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Abstract 
 

Ammonia borane, NH3BH3, has attracted growing interest in recent years in the field 

of hydrogen storage due to its high gravimetric hydrogen content. In this study the 

reaction of NH3BH3 with various metal hydrides was investigated. The reactions with 

hydrides of lithium and sodium required a molar ratio of 1:2 in favour of NH3BH3 and 

the reaction products were characterised as [Li(NH3)]
+[BH3NH2BH3]

− and 

[Na]+[BH3NH2BH3]
−, respectively, through solid state 11B and 23Na MAS NMR and 

Raman spectroscopy. The reaction of CaH2 with NH3BH3 required a reaction 

stoichiometry of 1:4 and this reaction proceeded through a different reaction 

mechanism, forming Ca(BH4)2·2NH3. The crystal structures of Ca(BH4)2·2NH3 and 

Ca(BH4)2·NH3 were determined by powder diffraction methods and the reaction 

pathway investigated through solid state 11B MAS NMR spectroscopy. 

The thermal desorption properties of these hydrogen rich materials were investigated 

and hydrogen was released from all the materials. However, under certain conditions 

ammonia was the major gaseous desorption product from Ca(BH4)2·2NH3 and was 

observed as a minor product from the decomposition of [Li(NH3)]
+[BH3NH2BH3]

−. 

Ammonia was also released during the synthesis of [Na]+[BH3NH2BH3]
−, but the 

decomposition of this material was free from ammonia release. Ramped thermal 

desorption studies of [Na]+[BH3NH2BH3]
− and [Li(NH3)]

+[BH3NH2BH3]
− to 350°C 

resulted in weight losses due to hydrogen desorption of 7.5 wt% and 12.5 wt%, 

respectively. Heating Ca(BH4)2·2NH3 to 350°C  resulted in a total weight loss of 27.5 

wt%, which was predominantly due to NH3 desorption. Powder XRD and solid state 

11B MAS NMR spectroscopy were employed to identify the solid decomposition 

products and decomposition pathways were proposed. Metal borohydrides were 

identified in all cases as well as polymeric products possessing B–N chains. 
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Chapter 1 

 

Introduction 

 

1.1 The Current World Energy Situation 

The world is currently heavily reliant on fossil fuels, with almost all mobile energy 

needs being met by petroleum, because they are a very convenient source of 

energy. However, with this source of energy rapidly running out, the need to find a 

replacement is becoming more critical. In pre-industrial times man used only biomass 

as an energy source, which had no effect on the atmosphere because carbon dioxide 

liberated from its combustion was offset by the absorption by plants during 

photosynthesis, producing a carbon neutral cycle. Since the industrial revolution 

world energy demand has drastically risen, with this increase mostly met by fossil 

fuels. The introduction of the steam engine provided the foundation for an 

industrialised society and a source of energy was needed in order to power it. This 

demand was met by coal. The use of fossil fuels led to an increase of the 

concentration of carbon dioxide in the atmosphere and because this is a greenhouse 

gas the burning of fossil fuels has been linked to global climate change. Alternatives 

to fossil fuels include biomass, nuclear, wind, solar, geothermal and hydrothermal 

energies. These energy sources may be especially useful in the production of 

electricity that is fed into the National Grid to be used in stationary applications. Their 

use in mobile applications is more challenging, which is where hydrogen may play an 

important role.  

1.2 Hydrogen 

Hydrogen offers potential to help provide a solution to the world‘s energy dilemma. 

Like electricity it is an energy carrier; however, electricity is at a disadvantage when 
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storage of energy is required. Hydrogen on the other hand could be suited to 

applications where storage of energy is required before use. 

Figure 1.1 depicts how the nature of the world‘s main energy carrier has changed 

through history. 

 

Figure 1.1 – Historical development of energy carriers 

There are two trends that are observed in this progression. The first trend involves 

the physical state of the carrier, the transition from a solid to a liquid and then on to a 

gas state energy carrier is observed. Secondly, there is a trend towards using more 

hydrogen rich fuels. These two trends combined point in the direction of using pure 

hydrogen as an energy carrier in the future. 

1.3 Hydrogen Production 

Hydrogen is the most abundant element in the universe: it is estimated that 90% of 

all atoms are hydrogen which corresponds to 75% by mass of the universe. Further 

to this, it is thought that the heavier elements were and still are being made from 

hydrogen and helium. On Earth, hydrogen is also the most abundant element; 

however, only a small fraction, approximately one percent, exists as molecular 

hydrogen, the vast majority of it chemically bound in H2O, with a further substantial 

amount bound in liquid or gaseous hydrocarbons. This means that the first step in 

using hydrogen as a fuel involves its production. In order to completely replace fossil 

fuels as the world‘s chief energy supplier, more than 3 × 1012 kg of hydrogen would 

need to be produced each year, which is approximately one hundred times greater 

than today‘s annual production.1 The production of hydrogen adds extra cost to the 

use of hydrogen, which has not been experienced with fossil fuels. The only cost 
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involved with fossil fuels is that of the mining, which makes the cost of hydrogen fuel 

around three times greater than that of petroleum. This produces an economic 

challenge: to minimise the cost of hydrogen production as well as having to convince 

the world economy of the benefits of a synthetic fuel, as consumers must be willing to 

pay for the energy content of the fuel. An investment over five years, to the value of 

ten to one hundred trillion dollars, would be required to establish a new renewable 

energy production infrastructure, which is the same amount spent worldwide on 

energy over the same period.1 

1.3.1 From Fossil Fuels 

Currently hydrogen production in the world centres on fossil fuels and, specifically, 

the process of steam reforming as shown in reaction 1.1. In 2008, 96% of the world‘s 

hydrogen was produced using this process.2 The hydrocarbon most frequently used 

for this reaction is methane. The process involves using high temperature steam, in 

the range 700 to 1000°C, in combination with a hydrocarbon to yield hydrogen and 

carbon monoxide. This is an endothermic reaction and hence consumes energy in 

the process. 

–(CH2)–n + H2O → (n + 1)H2 + CO  Reaction 1.1 

A second step, the water-gas shift reaction, reacts the synthesised carbon monoxide 

with steam to produce more hydrogen and carbon dioxide as shown in reaction 1.2. 

CO + H2O → CO2 + H2  Reaction 1.2 

Unfortunately, this method of production produces a significant amount of carbon 

dioxide emissions, in fact a similar amount to that of the direct combustion of fossil 

fuels. In the transition to a hydrogen economy, steam reforming would likely be the 

production method of choice during its infancy, with a predicted timescale of 20 

years.3 There are methods to reduce carbon dioxide emissions from steam 

reforming. The product gases are easily separated and carbon sequestration can be 

used to prevent carbon dioxide emissions to the atmosphere. 

There is a second method of producing hydrogen from hydrocarbons that is free from 

carbon dioxide emissions. The thermal dissociation or cracking of hydrocarbons, 
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specifically methane, results in the production of hydrogen as well as carbon. The 

decomposition of methane is less endothermic than steam methane reforming: the 

energy required per mole of hydrogen produced is 37.8 kJ mol−1 H2 for cracking 

compared with 63 kJ mol−1 H2 for steam reforming. Carbon dioxide emissions can 

potentially be as low as 0.05 mol CO2 / mol H2 compared to 0.43 mol CO2 / mol H2 for 

the steam reforming process.4 This process does, however, produce a vast amount 

of carbon and leaves the problem of how to dispose of it. Beneficially the product is 

solid, making it easily transported, handled and stored and one potential solution is to 

use it as a construction material.5 The biggest drawback to this method though is it is 

again not sustainable as the resource employed is non-renewable. 

1.3.2 Electrolysis 

In order for hydrogen to be classified as a clean, sustainable and renewable fuel, its 

production must move away from fossil fuels, avoid the release of carbon dioxide into 

the atmosphere and utilise a renewable source of energy. One such possibility is that 

of water electrolysis. Electricity generated from renewable forms of energy including 

solar, wind and hydro can be used in this process. Electrolysis is simply the 

decomposition of water into oxygen and hydrogen, which makes it the cleanest way 

to produce hydrogen. An electric circuit is connected to two electrodes, made from 

inert metal, such as platinum, which are placed into the water. Two processes occur, 

reduction at the negatively charged cathode and oxidation at the positively charged 

anode, shown in reactions 1.3 and 1.4. 

                   Cathode  2H+
(aq) + 2e− → H2(g)         Reaction 1.3 

               Anode  2H2O(l) → O2(g) + 4H+
(aq) + 4e−   Reaction 1.4 

The process is thermodynamically unfavourable and so it is necessary to apply an 

electric potential. It is possible to increase the rate of electrolysis by adding an 

electrolyte to the water. The efficiency of electrolysis at ambient conditions is 65%, 

although improvements to the process including the use of activated electrodes and 

very thin membranes can help achieve increased efficiency to 85%.6 Hydrogen 

produced in this way makes it sustainable in the long term as well as adding value to 

the renewable resources employed in the process. 
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1.3.3 Thermal Production 

Hydrogen can also be produced directly from the thermal decomposition of water. 

This is, however, a very unfavourable process thermodynamically and requires 

temperatures in excess of 2000°C. This temperature can be lowered substantially to 

below 1000°C through the use of either a platinum or ruthenium catalyst. Following 

the thermal decomposition, the product gases must be separated to avoid 

recombination of the gases or the production of an explosive mixture. The advantage 

of this process is that it again uses a renewable source of energy in the form of 

sunlight. A solar furnace channels light energy from the sun onto a small area which 

achieves the very high temperatures required for the decomposition to proceed.7 

1.3.4 Biomass 

Biomass can be used to produce hydrogen in two ways. Firstly, through gasification; 

this is a process similar in nature to that of steam reforming. The biomass is thermally 

treated to yield a mixture of gases including hydrogen, carbon monoxide and 

methane. Further heat treatment through heated steam yields further hydrogen as 

well as carbon dioxide. However, as the carbon dioxide that is released as a result of 

this process was originally absorbed by the plant, this process can be regarded as 

carbon dioxide neutral. The process of fermentation can also be used to produce 

hydrogen through biomass. Hydrogen can be produced sustainably by anaerobic 

bacterial growth on carbohydrate rich substrates in the absence of light, to give 

organic fermentation end products, hydrogen and carbon dioxide. Sustainable 

hydrogen production in this way requires principally carbohydrate based organics, 

biomass produced from sustainable resources, biomass of sufficient concentration 

that fermentative conversion and energy recovery are energetically favourable, and 

biomass that requires minimal pre-treatment.8 A significant advantage to this process 

is that biomass of low quality and low cost can be used. Again because the carbon 

dioxide released in the process was originally absorbed by the biomass it can be 

classed as a carbon dioxide neutral process. 
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1.4 Hydrogen as a Fuel 

Chemical energy is related to valence electrons in atoms or molecules and their 

potential to form stable arrangements through reaction. The hydrogen atom is made 

up of only one proton and one electron making it an attractive chemical energy 

source as it has the highest number of valence electrons available for reaction per 

unit mass. 

Following production, hydrogen is the cleanest burning fuel: the only exhaust gas 

when it is burnt with oxygen is water. Furthermore, hydrogen is a very energy rich 

fuel: its lower heating value, 120.1 MJ kg−1, is three times greater than that of 

petroleum, 42.5 MJ kg−1.9 There are two methods of exploiting the chemical potential 

of hydrogen. First, as with petroleum, it can be combusted in an internal combustion 

engine producing mechanical power; or secondly, it can be used to produce electrical 

power by electrochemical means using a fuel cell. 

Using hydrogen as a fuel also has the added benefits of dramatically cutting 

emissions of carbon dioxide, carbon monoxide and sulphur and nitrogen oxides. It 

has the potential to become a secure and abundant domestic supply of fuel, 

therefore significantly reducing the need to import other sources of energy such as oil 

or natural gas, in turn providing nations with energy independence and security. 

Finally, it would allow the transition from limited non-renewable supplies of fossil fuels 

to an unlimited, renewable fuel source. 

1.4.1 Hydrogen Internal Combustion Engine 

Internal combustion engines are a well established technology and the idea of using 

hydrogen as the fuel is not a modern one. The first internal combustion engine 

designed and built to run on a mixture of hydrogen and oxygen was built by François 

Isaac de Rivaz as early as 1807.10 Hydrogen gas can be used directly in a petroleum 

internal combustion engine with only minor modifications required. The hydrogen is 

burnt in the same way as gasoline, the only difference being that hydrogen burns 

hotter than gasoline resulting in the need for minor modifications to the engine. The 

modifications include using fuel injectors designed for gas instead of liquid, harder 

valve and valve seats to compensate for the reduced lubricating properties of 
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hydrogen gas compared to liquid gasoline, and employing an exhaust system that is 

capable of sustaining water vapour produced from the combustion process. 

Internal combustion engines running on hydrogen could pave the way for a transition 

to a Hydrogen Economy. The hydrogen internal combustion engine uses the current 

manufacturing infrastructure as well as allowing the opportunity to develop hydrogen 

infrastructure. A hydrogen internal combustion engine is currently much cheaper than 

a fuel cell running on hydrogen and therefore offers a cheaper temporary solution to 

using hydrogen as a fuel, until the cost of fuel cell technology starts to drop. A major 

advantage of using hydrogen instead of gasoline in an internal combustion engine is 

that the emissions of carbon dioxide are greatly reduced. A small amount of carbon 

dioxide is released when using hydrogen as the fuel, but this comes from engine oil 

in the cylinders of most engines and not from the fuel itself. It would require over 300 

vehicles running on a hydrogen internal combustion engine to emit the same amount 

of carbon dioxide as one vehicle running on gasoline. However, there are relatively 

few car manufacturers that are actively researching a hydrogen internal combustion 

engine and of the major automotive manufacturers it is only BMW and Mazda that 

currently have an active research programme. 

1.4.2 Fuel Cells 

Fuel cells are emerging as a leading alternative technology to the more polluting 

internal combustion engine in both mobile and stationary applications. They are 

widely considered to be the green power source for the 21st century and could make 

the prospect of a Hydrogen Economy a reality.11 However, they are not a recent 

invention, they were invented in 1839 by William Grove.12 Fuel cells are 

electrochemical energy conversion devices which convert the chemical energy of the 

fuel, which is generally hydrogen, directly into electrical energy. There are numerous 

types of fuel cell, that are characterised by the type of electrolyte that is employed, 

the most common electrolytes being alkaline, solid oxide, molten carbonate, 

phosphoric acid and polymer membrane. Provided there is a constant source of fuel, 

fuel cells are capable of continuously producing energy. 
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Polymer electrolyte membrane fuel cells, PEMFC, also known as proton exchange 

membrane fuel cells have a number of advantages associated with their use. 

Primarily the only emission is water when using hydrogen as the fuel and oxygen as 

the oxidant. They are able to operate at temperatures below 100°C with high 

efficiency, which also results in them having rapid start-up times, making them 

attractive for use in mobile applications. Compared to other fuel cells, PEMFCs are 

capable of generating more power for a given weight or volume, making them 

compact and lightweight. A fuel cell stack, where many fuel cells are used in 

combination, is used in practice, allowing higher power densities to be achieved. The 

PEMFC uses a solid polymer membrane as the electrolyte which is permeable to 

protons when saturated with water but does not conduct electrons. Hydrogen gas is 

supplied to the anode, where a catalyst, usually platinum, splits it into protons and 

electrons. The protons permeate across the electrolyte to the cathode, while the 

electrons flow through an external circuit, producing electric power. Air, containing 

oxygen, flows past the cathode. At the cathode, oxygen combines with the electrons 

and the protons producing water. The reactions taking place are as follows and a 

schematic diagram of a PEMFC is shown in figure 1.2. 

Anode   2H2 → 4H+ + 4e−   Reaction 1.5 

Cathode  O2 + 4H+ + 4e− → 2H2O  Reaction 1.6 

Overall  2H2 + O2 → 2H2O   Reaction 1.7 

 

Figure 1.2 – A schematic diagram of a PEMFC11 
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PEMFCs suffer performance degradation as a result of impurities in the hydrogen 

supply such as carbon monoxide, hydrogen sulphide, ammonia and organic 

compounds, and also from NOx and SOx in air.11 These contaminants can get into the 

membrane of the fuel cell, thereby competing with the protons for the SO3
− sites and 

decreasing water content, resulting in a reduction in proton conductivity. Fuel cell 

performance has been shown to drop rapidly when exposed to a hydrogen supply 

containing 30 ppm ammonia, and could not be fully recovered after removal of the 

ammonia.13 

1.5 Batteries 

A different type of technology that has been proposed as a replacement for fossil 

fuels is that of batteries. Hydrogen has to be first produced, potentially through the 

process of electrolysis, before it is converted back into electrical energy in a fuel cell. 

As a result of these energy conversions, the efficiency of the fuel cell compared to 

directly using the electricity in batteries is lowered. In stationary applications, when 

using hydrogen and fuel cells, 51% of the electricity that could have been delivered 

directly remains following the conversions, whereas batteries are able to store and 

retrieve electricity with efficiencies greater than 75%.14 In mobile applications it is 

estimated that by 2020 electric vehicles will have a range of 358 kilometres before a 

recharge is required. However, these recharges can take around four hours for a full 

recharge to be achieved. This is in contrast to fuel cells which are capable of running 

continuously provided there is sufficient fuel provided. Further to this the cost of 

lithium ion batteries is currently approximately three times too high for them to 

become a commercially viable alternative to internal combustion engine based 

vehicles. The development of alternative battery systems have shown particular 

improvements in recent years with respect to energy density, efficiency and cycling 

lifetimes, with an energy density of 125 W h / kg being achieved in lithium ion 

batteries offering a driving range of 250 kilometres.15 A major advantage of using 

batteries is that the infrastructure for this technology is already in place, whereas 

there is the need for huge investment in order to use hydrogen as a fuel. In reality, it 

seems likely that fuel cell vehicles will use a combination of batteries and a fuel cell in 

order to meet the energy demands of automotive transport.16 
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1.6 Hydrogen Storage 

At ambient temperature and pressure the hydrogen molecule exists as a gas, with a 

density of 0.0899 kg m−3; below −262°C it exists as a solid with a much higher 

density of 76.3 kg m−3 and there is a small zone where the molecule is found in the 

liquid form with a density of 70.8 kg m−3 at −262°C.1 The very low volumetric density 

of hydrogen gas shows the significant challenge of hydrogen storage. At ambient 

temperature and pressure 1 kg of hydrogen gas occupies a huge 11 m3. On board 

energy storage in vehicles is required to be light, safe and affordable. A modern, 

commercially available car designed primarily for mobility has a range of 400 

kilometres which burns 24 kilograms of petrol in a combustion engine.17 In order to 

match this range, a combustion engine operating on hydrogen would require eight 

kilograms of fuel or an electric car running on fuel cells would require four kilograms 

of hydrogen. At room temperature and pressure, four kilograms of hydrogen occupies 

a volume of 45 m3, which is not practical for a vehicle. 

The term hydrogen storage essentially implies the reduction of this enormous volume 

of hydrogen gas. The goal is to pack hydrogen as closely as possible in order to 

achieve the highest possible volumetric density while minimising the amount of 

additional material. In order to achieve higher hydrogen densities either work must be 

applied to compress hydrogen or through liquefaction, both of which can be easily 

performed. However, both methods cause a reduction in gravimetric density due to 

the additional weight of the vessels required to maintain high pressures or low 

temperatures. A compromise must be made between increasing the volumetric 

capacity of the storage system while maintaining a usable gravimetric hydrogen 

capacity. An alternative approach is to minimise the repulsion between hydrogen 

molecules through the interaction with another material. Another important criterion 

for a hydrogen storage system is that it requires a reversible hydrogen uptake and 

release mechanism. This requirement means that all hydrocarbons are excluded as 

potential storage methods as the hydrogen can only be irreversibly released at 

temperatures above 800°C. There are a number of potential storage methods which 

can broadly be divided into two categories: either the storage of molecular hydrogen, 

which increases volumetric density through compression, liquefaction or adsorption 
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onto a surface, or the storage of atomic or ionic hydrogen through the reaction of 

hydrogen gas to form metal hydrides or complex hydrides. 

1.6.1 Storing hydrogen as a gas 

Conventionally hydrogen is stored at high pressures. High pressure tanks are 

traditionally made of relatively cheap steel and are routinely filled up to a pressure of 

200 bar. However, this pressure would still require a total volume of 225 litres to store 

the 4 kilograms of hydrogen.17 Furthermore, this equates to a gravimetric density of 

only about 1%, which is very low. New lightweight composite cylinders have been 

developed which are capable of withstanding pressures up to 800 bar, which results 

in a volumetric density of 36 kg m−3.18 However, as the storage pressure increases, 

the gravimetric hydrogen density decreases, because the walls of the pressure 

cylinder must increase in thickness to be able to cope with the increased pressure. 

The ideal material for a high pressure cylinder requires a high tensile strength, low 

density and to be inert towards hydrogen, with the majority of cylinders being made 

from stainless steel, copper or aluminium alloys. Recently light-weight high-density 

carbon fibre gas cylinders have been developed, which are capable of storing 

hydrogen up to pressures of 1000 bar, giving a gravimetric hydrogen density of 10 

wt%.19 These high pressure gas cylinders come with significant disadvantages. 

Additional pressure control would be required due to the large pressure drop when 

the fuel is made available, there is a high safety risk associated with having high 

pressure gas in automobiles and they are costly. A large amount of physical work is 

also required to be done on the gas with respect to compression in order to achieve 

the high pressures, which is energy that cannot be reclaimed when using the gas.20 

Industry has set itself a target of developing cylinders capable of storing hydrogen at 

a pressure of 700 bar, with a maximum weight of 110 kg, a gravimetric density of 6 

wt% and a volumetric density of 30 kg m−3.21 However, this storage method looks 

unlikely to be adopted due to the low hydrogen density, safety concerns and high 

cost associated with it. 
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1.6.2 Liquid hydrogen storage 

The storage of hydrogen as a cryogenic liquid has a high gravimetric density of 70.8 

kg m−3 which is significantly higher than that of compressed gas.18 Liquid hydrogen is 

stored in cryogenic tanks at temperatures below −252°C. These storage tanks have 

to be open systems due to problems with boil off, because the pressure in a closed 

system could rise to 104 bar. There are two main challenges associated with liquid 

hydrogen storage. Firstly, the energy-intensive liquefaction process, which has a 

significant energy penalty, because up to 30% of the energy content of hydrogen is 

required to liquefy it.19 The second challenge is the thermal insulation of the 

cryogenic storage vessel in order to minimise the boil off of hydrogen. Even with the 

best available insulation vessels, boil off cannot be reduced below 1% per day for 

small tanks suitable for transportation usage. Further costs are also incurred because 

all of the components used for the delivery and storage of liquid hydrogen must be 

cooled. Due to these drawbacks, liquefaction is not a particularly efficient method of 

hydrogen storage. The high cost, large amount of energy required for liquefaction 

and the continuous boil off of hydrogen mean that this storage method is limited to 

applications where cost is not an important issue and the hydrogen is consumed in a 

relatively short time such as with air and space applications. 

1.6.3 Solid state hydrogen storage 

As the two conventional methods of hydrogen storage, compression and liquefaction, 

seem to be unlikely to be able to provide a solution to the problem, the most viable 

alternative, solid state hydrogen storage, could provide the answer. A suitable solid 

state hydrogen storage material should be able to store a high weight percent and 

high volume density of hydrogen, while being able to absorb and desorb hydrogen 

quickly close to room temperature and pressure. Furthermore, the material should be 

cheap, safe and reusable, and possess the capacity to be regenerated and readily 

recycled. Currently, there is no material that can meet all of these requirements. 

Hydrogen can interact with the host material in a number of ways. Firstly, hydrogen 

molecules can be physically adsorbed onto the surface of the host material. The 

hydrogen can be chemically absorbed by the material through the formation of 
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chemical bonds. Finally, chemical hydrides can be formed which are characterised by 

distinct chemical covalent bonding. 

1.6.4 Physisorption 

Hydrogen is capable of being adsorbed onto a solid surface through van der Waals 

interactions. Physisorption is the weakest interaction between a solid and hydrogen, 

the energy of the interactions is generally very low, in the range 2 to 20 kJ mol−1 H2.
1 

As a consequence of this the majority of hydrogen can be desorbed from the surface 

by thermal energy at room temperature and as such significant physisorption is only 

observed at temperatures below 273 K. Liquid nitrogen, with a boiling point of 77 K, 

is often used as a coolant in order to maximise the physisorption interaction. The 

strongest binding of hydrogen occurs when the hydrogen is bound directly to the 

surface of the solid and although subsequent layers of hydrogen can be formed, the 

weakness of these interactions means that hydrogen molecules usually form a 

monolayer on the surface. Therefore, materials with very high surface areas are 

required for this type of hydrogen storage system in order to reach a desirable 

hydrogen storage capacity. 

A number of types of high surface area solids have been studied including zeolites,22 

high surface area carbon,23 metal organic frameworks (MOFs)24 and polymers of 

intrinsic microporosity (PIMs).25 Single walled carbon nanotubes have been shown to 

take up 2 wt% hydrogen at 77 K, with a high surface area of 1315 m2 g−1.23 A zeolite-

like carbon material was shown to exhibit improved and reversible hydrogen storage 

capacity showing an uptake of 6.9 wt% at 77 K and 20 bar.26 At 1 bar the uptake was 

reduced to 2.6 wt%. The strength of hydrogen binding in zeolites has the potential to 

be improved by the inclusion of metal ions in the structure. Calcium exchanged 

zeolite X has been shown to take up 2.19 wt% hydrogen at 77 K and 15 bar.22 This is 

an improvement compared to zeolites that do not contain metal cations, where about 

1.5 wt% hydrogen can be absorbed under the same conditions.27 Gravimetric 

capacities of 6.7 wt% have also been reported for MOFs where the binding to metal 

centres is suggested to improve the hydrogen storage capacity.24 PIMs are polymers 

which behave like molecular sieves in the solid state, because they have rigid, 

contorted molecular structures that are unable to pack efficiently, which gives them 
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potential as hydrogen storage materials.28 They have been shown to take up 2.7 wt% 

at 77 K and 10 bar.25 Physisorption for hydrogen storage has the advantages of 

having relatively cheap materials and the storage systems are of a simple design. 

However, they suffer from relatively low gravimetric and volumetric densities and the 

low temperatures (and/or high pressures) required are significant drawbacks to their 

use. 

1.6.5 Metallic Hydrides 

A number of metals and alloys are capable of reversibly reacting with hydrogen to 

produce metal hydrides. The transition back to the metal can be achieved through 

either increasing the temperature or by reducing the pressure. Metals of group I and 

group II of the periodic table usually form stoichiometric ionic hydrides, such as LiH, 

whereas transition metals tend to form hydrides which have a variable non-

stoichiometric composition, as is the case with PdH0.6.
29 These non-stoichiometric 

hydrides form when hydrogen gas is dissociated at the metal surface and diffuses 

into the metal. During the desorption process, two hydrogen atoms recombine to 

form the hydrogen molecule. The lattice structure of non-stoichiometric hydrides is 

that of a typical metal with hydrogen atoms on the interstitial sites and hence they are 

also known as interstitial hydrides. 

The formation of an interstitial hydride can be described in terms of a pressure-

composition isotherm, as shown in figure 1.3.1 Initially the host metal dissolves some 

hydrogen in low concentrations forming a solid solution, shown as the α-phase in 

figure 1.3. Increasing the pressure results in the concentration of hydrogen within the 

metal increasing and nucleation and growth of the ordered hydride β-phase begins. A 

plateau is observed where the two phases co-exist. During this plateau region, the 

composition of the metal hydride can be changed significantly with only small 

changes in temperature or pressure. This plateau region ends once a certain 

temperature, denoted Tc in figure 1.3, is reached. Above this temperature the 

transition from the α to the β phase is continuous. 
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Figure 1.3 – A pressure–composition–temperature plot for a metal hydride17 

Metal hydrides are very effective for storing hydrogen in a safe and compact way, 

capable of achieving very high volumetric hydrogen densities. LaNi5H6.5 for example 

has a high volumetric hydrogen density of 115 kg m−3.18 However, as the reversible 

hydrides usually consist of transition and/or rare earth metals, gravimetric densities 

are unable to reach more than about 3 wt%. There are several families of 

intermetallic compounds of interest to hydrogen storage which are summarised in 

table 1.1. These compounds consist of an A element, which is usually a rare earth or 

alkaline earth metal, with a high affinity to hydrogen, forming stable hydrides and a B 

element, generally a transition metal, which has a low affinity to hydrogen, forming 

unstable hydrides. The B element is often nickel as this is an excellent catalyst for 

hydrogen dissociation. 

Table 1.1 – The families of hydride forming intermetallic compounds17 

Type Metal Hydride wt% H 

Elemental Pd PdH0.6 0.56 

AB FeTi FeTiH2 1.9 

AB2 ZrV2 ZrV2H5.5 3 

AB3 CeNi3 CeNi3H4 1.3 

AB5 LaNi5 LaNi5H6.5 1.5 

A2B Mg2Ni Mg2NiH4 3.6 

A2B7 Y2Ni7 Y2Ni7H3 0.5 
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The hydride of LaNi5 shows some promising hydrogen storage properties, including 

fast and reversible hydrogen uptake, as well as being able to release all of its 

hydrogen at a pressure of less than 2 bar. However, lanthanum and nickel are both 

heavy elements, which means that only 1.5 wt% can be stored in the alloy. Higher 

hydrogen contents are obtainable through the use of light elements. Magnesium 

forms a hydride containing 7.7 wt% hydrogen; however, it suffers from very slow 

rates of de/rehydrogenation and releases hydrogen at temperatures in excess of 

300°C.30 The characteristics of hydrogen absorption and desorption can be modified 

by partial substitution of the constituent elements in the host lattice. For example, 

attempts to improve the hydrogen storage properties of MgH2 have been made by 

alloying magnesium with nickel before hydriding, resulting in a hydride of 3.6 wt%, 

Mg2NiH4.
31 The rate of hydriding is improved, potentially due to nickel acting as a 

catalyst for the dissociation of hydrogen gas, but temperatures in excess of 280°C 

are still required for hydrogen release.17 This temperature can be decreased further 

through mechanical alloying with transition metals.32 Most metallic hydrides absorb 

hydrogen up to a metal to hydrogen ratio of two. Greater ratios are possible, as is the 

case with BaReH9, containing a ratio of 4.5.33  

1.6.6 Complex Hydrides 

Light metals such as lithium, sodium and aluminium give rise to a large variety of 

metal-hydrogen complexes. They are amongst the most promising candidates for 

hydrogen storage due to their lightweight and the number of hydrogen atoms per 

metal atoms, which in many cases is two. The term complex hydride is generally 

given to materials where hydrogen is covalently bonded to a central atom in a 

complex anion.34 These ionic hydrides include borohydrides, BH4
−, alanates, AlH4

− 

and amides, NH2
−, where the negative charge of the anion is compensated by a 

cation of a light metal. They have some of the highest known gravimetric hydrogen 

densities, with lithium borohydride, LiBH4, having a capacity of 18.5 wt%. However, 

the stability of the compounds can be problematic, as they decompose at elevated 

temperatures, often above the compound‘s melting point. 
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1.6.6.1 Alanates 

The aluminium hydrides (alanates) of sodium and lithium can be synthesised either 

directly from reaction of the constituent elements or through the reaction of the metal 

hydride with aluminium halides in solution.35 Both of these alanates have high 

gravimetric hydrogen contents, with lithium alanate containing 10.5 wt% and sodium 

alanate possessing 7.4 wt%. The compounds decompose through the release of 

hydrogen in a two step process, shown by reaction 1.8, lithium alanate decomposing 

at a slightly lower temperature of 201°C compared to 265°C for sodium alanate. The 

reverse reaction for the sodium system has been shown to proceed at 270°C under a 

hydrogen pressure of 175 bar.34 

3MAlH4 → M3AlH6 + 2Al + 3H2 → 3MH + 3Al + 9/2H2  Reaction 1.8 

The practical use of alanates as materials for hydrogen storage was limited due to 

high kinetic barriers both towards hydrogenation and the reverse reaction. The 

kinetics of both uptake and release of hydrogen in sodium alanate have been shown 

to be dramatically improved through doping with titanium.36 This allows hydrogen to 

be released from the material at 150°C, while the reversible reaction could proceed 

at a temperature as low as 170°C under 152 bar H2. However, this was achieved at a 

cost of the hydrogen capacity of the material, this being reduced from an initial value 

of 5.6 wt% down to 3.1 wt% after thirty one cycles. 

1.6.6.2 Borohydrides 

Borohydrides were first synthesised as early as 1940 through the reaction of 

ethyllithium with diborane.37 An alternative synthesis involves the reaction of metal 

hydride with diborane in ethereal solvents,38 and direct synthesis from the metal, 

boron and hydrogen is also possible at elevated temperature and hydrogen pressure. 

Borohydrides have been widely used in organic synthesis as reducing agents, 

however, their potential as hydrogen storage materials has recently been 

investigated.39, 40 

Lithium borohydride has a very high gravimetric hydrogen density of 18.5 wt% and 

therefore offers potential as a hydrogen storage material. The decomposition of 
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lithium borohydride begins at 280°C, which is accompanied by the melting of the 

material. Only a small amount of hydrogen is released at this temperature, with the 

main evolution of hydrogen occurring at a temperature in excess of 380°C.39 During 

this process three of the four hydrogen atoms are released, leaving lithium hydride 

and boron, giving a theoretical hydrogen capacity of 13.9 wt%. The decomposition of 

lithium borohydride is shown in reaction 1.9. 

2LiBH4 → 2LiH + 2B + 3H2    Reaction 1.9 

This desorption process can be catalysed by adding SiO2, significantly lowering the 

onset temperature of hydrogen release.39 The reverse rehydrogenation process has 

been shown to proceed at 600°C under a hydrogen pressure of 350 bar.41 Following 

rehydrogenation the amount of hydrogen that can then be reversibly released has 

been shown to be 8.3 wt%.42 

The decomposition of LiBH4 can be modified by reaction with MgH2, the alternative 

decomposition pathway shown in reaction 1.10.43 The presence of MgH2 improves 

the thermodynamics of both the hydrogenation and dehydrogenation pathways, while 

still maintaining a high gravimetric hydrogen density of 11.4 wt%. 

LiBH4 + ½MgH2 ↔ LiH + MgB2 + 2H2  Reaction 1.10 

The formation of MgB2 stabilises the dehydrogenated state, consequently effectively 

destabilising the LiBH4. Dehydrogenation begins from 270°C in a stepwise process, 

with a total of 8 wt% released by 450°C. Hydrogenation can be achieved to a value of 

10 wt% at 400°C under a pressure of 24 bar. 

The desorption of NaBH4, which contains 10.7 wt% hydrogen, has also been 

investigated.40 The compound undergoes dehydrogenation through a multi-step 

process, beginning at a temperature as low as 150°C, although there is only a 

relatively small release of hydrogen at this temperature, the main releases of 

hydrogen occur above the melting point of the material, 505°C, giving a total 

hydrogen release of 10.4 wt%, accounting for nearly all of the hydrogen in the initial 

material. Therefore, the decomposition of NaBH4 differs slightly to that of LiBH4, 

shown in reaction 1.11. 
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NaBH4 → Na + B + 2H2   Reaction 1.11 

This difference is most likely due to the lower decomposition temperature of NaH 

compared to LiH rather than any alternative decomposition pathway taking place. 

The equivalent reverse reaction of reaction 1.9 has been demonstrated for sodium 

hydride as well as calcium hydride.44 

1.6.6.3 Amides 

Alkali metal amides can be formed through the reaction of the molten metal with 

ammonia, through catalysing a metal–ammonia solution with Fe2O3 or by reaction of 

metal hydride with ammonia.45 The thermal decomposition of lithium amide proceeds 

through the release of ammonia gas, forming lithium imide, shown in reaction 1.12, 

and hence, from this point of view, the potential of lithium amide as a hydrogen 

storage material is limited.46 

2LiNH2 → Li2NH + NH3   Reaction 1.12 

A breakthrough in amide hydrogen storage chemistry came in 2002, when Chen et 

al.47 showed that lithium nitride, Li3N, is capable of absorbing 9.3 wt% hydrogen at 

moderate temperature and pressure. This absorption was shown to be a two step 

process represented by reaction 1.13. 

Li3N + 2H2 ↔ Li2NH + LiH + H2 ↔ LiNH2 + 2LiH Reaction 1.13 

Both steps of the reaction have been shown to be reversible, with a theoretical 

hydrogen capacity of 10.4 wt%. Furthermore, the reactions of LiNH2 with LiH and 

Li2NH with LiH were shown to release hydrogen, with only trace amounts of ammonia 

detected. However, the kinetics of the first step have been shown to be poor, with a 

very slow uptake of hydrogen and the Li2NH and LiH reaction was shown to only 

release hydrogen above 320°C in a vacuum.47 It is the amide–imide step that offers 

the most potential for hydrogen storage. This step has favourable thermodynamics 

and a reversible hydrogen capacity of 6.5 wt%, and as a result has been the subject 

of intensive research. The reaction mechanism has been investigated by isotopic 

exchange which led to the conclusion that the hydrogen release mechanism involved 

the combination of positively charged hydrogens present in LiNH2 combining with the 
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negatively charged ones in LiH.48 The effect of catalysis on the reaction has been 

investigated, with TiCl3 shown to decrease the onset temperature of hydrogen 

release.49 Ichikawa et al.50 investigated the mechanism of hydrogen release and 

concluded that it occurs through two steps. Firstly, LiNH2 decomposes to release 

ammonia, which in the second step rapidly reacts with the LiH present, producing 

Li2NH and hydrogen. The lithium hydride acts as a ‗scavenger‘ for ammonia and the 

reaction is so rapid that no ammonia release is detected. David et al.51 used 

structural refinement of X-ray diffraction data to show that the mechanism of 

transformation between LiNH2 and Li2NH during hydrogen cycling involves a bulk 

reversible reaction that occurs in a non-stoichiometric manner within the cubic anti-

fluorite-like Li–N–H structure. Variable stoichiometry was observed in this cubic 

structure, which suggested that the mechanism of absorption and desorption of 

hydrogen involves mobility of Li+ and H+. NH3 in this mechanism is formed as a result 

of Li+ migration to an adjacent, vacant, tetrahedral or octahedral site, resulting in 

unstable, charged species. Charge balance can be restored by the expulsion of a 

proton, leading to NH3 formation, which when released reacts with LiH, releasing H2. 

The hydrogenation mechanism involves surface migratory Li+, which interacts with 

H2, forming LiH and protonic hydrogen. The H+ subsequently bonds with NH2−, 

forming NH2
− and ultimately LiNH2. 

The decomposition of Mg(NH2)2 has also been investigated and was shown to 

proceed by the release of ammonia.52 Adding MgH2 failed to inhibit the release of 

ammonia, whereas the presence of LiH resulted in only hydrogen being released. 

This is due to the reaction of MgH2 with NH3 being a slow reaction in the order of one 

day, whereas LiH and ammonia react in an ultrafast reaction in less than 25 ms.53 

Mixed metal amide–hydride systems have been the subject of research, with Li–Ca, 

and Li–Mg systems being proposed.54 On substituting MgH2 for LiH2 in reaction 1.13, 

it was found that the onset temperature of hydrogen release was decreased and on 

dehydrogenation a mixed Li–Mg imide formed. The reaction was demonstrated to be 

reversible at 200°C and a hydrogen pressure of 32 bar. Further investigations 

showed that the hydrogenation reaction produced lithium hydride and magnesium 

amide in preference to the starting materials of lithium amide and magnesium 

hydride, shown by reaction 1.14.54-56 
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2LiNH2 + MgH2 → Li2Mg(NH)2 + 2H2 ↔  Mg(NH2)2 + 2LiH   Reaction 1.14 

Studies that started by looking at the magnesium amide and lithium hydride system 

settle on a 3:8 optimum molar ratio of the materials, with a reversible hydrogen 

content of 7 wt%. The hydrogenation reaction proceeds at 200°C under a pressure of 

30 bar, with dehydrogenation proceeding at 170°C. Interestingly both 

dehydrogenation and hydrogenation mechanisms have been thought to rely on 

ammonia, although no ammonia release is actually detected, while there is no 

mention of a mixed Li–Mg imide due to the lower temperatures employed. The 

dehydrogenation reactions are shown by reactions 1.14a–c, rehydrogenation by 

reactions 1.15a–c, with the overall reaction shown in reaction 1.16. 

3Mg(NH2)2 → 3MgNH + 3NH3 → Mg3N2 + NH3  Reaction 1.14a 

4NH3 + 4LiH → 4LiNH2 + 4H2   Reaction 1.14b 

4LiNH2 → 2Li2NH + 2NH3    Reaction 1.14c 

4Li2NH + 4H2 → 4LiH + 4LiNH2   Reaction 1.15a 

4LiNH2 → 2Li2NH + 2NH3    Reaction 1.15b 

2NH3 + ½Mg3N2 → 
2

3 Mg(NH2)2   Reaction 1.15c 

3Mg(NH2)2 + 8LiH ↔ Mg3N2 + 4Li2NH + 8H2  Reaction 1.16 

The equivalent Li–Ca system forms a mixed Li–Ca imide at 300°C starting with either 

metal amide.57 However, on rehydriding the mixed imide always results in Ca(NH2)2 

and LiH. There is a significant hydrogen release, approaching the theoretical 

hydrogen capacity of 4.5 wt%, up to 200°C, although as with the Li–Mg example, this 

does not result in the mixed imide forming, rather the individual calcium and lithium 

imides.58 The system is partly reversible at 180°C and 30 bar hydrogen pressure, 

shown in reaction 1.17. 

2LiNH2 + CaH2 → Li2NH + CaNH + 2H2 → Li2Ca(NH)2 + 2H2 ↔ Ca(NH2)2 + 2LiH 

Reaction 1.17 
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1.6.6.4 Mixed Amide Borohydrides 

Reactions of metal amides and borohydrides have proven to produce new materials 

with potential for hydrogen storage. In the case of lithium, a 3:1 mixture of amide to 

borohydride forms a compound of ideal stoichiometry Li4BN3H10.
59, 60 Structural 

investigations showed that both the NH2 and BH4 groups remained intact in the new 

mixed structure and so the compound should be regarded as Li4BH4(NH2)3. This 

material has a high hydrogen content of 11 wt% and decomposes through the 

release of hydrogen from 260°C.59 This shows improvements over the hydrogen 

storage properties of both amides, as hydrogen release is preferential to ammonia, 

and borohydrides, as there is a lower onset temperature of hydrogen release. The 

preferential release of hydrogen has been suggested to be as a result of the 

presence of Hδ+ in the amide group and Hδ− in the borohydride analogous to the LiH–

LiNH2 system. However, this system lacks reversibility, as the ultimate decomposition 

product is lithium boron nitride, Li3BN2, which is thermodynamically very stable. Other 

mixed amide borohydride compounds have been reported, with Li2BH4NH2 

containing a high hydrogen content of 13.5 wt% and Na2BH4NH2, which releases 

hydrogen from 290°C although this is accompanied by a small amount of ammonia 

release.61, 62 The quaternary hydride Li3BN2H8, contains 11.9 wt% hydrogen, of which 

approximately 10 wt% can be released from 250°C, with a small amount of ammonia 

release also observed.63  

1.6.7 Hydrogen Storage Targets 

The greatest challenge facing hydrogen storage is where hydrogen is to be used in 

mobile applications. The United States Department of Energy have outlined a series 

of criteria that a hydrogen store should meet in order to find practical use in mobile 

applications.64 The storage system should allow for a driving range of greater than 

300 miles while also meeting packaging, cost, safety and performance requirements 

to be competitive with comparable vehicles already in the market place. The original 

targets set out by the US Department of Energy were intended to show how 

hydrogen could compete with petrol. However, these targets have since been shown 

to be very optimistic and have recently been adjusted to make them more realistic as 
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well as due to knowledge gained from hydrogen-fuelled vehicles produced since the 

release of the original targets. The current target for the gravimetric capacity of a 

hydrogen storage system is 5.5 wt%, to be achieved by the year 2015, with the 

ultimate goal of increasing this to 7.5 wt%. Some of the targets set out for a hydrogen 

storage system are shown in table 1.2. 

Table 1.2 – Technical targets for an onboard hydrogen storage systems 

Storage Parameter 2015 target Ultimate target 

System gravimetric 

capacity 
5.5 wt% 7.5 wt% 

System volumetric 

capacity 
0.04 kg H2 / L 0.07 kg H2 / L 

Min / Max delivery 

temperature 
−40 / 85°C −40 / 85°C 

Operational cycle life 1500 1500 

Delivery pressure 
5 bar – Fuel Cell 

35 bar – ICE 

3 bar – Fuel Cell 

35 bar – ICE 

System fill time (5 kg H2) 3.3 minutes 2.5 minutes 

 

On top of the requirements detailed above, the system must also be completely and 

rapidly reversible as well as meet standards related to toxicity and safety. A further 

important requirement from a commercial point of view is that the hydrogen storage 

system is of low enough cost that it will be accepted into the marketplace. 

It is important to note that the criteria are not specific to the hydrogen storage 

medium, but rather the hydrogen system as a whole. This includes the balance-of-

plant components, the general term for all other components that are required for a 

hydrogen storage system to be used in conjunction with either a fuel cell or an ICE. 

Components such as pressure regulators, the storage tank and heat exchangers are 

all included in the storage system. Therefore, any hydrogen storage material must 

exceed the gravimetric and volumetric capacity targets so that the system as a whole 

is able to meet them. 
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There is also an important point to note in the case of chemical hydrides as materials 

for hydrogen storage. The gravimetric storage capacity of this system should be 

quoted from the hydrogen releasing reaction and not from the total hydrogen content 

of the material. It is often difficult to release the total hydrogen content of a material at 

moderate temperatures. An example of this being lithium borohydride, a compound 

that contains a total hydrogen content of 18.5 wt%. However, most of this hydrogen 

is released at elevated temperatures and as lithium hydride is one of the 

decomposition products, the amount of hydrogen actually released is reduced from 

this value until even higher temperatures are reached. 

1.6.8 Thermodynamics of Hydrogen Storage 

The relationship between the thermodynamic properties of a hydride and its 

hydrogen storage properties has been discussed in detail.65 The behaviour of a 

hydride can be predicted from the decomposition reaction of a metal hydride, 

equation 1.1 and the related thermodynamic parameters, equation 1.2. 

MHn → M + 
2
n H2(g)    Equation 1.1 

 
       Equation 1.2 

decH is equal to the negative of the standard enthalpy of formation of the hydride, 

fH . The entropy change is primarily due to the evolution of molecular hydrogen 

gas, which is the entropy change on changing from hydrogen in an ordered solid to a 

disordered gas, 
decS ≈ S(H2)° = 130.7 J mol−1 K−1. In order for thermal decomposition 

of the hydride to proceed, the entropy contribution must overcome the enthalpy 

contribution. At a certain temperature, the formal decomposition temperature of the 

hydride, Tdec, the standard Gibbs enthalpy of the decomposition reaction, decG , 

drops below zero. At ΔG = 0, the following is true for the thermal decomposition to 

proceed: 

   Equation 1.3 

From this the formal decomposition temperature can be shown to be: 
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   Equation 1.4 

is the negative enthalpy of formation of the hydride per hydrogen atom 

stored. Therefore, it can be shown that in order to reach an equilibrium pressure of 1 

bar at room temperature, 27°C, the ideal standard enthalpy of hydride formation for 

each hydrogen atom stored is calculated to be 19.6 kJmolH
−1. This value is a useful 

estimate in determining the potential reversibility of a hydrogen storage system, with 

the hydrogen releasing reaction ideally to be endothermic, so as to allow rehydriding 

to be thermodynamically favourable. However, this does not entirely rule out systems 

that do not meet this criterion. There is the possibility for systems that are irreversible 

under moderate pressure to become reversible as the pressure increases. Aside 

from the thermodynamics of the reaction, kinetics also play an important role in 

determining whether a storage system has potential. The kinetics must be sufficiently 

rapid to allow hydrogen to be supplied at a suitable rate to the fuel cell or ICE as well 

as allowing the system to meet recharging time targets. However, the kinetics of a 

reaction are not easily predicted. 
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1.7 Ammonia borane 

1.7.1 Synthesis 

Ammonia borane has recently attracted a growing amount of interest in the field of 

hydrogen storage.66, 67 This is largely due to its high gravimetric hydrogen content of 

19.6 wt% and its high volumetric content of 0.145 kg L−1. Furthermore, it exists as a 

stable white solid at room temperature and pressure and it is non-flammable, non-

toxic and non-explosive. The compound was first discovered in 1955 by Shore,68 

albeit through a stroke of luck. Previous work attempting to synthesise ammonia 

borane had proved unsuccessful. The reactions of Lewis acids with diborane had 

been well investigated, the products being monomeric donor-acceptor adducts; some 

examples are shown in reactions 1.18 and 1.19.69  

B2H6 + 2CO → 2BH3CO    Reaction 1.18 

B2H6 + 2(CH3)3N → 2(CH3)3NBH3            Reaction 1.19 

However, when the Lewis base was NH3, it was shown that NH3BH3 was not 

synthesised and the reaction proceeded through a different reaction pathway, 

synthesising a compound represented by the empirical formula B2H6.2NH3, which 

became known as the diammoniate of diborane, DADB.70 The structure of this new 

compound provided much speculation in the 1940s and early 1950s with three 

distinct possibilities suggested. Firstly a structure containing an ammonium cation, I, 

was proposed by Schlesinger.71 This structure was widely accepted until the 

discovery of the borohydride ion37, 72, 73 which led to a second borohydride anion 

containing structure, II, becoming conceivable.74 The final possibility discussed in the 

literature was that of a structure containing both an ammonium cation and a 

borohydride anion separated by an aminoborane, III.75 
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Finally, in the 1950s a series of papers were published by Parry and Shore76-79 that 

proved that the structure of DADB involved an N–B–N chain and a borohydride 

anion, structure II shown above. One of the key steps in confirming this structure was 

looking at how DADB reacted with ammonium and borohydride salts. DADB was 

found to be unreactive towards borohydride salts, but did react with ammonium 

salts.76 The steps in the reaction with ammonium bromide are shown in reaction 1.20 

and the overall reaction in 1.21. 

NH4Br + DADB → NH4BH4 + [NH3BH2NH3]
+[Br]− Reaction 1.20a 

2NH4BH4 → DADB + 2H2   Reaction 1.20b 

DADB + 2NH4Br → 2[NH3BH2NH3]
+[Br]− + 2H2  Reaction 1.21 

Shore79 attempted to improve the synthesis of the halide salts and attempted a one 

step reaction using ether as a solvent and ammonium chloride, expecting to 

synthesise the chloride analogue of the product shown in reaction 1.21. In fact the 

reaction proceeded differently and resulted in the synthesis of the previously 

unobtained ammonia borane, NH3BH3, as shown in reaction 1.22.  

 Reaction 1.22 

Subsequently it was proven that ammonia borane could be synthesised directly 

through the reaction of ammonium chloride and lithium borohydride as shown by 

reaction 1.23.80 

  Reaction 1.23 

As a result of this success the metathesis reaction in organic solvents has become 

one of the most widely used synthetic procedures to prepare ammonia borane. The 

reaction shown in reaction 1.23 produces ammonia borane in approximately a 30% 

yield. Attempts to modify this synthetic procedure have been undertaken in order to 
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improve the yield. Hu et al.81 investigated the reactions of ammonium salts with 

sodium borohydride in THF. The best results were obtained through the reaction of 

ammonium carbonate with sodium borohydride in a solution of THF at a temperature 

of 45°C, ammonia borane being obtained in an 80% yield. This synthetic procedure is 

now widely used.66, 67, 82-84 A second metathesis synthesis was investigated by 

Ramachandran et al.85 Again ammonium salts were reacted with sodium borohydride 

initially in THF, however, the results showed that as the concentration of sodium 

borohydride in THF increased the purity and yield of ammonia borane decreased. 

The effects of solvent on the reaction were subsequently analysed. It was shown that 

ammonia borane could be obtained with 98% purity in 95% yield when ammonium 

formate and sodium borohydride were reacted using dioxane as a solvent at 40°C. 

This procedure has also been utilised by other research groups.86, 87 

Progress has also been made in the direct reaction of diborane with ammonia. 

Research was carried out with respect to the role of the solvent in this reaction.88 It 

was found that the reaction could be directed in the direction of either the asymmetric 

cleavage product of diborane, DADB, or the symmetric cleavage product, ammonia 

borane. DADB can be synthesised through passing diborane gas into liquid ammonia 

at −78°C. If diborane is first dispersed in THF, producing a BH3.THF adduct, when 

ammonia is passed through the solution at −78°C, a 50/50 mixture of ammonia 

borane and DADB can be obtained. Ammonia borane can be removed from the 

mixture by extracting it with ether, giving a 50% yield. Mayer89 showed that the 

basicity of the solvent had an influence on the competing asymmetric and symmetric 

pathways, with more basic solvents favouring ammonia borane formation. Ammonia 

borane could be prepared in 68 to 76 % yields in glyme after the addition of gaseous 

ammonia to diborane solutions of ether. 

1.7.2 Structure 

Following on from the discovery of ammonia borane, investigations into its structure 

began. As evidence for the discovery of the compound, the powder X-ray diffraction 

(XRD) pattern of ammonia borane was obtained.80, 90 This data was used to 

determine a body centred tetragonal unit cell, with a = 5.255 Å and c = 5.048 Å at 

room temperature.91 A proposed polar space group of I4mm (#107) was given, in 
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agreement with the expected dipole moment of the molecule. The NH3BH3 molecules 

were located at the vertices and body centre of the unit cell with all B–N bonds being 

oriented in the same direction, parallel to c, as shown in figure 1.4. However, the H 

atom positions could not be determined. A second study supported these 

conclusions.92 However, it was also noted in this study that at low temperature, 230 ± 

5 K, a phase transition occurred, causing the appearance of additional faint lines in 

the diffraction pattern. 

 

Figure 1.4 – The room temperature structure of NH3BH3, the B atoms are shown in 

green and N in blue (Hydrogen atoms not shown)91 

This phase transition has been investigated, occurring at approximately 220 K. The 

low temperature phase has been shown to be orthorhombic with a = 5.395 Å, b = 

4.887 Å and c = 4.986 Å and a space group of Pmn21 (#31).93 The structure of the 

orthorhombic phase was first reported by Hoon94 through X-ray powder diffraction 

techniques. A subsequent NMR study showed that in this low temperature phase 

both the BH3 and NH3 units are stationary, showing that the H atoms have well 

defined equilibrium positions.95 However, this crystal structure showed discrepancies 

between experimental and calculated data.96 A single crystal neutron diffraction study 

of the low temperature phase finally reported the definitive structure, figure 1.5.93 This 

study located all of the hydrogen atoms and corrected the previously inaccurate 

assignment of the B and N locations of previous studies. This study showed that the 

B–N bond is not completely parallel to the c-axis. The phase transition is triggered by 

the reorientation of the BH3 and NH3 units, which leads to the tetragonal phase being 

more disordered than the orthorhombic phase, causing there to be a higher degree of 

entropy in the higher temperature tetragonal phase. 
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Figure 1.5 – The low temperature orthorhombic structure of NH3BH3, the B atoms are 

shown in green, N in blue and H in pale pink93 

At room temperature ammonia borane exhibits some unusual physical properties. 

Despite being isoelectronic with ethane, which has a melting point of −181°C, the 

compound exists in the solid state and does not melt until 114°C. This comes from 

the fact that ammonia borane is a Lewis adduct. The B and N atoms are held 

together through a dative covalent bond, as the lone pair of the nitrogen interacts 

with an empty p-orbital of the boron. The intramolecular polarity of the molecule could 

contribute to the elevated melting point, however, a second compound isoelectronic 

to ethane, methyl fluoride, is also polar, but its melting point is only slightly elevated 

from that of ethane to −141 °C. The intramolecular polarity does in fact play a key 

role in the physical properties of ammonia borane; the hydrogen atoms bonded to 

nitrogen are protic in character whereas those bonded to boron are hydridic. This 

leads to a network of dihydrogen bonds, shown in figure 1.6, giving added stability to 

the structure. 

H3BH2N–H
δ+

 – – –
δ−

H–BH2NH3 

Figure 1.6 – Dihydrogen bond found in ammonia borane 

These interesting dihydrogen bonds found in ammonia borane differ to the 

conventional hydrogen bond. A typical hydrogen bond involves a protic hydrogen of 

an X–H bond, where X = N or O, the hydrogen bond donor, interacting with the basic 
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lone pair of an electronegative atom, the hydrogen bond acceptor. However, studies 

by Richardson et al.97 showed that the bonding pair can lead to intramolecular 

hydrogen bonds of the type N–H---H–M and O–H---H–M. This study was further 

extended to boron and nitrogen containing compounds. Analysis of boron and 

nitrogen containing molecules showed that these interactions were found to have 

bond strengths between 12.6 and 29.3 kJ mol−1, which is comparable to a classical 

hydrogen bond of average strength.98 The H---H distances were found to be between 

1.7 and 1.9 Å in length, which is much shorter than the sum of van der Waals radii for 

two hydrogen atoms of 2.4 Å. In ammonia borane these H---H interactions have a 

calculated bond strength of 25.5 kJ mol−1 and in the low temperature orthorhombic 

phase the H---H distance has been found to lie in the range 2.02 to 2.23 Å through 

neutron diffraction studies.93, 98 

The room temperature tetragonal structure is highly disordered, due to the motion of 

the hydrogen atoms. The earliest studies on the room temperature structure failed to 

locate the hydrogen atoms,91, 92 although in both cases it was stated that there must 

be disorder to agree with the four-fold symmetry. This four-fold rotation axis 

contradicts the three-fold symmetry expected from tetrahedral –BH3 and –NH3 units. 

There are two possibilities to account for this. Firstly, dynamic disorder, where the 

hydrogen atoms are free to rotate about the B and N atoms or secondly, static 

disorder, where individual –BH3 and –NH3 groups orient randomly with respect to the 

a and b directions. NMR spectroscopy has been utilised to study the motion of the 

hydrogen atoms in both phases. In the low temperature orthorhombic phase, 

hydrogen atoms exchange within each of the three sites available for both –BH3 and 

–NH3 groups.95, 99 Motion occurs more rapidly in the –NH3 group than the –BH3 group 

meaning that they are independent of one another. The temperature dependence of 

the two rotations varies and as the phase transition temperature is approached, they 

rotate at similar rates. However, there are discrepancies in the literature about the 

nature of the rotations in the tetragonal phase. Either there is free rotation of the 

hydrogen atoms95 or there is a whole molecule twelve fold rotation about the B–N 

bond.99 
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Studies have been undertaken into locating the hydrogen atoms in the room 

temperature phase. A powder XRD study by Hoon and Reynhardt94 attempted to 

solve the crystal structure, however, the study was unsuccessful due to the disorder 

in the structure. It was proposed that due to the space group symmetry of the 

structure, I4mm, the vertices of the BH3 and NH3 groups can point in four mutually 

perpendicular directions, all perpendicular to the B–N axis, which means that each H 

atom can occupy any of twelve positions. A second study involving single crystal 

XRD was undertaken by Bowden et al.100 The positions for boron and nitrogen 

refined simply to stable positions, but again the hydrogen positions proved 

problematic. A 3D Fourier difference map was calculated, which showed hydrogen 

atoms bonded to both boron and nitrogen are disordered in a halo-like arrangement 

perpendicular to the B–N bond. The symmetry of the halo, was weakly four-fold, as a 

consequence of the space group symmetry, meaning that the number of potential 

hydrogen positions has to be a multiple of four. A model accounting for the disorder 

was constructed, which proposed eight potential hydrogen positions around each 

boron and nitrogen atom, with an occupancy of 3/8 in order to maintain the 

stoichiometry. However, such a model was calculated to introduce new weak 

diffraction peaks into the XRD pattern, which an exhaustive search of the data failed 

to find. The results of the model therefore showed that hydrogen atoms do not 

occupy fixed positions in an ordered arrangement. The average hydrogen positions 

were therefore refined for the structure. A more recent powder neutron diffraction 

study attempted to solve the structure by analysing a fully deuterated sample of 

ammonia borane, ND3BD3.
101 Both the proposed models of Hoon and Reynhardt, 

twelve possible hydrogen positions, and Bowden et al., eight possible hydrogen 

positions, were used to refine the structure. It was found that the best refinement was 

obtained with the eight possible positions model. Refined deuterium positions are 

published in this study. However, there are significant differences between this study 

and the single crystal XRD study with respect to atomic coordinates. To date, it has 

proved impossible to successfully refine the hydrogen positions in the room 

temperature tetragonal structure of ammonia borane due to the disorder observed in 

the structure. 
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1.7.3 Decomposition 

The earliest studies of ammonia borane showed that it is subject to a slow loss of 

hydrogen even at room temperature.90, 102 This loss of hydrogen was postulated to be 

accompanied by the formation of DADB. Pure ammonia borane was shown to 

dissolve completely in ethyl ether. However, a sample kept in a dry atmosphere for a 

short period was shown not to redissolve fully, suggesting a partial conversion to 

insoluble substances including DADB and polyaminoborane may have occurred. 

Further to this, ammonia borane dissolved in ether was observed to precipitate slowly 

an unidentified white solid. No observations about the behaviour of ammonia borane 

under thermal treatment were made during these studies. 

The first study of the thermal decomposition of ammonia borane was carried out by 

Hu et al.103 Thermogravimetric analysis, TGA, results showed that a rapid decrease 

in mass occurred between 120°C and 133°C, accompanied by a mass loss of 31.6%. 

As ammonia borane has a total hydrogen content of less than 20 wt%, hydrogen 

cannot be the sole decomposition product. A differential thermal analysis, DTA, study 

exhibited a sharp endothermic peak at 112°C. This corresponded well to the 

observed melting point of the compound, 112 – 114°C.89  At 117°C a sharp 

exothermic peak is observed, reaching a maximum at 130°C. This peak was 

accompanied by a rapid voluminous expansion and the release of a large amount of 

gas. Finally a broad exothermic peak was observed from 150°C to 200°C. A 

combined pressure and temperature measurement showed that a sharp pressure 

increase was observed from 120°C, corresponding closely with the first exothermic 

peak. On reaching 145°C, the rate of pressure increase decreased, suggesting a 

second decomposition step. A final pyrolysis study involved heating ammonia borane 

to 200°C. 2.33 mmol of hydrogen were calculated to be released per mmol of 

ammonia borane and infra-red (IR) spectroscopy showed that both diborane and 

borazine were released as a result of decomposition. This two step decomposition 

mechanism was rationalised firstly by an exothermic release of hydrogen through 

either reaction 1.24 or reaction 1.25. 

NH3BH3 → (NH2BH2)n + H2    Reaction 1.24 
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2NH3BH3 → NH3BH2NH2BH3 + H2   Reaction 1.25 

The exact nature of the step was not determined although both steps would lead to a 

material of BNH4 composition. The exact composition of the product was not 

determined but from previous work was suggested to be made up of 

cyclodiborazane, (BNH4)2, cyclotriborazane, (BNH4)3, cyclopentaborazane, (BNH4)5, 

and polyaminoborane, (BNH4)n.
104 The vast number of potential products in this step 

shows the complex nature of the thermal decomposition of ammonia borane. The 

BNH4 materials further undergo an exothermic hydrogen release step, producing a 

material of composition BNH2, reaction 1.26. 

(NH2BH2)n → (NHBH)n + nH2   Reaction 1.26 

An IR spectrum taken of a sample of ammonia borane pyrolysed at 600°C showed 

features at 1390 and 810 cm−1, which are also observed in boron nitride, showing this 

is the ultimate decomposition product. 

Komm et al.105 undertook a study related to the synthesis of poly(aminoborane), 

(NH2BH2)n. Ammonia borane heated to 140°C frothed and released gas, which was 

presumed to be hydrogen. A white solid was collected after the experiment was 

completed in a yield of 30%. Elemental analysis of the product showed that it was of 

empirical formula BNH4, however, molecular mass measurements proved 

unsuccessful due to the poor solubility of the material in solvents. This is consistent 

with either a cyclic or linear polymer of relatively high molecular weight, again 

showing the polymeric nature of the products from the thermal decomposition of 

ammonia borane. 

A DTA study by Sit et al.106 investigated how the heating rate affected the 

decomposition pathway. For all heating rates a sharp endothermic peak was followed 

by a sharp exothermic peak, however, the onset temperature of these processes was 

shown to be reliant on the heating rate, while features of the DTA curve became 

more distinct, with four separate processes being visible, with the lower heating 

rates. It was also observed that a slow heating rate resulted in the solid beginning to 

decompose at approximately 30°C below the melting point. The exothermic peaks 
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were again assigned to the formation of polyaminoboranes accompanied by 

hydrogen release and their subsequent decomposition, further releasing hydrogen. 

Wolf et al.66 further made progress in understanding the decomposition pathway 

through a study involving TGA, DSC, volumetric measurements and IR spectroscopy. 

DSC measurements showed that when a heating rate of 1°C min−1 was used, a 

previously unreported exothermic event was observed at 95°C, closely followed by 

an endothermic event and two further exothermic events at 113 and 125°C. There 

was considerable overlap between all of these events, each starting before the 

previous event had finished. A slower heating rate of 0.05°C min−1 significantly 

decreased the onset temperature of the first exothermic event to 82°C. Furthermore 

the endothermic event was no longer observed: the material completely decomposed 

below the melting point. Isothermal DSC measurements between 70 and 90°C show 

a single exothermic event, which was strongly dependent on temperature, occurring 

after forty minutes at 90°C and twenty four hours at 70°C. The mean enthalpy of 

reaction was calculated to be −21.7 kJ mol−1. The solid residue produced after 

heating was determined to be mainly composed of polyaminoborane. Isothermal 

volumetric measurements carried out at 90°C showed the first decomposition step to 

be accompanied by the release of hydrogen, with one mole of hydrogen released per 

mole of ammonia borane. Although the rate of release was strongly dependent on 

temperature, the amount of hydrogen release was independent of temperature. TGA 

measurements coupled with DSC and IR spectroscopy showed a mass loss of 10 

wt% for the first decomposition step. A one mole loss of hydrogen would correspond 

to a 6.5 wt% loss and hence volatile products such as borazine must account for the 

additional weight loss. IR spectroscopy identified monomeric aminoborane and 

borazine as products from this decomposition step. Monomeric aminoborane has 

been shown to be unstable at room temperature and rapidly polymerises.107 These 

measurements also showed that borazine was detected after the release of 

monomeric aminoborane suggesting that borazine is released from decomposition 

products, potentially through the polymerisation of monomeric aminoborane and not 

directly from ammonia borane. This study showed that there are several reactions 

taking place simultaneously during the thermal decomposition of ammonia borane, 

the main decomposition product being polyaminoborane, along with other volatile 
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products including borazine. Furthermore, the decomposition process was shown to 

be strongly dependent on temperature. 

A related study by Baitalow et al.108 resulted in similar findings. A combined 

volumetric–TGA study showed two weight loss steps, which could be separated with 

a suitably slow ramp rate. 1.1 moles of hydrogen per mole of ammonia borane were 

calculated to be released during the first decomposition step, agreeing well with the 

formation of polyaminoborane. After heating to 200°C a total of 2.2 moles of 

hydrogen per mole of ammonia borane were released, which would correspond to a 

total mass loss of 14.3 wt%. However, the observed mass loss was in excess of this 

value and so additional volatile products must account for this difference. At a 

heating rate of 10°C min−1 the observed mass loss was as high as 33 wt%. Mass 

spectrometry revealed that hydrogen, borazine and monomeric aminoborane were 

released during the decomposition process. Hydrogen release was observed in both 

decomposition steps, independent of the heating rate. However, the heating rate did 

affect the release of volatiles. At a higher heating rate borazine and monomeric 

aminoborane were released in both steps, but when the heating rate was reduced, 

borazine release was suppressed in the first step. These two volatiles are released 

simultaneously and it is therefore reasonable to conclude that borazine is formed 

through the dehydrogenation of monomeric aminoborane, forming the highly reactive 

monomeric iminoborane, which then trimerises producing borazine. The total 

hydrogen release was again shown to be independent of both temperature and 

heating rate, although its slow release rate in isothermal experiments at temperatures 

below 90°C was discussed. 

Up to this point only the thermodynamic properties of the thermal decomposition of 

ammonia borane had been reported, the mechanism of the release of gases was not 

fully understood. A study by Smith et al.109 suggested that the decomposition 

pathway proceeded by a bimolecular mechanism. The gases released during 

thermolysis from a mixture of NH3BH3 and ND3BD3 were analysed and all three 

molecular species H2, HD and D2 were observed. This study also showed that 

hydrogen could be released at a temperature as low as 70°C in isothermal 

experiments, although there was a long delay before hydrogen release began. An in 
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situ solid state 11B NMR study was undertaken by Stowe et al.110 which analysed the 

decomposition of ammonia borane and the evolution of boron containing non-volatile 

intermediates and products at 88°C. The ammonia borane starting material was 

shown to have two observable peaks, due to quadrupolar coupling, centred about a 

chemical shift of −27.0 ppm. The first change in the spectrum saw the intensity of the 

starting material decrease and a new resonance grow at −23.0 ppm. Two new 

additional resonances then appeared corresponding to BH2 and BH4 at −13 and −38 

ppm, the groups present in DADB. Pressure monitoring of ammonia borane 

decomposition at 88°C showed that there was very little pressure change during this 

time period, suggesting that little hydrogen is released at this time. The products 

formed during this period are precursors to hydrogen loss. This induction period was 

discussed as involving the disruption of the network of dihydrogen bonds, forming a 

new more mobile phase of ammonia borane. After DADB formation, hydrogen 

release began, evidenced by the broadening of the BH2 feature and the appearance 

of a broad BH feature, consistent with polymerised species. The BH4 signal remained 

constant after its appearance. DADB formation occurs during the nucleation step, this 

was identified as being the critical nucleation event that allows hydrogen release to 

commence. The final step in the decomposition was described as being a growth 

step. This step was described as initially involving the bimolecular reaction of DADB 

with unreacted ammonia borane resulting in the release of hydrogen and a DADB 

like species. This DADB like species then further reacts with ammonia borane to 

produce longer N–B chains, further releasing hydrogen and polyaminoborane 

precursors. The proposed mechanism of hydrogen release is shown in figure 1.7. 

Bowden et al.82 performed combined DSC–TG isothermal measurements. Two 

exothermic events were observed, which could be separated at lower temperatures. 

The first exotherm proceeded without any weight loss, whereas the second 

proceeded with a weight loss greater than 6.5 wt%, a larger weight loss than for the 

expected loss of one equivalent of hydrogen gas. This weight loss was larger at 

higher temperatures, due to the increased release of volatile species such as 

borazine. The first exothermic step was further analysed by optical microscopy and 

XRD. Microscopy observations showed significant changes in the molecular nature of 

ammonia borane without changes in the morphology of the crystals. It was concluded 
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Figure 1.7 – The proposed thermal dehydrogenation mechanism of ammonia 

borane110 

that the original alignment of polar B–N bonds along the c axis is disrupted during 

heating, removing the net polarity. This in turn means that the more mobile phase of 

ammonia borane involves more than just a disruption of the dihydrogen bonding 

network and there is a substantial disordering of the ammonia borane molecules. The 

XRD patterns showed that crystallinity was lost as temperature increased, at the 

same temperatures at which changes in the microscopy images were observed. The 

intensity of the peaks in the pattern decreased in a sigmoidal fashion, which is 

consistent with a nucleation and growth mechanism. Finally this study calculated an 

activation energy of 125 kJ mol−1 for the decomposition process. This value is close 

to the bond energy of the B–N dative bond,111 which is consistent with the formation 

of DADB during the nucleation step as this requires the breaking of this bond. 

The nature of the polymeric decomposition product, (NH2BH2)n has been 

investigated. A combined thermogravimetric–differential scanning calimetry (TG–

DSC) study showed that three mass loss steps are observed, all exothermic in 

nature, rationalised by reactions 1.27 – 1.29.112 

NBH4 → NBH2 + H2 6.9 wt%   Reaction 1.27 

NBH2 → NBH + ½H2  3.5  wt%   Reaction 1.28 
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NBH → NB + ½H2 3.5 wt%   Reaction 1.29 

However, observed total mass losses were greater than 14 wt% and so desorption of 

volatile substances, such as borazine, could account for the enhanced mass losses. 

Further to this it was noted that the sample history, with respect to its preparation had 

an effect on results; weight losses in the range 13.5 wt% to 32.0 wt% were observed. 

With such differences in results, it was suggested that there are competing 

decomposition pathways in addition to a stepwise hydrogen desorption mechanism. 

Baumann et al.113 further analysed the decomposition of polyaminoborane, 

synthesising the material through controlled decomposition of ammonia borane at 

90°C. A DSC study showed an exothermic event at 115°C, consistent with the 

second exothermic event seen in the decomposition of ammonia borane.66, 103 It was 

observed that, as with ammonia borane, increasing the heating rate caused an 

increase in the temperature at which polyaminoborane decomposes. The enthalpy of 

decomposition was shown to be dependent on heating rate; heating at 10 °C min−1 

gave a value of −15.4 kJ mol−1, whereas at 0.1°C min−1 a value of −23.9 kJ mol−1 

was calculated. The effect of heating rate shows that different reaction pathways are 

possible, causing differences in decomposition products. Combined TG–FTIR and 

TG–MS results showed that monomeric NH2BH2, borazine, diborane and hydrogen 

were released. Although the amount of hydrogen released was independent of 

heating rate with 1.1 moles of hydrogen released per mole of polyaminoborane, the 

amount of monomeric NH2BH2 and borazine released increased with rising heating 

rate. The release of 1.1 moles of hydrogen is consistent with the formation of a 

second polymeric species, polyiminoborane, (NHBH)x. 

1.7.4 As a hydrogen storage material 

The potential of ammonia borane as a hydrogen storage material was first discussed 

by Wolf et al.66 The high hydrogen content, 19.6 wt%, moderate temperatures of the 

thermal decomposition process and the exothermic character of the decomposition 

process were cited as the reasons for the compound‘s potential. However, ammonia 

borane does not meet the previously discussed United States Department of Energy 

targets for onboard hydrogen storage systems.67 Only 6.5 wt% of the compound‘s 
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hydrogen content can be released under isothermal conditions at temperatures 

below 100°C and this release suffers from a long induction period. Furthermore, the 

release of hydrogen occurs over a broad temperature range during temperature 

ramping experiments and occurs over a long time period under isothermal conditions 

below the operating system target temperature of 85°C. The two steps of hydrogen 

release have also proved difficult to separate at faster ramp rates and higher 

temperatures. The system also currently lacks reversibility, at least partly as a result 

of the exothermic release: attempts to directly rehydrogenate the system have 

proved unsuccessful.114 Finally, the hydrogen release is readily polluted with other 

decomposition products, including monomeric ammonia borane, borazine and 

diborane.67, 108 Borazine release during the decomposition of ammonia borane is so 

prominent that it has been used as a method of producing borazine on a laboratory 

preparation scale in high purity.115 The release of borazine and subsequent entry of 

the gas into a fuel cell would poison the fuel cell and prevent it from working. For 

these reasons, interest in the solid state storage of hydrogen in ammonia borane has 

fallen off and interest has moved onto looking at how the system can be modified in 

order to improve its hydrogen storage properties. 
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1.8 Aims 

Ammonia borane has been identified as having a great deal of potential as a material 

for hydrogen storage due to its high gravimetric hydrogen content. The interaction of 

hydridic boron-bound and protic nitrogen-bound hydrogen favours hydrogen release 

over other gases such as ammonia. The aim of the project was to investigate the 

potential for improving the hydrogen storage properties of the ammonia borane 

system through the introduction of metal cations. This was an area of hydrogen 

storage that had not been investigated at the start of this project. 

The reactions of ammonia borane with metal hydrides, namely lithium, sodium and 

calcium hydrides were investigated. The interaction of lithium and sodium amides 

with ammonia borane was also explored. The chief method employed to characterise 

the reaction products was that of powder X-ray diffraction. In order to investigate the 

hydrogen storage properties of the synthesised materials, thermal desorption 

investigations were performed. Temperature programmed desorption experiments in 

conjunction with mass spectrometry were carried out to obtain information about the 

gases released during both synthesis and decomposition of the materials. Intelligent 

gravimetric analysis and thermogravimetric analysis were employed to further 

investigate the thermal decomposition properties of the synthesised materials by 

monitoring the weight losses experienced during heating as well as recording the 

gases released using a mass spectrometer. Reaction pathways were investigated 

with respect to the changes in boron environments within the samples using solid 

state 11B magic angle spinning nuclear magnetic resonance spectroscopy. This 

method of analysis allowed information regarding amorphous reaction products to be 

obtained. In the case of the sodium hydride and ammonia borane reaction, the 

pathway was also investigated using solid state 23Na magic angle spinning nuclear 

magnetic resonance spectroscopy. The final method of characterisation used to 

investigate the products of the various reactions was that of Raman spectroscopy in 

order to obtain information regarding the changes in bonds within the samples. 
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Chapter 2 

 

Experimental 

 

2.1 Crystallography1-3 

2.1.1 Crystal Systems and Unit Cells 

In the solid state, all crystalline materials adopt a regular distribution of atoms or ions 

in three dimensions. This arrangement can be denoted by a repeatable unit, a unit 

cell. By definition the unit cell is the simplest portion of the structure that when 

repeated by translation shows the full symmetry of the crystal structure. A three 

dimensional unit cell is shown in figure 2.1. 

 

Figure 2.1 – General three-dimensional unit cell definition 

The angles and lengths that define the unit cell size are the lattice parameters. In the 

unit cell in figure 2.1 the lattice parameters may take any values and as a result the 

cell shown has no symmetry. An increasing amount of symmetry in the unit cell 

produces relationships between the various cell parameters, which leads to the 

seven crystal systems, table 2.1. These are the only independent unit cell shapes 

possible in three-dimensional crystal structures. 
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Table 2.1 – The dimensions and essential symmetry features of the seven crystal 

systems 

Crystal System Unit Cell 
Dimensions 

Essential Symmetry Allowed 
Lattices 

Cubic a = b = c 
α = β = γ = 90° 

Four threefold axes P, I, F 

Tetragonal a = b ≠ c 
α = β = γ = 90° 

One fourfold axis P, I 

Orthorhombic a ≠ b ≠ c 
α = β = γ = 90° 

Three twofold axes P, I, F, C 

Hexagonal a = b ≠ c 
α = β = 90° γ = 120° 

One sixfold axis P 

Trigonal / 
Rhombohedral 

a = b = c 
α = β = γ ≠ 90° 

One threefold axis R 

Monoclinic a ≠ b ≠ c 
α = γ = 90° β ≠ 90° 

One twofold axis P, C 

Triclinic a ≠ b ≠ c 
α ≠ β ≠ γ ≠ 90° 

None 
 

P 

 

2.1.2 Lattices 

For crystalline materials, the array of how atoms, ions or molecules are repeated is 

described as a lattice. Lattices provide no information about actual position of atoms 

or molecules, but show the translational symmetry of the material by locating 

equivalent positions, which are known as lattice points. The environment of an atom 

placed on one of these lattice points is identical to that placed on any other lattice 

point. 

There are four potential lattice types for three-dimensional crystals. The simplest of 

which is a primitive cell, P, containing only a single lattice point, at the cell corners, 

the only purely translational symmetry is that of the unit cell. The body centred lattice, 

I, has an additional lattice point located at the cell centre, while the face centred 

lattice, F, has additional lattice points at the centre of all the unit cell faces. Lattices 

with lattice points in just one face are also known as face centred. Conventionally, 

these lattices are known as C-type lattices, where the additional lattice point is 

located at the centre of the face of the ab plane. It is also possible to have A and B 

centring, but redefining a, b and c directions results in a C type lattice. 
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The combination of the seven crystal classes with the four lattice types gives rise to 

14 possible combinations, which are known as Bravais lattices, table 2.1. 

2.1.3 Lattice Planes and Miller Indices 

Lattice points which form a repeatable array in 3D can be connected by lattice 

planes. Each plane is part of a parallel set of equally spaced planes and each lattice 

point must lie on one of the lattice planes. These imaginary planes extend throughout 

the complete crystal structure, intersecting the unit cell at specific points, which are 

described by Miller indices. In a 3D structure three indices are required and are 

labelled h, k and l, which take values that are either positive or negative integers or 

zero. For a given set of planes the values of h, k and l are given by the reciprocal of 

the fractional intercepts along each of the cell directions. Where planes are parallel to 

one of the unit cell directions, the intercept is at infinity and therefore the Miller index 

for the axis is 1/∞= 0. Some examples of lattice planes and their Miller indices are 

shown in figure 2.2. The separation between equivalent planes is known as the d-

spacing, dhkl, which is also the perpendicular distance from the origin to the nearest 

plane. The relationship between the d-spacing and the lattice parameters can be 

determined geometrically, but is dependent on the crystal system. For a cubic system 

it can be calculated using the following equation: 

     Equation 2.1

 

 

Figure 2.2 – Examples of lattice planes and their Miller indices  
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2.1.4 Crystal Structures 

A crystal structure is described by lattice parameters, atomic positions within the unit 

cell and the symmetry of the unit cell. The inclusion of atoms within a unit cell can 

result in additional translational symmetry aspects to those that describe the Bravais 

lattices that must be considered. Atomic arrangements also result in screw axes and 

glide planes. The inclusion of all symmetry possibilities in 3D results in 230 space 

groups, which completely describe the symmetry of the unit cell. 

 

2.2 X-Ray Diffraction1, 2, 4 

2.2.1 Generation of X-rays 

X-rays are a form of electromagnetic radiation that are able to interact with electrons 

in matter. They are produced when high energy particles such as electrons collide 

with matter, resulting in the particles slowing down or stopping. In the case of a 

standard laboratory X-ray diffractometer this matter is most commonly copper metal, 

as was the case in this study. The resultant X-ray spectrum is composed of two 

elements, a broad background formed from the bremsstrahlung radiation and a 

number of sharp maxima. These sharp maxima are produced by well defined 

electronic transitions, which occur when the collision is of sufficient energy to eject an 

electron from the metal atoms‘ core orbitals. The filling of this hole by electron decay 

from a higher energy orbital occurs with the emission of radiation. Figure 2.3a shows 

an outer electron from the 2p or 3p orbitals dropping down to fill the vacant 1s orbital; 

the energy released in this process appears as X-ray radiation. The transitions are 

accompanied by fixed values of wavelength; in the case of copper, the 2p → 1s 

transition is called Kα and has a wavelength of 1.5418 Å, while the 3p → 1s transition 

is referred to as Kβ, with a wavelength of 1.3922 Å. The Kα transition occurs more 

frequently and with more intensity than Kβ and is more commonly used in diffraction, 

as was the case in this study. Both Kα and Kβ appear as close doublets due to the 

two possible spin states of the 2p electron. A typical X-ray spectrum for a copper X-

ray source is shown in figure 2.3b. 
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Figure 2.3 – (a) Generation of X-rays, (b) X-ray spectrum of copper 

X-ray diffraction requires a single intense single X-ray wavelength. This is achieved 

through monochromation. In this study a single germanium crystal was employed. 

The crystal is oriented so that one set of planes which diffracts strongly is at the 

Bragg angle to the incident beam. The Bragg angle is calculated for the wavelength 

of Kα1 so that only the Kα1 rays are diffracted, resulting in monochromatic radiation.  

2.2.2 Bragg’s Law 

The Bragg approach to diffraction is to regard crystals as built up in layers or planes 

so that each acts as a semi-transparent mirror. A proportion of the X-rays are 

reflected off a plane with the angle of reflection equal to the angle of incidence, while 

the remainder are transmitted and subsequently reflected by other later planes. The 

derivation of Bragg‘s law is shown in figure 2.4. Two X-ray beams, 1 and 2, are 

reflected from adjacent planes, A and B. Compared to beam 11‘ beam 22‘ has to 

travel the extra distance xyz and for the reflected beams 1‘ and 2‘ to be in phase, this 

distance must be equal to an integer number of wavelengths. 

 

Figure 2.4 – Derivation of Bragg‘s law 
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The relationship between the d-spacing and the angle of incidence, θ, to the distance 

xy is given by: 

xy = yz = d sinθ 

Hence, xyz = 2d sinθ 

Enforcing the condition that, xyz = nλ 

Gives Bragg‘s Law: nλ = 2d sinθ         Equation 2.2 

When Bragg‘s law is satisfied, the reflected beams are in phase and there is 

constructive interference. At angles other than the Bragg angle the reflected beams 

are out of phase and destructive interference occurs. In real crystals thousands of 

planes are present, which means that if the incident angle is incorrect by more than a 

few tenths of a degree, complete cancellation of the reflected beam usually occurs. 

2.2.3 Powder Diffraction 

Powder samples contain a massive number of very small crystallites which randomly 

adopt every possible orientation, consequently the lattice planes are also present in 

every possible orientation. An X-ray beam incident on a powder sample will be 

diffracted in all possible directions as governed by the Bragg equation. The effect of 

this is that each lattice spacing in the crystal gives rise to a cone of diffraction, figure 

2.5. These cones consist of a set of closely spaced dots, where each dot represents 

diffraction from a single crystallite within the sample. The positions of the various 

diffraction cones can be determined by a diffractometer, which uses an X-ray 

detector to measure the positions of diffracted beams. The detector scans a range of 

2θ values at a constant angular velocity and produces a pattern, with the signal 

intensity being directly proportional to the amount of X-rays hitting the detector. 

Powder diffraction allows the qualitative identification of crystalline phases present in 

a sample, but gives no direct information regarding their chemical composition. Every 

crystalline material has a characteristic powder pattern which can be used as a basis 

to identify the phases present in a pattern with the two variables in a pattern being 

peak position and intensity. 
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Figure 2.5 – Formation of cones of diffracted radiation 

Peak positions are determined by the wavelength of radiation used for powder 

diffraction and the unit cell size, shape and symmetry. The peak positions correspond 

to the separation distances of lattice planes within the unit cell. 

Peak intensities are important as they are necessary in order to solve crystal 

structures and they are required to identify phases present in a sample. Different 

parameters are capable of affecting either the absolute or relative intensities of the 

peaks. Absolute intensities are dependent on experimental factors such as data 

collection time and the scattering power of the sample as well as instrumental factors 

such as the intensity of the radiation source and the efficiency of the detector. The 

relative overall intensity of peaks for one phase compared to another is due to the 

relative abundance of that phase. The relative intensities of peaks for a specific 

phase are dependent on the types of atom present as well as their position in the unit 

cell. Preferred orientation can also affect the observed intensities. The sample is 

assumed to be a collection of crystallites of completely random orientation. However, 

if the crystallites are of a certain size or shape, such as plate-like or needle-like 

crystallites, they may align themselves into a non-random ordering. This ordering of 

crystallites can lead to errors in the observed intensities, with disproportionally high 

intensities from lattice planes in the aligned crystallographic plane. 

 

The intensity of a Bragg peak can be calculated from the following equation: 

   Equation 2.3 
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The terms of equation 2.3 are described below. 

)(hklK = Proportionality constant 

)(hklm = The multiplicity of the Bragg reflection, taking into account the number of 

planes which contribute to a reflection 

)(hklA = An absorption correction factor, which takes into account the proportion of the 

incident and diffracted X-rays absorbed by the sample. The extent of absorption 

depends upon the sample composition and the sample thickness in the direction of 

diffraction 

)(hklLp = This contains the Lorentz factor, which is the correction for the variation in 

the probability of observing a Bragg reflection at the diffraction angle and the 

Polarisation factor, which accounts for the polarisation of the X-ray beam 

2

)(hklF = The structure factor, which has the greatest influence upon the intensity of the 

Bragg peaks. It describes the interaction of the diffracted radiation with the atoms in 

the unit cell. It is calculated by: 

  Equation 2.4 

The terms of equation 2.4 are described below. 

nf = The atomic scattering factor of the nth atom in the unit cell with the coordinates    

( nnn zyx ,, ) 

nN = The site occupancy of the nth atomic site 

nnn zyx ,, = Coordinates of the nth atom in the unit cell 

 

= The thermal factor, which takes into account the reduction of 

intensity due to thermal vibrations of the atoms. B is proportional to the 

mean square oscillations of the atoms and is temperature dependent 
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2.2.4 Laboratory X-ray Diffraction 

X-ray data were collected using a Bruker D8 diffractometer operating in transmission 

mode. Cu Kα1 radiation, λ = 1.5406 Å, was used, with a germanium crystal as a 

monochromator employed to focus the X-rays into a convergent beam. A movable 

position sensitive detector with a step size of approximately 0.02° was used. The 

samples were rotated in the plane perpendicular to the X-ray beam. Samples were 

prepared by grinding in an argon filled glove box and sealed from the atmosphere 

between two layers of Scotch® Magic  tape. 

 

2.3 Rietveld Analysis5 

The principal aim of Rietveld analysis is to refine structural parameters in order to 

obtain a satisfactory fit for the diffraction data. The refinement is built upon a 

structural model using a collection of structural and experimental parameters that 

describe the crystal structure, which allows an accurate diffraction pattern to be 

calculated for a given crystal structure. In the 1960‘s it became apparent that a 

wealth of information could be obtained from a powder XRD pattern. Rietveld6 

developed a method for analysing powder diffraction patterns that focused on 

minimising the difference between observed and calculated patterns instead of 

minimising the difference between individual reflections. The Rietveld method uses a 

least-squares method where the structural and experimental parameters are varied 

until the best fit is obtained between the observed and calculated diffraction patterns. 

The function minimised during the least squares refinement is the residual, Sy, 

equation 2.5. 

    Equation 2.5 

where:           wi = 1/yi 

yi(obs) = observed intensity at the ith step 

yi(calc) = calculated intensity at the ith step 
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The Rietveld method is concerned with refinement of a structural model rather than 

structure solution and so as good a starting model as possible is required. Despite 

this the method can play a very important role in structure solution, as well as playing 

a key role in the final step of structure determination, when the final refinement of the 

determined structure is performed. The determination of a crystal structure can be 

described in a series of steps. The diffraction pattern is first indexed and the crystal 

system and lattice parameters are determined. This is then followed by the 

identification of the space group and subsequent determination of an approximate 

structure. The final step is the refinement of the structure through the Rietveld 

method. 

A visual inspection of a Rietveld plot with respect to the observed, calculated and 

difference plots is a good way of following the progress of a Rietveld refinement. For 

a perfect fit, the difference plot will be a straight line. However, a key feature of the 

method is that during refinement a number of statistics are produced to show how the 

fit is affected by variations in the parameters. These numerical values are a good 

indication of the ―goodness of fit‖ of the refinement. A statistical value based on the 

fitting of the complete calculated to the observed pattern is that of the ‗R-weighted 

pattern,‘ Rwp, equation 2.6. This statistic is the best indication of how well the 

refinement is progressing as it contains the residual, Sy, (equation 2.5) being 

minimised. However, it is susceptible to producing artificially high values if not all the 

peaks in the pattern are accounted for, but in this case this should be identifiable 

from inspection of the difference plot. The value may also be artificially low if the 

refined background is high, because it is easier to obtain a good fit to a slowly 

varying background than to sets of Bragg reflection profiles. For this reason 

background corrected versions of this and other R-values, which can all be 

expressed as percentages, can be calculated. The example of the background 

corrected Rwp value is shown by equation 2.7. 

   Equation 2.6  
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  Equation 2.7 

The final Rwp value should approach the statistically expected R-value, Rexp, equation 

2.8. which indicates the best possible R-value for a data set based on the quality of 

the data. 

    Equation 2.8 

N = Number of observables P = Number of refined parameters 

C = Number of constraints used 

A third useful numerical statistic is that of χ2, equation 2.9, the square of the ratio 

between Rwp and Rexp; the lower the value of χ2, the better the fit. This is a particularly 

useful statistic as it includes the number of refined parameters. The fit to the 

observed data can generally be improved by increasing the number of refined 

parameters. Very small values of χ2 can show that errors due to poor quality of data 

outweigh the errors with structural model and a data set with a high background, 

which is easily modelled, can also significantly reduce this value. 

     Equation 2.9 

A final indication of the quality of a Rietveld refinement is the chemical sense of the 

structural model obtained. Atomic distances between bonding and non-bonding 

atoms as well as bond angles should be sensible and fractional occupancies should 

be consistent with the chemical composition of the sample. 
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2.4 Mass Spectrometry7, 8 

Mass spectrometry is defined as the study of systems that causes the formation of 

gaseous ions which are subsequently characterised by their mass to charge ratios 

(m/z) and relative abundances. Selected m/z ratios can be analysed in order to 

determine their amount in a given sample. Mass spectrometry involves three main 

processes: ionisation, separation and detection. 

Ionisation 

Ionisation is the process that creates charged species by the removal or addition of 

an electron or proton. There are a number of ionisation techniques that can be used 

in mass spectrometry including chemical ionisation, electrospray ionisation and fast 

atom bombardment. However, the most common form of ionisation for gaseous 

analytes is that of electron impact. This was the only form of ionisation used in this 

study. 

Electron impact uses a tungsten filament to generate a beam of electrons which is 

then accelerated in order to knock out an electron from neutral molecules to produce 

singly charged cations. Single ionisation can be promoted and multiple ionisation 

avoided by tuning the energy of the electron beam. This is favourable as multiple 

ionisation will affect the m/z values of the ions under analysis. 

Ionisation can also result in fragmentation of ionic species. Excess energy from the 

ionisation process may be sufficient to result in the fragmentation of the ionic species 

into smaller fragments. The charged fragment can also be detected with a lower m/z 

ratio. 

Ion Separation 

Following ionisation a positively charged ion repeller forces the cations out of the 

ionisation chamber and they are then accelerated through a voltage, giving them all 

the same kinetic energy into a finely focused beam and into the analyser where 

separation occurs. Ion separation is based on the fact that the charged species have 

different m/z ratios. Quadrupole mass analysers are the most common method of ion 
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separation, and use an electric field provided by parallel electrodes to selectively 

stabilise or destabilise the paths of ions passing through it. The frequency of the 

electric field is varied to select which m/z value is stabilised and hence which ions are 

able to reach the detector. All other ions with different m/z values become neutralised 

through collisions and are therefore not detected. It is also important that the system 

operates under a vacuum so that the ions of interest do not collide with other species 

in the system during the ion separation process. Furthermore, the vacuum system is 

heated to minimise the amount of water present in the system. 

Detection 

The ions that reach the detector produce an ion current on collision with it, which the 

detector measures, outputting the data as a mass spectrum. For small samples, 

where high sensitivity is required, a secondary electron multiplier detector is used. 

Secondary electrons are produced by the initial collision of the ions with the detector, 

which is then amplified by a series of electrodes, each one at an increased potential. 

This results in increased sensitivity of the order of 106. 

 

2.5 Temperature Programmed Desorption 

Temperature programmed desorption (TPD) is a generic term for the controlled 

heating of a sample while the desorption products are monitored. A sample is heated 

under a flowing atmosphere at a controlled heating rate while the gaseous desorption 

products are analysed by mass spectrometry. A home built TPD apparatus was used 

in this study. 

Temperature programmed desorption under a flowing argon atmosphere was 

monitored using a mass spectrometer, TPD–MS. The flow of argon within the 

apparatus was regulated using a mass flow controller (Hastings 200 Series, 

Teledyne) at a constant rate of 100 ml min−1. The argon carrier gas flowed over the 

top of the reaction chamber. The sample (~0.1 g) was weighed into a quartz reaction 

tube (7 mm O/D, 4 mm I/D) inside an argon filled glove box and sealed vertically in 

the reaction chamber. The sealed reaction chamber was transferred to the TPD 
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apparatus while avoiding exposure of the sample to the atmosphere. An internal 

thermocouple, in contact with the sample, was used to control the sample 

temperature during experiments, with a barrel furnace surrounding the reaction 

chamber for heating. Endothermic and exothermic events were sometimes visible in 

the temperature trace of the TPD due to the thermocouple position within the sample. 

A quadrupole mass spectrometer (HPR–20, Hiden Analytical) was used to monitor 

the gaseous desorption products, with a secondary electron multiplier (SEM) 

detector. A schematic diagram of the TPD–MS setup is shown in figure 2.6. 

 

Figure 2.6 – Schematic diagram of the TPD–MS apparatus9 

Calibration 

A calibration gas (BOC Speciality Gases, 4736 ppm H2, 4898 ppm NH3, balance Ar) 

was used in order to determine the true sensitivity of the mass spectrometer with 

respect to H2 and NH3. There is a problem with detection of NH3 in a mass 

spectrometer because the main fragment, NH3
+, has the same m/z value as the OH+ 

fragment of H2O, which is often naturally present in vacuum systems. Therefore, the 

NH2
+ fragment, approximately 80% the intensity of the NH3

+ fragment, was used to 

determine the true amount of NH3. 

The calibration gas was flowed into the system and the observed partial pressures 

(Pn) for mass channels (m/z) 2 (H2
+), 16 (NH2

+), 17 (NH3
+ / OH+), 18 (H2O

+), 28 (N2
+), 

32 (O2
+) and 40 (Ar+) were recorded until a consistent signal was achieved. The 
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background signals for mass channels (m/z) 2 (H2
+) and 16 (NH2

+) were also 

determined for the pure argon carrier gas. 

The observed partial pressure signals for H2 and NH2 (P2 and P16) were converted to 

fractions ( 2x  and 
16x ) of the observed argon signal (P40): 

    Equation 2.10

 

The observed fractional signals determined for H2 and NH2 for the pure argon carrier 

gas ( 0

2x  and 0

16x ) were deducted from the respective fractional signals from the 

calibration gas, giving background subtracted fractional signals. Dividing these 

values by the true molar fraction provided with the calibration gas certificate, gives 

the relative sensitivity, R, values for H2 and NH3: 

   
 Equation 2.11

 

The observed signals for H2
+ and NH2

+ from TPD–MS experiments could then be 

corrected by these determined relative sensitivity values, giving true values for H2 

and NH3. 

For the TPD–MS experiments the MS data was collected for an appropriate time 

before the TPD heating profile commenced to allow determination of the background 

signals for mass channels 2 (H2
+) and 16 (NH2

+) ( 0

2x  and 0

16x ). The MS data was 

again converted to a fraction of the argon signal and the background signals 

determined before starting the heating profile were subtracted. Corrected molar 

fractions of H2 and NH3 in the gas stream were obtained by dividing the corrected 

fractional signals by the determined R values, equation 2.12. These corrected values 

were able to give accurate relative amounts of H2 and NH3 released. 

      Equation 2.12 
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Simulated gravimetric data could be produced from further processing of the molar 

fractions of H2 and NH3 in the gas stream as a consequence of a mass flow controller 

being incorporated in the TPD setup. The corrected MS data detailed the molar 

fractions of H2 and NH3 present at time, t, ( *

2H
x (t) and *

3NHx (t)) at regular time intervals 

(δt, minutes) determined by the rate of MS data collection, which was approximately 

three complete mass spectra per minute. With the argon carrier gas flowing at a 

known rate of 100 ml min−1 it was possible to determine the volume of each gas (
2H

V

and
3NHV ) released during the timescale for collection of one MS spectrum along with 

the total volume (ml) of each gas desorbed during a certain time interval, V(t): 

   Equation 2.13 

H2 and NH3 have molar volumes of 24.804 l mol−1 and 24.532 l mol−1, respectively, at 

room temperature and pressure. The calculated volume of gas released was used to 

provide an estimate of the number of moles of H2 and NH3 by multiplying the 

calculated volumes by 4.032  10−5 and 4.076  10−5, respectively. Provided the 

initial sample mass and molecular mass were known it was possible to express the 

number of moles of each gas released in terms of the number of moles of the starting 

sample. 

Multiplying the molecular mass of the gas by the calculated number of moles of the 

gas released gave a simulated mass of each gas released, equations 2.14 and 2.15. 

This calculated mass of gas released could then be subtracted from the initial sample 

mass (ms, grams) and expressed as a percentage of the starting mass and hence a 

simulated gravimetric plot could be plotted. 

  Equation 2.14

 

 Equation 2.15
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This form of data analysis is complicated, however, it does allow for a more complete 

analysis of the desorbed gases from the starting sample. It was particularly beneficial 

for analysis of samples of reaction mixtures where NH3BH3 was present. Upon 

heating NH3BH3 undergoes a voluminous swelling, which means it is unsuitable for 

analysis by more delicate methods of thermogravimetric analysis, whereas TPD–MS 

is much more resistant to poorly behaved samples. 

 

2.6 Intelligent Gravimetric Analysis 

An Intelligent Gravimetric Analyser (IGA, Hiden Analytical) is a pressure controlled 

thermo-gravimetric balance which allows complete control of the environment. The 

sample is inertly loaded into a quartz sample holder and placed onto a hang-down 

which is attached to a microbalance head. The sample mass is measured under 

different conditions so that the changes in weight can be monitored under 

temperature and pressure changes. The sample, microbalance head and 

counterbalance are all subject to the same environment which helps reduce 

buoyancy effects on the observed sample mass. An external furnace, surrounding 

the reaction tube, is used to heat the sample, with the sample temperature monitored 

by a positive temperature coefficient sensor located next to the sample. 

In this study the IGA was used to obtain thermogravimetric data of the samples under 

investigation. A constant flow rate and pressure of the argon carrier gas was 

therefore established within the IGA reactor through external mass flow controllers. 

The argon carrier gas flowed directly over the sample at a rate of 100 ml min−1 and a 

pressure of 1 bar, which collected gaseous desorption products and transported 

them to a mass spectrometer (HPR20-QIC, Hiden Analytical) for analysis. 

 

2.7 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) involves the measurement of the mass of a 

sample with varying temperature. The sample is mounted onto a thermocouple within 

the furnace. Argon carrier gas flows over the sample and collects desorbed gases 
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before carrying them to a mass spectrometer for analysis. The thermocouple is 

connected to a microbalance which records the mass of the sample during the 

experiment. 

 

2.8 Solid State Nuclear Magnetic Resonance Spectroscopy10, 11 

Nuclear magnetic resonance (NMR) spectroscopy is an experimental method 

capable of providing structural information regarding the local environmental 

configuration of nuclei. It is especially useful when information obtainable by other 

methods, such as XRD is limited by the absence of long-range order in the sample 

being studied. The technique exploits the magnetic properties of atomic nuclei within 

a sample, which have an intrinsic nuclear spin angular momentum. All elements and 

all of their isotopes have a nuclear spin quantum number, I, which takes a value of 

n/2, where n is an integer.  However, not all nuclei are NMR active: the spin quantum 

number must be non-zero and in these cases the nucleus will have a magnetic 

moment, μ, equation 2.16. The nuclei under investigation in this study, 11B and 23Na, 

both have a spin quantum number of 3/2. 

     Equation 2.16 

γ = the gyromagnetic ratio (the ratio of magnetic dipole moment to angular 

momentum); this is characteristic of a particular isotope of a particular element.  

When a magnetic field, B, is applied, the nuclear moments orient themselves, with a 

nucleus of spin I having 2I + 1 possible orientations, identified by the value of the 

magnetic quantum number, mI, which takes the values I, I−1, I−2, ..., −I. For 
11B and 

23Na, mI has the values −3/2, −
1/2, 

1/2, 
3/2. The splitting of a nucleus of I = 3/2 in an 

applied magnetic field is shown in figure 2.7. This is known as Zeeman splitting. The 

selection rule for NMR transitions dictates that ΔmI = ±1. The transition energy is 

given by equation 2.17. As ΔE = hν, the difference in energy between the energy 

levels has a corresponding frequency given by equation 2.18. It is this energy 

transition that is measured by the NMR technique. 
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        Equation 2.17 

                Equation 2.18 

 

Figure 2.7 – Energy levels for a nucleus (I = 3/2) in a magnetic field 

When radiofrequency radiation of the same energy as the splitting between the spin 

states is applied, a transition between the levels is able to take place. 

For a nucleus of spin I = 1/2 there are two possible orientations of nuclear spin, mI = 

±1/2. mI = +1/2 is the lowest energy more stable state, α, and the upper state has mI = 

−1/2, β. There are two allowed transitions (ΔmI = ±1), α→β, which corresponds to an 

absorption of energy and β→α corresponds to energy emission. The population 

difference between the spin states is governed by the Boltzmann distribution, 

equation 2.19. Increasing the field strength will increase the population difference 

and there will be a net absorption of energy and hence an increase in the strength of 

the signal. 

     Equation 2.19 

The excess population in the lower state is often very low, ~1 in 105, which is the 

basic reason behind the low sensitivity of the NMR technique. The compensation for 

this is that the absorption coefficient for all nuclei is constant and therefore the NMR 

signal is directly proportional to the number of nuclei producing it. This is important 

for the interpretation of spectra because it means the area under a spectral peak is 

directly related to the number of nuclei giving rise to it and this can be determined by 
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integration. This allows determination of the relative abundance of the different sites 

for a specific nucleus within each sample. 

The Chemical Shift 

When a molecule containing the nuclei under consideration is subjected to the 

magnetic field, the electrons within the molecule shield the nuclei from the external 

applied field. The field experienced by the nucleus is therefore not equal to the 

applied field.  The difference, referred to as the nuclear shielding, is proportional to 

the applied field. 

The chemical shift is defined as the difference between the resonance frequency of a 

particular nucleus and that of a reference standard, equation 2.20. It is generally 

reported on the δ scale (ppm). 

    Equation 2.20 

The factors that determine chemical shifts are due to atoms residing in different 

chemical environments which include coordination number, nearest neighbour type, 

type of next nearest neighbour and crystallographic inequivalence. A change in any 

of these environmental and chemical factors would result in a change in the electron 

density, hence modifying the shielding effect of the electrons and resulting in a 

change in the chemical shift. 

Quadrupolar Interaction 

The symmetry of the charge distribution of the nucleus plays a significant factor in the 

appearance of spectral lineshapes. Nuclei with I = ½ have spherical electric charge 

distributions, similar to a 1s orbital in hydrogen, which results in gaussian lineshapes. 

Those nuclei with I ≥ 1 have a non-uniform distribution of electric charge, resulting in 

distorted spheres and a charge gradient across the nucleus. These nuclei are 

quadrupolar, and both 11B and 23Na fall into this category. A non-spherical charge 

distribution can interact with an electric field gradient caused by asymmetry, resulting 

in a change in the energy level in addition to the Zeeman effect. The strength of the 

interaction is measured as the quadrupole moment. Linewidths are broadened as a 
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result of quadrupolar broadening, which can make it difficult to identify reliable 

chemical shifts. 

For nuclei with a nuclear spin I > 1/2, the non-spherically symmetrical nuclear electric 

charge distribution interacts with any electric field gradients present, disturbing the 

previously equally split Zeeman levels. In the case of 11B and 23Na where I = 3/2, the 

application of a magnetic field results in the four previously degenerate states 

becoming distinct energy levels, described by the magnetic quantum number mI, 

figure 2.7. The effect of the first-order quadrupolar interaction with the electric field 

gradient is to disrupt each of the nuclear energy levels by a small frequency. This 

disruption causes the non-central transitions (m ≠ ½) to be sufficiently shifted so that 

they appear as satellite peaks either side of a more intense central peak due to the m 

= ±½ transition within the NMR spectrum. The central transition, m½ → m−½ is 

unaffected. The first-order disruption of the energy levels is shown in figure 2.8.  

 

Figure 2.8 – Quadrupolar splitting of the nuclear energy levels within an applied 

magnetic field 

In cases where the quadrupolar coupling is sufficiently strong a second-order 

disruption in addition to the first-order effect is observable, so that the energy bands 

are again shifted. This shift results in the central line undergoing a significant 

anisotropic broadening. 

Recording spectra at high field helps to minimise the second order quadrupolar 

broadening, because the intensity of the quadrupolar interaction is inversely 

proportional to field strength; hence, at higher fields, sharper peaks can be 

obtained.12 The effect of increased field strength on the quadrupolar lineshape is 

shown in figure 2.9.13 
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Figure 2.9 – 11B MAS NMR spectra of polyborazylene recorded at various fields13 

Magic Angle Spinning 

In solution NMR the rapid molecular tumbling averages many line broadening 

interactions to zero. However, in the solid state these interactions are not reduced to 

zero and result in broad lines. Line broadening interactions that affect the NMR 

spectrum in the solid state are chemical shift anisotropy, dipolar and quadrupolar 

interactions. It is, however, possible to reduce this line broadening by the 

experimental technique of magic angle spinning, MAS. This technique involves 

rapidly rotating the sample about an axis inclined at θ to the magnetic field. The line 

broadening term contains the expression 3cos2θ−1, which becomes zero when θ = 

54.7°. In some cases the maximum spinning rate is insufficient to remove all the 

interactions and the resulting spectrum consists of a central line flanked by spinning 

side bands. In the case of the quadrupolar interactions, they can only be suppressed 

to the first order as second order quadrupolar interactions have a different line 

broadening term, which has zero points when θ = 30.6° and 70.1°. This can be 

overcome by multiple quantum magic angle spinning NMR. 

Boron Nitride 

Boron nitride can serve as a good example of the aspects of solid state MAS NMR 

discussed above. As discussed the 11B nucleus, I = 3/2, possesses a quadrupolar 

moment, which gives rise to a quadrupolar interaction, the extent of which is strongly 

dependent on the distortion of the site from cubic symmetry. BN exists in two 
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polymorphs. The cubic form is composed of local BN4 tetrahedra, with sp3 hybridised 

boron environments, while the hexagonal structure possesses nearly planar B3N3 

hexagons, with sp2 B environments. The solid state 11B MAS NMR spectra of the two 

polymorphs obtained by Marchetti et al.14 are shown in figure 2.10. 

 

Figure 2.10 – Solid state 11B MAS NMR spectra of (a) cubic BN and (b) hexagonal 

BN14 

The lineshapes of the two polymorphs are clearly different, with a mainly symmetrical 

sharp resonance obtained for the cubic structure, while the hexagonal form produces 

a peak typical of a second order quadrupole lineshape for a nucleus of less than 

cubic symmetry.11 The high symmetry of the boron environment within cubic BN 

means there is zero electric field gradient and hence zero quadrupole interaction. 

The asymmetrical boron present in hexagonal boron nitride implies the nucleus will 

possess an electric field gradient and so there is a significant quadrupolar interaction 

that broadens the peak over a large chemical shift range. 

The chemical shifts of the resonances are also affected by the different boron 

environments. In cubic BN, the resonance has a chemical shift of 1.6 ppm, while 

hexagonal BN produces a resonance at 30 ppm. This is due to the difference in 

chemical shielding between the tetrahedral (sp3 B) and trigonal (sp2 B) environments. 

The increase in electron density around the boron nucleus in the tetrahedral 

geometry shields the nucleus from the external applied field and so the resonance is 

shifted upfield. 

Finally, figure 2.10a shows that the line broadening interactions are averaged to zero 

through the use of the MAS technique for the cubic polymorph, whereas for the 
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hexagonal polymorph, figure 2.10b, the strong second-order quadrupolar interaction 

is only partially averaged and the characteristic lineshape of sp2 boron environments 

is observed. 

Solid state 11B MAS NMR spectra in this study were collected using a 500 MHz 

Bruker Avance III spectrometer equipped with an 11.74 T magnet. The solid state 

23Na MAS NMR spectra were collected using a 400 MHz Bruker Avance 

spectrometer equipped with a 9.4 T magnet. All samples were loaded in a glove box 

under an argon atmosphere into a rotor. The rotor was sealed and then transferred 

onto the spectrometer and data collected without sample exposure to the 

atmosphere. 

 

2.9 Raman Spectroscopy15 

Raman spectroscopy is concerned with the study of molecular vibrations. Vibrational 

modes can be excited to higher energy through the absorption of radiation of 

appropriate frequency. A Raman spectrum is a plot of intensity of scattering as a 

function of frequency or wavenumber. In Raman spectroscopy, the sample is 

illuminated by monochromatic light, which is usually generated by a laser. A 

vibrational mode is Raman active if the polarisability of the molecule changes during 

the vibration. Changes in polarisability are not always easy to visualise and it is 

usually necessary to employ group theory in order to determine whether or not a 

mode will be Raman active. 

During scattering, a short-lived excited state, known as a virtual state is created as a 

result of the incident radiation polarising the electron cloud surrounding the nuclei of 

the molecule under investigation. The excited state is unstable and rapidly relaxes 

through the release of a photon. Two types of scattered radiation are possible. 

Rayleigh scattering is essentially elastic, where only distortion of the electron cloud 

occurs and the energy difference between the incident and the scattered photons is 

minimal. Raman scattering events are inelastic, which occur when nuclear motions 

are induced in the molecule. The photon excites the molecule from the ground state 

to a virtual energy state and upon relaxation the molecule returns to a different 



CHAPTER 2. Experimental  75 
 

vibrational state. Figure 2.11 shows a diagram of the Rayleigh and Raman scattering 

processes. There are two types of Raman scattering, Stokes and anti-Stokes. Stokes 

scattering occurs when the Raman scattering event occurs from the ground 

vibrational state, ν = 0, and results in the molecule absorbing energy and adopting an 

excited vibrational state, ν = 1. The scattered photon is reduced in energy by the 

energy of this excited state compared to the incident photon. If the final vibrational 

state, ν = 0, is lower in energy than the initial vibrational state, ν = 1, then the excess 

energy is gained by the scattered photon, increasing its energy compared to the 

incident photon, this is known as anti-Stokes scattering. 

Raman spectra in this study were collected using a Renishaw InVia Raman 

microscope using an Ar ion laser at a wavelength of 488 nm. All samples were 

loaded in a glove box under an argon atmosphere into a sample cell. The sample cell 

was sealed and then transferred onto the Raman microscope and data collected 

without sample exposure to the atmosphere. 

 

Figure 2.11 – The Rayleigh and Raman scattering processes. The incident energy is 

shown in red and the scattered energy in green 
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Chapter 3 

 

The Thermal Decomposition of 

Ammonia Borane 

 

3.1 Introduction  

Prior to the commencement of this research there had been few published studies 

into the solid state thermal decomposition of ammonia borane. The majority of 

research related to ammonia borane had focused on determinations of the structure 

of the compound and any investigations into its decomposition generally involved 

organic solvents or hydrolysis. This research investigated the hydrogen desorption 

properties of the solid state material as well as spectroscopic investigations of the 

decomposition properties. 

 

3.2 Experimental 

The NH3BH3 starting material was placed into a quartz tube within an argon filled 

glove box (>10 ppm O2, >1 ppm H2O) and heated under a flowing argon atmosphere. 

The samples were reground and annealed at the target temperatures to allow for the 

samples to be collected as solids. Heating could not be carried out in-situ with 

respect to powder X-ray diffraction and solid state NMR spectroscopy due to the 

problem of ammonia borane undergoing a volume expansion while being heated. 
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3.3 Powder X-Ray Diffraction 

The as-received ammonia borane was a white material with a high degree of 

plasticity. The powder X-ray diffraction, XRD, pattern of the ammonia borane starting 

material is shown in figure 3.1.  

 

Figure 3.1 – The powder XRD pattern of ammonia borane at room temperature 

On heating the material to 80°C a significant volume expansion occurred after a long 

induction period of 180 minutes, consistent with observations in other studies.1, 2 

After this volume expansion had occurred the ammonia borane became wet and 

required further heating, again to 80°C, for the sample to solidify. After the sample 

had been heated for a second time a white powder was obtained. This heating 

resulted in a loss of crystallinity in the sample: the original peaks observed in the 

powder XRD pattern were lost and only some low intensity peaks at approximately 

24° 2θ are now observed. These peaks were assumed to be related to an 

intermediate solid labile form of ammonia borane that formed prior to the formation of 

the mobile form of ammonia borane in a liquid state, that formed during heating as a 

consequence of the disruption of the dihydrogen bonding network. This dramatically 

reduces the long range order within the structure, hence decreasing the crystallinity 

of the sample.3 The major product after heating to 80°C has been shown to be the 

amorphous polyaminoborane, which is therefore not observed in the pattern.2 
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Additional heating of the ammonia borane starting material was carried out and the 

results analysed by powder XRD. The collected patterns are shown in figure 3.2. 

 

Figure 3.2 – Powder XRD patterns obtained after heating as-received ammonia 

borane to different temperatures 

Further heating to 200°C produced a second amorphous product, polyiminoborane, 

again not detectable by X-rays.4 This material was again obtained as a white powder. 

Literature data shows that further heating to 600°C begins to result in the formation of 

boron nitride.4 Boron nitride is also a white powder and, consistent with this, the 

ammonia borane heated to 600°C resulted in a white powder. However, the powder 

XRD pattern obtained after heating at this temperature showed no peaks were 

present; the compound was again completely amorphous. It was possible that an 

amorphous form of boron nitride had formed. To confirm this, the product was further 

heated to 800°C to determine whether a crystalline phase could be obtained. The 

product obtained after heating to 800°C was again a white powder. However, the 

XRD pattern again showed that an amorphous phase had been produced. A large 

percentage of the hydrogen in the sample is released by this temperature and so it 

was concluded that an amorphous form of boron nitride was formed as the ultimate 

decomposition product. A study related to the decomposition of polyaminoborane has 

shown that a temperature of 1400°C is required before the decomposition product 

shows peaks due to the presence of crystalline boron nitride.5  
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3.4 Thermal Desorption Studies 

The desorption profile of ammonia borane obtained on the home-built temperature 

programmed desorption, TPD, apparatus is shown in figure 3.3. The experiment was 

performed at a heating rate of 2°C min−1 to a temperature of 350°C. The TPD was 

connected to a mass spectrometer for analysis of the gases released during 

decomposition. 

 

Figure 3.3 – TPD–MS analysis of a sample of NH3BH3. The temperature trace is 

shown in blue and the mole percentages of H2 and NH3 released are shown in red 

and brown, respectively  

The plot shows that three releases of hydrogen were observed during the 

decomposition of ammonia borane, with a substantial overlap of the first two 

desorptions. The first hydrogen desorption was sharp and began at 85°C, peaking at 

110°C. This release was accompanied by a bump in the temperature trace: the 

temperature increased at a rate faster than the ramp rate should have allowed. This 

showed that the release of hydrogen during this decomposition step was sufficiently 

exothermic to cause an increase in temperature in the sample holder. The 

exothermic nature of hydrogen release from ammonia borane has been 
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demonstrated in other studies.2 Shortly after this exothermic event an endothermic 

event occurred, at 112°C, which was consistent with the melting point of ammonia 

borane.6 Previous studies have shown that the melting of ammonia borane can be 

the thermal event that leads to the start of hydrogen release.4, 7 However, at 

sufficiently slow ramp rates, the release of hydrogen can begin prior to the compound 

melting, which was similar to what was observed during this decomposition.2 The 

second decomposition event began at 125°C and peaked at 150°C. This was a much 

broader hydrogen release than the first decomposition step. There was a long tail to 

this hydrogen release and the event did not completely end until a temperature of 

260°C was reached. A final small release began at 290°C, which decreased once the 

target temperature of 350°C was reached, suggesting that this release was 

incomplete during the timescale of the experiment. There was no observed release of 

NH3 during the desorption experiment, which is in accordance with other studies of 

the decomposition of ammonia borane.3, 4, 7 The release of the volatile gas borazine 

has been detected in other studies at temperatures in excess of 200°C through the 

use of infra-red spectroscopy.8 However, in this experiment no borazine release was 

detected by mass spectrometry. The appearance of borazine in the decomposition of 

ammonia borane has been shown to be related to the heating rate.8 Therefore, it was 

possible that the heating rate in this experiment was sufficiently slow to suppress 

borazine release. Alternatively, borazine has been shown to dehydropolymerise 

readily at temperatures above 100°C, yielding another white solid, polyborazylene.9 

This reaction could therefore have taken place in the sample holder before borazine 

could be detected by the mass spectrometer. Powder XRD showed that the products 

obtained after the heating run were completely amorphous. 

It is important to note that it has previously been discussed that the first step in 

hydrogen release from ammonia borane is the intermolecular rearrangement reaction 

resulting in DADB.1, 3, 10 However, as this rearrangement does not release hydrogen 

it was not observed in this experiment although it can be concluded that this step 

takes place at temperatures below 85°C. The first step of hydrogen release results in 

the formation of aminoboranes,2 as shown in reaction 3.1, which have been shown to 

rapidly associate,11 resulting in a number of products of formula (NBH4)x
12, in the 

form of either cycloborazanes up to a maximum ring size of five BH2NH2 units; or 
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aminoborane oligomers, which following continued association result in long chain 

polymers, as shown in figure 3.4.13 However, the cycloaminoboranes are crystalline 

materials.12 Therefore, aminoboranes of this type can only have formed in very small 

amounts as the XRD patterns were completely amorphous with the exception of 

three peaks visible in the pattern obtained at 80°C. The mechanism of formation of 

these oligomers and cyclic products has been proposed as involving the reaction of 

DADB, or DADB-like species with ammonia borane, shown in reaction 3.2.1 This 

mechanism shows that the first step of hydrogen release from ammonia borane 

results in a complex mixture of products. 

NH3BH3 → 
x

1 (NH2BH2)x + H2   Reaction 3.1 

 

Figure 3.4 – Some potential association products of aminoborane 

 

Reaction 3.2 
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Upon further heating the resulting cyclic products shown above undergo ring opening 

and the chain products decompose, both of which result in further loss of hydrogen 

during the second hydrogen release step. This hydrogen loss eventually results in 

the formation of compounds of general composition (NBH2)x, such as the polymeric 

chain species polyiminoborane, (NHBH)n, shown in reaction 3.3.7 These events occur 

during the second hydrogen desorption step. The decomposition of cycloborazanes 

and in particular cyclotriborazane has been shown to yield a solid residue similar in 

polymeric structure to the decomposition products of ammonia borane, as well as 

releasing borazine beginning at a temperature of around 150°C.14 Ammonia borane 

is also prone to releasing borazine at a similar temperature,15 which as mentioned 

earlier can polymerise to yield polyborazylene in this temperature range as shown in 

reaction 3.4. This reaction further contributes to the release of hydrogen during the 

second hydrogen release step observed in figure 3.3. 

 (NH2BH2)x → (NHBH)x + H2   Reaction 3.3  

 
Reaction 3.4 

The wide range of potential products formed during the first decomposition step 

resulted in the broad second step of hydrogen release as the decomposition of these 

products do not all commence at a single set temperature. The further higher 

temperature hydrogen release is suggested to be as a result of further decomposition 

of the products of formula (NBH2)x. This is at too low a temperature to be related to 

the formation of boron nitride, BN,3 and has therefore been suggested to form 

products of formula (NBH)x.
4 However, the difficulties in proposing structures for this 

compound mean that this is unlikely and hence this release could also be due to the 
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decomposition of products formed during the first hydrogen release step, of formula 

(NBH4)x, resulting in further products of lower hydrogen content. 

 

3.5 Raman Spectroscopy 

A comprehensive Raman spectroscopy study of the phase transition in ammonia 

borane has been carried out by Hess et al16 and this will be used as the basis for the 

assignment of the vibrational modes observed in the obtained spectrum. Point group 

analysis of the symmetry of molecules enables the prediction of the number, 

symmetry and activity of vibrational modes. The free ammonia borane molecule 

possesses C3v symmetry. The symmetry elements present in free ammonia borane 

are shown in figure 3.5. 

 

Figure 3.5 – The symmetry elements present in the free ammonia borane molecule 

Using Cartesian displacement vectors for each of the atoms as the basis set it is 

possible to derive the normal vibrational modes. The reducible representation for this 

basis set ( red) is shown in table 3.1 and the irreducible representation ( irr) is given 

in table 3.2, where translational ( trans) and rotational modes ( rot) are removed to 

give the normal vibrational modes ( 3n−6). The irreducible representation of molecular 

ammonia borane is 5A1 + A2 + 6E which is consistent with 3n − 6 = 18 degrees of 

freedom. The modes that are Raman active ( Raman) are shown and assigned 

vibrational modes. The eleven Raman active modes were reported by Smith et al.17  
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Table 3.1 – Point group table for C3v 

 E 2C3 3σv Linear, Rotations Quadratic 

A1 1 1 1 z x2 + y2, z2 

A2 1 1 −1 Rz  

E 2 −1 0 (x,y) (Rx, Ry) (x2−y2, xy) (xz, yz) 

red 24 0 4   

 

Table 3.2 – Deconvolution of irr for the free C3v symmetry ammonia borane molecule 

 

The vibrational A1 modes ν1, ν2, ν3, ν4, ν5 correspond to the N–H symmetric stretch, the 

B–H symmetric stretch, the N–H symmetric bend, the B–H symmetric bend and the 

B–N symmetric stretch, respectively. All of these modes are singly degenerate and 

are shown in figure 3.6. The vibrational E modes ν7, ν8, ν9, ν10, ν11, ν12 correspond to 

the N–H asymmetric stretch, the B–H asymmetric stretch, the N–H asymmetric bend, 

the B–H asymmetric bend and two asymmetric rocking motions involving planes of 

hydrogen atoms of both the BH3 and NH3 groups, respectively. These modes are 

doubly degenerate and are shown in figure 3.7. The ν6 mode corresponds to a BN 

torsion motion, however this is Raman inactive. 
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Figure 3.6 – The symmetric vibrational modes of the ammonia borane molecule 

 

Figure 3.7 – The asymmetric vibrational modes of the ammonia borane molecule 

ν1 ν2

ν4 ν5

ν3

ν12ν10

ν9ν8ν7

ν11
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For discussion purposes the Raman spectrum can be divided into five sections: the 

N–H stretching region, the B–H stretching region, N–H rocks and bends, B–H rocks 

and bends and the B–N stretching region. The room temperature Raman spectrum of 

ammonia borane is shown in figure 3.8. 

 
 Figure 3.8 – The room temperature Raman spectrum of ammonia borane 

 

Figure 3.9 – Raman spectrum of the (a) N–H stretching region (b) B–H stretching 

region (c) NH3 deformation region (d) BH3 deformation region 
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The N–H stretching region is shown in figure 3.9a. The asymmetric E N–H stretch is 

found at 3317 cm−1 and the symmetric A1 stretch located at 3252 cm−1. There is a 

third peak at 3177 cm−1 which has been unassigned in some studies.17-19 However, in 

the study by Hess et al.,16 it was assigned as being due to the result of Fermi 

resonance of the overtone of a peak at 1600 cm−1, an NH3 deformation mode, and 

the N–H symmetric stretch at 3252 cm−1. 

The B–H stretching region, shown in figure 3.9b, is dominated by two peaks at 2377 

and 2280 cm−1. There is also a slight shoulder on the less intense peak at 2330 cm−1. 

The assignment of these peaks has caused some dispute in the literature. Powder 

studies assigned the 2330 cm−1 peak to the asymmetric E B–H stretch and the 

symmetric A1 B–H stretch to the more intense, sharper peak at 2280 cm−1. 

Alternatively, the 2377 cm−1 peak has been assigned to the asymmetric B–H stretch 

by single crystal studies, although the symmetric stretch was assigned to either the 

2330 cm−1 peak18 or the 2280 cm−1 peak.19 This discrepancy likely comes about as 

the single crystal results were both part of high pressure studies which observed the 

splitting of the peak at 2377 cm−1 but no splitting of the other two peaks. Polarised 

Raman studies by Hess et al.16 show that the peaks at 2280 and 2377 cm−1 are both 

highly polarised whereas the 2330 cm−1 peak is depolarised, which agrees with the 

assignments from the powder studies. 

The N–H bending region is shown in figure 3.9c. There are three peaks in this region: 

the most intense is located at 1600 cm−1, a very low intensity peak is found at 1450 

cm−1, and the final peak is observed at 1375 cm−1. There is good agreement 

regarding the assignment of the peaks at 1600 cm−1 and 1375 cm−1 in the literature. 

The remaining weak peak at 1450 cm−1 has not been reported in a number of 

studies. It has, however, been assigned as an overtone of low frequency rocking 

motions.20 

The B–H bending region is shown in figure 3.9d. There is less agreement regarding 

the assignment of peaks in this region in other studies. Two features are observed at 

1190 cm−1 and 1160 cm−1. Asymmetric modes are generally observed at higher 

energy than symmetric modes, and so the peak at 1190 cm−1 has been assigned to 

the asymmetric E B–H bend.17, 19 This assignment has been supported by polarised 



CHAPTER 3. The Thermal Decomposition of Ammonia Borane 89 
 

studies which show that this mode is depolarised as well as high pressure studies 

which show that this peak splits under high pressure.16, 18 The symmetric B–H bend 

has been assigned to a number of different peaks namely 1155 cm−1,10 1158 cm−1,19 

1052 cm−1 17 and 1026 cm−1.18 Polarised studies support the assignment of this mode 

as the peak observed at 1160 cm−1.16 

The B–N stretching region is shown in figure 3.10. The 11B and 10B contributions to 

the B–N symmetric stretch are observed at 783 and 800 cm−1 respectively.21 The 

frequency difference of 17 cm−1 between these two peaks is in good agreement with 

ab initio calculations based on the mass difference of the two isotopes and a 

symmetric stretch.19 

 

Figure 3.10 – Raman spectrum of the B–N stretching region 

There are two remaining features that have yet to be assigned, firstly a weak feature 

at 1070 cm−1, observable in figure 3.9d, and a second at 728 cm−1 seen in figure 

3.10. These modes have been assigned as asymmetric rocking motions involving 

planes of hydrogen atoms in both BH3 and NH3 groups. The rocking motion which 

produces the peak at 1070 cm−1 involves the two planes of hydrogen atoms in a 

single NH3BH3 molecule remaining parallel to one another as the planes pivot about 

the B and N atoms. The lower frequency rocking motion also involves a pivoting 

motion of the planes of hydrogen atoms around the B and N atoms, however, in this 

motion the planes of hydrogen atoms in an individual molecule beat against each 

other.16 
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Table 3.3 shows a summary of the vibrational modes that are observed in the room 

temperature Raman spectrum of ammonia borane with the assignment of each 

mode. 

Table 3.3 – Summary of peaks observed in the Raman spectrum of ammonia 

borane. st = stretch, d = deformation, ds = scissors, du = umbrella, r = rock, ov = 

overtone, dp = depolarised, p = polarised  

Reference 5  
(cm−1) 

Assignment This Study 
(cm−1) 

3316 NHst E ν7 3317 

3250 NHst A1 ν1 3252 

3176 ov p  3177 

2375 Unknown dp  2377 

2328 BHst E ν8 2330 

2279 BHst A1 ν2 2280 

1600 NH3
ds E ν9 1600 

1450 ov dp  1450 

1375 NH3
du A1 ν3 1375 

1189 BH3
ds E ν10 1190 

1155 BH3
du A1 ν4 1160 

1065 NBHr E ν11 1070 

800 10BNst A1 ν5’ 800 

784 11BNst A1 ν5 783 

727 NBHr E ν12 728 

Not observed BN torsion A2 ν6 Not observed 

 

The Raman spectrum of ammonia borane taken after heating to 80°C for 12 hours is 

shown in figure 3.11. This spectrum is compared to that of ammonia borane in figure 

3.12, divided into the regions of N–H stretching, B–H stretching and the lower 

frequency region, containing the BH3 and NH3 deformations and the B–N stretch. 

Figure 3.12a shows that the ν7 and ν1 N–H stretches as well as the overtone 

observed at room temperature in this region are still observed. Figure 3.12b shows 

that the B–H stretches, ν8 and ν2, are also still present. Analysis of the 600 – 1800 

cm−1 region, figure 3.12c, shows that there is some evidence for the BH3 deformation 

modes, ν10 and ν4 still being present and ν5, the B–N stretch, is observed. It is more 

difficult to state conclusively that the NH3 deformation modes ν9 and ν3, the NBH  
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Figure 3.11 – The Raman spectrum of ammonia borane taken after heating to 80°C 

for 12 hours 

 

Figure 3.12 – Comparison of the Raman spectra of ammonia borane at room 

temperature (red) and after heating to 80°C (blue) showing (a) N–H stretching region 

(b) B–H stretching region (c) NH3 deformation, BH3 deformation and B–N stretching 

regions 

rocking modes ν11 and ν12 and the overtone observed in this region at room 

temperature are still present due to the decreased intensity of these features. These 

peaks appear to be present albeit with low intensity, hidden partly in the background 
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of the spectrum. The observation of these features shows that the first step of 

decomposition is not yet complete, as these peaks are due to the presence of 

undecomposed ammonia borane. However, in each of the regions of the spectrum, 

there are now new features present. 

The N–H stretching region now shows two additional peaks, the most intense found 

at 3270 cm−1 and a second at 3312 cm−1. The Raman spectrum of sodium amide, 

NaNH2, shows features at 3267 cm−1 due to the asymmetric, ν3, N–H stretch and at 

3218 cm−1 due to the symmetric, ν1, N–H stretch.22 This similarity suggests the 

presence of an NH2. The N–H stretches in the decomposition product are blue shifted 

compared to those in NaNH2 due to the presence of the metal cation. The B–H 

stretching region also displays additional peaks, two of approximately equal intensity 

at 2252 and 2322 cm−1 and a lower intensity, broad peak at 2422 cm−1. The two 

intense modes in this region are probably due to B–H stretches of a BH2 unit, with the 

asymmetric stretch at the higher frequency than the symmetric stretch. This is similar 

to the Raman spectrum of diborane, which contains terminal BH2 units.23 It is an 

interesting point to note here that the new peaks in the N–H stretching region are 

blue shifted compared to the original peaks, whereas in the B–H stretching region the 

new peaks have been red shifted. This can be explained through dihydrogen 

bonding. It has been well established that hydrogen stretching frequencies of X–H 

bonds, where X = O, N, show significant shifts to lower wavenumbers on formation of 

a hydrogen bond, with the most prominent spectral changes being observed in the 

region around 3500 cm−1.24, 25 Therefore, by analogy with the normal hydrogen bond, 

it would be expected that a similar effect would occur upon the formation of a 

dihydrogen bond. On decomposition, these dihydrogen bonds are broken and hence 

the N–H bonds present in the new compound will shift to a higher frequency.  

The new peaks being produced are accompanied by hydrogen release and therefore 

it is reasonable to assume that they are due to NH2 and BH2 groups. There are also a 

number of new peaks in the region 600 – 1800 cm−1, figure 3.12c. The peak found at 

1566 cm−1 is also observed in the Raman spectrum of NaNH2 and is assigned as 

being the symmetric, ν2, N–H bend.21 The other peaks observed in this region will be 

related to B–H bends and the B–N stretches. The B–H symmetric bend of the 
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terminal BH2 group in the Raman spectrum of diborane is located at 1180 cm−1.26 

Therefore, the modes observed at around this frequency are presumed to be as a 

result of the B–H bending vibrations, the asymmetric bend at 1208 cm−1 and the 

symmetric bend at 1167 cm−1. The mode at 811 cm−1 is in the right region to be 

related to a B–N symmetric stretch, although the broad nature of the peak makes it 

difficult to identify the presence or absence of a 10B–N stretch which would 

conclusively assign this mode. There are remaining unassigned features at 811, 876, 

1230 and 1286 cm−1. These features are also likely to be related to B–N stretches 

and B–H and N–H deformations due to the frequency range that they are found in. 

The potential variety of products produced at 80°C could result in a number of B–H 

and N–H environments being observed in the Raman spectrum. 

The Raman spectrum of ammonia borane taken after heating to 200°C for 12 hours 

is shown in figure 3.13. 

 

Figure 3.13 – The Raman spectrum of ammonia borane after heating to 200°C 

It is immediately apparent that the sharp peak shapes characteristic of the features 

observed in the Raman spectrum collected at room temperature and 80°C have been 

lost and the features observed at 200°C are much broader in nature. This broadening 

occurs where there is increased disorder due to a loss of crystallinity; polymeric, 

amorphous materials give broader features than crystalline materials.27 Non-

crystalline polymers lack molecular symmetry and so the chemical repeat units 

cannot be viewed as also being physical repeat units, due to the geometrical 
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irregularity. It is often a good approximation to consider each chemical repeat unit as 

a separate molecule in its own local environment. Broad peaks are therefore 

expected due to group vibrations. The groups of atoms of the same kind in different 

regions of the polymer have slightly different vibrational frequencies as a 

consequence of the different physical environments of the units to which they belong, 

resulting in the observed broadening of the features. The change in nature of the two 

spectra highlights the transition from the crystalline ammonia borane to the products 

of decomposition, amorphous polymers. A comparison of the spectra obtained at 

room temperature, and after heating to 200°C, can be seen in figure 3.14. 

 

Figure 3.14 – Comparison of the Raman spectra of ammonia borane at room 

temperature (red) and after heating to 200°C (green) showing (a) N–H stretching 

region. (b) B–H stretching region. (c) NH3 deformation, BH3 deformation and B–N 

stretching regions 

Analysis of figures 3.14a and 3.14b shows that there are no longer any N–H or B–H 

stretches present that can be attributed to ammonia borane as by this temperature all 

of the ammonia borane will have decomposed. Figure 3.14c shows that there is 

some alignment between the peaks observed in the room temperature and 200°C 

spectrum for B–H and N–H bends at 1190 and 1600 cm−1 respectively. However, as 

they originate from BH3 and NH3 units they are unlikely to be the same features in the 
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spectrum obtained from the sample heated to 200°C. A comparison between the 

spectra obtained from samples heated to 80°C and 200°C is shown in figure 3.15. 

 

Figure 3.15 – Comparison of the Raman spectra of ammonia borane at 80°C (blue) 

and after heating to 200°C (green) showing (a) N–H stretching region. (b) B–H 

stretching region. (c) NH3 deformation, BH3 deformation and B–N stretching regions 

The N–H stretching region shown in figure 3.15a shows that there are two broad 

peaks present, found at 3273 and 3339 cm−1. They have a similar ratio of intensities 

to the peaks observed at 80°C, suggesting that they could be related to N–H 

stretches found in an NH2 group. However, it is more likely that they are related to an 

NH group. The vibrational spectra of lithium amide, LiNH2, and lithium imide, Li2NH, 

have been reported.28 It was observed that the N–H stretches in the amide shifted to 

lower frequencies on decomposition to the imide. Furthermore, a broadening of the 

peaks was observed due to increased disorder in the crystallite. Therefore, it is 

reasonable to suggest that the features in this region belong to an NH group, with the 

N–H asymmetric stretch found at 3339 cm−1 and the symmetric N–H stretch at 3273 

cm−1. The peaks found at 200°C are much broader than those at 80°C showing that 

this NH unit is found within a polymeric material. The B–H stretching region of the 

spectrum, figure 3.15b, is dominated by broad peaks which substantially overlap one 
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another and so it is difficult to obtain any meaningful information from this region of 

the spectrum with respect to the composition of the sample. Based on the number of 

hydrogen desorptions by 200°C and the fact that an NH group is present, it is likely 

that B–H stretches are present due to a BH unit, however, the spectrum provides 

inconclusive evidence for this. The features observed between 600 and 1800 cm−1, 

figure 3.15c, are also broad in nature. There is some correlation with the peaks 

observed at 80°C and 200°C, specifically with respect to N–H and B–H bending 

vibrations. Unfortunately, the broad nature of the peaks again makes it difficult to 

assign them to particular stretching or bending modes. It is again predicted that a B–

N stretch should be present in the spectrum as this bond should remain intact 

throughout the dehydrogenation process. The broad feature at 880 cm−1 could be 

due to this mode. Furthermore, a higher frequency B–N stretch may be expected in 

the spectrum due to the formation of a B=N double bond on dehydrogenation. 

However, the broad features again make it difficult to identify such a mode. 

A table showing the changes in the Raman spectrum of ammonia borane as it was 

heated can be seen in Appendix 1. 

 

3.6 Solid State 11B MAS NMR Spectroscopy 

The decomposition pathway of ammonia borane was investigated through solid state 

11B MAS NMR. The spectrum of the as-received ammonia borane is shown in figure 

3.16. It can be seen that there is a single feature in this region, centred at −26.0 ppm. 

On closer inspection this feature is shown to have a shoulder at −24.5 ppm. The 

ammonia borane starting material possesses only one boron environment, namely an 

sp3 hybridised boron atom present as H3BN. The reason for the observation of two 

features is because of quadrupolar coupling.1 The quadrupolar interaction is inversely 

proportional to the magnetic field and hence at higher magnetic fields only a single 

feature will be observed in the spectrum.29 

The solid state 11B NMR spectrum of ammonia borane after heating to 80°C for 12 

hours is shown in figure 3.17. It is obvious that there has been a significant change in 
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Figure 3.16 – The room temperature solid state 11B MAS NMR spectrum of ammonia 

borane 

the appearance of the spectrum compared to that at room temperature, with the 

emergence of several new boron environments observed in the spectrum. These 

features of polyaminoborane are formed by the loss of one equivalent of hydrogen 

from ammonia borane. As a general rule, the further downfield the feature, the less 

hydrogen there is attached to an sp3 type boron.10 Table 3.4 summarises the features 

that are observed in the spectrum. 

 

Figure 3.17 – The solid state 11B MAS NMR spectrum of ammonia borane after 

heating to 80°C for 12 hours 

  

(ppm)
-40-30-20-100102030
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Table 3.4 – Assignment of features observed in the solid state 11B MAS NMR 

spectrum of ammonia borane after heating to 80°C for 12 hours10 

Environment Chemical Shift 
(ppm) 

sp3 B – BH4 −38.0 

sp3 B – H3BN −26.0 

sp3 B – H2BN2 −13.0 

sp3 B – HBN3 −0.5 

sp2 B +27 

 

The appearance of both H2BN2 and BH4 features in the spectrum is due to the 

formation of DADB during the nucleation process, through the isomerisation of two 

ammonia borane molecules.3 The appearance of this feature also confirms that the 

induction period, the disruption of the dihydrogen bonding network, has completed. 

Following DADB formation, the growth process occurs, whereby DADB reacts with 

ammonia borane, resulting in hydrogen loss.1 This hydrogen loss leads to the 

appearance of hydrogen deficient features in the spectrum, namely 

polyaminoborane-like products. The observation of a number of boron environments 

in the spectrum suggests that the hydrogen releasing pathway is complex and cannot 

be summarised as simply as the reaction shown in reaction 3.5. This is in agreement 

with the solid state 11B NMR spectrum of polymeric aminoborane.30 The spectrum 

showed both sp2 and sp3 boron environments present in the sample, showing that 

the structure was not a simple long chain polymer. 

NH3BH3 → (NH2BH2)n + H2    Reaction 3.5 

While this reaction can account for the appearance of the feature at −13 ppm due to 

sp3 boron present as H2BN2, it cannot account for the other boron environments that 

are observed. Some of the boron environments could be explained by the following 

reactions: 
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BH4, H2BN2 2NH3BH3 → [NH3BH2NH3]
+[BH4]

− (DADB) Reaction 3.6 

H3BN Unreacted NH3BH3  

H2BN2 NH3BH3 → (NH2BH2)n + H2 Reaction 3.7 

H2BN2, BH4 DADB + NH3BH3 → [NH3BH2NH2BH2NH3]
+[BH4]

− + H2 Reaction 3.8 

       

The reactions above along with 11B NMR observations add weight to the published 

ammonia borane decomposition pathway, whereby the appearance and reactions of 

DADB play a key role in hydrogen release.1, 3 The fact that there is still a substantial 

H3BN feature along with the BH4 presence suggests that the first step of hydrogen 

release was not completed under the conditions of this experiment, heating at 80°C 

for 12 hours, in agreement with the Raman spectra. 

The final sp3 B environment observed, due to HBN3, was not accounted for in a 

previous study.10 There is potential for competing cyclisation reactions to occur 

instead of the reaction of DADB or DADB like molecules with ammonia borane, as 

demonstrated below.1 

  Reaction 3.9 

      Reaction 3.10 

Following cyclisation, further molecules containing sp3 hybridised B in the form of 

H2BN2 are produced, again highlighting the complex nature of the decomposition 

pathway. These cyclic products could potentially react with ammonia borane giving 

rise to products containing HBN3 units as shown in reaction 3.11, which plays an 

important role in the decomposition of ammonia borane in solution.31 However, no 
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results have been published that provide evidence that this process occurs in the 

solid state. 

       Reaction 3.11 

There is also a small amount of sp2 boron evident in the form of a broad feature 

observed at 27 ppm. The appearance of sp2 boron in the spectrum would presumably 

be related to the loss of the second equivalent of hydrogen. This loss is generally 

associated with temperatures in excess of 100°C,32 although the results here suggest 

that this loss can begin at temperatures as low as 80°C, possibly due to the long 

heating time of 12 hours. The low intensity of this feature shows that this hydrogen 

loss does not contribute significantly to the hydrogen release at temperatures up to 

80°C. There are a number of pathways that could account for the appearance of sp2 

boron in the spectrum, two examples are shown below. 

(NH2BH2)n → (NHBH)n + H2   Reaction 3.12 

      Reaction 3.13 

The solid state 11B NMR spectrum obtained after heating ammonia borane to 200°C 

is shown in figure 3.18. Again a number of features are observed, with similar 

chemical shifts, as observed with the spectrum obtained after heating to 80°C. 

However, there are significant differences between the two spectra with regards to 

the intensity of the features observed. 
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Figure 3.18 – The solid state 11B MAS NMR spectrum of ammonia borane after 

heating to 200°C for 12 hours 

The dominant feature in the spectrum is now that of sp2 boron. There is still an sp3 

boron signal observed, namely due to HBN3 observed at −23.7 ppm. The features 

due to BH4 and H2BN2 have dramatically reduced in intensity and there is now only a 

small signal in the regions where these groups would be observed. This shows that 

the nucleation events have completed and there is only a minimal amount of DADB 

present in the sample and as such the release of the first equivalent of hydrogen has 

concluded. 

The spectrum also showed the appearance of a feature at 1.0 ppm. This environment 

could have been related to BN. The solid state 11B NMR spectrum of cubic BN shows 

a sharp resonance at 1.6 ppm and that of hexagonal BN shows a quadrupolar 

feature at similar chemical shift to the one observed in figure 3.18.33, 34 Therefore 

there is a possibility that cross linking reactions had proceeded, producing BN3 

environments, reaction 3.14. The resulting trigonal planar B environments are 

consistent with those present in hexagonal BN and therefore the feature would be 

expected to be quadrupolar at approximately 30 ppm. Furthermore, the ultimate 

decomposition product of NH3BH3 has been observed to be hexagonal and not cubic 

BN.5 The feature at 1.0 ppm may have been due to oxidation of the sample. 

(ppm)
-40-30-20-100102030
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Reaction 3.14 

The dominant quadrupolar sp2 boron signal, +30 ppm, is due to the release of the 

second equivalent of hydrogen. The dominant reaction that produces this product is 

the loss of hydrogen from polyaminoborane, giving polyiminoborane, shown by 

reaction 3.15. 

 (NH2BH2)n → (NH=BH)n + H2   Reaction 3.15 

As discussed previously there are a number of side reactions that can again 

contribute to this sp2 boron feature, making it the most prominent feature in the 

spectrum. 

The continued presence of a H3BN sp3 environment is a curious observation. Similar 

studies of ammonia borane decomposition show that by a temperature of 200°C this 

feature is lost.30 The slight downfield shift of this feature to −23.7 ppm suggested that 

this feature was not due to NH3BH3 presence. A potential explanation is that a cyclic 

species such as cyclotriborazane has reacted with ammonia borane at lower 

temperatures, leading to B-(cyclotriborazanyl)aminoborohydride, BCTB. At 

temperatures approaching 200°C these species may lose hydrogen specifically from 

the ring, resulting in a product containing sp2 boron in the ring and an sp3 H3BN 

boron environment in the side chain, shown by reaction 3.16, consistent with 

observations in the NMR spectrum. This product could also polymerise, further 

releasing hydrogen and leading to a structure similar in nature to polyborazylene, 

containing sp2 boron with an NH2BH3 unit attached. 
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  Reaction 3.16 

A table showing the changes in the solid state 11B MAS NMR spectrum of ammonia 

borane as it was heated can be seen in Appendix 1. 

 
 

3.7 Conclusion 

NH3BH3 shows potential as a hydrogen storage material due to its high gravimetric 

hydrogen content, 19.6 wt%. However, as shown by thermal desorption results, 

section 3.4, the desorption profile shows broad features. The complexity of these 

desorptions was highlighted by solid state 11B MAS NMR results, section 3.6, where 

a number of B environments were present in the samples after heating NH3BH3 to 

80°C and 200°C. Raman spectroscopic studies, section 3.5, showed that these 

products were polymeric, which implies that rehydrogenation of these decomposition 

products is not possible, a significant drawback for its potential use as a hydrogen 

storage material. 
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Chapter 4 

 

The Reaction of Sodium Hydride 

with Ammonia Borane 

 

4.1 Introduction 

At the beginning of this research there had been no reported investigations into the 

reactions of metal hydrides and ammonia borane. Initial investigations were targeted 

at synthesising the mixed amide borohydride of sodium, Na2BH4NH2, which has been 

previously reported.1 Initial investigations into the reaction of NaH and NH3BH3 in a 

molar ratio of 2:1 resulted in excess NaH in the product mixture. The 1:1 reaction 

mixture also resulted in excess NaH remaining at the end of the experiments. It was 

found that a stoichiometry of 1:2 in favour of NH3BH3 was required to yield a product 

free from starting materials. This new trigonal crystalline phase was found to be 

different from Na2BH4NH2. The hydrogen desorption properties of this material were 

investigated and spectroscopic characterisations carried out. 

 

4.2 Experimental 

Sodium hydride (Sigma-Aldrich, 95% purity) and ammonia borane (Sigma-Aldrich, 

97% purity) were ground together in a 1:2 molar ratio in an argon filled glove box 

(>10 ppm O2, >1 ppm H2O), and heated under a flowing argon atmosphere at 60°C. 

The sample was reground and annealed at 60°C to improve the crystallinity of the 

sample. 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 108 
 

NaNH2BH3 synthesis was attempted through the reaction of NaNH2 (Sigma-Aldrich, 

95% purity) and NH3BH3 (Sigma-Aldrich, 97% purity) in a 1:1 molar ratio. The 

reagents were mixed together in an argon filled glove box (>10 ppm O2, >1 ppm 

H2O). 

 

4.3 Powder X-Ray Diffraction 

Following heating of the reaction mixture, powder X-Ray diffraction (XRD) patterns 

were collected for the products. Initial investigations showed that a new crystalline 

phase formed at a temperature of 60°C that had previously not been reported in the 

literature. This phase was collected as a white powder and the powder XRD pattern 

is shown in figure 4.1. 

 

Figure 4.1 – The powder XRD pattern of the product of the reaction of NaH + 

2NH3BH3 at 60°C 

Further experiments showed that this phase continued to exist up to a temperature of 

110°C. At temperatures between 120°C and 400°C the only crystalline phase 

observed in the powder XRD patterns was that of sodium borohydride, NaBH4. At 

500°C and 800°C the powder XRD patterns showed no evidence of crystalline 

material. 

Studies in the literature regarding the reaction of ammonia borane with sodium 

hydride have focused on a 1:1 reaction mixture, which have proved to produce the 
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crystalline phase sodium amidoborane, NaNH2BH3. Synthesis of this material can be 

carried out in solution, using tetrahydrofuran (THF) as solvent,2, 3 or through ball 

milling the reagents.4, 5 The synthesis of this material has not previously been 

reported through direct thermal solid state reaction of the starting materials. 

Investigations into the 1:1 reaction found that at a temperature as low as 40°C the 

desired 1:1 product could be obtained. The powder XRD pattern of this product is 

shown in figure 4.2. 

 

Figure 4.2 – The powder XRD pattern of the product of the reaction of NaH + NH3BH3 

at 40°C 

A stack plot of the powder XRD patterns obtained from the products of the 1:1 

reaction at various temperatures is shown in figure 4.3. It can be seen that 

NaNH2BH3 was also formed in the 1:1 reaction at 50°C and was the dominant phase 

in the powder XRD pattern. There were also some lower intensity peaks present in 

this pattern which are not observed in figure 4.2. These peaks have similar 2θ values 

to the peaks observed in the unidentified crystalline phase from the 1:2 reaction, 

suggesting that this phase could also have formed during the reaction. At 60°C the 

powder XRD pattern contained no evidence of crystalline material and the pattern 

obtained after reaction at 200°C showed only the presence of NaH. 
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Figure 4.3 – Powder XRD patterns obtained from the products of the NaH + NH3BH3 reaction at various temperatures
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The 1:2 reaction was subsequently investigated at lower temperatures following the 

successful synthesis of NaNH2BH3. A stack plot showing the crystalline phases 

formed through the NaH + 2NH3BH3 reaction is shown in figure 4.4. After reaction at 

40°C the powder XRD pattern showed the presence of NaNH2BH3 as well as 

unreacted NH3BH3. There were no peaks due to the presence of NaH. Reaction at 

50°C again showed the presence of NaNH2BH3 in the product mixture as well as 

NH3BH3 and no NaH. This pattern also revealed that the unknown crystalline phase 

from reaction at 60°C had also begun to form. The plot clearly shows the initial 

formation of NaNH2BH3, followed by the emergence of the unidentified new 

crystalline phase and finally the appearance of NaBH4 at higher temperatures. To aid 

the visibility of the peaks found around 24°, figure 4.5 shows a stack plot of the 

products of reaction at temperatures up to 110°C, between 22° and 30° 2θ. 

Room temperature reactions of both 1:1 and 1:2 reaction mixtures were also carried 

out. Results showed that the 1:1 reaction would proceed to completion, the synthesis 

of NaNH2BH3, over a ten day period. The 1:2 reaction was also found to proceed at 

room temperature. The powder XRD pattern taken ten days after the reagents had 

been ground together showed the presence of NaNH2BH3 and NH3BH3, but that the 

NaH had been consumed by the reaction. Two months after the start of the reaction, 

the powder XRD pattern showed only the presence of the unidentified phase 

previously synthesised in 1:2 reactions. 

The formation of NaNH2BH3 has also been reported through the reaction of sodium 

amide, NaNH2, with ammonia borane in a 1:1 ratio using THF as solvent.3 This was, 

however, shown to be a much slower reaction than the reaction of NaH with NH3BH3. 

The solid state reaction, in contrast, showed the opposite. While the 1:1 reaction 

involving NaH was shown to require ten days to reach completion at room 

temperature, the reaction of NaNH2 and NH3BH3 was instantaneous. On mixing the 

reagents, white smoke was observed to be given off from the reaction and the 

reaction mixture became wet before rapidly drying. The powder XRD pattern of the 

product showed that NaNH2BH3 had formed, figure 4.6, although there was still 

substantial presence of NaNH2, despite there no longer being any NH3BH3 present. 
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Figure 4.4 – Powder XRD patterns obtained from the products of the NaH + 2NH3BH3 reaction at various temperatures  
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Figure 4.5 – Powder XRD patterns between 23° and 26° 2θ obtained from the products of the NaH + 2NH3BH3 reaction at 

temperatures before the appearance of NaBH4  
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Figure 4.6 – The powder XRD pattern of the product of the reaction of NaNH2 + 

NH3BH3 at room temperature (red), the XRD patterns of NaNH2BH3 (black) and 

NaNH2 (blue) are shown for comparison 

4.3.1 Discussion 

From the powder XRD patterns it can be concluded that the previously unreported 

crystalline phase formed at a temperature of 60°C and underwent decomposition 

above 110°C. NaBH4 was the only crystalline decomposition product, implying that 

amorphous N containing material also formed. This was similar to the decomposition 

of ammonia borane, where amorphous decomposition products were also observed, 

see chapter 3.4.  

NaBH4 is known to begin thermal decomposition at 400°C,6 although the major 

decomposition steps do not commence until a temperature of 565°C is reached as 

shown in reaction 4.1.7 

NaBH4 → Na + B + 2H2   Reaction 4.1 

This is in disagreement to results observed here, where the XRD pattern of the 

product from reaction at 500°C was amorphous, implying that NaBH4 had already 

undergone decomposition. NaBH4 treated under the same conditions showed only 

partial decomposition with some Na being evident in the powder XRD pattern. This 
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suggested that the amorphous decomposition product effectively decreased the 

decomposition temperature of NaBH4. Further to this the lack of Na in the powder 

XRD pattern of the product from the NaH + 2NH3BH3 reaction at 500°C suggested an 

alternative decomposition pathway to that shown in reaction 4.1. The onset 

temperature of NaBH4 decomposition has been shown to be lowered through the 

interaction of the material with LiAlH4
8 and MgH2

9 resulting in a modified 

decomposition pathway. However, because the composition of the amorphous 

material remains unknown it is not possible to determine how the decomposition 

pathway was modified. 

A difference between ammonia borane decomposition and this reaction was the lack 

of volume expansion on heating. Ammonia borane undergoes a significant volume 

expansion at 80°C, but this was not observed either during synthesis or 

decomposition of the unidentified crystalline phase. Therefore, it can be deduced that 

the induction phase, the disruption of the dihydrogen bonds, observed during the 

decomposition of ammonia borane, which is responsible for the volume expansion, 

did not have to occur during the reaction of NaH with NH3BH3. 

The 1:1 reaction pathway closely resembled that published in the literature. Following 

synthesis of NaNH2BH3, powder XRD analysis of the decomposition products after 

heating to 90°C revealed the sample to be amorphous and further heating to 200°C 

showed NaH to be the only crystalline phase observed.3 An interesting observation in 

the powder pattern of the reaction at 50°C was the emergence of peaks at similar 2θ 

to those observed in the unidentified crystalline phase. This suggested there may 

have been competing reactions taking place: firstly the synthesis of NaNH2BH3 and 

secondly the synthesis of the unidentified crystalline phase. However, the lower 

temperature 1:2 reactions showed the reactions were not in fact competing but the 

synthesis of NaNH2BH3 was the first step in the synthesis of the unidentified 

crystalline phase. This was further substantiated through the reaction of NaNH2BH3, 

previously synthesised through a 1:1 reaction at 40°C, with NH3BH3 at 60°C. The 

powder XRD pattern, figure 4.7, of the product showed that the unidentified 

crystalline phase from the 1:2 reaction was synthesised. 
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Figure 4.7 – The powder XRD pattern of the product of the reaction of NaNH2BH3 + 

NH3BH3 at 60°C 

The fact that both the 1:1 and 1:2 reactions proceeded at room temperature 

highlights the fact that these reactions must have been thermodynamically favoured, 

with a significant driving force and no significant kinetic barriers to the reactions. NaH 

has a negatively charged hydride ion and as previously discussed NH3BH3 has protic 

hydrogens associated with the nitrogen atoms. Therefore, there is potentially an 

attractive force between hydrogens of this nature which can combine to form a 

hydrogen molecule, leaving a sodium cation and an NH2BH3 anion which crystallise 

as NaNH2BH3. This reaction mechanism will be substantiated further in subsequent 

sections of this chapter that investigate the gases released during the reaction 

pathway. In terms of the reaction of NaNH2BH3 with NH3BH3, little can be determined 

about the driving force for the reaction from powder XRD patterns alone and this will 

be discussed further in the following sections of this chapter. 

The solid state reaction between NaNH2 and NH3BH3 was shown to synthesise 

NaNH2BH3, which implied that the white gas given off was NH3, reaction 4.2. This 

assumption also agreed with the observation that NH3 was released during the THF 

mediated reaction.3 

NaNH2 + NH3BH3 → NaNH2BH3 + NH3   Reaction 4.2 

There are two possible mechanisms that could have proceeded, both resulting in the 

same product. The NH2
− anion could have acted as a nucleophile, attacking the B in 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 117 
 

NH3BH3 through an SN2 type reaction, shown in reaction 4.3 or acted as a base and 

removed a proton from the NH3 group in NH3BH3 as shown by reaction 4.4. 

  Reaction 4.3 

Reaction 4.4 

It has been established in other studies that in the solid state the NH2
− anion appears 

to act as a nucleophile, whereas in solution the anion acts as a base.10 Therefore, it 

can be assumed that reaction 4.3 was responsible for the synthesis of NaNH2BH3, 

although no evidence for this can be offered by this study. In order to determine the 

correct mechanism a deuterated sample of NaND2 would be required as a starting 

material. The product of reaction would then either be NaND2BH3 if an SN2 reaction 

proceeded or NaNH2BH3 if the base mediated mechanism took place. 

This solid state reaction of NH3BH3 with NaNH2 was shown to be a poor method of 

synthesis of NaNH2BH3 as there was a significant presence of NaNH2 remaining in 

the powder XRD pattern, whereas all of the NH3BH3 was consumed in the reaction. 

Had the reaction been stoichiometric then all of the NaNH2 and NH3BH3 would have 

been consumed. The fact that NaNH2 remained after reaction showed that the 

competing pathway most likely involved NH3BH3. The spontaneous nature of the 

reaction suggests that the reaction could have been sufficiently exothermic to trigger 

the decomposition of NH3BH3. Assuming an SN2 reaction took place, there are a 

number of other similar type reactions that could have proceeded as detailed below. 

  Reaction 4.5

Reaction 4.6 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 118 
 

Reaction 4.5 would have competed with the main SN2, reaction 4.3, consuming 

NH3BH3 and leaving unreacted NaNH2. The second possible SN2 reaction, reaction 

4.6, would have formed NaNH2 as a product of the reaction. Both reactions would 

form Na+[BH3NH2BH3]
−. As this material is crystalline, see section 4.4, the fact that it 

was not observed in the powder XRD pattern of the product of this reaction shows 

that these reactions were not responsible for the observation of excess NaNH2. The 

continued presence of NaNH2 at the end of the reaction must therefore have been a 

consequence of partial NH3BH3 decomposition in the reaction mixture. 

The information gained from powder XRD patterns about the 2:1 reaction pathway is 

summarised in reaction 4.7, and the 1:1 reaction and NaNH2 reaction pathways are 

shown in reactions 4.8 and 4.9. 

 
Reaction 4.7 

 

NaH + NH3BH3 → NaNH2BH3 → Amorphous material → NaH + Amorphous material 

Reaction 4.8 

 

NaNH2 + NH3BH3 → (1-x)NaNH2 + xNaNH2BH3 + xNH3 + Amorphous material 

Reaction 4.9 

 

4.3.2 Indexing 

The peak positions observed in the product of the NaH + 2NH3BH3 reaction at 60°C 

were run through the indexing routine of Topas.11 The most probable assignment 

was for a trigonal unit cell with a = 4.34 Å and c = 17.86 Å, with a suggested space 

group of P31c. The a and c lattice constants were refined through a Pawley fit using 

Topas11 to values of 4.3389(4) Å and 17.859(1) Å, respectively, giving a unit cell 

volume of 291.16(5) Å3. The refinement is shown in figure 4.8. It can be seen from 

NaH + 2NH3BH3 NaNH2BH3 + NH3BH3

Unidentified 
crystalline phase

NaBH4 +

Amorphous material
Amorphous 

material

40°C 60°C

500°C

150°C
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this refinement that the product was impure as there were a few broad peaks 

present, at 20.5°, 27.6° and 39.4° 2θ, that were not accounted for by the indexed 

trigonal phase. The fact that they were broad indicated that they were most likely an 

impurity. The very large c:a ratio of approximately 4:1 led to the question as to 

whether this was a realistic unit cell. It was found that refinement of anisotropic peak 

broadening in trigonal symmetry using the method described by Stephens12 gave rise 

to a significantly improved fit to the observed data with significantly sharper peaks in 

the (001) direction. This observation was taken as evidence for the validity of the 

determined trigonal unit cell. 

 

Figure 4.8 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 60°C. The observed pattern is shown in red, the calculated 

pattern in black and the difference in blue. Blue tick marks indicate the peak positions 

of the trigonal phase. Rwp = 6.186%, χ2 = 1.540 

The procedure was repeated for the peak positions observed for this new phase 

synthesised in reactions up to a temperature of 110°C. The results are shown in table 

4.1 and the refinements can be seen in Appendix 2. The impurity peaks observed in 

the powder pattern of the products from reaction at 60°C were present in all patterns 

throughout this temperature range, with the intensity of these peaks being greatest at 

80°C. 

The refinement of the trigonal phase synthesised through the reaction of NaNH2BH3 

with NH3BH3 at 60°C is shown in figure 4.9. Unlike the 1:2 reaction, all of the peaks in 

this pattern are indexed meaning there were no crystalline impurities in the product. 

The refined lattice constants and cell volume are shown in table 4.1. 
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Figure 4.9 – Pawley refinement for the product synthesised through the NaNH2BH3 + 

NH3BH3 reaction at 60°C. The observed pattern is shown in red, the calculated 

pattern in black and the difference in blue. Blue tick marks indicate the peak positions 

of the trigonal phase. Rwp = 5.982%, χ2 = 1.148 

Table 4.1 – Refined values of the a and c lattice constants and cell volume for the 

trigonal phase observed in the NaH + 2NH3BH3 reaction 

Reaction 

Temperature (°C) 

a (Å) c (Å) Cell volume 

(Å3) 

60 4.3389(4) 17.859(1) 291.16(5) 

80 4.3392(5) 17.854(2) 291.12(8) 

100 4.3363(6) 17.844(2) 290.59(8) 

110 4.3393(5) 17.857(2) 291.19(7) 

NaNH2BH3 + NH3BH3 

60°C 
4.3379(6) 17.848(2) 290.85(8) 

 

As discussed earlier, inspection of the powder XRD pattern of the product from 

reaction at 120°C, showed that NaBH4 was the dominant crystalline phase present. 

NaBH4 has a face centred cubic unit cell with space group Fm3 m. The lattice 

constants were obtained through a Rietveld refinement using the crystal structure 

published by Filinchuk and Hagemann.13 Subsequently, the value of the lattice 

parameter a was refined to 6.1883(7) Å. The refinement for this product can be seen 

in figure 4.10. Inspection of the fit shows that there were again some unindexed 

peaks, which are found at 23.4°, 24.0° and 27.6° 2θ. The two peaks observed at 

23.4° and 24.0° are unrelated to the trigonal phase observed at 110°C. However, the 

peak at 27.6° is consistent with an impurity peak from lower temperature reactions. 
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NaBH4 is the only crystalline phase observed above this temperature, up to a 

reaction temperature of 400°C. The Rietveld refinements of the powder XRD patterns 

are shown in Appendix 2. Throughout the reaction temperature range of 120°C to 

400°C all of the peaks in the powder XRD patterns can be indexed to NaBH4 with no 

evidence of any crystalline impurities. Above 500°C the powder XRD patterns were 

completely amorphous and so no refinements could be performed. 

 

Figure 4.10 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 120°C. The observed pattern is shown in aqua, the calculated 

pattern in red and the difference in blue. Blue tick marks indicate the peak positions 

of NaBH4. Rwp = 8.141%, χ2 = 1.785 

A Rietveld refinement was performed on the NaNH2BH3 phase synthesised through 

the 1:1 reaction at 40°C using the crystal structure published by Wu et al.14 for the 

isostructural LiNH2BH3 and the lattice constants published by Xiong et al.5 for 

NaNH2BH3. Initially, only the a, b and c lattice constants were refined, however, the 

resultant refinement was unsatisfactory due to significant differences between the 

calculated and observed diffraction patterns. Therefore, the refinement moved on to 

include the atomic coordinates of the heaviest elements in the unit cell, namely 

sodium, nitrogen and boron. Hydrogen atoms were removed from the refinement as 

they are poor scatterers of X-rays. The calculated pattern had a much more 

acceptable fit following this refinement. A selection of refined parameters is shown in 

table 4.2 along with the original published structure values, and the refined powder 

XRD pattern shown in figure 4.11. Table 4.2 shows there is good agreement between 

the two unit cells with respect to lattice constants although there are slight 

discrepancies with respect to bond lengths. However, this is likely due to the poorer 

quality of data collected in this study; the acquisition of synchrotron X-ray diffraction 
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data would likely see these discrepancies reduced. The collection of neutron 

diffraction data of deuterated samples would also aid refinement of the hydrogen 

positions. As a consequence of the differences in the quality of data between the two 

studies, these discrepancies can be deemed acceptable. Not all of the peaks in the 

powder XRD pattern are accounted for by the NaNH2BH3 phase. There are two 

impurity peaks located at 25.6° and 36.0° 2θ, which are not related to either starting 

material. 

Table 4.2 – Refined lattice constants and selected bond lengths of NaNH2BH3 

synthesised in the reaction of NaH + NH3BH3 at 40°C 

Parameter Ref 5 NaH + NH3BH3 

40°C 

a (Å) 7.46931(7) 
 

7.4711(5) 

b (Å) 14.65483(16) 
 

14.6421(10)  

c (Å) 5.65280(8) 
 

5.6600(3) 

Na–N bond 

length (Å) 

2.35 2.413(4) 

B–N bond 

length (Å) 

1.56 1.460(2) 

 

 

Figure 4.11 – Rietveld refinement of NaNH2BH3 synthesised from reaction of NaH + 

NH3BH3 at 40°C. The observed pattern is shown in black, the calculated pattern in 

red and the difference in blue. Blue tick marks indicate the peak positions of 

NaNH2BH3. Rwp = 13.053%, χ2 = 1.621 

2 Theta

6560555045403530252015105

C
o

u
n

ts

1,000

800

600

400

200

0

-200

NaNH2BH3 100.00 %

NaNH2BH3 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 123 
 

The powder XRD pattern of the product from the NaH + 2NH3BH3 reaction at 40°C 

was shown to contain both NaNH2BH3 and NH3BH3, and these phases were refined 

using structures published by Wu et al.14 and Bowden at al.,15 respectively. For the 

NaNH2BH3 phase, the a, b and c lattice constants were refined along with the atomic 

positions of the sodium, nitrogen and boron atoms. The refinement for NH3BH3 was 

carried out with respect to the a and c lattice constants only. The result is shown in 

figure 4.12 and the refined values shown in table 4.3. There is good agreement 

between the published and refined parameters for both NaNH2BH3 and NH3BH3 as 

shown by table 4.3. The refinement also indicates that there is more NH3BH3 in the 

product of reaction than NaNH2BH3, and the refinement of NaH showed that this 

material was consumed by the reaction. The refinement also highlighted some 

impurities, with unrefined peaks located at 11.1°, 12.8°, 29.9°, 36.0°, 37.7°, 39.6° and 

54.5° 2θ. 

Table 4.3 - Refined lattice constants and selected bond lengths of NaNH2BH3 and 

NH3BH3 resulting from the reaction of NaH + 2NH3BH3 at 40°C 

Parameter Ref 5 – 

NaNH2BH3 

Ref 14 – 

NH3BH3 

NaNH2BH3 NH3BH3 

a (Å) 7.46931(7) 
 

5.2630(4) 7.4671(4) 5.2373(2) 

b (Å) 14.65483(16) 
 

5.2630(4) 14.6316(8) 5.2373(2) 

c (Å) 5.65280(8) 
 

5.0504(8) 5.6549(3) 5.0237(3) 

Na–N bond 

length (Å) 

2.35 Not applicable 2.43(1) Not 

applicable 

B–N bond 

length (Å) 

1.56 1.597(3) 1.46(2) 1.589 
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Figure 4.12 – Rietveld refinement for the product synthesised through the NaH + 
2NH3BH3 reaction at 40°C (a) the full 2θ range (b) 20 - 30° 2θ. The observed pattern 
is shown in black, the calculated pattern in red and the difference in blue. Bragg peak 

positions due to NH3BH3 (blue), NaNH2BH3 (black) and NaH (green) are indicated. 
Rwp = 11.711%, χ2 = 3.247 

The reaction at 50°C produced a powder XRD pattern containing multiple phases. 

The phases present were refined and the results are shown in table 4.4 and figure 

4.13. Rietveld refinements were performed for the known crystalline phases, 

NaNH2BH3 and NH3BH3 and a Pawley refinement for the unidentified trigonal phase. 

There is only one unassigned peak in the pattern, observed at 36.1° 2θ. There is 

good agreement between literature values and the refined parameters, and the NaH 

refinement again shows that this material has been consumed by the reaction. The 

refinement also suggests that there is a similar amount of NaNH2BH3 and NH3BH3 in 

the product. 
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Table 4.4 - Refined lattice constants and selected bond lengths of NaNH2BH3, 

NH3BH3 and the trigonal phase synthesised in the reaction of NaH + 2NH3BH3 at 

50°C 

Parameter Ref 5 – 

NaNH2BH3 

Ref 14 – 

NH3BH3 

NaNH2BH3 NH3BH3 Trigonal 

Phase 

a (Å) 7.46931(7) 

 

5.2630(4) 7.4570(4) 5.2298(3) 4.3370(3) 

b (Å) 14.65483(16) 

 

5.2630(4) 14.6120(9) 5.2298(3) 4.3370(3) 

c (Å) 5.65280(8) 

 

5.0504(8) 5.6494(4) 5.0178(4) 17.852(2) 

Na–N bond 

length (Å) 

2.35 Not 

applicable 

2.45(2) Not 

applicable 

Not applicable 

B–N bond 

length (Å) 

1.56 1.597(3) 1.49(2) 1.587 Not applicable 

 

 

 

Figure 4.13 - Rietveld refinement of the product synthesised through the NaH + 

2NH3BH3 reaction at 50°C (a) the full 2θ range (b) 20 - 30° 2θ. The observed pattern 

is shown in green, the calculated pattern in red and the difference in blue Bragg peak 

positions due to NH3BH3 (blue), NaNH2BH3 (black), NaH (green) and the trigonal 

phase (brown) are indicated. Rwp = 7.781%, χ2 = 1.540 
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After ten days reaction at room temperature the phases present in the powder XRD 

pattern could be refined as NaNH2BH3 and NH3BH3. After two months of reaction at 

room temperature, the phase present in the powder XRD pattern was indexed to a 

trigonal unit cell and then refined through a Pawley fit. After ten days of reaction the 

refinements showed that NaNH2BH3 made up 41.47 mol% of the product compared 

to 58.05 mol% NH3BH3 with a small amount of unreacted NaH. The refined lattice 

constants of all phases and the refined powder XRD patterns are shown in Appendix 

2. 

The refined values of phases observed in the products of the series of 1:1 reactions 

carried out between temperatures of 50°C and 200°C are summarised in table 4.5. 

The refined powder XRD patterns can be viewed in Appendix 2. The structure 

published by Shull et al.16 was used for the Rietveld refinement of NaH. At 50°C the 

only phase that could be refined was that of NaNH2BH3. Other peaks were present in 

the pattern, at similar 2θ values to peaks observed both for NH3BH3 and the trigonal 

phase; however, the poor resolution of these peaks made these phases impossible 

to refine. 

Table 4.5 – Refined a, b and c lattice constants observed in the NaH + NH3BH3 

reaction between temperatures of 50°C and 200°C 

Reaction 

Temperature (°C) 

Phase a (Å) b (Å) c (Å) 

50 NaNH2BH3 7.47534(6) 14.648(1) 5.6639(4) 

60 Amorphous Not 

applicable 

Not 

applicable 

Not 

applicable 

200 NaH 4.8833(10) a a 

Ref 5 NaNH2BH3 7.46931(7) 14.65483(16) 5.65280(8) 

Ref 15 NaH 4.89 a a 

 

Following the room temperature reaction of NaNH2 with NH3BH3 the powder XRD 

pattern could be refined to show the continued presence of NaNH2 and the formation 

of NaNH2BH3. The structure published by Nagib et al.17 was used as the starting 

model for the Rietveld refinement of NaNH2. The refinement showed a significant 

amount of NaNH2 remained after reaction, as well as some impurity peaks appearing 
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at 24.0°, 25.6°, 27.5° and 39.3° 2θ. The refined parameters are shown in table 4.6 

and the refined diffraction patterns can be found in Appendix 2.  

Table 4.6 - Refined lattice constants and selected bond lengths for NaNH2BH3 and 

NaNH2 from the reaction of NaNH2 + NH3BH3 

Parameter Ref 5 – 

NaNH2BH3 

Ref 16 – 

NaNH2 

NaNH2BH3 

RT 

NaNH2 

 RT 

a (Å) 7.46931(7) 

 

8.964(3) 7.4770(9) 8.973(10) 

b (Å) 14.65483(16) 

 

10.456(3) 14.671(2) 10.464(1) 

c (Å) 5.65280(8) 

 

8.073(3) 5.6641(8) 8.0809(9) 

Na–N bond 

length (Å) 

2.35 2.437 2.44(2) 2.442 

B–N bond 

length (Å) 

1.56 Not 

applicable 

1.52(3) Not 

applicable 

 

4.3.2.1 Impurities 

Following refinement of the powder XRD patterns, impurity peaks were highlighted in 

most of the patterns. These peaks are listed in table 4.7. With respect to the NaH + 

2NH3BH3 reactions, where the trigonal phase was formed, there were consistently 

impurity peaks at approximately 27.6° and 39.4°. These peaks remain unidentified, 

but do show that there are competing reactions taking place in addition to the 

formation of the trigonal phase. These impurities were also observed in the NaNH2 + 

NH3BH3 reactions, as well as in the NaH + NH3BH3 reaction at 80°C. Grochala et al.4 

reported three low intensity peaks in the powder XRD pattern of NaNH2BH3 at 

10.83°, 12.85° and 25.67°, which were unidentified. In this study these impurity peaks 

were also observed in the reactions where NaNH2BH3 was synthesised along with a 

further impurity peak at 36.0°. The positions of impurity peaks in the NaH + NH3BH3 

reactions at approximately 24.1°, 25.6° and 31.0° are consistent with the most 

intense peaks of the trigonal phase, suggesting that the trigonal phase formed to a 

minor extent during this reaction. The emergence of NaNH2BH3 as the main product 

of this reaction raised the possibility of this phase reacting with NH3BH3 to form the 
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trigonal phase. There were also a number of other peaks which appear in different 

patterns, although there was no apparent pattern with the appearance of these 

impurities, again highlighting that these reactions are not clean due to competing 

pathways. Interestingly there were no impurities in the product of the reaction 

between NaNH2BH3 and NH3BH3. This implies that separating the two steps involved 

in the synthesis of the trigonal phase leads to a purer product by restricting the extent 

to which side reactions can occur. There were a number of impurity peaks in the 1:2 

reaction product at 40°C. The impurity peaks in the 1:1 reaction at 40°C were mostly 

related to the trigonal phase formation. Therefore, the excess NH3BH3 present in this 

first step must have been responsible for increasing the potential for side reactions to 

occur. In the second step there may also have been more potential for other side 

reactions to occur, with a 1:2 reaction mixture compared to the NaNH2BH3 + NH3BH3 

reaction mixture, due to the presence of impurities, resulting in a significantly less 

pure product. The impurity at 28.9° in the 1:2 reaction at 110°C is consistent with the 

most intense (002) Bragg peak of NaBH4, showing that the trigonal phase begins to 

decompose to NaBH4 at this temperature. The two impurity peaks in the pattern of 

the product from the 1:2 reaction at 120°C are assumed to be related to the 

decomposition of the trigonal phase. The large number of impurity peaks shows the 

complex nature of both the synthesis reactions and the decomposition pathway. 

Further to this it was only possible to identify crystalline impurities from powder XRD 

patterns, the question of amorphous impurities or indeed major phases cannot be 

answered by this method of analysis. 
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Table 4.7 – The peak positions of impurities observed in powder XRD patterns 
¥ = NaBH4, 

† = Trigonal phase, ξ = Unknown impurity 

Reaction Temp 

(°C) 

Peak positions, 2θ 

NaH + 

2NH3BH3 

RT, 10 

days 

36.0ξ       

RT, 2 

months 

27.5ξ 39.3ξ      

40 7.0ξ 11.1ξ 12.8ξ 29.9ξ 36.0ξ   

50 36.1ξ       

60 20.5ξ 27.6ξ 39.4ξ     

80 20.5ξ 27.6ξ 39.4ξ     

100 27.7ξ 39.5ξ      

110 27.7ξ 28.9¥ 39.5ξ     

120 23.4ξ 24.0ξ 27.5ξ     

NaH + 

NH3BH3 

40 24.1† 25.6† 36.0ξ     

50 12.8ξ 24.0ξ 24.1† 25.6† 31.0† 36.0ξ 42.4ξ 

80 27.5ξ 31.6ξ 36.0ξ 46.7ξ    

NaNH2BH3 

+ NH3BH3 

60 None       

NaNH2 + 

NH3BH3 

RT 27.5ξ       

 

4.3.2.2 Refined Lattice Constants 

The changes in the values of the a and c lattice constants with reaction temperature 

for the trigonal phase are shown in figure 4.14. It can be seen that there were no 

particular trends in either of these parameters and the changes in the values were 

negligible. 

The variations of the a, b and c lattice constants of the NaNH2BH3 phase are shown 

in figure 4.15. For both the 1:1 and 1:2 reactions, the changes in the values of the 
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constants upon heating were all within 0.4% rendering them negligible, although the 

variation was greater for the product from the 1:1 reaction. 

 

Figure 4.14 – Lattice constants for the trigonal phase 

 

 

Figure 4.15 – Lattice constants for NaNH2BH3 

Figure 4.16 shows the changes in B–N and Na–N bond lengths in the NaNH2BH3 

phase. There are noticeable differences between the bond lengths calculated for 

both the Na–N bond and B–N bond compared to the structure published by Xiong et 

al.5 As discussed previously, this is most probably due to the difference in quality of 

data collected. The B–N bond is shorter in NaNH2BH3 than in NH3BH3, which can be 
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attributed to stronger bonding between the B and N atoms in NaNH2BH3, a 

consequence of substituting a hydrogen atom in NH3BH3 for a more electron 

donating alkali metal. The longer the Na–N bond, the more electron rich the N atom 

should be and a shorter B–N bond would be expected. Therefore, it seems that the 

quality of data collected was insufficient to draw comparisons between these bond 

lengths. 

 

Figure 4.16 – Bond lengths for NaNH2BH3 

The first step in the 1:2 reaction produces NaNH2BH3 and leaves excess NH3BH3. If 

this were to proceed stoichiometrically, the mole percentage of NaNH2BH3 and 

NH3BH3 in the product would be 50%. The values calculated from Rietveld 

refinements are shown in table 4.8 and are similar to the theoretical values for the 

50°C reaction, although it is slightly lower for NaNH2BH3 but much lower after 

reaction at 40°C. These discrepancies again highlight the fact that there are 

competing pathways taking place producing amorphous materials. The unexpectedly 

low value of NaNH2BH3 in the 40°C reaction could be due to intermolecular reactions 

involving NaNH2BH3 molecules, whereas at 50°C NaNH2BH3 preferentially reacts 

with NH3BH3 resulting in the trigonal phase. 

Table 4.8 – Mole percentage of phases in products from Rietveld refinements 

Reaction NaNH2BH3 NH3BH3 

NaH + 2NH3BH3 40°C 31.24% 68.76% 

NaH + 2NH3BH3 50°C 44.58% 55.42% 

NaH + 2NH3BH3 RT 41.67% 58.33% 
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4.4 Thermal Desorption Studies 

4.4.1 NaNH2BH3 

The thermal desorption properties of NaNH2BH3 were investigated using TGA–MS. A 

sample of the pre-synthesised NaNH2BH3 was inertly loaded into a TGA connected 

to a mass spectrometer. Figure 4.17 shows a combination of the thermogravimetric 

data and the mass spectrometric data. The heated sample showed a two step weight 

loss pathway. The first desorption step began at 70°C, peaking at 140°C. This 

desorption step was completely finished before the onset temperature, 230°C, of the 

second desorption step was achieved, which reached a maximum at 315°C. A total 

mass loss of 5.25 wt% was observed. The first step showed a loss of 3.5 wt% with a 

further loss of 1.75 wt% during the second step. The only gaseous desorption 

product detected by mass spectrometry was hydrogen. 

 

Figure 4.17 – TGA of NaNH2BH3. The gravimetric trace is shown in green, the 

temperature trace in blue and the mole percentages of H2 and NH3 detected by mass 

spectrometry shown in red and brown, respectively. 
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Discussion 

There have been conflicting reports with respect to NaNH2BH3 decomposition in the 

literature. Two independent studies have shown the material to release exclusively 

hydrogen, with a total weight loss of 7.5 wt%. The first of these studies was carried 

out isothermally at 91°C, and a heat treatment duration of 19 hours was required to 

effect the total mass loss.5 The second study used temperature ramping and showed 

weight loss over a two step release process with a first release step at 87°C 

releasing 4.4 wt% (1.15 equiv H2) and a second step at 174°C releasing a further 3.1 

wt% (0.85 equiv H2).
3 A third study analysed nine independent samples and found 

weight loss varied from 5.5 to 9.5 wt% in the temperature range 75 to 105 °C, with an 

average weight loss of 6.6 wt%.4 A further loss of 1.9 wt% was observed above 

140°C. However, the hydrogen release was significantly contaminated with ammonia. 

Compared to the earlier studies, the results here showed an unexpectedly low weight 

loss. However, the first weight loss step is consistent with the loss of roughly one 

equivalent of hydrogen as shown by reaction 4.10. This reaction would account for a 

weight loss of 3.8 wt%, similar to the observed value of 3.5 wt%, leaving a material of 

composition NaNHBH2. Powder XRD analysis in section 4.3.1 showed that the only 

crystalline product observed after decomposition of NaNH2BH3 was NaH, therefore 

this material must be amorphous and, by analogy with the decomposition products of 

NH3BH3, is probably a polymeric material. 

nNaNH2BH3 → (NaNHBH2)n + nH2  Reaction 4.10 

The next desorption step must result in NaH, in order to be consistent with powder 

XRD patterns. There was a slight discrepancy in temperatures: NaH was observed in 

powder XRD patterns after heating to 200°C, whereas the second weight loss did not 

commence until a temperature of 230°C was achieved. This could be due to the 

different experimental conditions: the reaction mixture was held at the reaction 

temperature for twelve hours during gas line experiments, but was heated at a rate of 

2°C min−1 during the TGA experiment. Therefore it would be reasonable to expect 

this event to occur at a higher temperature in the ramped TGA experiment. It is also 

plausible that NaH formed without gas evolution before the higher temperature 
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weight loss event. The sodium atom present could combine with an adjacent hydridic 

hydrogen bonded to boron, resulting in NaH and (NHBH)n, polyimidoborane, as 

shown in reaction 4.11. The higher temperature weight loss would consequently be 

associated with the thermal decomposition of polyimidoborane; this event was 

observed at a similar temperature in the desorption profile of NH3BH3 (Chapter 3.4).  

 Reaction 4.11 

Xiong et al.3 proposed that NaNH2BH3 decomposition results in the formation of NaH 

and BN, with calculated and observed weight losses of 7.5 wt%. However, this was 

challenged in a later study by Fijalkowski and Grochala4 on the grounds that the 

temperature was insufficient to lead to BN formation and that the hydrogen release 

was contaminated by NH3. The authors instead speculated that an intermolecular 

reaction, secondary to the main decomposition pathway, between NaNH2BH3 

molecules led to intermediates which decomposed to NaH and BH2NHNaBH2. 

However, this pathway involved the release of NH3 and so cannot have taken place 

during our TGA study. The weight loss observed in the second decomposition step 

was also insufficient to account for a release of a second equivalent of hydrogen. 

Assuming reaction 4.11 does account for NaH formation, the release of the second 

equivalent of hydrogen would not have been expected to be complete at the 

maximum temperature, 350°C, of this experiment because (NHBH)n requires 

temperatures in excess of 400°C to decompose fully to BN, which supports the 

relatively small weight loss.18 The combination of TGA and powder XRD results leads 

to the proposed decomposition of NaNH2BH3 shown in reaction 4.12. 

nNaNH2BH3 → (NaNHBH2)n + nH2 → nNaH + (NHBH)n → nNaH + nBN + nH2 

Reaction 4.12 
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4.4.2 NaH + NH3BH3 

The thermal desorption properties of a ground sample of NaH and NH3BH3 were 

investigated using TPD–MS, heated at a ramp rate of 2°C min−1 to 350°C. The data 

is shown in figure 4.18. 

 

Figure 4.18 – TPD–MS analysis of a ground reaction mixture of NaH + NH3BH3. The 

temperature trace is shown in blue and the mole percentages of H2 and NH3 released 

are shown in red and brown, respectively 

There were three exothermic events observed in the temperature trace, at 50°C, 

75°C and 85°C, with each event accompanied by hydrogen release. The first release 

at 50°C can be associated with the reaction of NaH and NH3BH3, forming NaNH2BH3, 

accompanied by the release of one equivalent of hydrogen. The temperature of the 

event was in good agreement with gas line reactions, where it was shown that this 

reaction occurred at 40°C, however, the release appeared to be much smaller than 

expected. This is substantiated by processing the TPD–MS data to show gravimetric 

data as discussed in chapter 2.5. The processed data is shown in figure 4.19. It can 

be seen that the first hydrogen release step evolved less than 0.2 equivalents of H2. 

The reaction potentially commenced on grinding the reagents and proceeded during 
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the delay between loading the sample onto the TPD apparatus and beginning the 

experiment. The hydrogen evolved during this time period would hence have not 

been detected during the desorption experiment. 

 

Figure 4.19 – Thermal decomposition analysis of NaH + NH3BH3 reaction mixture in 

a TPD with simulated gravimetric data. The temperature trace is shown in blue, the 

moles of H2 released in red, and simulated gravimetric data in green 

The main hydrogen release event occurred at 85°C and was observed to be a very 

sharp release of hydrogen, which, in agreement with TGA data in chapter 4.4.1 and 

results in the literature,3-5 can be assigned to the decomposition of the NaNH2BH3 

phase resulting in formation of (NaNHBH2)n. The increase in the temperature trace 

that occurred simultaneously with this hydrogen release highlights the exothermic 

nature of this decomposition. The theoretical weight loss for this step is calculated to 

be 3.7 wt% and the simulated value, 3.4 wt%, from figure 4.19 is similar to this. The 

discrepancy can be assumed to come from the fact that the sample was weighed 

before grinding the reagents and the mass at the start of the experiment was 

assumed to be equal to this. However, as discussed above there was potential for 

gas to have been released prior to the start of the experiment, the true sample mass 

at the start of the experiment would therefore have decreased and hence the actual 

weight loss would have been greater. 
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The third exothermic event observed in figure 4.18 occurred at 75°C between the two 

steps discussed above. There is no apparent third event in this temperature range 

that would account for this step. This event could potentially have been related to 

either the reaction of NaH with NH3BH3 or the decomposition of NaNH2BH3, although 

it could also have been due to side reactions. This hydrogen release was also 

evident in the TPD plot published by Xiong et al.,3 however, the release was not 

discussed.  

There was a final broad hydrogen release, which commenced at 140°C and 

continued until 230°C, with weight loss above 140°C totalling 1.8 wt%. This agrees 

very well with the study by Fijalkowski and Grochala4 but less so with our TGA 

experiment on NaNH2BH3, in terms of the onset temperature for this desorption 

event, although there was good agreement between the two weight loss values. The 

thermal desorption data of NaNH2BH3 obtained from the TGA experiment and the 

TPD-MS data for the NaH + 2NH3BH3 sample are compared in figure 4.20. 

 

Figure 4.20 – Comparison of thermal desorption data for a sample of NaH + NH3BH3 

in a TPD and NaNH2BH3 in a TGA 
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There is an apparent difference in the appearance of the two profiles: the main 

desorption event in the TGA experiment occurred at a higher temperature than in the 

TPD and the release was much broader. Interestingly though, the onset temperature 

of this major desorption event was consistent at approximately 75°C. The two events 

have both been assigned to the same desorption event, however, this comparison 

suggests that these two reactions did not necessarily follow the same pathway. 

There are a number of factors that could explain the discrepancies between the two 

traces. Primarily the sample in the TGA had been pre-synthesised in a gas line 

reaction at 40°C, whereas the sample in the TPD was a reaction mixture offering 

potential for side reactions to occur. Secondly, the experimental setups were not the 

same and so could have contributed to the differences in the desorption events. The 

powder XRD pattern of the product obtained from the TPD experiment is shown in 

figure 4.21. The diffraction pattern shows that the only crystalline decomposition 

product was NaH, which supports reaction 4.12. Unfortunately, due to the small 

quantity of sample required for a TGA experiment, insufficient sample was recovered 

for powder XRD analysis. 

 

Figure 4.21 – Powder XRD pattern of the NaH + NH3BH3 sample collected after 

heating to 350°C at a rate of 2°C min−1 in a TPD. Bragg peak positions due to NaH 

are shown in blue 

 

4.4.3 NaH + 2NH3BH3 

The desorption profile of the NaH + 2NH3BH3 reaction mixture collected in a TPD–

MS apparatus is shown in figure 4.22. The profile was acquired at a heating rate of 

2°C min−1 to a temperature of 350°C. 
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Figure 4.22 – The TPD profile of the NaH + 2NH3BH3 reaction mixture. The 

temperature trace is shown in blue and the mole percentages of H2 and NH3 released 

shown in red and brown respectively 

Hydrogen release can be seen to commence almost simultaneously with the 

beginning of heating. The first peak was observed at 40°C. This was followed by a 

slight endotherm in the temperature trace at 50°C. A second desorption of hydrogen 

began at 55°C and peaked at 80°C. The next desorption of hydrogen began at 

115°C; this peaked at 140°C, followed by a fourth desorption, which peaked at 

155°C. The onset of the final hydrogen release was observed at 230°C, peaking at 

250°C. Hydrogen release continued until the target temperature of 350°C was 

reached. There was a substantial amount of overlap of these desorption events. 

There was also a significant amount of ammonia release observed during the 

desorption experiment. A small amount of release occurred at 40°C, shortly after the 

onset of hydrogen release, with the main broad release beginning at 65°C and 

peaking at 80°C. The broad release continued until a temperature of 140°C was 

achieved when the ammonia signal tailed off, although a small release continued 

until 245°C. 
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Figure 4.23 shows the TPD–MS data processed so as to give simulated gravimetric 

data, as discussed in chapter 2.5. The total hydrogen content in the reagents was 

15.3 wt%, which was greater than the total weight loss calculated from the observed 

mass spectrometry data of 12.9 wt%; however, as observed in figure 4.22, NH3 also 

contributed to this weight loss. The powder XRD pattern, shown in figure 4.24, taken 

after the desorption run showed only NaBH4. If this were the only product, then a far 

higher weight loss of 55.9 wt% would have been observed. Therefore, although 

NaBH4 is the only crystalline desorption product, there must also be amorphous 

products present. 
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Figure 4.23 – Thermal desorption analysis of a NaH + 2NH3BH3 reaction mixture in a TPD apparatus with simulated gravimetric 

data. The mole percentages are shown by continuous lines and the moles of the gases released by broken lines, with H2 shown in 

red and NH3 in brown. The simulated gravimetric data is shown in green and the temperature trace in blue  
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Figure 4.24 – Powder XRD pattern of the NaH + 2NH3BH3 sample collected after 

heating to 350°C at a rate of 2°C min−1 in a TPD. Bragg Peak positions due to NaBH4 

are shown in blue. Rwp = 9.724%, χ2 = 1.121 

Figure 4.25 shows the amount of weight loss due to H2 and NH3 plotted as a function 

of temperature. From a combination of figures 4.23 and 4.25 it can be seen that a 

total of 2.7 moles of H2 (6.3 wt%) and 0.33 moles of NH3 (6.6 wt%) were released. 

 

Figure 4.25 – Simulated thermogravimetric analysis of a NaH + 2NH3BH3 reaction 

mixture in a TPD apparatus. The simulated gravimetric trace is shown in purple, with 

the proportion of the weight loss due to H2 and NH3 shown in red and brown, 

respectively 

Figure 4.23 shows how much of each desorbed gas in terms of moles were released 

during each desorption step. The first desorption was shown to release 0.2 

equivalents of hydrogen and a further 0.5 equivalents were released during the 
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second hydrogen release step. The major hydrogen desorption, which incorporated 

two peaks in the hydrogen trace released a total of 1.3 equivalents of hydrogen, with 

0.5 equivalents released after the first peak and a further 0.8 equivalents associated 

with the second broader peak. The remaining 0.7 equivalents of hydrogen were 

released during the remainder of the experiment, with 0.35 equivalents released 

during the fifth peak of the hydrogen trace. As a consequence of the ammonia trace 

showing only one broad feature, the 0.33 equivalents released could not be broken 

down into different decomposition events. 

Discussion 

The NaH + 2NH3BH3 reaction pathway has been shown to be complex, with a 

number of overlapping desorption events occurring, which offered potential for 

unidentified side reactions to proceed. The first desorption step occurred at a 

sufficiently low temperature to be related to the 1:1 reaction of NaH with NH3BH3, 

synthesising NaNH2BH3 which agrees with the reaction pathway proposed in reaction 

4.7, inferred from the results of powder XRD. This 1:1 reaction should release 1 

equivalent of hydrogen. However, as with the results of the simulated gravimetric 

data of the NaH + NH3BH3 reaction mixture from TPD data, figure 4.19, the 

calculated number of moles of hydrogen released was much lower than expected. 

This may again be attributed to the facile nature of the reaction, with it commencing 

and releasing hydrogen before the TPD experiment had begun, although competing 

side reactions may also have suppressed this release. 

The second step in the reaction pathway involved the simultaneous release of NH3 

and H2. This implied that at this point in the pathway, competing reactions were 

taking place. An insight into these pathways can be found by comparing the 

desorption profiles of the 1:1 and 1:2 reaction mixtures as shown in figure 4.26. The 

second hydrogen desorption correlates well with the small desorption event observed 

prior to the main sharp desorption in the TPD profile of a 1:1 reaction mixture, figure 

4.18. In the 1:1 reaction this desorption released 0.15 equivalents of hydrogen, 

whereas in the 1:2 reaction mixture 0.5 equivalents were released. The increased 

amount of hydrogen released in the 1:2 reaction during this desorption step 

suggested this event involved NH3BH3 in a side reaction. The main difference 
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between the two desorption profiles was that ammonia was released from the 1:2 

reaction mixture. This release may have therefore been associated with the formation 

of the crystalline trigonal phase. The most reasonable explanation for the release of 

ammonia would be through the reaction of NaNH2BH3 with NH3BH3 resulting in a 

phase of composition Na+(BH3NH2BH3)
−, reaction 4.13. 

NaNH2BH3 + NH3BH3 → Na+(BH3NH2BH3)
− + NH3         Reaction 4.13 

0.33 equivalents of NH3 were calculated to have been released during the TPD 

experiment. If this had been a clean reaction then 1 equivalent of NH3 would have 

been released, but because of the competing side reactions, this reaction could not 

proceed in a 1:1 fashion and so the amount of NH3 released was less than what was 

expected. This lower than expected release of NH3 also suggested NaNH2BH3 was 

not initially stoichiometrically formed. It can also be seen that shortly after hydrogen 

release had commenced, through the reaction of NaH with NH3BH3, NH3 release 

began. This supports the notion that NH3 release arose from the reaction of 

NaNH2BH3 with NH3BH3, because it would have been unable to occur without 

NaNH2BH3 presence. The sharp hydrogen desorption observed in the TPD profile of 

the 1:1 reaction at 90°C, assigned to NaNH2BH3 decomposition, was not present in 

the profile of the 1:2 reaction mixture, suggesting NaNH2BH3 did not undergo 

decomposition in the presence of NH3BH3. This is further evidence for the occurrence 

of reaction 4.13. 

Figure 4.27 shows a comparison of the thermal desorption trace of NH3BH3 versus 

the NaH + 2NH3BH3 reaction mixture. It can be seen that the first two desorption 

events in the 1:2 reaction mixture trace were complete before the first NH3BH3 

desorption step began and so cannot be related to NH3BH3 decomposition. However, 

there was a small peak in the hydrogen trace of the 1:2 reaction mixture at 110°C 

which correlated well with the first decomposition step of NH3BH3 suggesting the two 

events could have been related. 
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Figure 4.26 – A comparison of the TPD–MS data collected for NaH + NH3BH3 and 

NaH + 2NH3BH3 reaction mixtures. The desorption profile of the 1:1 reaction mixture 

has the most intense sharp release cut off to allow better comparison of the less 

intense desorptions 

 

Figure 4.27 – A comparison of the TPD-MS data collected for the NaH + 2NH3BH3 

reaction mixture and NH3BH3 
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Information garnered from powder XRD patterns showed that the next step in the 

reaction pathway was the formation of NaBH4. NaBH4 does not appear in either the 

decomposition pathway of NH3BH3 or NaNH2BH3 and hence should be related to the 

decomposition of the Na+(BH3NH2BH3)
− phase. From XRD data collected it was 

shown that NaBH4 formation occurred at a temperature of 120°C. The third 

desorption step in the TPD trace of the 1:2 reaction mixture that began at 115°C 

could therefore be related to this desorption step. The NH3 signal showed a decline 

as this step began and therefore it can be assumed that the decomposition of 

Na+(BH3NH2BH3)
− involved only the release of H2. The ratio of Na to B atoms in this 

phase is 1:2, whereas the ratio in NaBH4 is 1:1. The lack of any N containing 

gaseous decomposition products also means there is nitrogen that has been 

unaccounted for. This leaves a B:N ratio of 1:1. The temperature of this 

decomposition step was too low to have led to BN formation and only 0.5 equivalents 

of H2 were released. Any other decomposition products must also have been 

amorphous and so it would seem likely that a polyimidoborane-like phase had 

formed. This decomposition step can be represented in reaction 4.14. 

nNa+(BH3NH2BH3)
− → nNaBH4 + (BHNH)n + nH2       Reaction 4.14 

This step was accompanied by the release of 0.5 equivalents of hydrogen, whereas, 

reaction 4.14 shows that a release of one equivalent of hydrogen would have been 

expected. This lower release can be explained by the fact that the reaction forming 

Na+(BH3NH2BH3)
− was inhibited by other competing pathways and the amount of 

hydrogen released during this step was calculated from the original reaction mixture 

and not from the amount of Na+(BH3NH2BH3)
− that formed. 

The fourth hydrogen desorption peak, at 155°C, shows fairly good correlation with 

the second desorption event in the ammonia borane trace, as shown in figure 4.27. 

As discussed previously, some NH3BH3 decomposition was expected to have taken 

place during the desorption experiment and hence the products of this step would 

have subsequently undergone further decomposition, releasing hydrogen. 

The final high temperature hydrogen release was also due to competing pathways to 

the main Na+(BH3NH2BH3)
− synthesis–decomposition pathway. This can be verified 
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by the fact that the powder XRD results showed that the Na+(BH3NH2BH3)
− phase 

had completely undergone decomposition at this higher temperature and NaBH4 was 

the only crystalline product. Further to this, NaBH4 has been shown to undergo 

decomposition only at temperatures in excess of 400°C.7 

4.4.4 Alternative Thermal Desorption Studies 

There are no direct reports of Na+(BH3NH2BH3)
− or its decomposition in the literature, 

although its existence was postulated by Fijalkowski and Grochala.4 This study also 

raised a number of points which are relevant to the discussion here. Alternative 

studies had shown exclusive hydrogen release from NaNH2BH3,
2, 3, 5 however, 

Fijalkowski observed emission of a substantial amount of NH3 in the desorbed gases, 

both during synthesis of NaNH2BH3 and its subsequent decomposition. A DSC study 

of the decomposition of NaNH2BH3 revealed an endothermic event at 55°C. This 

endothermic event was also evident in the TPD trace of the NaH + 2NH3BH3 reaction 

mixture shown in figure 4.22. Fijalkowski hypothesised that this event was due to a 

thermally activated intermolecular head to tail dimerisation, reaction 4.14, which is 

also an important step in the decomposition of NH3BH3.
19 The resulting ionic salt is 

analogous to the topological isomer of DADB, [BH3(NH2)BH3]
−[NH4]

+. Reaction 4.15 

shows the postulated decomposition steps of this compound. 

2NaNH2BH3 → [NH3Na]+[BH3(NHNa)BH3]
−  Reaction 4.14 

[NH3Na]+[BH3(NHNa)BH3]
− → Na+[BH3(NHNa)BH3]

− + NH3↑ → 

NaH + BH3(NHNa)BH2 → BH2(NNa)BH2 + H2↑ → (BH(NNa)BH)n + H2↑ 

Reaction 4.15 

The endothermic event observed in this study cannot be related to a melting of either 

a reagent or NaNH2BH3, as all of these compounds melt at higher temperatures.4, 20 

Therefore, an intermolecular rearrangement reaction would seem to have occurred. 

The rearrangement reaction shown in reaction 4.14 offers one such possibility. 

However, as the subsequent decomposition steps, shown in reaction 4.15, result in 

the formation of NaH, which was not observed in powder XRD patterns, this excludes 

this possibility. Reaction 4.14 shows the reverse rearrangement reaction to the one 
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taking place during DADB formation from NH3BH3. The rearrangement reaction more 

closely related to DADB formation is shown in reaction 4.16. 

2NaNH2BH3 → [NaNH2BH2NH2Na]+[BH4]
−  Reaction 4.16 

Following the endothermic event, both H2 and NH3 were released in both this study 

and that by Fijalkowski. Therefore, the ionic salt that forms must provide a pathway 

for these gases to be released. There would appear to be no suitable pathway for the 

release of NH3 from this compound and hence reaction 4.16 cannot be the main 

reaction related to the endothermic event. 

The 1:2 reaction mixture of this study provided the opportunity for a number of other 

rearrangement reactions to proceed through the intermolecular reaction of 

NaNH2BH3 with NH3BH3, which following the first step in the reaction pathway would 

have been present in a 1:1 ratio. These reactions are shown below. 

 
Reaction 4.17 

 

 
Reaction 4.18 

 

 
Reaction 4.19 
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Reaction 4.20 

The products from reactions 4.19 and 4.20 are seen to be identical, however, the four 

reactions offer three additional products to those already proposed. In order for the 

reaction product to be consistent with the desorption data, NH3 must be released 

either simultaneously or soon after this formation step. Reaction 4.18 would appear 

to provide the product most susceptible to NH3 release, as the cation involves an NH3 

molecule bound to sodium.  

Therefore, the endothermic event at 50°C is assigned to be largely related to this 

reaction and hence the main reaction pathway. However, the possibility that these 

other rearrangements occurred during the reaction pathway cannot be ignored and 

again highlight the complex nature of the reaction mechanism, providing side 

reactions that could have led to the observed H2 release concomitant with the NH3 

release. Further evidence for the product of reaction 4.18 being the main product of 

the NaH + 2NH3BH3 reaction will be offered in section 4.5. 

An intermolecular reaction is not the only reaction mechanism that can yield the 

product [Na]+[BH3NH2BH3]
−. This product could also have been achieved through a 

simple nucleophilic attack by the NH2BH3 anion of NaNH2BH3 at the B of the 

NH3BH3, with NH3 expelled as the B is approached by the N of the anion, reaction 

4.21. This SN2 reaction would yield a negatively charged species of composition 

[BH3NH2BH3]
−, which would subsequently crystallise with the remaining cation, Na+. 

Reaction 4.21 

Fijalkowski hypothesised that the bimolecular reaction between NaNH2BH3 

molecules, reaction 4.14, was responsible for the release of NH3 observed during the 

decomposition of NaNH2BH3. However, NH3 release was also observed during the 

ball milling process that synthesised the NaNH2BH3 phase. Fijalkowski proposed the 

BH3NH2
− BH3—NH3 [BH3NH2BH3]

− + NH3
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intermolecular reaction between unreacted NH3BH3 and NaNH2BH3 was responsible 

for this release, shown in reaction 4.22.  

NaNH2BH3 + NH3BH3 → [NaNH3]
+[BH3(NH2)BH3]

− → Na+[BH3(NH2)BH3]
− + NH3↑ 

Reaction 4.22 

The results described here provide support for this assignment, although as 

discussed they are equally consistent with an SN2 reaction. Fijalkowski proposed that 

the decomposition of this material would proceed as shown by reaction 4.23. 

Na+[BH3(NH2)BH3]
− → BH3(NHNa)BH2 + H2↑   Reaction 4.23 

Our results do not agree with this proposed reaction, because NaBH4 was shown to 

be a decomposition product, also accompanied by H2 release. However, the results 

of a 11B NMR study by Fijalkowski revealed the presence of BH4
− during the reaction. 

Fijalkowski commented that any number of pathways could be responsible for BH4
− 

formation. The two reactions that were put forward are shown below. 

2NaNH2BH3 → [(NH2Na)(BH2)(NH2Na)]+[BH4]
−  Reaction 4.24 

2NaNH2BH3 → NaBH4 + NaNH2 + (NH2BH2)n  Reaction 4.25 

Our results are able to provide an alternative answer for the appearance of this BH4
− 

signal, through the decomposition of the Na+[BH3(NH2)BH3]
− phase. Reaction 4.24 

could still be in part responsible for BH4
− formation. However, a contribution from 

reaction 4.25 is not supported by the results of this study because there were no 

Bragg peaks due to NaNH2 observed in any of the powder XRD patterns, section 4.3.  
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4.4.5 Na+(BH3NH2BH3)
− Phase 

The gaseous thermal desorption properties of pre-synthesised Na+[BH3(NH2)BH3]
− 

through a gas line reaction at 60°C were investigated using TPD–MS and IGA–MS. 

The decomposition pathway was found to be independent of the method of 

desorption employed with hydrogen the only gas evolved in both techniques. 

4.4.5.1 TPD–MS 

Thermal desorption data collected from a pre-synthesised sample of the trigonal 

phase heated at a ramp rate of 2°C min−1 to 350°C is shown in figure 4.28. 

Figure 4.28 – TPD–MS analysis of pre-synthesised Na+[BH3(NH2)BH3]
−. The 

temperature trace is shown in blue and the mole percentages of H2 and NH3 released 

are shown in red and brown, respectively 

The sample had previously been heated on an argon gas line at 60°C during 

synthesis and therefore no gas release would have been expected below this 

temperature. Hydrogen release began at 100°C and was followed by a sharp release 

peaking at 140°C, this was accompanied by a slight exotherm in the temperature 

trace. A second broader release of hydrogen began at 145°C and peaked at 155°C. 
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The release then tailed off, although it did continue slowly until the maximum 

temperature of the experiment, 350°C, was reached. During this temperature range 

another peak was observed at 325°C. 

The powder XRD pattern of the sample collected after the desorption experiment, 

shown in figure 4.29, showed the crystalline decomposition product to be NaBH4, in 

agreement with gas line reactions, as discussed in section 4.3. 

 

Figure 4.29 – Powder XRD pattern of the product of the TPD experiment after 

heating Na+[BH3(NH2)BH3]
− to 350°C at 2°C min−1. Bragg peak positions due to 

NaBH4 are indicated in blue. Rwp = 8.775%, χ2 = 1.309 

4.4.5.2 IGA–MS 

A sample of the pre-synthesised trigonal phase (73 mg) was inertly loaded into an 

IGA connected to a mass spectrometer. Figure 4.30 shows the thermogravimetric 

data overlaid with the mass spectrometric data for the observed desorption products. 

The same conditions as employed in the TPD experiment were used, with the 

sample heated at a rate of 2°C min−1 to a target temperature of 350°C. 

The sample heated in the IGA showed a similar desorption trace to that of the TPD 

experiment, with only hydrogen desorbed. The onset of this release was observed at 

135°C, with the first release involving a sharp release of hydrogen, peaking at 145°C. 

As with the TPD experiment this release was accompanied by a slight exotherm in 

the temperature trace. Following this desorption step the release of hydrogen levelled 

out at 155°C and there was a plateau in the release until 180°C. The release 

continued albeit slowly until the target temperature of 350°C was achieved. A small 
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broad release was observed towards the end of the experiment, with a slight peak at 

305°C. 

 

Figure 4.30 – Thermogravimetric analysis of Na+[BH3(NH2)BH3]
− in an IGA. The 

gravimetric trace is shown in green, the temperature trace in blue and the mole 

percentages of H2 and NH3 released are shown in red and brown, respectively 

A total mass loss of 7.5 wt% was observed, although as can be seen in figure 4.30 

neither the weight loss nor the hydrogen release were complete at the end of the 

experiment. The main hydrogen desorption step was accompanied by a weight loss 

of 5 wt%; the observed plateau of hydrogen release was accompanied by a further 

1.2 wt% loss and the final 1.3 wt% was lost slowly up until the end of the experiment. 

4.4.5.3 Discussion 

A comparison of the thermal desorption profile of the trigonal phase from TPD–MS 

and IGA–MS experiments is made in figure 4.31. The IGA and TPD profiles of the 

trigonal phase show very similar desorption profiles, with both the main desorption of 

hydrogen and the higher temperature desorption occurring at similar temperatures. 

The two desorption profiles correlated reasonably well with the third hydrogen 

desorption peak in the TPD profile of the NaH + 2NH3BH3 reaction mixture, figure 

4.31, suggesting that they are all related to the same desorption event. Although, it 

can be seen that the desorption profile is much less well defined in the reaction 
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mixture. The main hydrogen desorption peak in the profiles of the trigonal phase 

would be due to the decomposition of this phase, as this event occurred at a similar 

temperature to which the phase change from Na+[BH3(NH2)BH3]
− to NaBH4 was 

observed through powder XRD analysis. The desorption events above 150°C were 

likely due to side reactions or the decomposition of amorphous materials formed as 

part of the main reaction pathway. There was a good agreement between the 

desorption event at 160°C for the reaction mixture and pre-synthesised trigonal 

phase. However, the higher temperature desorption event occurred at a lower 

temperature in the reaction mixture profile. This discrepancy was likely to have been 

due to side reactions. 

 

Figure 4.31 – Comparison of TPD–MS and IGA–MS thermal desorption data for the 

trigonal phase as well as TPD–MS thermal desorption data for a NaH + 2NH3BH3 

reaction mixture 

Further to this, there was no NH3 loss observed from the pre-synthesised 

Na+[BH3(NH2)BH3]
− phase, which confirmed that NH3 release was specific to the 

formation of this phase. 
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The hydrogen content of Na+[BH3(NH2)BH3]
− is 12.1 wt% and therefore this material 

can theoretically account for the total observed hydrogen weight loss of 7.5 wt% 

during the IGA–MS experiment. However, as discussed previously a number of side 

reactions potentially occurred during synthesis and therefore the sample used in this 

experiment would probably not have been pure Na+[BH3(NH2)BH3]
−. The main sharp 

hydrogen desorption has been assigned to the decomposition of this phase, forming 

NaBH4, reaction 4.26. 

nNa+[BH3(NH2)BH3]
− → nNaBH4 + (NH2BH2)n + nH2  Reaction 4.26 

This reaction yields the polymeric material polyaminoborane, which itself undergoes 

decomposition upon heating above 150°C and hence would also have decomposed, 

releasing hydrogen, reaction 4.27.18 

(NH2BH2)n → (NHBH)n + nH2   Reaction 4.27 

The decomposition of Na+[BH3(NH2)BH3]
− would therefore be expected to release 

two equivalents of hydrogen, equal to a weight loss of 6.0 wt%. The observed weight 

loss associated with this step was less than this, 5.0 wt%. This shows that the initial 

sample loaded into the IGA was not purely Na+[BH3(NH2)BH3]
− or that side reactions 

were proceeding during the experiment. The higher temperature weight losses were 

likely due to side reactions as both (NHBH)n and NaBH4 do not undergo 

decomposition until temperatures in excess of the maximum temperature reached 

during the experiment.7, 18 

 

4.5 Solid State 11B MAS NMR Spectroscopy 

The NaH + NH3BH3 and NaH + 2NH3BH3 reaction pathways were studied using solid 

state 11B MAS NMR spectroscopy to determine how the B environments changed as 

the reactions progressed, in particular to provide information on the amorphous 

components of the reaction mixtures. The reactions were carried out on an argon gas 

line as described in section 4.2 and the 11B NMR spectra collected at room 

temperature. The data was collected in collaboration with the University of Warwick. 
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All deconvolution of the spectra was carried out by Tom Partridge at the University of 

Warwick. 

4.5.1 NaH + NH3BH3 Reaction 

The solid state 11B MAS NMR spectrum of NaNH2BH3 synthesised through the solid 

state reaction of a 1:1 mixture of NaH and NH3BH3 at 40°C is shown in figure 4.32. 

There is a single feature observed in the spectrum, at −22.9 ppm, which is identical 

to that reported by Xiong et al.5 for the spectrum of NaNH2BH3. This feature can be 

assigned to the sp3 boron found in an NBH3 environment. 

 

Figure 4.32 – The solid state 11B MAS NMR spectrum of NaNH2BH3, synthesised 

through the NaH + NH3BH3 reaction at 40°C 

The spectrum obtained after heating the 1:1 reaction mixture to 60°C is shown in 

figure 4.33. The feature previously observed at −22.9 ppm, showed a slight shift 

upfield to −23.3 ppm as well as a significant broadening. Two small features were 

observed, at −42.7 ppm and 1.0 ppm. A broad complex feature at 30.4 ppm was also 

present. The shape of the feature is due to the quadrupolar interaction of this B 

environment.  
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Figure 4.33 – The solid state 11B MAS NMR spectrum of the product of the NaH + 

NH3BH3 reaction at 60°C 

The 11B NMR spectrum of the sample obtained after heating to 200°C is shown in 

figure 4.34. A broad feature, 30.4 ppm, was again observed in the spectrum, but had 

now become the dominant resonance in the spectrum. The NBH3 signal, observed at 

−23.3 ppm was again broad, however, the intensity was much reduced compared to 

its appearance in the spectrum after heating to 60°C. There were again low intensity 

features observed at 1.0 ppm and −42.7 ppm. 

 

Figure 4.34 – The solid state 11B MAS NMR spectrum of the product of the NaH + 

NH3BH3 reaction at 200°C 

  



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 158 
 

Discussion 

The single feature observed in the spectrum of NaNH2BH3 implied that the product 

was relatively pure, although there was some evidence for residual NH3BH3. The 

spectra of NaNH2HB3 and NH3BH3 are compared in figure 4.35. The spectra were 

similar in that both showed only a single resonance. This downshift of the BH3 signal 

on substitution of a hydrogen by sodium has been observed in previous solid state 

and solution 11B NMR studies.2, 4 The substitution of hydrogen by the more electron 

donating sodium increases the strength of the B–N bond. It was noted in section 4.3 

that the B–N bond length in NaNH2BH3 is slightly shorter (1.46 Å) than in NH3BH3 

(1.597 Å15) highlighting this change. The observed downfield shift of the NBH3 

resonance supports the increased strength of this bond.  

 

Figure 4.35 – The solid state 11B MAS NMR spectra of NaNH2BH3 (black) and 

NH3BH3 (red) 

The XRD pattern of the sample collected after heating the NaH + NH3BH3 reaction to 

60°C showed that no crystalline phases were observed, suggesting that NaNH2BH3 

had completely decomposed. However, the observation of a feature at −23.3 ppm in 

the 11B NMR spectrum of this sample suggested that decomposition was incomplete 

at 60°C. The fact that the resonance had broadened suggested that there was an 

increased amount of disorder in this environment, making NaNH2BH3 undetectable 

by XRD. The broad feature at 30.4 ppm can be assumed to be related to the most 

prominent decomposition pathway. As discussed in section 4.4, the first step in the 

decomposition of NaNH2BH3 involved the release of H2 which was expected to yield 
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a BH2 containing species, similar to the decomposition of NH3BH3. However, a boron 

found in a tetrahedral BH2 environment will give rise to a feature between +5 and −15 

ppm.21, 22 If the main decomposition product had possessed a tetrahedral BH2 

environment, the intensity of a feature in this range would have been much greater 

than the very low intensity of the peak observed at 1.0 ppm. This feature was more 

likely due to a small amount of oxidation of the sample, resulting in a B–O 

environment.  The absence of a tetrahedral BH2 feature means that either a BH2 unit 

was not involved in NaNH2BH3 decomposition or any species that formed containing 

a BH2 unit was rapidly consumed. The complex broad feature observed at 30.4 ppm 

is characteristic of sp2 B in either an N3B or N=BH–N environment.23, 24 The slight 

shift observed in the position of the NBH3 resonance could have meant that this was 

not in fact related to the NaNH2BH3 material and the decomposition product could 

have possessed terminal NBH3 and internal N=BH–N environments. The final feature 

at −42.7 ppm was related to a BH4 unit.19 The absence of any N2BH2 feature in the 

spectrum showed that this could not have been related to DADB or a DADB 

analogue. The chemical shift of this peak was inconsistent with that of NaBH4. 

Further heating to 200°C showed that the ultimate decomposition product primarily 

involved boron in an sp2 environment. Xiong et al.5 proposed the decomposition 

product of NaNH2BH3 to be (NaNBH)n. The spectrum observed by Xiong et al. after 

heating NaNH2BH3 to 200°C is reproduced in figure 4.36. This spectrum shows 

resonances with very similar intensities and chemical shifts to those in figure 4.34. 

However, Xiong et al. did not identify NaH as a decomposition product. 

Deconvolution of this broad quadrupolar feature, figure 4.37, showed there were in 

fact two sp2 boron environments present in the product. The dominant sp2 signal was 

observed at a chemical shift of 30.4 ppm and the secondary site at 23.5 ppm. The 

11B NMR spectrum of (NHBH)n possesses only a broad sp2 feature with a chemical 

shift of 31.0 ppm, similar to the dominant sp2 feature observed here.23, 24 As will 

become clear in subsequent chapters, the secondary quadrupolar site at 23.5 ppm 

was exclusive to the NaH + NH3BH3 reaction pathway, which suggests that 

(NaNBH)n may also have been a decomposition product. Further evidence for this 

will be presented in section 4.6. The main decomposition pathway of NaNH2BH3 can 

therefore be represented by reaction 4.28. The fact that other boron environments 
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were observed in the spectrum of the decomposition product, namely BH4 and NBH3, 

shows that there must have been competing side reactions to this main pathway.  

nNaNH2BH3 → nNaH + (NHBH)n + nH2  Reaction 4.28 

 

Figure 4.36 – The solid state 11B NMR spectrum of the decomposition product of 

NaNH2BH3 heated at 200°C5 

 

Figure 4.37 – Deconvolution of the broad quadrupolar feature observed in the solid 

state 11B MAS NMR spectrum collected for the product of the NaH + NH3BH3 

reaction at 200°C. The observed spectrum is shown in black, deconvolution of the 

site in pink and purple and the cumulative simulated spectrum in red 
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4.5.2 NaH + 2NH3BH3 Reaction 

The solid state 11B MAS NMR spectrum of the sample obtained after reaction at 40°C 

along with the deconvolution of the spectrum is shown in figure 4.38. The spectrum 

contained features in the region of the spectrum where NBH3 environments are 

expected. Deconvolution showed that there were two separate boron environments 

of this nature: which had chemical shifts of −23.0 ppm and  −26.1 ppm. These peaks 

had the same chemical shifts as the features previously observed in the 11B NMR 

spectra of NaNH2BH3 and NH3BH3, respectively. The spectra obtained after heating 

the 1:2 reaction mixture to 40°C is compared to those of NH3BH3 and NaNH2BH3 in 

figure 4.39. 

 

Figure 4.38 – The observed solid state 11B MAS NMR spectrum of the product of the 

NaH + 2NH3BH3 reaction at 40°C (black). Deconvolution of the spectrum is shown, 

with the cumulative simulated spectrum shown in red 
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Figure 4.39 – Comparison of the solid state 11B MAS NMR spectra of the product of 

the NaH + 2NH3BH3 reaction at 40°C (black), NaNH2BH3 (red) and NH3BH3 (blue) in 

the region −20 to −30 ppm 

The NMR spectrum of the sample obtained after reaction at 60°C along with the 

deconvolution of the spectrum is shown in figure 4.40. Deconvolution showed there 

had been a change in the appearance of the resonances found in the NBH3 region of 

the spectrum. The resonances assigned to NH3BH3 and NaNH2BH3 were no longer 

present and had been replaced by a single resonance at −24.2 ppm. A number of low 

intensity resonances were also observed, with features at −42.9 ppm, −7.3, −15.7 

ppm and 1.0 ppm along with a quadrupolar site at 29.3 ppm. 

 

Figure 4.40 – The observed solid state 11B MAS NMR spectrum of the product of the 

NaH + 2NH3BH3 reaction at 60°C (black). Deconvolution of the spectrum is shown, 

with the cumulative simulated spectrum shown in red 
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The pathway of the NaH + 2NH3BH3 reaction as viewed by solid state 11B NMR 

spectroscopy results with respect to the changes in B environments during the 

pathway is shown in figure 4.41. It can be seen that there were few changes in the 

spectra collected from the products of the 80°C and 100°C reactions compared to the 

product of the 60°C reaction. The spectra were dominated by the intense resonance 

at −24.2 ppm, as well as both spectra showing the previously observed low intensity 

features at −42.8 ppm, −15.7 ppm, −7.3 ppm and 1.0 ppm. The quadrupolar feature 

was again observed at 29.3 ppm in both spectra. However, deconvolution of this site 

showed that at 100°C there appeared to be a second B environment present, with a 

chemical shift of 25.7 ppm, figure 4.42. 
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Figure 4.41 – Solid state 11B MAS NMR spectra obtained from the products of the NaH + 2NH3BH3 reaction at various temperatures  
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Figure 4.42 – Deconvolution of the quadrupolar site observed in the 11B MAS NMR 

spectrum of the product of the NaH + 2NH3BH3 reaction at 100°C 

Figure 4.41 shows that a significant change in the 11B NMR spectra was observed on 

increasing the reaction temperature from 100°C to 120°C. The spectrum collected 

after reaction at 120°C is presented in figure 4.43 along with the deconvolution of the 

sites. The dominant resonance at −24.2 ppm at lower temperature was still present 

although its intensity had substantially reduced and the spectrum was now 

dominated by a sharp resonance at −42.0 ppm. The quadrupolar boron environment 

at 29.3 ppm was still present and deconvolution of this site again showed evidence 

that there was a secondary site at 25.7 ppm. At a reaction temperature of 120°C and 

above, the previously observed low intensity features at −42.8 ppm, −15.7 ppm and 

−7.3 ppm were not evident in any spectra, while the resonance at 1.0 ppm was 

present in most spectra. 

 

Figure 4.43 – The observed solid state 11B MAS NMR spectrum of the product of the 

NaH + 2NH3BH3 reaction at 120°C (black). Deconvolution of the spectrum is shown, 

with the cumulative simulated spectrum shown in red 
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Above 120°C the resonance at −24.2 ppm disappeared while the resonance with a 

chemical shift of −42.0 ppm remained the most intense feature in the spectra. 

Between 150°C and 400°C there was an increase in the cumulative intensity of the 

quadrupolar environments at 29.3 ppm. Deconvolution of the sites showed that the 

secondary site at 25.7 ppm was present throughout this temperature range, with it 

being most prominent after reaction at 150°C, figure 4.44. After reaction at 250°C 

and 400°C deconvolution revealed that a new resonance appeared in the spectra at 

−44.3 ppm, the intensity of which grew with temperature increase, figure 4.45. 

 

Figure 4.44 – Deconvolution of the quadrupolar B site observed in the solid state 11B 

MAS NMR spectra collected from the products of the NaH + 2NH3BH3 reaction at (a) 

150°C (b) 250°C and (c) 400°C 

Discussion 

The first step in the NaH + 2NH3BH3 reaction has been shown by powder XRD to 

involve the synthesis of NaNH2BH3 at 40°C with the excess NH3BH3 remaining in the 

reaction mixture. This was also shown to be the case by 11B NMR. The fact that no 

other resonances were observed in the spectrum implied that this step was free from 

side reactions. 

 

 

(a) (b) (c)
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Figure 4.45 – Deconvolution of the resonance observed at −42.0 ppm in the solid 

state 11B MAS NMR spectra collected from the products of the NaH + 2NH3BH3 

reaction at (a) 250°C and (b) 400°C 

Powder XRD results showed that the product of the 1:2 reaction at 60°C was a 

previously unreported trigonal crystalline phase, section 4.3. Following analysis of 

gas desorption data, section 4.4, this phase was assigned the chemical formula 

Na+[BH3NH2BH3]
−. After reaction at 60°C the resonances of NaNH2BH3 and NH3BH3 

were no longer observed and had been replaced by a dominant feature at −24.2 

ppm. This resonance supported the Na+[BH3NH2BH3]
− assignment. The chemical 

shift of this resonance is consistent with an sp3 boron in an NBH3 environment.5, 19 

Due to the reaction stoichiometry two boron atoms were required to be in the reaction 

product. Figure 4.46 shows the percentage change of boron in the observed 

environments as a function of reaction temperature. It can be seen that after reaction 

at 60°C over 80% of the boron in the sample was present in the environment at −24.2 

ppm. This shows that the two boron atoms within the product must have both been 

present in this environment and because the proposed product Na+[BH3NH2BH3]
− 

has only one boron environment, this result supports this assignment. The observed 

chemical shift of this resonance offers further support for this composition. The 

resonance appears downfield of the resonance observed in the spectrum of NH3BH3 

(a) (b)
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but upfield of that in NaNH2BH3. Electron donation from the Na causes the resonance 

to shift downfield compared to NH3BH3. However, the fact that this downfield shift 

was reduced compared to that observed with NaNH2BH3 shows that there was a 

reduced amount of electron donation, as would be expected with Na+[BH3NH2BH3]
−. 

The decreased intensity of the Na+[BH3NH2BH3]
− resonance after reaction at 120°C 

showed decomposition of this phase had occurred. This was accompanied by the 

appearance of the resonance at −42.0 ppm. Powder XRD results showed that NaBH4 

formed at 120°C and consistent with this, the observed resonance has a chemical 

shift associated with an alkali metal borohydride and can therefore be assigned to 

NaBH4.
25 Whereas powder XRD could not identify other products of this 

decomposition, 11B NMR revealed that a second product formed, which produced the 

quadrupolar boron resonance at 29.3 ppm. As NaBH4 showed an increased amount 

of hydrogen bound to boron, this site should show reduced hydrogen compared to a 

BH3. Quadrupolar boron sites have been identified for sp2 boron at similar chemical 

shifts to those identified in the spectra presented here.26 Two environments that 

satisfy this requirement are BHN2 and BN3, which have both been identified by 

Gervais et al.27 in the structure of polyborazylene. The chemical shifts of these were 

identified as 31 ppm and 27 ppm for the BHN2 and BN3 environments, respectively. 

The observed chemical shift of the quadrupolar boron resonance in our study is 

similar to that of the BHN2 environment, suggesting that the amorphous 

decomposition product of Na+[BH3NH2BH3]
− likely possesses this environment. 

Hexagonal BN also possesses sp2 boron and both Marchetti et al.26 and Jeschke et 

al.28 have observed this quadrupolar resonance at 30 ppm and 30.4 ppm, 

respectively. However, it is unlikely that this compound was responsible for the 

resonance observed in our study as temperatures in excess of 800°C are required for 

its synthesis.23 The second quadrupolar site identified at 25.7 ppm shows a similar 

upfield shift to the BN3 environment observed by Gervais et al. as did the BHN2 

environment. Figure 4.44 showed that this secondary site did not show a correlation 

with reaction temperature increase. It is therefore probable that this environment 

formed as a consequence of side reactions, possibly related to cross linking 

reactions between polymers possessing BHN2 environments, which would release H2 

and form polymers containing BN3 environments, as observed in the decomposition 
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of polyaminoborane.29 Figure 4.46 showed that the sp2 and NaBH4 environments 

were present in approximately equal amounts following decomposition of 

Na+[BH3NH2BH3]
−. This implied that all of the sodium in the decomposed products 

was present as NaBH4. This will be considered further in section 4.6. 

Above 250°C a second BH4 resonance was observed in the spectra of the products 

at −44.3 ppm, whose appearance and subsequent growth was accompanied by a 

decrease in the amount of NaBH4 and increase in sp2 boron in the sample. This 

would therefore be expected to be related to NaBH4 decomposition. However, the 

decomposition of NaBH4 has only been reported in the temperature range 400°C to 

565°C.7, 30, 31 Therefore, the changes in B environment observed at 250°C would not 

have been related to this decomposition. The fact that a second BH4 environment 

appeared in the spectrum may be an indication that a phase transition occurs during 

the decomposition of NaBH4. Phase transitions in the decomposition of both LiBH4 

and Ca(BH4)2 have previously been reported.32, 33 However, there no literature 

reports have identified such a transition for NaBH4. The reason behind the 

appearance of this resonance therefore remains unknown. The decomposition of 

NaBH4 has been shown to proceed through either reaction 4.29 or reaction 4.30.34 

NaBH4 → Na + B + 2H2    Reaction 4.29 

NaBH4 → NaH + B + 3/2H2    Reaction 4.30 

The absence of Na and NaH in the powder XRD patterns of the reaction products 

suggested that NaBH4 decomposition did not proceed. Therefore the changes in the 

spectra were likely due to unidentified side reactions involving NaBH4. 

Below 120°C a third BH4 resonance was observed at −42.8 ppm, along with two 

resonances at −7.3 ppm and −15.7 ppm. Stowe et al.19 identified resonances at 

similar chemical shifts during the thermal decomposition of NH3BH3, which were 

assigned to the formation of DADB. The amount of boron in BH2 and BH4 

environments was similar at temperatures below 120°C and both sites disappeared 

above this temperature. This collective behaviour was a good indication that the two 

sites were related. NH3BH3 decomposes to (NH2BH2)n through DADB formation and 

this polymer further decomposes to (NHBH)n above 130°C.18 Therefore above 120°C 
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it can be concluded that the BH2 environments released H2 to form sp2 boron and the 

BH4 crystallised with Na to form NaBH4. 

Finally the low intensity resonance at approximately 1 ppm, observed in most 

spectra, was thought to be due to a small amount of sample oxidation. 
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Figure 4.46 – A plot of the integrated intensities of the phases present in the NaH + 2NH3BH3 reaction pathway as deduced from 

solid state 11B MAS NMR  
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4.6 Solid State 23Na MAS NMR Spectroscopy 

The 1:2 sodium reaction pathway was also investigated through solid state 23Na MAS 

NMR spectroscopy. The data was collected in collaboration with the University of 

Warwick. All deconvolution of the spectra was carried out by Tom Partridge at the 

University of Warwick. The collected spectra are displayed in figure 4.47. 

Figure 4.47 shows that throughout the reaction pathway there were only three 

sodium environments. Initially two environments were present, a quadrupolar 

environment at 7.5 ppm and a resonance at −4.6 ppm. After reaction at 60°C only the 

resonance at −4.6 ppm was observed. Only this single site remained in the spectra 

up to 110°C, before the final site appeared, with a chemical shift of −8.3 ppm. The 

resonance at −4.6 ppm was present in both the spectra collected from the products 

of reactions at 120°C and 150°C, although the intensity of the resonance was low. 

Above 200°C only the resonance at −8.3 ppm was observed. 

Discussion 

The quadrupolar site observed at 7.5 ppm was identified as NaNH2BH3 through 

comparison with the solid state 23Na MAS NMR spectrum, figure 4.48, collected from 

the product of the NaH + NH3BH3 reaction at 40°C, previously established to be 

NaNH2BH3. This spectrum possessed a dominant quadrupolar sodium environment 

with a chemical shift of 7.5 ppm, identical to the resonance observed in the 1:2 

reactions at low temperature. As this resonance disappeared from the spectrum it 

was replaced by the increased intensity of the feature at −4.6 ppm, figure 4.49. From 

comparisons with powder XRD and solid state 11B MAS NMR results, this resonance 

can be assigned to the Na+[BH3NH2BH3]
− phase. This resonance was also 

unexpectedly observed in the spectrum of the 40°C reaction product and may have 

been due to the time delay between performing the 40°C reaction and collecting the 

23Na NMR spectrum, giving enough time for NaNH2BH3 to react slowly with NH3BH3 

in the sample, yielding this product. Above 120°C the resonance observed at −8.3 

ppm can be assigned to NaBH4.  
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Figure 4.47 – Solid state 23Na MAS NMR spectra collected from the products of the 

NaH + 2NH3BH3 reaction at (a) 40°C (b) 50°C (c) 60°C (d) 80°C (e) 100°C (f) 110°C 

(g) 120°C (h) 150°C 
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Figure 4.47 (cont.) – Solid state 23Na MAS NMR spectra collected from the products 

of the NaH + 2NH3BH3 reaction at (i) 200°C (j) 300°C (k) 400°C 

Figure 4.49 shows that following decomposition of Na+[BH3NH2BH3]
− all of the 

sodium was present as NaBH4 and therefore the decomposition product possessing 

sp2 boron was free of sodium. Combining the solid state 11B and 23Na MAS NMR 

results suggests that the main amorphous product from the decomposition of 

Na+[BH3NH2BH3]
− was similar to that of NH3BH3, (NHBH)n. The main decomposition 

pathway of Na+[BH3NH2BH3]
− can hence be represented by reaction 4.31, although 

side reactions likely play a part. 

nNa+[BH3NH2BH3]
− → nNaBH4 + (NHBH)n + nH2 Reaction 4.31 

The results of the solid state 23Na NMR experiments also gave further insight into the 

1:1 reaction pathway. Solid state 11B NMR results showed that the decomposition 

products of NaNH2BH3 and Na+[BH3NH2BH3]
− both possessed two sp2 boron 

environments. The dominant sp2 environment in both decomposition products 

produced similar chemical shifts of 30.4 ppm and 29.3 ppm, which in both reactions 
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was determined to be due to (NHBH)n formation. The secondary quadrupolar site 

showed a larger discrepancy between the chemical shifts of this environment, being 

observed in the decomposition products of NaNH2BH3 and Na+[BH3NH2BH3]
− at 23.5 

ppm and 25.7 ppm, respectively. This discrepancy may be due to the presence of 

sodium. The 23Na NMR results showed that sodium was not present in the 

amorphous decomposition products of Na+[BH3NH2BH3]
−, which may imply that the 

product responsible for the environment observed at 23.5 ppm did possess sodium. 

 

Figure 4.48 – The solid state 23Na MAS NMR spectrum collected from the product of 

the NaH + NH3BH3 reaction at 40°C 

 

Figure 4.49 – A plot of the integrated intensities of the phases present in the NaH + 

2NH3BH3 reaction pathway as deduced from solid state 23Na MAS NMR  
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4.7 Raman Spectroscopy 

4.7.1 NaNH2BH3 

The product of the NaH + NH3BH3 reaction, NaNH2BH3, has Cs symmetry and as 

such the only symmetry element the molecule possesses is a mirror plane as shown 

in figure 4.50. 

 

Figure 4.50 – The horizontal mirror plane present in the NaNH2BH3 molecule, sodium 

is shown in dark blue, nitrogen in blue, boron in green and hydrogen in white 

Using Cartesian displacement vectors for each of the atoms as the basis set it is 

possible to derive the normal vibrational modes. The reducible representation for this 

basis set ( red) is shown in table 4.9 and the irreducible representation ( irr) is given 

in table 4.10, where translational ( trans) and rotational modes ( rot) are removed to 

give the normal vibrational modes ( 3n−6). The irreducible representation of molecular 

NaNH2BH3 is 11A‘ + 7A‘‘ which is consistent with 3n − 6 = 18 degrees of freedom. 

The modes that are Raman ( Raman) active are shown and assigned vibrational 

modes. 

Table 4.9 – Point group table for Cs 

 E σh Linear, Rotations Quadratic 

A’ 1 1 x, y, Rz x2, y2, z2, xy 

A’’ 1 -1 z, Rx, Ry yz, xz 

red 24 4   

 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 177 
 

Table 4.10 – Deconvolution of irr for the NaNH2BH3 molecule of Cs symmetry 

 

The Raman spectrum of NaNH2BH3 is shown in figure 4.51. For discussion purposes 

the Raman spectrum is divided into different regions and compared to that of 

ammonia borane as shown in figure 4.52. The decreased symmetry of NaNH2BH3 

(Cs) compared to NH3BH3 (C3v) is reflected in the increased number of vibrational 

bands in the spectrum of NaNH2BH3. 

 

Figure 4.51 – The Raman spectrum of NaNH2BH3 

The reaction of NaH with NH3BH3 results in a substitution of a hydrogen associated 

with the nitrogen by the sodium. Therefore, the most significant changes in the 

Raman spectrum could reasonably be expected in the N–H stretching and bending 

regions. Figure 4.52a shows the N–H stretching region and it can be seen that there 

is a significant difference between the spectra of NH3BH3 and NaNH2BH3. There is a 

very weak feature observed at 3275 cm–1 along with two prominent strong bands at 

3369 cm–1 and 3313 cm–1, which are assigned to the N–H asymmetric and symmetric 

stretches, respectively. These vibrational modes are shown in figure 4.53. The final 

band in the N–H stretching region at 3259 cm−1 is assigned to an overtone. 
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Figure 4.52 – The Raman spectrum of NaNH2BH3 (red) compared to that of NH3BH3 

(purple) showing (a) the N–H stretching region, (b) the B–H stretching region, (c) the 

deformation region and (d) the B–N stretching region 

 

Figure 4.53 – The N–H stretches in the NaNH2BH3 molecule (a) symmetric stretch (b) 

asymmetric stretch 

The deformation modes of the NH2 group are limited to the symmetric bend, as an 

asymmetric bend is not possible. This mode was assigned to the weak band at 1607 

cm−1 observed in figure 4.52c. A total of three N–H vibrations were observed in the 

spectrum, which is in agreement with the Raman spectrum of NaNH2.
35 

The 11B-N stretch can be observed at 904 cm−1 in figure 4.52d and as with NH3BH3 

the 10B-N isotopic contribution is also observed at 921 cm−1, the frequency difference 

of 17 cm−1 between the two bands is identical for both molecules. The bands were 
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significantly blue shifted in NaNH2BH3 due to the increased electron donating 

strength of sodium compared to hydrogen, which resulted in a strengthening of the 

B–N bond, as evidenced in section 4.3. 

The B–H stretching region also shows significant differences between NH3BH3 and 

NaNH2BH3, figure 4.52b, and in fact resembles the B–H stretching region of NaBH4 

more closely, figure 4.54. In the crystal structure of NaBH4 the BH4
– anion occupies a 

site of ideal symmetry, having point group Td, figure 4.55. The similarity between the 

spectra may be explained by considering that the BH4
− ions rotate around 3-fold 

axes, effectively becoming BH3-like, having C3v symmetry. A similar rotation of the 

BH3 within NaNH2BH3 can also lead to this group possessing pseudo C3v symmetry. 

The dihydrogen bonding present in NH3BH3 prevents this rotation and this is reflected 

in the Raman spectrum. 

 

Figure 4.54 – The B–H stretching region of NaBH4 (blue) and NaNH2BH3 (red) 

 

Figure 4.55 – The symmetry of the BH4
– anion in NaBH4 with the symmetry elements 

labelled 

For the tetrahedral BH4
– anion it is possible to derive the normal vibrational modes 

using Cartesian displacement vectors for each of the atoms as the basis set. Table 
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4.11 shows the reducible representation for this basis set ( red) and the irreducible 

representation ( irr) is given in table 4.12, where translational ( trans) and rotational 

modes ( rot) are removed to give the normal vibrational modes ( 3n−6). The irreducible 

representation of BH4
− is A1 + E + 2T2 which is consistent with 3n − 6 = 9 degrees of 

freedom. The modes that are Raman ( Raman) active are shown and assigned 

vibrational modes. 

Table 4.11 – Point group table for Td 

 E 8C3 3C2 6S4 6σd Linear, Rotations Quadratic 

A1 1 1 1 1 1  x2 + y2 
+ z2 

A2 1 1 1 -1 -1   

E 2 -1 2 0 0  (2z2 – x2 – y2, 
x2−y2) 

T1 3 0 -1 1 -1 (Rx, Ry, Rz)  

T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz) 

red 15 0 -1 -1 3   

 

Table 4.12 – Deconvolution of irr for BH4
− ion of Td symmetry 

 

The vibrational modes ν1 (A1), ν2 (E), ν3 (T2) and ν4 (T2) correspond to the singly 

degenerate symmetric stretch, the doubly degenerate symmetric bend, the triply 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 181 
 

degenerate asymmetric stretch and the triply degenerate asymmetric bend, 

respectively, as shown in figure 4.56. 

 

Figure 4.56 – Vibrational modes of the BH4
− anion in NaBH4 

In terms of NaNH2BH3, the B–H symmetric and asymmetric stretches shown in figure 

4.56 are still possible vibrational modes. However, the ν2 symmetric bend which 

involves two pairs of H atoms moving towards each other and the ν4 asymmetric 

bend where one pair of H atoms move towards each other and the other pair of H 

atoms away from each other will not be possible when a hydrogen atom is replaced 

by the [NaNH2] group in NaNH2BH3. This change in environment results in a reversal 

of the assignment of these vibrational modes. The BH4 to BH3 change means that the 

ν2 symmetric bend now resembles the ν10 asymmetric bend of the BH3 group of 

ammonia borane and the ν4 asymmetric bend becomes similar to the ν3 symmetric 

bend of the same group, see figures 3.6 and 3.7 in chapter 3.5. Therefore, it may be 

expected that the B–H stretching region of NaNH2BH3 will resemble that of NaBH4, 

whereas the B–H deformation bands may resemble those of NH3BH3. 

The B–H deformation modes of NH3BH3 are shown in figure 4.52c. Two bands of 

similar appearance are observed at slightly higher energy in the NaNH2BH3 spectrum 

and it is therefore reasonable to assign these two bands as the B–H symmetric 

(scissors) and asymmetric (umbrella) deformations at 1241 cm−1 and 1262 cm−1, 

respectively. There are two bands at approximately twice the wavenumber of these 

two bands, 2486 and 2523 cm−1, and so they are assigned as overtones of these 

deformation modes. 
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The Raman spectrum of NaBH4 has been fully assigned by Renaudin et al.36 Using 

these literature assignments the bands in the B–H stretching region can be assigned. 

In NaBH4 the asymmetric bend is observed as a shoulder of the symmetric stretch 

band at lower wavenumber, however, for NaNH2BH3 this shoulder occurs at a higher 

wavenumber. Asymmetric stretches are observed at higher wavenumbers, so this 

shoulder is assigned to the asymmetric B–H stretch and the most intense band at 

2185 cm−1 is assigned to the symmetric B–H stretch. There are number of other 

bands in the B–H stretching region which have not been assigned to any vibration. 

These bands may arise because the BH3 group in NaNH2BH3 does not adopt an 

ideal tetrahedral arrangement and could theoretically adopt the symmetry of the 

NaNH2BH3 molecule as a whole, Cs. The effect of reducing the ideal tetrahedral 

symmetry can be seen by constructing a symmetry correlation table, table 4.13, and 

the corresponding correlation diagram, figure 4.57. 

Table 4.13. – Correlation table for Td and Cs point groups 

Cs E    σ 

A’ 1    1 

A’’ 1    -1 

Td E 8C3 3C2 6S4 6σd Species of Cs 

A1 1 1 1 1 1 A’ 

A2 1 1 1 -1 -1 A’’ 

E 2 -1 2 0 0 A’ + A’’ 

T1 3 0 -1 1 -1 A’ + 2A’’ 

T2 3 0 -1 -1 1 2A’ + A’’ 
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Figure 4.57 – Correlation diagram for Td and Cs symmetries 

Figure 4.57 shows that the ν1 (A1) symmetric stretch remains (A‘), the doubly 

degenerate ν2 (E) symmetric bend splits to A‘ and A‘‘ and the two triply degenerate ν3 

and ν4 (T2) vibrations split to 2A‘ + A‘‘ modes. Therefore, it could be expected that 

some of the vibrational modes split so that more vibrations are observed in the 

Raman spectrum. The bands observed at 2071 cm−1 and 2112 cm−1 and 2384 cm−1 

with a shoulder at 2403 cm−1 could be related to these band splittings. The complete 

assignment of the bands observed in the Raman spectrum of NaNH2BH3 is shown in 

figure 4.58. 
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Figure 4.58 – The Raman spectrum of NaNH2BH3 with the proposed assignment of the observed bands, du = umbrella deformation, 

ds = scissors deformation
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4.7.2 Na+[BH3NH2BH3]
− 

The Raman spectrum collected from the product of the NaH + 2NH3BH3 reaction at 

60°C is shown in figure 4.59. 

 

Figure 4.59 – The Raman spectrum collected from the product of the NaH + 

2NH3BH3 reaction at 60°C, Na+[BH3NH2BH3]
− 

The N–H stretching region of the spectrum is shown in figure 4.60. Only two peaks 

were observed, at 3255 cm−1 and 3300 cm−1, and therefore they can be simply 

assigned as the N−H symmetric and asymmetric stretches, respectively. This offers 

confirmation that the product contains an NH2 group. 

 

Figure 4.60 – The N–H stretching region of the Raman spectrum collected from the 

product of the NaH + 2NH3BH3 reaction at 60°C 
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The B–H stretching region, figure 4.61 of the product was more complicated than the 

N–H stretching region with a number of features observed. Bands were observed at 

2249, 2282, 2314, 2358, 2382, 2411, 2440 and 2508 cm−1. 

 

Figure 4.61 – The B–H stretching region of the Raman spectrum collected from the 

product of the NaH + 2NH3BH3 reaction at 60°C 

As the Na+[BH3NH2BH3]
− molecule possesses BH3 a comparison with the Raman 

spectrum of NH3BH3 can again help to identify some of the modes, figure 4.62. It can 

be seen that there was a good correlation between the B–H symmetric stretch of 

NH3BH3 at 2280 cm−1 and the most intense peak of the spectrum of 

Na+[BH3NH2BH3]
− at 2282 cm−1 in terms of the Raman shift, shape and relative 

intensity of these peaks. Therefore the band at 2282 cm−1 was assigned to a B–H 

symmetric stretch. The asymmetric B–H stretch of NH3BH3 was observed at 2330 

cm−1, on the shoulder of another feature at 2377 cm−1 in the spectrum of NH3BH3. 

The increased number of bands observed in the spectrum of Na+[BH3NH2BH3]
− 

compared to NH3BH3 meant that it was not possible to observe the asymmetric 

stretch, but the observation of a band at 2382 cm−1 implied that this stretch was still 

present. The separation between these B–H symmetric and asymmetric stretches 

was 100 cm−1. It can be seen from figure 4.61 that there were two other bands in the 

spectrum with a separation of ~100 cm−1, which also had similar shapes and relative 

intensities to those observed at 2282 and 2382 cm−1. By manually shifting the 

NH3BH3 B–H symmetric stretch to a Raman shift of 2314 cm−1 this correlation can be 

better observed, figure 4.62. The two bands at 2314 and 2411 cm−1 correlate well 
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with these shifted stretches, implying that they were also related to B–H symmetric 

and asymmetric stretches, respectively. The B–H stretching region of the spectrum 

therefore supported the presence of two BH3 groups within the product of the NaH + 

2NH3BH3 reaction. There were a number of other bands present in this region of the 

spectrum, the most intense of which was observed at 2358 cm−1. This band and the 

low intensity bands may be related to side reactions. 

 

Figure 4.62 – The B–H stretching regions of the Raman spectrum collected of the 

product of the NaH + 2NH3BH3 reaction at 60°C (red) and NH3BH3 (purple) and the 

spectrum of NH3BH3 blue shifted by 34 cm−1 (green) 

The region of the Raman spectrum where BH3 and NH3 deformation modes as well 

as B–N stretches are expected to be observed is shown in figure 4.63. The Raman 

spectrum of NH3BH3, also shown in figure 4.63, was used as a basis for the 

assignment of modes in this region. The B–N stretch was observed at 870 cm−1 and 

again the 10B contribution to this stretch was present at 894 cm−1, confirming the 

continued presence of a B–N bond in the reaction product. The B–N stretch was blue 

shifted compared to its position in NH3BH3, but red shifted compared to NaNH2BH3. 

This showed that the Na+[BH3NH2BH3]
− B–N bond was stronger than in NH3BH3 but 

weaker than in NaNH2BH3, which showed that electron donation from the Na was 

sufficient to increase the bond strength but to a lesser extent than in NaNH2BH3, 

where an Na–N bond was present. The BH3 deformation modes were observed at 
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1169 and 1198 cm−1, while the NH3 deformation mode was assigned to the band at 

1575 cm−1. Rocking motions of the H atoms associated with the BH3 groups would 

also be expected to produce two bands in the spectrum, with these vibrations 

assigned to the bands observed at 652 and 1001 cm−1. The number of bands 

observed in this region of the spectrum was greater than that of the spectrum of 

NH3BH3, with the increased number of bands due to two different BH3 groups 

present. 

 

Figure 4.63 – The NH3 deformation, BH3 deformation and B–N stretching region of 

the Raman spectrum collected from the product of the NaH + 2NH3BH3 reaction at 

60°C (red) and NH3BH3 (purple) 

  



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 189 

4.8 Overall Discussion and Conclusion 

4.8.1 The NaH + NH3BH3 Reaction Pathway 

The first step in the reaction pathway was the solid state reaction of 1 mole of NaH 

with 1 mole of NH3BH3 to yield the previously reported NaNH2BH3, reaction 4.32.5 

NaH + NH3BH3 → NaNH2BH3 + H2  Reaction 4.32 

This reaction could be effected at a temperature as low as 40°C, although gaseous 

thermal desorption data showed that the reaction began at temperatures lower than 

this. The reaction product was confirmed through powder XRD and solid state 11B 

MAS NMR spectroscopy. TPD-MS data showed that the only gas released during the 

synthesis of this phase was H2. A key feature of this reaction was likely to have been 

the high affinity for a protic hydrogen atom in the NH3 group of NH3BH3 to combine 

with the negatively charged hydrogen present in NaH forming H2. The resultant 

NH2BH3
− anion and Na+ cation would have subsequently combined to form the 

NaNH2BH3 product. 

As shown by powder XRD, NaNH2BH3 initially decomposed to an amorphous 

material. Thermal desorption studies revealed the exclusive release of H2 and solid 

state 11B NMR showed two dominant boron environments, with both sp2 and sp3 

(NBH3) hybridised boron present, as well as a small amount of BH4
−. 

Thermogravimetric data showed that this decomposition step was accompanied by 

the release of one equivalent of H2. A key property of NaNH2BH3 in terms of 

hydrogen storage is the presence of both hydridic and protic hydrogens due to the 

different electronegativities of boron and nitrogen. This is similar to amide 

borohydride materials, where H2 release is enhanced through the combination of Hδ+ 

and Hδ−.1 For NH3BH3, the overall loss of H2 can be written: 

nNH3BH3 → (NH2BH2)n + nH2  Reaction 4.33 

However, it is well established that the mechanism of H2 loss involves DADB. The 

appearance of a resonance due to BH4
− in the solid state 11B MAS NMR spectrum of 

decomposed NaNH2BH3, figures 4.33 and 4.34, suggests that a similar mechanism 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 190 

may have taken place during NaNH2BH3 decomposition with two NaNH2BH3 

molecules reacting to form a DADB like molecule, reaction 4.34. If this species had 

then reacted further with other NaNH2BH3 molecules, similar to the growth step in 

NH3BH3 decomposition, H2 would have been released and a polymeric species 

formed, reaction 4.35.  

Reaction 4.34 

Reaction 4.35 

Reaction 4.34 yields a polymeric species, implying the product would likely have 

been amorphous, in agreement with the XRD result. However, neither of the 

proposed reactions form products that possess sp2 boron and both possess N2BH2 

environments, which disagrees with 11B NMR results. Therefore, if either reaction is 

involved in the decomposition pathway the N2BH2 environments must be short lived. 

However, further H2 loss from these species below 60°C would not agree with the 

thermal desorption studies. This suggests that the initial decomposition product was 

not in fact polymeric. H2 loss from [NaNH2(BH2)NaNH2]
+[BH4]

− may have occurred 

intramolecularly through the combination of oppositely charged H atoms, reaction 

4.36. A competing reaction to this may also have been possible, with H2 lost 

intramolecularly from a single NaNH2BH3 molecule, reaction 4.37. These competing 

reactions yield products consistent with the 11B NMR study. The low intensity of the 

BH4
− feature after reaction at 60°C, figure 4.33, suggests reaction 4.37 may have 

been initially responsible for H2 loss. 

[NaNH2(BH2)NaNH2]
+[BH4]

− → [NaNH=BHNH2Na]+[BH4]
− + H2 Reaction 4.36 

NaNH2BH3 → Na+NH=BH2
− + H2   Reaction 4.37 
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At 200°C, the decomposition products included NaH and amorphous material 

containing two sp2 boron environments and BH4
−. TGA study of NaNH2BH3 showed 

this step released less than one equivalent of H2. Again competing reactions may 

have taken place. The products of reactions 4.36 and 4.37 had the potential to further 

release H2. [NaNH=BHNH2Na]+[BH4]
− could have reacted with NaNH2BH3 molecules, 

reaction 4.38, or Na+NH=BH2
− may have polymerised, reaction 4.39. 

 Reaction 4.38 

  nNa+NH=BH2
− → (NaNBH)n + nH2  Reaction 4.39 

Both of these products agree at least in part with the 11B NMR data, however, neither 

account for the appearance of NaH in the XRD pattern. The reactions were assumed 

to proceed through the combination of oppositely charged hydrogens. However, a 

second possibility would have been for the Na, also possessing a positive charge, to 

have combined with a negatively charged H atom, forming NaH as follows. This 

competition between H2 release and NaH formation could explain why H2 release 

was observed above 200°C in thermal desorption studies, but the amount released 

was less than one equivalent. 

 Reaction 4.40 

nNa+NH=BH2
− → (NHBH)n + nNaH  Reaction 4.41 

The results of solid state 11B and 23Na MAS NMR suggested that the dominant 

decomposition product was free from sodium, while a side reaction yielded a product 

containing sodium, therefore suggesting that reactions 4.40 and 4.41 were the 

dominant decomposition pathways. The fact that there are competing reaction 

pathways in the first step of NaNH2BH3 decomposition as well as further competition 

between H2 and NaH expulsion within each pathway highlights the complex nature of 



CHAPTER 4. The Reaction of Sodium Hydride with Ammonia Borane 192 

this decomposition. The dominant NaH + NH3BH3 reaction pathway is concluded to 

have proceeded according to the overall reaction 4.42. 

nNaH + nNH3BH3  → nNaNH2BH3 + nH2↑ → (NHBH)n + nNaH + nH2↑   Reaction 4.42 

4.8.2 The NaH + 2NH3BH3 Reaction Pathway 

The first step in the 1:2 pathway was identical to that observed in the 1:1 pathway, 

the reaction of NaH with NH3BH3 forming NaNH2BH3 and releasing H2. Thermal 

desorption data showed that the subsequent reaction pathway step involved the 

desorption of NH3, yielding a previously unreported crystalline phase. This crystalline 

phase was indexed to a trigonal unit cell with a = 4.3389(4) Å and c = 17.859(1) Å 

and a unit cell volume of 291.16(5) Å3. The composition of this trigonal phase was 

proposed to be Na+[BH3NH2BH3]
− and support for this assignment was provided by 

solid state 11B MAS NMR and Raman spectroscopy. Two pathways may have led to 

the formation of this product: either an intermolecular rearrangement reaction, 

reaction 4.43, or an SN2 reaction, reaction 4.44. 

Reaction 4.43 

Reaction 4.44 

There are only two reports of Na+[BH3NH2BH3]
− in the literature. It was first 

hypothesised as early as 1938 by Schaeffer et al.37 as a product of the reaction of 

DADB with Na in NH3, reaction 4.45. However, this was based on the incorrect 

structure of DADB ([NH4]
+[BH3NH2BH3]

−) previously proposed by Schlesinger and 

Burg.38 Shore et al.39 later showed that the products of the reaction of Na with DADB 

were in fact NaBH4 and (NH2BH2)n, reaction 4.46. 

Na + [NH4]
+[BH3NH2BH3]

− → [Na]+[BH3NH2BH3]
− + NH3 + ½H2 Reaction 4.45 

nNa + n[NH3BH2NH3]
+[BH4]

− → nNaBH4 + (NH2BH2)n + nNH3 + ½nH2   Reaction 4.46  

BH3NH2
− BH3—NH3 [BH3NH2BH3]

− + NH3
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A recent study by Daly et al.40 reported the compound Na+[BH3NH2BH3]
−. The 

reaction of NH3BH3 with excess Na in THF at room temperature synthesised 

NaNH2BH3, but when heated at reflux Na+[BH3NH2BH3]
− formed along with a white 

by-product that precipitated from the solution. The reaction of NaNH2 with NH3BH3 in 

a 1:2 molar ratio in refluxing THF was also shown to form this compound; however, in 

both cases THF could not be completely removed and so the authors were unable to 

obtain crystals of sufficient quality to study by XRD. 

Decomposition of Na+[BH3NH2BH3]
− led to the formation of NaBH4, as well as an 

amorphous material, and was accompanied by H2 release. Solid state 11B MAS NMR 

results showed that the amorphous phase was primarily constituted of sp2 boron in 

an NBH2 environment. Further to this, solid state 23Na MAS NMR investigations 

showed that no sodium was present in the amorphous materials. NaBH4 formation 

may have taken place through an intermolecular rearrangement reaction, reaction 

4.47, expelling Na+, which along with the BH4
− also produced would have crystallised 

as NaBH4. As with the growth step of NH3BH3 decomposition, this rearrangement 

would be a chain growth mechanism, leading to a polymeric decomposition product. 

Na+[BH3NH2BH3]
− decomposition occurred above 120°C, at which temperature 

(NH2BH2)n decomposes through H2 release and therefore the polymer formed in this 

reaction would have been susceptible to H2 release, ultimately yielding (NHBH)n. 

 
Reaction 4.47 

The NaH + 2NH3BH3 reaction pathway is concluded to have proceeded by the overall 

reaction 4.48. 

NaH + 2NH3BH3 → NaNH2BH3 + NH3BH3 + H2↑ → Na+[BH3NH2BH3]
− + NH3↑ → 

NaBH4 + (NHBH)n + H2↑ 

Reaction 4.48  
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4.8.3 Potential as Hydrogen Storage Materials 

The lower onset temperature of H2 release from NaNH2BH3 (70°C) compared to 

Na+[BH3NH2BH3]
− (100°C) suggests NaNH2BH3 has more potential as a hydrogen 

storage material. However, NaNH2BH3 has a lower hydrogen content (9.5 wt%) than 

Na+[BH3NH2BH3]
− (12.5 wt%). Thermogravimetric studies also showed that upon 

heating to 350°C Na+[BH3NH2BH3]
− showed the higher weight loss of 7.5 wt% 

compared to 5.25 wt% from NaNH2BH3, with both weight losses due to H2 only. The 

use of Na+[BH3NH2BH3]
− is, however, complicated by the desorption of NH3 during its 

synthesis from NaNH2BH3 and NH3BH3. 

A key advantage of NaNH2BH3 is the presence of oppositely charged hydrogens 

which aids the desorption of H2 from the material. These oppositely charged 

hydrogens are also present in Na+[BH3NH2BH3]
−. As shown in reaction 4.47 these 

opposite charges were not involved in the initial decomposition step of 

Na+[BH3NH2BH3]
− but following the formation of polymeric material, H2 release would 

have been promoted due to their presence. 

As with the parent material NH3BH3, both materials show initial sharp desorptions of 

H2. Following this initial release, the broad desorption of H2 observed for NH3BH3 is 

avoided. Despite this, the ultimate decomposition products of both NaNH2BH3 and 

Na+[BH3NH2BH3]
− involve the formation of (NHBH)n, an amorphous polymer, also a 

decomposition product of NH3BH3. Therefore, for all three materials the reversibility 

of the system is significantly hampered by the rehydriding of (NHBH)n. Furthermore, 

the crystalline decomposition products of NaNH2BH3 and Na+[BH3NH2BH3]
− are NaH 

and NaBH4, respectively. Clearly, these materials cannot be rehydrogenated 

individually. In fact the only material that offers the potential for recycling individually 

is (NHBH)n. Therefore following the initial dehydrogenation and rehydrogenation 

cycle, NaNH2BH3, Na+[BH3NH2BH3]
− and NH3BH3 would all lead to NH3BH3 being 

regenerated, eliminating the initial advantages that the NaNH2BH3 and 

Na+[BH3NH2BH3]
− storage systems held over their parent material. In the case of 

NaNH2BH3 this may be avoided if the decomposition pathway leading to (NaNBH)n 

formation can be promoted, giving the potential for NaNH2BH3 to be regenerated. 

This is not a possibility with Na+[BH3NH2BH3]
− as all of the Na in the decomposition 
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products is found in the form of NaBH4. However, this does not rule out the possibility 

of these materials being able to react with other dehydrogenation products in the 

presence of H2. As has been shown NaH reacts with NH3BH3 and so there may be 

potential for NaH or NaBH4 to react with the amorphous decomposition products, 

yielding sodium containing products, which could offer the storage system a 

recyclable pathway. 
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Chapter 5 

 

The Reaction of Lithium Hydride 

with Ammonia Borane 

 

5.1 Introduction 

At the commencement of this research there had been no reported investigations into 

the interaction of lithium hydride with ammonia borane. This investigation was initially 

focused on the attempted synthesis of Li2BH4NH2, a previously reported material.1 

The reaction mixture of LiH and NH3BH3 in a molar ratio of 2:1 left excess LiH at the 

end of the experiment. The 1:1 reaction mixture also resulted in the formation of a 

product which was contaminated with the LiH starting material. A stoichiometry of 1:2 

in favour of NH3BH3 was subsequently found to be required to yield a crystalline 

product free from starting materials. This new tetragonal crystalline phase differed 

from Li2BH4NH2. The hydrogen desorption properties of this material were 

investigated and spectroscopic characterisation carried out. 

 

5.2 Experimental 

Lithium hydride (Sigma-Aldrich, 95% purity) and ammonia borane (Sigma-Aldrich, 

97% purity) were ground together in a 1:2 molar ratio in an argon filled glove box 

(>10 ppm O2, >1 ppm H2O), and heated under a flowing argon atmosphere at 50°C. 

The sample was reground and annealed at 50°C to improve the crystallinity of the 

product. 
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The synthesis of LiNH2BH3 was attempted through the reaction of LiNH2 (Sigma-

Aldrich, 95% purity) and NH3BH3 (Sigma-Aldrich, 97% purity) in a 1:1 molar ratio. The 

reagents were mixed together in an argon filled glove box (>10 ppm O2, >1 ppm 

H2O). The nature of the reaction dictated that the reagents could not be ground 

together, because the reaction mixture became wet upon mixing and took several 

hours to dry under ambient conditions in the glove box. 

 

5.3. Powder X-Ray Diffraction 

Powder XRD patterns were collected for the products following the heating of the 

reaction mixture. It was found that a new crystalline phase formed at a temperature 

of 50°C, which was collected as a white powder at the end of the experiment. No 

reports of this phase had previously appeared in the literature. The powder XRD 

pattern of this phase is shown in figure 5.1. 

 

Figure 5.1 – The powder XRD pattern collected from the product of the reaction of 

LiH + 2NH3BH3 at 50°C 

Higher temperature reactions showed that this phase persisted up to a temperature 

of 120°C. At reaction temperatures above 120°C no crystalline phases were 

observed in the powder XRD pattern, showing that only amorphous phases 

remained. The ultimate decomposition product of the reaction was investigated using 
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an elevated reaction temperature of 800°C and, as can be seen in figure 5.2, this 

product was also amorphous. 

 

Figure 5.2 – The powder XRD pattern of the product of the reaction of LiH + 

2NH3BH3 at 800°C 

Reported studies into the reaction of LiH with NH3BH3 have focused on the 1:1 

reaction, which have been shown to synthesise the crystalline phase lithium 

amidoborane, LiNH2BH3. Similar to NaNH2BH3 there are two recent synthetic 

procedures that have been outlined to form this material. The reaction can proceed in 

solution using THF as a solvent2, 3 or through ball milling of the reagents.4, 5 A third 

preparative procedure has previously been reported for this material, through the 

reaction of NH3BH3 with n-butyllithium in THF at 0°C.6 As with NaNH2BH3, the 

synthesis of LiNH2BH3 has not previously been reported through direct thermal solid 

state reaction of LiH and NH3BH3. Investigations into the 1:1 reaction in this study 

revealed that this material could not be synthesised through a thermal reaction, even 

at low temperatures. Analysis by powder XRD (figure 5.3) revealed two phases 

present in the product: peaks related to the product of the 1:2 reaction along with 

peaks due to the continued presence of LiH were observed. 
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Figure 5.3 – The powder XRD pattern of the product of the reaction of LiH + NH3BH3 

at 60°C (red). The powder XRD pattern of LiH is shown for comparison (blue) 

The progression of the reaction with temperature increase as observed by powder 

XRD is shown in figure 5.4. It can be seen that powder XRD shows only two steps in 

the pathway. The first step involved the formation of the unknown crystalline phase at 

a reaction temperature of 50°C. This crystalline phase existed until a temperature of 

140°C. Above this temperature it mostly underwent decomposition to an amorphous 

material as shown by the absence of any significant amount of crystalline phases in 

any of the diffraction patterns. A small amount of LiBH4 was observed just above the 

background of the diffraction patterns collected from the products after reaction at 

140°C and 150°C, which was absent after reaction at 250°C. 
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Figure 5.4 – Powder XRD patterns obtained from the products of the LiH + 2NH3BH3 reaction at various temperatures
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The LiH + 2NH3BH3 reaction was also investigated at room temperature and it was 

found that the reaction proceeded, albeit slowly, over a period of two months, to yield 

the same unidentified crystalline phase discussed previously, shown in figure 5.5. At 

no point during the reaction was there any evidence of the formation of a 1:1 phase, 

either in the form of LiNH2BH3 or otherwise. It was also found that this reaction would 

proceed at 40°C with an extended reaction time of 80 hours. The product of the 

reaction was the unidentified crystalline phase, again no evidence of the formation of 

LiNH2BH3 was observed. 

 

Figure 5.5 – The powder XRD pattern of the LiH + 2NH3BH3 reaction two months 

after the reagents had been ground together at room temperature 

The unknown crystalline phase was also found to be the product of the reaction of 

LiNH2BH3, previously synthesised through the reaction of LiNH2 and NH3BH3, with 

NH3BH3 at 50°C, figure 5.6. 

 

Figure 5.6 – The powder XRD pattern of the product of the reaction of LiNH2BH3 + 

NH3BH3 at 50°C 
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Unlike the NaNH2 + NH3BH3 reaction, there have been no reports in the literature that 

have detailed the successful synthesis of LiNH2BH3 through a LiNH2 + NH3BH3 

reaction using either solid state or solution synthesis. On mixing the reagents an 

exothermic reaction appeared to proceed instantaneously, evidenced by the reaction 

mixture becoming wet only a few seconds after combining the reagents. There was 

no visible evidence of any gases being given off and the reaction mixture dried when 

it was left to stand for several hours, leaving a white powder. The powder XRD 

pattern of this sample, figure 5.7, showed that LiNH2BH3 was the main product of the 

reaction with a small amount of unreacted LiNH2 remaining, although NH3BH3 was 

completely consumed in the reaction. The excess LiNH2 that remained after reaction 

was possibly due to the reaction being sufficiently exothermic to initiate the 

decomposition of NH3BH3, hence altering the stoichiometry of the reaction from the 

desired 1:1 molar ratio. LiNH2 is stable to a much higher temperature than NH3BH3 

and so would not have undergone decomposition.7 The solitary report in the literature 

regarding the LiNH2 + NH3BH3 reaction stated that the solid state reaction yielded an 

amorphous hybrid material of approximate composition LiNH2BH3NH3, although 

similar observations regarding the state of the reaction mixture were made.8 This 

hybrid material is of the same chemical composition as Li(NH3)NH2BH3, an 

amorphous material synthesised by Xia et al.9 through the treatment of LiNH2BH3 

with NH3 at room temperature. There is a possibility that these materials were the 

same, however, as both were amorphous, XRD cannot determine this. 

The effect of heating the LiNH2BH3 material to 50°C is shown in figure 5.8. This did 

not result in any changes to the XRD pattern, LiNH2BH3 remained the dominant 

phase in the pattern, with LiNH2 still observed. Further heating to 100°C proved to 

result in the decomposition of the LiNH2BH3 phase as the only crystalline phase 

present in the XRD pattern was LiNH2. This showed that the decomposition product 

of LiNH2BH3 was an amorphous material. The LiNH2 present throughout was likely to 

have been unreacted starting material rather than a product of decomposition. 
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Figure 5.7 – The powder XRD pattern of the product of the reaction of LiNH2 and 

NH3BH3 at room temperature (blue). The powder XRD patterns of LiNH2BH3
10 (red), 

and LiNH2 (green) are shown for comparison 

 

Figure 5.8 – Powder XRD patterns obtained from the products of the LiNH2 + 

NH3BH3 reaction at specified temperatures 
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5.3.1 Indexing 

The peak positions observed in the product of the LiH + 2NH3BH3 reaction at 50°C 

were run through the indexing routine of Topas.11 The most probable assignment 

was for a tetragonal unit cell with a = 4.03 Å and c = 17.01 Å, with a suggested space 

group of P42mc. The a and c lattice parameters were refined through Topas11, using 

a Pawley fit, to values of 4.0288(2) Å and 16.958(2) Å, respectively, giving a unit cell 

volume of 275.26(5) Å3. The fit is shown in figure 5.9. There was only one broad peak 

present in the pattern that was not indexed as part of this tetragonal crystalline 

phase, observed at 40.5°, shown in figure 5.10. 

 

Figure 5.9 – Pawley refinement for the product synthesised through the LiH + 

2NH3BH3 reaction at 50°C. The observed pattern is shown in green, the calculated 

pattern in red and the difference in purple. Bragg peak positions of the tetragonal 

phase are indicated in blue. Rwp = 9.304%, χ2 = 2.931 

 

Figure 5.10 – The impurity peak in the Pawley refinement of the tetragonal phase 

synthesised through the LiH + 2NH3BH3 reaction at 50°C 

The procedure was repeated for the peak positions observed for this new phase 

synthesised in reactions up to a temperature of 140°C. The results are shown in table 

5.1 and the Pawley fits can be seen in Appendix 3. No regular trend between lattice 
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constants and reaction temperature was observed. There was variation in the lattice 

constants, but these differences were relatively small. The impurity peak observed in 

the powder pattern of the product from reaction at 50°C was observed in all patterns 

up to a reaction temperature of 120°C. The intensity of this peak was greatest at 

temperatures up to 80°C; at 100°C and 120°C its intensity was decreased and after 

heating to 140°C the peak was no longer visible. The structure published by Soulié et 

al.12 was used as a starting model for Rietveld refinements of the powder XRD 

patterns collected from the products of the LiH + 2NH3BH3 reaction at 140°C and 

150°C to show the presence of LiBH4. The refined patterns can be seen in figures 

5.11 and 5.12. The product of the LiNH2BH3 + NH3BH3 reaction was also indexed to 

the same tetragonal cell, although there was no sign of the impurity peak at 40.5°; 

the Pawley fit for this refinement can be seen in Appendix 3. There has been one 

study reported in the literature on the subject of the LiH + 2NH3BH3 reaction, with a 

ball milled reaction mixture shown to produce LiNH2BH3·NH3BH3 in the P21/c space 

group with a monoclinic unit cell.13 No peaks in any of the powder XRD patterns 

could be indexed to this monoclinic phase. 

Table 5.1 – Refined values of the a and c lattice constants and cell volume for the 

tetragonal phase observed in the LiH + 2NH3BH3 reaction 

Reaction 

Temperature (°C) 
a (Å) c (Å) Cell volume 

(Å3) 

Literature14 4.0320(4) 17.023(4) 276.73(8) 

RT 4.0293(3) 16.944(3) 275.09(6) 

40 4.0403(1) 17.1213(8) 279.48(2) 

50 4.0288(2) 16.958(2) 275.26(5) 

60 4.0331(1) 16.989(1) 276.34(3) 

80 4.0184(3) 16.913(2) 273.11(5) 

100 4.0313(5) 16.990(4) 276.12(10) 

120 4.0251(4) 16.963(3) 274.83(7) 

140 4.032(1) 16.955(6) 275.6(2) 

LiNH2BH3 + 
NH3BH3 50°C 

4.0223(4) 16.963(4) 274.44(8) 
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Figure 5.11 – The refined powder XRD pattern of the LiH + 2NH3BH3 reaction at 

140°C. The observed pattern is shown in orange, the calculated pattern in red and 

the difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue and LiBH4 in green. Rwp = 8.578%, χ2 = 1.026 

 

Figure 5.12 – Pawley refinement for the product synthesised through the LiH + 

2NH3BH3 reaction at 150°C. The observed pattern is shown in blue, the calculated 

pattern in red and the difference in purple. Bragg peak positions of LiBH4 are 

indicated in blue. Rwp = 4.678%, χ2 = 1.136 

Following the room temperature reaction of LiNH2 with NH3BH3, the powder XRD 

pattern was refined to show the continued presence of LiNH2 as well as the formation 

of LiNH2BH3. The starting model used for the Rietveld refinement of the LiNH2BH3 

phase was obtained from previous reports in the literature.4, 15 The a, b and c lattice 

constants were refined along with the atomic coordinates of lithium, nitrogen and 

boron. Hydrogen atoms were not included in the refinement as they are poor 

scatterers of X-rays. The structure published by Jacobs et al.16 was used as the 

starting model for the Rietveld refinement of LiNH2. The refined powder XRD pattern 

can be seen in figure 5.13. There was a good fit between the observed and 
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calculated patterns following this refinement. Table 5.2 shows a selection of refined 

parameters along with the original published structure values. 

Table 5.2 – Refined lattice constants and selected bond lengths of LiNH2BH3 and 

LiNH2 synthesised in the reaction of LiNH2 + NH3BH3 at room temperature 

Parameter NH3BH3
17 LiNH2BH3

4, 15 LiNH2
16 LiNH2BH3 LiNH2 

a 5.2630(4) 7.1051(8) 5.037 7.1147(7) 5.0433(9) 

b 5.2630(4) 13.930(1) 5.037 13.945(1) 5.0433(9) 

c 5.0504(8) 5.1477(7) 10.278 5.1524(6) 10.264(4) 

Li–N bond 

length (Å) 

0.85(7) 

(H–N) 

1.98 2.06 – 2.21 2.028(2) 2.06812 

B–N bond 

length (Å) 

1.597(3) 1.56 Not 
applicable 

1.571(2) Not 
applicable 

 

Figure 5.13 – Rietveld refinements for the phases observed in the product of the 

LiNH2 + NH3BH3 reaction at room temperature. The observed pattern is shown in 

black, the calculated pattern in red and the difference in purple. Bragg peak positions 

of LiNH2BH3 (blue), NH3BH3 (black) and LiNH2 (green) are indicated. Rwp = 8.343%, 

χ2 = 1.498 

The refinement showed that the major product of the reaction was LiNH2BH3 with a 

small amount of unreacted LiNH2 remaining in the sample. The reason behind the 

continued presence of LiNH2 will be discussed in section 5.3.2. The refined lattice 

constant values of both LiNH2BH3 and LiNH2 agreed well with literature values. The 

substitution of a protic H in NH3BH3 for Li resulted in a decrease of the B–N bond 

length in LiNH2BH3 compared to NH3BH3. The decreased B–N bond length shows 

that this bond increased in strength following the Li for H substitution, which agreed 

with predictions previously reported by Armstrong et al.18 The increased B–N bond 
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strength is due to the presence of the more electron donating Li, compared to H in 

NH3BH3. 

5.3.2 Discussion 

A tetragonal crystalline phase was synthesised through the reaction of LiH + 

2NH3BH3 at 50°C, which underwent decomposition above 140°C. This phase was 

also shown to form at 40°C and even at room temperature, although the reaction 

time required was substantially increased. The major decomposition products of the 

tetragonal phase were found to be amorphous, similar to the decomposition of 

NH3BH3. Only a very small amount of LiBH4 was formed around 150°C which was 

different from the decomposition of Na+[BH3NH2BH3]
−, where NaBH4 was a 

significant decomposition product. The low intensity of LiBH4 peaks in the powder 

XRD patterns may have been due to the material not being able to crystallise under 

the reaction conditions. It has been commented on in other studies that LiBH4 is 

unable to crystallise under dehydrogenation conditions and so is often not observed 

in powder XRD patterns despite it being an expected decomposition product.13 

A striking observation of all these reactions was the fact that a significant volume 

expansion was observed during heating, at which point the sample became wet, 

although the final product collected following annealing was a powder. This volume 

expansion is a key step in the decomposition of ammonia borane, whereas it was not 

observed in any reaction involving NaH and NH3BH3. This provided an insight into 

the mechanism of the crystalline phase formation. The hydride ion of MH is a strong 

base and is potentially capable of removing a protic H from the NH3 group in 

NH3BH3. In the case of the more basic NaH, deprotonation of NH3BH3 was facile and 

so NaNH2BH3 could form. Lithium is less electron donating than sodium, meaning the 

H− is a weaker base and so it was not capable of acquiring a protic H from NH3BH3. 

This meant that the NaH reaction could proceed when NH3BH3 was in its most stable 

state, before disruption of the dihydrogen bonding network. The LiH reaction, 

however, required the more labile form of NH3BH3, present after volume expansion 

and the disruption of the dihydrogen bonding network, in order for the reaction to 

proceed. This may have resulted in the lithium reaction proceeding through a 

different reaction mechanism to the sodium pathway. 
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The tetragonal phase has been identified in a number of literature studies as being a 

side product to the main reaction under investigation. A study by H. Wu et al.,15 

primarily focused on investigating the 1:1 reaction, was the first to discuss the 

product of the LiH + 2NH3BH3 reaction. Following ball milling of a 1:1 reaction mixture 

a number of low intensity unindexed peaks in the powder XRD pattern were 

observed along with peaks due to LiNH2BH3. The intensity of the unindexed peaks 

increased on decreasing the ratio of LiH to NH3BH3 to 1:2 in the reaction mixture. 

The majority of these peaks did not appear in our powder XRD pattern of the product 

of the LiH + 2NH3BH3 reaction, although the three dominant peaks observed at 2θ = 

10.4°, 22.6° and 31.3° were present. However, both the observed and unobserved 

peaks were indexed to the same crystalline material and the product was concluded 

to have the chemical formula LiNH2BH3·NH3BH3. A structure was subsequently 

solved in the Cmc21 space group, with lattice constants a = 13.992 Å, b = 10.742 Å 

and c = 10.110 Å. The fact that a number of the peaks in this XRD pattern occurred 

in the powder XRD pattern of our product from the LiH + 2NH3BH3 reaction 

suggested that the product observed by H. Wu et al. was in fact multiphase. 

A second study by C. Wu et al.13 focused on the synthesis of the LiNH2BH3·NH3BH3 

phase through ball milling of LiH + 2NH3BH3 and LiNH2BH3 + NH3BH3 reaction 

mixtures. The XRD pattern of the product was similar to the one observed by H. Wu 

et al.15 However, the three peaks observed at 2θ = 10.3°, 22.7° and 31.4° were 

assigned as impurities in the LiNH2BH3·NH3BH3 XRD pattern. The intensities of these 

peaks were also greatly reduced compared to those observed in the study by H. Wu 

et al.15 Consequently, the two determined structures of LiNH2BH3·NH3BH3 were 

significantly different. It was noted that the LiNH2BH3·NH3BH3 material underwent 

decomposition slowly at room temperature and subsequently the three impurity 

peaks at 2θ = 10.3°, 22.7° and 31.4° increased in intensity while the peaks indexed 

to the LiNH2BH3·NH3BH3 phase disappeared from the pattern. It can therefore be 

concluded that the data used by H. Wu et al. to solve the structure of 

LiNH2BH3·NH3BH3 did in fact contain two phases. Heating LiNH2BH3·NH3BH3 to 

100°C resulted in the decomposition of this material. The XRD pattern obtained after 

heating LiNH2BH3·NH3BH3 to 100°C resembled that of the tetragonal phase, with the 

three dominant peaks observed at 2θ = 10.4°, 22.6° and 31.3° present in both 
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patterns. These observations therefore suggested that the tetragonal phase was a 

product of the decomposition of LiNH2BH3·NH3BH3. 

A further study by C. Wu et al.14 investigated the phase transitions during the ball 

milled LiH + NH3BH3 reaction forming LiNH2BH3. The reaction pathway, reaction 5.1, 

was proposed to involve formation of LiNH2BH3·NH3BH3 as an intermediate. 

2LiH + 2NH3BH3 → LiH + LiNH2BH3·NH3BH3 + H2 → 2LiNH2BH3 + 2H2 

Reaction 5.1 

An impurity phase was identified in most samples, the most intense peak of which 

was observed in the XRD pattern at 22.7°, consistent with our observations. 

Furthermore, this crystalline phase was indexed to a tetragonal unit cell with lattice 

constants a = 4.0320(4) Å and c = 17.023(4) Å and a unit cell volume of 276.73(8) Å3. 

These parameters showed good agreement with those calculated for the tetragonal 

phase formed in our study, confirming that the same crystalline phase had formed. 

This impurity phase was thought to have originated from the decomposition of the 

LiNH2BH3·NH3BH3 phase during the reaction. 

From comparisons of the literature reports to the results outlined here, it can be 

concluded that the thermal LiH + 2NH3BH3 reaction did not result in the crystalline 

phase LiNH2BH3·NH3BH3. Literature studies showed the LiNH2BH3·NH3BH3 material 

was synthesised through room temperature ball milling of the reagents whereas this 

study used thermal treatment of the reagents in order to effect a reaction. C. Wu et 

al. 13, 14 showed that LiNH2BH3·NH3BH3 decomposed slowly at room temperature, 

with the resulting XRD pattern showing the presence of the tetragonal phase.13, 14 

Due to the LiH + 2NH3BH3 reaction being carried out at temperatures in excess of 

50°C, any formation of LiNH2BH3·NH3BH3 would have been rapidly followed by the 

transition to the tetragonal phase and so this material was not detected in the powder 

XRD patterns of the products. These results do, however, suggest that 

LiNH2BH3·NH3BH3 may have been involved in the LiH + 2NH3BH3 reaction 

mechanism. 

The product of the LiNH2BH3 + NH3BH3 reaction at 50°C was also the tetragonal 

phase, suggesting that LiNH2BH3 was also involved in the reaction mechanism, 
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despite not being observed in any of the powder XRD patterns of the products of the 

LiH + 2NH3BH3 reactions. Therefore, if LiNH2BH3 was involved in the reaction 

mechanism it must have undergone a rapid reaction with the second molar 

equivalent of NH3BH3 forming the tetragonal phase and, as discussed above, 

possibly through LiNH2BH3·NH3BH3 as an intermediate. The relative rates of the LiH 

+ NH3BH3 and LiNH2BH3 + NH3BH3 reactions can be determined through the LiH + 

NH3BH3 reaction. The powder XRD pattern, figure 5.3, showed the presence of the 

tetragonal phase and unreacted LiH, showing that LiNH2BH3 + NH3BH3 was the 

faster reaction. The LiH + 2NH3BH3 reaction pathway can hence be broken down into 

a two step process as shown in reaction 5.2. 

Reaction 5.2 

The rationale for the first step being rate limiting has been previously discussed and 

is related to the fact that in order for the reaction to proceed the NH3BH3 starting 

material had to undergo a structural change with respect to the disruption of the 

dihydrogen bonding network. Following this step a much more reactive, mobile form 

of NH3BH3 was present in the reaction mixture and hence the second step in the 

pathway, NH3BH3 reaction with LiNH2BH3 was able to proceed more rapidly. 

The rationale that neither LiNH2BH3 nor LiNH2BH3·NH3BH3 were observed in the 

powder XRD patterns was that the reaction temperatures were sufficient to effect 

subsequent reaction of LiNH2BH3 with NH3BH3 or LiNH2BH3·NH3BH3 decomposition. 

Therefore, at room temperature these thermal events may have been avoided. 

However, at no point during the room temperature reaction were either of these 

phases observed in the powder XRD pattern. LiNH2BH3 absence could be justified if 

the room temperature reaction of LiNH2BH3 + NH3BH3 was fast. However, this 

reaction was not shown to proceed instantly at room temperature; the powder XRD 

pattern obtained one week after grinding the reaction mixture, figure 5.14, showed 

that both starting materials as well as the tetragonal phase were present. This result 

can, however, be used to justify the absence of LiNH2BH3·NH3BH3 in any of the 

powder XRD patterns of the reaction products, because even at room temperature it 

was shown that this material was unable to form. It can hence be concluded that 
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LiNH2BH3 was not involved in the LiH + 2NH3BH3 reaction pathway. This conclusion 

is further validated by the results published by C. Wu et al.14 which investigated the 

1:1 reaction pathway. Reaction 5.1 shows that LiNH2BH3·NH3BH3 was in fact an 

intermediate in the formation of LiNH2BH3, therefore disproving reaction 5.2. This fact 

shows why it was not possible to form LiNH2BH3 from a reaction mixture of LiH and 

NH3BH3 at any reaction stoichiometry. LiNH2BH3·NH3BH3 has been shown to be 

unable to form in thermal reactions and instead the product was observed to be the 

tetragonal phase. This means that the second step in reaction 5.1, would have been 

unable to proceed, signifying that LiNH2BH3 formation was prevented. This also 

means that the first step in reaction 5.2 resulted in the tetragonal phase and excess 

LiH and not a mixture of LiNH2BH3 and unreacted NH3BH3 as speculated. 

 

Figure 5.14 – The powder XRD pattern of the products of reaction of LiNH2BH3 + 

NH3BH3 at room temperature, one week after grinding the reagents (purple). The 

powder XRD patterns of NH3BH3 (green), LiNH2BH3 (orange) and the tetragonal 

phase (red) are shown for comparison 

The conclusion that LiNH2BH3 does not have a role in the LiH + 2NH3BH3 reaction 

mechanism poses the question of what the reaction mechanism could involve. As 

discussed previously the reaction mixture was observed to undergo a voluminous 

swelling on heating, showing that the metal hydride reacted with the more mobile 

phase of ammonia borane. During this volume expansion, the dihydrogen bonding 

network is disrupted and the NH3BH3 molecules have increased freedom. In the 
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decomposition of NH3BH3 a nucleation step then occurs, which involves the 

rearrangement of two NH3BH3 molecules, forming DADB, reaction 5.3. 

  Reaction 5.3 

If LiH was to react with this mobile form of NH3BH3, before DADB formation, it would 

effectively be reacting with two NH3BH3 molecules and hence explain why a 1:2 

molar ratio of reagents was required. The crystal structure of LiNH2BH3·NH3BH3 

showed that the structure consists of alternate layers of LiNH2BH3 and NH3BH3.
13 

This structure was shown to contain both ionic bonds, between Li+ and NH2BH3
− 

ions, and dihydrogen bonds between adjacent NH3BH3 and LiNH2BH3 molecules. It is 

presumably these dihydrogen bonds that give the structure the ability to exist, similar 

to the role they play in the structure of NH3BH3.
19 In thermal reactions it is possible 

that the reaction temperatures are sufficiently high to inhibit formation of these 

dihydrogen bonds and hence LiNH2BH3·NH3BH3 formation, and consequently, the 

tetragonal phase would have formed instead. This proposal is supported by the 

lengths of the dihydrogen bonds found in LiNH2BH3·NH3BH3 and NH3BH3. The 

shortest dihydrogen bonds present in pure NH3BH3 have been experimentally 

determined to be 1.91(5) Å in length,17 although DFT calculations determined them to 

be shorter, 1.897 Å.20 The dihydrogen bond lengths in the NH3BH3 layers in the 

LiNH2BH3·NH3BH3 structure were also calculated and determined to be 1.902 Å in 

length.13 The dihydrogen bond lengths are similar in both structures and therefore it 

can be assumed that the dihydrogen bonding networks break at approximately the 

same temperature. In fact these bonds have been shown to break at lower 

temperature in LiNH2BH3·NH3BH3, evidenced by its lower melting point, 58°C, than 

NH3BH3, 95°C.13 The thermal LiH + 2NH3BH3 reaction was shown to not proceed 

until the NH3BH3 became labile and so LiNH2BH3·NH3BH3 would not be expected to 

form, with the tetragonal phase forming instead. 

The solid state reaction of LiNH2 and NH3BH3 produced the crystalline phase 

LiNH2BH3, although the product was contaminated with unreacted LiNH2, despite all 

of the NH3BH3 starting material being consumed during the reaction. The observation 
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of the reaction mixture foaming and becoming wet almost simultaneously with the 

mixing of the reagents showed that there was no significant kinetic barrier to the 

reaction. The product of the reaction being LiNH2BH3 implied that NH3 release 

accompanied the formation of this phase as shown in reaction 5.4. 

LiNH2 + NH3BH3 → LiNH2BH3 + NH3  Reaction 5.4 

The release of NH3 from this reaction was consistent with the NaNH2 + NH3BH3 

reaction. The reaction mechanism can therefore be assumed to have been the same 

as for the NaNH2 + NH3BH3 reaction, chapter 4.3, with the NH2
− anion acting as a 

nucleophile and attacking the B through an SN2 reaction, although there was still the 

possibility that the NH2
− anion acted as a base, forming the same product. LiND2 

would be required as a starting material to substantiate the reaction mechanism. 

The release of NH3 from these reactions also gave the potential for a second reaction 

to proceed. Exposing LiNH2BH3 to ammonia has been shown to yield a coordination 

compound, Li(NH3)NH2BH3.
9 This material is amorphous in nature at room 

temperature and exists as a sticky liquid, although it does crystallise at lower 

temperature. The observation that the LiNH2 + NH3BH3 reaction mixture became wet 

on mixing the reagents suggested that this NH3 adduct could have formed, although 

as it would have formed as an amorphous material it would not have been detected 

by powder XRD. This possible reaction will be discussed further in section 5.4. 

The continued presence of LiNH2 in the powder XRD pattern after reaction again 

showed that competing reactions must have been taking place. Two such competing 

reactions were proposed for the NaNH2 + NH3BH3 reaction in chapter 4.3, reactions 

4.5 and 4.6. The product of both reactions was Na+[BH3NH2BH3]
−. The powder XRD 

pattern of this material is now known, but it was not observed in the product of the 

NaNH2 + NH3BH3 reaction, showing that these reactions probably did not proceed. 

Neither is there any evidence that the lithium analogue, Li+[BH3NH2BH3]
−, formed 

during the LiNH2 + NH3BH3 reaction. The continued presence of LiNH2 at the end of 

the reaction is therefore attributed to the partial decomposition of NH3BH3 during the 

exothermic reaction upon mixing the reagents. 
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The information gained from powder XRD patterns about the 2:1 reaction pathway is 

summarised in reaction 5.5, the 1:1 pathway in reaction 5.6 and the LiNH2 reaction is 

shown in reaction 5.7. 

LiH + 2NH3BH3 → Tetragonal phase → Amorphous product + LiBH4 

Reaction 5.5 

LiH + NH3BH3 → ½LiH + Tetragonal phase  Reaction 5.6 

LiNH2 + NH3BH3 → xLiNH2BH3 + (1−x)LiNH2 → Amorphous product  

  Reaction 5.7 

 

5.4 Thermal Desorption Studies 

5.4.1 TPD Study of LiNH2BH3 

The gaseous thermal desorption properties of pre-prepared LiNH2BH3, through the 

LiNH2 + NH3BH3, reaction were investigated using TPD–MS. The sample was heated 

at a ramp rate of 2°C min−1 to 350°C. The collected data are shown in figure 5.15. 

 

Figure 5.15 – Thermal desorption analysis of a sample of LiNH2BH3 using a TPD 

apparatus. The temperature trace is shown in blue and the mole percentages of H2 

and NH3 released are shown in red and brown, respectively 
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It can be seen that there were three hydrogen release steps during the desorption 

experiment, which were free from ammonia pollution. The first release commenced at 

55°C and peaked at 87°C, with the second release beginning at 100°C and peaking 

at 130°C and also seeing a greater amount of hydrogen released. The final broad 

release started at 245°C and reached a maximum at 275°C. 

Discussion 

Literature reports regarding the thermal desorption of LiNH2BH3 have shown that 

exclusively hydrogen is released. Temperature ramping experiments have shown 

that the material vigorously releases H2 below 100°C, with this sharp release 

observed at either 92°C4, 15 or 86°C.5 These studies also identified a second small 

broad H2 desorption at 120°C. These earlier reports did not agree with the thermal 

desorption profile presented here. This may have been due to the presence of other 

amorphous materials in the sample. As discussed in section 5.3.2, the release of NH3 

during the LiNH2 + NH3BH3 reaction led to the possibility of the amorphous material 

Li(NH3)NH2BH3 also forming. Xia et al.9 reported that this material releases H2 at a 

lower temperature than LiNH2BH3, with desorption commencing at 40°C and peaking 

at 71°C. NH3 release was also observed in the desorption profile between 25 and 

150°C. The amorphous material LiNH2BH3NH3 identified by Graham et al.8 was also 

shown to release H2 at a lower temperature than LiNH2BH3, with the release 

commencing at approximately 40°C and peaking at 60°C. Therefore figure 5.15 

suggests that the sample contained both amorphous Li(NH3)NH2BH3, which was 

responsible for the first H2 desorption and crystalline LiNH2BH3, which was 

responsible for the second H2 desorption. 

None of the literature studies were heated to a sufficiently high temperature to 

observe the third higher temperature hydrogen release. This higher temperature 

desorption was due to further H2 loss from the polymeric decomposition products of 

both Li(NH3)NH2BH3 and LiNH2BH3. 
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5.4.2 TPD Study of LiH + 2NH3BH3 Reaction Mixture, Heated to 

350°C at a rate of 2°C min−1 

The gaseous thermal desorption properties the LiH + 2NH3BH3 reaction mixture were 

investigated using TPD–MS. The sample was heated at a ramp rate of 2°C min−1 to 

350°C. The collected data are shown in figure 5.16. 

 

Figure 5.16 – Thermal desorption analysis of the LiH + 2NH3BH3 reaction mixture 

using a TPD apparatus. The temperature trace is shown in blue and the mole 

percentages of H2 and NH3 released are shown in red and brown, respectively 

The onset temperature of H2 release was observed at 50°C and was followed by two 

sharp releases, the first of which peaked at 75°C and the second at 80°C. Analysis of 

the temperature trace showed that both of these events were exothermic, as can be 

seen by the augmented rate of temperature increase, shown more clearly in figure 

5.17. Following these two sharp desorptions the release became much broader in 

nature. On reaching a temperature of 100°C a third release of H2 began, which 

peaked at 120°C. The H2 trace began to decrease briefly before increasing again at 

135°C and this fourth release peaked at 150°C before tailing off. A final small release 

of H2 was observed at higher temperatures, which had a peak at 285°C. No NH3 

desorption was observed at any point in the TPD profile. 
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Figure 5.17 – The exothermic events in the TPD profile of the LiH + 2NH3BH3 

reaction mixture 

Discussion 

The powder XRD patterns showed two events in the LiH + 2NH3BH3 reaction 

pathway. A reaction temperature of 50°C resulted in the formation of the tetragonal 

crystalline phase and this was followed by the decomposition of this material to an 

amorphous product, which was completed at a reaction temperature of 150°C. Of the 

first two desorption events in the TPD profile, observed below a temperature of 80°C, 

at least one must have been related to the formation of the tetragonal phase. Two 

possible pathways may have proceeded in the room temperature to 80°C range of 

the desorption profile. Firstly, only one of these H2 desorptions was related to the 

formation of the tetragonal phase, with the second release being related to an 

alternative reaction pathway, resulting in amorphous products. However, in light of 

the results of other studies, it would appear to be more rational to assign both of 

these desorption events to the formation of the tetragonal phase.13, 14 As previously 

discussed reports in the literature detailed that the tetragonal phase formation arose 

from LiNH2BH3·NH3BH3 decomposition. However, due to the thermal nature of the 

reactions in our study, this material was unstable and subsequently led to the rapid 

formation of the tetragonal phase. Both of these steps have been shown to release 

exclusively H2. The initial release may therefore have been related to the mechanism 

that forms LiNH2BH3·NH3BH3. Furthermore the formation of this material has been 

shown to be an exothermic event, which explains why an exotherm was observed in 
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the temperature trace of the TPD study.13 However, because LiNH2BH3·NH3BH3 

melts at 58°C, it would not have been able to crystallise, with the sample instead 

being constituted of a mixture of LiNH2BH3 and NH3BH3, in amorphous or liquid 

forms, and unreacted LiH. This first release began to decrease before the second H2 

release commenced, which suggested that the melt briefly existed in the reaction 

mixture. The second release of H2 would consequently have been due to the 

formation of the tetragonal phase, which agreed with the reported decomposition 

temperature of LiNH2BH3·NH3BH3 of 80°C in temperature ramping experiments.13  

The reported desorption profile of LiNH2BH3·NH3BH3, which proceeds through the 

tetragonal phase, showed a second strong desorption of H2 at 140°C and a third 

weak desorption at 160°C. The two H2 release events observed between 100°C and 

160°C in figure 5.16, can therefore be assigned to the decomposition of the 

tetragonal phase. The fact that there were differences in the amount of H2 released in 

these two steps between this study and the desorption profile found in the literature 

was possibly down to different experimental setups. Powder XRD results showed 

that the product of the LiH + 2NH3BH3 reaction at temperatures above 150°C was 

amorphous, therefore these two desorption events resulted in the formation of an 

amorphous material. The literature study of the desorption profile of 

LiNH2BH3·NH3BH3 was not heated to a sufficient temperature to observe the higher 

temperature release observed at 285°C in this study. This desorption can be 

assigned to further decomposition of the amorphous material. 
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5.4.3 TPD Study of LiH + 2NH3BH3 Reaction Mixture, Heated to 60°C 

at a rate of 0.1°C min−1 

In order to further investigate the initial steps in the LiH + 2NH3BH3 reaction pathway, 

namely the formation of the tetragonal phase, the TPD experiment was repeated with 

experimental parameters that imitated the conditions employed during the synthesis 

of the tetragonal phase. Thermal desorption data was collected using a ramp rate of 

0.1°C min−1 to a target temperature of 60°C. The collected data are shown in figure 

5.18. 

 

Figure 5.18 – Thermal desorption analysis of the LiH + 2NH3BH3 reaction mixture 

using a TPD apparatus, under conditions employed during the synthesis of the 

tetragonal phase. The temperature trace is shown in blue and the mole percentages 

of H2 and NH3 released are shown in red and brown, respectively 

It can be seen that there were three events observed in the desorption profile. H2 was 

exclusively released from the reaction mixture, with the release effected at a 

temperature as low as 30°C. The release increased before reaching a plateau at 

40°C. A second release occurred between 45 and 50°C, with a peak at 47°C. The 

final release commenced at 50°C and peaked at 55°C, before decreasing prior to the 

achievement of the target temperature of 60°C. 
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Figure 5.19 shows this TPD–MS data processed so as to give simulated gravimetric 

data, as discussed in chapter 2.5. There was a total weight loss of 3.1 wt%, which 

equated to the loss of approximately one equivalent of H2. 

 

Figure 5.19 – Thermal desorption analysis of a LiH + 2NH3BH3 reaction mixture in a 

TPD apparatus processed to give simulated gravimetric data. The temperature trace 

is shown in blue, the moles of H2 released are shown in red and the simulated 

gravimetric data in green 

Discussion 

The release of only one equivalent of H2 was an interesting result because the study 

by Wu et al.13 concluded that thermal decomposition of LiNH2BH3·NH3BH3 resulted in 

the tetragonal phase formation through the desorption of two equivalents of H2, 

meaning a total of three equivalents of H2 were desorbed from a LiH + 2NH3BH3 

reaction mixture before the tetragonal phase formed. The release of one equivalent 

of H2, with a weight loss of 3.1 wt% from the starting mixtures suggested that reaction 

5.8 had taken place. 

LiH + 2NH3BH3 → LiNH2BH3·NH3BH3 + H2  2.9 wt% H2 Reaction 5.8 

Following the TPD experiment the sample could not be recovered for analysis by 

powder XRD analysis. However, as the conditions employed were identical to those 
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used in the thermal reactions carried out on an argon gas line, it was reasonable to 

assume that the products were the same and hence that the sample left at the end of 

the TPD experiment was that of the unidentified tetragonal phase. This suggested 

that the LiNH2BH3·NH3BH3 to tetragonal phase change was not in fact due to 

decomposition through H2 desorption, but in fact a rearrangement reaction that 

proceeded without desorption of H2 or any other gas. The discrepancy with the study 

by Wu et al. may have been due to the fact that Wu et al. pre-synthesised 

LiNH2BH3·NH3BH3 through ball milling and so it was present in the sample at the start 

of the experiment. Two reaction pathways may have therefore competed, the 

decomposition of LiNH2BH3·NH3BH3 to amorphous material but also the 

rearrangement reaction leading to the tetragonal phase, subsequently Wu et al. 

would only have observed the crystalline product through XRD analysis. In our study 

it has been proposed that the thermal reactions prevented the formation of 

LiNH2BH3·NH3BH3. The fact that the tetragonal phase was able to form during 

thermal reactions showed that it was more stable than LiNH2BH3·NH3BH3 and so 

formation of the tetragonal phase was favoured. 

 

5.4.4 TPD–MS Study of the Tetragonal Phase 

The gaseous thermal desorption properties from the pre-synthesised tetragonal 

phase through a gas line reaction at 50°C were investigated using TPD–MS. The 

desorption profile collected at a ramp rate of 2°C min−1 to a target temperature of 

350°C is shown in figure 5.20. 

The desorption profile showed that H2 was exclusively desorbed from the tetragonal 

phase. H2 release began at 65°C when a small broad release began, the peak of 

which occurred at 120°C. This was followed by the largest H2 desorption event, which 

commenced at 130°C and peaked at 150°C. A final small release began at 240°C 

and peaked at 275°C. 
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Figure 5.20 – Thermal desorption analysis of a sample of the tetragonal phase using 

a TPD apparatus. The temperature trace is shown in blue and the mole percentages 

of H2 and NH3 released are shown in red and brown, respectively 

Discussion 

Powder XRD results showed that the tetragonal phase decomposed at a reaction 

temperature of 140°C. Therefore the large H2 desorption event peaking at 150°C can 

be assigned to the decomposition of the tetragonal phase. This release of H2 from 

the tetragonal phase resulted in the formation of amorphous material. The higher 

temperature release of H2 was due to the decomposition of this amorphous material. 

The lower temperature desorption event was at too low a temperature for it to be 

expected to be related to the decomposition of the tetragonal phase. Therefore the 

tetragonal phase may not have been the only phase present in the sample showing 

that the LiH + 2NH3BH3 reaction was subject to side reactions. LiNH2BH3·NH3BH3 

has been shown to decompose in this temperature range.13 LiNH2BH3·NH3BH3 was 

not observed in the powder XRD patterns in this study, because the dihydrogen 

bonding network that gives the structure added stability was unable to form. If there 

was an amorphous form of this material present in the sample it may have 

undergone decomposition at similar temperatures, offering an explanation for the low 

temperature H2 desorption. 
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5.4.5 IGA–MS Study of the Tetragonal Phase 

A sample of the pre-synthesised tetragonal phase (81 mg) was inertly loaded into an 

IGA connected to a mass spectrometer. Figure 5.21 shows the thermogravimetric 

data overlaid with the mass spectrometric data for the observed desorption products. 

The same conditions as employed in the TPD experiment were used, with the 

sample heated at a rate of 2°C min−1 to a target temperature of 350°C. 

 

Figure 5.21 – Thermogravimetric analysis of the tetragonal lithium phase in an IGA. 

The gravimetric trace is shown in green, the temperature trace in blue and the 

signals detected by mass spectrometry of H2 in red and NH3 (×100) in brown 

The IGA–MS trace showed that H2 release began at 100°C, the release of H2 initially 

increased steadily, until a temperature of 135°C was achieved, at which point a 

significant increase in the amount of H2 release occurred. This desorption event 

showed two peaks at 145°C and 160°C. A small desorption of H2 was observed to 

commence at 255°C, peaking at 275°C and a final small release was observed 

above 330°C. This desorption profile was very similar to that observed in the TPD–

MS experiment, however, the IGA–MS experiment also showed NH3 desorption from 

the tetragonal phase. This desorption began at 75°C and peaked at 110°C, with no 

NH3 release observed above 150°C. 



CHAPTER 5. The Reaction of Lithium Hydride with Ammonia Borane 229 
 

The rate of weight loss from the sample showed five separate events. The first of 

which showed a weight loss of 3.6 wt% up to a temperature of 145°C, which was 

primarily due to NH3 release, although H2 desorption would also have contributed to 

this weight loss. The largest H2 desorption was accompanied by a weight loss of 9.4 

wt%. Between 165°C and 255°C, where the H2 desorption profile reached a plateau, 

a further weight loss of 1.4 wt% occurred. The H2 desorption between 255°C and 

275°C was accompanied by a weight loss of 1.1 wt% and above this temperature a 

further weight loss of 0.6 wt% was observed. This was a total weight loss of 16.1 wt% 

from the sample, with H2 desorption being responsible for a loss of approximately 

12.5 wt%. 

Discussion 

The low temperature NH3 release offered an alternative explanation to the reason 

behind the observed H2 desorption below the decomposition temperature of the 

tetragonal phase in both the TPD and IGA studies of the tetragonal phase. NH3 

desorption has been shown to be dependent on the setup of the desorption 

experiment. In a flowing system, NH3 release is detectable, whereas in a closed 

system H2 is often detected instead.21, 22 In the flowing system the carrier gas 

removes the NH3 from the surroundings of the sample, whereas in a closed system 

the NH3 is able to interact with the sample and this can result in the release of H2 

instead. The TPD setup was such that the argon carrier gas did not flow directly over 

the sample and so any NH3 released may have been able to interact with the sample, 

therefore resulting in H2 being detected by the mass spectrometer. In the IGA 

experiment, the argon carrier gas passed directly over the sample and hence the NH3 

was removed quickly meaning it was detectable. The H2 desorption below 130°C in 

the IGA experiment could have been related to the decomposition of the tetragonal 

phase. 

The higher temperature H2 desorptions occurred at similar temperature to those in 

the TPD experiment. Therefore the previous assignments that the main H2 release at 

135°C was due to decomposition of the tetragonal phase and H2 release above 

255°C was due to further release from the decomposition products of this material 

are valid. 
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The weight loss of 12.5 wt% due to H2 release gave an insight into the composition of 

the tetragonal phase. Wu et al.13 have previously proposed that the tetragonal phase 

has the composition LiN2B2H7. However, a material of this composition contains only 

11.1 wt % H2 and therefore it cannot account for all the observed weight loss. 

Furthermore, the structure of the material was proposed to be either 

LiNHBH2·NH2BH2 or LiNH2BH=NHBH3 and neither of these compositions would 

appear to be capable of desorbing NH3. The reported weight loss from 

LiNH2BH3·NH3BH3 due to H2 desorption is 14.3 wt%.13, 14 This material contains a 

total hydrogen content of 16.4 wt% and therefore this material or an isomer of it could 

have accounted for the observed weight loss in the IGA experiment. This hence adds 

weight to the proposal that the tetragonal phase formed through a rearrangement 

reaction from LiNH2BH3·NH3BH3 rather than it being a decomposition product of this 

material. 

The release of NH3 from the tetragonal phase provided an interesting insight into the 

composition of this material as it showed that the material must have had the 

potential to desorb NH3. An isomer of LiNH2BH3·NH3BH3 is [Li(NH3)]
+[BH3NH2BH3]

− 

which is similar in nature to the material synthesised through the NaH + 2NH3BH3 

reaction, [Na]+[BH3NH2BH3]
−. This material has the potential to release NH3 as well 

as having a total H2 content of 16.4 wt%. 

As has been previously discussed the LiH + 2NH3BH3 reaction was only able to 

proceed once labile NH3BH3 was present in the reaction mixture. LiH would have 

been able to react with one mole of NH3BH3 to form LiNH2BH3, reaction 5.9, but as 

the second mole of NH3BH3 was also labile, a subsequent reaction of LiNH2BH3 with 

NH3BH3 would also have been able to proceed. Due to the thermal nature of the 

reactions, dihydrogen bonds and subsequently LiNH2BH3·NH3BH3 would have been 

unable to form. The LiNH2BH3 + NH3BH3 reaction could have proceeded by either an 

SN2 reaction, reaction 5.10, or through a rearrangement mechanism similar to the 

one that takes place during DADB formation from two NH3BH3 molecules, reaction 

5.11. 

LiH + NH3BH3 → LiNH2BH3 + H2   Reaction 5.9 
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Reaction 5.10 

 
Reaction 5.11 

Reactions 5.10 and 5.11 are the same reactions that were proposed for the reaction 

of NaNH2BH3 and NH3BH3. Thermal desorption investigations of this reaction 

mechanism showed a significant amount of NH3 was released during the reaction, 

chapter 4.4, whereas the formation of the tetragonal phase did not involve NH3 

desorption. The lithium cation is a stronger Lewis acid than the sodium cation and so 

it is more facile for the released NH3 to form an adduct with the lithium cation 

compared to sodium.23 The calculated binding energy of NH3 to the sodium cation 

has been shown to be significantly weaker than to the lithium cation.24 Therefore the 

reaction temperatures employed would have been sufficient to prevent bond 

formation between the sodium cation and NH3, hence resulting in NH3 release. 

Whereas in the lithium reaction mechanism the binding energy was sufficient to allow 

an adduct to form, hence preventing immediate NH3 release. 

The tetragonal phase formed from a combination of reaction 5.9 and reaction 5.10 or 

5.11. Together these reactions show only the release of one equivalent of H2, which 

agreed with the simulated gravimetric data from the TPD study of a LiH + 2NH3BH3 

reaction mixture. 

With respect to the observation of the tetragonal phase forming from the 

decomposition of LiNH2BH3·NH3BH3 in the literature, this can be explained by the 

disruption of the dihydrogen bonding network present in this material.13, 14 The crystal 

structure, figure 5.22, of this material shows that the LiNH2BH3 and NH3BH3 

molecules form layers, held together by dihydrogen bonds.13 As this material is 

heated, these bonds break, leaving labile LiNH2BH3 and NH3BH3, which can then 

react either through reaction 5.10 or reaction 5.11, forming the tetragonal phase. 

LiNH2BH3 H3B—NH3

:

[Li]+[H3B(NH2)BH3]
− + NH3
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These reactions occur on heating and because LiNH2BH3·NH3BH3 has a low 

decomposition temperature, 57°C, decomposition of this material can also take 

place, explaining why these studies observed H2 desorption during formation of the 

tetragonal phase. 

 

Figure 5.22 – The crystal structure of LiNH2BH3·NH3BH3. The lithium atoms are 

shown in red, nitrogen in blue, boron in blue and hydrogen in pale pink 

The weight loss of 16.1 wt% from the tetragonal phase upon heating to 350°C was 

due to a combination of NH3 and H2 desorption. It was estimated that the weight loss 

due to H2 release was approximately 12.5 wt%. The release of four equivalents of H2 

from [Li(NH3)]
+[BH3NH2BH3]

− gives a theoretical weight loss of 11.9 wt%, which 

would leave a sample of composition LiN2B2H3 and the desorption of five equivalents 

of H2 would result in a theoretical weight loss of 14.9 wt%, leaving a sample of 

composition LiN2B2H. The composition of the decomposition products will be 

discussed further in section 5.5. 
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5.4.6 Comparison of H2 desorption from the LiH + 2NH3BH3 reaction 

mixture and [Li(NH3)]
+[BH3NH2BH3]

− to NH3BH3 

Figure 5.23 shows a comparison of the TPD profiles of H2 desorption from as-

received NH3BH3, the LiH + 2NH3BH3 reaction mixture and [Li(NH3)]
+[BH3NH2BH3]

−. 

It can be seen that the reaction mixture has a lower onset of H2 release compared to 

NH3BH3, with the onset temperature decreased from 85°C to 50°C when LiH is 

present. However, the main H2 desorption from [Li(NH3)]
+[BH3NH2BH3]

− occurred at a 

higher temperature than the first H2 desorption of NH3BH3 and at a similar 

temperature to that of the second H2 desorption from NH3BH3. 

In terms of improving the H2 release properties of NH3BH3, it can be seen that the 

presence of LiH has a positive effect, by decreasing the onset temperature of H2 

release, while also maintaining the sharp nature of this low temperature release. 

However, the pre-synthesised [Li(NH3)]
+[BH3NH2BH3]

− material showed higher 

temperature release as well as the release being over a broad temperature range. A 

positive feature in terms of hydrogen storage is the high H2 content of this material, 

16.4 wt%, with approximately 12.5 wt% H2 being released below 350°C. However, 

due to this material containing an NH3 adduct, there is the problem of NH3 desorption 

polluting the released H2, as shown by the IGA–MS results in figure 5.21. 
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Figure 5.23 – A comparison of the H2 desorption profiles from samples of NH3BH3 

(red), a LiH + 2NH3BH3 reaction mixture (blue) and [Li(NH3)]
+[BH3NH2BH3]

− (green) 

from TPD experiments 

 

5.5 Solid State 11B MAS NMR Spectroscopy 

The LiH + 2NH3BH3 reaction pathway was studied using solid state 11B MAS NMR 

spectroscopy to determine how the boron environments changed as the reaction 

progressed and in particular to provide information regarding the amorphous 

components of the reaction products. The thermal reactions were carried out on an 

argon gas line as described in section 5.2. The NMR spectra of the samples were 

collected at room temperature. The data was collected in collaboration with the 

University of Warwick. All peak fitting was carried out by Tom Partridge at the 

University of Warwick. 

The solid state 11B MAS NMR spectrum of the product of the LiNH2 + NH3BH3 

reaction is shown in figure 5.24. A dominant feature was observed at −23.7 ppm, 

which is characteristic of sp3 boron in an NBH3 environment.25 The second most 

intense feature was a broad resonance, at 29.9 ppm, which was a quadrupolar 

feature due to the presence of boron in an sp2 environment.26 There was also a very 



CHAPTER 5. The Reaction of Lithium Hydride with Ammonia Borane 235 
 

low intensity resonance present at −40.5 ppm, which can be assigned to a BH4
− 

environment.27 

 

Figure 5.24 – The solid state 11B MAS NMR spectrum of the product of the LiNH2 + 

NH3BH3 reaction at room temperature 

The NMR spectrum of the sample obtained after reaction at 50°C is shown in figure 

5.25. There are a number of distinct boron environments in the spectrum. The most 

intense of which was observed at −24.0 ppm, which is characteristic of a NBH3 

environment. The broad quadrupolar feature at 29.9 ppm showed the presence of 

boron in an sp2 environment and the low intensity feature found at −41.0 ppm is 

characteristic of BH4 type boron. 

 

Figure 5.25 – The solid state 11B MAS NMR spectrum of the product of the LiH + 

2NH3BH3 reaction at 50°C 
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The complete LiH + 2NH3BH3 reaction pathway as viewed from solid state 11B MAS 

NMR spectra is shown in figure 5.26. The spectra show that there were only small 

changes in the boron environments within the samples upon increasing the reaction 

temperature from 50°C to 100°C. Throughout this temperature range the most 

intense feature in the spectra was the one due to boron within an sp3 environment. 

This feature was again observed at −24.0 ppm at 60°C but shifted slightly after 

reaction at 80°C and 100°C to −23.8 ppm. The BH4 feature remained low intensity up 

to a temperature of 80°C, consistently with a chemical shift of −41.0 ppm, before its 

intensity increased slightly at 100°C and a slight downfield shift to −40.5 ppm 

occurred. The broad quadrupolar feature due to an sp2 boron environment retained 

the same chemical shift at these reaction temperatures, 29.9 ppm. A steady increase 

in the intensity during this temperature range was observed for this feature. 

After reaction at 120°C, a significant change was observed in the NMR spectrum. 

The sp3 boron feature showed a considerable decrease in intensity and also shifted 

downfield slightly to −23.5 ppm. This was accompanied by substantial increases in 

the intensities of both of the features due to boron in sp2 and BH4 environments. No 

change in the chemical shift of the quadrupolar sp2 feature was observed, although 

the BH4 resonance shifted upfield to a chemical shift of −41.4 ppm. There was 

minimal change in the spectrum upon heating to 150°C, the relative intensities of the 

features remained the same, while there were only slight changes in the chemical 

shifts of the sp3 feature, to −24.1 ppm, and the BH4 feature to −41.2 ppm. 

Further changes to the spectrum were observed after reaction at 250°C. The feature 

due to boron in an sp3 environment was of very low intensity and had also shifted 

downfield slightly to −23.3 ppm. The BH4 feature also showed decreased intensity 

and had a chemical shift of −41.3 ppm. The most intense feature in the spectrum was 

that of the broad sp2 resonance. Reaction at 400°C produced a spectrum that was 

dominated by the broad sp2 resonance. There was no evidence of a feature due to 

boron in an sp3 environment and only a very weak feature at −41.0 ppm showing the 

sample contained a small amount of boron in a BH4 environment. 

A number of the spectra possessed a low intensity feature at 0.7 ppm, this resonance 

was due to oxidation of the samples and will not be discussed further.  
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Figure 5.26 – Solid state 11B MAS NMR spectra obtained from the products of the LiH + 2NH3BH3 reaction at specified 

temperatures 

50°C

60°C

80°C

100°C

120°C

150°C
250°C

400°C
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5.5.1 Discussion 

Powder XRD results showed that the crystalline product of the LiNH2 + NH3BH3 

reaction was LiNH2BH3, although thermal desorption investigations suggested that 

the amorphous phase Li(NH3)NH2BH3 had also formed. Literature studies have 

shown that these two materials produce different 11B NMR spectra. The solid state 

11B NMR spectrum of LiNH2BH3 shows a single resonance at −22.9 ppm,
4 while that 

of the ammoniated material has a single resonance at −23.2 ppm.9 Therefore it may 

have been expected that the NMR spectrum of the product of the LiNH2 + NH3BH3 

reaction displayed two resonances at similar chemical shifts to these materials. The 

single resonance observed in the spectrum, however, disagreed with this hypothesis. 

The chemical shift, −23.7 ppm, of this resonance was also shifted upfield compared 

to the literature values of LiNH2BH3 and Li(NH3)NH2BH3. The NMR spectrum 

therefore showed that the sample contained only one BH3 environment. The fact that 

the chemical shift of this environment was shifted upfield compared to LiNH2BH3 was 

a good indication that the product of the LiNH2 + NH3BH3 reaction was an 

ammoniated material. Similar observations have been made when ammoniating 

Ca(BH4)2, with the chemical shift of Ca(BH4)2 observed at −32.7 ppm, while that of 

the ammoniated compound was observed at −34.7 ppm.22 Ammoniated Ca(NH2BH3)2 

also shows an upfield shift from −17 ppm in Ca(NH2BH3)2 to −21 ppm.
21 The 

presence of coordinated NH3 results in electron donation to the lithium and 

consequently an upfield shift in the position of the BH3 resonance due to increased 

shielding. Therefore the material responsible for the resonance at −23.7 ppm was 

most likely Li(NH3)NH2BH3. However, it is unclear as to why LiNH2BH3 would have 

been absent from the sample. This may in part have been  due to the delay between 

sample synthesis and spectrum collection, with residual NH3 in the glove box binding 

to LiNH2BH3, forming the ammoniated material. It seems unlikely, however, that this 

would have resulted in the complete absence of LiNH2BH3 from the sample. 

In section 5.3.2 it was hypothesised that remaining LiNH2 in the product of the LiNH2 

+ NH3BH3 reaction was due to the decomposition of NH3BH3. This hypothesis was 

supported by the 11B NMR spectrum of this product. The broad quadrupolar 

resonance due to the presence of boron in an sp2 environment at 29.9 ppm is also 
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observed in the decomposition product of NH3BH3, see chapter 3.6. Therefore, this 

resonance could at least in part have been due to decomposed NH3BH3. The 

appearance of a resonance at −41.0 ppm has been observed in the 11B NMR spectra 

of both decomposed LiNH2BH3 and Li(NH3)NH2BH3.
4, 9 These spectra also showed 

that the decomposition products of these materials primarily possessed boron in an 

sp2 environment. The broad quadrupolar feature at 29.9 ppm and the low intensity 

feature at −40.5 ppm can therefore be assigned to decomposition of these materials. 

Peak fitting of the 11B NMR spectra obtained from the products of the LiH + 2NH3BH3 

reactions allowed the percentages of the different boron environments within the 

samples to be determined. The results are shown in figure 5.27. 

 

Figure 5.27 – The percentage of boron in different environments in the samples 

collected from the LiH + 2NH3BH3 reactions at various temperatures, determined 

from peak fitting of the solid state 11B MAS NMR spectra 

Thermal desorption investigations of the tetragonal phase, resulted in the conclusion 

that this phase was of composition [Li(NH3)]
+[BH3NH2BH3]

−. Due to the symmetrical 

nature of the BH3NH2BH3 chain only one resonance would be expected in the solid 

state 11B NMR spectrum related to boron in an sp3 environment, at approximately 

−23 ppm as observed in LiNH2BH3.
4 Peak fitting of the 11B NMR spectrum of the 

product of the LiH + 2NH3BH3 reaction at 50°C showed that around 80% of the boron 
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in the product was in an sp3 environment, with 2.5% present as BH4 and 17.5% in an 

sp2 environment. This spectrum showed that the main product of the LiH + 2NH3BH3 

reaction at 50°C was primarily that of [Li(NH3)]
+[BH3NH2BH3]

−, however, the presence 

of both BH4 and sp2 boron environments showed that other reactions were also 

taking place. The chemical shift of the main resonance in the spectrum, −24.0 ppm, 

was supportive of the proposal that the tetragonal phase contained an NH3 molecule 

bound to the Li cation. The chemical shifts of BH3 groups in the metal amidoboranes 

are observed at lower chemical shifts than this and several NMR studies on 

ammoniating materials have shown that the resonance experiences a shift upfield 

due to electron donation from the NH3 to the metal cation.4, 9, 21, 22 The chemical shift 

of this boron resonance therefore supports the presence of an NH3 adduct within the 

tetragonal phase. 

On increasing the reaction temperature to 100°C there was a decrease in the 

percentage of boron within an sp3 environment, which was accompanied by an 

increase in the amount of sp2 boron. This showed that the decomposition of 

[Li(NH3)]
+[BH3NH2BH3]

− led to the formation of a material possessing boron only in an 

sp2 environment. During this temperature range there was no increase in the amount 

of boron present as BH4. This partial decomposition of [Li(NH3)]
+[BH3NH2BH3]

− below 

100°C also showed that the observed H2 release from this material below this 

temperature in thermal desorption studies, section 5.4, was related to this 

decomposition as well as the other possibilities previously discussed. Figure 5.27 

shows that reaction at 120°C resulted in a significant amount of decomposition of 

[Li(NH3)]
+[BH3NH2BH3]

− with the change in boron environment mostly from sp3 to sp2, 

although there was also an increase in the amount of boron present as BH4. The 

appearance of BH4 in the reaction pathway was only detected by powder XRD 

patterns in minimal amounts. The chemical shift of the BH4 resonance was consistent 

with that observed in crystalline LiBH4.
28 Furthermore, because NaBH4 was observed 

in the decomposition pathway of [Na]+[BH3NH2BH3]
− it would be reasonable to expect 

LiBH4 to form during the decomposition of [Li(NH3)]
+[BH3NH2BH3]

−. The reaction 

temperatures employed may have been insufficient to promote the crystallisation of 

LiBH4 and hence it was not observed in powder XRD patterns. The percentage of 

BH4 in the sample decreased upon heating to 250°C, showing that the LiBH4 had 
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partly decomposed and after reaction at 400°C there was very little LiBH4 remaining 

in the sample. The decomposition of LiBH4 after heating to 250°C has been reported, 

although the main decomposition event occurs at 453°C.29 The decreased BH4 

resonance was accompanied by an increase in the sp2 resonance. This is a 

discrepancy with the known decomposition pathway of LiBH4. The ultimate 

decomposition product has been shown to be elemental boron, which produces a 

broad resonance in 11B NMR spectra over 2 ppm.30 Further to this a number of 

studies have identified an intermediate product in the decomposition pathway as 

Li2B12H12, which produces a resonance at −12 ppm.
30 Neither of these two 

resonances were observed in any of the spectra of this study, suggesting that the 

non-crystalline state of LiBH4 must have affected its decomposition pathway. 

The weight loss observed in the IGA–MS study of [Li(NH3)]
+[BH3NH2BH3]

−, section 

5.4, implied that the decomposition product of this material was of composition 

LiN2B2H3. This composition was probably a combination of a number of materials. It 

has been established that one of the decomposition products involved the BH4
− ion. 

The remaining decomposition products must have contained boron in an sp2 

environment. Therefore potential products included Li3BN2, (LiNBH)n, (NHBH)n and 

BN. All of these materials produce broad quadrupolar resonances in solid state 11B 

NMR spectra at similar chemical shifts and therefore it was not possible to determine 

which of these sp2 boron containing materials formed.4, 31-33 

Wu et al.13 concluded that the tetragonal phase was of composition LiN2B2H7 and 

could be either LiNHBH2·NH2BH2 or LiNH2BH=NHBH3. These compositions were 

based on solid state 11B NMR measurements, which showed the tetragonal phase 

produced resonances at −24.1 ppm and 29.9 ppm, in agreement with the results 

presented here. The LiNH2BH=NHBH3 possibility does not appear to fit with the NMR 

results, as this material possesses boron in two environments, both of which would 

account for 50% of the boron in the compound, which disagrees with the results from 

peak fitting. The authors noted that the NMR spectrum resembled that of 

polyaminoborane, which suggested that the LiNHBH2·NH2BH2 was a polymeric 

product.25, 31 However, as discussed above, the weight loss observed in IGA 
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experiments along with the observed NH3 desorption showed that the tetragonal 

phase could not have been of this composition. 

 

5.6 Raman Spectroscopy 

The Raman spectrum collected from the product of the LiH + 2NH3BH3 reaction 

heated to 50°C is shown in figure 5.28, showing the different regions of the spectrum. 

 

Figure 5.28 – The Raman spectrum collected from the product of the LiH + 2NH3BH3 

reaction at 50°C, [Li(NH3)]
+[BH3NH2BH3]

−, showing (a) the N–H stretching region, (b) 

the B–H stretching region, (c) the deformation region 

The N–H stretching region, figure 5.28a, shows two distinct shapes of peaks, with 

two sharp bands observed at 3271 cm−1 and 3314 cm−1 and two broader less intense 

bands at 3347 cm−1 and 3410 cm−1. The two sharp bands are characteristic of N–H 

symmetric and asymmetric stretches respectively, similar to those observed in LiNH2, 

confirming the existence of an NH2 unit in the product. Broad N–H stretches, similar 

in nature to those present in figure 5.28a, have been observed in ammonia adducts 

of inorganic materials.34, 35 The Raman spectrum of NH3 has been reported by Ninet 
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et al.36 and using these assignments the bands observed at 3347 cm−1 and 3410 

cm−1 can be assigned to the N–H symmetric and asymmetric stretches, respectively. 

The asymmetric stretching mode of NH3 is observed at 3444 cm−1 and upon 

coordination with a Lewis acid it red-shifts, consistent with the observation here. This 

provides evidence for coordinated NH3 within the product of the LiH + 2NH3BH3 

reaction at 50°C and as such is consistent with the proposed [Li(NH3)]
+[BH3NH2BH3]

− 

composition. 

The B–H stretching region of the spectrum, figure 5.28b is more complex than the N–

H stretching region, with a number of features observed. Comparing this region with 

that of Na+(BH3NH2BH3)
−, figure 5.29, shows that there are a similar number of 

bands in each, the main difference being that the bands in the spectrum of the lithium 

product are slightly red shifted. The good resemblance between the two spectra 

suggests that the same B–H stretches are present in both compounds, indicating the 

presence of two BH3 groups in the product of the lithium reaction. Again this is 

consistent with the proposed [Li(NH3)]
+[BH3NH2BH3]

− composition. 

 

Figure 5.29 – The B–H stretching regions of the Raman spectra of 

[Li(NH3)]
+[BH3NH2BH3]

− (red) and Na+(BH3NH2BH3)
− (blue) 

The deformation region of the spectrum is also complex. BH3 deformations are 

evident at 1207 cm−1 and 1231 cm−1 while the intense, sharp band at 1569 cm−1 is 

likely related to an NH3 deformation as this mode is observed at 1627 cm−1 in the 

Raman spectrum of NH3.
36 The B–N stretch is difficult to identify as the 10B–N stretch 
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appears to be obscured by other more intense bands. The band observed at 1167 

cm−1 is tentatively assigned to this vibrational mode. The other bands in this region of 

the spectrum remain unassigned. 

The Raman spectrum collected from the product of the LiH + 2NH3BH3 reaction at 

150°C is shown in figure 5.30a. This spectrum shows similarities to that of LiBH4, the 

B–H stretching regions of the two spectra are compared in figure 5.30b. The Raman 

spectrum of LiBH4 has been fully assigned by Gomes et al.,37 and using these 

assignments some of the bands observed in figure 5.30a can be allocated modes. 

The vibrational modes of LiBH4 can be seen in chapter 4.7 and the assigned bands in 

table 5.3. 

 

Figure 5.30 – (a) The Raman spectrum collected from the product of the LiH + 

2NH3BH3 reaction at 150°C. (b) The B–H stretching region of the product (red) is 

compared to LiBH4 (blue) 

The good agreement between the literature and observed spectra of LiBH4 with some 

of the bands observed in the spectrum of the product from the LiH + 2NH3BH3 

reaction offers strong evidence that despite the lack of crystalline evidence for LiBH4, 

it was, in an amorphous form, a decomposition product of [Li(NH3)]
+[(BH3NH2BH3)]

−. 

The spectrum also showed evidence of other decomposition products being present, 

with features observed in the N–H stretching region (>3000 cm−1) and a number of 

low intensity features in the deformations region (<1500 cm−1). However, the broad 

nature of these features meant it was not possible to identify any of the modes. 
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Table 5.3 – Literature and observed Raman shifts and assignments for LiBH4 with 

observed data for the product of the LiH + 2NH3BH3 reaction at 150°C 

LiBH4 
Product of LiH + 

2NH3BH3 at 150°C 

Literature37 Observed Observed 

Assignment Raman shift 

(cm−1) 

Raman shift 

(cm−1) 

Raman shift (cm−1) 

ν4 1090 1095 1099 

ν4‘ 1099   

3νL 1235 1237 1236 

ν2 1286 1288 1289 

ν2‘ 1316 1320 1322 

2ν4 2157 2161 2163 

2ν4‘ 2177 2178 2179 

ν3 2275 2274 2274 

ν1 2301 2299 2300 

ν3‘ 2321 (sh) 2319 2318 

com 2391 2395  

com 2491 2487 2485 

com 2572 2571 2560 

sh = shoulder, com = combination bands 
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5.7 Overall Discussion and Conclusion 

5.7.1 The LiH + 2NH3BH3 Reaction Pathway 

The LiH + 2NH3BH3 reaction proved to synthesise a compound, 

[Li(NH3)]
+[BH3NH2BH3]

−, similar to the product of the NaH + 2NH3BH3 reaction, 

Na+(BH3NH2BH3)
−. The difference between the two compounds being that the lithium 

product possessed an NH3 adduct, due to the high affinity of lithium containing 

compounds to bind with NH3. However, the mechanism of formation of these 

materials appeared to differ. The sodium reaction proceeded through the formation of 

NaNH2BH3, whereas LiNH2BH3 was not detected in any sample by powder XRD. 

Furthermore, the LiH + 2NH3BH3 reaction mixture was observed to undergo a volume 

expansion during heating, implying that the disruption of the dihydrogen bonding 

network present within NH3BH3 was required before the reaction could proceed. The 

labile NH3BH3 could then react with LiH to form LiNH2BH3, however, the labile nature 

of the reaction mixture also meant that this underwent a rapid reaction with NH3BH3, 

forming [Li(NH3)]
+[BH3NH2BH3]

−, shown below.  

Reaction 5.12 

 
Reaction 5.13 

The powder XRD pattern of [Li(NH3)]
+[BH3NH2BH3]

− was indexed to a tetragonal unit 

cell with a = 4.0288(2) Å and c = 16.958(2) Å. Literature reports have shown that a 

ball milled reaction mixture of LiH + 2NH3BH3 yields LiNH2BH3·NH3BH3, which has 

been reported to undergo decomposition to form the same tetragonal phase.13, 14 It 

was concluded that this material was of composition LiN2B2H7. However, the results 

of our study do not support this assignment. Thermal desorption studies showed that 

the tetragonal phase experiences a weight loss of 12.5 wt% due to H2 release, which 

LiNH2BH3 H3B—NH3

:

[Li]+[H3B(NH2)BH3]
− + NH3
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cannot be accounted for by a material of composition LiN2B2H7. Furthermore, our 

solid state 11B MAS NMR results were inconsistent with the proposed 

LiNHBH2·NH2BH2 and LiNH2BH=NHBH3 compositions. We therefore conclude that 

the tetragonal phase is [Li(NH3)]
+[BH3NH2BH3]

− and is formed from a rearrangement 

reaction during melting of LiNH2BH3·NH3BH3, at which point a labile mixture of 

LiNH2BH3 and NH3BH3 is effectively present in the reaction mixture, hence allowing 

either reaction 5.12 or 5.13 to proceed. 

The decomposition of [Li(NH3)]
+[BH3NH2BH3]

− led to predominantly amorphous 

products, possessing sp2 boron environments. However, there was evidence that 

LiBH4 had formed in trace amounts. The formation of this material may have 

proceeded in a similar fashion to NaBH4 formation during Na+(BH3NH2BH3)
− 

decomposition, reaction 5.14. This decomposition pathway may also have been 

responsible for the observed NH3 release. 

Reaction 5.14 

The decomposition of [Li(NH3)]
+[BH3NH2BH3]

− was however more complicated than 

that of Na+(BH3NH2BH3)
−, as shown by the fact that LiBH4 was a minor 

decomposition product and this may have been due to the presence of the NH3 

adduct. NH3 release was shown to be dependent on experimental conditions and it 

was not released in a stoichiometric quantity in experiments when it was detected. 

The main decomposition pathway may have therefore involved the formation of 

polymeric material such as (LiNBHNHBH)n accompanied by H2 release, reaction 

5.15. The theoretical weight loss from this reaction, 11.9 wt%, is in good agreement 

with the observed weight loss in thermogravimetric studies, 12.5 wt%. 

n[Li(NH3)]
+[BH3NH2BH3]

− → (LiNBHNHBH)n + 4H2  Reaction 5.15 
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5.7.2 Potential as a Hydrogen Storage Material 

The high hydrogen content, 16.4 wt%, of [Li(NH3)]
+[BH3NH2BH3]

− suggests that this 

material may have potential as a material for hydrogen storage. It also shows 

moderate temperature H2 desorption, with a sharp release at 150°C. This is at a 

slightly higher temperature than the initial release of H2 from the parent compound 

NH3BH3, but the subsequent broad desorptions are avoided. The final mixture of 

decomposition products may offer potential for reactions to occur in the presence of 

H2, offering a rehydrogenation pathway. 

A drawback to the use of this material as a hydrogen store is that under certain 

conditions NH3 can be released. This release must be suppressed in order for the 

material to reach its full potential in the field of hydrogen storage. 
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Chapter 6 

 

The Reaction of Calcium Hydride 

with Ammonia Borane 

 

6.1 Introduction 

Prior to the start of this research there had been no reported studies into the reaction 

of calcium hydride with ammonia borane. Mixed amide borohydride materials have 

previously been reported for the alkali metals lithium and sodium, but the synthesis of 

the alkaline earth metal analogues has yet to be reported.1-8 The study was initially 

focused on the potential synthesis of calcium mixed amide borohydrides. The CaH2 + 

NH3BH3 reaction was investigated with different molar ratios and it was found that a 

molar ratio of 1:4 seemed to be stoichiometric. This stoichiometry yielded a 

crystalline phase free from starting materials at a reaction temperature of 80°C, 

which was identified to be Ca(BH4)2·2NH3. Further heating of the reaction mixture to 

120°C formed a second crystalline phase, Ca(BH4)2·NH3, and when the reaction 

temperature was increased to 225°C, Ca(BH4)2 was observed. The hydrogen 

desorption properties of the reaction pathway were investigated and spectroscopic 

characterisation of the crystalline phases by solid state 11B MAS NMR was carried 

out. The crystal structures of both Ca(BH4)2·2NH3 and Ca(BH4)2·NH3 were solved, 

with the crystal structure of Ca(BH4)2·NH3 being previously unreported. 

 

6.2 Experimental 

Calcium hydride (Sigma-Aldrich, 99.99%) and ammonia borane (Sigma-Aldrich, 97%) 

were ground together in a 1:4 molar ratio in an argon filled glove box (>10 ppm O2, 
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>1 ppm H2O) and heated under a flowing argon atmosphere at 80°C. The sample 

was reground and annealed again at 80°C to improve the crystallinity of the sample. 

6.3 Powder X-Ray Diffraction 

Powder XRD patterns were taken of the products following the heating of the reaction 

mixture. It was found that a crystalline phase (Phase A) formed at a temperature of 

80°C, which was collected as a white powder at the end of the experiment. The 

powder XRD pattern of this phase is shown in figure 6.1. 

 

Figure 6.1 – The powder XRD pattern of the product of the reaction of CaH2 + 

4NH3BH3 at 80°C 

Further experiments and powder XRD patterns of the reaction products showed that 

Phase A was the sole crystalline product of the CaH2 + 4NH3BH3 reaction up to a 

reaction temperature of 90°C. The highest reaction temperature employed where this 

phase was observed in the powder XRD pattern of the collected sample was 110°C. 

After reaction at 100°C, the powder XRD pattern showed that a second crystalline 

phase had formed during the reaction. This crystalline phase (Phase B) was the 

solitary crystalline product of reaction after heating the starting materials to 120°C. 

This sample was also collected as a white powder. The powder XRD pattern of this 

phase is shown in figure 6.2. Powder XRD patterns showed that Phase B existed up 

to a reaction temperature of 200°C; above this temperature, no evidence of its 

presence was observed in powder XRD patterns. 
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Figure 6.2 – The powder XRD pattern of the product of the reaction of CaH2 + 

4NH3BH3 at 120°C 

After reaction at 200°C the powder XRD pattern showed that the sample contained a 

second crystalline phase. Inspection of this pattern showed that this second phase 

was α-Ca(BH4)2. At 225°C α-Ca(BH4)2 was the only crystalline phase present in the 

powder XRD pattern, but partly underwent a phase transition at 250°C, giving a 

mixture of α and β Ca(BH4)2 in the powder XRD pattern. At 275°C, the powder XRD 

pattern showed no evidence of crystalline products, although after heating to 300°C 

and 400°C, there was evidence of a small amount of a crystalline phase, which was 

identified through inspection as CaH2. Elevated heating to 800°C produced a poorly 

crystalline material. It was also established that the CaH2 + 4NH3BH3 reaction was 

unable to proceed at temperatures below 80°C, even with extended reaction times. 

The reaction pathway of the CaH2 + 4NH3BH3 reaction as viewed by powder XRD 

results is shown in figure 6.3. 

It was observed during the experiments that the samples underwent a significant 

volume expansion at approximately 80°C, similar in nature to the observed 

expansion when heating the NH3BH3 starting material as discussed in chapter 3.3. 

This volume expansion was observed to take place after heating the reaction mixture 

for a period of 70 minutes. 
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Figure 6.3 – Powder XRD patterns obtained from the products of the CaH2 + 4NH3BH3 reaction at various temperatures  
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Analysis by powder XRD of the product obtained from a CaH2 + 2NH3BH3 reaction 

heated to 80°C for 72 hours revealed that there were two crystalline phases present 

in the sample. Peaks were observed in the pattern, figure 6.4, which were due to the 

formation of Phase A as well as unreacted CaH2. 

 

Figure 6.4 – The powder XRD pattern of the product of the reaction of CaH2 + 

2NH3BH3 heated at 80°C for 72 hours (blue). The powder XRD pattern of CaH2 

(green) and Phase A (red) are shown for comparison. The inset shows a closer 

comparison of the 1:2 reaction product with CaH2 between 27° and 33° 2θ 

6.3.1 Discussion 

Even now, there are few reported investigations into the reaction of CaH2 and 

NH3BH3. The reports that have appeared in the literature have studied the reaction 

with a stoichiometry of 1:2 in favour of NH3BH3. The reaction has been carried out in 

solution, using THF as a solvent, which proved to form Ca(thf)2(NH2BH3)2. Vacuum 

drying this product overnight led to the THF being removed from the compound 

yielding Ca(NH2BH3)2. However, small amounts of THF were still detected in the 

product, albeit in amounts well below stoichiometric ratios.9 The THF free product 

has been prepared through ball milling a CaH2 + 2NH3BH3 reaction mixture.10, 11 An 

ammoniated derivative of Ca(NH2BH3)2, Ca(NH2BH3)2·2NH3, has also been reported 

through ball milling a reaction mixture of Ca(NH2)2 and NH3BH3 in a 1:2 mole ratio.12 

The ammonia can be removed from this material through heating at 100°C, which 

results in Ca(NH2BH3)2. The synthesis of Ca(NH2BH3)2 or a derivative of this 
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compound has not been reported through direct solid state thermal reaction of CaH2 

and NH3BH3. Investigations into the 1:2 reaction in this study revealed that 

Ca(NH2BH3)2 could not be synthesised through thermal methods even at low reaction 

temperatures or with extended reaction times. 

The chemical compositions of both Phase A and Phase B were identified through 

comparisons with the results of a recent study published by Chu et al.13 This study 

investigated the reaction of Ca(BH4)2 with NH3 and a number of ammoniated forms of 

Ca(BH4)2; the NH3 content varied between a maximum of Ca(BH4)2·6NH3 and 

Ca(BH4)2·NH3. The published powder XRD pattern of Ca(BH4)2·2NH3 was identical to 

that of Phase A synthesised in the 1:4 CaH2 and NH3BH3 reactions in this study. 

Furthermore the published Ca(BH4)2·NH3 powder XRD pattern matched that of 

Phase B. It can therefore be concluded that the first step in the CaH2 + 4NH3BH3 

reaction resulted in the formation of Ca(BH4)2·2NH3. As a consequence of these 

observations the initial steps in the CaH2 + 4NH3BH3 reaction can be summarised 

through reaction 6.1. 

 

Reaction 6.1 

The question of what gases are released during the reaction pathway will be 

addressed in section 6.6, although from analysis of reaction 6.1 it would be 

reasonable to assume that the pathway involves the release of NH3. It is also evident 

that the stoichiometry shown in reaction 6.1 is incorrect. The reaction suggests that 

the actual stoichiometry was CaH2 + 2NH3BH3, as Phase A is B, N and H deficient 

with respect to the 1:4 starting mixture. However, as discussed previously a reaction 

stoichiometry of 1:2 was shown to leave unreacted CaH2 in the product. Therefore, it 

would be reasonable to conclude that the reaction pathway may have involved the 

formation of amorphous products containing the remaining B, N and H, which would 

have been undetectable by powder XRD. 

There have been a number of studies regarding the structure and decomposition 

products of the polymorphs of Ca(BH4)2.  A number of polymorphs have been 

CaH2 + 4NH3BH3 Ca(BH4)2·2NH3 Ca(BH4)2·NH3 α-Ca(BH4)2

Phase A Phase B
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identified with reports relating to the existence of α,14-21 α',17 β,14, 16-23 γ16, 20, 22-24 and 

δ22, 23 phases presented in the literature. The first polymorph observed in this study 

was that of the α phase, after carrying out the CaH2 + 4NH3BH3 reaction at 200°C, 

which on further heating to 250°C showed evidence of a phase transition to the β 

polymorph. Literature studies regarding the decomposition pathway of Ca(BH4)2 have 

also detailed this phase transformation, with it being shown to be completed by a 

temperature of 300°C.17, 18 However, none of the collected samples in this study 

produced powder XRD patterns that showed only the presence of β-Ca(BH4)2. The 

transformation of the α polymorph to the β phase must therefore have completed 

during the reaction carried out at 275°C. This powder XRD pattern was observed to 

be amorphous and therefore the decomposition of the β polymorph must have also 

taken place during the timescale of this reaction. The α' polymorph has been 

observed as the first step in the α to β phase transition by Filinchuk et al.17 There was 

no evidence of the α' polymorph forming in this study during the α to β phase 

transition, however, the study by Filinchuk et al. is the sole report that has identified 

the existence of this polymorph. The δ polymorph has also not been widely reported 

in the literature and furthermore it is only observed in trace amounts, forming in the 

temperature range 290 – 330°C from either the γ or β polymorphs.22, 23 Formation of 

both the α' and δ polymorphs are therefore very specific to the reaction conditions 

and it is hence unsurprising that they were not observed in this study. The remaining 

polymorph that was not observed in this study, the γ phase, is not involved in the α to 

β phase transition. This polymorph has been observed following heating 

Ca(BH4)2·2THF at 100°C under vacuum. The main product collected after THF 

removal was the α polymorph, but this was contaminated by a small amount of the γ 

polymorph.20 The γ polymorph can be synthesised in greater amounts by wet 

chemical synthesis, through the reaction of CaH2 with triethylamine borane, 

Et3N·BH3.
16, 22-24 There have been no reports regarding a phase transformation of the 

α form of Ca(BH4)2 to the γ phase and therefore because the CaH2 + 4NH3BH3 

reaction pathway initially led to the formation of the α polymorph, the γ phase is not 

expected to form. 

The decomposition of the β phase has been reported to commence at temperatures 

above 330°C.14, 20-23 This is not entirely consistent with our observations that there 



CHAPTER 6. The Reaction of Calcium Hydride with Ammonia Borane 259 
 

was no evidence of any polymorph of Ca(BH4)2 in powder XRD patterns above a 

reaction temperature of 250°C. At 275°C the powder XRD pattern showed no 

evidence of crystalline phases and hence decomposition of the material had at least 

begun. The discrepancy between the literature reports and the results of this study 

was likely due to differences in reaction conditions. Whereas the studies in the 

literature reported temperature ramping experiments, with a heating rate of 2°C 

min−1, the reactions of this study were heated slowly to the target temperature and 

then held for 12 hours. This difference could result in the observed difference in 

apparent decomposition temperature. It should also be considered that Ca(BH4)2 was 

unlikely to have been the only decomposition product, with amorphous products also 

present in the sample. Previous studies have shown that the decomposition 

temperature of Ca(BH4)2 can be reduced through the interaction with other 

materials.25-27 Therefore the possibility that these amorphous materials could have 

interacted with the Ca(BH4)2 and lowered its decomposition temperature cannot be 

ignored. The decomposition of Ca(BH4)2 has been shown consistently to result in the 

crystalline material CaH2.
14, 15, 18, 20-23, 28 This was reflected in the powder XRD 

patterns collected at 300°C and 400°C, where CaH2 was observed to be the only 

crystalline product. The other products of the decomposition of Ca(BH4)2 have not 

been completely identified, although there have been a number of studies related to 

identifying these unknown products. The decomposition pathway of Ca(BH4)2 has 

been postulated to involve one or both of the following reactions.15, 18, 20, 21 

Ca(BH4)2 → 2/3CaH2 + 1/3CaB6 +  10/3H2   Reaction 6.2 

Ca(BH4)2 → CaH2 + 2B + 3H2   Reaction 6.3 

The identification of B and CaB6 through powder XRD has proved unsuccessful with 

the majority of studies not observing these phases in the powder XRD patterns of 

decomposed Ca(BH4)2 as they are present in amorphous forms. Only two studies 

have identified the possible presence of CaB6 through XRD patterns.20, 23 However, 

in both of these studies this identification was limited to an observation that there was 

a broad increase in the background of the powder XRD pattern at the 2θ position, 

30.4°, where the most intense peak in the CaB6 would be found and both studies 

used Raman spectroscopy to confirm the presence of this material. In both of these 
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literature studies the broad feature was only observed upon heating Ca(BH4)2 in 

excess of 480°C and therefore the only sample where any evidence of CaB6 in this 

study may be expected would be in that of the sample heated to 800°C. A section of 

this pattern is shown in figure 6.5.  

 

Figure 6.5 – The powder XRD pattern of the CaH2 + 4NH3BH3 pattern showing two 

broad features at 30.5° and 37.5° 2θ, which give some indication that CaB6 may be 

present in the sample 

There are two broad features at 30.5° and 37.5° 2θ observed in this pattern which 

could be due to the presence of CaB6. Investigations into the decomposition pathway 

of Ca(BH4)2 have also led to the identification of an unknown intermediate crystalline 

phase that has been shown to form between 320°C and 390°C.18, 20, 21, 23 This 

intermediate has been indexed to an orthorhombic unit cell, with a suggested 

composition of either CaB2H2 or Ca(B12H12).
21, 23 The intermediate phase may have 

formed and subsequently decomposed during the reactions carried out at 400°C and 

800°C, as it was not identified in any of the powder XRD patterns of the CaH2 + 

4NH3BH3 reactions in this study. Upon further heating this intermediate undergoes 

decomposition to CaH2 and an amorphous boron containing material. CaH2 was 

observed in the powder XRD pattern of the reaction performed at 400°C and hence 

some of this material may have been present as a consequence of the intermediate 

phase decomposing as well as being formed directly from Ca(BH4)2 decomposition. 

The crystalline phase observed at 800°C was identified by comparison with the 

published XRD pattern of Ca3(BN2)2.
29 The poor crystallinity of this material was due 

to an insufficient temperature to allow the phase to crystallise, with a temperature of 
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1200°C shown to be required for the material to form with good crystallinity.29 This 

was an interesting observation considering the Ca within the reaction, as far as XRD 

showed, was present in the form of Ca(BH4)2 and CaH2 prior to the formation of 

Ca3(BN2)2. The appearance of nitrogen in a calcium containing phase at 800°C 

therefore suggested that an amorphous Ca, B and N containing phase formed during 

the reaction pathway and began to crystallise as Ca3(BN2)2 after heating to 800°C. 

Alternatively Ca3(BN2)2 could have formed as a result of the decomposition of CaH2, 

which has been shown to take place at a temperature of 700°C, leaving Ca metal 

and releasing H2.
30 The Ca metal may have subsequently reacted with an 

amorphous B and N containing compound, such as BN. However, the stability of BN 

renders the synthesis of Ca3(BN2)2 from such a reaction unlikely. The formation of 

Ca3(BN2)2 will be discussed further in section 6.7. The formation of Ca3(BN2)2 offered 

proof that there was an amorphous nitrogen containing compound present in the 

sample, although the composition of the material cannot be determined from powder 

XRD investigations. 

 

6.4 Crystal Structure Determination of Ca(BH4)2·2NH3 (Phase A) 

The crystal structure of Ca(BH4)2·2NH3 was determined from powder diffraction data 

using the computer program Topas.31 The structure was found to consist of 

octahedral Ca2+ surrounded by four BH4
− and two NH3 units. 

6.4.1 Indexing 

The observed peak positions from the Ca(BH4)2·2NH3 phase were run through the 

indexing routine of the computer program Topas.32 The most probable assignment 

was for an orthorhombic unit cell with a = 12.67 Å, b = 8.38 Å and c = 6.40 Å, which 

was similar to the assignment of Chu et al.13 The suggested space group was Pca21 

(#29), see table 6.1. The lattice constants and unit cell volume were refined in a 

Pawley fit using Topas as a = 12.6717(4) Å, b = 8.3665(3) Å, c = 6.3966(2) Å, giving 

a unit cell volume of 678.10(4) Å3. 
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Table 6.1 – Special positions available in the space groups Pca21 and Pbcn 

Pca21 (# 29) 

Multiplicity Wyckoff letter Site symmetry Coordinates 

4 a 1 (x, y, z) 

Pbcn (# 60) 

Multiplicity Wyckoff letter Site symmetry Coordinates 

8 d 1 (x, y, z) 

4 c 2 (0, y, ¼) 

4 b 1 (0,  ½, 0) 

4 a 1 (0, 0, 0) 

 

On closer inspection of the Pawley fit it was noticed that there were a number of 

predicted reflections with zero intensity, see figure 6.6, in the Pca21 (#29) space 

group and therefore other space groups were tested. Chu et al. indexed the XRD 

pattern of Ca(BH4)2·2NH3 to an orthorhombic unit cell with a = 6.4160 Å, b = 8.3900 

Å and c = 12.7020 Å with a space group of Pbcn (#60), table 6.1. It was found that 

this space group better suited the set of observed reflections, figure 6.7, with the 

lattice constants refined in a Pawley fit as a = 6.3967(3) Å, b = 8.3668(3) Å and c = 

12.6714(6) Å. The unit cell volume was calculated to be 678.17(5). It can be seen 

from figures 6.6 and 6.7 that the main difference between the two space groups was 

due to the peak at 23.6° 2θ. This peak was included in the fit in the Pca21 space 

group (the (310) peak, d-spacing of 3.77 Å), but excluded from that of Pbcn. Close 

inspection of the (310) peak revealed that the peak was significantly broader than the 

other peaks due to Ca(BH4)2·2NH3 and that the exact peak position did not 

completely match that of the predicted (310) reflection. It was concluded that this 

peak was most likely due to an impurity phase, rather than Ca(BH4)2·2NH3. Structure 

solution of the Ca(BH4)2·2NH3  material was therefore attempted using these lattice 

constants in the space group Pbcn, which had a minimal number of predicted 

reflections with zero intensity. 
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Figure 6.6 – Pawley refinement of the Ca(BH4)2·2NH3 powder XRD pattern in the 

Pca21 (#29) space group. The observed (black), calculated (red) and difference 

(blue) plots are shown. The predicted peak positions are shown in blue. Rwp = 

3.632%, χ2 = 2.615 

 

Figure 6.7 – Pawley refinement of the Ca(BH4)2·2NH3 powder XRD pattern in the 

Pbcn (#60) space group. The observed (black), calculated (red) and difference (blue) 

plots are shown. The predicted peak positions are shown in blue. Rwp = 3.881%, χ2 = 

2.958 

6.4.2 Determining the Number of Formula Units in the Unit Cell and 

Producing a Model 

The volume of the α-Ca(BH4)2 unit cell has been determined to be 863.07 Å3, with 

eight Ca(BH4)2 molecules within the unit cell, which means that a single Ca(BH4)2 unit 

occupies a volume of approximately 107.9 Å3.33 The calculated unit cell volume of 

Ca(BH4)2·2NH3 was 678.17 Å3, which would allow 6.35 Ca(BH4)2 units within the unit 

cell. The Pbcn space group allows sites of multiplicity of four or eight (table 6.1) and 

therefore because a Ca(BH4)2·2NH3 unit will occupy a larger volume than a Ca(BH4)2 

unit, it was concluded that there would most likely be four formula units per unit cell. 
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Throughout the structure solution process the region of the XRD pattern between 

22.9° and 24.0° 2θ was excluded from refinements as the peak observed in this 

range was due to a reflection that was unrelated to the Pbcn space group. The 

strongest scatterer of X-rays within the compound is calcium and therefore this was 

the first element to be introduced into the unit cell as part of the structure solution 

process. There are three available special positions in the Pbcn space group with a 

multiplicity of four (4a, 4b and 4c) and these were all considered as possible sites for 

Ca. Ca atoms were introduced on each of these sites and the occupancy as well as 

the atomic position of the 4c site were determined using the simulated annealing 

routine within Topas. It was found that the occupation of the 4a and 4b sites refined 

to zero, whereas the occupancy of the 4c site, (0, y, ¼) refined to one, giving the 4c 

site as the Ca position. 

Boron and nitrogen have similar X-ray scattering strengths and they were hence both 

introduced to the structure as the next step. There were a number of ways in which it 

was possible to introduce the required 8B and 8N to the unit cell due to the Pbcn 

space group possessing multiple special positions. The candidate models that 

involved occupation of two of the sites of multiplicity four proved to produce models 

that were poor both visually and statistically. In contrast, occupation of the 8d site for 

both B and N provided a much better candidate model. 

The final step in the structure solution was to introduce the H atoms into the unit cell. 

The H atoms could not be treated as separate entities due to their poor X-ray 

scattering capability and the quality of the laboratory based diffraction data. 

Therefore rigid bodies in the form of BH4 and Ca–NH3 units were introduced. These 

rigid bodies were introduced to the structure at the refined positions of B and N 

respectively. Ca–NH3 was chosen as a rigid body instead of just NH3 to enforce the 

geometry of the nitrogen lone pair bonding to Ca. The BH4 unit was initially restrained 

to ideal tetrahedral geometry with a fixed B–H bond length of 1.2 Å, while the N–H 

bonds within the NH3 unit were fixed to 1.1 Å and the bond angles fixed at 109.5°. 

The Ca–N bond length was allowed to vary from a starting value of 2.5 Å. The 

rotation of these rigid bodies was refined, followed by the refinement of all of the 

atomic positions. During these refinements the constraints applied to the rigid bodies 
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were maintained. This model gave a fit that was both visually, figure 6.8, and 

statistically, Rwp = 4.608%, satisfactory. At this point the number of terms in the 

background function was increased in order to improve the fit. A satisfactory model 

had now been produced to proceed with a full Rietveld refinement. 

 

Figure 6.8 – The fit for Ca(BH4)2·2NH3 with refined Ca, B and N positions and refined 

BH4 and Ca–NH3 rigid bodies within the Pbcn space group. The observed (black), 

calculated (red) and difference (blue) plots are shown. The predicted peak positions 

are shown in blue. Rwp = 4.608%, χ2 = 2.124 

6.4.3 Full Rietveld Refinement 

A complete Rietveld refinement was performed in Topas by refining a zero point 

error, a pseudo-Voigt peak shape (6 parameters) and a Chebyshev background 

function (17 parameters). Atomic positions were determined within the enforced 

geometry of the rigid bodies described in section 6.4.2 by refining the translation and 

rotation of the rigid bodies (6 parameters for each rigid body). The Ca–N bond length 

was refined, however, attempts to refine the N–H and B–H bond lengths resulted in 

the bond lengths reaching the minimum applied limit (0.8 Å) and so the N–H and B–H 

bond lengths were fixed at the values published by Chu et al.13 (1.03 Å and 1.23 Å, 

respectively). It was not possible to obtain accurate H positions from room 

temperature laboratory diffraction data. Higher quality diffraction data, obtained at low 

temperature to minimise thermal motion, would be advantageous. Isotropic thermal 

parameters (Beq) were also introduced to the refinement for Ca, B, N and H, and 

refined from starting values of 1 Å2. Refinement of these parameters resulted in non-

sensible values in every case except Ca, and so values for B, N and H were fixed at 

1 Å2. The final refinement contained 40 refined parameters. The resultant crystal 
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structure and Rietveld plot are shown in figures 6.9 and 6.10 respectively. The 

refined crystallographic data is shown in table 6.2. The atomic coordinates obtained 

from the cif file provided in the electronic supplementary information by Chu et al.13 

are shown for comparison. Mapping the structure determined by Chu et al. onto our 

structure required inversion of their x and y axes. 

Table 6.2 – Refined crystallographic data for Ca(BH4)2·2NH3
† 

Atom Site 
This study Chu et al.13 

x y z x y z 

B1 8d  0.271(3) 0.513(3) 0.1612(5) 0.242 0.489 0.1473 

H1 8d 0.142 0.567 0.1025 0.0850 0.5577 0.1157 

H2 8d 0.388 0.429 0.1126 0.3813 0.5063 0.0827 

H3 8d 0.367 0.620 0.2015 0.2986 0.5421 0.2330 

H4 8d 0.185 0.436 0.2284 0.1980 0.3469 0.1554 

N1 8d 0.753 0.745 0.0987 0.737 0.765 0.105 

H5 8d 0.712 0.633 0.0826 0.7197 0.6563 0.0685 

H6 8d 0.626 0.809 0.1170 0.5912 0.7930 0.1345 

H7 8d 0.823 0.794 0.0355 0.7646 0.8454 0.0450 

Ca1 4c 0 0.748(2) 0.25 0 0.754 0.25 

†Space group Pbcn (#60), a = 6.3969(2) Å, b = 8.3670(3) Å, c = 12.6717(4) Å. 

Rwp = 3.426%, Rexp = 2.377%, Rwp' = 16.054%, Rexp' = 11.140%, χ2 = 2.078. 

rCaN = 2.483(4), Beq(Ca) = 2.6(1) 

BH4 rigid body. Rotational values: Rx = 196(4)°, Ry = 310(4) and Rz = 131(4); 

Translational values: x = 0.271(3), y = 0.513(3), z = 0.1612(5). 

Ca–NH3 rigid body. Rotational values: Rx = 140.7(1)°, Ry = 357(2) and Rz = 267(2); 

Translational values: x = 0, y = 0.748(2), z = 0.25. 
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Figure 6.9 – Refined crystal structure of Ca(BH4)2·2NH3. The coordination 

environment of the Ca2+ cation is shown. Each Ca2+ coordinates with two NH3 and 

four BH4 groups. Ca is shown in purple, N in blue, B in green and H in pale pink 
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Figure 6.10 – Final Rietveld plot for Ca(BH4)2·2NH3. The observed pattern is shown in black, the calculated in red and the difference 

in blue. The calculated peak positions are indicated. Rwp = 3.426%, χ2 = 2.078  
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6.5 Crystal Structure Determination of Ca(BH4)2·NH3 (Phase B) 

The crystal structure of Ca(BH4)2·NH3 was determined from powder diffraction data 

using the computer program Topas.32 The structure was found to consist of 

octahedral Ca surrounded by five BH4
− and one NH3 units. 

6.5.1 Indexing 

The observed peak positions from the Ca(BH4)2·NH3 phase were run through the 

indexing routine of the computer program Topas.31 The most probable assignment 

was for an orthorhombic unit cell with a = 8.18 Å, b = 11.81 Å and c = 5.82 Å, which 

agreed with the assignment of Chu et al.13 The suggested space group was Pna21 

(#33), which shares identical predicted hkl values with space group Pnma (#62), so 

both possible space groups were considered. Due to the ordering of the lattice 

constants, the non-standard space group setting Pnam was considered instead of 

Pnma. The special positions available in these two possible space groups are shown 

in table 6.3. The lattice constants and the unit cell volume refined in a Pawley 

refinement using Topas as a = 8.1986(3) Å, b = 11.8410(5) Å, c = 5.8368(2) Å and 

the unit cell volume as 566.63(4) Å3. 

Table 6.3 – Special positions available in the space groups Pna21 and Pnam 

Pna21 (No. 33) 

Multiplicity Wyckoff letter Site symmetry Coordinates 

4 a 1 (x, y, z) 

Pnam (No. 62) 

Multiplicity Wyckoff letter Site symmetry Coordinates 

8 d 1 (x, y, z) 

4 c m (x, y, ¼) 

4 b 1 (0, ½, 0) 

4 a 1 (0, 0, 0) 
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6.5.2 Determining the Number of Formula Units in the Unit Cell and 

Producing a Model 

The volume of the α-Ca(BH4)2 unit cell has been determined to be 863.07 Å3, with 

eight Ca(BH4)2 molecules within the unit cell, which means that a single Ca(BH4)2 unit 

occupies a volume of approximately 107.9 Å3.33 As discussed in section 6.4, the unit 

cell volume of Ca(BH4)2·2NH3 was determined to be 678.3 Å3, with four formula units 

per unit cell and so each formula unit occupied a volume of 169.6 Å3. An estimated 

volume for one formula unit of Ca(BH4)2·NH3 can be made by taking an average of 

these two volumes, with the calculation giving a value of 138.75 Å3. From this value, 

the number of formula units of Ca(BH4)2·NH3 within the unit cell can be estimated to 

be approximately four. This estimate provides a good argument that there are four 

Ca(BH4)2·NH3 units within the unit cell.  

The first step in the structure solution process was to introduce the heaviest X-ray 

scatterer in the compound, Ca, to the unit cell, firstly within the Pna21 (#33) space 

group. There is only one general position within this space group and therefore the 

Ca atom was introduced on a general position (x, y, z). Using the simulated 

annealing function within Topas, the Ca position within the unit cell was determined. 

This procedure was repeated for the Pnam (#62) space group. Three available 

special positions with a multiplicity of 4 (4a, 4b and 4c) were considered as possible 

Ca sites. Ca atoms were introduced on each of these sites and the occupancy as 

well as the atomic position of the 4c site were determined using the simulated 

annealing routine within Topas. It was found that the occupancy of the 4a and 4b 

sites refined to zero, whereas the occupancy of the 4c site (x, y, ¼) refined to one, 

giving the 4c site as the Ca position. 

Refining the Ca atom positions in both the Pna21 and Pnam space groups gave 

similar visual fits to the observed diffraction data, see figures 6.11 and 6.12, and 

therefore both space groups were considered for the next stage of the structure 

solution process. The statistics for these refinements were also similar with an Rwp 

value of 9.506% for the Pna21 space group and 9.696% for Pnam. 
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Figure 6.11 – Rietveld plot upon refinement of the Ca positions within the Pna21 

(#33) space group. Rwp = 9.506%, χ2 = 10.524 

 

Figure 6.12 – Rietveld plot upon refinement of the Ca positions within the Pnam (#62) 

space group. Rwp = 9.696%, χ2 = 10.731 

B and N were then added to the structural models and their positions determined 

using simulated annealing, with Ca fixed at its previously determined position. In 

space group Pna21, two B positions and one N position were added on the 4a 

general position.  

In space group Pnam, the presence of multiple special positions meant that there 

were a number of possible ways to introduce the 8B and 4N required in the unit cell, 

each of which was tested. The occupation of 4a and 4b sites was always unfavoured, 

with the site occupancy refining to zero. Occupation of the 8d site was tested as a 

possible B site, but the presence of a mirror plane perpendicular to the shortest 

lattice parameter (c = 5.84 Å) meant that the maximum possible B–B distance was 

2.9 Å. This distance is significantly shorter than in the determined structures of both 

Ca(BH4)2·NH3, see section 6.4, and in α-Ca(BH4)2 (> 4 Å),33 and so occupation of the 
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8d site was deemed to be unfavourable. This unfavourable arrangement of boron 

atoms is shown in figure 6.13. The best visual and statistical fit was obtained with 

boron occupying two 4c sites and N occupying one 4c site. 

 

Figure 6.13 – The unit cell of Ca(BH4)2·NH3 with only Ca and B atoms present, with 

Ca occupying a 4c site and B occupying an 8d site in the Pnam space group. The Ca 

atoms are shown in purple and the B atoms shown in green 

After refining the Ca, B and N atom positions in both the Pna21 and Pnam space 

groups, it was still difficult to determine which space group would provide the most 

suitable structure for the compound as the visual fit and statistical data were very 

similar. The fits are shown in figures 6.14 (Pna21) and 6.15 (Pnam), with Rwp values 

of 4.294% for the Pna21 space group and 4.331% for Pnam. Due to the very similar 

fits it was decided to proceed with the structure solution using only the higher 

symmetry space group, Pnam. 

 

Figure 6.14 – Rietveld plot upon refinement of the Ca, B and N positions within the 

Pna21 (#33) space group. Rwp = 4.294%, χ2 = 3.272 
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Figure 6.15 – Rietveld plot upon refinement of the Ca, B and N positions within the 

Pnam (#62) space group. Rwp = 4.331%, χ2 = 3.327 

Progress in solving the structure now required the incorporation of the H atoms into 

the unit cell. Due to the poor X-ray scattering of H and the quality of the laboratory 

based diffraction data, it was not possible to treat the H atoms as separate entities. In 

order to include the H atoms, rigid bodies were therefore used in the form of BH4 and 

Ca–NH3. Ca–NH3 was chosen as a rigid body instead of just NH3 to enforce the 

geometry of the nitrogen lone pair bonding to Ca. The BH4 and Ca–NH3 rigid bodies 

were introduced to the structure at the refined positions for B and Ca, respectively, in 

the Pnam space group. The BH4 unit was initially restrained to its ideal tetrahedral 

geometry with a fixed B–H bond length of 1.2 Å. The Ca–NH3 rigid body was initially 

restrained to an N–H bond length of 1.1 Å, a Ca–N bond length of 2.5 Å and the bond 

angles within the NH3 group were fixed at 109.5°. The rotation of these rigid bodies 

was refined, followed by the refinement of all of the atomic positions. The constraints 

applied to the rigid bodies were maintained during these refinements. This model 

gave a good visual, figure 6.18, and statistical fit, Rwp = 4.089%, to the observed 

data. The number of terms in the background function was increased at this point to 

improve the fit. A satisfactory model had now been produced to proceed with a full 

Rietveld refinement. 
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Figure 6.16 – The fit for Ca(BH4)2·NH3 with refined Ca, B and N positions and refined 

BH4 and Ca–NH3 rigid bodies within the Pnam (#33) space group. Rwp = 4.089%, χ2 

= 2.946 

6.5.3 Full Rietveld Refinement 

A complete Rietveld refinement was performed in Topas by refining a zero point 

error, a pseudo-Voigt peak shape (6 parameters) and a Chebyshev background 

function (17 parameters). Atomic positions were determined within the enforced 

geometry of the rigid bodies described in section 6.5.2 by refining the translation and 

rotation of the rigid bodies (6 parameters for each rigid body). The Ca–N bond length 

was refined, however, attempts to refine the N–H and B–H bond lengths resulted in 

the bond lengths reaching the minimum applied limit (0.8 Å) and so the N–H and B–H 

bond lengths were fixed at the values published by Chu et al.13 for the structure of 

Ca(BH4)2·2NH3 (1.03 Å and 1.23 Å, respectively). It was not possible to obtain 

accurate H positions from room temperature laboratory diffraction data. Higher quality 

diffraction data, obtained at low temperature to minimise thermal motion, would be 

advantageous. Isotropic thermal parameters (Beq) were also introduced to the 

refinement for Ca, B, N and H, and refined from starting values of 1 Å2. Refinement of 

these parameters resulted in non-sensible values in every case except Ca, and so 

values for B, N and H were fixed at 1 Å2. The final refinement contained 53 refined 

parameters. The resultant crystal structure and Rietveld plot are shown in figures 

6.17 and 6.18 respectively. The refined crystallographic data is shown in table 6.4. 

The large errors associated with the rotational values of the Ca–NH3 rigid body are 

indicative of a large degree of thermal motion in the bound NH3. This could be 

overcome by the acquisition of higher quality data at lower temperature. 
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Table 6.4 – Refined crystallographic data for Ca(BH4)2·NH3
† 

Atom Site x y z 

B1 4c 0.058(1) 0.2818(9) 0.25 

H1 4c 0.164 0.2068 0.25 

H2 4c 0.929 0.2348 0.25 

H3 4c 0.074 0.3409 0.081 

H4 4c 0.074 0.3409 0.419 

B2 4c 0.350(1) 0.4317(8) 0.75 

H5 4c 0.213 0.4725 0.75 

H6 4c 0.342 0.3290 0.75 

H7 4c 0.425 0.4636 0.582 

H8 4c 0.425 0.4636 0.918 

N 4c 0.6899 0.9098 0.25 

H9 4c 0.6381 0.8849 0.415 

H10 4c 0.6381 0.8849 0.085 

H11 4c 0.7931 0.8621 0.25 

Ca 4c 0.8375(3) 0.0906(2) 0.25 

†Space group Pnam (#62), a = 8.1993(3) Å, b = 11.8410(4) Å, c = 5.8369(2) Å. 

Rwp = 3.321%, Rexp = 2.392%, Rwp' = 19.668%, Rexp' = 14.164%, χ2 = 1.929. 

rCaN = 2.46(2), H–N–H = 115.2°(7), Beq(Ca) = 1.0(1) 

B1H4 rigid body. Rotational values: Rx = 283(2)°, Ry = 202(1) and Rz = 214(2); 

Translational values: x = 0.058(1), y = 0.2818(9), z = 0.25. 

B2H4 rigid body. Rotational values: Rx = 289(3)°, Ry = 20(3) and Rz = 40(3); 

Translational values: x = 0.350(1), y = 0.4317(8), z = 0.75. 

Ca–NH3 rigid body. Rotational values: Rx = 143(33)°, Ry = 265(2) and Rz = 278(34); 

Translational values: x = 0.8375(3), y = 0.0906(2), z = 0.25. 
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Figure 6.17 – Refined crystal structure of Ca(BH4)2·NH3 (H atoms not shown). The 

coordination environment of the Ca2+ cation is shown. Each Ca2+ coordinates with 

one NH3 and five BH4 groups. Ca is shown in purple, N in blue, B in green and H in 

pale pink 
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Figure 6.18 – Final Rietveld plot for Ca(BH4)2·NH3. The observed pattern is shown in black, the calculated in red and the difference 

in blue. The calculated peak positions are indicated. Rwp = 3.321%, χ2 = 1.929  
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6.6 Thermal Desorption Studies 

6.6.1 TPD Study of a CaH2 + 4NH3BH3 Reaction Mixture 

The thermal desorption properties of a ground sample of a CaH2 + 4NH3BH3 reaction 

mixture were investigated using TPD–MS. The sample was heated to 350°C with a 

heating rate of 2°C min−1. The data collected are shown in figure 6.19. 

  

Figure 6.19 – TPD–MS analysis of a ground reaction mixture of CaH2 + 4NH3BH3. 

The temperature trace is shown in blue and the mole percentages of H2 and NH3 

(×200) released are shown in red and brown, respectively  

It can be seen from the temperature trace that an exothermic event occurred at 

around 100°C, which was accompanied by a sharp H2 release. A second broader H2 

desorption began at 105°C which peaked at 130°C. The amount of H2 being released 

decreased, before reaching a constant rate at 190°C. This plateau of H2 release 

continued up to 270°C when a sharp release occurred. A final small broad release 

began just before the target temperature of 350°C was achieved, this release may 

not have completed during the timescale of the experiment. NH3 was also released 

from the reaction mixture. There were two broad NH3 releases, the first began soon 

after the onset of H2 release at approximately 100°C, reaching a maximum at 135°C. 

The second release of NH3 began at 220°C and peaked at 255°C. Following this 

second broad release, the amount of NH3 being released from the sample 
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decreased, although it did continue until the maximum temperature of 350°C was 

reached. 

Discussion 

From the knowledge of the CaH2 + 4NH3BH3 reaction pathway garnered from powder 

XRD patterns, the desorptions observed in the TPD experiment would be expected to 

be related to events in the reaction pathway. The steps of the reaction pathway 

observed through powder XRD are shown below as well as the expected desorbed 

gases. 

CaH2 + 4NH3BH3 → Ca(BH4)2·2NH3 + B2N2H(12−2n) + nH2  Reaction 6.4 

 Ca(BH4)2·2NH3 →  Ca(BH4)2·NH3 + NH3   Reaction 6.5 

 Ca(BH4)2·NH3 → α-Ca(BH4)2 + NH3         Reaction 6.6 

α-Ca(BH4)2 → β-Ca(BH4)2         Reaction 6.7 

α + β-Ca(BH4)2 → 2/3CaH2 + 1/3CaB6 + 10/3H2      Reaction 6.8 

The two desorptions of NH3 can hence be assigned to reactions 6.5 and 6.6. These 

reactions were shown to be completed at 150°C and 225°C, respectively, by powder 

XRD. The first NH3 desorption correlated well with this temperature, with the majority 

of this first desorption being completed below 180°C. The majority of the second NH3 

desorption took place below a temperature of 300°C, with the peak rate of release at 

255°C. This discrepancy in temperature could have been due to the different 

experimental setups: the TPD experiment was heated at 2°C min−1 whereas the gas 

line reactions were held for 12 hours at the reaction temperature. Therefore, events 

in the TPD trace were likely to occur at higher temperatures than in gas line 

reactions. As shown in the structural model of Ca(BH4)2·2NH3, section 6.4, each Ca 

centre was coordinated with two NH3 molecules. The relatively low onset temperature 

of NH3 release, 100°C, highlighted that the NH3 molecules were coordinated to the 

Ca. This was a much lower temperature release of NH3 compared to Ca(NH2)2 

(347°C) and LiNH2 (380°C), where the N is more strongly bound to the metal atom.34, 
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35 However, the low levels of NH3 detected in this experiment suggested that an 

alternative pathway, favouring H2 release, was at work. 

The α to β phase transition in Ca(BH4)2, reaction 6.7, took place at 250°C according 

to powder XRD results. Investigations into this change outlined in the literature have 

shown that this was a structural phase transition that took place without the release 

of any gases.17, 18, 21 Therefore, it can be concluded that none of the gas desorption 

events were related to this transition. 

 

Figure 6.20 – A comparison of the H2 TPD profiles of the CaH2 + 4NH3BH3 reaction 

mixture (blue) and as-received NH3BH3 (red) 

Figure 6.20 compares the H2 desorption traces of the CaH2 + 4NH3BH3 reaction 

mixture and NH3BH3. There was a strong correlation between the first H2 desorptions 

from NH3BH3 and the CaH2 + 4NH3BH3 reaction mixture, which suggested that 

NH3BH3 decomposition may have played some role in the reaction pathway. The first 

step in the reaction pathway inferred from powder XRD patterns showed the 

formation of Ca(BH4)2·2NH3, reaction 6.4. A CaH2 + xNH3BH3 reaction mixture would 

be presumed to proceed in a 1:2 ratio in order to provide the correct stoichiometry to 

synthesise Ca(BH4)2·2NH3 without side products. However, as shown by powder 

XRD, figure 6.4, this stoichiometry resulted in excess CaH2 being present in the 

product. Despite the fact that the presumed excess of NH3BH3 in a 1:4 reaction 

mixture appeared to follow its established decomposition pathway, we may conclude 

that this excess NH3BH3 could have played a role in the pathway of the CaH2 + 
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4NH3BH3 reaction, because it was only at this stoichiometry that the starting 

materials were completely consumed during the reaction. The possible role of 

NH3BH3 in the reaction mechanism will be discussed in section 6.8. The first H2 

desorption step in the decomposition of NH3BH3 results in the formation of the 

amorphous material polyaminoborane, (NH2BH2)n, see chapter 3.4. As the only 

crystalline phase observed in the powder XRD pattern of the product of the CaH2 + 

4NH3BH3 reaction at 80°C was Ca(BH4)2·2NH3, the remaining B, N and H must have 

been present in an amorphous material. The first H2 desorption may therefore involve 

the following reaction: 

CaH2 + 4NH3BH3 → Ca(BH4)2·2NH3 + 2(NH2BH2)n + 2H2 Reaction 6.9 

A key observation of the reaction was that during heating the sample underwent a 

significant volume expansion, a phenomenon also observed during the thermal 

decomposition of as-received NH3BH3, which supports the notion that NH3BH3 

decomposition was involved in the reaction pathway. Furthermore, this 

decomposition is an exothermic process, explaining the observed exothermic event 

in figure 6.19. Following this first step, two separate desorption pathways could then 

proceed: firstly as discussed above the two step NH3 release from Ca(BH4)2·2NH3 

and secondly, as discussed in chapter 3.4, further H2 release from (NH2BH2)n. Figure 

6.20 shows that the second desorption of NH3BH3 occurred as a shoulder on the 

broad desorption from the mixture. This provided evidence that the decomposition of 

(NH2BH2)n, yielding (NHBH)n took place, reaction 6.10, but that other desorption 

events also proceeded, underlining the complicated nature of the desorption 

pathway. 

2(NH2BH2)n → 2(NHBH)n + 2nH2   Reaction 6.10 

The broad desorption of H2 between the two NH3BH3 related desorptions occurred 

just after the onset of NH3 release. A study by Chu et al.13 with respect to the 

decomposition of Ca(BH4)2·2NH3 reported that under flowing conditions NH3 was the 

only desorbed product, whereas H2 was exclusively released in a closed system. 

This was rationalised by the fact that in a closed system the NH3 would remain in 

close proximity to Ca(BH4)2, giving the potential to interact with nearby species and 
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leading to the dissociation of both N–H and B–H bonds, forming H2; the proposed 

desorption reaction after heating the sample to 250°C is shown in reaction 6.11. The 

TPD–MS experimental setup was not a closed system, but because the NH3 was not 

moved away quickly from the sample, it did offer potential for significant amounts of 

NH3 to remain close to the sample. The low levels of NH3 detected by mass 

spectrometry suggested that pathways similar to that proposed by Chu et al. 

proceeded, and hence H2 desorption at a similar temperature to NH3 in TPD–MS 

experiments was observed. 

Ca(BH4)2·2NH3 → ¼Ca(BH4)2 + ¼Ca3(BN2)2 + BN + 6H2 Reaction 6.11  

The higher temperature H2 desorption events, primarily the sharp release of H2 at 

270°C, were likely related to Ca(BH4)2, reaction 6.8. The shape of this desorption 

meant it could not have been associated with the decomposition pathway of NH3BH3, 

as the higher temperature H2 desorption event in this decomposition is broad in 

nature. In contrast to this, the first H2 desorption in Ca(BH4)2 decomposition has been 

observed as a sharp release.18, 21-23 However, the onset temperature of this H2 

desorption in this study was significantly lower than what has been reported in 

literature studies regarding Ca(BH4)2, casting doubt on the validity of this assignment. 

The lowest reported onset temperature of H2 release from Ca(BH4)2 is 320°C, which 

is 50°C higher than that observed in the TPD–MS experiment of this study.20 The 

results of powder XRD, section 6.3, also supported this low decomposition 

temperature of Ca(BH4)2. The literature study also employed a heating rate of 2°C 

min−1 and therefore the heating rates were not responsible for the observed 

differences. The initial low temperature H2 desorption, between 100°C and 150°C, 

due to unidentified side reactions possibly related to NH3 release being suppressed, 

may have led to the formation of other materials, such as Ca3(BN2)2 (reaction 6.11) 

hence complicating the reaction mixture and resulting in further side reactions at 

higher temperatures. The sharp H2 desorption at 270°C may have been one such 

side reaction that involved Ca(BH4)2. 

The highest temperature release of H2 at 350°C could potentially be related to one of 

two events. Firstly, in the desorption profile of NH3BH3, see chapter 3.4, a desorption 

of H2 was observed at a similar temperature and therefore it could be assigned to the 
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release of H2 from (NHBH)n. However, H2 release from Ca(BH4)2 has been observed 

as a two step process, with the second desorption step being much broader in nature 

than the first.20-23 This second step has been shown to take place at temperatures 

above 400°C and therefore would not have been expected to have been observed in 

the TPD–MS experiment of this study. However, as discussed above, the potential 

reaction of Ca(BH4)2 with other components of the reaction mixture may have led to 

H2 release at a lower temperature than what is observed from isolated Ca(BH4)2 and 

so it follows that further reactions may have occurred instead of the second H2 

desorption from Ca(BH4)2. 

Hydrogen loss from (NHBH)n has been shown to occur at temperatures as low as 

350°C, but this release is not completed below a temperature of 600°C.36 Therefore, 

it seems likely that the two H2 desorptions observed above 270°C were due to a 

combination of decomposition of Ca(BH4)2 and (NHBH)n, the sharp release at 270°C 

being related to the decomposition of Ca(BH4)2, resulting in CaH2 and an unidentified 

intermediate, and the higher temperature release at 350°C originating from (NHBH)n. 

Evidence for at least one of these desorption events being related to Ca(BH4)2 

decomposition was observed in the powder XRD pattern taken of the sample after 

the TPD–MS experiment. The pattern, figure 6.21, showed only CaH2 presence, a 

decomposition product of Ca(BH4)2. 

 

Figure 6.21 – The powder XRD pattern of the sample collected after heating a 

reaction mixture of CaH2 + 4NH3BH3 to 350°C at a rate of 2°C min−1 in a TPD (red). 

The powder XRD pattern of CaH2 is shown for comparison (purple)  
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6.6.2 IGA Study of a CaH2 + 4NH3BH3 Reaction Mixture 

The synthesis of the crystalline material Ca(BH4)2·2NH3, was investigated using IGA–

MS. A sample of the reaction mixture (24.6 mg) was inertly loaded into the IGA 

connected to a mass spectrometer. Figure 6.22 shows the thermogravimetric data 

overlaid with the mass spectrometric data for the observed desorption products. The 

sample was heated at a rate of 1°C min−1 to an initial target temperature of 70°C. 

This target temperature was subsequently raised to 90°C because neither any 

desorbed gases nor a weight loss were observed at 70°C. 

 

Figure 6.22 – Thermogravimetric analysis of the CaH2 + 4NH3BH3 reaction mixture in 

an IGA. The gravimetric trace is shown in green, the temperature trace in blue and 

the mole percentages of H2 and NH3 released are shown in red and brown, 

respectively 

Weight loss from the sample began at around 74°C, with the majority of mass lost 

above 88°C, when the temperature was maintained at 90°C. This weight loss was 

accompanied by both H2 and NH3 release. H2 release began first, with the onset of 

NH3 release at 84°C. The initial slow weight loss from the sample between 74°C and 

84°C was exclusively due to H2, with the main weight loss above 88°C being due to 

desorption of both H2 and NH3. Both the onset temperatures of H2 and NH3 

desorption were lower in the IGA–MS experiment compared to the TPD–MS 
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experiment. This was probably related to the lower heating rate employed in the 

IGA–MS experiment. The sample showed a weight loss of 14.7 wt% during the 

timescale of the experiment. 

Discussion 

The release of both H2 and NH3 during the IGA–MS experiment suggested that 

decomposition of NH3BH3 to (NH2BH2)n had occurred, resulting in H2 release, along 

with formation of Ca(BH4)2·2NH3 and its subsequent decomposition, releasing NH3 to 

yield Ca(BH4)2·NH3. The theoretical weight losses for these two events are shown 

below. 

CaH2 + 4NH3BH3 → Ca(BH4)2·2NH3 + 2(NH2BH2)n + 2H2  2.4 wt% 

Ca(BH4)2·2NH3 → Ca(BH4)2·NH3 + NH3  10.3 wt% 

These two reactions account for a weight loss of 12.7 wt% from the initial sample, 

which was lower than the observed weight loss of 14.7 wt%. The additional weight 

loss must have therefore been due to either the next steps in the reaction pathways 

or side reactions. 

 

6.6.3 Thermal Desorption Studies of Product A 

6.6.3.1 TPD Study of Product A 

The thermal desorption properties of the product of the CaH2 + 4NH3BH3 reaction 

heated at 80°C were investigated using TPD–MS. Powder XRD of the sample prior to 

the TPD–MS experiment confirmed that the sample contained the crystalline phase 

Ca(BH4)2·2NH3. The sample was heated to 350°C with a heating rate of 2°C min−1. 

The data collected are shown in figure 6.23. 

The desorption profile (figure 6.23) showed that both H2 and NH3 were released from 

the sample, with the onset of H2 release at a lower temperature, 95°C, than that of 

NH3, 125°C. The first desorption of H2 peaked at 135°C, which was shortly followed 
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Figure 6.23 – TPD–MS analysis of a sample of Product A. The temperature trace is 

shown in blue and the mole percentages of H2 and NH3 (×50) released are shown in 

red and brown, respectively 

by the maximum of the first NH3 desorption at 155°C. A shoulder was observed on 

the first H2 desorption peak at 155°C. A second broader H2 desorption began at 

215°C, continuing until a temperature of 275°C was reached, at which point a sharp 

desorption of H2 occurred. This was possibly due to two overlapping H2 desorption 

events. A second desorption of NH3 commenced at 230°C and reached a maximum 

at 270°C. This desorption was completed at a temperature of 300°C and no further 

release of NH3 were observed. A final small broad release of H2 was observed at 

320°C, which tailed off while the sample was held at 350°C. 

6.6.3.2 IGA Study of Product A 

A sample (61 mg) of the product of the CaH2 + 4NH3BH3 reaction pre-heated at 80°C 

was inertly loaded into an IGA connected to a mass spectrometer. Figure 6.24 shows 

the thermogravimetric data overlaid with the mass spectrometric data for the 

observed desorption products. The same conditions as employed in the TPD 

experiment were used, with the sample heated at a rate of 2°C min−1 to a target 

temperature of 350°C. 



CHAPTER 6. The Reaction of Calcium Hydride with Ammonia Borane 287 
 

 

Figure 6.24 – Thermogravimetric analysis of a sample of Product A in an IGA. The 

gravimetric trace is shown in green, the temperature trace in blue and the mole 

percentages of H2 and NH3 (×100) released are shown in red and brown, respectively 

A total weight loss of 27.5 wt% from the sample was observed on heating the sample 

to 350°C. The initial weight loss began at 80°C and continued until a temperature of 

165°C was reached. This step involved the loss of 15.5 wt%. This weight loss was 

accompanied by both the desorption of NH3 and H2. Unlike the TPD experiment, the 

onset of NH3 release (80°C) was observed at a lower temperature than H2 (95°C). 

The weight loss continued above 165°C, although the rate of loss decreased, 

implying that a second event in the reaction pathway was responsible. This step 

showed a weight loss of 7.1 wt% and was complete at 215°C. A second release of 

NH3 was observed between 150°C and 220°C, with only a small amount of H2 

desorption during this temperature range. The second weight loss was therefore 

related to the desorption of NH3. A third weight loss began at 240°C and at 350°C the 

rate of weight loss increased, implying a fourth weight loss event. The third event 

was responsible for a weight loss of 2.5 wt% and the final weight loss contributed 2.4 

wt%. NH3 release above 235°C was minimal and no NH3 release was observed at all 

above 295°C. Conversely, H2 desorption increased at 235°C and a plateau of H2 

release was observed between 255°C and 340°C, at which temperature a final sharp 
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release occurred, which peaked at 350°C. As 350°C was the highest temperature 

that the sample was exposed to, the experiment seemed to have captured an 

isothermal desorption. The two higher temperature weight losses were clearly due to 

the desorption of H2. 

6.6.3.3 Discussion 

The TPD–MS results (figure 6.23) showed the expected two step NH3 desorption 

pathway, for the decomposition of Ca(BH4)2·2NH3 to Ca(BH4)2·NH3, followed by its 

subsequent decomposition to Ca(BH4)2. The low levels of NH3 detected again 

suggested that this was in fact a minority pathway within this experimental setup. The 

initial H2 desorption was similar to what was observed from the reaction mixture, 

figure 6.19, with the initial release being related to alternative desorption pathways 

previously discussed, section 6.6.1, and the shoulder of this release being due to 

(NH2BH2)n decomposition. The broad higher temperature H2 release at 320°C may 

subsequently have been associated with the decomposition of (NHBH)n. H2 release 

between 215°C and 320°C was not observed during the TPD study of NH3BH3, 

chapter 3.4, and therefore it cannot have been associated with this decomposition 

pathway. Hence, this H2 release was likely associated with Ca(BH4)2, with the 

possibility of side reactions or unexpected interactions between compounds present 

in the two main desorption pathways being responsible. As with the TPD–MS study 

of the CaH2 + 4NH3BH3 reaction mixture, the temperature at which the sharp release 

of H2 occurred at, 275°C, was lower than what would be expected for isolated 

Ca(BH4)2. Therefore, the rationale discussed previously for this lower than expected 

H2 release in section 6.6.1 can also be applied here. The fact that this H2 release 

occurred shortly after the peak of the second NH3 desorption showed that the 

formation of Ca(BH4)2 was rapidly followed by either its decomposition or involvement 

in side reactions. 

The IGA desorption study of Ca(BH4)2·2NH3 revealed a total weight loss of 27.5 wt%, 

with a 22.6 wt% loss below 215°C. The majority of the NH3 desorption took place 

below this temperature. Theoretically the release of one equivalent of NH3 from 

Ca(BH4)2·2NH3 would result in a weight loss of 16.4 wt% and as two equivalents 

would be lost on forming Ca(BH4)2 the expected weight loss for the IGA study was 
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32.8 wt%. The much lower observed weight loss offers support to the notion that 

there was amorphous material present in the sample, such as (NH2BH2)n. The 

calculated weight losses from the initial sample assuming a composition of 

Ca(BH4)2·2NH3 + 2(NH2BH2)n are shown below for the desorption events observed 

below 215°C. 

Ca(BH4)2·2NH3 + 2(NH2BH2)n → Ca(BH4)2·NH3 + 2(NH2BH2)n + NH3  10.5 wt% 

Ca(BH4)2·NH3 + 2(NH2BH2)n → Ca(BH4)2·NH3 + 2(NHBH)n + 2H2  2.5 wt% 

Ca(BH4)2·NH3 + 2(NHBH)n → Ca(BH4)2 + 2(NHBH)n + NH3  10.5 wt% 

This gives a total theoretical weight loss of 23.5 wt% which agrees well with the 

observed weight loss. The slight discrepancy was due to the fact that there was a 

small amount of NH3 released above 215°C. The loss of 4.9 wt% above 215°C was 

primarily due to H2 desorption although it was slightly contaminated with NH3. Below 

215°C the observed weight loss was 0.9 wt% less than the theoretical value due to 

NH3 loss not being completed. Therefore it can be assumed that above 215°C, H2 

desorption caused a weight loss of 4.0 wt%, which was equal to a desorption of three 

equivalents of H2. H2 desorption from Ca(BH4)2 and (NHBH)n could both have 

contributed to this weight loss. Thermogravimetric studies of Ca(BH4)2 have shown 

that weight loss totalled 6 wt%, equal to two equivalents of H2, up to a temperature of 

350°C.18, 20, 21 Therefore, two of the three equivalents of H2 released above 215°C in 

the IGA–MS study can be assigned to Ca(BH4)2 decomposition with the remaining 

one equivalent desorbed from amorphous material in the sample. The good 

agreement between the theoretical and calculated weight losses suggests that in the 

IGA study the two pathways operated more or less separately and that side reactions 

were less of an issue. Significant support for this comes from the higher temperature 

H2 release. The release at 350°C agrees much better with the reported 

decomposition temperature of Ca(BH4)2, implying that in the IGA experiment this 

phase was not involved in side reactions. 

There were a number of differences between the TPD–MS and IGA–MS 

experiments. In the TPD–MS experiment, the onset of NH3 release was at a higher 

temperature than that of H2, whereas this was reversed for the IGA–MS experiment. 
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These observations supported the proposal that when the NH3 was not quickly 

removed from the sample (TPD) it was able to effect side reactions, resulting in H2 

release. In the IGA experiment the NH3 release was carried away as soon as it was 

desorbed, as the argon carrier gas flowed directly over the sample and so H2 was not 

desorbed until the decomposition of (NH2BH2)n began. The lower than expected 

temperature of desorption events compared to values reported in the literature was a 

feature of the TPD data. This was most apparent in the higher temperature H2 

desorptions, where the peak in the H2 desorption trace of the IGA–MS experiment at 

350°C showed much better agreement with the known decomposition temperature of 

Ca(BH4)2 compared to the peak observed at 275°C in the TPD–MS trace.20, 22, 23, 28 

As discussed this may have in part been due to side reactions caused by NH3 

interacting with the sample following its desorption. A second difference between the 

two experiments was that a larger sample was used in the TPD experiment, which 

may have been more prone to inhomogeneities in temperature or local composition. 

A further factor to consider was that the side reactions occurring in the TPD 

experiment may have led to the formation of a material that melted during the 

timescale of the experiment, producing a labilizing effect and hence lower 

temperature H2 release. 

 

6.6.4 Thermal Desorption Studies of Product B 

6.6.4.1 TPD Study of Product B 

The thermal desorption properties of the product of the CaH2 + 4NH3BH3 reaction 

heated at 150°C were investigated using TPD–MS. Powder XRD of the sample prior 

to the TPD–MS experiment confirmed that the sample contained the crystalline 

phase Ca(BH4)2·NH3. The sample was heated at a rate of 2°C min−1 to a maximum 

temperature of 350°C. The data collected is shown in figure 6.25. 
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Figure 6.25 – TPD–MS analysis of a sample of Product B. The temperature trace is 

shown in blue and the mole percentages of H2 and NH3 (×75) released are shown in 

red and brown, respectively 

Both H2 and NH3 desorptions were observed during the TPD experiment. The onset 

of H2 release was at a lower temperature than that of NH3, occurring at 80°C. There 

was an initial small broad release of H2, between 80°C and 165°C, which reached a 

maximum at 130°C. The main H2 desorption event began at 165°C and the shape of 

the H2 trace suggested that at least two H2 desorptions occurred between 165°C and 

300°C. A broad release proceeded in this temperature range, as well as a sharp 

release of H2, that reached a maximum at 275°C. A final higher temperature release 

of H2 began at 315°C, reaching a maximum at 335°C. There was a single broad NH3 

desorption which began at 160°C, the peak of which occurred at 270°C. 

6.6.4.2 TGA Study of Product B 

The thermogravimetric and thermal desorption properties of a sample of Product B 

were investigated using a TGA connected to a mass spectrometer. Figure 6.26 

shows the thermogravimetric data overlaid with the mass spectrometric data for the 

observed desorption products. The same conditions as employed in the TPD 

experiment were used, with the sample heated at a rate of 2°C min−1 to a target 

temperature of 350°C. 
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Figure 6.26 – Thermogravimetric analysis of a sample of Product B in a TGA. The 

gravimetric trace is shown in green, the temperature trace in blue and the mole 

percentages of H2 and NH3 released shown in red and brown, respectively 

The thermogravimetric data showed that a total weight loss of 14.8 wt% took place 

during the experiment. There were a number of weight loss events that took place, 

with the initial weight loss beginning at a temperature of 120°C. A second weight loss 

event appeared to start before the completion of the first at 160°C, due to a change 

in the rate of weight loss. The sample lost 2.2 wt% up to a temperature of 160°C. The 

second weight loss was completed at 235°C and a further 8.4 wt% was lost from the 

sample during this temperature range. Further weight loss was observed above 

260°C in a two step process. The sample lost weight slowly between 260°C and 

350°C, with a loss of 1.8 wt%. A final weight loss of 2.4 wt% took place while the 

sample was maintained at a temperature of 350°C. Analysis of the gases desorbed 

showed that the first two weight loss events were almost exclusively accompanied by 

NH3 release. NH3 desorption began at 125°C, with an initially slow rate of desorption. 

The rate of desorption increased greatly at 210°C and the majority of NH3 was 

released above this temperature in a single step desorption, peaking at 220°C. This 

desorption was complete at 240°C, with no further NH3 desorbed above this 

temperature. Only a minimal amount of H2 was released below 240°C, with two very 

small releases of H2 at 140°C and 235°C. The main H2 release occurred above 
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250°C, with two desorptions evident above this temperature. The absence of NH3 

release above this temperature showed that the two higher temperature weight 

losses were due entirely to H2 loss. There was a sharp increase in the amount of H2 

released at 250°C, while the rate of H2 release decreased slowly until a temperature 

of 345°C was reached, when a sharp release of H2 began. 

6.6.4.3 Discussion 

Desorption of H2 below 150°C was unexpected because the sample was synthesised 

at this temperature prior to the desorption experiments. This low temperature H2 

release in the TPD–MS experiment could have been due to the presence of 

(NH2BH2)n in the sample. The NH3 desorbed in both the experiments was due to the 

decomposition of Ca(BH4)2·NH3, the discrepancy in the observed temperature of the 

desorption being due to the different experimental setups as discussed in section 

6.6.3. Assuming the initial sample contained Ca(BH4)2·NH3 and (NH2BH2)n, the 

theoretical weight loss for this decomposition step is 11.7 wt%. The observed weight 

loss due to NH3 release was less than this, 10.6 wt%, this difference was possibly 

due to sample degradation, due to NH3 release, during the delay between 

synthesising the sample and running the TGA experiment. The weight loss of 4.2 

wt% above 260°C was exclusively due to H2 desorption, which meant that three 

equivalents of H2 were desorbed. This was the same result as for the IGA–MS study 

of Ca(BH4)2·2NH3, as would be expected and therefore the same conclusion can be 

drawn: two equivalents of H2 were desorbed due to the decomposition of Ca(BH4)2 

and the other equivalent desorbed from polymeric material in the sample. 

The H2 desorption trace from Ca(BH4)2·NH3 again showed the same discrepancy as 

with Ca(BH4)2·2NH3, where the H2 desorption assumed to be related to the 

decomposition of Ca(BH4)2 occurred at a lower temperature than expected in the 

TPD–MS experiment, whereas the TGA experiment showed the release at the 

expected temperature. The H2 desorption from the TGA experiment was very similar 

to that observed in the IGA trace of Product A at high temperature, which suggests 

this data may be more reliable than TPD.  The TGA experiment was similar in nature 

to that of IGA–MS, in the sense that the argon carrier gas flowed directly over the 

sample. This supports the proposal that the interaction of NH3 with sample 
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components resulted in different desorption pathways in the TPD experiment. A 

difference between the TPD–MS desorption data of Ca(BH4)2·2NH3 and 

Ca(BH4)2·NH3 was the observation of a sharp H2 desorption at 350°C from the 

Ca(BH4)2·NH3 sample, compared to a broad release from Ca(BH4)2·2NH3. A sharp 

release would be unexpected from a polymeric product such as (NHBH)n. This 

release may therefore have been related to the decomposition of Ca(BH4)2. 

 

6.7 Solid State 11B MAS NMR Spectroscopy 

The CaH2 + 4NH3BH3 reaction pathway was also investigated through solid state 11B 

MAS NMR spectroscopy to determine how the boron environments changed as the 

reaction progressed, in particular to provide information about amorphous 

components of reaction mixtures. The samples were prepared through thermal 

reactions as described in section 6.2 and the 11B NMR spectra collected at room 

temperature. The data was collected in collaboration with the University of Warwick. 

All deconvolution of the spectra was carried out by Tom Partridge at the University of 

Warwick. Figure 6.27 shows the 11B NMR spectrum collected of the product of the 

CaH2 + 4NH3BH3 reaction at 80°C along with the deconvolution of the spectrum. 

The 11B NMR spectrum of the sample collected after heating to 80°C was dominated 

by a strong resonance at −34.8 ppm; deconvolution showed there was also a weak 

resonance at −33.2 ppm. There were also a number of low intensity features present 

at −21.9, −17.3, −13.1 and −7.1 ppm: inset figure 6.27. Deconvolution of the 

quadrupolar resonance showed that there were two environments present; at 30.3 

and 25.3 ppm. 
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Figure 6.27 – The solid state 11B MAS NMR spectrum collected from the product of 

the CaH2 + 4NH3BH3 reaction at 80°C (black). Deconvolution of the spectrum is 

shown, with the cumulative simulated spectrum shown in red 

The pathway of the CaH2 + 4NH3BH3 reaction as viewed by solid state 11B MAS NMR 

spectroscopy is shown in figure 6.28. The spectrum collected after reaction at 90°C 

was identical to the one collected after reaction at 80°C, but further heating to 100°C 

resulted in the appearance of a shoulder on the most intense feature at −34.7 ppm, 

figure 6.29. Deconvolution of this spectrum showed that the shoulder was composed 

of two separate resonances at −32.2 and −33.2 ppm. The quadrupolar boron 

environments showed slight increases in intensity, while the low intensity resonances 

between −7.0 ppm and −22.0 ppm were still present.  
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Figure 6.29 – The solid state 11B MAS NMR spectrum collected from the product of 

the CaH2 + 4NH3BH3 reaction at 100°C (black). Deconvolution of the spectrum is 

shown, with the cumulative simulated spectrum shown in red 

Further heating to 110°C showed that the shoulder feature, made up of the two 

resonances at −32.3 and −33.2 ppm had increased in intensity and had become the 

most intense feature in the spectrum, figure 6.30. The previously observed 

resonance at −34.7 ppm was also still present. The low intensity features previously 

observed between −7.0 ppm and −22.0 ppm were also present, although their 

intensity had decreased, while the quadrupolar environments showed a slight 

increase in intensity. 
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Figure 6.28 – Solid state 11B MAS NMR spectra obtained from the products of the 

CaH2 + 4NH3BH3 reaction at various temperatures 
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Figure 6.30 – The solid state 11B MAS NMR spectrum collected from the product of 

the CaH2 + 4NH3BH3 reaction at 110°C (black). Deconvolution of the spectrum is 

shown, with the cumulative simulated spectrum shown in red 

The resonance at −34.7 ppm was no longer evident in the 11B NMR spectrum after 

reaction at 120°C, figure 6.31. Further to this the low intensity resonances between 

−7.0 and −22.0 ppm were also no longer present. The spectrum comprised only the 

quadrupolar boron environments and the two overlapping resonances at −32.3 and 

−33.2 ppm. 

Figure 6.28 shows that the spectra collected from the products of the reactions at 

150°C and 175°C were almost identical to that of the one collected after reaction at 

120°C, which showed that there had been no change in the boron environments 

during this temperature range. 

After reaction at 200°C the 11B NMR spectrum, figure 6.32, showed the appearance 

of a new boron environment at −30.1 ppm. The most intense feature in the spectrum 

was observed at −32.3 ppm which was again fitted to two boron environments with 

chemical shifts of −32.3 ppm and −33.2 ppm. The quadrupolar boron environments 

had increased in intensity. 
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Figure 6.31 – The solid state 11B MAS NMR spectrum collected from the product of 

the CaH2 + 4NH3BH3 reaction at 120°C (black). Deconvolution of the spectrum is 

shown, with the cumulative simulated spectrum shown in red 

 

Figure 6.32 – The solid state 11B MAS NMR spectrum collected from the product of 

the CaH2 + 4NH3BH3 reaction at 200°C (black). Deconvolution of the spectrum is 

shown, with the cumulative simulated spectrum shown in red 

The intensity of the quadrupolar boron environments increased after reaction at 

225°C, and further still after the 250°C reaction, figure 6.33. There was also a 
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significant change in the intensities of the features around −32.0 ppm between 

reactions at 200°C and 225°C, figure 6.34a. The resonance at −30.1 ppm became 

the most intense feature in the spectrum, while the intensities of the features at −32.3 

ppm and −33.2 ppm were greatly reduced. Similar observations were made in this 

chemical shift range in the spectrum obtained after heating to 250°C, figure 6.34b, 

with the most intense resonance observed at −30.0 ppm. One difference was that 

deconvolution of the spectrum suggested the initial dominant boron environment 

observed after reaction at 80°C (−34.8 ppm) was again present, although its intensity 

was low. A second difference was that the intensity of the resonance at −32.3 ppm 

had increased while the resonance at −33.2 ppm had decreased. This was the first 

time that the intensities of these two features had diverged. 

 

Figure 6.33 – Deconvolution of the quadrupolar boron site observed in the solid state 
11B MAS NMR spectra collected from the products of the CaH2 + 4NH3BH3 reaction 

at (a) 225°C (b) 250°C and (c) 275°C 

After reaction at 275°C the quadrupolar resonance had become the dominant 

resonance in the spectrum, figure 6.33c, and as can be seen in figure 6.28, this 

remained the most intense feature up to the maximum reaction temperature of 

800°C. At 275°C, figure 6.34c, the boron environment at −30.2 ppm had dramatically 

decreased in intensity compared to this resonance in the spectrum obtained after 

reaction at 250°C. The resonance at −33.2 ppm again showed a slight reduction in 



CHAPTER 6. The Reaction of Calcium Hydride with Ammonia Borane 301 
 

intensity, but conversely the intensity of the resonance at −32.3 ppm again showed a 

slight increase. The intensity of the feature at −34.8 ppm had also increased slightly. 

A broad resonance was also observed at −16.3 ppm. 

 

Figure 6.34 – Deconvolution of the resonances observed around −30 ppm in the solid 

state 11B MAS NMR spectra collected from the products of the CaH2 + 4NH3BH3 

reaction at (a) 225°C (b) 250°C (c) 275°C and (d) 300°C 

The spectrum collected after reaction at 300°C, figure 6.34d, showed decreased 

intensity of the resonances at −34.8 ppm and −32.3 ppm, with little change of the 

resonance at −30.2 ppm, while a noticeable increase in intensity of the resonance at 

−33.2 ppm occurred compared to those observed after reaction at 275°C. A broad 

low intensity resonance was again observed at −16.3 ppm. Higher temperature 

reactions at 400°C and 800°C resulted in spectra dominated by the quadrupolar 

resonance, neither spectrum showed any other well defined features. 

In a number of spectra a resonance at 1.0 ppm was observed. This resonance was 

due to oxidation of the sample and is therefore not discussed further. 
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Discussion 

Table 6.5 shows a summary of the resonances observed in the 11B NMR spectra of 

the products from the CaH2 + 4NH3BH3 reaction at various temperatures. Peak 

deconvolution was used to calculate the percentage of each environment in the 

spectra. 

Table 6.5 – Summary of the observed resonances in the 11B NMR spectra of the 

products from the CaH2 + 4NH3BH3 reaction at various temperatures, showing the 

percentage of each environment present in the samples 

Reaction 

Temperature 

(°C) 

Chemical Shift (ppm) 

−34.7 −33.2 −32.2 −30.1 −21.9 −17.3 −13.1 −7.1 30.3 

80 66.68 6.89   2.08 7.52 4.13 5.04 7.13 

90 60.26 12.84   2.30 5.19 4.20 2.49 12.38 

100 36.87 20.68 6.89  1.66 3.77 7.11 0.47 21.50 

110 20.34 22.59 23.44  0.41 1.50 1.10 0.72 29.62 

120  25.17 34.55      40.28 

150  23.16 35.63      40.95 

175  24.39 32.47      42.88 

200  15.87 22.49 19.35     42.10 

225  5.53 5.52 35.81     52.94 

250 1.23 2.90 5.40 23.57 0.63 0.15  0.09 65.97 

275 3.13 1.63 7.56 5.60 2.22  0.02 0.49 78.80 

300 1.59 7.24 3.26 4.58 0.48   0.10 82.34 

400 0.58 0.32 0.23 0.17 0.55    97.58 

800  0.17 0.13      99.45 

 

From the results of powder XRD some of the products of each reaction are already 

known and consequently assignment of the observed boron environments can be 

attempted. At 80°C, the crystalline phase Ca(BH4)2·2NH3 was the only product 

observed by powder XRD. The published 11B NMR spectrum of Ca(BH4)2·2NH3 

shows that this material has a single resonance at −34.7 ppm, which is a similar 

chemical shift to the one observed in this study.13 Therefore, the resonance can be 

assigned to the BH4 groups in this material. The determined crystal structure of 

Ca(BH4)2·2NH3, section 6.4, showed there was only one boron environment and  

therefore only one boron environment would be expected in the spectrum. Due to the 
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effect of two NH3 groups donating electrons to the calcium and consequently 

increased shielding at the boron sites, this resonance was the furthest upfield. 

The next crystalline phase observed by powder XRD was Ca(BH4)2·NH3; this was the 

only phase observed after reaction at 120°C and so either of the resonances 

observed at −33.2 ppm or −32.2 ppm could have been related to this material. In 

order to make the correct assignment the other crystalline phases observed in 

powder XRD patterns should be considered. α-Ca(BH4)2 was first observed in 

powder XRD patterns after reaction at 200°C and after reaction at 225°C was the 

only crystalline phase observed. The resonance at −30.1 ppm was not observed in 

the NMR spectra until reaction at 200°C and furthermore this was the dominant 

resonance in the spectrum of the product of the reaction at 225°C. Assignment of this 

resonance to the boron environment in α-Ca(BH4)2 is therefore justified. This 

assignment also agreed with that of Reiter et al.37 

The β polymorph of Ca(BH4)2 was first observed by powder XRD after reaction at 

275°C. Interestingly no resonance in the 11B NMR spectra first appeared at this 

temperature, but by a process of elimination the boron environment within this 

compound must have produced a resonance at either −33.2 ppm or −32.2 ppm. 

These two resonances were therefore due to Ca(BH4)2·NH3 and β-Ca(BH4)2. Again 

the presence of the electron donating group, NH3, in the monoammoniate would have 

caused a downfield shift in the position of the BH4 environment within this material 

and so the resonance at −33.2 ppm was assigned to Ca(BH4)2·NH3 and the 

resonance at −32.2 ppm was assigned to β-Ca(BH4)2. This assignment for β-

Ca(BH4)2 also agreed with that of Reiter et al.37 

Below 300°C Ca(BH4)2·2NH3, Ca(BH4)2·NH3, α-Ca(BH4)2 and β-Ca(BH4)2 were the 

only crystalline phases observed in powder XRD patterns. Therefore, the resonances 

observed at −21.9 ppm, −17.3 ppm, −13.1 ppm and −7.1 ppm could not have been 

present as crystalline material. As discussed in section 6.6, the decomposition 

pathway of NH3BH3 has been inferred to play a role in the CaH2 + 4NH3BH3 reaction 

pathway. Stowe et al.38 conducted a solid state 11B NMR investigation into the 

thermal decomposition of NH3BH3 at 88°C. Resonances were observed at −38 ppm 

and −13 ppm which were assigned to the BH4 and BH2 environments present in 
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DADB respectively. No resonance at −38 ppm was observed in any spectra in this 

study. However, the initial formation of Ca(BH4)2·2NH3 would have required the 

presence of a BH4
− ion in the reaction mixture. DADB formation could have provided 

this ion and hence the pathway to form Ca(BH4)2. This reaction would also explain 

why there was no BH4 resonance due to DADB presence observed in the NMR 

spectra. The BH2 resonances at −7.1 and −13 ppm observed by Stowe et al. were, 

however, observed in this study between 80°C and 110°C. Despite the consumption 

of the BH4
− ion from DADB, the decomposition of NH3BH3 would have still been able 

to proceed to form polymeric NH2BH2, and therefore a BH2 environment would be 

expected in the NMR spectrum. As NH3BH3 decomposition proceeded Stowe et al. 

noted that these resonances broadened and decreased in intensity due to continued 

polymerisation. Similar observations were noted in this study, with the intensities of 

both of these resonances decreasing as well as the peaks broadening with 

increasing reaction temperature. The 11B NMR spectrum obtained after reaction at 

120°C no longer showed these two resonances, indicating that the first two steps in 

NH3BH3 decomposition, reaction 6.12, were complete. The product of these steps 

(NHBH)n possessed boron only in an sp2 environment. Boron in an sp2 environment 

is observed in the range 0 ppm to 40 ppm.39-42 This decomposition product was 

shown by thermal desorption studies to form at around 150°C and therefore the 

broad feature at 30.3 ppm can be assigned to this decomposition product up to this 

reaction temperature. 

nNH3BH3 → (NH2BH2)n + nH2 → (NHBH)n + nH2 Reaction 6.12 

The resonances at −21.9 ppm and −17.3 ppm were observed between 80°C and 

110°C; however, only Ca(BH4)2·2NH3 and Ca(BH4)2·NH3 were detected by powder 

XRD in this temperature range. Therefore, a literature search was undertaken in an 

attempt to assign these features. Chua et al.12 studied the reaction of Ca(NH2)2 with 

NH3BH3 in a 1:2 molar ratio and found that an ammoniated derivative of 

Ca(NH2BH3)2 was synthesised, Ca(NH2BH3)2·2NH3. The NH3 was desorbed upon 

heating this material above 73°C. Solid state 11B NMR investigations of these 

materials showed that the boron environments within Ca(NH2BH3)2·2NH3 and 

Ca(NH2BH3)2 were observed at −21 and −17 ppm, respectively. Re-examination of 
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our powder XRD patterns produced no evidence that either of these products were 

present. However, the CaH2 + 4NH3BH3 reaction does offer the potential to form 

Ca(NH2BH3)2 through the same reaction mechanism that led to NaNH2BH3 formation 

from NaH and NH3BH3 starting materials. If this material had formed it could also 

have become ammoniated in the same way that ammoniated forms of Ca(BH4)2 were 

produced. The resonances observed at −21.9 and −17.3 ppm in this study were 

broad, low intensity peaks suggesting that the boron environments were disordered. 

This disorder may have explained why these phases were not detected by powder 

XRD. Although, there was no overwhelming evidence for the assignment of these 

resonances to Ca(NH2BH3)2 and Ca(NH2BH3)2·2NH3, this was the most satisfactory 

assignment that could be made based on the information available. The full 

assignment of the observed resonances in the solid state 11B NMR spectra is shown 

in table 6.6. 

Table 6.6 – The assignment of boron environments to the observed resonances in 

the solid state 11B NMR spectra 

Chemical Shift (ppm) Assignment 

−34.7 Ca(BH4)2·2NH3 

−33.2 Ca(BH4)2·NH3 

−32.2 β-Ca(BH4)2 

−30.1 α-Ca(BH4)2 

−21.9 Ca(NH2BH3)·2NH3 

−17.3 Ca(NH2BH3)2 

−13.1 BH2 – DADB / NH3BH3 decomposition products 

−7.1 BH2 – DADB / NH3BH3 decomposition products 

20.0 sp2 B 

Peak deconvolution of the various resonances allowed the percentages of each 

phase to be determined at the various reaction temperatures. The results are shown 

in figure 6.35. The percentage of crystalline phases present in the samples was also 

calculated from powder XRD patterns using Topas and the results are shown in 

figure 6.36.32 A comparison of the two figures shows that the results broadly agreed, 

the major difference being that XRD does not account for the amorphous content of 

the samples, while 11B NMR could not detect CaH2. A slight discrepancy was that the 
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resonances due to ammoniated phases reappeared in the spectra above 250°C. This 

was probably because during cooling, any NH3 that had remained in the vicinity of 

Ca(BH4)2 following its earlier release, was able to recombine with this material and 

reform the ammoniates. As powder XRD did not reveal this phase at these 

temperatures, the material may have been finely divided or highly disordered.  
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Figure 6.35 – The calculated percentages from peak fitting solid state 11B NMR spectra of each boron environment in the samples 

collected after reaction at various temperatures 
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Figure 6.36 – The percentage of crystalline phases present in the products of the CaH2 + 4NH3BH3 reaction at various temperatures 

calculated from powder XRD patterns   
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Figure 6.35 showed that the decrease in boron present as Ca(BH4)2·2NH3 was 

accompanied by an increase in the boron environment within Ca(BH4)2·NH3. 

However, this percentage decrease in the former was significantly greater than the 

observed increase in the latter. Further to this the resonance at −32.2 ppm was 

observed from 100°C onwards, previously assigned to β-Ca(BH4)2. This is a 

significant discrepancy with the results of thermal desorption studies, where the 

second release of NH3 did not occur until temperatures in excess of 200°C and 

powder XRD results revealed that it was in fact the α polymorph that formed first. The 

crystal structure determination of Ca(BH4)2·NH3, section 6.5, revealed that this 

structure contains two distinct boron positions within the unit cell, with the B1–Ca and 

B2–Ca distances shorter and longer than 2.9 Å, respectively. The B–Ca distance in 

β-Ca(BH4)2 is longer than 2.9 Å suggesting the B2 site of Ca(BH4)2·NH3 may have 

been similar to the boron site in β-Ca(BH4)2, hence producing a resonance with a 

similar chemical shift.17 Therefore, between reaction temperatures of 100°C and 

225°C the resonance assigned to β-Ca(BH4)2 may actually have been due to a 

second boron environment within Ca(BH4)2·NH3. This is substantiated by the fact that 

the percentage traces of Ca(BH4)2·NH3 and ‗β-Ca(BH4)2‘ follow each other relatively 

closely in this temperature range. Above 225°C the percentage of β-Ca(BH4)2 

present showed an increase whereas that of Ca(BH4)2·NH3 decreased, which was 

also the temperature at which powder XRD showed the presence of crystalline β-

Ca(BH4)2 within the product, and so above this temperature the resonance at −32.2 

ppm was genuinely due to β-Ca(BH4)2. 

As expected from powder XRD patterns the percentage decrease of boron in the 

environments of Ca(BH4)2·NH3 was accompanied by the increase of α-Ca(BH4)2 

within the sample. Once the reaction temperature had surpassed the onset 

temperature for the α to β phase transition, the percentage of the α polymorph began 

to decrease and the percentage of the β polymorph increased, although the decrease 

in α was greater than the increase in β. There was, however, also an increase in the 

percentage of boron in an sp2 environment within the sample and this must therefore 

also have been related to the decrease of α-Ca(BH4)2. There were two increases in 

sp2 boron environments. The first increase was observed up to a temperature of 

120°C. As discussed previously the formation of material containing boron in sp2 
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environments was initially primarily related to the decomposition pathway of NH3BH3. 

However, figure 6.35 shows that this initial increase was also related to the decrease 

in BH4 environments, another indication that unidentified side reactions took place 

during the reaction. The second increase in boron within an sp2 environment, above 

225°C, matched the percentage decrease in BH4 environment, which therefore 

suggested that the decomposition products of Ca(BH4)2 contained sp2 boron. 

There are no reported studies regarding the decomposition of Ca(BH4)2 that have 

used solid state 11B NMR to identify the thermal decomposition products and so a 

direct comparison of spectra is not possible. Both XRD and Raman spectroscopy 

have been used to identify CaB6 as a decomposition product.20, 28 The solid state 11B 

NMR chemical shift of CaB6 has been found to be 1.26 ppm.43 Therefore this material 

could not have contributed to the observed increase in sp2 environment. Powder 

XRD only showed evidence of CaB6 in the pattern obtained after reaction at 800°C 

and therefore a resonance due to CaB6 would reasonably also only be expected in 

this spectrum. Previous studies of Ca(BH4)2 decomposition have also shown that 

CaB6 has only been observed as a decomposition product at temperatures above 

400°C and so would not have been expected in the lower temperature spectra.20, 23 

Examination of the NMR spectrum obtained after reaction at 800°C showed that a 

broad signal was present between 0 ppm and 10 ppm, figure 6.37, and so it was not 

possible to identify CaB6. This broad feature also meant it was not possible to identify 

whether any elemental boron was present in this spectrum. Elemental boron shows a 

broad resonance at 2 ppm, which has been identified by 11B NMR spectroscopy 

following decomposition of LiBH4 heated to 500°C.44 Elemental boron has been 

predicted as a decomposition product of Ca(BH4)2, although it has not been 

identified.18, 20 

 

Figure 6.37 – The solid state 11B MAS NMR spectrum of the product of the CaH2 + 

4NH3BH3 reaction after heating to 800°C between 0 ppm and 10 ppm 
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A number of studies have also discussed the formation of an unidentified boron 

containing intermediate during Ca(BH4)2 decomposition. Riktor et al.23 postulated that 

this intermediate was of composition CaB2H2, although, a theoretical study reported 

that the reaction energy for formation of CaB2H2 was too high for this to be the 

favoured Ca(BH4)2 decomposition pathway.45 A second possibility for the 

intermediate is CaB12H12, although its formation during Ca(BH4)2 decomposition has 

not been directly identified. 11B NMR spectroscopy has been utilised to identify both 

MgB12H12 and Li2B12H12 as decomposition products from the respective metal 

borohydrides.44 The solid state 11B NMR spectrum of CaB12H12 shows a single 

resonance at −14.5 ppm.46 During our study a resonance of similar chemical shift 

(−16.0 ppm) was observed between 250°C and 300°C. Figure 6.35 shows that in this 

temperature range the intensity of both the α and β polymorphs decreased. 

Therefore, the observation of the resonance at −16.0 ppm provides some evidence 

that CaB12H12 could be an intermediate in the decomposition of Ca(BH4)2. 

The potential boron containing decomposition products of Ca(BH4)2 discussed so far, 

CaB6, B, CaB2H2 and CaB12H12, offer no explanation as to why there was a growth in 

the broad sp2 feature above 225°C. This large sp2 feature showed that boron was 

present in either BN2H or BN3 environments.42 As previously discussed, part of this 

signal was due to the presence of (NHBH)n in the sample. Above 400°C, this material 

had the potential to further desorb H2 to form BN.36, 47 BN exists in two polymorphs. 

The cubic form adopts the zinc blende structure and the structure is comprised of 

local BN4 tetrahedra, figure 6.38a, whereas the hexagonal polymorph has a structure 

similar to graphite, involving planar layers of B3N3 hexagons, stacked so that there is 

alternation between B and N in the layers, figure 6.38b. This difference in structure 

results in different chemical shifts in 11B NMR spectroscopy, with the cubic polymorph 

producing a resonance at 1.6 ppm, while the hexagonal polymorph produces a 

feature at 30 ppm with a quadrupolar line shape.48 Only a weak feature was 

observed at 1.6 ppm, which suggested that H2 loss from (NHBH)n yielded hexagonal 

BN and hence contributed to the strong quadupolar sp2 feature above 400°C. 

However, as (NHBH)n was already contributing to the resonance below 400°C, this 

decomposition step would not have resulted in increased intensity. 
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Figure 6.38 – The crystal structures of (a) cubic BN49 (b) hexagonal BN50 

The increased strength of the sp2 resonance may therefore be related to the 

decomposition of Ca(BH4)2. Chu et al.13 reported that the decomposition pathway 

followed by Ca(BH4)2·2NH3 was dependent on the conditions employed. Under 

dynamic flow mode, a two step deammoniation pathway proceeded, whereas in a 

closed system where NH3 remained within the vicinity of the complex, H2 was 

released. The sample collected after dehydrogenation at 250°C was studied by solid 

state 11B NMR and the spectrum showed two overlapping quadrupolar peaks at 

similar chemical shift to the broad sp2 resonance observed in this study. The overall 

dehydrogenation reaction was thought to have proceeded as shown below: 

 Ca(BH4)2·2NH3 → ¼Ca(BH4)2 + ¼Ca3(BN2)2 + BN + 6H2 Reaction 6.13 

The CaH2 + 4NH3BH3 reactions in this study were carried out on a flowing argon gas 

line, with the sample contained within a quartz tube and therefore NH3 would be 

expected to desorb. However, as argon flowed over the top of the quartz tube, the 

desorbed NH3 gas may not have been removed from the vicinity of the sample 

quickly enough to prevent a similar decomposition reaction to that shown in reaction 

6.13 from proceeding. Ca3(BN2)2 possesses boron in an sp environment and the 11B 

NMR spectrum of this material has been shown to produce a quadrupolar resonance 

with a similar chemical shift to that observed here.29 Furthermore, the BN formed 

during this reaction would have also contributed to the strong sp2 resonance and the 
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Ca(BH4)2 formed would have decomposed according to its known decomposition 

pathway, resulting in the previously discussed formation of CaB12H12 and CaB6. 

A similar phenomenon was observed in the decomposition of Ca(NH2BH3)2·2NH3, 

with a dynamic flowing mode favouring NH3 release, while a closed system resulted 

in H2 desorption.12 Following H2 desorption a broad feature with a quadrupolar 

lineshape compiled of two environments was observed in the solid state 11B NMR 

spectrum. Therefore, the most satisfactory explanation for the growth in the broad sp2 

feature above 225°C would be the formation of Ca3(BN2)2 and BN. As discussed in 

section 6.3, the powder XRD pattern of the sample collected after reaction at 800°C 

showed poorly crystalline Ca3(BN2)2.The high temperature required for this material 

to crystallise satisfactorily (1200°C) means that it may have been present in an 

amorphous form at lower temperatures, and was not detected by powder XRD.29 

 

6.8 Overall Discussion and Conclusion 

6.8.1 The CaH2 + 4NH3BH3 Reaction Pathway 

The results of powder XRD, thermal desorption and solid state 11B NMR 

spectroscopy have led to the following proposed reaction scheme for the CaH2 + 

4NH3BH3 reaction. 

The volume expansion that the sample underwent on heating, coupled with the 

thermal desorption results, which showed a H2 release profile similar in nature to 

NH3BH3, suggested that the first step in the reaction pathway could be the same as 

that in the decomposition mechanism of NH3BH3. The network of dihydrogen bonding 

is disrupted through heating, forming a more mobile phase of NH3BH3, figure 6.39, 

which then undergoes a rearrangement reaction, forming DADB, figure 6.40. This 

could be a crucial step in the formation of Ca(BH4)2·2NH3 as DADB possesses the 

BH4
− anion required for Ca(BH4)2 formation. 
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Figure 6.40 – Disruption of dihydrogen bonding network 

 

Figure 6.40 – The formation of DADB 

It is, however, the cationic segment of DADB that may be involved in the next stage 

of the reaction mechanism. The hydride ions present in CaH2 have the potential to 

attack the cation in one of two ways. An SN2 type reaction could proceed, whereby 

the H attacks the B, expelling NH3 and forming NH3BH3, figure 6.41. Alternatively a 

hydride abstraction reaction could occur, figure 6.42, where the hydride attacks a 

protic H of one of the NH3 groups, which would result in the formation of H2B=NH2 

and the release of NH3. 

 

Figure 6.41 – The proposed SN2 step during the CaH2 + 4NH3BH3 reaction 

 

Figure 6.42 – The proposed hydride abstraction step during the CaH2 + 4NH3BH3 

reaction 

Due to the 1:4 reaction stoichiometry, two moles of DADB would have formed and 

therefore the second H of CaH2 would be able to undergo a similar reaction to the 

first and hence a second mole of NH3 would be released as well as resulting in the 

formation of Ca(BH4)2, as shown below. 
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HCaBH4 + DADB → Ca(BH4)2 + H3NBH3 + NH3   Reaction 6.14 

HCaBH4 + DADB → Ca(BH4)2 + H2N=BH2 + NH3 + H2  Reaction 6.15 

The reaction vessel would now contain one mole of Ca(BH4)2 and two moles of NH3. 

NH3 has been shown to form adduct complexes of Li, Mg and Ca borohydrides under 

mild conditions and therefore the Ca(BH4)2 and 2NH3 would have formed  

Ca(BH4)2·2NH3.
13, 51, 52 This mechanism also offers an explanation for the importance 

of the 1:4 reaction stoichiometry: Two DADB molecules are required for Ca(BH4)2 to 

form and so four NH3BH3 molecules were initially required. 

In order to determine whether an SN2 or hydride abstraction reaction occurred, it is 

necessary to consider the products from the two reactions. The SN2 would result in 

NH3BH3, but at the temperatures employed in the reactions, in excess of 80°C, it 

would have been unstable and undergone decomposition, leading to (NH2BH2)n. The 

hydride abstraction reaction would have formed the highly unstable H2N=BH2 

monomer, which itself could have undergone two stabilising reactions, forming either 

(NH2BH2)n, figure 6.43, or a cyclic dimer (H2NBH2)2, figure 6.44. This cyclic dimer has 

been shown to be unstable and the ring structure breaks upon heating, also resulting 

in (NH2BH2)n.
38  

 

Figure 6.43 – Polymerisation of H2N=BH2 to form (NH2BH2)n 

 

Figure 6.44 – Cyclic dimer, (NH2BH2)2 formation from H2N=BH2 

There was a subtle decrease in the onset temperature of the second H2 release step 

in the CaH2 + 4NH3BH3 desorption profile compared to that of NH3BH3, as well as the 

two desorption profiles being significantly different following the initial H2 desorption, 

figure 6.20. The SN2 mechanism essentially releases NH3BH3 and so a much better 

agreement between the two profiles would be expected. Therefore, the large 
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differences between the two desorption profiles suggests that the abstraction 

mechanism may have taken place.  

Following the formation of Ca(BH4)2·2NH3 and (NH2BH2)n, to a first approximation the 

decomposition pathways of each material appear to proceed more or less separately, 

under certain conditions, as previously discussed. Ca(BH4)2·2NH3 desorbs NH3 in a 

stepwise process, forming  Ca(BH4)2·2NH3 and Ca(BH4)2, sequentially. Ca(BH4)2 

subsequently decomposed leading to CaH2, and possibly CaB6 and CaB12H12. This 

decomposition pathway was complicated by the presence of NH3 in the reaction 

vessel, resulting also in the formation of Ca3(BN2)2. (NH2BH2)n desorbed H2 forming 

(NHBH)n, which itself desorbs H2 at elevated temperatures, eventually leading to BN 

formation. 

 

6.8.2 Potential as Hydrogen Storage Materials 

The goal of this study was to improve the hydrogen desorption properties of the 

NH3BH3 system through the reaction with CaH2. However, the proposed mechanism 

of this reaction shows that the formation of DADB was in fact the key event that 

allowed the reaction with CaH2 to proceed. Thermal desorption studies showed that 

there were significant differences between the H2 release profile of the CaH2 + 

4NH3BH3 reaction and that of NH3BH3, with additional H2 desorption events from the 

reaction mixture, due to unidentified side reactions involving the interaction of NH3 

released from the ammoniates with other components of the reaction mixture, 

highlighting the complex nature of the desorption pathway. The product of this 

reaction, Ca(BH4)2·2NH3, released NH3 when it was heated under dynamic flowing 

conditions. The contamination of the H2 stream by NH3 is undesirable when it is to be 

used in fuel cells as NH3 will poison the fuel cell and therefore have a negative effect 

on its performance. As the CaH2 + 4NH3BH3 reaction pollutes the H2 desorbed from 

NH3BH3 with large amounts of NH3, its potential as a method of hydrogen storage 

seems to be limited. However, Ca(BH4)2·2NH3 has been shown by Chu et al.13 to 

offer potential as a hydrogen storage material when thermal decomposition is carried 

out within a closed system as H2 is the only gas desorbed.  
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Chapter 7 

 

Conclusions and Suggestions for 

Further Work 

 

7.1 Conclusions 

The thermal decomposition pathway of ammonia borane has been investigated. It 

was observed that upon heating ammonia borane foamed, due to the release of 

gaseous products of decomposition, identified to be hydrogen by TPD–MS 

investigations. A sharp hydrogen release began at 85°C, while subsequent 

desorptions were much broader, with releases commencing at 125°C and 290°C. 

Following the first decomposition step powder XRD analysis showed there were no 

crystalline materials present. Solid state 11B MAS NMR spectroscopy played a more 

important role in determining the composition of the amorphous decomposition 

products. A number of boron environments were present in the samples after heating 

NH3BH3 to 80°C and 200°C. The observed environments showed that DADB played 

an important role in the decomposition pathway. The appearance of N2BH2 

environments revealed the initial decomposition products were polyaminoboranes, 

(NH2BH2)n, while further heating resulted in boron predominantly residing in sp2 

environments, in the form of polyiminoboranes, (NHBH)n. The formation of these 

polymeric products was further supported by Raman spectroscopic studies. 

The bulk of this research focused on the thermal reactions of metal hydrides with 

ammonia borane. The products of the reactions were initially investigated by powder 

XRD. In the case of NaH, the reaction was found to be able to proceed with a 

reaction stoichiometry of 1:1 at a temperature of 40°C, forming NaNH2BH3. A 
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reaction stoichiometry of 1:2 in favour of NH3BH3 led to the formation of a new 

previously unreported crystalline phase at a reaction temperature of 60°C. The 

powder XRD pattern collected for this material was indexed to a trigonal unit cell, with 

a suggested space group of P31c. The a and c lattice constants were refined through 

a Pawley fit to values of 4.3389(4) Å and 17.859(1) Å, respectively. It was 

subsequently determined that the first step in the reaction pathway was the reaction 

of 1 mole of NaH with 1 mole of NH3BH3, forming NaNH2BH3, which then reacted 

with the excess NH3BH3 forming the trigonal phase. The trigonal phase was 

observed to exist until a reaction temperature of 150°C was achieved. Powder XRD 

analysis revealed that the only crystalline decomposition product was NaBH4, which 

implied that there were also amorphous decomposition products present. Thermal 

desorption investigations showed that the formation of NaNH2BH3 was exclusively 

accompanied by H2 release, while the formation of the trigonal phase was 

accompanied by the release of both H2 and NH3. The desorption of NH3 was 

concluded to be related to the formation of the trigonal phase, reaction 7.1, which led 

to the conclusion that the trigonal phase was of composition Na+(BH3NH2BH3)
−. The 

desorption of H2 was attributed to side reactions. 

NaNH2BH3 + NH3BH3 → Na+(BH3NH2BH3)
− + NH3  Reaction 7.1 

The reaction of LiH with NH3BH3 was observed to proceed differently to that of NaH. 

A reaction stoichiometry of 1:1 failed to yield LiNH2BH3 and it was only when a 

reaction stoichiometry of 1:2 in favour of NH3BH3 was employed that a single 

crystalline product could be obtained. The powder XRD pattern collected for this 

material was indexed to a tetragonal unit cell with a suggested space group of 

P42mc. The a and c lattice parameters were refined through a Pawley fit, to values of 

4.0288(2) Å and 16.958(2) Å, respectively. A powder XRD investigation revealed that 

this tetragonal phase existed until a reaction temperature of 150°C was reached. At 

this temperature there was some evidence that LiBH4 had formed, although the 

decomposition products were predominantly amorphous. Thermal desorption 

investigations showed that the formation of the tetragonal phase was exclusively 

accompanied by the release of H2, while both H2 and NH3 were desorbed during this 
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materials decomposition. These observations helped reach the conclusion that the 

tetragonal phase was of composition [Li(NH3)]
+[BH3NH2BH3]

−. 

The reaction of CaH2 with NH3BH3 was found to require a reaction stoichiometry of 

1:4 and a reaction temperature of 80°C in order to yield a product free from starting 

materials. The crystalline products of the reaction were analysed by powder XRD and 

a literature search allowed this product to be identified as Ca(BH4)2·2NH3. Further 

heating to 120°C yielded a second crystalline material, which was identified as 

Ca(BH4)2·NH3, before this material decomposed to form α-Ca(BH4)2 at 225°C. 

Powder XRD data was employed to solve the previously unreported structure of 

Ca(BH4)2·NH3 using Rietveld refinements. The structure was found to possess an 

orthorhombic unit cell in the Pnam space group with a = 8.1991(3) Å, b = 11.8406(4) 

Å and c = 5.8369(2) Å. The structure of Ca(BH4)2·2NH3 was also solved from powder 

XRD data, although this structure has previously been reported. Thermal desorption 

investigations showed that only H2 was released during the formation of 

Ca(BH4)2·2NH3 from starting materials, while both H2 and NH3 were desorbed in 

subsequent reaction steps. 

In order to obtain a more complete picture of the three reaction pathways discussed 

above, solid state 11B MAS NMR spectroscopy was employed, primarily to provide 

information about amorphous components of reaction mixtures. In all three reaction 

pathways the NMR spectra revealed that amorphous materials were significant 

decomposition products. The crystalline products of the lithium and sodium reactions 

possessed boron in only sp3 environments, however, the NMR spectra revealed sp2 

boron was present in all samples, even at reaction temperatures that were lower than 

the decomposition temperature of the crystalline products. This low temperature 

presence of sp2 boron showed that there were competing reactions taking place. 

Following decomposition of Na+(BH3NH2BH3)
− boron was found to exist in 

approximately equal amounts in sp2 and BH4 environments. Solid state 23Na MAS 

NMR spectroscopy revealed that all of the sodium in the decomposition products was 

found in the form of NaBH4, leading to the conclusion that the amorphous 

decomposition products were polyiminoboranes, (NHBH)n. The 11B NMR spectrum of 

the sample collected following the decomposition of [Li(NH3)]
+[BH3NH2BH3]

− was 
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dominated by an sp2 boron feature, as well as possessing a small BH4 resonance. 

The chemical shift of the sp2 feature was similar to that of the one observed in the 

spectrum collected from decomposed Na+(BH3NH2BH3)
−, implying that the same 

amorphous material had formed, namely polyiminoborane. 

The solid state 11B MAS NMR spectra of the CaH2 + 4NH3BH3 reaction pathway 

showed BH4 and sp2 features at all temperatures. The BH4 environment showed 

slight changes in chemical shift as the crystalline material present in the reaction 

mixture changed, while the appearance of sp2 boron at low temperature gave an 

important insight into the reaction pathway. The observation of both BH4 and sp2 

features following the first step in the reaction pathway led to the conclusion that the 

decomposition of NH3BH3 had an integral role in the reaction pathway, specifically 

the decomposition step resulting in the formation of DADB. DADB formation provided 

the BH4
− anion necessary to effect formation of Ca(BH4)2·2NH3. This reaction step 

rationalised the need for a reaction stoichiometry of 1:4, as two DADB units were 

required for Ca(BH4)2·2NH3 formation, which initially required four NH3BH3 

molecules. The NH3BH2NH3 unit present in DADB underwent chain growth and 

released hydrogen, following the same decomposition pathway as NH3BH3, forming 

an amorphous material possessing sp2 boron. The observed sp2 environment had 

the same chemical shift to that of polyiminoborane. 

The desorption profile of the NaH + 2NH3BH3 reaction mixture showed that H2 

release commenced almost instantaneously, with the first peak in the H2 trace 

observed at 40°C. A second H2 release began at 55°C and peaked at 80°C. The LiH 

+ 2NH3BH3 reaction mixture showed H2 release did not commence until 50°C, with a 

peak at 75°C. The observed lower onset temperature of H2 release from the NaH 

containing reaction mixture was due to the initial formation of NaNH2BH3, a reaction 

step that was not observed in the LiH + 2NH3BH3 reaction pathway. The second H2 

desorption from the NaH + 2NH3BH3 reaction mixture was due to Na+(BH3NH2BH3)
− 

formation. The first H2 desorption from the LiH + 2NH3BH3 reaction mixture was due 

to the equivalent step in this reaction pathway, the formation of 

[Li(NH3)]
+[BH3NH2BH3]

−, showing that the two materials formed at similar 

temperatures. A significant difference between the desorption profiles was the 
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release of NH3 from the NaH + 2NH3BH3 reaction mixture between 65°C and 140°C, 

which occurred during Na+(BH3NH2BH3)
− formation, whereas the formation of 

[Li(NH3)]
+[BH3NH2BH3]

− did not involve NH3 desorption. 

A comparison of the desorption profiles of Na+(BH3NH2BH3)
− and 

[Li(NH3)]
+[BH3NH2BH3]

− showed decomposition of these materials began at similar 

temperatures, with the onset of H2 release observed at 135°C and 130°C, 

respectively. The observed weight loss for [Li(NH3)]
+[BH3NH2BH3]

− in this initial 

decomposition step, 9.4 wt%, was greater than that observed for Na+(BH3NH2BH3)
−, 

5 wt%. Heating the materials to 350°C resulted in total weight losses due to H2 

release of 12.5 wt% for [Li(NH3)]
+[BH3NH2BH3]

− and 7.5 wt% for Na+(BH3NH2BH3)
−. 

The higher weight loss from [Li(NH3)]
+[BH3NH2BH3]

− suggests that it has more 

potential as a hydrogen storage material than Na+(BH3NH2BH3)
−. However, a further 

difference between the two desorption profiles was that [Li(NH3)]
+[BH3NH2BH3]

− 

showed a weight loss of 3.6 wt% between 75°C and 150°C due to NH3 release, 

whereas decomposition of Na+(BH3NH2BH3)
− was free from NH3 desorption. This 

NH3 release is a significant drawback in the potential of [Li(NH3)]
+[BH3NH2BH3]

− as a 

hydrogen storage material and so unless this release can be suppressed, it is 

Na+(BH3NH2BH3)
− that shows the greatest potential as a hydrogen store. 

It was observed that the reactions of LiH and NaH with NH3BH3 proceeded through 

different mechanisms, despite yielding similar products. A significant difference 

between the two reactions was that the LiH and NH3BH3 reaction mixture foamed, 

whereas, the NaH reaction did not, providing an insight into the mechanism of the 

crystalline phase formation. The hydride ion of MH is a strong base and is potentially 

capable of removing a protic H from the NH3 group in NH3BH3. In the case of the 

more basic NaH, deprotonation of NH3BH3 was facile and so NaNH2BH3 could form. 

Lithium is less electron donating than sodium, meaning the H− is a weaker base and 

so it was not capable of acquiring a protic H from NH3BH3. This meant that the NaH 

reaction could proceed when NH3BH3 was in its most stable state, before disruption 

of the dihydrogen bonding network, initially forming NaNH2BH3, before this material 

reacted with the second mole of NH3BH3 to yield Na+(BH3NH2BH3)
−. The fact that the 

LiH reaction mixture foamed showed that this metal hydride reacted with the more 
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mobile phase of NH3BH3. Following foaming LiH would have been able to react with 

one mole of NH3BH3 to form LiNH2BH3, but as the second mole of NH3BH3 was also 

labile, a subsequent reaction of LiNH2BH3 with NH3BH3 would also have been able to 

proceed. This meant that LiNH2BH3 was never observed as a reaction product and 

[Li(NH3)]
+[BH3NH2BH3]

− formed instead. 

Thermal desorption investigations of the reaction pathways showed a significant 

amount of ammonia was released during the NaH reaction, whereas the formation of 

[Li(NH3)]
+[BH3NH2BH3]

− was exclusively accompanied by hydrogen release. The 

lithium cation is a stronger Lewis acid than the sodium cation and so it is more facile 

for the released NH3 to form an adduct with the lithium cation compared to sodium. 

Consequently, ammonia desorption was observed during the decomposition of 

[Li(NH3)]
+[BH3NH2BH3]

−, whereas hydrogen desorption was exclusively observed 

during Na+(BH3NH2BH3)
− decomposition. 

The reaction of CaH2 with NH3BH3 yielded a borohydride containing product, showing 

that this reaction mechanism involved the formation of DADB, a very different 

mechanism to that observed in the cases of LiH and NaH. The reason behind this is 

that LiH and NaH are both metallic hydrides, whereas CaH2 is an insulator. This 

means a thermal reaction involving CaH2 could not proceed until the more reactive 

DADB had formed in the reaction mixture, which resulted in a reaction product 

unrelated to [Li(NH3)]
+[BH3NH2BH3]

− and Na+(BH3NH2BH3)
−. 

 

7.2 Suggestions for Further Work 

This research has opened up avenues to further research into metallated derivatives 

of ammonia borane. In terms of the products already synthesised in this research, 

namely Na+[BH3NH2BH3]
−, [Li(NH3)]

+[BH3NH2BH3]
−, Ca(BH4)2·2NH3 and 

Ca(BH4)2·NH3, it would be beneficial to continue crystallographic studies on all 

materials. The acquisition of synchrotron powder diffraction data would be desirable. 

This higher quality data would allow the diffraction data to be indexed and refined to 

a higher degree of accuracy. Furthermore, the crystal structures solved for 
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Ca(BH4)2·2NH3 and Ca(BH4)2·NH3 could be more accurately determined with 

synchrotron powder diffraction data. 

The crystalline phases Na+[BH3NH2BH3]
− and [Li(NH3)]

+[BH3NH2BH3]
− have been 

characterised by a variety of techniques in this research, however, the crystal 

structures of both materials remained unsolved. Further work related to these two 

materials should therefore focus on the successful solution of both of these crystal 

structures. 

The research could be further extended to investigate the interaction of ammonia 

borane with other group 1 and group 2 light hydrides as well as incorporating light 

transition metal hydrides. The possibility of synthesising mixed metal products would 

also be an interesting avenue to explore as a potential method of optimising 

hydrogen release. 

This research investigated the hydrogen desorption properties of the synthesised 

materials. However, in order to fully evaluate the potential of these materials for 

hydrogen storage it will be necessary to investigate their capability to be 

rehydrogenated following dehydrogenation. Hydrogenation at a variety of 

temperatures and pressures should be undertaken to investigate this potential. If 

hydrogenation proves successful, the systems capability to be recycled numerous 

times should be investigated. 
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Appendix 1 

Table A1.1 – The Raman shifts and assignments of bands observed in the Raman 

spectra of ammonia borane heated at various temperatures 

NH3BH3 RT NH3BH3 80°C NH3BH3 200°C 

Assignment Raman 
Shift 

(cm−1) 

Assignment Raman 
Shift (cm−1) 

Assignment Raman 
Shift 

(cm−1) 

N–Hst
asym 

(NH3) 
3317m N–Hst

asym 
(NH3) 

3319m N–Hst
asym 

(NH) 
3339s 

N–Hst
sym 

(NH3) 
3252vs N–Hst

sym (NH3) 3254m N–Hst
sym 

(NH) 
3273vs 

Overtone 3177m Overtone 3178w B–Hst 2444s 

Unknown 2377s Unknown 2375m B–Hst 2393s 

B–Hst
asym 

(BH3) 
2330s B–Hst

asym (BH3) Unobserved B–Hst 2329s 

B–Hst
sym 

(BH3) 
2280vs BHst

sym (BH3) 2283s B–Hst 2278s 

NH3
ds

asym 1600w NH3
ds

asym 1605vw N–Hb 1575w 

Overtone 1450vw Overtone 1452vw N–Hb 1570w 

NH3
du

sym 1375w NH3
du

sym 1381vw B–Hb 1405vw 

BH3
ds

asym 1190w BH3
ds

asym 1193w B–Hb 1202w 

BH3
du

sym 1160w BH3
du

sym 1161w B–Hb 1043vw 

NBHr 1070vw NBHr Unobserved 11B–Nst 880vw 
10B–Nst 800w 10BNst Unobserved 11B–Nst 787vw 
11B–Nst 783m 11BNst 786m  

 
 

 
 
 

st = stretch 
ds = scissors 

du = umbrella 
r = rock 

b = bend 
 

vs = very strong 
s = strong 

m = medium 
w = weak 

vw = very weak 

NBHr 728w NBHr Unobserved 

 N–Hst
asym 

(NH2) 
3312s 

N–Hst
sym (NH2) 3270vs 

B–Hst
asym (BH2) 2422s 

B–Hst
sym (BH2) 2322s 

Unknown 2252m 

N–Hb (NH2) 1566m 

B–Hb
asym (BH2) 1208w 

B–Hb
sym (BH2) 1167w 

B–Nst 811w 

B–H or N–H 
deformations 

1286w 

1230w 

1020w 

876w 
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Table A1.2 – The chemical shifts and assignments of features observed in the solid 

state 11B MAS NMR spectra of ammonia borane heated at various temperatures 

Environment Chemical Shift (ppm) 

 
Room 

Temperature 
80°C 200°C 

BH4 Not observed −38.0 −39.8 

NBH3 −26.0 −26.0 −23.7 

N2BH2 Not observed −13.0 Not observed 

N3BH Not observed −0.5 Not observed 

BOx Not observed Not observed 1.0 

sp2 B Not observed 27.0 Not observed 

sp2 B Not observed Not observed 30.0 
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Appendix 2 

 

 

Figure A2.1 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 80°C. The observed pattern is shown in sky blue, the calculated 

pattern in red and the difference in purple. Bragg peak positions of the trigonal phase 

are shown in blue. Rwp = 9.434%, χ2 = 1.907 

 

 

 

Figure A2.2 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 100°C. The observed pattern is shown in violet, the calculated 

pattern in red and the difference in purple. Bragg peak positions of the trigonal phase 

are shown in blue. Rwp = 7.798%, χ2 = 1.573 

2 Theta

6560555045403530252015105

C
o

u
n

ts

2,500

2,000

1,500

1,000

500

0

-500

Na Phase 0.00 %

2 Theta

6560555045403530252015105

C
o

u
n

ts

2,500

2,000

1,500

1,000

500

0

Na Phase 0.00 %

Trigonal phase 

Trigonal Phase 

phase 



APPENDIX 2  332 
 

 

Figure A2.3 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 110°C. The observed pattern is shown in pink, the calculated 

pattern in red and the difference in purple. Bragg peak positions of the trigonal phase 

are shown in blue. Rwp = 7.779%, χ2 = 1.413 

 

Figure A2.4 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 150°C. The observed pattern is shown in blue, the calculated 

pattern in red and the difference in purple. Bragg peak positions of NaBH4 are shown 

in blue. Rwp = 7.513%, χ2 = 1.234 

 

Figure A2.5 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 200°C. The observed pattern is shown in orange, the calculated 

pattern in red and the difference in purple. Bragg peak positions of NaBH4 are shown 

in blue. Rwp = 6.927%, χ2 = 1.259 
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Figure A2.6 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 250°C. The observed pattern is shown in grey, the calculated 

pattern in red and the difference in purple. Bragg peak positions of NaBH4 are shown 

in blue. Rwp = 6.187%, χ2 = 1.318 

 

Figure A2.7 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 300°C. The observed pattern is shown in green, the calculated 

pattern in red and the difference in purple. Bragg peak positions of NaBH4 are shown 

in blue. Rwp = 7.516%, χ2 = 1.199 

 

Figure A2.8 – Pawley refinement for the product synthesised through the NaH + 

2NH3BH3 reaction at 400°C. The observed pattern is shown in dark purple, the 

calculated pattern in red and the difference in purple. Bragg peak positions of NaBH4 

are shown in blue. Rwp = 10.826%, χ2 = 1.166 
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Table A2.1 – Refinement of the NaBH4 phase synthesised in the NaH + 2NH3BH3 

reaction in the temperature range 120°C – 400°C 

Reaction 

Temperature (°C) 

a (Å) Cell Volume (Å3) 

120 6.1888(2) 236.98(8) 

150 6.1557(3) 233.26(3) 

200 6.1622(5) 233.10(6) 

250 6.1613(4) 233.90(5) 

300 6.160(2) 233.8(2) 

400 6.180(1) 236.0(2) 

NaBH4
1 6.13080(10) 230.43 

 

 

 

Figure A2.9 – Pawley refinement of the product from the NaH + 2NH3BH3 reaction at 

room temperature after ten days (a) the full 2θ range (b) 20 – 30° 2θ. The observed 

pattern is shown in black, the calculated pattern in red and the difference in purple. 

Bragg peak positions due to NH3BH3 (blue), NaNH2BH3 (black) and NaH (green) are 

indicated. Rwp = 8.514%, χ2 = 2.008 
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Figure A2.10 – Pawley refinement of the product from the NaH + 2NH3BH3 reaction 

at room temperature after two months. The observed pattern is shown in black, the 

calculated pattern in red and the difference in purple. Bragg peak positions of the 

trigonal phase are shown in blue. Rwp = 8.581%, χ2 = 1.223 

 

Table A2.2 – Refined values of a, b and c lattice constants and selected bond lengths 

from the NaH + 2NH3BH3 reaction at room temperature 

Parameter NaNH2BH3 

Fig. A1.9. 

NH3BH3 

Fig. A1.9. 

Trigonal Phase 

Fig. A1.10. 

a (Å) 7.4633(3) 5.2350(2) 4.3600(2) 

b (Å) 14.6262(6) 5.2350(2) 4.3600(2) 

c (Å) 5.6530(2) 5.0223(2) 17.950(2) 

Na-N bond 

length (Å) 

2.42(1) Not 

applicable 

Not applicable 

B-N bond 

length (Å) 

1.459(9) 1.589 Not applicable 
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Figure A2.11 – Pawley refinement of the product from the NaH + NH3BH3 reaction at 

50°C (a) the full 2θ range (b) 20 - 30° 2θ. The observed pattern is shown in green, 

the calculated pattern in red and the difference in purple. Bragg peak positions of 

NaNH2BH3 are shown in blue. Rwp = 12.183%, χ2 = 3.066 

 

Figure A2.12 – Pawley refinement of the product from the NaH + NH3BH3 reaction at 

60°C. The observed pattern is shown in red, the calculated pattern in black and the 

difference in purple. Bragg peak positions of NaH are shown in blue. Rwp = 11.131%, 

χ2 = 1.153 
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Figure A2.13 – Pawley refinement of the product from the NaH + NH3BH3 reaction at 

200°C. The observed pattern is shown in orange, the calculated pattern in red and 

the difference in blue. Bragg peak positions of NaH are shown in blue. Rwp = 8.081%, 

χ2 = 1.082 

 

Figure A2.14 – Pawley refinement of the product from the NaNH2 + NH3BH3 reaction 

at room temperature. The observed pattern is shown in black, the calculated pattern 

in red and the difference in blue. Bragg peak positions due to NaNH2 (blue) and 

NaNH2BH3 (black) are indicated. Rwp = 10.361%, χ2 = 1.228 

 

Reference 

1. Filinchuk, Y.; Hagemann, H., Structure and properties of NaBH4.2H2O and 

NaBH4. European Journal of Inorganic Chemistry 2008, 20, 3127-3133. 
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Appendix 3 

 

 

Figure A3.1 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

room temperature. The observed pattern is shown in black, the calculated pattern in 

red and the difference in purple. Bragg peak positions of the tetragonal phase are 

indicated in blue. Rwp = 9.340%, χ2 = 2.051 

 

 

Figure A3.2 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

40°C. The observed pattern is shown in black, the calculated pattern in red and the 

difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 7.732%, χ2 = 2.126 
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Figure A3.3 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

60°C. The observed pattern is shown in red, the calculated pattern in black and the 

difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 6.257%, χ2 = 1.664 

 

Figure A3.4 – Pawley refinement the product from the LiH + 2NH3BH3 reaction at 

80°C. The observed pattern is shown in sky blue, the calculated pattern in red and 

the difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 11.017%, χ2 = 1.628 

 

Figure A3.5 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

100°C. The observed pattern is shown in violet, the calculated pattern in red and the 

difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 8.425%, χ2 = 1.014 
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Figure A3.6 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

120°C. The observed pattern is shown in teal, the calculated pattern in red and the 

difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 5.655%, χ2 = 1.141 

 

Figure A3.7 – Pawley refinement for the product from the LiH + 2NH3BH3 reaction at 

140°C. The observed pattern is shown in orange, the calculated pattern in red and 

the difference in purple. Bragg peak positions of the tetragonal phase are indicated in 

blue. Rwp = 8.578%, χ2 = 1.026 

 

Figure A3.8 – Pawley refinement for the product from the LiNH2BH3 + NH3BH3 

reaction at 50°C. The observed pattern is shown in black, the calculated pattern in 

red and the difference in purple. Bragg peak positions of the tetragonal phase are 

indicated in blue. Rwp = 7.093%, χ2 = 1.126 
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