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Abstract

In the thesis explicit dual parabolic-elliptic models are constructed for the Konenkov flexu-
ral edge wave and the Stoneley-type flexural interfacial wave in case of thin linearly elastic
plates. These waves do not appear in an explicit form in the original equations of motion
within the framework of the classical Kirchhoff plate theory. The thesis is aimed to high-
light the contribution of the edge and interfacial waves into the overall displacement field by
deriving specialised equations oriented to aforementioned waves only. The proposed models
consist of a parabolic equation governing the wave propagation along a plate edge or plate
junction along with an elliptic equation over the interior describing decay in depth. In this
case the parabolicity of the one-dimensional edge and interfacial equations supports flexu-
ral wave dispersion. The methodology presented in the thesis reveals a dual nature of edge
and interfacial plate waves contrasting them to bulk-type wave propagating in thin elastic
structures. The thesis tackles a number of important examples of the edge and interfacial
wave propagation. First, it addresses the propagation of Konenkov flexural wave in an elas-
tic isotropic plate under prescribed edge loading. For the latter, parabolic-elliptic explicit
models were constructed and thoroughly investigated. A similar problem for a semi-infinite
orthotropic plate resulted in a more general dual parabolic-elliptic model. Finally, an anal-
ogous model was derived and analysed for two isotropic semi-infinite Kirchhoff plates under

perfect contact conditions.
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Chapter 1

Introduction

1.1 Introduction to work

1.1.1 Localised wave phenomena, state of art

The history of localised waves in elasticity theory began with the famous paper by Rayleigh
(1885) where he described the so-called Rayleigh wave propagating along the surface of an
elastic half-space and decaying away from the surface. For many years the Rayleigh wave
speed has been one of the properties that attracted significant interest of the scientists. It is
well-known that the secular equation for this wave speed, derived by Rayleigh (1885), has an
unexplicit form which makes it hard to solve. The most common approach is to find solutions
using numerical methods, although there are many attempts to find them analytically. Several
approximate formulae are well-known (e.g., see Achenbach (1973)). The exact solution has
been found much later and was presented in papers by Rahman and Barber (1995) and then
by Nkemzi (1997). The latter was simplified by Malischevsky (2000). Another exact formula
was derived by Rahman and Michelitsch (2006).

Although the Rayleigh surface wave was discovered in an elastic isotropic half-space,
there exist a lot of analogous waves that occur in the bodies of different shapes and made of
anisotropic materials. For example, surface waves propagate in the circular discs which was
described experimentally in Oliver et al. (1954). However, for the aforementioned problem
solution was valid only for the low frequency limit. For the cases of higher frequencies several
theories were developed (e.g see McCoy and Mindlin (1963), Sinclair and Stephens (1971),

Cerv (1988)). Nowadays it is accepted that the three-dimensional theory of elasticity is
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mandatory to explain the propagation of such waves (e.g. see Lawrie and Kaplunov (2011)).
When the considered bodies are made of anisotropic materials, these cases involve much more
complex formulation. A detailed review on localised waves in anisotropic bodies was given in
the work by Chadwick and Smith (1977). Equations for surface wave speed in bodies made
of orthotropic materials were presented in Ogden and Vinh (2004) and in Pham and Ogden
(2004). The exact solution for the aforementioned equations was demonstrated in Vinh and
Ogden (2005). The proofs of uniqueness of the surface wave speed were suggested in many
works, one of the most significant being that by Mielke and Fu (2004). The effect of pre-stress
on the Rayleigh wave propagation is described in the works by Dowaikh and Ogden (1990)
and Chadwick (1995). Localised waves also propagate on the interface between two elastic
materials (both solid, or fluid and solid). Such a wave was discovered by Stoneley (1924) and
named after the author. The equations for these wave speeds are relatively more involved
as compared to the ones described above. In Barnett et al. (1985) theory concerning wave
uniqueness and existence in anisotropic materials is explained. Fundamental ideas are also
found in Chadwick and Borejko (1994). The effect of pre-stress on the Stoneley interfacial
wave propagation was described by Dowaikh and Ogden (1991). Also, the interfacial waves
on the boundary between elastic and acoustic media were studied by Scholte (see Scholte
(1947)) and independently by Gogoladse (1948). These waves are now usually referred to as
Scholte-Gogoladse waves.

Many years after the discovery of the Rayleigh wave its flexural analog for the Kirchhoff
plate theory was found (see Timoshenko and Woinowsky-Krieger (1987) and section 1.3 for
more details). The equation for its wavenumber p = py is the famous Konenkov dispersion

equation in the form

VPE =11 =v)p* +1)* = /p2 + 1((1 —v)p* = 1)* = 0. (1.1)

The method of its obtaining is presented in section 2.1.1 of the thesis.

The history of Konenkov flexural edge wave discovery is quite complicated and interesting
(see Norris et al. (2000)). The flexural edge wave was first found by Konenkov (1960) and
later by Sinha (1974), Thurston and McKenna (1974). Also, the paper by Ishlinskii (1954)
precedes the one of Konenkov and describes a similar problem which originates from the
theory of plate stability. The most interesting property of Konenkov flexural edge wave is its

dispersion (i.e. its speed depends on the frequency of the applied force or the plate material
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eigenfrequency). It is also worth mentioning that this wave is sensitive to the plate thickness
(see Lawrie and Kaplunov (2011)). The development of the flexural edge waves theory is
similar to the one for Rayleigh waves. They can be found in the cases of plate anisotropy (see
Norris (1994), Thompson et al. (2002), Zakharov and Becker (2003), Piliposian et al. (2010),
also Fu (2003), Fu and Brookes (2006), Lu et al. (2007)) as well as in the layered plates
(see Zakharov (2002), Zakharov (2004)) and in the plates with cracks (see Norris and Wang
(1994), Thompson and Abrahams (2005), Thompson and Abrahams (2007)). Furthermore,
the effects of fluid loading were considered by Norris and Abrahams (2000). In the cases of
circular plates the exact dispersion relation expressed in terms of Bessel functions was derived
by Destrade and Fu (2008). The Stoneley-type flexural interfacial wave propagation at the
junction of two plates was investigated by Zilbergleit and Suslova (1983).

Localised edge waves may also occur in thin semi-infinite cylindrical shells governed by the
Kirchhoff-Love theory (see Kaplunov et al. (2000)). Both Rayleigh and Konenkov flexural
edge waves may appear, coinciding with the short-wave limit of the circumferential waves
localized near the traction-free shell edge. Unfortunately, the shell curvature is not always
negligible in the asymptotic analysis mentioned above, therefore we need to take into account
its effect because of the coupling between the bending and extensional displacements. This
effect results in the low-level radiation damping of the extensional shell edge wave (Kaplunov
et al. (2000)). Furthermore, there exists a curvature super-low frequency edge wave which has
no analogue among the plate edge waves and is governed by the so-called ”semi-membrane”
shell theory (Goldenveizer (1961)). The recent works on edge waves propagation in thin elastic
shells are Gulgazaryan et al. (2008), Kaplunov and Wilde (2000), Kaplunov and Wilde (2002)
and Fu and Kaplunov (2011).

The aforementioned edge waves also appear in the theory of three-dimensional plates.
It is natural to assume that all the aforementioned localised waves are incorporated into
the full edge wave solutions as special cases (Lawrie and Kaplunov (2011)). For example,
according to the finite-element and experimental study of Lagasse and Oliner (1976), the
fundamental three-dimensional antisymmetric edge wave in the low-frequency limit becomes
the Konenkov one. The following works demonstrate interesting and useful approaches to
finding the flexural and surface waves in the three-dimensional plates: Kaplunov et al. (2005),

Zernov and Kaplunov (2008), Lagasse and Oliner (1976) and Krushynska (2011).
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The edge resonance phenomena in the most elementary cases is connected with the afore-
mentioned wave propagation (e.g. see Wilde et al. (2010)). This fact was mentioned in
the works Kaplunov et al. (2004b), Prikazchikov et al. (2007) and, for interface resonance,
Rogerson and Krynkin (2007).

Our approach to flexural edge and interfacial waves relies on a recently developed one
for surface and interfacial waves. It is obvious that both surface and edge waves seem to be
hidden in mathematical formulations of the original problems (Kaplunov et al. (2006)). Useful
approach to express them is to construct the explicit models that describe the surface waves
and extract their contribution from the general formulations. These models, highlighting the
dual hyperbolic-elliptic nature of surface waves, have recently been created by Kaplunov et al.
(2006) for elastic and piezoelastic surface waves (namely, Rayleigh and Bleustein-Gulyaev
surface waves). They contain elliptic equations describing the decay in the interior away from
the surface, and a hyperbolic equation at the surface corresponding to wave propagation. The
models provide significant simplifications of the problems formulation. They also prove to
be an efficient tool in capturing the transient dynamic behavior associated with the Rayleigh
wave, for example, in the case of a moving load problem (see Kaplunov et al. (2010)). The
aforementioned models were also presented in the papers Kaplunov et al. (2004a), Kaplunov
and Kossovich (2004) and Dai et al. (2010).

Development of similar models for flexural edge and interfacial waves seems not a trivial
extension of the approach for surface waves, especially taking into account the dispersive
nature of Konenkov and Konenkov-type waves. Therefore the main goal of this thesis is to
derive explicit approximate models to describe the flexural edge and interfacial waves. We
consider various cases of isotropic and anisotropic plates as well as the case of interfacial waves
for two perfectly bonded plates. The resulting models include elliptic equations characterising
the decay of the wave away from the edge into the interior domain, and a parabolic equation at
the edge. Thus, the constructed asymptotic models reveal the dual parabolic-elliptic nature

of the flexural edge and interfacial waves.

1.1.2 Work summary

Chapter 1 of the thesis is the introductory chapter containing all the preliminary knowledge

which is mandatory for understanding the main results and derived models of localised flex-
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ural waves. In Section 1.2 we introduce all the methods that have been used in the thesis.
Section 1.3 contains a brief description of the Kirchhoff plate theory equations and boundary
conditions. This theory forms the basis of our work.

The main results are presented in Chapters 2-4. The classical problem of vibrations of
an isotropic semi-infinite plate is considered in Section 2.1 of Chapter 2. The edge wave
propagation under homogeneous boundary conditions is investigated in Section 2.1.1. We
follow the steps described by Konenkov (1960) and derive the dispersion equation for the
so-called Konenkov flexural edge wave coefficient. The problem of applied bending moment
is considered in the next Section 2.1.2. The solution in terms of integral transforms and the
explicit dual parabolic-elliptic model of the Konenkov flexural edge wave are constructed. The
latter contains a one-dimensional parabolic equation for the plate edge and an elliptic equation
characterising the wave decay into the interior domain. The results for the exact solution
and approximate solutions corresponding to the classical Konenkov flexural edge wave are
compared graphically. A similar problem of applied shear force is reviewed in Section 2.1.3.
The exact solution and an approximate model are now derived for the rotation angle instead
of the deflection as in the previous section. In Section 2.2 we consider the flexural edge wave
if an isotropic circular plate. The first-order approximation is found taking into account the
curvature correction. The results for the leading and first-order solutions are compared with
the exact solution found by Destrade and Fu (2008).

Chapter 3 deals with the edge vibrations of an orthotropic semi-infinite plate. The first
Section 3.1 contains the analysis of the homogeneous edge wave. The derived dispersion
equation has an explicit solution which can be reduced to the isotropic case. The Konenkov
flexural edge wave coefficient is now shown to depend on 4 parameters. The next two Sections,
3.2 and 3.3, contain exact solutions for an applied bending moment and shear force, respec-
tively. They are also dedicated to deriving more general approximate dual parabolic-elliptic
models of the Konenkov flexural edge wave. The results are again compared graphically.

Finally, Chapter 4 contains some problems of vibrations in two joined isotropic semi-
infinite plates. In Section 4.1 the homogeneous Stoneley-type flexural interfacial wave is
considered, the dispersion equation for the interfacial wave coefficient is derived and numerical
solutions of this equation are computed. Section 4.2 contains the derivation of an exact

solution and a dual parabolic-elliptic model of plate’s vibration near the junction under the
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loading by a bending moment. The results are presented graphically for the case of a specific
bending moment. In Section 4.3 we proceed with the same scheme of solution and model
derivation as concerns the problem of applied shear force.

Conclusion summarises all the results thus obtained including the constructed explicit

dual parabolic-elliptic models.

1.2 Methods

In this section we describe methods to be used while finding solutions for the problems

considered in the thesis.

1.2.1 Laplace operators in different coordinate systems

The Laplace operator Ay, is very important in many problems of physics and applied math-
ematics. In the two-dimensional Cartesian coordinates it is defined by
0? 0?
= —+ —. 1.2
L= 9a2 + Oy? (1.2)
For the polar coordinate system, which is connected with the Cartesian one by the equal-
ities
2= g g =t (Y), w3)
x
we will denote the Laplace operator as Ay, . 4 to distinguish it from the Cartesian operator.

It is given by
9? 10 1 02

BLre=52 T ror T 208 4

1.2.2 Integral transforms

Many of the problems in mechanics and applied mathematics are connected with the partial
differential equations. When analysing them, it is very convenient to use the so-called integral
transforms which allow us to reduce the number of the variables in the equations and therefore
reduce their complexity. In the thesis we use Laplace and Fourier integral transforms whose

descriptions are presented below.
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1.2.2.1 Laplace integral transform

The Laplace integral transform is the function £ [f(¢)] defined by

o

cmsz%@z/f%@ﬁ (1.5)
0

One of the most important properties of the Laplace transform is the derivative property,
which is
L [ £ (t)] = s"FE(s) — s"LE(0) — s"2F(0) — ... — F7D(0). (1.6)
Here, f(™ denotes the n-th derivative of the function f with respect to the variable t.
In the thesis we consider only the homogeneous initial data, therefore we can use the

reduced derivative property of Laplace transform which is

L [ f<">(t)} = s"EE(s). (1.7)
The inverse Laplace transform is
(1) = / FE(s)etds.
0

In the thesis we apply the Laplace transform to the time-coordinate ¢ or its dimensionless

analogue 7 (see below in the text).

1.2.2.2 Fourier integral transform

The Fourier integral transform F (p) of a function f(z) is defined by
1 7 .
FF(p)=Flf(z)] = — / e P f(x)dx, 1.8
(p) [f(2)] W f(=) (1.8)
and the inverse Fourier transform is
f@) = = [ E . (19)
V2T

The Fourier integral transform, as well as that of Laplace, has the derivative property

given by the following expression
F@)] = )" F ). (1.10)

In the thesis we apply the Fourier integral transform to the z-coordinate (or its dimen-

sionless analogue &).
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1.2.3 Contour Integration

As it was mentioned above in Section 1.2.2, here we use integral transforms and, therefore, the
related integrals. For example, the inverse Fourier transform requires taking the integral in
form (1.9). Sometimes the integrand has singularities located on the real axis. In the thesis,
we deal with the integrands having several singularities on the real line, namely two poles
symmetrical around the origin. For this reason, here and below we take into consideration
the integrand function f(z), which has two poles, z = +z. Finding the result of integration

of
/ f(z)dx (1.11)

becomes possible if we use the path of integrating which avoids these poles. The method
used here is the contour integration avoiding these poles around the semi-circles with a small
radius r, which is suggested by the Cauchy Principle Value theorem (e.g. see Henrici (1988)).

For this reason we split the interval of integration into 5 segments, as shown in Figure 1.1.

Figure 1.1: Intervals of integration splitting of the original interval

The segments 1 (—oco <z < —z—71), 3 (—zp+r <z < xp—r)and 5 (xp+r < z < 00) do
not contain any singularities, and within the 2 and 4 we use the contour integration. Additive

property of integration allows us to rewrite (1.11) as follows

[ = [ ey [z [T oy .
Jr[lf(z)dzﬂL/oo f(x)da.
TE+r

Hereafter, f(z) is the function of the real argument f(z), extended to the complex plane.
Now we study the contour integrals on intervals 2 and 4. We remark that the way around
the poles is chosen in order to satisfy the Sommerfeld radiation conditions (see below in the
text). We parametrise the variable z in the first integral to specify the contour 2 by setting
2z = —xj, —re'®, where m < ¢ < 0. Note that this parametrization defines the direction of the

integration. For contour 4, we set z = xj, — re’™ with 7 < ¢ < 27, and finally integral (1.11)
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can be defined in the following form

00 —Xp—T 0 ) Tp—T
| t@do= [ 7 p@ans [Citp@aos [T fwyis
—00 —00 s —ZE+r <113)

oo

2T
—i—/ irei¢f2(¢)d¢+/ f(z)dz,

kT
where f1(¢) = f(—zp — re'®) whereas fo(¢) = f(zp — r€'?).
It should be mentioned that the values of the contour integrals around the poles x = tx;

define the contribution of these singularity points into the overall result of the integration

(1.13).

1.2.4 Residue Theory

We consider the Laurent series

o

)= ) an(z—2)" (1.14)

n=—00
of the complex variable function f(z) around point zp. The constant a_; of these series is
called the residue of f(z). An important property of the residues is that if f(z) is analytic
at zp, its residue at this point is zero. Unfortunately, the converse is not always true (e.g, if
f(2) = 1, for which it is well-known that the residue at point z = 0 of this function is 0.).
We denote the residue of a function f(z) at zp point as Res,—,(f(2)).

Residues of f(z) function may be found without explicitly expanding it into the Laurent
series. If f(z) has a pole of order m at the point z = zp, then the residue can be found by
the formula

m—1
(m i 1)! dimq [(z = 20)™ f(2)] sy - (1.15)

Res,—(f(2)) =

The Cauchy integral theorem says that the value of a contour integral of any contour in
the complex plane depends only on the properties of a few special points inside the contour,

and therefore

7{ f(2)dz = 2mi Z Res,—q(f(2)), (1.16)

a€A

where A is the set of all poles of the function f(z) inside the closed contour . Here and
below, we used the material from the book by Henrici (1988).
One of the most useful theorems of the residue theory application is the Jourdan’s lemma.

Its statement is:
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Consider a complex-valued, continuous function f(z), defined on a semicircular contour
Cr={z:2=Re? 0 c[0,7]} of radius R > 0 lying in the upper half-plane, centred at the
origin. If the function f(z) is of the form f(z) = e?g(z), 2 € Cr with a parameter p > 0,
then Jordan’s lemma states the following upper bound for the contour integral

™ i0
< p Grél[gu;(r]}g(Re )| (1.17)

f(z)dz
Cr

An analogous statement for a semicircular contour in the lower half-plane holds when p < 0.
If f(z) is defined and continuous on the semicircular contour Cp for all large R and

Mp := maxgeo ] {g(Rew)‘ — 0 as R — oo, then by Jordan’s lemma

lim f(z)dz=0. (1.18)

R—o0 Cr
Application of the Jourdan’s lemma allows to find the improper integral of the above function

f(2) as follows
/_ f(z)dx = 27riZResZ:a(f(z)), (1.19)

acA

where A is a finite set of non-real points of singularity of g(z).

Figure 1.2: Contours of integration. Separation of the poles

Now let the function f(z) = e*P?g(z) satisfy all the conditions of Jourdan’s lemma except
for the function g(z) to have two real points of singularity z = £py. It is obvious that we
cannot apply the lemma directly for finding the integral (1.19). To avoid this complexity, we

introduce two following closed contours of integration as shown in Figure 1.2. Here, r << R
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and r << 1. As it can be seen, contour 1 has z = —p;, and contour 2 contains z = p;, inside.

Then, we can apply the Jourdan’s lemma and state that

/_OO f(z)dz = 2miRes ,—+p, (f(2)), (1.20)

where for the negative value of p we choose contour 1 and for positive p we take contour 2.

1.3 Governing equations

1.3.1 Equations of motion for Kirchhoff theory of thin elastic plate bending

In their renowned book Timoshenko and Woinowsky-Krieger (1987), the authors derive an
equation for the mid-plane small deflection w in the Kirchhoff classical theory of plate bend-
ing. It is applicable for various types of materials. Onwards we study two different shapes of

plates, namely semi-infinite and circular ones.

1.3.1.1 Equations of motion in Cartesian coordinate system

Figure 1.3: Semi-infinite plate. Cartesian coordinate system

In the case of a semi-infinite plate, it is natural to use the Cartesian coordinate system.
We specify the directions of the z and y coordinate axes as shown in Figure 1.3. We assume
that a plate occupies the space —0c0 < z < oo and 0 < y < oo with —h < 2z < h. In
the Kirchhoff plate theory, the equilibrium equation in the Cartesian coordinate system is
formulated in the two-dimensional space and takes the following form (here and below see
Timoshenko and Woinowsky-Krieger (1987) for more details)

PM, M, _0*My,
+ —2
0x? Oy? Ox0y

=—q, (1.21)

where M, M,, M,, are bending moments, ¢ is the intensity of a transverse load.
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In the dynamics of plates with traction-free faces, considered below, ¢ is

0%w

where h is the half-thickness of the plate, p - the density of plate material and w is the plate
deflection.

We assume that the material properties of the plate are constant along all directions.
Such a material is called isotropic (e.g. see Courtney (1990)). This assumption is justified for
many metals, including steel, ets. Such materials are characterised by two constants, namely
the Young’s modulus F and the Poisson’s ratio v.

To present equation (1.21) in terms of the deflection w of the plate, we express the

moments M, M, and M,, as

0*w 0%w
M, = -D(S24+v5a),
< o2 " oy >
0*w 0*w
M, = —-D|—= — 1.23
y (811;8) (1.23)
0*w
M., = D1 - .
Y ( V) axay
where D is the flexural rigidity of the plate specified by
2ER?
D= —"" . 1.24
3(1—v?) (1.24)

Now, substituting (1.24) into (1.21), we obtain the equation of motion in terms of the

deflection w as
*w 0*w *w  2ph 0%w
i 2 543 T 1T a2
ox 0x20y oy D ot

=0, (1.25)

or, in a symbolic form,
2ph 0*w

2 —

where the differential Laplace operator Aj was introduced in Section 1.2.

As it has been mentioned, the material properties of the plate are assumed to be the
same along all directions. However, there are cases when this assumption is violated. Let
us assume that there exist three planes of material symmetry with respect to its elastic
properties. A material with these properties is called orthotropic (e.g. see Courtney (1990)).
In the Kirchhoff plate theory the elastic relations are reduced to the 2-dimensional formulae.

For the latter case, the four constants, E}, £y, E” and G are used to characterise the elastic
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properties of the plate. Taking the aforementioned directions of symmetry as coordinate axes,
we may start from the same equation (1.21). In doing so, the bending moments M, M, and

M, are now expressed in terms of the deflection w by the following equalities

0%w 0w
M.I = - <D$ 481’2 + Dl ayg )
0%w 0%w
My = — <Dy8y2 + Dlax2) 5 (127)
0w
M.’Ey == 2nym
Here , -
E' E h
D, = xh ) Dy = o )
E’:’;h:‘ Gg?’ (1.28)
_D]_ — T, _ny — T

Also, note that the bending stiffnesses D,, D,, D1, and D,, must satisfy the foundational
inequalities

Dyy >0, D+ D, >0, D,D,— D?>0, (1.29)

which arise from the condition of the positive definiteness of the strain energy density dV =
Pw 1 0w 0w
— = | My— + M,— .
Yoroy 2 < 7 02 My 8y2>
On substituting (1.27) into equation (1.21) we get the sought for equation of motion. It
is
0*w 0*w 0*w 0w

vomg +2(D1+2Dy) 520 T D, o 2ph s = 0. (1.30)

In fact, isotropy is a particular case of orthotropy, in which the material parameters E.,,

D

E,, E", and G are expressed through F and v as

E vE E
E,=E = —, B = —, G = —— 1.31
v Y 1—v? 1—v?’ 21 +v)’ (1.31)

while the bending stiffnesses D, D,, Dy and D,, are connected with the flexural rigidity D
by
Dx:Dy = D’ Dl = Z/Da D:py = 2(1—1/)D (132)

1.3.1.2 Equation of motion in polar coordinate system

The polar coordinate system becomes optimal when dealing with bending of a circular plate.

We return to the case when the plate is an isotropic one. The equation of motion is

2ph 0%w

2 —
AL,T,gi)w + ?ﬁ = 0, (133)
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Figure 1.4: Circular plate. Polar coordinate system

where Ar , 4 is the differential operator presented above in Section 1.2. This equation can

be directly obtained by using the relations between Polar and Cartesian coordinates (1.3).

1.3.2 Boundary conditions
1.3.2.1 Cartesian coordinates

We begin with a semi-infinite plate. Assuming that x and y coordinates are taken as shown
in Figure 1.3, we consider three types of boundary conditions, including a traction-free edge
and also one loaded by external bending moment or shear forces.

If the plate edge is entirely free, it is reasonable to assume that there are no bending and
twisting moments, and also no vertical shear forces being indicative, therefore the boundary

conditions at y = 0 are
My = 0, Mxy = 0, Sy = 0. (134)

However, it is obvious that only two boundary conditions are sufficient for finding the
deflection w. To get rid of this contradiction we have to introduce the so-called Kirchhoff

shear force (see Kirchhoff (1850) for more information).
OMy,
V, = <Sy = y) : (1.35)

In fact, the latter can be justified as a pretty delicate asymptotic analysis of the original

3D problem of elasticity, taking into account boundary layers (e.g. see Friedrichs (1955)).

In terms of deflection w (1.35) can be rewritten as: for an isotropic material

0w Ow
V== (G + g ).
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for an orthotropic material

Pw Pw

Thus, the boundary conditions at y = 0 are
M, = 0, V, = 0, (1.36)

or, in terms of the deflection w: for an isotropic plate

0%w n V62w 0
02 a2
P (1.37)
—+2—-v)=—— =0
oy +2-v) 0x20y ’
and for an orthotropic material
2 2
p, 2% p 2w _
Oy? Ox? 138
Pw Pw (1.38)
D,—+ (D1 +4D,y) ——— = 0.
Y oy3 + (Dt v) 0x20y 0

If the plate edge is loaded, we consider the combination of the bending moments and shear
forces. Due to the linear nature of the problem, we can separate the original problem into two;
in doing so, the first problem corresponds to the loading in the form of a bending moment,
whereas the second one deals with a shear force prescribed at the edge. In this thesis, the

problems for the deflection caused by moments and shear forces are studied separately.

D

L~
Lo

Figure 1.5: Bending moment at the plate edge. Loading scheme

For a bending moment M, = My(x,t) applied at the plate edge y = 0 as shown in Figure

1.5, the boundary conditions become

M, = My(z,t), V, = 0. (1.39)
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In terms of w they can be rewritten as: for an isotropic plate

0%w 0%w My(x,t)
—tv— = ——7
Pw +(2- ,/)637“’ - 0 .
oy ox20y
and for an orthotropic plate
0? 0?
DSy +Disy = —Mo(x,t),
9y 9z (1.41)
D63w+(D +4D,,) Pw _
Y oy3 ! Mooy
No y/'

S e
’ <

Figure 1.6: Transverse shear force at the plate edge. Scheme of loading

For a shear force Ny = Ny(x,t) applied at the plate edge y = 0 as shown in Figure 1.6,

the boundary conditions become

M, = 0, V, = No(,t). (1.42)

In terms of w they are: for an isotropic plate

0%w n V82w _ 0
oy* ~ Oa? ’ (1.43)
Ow r(2- ,,)637“’ _ Mo,
oy3 0x20y D’
and for an orthotropic plate
0? 0?
Dyig) + Dliqg = 07
9y 9z (1.44)
D83w+(D +4Dy,) Pw
Y oy3 ! Wox20y 0



1.3 Governing equations 17

1.3.2.2 Boundary conditions in polar coordinates

Considering an isotropic plate, the bending moments M,, My and M, 4 and shear forces S,

and Sy are expressed in terms of the deflection w as follows

2 2
MT:_DOw 1 0w 13w>},

o \ror TP oy
M, — _p|tow 10w 0w
¢ ror 12 0¢? Yor? |

1 0%w 1 ow
Mg = “‘”)D(raraqrrzagﬁ’

(1.45)

and

Sr = D (ALr(bw) ’
"y (1.46)
S¢ = —D;i(Aquﬁw)-

For a traction-free plate edge, boundary conditions have the same form as in Cartesian

coordinates, i.e. at r = R (where R is the outer radius of a circular plate), we get
M, = 0, V, = 0, (1.47)

where M, is specified by the first formula in (1.45), and

10M, 4
= (S"‘r 9 )

In terms of the deflection w, boundary conditions finally become

or? rdr = r2dp? ’ (1.48)
Q(A )+(1_V)1£ 10w  10w) _ 0 '
oy Lot rd¢ \rordp r20p ’



Chapter 2

Konenkov flexural edge wave in

isotropic plate

2.1 Konenkov flexural edge wave in semi-infinite plate

In this section we consider flexural edge waves appearing in a semi-infinite isotropic plate.
Various boundary conditions are considered. An approximate parabolic-elliptic explicit model

is formulated.

2.1.1 Homogeneous edge wave
2.1.1.1 Basic equations

We consider elastic bending of an isotropic semi-infinite plate. The equation of motion was
formulated in Section 1.3.1 (see (1.25) or (1.26)). First, we study the homogeneous boundary
conditions along the plate edge, written in form (1.37).

After introducing new dimensionless quantities by the formulae

T Y w t
= — = — * = — —
3 7 W =7

2.1
h’ h? h’ ( )

where h is the half-thickness of the plate, T is a typical time scale, and applying the Fourier

and Laplace integral transforms' with respect to &-coordinate (¢ — ip) and 7-coordinate

!Fourier and Laplace transforms will be used further for solving non-homogeneous problems.

18
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(T — s), equation of motion (1.25) and the boundary conditions (1.37) become

AW W

4 2 2\Th7
i 2p e + (p" + A\gsH)W =0, (2.2)
where
2ph®
2 _
is the dimensionless frequency parameter, and at n = 0
>W A
W — VpQW = 07
d*W ! AW 24
-2-v)p*— = 0.

dn3 dn

Now, we need to find the solution of equation (2.2) with boundary conditions (2.4) which

decays at the infinity.

2.1.1.2 Konenkov flexural edge wave speed in isotropic plate

The solution of problem (2.2)-(2.4) can be taken in the form
W(n) = Ce, (25)

On substituting it into (2.2) we find the values of the parameter

T2 = £V +ides,
Y34 = E/DP?—iXos

According to the conditions at infinity (therefore, we need Re(v;) > 0, i = 1,2,3,4) we

write the sought for solution as follows
W(n) = Ae™®" + Be P, (2.6)

where

a = /p?+idos,
B = VPP —ids,
and A and B are arbitrary constants.
We substitute (2.6) into the boundary conditions (2.4). This leads to a system of two

linear equations for the unknowns A and B. We write this system in matrix form. Thus,

2 _ 2 2 _ 02
«orp gr—vp AN 10 (2.8)
(&> = 2-v)p?a (2 —(2-v)p*)B B 0
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System (2.8) has a non-zero solution only when the determinant of the matrix in the

left-hand side equals to zero. As a result, we get
(B —a)[a®8% = (& + B*)vp? + 2(1 — v)aBp® + v(2 - v)p'] = 0, (2.9)

or

PR+ (L=t 21— )y fpt + 20 = 0. (210)

Before proceeding to the analysis of this equation, let us introduce the parameter

o= VZi5h (2.11)
P

In terms of ¢, equation (2.10) can be rewritten as
1— = +2(1—v)V1—ct =0. (2.12)
Now, we multiply the above equation by
X(@)=1-12—c* =201 —v)V1-c4, (2.13)

which never equals zero at the zeros of the denominator. This can be seen in Figure 2.1. We

b T T

005

02B—

035
0.05 010 0.15 020 025 0.30 035 0.40 0.45 0.50

v

Figure 2.1: Function X (c) at the first zero of denominator versus Poisson’s ratio

use this function below when operating with the solutions of the related problems.
Then, it becomes straightforward to find the solutions of the amended equation in the

following form
d o= (1-v) [31/—1—}—2\/2#—21/—&—1} :

(2.14)
4 = 1-v) [3V—1—2\/2v2—21/+1} .
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010 015 020 025 0.30 035 0.40 0.45
¥

Figure 2.2: Second root c5 versus Poisson’s ratio

It can be seen in Figure 2.2 that c3 has a negative value, and, therefore, it has no physical

meaning. The only root of this equation, in which we are interested in, is the root c;

corresponding to the so-called Konenkov flexural edge wave speed (Konenkov (1960)). Note

that Konenkov flexural edge wave speed depends on a number of parameters including the

frequency parameter \g, therefore we treat c; as a Konenkov flexural edge wave coefficient.

Dependence of ¢ on Poisson’s ratio is shown in Figure 2.3.

1.000

0998 —

0996 —

s 0994

0992 —

0.990—

0968
005

0.10 01s 020 025 030 035 0.40 045

Figure 2.3: Konenkov flexural edge wave coefficient versus Poisson’s ratio
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2.1.2 Bending moment at plate edge
2.1.2.1 Basic equations

Now we assume that a bending moment is applied at the semi-infinite plate edge y = 0.
In this case, the equation of motion can be taken in form (1.25) as before. The boundary
conditions for this type of loading were considered in Section 1.3.2 (see formula (1.42)).

As in Section 2.1.1, we introduce dimensionless quantities (2.1) and after applying the in-

tegral transforms we arrive at equation of motion (2.2). Boundary conditions (1.43) transform

to -
aw - -
d 9 _Vp2W = _M07
aa N . (2.15)
M —(2—-v) QM = 0
dn?3 P dn

where Mg(p, s) is the transformed dimensionless bending moment applied at the plate edge

—7]1 00677;6 o e *Tdr
MO(p7S) - \/%D /oo P <A MO(S? ) d )dp (216)

2.1.2.2 Exact solution in terms of integral transforms

We further seek for the solution of problem (2.2), (2.15) in form (2.6), where « and S are
the parameters from (2.7). The substitution of the solution into boundary conditions (2.15)
results in a system of linear equations for the unknown constants A and B. It can be presented

in a matrix form as

a? — vp? 2 up? A — M
P Fr-vp - ° 1. (2.17)

@+ 2-v)p)a (B2+2-v)p»)B | | B 0

In Section 2.1.1 we explored only the determinant of this system, whereas now we express

its solution as

Aq Ay
A=— B=_—= 2.18
A ? A ) ( )
where
042 _ I/p2 ,32 _ I/p2

= (B-a)[a®B? — (o + )vp® +2(1 - v)app® + v(2 - v)p'],
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and

Ay = = —My > = (2-v)p*] 5.

Ay = = My[o?—(2—-v)p?]a.
T e o e

Finally, the transformed solution for a semi-infinite plate deflection, expressed through

parameter ¢ (see (2.11)) appears as

5 ] 2 cle” = c 6_@6&7
Wi = e Al Aol X(), (219
with
Ai(e) = [1-v)=]V1+e2
No(c) = —[1-v)+2]VI-¢2, (2.20)
Ale) = (Be—ac) (c* = c3),
and

a. = V1-—c2,
(2.21)
Be = V1+c,
where X (c) is given by (2.13).

2.1.2.3 Derivation of explicit dual parabolic-elliptic model for Konenkov flexural

edge wave

Our goal now is to determine the Konenkov flexural edge wave contribution in exact solution
(2.19). It is natural to assume that this contribution is dominated by the poles ¢ = %¢y, of the
denominator. For this reason, we expand the transformed solution around its zeros ¢ = %c¢;
to take into account only the contribution of the Konenkov flexural edge wave. Thus, we get
in the leading order at the plate edge n =0

M, 2

V, = QW —_— 2.22
We Qe (Ck) —iS)\Q A Ci7 ( )
where
Aq(ek) + Ag(ek)
(1) — 2R T 22 x 2.23
Qe A(Ck) (Ck)a ( )
or, in terms of the transform parameter p, we have
A ~ p2
We = —QWNp—— 2 (2.24)

p4ci + s2A3°
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The last expression satisfies the following dimensionless equation

484W: 282W: (1)&282]\46‘(5,7')

“ger T SO T e

which corresponds to the equation in the original dimensional variables

(1 Qwe | 2ph Pwe _ o) 1 0°My
k-t D 0t2 € D 022

(2.25)

where we(z,t) is the edge deflection associated with the Konenkov flexural edge wave.

To obtain an equation over the interior domain we substitute the expression for the
4

c
Konenkov flexural edge wave poles s? = —)\—’gp‘l into the transformed equation of motion
0

(2.2), resulting in
d4 WZ 2p2 d2 W’Ln
dn* dn?

In the original variables the latter becomes

+ (1= c)p*Wy, = 0. (2.26)

64wm (94’LUm 4 84win
2 1—
oyt * Ox20y? +(1=c) ozt

—0, (2.27)

with w;, (z,y) is the deflection within the interior domain, induced by the Konenkov flexural
edge wave.

The first boundary condition for w;,(z,y) may be taken as
Win(2,0) = we(z), (2.28)

while the second one may be implied in the form

82wm a2we
o = Ve (2.29)

Such a choice of the boundary conditions is specified by the idea of the model. Let us consider

the case when the boundary conditions have more intuitive form

Win(z,0) = we(z),
0% wip, O*we Mo
= —U _——_—
0y? Ox? D’

where we(z, t) is the edge deflection induced by the Konenkov wave only, therefore the solution
into the interior, due to the elliptic nature of its equation (2.27), naturally should be a decay
of we, and, therefore, should be some function of it. Now, due to the linear character of the
problem, we may split the solution and the boundary conditions into

Win,1(2,0) = we(x),

2 2
0 Win,1 0% we

= —v
Oy? 0x?’
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and
’wm72(.%', 0) = 0,
82wm,2 o Mo
o2~ D’

Solution w;, 1 obviously gives the sought for wave decay within the interior, whereas w; 2 is
the deflection induced by the external bending moment excitation only and obviously is not
a deformation from the flexural edge wave. Therefore it should be omitted due to the model
nature and method of its construction.

The derived model clearly reveals a dual parabolic-elliptic nature of the Konenkov flexural
edge wave. It consists of a parabolic equation (2.25) along the edge and elliptic equation
(2.27) over the interior along with boundary conditions (2.28)-(2.29). It is in contrast to
a hyperbolic-elliptic nature of the classical Rayleigh wave for which we get a hyperbolic
equation instead of the parabolic one at the edge (see Rayleigh (1885) and Kaplunov et al.
(2006)).

2.1.2.4 Comparison with exact solution

In the section above we obtained exact solution (2.19) in terms of integral transforms, and
also derived explicit dual parabolic-elliptic model for Konenkov flexural edge wave (see (2.25),
(2.27)-(2.29)). Next, we compare these solutions by applying the inverse Fourier transform
and plotting the graphs for these solutions expressed through the dimensionless deflections.
We consider a bending moment Mo(x,t) = Myd(z)e ™" applied at the plate edge y = 0. Here

and below, Poisson’s ratio is assumed to be v = % In this case, the frequency parameter

2phbw?
Ao = 1/ pD . (2.30)

Also, for the harmonic case under study, the deflection w(z, y, t) may be found as w(x, y,t) =

takes the form

W (z,y)e~™*. Thus, we do not need to apply the Laplace integral transform. For the point-
moment Mg we rewrite the exact solution in a more convenient form using the parameter p,
i.e.

P> Ag(p)e” ™ + Ag(p)e”

Wi(n) = M,
() Opt —pt A(p)

X(p). (2.31)

Here,

a=E o, A=+, (2:32)
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Ai(p) = [(1=v)p* = XolVP? + Ao,
As(p) = —[(1=v)p* + X]V/P* = Do, (2.3
Alp) = cies(8—a)(p* - p),

X(p) = (1=v*)p" =201 —v)\/p* = Xp* = N,
with

Vado Vo (2.34)

Pk = , P2 = .
Cl Co

The deflection corresponding to the Konenkov flexural edge wave may be found from
formula (2.31) by isolating the contribution of the poles p = +py in the overall solution. This
contribution follows from the contour integration (see Section 1.2.3). The result of integration

W*is

€

. 1 . , . ,
wW; = Ner [/2 W(n, z1)e*¢dz +AW(7),22)6”25d22 . (2.35)
Here and below, the radius r of the semi-circles in Figure 1.1 is taken as
|1 — Ck’
= 2.36
"~ 10000 (2:36)

due to the sensitivity of the calculations in Matlab. This is the lower limit of the universal
expression for r in all problems solved in the thesis.
The solution of parabolic equation (2.25) follows immediately from the residue theory

(see Section 1.2.4). It is given by

1 RN - 27 . :
W= — We(n, p)eP*dp = Res,—,, (W.(n, z)e*"), 2.37
f= o [ Wl dp = T Res oy, (Wi (0. 2)e) 2.37)
where
A ~ p2
We(n,p) = QY My—— (2.38)
b — D
with

o — Aq(pr) + Ao (pr)
‘ A(pr)

Therefore, the explicit solution for the dimensionless plate edge deflection W correspond-

X (pr)- (2.39)

ing to the Konenkov flexural edge wave is given by

~ 1 .
W*(€) = \/2m'Q§1)Mgﬂe”’k§ : (2.40)
k
The graph of the deflection at the plate edge related to the Konenkov flexural edge wave

is presented in Figure 2.4. In this case we take the value \g = 1. Here and below all the
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Figure 2.4: Konenkov flexural edge wave in isotropic plate (Ag = 1). Comparison of exact (2.35) and

approximate (2.40) solutions

solutions were obtained numerically using Matlab 7.1. Figure 2.4 clearly demonstrates that
both methods give similar results, as predicted. Also note that we take the value My =27
My
so that the expression —— = 1.
P V2T

To find an overall solution in the dimensionless form W*(£,n), we need to evaluate the

following integral
* 1 < s 3
W) = <= [ W (2.41)

(The method of integrating was described in Section 1.2.3.)

Note that there exist two branch points p = 4+/\g on the real axis of the solution W(n, D)
(see (2.31)). In the interval between them (when —v/Ag < p < v/Ag) the quantity « takes the
value o = —i/Ag — p? to satisfy the Sommerfeld radiation condition at co. It is obvious that
for —co<p< —Xpand \g<p<ooa= \/m is real-valued to ensure the exponential
decay.

The obtained numerical solution along with the explicit contribution of the Konenkov
flexural edge wave given by (2.40) is shown below for different values of the frequency pa-
rameter A\g = 0.1 (Figure 2.5), A\g = 1 (Figure 2.6) and Ao = 10 (Figure 2.7) (at the plate
edge n = 0). Figures 2.5-2.7 show that the Konenkov flexural edge wave makes a dominating
contribution to the overall deflection of the plate edge. The only region where the overall

deflection is larger than that in the Konenkov flexural edge wave is the vicinity of the point
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moment. This is similar to the far-field assumption for the asymptotic model of the Rayleigh

wave (see Kaplunov et al. (2006)). Note also that the above vicinity is rather narrow since §

is the original coordinate x, normalised by the plate half-thickness.
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Figure 2.5: Edge deflection in isotropic plate (Ao = 0.1). Overall solution (2.41) and Konenkov flexural edge

s

wave contribution (2.40)
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Figure 2.6: Edge deflection in isotropic plate (Ao = 1). Overall solution (2.41) and Konenkov flexural edge

wave contribution (2.40)

A similar approach as described above was used to obtain the solutions over the interior

domain. Instead of a parabolic equation at the edge, elliptic problem (2.27)-(2.29) is analysed.
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Figure 2.7: Edge deflection in isotropic plate (Ao = 10). Overall solution (2.41) and Konenkov flexural edge

wave contribution (2.40)

The solution of this problem is given in terms of the integral transforms. It is

- QEI)MO p2
in(n, D) 20% Pt — Pi

[[(1 = ) + lpPemoe e — [(1 = ) = Fp2e 0] | (2.4)

This function may be integrated using the residue theory (see Section 1.2.4), and the final

solution for the Konenkov flexural edge wave deflection over the interior domain becomes

W 1 .
Wi (&,m) = V2mi Qe 5 0_— [[(1 —v)pi + Aole ™ @PE)m (1 — v)ps — )\O]e—ﬁ(pk)n] eiPkE

CL 4pk
(2.43)

We plot the graphs only for the single value of the frequency parameter \g = 1 due
to the similarity of all the deflection profiles. Numerical solutions, obtained by the scheme
described in Section 1.2.3, were also plotted for the various values of the coordinate 1. The
results are presented in Figures 2.8-2.9. They confirm an intuitive expectation that the
Konenkov flexural edge wave makes a key contribution into the exact solution near the edge.

Finally, 3D profiles of the dimensionless deflection associated with the Konenkov flexural
edge wave, obtained by the integration of the solutions (2.40) and (2.43) and the profile of
the overall deflection are produced (see Figures 2.10-2.11).
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Figure 2.8: Overall deflection of isotropic plate (n = 1). Overall solution (2.41) and dual parabolic-elliptic

model (2.43) for g =1
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Figure 2.9: Overall deflection of isotropic plate (n = 10). Overall solution (2.41) and dual parabolic-elliptic
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Figure 2.10: Konenkov flexural edge wave in isotropic plate. 3D profile for dual parabolic-elliptic model
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2.1.3 Transverse shear force at plate edge

In this section we consider another type of edge loading in the form of a transverse shear

force (see Figure 1.6).

2.1.3.1 Formulation of problem

The equation of motion for w deflection takes the form (1.25) or (1.26) as before, whereas
the boundary conditions are given now by (1.43).

By introducing dimensionless quantities (2.1) and applying integral transforms, the sought
for equation of motion takes form (2.2); in doing so, boundary conditions (1.43) at n = 0

become

2w R

— —uvpPW = 0,

dn? 9.44
BV i ) (2:44)
W _ -l = W,
dn? dn

where No(p, s) is the transformed dimensionless analogue of the original transverse shear

force which may be treated as a constant depending only on parameters p and s. It is

R h2 e8] ) oo
No(p,s) = \/%D/ e~ Pt </0 Ng({,r)637d7'> dp. (2.45)

As above, the solution of problem (2.2) and (2.44) takes form (2.6)-(2.7). Now we in-
troduce a new function, v(x,y,t), which can be interpreted as the rotation angle about the
ZT-axis.

v(z,y,t) = (ZZ (2.46)

For the latter, an equation of motion may be written in the same form, i.e.

0t 0*v o' 2ph @

ot 27&62%2 toit D aE - 0. (2.47)

In terms of the dimensionless quantities (2.1) its transformed analogue becomes
2 ) A

—— =20 —— + (' + A§sH)V = 0. (2.48)
n

Next, we need to formulate the boundary conditions for the transformed function V(7).

This is expressed through the function W as (see (2.6) and (2.7))

A

V(n) = —ade " — BBe P, (2.49)
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On using boundary conditions (2.44) for W we conclude that at n = 0

v _ vp?W(0) = 0,
. dn (2.50)
4>V o .
an? (2=v)p*V(0) = —No.

Then we express W (n) through V(n) at the plate edge n = 0. From (2.49) we deduce
that

A

V(0) = —aA — 5B.

Substitution of (2.49) into the second equation (2.50) yields
—(a® = (2-v)p?)ad — (6% — (2 — v)p?)BB = —Ny.

As a result, we get a system for the unknown constants A and B as follows

aA + BB = =V(0),
(2= 2-v)p?)ad + (82— (2-v)p*)BB = No.

The solution of this system is given by

B (V(0) (82 = (2= v)p?) + No)

A = -
af(p? —a?) ’
a (V(O) (@® = (2-v)p?) + ]\70>
B = .
af(p* —a?)
On inserting the expressions for A and B into the formula for W (0) we get
W) A+ B —— N0 _pgfitabte’ - @-vp
af(o+ B) af(a+ )

Thus, we expressed the transformed deflection W(O) at the plate edge through the trans-

formed rotation angle V(O) The sought for boundary conditions for V(n) at 7 = 0 take the

form )
dav 2 ‘ 2 A7
aBla+p)—— + vp’Y(p)V(0) = —vp°No,
dgig (2.51)
v B .
anr (2—-v)p°V(0) = —No,
where

Y(p) =2 +aB+a’— (2—v)p”. (2.52)
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2.1.3.2 Exact solution in terms of integral transforms

We take the solution of the problem, formulated in the previous section, as

V(n) = A1e= " + Bye . (2.53)

It can be easily verified that it satisfies the above equation of motion (2.48), and we can
proceed with finding the unknown constants A; and Bj using boundary conditions (2.51).
The substitution of (2.53) into (2.51) leads to a system for A; and Bj, which may be presented

in a matrix form as

=Y (p)vp® + o®Bla+B) ~Y(p)vp® +apf*(a+5) Ay vp* Ny
a? — (2 —v)p? B2+ (2 —v)p? B; — Ny
As shown above, the formulae for A; and B; are given by

A Ao

A= Bi=2 (2.54)
where
A = —(B—a)[a?8?—(a®+ 2)p* —2(1 —v)afp* + v(2 —v)p?], (2.55)
and
A = Noa(B? —uvp?), 2.56)

Ay = —NoB(a? —vp?).
Next, we determine the zeroes of the denominator A in (2.55). Comparison with equation
(2.9) shows that it has the same zeros (2.14).

On introducing the parameter ¢ from (2.11), we present the solution for V(n) as

V) = No @ Aic)e” 0 aen + Ag(c)e” _ZSAO,Bch(C) 2.57)
= —isAo (c* — c}) A(c) ’ '
where
Ale) = —(Be—ac)(c" — ),

Aile) = —[1-v)+2]V1-¢, (2.58)
As(e) = [1-v)=]V1+e
Here, a, and (. were given previously in (2.20) and the function X (c) was presented by

equality (2.13).
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2.1.3.3 Derivation of explicit dual parabolic-elliptic model

To investigate the contribution of the poles associated with the Konenkov flexural edge wave,

we set ¢ = £¢i, in the formula (2.57). The result is (n = 0)

~

~ NO 02
Vo=A1+ B = (2)
1+ 51 —18Ag (c4 — ck) @

where

Aq(cg) + Aa(c)
(2) — 2L 2 x 2.59
Qe A(Ck;) (Cli')’ ( )
or, in terms of parameter p
~ A~ p2
Vo= —No—1——550%. (2.60)

cipt 4 A3s?
This solution rewritten in the original variables corresponds to the equation for the rota-

tion angle around the x-axis

a0Me(@,t) | 2ph 0ve
kot D ot2

1 92N,
— N2 = 0
Qe D 0z2°’

(2.61)

where v (x,t) is the rotation angle at the plate edge.
To obtain an equation for the rotation angle over the interior domain we can substitute
4
c
the expression for the Konenkov flexural edge wave poles s? = ——];p‘l into the transformed
0

equation of motion (2.48), resulting in

dn* P dn?

d*Vin d*Vin A
Loop? =20 4 (1— c)p*Vime(n) = O,

which corresponds to the equation in the original variables

84'Uint 84'Uint 4
oyt + 261‘207;2 +(1=6)

4
0 Vint
Ozt

=0, (2.62)

where v (2,y) is the rotation angle for the Konenkov flexural edge wave over the interior
domain.

The first boundary condition for vy (z,y) is

Vint(x,0) = ve (), (2.63)
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while the second one follows from the second boundary condition (2.51) at y =0

a2vint 827)6
- (2- :
Oy? (2-v) 0z2

The remark about the right hand side of the above boundary conditions is similar to the one

(2.64)

described above in Section 2.1.2. The idea of model construction is that these models reveal
deformations caused only by the Konenkov wave, and omit those of bulk waves of any types.

Derived model (2.61)-(2.64) also reveals the dual parabolic-elliptic nature of the Konenkov
flexural edge wave. However, in the case of transverse shear force, it is derived for the rotation

angle v.

2.1.3.4 Explicit model for edge wave induced by transverse shear force. Attempt

of alternative formulation

As yet we have derived no model in terms of deflections for this type of loading (see Figure
1.6). Further we will try to reveal our reasons for this choice.

Let the equation of motion for the plate deflection w again be given by (1.25) or (1.26), and
the boundary conditions take form (1.43). In dimensionless quantities (2.1) the transformed
equation and boundary conditions take form (2.2) and (2.44), respectively.

This time we express the sought for solution in terms of the transformed deflection W(n)
As above, the solution of problem (2.2), (2.44) can be found in form (2.6)-(2.7). On substi-
tuting solution (2.6) into boundary conditions (2.44) we get a system of linear equations for

the unknown constants A and B. In a matrix form, the latter can be written as

a? — vp? 2 _ up? A 0
b Fr—vp _ . (2.65)

(@ —@2-v)pPa (B2-2-v)p*)B | | B —Nj
On introducing the parameter ¢ from (2.11) and the function X (¢) from (2.13), we present

the above constants as

B c? ~ Aq(c) .
4T G a1 266
B = ¢ 702209 x4, |

(—isho)?2(c* —ch) " A(o)
where
Aq(c) = [(1 —v)+ 02] ,
Ag(c) = —[(1—-v)—¢Y, (2.67)

A(C) = - (ﬁc - Oéc) (04 - C%)
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Finally, the transformed deflection of the plate becomes

~ V/ —isA £/ — 1S\
- No A Alc)e e Oacn—i-Ag(c)e* o Pen

W) = (—isAo)3/2 ¢t — ¢} A(e)

X(c). (2.68)

It is remarkable that the last formula does not allow an elegant explicit model for the
Konenkov flexural edge wave to be derived, as it has been done above, due to the ¢? factor
because the odd power does not lead to the sought for real-valued differential operator (see
Section 1.2.2). Such a model may be derived from the expression for the transformed rotation
angle. On using the relation between the functions W (n) and V (), we get a formula for the
transformed rotation angle. As it might be expected, it takes the same form (see (2.57) and

(2.58) above).

2.1.3.5 Comparison with exact solution

Comparison of the derived model (2.61)-(2.64) and the exact formulation (2.57) utilises the
same methodology as in Section 2.1.2. Below, the shear force is taken in the form Ny(z,t) =
Nob(z)e~ ™,

The edge rotation angle, associated with the Konenkov flexural edge wave, may be found
in two ways. First, we calculate the contribution to the exact solution related to the poles.

Let us evaluate the integrals

1 ~ . N .
Vi=—— | [ V(n, z)e*d +/V . 2z9)e'?28d ] 2.69
o | [Pt [V e, (269

In this case the exact solution may be further rewritten in terms of the parameter p as

2 —a —Bn
~ o 7 A(p)em ™+ Ag(ple
Vin,p) = N

(n:) Opt—pl A(p)

X(p), (2.70)

with
Ai(p) = =1 =v)p* + A]VP* = o,
Aa(p) = [ =v)p* = XolV/P* + o, (2.71)
Alp) = —cea(B—a)(p' —p3),
where the function X (p) takes the same form (2.33) as above, Ag is (2.30) and the quantities
« and 3 are expressed through (2.32).

The solution of the parabolic equation (2.61) is found using the residue theory as

1 RN - 2mi . ,
V= —— | V.(n,pePidp = Res,—p, (Ve(n, 2)e%). 2.72
e /7271_ /—oo (77 p) p \/% pk( (T] ) ) ( )
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The constant Ql(f) of the transformed angle V. also can be rewritten in the following form

@ _ A1(pr) + Ao(pr)
Qe A(pr) X (pr)-

Finally, the solution for V* induced by the Konenkov flexural edge wave can be written

(2.73)

in the form

~ 1 .
V(0,6 =V 27T¢Q£2)No§ew’f5 . (2.74)
k

As shown above, the small radius of the integration semi-circle (2.69) is taken as (2.36).
Here and below the numerical solutions are created for one value of the frequency parameter
Ao = 1 due to the similarity of the rotation profiles. Also, No = /27 similar to Mg in the
previous Section 2.1.2.4.

The methodology of obtaining the overall solution is the same as in Section 2.1.2. Also, as
above, the integration involves the choice of the branch cuts. The overall numerical solution

in the form
* 1 * . i
V(&) = \/%/ V(n,p)e™ dp (2.75)

compared with the Konenkov flexural edge wave contribution (2.74) is demonstrated in Figure
2.12. It shows that the Konenkov flexural edge wave makes the dominating contribution to
the overall edge rotation angle. The only region where the overall angle is larger than that for
Konenkov flexural edge wave is the vicinity of the point force. We note again that here £ is
the original coordinate normalised by the plate half-thickness. Therefore, the above vicinity
is rather narrow.

A similar approach was used to obtain the solutions over the interior domain. Instead of
a parabolic equation at the edge, an elliptic problem (2.62)-(2.64) is analyzed. The solution

of this problem is given below in terms of the integral transforms. It is

~ QYN,  p?
Vin(n,p) = 52 p74 i —[(1—-v) - cz]p%_ac(%)pn +[(1-v)+ c,2€]p2e_5c(c’“)p77 . (2.76)
k k

The above function can be integrated using the residue theory, and the final solution for
the Konenkov flexural edge wave rotation angle over the interior domain is presented in the

following form

(2) 5 ,
Qe QNOL —[(1 = v)p? — Aole@Pe)n 4 [(1 — V)pi + AolePpr)n | gipit

Vinl&m) = Vami= 5=
(2.77)
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The numerical data for the interior domain is given in Figures 2.13-2.14. They confirm
an intuitive expectation that the Konenkov flexural edge wave makes a key contribution to

the exact solution near the edge.

Comparison of the 3D profiles corresponding to the proposed dual parabolic-elliptic model

and the exact solution are presented in Figures 2.15-2.16.
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Figure 2.12: Edge rotation angle in isotropic plate (Ag = 1). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.74)
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Figure 2.13: Overall rotation angle of isotropic plate (n = 1). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.77)
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Figure 2.14: Overall rotation angle of isotropic plate (n = 10). Overall solution (2.75) and Konenkov flexural

edge wave contribution (2.77)
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Figure 2.15: Konenkov flexural edge wave in isotropic plate. 3D profile of the parabolic-elliptic model (2.74),
(2.77)
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Figure 2.16: Overall rotation angle of isotropic plate. 3D profile of the exact solution (2.75)
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2.2 Konenkov flexural edge wave in isotropic circular plates

In this section we consider the edge vibrations in the thin circular plate of radius R and
thickness 2h.
2.2.1 Basic equations

The equation of motion for the deflection w is given by equation (1.33). Taking into account
that the plate edge is free from any forces, the boundary conditions are presented in (1.48).

The solution for the original plate deflection w can be taken in the following form
w(r, ¢, t) = W(r,t)enf?, (2.78)

where n is the wave number. Equation of motion (1.33) and boundary conditions (1.48)

become
W 203W 14+ 2n2R?29°W 14 2n2R2O0W  n*R*Y— 2n’R? 2ph O*°W
Tl 5 5 3 + 1 W(rt)+ ——%5 =0,
or r Or r aor r aor r D ot
and at r = R
0w 10W  n’R?
— - ——W(n,t =0
3 2 2 p2 2 p2 o +V(r28r2 r 2(; )) |
o°w  10°'W 1+n°R°OW  2n°R n*R*OW n°R
- _ 1— — = 0.
or3  r or? r2 or * r3 W+{1-v) < r2  Or + r3 W) 0
Now, we introduce new dimensionless quantities
r=R(1—en), t=T1, w=hW*, (2.79)
1
h =—.
where & = -

With (2.79) and after applying the Laplace integral transform to the 7 variable (7 — s)

we obtain the equation for the transformed deflection W (n) as

AT 9 313 2.9 2N 349 dW 1—2¢?
dW 2 &EW P42 EW 42 dW T a2 =0, (2.80)
dpt  l—endp  (L—en)? dp>  (1-en)®dyp  |[(1-en)

where
R*2ph
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The boundary conditions at n = 0 (that is = R) are given by

d2W . d

— VW—VE—W = 0,

dn? dr (2.82)
dBW dW d2W . dW '
- —(2—v)— — 3 Wl —e22— = 0

We consider the case when the edge wave length is much smaller than R and larger than
h
h, i.e. the parameter = < ¢ < 1. Then equation (2.81) and boundary conditions (2.82)

become (here we neglect all the terms of order O(g?) and higher)

AW W . BW E2W AW .
— 22— 4+ (1-MHW —€ |2 4 2— — = 2.
! e +(1-cHW —¢ [ o +4n e + a enW 0, (2.83)
and -
d“wW . dw
TT/Q vW — EI/T = 0,
- - - 2.84)
d>3W dw AW N (
—_— = (2 —-v)— — 3—vYW| =0
where we define ¢ as
= —s2\3el. (2.85)

2.2.2 Solution of problem

We look for the transformed deflection W () in the form
W (n) = Wo(n) +eWi(n), (2.86)

so that the equation of motion can be split into two: for Wy and W, respectively. This results

in
AWy d2Wo -
-2 1—cHWo =0 2.87
d774 an +( c ) 0 ) ( )
and
dAW dB3W, d2W dW, R .
Lo 20 o2 1 =0 11— MWy + Wi | = 0. (2.88)

dn?t dn3 dn? dn
We start with the equation for Wy (2.87). We seek solution in the form

W() = Ce 1,
substitution of which into (2.87) gives

Wo = Ae™" + Be™#1, (2.89)
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where
a=+V1-—c2
(2.90)
f=VIT e

and A and B are arbitrary constants.
Now, as we have found the expression for W, we may obtain a non-homogeneous ordinary

differential equation for Wy

LN X
41 -2 21 + (1= = [—2 1—c2(2—¢%) — 417(:2] Ae=
dr dn (2.91)
+ [—2 14+ 22+ )+ 417c2] Be P,
Solution of (2.91) may be taken in the form
Wi = (A1 + Aan?) Ae™ " + (Byn + Bon?)Be 51, (2.92)

On substituting it into (2.91), we arrive at the explicit expressions for unknown constants

A1, Ay, By, By

c? 1
Al = ————, Ay = ———,
' 2(1—c2) 2V1 —¢? 2.93
C2 1 ( : )
Bl = —%— By = ——.
! 2(1+¢?) 2 21+ 2

Knowing that W (n) can be found in form (2.86), where all the components Wy and W,
are from (2.89)-(2.90) and (2.92)-(2.93), we can deduce that

p c? 1 9
= — —an
o == (g5 =) 4
+|1+e¢ ¢ n— ! n? || Be P,
2(1+¢2)7 214 ¢2

To find A and B, we substitute (2.94) into boundary conditions (2.84). In doing so we

(2.94)

obtain the following system of linear equations

[(1 —v—) —e(l-v)V1 —02} A+ [(1—y+02) —e(1-vWItT & B = 0,
1 (2 —v)c?\
[(1—1/—1—02)\/1—62—1—6<—2CQ—(1—I/)—|—2(1_022> A (2.95)
+|(1-v—c)V1+c2+e —§c2—(1—1/)—M | B =0
2 201+ c2) ) | '
2.2.3 Homogeneous edge wave. Curvature correction
System (2.95) has non-zero solutions provided that
1—v—eA2V1+e2—(1-v+c2) V1 -2
222 _ 2\2 .2 (2.96)
te (221 —v)V1 =t +2(1 —v)e? — A-v=-c)e (d-vie)e) _ 0.

2(1+ c2) 2(1 — 2)
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Here we neglect the terms of order O(e?) and higher. The solution of the above equation can
be found only using numerical methods. Note that if we also neglect terms of order O(g),
this equation can be reduced to the form similar to (1.1), i.e. to the Konenkov dispersion
equation (see Konenkov (1960)) for the semi-infinite plate. In the latter case its solution can
be easily found analytically.

As it has been previously mentioned at the beginning of this section, the exact equation
and solution of this problem were obtained by Destrade and Fu (2008). Written in terms of

parameters used in the thesis, their equation is
(1-v—c*)?Bi— (1—-v+c*)?Bj+ 22 (14 B;B;)(1 —v)e — (B; — Bj)(1 —v)%?* =0, (2.97)

where

€ Q@
Bi ’
1
1, <,a>
) c (2.98)
o <s’o‘) 1
c| - — Ja < +1, a>
€ « €
B; = ,

1
Ja <,a>
€

and a = g It can be easily checked that, using Debye series expansions from Abramowitz
and Stegun (1965), in the first-order approximation equation (2.97) can be reduced to form
(2.96).

We compare our first-order approximation solution with the exact one using the fzero
function from Matlab 7.1. The obtained solutions are plotted against the parameter nR and
are presented in Figures 2.17-2.19 for the various values of the Poisson’s ratio. For nR = 300
in Figure 2.20, we create solutions as functions of Poisson’s ratio. As it can be seen from
these Figures, the equations approximation depends only on the parameter nR, and not on
the material properties of the plate. It also can be noticed from Figure 2.17 that Matlab 7.1
function fzero, which has been utilised while obtaining these numerical solutions, does not
give a good approximation for small values of the parameter nR under the condition of small

Poisson’s ratio. This resulted in the small leap of solution for first-order approximation.
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Chapter 3

Konenkov flexural edge wave in

orthotropic plate

3.1 Homogeneous edge wave

In this section we investigate a homogeneous flexural edge wave propagating along the edge

of a semi-infinite orthotropic plate.

3.1.1 Basic equations

In this case, the equation of motion for the deflection w(x,y,t) is given by (1.30). The
boundary conditions for a traction-free edge are presented by formulae (1.38).

First we introduce dimensionless quantities in the following form

x = hé, y = hn, t="Tr,
w=hW*  D,=DD, D,=DD,, (3.1)
Dy = DDy, Dy, = DD,,,

where h is the half-thickness of the plate, D is a typical stiffness of the plate (for a number
of problems it is natural to take D = D,. However in the thesis we are going to leave it in
the general form as D) and T is a typical time scale.

After introducing (3.1) and applying integral transforms to equation (1.30) and the bound-

ary conditions (1.38), we get a problem for the transformed deflection W (7). It is

~dAW 2w

Dy g = 2(D1 + 215951,)1@20772 + (Dap® + As*)W =0, (3.2)

48
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2ph’
DT?
The boundary conditions at n = 0 become

where A% =

has the same form as above (see (2.3)).

D 2 = 0
3 A y d772 1p K ) (33)
. dBW . aw
D,—— — (D1 +4D,,)p*— = 0
Y d’l73 ( 1+ y)P dT]

3.1.2 Konenkov flexural edge wave coefficient in orthotropic plate

The solution of the problem (3.2)-(3.3) can be taken in the form (2.6). Substitution of (2.6)

into equation (3.2) leads to the expressions for the parameters a and 3; they are

1 A . A A A oA A
o = W\/(Dl + 2Dy )p? — \/[(D1 +2D,,) = DDy | p = Dys?23,
)

(3.4)

B = bl/z\/(Dl + 2Dy )p? + \/{(D1 +2Dy,)? — DIDy] pt— Dys?A3.
Y

As in Section 2.1, the system for the unknown constants A and B can be obtained by
the substitution of (2.6) with (3.4) into the boundary conditions (3.3). In a matrix form it is
given by

ﬁyaQ — ﬁ1p2 ﬁyﬂz — ﬁpo A 0 (3.5)
|Dya? = (D1 +4Du)p?| @ |DyB2 — (D1 +4Dn)p?| 8 | | B 0
The above system of linear equations has a non-trivial solution only in the case when its

determinant equals to zero, i.e.
(B—a) [D§a252 — Dy(B” + *)D1p® + 4DyaBDyyp® + Di(Dy + 41533?;)194] =0, (3.6)

or, in terms of p

(DD — DIp* + Dys?A2 + 4D,/ Do Dyt + Dys?23p% = 0. (3.7)
Now, we introduce a new parameter ¢ by the following equality
—Z'S)\[)\ / Dy
Y

Formula (3.7) expressed in terms of ¢ becomes

(DyDy — D) = Dyt + 4Duy\/ DuDy — Dyt = 0. (3.9)
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On multiplying by the function X (c)
X(C) = (DIﬁy_ﬁ%)_c4_4Dzy bey_C4 (310)

we find the explicit expression of the solutions of (3.9)

1

A~ A - N ~ 1

= (Dny—(,/D§+4Dgy—2ny)2> ,
1

~ A N N ~ 1

cy = <Dny—(\/D%+4D§y+2Dw)2> :

As above, ¢, corresponds to the Konenkov flexural edge wave coefficient in the case of an

(3.11)

orthotropic plate, and cs is the second root of the equation, which has no physical meaning.

3.1.2.1 Dependence of Konenkov flexural edge wave coefficient on orthotropy

As was shown in Chapter 2, the Konenkov flexural edge wave coefficient ¢; depends on the
problem parameters including the plate stiffness. For an isotropic plate its stiffness is a
function of two parameters, namely Poisson’s ratio v and Young’s modulus E. In the case
of an orthotropic plate, instead of Poisson’s ratio v and Young’s modulus F, we have to
consider four stiffnesses D,, D,, D1 and D, (or their dimensionless analogues, specified in
(3.1)). Further we study their effect on the value of Konenkov flexural edge wave coefficient
Ch-

First, we show that the expression for ¢, from (3.11) involves an isotropic plate as a
particular case. We recall that the parameters D,, D,, D1 and D,, are connected with F
and v by equalities (1.32). Substitution of these parameters into formula (3.11) gives exactly
the same expressions as those obtained in Chapter 2 for an isotropic plate, namely formulae
(2.14).

Let us investigate the behavior of the coefficient ¢; for the varying stiffnesses, D, D,,
Dy and D,,. First, we assume that D,, D; and D,, take the same values as in (1.32) in

1 c ;
terms of v and D, whereas D, varies between gD < D, < 5D. The graph of “korthotropic

~ CEk,isotropic
versus D, is presented in Figure 3.1. It is clear that the coefficient ¢ tends to infinity as

the parameter D, increases. This fact will also be further discussed when considering the
explicit dual parabolic-elliptic models for different types of boundary conditions.

1
The further graphs are obtained for the variation of D, (5D < Dy < 5D) (see Figure

1 1
3.1), Dy (ED < D; < 0.99D) (see Figure 3.2) and Dy, (5D < Dgy < 5D) (see Figure
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3.3). It is also noted that ¢, decreases as 151 grows whereas cp versus ﬁxy becomes almost
constant and equals to the asymptote 4/ ﬁxﬁy This asymptote is demonstrated in the last

two Figures.
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3.2 Bending moment at plate edge

In this section we discuss propagation of the Konenkov flexural edge wave induced by a

bending moment applied at the edge of an orthotropic plate.

3.2.1 Basic equations

The equation of motion for the deflection w remains the same as in (1.29), and the boundary
conditions appear as (1.41). On using quantities (3.1) and applying integral transforms we

get equation (3.2) with the following boundary conditions at the plate edge n =0

D, a? DipW = —My, (3.12)
. BW . ~ L dW '
Dydins — (D1 +4D4y)p Tﬁ = 0,
where My = Mg(s,p) is the transformed dimensionless analogue of the bending moment

applied at the plate edge.

3.2.2 Derivation of transformed solution

The solution of problem (3.2), (3.12) may be found in form (2.6), where parameters o and
are given by (3.4). Omitting the algebra, which is fairly similar to what has been done for

an isotropic plate, we get for the sought for exact solution

R \/ —isAg ﬁy 1/—i'9>\0w/ﬁy
2 ———Bcn

- My & Ai(c)e” c @l + Ag(c)e™ c

W(n) = X(c¢), (3.13)
ishoy/D, ¢ T Ae)
where
1 A N ~ ~ ~ -~
a. = A\/Dl + 2Dy — \/(Dl +2D4y)% — Dy Dy + 4,
Dy
. (3.14)
8. = ——\/Di+2Dy, +\/(By+ 20,0~ DD, +
\/ Dy
and also
Ave) = - [ww —\/(By+2D,,2— DD, + 04] 8.,
As(e) — [ww + /(D1 +2D,)2 — DDy + 04] e, (3.15)

Ale) = (Be—ac)(c" — c3),
with the function X (c¢) from (3.10).
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3.2.3 Derivation of explicit dual parabolic-elliptic model

Our main aim now is to identify the Konenkov flexural edge wave contribution to the exact

solution (3.14). For this purpose we use a similar methodology as that described in Section

2.1.2. First, we introduce several new quantities to simplify the formulation of the model.
The expressions for the dimension counterparts of the coefficients ¢; and the second root

co in (3.11) are

=

c¢; = (DD, — (y/D?+4D2 —2D.)?)",
k < Y 1 Y Y )1 (3.16)
¢ = (DeDy— (/D7 +4D2, +2D,)?)".
Also, we use the equality
« _ Ailcg) + Aa(cg)
QW™ = L2 : (3.17)
A(Ck;)
where
M) = - [2Dn ~ (D1 +20,7 = DD, + | Al
Ag(cr) = [szy + \/ (D1 4 2Dy,)? — DyDy, + c,:‘*] ac(cy), (3.18)
Alr) = (Beleg) — aclep)) (! — &),
with
* 1 2 x4
ac<ck) = \/ZT Dl + 2ny - \/(Dl + 2Dzy) - D:EDy + CrL
. v (3.19)
Bo(ct) = Dy + 2D,y + \/(Dl +2D,,)2 — DD, + ¢t

D
v Py
After these preliminaries, we finally come to the model equations of interest. In particular,
the parabolic equation at the plate edge in the original variables becomes
024 *w, 2ph 0w, )*L 9% M,

“k it — Q(l
Dg oxt D, ot? ¢ D, 0x2’

(3.20)

whereas the elliptic problem over the interior domain is

6*4 5*w: Otw: .
D _ L m 2 D 2D m D m
< v D, ) oxt +2(D1 + 2Day) 0x20y> 8 oy*

=0, (3.21)

with the boundary conditions at the plate edge y =0

a2wm a?we (3.22)

We may notice that, using equalities (1.32) which are the connection of the parameters
D, Dy, Dy and D, with E and v, we can obtain a dual parabolic-elliptic model (2.25),
(2.27)-(2.29) for the isotropic plate.
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3.2.4 Comparison with exact solution

We obtained exact solution (3.13) for the transformed deflection W () and also derived the
explicit dual parabolic-elliptic model for Konenkov flexural edge wave in an orthotropic plate
(see (3.20)-(3.22)). The next step is the comparison of the obtained solutions by applying
the inverse Fourier transform and plotting the results. We again investigate the case of the
bending point-moment My (see Section 2.1.2 above for more details) applied at the plate
edge. The assumption of the solution form remains the same and so does the form of the
frequency parameter \g (see (2.30)).

Asin Section 2.1.2; here the comparison of the model with the exact solutions is performed
using a similar methodology. First, in terms of the transform parameter p, the exact solution

for the deflection W (), p) is

P’ Ai(p)e 7+ Ag(p)e "

W (n,p) = Mo X(p), 3.23
(n,p) e AQ) () (3.23)
where
1 R ~ ~ ~ ~ o~ ~
a = DI/Z\/(Dl + 2Dy )p? — \/[(Dl +2D4y)% — Dny] p*+ DyAZ,
Y (3.24)
1 R N . . . A R
B = D”Q\/(Dl + 2Dy )p? + \/[(Dl +2Dyy)?% — Dny] Pt + DyAS,
Yy
with
M(p) = - |:2ﬁxyp2 - \/ [(151 +2D,,)? — D, Dy | p* + DyA3| B,
As(p) = {szpr + \/[(Dl +2D,,)? — DDy | p* + f)yAg} a, (3.25)
Alp) = (B—a)ctes(p* —p3),

and the parameters ci, co, pr and po are connected by the equalities

bpk=—"T—" D2=—" —-
Ck C2

Also, X (c) function transforms into

A~ ~ ~

X(p) = (DyD, — D¥)p* + Dys*\2 — 4Dy, \/ﬁmﬁyp‘l + Dys22\3p?. (3.27)

The contribution W, of the Konenkov flexural edge wave at the plate edge is given by

2
We = QM My—2—, (3.28)
b — Dy
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where

Q) — A1 (pr) + Ao(px)
‘ A(pk)

and, according to the residue theory, the dimensionless deflection at the plate edge is given

by the formula (2.40) with QLY defined by (3.29).

X (pr), (3.29)

A
It should be mentioned that the exact solution has branch points at p = + — 0 —.
D,D,
A
Then, over the interval — + <p< . 0 —, we take the branch with
\ D,D, D,D,
1 Mo A A oA . N A
y L

As before, the radius r is taken by (2.36) when integrating the exact solution along the
small semi-circles (see Sections 1.2.3 and 2.1.1).
We solve the elliptic problem (3.21)-(3.22) over the interior domain. In this case the

deflection takes the following form

. . 2 Aq —ac(er)Pn 1 A, . —Be(ex)pn
Win = Mo—2— Q) Lin(P)e” T Azin(pe : (3.31)
P =Py Dy(B2(ck) — aZ(cx))
where
Avn(p) = <2f)my /(D1 + 2D, — DuDy + Cg> 2
. . _ — (3.32)
AQ,in(p) - - <2Dzy - \/(Dl + 2D:vy)2 - Da:Dy + Ci) p2.

Finally, the dimensionless deflection corresponding to Konenkov flexural edge wave over
the interior domain follows from the residue theory and is given by

L Avinlpr)e O 4 Dyin(pr)e” O e g )
Pk Dy (B2 (cx) — aZ(ck))
It should be noted that for all the following numerical results the frequency parameter is

taken as \g = 1 and Mo = /2.

Wi (&,m) = V2miQ My

The analysis of the deflection is presented below using the results of Section 3.1.2.1 related
to the dependence of the Konenkov flexural edge wave coefficient on the stiffness parameters
D,, Dy, Dy and D,,. Using Figures 3.1-3.3, we can show how different values of the stiffness
parameters affect the Konenkov wave contribution into the overall plate deformation.

First, we study the effect of parameter D, on Konenkov wave propagation. The following
Figures 3.4-3.7 are created for D, = é and clearly demonstrate that the flexural edge wave

contribution into the overall plate deflection is rather significant.
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For the value D, = 5, when the Konenkov flexural edge wave coefficient ¢, takes the largest
value (see Figure 3.1) the deflection at the plate edge is demonstrated in Figure 3.8 while the
solutions over the interior domain are shown in Figure 3.9. In addition, the 3D profiles of
the deflection corresponding to the Konenkov flexural edge wave, based on parabolic-elliptic
model, and the overall deflection profiles are shown in Figures 3.10-3.11. Note that as it
follows from the analysis of the numerical results presented in Figures 3.4-3.11 larger values
of Konenkov flexural edge wave coefficient ¢; correspond to smaller deflections. In this case

the vicinity of the point moment has the most contribution to the overall deflection field.

0.4 T
. Konenkov wave

—#— Owerall deflection

02 —

. A %’§}§}}§¥;¥ 'f gifififigifkf ~ A

a2k -

RIRE] —
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Hon 80 B0 -0 20 o Fo] 40 B0 g0 oo

g

Figure 3.8: Edge deflection in orthotropic plate (D, = 5). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)

The effect of the parameter D, is similar to D, although the behavior of the solutions
against D, and D, is not symmetric despite the symmetry of the coefficient ¢, with respect
to D, and D,. Therefore we believe there is no need to present the solution dependence on
D, graphically.

As it can be seen from the above figures, propagation of the Konenkov flexural edge wave
and its contribution to the plate deflection is rather material-sensitive. The following cases
show this dependence even more clear.

For example, one can choose the plate material so that the Konenkov wave contribution
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Figure 3.9: Deflection in orthotropic plate (D, = 5) for n = 1 Overall solution (3.23) and Konenkov flexural

edge wave contribution (3.33)

Figure 3.10: Konenkov flexural edge wave in orthotropic plate (ﬁz = 5). 3D profile of the parabolic-elliptic
model (2.40), (3.33)
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Figure 3.11: Overall deflection in orthotropic plate (D, = 5). 3D profile of the exact solution (3.23)

will be the dominating. This material can be the material where all the other parameters
are as of an isotropic plate, but Dy = 0.99. The following Figures 3.12-3.14 clearly demon-
strate the fact that Konenkov wave now has a dominating contribution into the overall plate
deflection. The only exception is the vicinity of the applied force.

On the other hand, there exist and can be found using the model such materials, for
which when propagating, the flexural edge wave has a negligible contribution. One of the
examples is the material with large values of the D,, stiffness. In this case the value for ¢
is close to the asymptote 1/ ﬁxby. The following Figures 3.15-3.17, plotted for the material

with lA)Iy =5, clearly demonstrate that the model allows us to find such a material.
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Figure 3.14: Overall deflection in orthotropic plate (D; = 0.99). 3D profile of the exact solution (3.23)
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Figure 3.15: Edge deflection in orthotropic plate (Dgy, = 5). Overall solution (3.23) and Konenkov flexural

edge wave contribution (2.40)
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Figure 3.16: Konenkov flexural edge wave in orthotropic plate (Dzy = 5). 3D profile of the parabolic-elliptic
model (2.40), (3.33)
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Figure 3.17: Overall deflection in orthotropic plate (Day = 5). 3D profile of the exact solution (3.23)
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3.3 Transverse shear force at plate edge

This section is dedicated to an edge loading in the form of a transverse shear force (see Figure

1.6).

3.3.1 Formulation of problem

The equation of motion for the deflection w is taken in the form (1.29) as above, while the
boundary conditions are given now by relations (1.44). On using the dimensionless quantities
(3.1) and applying the integral transforms, the sought for transformed equation takes the form
of (3.2) and the boundary conditions at 77 = 0 become

. dPW

Dy—— — Dip®W = 0

Tap Y ’ 3.34
0, W by ab ™~ s o
yd773 1 xy )P dn = 05

where Ny is the transformed dimensionless analogue of the original transverse point shear

force.

3.3.2 Exact solution

The exact solution for the rotation angle v(z,y,t) around the z-axis (or its transform V(n))
can be obtained using the similar method as that described in Section 2.1.2. Omitting messy

but pretty straightforward algebra, we present the final result as

. —isAO\/ﬁy —isAO\/ﬁy
~ M() C2 Al(C)e_ c Qell | AQ(C)C_ c Ben

Vin) =
ERWYEYCET: A
where o, and S, are given by (3.14), the function X (c) is expressed by (3.10) and

Alle) = [wmy +\/(D1+2D,,)2 — DD, + 04] e,
AZ(C) - = |:2bmy - \/(bl + 2ﬁmy>2 - f)sz + C4:| 567 (336)
Ale) = —(Bc—ac)(c* = ).

3.3.3 Derivation of model

As it was mentioned above, the investigation of the Konenkov flexural edge wave contribution
into the overall solution (3.35) is based on the derivation of an explicit dual parabolic-elliptic

model. The method of its derivation is basically the same as that described in Section 2.1.2.
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In the case under study, the parabolic equation at the plate edge becomes

024 v, @821)6 B (2)*i82N0

= Q¢ , (3.37)
DZ oxt D, ot? D, 0x?
where
s Aq(cg) + Az(ch)
QY = - : (3.38)
A(%)
with
M) = [2Du+ /(D04 2D = DD, Yl
Ag(ch) = — [szy - \/ (D1 4 2D,,)? — DoDy, + c;‘*] Belch), (3.39)
Ale) = —(Belc}) — ae(e))cp* — 3",

and ae(c;), Be(cy) are presented by relations (3.19), ¢ and c3 are given by (3.16); also, as
above, v, is the rotation angle at the plate edge related to the Konenkov flexural edge wave.

The elliptic equation for the rotation angle v;, over the interior domain has now the form

0*4 o4, 4. Ot
D, — k- " +2(Dy +2D o+ Dy—— = 0. 3.40
( ‘ Dy> oct T (D1 + xy)8w28y2 Py dy* (3.40)
with the boundary conditions at y =0
Vin(x,0) = ve(x), 3.41)
aZUin 8206 3.41
Y Dy =—(D1 + 4D:ry) 92

This concludes the formulation of the model.

3.3.4 Comparison with exact solution

Thus, we have obtained the exact solution (3.35) for the transformed angle V(1) and also
derived the explicit dual parabolic-elliptic model for the Konenkov flexural edge wave in an
orthotropic plate (see (3.37) and (3.40)-(3.41)). The next step is to compare the obtained
solutions by analyzing the inverse Fourier transform and computing graphical illustrations.
We use now the case of the transverse shear point force Ny (see Section 2.1.3) applied at
the plate edge. As before, we operate with the same frequency parameter )y (see (2.30)).
Let us derive the formulae we need for computations. First we present the exact solution for

the rotation angle V(n, p) in terms of the transform parameter p

2 —a —Bn

N P Aq(p)e™ " 4+ Ag(p)e
Vin,p) = N
(m.) Ot —p} A(p)

X(p), (3.42)
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where parameters a(p) and [(p) are given by relations (3.24), pr and p2 take form (3.26),
the function X (p) is given by (3.27) and

80) = [2bopt + [0+ 2D, - D.D,] vt + 0,05
Asfe) = - [mxyz»? 0142502 5.0, 1+ b, Ag} Y
AB) = (B-a)dd(t - pl),

The solution at the plate edge for the Konenkov flexural edge wave is given by the following

expression (where V,(p) is the transformed angle of interest)

2
V.= QPN (3.44)
b =Dy

where

0@ — Aq(pg) + Aa(pr)
‘ A(px)

and, according to the residue theory, the dimensionless rotation angle at the plate edge takes

X (pr), (3.45)

form (2.74) with Qg) defined by (3.45). The branch points and the cut remain the same as
in the previous Section 3.2.4.

To integrate the exact solution over the small semi-circles (see Sections 1.2.3 and 2.1.1
for more details), radius r is taken by (2.36).

As above, for the interior domain we solve the elliptic problem (3.40)-(3.41). The sought

for solution takes the following form

p2 Al,in (p)e*O‘C(Ck)pn + Azﬂ.n(p)e*ﬁc(ck)pn

‘7z'n = NO Qg) ~ ) (346)
Pt =1, Dy (B2(ck) — a2(cx))
where
Al,in(p) = - <2f)my - \/(f)l + 2Dwy)2 - Dﬂcﬁy + Ci) p2’
A _ _ — (3.47)
AQ,in(p) = <2ny + \/(Dl + Qny)2 - D:ch + Ci) p2'

Finally, the dimensionless rotation angle corresponding to Konenkov flexural edge wave

over the interior domain can be found using the residue theory resulting in

. —ae(ck)pn ) —Be(cr)pn
L Avn(pre” + Aain(Pr)e ¢iPRE (3.48)
Apye Dy(B2(ck) — a(cr))

The results of computations are given in Figures 3.18-3.21. We set \yp = 1 and Ny =2x

Vin(&,m) = V2miQP Ny

in all the graphs. The general conclusion is that the effect of orthotropy on the magnitude of

the Konenkov component is analogous to that for the excitation by a point-bending moment.
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Note also that the form of the approximate solution at the plate edge in the case of orthotropic
plate is similar to the one of the isotropic plate (see (2.74)). The only difference is the
coefficient Q.(f) which depends on the material parameters. Therefore, below we present only

the 3D profiles for two most significant cases of wave propagation.

40

Figure 3.18: Konenkov flexural edge wave in orthotropic plate (f)l = 0.99). 3D profile of the
parabolic-elliptic model (2.74), (3.48)

L
e

e
LAy
G

Figure 3.19: Overall rotation angle in orthotropic plate (D1 = 0.99). 3D profile of the exact solution (3.42)



3.3 Transverse shear force at plate edge 69

Figure 3.20: Konenkov flexural edge wave in orthotropic plate (ﬁzy = 5). 3D profile of the parabolic-elliptic
model (2.74), (3.48)
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Figure 3.21: Overall rotation angle in orthotropic plate (D, = 5). 3D profile of the exact solution (3.42)



Chapter 4

Stoneley-type flexural interfacial

waves

4.1 Homogeneous interfacial wave

In this section we study homogeneous Stoneley-type flexural interfacial waves appearing at a

junction of two semi-infinite isotropic plates.

4.1.1 Basic equations

For the interfacial vibrations of two semi-infinite plates, it is natural to state a joint problem
for deflections of the plates participating in the junction. In this thesis we consider two plates

(see Figure 4.1).

Figure 4.1: Junction of two semi-infinite plates. Directions of coordinate system

Equations of motion may be taken as (1.25) or (1.26), leading to two equations for de-

70
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flections w1 (x,y,t) and wa(x,y,t) of plates 1 and 2 respectively. They are

(9411]7; + 84wi 64’11)2' Qpih 62’11)2'
ox? 0x20y? oyt D; ot?

=0, i=1,2, (4.1)

where p; are the material densities of plates 1 and 2, h is the half-thickness of plates (we
assume that thickness is the same for both plates) and D; are the bending stiffnesses.

By assuming that the junction y = 0 is continuous, and both plates are perfectly bonded
(i.e. perfect contact), contact conditions would now consist of four main components listed

below:
e equality of both plates deflections;
e equality of both plates rotation around the z-axis;
e cquality of bending moments M,;
e equality of vertical shear forces.

In terms of equations, these conditions are

w; = wy,
Ow, 0wy
2 2 0 - &y 7 2 2 (4 2)
0 w1 0 w1 0 w9 0 w9 .
8311]1 83w1 83w2 6311}2
D 2—v)=s—| = D 2 — )=
B e gas ] = PG el

where vy and v, are the Poisson’s ratios of plates 1 and 2 respectively.

We non-dimensionalise our equations by introducing the following notation
r="h& y=hn w=hW' D;= DD;, t=Tr, (4.3)

where T is a typical time scale and D is a typical stiffness (which, in many problems, could
be taken as D).
After using (4.3) and applying the integral transforms to (4.1), the transformed equations

of motion become

dAW; o, W, 4. 2 gned ,
ot —2p dnf-i-(p + AW, =0, i=1,2, (4.4)

where
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- are the frequency parameters of plates 1 and 2.

In doing so, the contact conditions at the junction of plates take the form of

Wi = W,
AWy dWs
217 i n ’ 214
d*Wh 9rh Dy | d*Ws - (4.6)
—unpWr = = — vap Wl ,
d772 Dy d772 ]
Wy AW, Dy | d®Wy AWy
—2-n)p—— = = —2—wm)p* —=|.
dn? ( ) dn Dy | dn? ( ) dn
4.1.2 Stoneley-type flexural interfacial wave in isotropic plates
Due to the nature of the above problem we introduce its solutions as
Wi = Cie_w"ﬂ, 1 =1,2. (47)

Substitution of (4.7) into equations (4.4) suggests that the solution of the above problem

takes form

'[/'[/"7 — Ajefaj‘nl + Bje*5j|77|7 j — 17 27 (48)

where parameters a; and 3; are

aj = /P HiNs, B = /PP —iNs, j=1.2, (4.9)

and A;, Bj are arbitrary constants which can be found by substitution of (4.8) into contact
conditions (4.6). The obtained system of linear equations for A; and Bj, j = 1,2, expressed

in a matrix form, is

(A B A ]

1 o a? —p? (a% - (2- I/l)p2) aq
I B B2 — vyp? (B — (2 —1)p?) K
X D D 4.10
1 —ay 22 (03 — vap?) — 2 (03 — (2= v2)p?) a2 (4.10)
Dy Dy
Dy Dy
1 By —Z2 (B —p?) —Z2 (- (2 )
I B2 D (52 2D ) D ( 2 ( 2)]7 )/82 |
= [ 00 0 O ]

The above system has non-zero solutions only in the case when its determinant equals to
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zero. This fact leads to the following equation
R R 2

[—z’s)\l — g—fis)\g + [(1 —v) — %(1 — 1/2)} pz} \/p2 +is\ \/p2 — 18\

R R 2
+ [—is)\l — g—jis)\g — [(1 —v) — g—j(l — 1/2)} pj \/p2 — s\ \/p2 + 98y
- [ml - %13/\2 . [(1 —w) - 21— W)} p2] VP s/ + ishe (4.11)

. 2

— [ 1S\ —|— zs)\Q + [(1 —v) — gj (1-— VQ)} pz} \/p2 — is)\l\/p2 — 18\
—&—432)\1/\2% [\/p + 8207+ +/pt + 32)\3} =0.

It is obvious that equation (4.11) is a very complicated one with many parameters. In
order to simplify it, we introduce new quantities by the following expressions

o— /p2 D2 o= YTisAL (4.12)

p

Then (4.11) transforms to
[(1+a)2 +d*VIi—EVI+b@ + [(1+a) - d]* VIi+EVI—b3
—[1—a)@+d*VIi—EVT-bZ - [1-a)@ —d’ VI+EVI+ b3 (4.13)
~da [VT= & + VT= 0| et = 0,

where

a=aB, b= d=(1—-v1)— (1 —w9)32 (4.14)

o
3’

As it might be seen from equation (4.13), its most general form does not have analytical
solutions, but it is possible to find them numerically. The next 3 plots (see Figures 4.2-
4.4) demonstrate the dependence of the solution on the parameters « and g from (4.14) for
different values of the plates Poisson’s ratios. We may notice that the solution is highly
dependent on the material parameters and does not exist for many of their values. Note
that the white areas in all Figures 4.2-4.4 correspond to such parameters relation where no
flexural interfacial wave exists.

As it can be seen from the pictures, one of the boundaries where the solution disappears

is the line o = 3. It corresponds to the value b = 1 in the above equation (4.13). Setting

b =1 in (4.13), which leads to more simple form of it, we are able to obtain the analytical

solutions
i s
1—u1
f0r042<1and042<1_7@0r
o V(@ =D~ ) — (1 m)a?) (4.16)

a?—1
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1 . .
Figure 4.2: Wave coefficient distribution (11 = v2 = §) Areas of solution existence

v =0.4,w,=173

1 . .
Figure 4.3: Wave coefficient distribution (11 = 0.4, v = 5) Areas of solution existence
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1
Figure 4.4: Wave coefficient distribution (11 = 3 vy = 0.4). Areas of solution existence

1—v
fora®>1and o> — %

It is natural to assume that the most general solution of equation (4.13) has a form similar

to (4.15)-(4.16) and, therefore, we may predict that the solutions can only exist for the values

leY o 11— a? a? 1—1
@<1and@<1_7y2,or@>land?>l_y2
in Figures 4.2-4.4.

. This dependence can be also noticed

1—1y

When the parameter ( reaches the value 82 = (which corresponds to d = 0),
2

equation (4.13) appears to have no solutions. It can also be checked by the asymptotic
analysis of the above equation by considering the case of ¢ — 0. The above observations
explain several boundaries of solution existence. The curved boundary which is seen in the

last two Figures may be explained by the fact that parameter 8 depends on the Poisson’s

ratios of both plates.
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4.2 Bending moment at junction of two plates

This section is dedicated to the analysis of the deflection of two spliced isotropic semi-infinite

plates induced by a bending moment at their junction.

Figure 4.5: Bending moment at the junction. Scheme of loading

4.2.1 Basic equations

For this type of loading (see Figure 4.5) the equations for the deflections w;, i = 1,2 remain

in form (4.1), whereas the boundary conditions at the junction (y = 0) become

wy = wy,
Ow _ Owy
2 Oy Oy 2 2 (4.17)
0wy 0%wy 0“wo 0“wo .
3Dl [ By +un ? 2} = Dy [ %yQ trags ] 3M0(957t)7
0 w1 0 w1 . 0 wa 0 w2
kR I =

where My(x,t) is the applied bending moment.
On using expressions (4.3) and applying the integral transforms to (4.1), we again come
to equations of motion (4.4). In doing so to boundary conditions (4.17), at n = 0 we obtain

the following

Wi = Wy,
AWy dWs
dp—  dnp’
d2W; - Dy | d*W, . My (4.18)

_ W, = = — PP Wa | — =

d’f]Q le 1 Dl dng VQp 2 Dl b

d3W, AW, Do | d3Ws dWo

—_(2— 22— —_(2— 222
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where My(s,p) is the transformed dimensionless bending moment.

4.2.2 Solution of problem

We take (4.8)-(4.9) as the solution of problem (4.4), (4.18). By substituting them to the
boundary conditions (4.18) we obtain a system of linear equations for the unknown constants

Ay, By, As and Bs. In the matrix form it can be written by

A B Ay By |

1 o a? —v1p? (a% —(2- Vl)p2) ol
L B B3 — vip? (B — (2—v1)p?) B
X Dy s 2 Dy o 2 (4.19)
-1 —ap —= (az—l/gp) —— (a2—(2—u2)p)a2 .
Dy )1
Dy Doy
—1 =B —== (B3 —vp?) —== (B3 — (2—12)p?) B2
Dy Dy i
My
=10 0 —= 0
D,

Without providing quite straightforward algebra, we present the exact solutions for the

transformed deflections W1i(n) and Wy(n) as

vV —iS)\l V —1SAL
. , - a1(e)h - Bl
W( ) = My ¢ Aqe)e c + As(c)e
Y D¥(—isA}) ¢t — ¢ A(cy) , (4.20)
M o M o
ey — M@ Asge e T A -
2\7 f)%(—is/\%) A Ci A(ch) )

where ¢y, is the solution of equation (4.13), the expressions for o;(c) and B;(c) (j = 1,2) are

presented below
ar(c) =vV1i=c  Bi(c) =V1+c (4.21)
as(c) = V1 —=bc%, Bi(c) =V1+ be?, .

with b from (4.14).
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And also,
Ai(e) = B*[(B1 — a2)Ba((va — 1) +be®) + (B2 — Br)aa((v2 — 1) — bc?)]
+(ag — B2)B1((v1 — 1) + ¢2),
Ag(e) = —[B*[(B2 — ar)aa((ra — 1) = b?) + (a1 — a2)Ba((v2 — 1) + bc?)]
+(ag = f)ar((v1 — 1) — )], (4.22)

Az(e) = (a1 —=B2)Bi((r1 — 1) + ) + (b1 = Bo)an((v1 — 1) — )
+8%(c1 — B1)Ba((v2 — 1) + be?),

Agle) = —[(a1 = a2)Bi((v1 = 1) + ) + (az = fr)ar((v1 — 1) — ¢*)
+ B2(Br — ar)as((v2 — 1) — bc?)] .

As it was mentioned above, due to the form of equation (4.13), it is impossible to find

its solutions analytically. Therefore it becomes impossible to expand the denominator A of

the original solution in order to find contribution of the interfacial wave coefficient poles. For

this reason we use the Taylor series to expand the denominator approximately as A(c) =

(c* — c})A/(¢}), where ¢y, is the sought for real zero of denominator and

1
A/ 4 —

x [(1+a)et +d)A+ ((1 + a)c; — d)B

—((1 - a)c% +d)C — ((1 - a)cz — d)D]

1 b2
_|_
\/l—cﬁ \/l—b%i

—4a(\/l—ci+ \/l—bQCé) + 2ac}

where

1—0%
+b

=41 a)/1 - \/1 - b — (1L a)c} + ) yi-bd  y1-4

\/1_Ci \/l—bci

2 2
\/1+bck 1+¢

Ji+d +b\/1+bc§

A:4(1+a)\/1—cz\/l—i-bci—i—((l—i-a)ci—i-d) —

—_

+

S
??‘QLO

D:4(1—a)\/1+c%\/1+bcz+((l—a)ci—d)

(4.23)

(4.24)
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4.2.3 Derivation of dual parabolic-elliptic model

The analysis of the Stoneley-type flexural interfacial wave contribution into the exact solution
is connected to the derivation of the dual parabolic-elliptic model. It consists of the parabolic
equations at the plates junction and the elliptic problem over the interior domain. The nature
of the problem and method of model construction allow us to create these equations separately
for each plate.

First, at the junction, where n = 0, we obtain (see Section 2.1.2 for more details) the

following expressions in terms of the transform parameter p

. M. 2
Woilp) = — 2L

1 .
B e i1 (4.25)

where Wm are the transformed deflections of plates 1 and 2 at the junction corresponding to

the Stoneley-type flexural interfacial wave and

Qe 1 — A 1 s
’ ()

Q(l) _ As(cy) +kA4(ck) (4.26)
e2 A/(Cé)

It is easy to check that lel) = Qg and, therefore, the deflections of both plates at the

junction are equal. In the original variables, we have the following parabolic equations:

82we,i 2ph 8211]6’1‘ o 1 (1)82MO

oz D, 0t2 _EQ@@' 012

ct (4.27)

- is the equation for the deflection we ;(z,t) of plate i (i = 1,2) related to the Stoneley-type
flexural interfacial wave.

The elliptic equations over the interior domain for the plates 1 and 2 deflections are shown

by
84win7i

a4win,i 19 a4win,i
oxt

oy? Ox20y>?

+ (1 —7ep)

=0, (4.28)

with wiy, ;(z,y) as the deflection of the plate ¢ (i = 1,2) over the interior domain related to

the Stoneley-type flexural interfacial wave, and

1, 2=1,

T=9 (4.29)
—, 1=2.
P1

The boundary conditions for wj, ;(z,y), i = 1,2 can be taken by the following expressions
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Win,i(,0) = we (),
82wm7i 82we,i (4-30)
= —y .
0y? ' Ox?

4.2.4 Comparison with exact solution

We obtained exact solutions (4.20) for the transformed deflections Wj (n,p), and also derived
the explicit dual parabolic-elliptic model related to the Stoneley-type flexural interfacial wave
(see (4.27)-(4.30)). Now we compare the obtained solutions by applying the inverse Fourier
transform and plotting the results. We consider a particular problem of a point bending
moment My (z,t) = Myd(x)e” ™! applied at the plates junction y = 0. Here and below, the

Poisson’s ratios are assumed to be vy = 0.4, v = 0.3. The frequency parameters then become

2 h5 2

A = /plDiw’
! (4.31)

Ny — 2pohSw?

9 = D,

Also, for this point moment My, we can rewrite the exact solution in a more convenient form

in terms of p parameter as follows

i = Mo _ 7 Aup)e 4 As(p)e=il

B 1?1 pt _pi A(p) ’ (4.32)
Waln) = My P2 As(p)e=2lnl 4 Ay (p)e=Pall

2=yt - D A(p) 7

Here,
a; =\p* =N, Bi=+pP+N, i=1.2, (4.33)

Ai(p) = B%[(B1— a2)B2((v2a — 1)p? + X2) + (B2 — B1)aa((v2 — 1)p? — A2)]
+(az = B2)Bi((v1 — 1)p* + M),

Ao(p) = —[B2[(B2 — ar)aa((va — 1)p* — o) + (a1 — a2)Ba((v2 — 1)p? + A2)]
+(ag = f2)ar((v1 = 1)p* = M1)],

Az(p) = (a1 = B2)Bi((v1 — 1)p* + Xi) + (b1 — B)an ((v1 — 1)p* — A1)
+8%(ar = B1)Ba((v2 — 1)p® + A2),

Ay(p) = —[(a1 —a2)Bi((r1 — Dp* + A1) + (a2 — Br)oa ((r1 — 1)p* — A1)
+ B2(B1 — ar)aa((v2 — 1)p* — A2)]

(4.34)
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and also,
Alp) = [(1+a) +dp*)” VP = M Vp? + Ao
+ [(1+a) —dp?]* VP2 + VD — A
— (1 —a) + dp?)] VP = MV A (4.35)
~ (1= a) = dp*]* VP + MV A
—4a [\/p4—/\%+\/p4—>\%] :
with
Pk = QT (4.36)

The deflection related to the Stoneley-type flexural interfacial wave may be found from
exact solution (4.20) by isolating the contribution of the poles p = £py, in the overall solution.
This contribution may be found using the contour integration (see Section 1.2.3 above) and
also using the constructed dual parabolic-elliptic model. The solutions of parabolic equations

(4.27) immediately follow from the residue theory (e.g. see Section 1.2.4). We find them as

R ; 274, . .
Wes :/ We,j(n, p)edp = —p (Wej(n, 2)e™%),
A Ve J (4.37)
j=12,
where
i Wy P .
We j(0,p) = Qe ;Mo———, j=1,2, (4.38)
pP* =P
with
oW = A (pr) + Aa(pr)
o 2 7 4.39
oW = As(pr) + As(pr) (4.39)
e2 A 5
and

A4L2Ku+@+@mmuu+m—@@3

~((1 = a) +dp{)C — (1 — a) — dp;) D] (4.40)

1 1
+ )
V=N Jpi -3
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where

_4d\/pk Al\/pk+)‘2+((1+a ) dg?) \/pk+A2 \/pk A

\/pk A1 \/pk+)\2 ’

oo TR (R

= 4d\/pk A1 \/pk A2 = ((1—a) +dp}) \/pk - ij &:: : i: |

:_4d\/pk+>‘1\/pk+)\2+((1—a — dp?) \/pk+)\2 \/p’f+)‘1

’ \/pk+>\1 N

Therefore, contribution of the Stoneley-type flexural interfacial wave into the overall deflection

(4.41)

at the junction W, is given by
~ 1 .
We;(€) = \/2mQS}MO2—e’pkf, j=12. (4.42)
’ ’ Dk

In order to find the overall solution for the dimensionless deflection W;(f ), 7 =1,2, we

need to integrate the following expression

Wien) = o= [ W) (4.43

The method of finding it was described in Section 1.2.3. In this case, the branch points are
p = ++/Ai, i = 1,2, and the cut where we take aj = —i\//\j—7pQ, is between them, so it is
Vi <p <V
For the numerical analysis of the above solutions we choose the parameters so that a =
P2 D2

= 0.4382 and 5 =
P1 D1

becomes ¢, = 0.9714. The frequency parameter is assumed to be \; = 1 whereas Mg = /2.

= 0.5477. Under these conditions the Stoneley coefficient

The small radius r of the contour semi-circles is again taken as (2.36).

Comparison of the Stoneley-type flexural interfacial wave contribution into the deflections
at the junction of plates is demonstrated in Figure 4.6. Since the solutions at the junction
are the same because of the problem statement, we provide only one figure for the overall
deflections.

A similar approach as described above is used to obtain the solutions over the interior

domain. Instead of parabolic equations at the junction, the elliptic problems (4.28)-(4.30)
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Figure 4.6: Deflection at the junction of isotropic plates. Overall solution (4.43) and Stoneley-type flexural

interfacial wave contribution (4.42)

are analyzed. The solutions of these problems are given in terms of the integral transforms.

They are
) Q(I)MO p2
Win,j(n,p) =—2

22 p*—p} (4.44)
x [[(1—v)) + AlpPelerrnl _ (1 — 1) — Z|peP (Ck)p\nl]

for j = 1,2. The above function can be integrated using the residue theory (see Section 1.2.4),

and the final solution for the deflections related to the Stoneley-type flexural interfacial wave

become
(1) 17
Moy 1
Wi (€:m) =v2m'Q”2 —
cp, 4pk (4.45)

x |[(1 = v)p2 + Ajles(eelmlnl (1 — p)p2 — Aj]e—ﬁj(ck)pm\] oPKE

The numerical solutions found using the scheme from Section 1.2.3 are shown in Figures
4.7-4.10. They confirm an intuitive expectation that the Stoneley-type flexural interfacial
wave makes a key contribution into the exact solution near the junction (again, the only

exception is the vicinity of the applied point bending moment).
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model (4.45) at n = —1
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4.3 Shear force at junction of two plates

This section includes the analysis of interfacial vibrations at the junction of two isotropic

semi-infinite plates induced by shear force.

Figure 4.11: Shear force at the junction. Scheme of loading

4.3.1 Basic equations

For this type of loading, shown in Figure 4.11, the equations of motion for w;, i = 1,2 remain

in form (4.1), whereas the continuity conditions at the junction (y = 0) become

wr = ws,
6w1 N 8w2
dy Oy’
D [6211)1 +u 62w1:| - D |:aQUJ2 +u 82w2:| (4'46)
. 1 0y 18?9”2 2 aang 2752 8,3
Dy 8;”31 +(2 1)69521[(}911;} — Dy [ a;? +(2- Vg)ax;gﬂ ~ No(a, 1),

where Ny(z,t) is the applied shear force.

On using (4.3) and applying integral transforms to equation (4.1) we get (4.4). In doing

so to the continuity conditions (4.46) their transformed analogue becomes

W, =
AW,
dy
o
dd:;gl —V1p2W1 =
W, L, dW
dn —( —Vl)PW =

WQJ
dWs
]
D,
Dy

D

Dy

d*Wo
dn?

AWy
dn?

R 4.47
- V2p2W2] ) ( )

dWo

—(2 — 222
(2—w2)p a7

ol )

D,
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where Ny(s,p) is the transformed dimensionless shear force.

4.3.2 Solution of problem

We take (4.8)-(4.9) as the solution of the problem (4.4)-(4.47). Its substitution into the
boundary conditions (4.18) permits the system of linear equations for the unknown constants

Ay, By, As and Bs to be obtained. In matrix form it can be written as follows

A B 4y By |

1 a1 a% — v1p? (a% - (2- V1)p2) a1
L B B3 — v1p? (B — (2= 1)p?) K
x D D
1 —ay — A2 (Oz% . V2p2) _ A2 (a% —(2- 1/2)2?2) o (4.48)
Dy Dy
Dy Dy
-1 = _Z 2 U 2 _Z 2 2 _ 2
I 1)) D (52 2D ) ADl ( 2 ( 2)p )62 |
No
=10 0 0 =
D;
For the sake of brevity we do not provide here the full solution derivation and present the
. dW;
final result for the transformed rotation angle V; = 7 L, i =1,2 (see Section 2.1.3 for more
n

details and explanations) as

V=isA V—ish
. 9 - ai(c)n] - Bi(e)n|
Dn) = No & Aic)e c + As(c)e c
YT BRisi) - df Mal T ()
VUM e P |
() = No 2 As(c)e c s + Aylc)e s
2\ D2(—isxz)t — Al(cf) ’

where ¢, is the solution of equation (4.13), the parameters «;(c), Bi(c), ¢ = 1,2 are from

(4.21),
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Ar(e) == a1 [ ((B1 — 02)(1 = v2) +be?) + (B — B2)((1 — v2) — b))
+az = B2) (1 — 1) + )],

Az(c) =61 [ (a1 — a2)((1 = v2) +bc?) + (B2 — an)((1 — 1) — be?))
+Haz = B2) (1 = 1) = )],

Asz(c) =ay [B*(ar — B1)((1 — v2) +bc) + (B2 — an)((1 — 11) + )
+(Br — B2)((1 — 1) = )],

Ayle) =B [B2(B1 — ar)((1 = v2) = be?) + (a1 — a2)((1 = 1) + ¢?)
+og = B1)((1—w1) = P)],

(4.50)

and A’(c}) is from (4.23).

4.3.3 Derivation of model

As it was mentioned in all previous chapters, analysis of the interfacial wave contribution
into the overall rotation angle is connected with the derivation of the dual parabolic-elliptic
model of the Stoneley-type flexural interfacial wave. It consists of the parabolic equations at
the plates junction and the elliptic equations for the plates rotation angles over the interior
domain. The models again can be constructed separately for the considered plates.

First, at the junction (n = 0) we obtain the following expressions in terms of the transform
parameter p (see section 2.1.3 for more details)

A Ny
Vei(p) = — =2

2) .

- Q( iy 1= 1727 (451)
Dl p4 _ pi e,

where Ve’i are the transformed rotation angles of plates 1 and 2 at the junction from the

Stoneley-type flexural interfacial wave and

o? Ax(er) + As(cx)

o Ng) (4.52)
02 = As(cy) + Agler) '

“? A(c})

It is easy to check that Q£21) = Qg%, therefore f/;,l(p) = ‘7672(]?).

In the original variables, parabolic equations for the plates rotation angles at the junction

become
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4 822)671' 2ph 62’1)871‘

. 2ph (2)0°No
ot T Dy o

e, 8.1,‘2

1
= 5@ (4.53)

The elliptic equations for the deflections of plates 1 and 2 respectively over the interior

domain (related to the Stoneley-type flexural interfacial wave) are presented below

4
0™ Vin i

i ) O*in;
ozt

oy* Ox20y>?

+ (1 —~cp)

=0, (4.54)

with v, i(z,y) as the rotation angle of plate ¢ (i = 1,2) over the interior domain, caused by
the Stoneley-type flexural interfacial wave, and v from (4.29).

The boundary conditions for vj, ;(z,y) can be presented by

Vin,i(x,0) = vei(x),
821)2'%1' 8211@72' (4'55)
ayr —(2-w) x?

4.3.4 Comparison with exact solution

We obtained the exact solutions (4.49) in terms of integral transforms, and also derived an
explicit dual parabolic-elliptic model for the Stoneley-type flexural interfacial wave (see (4.53),
(4.54)-(4.55) above). The next step is to compare of the obtained solutions by applying the
inverse Fourier transform and computing graphical illustrations.

We recall that the transverse shear point force Ny (see Section 2.1.3) is assumed to be
applied at the plates junction. As before, we operate with the same frequency parameters
A1 and Ay (see (4.31)). Poisson’s ratios are assumed to be v; = 0.4, v = 0.3. Derivation of
the formulae that we need for computations is similar to the one described in the previous
Section 4.2.4. We present first the exact solution for the rotation angles Vj(n, p) in terms of

the transform parameter p, given by

No  p*  Ag(p)eill+ Ag(p)e=Priml

VT A | (4.56)
V() — No p*  As(p)e2ll 4 Ay(p)eP20l :
2(n) = Flp4 — pﬁ A ’

where «; and f; are from (4.33), A(p) is given by (4.35), py, is connected with ¢, by expression
(4.36) and
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Ai(c) = — o [B7 ((B1 — a2)(1 = v2)p” + A2) + (B1 — B2) (1 — v2)p” — A2))
+(VP? =X = VPP + X) (1= m)p” + A1) |

As(c) =B1 [B ((a1 — a2)((1 = v2)p® + X2) + (B2 — 1) (1 — v2)p® — A2))
+(ag — Bo) (1 —v1)p* — A1),

As(e) =az [ (a1 = 1) ((1 = v2)p? + A2) + (B2 — a1)((1 = v1)p? + \1)
+(Br = B) (1 —m)p* — M),

Au(e) =62 [B(B1 — 1) (1 = v2)p” = Ao) + (o1 — a2)((1 = w1)p® + A1)

+(ag — B1)((1 —v)p” — M) -

(4.57)

The deflection related to the Stoneley-type flexural interfacial wave may be found from
exact solution (4.49) by isolating the contribution of the poles p = +pj. This contribution
may be found using contour integration (see Section 1.2.3 above) as well as using the solutions
of the parabolic equations (4.53) which immediately follow from the residue theory (e.g. see

Section 1.2.4). We find them as

1 . , 271 . A
V6 == [ Vi p)e ™ dp = 2T Resmy, (70, 2)e)
€,J\>) IVANY ) Pk ,J\!s )
VI J oo v2r (4.58)
Jj=12,
where
Y 2) x P2
Vej(n,p) = Qe No——, =12, (4.59)
Y2 U
with

@  Ar(pr) + Ao(pr)

el — )
(2) _ As(pr) + Aa(pr)
e,2 A ’
and A is given by (4.40). Therefore, the explicit solution for the dimensionless plate edge

(4.60)

rotation angle V';(§) is given by

~ 1 .
V(€)= VomiQP No—e, j=1,2. (4.61)
7 T 2y,
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To find the overall solution in the dimensionless form Vj*(f,n), j = 1,2, we need to

integrate the following expressions

1 oo .
Vit = o= / ¥, (n, p)e¥dp. (4.62)

The method of finding it was described in Section 1.2.3. The branch points and the cut
remain the same as mentioned above in Section 4.2.4.

The solution related to the Stoneley-type flexural interfacial wave over the interior domain
in terms of transform parameter p can be found from the elliptic problems (4.54)-(4.55). It

is

Vin,j(n,p) —Q(ZJ) Mo_p
B 2¢; p'—pj (4.63)

X [_[(V] — 1) — Ci]p2e_a]'(ck)pln‘ + [(V] _ 1) _.I_ Cz]er_ﬁj(ck)ph]‘]

for j=1,2.
This function can be integrated using the residue theory (see Section 1.2.4), and the final
solution for the Stoneley-type flexural interfacial wave rotation angle over the interior domain

is

* ey Qf)NO 1
‘/;n,j (é.a 77) =V2mi ’]2
C. 4pk (464)

X [_[(Vj —1)pi — )\j]e*%‘(ck)pkln\ +[(v; — 1)p? + )\j]efﬁj(ck)pklnl} ePrE

As above, all numerical data is created for the following material parameters o = /@ =
P1

A~

D .
0.4382, f = b2 = 0.5477 and ¢, = 0.9714. Frequency parameter A\; = 1 and Ny = /2.

1
Here the small radius r of the contour arcs is taken as (2.36).

Numerical results for the current problem are presented below in Figures 4.12-4.13. The
general conclusion is that the effect of junction on the magnitude of the Stoneley component

is analogous to that for the excitation by a point-bending moment.
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Figure 4.12: Stoneley-type flexural interfacial wave at the junction of two plates. 3D profile of the
parabolic-elliptic model (4.61), (4.64)
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Chapter 5

Conclusion

In this thesis we studied the Konenkov edge and interfacial waves in plates of various shapes
and made of different materials: the classical Konenkov flexural edge wave in an isotropic
semi-infinite plate (Chapter 2, Section 2.1), the edge wave in a thin elastic isotropic circular
plate (Chapter 2, Section 2.2), also, the existence of this wave studied in orthotropic semi-
infinite plates (see Chapter 3), and, finally, the Stoneley-type flexural interfacial wave at the
junction of two isotropic semi-infinite plates (Chapter 4). The main goal of the thesis involved
derivation of the explicit approximate models, revealing a dual parabolic-elliptic nature of
flexural edge and interfacial waves, which were derived for the aforementioned cases. The
obtained explicit models extract the contribution of the flexural wave into the full dynamic
response. The wave propagating in the isotropic semi-infinite plate can be depicted explicitly
by the following models: (2.25), (2.27)-(2.29) for the case of a bending moment applied at the
edge, and (2.61)-(2.64) for the applied shear force. If the plate under consideration is made
of an orthotropic material, the model is formulated by the following equations (3.20)-(3.22)
(for the bending moment loading) and (3.37) and (3.40)-(3.41) (for the shear force loading).
The principal difference between these models for isotropic and orthotropic plates lies in the
fact that in case of orthotropy we can vary the parameters and therefore vary the edge wave
contribution into the overall deflection or rotation of the plate. This is illustrated by Figures
3.4-3.21 of Chapter 3. Analogously, a dual parabolic-elliptic model of the Stoneley-type
flexural interfacial wave was derived in Chapter 4. It appears to be a natural generalisation
of the case of edge waves. For the bending moment applied at the junction, this model has

the following form (4.27)-(4.30) whereas for the shear force it is (4.53), (4.54)-(4.55). The
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basic feature of the aforementioned model is the complexity of the transcendental equation
of the wave speed and therefore the absence of its exact solution.

It is worth mentioning that unlike the dual hyperbolic-elliptic models of the Rayleigh
wave, the derived parabolic-elliptic models of edge and interfacial waves govern the dispersion
phenomena (absent in the surface Rayleigh-type waves). The unknown functions within the
above models depend on the loading type. In particular, if we deal with loading in the form
of a bending moment, the related model operates with the plate deflection in contrast to the
case of the loading in the form of shear force when the model deals with the rotation angle.

It is also worth mentioning that the developed method of model derivation allows various
generalisations. In particular, it can be extended to layered plates, electro-elastic materials,
ets. The dual parabolic-elliptic nature of the dispersive edge and interfacial waves might also

be expected for the latter.
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