waves; the amplitude, frequency and phase). Therefore, 

by working in the opposite direction (known as the inverse Fourier 

transformation) if the amplitude, frequency and phase components of the 

function are known, they can be used to calculate electron density at any 

point in the unit cell. This situation, however, is more complicated because a 

unit cell is a three dimensional object. Furthermore, each spot observed in the 

diffraction pattern appears not as a result of scattering from one electron in 

the unit cell but as a result of the constructive interference between waves 

scattered from all of the electrons present in the unit cell. Therefore, we need 
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to apply the inverse Fourier transform in all 3 directions within the volume of 

the unit cell to calculate the electron density at each and every point in that 

volume. 

The recorded reflections on the diffraction pattern, represent a sum of 

waves, diffracted from atoms on planes in the real space and are known as 

‘structure factors’. A three dimensional wave can be expressed in the following 

form: 

f(xyz) = fhkl e 2πiα ----------------------- (2) 

Where fhkl is the amplitude component of the wave and α is the phase 

component. The h, k, and l are the frequency terms of the wave in all three 

directions respectively i. e. by definition, how many times the wave repeats 

itself per unit cell in all three directions. Hence, the sum of all of the waves 

coherently interfering and producing a reflection in the reciprocal space can be 

represented as: 

F(hkl) = ΣhΣkΣlfhkl e 2π iα ----------------------- (3) 

This equation is known as the ‘structure factor equation’ corresponding 

to the reflection hkl (the Miller indices of that reflection or of the family of 

planes from which that particular reflection is originated). This way, structure 

factors for each and every reflection recorded on the detector can be 

calculated. Since the structure factor is the Fourier transform of electron 

density (ρ), another form of equation (3) can be written as 

F(hkl) =∫v ρxyz e 2 πi (hx+ky+lz) dx.dy.dz ----------------------- (4) 

Where, v is the volume of the unit cell. An inverse Fourier transform of 

equation (4) results in equation (5) -

ρxyz = 1/v ΣhΣkΣlF(hkl) e -2πi (hx+ky+lz) 

= 1/v ΣhΣkΣlf(hkl) e 2π iα e -2πi (hx+ky+lz) ---(5) 
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Equation (5) gives us the value of electron density at any point x, y, z in 

the volume of the unit cell provided that we have estimated all the structure 

factor amplitudes, frequencies and phases. 

Obtaining Phases 

The recorded diffraction pattern of a crystal is the Fourier transform of 

the electron density of its unit cell content. In principle, the Fourier transform 

is reversible and therefore it is possible to reconstruct the electron density in a 

unit cell from its diffraction pattern. However, from the electron density 

equation (equation-5) it is clear that to determine the electron density at any 

particular point in the unit cell (x, y, z) we need to know three parameters – (i)-

the amplitude factor (fhkl), (ii)- the frequency factor (h, k, l) and (iii)- the phase 

(α) components for all the Fourier terms i. e. for all the diffracted waves. 

The amplitude and the intensity of a wave are interrelated (the intensity 

is directly proportional to the square of the amplitude). In the process of data 

collection we only record intensities corresponding to reflections and hence 

amplitudes for all reflections can be easily determined. The frequency terms 

are nothing else but the Miller indices of the reflections. These values for all 

observed reflections have already been determined during the process of 

indexing the data. 

However, the third vital piece of information for each reflection – ‘The 

Phase’, is lost during the process of data collection and needs to be determined 

indirectly. This problem of losing phases in the data collection is termed as the 

Phase Problem. There are three main methods of solving the phase problem 

which can be used depending upon the type of the problem encountered. Any 

of these methods, however, does not provide with the actual and accurate 

phase information. An initial estimate of phases is calculated which is refined 

and improved subsequently (Taylor, 2003). 

Isomorphous replacement is a classical method of solving the phase 

problem. The principle of this method is that the contribution of any atom to 

the structure factor arising from the plane that intersects its position is 

proportional to the number of electrons present in the atom. Proteins are 

formed of C, N, O and S atoms which share almost same number of electrons 

in them. If a heavy atom, with an exceptionally large number of electrons is 

introduced uniformly in the crystal, the intensities of reflections corresponding 
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to the families of planes containing the heavy atom increase because of the 

additional scattering of waves by the heavy metal atom. This ultimately 

increases the amplitude factor of the corresponding structure factor equation 

for that reflection. In this method two different data sets are collected - one for 

the native crystal and the other for the heavy metal derivative crystal (Green et 

al., 1954). 

The condition that applies in this method is that both of the crystals 

should essentially be isomorphous i. e. both crystals should belong to the 

same space group with not more than 5% change in their cell parameters. The 

resulting intensities for both data sets are compared to retrieve phase 

information of heavy metal atom substructure that is present in the crystal. 

Positions of heavy metal atoms in the unit cell can be identified and can 

further be used to build the protein model. In normal practice, more than one 

heavy metal derivative is used and the method is called multiple isomorphous 

replacements. 

The method of anomalous scattering exploits the property of Friedel’s 

law. According to Friedel’s law, each set of planes produces two reflections 

given by hkl and –h-k-l which are equal in their intensities (Ihkl = I-h-k-l) but 

differ in their phases exactly by 1800. This makes all diffraction patterns 

centrosymmetric. Heavy metal atoms are incorporated into the protein crystal 

and the diffraction data is collected at the absorption edge of the incorporated 

heavy atom. This results in the absorption of radiation and Friedel’s law 

brakes down (Ihkl ≠ I–h-k-l). The absorption edge of an atom is defined as the 

wavelength at which the atom absorbs X-rays. 

By comparing the intensities of Friedel’s pairs of native and anomalous 

data (collected at the absorption edge), positions of heavy atoms in the unit 

cell can be determined. The anomalous scattering technique overcomes the 

problem of isomorphism as both, the native and the anomalous data sets can 

be collected from one single crystal by changing the wavelength to the 

absorption edge of the incorporated heavy atom. Usually, data sets are 

collected at several wavelengths in order to maximise the absorption (Taylor, 

2003) and the method of phase extraction is called Multiwavelength 

Anomalous Dispersion (MAD) method (Hendrickson and Ogate, 1997). 
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The use of a combination of above two methods is also becoming 

common. This technique is known as Single Isomorphous Replacement with 

Anomalous Scattering (SIRAS). 

Molecular replacement (Rosmann and Blow, 1962) is a method for 

phase estimation where a similar structure is known (Figure 1.12). Popularity 

of molecular replacement is increasing as more and more structures are being 

deposited in the Protein Data Bank (PDB). The success of molecular 

replacement method depends on the availability of sufficiently homologous 

structure. The higher the primary sequence identity, the higher are the 

chances, that the proteins will assume similar kind of three dimensional fold. 

As a rule of thumb, if the structure to be solved shares more than 30 % 

sequence identity with another protein whose structure is available, the 

molecular replacement method of phase estimation can be applied. 

In principle, this method exploits the property of reversibility of the 

Fourier transform and Patterson synthesis. A suitable protein with known 

structure (and hence known phases) is selected as a model and Patterson 

maps of the model molecule and the target unit cell content are calculated. A 

Patterson map is a Fourier transform of the structure factor amplitudes only 

and does not require phases. It represents all possible atom to atom vectors 

and thus relative positions of atoms with respect to each other. The Patterson 

map of the model is rotated first and then translated (Figure 1.12) within the 

unit cell to obtain the correct orientation of the target in the unit cell relative 

to the origin (Taylor, 2003). 

Figure 1.12: A schematic illustration of the process of molecular replacement. 
The target is similar but not identical to the model. 
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This operation of finding a rotation matrix ‘[R]’ and a translation vector 

‘t’ relates the Patterson map of the model (M) to the Patterson map of the 

target structure (X) according to the flowing equation -

X = [R].M + t 

Phases from the model (called calculated phases) are then associated 

with the observed structure factor amplitudes of the target molecule from 

diffraction data to calculate an initial electron density map according to 

equation – (5). Several computer programmes such as AMoRe (Navaza, 1994), 

MolRep (Vagin and Teplyakov, 1997) and PHASER (McCoy et al., 2007) are 

available to assist the whole operation. 

Model Building and Refinement 

The calculated phases are combined with the observed structure factor 

amplitudes from the diffraction pattern and a starting set of structure factor 

equations is calculated. These structure factor equations are used to calculate 

an initial electron density map of the molecule by using equation-(5). The 

quality of map at this stage depends on the quality of collected data and errors 

in phase estimation. Electron density maps can become biased towards the 

model if phases have been estimated by molecular replacement. This is termed 

as model bias. 

Many rounds of crystallographic model building and refinement are 

then carried out in a cyclic process (Figure 1.1, page 03) aiming to improve the 

agreement between the observed data and the atomic model that has been 

calculated by using phases from the search model. The cyclic process of model 

building and refinement is usually repeated until, ultimately, a model is 

generated which represents the observed data as closely as possible. 

In order to reduce the model biasing of phases, usually a 2Fo-Fc Fourier 

map is calculated. In this map electron density at any point is calculated 

using the structure factor amplitudes equal to a sum of twice the observed 

structure factor amplitudes (|Fobs|), minus the calculated amplitudes (|Fcalc|) 

{(2|Fobs| –|Fcalc|)} in equation-5. This map represents a positive continuous 

density of the model. The structure factor amplitudes of this map are = |Fobs| 

if the model is perfect. This map has a larger contribution of |Fobs| and hence 
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if the model misses parts or is not perfect, this map shows the missing parts 

up with less intensity. 

Another map, known as the Fo-Fc maps is also generated by using a 

sum of the observed structure factor amplitudes, minus the calculated 

amplitudes {(|Fobs| –|Fcalc|)} in equation 5. The electron density 

corresponding to this map is zero if the model is perfect, positive if some parts 

are missing in the model but present in the structure and negative if parts are 

absent in the structure but present in the model. 

In addition to protein molecules, crystals contain water molecules 

which are bonded to the protein by hydrogen bonding and ligands that were 

incorporated during the crystallisation or by soaking the crystal in ligand 

solutions. These molecules also need to be modelled. The electron density 

corresponding to these molecules is visible in the Fo-Fc map. Water molecules 

can be added manually or automatically with the help of computer programs 

used in refinement such as ARP/wARP (Lamzin and Wilson, 1993). Atomic 

coordinates for ligand molecules can be obtained from the database such as 

the HIC-UP server (Kleywegt and Jones, 1998). Alternatively, coordinates for 

ligand can be obtained from the PRODRUG server (Schuettelkopf and van 

Aalten, 2004) or from the Sketcher application of CCP4 (CCP4, 1994). 

Interpretation of electron density maps and model building, however is 

a laborious exercise which has been made easier by the development of several 

softwares such as O (Jones et al., 1991) and COOT (Emsley and Cowtan, 

2004). 

Model building is followed by refinement where adjustments are made 

to bring the calculated structure factors close to the observed structure 

factors. Preliminary progress of refinement is assessed by the reliability factor 

(or the R factor) and improved model geometry. More appropriately, refinement 

is a process that produces the most biologically meaningful structure from the 

experimental data. The model parameters that are refined in each cycle of 

refinement include the position (x, y, z), occupancies and thermal factors (B-

factors) of atoms. Generally used programmes for refinement are REFMAC 

(Murshudov et al., 1997) and CNS (Brunger et al., 1998). 

Refinement can be started at a low resolution in order to reduce the 

model bias and to avoid the entrapment in local minima. The resolution can 

subsequently be increased in one or more steps. This strategy proceeds with 
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the correction of the gross features of the model first and ensures that the 

wrongly assigned details do not bias the model. Initially, the model is refined 

by rigid body refinement in which the protein molecules are refined as if they 

are rigid bodies and no relative movement of different domains is allowed. 

Another basic type of refinement is restrained refinement where some 

freedom of movement within a narrow range of limits is allowed to the 

parameters to be refined. Adding restraints increases the observations to 

parameter ratio and therefore a good technique is to restrain the geometry of 

the protein tightly so that the phases could become more accurate as 

distortions in local geometry cannot be assigned without good phases. 

B-factors are the atomic displacement factors. B factors represent the 

distribution of positions occupied by an atom over a period of time (dynamic 

disorder) as well as variations in the position of an atom between different unit 

cells (static disorder) (McRee, 1993). B factor refinement is an example of 

restrained refinement. Large B-factor values are usually indicative of errors in 

the model coordinates. 

Structure Validation 

Validation is used to access the quality of the refined structure. It is a 

process of checking quality of the structure against basic laws and known 

knowledge of science. The measure of success of refinement process can be 

assessed by several means. 

The R-factor is the primary quality parameter of a structure. At the end 

of every cycle of model building and refinement, the difference between the 

calculated structure factors amplitudes and the observed structure factor 

amplitudes begin to converge and the value of R-factor drops. The R factor is 

calculated as below 

Rcryst = Σ ||Fo| - |Fc|| ----------------------- (6) 

Σ|Fo| 

Another important quality accessing parameter is Rfree. This concept 

was first coined by Brunger (Brunger, 1992). A set of randomly selected 

reflections (known as the test set) is taken out from all the available data and 

not used in the refinement. The rest of the data with which the refinement is 
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carried out is termed as working set. The Rcryst indicates agreement (or 

disagreement) between the observed data (working set) and the calculated 

data. On the other hand, the Rfree is calculated in a similar way but for the test 

set. Since, the Rfree is calculated against the experimental data and not the 

model, there is no model bias in the refinement of the test set. The advantage 

of Rfree is that it indicates about wrongly or over fitted data. 

Root mean square deviation (r.m.s.d) is another statistical parameter 

that helps in assessing the quality of a structure by indicating the deviation of 

covalent bond lengths and bond angles from their ideal values. A low r.m.s.d. 

value indicates that the geometry of the molecule is good and that the 

refinement was carried out properly. Usually an r.m.s.d. value < 0.2 for bond 

angles and <0.02 for bond lengths is considered acceptable. 

Ramachandran plots (Ramachandran et al., 1963) are good indicators 

of accuracy of protein models. A Ramachandran plot indicates whether the 

main chain backbone dihedral angles (Φ – Ψ angles) fall into the allowed range 

to form protein secondary structure elements. PROCHECK (Laskowski et al., 

1993) and MOLPROBITY (Davis et al. 2007) are two useful programs that can 

assist in the assessment of the quality of the structure at various stages of 

refinement. 

Deposition of Atomic Coordinates with the Protein Data Bank 

There is no definitive point when refinement of a structure is completed. 

As a rule of thumb, when the Rcryst and the Rfree stabilise, structure refinement 

is considered to be completed. Refined and validated structures are then made 

available to the public. The protein data bank (at either European 

Bioinformatics Institute, EBI; http://www.ebi.ac.uk/ or with the Research 

Collaboratory for Structural Bioinformatics, RCSB; http://www.rcsb.org/) is a 

global repository for structural information for X-ray crystallographic data. Not 

only the refined atomic coordinates for the protein but the experimental data, 

protein sequence and other parts of information are also deposited through a 

web interface such as AutoDep. The PDB facilitates an open access to all 

structures deposited world wide. 
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CHAPTER - II 

CLOSTRIDIUM DIFFICILE AND

ITS KNOWN TOXINS
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Introduction to Clostridium difficile 

Clostridia are Gram positive, spore forming, anaerobic, rod shaped 

bacteria. They are motile bacteria that are widely distributed in nature with 

their special prevalence in soil. They are commonly found in the 

gastrointestinal track of many animals including humans (Barth et al., 2004). 

Clostridia are closely related to Bacillus genera (Shimizu et al., 2002; Read et 

al., 2003). Along with Bacillus; they are thought to constitute the first bacterial 

population on the earth (Fox et al., 1980). Beside their genetic similarities, the 

two genera are well known for their ability to produce a variety of toxins which 

makes them potent pathogens of eukaryotic cells. 

Figure 2.1: An electron microscopic photograph of Clostridium difficile spores 
(figure obtained from Health Protection agency, U.K.) 

Clostridium difficile (Figure 2.1), originally known as Bacillus difficile 

was described in 1935 for the first time (Hall and Toole, 1935). In 1978, C. 

difficile was isolated from patients undergoing antibiotic treatment. The 

bacterium was soon identified as the primary cause of pseudomembranous 

colitis (Voth and Ballard, 2005). It was found that C. difficile causes disease 

almost exclusively in the presence of exposure to antibiotics. C. difficile is the 

only known anaerobic bacterium that produces toxins in the colon (Bartlett 

and Perl, 2005). 
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Clostridium difficile Infection 

Clostridium difficile is an important nosocomial pathogen. C. difficile 

infection (CDI) is known to be responsible for almost all cases of 

pseudomembranous colitis (PMC) and hospital acquired diarrhoea worldwide 

(Elliott et al., 2007). Elderly people are more at risk. CDI is recognised by a 

wide variety of symptoms ranging from mild self limiting diarrhoea to more 

severe life threatening pseudomembranous colitis. The more serious issue is 

that the infection occurs in hospitalised individuals who have undergone 

antibiotic treatment (Hurley and Nguyen, 2002) and hence the disease is 

called Hospital Acquired Diarrhoea. C. difficile is resistant to several 

antibiotics and antimicrobial agents which give the bacteria a selective 

advantage over other microbes that results in C. difficile associated outbreaks 

in healthcare facilities. 

Reports suggest that almost 3% of healthy and up to 40% of 

hospitalised individuals are colonised with C. difficile (McFarland et al., 1989). 

In healthy individuals, the bacteria remain in spore form under normal 

conditions and only go back to their active – vegetative form, when the normal 

intestinal flora gets disturbed upon exposure to antibiotics (Bartlett and Perl, 

2005). In general, any therapeutic agent, procedure or illness that disturbs the 

normal intestinal flora may give rise to CDI (Riley, 1998). Clindamycin and 

cephalosporins have been considered as significant cause of PMC (Tedesco et 

al., 1974; Gerding, 2004). 

Figure 2.2: The number of reported cases of Clostridium difficile-infection in the 
United Kingdom (Source - Health Protection Agency and Office for National 
Statistics). * - the 2008 data is for 3 quarters (Jan. 2008 – Sep. 2008). 

39




A survey report by the Health Protection Agency (HPA), in 2006 revealed 

that there was a 30 fold increment in the reported case of CDI in 15 years 

between 1990 to 2005 (Figure 2.2). In the year 2005, more than 3500 

individuals lost their lives to CDI in the United Kingdom (Figure 2.3). This 

number was more than 8 % of the reported cases of CDI in that year. Although 

the number of reported cases of CDI decreased from 2006 to 2007 (Figure 2.2), 

the severity of infection kept on increasing with a death toll of 6500 in 2006 

and more than 8000 in 2007 (Figure 2.3). 

Figure 2.3: The number of deaths associated with Clostridium difficile infection 
in England and Wales (Source- Office for National Statistics). 

The pathogenesis of C. difficile has been attributed to its three well 

known toxins – Toxin-A (TcdA), Toxin-B (TcdB) and a binary toxin (CDT). All 

three toxins are discussed below in detail. 

Clostridium difficile Virulence Factors 

Toxin-A and Toxin-B (TcdA, 308 kDa and TcdB, 270 kDa) are two 

proteins that have been considered to be the main virulence factors of C. 

difficile (Thelestam and Chaves-Olarte, 2000; Elliott et al., 2007). They along 

with several other closely related Clostridial toxins such as C. sordellii lethal 

toxin (TcsL) and haemorrhagic toxin (TcsH) and C. novyi alpha toxin (Tcn-α), 

constitute a group known as Large Clostridial Cytotoxins (LCT) (Just et al., 

2000). All members of this family are single chain proteins of high molecular 
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weight ranging from 200 to 300 kDa (Rupnik et al., 2003) and are among the 

largest known bacterial toxins. 

TcdA and TcdB from C. difficile have been studied in great detail. Both 

proteins are expressed efficiently by the host during the late log phase or 

stationary phase of growth (Voth and Ballard, 2005). However, the precise 

environmental signal that modulates toxin expression is still unclear. Studies 

suggest that the production of both proteins by C. difficile can be enhanced 

under stress conditions such as in the presence of antibiotics vancomycin and 

penicillin (Dupuy and Sonenshein, 1998). A recent study (Lyras et al., 2009) 

emphasises the essentiality of Toxin-B in C. difficile infection. 

TcdA and TcdB toxins are encoded by two separate genes namely tcdA 

and tcdB. Along with three other genes tcdC, tcdD and tcdE, these toxins form 

a pathogenicity locus (Figure 2.4) which spans over a 19 kb region on the 

genome of the bacterium (Hammond and Johnson, 1995). Translation 

products of these genes (tcdC, tcdD and tcdE) are suspected to be involved in 

the pathogenicity of the organism by regulating the expression of TcdA and 

TcdB and their release from the cell (Hammond and Johnson, 1995). A high 

sequence similarity and functional homology between TcdA and TcdB 

indicates that the two genes may have arisen as a result of gene duplication 

(von Eichel-Streiber et al., 1992). 

Figure 2.4: The arrangement of tcdA and tcdB toxin genes along with their 
regulators (tcdC tcdD and tcdE) in the C. difficile pathogenicity locus and the 
relative position of binary toxin genes (Adopted from McDonald et al., 2005). 

Less prominent is the C. difficile binary toxin (CDT). The pathogenic role 

of CDT in C. difficile infection is still a question of debate. About 6 to 12.5 % 

strains of C. difficile that have been isolated from patients suffering from CDI 
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are found to contain CDT genes (Stubbs et al., 2000; Popoff, 2000; Geric et al., 

2003). CDT is a genome encoded toxin. CDT coding genes are located at an 

unknown position outside the pathogenicity locus (Figure 2.4) (McDonald et 

al., 2005). A recent study has highlighted on an 18 base pair deletion in tcdC 

gene (one of the negative regulators of TcdA and TcdB, Figure 2.4). The 

deletion is found closely associated with the prevalence of C. difficile strains 

carrying CDT encoding genes (McDonald et al., 2005). The importance of this 

deletion and its correlation with the presence of CDT genes is not understood 

yet. It is suggested that the presence of CDT contributes towards the severity 

of infection (Perelle et al., 1997). However, to date, there is no report available 

to evaluate the cytotoxicity effect of complete CDT in isolation. 

Clostridium difficile Binary Toxin (Actin-ADPRT) 

Similar to many other Clostridial binary toxins such as C. perfringins 

iota toxin, C. botulinum C2 toxin, and C. spiroforme toxin, CDT is composed of 

two components – an enzymatically active component (CDTa) and a 

catalytically inert transport component (CDTb) (Barth et al., 2004). Domain 

organisation of CDTa and CDTb is shown in Figure 2.5. 

Figure 2.5: The domain organisation of CDTa and CDTb. CDTa′- mature CDTa 
fragment (without signal peptide), CDTb′- CDTb fragment without signal peptide, 
CDTb″ – fully mature CDTb fragment. 

The enzymatic component of C. difficile binary toxin (CDTa) is a 462 

amino acid protein with a total molecular weight of 49 kDa. The first 42-N 
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terminal residues of CDTa have been predicted to form a transmembrane 

peptide segment that acts as a signal peptide. CDTa gets activated by 

proteolytic cleavage of the signal peptide and the cleavage site has been 

identified at Lys 42-Val 43 (Perelle et al., 1997). Amino acid residues (Arg 295, 

Glu 378 and Glu 380) that are essential for catalytic (ADP ribosylation) activity 

of the enzymatic component of C. perfringens Iota toxin, Ia, the closest 

homologue of CDTa (Perelle et al., 1996; van Damme et al., 1996), are well 

conserved in CDTa. Precursor and mature CDTa share 81% and 84% 

sequence identity with the corresponding lengths of the enzymatic component 

of Iota toxin (Perelle et al., 1997; Voth and Ballard 2005). 

The transport component of C. difficile binary toxin (CDTb) consists of 

876 amino acid residues with a molecular weight of 98.9 kDa (Figure 2.5). The 

protein itself is catalytically inert but plays an important role in transporting 

the enzymatic component (CDTa) into the target cells. The first 42 N terminal 

residues of CDTb have also been predicted to be a signal peptide that displays 

features of a transmembrane segment (Perelle et al., 1993). Precursor CDTb 

shares 81.2 % and 38 % sequence identity with the transport component of C. 

perfringens Iota toxin (Ib) and C. botulinum C2 toxin (C2II), respectively (Barth 

et al., 2004). CDTb undergoes a proteolytic cleavage by chymotrypsin and the 

cleavage site has been proposed to be at Lys 209-Leu 210 (Perelle et al., 1997). 

As a result of cleavage, a 25 kDa N terminal fragment of CDTb falls apart and 

the remaining larger C terminal fragment functions as an active (mature) 

CDTb. The mature CDTb is 82 % identical to Ib and 40 % identical to C2II 

(Barth et al., 2004). 

Clostridial Actin-ADPRTs 

Several species of Clostridium and Bacillus produce binary toxins that 

belong to the ADP ribosylating toxin (ADPRT) superfamily. They all target actin 

molecules in the target cell. These toxins are composed of two subunits 

(components) which are transcribed, translated and secreted out of the cell as 

two separate proteins (Barth et al., 2004) encoded by two distinct genes. The 

G+C content of these genes vary between 27 to 31 % among different 

Clostridial species (Popoff, 2000). A significant difference at the genetic level 

between different Clostridial binary toxins is that C. difficile CDT, C. botulinum 

C2 and C. spiroforme CST are chromosome encoded toxins whereas C. 

perfringens iota toxin is a plasmid encoded toxin (Barth et al., 2004). 
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The smaller component (known as A or I) of Clostridial binary toxins 

possess the enzymatic activity of the toxin (Figure 2.5) and is responsible for 

the covalent ADP ribosylation of monomeric actin molecules in the target cell 

(Aktories and Wegner, 1992). These toxins utilise NAD or NADPH as the ADP-

ribose donor. The larger component (known as B or II) of these toxins is 

enzymatically inactive (Figure 2.5). The B component is responsible for the 

translocation of the A component into the target cell (Ohishi et al., 1980). 

Clostridial binary toxins are further classified into two main classes 

based on their substrate specificity (Schering et al., 1988; Rupnik et al., 2003; 

Barth et al., 2004). Toxins belonging to the Iota family can ADP-ribosylate all 

three isoforms of actin whereas toxins from C2 family are specific for only 

smooth muscle actins (β and γ isoforms of actin) (Vandekerckhove et al., 1987; 

Popoff et al., 1988; Aktories et al., 1986; Mauss et al., 1990). Binary toxins 

produced by different Clostridium species are listed in table 2.1. 

Table 2.1: Classification of costridial binary toxins based on their substrate 
specificity. 

Family Toxin and Components Specificity 

C. perfringens toxin (iota) 

α / β / γ Actins Iota family C. spiroforme toxin (CST) 

C. difficile toxin (CDT) 

C2 family C. botulinum toxin (C2) β / γ Actins 

Another basis of their classification is the sequence identity between 

different binary toxins. Members of the Iota family share more than 80% 

sequence identity in the family, while when aligned against the C2 family 

members, the sequence identity is much less – around 30 to 40% (Barth et al., 

2004).Toxins from one family also show immunological cross reactivity. In 

addition, the transport component of one toxin can transport the enzymatic 

components of other toxins into the target cell and thus can be exchanged 

among different toxins within the family (Rupnik et al., 2003). 

Common Mechanism of Action of Clostridial Actin-ADPRTs 

The B (or the transport) component of these binary toxins is produced 

as an inactive precursor molecule which gets activated on proteolysis by 
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various serine proteases such as furin, trypsin and chymotrypsin (Fernie et 

al., 1984; Klimpel et al., 1992; Perelle et al., 1997; Stiles, 1987). This 

activation results in the loss of about 20 to 25 kDa N terminal fragment from 

the precursor molecule (Figure 2.5). The large C terminal fragment of the B 

component undergoes a conformational change that facilitates the formation 

of a homo-heptameric transport component complex (Barth et al., 2004). 

Figure 2.6: The process of cell intoxication by Clostridial binary toxins. The B 
subunit is activated by chymotrypsin (1, 2) and forms a heptameric pore like 
structure (3) that binds to the unknown cell surface receptors (4). The A 
component (5) then docks on the assembly (6) which then gets endocytosed via 
early endosomal pathway (7). The A component translocates through the pore 
into the cytosol (8) and irreversibly modifies monomeric actin which blocks its 
polymerisation (10). 

The enzymatic component of the toxin then docks on the cell surface 

receptor bound heptameric transport component complex. The N terminal 

domains of both components are believed to be involved in docking on each 

other (Barth et al., 2004). The entire assembly of cell surface bound toxin is 

then translocated into the cytosol via acidified early endosomal pathway 

similar to the single chain diphtheria toxin or multi chain B. anthrcis lethal 
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and edema toxin (Madshus et al., 1991; Friedlander, 1986). Late endosomes 

are not involved in the transport as inhibitors of late endosomes are not found 

to affect the biological activity of C2 or iota toxins on the cells. However, the 

biological activity of C2 or iota toxin can be blocked by bafilomycin-A, which is 

known to inhibit the acidification of early endosome (Barth et al., 2000; 

Blocker et al., 2001; Werner et al., 1984). 

Highly acidic environment of the endosomal compartment (pH < 5.0) 

has been suggested to facilitate membrane insertion of the transport 

component heptamer generating a tunnel through the endosomal membrane. 

The low pH also induces a drastic conformational change in the enzymatic 

component. The enzymatic component is then translocated from the 

ensdosomal compartment into the cytosol via the tunnel. In the cytosol, the 

enzymatic component regains its three dimensional structure and becomes 

catalytically functional again. It is not clear whether the transport component 

heptamer also enters cytosol with the enzymatic component or remains 

attached to the endosomal membrane (Ohishi and Yanagimoto, 1992; Richard 

et al., 2002). A heat shock protein (Hsp90), a well conserved ATPase in 

eukaryotic cells has been thought to be involved in the transportation of 

enzymatic components of iota, CDT and C2 toxins across the endosomal 

membrane but the mechanism is yet to be understood (Haug et al., 2003a; 

Haug et al., 2003b). 

Figure 2.7: Site of cleavage on the NAD molecule by ADPRTs. 

The enzymatic component of these toxins transfers the ADP ribose 

moiety (Figure 2.7) of NADH or NADPH to monomeric actin (G-actin) molecules 

(Aktories and Wegner, 1989; Considine and Simpson, 1991). Monomeric actin 
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(G-actin) is a single peptide chain of 375 amino acid residues. 14 G-actin 

molecules interact together to produce a long thread like structure. Two of 

these strands then produce a right handed double stranded helix known as 

polymeric actin (F-actin). The polymeric form of actin is a polar molecule. 

Polymerisation of actin molecules takes place mainly at one end of the polymer 

known as the barber end (Figure 2.8), whereas depolymerisation occurs at the 

other end of the molecule known as the pointed end (Figure 2.8) at a faster 

rate (Aktories and Wegner, 1992). 

Figure 2.8: A schematic representation of mechanism of actin cytoskeleton 
disruption by Clostridial binary toxins. An irreversible modification of monomeric 
actin at Arg-177 prevents stacking of newly coming momonomeric actin on the 
growing polymeric actin chain. 

All ADP-ribosylating toxins transfer the ADP-ribose of NADH to Arg-177 

residue of monomeric actin (Vandekerckhove et al., 1988). Arg-177 of actin is 

located in the domain of newly entered G-actin molecule which interacts with 

the next coming G-actin (Figure 2.8). In the process of polymerization, Arg-177 

gets buried in the polymer and remains unaccessible to the toxin (Figure 

2.18). Hence, the polymeric form of actin is not a substrate for the ADP 

ribosylation by these toxins (Aktories et al., 1986). 

The irreversible modification of G actin results in disruption of the F-

actin - G-actin equilibrium in the cell as the polymerisation of actin molecules 

ceases (Aktories and Wegner, 1992; Barth et al., 2002). Eventually the cell 
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cytoskeleton, which is totally dependent on this equilibrium, collapses. These 

events result in excessive fluid loss from the cell (Simpson, 1982), increased 

intestinal fluid accumulation (Ohishi, 1983), rounding of the cell (Reuner et 

al., 1987) and finally cell death. 

Research has been carried out to identify cell surface receptors of these 

binary toxins but only a limited amount of knowledge is present in literature. 

Cell surface receptor/s of C. difficile CDT have not been identified. Cell surface 

receptors for C. botulinum C2 toxin have been identified as asparagine linked 

complex/hybrid carbohydrates (Eckhardt et al., 2000; Sugii and Kozaki, 1990) 

whereas the receptors for C. perfringens iota toxin have been found to be 

proteins which are resistant to proteases (Liu and Lappa, 2003; Stiles et al., 

2000; Stiles et al., 2002). 

Bacterial ADPRTs and Their Classification 

Bacterial pathogens utilise a whole range of toxins to modify or kill the 

target cell. ADP ribosylation (Collier and cole, 1969), glucosylation (Sehr et al., 

1998), acetylation (Mukherjee et al., 2006), deamidation (Schmidt et al., 1997) 

and proteolysis (Schiavo et al., 1992) of host proteins are some of the favoured 

methods of cell intoxification. ADP-ribosylation of elongation factor-2 (EF-2) 

was the first covalent modification shown to be performed by any toxin 

(diphtheria toxin) (Collier, 1975). 

ADP ribosylating toxins (ADPRTs) are a large family of potentially lethal 

toxins that transfers the ADP-ribose portion of NAD, covalently, to their targets 

(Deng and Barbieri, 2008). Producers of this family of toxins belong to a vast 

range of bacterial pathogens including Clostridia and Baccilus. These 

organisms are the principal causative agents of several serious diseases 

(Holbourn et al., 2006) such as cholera, diphtheria and hospital acquired 

diarrhoea. Targets of these ADPRTs are the key regulators of cellular functions 

such as small GTPases or Actin. Covalent modification of these proteins by 

toxins results in the serious collapse of key cellular processes and eventually 

cell death (Holbourn et al., 2006). The ADPRTs have been classified in 4 major 

classes based on their domain organisation and target specificity (Table 2.2). 

The AB5 class consists of some of the most well known toxins such as 

cholera, pertussis and E. coli enterotoxin (Figure 2.9). The catalytically active 

subunit (A subunit) of the toxin docks on a doughnut shaped pentamer of B 
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subunit that comprises the cell binding and translocation domains (Stein et 

al., 1994; Zhang et al., 1995; Gill et al., 1981; Finkelstein et al., 1987; Sixma 

et al., 1991). The hetero-hexamer assembles in the bacterial cell itself prior to 

its secretion (Sandkvist et al., 2000). The A subunit undergoes a proteolytic 

cleavage to release a disulphide linked A1 domain from the rest of the 

complex. The A1 domain is then transported into the target cell where it 

undergoes another activation process in order to become fully functional 

(Holbourn et al., 2006). Targets for this family of toxins are small regulatory G 

proteins (Table 2.2). 

Table 2.2: Different classes of the ADPRTs and their substrates. 

ADPRT 
class 

Toxin 
(PDB ID) 

Bacterium Target 

AB5 Cholera (1XTC) Vibrio cholerae Gs 
Pertussis (1PRT) Bordetella pertussis Gi, Gt and Ga 
E. coli 
Enterotoxin (1LTS) 

Escherichia coli Gs 

AB Diphtheria (1TOX) Corynebacterium 
Diphtheriae 

eEF2 

Pseudomonas 
exotoxinA (1AER) 

Pseudomonas 
Aeruginosa 

A-B VIP (1QS1) Bacillus cereus G-Actin 
binary Iota (1GIQ) Clostridium perfringens 

CDT (2WN4) Clostridium difficile 
C2 Clostridium botulinum 

Single C3bot (1G24) Clostridium botulinum RhoA, B, C 
polypep 
-tide 

C3stau (1OJZ) Staphylococcus aureus RhoA, B, C, E 
and Rnd3 

Diphtheria toxin belongs to the AB class of ADPRTs (Figure 2.9). 

Members of this family are highly potent toxins. Lethal dose of diphtheria 

toxin for humans is as low as 0.1 µg of toxin per kilogram (Deng and Barbieri, 

2008). These toxins are multidomain proteins with their receptor binding, 

translocation and catalytic domain residing on one single polypeptide chain 

(Hwang et al., 1987; Allured et al., 1986; Morris et al., 1985; Sandvig and 

Olsnes, 1980; Collier, 1975; Wilson and Collier, 1992). The substrate for AB 

class of ADPRTs is a diphthamide residue (a His residue that has been 

modified by addition of diphthamide side group) (Van Ness et al., 1980) on 

elongation factor-2 (Table 2.1) (Wilson and Collier, 1992). Interruption of 
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elongation factor-2 (EF2) function disrupts protein synthesis which leads to 

cell death (Collier, 1975). 

Figure 2.9: The structural comparison of all 4 classes of the ADPRTS with 
representative members from each class: A- C3Bot (PDB ID - 1G24) (Han et al., 
2001), B- Iota Toxin (PDB ID - 1GIQ) (Tsuge et al., 2003), C- Cholera toxin (PDB 
ID – 1XTC) (Zhang et al., 1995), D- Diphtheria toxin (PDB ID - 1TOX) (Bell and 
Eisenberg, 1996). The catalytic domains of each protein are shown in red (figure 
adopted from Holbourn et al., 2006). 

The third class of ADPRTs comprises small single domain C3 

coenzymes. An example of this class is C. botulinum C3bot toxin (Figure 2.9) 

(Aktories et al., 1987). This family of ADPRTs targets small GTPases such as 

RhoA, B and C (Table 2.1) at an exposed Arg-41 (Chardin et al., 1989; Sekine 
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et al., 1989). Covalent modification of Rho proteins as a result of ribosylation 

prevents its switching to active GTP bound state and leads to the loss of 

control over the cytoskeleton and eventually to cell death (Wilde and Aktories, 

2001). 

The A-B binary ADPRTs comprise the fourth class of the superfamily. 

This family includes toxins from a wide range of Clostridium species such as C. 

perfringens iota toxin, C. botulinum C2 toxin, C. difficile binary toxin (CDT), 

and vegetative insecticidal protein (VIP2) from Bacillus cereus (Han et al., 

1999; Aktories et al., 1986; Stiles and Wilkins, 1986; Simpson et al., 1989; 

Popoff and Boquet, 1988). As the name suggests, these toxins are binary in 

nature. These toxins are composed of two independently transcribed and 

translated gene products. A larger subunit (B subunit), that is known to form 

a heptameric pore like structure upon proteolytic activation translocates the 

catalytically active A subunit into the cytosol of the target cell. These toxins 

ADP-ribosylate monomeric actin in the target cell and thus are responsible for 

the collapse of the cell cytoskeleton (Aktories and Wegner, 1989). 

Mechanism of Action of C. difficile Toxin A and Toxin B 

TcdA and TcdB toxins from C. difficile utilise a well defined mechanism 

of action. Both the toxins possess glucosyltranferase activity and are capable 

of transferring the glucose moiety of UDP-glucose to small GTPases of the Rho 

superfamily in the target cell (Just and Gerhard, 2004; Just et al., 1995a; Just 

et al., 1995b; Lyras et al., 2009). Rho proteins are the primary regulators of 

actin cytoskeleton (Hall, 1990). Irreversible glucosylation by TcdA and TcdB 

results in the inactivation of these small GTPases and thus disruption of vital 

cell signalling pathways (Just et al., 1995a; Just et al., 1995b) which 

ultimately leads to cell death. 

Internalization of TcdA and TcdB in to the target cell takes place 

through nonproteinaceous cell surface receptor mediated endocytosis (Florin 

and Thelestam, 1983; Mitchell et al., 1987) via acidified endosomal pathway. 

The low pH of the endosome induces conformational changes in the toxin 

structure and exposes a hydrophobic domain (discussed in the next section) of 

the protein that is then inserted into the endosomal membrane (Qa’Dan et al., 

2000). The formation of such channels in the lipid bilayer by TcdB in a pH-

dependent process has indeed been reported (Barth et al., 2001). 
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Structural Organisation of TcdA and TcdB 

Structurally, these proteins are described as ABCD type protein (figure 

2.10) (Jank and Aktories, 2008). The full length protein can be divided into 4 

domains according to their function (Giesemann et al., 2008). 

Figure 2.10: The domain organisation of toxin-A and Toxin-B (ABCD model). A – 
Activity domain, B – Binding domain, C – Cutting domain and D – Delivery 
domain. The amino acid residue numbering is based on toxin-B (figure adopted 
from Jank and Aktories, 2008). 

The N terminal catalytic domain (activity or A domain) possesses full 

biological activity of the molecule (Hofmann et al., 1997; Faust et al., 1998). A 

repetitive oligopeptide sequence (binding or B domain) at the C terminal end of 

the protein has been suggested to be involved in receptor binding (Tucker and 

Wilkins, 1991; Wren, 1991; Frisch et al., 2003; Ho et al., 2005). The cell 

surface receptors of TcdA are carbohydrates in nature including Gal-α1, 3-

Gal-β1, 4-GlcNAc (Krivan et al., 1986; Pothoulakis et al., 1996). 

The central part of the protein constitutes the other two domains. Very 

little is known about its exact function (Giesemann et al., 2008). However, a 

small hydrophobic stretch (delivery or D domain) is suggested to mediate 

membrane insertion during the translocation process (Qa’Dan et al., 2000). 

The fourth functional domain of the protein (cutting or C domain), is 

characterised by its resemblance to a putative catalytic triad of a cysteine 

protease and is thought to be responsible for autoproteolytic cleavage of the 

protein (Pruitt et al., 2009) to facilitate transport of the A domain into the 

cytosol. 

In spite of availability of adequate information about their mode of 

internalization into the target cell as well as their mechanism of action, the 

structural information about C. difficile Toxin-A and Toxin-B is limited. The 

three dimensional structure of full length TcdA or TcdB are yet to be 

determined. The crystal structure of the catalytic domain of Toxin-B at 2.2 Å 
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(Figure 2.11) with its donor substrate UDP-glucose (UDP-Glc) and co factor 

(Mn2+) ion has recently been reported (Reinert et al., 2005). 

Figure 2.11: The crystal structure of the catalytic domain (domain A) of TcdB 
(Reinert et al., 2005) with bound manganese (shown as shphere) and UDP-
glucose (shown in sticks). The two orientations are at 900 to each other (PDB ID -
2BVL). 

The N terminal catalytic domain of TcdB consists of the first 543 amino 

acid residues of the protein. The overall fold of the catalytic domain resembles 

that of the members of glycosyltransferase-A (GT-A) family proteins (Reinert et 

al., 2005). Like other GT-A family proteins, a common D-X-D motif exists in 

TcdA and TcdB which is involved in the binding of Mn2+ ion and glucosyl 

group. As a result of intoxification, only the A domain of the protein is 

translocated into the cytosol of the target cell (Pfeifer et al., 2003; Rupnik et 

al., 2005; Reineke et al., 2007). The Large Clostridial toxins (LCTs) undergo an 

autoproteolysis that has been attributed to a cysteine protease activity located 

in the C domain (also known as cysteine protease domain or CPD) of the 

protein (Figure 2.12) (Egerer et al., 2007). Inositolhexaphosphate (IP6) has 

been suggested to mediate this autoproteolytic process (Reineke et al., 2007; 

Egerer et al., 2007). The crystal structure of C domain of TcdA in complex with 

bound IP-6 at 1.6 Å resolution has been reported (Pruitt et al., 2009). The C-

domain of TcdA spans from residue 543 to 809. The CPD of TcdA is composed 

of 9 stranded β sheet flanked by 5 α- helices (Figure 2.12). A trio of Asp, His 

and Cys have been shown important for autoproteolytic activity of TcdA (Pruitt 

et al., 2009) and TcdB (Egerer et al., 2007). 
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Figure 2.12: The C domain (or Cysteine protease domain or CPD) of TcdA with 
bound IP-6 (shown in sticks) (PDB ID - 3HO6) (Pruitt et al., 2009). 

At least two independent high resolution crystal structures of different 

lengths of the receptor binding C terminal repetitive domain (CRD) of TcdA 

(Figure 2.13) have been determined (Ho et al., 2005; Greco et al., 2006). 

Figure 2.13: LHS – the crystal structure of C terminal repetitive domain (127 
residues) of TcdA (PDB ID - 2F6E) (Ho et al., 2005). RHS – the crystal structure of 
C terminal repetitive domain (255 residues) of TcdA in complex with a synthetic 
derivative of its natural carbohydrate receptor (shown in sticks)(PDB ID - 2G7C) 
(Greco et al., 2006). 
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The presence of repetitive units of 21, 30 or 50 amino acid residues is 

the most striking feature of the C terminal repetitive domain of TcdA and TcdB 

(Dove et al., 1990; von Eichel-Streiber et al., 1990; von Eichel-Streiber et al., 

1992; von Eichel-Streiber et al., 1996). In TcdA, there are 30-38 repeats 

present whereas in TcdB the number of repeats are 19 to 24 (Ho et al. 2005). 

The CRD of TcdA is composed of 32 short repeats (SR) and 7 long repeats (LR) 

with each repeat consisting of a β hairpin followed by a loop (Ho et al., 2005). 

The carbohydrate binding site (Figure 2.13, RHS) in the CRD is a shallow 

trough between a LR and the hairpin turn of the following SR (Greco et al., 

2006). It is suggested that the CRD of these toxins adopts an elongated 

serpentine shape in which all carbohydrate binding sites are presented on the 

same face of the structure. This arrangement allows for a multivalent 

interaction of the toxin on the cell surface (Greco et al., 2006). 

Main Experimental Aims of This Thesis 

Limited information is available for both, the structures and 

mechanistic details of Clostridial binary toxins. The available structures to 

date include a high resolution (1.8Å) structure of the enzymatic component (Ia) 

of Iota toxin (Tsuge et al., 2003) in ligand bound form and a 2.1 Å resolution 

structure of the enzymatic component (C2I) of C2 toxin in native state 

(Schleberger et al., 2006). Both of these toxins belong to two different classes 

of Clostridial binary toxins (Table 2.1) on the basis of their substrate 

specificity which makes comparison of the two available structures difficult at 

the molecular level. 

A partially incomplete structure of the transport component (C2II) of 

C2 toxin in monomeric form has been determined (Schleberger et al., 2006). 

The structure provides limited amount of information due to its poor 

resolution (3.1Å). In addition to that, the C terminal receptor binding domain 

of the protein could not be modelled in this structure. The mature transport 

components of Iota family toxins are about 120 amino acid residues longer 

than the C2 family transport component (Barth et al., 2004). Since it is the 

large C-terminal fragment of the transport component that heptamerises and 

is functionally active; this difference in the length of mature proteins may 

provide some crucial information. It would be interesting to establish the 

functional implications of this extra length of the protein. 
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C. difficile is resistant to commonly used antibiotics and is capable of 

causing infection in their presence. An alternative approach to control C. 

difficile infection can be designed based on targeting its toxins. To do so, it is 

necessary to know the 3-dimensional structure of these toxins. Structural 

details of both components of binary toxin can provide important clues about 

their interaction, mechanism of cell intoxication, about their domains that 

should be targeted to make the toxin ineffective and what kind of molecules 

can efficiently inhibit the function of the toxin. 

In addition, the first 42 N terminal residues in CDTa and CDTb have 

been reported to function as signal peptides (Perelle et al., 1997; Rupnik et al., 

2003). Cleavage of the signal peptide is essential for both components to 

become fully mature and functionally active. It would be interesting to see 

what, if any conformational changes, the absence of the signal peptide and 

further proteolytic cleavage induces in mature CDTa and CDTb. Hence, the 

significance of determining the 3D structure is apparent and this leads to the 

aims of the study expected in this thesis. 

In order to provide a structural basis of the understanding of CDT 

function and to determine its role in pathogenesis, a full scale structure 

function study on CDT was initiated with following specific aims: 

� To establish methods of cloning, expression and purification of both the 

components of C. difficile binary toxin. 

� To assess the cell cytotoxicity potential of complete C. difficile binary 

toxin. 

� To determine and analyze the structure of enzymatic as well as 

transport components of C. difficile binary toxin, and 

� To understand the mechanistic details of binary toxins using protein 

engineering approach. 
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CHAPTER - III 

CLONING, EXPRESSION AND

PURIFICATION OF C. DIFFICILE


BINARY TOXIN


57




A - CLONING EXPRESSION AND PURIFICATION OF ENZYMATIC


COMPONENT OF C. DIFFICILE BINARY TOXIN: CDTa


MATERIALS AND METHODS 

Primer Design, PCR Amplification and Subcloning 

A set of primers (Table 3.1) was designed to PCR amplify the coding 

sequences of CDTa without its N terminal signal peptide sequence. This 

protein fragment was named CDTa′ and the corresponding coding DNA was 

named cdtA′. 

Table 3.1: The primer sequences for amplification of cdtA′. 

Fragment Primer Sequence 

cdtA′ F= AGCA GGATCC GAA ATC GTG AAC GAA GAT ATT C 

R= AGCA GTCGAC TTA* ATC CAC GCT CAG AAC C 

F – forward primer, R - reverse primer, In italics - random 5′ overhang, 
underlined - restriction sites, * - stop codon. The amplified DNA product was 
named as cdtA′. 

Table 3.2: The PCR composition and reaction conditions for cdtA′ amplification. 

Fragment Reaction mixture (50 µl) Reaction conditions 

cdtA′ Templet DNA= 2 µl, 

Forward primer=2.5 µl, 

Reverse Primer=2.5 µl, 

10X KOD buffer =5 µl, 

25mM MgSO4= 2 µl, 

8 mM DNTP mix=5 µl, 

5M Betaine=10 µl, 

DMSO=2 µl, 

KOD polymerase=1 µl, 

Water= 18 µl. 

950C– 300 secs, 

[950C – 60 secs, 

480C – 60 secs, -(40 cycles) 

720C – 60 secs] 

A recombinant DNA construct (pPCRscript-cdtA) containing the coding 

region of full length CDTa was kindly provided by our collaborator (Dr. Clifford 

C. Shone, HPA, Porton Down) and was used as template DNA for the 
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amplification reaction. The PCR composition and reaction conditions are given 

in table 3.2. The amplified product was run on a 0.8% agarose gel in Tris 

Acetate EDTA (TAE) buffer at 100 volts for 45 minutes and the product was 

eluted from the gel by using a Promega Wizard SV Gel and PCR Clean-up 

system. 

Three different clones of cdtA′ were prepared with the vector backbones 

of pMAL-HT, pMAL-p2x and pGEX-6p1. The PCR amplified product (cdtA′) and 

each of the vector backbones were double digested (Table 3.3) in separate 

reactions in a total volume of 50µL each, with BamHI and SalI restriction 

enzymes to produce compatible sticky ends. The reaction mixtures were 

incubated at 370C overnight to allow the complete digestion of DNA. 

Table 3.3: Composition of the restriction digestion reactions. 

Ingredient Reaction volume 

50 µl 10 µl 

Substrate DNA 30.0 µl 2.0 µl 

10 X buffer D 5.0 µl 1.0 µl 

BamHI and SalI 2.0 µl and 1.0 µl 0.4 µl and 0.2 µl 

100 X BSA 0.5 µl 0.1 µl 

Nuclease free water 11.5 µl 6.5 µl 

The digested products were run on a 0.8% agarose gel in 1X TAE at 100 

volts for 45 minutes and the desired DNA fragments were eluted from the gel 

using Promega Wizard SV Gel and PCR Clean-up system. 

Table 3.4: Composition of the ligation reaction. 

Ingredient Reaction volume = 10 µl 

Vector DNA 5.0 µl 

Insert 3.0 µl 

T4 DNA ligase 1.0 µl 

10 X ligase buffer 1.0 µl 

In the next step, the double digested insert (cdtA′) was ligated with the 

double digested vector backbones (pMAL-HT, pMAL-p2x and pGEX-6p-1) to 
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produce the desired recombinant constructs (Table 3.4). The reaction mixtures 

were incubated at 40C overnight to allow the ligation reaction to complete. 

Screening of Positive Recombinant Clones 

E.coli DH5α competent cells were transformed separately with the 

ligated products. Transformed cells were then plated on LB agar media (Table 

3.5) supplemented with 100 µg/ml ampicillin and incubated at 370C 

overnight. 

Table 3.5: Composition of different growth media used for protein expression. 

Media Ingredients 

LB broth media Tryptone = 10 gm, Yeast extract = 5 gm, NaCl = 10 

gm, dissolve and make up volume to 1000 ml. 

LB Agar media LB media + 1 to1.5% Agar 

TB broth media Tryptone = 12 gm, Yeast extract =24 gm, Glycerol = 4 

ml, dissolve and make up volume with water to 900 

ml. sterilised and allow to cool. Add 100 ml of 

separately sterilised 10 X TB salts solutions. 

TB salts (10X) K2HPO4 =125.4 gm and KH2PO4 =22.70 gm, dissolve 

and make up volume to 1000 ml. 

On the next day, overnight grown single colonies for each construct 

were selected randomly and inoculated in 10 ml of LB media supplemented 

with 100 µg/ml ampicillin, in separate tubes. The cultures were allowed to 

grow at 370C with continuous shaking at 200 rpm overnight. Plasmids were 

isolated from these cultures using a Promega Wiazrd Plus SV Minipreps DNA 

purification system. 

The isolated plasmids were subjected to double digestion reactions for 

preliminary analysis. The digestion reactions at this step were carried out in a 

total volume of 10 µl each (Table 3.3). The reaction mixtures were incubated at 

370C for 4 hours and analysed on a 0.8% agarose gel in 1X TAE at 100 volts 

for 45 minutes. The isolated plasmid DNA that was cleaved into two fragments 

(vector back bone and insert) of the expected size as a result of digestion were 

selected and the presence of the correct DNA fragments (both, inserts and 

vector back bone) was confirmed in those by sequencing (Eurofins, MWG). 
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Preparation of Expression Host 

The new clones that were prepared for CDTa′ expression were pMAL-HT-

cdtA′, pMAL-p2x-cdtA′ and pGEX-6p1-cdtA′. 20 µl of competent E. coli BL21-

CodonPlus (DE3)-RIPL cells were transformed with all three recombinant DNA 

in separate reactions. The transformed cells were plated on the Luria-Bertani 

agar (LB-agar) media (Table 3.5) containing 100 µg/ml ampicillin. All plates 

were incubated at 370C and cells were allowed to grow overnight. 

Next day, 20 ml of Luria-Bertani (LB) broth (Table 3.5) supplemented 

with 100 µg/ml ampicillin was inoculated with a single overnight grown colony 

from each plate in sepearte flasks and these cultures were allowed to grow at 

370C with shaking at 200 rpm overnight. 500 µl of each of the overnight grown 

cultures were mixed with equal volumes of 30% glycerol and stored at -800C. 

These glycerol stocks were used as seed cultures for the subsequent 

expression trials. 

Expression Trials for New Clones 

Table 3.6 provides the details of three sets of expression trials carried 

out for all three newly constructed clones. The frozen glycerol stocks were 

used to inoculate 20 ml of LB broth supplemented with 100 µg/ml of 

ampicillin in separate flasks. These cultures were allowed to grow at 370C with 

shaking at 200 rpm overnight. The expression experiments for all three clones 

were conducted simultaneously under identical conditions so that the results 

could be compared. 

500 ml of fresh sterile media (Table 3.5) was inoculated with the above 

grown seed cultures in separate flasks giving it a 1% final inoculum. 

Appropriate amount of ampicillin (100 µg/ml) was added to the media prior to 

inoculation. These cultures were incubated at 370C with shaking at 200 rpm. 

For low temperature trials, the incubation temperature was shifted to the 

desired value when the culture OD600 was 0.60 – 0.80. Cultures were induced 

with the Isopropyl β-D-thiogalactoside (IPTG) giving a final concentration of 1 

mM when the culture OD600 was 0.90 to 1.0. Incubation at the set temperature 

was continued up to 20 hours post induction. 

Expression samples were collected at different post induction time 

points to analyse on tris-glycine SDS-PAGE during each expression run. These 
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samples were centrifuged at 10,000 rpm for 10 minutes and cell pellets were 

resuspended in 75 µl of water. 25 µl of 4X SDS-PAGE loading dye was added 

to them. These samples were then heated at 1000C for 5 to 10 minutes and 

stored at 40C till they were analysed on a Tris-glycine SDS-PAGE. 

In addition to that, expression samples of 1 ml volume were collected 

separately and centrifuged at 10,000 rpm for 10 minutes at 40C. Cell pellets 

were resuspended in 500 µl of 1X Bug Buster solution (Novagen) and the 

suspensions were incubated at room temperature for 30 minutes. The 

suspensions were centrifuged at 10,000 rpm for 10 minutes at 40C and 

supernatants were collected. 25 µl of 4X SDS-PAGE loading dye was added to 

75 µl of each collected supernatant and these samples were also run on a 

Tris-glycine SDS-PAGE along with the harvested whole cell samples. 

Table 3.6: Different expression trials carried out for CDTa′ expression in the 
shake flask method using three different DNA constructs. 

Parameters Trial 1 Trial 2 Trial 3 

Media LB LB TB +1X TB salts + 0.5% glucose 

Host E. coli BL21-CodonPlus (DE3)-RIPL 

Incubation Started at 370C, 200 rpm 

Temperature Continued 

at 370C 

Shifted to 200C at OD600 = 0.6 to 0.8 

Induction 1 mM IPTG at OD600 = 0.9 to 1.0 

Harvest 4 hours/ 8 hours / 20 hours post incubation 

Results Visible expression, 

insoluble protein for all 

the 3 clones 

Visible expression, soluble 

protein for all the 3 clones 

10% resolving, 5% stacking Tris-glycine SDS-PAGE gels were run for all 

samples. To ensure loading the same amount of total protein on the gel, 

volume equivalent to the 9/OD600 of each sample was loaded on the gels. All 

gels were run at 200 volts at room temperature till the dye front migrated out 

of the lower end of the gel. Gels were stained with brilliant blue R stain for an 

hour and washed with destaining solution until the protein bands were clearly 

visible. Sample preparation and gel run were carried out essentially in an 

identical manner at all times unless otherwise stated. 
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Large Scale Expression of CDTa′ 

Based on the results of expression trials, clone pMAL-p2x-cdtA′ was 

chosen for the large scale production of the protein which was carried out in 

shake flask method. Seed culture was grown from the glycerol stock in the 

ampicillin containing LB media at 370C with continuous shaking at 200 rpm 

overnight. Sterilised TB media (supplemented with 1X TB salts, 0.5% glucose 

and 100 µg/ml ampicillin) was inoculated with the seed culture to give 1 to 

2% inoculum. The culture was allowed to grow at 370C at 200 rpm. The 

incubation temperature was decreased to 200C when the culture OD600 

reached to 0.6-0.8. The culture was induced with the IPTG to a final 

concentration of 1 mM at OD600 = 0.9-1.0 and continued to grow at 200C. The 

culture was finally harvested at 4 hours post induction time and centrifuged 

at 10,000 rpm at 40C for 10 minutes. The cell pellet was stored at -800C until 

further processing. 

Purification of CDTa′ 

The cell pellet was resuspended in buffer A (Table 3.7) (10 ml/gram of 

cell pellet) and the cells were lysed using a French press in two cycles at 2000 

bar pressure. The cell lysate was centrifuged at 25,000 rpm at 40C for 30 

minutes and the supernatant was collected. A Q sepharose ion exchange resin 

was equilibrated with buffer A and the clear supernatant was loaded onto it. 

The column was washed with plenty of buffer A until the base line was 

reached. The bound protein was then eluted in steps of 10%, 20%, 30%, 40%, 

50% and 100% of buffer B in buffer A (Table 3.7). All elution fractions were 

collected separately and run on a 10% separating SDS-PAGE. The MBP-CDTa′ 

fusion protein was identified on the gel and fractions containing the desired 

protein were pooled for tag cleavage reaction. 

Sufficient amount of factor Xa (1 Unit / 50 µg of fusion protein) was 

added to the protein and incubated at 200C for 24 hours with gentle shaking. 

On the next day, completion of the tag cleavage reaction was confirmed by 

running the reaction product on a 10% Tris-glycine SDS-PAGE. The protein 

was dialysed overnight against a 50 volumes of buffer C (Table 3.7) using a 12-

14 kDa cutoff dialysis tubes. 
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Table 3.7: Composition of buffers used in the CDTa′ purification.


Buffer Composition 

Buffer A 20 mM NaCl, and 5 mM CaCl2 in 50 mM Tris-HCl, pH 

8.0 

Buffer B 1 M NaCl and 5 mM CaCl2 in 50 mM Tris-HCl, pH 8.0 

Buffer C 20 mM NaCl in 50 mM Tris-HCl, pH 8.0 

Buffer D 1 M NaCl in 50 mM Tris-HCl, pH 8.0 

Factor Xa 

cleavage buffer 

100 mM NaCl and 5 mM CaCl2 in 50 mM Tris-HCl, pH 

8.0 

The dialysed protein solution was collected in a fresh tube and 

centrifuged at 10,000 rpm for 10 minutes at 40C to remove the insoluble 

debris and precipitated protein. Clear supernatant was passed through a Q 

sepharose ion exchange resin that was pre-equilibrated with buffer C. Purified 

CDTa′ was collected in the column flow-through. 

The bound uncleaved fusion protein and the cleaved MBP tag were 

eluted from the column in two steps of 10% and 50% of buffer D (Table 3.7) in 

buffer C and were collected separately. The column flow-through and eluted 

fractions were analysed on a 10% Tris-glycine SDS-PAGE to assess the purity 

of the protein. The purified protein was concentrated to 0.5 mg/ml using a 10 

kDa MWCO Millipore concentrator at 4000 rpm at 40C and was stored at -

800C in 1 ml aliquots. 

RESULTS AND DISCUSSION 

Primer Design, PCR Amplification and Subcloning 

The DNA construct (pPCRScript-cdtA) was kindly provided by our 

collaborator. It was commercially synthesised by GENEART (Germany). The 

construct was to facilitate in vivo amplification of the ‘insert’ (CDTa coding 

sequence) for further development of new clones. The coding sequence of full 

length CDTa was inserted in the pPCRScript vector backbone between BamHI 

and SalI restriction sites. The insert was provided with a stop codon 

immediately after the CDTa coding sequence. 
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The Primer set was designed to amplify the desired DNA fragments and 

to clone it into the first reading frame between BamHI and SalI sites. Both, the 

forward and the reverse primers were designed with a 5′ overhang of 4 random 

nucleotides followed by the restriction enzyme recognition sequence. Figure 

3.1 shows the PCR amplified DNA fragment on a 0.8% agarose gel. 

Figure 3.1: The PCR amplified cdtA′ on a 0.8% agarose gel. 

While going for the sticky end cloning with a PCR amplified product 

containing restriction sites at the ends, it is always advantageous to have such 

random 5′ overhangs. It is a well established fact that the restriction enzyme 

recognition sites at the end of the sequence are cut with a poorer efficiency 

than the recognition sites in the middle of the sequence. These 5′ random 

overhang sequences bring the recognition sequences in the middle of the DNA 

fragment and thus provide a better place for the restriction enzyme to latch on 

the DNA and to have a better grip on the DNA to cut it. 

A schematic arrangement of the domains of CDTa is presented below 

(Figure 3.2). The primer set was designed to amplify the DNA fragments (cdtA′), 

without the coding sequence of its signal peptide. CDTa (49 kDa) is produced 

by the bacterium as an inactive precursor which is activated by a proteolytic 

cleavage of the signal peptide (Perelle et al., 1997). The signal peptide of CDTa 

comprises of the first 42 N terminal residues of the full length protein and has 

a molecular weight of about 4 kDa. The expressed protein (CDTa′, ~45 kDa), 

thus lacks the N-terminal signal peptide. 
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Figure 3.2: The domain organisation of CDTa. 

Three different clones – pMAL-HT-cdtA′, pMAL-p2x-cdtA′ and pGEX-6p1-

cdtA′, were prepared at this stage. Preliminary analysis of new recombinant 

DNA clones was performed by double digestion reaction (Figure 3.3). All three 

used expression vectors accept the insert in the first reading frame between 

BamHI and SalI restriction sites. The PCR amplified fragment had its first 

codon immediately after the BamHI recognition sequence. Therefore, we had 

the possibilities of inserting the amplified cdtA′ into all three used expression 

vector backbones to produce the correct fusion protein in the first reading 

frame with the chosen set of restriction enzymes. The Sequence of all 

recombinant constructs producing DNA fragments of the expected size on an 

agarose gel as a result of digestion were subsequently confirmed by 

sequencing (Eurofins, MWG). 

Figure 3.3: Preliminary analysis of isolated plasmids from the selected colonies 
by enzymatic double digestion. The numbers were randomly assigned to 
colonies. DNA No. 73, 77 and 81 were sent for sequencing and were found 
correct. DNA No. 78, 79 and 82 did not have correct insert. 

The pMAL-p2x and pGEX-6p1 vectors were obtained commercially from 

New England Biolabs and GE Healthcare respectively. The pMAL-HT vector is a 

modified version of pMAL-c2x expression vector (New England Biolabs). The 
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original pMAL-c2x vector is designed to produce a fusion protein with a 

cleavable N terminal MBP (Maltose Binding Protein) tag. The pMAL-HT was 

produced by deleting the MBP coding sequence from the commercially 

available pMAL-c2x vector and replacing it with the coding sequence for 6-His 

tag. This modification allowed the construct to produce an N terminal 6-His 

tagged fusion proteins which could be cleaved from the fusion protein with the 

help of factor Xa. 

Expression Trials for New Clones 

The new clones are capable of producing the desired protein fused with 

three different cleavable tags at the N terminal (Table 3.8). Based on the tag 

and its properties, a suitable purification strategy can be developed for 

purification of the fusion protein and finally the target protein i. e. CDTa′. 

All different expression trials (table 3.6) produced the desired fusion 

proteins (Figure 3.4). The expression trial set 1 (Table 3.6) produced insoluble 

fusion proteins in the form of inclusion bodies for all three clones. 

Table 3.8: Details of fusion proteins produced by using different recombinant 
clones for CDTa′ expression. 

Clone Fusion 

Protein 

Molecular Weight 

( Tag + Protein) 

Nature of Tag 

pMAL-HT-

cdtA′ 

6His-CDTa′ 48 kDa 

(1 kDa + 47kDa) 

N terminal, cleavable by 

Factor Xa 

pMAL-p2x-

cdtA′ 

MBP-CDTa′ 92 kDa 

(45 kDa + 47 kDa) 

N terminal, cleavable by 

Factor Xa 

pGEX-6p1-

cdtA′ 

GST-CDTa′ 74 kDa 

(27 kDa + 47 kDa) 

N terminal, cleavable by 

PreScission protease 

The TB media is richer than the LB media and supports a much faster 

growth of the organisms. The higher the growth rate of the organism, the 

higher would be the rate of fusion protein expression and thus higher the 

chances of protein forming inclusion bodies. Therefore, no expression trial in 

TB media was carried out at 370C. 

Few more optimisations of the expression conditions (Table 3.6, trial set 

3) resulted in all three fusion proteins expressed in soluble form. The level of 
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expression of the three fusion proteins under identical conditions was in the 

following order (Figure 3.4). 

MBP-CDTa′ > GST-CDTa′ > HT-CDTa′ 

Figure 3.4: The expression of all 3 fusion proteins in expression trial 3 (Table 
3.6). 0H – pre induction sample, 4H – 4 hours post induction whole cell sample, 
CL – bug buster treated supernatant of 4 hours harvested sample. 

Prolonged post induction incubation for 8 hours or longer did not 

improve the expression of fusion proteins any further. Based on their level of 

expression, clone pMAL-p2x-cdtA′ was selected for the large scale production of 

the protein that was carried out in shake flask method. 

Purification of CDTa′ 

The purification of CDTa′ was completely based on its net surface 

charge distribution. At a pH below its isoelectric point (pI), any given protein 

has a net positive charge on it whereas at a pH above its pI, it has a net 

negative charge. Based on its net charge, proteins bind to an anion or a cation 

exchanger resins from which they can be selectively eluted and thus separated 

from each other. In this particular case, the fusion protein (MBP-CDTa′) and 

the tag (MBP) have their pIs in the range of 5.0 to 5.5, and therefore bear a net 

negative charge at the pH of buffers (i. e. pH 8.0) that are used in purification 

process. The theoretical pI of CDTa′ is 8.9 and hence, it is expected to have a 

net positive charge at pH 8.0. 
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Figure 3.5: Step elution from first anion exchange column. MBP-CDTa′ is 
present in the first elution fraction with 10% elution buffer. 1- crude cell lysate, 
M – marker protein ladder, 2, 3, 4, 5, 6 and 7 – elution steps with10%, 20%, 
30%, 40%, 50% and 00% buffer B in buffer A respectively. 

Out of these three species, only the fusion protein was present in the 

crude cell lysate. Because of its net negative charge at pH 8.0, it bound to the 

Q sepharose anion exchange resin and could be eluted from the column with 

an increased salt concentration in the mobile phase i. e. the elution buffer. 

Elution in steps was carried out to provide an idea of suitable range of the 

concentration of salt needed to elute the fusion protein from the column. Most 

of the desired fusion protein elutes with 10% buffer B which corresponds to 

100 mM of NaCl concentration (Figure 3.5). 

Results of the first anion exchange elution pattern were useful in the 

sense that factor Xa is most efficient in the presence of 100 mM NaCl salt. The 

pH of all buffers (pH 8.0) was also optimum for factor Xa mediated tag 

cleavage reaction to take place (Table 3.7). Factor Xa cleaves the MBP- CDTa′ 

fusion protein (in 24 hours at 200C) into two species (Figure 3.6, lanes 2 and 

3) namely, MBP (~42kDa) and CDTa′ (~45 kDa). 

The dialysed, tag cleaved protein sample (Figure 3.6, lane 4) contains all 

three species – CDTa′, MBP and the uncleaved MBP-CDTa′. The CDTa′ did not 

bind to the second Q sepharose column under the conditions that were 

identical to the loading conditions for the first anion exchange column run 

because of its net positive charge at pH 8.0 and could be collected in the 

column flow-through (Figure 3.6, lane 5) in second Q sepharose run. Whereas, 

the MBP and MBP-CDTa′ along with other impurities bound to the column 

again and thus could efficiently be separated from CDTa′ (Figure 3.6, lanes 6 

and 7). 
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Figure 3.6: Step wise progress of CDTa′ purification process. Lane 1- 10% 
elution fraction, lane 2 and 3 – cleaved protein. Lane 4 - dialised cleave protein, 
lane 5- flow-through from second anion exchange, lane 6 and 7- elution fractions 
(20% and 50% of buffer D in buffer C respectively) from second anion exchange 
column. 

SUMMARY 

Three different recombinant constructs namely – pMAL-HT-cdtA′, pMAL-

p2x-cdtA′ and pGEX-6p1-cdtA′ were prepared for the expression of CDTa 

fragment without its signal peptide. Based on the expression pattern, CDTa′ 

was expressed in soluble form as MBP-CDTa′ fusion protein. The purification 

process yielded a protein (CDTa′) of high purity that was stored at -800C. 
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B - CLONING, EXPRESSION AND PURIFICATION OF TWO DIFFERENT 

CONSTRUCTS OF TRANSPORT COMPONENT OF C. DIFFICILE 

BINARY TOXIN: CDTb′ and CDTb″ 

MATERIALS AND METHODS 

Recombinant DNA Construction 

Two different versions of CDTb were studied in this research. Sets of 

specific primers (Table 3.9) were designed to PCR amplify the DNA fragments 

for coding sequences of both the versions. The first version, cdtB′, was the 

DNA fragment that lacks the coding region for the N terminal signal peptide of 

the protein. We named this protein fragment as CDTb′. The second DNA 

fragment (named cdtB″) was the coding sequence for mature CDTb fragment 

and the expressed protein was named CDTb″. A recombinant construct 

(pPCRscript-cdtB) containing the coding region of full length CDTb was 

provided by our collaborator and was used as template DNA for both of the 

amplification reactions. 

Table 3.9: The primer sequences for the amplification of cdtB′ and cdtB″. 

Fragments Primer Sequence 

cdtB′ F= 

R= 

GTAT GGATCC GTG TGC AAC AC 

AGCA GTCGAC TTA* ATC CAC GCT CAG AAC C 

cdtB″ F= 

R= 

AGTA GGATCC CTG ATG AGC GAT TGG 

AGCA GTCGAC TTA* ATC CAC GCT CAG AAC 

F – forward primer, R - reverse primer, In italics - random 5′ overhang, 
underlined - restriction enzyme recognition sequence, * - stop codon. 

The reaction composition and reaction conditions for both the 

amplification reactions are provided in table 3.10. The amplified products were 

analysed on a 0.8% agarose gel in 1X TAE, at 100 V for 45 minutes and the 

products were eluted from the gel using Promega Wizard SV Gel and PCR 

Clean-up system. 

Both the amplified PCR fragments were then cloned into the pGEX-6p-1 

expression vector (GE Healthcare). The PCR amplified products (cdtB′ and 

cdtB″) and the vector backbone were double digested in a 50µL reaction each, 
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with BamHI and SalI restriction enzymes to produce compatible sticky ends as 

described in the section 3A previously. Further steps of ligation, 

transformation, positive clone selection, plasmid isolation, DNA sequencing, 

preparation of E. coli BL21-CodonPlus (DE3)-RIPL expression host and glycerol 

stocks were also carried out as described in the section 3A. 

Table 3.10: The PCR reaction composition and reaction conditions for cdtB′ and 
cdtB″ amplification. 

Fragment Reaction mixture (50 µl) Reaction conditions 

cdtB′ Templet DNA= 2 µl, 

Forward primer=2.5 µl, 

Reverse Primer=2.5 µl, 

10X KOD buffer =5 µl, 

25mM MgSO4= 2 µl, 

950C– 300 secs, 

[950C – 60 secs, 

550C – 60 secs, -(40 cycles) 

720C – 90 secs] 

cdtB″ DNTP mix (2mM each)= 5 µl, 

5M Betaine=10 µl, 

DMSO=2 µl, 

KOD polymerase=1 µl, 

Water= 18 µl. 

950C– 300 secs, 

[950C – 60 secs, 

510C – 60 secs, -(40 cycles) 

720C – 90 secs] 

Preliminary Expression Trials of GST-CDTb′ and GST-CDTb″ 

The expression trials for both the fusion proteins were conducted 

separately but in a similar way. 200 ml of sterilised TB media (with 1 X TB 

salts, 100 µg/ml ampicillin and 0.5% glucose) was inoculated with an 

overnight grown seed culture to give 1% inoculum and incubated at 370C with 

shaking at 200 rpm. The culture was induced with the IPTG to a 1mM final 

concentration when the culture OD600 was in the range of 0.8 to 1.0. 

Incubation at 370C was continued for the next 4 hours. Samples at different 

post induction time were collected to run on a Tris-glycine SDS-PAGE. Sample 

preparation and gel run was carried out as described previously (section 3A). 

More expression trials were carried out in order to express the desired 

protein in soluble form (Table 3.11). The parameter varied during different 

expression trials was temperature. All other parameters were kept identical. 

The culture was started at 370C in shake flask method at 200 rpm and was 

allowed to grow until the culture OD600 reached to 0.6 -0.8. The temperature 
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was then decreased to the desired value and the culture was induced with 1 

mM of IPTG at OD600 = 0.9 - 1.0. The culture was harvested at 16-20 hours 

post induction, centrifuged at 10,000 rpm for 10 minutes at 40C and the cell 

pellet was stored at -800C. 

Table 3.11: Different expression trials for CDTb′ and CDTb″ using pGEX-6p1-
cdtB′ and pGEX-6p1-cdtB″ clones in E. coli host. 

Parameters Trial set number 

1 2 3 4 5 

Media TB +1X TB salts + 0.5% glucose + ampicillin 

Host E. coli BL21-CodonPlus(DE3)-RIPL 

Method Shake flask 

Incubation conditions Started at 370C, 200 rpm 

Temperatures 370C 300C 240C 200C 160C 

Induction 1 mM / 0.5 mM IPTG at OD600 = 0.9 to 1.0 

Harvest 4 hours/ 8 hours / 20 hours post incubation 

Results overexpreesed protein seen at expected position 

on SDS-PAGE 

Location of protein Inclusion bodies Soluble form 

A small sample (1ml) of harvested culture was collected separately and 

centrifuged as above. The pellet was resuspended in buffer F (150 mM NaCl in 

50 mM Tris-HCl, pH 7.5) and was sonicated in 3 cycles of 10 sec on 20 

seconds off. The sonicated sample was centrifuged at 10,000 rpm for 10 

minutes at 40C and the supernatant was run on a 10% separating Tris-glycine 

gel along with the uninduced and induced (hourly) whole cell samples to 

confirm the presence of overexpressed protein in soluble form. 

Large scale Expression of GST-CDTb′ and GST-CDTb″ 

The large scale expression of both of the fusion proteins (GST-CDTb′ 

and GST-CDTb″) in soluble form was carried out in identical manner using a 

BIOFLO 3000 bioreactor (NewBrunswik). TB media supplemented with 1X TB 

salts, 100 µg/ml ampicillin and 0.5% glucose was inoculated with 1% (v/v) of 

the overnight grown seed culture at 370C. The incubation temperature was 

lowered down to 160C when the culture OD600 reached to 0.6 - 0.8, and the 
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culture was induced with the IPTG to a final concentration of 1 mM at OD600 = 

0.9 to 1.0. 

The temperature of the bioreactor was maintained at a set value by 

running hot/chilled water into the vessel jacket. A mixture of air and oxygen 

was sparged continuously in a ratio of 40:60 (air to oxygen) at 0.5 bar 

pressure each into the bioreactor to maintain a minimum of 60% dissolved 

oxygen (DO) at all times. The pH of the culture was maintained at 7.0 

throughout the process with intermittent addition of 10% orthophosphoric 

acid and 10% ammonium hydroxide, as and when required. An agitation rate 

of 150 rpm was also maintained during the run. The pH, DO and the 

temperature of the bioreactor were controlled in proportional-integral-

derivative (PID) manner. Incubation at 160C was continued and the culture 

was harvested at 20 hours post induction time. The harvested culture was 

centrifuged at 10,000 rpm for 10 minutes at 40C and the cell mass was stored 

at -200C. 

Afinity Purification and Tag Cleavage of CDTb′ 

The cell pellet was resuspended in lysis buffer (Table 3.12) and the cell 

suspension was sonicated in 5 cycles of 20 second on, 40 second off. The cell 

lysate was centrifuged at 25,000 rpm for 30 minutes at 40C and the clear 

supernatant was loaded onto a GST affinity column pre-equilibrated with lysis 

buffer. 

Table 3.12: Composition of the lysis buffer. 

Buffer Composition 

Lysis 150 mM NaCl, 2 mM DTT and 1 mM EDTA in 

buffer 50 mM Tris-HCl, pH 7.5 

The column was washed with plenty of lysis buffer until the base line 

was reached and the bound protein was eluted with 20 mM reduced 

glutathione in lysis buffer. The eluted protein was run on a 10% Tris-glycine 

SDS-PAGE to analyse the quantity and quality of the eluted protein. 

To cleave the GST tag, sufficient amount (1 Unit / 100 µg of fusion 

protein) of PreScission protease (GE Healthcare) was added to the fusion 

protein solution and the reaction mixture was incubated at 40C, overnight with 
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continuous stirring. The cleavage reaction product was analysed on a 10% 

resolving Tris-glycine SDS-PAGE in parallel with the uncleaved protein. 

Gel Filtration 

The affinity purified fusion protein (GST-CDTb′) was loaded onto a 

Superdex-200 gel filtration column pre-equilibrated with lysis buffer (Table 

3.12). Elution fractions of 1 ml each were collected and fractions 

corresponding to the eluted peak were analysed on a 10% resolving Tris-

glycine SDS-PAGE. Three different gel filtration runs at a flow rate of 1.0 

ml/minute, 0.5 ml/minute and 0.2 ml/minute were carried out in order to 

achieve best separation. 

Effect of the Cell Lysis Method on Fusion Protein 

The affinity and gel filtration procedures described above did not 

produce satisfactory results and were associated with a severe protein 

degradation problem. Hence, an extensive search for an appropriate 

purification strategy was carried out starting from the cell lysis method. The 

cell pellet was resuspended in lysis buffer (Table 3.12) as described before and 

cells were lysed using homogenizer at 400 bar pressure in 2 cycles. The cell 

lysate was centrifuged at 25,000 rpm for 30 minutes at 40C and the clear 

supernatant was collected. An affinity purification step was carried out in an 

identical way as it has been described before. At a different occasion, cell lysis 

using a French press at 2000 bar pressure was also tried. 

Search for Suitable Purification Strategy 

The affinity purified, tag cleavage reaction product was loaded again 

onto a GST affinity resin pre-equilibrated with lysis buffer (Table 3.13). The 

column flow-through was collected and was dialysed against 50 volume of 

dialysis buffer (Table 3.13) at 40C overnight. The dialysed protein was 

centrifuged at 10,000 rpm for 15 minutes at 40C to remove any particulate 

material and precipitate present. The clear supernatant was collected and 

loaded onto a Q sepharose column pre-equilibrated with dialysis buffer (Table 

3.13). The loaded column was washed with plenty of dialysis buffer and the 

bound protein was eluted with 100 ml of 0 to 100% gradient starting with 

dialysis buffer and ending with elution buffer (Table 3.13). Fractions 
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corresponding to the eluted peak were analysed on a 4-12% Bis-Tris SDS-

PAGE. Fractions containing the desired protein (CDTb’) were pooled. 

A need for further purification of the pooled protein was felt. Several 

different strategies from this point onwards were employed to serve the 

purpose. A flow chart shown in figure 3.7 explains some of the applied 

strategies. Composition of all the buffers that were used at different steps is 

provided in table 3.13. 

Figure 3.7: A flow chart of different purification strategies employed. 

It became clear that several steps of dialysis were needed to be 

incorporated at the different stages of purification to keep the protein in an 

appropriate buffer to match the physiochemical conditions suitable for loading 

the protein onto a given particular purification resin. All the dialysis steps 

were carried out using 12-14 kDa cut off dialysis tubes at 40C overnight with 

continuous stirring. 
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Table 3.13: Composition of buffers used at different steps of purification.


Step Buffer Composition 

Lysis / affinity 

purification 

and tag 

Lysis buffer 150 mM NaCl, 2 mM DTT and 1 

mM EDTA in 50 mM Tris-HCl, pH 

7.5 

cleavage Elution buffer 20 mM reduced Glutathion in 

lysis buffer 

Q sepharose 

Anion 

exchange / 

Dialysis / 

Equilibration buffer 

50 mM NaCl, 2 mM DTT and 1 

mM EDTA in 50 mM Tris-HCl, pH 

7.5 

MonoQ anion 

exchange 

Elution buffer 1 M NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

SP sepharose 

cation 

exchange 

Dialysis / 

Equilibration buffer 

20 mM NaCl, 2 mM DTT and 1 

mM EDTA in 50 mM Succinate 

buffer , pH 5.5 

Elution buffer 1 M NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Succinate buffer, 

pH 5.5 

P sepharose 

hydrophobic 

Dialysis / 

Equilibration buffer 

1M NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

exchange Elution buffer 2 mM DTT and 1 mM EDTA in 50 

mM Tris-HCl, pH 7.5 

Hydroxyappatit 

e column 

Dialysis / 

Equilibration buffer 

10 mM Sodium di hydrogen 

phosphate, pH 7.0 

Elution buffer 250 mM Sodium di hydrogen 

phosphate, pH 7.0 

Gel filtration Equilibration buffer 150 mM NaCl, 2 mM DTT and 1 

mM EDTA in 50 mM Tris-HCl, pH 

7.5 

A More Efficient Purification Strategy for CDTb′ 

Different purification strategies employed to solve the problem of 

degradation did not bring any significant improvement in the final purity of 

CDTb′. Therefore another method was employed. The cell lysis and affinity 
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purification steps were carried out in lysis buffer (Table 3.14) as it has been 

stated before. 

Table 3.14: Composition of buffers used in the alternative strategy for CDTb′ 
purification. 

Step Buffer Composition 

Lysis/affinity 

purification/tag 

Lysis buffer 150 mM NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

cleavage Elution buffer 20 mM reduced Glutathione in lysis 

buffer 

MonoQ anion 

exchange 

Dialysis buffer 50 mM NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

Elution buffer 500 mM NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

Concentration Concentration 

buffer 

200 mM NaCl, 2 mM DTT and 1 mM 

EDTA in 50 mM Tris-HCl, pH 7.5 

The affinity eluted fraction (fusion protein) was then directly loaded onto 

a MonoQ anion exchange column pre-equilibrated with lysis buffer. The loaded 

column was washed with plenty of lysis buffer and the bound protein was 

eluted with a 0 to 100% gradient starting with lysis buffer and ending with 

elution buffer (Table 3.14). All the fractions were analysed on a 4-12% Bis-Tris 

SDS-PAGE and fractions containing the desired fusion protein were collected 

and pooled. Sufficient amount of PreScission protease (1 Unit / 100 µg of 

fusion protein) was added to the pooled fusion protein solution and left 

overnight at 40C with gentle shaking to cleave the GST tag. 

The cleavage reaction product was once again passed through a GST 

affinity column pre-equilibrated with lysis buffer following a brief spin at 

10,000 rpm for 15 minutes at 40C to remove any particulate material and 

precipitate present. The column flow-through was collected and dialysed 

against 50 volume of dialysis buffer (Table 3.14) overnight at 40C. The dialysed 

protein was loaded onto a MonoQ column pre-equilibrated with dialysis buffer 

and the bound protein was eluted in 0 to 100% gradient starting with dialysis 

buffer and ending with elution buffer (Table 3.14). Fractions containing the 

free CDTb′ protein were identified by Bis-Tris SDS-PAGE and pooled. 

78




Routine Quality Check and Mass Spectrometric Analysis of CDTb′ 

The protein was concentrated to 7 mg/ml using 10 kDa MWCO 

concentrators. The protein quantity was estimated by recording absorbance at 

280 nm and the concentrated protein was stored at -800C. The stored protein 

sample was run on a 10% Tris-glycine SDS-PAGE after a week’s time for 

routine analysis. 

For mass spectroscopy analysis, the protein was buffer exchanged into 

water using a concentrator of 30 kDa MWCO, at 40C and 2000 rpm. The buffer 

exchanged protein was run on a 10% Tris-glycine SDS-PAGE along with the 

original concentrated sample under reducing as well as non-reducing 

conditions. The protein was analysed by mass spectroscopy facility at the 

Department of Chemistry, University of Bath. 

Final Purification of CDTb′ and CDTb″ 

The cells were lysed by homogenisation in buffer F (Table 3.15) and the 

cell lysate was centrifuged as explained before. The clear supernatant was 

loaded onto a GST affinity column and the column was washed with plenty of 

buffer F until the base line was reached. The bound protein was eluted with 

20 mM of reduced glutathione in buffer F. 

Table 3.15: Composition of buffers used for final purification of CDTb′. 

Buffer Composition 

Buffer F 150 mM NaCl and 2 mM DTT in 50 mM Tris-HCl, pH 7.5 

Buffer G 1000 mM NaCl, 2 mM DTT in 50 mM Tris-HCl, pH 7.5 

Buffer H 50 mM NaCl, 2 mM DTT and 0.2% tween-20 in 50 mM 

Tris-HCl, pH 7.5 

Buffer I 1000 mM NaCl, 2 mM DTT and 0.2% tween-20 in 50 mM 

Tris-HCl, pH 7.5 

The eluted fusion protein was loaded onto a MonoQ anion exchange 

column pre-equilibrated with buffer F followed by extensive washing of the 

column with plenty of buffer F. The bound protein was eluted in a 0 to 60% 

gradient of buffer G (Table 3.15) in buffer F. All of the fractions containing the 

desired fusion protein were collected and pooled based on a 4-12% Bis-Tris 
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SDS-PAGE result. Sufficient amount of PreScission protease (1 Unit / 100 µg 

of fusion protein) was added to the pooled fusion protein solution and left at 

40C overnight with gentle shaking for the tag cleavage reaction to take place. 

The cleavage reaction product was dialysed against 50 volume of buffer 

H (Table 3.15) overnight at 40C. The dialysed protein was centrifuged at 

10,000 rpm for 15 minutes at 40C and the supernatant was passed through a 

GST affinity column pre-equilibrated with buffer H and the column flow-

through was collected. The collected flow-through was then loaded onto a 

monoQ column pre-equilibrated with buffer H and the bound protein was 

eluted in a 0 to 60% gradient of buffer I (Table 3.15) in buffer H. Fractions 

containing the free CDTb′ (or CDTb″) protein were identified on a 4-12% Bis-

Tris SDS-PAGE and pooled. The pooled protein was stored at -800C. 

Quality Analysis and Quantification of Protein 

The quality of proteins (CDTb′ and CDTb″) was assessed by running 

protein samples on a freshly casted 10% resolving Tris-Glycin-SDS-PAGE in 

Tris-Glycin buffer using a standard protocol. In addition to that, two different 

commercially available SDS-PAGE systems – a 4-12% NuPAGE Novex Bis Tris 

Gels (BT gels) in MES buffer and a 4-20% Novex Tris Glycine gels (TG gels) in 

Tris Glycine buffer were also employed for the analysis of both the proteins. 

Both the gel systems and running buffers were purchased from Invitrogen and 

were used as per the instructions provided by manufacturers. 

The protein quantity in all the samples except the crude cell lysates was 

estimated by recording the absorbance at 280 nm wavelength. Theoretical 

absorbance (for 1 mg protein per ml sample) was calculated by submitting 

protein sequence to the ProtParam application of Expasy proteomic server 

(http://www.expasy.org). 

RESULTS AND DISCUSSION 

Recombinant DNA Construction 

The primers were designed to amplify the desired DNA fragments and to 

clone it into the first reading frame between BamHI and SalI sites. The 

amplified DNA fragments (cdtB′ and cdtB″) code for two different versions of 
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the transport component of C. difficile binary toxin, named CDTb′ and CDTb″ 

respectively. All sets of primers were designed with a random 4 nucleotides 

overhang followed by the restriction enzyme recognition site at the 5′ end of 

the coding sequence for the reasons that have been explained before (section 

3A). The PCR amplified cdtB′ fragment is shown in figure below (Figure 3.8) 

Figure 3.8: The PCR amplified cdtB′ (left) and double digestion of positive 
pGEX-6p1-cdtB′ clone (right). 

Positive colonies were successfully grown on LB-agar plate for both of 

the desired clones namely pGEX-6p1-cdtB′ and pGEX-6p1-cdtB″. A preliminary 

analysis of these clones by double digestion method yielded DNA fragments of 

the expected size on an agarose gel (Figure 3.8). Sequencing of both 

recombinant constructs confirmed the presence of the correct vector backbone 

and insert in the correct orientation and position. 

Expression of Proteins 

The transport component of C. difficile binary toxin, CDTb (99 kDa) is 

produced as an inactive precursor molecule with an N-terminal signal peptide 

of 42 residues. Figure 3.9 shows the domain organisation of CDTb. CDTb′ is 

the name given to the fragment of CDTb that lacks the N-terminal signal 

peptide. 

However, to transport the enzymatic component (CDTa) into the target 

cell, CDTb has to be activated by a proteolytic cleavage (Perelle et al., 1997) 

mediated by chymotrypsin. As a result of chymotrypsin mediated activation, a 

25 kDa N-terminal fragment of precursor CDTb is cleaved from the protein 

and the remaining C-terminal large fragment (75 kDa) has been suggested to 
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oligomerise to form a heptameric pore like structure (Barth et al., 2000; 

Blocker et al., 2001). 

Figure 3.9: The domain organisation of CDTb. 

This essentially means that the expressed CDTb′ requires a proteolytic 

activation by chymotrypsin to become fully functional protein whereas the 

expressed CDTb′′ should be a fully active (mature) fragment of CDTb (Figure 

3.9). With an N-terminal GST fusion partner (27 kDa), expected molecular 

weight of both of the expressed fusion proteins (GST-CDTb′ and GST-CDTb′′) 

are 122 kDa (Figure 3.10) and 102 kDa respectively. 

Figure 3.10: The expression samples of GST-CDTb′ fusion protein on a 10% 
Tris-glycine SDS-PAGE. 

Affinity Purification and Tag Cleavage of CDTb′ 

The gel analysis revealed that the affinity eluted fraction consisted of 

two major proteins bands (Figure 3.11, lane 1). The upper observed band 
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present at about 120 kDa corresponded to the expected molecular weight of 

GST-CDTb′ fusion protein. The lower major band on the gel was observed at 

about 97 kDa marker protein. The expected molecular weight of GST tag is 27 

kDa and it was initially thought that the tag had been cleaved off the fusion 

protein in solution to give free CDTb′. It could be confirmed by any of the 

following two methods. 

Figure 3.11: The affinity purified GST-CDTb′ protein and the tag cleavage 
reaction results. 

The first method exploits the biological specificity by western blot 

analysis of eluted fraction against anti-GST antibody. If the lower band 

present on gel (Figure 3.11, lane 1) was tag cleaved free protein, it should not 

be detected by the anti-GST antibody on the blot. The second method was to 

perform a tag cleavage reaction. This method takes advantage of the size of the 

tag. If the lower band was the tag cleaved protein, no observable shift in the 

position of the band on SDS-PAGE should be detected. However, there should 

be a position shift for the upper 120 kDa band yielding two bands on SDS-

PAGE – one corresponding to the free CDTb′ at 95 kDa and the other 

corresponding to GST tag at 27 kDa. In the absence of anti GST-antibody, the 

method of tag cleavage was employed. 

A shift in positions of both the protein bands was observed. Three 

bands were clearly visible on SDS-PAGE (Figure 3.11, lane 2). The top most 

protein band at 95 kDa (CDTb′) and the bottom most band at 27 kDa (GST 

tag) of lane 2 of Figure 3.11, were generated from the upper GST-CDTb′ fusion 

protein band (120 kDa) of lane 1 (Figure 3.11). However, the middle band at 
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about 66 kDa (Figure 3.11, lane 2) is the tag cleaved product of the lower band 

in the affinity purified fraction (Figure 3.11, lane 1). The result clearly 

indicated that the lower band in the affinity purified fraction was not the tag 

free CDTb′ as it was thought resulting from auto-tag cleavage in solution. 

What does the presence of the lower band in affinity purified fraction 

(Figure 3.11, lane 1) imply? This protein band results from the degradation of 

the fusion protein. The GST tag is at the N-terminal of the fusion protein and 

is intact in both the major components of the elution fraction (Figure 3.11, 

lane 1) and we could still see a position shift for both the protein bands (Figure 

3.11, lane 1) as a result of tag cleavage reaction (Figure 3.11, lane 2). Hence, 

this degradation of the protein must be taking place at the C terminal end. 

Since it is the large C terminal fragment that becomes functionally active on 

chymotrypsin mediated activation; this degradation somewhere at the C 

terminal end defeats the whole purpose of purification process completely. 

Several other pilot purification trials in the presence of different 

concentrations of protease inhibitor solutions / PMSF / DTT and/or EDTA did 

not yield any improvement. 

Gel Filtration 

The gel image (Figure 3.11) provides a fair idea of the molecular weight 

difference between the fusion protein and its degraded companion which is 

about 25 to 30 kDa. 

Figure 3.12: Results of the Gel filtration run. Lanes 1 to 4 are the early to late 
fractions of elution at a flow rate of 0.2 ml / minute. 
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The gel filtration chromatography separates proteins on the basis of 

their molecular weight (size) and could have been a method of choice to 

remove the contaminating protein from the protein of interest. The separation 

pattern of all the three gel filtration runs at different flow rates was similar to 

each other (Figure 3.10). There is a variation in the ratio of higher to lower 

band intensity as we proceed from lane 1 to 4 (early to late fractions of 

elution). This pattern was expected as the high molecular weight protein elutes 

first from the column. None of the run, however, could separate the two 

proteins efficiently. 

Effect of Cell Lysis Method on Fusion Protein 

The first change that was incorporated in the purification protocol was 

the use of homogeniser replacing sonicator for the cell lysis. A drastic decrease 

in the amount of the lower molecular weight protein in the affinity elution 

fraction was observed on SDS-PAGE (Figure 3.13, lanes 1 and 3). 

Figure 3.13: Comparison of the affinity eluted protein using sonication (lane 1) 
and homogenisation (lane 3) as the method of cell disruption. Lane 2 - Crude cell 
lysate. 

Homogenisation is a milder method of cell disruption. It is based on 

mechanical shearing. In homogenization, the cell suspension is passed 

through a small orifice and made to strike against a metallic O ring at a very 

high speed causing rapture of the cell wall. On the other hand, in sonication, 

the cell disruption is carried out by using the energy of ultrasonic waves which 

produces a significant amount of heat during the process that may result in 
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denaturation and degradation of the protein. Cell lysis using another method 

(French press), also did not prove effective (data not shown). 

Search for Suitable Purification Strategy 

Having found a suitable method for cell lysis, further attempts to purify 

the protein were continued. None of the various strategies employed (Figure 

3.7) produced crystallisation quality protein. The best quality (purity) of 

protein was produced by following the strategy shown by shaded path in the 

following flow chart (Figure 3.14). Protein from the first Q sepharose anion 

exchange looked pretty much clean and promising when it was run on a 4-

12% Bis-Tris SDS-PAGE (Figure 3.14). 

Figure 3.14: The best protein producing strategy (shaded) and the quality of 
the protein after first Q sepharose anion exchange. 

Further purification of the protein shown (Figure 3.14), however, was 

not successful. The second anion exchange step on a MonoQ column removed 

many more impurities and concentrated the desired protein to a small volume. 
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The MonoQ sepharose is an anion exchanger with much finer particle size and 

hence provides an improved resolution and separation of proteins as 

compared to other Q sepharose resins. It was this stage, where impurities still 

present in the sample were also concentrated and became visible on the gel 

(Figure 3.15, lanes 4 to 26). 

The elution fractions highlighted in the rectangle (Figure 3.15), 

consisted of highly concentrated protein. However, this protein was not 

considered suitable for crystallisation trials, and hence, further attempts were 

made to purify the protein. 

Figure 3.15: The quality (purity) of protein at the end of the shaded strategy in 
figure 3.14. 1- monoQ load, 2- monoQ flow-through , 3- protein marker, 4 to 26 – 
eluted protein fractions. 

Purification, Concentration and Storage of CDTb′ 

A different purification strategy based on the difference in pI of the two 

proteins i.e. fusion protein (GST-CDTb′) and tag cleaved free CDTb′, was 

tested. Theoretical pI values for these two proteins are in the range of 4.8 to 

5.0 and differ from each other only by 0.12 pH unit. It indicated that it would 

be almost impossible to separate them from each other on an ion exchange 

column and both of them would elute over the same range of salt 

concentration from the column. However, it was found that the fusion GST-

CDTb′ protein elutes at about 200-250 mM of salt while the free CDTb′ elutes 

at about 150-200 mM of salt concentration in the elution buffer from the 

MonoQ anion exchange column under identical conditions (Figure 3.16). 

This difference in elution pattern was not observed using ordinary Q 

sepharose resin due to the lack of resolution. However, this difference could be 

used in purification to improve the purity of the protein. Hence, the 

purification method used at this stage was as follows (Figure 3.17). 
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Figure 3.16: The final purification strategy used for CDTb′ purification.


Figure 3.17: The CDTb′ purification strategy based on the pI difference. 

In the first anion exchange, the elution fractions corresponding to 200-

250 mM salt (containing GST-CDTb′) were collected to get rid of the impurities 

that were eluted at 150-200 mM salt. In the second mono Q run, fractions 

containing the desired free protein (CDTb′) were collected corresponding to 

150-200 mM salt concentration. The impurities that were eluted with the 

fusion protein in the first anion exchange step and remained unmodified 
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would still elute at the same 200-250 mM salt concentration under identical 

conditions of protein loading and elution and thus can be separated from the 

target protein i. e. CDTb′, in the second anion exchange step. 

Figure 3.18: The purified CDTb′. A – purified (pooled) CDTb′ from 3 different 
purification batches. B – concentrated CDTb′ protein. 

The eluted fractions were analysed on a gel and fractions containing 

CDTb′ were collected and pooled. Figure 3.18 A shows purified CDTb′ from 3 

different batches on a 4-12% Bis-Tris SDS-PAGE. Protein quality from all 

three batches does not seem to differ from each other. Though the protein is in 

diluted form, it was certainly much better than the protein purity that was 

achieved by means of any other purification strategy used until then (Figure 

3.15). Figure 3.18 B shows concentrated CDTb′ protein on an SDS-PAGE. A 

direct comparison of Figure 3.18 B with Figure 3.15 clearly shows the 

improvement in the quality of purified protein. 

Routine Quality Check and Mass Spectroscopic Analysis of CDTb′ 

The concentrated protein, stored at -800C was analysed on 10% Tris-

glycine SDS-PAGE after one week of purification. On the gel, CDTb′ looks 

degraded resulting in a major protein band at around 65 kDa molecular 

weight (figure 3.19). Looking at the molecular weight difference of CDTb′ and 

the degraded product on the gel, it was suspected that it was the same 

degradation at the C terminal of the protein that occurred during the cell lysis 

step by sonicating the cell suspension. 
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Figure 3.19: Assessment of the protein (CDTb′) quality on buffer exchange into 
water. NR- non reducing condition, R- reducing condition. 

Figure 3.20: The mass spectroscopy results for CDTb′. 

To find out the molecular weight of the degraded product, mass 

spectroscopic analysis of the protein sample was carried out. The protein was 

stored in 50 mM Tris-HCl containing 200 mM NaCl. Tris is not a 

recommended buffer for mass spectroscopy and hence, the protein was buffer 

exchanged into water prior to its mass spectroscopic analysis. The buffer 

exchanged protein was run on a 10% Tris-glycine SDS-PAGE along with the 

original concentrated sample. Buffer exchange into water did not cause any 
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observable change in the quality of the protein under reducing as well as non-

reducing conditions (Figure 3.19). 

The mass spectrometric analysis did not show any peak at or around 65 

kDa molecular weight. A peak at 47 kDa was detected (Figure 3.20). However, 

there was no protein band detected on the gel at 47 kDa (Figure 3.20). The 

analysis was conducted within few hours of buffer exchange to avoid any 

ambiguity in the results. 

There are several examples of proteins which do not appear at their 

theoretical molecular weight on SDS-PAGE. The TcdC protein from C. difficile 

is one such protein. It has a molecular weight of 27 kDa but appears at about 

34 kDa on Tris-glycine SDS-PAGE (Govind et al., 2006; and unpublished data 

from our laboratory). No other reason could be thought for the absence of a 

peak at 65 kDa when we have most intense band on SDS-PAGE at that 

position Figure 3.19). However, whether it is the 47 kDa molecular weight 

protein that appears at 65 kDa on Tris-glycine gel was not clear. 

Final Purification of CDTb′ and CDTb″ 

Both of the target proteins (CDTb′ and CDTb″) were purified 

successfully (Figure 3.21). Addition of 0.2% Tween 20 enhanced the purity of 

both the proteins. 

Figure 3.21: The purified CDTb′ and CDTb″ on the Bis-Tris SDS-PAGE system. 
Lane 1- 3rd day CDTb′′ stored at -200C, lane 2- 3rd day CDTb′′ at -800C, lane 3 -
11th day CDTb′ stored at -200C, lane 4 - 11th day CDTb′ stored at -800C. 
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The storage concentrations of CDTb′ and CDTb″ were about 0.20 mg/ml 

and 0.15 mg/ml respectively. The purified protein was tested on Bis-Tris SDS-

PAGE over a period of several days to analyse the degradation of protein over 

long term storage and to check the effect of freeze-thaw process on protein 

quality. No observable difference in the protein quality was detected on the gel 

(Figure 3.21). 

Abnormal Behaviour of CDTb′ 

The purity of proteins was regularly checked on SDS-PAGE during the 

process of purification and storage. To understand the ambiguous results 

obtained for SDS-PAGE analysis and mass spectrometry, for CDTb′, two 

different types of SDS-PAGE systems (Bis-Tris system and Tris-glycine system) 

were tested. Figures 3.22 A and 3.22 B compare identical protein samples of 

CDTb′ and CDTb′′ along with the purified CDTa′ on both types of the gel 

systems following multiple cycles of freeze-thaw. Both of the gels were run 

simultaneously to avoid any ambiguity in comparing results. 

Figure 3.22: The purified CDTb′ and CDTb″ (A)- on the Bis-Tris SDS-PAGE 
system, (B) - on the Tris-Glycine SDS-PAGE system. Lane 1- CDTa′, 2- 3rd day 
CDTb′′ stored at -200C, 3- 3rd day CDTb′′ at -800C, lane 4 - 11th day CDTb′ stored 
at -200C, lane 5 and 6- 11th day CDTb′ stored at -800C. 

The degradation of free CDTb′ was observed only on Tris-Glycine SDS-

PAGE (Figure 3.22B, lanes 4, 5 and 6) whereas the protein appeared to be 

perfectly fine on a Bis-Tris SDS-PAGE system (Figure 3.22 A, lanes 4, 5 and 6) 

even after multiple cycles of freeze-thaw. The other two proteins, CDTa′ (Figure 

3.22 A and B, lane 1) and CDTb′′ (Figure 3.22 A and B, lanes 2 and 3) appear 

as a single band at the correct position on both types of the gel systems and 
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hence were used as controls. The protein bands in the protein standard used 

(SeeBlue plus2, from Invitrogen) appear to have different mobility on both 

types of gel systems. Therefore, all three tested proteins (CDTa′, CDTb′ and 

CDTb″) appear at different positions with respect to the standard used on the 

two gel systems. 

An excellent study by Hachmann and Amshey (Hachmann and Amshey, 

2005) helps in understanding the abnormal behaviour of proteins on SDS-

PAGE systems. The authors have suggested that in general, proteins are more 

prone to degradation on a Tris-Glycine gel than on a Bis-Tris gel for the 

reasons such as pH-dependent modifications in proteins, modification of 

sulphydryl groups and formation of acrylamide adducts to sulphydryl groups 

or amino groups on the protein. These effects are expected to be high at a 

higher pH which is a condition for Tris-Glycine gel. Hydrolysis of aspartate-

proline (DP) bonds has been reported to occur when traditional Laemmli 

method of sample preparation is employed (Tang, 1997; Kubo, 1994). 

However, it is also worth noting that not all DP bonds are liable to 

hydrolysis under these conditions and this is not the only mode of peptide 

bond cleavage under these particular conditions. Thus, it is possible that the 

local environment of a DP bond is responsible for its hydrolysis. As a result of 

these modifications, the peptide band may not be recognized and the protein 

could appear as multiple bands on the gel (Hachmann and Amshey, 2005) 

(Figure 3.22 B, lanes 4, 5 and 6). 

A closer look of the protein sequences reveals that CDTa′ (appendix I) 

lacks DP bonds and no abnormality was observed for CDTa′ on the two tested 

gel systems. However, presence of 7 such potential sites in CDTb′ (appendix I) 

makes this protein highly prone to the above stated modifications. Five of 

these DP bonds are present in CDTb′′ too (appendix I). The CDTb′′ did not 

show any abnormal behaviour (Figures 3.22 A and B, lanes 2 and 3). It is 

possible that these DP bonds present in CDTb′′ are the less labile sites for 

modification. We can also not rule out the possibility that this abnormal 

behaviour of CDTb′ (Figures 3.22 B, lanes 4, 5 and 6) could be a result of a 

more complex modification process. 

Another important point to make here is that, this abnormal behaviour 

of CDTb′ was observed only when the GST tag was removed from the protein. 

The GST-CDTb′ fusion protein was prone to degradation by sonication (Figure 

93




3.11) but did not show such abnormal behaviour. The fusion protein appeared 

as a single thick band on Tris-Glycine gel (Figure 3.10). How the fusion 

partner (GST) protected the protein (CDTb′) from showing abnormal behaviour 

is also not clear. 

The observed difference in the gel pattern of CDTb′ on different SDS-

PAGE systems was in agreement with mass spectrometry results (Figure 3.20) 

for the protein where no peak was detected in the range where degraded 

product (lower protein band) was present (i.e., at 65 kDa (Figures 3.19 and 

3.22B, lanes 4, 5 and 6) as observed on the Tris-Glycine gel. 

CDTb is the transport component of CDT which corresponds to Ib of C. 

perfringens iota toxin and C2II of C. botulinum C2 toxin. The crystal structure 

of C2II has been published along with its purification method (Schleberger, 

2006). In terms of sequence, closest members to CDTb, is the transport 

component of iota family binary toxins. Such abnormal behaviour has not 

been reported for C2II and Ib despite the presence of such potential DP sites 

for modification. 

SUMMARY 

Two different constructs of CDTb were cloned into pGEX-6p1 system. 

Both the constructs were overexpressed in soluble form as GST fusion 

proteins. CDTb′ protein was found to be sensitive to the method of cell lysis. 

Furthermore, the protein (CDTb′) exhibits abnormal behaviour on a Tris-

glycine SDS-PAGE which made its purification a time consuming task. 

Purification of CDTb″ was relatively easy once a method for CDTb′ purification 

was established. 
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CHAPTER – IV 

CHARACTERISATION AND

CRYSTALLISATION


OF C. DIFFICILE BINARY TOXIN
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MATERIALS AND METHODS 

Chymotrypsin Mediated Activation of CDTb′ 

Chymotrypsin and trypsin inhibitor from hen egg white (both from 

Sigma) were dissolved in buffer F (Table 3.15) at 1 mg/ml concentration. 

Chymotrypsin was added to the protein (CDTb′) to yield 1:10 (chymotrypsin to 

protein) ratio. The mixture was incubated at room temperature (250C) and 

samples were taken at 10, 15, 20, 25, 30, 40, 50 and 60 minutes time points. 

Trypsin inhibitor was added to the samples to give a 1:2 ratio 

(chymotrypsin to trypsin inhibitor). 4X NuPage gel loading dye (Invitrogen) was 

added to the samples followed by heating of the samples for 5 minutes at 95ºC. 

The samples were analysed on a 4-12% Bis-Tris SDS-PAGE system in MES 

buffer. Suitable heated and non heated control protein samples (CDTb′) were 

also run in parallel. The resulting activated fragment of CDTb′ was named 

CDTb′#. 

Vero Cell Culture 

Vero cells (kidney epithelial cells extracted from African green monkey) 

were grown in complete Dulbecco's Modified Eagle Medium (DMEM, 

supplemented with 10% heat inactivated fetal calf serum (FCS) and 2 mM 

glutamate) at 370C in the presence of 5% CO2 in air. Cells were routinely 

trypsynised and passaged twice a week. For the cytotoxicity assay, cells were 

trypsinised and used to coat 96 well plates in a total volume of 200 µl of 

complete DMEM (medium supplemented with FCS and glutamate). The plates 

were incubated as above for 16-24 hours to allow the formation of a confluent 

monolayer. To perform the cytotoxicity assay, the medium was removed gently 

from the wells without disturbing the cell layer and the cells were washed 

twice with Dulbecco’s phosphate buffered saline (DPBS). 100 µl of serum free 

DMEM was added to the wells and the cells were incubated at 37ºC in the 

presence of 5 % CO2 in air. 

Cytotoxicity Effects of Complete CDT 

To assess the cytotoxic potential of CDT, both components of CDT 

were added to Vero cell monolayers. In the first set of cytotoxicity assays, the 

cells were incubated with CDTa′+CDTb′ and CDTa′+CDTb″ (250ng + 250ng) at 
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370C. Suitable buffer and protein controls were also set up by incubating the 

cells with buffer, CDTa′, CDTb′ and CDTb″ (250 ng each) alone, under identical 

conditions. A positive control with 50 ng/ml of C. difficile Toxin A was also set 

up. All experiments were set up in duplicate in a total volume of 200 µl each 

and the cells were examined at 4 hours post incubation time using an 

Olympus CK2 inverted microscope. 

In the second set of experiments, Tween-20 was completely removed 

from CDTb′ and CDTb″ protein stocks before testing the proteins on the cells. 

Proteins were dialysed against 50 volume of buffer P (50 mM NaCl in 50 mM 

Tris-HCl, pH 7.5) overnight. Each dialysed protein was loaded onto a Q 

sepharose column and the column was washed with buffer P until the base 

line was reached. Bound protein was eluted in one step with buffer Q (600 mM 

NaCl in 50 mM Tris-HCl, pH 7.5). An equal volume of 50 mM Tris-HCl, pH 7.5 

was added to the protein to bring the final salt concentration to 300 mM and 

the protein was stored at -800C. 

Varying amounts of CDTa′ (50, 100, 150, 200 and 250 ng) were 

mixed with equal amounts of CDTb′ or CDTb″ in different combinations in a 

total volume of 100 µl of serum free DMEM and added to the monolayers in 

separate wells. A set of tests with identical amounts of CDTa′, but with 

chymotrypsin activated CDTb′ and CDTb″ (named as CDTb′# and CDTb″#) were 

also prepared. Suitable negative controls with individual proteins CDTa′, 

CDTb′, CDTb″, CDTb′# and CDTb″# (250 ng each) and positive controls with C. 

difficile Toxin A (50 ng/ml) and Toxin B (0.5 ng/ml) were also set up under 

identical conditions. All the experiments were performed in duplicate and the 

cells were incubated at 37ºC in the presence of 5 % CO2 in air. Cells were 

examined for evidence of cytotoxic effect after 24 hours incubation using an 

Olympus CK2 inverted microscope. 

CDTb Oligomerisation in Solution 

Eight different buffer systems (MIB pH 4.0, MMT pH 4.0, SPG pH 4.0, 

Na-Acetate pH 4.0, Bis-Tris pH 5.5, Bis-Tris pH 6.5, Tris-HCl pH 7.5 and Tris-

HCl pH 8.5) were screened for CDTb oligomerisation experiment. CDTb′ was 

treated with chymotrypsin to produce an activated CDTb fragment. 

Chymotrypsin was deactivated by adding trypsin inhibitor to the reaction 

mixture as described before. 20 µl of chymotrypsin activated protein was 
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mixed with 2 µl of 1 M of each buffer in separate reaction tubes and incubated 

at 4 ° C overnight. On the next day, 5 µl of NuPAGE gel loading dye was added 

to all samples. The samples were analysed on a 4-12% Bis-Tris SDS-PAGE in 

MES buffer. 

Concentration and Crystallization of CDTa′ 

The protein (CDTa′) was concentrated further to 10 mg/ml using a 10 

kDa molecular weight cutoff (MWCO) concentrator (Millipore) at 4000 rpm at 

40C. Primary crystallisation of CDTa′ was set up with the help of Phoenix 

crystallisation robot using five different commercially available crystallisation 

screens from Molecular Dimensions Limited, namely: (i)- Structure Screens I 

and II, (ii)- Clear Strategy Screen I, (iii)- Clear Strategy Screen II, (iv)- Pact 

Premier Screen and (v)- JCSG plus Screen. Detailed composition of each 

screen is provided in appendix II. 

Table 4.1: Some of the crystallisation conditions from commercial screens that 
produced preliminary CDTa′ crystals. 

Screen Condition number (appendix II) 

Structure Screen 1 & 2 C7, D1 

Clear Strategy Screen 1 E4, G1, G5, 

Clear Strategy Screen 2 F3, 

Pact Premier Screen A3, A4, A5, A6, B2, B3, B4, B5, B6, C3, C4, 

C5, C6, C7, C8, C9, D1, D3, D4, D5, D6, 

D7, D8, D9, E1, E7, E10, F1, F10, G1, G6, 

G7, G10, H1, H6, H7, H10 

JCSG plus Screen A10, C6, D1, D12 

Each screen comprises 96 conditions and hence in total 480 different 

conditions were set up using the sitting drop vapour diffusion (SDVD) method. 

150 nl of crystallisation solution was added to an equal volume of protein and 

allowed to equilibrate against a reservoir of 50 µl at 160C. 

Eight, out of the many conditions (Table 4.1) that produced primary 

hits for the crystallisation were selected for further optimisation. Crystals were 

reproduced in a 2 µl drop containing the protein and the reservoir solution in 
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a 1:1 ratio using the hanging drop vapour diffusion (HDVD) method in 24 well 

plates under identical incubation conditions. 

Final crystals for native CDTa′ were grown in three different conditions 

(Table 4.2) using the HDVD method by streak seeding the drops. Reservoir 

solution was added to an equal volume of the protein at 4 mg/ml 

concentration and allowed to equilibrate against a reservoir of 500 ul for 60 to 

90 minutes at 160C. The equilibrated drops were then streak seeded with thin 

plate crystals that were grown previously under identical conditions. 

To grow CDTa′ crystals in complex with NAD and NADPH, ligand 

solution at 100 mM was added to the protein at 5 mg/ml and diluted with 

CDTa concentration buffer (20 mM NaCl in 50 mM Tris-HCl pH 8.0) in such a 

way that the final concentration of the ligand was 10 mM and that of the 

protein was 4 mg/ml. Crystallisation was set up using the HDVD method 

under the condition containing 20% PEG 1500 in 0.1 M MIB buffer pH 9.0 

(Table 4.2) by streak seeding the drops as described for the crystallisation of 

native protein above. 

Table 4.2: The CDTa′ final crystal growth conditions. 

Crystal name Composition of crystallisation condition 

CDTa-8.5 0.2 M Potassium Thiocyanate, 0.1 M Tris pH 8.5, 

20% PEG 2K MME 

CDTa-9, 

CDTa+NAD and 

CDTa+NADPH 

0.1M MIB buffer pH 9.0, 20% PEG 1500 

(MIB = sodum malonate, imidazole, boric acid 

buffer) 

CDTa-4, 0.1M MIB buffer pH 4.0, 20% PEG 1500 

Concentration and Crystallisation of CDTb′ and CDTb″ 

CDTb′ and CDTb″ were concentrated to 7 mg/ml with the help of 

Millipore 10 kDa MWCO concentrators at 4000 rpm at 40C. As mentioned 

before, both of the proteins were stored in a buffer containing 0.2 % Tween-20. 

Initial set of crystallisation trials for each protein was set up in the presence of 

Tween-20 using all five commercially available crystallisation screens from 

Molecular Dimensions Limited in identical manner as described for CDTa′. 

An additional set of crystallisation trials for CDTb′ was also set up in 

the absence of tween-20. Tween-20 was removed from the protein as descried 
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before. Table 4.3 below provides a list of crystallisation conditions that 

produced primary hits for all different crystallisation trials. 

Table 4.3: the primary crystallisation hits obtained for CDTb′ (with and without 
tween-20) and CDTb″ (with tween-20) using commercial screens. 

Screen Condition number (appendix II) 

CDTb′ 

(with tween-20) 

CDTb″ 

(with tween-20) 

CDTb′ (without 

tween-20) 

Structure 

Screen 1 & 2 

B10, B12, C3, 

C9, C11, D9, E2, 

B10, C9, H6 G6 

Clear Strategy 

Screen 1 

C8, D9, E3, E9, 

F3, F9, G2, G3, 

G9, H3, H8, H9, 

D8, E3, E9, F3, 

F9, G2, G8, G9, 

H3, H8, H9, 

F9, F10, G10, 

H10, 

Clear Strategy 

Screen 2 

E2, E2, G2, --

Pact Premier 

Screen 

C9, C10, D10, C10, D10, E10, 

JCSG plus 

Screen 

B10, D2, D3, D6, 

D7, F5, G5, 

D6, F5, C4, 

The primary hits obtained for CDTb′ and CDTb″ crystallisation in the 

presence of tween-20 were then optimised using the HDVD and SDVD 

methods in 24 well plates. 1 µl of the protein was mixed with an equal volume 

of reservoir solution and allowed to equilibrate against a 500 µl volume of 

reservoir solution at 160C. Optimisation of CDTb′ crystallisation primary hits 

in the absence of tween-20 were also performed in 24 well plates using the 

HDVD as well as SDVD method. 

The primary hit that produced the best looking crystals (Pact premier 

screen – E10) for CDTb′ crystallisation in the absence of Tween-20 was also 

optimised further using the additive screen from Hampton Research Limited in 

a 96 well plate with the help of crystallisation robot. Table 4.4 lists all crystal 

producing conditions from the additive screen (for detailed composition please 

see appendix II). The obtained hits were then optimised manually using HDVD 

method. 
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Table 4.4: CDTb′ crystallisation hits using the additive screen with Pact Premier 
E10 condition as the basic condition. 

CDTb′ (without Tween-20 – Additive Screen 

Basic condition Additive Screen condition number 

20% PEG 3350 A8, B7, B8, C1, E11, F2, G1 

RESULTS AND DISCUSSION 

Chymotrypsin Mediated Activation of CDTb 

Available literature and experimental evidence suggest that transport 

components of Clostridial binary toxins have to be activated by tripsin or 

chymotrypsin to become fully functional (Perelle et al., 1997; Fernie et al., 

1984). Activation of the transport component of C. botulinum C2 toxin (C2II) by 

trypsin has been reported (Ohishi, 1987). At least two different studies 

(Blocker et al., 2001; Gluke et al., 2001) describe activation of the transport 

component of C. perfringens iota toxin (Ib) by chymotrypsin under the 

conditions of temperature, pH and incubation time similar to that reported for 

C2II. 

Figure 4.1: The chymotrypsin mediated activation of CDTb′ on Bis-tris SDS-
PAGE. Lane 1 and 2- non-heated CDTb′, lane 3- 5 minute heated CDTb′, lane 5, 
6, 7, 8, 9, 10, 11 and 12- 10, 15, 20, 25, 30, 40, 50 and 60 minute 
chymotrypsin treated, heated samples. 

Figure 4.1 shows the control protein, CDTb′ (lanes 1, 2 and 3) and the 

chymptrypsin activated CDTb fragment (lanes 5 to 12) on a Bis-Tris-SDS-

PAGE. A gradual decrease in the amount of precursor protein (CDTb′) can be 
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seen which completely disappears between 20 and 30 minutes time under the 

tested conditions. The reaction was continued for 60 minutes and no further 

cleavage or degradation of the activated fragment was observed in spite of the 

presence of chymotrypsin in the mixture. Chymotrypsin is a non specific 

protease and is known to cleave its substrate at random sites. However, 

successful production of the protein fragment of the correct size is strong 

evidence that activation of the transport component of C. difficile binary toxin 

by chymotrypsin is a highly specific process. These results also indicate that 

the expressed and purified protein (CDTb′) is correctly folded. 

Cell Cytotoxicity Effects of Complete CDT 

The first set of cytotoxicity experiments was conducted with CDTb′ and 

CDTb″ protein samples that were stored in a buffer containing 0.2% Tween-20. 

Previous data produced in our laboratory showed that Tween-20 has a lethal 

effect on growing Vero cells. 

Figure 4.2: The effect of Tween-20 on growing Vero cells in 4 hours time. 

Figure 4.2 demonstrates the effect of Tween-20 on growing Vero cells at 

4 hours post incubation time. CDTb is the transport component of the binary 

toxin and possesses no catalytic activity. The observed cell death in CDTb′ and 

CDTb″ alone controls was due to the presence of Tween-20 in the used protein 

samples (Figure 4.2). CDTa is the catalytic component of the binary toxin. It 
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requires CDTb as its translocation partner to access entry into the target cell. 

CDTa′ alone controls did not show any cell death (Figure 4.2). 

Due to the lethal effect of Tween-20 on growing cells, it was necessary 

to remove it from the stored protein samples. Figures 4.3, 4.4 and 4.5, below 

summarise the results of the second set of cytotoxicity experiments showing 

the effect of toxins on the cells at 24 hours time point. Observations were not 

made post 24 hours incubation as the cells were maintained in serum 

depleted medium. 

Figure 4.3: Controls for the cell cytotoxicity test. (A) – Blank (buffer control), (B) 
– CDTa′ alone control (250 ng), (C) – CDTb′ alone control (250 ng), (D) – CDTb″ 
alone control (250 ng), (E) – CDTb′# alone control (250 ng), (F) – CDTb″# alone 
control (250 ng),in a total volume of 200 µL. 

No cell death was observed in the buffer control (Figure 4.3 A) and in 

the presence of individual toxin components CDTa, CDTb′, CDTb′′, CDTb′# and 

CDTb′′# (Figures 4.3 B, C, D, E and F). These observations proved that the 

individual components of CDT are not cytotoxic. Healthy cells in CDTb′# and 
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CDTb′′# controls indicate that the chymotrypsin was inactivated completely by 

trypsin inhibitor. Toxin A and Toxin B are the best characterized toxins from 

C. difficile and were used as positive controls for Vero cell cytotoxicity in this 

study (Figures 4.3 G and H). 

Figure 4.4: The effect of binary toxin on growing Vero cells. (G) – Toxin A control 
(5ng), (H) – Toxin B (0.5 ng), (I) – CDTa′ + CDTb′# (10 ng+50 ng), (J) – CDTa′ + 
CDTb′ (250ng+250 ng), (K) – CDTa′ + CDTb′# (50ng+250 ng), (L) – CDTa′ + CDTb′# 

(250ng+250 ng), in a total volume of 200 µL. 

No cell death was observed in any of CDTa′+CDTb′ mixture test cases 

(Figure 4.4 J). CDTb′ is the recombinant inactive precursor fragment of CDTb. 

It requires chymotrypsin mediated activation to become fully functional. Vero 

cells are kidney epithelial cells and are not known to produce chymotrypsin 

which is necessary to activate CDTb′. In all previously reported studies on 

different Clostridial binary toxins (Gluke et al., 2001; Blocker et al., 2001; 

Ohishi et al., 1980; Kaiser et al., 2006), the corresponding transport 

104




components activated by trypsin or chymotrypsin have been used. Cell death 

was observed for CDTa′ in the presence of CDTb′# test cases (Figures 4.5 P, Q 

and R). Cell death was recorded for all CDTa′+CDTb′′ cases but to a 

considerably lower extent (Figures 4M and 4N) when compared with its 

chymotrypsin activated product, CDTb′′# (Figures 4.5 M and O). 

Figure 4.5: The effect of various concentrations of binary toxin components on 
growing Vero cells. (M) – CDTa′ + CDTb″(50ng+250 ng), (N) – CDTa′ + 
CDTb″(250ng+250 ng), (O) – CDTa′ + CDTb″# (50ng+250 ng), (P) – CDTa′ + CDTb′# 

(50 ng+50 ng), (Q) – CDTa′ + CDTb′# (50ng+150 ng), (R) – CDTa′ + CDTb′# 

(50ng+250 ng), in a total volume of 200 µL. 

A five-fold variation in the concentration of CDTa and CDTb was 

screened in different combinations. However, it was observed that variation in 

CDTa′ amount from 50 to 250 ng, keeping CDTb′# concentration constant, did 

not increase cell death significantly (Figures 4K and 4L). No significant 

difference in cell death was observed when CDTb′# concentration was varied 
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keeping that of CDTa′ fixed (Figures 4P, 4Q and 4R). However, our 

experimental results are insufficient to show conclusively whether the amount 

of activated CDTb or the concentration of CDTa present is the rate 

determining step in binary toxin mediated cell death. 

Previously, the cytotoxicity effect of CDTa has been studied by Gluke 

and co-workers using the transport component of iota toxin (Ib) to mediate the 

cell entry of CDTa because CDTb could not be well expressed (Gluke et al., 

2001). Hence, their study could not provide a definitive answer as to whether 

full length CDT (CDTa+CDTb) is cytotoxic. Our study presented here, provides 

a clear picture as we have used both components of CDT and have 

conclusively shown that the complete C. difficile binary toxin is capable of 

killing cells at as low as 50 ng/ml of CDTa′ and 250 ng/ml of CDTb′# (Figure 

4.4 I) (at the tested amount of CDTa (Gluke et al., 2001) and iota toxin 

(Blocker et al., 2001) reported in previous studies). 

Perelle and co-workers have demonstrated the cell cytotoxicity of 

complete CDT on Vero cells. In their experiments, Vero cells were incubated 

with the binary toxin producing C. difficile bacterial cell culture supernatant 

(Perelle et al., 1997). The culture supernatant contained Toxin A and Toxin B 

in addition to CDT. Authors suggest that incubation of the culture 

supernatant at -200C deactivated both C. difficile main toxins. However, the 

purified Toxin A and Toxin B that have been used in our study as positive 

controls, were always stored at -200C and no deactivation of either toxin was 

observed as both toxins were still capable of killing cells (Figures 4.4 G and H). 

In our study, both components of CDT were expressed recombinantly and 

purified. Hence, our results leave no ambiguity about cell death mediated by 

the complete CDT. Our report is the first report on CDT mediated cell 

cytotoxicity in isolation. 

Formation of CDTb Oligomer in Solution 

Binary toxins from various Clostridial and bacillus species follow a 

similar mechanism of cell entry. Transport components of these toxins form a 

heptameric pore like structure upon activation by 

trypsin/chymotrypsin/furin. Transport components from two different 

Clostridial actin modifying binary toxins have been studied in this regard. 

However, the two studied toxins belong to two different classes of Clostridial 
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actin-ADPRTs (Table 2.1) and the physiochemical conditions of heptamer 

formation vary among them. C2II from C. botulinum has been reported to form 

an SDS resistant heptamer whereas the Ib heptamer (from C. perfringens) was 

found susceptible to SDS (Blocker et al., 2001). 

The protein (CDTb′) was activated by chymotrypsin in a buffer 

containing 50 mM Tris-HCl pH 7.5 and 300 mM NaCl, as described previously. 

8 different buffer systems of different pH were screened for the oligomerisation 

of CDTb. Figure 4.6 below shows all samples on a Bis-Tris SDS-PAGE under 

SDS conditions. 

Figure 4.6: The formation of the CDTb oligomer in solution. Lane 1 – MIB pH 
4.0, 2 – MMT pH 4.0, 3 – SPG pH 4.0, 4 – Na-acetate pH 4.0, 5 – Bis-Tris pH 5.5, 
6 – Bis-tris pH 6.5, 7- Tris-HCl pH 7.5, 8 – Tris-HCl pH 8.5 

A faint protein band was observed well above the 188 kDa marker 

protein band for activated CDTb oligomer. Intensity of this protein band varied 

in different lanes. However, it was clearly visible in Na-Acetate buffer, pH 4.0 

test condition (Figure 4.6, lane 4). This observation agrees with results 

reported by Blocker and co-workers (Blocker et al., 2001) for the 

oligomerisation of iota toxin transport component (Ib). The formation of the 

CDTb oligomer could not be tested under non-SDS conditions. 

Concentration and Crystallisation of CDTa′ 

The protein was concentrated to 10 mg/ml without any difficulty. 

Figure 4.7 below, shows the concentrated CDTa′ protein on a 10% Tris-glycine 

SDS-PAGE. 

107




Figure 4.7: The concentrated CDTa′ protein on Tris-glycine SDS-PAGE (lane 1)


Figure 4.8: Some of the primary CDTa′ crystals. CSS – Clear strategy Screen, 
PPS- Pact Premier Screen. JCSG – JCSG plus screen. 
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At least 20 out of 480 screened crystallisation conditions resulted in 

thin plate like crystals of similar morphology within 24 hours. This number 

went up to over 50 within a week’s time (Figure 4.8). 

Eight conditions were then chosen and these thin plate crystals were 

reproduced by the hanging drop vapour diffusion method. Crystals from two 

different conditions were chosen to test in the X-ray beam at Station I03 of 

Diamond Light Source, United Kingdom. These crystals were protein crystals 

but diffracted poorly to 5Å resolution. 

Figure 4.9: The effect of seeding on CDTa′ crystal morphology.


Figure 4.10: The CDTa′ crystals in complex with NAD (left) and NADPH (right) 
grown by streak seeding. 

Both of the tested conditions were selected for final crystal optimisation 

by employing the streak seeding technique. Seeding improved crystal 

morphology significantly and consequently the diffraction quality of crystals 

was improved. Figure 4.9 illustrates the effect of streak seeding on crystal 
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morphology. Co-crystallisations of the protein with its donor substrates were 

also set up. Seeding resulted in diffraction quality crystals of good morphology 

in co-crystallisations also (Figure 4.10). X-ray diffraction data collection and 

structure determination of CDTa′ are discussed in the chapter 5. 

Concentration and Crystallisation of CDTb′ and CDTb″ 

CDTb′ protein was concentrated successfully up to 7 mg/ml. A small 

amount of precipitate was observed in CDTb″ samples during the 

concentration process. The concentrated protein samples were centrifuged at 

10,000 rpm for 10 minutes at 40C prior to setting up crystallisation in order to 

remove the precipitated protein. 

Figure 4.11: Some of the primary crystallisation hits obtained for CDTb′ in the 
presence of 0.2% tween-20. SS – Structure screens 1 and 2, CSS – Clear 
strategy Screen, PPS- Pact Premier Screen. JCSG – JCSG plus screen. 

In the presence of Tween-20 several crystallisation conditions (Table 

4.3) produced very thin needle crystals which were not suitable for data 

collection. These crystals of similar morphology were grown for CDTb′ as well 
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as for CDTb″ (Figures 4.11 and 4.12). Optimisation of these conditions in 24 

well plates also did not result in any significant improvement. 

Figure 4.12: Some of the primary crystallisation hits obtained for CDTb″ in the 
presence of 0.2% tween-20. SS – Structure screens 1 and 2, CSS – Clear 
strategy Screen, PPS- Pact Premier Screen. JCSG – JCSG plus screen. 

However, in the absence of Tween-20, much better diamond shaped 

crystals for CDTb′ were grown in few conditions (Table 4.3 and Figure 4.13). 

These crystals were not big in size but they appeared to be better than the 

crystals grown in the presence of Tween-20 (Figure 4.11). 

Figure 4.13: Some of the primary crystallisation hits obtained for CDTb′ in the 
absence of tween-20. SS – Structure screens 1 and 2, CSS – Clear strategy 
Screen, PPS- Pact Premier Screen. JCSG – JCSG plus screen. 

In the absence of Tween-20, the Pact premier screen condition number 

E10 produced the best looking crystals for CDTb′ (Figure 4.13, right most 

panel). These crystals could be reproduced in 24 well plates by varying the 
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concentration of salt and precipitant in the reservoir solution as well as the 

protein to reservoir solution ratio in the drop (Table 4.5 and Figure 4.14). 

Optimisation of these conditions so far has not improved the size of crystals 

significantly. None of these crystals showed diffraction spots at Diamond Light 

Source. 

Table 4.5: Variation of condition for the optimisation of CDTb′ crystals in a 24 
well plate in the absence of Tween-20. 

Basic condition – 0.2 M K thiocyanate, 20% PEG 3350 

Parameter Variation 

Protein concentration (in drop) 3 mg/ml – 4 mg/ml 

Precipitant (PEG) concentration) 16% – 20% 

Salt concentration 0.0 M to 0.2 M 

Protein : reservoir solution in drop 1:1, 1:2, 2:1 

Figure 4.14: CDTb′ crystals grown in 24 well plates in hanging drop vapour 
diffusion method in the absence of Tween-20. (1) – 16% PEG3350, protein (3 
mg/ml) : reservoir solution =1:2; (2) - 20% PEG3350, protein (3 mg/ml) : reservoir 
solution =1:2 

These crystals (Figure 4.14), however, could be reproduced in a wide 

range of concentrations of salt and precipitating agent (Table 4.5). Further 

optimisation of these crystals using the additive screen from Hampton 

research was carried out. Figure 4.15 displays some of the crystals grown in 

the crystallisation conditions from the additive screen. Unfortunately, the size 

of crystals still could not be improved. Further optimisation of different 

conditions in order to grow large diffraction quality crystals is underway. 
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Figure 4.15: The CDTb′ crystals grown in the absence of tween-20 using 
additive screen with basic condition – 20% PEG 3350 

SUMMARY 

Chymotrypsin mediated activation of precursor CDTb (i. e. CDTb′) 

resulted in a fully functional activated protein fragment (CDTb′#). Results of 

the cell cytotoxicity experiments proved that the expressed and purified 

proteins (CDTa′, CDTb′ and CDTb″) were active and correctly folded. In 

addition to that, the cell cytotoxicity tests indicated that complete CDT has the 

potential to kill cells in isolation and hence should have a definite role in C. 

difficile infection. 

The preliminary experimental results showed the formation of 

oligomeric CDTb complex in solution under acidic conditions. However, the 

intensity of the protein band was very low on an SDS-PAGE and these 

conditions need to be optimised further. 

Crystallisation trials for CDTa′ resulted in diffraction quality crystals of 

CDTa in its native form as well as in complex with the ADP-ribose donor 

substrate i. e. NAD and NADPH (discussed in chapter 5 in details). Preliminary 

success was achieved for CDTb′ and CDTb″ crystallisations. Small but good 

morphology crystals for CDTb′ were grown in the absence of Tweeen-20. 

Optimisation of these preliminary crystallisation hits is underway. 
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CHAPTER – V 

CRYSTAL STRUCTURE OF ENZYMATIC

COMPONENT OF


C. DIFFICILE BINARY TOXIN: CDTa
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Structural Analysis of Known ADPRTs 

ADP ribosylating toxins (ADPRTs) are a large superfamily that has been 

divided into four different classes based on their substrate specificity (Table 

2.2). All ADPRTs share a common active site fold (Han and Tainer, 2002; 

Domenighini and Rappuoli, 1996). Three dimensional structures for 

representative members of each of the 4 classes of ADPRTs have been 

determined. These include - Diphtheria toxin (1TOX) from Corynebacterium 

diphtheriae (Bell and Eisenberg, 1996), Pseudomonas exotoxin A (1AER) from 

Pseudomonas aeruginosa (Li et al., 1996), Pertussis toxin (1PRT) from 

Bordetella pertussis (Stein et al., 1994), Cholera toxin (1XTC) from Vibrio 

cholerae (Zhang et al., 1995), Escherichia coli heat labile enterotoxin (1LTS) 

(Sixma et al., 1993), Clostridium perfringens Iota toxin (1GIQ) (Tsuge et al., 

2003), Clostridium botulinum C2 toxin (2J3V) (Schleberger et al., 2006), 

Vegetative insecticidal protein (1QS1) from Bacillus cereus (Han et al., 1999) 

and the C3-like toxins, C3Bot (1G24) from Clostridium botulinum (Han et al., 

2001) and C3stau (1OJZ) from Staphylococcus aureus (Evans et al., 2003). 

Based on the ADP-ribose donor substrate binding pattern, ADPRTs have been 

classified into two classes: 

1- DT type, which is based on active site architecture and NAD binding 

features that are present in diphtheria toxin (Bell and Eisenberg, 1996). And, 

2- CT type, where the NAD binding features are similar to that is 

observed in cholera toxin (Zhang et al., 1995). The CT type toxins include 

C3Bot, VIP2, pertussis toxin, Iota toxin and CDT from C. difficile. 

The ADP-ribose donor (i. e. NAD) binds to the catalytic cleft in a high 

energy, closed conformation in all ADPRTs irrespective of their class and 

interacting residues. The NAD binding cleft in all ADPRTs comprises of a 

similar mixed α/β core structure. The cleft is positioned between a β-stranded 

framework and either an α-helix (examples - C3Bot, C3stau, VIP2 and Iota) or 

a variable length active site loop (such as in pertussis, cholera, diphtheria and 

exotoxin A). A sequence alignment of different ADPRTs reveals the presence of 

several conserved residues that form catalytically important motifs in the 3-

dimensional structures (Figure 5.1). 
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Figure 5.1: The sequence alignment of different classes of ADPRTs showing 
conserved catalytically important motifs (adopted from Holbourn et al., 2006). 
Pert. = Pertussis toxin, Diphth. = diphtheria toxin. 

An aromatic residue followed by a conserved Arg/His has been found in 

all ADPRTs till date (Domenigini and Rappuoli, 1996). The DT class is 

characterised by a Tyr-His whereas the motif present in the CT class is 

Val/Leu-X-Arg (Figure 5.1, where X is an aromatic residue). This particular 

motif is designated as the Arg/His motif and is found to be involved in the 

ligand binding but not in catalysis (Holbourn et al., 2006). However, 

mutational studies suggest that the loss of this conserved residue results in 

almost complete loss of transferase activity in several ADPRTs (Lobet et al., 

1991; Cieplak et al., 1988; Burnette et al., 1988; Burnette et al., 1991; Tsuge 

et al., 2003; Wilde et al., 2002). 

The STS motif of ADPRTs is supposed to act as an anchor to hold the 

NAD binding site together. In C3Bot, the first Ser residues of the motif forms 

hydrogen bond with the catalytic Glu beneath the cleft to hold it in the correct 

position to mediate NAD cleavage (Holbourn et al., 2006). However, mutational 

studies on iota toxin and dipththeria toxin (Bell and Eisenberg, 1996; 

Nagahama et al., 2000) suggest that while the STS motif stabilises the 

catalytic site, it is not essential in all ADPRTs. In diphtheria toxin the STS 

motif is replaced with the YTS motif where the Tyr residue is shown to be 

crucial for activity of the toxin (Carroll and Collier, 1988; Carroll and Collier, 

1984; Carroll and Collier, 1987). 

A loop of varying length known as the ARTT (ADP-ribosylating turn 

turn) loop is common in all CT type ADPRTs. The ARTT loop contains key 

catalytic residues in the form of an EXE or QXE motif which have been 

suggested to play a decisive role in ligand binding as well as in the transfer of 
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ADP-ribose to the substrate (Han et al., 2001; Han and Tainer, 2002; 

Domenighini and Rappuoli, 1996). An aromatic residue at the centre of the 

ARTT loop in class 3 and class 4 ADPRTs is another conserved residue. In 

C3Bot, this residue (Phe) has been shown to be essential for substrate binding 

(Wilde et al., 2002). However, an aromatic residue (Tyr) at an equivalent 

position in actin-ADPRTs such as iota toxin has not been assigned any such 

function to date (Tsuge et al., 2003; Tsuge et al., 2008). 

The PN loop forms an essential part of the ligand binding machinery of 

ADPRTs. In C3Bot, the PN loop has been reported to undergo a large 

movement upon NAD binding. A similar movement of the loop, however, has 

not been observed in iota toxin. The PN loop of two different classes of ADPRTs 

(class 3 and class 4) has been found to contribute to the NAD binding with an 

Arg residue that interacts with NAD directly. An aromatic residue (Phe) in both 

classes has been suggested to stabilise ligand binding by stacking interactions 

(Tsuge et al., 2003; Menetrey et al., 2002; Holbourn et al., 2006). 

A 15 residue active site loop that is present in class 1 and class 2 of 

ADPRTs has been found missing in class 3 and class 4 (Bell and Eisenberg, 

1996, Sixma et al., 1991). This loop has been suggested to be involved in 

substrate recognition (O’Neal et al., 2005). In class 3 and class 4 of ADPRTs, 

this loop has been replaced by an α-helix (named as α-3 helix) which packs 

itself tightly against the NAD binding cleft (Tsuge et al., 2003; Han et al., 1999; 

Han et al., 2001; Evans et al., 2003). This helix contains 3 conserved 

catalytically important residues amongst all class 3 and class 4 ADPRTs. This 

part of the NAD binding cleft is thought to be involved in holding the ADP-

ribose component of NAD after cleavage of the N-glycosidic bond until it is 

transferred to the acceptor molecule (Holbourn et al., 2006). 

C. difficile binary toxin (CDT) along with C. perfringens iota toxin and C. 

botulinum C2 toxin belongs to the class 4 of ADPRTs. In this chapter, high 

resolution crystal structures of the enzymatic component of CDT in its native 

form under three different pH conditions as well as in complex with its donor 

substrates, i. e. NAD and NADPH are presented. The mode of donor substrate 

recognition by CDTa is compared with that of Iota A with a possible 

explanation of the ARTT loop stability upon ligand binding in CDTa. Based on 

the structural data presented, it seems that the ADP-ribosylation reaction by 

CDTa prefers to proceed via an SN1 mechanism of catalysis rather than SN2. 
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MATERIALS AND METHODS 

Data Collection and Data Processing 

A single crystal was mounted in a nylon loop and flash frozen at 100K 

temperature in a stream of nitrogen gas. Diffraction data sets for native CDTa 

crystals (Figures 4.9 and 4.10) grown in three different crystallisation 

conditions (Table 4.2) were collected at Stations I02 and I04 of Diamond Light 

Source, Didcot, UK. Single crystal diffraction data sets for CDTa in complex 

with its donor substrates, NAD and NADPH were also collected in similar 

fashion at Station I02. Each of the stations was equipped with a Quantum-4 

CCD detector (Area Detector Systems Corp.). X-ray wavelengths used for data 

collection are provided in Table 5.1. Twenty percent glycerol was used as 

cryoprotectant for CDTa-NAD and CDTa-NADPH complex crystals. All native 

crystals were mounted without any cryoprotectant. Two hundred images for 

each crystal were collected using the rotation method of data collection with 

an oscillation range ∆Φ = 10. Raw data images were indexed and scaled with 

the HKL2000 package (Otwinowski et al., 1997) and the scaled intensities were 

truncated to amplitudes using TRUNCATE (French et al., 1978) from the CCP4 

suite (CCP4, 1994). Detailed data collection and data processing statistics are 

given in table 5.1. 

Structure Solution and Refinement 

To solve phases for the CDTa-8.5 structure, the search model was 

derived from the coordinates of enzymatic component of iota toxin (Tsuge et 

al., 2003) (PDB entry-1GIQ and 1GIR). Initial phases for structure solution 

were obtained using the molecular replacement routines of the MOLREP 

program (Vagin et al., 1997). Data in the range of 50.0 to 3.0 Å was used for 

the molecular replacement step. The resultant model was refined using 

REFMAC5 (Murshudov et al., 1997) of the CCP4 suite. Five percent of 

reflections were separated as Rfree set and used for cross validation (Brunger, 

1992). After an initial round of rigid-body refinement, iterative rounds of 

restrained refinement with electron density map calculations and manual 

adjustments of the model using COOT (Emsley and Cowtan, 2004) were 

carried out. On the basis of 2Fo–Fc electron density, side-chain atoms were 

omitted at some positions. Water molecules were added at positions where Fo– 
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Fc electron density peaks exceeded 3σ and potential hydrogen bonds could be 

made. 

A similar approach was adopted to solve other CDTa structures. The 

refined CDTa-8.5 structure was used as phasing model to obtain initial phases 

for all other structures. The atomic coordinates for NAD and NADPH were 

obtained from studies of Tsuge and co-workers (Tsuge et al., 2003). 

Model validation was conducted with the aid of programs PROCHECK 

(Laskowski et al., 1993) and MOLPROBITY (Davis et al., 2007). Estimations of 

main chain Φ-Ψ torsion angles were obtained from Ramachandran plot 

(Ramachandran et al., 1963). Figures were drawn with PyMOL (DeLano 

Scientific, San Carlos, CA, USA). Validated structure coordinates for all five 

structures were deposited with the Protein Data Bank (PDB) under entries – 

2WN4, 2WN5, 2WN6, 2WN7 and 2WN8 (Sundriyal et al., 2009). 

RESULTS AND DISCUSSION 

Data Collection and Data Processing 

CDTa without its signal peptide (CDTa′) was crystallised in its native 

form in three different crystallisation conditions (Table 4.2). Two of the 

conditions were virtually identical except for the pH (9.0 and 4.0 respectively) 

(Table 4.2). Crystals of CDTa′ in complex with NAD and NADPH were grown in 

high pH condition at pH 9.0 (Table 4.2). 

Figure 5.2 displays a typical X-ray diffraction image for native CDTa. 

Indexing of data sets suggested that all of the crystals belong to monoclinic 

system. All data sets were indexed and scaled in both, P2 and P21 space 

groups. However, a clear molecular replacement solution was obtained in P21 

space group (Table 5.2). Hence, P21 was the correct space group with slight 

variations in cell parameters for different crystals (Table 5.1). Calculation of 

Matthew’s coefficient (Matthews, 1968) indicated that all of the crystals 

contained one protein molecule per asymmetric unit with about 40-50 % 

solvent content in different crystals (Table 5.1). 
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Figure 5.2: A typical X-ray diffraction image for native CDTa crystal (CDTa-8.5). 

Structure Solution and Refinement 

The CDTa-8.5 structure was determined at 1.85 Å resolution whereas 

CDTa-4.0, CDTa-9.0, CDTa-NAD and CDTa-NADPH structures were 

determined at 2.0 Å, 1.9 Å, 2.25 Å and 1.95 Å respectively. The molecular 

replacement process for CDTa-8.5 structure determination yielded one unique 

solution (Table 5.2.) in P21 space group. Molecular packing in the unit cell for 

this solution was free of any unfavourable intermolecular contacts confirming 

it to be the correct solution. Figure 5.3 shows the packing of CDTa molecules 

in the unit cell. 

The resulting model was subjected to 20 cycles of rigid body refinement 

followed by 10 cycles of restrained refinement. A marked reduction in Rcryst 
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(from 49.41 to 31.78 %) and Rfree (from 47.93 to 36.41 %) values and a 

significant increase in the figure of merit (from 39.8 to 70.1 %) were observed 

indicating the success of refinement steps (Table 5.3). 

Figure 5.3: The arrangement of CDTa molecules in the crystal unit cell (for 
CDTa-8.5 crystal). The two fold axis is perpendicular to the plane of the paper. 

The presence of bound ligand was confirmed in the electron density 

maps of respective structures immediately after the first round of restrained 

refinement. Figure 5.4 displays the observed electron density for unmodelled 

NAD in the CDTa-NAD structure at an initial stage of refinement. 

The N terminal of CDTa was found to be highly disordered and electron 

density for few of the N terminal residues (1-27 for CDTa-8.5; 1-24 for CDTa 

4.0; 1-23 for CDTa-9.0; 1-26 for CDTa-NAD and 1-16 for CDTa-NADPH) was 

not visible in any of the structures. However, the modelled length of the N-

terminal varied among different structures which indicated the presence of 

these residues in the protein as all five crystals were grown from the same 

batch of the protein. 
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Figure 5.4: Electron density for the bound NAD (unmodelled) seen after the first 
cycle of restrained refinement. The continuous density with green pieces of 
positive density corresponds to the bound NAD molecule. The 2Fo-Fc and Fo-Fc 
maps are shown at 1σ and 3σ contour level respectively. 

The loop regions -178-181, 382-384 for CDTa 4.0; 383-384 for CDTa-

9.0 and 179-181 for CDTa-NAD, could also not be modelled. Figure 5.5 shows 

the final electron density for the ARTT loop (discussed in a later section) and 

the bound NAD in the CDTa-NAD structure. 

There were no residues in the disallowed region of the Ramachandran 

plot for any of the structures (Figures 5.6 to 5.10). Table 5.4 summarises 

important structure refinement statistics for all five structures. A tight 

geometry for all molecules was maintained throughout the process of 

refinement and model building (Table 5.4). 
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Figure 5.4: The final electron density for (A) – the ARTT loop from CDTa-NAD 
structure, and (B) – the bound NAD in CDTa-NAD structure at 2.25 Å resolution. 
The chemical structure of NAD is given in Figure 2.7 (page 47). 2Fo-Fc and Fo-Fc 
maps are shown at 1σ and 3σ contour level respectively. 
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Table 5.1: The data collection and processing statistics for all five crystals.


All crystals belong to P21 

space group 
CDTa-8.5 

(pH = 8.5) 

CDTa-4.0 

(pH = 4.0) 

CDTa-9.0 

(pH = 9.0) 

CDTa-NAD 

complex 

CDTa-NADPH 

complex 

Wavelength of X-ray (Å) 0.9795 1.3625 1.3625 0.9795 0.9795 

Exposure time per image 2 Seconds 4 Seconds 3 Seconds 

Ligand / Substrate - - - NAD NADPH 

Cell parameters 57.9, 44.5, 

78.0Å, β=102.8º 

57.1, 42.7, 

77.1Å, β=102.5 º 

57.4, 44.0, 

78.5Å, β=102.5 º 

62.1, 46.8, 

77.7Å, β=97.7 º 

60.8, 46.4, 

77.5Å, β=98.4 º 

Maximum Resolution (Å) 1.85 2.0 1.90 2.25 1.95 

Matthew’s coefficient 2.18 2.04 2.12 2.48 2.40 

Solvent content (%) 43.60 39.70 42.11 50.51 48.86 

Rsymm (%) 

Overall/ outermost shell 8.1 / 24.8 8.5 / 31.8 11.1 / 33.1 11.1 / 27.3 7.3 / 21.3 

Completeness (%) 

Overall/ outermost shell 96.0 / 76.3 94.0 / 75.3 96.3 / 75.5 95.8 / 74.9 96.3 / 74.0 

I / σI 

Overall / outermost shell 13.12 / 3.86 11.90 / 1.94 9.11 / 3.31 10.85 / 3.0 13.60 / 4.18 

Data Multiplicity 

Overall / outermost shell 3.7 / 2.5 3.5 / 1.8 3.7 /2.7 3.7 / 2.1 3.8 / 2.6 

No. of reflections 

Total / Unique 317439 / 33361 364537 / 24824 325716 / 29974 209467 / 21369 359671 / 30820 
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Table 5.2: The molecular replacement solution statistics for CDTa-8.5 structure. The best solution is highlighted.


S_ RF TF theta phi chi tx ty tz TFcnt Rfac Scor 
S___1__1 83.22 -91.80 5.07 0.071 0.000 0.268 31.88 0.485 0.392 
S___2__1 0.00 0.00 0.71 0.082 0.000 0.255 3.21 0.581 0.142 
S___3__1 6.95 5.39 179.23 0.156 0.000 0.205 5.69 0.590 0.099 
S___9__2 160.22 -5.33 128.87 0.769 0.000 0.306 1.53 0.595 0.092 
S___4__5 34.23 102.54 174.58 0.798 0.000 0.289 2.41 0.598 0.083 
S__12_13 52.98 26.26 90.42 0.156 0.000 0.284 2.02 0.586 0.081 
S___7__5 157.78 133.21 160.85 0.407 0.000 0.171 1.54 0.598 0.075 
S__10__7 48.00 -1.11 112.91 0.367 0.000 0.278 1.07 0.595 0.069 
S__11__9 137.44 -5.69 56.61 0.055 0.000 0.244 1.58 0.591 0.062 
S___5__4 10 60.41 -176.68 53.70 0.098 0.000 0.308 1.89 0.594 0.061 
S___8__4 11 40.89 39.47 177.22 0.443 0.000 0.254 2.07 0.597 0.060 
S___6__5 12 41.12 43.55 165.57 0.220 0.000 0.268 1.38 0.600 0.050 

Table 5.3: Refinement statistics for the first round of restrained refinement (10 cycles) for CDTa-8.5 structure. The 
starting and ending values are highlighted in cyan and yellow colours respectively. 

Ncyc Rfact      Rfree  FOM -LL -LLfree  rmsBOND  zBOND  rmsANGL  zANGL  rmsCHIRAL
 0    0.4941     0.4793    0.398     177378.  9471.3     0.0050        0.208      1.230       0.507      0.094
 1    0.4341     0.4565    0.482     173289.  9318.0     0.0215        0.965      1.473       0.704      0.101
 2    0.4005     0.4328    0.553     170723.  9224.7     0.0169        0.723      1.561       0.718      0.103
 3    0.3796     0.4161    0.592     168959.  9156.3     0.0166        0.689      1.654       0.760      0.108
 4    0.3646     0.4017    0.621     167647.  9102.5     0.0172        0.720      1.739       0.799      0.116
 5    0.3525     0.3914    0.643     166603.  9061.2     0.0178        0.740      1.805       0.825      0.123
 6    0.3426     0.3827    0.660     165762.  9028.1     0.0186        0.772      1.865       0.850      0.130
 7    0.3347     0.3753    0.674     165047.  9002.4     0.0193        0.800      1.907       0.870      0.135
 8    0.3281     0.3704    0.685     164467.  8980.2     0.0199        0.824      1.955       0.894      0.140
 9    0.3224     0.3662    0.694     163974.  8963.4     0.0205        0.851      2.002       0.917      0.145
 10    0.3178     0.3640    0.701     163593.  8949.3     0.0211        0.870      2.040       0.934      0.149 
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Table5.4: The structure refinement statistics for all five CDTa structures.


CDTa-8.5 CDTa-4.0 CDTa-9.0 CDTa-NAD CDTa-NADPH 

Rcryst / Rfree (%) 19.97 / 23.91 21.98 / 27.96 20.97 / 25.95 20.46 / 26.50 20.46 / 25.99 

Ramachandran plot (%) 

Allowed / Generously allowed 

99.70 / 0.30 99.40 / 0.60 

RMSD bond angles (º) 0.94 1.08 1.00 1.15 1.06 

RMSD bond length (Å) 0.007 0.008 0.007 

Number of Protein atoms 3135 3137 3178 3157 3247 

Number of Water molecules 424 154 231 156 259 

Average B factor (Å2)-

protein atoms 

main chain / side-chain 

Water 

Ligand (NAD/NADPH) 

Glycerol 

19.39 

18.95 / 19.84 

28.99 

--

--

34.15 

33.55 / 34.74 

39.39 

--

--

25.35 

24.67 / 26.02 

32.58 

--

--

32.35 

31.91 / 32.78 

41.07 

43.10 

58.70 

30.99 

30.50 / 31.49 

39.86 

44.10 

53.60 

PDB ID 2WN4 2WN8 2WN5 2WN7 2WN6 

•	 Rsymm = ΣhΣi[|Ii(h) – <I(h)>| / ΣhΣiIi(h)], where Ii is the ith measurement and <I(h)> is the weighted mean of all 
measurements of I(h). Rcryst = Σh|Fo – Fc| / ΣhFo, where Fo and Fc are the observed and calculated structure 
factor amplitudes of reflection h, respectively. Rfree is equal to Rcryst for a randomly selected 5% of reflections not 
used in the refinement. 
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Figure 5.6: The Ramachandran plot for CDTa-8.5 structure.
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Figure 5.7: The Ramachandran plot for CDTa-9.0 structure.
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Figure 5.8: The Ramachandran plot for CDTa-4.0 structure.
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Figure 5.9: The Ramachandran plot for CDTa-NAD structure.
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Figure 5.10: The Ramachandran plot for CDTa-NADPH structure.
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Overall Structure of CDTa 

C. difficile binary toxin (CDT) belongs to the class 4 of ADPRT 

superfamily. Toxins from this class target monomeric actin molecules in 

the target cell and are known as Actin-ADPRTs (Popoff and Boquet, 

1988). CDTa is the enzymatic component of CDT and ADP-ribosylates all 

three isoforms of actin. CDTa shares about 84% sequence identity with 

the enzymatic component of C. perfringens Iota toxin (Ia). The sequence 

identity between CDTa and the enzymatic component of C. botulinum C2 

toxin (C2I) is about 40% (Barth 2004). 

The crystal structure of Ia in complex with NAD and NADPH but 

not in its native form has been reported by Tsuge and co-workers (Tsuge 

et al., 2003). The crystal structure of C2I in its native form but not in 

ligand bound forms has recently been determined by Schleberger and co-

workers (Schleberger et al., 2006). Since both of these toxins belong to 

two different classes (Table 2.1) of Clostridial actin-ADPRTs (Mauss, 

1990), it is not possible to compare them at the atomic level. 

Irrespective of the variable sequence homology between different 

Actin-ADPRTs, they all possess similar three dimensional fold (Holbourn 

et al., 2006). A high degree of sequence conservation is reflected at the 

structural level when the three dimensional structure of CDTa is 

compared with those of previously reported crystallographic results on Ia 

from C. perfringens (Tsuget et al., 2003), C2I from C. botulinum 

(Schleberger et al., 2006) and the ADPRT component of vegetative 

insecticidal protein, VIP2 from Bacillus cereus (Han et al., 1999) (Table 

5.5 and Figure 5.11). 

Table 5.5: The structural comparison of CDTa with the known homologues 
(The r.m.s.d. values are shown in Å). The aligned length of the protein 
(number of Cα atoms) is shown in brackets. 

CDTa-NAD Ia-NAD C2I 

CDTa-NAD -- -- --

Ia-NAD (1GIQ) 1.02 (392) -- --

C2I (2J3X) 2.75 (382) 2.86 (401) --

VIP2-NAD (1QS2) 2.79 (378) 2.96 (390) 3.90 (386) 
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Figure 5.11: Crystal structures of the enzymatic component of different 
Actin-ADPRT binary toxins indicating overall three-dimensional fold of the 
molecule. (A) – CDTa (PDB ID - 2WN7) (Sundriyal et al., 2009), (B) – Ia (PDB 
ID - 1GIQ) (Tsuge et al., 2003), (C) – VIP2 (PDB ID - 1QS2) (Han et al., 
1999), and (D) – C2I (PDB ID - 2J3X) (Schleberger et al., 2006). Bound NAD 
is shown in sticks. 

However, substrate specificity (Table 2.1) of these toxins can not 

be explained from their structures. Perhaps the answer lies in the way 

these toxins interact with their ADP-ribose acceptor substrate i. e. actin. 

γ smooth muscle actin differs from the other two isoforms (α and β) of 

actin at the N-terminal only and therefore it was suspected that perhaps 

this region is primarily responsible for substrate recognition by different 

Clostridial binary toxins (Vendekerckhove and Weber, 1979). The crystal 
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structure of Ia in complex with actin has been determined (Tsuge et al., 

2008) but no structure for C2I-actin complex is available to compare with 

it. 

All five CDTa structures superimpose well on Ia, C21 and VIP2 

(Table 5.5). The overall structure of CDTa matches extremely well with 

that of Ia (Table 5.5, r.m.s.d. = 1.02 Å) except the ADP ribosyl turn turn 

(ARTT) loop region (discussed in detail later). Enzymatic components of 

Clostridial binary toxins (Figure 5.11 A, B and D) are composed of two 

mixed alpha-beta globular domains (Han et al., 1999; Tsuge et al., 2003; 

Schleberger et al., 2006). In CDTa, the N terminal domain extends from 1 

to 215 residues whereas the C terminal domain is from 224-420. The two 

domains of the protein are linked by a loop that stretches from residue 

216 to 223 (Figure 5.12). 

Figure 5.12: Overall structure of CDTa (cartoon representation) with NAD 
bound to the catalytic cleft (shown in sticks) 

The N-terminal domain of CDTa consists of 5 alpha helices and 8 

beta strands and is believed to interact with its translocation partner (i. 

e. CDTb in this case) during the process of translocation (Tsuge et al., 

2003). The C-terminal domain of the protein also comprises of 5 alpha 

helices and 8 beta strands and accommodates catalytic machinery of the 
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protein (Figure 5.12). Both domains are arranged almost perpendicular to 

each other but facing their clefts towards the same face of the protein 

similar to their organisation in VIP2, Ia or C2I (Han et al., 1999; Tsuge et 

al., 2003; Schleberger et al., 2006). Numbering of secondary structure 

elements in CDTa (Figure 5.12) follow the secondary structure 

assignment as in Ia (Tsuge et al., 2003). 

As in other Actin-ADPRTs, both domains of the protein adopt a 

similar fold despite very low sequence identity (18% in case of CDTa) 

between them and this has been suggested to be a result of a gene 

duplication effect (Han et al., 1999). In CDTa, both domains superimpose 

onto each other with an r.m.s.d. of 2.62 Å (Figure 5.13). 

Figure 5.13: Superimposition of the N-terminal (Green) and the C-terminal 
(Cyan) domains of CDTa on each other with bound NAD to the C-terminal 
domain. 

Catalytic Cleft and Binding of NAD and NADPH 

The enzymatic component of C. perfringens iota toxin (Ia) is the 

closest homologue of CDTa, sharing about 84% sequence identity 

between them. Amino acid residues that have been suggested essential 

for the ADP ribosylating activity of Ia (Arg-295, Arg-296, Arg-352, Gln-

300, Asn-335, Glu-378 and Glu-380) (van Damme et al., 1996) are well 

conserved in CDTa (Arg-302, Arg-303, Arg-359, Gln-307, Asn-342, Glu-

385 and Glu-387) (Table 5.6). 
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Our present structural analysis has shown that both, NAD and 

NADPH bind to the catalytic cleft of CDTa in a ‘closed conformation’ 

interacting with residues Arg-302, Arg-303, Arg-359, Gln-307, Asn-342 

and Ser-345 (Figure 5.14). This is analogous to the structural 

observations made with Ia (Figure 5.14) with the NAD molecule 

interacting with residues Glu-380, Arg-295, Arg-296, Arg-352, Gln-300, 

and Asn-335 (Tsuge et al., 2003). 

Table 5.6: The positional conservation of catalytically important residues 
in Ia and CDTa. Blue – residues directly interacting with NAD/ NADPH, 
Red – suggested residues to interact with Actin, Black – other important 
residues in the active site. 

Based on these observations (Figure 5.14 and Table 5.6) it is 

interesting to note that in CDTa, Glu-387, which corresponds to Glu-380 

in Ia does not seem to interact either with NAD or with NADPH (Table 

5.6, Figures 5.14 and 5.15). However, Ser-345 in CDTa seems to be an 

important residue in the catalytic site and makes direct interactions with 

the ligand in both NAD and NADPH complex structures. These 

observations point out that even between these two close homologues 

(CDTa and Ia), the mode of ligand recognition is significantly different 

(Table 5.6 and Figure 5.14). 
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Figure 5.14: A schematic representation of Hydrogen bonding of NAD to CDTa (top) and Ia (bottom). 

137 



Gln-307 is an important residue in the catalytic cleft and makes 

direct interactions with both ligands i. e. NAD and NADPH in their 

respective complex structures. Gln-307 adopts similar orientation in all 

native CDTa structures with its side chain leaning towards the catalytic 

cleft. Dual conformation of Gln-307 was observed in the CDTa-NAD 

complex (Figures 5.14 and 5.15 A). 

Figure 5.15: Binding of (A) – the NAD and (B) – the NADPH to CDTa. The 
broken black lines show possible hydrogen bonds (based on distances). 

It seems that Gln-307 moves towards and away from the cleft and 

that its interaction with NAD in CDTa is not static but dynamic in nature 

(Figure 5.15 A). In CDTa-NADPH complex, Gln-307 has been pushed 

permanently away from the cleft by the phosphate group of NADPH 

which accommodates itself but still making direct interaction with it to 

stabilise the complex (Figure 5.15 B). Thus, Gln-307 seems to be one of 

the key residues for ligand-enzyme complex stability. A similar 

displacement of equivalent Gln residue (Gln-300) side chain has been 

reported in Ia-NADPH structure but its dual conformation has not been 

observed in Ia-NAD structure (Tsuge et al., 2003). Authors could not 

compare this movement of Gln-300 with native Ia because of non-

availability of crystals of Ia in its native form. Table 5.7 lists all hydrogen 

bond interactions to compare the binding of NAD and NADPH to CDTa. 
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Table 5.7: The hydrogen bond interactions of CDTa with NAD and 
NADPH. 

CDTa-NAD CDTa-NADPH 

Bonded residues (Atoms) Length 

(Ǻ) 

Angle 

(0) 

Length 

(Ǻ) 

Angle 

(0) 

R302 (NH1) – NADPH (O1A) - - 3.38 149.2 

R302 (NH2) – NAD / NADPH (O1A) 2.92 158.7 3.34 151.5 

R303 (N) – NAD / NADPH (O7N) 2.67 150.9 2.68 161.8 

R303 (O) – NAD / NADPH (N7N) 3.09 - 3.08 -

S345 (OG) – NAD / NADPH(O2D) 3.12 139.1 3.0 148.9 

N342 (OD1) – NAD / NADPH (N6A) 3.06 - 2.98 -

R359 (NH1)– NAD / NADPH (O1N) 2.71 164.1 2.40 154 

R359 (NH2) – NAD / NADPH (O2N) 2.82 154.0 2.89 127.8 

Q307 (N) – NAD / NADPH (O3X) - - 2.48 160.9 

Q307 (NE2) – NAD (O3B) / NADPH 

(O1X) 

2.60 94.1 2.71 103.5 

Ligand Binding and ARTT Loop 

It has been well established that in ADPRTs the ADP-ribosyl turn-

turn (ARTT) loop is important for substrate binding and ADP-ribosylation 

even though the length of the loop varies among these proteins (Holbourn 

et al., 2006). The ARTT loop in Ia spans from residue 370 to 380 (Tsuge 

et al., 2003). In CDTa, this loop (connecting strands β13 and β14) spans 

from residues 377 to 387 and consists of two sharp turns as in Ia or 

C3Bot (Tsuge et al., 2003; Han et al., 2001). 

Conformational changes in the ARTT loop induced by NAD binding 

have been reported for C3Bot toxin (Menetery et al., 2002). These 

conformational changes in the loop, however, have not been claimed with 

confidence in Ia due to the non-availability of the same crystal form for 

native Ia. Authors (Tsuge et al., 2003) suggested that in Ia, it was 

possible to have similar conformational changes in the ARTT loop as a 

result of NAD binding and that these conformational changes in the loop 
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possibly disturbed the molecular packing in the crystal and prevented 

the authors from having native Ia and Ia-NAD crystals in the same form. 

With CDTa, we have overcome this problem and have determined 

the crystal structure of CDTa in its native form as well as in complex 

with NAD and NADPH in the same crystal forms (Tables 4.2 and 5.1). 

Hence, a direct comparison between native CDTa structures at acidic 

(CDTa-4.0) as well as at basic pH (CDTa-9.0) with ligand bound 

structures was possible. 

The ARTT loop in CDTa is found to be associated with significant 

disorder and high conformational flexibility in all three native structures 

as observed from their electron density maps. However, upon ligand 

(NAD/NADPH) binding, the loop adopts a highly ordered structure 

(Figure 5.16) associated with some critical changes in the orientation of 

side-chains in the catalytic site when compared with Ia. 

Electron density for both of the proposed catalytically important 

residues (Glu-385 and Glu-387) of the EXE motif in the ARTT loop was 

well defined in all five structures. The EXE motif adopts similar 

orientation in all structures (Figure 5.17). Ligand binding seems to 

stabilise the loop and electron density for the whole loop was clearly 

visible (Figure 5.16). This finding from two different ligand bound 

structures (CDTa-NAD and CDTa-NADPH) suggests that although the 

ligand binding stabilises the loop, it does not induce any specific large 

conformational changes in the loop as suggested for C3Bot (Menetrey et 

al., 2002) or proposed for Ia (Tsuge et al., 2003). 

C3Bot belongs to the Rho-ADPRT superfamily that targets Rho 

proteins. Phe-209, the conserved aromatic residue in the ARTT loop of 

C3Bot has been shown to be essential for substrate binding (Han et al., 

2001). This residue corresponds to Tyr-375 in Ia, Tyr-382 in CDTa, Phe-

423 in VIP and Phe-384 in C2I but its functional implications have not 

been discussed for any of these structures. 
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Figure 5.16: Electron density around the ARTT loop in (A) – CDTa 9.0, and (B) – CDTa-NAD structure. Disorder in the loop region 
can be seen clearly in the form of breaks in the electron density and the noise (red coloured density). 2Fo-Fc and Fo-Fc maps are 
shown at 1σ and 3 σ contour level respectively. 
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Han and co-workers (Han et al., 2001) have suggested that the 

solvent exposed side chain of Phe-209 in C3Bot may have a possible role 

in Rho protein binding to the enzyme. They further suggested that the 

absence of any other hydrophobic residue near Phe-209 in the protein 3-

dimensional structure will lead to significant conformational changes in 

the protein in order to bury Phe-209. In the crystal structure, the 

authors have reported that Phe-209 of the protein interacts 

hydropobically with Phe-49, Trp-58 and Ile-124 of the non-

crystallographic symmetry related molecule in the crystal in order to 

stabilise the structure. 

The side chain of Tyr-382 (a conserved critical aromatic residue 

known to be important in ADPRTs) in the ARTT loop was not visible in 

the CDTa-8.5 and CDTa-4.0 structures. It could be modelled in the 

CDTa-9.0, CDTa-NAD and CDTa-NADPH structures. However, 

interestingly, it adopts a different orientation in the native (CDTa-9.0) 

and ligand bound forms (Figures 5.17 and 5.18) which seems to be 

crucial for stabilisation of the protein-ligand complex. In the native CDTa 

structure, Tyr-382 stacks itself with Phe-126 of the symmetry related 

molecule similar to that seen in C3Bot. In the ligand bound structures, 

Tyr-382 flips inside towards the catalytic cleft and adopts a similar 

orientation in both of the complexes (CDTa-NAD and CDTa-NADPH) and 

interacts with Glu-387 (of EXE motif) which is considered an important 

catalytic residue (Figure 5.17). 

This movement of Tyr-382 would make it unavailable for an 

interaction with the substrate molecule unlike in C3Bot. Tyr-375 of Ia 

was also found in an inward flipped orientation in Ia-NAD structure 

(Figure 5.18). However, a recent report on Ia-Actin complex structure 

reveals that Tyr-375 of Ia in the complex adopts a similar inward flipped 

side chain orientation and does not interact with its substrate i. e. Actin 

(Tsuge et al., 2008). 
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Figure 5.17: A stereo view of the orientation of ARTT loop in CDTa in 
native and NAD bound form. Green – CDTa-8.5, Yellow – CDTa-9.0, 
Magenta – CDTa-4.0, Cyan – CDTa-NAD. Green – CDTa-8.5, Yellow – 
CDTa-9.0, Cyan – CDTa-NAD, Magenta – Ia-NAD. (The residue numbering 
is according to CDTa. The corresponding residues in Ia are Tyr-375, Glu-
378 and Glu-380. 

Figure 5.18: A stereo view of the ARTT loop in CDTa (native and NAD 
bound form) and Ia (NAD bound form). Green – CDTa-8.5, Yellow – CDTa-
9.0, Cyan – CDTa-NAD, Magenta – Ia-NAD. (The residue numbering is 
according to CDTa. The corresponding residues in Ia are Tyr-375, Glu-378 
and Glu-380. 

EXE Motif and STS Motif 

The EXE motif present in the ARTT loop has been considered 

important for ligand binding (Han et al., 2001; Han and Tainer, 2002). 

Glu-378 and Glu-380 form the EXE motif in Ia and correspond to Glu-

385 and Glu-387 in CDTa. 

Site-directed mutagenesis of Glu-378 and other catalytically 

important residues in Ia have been studied in detail by Nagahama and 
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co-workers (Nagahama et al., 2000). Results of their study suggest that 

Glu-378 plays a crucial role in stabilising substrate-enzyme complexes 

and catalysis. Its mutation to Ala resulted in the complete loss of 

NADase, ARTase, cytotoxic and lethal activity of Ia indicating that the 

carboxylic group of Glu-378 is essential for these activities. However, the 

kinetic analysis suggests that Glu-378 is essential for catalytic activity of 

Ia but not required for binding to NAD. Mutagenesis data from the same 

study suggests that Glu-380 is also not required for NAD binding in Ia. 

Glu-380 has been shown to interact directly with NAD in the Ia-

NAD complex whereas both residues (Glu-378 and Glu-380) are at 

hydrogen-bonding distance from NADPH in the Ia-NADPH complex 

(Tsuge et al., 2003). The binding of NADPH to Ia has not been discussed 

by the authors. In CDTa, however, the structurally equivalent Glu 

residues (Glu-385 and Glu-387) are not involved in direct interaction 

with either NAD or NADPH. (Figures 5.14 and 5.15, Tables 5.6 and 5.7). 

Figure 5.19: A stereo representation of superimposition of the catalytic 
machinery of CDTa and Ia with bound NAD. Green – CDTa-NAD, Cyan – Ia-
NAD. The residues numbering is according to CDTa. 

In addition, Glu-385 (corresponding to Glu-378 in Ia) adopts 

different orientation all together in CDTa (Figure 5.18). In Ia, the side 

chain of Glu-378 points towards the ligand binding cleft whereas in all 

five CDTa structures determined so far, it points away from the cleft 

eliminating possibilities of its interaction with any of the two studied 

ligands (Figure 5.19). No interaction of these two residues of CDTa (Glu-

385 and Glu-387) with NAD or NADPH still resulting in stable complex 
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formation suggests that the EXE motif is perhaps not necessary for the 

ligand binding and stabilisation of the complex in CDTa. This finding 

agrees with the results of mutational studies by Nagahama and co-

workers (Nagahama et al., 2000) on Ia. 

Ser-345, Thr-346 and Ser-347 together constitute the STS motif in 

CDTa. This motif corresponds to Ser-338, Thr-339 and Ser-340 in Iota 

toxin (Ia). Replacement of Ser-338 to Ala or Cys in Ia did not result in the 

complete loss of activity and suggests that the hydroxyl group of Ser-338 

is not essential for catalytic activity (Nagahama et al., 2000). However, its 

replacement to amino acids with a larger side chains such as Phe results 

in complete loss of ADPase activity (Nagahama et al., 2000). Ser-345 in 

CDTa occupies the equivalent position of Ser-338 in Ia. In CDTa Ser-345 

is situated very close to the active site cleft. Based on the structural 

observation it is clear that (as in Ia) the replacement of Ser-345 with a 

larger residue would abrogate substrate binding by not allowing the ADP-

ribose donor to sit into the cleft properly. 

Furthermore, in all CDTa structures, Ser-345 and Glu-387 sit in 

close proximity to each other and form a strong hydrogen bond (2.4-

2.7Å). Ser-345 makes a direct hydrogen bond with both NAD/NADPH in 

their respective complex structures. This is a significant difference 

observed based on the structural data from Ia where Glu-380 makes 

direct interaction with the ligand rather than Ser-338 (Tsuge et al., 

2003). However, in Ia-NAD structure, Ser-338 of the STS motif is also 

positioned at a hydrogen bonding distance from the NAD molecule 

(Figure 5.19) but its implications have not been discussed by the authors 

(Tsuge et al., 2003). Based on these structural results and in the light of 

results from the study of Nagahama and co-workers (Nagahama et al., 

2000) on Ia, it is tempting to suggest that Ser-345 in CDTa appears to 

have a crucial role in ligand binding and perhaps in catalysis as 

speculated by Tsuge et al. (Tsuge et al., 2003). 

Effect of Ligand Binding on ARTT loop Stability 

A crucial difference between the ligand binding pattern of Ia and 

CDTa is the involvement of Ser-345 of CDTa in ligand binding. In CDTa, 

OG atom of Ser-345 makes a hydrogen bond interaction with O2D atom 
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of NAD/ NADPH (Table 5.7) whereas, in Ia, Glu-380 interacts with the 

same atom of the ligand (Figure 5.14). 

Ser-345 and Glu-387 of CDTa (Ser-338 and Glu-380 of Ia) are 

positioned at close proximity with a strong hydrogen bond between them 

in all five CDTa structures (Figure 5.20). Thus the side chain of Glu-387 

of ARTT loop is held from one end by Ser-345 in all native as well as 

ligand bound CDTa structures (Figure 5.20). However, in this situation, 

the side chain of Glu-387 is still free to move in the ligand binding cleft in 

a hinge-like motion in all native structures. This freedom is perhaps 

translated throughout the loop exhibiting the observed flexibility in the 

loop region (Figure 5.16 A) in the absence of ligand. 

On ligand binding, Try-382, a conserved aromatic residue at the 

centre of the ARTT loop, flips towards the catalytic cleft to form a 

hydrogen bond with Glu-387 from the other side of its side chain (Figure 

5.20). Fixing the side chain of Glu-387 from both sides restricts its 

movement in the cleft which otherwise could have abrogated the ligand 

binding. This restricted movement of Glu-387 could be the possible 

reason for the improved stability in the ARTT loop region upon ligand 

binding (Figure 5.16 B). 

Other Important Residues 

Glu-301, Tyr-246, Asn-255 and Phe-349 have also been suggested 

to play an important role in the enzymatic activity of Ia (Tsuge et al., 

2003). In CDTa, Glu-308 (Glu-301 in Ia) does not seem to participate in 

ligand binding directly but stays close to Arg-302 (Arg-295 in Ia) which 

interacts with the ligand directly (Figure 5.15). Replacement of Glu-301 

to Ala in Ia resulted in the complete loss of NADase and ARTase activity 

of enzyme (Nagahama et al., 2000). 

Our structural analysis shows that Glu-308 holds Arg-302 in 

position by hydrogen bonding to form an optimal interaction with the 

ligand (Figure 5.20). A similar role can be attributed for residues Tyr-253 

and Asn-262 (Tyr-246 and Asn-255 in Ia). Tyr-253 forms a hydrogen 

bond with Asn-262 and thus restricts its movement. Asn-262 further 

restricts the movement of Asn-342 (Asn-335 in Ia) and places it optimally 

for interaction with NAD/NADPH (Figures 5.15 and 5.20). 
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Figure 5.20: The arrangement of residues in the CDTa catalytic cleft. 
Green – CDTa-9.0, Cyan – CDTa, Magenta – CDTa-NADPH. The residues 
numbering is according to CDTa. 

Phe-356 (Phe-349 in Ia) adopts similar orientation in all five CDTa 

structures. The side-chain of Phe-356 is relatively mobile in the three 

native structures. However, in the ligand bound structures its orientation 

is rearranged and provides stacking interactions against the nicotinamide 

ring of the ligand thus preventing its (nicotinamide ring’s) rotation in the 

plane. This fixed rotation of nicotinamide ring is further stabilised by 

Arg-303 through hydrogen bonding similar to the observations made with 

Ia (Figure 5.15). This network of interactions facilitates tight binding of 

the ligand at the active site. 

pH Induced Catalytic Site Flexibility 

In order to understand the active site flexibility in CDTa, the native 

structures were determined at three different pH levels- 4.0, 8.5 and 9.0. 

It is suggested that the highly acidic pH of the endosomal compartment 

(~4.0) induces a drastic conformational change in CDTa which facilitates 

its translocation into the cytosol through the heptameric CDTb pore 

(Barth et al. 2000; Simpson, 1989). It was thought that the crystal 

structure at low and high pH levels (CDTa-9.0 and CDTa-4.0) under the 

identical conditions of crystal growth would help in analysing the pH 

induced conformational changes within the protein. 
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All native CDTa structures superimpose well with an rmsd of 

0.63Å (Table 5.8). However, clear ‘conformational flexibility’ was observed 

among these structures in the active site (i. e., functionally important 

part). This was confined to the ARTT loop between strands β13 and β14 

(Figure 5.17) and the loop between strand β9 and helix α10 named ‘loop 

304’ (Figure 5.21). 

Table 5.8: The structural comparison of all different CDTa structures. 

Protein/Protein CDTa-8.5 CDTa-4.0 CDTa-9.0 CDTa-NAD 

CDTa-8.5 -- -- -- --

CDTa-4.0 0.63 (386) -- -- --

CDTa-9.0 0.35 (389) 0.54 (389) -- --

CDTa-NAD 0.71 (391) 0.85 (387) 0.65 (390) --

CDTa-NADPH 0.62 (391) 0.88 (389) 0.74 (394) 0.37 (392) 

Figure 5.21: The orientation of loop 304 which shows differences 
between CDTa-4.0 and other CDTa structures. Yellow – CDTa-9.0, 
Magenta – CDTa-4.0, Cyan – CDTa-NAD. 

This flexibility was more pronounced in the CDTa-4.0 structure 

and was consistent with the analysis of crystallographic temperature 

factors (Table 5.9) which provides an opportunity to obtain a relatively 

unbiased picture of the mobility of different parts of the structure. Indeed, 

these regions adopt a more stable structure at a higher pH (e. g. 8.5 and 

9.0) and NAD/NADPH complex structures of CDTa. Although this region 

is clearly influenced by the conditions required to obtain crystals (which 

are identical for the CDTa-4.0 and CDTa-9.0 structures except for the pH 
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of the crystallisation buffers) the innate flexibility may be important in the 

translocation of the enzymatic component (CDTa) of the toxin into the 

cytosol via receptor mediated early endosomal pathway. 

Table 5.9: Average B factors for the two flexible loop regions in different 
CDTa structures. 

Region (residue number) Average B factor 

CDTa-

8.5 

CDTa-

9.0 

CDTa-

4.0 

CDTa-

NAD 

CDTa-

NADPH 

Whole protein 19.39 25.35 34.15 32.35 30.99 

ARTT loop* (377-387) 

[Atoms] 

25.88 

[74] 

30.56 

[68] 

40.37 

[60] 

40.53 

[81] 

40.49 

[81] 

Loop 304 (304-325) 

[Atoms] 

21.05 

[175] 

34.02 

[175] 

41.61 

[171] 

34.41 

[175] 

35.77 

[175] 

* The modelled length of ARTT loop varies in different structures 

However, no appreciable conformational changes could be 

observed as a result of pH change in different structures and all three 

CDTa structures- CDTa-4.0, CDTa-8.5 and CDTa-9.0 superimpose well. 

Similar studies with the enzymatic component of C. botulinum C2 toxin 

(C2I) also did not show any such pH induced conformational changes 

(Schleberger et al., 2006). It is possible that these changes take place at 

acidic pH and it is quite likely that the presence of the translocation 

partner may be required to facilitate these conformational changes. 

Mechanistic Implications 

Currently available structural and biochemical data on ADPRTs, i. 

e., the conservation of catalytic site apparatus and NAD binding suggest 

a common catalytic mechanism based on nuclephilic substitution (SN) – 

either an SN1 or SN2 type reaction (Tsuge et al., 2003; Tsuge et al., 2008). 

A nucleophilic substitution reaction involves an electron pair 

donor (the nucleophile, Nu) with an electron pair acceptor (the 

electrophile) where a sp3-hybridised electrophile must have a leaving 

group (X) in order for the reaction to take place. The nucleophilic 

substitution reactions can proceed via two mechanisms – 
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An SN1 (substitution nucleophilic order 1) reaction is a first order 

chemical reaction where the attack by the nucleophile and the departure 

of the leaving group occurs in two separate steps. An SN1 reaction 

proceeds via formation of a planar carbenium ion in the first step, which 

is then, in second step, attacked by the nucleophile (Figure 5.22 A). The 

rate limiting step in an SN1 reaction is the first step i. e. the formation of 

carbenium ion. A higher stability of carbenium ion is a favourable 

condition for a reaction to take place via the SN1 mechanism. 

Figure 5.22: A schematic representation of the progression of an SN1 
reaction (A) and an SN2 reaction (B). 

On the other hand, an SN2 (substitution nucleophilic order 2) 

reaction is a second order reaction where the departure of the leaving 

group (formation of carbenium ion) takes place simultaneously with the 

backside attack by the nucleophile (Figure 5.22 B) and hence the 

reaction completes in one step. The rate of the SN2 reaction is determined 

by the ease of simultaneous nucleophilic attack and the departure of the 

leaving group. However, these are not the only factors determining the 

rate of the reaction. 

The SN2 reaction mechanism in class 4 ADPRTs has been 

proposed based on the structural analysis of VIP2 (Han et al., 1999). In 

the case of Ia, progression of the SN2 reaction has been postulated via 
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two possible ways. In the first hypothesis, guanidium group of Arg-177 of 

actin has been suggested to act as the nucleophile following its 

deprotonation by Glu-378 of the toxin. 

However, in the structure of Ia-Actin complex, it has been shown 

that Arg-177 of actin is positioned at a considerably long distance (7.0 Å) 

from Glu-378 of the toxin or the nicotinamide ring of NAD (Tsuge et al., 

2008). This eliminates the possibility of both – deprotonation of Arg-177 

by Glu-378 and a direct nucleophilic attack on ADP-ribose+ 

oxocarbenium ion by Arg-177 (Figure 5.23). Formation of the ADP-

ribose+ oxocarbenium ion has been suggested to be a spontaneous 

process driven by the specific highly folded conformation of NAD (Figure 

5. 4 B) in the catalytic cleft (Tsuge et al., 2003; Tsuge et al., 2008). 

Figure 5.23: A stereo representation of distances between the catalytic 
centre (C1D of NAD) and deprotonting Glu (Glu-385 in CDTa, Glu-378 in Ia). 
Green – CDTa-NAD, Cyan – Ia-NAD, Magenta – Ia of Ia-Actin, Orange – 
Actin of Ia-Actin. All distances shown are in Å units. 

Superimposition of CDTa-NAD and Ia-NAD complexes on Ia-Actin 

complex reveals that the toxin (Ia) does not undergo any large 

conformational change upon actin binding. It indicates that in the case of 

CDTa also, the SN2 reaction via direct nucleophilic attack by Arg-177 of 

actin would not be possible (Figure 5.23). 

Alternatively, for Ia, it was suggested that a water molecule that 

was present near the NMN (Nicotinamide mono nucleotide) ring (~4.0 Å) 
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could be a possible nucleophile. However, this water molecule could be 

modelled only in one of the two molecules in the asymmetric unit with a 

high temperature factor (Tsuge et al., 2003). These findings rule out its 

role in mediating the SN2 reaction for Ia. 

In CDTa, in complex with either NAD or NADPH, there are at least 

two water molecules with reasonably low temperature factors near the 

nicotinamide ring. One of the water molecules seems to be important as 

it bridges NAD, Ser-345 and Tyr-253 in the complex (Figure 5.24). 

However, this water molecule which is closest to the reaction centre (C1D 

of NAD/NADPH) is present at a considerably large distance of 5.45 Å in 

the CDTa-NAD (Figure 5.24) and at 4.25 Å in the CDTa-NADPH complex 

structure. These observations make the SN2 mechanism of catalysis less 

preferred in the case of CDTa. 

Figure 5.24: The position of nearest water molecule in the catalytic centre 
and hydrogen bonding network. The bound NAD is shown in green colour. 
The water molecule is shown as sphere. Hydrogen bonds are shown using 
black broken lines. Distance of the catalytic centre (C1D of NAD) from the 
water molecule (5.50 Å) is shown using red broken line. 

For the ADP-ribosylation reaction to proceed via an SN1 mechanism, 

the formed oxocarbenium ion (ADP-ribose+) must be highly stable. In the 

case of Actin-ADPRTs, the SN1 reaction mechanism would involve 

formation of an isolated positively charged oxocarbenium intermediate 

with the direct stabilising electrostatic interactions from the negatively 
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charged carboxylate group of catalytic glutamate (Glu-380 in Ia) or 

hydroxyl group of serine (Ser-345 in CDTa). 

In Ia, the SN1 reaction mechanism has been proposed via two 

reaction intermediates where rotation of the primary oxocarbanium ion, 

resulting in the formation of a secondary cation has been suggested 

(Tsuge et al., 2008). In Ia-actin complex structure, loop II of Ia (between 

α7 and α8) undergoes significant conformational changes. As a result, 

Gly-249 of the loop seems to interact directly with Arg-177 (acceptor 

residue) of actin. These changes in the loop rearrange Tyr-246 and Tyr-

251 in Ia (Tyr-253 and Tyr-258 in CDTa) also. Tyr-251 in Ia is suggested 

to play a role in transferring the rotated positively charged ADP-ribose 

intermediate cation to the substrate (Tsuge et al., 2008). Previous 

mutational studies on both of these residues (Tyr-246 and Tyr-251) in Ia 

have been shown to have adverse effects on NADase as well as ARTase 

activity of the protein (Tsuge et al., 2003). 

Figure 5.25: A stereo representation of negatively charged residues 
surrounding the catalytic centre (C1D) of NAD. These residues probably 
contribute towards the stability of formed oxocarbenium ion. 

In CDTa, a similar SN1 mechanism could be followed. Based on our 

structural data it is clear that Ser-345 interacts with both of the ligands 

(NAD or NADPH) directly which is further surrounded by Glu-387, Tyr-

253, Tyr-258 and Tyr-382. The negatively charged environment created 

by these residues could play a crucial role in stabilising the formed 
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positively charged oxocarbenium ion, which is a favourable condition for 

an SN1 reaction to take place (Figure 5.25). 

We propose that in CDTa it is Ser-345 that stabilises the 

oxocarbenium ion (Figure 5.26, step A) by direct interactions and 

facilitates its transfer to Tyr-258 following its rotation (Figure 5.26, step 

B and C) in a similar way as it has been proposed for Ia (Tsuge et al., 

2008). 

Figure 5.26: The proposed SN1 mechanism of ADP-ribosylation of actin by 
CDTa (Adopted from Tsuge et al., 2008). Colour coding – Black-NAD, Red-
CDTa, Blue-Actin. 

Suggested rotation of the primary oxocarbenium ion (Figure 5.26 

step B to step C) overcomes two difficulties. Firstly, NAD binds in the 

catalytic cleft in a highly compact conformation which is a high energy 

state. By rotation around the P-O bond, the formed primary 

oxocabanium ion moves to a relaxed, low energy state and thus becomes 

more stable. Secondly, rotation of the primary oxocarbenium ion would 

bring it closer to the surrounding negatively charged residues (Figure 

5.25) and thus the stability of the secondary cation would be enhanced 

resulting in the SN1 mechanism favouring conditions. 
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In Ia, an SN1 mechanism is further proposed to be progressed via 

rearrangement in Arg-177 of actin (Tsuge et al., 2008). This 

rearrangement in actin would bring Arg-177 of actin very near to Glu-

378 (another conserved Glu of EXE motif) of Ia (Figures 5.26 and 5.27) 

(Tsuge et al., 2008). Glu-378 thus participates in the ADP-ribose transfer 

reaction by deprotonating the guanidium group of Arg-177. In addition to 

that, Glu-378 holds Arg-177 of actin in the catalytic centre. 

When compared with Ia, Glu-385 of CDTa (equivalent to Glu-378 in 

Ia), adopts a different orientation and sticks away from the catalytic cleft 

(Figures 5.18 and 5.27). In this orientation, rearrangement of Arg-177 of 

actin would still leave both of the residues at a considerable distance of 

about 7.0 Å from each other (Figure 5.27). How this different orientation 

of Glu-385 still mediates the catalysis is an open question to investigate. 

Figure 5.27: The representation of distances between catalytic Glu-385 
(378) of CDTa (Ia) and Arg-177 of Actin before and after the proposed 
rearrangement of Arg-177 (Tsuge et al., 2008). The figure was produced by 
superimposing CDTA-NAD structure on Ia-Actin complex structure. Cyan – 
Ia (Gul-378), Green – CDTa (Gul-385), Magenta – Actin (Arg-177) before 
rearrangement), Orange – Actin (Arg-177) after rearrangement. Distances 
(in Å units) are shown using broken lines. 

Our structural data shows that the ARTT loop is not directly 

involved in the ligand binding in any of the complex CDTa structures 

(Figures 5.14 and 5.15), and is free to rearrange itself further. It is 

tempting to suggest based on two different complex crystal structures 

(CDTa-NAD and CDTa-NADPH) that once the donor substrate (NAD/ 

NADPH) is cleaved followed by the formation of oxocarbenium ion, further 
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rearrangement of the ARTT loop can not be ruled out considering its high 

flexibility. 

The presence of a large open cavity near the active site cleft as 

observed in the Ia-actin complex (Tsuge et al., 2008) also supports the 

hypothesis of ARTT loop rearrangements upon actin binding. This 

rearrangement in the ARTT loop would bring Glu-385 of CDTa into the 

reaction centre to proceed with the transfer of ADP-ribose moiety to Arg-

177 of actin from Ser-345 via Tyr-258 (Figure 5.22, step C). However, this 

hypothesis needs to be validated by direct structural evidence of CDTa in 

complex with actin, in combination with functional dissection of key 

residues by site-directed mutagenesis. 

SUMMARY 

CDTa and Ia belong to the actin-ADPRT family that irreversibly 

modify monomeric actin molecules by transferring the ADP ribose moiety 

of NAD/NADPH to Arg-177 of actin. Based on our structural data, 

despite high homology at primary sequence, structural as well as 

functional level, the mode of donor substrate recognition in Ia and CDTa 

appears to be different. 

The enzymatic components of Actin-ADPRTs have been suggested 

to undergo a low pH induced conformational changes during the process 

of translocation from the early endosome to the cytosol. The observed 

conformational flexibility and enhanced level of disorder in two of the 

catalytically important loop regions of CDTa at low pH state provide 

preliminary evidence for these conformational changes. However, to 

understand the exact mechanism of translocation of CDTa as well as the 

transfer of ADP-ribose to actin by CDTa, additional input in terms of 

mutational studies and structures (such as CDTa-actin complex) are 

required. 
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Understanding of C. difficile binary toxin (CDT) is still in the 

initial stage. This thesis is a step towards the structural, functional 

and biological characterisation of C. difficile binary toxin. 

In this thesis, we report cloning, expression and purification 

methods for both of the components (enzymatic as well as 

transport) of CDT. Purification methods described (Chapter III) 

resulted in milligram quantities of proteins of high purity. The cell 

cytotoxicity effect of CDT were shown on Vero cells (Chapter IV). 

Various combinations of CDTa and CDTb concentrations were 

tested including two different versions of recombinantly expressed 

CDTb (named as CDTb′ and CDTb′′) and their chymotrypsin 

activated fragments. It is clear from the results that both of the 

purified components are active and the complete CDT has a 

definite cell killing potential. However, there are at least two 

questions yet to be answered. 

1- Variation in the concentrations of CDTa or CDTb did not yield 

in any observable changes in the number of dead cells. It is 

still not clear whether the concentration of CDTa or the 

chymotrypsin activated CDTb is the key step in the process of 

cell death by CDT. 

2- Recombinantly expressed mature fragment of CDTb (CDTb′′) 

resulted in relatively poor cell death (in combination of CDTa) 

when compared with its chemotrypsin activated fragment. The 

length of CDTb′′ during the expression was decided based on 

a report by Perelle and co-workers (1997). Our experimental 

data does not reveal why CDTb′′ is less active. It may possible 

that the N terminal part of active CDTb is important for its 

function. Furthermore, CDTb′′ was expressed as GST-CDTb′′ 

fusion protein and cleavage of the tag would still leave 4 to 5 

undesired residues from the PreScission protease recognition 

sequence at the N terminal of the mature protein. Could these 
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residues interfere with the activity of the protein, bearing in 

mind that chymotrypsin activation of CDTb′′ improves the 

number of dead cells significantly (Chapter IV). Another 

possibility could be that the activation site predicted by 

Perelle and co-workers may not be precise and we have, in 

reality, expressed a larger fragment than the required. This 

issue can however be resolved by the N terminal sequencing 

of CDTb′′ and chymotrypsin activated CDTb′ and then aligning 

both of the sequences against each other. The expressed 

CDTb′′ can not be shorter than the required mature fragment 

due to the fact that chymotrypsin activation of CDTb′′ 

improves cell death count. 

High resolution crystal structure of CDTa has been 

determined in its native from at low and high pH states as well as 

in ligand bound forms (Chapter V). The CDTa structure shows 

crucial differences in the donor substrate recognition pattern 

when compared with the closest homologue i. e. the enzymatic 

component of iota toxin (Ia) from C. perfringens. In CDTa, the 

crystallographic data suggests that it is Ser-345 and not Glu-387 

that plays a key role in the protein-ligand complex stabilisation. 

On the other hand, in Ia, the analysis of crystallographic data 

(Tsuge et al., 2003) indicates that Ser-338 and Glu-380 may play 

interchangeable roles in the protein-ligand complex stabilisation 

as both of these residues seem to interact directly with ligand. 

However, the authors have not discussed the binding of Ser-338 

with NAD. 

In CDTa, mutational studies are required to assign definitive 

functional roles to Ser-345 or Glu-387 in the ligand binding. 

Several sets of primers for point mutations in CDTa have been 

designed for this purpose (S345A, S345R, S345Y, S345F, E387A, 

E387R, E387F and E387D). Positive clones for S345A and S345F 
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have been constructed successfully. These primers can be used to 

produce double mutants as well (such as S345A/E387A) which 

would be advantageous to study the interchangeable role of S-345 

and E-387 in the ligand binding. 

NAD and NADPH are the donor substrates for CDTa and 

other similar toxins. The ADP-ribose part of NAD/NADPH is 

transferred to monomeric Actin by the action of these ADPRTs. The 

crystal structure of Ia in complex with actin at 2.8 Å has been 

reported by Tsuge and co-workers in 2008. Ia does not seem to 

undergo any significant conformational changes except in one of 

the loops which brings G-249 of Ia at a hydrogen bonding distance 

from R-177 of actin. It has been postulated that E-378 residue in 

the ARTT loop of Ia mediates transfer of the ADP-ribose to R-177 of 

actin. The corresponding residue in CDTa is E-385. However, when 

compared, we see that the side chain of E-385 of CDTa adopts 

entirely different orientation and points away from the catalytic 

cleft unlike in Ia (Chapter V). This difference in orientation leaves 

E-385 of CDTa at a longer distance from R-177 of actin when 

superimposed on the Ia-Actin structure. Though, owing to the 

flexibility in the ARTT loop, rearrangement/s in the loop can not be 

ruled out. 

The crystal structure of CDTa in complex with actin could 

provide a definitive answer regarding how this side chain 

orientation of E-385 still carries out an identical function in CDTa. 

Preliminary experiments towards achieving this goal are in 

progress. In addition, site directed mutagenesis studies of E-385 

could throw some light on this issue. Different sets of primers 

(E385A, E385R, E385F and E385D) have been designed for this 

purpose. 

CDTb, like the transport components of other binary toxins 

is believed to form a homo-heptameric complex upon activation by 

chymotrypsin. The crystal structure of the transport component of 
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C2 toxin from C. botulinum in monomeric form (Schleberger et al., 

2006) has been reported. However, at present, structural 

information about any of the Clostridial binary toxin transport 

components in the heptameric form is not available. In this regard, 

a well established protocol for the expression and purification of 

CDTb has been developed. Preliminary crystallisation hits for 

CDTb′ have produced crystals which are currently being optimised. 

In the long term, it would be exciting to be able to 

characterise the CDTb homo-heptameric complex alone and the 

CDTb homo-heptamer in complex with the bound CDTa. Till date 

there is no information available about the amino acid residues of 

CDTb which play a role in the heptamer formation as well as about 

the residues of CDTb and CDTa which facilitate the binding of 

CDTa to the CDTb heptamer. However, when the chymotrypsin 

activated CDTb′ was incubated overnight at 40C at low pH 

condition, a faint but clearly visible protein band corresponding to 

the oligomeric form was visible on the SDS-PAGE (Chapter IV). 

Further, the structure of CDTa-CDTb complex could be useful to 

understand the pH induced conformational changes in CDTa 

which have been considered important for the translocation of 

CDTa from the endosome to the cytosol. 

Further research on all thesis topics at the molecular level 

will be of great academic, therapeutic as well as industrial interest 

towards the development of treatments against C. difficile infection. 

Answers to these questions will enhance our understanding of C. 

diffiicile binary toxin which will be helpful in the elucidation of 

general principles in protein-protein recognition involving similar 

binary toxins such as C. perfringens iota toxin and C. botulinum C2 

toxin. 
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APPENDIX I 

AMINO ACID SEQUENCES OF C.

DIFFICILE BINARY TOXIN


COMPONENTS
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Amino Acid Sequence of Full Length Enzymatic Component (CDTa) 

of C. difficile Binary Toxin (CDTa) (Refer to Figure 2.5) 

MKKFRKHKRISNCISILLILYLTLGGLLPNNIYAQDLQSYSEKVCNTTY 

KAPIESFLKDKEKAKEWERKEAERIEQKLERSEKEALESYKKDSVEIS 

KYSQTRNYFYDYQIEANSREKEYKELRNAISKNKIDKPMYVYYFESPE 

KFAFNKVIRTENQNEISLEKFNEFKETIQNKLFKQDGFKDISLYEPGK 

GDEKPTPLLMHLKLPRNTGMLPYTNTNNVSTLIEQGYSIKIDKIVRIVI 

DGKHYIKAEASVVNSLDFKDDVSKGDSWGKANYNDWSNKLTPNELA 

DVNDYMRGGYTAINNYLISNGPVNNPNPELDSKITNIENALKREPIPTN 

LTVYRRSGPQEFGLTLTSPEYDFNKLENIDAFKSKWEGQALSYPNFIS 

TSIGSVNMSAFAKRKIVLRITIPKGSPGAYLSAIPGYAGEYEVLLNHGS 

KFKINKIDSYKDGTITKLIVDATLIP 

Amino Acid Sequence of Functionally Mature Fragment of 

Enzymatic Component (CDTa’) of C. difficile Binary Toxin (Refer to 

Figure 2.5) 

KVCNTTYKAPIESFLKDKEKAKEWERKEAERIEQKLERSEKEALESY 

KKDSVEISKYSQTRNYFYDYQIEANSREKEYKELRNAISKNKIDKPMY 

VYYFESPEKFAFNKVIRTENQNEISLEKFNEFKETIQNKLFKQDGFKD 

ISLYEPGKGDEKPTPLLMHLKLPRNTGMLPYTNTNNVSTLIEQGYSIKI 

DKIVRIVIDGKHYIKAEASVVNSLDFKDDVSKGDSWGKANYNDWSN 

KLTPNELADVNDYMRGGYTAINNYLISNGPVNNPNPELDSKITNIENA 

LKREPIPTNLTVYRRSGPQEFGLTLTSPEYDFNKLENIDAFKSKWEGQ 

ALSYPNFISTSIGSVNMSAFAKRKIVLRITIPKGSPGAYLSAIPGYAGEY 

EVLLNHGSKFKINKIDSYKDGTITKLIVDATLIP 
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Amino Acid Sequence of Full Length Transport Component (CDTb) of 

C. difficile Binary Toxin (Refer to Figure 2.5) 

MKIQMRNKKVLSFLTLTAIVSQALVYPVYAQTSTSNHSNKKKEIVNED 

ILPNNGLMGYYFSDEHFKDLKLMAPIKDGNLKFEEKKVDKLLDKDKS 

DVKSIRWTGRIIPSKDGEYTLSTDRDDVLMQVNTESTISNTLKVNMK 

KGKEYKVRIELQDKNLGSIDNLSSPNLYWELDGMKKIIPEENLFLRDY 

SNIEKDDPFIPNNNFFDPKLMSDWEDEDLDTDNDNIPDSYERNGYTI 

KDLIAVKWEDSFAEQGYKKYVSNYLESNTAGDPYTDYEKASGSFDK 

AIKTEARDPLVAAYPIVGVGMEKLIISTNEHASTDQGKTVSRATTNSKT 

ESNTAGVSVNVGYQNGFTANVTTNYSHTTDNSTAVQDSNGESWNTG 

LSINKGESAYINANVRYYNTGTAPMYKVTPTTNLVLDGDTLSTIKAQE 

NQIGNNLSPGDTYPKKGLSPLALNTMDQFSSRLIPINYDQLKKLDAGK 

QIKLETTQVSGNFGTKNSSGQIVTEGNSWSDYISQIDSISASIILDTEN 

ESYERRVTAKNLQDPEDKTPELTIGEAIEKAFGATKKDGLLYFNDIPID 

ESCVELIFDDNTANKIKDSLKTLSDKKIYNVKLERGMNILIKTPTYFTN 

FDDYNNYPSTWSNVNTTNQDGLQGSANKLNGETKIKIPMSELKPYKR 

YVFSGYSKDPLTSNSIIVKIKAKEEKTDYLVPEQGYTKFSYEFETTEKD 

SSNIEITLIGSGTTYLDNLSITELNSTPEILDEPEVKIPTDQEIMDAHKIY 

FADLNFNPSTGNTYINGMYFAPTQTNKEALDYIQKYRVEATLQYSGFK 

DIGTKDKEMRNYLGDPNQPKTNYVNLRSYFTGGENIMTYKKLRIYAIT 

PDDRELLVLSVD 

Amino Acid Sequence of Signal Peptide less Fragment of Transport 

Component (CDTb’) of C. difficile Binary Toxin (Refer to Figure 2.5) 

EIVNEDILPNNGLMGYYFSDEHFKDLKLMAPIKDGNLKFEEKKVDKL 

LDKDKSDVKSIRWTGRIIPSKDGEYTLSTDRDDVLMQVNTESTISNTL 

KVNMKKGKEYKVRIELQDKNLGSIDNLSSPNLYWELDGMKKIIPEEN 

LFLRDYSNIEKDDPFIPNNNFFDPKLMSDWEDEDLDTDNDNIPDSYE 

RNGYTIKDLIAVKWEDSFAEQGYKKYVSNYLESNTAGDPYTDYEKAS 

GSFDKAIKTEARDPLVAAYPIVGVGMEKLIISTNEHASTDQGKTVSRA 

TTNSKTESNTAGVSVNVGYQNGFTANVTTNYSHTTDNSTAVQDSNG 

ESWNTGLSINKGESAYINANVRYYNTGTAPMYKVTPTTNLVLDGDTLS 

TIKAQENQIGNNLSPGDTYPKKGLSPLALNTMDQFSSRLIPINYDQLK 
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KLDAGKQIKLETTQVSGNFGTKNSSGQIVTEGNSWSDYISQIDSISASI 

ILDTENESYERRVTAKNLQDPEDKTPELTIGEAIEKAFGATKKDGLLY 

FNDIPIDESCVELIFDDNTANKIKDSLKTLSDKKIYNVKLERGMNILIKT 

PTYFTNFDDYNNYPSTWSNVNTTNQDGLQGSANKLNGETKIKIPMSE 

LKPYKRYVFSGYSKDPLTSNSIIVKIKAKEEKTDYLVPEQGYTKFSYEF 

ETTEKDSSNIEITLIGSGTTYLDNLSITELNSTPEILDEPEVKIPTDQEIM 

DAHKIYFADLNFNPSTGNTYINGMYFAPTQTNKEALDYIQKYRVEATL 

QYSGFKDIGTKDKEMRNYLGDPNQPKTNYVNLRSYFTGGENIMTYK 

KLRIYAITPDDRELLVLSVD 

Amino Acid Sequence of Functionally Mature Fragment of Transport 

Component (CDTb’’) of C. difficile Binary Toxin (Refer to Figure 2.5) 

LMSDWEDEDLDTDNDNIPDSYERNGYTIKDLIAVKWEDSFAEQGYK 

KYVSNYLESNTAGDPYTDYEKASGSFDKAIKTEARDPLVAAYPIVGVG 

MEKLIISTNEHASTDQGKTVSRATTNSKTESNTAGVSVNVGYQNGFT 

ANVTTNYSHTTDNSTAVQDSNGESWNTGLSINKGESAYINANVRYYN 

TGTAPMYKVTPTTNLVLDGDTLSTIKAQENQIGNNLSPGDTYPKKGLS 

PLALNTMDQFSSRLIPINYDQLKKLDAGKQIKLETTQVSGNFGTKNSS 

GQIVTEGNSWSDYISQIDSISASIILDTENESYERRVTAKNLQDPEDKT 

PELTIGEAIEKAFGATKKDGLLYFNDIPIDESCVELIFDDNTANKIKDSL 

KTLSDKKIYNVKLERGMNILIKTPTYFTNFDDYNNYPSTWSNVNTTNQ 

DGLQGSANKLNGETKIKIPMSELKPYKRYVFSGYSKDPLTSNSIIVKIK 

AKEEKTDYLVPEQGYTKFSYEFETTEKDSSNIEITLIGSGTTYLDNLSI 

TELNSTPEILDEPEVKIPTDQEIMDAHKIYFADLNFNPSTGNTYINGMY 

FAPTQTNKEALDYIQKYRVEATLQYSGFKDIGTKDKEMRNYLGDPNQ 

PKTNYVNLRSYFTGGENIMTYKKLRIYAITPDDRELLVLSVD 
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