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ABSTRACT 

 
 
 
The prevalence of oral diseases such as dental caries and periodontitis and the 
universal need for effective control of oral health has stimulated a great deal of 
interest in oral hygienic formulations both scientifically and commercially driven. 
Such formulations are normally deployed as complex formulations commonly 
containing antimicrobial actives together with excipients, where both classes of 
ingredients may contribute to the bacteriological effect of the oral hygienic product. 
However, the mode of action and/or the bacteriological and microecological effects 
of exposure of microorganisms to oral hygiene products are poorly understood. In 
this context, this doctoral dissertation represents a series of investigations to 
contribute to knowledge in the area. The impact of selected oral antimicrobial 
actives (triclosan, sodium lauryl sulphate, stannous fluoride and zinc lactate) on a 
key aspect of bacterial cellular membrane function was investigated. This involved 
measuring major cellular respiratory pathways during exposure to the test agents 
using two types of tetrazolium dyes possessing different redox potentials as 
respiration pathway indicators. Spectrophotometric analyses indicated that sub-
lethal levels of triclosan and sodium lauryl sulphate act as uncoupling agents, an 
observation not previously been reported. Sub-lethal concentrations of stannous 
fluoride and zinc lactate however, blocked cellular respiration with resulting shifts 
towards glycolytic/fermentative pathways. The contribution of a variety of test 
agents to the overall antimicrobial effect of a complex formulation (Listerine®) was 
investigated in order to understand the relative efficacy of the actives. This was 
achieved by testing the essential oils present in the formulation singly and in 
combination utilising in vitro models. The use of the hydroxyapatite disc model 
(HDM) to grow salivary microcosms to test the efficacy of the ingredients revealed 
hitherto unreported synergistic activity between the active ingredients thymol and 
menthol. Proprietary dentifrices (Colgate Total® and Crest ProHealth®) containing 
the antimicrobial agents triclosan or stannous fluoride/zinc lactate, respectively, 
were comparatively evaluated. This was performed by simultaneously establishing 
salivary microcosms in Sorbarod Biofilm Devices (SBDs). Following the 
establishment of dynamic steady-states, paired devices were dosed with each of 
the two proprietary dentifrices. Bacteriological data generated after multiple dosing 
indicated that both dentifrices were comparably effective in the reduction of all 
tested bacterial functional groups in the plaque models. However, data generated 
using HDM models indicated greater reductions in Gram-negative anaerobes after 
exposure to Colgate Total®. The observations presented in this thesis may 
contribute to the development of oral formulations with optimised antimicrobial 
efficacies against adventitious pathogens present in the oral cavity and help in 
reducing the incidence of oral diseases and potentially related systemic interface.  
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CHAPTER 1 
 

General Introduction 
 

1.1 The human microflora 
 
It is clear that the world that we live in is dominated by microorganisms which 

include unimaginable numbers of bacteria. The human body itself has been 

estimated to be comprised of over 1014 cells, of which only 10% are mammalian 

and 90% are accounted for by members of the microflora or microbiota (mainly 

bacteria); (Sanders and Sanders 1984). As a result of the co-evolution between 

the resident microflora and humans, is the establishment of complex relationships. 

In such relationships the resident microflora of humans plays a positive role 

directly and indirectly in the development of normal physiology, in nutrition and in 

the immune system of the host (Marsh 2000). However, a negative or a passive 

relationship may develop between opportunistic pathogens of the resident 

microflora and the habitat with the potential outcome of disease. The composition 

of the resident microflora varies in different habitats of the body and is considered 

to be a characteristic of those habitats (e.g.; mouth, skin, gastrointestinal tract, 

etc.). In spite of the variation in microorganisms between distinct habitats, their 

taxonomic composition is still relatively consistent between individuals (Marsh 

2003). Once colonised and established, the composition of the resident microflora 

in each distinct habitat remains relatively stable, this stability (also known as 

microbial homeostasis) is maintained to a considerable degree in spite of the host 

defence mechanisms and despite regular exposure to stress factors of the 

environment and microbial immigration (Rasiah et al. 2005). Many resident 
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bacteria grow and survive in a nutrient-sufficient matrix-enclosed ecosystem 

adherent to host surfaces known as biofilms (Donlan and Costerton 2002). Any 

substantial changes in the environment (pH changes or immune responses, etc.) 

might cause a break down of microbial homeostasis of these biofilms and 

potentially leading to disease (Marsh 1989; Newman 1990). An example of such 

break down of the microbial homeostasis is the prevalence of dental caries due to 

dietary carbohydrate intake and the resultant repetitive exposure of teeth enamel 

to low pH (Marsh et al. 1988).   

 

1.2 The oral microbial ecosystem 
 
The existence of various microbial habitats in the oral cavity makes the mouth one 

of the most diverse ecosystems in the human body. Due to differences in their 

properties and biological features, each part of the oral cavity supports the growth 

and the development of a characteristic microbial community. Colonisable tissues 

that are present in the mouth include soft mucosal surfaces such as the tongue, 

cheeks, lips and the hard surfaces of teeth. However, certain features of these 

distinctive habitats do not remain stable during the life-time of an individual; for 

example the eruption of teeth after first few months of life providing new hard (non-

shedding) surfaces for colonisation and the introduction of new sources of 

nutrients such as gingival crevicular fluid (GCF), during tooth extraction or dental 

treatment, and the insertion of dentures (Kuramitsu and Ellen 2000). Temporary 

alterations of the oral ecosystem may be affected by the type and the frequency of 

the food ingested, by antibiotic treatment, and by saliva and GCF flow (Marsh 

1991).  
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1.3 Hard surfaces (teeth) 
 
Their distinctive physical properties make the teeth one of the few non-shedding 

sites for microbial colonisation in the human body (Fig. 1.1). The body of the tooth 

consists of four main parts; i) Enamel, which is the outer part of the tooth and also 

considered to be adapted in order to withstand acids, enzymatic attacks and 

mastication forces. The primary mineral of the tooth enamel is hydroxyapatite 

which is mainly composed of crystalline calcium phosphate. ii) Dentin, which 

supports the enamel, although it is less mineralized, it is more physically resilient 

than enamel due to the elasticity caused by collagen contents. Dentin forms the 

bulk of the tooth and is responsible for the resistance of the enamel to masticatory 

forces. iii) Cementum covers the root of the tooth. The main role of the cementum 

is to anchor the tooth to the alveolar bone, via periodontal ligaments. Cementum 

mainly consists of inorganic material (hydroxyapatite) and organic material 

(collagen). Finally, iv) The pulp, which occupies the central part of the tooth and 

mainly consists of living connective tissue, nerve fibres, and blood vessels 

extending to the end of the tooth root. Its main functions are nutritive, sensory and 

protective. Dental plaque refers to the resident microflora of the teeth and various 

surfaces in the mouth (as described later in Section 1.10). 

 

1.4 Mucosal surfaces 
 
The soft surfaces in the oral cavity comprise the tongue, palette, cheeks and the 

lips. Besides their function as taste receptors, both papillae and the taste buds at 

the dorsum of the tongue provide large surfaces for bacterial colonisation. The 

physiological structure of the tongue helps in protecting the resident 

microorganisms from being removed by mechanical force of mastication and 
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saliva flow. Being continuously bathed with saliva, alongside its unique structure 

provide anaerobic conditions enabling obligately anaerobic bacteria to grow. The 

continuous shedding of the stratified squamous epithelium of the palette, cheeks 

and the lips may affect the colonisation of attached microorganisms (Gibbons and 

van Houte 1970; Gibbons 1984; Marsh and Martin 1999).  

 
Figure 1.1: Tooth structure in health and disease. Adapted from (Marsh and 
Martin 1999). 
 

1.5 Saliva 
 
Besides representing a fluid medium for the oral ecosystem, saliva has a major 

influence as a nutritional source on oral microorganisms (de Jong and Van der 

Hoeven 1987). Saliva consists of approximately 99% water, with a variety of 

electrolytes (sodium, calcium, potassium, chloride, magnesium, phosphate, 

bicarbonate) and proteins (de Almeida et al. 2008). Saliva, secreted from the 
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salivary glands (parotid gland, sub-mandibular gland and sublingual gland) is 

considered to be part of the total or whole saliva present in the oral cavity, 

whereas, whole saliva refers to the complex mixture of fluids from the salivary 

glands, GCF, oral mucosa exudate, the mucous of the nasal cavity and pharynx, 

planktonic oral microorganisms, dietary  residues, shed epithelium and blood cells 

(Humphrey and Williamson 2001). Normally, mixed saliva has a mean pH of 5.6 to 

7.0; averaging 6.7. The pH of the saliva normally increases when its flow is 

enhanced (Nolte 1982). The flow rate and the concentration of salivary 

components are subject to circadian rhythms, in which the slowest flow occurs 

during sleep (Marsh and Martin 1999). The composition of human saliva and the 

average concentrations of its components are listed in Table 1.1. 

The major classes of organic components in saliva are proteins and glycoprotiens. 

The glycoprotein mucin comprises almost 25% of the total proteins present in 

saliva. The main types of mucin present in the saliva are MG1 and MG2. Because 

its is highly glycosylated, mucin type MG1 binds tightly to the enamel of the teeth, 

forming complexes with other saliva constituents. It is therefore, a major 

component of the acquired pellicle to which resident microflora attach. Although, 

MG2 is less glycosylated and more soluble than MG1, it is more easily displaced 

to form aggregates with the resident microflora (Marsh and Martin 1999; Wilson 

2005). Since saliva covers the whole oral cavity with a thin layer of ca.100µm in 

depth, nutrients present in the saliva will be rapidly and continuously transported to 

the bacteria attached to most oral surfaces. 
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Table 1.1: The main constituents of stimulated human saliva. 

Substance Concentration  
(mg/100ml) 

Amino acids 3.4-4.8 

Ammonia 3.0 

Amylase 38.0 

Bicarbonate 200.0 

Calcium 6.0 

cAMP 50.0 

Citrate 0.2-2.0 

Chloride 100.0 

Free carbohydrates 2.0 

Glucose 1.0 

Glycoprotein 110-300 

IgA 19.0 

IgG 1.4 

IgM 0.2 

Lipid 2.0-3.0 

Lysozyme 11.0 

Peroxidase 0.3 

Phosphate 12.0 

Potassium 80.0 

Sodium 60.0 

Thiocyanate 1.0-3.0 

Total proteins 140-640 

Urea 13.0 

Protien 140-640 

Uric acid 3.0 

Data obtained from (Wilson 2005). 

1.6 Gingival Crevicular Fluid (GCF) 
 
Serum components can reach the oral cavity in the form of a transudate fluid 

flowing via the junctional epethelium of the gingival crevice that is termed gingival 

crevicular fluid (GCF; Fig. 1.1). The rate of the GCF flow is considered to be 

relatively slow in healthy individuals (ca. 0.3-8µl per tooth per hour), compared to 

individuals with active periodontal disease. The rate of flow increases markedly in 
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cases such as gingivitis were it reaches 14µl per tooth per hour and 44µl per tooth 

per hour in periodontitis cases (Wilson 2005). Gingival crevicular fluid is a rich 

source of nutrients for microbial inhabitants of the mouth, especially in the 

subgingival area. The main constituents of the GCF are proteins, and a range of 

inorganic ions and carbohydrates. Gingival crevicular fluid also contains epithelial 

and immune cells, which play and important factor in regulating the resident 

microflora of the gingival crevice in both health and disease (Marsh 2003). 

Leukocytes are one of the main defence components present in the GCF and GCF 

is thus a major source of leukocytes in the oral cavity. Major classes of leukocytes 

are: lymphocytes, monocytes and polymorphonuclear cells (PMNs) which 

comprise a high percentage. Vitamin K and haemin have also been detected in 

GCF which are essential for the growth of oral bacteria (Wilson 2005). 

In addition to endogenous nutrients provided by the saliva and the GCF, 

exogenous nutrients present in food play an important role in the metabolism and 

ecology of the oral cavity. For instance, regular consumption of dietary 

carbohydrates such as glucose, sucrose, fructose or cooked starch has been 

reported to be associated with shifts in the balance of plaque and with changes in 

its metabolic activity (Marsh et al. 1988). This shift is mostly associated with 

increase in the proportion of acidogenic bacteria such as Streptococcus mutans 

and a fall in the proportion of acid-sensitive species (de Stoppelaar et al. 1970; 

Minah et al. 1985; Bradshaw and Marsh 1988). Such alterations in the microflora 

and its metabolism may predispose teeth to dental caries (Boyar and Bowden 

1985; Milnes and Bowden 1985). 
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1.7 Factors affecting microbial homeostasis in the oral cavity 

1.7.1 Temperature 
 
The temperature of the mouth is maintained relatively constant, ranging between 

35-36ºC. Relatively stable temperatures provide suitable environmental conditions 

for the optimal growth and metabolism of diverse bacterial species. Fedi and Killoy 

(1992) have reported that the temperature in active periodontal pockets is higher 

than healthy sites with a mean of 39ºC. Higher temperatures can affect gene 

expression and down-regulate the virulence genes of some periodontal pathogens 

such as Porphyromonas gingivalis (Amano et al. 1994; Xie et al. 1997). It has also 

been reported that temperature may vary between different subgingival sites within 

the same person, thereby affecting the proportion of some bacterial species such 

as P. gingivalis, Tannerella forsythensis and Campylobacter rectus (Maiden et al. 

1998). 

 

1.7.2 Oxygen availability (redox potential) 
 
Although the oral cavity is a highly aerated environment, it is colonised with a 

majority of either facultatively or obligately anaerobic microorganisms. This is due 

to the fact that early bacterial colonisers such as streptococci utilise oxygen in their 

respiratory processes and produce CO2 (Gottschalk 1986). Anaerobic bacterial 

species require reduced conditions for their growth/survival. The consumption of 

O2 and the production of CO2, therefore, provides reduced environmental 

conditions suitable for the growth and metabolism of anaerobic species (later 

colonisers); (Bradshaw et al. 1996). Anaerobic species utilise 

glycolytic/fermentative pathways with the production of organic acids (pyruvate, 

lactate) causing highly reduced environmental conditions. Hence, the distribution 
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of anaerobic bacteria in the oral cavity is highly dependable on redox potential at a 

specific habitat. The structure of some sites in the oral cavity also has a 

considerable impact on the redox potential. Various reports indicate that 

periodontal pockets are more highly reduced than healthy gingival crevices within 

the same mouth. For example, the posterior surface of the tongue has been found 

to be more anaerobic than the anterior region (Kuramitsu and Ellen 2000). 

Therefore, the growth and survival of anaerobic species such Fusobacterium, 

Porphyromonas and Prevotella on these sites is more likely than less reduced 

habitats. 

 

1.7.3 pH 
 
The buffering capacity of saliva is responsible for moderating the pH of the oral 

cavity. This is due to the fact that individuals produce stimulated saliva most of the 

time which has a neutral pH (Edgar 1976). Normally, stimulated saliva contains 

proteins, bicarbonates and other constituents, providing the saliva a good buffering 

activity (Wilson 2005). Neutral pHs are optimal for growth of many types of oral 

microflora. However, at low pH values, especially in cases of frequent 

consumption of dietary carbohydrates, saliva may not provide complete protection 

due to the continuous production of acid by acidogenic species such as 

streptococci and lactobacilli (Wilson 2005). 
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1.8 Acquisition of the oral microflora 
 
For a human being, birth represents a borderline between the sterile intra-uterine 

life and the extra-uterine existence in the local environment, associated with 

continuous exposure to microorganisms. The colonisation of microorganisms to 

the infant’s oral cavity requires the successive transmission from the environment 

to the host. The diversity of bacterial composition appears after only few days of 

life (Socransky and Manganiello 1971). The supply of suitable bacteria by direct 

and indirect contact with the surroundings of the infant affects the composition of 

the early colonising microflora. In spite of the colonisation of different species in 

the oral cavity of the infant, their numbers are not as high compared to adult 

microflora (Wilson and Henderson 1998). Other species of streptococci, 

staphylococci, micrococci, lactobacilli, entrococci and neisseria have been 

detected in lower numbers. However, Streptococcus salivarius is generally present 

at high numbers after one day of birth (Carlsson et al. 1970; Socransky and 

Manganiello 1971; Wilson and Henderson 1998). Streptococci are generally the 

first colonisers in the oral cavity, whereas Streptococcus mitis and Streptococcus 

salivarius are early colonisers within genus streptococci (Kononen et al. 2002). 

Additionally Actinomyces odontolyticus is a primary colonizer within the genus 

Actinomyces (Kononen et al. 2002; Marsh 2005). It has been also reported that 

Veillonella species and the Prevotella melaninogenica group are amongst the first 

obligate anaerobes. F. nucleatum, non-pigmented Prevotella species and 

Porphyromonas catoniae have also been reported to be amongst early bacterial 

communities of the mouth (Marsh 2005). The oral bacterial community becomes 

more complex and diverse especially after the eruption of teeth. The presence of 

teeth provides a new habitat of non-shedding surfaces with a new nutrition source 
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represented by the GCF suitable for biofilm formation and maturation. 

Streptococcus mutans and Streptococcus sanguis appear to colonise the mouth 

after tooth eruption (Kuramitsu and Ellen 2000). Such findings confirm that 

changes in the environment, such as the emergence of teeth may have a 

significant impact on the microbial diversity. The continuous direct and indirect 

contact with family members introduces new species that are normally indigenous 

in the adults’ oral cavity. Gram-negative anaerobic species have been recovered 

more commonly after teeth eruption. Prevotella melaninogenica, F. nucleatum, 

non-pigmented Prevotella species recovery incident was higher in the oral cavity 

of infants with a mean age of 32 months than previous age 0(Marsh and Martin 

1999). An exact time-frame for colonisation of Gram-negative anaerobes and 

spirochetes has not been firmly established because these species are fastidious 

and difficult to culture but have been known to be recovered form the oral cavity of 

children within five years of age (Marsh 2005).  

 

1.9 Functional bacterial groups of the oral cavity 
 
The physiological differences and properties of various habitats in the oral cavity 

provide a suitable environment for the growth and colonisation of a wide range of 

bacterial species. Culture-independent approaches such as 16S rRNA analysis 

have detected ca. 500 different microbial species, in addition to 200 species that 

have been isolated and cultured from the oral cavity (total of ca. 700 different taxa) 

(Paster et al. 2001). The proportion of the cultivated species (ca. 40%) from the 

oral cavity is higher than from any other habitat of the human body. It is not 

uncommon therefore, to culture 20-30 species from different individuals (Paster et 

al. 2001). The prevalence of oral diseases such as dental caries and periodontitis 



 30 

has stimulated a great interest in studying their aetiology; i.e. the bacterial 

ecosystem and their habitats; to help developing various methods and chemicals 

for a better oral hygiene control.  

 

1.9.1 Gram-positive cocci 

The genus streptococci represent the majority of the resident Gram-positive 

microflora and are routinely isolated from all the habitats in the oral cavity. The oral 

streptococci have been differentiated by simple traditional biochemical and 

physiological tests and more recently by DNA tests. The oral streptococci groups 

are i) mutans streptococci group, members of this group being found in plaque and 

are mostly associated with dental caries. This group include S. mutans, serotypes 

c, e, f, Streptococcus sobrinus serotypes d, g, Streptococcus cricetus serotype a, 

S. rattus serotype b, S. ferus, S. macacae and S. downei serotype h. ii) the S. 

salivarius group with members of this group being mostly found on mucosal 

surfaces and are considered to be related to pathogenesis. This group comprise 

S. salivarius and S. vestibularis iii) S. anginosus group, the sub-species presented 

in this group are found mainly in the gingival crevice and are considered as 

opportunistic pathogens, and  include S. anginosus, S. intermedius and S. 

constellatus. iv) the S. mitis group, members of which are mainly found in dental 

plaque and include S. sanguis, S. oralis, S. gordonni, S. parasanguis, S. mitis and 

S. crista.   

Many species of streptococci have the ability to metabolise sucrose and 

synthesise extracellular polysaccharides (EPS) such as glucans and fructans. 

These polymers are essential components of the exoploysaccharide-containing 

matrix of dental plaque as reviewed by (Loesche 1986). The streptococci are 
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acidogenic and some species such as S. mutans are acidophilic, that have the 

ability to survive at low environmental pH of 4.5 (Loesche 1986; Wilson 2005). The 

acidophilic and acidogenic characteristics of S. mutans strongly implicate this 

species in the aetiology of dental caries (Loesche 1986). Some species of 

streptococci have been strongly associated with non-oral infections of the internal 

organs and are an important cause of purulent diseases. Species of S. anginosus 

have been involved with multiple types of infections in many sites of the body. 

Pulmonary, liver, central nervous system (CNS) and oral abscesses, as well as 

infections such as sinusitis, periodontitis, abdominal infections, and skin infections 

after human wound bites have all been associated with the S. anginosus group 

(Gray 2005).  

Despite Staphylococcus species have been isolated in low numbers from the oral 

cavity, they are not considered as part of the normal resident microflora of the 

mouth (Bagg et al. 1995). It has been suggested that Staphylococcus species’ 

presence is transient (Smith et al. 2001). Although skin and nasal flora are passed 

continuously, yet these species are unable to colonise or compete against the 

resident bacteria (Marsh and Martin 1999).  

Enterococci, like streptococci species have been isolated in low numbers in the 

oral cavity and have been strongly associated in many cases of failed endodontic 

cases (Fouad et al. 2002). 

Other species of Gram-positive cocci are commonly recovered from carious 

dentine, root canals and infected pulp chambers. Most of these species are 

anaerobic and placed in the genus Peptostreptococcus such as P. micros, P. 

anaerobius and P. magnus (Marsh and Martin 1999). 
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1.9.2 Gram-negative cocci 
 
The commensal aerobic species Neisseria comprise part of the normal microflora 

of the oral cavity and respiratory tract (Kaplan and Fine 2002). They are isolated 

from most sites of the oral cavity except the subgingival sites (Aas et al. 2005). 

The most common species is Neisseria subflava and they are amongst the 

primary colonisers of the resident microflora. N. subflava produces 

polysaccharides and is saccharolytic (Marsh and Martin 1999) Although N. 

subflava is not strongly associated with disease, they can however, enter the 

submucosa and cause opportunistic infections (Kaplan and Fine 2002). In spite of 

low incidence, several reports have described N. subflava as being the causative 

microorganism of endocarditis, meningitis and septicemia (Lewin and Hughes 

1966; Pollack and Mogtader 1984; Amsel and Mouljn 1996; Baraldès et al. 2000). 

Several species of Veillonella have been isolated from the oral cavity which are V. 

parvula, V. atypica, and V. dispar. These species are anaerobic Gram-negative 

cocci and are frequently isolated from the tongue, buccal mucosa and dental 

plaque. The ability of Veillonella to utilise metabolites such as pyruvate and lactate 

as their major carbon source demonstrates the nutritional relationship between 

Veillonella and other oral microflora (Hughes et al. 1988), thus contributing to the 

homeostasis of the ecosystem in different habitats. Veillonella species are rarely 

associated with human infections (Wilson 2005). 

1.9.3 Gram-positive rods 

Amongst the oral species representing a large proportion of the dental plaque are 

actinomyces. Seven out of twelve recognised species of actinomyces have been 

recovered from the human oral cavity and include A. naeslundii genospecies 1 and 

2, A. georgiae, A. israelii, A. meyeri, A. gerencseria, and A. odontolyticus. 
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Actinomyces are Gram-positive, facultatively anaerobic microorganisms which 

utilise glucose to produce specific organic acids such as succinic, lactic and acetic 

acids as characteristic end products. In addition, Actinomyces are primary 

colonisers that posses two distinct types of fimbriae (type 1 and 2), which are 

involved in adherence to the oral cavity tissues and inter-bacterial co-aggregation 

(Whittaker et al. 1996; Amano 2010). Actinomyces species are associated with 

caries (specifically root surface-caries), gingivitis and periodontitis (Loesche and 

Syed 1978; Brailsford et al. 2001).    

Despite they only comprise 1% of the total cultivable resident microflora, 

lactobacilli species are commonly isolated from the oral cavity. They are mostly 

recovered from human saliva, teeth, the palate, the dorsum of the tongue and the 

vestibular mucosa (van Houte et al. 1972). L. casei, L. fermentum and L. 

acidophilus are amongst the most commonly isolated species of lactobacilli from 

the oral cavity. Since the proportions of these species increase in advanced caries 

lesion, they were the first organisms to be implicated as specific caries-etiologic 

agents (van Houte 1994). Lactobacillus species are highly acidophilic  (van Houte 

1980) and acidogenic and have been identified to produce either lactate or acetate 

(Marsh and Martin 1999). 

The genus Eubacterium is a poorly-defined group of bacteria. This group 

comprises of various fastidious, slow growing anaerobes that can be very difficult 

to isolate and culture. They are mostly abundant in oral infections but rarely found 

at healthy sites. The oral asaccharolytic Eubacterium species are associated with 

periodontal disease and other oral infections (Spratt et al. 1999). 

Despite most propionibacteria species are commensal skin microflora, they have 

been reported to be isolated from the oral cavity including P. acne in particular. 
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Propionibacteria species are obligately anaerobic and can produce propionic acid 

from glucose fermentation (Marsh and Martin 1999). Several reports have 

identified P. propionicus as being associated with root canal infections (Sundqvist 

1992; Sunde et al. 2000). 

Corynebacterium matruchotii is a Gram-positive short rod microorganism with long 

filaments and short, thick terminal ends. Corynebacterium matruchotii  considered 

to be a bacterium of significance within the oral cavity and comprises the central 

filament of "corn-cob formations" (formations in which S. sanguis bacteria bind to 

and surround Corynebacterium matruchotii  to create a corn-cob appearance in 

dental plaque); (Fig. 1.2). Corynebacterium matruchotii can be isolated from dental 

plaque, although it is not known to be associated with the aetiology of dental 

diseases (Takazoe et al. 1978; Collins 1982). 

Rothia species have also been regularly isolated from the oral cavity. Two Rothia 

species are commonly isolated from the dental plaque and the dorsum of the 

tongue which include Rothia dentocariosa and Rothia mucilaginosa (Marsh and 

Martin 1999; Kanzor et al. 2002). Rothia dentocariosa has been reported to be 

associated with other infections in the human body such as infective endocarditis 

(Boudewijns et al. 2003). 
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Figure 1.2:  “Corn-cob” formations of dental plaque. Image taken from 
(Sukontapatipark et al. 2001). 
 

 

Bifidobacteria have also been isolated from the human oral cavity in both health 

and disease. They are Gram-positive, non-motile, non-spore forming, anaerobic 

bacteria that are generally present in dental plaque (Moore et al. 1984; Beerns 

1990), gingival crevice (Maeda 1980), and saliva (Sanyal and Russell 1978). 

Bifidobacterium dentium have already been described to be present in dental 

plaque (Beerens et al. 1957) and dental caries (Scardovi and Crociani 1974). More 

recently two new species of Bifidobacteria have been reported to be isolated from 

dental caries which include B. denticolens and B. inopinatum (Crociani et al. 

1996), yet both species have recently been reclassified into two new genera 

named Parascardovia denticolens and Scardovia inopinata respectively (Jian and 

Dong 2002). 
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1.9.4 Gram-negative rods 

1.9.4.1 Facultative anaerobic Gram-negative rods 
 
The majority of this group of microorganisms are represented by Eikenella, 

Haemophilus, Actinobacillus and Capnocytophaga species. Eikenella species are 

fastidious facultative anaerobic Gram-negative bacilli species that were first 

identified by Eiken M. in 1958 (Eiken 1958). Eikenella corrodens species are 

pleomorphic bacilli which sometimes appear in cocci-bacilli shapes and typically 

create depressions in the agar on which they are growing (Eiken 1958). E. 

corrodens are ccommensal microorganisms of the human mouth and upper 

respiratory tract and they have been associated in periodontitis (Slots 1977; 

Socransky 1977)  and infective endocarditis (Doref et al. 1974).  

Aggregatibacter actinomycetemcomitans previously know as Actinobacillus 

actinomycetemcomitans (Nørskov-Lauritsen and Kilian 2006) is another oral 

commensal Gram-negative rod shaped microorganism. A. 

actinomycetemcomitans is an opportunistic pathogen that possesses 

certain virulence factors such as leukotoxin that enable it to invade the host 

tissues. Hence it has been associated in severe cases of localized aggressive 

periodontitis (Slots and Ting 1999; Haubek et al. 2001) and infective endocarditis 

(Marsh and Martin 1999).   

Other species of clinical importance that are present in this category include 

haemophilli which include H. parainfluenzae, H. segnis and H. hameolyticus and 

H. somnus. Haemophilli are commonly recovered from the saliva, dental plaque 

and the epithelial surfaces of the oral cavity. Some members of this species have 

been isolated from infected jaws and have been associated with endocarditis 

(Darras-Joly et al. 1997).  
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Capnocytophaga species are a group of fusiform, Gram-negative, rod-shaped 

organisms with gliding motility whose growth is favoured by a capnophilic 

atmosphere. Normally they are found in human dental plaque and saliva and are 

also involved in the progression of periodontal disease (Jolivet-Gougeon and 

Sixou 2007). 

 

1.9.4.2 Obligately anaerobic Gram-negative rods 
 
This category of microorganisms represents a major proportion of the microflora of 

the oral cavity. Fusobacterium are species of considerable importance and interest 

in the oral microbiota. These species are characterised by their long filamentous 

morphology and include a number of oral species that are associated with health 

and disease such as; F. sulci, F. periodonticum, F. nucleatum, and F. alocis 

(Claesson et al. 1990; Bradshaw et al. 1998). F. nucleatum has been identified for 

its pathological potential in the development of oral disease such as periodontitis 

due to its number and frequency in periodontal lesions (Dzink et al. 1985; Dzink et 

al. 1988; Moore and Moore 1994) and its ability to form aggregates with other 

pathogens present in the infected site (Kolenbrander and London 1993). F. 

nucleatum can not utilise sugars as the main source of energy (Gharbia and Shah 

1988; Robrish et al. 1991; Rogers et al. 1991), instead it obtains its energy by the 

fermentation of peptides and amino acids to organic acids such as butyric acid and 

acetic acid (Robrish and Thompson 1988). However, F. nucleatum show no or 

weak intrinsic proteolytic activity (Brokstad et al. 1990), therefore it will profit from 

its coexistence with other bacterial species such as Porphyromonas gingivalis that 

has the ability to produce proteolytic enzymes and release peptides that are 

necessary for F. nucleatum’s growth (Gharbia et al. 1989). F. nucleatum is 
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capable of desulfuration of sulfur containing amino acids such as cysteine and 

methionine, resulting in the release of odorous volatile sulfur compounds (VSC) 

such as ammonia, hydrogen sulfide, butyric acid, and methyl mercaptan (Pianotti 

et al. 1986; Claesson et al. 1990). Methyl mercaptan and hydrogen sulfide account 

for 90% of the total content (Tonzetich 1977). 

P. gingivalis are asaccharolytic, proteolytic species, dependent on nitrogenous 

substrates for energy such as amino acids and peptides to produces butyrate, 

acetate and propionate as their main metabolites (Shah and Gharbia 1989). 

Although sugars such as glucose can be utilized by the organism, they are not 

converted to metabolic end products but are mainly used for the biosynthesis of 

intracellular macromolecules (Shah and Williams 1987; Shah and Gharbia 1989; 

Shah and Gharbia 1993). P. gingivalis has an obligate vit. K and iron requirements 

for its growth (Bramanti and Holt 1990; Wilson 2005). P. gingivalis has long been 

considered as important species of the periodontopathic microflora associated in 

periodontal disease progression and bone and tissue destruction (Holt et al. 1988; 

Slots and Listgarten 1988). P. gingivalis has various virulence factors which 

include a number of enzymes responsible of the destruction of host tissues such 

as protease, collagenase, aminopeptidase, gelatinase and nuclease (Holt et al. 

1999). Along with its destructive enzymes P. gingivalis produces a number of 

odorous cytotoxic substances such as H2S, butyrate, methylmercaptan and indole 

(Holt et al. 1999). P. gingivalis posses a capsule that protects it from phagocytosis 

and fimbriae that mediate the bacterium adhesion to its habitat (Holt et al. 1999). 

Morphologically, both Prevotella species and Porphyromonas species are similar. 

However, the main difference is that Prevotella are saccharolytic and they have 

the ability to ferment carbohydrates, producing succinate and acetate. Prevotella 
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species can be categorized into to two either pigmented or non-pigmented main 

groups. The pigmented group includes P. loeschii, P. melaninogenica, P. 

denticola, P. intermedia and P. nigrescens whilst the non-pigmented group include 

the following species; P. oulora, P. oralis and P. buccalis. Both P. nigrescens and 

P. intermedia have been recognised as being associated with periodontal disease 

(Socransky and Haffajee 2005; Wilson 2005). 

Another microorganism that has been associated with periodontitis is Tannerella 

forsythensis (previously known as Bacteroides forsythus). It is a fusiform bacillus 

microorganism that utilizes amino acids as its major energy source to produce 

propionic, isovaleric and butyric acid (Wilson 2005). It has been frequently 

detected with P. gingivalis (Klein and Goncalves 2003; Yang 2004) and it can co-

aggregate with other species involved in periodontitis such as P. gingivalis and F. 

nucleatum which might increase its colonisation in the periodontal pockets (Holt 

and Ebersole 2005). 

Leptotrichia buccalis is another fusiform anaerobic, saccarolytic microorganism 

that becomes aerotolerant  in the presence of CO2 enriched environment (Wilson 

2005). It is usually isolated from dental plaque and plays a role in the etiology of 

periodontal diseases or in oral-related abscesses (Kondo et al. 1978; Reig et al. 

1985). 

Selenomonas noxia, S. fluggei, and S. artemidis have been recently discovered in 

plaque of the gingival crevice (Marsh and Martin 1999). They are saccharolytic, 

motile microorganisms that have a unique helical shape. S. noxia has been 

strongly associated in cases of periodontitis (Tanner et al. 1998). 

Several Campylobacter species including; C. rectus, C. concisus, C. sputorum and 

C. showae have been isolated from the subgingival sites. These species are 
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assaccharolytic and have a unique spiral shape. They produce succinate as their 

only metabolic end-product. C. rectus  has been associated in cases of 

periodontitis (Macuch and Tanner 2000). 

 

1.9.5 Spirochaetes 
 
Spirochaetes are Gram-negative, anaerobic, motile, helically and highly coiled 

(spiral-shaped) microorganisms. Oral spirochaetes belong to the genus 

Treponema and include a number of species such as; T. socranskii, T. denticola, 

T. vincentii and T. microdentium. They are highly fastidious microorganisms that 

are very difficult to grow in the laboratory (Dewhirst et al. 2001). Spirochaetes can 

be detected in the subgingival plaque and T. denticola in particular has been 

associated with gingivitis (Lee et al. 2005), root canal infections (Rocas and 

Siqueira 2005) and periodontitis (Choi et al. 1993). The association of spirochetes 

with oral diseases have been accounted for several virulence factors. These 

virulence factors include; adhesins, trypsin-like proteinase, peptidase and 

haemosyline (Chan and McLaughlin 1999). The ability T. denticola to produce 

glycine and pyruvate can support the growth of other microorganisms in the 

microbial habitat (Wilson 2005).  
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1.10 Dental plaque as a biofilm community 
 
Dental plaque can be defined as a mosaic dense community of microorganisms, 

embedded in an extracellular matrix of polymers of both host and microbial origin 

mainly found on various surfaces of the mouth as a biomass (Marsh 2004). Dental 

plaque has been described in detail on different parameters: i) On a clean surface 

over time. ii) In people with different ages, from different countries and diets with 

precise deficiencies in their host defenses (acquired and innate). iii) Following 

various therapies (Robinson et al. 1997). 

The composition of dental plaque varies on distinct anatomical surfaces (fissures, 

approximal, smooth surfaces, gingival crevice and dentures) due to different 

physical and biological properties of each site (Bowden et al. 1975). Dental plaque 

normally accumulates at stagnant sites that protect it from removal forces applied 

to the mouth. 

For the establishment of a mature plaque community, dental plaque undergoes 

several phases of development which include: i) Pellicle formation, following 

eruption or cleaning, a conditioning film (the acquired pellicle) forms immediately 

(Marsh 2004) and influencing the pattern of initial microbial colonization (Al-

Hashimi and Levine 1989); ii) Passive transport of oral bacteria to the habitat. 

Reversible adhesion occurs by weak long–range physicochemical interactions 

between the surfaces of the early bacterial colonisers  and the glycoprotein-pellicle 

of the coated tooth (Busscher and van der Mei 1997), while irreversible adhesion 

occurs by strong, short-range interactions between specific molecules on the 

bacterial cell surface (adhesins) and complimentary receptors in the pellicle 

(Jenkinson and Lamont 1997). With respect to the DLVO theory of colloidal 

stability, bacterial phenotypic changes are also required to fully explain irreversible 
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adhesion to oral surfaces. Oral bacteria can participate in multiple interactions at 

the same time with the host molecules and similar receptors on other bacteria (co-

adhesion). In this stage cocci microorganisms are absorbed onto the 

preconditioned environment, the pioneer species include mostly Neisseria, 

streptococci, Actinomymyces and Haemophilus species. These early colonisers 

grow and multiply forming colonies that become embedded in the biofilm’s EPS, 

creating favourable conditions for the co-adhesion of later coloniser (Marsh 2004); 

iii) Co-adhesion of secondary bacterial colonisers to primary colonisers. A special 

interbacterial adhesin–receptor interaction is involved in this stage which usually 

involves lectins. This kind of adhesion usually leads to an increase in the diversity 

of bacteria in the biofilm and the formation of unusual morphological structures like 

corn-cob formations (Kolenbrander et al. 2000). The process of co-adhesion 

allows bacteria in dental plaque to engage in a range of antagonistic and 

synergetic biochemical interactions (Marsh and Bradshaw 1999). Close physical 

contact of bacteria in dental plaque may enhance the efficiency of metabolic 

interactions for example; the co-adhesion between anaerobic bacteria and 

oxygen-consuming species will ensure their survival in an aerobic oral 

environment (Bradshaw et al. 1998), i.e. the consumption of environmental oxygen 

by early colonisers produces a low redox potential environment creating suitable 

conditions for the survival and growth of late colonisers. iv) Multiplication of 

bacterial colonisers. Continued growth of cells in dental plaque leads to a three 

dimensional spatially and functionally organized mixed-culture biofilm. A complex 

extracellular matrix normally made up of soluble and insoluble glucans, fructans 

and hetropolymers is formed due to the production of polymers, the formed matrix 

has the ability to be biologically active and retain nutrients like water, key enzymes 
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inside the biofilm (Allison 2003). The presence of such matrix plays an important 

role in the integrity and general resistance of biofilm. Within time the number of 

early coloniser decreases whilst the proportion of late colonisers (such as 

Fusobacterium and Veillonella species) increase. The increase in the proportion of 

late colonisers causes a further reduction in the redox potential within the growing 

plaque, which is favoured by more late colonisers ultimately producing a highly 

complex and diverse bacterial community within an EPS-containing matrix (Fig. 

1.3). v) Detachment and shedding. Detachment of oral bacteria from surfaces 

enables many bacteria to re-colonize a new site in the oral cavity. This behaviour 

can be considered as a response to an environmental cause such as stress,  an 

example of this, is the production of hydrolysing enzymes by some sessile bacteria 

leading to the hydrolyses of specific adhesins and subsequently detaching 

bacteria (Marsh 2004). 

Studies using confocal laser scanning microscopy (CLSM) have demonstrated an 

open architecture of dental plaque similar to other biofilms grown in aqueous 

systems present in the body (Wood et al. 2000). This more open architecture is 

comprised of channels travelling across the plaque biofilm. These channels have 

important applications for the penetration and distribution of molecules (such as 

nutrients, end-products) across the ecosystem of the habitat. 

Once a mature biofilm is formed, dental plaque remains relatively stable over time 

which may benefit the host (Marsh 2000). Dental plaque plays an important role in 

the normal development of the physiology of the host and decreases the chance of 

infection and colonization by exogenous species, particularly pathogens 

(colonization resistance), by acting as a barrier (McFarland 2000). Colonization 

resistance of bacteria in dental plaque includes effective competition for nutrients 
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and attachment site by resident oral microflora preventing non-plaque species 

from residing in the targeted habitat. This also involves creating unfavourable 

growth conditions for exogenous pathogens (McFarland 2000). It is important to 

study dental plaque on different sites of the tooth due to the distinctive properties 

and biological features of each habitat which supports the growth and the 

development of a characteristic microbial community. 

 

1.11 Supragingival plaque 
 
Supragingival plaque can be defined as biofilms that form at any site of the tooth, 

above the gingival margin level (Fig. 1.1). These biofilms grow in the fissures of 

the teeth and between adjacent teeth, known as “fissure plaque” and “approximal 

plaque” respectively. Fissure plaque is mainly comprised of streptococci, 

especially extracellular polysaccharide-producing species (Marsh and Martin 

1999). Usually, a simpler community is found in fissures compared to other tooth 

surfaces due to more severe environmental conditions such as limited range of 

nutrients provided by saliva (Marsh et al. 1988). Approximal plaque, on the other 

hand, is mainly dominated by Gram-positive rods, especially Actinomyces species 

although they have high number of streptococci species. The redox potential of the 

approximal sites are generally lower than the fissures of the tooth suggesting the 

growth of a more diverse plaque community including Gram-negative 

microorganisms such as Fusobacterium, Veillonella, and Treponema species 

(Bowden et al. 1975). 
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Figure 1.3:  Schematic diagram representing the patterns of adhesive interactions 
between bacteria-host and bacteria-bacteria in dental plaque. Adapted from 
(Kolenbrander and London 1993).  
 
 

1.12 Subgingival plaque 
 
This site is a distinct microbial habitat, affected by both the anatomy and the 

presence of the GCF, which makes it one of the most taxonomically diverse sites 

in the oral cavity. Many Gram-negative anaerobic bacteria can be found in high 

levels in this site in contrast to that in fissure and approximal surfaces. Organisms 

such as spirochetes and anaerobic streptococci can also be isolated from this site. 

Unlike supragingival sites, most of the microorganisms isolated from this site are 

assachrolytic and proteolytic and they derive their energy from the degradation of 

proteins and peptides found in the GCF of the host. P. melaninogenica, 

Fusobacterium, Bifidobacterium, Selenomonas, and Campylobacter are some 
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examples of the microflora that can be isolated from this site (Maeda 1980; 

Macuch and Tanner 2000). Streptococcus mitis group, streptococcus anginosus 

group and Gram-positive rods such as Actinomyces species can also be isolated 

from this site (Loesche 1986; Marsh and Martin 1999; Wilson 2005). 

 

1.13 Role of plaque bacteria in oral diseases 
 
There are two main hypotheses involving the role of dental plaque in the etiology 

of carries and periodontal diseases. 

The first hypothesis is the “specific plaque hypothesis” (Loesche 1992) which 

suggests that only few bacterial species out of the whole plaque community are 

responsible for dental caries and other diseases such as periodontitis and 

halitosis. This hypothesis also proposes targeting a limited number of 

microorganisms for the prevention and the treatment of a disease (Loesche 1992). 

The second hypothesis is the “non-specific hypothesis”, this hypothesis claimed 

that dental disease is the outcome of overall activity of the oral microflora, i.e. a 

heterogeneous mixture of microorganisms can play an important role in an oral 

disease (Theilade 1986). 

A later alternative hypothesis has been proposed, which is the “ecological plaque 

hypothesis”. This hypothesis suggested that pathological organisms which are 

associated with oral diseases can also be found at unaffected areas. This 

hypothesis also claimed that the dental disease is caused by a shift in the balance 

of the resident microflora due to changes in the environmental conditions such as 

repeated conditions of low pH due to the increase of sugar intake leading to a 

competitive growth of species favouring that environmental condition such as 

potential caries pathogens  (Marsh 1994). 
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1.13.1 Dental caries 
 
Dental caries is a dynamic and complex biochemical progress that involves a 

progressive localised destruction of the enamel, dentine and cementum of the 

tooth. This process is normally caused by bacterial fermentation involved in the 

production and release of organic acids (pyruvate, lactate, acetate) on the tooth 

surface, which in turn leads to a pH decline of less than 5.5 and the dissolution 

and demineralisation of the tooth. The demineralisation process involves the 

transportation of calcium and phosphate ions away from the tooth to the 

surrounding environment by the dissolution action of the acids. The 

demineralisation process can be reversed unless cavities are formed that lead to 

caries. Dental caries is considered to be one of the more prevalent diseases of 

humans, particularly amongst populations in industrialised countries. The etiology 

of dental caries depends on a number of factors, including i) plaque 

microorganisms. ii) type of diet consumed by the host, and iii) salivary composition 

and flow rate. Most indigenous plaque bacteria are the microorganisms that are 

involved in dental caries which include S. mutans, S. sobrinus and lactobacilli 

species. All the cariogenic microorganisms that are involved in dental caries have 

the ability to produce organic acids and survive and flourish in the low pHs that 

have been created, hence they are acidogenic, acidophilic and or/aciduric. There 

are four types of caries depending on the affected site of the tooth which include; 

smooth surface caries, approximal surface caries, fissure caries and root surface 

caries. 
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1.13.2 Periodontal disease 
 
Periodontal disease includes many conditions where the supporting tissue of the 

teeth is affected and may be attacked as a result of a direct action by the 

microorganisms themselves and/or an indirect action of the inflammatory response 

which is triggered by the host due to plaque accumulation. The junctional epithelial 

tissue at the base of the gingival crevice starts to migrate down to the root of the 

tooth and forming a periodontal pocket and eventually leading to tooth loss. 

Gnotobiotic animal studies have provided significant evidence about the role of 

bacteria as a direct causative factor in periodontal diseases. Those germ-free 

animals rarely suffer from periodontal disease; however, food can cause a closure 

of the gingival crevice producing inflammation. This inflammation is more common 

and severe in the presence of specific pure cultured bacteria isolated from human 

periodontal pockets used to infect gnotobiotic animal (Marsh and Martin 1999). 

Bacterial species that are cultured from human periodontal pockets include 

Streptococcus, Actinomyces and Gram-negative species such as Actinobacillus, 

Prevotella, Porphyromonas, Capnocytophaga, Eikenella, Fusobacterium and 

Selenomonas species. Studies show that the administration of antibiotics active 

against pure cultured bacteria of the periodontal disease in the infected animals 

led to the inhibition of periodontal disease progression (Jordan and Keyes 1972). 

These findings support the fact that bacteria are implicated in periodontal disease 

(Marsh and Martin 1999). 

1.13.3 Halitosis 
 
Breath malodour or halitosis is mainly caused by volatile odorous substances that 

are the product of the metabolic and proteolytic activity of the microorganisms 

accumulated on the tongue surface and the oral cavity. These volatile odorous 
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substances are present in the air exhaled from the oral cavity or nasal passages of 

the infected individual (Farrell et al. 2006). Although the majority of malodour 

causes are associated with physiological transient diseases, estimations show that 

about 10-30 % of the cases may be chronic (Meskin 1996). Other studies show 

that 85-90 % of all cases have an intra-oral origin (oral malodour), while the rest of 

the cases have an extra-oral origin which are caused by other infections such as 

respiratory and gastro-intestinal infections, systemic disease, metabolic disorders 

or even medication (Tonzetich 1977; Rosenberg 2002). 

The predominant VSC that are released by the oral cavity are hydrogen sulphide 

(H2S), and methyl mercaptane (CH3SH), in association with smaller concentrations 

of dimethyl sulphide (CH3)2S and dimethyl disulphide (CH3S)2. The release of 

these volatile compounds depends on many factors mainly: i) bacterial species 

population and diversity of the oral cavity, ii) substrate availability and iii) salivary 

flow (Sanz et al. 2001). 

It has been identified that Gram-negative anaerobic bacteria are strongly 

associated with oral malodour, where high odour individuals normally have higher 

total Gram-negative bacterial load on the tongue, including species like 

Porphyromonas, Prevotella, Fusobacterium and Treponema species (McNamara 

et al. 1972). 

Studies by De Boever and Loesche (1995) have shown a positive correlation 

between the levels of VSC and the amount of biofilm coating the tongue. Later 

studies showed that the dorsum of the tongue is the main source of VSC in both 

periodontaly diseased and healthy subjects (Roldan et al. 2003). 
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1.14 Oral antimicrobial agents and the prevention o f oral diseases 
 
Oral antimicrobial agents in oral health care products are defined as chemicals 

that have an effect on plaque sufficient to benefit the oral hygiene and prevent or 

limit the progression of oral diseases (Lang and Newman 1997). Oral 

antimicrobials could produce their effect by; i) interfering with the adhesion of oral 

bacteria to surfaces and prevent biofilm formation; ii) interfering with the co-

aggregation mechanisms; iii) affecting bacteria by preventing further growth of 

colonies, vi) removing or causing a disruption in  the existing biofilms, v) 

enhancing the local inflammatory and immune responses towards bacteria in 

biofilms, where some agents enhance the antibacterial mechanism of neutrophils 

which are considered to be effective against biofilms (Shapira et al. 2000). 

Guidelines have been proposed by the Council of Scientific Affairs of the American 

Dental Association (ADA) for the acceptability of antimicrobial agents in oral health 

products and their control of dental plaque (Sreenivasan and Gaffar 2002). These 

guidelines state that the use of antimicrobial agents in dentifrices should not result 

in the growth of pathogenic or opportunistic microorganisms or alter the 

composition of the oral microflora (ADA 1986). Based on the above guidelines, 

many studies have been investigating the changes in the proportion of functional 

groups and resistance of oral microorganisms with long and short term use of both 

dentifrices and mouthwashes containing antimicrobial agents (Tinanoff and 

Camosci 1984; Zambon et al. 1995; McBain et al. 2003; Winkel et al. 2003). 

Therefore, the main objective in the prevention of oral diseases is to maintain 

equilibrium between the host and the resident microflora, whilst aiming to reduce 

total biofilm mass and/or the levels of specific groups of opportunistic pathogens 

(Baehni and Takeuchi 2003). Effective approaches for the prevention include 
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mechanical removal of plaque (brushing and flossing) with the use of dentifrices 

and mouthwashes included with antimicrobial agents and also controlling the 

intake of carbohydrates such as sucrose (Baehni and Takeuchi 2003).  

Various oral antimicrobial agents have been introduced to oral care products to 

enhance their anti-plaque effects. Chlorhexidine, which is an antimicrobial 

bisbiguianide has been found to have a broad-spectrum antimicrobial effect 

against a variety of both Gram-positive and Gram-negative bacterial species 

(Gilbert and Moore 2005). The anti-plaque efficacy of  chlorhexidine is owned to its 

cationic nature that enables it to bind to different surfaces and enabling it to reduce 

pellicle formation and helping it to act over a long period of time in the oral cavity 

(McBain et al. 2003).  Studies by Hase et al have demonstrated the efficiency of 

chlorhexidine in reducing oral bacterial viability (Hase et al. 1998), whereas plaque 

regrowth inhibition and its anti-gingivitis effect was studied by Loe and Schiott (Loe 

and Schiott 1970). 

Essential oils such as menthol, thymol, eucalyptol have also demonstrated both 

anti-plaque and anti-gingivitis efficacy (Gordon et al. 1985; DePaola and Daniel 

1989; Daniel et al. 1990; Sharma et al. 2001; Sharma et al. 2004). Studies by 

Ouhayoun have reported a plaque penetration capability of this mixture of 

essential oils when incorporated in a proprietary mouthwash formulation 

(Ouhayoun 2003). Although many studies have reported the anti-plaque efficacy of 

this formulation, none have investigated the contribution of the active ingredient(s) 

that maybe responsible for its activity. Therefore, investigating the antimicrobial 

activity of the active agents in EO-containing (individually and in combination) was 

one of the objectives and aims of this thesis. 
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Another antimicrobial molecule that has been tested extensively is the phenolic 

compound triclosan (Svatun et al. 1990; Jenkins et al. 1991; Giertsen 2003; Gilbert 

et al. 2003; McBain et al. 2010). Triclosan has been incorporated in many oral 

health products. Besides being a significant anti-plaque and anti-gingivitis agent 

(Stephen et al. 1990; Svatun et al. 1990), triclosan has also been reported to 

posses an anti-inflammatory activity and could broadly suppress multiple 

inflammatory gene pathways responsible for the pathogenesis of gingivitis and 

periodontitis (Barros et al. 2010).  

Metal salts such as stannous fluoride and zinc lactate have also been reported to 

exert an anti-plaque activity (Skjörland et al. 1978; Shah 1982) and have been 

introduced in many oral hygiene products. Metal salts have a valuable mode of 

action by inhibiting enzymes responsible for metabolic reactions of carbohydrate 

and leading to the inhibition of sugar transport and metabolism (Oppermann et al. 

1980). 

Quaternary ammonium compounds such as cetylpyridinium chloride have also 

been reported to exhibit a significant anti-plaque activity (Holbeche et al. 1975; 

Rawlinson et al. 2008). Cetylpyridinium chloride has been introduced in oral care 

products since the 1940s and have also been proven to have low mammalian 

toxicity (Arro and Salenstedt 1973). 

Further detailed description of the properties, mechanisms of action and 

antimicrobial efficacies of various investigated antimicrobial agents have taken 

place within different sections of this thesis. 

1.15 Dentifrices & mouthwashes 
 
Dentifrices and mouthwashes are commonly used vehicles for the daily control of 

oral hygiene as an adjunct to mechanical methods. As previously described in 
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Section 1.14, a wide range of oral antimicrobial agents have been introduced to 

dental preparations to provide protection against oral cavity diseases such as 

dental caries, periodontal disease, gingivitis and halitosis. The antimicrobial agents 

that have been used in oral preparations belong to various chemically known 

groups with different mechanisms of action. The most commonly used 

antimicrobial agents and their mechanism of action are briefly described and listed 

in Table 1.2.    

 

Table 1.2: The most commonly used antimicrobial agents in dental care 
formulations 

Antimicrobial Chemical group Mechanism 
of action 

Use 

Chlorhexidine antiseptic 
bisbiguanide 

Membrane1 
damage 

mouthwashes, oral spray, 
dentifrice, disinfectant 

Cetylpyridinium 
chloride (CPC) 

quaternary 
ammonium 
compound (QAC) 

Membrane2 
damage 

mouthwash, dentifrice 

Triclosan phenolic based 
compound  

Membrane3 
damage 

dentifrice, hand soup, liquid 
soup, plastic households 

Stannous & zinc 
slats 

metal salts  binding of  
thiol groups4 

mouthwash, dentifrice 

Hydrogen peroxide 

(H2O2)  

antiseptic 
oxygenating 
agent 

production of 
active 
oxygen5  

mouthwash 

Sodium lauryl 
sulphate 

surfactant initiation of 
autolysis6 

foaming agent in dentifrices 
and mouthwashes 

Sodium fluoride 

(NaF) 

fluorinated 
compound 

Cariostatic7  mouthwash, dentifrice 

Thymol, menthol 
and eucalyptol 

essential oils biofilm 
penetration8 

mouthwash 

 

1 Davies 1973, 2 Gilbert and Moore 2005, 3 Heath et al. 1999, 4 Oppermann et al. 
1980, 5 Gaffar et al. 1997, 6 Gilby and Few 1959; Shafa and Salton 1960; 
Woldringh and van Iterson 1972; Filip et al. 1973, 7 de Leeuw 2004, 8 Ouhayoun 
2003. 
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1.16 In vitro modelling of the oral resident microflora 
 
 A model is used to represent or mimic real phenomena containing various 

aspects and elements of the represented system. In vitro models have the ability 

to provide information that explain the process observed in the real system. One 

objective of a model is to minimise the side/adverse effects that could be produced 

by experimental antimicrobial agents or antibiotics on human volunteers.  

Over the years various in vitro models have proven to be useful as substitutes for 

human volunteers when studying microbial ecosystems of the human body and for 

providing insight into the effects produced by antimicrobial agents on these 

communities (Cassels et al. 1995; Shu et al. 1999; Guggenheim et al. 2001; 

Gilbert et al. 2003; McBain et al. 2003). There is a range of laboratory 

experimental oral models used for studying single oral bacteria and/or multi-

species biofilm. 

These models can be divided into two major groups according to the method of 

nutrient supply, these are: i) Closed system biofilm models:  this type of models 

uses saliva and/or other nutrients incubated with selected species for a specific 

period of time. An example of a closed system model is the “Zürich” biofilm model 

that has been developed by Gugggenheim et al (Guggenheim et al. 2001). In this 

model, several supragingival plaque species were incubated anaerobically in a 

saliva-based nutrition medium in which a sterile hydroxyapatite disc was 

previously introduced in a multi-well tissue culture plate. This type of system is 

considered to be convenient because it is simple, straightforward to construct, and  

is relatively easy to manipulate different parameters such as the applied medium, 

feeding regimens and the added antimicrobial agents (Guggenheim et al. 2001). ii) 

Open system biofilm models: this type of system involves a continuous flow of 
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culture or nutrients and could produce a closer representation to the continuous 

flow of nutrients and bacterial shedding in the oral cavity. The open systems 

include various range of models that some of which will be described in the 

following sections. 

 

1.16.1 Chemostats 
 
The chemostat is considered to be a typical system for producing microbial 

cultures in steady-state homogenous suspensions (Novick and Szilard 1951; 

Marsh et al. 1983; McDermid et al. 1986). Chemostat use for studying biofilms is 

very limited due to the fact that bacterial cells remain in suspensions rather than 

biofilm form. However, two-stage chemostat system was developed with 

colonisable material of Suspended Substratum Biofilm Reactors (SSRs) in a 

second vessel. The two-stage chemostat was applied for the study of biofilm 

formation (Keevil et al. 1987; Marsh 1995). A limitation of using chemostats for 

studying planktonic bacterial growth rates is the “wall growth” of biofilms on the 

surface of the fermentation vessel which serves as a nidus for irregular shedding 

of bacteria into the cell suspension (McBain 2009). The system is relatively easy to 

construct and the SSRs can be easily removed and analysed at any time during 

the experimental run. 

 

1.16.2 The Constant Depth Film Fermenter (CDFF) 
 
The CDFF is an open system biofilm model which allows the formation of large 

scale of replicate biofilms. In this model, the biofilms are formed on the top of 

plugs that are installed to a fixed depth in a rotating pan. Any biofilm growing 

above the recess level of the plugs will be scraped off by a blade keeping the 
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biofilms in a constant depth (Peters and Wimpenny 1988). The system has several 

inlets allowing it to be fed by the addition of growth medium whilst other inlets 

could be used as challenging ports. Different types of substrata, such as 

polytetrafluoroethylene, hydroxyapatite, tooth enamel and porcelain may be used 

(Wirthlin et al. 2005). The CDFF has been reviewed and widely used by many 

researchers to study biofilms such as dental plaque (Hope et al. 2002; McBain et 

al. 2003; McBain et al. 2003; Wood et al. 2006; Ledder et al. 2009). The model 

has also been used successfully to investigate the effects of several oral 

antimicrobial agents against single species biofilm grown on various substrata 

(Pratten et al. 1998; Pratten and Wilson 1999). 

 

1.16.3 The Sorbarod biofilm device (SBD) 
 
The Sorbarod biofilm device (SBD) is another example of the open system biofilm 

models. The single sorbarod device was first developed by Hodgson and Gilbert 

(1995) to examine the physiological properties of single species biofilms. The 

device consists mainly of a cellulose matrix filter plug wrapped inside a paper 

sleeve. Biofilms are grown within the filters and fed continuously via an inlet port. 

Viable counts on already established biofilms can take place by sacrificing the filter 

or by collecting the spent culture fluid (perfusate) after obtaining a steady state 

without disturbing the biofilm model. An additional challenging port may be added 

to the system to investigate the efficacy of antibacterial agents against an 

established biofilms as studies by Parveen et al. (Parveen et al. 2001). The 

system has also been used previously to study population dynamics of 

Pseudomonas aeruginosa and Burkhoderia capacia (Al-Bakri et al. 2004). One of 

the main advantages of this type of system is that they allow several samples to 
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be taken during the period of the experiment without disturbing the steady state of 

the grown biofilm. More detailed description of the SBD system has taken place in 

Chapter two of this thesis. 

 

1.16.4 The drip flow biofilm reactor 
 
The main principle of the drip flow biofilm reactor is growing biofilms on glass slide 

surface by dripping growth medium on it. The device consists of four parallel 

polycarbonate chambers in which standard microscope slides can be situated in 

(McBain 2009). Modifications can be done to the system by replacing the type of 

substratum required for the study. Xu et al. have previously utilised this model to 

investigate the role of oxygen availability in determining the local physiological 

activity of Pseudomonas aeruginosa biofilms growing on stainless steel substrata 

(Xu et al. 1998). Hydroxyapatite coated slides in a modified drip flow biofilm 

reactor have been previously used to evaluate the antibacterial effects of dental 

hygiene formulations (Ledder et al. 2008). Feed-line inconsistencies can however, 

cause aerial heterogeneity of the biofilm over the substratum and hence, biofilms 

replication between different chambers may be difficult (McBain 2009). 

 

1.17 Aims 
 
From a superficial perspective the persistence and activities of bacteria in the oral 

cavity represents a nuisance, requiring daily physical and chemical treatment and, 

for almost all individuals, requiring visits to the dentist for routine and occasionally 

unpleasant treatment. However, the carriage of large numbers of microorganisms 

in the oral cavity, the large bowel or on the skin may be frequently protective 



 58 

through a process that has been termed colonisation resistance. Importantly 

however, it has also been associated with potentially serious diseases. A good 

example of this is periodontal disease which may expose the bloodstream to 

adventitious pathogens and may also result in systemic complications of chronic 

inflammation. Thus, the potentially serious health implications of poor oral hygiene 

have been encapsulated in the relatively new concept of the oral systemic 

interface (Seymour et al. 2007). 

The prevalence of dental caries and periodontitis and the universal need for 

effective routine dental hygiene has stimulated a great deal of interest both 

scientific and commercially driven. 

Ever since the early days of preservation and antisepsis, the use of chemical 

agents to control and/or remove microorganisms has been a key area of interest, 

with important potential benefits to humankind. The antibiotic era has seen 

massive resources dedicated to the discovery and understating of new chemical 

entities with antibacterial potential. At the same time, the use of less specific 

antimicrobial agents such as can be broadly classed as antiseptics and 

disinfectants have been neglected in relative terms. Consequently, there remains 

much to learn about the mode of action and/or the bacteriological and 

microecological effects of exposure of microorganisms to this class of compound. 

Since toothpastes (dentifrice formulations) and other oral hygienic agents are 

commonly supplemented with antimicrobial compounds, and these are used 

frequently, and considering that the incidence of dental caries and periodontitis 

globally shows no signs of decreasing, the effect of dental hygienic actives and 

formulations on the oral microbiota requires further investigation. In order to 

contribute to knowledge in the area, investigations of the oral microbiota should 
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include those done from the perspective of antimicrobial efficacy, but also in terms 

of the metabolic effects of lethal and sub-lethal concentrations of actives. 

Additionally, the mouth is a key area for biofilm formation and dental plaque was 

arguably the first biofilm that received systematic research attention from 

microbiologists. 

Oral care products differ from most antibiotics in that they are deployed as 

complex formulations containing ingredients that are, often for regulatory reasons 

identified as actives or excipients (putatively inactive ingredients) that provide 

desirable physicochemical properties on the product and which may also 

contribute significantly to the product efficacy. In general, the effect of excipients 

on overall effectiveness is poorly understood. 

There are several factors associated with dental plaque that contribute towards 

dental caries and other oral diseases. Principally, the accumulation of bacteria on 

hard and soft tissues (dental plaque) is a key target of oral hygienic regimes and 

products, but additionally; i) the production of acidic fermentation products 

contributes to the erosion of enamel and ii) the accumulation of periodontal 

pathogens which contribute to inflammation has been implicated in periodontitis. 

This thesis represents a series of investigations aimed to better understand the 

above issues. In Chapter 3, selected oral health actives were investigated in terms 

of their impact on bacterial cellular membranes and on the production of potentially 

harmful fermentation products (such as lactic acid). Since the use of dental 

hygiene formulations will be associated with both lethal and sub-lethal exposure, 

this chapter aimed to better understand the potential effect upon cellular 

respiration/fermentation in different bacterial species in the presence of effective 

and sub-lethal concentrations of actives and excipients. 
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In Chapter 4, the contributions of a variety of ingredients (both active and 

excipeint) to the totality of antibacterial effects of a complex formulation was 

investigated in order to help better understand the relative contribution of 

ingredients to the overall effectiveness of the formulation. In order to achieve this, 

the antibacterial effects of the ingredients were tested singly and in combination to 

reveal hitherto poorly understood novel additive and synergistic combinations, 

which may achieve enhanced bacterial inactivation or removal from surfaces. 

Chapter 5 utilised a variety of biofilms models to further investigate the effects of 

formulations containing actives evaluated in Chapter 3 on plaque accumulation, 

inactivation and taxonomical composition.  

When combined, the experimental work presented in this thesis contributes to 

knowledge in this relatively poorly understood area of pharmaceutical 

microbiology. 
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CHAPTER 2 
 

General Experimental Methods 
 

2.1 Chemicals 
 
Unless otherwise specified, all chemicals and reagents used throughout this study 

were of the purest available grade and were obtained from Sigma-Aldrich 

Chemical Company (Poole, U.K.) or from British Drug Houses, (BDH) Ltd (London, 

U.K.). All bacteriological media used during this study were obtained from Oxoid 

(Oxoid Ltd, Basingstoke, UK) and formulated in accordance with manufacturer’s 

procedures. 

2.2 Sterilisation techniques of growth media and Mo dels  
 
Volumes of less than 1L of growth media were heat sterilised by autoclaving at 

121°C for 15 min (1 kg.cm -2); (Bridson E.Y 1970). Media volumes larger than 5 L 

were sterilised at 121°C for a holding period of 45  min. Heat-liable solutions were 

sterilised by filtration using 0.22 µm nitrocellulose filters (Millipore, Carrigtwohill, 

Ireland). Biofilm models, fermentation vessels and media delivery systems were 

sterilized at 121°C for 45 min. 

 

2.3 Microorganisms and culture maintenance 

2.3.1 Bacterial species 

The bacterial strains tested throughout the study are listed in the table below. 
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Table 2.1: Bacterial species and strains used throughout the study. 

Bacterial specie Bacterial strain Reference 

Fusobacterium nucleatum  ATCC 10953 (McBain et al. 2003) 

Prophyromonas gingivalis W50 (Gilbert et al. 2004) 

Neisseria subflava A1078 (McBain et al. 2008) 

Lactobacillus rhamnosus AC413 (Ledder et al. 2009) 

Actinomyces naeslundii WVU* 627 (Gilbert et al. 2004) 

Streptococcus sanguis NCTC* 7863 (Gilbert et al. 2004) 

Streptococcus oralis NCTC11427 (Ledder et al. 2009) 

Streptococcus mutans NCTC10832 (McBain et al. 2008) 

Veillonella dispar ATCC*177745 (Gilbert et al. 2004) 

Prevotella oralis NCTC11459 (McBain et al. 2008) 

 

Escherichia coli  

 

C600 

PharmaceuticalxMicrobiology 
Group,xSchoolxofxPharmacy 
andxPharmaceuticalxSciences, 
The University ofXManchester 

WVU*: West Virginia University; NCTC*: National Collection of Type Cultures (UK); 
ATCC*: American Type Culture Collection. 
 

Bacterial strains were cryopreserved at -80˚C using cryobead vials (Technical 

Service Consultants Ltd, Heywood U.K). Bacteria were grown on Wilkins-Chalgren 

anaerobe agar and broth and incubated anaerobically in a Mark 3 anaerobic work 

station (Don Whitely Scientific, Shipley, UK) at 37˚C (Gas mix 80% N2, 10% CO2 

and 10% H2) except N. subflava and E. coli which were both grown on nutrient 

agar and broth and incubated aerobically. 

 

2.3.2 Collection and storage of salivary samples 
 
Saliva samples used were obtained from healthy human donor(s) that had not 

taken antibiotics for at least 18 months before saliva collection and had no history 
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of periodontal disease or active caries. All microcosms were inoculated with 

freshly collected saliva that was collected in sterile universal tubes.  

 

2.4 Bacterial culture media 
 
Oral microcosms were maintained by using a modified artificial saliva medium. 

Composition was as follows: (gL-1 in distilled water): 2.5, porcine type II mucin; 2.0, 

tryptone; 2.0, bacteriological peptone; 1.0, yeast extract; 0.1, cysteine 

hydrochloride; 0.35, NaCl; 0.2, KCl; 0.2, CaCl2; 0.001, haemin and 0.0002, Vitamin 

K1 (Shah and Williams 1976; McBain et al. 2002). For the purpose of isolation and 

enumeration of functional bacterial groups, a variety of selective and non selective 

agar growth media were used. These media were: trypticase yeast-extract, 

cysteine, sucrose agar (TYCS); (Van Palenstien and Helderman 1983) for total 

streptococci, Wilkins-Chalgren (WC) agar was used for total aerobes and total 

anaerobes, Wilkin-Chalgren agar with Gram-negative (GN) supplement [containing 

(mg-1); 5.0, haemin; 0.5, menadione; 10, nalidixic acid; 10, vancomycin; and 2.5, 

sodium succinate] for total Gram-negative anaerobes, Wilkins-Chalgren (WC) agar 

was used for total aerobes and total anaerobes, and Rogosa agar (RA) for total 

lactobacilli. All bacteriological media were incubated anaerobically in a Mark 3 

anaerobic work station (Don Whitely Scientific, Shipley, UK) at 37˚C (Gas mix 80% 

N2, 10% CO2 and 10% H2) for up to 7 days except for WC for total aerobes  which 

was incubated aerobically for 3 days at 37˚C in a standard bench-top incubator. 
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2.5 Enumeration of bacterial cells by viable plate count 
 
The reproducibility of the viable count technique was tested by conducting serial 

dilutions (1:10) of overnight cultures of E. coli C600 in 0.9% sterile saline solution. 

Aliquots (100 µl) of the dilution series were aseptically spread in quintuplicate on 

the surface of pre-dried nutrient agar plates using sterile disposable spreaders 

(Microspec Ltd, Cheshire, UK). Plates were then incubated overnight aerobically at 

37˚C before counting the number of colony forming units (cfu) for each plate with a 

yield between 30 and 300 cfu. The number of viable cells (cfu/ml) from the original 

suspension was calculated by multiplying the mean number of cfu from 

quintuplicate plates by the dilution factor. The results for each dilution series were 

subjected to an analysis of variance (ANOVA) test, the results of which are shown 

in Table 2.2 and Table 2.3. 

 

Table 2.2:  Results of viable counts of E. coli C600 cell suspensions. 

Dilution Series Plate  
Replicate No.  

1 2 3 4 5 

1 90 96 90 91 99 

2 96 92 99 103 97 

3 103 114 82 80 90 

4 85 118 88 101 112 

5 90 96 101 107 103 

Total 464 516 460 482 501 

Mean 93 103 92 96 100 
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Table 2.3:  Analysis of variation of viable counts technique showing no statically 
significant variation.   
Source of 
variation 

Degree of 
freedom 

Mean 
square 

Sum of 
square 

F value P value 

 
Between 
counts 

 

4 

 

114.560 

 

458.240 

  

     

1.314 

 

0.299 

 
Within 
counts 

 

20 

 

87.180 

 

1743.600 

  

 
 

2.6 Minimum inhibitory concentrations (MIC) determi nation by growth rate 
method 
  
Preparation of inocula for MIC and respiratory activity determinations was done as 

follows: Single colonies of test microorganisms, previously grown on Wilkins-

Chalgren agar were inoculated into sterile Wilkins-Chalgren broth (10ml) contained 

in 25ml sterile Universal bottles and incubated aerobically at 37˚C with continuous 

shaking at 100 RPM.  According to previous verification, the cultures were 

incubated at 37˚C for 8 hrs (± 1hr), until they were entering mid exponential phase. 

Bacterial cultures were diluted 1:100 in sterile Wilkins-Chalgren broth to be used 

as inocula for antimicrobial susceptibility and respiratory activity determination 

tests. Different concentrations of water-soluble solutions of antimicrobials were 

prepared in distilled water and then diluted with double strength Wilkins-Chalgren 

broth, except for triclosan which was prepared in 100% dimethyl sulphoxide 

(DMSO) which was used as a co-solvent and then diluted with double strength 

Wilkins Chalgren broth. Stock antimicrobials concentrations were as follows: 

Sodium lauryl sulphate (50mg.ml-1), stannous fluoride (10mg.ml-1), triclosan 
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(10mg.ml-1) and zinc lactate (50mg.ml-1). All antimicrobial agents in this study were 

obtained from Colgate-Palmolive (Piscataway, New Jersey, USA) and sterilized by 

filtration through 0.2 µm pore size (NALGENE™, New York, USA) filters and then 

stored in 25 ml sterile Universals bottles at -70˚C. Sterile Wilkins-Chalgren broth 

(100 µl) was then added to each well of 96-well microtitre plate (Becton Dickinson, 

New Jersey, USA). Aliquots (100µl) of each agent were transferred in the first 

column of wells and mixed. Initial concentrations of each antimicrobial were as 

follows:  Sodium lauryl sulphate (6.25mg.ml-1), stannous fluoride (1.25mg.ml-1), 

triclosan (0.1mg.ml-1) with maximum of 1% DMSO (Gomez  and Maillard 2005) 

and zinc lactate (6.25mg.ml-1). Doubling dilutions were carried out across the plate 

till the tenth column in case of triclosan and the eleventh column with other 

antimicrobials using a multichannel pipette, after each dilution tips were changed, 

10 µl of the diluted cultures of E. coli, N. subflava or S. oralis (one species per 96- 

well plate) were added. The plates were then incubated for 16 hrs at 37˚C in a 

microtiter plate reader (PowerWave Xs, Biotek®, Vermont, USA) and growth 

readings were obtained at 470 nm every 20 mins. Negative and positive controls 

were also included. Positive controls comprised wells containing only 100µl of 

diluted over night culture and 100µl of sterile Wilkins-Chalgren broth, while 

negative controls consisted of sterile Wilkins-Chalgren broth. The eleventh column 

included 1% DMSO and diluted cultures as a second positive control in all 

triclosan microdilution assays.  
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2.7 Minimum inhibitory concentration (MIC) determin ation by broth dilution 
endpoint method 
 
The broth dilution endpoint method is commonly used for testing the MICs of 

antimicrobial agents (Pfaller et al. 1994). Inocula preparation for the broth dilution 

endpoint (BDE) determination of antimicrobial susceptibility was performed as 

follows: Single colonies of the tested microorganisms, previously grown on 

Wilkins-Chalgren agar was inoculated into 10 ml of sterile Wilkins-Chalgren broth 

contained in 25 ml sterile Universal bottles. Anaerobic microorganisms were 

incubated anaerobically in a Mark 3 anaerobic work station (Don Whitely Scientific, 

Shipley, UK) at 37˚C (Gas mix 80% N2, 10% CO2 and 10% H2) for 24-72 hrs while 

aerobic microorganisms were incubated aerobically at 37˚C with continuous 

shaking at 100 RPM for 8 hrs. Bacterial cultures were diluted 1:100 in double 

strength sterile Wilkins–Chalgren broth to be used as inocula for antimicrobial 

susceptibility tests. Stock solutions (2.0mg.ml-1) of stannous fluoride and zinc 

lactate were prepared in distilled water and filter sterilised. Stock solutions of 

menthol (0.84mg.ml-1) and thymol (1.28mg.ml-1) were prepared in 43.2% ethanol 

and filter sterilized. Listerine® (100%) mouthwash was also tested for its 

antimicrobial activity. Aliquots (100µl) of sterile Wilkins-Chalgren broth was added 

to the 96-well microtiter plate (Becton Dickinson, New Jersey, USA). Aliquots 

(100µl) of each agent were transferred to the first column of wells and mixed. 

Doubling dilutions were carried out across the plate using a multichannel pipette 

and tips changed after each dilution step. Diluted overnight culture (100µl aliquots; 

one species per plate) were added to the 96-well microtiter plate to produce the 

following initial concentrations of each antimicrobial agent: (1mg.ml-1) of stannous 

fluoride and zinc lactate, menthol (0.42mg.ml-1), thymol (0.64mg.ml-1) with a 

maximum concentration of 21.6% ethanol and 50% Listerine® mouthwash.  The 
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plates were then incubated either aerobically or anaerobically at 37˚C for 48h. 

MICs were defined as the endpoint at which no turbidity could be detected 

compared to controls. MICs determination for each antimicrobial agent was carried 

out in triplicate in the same 96-well plate. Both negative and positive controls were 

included. Negative controls included sterile Wilkins-Chalgren broth while positive 

controls included diluted overnight cultures.  

 

2.8 Respiratory activity determination after long-t erm (18 hrs) exposure to 
antimicrobial agents 
 
To assess respiratory activity, solutions of 0.3% of two types of tetrazolium dyes 

[2,3,5-triphenyl tetrazolium chloride] (TTC) and Iodonitrotetrazolium chloride (INT) 

Sigma-Aldrich Chemical Company (Poole, U.K.) were added to the microtiter plate 

after long-term (18 hrs) exposure to different concentrations of different 

antimicrobial agents (Section 2.6). Tetrazolium salts were prepared as follows: 

0.3% of TTC or INT were prepared in 6% D-glucose monohydrate (BDH, Poole, 

England) and filter sterilized. At the end of the 16 hrs incubation of the microtiter 

plate, aliquots of 100µl of TTC solution and INT were dispensed in triplicate in 

different set of rows in the same 96-well plate to produce a final concentration of 

0.1% of tetrazolium dye and 2% of D-glucose monohydrate in each well of the 

microtiter plate. The microtiter plate was then incubated for 1 hr at 37˚C in the 

plate reader and readings were obtained every 2 mins at 550 nm. 
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2.9 Respiratory activity determination during short -term exposure to 
antimicrobial agents  
 
Inocula for the determination of respiratory activity during short-term (1 hr) 

exposure to different concentrations of different antimicrobial agents were 

prepared as follows: single colonies of tested microorganism previously grown on 

Wilkins- Chalgren agar were inoculated into 10ml of sterile Wilkins-Chalgren broth 

contained in25 ml sterile Universal bottles and incubated aerobically at 37˚C with 

continues shaking at 100 RPM.  According to previous batch culture studies, the 

new cultures were incubated at 37˚C for 8 hrs (± 1hr), until they were entering mid 

exponential phase. Antimicrobial agent preparation and initial concentrations were 

as described in Section 2.6. Aliquots (100µl) of mid exponential phase cultures of 

E. coli, N. subflava or S. oralis (one species per 96-well plate) were added to each 

microtiter plate. Freshly prepared, filter sterilized tetrazolium solutions included 

0.3% of either INT or TTC and 6% of one of the following substrates: sodium 

acetate, pyruvic acid (α-ketopropinic acid) and D-glucose monohydrate (BDH, 

Poole, England). Aliquots (100µl) of TTC solution and INT substrate solutions (one 

substrate per 96-well plate) were added in triplicate in different set of rows in the 

same 96-well plate to produce a final concentration of 0.1% of tetrazolium dye and 

2% of substrate in the tested wells. The microtiter plate was then incubated for 1 

hr at 37˚C in the plate reader and readings were obtained every 2 mins at 550 nm. 
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2.10 Fractional inhibitory concentration method (Ch eckerboard microdilution 
method) 
 
The FIC index has been previously used to evaluate combinatorial activities of 

multiple antimicrobial agents (Hall et al. 1983). Inocula preparation and incubation 

time were previously mentioned in Section 2.7. The fractional inhibitory 

concentration method was assessed for the two metal salts and all essential oil 

compounds in separate experiments. Stock solutions (4.0mg.ml-1) of stannous 

fluoride and zinc lactate were prepared in distilled water and filter sterilized. Stock 

solutions of menthol (1.68mg.ml-1) and thymol (2.56mg.ml-1) were prepared in 

43.2% ethanol (twice the percentage present in Listerine®) and also sterilized by 

filtration. Doubling dilutions were carried out horizontally across the plate for the 

first antimicrobial agent and vertically for the second agent using a multichannel 

pipette (stannous fluoride vs. zinc lactate and thymol vs. menthol). Aliquots (100µl) 

of the diluted overnight culture (one specie per plate) were added to the 96-well 

microtiter plate to produce the following initial concentrations of each antimicrobial: 

(1.0mg.ml-1) of stannous fluoride and zinc lactate, menthol (0.42mg.ml-1), thymol 

(0.64mg.ml-1) with a maximum concentration of 21.6% ethanol (equal to the 

percentage present in Listerine®). The plates were then incubated aerobically and 

anaerobically at 37˚C for 48h and each MIC determination was carried out in 

triplicate for each tested bacteria. Negative and positive controls were also 

included. 

2.11 Minimum bactericidal concentration determinati on (MBC) 
 
The method of Taylor et al. was used as the basis for MBC determinations (Taylor 

et al. 1983). These were determined by taking aliquots (10µl) from each well 

without turbidity of the MIC plate including the end point which are then spot-plated 
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on Wilkins-Chalgren agar and incubated either aerobically or anaerobically at 

37˚C, in triplicate. The MBC was determined as the lowest concentration of tested 

antimicrobial or tested combination of antimicrobials that produced no growth on 

the Wilkins-Chalgren agar plate after 3-7 days of incubation. 

 

2.12 Hydroxyapatite disc model (HDM) 
 
The hydroxyapatite disc model has been utilised in many studies to grow bacterial 

biofilms (Ledder et al. 2006; Ledder et al. 2009; McBain et al. 2010). Sterile 

hydroxyapatite (HA) discs having a diameter of 9.6mm (Clarkson chromatography, 

Pennsylvania, USA) were placed aseptically in a sterile 24-well tissue culture plate 

(Becton Dickinson labware, New Jersey, USA). For validation studies, each disc 

(n=12) was submerged in one millilitre of 1:100 diluted overnight culture or fresh 

human saliva and incubated anaerobically in a Mark 3 anaerobic work station   

(Don Whitely Scientific, Shipley, UK) at 37˚C (Gas mix 80% N2, 10% CO2 and 10% 

H2) for 48h. The tissue culture plates were removed from the anaerobic station and 

each HA disc was removed and aseptically submerged in a test formulation or 

mouthwash for 1 min. before rinsing with sterile PBS (1 min). Each disc was then 

vortexed for 20 seconds in 9ml pre-reduced half strength sterile thioglycolate broth 

contained in 25ml Universal bottles with sterile glass beads before serially diluting 

in half strength broth and plating out onto Wilkins-Chalgren agar, Wilkins-Chalgren 

agar with Gram-negative supplements, TYCS agar and Rogosa agar plates. All 

bacteriological media were incubated anaerobically in a Mark 3 anaerobic work 

station at 37˚ for up to 7 days except for Wilkins-Chalgren for total aerobes counts 

which were incubated aerobically for 3 days at 37˚C in a standard bench-top 

incubator. Positive control discs and discs used for validation studies were not 
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submerged in the mouthwashes. Each validation assay and antibacterial test was 

carried out in triplicate using a different HA disc in each trial, and each trial was 

also carried out in triplicate.  

 

2.13 Glass slide biofilm model (GSM) 
 
Glass slides (10 mm2 x 1mm) were used as an alternative test surface to test for 

bacterial biomass reproducibility on glass slides pre- and post-antimicrobial 

treatment. Sterile glass slides (n=12) were placed aseptically in a sterile 24-well 

tissue culture plates and submerged in one millilitre of 1:100 diluted overnight 

axenic cultures or one millilitre of fresh human saliva. Culture wells containing 

fresh saliva or anaerobe bacterial cultures were then incubated anaerobically in a 

Mark 3 anaerobic work station   (Don Whitely Scientific, Shipley, UK) at 37˚C (Gas 

mix 80% N2, 10% CO2 and 10% H2) for 48 hrs, whilst culture plates with aerobic 

bacterial species were incubated aerobically for 48 hrs at 37˚C in a standard 

bench-top incubator. The 24-well plates were then removed from the incubators 

and each slide was aseptically submerged in sterile PBS (1min). Each slide was 

then vortexed for 20 seconds in 9ml pre-reduced half strength sterile thioglycolate 

broth contained in a 25ml universal bottle with sterile glass beads before serially 

diluting in half strength broth and plating out on a range of different selective agar 

as described previously (Section 2.4). Each validation assay was carried out in 

triplicate using a different glass slide in each trial, in triplicate.  
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2.14 Crystal violet assay (biomass susceptibility a ssay) 
 
The biomass susceptibility assay has been previously described (Moskowitz et al. 

2004). A modified assay was performed as follows; Aliquots (150µl) of fresh 

human saliva were added to the wells of the first 7 columns of two flat–bottom 96-

well (12 columns x 8 rows) microtiter plates (Nalgene Nunc International, 

Rochester, N.Y), whilst 150µl of heat sterilised saliva was added to the wells of the 

eighth column. Bacterial biofilms were formed by immersing peg lids (Nunc TSP 

system) into the saliva-incubated plates and incubating anaerobically in a Mark 3 

anaerobic work station (Don Whitely Scientific, Shipley, UK) at 37˚C (Gas mix 80% 

N2, 10% CO2 and 10% H2) for 48h for the first plate, whilst the second plate was 

incubated aerobically at 37˚C in a standard bench-top incubator for the same 

period of time. Each peg lid was then placed in a new flat-bottom 96-well plate 

containing 200µl per well PBS for rinsing for a period of 1 min. to remove loosely 

adhered or unattached biomass. Each peg lid was then exposed to challenging 

wells for one min. containing the following concentrations of chemicals and 

antimicrobial agents; 100% PBS solution (1st and 8th column), 100% Listerine® 

mouthwash (2nd column), ethanol 21.6% (3rd column), 0.042% menthol (4th 

column), 0.092% eucalyptol (5th column), 0.064% thymol (6th column), and 0.060% 

methyl salicylate (7th column). Each peg lid was then placed in flat bottom 96-well 

plate containing 200µl per well of 0.1% crystal violet solution for a period of 15 

minutes before rinsing (1min) in a new flat-bottom 96-well plate containing 200µl 

per well PBS (3 times) and drying (2 hours). To solubilise the absorbed crystal 

violet, each stained peg lid was placed in a new flat-bottom 96-well plate 

containing 200µl of 95% ethanol for a priod of 15minutes. The absorbance of each 
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solubilised crystal violet plate was then read at 590nm in a microtiter plate reader 

(PowerWave Xs, Biotek®, Vermont, USA). 

 

2.15 Microscopic evaluation of bacterial biomass 
 
Biofilms formed on glass slides were prepared as previously described (2.11). To 

evaluate the antibacterial efficacy of a proprietary mouthwash on salivary-derived 

microcosms, each glass slide (n=4) was aseptically removed from the culture plate 

and submerged in the designated mouthwash for one min before submerging for a 

further min. in sterile PBS (0.1 M, pH 7) for the removal of excessive antimicrobial 

agent. Each glass slide was then stained with a LIVE/DEAD bacterial-viability stain 

(BacLight; Molecular Probes, Leiden, The Netherlands) in accordance to 

manufacturer’s instructions. Once stained, slides were left to dry before washing 

with 100µl of PBS for the removal of excessive stain. Each glass slide was 

mounted on an additional glass slide, nail varnish being used as an adhesive on 

the corners of each slide to prevent the treated glass slide from being displaced 

during microscopic examination. The glass slides were mounted with a cover slip 

and immersion oil before examination was carried out using the 100x oil-

immersion lens of an epifluorescence microscope (Axioskop 2, Zeiss, 

Hertfordshire, U.K). Cells were scored as live (green) or dead (red) in ten random 

fields. Positive controls were also included and contained glass slides submerged 

in sterile PBS alone and stained according to manufacturer’s instructions. 
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2.16 Sorbarod Biofilm Device (SBD) 
 
The Sorbarod Biofilm Device has been previously adopted for the growth of 

bacterial biofilms (Hodgson and Gilbert 1995; Al-Bakri et al. 2004). Salivary 

microorganisms were grown within sorbarod devices which were first described by 

Hodgson (Hodgson and Gilbert 1995). Single sorbarods (Ilacon Ltd, Kent, UK) 

were inserted in a clear PVC tubing of lengths (40 mm in length, 10 mm in 

diameter) and sterilised by autoclaving. Sorbarod filters consist of cylindrical paper 

sleeves encasing a matrix of cellulose fibres. Each assembly was inoculated 

dropwise with one millilitre of fresh human saliva using a sterile syringe. A two ml 

sterile syringe plunger (Becton Dickinson, Ireland) was withdrawn leaving the 

rubber piston within the syringe lumen. The syringe lumen containing the rubber 

plunger was introduced into the PVC tubing in which the Sorbarod filter was 

introduced, and a sterile, disposable needle (0.8 x 40 mm) was inserted through 

the rubber piston. The Sorbarod assembly was then inserted into a plastic funnel 

(Figs. 2.1, 2.2) to maintain an aseptic environment for the filter and perfusate. 

Another sterile needle was inserted in the rubber seal to serve as a challenge port. 

Four Sorbarod units were assembled and set upright and placed within a 37˚C 

incubator. Media inlet tubing was connected to the needles and sterile artificial 

saliva was delivered to each unit at 0.07 ml/min via a previously calibrated 

peristaltic pump, (Watson Marlow Model 505S Watson Marlow Ltd, Cornwall, UK). 

The developed bacterial communities were characterised over a period of one 

week after inoculation (9 days in total). After duplicate salivary communities had 

been stabilised and characterised, different antimicrobial suspensions were added 

to the bacterial communities in the units through the challenge port. The 

antimicrobials used to challenge the bacterial fermenters were; suspensions of 5% 
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w/v of Colgate Total® toothpaste and 5% w/v of Crest ProHealth® toothpaste each 

of which was added to duplicate units separately. Each dentifrice suspension was 

introduced to the developed biofilms in a rate to reach a maximum of 3g twice a 

day which resembles roughly the actual amount of toothpaste that is introduce to 

the oral cavity in a daily regimen.  

 

2.17 Sampling of the Single Sorbarod device  
 
Perfusates from each assembly unit was obtained by detaching the unit from its 

collection container and placing a sterile universal tube below the outlet, to collect 

2ml of the perfusate without affecting the flow rate. For enumeration, perfusate of 

each model unit was serially diluted using half-strength thioglycolate solution.  

Aliquots (100µl) of appropriate dilutions were plated in triplicate onto a variety of 

selective and non selective agar (Section 2.4). Plates were then incubated 

anaerobically in a Mark 3 anaerobic work station (Don Whitely Scientific, Shipley, 

UK) at 37˚C (Gas mix 80% N2, 10% CO2 and 10% H2) for up to 7 days except for 

WC for total aerobes counts which were incubated aerobically for 3 days at 37˚C 

in a standard bench-top incubator.  
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Figure 2.1:  Schematic diagram of the Sorbarod Biofilm Model, showing its various parts and the medium feed section (media delivery 
system). 
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Figure 2.2: Sorbarod plug contained in PVC tubing inserted in a plastic 
funnel (a). The assembled unit was placed upside down onto a collection 
vessel and attached with autoclave strips. 

a) 

b) 
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CHAPTER 3 
 

Effects of sub-lethal concentrations of various ora l anti-plaque 
agents on bacterial growth and respiratory activity  in Escherichia 
coli, Neisseria subflava and Streptococcus sanguis 

 

3.1 Introduction 
 
The control of biofilm accumulation in the oral cavity by physical removal has been 

a cornerstone for the maintenance of oral hygiene. Despite its important role in the 

prevention of gingivitis, periodontitis and dental caries, mechanical removal of 

plaque is not efficiently practiced by many individuals (Morris and Steele 1998). 

According to a survey conducted in the United Kingdom, 72% of the examined 

subjects showed visible plaque and calculus (calcified plaque) on at least one 

tooth (Morris and Steele 1998). Another limitation associated with the removal of 

dental plaque by mechanical means alone is that these methods concentrate 

mainly on the hard surfaces and to considerably lesser extent on the soft tissues in 

the oral cavity. Although teeth provide an excellent surface for the growth of oral 

microorganisms, they represent a small proportion of the total surface area of the 

oral cavity. Previous studies have shown that bacteria involved in oral disease also 

accumulate on the soft tissues of the mouth and can serve as nidus for 

colonisation on the hard tissues (Socransky and Haffajee 2005). Poor plaque 

removal and the incidence of periodontal disease would suggest that mechanical 

plaque control alone is frequently insufficient. Therefore, the adjunct use of oral 

care formulations such as dentifrices containing anti-plaque agents is considered 

to be beneficial for the control of biofilms on different surfaces in the mouth and 

may contribute to the prevention of oral diseases. Dentifrices used for routine 
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patient-directed control of oral hygiene include various active ingredients such as 

metal salts (for example, stannous fluoride and zinc lactate), phenolic compounds 

(such as triclosan) and surfactants (such as sodium lauryl sulphate). In spite of the 

long and extensive use of these antimicrobial agents and the clinical proof of their 

efficacy, there remains a lack of understanding of their mechanisms of action at 

both effective and sub-lethal concentrations (sub-MIC levels). Studies on sub-MIC 

levels of such compounds are of relevance because antimicrobial agents delivered 

from dental formulations may persist at effective levels for only a relatively short 

period of time in the oral cavity before they are either washed away or swallowed 

(Marsh 1994) and thus may commonly be present at low concentrations.  

 

3.1.1 Triclosan 
 
Triclosan (2,4,4´–trichloro-2´–hydrodiphenyl ether) is a non-ionic, off-white, 

odourless and tasteless powder with the molecular formula C12H17Cl3O2 (Fig. 3.1); 

(Chemical Abstracts No. 3380-34-5). It is a broad-spectrum antimicrobial agent 

and it is effective against many Gram-positive (including some mycobacteria) and 

Gram-negative bacteria (Heath et al. 1999). It has been used in skin care products 

for more than 30 years, and was first introduced in toothpastes in 1985 (Jones et 

al. 2000). 

Cl

OH

O

Cl

Cl

 

Figure 3.1:  The Chemical Structure of Triclosan 
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McMurry et al. (1998) have demonstrated that triclosan binds to the 

bacterial enoyl-acyl carrier protein reductase enzyme (fabI) which is a key enzyme 

in bacterial fatty acid synthesis (McMurry et al. 1998). This binding increases the 

enzyme's affinity for nicotinamide adenine dinucleotide (NAD+), resulting in the 

formation of a stable ternary complex of ENR-NAD+-triclosan. This complex is 

unable to participate in the elongation steps in fatty acids biosynthesis (McMurry et 

al. 1998). Such inhibition of membrane biogenesis by the blocking of fatty acid 

synthesis is associated with the bacteriostatic effect of triclosan whilst its 

bactericidal effect is attributed to the leakage of intracellular materials  (Suller and 

Russell 2000; Gomez  and Maillard 2005). 

 

3.1.2 Stannous Fluoride 
 
Fluorides were introduced to some domestic water supplies in the U.K in the 

1940s to improve oral hygiene within the population (Ogaard et al. 1994). 

Stannous fluoride has been used in oral hygiene formulations to prevent caries 

since 1950s. Stannous fluoride is a broad-spectrum antimicrobial agent exerting its 

activity against both Gram-positive and Gram-negative bacteria and significantly, 

has potent activity against the dental pathogen Streptococcus mutans (Weber et 

al. 1995). The antimicrobial effect of stannous fluoride is believed to be principally 

due to the stannous ion rather than the fluoride ion (Ogaard et al. 1994). The effect 

of stannous fluoride on oral bacteria has been attributed to i) tin, the polyvalent 

cation, which may inhibit plaque formation by interacting with negatively charged 

components in plaque essential for adhesion/cohesion (Skjörland et al. 1978); ii) 

the oxidation of enzymes containing thiol groups, causing inhibition of 

carbohydrates metabolism (Oppermann et al. 1980) and reducing DNA 
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transcription (Tinanoff and Camosci 1984; Tinanoff and Zameck 1987). 

Additionally, the fluoride ion in the compound may react with the hydroxyapatite of 

the enamel by three mechanisms and thus augmenting the cariostatic effect 

exhibited by stannous fluoride. These mechanisms are: i) ion exchange of F- for 

OH-, ii) the formation of fluorapatite crystals from super saturated solutions which 

is a less soluble compound than hydroxyapatite, and iii) the formation of calcium 

fluoride and its deposition on the enamel (White and Nancollas 1990). The first two 

reactions may occur during long-term exposure to low levels of fluoride solutions 

such as in supplemented water supplies, while calcium fluoride formation is the 

major reaction product of short-term exposure of enamel to concentrated fluoride 

products (Ogaard et al. 1994). When pH levels drop on plaque surfaces, a pellicle 

protein coat coating the calcium fluoride is lost (Chander et al. 1982) leading to the 

release of fluoride ions that may be adsorbed to the enamel surface and an 

increase in the rate of remineralisation of the lost minerals (Ogaard et al. 1994). 

 

3.1.3 Zinc Lactate 
 
Zinc salts have been recognized for their anti-plaque properties in dentifrices since 

the 1940s  (Hanke 1940; Shah 1982). Zinc is one of the minor elements present in 

human dental enamel and it is a micronutrient, essential for the growth of 

microorganisms present in the oral cavity at trace levels. Elevated concentrations 

of zinc may have inhibitory effects on bacterial growth (Gallagher and Cutress 

1977; Babich and Stotzky 1978). Zinc is therefore an effective bacteriostatic 

antimicrobial agent against caries-associated Streptococcus mutans and various 

oral bacteria that are associated with gingivitis such as Fusobacterium nucleatum 

and Prevotella intermedia (Marquis et al. 2005). The bacteriostatic activity of zinc 
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is associated with its affinity for thiol groups present in catabolic enzymes 

(Oppermann et al. 1980). In vitro studies showed that the combination of zinc salts 

with other agents such as triclosan used in dentifrices had a greater inhibitory 

effect, particularly against Gram-negative species, than that of each agent dosed 

singly (Cummins et al. 1993). Studies have also shown that zinc has an anti-

halitosis effect (Yaegaki and Suetaka 1989; Waler 1997).  Waler et al reported that 

the mechanism of action zinc involved in the inhibition of volatile sulphur 

compounds (VSC) production responsible for malodour (halitosis) was due to its 

ability to form stable mercaptides with the substrate of the VSC in the oral cavity 

rather than its affinity to oxidize enzymatic thiol groups (Waler 1997; Young et al. 

2001).  

 

3.1.4 Sodium Lauryl Sulphate  
 
Sodium lauryl sulphate (SLS) is an anionic detergent that has been used singly or 

in combination with other agents in dentifrices and mouthwashes for several  

decades (Healy and Peterson 1999). It is believed that anionic surfactants such as 

SLS exert their bactericidal action via the cytoplasmic and outer membrane of 

bacteria by reacting with and solubilising protein moieties resulting in dissolution of 

the cellular membrane and disaggregation of the cell wall (Gilby and Few 1959; 

Shafa and Salton 1960; Woldringh and van Iterson 1972; Filip et al. 1973).  In vivo 

experiments on dentifrices and mouthwashes containing SLS have showed that 

SLS possesses an anti-plaque effect, even when used singly (Jenkins et al. 1991). 

The same study however, concluded that incorporation of SLS increased the 

antibacterial activity of other antimicrobials such as triclosan (Jenkins et al. 1991). 

The increased activity of triclosan in the presence of SLS is probably due to 
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triclosan being dissolved by the hydrophobic interior of SLS micelles until it 

reaches a lipophilic target were it produces its action (Rolla et al. 1993).  

 

3.2 Selection of representative test bacteria for in-vitro studies 
 
Continuous contact with environmental oxygen is required for the growth of 

obligately aerobic species, and also limits the growth of obligately anaerobic 

species in the oral microflora. Obligately anaerobic species require anaerobiosis 

(reduced environmental conditions) for their survival and succession in the plaque 

microbial community. Thus, the degree of oxidation and reduction (redox potential) 

in different sites of the mouth influence microbial succession and survival. Early 

bacterial colonisers such as N. subflava, S. mutans and S. oralis utilize oxygen 

(obligately for N. subflava) as the major final electron acceptor and produce CO2 

(Gottschalk 1986), leading to a reduction in the redox potential, producing more 

favourable conditions for later colonisers to proliferate in the plaque environment. 

In addition, secondary colonisers may produce fermentation metabolites such as 

lactic acid, therefore the redox potential in various depths of a biofilm such as 

plaque is gradually lowered and becomes more suitable for the growth of various 

species of microorganism with different oxygen tolerance. The increased cell 

density and thickness in older plaques may produce strictly anaerobic conditions 

which will affect bacterial metabolism. For example, an increase in the activity of 

the glycolytic enzymes of S. mutans and changes in the pattern of metabolic 

pathways occurs under anaerobiosis which can result in lower pH values for 

prolonged periods that are sufficient to cause dental demineralisation (Marsh and 

Martin 1999). Hence, any shift in the metabolic activities of early or secondary 
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colonisers may influence the composition or metabolism in the microbial habitat 

which could be an initiation parameter for dental disease (Marsh and Martin 1999).  

 

3.3 Assessment of cellular respiratory levels 
 
Cell respiration consists of several interconnected pathways through which the 

oxidation of substrates is catalysed and potential energy is released (Brock et al. 

1994). Some of this energy may be stored in the form of ATP, prior to being used 

in energy-requiring cellular activities. Oxidation of substrates occurs by many 

pathways and three of the major ones will be discussed in this chapter. These 

pathways are: i) Emden-Meyerhof-Parnas pathway (EMP) or glycolysis: this 

pathway is the most common sequence of reactions used by most bacteria in 

which sugars such as glucose are catalysed and converted into two pyruvate 

molecules with the generation of 2 ATP molecules; ii) Fermentation: in the 

absence of oxygen or other external electron acceptors, microorganisms reduce 

the pyruvate molecules generated by glycolysis to organic acids such as succinic, 

lactic and acetic acids which also can be further reduced to alcohol; iii) The 

tricarboxylic acid cycle (citric acid cycle) and oxidative phosphorylation: 

fermentation results in a relatively small amount of energy compared to aerobic 

respiration. In aerobic conditions, the primary route for the oxidation of sugars in 

facultative anaerobic microorganisms is via the EMP pathway and the tricarboxylic 

acid cycle (also known as Krebs cycle) instead of fermentative pathways (Gilbert 

1975; Brock et al. 1994). During the oxidation of intermediates in the citric acid 

cycle, electrons are released and transferred to enzymes that contain the 

coenzyme NAD+ or FAD and hence they are converted into NADH, FADH 

respectively. These NADH, FADH molecules transfer the electrons to oxygen 
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through the activity of the electron transport system (ETS) in the case of aerobic 

respiration. The net result of respiring one glucose molecule aerobically is the 

formation of 38 ATP molecules. In spite of the experiments in this chapter being 

designed so that microorganisms will grow in preferable aerobic conditions 

(respiration); (Section 2.9), this study also focuses on anaerobic condition 

pathways that could potentially occur due to shifts of respiratory pathways in the 

presence of antimicrobial agents. Such pathways include glycolysis/fermentation 

which involve lactic acid production accounting for the pathogenicity of some oral 

microorganisms. With respect to oral health, caries are mainly caused by glycolytic 

production of acids from dietary sugars; these acids especially lactic acid can 

lower the pH in dental plaque to values below 4, leading to tooth enamel 

demineralization which can be progressive and irreversible if the acidic 

environment is sustained. Measuring cellular respiration/fermentation was, 

therefore considered to be physiologically relevant in this study due to: i) the 

impact of the antimicrobials tested on cellular membranes, which are the functional 

sites for bacterial respiration and, ii) the ability to measure the activity of the 

glycolytic/fermentative pathway where their metabolites have been shown to act 

as cariogenic factors. 

 

3.4 Aims 
 
The aim of this chapter was to investigate the mechanism of action and explore 

the effects of sub-lethal concentrations of a range of antimicrobial agents 

commonly found in oral hygiene preparations upon bacterial growth and 

respiration/fermentation pathways of three different bacterial species under 

oxygen replete conditions. The microorganisms studied (N. subflava and S. oralis) 
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were selected because of their ability to utilise oxygen as a final electron acceptor 

in their metabolic respiratory reactions. E. coli on the other hand, was used as a 

model organism commonly studied as a paradigm bacteria possessing the 

principle pathways participating in cellular respiration.  

 

3.5 Methods 
 
A quantitative and reproducible method was used to assess both antibacterial 

action and the effects on respiratory activity pattern produced by sub-lethal levels 

of antimicrobial agents. Initially, MIC levels were determined for the three species 

as described in Section 2.6, bacterial growth was measured spectrophotometricaly 

and optical densities plotted as a function of time. Growth rates were calculated as 

a percentage of the control slope and plotted against the antimicrobial 

concentration; this was then extrapolated to the concentration axis (x-axis) in order 

to determine the MIC. All initial readings for optical densities of the growth curves 

were normalised to a value of 1, in order to reduce errors in growth patterns that 

might occur due to changes in the initial concentration of bacteria in the culture 

(aliquots variance). All starting optical density values were, however, within the 

range of (±0.19-0.23). 

3.6 Results 

3.6.1 Determination of growth inhibition by oral an timicrobial agents 

3.6.1.1 Effects of exposure of N. subflava to antimicrobial agents 
 
Growth curves generated in the microtiter plate reader were used to monitor and 

investigate the growth of N. subflava in the presence of various concentrations of 

antimicrobial agents, and plotted as a function of time at each concentration tested 

(Figs. 3.2; 3.3; 3.4; and 3.5). It is important to note that the concentrations tested 
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for each antimicrobial represented doubling dilutions (for 11 separate 

concentrations). However, for reasons of clarity, only selected values are given in 

the graphs. An exception for that was Fig. 3.2 in which all the tested antimicrobial 

concentrations were shown and stated. The data presented in Figs. 3.2; 3.3; 3.4; 

and 3.5 show that appropriate concentrations for growth inhibition lay between 

24.4µg.ml-1 and 48.8µg.ml-1 for SLS (Fig. 3.2), between 0.39mg.ml-1 and 

0.195mg.ml-1 for zinc lactate (Fig. 3.3), between 0.8µg.ml-1 and 1.6µg.ml-1 for 

triclosan (Fig. 3.4), and for stannous fluoride lay between 0.625mg.ml-1 and 

1.25mg.ml-1 (Fig. 3.5).  
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Figure 3.2:  Growth curves for N. subflava exposed to a range of concentrations of 
sodium lauryl sulphate, ( ) 6.25mg.ml-1; ( ) 3.125mg.ml-1; ( ) 1.56mg.ml-1; 
( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; ( ) 0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) 
48.8µg.ml-1; ( ) 24.4µg.ml-1; ( ) 12.2µg.ml-1; ( ) 6.1µg.ml-1; ( ) control. 
Points represent mean values of triplicate experiments; error bars represent 
standard errors of the mean (n=3). 
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Figure 3.3: Growth curves for N. subflava exposed to a range of concentrations of 
zinc lactate, ( ) 6.25mg.ml-1; ( ) 0.39mg.ml-1; ( ) 0.195mg.ml-1; ( ) 
24.4µg.ml-1; ( ) 6.1µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 

                Time (hours)

0 2 4 6 8 10 12 14 16 18

Lo
g 

O
.D

47
0n

m

0.1

1

10

  
Figure 3.4:  Growth curves for N. subflava exposed to a range of concentrations of 
triclosan, ( ) 1.6µg.ml-1; ( ) 0.8µg.ml-1; ( ) 0.4µg.ml-1; ( ) 0.2µg.ml-10; ( ) 
DMSO 1%; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
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Figure 3.5:  Growth curves for N. subflava exposed to a range of concentrations of 
stannous fluoride, ( ) 1.25mg.ml-1; ( ) 0.625mg.ml-1; ( ) 156µg.ml-1; ( ) 
19.5µg.ml-1; ( ) 1.2µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
 
 
 
The same figures also show that the decrease in optical densities is proportional to 

the increase of the concentration of each antimicrobial. The linear regression from 

each growth curve was subsequently used to calculate the rate of growth in mid-

log phase and expressed as percentage of control values in the presence of 

various concentrations for each antimicrobial.  

The growth rate curves generated were extrapolated to the x-axis (concentration 

axis) to determine the MIC for each antimicrobial individually (Figs. 3.6; 3.7; 3.8 

and 3.9). The MIC values generated from Figs. 3.6; 3.7; 3.8 and 3.9 show that 

these values were within the range of the MIC values generated from Figs. 3.2; 

3.3; 3.4; and 3.5 except for triclosan calculated MIC that was a little bit higher than 

that of the anticipated MIC as shown in Table 3.1. 

 



 91 

 

                 SLS (mg.ml-1)

0.00 0.01 0.02 0.03 0.04 0.05

G
ro

w
th

 r
at

e 
%

0

20

40

60

80

100

120

  
Figure 3.6:  Percentage growth rate of N. subflava in the presence of sodium lauryl 
sulphate. Dotted line represents the extrapolation line for MIC calculation.     
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Figure 3.7:  Percentage growth rate of N. subflava in the presence of zinc lactate. 
Dotted line represents the extrapolation line for MIC calculation. 
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Figure 3.8:  Percentage growth rate of N. subflava in the presence of triclosan. 
Dotted line represents the extrapolation line for MIC calculation. 
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Figure 3.9:  Percentage growth rate of N. subflava in the presence of stannous 
fluoride. Dotted line represents the extrapolation line for MIC calculation. 
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3.6.1.2 Effects of exposure of S. oralis to antimicrobial agents 
 
In a similar manner to the data shown in Section 3.6.1.1, data generated in Figs. 

3.10-3.17 were used to calculate the MIC of each concentration of different 

antimicrobials on the growth rate of S. oralis. Data in Figure 3.10 show that 

concentrations of SLS lower than 24.4µg.ml-1 had little effect on the growth of S. 

oralis cultures. SLS concentration of 24.4µg.ml-1 had an effect on slightly reducing 

the optical density of bacterial culture at the onset of stationary phase which in turn 

reduced the yield.  
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Figure 3.10:  Growth curves for S. oralis exposed to a range of concentrations of 
sodium lauryl sulphate, ( ) 6.25mg.ml-1; ( ) 24.4µg.ml-1; ( ) 12.2µg.ml-1; ( ) 
6.1µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
 
 
On the other hand, data in Figs. 3.11, 3.12, and 3.13 showed that concentrations 

of 0.195mg.ml-1 of Zn, 3.12µg.ml-1 of TCS and 156µg.ml-1 of SnF2 had a greater 

effect on reducing both the onset of stationary phase and the yield of the 

microorganisms in the culture.  
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Figure 3.11:  Growth curves for S. oralis exposed to a range of concentrations of 
zinc lactate, ( ) 1.56mg.ml-1; ( ) 0.195mg.ml-1; ( ) 48.8µg.ml-1; ( ) 
6.1µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
 
 
The MICs of the mentioned antimicrobial agents were generated by extrapolating 

the growth rate percentage curves to the concentration axis as mentioned in 

Section 3.5, and are shown in Table 3.1. 
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Figure 3.12:  Growth curves for S. oralis exposed to a range of concentrations of 
triclosan, ( ) 100µg.ml-1; ( ) 3.12µg.ml-1; ( ) 0.4µg.ml-1; ( ) DMSO 1%;  
( ) control. Points represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). 
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Figure 3.13:  Growth curves for S. oralis exposed to a range of concentrations of 
stannous fluoride, ( ) 1.25mg.ml-1; ( ) 156µg.ml-1; ( ) 78.0µg.ml-1; ( ) 
19.5µg.ml-1; ( ) 1.2µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.14:  Percentage growth rate of S. oralis in the presence of sodium lauryl 
sulphate. Dotted line represents the extrapolation line for MIC calculation.         
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Figure 3.15:  Percentage growth rate of S. oralis in the presence of zinc lactate. 
Dotted line represents the extrapolation line for MIC calculation. 
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Figure 3.16:  Percentage growth rate of S. oralis in the presence of triclosan. 
Dotted line represents the extrapolation line for MIC calculation. 
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Figure 3.17:  Percentage growth rate of S. oralis in the presence of stannous 
fluoride. Dotted line represents the extrapolation line for MIC calculation. 
 

 

 



 98 

3.6.1.3 Effects of exposure of E. coli to antimicrobial agents  
 
Growth curves presented in Fig. 3.18 show that various concentrations of SLS 

could only cause a slight inhibition in the yield of E. coli. This was only determined 

at 6.25mg.ml-1 of SLS.  
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Figure 3.18:  Growth curves for E. coli exposed to a range of concentrations of 
sodium lauryl sulphate, ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 48.8µg.ml-1;  
( ) 24.4µg.ml-1; ( ) control. Points represent mean values of triplicate 
experiments; error bars represent standard errors of the mean (n=3).  
 
 
Fig. 3.19 show that concentrations of 0.39mg.ml-1 and higher were required to 

cause a reduction in both the onset of stationary phase and the yield of E. coli, 

whilst concentrations of 3.12µg.ml-1 and higher of TCS were required to produce 

the same effects on the bacterial cultures (Fig. 3.20). SnF2 levels showed no 

effects on the growth of E. coli cultures except in the presence 1.25mg.ml-1 at 

which both the onset of stationary phase and the yield were reduced as shown in 

Fig. 3.21. The MIC levels of Zn, TCS and SnF2 were achieved from the 
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extrapolation of the growth rate percentage curves of E.coli (Figs. 3.19; 3.20 and 

3.21), whilst no MIC was detected in Fig. 3.18.  
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Figure 3.19:  Growth curves for E. coli exposed to a range of concentrations of 
zinc lactate, ( ) 1.56mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; ( ) 
0.195mg.ml-1 ; ( ) 6.1µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3).  
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Figure 3.20:  Growth curves for E. coli exposed to a range of concentrations of 
triclosan, ( ) 100µg.ml-1; ( ) 12.5µg.ml-1; ( ) 6.25µg.ml-1; ( ) 3.12µg.ml-1; 
( ) 0.2µg.ml-1; ( ) DMSO 1%; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3).  
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Figure 3.21:  Growth curves for E. coli exposed to a range of concentrations of 
stannous fluoride, ( ) 1.25mg.ml-1; ( ) 156µg.ml-1; ( ) 9.75µg.ml-1; ( ) 
control. Points represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3).  
 
 
The MIC ranges of the different antimicrobials used in this study are shown in 

Table 3.1, in which these ranges are compared with the levels of the same 

molecules present in their counterpart oral hygiene products. The growth curve 

anticipated MIC ranges were visually selected by detecting the antimicrobial 

concentration values of the growth curve showing the lowest growth activity and 

the nearest growth curve with total growth inhibition. It is clear from the values 

listed in the table that most of the values of the growth curve anticipated MIC 

ranges were within the range of the MIC levels that were detected from the 

extrapolation of the percentage growth rate curves of the tested bacterial species.  

It is also clear that both the anticipated and calculated antimicrobial values are 

lower than the concentrations of the oral hygiene antimicrobial counterparts 

except for SLS test results where the tested concentration had minimal effect on 

the growth of E. coli species. 
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Figure 3.22:  Percentage growth rate of E. coli in the presence of sodium lauryl 
sulphate.  
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Figure 3.23:  Percentage growth rate of E. coli in the presence of zinc lactate. 
Dotted line represents the extrapolation line for MIC calculation.  
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Figure 3.24:  Percentage growth rate of E. coli in the presence of triclosan. Dotted 
line represents the extrapolation line for MIC calculation. 
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Figure 3.25:  Percentage growth rate of E. coli in the presence of stannous 
fluoride. Dotted line represents the extrapolation line for MIC calculation. 
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Table 3.1:  MIC levels of different antimicrobial agents against N. subflava, S. oralis and E. coli. 

 

* Concentrations in µg.ml-1,** Not determined.  
 

 
 
 
 
 
 
 
 
 
 
 

Micro-
organisms 

Growth curve anticipated MIC 
range (mg.ml -1) 

Calculated MIC (mg.ml -1) Oral hygiene antimicrobial 
concentration (mg.ml -1)  

 SLS Zn TCS SnF2 SLS Zn TCS SnF2 SLS Zn TCS SnF2 
 

N. subflava 
 

24.4-
48.8* 

 
0.39-
0.78 

 
0.8-1.6* 

 
0.63-
1.25 

 
49* 

 
0.78 

 
1.7* 

 
1.25 

 
S. oralis 

 
24.4-
48.8* 

 
0.20-
0.39 

 
3.12-
6.25* 

 
0.16-
0.32 

 
49* 

 
0.39 

 
6.20* 

 
0.31 

 
E. coli 

 

 
ND** 

 
0.78-
1.56 

 
12.5-
25* 

 
> 1.25 

 
ND 

 
1.58 

 
9.5* 

 
1.85 

 
 

   
 
10 

 
 
 
 

10 

 
 

  
 
3.0 

 
 
 
 

4.5 



 104 

3.6.2 Assessment of bacterial respiratory activity 
 
Tetrazolium salts have been used in many previous studies as indicators of 

bacterial respiratory activity (Roslev and King 1993; Smith and McFeters 1997; 

Bhupathiraju et al. 1999). These dyes serve as artificial electron acceptors for 

different metabolic chain reactions. Initially tetrazolium salts are colourless in 

solution but they become coloured when they are reduced by the action of 

different enzymes in the respiratory system of microorganisms. Reduction of 

tetrazolium salts with different redox potentials results in the formation of coloured, 

insoluble, intracellular formazones crystals (Smith and McFeters 1997). In this 

chapter, bacterial respiratory pathways were assessed at different points using two 

types of tetrazolium salts with different redox potentials. The site of reduction of 

TTC has been proven to be at the level of electron transport chain specifically at 

cytochrome c oxidase and it is believed that it competes with molecular oxygen for 

reducing equivalents (Slater and Sawyer 1963; Gilbert 1975; Bochner and 

Savageau 1976; Dorthu et al. 1992). On the other hand, the reduction of INT is 

coupled to the reduction of NAD(P)H-dependant dehydrogenases (Babson and 

Babson 1973; Gilbert 1975; Smith and McFeters 1997). Therefore, INT reduction 

allows the detection of glycolysis, fermentation, TCA and ETS pathways whilst 

TTC reduction is strictly an identification  of the ETS chain. 
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3.6.2.1 Bacterial respiration assessment after long -term (18 hours) exposure 
to different antimicrobial agents 
 
The respiratory potentials of N. subflava, S. sanguis and E. coli were assessed for 

one hour after 16 hours exposure to sub-MIC levels of different antimicrobial 

agents (Section 2.8). Incubation of tetrazolium salts with microorganisms for more 

than one hour may cause abiotic reduction of the dye rather than enzymatic 

reduction (data not shown). Bacterial respiration was monitored 

spectrophotometricaly. Validation studies showed that the optimal wavelength for 

measuring tetrazolium salts activity (INT & TTC) was 550 nm. Optical densities for 

each reduced dye were plotted as a function of time and the oxidation/reduction 

rate was calculated as a percentage of the control slope and plotted against the 

antimicrobial concentration.   

 

3.6.2.1.1 Assessment of N. subflava respiration activity 

Tetrazolium salts assays of N. subflava were used to assess the respiratory 

potential in the presence of sub-lethal concentrations of various antimicrobials. 

Data shown in Figs. 3.26 and 3.27 demonstrate the ability of bacterial cells to 

respire in the presence of INT and TTC respectively with SLS as the antimicrobial 

agent. Data presented in Fig. 3.26 show that the increase in the optical density is 

proportional to the decrease in the concentration of SLS, whereas data presented 

in Fig. 3.27 show that cells exposed to sub-lethal concentrations of SLS respire at 

a much higher rate than the control cells. The results presented in Figs. 3.28 and 

3.29 also indicate a proportional increase in the optical densities of both INT and 

TTC respectively with the decrease in the concentration of zinc lactate i,e both 

tetrazoliums are equally reduced and the increase in the reduction is proportional 

to the decrease in the concentration of zinc lactate, this inverse proportionality  
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was also shown with INT and TTC reduction in the presence of stannous fluoride 

(Figs. 3.32 and 3.33). Data presented in Fig. 3.31 show a similar respiration 

pattern of that in Figs. 3.26 and 3.27 in which the rate of respiration of N. subflava 

cultures in the presence of high concentrations of triclosan is much higher than 

control cultures. This increase in the optical density refers to the increase in the 

reduction of TTC in the presence of SLS or triclosan reflects an uncoupling action 

of these biocides.         
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Figure 3.26:  The effect of different concentrations of sodium lauryl sulphate on INT 
activities in N. subflava; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; 
( ) 0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) 12.2µg.ml-1; ( ) control. Points 
represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). 
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Figure 3.27:  The effect of different concentrations of sodium lauryl sulphate on 
TTC activities in N. subflava; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1 

( ) 0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) 12.2µg.ml-1; ( ) control. Points 
represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). 
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Figure 3.28:  The effect of different concentrations of zinc lactate on INT activities 
in N. subflava; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; ( ) 
0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) 12.2µg.ml-1; ( ) control. Points represent 
mean values of triplicate experiments; error bars represent standard errors of the 
mean (n=3). 
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Figure 3.29:  The effect of different concentrations of zinc lactate on TTC activities 
in N. subflava; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1 ( ) 
0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) 12.2µg.ml-1; ( ) control. Points represent 
mean values of triplicate experiments; error bars represent standard errors of the 
mean (n=3). 
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Figure 3.30:  The effect of different concentrations of triclosan on INT activities in 
N. subflava; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 25.0µg.ml-1; ( )    
12.5µg.ml-1; ( ) 6.25µg.ml-1; ( ) 3.12µg.ml-1; ( ) 0.2µg.ml-1; ( ) control. 
Points represent mean values of triplicate experiments; error bars represent 
standard errors of the mean (n=3). 
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Figure 3.31:  The effect of different concentrations of triclosan on TTC activities in 
N. subflava; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 25.0µg.ml-1; ( ) 12.5µg.ml-1 

; ( ) 6.25µg.ml-1; ( ) 3.12µg.ml-1; ( ) 0.2µg.ml-1; ( ) control. Points 
represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). 
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Figure 3.32:  The effect of different concentrations of stannous fluoride on INT 
activities in N. subflava; ( ) 1.25mg.ml-1; ( ) 0.31mg.ml-1; ( ) 39.0µg.ml-1;  
( ) 9.75µg.ml-1; ( ) 1.2µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.33:  The effect of different concentrations of stannous fluoride on TTC 
activities in N. subflava; ( ) 1.25mg.ml-1; ( ) 0.31mg.ml-1; ( ) 39.0µg.ml-1;  
( ) 9.75µg.ml-1; ( ) 1.2µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3).   
 

Uncoupling agents remove or degrade the link between the oxidation of 

coenzymes such as NADH and the phosphorylation of ADP to ATP in the proton 

motive force. This uncoupling effect results from the ability of compounds such as 

triclosan and SLS to perturb and damage the cytoplasmic membrane, whereby the 

cell membrane becomes permeable to external protons resulting in short circuiting 

the ETS chain and the inhibition of ATP synthesis. As a consequence, the 

damaged cell needs to respire at a faster rate to survive the injury produced by the 

uncouplers. Another theory involving the uncoupling effect states that these 

compounds are highly lipophilic that can pass across the cell membrane and 

acting as external protons thus also resulting in short circuiting the ETS chain and 

the inhibition of ATP synthesis (Russell 1992). The linear regression from each 

reduction curve in Figs. 3.26 to 3.33 was used to calculate the rate of reduction of 

each tetrazolium salt separately and then expressed as percentage of control 
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values in the presence of various concentrations of different antimicrobial agents. 

The increased rate of respiration in Fig. 3.27 can be determined by the increase in 

the reduction rate of TTC rather than INT in Fig. 3.34 due to the redox potential of 

TTC at the ETS. Cellular respiration was also increased in the presence of TCS, 

as shown clearly in Fig. 3.36 where the percentage reduction rate of TTC was 

clearly higher than INT reduction rate in the presence of various concentrations of 

TCS. Data presented in Figs. 3.35 and 3.37 represent the percentage reduction 

rate of both tested tetrazoliums with N. subflava cultures in the presence of zinc 

lactate and stannous fluoride respectively, where the percentage reduction rate of 

INT and TTC is approximately the same. The equal reduction of tetrazolium salts 

explains that INT and TTC might be equally reduced at the ETS. 
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Figure 3.34:  The percentage reduction rate of ( ) TTC and ( ) INT with N. 
subflava in the presence of sodium lauryl sulphate. 
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Figure 3.35:  The percentage reduction rate of ( ) TTC and ( ) INT with N. 
subflava in the presence of zinc lactate. 
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Figure 3.36:  The percentage reduction rate of ( ) TTC and ( ) INT with N. 
subflava in the presence of triclosan. 
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Figure 3.37:  The percentage reduction rate of ( ) TTC and ( ) INT with N. 
subflava in the presence of stannous fluoride. 

 

 

3.6.2.1.2 Assessment of S. oralis respiration activity 

According to the data presented in Figs. 3.38 to 3.45, control cultures of S. oralis 

showed higher optical densities in the reduction of INT as an artificial electron 

acceptor compared to the optical densities of TTC control cultures. Results also 

indicated that the addition of 2% glucose had very little effect on the respiratory 

activity of control cells of S. oralis compared to the respiratory activity of N. 

subflava and E. coli (section 3.4.2.1.3). 
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Figure 3.38:  The effect of different concentrations of sodium lauryl sulphate on 
INT activities of S. oralis; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; 
( ) 0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) control. Points represent mean values 
of triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.39:  The effect of different concentrations of sodium lauryl sulphate on 
TTC activities of S. oralis; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; 
( ) 0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) control. Points represent mean values 
of triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.40:  The effect of different concentrations of zinc lactate on INT activities 
of S. oralis; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; ( ) 
0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3).   
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Figure 3.41:  The effect of different concentrations of zinc lactate on TTC activities 
of S. oralis; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; ( ) 
0.195mg.ml-1; ( ) 97.6µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.42:  The effect of different concentrations of triclosan on INT activities of 
S. oralis; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 25.0µg.ml-1; ( ) 12.5µg.ml-1; 
( ) 6.25µg.ml-1; ( ) DMSO 1%; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.43:  The effect of different concentrations of triclosan on TTC activities of 
S. oralis; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 25.0µg.ml-1; ( ) 12.5µg.ml-1; 
( ) 6.25µg.ml-1; ( ) DMSO 1%; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.44:  The effect of different concentrations of stannous fluordie on INT 
activities of S. oralis; ( ) 1.25mg.ml-1; ( ) 0.31mg.ml-1; ( ) 78.0µg.ml-1; ( ) 
19.5µg.ml-1; ( ) 2.43µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.45:  The effect of different concentrations of stannous fluordie on TTC 
activities of S. oralis; ( ) 1.25mg.ml-1; ( ) 0.31mg.ml-1; ( ) 78.0µg.ml-1; ( ) 
19.5µg.ml-1; ( ) 2.43µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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The higher optical densities in the presence of INT dye produced by control cells 

could be explained by the metabolic pathway that the bacterial cells undergo. The 

metabolic pathways for control cells, in the absence of antimicrobial agents, are 

more likely to be of a glycolytic fermentative nature rather than complete oxidation 

of glucose. This metabolic behaviour of the control cells is explained by the higher 

affinity of INT dye to be reduced in the fermentation compared to the reduction of 

TTC. Low optical densities produced by TTC reduction in the presence of control 

cells could also explain a complete shut down of oxidative phosphorylation 

pathway in the control microorganisms. Data in Figs. 3.38 and 3.39 also show that 

glucose addition caused an increase in the optical densities which resembled a 

burst in the reduction of tetrazolium salts by S. oralis cultures in the presence of 

certain concentration of SLS antimicrobial. The increased reduction of tetrazolium 

salts in the presence of certain concentrations of antimicrobial agents could be 

caused by the shift of balance of use of carbon source from growth (anabolism) to 

complete oxidation (catabolism), i.e impaired or damaged cells need to conduct 

respiration to survive an injury rather than they need to grow (Baker et al. 1940; 

Gottschalk 1986). This high reduction behaviour was also noted in Figs. 3.42 and 

3.43 in the presence of various concentrations of TCS, where a significant 

reduction of both tetrazolium salts was shown. 

Data in Figs. 3.40 and 3.41 show that the optical densities were much higher in the 

presence of INT compared to that in the presence of TTC at certain concentrations 

of zinc lactate. This was the same case in the data presented in Figs. 3.44 and 

3.45 in the presence of stannous fluoride, where the optical densities resembling 

INT reduction was higher than those of TTC. 
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Data in Figs. 3.46 and 3.48 show that the percentage reduction rate of TTC is 

higher than that of INT in the presence of various concentrations of SLS and 

triclosan. This data adds conformation to the data presented in Section 3.5.2.1.1 

with cultures of N. subflava with the same antimicrobials. In which agents such as 

SLS and TCS have the ability to uncouple the oxidation of coenzymes such as 

NADH from the phosphorylation of ADP to ATP in the proton motive force. This 

effect results from the ability of these compounds to cause damage to the cellular 

membrane and make it more permeable to external protons resulting in short 

circuiting the ETS chain and the inhibition of ATP synthesis. Consequently, the 

cells need to respire at a faster rate to survive the injury produced by the 

uncoupling agents. 
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Figure 3.46:  The percentage reduction rate of ( ) TTC and ( ) INT with S. 
oralis in the presence of sodium lauryl sulphate. 
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Figure 3.47:  The percentage reduction rate of ( ) TTC and ( ) INT with S. 
oralis in the presence of zinc lactate. 
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Figure 3.48:  The percentage reduction rate of ( ) TTC and ( ) INT with S. 
oralis in the presence of triclosan. 
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Figure 3.49:  The percentage reduction rate of ( ) TTC and ( ) INT with S. 
oralis in the presence of stannous fluoride. 
 

 

Higher percentage reduction rates of INT are presented in Figs. 3.47 and 3.49 in 

the presence of various concentrations of zinc lactate and stannous fluoride 

respectively. The same graphs also show inhibition in the reduction of TTC which 

is a clear indication that glucose oxidation was incomplete and the preferable 

metabolic pathway was fermentation rather than complete oxidation in the 

presence of sub-lethal levels of the correspondence antimicrobials.  

 

3.6.2.1.3 Assessment of E. coli respiration activity  

The effect of different concentrations of SLS on reduction potentials of INT and 

TTC dyes in E. coli are shown in Figs. 3.50 and 3.51. The optical densities 

representing the reduction potentials of INT and TTC were increased in the 

presence of certain concentrations of SLS (Figs. 3.50 and 3.51).  
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Figure 3.50:  The effect of different concentrations of sodium lauryl sulphate on 
INT activities in E. coli; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1;  
( ) 48.8µg.ml-1; ( ) 24.4µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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Figure 3.51:  The effect of different concentrations of sodium lauryl sulphate on 
TTC activities in E. coli; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.39mg.ml-1; 
( ) 48.8µg.ml-1; ( ) 24.4µg.ml-1; ( ) control. Points represent mean values of 
triplicate experiments; error bars represent standard errors of the mean (n=3). 
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These results were further investigated by calculating the percentage reduction 

rate of both dyes. In Fig. 3.52, plots of the calculated percentages of the reduction 

of INT and TTC show a similar rate of reduction in the presence of various 

concentrations of SLS, suggesting an equal reduction of both dyes. The 

respiratory behaviour of E. coli culture is more likely to be a complete oxidation of 

glucose in the ETS chain in the cytoplasmic membrane.  
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Figure 3.52:  The percentage reduction rate of ( ) TTC and ( ) INT with E. coli 
in the presence of sodium lauryl sulphate. 
 
 
Both Figs. 3.53 and 3.54 show an increased optical density in the presence of 

various concentrations of zinc lactate. Although, INT and TTC were reduced in the 

presence of zinc lactate, calculations of percentage reduction rate in Fig. 3.55 

show a slightly greater reduction in favour of INT rather than TTC. High optical 

densities resembling reduction of the dyes were indicated at the onset of addition 

glucose/dye solution in the presence of TCS as an antimicrobial (Figs. 3.55 and 

3.57).  
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Figure 3.53:  The effect of different concentrations of zinc lactate on INT activities 
in E. coli; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.195mg.ml-1; ( )   
48.8µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3).  
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Figure 3.54:  The effect of different concentrations of zinc lactate on TTC activities 
in E. coli; ( ) 6.25mg.ml-1; ( ) 0.78mg.ml-1; ( ) 0.195mg.ml-1; ( )   
48.8µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
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This burst of the respiratory behaviour was thought to be an uncoupling effect in 

the presence of high concentrations of triclosan as previously described (Sections 

3.6.2.1.1 and 3.6.2.1.2).  
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Figure 3.55:  The percentage reduction rate of ( ) TTC and ( ) INT with E. coli 
in the presence of zinc lactate. 

                  Time (mins)

0 10 20 30 40 50 60 70

O
.D

55
0n

m

1

2

3

4

5

6

 
Figure 3.56:  The effect of different concentrations of triclosan on INT activities in 
E. coli; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 12.5µg.ml-1; ( ) 0.4µg.ml-1; ( ) 
DMSO 1%; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
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The calculated percentage reduction rate presented in Fig. 3.58 shows an 

increased level of reduction percentage rate at high concentrations of TCS 

especially with TTC as an artificial electron acceptor.  
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Figure 3.57:  The effect of different concentrations of triclosan on TTC activities in 
E. coli; ( ) 100µg.ml-1; ( ) 50.0µg.ml-1; ( ) 12.5µg.ml-1; ( ) 0.4µg.ml-1; ( ) 
DMSO 1%; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3).     
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Figure 3.58:  The percentage reduction rate of ( ) TTC and ( ) INT with E. coli 
in the presence of triclosan.    
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The reduction of INT dye with various concentrations of stannous fluoride was 

higher than that of TTC as indicated by the increased optical densities of these 

dyes in Figs. 3.59 and 3.60.  
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Figure 3.59:  The effect of different concentrations of stannous fluoride on INT 
activities in E. coli; ( ) 1.25mg.ml-1; ( ) 156µg.ml-1; ( ) 39.0µg.ml-1; ( ) 
9.75µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
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Figure 3.60:  The effect of different concentrations of stannous fluoride on TTC 
activities in E. coli; ( ) 1.25mg.ml-1; ( ) 156µg.ml-1; ( ) 39.0µg.ml-1; ( ) 
9.75µg.ml-1; ( ) control. Points represent mean values of triplicate experiments; 
error bars represent standard errors of the mean (n=3). 
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These observations were further confirmed by calculating and comparing the 

percentage reduction rates of both dyes (Fig. 3.61), which show a higher 

percentage reduction rate of INT compared to TTC in the presence of the same 

concentrations of zinc lactate. These results indicate that a glycolytic fermentative 

pathway is more likely to be the metabolic pathway conducted by the tested 

microorganisms in the presence of zinc lactate. 
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Figure 3.61:  The percentage reduction rate of ( ) TTC and ( ) INT with E. coli 
in the presence of stannous fluoride. 
 
 
In summary, damaged or impaired bacterial cells showed a higher respiratory 

activity in order to survive injury, rather than growing, compared to the control 

cultures. This observation was shown in all the bacterial cultures (N. subflava, S. 

oralis and E. coli) tested in the presence of certain concentrations of sodium lauryl 

sulphate and triclosan. 

An example of such behaviour was the uncoupling of cellular respiration of all 

three bacterial cultures tested in the presence of various concentrations of SLS 

and TCS separately, as shown by the higher reduction of the tetrazolium dye TTC. 
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In addition facultative anaerobes (E. coli and S. oralis) showed a greater tendency 

to undergo fermentative metabolic pathways rather than complete oxidation of the 

substrate glucose in the presence of zinc lactate and stannous fluoride, as 

detected by the higher reduction of INT compared to TTC. 

 

3.6.2.2 Respiratory activity detection with various  substrates (short-term 
antimicrobial exposure) 
 
The growth of bacterial cultures using different substrates as carbon sources was 

conducted in order to monitor the metabolic pathways targeted by sub-lethal 

concentrations of various oral hygienic molecules by the method described in 

Section 2.9. 

 A change in substrate for growth necessitates a change in the metabolic pathway 

and enzymes equipped for its utilization and oxidation. Therefore, adding a 

specific substrate that is involved in the cellular respiratory pathway enables the 

investigation and detection of the pathway that takes place in respiration in the 

presence of potential reduction dyes and the tested antimicrobial agent. 

The growth on acetate as a carbon source was first studied by Sir Hans L. 

Kornberg in the late 1950s. According to Kornberg, acetate is transported into the 

bacterial cell and converted into acetyl-Co A by the action of acetyl-Co A 

synthetase and then Acetyl-Co A is fed into the TCA cycle, thus yielding NADH 

(Kornberg 1965). NADH-dependant dehydrogenases can be freely oxidized by INT 

for the detection of the TCA pathway. Therefore, the growth of microorganisms on 

acetate promotes the detection of respiratory pathways involved with oxidative 

phosphorylation rather than glycolysis and fermentation, i.e; acetate misses the 
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glycolytic and fermentation pathway when oxidized as the sole carbon source for 

bacteria.  

A problem found in microorganisms while growing on acetate is how intermediates 

of the TCA cycle such as oxaloacetate are regenerated to serve as starting 

materials for cellular biosynthesis. In E. coli, the cleavage of isocitrate is catalysed 

by isocitrate lyase to form succinate and glyoxylate intermediates. Glyoxylate is 

then condensed with acetyl-Co A by the action of malate synthase to yield L-

malate which serve as a precursor for oxaloactate. These extra reactions together 

with the TCA cycle reactions form the glyoxylate cycle (Gottschalk 1986). 

The growth of bacteria on pyruvate as a carbon source was also employed in this 

study. Pyruvate oxidation was utilized to investigate the cellular metabolic 

pathways at sites of reduction of INT and TTC in both the fermentation and 

oxidative phosphorylation pathways. i.e; pyruvate, like acetate, misses the 

glycolytic pathway but it is still liable for the fermentative pathway or oxidative 

phosphorylation. The pathway of pyruvate oxidation is simple. Under anaerobic 

conditions pyruvate is converted into its fermentative products, lactate or alcohol, 

whilst under sufficient oxygen environment, pyruvate is transported into the cell 

and is oxidised by pyruvate dehydrogenase complex to acetyl-Co A which is then 

fed into the TCA cycle. Thus, the glycolytic pathway cannot be investigated when 

bacterial growth is mainly dependant on pyruvate.  

The metabolic activity (INT and TTC reduction) of each bacterial species was 

observed spectrophotometricaly in the presence of each substrate and the optical 

densities were plotted as a function of time. The linear regression from each 

reduction curve was used to calculate the rate of reduction as a percentage of the 

control slope and plotted against the antimicrobial concentration. 
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3.6.2.2.1 Effect of antimicrobial exposure on respi ratory rates detection in N. 
subflava 
 
Data presented in Fig. 3.62 show a higher increase in the percentage of reduction 

rate of TTC than that of INT in the presence of different substrates as carbon 

sources and sub-lethal concentrations of SLS. 
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Figure 3.62:  The percentage reduction rate of TTC & INT with N. subflava in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
sodium lauryl sulphate as an antimicrobial.  
 
 
The higher reduction rate of TTC with all substrates in the presence of sub-lethal 

levels of SLS indicates the following; i) Growth on acetate inhibits microorganisms 

from undergoing glycolysis or fermentation. TTCs are highly reduced at the level of 

electron transport chain specifically cytochrome c oxidase in the cytoplasmic 

membrane. Higher reduction rates indicate that the metabolic pathway is a 

complete oxidation of the substrate in the ETS (Fig. 3.62). ii) Using glucose as a 

carbon source enables the microorganism to utilize both the glycolytic fermentative 
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pathway and oxidative pathways. Higher rates of reduction of TTC reduce the 

possibilities of a glycolytic/fermentative pathway (Fig. 3.62). iii) When pyruvate 

was employed as a substrate, it was expected that bacterial metabolic pathways 

would exclude glycolysis; TTC higher reduction rates confirm this hypothesis, 

showing a much greater probability of undergoing complete oxidation of the 

substrate (Fig. 3.62). iv) Although the exposure time to the antimicrobial was for 1 

hr, the boost in the respiratory activity was marked. This activity indicated an 

uncoupling effect caused by SLS which was also detected in the presence of sub-

lethal levels of triclosan, especially in the presence of glucose as a substrate (Fig. 

3.64). The data presented in Fig. 3.62 also clearly shows that the respiratory 

behaviour of N. subflava cultures were complete oxidation of substrates in the 

presence of sub-lethal levels of SLS rather than fermentative pathway. This 

pattern of reduction was different in the presence of sub-lethal levels of zinc 

lactate (Fig. 3.63). The data presented in Figs. 3.63 and 3.65 show a higher 

reduction rate of INT than that of TTC in the presence of acetate as a substrate. 

Although INT reduction rate was higher, this does not necessarily mean that 

bacterial respiration is not undergoing complete oxidation. This may be due to 

either the ability of INT to be reduced in the ETS similarly to TTC, or that the 

substrate employed in the experiment (acetate) only allowed bacteria to 

commence oxidative respiration. 

The metabolic activity of Neisseria cultures in the presence of glucose and zinc or 

stannous fluoride (Figs. 3.63 and 3.65) confirm the results presented with acetate 

in which oxidation is more likely to be the pathway of choice for this species under 

the specified conditions. 
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Figure 3.63:  The percentage reduction rate of TTC & INT with N. subflava in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
zinc lactate as an antimicrobial. 
 
 
 
When pyruvate was introduced as a carbon source, a similar respiration pattern to 

that with acetate was observed (Fig. 3.62). This similarity in reduction pattern 

could also explain a similarity in the respiratory activity of the bacterial cultures. 
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Figure 3.64:  The percentage reduction rate of TTC & INT with N. subflava in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
triclosan as an antimicrobial. 
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Figure 3.65:  The percentage reduction rate of TTC & INT with N. subflava in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
stannous fluoride as an antimicrobial. 
3.6.2.2.2 Effect of antimicrobial exposure on respi ratory rates detection in S. 
oralis 
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The high reduction rates of TTC show an increased stimulation in the metabolic 

activity of S. oralis in the presence of SLS (Fig. 3.66). It was clearly noted that the 

reduction of TTC was substantially higher than that of INT in the presence of all 

the tested substrates, suggesting that complete oxidative phosphorylation was the 

preferable respiratory pathway in the presence of various concentrations of SLS. 
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Figure 3.66:  The percentage reduction rate of TTC & INT with S. oralis in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
sodium lauryl sulphate as an antimicrobial. 
 
 

This stimulation in the metabolic activity was also shown in Fig. 3.67 where the 

respiratory activity of cells exposed to triclosan was much higher than in the 

control cells. This increase in the respiratory activity indicates an uncoupling effect 

on damaged cells caused by either SLS or TCS separately. Unlike with N. 

subflava cultures, this uncoupling effect with S. oralis cultures was observed at 

concentrations much higher than the sub-lethal levels of the antimicrobials. This 

could be a result of the short term exposure of microorganism to each 

antimicrobial.  
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Figure 3.67:  The percentage reduction rate of TTC & INT with S. oralis in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
triclosan as an antimicrobial.  

 
 
Although fermentative pathways were observed in long-term exposure of S. oralis 

to stannous and zinc (Figs. 3.47 and 3.49), short-term exposure of S. oralis 

cultures to the same metals did not shift the metabolic pathways to the same 

extent (Figs. 3.68 and 3.69). This could be simply due to the short contact time.  

An increase in the reduction rate of tetrazolium salts occurred at concentrations up 

to 78µg.ml-1 for stannous fluoride (Fig. 3.68) and up to 100µg.ml-1 for zinc lactate 

(Fig. 3.69). This increase in the reduction rates in sub-lethal concentrations of 

antimicrobials could reflect the increase in the respiratory activity of damaged cells 

as noticed and explained previously (Section 3.5.2.1.1).  
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Figure 3.68:  The percentage reduction rate of TTC & INT with S. oralis in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
stannous fluoride as an antimicrobial.  
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Figure 3.69:  The percentage reduction rate of TTC & INT with S. oralis in the 
presence of different substrates; ( ) INT+acetate; ( ) TTC+acetate; ( ) 
INT+glucose; ( ) TTC+glucose;( ) INT+pyruvate; ( ) TTC+pyruvate, and 
zinc lactate as an antimicrobial. 
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In summary, the tested bacterial species showed a complete oxidative respiration 

pathway in the presence of all antimicrobial agents tested separately using 

different substrates. It is noted that detecting the respiratory pathways using 

different substrates has failed to detect any fermentative pathways, as previously 

shown in long-term exposure to various antimicrobial agents. The short time of 

exposure (1 hr) of different bacterial cultures to the sub-lethal levels of the tested 

antimicrobial agents might explain the inability of these agents to affect the 

metabolic pathways in the bacterial cells, therefore, it was more likely that tested 

cultures commence a complete oxidation pathway in the presence of sufficient 

oxygen rather than shifting to other pathways, hence the inability to detect 

fermentation. In spite of the failure to detect fermentation, uncoupling of bacterial 

respiration was confirmed and clearly indicated in the presence of SLS and TCS 

separately with different sugars.  

 

3.7 Discussion 
 
The control of plaque accumulation remains the main method for the prevention of 

dental plaque-related diseases such as periodontitis, gingivitis and dental caries. 

The maintenance of oral hygiene has proven to be enhanced when antimicrobial 

agents have been incorporated as adjuncts in dental hygiene formulations 

(Gordon et al. 1985; Svatun et al. 1987; Mandel 1988; Svatun et al. 1990). Hence, 

dentifrices and mouthwashes used in daily routine control of oral hygiene often 

include antimicrobial agents such as metal salts (stannous fluoride and zinc 

lactate), phenolic compounds (triclosan) and surfactants (sodium lauryl sulphate). 

At the cellular level, some antimicrobial agents often used in oral hygiene products 

exert their anti-metabolic activity at sub-lethal levels by affecting the bacterial 



 139 

cellular membrane and its metabolic pathways (Marsh 1994). Hence, it is 

physiologically relevant to study the influence of sub-lethal levels of oral 

antimicrobials on metabolic pathways such as respiration and 

glycolysis/fermentation. Another reason behind measuring cellular 

respiration/fermentation was to detect the glycolytic/fermentative pathway since, 

acidic fermentation products have been proven to act as cariogenic factors. 

Therefore, this chapter studied the effects of both effective and sub-lethal 

concentrations of several antimicrobial agents commonly incorporated in 

dentifrices and mouthwashes on bacterial growth and respiration/fermentation 

pathways of axenic bacterial species. 

The effects produced by effective oral hygiene molecules have been previously 

studied and reviewed (Maltz and Emilson 1982; Ritchie and Jones 1988; Giertsen 

2003). There is however, a lack of understanding of the effects produced by oral 

antimicrobial agents on metabolic pathways at sub-lethal concentrations. Thus, 

methods in the present chapter were performed using tetrazolium salts as 

bacterial metabolic pathways indicator in the presence of sub-lethal concentrations 

of various oral antimicrobial agents. The use of tetrazolium salts as biological 

indicators for measuring cells viability via detecting their respiratory activity has 

been previously studied (Zimmermann et al. 1978; Fukui and Takii 1989; Roslev 

and King 1993; Smith and McFeters 1997; Bhupathiraju et al. 1999). However, 

they have not been applied to oral hygiene agents in the manner described in this 

chapter. 

Previous studies into the antimicrobial effects of compounds such as 

tetrachlorosalicylanilide, trichlorocarbanilide and dinitrophenol have indicated the 

ability to of such compounds to behave as bacterial respiration uncoupling agents 
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(Hamilton 1968; Russell 1992). However, data from this chapter suggest that the 

antimicrobials triclosan and sodium lauryl sulphate were also able to uncouple 

NADH from the phosphorylation of ADP to ATP and therefore behaving as 

uncoupling agents. This uncoupling activity can be a result of either the loss of 

sub-cellular fractions and impaired function of the cellular membrane or the 

antimicrobial agents being highly lipophilic and crossing the cell membrane freely 

and acting as proton carriers (Russell 1992). In both cases, the mobility of external 

protons may result in short circuiting the ETS chain and resulting in the inhibition 

of ATP synthesis. In uncoupling, substrates are almost completely oxidised in the 

presence of an uncoupling agent, and cellular components are not synthesised 

(Gottschalk 1986). Such metabolic behaviour was observed in both long- and 

short-term studies by detecting the optical densities of the reduced tetrazolium 

dyes in the presence of the tested antimicrobial agent. Dyes with different redox 

potentials provided information of the respiratory levels depending on the 

reduction percentage of the treated cells compared to their controls. Theoretically, 

the uncoupling of respiration of microorganisms in the oral cavity could serve as a 

benefit to oral health by the routine use of oral hygiene products containing 

uncouplers such as triclosan and sodium lauryl sulphate. This results in the 

inability of bacterial cells to grow. However, such exposed cells would continue to 

respire and thus utilize available substrates present in the oral cavity. This activity 

could result in plaque disruption. An example of such uncoupling behaviour can be 

observed by the inability of the tested species such as S. oralis to grow in the 

presence of 100µg.ml-1 of TCS (Fig. 3.20), whereas the same species were 

completely capable of reducing the tetrazolium dye, hence respiring at the same 

concentration as shown in Fig. 3.57.  
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Data presented in this chapter also suggest that long-term exposure (18 hrs) of 

facultative anaerobic species (S. oralis and E. coli) to sub-MIC of stannous 

fluoride, can result in the shift of the metabolic activity to fermentative pathways 

(Figs. 3.49 and 3.61). In an oral ecosystem such shifts in the metabolic behaviour 

of the affected microorganisms could lead to an adverse impact on the oral 

hygiene by providing potentially increasing acidogens (Bradshaw and Marsh 1988; 

Marsh and Martin 1999). Data for short-term exposure of bacterial species to 

different oral antimicrobial agents using different substrates did not indicate shifs in 

the metabolic pathways towards a fermentative reaction, especially in the 

presence of antimicrobials that have previously shown such affect. This 

observation could be explained by the insufficient contact time between the 

microorganisms and the tested antimicrobial agent which did not allow shifts in 

cellular metabolism. The study of the metabolic activity in the current chapter 

suggests that perhaps other mechanisms of action are responsible for the 

antimicrobial efficacies of some antimicrobial agents especially over short contact 

periods with bacterial species and this will be studied within the following chapters.   
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CHAPTER 4 

 

An in vitro comparative evaluation of the anti-plaque effects of 
proprietary mouthwashes 
 

4.1 Introduction 
 
Dental plaque is a taxonomically diverse sessile microbial ecosystem which may 

contain more than 500 different bacterial species (Paster et al. 2001). This diverse 

bacterial community is found on healthy enamel and other surfaces in the mouth, 

but it is also involved in the pathogenesis of two of the most prevalent diseases 

affecting developed countries: caries and periodontal diseases. Dental caries and 

periodontal disease are the main causes of tooth loss in man (Addy et al. 1992). 

Attempts to control plaque accumulation or prevent its harmful effects continue to 

be means for the prevention of dental plaque-related diseases. In general, the 

prevention of dental diseases is more effective when antimicrobial agents are used 

to protect against plaque accumulation. Thus, there is a considerable interest in 

the use of antimicrobial agents as adjuncts to physical removal methods such as 

brushing and flossing to prevent dental disease. Because they serve as a valuable 

complement to mechanical plaque removal (i.e. brushing and flossing), 

antimicrobials have been incorporated into many different oral health formulations 

such as toothpastes, mouthwashes, sprays and gels.  Over the years, a number of 

essential oil preparations (including thymol, menthol and eucalyptol); 

bisbiguanides (e.g. chlorhexidine), quaternary ammonium  compounds (e.g. 

cetylpyridinium chloride), oxidising agents (e.g. hydrogen peroxide) and fluorinated 

compounds (e.g. sodium fluoride) have been tested and developed in commercial 

formulations and have been previously studied and reviewed (Holbeche et al. 
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1975; Gordon et al. 1985; McBain et al. 2003). However, there is a lack in 

understanding of the mechanisms by which they control the plaque ecosystem. 

Therefore, this chapter comparatively evaluates the antibacterial efficacy of 

various commercial antimicrobial-containing mouthwashes using an in vitro biofilm 

model. Understanding the antibacterial efficacy of different commercial 

mouthwashes would be further enhanced by investigating the characteristics of the 

active components presented in them. This chapter, therefore, will consider the 

mechanism of action of the active components of the mouthwashes described in 

Table 4.1 before studying their effects on complex in vitro plaque models. 

 

4.1.1 Chlorhexidine  

Chlorhexidine (CHX) is active against a variety of Gram-positive, Gram-negative 

bacteria and some fungi (Gilbert and Moore 2005). Chlorhexidine has been 

incorporated in a variety of oral hygiene products such as mouthwashes 

(Periogard®) and toothpastes (Curasept®). It has also been introduced in surgical 

hand washes as an antiseptic. The mechanisms of action of CHX are similar to 

those of the quaternary ammonium compounds; the bisbiguanide groupings in 

CHX have affinity for anionic sites of the cell membrane (Chawner and Gilbert 

1989a; Chawner and Gilbert 1989c). This interaction causes CHX to form bridges 

between pairs of adjacent phospholipid head groups of the cell membrane and to 

displace the associated stabilising divalent cations (Davies 1973) causing a 

reduction in cell membrane fluidity and affecting osmoregulation and consequently 

metabolic capability of the cell (Hugo and Longworth 1966). Severe interactions 

may occur at higher concentrations causing the cell membrane to adopt a liquid 

crystalline state, loss of structural integrity and leakage of cellular materials 
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(Longworth 1971; Chawner and Gilbert 1989a; Chawner and Gilbert 1989b; 

Chawner and Gilbert 1989c). Another mechanism of action of CHX has been 

identified by Hastings (2000), which is the ability of CHX, following entry to the 

cytoplasm to cause inhibition of proteolytic and glucosidic enzymes. In 1970, Löe 

and Schiott were the first to demonstrate the anti-plaque activity of CHX (Loe and 

Schiott 1970). By 1974, CHX activity had proven to be one of the most effective 

anti-plaque agents and thus for the prevention of oral diseases (Adams and Addy 

1994). The major advantage of CHX over some other anti-plaque compounds is its 

cationic nature that enables it to bind to both hard surfaces (tooth) and soft 

surfaces (oral mucosa), to maintain substantivity, i.e. enabling it to reduce pellicle 

formation and helping it to act over a long period of time after its use (McBain et al. 

2003). Many studies have demonstrated the efficiency of CHX in reducing oral 

bacterial viability (Hase et al. 1998), inhibiting plaque regrowth and preventing 

gingivitis (Loe and Schiott 1970). The main disadvantage of CHX is an unpleasant 

taste and in some cases associated staining of the teeth (Addy et al. 1985), which 

at times can be severe and requires professional cleaning  (Hoyos et al. 1977). 

Chlorhexidine has relatively low mammalian toxicity and therefore can be safely 

used in oral hygiene products (Foulkes 1973).   

 

4.1.2 Cetylpyridinium chloride  

As a monocationic quaternary ammonium compound, the mode of action of 

cetylpyridinium chloride (CPC) is thought to involve perturbation of the lipid bilayer 

of both the cytoplasmic and the outer membrane in Gram-negative 

microorganisms. This action on the membrane leads to a generalised and 

progressive leakage of cellular components to the environment (Gilbert and Moore 
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2005). Cetylpyridinium chloride-containing mouthwashes have been marketed 

since the early 1940s. Data obtained from various clinical studies have shown a 

reproducible significant reduction of supragingival dental plaque with the use of 

mouthwashes containing 0.05% to 0.1% CPC (Holbeche et al. 1975; Rawlinson et 

al. 2008). With CPC formulations, staining also occurs but to a lesser extent than 

for CHX-containing mouthwashes. However, taste alteration and/or burning 

sensations have been frequently reported with alcohol-based, CPC-containing 

mouthwashes (Rawlinson et al. 2008). Cetylpyridinium chloride has also proven to 

have low mammalian toxicity (Arro and Salenstedt 1973). 

 

4.1.3 Sodium Fluoride 

Sodium fluoride (NaF) has been incorporated in a wide range of oral hygiene 

products such as mouthwashes and dentifrices. The cariostatic effects of NaF 

have been extensively studied and reviewed (Bibby et al. 1946; Horowitz 1971; 

Andres et al. 1974; Sudjalim et al. 2007), and it has been concluded that the 

effects associated with NaF appear to be carried out by the fluoride ion rather than 

the metal component as in the case with stannous fluoride (Maltz and Emilson 

1982). The cariostatic activity of the fluoride ion is thought to be a result of the 

physiochemical properties of the teeth which involves the incorporation of fluoride 

ions into the hydroxyapatite structure of the enamel of the tooth forming 

fluoroapatite. This incorporation involves the replacement of the hydroxyl groups 

and the redeposition of less soluble fluoridated hydroxyapatite (de Leeuw 2004). 

Other studies suggest that fluoride ions also interfere with initial oral bacteria 

resulting in plaque formation, affecting bacterial metabolism and inhibiting acid 

production (Bibby and Van Kerstern 1940; Hamilton 1977; Skjörland et al. 1978).  
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4.1.4 Hydrogen Peroxide  

The bactericidal action of H2O2 is related to its oxidising effect through the release 

of oxygen in the presence of tissue or bacterial-derived enzymes (Miyasaki et al. 

1986). Therefore, it is not surprising that H2O2 has been used to control or 

suppress oral infections caused by obligate anaerobes, due to the high sensitivity 

of these species to active oxygen (Imlay 2002). Mouthwashes containing 3% H2O2 

have shown great effectiveness in the reduction of VSC production (Suarez et al. 

2000). The anti-plaque and anti-gingivitis effects of H2O2 containing mouthwashes 

have also been reported but remain in dispute due to contradictory findings and 

the limitation of information related to this agent (Wennstorm and Lindhe 1979; 

Gusberti et al. 1988). Hydrogen peroxide is used as an active component in a 

number of over-the-counter oral hygiene products such as (Peroxyl®) mouthwash. 

 

4.1.5 Essential oils  

A mixture of essential oils (thymol, menthol and eucalyptol) have been in use as a 

proprietary mouthwash Listerine® for over a century. A number of long-term 

clinical trials have examined the adjunctive benefit of this EO-containing 

mouthwash and its anti-plaque and anti-gingivitis efficacy (Gordon et al. 1985; 

DePaola and Daniel 1989; Daniel et al. 1990; Sharma et al. 2001; Sharma et al. 

2004). Clinical studies have also suggested that brief exposure of microorganisms 

to an EO-containing mouthwash causes distinctive morphological changes in 

bacteria and the loss of cell-surface integrity, leading to an inhibition in enzymatic 

activity and cell death. This bactericidal action prevents secondary bacterial 

colonisers from aggregating with Gram-positive pioneer species, slowing down 

plaque formation, resulting in the reduction of bacterial load and decrease of 
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plaque mass (Kurbert et al. 1993; Fine et al. 2001). The capability of this type of 

mouthwash to penetrate the plaque biofilm and exert bactericidal action has been 

explained by Ouhayoun (2003). A short-term clinical study (two weeks) has also 

demonstrated the effectiveness of an EO-containing mouthwash in inhibiting the 

development of, and reducing existing plaque, in subjects who used no other oral 

hygiene procedures (Mankodi et al. 1987). In spite of its prolonged use as a 

mouthwash and its proven anti-gingivitis and anti-plaque activity, there is still a 

lack of understanding about the contribution of the active ingredient(s) that maybe 

responsible for its anti-plaque activity since most of the studies focused on the 

complete formulation rather than its individual components. Therefore, 

investigating the antimicrobial activity of the active agents an EO-containing 

(individually and in combination) was one of the aims of this current chapter. 

 

4.2 Models/Approaches 

For any in vitro model system to be a representation of real phenomena it must 

reproduce aspects of the ecosystem to be studied. Hence, the hydroxyapatite disc 

model (HDM), first described by Guggenheim et al (2001), consists of a disc made 

up of hydroxyapatite (HA) which is chemically similar to the tooth enamel. This 

model has the capability of harbouring microorganisms of complex ecosystems 

such as oral bacteria and can be used to represent a supragingival plaque system 

(Guggenheim et al. 2001). The current in vitro study was designed and executed 

in two parts; the first part was to use the HDM to demonstrate the ecological shifts 

in plaque composition (functional bacterial groups) in response to short-term 

exposure to oral chemoprophylactic agents (complete mouthwashes and/or active 

ingredients). The second part was to use a microscopic evaluation technique, 
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LIVE/DEAD bacterial-viability staining (BacLight; Molecular Probes, Leiden, The 

Netherlands), to evaluate the intact bacterial biomass on HA. The use of HA discs 

appeared to be an unsuccessful approach in the microscopic evaluation technique 

(data not presented) due to cross fluorescence between the bacterial biomass and 

the HA material, hence a glass slide model (GSM) was used to overcome the 

background cross fluorescence problem. Both the incubation periods and the 

methodology of the HDM and GSM were previously described in Sections 2.12 

and 2.13.   

 

4.3 Microorganism choice for validation studies of glass slide model   

Although the use of glass surfaces as substrata has been described in several 

biofilm studies, their use for the growth and attachment of oral bacterial species 

individually and/or as whole salivary biofilms has not been validated (LeChevallier 

et al. 1988; Bowden and Li 1994; Shu et al. 1999; Mah and O'Toole 2001). It is 

acknowledged that plaque ecosystems are composed of several hundred bacterial 

species, each of which plays role in plaque architecture (Marsh and Martin 1999). 

Hence, the selection of microorganisms for this particular study was based on 

bacterial species comprising the early or primary colonisers of plaque biofilm. S. 

oralis, S. sangius and N. subflava were selected as a simple paradigm to be used 

in validation studies as the microorganisms resembling the early colonisers in the 

dental plaque (Marsh and Martin 1999). After successive validation experiments 

involving mono-species biofilms, the glass substrata were further validated by 

growing salivary microcosm biofilms on them as previously described (Section 

2.13). 
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4.4 Aims 

The antibacterial effects of various formulations used for the enhancement of oral 

hygiene is related to the active ingredient(s) as well as other components in the 

formulation (Marsh 1992). Here, the most potent oral formulations with the highest 

antibacterial efficacy were tested alongside their active component(s). Hence, the 

main aim of this chapter was to investigate the antimicrobial efficacy of different 

oral formulations and detect the ingredient(s) responsible for their bactericidal 

potency against functional groups of in vitro salivary microcosms. 

 

4.5 Results  

4.5.1 Statistical analysis  

For analysis of viable counts, the Student’s t-test was used to determine whether 

the use of glass surfaces for biofilm formation were significant for validation 

studies. The Student’s t-test was also used to determine whether the effects of 

various mouthwashes in microcosms were significant. Data were arranged in 

tables and subjected to a SigmaPlot version 11 Systat© software. 

 

4.5.2 Validation studies of glass slides models 

Glass slides models have been tested comparatively with HDMs for their ability to 

be used as substrata for reproducing biofilms successfully with different oral 

bacterial species (pure bacterial cultures and whole salivary microcosms). This 

validation was considered to be important for further microscopic investigations of 

the effects of a proprietary mouthwash on biofilm attachment. Fig. 4.1 illustrates 

the ability N. subflava cultures to attach to different substrata (glass and HA) 

aerobically for 48 hrs. The total counts of N. subflava grown on each of the three 
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test glass surfaces were not significantly different to each other (p > 0.05). The 

total counts were also not significantly different (p > 0.05) when N. subflava was 

grown on each HA discs. Moreover, there was no significant difference in the 

viable counts of N. subflava grown on glass substrata compared to those grown on 

HA discs (p > 0.05) as shown in Fig. 4.1. 
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Figure 4.1:  The effect of N. subflava cultures attachment on different substrata on total counts; G1, 
G2 and G3 (white bars) represent viable counts after incubation on glass substrata. HA1, HA2 and 
HA3 (black bars) represent viable counts after incubation on hydroxyapatite substrata. Data 
represent mean values of triplicate experiments; error bars represent standard errors of the mean 
(n=3). 
 
 
Fig. 4.2 shows the ability S. oralis cultures to attach anaerobically for 48 hrs on 

both glass and HA surfaces. The viable counts of S. oralis resuspended biofilms 

grown previously on glass slides were not significantly different (p > 0.05). When 

HA was used as a surfaces for the growth of the same species, an insignificant 

difference (p > 0.05) of the viable counts was also detected. However, a significant 

difference (p < 0.05) of ca. 1.5 log10 cfu.mm-2 was shown with the counts of S. 

oralis grown on glass substrata compared to the counts of the microorganisms 

grown on HA discs. 
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Figure 4.2:  The effect of S. oralis cultures attachment on different substrata on total counts; G1, 
G2 and G3 (white bars) represent viable counts after incubation on glass substrata. HA1, HA2 and 
HA3 (black bars) represent viable counts after incubation on hydroxyapatite substrata. Data 
represent mean values of triplicate experiments; error bars represent standard errors of the mean 
(n=3). * above the open bar represents a significant change with respect to HA counts (p < 0.05). 
 

Data presented in Fig. 4.3 shows a comparison of the effect of S. sanguis cultures 

attachment on both glass and HA surfaces on viable counts when grown 

anaerobically for 48 hrs. S. sanguis viable counts were slightly higher when 

biofilms were grown on glass compared to biofilms grown on HA substrata (Fig. 

4.3). However, the slight increment in the viable counts was not considered to be 

statistically different (p > 0.05) between the counts after growth on the tested 

substrata.  

In summary, there were no statistical differences between the viable counts of the 

suspended biofilms of each tested species when grown on the same substratum. 

Moreover, with the exception of S. oralis, the viable counts of the bacteria grown 

on glass were significantly different from the viable counts of the same bacteria 

grown on HA surfaces.     
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Figure 4.3:  The effect of S. sanguis cultures attachment on different substrata on total counts; G1, 
G2 and G3 (white bars) represent viable counts after incubation on glass substrata. HA1, HA2 and 
HA3 (black bars) represent viable counts after incubation on hydroxyapatite substrata. Data 
represent mean values of triplicate experiments; error bars represent standard errors of the mean 
(n=3). 
 

The ability to reproducibly grow biofilms from salivary microcosms on glass was 

compared to those grown on HA substrata. Fig. 4.4 illustrates the cells attachment 

following incubation of salivary samples on both glass and HA substrata, as 

measured by viable counts of the functional groups of the salivary microcosms.  

Fig. 4.4 (A), shows a significant difference in viable counts (p < 0.05) of 1.5 log10 

cfu.mm-1 of total aerobes grown within salivary biofilms on glass substrata 

compared to viable counts of the same functional group grown on HA discs. 

Moreover, data presented in Fig. 4.4 (B-D), also show a significant difference in 

viable counts (p < 0.05) of ca. 1 log10 cfu.mm-1 of the rest of the bacterial functional 

groups grown within salivary biofilms on glass substrata compared to viable counts 

of the same functional group grown on HA discs. 

In general, the data presented in Fig. 4.4 show the ability to produce reproducible 

biofilms on glass surfaces. However, in all trials viable counts of the functional 
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groups grown on glass substrata were significantly less than the viable counts of 

the same functional groups grown HA substrata. 
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         (C) Total streptococci                             (D) Total Gram-negative anaerobes 
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Figure 4.4:  The effect of microorganisms attachment of whole saliva on different substrata on total 
counts; G1, G2 and G3 (white bars) represent viable counts after incubation on glass substrata. 
HA1, HA2 and HA3 (black bars) represent viable counts after incubation on hydroxyapatite 
substrata. Data represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). * above the open bar represents a significant change with respect to HA 
counts (p < 0.05). 
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4.5.3 Antibacterial efficacy of various mouthwashes  and their active 
component(s) 
 
The hydroxyapatite disc model was used to evaluate and compare the 

antimicrobial efficacy of different oral antimicrobial agents against different 

functional bacterial groups in salivary microcosms. In this study commercially 

available mouthwashes were tested alongside their active ingredient(s). The 

mouthwashes and their respective antimicrobial agent(s) that were tested 

included; i) Listerine®, containing the essential oils menthol, thymol, and 

eucalyptol, with methyl salicylate and alcohol also included in the formulation. ii) 

Neutrafluor®, which contains the active ingredient NaF. iii) Plax®overnight®, 

containing the quaternary ammonium compound CPC. iv) Periogard®, which 

contains the bisbiguanide CHX and v) Peroxyl®, which includes the active 

ingredient H2O2 as an oxidising agent. It is important to note that the essential oils 

used in this study were either insoluble or slightly soluble in water but highly 

soluble in alcohol, therefore, alcohol (ethanol) at commercial concentration was 

used as a vehicle to solubilise them. The concentrations of the active components 

tested were equal to the concentrations of the same actives presented in the 

commercial counterpart mouthwash (Table 4.1). 
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Table 4.1:  Active ingredients and their concentrations found in different tested 
commercially available mouthwashes. 
 
Mouthwashes Active ingredients Concentrations of 

active ingredients 
 

 

 

 

Listerine® 

Menthol* 

 

Thymol* 

 

Eucalyptol* 

 

Methyl salicylate* 

 

Ethanol 

0.042% 

 

0.064% 

 

0.092% 

 

0.060% 

 

26.1% 

Neutrafluor® Sodium fluoride 0.05% 

Plax®overnight® Cetyl pyridinum chloride 0.05% 

Peroxyl® Hydrogen peroxide 1.5% 

Periogard® Chlorhexidine 0.12% 

* active ingredient was dissolved in 26.6% ethanol (as used in Listerine® 
formulation concentration) before being tested. 
 

Data presented in Fig. 4.5 illustrate the effects of mouthwashes and their active 

components on the viable counts of total facultative anaerobe bacteria derived 

from salivary microcosms after one minute exposure. The mouthwashes 

Neutrafluor®, Peroxyl® and the active CPC did not show any significant reduction 

in the viable counts of the total facultative anaerobes (Fig. 4.5), whereas all other 

mouthwashes and their active components showed a statistically significant 

reduction in viable counts, the most prolific being Listerine® (4.5 log10 cfu.mm-1 

reduction) and Periogard® (3 log10 cfu.mm-1 reduction). 
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Figure 4.5:  Effects of mouthwashes and actives on total facultative anaerobic viable bacterial 
counts of saliva-derived oral microcosms maintained on HA discs after one min. exposure; (NE) 
Neutrafluor®, (LS) Listerine®, (TH) thymol, (ME) menthol, (MS) methyl salicylate, (EU) eucalyptol, 
(PX) Peroxyl®, (HO) H2O2, (ON) Plax®overnight®, (CP) CPC, (PE) Periogard®, (CX) CHX, (AL) 
alcohol. The solid black bars represent control counts (untreated microcosms) while the open bars 
represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
 
 
The antimicrobial activities of the tested mouthwashes and actives against total 

anaerobes derived from salivary microcosms maintained on HA discs after one 

min exposure are illustrated in Fig. 4.6. A ca. 4 log10 cfu.mm-1 reduction of bacterial 

viable counts was detected after the one min. exposure of the salivary biofilm to 

Listerine® mouthwash. This reduction in viable counts was highly significant when 

compared to the control viable counts and other viable counts related to other 

mouthwashes and actives. Despite their statistically significant reduction of 

anaerobic viable counts, none of Listerine’s® active ingredients showed a similar 
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reduction to the whole formulation. The most active component was thymol, 

showing a ca. 1 log10 cfu.mm-1 reduction in bacterial viable counts.  
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Figure 4.6:  Effects of mouthwashes and actives on total anaerobic viable bacterial counts of 
saliva-derived oral microcosms maintained on HA discs after one min. exposure; (NE) Neutrafluor®, 
(LS) Listerine®, (TH) thymol, (ME) menthol, (MS) methyl salicylate, (EU) eucalyptol, (PX) Peroxyl®, 
(HO) H2O2, (ON) Plax®overnight®, (CP) CPC, (PE) Periogard®, (CX) CHX, (AL) alcohol. The solid 
black bars represent control counts (untreated microcosms) while the open bars represent the 
treated biofilm. Data represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). * above the open bar represents a significant change with respect to 
control counts (p < 0.05). 
 

Other actives in the study such as CHX showed a significant reduction in cell 

counts (ca.1 log10 cfu.mm-1) compared to the control. However, this antibacterial 

activity was considered less than the activity of its commercial mouthwash 

counterpart Periogard®, which showed a reduction of ca. 3 log10 cfu.mm-1 

compared to the controls. The rest of the tested actives and their counterpart 

mouthwashes showed a reduction of approximatly 0.5 log10 cfu.mm-1 of the 
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bacterial viable counts compared to their related controls, except for Neutrafluor® 

which, did not show any significant reduction on cell numbers. 

The antimicrobial efficacies against other bacterial functional groups in the 

salivary-derived biofilm were also tested. Fig. 4.7 illustrates the antimicrobial 

activity of different actives and their related mouthwashes on the viable counts of 

total Gram-negative anaerobic bacterial groups derived from salivary microcosms 

attained on HA discs after one min exposure. As previously shown with other 

functional bacterial groups, Listerine® mouthwash demonstrated a high 

antimicrobial efficacy which was represented by ca. 5 log10 cfu.mm-1 reduction in 

the viable counts of the related Gram-negative anaerobes compared to the control 

(Fig. 4.7). Thymol, as one of Listerine’s® actives, also showed a significant 

reduction in viable counts of the same bacterial functional groups (3 log10 cfu.mm-1; 

Fig. 4.7). Data presented in Fig. 4.7 also indicate that the rest of the active 

ingredients of Listerine® did not show the same potent antibacterial efficacy of 

Listerine® itself or thymol’s when compared to the control. Fig. 4.7 also 

demonstrates the antibacterial efficacy of other formulations such as Peroxyl® and 

its active agent H2O2, both of which showed a reduction of the viable counts of the 

related Gram-negative anaerobes. This reduction was calculated as ca. 2.5 and 

2.25 log10 cfu.mm-1 respectively. The mouthwash Periogard® and its active CHX 

showed reduction values of ca. 2.5 and 2 log10 cfu.mm-1 respectively (Fig. 4.7).  

The lowest antibacterial activity against the Gram-negative anaerobes of the 

salivary microcosm was represented by the high viable counts of these species 

after exposure to the mouthwashes Neutrafluor®, Plax®overnight® and its active 

CPC (Fig. 4.7).  
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Figure 4.7:  Effects of mouthwashes and actives on total Gram-negative anaerobic viable bacterial 
counts of saliva-derived oral microcosms maintained on HA discs after one min. exposure; (NE) 
Neutrafluor®, (LS) Listerine®, (TH) thymol, (ME) menthol, (MS) methyl salicylate, (EU) eucalyptol, 
(PX) Peroxyl®, (HO) H2O2, (ON) Plax®overnight®, (CP) CPC, (PE) Periogard®, (CX) CHX, (AL) 
alcohol. The solid black bars represent control counts (untreated microcosms) while the open bars 
represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
 
 
The effects of one min. exposure to different actives and mouthwashes on total 

streptococci is presented in Fig. 4.8. A significant reduction of the streptococci 

functional group was observed after treatment with Listerine®. It can be seen from 

Fig. 4.8 that Listerine’s® active ingredients individually failed to show the same 

reduction in counts as that of the commercial product itself. Statistical analysis 

confirmed that there was no significant reduction in the counts after treatment with 

Neutrafluor®, Peroxyl®, Plax®overnight® and the active ingredients represented by 

them (Fig. 4.8). Treatment with Periogard® and its active CHX showed a reduction 

in viable counts of ca. 2.5 and 1 log10 cfu.mm-1 respectively (Fig. 4.8). 
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Figure 4.8:  Effects of mouthwashes and actives on total streptococci viable bacterial counts of 
saliva-derived oral microcosms maintained on HA discs after one min. exposure; (NE) Neutrafluor®, 
(LS) Listerine®, (TH) thymol, (ME) menthol, (MS) methyl salicylate, (EU) eucalyptol, (PX) Peroxyl®, 
(HO) H2O2, (ON) Plax®overnight®, (CP) CPC, (PE) Periogard®, (CX) CHX, (AL) alcohol. The solid 
black bars represent control counts (untreated microcosms) while the open bars represent the 
treated biofilm. Data represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). * above the open bar represents a significant change with respect to 
control counts (p < 0.05). 
 

In summary, treatment of saliva-derived microcosms with Listerine® has 

successfully shown a high reduction in bacterial counts which was manifested 

against total facultative anaerobes, total aerobes, Gram-negative and total 

streptococci (Figs. 4.5-4.8). This reduction was observed to be greater than the 

viable count reductions of the other mouthwashes and their actives that were 

tested. Moreover, the reduction of viable counts by Listerine® was significantly 

higher than that of Listerine® actives used individually. Therefore, further 

investigations into detecting the mechanisms of action of Listerine® formulation 

itself and its actives individually and in combination were conducted. The ability of 
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the bacterial biomass to detach from its substrata after exposure to Listerine® 

and/or its actives individually was also examined as described (Section 2.14). The 

antibacterial effect of Listerine® formulation was investigated microscopically as 

described (Section 2.15). 

 

4.5.4 Investigations into the effects of Listerine ® and its active ingredients on 
biomass detachment 
 
Crystal violet assays were used to investigate the ability of Listerine® and its active 

agenst to perturb the attachment integrity of artificial plaque biomass. As 

previously described in Section 2.14, salivary-derived bacterial biomass were 

grown on peg devices both aerobically and anaerobically for 48 hrs before 

exposure to the mouthwash and its active agents individually for one min. duration. 

Crystal violet staining of the biofilm material remaining on the peg devices was 

compared spectrophotometrically after the crystal violet was re-solubilised. A high 

optical density would imply to a high artificial plaque mass remaining on the peg 

device and vice versa. Data displayed in Fig. 4.9 and Fig. 4.10 illustrate the effects 

caused by Listerine® and its active ingredients on the optical densities of crystal 

violet stained-artificial plaque after one min exposure. According to statistical 

analysis the crystal violet optical densities of all stained microcosms did not show 

any significant difference compared to control optical density values (Fig. 4.9 and 

Fig. 4.10). The only significant difference was observed in the optical densities of 

the negative control values, where this difference was considered to be due to the 

absence of growing bacteria in the sterilised saliva representing negative controls 

(Fig. 4.9 and Fig. 4.10). 
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Figure 4.9:  Effects of Listerine® mouthwash and its active ingredients on crystal violet O.D of 
stained salivary-derived microcosms maintained aerobically on peg devices after 1 min. exposure; 
(+ve) positive control, (LS) Listerine®, (AL) Alcohol, (ME) menthol, (EU) eucalyptol, (TH) thymol, 
(MS) methyl salicylate, (-ve) negative control. The solid black bar represents the control O.D 
(untreated microcosms) while the open bars represent the treated biofilm. Data represent mean 
values of eight replicates; error bars represent standard errors of the mean (n=8). * above the open 
bar represents a significant change with respect to control O.D (p < 0.05). 
 

It was also observed from both Figs. (4.9 and 4.10), that all the optical density 

values of crystal violet representing the remaining biomass attached on pegs was 

higher in aerobic conditions. These differences in optical densities were also 

consistent with positive control values representing the untreated microcosms. 

This consistency is more likely to represent the magnitude of biomass growth in 

aerobic conditions rather than being a resemblance of ability of the E.O’s to detach 

the plaque. The study design incubation period of the anaerobic plaque (48 hours), 

the slow growth of the different taxonomic species (strict and facultative 

anaerobes) and the plastic substratum of the peg material might be causative 

factors for a lower bacterial biomass on pegs incubated anaerobically which 

represent low optical densities of crystal violet values. 
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Figure 4.10:  Effects of Listerine® mouthwash and its active ingredients on crystal violet O.D of 
stained salivary-derived microcosms maintained anaerobically on peg devices after 1 min. 
exposure; (+ve) positive control, (LS) Listerine®, (AL) Alcohol, (ME) menthol, (EU) eucalyptol, (TH) 
thymol, (MS) methyl salicylate, (-ve) negative control. The solid black bar represents the control 
O.D (untreated microcosms) while the open bars represent the treated biofilm. Data represent 
mean values of eight replicates; error bars represent standard errors of the mean (n=8). * above 
the open bar represents a significant change with respect to control O.D (p < 0.05). 
 
 
 
4.5.5 A comparative investigation of the combinator ial  antibacterial 
efficacies of Listerine ® mouthwash active components 
 

An in vitro approach was used to investigate the antibacterial activity of Listerine® 

active ingredients. The HDM was used to investigate the active agents 

combinatorial antibacterial effect in the following possible combinations; i) 

eucalyptol-menthol combination (EU-ME), ii) thymol-menthol combination (TH-

ME), iii) methyl salicylate-menthol combination (MS-ME), vi) thymol-eucalyptol 

combination (TH-EU), v) methyl salicylate-eucalyptol combination (MS-EU), and 

iv) thymol-methyl salicylate combination (TH-MS). In all cases the combinatorial 

actives concentrations were equal to the concentrations found in the product and 

were dissolved in 26.1% ethanol to mimic the product formulation and to enhance 

the solubility of the ingredients. The antibacterial efficacy was evaluated by 

comparing viable bacterial counts of the saliva-derived microcosm that had been 
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maintained on HA discs and treated one min. with the combinatorial actives 

(Section 2.12). 

Fig. 4.11 shows the effects a 1min. exposure to Listerine® mouthwash and its 

combinatorial actives on viable bacterial counts of total facultative anaerobes of 

saliva-derived oral microcosms maintained on HA discs. 
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Figure 4.11:  Effects of Listerine® mouthwash and its combinatorial actives on total facultative 
anaerobic viable bacterial counts of saliva-derived oral microcosms maintained on HA discs after 
one min. exposure; (LS) Listerine®, (EU-ME) eucalyptol-menthol combination, (TH-ME) thymol-
menthol combination, (MS-ME), methyl salicylate-menthol combination, (TH-EU) thymol-eucalyptol 
combination, (MS-EU) methyl salicylate-eucalyptol combination, (TH-MS) thymol-methyl salicylate 
combination. The solid black bar represents control counts (untreated microcosms) while the open 
bars represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
 

It was observed from the data presented in Fig. 4.11 that all combinatorial actives 

except that of EU-ME promoted statistically significant reductions in viable counts 

compared to the control. Both Listerine® and the TH-ME combination were 

substantially more effective in reducing cell number than the rest of the tested 

combinations (Fig. 4.11). Statistical analysis showed that the reduction in viable 

counts caused by Listerine® and the TH-ME actives combination was not 
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significantly different; hence, both the formulation itself and TH-ME combination 

show a similar antimicrobial effectiveness (ca.1.5 log10 cfu.mm-1 reductions). 

Fig. 4.12 illustrates the effectiveness of Listerine® mouthwash and its combinatorial 

actives on the reduction in numbers of total anaerobic bacteria. The data 

presented in the same figure shows that TH-EU and TH-MS actives combination 

were equally effective in promoting the reduction of bacterial CFU’s (ca.1.5 log10 

cfu.mm-1). TH-ME had a modestly better antibacterial efficacy compared to the 

Listerine® formulation (Fig. 4.12). Whilst EU-ME failed to show any significant 

reduction in viable counts compared to the control, MS-EU showed a minor 

reduction followed by the CFU reduction promoted by MS-ME combination (Fig. 

4.12). 
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Figure 4.12: Effects of Listerine® mouthwash and its combinatorial actives on total anaerobic 
viable bacterial counts of saliva-derived oral microcosms maintained on HA discs after one min. 
exposure; (LS) Listerine®, (EU-ME) eucalyptol-menthol combination, (TH-ME) thymol-menthol 
combination, (MS-ME), methyl salicylate-menthol combination, (TH-EU) thymol-eucalyptol 
combination, (MS-EU) methyl salicylate-eucalyptol combination, (TH-MS) thymol-methyl salicylate 
combination. The solid black bar represents control counts (untreated microcosms) while the open 
bars represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
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The results shown in Fig. 4.13 provide a clear representation of the antibacterial 

effectiveness of Listerine® mouthwash and its combinatorial actives on total Gram-

negative anaerobic viable bacterial counts. The viable counts reduction efficacies 

of the combinations TH-ME, TH-EU and TH-MS were slightly better than Listerine® 

as a whole. Listerine® mouthwash itself showed a substantial antibacterial 

effectiveness by achieving a reduction of ca. 2.5 log10 cfu.mm-1 (Fig. 4.13). Viable 

counts reduction affected by exposure of biofilms to EU-ME combination were 

slightly more than the control, whereas MS-EU combination did not show any 

statistical difference from the control. The combination of MS-ME was effective in 

causing a ca. 1 log10 cfu.mm-1 reduction of CFU’s as shown in Fig. 4.13. 
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Figure 4.13:  Effects of Listerine® mouthwash and its combinatorial actives on total Gram negative 
anaerobic viable bacterial counts of saliva-derived oral microcosms maintained on HA discs after 
one min. exposure; (LS) Listerine®, (EU-ME) eucalyptol-menthol combination, (TH-ME) thymol-
menthol combination, (MS-ME), methyl salicylate-menthol combination, (TH-EU) thymol-eucalyptol 
combination, (MS-EU) methyl salicylate-eucalyptol combination, (TH-MS) thymol-methyl salicylate 
combination. The solid black bar represents control counts (untreated microcosms) while the open 
bars represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
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The effectiveness of Listerine® mouthwash and paired combination of active 

compounds against total streptococci CFU’s was demonstrated in Fig. 4.14. Active 

ingredient combinations of EU-ME, MS-ME and MS-EU did not show any 

significant statistical difference in promoting a viable counts reduction compared to 

the control counts (Fig. 4.14). Statistical analyses have shown that the 

antimicrobial efficacy of both Listerine® mouthwash and the combination of TH-ME 

were not significantly different to each other, but were significantly different to the 

control values (ca. 2 log10 cfu.mm-1 reduction). Statistical analyses have also shown 

that the antimicrobial efficacy of both TH-EU and TH-MS combinations was not 

significantly different when compared to each other. Moreover, TH-EU and TH-MS 

combinations had a modest effect on reducing the total streptococci counts (ca. 1 

log10 cfu.mm-1 reduction) as demonstrated in Fig. 4.14. 

In summary, the presence of the essential oil thymol in any of the tested 

formulations led to a better reduction in the differential viable bacterial counts 

compared to other active ingredients formulations (Figs. 4.11-4.14). The paired 

combination of TH-ME was as effective as, or slightly better than, Listerine® 

mouthwash in reducing the CFU’s of different bacterial functional groups. 

Therefore, the combination of thymol and menthol were further tested for any 

potential synergy against pure oral bacterial species in the incoming section of the 

results.   
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Figure 4.14:  Effects of Listerine® mouthwash and its combinatorial actives on total streptococci 
viable bacterial counts of saliva-derived oral microcosms maintained on HA discs after one min. 
exposure; (LS) Listerine®, (EU-ME) eucalyptol-menthol combination, (TH-ME) thymol-menthol 
combination, (MS-ME), methyl salicylate-menthol combination, (TH-EU) thymol-eucalyptol 
combination, (MS-EU) methyl salicylate-eucalyptol combination, (TH-MS) thymol-methyl salicylate 
combination. The solid black bar represents control counts (untreated microcosms) while the open 
bars represent the treated biofilm. Data represent mean values of triplicate experiments; error bars 
represent standard errors of the mean (n=3). * above the open bar represents a significant change 
with respect to control counts (p < 0.05). 
 
 
 
4.5.6 Into investigating a potential combinatorial antimicrobial activity 
between thymol and menthol essential oils 
 
A checkerboard microdilution method was used to investigate the presence of a 

potential synergistic effect between the essential oils thymol and menthol. 

According to the data previously presented in section 4.5.5, the combination of 

both oils solubilised in 26.1% alcohol was as active as or slightly better than the 

complete product. In order to compare their synergistic effect, both actives were 

tested individually before being tested in combination against various oral bacterial 

species as previously described in section 2.10. The interactions between the two 

essential oils were classified as synergistic, additive, or antagonistic on the basis 

of the fractional inhibitory concentration (FIC) index. The FIC index is the sum of 



 169 

the FICs of each tested agent and the FIC is defined as the MIC of each 

antimicrobial when used in combination divided by the MIC of the antimicrobial 

when used alone. As previously described in Section 3.4.3.1, the interaction was 

defined as synergistic if the FIC index was <1, additive if the FIC index was 1.0, 

sub-additive if the FIC index was between 1.0 and 2.0, indifferent if the FIC index 

was 2, and antagonistic if the FIC index >2 (Berenbaum 1978; Hall et al. 1983; 

Scott et al. 1999; Canton et al. 2005). The combination of both essential oils was 

demonstrated against various tested species as shown in Table 4.2. 

In accordance to the FIC index values presented in Table 4.1, both essential oils 

(thymol and menthol) were shown to possess a synergistic antimicrobial activity 

against most of the tested oral species. However, the MIC values for thymol in the 

combinatorial solution ranged from (10µg.ml-1-0.16mg.ml-1), whereas in Listerine® 

the MIC values of thymol active ingredient ranged from (5µg.ml-1-0.32mg.ml-1). 

Menthol MIC values have also shown to be lower in the combination (30 µg.ml-1-

70µg.ml-1) compared to the mouthwash itself (30µg.ml-1-0.21mg.ml-1). The higher 

MIC values of Listerine® compared to its actives combination indicate its lower 

antibacterial activity. This lower activity could be caused by the presence of 

various active and inactive ingredients in the mouthwash solution which might 

antagonise the antibacterial activity of thymol and menthol synergy. Several trials 

to investigate the nature of antagonising ingredients by the checkerboard method 

failed (data not presented) due to the inability to produce a clear solution when a 

fourth active ingredient was introduced.  
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4.5.7 Microscopic evaluation of Listerine ® mouthwash on artificial plaque  

The capability of Listerine® mouthwash to penetrate and/or detach a salivary-

derived plaque biofilm in addition to its antibacterial action was tested. Glass slides 

were used as substrata for the biofilm. Incubation period and mouthwash exposure 

time were previously described in (Section 2.15).  
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Figure 4.15:  Effects of Listerine® mouthwash on attachment and viability of saliva-derived oral 
microcosm as determined by LIVE/DEAD BacLight assay. Data are means ± SD from 2 glass 
slides, each of which counted ten random fields of view. Filled bars, control (untreated microcosm); 
open bars, Listerine® treated microcosm. * above the open bar represents a significant change with 
respect to control counts (p < 0.05). 
 
 
Fig. 4.15 shows data for numbers of individual live and dead cells developed in 

control and Listerine®-exposed environments with salivary bacterial consortia 

maintained on glass slides. Brief exposure (1 min) to the mouthwash significantly 

reduced the number of live cells compared to untreated controls (Fig. 4.15). The 

increase in the number of dead microorganism was statistically significant after 

exposure to Listerine® compared to untreated biofilms (Fig. 4.15). Measurements 

of the live/dead cells, however, do not necessarily correlate only with lethality of 

the mouthwash, as the data represented in Fig. 4.15 show that the sum of the 
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treated live and dead cells was still lower than 100% field of view. This observation 

was in apparent agreement with the images presented in Fig. 4.16. The number 

and the aggregations of the scored live and dead microorganisms after Listerine® 

exposure were lower per field of view compared to control. A detachment of the 

cells and a washing effect is proposed. 

 

 

Figure 4.16:  Epifluorescence microscope images showing LIVE/DEAD-stained 
saliva-derived plaque formed on glass slides. (a) Control (live); (b) control (dead); 
(c) treated (live); (d) treated (dead). Total magnification: x1000. 

a) b) 

 d) c) 

 

100µm 
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Table 4.2:  In vitro interactions between thymol and menthol on various axenic species of the oral microcosm indicated by the 
fractional inhibitory concentration index (FIC) method. 
 

 
 

Organism 

 
Thymol 

   (mg.ml -1)a 

 
Menthol  

  (mg.ml -1)b 

 
Thymol 

   (mg.ml -1)c 

 
Menthol  

  (mg.ml -1)d 

   
Listerine ®  % 

 
Thymol  

   (mg.ml -1)e 

 
Menthol 

  (mg.ml -1)f 

 

 
 

MIC 

 
 

MBC 

 
 

MIC 
 

 
 

MBC MIC MBC 
 

MIC 
 

 
MBC 

 

 
 

Checkerboard FIC 
index 

 
 

Interpretation MIC MBC MIC MBC MIC MBC 

 
S. oralis 

 
0.16 

 

 
0.64 

 

 
0.21 

 

 
> 0.42g 

 
0.005 

 

0.005 
0.005 
(0.01)h 

 
0.003 

 

 
0.003 

 

 
0.046 

 

 
Si 

 

12.5 
 

 

50 

 

0.08 

 

0.32 

 

0.05 

 

0.21 

 
S. mutans 

 
0.32 

 

 
0.32 

 

 
> 0.42 

 
> 0.42 

0.04 
0.04 

(0.01) 

(0.01) 
(0.08) 
(0.04) 

 
0.003 

 
0.003 

 
0.09 

 

 
S 

 
25 

(50) 

 
50 

 
0.16 

 

 
0.32 

 

 
0.1 

 

 
0.21 

 

 
P. oralis 

 
0.32 

 

 
0.32 

 

 
0.105 

 

 
0.105 

 

 
0.08 

 

 
0.08 

 

 
0.007 

 

 
0.007 

 

 
0.3 

 

 
S 

 
50 

 
50 

 
0.32 

 

 
0.32 

 

 
0.21 

 

 
0.21 

 

 
S. sanguis 

 
0.16 

 

 
0.16 

 

 
0.42 

 

 
0.42 

 

 
0.005 

 

 
0.005 

 

 
0.003 

 

 
0.003 

 

 
0.039 

 

 
S 

 
12.5 

 
25 

 
0.08 

 
0.16 

 
0.05 

 
0.1 

 
L. rhamnosus 

 
0.32 

 

 
0.32 

 

 
> 0.42 

 
> 0.42 

 
0.16 

 

 
0.32 

 

 
0.003 

 

 
0.003 

 

 
0.5 

 

 
MSj 

 
50 

 
50 

 
0.32 

 

 
0.32 

 

 
0.21 

 

 
0.21 

 

 
P. gingivalis 

 
0.16 

 

 
0.16 

 

 
0.007 

 

 
0.007 

 

 
0.001 

 

 
0.001 

 

 
0.007 

 

 
0.007 

 

 
1.008 

 

 
SAk 

 
50 

 
50 

 
0.32 

 

 
0.32 

 

 
0.21 

 

 
0.21 

 

 
N. subflava 

 
0.02 

 

 
0.08 

 

0.05 
0.05 
(0.1) 

0.1 
0.1 

(0.2) 

 
0.005 

 

 
0.005 

 

 
0.003 

 
0.003 

 
0.3 

 

 
S 

 
0.78 

 
3.1 

(1.56) 

 
0.005 

 

 
0.02 

 

 
0.003 

 
0.013 

 

 
a,b; MICs and MBCs for essential oils tested individualy, c,d; MICs and MBCs for essential oils tested in combination, e ; concentration of thymol represented in Listerine® 
f; concentration of menthol represented in Listerine®, g; value greater than the tested concentration, h; different value, i; synergy, j; marginal synergy, k; sub-additive.
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4.6 Discussion 

This chapter compared the antibacterial efficacy of a number of commercially 

available mouthwashes and their active ingredients, namely Listerine®, 

Periogard®, Plax®overnight®, Peroxyl® and Neutrafluor®. The comparative 

experiments were performed using a hydroxyapatite disc as an in vitro biofilm 

model, first described by Guggenheim in 1999. The results suggest that Listerine® 

mouthwash showed a higher reduction in the total counts of various bacterial 

functional groups after one min. exposure compared to other tested mouthwashes 

(Neutrafluor®, Plax®overnight®, Periogard® and Peroxyl®); (Figs. 4.5, 4.6, 4.7 and 

4.8).  

Interestingly, the individual active ingredients of Listerine® mouthwash, namely 

menthol, thymol, eucalyptol, methyl salicylate and ethanol at formulation 

concentrations showed only a modest reduction in the viable counts of bacterial 

functional groups, suggesting combinatorial action of two or more of the 

components (Figs. 4.5, 4.6, 4.7 and 4.8). Although Periogard® mouthwash showed 

a reduction in total counts, its efficacy was not as great as that of Listerine®. These 

findings are in agreement with Pan et al who suggested that the rapid killing 

activity of Listerine® mouthwash was attributed to its ability to penetrate plaque 

and damage bacterial cellular membrane (Pan et al. 2000). Due to this 

antibacterial efficacy, Listerine® mouthwash was further investigated. Data 

presented in the HDM study could not give a full explanation of the mechanism by 

which either Listerine® or its active ingredients exert their antimicrobial efficacy. 

The HDM study data provided information on bacterial functional groups counts 

reduction caused by Listerine® exposure. Again, this reduction could be a result of 

the biofilm penetrative activity of Listerine®, leading to biofilm removal from the 
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substrata and not necessarily kill. Therefore, other approaches were conducted in 

order to provide more information regarding the antibacterial mode of action 

Listerine® and its active ingredients. Biofilm detachment investigations (crystal 

violet assays) were conducted to see whether Listerine® and/or any of its active 

ingredients were responsible for plaque removal. Results did not show any 

significant difference between the optical densities for treated and non-treated 

biofilms, for Listerine® or any of its active ingredients that were tested (Figs. 4.9 

and 4.10). These results suggest that neither Listerine® nor any of its active 

ingredients had any impact on biofilms detachment from the treated plaque-

containing pegs. Despite showing a negative removal impact of biofilms in crystal 

violet assays, microscopic evaluation experiments of LIVE/DEAD BacLight assays 

were conducted to investigate both the lethality and the removal activity presence 

of Listerine® formulation (Figs. 4.15 and 4.16). It is suggested from the results of 

LIVE/DEAD BacLight assays that Listerine® mouthwash was able to rapidly kill 

microorganisms of the salivary bacterial consortia that were maintained on the 

glass slides. The data showed that ca. 50% of the Listerine®-treated oral biofilm 

was killed, ca. 30% live and ca. 20% absent or detached from its substrata. Data 

from the LIVE/DEAD BacLight assays suggest that a removal activity of biofilms 

after brief exposure to the mouthwash could occur. The effect of surface chemistry 

and topography on microbial attachment has been previously studied (Cunliffe et 

al. 1999). However, the hydrophilic property of glass surfaces make them more 

“hygienic” (Boyd et al. 2000; Verran et al. 2008). Therefore, the differences in the 

topographic properties of the tested glass slides in the LIVE/DEAD BacLight 

assays and the plastic pegs in the crystal violet assays might explain the 

difference in bacterial retention on surfaces and the biofilm removal behaviour by 
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Listerine®. Although validation studies in this chapter showed the ability to 

reproducibly produce biofilms on the same substrata, it has been observed that 

the viable counts of the functional bacterial groups of the resuspended biofilms 

grown on glass slides were significantly lower than the viable counts of bacterial 

groups grown on HA substrata with respect to the surface area. It is proposed that 

the topography of glass substrata makes it less favourable for biofilm growth with 

the organisms tested, with a higher chance for biofilm integrity to be disrupted and 

removed on exposure to chemotherapeutic agents. Hence, a biofilm detachment 

activity was observed on mouthwash treated glass slides. The results presented in 

this chapter also showed a synergistic activity between two of the active 

ingredients of Listerine®, namely menthol and thymol. When tested on in vitro 

biofilm models, the paired essential oils showed a significant reduction in the 

viable counts, in some cases, similar to that of Listerine® mouthwash (Figs. 4.11, 

4.12, 4.13 and 4.14). This synergy of the combinatorial essential oils was also 

observed against planktonic oral species in an FIC index study (Table 4.2). The 

revealed combinatorial activity of the active ingredients in Listerine® may provide a 

new insight into the action of an old and poorly understood formulation. 

In summary, in vitro studies showed that the essential oil-based mouthwash, 

Listerine® was more effective against salivary-derived biofilms than the other 

tested mouthwashes. Its antibacterial efficacy was suggested to be related to its 

rapid kill ability rather than biofilm removal activity. It has also been indicated that 

the antimicrobial efficacy of Listerine® is mostly related to the synergistic activity of 

two of its active ingredients, the essential oils menthol and thymol. 
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CHAPTER 5 

 

In vitro comparative evaluation of the anti-plaque effects of 
proprietary dentifrices 
 

5.1 Introduction 

Plaque has long been considered to be the main factor associated in the 

occurrence of oral diseases such as dental caries, gingivitis and periodontitis 

(Theilade 1986; Loesche 1992; Marsh 1994; Marsh and Martin 1999). The primary 

factor in achieving good oral health is the adequate routine control of dental 

plaque by both mechanical and chemical means. Self practiced procedures such 

as toothbrushing, alongside the use of mouthwashes and flossing are considered 

to be the most common methods in achieving good oral hygiene. In order to 

improve the efficacy of self-performed mechanical procedures such as tooth 

cleaning, antimicrobial molecules are commonly employed. A logical extension to 

the traditional role of toothpastes is to use them as carriers of anti-plaque agents 

(Svatun et al. 1990). A considerable number of antimicrobial agents have been 

evaluated for their use in dentifrices, of which very few have been adopted for use 

in commercial toothpastes that provide good oral hygiene. In this context, this 

chapter evaluates the potential use of toothpastes containing triclosan (Colgate 

Total®) and stannous fluoride with zinc lactate (Crest ProHealth®) to reduce in vitro 

bacterial viability. Although the antimicrobial efficacy of these oral dentifrices have 

been previously studied and comparatively evaluated using various approaches 

(Ledder et al. 2008), there is a lack in understanding of the antibacterial 

mechanism they produce and their effect on the plaque ecosystem.  
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5.2 Models/Approaches 

Two in vitro models were adopted to give more useful insights on the antimicrobial 

efficacy of the proprietary toothpastes. The first was the hydroxyapatite disc model 

(HDM) which is a closed growth system model (Sections 2.12 and 4.1). The 

second model used the Sorbarod Biofilm Device (SBD) which is an example of an 

open growth system (continuous culture). This type of system yields relatively 

large amounts of bacterial biofilm mass and enables regular monitoring of bacterial 

functional groups dynamics through the analysis of spent culture fluid (perfusates) 

(Section 2.17). The rationale behind the use of the SBD, was to demonstrate the 

antibacterial efficacy of the tested dentifrices on a wider range of oral bacterial 

ecosystems, whereas the HDM is more specific in the detection of effects targeted 

on the supragingival plaque (McBain et al. 2005). Another significant advantage of 

an open system (continuous culture) over simple closed or multi-well plate models 

is that the mean growth rate can be altered by adjusting the rate of perfusion of 

medium (McBain et al. 2005). However, both systems provide information related 

to the comparative efficacy of the tested dentifrices against different functional 

groups of salivary microcosms; HDMs in short-term investigation and SBDs for 

longer durations.  

 

5.3 Aims 

The antimicrobial efficacy of an oral hygiene product is a representation of the 

efficacy of its active ingredient(s) and in some cases other components present in 

the formulation (Marsh 1992; McBain et al. 2010). The antimicrobial efficacy of 

triclosan and the paired active ingredients stannous fluoride with zinc lactate 

present in Colgate Total® and Crest ProHealth® respectively, have been described 
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in Chapter 3. The aim of this chapter therefore, was to compare and investigate 

the antimicrobial efficacy of the two dentifrices as a whole formulation using 

various in vitro model systems (HDM and SBD). 

 

5.4 Methods  

For the purpose of developing any product which benefits oral hygiene, it is 

essential to investigate the characteristics and the antibacterial efficacy of both 

actives and excipients before they are incorporated in the product. In this chapter, 

the commercially available toothpastes tested were Colgate Total® and Crest 

ProHealth®. Colgate Total® toothpaste uses triclosan as its active ingredient, 

whereas, Crest ProHealth® contains a combination of active ingredients. These 

are stannous fluoride and potentially also zinc lactate, although zinc lactate was 

claimed to be an inactive ingredient by the manufacturer on the product’s label. 

The antimicrobial efficacies of both zinc lactate and stannous fluoride against oral 

species have been described in previous studies (Shah 1982; Tinanoff and 

Camosci 1984; Weber et al. 1995; Winkel et al. 2003; Marquis et al. 2005) and in 

Chapter 3 of this thesis. To better understand which ingredient(s) is/are 

responsible for Crest ProHealth®’s antimicrobial efficacy, it was important to 

investigate the antimicrobial efficacy of zinc lactate and stannous fluoride 

separately and in combination. 

In order to evaluate the combinatorial activity of zinc lactate and stannous fluoride, 

a checkerboard microdilution method was chosen for the investigation of the 

antimicrobial efficacy of the active ingredients of Crest ProHealth®. This method is 

widely used for the detection of combinatorial activities between antimicrobial 

agents as previously discussed (Section 2.10). 
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5.5 Results  

5.5.1 In vitro identification of claimed to be inactive ingredien ts 

The concentrations of the tested antimicrobial agents were prepared to represent 

the concentrations present in the dentifrices as shown in Table 3.1. The 

interactions between the two antimicrobial agents were classified as synergistic, 

additive, or antagonistic on the basis of the fractional inhibitory concentration (FIC) 

index. The FIC index is the sum of the FICs of each of the antimicrobials where 

the FIC is defined as the MIC of each antimicrobial when used in combination 

divided by the MIC of the antimicrobial when used alone (Perea et al. 2002). The 

interaction was defined as synergistic if the FIC index was <1, additive if the FIC 

index was 1.0, sub-additive if the FIC index was between 1.0 and 2.0, indifferent if 

the FIC index was 2, and antagonistic if the FIC index >2 (Berenbaum 1978; Hall 

et al. 1983; Scott et al. 1999; Canton et al. 2005). In accordance to the FIC index 

values presented in Table 5.1 both antimicrobial agents (stannous fluoride and 

zinc lactate) have shown to possess a synergistic antimicrobial activity against all 

tested oral species.  

 

5.5.2 In vitro evaluation of the antibacterial efficacy of two pr oprietary 
dentifrices (closed system model) 
 
The hydroxyapatite disc model was one of the techniques that was used to 

evaluate and compare the antimicrobial efficacy of two oral dentifrices against 

various bacterial functional groups found in salivary microcosms (Section 2.12). 

The dentifrices that have been tested in this study included the following active 

ingredients i) Colgate Total®, contains 3mg.ml-1 of the active ingredient triclosan 

and ii) Crest ProHealth®, contains 4.5 and 10mg.ml-1of stannous fluoride and zinc 

lactate respectively. It is important to note that the concentration used for each 
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tested dentifrice was 5%. The reasons behind using this concentration were; i) the 

high density of the suspension (reconstituted toothpastes) at higher concentrations 

led to an adhesion of the HA discs with the bottom of the wells of the culture plate 

causing a physical disruption of the grown biofilms, ii) concentrations greater than 

5% were unable to form a uniform suspension after reconstitution giving false data 

interpretation and, iii) concentrations greater than 5% led to the formation of 

unsuspended toothpaste clumps adhering to the HA disc and physically disrupting 

the formed biofilm.  

Fig. 5.1 illustrates the effects of 5 mins. exposure to Colgate and Crest ProHealth® 

dentifrices on the viable counts of functional bacterial groups of saliva-derived oral 

microcosms maintained on HA discs. The data presented in Fig. 5.1 show that 

both dentifrices were statistically significant (p < 0.05) in reducing the viable counts 

of total aerobic bacterial species compared to control. Viable counts of the total 

aerobic species achieved by exposure to both dentifrices separately was ca. 2 log10 

cfu.mm-1 reduction, whereas the viable counts of both dentifrices were not 

significantly different (p > 0.05) when compared to each other. On 5 mins. 

exposure, both dentifrices were able to significantly reduce (p < 0.05) the viable 

counts of total facultative anaerobes by ca. 2.5 log10 cfu.mm-1 compared to control 

counts (Fig. 5.1). However, viable count reductions of the facultative anaerobes of 

both dentifrices were not statistically different when compared to each other (Fig. 

5.1). Colgate Total® dentifrice was able to cause a reduction of ca. 2.5 log10cfu.mm-

1 to the viable counts of total Gram-negative anaerobes compared to the control 

counts, whilst Crest ProHealth® showed an ca. 2 log10 cfu.mm-1 reduction of the 

same functional bacterial group in comparison to control (Fig. 5.1). However, both 

dentifrices showed a statistically significant (p < 0.05) reduction of the total Gram- 
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Table 5.1:  In vitro interactions between stannous fluoride and zinc lactate on various species of the oral microcosm indicated by the 
fractional inhibitory concentration index (FIC) method. 
 

 
stannous 
fluoride 

 (mg.ml -1)a 

 
zinc lactate 
(mg.ml -1)b 

 
stannous fluoride 

 (mg.ml -1)c 

 
zinc lactate  
(mg.ml -1)d 

 
 

Organism 

 
MIC 

 
MBC 

 
MIC 

 

 
MBC MIC MBC 

 
MIC 

 

 
MBC 

 

 
 

Checkerboard 
FIC index 

 
 

Interpretation  

 
S. oralis 

0.5 
0.5  

(0.25) 

 
ND 

 
0.25 

 

 
ND 

 
1x10-3 

 

 
ND 

 
0.016 

 
ND 

 
0.0644 

 
S 

 
S. mutans 

 
0.25 

 

 
ND 

1.00 
1.00  
(0.5) 

 
ND 

 
1x10-3 

 

 
ND 

 
0.016 

 
ND 

 
0.0195 

 
S 

 
 

P. oralis 
 

0.25 
 

 
ND 

 
1.00 

 
ND 

 
1x10-3 

 

 
1.00 

 
0.016 

 

 
1.00 

 
0.0195 

 

 
S 

 
S. sanguis 

 
0.5 

 

 
ND 

 
0.25 

 

 
ND 

 
1x10-3 

 

 
1.00 

 
0.016 

 

 
1.00 

 
0.0644 

 
S 

 
L. rhamnosus 

1.00 
1.00 
(0.5) 

 
ND 

 
1.00 

 
ND 

 
9.8x10-4 

(1.9x10-3) 

 
ND 

 
0.016 

 

 
ND 

 
0.0166 

 
S 

 
 

V. dispar 
 

0.5 
 

ND 
 

1.00 
 

ND 
 

1x10-3 

 

 
0.5 

 

 
0.016 

 

 
0.016 

 

 
0.0176 

 
S 

 
N. subflava 

 
0.5 

 
ND 

 
0.25 

 
1.00 

 
1x10-3 

 

 
1x10-3 

 

 
0.016 

 

 
1.00 

 
0.0644 

 
S 

 
 

A. naeslundii 
0.5 
0.5  

(0.25) 

 
ND 

1.00 
1.00 
(0.5) 

 
ND 

 
1x10-3 

 (1.9x10-3) 

 
0.5 

 

 
0.016 

 

 
0.016 

 

 
0.0176 

 
S 

 

a,b ; MICs and MBCs are for the antimicrobials tested in separately, c,d ; MICs and MBCs are for the antimicrobial agents tested in 
combination, S ; Synergy, ND ; not detected.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Figure 5.1:  Effects of dentifrices on functional bacterial groups viable counts of saliva-derived oral 
microcosms maintained on HA discs after five mins. exposure. The solid black bars represent 
control counts (untreated microcosms), the open bars represent the treated biofilm with Crest 
ProHealth® dentifrice, while the solid gray bars represent the treated biofilm with Colgate Total® 
dentifrice . Data represent mean values of triplicate experiments; error bars represent standard 
errors of the mean (n=3). * above the bars represents a significant change with respect to control 
counts (p < 0.05). ** above the bars represents a significant change with respect to control counts 
and other dentifrice counts (p < 0.05). 
 
 
negative anaerobes compared to the control. In addition, the data presented in 

Fig. 5.1 showed a significant reduction (p < 0.05) in the viable counts of total 

streptococci (c. 1.5 log10 cfu.mm-1) after exposure by both dentifrices compared to 

control. However, there was no significant difference (p > 0.05) in the viable counts 

of the total streptococci of both dentifrices when compared to each other (Fig 5.1). 

In summary, exposure to both Colgate Total® and Crest ProHealth® dentifrices 

separately resulted in significant reductions (p < 0.05) in viable counts of all 

bacterial functional groups of the tested oral microcosms in comparison to control. 

The reductions in the viable counts of all the tested salivary functional groups were 

not significantly different when compared between both toothpastes, an exception 
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of which were the viable counts of Gram-negative anaerobic species that have 

been reduced to a greater extent by exposure to Colgate Total® than Crest 

ProHealth®. 

 

5.5.3 In vitro evaluation of the antibacterial efficacy of two pr oprietary 
dentifrices (open system model) 
 
The Sorbarod Biofilm Device (SBD) was selected as a second model for the 

evaluation and the comparison of the antimicrobial efficacy of Colgate Total® and 

Crest ProHealth® dentifrices against various bacterial functional groups present in 

the salivary microcosm (Section 2.16). Each SBD (n=4) was set up to run for a 

period of 9 days. On day six, two models were pulsed with the same dentifrice 

twice a day for a period of 3 days. The data in Fig. 5.2 show the results of culture-

based enumeration of total aerobic bacteria for plaque microcosms before and 

after pulsing with the proprietary dentifrices.   
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Figure 5.2:  Viable counts of total aerobic bacteria in SBDs before and during pulsing with 5% w/v 
proprietary dentifrices. ( ) mean of ecosystems pulsed with Colgate Total® (n=2); ( ) mean of 
ecosystems pulsed with Crest ProHealth® (n=2); error bars represent standard errors of the mean 
between models (n=2). The vertical arrows show the time of dentifrices addition.  
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Dynamic stability of the characterised bacterial communities was attained in the 

sorbarod devices within ca. 3 days of inoculation. The mean values of the viable 

counts of total aerobic bacterial groups of the SBD models (n=2) pulsed with 

Colgate Total® show a reduction of 1.5 log10 cfu.mm-1, whereas, the mean values of 

the viable counts of the same species derived from ecosystems pulsed with Crest 

ProHealth® show a lower reduction of 0.9 log10 cfu.mm-1 (Fig. 5.2). However, 

results did not show any statistical significance in the viable counts between 

models after pulsing with either dentifrice. 

Figure 5.3 illustrates the viable counts of total anaerobic bacterial functional 

groups in SBD models before and during the addition of 5% Colgate Total® and 

Crest ProHealth® suspensions. The addition of Colgate Total® to the SBDs caused 

a slight reduction in viable counts of total anaerobic bacterial functional groups (ca. 

1 log10 cfu.mm-1) as shown in Fig. 5.3. 
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Figure 5.3:  Viable counts of total anaerobic bacterial groups in SBDs before and during pulsing 
with 5% w/v proprietary dentifrices. ( ) mean of ecosystems pulsed with Colgate Total® (n=2); 
( ) mean of ecosystems pulsed with Crest ProHealth® (n=2); error bars represent standard 
errors of the mean between models (n=2). The vertical arrows show the time of dentifrices addition.   
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Pulsing with Crest ProHealth® dentifrice suspension showed a reduction (ca. 0.9 

log10 cfu.mm-1) in the viable counts of anaerobic species of perfusate samples from 

the represented SBDs (Fig. 5.3). However, the mean values of the reduction of 

viable counts of anaerobic species were not statistically different between the 

models after pulsing with the tested dentifrices. 

Figure 5.4 shows the data obtained from culture-based enumeration of total Gram-

negative anaerobic bacteria for plaque microcosms before and after pulsing with 

the proprietary dentifrices. Pulsing with Colgate Total® suspension showed a 

reduction in the viable counts of total Gram-negative anaerobic bacterial groups in 

the represented models, where this reduction reached ca. 2 log10 cfu.mm-1. 
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Figure 5.4:  Viable counts of total Gram-negative anaerobic bacterial groups in SBDs before and 
during pulsing with 5% w/v proprietary dentifrices. ( ) mean of ecosystems pulsed with Colgate 
Total® (n=2); ( ) mean of ecosystems pulsed with Crest ProHealth® (n=2); error bars represent 
standard errors of the mean between models (n=2). The vertical arrows show the time of 
dentifrices addition.   
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A lower reduction in the viable counts (ca. 1.1 log10 cfu.mm-1) of Gram-negative 

species was observed after pulsing the SBDs with Crest ProHealth® dentifrice 

suspension as shown in Fig 5.4. Despite the high difference in the reductions of 

the viable counts, the mean values of the reduction of viable counts of Gram-

negative species were not statistically different between the models after pulsing 

with the tested dentifrices.  
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Figure 5.5:  Viable counts of total streptococci bacterial groups in SBDs before and during pulsing 
with 5% w/v proprietary dentifrices. ( ) mean of ecosystems pulsed with Colgate Total® (n=2); 
( ) mean of ecosystems pulsed with Crest ProHealth® (n=2); error bars represent standard 
errors of the mean between models (n=2). The vertical arrows show the time of dentifrices addition.   
 

The effects of the addition of proprietary dentifrices on the reduction in viable 

counts of total streptococci in dental microcosms have been illustrated in Fig. 5.5. 

A minor transient reduction in the counts of streptococci (ca. 0.7 log10 cfu.mm-1) 

was noted after pulsing models with Colgate Total® toothpaste suspensions. 

Pulsing with Crest ProHealth® also had a minor effect in reducing the viable counts 

of streptococci species in SBDs. This reduction was also estimated to be ca. 0.7 

log10 cfu.mm-1 (Fig. 5.5). 
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In general, the SBDs that have been dosed with Colgate Total® and Crest 

ProHealth® respectively, showed a similar reduction in the viable counts of 

streptococci bacterial groups. 

 

5.6 Discussion 

The association between plaque and oral disease has been well established and 

comprehensively studied over the years (Löe et al. 1967; Tanner et al. 1996; 

Tanner et al. 1998). The necessity to control plaque by the adjunct use of oral 

hygiene products containing antimicrobial agents with mechanical control has also 

been described and studied (Axelsson and Lindhe 1987; DePaola and Daniel 

1989; McBain et al. 2003; Rawlinson et al. 2008). A variety of over-the-counter 

oral hygiene preparations with various antimicrobial agents have been introduced 

to the public. Many of these products claim to be beneficial for the control of oral 

hygiene and the prevention of oral disease such as dental caries, gingivitis and 

periodontitis. Various models and approaches, both in vitro and clinical trials, have 

been used to compare the anti-plaque efficacy of various oral preparations such 

as dentifrices and mouthwashes (Mankodi et al. 1987; Jenkins et al. 1993; McBain 

et al. 2003). The current chapter investigated the antimicrobial efficacy of two 

different dentifrices containing previously studied antimicrobial agents (Chapter 3). 

The first dentifrice contained the antimicrobial agent triclosan (Colgate Total®), 

whilst the second dentifrice contained the paired antimicrobial agents stannous 

fluoride and zinc lactate (Crest ProHealth®). Various models have been used to 

compare the antibacterial effects of Colgate Total® and Crest ProHealth® as whole 

formulations and active ingredients on in vitro oral biofilms (Ledder et al. 2008; 

McBain et al. 2010). In previous studies modified drip flow biofilm reactors and 
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Multiple Sorbarod Devices were used to establish salivary biofilm microcosms to 

evaluate the antimicrobial effects of these proprietary toothpastes (Ledder et al. 

2008). The experimental models adopted in this chapter have been used to 

compare the micro-ecological effects of single (HDM) and multiple dosing (SBD) of 

the commercial toothpaste.   

The hydroxyapatite disc model has been previously used to investigate the 

antimicrobial efficacy of oral hygiene products (Shapiro et al. 2002). In the current 

chapter, the ability of Colgate Total® and Crest ProHealth® to reduce viable counts 

of mixed microbial populations was examined using the HDM. In vitro 

investigations using the HDMs showed that both tested dentifrices were equally 

effective against most salivary bacterial functional groups. However, a higher 

reduction in the Gram-negative bacterial functional groups was noted after 

exposure to Colgate Total®.  

The continuous culture SBD was the second type of model that was used in the 

current chapter. The use of continuous culture models to evaluate the efficacy of 

oral hygiene products has previously been investigated (Pratten et al. 1998; 

McBain et al. 2003). However, the SBD has not been used to evaluate the 

effectiveness of dental hygiene products namely, toothpastes against oral 

microcosms. The use of the continuous culture models such as the SBD may be a 

useful tool in studying microcosms that simulate and resemble the subgingival 

plaque. Since in vitro dosing regimes do not necessarily reproduce the dynamics 

and variability of actual human use, four in vitro models were set up to reduce 

inter-models variability and give an indication of consortial responses to dentifrice 

pulsing.  
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Bacteriological data generated after multiple dosing of the SBD models with the 

dentifrices suspensions showed that, as with some HDM biofilm functional groups, 

both dentifrices were equally effective in the reduction of all tested functional 

groups. The inhibitory activity of Colgate Total® toothpaste against Gram-negative 

anaerobic functional group in SBDs was particularly marked, however statistically 

insignificant compared to its counterpart Crest ProHealth®. Colgate Total® 

toothpaste’s inhibitory activity against Gram-negative species, as in SBD models, 

was also significantly reduced in the HDM plaques with respect to the amplitude of 

viability reductions of both models. These reductions of the Gram-negative groups 

supported the results shown for the same species but investigated by other 

models in a previous study (Ledder et al. 2008). However, the substrata, the 

dosing regimen and the concentrations of the dentifrices tested were the main 

differences between the previous and the current study. The main advantage in 

this study over the previous study was using lower concentrations of the 

dentifrices (5%) to form a uniform dentifrice suspension and prevent clump 

formation which could physically disrupt the formed biofilms. Another advantage 

was dosing the SBD models with the dentifrices twice daily to simulate the daily 

routine use of oral hygiene products. In the current study however, Crest 

ProHealth® was observed to be as successful as Colgate Total® in reducing the 

viable counts of all bacterial functional groups in both single and multiple dosing 

approaches, with an exception of Gram-negative groups grown in HDM plaques, 

where the reduction in viable counts was greater  after exposure to Colgate Total®.  

Since most of the known periodontal pathogens are Gram-negative anaerobes 

(Socransky and Haffajee 2005), making this bacterial functional group a key target 

for oral hygiene products. The ability of Colgate Total® toothpaste to markedly 



 190 

reduce this bacterial functional group after exposure in the HDM, with respect to 

oral health, highly suggest its clinical efficacy against the progression of 

periodontal diseases as previously proven by (Rosling et al. 1997; Cullinan et al. 

2003). 

In general, both Colgate Total® and Crest ProHealth® toothpastes caused a 

reduction in bacterial diversity in both tested bacterial plaques. However, this 

diversity was more reduced in cases of exposure with Colgate Total®. It can also 

be indicated that the comparative efficiencies of both tested formulations were 

broadly congruent with previous studies using active ingredients alone (Gilbert et 

al. 2003; McBain et al. 2010). 
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CHAPTER 6 
 

 
General discussion  
 
 
Throughout life, the human body is in continual contact with a variety of 

microorganisms, the majority of which are eubacteria. An important outcome of the 

co-evolution between humans and bacteria is the development of complex, 

intimate and stable relationships (Rasiah et al. 2005). Such host-bacterial 

symbiotic relationships may be i) commensal, in which microorganism benefit from 

the substrate and substratum while the host neither benefit nor harmed, ii) mutual, 

in which reciprocal benefits occur to both microorganism and host, or iii) 

pathogenic in which microorganisms benefit whilst the host is harmed. Similar to 

other sites in the body such as the large intestine and the skin, the oral cavity has 

a relatively stable characteristic composition of bacterial flora that co-exists with 

the host cells (Marsh 2003). The physiological properties of different parts in the 

oral cavity provide a suitable environment for the growth and colonisation of a wide 

range of bacterial species. Distinct areas of the mouth include soft mucosal 

surfaces such as the tongue, cheeks, lips and the hard non-shedding surfaces of 

teeth. Microbial biofilms growing on the non-shedding surfaces of the teeth are 

known as supragingival plaque, whilst the gingival crevice provides a nutritionally 

unique habitat for the growth of a taxonomically distinct microbiota, known as 

subgingival plaque (Slots 1977). Breakdowns in the microbial homeostasis of 

dental plaque may change the mutual host-bacterial relationship into a pathogenic 

relationship (Marsh 1989; Newman 1990). The outcome of the overall pathogenic 

effect of dental plaque is the emergence of major oral diseases such as dental 
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caries, gingivitis and periodontitis. Importantly however, periodontal disease may 

expose the blood stream to opportunistic pathogens that maybe the causative 

agents of systemic diseases such as endocarditis, meningitis and septicaemia 

(Lewin and Hughes 1966; Pollack and Mogtader 1984; Amsel and Mouljn 1996; 

Baraldès et al. 2000). Hence, the development of effective hygienic products 

which effectively control bacterial growth in the mouth is of great interest (Gordon 

et al. 1985; Gilbert et al. 2003; McBain et al. 2003; Ledder et al. 2009). In this 

context, attempts to control plaque accumulation or prevent its harmful effects 

continue to be primary means by which dental plaque-related diseases are 

controlled or prevented (Daniel et al. 1990; Giertsen 2003; Ouhayoun 2003). Since 

they serve as a valuable complement to mechanical removal of plaque, various 

antimicrobial agents have been deployed with many different oral hygiene control 

formulations such as toothpastes, mouthwashes, sprays and gels (Marsh 1992; 

McBain et al. 2010). A considerable number of antimicrobial agents have been 

evaluated for their use in oral formulations, of which a small proportion has been 

adopted for use in commercial products. For example, various essential oil 

preparations, antiseptic bisbiguanides, quaternary ammonium compounds, 

oxygenating agents, fluorinated compounds, metal salts, phenolic compounds and 

surfactants have been tested and developed in commercial mouthwashes and 

dentifrices (Horowitz 1971; Wennstorm and Lindhe 1979; Gordon et al. 1985; 

Stephen et al. 1990; Jenkins et al. 1991; McBain et al. 2003). In spite of the long 

and extensive use of oral antimicrobial agents, there remains a lack of 

understanding of their mechanisms of action on the bacterial cell at both effective 

and sub-lethal concentrations (sub-MIC levels) and on biofilm communities 

(plaque). Therefore, investigations in this doctoral dissertation aimed to better 
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understand the effects of selected oral antimicrobial agents on salivary 

microcosms and axenic species. In this respect, the outcome of effective and sub-

lethal concentrations of selected antimicrobial agents (triclosan, stannous fluoride, 

sodium lauryl sulphate and zinc lactate) on cellular respiration/fermentation of N. 

subflava, S. oralis and E. coli species was investigated since acidic fermentation 

products play a major factor in enamel erosion. Antimicrobial agents which divert 

cellular metabolism from respiration towards fermentation may result in greater 

acidity in the oral cavity and conversely, acidogenesis and thus cariogenesis may 

be decreased by agents which encourage respiratory metabolism. The use of 

some products may therefore lead to comparatively greater enamel erosion due to 

changes in cellular respiration/fermentation. The effects of dentifrices containing 

the above selected antimicrobial agents on plaque accumulation, inactivation and 

taxonomical composition were therefore investigated.  

Since oral care products are deployed as complex formulations containing several 

ingredients (actives and excipients) that enhance the overall effectiveness of a 

formulation, this thesis aimed to provide further knowledge regarding the 

contribution of selected ingredients on the total antimicrobial efficacy of a complex 

formulation. The antibacterial efficacies of selected antimicrobial agents and 

formulations were investigated using appropriate in vitro model systems. Closed 

systems (the hydroxyapatite disc model) and open/continuous flow system (the 

Sorbarod Biofilm device) were used to reproduce oral bacterial ecosystems that 

simulate distinct microbial habitats in the oral cavity whilst microdilution methods 

(microtiter plate assays) were used to grow axenic bacterial species. Bacterial 

culture techniques using selective bacteriological media were used to measure 
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viable counts of specific bacterial functional groups after exposure to various oral 

antimicrobial agents. 

Data presented in Chapter 3 make the observation that triclosan and sodium lauryl 

sulphate are responsible for the uncoupling of the proton motive force from the 

phosphorylation of ADP to ATP in the tested microorganisms. This phenomenon 

occurred in both long- and short-term experiments. Data generated also 

suggested that long-term exposure of facultative anaerobic species (S. oralis and 

E. coli) to the sub-MIC levels of stannous fluoride cause shifts in metabolic activity 

towards fermentation. Such changes could lead to an adverse impact on the oral 

hygiene by providing reduced environmental conditions. This in turn could lead to 

the increase in acidogenic bacterial species population and consequently lead to 

an increase in harmful fermentation product (lactic acid) which could cause 

enamel erosion and caries (Bradshaw and Marsh 1988; Marsh and Martin 1999).  

Data in Chapter 4 suggest that Listerine® mouthwash caused greater reductions in 

total counts of various bacterial functional groups (total aerobes, total facultative 

anaerobes, total Gram-negative anaerobes and total streptococci species) after 

one min. exposure compared to the other tested mouthwashes (Neutrafluor®, 

Plax®overnight®, Periogard® and Peroxyl®) and the control. The results also show 

that active ingredients of Listerine® mouthwash (thymol, menthol, methyl salicylate 

and eucalyptol) produced a modest reduction in the viable counts of bacterial 

functional groups when investigated separately rather than in combination. The 

antimicrobial efficacy of Listerine® mouthwash was more attributed to the novel 

observation of synergistic antimicrobial activity of its active ingredients menthol 

and thymol, rather than the activity of the active ingredients singly (Chapter 4). 

Microscopy studies presented in Chapter 4 suggest that Listerine® mouthwash has 
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effective biofilm penetration and/or bacterial detachment activity when added to 

cultures grown on glass slides. This has been previously reported by Ouhayoun 

(2003). By comparison, in vitro studies using plastic pegs as the substrata showed 

no significant difference between treated and untreated biofilms.  

Data presented in Chapter 5 described a synergy between the active ingredient 

stannous fluoride and zinc lactate in Crest ProHealth® dentifrice. Bacteriological 

data generated from two different in vitro biofilm models (the hydroxyapatite disc 

model and the Sorbarod Biofilm device) suggest that the dentifrice Colgate Total® 

was more effective than Crest ProHealth® dentifrice in the reduction of total Gram-

negative bacteria functional groups in the HDM model. This is in agreement with 

previous studies (Ledder et al. 2008; Chapter 5). Results obtained by dosing 

plaque ecosystems in the SBDs with 5% suspensions of dentifrice indicate a 

similar decrease in the viable counts of all tested bacterial functional groups and 

suggesting a similar antimicrobial activity of both dentifrices (Chapter 5). 

Observations presented in this doctoral dissertation provide a better understanding 

of properties of a variety of actives and may contribute to the development of oral 

formulations with optimised antimicrobial properties against adventitious 

pathogens present in the oral cavity and help in reducing the incidence of oral 

diseases and potentially related systemic interface. 

With regards to the uncoupling activity demonstrated in this thesis (Chapter 3), the 

development and the regular use of oral formulations containing uncoupling 

agents may affect plaque metabolism and accumulation. This could be a result of 

the inability of bacterial cells to grow in the presence of the uncoupling agents. 

However, such exposed cells may continue to respire and thus utilise available 
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substrates present in the oral cavity. Consequently, this activity could result in 

plaque disruption. 

The synergistic antimicrobial activity of the essential oils thymol and menthol which 

caused antibacterial effects of comparative magnitude to the whole formulation, as 

discovered in this study, could also be exploited by reducing or excluding the use 

of other ingredients in the formulation. This could contribute in reducing the overall 

side effects and increase the toxic margin of the whole formulation. However, 

physiochemical compatibility issues between the oils could rise when deployed 

alone which need further investigation.  

The ability of sub-lethal levels of some antimicrobial agent (stannous fluoride and 

zinc lactate) to shift cellular metabolic activity towards fermentative pathways 

suggests that the effects of their long-term use should be investigated. 

Investigating the pH and the taxonomical composition of dosed plaque 

communities, could help provide further knowledge on the overall metabolic 

behaviour of plaque communities and any potential shifts in caries and 

periodontitis associated pathogens. 
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