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Abstract

The work presented concerns the way small particles attached to a surface are resuspended when

exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive

particles as a consequence of potential nuclear accidents. In this particular case the focus is on

small particles, < 5 microns in diameter, where the principal force holding such particles onto a

surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the

microphysics of small particles, it was decided here to aim to develop improved versions of the

Rock’n’Roll (R’n’R) model; the R’n’R model is based on a statistical approach to resuspension

involving the rocking and rolling of a particle about surface asperities induced by the moments of

the fluctuating drag forces acting on the particle close to the surface.

Firstly, a force (moment) balance model has been modified by including the distribution of the

aerodynamic force instead of considering only its mean value. It was also possible to improve the

representation of the adhesive-force distribution where it is customary to include a substantial

reduction factor to take account of surface roughness.

The R’n’R model is significantly improved by using realistic statistical fluctuations of both the

stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation

(LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a

major assumption is that these obey a Gaussian distribution. The flow conditions are translated into

the moments of the drag force acting on the particle attached to the surface (using O’Neill’s

formula for the aerodynamic drag forces in terms of the local flow velocities). In so doing the

influence of highly non-Gaussian forces (associated with the sweeping and ejection events in a

turbulent boundary layer) on the resuspension rate has been examined along with the sensitivity of

the fluctuation statistics to LES and DNS. We have found most importantly that the statistics of both

fluctuating forces and its derivative (normalized on their rms values) are noticeably independent of

the normalized distance from the wall, y+ within the viscous sublayer (y+ < 6) – if this were not the

case then modelling fluctuations with different particle sizes would be far more complex.

In particular as a result of the analysis of our DNS/LES data 3 distinct features of the modified R’n’R

model have emerged as playing an important part in the resuspension. The first is the typical

forcing frequency ω due to the turbulent (fluctuating) aerodynamic drag forces acting on the

particle attached to a surface (in the modified R’n’R model based on the DNS results (y+ = 0.1) it is

a factor of 4 > the value in the original model based on Hall’s measurements of the lift force). This

naturally has a significant effect of increasing the fraction resuspended for very short times (ωt ~< 1)
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and is the controlling influence over the entire range of times from short to long term resuspension.

The second is the value of the ratio of the root-mean-square (rms) drag force to its mean value

which in the modified model is nearly twice (1.8) than that in the original. This feature of the

model is largely responsible for the greater fraction resuspended after times ~ 1s (times which are

sufficient to include the transition period from short term resuspension to long term resuspension

rates (~t-1). The third feature introduces changes in the resuspension because the distribution of

aerodynamic drag forces in the modified model is distinctly non-Gaussian behaving more like a

Rayleigh distribution. This means that the distribution of the drag force decays much more slowly in

the wings of the distribution than the equivalent Gaussian (with the same rms) so that for very large

values of the adhesive force / rms drag force ~ 8 (at the extreme end of the DNS measurements),

the resuspension rate constant is a factor of 30 larger than that for an equivalent Gaussian model.

Thus although the fraction of particles resuspended is very small in these instances, the differences

between the modified and original models can be very large. This is particularly important when we

consider resuspension from multilayer deposits.

When we consider these influences in the context of a broad range of adhesive forces due to surface

roughness, we find that in general, the modified model gives around 10% more for the fraction of

particle resuspension fraction than the original R’n’R model (for an initial log normal distribution of

adhesive forces), however the difference could become significant (3 to 7 times greater depending

on the range of values of the adhesive-force spread factor) when the friction velocity is small (i.e.,

smaller resuspension fraction). As for the short-term resuspension rate, the difference between the

modified and original model becomes significant when this is dominated by the typical forcing

frequency (ω+ is 0.0413 for the original model, 0.08553 for LES approach and 0.127143 for DNS for y+

= 6). The sensitivity to the adhesive-force spread factor has also been studied and the results

indicate that the modified model removes particles much more easily than the original model in

conditions of small friction velocity and a smoother surface (i.e., small spread factor). Finally in this

phase of the work, the correlation between the distribution of the fluctuating force and its

derivative has been checked for both LES and DNS statistics. The results demonstrate that this

correlation has a very slight effect on particle resuspension compared with the result from the

uncorrelated curve-fitted model.

In view of recent numerical data for lift and drag forces in turbulent boundary layers (Lee &

Balachandar), the lift and drag we have considered and the impact of these data on predictions

made by the non-Gaussian R’n’R model are compared with those based on O’Neill formula. The

results indicate that, in terms of the long-term resuspension fraction, the difference is minor. It is

concluded that as the particle size decreases the L&B method will lead to less-and-less long-term

resuspension.

Finally the ultimate model that has been developed in this work is a hybrid version of the R’n’R

model adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer
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approach. The deposit is modelled in several overlying layers where the coverage effect (masking)

of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage

ratio factor was modelled where this was subsequently replaced by the more general case of a

polydisperse deposit with a particle size distribution. The results indicate that, in general, as the

number of modelled layers increases the resuspension fraction of the whole deposit after a certain

time decreases significantly. In other words, it takes a much longer time to resuspend a thicker

deposit. Taking account of the particle size distribution slightly increases the short-term

resuspension. However, this change decreases the long-term resuspension significantly. The model

results have been compared with data from the STORM SR11 test (ISP-40) and the BISE experiments.

In general, both comparisons indicate that with smaller spread of the adhesive force distribution

(i.e., the range of adhesive force distribution is narrower) the new multilayer model agrees very

well with the experimental data. It can be inferred that multilayer deposits lead to much narrower

distributions of adhesive force.
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Résumé

Les travaux présentés traitent la manière dont de fines particules déposées sur une surface sont

remises en suspension lorsqu’elles sont soumises à un écoulement turbulent. Le domaine

d’application spécifique de ce travail concerne la remobilisation de particules radioactives qui peut

se produire pendant des accidents nucléaires. Dans ce cas particulier l’intérêt doit se focaliser sur

de petites particules, de diamètre inférieur à 5 microns, pour lesquelles la force principale les

retenant sur une surface est due aux forces intermoléculaires de van der Waals. Etant donné son

traitement approprié de la microphysique de petites particules, l’objectif choisi pour les recherches

actuelles était le développement de versions améliorées du modèle Rock’n’Roll (R’n’R); le modèle

R’n’R se base sur une approche statistique de la remise en suspension qui intègre le balancement et

le roulement d’une particule par rapport à des aspérités d’une surface, balancement et roulement

qui sont induits par les moments des forces de traînée fluctuantes près de la surface qui agissent sur

la particule.

Dans un premier temps, un modèle de bilan des forces (moments) a été modifié en incluant la

distribution de la force aérodynamique au lieu de considérer uniquement sa valeur moyenne. Il a

été également possible d’améliorer la représentation de la distribution de la force d’adhérence

alors qu’habituellement cette distribution intègre un facteur de réduction important afin de tenir

compte de la rugosité de la surface.

Le modèle R’n’R est amélioré de manière importante en remplaçant l’hypothèse d’une distribution

gaussienne des fluctuations statistiques de la vitesse et de l’accélération du fluide dans le sens du

courant près de la paroi par des statistiques réalistes qui sont générées avec les techniques de

simulations aux grandes échelles (LES) ou de simulations numériques directes (DNS) pour un

écoulement turbulent dans un tuyau. Les conditions d’écoulement sont traduites en moments de la

force de traînée agissant sur la particule attachée à la surface en appliquant la formule d’O’Neill

pour les forces de traînée aérodynamiques en fonction des vitesses d’écoulement locales. De cette

manière, l’influence de forces fortement non-gaussiennes (associées aux événements de balayage et

d’éjection dans une couche limite turbulente) sur le taux de resuspension a été examinée ainsi que

la sensibilité des statistiques de fluctuation selon leur origine LES ou DNS. Nous avons

principalement trouvé que les statistiques de la force fluctuante et de sa dérivée (tous les deux

normalisés par rapport à la racine de la moyenne du carré – ou RMC - de leurs valeurs respectives)

sont sensiblement indépendantes de la distance normalisée depuis la paroi, y+, à l’intérieur de la

sous-couche visqueuse (c’est-à-dire, y+ < 6) – si ceci n’était pas le cas la modélisation des

fluctuations pour des particules de tailles différentes serait beaucoup plus complexe.
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En particulier du fait des analyses de nos résultats DNS/LES, trois aspects distincts du modèle R’n’R

modifié ont émergé comme jouant un rôle important dans la remise en suspension. Le premier est

la fréquence typique ω due aux forces de traînée aérodynamique turbulentes agissant sur la

particule déposée sur une surface (dans le modèle R’n’R modifié utilisant les résultats de la DNS (y+

= 0,1), celle-ci est 4 fois supérieure à la valeur dans le modèle standard qui se base sur les mesures

de Hall de la force de portance). Ceci a bien entendu un effet significatif en augmentant la fraction

remise en suspension pour les délais très courts (ωt ~< 1) et constitue l’influence déterminante pour

la gamme temporelle entière de remise en suspension à court jusqu’au long terme. Le deuxième est

la valeur du rapport de la RMC de force de traînée à sa valeur moyenne qui, dans le modèle modifié,

est presque deux fois (1,8) fois supérieur que dans le modèle standard. Cet aspect du modèle est

largement responsable de la fraction remise en suspension plus importante au-delà de 1s environ

(un délai suffisamment long pour intégrer la phase de transition entre le taux de remise en

suspension à court terme et celui à long terme (qui varie comme 1/t). Le troisième aspect introduit

des modifications de la remise en suspension à cause de la distribution des forces de traînée

aérodynamiques qui est nettement non gaussienne dans le modèle modifié; en pratique cette

distribution se rapproche plutôt d’une distribution de Rayleigh. Cette différence signifie que, dans

les zones extrêmes de la distribution, la force de traînée s’estompe beaucoup plus lentement

qu’avec la distribution gaussienne équivalente (ayant la même RMC) de sorte que, pour les valeurs

très grandes du rapport {force d’adhérence / RMC de la force de traînée} ~8 (à la limite extrême

des résultats de la DNS), la constante du taux de resuspension initial est 30 fois supérieure à celle

du modèle gaussien équivalent. Ainsi, bien que la fraction de particules remise en suspension soit

très faible dans ces conditions, les différences entre les modèles standard et modifié peuvent être

très grandes. Ceci est particulièrement important à la considération de la resuspension depuis les

dépôts de particules multicouches.

Lorsqu’on considère ces influences dans le contexte d’une étendue large de forces d’adhérence due

à la rugosité d’une surface, on trouve en général que le modèle modifié produit une fraction de

resuspension de particules environ 10% plus élevée que le modèle R’n’R standard (pour une

distribution initialement lognormale des forces d’adhérence), cependant cette différence peut

devenir plus significative (3 à 7 fois plus élevée en fonction de la gamme des valeurs du facteur

d’étendue de la force d’adhérence) lorsque la vitesse de frottement est faible (c’est-à-dire,

fraction de resuspension faible). Quant au taux de resuspension à court terme, la différence entre

le modèle modifié et le modèle standard devient significative lorsque ce taux est dominé par la

fréquence typique de bourrasque (ω+ égale 0,0413 pour le modèle gaussien, 0,08553 pour

l’approche LES et 0,127143 pour celle de la DNS à y+ = 6). La sensibilité au facteur d’étendue de la

distribution de la force d’adhérence a été également étudiée et ces résultats indiquent que le

modèle modifié conduit à remettre en suspension des particules beaucoup plus facilement que le

modèle standard sous conditions de vitesse de frottement faible et de surface plus lisse (c’est-à-

dire, facteur d’étendue de la distribution plus petit). Pour terminer cette phase des travaux, la
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corrélation entre la distribution de la force fluctuante et de sa dérivée a été vérifiée pour les

statistiques de la LES et de la DNS. Les résultats démontrent que cette corrélation a un effet très

faible sur la remise en suspension de particules comparé aux résultats du modèle à distribution

ajustée et non-corrélée.

A la lumière de données d’études numériques récentes des forces de portance et de traînée dans

des couches limites turbulentes (Lee et Balachandar), l’impact de ces forces sur les résultats

produits par le modèle R’n’R modifié utilisant la formule de O’Neil a été investigué. Les résultats

indiquent que, en termes de la fraction remise en suspension à long-terme, la différence est

mineure. La conclusion est que lorsque la taille de particule décroit la méthode de L&B conduira à

de moins en moins de resuspension à long terme.

Enfin l’ultime modèle qui a été développé dans le cadre de ces recherches est une version hybride

du modèle R’n’R adaptée au cas de dépôts multicouches et qui se base sur l’approche multicouche

de Friess et Yadigaroglu. Le dépôt est modélisé en plusieurs couches qui se recouvrent et l’effet de

masquage des couches du dépôt a été étudié; dans un premier temps un dépôt monodispersé

incluant un facteur du ratio de masquage est modélisé puis, par la suite, celui-ci est remplacé par

le cas plus général d’un dépôt polydispersé associé à une distribution de tailles de particules. Les

résultats indiquent, en général, une décroissance significative suite à un certain laps de temps de la

fraction remise en suspension de l’ensemble du dépôt lorsque le nombre de couches modélisées

augmente. Autrement dit, il faut beaucoup plus de temps pour remettre en suspension un dépôt

plus épais. La prise en compte de la distribution de taille de particules augmente légèrement la

remise en suspension à court terme. Cependant, cette modification diminue de manière

significative la remise en suspension à long terme. Les résultats du modèle multicouche ont été

comparés à des données expérimentales provenant de l’essai SR11 du programme STORM (l’ISP-40)

et des expériences BISE. En général, les deux comparaisons indiquent qu’avec une étendue réduite

de la distribution de la force d’adhérence (c’est-à-dire, la distribution de la force d’adhérence est

plus étroite) la nouvelle modélisation multicouche s’accorde très bien avec les données

expérimentales. Il est possible d’inférer que les dépôts multicouches conduisent à des distributions

de force d’adhérence sensiblement plus étroites.
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Chapter 1

Introduction

And the continuity of our science has not been affected by all these

turbulent happenings, as the older theories have always been included

as limiting cases in the new ones.

- Max Born

1.1 Nuclear Accidents

During nuclear accidents, the severity of the consequences is governed by the quantities and forms

of radioactive substances (including actinides from the fuel, products of the actinide fission

reactions and activated structural material) released into the environment. This release is mainly

influenced by the formation, deposition (i.e., retention) and resuspension (i.e., remobilization) of

aerosols in the primary system and containment building. Therefore, aerosol resuspension can

become an important contribution to the severity of accidents. With different reactor technologies,

the causes of deposition and resuspension are different. There are three main reactors that will be

introduced below: pressurized-water reactor (PWR); high-temperature reactor (HTR) and

International thermonuclear experimental reactor (ITER).

1.1.1 Pressurized Water Reactor

In PWRs, there are three different barriers between fuel and environment. Firstly, there are

thousands of fuel rods making up the core and the fuel is contained as pellets in the fuel rods with

metal cladding (the first barrier). The core is inside a reactor vessel (which is part of the primary

system, the second barrier) which is inside a containment building (the third and final barrier). All

these barriers reduce the risk of radioactivity release to the environment.

Accidents can be caused by equipment failure or human errors. Different well-defined sequences

arise from accident scenarios that include station blackout (e.g. primary pumps stop working, back-

up power fails, etc.), transient sequences (severe over-reactivity of the core occurs when boric acid

in the primary coolant is suddenly diluted by pure water), loss of the
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primary coolant by leakage, and rupture of one or several steam generator tubes (Hocke et al.,

1995).

All of the above scenarios, coupled to other failures or events, can lead to the core meltdown and

consequently, the emission of various highly-toxic fission products (FPs) such as isotopes of Kr, Xe, I,

Cs, Sb, Ce, Te, Ba, etc. Some of these products initially in vapour state can result in aerosol

particles by homogeneous and/or heterogeneous nucleation where these aerosol particles will

undergo agglomeration and other processes (Zoulalian & Albiol, 1995).

The liquid or solid particles deposit by various mechanisms onto the reactor vessel internals and the

coolant pipework and, subsequently, can be resuspended if one of the following events occurs

(Parozzi, 1992):

 core quenching due to the delayed intervention of Emergency core cooling system (ECCS);

 slumping of the (partially) molten core into the pool of water remaining in the vessel

bottom;

 forced depressurization of the reactor coolant system (RCS) after or during the melting

period;

 fast depressurization due to pipework or vessel failure after or during the melting period.

Since the radioactive particles are released into the containment building and deposit on the walls

and the floor, in the same manner, particles can be resuspended here because of:

 Hydrogen deflagration;

 Steam explosion by vessel melt-through and corium contact with underlying water;

 Fast depressurization due to the containment failure;

 Fast depressurization due to the containment venting.

Compared to steam explosion, hydrogen deflagration is a more important phenomenon from a safety

point of view since, given the later time that deflagration can occur, high contamination levels can

be achieved in the containment atmosphere at a relatively late time in the accident.

1.1.2 High Temperature Reactor

In HTRs, fuel materials are contained either in graphite rods or inside graphite pebbles. Graphite

dust will be generated during the normal reactor operation and pebble-to-pebble friction and will

deposit inside the primary system; it will then become radioactive due to the sorption of FPs. This

radioactive dust is the major problem in accidents. In the case of a depressurized loss-of-flow

accident (e.g., large pipework leak), a significant amount of radioactive dusts will be resuspended

from the primary system inside surface due to the fast depressurization and will be released into

the confinement building and then be filtered before release to the environment. Therefore,
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resuspension of deposited particles become a key issue in HTR safety analyses (e.g., see

Stempniewicz & Komen, 2006).

1.1.3 International Thermonuclear Experiment Reactor

ITER is to be the first large-scale fusion reactor. The fuel (tritium gas) will be heated to the plasma

phase by the tokomak-based technology comprising, of most interest here, the ‘donut’ shaped

vacuum vessel (VV) which is surrounded by water pipes for cooling. Metallic dust will be generated

in the VV during normal operation due to the contact with and radiation of the plasma onto

structural surfaces where this dust will deposit inside the VV.

If a LOVA (Loss of vacuum accident) event occurs, an external flow which may be air or steam may

burst into the inside of vacuum vessel causing fast pressurization (Takase, 2001). Furthermore,

hydrogen will be generated from the reaction of steam with metallic dust (either resuspended or on

the hot surfaces) with the risk of causing a hydrogen explosion after condensation of the steam (Iseli,

2001). During the accidents, the radioactive dust will be resuspended from the inside surface of the

VV due to the external turbulent flow or the hydrogen explosion and must be dealt with by

confining measures if it is not to be released into the environment.

1.2 Aerosol Physics

Aerosols are suspensions of small particles in gases. They are formed by disintegration

(fragmentation) of solids or liquids or by condensation of gases to liquid or solid particles. They may

also result from the resuspension of powdered material or the breakup of agglomerates. The size of

aerosols varies from 1nm to 100 μm (Friedlander, 2000) where raindrops, e.g., are much larger 

(diameter around 1 mm). Heat and mass transport to the particles, as well as their interaction with

radiation, are strongly affected by size and shape. Liquid aerosols, due to surface tension, are

almost always spherical, but solid aerosols can occur in many different shapes varying from

spherical to fibrous (needle-like forms). They can be chain-like agglomerates, or can be amorphous

clumps (Williams & Loyalka, 1991).

1.2.1 Nuclear Aerosols

The aerosol characteristics in three different reactors will be described in this section. The

interested reader is referred to Allelein et al. (2009) for details of our current level of knowledge

and analytical capabilities with respect to nuclear aerosols (the reference concerns PWRs but is of

much more general validity).
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1.2.1.1 Pressurized Water Reactor

In a reactor accident, aerosols may range in size from 0.01μm to 20μm. Aerosol concentrations in 

accident analyses are typically less than 100g/m3 and usually more than 1g/m3. Kissane (2008)

concluded that the typical aerosol composition for PWRs is seen to be a mixture of roughly one third

metals (Ag and/or Cd, 15-40%), one third metal-oxide content (SnO and, potentially, UO2 and ZrO2)

and one third FPs covering a diversity of compounds (from metals to oxides to salts, e.g., RbI, to

ternary compounds). Concerning particle shape, relatively compact particles without branching

chain-like structures appear to be typical in the RCS.

1.2.1.2 High Temperature Reactor

In the HTR context, Kissane (2009) has reviewed information on this technology. Operating

experience with HTRs showed that three types of carbonaceous dust arose: graphite from

mechanical mechanisms in the core; carbon from decomposition of hydrocarbons (oil contamination)

and carbon from decarburization of steel alloys. Indeed, one can consider four types of dust since

the graphite from the core is generated from both the high-purity highly-graphitized filler and the

partially-graphitized binder of the fuel elements/pebbles.

Concerning the quantity of carbonaceous dust, information from HTR experience may well not be

directly relevant with respect to modern designs since materials (alloys, graphites) and conditions

have changed: decarburization-generated (if any) and graphite-abrasion-generated dusts are likely

to be different; hydrocarbon contamination can be ruled out. Nevertheless, given that knowledge

for this important parameter is very scarce, extrapolation from HTR experience is useful. It seems

that in a 400MWt pebble-bed HTR abrasion-generated carbonaceous dust can be anticipated to be in

the range 30–100 kg yr−1; dust in a prismatic-core HTR can be expected to be far less.

Concerning the size of carbonaceous dust, for the same reasons just stated above, information on

dust size from HTR experience may well not be of direct use with respect to modern designs.

Furthermore, it turns out to be reasonable to assume that the partially-graphitized binder is the

major source of carbonaceous dust. From only two reliable sources of relevant data, dust size

(diameter) is expected to be in the 1-5m range.

1.2.1.3 International Thermonuclear Experiment Reactor

The basic safety concern with ITER is the prevention of events leading to the release of tritium,

activated dust and activated corrosion products. It can be expected that in ITER the interaction of

plasma with structural walls of the tokomak and the diverter will generate hundreds of kilograms of

tungsten, beryllium and/or carbon dust (Chuyanov and Topilski, 2006; Ciattaglia, 2010). These

particles will have a characteristic diameter <100μm with a considerable fraction <10μm. 

Hypothetical accidents have been identified and investigated for ITER (Taylor, 2007). In particular,



1.2 Aerosol Physics

5

interaction of hot dust with water in the case of a water-ingress accident (i.e., failure of the first-

wall cooling loop inside the vacuum vessel) will produce hydrogen and risk producing an explosion.

Air ingress into the vacuum vessel could also potentially lead to a dust explosion. Such explosions

could damage the machine and would present a danger to the public if the release of radioactivity

(mainly due to the accumulated contamination in the dust) from the VV is not mitigated. The

current strategy to cope with the risk of dust and hydrogen explosions is based on administrative

limits on accumulation of dust within the ITER vacuum vessel.

1.2.2 Aerosol Mechanism

The General dynamic equation (GDE) is the fundamental description for modelling industrial and

atmospheric aerosol processes. According to Friedlander (2000), without considering the spatial

effect, the equation is obtained as shown below.

( , ) ( , )
( ) ( , ) ( )

coag

n v t n v t
R v n v t S v

t t

  
     

[1.1]

Where,

n(v,t) is the number concentration of particles with volume v at time t

the first term on the right is the rate of production of particles with volume v by coagulation

R(v) is the removal-rate constant of particles with volume v, i.e., deposition

S(v) is the source rate of the particles with volume v.

The coagulation term in Eq.[1.1] can be presented as shown below.

0 0

( , ) 1
( , ) ( ) ( ) ( ) ( , ) ( )

2

v

coag

n v t
K u v u n u n v u du n v K u v n u du

t


 

     
  [1.2]

where K(u,v) is the rate constant of two particles coagulating one with volume u and the other v.

Concerning Eq.[1.2], the first integral on the right hand side is the rate of coagulation of the

particles with volume u and v-u to form a particle of volume v, i.e., a creation term for this size.

The second integral is the rate of coagulation of the particles of volume v with particles of any

volume to form a particle that is no longer in the v to v+dv volume interval.

1.2.2.1 Particle Coagulation

‘Coagulation’ describes the process of fusion or adhesion of two particles when they touch. The

‘collision’ takes place due to the relative velocity between the aerosol particles. The relative

velocity can be affected by the following phenomena: Brownian motion, gravitational settling and

turbulent effects (Williams & Loyalka, 1991).

Brownian motion
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The simultaneous random walk of a large number of particles suspended in the fluid due to the

random impact of molecules on their surfaces arising from thermal energy leads to collisions causing,

therefore, coagulation.

Gravitational settling

The larger particles settling under the force of gravity will sweep up the smaller particles. If two

particles are within a certain distance of each other the faster one (if it is above) has the possibility

of colliding with the slower one, thereby causing coagulation.

Turbulence effects

There are two independent mechanisms, turbulent inertia and turbulent diffusion. The former one

means that the particles are expelled from turbulent eddies due to the large difference in the

densities of the particles and the fluid and then impact with other particles. The latter one is that

the particles are carried by the turbulent eddies when the particles are relatively small and then

contact other particles.

More explanations are given in Williams & Loyalka (1991) and Friedlander (2000). There is a

summary of all the formulas of particle coagulation in Allelein et al (2009).

1.2.2.2 Particle Deposition

Aerosol particles do not remain stationary. They can move because of gravity, temperature and

concentration gradients, random diffusion, aerodynamic forces or the force exerted by electrical

fields or radiation. There are various reasons causing particles deposition which include

sedimentation, impaction, diffusion and different phoretic mechanisms. Some of them will be

described below. More explanation, formulas and experiments are provided in Zoulalian & Albiol

(1995) and Allelein et al. (2009).

Deposition by Sedimentation

This phenomenon results from the action of gravity on a particle counteracted by the friction force

(drag). Practically, sedimentation becomes an important phenomenon when large particles (several

microns) are carried in a horizontal pipe by low-velocity flow and it often becomes dominant within

containment where the average velocity of the fluid is practically zero, particles size increases

(agglomeration) and temperature gradients are low.

Deposition by Impaction

In the presence of a gaseous flow submitted to a velocity variation or a direction change, the

liquid/solid particles, due to higher inertia, can follow a different path from that of the fluid phase.

On the other hand, smaller and lighter particles with low inertia follow closely the fluid path.

Consequently, a particle can encounter a surface which represents an obstruction in its path; the
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particles will hit the obstruction and remain there if the adhesive force is larger than the bouncing

force.

Deposition by Laminar and Turbulent Diffusion

Velocity and momentum gradients appear in a viscous fluid. Gradients enhance the migration of

aerosols to low velocity zones and consequently the trapping of aerosols on the wall where, in the

limit, flow is stagnant. This deposition process resulting from a velocity gradient is also called

viscophoretic deposition. In laminar flow, this phenomenon is dependent on fluid properties and

particle size where, in normal conditions, being driven by Brownian motion it is only be appreciable

in the case of submicronic particles. In turbulent flow, eddies enhance the mixing and dispersive

transport of particles having most impact on supramicron particles. In a turbulent flow near a

surface, i.e., within the viscous boundary layer, particles reach this layer by turbulent transport

then other mechanisms such as Brownian motion lead to transport to the wall. It must be noted that,

in the case of highly turbulent flows, there exists an additional projection mechanism where eddies

can impart sufficient momentum to (larger) particles for them to be able to coast their way through

the boundary layer onto walls. This inertial impaction phenomenon is significant when the stopping

distance is non-negligible compared to the thickness of the boundary layers.

Deposition by Thermophoresis

A solid particle within a gaseous flow where there exist temperature gradients is subjected to a

force because the particle momentum flux is not nil due to the temperature gradient and the gas

molecule impactions on the particle which are not symmetrical (higher on the side facing higher

temperatures). If the wall temperature is lower than in the bulk of the gas, the particles tend to

move towards the wall and finally deposit there. This phenomenon is called thermophoresis. Since

thermophoretic deposition is linked to temperature gradients, it is only significant in spaces where

the distance between particles and the wall is small.

Deposition by Diffusiophoresis

Diffusiophoresis is particle movement by entrainment in the flux of a condensing vapour (Stefan

flow) such as steam. This effect arises because the gas impinging on one side of the particle imparts

more momentum than that impinging on the other side. The particles are carried by the condensing

vapour towards to the cold wall and deposit. This phenomenon always appears simultaneously with

thermophoretic deposition.

Electrophoretic Deposition

Generally speaking, the electric charge of an aerosol is never nil following impact with molecules.

Charged particles can be drawn to a wall due to the electric force (which can, in certain cases, be

very superior to gravity) and be trapped on the wall. Even for a “neutral” aerosol there may be a

charge balance of positive and negative particles; this balance can be destroyed by generating

positive or negative ions in the medium, such as in a strong electric field or near a radioactive
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source. Nuclear aerosols tend to be charged due to transporting radioactive isotopes that emit 

and  radiation carrying away electric charge.

1.2.2.3 Particle Resuspension

In reactors, particles deposited on surfaces can become resuspended by an aerodynamically-

generated lift and drag forces due to the incidents already described above. The basic nature of the

resuspension process is understood but it is not possible with today’s models to predict reliably

when and to what extent the process occurs (see Chapter 2).

Many parameters need to be considered in the resuspension process such as particle size, flow

conditions and the adhesion strength between particles and wall. Surface roughness is a significant

parameter in adhesive force. Resuspension is a random process. Particles are not immediately

resuspended by a certain flow but by irregular bursts. In turbulent flow, small particles are

resuspended in the boundary layer due to the occasional bursts of turbulent eddies. Resuspension is

a key precursor to dust explosions (cf. ITER above). In nuclear accidents, resuspension can have

considerable impact on the progression of the accident and radiation releases (Williams & Loyalka,

1991).

1.3 Objectives and Outline

1.3.1 Objectives

The underlying objective of this research is to develop, validate and apply a physical model for the

resuspension of particles from multilayer deposits that can account for the resuspension of clusters

of particles from a bed of particles of variable size and shape. It was not expected that a final

model taking account of an arbitrary deposit in arbitrary conditions would be developed but that

very substantial progress would be made towards this objective. The practical application will be

that of assessing resuspension of particles in a range of accident scenarios for PWRs as well as other

reactor technologies such as ITER. It will be seen that progress has been made with a hybrid

development of the Rock’n’Roll (Reeks & Hall, 2001) model suited to application to multilayer

deposits.

The resuspension of a particle from a multilayer deposit depends on the interaction of two

processes: the aerodynamic forces tending to remove the particle from the bed and the various

forces (essentially due to particle-particle interactions) that resist resuspension. To some extent,

these two effects can be decoupled and studied separately. The aerodynamic forces acting on a

particle will depend mainly on the turbulent flow and will be largely independent of the nature of

the surface so that results obtained for an isolated particle on a smooth wall can be applied to an



1.3 Objectives and Outline

9

exposed particle sitting at the surface of a multilayer deposit. The form of the particle resistance to

resuspension that is assumed in the Rock’n’Roll model might also be expected to apply to exposed

particles on a multilayer deposit. But there are also good physical reasons for believing that other

effects might occur in the resuspension of particles from a multilayer model that are not present in

the resuspension of an isolated particle from a smooth wall. For example, the micro- and macro-

scale roughness of the multilayer deposit will have some influence on the turbulent structure of the

near-wall boundary layer, thus modifying the aerodynamic forces acting on the particle. And the

presence of a wide range of particle sizes within the multilayer deposit can result in additional

resistance forces caused by interaction between the particles. An important consequence of this

interaction is that the resistance to resuspension can vary in time – the largest particles will tend to

disappear first, leaving a high concentration of small particles in the surface layer. These small

particles might then act as ‘cement’, locking in the larger particles in the lower layers, and thus

modifying the threshold for particle erosion. In such a situation the Rock’n’Roll model might no

longer be a reliable or relevant model for the intervening physical processes.

There remain some physical uncertainties in the basic Rock’n’Roll model, notably concerning the

validity of the assumptions made in modelling the aerodynamic forces on a particle at the surface.

It was decided, therefore, that since the Rock’n’Roll model will form the basis of a model for

resuspension from a multilayer deposit, the first priority of this research would be to improve the

modelling of the turbulence-induced aerodynamic forces on an isolated particle. It was thought that

investigating how the presence of layers of particles might modify the turbulence and the

aerodynamic forces exerted on the particle might also be achieved. Some account of how the

resistance to resuspension is modified for particles at the surface of a multilayer deposit was also a

possibility. The results from these possibilities could then be used to develop a simpler engineering

model for resuspension from multilayer deposits.

Detailed objectives begin with improving the Rock’n’Roll model for the resuspension of particles

from surfaces with less than a mono-layer coverage. Simulations will be required of the stochastic

properties of the turbulent forces generated on particles due to the turbulent structures generated

in the boundary layer (sweeping and bursting mechanisms). In particular, the examination of the

sensitivity or otherwise of the Gaussian assumption used in earlier stochastic models for

resuspension must be verified. This data will be used to construct a model for resuspension rate

that takes account of the non-Gaussian nature of the turbulent fluctuations (in particular the

turbulent induced shear force). It will be important to see how, for instance, the spectrum of the

turbulent-fluctuation strain rates is coupled to the induced aerodynamic forces. These forces will be

calculated using various models for the lift and drag based on the local instantaneous strain rate

and fluid velocity. Then, the intention was to develop a mechanistic model for resuspension of

particles of variable sizes (and perhaps shapes) from multilayer deposits accounting for the

resuspension of particles in clusters. A detailed model must deal with detailed mechanisms for
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release of clusters under the actions of turbulent drag and lift forces and their couples and the

cohesive forces binding the deposit together.

1.3.2 Outline

There are six chapters in this thesis. The present Chapter is the introduction which describes the

background of severe nuclear accidents and aerosol issues in different types of reactors as well as

the objective of this research. Chapter 2 is a literature review which presents the previous theories

on forces acting on particles when they are near the boundary layer, classical resuspension models

and previous resuspension experiments. The previous classical resuspension models are summarized

in three parts: 1) models based on force balance, 2) models based on energy accumulation, 3)

multilayer-deposit resuspension. Modifications of resuspension models rendering them physically

more acceptable will be demonstrated in Chapter 3 and Chapter 4, i.e., Chapter 3: modification of

a typical force-balance model (the fluctuating aerodynamic forces will be considered); Chapter 4:

modification of an energy-accumulation model (the statistics of fluid fluctuations will be modified

based on Large Eddy Simulation and Direct Numerical Simulation data). In Chapter 5, a multilayer

resuspension model based on energy accumulation will be developed, tested and discussed. Finally,

Chapter 6 leads to the final conclusions and future possibilities.
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Chapter 2

Literature Review

....I was standing on the shoulders of giants.

- Isaac Newton

In reality when a particle is sitting on the wall in a fluid flow (see Figure 2.1 below), the

aerodynamic forces - such as drag, lift, etc. - are tending to remove the particle from the surface

whereas the adhesive force, gravitational force, etc. tend to hold the particle on the surface and

resisting particle resuspension. In this section, the boundary layer condition and different forces

acting on particles will be introduced, and then the classical resuspension models will be

particularly reviewed; finally the resuspension experiments will be discussed.

Figure 2.1 - Forces on particle
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2.1 Boundary Layer and Forces

2.1.1 Boundary Layer

A boundary layer is a relatively thin layer of fluid close to a solid boundary in which the fluid

velocity changes rather rapidly with distance from the boundary. As we know, due to the effect of

viscosity, the fluid in contact with a solid surface must move at the same velocity as the surface

(the ‘no-slip’ condition). If the wall is stationary, the fluid velocity must therefore fall to zero at

the wall. Therefore, there will be a velocity transition between the near wall region and the

boundary. At large Reynolds numbers this transition takes place in a thin layer near to the wall and

Prandtl (1904) named this layer the boundary layer. A boundary layer is not a static phenomenon

but dynamic. The thickness of a boundary layer (there are several ways of defining the boundary

layer thickness: the height from the solid surface where 99% of free stream speed is first

encountered or on the basis of momentum, etc.) varies with streamwise position on the boundary.

The boundary layer may be laminar or turbulent which depends on the Reynolds number but viscous

forces dominate very near the wall even in the turbulent case.

Consider a flow with velocity U past an object with typical length scale L (for a circular pipe, this is

the diameter of the pipe and for a flat plate the distance from leading edge), a relative Reynolds

number is defined as Re = UL/νf, where νf is the kinematic viscosity of the fluid. The Reynolds

number characterizes the relative strength of viscous and inertial forces and it is the key parameter

used in defining whether a flow is likely to be turbulent. For low values of Re, viscous forces

dominate the flow and it tends to be laminar. For larger values, a point (typically Re = 4 x 103 for

circular pipe and Re = 5 x 105 for flat plate) is reached where a transition occurs in which the

fluctuations are amplified. Beyond this point, the flow tends to be a fully turbulent state.

2.1.1.1 Laminar Boundary Layer

In a laminar boundary layer, any mass or momentum exchange takes place only between adjacent

layers and the shear stress associated is able to be predicted by molecular viscosity. More details on

laminar boundary layer are provided in Batchelor (1967). In the present thesis, particles

resuspension is only considered in turbulent boundary layer.

2.1.1.2 Turbulent Boundary Layer

In a turbulent boundary layer, turbulent eddies rather than molecular viscosities are responsible for

the exchange of mass, momentum and energy (except for the very thin viscous layer adjacent to the

surface), and thus take place on a much bigger scale than for the laminar boundary layer. It is

convenient to transform the variables to dimensionless form with respect to the wall variables.
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uτ is the wall friction velocity, τw is the wall shear stress, ρf is the density of the continuous phase,

νf is the kinematic viscosity of the continuous phase, iu 
are the dimensionless fluid velocities

(note that iu is the time averaged fluid velocity), iv 
are the dimensionless particle velocities, t+ is

the dimensionless time and y+ is the dimensionless distance normal to the wall (Schlichting, 2000).

In the case of smooth surfaces, the friction velocity can be evaluated as a function of the Fanning

friction factor f* and the fluid characteristic velocity U (cross sectional average velocity which is

averaged over the cross sectional area and mass flow rate); In TRAP-MELT2, f* is computed from an

empirical correlation with Reynolds number (Parozzi & Masnaghetti, 1990).


 

0.32* 0.0014 0.125

2 2τ

Ref
u U U [2.2]

Close to the wall in the viscous sublayer (0 < y+ ≤ 5) viscous forces dominate and the dimensionless 

velocity varies linearly with distance from the wall:

xu y 

Further away from the wall (y+ > 70), momentum transfer is dominated by turbulent eddies, and the

velocity profile is logarithmic (but note that the log regime does not extend indefinitely):

1
ln 5xu y

κ
  

In between those two layers, there is a transition region – the buffer region – where the velocity

evolves from a linear to a logarithmic profile. Varies forms have been proposed for the velocity

distribution in this region; recently, Gersten and Herwig (1992) suggested:

4
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[2.3]

where κ = 0.41 and Λ = 0.127. The complete profile is plotted in Figure 2.2. 
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Figure 2.2 - Dimensionless fluid mean velocity in the turbulent boundary layer

In the viscous sublayer (y+ < 5), the mean flow shows a linear profile where the shear rate is given

by G = uτ
2/νf. Therefore, the shear rate Reynolds number becomes Rer = uτ r/νf.

In the case of a rough surface, the measurements of Nikuradse (1932, 1933) give

2.5ln 8.48x

r

y
u

k
   [2.4]

where kr is the Nikuradse roughness length (depends on material, e.g. 0.06 for coated steel, 0.16

for coated cast iron, 0.3-3.0 for reinforced concrete, etc).

There is no analytical solution for the profiles of turbulent quantities such as fluctuating velocities

and Reynolds stress, but various authors have attempted to fit equations to measured data. In this

way, Kallio and Reeks (1989) obtained the following profiles for the root mean square of fluctuating

streamwise velocity and the dimensionless timescale of the fluid fluctuation (see Figure 2.3):
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Figure 2.3 - rms of fluctuating velocity and fluid time scale vs. y+ (Kallio & Reeks, 1989)

Although there is strong activity in the near-wall region as shown by Townsend (1956), the

important feature this region reveals in the turbulence dynamics was first demonstrated by Kline et

al. (1967). They demonstrated an experiment to visualize the flow in a low-speed water channel by

using hydrogen bubbles which were generated by an electric wire. This technique revealed the

presence of low-speed streaks (shown in Figure 2.4, the wire is located parallel to a flat plate and

normal to the direction of flow; the flow is from left to right of the pictures). Intermittently, the

streaks begin to oscillate and then break up in a fairly violent motion, also called a ‘burst’ (shown in

Figure 2.5, the wire is located normal to the plate on the left of the pictures; the flow is from left

to right of the pictures).
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Figure 2.4 - Near-wall structure of a turbulent boundary layer (top view) (Kline et al., 1967)

Figure 2.5 - Near-wall structure of a turbulent boundary layer (side view) (Kim et al., 1971)

Figure 2.6 sketches the formation and breakup of the streak in the bursting process. Kim et al.

described that the total bursting process is a continuous chain of events leading from a relatively

quiescent wall flow to the formation of relatively large and relatively chaotic fluctuations. The

process, in the cases observed, is of an on-off or intermittent character. They also showed that

much of the turbulence production (about 70% of the total) was associated with the bursting.
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Figure 2.6 - Mechanics of streak formation and breakup (Kline et al., 1967; Kim et al., 1971)

In Kim et al. (1971) model, the first stage of bursting is considered as the lifting of a low-speed

streak from the wall. As the low-speed streak moves downstream it also gradually moves away from

the wall. The observed secondary (streamwise) vorticity embodied in a low-speed high-speed streak

pair initially is very low. As a result, the low-speed streak at first moves away from the wall very

slowly over a very long streamwise extent. One might say that its outward motion, away from the

wall, is then the cumulative effect over long distances (or times) of a small streamwise vorticity.
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However, once the low-speed streak has reached some critical distance from the wall, it appears to

turn much more sharply outward, away from the wall, but still moving downstream. This more rapid

outward motion is referred as ‘low-speed-streak lifting’ or, for brevity, ‘streak lifting’. The use of

the words ‘critical distance’ should not be interpreted as sharply defined single distance; there is,

in fact, a distribution of critical values when measured over a large number of streak-lifting

processes.
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2.1.2 Forces Acting on a Particle

When a particle is moving in a flow, different forces are generated from either the fluid properties

such as viscosity or the properties of the particle itself (density, radius, etc.). In this section, the

aerodynamic forces will be described in detail.

2.1.2.1 Drag Force and Faxen Force

Suppose the particle is moving in a uniform pressure field when there is no acceleration, the drag

force acting on the particle is defined as the steady-state drag force.

1
( )

2
ssD f DF ρ C S  u v u v [2.6]

ρf is the density of the flow, CD is the drag coefficient which varies with particle Reynolds number

(Rep). S is the representative area (cross section perpendicular to the flow) of the particle. u and v

are fluid and particle velocity vector, respectively. Rep is defined as below.

2 f

p

f

ρ r
Re

μ




u v
[2.7]

r is the radius of the particle (assumed as sphere), μf is the fluid viscosity. The relationship between

Rep and CD is shown in Figure 2.7. At critical Reynolds number (Rep ~ 3 x 105), there is a dramatic

decrease in the drag coefficient since the boundary layer becomes turbulent.

Figure 2.7 - Drag coefficient vs. Particle Reynolds number (Crowe et al., 1998)

When Rep < 1, CD becomes the classical Stokes drag coefficient (CD = 24/Rep). Stokes was the first to

derive an expression for the drag force on a small spherical particle falling in a viscous fluid.

6 ( )D fF πμ r u v [2.8]
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O’Neill (1968) derived that the drag force on a spherical particle near a surface in uniform linear

shear flow is approximately 1.7 greater than the Stokes drag force.

32.06 ( )DS fF μ r u v [2.9]

It can also be written as

232.06DS fF μ r G

where G is the shear rate. For a dimensionless distance from a surface smaller than y+ = 5, the shear

rate can be written as uτ
2/νf , uτ is wall friction velocity and νf is the fluid kinematic viscosity.

The Stokes drag force is based on a uniform free stream velocity; for non-uniform flow field an

additional force was derived by Happel & Brenner (1973) which is called the Faxen force.

3 2

F fF πμ r  u [2.10]

Dandy and Dwyer (1990) performed 3D numerical simulations of a non-rotating sphere in a steady

linear shear flow for a wide range of particle Reynolds numbers (0.1≤Rep≤100) and dimensionless 

shear rates. Their simulations showed that the drag force on a spherical particle in a shear flow is

almost the same as that in a uniform flow, in other words, the effect of shear on the drag force is

very weak.

Hontanon et al. (2000) derived the expressions of the drag force on a spherical particle near the

wall in turbulent pipe flow, including corrections due to both inertial and wall effects.
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where ux
+
, uy

+ are the fluid velocities in the streamwise and normal directions, vx
+
, vy

+ are the

particle velocities in the streamwise and normal directions and kpw is the ratio of particle radius to

particle distance from the wall.

In this thesis, the drag force will be calculated by simply using the O’Neill (1968) method. Also

there is an alternative method calculating drag force from local velocity gradients (Lee and

Balachandar, 2010) which will be introduced in Chapter 4.1.7 (p148)

2.1.2.2 Lift Force and Magnus Force

The Magnus force is caused by particle rotation. Due to the velocity difference between the two

sides of the particle, there is a pressure difference across the particle surface. Rubinow & Keller
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(1961) derived an analytical expression for the Magnus lift force on a spinning sphere, for the

condition Rep ~ 1.

31 1
( )

8 2
M f pF πρ D ω

  
      

  
u u v [2.12]

Lift force is the force generated due to particle inertia and shear rate, which causes the particle to

travel normally to the flow direction (perpendicular to the direction of the drag). There are three

important parameters of the Reynolds numbers associated with the shear rate (Rer), the particle

slip (Res) and the particle rotation (Reω).

2 2, ,r f s s ω pf f
Re Gr ν Re V r ν Re ω r ν   [2.13]

where G is the velocity gradient or shear rate, Vs is the particle slip velocity, νf is the fluid

kinematic viscosity, and ωp is the particle rotation.

When a particle is moving in a shear flow (Rep  1), due to the pressure distribution induced by

velocity gradient, a force is generated by the pressure gradient normal to the velocity streamline.

This is so called the Saffman lift force (Saffman, 1965), which is valid only for the strong shear

regime (Rer
1/2  Res).

2 ( ) ( )
6.46Sl f fF r μ ρ

  




u v u

u
[2.14]

This solution, as noted by Saffman, is not valid for the particle near the wall surface.

According to Goren (1970), the lift force acting on a particle in contact with a plane in uniform flow

depends on fluid viscosity, particle radius and a constant characterizing velocity gradient of the

fluid velocity normal to the plane. The constant gradient based on Laufer’s (1954) result is

estimated proportional to fluid kinematic viscosity and wall friction velocity. Then the lift force of

the particle on the plane in uniform flow is obtained by

3

20.608 τ
lp f f

f

ru
F ρ ν

ν

 
  

 
[2.15]

However, this model was considered in the case of creeping flow only and the flow direction was

normal to the surface.

For a sphere resting on a flat surface in wall-bounded shear flow under conditions of small particle

Reynolds numbers, Leighton and Acrivos (1985) showed the mean lift force in terms of the shear

rate is equal to uτ
2/νf in the viscous sublayer (y+ < 5). Therefore, the mean lift force acting in the

boundary layer is derived as

4

20.576 τ
LA f f

f

Du
F ρ ν

ν

 
  

 
[2.16]

However, their solution is only strictly valid when the shear Reynolds number is much less than one.
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Cherukat and McLaughlin (1994) derived a simplified equation for the inertial lift force on a

spherical particle in a linear shear flow very close to a flat wall (i.e., the ratio of particle radius to

particle distance from the wall, kpw ≈ 1) which interpolates smoothly between the Saffman and the 

Leighton-Acrivos limit. It is considered to be the best analytical result to calculate the lift force on

a sphere in wall-bounded shear flow (Lazaridis et al., 1998).
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There is a major assumption for all the lift force theories above, which is that both the shear rate

Reynolds number and slip Reynolds number are much smaller than unity (Rer  1, Res  1).

None of the above theories can be extrapolated to the situation where larger particle Reynolds

numbers are considered and also they are not valid for the spherical particles near the surface in

the sublayer region. Hall (1988) then produced an experiment to measure the lift force on the

particles in the viscous sublayer and derived a correlation of mean lift force by fitting to the

experimental data.

2.31
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[2.18]

which is valid over the range (1.8 < ruτ/νf < 70). This model will be applied for the mean lift force in

this thesis.

2.1.2.3 Pressure Gradient and Buoyancy Force

The local pressure gradient generates a force in the opposite direction of the pressure gradient. The

net pressure force and shear stress force are given by:

,P p f τ p ijF V p F V τ      [2.19]

where Vp is the particle volume, τij is the shear stress tensor and pf is the fluid pressure.

Sometimes, in the case of bubbly flow, the buoyancy effect becomes important. The corresponding

buoyancy force is known as Archimedes principle.

( )b p f pF ρ ρ gV  [2.20]

where ρp is the particle density.

However, pressure gradient and buoyancy force is very small for solid particles compared to drag

and lift. Therefore, they are not considered in this thesis.
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2.1.2.4 Added Mass Force and Basset Force

The added mass force, also known as the virtual mass force, is a result of the fluid around the

particle being accelerated with the particle. Essentially, it just expresses the fact that in order to

accelerate the particle, the fluid also needs to be accelerated: the fluid in front of the particle has

to get out of the way, and the fluid behind has to follow the particle. Balancing the work done in

accelerating inviscid and incompressible fluid surrounding the particle, the added mass force is

obtained

1

2A f p

D d
F ρ V

Dt dt

 
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 

u v
[2.21]

The Basset force, also called the Basset history force, is the force associated with past movements

of the particle. The Basset term takes account of viscous effects - it describes the force due to the

lagging boundary layer development with changing relative velocity. The Basset force depends on

the acceleration history up to the present time. Reeks and McKee (1984) modified the expression for

the Basset force to include the case when there is an initial fluid and particle velocity.
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where u0 and v0 are the initial fluid velocity and particle velocity, respectively.

In this thesis, the added mass and Basset force are not considered due to their small contributions

to the aerodynamic force for small solid particles in gas flow.

2.1.2.5 Adhesive Force and Surface Roughness

Adhesive forces include intermolecular forces such as van der Waals interactions, various chemical

and hydrogen bonds, and sintering effects such as diffusion, condensation and diffusive mixing

(Krupp, 1967). Surface roughness also plays an important role in adhesion since the adhesion of

small particles on rough surfaces is mainly determined by the geometrical features of the surface-

particle system (Katainen et al., 2006).

Hertz (1896) was the first person who investigated the contact between two smooth elastic bodies

and demonstrated that the contact radius (distance between the centres of the mass of two bodies)

between two spheres is a function of the sphere radii and the force acting on them.

3 1 2
1 2

1 2

3
( )

4
c pf

rr
r π k k F

r r
 


[2.23]

where rc is the contact radius, k1 and k2 are elastic constants for each sphere, r1 and r2 are sphere

radii, and Fpf is the pressed force (interaction force) between spheres. Based on Hertz’s contact

equation, Johnson et al. (1971) (JKR) demonstrated that the pull-off force between the solid elastic

spheres in contact is determined by the surface energy:
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where γ is the surface energy per unit contact area. Based on the JKR theory, the element of the

normal force of adhesion to the surface for a perfectly smooth contact surface and a spherical

particle of radius is:

3

2
aF πγr [2.25]

where γ is the surface energy, (0.56J/m2 for aluminium, for example). This simple model will be

applied for the adhesive force of particle sitting on perfect smooth surface in this thesis.

Schaefer et al. (1995) investigated the surface force interactions between individual 8 μm diameter 

spheres and atomically-flat substrates and concluded that by including the surface asperities of the

substrates, the measured pull-off forces are a factor of 3 smaller than that expected from the JKR

predictions. Deladi et al. (2002) presented a 3D adhesion model based on JKR theory, which is

capable of estimating adhesive forces between two arbitrary surfaces taking into account van der

Waals forces, normal forces, elastic and plastic deformation of the contacting asperities.

Recently, surface energy and pull-off forces for particles in contact with a rough surface have been

measured using Atomic Force Microscopy (AFM). The basic principles of this technique are well

described in Binnig et al. (1986). Measurements of pull-off force obtained using this method are

provided by Beach et al. (2002) and Drelich et al. (2004). George and Goddard (2006) describe the

use of this technique to measure surface energy of rough surfaces. Several approaches have been

developed for describing the effect of surface roughness on adhesion, and Eichenlaub et al. (2004)

compare three of these – representation by hemispherical asperities, by fractals, and by Fourier

transforms (Cooper et al., 2001) – using results from AFM. However, the details are not included

here since this is not important to the rest of this study.

Van der Waals and cohesive force

The Van der Waals force is the principal interaction force between particles caused by general

molecular attraction. It is related to the Hamaker constant (Hc) which is determined by the number

and static polarizability of the atom particles. Ranade (1987) stated that the effect of roughness on

Van der Waals force is highly dependent on the nature of the roughness and that the molecular

interactions are usually active over a distance of several nanometres across the interface between

the particle and the substrate. Recent models simulating adhesive force between a small spherical

particle and a rough surface are based on the idea that the asperities can be modelled as

hemispherical caps on a smooth substrate. Rabinovich et al. (2000) modified Rumpf’s model (Rumpf,

1990) - commonly used in modelling adhesive force between a spherical particle and nanoscale

surface roughness - by replacing asperity radius with the asperity root mean square (rms) roughness

(rms value of the asperity radii) since the asperity radius is not easily measured; they proposed:
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where Hc is the Hamaker constant, H0 is the equilibrium distance (closest approach between surface,

approximately 0.3nm), r is the particle radius and arms is the asperity rms value. Rabinovich et al.

(2000) concluded that their model is more accurate than previous models. The experimental

adhesion force was predicted within 50% of experimental values using their method whereas

previous models underestimated adhesion by a factor of 10-50.

The cohesive force is defined as the adhesive force between particles and is generated by the same

physical processes as those responsible for the van der Waals force, but the cohesive force depends

on the contact geometry between the particles. Alloul-Marmor (2002) noted that the contact forces

between particles in a bed are much more complicated to evaluate than the equivalent forces for

particles on a surface, because of the widely-varying contact conditions or deposit structure.

Other forces

There can be an electrostatic interaction between particles, or particles and a surface caused by

the difference in the work function of contact potential between two materials or by the electric

charge on the particle or the surface. Bowling (1988) concludes that for particles less than 25 µm

(radius), the Van der Waals force predominates over the electrostatic force.

If a liquid film is present, capillary forces can have an important effect; in dry conditions it might

be expected that this force will not be significant, but if the aerosol particles have absorbed liquid,

then a liquid film can be present on the surface of the particle. The force is linearly proportional to

the radius of curvature of the liquid film, and this will generally scale on particle radius.

The frictional force is due to the sliding and rolling resistance and is related to the particle weight.

However, in the multilayer deposit the frictional force is also affected by other forces (adhesion,

particles interaction force, etc.).

2.1.2.6 Gravitational Force

The gravitational force for a spherical particle with radius r and material density ρp is given by:

34

3
G pF πr ρ g [2.27]

This force is generally only important for aerosol particles radii larger than 50μm, whilst for particle 

radii smaller than 25μm it becomes negligible. 
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2.2 Resuspension Experiments

2.2.1 General Experiments

Many experiments have been performed to investigate different aspects of the resuspension of small

particles by a turbulent flow, and Table 2.1 (taken from Alloul-Marmor, 2002) provides a summary of

most (if not all) of the relevant experiments. These experiments can be divided into two main

groups – those aimed at improving the detailed understanding of specific physical processes involved

in the resuspension of a small particle from a clean surface, and those designed to provide data

concerning the collective resuspension of a large number of particles from a deposit. Often these

latter experiments have been performed in conditions that are as close as possible to those that

might occur in a real resuspension event in a nuclear circuit.

Data from both types of experiment have been used in the development and validation of

resuspension models, but the very wide range of conditions and experimental techniques that have

been used makes it difficult in some cases to obtain general agreement on the influence of certain

parameters and effects.

It should also be emphasized that the conditions in a real resuspension event in a nuclear circuit are

likely to be so extreme (temperature, velocities, radioactivity...) that it is not possible to envisage

simulating them directly in an experiment. So the only way of extrapolating from laboratory

experiments to these extreme conditions is with models which reproduce the basic physical

processes correctly.

For the work presented in this thesis, the most useful resuspension experiment is that of Reeks and

Hall (2001), partly because this was used to validate the Rock’n’Roll model, but also since the

experiment provided direct measurements of particle adhesion. Detailed information about Hall’s

experiment is included in Chapter 4.1.4 (p129). Therefore, the parameters of adhesive force

distribution, especially if it is assumed to be lognormal, could be useful for the comparison of the

modified models. Also Biasi’s correlation (Biasi et al., 2001) between particle size and the

statistical distribution of adhesive forces which was derived by tuning to results from several

experiments (Braaten, STORM and ORNL, see next section) will be also widely applied here in the

unmodified- and modified-model calculations.
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Author Year
Installation /

Measurement
Technology

Surface
Deposit of
Particles

dp(µm) Std
Parameters of

flow
Measured value Objective of experimental study and observations

Wright and
Pattison

1984
Circular tubes
2.33×7.62 cm

Polished steel
Multilayer of
Mg, Zn, TiO2,

FeO2

0.1 - 1 --- Up to 120 m/s
Study of influence of parameters on reentrainment in multilayer

deposits

Braaten et
al.

1988
Wind tunnel
1×1×2.5 m /

Optical system
Glass

Monolayer of
Lycopodium

28 1.07
V (m/s) = 6,0 ;

7,5 ; 9,0
I <1 %

Concentration of
resuspended
particles as a
function of time

Identification of coherent structures
2 events of Resuspension:

- Ejection-sweeping
- Macro-sweeping

Wen and
Kasper

1989
Tubes

1.25 to 25 mm /
CNC and LPC

Polished steel,
Electropolished

steel,
Rough steel

Monolayer of
Dust

Inconnu
Latex

>0.01
>0.2

0.4 to 1

Polyd.

Volume flowrate
(104 m3/s) = 1.25

1.67
7.5

Concentration of
resuspended
particles as a
function of time

Validation of the kinetic model of molecular desorption (Wen and
Kasper, 1989) for the long-term (between 10 h and 100 h)
Observation of systematic departure from the 1 / Δ t law

Wen et al. 1989
Tube 5 mm/

CNC and LPC
Pure steel

Monolayer of
Latex

> 0.01 Polyd.
Re =

12400
155000

Concentration of
particles
Resuspension as a
function of time

Validation of the model of Wen and Kasper (1989) for short term
(< 1 min)

Fromentin 1989
Tunnel PARESS
25×25×350 cm /

Gravitational weight

Stainless steel
sample 10×30

cm2

Multilayer of
SnO2
Fe203

Sn
Si

0.4
2
4

4.3

2.8
2
2
2

V (m/s) =
5 to 25

Flux of
resuspension as a
function of time

Study of resuspension a multiplayer deposit - Elaboration of a
semi-empirical correlation

Observation of a reduction if the resuspension flux as a function
of time

Braaten et
al

1990
Wind tunnel

1×1×2.5 m / Optical
system

Glass
(microscopic

plate)

Dispersed
monolayer of
Lycopodium

28 1.07
V (m/s) =

6.0 ; 7.5 ; 9.0
I <1 %

Fraction
resuspension as a
function of time

Measurement of the adhesion force - Validation of the
resuspension model based on a Monte-Carlo algorithm

(Braaten et al., 1990)

Tsai et al. 1991
Hard disk of
computer /

Calculations

Smooth disk of
SiO2

Monolayer of
SiO2 sphèrical

and smooth

0.01 to
0.12

V (m/s) =
0.3 to 0.9

Critical linear
velocity of
resuspension

Validation of the resuspension model of critical moments
Highlighted the influence of the size of particles, energy of

surface and parameters of membership on the critical velocity of
detachment of particles

Taheri and
Bragg

1992
Injector 24×12 mm

/ Microscopic
counting

Glass plate
Monolayer of

Glass marbles
20
35

1.04
1.8

V (m/s) =
5 to 87

Percentage of
particles
resuspended as a
function of the free
velocity and friction
velocity

Study of resuspension and of the critical velocity of detachment
Description of the lognormal distribution of the adhesive forces

Wu et al. 1992

Blower
1×1×9 m /

Microscope and
camera

---

Monolayer of
Uranine
Polymer

Lycopodium
Pollen

5 to 42 Monod.
V (m/s) =

4 to 8
I~2 %

Resuspension and
rebound fraction,
Resuspension rate
as a function of
time

Phenomena of rebound and of resuspension of particles
Description of the 2 regimes of resuspension: <1 min, strong

rate ; followed by a weaker rate
Description of the influence of the velocity of flow, of the size of

particles, of humidity and of roughness of surface

Fairchild
and Tillery

1992

Hemispheric
channel

20×15 cm /
Gravitational weight

Steel
Monolayer of

Aluminium
spheres

0.8
7.0

2.4
1.6

V (m/s) =
5 to 22

Rate of
resuspension
Vertical flux of
resuspension

Effect of particles in saltation (100 to 200 µm) on resuspension
of particles <10 µm

Increase of Resuspension with the size of particles in saltation

Nicholson 1993

Wind tunnel
1×1×19.25 m /

Isokinetic probe and
optical microscope

Concrete
Grass

Silica marbles
4.1
9.6
17.5
22.1

0.8
1.9
2.7
3.2

V (m/s) =
3.0 ; 5.0 ; 6.5

3.0 ; 4.5 ; 8.0

Rate of
resuspension as a
function of time

Influence study of the surface, particle sizes, air velocity and the
type of resuspension surface

Variation of the rate: 1/Δt 
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Braaten 1994

Wind tunnel
0.5×0.5×6 m /
Optical system
(microscopic

counting)

Glass
(microscopic

plate)

Dispersed
monolayer of
Ni marbles

Lycopodium
Glass marbles

Pollen

18
28
20
34

Polyd
1.07
Polyd

I <1 %
V (m/s) =

9.6 to 15.1
5.9 to 11.0
13.5 to 19.6
5.4 to 10.9

Fractional
resuspension as a
function of
adhesives forces
and of velocity

Study of characteristics of resuspension of monolayer deposits
Determination of the entrainment velocity as a function of the

flow velocity

Foucault 1994

Tunnel
0.5×0.47×5.7m /

Capture by sound
and laser system

Polished or
rough Steel

Natural bed of
Polystyrene

PVC
Silica gel

Glass marbles

80 to 2000
2 to 250
3 to 60

80 to 520

Tend to
Monod
Monod.
Monod.
Monod.

V (m/s) =
1 to 25

Critical lift-off
velocity
Mass of recovered
particles

Phenomenon of takeoff and of saltation particles in a turbulent
boundary layer– Validation of the lift-off model (Foucault, 1994)

Giess et al
1994
1997

Aerodynamic tunnel
/

Isokinetic probe

Palouse of
different height

Silica spheres
dae =

1 ; 5 ; 10
et 20

Monod.
V (m/s) = 3.0 ; 5.0

et to 7.8

Resuspension rate
and accumulative
resuspension
fraction as a
function of time

Influence of the roughness of the surface, the speed of the wind,
the stability of the speed and the time of exposure on

resuspension
Description of the dependence of the rate as a function of time

Matsusaka
and

Masuda
1996

Canal rectangulaire
3×10×400 mm /

Electrostatic
method

---
Fly ash

agglomerates
3,0

10-30
2.14

V (m/s) =
10 to 40

Acc (m/s2) =
0.01 to 0.6

Resuspension flux
and Mass
resuspended per
unit surface area
as a function of
velocity and time

Study of a entrainment
in a stable and accelerated flow – Validation of the model of

Matsusaka and Masuda (1996)
Description of the influence of acceleration on reentrainment

Hummel et
al

1998
Circular wind tunnel
STORM 63 mm×5

m /

Steel with
roughness of

0.8 µm
Multilayer SnO2

dae=
0.8
0.7
0.7

1.8
2.7
2.3

V (m/s) =
58 to 127
89 to 109

78

Rate of
resuspension

After a deposition stage, the study of resuspension of a
multilayer deposit

Study of influence of the temperature and of the gas flow
velocity on resuspension

Tsai and
Chiou

1999

Wind tunnel 5×5×20
cm /Suction on

filters – TSI
DustTrak

Flat plate Road dust < 44 ---
V (m/s) =
0 to 15

Emission factor

Critical velocity of reentrainment and entrainment in an
accelerated flow

Description of the influence of acceleration on the emission
factor

Phares et
al.

2000
Channel of breadth
1.27 mm / Camera

Glass plate
Spheres of
fluorescent
ammonium

8.4 to 15.7
6.6 to 13.5

Monod.
Monod.

Re inconnu
Effectiveness of
resuspension

Description of the influence of the size of particles and
properties of the surface on the resuspension

Development of a kinetic model of detachment taking into
account these observations

Reeks and
Hall

2001
Tunnel 5×0.2×0.02

m / Photograph
Polished steel

Dispersed
polystyrene

and monolayer
aluminium

12.2
23
13

1.15
1.17
1.85

uτ (m/s) =
0.1 to 10

Fractional
resuspension after
1 s
Adhesive forces

Comparison with RRH (Reeks et al ., 1989) and Rock’n’Roll
models (Reeks and Hall, 2001)

Closer experimental results of the Rock’n’Roll model

Gotoh et al 2001

Rectangular section
2×40×400 mm /
Camera at the

microscopic scale

Glass plate

Graphite
Particles

spheres of
polyethylene

10-55 Polyd.

V (m/s) =
9.9 to 39.6

Re =2600 to
10000

Instantaneous and
integrated
resuspension
fractions as a
function of Δt 

Effect of the numbers of particles per unit surface area on the
resuspended fraction

Table 2.1 - List of experimental studies of particle resuspension (Alloul-Marmor, 2002)
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2.2.2 Experiments in Nuclear Area

Parozzi et al. (1995) reviewed several nuclear based resuspension experiments in detail:

 The Marviken Experimental Intermediate Program (Ström, 1986) which investigated the possible

effect of the resuspension mechanism on the aerosol deposition in pipes and concluded that no

resuspension effect had influenced the tests previously performed;.

 The LWR Aerosol Containment Experiments (LACE) (Rahn, 1988) which focused on providing a

representative database for thermal-hydraulic and aerosol codes in the scenarios of containment

failures;

 PARESS (PArticle RESuspension Study) (Fromentin, 1989) which gave preliminary indications about

the main characteristics of the resuspension phenomenology although it did not produce data

bases representative of RCS (Reactor Coolant System) conditions because of the lack of accurate

measurements of the initial mass in RCS condition;

 AEA Winfrith Experiments (Benson & Bowsher, 1988) which confirmed the importance of the

physical resuspension process in severe accident analyses although the conditions of those tests

were again quite far from LWR accident conditions;

 Oak Ridge Experiments (Wright & Pattison, 1994) which is the most systematic experimental

approach to dry aerosol resuspension within the RCS and the results showed that the resuspension

became significant at high velocity (~ 60m/s);

 STORM Program (Simplified Tests on Resuspension Mechanisms) (Agrati et al., 1991)

The STORM programme (SD test series for deposition and SR test series for gas-flow-induced

resuspension) carried out at the Joint Research Centre Ispra (Bujan et al., 2008) was conceived to

provide data for the development and validation of models for deposition and resuspension in

severe accident conditions. In particular, the experiments were designed to investigate two

processes considered to be important in the primary cooling circuit – thermophoretic deposition and

mechanical resuspension. The resuspension tests can be subdivided into four phases: (1) heat-up

phase, (2) temperature stabilization phase, (3) aerosol deposition phase, (4) and aerosol

resuspension phase. In test SR11 for example, the test section is a straight pipe 5.0055 meter long,

with 63 mm internal diameter; the aerosol used was tin oxide (SnO2) and in the resuspension phase,

pure nitrogen was used as the carrier gas (Castelo et al., 1999). The test was performed over two

consecutive days, with the deposition phase in the first day and the resuspension phase in the

second day. The resuspension phase was subdivided in 6 periods, with stepwise increases of the N2

carrier gas flow from 450 to 805 kg/h at 370 ºC. Detail information on the STORM SR11 – ISP40 is

presented in Chapter 5.2.1 (p184).

It is worth noting here that the ASTEC/Sophaeros code developed by IRSN is designed to predict the

transport of fission products in the RCS of a LWR during severe accidents (more information about

the Sophaeros code in Chapter 5.2.1, p184) where this includes aerosol mechanisms; in fact, either

a force-balance model can be activated for resuspension or the R’n’R model. This code has been
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used to simulate the STORM experiments (see Figure 2.8) but it does not agree particularly well

with the measurements, even after modifications – FB1 refers to the force balance model with the

cohesive force coefficient = 1.0x10-6 N/m; FB2 refers to the force balance model with the

coefficient of 1.0x10-5 N/m; RnR1 refers to the Rock’n’Roll model with an imposed maximum time

step of 1s; RnR2 refers to the Rock’n’Roll model with the imposed maximum time step of 30s.

Figure 2.8 - Comparison between model predictions and STORM SR11 test (Bujan et al., 2008)

Figure 2.9 - Comparison between model predictions and STORM SR11 test (Bujan et al., 2008)
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In particular, the experiments show that resuspension occurs almost instantaneously when the

conditions change, and then drops to zero, whereas the models FB1 and FB2 show a steady increase

in resuspension fraction during periods of constant conditions. The R’n’R model reproduces the

stepwise intermittent behaviour observed in the experiments, but also over-estimates the fraction

resuspended.

If the R’n’R model is modified, using the adhesive force correlation developed by Biasi et al. (2001),

then it agrees much more closely with the data (Figure 2.9), but this is hardly surprising, since the

STORM data set was one of those used to develop this correlation in the first place.
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2.2.3 Experiments on Multilayer Deposits

Only a few experiments have been performed using multilayer deposits. The PARESS experiment

(Fromentin, 1989) includes two steps:

 Deposition phase in which particles (Fe2O3, Sn, Si and NaCl) are generated with an AMMD

(Aerodynamic Mass Median Diameter) between 2 and 4.3μm and STD (Geometric Standard 

Deviation) is around 2;

 Resuspension phase in which the mean velocity of the flow could be selected from 5 to 20 m/s.

Fromentin determined a fraction of resuspended particles which he expressed in terms of the mean

flux, calculated from the difference between the mass of the deposit before and after resuspension.

From these experimental data, Fromentin established a relationship between resuspended flux, the

exposure time and the friction velocity near the surface. He also concluded that the resuspended

flux was approximately proportional to the surface friction velocity. Also, the study described that

the mechanical resuspension of dry particles reveals two distinct aspects: erosion and denudation. If

erosion occurs, the dust is removed steadily layer by layer, while if denudation occurs, the deposit

is suddenly lifted and holes are produced on the deposited surface.

Alloul-Marmor (2002) produced a resuspension experiment (BISE) for cone structured multilayer

deposit, which will be presented in detail in Chapter 5.2.2 (p189).

Raunio (2008) produced a resuspension experiment funded by VTT (Technical research center of

Finland). In the VTT experiment, the N2 flow is controlled by critical orifices which were designed to

give 100 l/min at a pressure 1.8 bar and normal temperature. The gas has a density of 1.194 kg/m
3
,

and a kinematic viscosity of 1.47x10
-5

m
2
/s. In a deposition phase, the nickel particles were deposited

on a glass surface. Deposited particle size is not measured whereas the AMMD of particles in the gas

flow is measured as 1.8μm with GSD 1.4 (GMD is around 0.4294μm). During the experiment the flow 

rate was progressively increased and the commutative fraction of particles resuspended was

measured for each new value of the friction velocity (0 ~ 3.2m/s). The experimental data showed that

there are only approximately 50% of the particles resuspended after about 100 minutes. Raunio

concluded that their resuspension results suffered from large uncertainties and are largely

inconclusive.

In this thesis, the data of STORM SR11 test and the BISE experiment will be applied for the

comparison to the multilayer model results.
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2.3 Classical Resuspension Models

The reentrainment phenomenon has long been studied. For a liquid surface, the adhesive force

acting on a particle is much greater than on the solid surface and the particle is very hard to

remove. In this case, particle reentrainment is assumed to be negligible. On a dry solid surface,

apart from resuspension there is a rebound or bounce-off process during deposition. When a particle

strikes a surface, due to the momentum of the particle and mechanical properties of both the

particle and surface, it can bounce off the surface. For given physical properties, the physics of

rebound shows that a particle would rebound from a surface as long as the particle speed or kinetic

energy is above some critical level and that it will prevent resuspension from taking place. A brief

review on rebound process is discussed by Paw U and Braaten (1995). In this thesis, the bounce-off

process is not considered. We deal with a simplified situation where the resuspension process occurs

after a deposition phase with particles that have been deposited on a surface being resuspended by

gas flow sweeping over the surface.

The particle resuspension is usually indicated in terms of resuspension rate (Λ) and resuspension

mass flux (Φr). According to Fauske (1984), for an initial mass load of M0 particles deposited on the

surface with area S, and if ∆M is the mass of the particles resuspended during a time interval ∆t,

the resuspension rate and mass flux are defined as

Δ 0
0 0

0

Δ / 1
Λ lim

( / )Δ

1
Λ

t

r

M S dM

M S t M dt

M dM
Φ

S S dt


 

 

[2.28]

Over the years, many studies have been devoted to the construction of theoretical models for

simulating and predicting resuspension properties which have been divided into two categories: one

is based on a balance of forces which concerns the resultant force from aerodynamic and adhesive

forces acting on a particle and the other is based on energy accumulation that describes particle

removal in terms of accumulation of kinetic energy from the flow.

Early scientific research on resuspension, such as Chepil (1959) and Bagnold (1960), was concerned

with soil grains and settled-dust transport into atmosphere. Corn and Stein (1965) studied the re-

entrainment of spherical glass particles and fly ash from metal surfaces by high speed air flow (e.g.,

20m/s to 30m/s) and indicated that one main difficulty of predicting particle re-entrainment on the

surface is the influence of particle adhesion. Concerning the nuclear industry, Romney and Wallace

(1977) concluded that resuspension of contaminated particles in the environment can lead to re-

deposition and formation of foliar clusters, which contributes significant plutonium level in

vegetation. Ziskind et al. (1995) mentioned that experimental measurements of resuspension

indicate that particle removal from a surface is not instantaneous but takes place over a period of
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time. Thus, it is assumed that resuspension has a statistical origin associated with the turbulent

flow character.

Hereafter, the classical models based on a force balance approach are reviewed and discussed in

Chapter 2.2.1 (p35) and those based on energy accumulation are reviewed and discussed in Chapter

2.2.2 (p47).
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2.3.1 Models Based on Force Balance

The force-balance model is based on a simple concept where particle resuspension is assumed to

take place instantaneously when the aerodynamic forces exceed the surface adhesive force. Three

types of force balance model have been developed - statistical models, kinetic models and

Lagrangian models – and they will be reviewed separately.

2.3.1.1 Statistical Models

Cleaver and Yates (1973) developed the first isolated-particle resuspension model to combine the

statistical character of turbulent bursting with particle resuspension by using the visual observations

on burst distribution in space and time. Although it is statistical in nature, it retains the essential

character of a force-balance model. The resuspension depends on both the lift force caused by

burst flow and the adhesive force from the surface, as shown below.

Figure 2.10 - Schematic diagram of turbulent burst in the wall region (Cleaver & Yates, 1973)

The burst is modelled by Cleaver and Yates as an axisymmetric stagnation-point flow and the lift

force acting on a particle is proportional to ρf νf
2(Duτ/νf)

3 (given by Eq.[2.15])

3

20.608 τ
L f f

f

ru
F ρ ν

ν

 
  

 

In their model, particle resuspension can occur if the lift force is greater than the adhesive force

leading to the criterion (Eq.[2.29]). Following Zimon (1964) they assumed that all types of adhesive

forces are proportional to the particle diameter. Therefore, particle resuspension occurs (in other

words, the lift force is greater than adhesive force) when
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where τw is the wall shear stress and β is a constant.

Ziskind et al. (1997) analysed particle detachment from a surface by considering the aerodynamic

and adhesion force (or moment). By using the JKR adhesion model (Johnson et al., 1971), they

defined the conditions of particle resuspension from a perfect smooth surface which is similar to

Eq.[2.29] and from a two-asperity rough surface.
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where κ is elastic constant of the particle, γ is the surface energy and ra is the asperity radius.

The aerodynamic force for resuspending the particles is provided by turbulent burst; based on an

analysis of experimental data, Cleaver and Yates suggested that a typical burst diameter is of the

order of 20νf/uτ and that bursts are separated by a distance of about s 630νf/uτ in the streamwise

direction, and 135νf/uτ in the cross-stream direction, as shown in Figure 2.11.

Figure 2.11 - Turbulent burst distribution on the surface (Cleaver & Yates, 1973)

The mean time period between bursts is approximately 75νf/uτ
2. Assuming that some fraction α of

the particles exposed to a turbulent burst on the surface of the deposit are removed, in other words

all the particles in an area of α(π/4)(20νf/uτ)
2 will be removed from the surface in any one burst,

the fraction of the particles resuspended as a function of time is given by

2
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[2.31]
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The initial resuspension rate defined at the moment when the surface is first exposed to a turbulent

burst is given by

2

0

Λ(0) ln 1
75 270

c τ

ft

df u α

dt ν


 
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 
[2.32]

Cleaver and Yates assume that the constant α is approximately of the order 1/100. Their model

recognises the importance of the rms (root mean square) lift force in particle resuspension, but it

does not give consideration of this quantity in the turbulent burst.

Phillips (1980) followed the study and extended the resuspension conditions to four regimes (see

Figure 2.12):

a) Large particle regime, the hydrodynamic force balances with net weight, which leads

700wτ r (for air) and 1680wτ r (for water): 1

wτ r

b) Intermediate regime, net weight balances with turbulent lift force, which leads

0.047wτ  (for air) and 0.13wτ  (for water): 0

wτ r

c) Small particle regime, adhesion force balances with turbulent lift force, which leads

4/3 85 10wτ r   (for air): 4/3

wτ r 

d) Unrealised regime, drag force balances with adhesion force, which leads

73.8 10wτ r   (for air): 1

wτ r 

Figure 2.12 - Four limiting regimes of resuspension (Phillips, 1980)

Phillips concluded that there are two major weaknesses of this type of models: the first is that the

lift force is specified without a mechanism for its operation, and the second is that a distinction has

to be made between water and air as carrying fluid.
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Braaten et al. (1990) developed a Monte-Carlo particle resuspension model which is capable of

simulating the unsteady nature of resuspension and compared the results with those obtained from

a resuspension experiment using Lycopodium particles (count-median diameter 27.8 μm). They 

considered the random nature of turbulent-burst effect and used an approximate mean time

(300νf/uτ
2) between bursts. For each time step, Braaten et al. generate a random number from

unique probability distribution to calculate surface fluid force; if it is larger than the minimum

required for resuspension, a fraction of particles removed is determined by a particle adhesion

function (which is given by a log-normal distribution) and compared to the current cumulative

removal fraction. If the calculated fraction removed is larger than the current cumulative removal

fraction, the latter is replaced.

Braaten et al. concluded that the fraction of particles removed from the wall in a turbulent

boundary layer with a constant streamwise velocity as a function of time was found to be governed

by two regimes which both can be fitted to exponential functions. The first occurs in the first few

minutes (nearly 60% particles removed in first 5 minutes) and then the fraction becomes a constant

value around 60% - 70%.

Figure 2.13 - Fraction of particle removed vs. time (Braaten et al., 1990)

2.3.1.2 Kinetic Models

Wen and Kasper (1989) demonstrated a kinetic model of particle reentrainment which is possible to

calculate particle concentration as a function of time. The model describes resuspension as a first

order reaction, similar to molecular desorption from a heterogeneous surface with a certain rate

constant. They defined a dimensionless variable Fr which is the ratio of adhesive force to the

removal force and the first order rate constant for molecular desorption from a uniform surface

which is identical to the one used in chemical kinetics and assumed as

( ) rF

ra F Ae [2.33]

where A is a constant. Then the number density of particles on the surface at time t is given by
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r rN F t N F e [2.34]

N0(Fr) is the initial distribution function of the force ratio which could be assumed as a log-normal

distribution. Then the normalized particle concentration in the gas generated by resuspension from

a unit surface element is derived.
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Their model showed a good agreement with experimental data (particle size around 0.5 ~ 0.6 μm) 

and also explained observed systematic deviation of the data from the 1/t decay as showed in

Figure 2.14. They believed that the derivations could be accounted for the correction of 1/t law.

The results shown that for short times (t < 4/A):

1
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Ate
n t

t



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4
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 ):

exp( )
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r ma xF
At e

n t
t




where Fr-max is the maximum value of the ratio. The empirical constants are tuned to adjust the

model results to coincide with experiment data. Hall (1989) pointed that these derivations could be

caused by the sensitivity of the 1/t relationship to perturbations of the flow rate.

Figure 2.14 - Resuspension particle concentration vs. time (Wen & Kasper, 1989)
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Matsusaka and Masuda (1996) studied the resuspension of aggregates from a fine powder layer in an

accelerated flow and presented a new model to explain the time dependence of the resuspension of

aggregates. An experiment is also provided by resuspending fly-ash particles (mass median diameter

~ 3 μm) in air flow. The experimental results showed that the distribution of adhesive strength (wall 

shear stress which calculated from the mass flux) was approximated by a log-normal distribution.

Figure 2.15 - Resuspension flux with different flow acceleration (Matsusaka & Masuda, 1996)

The resuspension phenomena is described as consisting of two types, the short delay resuspension

(due to small fluctuation in the shear flow) and long delay resuspension (due to large fluctuation

caused by turbulent burst), where the resuspension flux of both cases is approximated by simple

exponential functions. It is also shown that the resuspension flux increased in an accelerated flow

with elapsed time being approximately proportional to flow acceleration α (shown in Figure 2.15).

Parozzi and Tagliaferri (2000) derived a correlation model assuming that the resuspension rate

depends on the resultant force F(r) acting on the deposited particles. The model is capable of

handling only the average behaviour of each particle size bin. The resultant force is calculated as

the algebraic sum of aerodynamic forces (drag and lift force) and adhesive forces (gravity, cohesive

and frictional force).

( ) ( )drag lift gravity cohesive frictionF r F F F F F     [2.36]

The resuspension rate is defined as:

Λ( ) [ ( )]Br A F r [2.37]

where A and B are empirical coefficients to fit the experimental date, F(r) is the resulting force

acting on the particles with particle radius r.

The drag force is set equal to the product of shear stress and the particle streamwise projected

area (Parozzi et al., 1995) and the lift force is similar to Eq.[2.15] with some coefficients adjusted,
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where τ is the shear stress at the wall, χ is the aerodynamic shape factor normally set to 1 for

densely-packed and spherical particles and 3 for porous particles in the model. Gravity is only

important for large particles (D > 100μm) and becomes negligible for small particles (D < 10 ~ 50μm).    

The cohesive force is caused by intermolecular attraction and is expressed according to Brockmann

(1985). The friction is assumed to be proportional to the adhesive force and gravity.
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[2.39]

where H is a constant depending on material properties (experiment data confirmed H is of a order

1x10-7 N/m for single layer and 1x10-6 N/m after ten layers), λ is collision shape factor and set to 1

and ρp is particle density.

The empirical constants used for resuspension rate in Eq.[2.37] were estimated using data from

several experiments (Wurelingen, STORM and Oak Ridge); these gave A = 0.4037 and B = 0.6003 for

the case F(r) < 3.06x10-4 μN, and A = 90.28 and B = 1.269 for the case F(r) ≥ 3.06x10-4 μN; the 

resulting model predictions are compared with the data in Figure 2.16.

Figure 2.16 - Distribution of resuspension rate vs. resultant force (Parozzi & Tagliaferri, 2000)
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It is not apparent from Figure 2.16 that the Parozzi and Tagliaferri model captures all the data

sufficiently. However, the proposed correlation does not reflect the experimental data very well.

Indeed, Parozzi and Tagliaferri concluded that this model is only applicable to the homogeneous

layer which means the deposit is thin (< 1mm) and not packed. The development of the model for

heterogeneous layers would require taking into account the packing and agglomeration of the

deposited particles’ packing and agglomeration.

2.3.1.3 Lagrangian Models

Hontañón et al. (2000) developed a force-balance resuspension model by using a 2D Lagrangian

particle tracking method, which calculates the trajectory of the particles within the viscous

sublayer of turbulent pipe flow. The model is conceived to deal with small particles (up to a few

microns) so the gravitational force is neglected. The drag force for a small particle close to a wall is

given by Eq.[2.11] and the lift force used in the model is that derived by Cherukat and McLaughlin

(1994) (Eq.[2.17]). The particles are assumed to be hard smooth spheres, sitting on a rough surface

consisting of asperities with the same radius of curvature, and a height distribution given by a

polynomial approximation.

Figure 2.17 - Interaction of a particle with a rough surface (Hontañón et al., 2000)

The adhesive force acting on the particle is derived using the Lennard-Jones (LJ) potential

(Lennard-Jones, 1931) to describe the intermolecular interaction of the particles and surface. The

equation includes both the attractive and repulsive terms and is shown below.
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where A, B are coefficients related to LJ parameters, n(z) is atomic density which is expressed in

terms of a polynomial distribution, and the other parameters are as defined in Figure 2.17 above.

Figure 2.18 - Remaining mass fraction vs. time prediction (CÆSAR model) (Hontanon et al., 2000)

The model was used to simulate resuspension in the STORM (details on STORM are provided in

Chapter 2.2.2, p29) experiment conditions; typical results from those simulations are shown in

Figure 2.18. There is an initial phase, lasting a few milliseconds, in which most of the material is

resuspended, and then the resuspension rate falls very rapidly. This agrees qualitatively with

experimental observations, but the initial resuspension rate is higher than that measured in the

experiments. One possible explanation for this is that this is a single layer model, in which all the

particles are exposed to the flow immediately and it does not include cohesion between particles.

Guingo and Minier (2008) proposed a new model aiming at simulating the resuspension of spherical

particles in turbulent air flow using stochastic Lagrangian methods. In the model, particles are

considered to be resuspended when the drag moment exceeds the adhesion moment. The drag force

is taken as 1.7 times the Stokes drag (see Eq.[2.9]). In this model the surface of the wall consists of

a mixture of large and small scale roughness elements, and the adhesive force then depends on the

size of the particle relative to the size of the roughness elements and the spacing between them.

There different cases are possible, as illustrated in Figure 2.19.

i, Case A: small particles
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In this case, the wall is considered as smooth. According to the JKR theory, the adhesive force is

given as Eq.[2.25]

3aF πrγ [2.41]

where γ is the surface energy.

ii, Case B: mid-size particles

The particle is large enough to be in contact with several small asperities; to evaluate the number

of these asperities, the contact radius (rc) needs to be defined using the JKR theory.
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where K is the composite Young’s modulus defined by
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ν1, ν2 are Poisson’s ratio for the particle and the substrate, respectively, and E1, E2 are Young’s

moduli.

If the mean asperity radius is denoted for the small scale roughness by rfine, and the surface density

of the small scale elements by ρfine, then the adhesive force is similar to that given by Eq.[2.26].
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where P is generated from a Poisson distribution, L is generated from a log-normal distribution with

the standard deviation equal to the mean, Hc is the Hamaker constant and H0 is the equilibrium

distance (0.3nm), i.e., the particle-surface gap.

Figure 2.19 - Adhesion model in 3 cases with different particle sizes (Guingo & Minier, 2008)

iii, Case C: large particles
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A large particle will be in contact with several large-scale asperities and the number of contact

points is estimated as a Poisson distribution with mean 2r/Llarge where Llarge is the mean distance

between two large-scale asperities. Then the total adhesive force is given by:

2

2
1 0

( )
( ) , where (2 / )

6

I
c i fine

a i fine c large
i

H L r
F Ρ ρ π r I P r L

H

  [2.45]

In all three cases the aerodynamic drag force is taken as 1.7 times the Stokes drag (see Eq.[2.9]).

The model was used to simulate the experiments of Ibrahim et al. (2003) and it reproduces the main

features of their results, as can be seen in Figure 2.20 (dot: alumina particles r = 36μm, square: 

alumina particles r = 16μm). 

Figure 2.20 - Comparison of model results to experimental data (Guingo & Minier, 2008)

The model was also used to simulate Hall’s experiment (Reeks & Hall, 2001) with 10μm graphite 

particle resuspension, as shown in Figure 2.21. Based on these comparison, Guingo and Minier

concluded that the surface roughness and Hamaker constant, which are input variables for their

model, do represent physical quantities or material properties and have strong intrinsic physical

meaning which are important aspects of particle resuspension.

However, such models are very useful in the precise way they can handle the complexity of the

particle-surface interaction and the aerodynamic forces. They can be very useful in providing the

input data to the simple analytical models like the R’n’R that are discussed in this thesis. They

could also comprise an important source of validation. Furthermore, it is perhaps worth noting that

the R’n’R model deals with the detachment of a particle from a surface and not the subsequent

particle motion in the turbulent boundary layer.
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Figure 2.21 - Results of G&M model and Hall’s experiment (Guingo & Minier, 2008)
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2.3.2 Models Based on Energy Accumulation

Force-balance approaches imply that particles are resuspended instantaneously from a surface when

the aerodynamic forces exceed the resistance forces (adhesion, etc.). However, Sehmel (1980)

showed from experimental measurements that particle resuspension from a surface is not

instantaneous but increases with time. According to Corn and Stein (1965), the removal of nominally

identical small particles from a smooth surface in high-velocity air also depends on the time of

exposure. Based on the observation that small particles can be resuspended, even when the

adhesive force exceeds the aerodynamic force, Reeks, Reed and Hall (1988) (hereafter RRH)

proposed a new model, based on the idea that the adhesion of the particle to the substrate can be

represented as a particle in a potential well, with a potential that decreases as the particle moves

away from the surface. The action of the unsteady turbulent flow on the particle then causes it to

vibrate – to oscillate within the well – until it acquires enough vibrational energy to escape from the

well, and becomes resuspended. They defined a resuspension rate constant p, for a long-term

resuspension of the form

0 exp
2

Q
p ω

PE

 
   

 
[2.46]

where ω0 is the typical natural frequency of the system, Q is the height of the surface adhesive

potential well and <PE> is average potential energy of a particle in a well. Later, Reeks and Hall

(2001) developed this model to include aerodynamic drag, applied using a quasi-static analysis of

the particle at the top of the potential well; thus has become known as the Rock’n’Roll model.

These two models will now be discussed in detail.

2.3.2.1 RRH Model

The initial model developed by Reeks et al. (1988) describes a close analogy of particle motion in

turbulent flow with the behaviour of molecules desorption in the surface, and the escape of

Brownian particles from a potential well. They represented a potential well between particle and

substrate formed from a surface adhesive force, a repulsive elastic force and a mean aerodynamic

lift force.

Figure 2.22 shows the potential energy varying with displacement normal to the surface. Point A is

the stable equilibrium position that adhesive force balances with the repulsive elastic force and the

mean lift force; and point B is the unstable equilibrium position in which the adhesive force

balances with the mean lift force. At position yB, particle will leave the potential well (or resuspend)

from the surface when it accumulates enough energy from the turbulence to escape over the

potential barrier at B, which has height of Q. The particle motion in the well is approximated by a

lightly damped harmonic oscillator driven by fluctuating lift force fL(t), as in Eq.[2.47].
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Figure 2.22 - Surface potential well and particle motion (Reeks et al., 1988)

2 1 ( )Ly βy ω y m f t    [2.47]

where y is the displacement normal to the surface, β is the damping constant, ω is the natural

frequency of the particle in the potential well and m is the particle mass. Based on the general

solutions of the equation above, they derived the mean square displacement <y2> and velocity <v2>

in a harmonic potential in order to calculate the accumulation of vibrational energy.
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y η

m ω
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v η

m ω f ω

 

 
 [2.48]

where <fL
2> is mean square fluctuating lift force, η is a resonance contribution factor which depends

on the energy spectrum of the fluctuating lift force around resonance, the natural frequency of the

particle and the damping constant

2 ˆ ( )
2

L

π
η ω E ω

β
 [2.49]

η will be zero if there is no resonance energy transfer.

i Energy spectrum of the fluctuating lift force

The normalized energy spectrum of the fluctuating lift force ( ˆ ( )LE ω ) is obtained from the

dimensionless energy spectrum ( ( )E ω  ), which in the RRH model is a simplified form of Schewe’s

(1983) spectrum, as given by Eq.[2.51].

2 2
ˆ ( ) ( )

f f

L

τ τ

ν ν
E ω E ω ω ω

u u

    [2.50]
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where uτ is the wall friction velocity and νf is the fluid kinematic viscosity.

ii Natural frequency of the particle

The stiffness of the system is derived by using the JKR model (Johnson et al., 1971), and then the

particle natural frequency is derived as

 
1/32/3 1 0

1

1 0

9

2 5
a

P Pε
ω ε K Pr r

m P P

 
   

 
[2.52]

where ε is the stiffness of the system, K is the composite Young’s modulus Eq.[2.43], ra′ is the

normalized asperity radius, P0 is the force acting on the particle and P1 is the apparent Hertzian

force.

0
0 1 0 2 1 1L a
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P
P F mg P P f

f

 
       

 
 

[2.53]

The adhesive force in the RRH model is generated by scaling up the adhesive force for a smooth

surface (Fa) using a random normalized asperity radius ra′, drawn from a log-normal distribution with

geometric mean ar  (also referred as adhesion reduction factor) and geometric standard deviation

(also referred as adhesive spread factor) aσ . In RRH model, ar  and aσ are assumed to be 0.1 and 4,

respectively. The values used here represent the surface characteristics as determined from

measurements made by Reed (1986, unpublished).
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[2.54]

Then the adhesive force is given by

3

2a a a af F r πγrr   [2.55]

where Fa is the adhesive force on the smooth surface, as given by Johnson et al. (1971). It is noted

that other adhesive models were considered in Reeks et al. (1985) which gave similar results on the

resuspension rate constant.

iii Damping constant

The vibrational energy of a particle in contact with a surface can be dissipated by fluid damping and

mechanical damping, and then the total damping of particle motion in the normal direction is

assumed to be the sum of these two.

2 4

3/2

2

6 2.4

2

f s

f m

f

πr μ mω ρω
β β β

m ν π E
    [2.56]

where βf is the fluid damping constant, as given by Batchelor (1967), βm is the mechanical damping

constant, obtained by balancing net energy lost from the surface with the energy transferred to the
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particle in oscillation (Miller & Pursey, 1954), ρs is the substrate density and E2 is the Young’s

modulus of the substrate.

In the RRH model the particle velocity and the particle displacement are assumed to be drawn from

independent Gaussian distributions, with joint probability density function W(v,y).

2 2

2 22 2

1
( , ) exp exp

2

v y
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v yπ v y

   
     
   
   

[2.57]

The resuspension rate constant p is then derived as the net current of particles at the removal point

B (Figure 2.22) over the number of particles on the surface.
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where ( , ) ( , ) 1
By

W v y dydv W v y dydv
  
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At the detachment point B, the adhesive force (fa) balances the lift force FL (which is the sum of

mean and fluctuating lift forces), so Eq.[2.47] becomes

2

B a Lmω y f F  [2.59]

Hall (1988) measured the mean lift forces on particles in a turbulent boundary layer. This gives an

expression (Eq.[2.18]) which is valid over the range (1.8 < ruτ/νf < 70).

2.31

220.9 τ
L f f

f

ru
F ρ ν

ν

 
  

 
 

Substitute Eq.[2.48], Eq.[2.57] and Eq.[2.59] into Eq.[2.58], the resuspension rate constant in a

harmonic potential is given by
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where 2

Lf
 and the root mean square (rms) fluctuating lift force are assumed to be given by

2 2 2 2

0

ˆ ( )L L L L Lf ω E ω f dω f F


  [2.61]

The maximum value of p in the RRH model is limited to the bursting frequency of turbulent motion

in a turbulent boundary layer, which according to Blackwelder and Haritonidis (1983), is given by
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[2.62]



2.3 Classical Resuspension Models

51

General form of resuspension rate constant

For a general potential well, the average potential energy <PE> is defined as 2 21

2
mω y and the

height of potential well Q is given by  
2

a Lk f F ε . Then by substituting <PE> and Q into

Eq.[2.46], the general resuspension rate constant is given by
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
[2.63]

where k is a numerical constant dependent upon the shape of the potential, which equals ½ for a

harmonic potential and 1 for the JKR potential model (Johnson et al., 1971). In the RRH model, k =

1 is used.

The particle fraction remaining is given by the integration of the remaining fraction in each

identical adhesive condition; the adhesive condition depends on the normalized asperity radius

varying from 0 to ∞.  

 
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
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Then the resuspension rate is derived as

 
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Figure 2.23 - Resuspension rate vs. time (Reeks et al., 1988)

The modelling results in Figure 2.23 show that the resuspension of particles (radius around 25-50μm) 

from a rough surface can be divided into two regimes: the initial resuspension in which many
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particles are resuspended within a very short time; and the long-term resuspension where its rate is

proportional to approximately t-1.1. This relationship is observed for wide variations of particle

diameter, flow conditions and surface roughnesses and this behaviour of reverse time relationship

has also been confirmed by other models and experiments (Wen & Kasper 1989, Jurcik & Wang 1991).

Improvements of RRH model

Vainshtein et al. (1997) observed resuspension due to rolling and they concluded that the drag force

is a more effective agent than lift for the transfer of turbulent energy from the flow to a particle on

a surface. The Vainshtein et al. model uses the potential-well approach and considers the particle-

wall effect as though the particle is connected to the wall by a spring. They defined a tangential

pull-off force which pulls the particle off against the spring. Compared with the RRH model, the

ratio of the height of the potential well to the average potential energy in Eq.[2.46] (Q/2<PE>) is

rewritten as the ratio of the pull-off force to turbulent drag force. The particle resuspension rate

constant is then given as

4/3
2 4/3
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300
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f τ f
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  
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    

[2.66]

where uτ is the wall friction velocity, νf is the fluid kinematic viscosity, ρf is the fluid density, γ is

the surface energy, κ is the elastic constant (used as the composite Young’s modulus K in Eq.[2.43])

and r is the particle radius. In their model, the particle fraction remaining and resuspension rate are

calculated same as in Eq.[2.64] and Eq.[2.65], respectively.

Komen (2007) commented on Vainshtein et al. model that the largest uncertainties in the model are

from the adhesion modelling; the adhesion moment overestimates the magnitude of the moment

necessary to rotate the particle and the restoring force from adhesion is over predicted due to a

constant spring stiffness where the maximum equilibrium value is used.

Subsequently, Reeks and Hall modified the RRH model, Reeks and Hall (2001), to account for the

influence of drag that can provoke rolling: this leads us to the well-known Rock’n’Roll model.
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2.3.2.2 Rock’n’Roll Model

In addition to the lift and adhesive forces, the drag force is also considered in the model. Thus, the

particle will be oscillating about a pivot point P rather than oscillating vertically in a potential well,

as shown in Figure 2.24. In this case, the particle contacts with two asperities.

Figure 2.24 - Particle surface geometry for Rock’n’Roll model (Reeks & Hall, 2001)

When the vibrational energy is being accumulated, the particle will break the contact point Q and

start oscillating on the pivot point P before it leaves the surface. Therefore, the equation of motion

will take into account moment of inertia and couple about point P. a is the distance between two

asperities. The geometric factor (r/a) which refers to the ratio of the particle radius to the distance

between asperities is suggested to be close to 100 according to Hall’s experiment (Reeks and Hall,

2001).

Eq.[2.47] then becomes:

2 1Γ ( )θ θθ β θ ω θ I t     [2.67]

where θ is the angle of small oscillation about P, I is the particle moment of inertia (5/7 mr2) and Γ′

is the fluctuating component of the couple. It is assumed that the drag mβ caused by small

oscillation θ is the same for a sphere particle of radius r oscillating in position with velocity rθ ; so

the damping constant βθ is derived by equalling the moment of this force about P with θIβ θ . The

displacement (deformation) of the particle about P is given by aθ so that the restoring couple is

given by mω2a2θ. The relationship between the natural frequency ωθ (for vertical and horizontal
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oscillations) and the natural frequency ω (for vertical oscillations) is obtained by balancing the

restoring couple with 2

θIω θ .

2

2

5 5

7 7
θ θ

a
β β ω ω

r
  [2.68]

The couple acting at point P can be expressed in terms of the relevant forces, Eq.[2.63] is replaced

by:
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gn and gt are the gravitational components of acceleration acting normally and tangentially to the

wall surface. F is resultant aerodynamic force (obtained from the moment) acting on P which is

given by drag and lift forces and f is its fluctuating component. As for the RRH model, the mean lift

force is given by Eq.[2.18] and the mean drag force is equal to 1.7 times the Stokes drag (Eq.[2.9]).
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The experiments by Hall (1998) measured the energy spectrum of the lift force (Eq.[2.62]); the

R’n’R model have renewed the energy spectrum by including the effect of the drag force and the

effective zero mean fluctuating force, f. The ratio of rms to the mean aerodynamic force is 0.2

obtained by Hall’s measurements, and the ratio of the rms derivative to the rms force is derived

from Hall's measurements of the energy spectrum of the lift force (where the lift force here is

assumed to be the same as the fluctuating aerodynamic force).
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The universal energy spectrum for the fluctuating lift force ( ( )E ω  ) used in the R’n’R model is a

modified version of the one used in the RRH model, where following Hall (1994)
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Quasi-static case

If the motion of particles is driven by turbulent aerodynamic forces and there is no resonant energy

transfer, the particle motion can be described as a force balance between aerodynamic forces and
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the adhesive force; this is often referred to as the ‘Quasi-static’ case. Then, for a particle in

equilibrium at the detachment point

aF f f  [2.73]

If a relationship (ψ) between f and particle displacement and velocity exist,

( ) ( ) ( ) ( )y t ψ f v t fψ f   [2.74]

Substituting Eq.[2.74] into Eq.[2.58], the resuspension rate constant for the quasi-static case is

given by
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where ( , )p f f is the distribution of fluctuating aerodynamic force and its derivative, which is

assumed as a joint Gaussian distribution with zero correlation between f and f .

Then the resuspension rate constant is obtained
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where erf is the error function.

More details about Quasi-static case will be described in Chapter 4 (p97).

The particle fraction remaining fR(t) and the resuspension rate Λ(t) are then defined by using the

same forms as Eq.[2.64] and Eq.[2.65], respectively
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where φ(ra′) is assumed as log-normal distribution according to Eq.[2.54].

Reeks and Hall reported 20 resuspension experiments that used both alumina and graphite particles

(more details about the experiments are described in Chapter 4.1.4, p129). The Material properties

required to calculate particle resuspension for both the RRH and the R’n’R models are listed below.

Table 2.2 - Material properties in Hall’s experiment (Reeks and Hall, 2001)
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The parameters for adhesive force log-normal distribution in the RRH and the R’n’R models are

produced based on Reed and Rochowiak (1988).

Table 2.3 - Parameters of adhesive force distribution (Reeks and Hall, 2001)

The results for 10μm alumina (in diameter) and graphite particle are shown in Figure 2.25 and 

Figure 2.26, respectively. It can be clearly seen from the figures that the Rock’n’Roll model gives

much better agreement with experimental values of the resuspension than the original RRH model,

the agreement being quite good considering the large uncertainty in the adhesive force

measurement. Furthermore, the comparison between the Rock’n’Roll model results with and

without resonant energy transfer shows only a slight difference. This means that the resonant

energy transfer only makes a very small contribution to resuspension and the quasi-static version

(without resonant energy transfer) can be used for certain conditions.

Figure 2.25 - Comparison of alumina particle fraction remaining after 1s (Reeks & Hall, 2001)
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Figure 2.26 - Comparison of graphite particle fraction remaining after 1s (Reeks & Hall, 2001)

Figure 2.27 - Remaining fraction for R’n’R and Vainshtein (Stempniewicz et al., 2008)
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Stempniewicz et al. (2008) compared the results of the Rock’n’Roll model (Reeks and Hall, 2001)

and Vainshtein model (1997) with the experiments of Reeks and Hall and STORM (Details on STORM

is provided in Chapter 2.2.2, p29), and concluded that the Vainshtein model gives better agreement

with the experiment results whereas the Rock’n’Roll model somewhat overestimates the

resuspension at low value of the friction velocity. Figure 2.27 shows the comparison of the

Rock’n’Roll prediction and Vainshtein predictions with the experimental data, for an adhesive

spread factor of 4. They also concluded that the adhesive force and its distribution for dust particle

deposited on a rough surface are very important in successful resuspension predictions.

Biasi et al. (2001) took the Rock’n’Roll model for resuspension with an empirical log-normal

distribution of adhesive force to reproduce the resuspension data of a number of experiments. Some

adhesion-force parameters were tuned to fit the data of the most highly-characterised experiments,

i.e., those of Hall (Reeks & Hall, 2001) and Braaten (1994). Then, using an enlarged dataset

including STORM and ORNL ART resuspension results, they obtained a global correlation for

geometric mean adhesive force and geometric spread as a function of particle geometric mean

radius (in microns)
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r r

σ r

  
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[2.78]

The correlation is shown in Figure 2.28.

Figure 2.28 - Error distribution of Biasi’s model predictions (Biasi et al., 2001)
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They also concluded that the measurements of adhesive force (Boehme et al., 1962) show that the

distribution of adhesive forces is close to a log-normal distribution, but that the validity of assuming

a Gaussian distribution for the drag force might be questionable (i.e. there is no physical basis

justifying the particular form of the Gaussian distribution). They also pointed out that, in reality,

the geometric ratio of particle radius to average separation of asperities, r/a, appearing in the

R’n’R model, rather than being a constant, has a spread as with the actual adhesive force.

Figure 2.29 - Biasi’s result compare with Reeks and Hall’s experiment (Biasi et al., 2001)

2.3.2.3 Simplified RRH Model

Based on the work by Davis and Hall’s report (1988), Reeks (2008) developed a simplified model

with the same statistical distribution of adhesive force as that used in RRH model. The adhesive

force is assumed to scale on the adhesive force for a particle sitting on a perfectly smooth surface,

which is proportional to the radius of the particle. The aerodynamic removal force is assumed to

scale on the dynamic head associated with the flow, ρf V2. Then

2

fF kρ U [2.79]

where F is the aerodynamic removal force, k is a factor that would depend on particle size, ρf is the

fluid density and U is the mean fluid velocity at the centre of the particle.

The fraction resuspended is given by

0
( )

F

R a aF P f df  [2.80]

where P(fa) is the distribution of adhesive forces fa scaled on the adhesive force for perfect contact.

The crucial part of the evaluation of this integral is to assume on the basis of experiments that the

adhesive forces have a log-normal distribution distributed. D&H show that over the region where the

resuspension fraction is not saturated (neither close to zero nor 1), FR is very close to proportional

to ln(ρf V2). Reeks (2008) mentioned that the broader the distribution of adhesive forces the closer
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this becomes to an exact proportionality. For instance if the adhesive force was distributed

uniformly on a logarithmic scale, this result would be exact, i.e.

2lnR f

a

A
F ρ U

σ



[2.81]

where aσ is the logarithmic spread of the adhesive force and A is a constant.

In the viscous sublayer, the fluid mean velocity U can be written as ruτ
2/νf, νf is the fluid kinematic

viscosity, then Eq.[2.81] becomes
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2.3 Classical Resuspension Models

61

2.3.3 Models for Resuspension from a Multilayer Deposit

In most nuclear accidents, particles will first be deposited on the walls, forming multilayer deposits,

before being resuspended. But the models reviewed as far all consider the resuspension of an

isolated particle from a clean surface. In reality, the surface particles will be in contact with other

particles and they form agglomerates or clusters, and it is possible that particles will be

resuspended in ‘clumps’ rather than individually. In the multilayer deposit, bulk density (related

parameter, porosity) has been used to characterize the structure (i.e. how dense the deposit

structure is) (Schmidt & Löffler, 1991). Coordination number (which is the average number of

contacts of a particle) is an important parameter to the structure of agglomerates (Weber and

Friedlander, 1997). Furthermore, the aerodynamic contribution should be taken into account

through the shielding effect by existence of other particles in the deposits. The aerodynamic drag

force acting on each constituent particle should be definitely smaller than that without other

particles. Iimura et al. (2009) concluded that the morphology of deposits much affects the

resuspension of particles and the sterically bulky deposit undergoes the stronger aerodynamic force

and is easy to be resuspended and consequently a smaller number of particles remain attached to

the surface.

The first multilayer model was probably that of Paw U (1982) which was initially an extension of the

model of Cleaver and Yates (1973). In this model, the multilayer deposit ensures a continuous

supply of particles for resuspension, so the resuspension fraction becomes

21
( )

270 100
τ

c

f

u t
f t

ν
  [2.83]

where 100νf/uτ
2 is the average time between turbulent bursts in Cleaver and Yates (1976), νf is the

fluid kinematic viscosity and uτ is the wall friction velocity. Paw U concluded that the model

required further development to include saltation, and the physics of the atmospheric surface

boundary layer and rebound/net-deposition phenomena. One can observe that it is a rough model

since the resuspension fraction is determined as a resuspension probability constant (1/270)

multiplied by the total number of bursts.

Fromentin (1989) set up a two-step experiment PARESS (PArticle RESuspension Study) in which the

first step was deposition of different aerosols and the second step was resuspension. Experiments

were performed with a range of mean flow velocities, between 5 and 20m/s. Throughout the

experiments, the long-term resuspension flux (time > 2s) decreased with time of exposure to the

flow and could be modelled by an expression of the form where A and B are empirical coefficients.

Λ BA t   [2.84]
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Figure 2.30 - Resuspension flux vs. time of Fromentin’s model (Fromentin, 1989)

Figure 2.30 above shows the resuspension flux of deposited particles (AMMD ~ 2 μm) as a function of 

time. Fromentin showed that the constants A and B are proportional to the wall friction velocity uτ.

Therefore, the resuspension flux could be written as a function of time and wall friction velocity.

1.23Λ 0.025 ( 0.29) τu

τu t


    [2.85]

which is valid for 2s < t < 10000s, and 0.3m/s < uτ < 1m/s.

Heames et al. (1992) presented a resuspension model (used in the US NRC code VICTORIA) that is

based on a power law curve fit to the experimental data obtained by Wright et al. (1992) from the

ORNL Aerosol Resuspension Test (ART). This fit is of the same type used in correlating the PARESS

resuspension data (Fromentin, 1989) and the resuspension flux (which is assumed only to be

calculated in turbulent flow, no resuspension in laminar flow) is obtained as:

2 1.25Λ 0.05 τu t    [2.86]

In this model it is assumed that:

 all particles have the same properties of adhesion to the substrate;

 once particles are deposited they are taken to be immediately well mixed with previously

deposited particles;

 resuspended particles have the same size as when they deposited;

 the exposure time in Eq.[2.86] is defined as the difference between current time and the point at

when flow first becomes turbulent in the current cell.
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Figure 2.31 - Two-layer 10 μm Al2O3 particle fraction remaining (Lazaridis & Drossinos, 1998)

Lazaridis and Drossinos (1998) derived an expression for the total particle resuspension rate from a

multilayer deposit in terms of the fixed resuspension rate from each layer, calculated using the RRH

model. An interaction potential is considered between each layer and particle-particle interactions

in the same layer are neglected (i.e. no particle interaction in the streamwise axial direction). The

formulae for interaction energy between a particle and the surface or between particles are

developed and used to evaluate the natural frequency of vibration which replaces the term Eq.[2.52]

in the RRH model. In order to obtain an analytical solution for the particle fraction remaining on the

surface as a function of time, the deposit was limited to two layers.

Friess and Yadigaroglu (2001) provide a generic model which uses a recursion relation which uses

the resuspension rate of the first layer (i = 1) to calculate the resuspension rate of the layers below

(i ≥ 2). Detailed information on Friess and Yadigaroglu (2001) is presented in Chapter 5.1 (p156). 

The particle resuspension rate of the current layer, i, based on the previous layers is derived as,

1 10
Λ ( ) Λ ( )Λ ( ) 2

t

i it t t t dt i
     [2.87]

The total resuspension rate for L layers deposit is given by
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             [2.88]
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They compared their model with that of Lazaridis and Drossinos (1998) and found that the exposure

time required to resuspend half of the deposit predicted by their generic model (i = 150, typical

value of STORM test) is 2.4 times longer than that computed by L&D’s model. Friess and Yadigaroglu

(2001) also modified the model of Fromentin (1989) by including the dimensionless variables

2
1Λ ( ) Λ ( ) , 0.012 τ

i f i f f

f

u
t b t t b t b

ν
      [2.89]

where bf is the burst frequency as given by Rashidi and Banerjee (1990).

Figure 2.32 shows the dimensionless resuspension flux vs. dimensionless time for the various

thickness deposits (L = 1, 2, 3…, 10, 20, 30, 40, infinity). It appears that the resuspension flux

becomes a nonzero value at infinite time. Friess and Yadigaroglu (2001) mentioned that the fact

that the resuspension flux is predicted to always become zero after an infinite time might seem

paradoxical: One might expect that eroding an infinitely thick deposit by means of a fluid of

constant velocity eventually leads to a stationary state with a nonzero value Λ∞(∞) of the

resuspension flux.

Figure 2.32 - Dimensionless resuspension rate vs. time (Friess & Yadigaroglu, 2001)
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Friess and Yadigaroglu (2001) also extended the RRH isolated-particle model (Reeks et al., 1988) to

the multilayer case, based on a simplified assumption that a particle sitting on top of the multilayer

deposit has the same resuspension rate constant p (Eq.[2.60]) as an isolated particle sitting on a

clean surface. This is analogous to the assumption made in the Lazaridis and Drossinos model (1998).

Figure 2.33 shows that the long-term behaviour of resuspension rate follows the 1/t law and is

independent of the initial deposit thickness (Application on Reeks, Reed and Hall (1988) model).

Figure 2.33 - Resuspension rate vs.time using RRH model (Friess & Yadigaroglu, 2001)

The main conclusion of Friess and Yadigaroglu (2001) is that major discrepancies between theory

and experiment are to be expected if a monolayer model is used for a wide range of initial deposit

thicknesses. The monolayer models also over predict the resuspension mass and the short term

resuspension flux. For long-term flux, the results of a monolayer model are acceptable. This trend

was also observed by Alloul-Marmor (2002) for resuspension of piles of alumina dust with diameter

between a few microns and 100 m. The experimental data (Alloul-Marmor, 2002) were compared

with the results of the model developed by Biasi et al. (2001); this showed that the model

overestimated the resuspension fraction, and it was not possible to improve the model predictions

for the whole data set by modifying the adhesive force correlations (Eq.[2.78]) used in the model.
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The data from the experiments were used to derive a new correlation for the resuspension fraction,

of the form:

5.7

50( ) ( )τ
c

f

u
f t d

ν
 

where d50 is the mass-median diameter of the particles in the deposit.

Figure 2.34 - Two-dimensional particle deposits structure (Friess & Yadigaroglu, 2002)

In order to investigate the influence of the deposit structure on particle resuspension, Friess and

Yadigaroglu (2002) developed a new simulation, in which individual particles were first deposited on

a wall, to build up a multilayer deposit. Each particle is deposited with a ‘sticking probability’ (s)

which is used to determine, randomly, whether a particle will stick to another deposited particle or

slide over it. This sticking probability directly determines the porosity, ς of the bed that is formed,

as can be seen in Figure 2.34, which shows two particle beds, formed with two different values of s.

When the sticking probability is very low (s = 0, Figure 2.34a) the bed is closely packed and the
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porosity tends to its minimum value; as the sticking probability increases the bed tends to grow in

bifurcating chains of particles, like trees (Figure 2.34b), and the porosity increases.

Every cluster is associated with a resuspension probability per unit time, pc, which is based on a

balance between adhesion forces and the forces exerted by the turbulent bursts (which the

distribution of burst forces exerted on a cluster is assumed to be Gaussian). It is similar to the

model that originally proposed by Fromentin (1989) and later refined by Friess and Yadigaroglu

(2001). The resuspension mass flux is then derived as:
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where m(t) is the remaining mass per unit wall surface area as a function of time, Dm is the mass

mean diameter of deposited particles, and Ln is the quantity layer number, defined as the number

of particles intersected on average by a line normal to the wall (Friess and Yadigaroglu, 1998). The

dimensionless resuspension flux obtained is similar to Eq.[2.89].
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f p m f
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π b ρ D ν
     [2.91]

Figure 2.35 - Dimensionless resuspension flux (Friess & Yadigaroglu, 2002)
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Friess and Yadigaroglu (2002) showed that the model predictions confirm the 1/t law for long-term

resuspension (shown in Figure 2.35, β is the relative burst strength which is the ratio of the average

burst force on a particle to this particle’s adhesion force on a flat base) and conclude that the

values of exponent q = 0.8 (see equation in Figure 2.35) from the PARESS experiments are still

theoretically unexplained. They also analyze the sensitivity of the model to bed porosity, using the

data from STORM experiment. The characteristic shape of model responses can be seen to depend

strongly on the bed porosity. The model results also indicated a hypothesis that the porosity of the

deposits in the PARESS experiment (Fromentin, 1989) was high compared to the STORM deposits.

Ziskind (2006) notes that this model is restricted to one-foot clusters, while a two-point contact has

been widely accepted in monolayer resuspension modelling (Ziskind et al. 2000, Reeks and Hall

2001). Also the magnitude of adhesive force is calculated going back to Zimon (1982).
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2.3.4 Conclusions on Resuspension Models

Models for the resuspension of particles from a wall are based either on balance of aerodynamic and

adhesive force, or on the accumulation of kinetic and potential energy by the particles. Three

different approaches have been developed for modelling the balance between adhesive and

aerodynamic forces:

 a statistical approach which simulates the stochastic nature of particle resuspension and normally

calculates the fraction of particle resuspended without concerning the time effect; turbulent

burst is considered to be generated by following some probability distribution;

 a kinetic approach which is analyzed in a manner similar to the approach applied in chemical

kinetics and normally generates the resuspension rate; and

 a Lagrangian approach which simulates the particles’ trajectories while they are moving in

turbulent flow.

These are all based on one basic rule: that the particles would resuspend from the surface when the

aerodynamic forces acting on them exceed the adhesive forces. However, this force-balance

approach takes no account of the timescales over which particles are resuspended (Reeks et al.,

1988) or in other words, all particles of the same size will either resuspend instantaneously or stay

on the surface regardless of time where, in fact, experimental measurements indicate that particle

removal takes place over a period of time (Sehmel, 1980).

Leighton and Acrivos (1985) showed in their paper that the mean and fluctuating lift force are much

smaller than the experimental adhesive force (Wen et al., 1989) when particles are small. It can

also be seen from the formula of the mean aerodynamic moment which takes account of the drag

effect (Laufer 1954, O’Neill 1968) and adhesive moment (Wang, 1990) that for small particles, the

latter is larger. However, Sehmel (1971) showed that even particles as small as 2 μm can be 

resuspended in turbulent pipe flow. Unlike the force-balance model, the models based on energy

accumulation allow for particles to resuspend from a surface as long as they accumulate enough

potential energy from the surrounding turbulent flow over a period of time, even in the cases when

surface forces may be very strong (especially for small particles).

Multilayer resuspension has seldom been studied in the last decade. The most recent model is

presented by Friess and Yadigaroglu (2002) which puts forward a central hypothesis: that the

structure of the deposit which is characterised by the bed porosity becomes an important parameter

in multilayer resuspension modelling. Particles form clusters during the deposition process and the

resuspendable clusters are associated with a variable called resuspension probability per unit time

which is obtained from a balance between adhesive forces (which are considered as a function of

particle diameter) and forces caused by turbulent bursts.
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To sum up, in order to obtain a successful resuspension model, a good simulation of adhesive force

distribution for particles deposited on the surface and statistics of turbulent fluctuating forces are

necessarily needed.
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Chapter 3

Modification of the

Force Balance Model

It is a bad plan that admits of no modification.

- Publilius Syrus

In this Chapter we present and discuss the results of a modification to the traditional force

/moment balance resuspension models by introducing a statistical distribution of aerodynamic

removal forces (moments). As a particular example we focus our attention on the recently published

NRG resuspension models (Komen, 2007) which are based on the aerodynamic/ adhesion system of

forces and moments contained in the Vainhstein model for a spherical particle in smooth contact

with a surface. We begin with a brief description of the Vainshtein (1997) model. This is followed by

a description of the NRG3 (force balance) and NRG4 (moment balance) models and how they

incorporate the Vainhstein model for particle adhesive / aerodynamic removal forces and moments.

For the reason explained, modifications to allow for the influence of distribution of aerodynamic

removal moments are applied only to the NRG4 model whose predictions are subsequently

compared for the system of moments based on the Vainhstein model with those based on that used

in the R’n’R model

3.1 Vainshtein Model

In the Vainshtein model (Vainshtein et al., 1997), the adhesion moment is defined in terms of the

adhesive force Fa of a particle sitting on a smooth surface (Fa = 1.5πγr) and the equilibrium radius re

(contact radius) when the adhesion attraction balanced with elastic tension. The equilibrium radius

is defined if only the adhesive force is dominant (Wang, 1990), as

 
1

2 36er πγr κ [3.1]

where γ is surface energy per unit contact area, r is the particle radius and κ is the elastic constant.
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Figure 3.1 - Vainshtein nonlinear particle oscillation model (Vainshtein et al., 1997)

This can be modelled using a spring to represent the attractive force, as shown in Figure 3.1. In

principle, the spring stiffness (ε) should be a function of the particle displacement, decreasing from

a maximum value at the equilibrium point to zero at the separation point. However, in order to

simplify the problem, and to compare with the RRH model (Reeks et al., 1988) it is assumed to take

a constant value, obtained from the JKR adhesion model, and given by

 
1/3 2/3 2/39

6
10

ε πγ κ r [3.2]

Then the maximum spring extension SB, corresponding to detachment of the particle from the

surface at point B (Figure 3.2) is given by

2/3 1/3

2/3
1.96B

γ r
S

κ
 [3.3]

Figure 3.2 - Potential well diagram (Reeks et al., 1988)

The equation of particle motion around the detachment point and the condition of small oscillations

is given as follow

3
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ε
mx x F

r
  [3.4]
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where m is the particle mass and x is the horizontal displacement. It is noted the damping term in

caused by the transmission of elastic waves in the solid substrate is negligible at low frequencies.

The drag moment is proportional to the drag force which is defined as 1.7 times than the Stokes

drag as assumed in the Rock’n’Roll model (Reeks & Hall, 2001).

2 21.399 1.7 6D D D f τM F r F πρ u r    [3.5]

where ρf is the fluid density and uτ is the wall friction velocity.

The first inertial term in Eq.[3.4] is also negligible at low frequencies, so Eq.[3.4] can be simplified

to

3

22
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ε
x F

r
 [3.6]

It is assumed that the maximum spring extension during oscillation does not exceed SB. Therefore

the maximum x-direction displacement xB is determined approximately by

1/3 2/3
2 2

1/3
2 1.98B B B

γ r
x S r rS

κ
    [3.7]

At the maximum spring extension (x = xB) the driving force from the aerodynamic drag balances the

tangential pull-off force, which can therefore be written, from Eq.[3.2] and Eq.[3.7], as

4/3 2/3
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2 1/3
9.3

2
aτ B

ε γ r
F x

r κ
  [3.8]

It has been demonstrated by Vainshtein et al. (1997) that the pull-off forces are smaller than the

drag force, then according to the RRH model (Reeks et al., 1988), the height of the potential well Q

can be expressed in terms of the pull-off force by integration of Faτ from zero to the maximum

displacement xB, and the potential energy <PE> can be expressed in terms of the drag force. The

typical natural frequency in Vainshtein model is taken to be the same as in the RRH model.
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where νf is the fluid kinematic viscosity.

As a result, the resuspension rate constant is defined as
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[3.10]

Therefore, the fraction of particles remaining on the surface at time t is derived using the same

formula as in the RRH model.

 
0

( ) exp ( ) ( )
R a a a

f t p r t φ r dr


      [3.11]

where ra′ is the normalized asperity radius defined as the ratio of the asperity radius ra to the

particle radius r, i.e. ra/r. The pull-off force (i.e. adhesive force) should be calculated using the
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asperity radius ra rather than the particle radius r since the adhesive force is smaller than that for a

smooth surface. φ(ra′) is the adhesive force distribution which is assumed to have a log-normal

distribution with geometric mean ar and geometric standard deviation (adhesive spread factor) σa′,

shown in Eq.[3.18].

Komen (2007) developed two simple quasi-static resuspension models, in which the formula of the

used for the adhesive moment is similar to that used in the Vainshtein model for particle adhesion

to a surface. In the next section we will focus on his NRG models (named after Nuclear Research

and consultancy Group, in the Netherlands).
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3.2 NRG Models

The Nuclear Research and consultancy Group (NRG) recently developed two quasi-static

resuspension models (Komen, 2007). The first model NRG3 is based on a quasi-static balance of the

drag force and the tangential pull-off force similar to that used in the Vainshtein model. The pull-

off force is computed using the asperity radius ra, rather than the particle radius, and is given by

 
2/34/3

1/3
9.3 a

aτ

γ rr
F

κ


 [3.12]

In a similar way as in the Vainshtein model, the NRG3 model assumes that this adhesive reduction ra′

is equivalent to the ratio of the asperity radius and the particle radius.

There is a step function δ given in the NRG3 model which equals 1 when the pull-off forces (Faτ)

exceed the drag forces (FD). It is described as the fraction of particles (either 0 or 1) with radius r

remaining on the surface asperities with normalized asperity radius ra′, in other word, if the drag

force dominates (FD > Faτ) all particles are resuspended from the surface.
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However, if the moment balance is used instead of the force balance, considering the adhesive

moment from the Vainshtein model,

 
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κ


  [3.14]

the normalized asperity radius ra′ will be increased to the power of 5/3 whereas it is 2/3 in the

force balance case. Since it has been demonstrated that the considered force and moment balance

are equivalent, it can be concluded that the models are not fully consistent for rough surfaces.

Therefore, the following pragmatic approach is considered by NRG when constructing the NRG4

particle resuspension model. This resuspension model is based on a balance of moments. In the

NRG4 resuspension model, the adhesive reduction ra′ due to surface roughness is defined as the ratio

of the adhesive moment on rough surface to the adhesive moment on smooth surface, see Eq.[3.16].

In the NRG4 model, the step function is determined by the relative magnitudes of the adhesion

moment (Ma) and the drag moment (MD).
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The drag moment takes the same form as that in the Vainshtein model, see Eq.[3.5]. Komen (2007)

concluded that the adhesive moment of JKR adhesion model on rough surface is theoretically more

correct than that in the Vainshtein model. Therefore, the adhesive moment of JKR adhesion is

applied in the NRG4 model.
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Assuming that the distribution of adhesive reduction is similar to that for the Vainshtein and the

Rock’n’Roll models, the particle fraction remaining on the surface is then computed as

0
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The log-normal distribution of the adhesive asperities radii in Vainshtein model is given by
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with geometric mean ar (reduction factor) and geometric standard deviation (adhesive spread

factor) σa′.

The three models – Vainshtein, NRG3 and NRG4 – have been used to compute resuspension as a

function of wall friction velocity for the same conditions (Hall's experiment, Reeks & Hall, 2001) –

alumina particles with three different values of diameters, ar = 0.027 and σa′ = 10.4 (values

obtained from Reeks & Hall, 2001 and Biasi et al., 2001). The results of these calculations are

plotted in Figure 3.3, Figure 3.4 and Figure 3.5. Komen concluded from the graphs that the NRG4

model predictions are in reasonable agreement with the experimental data, whereas the Vainshtein

and NRG3 models yield an under prediction of the amount of resuspended particles for the selected

surface roughness parameters. Therefore, the modification in next section will be based on the

NRG4 model.

Figure 3.3 - Particle fraction remaining after 1s by the Vainshtein model (Komen, 2007)
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Figure 3.4 - Particle fraction remaining after 1s by the NRG3 model (Komen, 2007)

Figure 3.5 - Particle fraction remaining after 1s by the NRG4 model (Komen, 2007)

It is noted that the NRG4 model is simply based on the error function. Consider that the

resuspension will occur (none left on the surface) when the drag moment exceeds the adhesive

moment, for any value of friction velocity (uτ) and particle radius resuspension will occur if
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where rab′ is the normalized asperity radius when the drag moment balanced with the adhesive

moment. So the step function δ becomes
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Therefore, the fraction remaining on the surface is derived as
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Now introduce the new variable θ, let
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where
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.

In order to calculate the adhesive force or moment for a rough surface, in the Vainshtein and

Rock’n’Roll models, the asperity radius is assumed physically much smaller than the particle radius,

i.e. ra′  1. If ra′ = 1, it is considered that the particle is sitting on a smooth surface. However, the

log-normal distribution generates a non-zero (although vanishing) probability for all positive values

of the asperity radius so its part of the distribution inevitably consists of asperities for which ra′ > 1.

Indeed, with the values for the geometric mean ar and adhesive spread factor σa′ used in the

Vainshtein and Rock’n’Roll models, a significant fraction of the asperity distribution lies outside the

range 0 < ra′ < 1. For this larger values of ra′, the particle adhesion is much closer to that for a

particle on a smooth surface, so Komen (2007) modified the adhesion asperity distribution to take

account of this; he introduced a truncated distribution φt(ra′), with a log-normal form in the range 0

< ra′ ≤ 1, and zero outside this range. 
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 [3.23]

It is noted that regarding of the truncated distribution, the lower limit of the integration in Eq.[3.21]

becomes
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So the maximum value of θb for the integration occurs when rab′ = 1,
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However, Komen (2007) showed that the use of a truncated log-normal distribution did not result in

any significant change in resuspension fraction.
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3.3 Modification of the NRG4 Model

The NRG4 model assumes that resuspension will occur when the aerodynamic moment exceeds the

adhesive moment. The aerodynamic moment is obtained from the mean drag and does not include

the effects of fluctuating drag or any contribution from the lift force (although the lift will not have

much effect on resuspension, compared with the influence of the drag force). In reality, however,

the aerodynamic drag will fluctuate, and the aerodynamic moment ought to be calculated from this

fluctuating force. In this section, therefore, the NRG4 model is firstly modified to include a

fluctuating aerodynamic moment (within the frame work of a quasi-static analysis) and then the

aerodynamic resultant force (F) and adhesive force (fa), as developed in the R’n’R model (Reeks &

Hall, 2001) is incorporated. In both cases, the adhesive forces are assumed given by a log-normal

distribution (Eq.[3.18]), and the influence of these modifications for a range of particle sizes (r) and

adhesive spread factor (σa′) is compared.

3.3.1 Part I

It is assumed that the aerodynamic moment has a Gaussian distribution, with mean <MD> and root

mean square mD.

2
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D D
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π m m
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[3.25]

where <MD> is given by from Eq.[3.5] and mD is assumed to be equal to 0.2<MD>, as given in the

R’n’R model. Later, the influence of the ratio <MD>/ mD on particle resuspension is investigated.

Then the fraction of particles that remains on the surface is given by

0

( ) ( )R a af G M δ φ r dMdr
 



    [3.26]

where δ = 0 if M > Ma and δ = 1 if M ≤ Ma, and the adhesive moment is computed from Eq.[3.16].

Substituting Eq.[3.25] into Eq.[3.26],
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The aerodynamic moment distribution can be written in normalized form:
2

D
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and 21
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The step function δ define the domain of integration, so the upper limit for the integration is given

by

0
2

a D

D

M M
A

m


 from which

0

2

0 0

1
2 exp( ) ( )

A

R a af A dA φ r dr
π



   

Finally, the fraction of particle remaining on the surface (fR) is given by
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where Ma depends on ra′, as given by Eq.[3.16]. The numerical method of calculating Eq.[3.27] is

shown in Appendix 2 (p202). The resuspension fraction shown later in all figures is defined as (1-fR).

The normalized asperity radius (ra′) is assumed to have a log-normal distribution, as given by

Eq.[3.18]; to examine the influence of the fluctuating drag force we have performed simulations

with a mean value (also called ‘reduction’) ar = 0.01 and three different spread factors σa′. For one

of these the Biasi’s correlation (Biasi et al., 2001), which based on resuspension experiments (Reek

& Hall, 2001), is used.

6 1.41.8 0.136( 10 )aσ r    [3.28]

Biasi’s correlation values for 2μm, 10μm and 20μm particles (diameter) are given below 

 2μm 10μm 20μm 

σa′ 1.936 3.094 5.216

The results are plotted in Figure 3.6, Figure 3.7 and Figure 3.8. The models will be noted as NRG4

and NRG4 modified.
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Figure 3.6 - Comparison of NRG4 and modified NRG4 with spread factor = 2
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A comparison of these figures shows that in all cases the inclusion of the fluctuating drag increases

the fraction resuspended, as might be expected. This effect is most evident for the smallest

particles (particularly 2μm) and for the lowest spread factors – in fact there is very little difference 

between the value computed by Biasi’s correlation (for 10μm particles) and the assumed value of 2. 

The influence of the spread factor on the resuspension fraction is illustrated in Figure 3.9 for 10μm 

alumina particles, and 3 values of spread factors. All three curves intersect at the point where the

resuspension fraction is equal to 0.5, and this is therefore independent of the spread factor.

Consider Eq.[3.22], the resuspension remaining by the NRG4 model can be rewritten as
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Now when fR = 0.5, θb = 0, then the friction velocity to resuspend 50% of the particles is derived as
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
 [3.29]

from which the friction velocity necessary to resuspend 50% of the particles is computed

1

50 1.215τu m s 

It is important to emphasize that this is independent of the spread factor, since this also explains

the influence of the spread factor for resuspension fraction less than or greater than 50%.

For friction velocities less than uτ50, increasing the spread factor increases the fraction resuspended,

whereas for friction velocities greater than uτ50 an increase in spread factor leads to a drop in the

fraction resuspended. The spread factor affects the fraction resuspended because it determines the

lower limit of integration for the particle size distribution.

ln( )

2 ln

ab a
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θ

σ

 
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

The limiting value of the normalized asperity radius rab′ is determined by the balance of adhesive

and aerodynamic moments and depends on uτ and particle radius, but not on the spread factor

(Eq.[3.19]). The geometric mean normalized asperity radius ar does not vary in these calculations,

so increasing the spread factor σa′ leads to a decrease on the integration limit θb. At first sight it

might be thought that decreasing the lower limit of integration should inevitably lead to an increase

in the integral of fraction remaining (fR), and hence a reduction in the fraction resuspended (1-fR).

But for uτ < uτ50, resuspension fraction is < 0.5 and the lower limit of integration is negative (because

rab′ < ar ). So decreasing the value of θb moves it closer to zero, and hence decreases the integral.
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Of course, once rab′ > ar (uτ > uτ50) then the lower limit becomes positive, and increasing σa′ does

indeed result in an increase in fR (decrease in fraction resuspended).

Physically, this can be explained by the way the log-normal distribution changes with the spread

factor. The median value of the log-normal distribution used in these simulations occurs at ra′ =

ar and the modal value (the peak) occurs at  
2

exp lna ar σ  
 

. Note that the median is

independent of the spread factor, but the mode – the peak – decreases as σa′ increases (it shifts

towards ra′ = 0, and the peak value of the frequency distribution decreases). Now for uτ < uτ50, rab′ <

ar , and only asperities with normalized radii between zero and rab′ contribute to resuspension (1-fR),

so as σa′ increases, the peak in the distribution shifts towards ra′ = 0 and the proportion of asperities

in the region 0 < ra′ < rab′ increases, so the resuspension fraction increases. See diagram below

Figure 3.10 - Log-normal distributions with different spread factors

 A1 + A2 = 0.5 as σa′ increases A1 decreases, so A2 must increase.

 B1 + B2 = 0.5 as σa′ increases B1 decreases, so B2 must increase.

More information and discussion is shown in Appendix 1 (p200).

If the limiting asperity radius is greater than ar then as σa′ increases the proportion of asperities in

the tail of the distribution increases, and the proportion of asperities with radii less than rab′ 

decreases, so increasing the spread factor decreases the fraction resuspended.
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In order to identify more clearly the influence of the fluctuating drag moment, the ratio of the

fraction resuspended in the modified NRG model to the fraction resuspended in the NRG4 model is

plotted, for 2μm, 10μm and 20μm particles, and for two spread factors – 2 and 10. The results are 

shown in Figure 3.11. The fluctuating drag has the biggest effect at low friction velocities and low

spread factors. The ratio of the three resuspended fractions seems independent of the particle size.

The influence of the rms coefficient (0.2 in the modified NRG model) of the fluctuating force is

illustrated in Figure 3.12 and Figure 3.13; the fraction of particles resuspended increases as the rms

factor of the fluctuating moment increases, as might be expected, and the effect is greatest at the

low value of uτ (shown in Figure 3.13). It should be noted that the largest value of the rms

coefficient (which corresponds to mD = <MD>) is much larger than anything likely to be encountered

in practice.
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3.3.2 Part II

This section describes a new model which based on the NRG4 model but with a new moment system

that as used in R’n’R model (Reeks & Hall, 2001), which is referred as NRG4-RNR model. Then the

model is modified by including the fluctuating aerodynamic forces, which is referred as modified

NRG4-RNR model. Reeks and Hall’s (2001) method of deriving mean aerodynamic resultant force is

applied.

Figure 3.14 - Rock’n’Roll model geometry (Reeks & Hall, 2001)

The basic configuration is shown in Figure 3.14; a spherical particle, radius r, is supported on two

asperities, with contact points O and P separated by a distance a. The drag and lift forces, FD and FL,

act through the centre of the particle, and the adhesive force FA acts vertically downwards at O.

The couple of the system about P is that given by

2

2Γ
2 2

L D

a a
F r F

 
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[3.30]

Assuming that 1r a  , the resultant aerodynamic force F is derived as
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Γ 1 1 1
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L D L D

r r
F F F F F

a a a

 
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 
[3.31]

The ratio r/a is thought to be typically of the order of 100 (Reeks & Hall, 2001). Then it is assumed

that the resultant aerodynamic force F is fluctuating, and can be modelled by a Gaussian

distribution with the mean <F> and the rms fluctuating component f.

2
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2 2

F F
G F

π f f
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[3.32]
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The mean aerodynamic force is derived based on Eq.[3.30]. The fluctuating component is defined as

a rms coefficient times the mean, the rms coefficient is 0.2 as suggested by Reeks and Hall (2001).

1
0.2

2
L D

r
F F F f F

a
   [3.33]

The effect of modifying the rms factor will be investigated later. Following Reeks and Hall (2001),

the mean drag and lift force are defined as

2 2.31

2 232 20.9τ τ
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[3.34]

The drag force is based on the principle of Stokes drag on a small particle, radius r, immersed in the

viscous sub-layer.

The adhesion moment is derived following Figure 3.14 and the adhesive force fa is simply defined

based on scaling on the adhesive force for the smooth contact surface Fa in the JKR model, as below

3

2
a a a a aM f a F r a πγrr a    [3.35]

Then the particle fraction remaining of the surface, according to NRG model, is obtained as
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The derivation is similar as that derives Eq.[3.27], then
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As in Part I, the mean normalized asperity radius is set equal to 0.01 and the resuspension fraction

is computed as a function of uτ for different spread factors.

Figure 3.15, Figure 3.16 and Figure 3.17 show the resuspension fraction as a function of friction

velocity for three different particle diameters (2μm, 10μm and 20μm) and different adhesive spread 

factors (2, Biasi and 10). In all cases, curves are plotted for the NRG4-RNR model and for the

modified NRG4-RNR model. The results are similar in form to those obtained with the NRG4 model

(Figure 3.6, Figure 3.7 and Figure 3.8) although the actual fraction resuspended is sensitive to the

lift-off model. This is discussed in detail later. The curves all show that including the influence of

fluctuations in the lift-off force results in an increase in the fraction resuspended, and this increase

is most noticeable for the smallest particle diameter (2μm); even in that case, the increase in 

resuspension fraction over most of the curve is of the order of 10%. This is evident from the graph in

Figure 3.19 of the ratio of resuspended fractions for the two conditions. At very low friction

velocities the ratio reaches a maximum of about 2.2 – very similar to that obtained in the earlier

simulation (Figure 3.11) – but the actual fraction resuspended at such a low friction velocity is so

small that this amplification is not really practically significant.
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Figure 3.15 - Comparison of NRG4-RNR and modified NRG4-RNR with spread factor = 2
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Figure 3.16 - Comparison of NRG4-RNR and modified NRG4-RNR with spread factor = Biasi
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Figure 3.17 - Comparison of NRG4-RNR and modified NRG4-RNR with spread factor = 10
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The influence of the level of fluctuation in the aerodynamic force has been investigated by

simulating one case (particle diameter = 10μm; spread factor = Biasi) for several different values of 

the rms coefficients, and the results are shown in Figure 3.20. This shows that the additional

resuspension caused by fluctuations in the aerodynamic force is really rather small when the rms

coefficient = 0.2, and only seems to become significant for the rms coefficient > 0.5. This

corresponds to a very high lead of fluctuation – much higher than would be encountered in practice.

The effect of rms coefficient on particle resuspension is further studied in next the Chapter.

The four models NRG4, NRG4 modified, NRG4-RNR and NRG4-RNR modified have been compared for

spread factors of 2 and 10, and the results are plotted in Figure 3.21 and Figure 3.22. These show

that the resuspension fraction for large particles (diameter 20μm) is fairly insensitive to the choice 

of model, but that the resuspension fraction of small particles is much more sensitive to the

resuspension model. But for both values of spread factor the choice of lift off model (NRG4-RNR)

has much more influence than the inclusion (or not) of a fluctuating lift-off force.

It is noted that as particle size increases the tendency between the models using NRG4 moment

system (NRG4, NRG4 modified) and the models using R’n’R moment system (NRG4-RNR, NRG4-RNR

modified) is reversed. The reason of this is from the difference between the moment systems of

these models. In order to study this, now consider the different moment systems in the NRG4 and

NRG4-RNR models

4/3 5/3
2 3
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When aerodynamic moment balances with the adhesive moment, the normalized asperity radii in

balanced state for both systems are derived as
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Then according to Eq.[3.22], the fractions remaining on the surface for both the NRG4-RNR and

NRG4 models are derived as
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The ratio of the fraction remaining between the NRG4-RNR and NRG4 model is plotted in Figure 3.23.

The figure show that ratio = 1 as particle size is around 6μm. As particle size is greater than 6μm, 

the model with R’n’R moment system (NRG4-RNR) starts resulting more particles remaining on the

surface.
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Figure 3.21 - Comparison of NRG4 and NRG4-RNR models with spread factor = 2
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3.4 Conclusion and Discussion

In this chapter, the Vainshtein’s model and NRG models have been reviewed and compared via their

predictions for the resuspension fraction. The effect of various possible improvements to the NRG4

model has been investigated, and quantified for a range of practical conditions. The different

effects that have been studied include

 the form of the aerodynamic removal force and the force (or moment) balance at particle

removal from a surface

 the influence of the fluctuating aerodynamic removal force

In all case the asperity radius is assumed to have a log-normal distribution.

Inclusion of the influence of fluctuating removal forces has little influence on the resuspension

fraction for large particles (diameter ~ 20μm), and is independent of the spread factor. Smaller 

particles (diameter ~ 2μm), however, are much more sensitive to this inclusion and it has more 

influence than the fluctuations in the aerodynamic drag force. Increasing the spread factor

decreases the resuspension fraction, for strong flows and increases the resuspension fraction for low

flows; this is at least partly due to the assumption of a log-normal distribution for the normalized

asperity radius.
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Chapter 4

Modification on the

Rock’n’Roll Model

The sciences do not try to explain, they hardly even try to interpret, they

mainly make models. By a model is meant a mathematical construct which,

with the addition of certain verbal interpretations, describes observed

phenomena. The justification of such a mathematical construct is solely and

precisely that it is expected to work.

- John Von Neumann

In this Chapter, the modification of the Rock’n’Roll (R’n’R) model will be presented and the impact

this has upon the resuspension predictions examined and discussed. We begin by giving a brief

description of the original R’n’R model as described in Reeks and Hall (2001). We then follow that

with a description of the aerodynamics removal forces and how their statistics was obtained from

LES and DNS measurements of turbulent velocities in a fully developed boundary layer. We show

how these statistics are incorporated into a new improved R’n’R model and in particular the effect

they have on the model predictions for resuspension compared to the original model.

The R’n’R model presented by Reeks and Hall (2001) is an energy accumulation resuspension model.

In which particles on a surface are considered to be resuspended when they have accumulated

enough kinetic energy to be detached from the surface. This energy accumulation can take place at

the natural frequency of the particle-surface deformation (resonant energy transfer) or at the

forcing frequency of the fluctuating aerodynamic force acting on the particles at the surface

referred to as the quasi static case. In particular, this means that the particle motion is

approximated by a force balance (or moment balance if the couples of the system are considered)

between aerodynamic force and adhesive force. The quasi-static case is widely used in practice

instead of the case considered in the original R’n’R model where both resonant energy and quasi

static cases are included e.g. as in the nuclear severe accident analysis code, i.e. SOPHAEROS

(Cousin et al., 2008) and AERORESUSLOG (Guentay et al., 2005); this neglect of resonant energy

transfer is not only due to a reduction of computational time, but also the similar results between

quasi-static case and original R’n’R model as can be seen in Figure 4.1.
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Figure 4.2 - Potential well and particle couple system

Recalling the R’n’R quasi-static model, the geometry of the particle-surface contact in the revised

model (as also in the original) is shown in Figure 4.2b in which the distribution of asperity contacts

is reduced to a two-dimensional model of two-point asperity contact. Thus rather than the centre of

the particle oscillating vertically as in the original Reeks Reed and Hall (1988) (RRH) model, it will

oscillate about the pivot P until contact with the other asperity at Q is broken. When this happens it

is assumed that the lift force is either sufficient to break the contact at P and the particle
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resuspends or it rolls until the adhesion at single-point contact is sufficiently low for the particle to

resuspend. In either situation the rate of resuspension is controlled by the rate at which contacts

are initially broken. The formula for the resuspension rate has the same form as in the original RRH

model except that couples are taken account of by replacing vertical lift forces by equivalent forces

based on their moments. That is referring to Figure 4.2b, the equivalent force F is derived from the

net couple (Γ) of the system above so that 

1
Γ

2 2
L D L D

a r
F rF F F F

a
     [4.1]

where a is the typical distance between asperities, r the particle radius, FL the lift force and FD

the drag force. The geometric factor (r/a) which refers to the ratio of the particle radius to the

distance between asperities is suggested to be close to 100 according to Hall’s experiment (Reeks

and Hall, 2001). We recall that for the quasi-static case in the R’n’R model, at the detachment

point (i.e. point ydh in Figure 4.2a, referring to the angular displacement of the asperity contact at

Q about P as in Figure 4.2b), the aerodynamic force acting on the particle (which includes the mean

<F> and fluctuating parts f(t)) is considered to balance the restoring force at each instant of time

(hence the term quasi –static). So

( ) ( ) 0ARF f t F y   [4.2]

where FAR(y) is the adhesive restoring force as a function of the angular deformation (y) of the

particle. At the point of detachment (ydh) the adhesive force is denoted by fa = -FAR (ydh), so that

from Eq.[4.2], the fluctuating component of the equivalent aerodynamic force at the detachment

point (fdh) can be written as

dh af f F  [4.3]

Based on their measurements the mean drag and lift force for a spherical particle of radius r is

given by Reeks and Hall (2001) (Eq.[2.70] and Eq.[2.18]) as

2 2.31

2 232 20.9τ τ
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f f
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ν ν

   
       

   
[4.4]

where ρf is the fluid density, νf is the fluid kinematic viscosity, uτ is the wall friction velocity. The

adhesive force is considered as a scaled reduction of the adhesive force on a smooth surface based

on the JKR model (Johnson, Kendal and Roberts, 1971) (Eq.[2.55]). Thus

3

2
a af πγrr [4.5]

where γ is the surface energy and ra′ the normalized asperity radius ra/r where ra is the asperity

radius. ra′ is assumed to have a log-normal distribution φ(ra′) with geometric mean ar (also called

reduction factor) and geometric standard deviation σa′ (also called spread factor). Physically, these

two parameters define the roughness of the surface. ar defines how adhesive force reduces from

smooth surface and σa′ describes how narrow the distribution is.
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a a
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   

 

[4.6]
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Biasi et al. (2001) took the Rock’n’Roll model for resuspension and added an empirical log-normal

distribution of adhesive forces to reproduce the resuspension data of a number of experiments.

Some adhesion-force parameters were tuned to fit the data of the most highly-characterised

experiments, i.e., those of Hall (Reeks & Hall, 2001) and Braaten (1994). Then, for an enlarged

dataset including STORM and ORNL ART resuspension results, the best global correlation for

geometric mean adhesive force and geometric spread as a function of particle geometric mean

radius (in microns) was obtained, namely

0.545

1.4

0.016 0.0023

1.8 0.136

a

a

r r

σ r

  

  
[4.7]

The resuspension rate constant p, according to Reeks et al. (1988), is defined as the number of

particles per second detached over the number of particles attached on the surface.

0

( , ) ( , )
dhy

dhp v P y v dv P y v dydv
 

 

    [4.8]

The numerator can also be described as the particle detachment flux (density flux) out of the

potential well (Figure 4.2a). The denominator is the number of particles in the well.

Referring to Eq.[4.2] for the quasi-static case, we note that the angular deformation or

displacement y can be written as an implicit function of the fluctuating aerodynamic force (f), i.e.

( ) ( ) ( ) ( )y t ψ f and so y t fψ f   [4.9]

where ψ’(f) is the first derivative of ψ(f) with respect to f.

then

0
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dhp f P f f df P f f dfdf
 

 

        [4.10]

where the joint distribution P of fluctuating aerodynamic force (f) and its derivative ( f ) is assumed

to be a joint normal distribution with zero correlation between the force and its derivative. Thus

1 2 2
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where 2f is the root mean square of fluctuating force and assumed as the rms coefficient frms

multiplied by the average aerodynamic force F (In R’n’R model, frms is 0.2).

Substituting Eq.[4.11] into Eq.[4.10], the resuspension rate constant is then given by
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[4.12]
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where

2 2
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
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ω is the value of 2 2f f in wall units and represents the typical frequency of particle

motion in the surface adhesive potential well. In the R’n’R model ω is 0.0413. It is noted that the

maximum value of resuspension rate constant is given by

2

2

1

2

f
p

π f



[4.14]

Therefore when 2

dhf f ≤ 0.75, the resuspension rate constant reaches its maximum value. 

The particle fraction remaining fR(t) and resuspension rate Λ(t) at time t are defined as
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[4.15]

In next sections, the modification of the R’n’R model quasi-static case will be presented and

discussed which includes the modification of the fluctuating aerodynamic force.
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4.1 Fluctuating Aerodynamic Force

In this section, we describe how LES and DNS have been used to obtain the distributions of

fluctuating aerodynamic force and its time derivative. We then show how the Rock ‘n’ Roll model is

modified by these new distributions and the impact this has on the resuspension predictions.

4.1.1 Large Eddy Simulation

The Smagorinsky dynamic sub-grid scale model (Germano et al., 1991) is applied in Large Eddy

Simulation (LES). The domain for LES approach is described below in Figure 4.3. The periodic

boundary condition is applied in the streamwise and spanwise directions and the computational grid

is in essence following the flow down stream. The top and bottom surface are the wall. Table 4.2 in

next section also showed the parameters applied in the simulation.

Figure 4.3 - Domain of LES calculation

In order to maintain a time dependent flow, an external force must be applied to the flow. In the

case of the channel, a negative streamwise pressure gradient is used to sustain the flow which is

calculated as

2

11.0
τ fu ρdp

Pa m
dx h

     [4.16]

where ρf is the fluid density and h is the characteristic height which is 1 in this simulation. The

shear Reynolds number Rer applied in the simulation is

182.87
τ f

τ

f

u ρ h
Re

μ
  [4.17]

where μf is fluid viscosity.
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The time interval Δt is 0.0015s and there are 60116 time steps calculated. The fluid parameters are

listed below:

3 1 1

1 1

1.000 , 0.0055555

18.0 , 1.0132 , 1.0159

f f

C w τ w f

ρ kg m μ kg m s

U m s τ Pa u τ ρ m s
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 

    

     

where Uc is characteristic flow velocity and τw is the shear stress at the wall.

Figure 4.4 - Histogram and fitted distribution of instantaneous streamwise velocity (y+ = 6)

The fluid instantaneous streamwise velocity u was obtained for different y+ (y+ = 1, y+ = 2 and y+ = 6)

away from the wall at each time step. The histogram of the streamwise velocities (y+ = 6) is

obtained as shown in Figure 4.4. Assuming the local fluid velocity is similar to the particle velocity,

the instantaneous drag forces acting on the particle is then calculated from the velocities by

O’Neill’s (1968) method which derived a simple drag force solution of the Stokes flow equation via

Fourier – Bessel transforms for the sphere particle sitting on the wall in viscous sublayer.

2

1.7 6 10.2
f f

D f

τ

r μ ρ
F πμ r u π u

u



   [4.18]

where r+ is the dimensionless particle radius which considered as y+ away from the wall. Since in

R’n’R model the drag force contribute the main part to the aerodynamic force (the drag force is

multiplied by a factor of 100 (r/a = 100) and the lift force is reduced to half, following Eq.[4.1]), at

the moment it is assumed that the lift force is neglected. Then the aerodynamic equivalent force is

obtained according to Eq.[4.1].
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100D D

r
F F F

a
   [4.19]

The aerodynamic equivalent force contains two parts: the mean and the fluctuating component.

The fluctuating aerodynamic equivalent force is obtained by subtracting the mean part (arithmetic

mean calculated from the data) from the instantaneous aerodynamic force.

f F F  [4.20]

The derivative of the fluctuating aerodynamic force f is calculated by the first order method,

t

ff
f ii

i



 1 [4.21]

In order to regenerate the new joint distribution for P (Eq.[4.11]), f and f will be normalized first

by their rms values. Let z1 and z2 be the normalized fluctuating force and derivative, then

1 2
2 2

,
f f

z z
f f

 



[4.22]

Then the histograms of z1 and z2 are obtained and the results indicate that the distribution of

fluctuating aerodynamic resultant force fits to a Rayleigh distribution (Figure 4.5 (y+ = 6), Figure 4.6

(y+ = 2) and Figure 4.7 (y+ = 1)) and the distribution of the derivative of the fluctuating aerodynamic

resultant force fits to a Johnson SU distribution (Figure 4.8 (y+ = 6), Figure 4.9 (y+ = 2) and Figure

4.10 (y+ = 1)). It is noted that there are two important reasons for choosing a Rayleigh distribution

for the distribution of fluctuating aerodynamic resultant force: 1) best fit in the wings. 2) only two

parameters are required.

Figure 4.5 - Histogram and fitted distribution of fluctuating resultant force from LES data (y+=6)
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Figure 4.6 - Histogram and fitted distribution of fluctuating resultant force from LES data (y+=2)

Figure 4.7 - Histogram and fitted distribution of fluctuating resultant force from LES data (y+=1)



4.1 Fluctuating Aerodynamic Force

106

Figure 4.8 - Histogram and fitted distribution of derivative of fluctuating force from LES data (y+=6)

Figure 4.9 - Histogram and fitted distribution of derivative of fluctuating force from LES data (y+=2)



4.1 Fluctuating Aerodynamic Force

107

Figure 4.10 - Histogram and fitted distribution of derivative of fluctuating force from LES data (y+=1)

According to the histogram plot (Figure 4.5) of fluctuating resultant force at y+ = 6, one can observe

that the Rayleigh distribution is highly skewed compared to Gaussian distribution. However for the

histogram plot (Figure 4.8) of the derivative at y+ = 6, the skewness of Johnson SU distribution is

similar to Gaussian distribution; the difference occurs in the wings. More discussion about the

histogram and fitted distribution will be provided in Section 4.1.2 (p109).

Recall that in the quasi-static case of R’n’R model, it is assumed that distribution of fluctuating

aerodynamic force and its derivative (Eq.[4.11]) are statistically independent. From the LES data

generated above, the distribution of fluctuating resultant force (Rayleigh distribution) and its

derivative (Johnson SU distribution) can then replace the normal distribution assumption.

Then the new normalized joint distribution can be obtained by

  
2 2

21 1 1 1 1
1 2 3 12 2

22 2

1 1
( , ) exp exp ln 1

2 22 1

z A z A B
P z z B B z z

AA B π z

     
              

[4.23]

where A1, A2, B1, B2, B3 and B4, are all constants depending on the fluid condition, 2 4

2

z B
z

B


 . The

former part of Eq.[4.23] which contains constants Ai is the Rayleigh distribution and the latter which

contains Bi constants is the Johnson SU distribution.

As the differential 1 2 1 2( , )P z z dz dz equals to ( , )P f f dfdf  and Eq.[4.22] also gives
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2

1df f dz , 2

2df f dz  [4.24]

then the relationship between the normalized joint distribution and original one is obtained,

1 2

2 2

( , )
( , )

P z z
P f f

f f



[4.25]

Substitute Eq.[4.22], Eq.[4.24] and Eq.[4.25] to Eq.[4.10] (derivation is shown in Appendix 3, p203),

the modified resuspension rate constant is obtained,

2 2 2

1 1 1
22

2 22

1 1
exp 1 exp

2 2
dh dh dh

f

f z A z A z A
p B

A AAf

        
            

      



[4.26]

where 2

dh dhz f f , fdh is the fluctuating resultant force at detachment point (Eq.[4.3]). The

term 2f is calculated as the rms coefficient frms multiplied by the mean of aerodynamic

resultant force. frms equals 0.2 in R’n’R model whereas here it is calculated from the simulation

data.

2

rmsf f F [4.27]

In R’n’R model, the maximum value of p is limited to the bursting frequency of turbulent motion in a

turbulent boundary layer (ω), the ratio of the rms value of the force derivative to the rms value of

the fluctuating resultant force is given as

2 2

2

τ

f

f u
ω ω

νf


 

   
 
 


[4.28]

where ω+ which is called the typical forcing frequency equals to 0.0413 in R’n’R model based on

Hall’s experiment. Here it is calculated from the simulation data. ω+ is ω in wall unit.

Table 4.1 shows the values of all the parameters appear in the equations based on LES data (for y+ =

1, 2 and 6).

f
B  A1 A2 ω+ frms

y+ = 1 0.370063 1.90124 1.511536 0.100202 0.355

y+ = 2 0.365629 1.86330 1.495317 0.08484 0.356

y+ = 6 0.366081 1.88837 1.510938 0.08553 0.335

Table 4.1 - Parameters used in modified R’n’R model calculated from LES data
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4.1.2 Direct Numerical Simulation

A spectral projection method for incompressible flow simulation based on an orthogonal

decomposition of the velocity into two solenoidal fields (Buffat et al., 2011) is applied for Direct

Numerical Simulation. The approximation is based on Fourier expansions in the streamwise (x) and

spanwise (z) directions and an orthogonal expansion of Chebyshev polynomials (proposed by Moser

et al., 1983) in the wall normal (y) direction in order to satisfy the wall boundary conditions. The

boundary conditions are no-slip on the wall and periodic in the streamwise and spanwise directions.

The domain is shown in Figure 4.11.

Figure 4.11 - Domain of DNS calculation

Consider an incompressible, Newtonian fluid moving between two fixed, parallel plates distant from

2h apart (h is 1). The volume force is introduced in order to simulate flows that are not naturally

periodic in the streamwise direction, while keeping the benefits of Fourier expansions in this

direction.

x y z h grid Reτ ∆t steps

LES 2π 2 π 1 72 x 72 x 72 183 0.0015s 60116

DNS 6π 2 8
3 π 1 384 x 193 x 384 180 0.0034s 63738

Table 4.2 - Simulation parameters in LES and DNS

Table 4.2 showed the simulation parameters compared to LES and the other parameters in DNS are

listed below,

3 1 1 11.000 , 0.00030506 , 0.054945f f τρ kg m μ kg m s u m s         

The flow instantaneous velocities are recorded in each time step and the recording positions are y+

= 0.1, y+ = 0.6, y+ = 1.9 and y+ = 6, respectively, away from the wall. The same approach of

calculating fluctuating force (Eq.[4.18], Eq.[4.19] and Eq.[4.20]) and its derivative (Eq.[4.21]) as in
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LES case is applied and they also are normalized by their rms values (Eq.[4.22]). The distributions of

the normalized fluctuating resultant force and its derivative for each y+ are shown below.

Figure 4.12 - Histogram and fitted distribution of fluctuating resultant force from DNS data (y+=6)

Figure 4.13 - Histogram and fitted distribution of fluctuating resultant force from DNS data (y+=1.9)
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Figure 4.14 - Histogram and fitted distribution of fluctuating resultant force from DNS data (y+=0.6)

Figure 4.15 - Histogram and fitted distribution of fluctuating resultant force from DNS data (y+=0.1)
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Figure 4.16 - Histogram and fitted distribution of derivative of fluctuating force from DNS data
(y+=6)

Figure 4.17 - Histogram and fitted distribution of derivative of fluctuating force from DNS data
(y+=1.9)
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Figure 4.18 - Histogram and fitted distribution of derivative of fluctuating force from DNS data
(y+=0.6)

Figure 4.19 - Histogram and fitted distribution of derivative of fluctuating force from DNS data
(y+=0.1)

The results indicated that the distribution of fluctuating aerodynamic resultant force also fits to a

Rayleigh distribution and the distribution of the derivative of the fluctuating aerodynamic resultant

force fits to a Johnson SU distribution which is consistent with LES results.
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Then with the same calculation of LES approach, the resuspension rate constant is obtained as

2 2 2

1 1 1
22

2 22

1 1
exp 1 exp

2 2
dh dh dh

f

f z A z A z A
p B

A AAf

        
            

      



[4.29]

with the same assumption on the rms coefficient frms and the typical forcing frequency ω+.

2 2
2

2
, τ

rms

f

f u
f f F ω

νf


 

   
 
 



The table below shows the values of all the parameters in LES and DNS.

LES
f

B  A1 A2 ω+ frms

y+ = 1 0.370063 1.90124 1.511536 0.100202 0.355

y+ = 2 0.365629 1.86330 1.495317 0.08484 0.356

y+ = 6 0.366081 1.88837 1.510938 0.08553 0.335

DNS
f

B  A1 A2 ω+ frms

y+ = 0.1 0.343658 1.812562 1.463790 0.164189 0.366

y+ = 0.6 0.346911 1.784751 1.446609 0.152035 0.366

y+ = 1.9 0.351181 1.759902 1.431301 0.131261 0.365

y+ = 6 0.358568 1.836052 1.478360 0.127143 0.346

Table 4.3 - Parameters used in modified R’n’R model calculated by LES and DNS data

From the table above one can observe from both LES and DNS results that in the viscous sublayer (y+

< 6), the statistics of fluctuating resultant force and its derivative (normalized on their rms values)

are almost independent of y+ (parameters
f

B  , A1 and A2 are very close). Also the value of the rms

coefficient frms (namely 2f F ) is almost independent of y+ and with approximately the same

values for both the LES and DNS measurements. However, the typical ‘burst’ frequency ω+ varies

with y+ and there is noticeable difference between the values obtained from the LES and DNS data.

The importance of the parameters
f

B  , A1 and A2 that define the non-Gaussian distributions as

distinct from a Gaussian distribution and the two parameters (frms and ω+) on resuspension will be

investigated in the subsequent analysis and figures given below.
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4.1.3 Results and Analysis

In this section, we compare the predictions of the modified R’n’R model based on the LES and DNS

data with those of the original R’n’R model. This is done in 3 stages because the difference depends

on 3 distinguishable effects. First the difference between the Gaussian and non-Gaussian models is

compared where the difference lies in the role of Gaussian versus non-Gaussian distributions of the

fluctuating aerodynamic force and its time derivative (both with the same mean and rms). In

particular the dependence of the resuspension rate constants on the adhesive force is dependent

upon a Gaussian distribution in the Gaussian models and in the non-Gaussian model it is dependent

on a Rayleigh distribution. Then we consider the sensitivity of the predictions of the modified model

to the LES and DNS results (y+ = 6) based on the measured parameters in Table 4.3. Finally we

compare predictions of the original Gaussian R’n’R model with those of the modified non-Gaussian

R’n’R model based on the DNS results (y+ = 0.1) in Table 4.3 where the difference also depends upon

the different values of ω+ and the values of frms (the ratio of the rms of the aerodynamic removal

force to it is mean value). In this case we shall compare predictions with the experimental results in

the Hall experiment (Reeks and Hall, 2001).

4.1.3.1 Gaussian vs. Non-Gaussian Distribution (DNS)

In this section we will compare the predictions using a non-Gaussian model for the resuspension rate

constant pnG based on Eq.[4.29] with those obtained using a Gaussian model. The values of the

constants in Eq.[4.29] are those given in Table 4.3. For the Gaussian model the resuspension rate

constant pG is given by

   21 1
2 2

expG dh dhπ
p z ω z 

where 2 2ω f f  and   2/dh az f F f  . For future reference we shall also use the

normalized adhesive force 2/a az f f so that 1

dh a rmsz z f   , because unlike zdh, a log

normal distribution of asperity radii corresponds to a Lognormal distribution of za with the same

geometric spread (shown later).

In comparing the non-Gaussian and Gaussian models we shall naturally use the same value of

2 2ω f f  and frms. In fact we shall plot the results so that the differences are independent

of the value of ω reflecting only the difference between a Gaussian and non-Gaussian distribution of

fluctuating aerodynamic forces with the same standard deviation. (To be more precise a Gaussian

with a Rayleigh distribution) Later on we will compare the predictions based on the original R’n’R

model with those based on the non-Gaussian resuspension rate (which we refer to as the modified

R’n’R model), but in these cases the values of ω are different.
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To begin with we compare the values for the resuspension rate constant for the Gaussian and non-

Gaussian models when the adhesive force balances the mean aerodynamic force i.e. fdh or zdh = 0.

For the Gaussian model this value corresponds to the maximum value of the resuspension rate

constant. For a Gaussian model (as in the original R’n’R model),

1
2

(0) 0.15915G π
p ω ω 

This is also the maximum value and applies for zdh < 0.75.

We recall that using Hall’s measurements for the original R’n’R model
2(0) 0.00658 /G τ fp u ν . In

the case of the non–Gaussian model,

1
2 2

1 1 1

2
2 2 2

1 1
(0) exp 1 exp

2 2
nG f

A A A
p B ω

A AA


                                  



which using the values for A1, A2, f
B  of y+ = 0.1 given in Table 4.3 gives

(0) 0.25223nGp ω

We note from Figure 4.20 that ( )nG dhp z > ( )G dhp z for 0.5dhz  because the maximum value of the

resuspension rate constant in the Gaussian model is set at (0)Gp as in the original model. Note the

negative skewness of the distribution of aerodynamic forces means there are more particles on the

surface which experience forces < the mean removal force F . However as shown in Figure 4.20 as

zdh increases beyond 0.5, the difference between Gaussian and non-Gaussian decreases until at

2.1dhz  they are both the same. Beyond this value, the non-Gaussian rate constant exceeds the

Gaussian value. Particularly striking is the large difference between the two predictions for values

of the resuspension rate constant for 1dhz  which although (0), (0)nG Gp p , reflects the

significant difference between the two distributions for aerodynamic removal forces in the wings of

the distribution (corresponding to the highly intermittent bursting and sweeping events of fluid

motion near the wall). Note that when zdh is large the adhesive force on the particle is larger than

the mean aerodynamic resultant force (in other words, in the situation particles are very difficult to

be removed). Therefore, in this situation, the non-Gaussian distribution results significantly more

resuspension than the original Gaussian case.
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Figure 4.20 - Normalized resuspension rate constant between non-Gaussian and Gaussian

The LES/DNS measurements are only reliable out to 4dhz  , but even so from Figure 4.20, the ratio

of / 10nG Gp p  . The form of the distribution for values of 4dhz  would seem to indicate the

difference between the two predictions increases significantly.

Noted that the normalized fluctuating resultant force at the detachment point (zdh), as shown

before, is

2

a a a

dh

rms

f F F r F
z

f Ff

 
  [4.30]

Then the normalized adhesive force (or the ratio of adhesion to the rms of aerodynamic force) is

derived as

1 a a
a dh

rms rms

F r
z z

f f F


   [4.31]

where ra′ is the normalized asperity radius which is from a log-normal distribution φ( ar , aσ ). Then za

also forms a log-normal distribution. The mean is defined as

3
2a a

a a

rms rms

F r πγr
z r

f F f F


  [4.32]
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The spread is defined as
2

ln( ) ln( )a az z   and is identical with aσ which is derived as

2

ln( ) ln( )a ar r    .

Then the log-normal distribution φ( ar , aσ ) is replaced by φ( az , aσ ).

The resuspension rate constant p is, according to Eq.[4.26], a function of zdh. Then the particle

fraction remaining on the surface and the resuspension rate are given by





   

     





0

0

( ) exp ( ) ( )

Λ( ) ( ) ( ) exp ( ) ( )

R dh a a

R dh dh a a

f t p z t φ z dz

t f t p z p z t φ z dz
[4.33]

It is noted that ω is the typical forcing frequency of the particle in the potential well, defined as

2 2

2

τ

f

f u
ω ω

νf


 

   
 
 


[4.34]

Then the resuspension rate ( Λ ), resuspension rate constant (p) and the time (t) are normalized

based on the typical forcing frequency.

ˆ ˆˆΛ Λ , ,ω p p ω t ωt   [4.35]

The normalized resuspension rate is then derived as


   0

ˆ ˆˆ ˆΛ( ) ( ) exp ( ) ( )dh dh a at p z p z t φ z dz [4.36]

It is interesting to see how this significant difference in the values of the rate constants for the two

models for large values of the adhesive force is reduced when in practice we have a broad spread of

adhesive forces. To show this we effectively plot the ratio of the initial resuspension rate as a

function of geometric mean of the normalized adhesive force, za for various values of the spread

(Figure 4.21) and then the same ratio as a function of the spread for a large value of the geometric

mean (Figure 4.22). Note that a log-normal distribution of normalized asperity radii will have the

same spread as a log normal distribution of normalized adhesive forces (as shown before). For a

very narrow spread ~ 1.01 we would expect to reproduce the ratio of resuspension rate constant

shown in Figure 4.20. However as the spread increases so the relative importance and contribution

form the resuspension rates from the higher values of the normalized adhesive force za is markedly

less, even when the geometric mean of za ~ 8 (note that for comparison with Figure 4.20 a value of

za = 8, zdh ~ 5.27 for a value of 1/frms ~ 2.73). In fact for a spread of 2 (nominally smooth surfaces),

the ratio is less for large values of the geometric mean of the normalized adhesive force compared

to its value for zero geometric mean of za.
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Figure 4.21 - Ratio of normalized resuspension rate of non-Gaussian to Gaussian vs. Geometric

mean of za (ratio of adhesive force fa/ rms of fluctuating aerodynamics force 2f

Figure 4.22 shows the sensitivity of the ratio of normalized resuspension rates to changes in the

spread for a large of the geometric mean of za = 8. Note the ratio drops to unity for a spread as

narrow as 1.2 and actually drops below unity but flattens out to a value ~ 1.5 as the spread

increases. All this reflects the regions where the ratio of the rate constants is less than 1 for values

of za between 2.73 (when mean aerodynamic forces  adhesive force) and 5 and za > 5 when the

ratio > 1 and the relative contributions these regions of the curve of the resuspension rate constant

make to the overall net resuspension rate. Of course resuspension is not an instantaneous process

and we know that the resuspension rates will vary significantly in the short term for 0 < ωt < 10 to

ωt  1 in the long-term.
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Figure 4.22 - Ratio of normalized resuspension rate of non-Gaussian to Gaussian vs. spread
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Figure 4.23 - Ratio of normalized resuspension rate of non-Gaussian to Gaussian vs. ωt (za = 3)



4.1 Fluctuating Aerodynamic Force

121

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

geometric mean of z
a

= 5

Normalized time t

R
a
ti
o

o
f


/


o
f

n
o
n
-G

a
u
s
s
ia

n
to

G
a
u
s
s
ia

n

spread factor = 2

spread factor = 4

spread factor = 8

Figure 4.24 - Ratio of normalized resuspension rate of non-Gaussian to Gaussian vs. ωt (za = 5)
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Figure 4.25 - Ratio of normalized resuspension rate of non-Gaussian to Gaussian vs. ωt (za = 8)
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Figure 4.23 - Figure 4.25 show the ratio of non-Gaussian to Gaussian normalized resuspension rates

as a function of time for a range of spread factors (typical of smooth to rough surfaces) and values

of the geometric mean of the normalized adhesive forces za when the geometric mean  mean

aerodynamic force (za ~ 3) to when it is significantly greater than mean aerodynamic force (but still

within the range of the experimental results for zdh). In all cases the resuspension rates and times

are suitably normalized on ω. The figures show that for a spread from 2 to 8, the ratio starts off > 1

(as in Figure 4.21) and decreases reaching close to unity at values of ωt ~ 5, and reaching a

minimum value for value of ωt ~ 20 but whose precise value increases with the spread. The actual

minimum value is less the greater the spread. In the region of 5 < ωt < 40, the ratio is less than 1

and for ωt > 40 the ratio is greater than 1 and rising to a maximum value ~ 1.3 at ωt ~ 60. Beyond

this value of ωt, the ratio flattens out to a constant value larger than 1 which depends on the

spread factors and geometric means of za. It shows that for the long-term, the resuspension rate of

the non-Gaussian model is always larger than the Gaussian case at a fix ratio value. In Figure 4.26

we show the actual values of the resuspension rates for the Gaussian and non-Gaussian models

which indicating the transition from short to long-term resuspension occurring at ωt ~ 20.
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4.1.3.2 Comparison of DNS and LES for Resuspension Predictions

In this section we show the sensitivity of the resuspension rate and fraction resuspended to the

values of the parameters in Table 4.3 based on the LES and DNS data. The main difference is

reflected in the difference in values for ω+ values of frms being very similar in either case for the

values of y+ that were measured. The typical forcing frequency due to the turbulence, ω whether in

real time or wall units ω+ is a scaling parameter for the resuspension rates so we can use Figure 4.26

to obtain the value of the resuspension rates for any value of ω+ at any real time (recognising that

the values of the normalized resuspension rates in Figure 4.26 at any give value of ωt don’t refer to

the same values in real time if the value of ω or ω+ are different. The resuspension rates for LES or

DNS can be obtained directly from Figure 4.26 by compressing or expanding the horizontal and

vertical scales appropriately. Thus if the real time is t we have the formula

Λ ( ) Λ( )

Λ ( ) Λ( )
DNS DNS DNS

LES LES LES

t ω ω t

t ω ω t






where subscripts DNS and LES refer to the DNS and LES measurements. So whether this radio is > or

< 1 depends on the ratio of /DNS LESω ω and the ratio of the normalized resuspension rates in Figure

4.26 measured at different values of the normalized time.
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DNS values are not universally > LES values and vice versa. The features are illustrated in Figure

4.27 using the specified flow and particle adhesions properties measured in Hall’s experiment and

two different particles (2μm and 10μm in diameter). 

Hall’s experiment condition:

3 2 5 2 1 11.181 , 0.56 , 1.539 10 , 2.19f f τρ kg m γ J m ν m s u m s            

Biasi’s correlation (Eq.[4.7]):

2μm (diameter): m (reduction) = 0.0137 and sf (spread factor) = 1.936;  

10μm (diameter): m = 0.0105 and sf = 3.095. 

Note that resuspension rate based on the DNS data is not consistently larger than that for the LES

measurements even though DNS LESω ω (subscripts DNS and LES refer to the DNS and LES

measurements).

Long-term resuspension rate

We recall that the long-term resuspension rate follows a power law decay of the form (Reeks et al.,

1988),

2

1Λ( ) ξt ξ t [4.37]

where ξ1 and ξ2 are constants and ξ2 is close to 1.

Here we have computed using both the DNS and LES data the power law exponent ξ2 and the

constant ξ1 as functions of the friction velocity for the 10 micron (diameter) alumina particles using

a reduction in adhesion 0.0105 and a spread in adhesion of 3.095 based on Biasi’s correlation

(Eq.[4.7]). Hall’s experimental flow conditions are used to calculate the results.
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Figure 4.29 - Comparison of long-term resuspension rate constant 2 between LES and DNS, Biasi’s
correlation for adhesion is applied
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Figure 4.30 - Comparison of fraction resuspended for exposure time step between LES and DNS

Figure 4.28 shows the relationships between ξ2 and friction velocity based on the DNS and LES

measurements. Both the LES and DNS data give values of ξ2 ~ 1 as expected but the LES values are

slightly > DNS value indicating a slightly > decay in time. Note that the exponent approaches unity

for a friction velocity approaching zero. Figure 4.29 shows how ξ1 varies with friction velocity based

on the DNS and LES data indicating that the two curves are remarkably close to one another despite

the significant difference in the corresponding values of ω+. We note that the constant ξ1

approaches zero as the friction velocity tends to zero i.e. zero resuspension rate. At the other

extreme as the friction velocity approaches infinity, ξ1 also approaches zero. In this case the

fraction of particles removed initially in the short term resuspension phase approaches unity, so

that the fraction available for long term resuspension approaches zero and hence the long term

resuspension rate reflected in the value of ξ1 approaches zero. There is clearly a maximum value

somewhere in between.

In Figure 4.30, we examine the influence of the difference in values of ω+ (See Table 4.3) on the

fraction resuspended as a function of time. We employ the same flow conditions using the same

flow and adhesion properties as in Hall’s experiment. The most significant difference occurs when

resuspension times t ~ 0.0001 or ~1ω t   (where
2

τ ft tu ν  ). The value of 1/ω+ in this case is
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7.8652 based on the DNS data (y+ = 6). The DNS data gives more resuspension rate for ~1ω t  

than the LES data because the measured value of ω+ is greater.

For the case of t = 1s, there is very little difference between the LES and DES predictions because

for this value all the short term resuspension has occurred (what is left is the fraction that

resuspends over a much longer timescale). Figure 4.31 shows that the modified model based on DNS

gives results very close to LES case for both 2μm and 10μm particles.   
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Figure 4.31 - Comparison of resuspension fraction after 1s between LES and DNS

Furthermore, the effect of spread factor for different sizes particles is presented in Figure 4.32.

Values for the fraction resuspended after 1s based on DNS and LES data are very close, except there

is a noticeable difference (ratio up to 1.3) when the friction velocity is small. It is also shown that

when the spread factor is small, in other words, the adhesive distribution is very narrow the ratio

between two models decreased which indicated that the non-Gaussian DNS model removes particles

much easier than in the small friction velocity region on a very rough surface. The forms of the

curves and the maximum reflect the fact that the predictions based on DNS and LES data both tend

towards zero when the friction velocity tends to zero, and tends to unity when the friction velocity

is very large. Most of the resuspension that occurs in the time of 1s is largely short term

resuspension. For small friction velocities this is very small and is dominated by the value of ω+

where there is a significant difference between the values based on DNS and LES data (the ratio of

DNS / LES frequencies ~1.5 for y+ = 6).
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Figure 4.32 - Comparison of resuspension fraction ratio for DNS and LES approaches

In summary, the modified models by LES and DNS approach give similar results. The major

difference between the two approaches reflects the difference in the values of the typical forcing

frequency ω+ (for y+ = 6, ω+ is 0.08553 for LES case and 0.127143 for DNS case). This is probably the

reason that DNS approach considers the small eddies in the simulations. From now on, we will use

the DNS approach (y+ = 0.1) as the modified R’n’R model, because where the data obtained is much

closer to the wall.
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4.1.4 Comparison of Original and Modified R’n’R model

There are several points that need to be clarified before we make a comparison of the predictions

made by the two models.

 O’Neill’s formula (Eq.[4.18]) is used to calculate the resultant fluctuating aerodynamic force

from the fluctuating streamwise velocity.

 The correlations (Eq.[4.38]) between the distribution of fluctuating force and its derivative are

not significant and are therefore neglected in the modified model.

 The parameters from DNS (y+ = 0.1) are used in the modified model because the value of y+ is

much closer to the value of the typical particle radius r+ (in wall units). Although it is shown in

Table 4.3 that the typical forcing frequency ω+ varies with y+, at the moment the typical forcing

frequency ω+ value is a fixed value chosen from the case y+ = 0.1 due to the fact that there are

not enough simulation data to produce the relationship between ω+ and y+. It will be

recommended in future work.

 Biasi’s correlation (Eq.[4.7]) is applied in both the modified and original models to calculate the

reduction and spread in adhesion as a function of particle size. It is the up-to-date adhesion

correlation and is also based on Hall’s experimental data.

As a useful preliminary we recall that in Hall’s experiment (Reeks & Hall, 2001) there were three

types of particles (10μm alumina, 20μm alumina and 10μm graphite) used in the experiment. Hall 

measured both the adhesive force and resuspension of those particles. The measurement of

adhesion forces for a mono layer of these three particle types distributed uniformly over a polished

type 316 stainless-steel surface were carried out using an MSE Superspeed 75 centrifuge. In all three

cases, measurements of the fraction removed were made for forces applied both normal and

tangential to the substrate upon which the particles were deposited in dry conditions. It was

reported that the centrifuge had to spin 10 times faster to dislodge a proportion of particles

normally than by removing the same proportion tangentially. As the applied force is proportional to

the square of the spin speed this implies that the net value of r/a = 100 (particle radius over the

distance between neighbouring asperities).

For the resuspension phase, the air flow, provided by a Griffin blower, passed through a series of

ducts into a plenum chamber to damp out any flow fluctuations. The air passed through an absolute

filter to ensure that no particulate was present in the air stream. To establish fully developed flow,

the air then passed through a 5 m long 0.2 m x 0.02 m rectangular duct in which the test section

was situated 3.5 m downstream along the duct. At the end of the duct a sample of the air passed

through a counter which had the facility to record the particle concentration as a function of time

in four size intervals. Prior to each resuspension run, the particles used were sub-divided using a

spinning riffler to ensure that the size distributions of particles used in the various runs were as

similar as possible. The test section was polished with diamond paste, and then degreased using a

5% solution of Decon 90 in distilled water. The particles were deposited on the surface by
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transporting them by compressed air through two impinging jets which broke up any agglomerates.

The suspension was then injected into still air and allowed to settle on the test surface and on the

centrifuge cells for adhesion measurements. Samples of the particles deposited both upstream and

downstream of the test section were taken for subsequent size analysis using an IBAS image

analyzer. The test section was then placed in the air rig. A photograph of the particles was then

taken when the air rig was started and the velocity increased in steps with photographs taken of the

test surface at each step. After the run the photographs taken were compared and the fraction

remaining on the surface at each stage was determined by observing which particles had left the

surface.

There were 20 resuspension runs for both graphite and alumina particles performed in Hall’s

experiment. Here the experimental data of Run – 9, 10, 15 (for 10μm alumina, in diameter) and Run 

– 7, 8, 20 (for 20μm alumina particles) will be used to compare with the modified and original model 

results.
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Figure 4.33 - Comparison of resuspension fraction to Hall’s experiment (10μm) 

Note the calculation of the fraction responds after 1 s is a nominal time, just so long as the time is

sufficient for the resuspension rates at the end of the exposure time are very small ( and in the long

term resuspension range).
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Figure 4.33 also shows the comparison of resuspension fraction calculated from the modified and

original R’n’R model with the experimental data for 10μm alumina particles. It can be observed that 

the modified model gave closer results to the experimental data in the region which the friction

velocity is from around 0.5m/s to 1.5m/s. Although the modified model gave more resuspension

than the experimental data when friction velocity was smaller than 0.5m/s and larger than 1.5m/s,

the solid curve still had a closer trend to the experimental data than the original model did. This

observation is also true for 20μm alumina particles as can be observed in Figure 4.34. 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparision of fraction resuspended for 20m Alumina

u


(m/s)

F
ra

c
ti
o
n

re
s
u
s
p
e
n
d
e
d

a
ft

e
r

1
s

modified model (DNS)

original R'n'R model

Run - 7

Run - 8

Run - 20

Figure 4.34 - Comparison of resuspension fraction to Hall’s experiment (20μm) 

To investigate the difference between the modified and original model predictions, the effect of

two important parameters (the typical forcing frequency ω+ and the rms coefficient frms) are studied

here. A table is shown below for the difference of these two parameters.

ω+ frms

Modified (DNS) 0.164189 0.366

Original R’n’R 0.0413 0.2

We have calculated the fraction resuspended after 1s as a function of friction velocity and

resuspension rate as a function of time for 10μm alumina particle using a reduction in adhesion 

0.0105 and a spread in adhesion of 3.095 based on Biasi correlation (Eq.[4.7]). Hall’s experimental
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condition is used to calculate the results. In order to compare, we used the values of the two

parameters which are from original R’n’R model in the modified model. The results are shown

below.

Figure 4.35 - Comparison of resuspension fraction after 1s between modified and original model
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Figure 4.36 - Comparison of resuspension rate between modified and original model

Figure 4.35 and Figure 4.36 show the fraction resuspended and resuspension rate of modified and

original model. There are two points noted here:

 The effect of the typical forcing frequency ω+ on the resuspension fraction after 1s is not

significant (consistent with our observations in the previous section). However, it affects

dramatically the short term resuspension rate t < 0.0001 (or ~1ω t   ). From Figure 4.36, one

can observe that as the original ω+ is applied in the modified model (cross point) the initial rates

reduce significantly as compared to the modified model results (straight line).

 The rms coefficient frms is the key parameter for long term resuspension fraction (not to be

confused with long term resuspension rates, the long term resuspension fraction includes the

integrated history from time zero and includes the short term resuspension rates). As one can

observe from Figure 4.35, when the original rms coefficient frms (0.2) was used in the modified

model (circle point) the result is much closer to the original model result (dotted line).
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Figure 4.37 - Comparison of resuspension fraction ratio of modified (DNS) to original model

Furthermore, it is noted that the difference between the fraction resuspended of modified and

original model could become significant when the friction velocity is small. As shown in Figure 4.37,

the ratio increases to around 6 or 7 on a nominally smooth surfaces (spread = 2) when friction

velocity is smaller than 1m/s.

Long-term Resuspension Rate

Recall the long-term resuspension rate

2

1Λ( ) ξt ξ t

where ξ1 and ξ2 are constants and ξ2 is close to 1. Here we have computed the power law exponent

ξ2 and the constant ξ1 for both the modified model (DNS) and original model as functions of the

friction velocity for the 10 micron (diameter) alumina particles using a reduction in adhesion 0.0105

based on Biasi correlation (Eq.[4.7]) and varies spread factors (Biasi 3.095, 5 and 8). Hall’s

experiment condition is applied in the calculation.
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Figure 4.38 - Comparison of long-term resuspension rate constant 1 between modified and original
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Figure 4.39 - Comparison of long-term resuspension rate constant 1 between modified and original
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Figure 4.40 - Comparison of long-term resuspension rate constant 1 between modified and original

Figure 4.38 - Figure 4.40 shows how ξ1 varies with the friction velocity for different spread factors.

There is always a maximum value of ξ1 in each graph. These features are also apparent in the

earlier graphs where we compared the DNS and LES (see Figure 4.28) and the explanation is the

same as that provided. We recall there was no discernable difference between the LES and DNS

predictions where the values of frms were the same but the values of ω+ significantly different. We

can conclude that the difference between the modified and original model is due to the difference

in values of frms. Figure 4.41 shows that the ratio of ξ1 between the two models for different spread

factor. One can observe that when for a spread factor < 3 (the lowest value taken), there is a

remarkable difference between two models for small values of the friction velocity < 0.1 m/s).
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Figure 4.41 - Ratio of long-term resuspension rate constant 1 of modified to original

Figure 4.42 - Figure 4.44 described the relationship between ξ2 and friction velocity for different

spread factors. The values of ξ2 are close to 1 for both modified and original model as expected.

Also as the spread factor increases from 3.095 to 8, the difference between the two models

predictions reduces as the value of ξ2 reduces.
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Figure 4.42 - Comparison of long-term resuspension rate constant 2 (spread factor = Biasi, 3.095)
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Figure 4.43 - Comparison of long-term resuspension rate constant 2 (spread factor = 5)
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Figure 4.44 - Comparison of long-term resuspension rate constant 2 (spread factor = 8)



4.1 Fluctuating Aerodynamic Force

140

4.1.5 Literature Comparison on Streamwise Fluctuating Velocity

The fluctuating aerodynamic resultant force according to Eq.[4.18] is proportional to the

streamwise fluctuating velocity. In this section in order to validate the Rayleigh distribution of

fluctuating streamwise velocity, other similar measurements reported in the literature will be

considered in terms of a comparison of distribution (histogram) and skewness. There are surprisingly

few measurements of the distribution of the fluctuating velocities reported in the literature. Here

our LES and DNS results are compared to the DNS data produced by Moser et al. (1999) for different

shear Reynolds numbers (Figure 4.45). One can observe that although there is a dip in the small

velocity region (near 0) in both the DNS and LES result, the histograms are very close in the wings

and they are independent of the shear Reynolds numbers. The reason for the dip might be because

of the lack of sufficient velocity data in that region (near 0) or more likely the nature of the flow.

At the moment, the evidence is not enough to draw conclusions. However, those very small

fluctuations will not affect the values of the resuspension we predict.
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Figure 4.45 - Histogram of LES result compared to Moser et al. (1999) DNS results

The skewness and kurtosis of LES and DNS data will be compared to the experimental data with

different Reynolds numbers because in reality the Reynolds number of the flow in the reactor

system is quite high. The experimental data compared is from Eckelmann (1974) for Re = 4800, 7100

and Ueda & Hinze (1975) for Re = 11450, 35500.
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Figure 4.46 - Comparison of skewness of fluctuating streamwise velocity
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Figure 4.46 shows the skewness comparison between the simulation results and the experimental

data. It can be observed that the skewness of simulation results are very close to the experimental

data in high Reynolds numbers (>7100) in the viscous sublayer.

Figure 4.47 shows the kurtosis comparison between the simulation results and the experimental

data. Although the results of experiment with higher Reynolds number became closer to the

simulation data, there is still a difference between them when y+ was small. However, since the

kurtosis only affects the peak of the distribution and in the histogram the highest peak occurs in the

small fluctuating velocity region, the effect of the kurtosis is not so important compared to the

skewness which the latter determines the value of the distribution in the wings.

The comparison indicates that the statistics of the fluctuating resultant force (i.e. proportional to

fluctuating streamwise velocity) from the simulation results are consistent with the experimental

data in high Reynolds numbers. Therefore, it is appropriate to use the simple Rayleigh distribution

for the fluctuating resultant force.
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4.1.6 Correlation between Fluctuating Force and Its Derivative

In the non-Gaussian model based on both LES and DNS statistics, the joint distribution of the

fluctuating aerodynamic resultant force and its first derivative are assumed to be best fitted

respectively by a Rayleigh distribution (for the fluctuating force f(t)) and a Johnson SU distribution

(time derivative of the fluctuating force ( )f t ) which are statistically independent. In this section,

the effect of the possible correlation of f(t) and ( )f t on resuspension is examined.

In this case, the joint distribution will be described by the probability distribution of the fluctuating

force multiplied by the conditional probability distribution of ( )f t given ( )f t , i.e.

1 2( , ) ( ) ( | )P f f P f P f f   [4.38]

However, it is not easy to calculate P2. Therefore, the joint distribution will be calculated from the

raw data of the fluctuating force and its derivative. Firstly, the forces and their derivatives in the

data are normalized by their rms to give standard variables z1 and z2 respectively (Eq.[4.22]). Then

the domain of z1 and z2 is divided into cells. The cell on the bottom left is named as (1, 1), the cell

on the top right is marked as (N+1, N+1) and the one in the origin is marked as (N/2+1, N/2+1), as

shown in Figure 4.48. In the raw data, for each time step there is a value of z1 and z2. If z1 and z2

appears in a cell, the counter in the cell is incremented by 1.

Figure 4.48 - Domain of PDF of fluctuating force and its derivative
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Finally, the counter of each cell is divided by the total amount of the data. Therefore, the

probability density function of the fluctuating force and its derivative are given as
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Figure 4.49 - PDF of normalized fluctuating force and its derivative (LES)
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Figure 4.50 - Contour plot of PDF (LES)
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Figure 4.51 - PDF of normalized fluctuating force and its derivative (DNS)
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Figure 4.52 - Contour plot of PDF (DNS)

Figure 4.49 and Figure 4.50 shows the probability density function of the normalized fluctuating

force and its derivative and the contour plot generated from LES data. Figure 4.51 and Figure 4.52

shows the PDF generated from DNS data. One can observe that the two sets of data generate similar

results which the joint distribution is in an ellipse shape with the most likely probability density

occurs in around (0, -2) in the domain. The correlation coefficient CC is calculated as

1 2

C

z z
C

N





[4.39]

with N is the amount of the data. The correlation coefficient equals -0.01267 for LES data, 0.00124

for DNS data.

In the calculation of the resuspension fraction based on this raw data distribution method, the fact

is that as the cell number reduces the resuspension fraction result varies. Therefore, to define the

proper cell number which should be used, the uncorrelated raw data distribution method is applied

and the result is compared with the curve fitted model. The number of cells divided is recorded

when the result from the uncorrelated raw data distribution method is very close to the result from

the uncorrelated curve fitted method. Then this cell number will be used in calculating the

resuspension fraction result for this correlated raw data distribution method. The results shown

below are the comparison of the resuspension fraction between uncorrelated curve fitted model and

correlated raw data distribution model for different size particles based on LES and DNS data.
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Figure 4.53 - Comparison of correlated and uncorrelated model, LES
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Figure 4.54 - Comparison of correlated and uncorrelated model, DNS

The results of the uncorrelated curve fitted model and the correlated raw data distribution model

are very close to each other because the correlation coefficient in both LES and DNS approach is

close to zero. Therefore, the correlation of fluctuating force and its derivative hardly affects the

predicted resuspension and the uncorrelated curve fitted model can be used in the modified model

instead of calculating from the raw data.
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4.1.7 A comparison with model predictions based on Lee & Balachandar’s

measurements of the drag force

In the previous studies, the drag force acting on the particle was calculated using the modified

Stokes drag formula given by O’Neill (1968) for the drag force of a spherical particle on or near a

wall. Recently Lee & Balachandar (2010) have made extensive calculations of the aerodynamic

forces acting on a small particle on or near a wall in a turbulent boundary layer generated by DNS.

In what follows we shall use these results to calculate the corresponding drag forces generated in

our DNS flow and compare the model predictions of the resuspension with those based on O’Neill’s

formula.

Application of O’Neill Formula

Assuming the local fluid velocity is similar to the particle velocity, the instantaneous drag force acting

on a spherical particle is then calculated from the velocity by applying O’Neill’s (1968) formula.

1.7 6 fF πμ r u 

where r is the particle radius and represents the distance of the particle from the wall (i.e.

corresponding to y+). Then the fluctuating drag force f is defined by subtracting the mean <F> from

F. (i.e. F - <F>).

And then it is normalized by its rms

2
S

f
z

f
 [4.40]

The first derivative of fluctuating force is calculated via 1

Δ
i if f

f
t

 
 , then normalized as

2
S

f
z

f






[4.41]

where
S

z is the normalized fluctuating drag force and Sz is its first derivative.

Application of Lee & Balachandar (2010) Analysis

Lee and Balachandar (2010) worked towards a superposition of drag and lift contributions on a

sphere particle from shear, translation and rotation mechanisms that is applicable at modest

Reynolds numbers. Here in this case, the particle is considered as sitting on the wall and the lift

force is neglected. Therefore, the translation and rotation force are not considered. The drag force

is then derived as:

2 2

2
D f W

π
F C ρ G G L r  [4.42]

where CD is the drag coefficient solely due to the local shear, G is the local shear rate Lw is the

distance from the wall to the centre of the particle which the radius is r. The drag coefficient is
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 0.75340.81
1 0.104D r

r

C Re
Re

  [4.43]

where Rer is the shear Reynolds number which is determined as

2 W

r

f

G L r
Re

ν
 [4.44]

The distance from the wall to the centre of the particle can also be written as

f

W

τ

ν y
L

u



 [4.45]

which is the same form for particle radius r.

From the DNS data, we obtained the instantaneous velocity gradient (dU/dy) for certain y+ (e.g. y+ =

0.1). Then the normalized drag force and its derivative are determined as the same in the first case

by O’Neill’s formula.

2
LB

f
z

f


2
LB

f
z

f






[4.46]

The graphs below show that the distribution of normalized fluctuating resultant force in L&B

method is also a Rayleigh. The first derivative of the fluctuating force also fits well to the Johnson

SU distribution which the histogram is not shown below.

Figure 4.55 - Distribution of normalized fluctuating drag force calculated by L&B formula (y+ =0.1)
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Figure 4.56 - Distribution of normalized fluctuating drag force calculated by L&B formula (y+ =0.6)

Figure 4.57 - Distribution of normalized fluctuating drag force calculated by L&B formula (y+ =1.9)

The comparison of the best fit distributions of the normalized fluctuating force and its derivative

obtained using O’Neill’s and L&B’s formulae for the drag forces are shown below. For different y+

(0.1, 0.6 and 2), the application of O’Neill’s formula gives distribution for both z1 and z2 which are

higher in the range -1 < z1, z2 < 1 than the equivalent distributions based on the L&B (see Figure

4.58 and Figure 4.59).
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Following the step Eq.[4.23] to Eq.[4.28], the parameters are listed below with the values based on

O’Neill’s and L&B formula for the drag force.

O’Neill formula
f

B  A1 A2 ω+ frms

y+ = 0.1 0.343658 1.812562 1.463790 0.164189 0.366

y+ = 0.6 0.346911 1.784751 1.446609 0.152035 0.366

y+ = 1.9 0.351181 1.759902 1.431301 0.131261 0.365

L&B formula
f

B  A1 A2 ω+ frms

y+ = 0.1 0.369894 1.917928 1.529456 0.137218 0.346

y+ = 0.6 0.362101 1.836402 1.478577 0.127625 0.370

y+ = 1.9 0.349816 1.731746 1.414021 0.129259 0.447

Table 4.4 - Comparison of parameters by two formulas of calculating fluctuating force

From the Table above, one can observe that the parameters calculated by these two formulas are

on the whole significantly except the vale for frms for y+ = 1.9. It is noted that unlike the

application by O’Neill formula, the rms coefficient frms using the L&B formula increased with

increasing y+ and the effect of this has on long term resuspension fraction will be shown later.
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Figure 4.60 - Comparison of resuspension rate of two statistic generation formulas (y+ = 0.1)
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Figure 4.60 shows that the resuspension rate result calculated via the statistics based on O’Neill’s

formula are very close to the case using L&B formulae. There is a small difference between model

predictions in the short term (< 0.001s) which is due to the difference of typical forcing frequency.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hall's experiment condition, 10m Alumina (y+ = 1.9)

u


(m/s)

F
ra

c
ti
o
n

re
s
u
s
p
e
n
d
e
d

O'Neill

L&B

Figure 4.61 - Comparison of resuspension fraction of two statistic generation formulas (y+ = 1.9)

Figure 4.61 shows that based on the DNS data for y+ = 1.9 (where the difference is caused by the frms

values), the difference of long term resuspension fraction (> 1s) based on the two formulas is under

5%.

The comparison indicates that predictions calculated from the L&B formula are quite close to the

original model using O’Neill’s formulae. Therefore on the grounds of the simplicity and application

of O’Neill’s formula, we will use this formula in our modified R’n’R model in subsequent analysis of

resuspension from multilayer deposits.
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4.2 Conclusion and Discussion

We have described how the statistics of the fluctuating aerodynamic resultant force f and its time

derivative f (acting on a particle attached to a surface in a fully developed turbulent boundary

layer) have been obtained from both LES and DNS. The distribution of both these variables

normalized on their rms values is found to be approximately independent of y+ in the viscous

sublayer (y+ < 6) and statistically independent of one another. The main difference between the 2

sets of data is in the values obtained for the typical forcing frequency 2 2/ω f f  applied to

the particle-surface deformation (for y+ = 6, ω+ (the value of ω in wall units) is 0.085 for the LES

case and 0.127 for the DNS case), the values of the ratio of the rms / mean of the aerodynamic drag

force being very close to one another.

We have compared the differences between the predictions made by Gaussian and non-Gaussian

models for resuspension where the difference lies in the role of Gaussian versus non-Gaussian

distributions of f and f (with the same rms). It was noted that when the adhesive force/ rms

aerodynamic force za is large (za ~ 8), the ratio of resuspension rate constant based on the non-

Gaussian to that of the Gaussian model ~ 30 and reflects the much slower decay of the non-Gaussian

Rayleigh distribution for the aerodynamic drag force in the tails of the distribution compared to that

of the Gaussian distribution. However the broad range of adhesive forces in practice significantly

reduces the influence of the tails of the distribution mainly because the contribution to the

resuspension in this region of the adhesive force distribution is so small.

The difference between the modified models based on DNS and LES data and hence to the

sensitivity of the measurements themselves has been examined. The difference in the resuspension

predictions naturally reflects the difference in values of ω+ which is a natural scaling parameter for

the resuspension rate and for the real time t when it occurs. It means that DNS values of the

resuspension rate are not universally > LES values as the ratio of the values of ω+ might imply (See

Figure 4.27 for the calculated resuspension rates using the particle adhesions properties measured

in Hall’s experiment and two different particles, 2μm and 10μm in diameter). However when 

considering the resuspended fraction for the case of t = 1s, there is very little difference between

the LES and DES predictions because for this exposure time all the short term resuspension has

occurred (what is left is the fraction that resuspends over a much longer timescale).

The main difference between the modified and original model is reflected in the different values of

ω+ and the ratio of the mean to the rms of the aerodynamic removal forces frms and the impact

these differences have on the fraction resuspended and the resuspension rates. We took the

experimental conditions in the Hall experiment as an example so we could compare predictions for
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the fraction resuspended with experimental results. We found that the modified model gave closer

results to the experimental data in the region where the friction velocity is from around 0.5m/s to

1.5m/s. Although the modified model gave more resuspension than the experimental data when

friction velocity was smaller than 0.5m/s and larger than 1.5m/s, the results from modified model

still had a closer trend to the experimental data than the original R’n’R model did. It was also noted

that the difference between the fraction resuspended predicted by the modified and original

models could become significant when the friction velocity is small. It was concluded that the

typical forcing frequency ω+ is the crucial parameter in short term resuspension rate and the rms

coefficient frms is the key parameter for long-term resuspension fraction. The effect of the typical

forcing frequency ω+ on the resuspension fraction after 1s is not significant.

Finally, we have examined the implications for resuspension of using the recently published formula

of Lee & Balachandar (2010) (L&B) for the drag force acting on a particle on a surface (based on

their DNS measurements of drag forces on particles on or near a surface in a turbulent boundary

layer). The comparison indicated that the resuspension predictions using the L&B formula were

quite close to those of the original model which uses the O’Neill formula for the drag force except

in the region -1 < z1, z2 < 1 where application of O’Neill’s formula gives higher values. However, this

has very little effect on the resuspension rate and resuspension fraction. Therefore on the grounds

of simplicity and application of O’Neill’s formula, we will use this formula in our modified R’n’R

model in subsequent analysis of resuspension from multilayer deposits.
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Chapter 5

Multilayer

Resuspension

Ordinary language is totally unsuited for expressing what physics really

asserts, since the words of everyday life are not sufficiently abstract.

Only mathematics and mathematical logic can say as little as the

physicist means to say.

- Bertrand Russell

5.1 Multilayer Resuspension Models

Resuspension of multilayer deposits of radioactive particles is an important phenomenon in nuclear

severe accidents. However, most of the models used to predict the amount of resuspended

particulate are based on the resuspension of isolated particles as described in the previous chapters.

There are only a few models which consider the multilayer case, namely Fromentin (1989), Lazaridis

& Drossinos (1998) (referred to as LD) and Friess & Yadigaroglu (2001) (referred to as FY). In this

Chapter, the modified R’n’R model will be adapted for application to multilayer deposits based on

the FY multilayer approach. Furthermore, the coverage effect of layers on resuspension will be

considered in this modified FY multilayer model in two ways: 1) introducing a coverage factor; 2)

considering the influence of a distribution of particle size within each layer. Finally, the modified

multilayer model resuspension predictions will be compared with the resuspension measurements in

the STORM SR11 test (Castelo et al., 1999) and the BISE experiment (Alloul-Marmor, 2002).

Fromentin’s model is a semi-empirical model based on force-balance methods and the input

parameters are limited to those in the PARESS experiment upon which the model is based. The LD

model is restricted to a multilayer deposit in which the resuspension rate for each particle in the

deposit is the same. In contrast the FY model (2001) takes account of the fact that the resuspension

rate constant can vary according to the distribution of adhesive forces experienced by a particle in

each layer. If we compare the two models in situations where the resuspension rate constant is the

same for all particles, there is a difference in the way the fraction of particles exposed to the flow

is calculated. If the layers are numbered 1, 2, 3...etc from the top layer exposed to the flow, then
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the LD model takes this fraction in the ith layer to be the number of particles removed from the (i-

1)th layer over the initial number of particles in the (i-1)th layer. Thus it assumes that whenever a

particle is removed from the (i-1)th layer a particle in the ith layer is exposed and is immediately

resuspended. Hence, the model is valid for large resuspension rates or equivalently, it gives the

maximum multilayer resuspension rate (i.e., if a particle is exposed it resuspends). In these

circumstances the FY model, on the other hand, takes the fraction of exposed particles in the ith

layer to be the ratio of the number of particles in the (i-1)th layer to the number of particles in the

ith layer at time t. Thus

1

1

1

( )
1 2 LD model

(0)

( )
1 2 FY model

( )

i i
i

i

i i
i

i

dn n t
pn i
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dn n t
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dt n t







 
    

 

 
    

 

where ni is the number of particles in the ith layer at time t (i.e. the total number of particles in ith

layer at time t being the sum of those particles exposed and unexposed to the flow) and p is the

resuspension rate constant. Since every particle sits on top of a particle in the layer below, this

ratio gives the exact number of exposed particles which the LD model does not provide.

The FY model is not only exact in this situation but as we stated above more generally applicable

since the resuspension rate constant can vary from particle to particle in any given layer and from

layer to layer. Since this is an important consideration in multilayer resuspension, the FY model is

used as the basis for the multilayer modelling which will be presented in this chapter.

Let us now recall the essential features of the FY model (Friess & Yadigaroglu, 2001) which deals

with the resuspension of a deposit composed of a regular array of identical spherical particles. FY

(2001) first dealt with an infinitely thick deposit, defining a resuspension rate constant p(ξ) for each

particle exposed to the flow, where ξ is a statistical variable or number of variables upon which p

depends (e.g. adhesion arising from the contact of a particle with other particles whose value

controls the influence of the flow). The probability density function (pdf) for the occurrence of ξ is

given by n(ξ,t). It is supposed that every time a particle is removed (resuspended by the flow)

another particle is uncovered and exposed to the flow but with a different ξ say ξ′ with a probability

distribution φ(ξ′) for uncovered particles. The particles are homogeneously distributed in the initial

state with n(ξ,0) = φ(ξ). The rate at which particles are exposed is given by

Λ( ) ( ) ( , )
ξ

t p ξ n ξ t dξ  [5.1]

and the fraction of those particles exposed per unit time with values between ξ, ξ + dξ will be

( ) ( ) ( , )
ξ

dξφ ξ p ξ n ξ t dξ


  

The equation for n(ξ,t) is thus

( , )
( ) ( , ) ( ) ( ) ( , )

ξ

n ξ t
p ξ n ξ t φ ξ p ξ n ξ t dξ

t 


    

  [5.2]
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Therefore, for an L-layer deposit, let ni(ξ,t)dξ denote the probability of exposed particles between

ξ, ξ + dξ in the ith layer at time t, the layers being numbered sequentially from the top layer

(totally exposed to a flow) downward as i = 1, 2, 3 … L. Then the set of ODEs (ordinary differential

equations) is

1
1

( , )
( ) ( , )

n ξ t
p ξ n ξ t

t


 



1

( , )
( ) ( , ) ( ) ( ) ( , ) ( 2)i

i iξ

n ξ t
p ξ n ξ t φ ξ p ξ n ξ t dξ i

t



     

  [5.3]

The resuspension rate for ith layer is given by

Λ ( ) ( ) ( , )i iξ
t p ξ n ξ t dξ  [5.4]
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5.1.1 Modified Rock’n’Roll Model in Multilayer Case

The Modified Rock’n’Roll model (Chapter 4.1.4, p129) is a single particle kinetic model based on the

Rock’n’Roll model (Reeks & Hall, 2001) with the resuspension rate constant p(ξi) accounting for the

non-Gaussian statistics of the fluctuating aerodynamic resultant force obtained from LES and DNS

data.

The adhesive force of the isolated particle on the surface with two asperities is given by

3

2
a af πγrr [5.5]

where γ is the adhesive surface energy (per unit area), r is the particle radius and ra′ is the

normalized asperity radius which is the ratio of asperity radius (ra) to particle radius and the

distribution of ra′ is considered as log-normal (φ(ra′)) with geometric mean ar and geometric

standard deviation σa′ (adhesive spread) i.e.

2

2

ln( )1 1 1
( ) exp

ln 2(ln )2

a a

a

a a a

r r
φ r

r σ σπ

       
   

 

Biasi et al. (2001) derived a correlation for these distribution parameters as a function of particle

radius (in microns), namely

1.4

0.545

1.8 0.136

0.016 0.0023

a

a

σ r

r r

  
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[5.6]

We recall that in the FY multilayer model, this distribution of normalized asperity radii refers to the

initial state of the pdf of exposed particles, n(ξ,0), i.e.

( ,0) ( )a an r φ r  [5.7]

where the normalized asperity radius ra′ refers to the intrinsic statistical variable ξ.

The resuspension rate constant p in the modified R’n’R model (Eq.[4.29]) is a function of the

normalized asperity radius for a fixed particle size. Hence, p is referred to as p(ra′). Therefore, the

set of ODEs for the pdf of exposed particles in a deposit composed of i = 1, 2, 3 … L layers at time t

is given by

1
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The
1

0

( ) ( ) ( , )a a i a aφ r p r n r t dr



       part is thus a source term. It is considered as the extra source of

particle exposure rate (exposing particles in a given layer by resuspending particles from the layer

above).

The resuspension rate in the ith layer is given by

0

Λ ( ) ( ) ( , )i a i a at p r n r t dr


    [5.9]

For i = 1, the first layer resuspension rate is given explicitly in the original R’n’R model appropriate

for a monolayer (Eq.[4.15]) because there is no source term from the particles in the layer above,

namely

( )

1

0

Λ ( ) ( ) ( )ap r t

a a at p r e φ r dr


    [5.10]

The initial value of exposed particles from the second layers downward ni(ra′,0) = 0 (i ≥ 2) which 

means all the particles in the layer below are covered by the particles from the layer above.

Therefore, for the second layer and layers below (i ≥ 2) using the initial condition for ni(ra′,t), gives

( ) ( )

1

0 0

( , ) ( ) ( ) ( , ) ( 2)a a

t
p r t p r t

i a a a i a an r t φ r e e p r n r t dr dt i
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Substituting Eq.[5.11] in Eq.[5.9], the resuspension rate for the ith layer is given by
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Initially it is assumed as in the FY model that the deposit is formed from identical spherical

particles as shown in Figure 5.1.
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Figure 5.1 - Geometry of the multilayer system with same size particles

The micro roughness for all the particles is assumed to be the same so the same distribution of

normalized asperity radius (φ(ra′)) is used for all the particles in the domain. In the calculation

below, the parameters from the STORM SR11 experiment Phase 6 condition will be applied (more

information is provided in next section). The parameters for Phase 6 are:

Average

radius

(μm)

Fluid

density

(kg.m-3)

Fluid

kinematic

viscosity

(m2.s-1)

Wall

friction

velocity

(m.s-1)

Surface

energy

(J.m-2)

Reduction

factor

(Geometric

mean)

Spread factor

(Geometric

standard

deviation)

0.227 0.5730 5.2653 x 10-5 6.249 0.5 0.015 1.817

where Biasi’s correlation (Eq.[5.6]) is used for the adhesion distribution parameters.

Figure 5.2 shows the resuspension rate of particles in layer 1, 3, 5, 10 and 20. The resuspension rate

of the first layer is identical to that of the isolated particle model. For the second and subsequent

layers, the initial resuspension rate at t = 0 is zero. Starting from zero the resuspension rate rises to

a maximum during which time most of the particles which are easily removed resuspend from a

given layer (i.e. for these particles the mean effective aerodynamic force > adhesive force), the

remainder being removed on a much longer period. The time to reach a maximum may therefore be

regarded as a delay time for the particles in a given layer to be exposed by removing particles from

all the layers above it. Note that the maximum resuspension rate decreases as the layer number

increases. Also note that the resuspension rate of each layer beyond its maximum value, whilst

being initially less than the layer above, eventually exceeds it so that the integrated amount

(fraction resuspended) is the same (close to unity) for all layers in the long-term (t ) (Numerics

were checked to make sure that this was the case).
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Figure 5.2 - Resuspension rate of each layer vs. time for the initial multilayer model (the FY model
with rate constants based on the modified non-Gaussian R’n’R model)

The initial number of particles is the same in each layer normalized to unity. Then the fractional

resuspension rate for the domain (L layers) is given by

1

Λ ( )

Λ ( )

L

i
i

L

t

t
L




[5.13]

which corresponds to the resuspension fraction of an L layers deposit.

0

( ) Λ ( )
t

r L Lf t t dt   [5.14]

The modified R’n’R model incorporating the FY multilayer approach will be referred to as the initial

multilayer model since the model will later on be extended to include the coverage effect.
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Figure 5.3 - Fractional resuspension rate comparison (particle diameter: 0.45μm) 

Figure 5.4 - Fractional resuspension rate ratio between monolayer and multilayer
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Figure 5.5 - Resuspension fraction comparison for initial multilayer model

The fractional resuspension rate is shown in Figure 5.3. The short term resuspension rate is

considered finished when the exposure time t is around 10-4s when as shown in the plot the long-

term resuspension (approximately proportional to 1/t) begins (we note that 1/ω+ which corresponds

to a timescale ~10-5s). The initial fractional resuspension rate decreases with increasing layers when

more particles tend to be removed over a longer period.

Figure 5.4 shows how much the monolayer fractional resuspension rate differs from that of the

multilayer resuspension (for the same initial fraction = 1, in each case). As the layer number

increases, the ratio of the resuspension rate between monolayer and multilayer increases

significantly in the short term. However after a given time which increases with the value of i, the

resuspension rate for a given layer eventually exceeds that for a monolayer i = 1 at the same time

(the ratio < 1), and in the long-term the ratio should converge to zero (see the cases for layer i = 3

and 5 in Figure 5.2). Figure 5.5 shows the resuspension fraction of the whole deposit domain. It

shows that after 100s 80% of the monolayer deposit is removed whereas only around 3% of the 100

layers deposit is resuspended.
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5.1.1.1 Influence of Spread Factor on Multilayer Resuspension

Now the influence of the spread factor is considered. The geometric mean of the normalized

asperity radius is fixed at 0.015. The spread factor values of 1.1, Biasi (1.817) and 4.0 are chosen

for comparison (Note that the spread is the geometric standard deviation and > 1). Figure 5.6,

Figure 5.7 and Figure 5.8 show the comparison of resuspension fraction for a monolayer, 10 layers

and 100 layers deposits for different spread factors, respectively. We note that for a monolayer by

virtue of the log normal distribution the time for 50% of the deposit is independent of the spread

factor. For times smaller than this value, the largest spread factor gives the greatest fraction

resuspension whereas beyond this time, the situation is reversed.
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Figure 5.6 - Effect of spread factor on monolayer model (note that the exposure for 50%
resuspension is the same for all spread factors)
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Figure 5.8 - Effect of spread factor on 100 layers model
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We note that a spread of 1.1 corresponds to a very narrow distribution of adhesive forces (a value of

1.0 corresponds to zero spread) so in this case there is only a very small amount of longer term

resuspension, most particles being resuspended over a period of 10-2s. As the number of layers

increases from 1 to 100 layers, the resuspension is still relatively sharply defined but the onset of

resuspension is delayed from 10-4s to 10-2s, whilst occurring over a period of say 10-1s. As the spread

factor increases the difference between the 100 layer deposit and the monolayer is much more

marked: for a spread of 4 after 1s, only 2% of the 100 layer deposit has resuspended compared with

almost 100% for the monolayer deposit. There is in fact no sharp distinction between short and long-

term resuspension, in fact it is really all long-term resuspension.
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Figure 5.9 - Time to resuspend 50% particles vs. total layer numbers of deposit

Figure 5.9 showed the time to resuspend 50% particles for different spread factor. As the spread

factor increased, the half resuspension time increased dramatically as the deposit became thicker.
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Figure 5.10 shows the ratio of resuspension fraction between short term and long-term. The short

term is considered as the period before the resuspension rate becomes approximately proportional

to 1/t. It can be observed in Figure 5.3 that after around 10-4 s the curves become straight lines.

Therefore, short term finishes ~10-4 s (~12 in wall units). As the layer number increases, i.e. the

deposit thickness increases the short term resuspension contributes less and less to the total

resuspension since most of the particles covered are not so easily removed. For the same number of

layers L, the ratio of short term and long-term resuspension fraction with a large spread factor (i.e.

4) is always higher than for a small spread factor although the difference is hardly observed when

layer numbers are very large. The reason for this is due to a wide range of adhesive force, the

particles with small adhesive force are more easily to be removed in the short term. However, this

large range of adhesive force affects the ratio difference less and less when the layer number

increases, which indicates that the thickness of the deposit is a more important factor than the

spread of adhesion on resuspension. Also, Figure 5.10 indicates that the slopes are the same for the

range of spread factors. It suggests that

log( ) log ( ) log( )

( )

a

slope

a

Ratio f σ slope L

Ratio f σ L

    

 
[5.15]

where the slope is very close to -1, f(σa′) is a function of σa′ and is plotted in Figure 5.11.
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The function f according to Figure 5.11 is fitted to

  5.634.47 1.27a af σ σ    [5.16]

5.1.1.2 Comparison of Gaussian and non-Gaussian R’n’R model in Multilayer Resuspension

The major difference between Gaussian and non-Gaussian R’n’R model is from the resuspension rate

constant, recall Eq.[4.12] and Eq.[4.29]: the Gaussian case
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and the non-Gaussian case
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with the same assumption on the rms coefficient frms and the typical forcing frequency ω+.
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The fraction resuspension of multilayer models with these two R’n’R models is calculated. In the

comparison, the typical forcing frequency ω+ and the rms coefficient frms are chosen to be the same
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for both Gaussian and non-Gaussian cases (ω+ = 0.0413 and frms = 0.2). Therefore, the difference

between the curves in Figure 5.12 is only from the Gaussian and non-Gaussian distributions (the

distributions of aerodynamic resultant force and its derivative) which used to derived the

resuspension rate constant.
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Figure 5.12 - Comparison of multilayer model with the rate constant based on Gaussian and non-
Gaussian R’n’R model

Figure 5.12 shows that the non-Gaussian model always results more resuspension than the Gaussian

case. As time increases, the difference becomes greater and greater. It is noted that the time of

the joint point (around 10-3s in the plot) depends on the wall friction velocity, typical forcing

frequency and the rms coefficient; it is independent to the layer numbers.
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5.1.1.3 Influence of Coverage on Multilayer Resuspension

The effect of coverage is now considered by assuming that particles are not regularly spaced as in a

lattice of the FY generic model but randomly spaced with the same distribution for all layers. Thus

in any given layer apart from the top layer when no particles are removed from the layer above, an

area corresponding to the particles projected cross section area is revealed within which particles

are exposed to the flow. Here a new parameter αi (the coverage coefficient) is introduced to

describe the number ratio of particles exposed to the flow in a given layer (i + 1) due to removal of

particles from the layer above (i), namely

1i
i Ai

i

n
a f

n
 [5.17]

where fAi is the particle occupied area fraction (the fraction of particles projected area in

horizontal plane parallel to the wall) in layer i and in is the initial average number of particles in

the ith layer. In other words, all the particles in layer i would therefore cover 1Ai if n  particles in

layer i + 1. It is noted that the average number of each layer is the same, therefore 1i in n =1. Also

it is assumed that the coverage coefficient is the same for all layers (use α instead of αi). The

particle occupied area fraction is defined as the total particles cross section area over the whole

area of the layer.

pi i

Ai

i

A n
f

A
 [5.18]

where piA is the average particle projected area (for spherical particle, it is 2

iπr and ir is the

average particle radius in layer i) and Ai is the total surface area of layer i.

The average number of particles in the ith layer can be determined as

i V i

i

pi

V f
n

V
 [5.19]

where Vi is the total volume of layer i. fVi is the particle volume fraction in the ith layer and piV is

the average single particle volume in the ith layer. The volume fraction is related by definition to

the porosity, namely considered

1Vi if ς  [5.20]

It is noted that technically this porosity ought to be different for different layers. Here, it is

assumed that the porosities for all the layers are the same (use ς).

The average thickness of the ith layer is assumed as the average diameter of particles in the ith

layer. Therefore, the particle occupied area fraction is given by
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    [5.21]

It is assumed that the average number of particles in each layer is the same. Therefore, the

coverage coefficient is then derived as

 1
2

1
pi ii
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i pi

A rn
a f ς

n V
   [5.22]

For a deposit composed by spherical particles,

2 2

34
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2 3 3
(1 )
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i i i i i Vi

Ai Vi

i i i

πr n πr A r f
f f ς

A A πr
     [5.23]

Therefore, the coverage coefficient for the deposit of spherical particles according to Eq.[5.17] and

Eq.[5.23] is given by

3
(1 )

2
α ς  [5.24]

Note: α varies from 0 to 1.5. α = 1 means that if one particle is removed from the layer above only

one particle in the layer below will be exposed to the flow. Friess and Yadigaroglu (2002)

demonstrated that in STORM SR11 experiment condition, their deposition and resuspension model

with the porosity between 0.62 and 0.71 gave closer results to the experimental data. Therefore,

the value of α in STORM SR11 experiment condition is calculated from 0.44 to 0.57.

α is the number ratio of particles exposed to the flow of the layer below to the current layer and

than it can be derived as the rate ratio since the exposure rate is approximately the number of

particles multiplied by the rate constant.

1 1i i
Ai Ai

i i

n n
a f f

n n
 





[5.25]

Therefore, Eq.[5.8] is redefined by including the exposure rate ratio in the source term.
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Figure 5.13 - Effect of exposure rate ratio on resuspension rate

Figure 5.13 and Figure 5.14 show the resuspension rate and fraction comparison between the initial

multilayer model and the model included the coverage coefficient. As one can observe from the

resuspension rate comparison, the monolayer case is unaffected by the coverage coefficient as

expected and for the multilayer case (10 and 100 layers) the resuspension rate with no coverage

effect (with α = 1) is very close to the resuspension with α = 0.5 in the short term <10-4s exposure

time (since this is mainly due to resuspension of the top layers where the reduced coverage effect

has hardly any effect: only in the long-term >10-4s does the coverage effect starts to dominate

reducing the resuspension rate dramatically. This can also be observed in Figure 5.14 which is the

comparison of resuspension fraction as a function of time. A coverage coefficient α = 0.5 reduces

the fraction amount by around half after 100s. However, this coverage coefficient is determined by

the porosity of each layer and in reality the porosity for each layer is different and also this porosity

varies as time goes on. In the next section, this ratio constant will be replaced with a particle size

distribution which will be more physically correct.
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5.1.2 Multilayer Resuspension with Particle Size Distribution in Layer

In order to study the behaviour of deposit structure in particle resuspension, the clustering of

particles within a given layer (the clustering effect) is an important consideration. However, there

is not much information about the cluster and deposit structure in a bed of particles. In this section,

a simple addition is introduced to the set of multilayer equations to include the influence of

particle size distribution in the initial multilayer model where the clusters are considered simply as

different size particles. The interaction between the particles in the same layer is not considered,

but the coverage effect from the layer above to the layer below will be included.

The distribution ψ(r) of the particle radius r is considered as log-normal with geometric mean r and

geometric standard deviation σr, i.e.

2

2

ln( )1 1 1
( ) exp

ln 2(ln )2 r r

r r
ψ r

r σ σπ

     
 
 

[5.27]

Since the resuspension rate constant p and exposure pdf n is a function of particle size, then the

formula for the pdf of exposed particles (Eq.[5.8]) becomes
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        

        [5.28]

Note: the integration in the source term of the second equation for particle size distribution is

taken from the current particle radius r to infinity. In other words, in order to expose the current

particle of radius r to the flow, the radius of the particle from the previous layer must be larger

than the current particle radius. The numerical method of Eq.[5.28] is presented in Appendix 4

(p205).

Each deposit layer is assumed as the formation of a distribution of spherical particles as shown,

Figure 5.15 - Geometry of the multilayer system with polydisperse particles
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The resuspension rate in the ith layer is thus defined as

0 0

Λ ( ) ( , ) ( , , )i a i a at p r r n r r t dr dr


    [5.29]

The roughness condition for all the particles is assumed to be the same. The same distribution of

normalized asperity radius (φ(ra’)) is used for all the particles in the domain. Layer thickness is

determined by the mean particle diameter and they are assumed to be the same for every layer.

In the calculation below, the parameters from the STORM SR11 experiment Phase 6 conditions will

be applied, together with Biasi’s correlation for the parameters of adhesion distribution.

Average

radius (μm)

Geometric

standard

deviation of

radius

Fluid density

(kg.m-3)

Fluid kinematic

viscosity (m2.s-1)

Wall friction

velocity (m.s-1)

Surface energy

(J.m-2)

0.227 1.7 0.5730 5.2653 x 10-5 6.249 0.5

The average particle size and geometric standard deviation was used identical to the SOPHAEROS

code (more information in Chapter 5.2.1, p184).

Figure 5.16 - Fractional resuspension rate vs. time for model with polydisperse particles
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The fractional resuspension rate (calculated by Eq.[5.13]) for the polydisperse particles is shown in

Figure 5.16. Compared to the results for the for monodisperse particles, the long-term resuspension

rate in this case has decreased in a significant amount when the layer number increased which can

be observed in Figure 5.17.

The comparison of the resuspension for monodisperse particles with that for polydisperse particles

in each layer with the same geometric mean size Eq.[5.27] is shown below. Figure 5.17 shows the

comparison of the fractional resuspension rate from which it is observed that the fractional

resuspension of the polydisperse particles in the short term is greater than that for the

monodisperse particles due to the fact the resuspension rate is biased towards increasing particles

size. After the initial resuspension and the larger particles (> the geometric mean) have been

removed, the particles left are biased towards particle sizes < geometric mean which are harder to

remove than those with the geometric mean size. Note that the long-term resuspension rate of the

polydisperse case is several orders of magnitude less than that of the monodisperse case.
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Figure 5.18 - Resuspension fraction vs. time for polydisperse particles
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Figure 5.18 shows the resuspension fraction for different layers for the polydisperse case. It is noted

that as the layer number increases to more than 10, less than 10% deposit is removed after 100s. It

also shows that the resuspension fraction for each layer case is exponentially proportional to the

time in the long-term after 10-4s. The comparison of the resuspension fraction for the polydisperse

particles and the monodisperse particles with the same geometric mean size and is shown in Figure

5.19. For the monolayer fraction resuspended, the polydisperse case gives slightly more

resuspension than the monodisperse case in the short period at the beginning which is the reason of

that more larger particles are considered in the polydisperse model and they are easier to be

removed than smaller ones. After that period, the resuspension fraction of polydisperse particles

becomes less and less compared to that of the monodisperse particles since the smaller polydisperse

particles are increasingly harder to remove.
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Figure 5.20 - Ratio of resuspension fraction between initial monodisperse model and model with
polydisperse particles

Figure 5.20 shows the ratio of the resuspension fraction of the monodisperse particles with that of

the polydisperse particles. All the curves start with similar values due to the resuspension of the top

layers; also in the short term (<10-4s) the resuspension of the polydisperse particles is greater than

that of the monodisperse particles since the 50% of the polydisperse particles with sizes > that of

the monodisperse particles easier to resuspend. As the layer number increases the difference

between the monodisperse and polydisperse particles becomes significant. For 10 layers, the
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resuspension fraction of the monodisperse particles after 100s is ~4.5 times that of polydisperse

particles. And for the 100 layers case, the ratio increases to around 5 after 100s. This is all

consistent with graphs for the resuspension rate comparison.

It is noted here that in the calculations of the multilayer polydisperse particles, Biasi’s correlation

of the parameters for the distribution of adhesive forces was used for each particle in the size

distribution; so the geometric mean of normalized asperity radius and spread factor is different for

every particle size.

To examine the effect of spread factor, the value of the geometric mean normalized adhesive

radius is fixed at (0.015) and we consider the influence of spread factors of 1.1 (a very narrow

spread), 1.817 (Biasi) and 4.0 with the same size distribution as before in Figure 5.18.
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Figure 5.21, Figure 5.22 and Figure 5.23 show the effect on the fraction resuspended of spread

factors for a range of layer thickness in the deposit. It is observed in Figure 5.21 that the monolayer

model with larger spread initially gives more resuspension due to the fact that there is more large

size particles involved in the distribution with a larger spread and they are easier to remove. After a

certain period (10-3s), the model with the larger adhesive spread predicts less and less resuspension

because the particles left are much harder to remove. However, as the layer number increases the

difference between the resuspension for different spread factors becomes less and less because the

particles are harder to remove in the thicker deposit due to the coverage effect.

It is noted that in Figure 5.6, Figure 5.7 and Figure 5.8, the curves for the small adhesive spread

factor (1.1) are quite different to the others with larger spread factors even for large layer numbers

(the curve for small spread factor being more close to a step function). However, this phenomenon

is not appeared here. The reason of this is because once a particle size distribution is considered,

there would be a large probability of small particles (radius is smaller than the average radius).

Therefore, no matter how small the range of adhesive force is, there are still a large amount of

particles need to be removed in a much longer period.
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Figure 5.24 - Ratio of resuspension fraction between short term and long-term

Figure 5.24 shows the ratio of resuspension fraction between short term and long-term. The short

term is considered as the period before the resuspension rate becomes approximately proportional
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to 1/t. It is observed in Figure 5.16 that after around 10-4s the curves become straight lines.

Therefore, short term finishes around 10-4s. As the layer number increases, in other words, the

deposit became thicker and thicker the short term resuspension contributes less and less to the

total resuspension because most of the particles were covered and not easy removed. Also, for the

large spread factor (i.e. 4) the ratio of short term and long-term resuspension fraction is always

higher than the model with small spread factor though the difference is hardly observed when layer

numbers are very large. The reason of this is due to a wide range of adhesive force, the particles

with small adhesive force being more easily removed in the short term and this affects the layers on

the top more than the layers below. Also, Figure 5.24 indicates that the slopes are the same for the

range of spread factors. It is noted that the slopes are close to -1.1.
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5.2 Validation of Multilayer Models

In this section, model predictions are compared with the results of two experiments: the STORM

SR11 test (Castelo et al., 1999) and the BISE experiment (Alloul-Marmor, 2002). The former is

probably the best experiment for multilayer deposit resuspension in the nuclear area and the latter

is the latest experiment for multilayer resuspension for which the experimental data has been

compared with R’n’R model predictions.

5.2.1 STORM SR11 Test

The STORM (Simplified Test of Resuspension Mechanism) facility was carried out by the Joint

Research Centre of the European Commission (EC/JRC) at Ispra, Italy. The aerosol used throughout

the tests was composed of tin oxide (SnO2) particles produced by a laser gun. In all 13 tests were

undertaken, the first 8 tests only for aerosol deposition and the rest of the tests included

resuspension. SR09 (STORM Resuspension), SR10, SR11, SR12 and SR13 were the tests for aerosol

resuspension (Bujan et al., 2008). SR11 is also an International Standard Problem number 40 (ISP-40).

It took place in April 1997 and included two distinct phases, the first concentrating on aerosol

deposition mostly by thermophoresis and eddy impaction and the second on aerosol resuspension

under a stepwise increasing gas flow (Castelo et al., 1999).

Figure 5.25 - The STORM facility (Castelo et al., 1999)
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The STORM test facility is shown in Figure 5.25. The test section (in the blue box) was a 5.0055m

long straight pipe with 63 mm internal diameter. In the deposition phase, the carrier gas and

aerosols passed through the mixing vessel followed by a straight pipe into the test section and then

finally to the wash and filtering system. In the resuspension phase, the clean gas was injected

through the resuspension line directly into the test section and the resuspended SnO2 aerosols were

collected in the main filter before the gas goes through the wash and filtering system (Castelo et al.,

1999). The resuspension phase was divided into six steps of increasing gas velocity; the carrier gas

was pure nitrogen (N2) at 370 ºC; the flow rates, fluid mean velocity, fluid density and kinematic

viscosity for each step are given in the table below.

Step
Mass flow rate

(kg/s)

Fluid mean

velocity (m/s)

Fluid density

(kg/m3)

Fluid kinematic

viscosity (m2/s)

Wall friction

velocity (m/s)

1 0.102 62.01 0.4422 6.0697 x 10-5 2.773

2 0.126 76.87 0.5425 5.5521 x 10-5 3.438

3 0.152 93.17 0.5480 5.5000 x 10-5 4.167

4 0.175 107.78 0.5566 5.4204 x 10-5 4.820

5 0.199 123.28 0.5647 5.3427 x 10-5 5.513

6 0.224 139.74 0.5730 5.2653 x 10-5 6.249

Table 5.1 - Conditions of STORM SR11 test

The mass flow rate was measured in the STORM SR11 test. The fluid mean velocity, density and

kinematic viscosity are obtained from the SOPHAEROS code (Cousin et al., 2008). (SOPHAEROS is the

module of the European Integral Code ASTEC V1.3 (Accident Source Term Evaluation Code) to

reproduce the experimental results of the STORM resuspension tests SR09, SR10, SR11, SR12 and

SR13.) The wall friction velocity is calculated as

w
τ

f

τ
u

ρ


where τw is the wall shear stress, whose value can be obtained from a 1-D thermal-hydraulic system

code simulation, using the formula

2

8

fric

w f

f
τ ρ V [5.30]

where V is the fluid mean velocity and ffric is the friction factor which in the STORM case is

approximately 0.016 (Komen, 2007).

The size of particles collected after deposition in the STORM test can be reproduced by a log-normal

distribution and in the SOPHAEROS code the geometric mean diameter (GMD) is given as 0.454μm 

and the geometric standard deviation 1.7. Also in the code, the range of the particle size

distribution is considered to be from 0.002μm up to 200μm (geometric mean diameter).  
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The SnO2 aerosol was produced during the deposition phase. The total mass of the aerosol deposited

in the test pipe was estimated to be 0.162kg. The time and mass at the end of each step and the

resuspension fraction are shown in the table below.

Step
Time at the end of

each step (s)

Mass at the end of

each step (kg)

Fraction

resuspended

1 720 0.156 0.037

2 2280 0.151 0.068

3 3300 0.124 0.235

4 4380 0.096 0.407

5 5400 0.070 0.568

6 5820 0.042 0.741

Table 5.2 - Resuspension result of STORM SR11 test

The surface energy of SnO2 according to Yuan et al. (2002) varies from 0.47 J/m2 to 0.51 J/m2 at

370 ºC. Here 0.5 J/m2 is used for the model calculation.
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Figure 5.26 - STORM SR11 test comparison (using Biasi’s correlation for the adhesive forces)
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For the purposes of comparison, two multilayer models were used to calculate the fraction of

particles resuspended at the end of each time step: the monodisperse multilayer model (referred to

as the monodisperse case) and the polydisperse multilayer model (referred to as the polydisperse

case). The values of the parameters used in the model predictions are those given in Table 5.1 and

Table 5.2. Biasi’s correlation for the adhesive force distribution according to each particle size was

used to obtain the results shown in Figure 5.26.

Figure 5.26 shows the model comparisons of the resuspension fraction with the STORM SR11 test

results. It is observed that for the monolayer resuspension both polydisperse and monodisperse

cases give more resuspension than the experimental data. However, polydisperse case gives results

very close to the experimental data in the first step and final step. Comparing one with another,

the monodisperse case with 2 layers gives the best results of the other cases studied.
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Figure 5.27 - STORM SR11 test comparison (geometric mean (reduction in adhesion) = 0.01,
adhesive spread factor = 1.5)

However, it is recalled that Biasi’s correlation for the adhesive forces is based on the original R’n’R

model which is an isolated particle model for resuspension. Therefore, it is strictly not suited for

the multilayer deposit case. In order to check the sensitivity of the resuspension to the values of the

adhesion parameters, a geometric mean (reduction in adhesion) was chosen to be 0.01 according to

Hall’s experiment (Reeks & Hall, 2001) with two different spread factors (1.5 and 4.0) used for

comparison. The small spread case is shown in Figure 5.27; one can observe that the polydisperse
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case with 3 layers gives a much closer agreement with the experimental measurements than the

monodisperse case.
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Figure 5.28 - STORM SR11 test comparison (geometric mean (reduction = 0.01, adhesive spread
factor = 4.0)

In the case of the resuspension for the large spread factor (4.0), Figure 5.28 shows a poor

comparison with the experimental data for both monodisperse and polydisperse cases. The trends of

the curves are quite different from those of the experimental data.
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5.2.2 BISE Experiment

The BISE (Banc de mIse en Suspension par Ecoulement) experiment was performed by Alloul-Marmor

(2002) with the purpose of studying the resuspension of non-radioactive polydisperse particles on a

surface in fully developed channel air flow.

Figure 5.29 - Schema of BISE experiment facility

The principal zone of the installation is composed of two plexiglas partitions. The one on the left in

Figure 5.29 is a horizontal right-angled parallelepiped conduit 40cm in length, 12cm wide and 7cm

high. There was an experimental surface towards the end of the channel, as shown below. The

carrier flow was dry air at room temperature with a range of mean velocities from 0.5m/s to 10m/s

(friction velocities from 0.04m/s to 0.52m/s). The time interval for each experiment was 900s.

Figure 5.30 - Representation of experimental surface

Al2O3 spherical monodisperse particles were used in the experiment. 5 particle sizes were

considered from 4.6μm to 58.7μm (MMD) and the resuspension of two of them were compared to 
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R’n’R model predictions. In the model comparison, only one particle size from these two has been

chosen (58.7 microns) because the resuspension fraction was very small for the smaller size

particles. Also the mass median diameter has been converted to geometric mean diameter, shown

in the table below.

MMD (μm) GMD (μm) GSD

58.7 47.75 1.3

Table 5.3 - Table of particle size in BISE experiment

The values of the parameters used in the model calculation are

Average radius

(μm)

Geometric

standard deviation

of radius

Fluid density

(kg.m-3)

Fluid kinematic

viscosity (m2.s-1)

Surface energy

(J.m-2)

23.875 1.3 1.293 1.515 x 10-5 0.56

It is noted that, Biasi’s correlation is not appropriate for large size particles. Therefore, the

geometric mean of normalized asperity radius and spread factor according to Reeks and Hall (2001)

are chosen as 0.01 and 1.5, respectively.
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Figure 5.31 - Monodisperse multilayer resuspension predictions vs. BISE experimental results
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It is clear from the comparison shown in Figure 5.31 that the monodisperse multilayer model with

50 layers gives very good results compared to the experimental data. However, when a particle size

distribution is included (shown in Figure 5.32), the Polydisperse case gives quite poor comparison

with the experimental data.
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Figure 5.32 - Polydisperse multilayer resuspension predictions vs. BISE experimental results

Several conclusions can be drawn from the validation of the multilayer model:

 Both the STORM and the BISE comparisons indicate that multilayer model predictions with small

adhesive spread factors give much better comparison with the experimental results. This feature

was also concluded by Biasi et al. (2001). This may be because within a packed deposit, all the

particles have similar surroundings that the spread in adhesion is reduced when there are a

greater number of contacts with other particles (referred to as the co-ordination number).

 In the STORM comparison, the polydisperse case gave a better comparison with the experimental

data whereas in the BISE comparison the monodisperse case gave better results. There is a

marked difference between the deposit structures in the two experiments: in the STORM test the

deposit is formed from a natural deposition phase in the STORM test whereas in the BISE

experiment it is a compacted cone shaped deposit. This may have an influence on the coverage

effect of the deposit layers. In other words, due to the fact that in BISE experiments the deposit

structure is more compact, the polydisperse resuspension predictions are less applicable to this

highly compacted deposit case.
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 It should be noted that the adhesion parameters (reduction factor and spread factor) basically

dominate the multilayer resuspension. Therefore, a better and comprehensive knowledge of

these parameters is very important.
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Chapter 6

Conclusions and

Recommendations

for Future Work

....When I wrote that only God and I knew what it meant. Now

only God knows.

- Robert Browning

The work described in this thesis has been concerned with the way small particles attached to a

surface are resuspended when exposed to a turbulent flow. Of practical concern has been the

remobilization of radioactive particles resulting from potential nuclear accidents. In this particular

case the focus is on the resuspension of small particles, < 5 microns in diameter, where the

principal force holding such particles onto a surface arises from van der Waals inter-molecular

forces and where the particle removal forces are generated by the turbulent shear stresses close to

the surface. Given its suitable treatment of the microphysics of the attachment of small particles

to rough surfaces, it was decided here to aim to develop improved versions of the Rock’n’Roll

(R’n’R) model which is based on a stochastic approach to resuspension involving the rocking and

rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces

acting on the particle close to the surface. In the process it was also decided to extend the

application of resuspension of mono layers of particles to the more general case of multilayer

resuspension since that is the case in a majority of resuspension experiments reported in the

literature and that occurring in general in a nuclear severe accident. In the case of multilayer

resuspension, a proper treatment necessitates an application of a stochastic model, force or

moment balance models being inadequate and inappropriate.

The original R’n’R model makes a number of assumptions about the way particles are removed from

a surface, one of the more important being that the removal forces and their time derivatives are

Gaussian and statistically independent. The fluid motion close to the surface in a turbulent

boundary layer consists of a random sequence of highly intermittent sweeps and ejections. The

assumption that the statistics of these events are Gaussian (though the simplest and most

convenient assumption to make at the time) is therefore questionable. In more recent times the
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numerous DNS and LES measurements of fluid velocities in turbulent boundary layers has presented

us with the opportunity to obtain more realistic distributions for the removal forces and their

derivatives and in turn to develop new, more accurate and reliable models for particle resuspension.

In the course of this study it has been instructive to compare the new model predictions with those

of the original model. This has been done for both mono layer and multi layer resuspension for

which in the latter case, this study has been of fundamental importance.

In this final Chapter we have summarised the work and conclusions of each aspect the work carried

out and the impact it has upon the modelling and predictions of resuspension. The Chapter is

concluded with a list of recommendations for future work

6.1 Conclusions and Discussions

6.1.1 Improvements to Force and Moment Balance Models for Resuspension

In this preliminary study we presented and discussed some improvements that have been made to

the traditional force /moment balance models for particle resuspension by considering the influence

of a statistical distribution of aerodynamic removal forces (moments) rather than just using their

mean values. This improvement was specifically directed at the NRG4 moment balance model

developed by Komen (2007) which included the influence of a spread of adhesive forces (moments)

due to surface roughness. This particular model used an aerodynamic/ adhesion system of forces

and moments contained in the Vainshtein model for a spherical particle in smooth contact with a

surface. The influence of a combined distribution of adhesive and aerodynamic removal moments

was studied as also was the sensitivity to the particular system of moments by comparing the

predictions based on the Vainshtein system with that used in the R’n’R model. The general

conclusion was that the inclusion of a distribution of aerodynamic forces and moments increases the

resuspension but not appreciably. Greater sensitivity was reflected in the different system of

moments especially for small a particles (2 microns compared to 10 microns in the case considered,

see Figure 3.21 and Figure 3.22)

6.1.2 Application of LES/DNS data and the role of non-Gaussian removal forces

The LES/DNS data for the distribution of the velocities and accelerations in the viscous sub-layer of

a fully-developed turbulent boundary layer and how they have been used to produce a new non-

Gaussian R’n’R model for the resuspension rate constants have played a pivotal role in the work

presented in this thesis. We showed specifically how these data were converted into values for the

mean and fluctuating aerodynamic force f and its time derivative f (acting on a particle attached

to a surface in a fully developed turbulent boundary layer). The distributions obtained for f and f
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were distinctly non-Gaussian, the measured distribution of f being best fitted for both sets of data

by a Rayleigh distribution and similarly that of f by an SU Johnson distribution. The distribution of

both these variables normalized on their rms values was found to be approximately the same for

both sets of data, independent of y+ for y+ < 6 and statistically independent of one another. These

distributions were used to obtain a revised formula for the resuspension rate constant in which the

DNS value for the forcing frequency 2 2ω f f  applied to the particle-surface deformation

was nearly 50% higher than the equivalent LES value: by contrast the values of the ratio of the rms /

mean of the aerodynamic drag force were very close to one another. By comparison with the

original model the dependence of the rate constant on the adhesive force is now explicitly

dependent on the Rayleigh distribution for f rather than a Gaussian distribution.

Resuspension predictions of this new Gaussian R’n’R model were compared with those of the

original R’n’R model. This was done in 4 stages. First the difference between the Gaussian and non-

Gaussian models was evaluated where the difference lies in the role of Gaussian versus non-

Gaussian distributions of the fluctuating aerodynamic force and its time derivative (both with the

same mean and rms). In particular it was noted that when the ratio adhesive force/ rms

aerodynamic force, za, is large (za ~ 8), the ratio of resuspension rate constant based on the non-

Gaussian to that of the Gaussian model ~ 30 and reflects the much slower decay of the non-Gaussian

Rayleigh distribution for the aerodynamic drag force in the tails of the distribution compared to that

of the Gaussian distribution. However the broad range of adhesive forces in practice significantly

reduces the influence of the tails of the distribution mainly because the contribution to the total

resuspension in this region of the adhesive force distribution is so small.

Secondly we considered the sensitivity of the predictions of the new model to the LES and DNS

results based on the parameters in Table 4.3. The difference in the resuspension predictions

naturally reflects the difference in values of ω+ which is a natural scaling parameter for the

resuspension rate and for the real time t when it occurs. It means that DNS values of the

resuspension rate are not universally > LES values as the ratio of the values of ω+ might imply.

However when considering the resuspended fraction for the case of t = 1s, there is very little

difference between the LES and DES predictions because for this exposure time all the short term

resuspension has occurred (what is left is the fraction that resuspends over a much longer

timescale).

Thirdly we compared predictions of the original Gaussian R’n’R model with those of the modified

non-Gaussian R’n’R model based on the DNS results (y+ = 0.1) in Table 4.3 where the difference also

depends upon the different values of ω+ and the values of frms (the ratio of the rms of the

aerodynamic removal force to it is mean value). In particular we compared predictions with the

experimental results in the Hall experiment (Reeks and Hall, 2001). We found that the new model

gave closer results to the experimental data in the region where the friction velocity is from around
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0.5m/s to 1.5m/s. Although the modified model gave more resuspension than the experimental data

when friction velocity was smaller than 0.5m/s and larger than 1.5m/s, the results from the

modified model still had a closer trend to the experimental data than the original R’n’R model did.

It was also noted that the difference between the fraction resuspended predicted by the modified

and original models could become significant when the friction velocity is small. It was concluded

that the typical forcing frequency ω+ is the crucial parameter in short term resuspension and the

rms coefficient frms is the key parameter for long-term resuspension. The effect of the typical

forcing frequency ω+ on the resuspension fraction after 1s is not significant.

Finally, we examined the implications for resuspension of using the recently published formula of

Lee & Balachandar (2010) (L&B) for the drag force acting on a particle on a surface (based on their

DNS results for drag forces on particles on or near a surface in a turbulent boundary layer). The

comparison indicated that the resuspension predictions using the L&B formula were quite close to

those of the original model which uses the O’Neill formula for the drag force except in the region -1

< z1, z2 < 1 where application of O’Neill’s formula gives higher values. However, this has very little

effect on the resuspension rate and resuspension fraction. Therefore on the grounds of simplicity we

will continue application of O’Neill’s formula in our modified R’n’R model in subsequent analysis of

resuspension from multilayer deposits.

6.1.3 Multilayer Resuspension Models

The ultimate model that has been developed in this work is a hybrid version of the R’n’R model

adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer

approach. The deposit is modelled in several overlying layers where the coverage effect (masking)

of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage

ratio factor was modelled where this was subsequently replaced by the more general case of a

polydisperse deposit with a particle size distribution.

The idea behind the multilayer resuspension model is that the deposited particles are removed by

layers; the rate of removal of particles from any given layer depends upon the rate of removal of

particles from the layer above which thus acts as a of source of uncovering and exposure of

particles to the resuspending flow. This exposure depends upon the surface area exposed to the

flow in any given layer and the fraction of that surface area occupied by particles (referred to as

the coverage coefficient). It is assumed that when a particle is removed from the layer above only

particle with sizes less than that of the particle removed can be resuspended. The influence of

coverage and particle size constitutes additional features with respect to the original FY model

which considered the resuspension of deposit consisting of a regular lattice array of particles of the

same size (F&Y refer to this as a generic model for multilayer resuspension). As in the original FY

model a lognormal distribution of adhesive forces between particles is assumed in each layer and

that there is no correlation between the adhesive forces between layers. The distribution of
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adhesive forces and particle-coverage coefficient need not be the same for every layer (indeed, if

the layers are numbered sequentially from the top layer then there is good reason to suppose that

the adhesive forces increase with increasing layer number). However in this study it is assumed that

all 3 parameters are the same in each layer.

We recall that in the case of monolayer resuspension, so long as the exposure time was much

greater than timescale of the aerodynamic removal forces the value of this timescale had little

influence on the fraction of particles removed. In the case of multilayer resuspension, the value of

this timescale is critical to the overall fraction of particles resuspended since it determines the time

at which particles in any given layer are exposed to the flow and hence resuspended. In contrast to

monolayer resuspension it is the fraction removed as a function of time that is important. In

monolayer resuspension most of the particles that are available for resuspension will be removed in

less than one second, the remainder being resuspended over much greater times. As an illustration

Figure 5.2 shows the resuspension rate of particles in layers 1, 3, 5, 10 and 20 of a multilayer

deposit of particles of the same size. The resuspension rate of the first layer is identical to that of

the isolated particle model. For the second and subsequent layers, the initial resuspension rate

starts from zero and rises to a maximum during which time most of the particles which are easily

removed are resuspended from a given layer (i.e. for these particles the mean effective

aerodynamic force > adhesive force), the remainder being removed on a much longer period. The

time to reach a maximum may therefore be regarded as a delay time for the particles in a given

layer to be exposed by removing particles from all the layers above it. This behavior results in a

dramatic difference in the fraction resuspended compared with that for a monolayer for the same

exposure time. Figure 5.5 shows for instance the resuspension fraction of a multilayer deposit

consisting of 100 layers. It shows that after 100s, nearly 80% of the monolayer deposit is removed

compared to around 3% of the 100 layers deposit.

The spread factor of the adhesive force distribution also has a great influence on multilayer

resuspension. As a typical example, Figure 5.9 shows the half–life (time to resuspend 50% particles)

for different spread factors. As the spread factor increased, the half life increases dramatically as

the deposit became thicker. We also compared the resuspension prediction using the non-Gaussian

model for the resuspension rate constant (based on the DNS results) with those based on a Gaussian

model (with the same values of , ,rmsω f F ). As with the case of mono-layer resuspension, Figure

5.12 shows that the non-Gaussian model always results in more resuspension than the Gaussian case

but, in contrast, as time increases the difference becomes greater and greater. This difference

reflects the difference in the normalized distributions for the aerodynamic drag force where the

non-Gaussian distribution (used throughout this study) is significantly greater in the wings than that

of the Gaussian distribution. It was noted that when both models gave the same value for the

resuspension fraction (around 10-3s in the plot) this value was independent of the layer thickness.
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In studying the resuspension of a multilayer composed of polydispersed particles the model

predictions for the resuspension fraction were compared with those of a multilayer deposit

composed of monodisperse particles with the same geometric mean size. As an example, Figure

5.20 shows the ratio of the resuspension fraction of the monodisperse particles with that of the

polydisperse particles as a function of layer thickness (L = 1 ~ 100) (reduction and spread factors are

calculated by Biasi’s correlation). All the curves start with similar values due to the dominance of

resuspension of the top layers; also in the short term (<10-4s) the resuspension of the polydisperse

particles is greater than that of the monodisperse particles since the 50% of the polydisperse

particles with sizes > that of the monodisperse particles are easier to resuspend. As the layer

number increases the difference between the monodisperse and polydisperse particles becomes

significant. For 10 layers, the resuspension fraction of the monodisperse particles after 100s is ~4.5

times that of polydisperse particles. And for the 100 layers case, the ratio increases to around 5

after 100s.

In comparing model predictions with the experimental results of the STORM tests and the BISE

experiments, several conclusions can be made:

 Both the STORM and the BISE comparisons indicated that applying small adhesive spread factors

gave much better results compared to the experiments. This result was also a conclusion of Biasi

et al. (2001). This is because, when in a more compacted or coordinated deposit structure, all

the particles have similar surrounding conditions. Therefore, the adhesion distribution should

have a narrower range.

 In the STORM comparison, the polydisperse case gave a better comparison with the experimental

data whereas in the BISE comparison the monodisperse case gave better results. There is a

marked difference between the deposit structures in the two experiments: in the STORM test the

deposit is formed from a natural deposition phase in the STORM test whereas in the BISE

experiment it is a mechanically-compacted cone-shaped deposit. This may have an influence on

the coverage effect of the deposit layers. In other words, due to the fact that in BISE

experiments the deposit structure is more compact, the polydisperse resuspension predictions are

less applicable to this highly-compacted deposit case.

 It should be noted that multilayer resuspension is most sensitive to the adhesion parameters

(reduction factor and spread factor). Therefore, a better and comprehensive knowledge of these

parameters is very important.

6.2 Recommendations for Future Work

Firstly, it is shown in Table 4.3 that the measured typical forcing frequency ω+ varied with y+. At

the moment in the modified R’n’R model, the typical forcing frequency ω+ value is a fixed value

chosen from the case y+ = 0.1 due to the fact that there are not enough simulation data to produce
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the relationship between ω+ and y+. Therefore, the future work can be continued on studying the

correlation between the typical forcing frequency ω+ and y+ in the viscous sublayer. The study of

the correlation between the rms coefficient frms and y+ in the viscous sublayer should also be

considered. Therefore, these two presently fixed parameters will eventually be replaced by two

formulas which depended on the y+.

Secondly, it was noted that the adhesion parameters (reduction factor and spread factor) have a

considerable influence on the multilayer resuspension as well as the value of ω+. Therefore, better

and comprehensive knowledge on these parameters is very important. The future work could

consider tuning the correlation between the particle size and the reduction factor and spread factor

for a lognormal adhesion distribution for the multilayer models (monodisperse and polydisperse

models) from existing resuspension experiments, viz. Reeks & Hall (2001), Braaten (1994), STORM,

ORNL ART, etc.

Thirdly, the clustering effect should be considered in the multilayer model which includes the

aspects identified below.

 Particle-particle interactions in the clusters: the forces between particles should be considered;

they might collide with each other and affect deposit structure and resuspension; how might this

depend upon shape and packing and coordination number?

 Resuspension behaviour of a large agglomerate: we need to understand how large agglomerates

resuspend; do they break up first or resuspend as an intact cluster? Is there any relationship

between the sizes of resuspended agglomerates and the way the particles clustered in the

deposit?

 Clustering in terms of coordination number should be considered which may be associated with

the inter-particle force and particle size parameters. At the moment, coordination number is the

most important parameter in defining the property of clustering.

 Distribution of clusters in the deposit layer should be studied. We might also study the

distribution of coordination numbers.

 When the modified R’n’R model is applied to the clusters, there are several points that need to

be reconsidered: 1. adhesive force (inter-cluster force from particle contacts); 2. aerodynamic

forces (the drag force per particle comprising the cluster is probably reduced whereas lift force

may become important and influence the breakup of large clusters); 3. gravity (this may not be

negligible for clusters).
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Appendices

1 Log-normal Distribution

Consider a random variable x which is necessarily positive; the pdf of x is denoted by f(x). The

arithmetic mean (μ) and variance (σ2) of x are given by
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If it is assumed that the pdf is a log-normal distribution, then
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which indicates that the transformed variable ln(x) has a Gaussian distribution, with geometric

mean μ1 and geometric variance standard deviation σ1.

The statistical properties of the distribution of x are related to the parameters of the lognormal

distribution as follows
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In some simulations, the spread factor σ1 is varied, but not the geometric mean μ1. This means that

the arithmetic mean μ changes with the spread factor σ1 - it increases as the spread factor

increases - but the median value of the distribution does not change; 50% of the particles will

always be smaller than μ1 and 50% will always be larger. The mode (the peak in the log-normal

distribution) decreases as the spread factor increases.

These different effects are illustrated in Figure 3.10, which shows three different log-normal

distributions, with μ1 = 0.01 and σ1 = 1.5, 2 and 3. So as the spread factor is increased, the modal
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value - the peak in the distribution - moves towards zero, and the tail of the distribution increases

slightly.

Click to return to p85.
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2 Numerical Method of Modified NRG4 Models

To calculate the fraction remaining on the surface
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MD and mD is a function of friction velocity uτ. Ma is a function of ra′. Other parameters: radius r,

fluid density ρf, fluid kinematic viscosity νf, surface energy γ and elastic constant κ are given.

Therefore, the fraction remaining on the surface is rewritten as
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where f() and g() are known functions and φ() is the log-normal distribution with known parameters:

geometric mean ar and geometric standard deviation aσ . α is used instead for ra′ for convenience,

then
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Then divide the domain of 0,α  into a set of discrete values αk (k = 1, 2, 3, etc...) with the

interval length 1Δ k k kα α α  .

Then the fraction remaining on the surface is derived as
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Practically, the range of normalized asperity radius ra′ (αk) is taken from 4

a ar σ  to 4

a ar σ  . The

domain of asperity radius could be also divided in a log-scale range ( log( ) 4 log( )a ar σ  to

log( ) 4 log( )a ar σ  ) in order to increase the calculation efficiency.

Click to return to Eq.[3.27].
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3 Derivation of Modified R’n’R Model

To calculate the resuspension rate constant, substitute Eq.[4.22], Eq.[4.24] and Eq.[4.25] to

Eq.[4.10], then
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 , fdh is the fluctuating resultant force at detachment point (Eq.[4.3]).

Now calculate the top part of equation first,
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Bfdot can be calculated numerically, which can be called as reduction factor of the derivative of the

fluctuating aerodynamic resultant force. Then,
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Furthermore, the bottom part is derived.
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Combine the top and the bottom part, the modified resuspension rate constant is obtained,
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Click to return to Eq.[4.26].
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4 Numerical Method of Multilayer Model

Divide the domain of 0,r   into a set of discrete values rj in ascending order and numbered

sequentially j = 1, 2, 3, etc... And divide the domain of 0,ar   into a set of discrete values ξk

(symbol ξ is used here instead of ar for convenience) with k = 1, 2, 3, etc... Let

( ) ( , , )Δ Δijk i j k j kN t n r ξ t r ξ

where 1Δ j j jr r r  and 1Δ k k kξ ξ ξ  are the interval length over which the resuspension rate

constant p(r, ra’) can be assumed constant. Thus, Eq.[5.28] becomes:

( , )
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1
1
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t




 




   




Then dividing the time domain into a series of discrete times tm : m = 0, 1, 2, etc. and denoting

Nijk(tm) by
m

ijkN and p(rj, ξk) by pjk, the differential term can be replaced by

1

Δ

m m m

ijk ijk ijk

m

N N N

t t
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



Therefore,
m

ijkN is obtained recursively in the following manner starting from
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Then the resuspension rate (Eq.[5.29]) of the ith layer is calculated as

Λ Δ Δ 1, 1m

i jk ijk j k
j k

p N r ξ i m  

In the STORM test calculation above, the range of particle radius according to SOPHAEROS code is

taken from 0.001μm to 100μm with the geometric mean 0.227μm and geometric standard deviation 

1.7 (Notes: 1. due to the fact that the probability of very large size particles (r > 50μm) is very very 

small, the gravity effect for these large particles is neglected in this multilayer model. 2. For large

size particles (r > 35μm), Biasi’s correlation for spread factor is still applied, however the geometric 

mean in the correlation is considered as very very small). The range of normalized asperity radius is

taken from 4

a ar σ  to 4

a ar σ  . The domain of asperity radius and particle size could be also divided

in a log-scale range in order to increase the calculation efficiency.

Click to return to Eq.[5.28].
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