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Abstract 

The primary goal of this research project was to investigate the mechanism of a novel thermally 

activated cyclisation reaction discovered by Parsons et al. During these studies two novel reactions 

were discovered: 

 

Reagents and Conditions: (i) Toluene 0.1M, reflux, 4h, 32%. 

 

Reagents and Conditions: (i) Toluene, 0.01M, reflux, 4h, 53% 

Radical and ene pathways for the generation of these products were proposed. However, despite 

extensive empirical studies, no definitive proof for either mechanism was found.  The breadth of the 

synthetic utility of the above reactions was also investigated by synthesizing various analogues. 

The general application of the Parsons’ cyclisation to the synthesis of steroid cored and the complex 

natural product Jiadifenin was also investigated. Advanced intermediates were synthesised and 

invaluable information on reactivity was gained, however these investigations could not be 

completed due to time constraints.  
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1.1 A Novel Cyclisation by Parsons et al. 

1.1.1 Studies Towards the Total Synthesis of Lactonamycin 

 

The potent antibiotic lactonamycin (1.1) was first reported by Matsumoto et al.
1
 who extracted it 

from Streptomyces rishiniensis cultures found in mud samples near Yokohama City, Japan.  

 

Figure 1.1: Lactonamycin 

It is active against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus 

(MRSA) and vancomycin-resistant Enterococcus (VRE).
2
 In addition, it exhibits antitumor activity 

against various malignant cancerous cell lines.
2
 Because of the complexity of its chemical structure 

and obvious biological activity, many research groups have embarked in studies to synthesise 

lactonamycin in the laboratory.
3-7

 To this date however only one total synthesis has been achieved.
8
 

The Parsons group has been interested in the total synthesis of lactonamycin for some years and 

originally set out to achieve the construction of the core CDEF fused ring structure in 1.1 by either a 

palladium
9-11

 or radical 
12-14

 cascade sequence.
15

 The chosen retrosynthetic approach is depicted in 

Scheme 1.1 below. 
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Scheme 1.1: Retrosynthetic Analysis of Lactonamycin by Parsons 

Advanced intermediate 1.2 would therefore be conveniently accessed by a single synthetic 

manipulation of 1.3. The proposed tri-n-butyltin radical-mediated mechanism leading to 1.2 is 

shown below in Scheme 1.2. 
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Scheme 1.2: Mechanism of Radical Cascade with Tri-n-butyltin Hydride 

The pre-generated tri-n-butyltin radical performs a halogen abstraction on 1.3 to generate alkynyl 

radical 1.5. A series of favourable 6-exo-dig (1.5), 5-exo-dig (1.6) and 6-endo-trig (1.7) cyclisations 

yield allyl radical 1.8; aromatisation of the scaffold is then achieved by action of tri-n-butyltin 

radicals to give 1.2. 

In order to test the feasibility of the above cascade sequence, a model system (1.12) was synthesised 

(Scheme 1.3). 
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Reagents and Conditions: (i) 
n
BuLi, CuCN, 2,3-dibromopropene, THF, -78°C to rt then 1M HCl(aq) , rt, 73%; (ii) 

LiC≡CCH2NMeBoc, 
t
BuBr, -95°C to rt, 83%; (iii) 2M HCl in diethyl ether, rt, then Me3SiC≡CCOCl, Et3N, CH2Cl2, rt 

79%. 

Scheme 1.3: Synthesis of Model Cyclisation Precursor 1.12 

Imidazolidine 1.9 was subjected to lithium-halogen exchange with n-butyllithium and the resulting 

anion reacted with cuprous cyanide to generate a lower-order cyanocuprate. Addition of 2,3-

dibromopropene yielded, after an acidic workup, aldehyde 1.10 which was subsequently reacted 

with the lithium salt of boc-protected N-methylpropargyl amine to give propargylic alcohol 1.11. 

Hydrogen chloride-mediated BOC deprotection followed by coupling of the resulting amine with 

trimethylsilylpropioloyl chloride gave desired precursor 1.12.  

This material was subjected to two different radical-mediated cyclisation conditions (Table 1.1). 
16
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Reagents and Conditions: (i), Benzene, reflux, radical initator, time, see Table 1.1. 

Entry Radical initiator Time (h) Yield (%) 

1 
n
BuSnH / AIBN 11 14 

2 (Me3Si)3SiH 72 22 

Table 1.1: Radical Cyclisations of 1.12 

Tris(trimethylsilyl)silane 
17

 gave better results than tri-n-butyltin hydride. However both reactions 

were found to be afflicted by extensive decomposition of reagents/products. In order to identify the 

cause of this issue a thermal decomposition study was carried out by boiling 1.12 alone in benzene 

for 40 hours. Astonishingly this procedure yielded tetracycle 1.13 in 26% yield, higher than with 

any radical initiators previously employed.  

1.1.2 The Discovery of a New Thermally Activated Cyclisation Reaction 

 

As it appeared that the reaction is thermally activated, different solvents and temperatures were 

tested for the newly discovered transformation (Table 1.2). 
16
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Reagents and Conditions: (i) Solvent, time, see Table 1.2. 

Entry Solvent Boiling temperature (°C) Time Yield (%) 

1 Benzene 80 48 h 26 

2 THF 66 144 h 35 

3 Toluene 110 2 h 41 

4 DMF 153 30 min 63 

5 Diglyme 162 30 min 23 

6 DMSO 189 15 min - 

Table 1.2: Different Conditions Tested for the Thermolysis of 1.12 

The best results were obtained using DMF (63% yield) and toluene (41% yield) as solvents (Entries 

4 and 3 respectively); both represented a considerable improvement over the reaction with radical 

initiators. It then occurred to the researchers that the high yield obtained with DMF may be 

attributed to its tendency to decompose on boiling to small amounts of dimethylamine 
18

 which 

would scavenge reactive hydrogen bromide generated during the reaction. To test this hypothesis, 

1.12 was heated in boiling toluene in the presence of methyl oxirane, an efficient acid trap first 

employed by Corey et al. during their total synthesis of gibberellic acid.
19

 The higher boiling 

equivalents cyclohexene oxide and butyl oxirane were also tested and the results obtained are 

summarised in Table 1.3 below.
16
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Reagents and Conditions: (i) Toluene, reflux, acid trap, time, see Table 1.3. 

Entry Acid Trap Time (h) Yield (%) 

1 Methyl oxirane 3.5 h 44 

2 Cyclohexene oxide 2.5 h 64 

3 Butyl oxirane 3 h 76 

Table 1.3: Different Acid Traps Tested for the Thermolysis of 1.12 

Methyl oxirane gave only a slightly improved yield over the corresponding reaction in toluene 

alone. This was attributed to its low boiling point (bp 34°C 
20

) which causes its evaporation from 

the reaction mixture
16

. A marked improvement was seen with cyclohexene oxide (129-130°C 
21

), 

while butyl oxirane (118-120°C 
22

) gave the best yield. This was clear evidence that in the absence 

of acid traps, the starting material/products of the reaction are decomposed by hydrogen bromide 

generated in solution.  
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1.1.3 Mechanistic Investigations 

 

Initially an acid-catalysed mechanism for the cyclisation of 1.12 was proposed 
16

 (Scheme 1.4). 

 

Scheme 1.4: Proposed Acid-Catalysed Mechanism for the Formation of 1.13 

Intramolecular attack of the aryl alkenyl portion by the bromine lone pairs is followed by 6-exo-dig 

and 5-exo-dig cyclisations to yield 1.14 after acquisition of a proton. The construction of the 

tetracyclic structure is then completed by opening of the cyclic bromonium ion and aromatisation 

by loss of hydrogen bromide in 1.15. This postulate however was in clear contrast with the notion 

that the cyclisation works better in the presence of acid scavengers. Further dismissal of the acid-

catalysed mechanistic hypothesis came when precursor 1.16, which lacks bromine atoms in its 

structure, was also successfully cyclised in base-washed glassware (Scheme 1.5). 
15,23
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Reagents and Conditions: (i) Toluene, reflux, 1h, 91%. 

Scheme 1.5: Cyclisation in the Absence of a Bromine Atom  

Another piece of information gathered by the researchers was that when 1.18 was heated in boiling 

toluene, tricycle 1.19 was formed in 97% yield (Scheme 1.6).
15

 A longer reaction time of 13 hours 

was required to achieve cyclisation in the absence of a trimethylsilyl group. 

 

Reagents and Conditions: (i) Toluene, reflux, 13h, 97%. 

Scheme 1.6: Cyclisation with no Silicon Atom in the Molecule 

Further structural manipulations of cyclisation precursors revealed that installing a gem-dimethyl 

group α to the ether functionality as in 1.20 (Scheme 1.7) prevents the cyclisation from taking 

place.
24
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Reagents and Conditions: (i) Toluene, reflux, 72h. 

Scheme 1.7: Failed Reaction of 1.20 

In order to investigate the vital role of the hydrogen atoms α to the ether functionality in 1.16, 

deuterated compound 1.21 was subjected to heating in refluxing toluene (Scheme 1.8). 
24,25

 

 

Reagents and Conditions: (i) Toluene, reflux, 3.5h, 94%. 

Scheme 1.8: Cyclisation of Deuterated Compound 1.21 

Analysis of the product revealed that a 1,5-deuterium shift had occurred. 

The role of the amide linkage was also investigated. To this end ester 1.23 was constructed and then 

heated in refluxing toluene (Scheme 1.9).
23
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Reagents and Conditions: (i) Toluene, epoxyhexene, reflux, 52h, 76%. 

Scheme 1.9: Cyclisation of Ester Analogue 

Interestingly it was noted that the ester linkage causes the rate of reaction to significantly decrease. 

A similar observation had previously been described by Parker et al.
26

 during studies on the 

intramolecular Diels-Alder reaction of amides and esters. 

The following is a summary of the notions gathered by the Parsons group on the novel cyclisation 

reaction: 

i) The reaction works in the absence of radical initiators and is thermally activated 

ii) The mechanism is not acid-catalysed 

iii) The presence of a silicon atom at the ynone functionality accelerates the reaction 

iv) The presence of one or more propargylic protons is essential 

v) A 1,5-hydrogen shift occurs during the course of the reaction 

Particular weight was given to the fact that the precursor without a silicon functionality 1.18 

cyclises slowly.  Silicon is known to stabilise α-radicals through vicinal (d-p) π overlap 
27,28

 and 

therefore its presence would increase the rate of a reaction involving radical intermediates. Also the 

cyclisation precursors synthesised by Parsons et al. were similar to substrates involved in the 

Bergman, Myers-Saito and Schmittel cyclisations. These notions spurred the formulation of a 

radical mechanism 
25

, shown in Scheme 1.10 for the cyclisation of precursor 1.16. 
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Scheme 1.10: Proposed Radical Mechanism for the Formation of 1.17 

Amide resonance in 1.16 would bring the two acetylene moieties close in space and this could 

trigger a radical cyclisation with consequent generation of biradical 1.25. A 1,5-hydrogen 

abstraction would then ensue giving allenol ether 1.26, which would then undergo an intramolecular 

Diels-Alder reaction to yield observed product 1.17. 

An ene-mechanism was also formulated
25

 and is depicted in Scheme 1.11 for the cyclisation of 

precursor 1.16. 

 

Scheme 1.11: Proposed Ene-Mechanism for the Formation of 1.17 
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A propargylic-ene reaction could take place in 1.16 generating intermediate 1.26 in a single 

mechanistic step. As for the postulated radical mechanism in Scheme 1.10 a Diels-Alder reaction in 

1.26 would follow generating product 1.17. 

Previous to the commencement of the work described in the results and discussion section of this 

thesis (Chapter 2) no definitive evidence was gathered by Parsons et al. in favour of either 

mechanism.   
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1.2 Metal-Free Radical Cyclisations 

1.2.1 Enediyne Antibiotics 

 

The term enediyne gained notoriety in 1987 with the elucidation of the chemical structure of the 

antibiotic and antitumor agents calicheamicins 
29,30

 (1.27: calicheamicin γ
l
1, Figure 1.2)  and 

esperamicins 
31-33

 (1.28: esperamicin A1, Figure 1.2). 

 

Figure 1.2: Calicheamicin γ
l
1 (1.27) and Esperamicin A1 (1.28) 

Calicheamicin γ
l
1 1.27 is extremely active against Gram-negative bacteria, highly active against 

Gram-positive bacteria and shows extraordinary potency against various murine tumors such as 
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P338 and L1210 leukemias and  solid neoplasms such as colon 26 and B-16 melanoma.
29,30

  

Esperamicin A1 1.28 has been shown to posses potent anticancer activity against the very same 

murine tumors.
31,32

 Both 1.27 and 1.28 are thought to exert their biological activity by effectively 

damaging DNA strands.
34,35

 Their structure is divided into an oligosaccharide fragment which is 

presumed to serve as a delivery system and an enediyne moiety which, upon activation in the body, 

exerts the biological activity observed.
34,35

 The mechanism of DNA cleavage by calicheamicin γ
l
1 is 

depicted in Scheme 1.12 below. 

 

Scheme 1.12: Mechanism of Activation and Subsequent DNA Cleavage by Calicheamicin γ
l
1  

The first step in the mechanism is the selective coordination of calicheamicin γ
l
1 1.27 

to TCCT sites on DNA strands using its oligosaccharide tail for specific recognition.
34,35

 A 

nucleophile such as glutathione then attacks the trisulfide group in 1.27 leading to the formation of 

a thiolate anion which undergoes conjugate addition with the enone moiety thus forming tricyclic 

structure 1.29. The resulting conformational change causes a shortening of the distance between the 

two acetylene portions of the enediyne moiety which triggers a cyclization yielding biradical 
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intermediate 1.30. This highly reactive intermediate is then capable of abstracting hydrogen atoms 

from DNA therefore causing its destruction.
34,35

  

At the time of the elucidation of the structures of calicheamicin γ
l
1 1.27 and esperamicin A1 1.28 the 

ability of enediynes to undergo spontaneous cyclisation yielding biradical intermediates was not a 

new concept; in fact it had been discovered fifteen years earlier in the laboratories of Robert G. 

Bergman. 

1.2.2 The Bergman Cyclisation 

 

In 1972 Bergman and Jones described the unusual scrambling of deuterium labeling in 1.32 upon 

pyrolysis  (Scheme 1.13).
36

 

 

Reagents and Conditions: (i) Neat, 300°C 

Scheme 1.13: First Observation by Bergman and Jones 

It was then observed that when cis-1,5-hexadiyn-3-ene 1.34 was heated in 2,6,10,14-

tetramethylpentadecane at 200°C in 0.01M concentration, benzene 1.35 is generated (Scheme 

1.14).
36,37
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Reagents and Conditions: (i) 2,6,10,14-tetramethylpentadecane, 200°C, 0.01M 

Scheme 1.14: The First Reported Bergman Cyclisation 

It was deduced that during an intermediate step in the above reaction two hydrogen atoms are 

abstracted from the solvent and that the only species able to perform this transformation are organic 

radicals.
37

 Biradical 1.36 (Scheme 1.15) was proposed as an intermediate and its presence during 

the course of the reaction was proved by trapping studies with carbon tetrachloride and methanol.
37

 

 

Scheme 1.15: Trapping of 1,4- Benzendiyl 1.36 by Bergman 

Further support for the biradical theory was then provided by the observation of a CIDNP 
38,39

 effect 

(Figure 1.3) during the thermolysis of 1.39 in a hexachloroacetone/cyclohexadiene-d4 solvent 

mixture (Scheme 1.16 and Figure 1.3). 
40,41
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Reagents and Conditions: (i) Hexachloroacetone, cyclohexadiene-d4, 160°C, relative yield 1.40:1.41: 1:3 

Scheme 1.16: Bergman Cyclisation of 1.39 in Hexachloroacetone/Cyclohexadiene-d4 

 

(A) NMR solution before reaction; (B) Signals observed during reaction at 160°C; (C) Room-temperature spectrum 

after complete reaction of 1.39; (D) Spectrum of 1.41 in carbon tetrachloride 

Figure 1.3: CIDNP Effect Observed by Bergman during Reaction of a Hexachloroacetone/ 

Cyclohexadiene-d4 Solution of 1.39 
41
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The presence of an inverted emission signal in spectrum B in Figure 1.3 was a clear indication of 

the intermediacy of a radical species. 

Prior to the discovery of the Bergman cyclisation, Masamune et al. 
42

 described the conversion of 

enediyne 1.42 into a benzenoid system, but without mentioning the involvement of a biradical 

system (Scheme 1.17). 

 

Reagents and Conditions: (i) NaOMe, solvent 

Scheme 1.17: Work by Masamune et al. 

The conversion from 1.43 to 1.44 is likely the result of a Bergman cyclisation. 

In 1966 Mayer and Sondheimer 
43

 described the rearrangement of 1.45 to 1.47 (Scheme 1.18) 

which is also likely to involve a reaction similar to the Bergman cyclisation and a biradical 

intermediate.  

 

Reagents and Conditions: (i) DMSO, MeOH, 7% KOH(aq.), reflux, 15min, 34%. 

Scheme 1.18: Work by Mayer and Sondheimer 

 

 



34 
 

1.2.3 The Myers-Saito Cyclisation  

 

Neocarzinostatin 1.48 (Scheme 1.19) is another powerful antibiotic first isolated from Streptomyces 

carzinostaticus by Ishida et al. in 1965.
44

 Its structure was elucidated in 1985 by Edo et al. 
45

  

In 1987 Myers 
46

 shed light on the mechanism of DNA cleavage by neocarzinostatin. He proposed 

that upon reaction of 1.48 with methyl thioglycolate, activation of the chromophore leads to the 

formation of enyne cumulene 1.49 which subsequently undergoes cyclization to yield biradical 

species 1.50. Supposedly, it is this species that causes destruction of DNA strands and is therefore 

responsible for the biological activity of neocarzinostatin.  

 

Scheme 1.19: Mechanism of DNA Cleavage by Neocarzinostatin 
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Specie 1.50 resembles the 1,4-benzenediyl biradical involved in the Bergman cyclisation. In both 

cases the unpaired electrons reside in two s-orbitals (Figure 1.4). 

 

Figure 1.4: Similarity Between 1,4-Benzenediyl Biradical in the Bergman Cyclisation and the 

Biologically Active Intermediate of Neocarzinostatin 

Intrigued by this newly discovered reaction, Myers decided to test the thermal cyclisation on simple 

enyne-allene system 1.53.  An interesting reaction between the acetylene and allene portions was 

observed with formation of products 1.55, 1.56 and 1.57. Their isolation was attributed to the 

intermediacy of biradical 1.54 (Scheme 1.20). 
47

 
48

 

 

Reagents and Conditions: (i) 1,4-Cyclohexadiene, reflux, 0.003M, 1.55: 60%, 1.56: 20%, 1.57: 20% 

Scheme 1.20: First Reported Myers Cyclisation 

The above transformation was carried in refluxing 1,4-cyclohexadiene which has a boiling point of 

88-89°C.
49

 This improved reactivity over the Bergman cyclisation (which possesses a much higher 

thermal activation barrier) of the now commonly known as Myers-Saito cyclisation has been 

attributed to the generation of a stabilised benzyl π radical 
48

 as shown in Figure 1.5 below. 
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Figure 1.5: Intermediate σ,π Biradical in the Myers-Saito Cyclisation 

Experimental evidence for the formation of biradical system 1.54 was subsequently gathered; 

thermolysis of 1.53 in methanol and carbon tetrachloride furnished trapped products 1.58, 1.59, 

1.60 and 1.61 (Scheme 1.21). 
47

  

 

Reagent and Conditions: (i) Methanol, 0.003M, 100°C, 30min, 1.58: 35%, 1.59: 10%; (ii): Carbon tetrachloride, 

0.003M, 100°C, 30min, 1.60+1.61= 15-25%. 

Scheme 1.21: Trapping Studies by Myers et al. 

The ease of σ,π – radical formation prompted Saito and co-workers to study these systems as 

potential synthetic antitumor agents.
50

 Enyne-allene system 1.66 was constructed via a key [2,3]-

sigmatropic rearrangement of intermediate phenyl sulfenate 1.65 
51

 as shown in Scheme 1.22 

below. 
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Reagents and Conditions: (i) Pd(PPh)4, CuI, n-propylamine, but-3-ynyl acetate, benzene, 71% (ii) Pd(PPh)4, CuI, n-

propylamine, propargyl alcohol, benzene, 57% (iii) Benzenesulfenyl chloride, Et3N, CH2Cl2, -78°C to 0°C, 56% 

Scheme 1.22: Construction of 1.66 by Saito et al. 

Sulfoxide 1.66 was found to have a half-life of 16 minutes at 37°C. It was then incubated at 

different pH and temperatures in the presence of φX174 RF I DNA to test its ability to cause its 

cleavage.
51

 This type of DNA is generated by the extraction of DNA from Escherichia coli and its 

treatment with alkali. Chromatographic separation of the residue yields two forms of φX174 RF I 

DNA, RF component I (double DNA strand) and RF component II (single DNA strand).
52

 Testing 

of a DNA-cleaving candidate substance on both individual forms is accepted as providing a simple 

but good in vitro model of activity.
52

 The results of the incubation of enyne-allene 1.66 with these 

two DNA forms are shown in Table 1.4 below. 
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Entry Concentration of 

1.66 (μM) 

Conditions DNA RF component I 

(% cleavage) 

DNA RF component II 

(% cleavage) 

1 100 pH 8.0, 27°C 63 32 

2 500 pH 8.0, 27°C 53 42 

3 100 pH 4.6, 37°C 67 33 

4 500 pH 4.6, 37°C 5 91 

Table 1.4: DNA RF Component I and DNA RF Component II Cleavage by Enyne-Allene 1.66 

Saito and co-workers had therefore proved that synthetic enyne-allene 1.66 is effective at cleaving 

both double stranded and single stranded DNA forms at different pH and temperatures.   

1.2.4 The Schmittel Cyclisation 

 

During investigations of the Myers-Saito cyclization, Schmittel et al discovered that switching from 

an alkyl to an aromatic or bulky silyl substituent at the acetylene terminus of an enyne-allene causes 

an interesting change in reactivity.
53

 Biradical 1.71 was proposed as an intermediate (Scheme 1.23).  

 

Scheme 1.23: The Switch from the Myers-Saito to the Schmittel Cyclisation 
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Examples of the cyclisations designed by Schmittel are shown in Scheme 1.24. 

 

Reagents and Conditions: (i) 1,4-Cyclohexadiene (excess), benzene, reflux, 1h. 1.73: 76%, 1.75: 63%. 

Scheme 1.24: Examples of the Work by Schmittel et al. 

Addition of 1,4-cyclohexadiene was found to be essential; in its absence the yield of cyclization 

product 1.75 was lowered to 20%. 
54

 According the Schmittel the role of 1,4-cyclohexadiene is to 

reduce radical-mediated polymerisation during the course of the reaction.  
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Reagents and Conditions: (i) Benzene, reflux. 

Scheme 1.25: Aromatisation Role of 1,4-Cyclohenxadiene in the Schmittel Cyclisation 

Schmittel concentrated on finding a proof for the existence of the supposed intermediate biradical 

1.71 (Scheme 1.23). He postulated the following arguments in favour of a radical mechanism: 
55

 

i) The switch from the Myers-Saito cyclisation when substituting the acetylene terminus 

with an aryl or silyl moieties could result from their ability to stabilise α-radicals 

ii) The rate of cyclisation is unaffected by the introduction of large substituents at the allene 

terminus. This would cause a reduction in rate in pericyclic reactions but not in the case 

of a radical mechanism. 

iii) Rates of reaction are independent of solvent polarity. This excludes the presence of any 

zwitterionic intermediates. 

However, subsequent attempts at intermolecular radical trapping using oxygen, thiophenol, 

tris(trimethylsilyl)silane and TEMPO failed, giving no experimental proof for the existence of the 

biradical intermediate.
55
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A recent computational study of the Schmittel cyclisation by Engels et al. concentrated on the 

theoretical calculation of the activation energy for the possible biradical (stepwise) and “ene” 

(concerted) mechanisms (Scheme 1.26).
56

 

 

Scheme 1.26: Proposed Concerted and Stepwise Mechanisms for the Schmittel Cyclisation 

The study concluded that the “ene” mechanism possesses equal activation barrier height as the 

biradical pathway (~32 Kcal/mol).
56

 It was then observed that in both proposed mechanisms, the 

hydrogen-abstraction is the rate determining step. Engels exploited this notion to predict kinetic 

isotope effects for both pathways and calculated a kH/kD of around 2 for the concerted reaction and a 

kH/kD close to 1 for the stepwise mechanism.
56

 Schmittel then set out to experimentally measure 

kH/kD for the cyclisation of 1.82 and 1.83 in refluxing toluene (Figure 1.6).
57

  

 

Figure 1.6: Molecules selected by Schmittel for Kinetic Isotope Effect Study 
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A k1.78/k1.79 value of 1.17 was calculated from the rate measurements. According to Schmittel 
57

 and 

the calculation by Engels 
56

 this is a clear indication that a step-wise (radical) mechanism is in 

operation. 

Another method adopted by the Schmittel et al. to indirectly prove the existence of a biradical 

intermediate was to introduce a cyclopropane ring at the allenic terminus.
55

 The rate for the radical 

opening of cyclopropane rings is known to be extremely fast (k (80°C) = 1.1 x 10
9
 s

-1
).

58
 When 

enyne allene 1.84 was heated in the presence of 1,4-CHD, however, no opening of the cyclopropane 

was observed (Scheme 1.27). 

 

Reagents and Conditions: (i) 1,4-Cyclohexadiene (excess), benzene, reflux, 1h. Combined yield: 52%, 1.85:1.86 = 

0.6:1.0. 

Scheme 1.27: Attempted Cyclopropane Opening by Schmittel et al. 

Schmittel observed that the reaction is not stereospecific giving a mixture of E/Z (1.85) and E/E 

(1.86) diastereomers. This meant that the mechanism cannot be concerted and rotation about bonds 

occurs at some stage of the reaction, as depicted in Figure 1.7 below for the proposed radical 

intermediate. 

 

Figure 1.7: Bond Rotation in the Radical Mechanism Proposed for the Schmittel Cyclisation 
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The failure of isolating an open cyclopropane structure from 1.87 however did not deter Schmittel. 

Ten years after the initial attempt in Scheme 1.27 he discovered that on heating new substrate 1.89, 

compound 1.90 which is the result of the cyclopropyl group opening, was isolated.
59

 

 

Reagents and Conditions: (i) 1,4-Cyclohexadiene 100eq, toluene, sealed tube, 170°C, 7h, 1.90: 32%, 1.91: 25%. 

Scheme 1.28: Successful Cyclopropane Ring Opening by Schmittel 

Formation of 1.91 was attributed to an intermediate silyl shift step required to aid aromatisation to 

the naphthalene group.
59

 The difference in reactivity observed between cyclopropane analogues 

1.84 and 1.89 was explained by the replacement of the phosphine oxide group in 1.84 with an aryl 

group in 1.89 which emphasises the radical character in intermediate biradical species.
59

 The 

successful opening of the cyclopropane moiety in 1.89 was considered by Schmittel to be 

indisputable evidence that a stepwise/radical mechanism is in operation.  

1.2.5 Other Radical Cyclisations 

 

1.2.5.1 Johnson and Kociolek 

In 1999 Johnson and Kociolek reported that upon pyrolysis at 500-600°C and 0.01Torr 1,6,11-

dodecatriyne 1.92 yields a mixture of products 1.93, 1.94 and 1.95. 



44 
 

 

Reagents and Conditions: (i) Neat, 500-600°C, 0.01Torr, total yield: 35%, 1.93:1.94+1.95= 1:5 

Scheme 1.27: Work by Johnson and Kociolek 

The proposed mechanism for the above transformation involves an initial dimerisation of the 1,6-

diyne system yielding a 1,4-biradical species 1.96. Subsequent intramolecular trapping of the 

remaining acetylene moiety and dehydrogenation yields the observed products 
60

 as shown in 

Scheme 1.28. 

 

Scheme 1.28: Proposed Biradical Mechanism by Johnson and Kociolek 

DFT calculations at the pBP86/DN
*
 level predict that the conversion of 1.92 to 1.96 is exothermic 

by 131Kcal/mol 
60

 a barrier much smaller than that for the corresponding concerted 

cyclotrimerisation mechanism proposed for the similar Berthelot reaction 
61

 which involves the high 

temperature intermolecular condensation of three acetylene molecules to yield benzene.
62

 No 

further work on this transformation has so far been published. 
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1.2.5.2 Ley et al. 

Following Johnson and Kociolek’s work, Ley et al. have recently reported that introducing an ether 

functionality in 1.92 (Scheme 1.27) substantially lowers the activation energy of the reaction 

allowing it to proceed at 200°C under microwave conditions (Scheme 1.29).
63

  

 

Reagents and Conditions: (i) DMF, MW, 200°C, 0.5h, 1.101: Trace, 1.102: 94% 

Scheme 1.29: Work by Ley et al. 

The isolation of intermediate 1.101 in trace amounts led to the formulation of a mechanistic 

postulate involving a 1,4-biradical (1.103) or a cyclobutadiene (1.104) species (Scheme 1.30). 

 

Scheme 1.30: Mechanistic Postulate by Ley et al. 
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Either 1.103 or 1.104 could give access to a Dewar benzene 
64,65

 structure 1.105. This could 

rearrange to lower energy tetracycle 1.106 which could then fragment to biradical 1.107, which has 

literature precedent 
66,67

 and lead to the observed product 1.102 via detected intermediate 1.101.  

No experimental proof for the existence of any of the proposed intermediates was ever gathered and 

no further work on this reaction has so far been published.  
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1.3 Ene Reactions Involving Triple Bonds 

1.3.1 The Propargylic-Ene Reaction 

 

Ene-reactions are very efficient methods for generating complex structures in a single synthetic 

step. The intramolecular variant of this type of cascade reaction is a well-established process 
68

 

however few examples have been reported involving propargylic rather than allylic hydrogen 

atoms. 

1.3.1.1 Oppolzer et al. 

In 1973 Oppolzer et al. reported that thermolysis of neat propargylic amine 1.108 generates allene 

1.109 in 43% yield.
69

  

 

Reagents and Conditions: (i) Neat, 210°C, 2h, 43%. 

Scheme 1.31: First Example of Propargylic-Ene Reaction by Oppolzer et al. 

The above reaction was reported to occur at a significantly lower temperature than the 

corresponding 1,6-dialkene ene-cyclisations. A mechanistic rationale for the transformation above 

was not provided, however it was assumed this reaction proceeds via an ene-mechanism. 

1.3.1.2 Shea et al. 

While investigating the intramolecular Diels-Alder reaction of 1.110, Shea et al. isolated aldehyde 

1.111 as a side product (Scheme 1.32).
70
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Reagents and Conditions: (i) Neat, 402°C, 12%. 

Scheme 1.32: Work by Shea et al. 

Deuterium labelling studies revealed that an intramolecular hydrogen-abstraction step takes place 

during the reaction. To account for this, cyclic oxallene 1.113 was proposed as an intermediate in 

the transformation (Scheme 1.33).
70

  

 

Scheme 1.33: Proposed Mechanism by Shea et al. 

A concerted propargylic-ene reaction with concomitant 1,6-hydrogen abstraction generates cyclic 

allene 1.113. This carbocycle was calculated to posses strain energy of approximately 

14Kcal/mol.
70

 The feasibility of the whole process was backed up by consideration of the energetics 

of the parent ene-reaction shown in Scheme 1.34, estimated to be exothermic by 23Kcal/mol.
71

  

 

Scheme 1.34: Previous Investigation by Shea et al. 

The second step of the rearrangement was thought to proceed via a retro-hetero ene fragmentation 

involving a 1,5-hydrogen abstraction step, a process well precedented at the time of this 

publication.
72-75
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1.3.1.3 Pérez et al. 

While investigating the coclycomerisation of 1,6-enyne systems and arynes catalysed by palladium 

(0), Pérez et al. discovered that molecule 1.118 undergoes spontaneous decomposition on standing 

at room temperature.
76

 Tentative NMR analysis of the generated mixture revealed the intermediate 

generation of allene 1.119. 

 

Reagents and Conditions: (i) Neat, rt 

Scheme 1.35: Work by Pérez et al. 

The proposed mechanism for this transformation involves a concerted propargylic-ene reaction.
76

 

1.3.1.4 Cheng et al. 

In 2005 Cheng et al. demonstrated a room-temperature intermolecular variant of the propargylic-

ene transformation.
77

 Highly reactive benzyne was found to undergo reaction with alkyne 1.121 at 

room temperature to generate allene 1.122 in 69% yield (Scheme 1.36). 

 

Reagents and Conditions: (i) KF, 18-crown-6, THF, rt, 6h, 69%. 

Scheme 1.36: Work by Cheng et al. 

Benzyne was generated in situ by reaction of 2-(trimethylsilyl)phenyl triflate 1.120 with potassium 

fluoride.
77
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1.3.1.5 Martin et al. 

During studies on the functionalisation of fullerene C60 Martin et al. reported that upon refluxing in 

chlorobenzene, 1,6-fullerenynes bearing alkyl substituents on the terminal carbon of the alkyne 

moiety led quantitatively to new allenes (Scheme 1.37). 
78

  

 

Reagents and Conditions: (i) Cl-Ph, reflux, 3h, 99%. 

Scheme 1.37: Work by Martin et al. 

A propargylic-ene mechanism was proposed for this transformation. DFT calculations revealed that 

this reaction is exothermic only by 9.5Kcal/mol. It was therefore concluded that the formation of 

allenes from 1,6-fullerenynes must be kinetically driven.
78

 

1.3.1.6 Dachs et al. 

While investigating the metal-catalysed cyclisation of triaza macrocylic scaffolds Dachs et al. 

discovered that tetrafused structure 1.126 can be obtained simply by refluxing molecule 1.125 in 

toluene under catalyst-free conditions.
79
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Reagents and Conditions: (i) Toluene, reflux, 30h, 32%. 

Scheme 1.38: Work by Dachs et al. 

It was discovered that addition of an excess of 1,4-cyclohexadiene to the reaction mixture raised the 

yield of the above transformation to 77% yield.
79

 This finding initially led the researchers into 

thinking that a biradical mechanism is in operation, similar to that proposed by Parsons et al. 
23

 for 

their transformation. However EPR studies carried in the presence of radical traps failed to confirm 

the presence of radical intermediates and a propargylic-ene mechanism was instead proposed 
79

 as 

shown in Scheme 1.39 below. 

 

Scheme 1.39: Proposed Mechanism Postulated by Dachs et al. 

1.3.1.7 Danheiser et al. 

Danheiser et al. have recently been involved in investigations of formal [2+2+2] cyclisations. The 

first example published involves the bimolecular cyclotrimerisation between a 1,6-diyne and 

alkenyl or alkynyl dienophile.
80

 An example is shown in Scheme 1.40 below. 
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Reagents and Conditions: (i) Toluene, 0.1M, reflux, 21h, 94%, Z:E = 91:9. 

Scheme 1.40: Work by Danheiser et al. 

The proposed mechanism involves an intramolecular propargylic-ene reaction of 1.128 to 

genererate vinylallene 1.131, which then undergoes an intermolecular Diels-Alder cycloaddition 

with dienophile 1.129 to yield product 1.130 (Scheme 1.41).
80

  

 

Scheme 1.41: Proposed Mechanism Postulated by Danheiser et al. 

In this publication mention of the biradical mechanism proposed for similar transformations by 

Johnson et al., Ley et al. and Parsons et al. was made. However it was dismissed in favour of an 

ene-mechanism.
80

 

Another publication by Danheiser et al. describes the use of an intramolecular cyclotrimerisation 

between two alkynes and a cyano group for the synthesis of substituted pyridines.
81

 An example is 

shown below (Scheme 1.42). 
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Reagents and Conditions: (i) Toluene, 0.01M, 160°C, 21h, 71%. 

Scheme 1.42: Work by Danheiser et al. 

The proposed mechanism involves a propargylic-ene reaction between the 1,6-diyine with 

subsequent Diels-Alder cycloaddition of the resulting vinylallene with the cyano group (Scheme 

1.43).
81

  

 

Scheme 1.43: Proposed Mechanism Postulated by Danheiser et al. 

1.3.2 Conjugated Ynone Cycloadditions 

 

1,3-Dienes are the typical four-electron components involved in the Diels-Alder reaction. However, 

[4+2] cycloadditions between conjugated enynes and alkenes or alkynes have also been reported in 

the literature (Scheme 1.44). The proposed mechanisms for these transformations commonly 

involve the intermediacy of highly strained cyclic allene species. 
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Scheme 1.44: General Scheme for the Enyne Cycloaddition with Formation of a Cyclic Allene 

Intermediate 

An insignificant amount of work has been published on the heterocyclic variant of this reaction. 

Danheiser et al. in 1998 reported the first and only examples of such transformation 
82

 one of which 

is shown below in Scheme 1.45. 

 

Reagents and Conditions: (i) Toluene, 0.1M, 180°C, 1.1eq. γ-terpinene, 48h, 80% yield. 

Scheme 1.45: First Conjugated-Ynone Cycloaddition Reported by Danheiser et al. 

Addition of the radical inhibitor γ-terpinene was found to be essential to improve the efficiency of 

the transformation, which is thought to involve the generation of a carbene intermediate (Scheme 

1.46).
82
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Scheme 1.46: Proposed Mechanism Postulated by Danheiser et al. 

An initial intramolecular [4+2] cycloaddition between the alkyne and the conjugated ynone in 1.138 

generates strained heterocyclic allene 1.140. A subsequent 1,2-carbon shift forms the fused furan 

motif with concomitant generation of a carbene which then undergoes C-H bond insertion to yield 

observed product 1.139.
82

 Further support for the postulated formation of a carbene intermediate 

was provided by the result depicted in Scheme 1.47 below. 
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Reagents and Conditions: (i) Toluene, 0.1M, 150°C, 16h, 30-35%. 

Scheme 1.47: Opening of the Cyclopropane Moiety in 1.142 

After the initial [4+2] cyclisation and generation of the carbene intermediate, a concerted 

fragmentation of the cyclopropane ring yields the observed product 1.145.
82
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1.4 Jiadifenin 

1.4.1 Structure and Biological Activity 

 

Seco-prezizaane-type sesquiterpene jiadifenin 1.146 was first reported by Fukuyama et al. in 2002 

83
 who isolated it in 0.001% yield from the methanol extract of the pericarps of Illicium Jiadifengpi. 

 

Figure 1.8: Jiadifenin 

From a chemical perspective its highly oxygenated, cage-like structure makes it an appealing target 

for total synthesis. Added challanges to be considered are the presence of five asymmetric centers 

and a hemiacetal functionality which makes the C-10 centre anomeric. On the biological level, 

Fukuyama and co-workers 
83

 have shown that jiadifenin exhibits potent growth promoting activity 

in cultures of rat cortical neurons in concentrations ranging from 0.1 to 10 μM. Recent studies 

carried out by Danishefsky et al. demonstrated that 1.146 regulates the action of nerve growth 

factor protein rather than acting independently.
84

 In the presence of NGF, 1.146 enhanced neurite 

lengths by 162% relative to a DMSO-NGF control. Jiadifenin is thus appropriately classified as a 

non-peptidyl neurotrophic factor 
85

 and could be a successful candidate for the fight against 

neurodegenerative diseases.  

Despite the interesting characteristics described above only one total synthesis of jiadifenin has 

been achieved so far. 
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1.4.2 Total synthesis by Danishefsky et al. 

 

The retrosynthetic rationale chosen by Danishefsky and co-workers for the synthesis of jiadifenin is 

shown in Scheme 1.48 below.
84

 

 

Scheme 1.48: Retrosynthetic Rationale of Jiadifenin by Danishefsky et al. 

As previously reported by Fukuyama et al.
83

 1.146 can be obtained by the oxidative ring-

contraction of an α-hydroxy lactone which would in turn be obtained by oxidative-cleavage of the 

allyl group in 1.148. The tertiary hydroxyl group was expected to be introduced by α-hydroxylation 

of the lactone functionality in 1.149. Intramolecular Claisen condensation followed by 

intramolecular Horner-Wadsworth-Emmons reaction would deliver the tricyclic skeleton of 1.149 

from 1.151 through 1.150. The construction of the two quaternary centers in 1.151 would then be 

achieved by a series of stereoselective alkylations of symmetrical cyclohexanone 1.152. 
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Therefore the first challenge in the synthetic plan devised by Danishefsky et al. involved the de-

symmetrisation of ketone 1.152 (Scheme 1.49).   

 

Reagents and Conditions: (i) LHMDS, THF, -78°C then MeI, -78°C to rt; (ii) 10% aq.KOH, MeOH, aq. HCHO, 0°C; 

(iii) TBSOTf, 2,6-lutidine, CH2Cl2, 0°C, 64% over three steps; (iv) LHMDS, THF, -78°C, to rt, 73%; (v) LDA, THF, -

78°C to -20°C, BrCH2CO2Et, HMPA, -78°C, 1.151: 73%, 1.154: 24%  

Scheme 1.49: Synthesis of 1.151 

Methylation followed by hydroxymethylation under thermodynamic conditions gave 1.153. This 

material was then subjected to two further alkylations with allyl bromide and ethyl bromoacetate 

respectively to yield a diastereomeric mixture of 1.151 and 1.154.   
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Reagents and Conditions: (i) LiCH2P(O)(OMe)2, THF, -78°C, 81%; (ii) NaH, THF, reflux, 91%; 2N aq. HCl, THF, 

94%; (iv) ClCO2Et, pyridine, DMAP, CH2Cl2, 0°C to rt, 93%; (v) NaH, THF, reflux, 94%; (vi) mCPBA, CH2Cl2, 90%; 

(vii) NaBH4, THF/MeOH (1:1), -78°C, 93%; (viii) LDA, THF, -40°C to -15°C then MeI, HMPA, -35°C, 64%; (ix) O3, 

Sudan 7B Red, CH2Cl2/EtOH (1:1), -78°C; (x) Jones reagent, acetone, 90% over two steps. 

 Scheme 1.50: Synthesis of 1.147 

Conversion of the ester moiety in 1.151 into a β-keto phosphonate followed by intramolecular 

Horner-Wadsworth-Emmons reaction and global deprotection gave 1.155 in 70% combined yield. 

Reaction of 1.155 with ethyl chloroformate and Claisen condensation gave tricyclic 1.149 in 94% as 

a single diastereomer. Hydroxylation of the 1,3-dicarbonyl system in 1.149 with mCPBA and 

sodium borohydride-mediated reduction of the ketone moiety at C7 gave 1.148 This material was 

then methylated using LDA and methyl iodide and the construction of the second  lactone ring was 

then achieved by ozonolysis of the allylic group and oxidation of the resulting hemiacetal.  
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Reagents and Conditions: (i) NaBH4, CeCl3.7H2O, THF/MeOH (3:1), -65°C, 88%; (ii) NaHMDS, THF, -78°C, then 

1.158, THF, -78°C, 48% after one recycle; (iii) Jones’ reagent, acetone, MeOH, 0°C, 29%; Jones’ reagent, acetone, 

MeOH, 0°C, 40%. 

Scheme 1.51: Synthesis of Jiadifenin by Danishefsky et al. 

Luche reduction of the enone moiety followed by α-hydroxylation of the lactone moiety using 

oxaziridine 1.158 gave 1.157. Finally, 1.157 was oxidised in two steps to racemic Jiadifenin using 

excess Jones’ reagent in a mixture of acetone and methanol. Racemic Jiadifenin was therefore 

obtained over 19 steps in a total 0.5% yield. 
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2. Results and Discussion 
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2.1 Novel Cyclodimerisation of 1,6-Diynes for the 

Generation of (Z,Z) Exo-Cyclic Conjugated Dienes 

Fused to Lactams 

2.1.1 Outline of Investigation 

 

The aim of the following DPhil research project was to devise and execute a series of experiments 

with the intention of gaining a better mechanistic understanding of the novel thermal cyclisation 

discovered by Parsons et al. (Scheme 2.1).
15,23

  

 

Scheme 2.1: Original Cyclisation Discovered by Parsons et al. 

As explained in Section 1.1.3 the possibility of an acid-catalysed mechanism had been previously 

discarded.
15

 To further extend this notion to cyclisation precursors containing an aromatic group the 

alkenyl bromide portion of precursor 1.12 was replaced by a terminal alkyne.
25

 The construction of 

desired material 2.6 is detailed below in Scheme 2.2. 
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Reagents and Conditions: (i) N,N-Dimethylethylene diamine, cat. pTSA, toluene, reflux, 92%; (ii) 
n
BuLi, CuCN, (3-

bromo-1-propynyl)(trimethyl)silane, THF, -60°C then 1M HCl(aq) , rt, 69%; (iii) LiC≡CCH2NMeBoc, 
t
BuBr, -95°C, 

then 1M HCl(aq) , rt, 90%; (iv) cat NaOMe, CH2Cl2:MeOH 1:1, 97%; (v) 2M HCl in diethyl ether, 60%; (vi) 

Me3SiC≡CCOCl, Et3N, CH2Cl2, 28%. 

Scheme 2.1: Synthesis of cyclisation precursor 2.6 

2-Bromobenzaldehyde 2.1 was protected to give imidazolidine 1.9 with N,N-dimethylethylene 

diamine in the presence of para-toluene sulfonic acid under Dean-Stark conditions.
86,87

 This 

protecting group has the advantage of facilitating ortho-lithiation and is also easily removed by 

addition of a weak, aqueous acid solution.
88

 Aryl bromide 1.9 was subjected to lithium-halogen 

exchange with n-butyllithium and reaction of the resulting anion with one equivalent of cuprous 

cyanide afforded the corresponding lower-order cyanocuprate. As previously reported by Eberbach 
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et al 
89

, the obtained cuprate was then reacted with (3-bromo-1-propynyl)(trimethyl)silane to yield 

desired 2-substituted benzaldehyde 2.2. Carbamate 2.3 was subsequently formed by alkylation of 

the aldehyde by the lithium salt of tert-butyl methyl(prop-2-ynyl)carbamate. Desilylation of 2.3 was 

achieved in excellent yield by the action of catalytic sodium methoxide in methanol to give terminal 

alkyne 2.4, which was then converted into amine salt 2.5 by addition of hydrogen chloride in 

diethyl ether. Reaction of amine salt 2.5 with the acyl chloride derived from 3-(trimethylsilyl)-2-

propynoic acid in the presence of triethylamine as a base yielded desired cyclization precursor 2.6. 

Thermolysis of 2.6 in toluene in the absence of acid scavengers furnished two new products 

(Scheme 2.2) 

 

Reagents and Conditions: (i) Toluene, reflux, 0.1M, 4h, 1.13: 76%, 2.7: 9%. 

Scheme 2.2: Thermal cyclisation of precursor 2.6 

As in the example shown in Section 1.1.3, the isolation of 1.13 ruled out the previously proposed 

acid-catalysed mechanism as no bromine is present in the molecule to generate catalytic amounts of 

hydrogen bromide in solution.
23

 The formation of unexpected product 2.7 was the most interesting 

factor; its structure revealed that the lower alkynyl portion in 2.6 failed to participate in the 

cyclisation and that two extra hydrogen atoms are incorporated during the course of the reaction. 

Following these observations the mechanism in Scheme 2.3 was proposed.  
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Scheme 2.3: Postulated Mechanism for the Formation of 1.13 and 2.7 

In the postulated mechanism alkyne 2.6 cyclises to give a concentration of biradical 2.8 which in 

turn could give biradical 2.9 by intramolecular 1,5-hydrogen atom abstraction and tautomerism. 

This reacts intramolecularly to give tetracycle 2.10 followed by isomerisation to phenol 1.13. 

Alternatively it could hydrogen-abstract from the solvent to generate enol 2.11 which is in 

equilibrium with the observed product 2.7. 
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Since it was now obvious that the terminal alkyne was not necessary for the cyclisation to occur, the 

chosen course of action was to synthesise a novel cyclisation precursor consisting solely of a 1,6-

diyne system. 

2.1.2 Synthesis of a new cyclisation precursor 

 

2.1.2.1 Retrosynthetic Analysis 

Due to the immediate availability of benzaldehyde in the laboratory, amide 2.12 (Figure 2.1) was 

selected as a new synthetic target. 

 

Figure 2.1: Novel Cyclisation Precursor 

The retrosynthetic approach for 2.12 is depicted in Scheme 2.4 below.  

 

Scheme 2.4: Retrosynthetic Analysis of Amide 2.12 
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A disconnection at the amide moiety leads to the commercially available (3-(trimethylsilyl)-2-

propynoic acid) 2.13 and secondary amine 2.14. The latter could be generated from protected amine 

2.15 which could be obtained from the alkylation of benzaldehyde by the lithium salt of protected 

N-methylpropargyl amine 2.17. 

2.1.2.2 Investigation of Nitrogen Protection/Deprotection Sequence 

In order to be selectively deprotonated at the terminal alkyne position (pKa ~ 29 in DMSO 
90,91

) N-

methylpropargyl amine needed primarily to be protected at the nitrogen atom. Another factor to 

take into account was that deprotonation by strong bases of the propargylic protons α to the nitrogen 

atom can be a competing possibility, as shown in Scheme 2.5 below for a selected example.
92

 

 

Reagents and Conditions: (i) 
t
BuOK, THF, 0°C, 10min, 88%. 

Scheme 2.5: Work by Maddaluno et al. 

On this basis the ideal protecting group for N-methylpropargyl amine should replace the proton on 

the nitrogen atom while sterically hindering the propargylic position. One of the most commonly 

employed groups for amine protection in organic synthesis is tert-butyl carbamate.
93

 It is stable to 

strong, nucleophilic bases and is moderately bulky.  

The adaptation of the Boc protecting group for the synthesis of amine 2.23 is shown in Scheme 2.6 

below. 
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Reagents and Conditions: (i) Di(tert-butyl)dicarbonate, CH2Cl2, 0°C to rt, 99%; (ii) 
n
BuLi, THF, -70°C; (iii) 

Benzaldehyde, -70°C to RT, then sat. NH4Cl(aq), rt, 81%; (iv) 2M HCl in Et2O, rt, 44%. 

Scheme 2.6: The Use of Boc for the Synthesis of Amine 2.23 

Boc protection of commercially available N-methylpropargylamine 2.18 was easily achieved by 

reaction with di(tert-butyl) dicarbonate in CH2Cl2 at 0°C to room temperature. Deprotonation of the 

terminal alkyne in 2.21  was then performed by addition of n-butyllithium at -70°C and the newly 

generated anion underwent smooth alkylation with benzaldehyde to furnish alcohol 2.22 in 81% 

yield. 

The next step in the synthetic sequence was the removal of the Boc protecting group. Typical 

methods employ protic acids such as HCl in ethyl acetate 
94

, diethyl ether and dioxane 
95

, 

trifluoroacetic acid in dichloromethane 
96,97

 or Lewis-acids such as zinc(II) bromide in 

dichloromethane 
97,98

. An initial attempt at Boc deprotection was carried using trifluoroacetic acid 

in dichloromethane. Unfortunately addition at 0°C followed by stirring at room temperature for one 

hour led to complete decomposition of the reaction mixture. More encouraging results were 

obtained when a solution of hydrogen chloride in diethyl ether was employed. On a small scale 

(~1mmol), this process gave a mediocre yield (44%) of the hydrochloride salt 2.23. However, on 

scaling up (~10mmol) little or no product was isolated. Closer inspection of the structure of the 

starting material revealed that the use of the required strong protic acids might cause a negative 

interaction with the benzylic hydroxyl group in 2.22. Acid-catalysed alcohol dehydration is a well 
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known process 
99,100

, and is especially efficient even at room temperature for the generation of 

tertiary, benzylic or allylic carbocations. This possible effect on alcohol 2.22 is depicted below 

(Scheme 2.7). 

 

Scheme 2.7: Possible Acid-Catalysed Decomposition Pathway of 2.22 

Protonation of the secondary alcohol in 2.22 and consequent loss of a water molecule in 2.24 could 

generate stabilised benzylic carbocation 2.25 which would then undergo a series of 

reactions/rearrangements leading to the formation of unwanted products. 

Zinc(II) bromide in dichloromethane was also tested as the Boc-deprotecting agent. After a basic 

workup the residue was purified on column chromatography in the presence of 1% triethylamine to 

yield unexpected amine 2.26 (Scheme 2.7). 

 

Reagents and Conditions: (i) Anhydrous ZnBr2, CH2Cl2, rt then 10% K2CO3 (aq) , 62% 

Scheme 2.7: Attempted Boc-deprotection employing zinc(II) bromide 

The net outcome of this reaction is a Boc-deprotection of the secondary amine with concomitant 

protection of the benzylic alcohol with a tert-butyl group. A postulated mechanism is shown below 

in Scheme 2.8. 
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Reagents and Conditions: (i) anhydrous ZnBr2, CH2Cl2 then H2O. 

Scheme 2.8: Possible mechanism for the formation of 2.26 

The first step involves the coordination of zinc(II) bromide to the oxygen atoms’ lone pairs. A 

stable tert-butyl cation is then eliminated in favour of the generation of a covalent oxygen-zinc 

bond. Resulting 2-bromo-2-methylpropane then reacts in a SN1 fashion with the benzylic alcohol. 

On addition of water the complex collapses, releasing the free amine and generating zinc(II) 

carbonate. Support for the intermediate generation of 2-bromo-2-methylpropane is provided by 

studies carried by Marcantoni et al 
101

 on the deprotection of tert-butyl esters with cerium(III) 

chloride and sodium iodide. After aqueous work-up the presence of 2-iodo-2-methylpropane in 

solution was detected by gas chromatography. 

Having failed to find suitable conditions for the Boc-deprotection in 2.22 the focus was directed 

towards finding a different protecting group for the secondary amino group. Silyl amines are not 

frequently encountered in organic synthesis mainly because high reactivity to moisture 
93

 which 
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makes their handling a delicate task. However they have been successfully employed in the 

synthesis of complex molecules. For example Pratt and co-workers have exploited trimethylsilyl 

protection of anilines for the synthesis of substituted benzophenones (Scheme 2.9).
102

  

 

Reagents and Conditions: (i) 
n
BuLi, THF, 0°C; (ii) MeeSiCl, rt, 61%; (iii) 

n
BuLi, Et2O, 0°C; (iv) Benzonitrile, rt, then 

H2O, 85%. 

Scheme 2.9: Work by Pratt et al. 

The bis-trimethylsilyl group not only substitutes the potentially reactive hydrogen atoms on the 

amine but also prevents ortho lithiation of the aromatic ring in the presence of excess n-

butyllithium. 

Overman and co-workers have employed tert-butyldiphenylsilyl protection of a primary amine for 

the synthesis of compound 2.39 in Scheme 2.10. 
103

 

 

Reagents and Conditions: (i) cat. K2CO3, MeOH, rt, 97%; (ii) DMSO, oxalyl chloride, Et3N, -78°C, 97%; (iii) 2.37, 

Et2O, -78°C to 0°C, 47%; (iv) 4:1 THF:1M HCl(aq), rt, 88%. 

Scheme 2.10: Work by Overman et al. 
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The bulky tert-butyldiphenylsilyl protection was shown to be stable to organometallic reagents and 

oxidative conditions. In this instance amine 2.38 was deprotected using aqueous hydrochloric acid 

in tetrahydrofuran, however in the same publication pyridine-hydrofluoric acid is also mentioned as 

a possible deprotecting agent. Although very toxic, diluted aqueous solutions of hydrofluoric acid 

have a pKa of 3.45 
104

, considerably less acidic than corresponding solutions of aqueous hydrogen 

chloride. 

Wang et al.
105

 have more recently reported the use of the tri-isopropylsilyl protection in the 

synthesis of  2.43 (Scheme 2.11). 

 

 

 

 

Reagents and Conditions: (i) 
n
BuLi, THF, -78°C then TIPS-OTf, -78°C to rt; ii) 

n
BuLi, -78°C then TsCN, -78°C to rt 

72%; (iii) 5 mol% Rh(OAc)2, diazomalonate, 1,2-DCE, reflux; (iv) 5M HF in MeCN, rt, 60%. 

Scheme 2.11: Work by Wang et al. 

The silyl amine is stable to n-butyllithium and remarkably it is also resilient to a metal carbenoid 

generated from diazomalonate and rhodium acetate. Silyl removal in this study was performed by 

action of a solution of hydrofluoric acid in acetonitrile. 

All the positive points described above prompted the study of silyl protection for the synthesis of 

cyclisation precursor 2.12 and due to its availability in the laboratory the tri-isopropylsilyl group 
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was chosen for the investigation. Protection of N-methylpropargylamine 2.18 was achieved in 

quantitative yield with tri-isopropylsilyl trifluoromethanesulfonate in the presence of triethylamine 

as an acid scavenger (Scheme 2.12). 

 

Reagents and Conditions: (i) TIPS-OTf, Et3N, CH2Cl2, 0°C to rt, 99%; (ii) 
n
BuLi, THF, -70°C; (iii) Benzaldehyde, -

70°C to rt, then sat. aq. NH4Cl, 95%; (iv) 40% aq HF, MeCN, rt, then 10% aq K2CO3, 87%. 

Scheme 2.12: Silyl-Protection of N-Methylpropargylamine, Alkylation and Silyl-deprotection 

Deprotonation at the terminal acetylene of silyl-protected amine 2.44 and alkylation with a slight 

excess of benzaldehyde proceeded in 95% yield. After quenching with saturated aqueous 

ammonium chloride and washing with saturated aqueous sodium bisulfate to remove excess 

aldehyde via its bisulfate adduct 
106

 the product 2.45 was found to be adequately pure so further 

purification was not performed. This reduces the required time for the synthesis and also avoids the 

potentially problematic column chromatography of the silyl amine. 

Silyl deprotection of 2.45 was achieved using 40% aqueous hydrofluoric acid in acetonitrile inside a 

plastic container. A basic work up furnished desired amine 2.14 as a white, pure solid in 87% yield.  

This material required no further purification. 

With an optimised route in hand, a small series of aryl substituted precursors was created in order to 

test the replicability of the devised synthesis. The results are presented below in Table 2.1.  
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Reagents and Conditions: (i) 
n
BuLi, THF, -70°C; (ii) 2-R-benzaldehyde see Table 2.1, -70°C to rt then sat. aq. NH4Cl. 

Scheme 2.13: Alkylation of Different Benzaldehydes with 2.44 

Entry R Compound reference Yield (%) 

1 H 2.45 92 

2 F 2.46 86 

3 Cl 2.47 91 

4 Br 2.48 95 

Table 2.1: Alkylation of Different Benzaldehydes with 2.44 

 

Reagents and Conditions: (i) 40% aq HF, MeCN, rt then 10% aq K2CO3. 

Scheme 2.14: TIPS-Deprotection of Different Analogues 

Entry R Compound reference Yield 

1 H 2.14 94 

2 F 2.49 96 

3 Cl 2.50 92 

4 Br 2.51 87 

Table 2.2: TIPS-Deprotection of Different Analogues 

2.1.2.3 Investigation of Amide Coupling 

The required acid for the coupling (3-(trimethylsilyl)-2-propynoic acid) 2.13 was synthesised using 

a slightly modified version of Fleming’s and co-workers procedure.
107
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Reagents and Conditions: (i) MeLi, THF, -70°C to -50°C then CO2(s) then 1M HCl(aq), 78%. 

Scheme 2.15: Synthesis of (3-(trimethylsilyl)-2-propynoic acid) 

The terminal acetylene proton in ethynyl(trimethyl)silane was removed by action of methyllithium. 

This step was found to require gentle warming form -78°C to -50°C in order for complete 

deprotonation to occur. The resulting solution was then carefully transferred via cannula into a flask 

containing crushed, solid carbon dioxide and the resultant slurry was stirred overnight. Quenching 

of the resulting lithium carboxylate with aqueous hydrochloric acid solution gave acid 2.13 in 78% 

yield.  

The formation of amide 2.12 was subsequently investigated and to this end various coupling 

reagents and additives 
108

 were tested as shown in Table 2.3 below.  
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Reagents and Conditions: (i) Activating agent, see Table 2.3 then 2.14, Et3N, CH2Cl2 

Scheme 2.16: Generalised Amide Coupling 

Entry Activating agents Yield (%) 

1 Oxalyl Chloride / DMF 55 

2 Oxalyl Chloride / DMAP 0 

3 DCC 35 

4 CDI 12 

5 HBtU 46 

6 DCC / HOBt 41 

Table 2.3 Different Activating Agents Tested for Amide Coupling 

The best results were obtained with oxalyl chloride 
109

 in the presence of a catalytic amount of DMF 

which gave amide 2.12 in 55% yield. This result however was deemed not satisfactory due to the 

high cost of N-methylpropargylamine 2.18 which is needed at the start of the synthesis of precursor 

2.12. Therefore attention was shifted to other reagents involved in the reaction, and different bases 

were screened for the amide coupling (Table 2.4).  
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Reagents and Conditions: (i) Oxalyl chloride, DMF(cat), CH2Cl2 then 2.14, Base, see Table 2.2, CH2Cl2 

Scheme 2.17: Generalised Amide Coupling 

Entry Base Yield (%) 

1 Et3N 55% 

2 Pyridine Trace 

3 Imidazole Trace 

4 DIPEA 61% 

5 2,6-Lutidine 82% 

Table 2.4 Different Bases Tested for Amide Coupling 

Pyridine and imidazole gave traces of product as detected by 
1
H NMR analysis, while N,N-

diisopropylethylamine provided a slight improvement over triethylamine. The best result however 

was obtained with the sterically hindered base 2,6-lutidine (Entry 5) which gave the desired amide 

2.12 in 82% yield. A trend is visible in Table 2.4 indicating that more sterically hindered bases give 

higher yields of desired amide 2.12. At the start of this section during the synthesis of precursor 2.6 

the terminal trimethylsilyl group in 2.3 was removed by action of a catalytic amount of sodium 

methoxide in methanol; a similar effect could be induced by unhindered nitrogen bases during the 

formation of amide 2.12. 

The optimised route to amide 2.13 was then applied to the synthesis of other cyclisation precursor 

analogues (Table 2.5). 
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Reagents and Conditions: (i) Me3SiC≡CCOCl, CH2Cl2, 2,6-Lutidine, 0°C to rt. 

Scheme 2.18: Amide Coupling of Different Analogues 

Entry R Compound reference Yield 

1 H 2.12 84 

2 F 2.53 81 

3 Cl 2.54 80 

4 Br 2.55 82 

Table 2.5: Amide Coupling of Different Analogues 

Yields for all three steps and for all the analogues were very satisfactory. However it must be noted 

that the products of the amide couplings always contained small quantities of solvent after 

purification (max 5% by 
1
H NMR). This was caused by their high viscosity which makes the 

evaporation of residual volatiles a difficult task, made even harder by the fact that these molecules 

are not stable for prolonged periods of time (hours) even at room temperature. They were also 

found to be extremely sensitive to even mild acidic conditions, so much in fact that for 
1
H and 

13
C 

NMR analyses the deuterated chloroform employed had to be purified prior use by addition of 5Å 

molecular sieves and solid potassium carbonate.
110

 

The problems associated with the amine protection/deprotection and amide coupling for the 

synthesis of the cyclisation precursors had been successfully solved. The newly developed method 

has proven very popular in research in the Parsons group and it will be employed for studies 

towards the total synthesis of the antibiotic Lactonamycin and other natural products. 
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2.1.3 Cyclisations 

 

2.1.3.1 Cyclisation Reactions of Analogues 

Compound 2.55 was chosen to test the thermolysis and a concentration of 0.1M was set in order to 

ensure replicability of future cyclisations.  After refluxing in anhydrous, degassed toluene for four 

hours column chromatography afforded a bright-yellow, amorphous solid while attempts at 

isolating another minor product were unsuccessful. NMR, IR and mass analysis of the solid 

obtained revealed its structure to be diene 2.56 below. 

 

Reagents and Conditions: (i) Toluene 0.1M, reflux, 4h, 32%. 

Scheme 2.19: Thermal Cyclisation of 2.13 

Interestingly, NMR data revealed that 2.56 had been formed as a single diastereomer, most likely 

the Z,Z diene. Numerous attempts were made at finding suitable recrystallisation conditions for X-

ray analysis; this task however was made rather difficult by the instability of 2.56 in different hot 

solvents. Eventually it was discovered that relatively thick needle-like crystals could be obtained by 

the slow evaporation of a 1:5 v/v diethyl ether: hexane solution of 2.56. The result of 

crystallographic analysis confirmed that the diene was indeed the Z,Z diastereomer (Figure 2.2). 

The crystal system was found to be orthorhombic and belonging to the Pbca (No.61) space group. 
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Figure 2.2: ORTEP Representation of Diene 2.56 

The other three cyclisation precursor analogues were also subjected to cyclisation conditions and 

the results are shown below (Table 2.6). 

 

Reagents and Conditions: (i) Toluene 0.1M, reflux, 4h. 

Scheme 2.20: Thermal cyclisations of Various Analogues 

Entry R Compound reference Yield 

1 H 2.57 61 

2 F 2.58 29 

3 Cl 2.59 36 

4 Br 2.56 32 

 

Table 2.6: Thermal cyclisations of Various Analogues 
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Interestingly, amide 2.57 gave a relatively higher yield of its correspondent diene product 2.56. The 

only obvious structural difference of this precursor compared to the rest is the absence of a halogen 

atom at the 2-position on the aromatic ring. 

It was also possible to obtain X-ray crystal structures for compounds 2.57 (rhombohedral crystal 

structure, R 3  (No.148) space group) and 2.59 (monoclinic crystal structure, P 21/c (No.14) space 

group) (Figures 2.3 and 2.4), however attempts at obtaining thick-enough crystals of fluoro-

analogue 2.58 were always unsuccessful possibly due to increased lipophilicity imparted to the 

whole molecule by the fluorine atom. 

 

Figure 2.3: ORTEP Representation of Diene 2.57 

 

Figure 2.4: ORTEP Representation of Diene 2.59 
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The above ORTEP drawings show that in all cases a single diastereomer was formed. 

This reaction is the first example of a metal-free generation of Z,Z exo-cyclic conjugated dienes 

fused to lactams. Although the desired product was always formed under these conditions, the 

yields were considerably affected by decomposition during the course of the reaction. A possible 

cause for this was identified while recording the melting points of dienes 2.56, 2.57, 2.58 and 2.59. 

These compounds were found to decompose at temperature only slightly higher than the boiling 

point of toluene (110.58°C) 
111

 as reported in Table 2.7 below. Worthy of note is that the product 

derived from higher-yielding amide 2.57 has a higher decomposition temperature than the rest of 

the precursors. 

 

Entry Compound reference R Decomposition temperature (°C) 

1 2.57 H 149-151 

2 2.58 F 127-130 

3 2.59 Cl 123-125 

4 2.56 Br 122.124 

Table 2.7: Decomposition temperatures of diene products 

This effect could be the result of the absence of a halogen substituent in 2.57 which would hamper 

rotation of the aromatic ring during heating and therefore lead to a lower decomposition 

temperature. Decomposition could also arise from unwanted intermolecular reactions taking place 

at 0.1M concentration. In order to test these theories, the cyclisation of precursor 2.56 was repeated 

at 80°C, 0.01M concentration and a reaction time of 24 hours (Scheme 2.20 below). 
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Reagents and Conditions: (i) Toluene 0.01M, 80°C, 24h, 35%. 

Scheme 2.20: Cyclisation at Reduced Temperature, Reduced Concentration and Longer Reaction 

Time 

Although the reaction took a longer time to reach completion the yield of cyclisation product only 

slightly increased. Therefore decomposition in the above cyclisations is completely independent of 

solvent concentration and temperature. It could then be assumed that decomposition is caused by 

transient, very reactive species which can undergo various side reactions. During their studies into 

the intramolecular [4+2] addition of conjugated ynones, Danheiser ad co-workers 
82

 employed γ-

terpinene to suppress polymerisation of the ynone starting material. Reflux of cyclisation precursor 

2.55 in toluene in the presence of γ-terpinene however gave no improvement on the yield (Scheme 

2.21 below). 

 

Reagents and conditions: (i) Toluene 0.1M, γ-terpinene, reflux, 4h, 30% 

Scheme 2.21: Cyclisation in the presence of γ-terpinene 
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2.2 Ketone Modification - Novel Synthesis of 2-

Hydroxypyrroles 

2.2.1 Outline of Investigation 

 

As pointed out in Section 1.1.3, deuterium-labeling studies have previously confirmed that during 

the cyclisation discovered by Parsons et al. a hydrogen atom is abstracted intramolecularly (Scheme 

1.8 below).  

 

Reagents and Conditions: (i) Toluene, reflux, 3.5h, 94%. 

Scheme 1.8: Cyclisation of Deuterated Compound 1.21 

A way to drastically alter the reactivity of compound 2.55 is to completely remove this hydrogen 

atom by oxidising the secondary alcohol moiety to a ketone (Figure 2.5 below). 
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Figure 2.5: Position of the abstracted hydrogen atom in 2.55 

2.2.2 Oxidation of Secondary Alcohol to Ketone 

There are countless procedures available in the literature to oxidise secondary alcohols to 

ketones.
112

 One of the cheapest and most synthetically robust is the oxidation with manganese(IV) 

oxide (MnO2). Pyrolusite (natural source of MnO2) and pure synthetic MnO2 are poor oxidants.
113

 

Oxidation of organic compounds requires active and specially prepared MnO2; several procedures 

for the generation of this reactive oxidant have been published.
114-116

 Further appeal for the use of 

this reagent comes from the fact that reactions are heterogeneous, they are generally fast (in the 

order of hours) and do not require the use of anhydrous solvents. 

Oxidation of alcohol 2.55 with excess MnO2 was carried in CH2Cl2 at room temperature for 24h 

(Scheme 2.22). 

 

Reagents and Conditions: (i) 20 eq MnO2, CH2Cl2, rt, 24h, 54% 

Scheme 2.22: Oxidation of Alcohol 2.55 with MnO2 
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The yield was deemed unsatisfactory and another disadvantage included the need of a 20 fold 

excess of reagent which could cause problems during scale-up.  

A better oxidation protocol had to be sought. Inspiration came from the work of Jones et al.
117-119

 on 

the oxidation of acetylenic alcohols employing chromic acid, generated from chromium(VI) 

trioxide and concentrated sulfuric acid. Preparation of Jones’ reagent was achieved using a 

published procedure.
120

 

 

Reagents and Conditions: (i) 3.0M Jones’ reagent, acetone, rt, 96%. 

Scheme 2.23: Jones Oxidation of 2.55 

Oxidation of alcohol 2.55 with this solution proceeded in very high yield (Scheme 2.23). Added 

advantages to the use of this procedure are short reaction times and easy work-up conditions. Often 

it was found that only a simple filtration through a short column of silica gel was all that was 

required to obtain pure 2.60.  

2.2.3 Cyclisation 

 

The next step was to test the thermolysis of 2.60 in refluxing anhydrous, degassed toluene. Identical 

to previous cyclisations a 0.1M concentration of the reaction mixture was initially chosen (Scheme 

2.24). 
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Reagents and conditions: (i) Toluene, 0.1M, reflux, 4h 

Scheme 2.24: Thermolysis of 2.60 at 0.1M Concentration 

Unfortunately the above thermolysis failed to give any isolable products. In order to test if the 

concentration of the starting material was an issue, heating of 2.60 in toluene was repeated at 0.01M 

(Scheme 2.25). A single product was isolated which was found to be unstable to moisture, light, 

prolonged heating in various solvents and mild acidic conditions.  

 

Reagents and conditions: (i) Toluene, 0.01M, reflux, 4h 

Scheme 2.25: Thermolysis of 2.60 at 0.01M Concentration 

Despite this it was possible to obtain clean spectroscopic data, and the 
1
H, 

13
C, HSQC and HMBC 

data analysis is discussed below. 

2.2.4 Structure Elucidation of Cyclisation Product 

 

The 
1
H NMR spectrum of the novel cyclisation reaction product is shown below (Figure 2.6). 



89 
 

 

Figure 2.6: 
1
H NMR Spectrum of Novel Product 
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The spectrum displays a total of seven peaks, five in the low field region (6.68-7.60ppm) and two in 

the high field region (0.45, 3.24ppm). A tentative assignment of a number of these peaks can be 

made by comparison with the 
1
H NMR spectrum of precursor 2.60. The peak at 0.45ppm (singlet, 

integration: 9H) could correspond to a trimethylsilyl functionality and the peak at 3.24ppm (singlet, 

integration: 3H) could be attributed to an amide’s N-methyl group. The same reasoning would lead 

to the assignment of the four peaks in aromatic region (7.60ppm (doublet, integration: 1H), 

7.43ppm (doublet, integration: 1H), 7.27ppm (triplet, integration: 1H) and 7.16ppm (triplet, 

integration: 1H)) to the four proton of a substituted 2-bromoaryl group, as shown in Figure 2.7 

below. 

 

Scheme 2.7: Assignment of Peaks in the 7.16-7.60ppm Region 

At this point the peak at 6.68ppm (singlet, integration: 1H) cannot be tentatively assigned to any 

specific functional groups.  

Analysis of the 
13

C and DEPT spectra reveals that the cyclisation product contains a total of fifteen 

carbon environments, six of which are CH/CH3 carbons and the remaining nine are quaternary 

centres.  
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Figure 2.8: 
13

C NMR Spectrum of Novel Product 
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Figure 2.9: DEPT NMR Spectrum of Novel Cyclisation Product 
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Using the HSQC spectrum, one-bond carbon-hydrogen correlations can be made (Table 2.8). From 

this data it is revealed that 
1
H NMR peak at 6.67ppm is related to 

13
C NMR peak at 132.21ppm; 

these regions are characteristic of π-electron rich heteroaromatic fragments. 
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Figure 2.10: HSQC NMR Spectrum of Novel Cycliation Product. (Note: 
13

C Signal Values are 

Shifted by a Fraction of ppm) 
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The single quantum coherence correlations are listed in Table 2.8 below. 

1
H Shift 

(ppm) 

13
C Shift (Corrected to 

13
C 

NMR spectrum) (ppm) 

Fragment 

0.45 -1.26 RSiMe3 

3.23 28.96 RCONMe 

6.67 132.21 π-Electron rich 

heteroaromatic 

7.16 129.31 Aromatic 

7.27 127.20 Aromatic 

7.43 132.58 Aromatic 

7.60 132.70 Aromatic 

Table 2.8: HSQC Derived C-H Correlations 

Therefore eight 
13

C signals remain unaccounted for. From 
13

C functional group tables, the tentative 

assignments shown in Table 2.9 below can be made. 

13
C Shift (ppm) Functional group 

89.21 Alkyne  

90.70 Alkyne 

97.12 π-Electron rich heteroaromatic 

115.57 π-Electron rich heteroaromatic 

125.61 Aromatic 

125.67 Aromatic 

168.56 Conjugated carboxylic acid 

derivative 

189.68 Conjugated ketone 
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Table 2.9: Tentative Assignment of Remaining 
13

C Signals by Comparison with 
13

C Functional 

Group Shifts Table 

The HMBC spectrum of the novel compound is shown below (Figure 2.11). 
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Figure 2.11: HMBC NMR Spectrum of Novel Cycliation Product. (Note: 
13

C Signal Values are 

Shifted by a Fraction of ppm) 
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The multiple bond coherence correlations are shown in Table 2.10 below. 

1
H Shift (ppm) 

13
C

 
Shift (ppm) (Corrected to 

13
C 

NMR spectrum) 

0.45 -1.26, 189.68 

3.24 132.21, 168.56 

6.68 168.56, 97.12, 89.21, 28.96, 

189.68, 115.57 

7.16 125.61, 132.58 

7.27 132.70, 125.67 

7.43 90.70, 129.31, 125.61 

7.60 125.67, 127.20 

Table 2.10: HMBC Derived C-H Correlations 

The following conclusions can be drawn from the above HMBC correlations: 

1) The trimethylsilyl group (0.45ppm, 
1
H shift) correlates to a conjugated ketone (189.68ppm, 

13
C shift). An acyl silane moiety is therefore present in the molecule: 

 

2) The N-methyl group (3.24ppm, 
1
H shift) correlates to a conjugated carboxylic acid 

derivative (168.56ppm, 
13

C shift). An amide function is therefore present in the molecule. 

The N-methyl group also correlates to a single proton belonging to π-electron rich 

heteroaromatic group (6.68ppm, 
1
H shift, 132.21ppm, 

13
C shift). These notions lead to the 

identification of an unsaturated, nitrogen-based heterocycle in the molecule: 
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3) The single proton belonging to the heteroaromatic group (6.68ppm, 
1
H shift) correlates to 

two π-electron rich heteroaromatic group signals (97.12ppm, 115.57ppm, 
13

C shifts). 

Therefore the aforementioned heterocyclic group is a hydroxy-pyrrole: 

 

4) The hydrogen atom of the hydroxy-pyrrole moiety also correlates to an alkyne carbon 

(89.21ppm, 
13

C shift) and more weakly to the acyl silane carbon (189.68ppm, 
13

C shift). 

Therefore, an acetylene and acyl silane substituents are present at the 4- and 3-positions of 

the pyrrole ring: 

 

5) Finally, the aromatic proton at 7.43ppm in the 
1
H spectrum correlates to an acetylene carbon 

atom (90.70ppm, 
13

C shift). This last piece of information gives the complete structure of 

novel product 2.61: 
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The above structure is consistent with high resolution mass spectrum values (calcd. for 

C17H18BrNO2NaSi [M+Na]
+
: 398.02011; found: 398.0182). The IR of product 2.61 displays a weak 

but broad peak at around 3300cm
-1

, consistent with a hydroxyl group. A stretch for an alkynyl 

moiety is also present (2204.82cm
-1

) together with a typical conjugated acyl silane stretch 
121

 

(1573.30cm
-1

). All the data in hand is highly consistent with proposed structure 2.61. 

2.2.5 Synthesis and Cylisations of Ketone Analogues 

 

 

Reagents and Conditions: (i) Toluene, 0.01M, reflux, 4h, 53% 

Scheme 2.26: Thermolysis of 2.60 at 0.01M Concentration 

This reaction is unprecedented in the chemical literature. The outcome of the thermolysis is the 

generation of a tri-substituted pyrrole containing a conjugated acetylene and acyl silane moieties. 

The acyl silane could be responsible for the observed light sensitivity of 2.61; it is known that n-π
*
 

excitations in acyl silanes occur at unusual long wavelength (380-420 nm) 
122,123

, well into the 

visible light spectrum (390-750 nm).
104

 

In order to test the breadth of the synthetic utility of this cyclisation reaction three new ketone 

cyclisation analogues were synthesised (Table 2.11). 
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Reagents and Conditions: (i) 3.0M Jones’ reagent, acetone, rt 

Scheme 2.27: Alcohol Oxidation of Different Analogues 

Entry R Product Reference Yield (%) 

1 H 2.62 91 

2 F 2.63 74 

3 Cl 2.64 88 

4 Br 2.60 96 

Table 2.11: Alcohol Oxidation of Different Analogues 

Oxidation of fluorine analogue 2.53 proved to be difficult, possibly due to hydrogen bonding 

between the fluorine atom and the benzylic hydroxyl group (Figure 2.11). 

 

Figure 2.11: Hydrogen Bonding Between Fluorine Atom and Hydroxyl Group 

The transformation however proceeded in fair yield with longer reaction times and addition of extra 

equivalents of Jones’ reagent. 

The results of the cyclisation of ketones 2.62, 2.63 and 2.64 are shown in Table 2.12 below. 
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Reagents and conditions: (i) Toluene, 0.01M, reflux, 4h 

Scheme 2.28: Cyclisation of Ketone Analogues 

Entry R Product reference Yield (%) 

1 H - Decomposition 

2 F - Decomposition 

3 Cl 2.65 46 

4 Br 2.61 53 

Table 2.12: Cyclisation of Ketone Analogues 

Unfortunately ketones 2.62 and 2.63 decomposed completely during the course of the reaction 

leaving no isolable products. Chloro-analogue 2.64 instead successfully cyclised giving expected 

product 2.65 in 46% yield. 
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2.3 Investigation of Mechanisms 

2.3.1 Cyclisation of Alcohol Analogues 

 

The key steps in the proposed mechanism for the generation of ketone 2.7 (Scheme 2.2) in Section 

2.1.1 were: 

i) Generation of a biradical 

ii) 1,5-Hydrogen abstraction and radical tautomerism 

iii) Quenching of resulting biradical by intermolecular abstraction of hydrogen (either from 

solvent or other species) 

 

Figure 2.11: Previously Isolated Product 

The net result is a cyclisation reaction with gain of two new hydrogen atoms which could either 

originate from toluene or from other organic fragments present in solution. The latter could explain 

the extensive decomposition observed during the course of the reaction. 

Novel cyclisation product 2.56 (Figure 2.12) structurally resembles ketone 2.7. However in 2.56 it 

is obvious that the intermolecular hydrogen-abstraction step does not occur. 

 

Figure 2.12: Novel product 2.56  
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2.3.1.1 First Proposed mechanism 

Following the mechanistic proposal for the formation of 2.7, the generation of diene 2.56 could be 

accounted for by the mechanism depicted below in Scheme 2.29. 

 

Scheme 2.29: First Proposed Mechanism for the Formation of 2.56 

Amide resonance aids the approach of the two acetylene moieties close causing a cyclisation to 

pyrrole 2.66 with generation of a 1,4-biradical system. 1,5-Hydrogen abstraction and radical 

tautomerism would then yield biradical 2.67. At this stage the intermolecular abstraction of 

hydrogen atoms does not occur; radical combination instead could yield strained fused cyclobutene 

2.68. Tautomerism of enol 2.68 yields ketone 2.69 which adopts the thermodynamically more stable 

trans-configuration in order to minimise steric interactions between the aryl and the silicon groups 

(Figure 2.13). 
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Figure 2.13: Steric Interactions in the Cis and Trans Configurations of 2.69 

Cyclobutenes are known to undergo thermal isomerisation to yield open-chain butadienes.
124,125

 As 

predicted by Woodward-Hoffmann rules 
126

 this electrocyclisation is stereospecific and proceeds 

cleanly in a conrotatory manner as shown in Scheme 2.30 below.  

 

Scheme 2.30: Conrotatory Opening of Cyclobutenes 

Therefore, thermal opening of trans 2.69 would yield exclusively the observed (Z,Z)-diene 2.56.  

2.3.1.2 Second Proposed Mechanism 

A second possible mechanism for the formation of diene 2.56 is shown in Scheme 2.31 below. 
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Scheme 2.31: Second Proposed Mechanism for the Formation of 2.56 

The first two steps are the same as for the previously proposed mechanisms. However, after 1,5-

hydrogen abstraction in 2.66, radical tautomerism does not take place and instead radical 

termination gives allenol 2.70, which is in equilibrium with observed diene 2.56. However the 

absence of radical tautomerism in structure 2.66 contradicts the previously proposed mechanism for 

the formation of 2.7. 

2.3.1.3 Third Proposed Mechanism 

Lastly a third mechanism could be in operation (Scheme 2.32). 
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Scheme 2.32: Proposed Propargylic-Ene Mechanism for the Formation of 2.62 

Amide resonance in 2.55 could bring the alkynes in proximity and allow a concerted propargylic-

ene reaction to take place, yielding allenol 2.70 in a single mechanistic step. As the second 

mechanism proposed above however it fails to account for the isolation of product 2.7. 

Therefore the first and second proposed mechanisms are stepwise-radical whereas the third is 

concerted-ene. The first step into the investigation of which mechanism is in operation then was to 

test if the supposed initial generation of a biradical is actually taking place. 

 

2.3.2 Attempted Radical Trappings by Chemical Means 

 

A convenient method employed for the study of reaction involving carbon-centered radicals is their 

chemical trapping by stable nitroxyl radical species such as TEMPO.
127

 

For example, Beckwith et al.
128

 have shown that TEMPO can efficiently trap the carbon-based 

radical products generated from the thermolysis of bis(6-heptenoyl) peroxide 2.71 in cyclohexane to 

give isolable adducts 2.74 and 2.75 (Scheme 2.33). 
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Reagents and Conditions: (i) Cyclohexane, 123.5°C, 1.53M, 2.71; (ii) 10eq. TEMPO, 2.74: 6.74%, 2.75: 11.84%. 

Scheme 2.33: Trapping of Carbon-Based Radicals with TEMPO by Beckwith et al. 

The success of these trapping reactions is reported to be highly dependent on steric bulk present 

around the radical centre 
129

, the polarity of solvent employed and the bimolecular rate at which 

radicals in solution might terminate each other.
130

 

Encouraged by the possibility of trapping potential radical intermediates the above methodology 

was applied for the cyclisation of amide 2.56 (Scheme 2.34). 

 

Reagents and Conditions: (i) Toluene, reflux, 0.1M, 10 eq. TEMPO, 4h. 

Scheme 2.34: Attempted Radical Trapping with TEMPO 

Unfortunately, reflux of 2.56 in toluene in the presence of an excess of TEMPO gave extensive 

decomposition. No isolable products were detected by conventional analysis techniques and 

therefore purification was not attempted. This destructive effect observed in the reaction with 
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TEMPO however could still be an indication of interference with radicals generated during the 

course of the cyclisation. 

Another test for the presence of radical intermediates during a reaction is to employ carbon 

tetrachloride as a chemical trap. As discussed in the introduction section, during their work on the 

enediyne thermal cyclisation Bergman and Jones trapped the p-benzyne intermediate by switching 

the solvent from benzene to carbon tetrachloride (Scheme 2.35).
36

  

 

Reagents and Conditions: (i) Carbon tetrachloride, 200°C, 0.01M. 

Scheme 2.35: Trapping of Intermediate p-Benzyne with Carbon Tetrachloride During the Bergman 

Cyclisation 

A solution of amide 2.55 in refluxing anhydrous, degassed carbon tetrachloride however gave the 

usual cyclisation product 2.56 in reduced yield compared to the reaction in toluene and no 

chlorinated adducts were detected (Scheme 2.36). 

 

Reagents and Conditions: (i) Carbon tetrachloride, 0.1M, reflux, 4h, 23%. 

Scheme 2.36: Attempted Radical Trapping with Carbon Tetrachloride 

The failure to trap the supposed intermediate radical species cannot be interpreted as definitive 

dismissal of a radical mechanism. As previously explained the trapping by external agents is highly 

dependent on the rate of bimolecular termination of radical species in solution.
130

 It could be 



110 
 

possible that in the first proposed mechanism in Scheme 2.29 the supposed biradical intermediate 

2.69 is terminated much faster than the time required for its intermolecular reaction with radical 

traps (Scheme 2.37). 

 

Scheme 2.37: Rate of Intramolecular versus Intermolecular Quenching of Biradical 2.67 

 

2.3.3 Attempted Observation of Transient Radicals by Chemically Induced Dynamic Nuclear 

Polarisation (CIDNP) 

 

CIDNP is a useful technique employed for the detection of free radicals using an ordinary NMR 

spectrometer. It was first observed by Ward in 1967 
38,39

  during the lithium-halogen exchange and  

subsequent 5-exo-dig intramolecular cyclisation of 6-bomo-1-phenyl-1-hexyne 2.77 (Scheme 2.38). 
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Reagents and Conditions: (i) Excess 
n
BuLi, hexane/Et2O (5:1), rt, then H2O, 60%. 

Scheme 2.38: CIDNP Experiment by Ward 

The reaction was carried out in a sealed NMR tube which allowed spectra to be obtained at various 

points during the transformation. Ward noticed that the emission signals obtained appeared greatly 

enhanced or reduced and he immediately recognized this effect as being caused by CIDNP, 

therefore  providing physical evidence for Bryce-Smith’s idea 
131

 that organometallic reactions are 

radical in nature. The physical reason for such effect is that protons in a reacting molecule become 

dynamically coupled to an unpaired electron while proceeding from reactants to products.
99

 As 

explained in Section 1.X observation of the CIDNP effect was effectively employed by Bergman 

and co-workers for the detection of radical intermediates in the Bergman cyclisation. 

The Varian 600MHz NMR machine available at the Sussex University NMR facility is capable of 

recording variable temperature spectra. A 0.05M (13mg, 0.7ml sample) solution of amide 2.55 in 

anhydrous, degassed d8-toluene was heated to 110°C in a J. Young NMR tube for four hours and a 

spectrum recorded every five minutes. Analysis of the total spectrum however revealed no clear 

enhancement or reduction in peak intensity during the course of the reaction. Although the presence 

of CIDNP always means that a free radical is involved, its absence does not prove that a free-radical 

intermediate is necessarily absent, since reactions involving free-radical intermediates can also take 

place without observable CIDNP.
99

  

2.3.4 Future Work 

The mechanism of this transformation remains undiscovered. Further studies into this field could 

entail the detection of supposed radicals by EPR spectroscopy and by chemical trapping with 

different new reagents. It would also be worthwhile investigating the application of this novel 

alkyne dimerisation to non-aromatic systems and possibly to natural product synthesis. 
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2.3.5 Proposed Mechanisms for Ketone Cyclisation 

 

2.3.5.1 First Proposed Mechanism 

The first proposed mechanism for the cyclisation of ketone 2.60 is shown below (Scheme 2.39). 

 

 

Scheme 2.39: Proposed Radical Mechanism for the Formation of 2.61 

As in the mechanism postulated for cyclisation of alcohol 2.55, amide resonance in 2.60 aids a 

disproportionation of the 1,6-diyine system that causes the generation of a 1,4-biradical (2.79). At 

this stage however the benzylic hydrogen atom is absent having been removed by oxidation of the 

alcohol to the ketone. Therefore 1,5-hydrogen abstraction cannot occur and the radical α to silicon 

reacts at the oxygen at the carbonyl moiety, forming substituted pyran ring 2.80. Radical 

tautomerism in 2.80 allows the biradical system in 2.81 to terminate intramolecularly yielding the 

acetylene and acyl silane observed in the product. Simple proton tautomerism in 2.82 affords 

substituted pyrrole 2.61. 



113 
 

2.3.5.2 Second Proposed Mechanism 

A second mechanism based on the reported intramolecular [4+2] cycloaddition of conjugated 

ynones 
82

 is shown below (Scheme 2.40). 

 

Scheme 2.40: Postulate Ynone [4+2] Mechanism for the Formation of 2.61 

A concerted [4+2] cycloaddition between the ynone functionality and the silyl acetylene in 2.60 

would yield highly strained heterocyclic allene 2.83. Electrocyclic ring opening in 2.83 would yield 

the observed alkyne and acyl silane groups observed in the final product 2.61. Unfortunately no 

definitive empirical evidence for either mechanism is available and the question of which of these 

mechanism is involved in the generation of substituted pyrrole 2.61 remains unanswered. 

The failure of precursors 2.62 and 2.63 however still remains to be answered. The only obvious 

difference between these substrates and the successfully cyclised 2.60 and 2.64 is the size of the 

substituent at the 2-position of the aromatic group. It could then be postulated that there is a 

fundamental need for a large substituent to aid the locking of the molecule in a favourable 

conformation as shown in Scheme 2.41 below. 
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 2.41: Possible Substituent Effect During Cyclisation of 2.60 

Steric interactions in the fluoro-analogue 2.63 and precursor 2.62 would be greatly diminished 

therefore limiting the statistical chance of participation of the carbonyl group in the reaction. 

2.3.5.3 Future Work 

Future work on this project would need to concentrate primarily on the confirmation of the 

proposed structure of the products by X-ray crystallography. Trapping of potential radical 

intermediates should also be pursued. 
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2.4 Investigating the Possibility of a [4+2] Cyclisation in 

the Cyclisation of Alcohol Analogues 

2.4.1 Overview of the Investigation 

 

The original cyclisation discovered by Parsons et al for the construction of the core CDEF ring 

structure of Lactonamycin 
15

 involved the intramolecular reaction of a 1,6-diyine system with an 

alkenyl bromide. Based on the mechanistic proposals made in Section 2.4 for the formation of 

diene 2.56 the following mechanisms could be in operation during the formation of 1.13. 

 

Scheme 2.42: Proposed Radical Mechanism for the Formation of 1.13 

2.85 would be generated via the previously discussed mechanism. Termination of this biradical by 

reaction with the alkenyl bromide portion would give 2.86 which gains aromaticity by loss of 

hydrobromic acid to give observed product 1.13. 
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A second possible mechanism would entail the generation of diene 2.89 by a propargylic-ene 

reaction and its subsequent Diels-Alder cyclisation with the alkenyl bromide portion (Scheme 

2.43). 

 

Scheme 2.43: Proposed Propargylic-Ene/[4+2] Mechanism for the Formation of 1.13 

The most fundamental difference between the two above mechanisms is the way in which the 

alkenyl bromide portion is attacked. The aim of this project was to test if a Diels-Alder reaction 

with generalised diene 2.89 (Scheme 2.44) is a viable option. 

 

Scheme 2.44: Generalised Substrate for the Investigation of [4+2] Reactions 
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2.4.2 Attempted Intermolecular [4+2] Cyclisations 

 

The diene moiety in structure 2.56 is electron-deficient as it is connected at both ends with electron-

withdrawing carbonyl groups. This means that HOMO of the diene is too low in energy to react in a 

conventional Diels-Alder fashion. However in this case the LUMO of the diene could react with the 

HOMO of an electron-rich dienophile in what is referred to as an inverse electron demand Diels-

Alder. 

Therefore diene 2.56 was dissolved in toluene and stirred at room temperature in the presence of an 

excess of propargyl alcohol for ten days. No reaction took place; therefore the solution was refluxed 

for six hours. Slight decomposition of the starting material was observed but no reaction with the 

dienophile took place. 

To cover every possibility diene 2.56 was also first stirred at room temperature and then refluxed in 

the presence of the electron-deficient dienophile maleic anhydride. In both cases no cyclisation 

reaction occurred. 

The conditions tested for the attempted intermolecular Diels-Alder reactions with 2.56 are 

summarised in Table 2.13 below. 
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Reagents and Conditions: (i) Toluene, DIENOPHILE, TEMPERATURE, TIME, see Table 2.13 below 

Entry Dienophile (Equivalents) Temperature (°C) Time (h) Products 

1 Propargyl Alcohol (10) rt 240 None 

2 Propargyl Alcohol (10) 110 6  None 

3 Maleic Anhydride (5) rt 240 None 

4 Maleic Anhydride (5) 110 6 None 

Table 2.13: Attempted Diels-Alder Reactions with Diene 2.56 

Therefore diene 2.56 was proven unable to perform an intermolecular Diels-Alder reaction. 

However in the original cyclisation by Parsons the alkenyl bromide is present in the same molecule 

as the diene. The next option therefore was to test if an intramolecular [4+2] reaction is a 

possibility. 

2.4.3 Attempted Intramolecular [4+2] Cyclisation 

 

In order to test the intramolecular [4+2] reaction it was necessary to construct the diene by the 

established thermal cyclisation method and then introduce a dienophile in a second distinct 

synthetic step. 

One way to achieve this would be to perform a palladium-catalysed coupling on bromo-diene 2.56. 

The 2010 Nobel prize winning Suzuki reaction 
132,133

 was discarded as an option as it is prone to 

undergo β-hydrogen elimination when using substrates with β-hydrogens  
134

 such as a simple allyl 

group. Recently a method that overcomes this problem has been reported 
135

, however it employs 

alkyltrifluoroborates which are incompatible with the trimethylsilyl moiety in 2.56 
136

.  The Stille 
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coupling 
137

 does not suffer from the elimination drawback as the coupling stage of the reaction is 

faster than the competing β-hydrogen elimination step.
138

 A typical procedure for this reaction 

involves heating of the substrate, a palladium(0) catalyst and a tri-n-butyltin derivative in a wide 

range of solvents. Aryl bromide 2.56 was then refluxed in anhydrous THF in the presence of a 

catalytic amount of tetrakis(triphenylphosphine)palladium(0) and a slight excess of allyl tri-n-

butyltin (Scheme 2.44). 

 

Reagents and Conditions: (i) 10mol% Pd(PPh3)4, allyl tri-n-butyltin, THF, reflux, 5h. 

Scheme 2.44: Attempted Stille Coupling on 2.56 

After refluxing for five hours however diene 2.56 had decomposed giving no desired product. It 

was then proposed that the reverse coupling between allyl bromide and aryl tin derivative 2.90 

(Figure 2.14) could yield better results. The decision to use the ester analogue of diene 2.62 was 

due to the lower cost of propargyl alcohol versus N-methylpropargylamine and the omission of 

protection/deprotection steps for its synthesis. 

 

Figure 2.14: New Target for Reverse Stille Coupling 

Diene 2.90 would be the product of the cyclisation of precursor 2.93 which was generated by the 

synthetic sequence shown in Scheme 2.45 below. 
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Reagents and Conditions: (i) 
n
BuLi, THF, -20°C then 

n
BuSnCl, -20°C to rt then 1M HCl(aq.), 94%; (ii) LiC≡CCH2OLi, 

THF, -70°C to rt then sat. NH4Cl(aq.), 63%; (iii) Me3SiC≡CCOCl, 2,6-lutidine, CH2Cl2, 0°C to rt, 71%. 

Scheme 2.45: Synthesis of Tin-Cyclisation Precursor 2.93 

Imidazolidine-protected 2-bromobenzaldehyde 2.09 was subjected to a lithium-halogen exchange 

using one equivalent of n-butyllithium and the resulting anion was quenched by addition of tri-n-

butyltin chloride. The resulting aldehyde was alkylated with propargyl alcohol lithium-dianion 
139

 to 

yield, after a mildly acidic work up, diol 2.92. The primary alcohol moiety of 2.92 was esterified by 

the condensation with 3-(trimethylsilyl)-2-propynyl chloride 2.14 in the presence of 2,6-lutidine to 

furnish desired precursor 2.93. 

Thermolysis of 2.93 in toluene at 0.1M for 4 hours unfortunately yielded a multitude of products 

and separation was not attempted. 

As a last resort it was proposed that a mild magnesium-halogen exchange 
140

 on diene 2.56 followed 

by alkylation of allyl bromide could be a viable route to the desired material.  
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Reagents and Conditions: (i) 
n
PrMgBr, THF, -30°C then CuCN, -30°C to -10°C then allyl bromide, -30°C to rt. 

Scheme 2.46: Magnesium-Halogen Exchange and Quenching with Allyl Bromide 

Addition of one equivalent of isopropyl magnesium bromide to diene 2.56 at -30°C effectuated the 

halogen exchange and the resulting Grignard reagent was added to one equivalent of copper cyanide 

to generate a lower-order cyanocuprate. After addition of allyl bromide and slow warming to room 

temperature, analysis of the crude reaction mixture revealed that a multitude of compounds had 

been formed and chromatographic separation was not attempted. 
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2.5 Studies into the Application of the Cyclisation 

Reactions to the Synthesis of Natural Products 
 

2.5.1 Overview 

 

Organic synthesis is generally recognized as being divided into methods oriented and target 

oriented.
141

 The previous entails the study of new reagents, catalysts, synthetic strategies and tactics 

whereas the latter is concerned with the synthesis of natural or target molecules. These two fields 

are inexorably connected and dependent on each other; new strategies and reagents are needed to 

improve the synthesis of particular targets but at the same time the quest to synthesise a specific 

molecule very frequently results in the discovery of a new reaction or mechanism (serendipity). 

So far the novel cyclisation discovered by Parsons et al. has only been applied to studies towards 

the total synthesis of Lactonamycin.
15,25,142

 However due to its ability to generate complex fused 

ring structures in one simple synthetic step it has the potential to be employed for the synthesis of 

numerous different natural products. 

2.5.2 Studies towards the Synthesis of Steroidal Cores 

 

2.5.2.1 Overview of Investigation 

All the previously investigated cyclisation reactions in the Parsons group involved the use of a 1,6-

dialkyne system separated by either an amide or an ester moiety. The first aim of this investigation 

was to test if molecule 2.94, which contains a ketone spacer group, is able to perform a thermal 

cyclisation reaction. 
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Scheme 2.47: Investigation of an All-Carbon Cyclisation 

If the above hypothesis is true, manipulation of 2.95 to could furnish cyclisation precursor 2.96 

which could, in theory, be able to generate simplified steroid core 2.98 by a thermal 

cyclisation/Diels-Alder cascade, as shown in Scheme 2.48 below. 

 

Scheme 2.48: Potential Use of a Thermal Cyclisation for the Synthesis of Steroid Cores 

2.5.2.2 Synthesis of the All-Carbon Cyclisation Precursor 

The retrosynthetic approach envisaged for 2.94 is shown in Scheme 2.49 below. 
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Scheme 2.49: Retrosynthetic Analysis of Compound 2.94 

Ketone 2.94 could be generated from the addition of the lithium salt of ethynyl(trimethyl)silane to 

Weinreb amide 2.100, which could be obtained from the elaboration of protected alcohol 2.102. The 

Weinreb ketone synthesis is a useful synthetic tool because reaction of a lithium nucleophile with 

an amide would yield over-alkylated products.
143

 However, addition of one equivalent of lithium 

nucleophile to a Weinreb amide yields lithium chelate 2.107 which is impervious to a second 

nucleophilic attack (Scheme 2.50). Acid hydrolysis of this intermediate yields the desired ketone. 

 

Scheme 2.50: Weinreb Ketone Synthesis 

2.102 (Scheme 2.49) could be then accessed from alcohol 2.104 and 2,3-dibromopropene 2.103 by 

employing Williamson’s ether synthesis conditions; a straightforward disconnection at the acetylene 

moiety indicates to commercially available 4-pentyn-1-ol 2.105. 
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Scheme 2.51 below illustrates the synthesis of desired material 2.94. 

 

Reagents and Conditions: (i) TBS-Cl, Et3N, CH2Cl2, rt, 95%; (ii) 
n
BuLi, THF, -78°C to -20°C then para-formaldehyde, 

-20°C to rt, then sat. NH4Cl(aq) , 77%; (iii) 2,3-Dibromopropene, CTAB, 50% aq. NaOH, CH2Cl2, rt, 72%; (iv) TBAF, 

THF, rt, 92%; (v) 3.0M Jones’ reagent, acetone, rt, 79%; (vi) Oxalyl chloride, cat. DMF, CH2Cl2, rt then N,O-

Dimethylhydroxylamine hydrochloride, Et3N, CH2Cl2, rt, 87%; (vii) Li-C≡C-SiMe3, THF, -78°C to rt then 1M HCl(aq), 

67%. 

Scheme 2.51: Synthesis of Precursor 2.94 

4-Pentyn-1-ol 2.105 was protected, in near quantitative yield, as its tert-butyldimethylsilyl ether 

2.109 using tert-butyldimethylsilyl chloride in the presence of triethylamine as an acid scavenger. 

TBS-ethers have the advantage of being relatively robust in basic conditions and are easily removed 

by action of a weak acid or in the case of acid-labile molecules by fluoride ions.
144

 Deprotonation of 

2.109 was performed by addition of one equivalent of n-butyllithium solution at -78°C. Warming to 

-20°C to ensure complete proton abstraction and reaction of the resulting lithium salt with excess 

para-formaldehyde followed by quenching with saturated aqueous NH4Cl gave 2.110. Formation of 
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ether 2.111 was accomplished using a biphasic mixture of 2.110 and 2,3-dibromopropene in DCM 

and 50% aqueous sodium hydroxide in the presence of phase-transfer catalyst 

hexadecyltrimethylammonium bromide.
145

 Tetra-n-butylammonium fluoride mediated silyl 

deprotection of 2.111 and consequent Jones’ oxidation of 2.112 yielded desired carboxylic acid 

2.112. Acid chloride formation was accomplished with oxalyl chloride in the presence of a catalytic 

amount of DMF followed by reaction with N,O-dimethylhydroxylamine hydrochloride gave 

Weinreb amide 2.100 in 87% yield. Deprotonation of ethynyl(trimethyl)silane was achieved by 

action of n-butyllithium and the resulting anion was reacted with amide 2.100 to furnish, after 

acidic work up desired ketone 2.94 in 67% yield. 

2.5.2.3 Attempted Cyclisations of All-Carbon Cyclisation Precursor 

Upon refluxing in anhydrous, degassed toluene at 0.1M concentration for 24 hours, no reaction took 

place and all of ketone 2.94 was recovered (Scheme 2.52). 

 

Reagents and Conditions: (i) Toluene, 0.1M, reflux, 24h. 

Scheme 2.52: Attempted Cyclisation of 2.94 in Refluxing Toluene 

Therefore the presence of an amide or ester spacer-group in the molecule appears to be of 

fundamental importance for the cyclisation to proceed. During studies on rates of cyclisation of 

enediynes, Nicolaou et al.
34

 have shown that reaction rates dramatically increase if the alkyne 

portions are close together in space (cd distance in Figure 2.15 below). 
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Figure 2.15: Relationship between cd Distance and Rate of Cyclisation in Enediynes 

It could be then postulated that in cyclisation precursors containing an amide or ester spacers the 

approach of the two acetylene moieties is facilitated by resonance an effect which would not be 

observed for the ketone analogue (Scheme 2.53). 

 

Scheme 2.53: Amide and Ester Resonance in Cyclisation Precursors 

The rate of reaction is however proportional to the temperature as shown in the examples by 

Nicolaou. It should then be possible to cyclise the ketone analogue by increasing the temperature 

therefore increasing the statistical chance of the two acetylene moieties to encounter each other in 

space. In order to be able to heat toluene above its boiling point the reaction was repeated under 

microwave conditions at 150°C. Unfortunately no reaction took place (Scheme 2.54). 
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Reagents and Conditions: (i) Toluene, MW, 300W, 150°C, 2h. 

Scheme 2.54: Attempted Cyclisation of 2.94 in Toluene under Microwave Conditions at 150°C 

2.5.2.4 Future Work 

Locking the ketone functionality as the E-silyl enol ether 2.120 could mimic the role of the amide 

and ester resonance in successfully cyclised precursors (Figure 2.16). 

 

Figure 2.16: Mimicking the Amide and Ester Resonance by Forming the E-Silyl Enol Ether 

The stereoselective formation of enolates has been rationalized with the Ireland model.
146-148

 

Ketones with non-sterically demanding substituents can be converted selectively to the E-enolate by 

addition of a bulky, kinetic base such as lithium tetramethylpiperidide.
149

 

The formation of 2.120 could be the answer to the successful cyclisation of the all carbon analogue. 
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2.5.3 Studies into the Application of the Thermal Cyclisation Reaction to the Synthesis of Jiadifenin 

 

2.5.3.1 Overview of Investigation 

Seco-prezizaane-type sesquiterpene Jiadifenin 
83

 (Figure 2.17) is a biologically and structurally 

interesting molecule that provides the organic chemist with a rewarding synthetic challenge. 

 

Figure 2.17: Jiadifenin 

The highlighted tricyclic core of Jiadifenin in Figure 2.17 bears resemblance to molecules 

previously synthesised in the Parsons’ research group using the thermal cyclisation (Scheme 

2.55).
23

  

 

Reagents and Conditions: (i) Toluene, epoxyhexene, reflux, 52h, 76% 

Scheme 2.55: Previous Work in Parsons’ Group 

This precedent gives support to the theory that Jiadifenin could be synthesised using the thermal 

cyclisation reaction. 
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2.5.3.2 Retrosynthetic Analysis 

The chosen retrosynthetic analysis for the synthesis of Jiadifenin is shown below in Scheme 2.56. 

 

Scheme 2.56: Retrosynthetic Analysis of Jiadifenin 

The ultimate transformation leading to Jiadifenin from 1.147 has been reported in the original 

publication by Fukuyama et al.
83

 α-Hydroxylactone 1.147 could be obtained by a Kiliani-Fisher 
150-

152
 synthesis from γ-hydroxyaldehyde 2.121 which would be derived from the selective oxidation of 
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the primary alcohol in 2.122. The desired hydroxyl moieties of 2.122 could be generated from a 

Fleming-Tamao oxidation 
153-156

 of two dimethylphenylsilyl groups 2.123 the presence of would be 

coincidentally advantageous during the key thermal cyclisation step. A conjugate addition to α,β-

unsaturated ester 2.124 followed by a lithium enolate trapping with an oxaziridine 
157,158

 would 

furnish 2.123. 2.124 would be the product of the thermal cyclisation developed by Parsons et al. 

Precursor 2.125 could be obtained from the manipulation of 2.128 which in turn would be 

synthesised by a key chiral epoxide opening step. 

2.5.3.3 Synthesis of Precursors 

The first target in the sequence was silyl alkenyl bromide 2.129. Initial attempts at its synthesis 

were based on a published procedure employing dimethylphenylsilyl lithium 2.133 and 2,3-

dibromo-1-propene (Scheme 2.57).
159

  

 

Reagents and Conditions: (i) SOCl2, reflux, 84%; (ii) Li, THF, -10°C; (iii) CuCN, LiCl, -50°C; (iv) 2,3-Dibromo-1-

propene, -50 to -20°C, 49%. 

Scheme 2.57: First Synthesis of 2.129 

Dimethylphenysilyl chloride was obtained in 84% yield from the relatively less expensive 

dimethylphenylsilylane by a published route.
160

 The corresponding lithium reagent 2.133 was 

generated by a lithium-halogen exchange as described by Fleming.
161

 Addition of an equivalent of 

copper(I) cyanide furnished a lower-order cyanocuprate intermediate which upon reaction with 2,3-

dibromo-1-propene gave desired product 2.129 in 49% yield.  Problems afflicting this synthesis are 

the use of expensive starting materials, the unreliable generation of the silyl lithium reagent and the 
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use of toxic copper(I) cyanide. Also the product obtained by this procedure was found to be 

contaminated with a substantial amount of disilane impurity 2.134 (Figure 2.18) most likely 

generated from the unwanted coupling of the silyl lithium reagent with unreacted silyl chloride. 

 

Figure 2.18: Disilane Impurity 

A published route for the generation of 2.129 
162

 makes use of a copper(I) chloride-catalysed silane 

insertion in the carbon-bromine bond  of 2,3-dibromo-1-propene 2.103 followed by alkylation of 

the resulting silyl chloride 2.135 by Grignard reagents. Using this relatively cheap and easy 

procedure furnished the desired alkenyl bromide 2.129 in very high yield and purity (Scheme 2.58). 

 

Reagents and Conditions: (i) HSiCl3, CuCl(cat), Et3N, Et2O, rt, 88%; (ii) 1 eq. PhMgBr, Et2O, reflux then 2 eq. MeMgBr, 

Et2O, rt, 91%. 

Scheme 2.58: Second, Improved Synthesis of 2.129 

With alkenyl bromide 2.129 in hand it was time to construct the chiral epoxide. Firstly a suitable 

protecting group had to be found for the primary hydroxyl group of 2.130. Due to its resistance to 

strongly basic conditions, low cost and sheer size which could improve selectivity of the epoxide 

opening step, the triphenylmethyl (trityl) group was chosen for the investigation. 
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A published one-pot Sharpless epoxidation
163

 /protection sequence 
164

 was therefore adopted 

starting from commercially available E-but-2-ene-1-ol (crotyl alcohol) (Scheme 2.59).  

 

Reagents and Conditions: (i) Ti(O
i
Pr)4 (10mol%), (-)-DIPT (12mol%), 

t
BuOOH, DCM, 3Å ms, -20°C then P(OMe)3, -

20°C then Ph3C-Cl, DMAP(cat), Et3N, CH2Cl2, -20°C, 62%, 95%+ ee 

Scheme 2.59: Synthesis of Chiral Epoxide 2.137 

After evaporative recrystallisation from chloroform/hexane (1:4 v/v) 2.137 was isolated in 95%+ 

enantiomeric excess as determined by the 
1
H NMR analysis of the Mosher ester of the 

corresponding iodohydrin.
165

 

Next the epoxide opening step was investigated. 

2.5.3.4 Epoxide Opening 

While hetereoatom-based nucleophiles have been successfully employed for the opening of chiral 

1,2-substituted epoxides, the use of carbon-based nucleophiles is much less developed.
166

 

Organocopper reagents are known to be some of the most efficient at carrying this transformation in 

a highly chemo- and stereo-selective manner.
167

 The opening of epoxide 2.137 by vinyl higher-

order cyanocuprate 2.138 has been previously reported (Scheme 2.60).
168

  

 

Reagents and Conditions: (i) BF3.OEt2, THF, -78°C; (ii) 60% CHCl2CO2H, 78%. 

Scheme 2.60: Work by Casalnuovo et al. 
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The additive boron trifluoride-diethyl etherate increases the reactivity of the cyanocuprate reagent 

by situating itself to a significant degree on the nitrile ligand of the reagent therefore increasing the 

Lewis acidity of the whole complex.
169

 This allows many epoxide openings to occur at low 

temperatures and at greater rates relative to reactions in the absence of this additive. However care 

must be taken when employing this procedure as temperature above -50°C start to seriously 

decompose the cuprate-lewis acid complex.
170

  

In order to generate the required higher-order cyanocuprate silyl alkenyl bromide 2.129 was 

subjected to a lithium-halogen exchange with two equivalents of tert-butyllithium and then added to 

a suspension of 0.5eq of copper(I) cyanide. The resulting reagent was then used in various attempts 

to open epoxide 2.137 (Table 2.14). 
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Reagents and Conditions: (i) 2eq. 
t
BuLi, SOLVENT (see Table 2.14), -70°C then 0.5eq CuCN, -70°C to -20°C then 

ADDITIVE (see Table 2.14) , -70°C then 2.137, TEMPERATURE (see Table 2.14), TIME (see Table 2.14) then sat. 

NH4Cl(aq.)/5M NH4OH(aq.) (8:2, v/v) 

Scheme 2.61: Higher-order Cyanocuprate-Mediated Opening of Epoxide 2.137 

Entry Solvent Temperature Time
b 

Additive Yield of 2.140
c 

2.140:2.141
d 

1 THF -70°C 4h None 0 - 

2 Et2O -70°C 4h None 0 - 

3 THF -60°C
a 

4h BF3.OEt2 0 - 

4 Et2O -60°C
a 

4h BF3.OEt2 Trace
c 

- 

5 THF 18°C 24h None 11% 3:1 

6 Et2O 18°C 24h None 62% 2:1 

a) Heating above -50°C causes rapid decomposition of the organocuprate reagent identified by appearance of 

brown/black colour. b) Reaction time after addition of epoxide c) Isolated yield d) Determined by 
1
H NMR of crude 

mixture. 

Table 2.14: Conditions Tested for Opening of Epoxide 2.137 

In order to achieve the opening of the epoxide at the desired 2-position of 2.137 the reaction was 

first tested at low temperatures. The generated organocuprate alone however was found unable to 

perform the reaction in either tetrahydrofuran or diethyl ether at -70°C (entries 1 and 2 Table 2.14). 

Addition of BF3.OEt2 and stirring at a slightly higher temperature (entries 3 and 4 Table 2.14) did 

not significantly improve reactivity yielding only trace amounts of product. Finally it was 
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discovered that carrying the reaction in diethyl ether at room temperature (entry 6 Table 2.14) in 

the absence of additives effectuated the transformation neatly giving desired material 2.140 in 62% 

isolated yield. Undesired product 2.141, which results from the epoxide opening at the 3-position 

was also obtained in 27% yield. The difference in yield observed between entries 5 and 6 in Table 

2.14 is a clear demonstration of the greater lewis-acidity of diethyl ether compared to 

tetrahydrofuran which results in a better stabilisation of lithium cations in solution.
171

 

A clear disadvantage encountered in the use of higher-order cyanocuprates is the requirement for 

two equivalents of lithium reagent, one of which does not take part in the reaction and it is therefore 

lost at the end of the procedure. To avoid such a loss, higher-order mixed cyanocuprates can be 

formed where a non-transferrable ligand is included in the cluster. Examples of such “dummy” 

ligands are 2-thienyl, dimsyl, methyl, imdazoyl and trimethylsilylmethyl.
167

  A practical example by 

Lipshutz 
172

 using higher-order mixed cyanocuprates for the opening of epoxides is shown below in 

Scheme 2.62. 

 

Reagents and Conditions: (i) THF, 0°C, 4h, 92%. 

Scheme 2.62: Lipshutz’s Work on Higher-Order Mixed Cyanocuprate-Mediated Opening of a 

Terminal Epoxide 

The vinyl ligand was transferred selectively yielding desired product 2.144 in an excellent 92% 

yield. 

The use of a 2-thienyl ligand for the opening of epoxide 2.137 was therefore investigated (Scheme 

2.63). 
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Reagents and Conditions: (i) 2eq. 
t
BuLi, -70°C then (2-Thienyl)Cu(CN)Li, -70°C to -20°C then 2.137, -70°C to rt, 

2.140: 59%, 2.141: 21%. 

Scheme 2.63: Higher-Order Mixed Cyanocuprate-Mediated Opening of Epoxide 2.137 

As expected the allyl silane group was transferred exclusively giving desired product 2.140 in 59% 

isolated yield. 

2.5.3.5 Attempted Trityl-Deprotections 

Due to their propensity to generate the very stable triphenylmethyl cation trityl ethers are commonly 

cleaved by action of acidic reagents. The first attempted deprotection on 2.140 was performed using 

Amberlyst-15H 
173

 a highly acidic (pKa< 1
174

) sulphonic acid macroreticular resin. The unfortunate, 

yet still interesting outcome was a highly efficient deprotection of the primary alcohol with 

concomitant cleavage of the dimethylphenylsilyl group (Scheme 2.64). 

 

Reagents and Conditions: (i) Amberlyst-15H, DCM, rt, 93% 

Scheme 2.64: Attempted Trityl Deprotection of 2.140 

A possible cause for the cleavage of the silyl group could be its ability to stabilise a β-cation (β-

effect) 
27,28

 which would be generated from the protonation of the terminal alkene in 2.146 as 
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depicted in Scheme 2.65. A subsequent attack by the conjugate base on the silicon group would 

then furnish 2.145. 

 

Scheme 2.65: Possible Mechanism of Elimination of the Silyl Group 

Deprotection with a less acidic reagent was then pursued. Stirring 2.140 in CH2Cl2 in the presence 

of formic acid (pKa = 3.75 
104

) however furnished the same product in 89% yield. The same result 

was also obtained when employing lewis acidic zinc(II) bromide 
175,176

 in CH2Cl2 (74% yield of 

2.145). 

2.5.3.6 Future Work 

Due to time constraints the trityl deprotection was not investigated any further. However a method 

employing tri-isopropylsilane, methanesulfonic acid and di-isopropylethylamine for the 

deprotection of highly acid-sensitive aziridine derivatives was recently published.
177

 This procedure 

could be the answer to the successful deprotection of trityl ether 2.140.  
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3. Experimental Section 
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3.1 General Procedure 

 

Reactions were conducted at room temperature under an atmosphere of nitrogen unless otherwise 

stated. Reactions were monitored using analytical thin-layer chromatography with visualisation by 

UV light and alkaline potassium permanganate (KMnO4). 

 

Reaction solvents were purified and dried according to literature methods. THF and diethyl ether 

were distilled from sodium with benzophenone as an indicator, CH2Cl2 and acetonitrile were 

distilled from CaH2. All other solvents and reagents were used as supplied. Flash chromatography 

was performed using silica gel 60, 230-400 mesh.  

 

1
H NMR spectra were recorded on a Varian 500MHz machine (operating at ambient probe 

temperature using an internal deuterium lock). Chemical shifts were reported in parts per million 

(ppm), using residual solvent as an internal standard. Standard abbreviations were used throughout 

(s singlet; bs broad singlet; d doublet; dd doublet of doublets; dt doublet of triplets; dq doublet of 

quartets; t triplet; q quartet; m multiplet). Coupling constants were measured in Hertz (Hz). 
13

C 

NMR spectra were recorded at 126 MHz. Chemical shifts are reported in parts per million (ppm). 

ESI Mass spectra were recorded on a Bruker Daltonics Apex III spectrometer with methanol as 

solvent. EI mass spectra were recorded on a Fisons VG Autospec spectrometer. Infra red spectra 

were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer. Alpha-D were recorded on a 

AUTOPOL IV Polarimeter. 

3.2 Compounds 
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2-(2-Bromophenyl)-1,3-dimethylimidazolidine (1.9) 

 

A mixture of 2-bromobenzaldehyde (18.50g, 11.7ml, 0.1mol), N,N’-dimethylethylenediamine 

(9.70g, 12.0ml, 0.11mol), para-toluenesulfonic acid (1.90g, 0.01mol) in toluene (100ml) was 

refluxed for 6h while removing generated water by means of a Dean-Stark apparatus . After cooling 

volatiles were removed under low vacuum and the residue distilled to give the title product (bp 128-

130°C at 6.8Torr) as a clear, yellow oil, 23.22g (92%). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.80 – 7.67 (m, 1H, 2CH), 7.57 – 7.47 (m, 1H, 4CH), 7.33 (dd, 

J = 7.5, 3.7 Hz, 1H, 5CH), 7.16 (ddd, J = 8.0, 6.2, 4.7 Hz, 1H, 3CH), 4.08 (d, J = 3.9 Hz, 1H, 7CH), 

3.48 – 3.23 (m, 2H, 2x9CHa), 2.74 – 2.53 (m, 2H, 2x9CHb), 2.34 (s, 6H, 2x8CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 138.87, 132.36, 131.18, 129.75, 128.04, 125.65, 88.54, 53.69, 

39.59 

m/z (ESI+): 255, 256, 257, 258, 277, 279 

HRMS (ESI+): Calcd. for C11H16BrN2 [M]
+
: 255.0496; found: 255.0491  

υmax (film/ cm
-1

): 2943 w, 2839 w, 2778 w, 1445 w, 1240 w, 1031 m 

Data consistent with those previously reported. 
86
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2-[3-(Trimethylsilyl)prop-2-yn-1-yl]benzaldehyde (2.2) 

 

2-(2-Bromophenyl)-1,3-dimethylimidazolidine (1.9) (5.00g, 19.60mmol) was dissolved in THF 

(50ml) and the resulting solution was cooled to -25°C (H2O/acetone 40:60v/v /liq. N2). 
n
BuLi 

(1.6M, 12.3ml, 19.60mmol) was added dropwise after which the solution was warmed slowly to 

0°C. Cooling was re-applied (-25°C, H2O/Acetone 40:60v/v/liq. N2) and copper(I) cyanide (1.84g, 

20.58mmol) was added in one portion. After stirring for 45min 3-(trimethylsilyl)propargyl bromide 

(3.4mL, 21.56mmol) was added dropwise. The solution was allowed to warm to rt and stirring was 

continued for 18 h after which the reaction was quenched with 1M aq. HCl solution (30ml). After 

addition of Et2O (100ml) the resulting phases were separated. The organic layer was then washed 

with sat. aq. NaCl solution (100ml) and dried over MgSO4. Removal of volatiles under low vacuum 

gave a red oil which was purified by kugelröhr distillation (140ºC-150ºC at 0.07Torr) to give the 

title compound as a clear, colourless oil, 2.93g (69% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 10.21 (s, 1H, 11CH), 7.82 (d, 1H, J = 7.6Hz, 9CH), 7.74 (d, 1H, 

J = 7.6Hz, 7CH), 7.62-7.57 (m, 1H, 8CH), 7.48 (t, 1H, J = 7.4Hz, 6CH), 4.11(s, 2H, 4CH2), 0.19 (s, 

9H, 3x1CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 192.72, 138.36, 134.08, 133.44, 133.11, 129.3, 127.28, 103.34, 

88.55, 23.98, 0.02 

m/z (ESI+) 239, 217, 102, 79 

HRMS (ESI+): Calcd. for C13H16OSiNa [M+Na]
+
: 239.0863; found: 239.0861 

υmax (film/ cm
-1

): 3377 s, 2961 w, 2899 w, 2834 w, 2737 w, 1695 s, 1576 w, 1487 w, 1030 m 

Data consistent with those previously reported.
178
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tert-Butyl methyl(prop-2-yn-1-yl)carbamate (2.21) 

 

N-methylpropargylamine (10.00g, 12.2ml, 144.7mmol) was dissolved in CH2Cl2 (100ml) and the 

solution cooled (ice/water). tert-Butyldicarbonate (31.60g, 144.7mmol), previously dissolved in 

CH2Cl2 (100ml) was then added dropwise to the amine solution, and the reaction allowed to stir at rt 

for 2h. Volatiles were then removed in vacuo to yield a brown oil which was purified by column 

chromatography (100% CH2Cl2) to afford the title compound as a clear, light yellow liquid which 

crystallized amorphously on cooling in the freezer, 24.30g (99% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 4.06-3.89 (bs, 2H, 3-CH2), 2.85 (s, 3H, 4-CH3), 2.16 (t, J = 

2.39 Hz, 1H, 1-CH), 1.40 (s, 9H, 7-3CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 155.07, 79.95, 79.07, 71.48, 37.87, 33.29, 28.23 

m/z (EI+): 176, 169, 154, 147, 114, 113, 96, 73 

υmax (film/ cm
-1

): 3308 s, 2979 w, 2931 w, 1693 s, 1481 w, 1249 w, 1050 m 

Rf: 0.30 in 1:9 Et2O/40-60 petroleum ether (KMnO4) 
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tert-Butyl(4-hydroxy-4-{2-[3-(trimethylsilyl)prop-2-yn-1-yl]phenyl}but-2-yn-1-yl)methylcarbamate 

(2.3) 

 

n
BuLi (2.5M, 5.1ml, 12.71mmol) was added to a cooled (-90°C, methanol/liq. N2) solution of tert-

butyl methyl(prop-2-yn-1-yl)carbamate (2.21 (2.15g, 12.71mmol) in THF (200 ml) and the reaction 

mixture stirred for 30min. A solution of 2-[3-(trimethylsilyl)prop-2-yn-1-yl]benzaldehyde (2.2) 

(2.50g, 11.56mmol) in THF (5ml) was then added dropwise and the reaction mixture allowed to stir 

for 1h. The reaction was quenched with 2-bromo-2-methylpropane (2.0ml, 17.33mmol) and was 

then allowed to warm slowly to rt. The resulting solution was diluted with Et2O (200ml), washed 

with water (50ml) and the aqueous fraction extracted with diethyl ether (2x50ml). The combined 

organic fractions were washed with sat. aq. NaCl solution and dried over MgSO4. Removal of 

volatiles in vacuo gave a dark orange oil which was purified by flash column chromatography (3:2 

hexane/Et2O) to give the title compound as a clear, yellow oil, 4.01g (90% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.66-7.62 (m, 1H, 9CH), 7.49-7.46 (m, 1H, 6CH), 7.34-7.28 

(m, 2H, 8CH, 7CH), 5.71 (s, 1H, 11CH), 4.11 (s, 2H, 14CH2), 3.82 (s, 2H, 4CH2), 2.90 (s, 3H, 

5CH3), 1.44 (s, 9H, 3x18CH3), 0.17 (s, 9H, 3x1CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 155.29, 137.2, 134.21, 129.38, 128.84, 127.38, 104.23, 87.78, 

82.53, 82.25, 80.22, 62.11, 38.68, 37.94, 33.65, 28.31, 23.56, -0.03 

m/z (EI+) 410, 409, 408, 354, 353, 352, 136 

HRMS (ESI+): Calcd. for C22H31NO3SiNa [M+Na]
+
: 408.1965; found: 408.1958 

υmax (film/ cm
-1

): 3396 s, 2963 br, 2248 w, 2177 w, 1678 s, 1483 w, 1368 w, 1251 m 

Rf: 0.22 in 2:3 Et2O/hexane (KMnO4) 



145 
 

tert-Butyl[4-hydroxy-4-(2-prop-2-yn-1-ylphenyl)but-2-yn-1-yl]methylcarbamate (2.4) 

 

A solution of tert-butyl(4-hydroxy-4-{2-[3-(trimethylsilyl)prop-2-yn-1-yl]phenyl}but-2-yn-1-

yl)methylcarbamate (2.3) (2.53g, 6.70mmol) and sodium methoxide (0.11g, 1.97mmol) in CH2Cl2 

(10ml) and methanol (10ml) was stirred at room temperature for 18h. It was then diluted with 

CH2Cl2 (20ml), washed with water (50ml) and the aqueous fraction extracted with CH2Cl2 

(2x20ml). The combined organic layers were dried over MgSO4, filtered and the solvent removed in 

vacuo to give the title compound as a thick, yellow oil which was used in the next step without 

further purification 2.04g (97% yield).  

1
H NMR (500 MHz, CDCl3) δ ppm 7.66 (d, J = 6.9Hz, 1H, 8CH), 7.53 (d J = 6.8Hz, 1H, 5CH), 

7.36-7.29 (m, 2H, 6CH, 7CH), 5.73 (d, J = 4.3Hz, 1H, 10CH), 4.12 (s, 2H, 13CH2), 3.80 (s, 2H, 

3CH2), 2.91 (s, 3H, 14CH3), 2.46 (s, 1H, OH), 2.21 (t, J = 1.4Hz, 1H, 1CH), 1.45 (s, 9H, 3x17CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 155.24, 137.78, 134.02, 129.21, 128.73, 127.29, 127.13, 82.62, 

82.26, 81.77, 80.21, 71.15, 62.13, 38.60, 37.94, 28.36, 21.92 

m/z (ESI+) 336, 330, 280, 112, 101, 58 

HRMS (ESI+): Calcd. for C19H23NO3Na [M+Na]
+
: 336.1570; found: 336.1552 

υmax (film/ cm
-1

): 3396 s, 2977 br, 2248 w, 2120 w, 1677 s, 1483 w, 1368 w, 1251 m  

Rf: 0.31 in 1:1 Et2O/40-60 petroleum ether (KMnO4) 
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4-(Methylamino)-1-(2-prop-2-yn-1-ylphenyl)but-2-yn-1-ol hydrochloride salt (2.5) 

 

A solution of tert-butyl [4-hydroxy-4-(2-prop-2-yn-1-ylphenyl)but-2-yn-1-yl]methylcarbamate (2.4) 

(781mg, 2.52mmol) and hydrogen chloride in Et2O (2M, 2.5ml, 5.00mmol) was stirred at rt for 3h. 

Pentane (7ml) was added and the precipitate removed by filtration. The filter cake was washed with 

Et2O (2x20ml) and pentane (1x20ml) and dried under a nitrogen gas flow to give the title compound 

as an off white solid, 378mg (60% yield). 

1
H NMR (500 MHz, DMSO-d6 ) δ ppm 9.48 (bs, 2H, NH2), 7.62 (d, J = 6.3Hz, 1H, 8CH), 7.48 (d, J 

= 6.5Hz, 1H, 5CH), 7.34-7.28 (m, 2H, 6CH, 7CH), 6.28 (s, 1H, 10CH), 3.91 (s, 2H, 13CH), 3.80 (s, 

2H, 3CH), 3.15 (s, 1H, 1CH), 2.52 (s, 3H, 14CH3) 

13
C NMR (126 MHz, DMSO-d6) δ ppm 138.59, 133.72, 128.40, 128.05, 126.77, 126.12, 88.22, 

81.87, 78.03, 73.98, 59.91, 36.83, 31.37, 21.05 

m/z (EI+) 213, 194, 181, 165, 153, 141, 128, 115, 103 

HRMS (ESI+): Calcd. for C14H16NO [M]
+
: 214.1226; found: 214.1217 

υmax (neat/ cm
-1

): 3584 s, 3246 s, 2925 s, 2855 w, 2727 w, 2397 w, 1602 w, 1461 w, 1377 w, 1205 

m 

Mp: 96ºC-100ºC 
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N-[4-Hydroxy-4-(2-prop-2-yn-1-ylphenyl)but-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide 

(2.6) 

 

DMF (4 drops) was added to a solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (196mg, 

1.38mmol) and oxalyl chloride (0.13ml, 1.38mmol) in CH2Cl2 (20ml) and the resulting solution was 

stirred at rt for 40min. This solution was then added dropwise via syringe to a mixture of 4-

(methylamino)-1-(2-prop-2-yn-1-ylphenyl)but-2-yn-1-ol hydrochloride (2.5) (327mg, 1.31mmol) 

and triethylamine (334mg, 0.46ml, 3.27mmol) in CH2Cl2 (10ml). The resulting cloudy solution was 

stirred at rt for 20min and then quenched with water (20ml). The phases were separated, the organic 

layer washed with aq. HCl (2M, 2x10ml), sat. aq. NaHCO3 solution (50ml), dried over MgSO4, 

filtered and the volatiles removed in vacuo to give a red oil. This was purified by flash column 

chromatography (3:2 Et2O/hexane) to give the title compound as a viscous, yellow oil, 174mg (28% 

yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.63-7.60 (m, 1H, 8CH), 7.53-7.50 (m, 1H, 5CH), 7.34-7.29 

(m, 2H, 6CH, 7CH), 5.74 (d, J = 12.9Hz, 1H, 10CH), 4.48 (s, 1H, 13CH2), 4.30 (s, 1H, 13CH2), 

3.79 (d, J = 2.7Hz, 2H, 3CH2), 3.25 (s, 1.5H, 14CH3), 3.00 (s, 1.5H, 14CH3), 2.73 (bs, 1H, OH), 

2.23-2.20 (m, 1H, 1CH), 0.24 (d, J = 2.8Hz, 9H, 3x18CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 153.63, 153.49, 137.14, 136.36, 134.04, 129.59, 129.41, 

129.03, 128.98, 127.41, 127.35, 127.22, 127.17, 98.35, 95.49, 84.04, 83.30, 81.76, 81.62, 80.79, 

80.51, 71.12, 62.16, 41.03, 35.59, 35.78, 31.75, 22.05, -0.77 

m/z (EI+) 725, 697, 530, 461, 360, 330, 242, 120 

HRMS (ESI+): Calcd. for C20H23NO2SiNa [M+Na]
+
: 360.1390; found: 360.1373 

υmax (neat/ cm
-1

): 3378 s, 3306 s, 2961 s, 2853 w, 2247 w, 1716 s, 1485 w, 1348 w, 1253 w 
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Rf: 0.15 in 1:1 Et2O/hexane (KMnO4) 
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11-Hydroxy-2-methyl-4-(trimethylsilyl)-1,2,4,5-tetrahydro-3H-naphtho[2,3-e]isoindol-3-one (1.13) 

 

A solution of N-{4-[2-(2-bromoprop-2-en-1-yl)phenyl]-4-hydroxybut-2-yn-1-yl}-Nmethyl-3-

(trimethylsilyl)prop-2-ynamide (2.6) (0.50g, 1.23mmol) and butyl oxirane (2.9mL, 23.92mmol) in 

de-gassed toluene (20ml) was heated at reflux for 4h. After cooling to rt, the solvent was removed 

under reduced pressure and the residue purified by flash column chromatography (1:1 Et2O/hexane) 

to give the title compound as a yellow, amorphous solid, 316mg (76% yield). 

1
H NMR (500 MHz, DMSO-d6) δ ppm 9.79 (bs, 1H, OH), 8.22 (d, J=8.6Hz, 1H, 10CH), 7.74-

7.71(m, 1H, 5-CH), 7.45-7.41 (m, 1H, 7CH), 7.26-7.22 (m, 2H, 8CH, 9CH), 4.82(dd, J1 = 20.1Hz 

J2 = 122.3Hz, 2H, 15CH2) 3.29-3.22 (m, 2H, 3CH2), 3.09-2.96 (m, 3H, 16CH3), 2.21 (t, J=7.3Hz, 

1H, 2CH), -0.19 (s, 9H, 3x1CH3) 

13
C (126MHz, DMSO-d6) δ ppm 169.7, 148.3, 141.6, 135.6, 134.2, 133.9, 127.3, 126.5, 124.8, 

124.7, 122.2, 118.3, 114.9, 54.7, 31.1, 28.8, 21.2, -2.1 

m/z (ESI+) 360, 338, 322, 232 

HRMS (ESI+): Calcd. for C20H23NO2SiNa [M+Na]
+
: 360.1390; found: 360.1388 

υmax (neat/ cm
-1

): 3043 s, 2955 s, 2855 w, 1943 w, 1647 s, 1570 w, 1487 w, 1371w, 1247 m 

Melting point: decomposes at 278ºC-281ºC (CH2Cl2/hexane) 
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1-Methyl-4-[2-oxo-2-(2-prop-2-yn-1-ylphenyl)ethyl]-3-[(trimethylsilyl)methyl]-1,5-dihydro-2H-pyrrol-

2-one (2.7) 

 

A solution of N-{4-[2-(2-bromoprop-2-en-1-yl)phenyl]-4-hydroxybut-2-yn-1-yl}-Nmethyl-3-

(trimethylsilyl)prop-2-ynamide (2.6) (0.50g, 1.23mmol) and butyl oxirane (2.9mL, 23.92mmol) in 

toluene (20ml) was heated at reflux for 4h. The solvent was removed under reduced pressure and 

the residue purified by flash column chromatography (24:1 Et2O/hexane) to give the title compound 

as a yellow, amorphous solid, 38mg (9% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.73-7.69 (m, 2H, 8CH, 6CH), 7.55-7.50 (m, 1H, 7CH), 7.41-

7.36 (m, 1H, 5CH), 3.95 (s, 2H, 13CH2), 3.91 (s, 2H, 11CH2), 3.89 (d, J = 2.6Hz, 2H, 3CH2), 3.02 

(s, 3H, 14CH3), 2.18 (t, J = 2.7Hz, 1H, 1CH), 1.77 (s, 2H, 17CH2), 0.02 (s, 9H, 3x18CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 199.38, 171.74, 137.12, 136.68, 136.03, 134.61, 132.57, 

130.68, 128.84, 127.12, 81.88, 71.06, 54.92, 40.57, 29.34, 23.66, 14.73, -1.10 

m/z (ESI+) 413, 362, 274, 234, 218, 121, 101 

HRMS (ESI+): Calcd. for C20H25NO2SiNa [M+Na]
+
: 362.1547; found: 362.1533 

υmax (neat/ cm
-1

): 2954 w, 2926 w, 2856 w, 1681 s, 1450 w, 1249 w 

Rf: 0.28 in 100% Et2O (KMnO4) 

 

 

 

 



151 
 

tert-Butyl (4-hydroxy-4-phenylbut-2-yn-1-yl)methylcarbamate (2.22) 

 

tert-Butyl methyl(prop-2-ynyl)carbamate (2.21) (15.00g, 88.64mmol) was dissolved in THF 

(100ml) and the temperature of the solution was lowered to -70°C (EtOAc/liq. N2). 
n
BuLi (2.2M, 

40.0ml, 88.64mmol) was then added dropwise at moderate rate to yield a dark orange solution. 

Stirring was continued at –70°C for 1 hour. A solution of benzaldehyde (9.41g, 88.64mmol) in THF 

(50ml) was then added dropwise via cannula . The temperature was then allowed to rise slowly to rt 

and the reaction was stirred at this temperature for 18h. After quenching with sat. aq. NH4Cl 

solution (100ml) the solution was diluted with ethyl acetate (200ml) and then washed with water 

(1x200ml). Drying of the organic phase on MgSO4, filtration and evaporation of volatiles yielded a 

brown, viscous oil which was purified by column chromatography (1:9 to 3:7 EtOAc/40-60 

petroleum ether with a 5% gradient) to give the title compound as a light yellow, viscous oil, 19.72g 

(81%). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.52 (d, J = 7.56 Hz, 2H, 2x3CH), 7.36 (t, J = 7.36, 7.36 Hz, 

2H, 2x2CH), 7.31 (d, J = 7.24 Hz, 1H, 1CH), 5.47 (s, 1H, 5CH), 4.11 (bs, 2H, 8CH2), 2.90 (s, 3H, 

9CH3), 1.45 (s, 9H, 3x12CH3). 

13
C NMR (126 MHz, CDCl3) δ ppm 140.75, 128.51, 128.24, 126.58, 83.51, 81.92, 80.20, 64.46, 

38.31, 33.57, 28.35. 

m/z (ESI+): 298, 242, 202, 100 

HRMS (ESI+): Calcd. for C16H21NO3Na [M+Na]
+
: 298.1412; found: 298.1414 

υmax (neat/ cm
-1

): 3404 br, 2976 w, 2930 w, 1696 s, 1677 s, 1481w, 1392 w, 1249 m, 1151 m  

Rf: 0.46 in 1:1 EtOAc/40-60 petroleum ether (KMnO4) 
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4-(Methylamino)-1-phenylbut-2-yn-1-ol (2.26) 

 

From tert-Butyl (4-hydroxy-4-phenylbut-2-yn-1-yl)methylcarbamate (2.22): 

To a solution of tert-butyl 4-(2-bromophenyl)-4-hydroxybut-2-ynyl(methyl)carbamate (2.22) 

(3.97g, 11.97mmol) in Et2O (30 ml) was added hydrogen chloride in Et2O (4M, 9ml, 35.91mmol) 

and the reaction allowed to stir at rt for 18 hours. The resulting suspension was cooled to 0°C in a 

freezer, filtered and washed with cold Et2O (1x50ml). Air drying afforded a white, amorphous solid, 

which was then suspended in fresh EtOAc (50ml). The resulting mixture was carefully treated with 

10% aq. K2CO3 solution (100ml), the aqueous phase was saturated with NaCl and was then 

extracted with EtOAc (3x50ml). The combined organic fractions were dried on Na2SO4, filtered and 

the volatiles removed in vacuo to afford the title compound as an amorphous, off-white solid, 4.35g 

(44%). 

From 4-[methyl(triisopropylsilyl)amino]-1-phenylbut-2-yn-1-ol (2.14): 

To a solution of 4-[methyl(triisopropylsilyl)amino]-1-phenylbut-2-yn-1-ol (2.14) (3.97g, 

11.97mmol) in MeCN (50ml) in a PTFE container was added 40% aq. HF (10ml) in one portion via 

PTFE pipette. After stirring for 10min the reaction was quenched by careful addition of 10% aq. 

K2CO3 (200ml). The aqueous phase was saturated with NaCl and extracted with EtOAc (3x100ml). 

The combined organic fractions were dried on Na2SO4, filtered and the solvent removed in vacuo to 

yield an off-white solid, 1.97g (94% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.51 (d, J = 7.4 Hz, 2H, 2x3CH), 7.34 (t, J = 7.4 Hz, 2H, 

2x2CH), 7.31 – 7.26 (m, 1H, 1CH), 5.43 (s, 1H, 5CH), 3.37 (d, J = 1.8 Hz, 2H, 8CH), 3.08 (bs, 1H, 

OH), 2.38 (s, 3H, 9CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 141.51, 128.56, 128.12, 126.60, 84.42, 83.64, 64.11, 40.10, 

35.08 
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m/z (EI+): 199, 198, 177, 176 

HRMS (ESI+): Calcd. for C11H14NO [M]
+
: 176.1069; found: 176.1068 

υmax (neat/ cm
-1

): 3269 s, 2871 br, 1601 w,1492 m, 1451 s, 1336 m, 1120 s, 1017 s  

Mp: 91-93°C (CH2Cl2/hexane) 
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[4-(2-Bromophenyl)-4-tert-butoxybut-2-yn-1-yl]methylamine (2.26) 

 

To a suspension of anhydrous zinc(II) bromide (16.57g, 73.60mmol) in CH2Cl2 (150ml) at rt was 

added a solution of tert-butyl (4-hydroxy-4-phenylbut-2-yn-1-yl)methylcarbamate (2.22) (4.05g, 

14.72mmol) in CH2Cl2 (20ml). The resulting mixture was stirred at rt for 24h and then quenched by 

addition of 10% aq.K2CO3 solution (100ml). The phases were separated and the aqueous layer was 

washed with CH2Cl2 (2x50ml). The combined organic layers were dried on Na2SO4, filtered and the 

volatiles removed in vacuo. Flash column chromatography of the crude (1:19 MeOH/CH2Cl2 with 

1% Et3N) gave the title compound as a light yellow oil, 1.52g (62%). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.51 (d, J = 7.5 Hz, 2H, 5CH, 2x3CH), 7.33 (t, J = 7.5 Hz, 2H, 

2x2CH), 7.26 (t, J = 7.3 Hz, 1H, 1CH), 5.29 (s, 1H, 5CH), 3.44 (d, J = 1.6 Hz, 2H, 10CH2), 2.45 (s, 

3H, 11CH3), 1.33 (s, 9H, 3x7CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 141.44, 128.34, 127.63, 126.76, 84.77, 83.94, 75.55, 64.26, 

40.54, 35.43, 28.50 

m/z (ESI+): 205, 174, 158, 157, 144, 143, 128, 115 

HRMS (ESI+): Ion not found 

υmax (neat/ cm
-1

): 2974 w, 2932 w, 1449 w, 1366 w, 1190m, 1010 m 
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1,1,1-Triisopropyl-N-methyl-N-prop-2-yn-1-ylsilanamine (2.44) 

 

N-Methylpropargylamine (5g, 72.35mmol) and triethylamine (10.97g, 15.1ml, 108.53mmol) were 

dissolved in CH2Cl2 and the resulting solution cooled using an ice/water bath. Neat triisopropylsilyl 

trifluoromethanesulfonate (23.28g, 75.97mmol) was then added dropwise via syringe. The resulting 

solution was stirred at rt for 18h. The organic phase was washed with 10% aq. K2CO3 solution 

(2x100 ml) and then dried on Na2SO4. Distillation under reduced pressure (84-87°C at 1.6Torr) 

gave a colourless, clear oil, 16.14g (99% yield).  

1
H NMR (500 MHz, CDCl3) δ ppm 3.57 (d, J = 2.1Hz, 2H, 3CH2), 2.61 (s, 3H, 4CH3), 2.14 (t, J = 

2.3Hz, 1H, 1CH), 1.22 – 1.10 (m, 3H, 3x5CH), 1.06 (d, J = 7.5Hz, 18H, 6x6CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 83.39, 70.20, 40.82, 36.34, 18.47, 12.26 

m/z (ESI+): 226, 175, 155 

HRMS (ESI+): Calcd. for C13H28NSi [M]
+
: 226.1991; found: 226.1986 

υmax (neat/ cm
-1

): 2944 w, 2866 w, 1463 w, 1142 w 
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4-[Methyl(triisopropylsilyl)amino]-1-phenylbut-2-yn-1-ol (2.14) 

 

A solution of 1,1,1-triisopropyl-N-methyl-N-prop-2-yn-1-ylsilanamine (2.44) (5.51g, 24.47mmol) 

in THF (50ml) was cooled to -70°C (EtOAc/liq. N2). 
n
Buli (2.5M, 9.8ml, 24.47mmol) was then 

added dropwise. After stirring for 10 min, the temperature was allowed to raise to -20°C and then 

lowered again to -70°C at which point it was allowed to stir for 30min. Benzaldehyde (2.86g, 2.7ml 

26.92mmol) was then added neat via syringe, and the solution stirred at -70°C for 20min. The 

cooling bath was removed and the temperature allowed to slowly rise to rt. The reaction was 

quenched with sat. aq. NH4Cl solution (20ml).  EtOAc (100ml) was added and the organic phase 

separated and washed with 10% aq. K2CO3 solution (100ml), 10% aq. NaSO3H solution (2x100ml) 

and water (100ml). Drying on Na2SO4, filtering and evaporation of volatiles gave a light yellow, 

clear oil which was used in the next step without further purification, 7.46g (95% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.56 (d, J = 7.3 Hz, 2H, 3CH), 7.37 (t, J = 7.3 Hz, 2H, 2CH), 

7.32 (d, J = 7.2 Hz, 1H, 1CH), 5.49 (d, J = 5.9 Hz, 1H, 5CH), 3.67 (d, J = 1.3 Hz, 2H, 8CH2), 2.63 

(s, 3H, 9CH3), 2.17 (d, J = 6.2 Hz, 1H, OH), 1.22 – 1.10 (m, 3H, 3x10CH), 1.10 – 1.02 (m, 18H, 

6x11CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 128.45, 128.15, 126.64, 86.50, 81.96, 64.78, 40.98, 36.42, 

18.32, 17.68, 12.07 

m/z (ESI+): 354, 351, 332, 313, 176 

HRMS (ESI+): Calcd. for C20H34NOSiNa [M+Na]
+
: 332.2391; found: 332.2404 

υmax (neat/ cm
-1

): 3348 br, 2943 m, 2864 m, 1462 w, 1141 w, 1006 m 
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1-(2-Fluorophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.46) 

 

A solution of 1,1,1-triisopropyl-N-methyl-N-prop-2-yn-1-ylsilanamine (2.44) (2.61g, 11.59mmol) 

in THF (50ml) was cooled to -70°C (EtOAc/liq. N2). 
n
Buli (2.5M, 4.6ml, 11.92mmol) was then 

added dropwise . After stirring for 10 min, the temperature was allowed to raise to -20°C and then 

lowered again to -70°C at which point it was allowed to stir for 30min. 2-Fluorobenzaldehyde 

(1.58g, 1.4ml, 12.75mmol) was then added neat via syringe, and the solution stirred at -70°C for 

20min. The cooling bath was removed and the temperature allowed to slowly rise to rt. The reaction 

was quenched with sat. aq. NH4Cl solution (10ml).  EtOAc (100ml) was added and the organic 

phase separated and washed with 10% aq. K2CO3 solution (100ml), 10% aq. NaSO3H solution 

(2x100ml) and water (100ml). Drying on Na2SO4, filtering and evaporation of solvents gave a light 

yellow, clear oil which was used in the next step without further purification, 3.48g (86% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.66 (td, J = 7.6, 1.6 Hz, 1H, 2CH), 7.30 (tdd, J = 7.3, 5.3, 1.7 

Hz, 1H, 5CH), 7.15 (td, J = 7.6, 0.9 Hz, 1H, 3CH), 7.10 – 6.98 (m, 1H, 4CH), 5.76 (s, 1H, 7CH), 

3.65 (d, J = 1.4 Hz, 2H, 10CH2), 2.60 (s, 3H, 11CH3), 1.19 – 1.09 (m, 3H, 3x12CH), 1.08 – 1.04 

(m, 18H, 6x13CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 129.96, 128.34, 128.31, 124.19, 115.57, 86.51, 80.85, 59.25, 

40.95, 36.39, 18.27, 17.67, 12.29 

m/z (ESI+): 372, 350, 216, 194, 176, 124 

HRMS (ESI+): Calcd. for C20H32NOFSiNa [M+Na]
+
: 372.2121; found: 372.2129 

υmax (neat/ cm
-1

): 3311 br, 2944 m, 2865 m, 1616 w, 1589 w, 1488 m, 1458 m, 1008 m 
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1-(2-Chlorophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.47) 

 

A solution of 1,1,1-triisopropyl-N-methyl-N-prop-2-yn-1-ylsilanamine (2.44) (3.12g, 13.86mmol) 

in THF (50ml) was cooled to -70°C (EtOAc/liq. N2). 
n
Buli (2.5M, 5.5ml, 13.86mmol) was then 

added dropwise . After stirring for 10 min, the temperature was allowed to raise to -20°C and then 

lowered again to -70°C at which point it was allowed to stir for 30min. 2-Chlorobenzaldehyde 

(1.95g, 13.86mmol) was then added neat via syringe, and the solution stirred at -70°C for 20min. 

The cooling bath was removed and the temperature allowed to slowly rise to rt. The reaction was 

quenched with sat. aq. NH4Cl solution (10ml).  EtOAc (100ml) was added and the organic phase 

separated and washed with 10% aq. K2CO3 solution (100ml), 10% aq. NaSO3H solution (2x100ml) 

and water (100ml). Drying on Na2SO4, filtering and evaporation of solvents gave a light yellow, 

clear oil which was used in the next step without further purification, 4.61g (91% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.77 (dd, J = 7.6, 1.8 Hz, 1H, 2CH), 7.37 (dd, J = 7.7, 1.3 Hz, 

1H, 5CH), 7.30 (dd, J = 7.4, 1.3 Hz, 1H, 3CH), 7.29 – 7.23 (m, 1H, 4CH), 5.84 (d, J = 5.4 Hz, 1H, 

7CH), 3.65 (d, J = 1.4 Hz, 2H, 10CH2), 2.61 (s, 3H, 11CH3), 2.38 (d, J = 5.5 Hz, 1H, OH), 1.19 – 

1.08 (m, 3H, 3x12CH), 1.04 (d, J = 7.1 Hz, 18H, 6x13CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 138.36, 132.69, 129.61, 129.40, 128.28, 127.05, 86.64, 80.82, 

62.08, 40.97, 36.42, 18.29, 12.04 

m/z (ESI+): 388, 385, 366, 313, 210 

HRMS (ESI+): Calcd. for C20H32NOClSiNa [M+Na]
+
: 388.1831; found: 388.1833 

υmax (neat/ cm
-1

): 3330 br, 2943 m, 2864 m, 1597 w, 1467 m, 1443 m, 1007 m 
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1-(2-Bromophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.48) 

 

A solution of 1,1,1-triisopropyl-N-methyl-N-prop-2-yn-1-ylsilanamine (2.44) (2.96g, 13.14mmol) 

in THF (50ml) was cooled to -70°C (EtOAc/liq. N2). 
n
Buli (2.5M, 5.3ml, 13.14mmol) was then 

added dropwise . After stirring for 10 min, the temperature was allowed to raise to -20°C and then 

lowered again to -70°C at which point it was allowed to stir for 30min. 2-Bromobenzaldehyde 

(2.43g, 13.14mmol) was then added neat via syringe, and the solution stirred at -70°C for 20min. 

The cooling bath was removed and the temperature allowed to slowly rise to rt. The reaction was 

quenched with sat. aq. NH4Cl solution (10ml).  EtOAc (100ml) was added and the organic phase 

separated and washed with 10% aq. K2CO3 solution (100ml), 10% aq. NaSO3H solution (2x100ml) 

and water (100ml). Drying on Na2SO4, filtering and evaporation of solvents gave a light yellow, 

clear oil which was used in the next step without further purification, 5.11g (95% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.83 (dd, J = 7.8, 2.0 Hz, 1H, 2CH), 7.67 (d, J = 8.3 Hz, 1H, 

4CH), 7.35 (t, J = 7.6 Hz, 1H, 5CH), 7.22 (m, 1 H, 3CH), 5.81(m, 1H, 7CH), 3.60 (s, 2H, 10CH2), 

2.66 (s, 3H, 11CH3), 2.42 (d, J = 4.9 Hz, 1H, OH), 1.15 (m, 3 H, 3x12CH), 1.16 (m, 18 H, 

6x13CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 140.01, 132.95, 129.71, 128.56, 127.70, 122.77, 86.89, 80.93, 

64.37, 41.00, 36.54, 18.37, 12.11 

m/z (ESI+): 434, 410, 277, 144. 

HRMS (ESI+): Calcd. for C20H33BrNOSi [M]
+
: 410.1515; found: 410.1509 

υmax (neat/ cm
-1

): 3357 br, 2942 w, 2864 w, 1464 w, 1191 w 
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1-(2-Fluorophenyl)-4-(methylamino)but-2-yn-1-ol (2.49) 

 

To a solution of 1-(2-fluorophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.46) (1.54g, 

4.41mmol) in MeCN (10ml) in a PTFE container was added 40% aq. HF (5ml) in one portion via 

PTFE pipette . After stirring for 10min the reaction was quenched by careful addition of 10% aq. 

K2CO3 (100ml). The aqueous phase was saturated with NaCl and extracted with EtOAc (3x50ml). 

The combined organic fractions were dried on Na2SO4, filtered and the solvent removed in vacuo to 

yield an off-white solid, 817mg (96% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.65 (td, J = 7.6, 1.7 Hz, 1H, 2CH), 7.30 (tdd, J = 7.3, 5.3, 1.8 

Hz, 1H, 5CH), 7.16 (td, J = 7.6, 1.0 Hz, 1H), 4CH, 7.05 (ddd, J = 10.1, 8.3, 1.0 Hz, 1H, 3CH), 5.75 

(t, J = 1.6 Hz, 1H, 7CH), 3.44 (d, J = 1.8 Hz, 2H, 10CH2), 2.44 (s, 3H, 11CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 161.05, 129.96, 128.42, 124.29, 115.59, 109.99, 84.04, 82.78, 

58.62, 40.16, 35.17 

m/z (ESI+): 217, 216, 194, 176 

HRMS (ESI+): Calcd. for C11H13FNO [M]
+
: 194.0975; found: 194.0957 

υmax (neat/ cm
-1

): 3266 s, 2800 s, 1614 w, 1587 w, 1487 m, 1456 m, 1226 w, 1029 m 

Mp: 99-101°C (CH2Cl2/hexane) 
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1-(2-Chlorophenyl)-4-(methylamino)but-2-yn-1-ol (2.50) 

 

To a solution of 1-(2-chlorophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.47) (2.11g, 

5.77mmol) in MeCN (10ml) in a PTFE container was added 40% aq. HF (10ml) in one portion via 

PTFE pipette . After stirring for 10min the reaction was quenched by careful addition of 10% aq. 

K2CO3 (100ml). The aqueous phase was saturated with NaCl and extracted with EtOAc (3x50ml). 

The combined organic fractions were dried on Na2SO4, filtered and the solvent removed in vacuo to 

yield an off-white solid, 817mg (92% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.75 (dd, J = 7.6, 1.6 Hz, 1H, 2CH), 7.34 (dd, J = 7.8, 1.1 Hz, 

1H, 5CH), 7.28 (td, J = 7.6, 1.2 Hz, 1H, 4CH), 7.23 (td, J = 7.6, 1.7 Hz, 1H, 3CH), 5.80 (s, 1H, 

7CH), 3.40 (d, J = 1.7 Hz, 2H, 10CH2), 2.41 (s, 3H, 11CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 138.73, 132.47, 129.55, 129.26, 128.11, 127.12, 83.46, 83.28, 

61.13, 40.07, 35.05 

m/z (ESI+): 296, 232, 210 

HRMS (ESI+): Calcd. for C11H12ClNONa [M+Na]
+
:232.0505; found: 232.0500 

υmax (neat/ cm
-1

): 3268 s, 2903 s, 2667 br, 1592 w, 1574 w, 1484m, 1334 m, 1295 m, 1119 m, 1025 

m 

Mp: 111-113°C (CH2Cl2/hexane) 
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1-(2-Bromophenyl)-4-(methylamino)but-2-yn-1-ol (2.51) 

 

To a solution of 2-(bromophenyl)-4-[methyl(triisopropylsilyl)amino]but-2-yn-1-ol (2.48) (3.26g, 

7.97mmol) in MeCN (50ml) in a PTFE container was added 40% aq. HF (10ml) in one portion via 

PTFE pipette . After stirring for 10min the reaction was quenched by addition of 10% aq. K2CO3 

solution (200ml). The aqueous phase was saturated with NaCl and extracted with EtOAc 

(3x100ml). The combined organic fractions were dried on Na2SO4, filtered and evaporation of the 

solvent gave an off-white solid, 1.76g (87%). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.76 (dd, J = 7.7, 1.2 Hz, 1H, 2CH), 7.54 (d, J = 7.9 Hz, 1H, 

4CH), 7.34 (t, J = 7.5 Hz, 1H, 5CH), 7.16 (td, J = 7.9, 1.4 Hz, 1H, 3CH), 5.78 (s, 1H, 7CH), 3.42 

(d, J = 1.5 Hz, 2H, 10CH2), 2.43 (s, 3H, 11CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 140.35, 133.01, 129.76, 128.50, 127.93, 122.68, 84.07, 83.24, 

63.78, 40.31, 35.31 

m/z (ESI+): 277, 275, 256, 254, 238, 236 

HRMS (ESI+): Calcd. for C11H13BrNO [M]
+
: 254.0173; found: 254.0175 

υmax (neat/ cm
-1

): 3268 s, 3057 br, 2978 w, 2903 w, 1485 w, 1292 w 

Mp: 118-120°C (CH2Cl2/hexane) 
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3-(Trimethylsilyl)prop-2-ynoic acid (2.13) 

 

MeLi (1.6M in Et2O, 80.0ml, 128.00mmol) was added to a cooled (-75°C solid CO2/acetone) 

solution of (trimethylsilyl)acetylene (18.1ml, 128.00mmol) in Et2O (150ml). The temperature of the 

resulting solution was allowed to rise to -20°C and then was cooled again to -75°C. Previously 

crushed solid CO2 pellets (50g) were then added in 3 portions via side-arm solid addition funnel. 

The reaction was allowed to warm to rt over 18hr and was then quenched with aq. HCl (1M, 

300ml). The phases were separated and the aqueous fraction extracted with Et2O (2x75ml). The 

combined organic fractions were washed with sat. aq. NaCl solution, dried over MgSO4, filtered 

and the solvent removed in vacuo. The residue was purified via short-path distillation (bp 72-74°C 

at 0.08Torr) to give the title compound as a clear, colourless oil, 12.38g (78% yield). 

1
H (500 MHz, CDCl3) δ ppm 11.36 (1H, bs, OH), 0.24 (9H, s, 3x1CH3) 

13
C (126 MHz, CDCl3) δ ppm 157.82, 97.45, 93.73, -1.18 

m/z (EI+) 127, 99, 83 

υmax (neat/ cm
-1

): 2965 s, 2904 s, 2626 s, 2178 w, 1694 s, 1517 m, 1404 m, 1254 w 

Data consistent with those previously reported. 
179
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N-(4-Hydroxy-4-phenylbut-2-yn-1-yl)-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.12) 

 

To a cooled (ice/water bath) solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (426mg, 

2.99mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.27ml, 399mg, 

3.14mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred for 2h. It 

was then cooled again (ice/water bath) and 2,6-lutidine (0.69, 641mg, 5.98mmol) was added 

dropwise followed by 4-(methylamino)-1-phenylbut-2-yn-1-ol (2.23) (500mg, 2.85mmol) 

previously dissolved in CH2Cl2 (10ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (1:1 to 3:2 Et2O/hexane with a 10% gradient) to give the title compound as 

a yellow, viscous oil, 713mg, (82% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.54 – 7.48 (m, 2H, 3CH), 7.42 – 7.29 (m, 3H, 1CH, 2CH), 

5.49 (d, J = 16.9 Hz, 1H, 5CH), 4.48 (d, J = 1.6 Hz, 0.8H, 8CH2), 4.32 (d, J = 1.7 Hz, 1.2H, 8CH2), 

3.26 (s, 1.4H, 9CH3), 3.01 (s, 1.6H, 9CH3), 0.24 (d, J = 3.5 Hz, 9H, 3x13CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 153.60, 140.35, 128.69, 128.62, 128.54, 128.41, 126.53, 

126.50, 98.24, 95.54, 84.06, 80.41, 80.26, 64.55, 40.95, 35.58, 35.52, 31.63, -0.72 

m/z (ESI+): 338, 322, 300, 282 

HRMS (ESI+): Calcd. for C17H21NO2SiNa [M+Na]
+
: 322.1239; found: 322.1234 

υmax (neat/ cm
-1

): 3387 br, 2960 w, 2164 w, 1623 s, 1400 m, 1252 m, 1123 m 

Rf: 0.18 in 3:2 Et2O/hexane (KMnO4) 
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N-[4-(2-Fluorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.53) 

 

To a cooled (ice/water bath) solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (387mg, 

2.72mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.25ml, 363mg, 

2.86mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred for 2h. It 

was then cooled again (ice/water bath) and 2,6-lutidine (0.63ml, 583mg, 5.44mmol) was added 

dropwise followed by 1-(2-fluorophenyl)-4-(methylamino)but-2-yn-1-ol (2.49) (500mg, 2.59mmol) 

previously dissolved in CH2Cl2 (10ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (1:1 Et2O/hexane) to give the title compound as a yellow, viscous oil, 

620mg, (81% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.60 (t, J = 7.6 Hz, 1H, 2CH), 7.35 – 7.27 (m, 1H, 5CH), 7.16 

(t, J = 7.5 Hz, 1H, 4CH), 7.06 (dd, J = 15.9, 8.6 Hz, 1H, 3CH), 5.75 (d, J = 17.0 Hz, 1H, 7CH), 4.46 

(s, 0.9H, 10CH2), 4.30 (s, 1.1H, 10CH2), 3.24 (d, J = 2.2 Hz, 1.6H, 11CH3), 2.99 (d, J = 2.5 Hz, 

1.4H, 11CH3), 0.23 (dd, J = 5.9, 1.6 Hz, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 128.22, 128.10, 124.38, 115.55, 98.30, 95.50, 95.26, 59.95, 

58.90, 40.91, 35.54, 35.48, 32.71, 31.59, 28.47, -0.74 

m/z (ESI+): 340, 318, 229, 194 

HRMS (ESI+): Calcd. for C17H 20FNO2SiNa [M+Na]
+
: 340.1145; found: 340.1140 

υmax (neat/ cm
-1

): 3371 br, 2961 m, 2247 w, 2165 w, 1621 s, 1488 s, 1456 s, 1252 s, 1124 s 
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Rf: 0.22 in 1:1 Et2O/hexane (KMnO4) 
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N-[4-(2-Chlorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.54) 

 

To a cooled (ice/water bath) solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (356mg, 

2.50mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.23ml, 333mg, 

2.63mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred for 2h. It 

was then cooled again (ice/water bath) and 2,6-lutidine (0.58ml, 540mg, 5.00mmol) was added 

dropwise followed by 1-(2-chlorophenyl)-4-(methylamino)but-2-yn-1-ol (2.50) (500mg, 2.39mmol) 

previously dissolved in CH2Cl2 (10ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (1:1 to 3:2 Et2O/hexane with a 10% gradient) to give the title compound as 

a yellow, viscous oil, 615mg, (80% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.69 (d, J = 7.7 Hz, 1H, 2CH), 7.35 – 7.27 (m, 2H, 5CH, 4CH), 

7.26 – 7.20 (m, 1H, 3CH), 5.78 (d, J = 4.9 Hz, 1H, 7CH), 4.41 (s, 1H, 10CH2), 4.28 (s, 1H, 10CH2), 

3.22 (s, 1.5H, 11CH3), 3.12 (d, J = 5.9 Hz, 1H, OH), 2.98 (s, 1.5H, 11CH3), 0.18 (d, J = 3.6 Hz, 9H) 

13
C NMR (126 MHz, CDCl3) δ ppm 152.94, 152.84, 138.73, 138.61, 131.80, 129.42, 129.37, 

129.22, 129.16, 128.15, 128.02, 127.11, 84.95, 84.22, 79.41, 78.90, 78.76, 75.41, 75.17, 61.58, 

61.53, 40.89, 35.50, 35.30, 31.67, 0.09 

m/z (ESI+): 358, 357, 356, 230  

HRMS (ESI+): Calcd. for C17H20ClNO2SiNa [M+Na]
+
: 356.0838; found: 356.0844 

υmax (neat/ cm
-1

): 3378 br, 2961 w, 2869 w, 1620 s, 1445 m, 1398 m, 1250 s, 1124 m 



168 
 

Rf: 0.17 in 1:1 Et2O/hexane (KMnO4) 
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N-[4-(2-Bromophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.55) 

 

To a cooled (ice/water bath) solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (400mg, 

2.81mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.29ml, 428mg, 

3.37mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred for 2h. It 

was then cooled again (ice/water bath) and 2,6-lutidine (0.65ml, 602mg, 5.62mmol) was added 

dropwise followed by 1-(2-bromophenyl)-4-(methylamino)but-2-yn-1-ol (2.51) (649mg, 2.55mmol) 

previously dissolved in CH2Cl2 (10ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (1:1 to 3:2 Et2O/hexane with a 10% gradient) to give the title compound as 

a yellow, viscous oil, 672mg, (82% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.71 (d, J = 7.7 Hz, 1H, 2CH), 7.57 – 7.47 (m, 1H, 5CH), 7.34 

(t, J = 7.2 Hz, 1H, 4CH), 7.17 (dd, J = 13.8, 7.3 Hz, 1H, 3CH), 5.78 (d, J = 16.8 Hz, 1H), 4.44 (s, 

0.8H, 10CH2), 4.28 (d, J = 6.8 Hz, 1.2H, 10CH2), 3.23 (s, 1.8H, 11CH3), 3.15 (d, J = 4.4 Hz, 1H, 

OH), 2.98 (s, 1.2H, 11CH3), 0.22 (d, J = 6.4 Hz, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 153.62, 153.49, 139.45, 139.40, 132.98, 132.90, 129.89, 

129.81, 128.37, 128.23, 127.88, 127.86, 122.44, 122.41, 98.36, 95.50, 95.27, 83.96, 83.27, 80.19, 

80.02, 63.90, 40.97, 35.61, 35.55, 31.65, -0.71 

m/z (ESI+):  403, 402, 400, 201, 133 

HRMS (ESI+): Calcd. for C17H20BrNO2SiNa [M+Na]
+
: 400.0368; found: 400.0339 
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υmax (neat/ cm
-1

): 3368 br, 2961 m, 2247 w, 1622 s, 1440 m, 1401 m, 1252 s, 1127 m 

Rf: 0.19 in 1:1 Et2O/hexane (KMnO4) 
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(3Z,4Z)-1-Methyl-4-(2-oxo-2-phenylethylidene)-3-[(trimethylsilyl)methylene]pyrrolidin-2-one (2.57) 

 

A solution of N-(4-hydroxy-4-phenylbut-2-yn-1-yl)-N-methyl-3-(trimethylsilyl)prop-2-ynamide 

(436mg, 1.46mmol) (2.12) in de-gassed toluene (15ml) was heated at reflux for 4h. After cooling to 

rt the solvent was removed in vacuo and the crude was purified by flash column chromatography 

(1:4 EtOAc/hexane) to yield the title compound as a yellow, amorphous solid, 267mg (61% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.99 (d, J = 7.4 Hz, 2H, 3CH), 7.57 (t, J = 7.3 Hz, 1H, 1CH), 

7.49 (t, J = 7.6 Hz, 2H, 2CH), 7.37 (s, 1H, 6CH), 7.04 (s, 1H, 12CH), 4.60 (d, J = 2.1 Hz, 2H, 

8CH2), 3.02 (s, 3H, 9CH3), 0.30 (s, 9H, 3x13CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 189.94, 166.48, 148.30, 143.85, 140.70, 138.67, 133.04, 

128.84, 128.19, 112.68, 54.38, 29.63, 0.05 

m/z (ESI+):  338, 322, 300, 284 

HRMS (ESI+): Calcd. for C17H21NO2SiNa [M+Na]
+
: 322.1239; found: 322.1234 

υmax (neat/ cm
-1

): 2953 m, 2251 m, 1696 s, 1655 s, 1367 m, 1245 s 

Rf: 0.31 in 3:7 EtOAc/hexane (KMnO4) 

Mp: decomposes at 149-151°C (hexane) 

See Appendix for crystallographic data 
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(3Z,4Z)-4-[2-(2-Fluorophenyl)-2-oxoethylidene]-1-methyl-3-[(trimethylsilyl)methylene]pyrrolidin-2-

one (2.58) 

 

A solution of N-[4-(2-fluorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-

ynamide (452mg, 1.42mmol) (2.53) in de-gassed toluene (14ml) was heated at reflux for 4h. After 

cooling to rt the solvent was removed in vacuo and the crude was purified by flash column 

chromatography (1:4 EtOAc/hexane) to yield the title compound as a yellow, amorphous solid, 

131mg (29% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.64 (d, J = 7.2 Hz, 1H, 2CH), 7.48 – 7.42 (m, 2H, 4CH, 5CH), 

7.31 (t, J = 7.1 Hz, 1H, 3CH), 7.15 (s, 1H, 8CH), 7.08 (s, 1H, 14CH), 4.58 (s, 2H, 10CH2), 3.01 (s, 

3H, 11CH3), 0.22 (s, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 194.23, 168.60, 147.65, 142.38, 139.30, 136.93, 132.12, 

129.34, 128.05, 113.72, 54.27, 30.23, 0.06 

m/z (ESI+): 317, 301 245   

HRMS (ESI+): Calcd. for C17H20FNO2SiNa [M+Na]
+
: 340.1145; found: 340.1189  

υmax (neat/ cm
-1

): 2983 w, 2745 w, 1688 s, 1659 m, 1521 m, 1288 m, 1232 s 

Rf: 0.30 in 2:3 EtOAc/hexane (KMnO4) 

Mp: decomposes at 127-130°C (hexane) 
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(3Z,4Z)-4-[2-(2-Chlorophenyl)-2-oxoethylidene]-1-methyl-3-[(trimethylsilyl)methylene]pyrrolidin-2-

one (2.59) 

 

A solution of N-[4-(2-chlorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-

ynamide (410mg, 1.23mmol) (2.54) in de-gassed toluene (14ml) was heated at reflux for 4h. After 

cooling to rt the solvent was removed in vacuo and the crude was purified by flash column 

chromatography (1:4 EtOAc/hexane) to yield the title compound as a yellow, amorphous solid, 

148mg (36% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.51 (d, J = 7.5 Hz, 1H, 2CH), 7.48 – 7.38 (m, 2H, 4CH, 5CH), 

7.35 (t, J = 7.3 Hz, 1H, 3CH), 7.06 (s, 1H, 8CH), 7.00 (s, 1H, 14CH), 4.60 (s, 2H, 10CH2), 3.04 (s, 

3H, 11CH3), 0.28 (s, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 191.81, 166.26, 147.65, 143.48, 141.68, 139.92, 131.88, 

131.25, 130.42, 129.40, 127.04, 116.25, 54.17, 29.50, -0.17 

m/z (ESI+):  372, 356, 334, 318 

HRMS (ESI+): Calcd. for C17H20ClNO2SiNa [M+Na]
+
: 356.0849; found: 356.0844 

υmax (neat/ cm
-1

): 2952 w, 2896 w, 1698 s, 1666 m, 1611 s, 1589 m, 1361 m, 1242 s 

Rf: 0.32 in 1:4 EtOAc/hexane (KMnO4) 

Mp: decomposes at 123-125°C (hexane) 

See Appendix for crystallographic data 
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(3Z,4Z)-4-[2-(2-Bromophenyl)-2-oxoethylidene]-1-methyl-3-[(trimethylsilyl)methylene]pyrrolidin-2-

one (2.56) 

 

A solution of N-[4-(2-bromophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-

ynamide (497mg, 1.31mmol) (2.55) in de-gassed toluene (14ml) was heated at reflux for 4h. After 

cooling to rt the solvent was removed in vacuo and the crude was purified by flash column 

chromatography (1:4 EtOAc/hexane) to yield the title compound as a yellow, amorphous solid, 

157mg (32% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.66 – 7.60 (m, 1H, 2CH), 7.47 (dd, J = 7.6, 1.6 Hz, 1H, 5CH), 

7.40 (td, J = 7.5, 0.8 Hz, 1H, 4CH), 7.32 (td, J = 7.8, 1.7 Hz, 1H, 3CH), 7.02 (t, J = 2.4 Hz, 1H, 

8CH), 6.99 (s, 1H, 14CH), 4.60 (d, J = 2.3 Hz, 2H, 10CH2), 3.04 (s, 3H, 11CH3), 0.27 (s, 9H, 

3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 192.55, 166.25, 147.67, 143.48, 141.95, 141.78, 133.57, 

131.84, 129.19, 127.57, 119.33, 116.08, 54.13, 29.51, -0.17 

m/z (ESI+):  418, 416, 402, 400, 380, 378 

HRMS (ESI+): Calcd. for C17H20BrNO2SiNa [M+Na]
+
: 400.0344; found: 400.0339 

υmax (neat/ cm
-1

): 2948 w, 2900 w, 1695 s, 1663 s, 1610 s, 1588 s, 1359 s, 1240 s, 1024 m 

Rf: 0.35 in 1:4 EtOAc/hexane (KMnO4) 

Mp: decomposes at 122-124°C (hexane) 

See Appendix for crystallographic data 
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N-Methyl-N-(4-oxo-4-phenylbut-2-yn-1-yl)-3-(trimethylsilyl)prop-2-ynamide (2.62) 

 

Preparation of Jones’ reagent: 

To a cooled (ice/water bath) solution of chromium(VI) trioxide (67g, 670mmol) in water (125ml) 

was carefully added fuming H2SO4 (58ml, 110.20g, 1.124mol). Residual salts at the bottom of the 

flask were then dissolved using the minimum quantity of water necessary. The approximate 

molarity of the resulting solution is 3M. 

Oxidation procedure:  

To a cooled (ice/water bath) solution of N-(4-hydroxy-4-phenylbut-2-yn-1-yl)-N-methyl-3-

(trimethylsilyl)prop-2-ynamide (2.12) (600mg, 1.80mmol) in acetone (20ml) was added Jones’ 

reagent (3M, 1.8ml, 5.40mmol). The reaction mixture was then allowed to stir at rt for 30min, after 

which enough 
i
PrOH was added to cause the solution to acquire a persistent green colour. The 

mixture was then filtered through a pad of Celite and the resulting cake was washed with Et2O 

(50ml). The resulting filtrate phases were separated and the combine organic layers were washed 

with water (2x20ml) and sat. aq. NaCl solution (50ml). Drying on MgSO4, filtering and evaporation 

of volatiles in vacuo afforded a brown oil which was purified by flash column chromatography 

(7:13 to 1:1 Et2O/hexane with a 5% gradient) to give the title compound as a light yellow oil, 

487mg (91%). 

1
H NMR (500 MHz, CDCl3) δ ppm 8.08 (dd, J = 8.2, 1.1 Hz, 2H, 3CH), 7.66 – 7.56 (m, 1H, 1CH), 

7.48 (dt, J = 13.9, 6.9 Hz, 2H, 2CH), 4.68 (s, 0.8H, 8CH2), 4.52 (s, 1.2H, 8CH2), 3.33 (s, 2H, 

9CH3), 3.10 (s, 1H, 9CH3), 0.24 (d, J = 5.0 Hz, 9H, 3x13CH3) 
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13
C NMR (126 MHz, CDCl3) δ ppm 177.30, 177.12, 153.71, 153.48, 136.31, 136.23, 134.48, 

134.33, 129.58, 129.52, 128.72, 128.64, 99.03, 98.97, 95.15, 95.02, 87.80, 87.37, 82.38, 81.79, 

41.01, 35.90, 35.63, 32.09, -0.76 

m/z (ESI+): 320, 298, 205  

HRMS (ESI+): Calcd. for C17H20NO2Si [M]
+
: 298.1263; found: 298.1265 

υmax (neat/ cm
-1

): 2962 w, 2917 w, 2232 w, 1711 w, 1639 s, 1396 m, 1259 s  

Rf: 0.26 in 1:1 Et2O/hexane (KMnO4) 
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N-[4-(2-Fluorophenyl)-4-oxobut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.63) 

 

To a cooled (ice/water bath) solution of N-[4-(2-fluorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-

3-(trimethylsilyl)prop-2-ynamide (2.53) (954mg, 3.01mmol) in acetone (20ml) was added Jones’ 

reagent (3M, 3.1ml, 9.33mmol). The reaction mixture was then allowed to stir at rt for 30min, after 

which enough 
i
PrOH was added to cause the solution to acquire a persistent green colour. The 

mixture was then filtered through a pad of Celite and the resulting cake was washed with Et2O 

(50ml). The resulting filtrate phases were separated and the combine organic layers were washed 

with water (2x20ml) and sat. aq. NaCl solution (50ml). Drying on MgSO4, filtering and evaporation 

of volatiles in vacuo afforded a brown oil which was purified by flash column chromatography (3:7 

Et2O/hexane) to give the title compound as a light yellow oil, 703mg (74%). 

1
H NMR (500 MHz, CDCl3) δ ppm 8.10 (dt, J = 4.7, 2.1 Hz, 2H, 3CH, 5CH), 7.67 – 7.56 (m, 1H, 

1CH), 7.49 (ddd, J = 15.2, 10.5, 6.8 Hz, 1H, 2CH), 4.70 (s, 0.8H, 10CH2), 4.54 (s, 1.2H, 10CH2), 

3.35 (s, 1.8H, 11CH3), 3.12 (s, 1.2H, 11CH3), 0.26 (d, J = 4.9 Hz, 9H, 3x15CH3). 

13
C NMR (126 MHz, CDCl3) δ 177.33, 153.74, 136.32, 134.49, 134.33, 130.08, 129.60, 129.54, 

128.72, 128.64, 128.39, 99.03, 95.13, 95.00, 87.76, 81.82, 77.24, 76.99, 76.74, 76.64, 65.80, 54.25, 

41.02, 35.90, 35.64, 32.10, 15.21, -0.76. 

m/z (ESI+): 315, 243, 191 

HRMS (ESI+): Calcd. for C17H18FNO2Si [M]
+
: 315.1090; found: 315.1082  

υmax (neat/ cm
-1

): 2958 w, 2219 w, 1621 s, 1567 w, 1232 m 

Rf: 0.21 in EtOAc/hexane (KMnO4) 
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N-[4-(2-Chlorophenyl)-4-oxobut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.64) 

 

To a cooled (ice/water bath) solution of N-[4-(2-chlorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-

3-(trimethylsilyl)prop-2-ynamide (2.54) (600mg, 1.80mmol) in acetone (20ml) was added Jones’ 

reagent (3M, 1.9ml, 5.76mmol). The reaction mixture was then allowed to stir at rt for 30min, after 

which enough 
i
PrOH was added to cause the solution to acquire a persistent green colour. The 

mixture was then filtered through a pad of Celite and the resulting cake was washed with Et2O 

(50ml). The resulting filtrate phases were separated and the combine organic layers were washed 

with water (2x20ml) and sat. aq. NaCl solution (50ml). Drying on MgSO4, filtering and evaporation 

of volatiles in vacuo afforded a brown oil which was purified by flash column chromatography (3:7 

Et2O/hexane) to give the title compound as a light yellow oil, 526mg (88%). 

1
H NMR (500 MHz, CDCl3) δ ppm 8.02 – 7.92 (m, 1H, 5CH), 7.51 – 7.43 (m, 2H, 3CH, 2CH), 

7.39 (ddd, J = 8.5, 5.2, 2.5 Hz, 1H, 4CH), 4.67 (s, 0.7H, 10CH2), 4.51 (s, 1.3H, 10CH2), 3.33 (s, 

1.8H, 11CH3), 3.08 (s, 1.2H, 11CH3), 0.25 (d, J = 4.6 Hz, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 175.95, 175.85, 153.70, 153.45, 135.07, 135.04, 133.76, 

133.67, 133.60, 133.55, 132.80, 132.55, 131.64, 131.55, 126.86, 126.82, 99.03, 98.99, 95.10, 94.98, 

88.71, 88.34, 83.58, 82.97, 41.07, 35.90, 35.67, 32.09, -0.76 

m/z (ESI+): 372, 371, 370, 355, 254, 179 

HRMS (ESI+): Calcd. for C17H18ClNO2NaSi [M+Na]
+
: 354.0691; found: 354.0688 

υmax (neat/ cm
-1

): 2963 w, 2206 w, 1632 s, 1587 w, 1395 w, 1238 m 

Rf: 0.26 in 1:1 Et2O/hexane (KMnO4) 
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N-[4-(2-Bromophenyl)-4-oxobut-2-yn-1-yl]-N-methyl-3-(trimethylsilyl)prop-2-ynamide (2.60) 

 

To a cooled (ice/water bath) solution of N-[4-(2-chlorophenyl)-4-hydroxybut-2-yn-1-yl]-N-methyl-

3-(trimethylsilyl)prop-2-ynamide (2.55) (823mg, 2.18mmol) in acetone (20ml) was added Jones’ 

reagent (3M, 2.3ml, 6.76mmol). The reaction mixture was then allowed to stir at rt for 30min, after 

which enough 
i
PrOH was added to cause the solution to acquire a persistent green colour. The 

mixture was then filtered through a pad of Celite and the resulting cake was washed with Et2O 

(50ml). The resulting filtrate phases were separated and the combine organic layers were washed 

with water (2x20ml) and sat. aq. NaCl solution (50ml). Drying on MgSO4, filtering and evaporation 

of volatiles in vacuo afforded a brown oil which was purified by flash column chromatography (3:7 

Et2O/hexane) to give the title compound as a light yellow oil, 788mg (96%). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.95 (ddd, J = 11.1, 7.7, 1.7 Hz, 1H, 5CH), 7.67 (td, J = 8.3, 1.1 

Hz, 1H, 3CH), 7.48 – 7.30 (m, 2H, 2CH, 4CH), 4.66 (s, 0.6H, 10CH2), 4.49 (s, 1.4H, 10CH2), 3.31 

(s, 2.1H, 11CH3), 3.06 (s, 0.9H, 11CH3), 0.23 (d, J = 4.7 Hz, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 176.58, 153.69, 153.44, 136.65, 135.06, 134.97, 133.71, 

133.57, 133.05, 132.82, 127.42, 127.39, 121.29, 121.17, 99.03, 99.00, 95.10, 94.99, 88.95, 88.57, 

83.18, 82.58, 41.06, 35.93, 35.68, 32.12, -0.75 

m/z (ESI+): 401, 400, 398 

HRMS (ESI+): Calcd. for C17H18BrNO2NaSi [M+Na]
+
: 398.0188; found: 398.0182 

υmax (neat/ cm
-1

): 2961 w, 2245 w, 1634 s, 1395 m, 1240 s 

Rf: 0.29 in 2:3 Et2O/hexane (KMnO4) 
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4-[(2-Bromophenyl)ethynyl]-1-methyl-3-[(trimethylsilyl)carbonyl]-1H-pyrrol-2-ol (2.61) 

 

A de-gassed solution of N-[4-(2-bromophenyl)-4-oxobut-2-yn-1-yl]-N-methyl-3-

(trimethylsilyl)prop-2-ynamide (2.60) (290mg, 0.77mmol) in toluene (77ml) was heated at reflux 

for 4h. After cooling the solvent was removed in vacuo and the residue purified by flash column 

chromatography (1:9 Et2O/hexane) to yield the title compound as a brown oil, 154mg (53% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.60 (d, J = 8.1 Hz, 1H, 2CH), 7.43 (d, J = 7.7 Hz, 1H, 5CH), 

7.27 (t, J = 7.5 Hz, 1H, 4CH), 7.16 (t, J = 7.7 Hz, 1H, 3CH), 6.68 (s, 1H, 10CH), 3.24 (s, 3H, 

11CH3), 0.45 (s, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 189.52, 168.40, 132.54, 132.42, 132.05, 129.15, 127.04, 

125.51, 125.45, 115.41, 96.96, 90.54, 89.05, 28.81, -1.42 

m/z (ESI+): 474, 418, 416, 414, 400, 398 

HRMS (ESI+): Calcd. for C17H18BrNO2NaSi [M+Na]
+
: 398.02011; found: 398.0182 

υmax (neat/ cm
-1

): 2925 w, 2204 w, 1705 w, 1631 s, 1573 s, 1472 m, 1300 m, 1217 m, 1099 s 

Rf: 0.29 in 1:4 Et2O/hexane (KMnO4) 
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4-[(2-Chlorophenyl)ethynyl]-1-methyl-3-[(trimethylsilyl)carbonyl]-1H-pyrrol-2-ol (2.65) 

 

A de-gassed solution of N-[4-(2-chlorophenyl)-4-oxobut-2-yn-1-yl]-N-methyl-3-

(trimethylsilyl)prop-2-ynamide (2.64) (230mg, 0.69mmol) in toluene (70ml) was heated at reflux 

for 4h. After cooling the solvent was removed in vacuo and the residue purified by flash column 

chromatography (1:4 Et2O/hexane) to yield the title compound as a brown oil, 105mg (46% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.47 – 7.34 (m, 2H, 2CH, 5CH), 7.29 – 7.16 (m, 2H, 3CH, 

4CH), 6.66 (s, 1H, 10CH), 3.23 (s, 3H, 11CH3), 0.45 (s, 9H, 3x15CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 189.58, 168.40, 135.68, 132.49, 132.09, 129.39, 129.02, 

126.47, 123.32, 115.43, 96.97, 89.57, 88.73, 28.79, -1.43 

m/z (ESI+): 370, 366, 354, 348 

HRMS (ESI+): Calcd. for C17H19ClNO2Si [M]
+
: 332.0873; found: 332.0868 

υmax (neat/ cm
-1

): 2944 w, 2208 w, 1704 w, 1629 s, 1574 s, 1475 m, 1296 m, 1214 s, 1029 m 

Rf: 0.51 in 2:3 Et2O/hexane (KMnO4) 
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2-(Tri-n-butylstannyl)benzaldehyde (2.91) 

 

2-(2-Bromophenyl)-1,3-dimethylimidazolidine (1.9) (5.00g, 19.60mmol) was dissolved in Et2O 

(50ml) and the resulting solution cooled to -25°C (water/acetone 40:60 v/v/liq. N2). 
n
BuLi (1.6M, 

12.3ml, 19.60mmol) was added dropwise after which the solution left to slowly warm to 0°C and 

stirred for a total of 2h. It was subsequently cooled to -70°C (acetone/liq. N2) and tri-n-butyltin 

chloride (7.02g, 5.8ml, 21.56mmol) was introduced dropwise via syringe. Cooling was then 

removed and the solution allowed to warm to rt. Stirring was continued for 18h and the reaction was 

quenched by addition of aq. HCl solution (1M, 100ml). The resulting phases were separated and the 

aqueous layer washed wit Et2O (50ml). The combined organic phases were washed with sat. aq. 

NaCl solution (100ml) and then dried on MgSO4. After filtration and evaporation of volatiles in 

vacuo, the residue was purified by flash column chromatography (1:9 to 1:4 Et2O/hexane with a 

10% gradient) to give the product as a colourless oil, 6.82g (94% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 9.96 (s, 1H, 11CH), 7.79 (d, J = 7.2 Hz, 1H, 9CH), 7.69 (d, J = 

7.6 Hz, 1H, 7CH), 7.54-7.49 (m, 2H, 8CH, 6CH), 1.58-0.86 (m, 27H, 3x(1CH3, 2CH2, 3CH2, 4CH2)   

Rf: 0.58 in 1:4 Et2O/hexane (KMnO4) 

Data consistent with those previously reported. 
180
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1-[2-(Tri-n-butylstannyl)phenyl]but-2-yne-1,4-diol (2.92) 

 

A 1l 3-neck flask was charged with THF (300ml) and freshly distilled propargyl alcohol (2.89g, 

3.00ml, 51.6mmol). The solution was cooled to -70°C (EtOAc/liq. N2) and 
n
BuLi (2.5M, 4.13ml, 

103.2mmol) was added dropwise via syringe. After stirring at -70°C for 2h 2-(tri-n-

butylstannyl)benzaldehyde (2.91) was introduced dropwise and the reaction was then allowed to 

warm to rt and was stirred at this temperature for 18h. Quenching with sat. aq. NH4Cl solution 

(20ml) was followed by removal of volatiles under low vacuum. Et2O (50ml) was added to the 

residue and the phases separated. The organic layer was then washed with water (50ml), dried on 

MgSO4, filtered and the solvent removed in vacuo to give an oil, which was purified by flash 

column chromatography (1:1 Et2O/hexane) to give the title compound as a colourless oil, 5.50g 

(63% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.72 (app. d, J = 6.9 Hz, 1H, 8CH), 7.49 (app. dd, J = 7.2, 1.3 

Hz, 1H, 9CH), 7.36 (app. td, J = 7.5, 1.4 Hz, 1H, 7CH), 7.29 (app. td, J = 7.3, 1.3 Hz, 1H, 6CH), 

5.41 (dt, J = 5.7, 1.6 Hz, 1H, 11CH), 4.37 (dd, J = 6.2, 1.7 Hz, 2H, 14CH2), 2.09 (d, J = 5.8 Hz, 1H, 

1xOH), 1.59 – 1.49 (m, 6H, 3x4CH2), 1.35 (app. dq, J = 14.6, 7.3 Hz, 6H, 3x3CH2), 1.14 – 1.08 (m, 

6H, 3x2CH3), 0.90 (app. t, J = 7.3 Hz, 9H, 3x1CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm δ 146.76, 141.48, 137.05, 128.57, 127.81, 126.36, 85.92, 

85.35, 66.75, 51.25, 29.13, 27.38, 13.63, 10.84 

m/z (ESI+): 452, 450, 422, 132 

HRMS (ESI+): Calcd. for C22H36O2SnNa [M+Na]
+
: 471.1630 ; found: 471.1674 

υmax (neat/ cm
-1

): 3258 br, 2907 s, 1592 w, 1574 w, 1484m, 1334 m, 1295 m, 1119 m, 1025 m 
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Rf: 0.18 in 1:1 Et2O/hexane (KMnO4) 
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4-Hydroxy-4-[2-(tri-n-butylstannyl)phenyl]but-2-yn-1-yl 3-(trimethylsilyl)prop-2-ynoate (2.93) 

 

To a cooled (ice/water bath) solution of 3-(trimethylsilyl)prop-2-ynoic acid (2.13) (1.04g, 

7.32mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.81ml, 1.21g, 

9.51mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred for 2h. It 

was then cooled again (ice/water bath) and 2,6-lutidine (1.55ml, 1.43g, 13.3mmol) was added 

dropwise followed by 1-[2-(tri-n-butylstannyl)phenyl]but-2-yne-1,4-diol (2.92) (3g, 6.65mmol) 

previously dissolved in CH2Cl2 (20ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (1:19 to 1:9 Et2O/hexane, 5% gradient) to give the title compound as a 

colourless, viscous oil, 1.24g (71% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 7.70 (d, J = 7.0 Hz, 1H, 8CH), 7.46 (dd, J = 7.2, 1.1 Hz, 1H, 

9CH), 7.40 (td, J = 7.6, 1.4 Hz, 1H, 7CH), 7.32 (td, J = 7.3, 1.2 Hz, 1H, 6CH), 6.27 (t, J = 1.6 Hz, 

1H, 11CH), 4.81 (d, J = 1.6 Hz, 2H, 14CH2), 1.67 – 1.44 (m, 6H, 3x4CH2), 1.42 – 1.26 (m, 6H, 

3x3CH2), 1.21 – 1.05 (m, 6H, 3x2CH2), 0.90 (t, J = 7.3 Hz, 9H, 3x1CH3), 0.35 – 0.16 (s, 9H, 

3x18CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 151.96, 151.55, 142.41, 137.02, 128.77, 128.50, 128.32, 95.62, 

95.53, 94.00, 93.64, 81.18, 69.55, 53.27, 29.02, 13.63, 10.68, -0.96 

m/z (ESI+): 576, 572, 453, 163 
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HRMS (ESI+): Calcd. for C28H44SnO3SiNa [M+Na]
+
: 595.1975; found: 595.1938 

υmax (neat/ cm
-1

): 3011 br, 2108 w, 1758 w, 1635 s, 1544 s, 1467 m, 1236 m, 1211 s, 1022 m 

Rf: 0.23 in 1:9 Et2O/hexane (KMnO4) 
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tert-Butyl(dimethyl)(pent-4-yn-1-yloxy)silane (2.109) 

 

A 500ml 3-neck flask was charged with imidazole (19.36g, 284.05mmol), CH2Cl2 (500ml) and 4-

pentyne-1-ol (20g, 237.36mmol). The solution was cooled in an ice/water bath and tert-

butyldimethylsilyl chloride (37.5g, 248.84mmol) dissolved in CH2Cl2 (100ml) was added dropwise 

via addition funnel. The temperature was allowed to rise to rt and the reaction was stirred for 18h. 

Quenching was achieved with 10% aq. K2CO3 solution (200ml). Isolation of the organic layer, 

drying on MgSO4, filtering and removal of solvent in vacuo gave the crude product which was 

purified by short-path distillation to give the title compound (bp 72-74ºC at 12Torr) as a colourless 

oil, 44.71g (95% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 3.86 (2H, dd, J = 12.2, 0.6, 5CH2), 2.46–2.40 (2H, m, 3CH2), 

2.08 (1H, td, J = 2.6, 1.0, 1CH), 1.92–1.85 (2H, m, 4CH2), 1.16–0.97 (9H, m, 3x8CH3), 0.30–0.15 

(6H, m, 2x6CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 84.31, 68.45, 61.59, 31.75, 26.11, 18.48, 15.02, -5.18 

m/z (ESI+): Ion not found 

υmax (neat/ cm
-1

): 2929.81 w, 2858.07 w, 1736 w, 1254 m, 1102.93 m 

Rf: 0.31 in 1:4 EtOAc/hexane (KMnO4) 

Data consistent with those previously reported. 
181

 

 

 

6-{[tert-Butyl(dimethyl)silyl]oxy}hex-2-yn-1-ol (2.110) 
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To tert-butyl(dimethyl)(pent-4-yn-1-yloxy)silane (2.109) (20.0g, 101.34mmol) in THF (100ml) at -

70°C (EtOAc/liq. N2) was added 
n
BuLi (2.5M, 40.04ml, 101mmol) dropwise via addition funnel. 

The reaction mixture was stirred for 10min and then allowed to warm to -20 ºC and stirred at this 

temperature for 10min. Paraformaldehyde (7.63g, 253.98mmol) was then added in one portion and 

the reaction was allowed to warm to rt and stirred for 1h. Quenching was achieved with sat. aq. 

NH4Cl solution (100ml) and the resulting biphasic mixture diluted with EtOAc (100ml). The 

organic phase was separated, dried on MgSO4, filtered and solvents were removed in vacuo. The 

crude was purified by flash column chromatography (1:4 EtOAc/hexane) to give the title compound 

as a colourless oil, 17.60g (77% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 4.24–4.16 (2H, m, 1CH2), 3.65 (2H, t, J = 6.1, 6CH2), 2.27 (2H, 

tt, J = 7.1, 2.0, 4CH2), 1.76–1.63 (2H, m, 5CH2), 0.91–0.80 (9H, m, 9CH3), 0.05–-0.01 (6H, m, 

7CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 86.27, 78.68, 61.80, 51.54, 31.84, 26.13, 18.52, 15.39, -5.14 

m/z (ESI+): 228, 212, 178 

HRMS (ESI+): Calcd. for C12H24O2Si [M]
+
: 228.4033; found: 228.1540 

υmax (neat/ cm
-1

): 3673 br, 3339 m, 2929 w, 2858 w, 1253 m, 1102 m 

Rf: 0.24 in 1:4 EtOAc/hexane (KMnO4) 

Data consistent with those previously reported. 
182

 

({6-[(2-Bromoprop-2-en-1-yl)oxy]hex-4-yn-1-yl}oxy)(tert-butyl)dimethylsilane (2.111) 
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To a solution of hexadecyltrimethylammonium bromide (1.20 g, 3.29 mmol) in CH2Cl2 (20ml) was 

added 50% aq. NaOH solution (20ml). The resulting biphasic mixture was stirred vigorously at rt 

for 10min. 6-{[tert-Butyl(dimethyl)silyl]oxy}hex-2-yn-1-ol (2.110) (5 g, 21.87 mmol) was then 

added followed by  2,3-dibromopropene (5.25 g, 26.26 mmol). The reaction was left to stir for 16h 

at rt. Water (50ml) and CH2Cl2 (50ml) were added and the organic phase separated, dried over 

MgSO4 and filtered. Removal of solvent in vacuo gave an orange oil which was purified by flash 

column chromatography (1:19 EtOAc/hexane) to give the title compound as a colourless, viscous 

oil, 5.52g (72% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 5.94–5.85 (1H, m, 1CHa), 5.61 – 5.55 (1H, m, 1CHb), 4.21-4.03 

(4H, m, 3CH2, 4CH2), 3.65 (2H, t, J = 6.0, 9CH2), 2.34–2.20 (2H, m, 7CH2), 1.75–1.60 (2H, m, 

8CH2), 0.90–0.79 (9H, m, 3x12CH3), 0.02 (6H, s, 2x10CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 128.98, 118.15, 87.51, 75.43, 73.20, 61.68, 57.94, 31.80, 

26.10, 18.49, 15.29, -5.25 

m/z (ESI+): 398, 370, 226 

HRMS (ESI+): Calcd. for C15H27BrO2SiNa [M+Na]
+
: 370.08563; found: 370.0853 

υmax (neat/ cm
-1

): 2929 w, 2856 w, 1640 w, 1251 m, 1081 m 

Rf: 0.21 in 1:19 EtOAc/hexane (KMnO4) 

6-[(2-Bromoprop-2-en-1-yl)oxy]hex-4-yn-1-ol (2.112) 

 

To ({6-[(2-Bromoprop-2-en-1-yl)oxy]hex-4-yn-1-yl}oxy)(tert-butyl)dimethylsilane (2.111) (5.0g, 

14.48mmol) in THF (100ml) at rt was added tetrabutylammonium fluoride solution (1M in THF, 

30.4ml, 30.41mmol) dropwise. The reaction was stirred at rt for 3h and it was then diluted with 
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water (100ml) and EtOAc (100ml). The isolated organic layer was then washed with sat. aq. NaCl 

solution (50ml), dried on MgSO4 and filtered. Evaporation of solvents in vacuo and purification of 

the crude material by flash column chromatography (2:3 EtOAc/hexane) gave the title compound as 

a colourless, viscous oil, 3.08g (92% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 5.92 (1H, dd, J = 2.9, 1.4, 1CHa), 5.64 – 5.60 (1H, m, 1CHb), 

4.19–4.14 (4H, m, 3CH2, 4CH2), 3.74 (2H, m, 9CH2), 2.35 (2H, tt, J = 7.0, 2.1, 7CH2), 1.77 (2H, m, 

8CH2) 

13
C NMR (126 MHz, CDCl3) δ ppm 124.79, 118.46, 76.00, 73.49, 73.08, 61.94, 57.98, 31.45, 15.57 

m/z (ESI+): 254, 176 

HRMS (ESI+): Calcd. for C9H13BrO2Na [M+Na]
+
: 254.9991; found: 254.9974 

υmax (neat/ cm
-1

): 3380 br, 2945 w, 2851 w, 2223 w, 1639 m, 1134 m, 1070 m 

Rf: 0.25 in 2:3 EtOAc/hexane (KMnO4) 
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6-[(2-Bromoprop-2-en-1-yl)oxy]hex-4-ynoic acid (2.101) 

 

Preparation of Jones’ reagent: 

To a cooled (ice/water bath) solution of chromium(VI) trioxide (67g, 670mmol) in water (125ml) 

was carefully added fuming H2SO4 (58ml, 110.20g, 1.124mol). Residual salts at the bottom of the 

flask were then dissolved using the minimum quantity of water necessary. The approximate 

molarity of the resulting solution is 3M. 

Oxidation procedure:  

To a cooled (ice/water bath) solution of 6-[(2-bromoprop-2-en-1-yl)oxy]hex-4-yn-1-ol (2.112) 

(2.50g, 10.67mmol) in acetone (20ml) was added Jones’ reagent (3M, 17.8ml, 53.35mmol). The 

reaction mixture was then allowed to stir at rt for 30min, after which enough 
i
PrOH was added to 

cause the solution to acquire a persistent green colour. The mixture was then filtered through a pad 

of Celite and the resulting cake was washed with Et2O (50ml). The organic phase was separated, 

dried on MgSO4 and filtered. Evaporation of volatiles in vacuo afforded the title compound as a 

light yellow oil, 2.10g (79%). This compound was used in the next step without further purification. 

1
H NMR (500 MHz, CDCl3) δ ppm 5.91 (1H, d, J = 1.5, 1CHa), 5.62 (1H, d, J = 0.7, 1CHb), 4.16 

(4H, m, 3CH2, 4CH2), 2.62–2.57 (2H, m, 8CH2), 2.57–2.52 (2H, m, 7CH2) 

13
C NMR (126 MHz, CDCl3) δ ppm 176.95, 128.93, 118.61, 85.45, 76.44, 73.41, 57.72, 33.15, 

14.71 

m/z (ESI+): 268, 252, 175 

HRMS (ESI+): Calcd. for C9H11BrO3Na [M+Na]
+
: 268.9784; found: 268.9765 
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υmax (neat/ cm
-1

): 2922 br, 1708 s, 1640 w, 1248 w, 1136 m, 1075 m 
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6-[(2-Bromoprop-2-en-1-yl)oxy]-N-methoxy-N-methylhex-4-ynamide (2.100) 

 

To a cooled (ice/water bath) solution of 6-[(2-Bromoprop-2-en-1-yl)oxy]hex-4-ynoic acid (2.101) 

(1.78g, 7.19mmol) and 4 drops of DMF in CH2Cl2 (20ml) was added oxalyl chloride (0.61ml, 

910mg, 7.19mmol) dropwise via syringe. The solution was allowed to warm to rt and was stirred 

for 2h. It was then cooled again (ice/water bath) and triethylamine (1.7ml, 1.21g, 11.95mmol) was 

added dropwise followed by N,O-dimethylhydroxylamine hydrochloride (880mg, 8.98mmol) 

previously dissolved in CH2Cl2 (10ml). The resulting cloudy solution was then allowed to stir at rt 

for 18h. The reaction was then quenched with water (20ml), and the organic layer washed with 10% 

aq. citric acid solution (20ml) and 10% aqueous K2CO3 solution (20ml). Drying on Na2SO4, 

filtering and evaporation of volatiles in vacuo gave a deep yellow oil which was purified by flash 

column chromatography (2:3 EtOAc/hexane) to give the title compound as a yellow, viscous oil, 

1.80g (87%). 

1
H NMR (500 MHz, CDCl3) δ ppm 5.92 (1H, dd, J = 2.9, 1.4, 1CHa), 5.63 – 5.60 (1H, m, 1CHb), 

4.16 (4H, m, 3CH2, 4CH2), 3.68 (3H, s, 11CH3), 3.17 (3H, s, 10CH3), 2.66 (2H, t, J = 7.4, 8CH2), 

2.59 – 2.51 (2H, m, 7CH2) 

13
C NMR (126 MHz, CDCl3) δ ppm 128.91, 118.50, 88.53, 86.70, 71.42, 61.53, 57.95, 31.42, 

28.60, 14.44 

m/z (ESI+): 292, 172, 86 

HRMS (ESI+): Calcd. for C11H16BrNO3Na [M+Na]
+
: 314.0206; found: 314.0162 

υmax (neat/ cm
-1

): 2938 w, 2857 w, 1659 s, 1385 w, 1135 m, 1075 m 

Rf: 0.28 in 2:3 EtOAc/hexane (KMnO4) 
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8-[(2-Bromoprop-2-en-1-yl)oxy]-1-(trimethylsilyl)octa-1,6-diyn-3-one (2.94) 

 

(Trimethylsilyl)acetylene (0.51 g, 5.17 mmol) was dissolved in THF (50ml). The solution was 

cooled to -70 ºC (EtOAc/liq. N2) and then 
n
BuLi (2.5M, 2.1ml, 5.18mmol) was added dropwise. 

The reaction mixture was allowed to warm to -30 ºC and was then cooled back down to -70 ºC. 6-

[(2-bromoprop-2-en-1-yl)oxy]-N-methoxy-N-methylhex-4-ynamide (2.100) (1.5 g, 5.17 mmol) was 

added and the resulting solution allowed to stir for 15 minutes after which it was warmed to rt and 

stirred for a further 3h. Quenching was achieved with sat. aq. NH4Cl solution (50ml), EtOAc 

(100ml) was added and the layers separated. The organic phase was washed with water (50ml) and 

dried over MgSO4. The solvent was removed in vacuo giving a yellow/brown oil which was 

purified by flash column chromatography (2:23 EtOAc/hexane) to give the title compound as a 

colourless oil 1.13g (67% yield). 

1
H NMR (500 MHz, CDCl3) δ ppm 5.92 (1H, dd, J = 2.9, 1.3, 1CHa), 5.63 – 5.60 (1H, m, 1CHb), 

4.17 – 4.12 (4H, m, 3CH2, 4CH2), 2.81 – 2.75 (2H, m, 8CH2), 2.58 – 2.51 (2H, m, 7CH2), 0.29 – 

0.15 (9H, m, 12CH3) 

13
C NMR (500 MHz, CDCl3) δ ppm 185.21, 128.92, 118.73, 110.35, 101.59, 85.66, 76.35, 73.56, 

57.80, 27.76, 13.59, -0.58 

m/z (ESI+): 328, 209, 175. 

HRMS (ESI+): Calcd. for C14H19BrO2Na [M+Na]
+
: 351.0230; found: 351.0187 

υmax (neat/ cm
-1

): 2959 w, 2857 w, 2150 w, 1640 s, 1108 w, 1078 m 

Rf: 0.24 in 1:9 EtOAc/hexane (KMnO4) 
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Chloro(dimethyl)phenylsilane (2.132) 

 

To neat dimethyl(phenyl)silane (85.5g, 627.43mmol) was added thionyl chloride (78.38g, 48.1ml, 

658.80mmol) and the resulting solution was heated at reflux for 4h. After cooling, fractional 

distillation of the crude mixture yielded the title compound  (bp 76-81°C at 15Torr) as a clear, 

colourless liquid, 86.2g (84% yield).  

1
H NMR (500MHz, CDCl3) δ ppm: 7.65-7.61 (m, 2H, 2CH), 7.46-7.37 (m, 3H, 5-CH, 3CH, 1CH), 

0.70 (s, 6H, 2x5CH3) 

13
C NMR (126MHz, CDCl3) δ ppm: 133.64, 130 95, 129.03, 128.47, 2.01 

Physical properties and spectra comparable to those reported in the literature
162
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(2-Bromoprop-2-en-1-yl)(trichloro)silane (2.135) 

 

A solution of 2,3-dibromopropene (53.14g, 265.87mmol), copper(I) chloride (1.32g, 13.29mmol) 

and triethylamine (37.0ml, 26.9g, 265.87mmol) in Et2O (130ml) was cooled by means of an 

ice/water bath. Trichlorosilane (29.5ml, 39.61g, 292.46mmol) was then added dropwise via 

dropping funnel and the reaction was allowed to warm to rt and was stirred for a total of 18h. The 

resulting suspension was filtered through a pad of Celite and the cake washed with Et2O (3x100ml). 

Volatiles in the filtrate solution were removed in vacuo and the residue purified by fractional 

distillation to give the title compound (bp 35-37°C at 1Torr) as a colourless, clear oil, 59.52g 

(88%). 

1
H NMR (500 MHz, CDCl3) δ ppm 5.71 (dt, J = 2.0, 0.9 Hz, 1H, 3CHa), 5.60 (d, J = 2.2 Hz, 1H, 

3CHb), 2.90 (d, J = 0.9 Hz, 2H, 1CH2) 

13
C NMR (126 MHz, CDCl3) δ ppm 121.64, 120.56, 38.83 

Physical properties and spectra comparable to those reported in the literature
162 
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(2-Bromoprop-2-en-1-yl)(dimethyl)phenylsilane (2.129) 

 

From chloro(dimethyl)phenylsilane (2.132): 

To lithium wire (1.78g, 256.58mmol) cut into 2-3mm segments in THF (100ml) under argon at rt 

was added chlorodimethyl(phenyl)silane (2.132) (21.9g, 128.29mmol) dropwise via syringe . The 

reaction flask was then sealed and placed in a -20°C freezer for 120h. The resulting thick, red 

solution was then added via cannula to a precooled (-70°C, EtOAc/liq. N2) suspension of copper(I) 

cyanide (9.57g, 106.91mmol) in THF (50ml). The mixture was allowed to warm up to -50°C and 

stirred at this temperature for 30min. 2,3-Dibromopropene (85% purity, 25.14g, 12.3ml, 

106.91mmol) was then added dropwise and the solution stirred at -70°C for 30min and at -20°C for 

a further 20min. After slowly warming up to 0°C the reaction was quenched by addition of water 

(100ml) and the biphasic mixture filtered through a pad of celite washing with copious amounts of 

Et2O (3x100ml). The phases were separated and the aqueous layer was washed with a further 

portion of Et2O (100ml) and the combined organic phases washed with sat. aq. NH4Cl solution 

(200ml) and sat. aq. NaCl solution (200ml). Drying on MgSO4, filtration and removal of volatiles in 

vacuo gave a yellow oil which was purified by flash column chromatography (100% hexane) to 

give the title compound a light yellow, clear oil, 1.65g (49% yield). Purity by 
1
H NMR: 75%. 

 

From (2-bromoprop-2-en-1-yl)(trichloro)silane (2.135): 

To a solution of (2-bromoprop-2-en-1-yl)(trichloro)silane (2.135) (46.45g, 182.58mmol) in Et2O 

(100ml) was added phenylmagnesium bromide solution (3M in Et2O, 60.3ml, 180.75mmol) 

dropwise and the resulting solution was heated at reflux (flask fitted with Et2O condenser) for 20h. 

It was then cooled by means of an ice/water bath and methylmagnesium bromide (3M in Et2O, 
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124.7ml, 374.29mmol) was introduced dropwise via dropping funnel. The reaction was stirred at rt 

for 4h and was then quenched by addition of sat. aq. NH4Cl solution (200ml). The isolated organic 

layer was dried on MgSO4, filtered and the volatiles removed in vacuo. The residue was purified by 

flash column chromatography (1:99 Et2O/hexane) to give the title product as a colourless oil, 

42.43g (91% yield). Purity by 
1
H NMR: 95+%. 

1
H NMR (500 MHz, CDCl3) δ ppm: 7.68-7.59 (m, 5H, 1CH, 2CH, 3CH), 5.24 (m, 1H, 8CHa), 5.17 

(m, 1H, 8CHb), 2.26 (d, J = 0.9 Hz, 2H, 6CH2), 0.29 (s, 6H, 2x5CH3) 

 
13

C NMR (126 MHz, CDCl3) δ ppm 135.78, 128.49, 127.36, 126.98, 126.55, 114.65, 33.87, -1.04 

 m/z: 263, 261, 216, 214, 136,135, 105 

Physical properties and spectra comparable to those reported in the literature
162 
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(2R,3R)-2-Methyl-3-[(trityloxy)methyl]oxirane (2.137) 

 

A 1l 3-neck flask was charged with CH2Cl2 (400ml), 3Å crushed molecular sieves (10g), freshly 

distilled (-) diisopropyl D-tartrate (7.0ml, 7.80g, 33.29mmol) and freshly distilled crotyl alcohol 

(24.0ml, 20.00g, 277.35mmol). The resulting solution was cooled to -20°C (water/acetone 40:60 

v/v/liq. N2) and stirred at this temperature for 30min. Freshly distilled titanium(IV) isopropoxide 

(8.2ml, 7.88g, 27.74mmol) was then added in one portion. After stirring for 20min tert-

butylhydroperoxide solution (3.5M in toluene, 158.5ml, 554.70mmol) was introduced dropwise via 

dropping funnel making sure the reaction temperature did not rise above -20°C. After the addition 

the reaction flask was sealed and placed in a -25°C freezer for 7days. The reaction flask was placed 

under nitrogen gas flow and in a -20°C bath (water/acetone 40:60 v/v/liq. N2) and 

trimethylphosphite (32.7ml, 34.4g, 277.35mmol) was added dropwise via syringe making sure the 

reaction temperature did not rise above -20°C. After stirring at -20°C for 30min, triethylamine 

(39.0ml, 28.06g, 277.35mmol) was added dropwise followed by a solution of trityl chloride 

(81.20g, 291.22mmol) and dimethylamino pyridine (1.70g, 13.87mmol) dissolved in CH2Cl2 

(150ml). The reaction temperature was allowed to rise to rt and the resulting cloudy solution was 

stirred for 18h. It was then filtered through a pad of Celite and the cake washed with CH2Cl2 

(3x100ml). The filtrate was washed with water (2x500ml), sat. aq. CuSO4 solution (500ml). The 

isolated organic layer was dried on Na2SO4, filtered and volatiles were removed in vacuo to yield a 

brown oil which was purified by flash column chromatography (1:9 to 1:7 Et2O/hexane with a 0.5% 

gradient) to yield a white, amorphous solid. This was then dissolved in a mixture of CH2Cl2/hexane 

(1:3, 600ml) and the solvents left to evaporate over 4 days giving the title compound as 

rhombohedral, white crystals, 56.77g (62% yield). 
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1
H NMR (500 MHz, CDCl3) δ ppm 7.50 – 7.45 (m, 6H, 3x7CH), 7.31 (ddd, J = 6.4, 5.7, 2.2 Hz, 

6H, 3x8CH), 7.27 – 7.22 (m, 3H, 3x9CH), 3.29 (dd, J = 10.7, 3.2 Hz, 1H, 4CHa), 3.17 (dd, J = 10.8, 

5.0 Hz, 1H, 4CHb), 2.95 – 2.85 (m, 2H, 3CH, 2CH), 1.32 (d, J = 4.9 Hz, 3H, 1CH3) 

[α]D
25

: -5.3 (c = 0.05, CH2Cl2) 

Data consistent with those previously reported. 
183

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



201 
 

 (2S,3R)-4-{[Dimethyl(phenyl)silyl]methyl}-3-methyl-1-(trityloxy)pent-4-en-2-ol (2.140) 

 

Homogeneous cyanocuprate method:   

To a cooled (-70°C, EtOAc/liq. N2 bath) solution of (2-bromoprop-2-en--yl)(dimethyl)phenylsilane 

(2.129) (845mg, 3.31mmol) in Et2O (20ml) was added tert-butyllithium (1.7M in pentane, 4.0ml, 

6.79mmol) dropwise via syringe. The cooling bath was removed and the reaction allowed to slowly 

warm to 0°C. The solution was then cooled once again to -70°C and was then transferred via 

cannula to a suspension of copper(I) cyanide (149mg, 1.66mmol) in Et2O (30ml). The resulting 

mixture was allowed to slowly warm to 0°C to obtain a bright yellow, homogeneous solution. 

(2R,3R)-2-Methyl-3-[(trityloxy)methyl]oxirane (2.137) (456mg, 1.38mmol) was then introduced 

neat via syringe and the reaction allowed to stir at rt overnight. Quenching was achieved by addition 

of sat. aq. NH4Cl solution (50 ml) and stirring until neat separation of phases was observed. The 

organic layer was separated and the aqueous washed with Et2O (20 ml). The combined organic 

layers were dried over Na2SO4, filtered and volatiles removed in vacuo to give a yellow oil. Column 

chromatography (10% Et2O/hexane) gave the title compound as a light yellow oil, 432mg (62% 

yield). 

Mixed cyanocuprate method: 

To a cooled (-70°C, EtOAc/liq. N2 bath) solution of thiophene (5.7ml, 6.01g, 71.50mmol) in Et2O 

(100 ml) was added n-butyllithium (2.5M in hexanes, 28.6ml, 71.50mmol) dropwise via syringe. 

The resulting solution was allowed to warm to -20°C and stirred at this temperature for 20 min. 

In a separate flask, (2-bromoprop-2-en--yl)(dimethyl)phenylsilane (2.129) (16.59g, 65.00mmol) 

was dissolved in Et2O (100ml) and the resulting solution cooled to -70°C (EtOAc/liq. N2 bath). 
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Tert-Butyllithium  (1.7M in pentane, 76.5ml,130.00 mmol) was then introduced dropwise via 

dropping funnel and the reaction allowed to slowly warm to 0°C.  

The above solutions were sequentially transferred via cannula to a suspension of copper(I) cyanide 

(5.82g, 65.00mmol) in Et2O (150ml) at -70°C (EtOAc/liq. N2 bath). The obtained suspension was 

allowed to slowly warm to 0°C and stirred at this temperature for 30min, giving a homogeneous, 

bright yellow solution. A solution of (2R,3R)-2-Methyl-3-[(trityloxy)methyl]oxirane (2.137) 

(21.48g, 65.00mmol) in Et2O (100ml) was the introduced dropwise via  dropping funnel and the 

resulting solution was allowed to stir at rt overnight. Quenching was achieved by addition of sat. aq. 

NH4Cl solution (200ml) and stirring until neat separation of phases was observed. The organic layer 

was separated and the aqueous washed with Et2O (200ml). The combined organic layers were dried 

over Na2SO4, filtered and volatiles removed in vacuo to give a yellow oil. Column chromatography 

(10% Et2O/hexane) gave the title compound as a light yellow oil, 19.36g (59% yield).  

1
H NMR (500 MHz, CDCl3) δ ppm 7.52-7.41 (m, 8H, 1CH, 3x15CH), 7.33-7.29 (m, 8H, 2CH, 

3x16CH), 7.26-7.19 (m, 4H, 1CH, 3x17CH), 4.65 (s, 1H, 8CHb), 4.63 (s, 1H, 8CHa), 3.71 (d, J = 

5.0 Hz, 1H, 11CH), 3.20 (dd, J = 9.3, 6.7 Hz, 1H, 12CHb), 3.12 (dd, J = 9.3, 5.1 Hz, 1H, 12CHb), 

2.16 – 2.06 (m, 1H, 9CH), 2.04 (d, J = 1.8 Hz, 1H, OH), 1.75 (d, J = 13.8 Hz, 1H, 6CHb), 1.64 (d, J 

= 13.7 Hz, 1H, 6CHb), 0.87 (d, J = 6.9 Hz, 3H, 10CH3), 0.31 (app. d, J = 4.0 Hz, 6H, 5CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 149.14, 143.99, 133.56, 129.01, 128.76, 128.71, 127.86, 

127.80, 127.72, 127.04, 108.64, 77.28, 77.02, 76.77, 71.84, 65.64, 43.15, 25.90, 13.25, -2.86. 

m/z (ESI+): 529, 443, 403, 345, 324, 243 

HRMS (ESI+): Calcd. for C34H38O2SiNa [M+Na]
+
: 529.2538; found: 529.2533  

υmax (neat/ cm
-1

): 3449 br, 3065 w, 2960 w, 2926 w, 2878 w, 1629 w, 1448 s, 1248 w, 1115 w, 836 

w  

Rf: 0.31 in 10% Et2O/hexane 
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[α]D
26

: +34.5 (c = 0.05, CH2Cl2) 
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(2R,3S)-4-{[Dimethyl(phenyl)silyl]methyl}-3-[(trityloxy)methyl]pent-4-en-2-ol (2.141) 

 

Homogeneous cyanocuprate method:   

To a cooled (-70°C, EtOAc/liq. N2 bath) solution of (2-bromoprop-2-en--yl)(dimethyl)phenylsilane 

(2.129) (845mg, 3.31mmol) in Et2O (20ml) was added tert-butyllithium (1.7M in pentane, 4.0ml, 

6.79mmol) dropwise via syringe. The cooling bath was removed and the reaction allowed to slowly 

warm to 0°C. The solution was then cooled once again to -70°C and was then transferred via 

cannula to a suspension of copper(I) cyanide (149mg, 1.66mmol) in Et2O (30ml). The resulting 

mixture was allowed to slowly warm to 0°C to obtain a bright yellow, homogeneous solution. 

(2R,3R)-2-Methyl-3-[(trityloxy)methyl]oxirane (2.137) (456mg, 1.38mmol) was then introduced 

neat via syringe and the reaction allowed to stir at rt overnight. Quenching was achieved by addition 

of sat. aq. NH4Cl solution (50 ml) and stirring until neat separation of phases was observed. The 

organic layer was separated and the aqueous washed with Et2O (20 ml). The combined organic 

layers were dried over Na2SO4, filtered and volatiles removed in vacuo to give a yellow oil. Column 

chromatography (10% Et2O/hexane) gave the title compound as a light yellow oil, 451mg (27% 

yield). 

Mixed cyanocuprate method: 

To a cooled (-70°C, EtOAc/liq. N2 bath) solution of thiophene (5.7ml, 6.01g, 71.50mmol) in Et2O 

(100 ml) was added n-butyllithium (2.5M in hexanes, 28.6ml, 71.50mmol) dropwise via syringe. 

The resulting solution was allowed to warm to -20°C and stirred at this temperature for 20 min. 

In a separate flask, (2-bromoprop-2-en--yl)(dimethyl)phenylsilane (2.129) (16.59g, 65.00mmol) 

was dissolved in Et2O (100ml) and the resulting solution cooled to -70°C (EtOAc/liq. N2 bath). 
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Tert-Butyllithium (1.7M in pentane, 76.5ml,130.00 mmol) was then introduced dropwise via 

dropping funnel and the reaction allowed to slowly warm to 0°C.  

The above solutions were sequentially transferred via cannula to a suspension of copper(I) cyanide 

(5.82g, 65.00mmol) in Et2O (150ml) at -70°C (EtOAc/liq. N2 bath). The obtained suspension was 

allowed to slowly warm to 0°C and stirred at this temperature for 30min, giving a homogeneous, 

bright yellow solution. A solution of (2R,3R)-2-Methyl-3-[(trityloxy)methyl]oxirane (2.137) 

(21.48g, 65.00mmol) in Et2O (100ml) was the introduced dropwise via  dropping funnel and the 

resulting solution was allowed to stir at rt overnight. Quenching was achieved by addition of sat. aq. 

NH4Cl solution (200ml) and stirring until neat separation of phases was observed. The organic layer 

was separated and the aqueous washed with Et2O (200ml). The combined organic layers were dried 

over Na2SO4, filtered and volatiles removed in vacuo to give a yellow oil. Column chromatography 

(10% Et2O/hexane) gave the title compound as a light yellow oil, 6.89g (21% yield).  

1
H NMR (500 MHz, CDCl3) δ ppm: 7.47 – 7.39 (m, 8H, 2CH, 3x16CH), 7.36 – 7.29 (m, 8H, 3CH, 

3x15CH), 7.26 (m, J = 8.8, 5.6 Hz, 4H, 1CH, 3x17CH), 4.63 (m, 1H, 8Hb), 4.52 (m, 1H, 8Ha), 3.93 

– 3.82 (m, 1H, 10CH), 3.55 (s, 1H, OH), 3.34 (dd, J = 9.6, 4.1 Hz, 1H, 12CHa), 3.31 – 3.22 (m, 1H, 

12CHb), 2.11 (td, J = 8.0, 4.1 Hz, 1H, 9CH), 1.72 (d, J = 14.0 Hz, 1H, 6CHa), 1.67 (d, J = 14.0 Hz, 

1H, 6CHb), 1.12 (d, J = 6.2 Hz, 3H, 11CH3), 0.28 (s, 3H, 5CH3), 0.25 (s, 3H, 5CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 143.54, 133.52, 129.02, 128.63, 127.92, 127.76, 127.15, 

110.30, 87.68, 77.26, 77.01, 76.75, 71.31, 66.17, 53.39, 27.48, 21.20, -2.69, -2.80 

m/z (ESI+): 529, 469, 407, 324, 215. 135 

HRMS (ESI+): Calcd. for C34H38O2SiNa [M+Na]
+
: 529.2538; found: 529.2535  

υmax (neat/ cm
-1

): 3455 br, 3068 w, 2957 w, 1692 w, 1451 s, 1248 w, 1115 w, 834 w. 

Rf: 0.29 in 10% Et2O/hexane 

[α]D
25

: +67.3 (c = 0.05, CH2Cl2) 
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(2S,3R)-3,4-dimethylpent-4-ene-1,2-diol (2.145) 

 

Amberlyst 15-H resin method: 

To a solution of (2S,3R)-4-{[dimethyl(phenyl)silyl]methyl}-3-methyl-1-(trityloxy)pent-4-en-2-ol 

(2.140) (490mg, 0.97mmol) in methanol (10ml) was added Amberlyst 15-H resin (1.45g). The 

resulting suspension was stirred at rt for 2h. Filtration and evaporation of volatiles in vacuo gave a 

yellow oil. Column chromatography (20%, 70% Et2O/hexane, no gradient) gave the title product as 

a colourless oil, 117mg (93% yield).   

Formic acid method: 

To a solution of (2S,3R)-4-{[dimethyl(phenyl)silyl]methyl}-3-methyl-1-(trityloxy)pent-4-en-2-ol 

(2.140) (620mg, 1.22mmol) in methanol (10ml) was added formic acid (0.23ml, 282mg, 

6.12mmol). The resulting clear solution was stirred at rt for 2h. Evaporation of volatiles in vacuo 

gave a colourless oil which was purified by column chromatography (20%, 70% Et2O/hexane, no 

gradient) giving the title product as a colourless oil, 141mg (89% yield). 

Zinc(II) bromide method: 

To a solution of (2S,3R)-4-{[dimethyl(phenyl)silyl]methyl}-3-methyl-1-(trityloxy)pent-4-en-2-ol 

(2.140) (347mg, 0.68mmol) in DCM (10ml) was added zinc(II) bromide (463mg, 2.05mmol). The 

resulting solution was stirred at rt for 2h and was then quenched by addition of water (10 ml). The 

organic layer was washed with sat. aq. NaHCO3 solution (20ml) and was then dried over Na2SO4. 

Filtration and evaporation of volatiles in vacuo gave a yellow oil which was purified by column 

chromatography (20%, 70% Et2O/hexane, no gradient) giving the title product as a colourless oil, 

66mg (74% yield).  
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1
H NMR (500 MHz, CDCl3) δ ppm 4.81 – 4.67 (m, 2H, 3CHa, 3CHb), 3.60 (dt, J = 7.1, 3.0 Hz, 2H, 

7CH2), 3.43 (dd, J = 11.9, 8.6 Hz, 1H, 6CH), 3.14 (bs, 2H, 2xOH), 2.32 – 2.08 (m, 1H, 4CH), 1.69 

(d, J = 0.8 Hz, 3H, 1CH3), 1.09 (d, J = 6.9 Hz, 3H, 5CH3) 

13
C NMR (126 MHz, CDCl3) δ ppm 147.12, 111.72, 73.98, 65.40, 44.13, 20.01, 15.28 

m/z (ESI+): 153, 151 

HRMS (ESI+): Calcd. for C7H14O2Na [M+Na]
+
: 153.0891; found: 153.0886 

υmax (neat/ cm
-1

): 3350 br, 2965 w, 2921 w, 1646 w, 1446 w, 1046 s 

Rf: 0.12 in 3:2 Et2O/hexane (KMnO4) 

[α]D
25

: +22.1 (c = 0.05, CH2Cl2) 
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5.1 X-ray data 

 

(3Z,4Z)-1-Methyl-4-(2-oxo-2-phenylethylidene)-3-[(trimethylsilyl)methylene]pyrrolidin-2-one (2.57) 

 

 

Table 1.  Crystal data and structure refinement . 

Identification code  apr1108 

Empirical formula  C17 H21 N O2 Si 

Formula weight  299.44 

Temperature  173(2) K 

Wavelength  0.71073 Å 
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Crystal system  Rhombohedral 

Space group  R 3   (No.148) 

Unit cell dimensions a = 30.9588(9) Å a= 90°. 

 b = 30.9588(9) Å b= 90°. 

 c = 9.3101(3) Å g = 120°. 

Volume 7727.7(4) Å3 

Z 18 

Density (calculated) 1.16 Mg/m3 

Absorption coefficient 0.14 mm-1 

F(000) 2880 

Crystal size 0.25 x 0.25 x 0.20 mm3 

Theta range for data collection 3.48 to 25.86°. 

Index ranges -33<=h<=38, -38<=k<=29, -11<=l<=11 

Reflections collected 12947 

Independent reflections 3319 [R(int) = 0.063] 

Reflections with I>2sigma(I) 2261 

Completeness to theta = 25.86° 99.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3319 / 0 / 194 

Goodness-of-fit on F2 1.008 

Final R indices [I>2sigma(I)] R1 = 0.047, wR2 = 0.097 

R indices (all data) R1 = 0.083, wR2 = 0.109 

Largest diff. peak and hole 0.18 and -0.22 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction not applied ,  
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Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for apr1108.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

Si 1495(1) 779(1) 2645(1) 39(1) 

O(1) 3074(1) 1931(1) 8694(2) 47(1) 

O(2) 1854(1) 1879(1) 3425(2) 41(1) 

N 2382(1) 2250(1) 5328(2) 37(1) 

C(1) 2978(1) 1142(1) 9214(2) 29(1) 

C(2) 3388(1) 1349(1) 10132(2) 37(1) 

C(3) 3499(1) 1048(1) 10955(2) 49(1) 

C(4) 3198(1) 534(1) 10887(2) 49(1) 

C(5) 2789(1) 325(1) 10009(2) 44(1) 

C(6) 2676(1) 623(1) 9158(2) 35(1) 

C(7) 2874(1) 1487(1) 8355(2) 32(1) 

C(8) 2541(1) 1294(1) 7104(2) 30(1) 

C(9) 2440(1) 1584(1) 6260(2) 28(1) 

C(10) 2631(1) 2134(1) 6463(2) 35(1) 

C(11) 2120(1) 1424(1) 4975(2) 28(1) 

C(12) 2096(1) 1866(1) 4455(2) 31(1) 

C(13) 2461(1) 2750(1) 5142(3) 56(1) 

C(14) 1885(1) 977(1) 4322(2) 33(1) 
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C(15) 1862(1) 1142(1) 1063(2) 56(1) 

C(16) 907(1) 794(1) 2876(3) 68(1) 

C(17) 1333(1) 119(1) 2370(3) 67(1) 

Table 3.   Bond lengths [Å] and angles [°] for apr1108. 

_____________________________________________________ 

Si-C(16)  1.856(3) 

Si-C(15)  1.858(2) 

Si-C(17)  1.863(2) 

Si-C(14)  1.880(2) 

O(1)-C(7)  1.233(2) 

O(2)-C(12)  1.230(2) 

N-C(12)  1.344(2) 

N-C(13)  1.451(3) 

N-C(10)  1.456(2) 

C(1)-C(2)  1.393(3) 

C(1)-C(6)  1.399(3) 

C(1)-C(7)  1.491(3) 

C(2)-C(3)  1.375(3) 

C(3)-C(4)  1.385(3) 

C(4)-C(5)  1.369(3) 

C(5)-C(6)  1.386(3) 

C(7)-C(8)  1.471(3) 

C(8)-C(9)  1.341(3) 

C(9)-C(11)  1.472(3) 

C(9)-C(10)  1.510(3) 
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C(11)-C(14)  1.343(3) 

C(11)-C(12)  1.489(3) 

 

C(16)-Si-C(15) 112.87(13) 

C(16)-Si-C(17) 108.37(13) 

C(15)-Si-C(17) 107.55(13) 

C(16)-Si-C(14) 112.00(11) 

C(15)-Si-C(14) 111.21(10) 

C(17)-Si-C(14) 104.34(10) 

C(12)-N-C(13) 123.92(17) 

C(12)-N-C(10) 114.50(16) 

C(13)-N-C(10) 121.53(17) 

C(2)-C(1)-C(6) 118.80(18) 

C(2)-C(1)-C(7) 118.26(17) 

C(6)-C(1)-C(7) 122.93(17) 

C(3)-C(2)-C(1) 120.6(2) 

C(2)-C(3)-C(4) 120.0(2) 

C(5)-C(4)-C(3) 120.1(2) 

C(4)-C(5)-C(6) 120.5(2) 

C(5)-C(6)-C(1) 119.89(19) 

O(1)-C(7)-C(8) 120.92(18) 

O(1)-C(7)-C(1) 119.54(18) 

C(8)-C(7)-C(1) 119.53(17) 

C(9)-C(8)-C(7) 122.94(17) 

C(8)-C(9)-C(11) 126.40(17) 
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C(8)-C(9)-C(10) 126.17(17) 

C(11)-C(9)-C(10) 107.44(16) 

N-C(10)-C(9) 103.39(15) 

C(14)-C(11)-C(9) 129.88(18) 

C(14)-C(11)-C(12) 123.32(18) 

C(9)-C(11)-C(12) 106.79(16) 

O(2)-C(12)-N 125.67(18) 

O(2)-C(12)-C(11) 126.56(18) 

N-C(12)-C(11) 107.76(16) 

C(11)-C(14)-Si 129.79(16) 

_____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

(3Z,4Z)-4-[2-(2-Chlorophenyl)-2-oxoethylidene]-1-methyl-3-[(trimethylsilyl)methylene]pyrrolidin-2-

one (2.59) 
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Table 1.  Crystal data and structure refinement for C17H20ClNO2Si. 

Identification code  oct109b 

Empirical formula  C17 H20 Cl N O2 Si 

Formula weight  333.88 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c (No.14) 

Unit cell dimensions a = 13.1246(4) Å a= 90°. 

 b = 11.2116(4) Å b= 110.280(2)°. 

 c = 12.7330(3) Å g = 90°. 

Volume 1757.49(9) Å3 
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Z 4 

Density (calculated) 1.26 Mg/m3 

Absorption coefficient 0.29 mm-1 

F(000) 704 

Crystal size 0.30 x 0.14 x 0.11 mm3 

Theta range for data collection 3.41 to 26.73°. 

Index ranges -16<=h<=16, -14<=k<=14, -14<=l<=16 

Reflections collected 22079 

Independent reflections 3725 [R(int) = 0.062] 

Reflections with I>2sigma(I) 2841 

Completeness to theta = 26.73° 99.8 %  

Tmax. and Tmin.  1.0088 and 0.8855 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3725 / 0 / 203 

Goodness-of-fit on F2 1.044 

Final R indices [I>2sigma(I)] R1 = 0.046, wR2 = 0.101 

R indices (all data) R1 = 0.069, wR2 = 0.110 

Largest diff. peak and hole 0.33 and -0.49 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction MULTISCAN  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for oct109b.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 
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 x y z U(eq) 

________________________________________________________________________________ 

Cl 5798(1) -2762(1) 3189(1) 56(1) 

Si 10037(1) 3468(1) 2242(1) 34(1) 

O(1) 5749(1) -676(1) 1722(1) 34(1) 

O(2) 8622(1) 2460(1) -152(1) 29(1) 

N 7189(1) 1212(2) -311(1) 24(1) 

C(1) 6078(2) -1521(2) 4057(2) 30(1) 

C(2) 6094(2) -1699(2) 5143(2) 43(1) 

C(3) 6294(2) -744(3) 5867(2) 55(1) 

C(4) 6473(2) 375(3) 5527(2) 52(1) 

C(5) 6488(2) 532(2) 4457(2) 37(1) 

C(6) 6303(2) -410(2) 3698(2) 24(1) 

C(7) 6352(2) -167(2) 2557(2) 22(1) 

C(8) 7169(2) 708(2) 2504(2) 22(1) 

C(9) 7306(2) 1042(2) 1547(2) 18(1) 

C(10) 8150(2) 1861(2) 1464(1) 18(1) 

C(11) 8050(2) 1902(2) 260(2) 21(1) 

C(12) 6665(2) 619(2) 384(2) 24(1) 

C(13) 6908(2) 938(2) -1492(2) 37(1) 

C(14) 8902(2) 2460(2) 2284(2) 22(1) 

C(15) 11038(2) 2655(3) 1776(3) 58(1) 

C(16) 9527(2) 4814(2) 1372(2) 52(1) 

C(17) 10695(3) 3896(3) 3742(2) 68(1) 

Table 3.   Bond lengths [Å] and angles [°] for oct109b. 
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_____________________________________________________ 

Cl-C(1)  1.735(2) 

Si-C(16)  1.854(3) 

Si-C(15)  1.857(3) 

Si-C(17)  1.866(3) 

Si-C(14)  1.885(2) 

O(1)-C(7)  1.224(2) 

O(2)-C(11)  1.226(2) 

N-C(11)  1.354(2) 

N-C(13)  1.451(2) 

N-C(12)  1.456(2) 

C(1)-C(2)  1.391(3) 

C(1)-C(6)  1.393(3) 

C(2)-C(3)  1.378(4) 

C(3)-C(4)  1.373(4) 

C(4)-C(5)  1.381(3) 

C(5)-C(6)  1.394(3) 

C(6)-C(7)  1.501(3) 

C(7)-C(8)  1.472(3) 

C(8)-C(9)  1.346(3) 

C(9)-C(10)  1.471(3) 

C(9)-C(12)  1.505(3) 

C(10)-C(14)  1.342(3) 

C(10)-C(11)  1.492(2) 
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C(16)-Si-C(15) 110.93(14) 

C(16)-Si-C(17) 110.19(14) 

C(15)-Si-C(17) 108.97(16) 

C(16)-Si-C(14) 112.34(11) 

C(15)-Si-C(14) 111.63(11) 

C(17)-Si-C(14) 102.43(10) 

C(11)-N-C(13) 122.90(16) 

C(11)-N-C(12) 114.58(15) 

C(13)-N-C(12) 121.90(16) 

C(2)-C(1)-C(6) 121.5(2) 

C(2)-C(1)-Cl 116.44(17) 

C(6)-C(1)-Cl 122.06(16) 

C(3)-C(2)-C(1) 119.2(2) 

C(4)-C(3)-C(2) 120.9(2) 

C(3)-C(4)-C(5) 119.3(2) 

C(4)-C(5)-C(6) 121.9(2) 

C(1)-C(6)-C(5) 117.15(18) 

C(1)-C(6)-C(7) 124.33(18) 

C(5)-C(6)-C(7) 118.52(18) 

O(1)-C(7)-C(8) 122.18(17) 

O(1)-C(7)-C(6) 121.65(17) 

C(8)-C(7)-C(6) 116.18(16) 

C(9)-C(8)-C(7) 123.74(17) 

C(8)-C(9)-C(10) 125.47(17) 

C(8)-C(9)-C(12) 126.81(17) 
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C(10)-C(9)-C(12) 107.69(15) 

C(14)-C(10)-C(9) 128.67(17) 

C(14)-C(10)-C(11) 124.31(17) 

C(9)-C(10)-C(11) 107.01(15) 

O(2)-C(11)-N 125.59(17) 

O(2)-C(11)-C(10) 127.24(17) 

N-C(11)-C(10) 107.16(16) 

N-C(12)-C(9) 103.50(15) 

C(10)-C(14)-Si 130.73(15) 

_____________________________________________________________ 

 

 

 

 

 

 

 

 

 

(3Z,4Z)-4-[2-(2-Bromophenyl)-2-oxoethylidene]-1-methyl-3-[(trimethylsilyl)methylene]pyrrolidin-2-

one (2.56) 
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Table 1.  Crystal data and structure refinement . 

Identification code  dec1307 

Empirical formula  C17 H20 Br N O2 Si 

Formula weight  378.34 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca  (No.61) 

Unit cell dimensions a = 11.5307(3) Å a= 90°. 

 b = 12.4900(3) Å b= 90°. 

 c = 25.4454(7) Å g = 90°. 

Volume 3664.61(16) Å3 
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Z 8 

Density (calculated) 1.37 Mg/m3 

Absorption coefficient 2.32 mm-1 

F(000) 1552 

Crystal size 0.3 x 0.3 x 0.1 mm3 

Theta range for data collection 3.40 to 26.02°. 

Index ranges -14<=h<=14, -14<=k<=15, -27<=l<=31 

Reflections collected 23989 

Independent reflections 3584 [R(int) = 0.079] 

Reflections with I>2sigma(I) 2529 

Completeness to theta = 26.02° 99.5 %  

Tmax. and Tmin.  0.6743 and 0.4910 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3584 / 0 / 203 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.055, wR2 = 0.115 

R indices (all data) R1 = 0.091, wR2 = 0.130 

Largest diff. peak and hole 0.84 and -0.91 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction MULTISCAN  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for dec1307.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 
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 x y z U(eq) 

________________________________________________________________________________ 

Br 6699(1) 4639(1) 2275(1) 62(1) 

Si 8604(1) 7694(1) 109(1) 31(1) 

O(1) 4016(2) 6588(2) 1920(1) 39(1) 

O(2) 7494(2) 9579(2) 766(1) 36(1) 

N 6010(3) 9213(2) 1340(1) 32(1) 

C(1) 4510(3) 4781(3) 1764(1) 30(1) 

C(2) 3447(3) 4359(3) 1597(2) 42(1) 

C(3) 3218(4) 3281(4) 1645(2) 59(1) 

C(4) 4032(5) 2612(4) 1860(2) 63(2) 

C(5) 5088(5) 2997(4) 2030(2) 56(1) 

C(6) 5318(4) 4095(3) 1979(1) 39(1) 

C(7) 4704(3) 5968(3) 1711(1) 27(1) 

C(8) 5665(3) 6320(3) 1377(1) 27(1) 

C(9) 5944(3) 7357(3) 1298(1) 25(1) 

C(10) 5381(3) 8307(3) 1557(2) 35(1) 

C(11) 6839(3) 7760(3) 943(1) 22(1) 

C(12) 6856(3) 8951(3) 996(1) 27(1) 

C(13) 5707(4) 10301(3) 1477(2) 50(1) 

C(14) 7504(3) 7222(3) 602(1) 27(1) 

C(15) 7912(4) 8550(4) -400(2) 50(1) 

C(16) 9863(3) 8385(4) 411(2) 52(1) 

C(17) 9100(5) 6421(4) -202(2) 63(2) 

Table 3.   Bond lengths [Å] and angles [°] for dec1307. 
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_____________________________________________________ 

Br-C(6)  1.888(4) 

Si-C(16)  1.856(4) 

Si-C(15)  1.859(4) 

Si-C(17)  1.865(4) 

Si-C(14)  1.880(4) 

O(1)-C(7)  1.230(4) 

O(2)-C(12)  1.224(4) 

N-C(12)  1.351(5) 

N-C(13)  1.447(5) 

N-C(10)  1.453(5) 

C(1)-C(6)  1.379(5) 

C(1)-C(2)  1.400(6) 

C(1)-C(7)  1.506(5) 

C(2)-C(3)  1.377(6) 

C(3)-C(4)  1.370(7) 

C(4)-C(5)  1.379(7) 

C(5)-C(6)  1.403(6) 

C(7)-C(8)  1.464(5) 

C(8)-C(9)  1.350(5) 

C(9)-C(11)  1.461(5) 

C(9)-C(10)  1.505(5) 

C(11)-C(14)  1.338(5) 

C(11)-C(12)  1.495(5) 
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C(16)-Si-C(15) 110.9(2) 

C(16)-Si-C(17) 109.4(2) 

C(15)-Si-C(17) 109.1(2) 

C(16)-Si-C(14) 113.43(19) 

C(15)-Si-C(14) 110.83(18) 

C(17)-Si-C(14) 102.84(18) 

C(12)-N-C(13) 123.9(3) 

C(12)-N-C(10) 114.7(3) 

C(13)-N-C(10) 121.3(3) 

C(6)-C(1)-C(2) 118.6(4) 

C(6)-C(1)-C(7) 123.1(4) 

C(2)-C(1)-C(7) 118.3(3) 

C(3)-C(2)-C(1) 120.6(5) 

C(4)-C(3)-C(2) 120.0(5) 

C(3)-C(4)-C(5) 121.2(4) 

C(4)-C(5)-C(6) 118.5(4) 

C(1)-C(6)-C(5) 121.1(4) 

C(1)-C(6)-Br 120.3(3) 

C(5)-C(6)-Br 118.2(4) 

O(1)-C(7)-C(8) 123.5(3) 

O(1)-C(7)-C(1) 119.0(3) 

C(8)-C(7)-C(1) 117.4(3) 

C(9)-C(8)-C(7) 123.7(3) 

C(8)-C(9)-C(11) 126.2(3) 

C(8)-C(9)-C(10) 126.1(3) 
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C(11)-C(9)-C(10) 107.8(3) 

N-C(10)-C(9) 103.4(3) 

C(14)-C(11)-C(9) 129.2(3) 

C(14)-C(11)-C(12) 123.5(3) 

C(9)-C(11)-C(12) 107.2(3) 

O(2)-C(12)-N 126.1(3) 

O(2)-C(12)-C(11) 127.0(3) 

N-C(12)-C(11) 106.9(3) 

C(11)-C(14)-Si 131.4(3) 

_____________________________________________________________ 
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