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Abstract

In the thesis explicit dual parabolic-elliptic models are constructed for the Konenkov flexu-

ral edge wave and the Stoneley-type flexural interfacial wave in case of thin linearly elastic

plates. These waves do not appear in an explicit form in the original equations of motion

within the framework of the classical Kirchhoff plate theory. The thesis is aimed to high-

light the contribution of the edge and interfacial waves into the overall displacement field by

deriving specialised equations oriented to aforementioned waves only. The proposed models

consist of a parabolic equation governing the wave propagation along a plate edge or plate

junction along with an elliptic equation over the interior describing decay in depth. In this

case the parabolicity of the one-dimensional edge and interfacial equations supports flexu-

ral wave dispersion. The methodology presented in the thesis reveals a dual nature of edge

and interfacial plate waves contrasting them to bulk-type wave propagating in thin elastic

structures. The thesis tackles a number of important examples of the edge and interfacial

wave propagation. First, it addresses the propagation of Konenkov flexural wave in an elas-

tic isotropic plate under prescribed edge loading. For the latter, parabolic-elliptic explicit

models were constructed and thoroughly investigated. A similar problem for a semi-infinite

orthotropic plate resulted in a more general dual parabolic-elliptic model. Finally, an anal-

ogous model was derived and analysed for two isotropic semi-infinite Kirchhoff plates under

perfect contact conditions.
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Chapter 1

Introduction

1.1 Introduction to work

1.1.1 Localised wave phenomena, state of art

The history of localised waves in elasticity theory began with the famous paper by Rayleigh

(1885) where he described the so-called Rayleigh wave propagating along the surface of an

elastic half-space and decaying away from the surface. For many years the Rayleigh wave

speed has been one of the properties that attracted significant interest of the scientists. It is

well-known that the secular equation for this wave speed, derived by Rayleigh (1885), has an

unexplicit form which makes it hard to solve. The most common approach is to find solutions

using numerical methods, although there are many attempts to find them analytically. Several

approximate formulae are well-known (e.g., see Achenbach (1973)). The exact solution has

been found much later and was presented in papers by Rahman and Barber (1995) and then

by Nkemzi (1997). The latter was simplified by Malischevsky (2000). Another exact formula

was derived by Rahman and Michelitsch (2006).

Although the Rayleigh surface wave was discovered in an elastic isotropic half-space,

there exist a lot of analogous waves that occur in the bodies of different shapes and made of

anisotropic materials. For example, surface waves propagate in the circular discs which was

described experimentally in Oliver et al. (1954). However, for the aforementioned problem

solution was valid only for the low frequency limit. For the cases of higher frequencies several

theories were developed (e.g see McCoy and Mindlin (1963), Sinclair and Stephens (1971),

Cerv (1988)). Nowadays it is accepted that the three-dimensional theory of elasticity is

1



1.1 Introduction to work 2

mandatory to explain the propagation of such waves (e.g. see Lawrie and Kaplunov (2011)).

When the considered bodies are made of anisotropic materials, these cases involve much more

complex formulation. A detailed review on localised waves in anisotropic bodies was given in

the work by Chadwick and Smith (1977). Equations for surface wave speed in bodies made

of orthotropic materials were presented in Ogden and Vinh (2004) and in Pham and Ogden

(2004). The exact solution for the aforementioned equations was demonstrated in Vinh and

Ogden (2005). The proofs of uniqueness of the surface wave speed were suggested in many

works, one of the most significant being that by Mielke and Fu (2004). The effect of pre-stress

on the Rayleigh wave propagation is described in the works by Dowaikh and Ogden (1990)

and Chadwick (1995). Localised waves also propagate on the interface between two elastic

materials (both solid, or fluid and solid). Such a wave was discovered by Stoneley (1924) and

named after the author. The equations for these wave speeds are relatively more involved

as compared to the ones described above. In Barnett et al. (1985) theory concerning wave

uniqueness and existence in anisotropic materials is explained. Fundamental ideas are also

found in Chadwick and Borejko (1994). The effect of pre-stress on the Stoneley interfacial

wave propagation was described by Dowaikh and Ogden (1991). Also, the interfacial waves

on the boundary between elastic and acoustic media were studied by Scholte (see Scholte

(1947)) and independently by Gogoladse (1948). These waves are now usually referred to as

Scholte-Gogoladse waves.

Many years after the discovery of the Rayleigh wave its flexural analog for the Kirchhoff

plate theory was found (see Timoshenko and Woinowsky-Krieger (1987) and section 1.3 for

more details). The equation for its wavenumber p = pk is the famous Konenkov dispersion

equation in the form√
p2 − 1((1− ν)p2 + 1)2 −

√
p2 + 1((1− ν)p2 − 1)2 = 0. (1.1)

The method of its obtaining is presented in section 2.1.1 of the thesis.

The history of Konenkov flexural edge wave discovery is quite complicated and interesting

(see Norris et al. (2000)). The flexural edge wave was first found by Konenkov (1960) and

later by Sinha (1974), Thurston and McKenna (1974). Also, the paper by Ishlinskii (1954)

precedes the one of Konenkov and describes a similar problem which originates from the

theory of plate stability. The most interesting property of Konenkov flexural edge wave is its

dispersion (i.e. its speed depends on the frequency of the applied force or the plate material
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eigenfrequency). It is also worth mentioning that this wave is sensitive to the plate thickness

(see Lawrie and Kaplunov (2011)). The development of the flexural edge waves theory is

similar to the one for Rayleigh waves. They can be found in the cases of plate anisotropy (see

Norris (1994), Thompson et al. (2002), Zakharov and Becker (2003), Piliposian et al. (2010),

also Fu (2003), Fu and Brookes (2006), Lu et al. (2007)) as well as in the layered plates

(see Zakharov (2002), Zakharov (2004)) and in the plates with cracks (see Norris and Wang

(1994), Thompson and Abrahams (2005), Thompson and Abrahams (2007)). Furthermore,

the effects of fluid loading were considered by Norris and Abrahams (2000). In the cases of

circular plates the exact dispersion relation expressed in terms of Bessel functions was derived

by Destrade and Fu (2008). The Stoneley-type flexural interfacial wave propagation at the

junction of two plates was investigated by Zilbergleit and Suslova (1983).

Localised edge waves may also occur in thin semi-infinite cylindrical shells governed by the

Kirchhoff-Love theory (see Kaplunov et al. (2000)). Both Rayleigh and Konenkov flexural

edge waves may appear, coinciding with the short-wave limit of the circumferential waves

localized near the traction-free shell edge. Unfortunately, the shell curvature is not always

negligible in the asymptotic analysis mentioned above, therefore we need to take into account

its effect because of the coupling between the bending and extensional displacements. This

effect results in the low-level radiation damping of the extensional shell edge wave (Kaplunov

et al. (2000)). Furthermore, there exists a curvature super-low frequency edge wave which has

no analogue among the plate edge waves and is governed by the so-called ”semi-membrane”

shell theory (Goldenveizer (1961)). The recent works on edge waves propagation in thin elastic

shells are Gulgazaryan et al. (2008), Kaplunov and Wilde (2000), Kaplunov and Wilde (2002)

and Fu and Kaplunov (2011).

The aforementioned edge waves also appear in the theory of three-dimensional plates.

It is natural to assume that all the aforementioned localised waves are incorporated into

the full edge wave solutions as special cases (Lawrie and Kaplunov (2011)). For example,

according to the finite-element and experimental study of Lagasse and Oliner (1976), the

fundamental three-dimensional antisymmetric edge wave in the low-frequency limit becomes

the Konenkov one. The following works demonstrate interesting and useful approaches to

finding the flexural and surface waves in the three-dimensional plates: Kaplunov et al. (2005),

Zernov and Kaplunov (2008), Lagasse and Oliner (1976) and Krushynska (2011).
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The edge resonance phenomena in the most elementary cases is connected with the afore-

mentioned wave propagation (e.g. see Wilde et al. (2010)). This fact was mentioned in

the works Kaplunov et al. (2004b), Prikazchikov et al. (2007) and, for interface resonance,

Rogerson and Krynkin (2007).

Our approach to flexural edge and interfacial waves relies on a recently developed one

for surface and interfacial waves. It is obvious that both surface and edge waves seem to be

hidden in mathematical formulations of the original problems (Kaplunov et al. (2006)). Useful

approach to express them is to construct the explicit models that describe the surface waves

and extract their contribution from the general formulations. These models, highlighting the

dual hyperbolic-elliptic nature of surface waves, have recently been created by Kaplunov et al.

(2006) for elastic and piezoelastic surface waves (namely, Rayleigh and Bleustein-Gulyaev

surface waves). They contain elliptic equations describing the decay in the interior away from

the surface, and a hyperbolic equation at the surface corresponding to wave propagation. The

models provide significant simplifications of the problems formulation. They also prove to

be an efficient tool in capturing the transient dynamic behavior associated with the Rayleigh

wave, for example, in the case of a moving load problem (see Kaplunov et al. (2010)). The

aforementioned models were also presented in the papers Kaplunov et al. (2004a), Kaplunov

and Kossovich (2004) and Dai et al. (2010).

Development of similar models for flexural edge and interfacial waves seems not a trivial

extension of the approach for surface waves, especially taking into account the dispersive

nature of Konenkov and Konenkov-type waves. Therefore the main goal of this thesis is to

derive explicit approximate models to describe the flexural edge and interfacial waves. We

consider various cases of isotropic and anisotropic plates as well as the case of interfacial waves

for two perfectly bonded plates. The resulting models include elliptic equations characterising

the decay of the wave away from the edge into the interior domain, and a parabolic equation at

the edge. Thus, the constructed asymptotic models reveal the dual parabolic-elliptic nature

of the flexural edge and interfacial waves.

1.1.2 Work summary

Chapter 1 of the thesis is the introductory chapter containing all the preliminary knowledge

which is mandatory for understanding the main results and derived models of localised flex-
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ural waves. In Section 1.2 we introduce all the methods that have been used in the thesis.

Section 1.3 contains a brief description of the Kirchhoff plate theory equations and boundary

conditions. This theory forms the basis of our work.

The main results are presented in Chapters 2-4. The classical problem of vibrations of

an isotropic semi-infinite plate is considered in Section 2.1 of Chapter 2. The edge wave

propagation under homogeneous boundary conditions is investigated in Section 2.1.1. We

follow the steps described by Konenkov (1960) and derive the dispersion equation for the

so-called Konenkov flexural edge wave coefficient. The problem of applied bending moment

is considered in the next Section 2.1.2. The solution in terms of integral transforms and the

explicit dual parabolic-elliptic model of the Konenkov flexural edge wave are constructed. The

latter contains a one-dimensional parabolic equation for the plate edge and an elliptic equation

characterising the wave decay into the interior domain. The results for the exact solution

and approximate solutions corresponding to the classical Konenkov flexural edge wave are

compared graphically. A similar problem of applied shear force is reviewed in Section 2.1.3.

The exact solution and an approximate model are now derived for the rotation angle instead

of the deflection as in the previous section. In Section 2.2 we consider the flexural edge wave

if an isotropic circular plate. The first-order approximation is found taking into account the

curvature correction. The results for the leading and first-order solutions are compared with

the exact solution found by Destrade and Fu (2008).

Chapter 3 deals with the edge vibrations of an orthotropic semi-infinite plate. The first

Section 3.1 contains the analysis of the homogeneous edge wave. The derived dispersion

equation has an explicit solution which can be reduced to the isotropic case. The Konenkov

flexural edge wave coefficient is now shown to depend on 4 parameters. The next two Sections,

3.2 and 3.3, contain exact solutions for an applied bending moment and shear force, respec-

tively. They are also dedicated to deriving more general approximate dual parabolic-elliptic

models of the Konenkov flexural edge wave. The results are again compared graphically.

Finally, Chapter 4 contains some problems of vibrations in two joined isotropic semi-

infinite plates. In Section 4.1 the homogeneous Stoneley-type flexural interfacial wave is

considered, the dispersion equation for the interfacial wave coefficient is derived and numerical

solutions of this equation are computed. Section 4.2 contains the derivation of an exact

solution and a dual parabolic-elliptic model of plate’s vibration near the junction under the
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loading by a bending moment. The results are presented graphically for the case of a specific

bending moment. In Section 4.3 we proceed with the same scheme of solution and model

derivation as concerns the problem of applied shear force.

Conclusion summarises all the results thus obtained including the constructed explicit

dual parabolic-elliptic models.

1.2 Methods

In this section we describe methods to be used while finding solutions for the problems

considered in the thesis.

1.2.1 Laplace operators in different coordinate systems

The Laplace operator ∆L is very important in many problems of physics and applied math-

ematics. In the two-dimensional Cartesian coordinates it is defined by

∆L =
∂2

∂x2
+

∂2

∂y2
. (1.2)

For the polar coordinate system, which is connected with the Cartesian one by the equal-

ities

r2 = x2 + y2, φ = tan−1
(y
x

)
, (1.3)

we will denote the Laplace operator as ∆L,r,φ to distinguish it from the Cartesian operator.

It is given by

∆L,r,φ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
(1.4)

1.2.2 Integral transforms

Many of the problems in mechanics and applied mathematics are connected with the partial

differential equations. When analysing them, it is very convenient to use the so-called integral

transforms which allow us to reduce the number of the variables in the equations and therefore

reduce their complexity. In the thesis we use Laplace and Fourier integral transforms whose

descriptions are presented below.



1.2 Methods 7

1.2.2.1 Laplace integral transform

The Laplace integral transform is the function L [f(t)] defined by

L [f(t)] = FL(s) =

∞∫
0

e−stf(t)dt (1.5)

One of the most important properties of the Laplace transform is the derivative property,

which is

L
[
f (n)(t)

]
= snFL(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0). (1.6)

Here, f (n) denotes the n-th derivative of the function f with respect to the variable t.

In the thesis we consider only the homogeneous initial data, therefore we can use the

reduced derivative property of Laplace transform which is

L
[
f (n)(t)

]
= snFL(s). (1.7)

The inverse Laplace transform is

f(t) =

∞∫
0

FL(s)estds.

In the thesis we apply the Laplace transform to the time-coordinate t or its dimensionless

analogue τ (see below in the text).

1.2.2.2 Fourier integral transform

The Fourier integral transform FF (p) of a function f(x) is defined by

FF (p) = F [f(x)] =
1√
2π

∞∫
−∞

e−ixpf(x)dx, (1.8)

and the inverse Fourier transform is

f(x) =
1√
2π

∞∫
−∞

eixpFF (p)dp. (1.9)

The Fourier integral transform, as well as that of Laplace, has the derivative property

given by the following expression

F
[
f (n)(x)

]
= (ip)nFF (p). (1.10)

In the thesis we apply the Fourier integral transform to the x-coordinate (or its dimen-

sionless analogue ξ).
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1.2.3 Contour Integration

As it was mentioned above in Section 1.2.2, here we use integral transforms and, therefore, the

related integrals. For example, the inverse Fourier transform requires taking the integral in

form (1.9). Sometimes the integrand has singularities located on the real axis. In the thesis,

we deal with the integrands having several singularities on the real line, namely two poles

symmetrical around the origin. For this reason, here and below we take into consideration

the integrand function f(x), which has two poles, x = ±xk. Finding the result of integration

of ∫ ∞
−∞

f(x)dx (1.11)

becomes possible if we use the path of integrating which avoids these poles. The method

used here is the contour integration avoiding these poles around the semi-circles with a small

radius r, which is suggested by the Cauchy Principle Value theorem (e.g. see Henrici (1988)).

For this reason we split the interval of integration into 5 segments, as shown in Figure 1.1.

Figure 1.1: Intervals of integration splitting of the original interval

The segments 1 (−∞ < x < −xk−r), 3 (−xk+r < x < xk−r) and 5 (xk+r < x <∞) do

not contain any singularities, and within the 2 and 4 we use the contour integration. Additive

property of integration allows us to rewrite (1.11) as follows∫ ∞
−∞

f(x)dx =

∫ −xk−r
−∞

f(x)dx+

∫
2
f(z)dz +

∫ xk−r

−xk+r
f(x)dx

+

∫
4
f(z)dz +

∫ ∞
xk+r

f(x)dx.

(1.12)

Hereafter, f(z) is the function of the real argument f(x), extended to the complex plane.

Now we study the contour integrals on intervals 2 and 4. We remark that the way around

the poles is chosen in order to satisfy the Sommerfeld radiation conditions (see below in the

text). We parametrise the variable z in the first integral to specify the contour 2 by setting

z = −xk− reiφ, where π ≤ φ ≤ 0. Note that this parametrization defines the direction of the

integration. For contour 4, we set z = xk − reiπ with π ≤ φ ≤ 2π, and finally integral (1.11)
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can be defined in the following form∫ ∞
−∞

f(x)dx =

∫ −xk−r
−∞

f(x)dx+

∫ 0

π
ireiφf1(φ)dφ+

∫ xk−r

−xk+r
f(x)dx

+

∫ 2π

π
ireiφf2(φ)dφ+

∫ ∞
xk+r

f(x)dx,

(1.13)

where f1(φ) = f(−xk − reiφ) whereas f2(φ) = f(xk − reiφ).

It should be mentioned that the values of the contour integrals around the poles x = ±xk
define the contribution of these singularity points into the overall result of the integration

(1.13).

1.2.4 Residue Theory

We consider the Laurent series

f(z) =

∞∑
n=−∞

an(z − z0)n (1.14)

of the complex variable function f(z) around point z0. The constant a−1 of these series is

called the residue of f(z). An important property of the residues is that if f(z) is analytic

at z0, its residue at this point is zero. Unfortunately, the converse is not always true (e.g, if

f(z) = 1
z , for which it is well-known that the residue at point z = 0 of this function is 0.).

We denote the residue of a function f(z) at z0 point as Resz=z0(f(z)).

Residues of f(z) function may be found without explicitly expanding it into the Laurent

series. If f(z) has a pole of order m at the point z = z0, then the residue can be found by

the formula

Resz=z0(f(z)) =
1

(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)]z=z0 . (1.15)

The Cauchy integral theorem says that the value of a contour integral of any contour in

the complex plane depends only on the properties of a few special points inside the contour,

and therefore ∮
γ
f(z)dz = 2πi

∑
a∈A

Resz=a(f(z)), (1.16)

where A is the set of all poles of the function f(z) inside the closed contour γ. Here and

below, we used the material from the book by Henrici (1988).

One of the most useful theorems of the residue theory application is the Jourdan’s lemma.

Its statement is:
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Consider a complex-valued, continuous function f(z), defined on a semicircular contour

CR = {z : z = Reiθ, θ ∈ [0, π]} of radius R > 0 lying in the upper half-plane, centred at the

origin. If the function f(z) is of the form f(z) = eipzg(z) , z ∈ CR with a parameter p > 0,

then Jordan’s lemma states the following upper bound for the contour integral∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ π

p
max
θ∈[0,π]

∣∣g(Reiθ)∣∣ . (1.17)

An analogous statement for a semicircular contour in the lower half-plane holds when p < 0.

If f(z) is defined and continuous on the semicircular contour CR for all large R and

MR := maxθ∈[0,π]
∣∣g(Reiθ)∣∣→ 0 as R→∞, then by Jordan’s lemma

lim
R→∞

∫
CR

f(z) dz = 0. (1.18)

Application of the Jourdan’s lemma allows to find the improper integral of the above function

f(z) as follows ∫ ∞
−∞

f(x) dx = 2πi
∑
a∈A

Resz=a(f(z)) , (1.19)

where A is a finite set of non-real points of singularity of g(z).

Figure 1.2: Contours of integration. Separation of the poles

Now let the function f(z) = e±ipzg(z) satisfy all the conditions of Jourdan’s lemma except

for the function g(z) to have two real points of singularity z = ±pk. It is obvious that we

cannot apply the lemma directly for finding the integral (1.19). To avoid this complexity, we

introduce two following closed contours of integration as shown in Figure 1.2. Here, r << R
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and r << 1. As it can be seen, contour 1 has z = −pk and contour 2 contains z = pk inside.

Then, we can apply the Jourdan’s lemma and state that

∫ ∞
−∞

f(x) dx = 2πiResz=±pk(f(z)) , (1.20)

where for the negative value of p we choose contour 1 and for positive p we take contour 2.

1.3 Governing equations

1.3.1 Equations of motion for Kirchhoff theory of thin elastic plate bending

In their renowned book Timoshenko and Woinowsky-Krieger (1987), the authors derive an

equation for the mid-plane small deflection w in the Kirchhoff classical theory of plate bend-

ing. It is applicable for various types of materials. Onwards we study two different shapes of

plates, namely semi-infinite and circular ones.

1.3.1.1 Equations of motion in Cartesian coordinate system

Figure 1.3: Semi-infinite plate. Cartesian coordinate system

In the case of a semi-infinite plate, it is natural to use the Cartesian coordinate system.

We specify the directions of the x and y coordinate axes as shown in Figure 1.3. We assume

that a plate occupies the space −∞ < x < ∞ and 0 ≤ y < ∞ with −h ≤ z ≤ h. In

the Kirchhoff plate theory, the equilibrium equation in the Cartesian coordinate system is

formulated in the two-dimensional space and takes the following form (here and below see

Timoshenko and Woinowsky-Krieger (1987) for more details)

∂2Mx

∂x2
+
∂2My

∂y2
− 2

∂2Mxy

∂x∂y
= −q, (1.21)

where Mx, My, Mxy are bending moments, q is the intensity of a transverse load.
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In the dynamics of plates with traction-free faces, considered below, q is

q = −2ρh
∂2w

∂t2
, (1.22)

where h is the half-thickness of the plate, ρ - the density of plate material and w is the plate

deflection.

We assume that the material properties of the plate are constant along all directions.

Such a material is called isotropic (e.g. see Courtney (1990)). This assumption is justified for

many metals, including steel, ets. Such materials are characterised by two constants, namely

the Young’s modulus E and the Poisson’s ratio ν.

To present equation (1.21) in terms of the deflection w of the plate, we express the

moments Mx, My and Mxy as

Mx = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
,

My = −D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
,

Mxy = D(1− ν)
∂2w

∂x∂y
.

(1.23)

where D is the flexural rigidity of the plate specified by

D =
2Eh3

3(1− ν2)
. (1.24)

Now, substituting (1.24) into (1.21), we obtain the equation of motion in terms of the

deflection w as
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
+

2ρh

D

∂2w

∂t2
= 0, (1.25)

or, in a symbolic form,

∆2
Lw +

2ρh

D

∂2w

∂t2
= 0, (1.26)

where the differential Laplace operator ∆L was introduced in Section 1.2.

As it has been mentioned, the material properties of the plate are assumed to be the

same along all directions. However, there are cases when this assumption is violated. Let

us assume that there exist three planes of material symmetry with respect to its elastic

properties. A material with these properties is called orthotropic (e.g. see Courtney (1990)).

In the Kirchhoff plate theory the elastic relations are reduced to the 2-dimensional formulae.

For the latter case, the four constants, E′x, E′y, E
′′ and G are used to characterise the elastic
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properties of the plate. Taking the aforementioned directions of symmetry as coordinate axes,

we may start from the same equation (1.21). In doing so, the bending moments Mx, My and

Mxy are now expressed in terms of the deflection w by the following equalities

Mx = −
(
Dx

∂2w

∂x2
+D1

∂2w

∂y2

)
,

My = −
(
Dy

∂2w

∂y2
+D1

∂2w

∂x2

)
,

Mxy = 2Dxy
∂2w

∂x∂y
.

(1.27)

Here

Dx =
E′xh

3

3
, Dy =

E′yh
3

3
,

D1 =
E′′h3

3
, Dxy =

Gh3

3
.

(1.28)

Also, note that the bending stiffnesses Dx, Dy, D1, and Dxy must satisfy the foundational

inequalities

Dxy > 0, Dx +Dy > 0, DxDy −D2
1 > 0, (1.29)

which arise from the condition of the positive definiteness of the strain energy density dV =

Mxy
∂2w

∂x∂y
− 1

2

(
Mx

∂2w

∂x2
+My

∂2w

∂y2

)
.

On substituting (1.27) into equation (1.21) we get the sought for equation of motion. It

is

Dx
∂4w

∂x4
+ 2 (D1 + 2Dxy)

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ 2ρh

∂2w

∂t2
= 0. (1.30)

In fact, isotropy is a particular case of orthotropy, in which the material parameters E′x,

E′y, E
′′, and G are expressed through E and ν as

E′x = E′y =
E

1− ν2
, E′′ =

νE

1− ν2
, G =

E

2(1 + ν)
, (1.31)

while the bending stiffnesses Dx, Dy, D1 and Dxy are connected with the flexural rigidity D

by

Dx = Dy = D, D1 = νD, Dxy = 2(1− ν)D. (1.32)

1.3.1.2 Equation of motion in polar coordinate system

The polar coordinate system becomes optimal when dealing with bending of a circular plate.

We return to the case when the plate is an isotropic one. The equation of motion is

∆2
L,r,φw +

2ρh

D

∂2w

∂t2
= 0, (1.33)
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Figure 1.4: Circular plate. Polar coordinate system

where ∆L,r,φ is the differential operator presented above in Section 1.2. This equation can

be directly obtained by using the relations between Polar and Cartesian coordinates (1.3).

1.3.2 Boundary conditions

1.3.2.1 Cartesian coordinates

We begin with a semi-infinite plate. Assuming that x and y coordinates are taken as shown

in Figure 1.3, we consider three types of boundary conditions, including a traction-free edge

and also one loaded by external bending moment or shear forces.

If the plate edge is entirely free, it is reasonable to assume that there are no bending and

twisting moments, and also no vertical shear forces being indicative, therefore the boundary

conditions at y = 0 are

My = 0, Mxy = 0, Sy = 0. (1.34)

However, it is obvious that only two boundary conditions are sufficient for finding the

deflection w. To get rid of this contradiction we have to introduce the so-called Kirchhoff

shear force (see Kirchhoff (1850) for more information).

Vy =

(
Sy −

∂Mxy

∂y

)
. (1.35)

In fact, the latter can be justified as a pretty delicate asymptotic analysis of the original

3D problem of elasticity, taking into account boundary layers (e.g. see Friedrichs (1955)).

In terms of deflection w (1.35) can be rewritten as: for an isotropic material

Vy = −D
(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)
,
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for an orthotropic material

Vy = −
(
Dy

∂3w

∂y3
+ (D1 + 4Dxy)

∂3w

∂x2∂y

)
.

Thus, the boundary conditions at y = 0 are

My = 0, Vy = 0, (1.36)

or, in terms of the deflection w: for an isotropic plate

∂2w

∂y2
+ ν

∂2w

∂x2
= 0,

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= 0,

(1.37)

and for an orthotropic material

Dy
∂2w

∂y2
+D1

∂2w

∂x2
= 0,

Dy
∂3w

∂y3
+ (D1 + 4Dxy)

∂3w

∂x2∂y
= 0.

(1.38)

If the plate edge is loaded, we consider the combination of the bending moments and shear

forces. Due to the linear nature of the problem, we can separate the original problem into two;

in doing so, the first problem corresponds to the loading in the form of a bending moment,

whereas the second one deals with a shear force prescribed at the edge. In this thesis, the

problems for the deflection caused by moments and shear forces are studied separately.

Figure 1.5: Bending moment at the plate edge. Loading scheme

For a bending moment My = M0(x, t) applied at the plate edge y = 0 as shown in Figure

1.5, the boundary conditions become

My = M0(x, t), Vy = 0. (1.39)
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In terms of w they can be rewritten as: for an isotropic plate

∂2w

∂y2
+ ν

∂2w

∂x2
= −M0(x, t)

D
,

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= 0;

(1.40)

and for an orthotropic plate

Dy
∂2w

∂y2
+D1

∂2w

∂x2
= −M0(x, t),

Dy
∂3w

∂y3
+ (D1 + 4Dxy)

∂3w

∂x2∂y
= 0.

(1.41)

Figure 1.6: Transverse shear force at the plate edge. Scheme of loading

For a shear force Ny = N0(x, t) applied at the plate edge y = 0 as shown in Figure 1.6,

the boundary conditions become

My = 0, Vy = N0(x, t). (1.42)

In terms of w they are: for an isotropic plate

∂2w

∂y2
+ ν

∂2w

∂x2
= 0,

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= −N0

D
;

(1.43)

and for an orthotropic plate

Dy
∂2w

∂y2
+D1

∂2w

∂x2
= 0,

Dy
∂3w

∂y3
+ (D1 + 4Dxy)

∂3w

∂x2∂y
= −N0.

(1.44)
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1.3.2.2 Boundary conditions in polar coordinates

Considering an isotropic plate, the bending moments Mr, Mφ and Mr,φ and shear forces Sr

and Sφ are expressed in terms of the deflection w as follows

Mr = −D
[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+

1

r2
∂2w

∂φ2

)]
,

Mφ = −D
[

1

r

∂w

∂r
+

1

r2
∂2w

∂φ2
+ ν

∂2w

∂r2

]
,

Mr,φ = (1− ν)D

(
1

r

∂2w

∂r∂φ
− 1

r2
∂w

∂φ

)
,

(1.45)

and

Sr = −D ∂

∂r
(∆L,r,φw) ,

Sφ = −D1

r

∂

∂φ
(∆L,r,φw) .

(1.46)

For a traction-free plate edge, boundary conditions have the same form as in Cartesian

coordinates, i.e. at r = R (where R is the outer radius of a circular plate), we get

Mr = 0, Vr = 0, (1.47)

where Mr is specified by the first formula in (1.45), and

Vr =

(
Sr −

1

r

∂Mr,φ

∂φ

)
.

In terms of the deflection w, boundary conditions finally become

∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+

1

r2
∂2w

∂φ2

)
= 0,

∂

∂r
(∆L,r,φw) + (1− ν)

1

r

∂

∂φ

(
1

r

∂2w

∂r∂φ
− 1

r2
∂w

∂φ

)
= 0.

(1.48)



Chapter 2

Konenkov flexural edge wave in

isotropic plate

2.1 Konenkov flexural edge wave in semi-infinite plate

In this section we consider flexural edge waves appearing in a semi-infinite isotropic plate.

Various boundary conditions are considered. An approximate parabolic-elliptic explicit model

is formulated.

2.1.1 Homogeneous edge wave

2.1.1.1 Basic equations

We consider elastic bending of an isotropic semi-infinite plate. The equation of motion was

formulated in Section 1.3.1 (see (1.25) or (1.26)). First, we study the homogeneous boundary

conditions along the plate edge, written in form (1.37).

After introducing new dimensionless quantities by the formulae

ξ =
x

h
, η =

y

h
, W ∗ =

w

h
, τ =

t

T
, (2.1)

where h is the half-thickness of the plate, T is a typical time scale, and applying the Fourier

and Laplace integral transforms1 with respect to ξ-coordinate (ξ → ip) and τ -coordinate

1Fourier and Laplace transforms will be used further for solving non-homogeneous problems.

18



2.1 Konenkov flexural edge wave in semi-infinite plate 19

(τ → s), equation of motion (1.25) and the boundary conditions (1.37) become

d4Ŵ

dη4
− 2p2

d2Ŵ

dη2
+ (p4 + λ20s

2)Ŵ = 0, (2.2)

where

λ20 =
2ρh5

T 2D
(2.3)

is the dimensionless frequency parameter, and at η = 0

d2Ŵ

dη2
− νp2Ŵ = 0,

d3Ŵ

dη3
− (2− ν)p2

dŴ

dη
= 0.

(2.4)

Now, we need to find the solution of equation (2.2) with boundary conditions (2.4) which

decays at the infinity.

2.1.1.2 Konenkov flexural edge wave speed in isotropic plate

The solution of problem (2.2)-(2.4) can be taken in the form

Ŵ (η) = Ce−γη, (2.5)

On substituting it into (2.2) we find the values of the parameter γ

γ1,2 = ±
√
p2 + iλ0s,

γ3,4 = ±
√
p2 − iλ0s

According to the conditions at infinity (therefore, we need Re(γi) > 0, i = 1, 2, 3, 4) we

write the sought for solution as follows

Ŵ (η) = Ae−αη +Be−βη, (2.6)

where

α =
√
p2 + iλ0s,

β =
√
p2 − iλ0s,

(2.7)

and A and B are arbitrary constants.

We substitute (2.6) into the boundary conditions (2.4). This leads to a system of two

linear equations for the unknowns A and B. We write this system in matrix form. Thus, α2 − νp2 β2 − νp2

(α2 − (2− ν)p2)α (β2 − (2− ν)p2)β

 A

B

 =

 0

0

 . (2.8)
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System (2.8) has a non-zero solution only when the determinant of the matrix in the

left-hand side equals to zero. As a result, we get

(β − α)
[
α2β2 − (α2 + β2)νp2 + 2(1− ν)αβp2 + ν(2− ν)p4

]
= 0, (2.9)

or

s2λ20 + (1− ν2)p4 + 2(1− ν)
√
p4 + s2λ20p

2 = 0. (2.10)

Before proceeding to the analysis of this equation, let us introduce the parameter

c =

√
−isλ0
p

(2.11)

In terms of c, equation (2.10) can be rewritten as

1− ν2 − c4 + 2(1− ν)
√

1− c4 = 0. (2.12)

Now, we multiply the above equation by

X(c) = 1− ν2 − c4 − 2(1− ν)
√

1− c4, (2.13)

which never equals zero at the zeros of the denominator. This can be seen in Figure 2.1. We

Figure 2.1: Function X(c) at the first zero of denominator versus Poisson’s ratio

use this function below when operating with the solutions of the related problems.

Then, it becomes straightforward to find the solutions of the amended equation in the

following form

c4k = (1− ν)
[
3ν − 1 + 2

√
2ν2 − 2ν + 1

]
,

c42 = (1− ν)
[
3ν − 1− 2

√
2ν2 − 2ν + 1

]
.

(2.14)
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Figure 2.2: Second root c42 versus Poisson’s ratio

It can be seen in Figure 2.2 that c42 has a negative value, and, therefore, it has no physical

meaning. The only root of this equation, in which we are interested in, is the root ck

corresponding to the so-called Konenkov flexural edge wave speed (Konenkov (1960)). Note

that Konenkov flexural edge wave speed depends on a number of parameters including the

frequency parameter λ0, therefore we treat ck as a Konenkov flexural edge wave coefficient.

Dependence of ck on Poisson’s ratio is shown in Figure 2.3.

Figure 2.3: Konenkov flexural edge wave coefficient versus Poisson’s ratio
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2.1.2 Bending moment at plate edge

2.1.2.1 Basic equations

Now we assume that a bending moment is applied at the semi-infinite plate edge y = 0.

In this case, the equation of motion can be taken in form (1.25) as before. The boundary

conditions for this type of loading were considered in Section 1.3.2 (see formula (1.42)).

As in Section 2.1.1, we introduce dimensionless quantities (2.1) and after applying the in-

tegral transforms we arrive at equation of motion (2.2). Boundary conditions (1.43) transform

to
d2Ŵ

dη2
− νp2Ŵ = −M̂0,

d3Ŵ

dη3
− (2− ν)p2

dŴ

dη
= 0,

(2.15)

where M̂0(p, s) is the transformed dimensionless bending moment applied at the plate edge

M̂0(p, s) =
h√
2πD

∫ ∞
−∞

e−ipξ
(∫ ∞

0
M∗0 (ξ, τ)e−sτdτ

)
dp. (2.16)

2.1.2.2 Exact solution in terms of integral transforms

We further seek for the solution of problem (2.2), (2.15) in form (2.6), where α and β are

the parameters from (2.7). The substitution of the solution into boundary conditions (2.15)

results in a system of linear equations for the unknown constants A and B. It can be presented

in a matrix form as α2 − νp2 β2 − νp2

(α2 + (2− ν)p2)α (β2 + (2− ν)p2)β

 A

B

 =

 −M̂0

0

 . (2.17)

In Section 2.1.1 we explored only the determinant of this system, whereas now we express

its solution as

A =
∆1

∆
, B =

∆2

∆
, (2.18)

where

∆ =

∣∣∣∣∣∣ α2 − νp2 β2 − νp2

(α2 − (2− ν)p2)α (β2 − (2− ν)p2)β

∣∣∣∣∣∣
= (β − α)

[
α2β2 − (α2 + β2)νp2 + 2(1− ν)αβp2 + ν(2− ν)p4

]
,
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and

∆1 =

∣∣∣∣∣∣ −M̂0 β2 − νp2

0 (β2 − (2− ν)p2)β

∣∣∣∣∣∣ = −M̂0

[
β2 − (2− ν)p2

]
β,

∆2 =

∣∣∣∣∣∣ α2 − νp2 −M̂0

(α2 − (2− ν)p2)α 0

∣∣∣∣∣∣ = M̂0

[
α2 − (2− ν)p2

]
α.

Finally, the transformed solution for a semi-infinite plate deflection, expressed through

parameter c (see (2.11)) appears as

ˆW (η) =
M̂0

−isλ0
c2

c4 − c4k
∆1(c)e

−
√

−isλ0
c

αcη + ∆2(c)e
−
√

−isλ0
c

βcη

∆(c)
X(c), (2.19)

with

∆1(c) =
[
(1− ν)− c2

]√
1 + c2,

∆2(c) = −
[
(1− ν) + c2

]√
1− c2,

∆(c) = (βc − αc) (c4 − c42),

(2.20)

and

αc =
√

1− c2,

βc =
√

1 + c2,
(2.21)

where X(c) is given by (2.13).

2.1.2.3 Derivation of explicit dual parabolic-elliptic model for Konenkov flexural

edge wave

Our goal now is to determine the Konenkov flexural edge wave contribution in exact solution

(2.19). It is natural to assume that this contribution is dominated by the poles c = ±ck of the

denominator. For this reason, we expand the transformed solution around its zeros c = ±ck
to take into account only the contribution of the Konenkov flexural edge wave. Thus, we get

in the leading order at the plate edge η = 0

Ŵe = Q(1)
e (ck)

M̂0

−isλ0
c2

c4 − c4k
, (2.22)

where

Q(1)
e =

∆1(ck) + ∆2(ck)

∆(ck)
X(ck), (2.23)

or, in terms of the transform parameter p, we have

Ŵe = −Q(1)
e M̂0

p2

p4c4k + s2λ20
. (2.24)
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The last expression satisfies the following dimensionless equation

c4k
∂4W ∗e
∂ξ4

+ λ20
∂2W ∗e
∂τ2

= Q(1)
e

h2

D

∂2M∗0 (ξ, τ)

∂ξ2
,

which corresponds to the equation in the original dimensional variables

c4k
∂4we
∂x4

+
2ρh

D

∂2we
∂t2

= Q(1)
e

1

D

∂2M0

∂x2
, (2.25)

where we(x, t) is the edge deflection associated with the Konenkov flexural edge wave.

To obtain an equation over the interior domain we substitute the expression for the

Konenkov flexural edge wave poles s2 = −
c4k
λ20
p4 into the transformed equation of motion

(2.2), resulting in

d4Ŵin

dη4
− 2p2

d2Ŵin

dη2
+ (1− c4k)p4Ŵin = 0. (2.26)

In the original variables the latter becomes

∂4win
∂y4

+ 2
∂4win
∂x2∂y2

+ (1− c4k)
∂4win
∂x4

= 0, (2.27)

with win(x, y) is the deflection within the interior domain, induced by the Konenkov flexural

edge wave.

The first boundary condition for win(x, y) may be taken as

win(x, 0) = we(x), (2.28)

while the second one may be implied in the form

∂2win
∂y2

= −ν ∂
2we
∂x2

. (2.29)

Such a choice of the boundary conditions is specified by the idea of the model. Let us consider

the case when the boundary conditions have more intuitive form

win(x, 0) = we(x),

∂2win
∂y2

= −ν ∂
2we
∂x2

− M0

D
,

where we(x, t) is the edge deflection induced by the Konenkov wave only, therefore the solution

into the interior, due to the elliptic nature of its equation (2.27), naturally should be a decay

of we, and, therefore, should be some function of it. Now, due to the linear character of the

problem, we may split the solution and the boundary conditions into

win,1(x, 0) = we(x),

∂2win,1
∂y2

= −ν ∂
2we
∂x2

,
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and

win,2(x, 0) = 0,

∂2win,2
∂y2

= −M0

D
,

Solution win,1 obviously gives the sought for wave decay within the interior, whereas win,2 is

the deflection induced by the external bending moment excitation only and obviously is not

a deformation from the flexural edge wave. Therefore it should be omitted due to the model

nature and method of its construction.

The derived model clearly reveals a dual parabolic-elliptic nature of the Konenkov flexural

edge wave. It consists of a parabolic equation (2.25) along the edge and elliptic equation

(2.27) over the interior along with boundary conditions (2.28)-(2.29). It is in contrast to

a hyperbolic-elliptic nature of the classical Rayleigh wave for which we get a hyperbolic

equation instead of the parabolic one at the edge (see Rayleigh (1885) and Kaplunov et al.

(2006)).

2.1.2.4 Comparison with exact solution

In the section above we obtained exact solution (2.19) in terms of integral transforms, and

also derived explicit dual parabolic-elliptic model for Konenkov flexural edge wave (see (2.25),

(2.27)-(2.29)). Next, we compare these solutions by applying the inverse Fourier transform

and plotting the graphs for these solutions expressed through the dimensionless deflections.

We consider a bending moment M0(x, t) = M0δ(x)e−iωt applied at the plate edge y = 0. Here

and below, Poisson’s ratio is assumed to be ν = 1
3 . In this case, the frequency parameter

takes the form

λ0 =

√
2ρh5ω2

D
. (2.30)

Also, for the harmonic case under study, the deflection w(x, y, t) may be found as w(x, y, t) =

W (x, y)e−iωt. Thus, we do not need to apply the Laplace integral transform. For the point-

moment M̂0 we rewrite the exact solution in a more convenient form using the parameter p,

i.e.

Ŵ (η) = M̂0
p2

p4 − p4k
∆1(p)e

−αη + ∆2(p)e
−βη

∆(p)
X(p). (2.31)

Here,

α =
√
p2 − λ0, β =

√
p2 + λ0, (2.32)
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∆1(p) = [(1− ν)p2 − λ0]
√
p2 + λ0,

∆2(p) = −[(1− ν)p2 + λ0]
√
p2 − λ0,

∆(p) = c4kc
4
2(β − α)(p4 − p42),

X(p) = (1− ν2)p4 − 2(1− ν)
√
p4 − λ20p2 − λ20,

(2.33)

with

pk =

√
λ0
ck

, p2 =

√
λ0
c2

. (2.34)

The deflection corresponding to the Konenkov flexural edge wave may be found from

formula (2.31) by isolating the contribution of the poles p = ±pk in the overall solution. This

contribution follows from the contour integration (see Section 1.2.3). The result of integration

W ∗e is

W ∗e =
1√
2π

[∫
2
Ŵ (η, z1)e

iz1ξdz1 +

∫
4
Ŵ (η, z2)e

iz2ξdz2

]
. (2.35)

Here and below, the radius r of the semi-circles in Figure 1.1 is taken as

r =
|1− ck|
10000

, (2.36)

due to the sensitivity of the calculations in Matlab. This is the lower limit of the universal

expression for r in all problems solved in the thesis.

The solution of parabolic equation (2.25) follows immediately from the residue theory

(see Section 1.2.4). It is given by

W ∗e =
1√
2π

∫ ∞
−∞

Ŵe(η, p)e
ipxdp =

2πi√
2π
Resz=pk(Ŵe(η, z)e

izx), (2.37)

where

Ŵe(η, p) = Q(1)
e M̂0

p2

p4 − p4k
(2.38)

with

Q(1)
e =

∆1(pk) + ∆2(pk)

∆(pk)
X(pk). (2.39)

Therefore, the explicit solution for the dimensionless plate edge deflection W ∗e correspond-

ing to the Konenkov flexural edge wave is given by

W ∗e (ξ) =
√

2πiQ(1)
e M̂0

1

2pk
eipkξ. (2.40)

The graph of the deflection at the plate edge related to the Konenkov flexural edge wave

is presented in Figure 2.4. In this case we take the value λ0 = 1. Here and below all the
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Figure 2.4: Konenkov flexural edge wave in isotropic plate (λ0 = 1). Comparison of exact (2.35) and

approximate (2.40) solutions

solutions were obtained numerically using Matlab 7.1. Figure 2.4 clearly demonstrates that

both methods give similar results, as predicted. Also note that we take the value M̂0 =
√

2π

so that the expression
M̂0√

2π
= 1.

To find an overall solution in the dimensionless form W ∗(ξ, η), we need to evaluate the

following integral

W ∗(ξ, η) =
1√
2π

∫ ∞
−∞

Ŵ (η, p)eipξdp. (2.41)

(The method of integrating was described in Section 1.2.3.)

Note that there exist two branch points p = ±
√
λ0 on the real axis of the solution Ŵ (η, p)

(see (2.31)). In the interval between them (when −
√
λ0 ≤ p ≤

√
λ0) the quantity α takes the

value α = −i
√
λ0 − p2 to satisfy the Sommerfeld radiation condition at∞. It is obvious that

for −∞ < p < −λ0 and λ0 < p < ∞ α =
√
p2 − λ0 is real-valued to ensure the exponential

decay.

The obtained numerical solution along with the explicit contribution of the Konenkov

flexural edge wave given by (2.40) is shown below for different values of the frequency pa-

rameter λ0 = 0.1 (Figure 2.5), λ0 = 1 (Figure 2.6) and λ0 = 10 (Figure 2.7) (at the plate

edge η = 0). Figures 2.5-2.7 show that the Konenkov flexural edge wave makes a dominating

contribution to the overall deflection of the plate edge. The only region where the overall

deflection is larger than that in the Konenkov flexural edge wave is the vicinity of the point
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moment. This is similar to the far-field assumption for the asymptotic model of the Rayleigh

wave (see Kaplunov et al. (2006)). Note also that the above vicinity is rather narrow since ξ

is the original coordinate x, normalised by the plate half-thickness.

Figure 2.5: Edge deflection in isotropic plate (λ0 = 0.1). Overall solution (2.41) and Konenkov flexural edge

wave contribution (2.40)

Figure 2.6: Edge deflection in isotropic plate (λ0 = 1). Overall solution (2.41) and Konenkov flexural edge

wave contribution (2.40)

A similar approach as described above was used to obtain the solutions over the interior

domain. Instead of a parabolic equation at the edge, elliptic problem (2.27)-(2.29) is analysed.
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Figure 2.7: Edge deflection in isotropic plate (λ0 = 10). Overall solution (2.41) and Konenkov flexural edge

wave contribution (2.40)

The solution of this problem is given in terms of the integral transforms. It is

Ŵin(η, p) =
Q

(1)
e M̂0

2c2k

p2

p4 − p4k

[
[(1− ν) + c2k]p

2e−αc(ck)pη − [(1− ν)− c2k]p2e−βc(ck)pη
]
. (2.42)

This function may be integrated using the residue theory (see Section 1.2.4), and the final

solution for the Konenkov flexural edge wave deflection over the interior domain becomes

W ∗in(ξ, η) =
√

2πi
Q

(1)
e M̂0

c2k

1

4pk

[
[(1− ν)p2k + λ0]e

−α(pk)η − [(1− ν)p2k − λ0]e−β(pk)η
]
eipkξ.

(2.43)

We plot the graphs only for the single value of the frequency parameter λ0 = 1 due

to the similarity of all the deflection profiles. Numerical solutions, obtained by the scheme

described in Section 1.2.3, were also plotted for the various values of the coordinate η. The

results are presented in Figures 2.8-2.9. They confirm an intuitive expectation that the

Konenkov flexural edge wave makes a key contribution into the exact solution near the edge.

Finally, 3D profiles of the dimensionless deflection associated with the Konenkov flexural

edge wave, obtained by the integration of the solutions (2.40) and (2.43) and the profile of

the overall deflection are produced (see Figures 2.10-2.11).
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Figure 2.8: Overall deflection of isotropic plate (η = 1). Overall solution (2.41) and dual parabolic-elliptic

model (2.43) for λ0 = 1

Figure 2.9: Overall deflection of isotropic plate (η = 10). Overall solution (2.41) and dual parabolic-elliptic

model (2.43) for λ0 = 1
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Figure 2.10: Konenkov flexural edge wave in isotropic plate. 3D profile for dual parabolic-elliptic model

(2.40) and (2.43) for λ0 = 1

Figure 2.11: Overall deflection of isotropic plate. 3D profile for exact solution (2.41) for λ0 = 1
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2.1.3 Transverse shear force at plate edge

In this section we consider another type of edge loading in the form of a transverse shear

force (see Figure 1.6).

2.1.3.1 Formulation of problem

The equation of motion for w deflection takes the form (1.25) or (1.26) as before, whereas

the boundary conditions are given now by (1.43).

By introducing dimensionless quantities (2.1) and applying integral transforms, the sought

for equation of motion takes form (2.2); in doing so, boundary conditions (1.43) at η = 0

become
d2Ŵ

dη2
− νp2Ŵ = 0,

d3Ŵ

dη3
− (2− ν)p2

dŴ

dη
= −N̂0,

(2.44)

where N̂0(p, s) is the transformed dimensionless analogue of the original transverse shear

force which may be treated as a constant depending only on parameters p and s. It is

N̂0(p, s) =
h2√
2πD

∫ ∞
−∞

e−ipξ
(∫ ∞

0
N∗0 (ξ, τ)e−sτdτ

)
dp. (2.45)

As above, the solution of problem (2.2) and (2.44) takes form (2.6)-(2.7). Now we in-

troduce a new function, v(x, y, t), which can be interpreted as the rotation angle about the

x-axis.

v(x, y, t) =
∂w

∂y
. (2.46)

For the latter, an equation of motion may be written in the same form, i.e.

∂4v

∂x4
+ 2

∂4v

∂x2∂y2
+
∂4v

∂y4
+

2ρh

D

∂2v

∂t2
= 0. (2.47)

In terms of the dimensionless quantities (2.1) its transformed analogue becomes

d4V̂

dη4
− 2p2

d2V̂

dη2
+ (p4 + λ20s

2)V̂ = 0. (2.48)

Next, we need to formulate the boundary conditions for the transformed function V̂ (η).

This is expressed through the function Ŵ as (see (2.6) and (2.7))

V̂ (η) = −αAe−αη − βBe−βη. (2.49)
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On using boundary conditions (2.44) for Ŵ we conclude that at η = 0

dV̂

dη
− νp2Ŵ (0) = 0,

d2V̂

dη2
− (2− ν)p2V̂ (0) = −N̂0.

(2.50)

Then we express Ŵ (η) through V̂ (η) at the plate edge η = 0. From (2.49) we deduce

that

V̂ (0) = −αA− βB.

Substitution of (2.49) into the second equation (2.50) yields

−(α2 − (2− ν)p2)αA− (β2 − (2− ν)p2)βB = −N̂0.

As a result, we get a system for the unknown constants A and B as follows

αA + βB = −V̂ (0),(
α2 − (2− ν)p2

)
αA +

(
β2 − (2− ν)p2

)
βB = N̂0.

The solution of this system is given by

A = −
β
(
V̂ (0)

(
β2 − (2− ν)p2

)
+ N̂0

)
αβ(β2 − α2)

,

B =
α
(
V̂ (0)

(
α2 − (2− ν)p2

)
+ N̂0

)
αβ(β2 − α2)

.

On inserting the expressions for A and B into the formula for Ŵ (0) we get

Ŵ (0) = A+B = − N̂0

αβ(α+ β)
− V̂ (0)

β2 + αβ + α2 − (2− ν)p2

αβ(α+ β)
.

Thus, we expressed the transformed deflection Ŵ (0) at the plate edge through the trans-

formed rotation angle V̂ (0). The sought for boundary conditions for V̂ (η) at η = 0 take the

form

αβ(α+ β)
dV̂

dη
+ νp2Y (p)V̂ (0) = −νp2N̂0,

d2V̂

dη2
− (2− ν)p2V̂ (0) = −N̂0,

(2.51)

where

Y (p) = β2 + αβ + α2 − (2− ν)p2. (2.52)
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2.1.3.2 Exact solution in terms of integral transforms

We take the solution of the problem, formulated in the previous section, as

V̂ (η) = A1e
−αη +B1e

−βη. (2.53)

It can be easily verified that it satisfies the above equation of motion (2.48), and we can

proceed with finding the unknown constants A1 and B1 using boundary conditions (2.51).

The substitution of (2.53) into (2.51) leads to a system for A1 and B1, which may be presented

in a matrix form as −Y (p)νp2 + α2β(α+ β) −Y (p)νp2 + αβ2(α+ β)

α2 − (2− ν)p2 β2 + (2− ν)p2

 A1

B1

 =

 νp2N̂0

−N̂0

 .
As shown above, the formulae for A1 and B1 are given by

A1 =
∆1

∆
, B1 =

∆2

∆
, (2.54)

where

∆ = − (β − α)
[
α2β2 − (α2 + β2)νp2 − 2(1− ν)αβp2 + ν(2− ν)p4

]
, (2.55)

and

∆1 = N̂0α(β2 − νp2),

∆2 = −N̂0β(α2 − νp2).
(2.56)

Next, we determine the zeroes of the denominator ∆ in (2.55). Comparison with equation

(2.9) shows that it has the same zeros (2.14).

On introducing the parameter c from (2.11), we present the solution for V̂ (η) as

V̂ (η) =
N̂0

−isλ0
c2(

c4 − c4k
)∆1(c)e

−
√

−isλ0
c

αcη + ∆2(c)e
−
√

−isλ0
c

βcη

∆(c)
X(c), (2.57)

where

∆(c) = −(βc − αc)(c4 − c42),

∆1(c) = −
[
(1− ν) + c2

]√
1− c2,

∆2(c) =
[
(1− ν)− c2

]√
1 + c2.

(2.58)

Here, αc and βc were given previously in (2.20) and the function X(c) was presented by

equality (2.13).
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2.1.3.3 Derivation of explicit dual parabolic-elliptic model

To investigate the contribution of the poles associated with the Konenkov flexural edge wave,

we set c = ±ck in the formula (2.57). The result is (η = 0)

V̂e = A1 +B1 =
N̂0

−isλ0
c2(

c4 − c4k
)Q(2)

e ,

where

Q(2)
e =

∆1(ck) + ∆2(ck)

∆(ck)
X(ck), (2.59)

or, in terms of parameter p

V̂e = −N̂0
p2

c4kp
4 + λ20s

2
Q(2)
e . (2.60)

This solution rewritten in the original variables corresponds to the equation for the rota-

tion angle around the x-axis

c4k
∂4ve(x, t)

∂x4
+

2ρh

D

∂2ve
∂t2

= Q(2)
e

1

D

∂2N0

∂x2
, (2.61)

where ve(x, t) is the rotation angle at the plate edge.

To obtain an equation for the rotation angle over the interior domain we can substitute

the expression for the Konenkov flexural edge wave poles s2 = −
c4k
λ20
p4 into the transformed

equation of motion (2.48), resulting in

d4 ˆVint
dη4

− 2p2
d2 ˆVint
dη2

+ (1− c4k)p4 ˆVint(η) = 0,

which corresponds to the equation in the original variables

∂4vint
∂y4

+ 2
∂4vint
∂x2∂y2

+ (1− c4k)
∂4vint
∂x4

= 0, (2.62)

where vint(x, y) is the rotation angle for the Konenkov flexural edge wave over the interior

domain.

The first boundary condition for vint(x, y) is

vint(x, 0) = ve(x), (2.63)
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while the second one follows from the second boundary condition (2.51) at y = 0

∂2vint
∂y2

= −(2− ν)
∂2ve
∂x2

. (2.64)

The remark about the right hand side of the above boundary conditions is similar to the one

described above in Section 2.1.2. The idea of model construction is that these models reveal

deformations caused only by the Konenkov wave, and omit those of bulk waves of any types.

Derived model (2.61)-(2.64) also reveals the dual parabolic-elliptic nature of the Konenkov

flexural edge wave. However, in the case of transverse shear force, it is derived for the rotation

angle v.

2.1.3.4 Explicit model for edge wave induced by transverse shear force. Attempt

of alternative formulation

As yet we have derived no model in terms of deflections for this type of loading (see Figure

1.6). Further we will try to reveal our reasons for this choice.

Let the equation of motion for the plate deflection w again be given by (1.25) or (1.26), and

the boundary conditions take form (1.43). In dimensionless quantities (2.1) the transformed

equation and boundary conditions take form (2.2) and (2.44), respectively.

This time we express the sought for solution in terms of the transformed deflection Ŵ (η).

As above, the solution of problem (2.2), (2.44) can be found in form (2.6)-(2.7). On substi-

tuting solution (2.6) into boundary conditions (2.44) we get a system of linear equations for

the unknown constants A and B. In a matrix form, the latter can be written as α2 − νp2 β2 − νp2

(α2 − (2− ν)p2)α (β2 − (2− ν)p2)β

 A

B

 =

 0

−N̂0

 . (2.65)

On introducing the parameter c from (2.11) and the function X(c) from (2.13), we present

the above constants as

A =
c3

(−isλ0)3/2(c4 − c4k)
N̂0

∆1(c)

∆(c)
X(c),

B =
c3

(−isλ0)3/2(c4 − c4k)
N̂0

∆2(c)

∆(c)
X(c),

(2.66)

where

∆1(c) =
[
(1− ν) + c2

]
,

∆2(c) = −
[
(1− ν)− c2

]
,

∆(c) = − (βc − αc) (c4 − c42).

(2.67)



2.1 Konenkov flexural edge wave in semi-infinite plate 37

Finally, the transformed deflection of the plate becomes

Ŵ (η) =
N̂0

(−isλ0)3/2
c3

c4 − c4k
∆1(c)e

−
√

−isλ0
c

αcη + ∆2(c)e
−
√

−isλ0
c

βcη

∆(c)
X(c). (2.68)

It is remarkable that the last formula does not allow an elegant explicit model for the

Konenkov flexural edge wave to be derived, as it has been done above, due to the c3 factor

because the odd power does not lead to the sought for real-valued differential operator (see

Section 1.2.2). Such a model may be derived from the expression for the transformed rotation

angle. On using the relation between the functions Ŵ (η) and V̂ (η), we get a formula for the

transformed rotation angle. As it might be expected, it takes the same form (see (2.57) and

(2.58) above).

2.1.3.5 Comparison with exact solution

Comparison of the derived model (2.61)-(2.64) and the exact formulation (2.57) utilises the

same methodology as in Section 2.1.2. Below, the shear force is taken in the form N0(x, t) =

N0δ(x)e−iωt.

The edge rotation angle, associated with the Konenkov flexural edge wave, may be found

in two ways. First, we calculate the contribution to the exact solution related to the poles.

Let us evaluate the integrals

V ∗e =
1√
2π

[∫
2
V̂ (η, z1)e

iz1ξdz1 +

∫
4
V̂ (η, z2)e

iz2ξdz2

]
. (2.69)

In this case the exact solution may be further rewritten in terms of the parameter p as

V̂ (η, p) = N̂0
p2

p4 − p4k
∆1(p)e

−αη + ∆2(p)e
−βη

∆(p)
X(p), (2.70)

with

∆1(p) = −[(1− ν)p2 + λ0]
√
p2 − λ0,

∆2(p) = [(1− ν)p2 − λ0]
√
p2 + λ0,

∆(p) = −c4kc42(β − α)(p4 − p42),

(2.71)

where the function X(p) takes the same form (2.33) as above, λ0 is (2.30) and the quantities

α and β are expressed through (2.32).

The solution of the parabolic equation (2.61) is found using the residue theory as

V ∗e =
1√
2π

∫ ∞
−∞

V̂e(η, p)e
ipxdp =

2πi√
2π
Resz=pk(V̂e(η, z)e

izξ). (2.72)
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The constant Q
(2)
e of the transformed angle V̂e also can be rewritten in the following form

Q(2)
e =

∆1(pk) + ∆2(pk)

∆(pk)
X(pk). (2.73)

Finally, the solution for V ∗e induced by the Konenkov flexural edge wave can be written

in the form

V ∗e (η, ξ) =
√

2πiQ(2)
e N̂0

1

2pk
eipkξ. (2.74)

As shown above, the small radius of the integration semi-circle (2.69) is taken as (2.36).

Here and below the numerical solutions are created for one value of the frequency parameter

λ0 = 1 due to the similarity of the rotation profiles. Also, N̂0 =
√

2π similar to M̂0 in the

previous Section 2.1.2.4.

The methodology of obtaining the overall solution is the same as in Section 2.1.2. Also, as

above, the integration involves the choice of the branch cuts. The overall numerical solution

in the form

V ∗(ξ, η) =
1√
2π

∫ ∞
−∞

V̂ (η, p)eipξdp (2.75)

compared with the Konenkov flexural edge wave contribution (2.74) is demonstrated in Figure

2.12. It shows that the Konenkov flexural edge wave makes the dominating contribution to

the overall edge rotation angle. The only region where the overall angle is larger than that for

Konenkov flexural edge wave is the vicinity of the point force. We note again that here ξ is

the original coordinate normalised by the plate half-thickness. Therefore, the above vicinity

is rather narrow.

A similar approach was used to obtain the solutions over the interior domain. Instead of

a parabolic equation at the edge, an elliptic problem (2.62)-(2.64) is analyzed. The solution

of this problem is given below in terms of the integral transforms. It is

V̂in(η, p) =
Q

(2)
e N̂0

2c2k

p2

p4 − p4k

[
−[(1− ν)− c2k]p2e−αc(ck)pη + [(1− ν) + c2k]p

2e−βc(ck)pη
]
. (2.76)

The above function can be integrated using the residue theory, and the final solution for

the Konenkov flexural edge wave rotation angle over the interior domain is presented in the

following form

V ∗in(ξ, η) =
√

2πi
Q

(2)
e N̂0

c2k

1

4pk

[
−[(1− ν)p2k − λ0]e−α(pk)η + [(1− ν)p2k + λ0]e

−β(pk)η
]
eipkξ.

(2.77)
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The numerical data for the interior domain is given in Figures 2.13-2.14. They confirm

an intuitive expectation that the Konenkov flexural edge wave makes a key contribution to

the exact solution near the edge.

Comparison of the 3D profiles corresponding to the proposed dual parabolic-elliptic model

and the exact solution are presented in Figures 2.15-2.16.

Figure 2.12: Edge rotation angle in isotropic plate (λ0 = 1). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.74)



2.1 Konenkov flexural edge wave in semi-infinite plate 40

Figure 2.13: Overall rotation angle of isotropic plate (η = 1). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.77)

Figure 2.14: Overall rotation angle of isotropic plate (η = 10). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.77)
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Figure 2.15: Konenkov flexural edge wave in isotropic plate. 3D profile of the parabolic-elliptic model (2.74),

(2.77)

Figure 2.16: Overall rotation angle of isotropic plate. 3D profile of the exact solution (2.75)
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2.2 Konenkov flexural edge wave in isotropic circular plates

In this section we consider the edge vibrations in the thin circular plate of radius R and

thickness 2h.

2.2.1 Basic equations

The equation of motion for the deflection w is given by equation (1.33). Taking into account

that the plate edge is free from any forces, the boundary conditions are presented in (1.48).

The solution for the original plate deflection w can be taken in the following form

w(r, φ, t) = W (r, t)einRφ, (2.78)

where n is the wave number. Equation of motion (1.33) and boundary conditions (1.48)

become

∂4W

∂r4
+

2

r

∂3W

∂r3
− 1 + 2n2R2

r2
∂2W

∂r2
+

1 + 2n2R2

r3
∂W

∂r
+
n4R4 − 2n2R2

r4
W (r, t) +

2ρh

D

∂2W

∂t2
= 0,

and at r = R

∂2W

∂r2
+ ν

(
1

r

∂W

∂r
− n2R2

r2
W (r, t)

)
= 0,

∂3W

∂r3
+

1

r

∂2W

∂r2
− 1 + n2R2

r2
∂W

∂r
+

2n2R2

r3
W + (1− ν)

(
−n

2R2

r2
∂W

∂r
+
n2R2

r3
W

)
= 0.

Now, we introduce new dimensionless quantities

r = R(1− εη), t = Tτ, w = hW ∗, (2.79)

where ε =
1

nR
.

With (2.79) and after applying the Laplace integral transform to the τ variable (τ → s)

we obtain the equation for the transformed deflection Ŵ (η) as

d4Ŵ

dη4
− 2ε

1− εη
d3Ŵ

dη3
− ε2 + 2

(1− εη)2
d2Ŵ

dη2
− ε3 + 2ε

(1− εη)3
dŴ

dη
+

[
1− 2ε2

(1− εη)4
+ λ20s

2ε4
]

= 0, (2.80)

where

λ20 =
R4

T 2

2ρh

D
. (2.81)
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The boundary conditions at η = 0 (that is r = R) are given by

d2Ŵ

dη2
− νŴ − νεdŴ

dη
= 0,

d3Ŵ

dη3
− (2− ν)

dŴ

dη
− ε

[
d2Ŵ

dη2
+ (3− ν)Ŵ

]
− ε2dŴ

dη
= 0.

(2.82)

We consider the case when the edge wave length is much smaller than R and larger than

h, i.e. the parameter
h

R
� ε � 1. Then equation (2.81) and boundary conditions (2.82)

become (here we neglect all the terms of order O(ε2) and higher)

d4Ŵ

dη4
− 2

d2Ŵ

dη2
+ (1− c4)Ŵ − ε

[
2
d3Ŵ

dη3
+ 4η

d2Ŵ

dη2
+ 2

dŴ

dη
− εηŴ

]
= 0, (2.83)

and
d2Ŵ

dη2
− νŴ − εν dŴ

dη
= 0,

d3Ŵ

dη3
− (2− ν)

dŴ

dη
− ε

[
d2Ŵ

dη2
+ (3− ν)Ŵ

]
= 0,

(2.84)

where we define c as

c4 = −s2λ20ε4. (2.85)

2.2.2 Solution of problem

We look for the transformed deflection Ŵ (η) in the form

Ŵ (η) = Ŵ0(η) + εŴ1(η), (2.86)

so that the equation of motion can be split into two: for Ŵ0 and Ŵ1 respectively. This results

in
d4Ŵ0

dη4
− 2

d2Ŵ0

dη2
+ (1− c4)Ŵ0 = 0, (2.87)

and
d4Ŵ1

dη4
− 2

d3Ŵ0

dη3
− 2

d2Ŵ1

dη2
− 4η

dŴ0

dη
+
[
(1− c4)Ŵ1 + 4ηŴ0

]
= 0. (2.88)

We start with the equation for Ŵ0 (2.87). We seek solution in the form

Ŵ0 = Ce−γη,

substitution of which into (2.87) gives

Ŵ0 = Ae−αη +Be−βη, (2.89)
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where

α =
√

1− c2,

β =
√

1 + c2,
(2.90)

and A and B are arbitrary constants.

Now, as we have found the expression for Ŵ0, we may obtain a non-homogeneous ordinary

differential equation for Ŵ1

d4Ŵ1

dη4
− 2

d2Ŵ1

dη2
+ (1− c4)Ŵ1 =

[
−2
√

1− c2(2− c2)− 4ηc2
]
Ae−αη

+
[
−2
√

1 + c2(2 + c2) + 4ηc2
]
Be−βη.

(2.91)

Solution of (2.91) may be taken in the form

Ŵ1 = (A1η +A2η
2)Ae−αη + (B1η +B2η

2)Be−βη. (2.92)

On substituting it into (2.91), we arrive at the explicit expressions for unknown constants

A1, A2, B1, B2

A1 = − c2

2(1− c2)
, A2 = − 1

2
√

1− c2
,

B1 =
c2

2(1 + c2)
, B2 = − 1

2
√

1 + c2
.

(2.93)

Knowing that Ŵ (η) can be found in form (2.86), where all the components Ŵ0 and Ŵ1

are from (2.89)-(2.90) and (2.92)-(2.93), we can deduce that

Ŵ (η) =

[
1− ε

(
c2

2(1− c2)
η +

1

2
√

1− c2
η2
)]

Ae−αη

+

[
1 + ε

(
c2

2(1 + c2)
η − 1

2
√

1 + c2
η2
)]

Be−βη.

(2.94)

To find A and B, we substitute (2.94) into boundary conditions (2.84). In doing so we

obtain the following system of linear equations[
(1− ν − c2)− ε(1− ν)

√
1− c2

]
A+

[
(1− ν + c2)− ε(1− ν)

√
1 + c2

]
B = 0,[

(1− ν + c2)
√

1− c2 + ε

(
−1

2
c2 − (1− ν) +

(2− ν)c2

2(1− c2)

)]
A

+

[
(1− ν − c2)

√
1 + c2 + ε

(
−5

2
c2 − (1− ν)− (2− ν)c2

2(1 + c2)

)]
B = 0.

(2.95)

2.2.3 Homogeneous edge wave. Curvature correction

System (2.95) has non-zero solutions provided that

(1− ν − c2)2
√

1 + c2 − (1− ν + c2)2
√

1− c2

+ε

[
2c2(1− ν)

√
1− c4 + 2(1− ν)c2 − (1− ν − c2)2c2

2(1 + c2)
− (1− ν + c2)2c2

2(1− c2)

]
= 0.

(2.96)
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Here we neglect the terms of order O(ε2) and higher. The solution of the above equation can

be found only using numerical methods. Note that if we also neglect terms of order O(ε),

this equation can be reduced to the form similar to (1.1), i.e. to the Konenkov dispersion

equation (see Konenkov (1960)) for the semi-infinite plate. In the latter case its solution can

be easily found analytically.

As it has been previously mentioned at the beginning of this section, the exact equation

and solution of this problem were obtained by Destrade and Fu (2008). Written in terms of

parameters used in the thesis, their equation is

(1− ν − c2)2Bi − (1− ν + c2)2Bj + 2c2(1 +BiBj)(1− ν)ε− (Bi −Bj)(1− ν)2ε2 = 0, (2.97)

where

Bi =

c

Iα(1

ε
+ 1, α

)
+

1

ε

Iα

(
1

ε
, α

)
α


Iα

(
1

ε
, α

) ,

Bj =

c

1

ε

Jα

(
1

ε
, α

)
α

− Jα
(

1

ε
+ 1, α

)
Jα

(
1

ε
, α

) ,

(2.98)

and α =
c

ε
. It can be easily checked that, using Debye series expansions from Abramowitz

and Stegun (1965), in the first-order approximation equation (2.97) can be reduced to form

(2.96).

We compare our first-order approximation solution with the exact one using the fzero

function from Matlab 7.1. The obtained solutions are plotted against the parameter nR and

are presented in Figures 2.17-2.19 for the various values of the Poisson’s ratio. For nR = 300

in Figure 2.20, we create solutions as functions of Poisson’s ratio. As it can be seen from

these Figures, the equations approximation depends only on the parameter nR, and not on

the material properties of the plate. It also can be noticed from Figure 2.17 that Matlab 7.1

function fzero, which has been utilised while obtaining these numerical solutions, does not

give a good approximation for small values of the parameter nR under the condition of small

Poisson’s ratio. This resulted in the small leap of solution for first-order approximation.
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Figure 2.17: Solutions of dispersion equations for ν = 0.2. Exact solution, first order approximation and

leading order approximation corresponding to the semi-infinite plate

Figure 2.18: Solutions of dispersion equations for ν =
1

3
. Exact solution, first order approximation and

leading order approximation corresponding to the semi-infinite plate
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Figure 2.19: Solutions of dispersion equations for ν = 0.5. Exact solution, first order approximation and

leading order corresponding to the semi-infinite plate

Figure 2.20: Solutions of dispersion equations for nR = 300. Exact solution, first order approximation and

leading order corresponding to the semi-infinite plate versus Poisson’s ratio



Chapter 3

Konenkov flexural edge wave in

orthotropic plate

3.1 Homogeneous edge wave

In this section we investigate a homogeneous flexural edge wave propagating along the edge

of a semi-infinite orthotropic plate.

3.1.1 Basic equations

In this case, the equation of motion for the deflection w(x, y, t) is given by (1.30). The

boundary conditions for a traction-free edge are presented by formulae (1.38).

First we introduce dimensionless quantities in the following form

x = hξ, y = hη, t = Tτ,

w = hW ∗, Dx = DD̂x, Dy = DD̂y,

D1 = DD̂1, Dxy = DD̂xy,

(3.1)

where h is the half-thickness of the plate, D is a typical stiffness of the plate (for a number

of problems it is natural to take D = Dy. However in the thesis we are going to leave it in

the general form as D) and T is a typical time scale.

After introducing (3.1) and applying integral transforms to equation (1.30) and the bound-

ary conditions (1.38), we get a problem for the transformed deflection Ŵ (η). It is

D̂y
d4Ŵ

dη4
− 2(D̂1 + 2D̂xy)p

2d
2Ŵ

dη2
+ (D̂xp

4 + λ20s
2)Ŵ = 0, (3.2)

48
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where λ20 =
2ρh5

DT 2
has the same form as above (see (2.3)).

The boundary conditions at η = 0 become

D̂y
d2Ŵ

dη2
− D̂1p

2Ŵ = 0,

D̂y
d3Ŵ

dη3
− (D̂1 + 4D̂xy)p

2dŴ

dη
= 0.

(3.3)

3.1.2 Konenkov flexural edge wave coefficient in orthotropic plate

The solution of the problem (3.2)-(3.3) can be taken in the form (2.6). Substitution of (2.6)

into equation (3.2) leads to the expressions for the parameters α and β; they are

α =
1

D̂
1/2
y

√
(D̂1 + 2D̂xy)p2 −

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 − D̂ys2λ20,

β =
1

D̂
1/2
y

√
(D̂1 + 2D̂xy)p2 +

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 − D̂ys2λ20.

(3.4)

As in Section 2.1, the system for the unknown constants A and B can be obtained by

the substitution of (2.6) with (3.4) into the boundary conditions (3.3). In a matrix form it is

given by D̂yα
2 − D̂1p

2 D̂yβ
2 − D̂1p

2[
D̂yα

2 − (D̂1 + 4D̂xy)p
2
]
α
[
D̂yβ

2 − (D̂1 + 4D̂xy)p
2
]
β

 A

B

 =

 0

0

 . (3.5)

The above system of linear equations has a non-trivial solution only in the case when its

determinant equals to zero, i.e.

(β − α)
[
D̂2
yα

2β2 − D̂y(β
2 + α2)D̂1p

2 + 4D̂yαβD̂xyp
2 + D̂1(D̂1 + 4D̂xy)p

4
]

= 0, (3.6)

or, in terms of p

(D̂xD̂y − D̂2
1)p4 + D̂ys

2λ20 + 4D̂xy

√
D̂xD̂yp4 + D̂ys2λ20p

2 = 0. (3.7)

Now, we introduce a new parameter c by the following equality

c =

√
−isλ0

√
D̂y

p
. (3.8)

Formula (3.7) expressed in terms of c becomes

(D̂xD̂y − D̂2
1)− D̂yc

4 + 4D̂xy

√
D̂xD̂y − D̂yc4 = 0. (3.9)
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On multiplying by the function X(c)

X(c) = (D̂xD̂y − D̂2
1)− c4 − 4D̂xy

√
D̂xD̂y − c4 (3.10)

we find the explicit expression of the solutions of (3.9)

ck =

(
D̂xD̂y − (

√
D̂2

1 + 4D̂2
xy − 2D̂xy)

2

) 1
4

,

c2 =

(
D̂xD̂y − (

√
D̂2

1 + 4D̂2
xy + 2D̂xy)

2

) 1
4

.

(3.11)

As above, ck corresponds to the Konenkov flexural edge wave coefficient in the case of an

orthotropic plate, and c2 is the second root of the equation, which has no physical meaning.

3.1.2.1 Dependence of Konenkov flexural edge wave coefficient on orthotropy

As was shown in Chapter 2, the Konenkov flexural edge wave coefficient ck depends on the

problem parameters including the plate stiffness. For an isotropic plate its stiffness is a

function of two parameters, namely Poisson’s ratio ν and Young’s modulus E. In the case

of an orthotropic plate, instead of Poisson’s ratio ν and Young’s modulus E, we have to

consider four stiffnesses Dx, Dy, D1 and Dxy (or their dimensionless analogues, specified in

(3.1)). Further we study their effect on the value of Konenkov flexural edge wave coefficient

ck.

First, we show that the expression for ck from (3.11) involves an isotropic plate as a

particular case. We recall that the parameters Dx, Dy, D1 and Dxy are connected with E

and ν by equalities (1.32). Substitution of these parameters into formula (3.11) gives exactly

the same expressions as those obtained in Chapter 2 for an isotropic plate, namely formulae

(2.14).

Let us investigate the behavior of the coefficient ck for the varying stiffnesses, Dx, Dy,

D1 and Dxy. First, we assume that Dy, D1 and Dxy take the same values as in (1.32) in

terms of ν and D, whereas Dx varies between
1

5
D ≤ Dx ≤ 5D. The graph of

ck,orthotropic
ck,isotropic

versus D̂x is presented in Figure 3.1. It is clear that the coefficient ck tends to infinity as

the parameter Dx increases. This fact will also be further discussed when considering the

explicit dual parabolic-elliptic models for different types of boundary conditions.

The further graphs are obtained for the variation of Dy (
1

5
D ≤ Dy ≤ 5D) (see Figure

3.1), D1 (
1

10
D ≤ D1 ≤ 0.99D) (see Figure 3.2) and Dxy (

1

5
D ≤ Dxy ≤ 5D) (see Figure
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Figure 3.1: Konenkov flexural edge wave coefficient versus Dx

Figure 3.2: Konenkov flexural edge wave coefficient versus D1
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Figure 3.3: Konenkov flexural edge wave coefficient versus Dxy

3.3). It is also noted that ck decreases as D̂1 grows whereas ck versus D̂xy becomes almost

constant and equals to the asymptote 4

√
D̂xD̂y. This asymptote is demonstrated in the last

two Figures.



3.2 Bending moment at plate edge 53

3.2 Bending moment at plate edge

In this section we discuss propagation of the Konenkov flexural edge wave induced by a

bending moment applied at the edge of an orthotropic plate.

3.2.1 Basic equations

The equation of motion for the deflection w remains the same as in (1.29), and the boundary

conditions appear as (1.41). On using quantities (3.1) and applying integral transforms we

get equation (3.2) with the following boundary conditions at the plate edge η = 0

D̂y
d2Ŵ

dη2
− D̂1p

2Ŵ = −M̂0,

D̂y
d3Ŵ

dη3
− (D̂1 + 4D̂xy)p

2dŴ

dη
= 0,

(3.12)

where M̂0 = M̂0(s, p) is the transformed dimensionless analogue of the bending moment

applied at the plate edge.

3.2.2 Derivation of transformed solution

The solution of problem (3.2), (3.12) may be found in form (2.6), where parameters α and β

are given by (3.4). Omitting the algebra, which is fairly similar to what has been done for

an isotropic plate, we get for the sought for exact solution

Ŵ (η) =
M̂0

−isλ0
√
D̂y

c2

c4 − c4k
∆1(c)e

−

√
−isλ0
√
D̂y

c
αcη + ∆2(c)e

−

√
−isλ0
√
D̂y

c
βcη

∆(c)
X(c), (3.13)

where

αc =
1√
D̂y

√
D̂1 + 2D̂xy −

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4,

βc =
1√
D̂y

√
D̂1 + 2D̂xy +

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4,

(3.14)

and also

∆1(c) = −
[
2D̂xy −

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4

]
βc,

∆2(c) =

[
2D̂xy +

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4

]
αc,

∆(c) = (βc − αc)(c4 − c42),

(3.15)

with the function X(c) from (3.10).
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3.2.3 Derivation of explicit dual parabolic-elliptic model

Our main aim now is to identify the Konenkov flexural edge wave contribution to the exact

solution (3.14). For this purpose we use a similar methodology as that described in Section

2.1.2. First, we introduce several new quantities to simplify the formulation of the model.

The expressions for the dimension counterparts of the coefficients ck and the second root

c2 in (3.11) are

c∗k =
(
DxDy − (

√
D2

1 + 4D2
xy − 2Dxy)

2
) 1

4
,

c∗2 =
(
DxDy − (

√
D2

1 + 4D2
xy + 2Dxy)

2
) 1

4
.

(3.16)

Also, we use the equality

Q(1)
e

∗
=

∆1(c
∗
k) + ∆2(c

∗
k)

∆(c∗k)
. (3.17)

where

∆1(c
∗
k) = −

[
2Dxy −

√
(D1 + 2Dxy)2 −DxDy + c∗k

4

]
βc(c

∗
k),

∆2(c
∗
k) =

[
2Dxy +

√
(D1 + 2Dxy)2 −DxDy + c∗k

4

]
αc(c

∗
k),

∆(c∗k) = (βc(c
∗
k)− αc(c∗k))(c∗k

4 − c∗24).

(3.18)

with

αc(c
∗
k) =

1√
Dy

√
D1 + 2Dxy −

√
(D1 + 2Dxy)2 −DxDy + c∗k

4,

βc(c
∗
k) =

1√
Dy

√
D1 + 2Dxy +

√
(D1 + 2Dxy)2 −DxDy + c∗k

4,

(3.19)

After these preliminaries, we finally come to the model equations of interest. In particular,

the parabolic equation at the plate edge in the original variables becomes

c∗k
4

D2
y

∂4we
∂x4

+
2ρh

Dy

∂2we
∂t2

= Q(1)
e

∗ 1

Dy

∂2M0

∂x2
, (3.20)

whereas the elliptic problem over the interior domain is(
Dx −

c∗k
4

Dy

)
∂4win
∂x4

+ 2(D1 + 2Dxy)
∂4win
∂x2∂y2

+Dy
∂4win
∂y4

= 0, (3.21)

with the boundary conditions at the plate edge y = 0

win(x, 0) = we(x),

Dy
∂2win
∂y2

= −D1
∂2we
∂x2

.
(3.22)

We may notice that, using equalities (1.32) which are the connection of the parameters

Dx, Dy, D1 and Dxy with E and ν, we can obtain a dual parabolic-elliptic model (2.25),

(2.27)-(2.29) for the isotropic plate.
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3.2.4 Comparison with exact solution

We obtained exact solution (3.13) for the transformed deflection Ŵ (η) and also derived the

explicit dual parabolic-elliptic model for Konenkov flexural edge wave in an orthotropic plate

(see (3.20)-(3.22)). The next step is the comparison of the obtained solutions by applying

the inverse Fourier transform and plotting the results. We again investigate the case of the

bending point-moment M0 (see Section 2.1.2 above for more details) applied at the plate

edge. The assumption of the solution form remains the same and so does the form of the

frequency parameter λ0 (see (2.30)).

As in Section 2.1.2, here the comparison of the model with the exact solutions is performed

using a similar methodology. First, in terms of the transform parameter p, the exact solution

for the deflection Ŵ (η, p) is

Ŵ (η, p) = M̂0
p2

p4 − p4k
∆1(p)e

−αη + ∆2(p)e
−βη

∆(p)
X(p), (3.23)

where

α =
1

D̂
1/2
y

√
(D̂1 + 2D̂xy)p2 −

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20,

β =
1

D̂
1/2
y

√
(D̂1 + 2D̂xy)p2 +

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20,

(3.24)

with

∆1(p) = −
[
2D̂xyp

2 −
√[

(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20

]
β,

∆2(p) =

[
2D̂xyp

2 +

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20

]
α,

∆(p) = (β − α)c4kc
4
2(p

4 − p42),

(3.25)

and the parameters ck, c2, pk and p2 are connected by the equalities

pk =

√
λ0

√
D̂y

ck
, p2 =

√
λ0

√
D̂y

c2
.

(3.26)

Also, X(c) function transforms into

X(p) = (D̂xD̂y − D̂2
1)p4 + D̂ys

2λ20 − 4D̂xy

√
D̂xD̂yp4 + D̂ys2λ20p

2. (3.27)

The contribution Ŵe of the Konenkov flexural edge wave at the plate edge is given by

Ŵe = Q(1)
e M̂0

p2

p4 − p4k
, (3.28)
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where

Q(1)
e =

∆1(pk) + ∆2(pk)

∆(pk)
X(pk), (3.29)

and, according to the residue theory, the dimensionless deflection at the plate edge is given

by the formula (2.40) with Q
(1)
e defined by (3.29).

It should be mentioned that the exact solution has branch points at p = ±
√√√√ λ0√

D̂xD̂y

.

Then, over the interval −
√√√√ λ0√

D̂xD̂y

≤ p ≤
√√√√ λ0√

D̂xD̂y

, we take the branch with

α = −i 1

D̂
1/2
y

√√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20 − (D̂1 + 2D̂xy)p2. (3.30)

As before, the radius r is taken by (2.36) when integrating the exact solution along the

small semi-circles (see Sections 1.2.3 and 2.1.1).

We solve the elliptic problem (3.21)-(3.22) over the interior domain. In this case the

deflection takes the following form

Ŵin = M̂0
p2

p4 − p4k
Q(1)
e

∆1,in(p)e−αc(ck)pη + ∆2,in(p)e−βc(ck)pη

D̂y(β2c (ck)− α2
c(ck))

, (3.31)

where

∆1,in(p) =

(
2D̂xy +

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4k

)
p2,

∆2,in(p) = −
(

2D̂xy −
√

(D̂1 + 2D̂xy)2 − D̂xD̂y + c4k

)
p2.

(3.32)

Finally, the dimensionless deflection corresponding to Konenkov flexural edge wave over

the interior domain follows from the residue theory and is given by

W ∗in(ξ, η) =
√

2πiQ(1)
e M̂0

1

4pk

∆1,in(pk)e
−αc(ck)pη + ∆2,in(pk)e

−βc(ck)pη

D̂y(β2c (ck)− α2
c(ck))

eipkξ. (3.33)

It should be noted that for all the following numerical results the frequency parameter is

taken as λ0 = 1 and M̂0 =
√

2π.

The analysis of the deflection is presented below using the results of Section 3.1.2.1 related

to the dependence of the Konenkov flexural edge wave coefficient on the stiffness parameters

Dx, Dy, D1 and Dxy. Using Figures 3.1-3.3, we can show how different values of the stiffness

parameters affect the Konenkov wave contribution into the overall plate deformation.

First, we study the effect of parameter Dx on Konenkov wave propagation. The following

Figures 3.4-3.7 are created for D̂x =
1

5
and clearly demonstrate that the flexural edge wave

contribution into the overall plate deflection is rather significant.
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Figure 3.4: Edge deflection in orthotropic plate (D̂x = 1
5
). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)

Figure 3.5: Deflection in orthotropic plate (D̂x = 1
5
) for η = 1 Overall solution (3.23) and Konenkov flexural

edge wave contribution (3.33)



3.2 Bending moment at plate edge 58

Figure 3.6: Konenkov flexural edge wave in orthotropic plate (D̂x = 1
5
). 3D profile of the parabolic-elliptic

model (2.40), (3.33)

Figure 3.7: Overall deflection in orthotropic plate (D̂x = 1
5
). 3D profile of the exact solution (3.23)
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For the value D̂x = 5, when the Konenkov flexural edge wave coefficient ck takes the largest

value (see Figure 3.1) the deflection at the plate edge is demonstrated in Figure 3.8 while the

solutions over the interior domain are shown in Figure 3.9. In addition, the 3D profiles of

the deflection corresponding to the Konenkov flexural edge wave, based on parabolic-elliptic

model, and the overall deflection profiles are shown in Figures 3.10-3.11. Note that as it

follows from the analysis of the numerical results presented in Figures 3.4-3.11 larger values

of Konenkov flexural edge wave coefficient ck correspond to smaller deflections. In this case

the vicinity of the point moment has the most contribution to the overall deflection field.

Figure 3.8: Edge deflection in orthotropic plate (D̂x = 5). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)

The effect of the parameter Dy is similar to Dx, although the behavior of the solutions

against Dx and Dy is not symmetric despite the symmetry of the coefficient ck with respect

to Dx and Dy. Therefore we believe there is no need to present the solution dependence on

Dy graphically.

As it can be seen from the above figures, propagation of the Konenkov flexural edge wave

and its contribution to the plate deflection is rather material-sensitive. The following cases

show this dependence even more clear.

For example, one can choose the plate material so that the Konenkov wave contribution
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Figure 3.9: Deflection in orthotropic plate (D̂x = 5) for η = 1 Overall solution (3.23) and Konenkov flexural

edge wave contribution (3.33)

Figure 3.10: Konenkov flexural edge wave in orthotropic plate (D̂x = 5). 3D profile of the parabolic-elliptic

model (2.40), (3.33)
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Figure 3.11: Overall deflection in orthotropic plate (D̂x = 5). 3D profile of the exact solution (3.23)

will be the dominating. This material can be the material where all the other parameters

are as of an isotropic plate, but D̂1 = 0.99. The following Figures 3.12-3.14 clearly demon-

strate the fact that Konenkov wave now has a dominating contribution into the overall plate

deflection. The only exception is the vicinity of the applied force.

On the other hand, there exist and can be found using the model such materials, for

which when propagating, the flexural edge wave has a negligible contribution. One of the

examples is the material with large values of the Dxy stiffness. In this case the value for ck

is close to the asymptote 4

√
D̂xD̂y. The following Figures 3.15-3.17, plotted for the material

with D̂xy = 5, clearly demonstrate that the model allows us to find such a material.
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Figure 3.12: Edge deflection in orthotropic plate (D̂1 = 0.99). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)

Figure 3.13: Konenkov flexural edge wave in orthotropic plate (D̂1 = 0.99). 3D profile of the

parabolic-elliptic model (2.40), (3.33)
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Figure 3.14: Overall deflection in orthotropic plate (D̂1 = 0.99). 3D profile of the exact solution (3.23)

Figure 3.15: Edge deflection in orthotropic plate (D̂xy = 5). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)
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Figure 3.16: Konenkov flexural edge wave in orthotropic plate (D̂xy = 5). 3D profile of the parabolic-elliptic

model (2.40), (3.33)

Figure 3.17: Overall deflection in orthotropic plate (D̂xy = 5). 3D profile of the exact solution (3.23)
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3.3 Transverse shear force at plate edge

This section is dedicated to an edge loading in the form of a transverse shear force (see Figure

1.6).

3.3.1 Formulation of problem

The equation of motion for the deflection w is taken in the form (1.29) as above, while the

boundary conditions are given now by relations (1.44). On using the dimensionless quantities

(3.1) and applying the integral transforms, the sought for transformed equation takes the form

of (3.2) and the boundary conditions at η = 0 become

D̂y
d2Ŵ

dη2
− D̂1p

2Ŵ = 0,

D̂y
d3Ŵ

dη3
− (D̂1 + 4D̂xy)p

2dŴ

dη
= −N̂0,

(3.34)

where N̂0 is the transformed dimensionless analogue of the original transverse point shear

force.

3.3.2 Exact solution

The exact solution for the rotation angle v(x, y, t) around the x-axis (or its transform V̂ (η))

can be obtained using the similar method as that described in Section 2.1.2. Omitting messy

but pretty straightforward algebra, we present the final result as

V̂ (η) =
M̂0

−isλ0
√
D̂y

c2

c4 − c4k
∆1(c)e

−

√
−isλ0
√
D̂y

c
αcη + ∆2(c)e

−

√
−isλ0
√
D̂y

c
βcη

∆(c)
X(c), (3.35)

where αc and βc are given by (3.14), the function X(c) is expressed by (3.10) and

∆1(c) =

[
2D̂xy +

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4

]
αc,

∆2(c) = −
[
2D̂xy −

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4

]
βc,

∆(c) = −(βc − αc)(c4 − c42).

(3.36)

3.3.3 Derivation of model

As it was mentioned above, the investigation of the Konenkov flexural edge wave contribution

into the overall solution (3.35) is based on the derivation of an explicit dual parabolic-elliptic

model. The method of its derivation is basically the same as that described in Section 2.1.2.
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In the case under study, the parabolic equation at the plate edge becomes

c∗k
4

D2
y

∂4ve
∂x4

+
2ρh

Dy

∂2ve
∂t2

= Q(2)
e

∗ 1

Dy

∂2N0

∂x2
, (3.37)

where

Q(2)
e

∗
=

∆1(c
∗
k) + ∆2(c

∗
k)

∆(c∗k)
, (3.38)

with

∆1(c
∗
k) =

[
2Dxy +

√
(D1 + 2Dxy)2 −DxDy + c∗k

4

]
αc(c

∗
k),

∆2(c
∗
k) = −

[
2Dxy −

√
(D1 + 2Dxy)2 −DxDy + c∗k

4

]
βc(c

∗
k),

∆(c∗k) = −(βc(c
∗
k)− αc(c∗k))(c∗k

4 − c∗24),

(3.39)

and αc(c
∗
k), βc(c

∗
k) are presented by relations (3.19), c∗k and c∗2 are given by (3.16); also, as

above, ve is the rotation angle at the plate edge related to the Konenkov flexural edge wave.

The elliptic equation for the rotation angle vin over the interior domain has now the form(
Dx −

c∗k
4

Dy

)
∂4vin
∂x4

+ 2(D1 + 2Dxy)
∂4vin
∂x2∂y2

+Dy
∂4vin
∂y4

= 0. (3.40)

with the boundary conditions at y = 0

vin(x, 0) = ve(x),

Dy
∂2vin
∂y2

= −(D1 + 4Dxy)
∂2ve
∂x2

.
(3.41)

This concludes the formulation of the model.

3.3.4 Comparison with exact solution

Thus, we have obtained the exact solution (3.35) for the transformed angle V̂ (η) and also

derived the explicit dual parabolic-elliptic model for the Konenkov flexural edge wave in an

orthotropic plate (see (3.37) and (3.40)-(3.41)). The next step is to compare the obtained

solutions by analyzing the inverse Fourier transform and computing graphical illustrations.

We use now the case of the transverse shear point force N0 (see Section 2.1.3) applied at

the plate edge. As before, we operate with the same frequency parameter λ0 (see (2.30)).

Let us derive the formulae we need for computations. First we present the exact solution for

the rotation angle V̂ (η, p) in terms of the transform parameter p

V̂ (η, p) = N̂0
p2

p4 − p4k
∆1(p)e

−αη + ∆2(p)e
−βη

∆(p)
X(p), (3.42)
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where parameters α(p) and β(p) are given by relations (3.24), pk and p2 take form (3.26),

the function X(p) is given by (3.27) and

∆1(p) =

[
2D̂xyp

2 +

√[
(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20

]
α,

∆2(c) = −
[
2D̂xyp

2 −
√[

(D̂1 + 2D̂xy)2 − D̂xD̂y

]
p4 + D̂yλ20

]
β,

∆(p) = (β − α)c4kc
4
2(p

4 − p42),

(3.43)

The solution at the plate edge for the Konenkov flexural edge wave is given by the following

expression (where V̂e(p) is the transformed angle of interest)

V̂e = Q(2)
e N̂0

p2

p4 − p4k
, (3.44)

where

Q(2)
e =

∆1(pk) + ∆2(pk)

∆(pk)
X(pk), (3.45)

and, according to the residue theory, the dimensionless rotation angle at the plate edge takes

form (2.74) with Q
(2)
e defined by (3.45). The branch points and the cut remain the same as

in the previous Section 3.2.4.

To integrate the exact solution over the small semi-circles (see Sections 1.2.3 and 2.1.1

for more details), radius r is taken by (2.36).

As above, for the interior domain we solve the elliptic problem (3.40)-(3.41). The sought

for solution takes the following form

V̂in = N̂0
p2

p4 − p4k
Q(2)
e

∆1,in(p)e−αc(ck)pη + ∆2,in(p)e−βc(ck)pη

D̂y(β2c (ck)− α2
c(ck))

, (3.46)

where

∆1,in(p) = −
(

2D̂xy −
√

(D̂1 + 2D̂xy)2 − D̂xD̂y + c4k

)
p2,

∆2,in(p) =

(
2D̂xy +

√
(D̂1 + 2D̂xy)2 − D̂xD̂y + c4k

)
p2.

(3.47)

Finally, the dimensionless rotation angle corresponding to Konenkov flexural edge wave

over the interior domain can be found using the residue theory resulting in

V ∗in(ξ, η) =
√

2πiQ(2)
e N̂0

1

4pk

∆1,in(pk)e
−αc(ck)pη + ∆2,in(pk)e

−βc(ck)pη

D̂y(β2c (ck)− α2
c(ck))

eipkξ. (3.48)

The results of computations are given in Figures 3.18-3.21. We set λ0 = 1 and N̂0 =
√

2π

in all the graphs. The general conclusion is that the effect of orthotropy on the magnitude of

the Konenkov component is analogous to that for the excitation by a point-bending moment.
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Note also that the form of the approximate solution at the plate edge in the case of orthotropic

plate is similar to the one of the isotropic plate (see (2.74)). The only difference is the

coefficient Q
(2)
e which depends on the material parameters. Therefore, below we present only

the 3D profiles for two most significant cases of wave propagation.

Figure 3.18: Konenkov flexural edge wave in orthotropic plate (D̂1 = 0.99). 3D profile of the

parabolic-elliptic model (2.74), (3.48)

Figure 3.19: Overall rotation angle in orthotropic plate (D̂1 = 0.99). 3D profile of the exact solution (3.42)
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Figure 3.20: Konenkov flexural edge wave in orthotropic plate (D̂xy = 5). 3D profile of the parabolic-elliptic

model (2.74), (3.48)

Figure 3.21: Overall rotation angle in orthotropic plate (D̂xy = 5). 3D profile of the exact solution (3.42)



Chapter 4

Stoneley-type flexural interfacial

waves

4.1 Homogeneous interfacial wave

In this section we study homogeneous Stoneley-type flexural interfacial waves appearing at a

junction of two semi-infinite isotropic plates.

4.1.1 Basic equations

For the interfacial vibrations of two semi-infinite plates, it is natural to state a joint problem

for deflections of the plates participating in the junction. In this thesis we consider two plates

(see Figure 4.1).

Figure 4.1: Junction of two semi-infinite plates. Directions of coordinate system

Equations of motion may be taken as (1.25) or (1.26), leading to two equations for de-

70
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flections w1(x, y, t) and w2(x, y, t) of plates 1 and 2 respectively. They are

∂4wi
∂x4

+ 2
∂4wi
∂x2∂y2

+
∂4wi
∂y4

+
2ρih

Di

∂2wi
∂t2

= 0, i = 1, 2, (4.1)

where ρi are the material densities of plates 1 and 2, h is the half-thickness of plates (we

assume that thickness is the same for both plates) and Di are the bending stiffnesses.

By assuming that the junction y = 0 is continuous, and both plates are perfectly bonded

(i.e. perfect contact), contact conditions would now consist of four main components listed

below:

• equality of both plates deflections;

• equality of both plates rotation around the x-axis;

• equality of bending moments My;

• equality of vertical shear forces.

In terms of equations, these conditions are

w1 = w2,

∂w1

∂y
=

∂w2

∂y
,

D1

[
∂2w1

∂y2
+ ν1

∂2w1

∂x2

]
= D2

[
∂2w2

∂y2
+ ν2

∂2w2

∂x2

]
,

D1

[
∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

]
= D2

[
∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

]
,

(4.2)

where ν1 and ν2 are the Poisson’s ratios of plates 1 and 2 respectively.

We non-dimensionalise our equations by introducing the following notation

x = hξ, y = hη, wi = hW ∗i , Di = DD̂i, t = Tτ, (4.3)

where T is a typical time scale and D is a typical stiffness (which, in many problems, could

be taken as D1).

After using (4.3) and applying the integral transforms to (4.1), the transformed equations

of motion become

d4Ŵi

dη4
− 2p2

d2Ŵi

dη2
+ (p4 + s2λ2i )Ŵi = 0, i = 1, 2, (4.4)

where

λ2i =
2ρih

5

DiT 2
(4.5)
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- are the frequency parameters of plates 1 and 2.

In doing so, the contact conditions at the junction of plates take the form of

Ŵ1 = Ŵ2,

dŴ1

dη
=

dŴ2

dη
,

d2Ŵ1

dη2
− ν1p2Ŵ1 =

D̂2

D̂1

[
d2Ŵ2

dη2
− ν2p2Ŵ2

]
,

d3Ŵ1

dη3
− (2− ν1)p2

dŴ1

dη
=

D̂2

D̂1

[
d3Ŵ2

dη2
− (2− ν2)p2

dŴ2

dη

]
.

(4.6)

4.1.2 Stoneley-type flexural interfacial wave in isotropic plates

Due to the nature of the above problem we introduce its solutions as

Ŵi = Cie
−γi|η|, i = 1, 2. (4.7)

Substitution of (4.7) into equations (4.4) suggests that the solution of the above problem

takes form

Ŵj = Aje
−αj |η| +Bje

−βj |η|, j = 1, 2, (4.8)

where parameters αj and βj are

αj =
√
p2 + iλjs, βj =

√
p2 − iλjs, j = 1, 2, (4.9)

and Aj , Bj are arbitrary constants which can be found by substitution of (4.8) into contact

conditions (4.6). The obtained system of linear equations for Aj and Bj , j = 1, 2, expressed

in a matrix form, is [
A1 B1 A2 B2

]

×



1 α1 α2
1 − ν1p2

(
α2
1 − (2− ν1)p2

)
α1

1 β1 β21 − ν1p2
(
β21 − (2− ν1)p2

)
β1

−1 −α2 −D̂2

D̂1

(
α2
2 − ν2p2

)
−D̂2

D̂1

(
α2
2 − (2− ν2)p2

)
α2

−1 −β2 −D̂2

D̂1

(
β22 − ν2p2

)
−D̂2

D̂1

(
β22 − (2− ν2)p2

)
β2


=
[

0 0 0 0
]
.

(4.10)

The above system has non-zero solutions only in the case when its determinant equals to
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zero. This fact leads to the following equation[
−isλ1 − D̂2

D̂1
isλ2 +

[
(1− ν1)− D̂2

D̂1
(1− ν2)

]
p2
]2√

p2 + isλ1
√
p2 − isλ2

+
[
−isλ1 − D̂2

D̂1
isλ2 −

[
(1− ν1)− D̂2

D̂1
(1− ν2)

]
p2
]2√

p2 − isλ1
√
p2 + isλ2

−
[
isλ1 − D̂2

D̂1
isλ2 −

[
(1− ν1)− D̂2

D̂1
(1− ν2)

]
p2
]2√

p2 + isλ1
√
p2 + isλ2

−
[
−isλ1 + D̂2

D̂1
isλ2 +

[
(1− ν1)− D̂2

D̂1
(1− ν2)

]
p2
]2√

p2 − isλ1
√
p2 − isλ2

+4s2λ1λ2
D̂2

D̂1

[√
p4 + s2λ21 +

√
p4 + s2λ22

]
= 0.

(4.11)

It is obvious that equation (4.11) is a very complicated one with many parameters. In

order to simplify it, we introduce new quantities by the following expressions

α =

√
ρ2
ρ1
, β =

√
D̂2

D̂1

, c =

√
−isλ1
p

. (4.12)

Then (4.11) transforms to[
(1 + a)c2 + d

]2√
1− c2

√
1 + bc2 +

[
(1 + a)c2 − d

]2√
1 + c2

√
1− bc2

−
[
(1− a)c2 + d

]2√
1− c2

√
1− bc2 −

[
(1− a)c2 − d

]2√
1 + c2

√
1 + bc2

−4a
[√

1− c4 +
√

1− b2c4
]
c4 = 0,

(4.13)

where

a = αβ, b =
α

β
, d = (1− ν1)− (1− ν2)β2. (4.14)

As it might be seen from equation (4.13), its most general form does not have analytical

solutions, but it is possible to find them numerically. The next 3 plots (see Figures 4.2-

4.4) demonstrate the dependence of the solution on the parameters α and β from (4.14) for

different values of the plates Poisson’s ratios. We may notice that the solution is highly

dependent on the material parameters and does not exist for many of their values. Note

that the white areas in all Figures 4.2-4.4 correspond to such parameters relation where no

flexural interfacial wave exists.

As it can be seen from the pictures, one of the boundaries where the solution disappears

is the line α = β. It corresponds to the value b = 1 in the above equation (4.13). Setting

b = 1 in (4.13), which leads to more simple form of it, we are able to obtain the analytical

solutions

c = ±
√

(α2 − 1)((1− ν1)− (1− ν2)α2)

1− α2
(4.15)

for α2 < 1 and α2 <
1− ν1
1− ν2

or

c = ±
√

(α2 − 1)((1− ν1)− (1− ν2)α2)

α2 − 1
(4.16)
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Figure 4.2: Wave coefficient distribution (ν1 = ν2 =
1

3
). Areas of solution existence

Figure 4.3: Wave coefficient distribution (ν1 = 0.4, ν2 =
1

3
). Areas of solution existence
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Figure 4.4: Wave coefficient distribution (ν1 =
1

3
, ν2 = 0.4). Areas of solution existence

for α2 > 1 and α2 >
1− ν1
1− ν2

.

It is natural to assume that the most general solution of equation (4.13) has a form similar

to (4.15)-(4.16) and, therefore, we may predict that the solutions can only exist for the values
α2

β2
< 1 and

α2

β2
<

1− ν1
1− ν2

, or
α2

β2
> 1 and

α2

β2
>

1− ν1
1− ν2

. This dependence can be also noticed

in Figures 4.2-4.4.

When the parameter β reaches the value β2 =
1− ν1
1− ν2

(which corresponds to d = 0),

equation (4.13) appears to have no solutions. It can also be checked by the asymptotic

analysis of the above equation by considering the case of c → 0. The above observations

explain several boundaries of solution existence. The curved boundary which is seen in the

last two Figures may be explained by the fact that parameter β depends on the Poisson’s

ratios of both plates.
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4.2 Bending moment at junction of two plates

This section is dedicated to the analysis of the deflection of two spliced isotropic semi-infinite

plates induced by a bending moment at their junction.

Figure 4.5: Bending moment at the junction. Scheme of loading

4.2.1 Basic equations

For this type of loading (see Figure 4.5) the equations for the deflections wi, i = 1, 2 remain

in form (4.1), whereas the boundary conditions at the junction (y = 0) become

w1 = w2,

∂w1

∂y
=

∂w2

∂y
,

D1

[
∂2w1

∂y2
+ ν1

∂2w1

∂x2

]
= D2

[
∂2w2

∂y2
+ ν2

∂2w2

∂x2

]
−M0(x, t),

D1

[
∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

]
= D2

[
∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

]
,

(4.17)

where M0(x, t) is the applied bending moment.

On using expressions (4.3) and applying the integral transforms to (4.1), we again come

to equations of motion (4.4). In doing so to boundary conditions (4.17), at η = 0 we obtain

the following

Ŵ1 = Ŵ2,

dŴ1

dη
=

dŴ2

dη
,

d2Ŵ1

dη2
− ν1p2Ŵ1 =

D̂2

D̂1

[
d2Ŵ2

dη2
− ν2p2Ŵ2

]
− M̂0

D̂1

,

d3Ŵ1

dη3
− (2− ν1)p2

dŴ1

dη
=

D̂2

D̂1

[
d3Ŵ2

dη2
− (2− ν2)p2

dŴ2

dη

]
,

(4.18)
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where M̂0(s, p) is the transformed dimensionless bending moment.

4.2.2 Solution of problem

We take (4.8)-(4.9) as the solution of problem (4.4), (4.18). By substituting them to the

boundary conditions (4.18) we obtain a system of linear equations for the unknown constants

A1, B1, A2 and B2. In the matrix form it can be written by[
A1 B1 A2 B2

]

×



1 α1 α2
1 − ν1p2

(
α2
1 − (2− ν1)p2

)
α1

1 β1 β21 − ν1p2
(
β21 − (2− ν1)p2

)
β1

−1 −α2 −D̂2

D̂1

(
α2
2 − ν2p2

)
−D̂2

D̂1

(
α2
2 − (2− ν2)p2

)
α2

−1 −β2 −D̂2

D̂1

(
β22 − ν2p2

)
−D̂2

D̂1

(
β22 − (2− ν2)p2

)
β2


=

[
0 0 −M̂0

D̂1

0

]
.

(4.19)

Without providing quite straightforward algebra, we present the exact solutions for the

transformed deflections Ŵ1(η) and Ŵ2(η) as

Ŵ1(η) =
M̂0

D̂2
1(−isλ21)

c2

c4 − c4k
∆1(c)e

−

√
−isλ1
c

α1(c)|η|
+ ∆2(c)e

−

√
−isλ1
c

β1(c)|η|

∆′(c4k)
,

Ŵ2(η) =
M̂0

D̂2
1(−isλ21)

c2

c4 − c4k
∆3(c)e

−

√
−isλ1
c

α2(c)|η|
+ ∆4(c)e

−

√
−isλ1
c

β2(c)|η|

∆′(c4k)
,

(4.20)

where ck is the solution of equation (4.13), the expressions for αj(c) and βj(c) (j = 1, 2) are

presented below

α1(c) =
√

1− c2, β1(c) =
√

1 + c2,

α2(c) =
√

1− bc2, β1(c) =
√

1 + bc2,
(4.21)

with b from (4.14).
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And also,

∆1(c) = β2
[
(β1 − α2)β2((ν2 − 1) + bc2) + (β2 − β1)α2((ν2 − 1)− bc2)

]
+(α2 − β2)β1((ν1 − 1) + c2),

∆2(c) = −
[
β2
[
(β2 − α1)α2((ν2 − 1)− bc2) + (α1 − α2)β2((ν2 − 1) + bc2)

]
+(α2 − β2)α1((ν1 − 1)− c2)

]
,

∆3(c) = (α1 − β2)β1((ν1 − 1) + c2) + (β1 − β2)α1((ν1 − 1)− c2)

+β2(α1 − β1)β2((ν2 − 1) + bc2),

∆4(c) = −
[
(α1 − α2)β1((ν1 − 1) + c2) + (α2 − β1)α1((ν1 − 1)− c2)

+ β2(β1 − α1)α2((ν2 − 1)− bc2)
]
.

(4.22)

As it was mentioned above, due to the form of equation (4.13), it is impossible to find

its solutions analytically. Therefore it becomes impossible to expand the denominator ∆ of

the original solution in order to find contribution of the interfacial wave coefficient poles. For

this reason we use the Taylor series to expand the denominator approximately as ∆(c) =

(c4 − c4k)∆′(c4k), where ck is the sought for real zero of denominator and

∆′(c4k) =
1

4c2k

×
[
((1 + a)c2k + d)A+ ((1 + a)c2k − d)B

−((1− a)c2k + d)C − ((1− a)c2k − d)D
]

− 4a(
√

1− c4k +
√

1− b2c4k) + 2ac4k

 1√
1− c4k

+
b2√

1− b2c4k

 .
(4.23)

where

A = 4(1 + a)
√

1− c2k
√

1 + bc2k + ((1 + a)c2k + d)

−
√

1 + bc2k√
1− c2k

+ b

√
1− c2k√
1 + bc2k

 ,

B = 4(1 + a)
√

1 + c2k

√
1− bc2k + ((1 + a)c2k − d)


√

1− bc2k√
1 + c2k

+ b

√
1 + c2k√
1− bc2k

 ,

C = 4(1− a)
√

1− c2k
√

1− bc2k − ((1− a)c2k + d)


√

1− bc2k√
1− c2k

+ b

√
1− c2k√
1− bc2k

 ,

D = 4(1− a)
√

1 + c2k

√
1 + bc2k + ((1− a)c2k − d)


√

1 + bc2k√
1 + c2k

+ b

√
1 + c2k√
1 + bc2k

 .

(4.24)
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4.2.3 Derivation of dual parabolic-elliptic model

The analysis of the Stoneley-type flexural interfacial wave contribution into the exact solution

is connected to the derivation of the dual parabolic-elliptic model. It consists of the parabolic

equations at the plates junction and the elliptic problem over the interior domain. The nature

of the problem and method of model construction allow us to create these equations separately

for each plate.

First, at the junction, where η = 0, we obtain (see Section 2.1.2 for more details) the

following expressions in terms of the transform parameter p

Ŵe,i(p) = −M̂0

D̂1

p2

p4 − p4k
Q

(1)
e,i , i = 1, 2, (4.25)

where Ŵe,i are the transformed deflections of plates 1 and 2 at the junction corresponding to

the Stoneley-type flexural interfacial wave and

Q
(1)
e,1 =

∆1(ck) + ∆2(ck)

∆′(c4k)
,

Q
(1)
e,2 =

∆3(ck) + ∆4(ck)

∆′(c4k)
.

(4.26)

It is easy to check that Q
(1)
e,1 = Q

(1)
e,2 and, therefore, the deflections of both plates at the

junction are equal. In the original variables, we have the following parabolic equations:

c4k
∂2we,i
∂x4

+
2ρh

D1

∂2we,i
∂t2

=
1

D1
Q

(1)
e,i

∂2M0

∂x2
(4.27)

- is the equation for the deflection we,i(x, t) of plate i (i = 1, 2) related to the Stoneley-type

flexural interfacial wave.

The elliptic equations over the interior domain for the plates 1 and 2 deflections are shown

by
∂4win,i
∂y4

+ 2
∂4win,i
∂x2∂y2

+ (1− γc4k)
∂4win,i
∂x4

= 0, (4.28)

with win,i(x, y) as the deflection of the plate i (i = 1, 2) over the interior domain related to

the Stoneley-type flexural interfacial wave, and

γ =


1, i = 1,
ρ2
ρ1
, i = 2.

(4.29)

The boundary conditions for win,i(x, y), i = 1, 2 can be taken by the following expressions
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win,i(x, 0) = we,i(x),

∂2win,i
∂y2

= −νi
∂2we,i
∂x2

.
(4.30)

4.2.4 Comparison with exact solution

We obtained exact solutions (4.20) for the transformed deflections Ŵj(η, p), and also derived

the explicit dual parabolic-elliptic model related to the Stoneley-type flexural interfacial wave

(see (4.27)-(4.30)). Now we compare the obtained solutions by applying the inverse Fourier

transform and plotting the results. We consider a particular problem of a point bending

moment M0(x, t) = M0δ(x)e−iωt applied at the plates junction y = 0. Here and below, the

Poisson’s ratios are assumed to be ν1 = 0.4, ν2 = 0.3. The frequency parameters then become

λ1 =

√
2ρ1h

5ω2

D1
,

λ2 =

√
2ρ2h

5ω2

D2
.

(4.31)

Also, for this point moment M0, we can rewrite the exact solution in a more convenient form

in terms of p parameter as follows

Ŵ1(η) =
M̂0

D1

p2

p4 − p4k
∆1(p)e

−α1|η| + ∆2(p)e
−β1|η|

∆(p)
,

Ŵ2(η) =
M̂0

D1

p2

p4 − p4k
∆3(p)e

−α2|η| + ∆4(p)e
−β2|η|

∆(p)
,

(4.32)

Here,

αi =
√
p2 − λi, βi =

√
p2 + λi, i = 1, 2, (4.33)

∆1(p) = β2
[
(β1 − α2)β2((ν2 − 1)p2 + λ2) + (β2 − β1)α2((ν2 − 1)p2 − λ2)

]
+(α2 − β2)β1((ν1 − 1)p2 + λ1),

∆2(p) = −
[
β2
[
(β2 − α1)α2((ν2 − 1)p2 − λ2) + (α1 − α2)β2((ν2 − 1)p2 + λ2)

]
+(α2 − β2)α1((ν1 − 1)p2 − λ1)

]
,

∆3(p) = (α1 − β2)β1((ν1 − 1)p2 + λ1) + (β1 − β2)α1((ν1 − 1)p2 − λ1)

+β2(α1 − β1)β2((ν2 − 1)p2 + λ2),

∆4(p) = −
[
(α1 − α2)β1((ν1 − 1)p2 + λ1) + (α2 − β1)α1((ν1 − 1)p2 − λ1)

+ β2(β1 − α1)α2((ν2 − 1)p2 − λ2)
]
,

(4.34)
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and also,

∆(p) =
[
(1 + a) + dp2

]2√
p2 − λ1

√
p2 + λ2

+
[
(1 + a)− dp2

]2√
p2 + λ1

√
p2 − λ2

−
[
(1− a) + dp2

]2√
p2 − λ1

√
p2 − λ2

−
[
(1− a)− dp2

]2√
p2 + λ1

√
p2 + λ2

− 4a

[√
p4 − λ21 +

√
p4 − λ22

]
,

(4.35)

with

pk =

√
λ1
ck

. (4.36)

The deflection related to the Stoneley-type flexural interfacial wave may be found from

exact solution (4.20) by isolating the contribution of the poles p = ±pk in the overall solution.

This contribution may be found using the contour integration (see Section 1.2.3 above) and

also using the constructed dual parabolic-elliptic model. The solutions of parabolic equations

(4.27) immediately follow from the residue theory (e.g. see Section 1.2.4). We find them as

W ∗e,j =
1√
2π

∫ ∞
−∞

Ŵe,j(η, p)e
ipξdp =

2πi√
2π
Resz=pk(Ŵe,j(η, z)e

izξ),

j = 1, 2,

(4.37)

where

Ŵe,j(η, p) = Q
(1)
e,j M̂0

p2

p4 − p4k
, j = 1, 2, (4.38)

with

Q
(1)
e,1 =

∆1(pk) + ∆2(pk)

∆
,

Q
(1)
e,2 =

∆3(pk) + ∆4(pk)

∆
,

(4.39)

and

∆ =c4k

[
1

4p2k

[
((1 + a) + dp2k)A+ ((1 + a)− dp2k)B

−((1− a) + dp2k)C − ((1− a)− dp2k)D
]

−2a

 1√
p4k − λ21

+
1√

p4k − λ22

 ,
(4.40)
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where

A = 4d
√
p2k − λ1

√
p2k + λ2 + ((1 + a) + dp2k)


√
p2k + λ2√
p2k − λ1

+

√
p2k − λ1√
p2k + λ2

 ,

B = −4d
√
p2k + λ1

√
p2k − λ2 + ((1 + a)− dp2k)


√
p2k − λ2√
p2k + λ1

+

√
p2k + λ1√
p2k − λ2

 ,

C = 4d
√
p2k − λ1

√
p2k − λ2 − ((1− a) + dp2k)


√
p2k − λ2√
p2k − λ1

+

√
p2k − λ1√
p2k − λ2

 ,

D = −4d
√
p2k + λ1

√
p2k + λ2 + ((1− a)− dp2k)


√
p2k + λ2√
p2k + λ1

+

√
p2k + λ1√
p2k + λ2

 .

(4.41)

Therefore, contribution of the Stoneley-type flexural interfacial wave into the overall deflection

at the junction W ∗e,i is given by

W ∗e,j(ξ) =
√

2πiQ
(1)
e,j M̂0

1

2pk
eipkξ, j = 1, 2. (4.42)

In order to find the overall solution for the dimensionless deflection W ∗j (ξ, η), j = 1, 2, we

need to integrate the following expression

W ∗j (ξ, η) =
1√
2π

∫ ∞
−∞

Ŵj(η, p)e
ipξdp. (4.43)

The method of finding it was described in Section 1.2.3. In this case, the branch points are

p = ±
√
λi, i = 1, 2, and the cut where we take αj = −i

√
λj − p2, is between them, so it is

−
√
λi ≤ p ≤

√
λi.

For the numerical analysis of the above solutions we choose the parameters so that α =√
ρ2
ρ1

= 0.4382 and β =

√
D̂2

D̂1

= 0.5477. Under these conditions the Stoneley coefficient

becomes ck = 0.9714. The frequency parameter is assumed to be λ1 = 1 whereas M̂0 =
√

2π.

The small radius r of the contour semi-circles is again taken as (2.36).

Comparison of the Stoneley-type flexural interfacial wave contribution into the deflections

at the junction of plates is demonstrated in Figure 4.6. Since the solutions at the junction

are the same because of the problem statement, we provide only one figure for the overall

deflections.

A similar approach as described above is used to obtain the solutions over the interior

domain. Instead of parabolic equations at the junction, the elliptic problems (4.28)-(4.30)
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Figure 4.6: Deflection at the junction of isotropic plates. Overall solution (4.43) and Stoneley-type flexural

interfacial wave contribution (4.42)

are analyzed. The solutions of these problems are given in terms of the integral transforms.

They are

Ŵin,j(η, p) =
Q

(1)
e,j M̂0

2c2k

p2

p4 − p4k
×
[
[(1− νj) + c2k]p

2e−αj(ck)p|η| − [(1− ν)− c2k]p2e−βj(ck)p|η|
] (4.44)

for j = 1, 2. The above function can be integrated using the residue theory (see Section 1.2.4),

and the final solution for the deflections related to the Stoneley-type flexural interfacial wave

become

W ∗in,j(ξ, η) =
√

2πi
Q

(1)
e,j M̂0

c2k

1

4pk

×
[
[(1− νj)p2k + λj ]e

−αj(ck)pk|η| − [(1− νj)p2k − λj ]e−βj(ck)pk|η|
]
eipkξ.

(4.45)

The numerical solutions found using the scheme from Section 1.2.3 are shown in Figures

4.7-4.10. They confirm an intuitive expectation that the Stoneley-type flexural interfacial

wave makes a key contribution into the exact solution near the junction (again, the only

exception is the vicinity of the applied point bending moment).
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Figure 4.7: Overall deflection in isotropic plates (plate 1). Overall solution (4.43) and the parabolic-elliptic

model (4.45) at η = 1

Figure 4.8: Overall deflection in isotropic plates (plate 2). Overall solution (4.43) and the parabolic-elliptic

model (4.45) at η = −1
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Figure 4.9: Stoneley-type flexural interfacial wave at the junction of two plates. 3D profile of the

parabolic-elliptic model (4.42), (4.45)

Figure 4.10: Overall deflection at the junction of two plates. 3D profile of the overall solution (4.43)



4.3 Shear force at junction of two plates 86

4.3 Shear force at junction of two plates

This section includes the analysis of interfacial vibrations at the junction of two isotropic

semi-infinite plates induced by shear force.

Figure 4.11: Shear force at the junction. Scheme of loading

4.3.1 Basic equations

For this type of loading, shown in Figure 4.11, the equations of motion for wi, i = 1, 2 remain

in form (4.1), whereas the continuity conditions at the junction (y = 0) become

w1 = w2,

∂w1

∂y
=

∂w2

∂y
,

D1

[
∂2w1

∂y2
+ ν1

∂2w1

∂x2

]
= D2

[
∂2w2

∂y2
+ ν2

∂2w2

∂x2

]
,

D1

[
∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

]
= D2

[
∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

]
−N0(x, t),

(4.46)

where N0(x, t) is the applied shear force.

On using (4.3) and applying integral transforms to equation (4.1) we get (4.4). In doing

so to the continuity conditions (4.46) their transformed analogue becomes

Ŵ1 = Ŵ2,

dŴ1

dη
=

dŴ2

dη
,

d2Ŵ1

dη2
− ν1p2Ŵ1 =

D̂2

D̂1

[
d2Ŵ2

dη2
− ν2p2Ŵ2

]
,

d3Ŵ1

dη3
− (2− ν1)p2

dŴ1

dη
=

D̂2

D̂1

[
d3Ŵ2

dη2
− (2− ν2)p2

dŴ2

dη

]
+
N̂0

D̂1

,

(4.47)
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where N̂0(s, p) is the transformed dimensionless shear force.

4.3.2 Solution of problem

We take (4.8)-(4.9) as the solution of the problem (4.4)-(4.47). Its substitution into the

boundary conditions (4.18) permits the system of linear equations for the unknown constants

A1, B1, A2 and B2 to be obtained. In matrix form it can be written as follows

[
A1 B1 A2 B2

]

×



1 α1 α2
1 − ν1p2

(
α2
1 − (2− ν1)p2

)
α1

1 β1 β21 − ν1p2
(
β21 − (2− ν1)p2

)
β1

−1 −α2 −D̂2

D̂1

(
α2
2 − ν2p2

)
−D̂2

D̂1

(
α2
2 − (2− ν2)p2

)
α2

−1 −β2 −D̂2

D̂1

(
β22 − ν2p2

)
−D̂2

D̂1

(
β22 − (2− ν2)p2

)
β2


=

[
0 0 0

N̂0

D̂1

]
.

(4.48)

For the sake of brevity we do not provide here the full solution derivation and present the

final result for the transformed rotation angle V̂i =
dŴi

dη
, i = 1, 2 (see Section 2.1.3 for more

details and explanations) as

V̂1(η) =
N̂0

D̂2
1(−isλ21)

c2

c4 − c4k
∆1(c)e

−

√
−isλ1
c

α1(c)|η|
+ ∆2(c)e

−

√
−isλ1
c

β1(c)|η|

∆′(c4k)
,

V̂2(η) =
N̂0

D̂2
1(−isλ21)

c2

c4 − c4k
∆3(c)e

−

√
−isλ1
c

α2(c)|η|
+ ∆4(c)e

−

√
−isλ1
c

β2(c)|η|

∆′(c4k)
,

(4.49)

where ck is the solution of equation (4.13), the parameters αi(c), βi(c), i = 1, 2 are from

(4.21),
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∆1(c) =− α1

[
β2
(
(β1 − α2)((1− ν2) + bc2) + (β1 − β2)((1− ν2)− bc2)

)
+(α2 − β2)((1− ν1) + c2)

]
,

∆2(c) =β1
[
β2
(
(α1 − α2)((1− ν2) + bc2) + (β2 − α1)((1− ν2)− bc2)

)
+(α2 − β2)((1− ν1)− c2)

]
,

∆3(c) =α2

[
β2(α1 − β1)((1− ν2) + bc2) + (β2 − α1)((1− ν1) + c2)

+(β1 − β2)((1− ν1)− c2)
]
,

∆4(c) =β2
[
β2(β1 − α1)((1− ν2)− bc2) + (α1 − α2)((1− ν1) + c2)

+(α2 − β1)((1− ν1)− c2)
]
,

(4.50)

and ∆′(c4k) is from (4.23).

4.3.3 Derivation of model

As it was mentioned in all previous chapters, analysis of the interfacial wave contribution

into the overall rotation angle is connected with the derivation of the dual parabolic-elliptic

model of the Stoneley-type flexural interfacial wave. It consists of the parabolic equations at

the plates junction and the elliptic equations for the plates rotation angles over the interior

domain. The models again can be constructed separately for the considered plates.

First, at the junction (η = 0) we obtain the following expressions in terms of the transform

parameter p (see section 2.1.3 for more details)

V̂e,i(p) = − N̂0

D̂1

p2

p4 − p4k
Q

(2)
e,i , i = 1, 2, (4.51)

where V̂e,i are the transformed rotation angles of plates 1 and 2 at the junction from the

Stoneley-type flexural interfacial wave and

Q
(2)
e,1 =

∆1(ck) + ∆2(ck)

∆′(c4k)
,

Q
(2)
e,2 =

∆3(ck) + ∆4(ck)

∆′(c4k)
.

(4.52)

It is easy to check that Q
(2)
e,1 = Q

(2)
e,2, therefore V̂e,1(p) = V̂e,2(p).

In the original variables, parabolic equations for the plates rotation angles at the junction

become
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c4k
∂2ve,i
∂x4

+
2ρh

D1

∂2ve,i
∂t2

=
1

D1
Q

(2)
e,i

∂2N0

∂x2
(4.53)

The elliptic equations for the deflections of plates 1 and 2 respectively over the interior

domain (related to the Stoneley-type flexural interfacial wave) are presented below

∂4vin,i
∂y4

+ 2
∂4vin,i
∂x2∂y2

+ (1− γc4k)
∂4vin,i
∂x4

= 0, (4.54)

with vin,i(x, y) as the rotation angle of plate i (i = 1, 2) over the interior domain, caused by

the Stoneley-type flexural interfacial wave, and γ from (4.29).

The boundary conditions for vin,i(x, y) can be presented by

vin,i(x, 0) = ve,i(x),

∂2vin,i
∂y2

= −(2− νi)
∂2ve,i
∂x2

.
(4.55)

4.3.4 Comparison with exact solution

We obtained the exact solutions (4.49) in terms of integral transforms, and also derived an

explicit dual parabolic-elliptic model for the Stoneley-type flexural interfacial wave (see (4.53),

(4.54)-(4.55) above). The next step is to compare of the obtained solutions by applying the

inverse Fourier transform and computing graphical illustrations.

We recall that the transverse shear point force N0 (see Section 2.1.3) is assumed to be

applied at the plates junction. As before, we operate with the same frequency parameters

λ1 and λ2 (see (4.31)). Poisson’s ratios are assumed to be ν1 = 0.4, ν2 = 0.3. Derivation of

the formulae that we need for computations is similar to the one described in the previous

Section 4.2.4. We present first the exact solution for the rotation angles V̂j(η, p) in terms of

the transform parameter p, given by

V̂1(η) =
N̂0

D1

p2

p4 − p4k
∆1(p)e

−α1|η| + ∆2(p)e
−β1|η|

∆
,

V̂2(η) =
N̂0

D1

p2

p4 − p4k
∆3(p)e

−α2|η| + ∆4(p)e
−β2|η|

∆
,

(4.56)

where αi and βi are from (4.33), ∆(p) is given by (4.35), pk is connected with ck by expression

(4.36) and
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∆1(c) =− α1

[
β2
(
(β1 − α2)((1− ν2)p2 + λ2) + (β1 − β2)((1− ν2)p2 − λ2)

)
+(
√
p2 − λ2 −

√
p2 + λ2)((1− ν1)p2 + λ1)

]
,

∆2(c) =β1
[
β2
(
(α1 − α2)((1− ν2)p2 + λ2) + (β2 − α1)((1− ν2)p2 − λ2)

)
+(α2 − β2)((1− ν1)p2 − λ1)

]
,

∆3(c) =α2

[
β2(α1 − β1)((1− ν2)p2 + λ2) + (β2 − α1)((1− ν1)p2 + λ1)

+(β1 − β2)((1− ν1)p2 − λ1)
]
,

∆4(c) =β2
[
β2(β1 − α1)((1− ν2)p2 − λ2) + (α1 − α2)((1− ν1)p2 + λ1)

+(α2 − β1)((1− ν1)p2 − λ1)
]
.

(4.57)

The deflection related to the Stoneley-type flexural interfacial wave may be found from

exact solution (4.49) by isolating the contribution of the poles p = ±pk. This contribution

may be found using contour integration (see Section 1.2.3 above) as well as using the solutions

of the parabolic equations (4.53) which immediately follow from the residue theory (e.g. see

Section 1.2.4). We find them as

V ∗e,j(ξ, η) =
1√
2π

∫ ∞
−∞

V̂e,j(η, p)e
ipxdp =

2πi√
2π
Resz=pk(V̂e,j(η, z)e

izx),

j = 1, 2,

(4.58)

where

V̂e,j(η, p) = Q
(2)
e,j N̂0

p2

p4 − p4k
, j = 1, 2, (4.59)

with

Q
(2)
e,1 =

∆1(pk) + ∆2(pk)

∆
,

Q
(2)
e,2 =

∆3(pk) + ∆4(pk)

∆
,

(4.60)

and ∆ is given by (4.40). Therefore, the explicit solution for the dimensionless plate edge

rotation angle V ∗e,j(ξ) is given by

V ∗e,j(ξ) =
√

2πiQ
(2)
e,j N̂0

1

2pk
eipkξ, j = 1, 2. (4.61)
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To find the overall solution in the dimensionless form V ∗j (ξ, η), j = 1, 2, we need to

integrate the following expressions

V ∗j (ξ, η) =
1√
2π

∫ ∞
−∞

V̂j(η, p)e
ipξdp. (4.62)

The method of finding it was described in Section 1.2.3. The branch points and the cut

remain the same as mentioned above in Section 4.2.4.

The solution related to the Stoneley-type flexural interfacial wave over the interior domain

in terms of transform parameter p can be found from the elliptic problems (4.54)-(4.55). It

is

V̂in,j(η, p) =
Q

(2)
e,j N̂0

2c2k

p2

p4 − p4k
×
[
−[(νj − 1)− c2k]p2e−αj(ck)p|η| + [(νj − 1) + c2k]p

2e−βj(ck)p|η|
] (4.63)

for j = 1, 2.

This function can be integrated using the residue theory (see Section 1.2.4), and the final

solution for the Stoneley-type flexural interfacial wave rotation angle over the interior domain

is

V ∗in,j(ξ, η) =
√

2πi
Q

(2)
e,j N̂0

c2k

1

4pk

×
[
−[(νj − 1)p2k − λj ]e−αj(ck)pk|η| + [(νj − 1)p2k + λj ]e

−βj(ck)pk|η|
]
eipkξ.

(4.64)

As above, all numerical data is created for the following material parameters α =

√
ρ2
ρ1

=

0.4382, β =

√
D̂2

D̂1

= 0.5477 and ck = 0.9714. Frequency parameter λ1 = 1 and N̂0 =
√

2π.

Here the small radius r of the contour arcs is taken as (2.36).

Numerical results for the current problem are presented below in Figures 4.12-4.13. The

general conclusion is that the effect of junction on the magnitude of the Stoneley component

is analogous to that for the excitation by a point-bending moment.
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Figure 4.12: Stoneley-type flexural interfacial wave at the junction of two plates. 3D profile of the

parabolic-elliptic model (4.61), (4.64)

Figure 4.13: Overall rotation angle at the junction of two plates. 3D profile of the exact solution (4.62)



Chapter 5

Conclusion

In this thesis we studied the Konenkov edge and interfacial waves in plates of various shapes

and made of different materials: the classical Konenkov flexural edge wave in an isotropic

semi-infinite plate (Chapter 2, Section 2.1), the edge wave in a thin elastic isotropic circular

plate (Chapter 2, Section 2.2), also, the existence of this wave studied in orthotropic semi-

infinite plates (see Chapter 3), and, finally, the Stoneley-type flexural interfacial wave at the

junction of two isotropic semi-infinite plates (Chapter 4). The main goal of the thesis involved

derivation of the explicit approximate models, revealing a dual parabolic-elliptic nature of

flexural edge and interfacial waves, which were derived for the aforementioned cases. The

obtained explicit models extract the contribution of the flexural wave into the full dynamic

response. The wave propagating in the isotropic semi-infinite plate can be depicted explicitly

by the following models: (2.25), (2.27)-(2.29) for the case of a bending moment applied at the

edge, and (2.61)-(2.64) for the applied shear force. If the plate under consideration is made

of an orthotropic material, the model is formulated by the following equations (3.20)-(3.22)

(for the bending moment loading) and (3.37) and (3.40)-(3.41) (for the shear force loading).

The principal difference between these models for isotropic and orthotropic plates lies in the

fact that in case of orthotropy we can vary the parameters and therefore vary the edge wave

contribution into the overall deflection or rotation of the plate. This is illustrated by Figures

3.4-3.21 of Chapter 3. Analogously, a dual parabolic-elliptic model of the Stoneley-type

flexural interfacial wave was derived in Chapter 4. It appears to be a natural generalisation

of the case of edge waves. For the bending moment applied at the junction, this model has

the following form (4.27)-(4.30) whereas for the shear force it is (4.53), (4.54)-(4.55). The
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basic feature of the aforementioned model is the complexity of the transcendental equation

of the wave speed and therefore the absence of its exact solution.

It is worth mentioning that unlike the dual hyperbolic-elliptic models of the Rayleigh

wave, the derived parabolic-elliptic models of edge and interfacial waves govern the dispersion

phenomena (absent in the surface Rayleigh-type waves). The unknown functions within the

above models depend on the loading type. In particular, if we deal with loading in the form

of a bending moment, the related model operates with the plate deflection in contrast to the

case of the loading in the form of shear force when the model deals with the rotation angle.

It is also worth mentioning that the developed method of model derivation allows various

generalisations. In particular, it can be extended to layered plates, electro-elastic materials,

ets. The dual parabolic-elliptic nature of the dispersive edge and interfacial waves might also

be expected for the latter.
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