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Abstract 

The Voskhod podiform chromitite is one of more than 30 chromitite deposits that collectively 

form the Main Ore Field (MOF) within the Kempirsai Massif, in Kazakhstan. The MOF is the 

largest podiform chromitite ore-field in the world. The Voskhod deposit, encased in a 

serpentinised dunite halo, is situated within harzburgite units that comprise the mantle sequence 

of the Kempirsai ophiolite. This study arose from a unique opportunity to work on drill core 

samples through an un-mined podiform chromite deposit and investigate its internal structure, 

composition and genesis.  

The 18Mt ore-body has a strike of 600 m, is 170 m to 360 m wide and has an average thickness 

of 39 m. It has an immediate dunite halo between 1 m and 5 m thick. The ore body is made up 

of multiple stacked chromitite layers. Mineralised layers are separated by barren dunite or by 

weakly disseminated dunite lenses ranging from <1 m to 50 m. The style of mineralization 

varies throughout the ore body; the central region is dominated by thick (>5 – 45 m) units of 

massive chromite (>80% chromite), with progression towards the south west disseminated 

chromite (10 – 40% chromite) becomes increasingly abundant. Drill core logging and cross-

section profiling of the internal structure of the ore body has identified an intricately connected 

network of what appear to be chromite-filled channel-ways.  

Outside of the halo the host rocks are inter-layered harzburgite and dunite.  Accessory chromite 

in harzburgite has an average Cr# of 0.31 compared to Cr# 0.49 in the dunite. The harzburgites 

are depleted, having formed from intermediate degrees  of partial melting (~15 – 18 %) of a 

fertile mantle source at a mid-ocean ridge (MOR) setting. The dunite units have transitional 

geochemical fingerprints that imply they formed from the interaction of MOR mantle harzburgite 

with both mid ocean ridge baslt-melt and an arc derived-melt. They are not the products of 

extremely high degrees of partial melting.   

The encasing dunite halo is extensively serpentinised (>80%). Chromite is only present as an 

accessory phase having an average Cr# of 0.62. The dunite has a geochemical signature 

indicating that it formed by reaction between residual harzburgite and a boninite melt in supra-

subduction zone (SSZ) tectonic setting.  

A variety of geochemical fingerprints have been identified; residual MOR harzburgite, reacted-

MOR dunite, reacted-SSZ dunite and harzburgite, indicating that the mantle section has had a 
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polygenetic tectonic evolution, recording both ocean basin opening (MOR setting) and closing 

(SSZ setting) events. 

Trace element and REE whole rock geochemistry of the chromitites and associated host rocks  

provide evidence of depletion and a later-stage LREE-enrichment event. LREE-enrichment is 

most intense within and immediately adjacent to the chromitite.  

Chromites from the ore zone are at the Cr-rich extreme for podiform chromites (Cr# ave. 0.80-

0.85) and are TiO2 poor (ave. 0.16 wt%),  similar to chromite in boninite worldwide and nearby. 

Al/Ti ratios have been used to calculate the composition of the parent melts from which the 

Voskhod podiform chromitite crystallised: compositions that are synonymous with a boninite 

melt composition. 

Chemical variation in chromite is systematic and on a much smaller scale than was anticipated.  

Even variations in a single thin section provide key evidence for different magmatic processes.  

An apparent melt-rock reaction in harzburgite has been examined in freeze-frame. 

The chromite chemistry has been investigated at 50 cm, 1 cm and 1 mm scales. Compositional 

differences were identified on the basis of MgO% and FeO(t)% compositions. Diagrams FeO-

Fe2O3 and Cr# - Mg# were used to demonstrate the variations and identify relationships. Broad 

cryptic layering on a 50 cm scale has been found as well as fine-cryptic layering on a 1 – 8 cm 

scale.  The variations are interpreted to reflect differences in the mineral phases crystallised 

from the melt; periods when on chromite only crystallised are distinguished from periods when 

both chromite with olivine crystallised. It seems likely that the deposit is made up of thousands 

of episodes of chromite accumulation that formed in an intermittently replenished open-system.   

It also seems likely that the conduit was never a single melt-filled cavity; instead melt flow was 

focused through the mantle over an extended period. The conduit appears to be comprised of 

multiple branches, as chromite (± olivine) crystallised from the melt the channel-way became 

blocked and the melt was forced to deviate and make a new pathway through the mantle. As 

time elapsed the process resulted in the formation of stacked chromitite lenses, creating an 

orebody that has an internal arrangement of chromitite and dunite unites which resemble a 

stacked braided 'delta'.  

 

 



 iii 

ACKNOWLEDGEMENTS 

Sincere thanks to Iain McDonald for his patience, time and encouragement. 

Thank you to my supervisors, Chris Neary, Julian Pearce and Hazel Prichard as well as my 

industry mentor Nic Barcza for their help and advice.  

I owe a large debt of gratitude to; Nic Barcza, Chris Powers, Matt Boyes, Simon Apps, 

Kevin Alexander and Lisa Pereira for all their technical help, logistical support and kindness 

– it was a pleasure to work with you. Without their efforts this project would not have been 

possible.  

Peter Fisher has been of invaluable assistance and equally patient during the long periods 

of time I have spent on the SEM. Lawrence Badham and Peter Greatbatch were 

responsible for making hundreds of polished thin sections between them. 

Iain McDonald and Ley Woolley were efficient at running many sample solutions on the 

mass spectrometers at Cardiff and very kind to teach me the methods for sample 

preparation in the geochemistry laboratory.  

A big thank you to Ian Parkinson and Andy Tindle, who supervised my use of the EMP at 

the Open University. Extra thanks to Millie and Anna, who “on-the-day” agreed to 

accommodate me during my time at the O.U and were really very lovely. 

Thank you to; Matthew Minifie, Tracy Aze, Tom Gregory, Alan Hastie, Bryan Hatton, Sarah 

Dare, Freddie Spyre, Aggie Georgeopoulou, Ruth Liley, Namaste Nicolai and David 

Thornalley for your unending moral support and more importantly - the laughter. Thanks is 

also expressed to my magma process group officemates Chris Brough, Kerry Howard and 

Iain Neill. 

I acknowledge the funding for this project from Cardiff University, Oriel Resources Plc. and 

an additional annual contribution from SRK. Travel grants from the SEG, GSSA, MDSG and 

IOM
3
 Andrew Carnegie fund to attend conferences and field trips have been greatly 

appreciated. 

Finally, thank you to my parents, Geoffrey and Gillian as well as to my sisters, Bertie and 

Minnie, who have been gracious enough to express continual faith in my ability. 



  iv 

Table of Contents 
                Page 

 

Abstract           i 

Acknowledgements         iii 

Contents           iv 

 

Chapter 1. Introduction         1 

 

 

Chapter 2. Ophiolites         3 

 

2.1  Ophiolite stratigraphy       4 

2.1.1   Crustal units        5 

2.1.2   Mantle units        6 

2.1.3   Chromite in the ophiolite sequence    7 

2.2  Ophiolite formation and emplacement     8 

2.2.1   Tectonic settings: Mantle and melt geochemistry  9 

2.2.1.1  Mid-Ocean Ridge Basalt (MORB)     11 

2.2.1.2  Boninite        12 

2.2.1.3  Island-Arc Tholeiite (IAT) and Calc-Alkaline Basalt (CAB) 13 

2.2.2   Mantle peridotite types      14 

2.2.2.1  Abyssal peridotite       14 

2.2.2.2  Forearc Peridotite       15 

2.2.3   Ophiolite mantle peridotite      15 

2.2.4   Limitations relating mantle peridotites and crustal lavas 16 

2.3  Geochemistry: A tool for tectonic reconstruction   17 

2.3.1   Monogenetic and polygenetic tectonic settings   18 

2.3.1.1  Melt-rock reaction within monogenetic tectonic settings 19 

2.3.1.2  Melt-rock reaction within polygenetic tectonic settings  19 

2.4  Ophiolite types        20 

2.5  Ophiolites of the Urals       21 

 

 

Chapter 3. Chromite         24 

 

3.1  Chromium         24 

3.1.1   Uses of chromium       25 

3.2  Chromite deposits        26 

3.2.1   Stratiform chromitite       27 

3.2.1.1  Chromite crystallisation models: Stratiform chromitite  29 



  v 

3.2.2   Ophiolitic chromite       31 

3.2.2.1  Ophiolite chromite: Crustal cumulates    32 

3.2.2.2  Ophiolite chromite: Mantle hosted podiform chromitite  33                               

3.3  Podiform chromitite genesis models     38 

3.3.1.1  The chromitite-dyke hypothesis     40 

3.3.1.2  Mixing multistage-melts      42 

3.3.1.3  The melt-rock reaction models     43 

3.3.1.4  Water and chromite formation     46 

3.4  Chromite geochemistry       47 

3.4.1   Conditions that impact the composition of chromite crystallised  

from a melt        48 

3.5  Geochemical variation and trends in chromite    55 

3.5.1   The Fe-Ti Trend       56 

3.5.2   The Cr-Al Trend       57 

3.5.2.1  Sub-solidus re-equilibration between chromite and olivine 58 

3.5.3   The Rhum Trend       58 

3.5.4   Mg#-Cr# relationships and understanding chromite genesis 59 

3.5.4.1  Trend A        60 

3.5.4.2  Trend B        62 

3.5.5   Cyclic layering and chromitite layers    63 

3.6  Chromite alteration        63 

3.6.1   Accessory chromite morphologies: Proposed mechanisms  

of formation        65 

3.6.2   Silicate inclusions in chromite     65 

3.6.3   Chromite ore types       66 

3.6.4   Densification of chromite: Mechanisms and features  68 

3.6.4.1  Mechanical separation: Drifting velocity    69 

3.6.4.2  Overgrowth – Postcumulus reaction with a chrome-rich  

liquid         69 

3.6.4.3  Post-cumulus reaction between chromite, plagioclase and a  

late-stage liquid       70 

3.6.4.4  Compaction - Sintering      70 

3.6.4.5  Deformation: Grain boundary features    72 

 

 

Chapter 4. The Regional Setting of the Voskhod  Podiform Chromite  

Deposit         73 

 

4.1  Podiform Chromitites in the Kempirsai Massif    73 

4.2  Regional setting: The Urals      75 

4.2.1   Tectonic evolution : Arc systems and structures of  

the Urals.        76 



  vi 

4.2.2   The Main Uralian Fault (MUF)     77 

4.2.3   The Tagil Arc - Middle to Polar Urals    78 

4.2.4   The Magnitogorsk Arc – South Urals    78 

4.3  Boninites of the Urals       79 

4.4  The Sakmara Allochthon       82 

4.5  The Kempirsai Massif       84 

4.6  Chromitite Orebodies of the Kempirsai Massif    85 

4.6.1   The Batamshinsk-type (BAT) Chromite Ores   85 

4.6.2   The Main Ore Field (MOF)      86 

 

 

Chapter 5. Voskhod         87 

 

5.1  The Voskhod podiform chromite deposit     87 

5.1.1   Drill Collar Grid for the Voskhod License Area   88 

5.1.2   Morphology of the Voskhod podiform chromite ore body 92 

5.2  Mineralogy of the hanging wall and footwall ultramafics  98 

5.2.1   Overburden (OVB)       98 

5.2.2   Dunite (DUN)       98 

5.2.3   Altered Dunite (ASDUN)      99 

5.2.4   Harzburgite (HARZ)       100 

5.2.5   Altered Harzburgite (AHARZ)     100 

5.2.6   Alteration processes      101 

5.3  Petrology of the hanging wall and footwall ultramafics   101 

5.3.1   Dunite and altered serpentinised dunite    101 

5.3.2   Harzburgite        104 

5.4  Chromite grain types       106 

5.4.1  Chromite grain morphologies in the harzburgite and  

dunite units of the Voskhod deposit.    106 

5.4.2   Poikilitic textures       110 

5.4.3   Recording the chromite morphologies of the  

Voskhod deposit       111 

5.5  The Voskhod deposit chromitite ore types    111 

5.5.1   Massive Chromitite       112 

5.5.1.1  Hard massive chromite (HMCR)     113 

5.5.1.2  Soft massive chromite (SMCR)     113 

5.5.1.3  Powdery chromite (PCR)      113 

5.5.2   Olivine-chromitite       114 

5.5.2.1  Nodular chromite       115 

5.5.2.2  Spindle chromite       115 

5.5.2.3  High-grade disseminated chromite (50-90% chromite)  116 

5.5.3   Chromitiferous dunite      116 



  vii 

5.5.3.1  Disseminated chromite (5-50% chromite)   116 

5.5.4   Dunite with accessory chromite     117 

5.5.5   Vein and Lens Chromite      117 

5.5.6   Reflected light petrology of massive chromite ore  119 

5.5.6.1  Connecting grains: Contact grain boundaries   120 

5.5.6.2  Chromite grain inter-growths     121 

5.5.6.3  Compaction and annealing      122 

5.5.6.4  Chromite grain organisation     123 

5.5.6.5  Irregular grain edges; cuspate and embayment features 125 

5.5.6.6  Triple junctions and silicate-filled grain boundary voids  127 

5.5.6.7  Silicate inclusions       128 

5.6  Whole rock analyses       130 

5.6.1   Covariation diagrams      130 

5.6.1.1  Al2O3 against Y and CaO against Y co-variation plots  134 

5.6.1.2  Co-variation plot Al2O3 against CaO    136 

5.6.2   REE patterns        138 

5.6.2.1  REE profiles grouped by shape     140 

5.6.2.2  REE profiles grouped by rock-type    143 

5.6.2.3  Extended trace element plots (spidergrams)   145 

5.7  Summary of samples analysed and data presented in this chapter 152 

 

 

Chapter 6. Tectonic setting discrimination using chromite from the  

        Voskhod deposit peridotite, dunite and chromitite units           154 

 

6.1  Aim of the Chapter        154 

6.1.1   Tectonic Settings       154 

6.1.2   Tectonic discrimination diagrams: An overview   154 

6.2  Methodology         155 

6.2.1   Sample selection       155 

6.3  The Voskhod Chromite Deposit: A Crustal or Mantle Chromitite? 158 

6.3.1  Petrogenesis of the Voskhod host peridotites using the  

Olivine-Spinel Mantle Array (OSMA) diagram   160 

6.4  Peridotite-type Discrimination and Significance    165 

6.4.1  TiO2-Al2O3 Chromite Composition Variation: Host Peridotite-  

and Reacting Melt-type Discrimination Diagram   166 

6.5  Cr# - TiO2 wt% diagram: Melt-mantle interaction discrimination 169 

6.5.1   TiO2 - Fe3+# Diagram      177 

6.5.2  Fe2+/Fe3+ - Al2O3 Chromite Composition: Peridotite-type  

Discrimination Diagram      180 

6.6  Oxygen fugacity as a tool for fingerprinting tectonic settings  181 

6.6.1  ∆log fO2(FMQ) against Cr# diagram: Tectonic discrimination  



  viii 

of the Voskhod peridotites and dunites.    181 

6.6.2   Limitations of the fO2 –Cr# discrimination diagram  185 

6.7 The tectonic discrimination of the Voskhod peridotites and   

dunites using Ga-Ti-Fe3+ systematics in chromite   186 

6.7.1   TiO2/Fe3+# against Ga/Fe3+# diagram    187 

6.7.1.1  Anomalous distal dunite samples     189 

6.7.2   Chromite Cr# against Mg# diagram    190 

6.8  Parent melt composition       193 

6.8.1   Al2O3 and TiO2 in the parent melt     194 

6.8.2   FeO/MgO Melt Composition     199 

6.9  Results overview        202 

 

 

Chapter 7. Major and minor element geochemistry variation on a 50 cm  

spaced scale, across a 45 m section of massive chromite from  

drill core V05-13                 206 

 

7.1  Interrogation of the V05-13 data series     208 

7.1.1   Data reliability       209 

7.1.1.1  Comparison of the Voskhod sample variation with  

natural standards       212 

7.1.2   V05-13 Chromite: Major element geochemistry   216 

7.1.3  Determining the ferrous and ferric iron contents of 

MgO>FeO(t) and FeO(t)>MgO chromites    218 

7.1.4   V05-13 Chromite: Trace element geochemistry   221 

7.1.5   Mg#-Cr# diagram       223 

 

 

Chapter 8. Variation on a 1 cm spaced scale, in the major and minor  

element geochemistry of the Voskhod massive chromite.         228 

 

8.1  Data reliability and the data distribution of samples F1964-65,  

F1996-97 and F1925                239 

8.1.1   The standard error and sample data distribution for  

FeO % against Fe2O3 % diagram                        230 

8.1.2   The standard error and sample data distribution on  

the Mg#-Cr# diagram               232 

8.1.3   Examination of the trivalent cation geochemistry           234 

8.2  The geochemical distinction between samples F1964-65,  

F1996-97 and F1925                237       

8.3  Examination of dataset F1964-65               239 

8.3.1   Variation with depth                239 



  ix 

8.3.2   FeO% vs. Fe2O3%                242 

8.3.3   Chromite mineral proportions vs. chromite Mg#            246 

8.3.4   Mg# vs. Cr#                 247 

8.4  Examination of dataset F1996-97               251 

8.4.1   Variation with depth                252 

8.4.2   FeO%- Fe2O3%                255 

8.4.3   Mg#-Cr#                 256 

8.5  Massive chromitite grading into a silicate-rich horizon            259 

8.6  Examination of dataset F1925               260 

8.6.1   Variation with depth                264 

8.6.2   FeO%- Fe2O3%                267 

8.6.3   Mg#-Cr#                 270 

8.7  Summary                  273 

 

 

Chapter 9. Discussion                   275 

 

9.1  The tectonic evolution of the Uralian basin recorded by the   

mantle hosted Voskhod chromite deposit             275 

9.1.1   Whole rock geochemistry               275 

9.1.2   The OSMA                 282 

9.1.3   Cr#-TiO2 diagram                283 

9.1.4   fO2-Cr# and TiO2/Fe3+#-Ga/Fe3+# diagrams            284 

9.1.5   Host rock geochemistry: A record of the palaeo-Uralian  

ocean basin evolution.               286 

9.2  Parental melt composition of the high-Cr Voskhod chromitite           291 

9.2.1   The role of boninite in forming podiform chromitite           291 

9.2.2   Water and chromite crystallisation             292 

9.2.3   Melt-rock reaction                293 

9.3  The Voskhod orebody                294 

9.3.1   The Voskhod orebody: A record of melt migration through  

the mantle.                 295 

9.3.2   Genesis of ore zone dunite and the dunite halo            297 

9.4  Compositional variations in chromite from the ore zone           299 

9.4.1   Massive chromite composition variations             299 

9.4.2   A rationale for the genesis of co-existing MgO>FeO(t)  

and FeO(t)>MgO chromites in massive chromite      309 

 

Chapter 10. Conclusions                  316 

       

Appendices  

Appendix A – Methods                  322 



  x 

Appendix B – Drill core logs                       330 

Appendix C – Whole rock analyses                 344 

Appendix D – Voskhod Chromite: SEM Analyses              348 

Appendix E – Voskhod Chromite: EPMA and LA-ICP-MS Analyses            384 

Appendix F – Voskhod Olivine (Fo): SEM and EPMA Analyses            388 

Appendix G – Evaluation of Voskhod data precision              394 

Appendix H – Voskhod Sample Suite: Petrology              399 

 

References                    402 

 

  



  xi 

List of Figures 

 

Chapter 2 

Figure 2.1.1: Ocean crust idealised stratigraphic section     4 

Figure 2.1.2: Pyroxenites, peridotites and dunite compositions.    6 

Figure 2.2.1: A schematic detailing the differing melt-types and the  

tectonic settings associated with their formation.    8 

Figure 2.3.1: An annotated diagram of the fO2 against Cr#.              18 

 

Chapter 3 

Figure 3.2.1: A sketch of textural evolution based on relationships of textures  

in mantle peridotite with mantle flow structures    34 

Figure 3.4.1: An idealised sketch to illustrate the effect of cooling rate on  

the crystallisation of chromite      50 

Figure 3.4.2: Idealised sketch of the relationship between pressure and  

chromium content of chromite and chromium content of a melt   51 

Figure 3.4.3: Idealised sketch of the relationship between fO2 and chromium  

content of chromite and chromium content of a melt   52 

Figure3.4.4: Idealised sketch of the relationship between the SiO2 melt  

content and chromium content of chromite and chromium  

content of a melt        53 

 

Chapter 4 

Figure 4.1.1: A map of the Ural divisions and corresponding geological  

units, with an enlarged map showing the Kempirsai Massif  

geology and orefields.       74 

Figure 4.2.1: A late Carboniferous, palaeo-graphic world map to illustrate the  

construction of the Ural mountain chain.     75 

Figure 4.2.2: A schematic cartoon to illustrate the formation and relative  

positions of the Magnitogorsk, Tagil and Valerianovka arc systems  

during the Late Devonian.       77 

Figure 4.3.1: A geological map of the Urals showing the location of Baimak and  

Buribai boninite sample localities and the relative position of the  

Kempirsai Massif.        80 

Figure 4.4.1: A map of the Sakmara Allochthon position in the south Urals,  



  xii 

the regional geologic complexes and major faults.   83 

 

Chapter 5 

Figure 5.1.1 A map depicting the drill collar locations from the Voskhod  

license area.         90 

Figure 5.1.2: Drill collar locations and 3.D ore body model of the  

Voskhod podiform chromite deposit.     91 

Figure 5.1.3 Drill collar map illustrating three cross sections constructed using  

drill core (by the author) from drill collars along the line of the  

section.         92 

Figure 5.1.4 Cross section 1 - southwest to the northeast of the ore body (CS1). 93 

Figure 5.1.5: Cross section 2 (CS2) west-east cross section through the  

centre of the ore body.       95 

Figure 5.1.6 Cross-section 3 (CS3). East – west cross section south of the  

centre of the ore body south of CS2.     96 

Figure 5.1.7: A 3.D schematic of the Voskhod chromite deposit ore body  

with drill holes produced by the author using Arc GIS software  

package.         97 

Figure 5.2.1: The Voskhod rock types in drill core      99 

Figure 5.3.1: Dunite          102 

Figure 5.3.2: Altered serpentinised dunite        103 

Figure 5.3.3: Harzburgite         105 

Figure 5.3.4: Altered harzburgite showing a shear foliation texture   106 

Figure 5.4.1: Cuspate, holly leaf and subidiomorphic chromites    107 

Figure 5.4.2: Euhedral chromites        108 

Figure 5.4.3: Co-existing chromite types in hanging wall dunite    109 

Figure 5.4.4: Poikilitic textures in holly leaf and subidiomorphic chromite types. 110 

Figure 5.5.1: Massive chromite ore types       112 

Figure 5.5.2: A micro-fracture network in HMCR ore: Alteration of chromite  

(black) to ferrit-chromite (brown).      113 

Figure 5.5.3: Olivine-chromitite ore types from the Voskhod ore body.   114 

Figure 5.5.4: Chomitiferous dunite: Disseminated chromite    116 

Figure 5.5.5: Dunite with accessory chromite      117 

Figure 5.5.6: Vein chromite         118 

Figure 5.5.7: Connecting chromite grains present in interstitial silicate   120 



  xiii 

Figure 5.5.8: Grain inter-growths within massive chromite    121 

Figure 5.5.9: Compaction and annealing       122 

Figure 5.5.10: The organisation of chromite grains in massive chromite.  124 

Figure 5.5.11: Cuspate, pitted and undulating chromite grain edges in  

contact with interstitial silicate.      125 

Figure 5.5.12: Triple junctions and boundary voids     127 

Figure 5.5.13: Silicate inclusions in massive chromite.     129 

Figure 5.6.1:   Al2O3 against Y whole rock co-variation diagram    134 

Figure 5.6.2: CaO against Y co-variation diagram      135 

Figure 5.6.3: Al2O3 against CaO wt% co-variation plot     137 

Figure 5.6.4: Chondrite-normalised REE patterns for Voskhod  

peridotites and dunite.         142 

Figure 5.6.5: REE profiles grouped by rock-type.      144 

Figure 5.6.6: Extended trace element plots for the Voskhod samples  

grouped by rock-type and normalised to chondrite.   147 

Figure 5.6.7: A comparison of the trace and rare earth element for the  

Thetford Mines Ophiolite and Voskhod mantle and boninite  

rock series.         150 

 

Chapter 6 

Figure 6.3.1: A plot of Cr# against Mg# to discriminate between  

chromitites of differing genetic origins.     159 

Figure 6.3.2: An illustration defining the fields given in the Cr#-Fo diagram  160 

Figure 6.3.3: A plot of Cr# spinel against the Fo content of olivine from the  

host peridotites and dunite, dunite halo and chromitite rocks  

of the Voskhod deposit.       162 

Figure 6.4.1: TiO2% against Al2O3% illustrating the peridotite type and lava  

type defined field boundaries after Kamenetsky et al., 2001.  166 

Figure 6.4.2: TiO2- Al2O3 variation as seen in Cr-spinel with respect to  

modern day tectonic settings.      168 

Figure 6.5.1: A plot of Cr# against TiO2 wt% annotated with reaction fields.  170 

Figure 6.5.2: Plot of Cr# against TiO2 wt% for chromite from the host units and  

ore zone of the Voskhod deposit.      172 

Figure 6.5.3: Plot of Cr# against TiO2 wt% for chromite from the Voskhod  

deposit host units and ore zone annotated with a two-part  



  xiv 

reaction trend “A” and “B”.       174 

Figure 6.5.4: Chromite Cr# - TiO2 plot with data added from nearby areas.  176 

Figure 6.5.5: A schematic overview of the TiO2 wt% against Fe
3+

# plot.   178 

Figure 6.5.6: TiO2 wt% against Fe
3+

# in chromite from the Voskhod  

peridotite and dunite units.       179 

Figure 6.5.7: Fe
2+

/Fe
3+

 - Al2O3 discrimination between SSZ-type and  

MORB-type mantle chromite.      180 

Figure 6.6.1: ∆log fO2(FMQ) against Cr# diagram for chromites from  

the Voskhod peridotites and dunites.     183 

Figure 6.7.1: TiO2/Fe
3+

# against Ga/Fe
3+

# in chromite from the peridotite    

 and dunite units of the Voskhod deposit.      187 

Figure 6.7.2: Cr# against Mg# diagram of chromites from peridotite, dunite  

and chromitite units.        191 

Figure 6.8.1: Al2O3 melt-spinel relationship      196 

Figure 6.8.2: TiO2 melt-spinel relationships for high- and low- Al2O3 spinel  196 

Figure 6.8.3: TiO2 wt% versus Al2O3 wt% melt compositions    197 

Figure 6.8.4: V05-13 chromite dataset: The calculated FeO/MgO content of  

the parent melt from which the chromite crystallised plotted  

against down hole depth.       200 

Figure 6.8.5: V05-13 chromite dataset: Variation with depth of the Al2O3 wt%  

and TiO2 wt% content of the parent melt from which  

the chromite crystallised.       201 

Chapter 7 

Figure 7.1.1: Drill core V05-13 lithological units log.     207 

Figure 7.1.1: The major and trace elements, maximum, minimum and  

average RSD% values from samples compared with the  

complete dataset RSD%.       211 

Figure 7.1.2: FeO(t)% against Cr2O3% compares the composition  

variation of single chromite grain standards with the V05-13  

chromite dataset.        213 

Figure 7.1.3: MgO% against Al2O3% to compare the composition  

variation of single chromite grain standards with the V05-13  

chromite dataset.        214 

Figure 7.1.4: The major element geochemistry of chromite analyses from  

drill-core V05-13 versus depth.      216 



  xv 

Figure 7.1.5: FeO% against Fe2O3%       219 

Figure 7.1.6: FeO% against MnO% showing the chromite groups  

MgO>FeO(t) and FeO(t)>MgO      222 

Figure 7.1.7: Mg# versus Cr# plot        224 

Figure 7.1.8: Data point population density of the Mg# versus Cr# plot   225 

Figure 7.1.9: Mg# against Cr# annotated with individual grain analyses  

from seven samples to demonstrate compositional variation  

within a sample.        226 

 

Chapter 8 

Figure 8.1.1: FeO% against Fe2O3% showing the average compositions  

of the standards and samples F1964-65, F1996-97,  

F1925-massive chromite and F1925-disseminated chromite.  230 

Figure 8.1.2: Mg# against Cr# showing the standard compositions and the  

average data for samples F1964-65, F1996-97, F1925-massive  

chromite and F1925-disseminated chromite.    233 

Figure 8.1.3 (cont): Comparison of the trivalent, major element oxide  

compositions obtained from the analysis of the standards.  236 

Figure 8.2.1: The major element composition of chromitite samples  

F1964-65, F1996-97 and F1925 presented on the plot  

Mg# against Cr#        238 

Figure 8.3.1: Variation of the chromite major element chemistry with depth in  

sample F1964-65.        240 

Figure 8.3.2: The variation of FeO and MgO with depth in sample F1964-65  241 

Figure 8.3.3: FeO% against Fe2O3% showing the F1964-65  

chromite compositions.       243 

Figure 8.3.4: FeO% against Fe2O3% a comparison of the V05-13 massive  

chromites with the three chromite groups identified in sample  

F1964-65.         245 

Figure 8.3.5: The chromite content in a section against the chromite Mg#  

values for each section of sample F1964-65.    246 

Figure 8.3.6: Mg# against Cr#        248 

Figure 8.3.7: Mg# against Cr# a comparison of the V05-13 massive chromites  

with dataset F1964-65, Groups 46-49, 50-54 and 55-59   250 

Figure 8.4.1: Variation of the chromite major element chemistry with depth  



  xvi 

down hole in sample F1996-97.      252 

Figure 8.4.2: Variation of FeO and MgO contents in F1996-97    254 

Figure 8.4.3: FeO% against Fe2O3% showing the composition of  

sample F1996-97.        255 

Figure 8.4.4: FeO% against Fe2O3% diagram a comparison of the   

V05-13 massive chromites with the composition of  

sample F1996-97.        256 

Figure 8.4.5: Mg# against Cr# diagram for sample F1996-97    257 

Figure 8.4.6: Mg# against Cr# diagram a comparison of the V05-13 massive  

chromites with the composition of sample F1996-97.   258 

Figure 8.5.1: Schematic of sample F1925 illustrating the change in style  

of chromite mineralisation across the drill core intersection.  259 

Figure 8.6.1: Variation of the chromite major element chemistry with depth  

down hole in sample F1925.       264 

Figure 8.6.2: The variation of MgO and FeO with depth in sample F1925  265 

Figure 8.6.3: The variation of Cr2O3 and MgO with depth in sample F1925.  266 

Figure 8.6.4: The variation of Cr2O3, Al2O3 and Fe2O3 with depth in  

sample F1925        266 

Figure 8.6.5: Sample F1925 FeO% against Fe2O3%     267 

Figure 8.6.6: FeO% against Fe2O3% comparison of the V05-13 massive  

chromite dataset with sample F1925.     269 

Figure 8.6.7: Sample F1925 Mg# versus Cr#      271 

Figure 8.6.8: Mg# against Cr#; comparison of chromite composition  

datasets V05-13 and F1925.      272 

 

Chapter 9 

Figure 9.3.1: A 3.D model of the Voskhod chromite deposit    297 

Figure 9.4.1: FeO% against Fe2O3% annotated with processes that control  

chromite and olivine crystallisation from a melt.    303 

Figure 9.4.2 : Mg# against Cr# for all massive chromite data collected from  

the Voskhod deposit.        308 

Figure 9.4.3: A schematic cross section profile of a massive chromite  

sample illustrating the unknown proximity of a grain boundary  

with depth.         311 

Figure 9.4.4: Mg# against Cr# indicating the proposed geochemical change  



  xvii 

in chromite composition resulting from subsolidus  

re-equilibration between chromite with interstitial olivine.   312 

 

 



Chapter 1: Introduction 

1 

Chapter 1: Introduction 

This study was set-up as a co-operative research project between Oriel Resources 

Plc. (a subsidiary of Mechel) and Cardiff University, Earth and Ocean Sciences 

department. In May 2006, the Voskhod mine plan had recently received approval for 

mine development. The collaboration was driven by an industry initiative to further 

understand the ore geology of the deposit; the ore types, their spatial distribution and, 

in particular, how the affect of mineralogical and compositional variation impacted 

mineral processing. 

 

The inter-disciplinary nature of the project was difficult to take forward. During the first 

year several months were spent working at the High Temperature Technology 

department laboratories at Mintek in Johannesburg, South Africa. Thermo-gravimetric 

and smelting testwork studies were conducted to thermally characterise the ore types 

and determine the most efficient smelting recipes. In light of the complexities and 

difficulties experienced in combining the geological and metallurgical research 

deliverables, a decision was made at the end of the first year, to reduce the scope and 

focus purely on geological aspects. 

 

Active collaboration with Oriel Resources Plc. included; three, two month field seasons 

working at the Voskhod mine in Kazakhstan. Work undertaken included; core logging, 

core sampling, data entry and ore body modelling. Unlimited access to drill core, drill 

core logs, assay results and use of ore-body modelling software was provided by the 

company. This provided a wealth of sample material and information that made this 

study possible.  

 

The research focused on the geochemical variations in chromite. The processes 

responsible for the formation of podiform chromitite have been a point of long standing 

debate (e.g., Irvine, 1967; Thayer, 1969; Malpas & Strong, 1975; Lago et al., 1982; 

Johan et al., 1983; Stowe, 1987; Paktunc¸, 1990; Zhou et al., 1994, 1996). Attempts to 

draw analogies between crustal-hosted stratiform chromitite and mantle hosted 

podiform chromitite have previously proved contentious. A fundamental problem being 

that many large podiform chromitites have been mined out, leaving little in situ 

chromite. Access to an unmined podiform chromitite, Voskhod being one of the largest 

of its kind in the world, provided a unique opportunity to look at an intact podiform 

chromitite deposit. 
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Initial studies of the ore chromite geochemistry revealed that there was little variation 

with depth through, or between relative positions across the ore body. From these 

early results it was realised that detailed systematic analytical studies were required. 

Subsequent work focused on three aspects. To: 

 

 Determine the tectonic setting associated with the ore body formation. 

 Investigate the hanging wall, footwall and dunite halo adjacent to the ore body and 

assess how these lithologies had been affected by the ore forming process. 

 Identify the characteristics of, and constrain the controls on, chromitite formation to 

develop a genetic model. 

 

These objectives were achieved by studies on; 

 A dense, complete chromite core, 45 m long, selected from the most intensely 

mineralised zone at the centre of the ore body (drill core V05-13). 

 Three continuous drill core sections; two of massive chromite and one of massive 

grading into disseminated chromite, each 15 cm long. 

 Numerous small (5cm) samples selected from across the ore body, dunite halo, 

hanging wall and footwall units. 

 

A range of analytical techniques were used to collect data including, scanning 

electron microscopy, electron microprobe microscopy, laser ablation and whole rock 

geochemical analysis. 

 

This thesis presents the results of these studies, linking together the outcomes to 

form a model that explains where, how and under what geological conditions this 

giant podiform chromitite, the Voskhod deposit, formed. 
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Chapter 2: Ophiolites 

The early use and development of the terms close to 'ophiolite' was reviewed by 

Amstutz (1980). The term was initially used to describe different types of serpentinite. 

This lead to the development of the slightly more restricted model by Steinmann which 

included the collective association of peridotite, basalt and radiolarite, present in the 

Alps and Apennines, as characteristic of the deep-ocean floor. Bailey (1936) placed 

Steinmann's interpretation into the context of continental drift and orogeny. 

 

In the 1960's  an ophiolite was regarded as an on-land fragment of fossil oceanic 

lithosphere formed at the site of a palaeo-spreading centre (Hess, 1965; Gass, 1968 

and 1990). This lead to the Penrose statement of the ophiolitic stratigraphy (Anon, 

1972).  Between this and the mid 1980's the view developed that most ophiolites were 

formed in a subduction zone environment (Pearce, 2003).  However, many ophiolitic 

terranes did not have all the rock groups of the Penrose ophiolite, leading to a revised 

9-fold classification of ophiolites (Dilek, 2003) each with a type locality.  These all 

contained a simple 'trinity' of rock types - pillow lavas, gabbros and ultrabasic rocks or 

peridotites.  Ophiolites were recognised to have a wide time distribution (Table 1) 

though the concept of a Pre-Cambrian ophiolite is still debated (Klusky, 2003). Many 

ophiolites are polygenic, recording the imprint of more than one tectonic environment. 

 

Ophiolites record one or more of the progressive stages of a Wilson cycle, from early 

stage continental rifting and sea floor spreading, to late stage subduction and 

obduction events associated with ocean closure (Dilek 2003). The occurrence of 

ophiolites correlate with major orogenic events, resulting in sections of ocean crust 

being tectonically emplaced onto continental crust, or older oceanic crust by 

overthrusting or obduction at converging plate boundaries (Coleman, 1971; Dewey & 

Bird, 1971; Dewey, 1976) during the closing stage of an ocean basin. They are 

typically found situated in the fault zones of orogenic belts. Such fault zones are 

suggested to represent suture zones that link plate collision events, typically between 

continents and island arcs (Burke et al., 1977) as well as supercontinent formation 

events. 
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Event resulting in ocean 

crust formation 

Ocean crust formed Continent formed/orogenic 

event 

(Ophiolite emplacement) 

Timing of 

orogeny 

Assembly of Rodina Proterozic 1040-960 Ma Rodina ~1000 Ma 

Collision between E. and 

W. Godwana 

Proterozoic ~680 Ma Pannotia 700-600 Ma 

Rodina break-up,  

W. Gondwana assembly 

Proterozoic 820 - 740 Ma Pan-African – Brasiliano 520-500 Ma 

East Iapetus Ocean 

Closure 

Palaeozoic  ~500 Ma Caledonian – Famatinian 460-440 Ma 

Rheic Ocean Closure Palaeozoic  ~380 Ma Appalachian – Hercynian 300-270 Ma 

Pleionic Ocean closure Palaeozoic  ~408 Ma Altaid - Uralian ~240 Ma 

Alpine Orogeny Mesozoic  ~180Ma Africa-Europe ~120 Ma 

Source: Dilek, 2003b  

Table 1: Ophiolites and Associated Orogenic Events 

 

2.1 Ophiolite stratigraphy  

 

Figure 2.1.1: Ocean crust idealised stratigraphic section 

Illustration is not drawn to scale  
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An idealised ocean floor sequence determined by geophysical surveying and ocean 

drilling (Moores & Vine, 1971; Moores, 1972; Moores & Jackson, 1974), is shown in 

Figure 2.1.1; it is similar to the Penrose pseudo-stratigraphy. The interface between 

the crustal ultramafic cumulate units and mantle ultramafic tectonites (harzburgite and 

lherzolite) is termed the Petrological Moho and can be identified in an ophiolite 

stratigraphic sequence (e.g. White, 1988). An ophiolite stratigraphic sequence 

includes; pelagic sediments, basalt pillow lavas, a dolerite sheeted dyke and sill 

complex, a gabbro plutonic intrusion, mafic progressing to ultramafic cumulates and 

mantle harzburgite and/or lherzolite at the base of the sequence.  

2.1.1 Crustal units  

Pelagic sediments, formed from biogenetic marine material, accumulate in the abyssal 

plain of the deep ocean typically in a back-arc setting. If situated close to a continental 

source, a terrestrial component may also be present. The uppermost igneous unit is 

typically basalt. Pillow lavas form when basaltic lava flows are expelled onto the ocean 

floor. They are sack like bodies typically 0.2 -2 m in diameter, separated by rapidly 

cooled, fine-grained rinds (Benson, 1926; Steinmann, 1927). Sheeted dykes and sill 

complexes of dolerite underlie the pillow lava unit. The dykes and sills are feeder 

conduits, responsible for transporting magma to the surface (e.g. Gass, 1968; Moores, 

1969). Within the sequence, gabbro forms massive, isotropic, plutonic intrusions (non-

cumulate), where minerals have crystallised at the periphery of the magma chamber 

(e.g. Maxwell, 1969; Marsh, 1989). Additionally, gabbroic horizons, possessing 

cumulus textures have been reported towards the top of the crustal ultramafics (e.g. 

Church & Stevens, 1970).  

 

Ultramafic rock types are present towards the base of the crustal (e.g. Maxwell, 1969; 

Moores, 1969; Anon, 1972), these include; clinopyroxenite, troctolite, wehrlite and 

dunite. The mineral compositions and relative abundances of these rock types (Figure 

2.1.1) are determined by the tectonic environment and the parent magma chemistries 

associated with their formation (see Section 2.2). Dunite is most abundant at the 

Petrological Moho, at the base of the crust. Lenses and discontinuous layers of dunite, 

are frequently observed parallel to or cross cutting the foliation of the harzburgite 

mantle rock. 
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2.1.2 Mantle units 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.2: Pyroxenites, peridotites and dunite compositions. 

Adapted from Bodinier & Godard 2004 

 

The classification of mantle peridotites, harzburgite and lherzolite, is based on mineral 

proportions of olivine, orthopyroxene and clinopyroxene, Figure 2.1.2. Amphibole is 

present in some mantle rocks (typically <10 % of the rock composition) formed by the 

hydration of the primary mineral phase clinopyroxene. 

 

Mantle harzburgite is a refractory, residual rock that stratigraphically overlies fertile 

mantle lherzolite. It forms by convection of the upper mantle, which causes lherzolite 

to rise and, by adiabatic decompression, partially melt. The partial melting process 

preferentially extracts clinopyroxene forming a residue depleted in clinopyroxene. 

Increased degrees of partial melting and/or prolonged periods of mantle melting, lead 

to a progressively more depleted residue, eventually forming a clinopyroxene-poor 

harzburgite or in extreme cases, dunite. 
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Lherzolite is most commonly present stratigraphically below harzburgite. However, 

lherzolite may also form by the ‘refertilisation’ of harzburgite (Ringwood, 1982; 1986; 

Ringwood & Irifune, 1988), a process where upwelling melt, impregnates residual 

mantle harzburgite crystallising clinopyroxene, with or without orthopyroxene and 

plagioclase, changing the mineralogical composition (Godard et al., 2000; Takazawa 

et al., 2003). When lherzolite is created in this way it typically forms narrow bands 

several centimetres wide, with diffuse boundaries grading into the host harzburgite 

(Lippard et al., 1986).  

 

2.1.3 Chromite in the ophiolite sequence 

Two types of chromite are associated with peridotite rocks: 

  

Accessory chromite, where grains comprise <3 % of the rock by volume, is commonly 

associated with crustal dunite and the mantle rocks, harzburgite and lherzolite.   

Concentrated accumulations of chromite; these are found in almost all ophiolites, 

examples include; the Thetford Mines ophiolite complex in the southern Quebec 

Appalachians, the Loubusa ophiolite in Tibet and the Tari-Misaka Ultramafic Complex, 

south west Japan, numerous others have been documented in Cyprus, Oman, Turkey, 

Philippines, China, New Caledonia, Cuba, (e.g. Stowe, 1994).  

 

Chromitite refers to a rock that is dominated by chromite co-existing with olivine, with 

or without clinopyroxene, orthopyroxene and plagioclase. When chromite 

concentrations form in the mantle units of an ophiolite as pod-, sack-, lensoid- or disc- 

shaped masses, they are termed podiform chromitite. Podiform chromitite is a 

characteristic feature of harzburgite mantle sequences, but are less common in 

lherzolite mantle sequences (Roberts & Neary, 1993). Laterally extensive, planar 

layers of chromitite may form in the lowermost crustal layers of some ophiolites, 

although generally these are not referred to as podiform chromitite.  

 

Chromite and chromitite genesis is discuss further in Chapter 3. 
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2.2 Ophiolite formation and emplacement 

 

Figure 2.2.1: A schematic detailing the differing melt-types and the tectonic 

settings associated with their formation.   

Adapted from R. Lilly, 2006 

 

The sequential events resulting in ophiolite formation are; i) ocean crust genesis, ii) 

slab detachment within the ocean basin, iii) plate collision and iv) emplacement onto 

older, more dense crust, can occur in a short time frame of 2 Ma (Hacker et al., 1996). 

Young, hot, thin (3.5 km thick) ocean crust is buoyant, so resists subduction and is 

obducted (Dewey, 1976). Emplacement occurs most readily at a convergent plate 

system boundary e.g. a supra-subduction zone setting. For an ophiolite to form from 

mid-ocean ridge-type crust a divergent plate system must be reversed to a convergent 

system while the ocean crust is still young and buoyant. Buoyancy analysis of 

subducting lithosphere suggests that oceanic lithosphere 10 Ma or older has an 

increased susceptibility to deep subduction (Cloos, 1993). This provides an 

explanation for the lack of MOR (normal oceanic lithosphere) preserved in the 

geological record; such lithosphere would have undergone deep subduction and been 

reincorporated into the mantle (Coleman, 1977). 

 

Older basement material, either continental margin or older oceanic crust, is 

comprised of platform sediments and carbonate sequences. The process of 

emplacement results in the formation of characteristic features including; a 
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metamorphic sole, nappes (intact thrust sheets) and/or a mélange (a complex tectonic 

mix of both continental and oceanic derived rock fragments) (Moores et al., 2000).  

 

2.2.1 Tectonic settings: Mantle and melt geochemistry 

Ocean crust forms in extension-related tectonic settings, sites include; mid-ocean 

ridge (MOR), e.g. the Mid-Atlantic Ridge, incipient rifts e.g. the Red Sea (Bischoff, 

1969) and island arc settings; back arc basins e.g. East Scotia back-arc basin (Dilek, 

2003a), forearc basins e.g. the Izu-Bonin-Mariana forearc, Western Philippine Basin 

(Parkinson & Pearce, 1998; Pearce et al., 2000; Ishiwatari et al., 2003) and incipient 

arcs.  

 

Differences between tectonic settings affect the mantle conditions and subsequently 

the melts produced. These differences manifest as geochemical signatures that can 

be identified in lavas as well as mantle rocks where evidence of depletion or 

enrichment, owing to interaction between mantle and melts, may be recorded.  

 

 Mid Ocean 

Ridge 

Fore-Arc Island-Arc Back-Arc 

Environmental 

Setting 

MOR Sea floor 

spreading 

Supra-

Subduction 

Zone 

Supra-

Subduction 

Zone 

Back-arc 

spreading 

Nature of Mantle Fertile Depleted Depleted Depleted 

Depth of melting Shallow Shallow Deep  

Presence of 

water 

Anhydrous Hydrous Hydrous  

Degree of 

Partial Melting 

Low-Moderate High Moderate-High  

Melt-type Mid Ocean 

Ridge Basalt 

(MORB) 

Boninite (BON) Island Arc 

Tholeiite (IAT) 

Island Arc 

Tholeiite (IAT) 

Element 

Signature 

Depleted: LREE Enriched: Mg.  

Depleted: REE 

and HFSE  

Enriched: K, Ba, 

Sr, Th and 

LREE 

Depleted: Ta 

and Nb  

 
Source: Lilly, 2006 

Table 2: Ocean Basin Tectonic Settings and Characteristics of Melts Generated 

 

The initiation of a continental plate break-up is marked by the formation of an incipient 

rift, the resulting plate divergence marks the boundary between two continents. As rift 

extension progresses a major ocean basin forms that has a central submarine ridge 
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system, a MOR. The fresh basalts erupted onto the seafloor associated with these 

systems are termed mid-ocean ridge basalts (MORB).  

 

At MOR localities the mantle source is fertile Iherzolite containing 0.01-0.04 wt% water 

(Pearce et al., 1992). The mantle is subject to low-moderate degrees of partial melting 

(<25%) under anhydrous and reducing conditions, typically ±1 fO2 of the quartz-

fayaltie-magnetite (QFM) boundary (Haggerty, 1976; Christie et al., 1986; Carmichael 

& Ghiorso, 1986). A MORB melt containing ~0.33 wt% water (Jambon, 1994) forms 

and a moderately depleted mantle residue of either, lherzolite or clinopyroxene-rich 

harzburgite. 

 

In contrast, a supra-subduction zone (SSZ) forms when two ocean plates converge. 

Initial subduction-related magmatism occurs at a localised spreading centre forming a 

forearc (Pearce et al., 1984). Subduction of the downward moving slab introduces 

water, at depth into the mantle wedge. This enriches the mantle source with up to 0.5 

wt% water (Pearce et al., 1992). Water is present either as hydrous minerals (e.g. the 

decomposition of amphibole) or fluids that flush through the melting zone. Water 

promotes hydrous melting of the mantle wedge by lowering the solidus and increasing 

oxidising conditions (Kushiro, 1990). Consequently, higher degrees of melting may be 

achieved, up to 30% (Jacques & Green, 1980). Island arc tholeiite (IAT) forms when 

the mantle wedge is fertile or boninite (BON) when the mantle source is depleted and 

a mantle residue of depleted harzburgite is remnant (Dilek, 2003b).  

 

The development of a SSZ and associated forearc magmatism is the first stage in the 

formation of an intra-oceanic arc. As the tectonic regime evolves a complex series of 

arc terrains, separated by inter-arc basins form (Figure 2.2.1). The initial SSZ fore-arc 

setting evolves to form an island arc and with further maturation a back-arc. Melts with 

distinctly different chemical compositions are associated with each of the three 

settings (Table 2). Thus, the composition of an igneous rock provides information 

relating to the tectonic setting it formed in. 

 

The concept to distinguish between ophiolites started with the work of Rocci et al. 

(1975) and was based on studies of the Tethyan ophiolites. This work was developed 

further by Pearce et al. (1984). Their findings showed that geochemical characteristics 

and crystallisation sequence differences could be used to distinguish between 

ophiolite types and interpret formation histories. A comparison of the mineralogical 

compositions of SSZ and MOR ophiolite mantle sequences show that SSZ ophiolites 
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more commonly possess podiform chromite, with economic sized chromite deposits 

only present in SSZ-ophiolites. In terms of the crustal sequences, clinopyroxenite and 

wehrlite are present in the ultramafic cumulates of SSZ-ophiolites, these units 

crystallised out of melts derived from depleted (clinopyroxene-poor) residual mantle. In 

contrast, troctolite and gabbro units are present in the lower crustal cumulates of MOR 

ophiolites crystallising from melts derived from fertile mantle comprised of lherzolite 

and clinopyroxene-rich harzburgite. The differences between the cumulate sequences 

result from the different melt source mantle compositions.  

 

In addition to the crustal cumulates compositions, the order of crystallisation is also an 

indicator of the melt composition and tectonic setting associated with melt genesis. For 

boninites the order is olivine – orthopyroxene – clinopyroxene, for island arc tholeiites: 

olivine – clinopyroxene – plagioclase (Pearce et al., 1984; Cameron, 1985) and for 

MORB: olivine – plagioclase – clinopyroxene (Bryan, 1983; Pearce et al., 1984) . 

Pearce et al., (1984) proposed that the differences in crystallisation sequences and 

melt compositions was a reflection of the higher CaO/Al2O3 ratios of SSZ melts 

(boninites and island-arc tholeiites) than of primary melts (MORB) formed in MOR 

settings. This hypothesis is supported by the relative abundance of Ca-bearing 

clinopyroxene present in the fertile mantle units observed in MOR-ophiolites. 

 

Although the differences between MOR- and SSZ-ophiolite mantle control the melt 

compositions, changes to the pressure, temperature and oxygen fugacity (fO2) 

conditions during melting also have an effect. Melts formed under high pressure and 

temperature conditions (e.g. boninites) have greater abundances of Mg, Fe and Ti in 

comparison to lower pressure and temperature melts (primary MORB melts) that are 

higher in Si and Al (Danyushevsky et al., 1987; Sobolev & Shimizu, 1993; Kamenetsky 

et al., 2001). 

 

2.2.1.1 Mid-Ocean Ridge Basalt (MORB) 

MORB lavas are the product of the low-moderate partial melting of an upwelling fertile, 

asthenospheric mantle source, the result of adiabatic decompression (e.g. Cawthorn, 

1975). Their chemistry reflects the anhydrous melting conditions present in a MOR 

setting (Green, 1973).  

 

Oceanic basalts include Normal-MORB (NMORB), Enriched-MORB (E-MORB), 

Ocean Island Basalt (OIB) and Large Igneous Province (LIP) type lavas. The 
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differences between these lavas are a function of differing mantle compositions, 

melting conditions (e.g. pressure, temperature and fO2), spreading rates and/or 

fractional crystallisation (Stracke & Bourdon, 2009). MORB is predominantly tholeiitic 

in composition (e.g. Engel et al., 1965; Melson et al., 1976). The geochemical data for 

2,499 MOR samples was compiled and interrogated by Metcalf and Shervais (2008). 

They showed that MORB compositions have a restricted range in major element 

composition characterised by; a limited range, low silica content 48-52 wt% SiO2, 

moderate to high TiO2 contents of ~0.5 wt% up to 3.6 wt% (typically greater than 1.2 

wt% TiO2), Al2O3 ~15.0 wt%, FeOT ~10.0 wt%, CaO ~11.3 wt% and Na2O ~2.6 wt% 

(Metcalf & Shervais, 2008).  

 

The N-MORB mantle source is depleted in incompatible trace elements (i.e. Cs, Ba, 

Th, Ta, Nb, K, Pb, Sr, P, Zr, Hf, Ti, Y, REE) relative to the estimated primitive-mantle 

compositions. This depleted source is referred to as depleted MORB mantle (DMM) 

(Hofmann, 1988; Sun & McDonough, 1989)  and is present in the shallow 

asthenosphere. In comparison, enriched basalt compositions (E-MORB < LIP < OIB) 

are elevated in incompatible trace elements (Schilling et al., 1983, 1985; le Roex, 

1987; Sun & McDonough, 1989) (Chapter 5, Section 5.6).  

 

A-typical MOR spreading centre activity has produced more evolved basalt 

compositions from MORB parent magmas, these have been interpreted to result from 

extreme fractionation e.g. Pacific-Antarctic Ridge (Stoffers et al., 2002). Although a 

MOR setting is the principal locality where MORB forms, MORB lava compositions 

may be detected in back-arc basin lavas when back-arc spreading is sufficiently 

extensive to access mantle that has not been contaminated by subducted oceanic 

lithosphere (Pearce et al., 1984). 

 

2.2.1.2 Boninite 

Boninites were first classified in Western Pacific intra-oceanic arc rocks (Sharaskin et 

al., 1980; Crawford et al., 1981; Natland, 1981; Natland & Tarney, 1981; Hickey & 

Frey, 1982: Umino, 1986; Bloomer & Hawkins, 1987; Stern & Bloomer, 1992) and 

have since been identified in a number of ophiolites located within mountain belts at a 

number of worldwide localities including; the Tethyan ophiolites (Pearce et al., 1984, 

2000; Thy, 1984; Cameron, 1985), the Appalachian ophiolites (Crawford & Cameron, 

1985; Coish, 1989) and the Ural ophiolite massifs (Kuz’min & Kabanova, 1991; 

Spadea et al., 1998; Spadea & Scarrow, 2000; Brown et al., 2006). This melt-type is 
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associated with the inception of new subduction systems (e.g. Crawford et al., 1981, 

1986, 1997; van der Laan et al., 1989; Stern & Bloomer, 1992; Hawkins & Castillo, 

1998; Flower, 2003; Flower & Dilek, 2003) and is found exclusively in arc-forearc 

terrains (e.g. Reagan & Maijer, 1984; Bloomer et al., 1994).  

 

Geochemically, boninites have a primitive compositions that are characterised by; 

high-MgO, low-TiO2 and low alkali contents, relative to basalts and andesites that 

possess equivalent SiO2 contents, as well as, low high-field strength elements (HFSE) 

relative to large ion lithophile elements (LILE) K, Rb, Sr and Ba (Meijer, 1980; Natland 

& Tarney, 1981; Crawford et al., 1989). Their geochemically primitive nature results 

from high degrees of partial melting of a depleted source and the characteristic high 

LILE/HFSE ratios observed indicate that the rocks are generated from depleted mantle 

wedge material, influenced by the addition of a fluid component. Furthermore, 

boninites show evidence for being high temperature magmas >1300-1350°C, as 

inferred from petrochemical observations (Duncan & Green, 1987; Crawford et al., 

1989).  

 

The evolution of these magmatic products has been debated. One hypothesis is that 

boninites are the product of reaction between ascending basaltic melts, formed from 

melting of the mantle wedge, and refractory residual mantle (e.g. Kelemen, 1995; 

Zhou et al., 1996). Parkinson & Pearce (1998) proposed that this model could explain 

the ultra-refractory characteristics of forearc associated peridotites. An alternative 

theory put forward by Macpherson & Hall (2001) interpreted boninites to represent 

magmas formed by the interaction of thermally anomalous mantle plumes associated 

with active, hydrous subduction systems (see also, Deschamps & Lallemand, 2003). 

The modification of the upper mantle mineralogy and geochemistry, resulting from 

melt-rock interaction between percolating magmas and mantle wall rock, has been 

documented in numerous studies (Fisk, 1986; Kelemen, 1990; Kelemen et al., 1995). 

The studies show that melt-rock interaction results in the continual mineralogical and 

geochemical modification of both the reacting melt and the wall rock, where basaltic 

magma alters to a boninite chemistry and the peridotite wall rock  to dunite, the result 

of pyroxene dissolution (Zhou & Robinson, 1994). 

 

2.2.1.3 Island-Arc Tholeiite (IAT) and Calc-Alkaline Basalt (CAB) 

Island arc tholeiite (IAT) lavas form during the early stages in arc development. Island 

arc tholeiite rocks are chemically analogous to, but also different from, calc-alkaline 
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basalt  (CAB) rocks (Jakes & Gill, 1970). Calc-alkaline basalts are associated with 

more mature arc systems and also back-arc basin (BAB) systems. 

 

IAT lavas mark the evolution of a SSZ, from the initial fore-arc setting, to that of an 

island arc. IAT melts are generated at depth, from moderate-high degrees of partial 

melting of a depleted mantle source. Melting is enhanced by the hydrous conditions 

associated with SSZ settings. They are found in intra-oceanic, island arc systems e.g. 

the Mariana arc, as well as in association with oceanic plateaus e.g. the Caribbean 

island arc tholeiites. Geochemically these rocks produce flat to light rare earth element 

(LREE) enriched rare earth element (REE) patterns. Comparatively, IATs are more 

LREE depleted than CABs, have a comparatively lower silica mode, increased iron 

content and higher Na2O/K2O ratios. Negative Nb and Ta anomalies are associated 

with both lava types. 

 

2.2.2 Mantle peridotite types 

Aside from the melt chemistry, melt-rock reaction is also a governed by the mantle 

peridotite geochemistry. Some types of peridotite form in, or are influenced by, similar 

tectonic settings e.g. abyssal peridotite and the mantle section of ophiolites. In such 

cases it is the locality of the peridotite exposure that distinguishes the peridotite-type 

characterisation.  

 

2.2.2.1 Abyssal peridotite 

Abyssal peridotite is the residual product of adiabatic decompression melting of a 

fertile mantle source at a MOR typically found tectonically exposed along fracture 

zones, within transforms and locally on rift valley floors at some slow spreading ridges 

(e.g. Dick & Bullen, 1984). Studies by Johnson et al., (1990) demonstrate that abyssal 

peridotite is the residue of fractional melting of a fertile mantle source. The more 

depleted the peridotite (the greater the extent of melting), the greater the MgO content 

will be (e.g. Frey et al., 1985) as MgO increases proportionately with the olivine 

content. Hellebrand et al., (2001) observed that HREE in abyssal clinopyroxenes 

correlated with the Cr/(Cr+Al) ratio of co-existing spinel, reflecting the degree of partial 

melting of the residual peridotite. 

 

Abyssal peridotite that is subsequently influenced by a SSZ tectonic setting undergoes 

further melt extraction episodes. The melts ascend and are subsequently expelled to 
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form an island arc. The extensively depleted abyssal peridotite formed at such a 

setting is classified as forearc peridotite (Ishii et al., 1992; Nui et al., 1997 and 2001; 

Nui, 2004; Monsef et al, 2010).  

 

2.2.2.2 Forearc Peridotite 

Forearc peridotite is characterised by high degrees of partial melting and is more 

depleted than abyssal peridotite. The degree of mantle melting is greater in SSZ 

settings, as dewatering of the downward subducting slab creates hydrous melts that 

lower the mantle solidus (Pearce & Parkinson, 1993).  

 

Chromite in forearc peridotite has a geochemistry where the Cr# (Cr# =[Cr/(Cr+Al)]) is 

between 0.3 and 0.6 and TiO2 contents are low (<0.13 wt%) (Monsef et al., 2010). 

These chemical characteristics typify residual peridotite formed from >20% partial 

melting such as that exposed in depleted residual mantle and ophiolites e.g. the Izu-

Ogasawara-Mariana forearc (Ishii et al., 1992), South Sandwich arc-basin system 

(Pearce et al., 2000), the Mariana back-arc basin (O’Hara et al., 2002), the Izu-Bonin-

Mariana forearc (Parkinson & Pearce, 1998) and the Oman ophiolites (Tamura & Arai, 

2006).  

 

It should be noted that in some exceptional cases depleted peridotite may also form in 

MOR settings where MORB melt extraction has been extensive e.g. the Fifteen-

Twenty Fracture Zone, the Mid-Atlantic Ridge, (Godard et al., 2008) and the East 

Pacific Rise (Niu & Hekinian, 1997). To fully appreciate the tectonic setting associated 

with the formation of depleted peridotite investigation into REE and trace element 

patterns should be considered in conjunction with whole rock major and minor element 

data (Monsef et al., 2010). 

 

2.2.3 Ophiolite mantle peridotite 

Exposed mantle peridotite units located at the base of an ophiolite sequence may be 

studied to determine the melting history and assist in distinguishing the tectonic setting 

associated with the ophiolite genesis and emplacement. Studies of mantle peridotites, 

cross-referenced with co-genetic crustal lavas, can be used to assess; i) the mantle 

potential temperature variation, ii) plate spreading rate variation and iii) mantle source 

compositional variation. An appreciation of these factors facilitates the interpretation 
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of; the extent of mantle melting, the MORB composition and the rate of ocean crust 

production (Nui, 2004 and references therein). 

 

2.2.4 Limitations relating mantle peridotites and crustal lavas 

Studying residual peridotite and genetically associated crustal lava relationships to 

interpreting geodynamic settings has limitations. Dick et al. (1984) demonstrated a 

qualitative complimentary relationship between abyssal peridotites and spatially 

associated MORB in terms of their associated varying extents of melting. However, in 

terms of quantitative melting models this relationship is difficult to constrain. Elthon 

(1992) reported that the bulk chemical compositions of abyssal peridotites are not 

consistent with residues from MORB formation, formed by either batch or fractional 

melting processes. Elthon (1992) proposed that the chemical trends of abyssal 

peridotites result predominantly from refertilisation processes rather than partial 

melting processes. Nui et al. (1997) undertook studies to quantitatively reconcile 

melting and crustal accretion processes at mid-ocean ridge settings, by outlining the 

significance of olivine accumulation in the mantle. Their research found that olivine 

accumulation in the mantle impacts the modal mineral proportions of abyssal 

peridotites. This distorts the resulting bulk chemical compositions, subsequently 

impacting the interpretation of mantle melting processes. 

 

In addition to the first order direct relationship between abyssal peridotite and MORB 

composition, second order aspects of melt generation and crustal accretion also 

require consideration. Second order aspects (termed as mantle melting dynamics, 

(Nui et al., 1997) include the initial and final depths of melting, the melting rate, the 

extent to which melting is fractional or batch, extent and depth of melt-rock interaction 

and modal and chemical source variation (Klein & Langmuir, 1987; Johnson et al., 

1990 and Kelemen et al., 1995; Nui et al., 1997). A competent understanding of the 

factors that influence mantle melting dynamics is required to be able to correctly 

interpret the tectonic setting. 

 

The compositions of mineral phases present in peridotite have been used to compare 

and contrast peridotites from different tectonic settings (e.g. Dick & Bullen, 1984; 

Bonatti & Michael, 1989). Geochemical parameters, e.g. the Cr# of chromite, Fo of 

olivine and the Al2O3 content of orthopyroxene, can be used to assess differences in 

the modal and bulk composition between peridotites. It has been shown that with 

progressive change in tectonic environment, from passive continental margins, to mid-
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ocean ridge settings, to mature oceans, to supra-subduction zone settings, the degree 

of peridotite depletion increases respectively. As the degree of depletion increases, 

compositional changes are observed in the peridotite mineralogy; i) the Cr# of 

chromite increases, ii) the modal content of clinopyroxene decreases, iii) the bulk 

content of Al2O3 decreases and MgO increases, iv) the Al2O3 content of orthopyroxene 

decreases yet the MgO content increases and v) the Fo of olivine increases. 

Subsequently, these compositional variations are indicators providing information 

about the tectonic setting to have influenced peridotite formation (Pearce et al., 1984; 

Dick & Bullen, 1984; Bonatti & Michael, 1989). 

 

2.3 Geochemistry: A tool for tectonic reconstruction 

Ophiolites retain mineralogical, geochemical and structural characteristics that enable 

the reconstruction and interpretation of the tectonic setting that was in effect during 

crust formation up to and including the point of emplacement onto the continent (e.g. 

Pearce, 1980) and it is the tectonic setting that governs the degree of  mantle melting. 

Studies have shown that more refractory and chemically-depleted the mantle reflect 

higher degrees of partial melting and melt extraction (Goddard et al., 1995; 2000; 

Vernières et al., 1997; Gruau et al., 1998; Girardeau et al., 2002; Le Mee et al., 2004; 

Monnier et al., 2006).  

 

Reaction between residual mantle and upwelling melts, termed melt-rock reaction, 

compartmentally refertilises the mantle (Elthon, 1992; Niu & Hekinian, 1997; Niu, 

2004). The geochemistry of residual mantle peridotite, fertilised peridotite and, if 

present, the associated crustal lavas, can be used together to determine the tectonic 

model associated with the formation of the ophiolite complex.  

 

The extent of melt-mantle interaction can be investigated, by studies of chromite 

derived from mantle peridotite. The composition of chromite and modal proportions of 

mineral phases olivine, clinopyroxene and orthopyroxene in the mantle peridotite, 

provide evidence of the mantle melting history and interaction with  upwelling (deeper 

sourced) melts (e.g. Kelemen et al., 1995; Edwards & Malpas, 1996; Edwards et al, 

1996; Nui et al., 1997; Pearce et al., 2000). 
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2.3.1 Monogenetic and polygenetic tectonic settings 

When the composition of the crustal and mantle units of an ophiolite reflect having 

formed in multiple, different tectonic environments, it is said to have formed in a 

polygenetic tectonic setting (e.g. Meffre et al., 1996; Portnyagin et al., 1997; Parkinson 

& Pearce, 1998; Pearce et al., 2000; Flower, 2003; Dare et al., 2008). The implication 

being that the mantle residue and melt responsible for refertilisation could be derived 

from tectonically different settings. The alternative is a monogenetic setting, which 

defines a tectonic setting where the mantle lithosphere and interacting melt are 

derived from the same tectonic setting e.g. Hess Deep where residual MOR mantle 

harzburgite reacts with MOR melt creating dunite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.1: An annotated diagram of the Δ log fO2 against Cr#. 

Plot taken from the work of Dare et al., 2008 showing monogenetic and polygenetic reaction 

trend orientations between harzburgite and dunite pairs and discrimination boundaries for MOR 

and SSZ harzburgite and MOR and SSZ dunite. Cogenetic harzburgite-dunite pairs from mid-

ocean ridge (MOR) and supra-subduction zone (SSZ) sites. MOR-SSZ discrimination 

boundaries for dunites (solid line) and harzburgites (dashed line) together with lava spinel fields 

for MORB, IAT, CAB and BON are shown. The vector for melt-rock reaction is marked by 

arrows between harzburgite-dunite pairs, for monogenetic settings arrows (black) are oblique 

to the peridotite discrimination boundaries, whereas for polygenetic settings arrows (blue) are 

sub-parallel to the boundaries. Sample notations for MOR sites: M = MAR (Mid-Atlantic Ridge), 

H = Hess Deep, A = Azores and for SSZ sites: SF/A = South Sandwich Forearc and CF/A = 

Conical  Forearc Seamount. The SF/A and CF/A pairs formed diagonal interpreted to represent 

residual mantle (e.g. MOR or back-arc basin [BAB]) interacting with SSZ melts: the CF/A with a 

boninitic melt and SF/A with an IAT melt. Data sources: SF/A (Pearce et al., 2000 and Dare et 

al., 2008); CF/A (Parkinson & Pearce, 1998). 
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2.3.1.1 Melt-rock reaction within monogenetic tectonic settings 

Dare et al. (2008) studied dunite-harzburgite pairs collected from a variety of 

monogenetic and polygenetic tectonic settings. Their investigations focused on the 

relationship between the Cr# (where Cr# = [Cr/(Cr+Al)]) of chromite present within 

each sample and the oxygen fugacity (Δ log fO2), for each dunite-harzburgite pair 

(Figure 2.3.1). The monogenetic, mid-ocean ridge (MOR), sample pairs source 

localities included: the Mid-Atlantic Ridge (MAR), a slow spreading rate site; Azores, a 

plume influenced site and Hess Deep, a fast spreading rate site. Their findings 

showed that chromites from MOR dunites (the melt-mantle reaction product) typically 

have elevated fO2 compared to the MOR harzburgite (the residual) counterpart. This 

was interpreted to be the result of the mantle residue and interacting melt being under 

anhydrous conditions, where comparatively Fe3+ would be depleted in the residue, yet 

relatively enriched in the melt. The Fe3+ component of chromite is a parameter 

involved in the calculation of Δ log fO2 (Wood & Virgo, 1989; Ballhaus et al., 1991), the 

Cr# of chromite within a sample is intrinsically linked to the fO2 of a sample (Parkinson 

& Pearce, 1998; Parkinson & Arculus, 1999; Pearce et al., 2000). 

 

The vector drawn between the harzburgite and dunite pair end members for each 

sample set defines the melt-rock reaction trend (see the black arrows labelled M,H 

and A annotated on Figure 2.3.1). Melt-rock reaction between MOR harzburgite and 

MOR melt results in a greater increase in fO2 than in Cr# (Dare et al., 2008). The 

vector trends produced are oblique to the fO2 –dependent part of the discrimination 

boundary (the horizontal). This implies that the extent of melt-rock reaction is an 

important variable when determining a tectonic setting. Furthermore, the oblique 

orientation of the vector has been interpreted to reflect the extent of magmatic 

differentiation of the melt. The affect of magmatic differentiation on the composition of 

peridotite is an important consideration when interpreting a tectonic setting 

(Sakuyama, 1978; Thy, 1983; Arai, 1992; Dare et al., 2008). 

 

2.3.1.2 Melt-rock reaction within polygenetic tectonic settings 

A polygenetic tectonic setting is one where the mantle residue preserves a tectonic 

signature different to that of the interacting melt. The most common type forms by the 

interaction of MOR lithosphere with SSZ melts (published examples are the Conical 

Forearc Seamount in the Mariana forearc (e.g. Ishii et al., 1992; Parkinson & Pearce, 

1998; Pearce et al., 2000; Dare et al., 2008) and the South Sandwich Forearc (Pearce 
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et al., 2000; Dare et al., 2008). Harzburgite-dunite pairs from polygenetic MOR-SSZ 

settings form diagonal trends on the Δ log fO2 – Cr# diagram, (see the blue arrows 

labelled SF/A and CF/A on Figure 2.3.1). Both the Cr# and fO2 values of chromite 

increase from harzburgite to dunite. This reaction trend has been interpreted by the 

authors cited above as consistent with pre-existing residual mantle (that possess lower 

Cr# and fO2 values such as those associated with MOR or back-arc basin [BAB] 

settings) interacting with SSZ melts (that possess higher Cr# and fO2 values owing to 

the hydrous nature of the SSZ melts).  

 

2.4 Ophiolite types 

Significant differences exist between ophiolites, even between those that occur in the 

same orogenic belt. Distinctive differences noted include; internal structures and 

micro-structures, chemical signatures and style of formation (Nicolas, 1989; Dilek et 

al., 2000).  

 

The diversity in terms of ophiolite emplacement mechanisms and tectonic origins 

(Wakabayashi & Dilek, 2003) has resulted in the creation of type-subcategories to 

distinguish between ophiolites. Five ophiolite sub-types have been identified; Ligurian, 

Mediterranean, Sierran, Franciscan and Caribbean.  

 Ligurian-type ophiolites (Rampone & Piccardo, 2000) are relics of continental rift 

basins and early-stage sea-floor spreading, the associated crustal units possess a 

mid-ocean ridge basalt (MORB) affinity. The mantle section is fertile lherzolite of 

exhumed subcontinental mantle lithosphere derived from an ocean-continent 

transition zone (Dilek & Flower, 2003; Müntener & Piccardo, 2000).  

 Mediterranean-type ophiolites are derived from protoarc–forearc–backarc 

assemblages and possess supra-subduction zone affinities.  

 Sierran-type ophiolites evolve from poly-genetic igneous histories associated with 

the development of ocean arc terrains resulting from multiple episodes of 

magmatism, rifting and tectonic accretion.  

 Franciscan-type ophiolites are situated in ancient accretionary complexes, these 

are typically associated with mélanges and high-pressure metamorphic rocks. 

Genetic and temporal relationships between the melt and residua are not 

observed in the ophiolite stratigraphy, diverse chemical affinities, however, are 

noted.  

 Caribbean-type (Dilek, 2003a) ophiolites are characterised by tectonically 

emplaced fragments of large igneous province generated oceanic crust. 
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2.5 Ophiolites of the Urals  

The present day Ural mountains (the Uralides) are orientated approximately north-

south and extend for a distance of 2,500 km from the islands of Novaya Zemlya in the 

Arctic Ocean (66N) to the latitude of the Caspian Sea (48N) (Savelieva & Nesbitt, 

1997; Brown et al., 2002, 2006; Spadea et al., 2003). The Uralides are an orogenic 

fold-and-thrust belt that mark the Late Palaeozoic arc-continent collision event along 

the Eastern European palaeomargin of the Baltica plate (Brown et al., 1998, 2002; 

Spadea et al., 2003). The orogenic belt hosts in excess of 150 ophiolite masses 

derived from differing tectonic settings as identified by the geochemical variations 

between the oceanic lithosphere mantle sections (Savelieva & Nesbitt, 1996; ). The 

majority of ocean crust fragments that constitute the Uralide ophiolites formed during 

the Palaeozoic in the Uralian Ocean basin (Urals Papers).  

 

Given the vast length, the Uralides are divided geographically into the; Polar, CIS-

Polar, North, Middle and South Urals (Chapter 4, Section 4.1, Figure 4.1.1). The 

Uralide ophiolites are not identical in terms of geochemistry, but record key stages of 

the Uralian Ocean basin evolution. Initiation of the ocean basin closure during the 

Silurian-Devonian led to the formation of island arcs; the Magnitogorsk island arc 

(MIA) in the South Urals and the Tagil-Schych’ya and Voykar island arcs of the Middle 

to Polar Urals region  (Yazeva & Bochkarev, 1996; Bosch et al., 1997; Saveliev et al., 

1999; Savelieva et al., 2002; Herrington et al., 2005).  

 

Island-arc – continent (East European craton) collision during the Late Devonian – 

Early Carboniferous (Spadea & D’Antonio, 2006) caused the closure of back-arc-

basins and emplacement of ophiolites along the formed suture zones. During the late 

Permian continent – continent collision (the Uralide Orogeny that occurred between 

Baltica – Eastern Europe and Kazakhstan – Siberia) the Uralian Ocean closed (Brown 

et al., 1998; Condie & Sloan 1998) and along with it the physical divide between 

Europe and Asia. This event contributed to the formation of the supercontinent 

Pangea. 

 

Both Ligurian- and Mediterranean-type ophiolites are observed in the Uralides.  

 

The Magnitogorsk arc is an intra-oceanic arc sequence, formed during the Middle to 

Late Devonian. Boninite and tholeiite magmas erupted in the forearc region, and 

younger (relatively) tholeiite to calc-alkaline volcanic rocks are found associated with 
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the mature arc (Seravkin et al;. 1992; Brown & Spadea, 1998; Spadea er al., 2002; 

Herrington et al; 2005). These volcanic units form the basement of the Magnitogorsk 

arc and are overlain by volcaniclastic sediments in the forearc basin, reaching 

thicknesses as great as 5,000 m (Brown et al., 2001). Located to the centre-west of 

the Magnitogorsk Zone in the South Urals, the Nurali, Mindyak and Kraka massifs are 

Ligurian-type ophiolites, dominated by fertile mantle lherzolite widely considered to 

have formed during early stage continental rifting and subsequent sea-floor spreading 

(Savelieva et al., 1997; Spadea et al., 2003). Further south of the Magnitogorsk zone 

are the Kempirsai and Khabarny massifs. These are Mediterranean-type ophiolites 

and possess mantle sequences comprised of depleted mantle harzburgite. Both the 

Kempirsai and Khabarny ophiolite massifs formed in association with the MIA 

accretionary complex, in a fore-arc – island-arc, supra-subduction zone setting 

(Savelieva et al., 1997; Spadea & Scarrow., 2000 and Herrington et al., 2005; Brown 

et al., 2006).  

 

The Middle, North and CIS-Polar and Polar Urals host the Tagil zone (of the Tagil 

Arc). It is considered to represent an accreted intraoceanic arc and is comprised 

predominantly of Silurian andesites to the west and Early Devonian volcaniclastic 

rocks to the east. These units are overlain by 2,000m of Early and Middle Devonian 

limestone that, to the east, is inter-layered with calc-alkaline volcanics. 

 

In the north, in the Polar Urals are the Voykar and Raiiz ophiolite massifs. These are 

also Mediterranean-type ophiolites and are considered the northern equivalents of the 

massifs such as Kempirsai and Khabarny. However, these ophiolites formed in the 

Tagil Arc, fore-arc – island-arc, supra-subduction zone setting (Savelieva et al., 1997; 

Spadea & Scarrow., 2000 and Herrington et al., 2005; Brown et al., 2006).  

 

The Middle, North and CIS-Polar Urals host the Tagil zone (of the Tagil Arc). The east 

of the Tagil zone is characterised by the occurrence of rare, small, harzburgite-

dominated, Mediterranean-type ophiolite complexes tectonically emplaced between 

the volcanic sequences (Savelieva & Nesbitt; 1996; Savelieva et al., 2002; Herrington 

et al., 2005). To the west are zoned ultramafic, Alaskan type, massifs that constitute 

the Platinum Belt. This belt extends over 900 km from the Arctic circle (60N) south to 

Yekaterinburg (57N) (Savelieva & Nesbitt, 1996; Savelieva, 2002). These massifs 

formed during the Mid-Silurian, intruding lower sequence basalts and sheeted dyke 

complexes of MORB affinity (Schmeley et al., 1997; Herrington et al., 2005). The 
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intrusions are considered to be co-magmatic with calc-alkaline, supra-subduction zone 

associated, lavas present higher in the sequence (Bosch et al., 1997; Narkisova et al., 

1999; Friberg, 2000; Savelieva et al., 2002; Herrington et al., 2005).  

 

The Uralian ophiolites mark progressive stages of the Wilson cycle and identify 

evolutionary differences in oceanic crust generation of the Uralian Ocean system; from 

the extension tectonic regime effective during the opening and growth of the Uralian 

Ocean during the mid Ordovician (Spadea et al., 2003) to the compressive tectonics 

active during the closure of the Uralian Ocean in the late Permian.   
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Chapter 3:  Chromite  

Chromite (FeCr2O4) or chrome-spinel is an end member of the spinel group. 

The unit cell formula for spinel is AB2O4, where divalent cations substitute into 

“A”, the tetrahedral site and trivalent cations into “B”, the octahedral site. Major 

elements present in spinel are; Mg2+, Fe2+, Cr3+, Fe3+ and Al3+, the minor 

elements are; Mn2+, Ti4+, V3+, Ni2+, Co2+ and Zn2+.  

 

Chromite deposits are the primary ore source of chromium metal.  

 

3.1 Chromium 

Chromium was discovered in 1797 by Nicolas-Louis Vauquelin and Martin H. 

Klaproth as a component of the mineral crocoite (PbCrO4) in a Siberian lead 

ore sample (Donath, 1962). Work by Vauquelin in 1798, led to the successful 

formation of chromium carbide by high temperature reduction of CrO3, using 

charcoal as the reductant (Vauquelin, 1974). In 1798, J. T. Lowitz reported the 

discovery of chromium in Russian chromite samples. 

 

The name chromium is derived from the Greek, “χρώμα”, meaning “colour”. 

The name was chosen because of the wide variety of colours possessed by 

chromium bearing compounds. The array of colours result from numerous 

oxidation states that the element exhibits, ranging from Cr+ to Cr+6 (Rollinson, 

1973). However, in terms of chromium bearing minerals, oxidation states Cr3+ 

and Cr6+ are most prevalent, substituting readily into crystal structures, (Burns 

& Burns, 1975).  

 

The cation Cr3+, present as Cr2O3, is the most common oxidation state of Cr in 

chromium bearing minerals. This preferred oxidation state reflects the high 

crystal field and octahedral site preference energy of Cr3+ ions (Burns, 1970).  

The ionic radius of Cr3+ is 0.615 Å (Shannon & Prewitt, 1969) and is a similar 

size to cations Al3+ (0.53 Å), Fe3+ (0.645 Å), Ti4+ (0.68 Å) and Mg2+ (0.72 Å) 

(Burns & Burns, 1975). These similar ionic radii mean that for many minerals 
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where Cr3+ is a component of the crystal structure, isostructural phases form 

with Al3+ and Fe3+ in the place of Cr3+. The reverse is also true; Cr3+ ions will 

substitute into the octahedral sites of many minerals containing Al3+, Fe3+, Ti4+ 

and Mg2+. Burns & Burns (1975) identify that the most common chromium 

trivalent substitution is between Al3+ and Cr3+, observed in the solid-solution 

series spinel-magnesiochromite and grossularite-uvarovite. In contrast, the 

substitution of Cr3+ for Fe3+ is less common with spinels, e.g. ishkulite, being 

comprised of chromite and magnetite mixtures (FeCr2O3 and Fe3O4, 

respectively). Similarly restricted is the substitution of Mg2+ for Cr3+ into 

minerals, e.g. chrome diopside and chrome tremolite. This substitution requires 

a compensation to accommodate the charge balance in these crystal 

structures.  

 

Mao et al. (1972) proposed that Cr2+ is a constituent in blue diopsides. In 

addition, it has also been reported that olivine and pyroxene minerals from 

lunar samples possess chromium in the Cr2+ form (Haggerty et al., 1970; Boyd 

& Smith, 1971; Boyd, 1972). In the case of the lunar samples, the presence of 

Cr2+ reflects the reducing conditions in which these minerals formed. The 

substitution of Cr2+ in place of Fe2+ could, theoretically, occur in 

ferromagnesian silicates, owing to the similar ionic radii of Cr2+, 0.82 Å and 

Fe2+, 0.77 Å. However, Burns (1970) noted that Cr2+ is typically present in 

distorted octahedral sites of silicate phases and explained it to be the result of 

the Jahn-Teller effect (Burns, 1970; Burns & Burns, 1975 

 

3.1.1 Uses of chromium 

Initial concentrations of chromium in mantle peridotite can be as low as 0.2 

wt.%, chromium may be concentrated up to 55 wt.% and when this happens 

the rock type chromitite forms (where chromite comprises a greater than 90 % 

volume of the rock). Chromitite is the most abundant source of chromium, a 

valuable element for alloying and refractory industries, and the reason it is 

mined. There are three principal categories of chromite ore; 
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i) Metallurgical ore (commonly Cr2O3 > 40%; Cr/Fe >2:2), which is smelted to 

produce ferrochrome for addition to the furnace charge for the manufacture of 

special steels, including stainless steel (18% Cr, 8% Ni and 74% Fe). 

 

ii) Chemical ore (Cr2O3 >42%; Cr/Fe <2:2), the raw material for the production 

of Cr-chemicals used in a variety of applications such as paints and 

electroplating. 

 

iii) Refractory ore (SiO2 <10%, Al2O3 >20%, Al2O3 + Cr2O3 >60%), used for 

blast-furnace lining bricks. 

 

Chromite ore or chromitite rock, forms as dykes, pods and layers up to several 

hundreds of metres long and several metres thick containing several tons of 

this element. For such mineralisation to form requires a concentration factor of 

approximately 300.  Understanding the processes behind the genesis of this 

form of chromite mineralisation is an important part of mantle studies. 

 

Chromite forms orthomagmatic ore deposits that take the form of layers, dykes 

or pods. Deposits vary across the globe in terms of size and chromium content 

of the chromites, that aggregate together to form chromite ore. 

 

3.2 Chromite deposits  

Chromite deposits occur where chrome-spinel concentrates in a localised area. 

Two principal economic deposit types of chromitite exist;  

 

i) Stratiform chromite deposits are typically located in stable continental shield 

environments. Accumulations develop in layered igneous complexes e.g. the 

Bushveld Igneous Complex, S.A (Barnes & Maier, 2002). 

 

ii) Podiform chromite deposits that occur in the ultramafic mantle and crustal 

rocks of ophiolites. These are present either as layers at the base of the 

magmatic cumulates or, more typically, as dykes, disc shaped lenses and pods 
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in upper mantle peridotites (Jackson, 1961; Thayer, 1964; Jackson & Thayer, 

1982;  Stowe, 1994).  

 

As the Earth has evolved, tectonic regimes have changed over time and 

consequently the environments favouring chromite concentration and deposit 

formation have varied. Five tectonic settings exist in which chromite 

accumulates, these are; i) ophiolite, lower crustal cumulates, ii) podiform 

chromite in mantle harzburgite, iii) Bushveld-type layered complexes in 

continental shields, iv) chromitite in serpentinised peridotite-metapyroxenite 

sills in Achaean greenstone belts, and v) Achaean anorthositic layered 

complexes in high-grade gneissic terrains (Stowe, 1994). Furthermore, there is 

a temporal relationship between the prevalence of each tectonic setting with 

four the key epochs of earth history: (i) the Achaean ~3,500 - 2,900 Ma a 

period of tectonic instability and high thermal gradients, (ii) 2,900 – 2,000 Ma 

when active extensive regions of continental shields with high thermal 

gradients became stable, favouring the formation and emplacement of large 

Bushveld-type complexes, (iii) 2,000 – 800 Ma the Cr/Fe ratios of chromite are 

low in layered complexes and ophiolites are unusual and (iv) since 800 Ma 

ophiolite-hosted podiform chromite deposits predominate. 

 

Despite there being several different genesis models for the formation of 

chromite ore deposits, it is consistently observed that in all scenarios chromite 

formation is associated with ultramafic rocks (Duke, 1983; Stowe, 1987). 

 

3.2.1 Stratiform chromitite  

Stratiform chromite deposits are laterally extensive, thin (<1 cm up to 1 m) 

chromitite layers, e.g. the Bushveld Igneous Complex, South Africa and the 

Great Dyke, Zimbabwe. The layers can extend continuously over great 

distances, as much as 200 km. These chromite deposits are commonly found 

within early Precambrian continental shields or proximal to the margins of 

continental shields (Stowe, 1994).  
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Examples of layered intrusion complexes include: the Bushveld Igneous 

Complex, South Africa; Rhum, Scotland; Stillwater, Montana; Bird River Sill, 

Manitoba, Canada; Great Dyke, Zimbabwe; Bacuri Complex, Brazil. 

 

The formation of chromitite bearing layered intrusions results from upwelling 

basaltic magma intruding continental crust. The magma penetrates upward 

until a point where the fluid pressure exceeds the pressure of the lithostatic 

overburden, at approximately 1-2 kbar (Mudge, 1968) at which point the 

magma migrates laterally. Typically the morphology of a layered complex is 

either, elongate and narrow in cross-section, tapering downward to a dyke-like 

feeder channel (e.g. The Great Dyke, Zimbabwe) (Worst, 1958) or sheet-like 

when the force of the magma has successfully breached the overburden, 

allowing it to spread laterally, e.g. Bushveld Igneous Complex, South Africa 

(Sharpe et al., 1981).  

 

The Great Dyke, Zimbabwe and the Bushveld Igneous Complex, South Africa 

are located within the African continental craton and formed during the 

Precambrian, 2,460 Ma and 2050 Ma respectively. Both are immensely large, 

world famous, and host stratiform chromitite deposits (Irvine, 1974). The Great 

Dyke is hosted within a graben structure 500 km long and up to 12 km wide; in 

cross-section it is a deep tapering conduit. The Bushveld Igneous Complex is 

comprised of five lobes and covers an area approximately 12,000 km2 (Von 

Gruenewaldt et al., 1985).  

 

Stratiform chromitite deposits form from the fractional crystallization of a picritic 

melt in a magma chamber. The precipitated crystals sink to the chamber floor 

and accumulate (Lago et al., 1982). Chromite layers crystallized in-situ, in a 

stable continental setting, form planar, continuous layers. Although, post-

formation tectonic deformation may fault, tilt and cause brittle deformation, 

disrupting the continuity of the layers, while syncrystallization deformation may 

cause chromite layers to pinch and swell as observed at Kemi in Finland and in 

the Bushveld Igneous Complex within both the UG1 and UG2 layers (Stowe, 

1994).   
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Associated mineral phases that crystallise prior to and following the 

crystallisation of monomineralic, chromitite layers are, olivine, clinopyroxene, 

orthopyroxene and plagioclase. The abundance of these minerals and 

thickness of the units formed is dependent on numerous factors including; 

environmental conditions, magma chemistry, volume and longevity of the 

magma pulse.  

 

3.2.1.1 Chromite crystallisation models: Stratiform chromitite 

For chromitite layered complexes to form a mechanism is required whereby 

chromite is the only phase to crystallise from the magma. A number of genesis 

models have been proposed.  

 

Irvine (1977) demonstrated that by mixing fresh primitive magma with a 

comparatively more fractionated magma could produce a hybrid magma with a 

bulk composition that lay in the chromite crystallisation field.  

 

Furthering the chromitite formation model of Irvine (1977), Sharpe and Irvine 

(1983) conducted a series of melting experiments on two samples from the 

Bushveld and identified a new chemical mechanism for chromitite formation. 

The liquidi of the two melts, one saturated with plagioclase and chromite (A1) 

and the other with olivine and chromite (U1), when combined lowered the 

crystallisation temperatures of the silicates yet chromite crystallisation was 

sustained. Thus, by mixing the two liquids that would independently crystallise 

cumulates dominated by silicates with only accessory amounts of chromite, 

formed a hybrid melt saturated in chromite, so forming chromitite.  

 

Detailed modelling of the A1 and U1 melt compositions by Irvine (1977b) 

categorised them as spinel-saturated melts in the CaO-MgO-Al2O3-Cr2O3-SiO2 

system. Results showed that melt U1 was significantly enriched in Cr2O3 

compared to melt A1 and that as the olivine content of U1 increased, so too did 

the Cr2O3 content. In contrast, melt A1, a primitive melt, was saturated with Al-

rich chromite, there being only a trace amount of Cr2O3 present in the melt.    
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However, work by Mondal and Mathez (2007) demonstrates that the Irvine, 

1977 model would result in chromitite forming at or near to the base of a cyclic 

unit, and that this in situ crystallisation of a thick chromitite layer should deplete 

the mixed magma of Cr. Consequently, the chemical composition of the 

orthopyroxene below a chromitite layer should be Cr-rich relative to that of the 

orthopyroxene crystallising above a chromitite layer. On the contrary, Mondal 

and Mathez show that orthopyroxene present in the units above and below the 

UG2 chromitite are chemically identical in terms of Cr content; results that 

conflict with the model of Irvine (1977) for in situ crystallisation.  

 

Research by Eales, 2000, hypothesised that the silicates (olivine, 

orthopyroxene and plagioclase) and chromite crystallised within a magma and 

were carried to and deposited at the present location. He proposed that the 

chromite and silicate phases were separated by mechanical, postulating that 

chromite was introduced as a chromite slurry. Supporting Eales’s (2000) work, 

Maier and Barnes (2008) and Voordouw et al. (2009) have put forward similar 

hypotheses to explain the genesis of the Bushveld, Upper Group chromitites.  

 

Naldrett et al. (2009) draw on the primitive and fractionated (same parent 

source) magma mixing model of Irvine (1977), but acknowledge that the 

chromite and silicate phases may not have crystallised in situ. Instead they 

develop the model, suggesting that there were two ascent paths for the 

magma; one rapid, where fractionation of the magma did not occur, the other, 

slower, that permitted the fractionation of the magma, as well as interaction 

with and contamination by crustal material during ascent, so altering the initial 

composition. The differences between the evolution of the magma batches 

resulting from the different routes taken to reach Bushveld magma chamber, 

are recorded in the compositions of the mineral phases that crystallise from 

each magma batch. 
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3.2.2 Ophiolitic chromite 

Two types of chromitite occur in the mantle peridotites of ophiolite complexes; 

pods of chromitite hosted by harzburgite and less commonly lherzolite, and 

chromitite layers present in the dunites of the lower cumulate and transition 

zone.  

 

Podiform chromitites are most commonly located in the upper mantle tectonites 

of harzburgite ophiolite types (HOT) (Pearce et al., 1984; Roberts, 1988; 

Boudier and Nicolas, 1985) examples are; the Loubusa ophiolite, Tibet (Bai et 

al., 1993; Zhou et al., 1996), the Thetford Mines Ophiolite, southern Québec, 

Canada (Gauthier et al., 1990; Bèdard et al., 2007; Pagé et al., 2008) and the 

Vourinos Complex, Greece (Rassios & Roberts, 1986; Roberts, 1992). 

Podiform chromitite is uncommon in lherzolite mantle; when present 

chromitites are typically small (Leblanc & Timagoult, 1989; Gervilla & Leblance, 

1990), examples include;  the Trinity Complex northern California (Quick, 1981; 

Noller & Carter, 1986), the Horoman complex, Hokkaido, Japan (Niida, 1984; 

Takahashi, 1992) and the Oen complex, Spain (Gervilla & Leblanc, 1990). An 

exception is the Isabela ophiolite, the Philippines, which is a lherzolite-

dominant mantle section that contains several podiform chromitites (Morishita 

et al., 2006) 

 

Deposits form as either; i) tabular, sheet-like layers present in the peridotite 

units at the base of the crustal cumulates situated beneath magma chambers 

at the transition zone (Nicolas & Prinzhofer, 1983) or ii) as sack-like or pencil 

shaped pods hosted in the tectonite peridotites of the upper mantle (e.g. 

Thayer, 1964; Dickey, 1975: Stowe, 1994; Ballhaus, 1998). The petrological 

Moho is present at the dunite-harzburgite contact at the base of the magma 

chamber. Podiform chromitites tend to be focused at the Moho, both above and 

below. Deposits vary considerably in size, dimensions range from 5 to 1,200 m 

in length and 1 to 130 m in thickness (Stowe, 1994).   

 

Although with respect to deposit morphology and stratigraphic position these 

two sub-categories of podiform chromite differ, the key similarities are that both 
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occur in the ultramafic units of ophiolites and both exhibit orbicular and/or 

nodular chromitite ore textures, a texture that is unique to podiform chromite 

deposits (e.g. Thayer, 1969; Dickey, 1975). 

 

The genesis of podiform chromite is a complicated and controversial subject, 

numerous models have been proposed (McElduff & Stumpfl, 1991; Arai et al., 

2004; Uysal et al., 2005; Page & Barnes, 2009). However, some aspects of 

podiform chromite genesis are agreed. It is widely accepted that the 

environmental setting responsible for podiform chromitite genesis is associated 

with the formation of oceanic crust. The extensive early crystal fractionation of 

olivine and chromite, such as that observed in the supra-subduction zone 

ophiolites, reflects mineralogically the  association of podiform chromitite 

deposits with such a tectonic setting (Pearce, 1984; Roberts, 1988; Edwards et 

al., 2000).  

 

Within Europe podiform chromites are associated with ophiolites dated 

Cretaceous age (95-80 Ma). Example localities include the Cyprus (Blome & 

Irwin, 1985) and Oman (Pearce et al., 1981) ophiolites. In a global context 

podiform chromite deposits as old as 500 Ma are known to exist e.g. the 

Thetford podiform chromite deposit, Canada ca. 480 Ma (Clague et al., 1981). 

3.2.2.1 Ophiolite chromite: Crustal cumulates 

The lower ultramafic crustal cumulates in ophiolite complexes are comprised of 

dunite, wehrlite and pyroxenite that grade upwards into gabbro, with the gabbro 

component progressively increasing in abundance at higher stratigraphic 

levels. These cumulate layers crystallise out from the melt fraction (olivine 

composition Fo85-87) (e.g. Haggerty, 1991). Chromitites occur within this 

ultramafic sequence of crustal cumulates as thin (centimetre scale) horizons. 

However, alternating cumulate-chromitite sequences can be extensive, as in 

the case of the Orhaneli massif, Turkey that is 2,500 m thick (Stowe, 1994 and 

references there in – Tankut, 1980). As observed by Thayer (1964, 1969) the 

morphology of these deposits and the mineralogy of the associated overlying 

lithologies, that are dominated by progressive plagioclase enrichment up 

sequence, are features analogous to the continental layered complexes 
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(stratiform chromite deposits). Podiform chromitite genesis is associated with 

subduction zones and for arc spreading above a convecting mantle. 

Consequently, cumulates forming below the Moho are constantly deformed, 

being folded and dislocated. Casey and Karson, (1981) suggest that 

intermittent upwelling magma pulses cause changes to the shapes and 

distribution of overlying magma chambers from which the cumulate layers 

crystallise. This process may also contribute to the formation of discontinuous, 

irregular chromitite layers.  

 

3.2.2.2 Ophiolite chromite: Mantle hosted podiform chromitite  

Mantle hosted podiform chromitites differ in a number of ways from crustal 

cumulate podiform chromitites (Section 3.2.2.1). Arguably the most prominent 

difference is that podiform chromitite deposits are hosted by mantle residuum 

(olivine compositions Fo90-94) most commonly harzburgite. The harzburgite 

mantle residue is depleted (compared to the underlying fertile lherzolite mantle) 

and is the source from which basaltic melts are derived, these melts migrate 

upwards to the ridge axis in the overlying crust (Moores and Vine, 1971; 

Greenbaum, 1972; Menzies and Allen 1974; Paktunc, 1990; Roberts and 

Neary, 1993). Comparatively, lherzolite-type ophiolites, where partial melting is 

less extensive, host significantly smaller amounts of podiform chromitite, if any. 

In lherzolite-type ophiolites chromium and aluminium are preferentially sighted 

in chrome-diopside or chrome-garnet (Noller and Carter, 1986). Similarly, 

podiform chromites are non-existent or small scale when present within highly 

refractory harzburgite (Arai, 1997). 

 

A distinctive feature of mantle hosted podiform chromitite is the presence of a 

dunite halo. Irrespective of the size, shape, orientation or stratigraphic 

emplacement level, podiform chromitites are almost always enclosed by dunite 

(Thayer, 1960). The halo may be present as a sharp contact between massive 

chromite (mineralisation) and the dunite (selvedge of the orebody) or as a 

gradational contact passing from harzburgite to dunite into minor disseminated 

chromite mineralisation that progressively becomes more intense and massive 

with distance into the mineralised zone (Zhou, 1994; Zhou et al., 2001). The 
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size of the dunite halo varies between deposits, from a few centimetres to 

several tens of metres (Thayer, 1964; Paktunc & Baysal, 1981; Christiansen, 

1982; Paktunc, 1990).  To date there is no identified link between the thickness 

of the dunite halo and the size of the orebody or the grade of the ore contained 

within it (Thayer, 1964, 1969; Peters and Kramers, 1974; Brown, 1980; 

Leblanc, 1987; Roberts and Neary, 1993; Zhou et al., 1994; Zhou et al., 1996), 

although it seems reasonable to consider that the two are likely to be 

genetically linked.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: A sketch of textural evolution based on relationships of textures in 

mantle peridotite with mantle flow structures in the Maqsad Mantle Transition 

Zone (Adapted from Boudier & Nicolas, 1995) 
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When unaffected by emplacement-related deformation the mantle peridotite 

records, in structures produced by high temperature and low differential stress 

deformation, the history of solid-state mantle flow (Figure 3.2.1). Mapping of 

these structures provides insight into the asthenospheric flow geometry at the 

base of a ridge axis (Ceuleneer et al., 1988; Nicolas et al., 1988). Mapping of 

the Oman ophiolite by Leblanc and Ceuleneer (1991) has revealed areas, 

approximately 10 km in extension, where plastic flow lines are oriented 

perpendicular to the paleo-Moho. At the top of these palaeo-upwellings, the 

plastic flow structures rotate to the horizontal in a narrow transition zone a few 

hundred meters thick and diverge in all directions, primarily along the paleo-

ridge axis. This flow pattern has been interpreted as the footprint of a small-

scale mantle diapirism, possibly related to the segmentation of spreading 

centres (Rabinowicz et al., 1987; Nicolas et al., 1988).  

 

The petrological Moho, which differentiates between the mantle (below) and 

the crust (above), is marked by cumulate dunite between the harzburgite 

(mantle) and cumulate gabbro (crustal) units. Preserved trapped melt is 

present in the dunite section in the form of melt pockets marking the pathway 

of melt to the surface of the upwelling asthenosphere. At the petrological Moho, 

characteristic flow lines in the country rock, which at depth were vertical, are 

rotated horizontal, along with any chromitite pods encapsulated in the section. 

The section is characteristically barren of melt extraction structures, although 

intrusive dikes are often prevalent. (Leblanc & Ceuleneer, 1992) 
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Figure 3.2.2: A sketch illustrating the positions of podiform chromitites (black) 

that are discordant (dc), subcordant (sc) and concordant (cc) in relation to 

mantle flow lines (black dashed arrows) in the upper mantle beneath a 

spreading ridge. 

(Adapted from Edwards et al., 2000 and references therein) 

 

The stratigraphic location and relative orientation of a chromitite pod is 

dependent on the post chromitite formation orientation changes that took place 

during mantle flow. The relationship between the orientation of the pod and the 

mantle flow lines preserved in the host peridotite make it possible to classify 

chromitite pods. Three categories are described, concordant, subcordant and 

discordant (Cassard et al., 1981). As chromitites are deformed by 

asthenospheric flow processes their orientation changes progressively from 

discordant, to subcordant and finally concordant with the surrounding peridotite 

flow lineations (Figure 3.2.2).  

 

Structures and fabrics identified within podiform chromitite are the result of 

solid-state flow and recrystallisation at relatively high temperatures (Cassard et 

al., 1981). Vertical flow structures record textures related to earlier mantle 
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Observations include; i) banding differentiated between by varying 

compositions ratios of chromite and olivine minerals, ii) foliation identified by 

the alignment and flattening of minerals comprising the chromitites. and iii) 

lineation, determined either by the elongate direction of minerals within a 

foliation plane or the direction perpendicular to the plane of pull-apart 

structures (in massive ore) (Cassard et al., 1981). 

 

Similarly, the chromite textures of podiform chromitites provide an indication of 

the extent of deformation. Chromite from discordant pods is often coarse and in 

some cases even pegmatitic (Panayiotou et al., 1986; Georgiou, 1987). It is 

interpreted to indicate magmatic crystallisation. However, the primary 

chromitite textures identified in discordant chromitite pods have often been 

affected by deformation, and are frequently distorted or overprinted. Although 

deformation of chromite ore is common, the nodular ore type is particularly 

effective at preserving a fabric. The orientation of chromite nodules, when 

compared with the host rock foliation, provides some indication of whether the 

chromitite is concordant, subcordant or discordant. Similarly with the orientated 

position of the ore body relative to the foliation of the host rock. 

 

 Lorand and Ceuleneer (1989) studied the presence of silicate inclusions in 

chromite from podiform chromitites. They observed that silicate inclusions are 

common in discordant podiform chromitite, however, are gradually lost diffusing 

out during strain-induced recrystallisation. Chromitite pods that are deformed 

and concordant with the host mantle are comprised of distorted chromite that 

has disrupted, lost or reformed grain boundaries and lack silicate inclusions, a 

result of the deformation process.  

 

There is no characteristic morphology for a mantle hosted chromitite orebody, 

a result of the unstable environment in which these deposits form. However, 

orebodies are often described as lens-, tabular-, sack- or pipe-shaped (Thayer, 

1964). Li et al., (1993) described that a typical chromitite orebody has a length 

of 20 to 250 m, width of 10 to 100 m, is between 0.5 and 5.0 m thick and has 

an average grade of 48 wt % Cr2O3. In more general terms, Thayer (1973) 

reported that an average sized podiform chromitite deposit would yield 
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approximately 1,000 tons of ore. However, there are exceptions; the Coto ore 

body in the Philipinnes consists of ~8,000,000 tons of ore, and the Tiebaghi in 

New Caledonia and Golalan in Turkey deposits each comprise in excess of 

1,000,000 tons of ore (Paktunc, 1990 and references there in). The styles of 

mineralisation associated with these deposits also varies from small, 

centimetre sized patches of disseminated chromite grains, such as those 

observed in dunite channels cross cutting the harzburgite mantle unit at the 

Lizard in south west England, to enormous 1,800 m long massive chromite 

layers that reach up to 120 m in thickness, as exhibited by the economic 

deposits of the Main Ore Field within the Kempirsai massif, Kazakhstan 

(Melcher et al., 1997).  

 

In the same way that the morphology of a podiform chromitite periphery is 

irregular, so too is the internal structure. Chromitite horizons occur interleaved 

with dunite. These horizons are rarely continuous, often folded or dislocated by 

syn-mineralisation or post-formation deformation events. Not only is the 

environment of formation, the mantle, unstable but the post-formation, 

exhumation, tectonic influences on the chromitites are also disruptive. At any 

time during the formation and emplacement process the chromitite pods might 

undergo distortion and lose their original form. 

 

3.3 Podiform chromitite genesis models 

The genesis of podiform chromitite is an controversial topic and one that is yet 

to be resolved; several genesis model exist. 

 

In the early 1960’s the works of Thayer started to address the development of 

a genesis model to explain the formation of podiform chromitite, Thayer (1964, 

1969, 1970) suggested that mantle hosted chromite accumulations formed by 

differentiation of chromite from magma present in the lower crust and upper 

mantle, and that these chromite accumulations were subsequently emplaced 

within the underlying peridotite crystal mush (Dickey, 1975). 
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The acceptance that ophiolites were segments of oceanic lithosphere 

(deRoever, 1957; Vuagnat, 1963; Hess, 1965; Moores, 1969) combined with 

the observation that podiform chromitites occur in the mantle tectonites units of 

ophiolites, led to the development of new formation models that associated 

their genesis with that of oceanic crust. 

 

By the early 1970’s it was agreed that the mantle section of ophiolites was 

residuum, formed from the extraction of basaltic melts (Moores & Vine, 1971; 

Greenbaum, 1972; Menzies & Allen, 1974; Roberts & Neary, 1993). The 

impossibility that mantle hosted chromitite deposits were also residuum, 

teamed with the numerous cumulate characteristics exhibited by the deposits, 

meant that a suitable genesis model had to explain how non-residual chromitite 

bodies occur in residual mantle units.  

 

Attempts to create a model led to podiform chromitites being considered 

autoliths, formed from the accumulation of chromite crystallised in magma 

pockets at the base of the crustal cumulates (Dickey, 1975; Greenbaum, 

1977). Dickey (1975) proposed that the chromite concentrations sank into the 

underlying residual  peridotite due to the greater density of chromitite relative to 

the surrounding cumulate peridotite. Taking a similar approach Greenbaum 

(1977) proposed that the chromitite segregations were emplaced into the 

underlying mantle peridotite by tight in-folding. Both models were dispelled 

because of a lack of structural evidence (Cassard et al., 1981). Additionally, the 

models failed to explain the variation in Cr/Fe ratio seen in chromite with depth 

in many ophiolites (Brown, 1980; LeBlanc, 1987) or the presence of the dunite 

halo that characteristically surrounds chromitite pods.  

 

Ideas progressed and it became accepted that the co-existence of olivine and 

chromite in the mantle represented early stage fractionates of picritic melts 

(Menzies & Allen, 1974) that ascended through the upper mantle, into the 

crust, at the site of palaeo-spreading centres (Coleman, 1977; Neary & Brown, 

1979; Brown, 1980; Lago et al., 1982; Roberts & Neary, 1993). Throughout the 

late 1980’s and 1990’s the physico-chemical environmental controls that affect 

melts migrating through the mantle were studied to understand their influence 
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on the precipitation and composition of chromite (e.g. Talkington et al., 1983; 

Murck & Campbell, 1986; Leblanc & Ceuleneer, 1991; Roeder & Reynolds, 

1991; Zhou et al., 1996, 1997). In addition, fluids and volatiles are thought to 

have played an important role in the crystallisation of chromite in the mantle 

(Johan et al., 1983; McElduff & Stumpfl, 1991; Edwards et al., 2000; Matveev & 

Ballhaus, 2002) 

 

The cumulate textures and chromitite layers observed in ophiolitic chromitite 

deposits are indicative of crystallisation having played a significant role in the 

formation of podiform chromitite ore; especially for deposits located in the 

lower-crustal ultramafic cumulate sequence of ophiolites. Other characteristic 

features include; irregular form, random distribution within the mantle and 

geochemical composition variations between neighbouring deposits (Auge & 

Roberts, 1982) 

 

3.3.1.1 The chromitite-dyke hypothesis  

The chromitite-dyke model interprets podiform chromitites to be the product of 

early stage chromite crystallisation from a basaltic magma migrating through 

focused conduits in the mantle.(Brown, 1980; Auge and Roberts, 1982; Lago et 

al., 1982; Cassard et al., 1983; Leblanc, 1987; Leblanc & Ceuleneer, 1992). 

Brown (1980) suggested that chromite formed by fractional crystallisation of 

rising magma in periodically replenished, small chambers, situated beneath the 

main cumulate magma chamber, within the mantle harzburgite.  

 

Lago et al., (1982) modelled the precipitation and accumulation of chromite 

within conduits for basaltic melt passing through mantle diapirs beneath a 

spreading ridge centre. The results showed that the melt and peridotite 

interaction produce dunite, and that active convection in cavities formed by 

local widening of magma conduits promotes crystallization, growth and 

accumulation of chromitite. The cumulates are deposited at the base of the 

mantle hosted chambers, blocking the conduit. According to this hypothesis the 

chromitite-bearing conduit initially cuts the structure of the surrounding 

peridotite. Subsequent intense deformation transforms the mass into a lens 
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which is rotated into concordance with the surrounding peridotite, such that the 

lens walls are aligned parallel to the foliation of the enclosing peridotite 

(Nicolas, 1989). A similar model was proposed by LeBlanc (1987) to explain 

the deposits in New Caledonia, who suggested that the dunite halo and the 

inter-layered dunite within the chromitite pods resulted from partial melting of 

the surrounding host peridotites by the high temperature magma. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1: Harzburgite, dunite and chromitite labelled with example Cr# and 

TiO2 wt% values 

 

Geochemically, the chromitite-dyke hypothesis is supported by the disparity 

between the Ti contents of chromite in the chromitite pod, the dunite envelope 

and the surrounding mantle harzburgite. Ti values for chromite in the pod and 

dunite halo are higher than those of chromite found in the host harzburgite, 

where it is considerably lower (Figure 3.3.1) (Arai & Yurimoto, 1994). This trend 

is observed even when the Cr# values for chromite in the chromitite pod, dunite 

halo and harzburgite are almost the same (Arai and Yurimoto, 1994). This 

implies that the Ti values of the podiform chromite reflect the composition of 

the inflowing melt chemistry.  

 

Although this model goes some way towards providing an explanation of 

podiform chromitite genesis, it fails to address the problem that fractionating 

basaltic melts do not contain sufficient Cr to enable large volumes of chromite 
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to form prior to the onset of silicate-dominated crystallization (Murck and 

Campbell, 1986; Roeder and Reynolds, 1991; Campbell and Murck, 1993). For 

extensive horizons of chromitite to form chromite must crystallise without 

silicate phases, such a situation requires a mechanism to drive the melt 

composition into the liquidus field of chromite. This could be is controlled by 

advantageous chemistries between the melt and host wall-rock or by suitable 

and sustained environmental conditions. Furthermore, a podiform chromitite 

genesis model needs to explain the existence of the clino- and orthopyroxene 

depleted, dunite halo present around the podiform chromite pods. 

 

3.3.1.2 Mixing multistage-melts  

Mixing refractory (boninitic affinity) and fertile (mid-ocean ridge basalt affinity) 

melts produced by multistage melting and melt segregation in the mantle 

(Paktunc, 1990; Ballhaus, 1998) has been proposed as a model to explain 

chromite crystallisation in the mantle. However, field relationships in ophiolites 

have demonstrated that multistage melts would coexist and mix in a conduit, 

and that early MORB melts would leave a crystalline product rather than a melt 

in the conduit (Edwards, 1991, 1995). 

 

Ballhaus (1998) has proposed a magma mixing model based on experiments 

combining a picritic melt (forsteritic, ol-norm, high-P, low-viscosity) with a 

boninitic melt (siliceous, low-P more viscous). Viscosity would inhibit instant 

mixing of the melts such that cumulus chromite would nucleate and grow only 

in the mafic melt where the chromite/melt interfacial energy was lowest. The 

siliceous melt would act as a diffusive chromium reservoir. It is proposed that 

the richest chromite ores form when the volume ratio of the melt nucleating 

chromite is small relative to the ambient melt. The experiments simulated, on a 

micro-scale, two characteristic features of podiform chromite deposits: the 

nodular texture, and the dunite envelope of chromite pods. 

 

Some workers (e.g. Auge 1987; Leblanc & Ceuleneer, 1992) have considered 

the volume of magma required in order for accumulations of chromite, like 

those that comprise podiform chromitites, to form. In terms of magma chemistry 
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chromium is a minor component. In primitive MORB-type basalt the Cr content 

is typically 200-700 ppm (Roeder & Reynolds, 1991; Leblanc & Ceuleneer, 

1992; Roeder et al., 2006), while naturally more chromium-rich boninitie 

magma has a Cr content between 1,000-1,500 ppm (e.g. Kuroda et al., 1978; 

Jenner, 1981; Walker & Cameron, 1983). Assuming the complete removal of 

Cr from a magma to form chromite, Leblanc and Ceuleneer (1992) calculated 

that to form a 3,000 t chromitite deposit (the equivalent of 900 t of chromium) 

would require a magma volume at least 300 to 400 times greater than the 

3,000 t volumetric area of the final chromitite body (Leblanc & Ceuleneer, 

1992). A similar calculation was considered by Auge (1987) using the average 

Cr crystal/liquid partition co-efficient derived from the works of Maurel and 

Maurel (1982b). He proposed that the volume of magma required to form 

chromitite would be at least 500 times greater that the volume of the ore 

formed. It is evident that substantial magma volumes (melt flow) are necessary 

to supply the Cr required for podiform chromite deposits to form.  

 

The source of Cr-rich melt is important to consider. Such melts either form from 

second stage melt events, are boninitic or are derived from supra-subduction 

zone magmas. All are associated with a more extensively depleted mantle 

source (Roberts, 1988, 1992).  

 

The hypothesis that multi-stage melts mix to form podiform chromitite would be 

a conceivable scenario if ongoing magmatism exploits a single conduit that 

remains open and is filled by melt at different stages during its chemical 

evolution (Leblanc and Ceuleneer, 1992).  

 

3.3.1.3 The melt-rock reaction models  

A more recent model hypothesis, the melt-rock reaction model, proposes that 

chromite crystallisation results from reaction between a migrating primitive melt 

and the mantle peridotite through which it percolates (Kelemen, 1990; Arai & 

Yurimoto, 1994; Zhou et al., 1994, 1996; Edwards, 1995; Varfalvy et al., 

1996,1997; Arai, 1997). The concept of melt-rock interaction has been reported 

in several mantle sections (Fisk, 1986; Kelemen, 1990; Kelemen et al., 1992), 
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however the interaction does not always result in the crystallisation of chromite, 

let alone the formation of podiform chromitite (Zhou & Robinson, 1997). 

Furthermore, the reaction rationales that promote chromite precipitation vary 

between authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arai & Yurimoto, (1994) proposed that an exotic melt, formed at depth under 

higher pressure, is injected into mantle harzburgite and reacts with the wall-

rock dissolving orthopyroxene to form dunite and a secondary Si-rich melt that 

is enriched in Cr (Figure 3.3.2). The Si-rich melt mixes with subsequent pulses 

of, relatively primitive melt and precipitates chromite. The authors also 

identified that large, Cr-rich podiform chromitites are typically found hosted in 

moderately refractory (Cr# residual spinel ~0.5), clinopyroxene-bearing harzburgite,  
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whereas in lherzolite-dominant or refractory harzburgite mantle sections 

chromitites are small in size and limited in number, or altogether absent. 

 

Arai (1997) further developed the concept that the composition of the host 

peridotite is a dominant control on podiform chromitite genesis. He proposed 

that the composition of the mantle peridotite wall-rock that controls the size and 

composition of the chromitites and identified the source of Cr to be from 

orthopyroxene in the mantle rocks.  

 

A slightly different explanation of the melt-rock reaction model is given by Zhou 

et al., (1994).  They attribute the composition modification of the ascending 

basaltic partial melts to result directly from reaction with the host peridotites. As 

with the model of Arai & Yurimoto (1994), this model relies on the incongruent 

dissolution of pyroxene from the host peridotite. The melt is altered becoming 

relatively enriched in SiO2 driving the melt composition into the chromite 

stability field.  

 

In both of the melt-rock reaction models melt dissolves pyroxene from 

harzburgite. A by-product of the dissolution of pyroxene is residual olivine. 

Field evidence in the form of a dunite selvedge encasing podiform chromitites 

and the dunite layers that coexist with chromitite layers in the mineralised 

zones, is the most conclusive evidence for this process (Arai, 1994a). 

  

Irrespective of the subtleties between the melt-rock interaction systematics, 

there is agreement that pods of Al-rich chromite form where tholeiitic (Al-rich) 

melt reacts with lherzolite or harzburgite and Cr-rich chromitite pods form by 

reaction between harzburgite and  boninitic (a Cr-rich melt) (Zhou et al., 1994; 

LeBlanc, 1995; Rollinson, 2005). In addition, aside from the compositions of 

the interacting melt and mantle the main control affecting the size and 

abundance of podiform chromitite is the extent of melt-rock interaction (Zhou & 

Robinson, 1997).  
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3.3.1.4 Water and chromite formation 

All of the previous studies have incurred  the problem of precipitating large 

volumes of chromite from basaltic melts where Cr has a very low solubility.  

 

It is widely accepted that water is necessary for partial melting of supra-

subduction zone mantle to produce melts capable of forming podiform 

chromitites with unfractionated Cr/Al ratios (e.g., Pearce et al., 1984; Roberts, 

1988; Zhou and Robinson, 1997; Robinson et al., 1997). Water promotes the 

partial melting of refractory peridotites and will dissolve in the melt and remain 

present until after the crystallisation of podiform chromitite and pyroxenite. A 

hydrous melt has more octahedral sites as the presence of water lowers the 

degree of polymerisation of the silica network of the melt (Edwards et al., 

2000). This promotes the solubility of Cr within hydrous melts owing to the high 

preference energy of Cr3+, the major ion controlling Cr solubility (Murck and 

Campbell, 1986; Roeder and Reynolds, 1991). Cr is present in the melt until 

the melt and peridotite react, this raises the Si content of the melt inducing 

polymerisation of the melt. The result is a reduction in the number of octahedral 

sites available for Cr incorporation into the melt, thus Cr becomes an insoluble 

component of the evolved melt and is crystallised as chromite from the melt. To 

maximise the production of chromite, an open system is required to facilitate a 

continuous supply of Cr-rich melt during the melting stage. In the same way the 

presence of water favours chromium solubility in the melt, a sudden loss of 

water from the melt, which will lead to a drop in pressure (Kushiro, 1969; 

Dickey, 1975), promotes the crystallisation of chromite. In this event, chromium 

in the melt will partition into the solid phase chromite. 

 

As outlined, several models have been proposed for the origin of podiform 

deposits hosted by the mantle tectonic section of ophiolites, however, none 

provide satisfactory accounts for all the observed features of chromite deposits, 

these being; the cumulate and deformation textures, the concordant to 

discordant disposition of the pods, the dunite envelope around the pods, and 

the variation of chromite composition with depth or host lithology.  

 



Chapter 3: Chromite 

  

47 

It appears favourable that for chromitites to form, melt pathways must be 

available for melt to pass through the mantle. These melt channel ways provide 

a focal point for crystallised chromite to precipitate. The continual 

replenishment of chromium saturated melt passing through the pathways is 

essential for continuous chromite formation and deposition.  

 

3.4 Chromite geochemistry  

Podiform chromitite compositions range from Cr-rich to Al-rich. Chromite is a 

useful petrogenetic indicator, in terms of grain morphology and composition, 

the chemistry records the conditions at the time of crystallisation, these include; 

the geodynamic setting, melt composition (e.g. Irvine, 1965, 1967; Evans & 

Frost, 1975; Fisk & Bence, 1980; Maurel & Maurel, 1982a, 1982b; Sack, 1982; 

Dick & Bullen, 1984; Allan et al., 1988; Allan, 1992, 1994; Arai, 1992, 1994b), 

the peridotite source (e.g. Dick & Bullen, 1984; Arai, 1987, 1994; Clynne & 

Borg, 1997), the extent of melt and peridotite interaction (Kelemen et al., 1990; 

Zhou et al., 1994; LeBlanc, 1995, 1997; Zhou and Robinson, 1997; Robinson 

et al., 1997), as well as, the crystallisation conditions; temperature and cooling 

rate (e.g. Fisk & Bence, 1980; Ozawa, 1984; Sack & Ghiorso, 1991; Scowen et 

al., 1991), pressure (e.g. Sigurdsson & Schilling, 1976; Jacques & Green, 

1980; Ballhaus et al., 1991; Roeder & Reynolds, 1991) and oxygen fugacity 

(fO2) (e.g. Hill & Roeder, 1974; Murck & Campbell, 1986; Ballhaus et al., 1991; 

Roeder & Reynolds, 1991). The Cr# value (Cr# = [Cr/(Cr+Al+Fe3+)]) of 

chromite is frequently used to constrain the conditions and determine the 

mantle peridotite source and the degree of partial melting (e.g. Jaques & 

Green, 1980; Duncan & Green, 1987; Bonatti & Michael, 1989). 

 

High-Cr chromitites are generally found in highly depleted mantle harzburgite 

(Arai, 1994). Their genesis is thought to be associated with high-Si, high-Mg 

magmas, boninites, the product of high degrees of partial melting (Crawford et 

al., 1989). In contrast, Al-rich chromitites are present in more fertile mantle 

peridotite, typically at higher levels within the ophiolite stratigraphic sequence 

(Neary & Brown, 1979; Roberts & Neary, 1993; Stowe, 1994) and are 
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considered to be produced from lower degrees of partial melting (e.g. Dick and 

Bullen, 1984; Arai, 1992; Roberts & Neary, 1993; Zhou et al., 1994). 

 

3.4.1 Conditions that impact the composition of chromite 

crystallised from a melt 

Research has been conducted, experimental petrology in the laboratory and 

natural geological analogues, to investigate the impact of melt composition, 

temperature, pressure and fO2, on chromite composition. Studies have looked 

at; natural MORB lava samples (Allan et al., 1988) and komatiites (Barnes, 

1998), chromium solubility and chromite crystallisation from basaltic melts 

(Roeder & Reynolds, 1991), as well as the effects of temperature, fO2, and melt 

composition, on chromite equilibration with liquid and silicate phases in basic 

and ultrabasic melts (Murck & Campbell, 1986; Klingenberg  Kushiro, 1996). 

 

Typically these experimental studies have intended to further the 

understanding of crustal hosted chromite samples. The conditions simulated 

during these experiments are not analogous to the mantle conditions where 

podiform chromitite forms. However, the theoretical behaviour of a melt to 

condition changes and the impact of these changes on the melt chemistry and 

crystallisation of chromite, are none-the-less important to understand when 

studying the formation of podiform chromitite. 

 

Chromite crystallises early from a basaltic melt. The principal variable 

controlling chromite composition, at liquidus temperatures, is the change in 

melt composition (Allan et al., 1988). The contemporaneous crystallisation of 

other mineral phases, e.g. olivine, plagioclase, clino- and orthopyroxene alter 

the melt chemistry and change the composition of the chromite formed (Allan 

et al., 1988, Roeder & Reynolds, 1991); a result of the competition for trivalent 

and divalent cations between co-existing chromite, silicate and melt, as well as 

the efforts of the system to reach equilibrium.  
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Plagioclase  

Crystallisation or melting of plagioclase changes the composition of the melt 

and co-existing chromite (Irvine, 1977; Fisk & Bence, 1980; Roeder & 

Reynolds, 1991). Plagioclase crystallisation consumes Al2O3 from the melt, 

while resorption of plagioclase into the melt increases the Al2O3 content. These 

processes effect the Cr/Al ratio of the melt and consequently the Cr# of 

coexisting chromite. Plagioclase crystallisation increases the Cr# of co-existing 

chromite, while resorption has the inverse effect (Henderson, 1975; Henderson 

& Wood, 1981; Roeder & Reynolds, 1991; Roeder et al., 2000; Kamenetsky et 

al., 2001; Naldrett et al., 2009) . 

 

Olivine  

Crystallisation of olivine from a melt increases the Fe2+# content of the melt, 

consequently the Fe2+# of contemporaneously crystallised chromite will also 

increase (Roeder & Reynolds, 1991). The Cr# of chromite is not significantly 

affected by olivine crystallisation because the trivalent cation content of the 

melt is unaffected, there being no trivalent cations in the olivine crystallographic 

structure. Thus, the composition of chromite is controlled only by the 

equilibrium between the chromite crystallised and the melt it crystallises from. 

 

Clinopyroxene  

The crystallisation of clinopyroxene removes Mg, Fe, Cr and Al from the melt. 

The Cr/Al ratio of clinopyroxene is higher than that of the parent melt (Roeder 

& Reynolds, 1991). Consequently, co-crystallising chromite will have a lower 

Cr# value. Early reports suggested that chromite crystallises over a small 

temperature range (Hill & Roeder, 1974; Fisk & Bence, 1980) and stops 

crystallising after clinopyroxene and plagioclase start to form (Bowen, 1928; 

Irvine, 1965, 1967; Roeder & Hill, 1974; Dick & Bullen, 1984). However, these 

hypotheses have since been dismissed. Kamenetsky et al. (2001) identified 

chromite inclusions in olivine, orthopyroxene, clinopyroxene and plagioclase 

and studied those present in olivine, where the Fo (Fo=[Mg/(Mg+Fe2+)]) values 

extended a wide range (Fo75.0-94.4). Their findings support a hypothesis for 

continuous chromite crystallisation together with cotectic silicate phases, 

olivine, pyroxene and plagioclase, over a wide range of temperatures 
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(1,200ºC–1,700ºC). It is possible for the crystallisation temperature range to 

exceed 200-250°C (Kamenetsky et al., 2001). 

 

Cooling rate 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1: An idealised sketch to illustrate the effect of cooling rate on the 

crystallisation of chromite created using  information from Campbell & Murck, 

1986. 

 

Campbell & Murck (1986) demonstrated that rapid cooling of a melt promotes 

chromite formation, crystallising a mixed chromite-olivine mineral assemblage. 

In contrast, lower cooling rates result in the crystallisation of chromite alone, 

forming chromitite horizons (Figure 3.4.1).  

 

 

 

 

 

 

 

 

 

C hromite

C ooling R ate 
(temperature change/time)

C hromite 
& olivine

P
ro

p
o

rt
io

n
 o

f 

c
h

ro
m

it
e

 c
ry

s
ta

lli
s
e

d

C hromite

C ooling R ate 
(temperature change/time)

C hromite 
& olivine

P
ro

p
o

rt
io

n
 o

f 

c
h

ro
m

it
e

 c
ry

s
ta

lli
s
e

d



Chapter 3: Chromite 

  

51 

Pressure 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2: Idealised sketch of the relationship between pressure and 

chromium content of chromite (left) and chromium content of a melt (right) 

based on information from the literature (Fujii & Scarfe, 1985; Falloon &Green, 

1987; Roeder & Reynolds, 1991) 

 

Experimental studies of melt-chromite equilibrium dynamics by Roeder & 

Reynolds (1991) showed that increasing pressure raised the liquidus 

temperature favouring the crystallisation of chromite, although it did little to 

alter the solubility of chromium in the melt or change the composition of the 

chromite formed (Figure 3.4.2). The chromite-olivine-melt system was studied 

by Jaques & Green (1980) and demonstrated a pressure dependence for the 

residual Foolivine - Cr#chromite trend. Their results showed that the Cr# of 

chromites equilibrated with lower pressure melt were higher than those of 

chromites that had equilibrated with higher pressure melt for a given Fo value.  

 

Fujii and Scarfe (1985) and Falloon and Green (1987) investigated the effect of 

peridotite melting under controlled pressure conditions and produced Al-rich 

chromites. The Al2O3 composition of a melt has a greater affect on the chromite 

composition than the influence of pressure (Roeder & Reynolds, 1991). 

However, that is not to say that pressure does impact the composition of 

chromite. When chromite, plagioclase and melt phases co-exist, an increase in 

pressure may cause the destabilisation of plagioclase, and consequently 

C r#chr

P ressure

Destabilisation of plagioclase

P ressure

C r in meltC r#chr

P ressure

Destabilisation of plagioclase

C r#chr

P ressure

Destabilisation of plagioclase

P ressure

C r in melt

P ressure

C r in melt



Chapter 3: Chromite 

52 

increase the Al2O3 content of the melt. The co-existing chromite will equilibrate 

with the altered melt composition, increasing the Al2O3 content of the chromite, 

so lowering the Cr# value (Allan et al., 1988; Naldrett et al., 2009). 

 

Oxygen fugacity 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.3: Idealised sketch of the relationship between fO2 and chromium 

content of chromite (left) and chromium content of a melt (right) based on 

information from the literature (Ulmer, 1969; Cameron & De-Borough, 1969; 

Maurel & Maurel, 1982a,b; Murck & Campbell, 1986; Roeder & Reynolds, 1991) 

 

The fO2 is a function of the oxygen availability during chromite crystallisation. 

The chromite composition, specifically Fe3+# and the Fe3+/Fetotal ratio, give an 

indication, as the Fe3+ content of chromite is controlled by the oxidation of Fe2+ 

to Fe3+. Chromium solubility increases under reducing conditions (lower fO2) (at 

constant temperature) (Figure 3.4.3) as Cr2+ is more readily accommodated in 

the melt (Murck & Campbell, 1986; Schreiber, 1976; Roeder & Reynolds, 

1991). When the conditions rapidly become more oxidising, reduced chromium 

(Cr2+) oxidises to Cr3+ causing the melt to be super-saturated in Cr3+. This 

promotes the instantaneous precipitation of chromite out of the melt, yet the 

Cr# does not appear to be sensitive to fO2 variations (Ulmer, 1969; Cameron & 

De-Borough, 1969; Maurel & Maurel, 1982a,b; Murck & Campbell, 1986; 

Roeder & Reynolds, 1991). Although theoretically justified, there is difficulty 

applying the instantaneous precipitation of chromite hypothesis to a geological 
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context, as no geologic mechanism has been identified that produces a sudden 

increase in fO2 at constant or near constant temperature (Ulmer, 1969). 

 

Melt composition 

 

 

 

 

 

 

 

 

 

 

 

Figure3.4.4: Idealised sketch of the relationship between the SiO2 melt content 

and chromium content of chromite (left) and chromium content of a melt (right) 

based on information from the literature (Jaques & Green, 1980; Takahashi & 

Kushiro, 1983; Dick & Bullen, 1984; Murck & Campbell, 1986; Peck & Keays, 

1990; Melcher et al., 1997; Edwards et al., 2000) 

 

The melt chemistry, in particular the solubility of Cr3+, is controlled principally by 

the availability of octahedral sites. These are determined by the temperature 

and SiO2 content of a melt. Chromium (Cr3+) partitions into chromite when a 

melt is more SiO2 -rich. The elevated SiO2 content increases the 

polymerisation of the melt reducing the number of octahedral sites causing Cr3+ 

to become insoluble (Figure, 3.4.4), crystallising chromite (Dick & Bullen, 1984; 

Murck & Campbell, 1986; Peck & Keays, 1990; Melcher et al., 1997; Edwards 

et al., 2000). The SiO2 content of a melt is sensitive to changes in pressure. 

Adiabatic decompression of upwelling mantle peridotite increases the SiO2 

content of mantle melts (e.g. Jaques & Green, 1980; Takahashi & Kushiro, 

1983). Similarly, an increase in water vapour pressure (PH2O) will favour an 

increase in the SiO2 content of a melt (Kushiro, 1969). 
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Temperature  

 

 

 

 

 

 

 

 

Figure 3.4.5: Idealised sketch of the relationship between temperature and 

chromium content of chromite (left) and chromium content of a melt (right) 

based on information from the literature (Fisk & Bence, 1980; Ozawa, 1984; 

Murck and Campbell, 1986; Sack & Ghiorso, 1991; Scowen et al., 1991) 

 

An increase in temperature will increase the Cr3+ content of a melt, Figure 3.4.5  

(e.g. Fisk & Bence, 1980; Ozawa, 1984; Murck and Campbell, 1986; Sack & 

Ghiorso, 1991; Scowen et al., 1991). Two reasons have been suggested to 

explain this, i) an increase in temperature creates more octahedrally co-

ordinated sites in the melt, or ii) at higher temperatures the structure of the melt 

is less rigid, such that a site may alter more readily to facilitate the substitution 

of elements that would not normally be accommodated (Murck and Campbell, 

1986). Given that Cr3+ is more soluble in higher temperature melts, chromite 

precipitated and in equilibrium with melt at higher temperatures will have higher 

Cr# values (Fisk, 1986; Murck & Campbell, 1986; Roeder & Reynolds, 1991). 

In addition to Cr3+ the  Mg2+ content of a melt also increases as temperature 

rises, while the Fe2+, Fe3+, and Al3+ contents decrease, in terms of relative 

abundance (Murck & Campbell, 1986).  

 

It is important to note that the composition of chromite is considered to be 

proportionally representative of the composition of the melt phase at the time of 

chromite crystallisation. However, the composition does not necessarily 

correspond with the whole rock chemistry as coexisting minerals, e.g. olivine, 
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orthopyroxene and clinopyroxene, may distort the record of the chromite-melt 

equilibrium effective at the time of chromite crystallisation (Maurel & Maurel, 

1982; Roeder & Reynolds, 1991).  

 

3.5 Geochemical variation and trends in chromite 

At a given pressure and temperature the modal proportions and respective 

composition of chromite and silicate phases, as well as the composition of 

trapped interstitial fluid or melt, all effect equilibration. The higher the modal 

percentage of a mineral the more it is buffered against subsolidus re-

equilibration. The composition of chromitite (where chromite is the principal 

mineral phase comprising the rock) is analogous to the composition of the 

primary liquidus chromites (e.g. Sack & Ghiorso, 1991; Poustovetov, 2000 and  

Barnes & Roeder, 2001). The geochemistry of chromite and co-existing 

interstitial silicate phases, as well as the sequential order of crystallisation of 

these phases, provides a geochemical fingerprint by which to determine the 

parental melt composition. Experimental studies by Maurel & Maurel, (1982) 

and Roeder & Reynolds, (1991) have shown that chromite chemistry is 

fundamentally dictated by the composition of the parent melt from which it 

crystallises (e.g. Crawford, 1980; Dick & Bullen, 1984; Allan et al., 1988; Arai, 

1992; Della-Pasqua et al., 1995; Kamenetsky, 1996, 2001; Rollinson, 2008; 

Page & Barnes, 2009). 

 

Barnes and Roeder (2001) document the following geochemical trends; Cr-Al 

trend, the Fe-Ti trend and the Rhum trend, where the Al content of chromite 

increases primarily at the expense of Cr, and to a lesser extent Fe3+. These 

can be identified when examining chromite data using the bivariate plots; Cr# - 

Mg# and Fe3+# - TiO2. These plots are used to examine the Voskhod sample 

datasets; F1925, F1964-65 and F1996-97 presented in Chapter 8. 
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3.5.1 The Fe-Ti Trend 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1: The generalised Fe-Ti trend for chromite based on the global 

terrestrial spinel dataset (adapted from Barnes & Roeder, 2001). 

 

The Fe-Ti trend described by Barnes and Roeder (2001) identifies a positive 

relationship, where Fe3+ (and Fe2+#) increases with TiO2 wt%, (Figure 3.5.1). A 

negative correlation is observed between chromite Cr# and Mg#. The trend has 

been documented in Cr-rich chromites from basalt and differentiated mafic-

ultramafic igneous bodies. The co-variation of Fe and Ti recorded in chromite 

provides evidence for the fractional crystallisation of olivine (and/or pyroxene, 

with or without plagioclase) out of the parent magma, promoting the Fe/Mg 

ratio and Ti content of the parent magma to increase (Barnes & Roeder, 2001). 

Chromites in orthocumulate rocks that interact with evolving, trapped, 

intercumulus liquid commonly display strong a Fe-Ti trend relationship 

(Henderson, 1975; Henderson & Wood, 1981; Roeder & Campbell, 1985; 

Scowen et al., 1991). 
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3.5.2 The Cr-Al Trend 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.2: The generalised Cr-Al trend for chromite based on the global 

terrestrial spinel dataset (adapted from Barnes & Roeder, 2001). 

 

The Cr-Al trend (where Cr# = [Cr/(Cr+Al)] and Mg#=[Mg/(Mg+Fe2+)]) is 

characterised by an increase in Cr# that is complimented by a decrease in 

Mg#, (Figure 3.5.2). It is described by Barnes and Roeder (2001) as extending 

a wide range of Cr#, low Fe2+#, low Fe3+# and low TiO2 wt% values. The Cr-Al 

trend was first observed by Irvine (1967) in the Muskox layered intrusion 

located south of the Coronation Gulf in the Northwest Territories. Irvine (1967) 

proposed that the trend formed by equilibration of chromite and olivine at a 

constant temperature. The concept formed the theoretical basis for the olivine 

geothermometer where the gradient of the trend line is dependent on 

temperature. The gradient is formed by chromites that have re-equilibrated with 

co-existing olivine (Sack & Ghiorso, 1991; Poustovetov, 2000). This trend is 

inherent in mafic-ultramafic oceanic rocks (Barnes & Roeder 2001) and alpine 

ultramafic bodies (Genshaft & Ilupin, 2002).  
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3.5.2.1 Sub-solidus re-equilibration between chromite and olivine 

Post cumulus and sub-solidus re-equilibration between chromite and olivine 

results in Fe-Mg exchange. The process is controlled by the more abundant 

mineral phase. When chromite dominates re-equilibration between chromite 

and olivine promotes the substitution of Mg into olivine at the expense of Fe2+ 

that is incorporated into chromite. Cooling a system where chromite and olivine 

co-exist promotes subsolidus re-equilibration (Irvine, 1965). Furthermore, the 

effect of Fe2+-Mg2+ exchange is more pronounced in rocks where cooling rates 

have been slower (Barnes & Roeder, 2001) as the new equilibrium is more 

likely to be reached when the diffusional readjustments have had more time to 

reach conclusion. The extent of Fe-Mg exchange is determined when the 

closure temperature is reached and equilibration ceases (Roeder et al., 1979; 

Sack and Ghiorso, 1991). Sub-solidus re-equilibration affects the divalent 

cations, the trivalent ions, present in chromite, are essentially unaffected by the 

process. 

 

3.5.3 The Rhum Trend  

The Rhum trend is broadly similar to the Cr-Al trend. An increase in Al# (a 

decrease in Cr#) is complimented by an increase in Mg# (Figure 3.5.3). The 

Al# increases at the expense of Cr predominantly (although Fe3+ also 

decreases). In contrast to the Cr-Al trend that results from sub-solidus re-

equilibration, Henderson (1975) (and Henderson & Wood, 1981; Barnes & 

Roeder, 2001; Naldrett et al., 2009) described the reaction of chromite with 

intercumulus trapped liquid, plagioclase and olivine as the mechanism 

responsible for the formation of the Rhum trend. In terms of a chemical 

reaction, as the Cr/Al ratio of chromite changes the Fe/Mg exchange co-

efficient within the coexisting silicate phases alters to compensate, buffering 

the system (Barnes & Roeder, 2001; Naldrett et al., 2009). Hence, as the Cr/Al 

ratio of chromite decreases so too does the Fe/Mg ratio. This relationship 

reflects the preferential cation pairing of Cr3+ and Fe2+ that is complimented by 

the pairing of Al3+ and Mg2+. Consequently, the Rhum trend is restricted to 
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mafic layered intrusions where chromite is present within gabbroic 

orthocumulate rocks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.3: The Rhum trend present in chromite from the Rhum layered 

intrusion (adapted from Barnes & Roeder, 2001, after Henderson, 1975 and 

Henderson & Wood, 1981). 

 

3.5.4 Mg#-Cr# relationships and understanding chromite genesis  

The two principal Cr# and Mg# relationships documented in the literature on 

chromite; the Cr-Al and Rhum trends display an antithetic relationship, where 

Cr# increases as Mg# decreases are explained by two different processes 

(Sections 3.5.2 and 3.5.3); i) the influence of, and interaction between, co-

existing chromite and an evolving melt phase, the Rhum trend and ii) 

subsolidus re-equilibration exchange of divalent cations Fe2+ and Mg between 

chromite and a co-existing silicate phase (most typically olivine), the Cr-Al 

trend.  

 

Relationships between Cr# and Mg# in chromite have been used in support of 

models of chromite crystallisation (e.g., Irvine, 1967; Henderson, 1975; 
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Henderson & Wood, 1981; Cameron, 1977; and Naldrett et al., 2009). Naldrett 

et al., (2009) studied massive chromite samples collected from the Upper, 

Middle and Lower Groups of the Bushveld Complex. They identified two trends 

termed Trend A and Trend B. Trend A forms a negative correlation, where Cr# 

increases as Mg# decreases (the same relationship as exhibited by the Rhum 

trend). Trend B forms a positive correlation between Cr# and Mg#, where a 

decrease in the Cr# is accompanied by an decrease in the Mg#.  

 

3.5.4.1 Trend A 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.4: An idealised representation of the Mg#-Cr# relationships Trend A 

and Trend B as identified by Naldrett et al., 2009 in massive chromitite from the 

Bushveld Complex, South Africa. 

 

Naldrett et al. (2009) analysed a set of massive chromite samples and 

identified Trend A within; i) the upper region of the Lower Group (LG) and ii) in 

the lower region of the Middle Group (MG) combined with the Upper Group 

(UG), of the Bushveld Complex. They reported that as the Cr# ratio increased 

and the Mg# ratio decreased, the Fe3+/Fetot component remaining essentially 

constant. The trend (Trend A, Figure 3.5.4) was interpreted to result from rapid, 

sequential pulses of fresh magma entering the magma chamber, changing the 
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composition of the magma. The repetitive disturbance to the magma system 

prevented fractional crystallisation that consequently is not recorded by the 

chromite composition. Fundamentally Trend A forms by the same processes 

that are responsible for creating the Rhum Trend (Section 3.5.3). 

 

To date Trend A has been most commonly documented in chromite samples 

sourced from layered mafic-ultramafic intrusions. The trend has been observed 

in massive chromite, where interstitial silicate minerals are minimal (e.g. the 

Bushveld Complex) as well as where chromite co-exists with olivine, 

orthopyroxene and plagioclase (e.g. the Rhum layered intrusion). Chromite 

analyses obtained from accessory chromite sourced from the dunite halo 

periphery (located immediately adjacent to podiform chromitite ore bodies) 

outward into the host peridotite and dunite units typically display a progressive 

decrease in Cr# that is complimented by an increase in Mg# (the Cr-Al trend) 

(Irvine, 1965; Dick & Bullen, 1984). The geochemistry of chromite sourced from 

within ore horizons internal to podiform chromitites has been reported to show 

a different trend  of Cr# being stable as Mg# varies (e.g. Ahmed, 1984). 

 

Trend A, first recognised and described by; Henderson, (1975) (and again later 

Henderson & Wood, 1981) identified in the Rhum layered mafic-ultramafic 

complex. Other localities where this trend has been observed include; the 

Bacuri Sill in Guyana (Spier and Ferreira, 2001); the Bird River Sill, Manitoba 

(Ohnenstetter et al. 1986); the chromitites from the Upper Critical Zone of the 

Bushveld Complex (Cameron, 1977). Allan et al. (1988) observed the trend in 

quenched MORB-type lavas (the effect of quenching is deemed to minimise 

any post-accumulation reaction) sourced from the Lamont seamount chain, 

eastern Pacific. In addition to the Cr# - Mg# relationship produced by the 

MORB-type lava samples an inverse relationship between Fe3+# and Mg was 

noted, where Fe3+# increases as Mg# decreases (Allan et al., 1988).  
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3.5.4.2 Trend B 

Trend B, the second trend identified by Naldrett et al. (2009), forms by a 

decrease in Cr# that is accompanied by a decrease in Mg#, producing a 

positive slope trend (Figure 3.5.4). 

 

Trend B is interpreted by Naldrett et al. (2009) to correspond with periods when 

the composition of the magma in the magma chamber was dominated by 

fractional crystallisation, so promoting an increase in the Al2O3 content of the 

magma. This results in both a spinel and silicate (olivine and/or orthopyroxene 

(with ± plagioclase) phase precipitating from the magma. During periods when 

no new influxes of magma enter the chamber the composition of the magma 

systematically evolves, in doing so the chromite (and additional silicate phases) 

that crystallise and precipitate from the magma record the progressive 

compositional changes of the magma. The work of Hulbert & Gruenewaldt 

(1985) comments that the extremely high Cr# ratios observed in many of the 

disseminated chromites from the eastern Bushveld are likely to result from the 

co-crystallisation and precipitation of a plagioclase phase with chromite. The 

crystallisation and precipitation of plagioclase acts to buffer the abundance of 

Al2O3 in the melt such that Al is not incorporated into the chromite lattice, but is 

rather extracted from the magma through the formation of plagioclase. 

 

Trend B has been less commonly identified in chromitites from layered 

intrusions. Wilson, (1982) found the trend in chromitites from the upper region 

of the Great Dyke, Zimbabwe and Naldrett et al. (2009) identified it in massive 

chromite samples sourced from the lower region of the Lower Group (LG) and 

in the upper region of the Middle Group (MG) of the  Bushveld Complex. 

However, literature scans of the Cr# - Mg# plots created using chromite data 

from chromitites and disseminated chromite horizons identify additional 

localities where Trend B is exists, these include: chromite in chromitite from the 

Stillwater Intrusion, Montana (from data compiled by Roach et al., 1998. 

Sources: Stevens, 1944, Howland, 1955; Sampson, 1966; Beeson & Jackson, 

1968; Nicholson & Lipin, 1985); chromite-rich zones of the Nazhny Tagil and 

Kachkanar Ultramafic Complexes, Urals, Russia, (Auge et al., 2005); chromitite 
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deposits hosted in the layered ultramafic bodies of the Nuasahi massif, 

Singhbhum Craton, India, (Mondal et al., 2006); chromite from i) the chromite 

and dunite dyke and ii) accessory chromite from the dunite and clinopyroxene 

dyke, in the Maqsad Diapir, Oman, (Leblanc & Ceuleneer, 1992); disseminated 

chromites from the Eastern Bushveld Complex (Cameron, 1997), the Merensky 

Reef and U.G.3 – (Maandagshoek), (Hulbert & Von Gruenewaldt, 1985); in the 

chromite composition of chromite sourced from “between” chromitite ore zones 

as well as in nodular texture ore from podiform chromite deposits of the 

Sakhakot-Qila ophiolite complex, Pakistan (Ahmed, 1984); in “between” the 

chromite ore seams of Panton Sill, Western Australia (Hamlyn & Keays, 1979). 

 

3.5.5 Cyclic layering and chromitite layers 

The close link between cyclic layering and chromitite layers in layered 

intrusions suggests a genetic link between chromitites and multiple injection. 

However, regardless of whether magma mixing causes chromite crystallise 

from the melt; a layer of pure chromitite will only form if the mixed melt “hybrid” 

lies in the primary field of chromite, as discussed by Irvine (1977) and Sharpe 

& Irvine (1983). If a primitive chromite-saturated melt mixes with a more 

evolved (fractionated) chromite-saturated melt the resulting hybrid melt will be 

super-saturated with respect to chromite. Consequently, mixing a primitive 

magma with a fractionated magma favours the formation of chromite-rich 

cumulates (Murck & Campbell, 1986). 

 

3.6 Chromite alteration 

It is widely accepted that chromite is a suitable petrogenetic indicator when 

olivine is the predominant co-existing silicate phase. The composition of olivine 

does not allow for the transfer or exchange of trivalent cations (Cr, Al), (Irvine, 

1967; Lehmann, 1983; Dick & Bullen, 1984; Hatton & Von Gruenewaldt, 1985; 

Scowen et al., 1991; Sack & Ghiorso, 1991; Poustovetov, 2000). Subsolidus 

re-equilibration causes virtually no change to the abundance of Cr, Al or Fe3+ 

owing to their low diffusivity in olivine (Roeder & Campbell, 1985; Scowen et 
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al., 1991; Barnes, 1998).  This is not true of the divalent cations, Fe2+ and Mg, 

that are interchangeable between olivine and chromite during subsolidus re-

equilibration. If an appropriate carrier phase e.g. an intergranular fluid were 

present, it seems feasible that trivalent species could be mobilised out of 

chromite and across an olivine medium by intergranular flow.  

 

Changes in chromite composition are not solely dependent on the diffusion of 

cations out of the lattice. Neary (1974) reports two co-existing chromite 

compositions within a grain, while evidence of unmixing textures and 

compositions are reported by Loferski and Lipin (1983), Sack and Ghiorso 

(1991) and Tamura and Arai, (2005). Furthermore, chemical changes e.g. the 

loss of aluminium, have been documented and attributed to events such as re-

equilibration with, late stage magmatic fluids (Frisch, 1971), metamorphic fluids 

above 550°C (Barnes S.J. 1998) and at lower temperatures (Arai et al, 2006). 

There is insufficient evidence to support that these changes could not have 

taken place under conditions of decompression and decreasing temperature, 

such as those associated with the latter stages of a thermal cycle in the mantle 

where fluids are still present. Consequently, caution needs to be exercised 

when interpreting chromite compositions as being “original”. Reports of 

aluminium mobility are endorsed by the alteration of chromite to ferritchromit or 

chromian magnetite where it is evident that aluminium has been mobilised 

creating an end member composition that is absent of, or significantly lacking 

in, aluminium (e.g. Ulmer 1974, Shen et al 1988 and Khalil and Makky 2009). 

The silicates associated with these altered chromites are often notably 

chromian-rich and a testament to the mobility of chromium.  

 

The presence of altered chromite phases are easily identified in reflected light 

and can be avoided when collecting data. In spite of the hindrance introduced 

by the composition of altered chromite, the trivalent cations in chromite are still 

considered to be the most effective to use when developing tectonic 

discrimination fingerprint models (Chapter 2, Section 2.3).  
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3.6.1 Accessory chromite morphologies: Proposed mechanisms of 

formation 

A variety of chromite grain morphologies are associated with mantle 

peridotites. Terms to describe these shapes and textures included holly-leaf, 

cuspate, idiomorphic, subidiomorphic and euhedral. 

 

Holly leaf chromite forms from the partial melting of peridotite (Mercier and 

Nicolas, 1975). The shape results when the chromite phase is out of 

equilibrium with the melt and consequently subjected to aggressive resorption. 

This process produces the cuspate and concave embayment erosion features 

characteristic of a crystal formed out of equilibrium. The disruption to 

equilibrium may result from interaction with a new percolating melt or from 

localised, decompressional melting of clinopyroxene (e.g. Augé, 1982). 

 

The formation of subidiomorphic and euhedral chromites is debated. Two 

mechanisms are proposed. 

i) Magmatic crystallisation from a melt (Pike and Schwarzman, 1977) 

ii) Melt-chromite reaction, where residual chromite interacts with a percolating 

melt (Pike & Schwarzman, 1977; Leblanc et al., 1980) where the reaction is not 

extremely aggressive resulting in rounding of the corners of the crystals. 

 

Pike and Schwarzman (1977) propose that euhedral chromite grains develop 

when of a state of equilibrium is reached between a pre-existing chromite and 

a melt or fluid during recrystallisation of peridotite. 

 

3.6.2 Silicate inclusions in chromite  

Poikilitic textures develop from the growth of chromite around an earlier 

crystallised (or simultaneously growing) silicate grain. Silicate inclusions within 

chromitite chromite are common and deemed to form during magmatic 

crystallisation and/or melt-rock interaction (Roberts, 1982; Lorand and Ceuleer, 

1992). It is debated that chromites with embayment features and deep cuspate 
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edges represent a precursor stage to poikilitic texture formation (Barnes & Hill, 

1995). Insufficient chromium availability in the melt may result in incomplete 

growth of the crystal form and consequently, the chromite grain partially 

envelops the silicate grain around which it is growing.  

 

3.6.3 Chromite ore types 

Greenbaum (1977) created a classification to distinguish between different 

chromite bearing rock types on the basis of the modal variation of chromite 

comprising a rock. The categories are; massive chromitite (>90% chromite), 

olivine-chromitite (51-90% chromite), chromitiferous dunite (5-50% chromite) 

and dunite with accessory chromite (<5% chromite). Although this criteria is 

satisfactory for describing the compositional variation of the chromite/silicate 

ration of a rock, it fails to identify the vast variety of textures associated with 

podiform chromite ores.  

 

There is no strict textural classification system used to describe chromite ores, 

however, some terms commonly used in the literature include; disseminated 

chromite, massive chromite, nodular, occluded silicate and chromite net 

textures and orbicular chromite ore-types (Thayer, 1964, 1969; Greenbaum, 

1977; Brown, 1980; Leblanc, 1980; Ahmed, 1982; Duke, 1983). Nodular, 

orbicular and very coarse chromite ore textures are features unique to ophiolite 

chromitites (Thayer, 1964; Leblanc, 1980; Brown, 1987). 

 

Disseminated chromite. 

Weakly disseminate chromite is comprised of less than 5% modal proportion 

chromite. Grains are typically 0.1-2 mm and have euhedral, subhedral or 

anhedral forms. The grains may be scattered evenly throughout the olivine host 

silicate or form disorganised grain clusters in patches within the olivine. 

 

Heavily disseminated chromite, where the rock is classified on the basis of 

modal variation as an olivine-chromitite, characteristically displays cumulate 

textures, evidence of layering and graded layers (Duke, 1983). 



Chapter 3: Chromite 

  

67 

 

Nodular chromite, chromite net textures, occluded silicate, and orbicular 

chromite are all textures displayed by olivine chromitite or chromitiferous 

dunite. 

 

Nodular chromite 

Nodular chromite is comprised of interlocking, anhedral to subhedral chromite 

grains that form elliptical nodules approximately 2 mm to 20 mm in diameter, 

these are enclosed in a matrix of dunite (olivine or serpentine). Greenbaum 

(1977) describes that the rounded aggregates exhibit a variety of forms ranging 

from spherical to oblate and prolate spheroids. Within a single podiform 

chromite deposit nodules may vary in size, laterally and/or with depth 

throughout the deposit. Nodules will be in point contact with adjacent nodules 

with more densely packed nodules sharing a greater amount of surface contact 

between neighbouring nodules (Greenbaum, 1977) a feature that can 

ultimately result in nodules coalescing (Brown, 1987). Nodules may be 

elongate, the lineation defined by the long axis of the nodule preserves 

evidence of strain events, in such cases the nodules are normally aligned.  

 

Nodules may possess cores comprised either of olivine (Brown, 1980), or in 

some cases of chromite dendrites inter-grown with olivine with or without 

clinopyroxene and/or feldspar (Greenbaum, 1977; Leblanc, 1980; Brown, 1987; 

Malpas & Robinson, 1987) although the host matrix silicate present between 

nodules is only composed of olivine. Silicate bearing cores may comprise as 

much as two thirds of the volume of some nodules, with the silicate proportion 

being as great as 60% (Greenbaum, 1977). Encasing the dendritic chromite 

and silicate core is a shell  of massive, granular chromite. 

 

Net textures and occluded chromite 

The chromite net texture was first report by Thayer (1969), ore is comprised of 

small 1-2 mm subhedral to euhedral chromites present interstitially between 

larger, rounded olivine grains (that have since been altered to serpentine). The 

texture forms from the settling of large olivine and small chromite grains in a 

fluid magma (Brown, 1980). As the proportion of chromite crystallised 
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increases relative to that of olivine an occluded silicate texture forms (Thayer, 

1969). An occluded silicate texture forms when grains of olivine are 

encapsulated in a matrix of smaller, interconnecting chromite grains that form a 

mesh . 

 

Orbicular chromite 

The mineral proportions and arrangement of orbicular chromite is the reverse 

of nodular chromite. The ellipsoids comprise a core of serpentinised olivine 

encased by one or multiple chromite shells alternating with olivine. 

Characteristically the chromite shells are very fine ranging from 0.2-2.0 mm in 

width. Multiple chromite shells are separated by comparatively thicker, 

irregular, coarse halos of olivine. The chromite grains forming the shells are 

anhedral to subhedral and range from 01.-2.0 mm in dimension (Greenbaum, 

1977) 

 

Massive chromite 

Chromite comprises >90% of the modal proportion. Grains are coarse (up to 10 

mm), euhedral to subhedral and coalesce to form granular aggregates. A small 

proportion (<10%) of inter-granular serpentinised olivine is present. Fluctuation 

in the proportion of serpentine results in a banded texture. When the proportion 

of serpentine exceeds 10% the rock is termed an olivine-chromitite. 

3.6.4 Densification of chromite: Mechanisms and features 

The low chromium contents in melts, even those considered relatively 

chromium-rich such as boninites and komatiites (Section 3.3.1.2, paragraph 3) 

mean that for a chromite deposit to form large quantities of melt are required. 

For a Cr-rich chromite deposit to form (as opposed to Al-rich chromite) requires 

that vast quantities of chromite to crystallise from the melt as well a high 

chromium availability and favourable physicochemical conditions to promote 

the incorporation of Cr3+ into the chromite lattice over that of Al3+ or Fe3+.  

 

The composition of podiform chromite ores, in terms of mineralogical 

composition is principally controlled by the ratio of chromite and olivine that 
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crystallise from the parent melt. This is governed by the melt composition and 

physical parameters e.g. fO2 and the relative temperatures of the melt and wall-

rock (Mysen & Boettcher, 1975). For massive chromite to form it is necessary 

either for chromite to be the sole crystallising phase from the melt or for a 

secondary, post-crystallisation process to aid the accumulation and 

concentration of the chromite grains. The latter process is referred to in the 

literature as densification (e.g. Cameron & Emerson, 1959), several theories 

have been proposed to explain this process. 

 

3.6.4.1 Mechanical separation: Drifting velocity 

Compared with olivine, chromite has a greater drifting velocity and this 

promotes the clustering of chromite in synneusis structures, as well as the 

separation of chromite from contemporaneously crystallised olivine within a 

melt (Lago et al., 1981). This mechanism has been proposed to explain the 

formation of chromite segregations in podiform chromite and requires that the 

chromite clusters are mechanically separated from olivine during settling in the 

melt conduit. 

 

3.6.4.2 Overgrowth – Postcumulus reaction with a chrome-rich liquid 

From the study of textures in chromite-rich rocks from the Bushveld Complex, 

Sampson (1929; 1931; 1932) concluded that the addition of a later-stage 

chrome-rich liquid had increased the initial chromite/olivine ratio. Proposed 

sources of a chrome-rich liquid include (i) partial re-melting of chromite crystals 

and subsequent chromite crystallisation, (ii) crystallisation of chromite from a 

chrome-rich residual magma or (iii) an intrusion of fresh chrome-rich magma 

that would permeate interstitially between the pre-existing settled chromites. A 

similar hypothesis was put forward by McDonald (1965; 1967a; 1967b) to 

explain the formation of massive chromite layers in the Bushveld Complex, 

citing the contemporaneous settling of chromite grains with chrome-rich melt 

droplets to explain the textures of massive chromite ore.  
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However, these theories invoking the later stage addition and reaction of a 

chrome-rich liquid with pre-existing chromites were rejected by Jackson (1966), 

Wager & Brown, (1968) and Cameron (1969). In addition, Golding (1975) also 

rejected this model as a means of explaining the massive chromite ore textures 

observed in podiform chromite from the Coolac ultramafic belt, New South 

Wales.   

 

3.6.4.3 Post-cumulus reaction between chromite, plagioclase and a late-

stage liquid 

The formation of Al-rich massive chromite ore was explained by Henderson & 

Suddaby (1971) to result from post-cumulus reaction and equilibration between 

crystallised Cr-rich chromite, plagioclase and an interstitial trapped liquid. This 

reaction forms chromite with a lower Cr, higher Al content and causes an 

increase in the chromite volume. 

 

3.6.4.4 Compaction - Sintering 

Sintering is a process most commonly associated with the manufacturing of 

ceramics and powder metallurgy. However, it has been noted by several 

workers that the textures formed and the characteristic reduction in porosity 

that occurs as a consequence of the process are analogous to those seen in 

massive chromite ore, from layered intrusion deposits, e.g. the Bushveld 

Complex, South Africa (Hulbert & Von Gruenewaldt, 1985) and podiform 

chromite deposits, e.g. chromite from the Coolac ultramafic belt, New South 

Wales (Golding, 1975). Sintering has also been used in a geological context to 

explain the densification of magnetite layers in the upper zone of the Bushveld 

Complex (Reynolds, 1985) as well as the formation of monomineralic layers in 

layered intrusions (Ulmer & Gould, 1982). 

 

Sintering results from the application of heat to a material and results in 

reducing the porosity; the temperature applied is not sufficiently high to melt 

the material. The process leads to the rearrangement of grains to optimise 

packing by maximising the number of grain boundary contacts. In addition, the 
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process increases the solubility, and consequently the transfer, of interstitial 

material away from the grain boundary contact areas towards regions of lower 

tensile stress. When pressure is applied to process it is termed pressure 

sintering and the packing order is further improved. 

 

Typically, sintering changes the physical properties of a material without 

changing the bulk chemical composition. However, if the grains are not 

chemically homogenous then the compositions may be altered by solid-state 

diffusion. This results from the migration of atoms through a crystal lattice and 

transfer between neighbouring lattices. Grain boundary contacts provide a 

pathway for atoms to be exchanged between grains. Interstitial liquid can serve 

as a medium for the transfer of atoms between grains if the chemical 

composition permits. If the conditions for intergranular reaction prevail for a 

long enough time period it is possible for homogenization to be achieved, 

although long time periods are required (Li, 1998). The higher the sintering 

temperature the shorter the time required for homogenisation to be achieved 

(Fischmeister & Exner, 1965). It is noteworthy that the long time periods 

proposed by these authors are considered in terms of metallurgical processing 

and refer to timescales in excess of 500 hours; in a geological context, this 

time frame is very short. 

 

Sintering and related processes such as Nabbaro-Herring creep (i.e. atoms 

diffuse through the crystal lattice resulting in grain elongation), Coble creep (i.e. 

atoms diffuse along grain boundaries causing grain elongation) and Ostwald 

ripening (i.e. small crystals dissolve and are adsorbed onto larger crystals) are 

all mechanisms that could take effect during the densification of chromite 

grains to produce enlarged, annealed grains, overgrowth textures and grain 

boundary interface adjustments. Furthermore, these are features that have 

been observed and documented in massive chromite ores from both podiform 

and stratiform chromite deposits (Voll, 1960; Golding, 1975; Hulbert & Von 

Gruenewaldt,1985). 
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3.6.4.5 Deformation: Grain boundary features 

 

 

 

 

 

 Figure 3.6.1: Grain boundary model schematic (after White & White, 1981) 

[a] The grain boundary model is comprised of a grain boundary film (f) along this lie isolated voids (v), at 

grain triple junctions voids link to form tubes (t) or a series of interconnected micropores. [b] Illustrates the 

plan-view cross-section β of a grain boundary as defined in [a] 

 

White and White (1987) studied grain boundary features to understand the 

effect of intercrystalline mass transport during deformation processes. The 

results documented observations made from the study of polycrystalline 

tectonites and a grain boundary model was developed to illustrate the principal 

findings. Features include, (i) grain junction tubules, (ii) isolated voids and (iii) a 

thin film of distorted crystal structure (Figure 3.6.1). Voids along grain 

boundaries shorten the effective diffusion path. The overall effect of the 

observed grain boundary features is to enhance the rate of intercrystalline 

transport processes. 
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Chapter 4.  The Regional Setting of the Voskhod  

Podiform Chromite Deposit 

 

4.1 Podiform Chromitites in the Kempirsai Massif 

The Voskhod podiform chromitite is one of approximately 50 chromitite deposits 

and associated ore showings located within the Main Ore Field (MOF) of the 

Kempirsai Massif (Distler et al., 2003; Herrington et al., 2005). Collectively, these 

deposits form the largest occurrence of podiform chromitite in the world; both in 

terms of the number of recognised deposits as well as the unusually large size of 

the individual ore bodies. The MOF is situated in the south east of the Kempirsai 

Massif and is presently being mined for chromite. The Kempirsai Massif is an 

ophiolite complex that formed within the Magnitgorsk arc system, it is present 

within the Sakmara allochthon located in the south of the Ural mountains, 

Kazakhstan (see Figure 4.1.1).  
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Figure 4.1.1: A map of the Ural divisions and corresponding geological units, with 

an enlarged map showing the Kempirsai Massif geology and orefields. 

(Modified after Melcher et al., 1997; Herrington et al., 2005) 
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4.2 Regional setting: The Urals 

 

Figure 4.2.1: A late Carboniferous, palaeo-graphic world map to illustrate the 

construction of the Ural mountain chain. 

Continent names, given in italics, landmass positions as at the time of the late Carboniferous. 
(After Dietz & Holden, 1970 and Windley, 1995) 

 

The Ural mountains form the geographic divide between Europe and Asia. This 

orogenic mountain belt formed as a result of the Palaeozoic Uralide orogeny, an 

event that resulted in the collision of the East European, Siberian and Kazakh 

cratons throughout the Silurian to Carboniferous and concluded in the assembly of 

Pangea. The geological processes associated with the orogeny, are responsible 

for the formation of the diverse forms of mineralisation found in the Urals.  
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4.2.1 Tectonic evolution : Arc systems and structures of the Urals. 

The Uralian orogenic cycle spanned from the Early Ordovician to the Early 

Triassic. The event was initiated by continental rifting at the passive plate margin 

boundary that existed prior to the split of the East European craton (EEC) and 

Kazakh, Siberian cratons, during the Late Cambrian to Early Ordovician. 

Throughout the Mid-Ordovician to Late-Silurian, extensional rift tectonics led to the 

development of a mid-ocean ridge (MOR) setting and associated sea floor 

spreading and ocean crust formation. This formed the palaeo-Uralian ocean basin, 

sited at the eastern edge of the EEC (Herrington et al., 2005). 

 

An intra-oceanic thrust series developed during the onset of the Uralian palaeo-

ocean basin closure in the early-Silurian. As basin closure progressed, ongoing 

compressional tectonic dynamics led to the development of a SSZ setting 

(Savelieva & Nesbitt, 1996) and subsequent formation of  two intraoceanic volcanic 

arc systems; the Magnitogorsk (to the south) and Tagil (to the north) at the western 

margin of the ocean basin (Figure 4.2.2). Similarly, to the east of the basin a 

subduction zone and associated continental arc system, the Valerianovka arc, 

developed throughout the Late Devonian to Carboniferous at the western fringe of 

the Kazakh plate (see Figure 4.2.1).  

 

The compressional tectonic regime progressed throughout the Late Devonian 

during which the continental margin of the EEC (East European craton) subducted 

eastward beneath the Magnitogorsk and Tagil ocean arcs. Simultaneously the 

Kazakh plate moved westward, encroaching and ultimately closing the paleo-

uralian ocean, this was completed by the Late Carboniferous. Continent-continent 

collision continued throughout the Permian to the Early Triassic, forming the Ural 

mountains. The East Uralian zone (EUZ), situated east of the Magnitogorsk arc 

zone, represents the collision zone contact between the two cratons. To the west, 

the Main Uralian fault zone (MUFZ), separates the Magnitogorsk arc zone from the 

Central and West Uralian Zones (see Section 4.4, Figure 4.4.1,). (Seravkin et al., 

1992; Maslov et al., 1993; Melcher et al., 1994; 1997; Brown & Spadea, 1999; 

Brown et al., 2001; Spadea et al., 2002; Herrington et al., 2005; Brown et al., 

2006). 
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Figure 4.2.2: A schematic cartoon to illustrate the formation and relative positions of 

the Magnitogorsk, Tagil and Valerianovka arc systems during the Late Devonian. 

Cartoon based on schemcatics from Melcher et al., 1997 Herrington et al., 2005 and Brown et 
al., 2006 

Three major faults transect north to south along the Uralian Central, these are; the 

Main Uralian Fault Zone (MUFZ) to the west, the East Magnitogorsk-Serov Mauk 

Fault (EMSMF) in the centre and the Troisk Fault to the east Zone (Figure 4.2.2). 

The two major arc systems, the Magnitogorsk arc and the Valerianovka arc, 

present in the south Urals have sutured together along the EUZ (Herrington et al., 

2005). 

 

4.2.2 The Main Uralian Fault (MUF) 

The MUF is the suture contact between the EEC, to the west, and the 

Magnitogorsk and Tagil arcs (south and north respectively) present to the east 

(Figure 4.2.2 and Section 4.4 Figure 4.4.1,). Arc-continent collision between the 

Magnitogorsk island arc and the margin of EEC ceased in the Late Devonian 

(Puchkov, 1997, 2000; Brown & Spadea, 1999; Alvarez-Marron, 2002; Brown et 

al., 2006). 
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The MUF extends the entire length of the Urals, it is more than 2,500 km long. In 

the south Urals the MUF zone (MUFZ) is approximately 10 km wide and is 

comprised of an east dipping mélange unit. Lithologically this zone is dominated by 

serpentinites clastically bound with fragments of Devonian volcanics and arc 

derived sedimentary rocks as well as lenticular slabs of ultramafic mantle rock that 

vary from several hundred m
2
 up to a km

2
 in dimension (Herrington et al., 2005 and 

refs therein; Brown et al., 2006). 

 

4.2.3 The Tagil Arc - Middle to Polar Urals 

The Tagil arc, an intraoceanic arc formation, accreted during the Silurian to Middle 

Devonian (Yazeva and Bochkarev, 1996; Bosch et al., 1997). To the west of the 

arc the basement units are comprised of Silurian andesitic lavas and in the east 

Early Devonian trachytes and volcaniclastic units. The basement units are overlain 

by approximately 2,000 m of Early to Middle Devonian limestone that to the east is 

inter-layered with calc-alkaline lavas that formed in a mature island arc setting 

(Antsigin et al., 1994; Yazeva and Bochkareve, 1994). The arc rock suite is 

intruded and cross-cut by dunite-clinopyroxene-gabbro massifs. Structurally the 

Tagil arc is an open synform (Bashta et al., 1990; Ayarza et al., 2000) that has 

been metamorphosed to a lower greenschist facies (Herrington et al., 2005).  

 

4.2.4 The Magnitogorsk Arc – South Urals 

The Magnitogorsk arc formed in a SSZ setting. The basement rocks consist of 

boninitic and tholeiitic lava assemblages and include the Baimak-Buribai Complex. 

These lavas erupted into a forearc setting in the Late Silurian – Early Devonian 

and are associated with incipient subduction; the primary stage of supra-

subduction initiation. As the island arc system matured, during the Middle – Late 

Devonian, volcanism evolved to a tholeiitic - calc alkaline composition These lavas 

overly the boninitic and tholeiitic lavas (Seravkin et al., 1992; Brown & Spadea, 

1999; Spadea et al., 2002). Up sequence are volcaniclastic sediments, that were 

deposited in a forearc basin and reach up to 5,000 m in thickness (Maslov et al., 

1993; Brown et al., 2001). The top of the sequence is capped by Early 

Carboniferous, shallow-water, carbonates that unconformably overlie the island arc 
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rocks. Late-stage, Early Carboniferous granites intrude the arc sequence. 

Structurally the Magnitogorsk arc exhibits minor open folds and thrust deformation 

features (Brown et al., 2001). Herrington et al. (2005) report that the metamorphic 

grade does not reach greenschist facies. 

 

4.3 Boninites of the Urals 

Early to Mid-Devonian boninitic rocks (lavas, dikes and shallow-level intrusive 

rocks) have been recognised in the Baimak-Buribai Complex of the Magnitogorsk 

Zone island arc system. The Baimak-Buribai is comprised of volcanic and sub-

volcanic units, including pillow lavas, hyaloclastites, dykes and volcanic terrigenous 

deposits and pelagic sediments. The lavas range from boninitic to calc-alkaline in 

composition and are the only documented boninite lavas present in the South 

Urals (Ivanon et al., 1989; Seravkin et al., 1992; Brown & Spadea, 1999; Spadea 

et al., 2002). The complex provides a record of the progressive evolution and 

development of the Magnitogorsk island arc (Spadea et al., 1998).  

 

The Baimak-Buribai complex boninites are basic-intermediate lavas with 

compositional ranges of; 52-59% SiO2, 7-19% MgO, 0.3-0.5% TiO2, 4-10% CaO, 

low alkalis and relatively high Cr ≤ 1000 ppm and Ni ≤ 400 ppm. The rare earth 

element (REE) concentration characteristics include, low total abundances, 

depleted Ce concentrations, low La/Yb ratios and in some samples prominent 

depletion of the Middle REEs (MREEs) (Spadea et al. 1998).  
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Figure 4.3.1: A geological map of the Urals showing the location of Baimak and 

Buribai the source localities for the boninite samples and the relative position of the 

Kempirsai Massif (host to the Voskhod deposit). 

Adapted from Herrington et al., 2002 

 

Three field localities were studied and sampled by Spadea et al. (1998); the 

Shankhai Stream sequence, the Tanalyk River sequence and the Baimak-Buribai 

type sequence near Samaskoe (listed in order from the base to the top of the 

Baimak-Buribai Complex).  

 

The boninite samples were collected from horizons within the Shankhia Stream 

and Tanalyk River sequences. Of the 29 samples collected and studied by Spadea 

et al. (1998) five were identified as boninites; LK148-1, SU386, SU398, SU401 and 

Preuralian zone

Western-Uralian

folded zone

Ural-Tau zone

Tagil zone

Magnitogorsk (Tagil-

Magnitogorsk zone

East Ural zone

Ultramafic-mafic ophiolite 

massifs

Zoned ultramafic-mafic 

massifs (platinum belt)

Main granite massifs

Main allochtonous

boundaries

N

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

TagilN

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

Tagil

Preuralian zone

Western-Uralian

folded zone

Ural-Tau zone

Tagil zone

Magnitogorsk (Tagil-

Magnitogorsk zone

East Ural zone

Ultramafic-mafic ophiolite 

massifs

Zoned ultramafic-mafic 

massifs (platinum belt)

Main granite massifs

Main allochtonous

boundaries

Preuralian zone

Western-Uralian

folded zone

Ural-Tau zone

Tagil zone

Magnitogorsk (Tagil-

Magnitogorsk zone

East Ural zone

Ultramafic-mafic ophiolite 

massifs

Zoned ultramafic-mafic 

massifs (platinum belt)

Main granite massifs

Main allochtonous

boundaries

N

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

TagilN

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

TagilN

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

TagilN

100 km

50° N
58° E 60° E

58° N

Kempirsai 

Massif

Buribai

Baimak

Nizhnly

Tagil



Chapter 4: The regional setting of the Voskhod podiform chromite deposit 

81 

LK148-4. Petrographically these five samples split forming two groups termed 2b 

and 3a. The definition for each group given by Spadea et al. (1998) is as follows; 

 

“Group 2b (LK148-1, SU386, SU398 and SU401) – are moderately porphyritic 
boninitic basaltic-andesites with olivine and/or orthopyroxene phenocrysts, and Cr-
spinel included within olivine as micro-phenocrysts. Olivine is irregularly 
distributed, it is sometimes glomerophyric, and may be corroded. The secondary 
minerals are actinolite, chlorite, albite and epidote.” 
 
“Group 3a (LK148-4) – are aphyric, variably textured, spherulitic to dendritic and 
microlitic, commonly amygdaloidal, boninites. The secondary minerals are chlorite, 
actinolite, pumpellyite and epidote.”  
 

The literature portrays an apparent genetic association between boninite melts and 

the formation of mantle hosted, high-Cr, podiform chromitites present within 

ophiolites; e.g. the Troodos ophiolite, Cyprus - Robinson et al., 1983; the Luobusa 

ophiolite, southern Tibet - Zhou, 1996; the northern region of the Oman ophiolite in 

Wadi Rajmi - Rollinson, 2005; 2008; the Thetford Mines ophiolite, Québec, Canada 

- Pagé & Barnes, 2009. (Chapter 3,  Section 3.3.1.4: Chromite crystallisation and 

melt type relationships, references: Zhou & Robinson, 1994; Arai & Yurimoto, 

1994; Zhou et al., 1996; Matsumoto et al., 1997; Zhou et al., 2001; Uysal et al., 

2005; Morishita et al., 2007; Caran et al., 2010). Consequently, it is becoming 

increasingly more common for authors to compare podiform chromitite and 

boninite lava data from genetically associated formations (e.g. Rollinson, 2005; 

2008; Pagé & Barnes, 2009).  

 

Boninite lavas have not been recorded within the crustal lava units of the 

Kempirsai Massif. The lava assemblages observed are Early Silurian dolerites, 

amygdoloidal basalts and siliceous tuffs (Pavlov & Grigoryeva, 1977). These Early 

Silurian lavas are too old to be related to the formation of the Magnitogorsk island 

arc system (Middle-Late Devonian). Instead, they are more likely MORB-type 

basalts that formed during the opening of the Uralian palaeo-ocean basin, in a 

MOR setting. Since the mantle units of the Kempirsai Massif have numerous, >15 

Mt, high-Cr, podiform chromitite deposits in the Main Ore Field, it seems feasible  

that during subduction initiaition, when the Kempirsai Massif mantle would have 

been part of a developing fore-arc setting, interaction with a boninite melt may 

have occured.  
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Observed field and petrographic characteristics of the Baimak-Buribai complex 

boninites provide evidence for high temperatures typical of boninitic volcanism, 

~1150°C – 1300°C (Crawford et al., 1989). Furthermore, the the abundance of 

vesicles within the boninite units indicate that the magmas were also volatile rich 

(Spadea et al., 1998).  

 

Given that; i) the age dates of the Baimak-Buribai complex boninites are 

contemporaneous with the formation of the early stage Magnitogorsk arc, forearc 

setting (Spadea et al., 1998), ii) the evidence for the podiform chromitites (Melcher 

et al., 1997) and boninites (Spadea et al., 1998) being volatile rich and iii) the 

geographic proximity of the Kempirsai Massif and the Baimak-Buribai complex 

(Spadea et al., 1998; Herrington et al., 2005; Brown et al., 2006); a genetic 

relationship between the Baimak-Buribai boninites and the podiform chromitites of 

the Kempirsai Massif seems possible; a relationship that will be investigated further 

in the thesis. 

 

4.4 The Sakmara Allochthon 

The Sakmara allochthon accretionary complex is located in the South Urals. It is 

comprised of Cambrian and Ordovician sedimentary sequences rifted from the 

margin of the East European Craton (EEC). Fragments of oceanic-arc volcanic 

rocks and massifs, including the Kempirsai and Khabarny massifs, are 

incorporated within these sedimentary units (Herrington et al., 2005). Between the 

Sakmara Allochthon ophiolite massifs and the Main Ural fault (MUF) is a narrow 

belt comprised of metasediments and meta-ophiolites including eclogite-facies 

assemblages. The eclogites have been documented to record peak metamorphic 

conditions of 27 kbar and 615°C (Melcher et al. 1997 and references therein). 
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Figure 4.4.1: A map of the Sakmara Allochthon position in the south Urals, the 

regional geologic complexes and major faults.  

The cross-section is representative (not to scale). Modified after Herrington et al., 2005. 

 

The Sakmara Allochthon forms part of the Magnitogorsk arc-continent collisional 

suture. The unit was exhumed and obducted westwards onto the eastward 

subducting continental margin of the EEC during the Middle Devonian; a process 

associated with the closure of the palaeo-Uralian ocean basin (Figure 4.4.1)  

(Herrington et al., 2005). The Sakmara allochthon overlies the West Uralian zone 

which is comprised of continental shelf sediments and is bound to the east by the 

Main Ural deep-fault (Melcher et al., 1997). 

 

58

E
M

F
Z

T
F

T
F

E
M

F
Z

M
U

F
Z

M
U

F
Z

56

60

62º E

50

52

54

56º N

Kempirsai Massif

Sakmara Allochthon

Khabarny Massif

East Uralian

Zone 

Trans-Uralian Zone

West Uralian
Zone 

Magnitogorsk Arc

58

E
M

F
Z

T
F

T
F

E
M

F
Z

M
U

F
Z

M
U

F
Z

56

60

62º E

50

52

54

56º N

Kempirsai Massif

Sakmara Allochthon

Khabarny Massif

East Uralian

Zone 

Trans-Uralian Zone

West Uralian
Zone 

West Uralian
Zone 

Magnitogorsk Arc

Foreland fold & thrust belt 

zones & complexes

Magnitogorsk Zone

Zilair Nappe sediments

Maksutovo Complex

Suvanyak Complex

Sakmara Complex

Ultra-mafic Massifs

Trans Uralian Zone

East Uralian Zone

Proterozoic EEC

Foreland fold & thrust belt 

zones & complexes

Magnitogorsk Zone

Zilair Nappe sediments

Maksutovo Complex

Suvanyak Complex

Sakmara Complex

Ultra-mafic Massifs

Trans Uralian Zone

East Uralian Zone

Proterozoic EEC

A B

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Magnitogorsk 

arc

East Uralian 

Zone
Trans-Uralian 

Zone

Sakmara 

allochthon

MUFZ
EMFZ

TF

West Uralian 

Zone

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Magnitogorsk 

arc

East Uralian 

Zone
Trans-Uralian 

Zone

Sakmara 

allochthon

MUFZ
EMFZ

TF

West Uralian 

Zone

A B

58

E
M

F
Z

T
F

T
F

E
M

F
Z

M
U

F
Z

M
U

F
Z

56

60

62º E

50

52

54

56º N

Kempirsai Massif

Sakmara Allochthon

Khabarny Massif

East Uralian

Zone 

Trans-Uralian Zone

West Uralian
Zone 

Magnitogorsk Arc

58

E
M

F
Z

T
F

T
F

E
M

F
Z

M
U

F
Z

M
U

F
Z

56

60

62º E

50

52

54

56º N

Kempirsai Massif

Sakmara Allochthon

Khabarny Massif

East Uralian

Zone 

Trans-Uralian Zone

West Uralian
Zone 

West Uralian
Zone 

Magnitogorsk Arc

Foreland fold & thrust belt 

zones & complexes

Magnitogorsk Zone

Zilair Nappe sediments

Maksutovo Complex

Suvanyak Complex

Sakmara Complex

Ultra-mafic Massifs

Trans Uralian Zone

East Uralian Zone

Proterozoic EEC

Foreland fold & thrust belt 

zones & complexes

Magnitogorsk Zone

Zilair Nappe sediments

Maksutovo Complex

Suvanyak Complex

Sakmara Complex

Ultra-mafic Massifs

Trans Uralian Zone

East Uralian Zone

Proterozoic EEC

A BA B

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Magnitogorsk 

arc

East Uralian 

Zone
Trans-Uralian 

Zone

Sakmara 

allochthon

MUFZ
EMFZ

TF

West Uralian 

Zone

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Geological Units

Baltica continental crust

Accretionary complex

Oceanic crust

Volcanic arc

East Uralian Zone

Kazakhstan continental crust

Magnitogorsk 

arc

East Uralian 

Zone
Trans-Uralian 

Zone

Sakmara 

allochthon

MUFZ
EMFZ

TF

West Uralian 

Zone

A BA B



Chapter 4: The regional setting of the Voskhod podiform chromite deposit 

84 

4.5 The Kempirsai Massif 

The Kempirsai massif is an ophiolite situated within the Sakmara Allochthon of the 

Central Uralian Uplift. It hosts the world’s largest collection of podiform chromite 

deposits that form the Batamshinsk, Tagashasai, Stepninsk and Main Ore Field 

(MOF) orefields. The Voskhod deposit is located within the MOF (Figure 4.4.1).  

 

The Kempirsai massif is an ophiolite complex of relict Palaeozoic ocean crust 

(Dilek, 2003). The massif was thrust westwards during obduction onto the 

Proterozoic and Palaeozoic shelf sediments of the EEC platform during the 

Variscan nappe tectonic episode of the Uralian orogeny. It is the largest of the 

Palaeozoic, ultramafic, ophiolite massifs, present in the southern Urals (Melcher et 

al., 1994; Melcher et al., 1997; Savelieva et al., 1997).  Its elongate shape extends 

90 km in a north-south direction and up to 32 km in an east-west direction, 

covering an area of approximately 2,000 km
2
. The massif is comprised of a 

complete ophiolite sequence of; pillow lavas of MORB affinity, a sheeted dyke 

complex of gabbros and dolerites, cumulate layers of olivine gabbros, troctolites 

and dunites and a thick (up to 16 km) mantle sequence of residual harzburgite with 

minor dunite and lherzolite (Melcher et al., 1997) capped by Middle Ordivician 

black shales (Herrington et al., 2005). Late stage wehrlite, pyroxenite and gabbro 

dykes and intrusives cross-cut the crustal units (Edwards & Wasserburg., 1985; 

Melcher et al., 1994; Savelieva and Nesbitt, 1996; Savelieva et al., 1997, 2002; 

Melcher et al., 1999 and references therein).  

 

It is reported by Melcher et al. (1997) that the formation of the giant sized podiform 

chromite deposits of the Kempirsai Massif are associated with vast quantities of 

volatile rich fluids likely to have been released from a hydrated subducting crust 

slab component. The hydrous regime is evident from visible, fluid and mineral 

inclusion assemblages present within the Kempirsai chromite. Furthermore, the 

oxidising conditions calculated by Melcher et al. (1997) do not conform with a 

magmatic model operating under an anhydrous upper mantle conditions (Melcher 

et al., 1997). 

 

The chromite deposits present within the Kempirsai Massif account for the largest 

occurrence of podiform chromitite in the world and form the second largest 
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resource of chromite in world, after of the Bushveld chromite seams of South 

Africa.  

 

4.6 Chromitite Orebodies of the Kempirsai Massif   

The chromitite ore bodies within the Kempirsai Massif are divided into two groups 

based on chromite composition. High-Cr chromite chromitites are found in the 

MOF while the Stepninsk, Tagashasai and Batamshinsk ore fields host high-Al 

chromitites. The high-Al chromite chromitites associated with these orefields are 

collectively termed Batamshinsk-type (BAT) chromite ores (Melcher et al., 1997) 

(Figure 4.4.1). 

 

4.6.1 The Batamshinsk-type (BAT) Chromite Ores 

The high-Al chromite, BAT orebodies are situated in the west, central and 

northwest areas of the Kempirsai massif (Melcher et al., 1994; 1997; Garuti et al., 

2002). To the north and west are the Batamshinsk and Tagashasai ore fields 

(respectively). The pod and lens shaped orebodies, which rarely exceed 100 m in 

length and 10 m in thickness (Herrington et al., 2005), are hosted in a layered 

series of serpentinised dunite-harzburgite mantle units underlain by tectonised 

harzburgites (Melcher et al., 1994 and references therein). The Stepninsk 

orebodies are located to the southwest of the massif, within dunite cumulate 

layers, close to the inferred crust-mantle boundary near the village of Stepninsk. 

These orebodies are tens of meters in length and less than 3 m in thickness 

(Herrington et al., 2005).  

 

To the south east of the massif is located the Main Ore Field (MOF), this region 

hosts the giant orebodies of Cr-rich, Al-poor chromian spinel. The Voskhod 

Chromite deposit, the focal study area of this thesis, is one such orebody from 

within the MOF. 
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4.6.2 The Main Ore Field (MOF)  

The MOF is an elongate NNE-SSW trending anticline, the axial plane can be 

traced over 22 km and it is approximately 7 km wide. Two parallel ore zones of 

podiform chromite mineralisation can be traced, one on either side of the anticline, 

these ore zones meet in the south west (Melcher et al., 1994). The mantle 

sequenece in the MOF region is 16 km thick comprised of dunite, harzburgite and 

more rarely harzburgite interlayered with lherzolite horizons. Multi-orientated 

pyroxenite veins cross-cut the mantle stratigraphy. The massive chromite 

orebodies are frequently cross-cut by veins of amphibole and chromite. (Melcher et 

al., 1997; 1999 and references there in) 

 

The deposits possess a range of morphologies elongated in a north east 

orientation, occurring either as a single lens of chromite mineralisation (such as the 

Molodezhnoe deposit) or as a series of discrete lenses serparated by weakly 

mineralised dunite horizons (Herrington et al., 2005). Orebodies are generally 

orientated parallel to the mineral foliation visible in the host rocks of dunite and 

harzburgite. The deposits situated to the west side of the anticline dip to the west 

5-50°, the largest deposits (>40 Mt) include Millionnoe, Diamond Pearl and 20 

Years of Kazakh SSR in addition to 15 smaller deposits. To the east are large 

deposits 40 Years of Kazakh SSR, Mir, Molodezhnoe and Voskhod-Karagash as 

well as a further 30 smaller deposits recognised. These orebodies dip to the east 

15-75°. The orebodies range in size from tens of meters to 1,800 m (Molodezhnoe) 

having thicknesses ranging from a few meters to 230 m (Diamond Pearl). 

Numerous, high angle faults (trending east-west) cross cut the MOF, these often 

displace and terminate the chromite orebodies (Melcher et al., 1997; 1999; 

Herrington et al., 2005). 
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Chapter 5. Voskhod 

 

This chapter presents the principal geological features of the Voskhod chromite 

deposit including; the location and spatial relationship to other chromite deposits in 

the Kempirsia Massif, the orebody morphology and broad chemical characteristics, 

as well as the mineralogical composition and geochemistry of the silicate rocks 

that comprise the hanging wall and footwall units. 

 

5.1 The Voskhod podiform chromite deposit 

The chromitite deposits of the Kempirsai Massif, Main Ore Field (MOF) are located 

proximal to the town of Chromtau. There are more than 50 identified deposits that 

cumulatively possess chromite reserves exceeding 300 Mt (Melcher et al., 1994, 

1997 and 1999). The deposits form two parallel bands aligned with the north 

northeast-south southwest trending axial plane of the major anticline of the MOF. 

The largest are Voskhod, Mir and 40 Let located to the east of the axial plane and 

Millionnoe, Diamond Pearl and 20 Let to west. The MOF ore bodies are lens 

shaped and the long axes of the lenses are oriented parallel to the foliation present 

in the host rocks (Melcher et al., 1997). The deposits are always enveloped by 

serpentinised dunites, and are often offset and dismembered by east-west 

trending faults. 

  

Typically ophiolite-hosted podiform chromitites rarely exceed 10 Mt of chromite, 

e.g. the classic ophiolite complex in the Troodos Massif of Cyprus. The Voskhod 

chromite deposit contains in excess of 18 Mt. Voskhod, located to the east of the 

MOF syncline, is separated from the neighbouring Karaagash deposit (sited to the 

north) by the east-west Karaagash fault, the surface expression of which dips to 

the north at 80º. The ore body is disc-shaped and comprised of a series of en 

echelon chromitite lenses. The hanging wall and, to a greater extent, the footwall 

contacts are highly irregular. Dipping to the northeast at 35-40º, it has a length of 

600 m in this direction, a width varying between 170 m to 360 m and a thickness of 

between 2 m and 123 m (average 39 m). The median plane of the ore body is 

positioned at a depth of 102 m in the southwest that decreases to 452 m in the 

northeast, having an inclined dip of approximately 28°.  
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The deposit is comprised of multiple layers of stacked chromitite lenses orientated 

parallel to the dip of the ore body. These layers vary in thickness, ranging from 

centimetres to several metres thick. The thickest layer of continuous mineralisation 

is 123 m thick (comprised of massive and disseminated chromite ore types). The 

style of mineralisation varies from massive chromite (>80 chromite) to weakly 

mineralised, disseminated chromite (~10% chromite). The ores are comprised of 

two mineral phases, chromite and serpentine that represents altered primary 

olivine. The progression from massive chromite into disseminated ore or barren 

dunite horizons varies; sometimes the change is immediate with there being no 

evidence of a structural break in the core and other times the change is 

gradational with the modal proportions of chromite and olivine changing 

progressively over a depth interval, from one side of a layer to another. 

  

The top soil overburden is composed of Palaeogene-Quaternary loams overlying 

sandy clays and rubble 0.5-0.7 m thick. The bedrock is comprised of alternating 

dunite and peridotite assemblages that have undergone varying degrees of 

serpentinisation. These units are weathered, heavily fractured and brecciated to 

depths of 60-80 m. Serpentinised dunite encompasses the ore body and is present 

between the stacked ore lenses. Sulphides are present in the dunite but are rare, 

they include pyrrhotite, pentlandite and chalcopyrite. 

 

Samples were collected from six drill cores, five from the central region of the ore 

body extending to the west and east limits (V05-13, -21, -24, -28 and V06-48) and 

one to the southwest limit (V06-06).   

 

5.1.1   Drill Collar Grid for the Voskhod License Area 

Oriel Resources drilled a total of 53 holes during the 2005 drilling campaign; of 

these 43 intercepted chromite mineralisation. The average thickness of 

mineralisation intercepted is 63.80 m (Table 5.1.1). Information collected from the 

study of the drill cores was used to model the ore body; its size, shape, the ore 

type spatial variation and distribution. An overview of this data is presented.  
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Drill 
hole I.D. 

Chromite 
mineralisation 
top 

Chromite 
mineralisation 
base 

Mineralisation 
thickness 

V05-01 301.10 414.75 113.65 

V05-02 392.10 461.60 69.50 

V05-05 432.92 454.65 21.75 

V05-06 405.90 443.60 37.70 

V05-07 427.10 465.40 38.30 

V05-08 398.25 447.20 48.95 

V05-09 437.10 468.20 31.10 

V05-10 341.00 379.59 38.59 

V05-11 350.20 376.00 25.80 

V05-12 332.80 398.80 66.00 

V05-13 255.70 361.30 105.60 

V05-14 285.00 409.70 124.70 

V05-15 193.80 230.80 37.00 

V05-16 415.05 456.30 41.25 

V05-17 454.88 484.00 29.12 

V05-18 409.00 435.10 26.10 

V05-19 269.60 378.80 109.20 

V05-20 333.90 421.70 87.80 

V05-21 241.40 289.30 47.90 

V05-22 249.50 358.70 109.20 

V05-23 264.45 347.90 83.45 

V05-24 266.40 377.50 111.10 

V05-25 296.20 430.75 134.55 

V05-26 326.30 435.55 109.25 

V05-28 327.16 440.05 112.89 

V05-30 401.30 413.20 11.90 

V05-34 140.70 229.50 88.80 

V05-35 138.00 189.45 51.45 

V05-36 202.70 252.20 49.50 

V05-37 104.00 179.20 75.20 

V05-38 113.40 140.30 26.90 

V05-39 116.70 153.45 36.75 

V05-40 157.50 177.70 20.20 

V05-41 85.00 133.10 48.10 

      Average thickness(m) =  63.80 

 

Table 5.1.1: Chromite mineralisation thicknesses observed across the orebody. 

The upper and lower limits are defined by a cut-off grade of 20% chromite. 

 

Table 5.1.1 shows the of thicknesses of the mineralised zones intercepted, these 

range from 11.9 to 134.55 m, the average value is 63.8 m. 
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Figure 5.1.1 A map depicting the drill collar locations from the Voskhod license 

area.  

The red  squares around drill collars; V05-06, V05-13, V05-21, V05-24, V05-28, V05-48 and 

V06-S6 identify drill cores that were sampled for the purpose of this study. 
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Figure 5.1.2: Drill collar locations and 3.D ore body model of the Voskhod podiform chromite deposit.  

The samples that form the focus of this research were selected from drill holes V05-13, 21, 24, 28, 48 and S6 indicated as grey vertical lines. The reader 

should note that not every drill collar is surface expression is shown. The 3.D orebody model was created using GEMCOM software (Matthew Boyes, 2006). 

The ore zone (shown in red) was determined by the ore cut off grade of  20% Cr2O3. The blue lines are planned mining levels. 
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5.1.2 Morphology of the Voskhod podiform chromite ore body 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.3 Drill collar map illustrating three cross sections constructed using 

drill core (by the author) from drill collars along the line of the section. 

Cross section 1 (CS1) traverses southwest to northeast across the ore body. 

Cross sections 2 and 3 (CS2 and CS3) traverse west to east across the ore body, CS2 

transects the central ore zone of the ore body.  

 

The broken lines indicate the surface expression of each transect presented as 

cross sections CS1, CS2 and CS3, the coloured shape outline encompasses 

additional drill collar identification numbers. Although these holes were not 

sampled in detail for geochemistry and mineralogy, they were logged by the author 

and the data have been incorporated into each cross section. The cross sections 
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(CS1 - Figure 5.1.4, CS2 -Figure 5.1.5 and CS3-Figure 5.1.6) provide a visual 

representation of the variation in mineralisation with depth in terms of principal ore 

type and continuity of the mineralised intervals 

.

 

Figure 5.1.4 Cross section 1 - southwest to the northeast of the ore body (CS1). 

The ore body dips at approximately 35° to the north east. The CS1 traverse intersects the 

western fringe of the ore body. Hard massive chromite (HMCR) - purple, soft massive chromite 

(SMCR) - purple and powdery chromite (PCR) – dark blue are ore types where chromite 

comprises more than 80% of the rock. For the purpose of modelling the other ore types vein- 

(VCR), lens- (LCR) and disseminated chromite (DCR) ore types were divided into two groups 

based on the percentage chromite content, of the rock mass, over a given interval. Greater 

than 40% chromite is coded orange and less than 40% chromite, yellow. The broken line 

shapes outline compositionally similar ore units present at similar depths. Created by the 

author using Surpac software. 

 

The grade and thickness of mineralisation is greatest in the central region of the 

ore body, illustrated by drill cores V05-13, -22 and V06-56.  The style of 

mineralisation varies throughout the ore body, from the centre to the periphery, as 

S.W 

N.E 

HMCR & SMCR (chromite >80%) 

PCR (chromite >80%) 

DCR (chromite >40) 

DCR/VCR/LCR (chromite <40%) 
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well as with stratigraphic depth. It is common for there to be an interval of weakly 

disseminated chromite (<40% chromite) at the base of massive chromite. This 

may be immediately adjacent to the massive chromite mineralisation or separated 

by a unit of barren dunite. Typically the first appearance of mineralisation down 

hole is of massive chromite (purple or dark blue). Extensive drill core data 

collection and subsequent modelling of the relative proportions and relationships 

between the ore types, demonstrates that the deposit is not a singular, continuous 

massive chromite body. Instead, the mineralised intersections appear to link 

together forming a connected network. It has previously been documented that 

Voskhod is comprised of a series of stacked lenses (Herrington et al., 2005), 

modelling of the drill core data supports this. It is possible to connect similar styles 

of mineralisation present at similar depths and outline potential ore lenses, these 

may lie directly on top of one another or be separated by dunite (Figure 5.1.4). 
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Figure 5.1.5: Cross section 2 (CS2) west-east cross section through the centre 

of the ore body. 

Key as in Figure 5.1.4. The dashed outlines around selected mineral horizons indicate possible 

network relationships between neighbouring drill core mineralised sections. The small black 

dotted line with red shading represents network connections where the interpretation is 

confident. The dot-dashed black lines filled by oblique red stripes drawn to the west of the 

section indicate that the degree of confidence is less. Created by the author using Surpac 

software. 

 

At the centre, verging towards the eastern margin of the ore body, is the most 

intensely mineralised region of the Voskhod deposit, drill holes V05-24, -25 and -

26 (Figure 5.1.5). In drill cores V05-24, -25 and -26 more than one mineralised 

interval is identified. The start and end mineralisation contact in these drill cores is 

sharp. In contrast, to the west, the mineralisation present in drill cores V05-23 and 

-22 is comprised of numerous, comparatively small-scale, weakly mineralised 

intervals that are inter-layered with barren dunite and the cessation of 

mineralisation is gradual.  

 

East West 

    = massive chromite 

    = high grade disseminated chromite 

    =  disseminated chromite 

   = barren 
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Figure 5.1.4 and Figure 5.1.5 show that unlike a stratiform chromite body the 

multiple 'layers' of different ore cannot be easily correlated between different drill 

holes.  There is very little lateral continuity; rather the deposit seems to exhibit a 

spongiform structure with parts composed of massive ore surrounded on all sides, 

vertically and laterally, by less mineralised zones with higher silicate content. 

 

 

Figure 5.1.6 Cross-section 3 (CS3). East – west cross section south of the centre 

of the ore body south of CS2. 

Key as in Figure 5.1.4. The broken line outlines identify two mineralised intervals. A 

stratigraphically higher, massive chromite horizon, shaded purple and a second, lower horizon 

of disseminated chromite that underlies the massive chromite, shaded yellow. Created by the 

author using Surpac software. 

 

From the south to the centre of the ore body two intervals of different types of 

mineralisation are observed; a unit of massive chromite overlies disseminated 

chromite. At the edge of the ore body, drill holes V06-44, -45 and -58, the units are 

in contact, while towards the centre, a section of barren dunite separates the two 

intervals (Figure 5.1.6).   

 

HMCR & SMCR 

PCR 

>40% DCR 

<40% DCR/VCR/LCR 



Chapter 5: Voskhod 

97 

 

 

Figure 5.1.7: A 3.D schematic of the Voskhod chromite deposit ore body with 

drill holes produced by the author using Arc GIS software package. 

The ore body model (Figure 5.1.7) shows i) the surface expression of the licence 

area and drill collar locations, ii) an upper plane that defines the start of 

mineralisation and iii) a lower plane representing the end of mineralisation. The ore 

zone, determined by a 20% Cr2O3 cut-off grade, is outlined by the black broken 

line shaded blue. The terrace features present at the edge of the diagram result 

from the interpolation of the data and are artefacts of the Arc GIS modelling 

program used.   

 

The ore body outline is shown as a 3.D schematic with drill collars, drill holes and 

projections in Figure 5.1.7.  Drill hole V05-27 did not intercept mineralisation, this 

is marked by a noticeable depression in the upper contact plane in Figure 5.1.7 

(drill hole V05-27 is shown in orange). However, the four closest neighbouring drill 

holes; V05-02 (north), -20 (southwest), -26 (west) and -28 (east) are each 

V05-13V05-27
N

Upper mineralisation 
contact plane

Lower mineralisation 
contact plane
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extensively mineralised with; 70 m, 88 m, 109 m and 113 m  of chromitite 

respectively (shown in green). In fact, the extensive mineralisation reported in the 

area surrounding V05-27 forms the most ore-rich zone of the ore body. This 

observation is testament to the irregular, spongiform texture of the Voskhod 

chromite ore body and the one dimensional nature of sampling offered by drilling. 

 

5.2 Mineralogy of the hanging wall and footwall ultramafics 

The rock classification used is based on mineralogical modal proportions of olivine, 

chromite and clino- and orthopyroxene as shown in Chapter 2 Section 2.1.1. For 

the purposes of drill core logging a series of lithological codes and associated 

descriptions were produced. These are described below. 

 

5.2.1 Overburden (OVB) 

Several material types are included under this category, including; i) dark brown 

soil, ii) light khaki to ochre rubbly clays, iii) brown silt to sand grain size, clay, iv) 

rubble horizons consisting of disaggregated bedrock, v) rubble horizons containing 

fragments of bleached, light grey rock fragments that are porous, exhibit box-work 

cavities or are silicified, vi) loose sand with well rounded, well sorted grains and vii) 

fluviatile gravels. 

 

5.2.2 Dunite (DUN) 

Unaltered dunite is fine grained, dark grey to black, possessing a granular texture 

with no internal structure (Figure 5.2.1 a). Microscopy reveals relict olivine crystals 

set in a serpentine matrix, with fractures frequently filled with pale green or white 

lizardite. These fractures appear randomly orientated, are 5-8 mm thick and 

constitute <2 % of the modal volume. Additionally, small (3-5 mm) phenocrysts of 

orthopyroxene (or when altered, bastite) locally constitute 2-3% of the rock 

volume. The concentration and size of the phenocrysts gradually increases when 

the dunite units grade into harzburgite (HARZ). 
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Figure 5.2.1: (a) Dunite (DUN), (b) grey serpentinised dunite (ADUN) with  green 

dunite and purple kammererite, (c) bleached pale brown – cream altered 

serpentinised dunite (ADUN), (d) Harzburgite (HARZ) with porphyroblasts of 

orthopyroxene visible and (e) Altered harzburgite (AHARZ) with intense white 

lizardite veins. 

A 30 cm ruler is shown for scale in (a) and (c). 

 

5.2.3 Altered Dunite (ASDUN) 

The extent of dunite alteration varies throughout the hanging wall, footwall and 

barren horizons within the ore body. Altered serpentinised dunite is present within 

and immediately adjacent to the mineralized zone, it is altered to a pale grey with 

centimetre sized regions of vivid green dunite often present, the rock is competent, 

fine-medium grained having a smooth powdery texture (Figure 5.2.1 b). A dunite 

c 

e 

a b 

d 
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halo is a characteristic of podiform chromite deposits (e.g. Thayer, 1964). The 

Voskhod deposit dunite halo, composed of ADUN, ranges from <1m up to 3m in 

thickness. This type of altered dunite hosts the vein chromite (VCR) and 

disseminated chromite (DCR) mineralisation. 

  

As the degree of alteration increases the ADUN rock is bleached pale brown to 

cream, has a very fine, powdery texture and poor rock competency that is 

characterised by intense fracturing (Figure 5.2.1 c). Where alteration is most 

intense the alteration of serpentine produces a powdery, cream-white smectite 

clay mineral assemblage. 

 

Accessory minerals present in altered dunite include crystalline growths of bright 

green tremolite [Ca2(Fe
2+

,Mg)5Si8O22(OH)2] and purple kammererite 

[(Mg,Fe
2+

,Cr)5Al2Si3O10(OH)8] (the chromian-rich variety of clinochlore) (Figure 

5.2.1 b). Veins of pale green and white lizardite, ranging from 2mm to 1 cm thick, 

are common in all cases of serpentinised dunite and altered serpentinised dunite.  

 

5.2.4 Harzburgite (HARZ) 

The hanging wall, and less obviously so the footwall, are comprised of a series of 

alternating harzburgite and dunite units. The harzburgite (HARZ) groundmass is 

olivine, comprising ~85% of the rock volume, it is grey, medium grained with a 

granular texture. The distinguishing feature of the harzburgite is the notable  

increase in the abundance and size of orthopyroxene porphyroblasts (crystals can 

be as large as 1.5 cm) that constitute >10% of the rock volume (Figure 5.2.1 d).  

 

5.2.5 Altered Harzburgite (AHARZ) 

Altered harzburgite (AHARZ) is present in the uppermost 65 m to 100 m of drill 

core, it is a pink-buff rock and centimetre-scale blue-black patches are common 

giving the rock a mottled appearance. Large (up to 1.5 cm) altered orthopyroxene 

phorphyroblasts (bastites), indicate that the harzburgite is altered. An abundance 

of highly irregular, randomly oriented lizardite veins cross-cut the AHARZ units. 

Veins range from 1 mm to 10 mm thick, consist mainly of white lizardite and in 
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some places exceeds 10% of the rock mass composition.  They probably formed 

during the volume expansion process that is typically associated with 

serpentinisation. When veining is sufficiently intense a stockwork forms.  

 

5.2.6 Alteration processes 

The close relationship between the alteration and the development of veining 

(AHARZ) in the upper section of the hanging wall (the initial 65 m to 100 m of hard 

bedrock drilled) suggests that the two features are related by a common process. 

Several explanations have been proposed (pers.comm. K. Alexander, Voskhod 

site geologist); 

 

(i) A deep penetrating surface weathering event that altered and bleached the 

harzburgite and formed lizardite veins at low temperatures.  

(ii) A localised hydrothermal event, spatially related to an overlying thrust zone, 

created brittle fractures.  

(iii) Intense serpentinisation of the dunites and harzburgites causes brittle failure 

generating an intense fracture network. Bleaching of the rocks may be attributed to 

recent groundwater movement percolating through the units. However, if this is the 

case, the process has been selective as not all horizons have been affected. 

 

 

5.3 Petrology of the hanging wall and footwall ultramafics 

5.3.1 Dunite and altered serpentinised dunite 

In the DUN and ASDUN rock types the degree of serpentinisation varies between 

60% to 80% and >80% respectively. Serpentinisation forms the characteristic 

mesh-texture and relict olivine grains may be present at the centre, although many 

grains have been completely altered. Fine <1 mm veins of chlorite (e.g. Figure 

5.3.2, V05-24-328) and lizardite cross-cut the dunite.  
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The intensity of serpentinisation increases down-hole with proximity towards the 

ore body. Accessory chromite (typically ~3%) is dark red/orange-black in plane 

polarised light; this colour is characteristic of high-chromium chromites.  

 

The multiple bright birefringence colours of the olivine suggests that these relict 

grains have not crystallised under high strain conditions. Similarly, the mesh 

textures and grain fracture network are not aligned. There is a no evidence of a 

foliation in these units. 

 

    

Figure 5.3.1: Dunite (DUN)  

Sample V05-24-348, ~70% serpentinised dunite: a) plane polarised light, b) cross-polarised 

light The preserved olivine relicts at the centre of the mesh textures display characteristic, 

second order, bright birefringence colours. 

a b 

1 mm 1 mm 
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Figure 5.3.2: Altered serpentinised dunite (ASDUN) 

(a) and (b) Sample V05-24-328: ~85% serpentinised dunite from the dunite halo at 375.00 m, 

of the Voskhod chromite ore body. A serpentine mesh texture dominates the thin section and 

microfractures are filled with serpentine. Euhedral chromite grains comprise ~5% of the rock. 

(c) and (d) Sample V05-24-301: ~85% serpentinised dunite from a dunite horizon at 249.53 m 

in the hanging wall of the ore body. A serpentine mesh texture is pervasive and micro-fractures 

are filled with serpentine. The small (<1 mm dimension) patches of a bright birefringence 

colour, platy mineral is actinolite, this constitutes <5% of the rock ground mass. (e) and (f) 

Sample V05-28-G1631: >90% serpentinised dunite from within the ore zone at 434.40m, 

extensively altered and deformed. The area of bright birefringence, fibrous mineral growth in 

the centre top of (f) is actinolite. To the bottom right are relict grains of olivine with bright, high 

birefringence colours. 

a b 

c d 

e f 

1 mm 1 mm 
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5.3.2 Harzburgite  

Serpentinisation of the harzburgite sections is >80% evidenced by serpentine 

mesh textures and ‘bastites’ formed from the alteration of orthopyroxene 

porphyroblasts (Figure 5.3.3). Of the original, unaltered mineral phases relict 

olivine constitutes ~20% and orthopyroxene ~5%.  In some cases, an alteration 

selvedge surrounds the orthopyroxene porphyroblasts (Figure 5.3.3 b and f). In 

section DH-219A this halo is comprised of low temperature amphibole displaying 

bright birefringence colours (Figure 5.3.3 f). In section V05-24-327 the halo mineral 

is green in plane polarised light, displays low birefringence colours in crossed 

polarised light and is considered to be chlorite (Figure 5.3.3 b).  

 

Prior to alteration the approximate modal composition of the harzburgite would 

have been 80% olivine, 15% orthopyroxene and up to 3% chromite and 2% 

clinopyroxene. The chromite grains vary from being pale golden and translucent 

(characteristic of high alumina-chromites) to deep red or brown-black (high 

chromium-chromites) in plane polarised light. Chromites, with diameters of up to 1 

mm, are sometimes partially altered to ferrit-chromite or magnetite at the grain 

edges, these appear opaque in plane polarised light and are surrounded by 

chlorite e.g. DH 219A (Figure 5.3.3 e).  

 

Evidence of a lineation fabric may be identified in some samples by the alignment 

of orthopyroxene porphyroblasts (bastites when altered), chromite grains and 

shear-foliated serpentine mesh textures e.g. DH-219A (Figure 5.3.3 e and f). 

Olivine grains in the serpentine mesh centres that display bright birefringence 

colours at different angles, when rotated under cross-polarised light, indicate a 

sheared foliation texture rather than a cumulate magmatic texture (Figure 5.3.4).  

 

Pull apart textures are observed in the bastites and the resulting fractures are 

orientated perpendicular to the direction of the fabric lineation (e.g. sample DH 

219A, Figure 5.3.3 e and f) or exploit the orthopyroxene crystal structure along the 

mineral cleavage plane (e.g. sample V05-24-327 Figure 5.3.3 a & b).  
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Figure 5.3.3: Harzburgite  

(a) and (b) Harzburgite sample V05-24-327: a fractured, orthopyroxene (opx) porphyroblast 

selvedged by chlorite (chl), set in a serpentinised olivine groundmass (with <5% relict olivine)  

to the bottom right is a a subhedral chromite grain; (c) and (d) Altered harzburgite, sample V06-

S6-179: right of centre is an altered pyroxene ‘bastite’ crystal, to the top right is a euhedral 

chromite grain, a serpentine mesh texture is present across the slide (~30% relict olivine); (e) 

and (f) Altered harzburgite sample DH 219A: in plane polarised light (e) An anhedral chromite 

grain partially altered at the edges to magnetite and chlorite and in cross polarised light (b) 

extensive serpentine alteration (>90%) with no relict olivine grains, bottom right is a fractured 

pyroxene porphyroblast  partially selvedged by an amphibole halo. (Scale bar = 1 mm) 

Opx 

Chl 

a b 

c d 

e f magnetite 

chlorite 

chromite 

1 mm 1 mm 
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Figure 5.3.4: Altered harzburgite showing a shear foliation texture  

Sample V05-24-327: Relict olivine grains (~25%) of differing birefringence colours indicate a 

shear foliation texture. (Scale bar = 1 mm) 

 

5.4 Chromite grain types 

A variety of chromite grain morphologies are seen developed in the harzburgite 

and dunite rocks where chromite is an accessory phase (see Chapter 3, Section 

3.6.1). In contrast, the grains comprising the chromite ore are typically euhedral to 

subhedral. In the massive chromite ore grains are often densely packed and grain 

boundaries are difficult to distinguish. 

 

5.4.1 Chromite grain morphologies in the harzburgite and dunite 

units of the Voskhod deposit. 

Four chromite morphologies are identified in the Voskhod harzburgite and dunites; 

holly leaf and cuspate, subidiomorphic and euhedral. These correspond with the 

types identified and described in literature for the classification of ophiolite 

chromite (Mercier, 1972; Dick, 1977; Augé, 1982; 1987) (Chapter 3, Section 3.6.1).  

 

Holly leaf chromite grains are uncommon, when present they appear as a 

transition phase seemingly half way between a holly leaf and cuspate grain, having 

smoother edges than are typical of the holly leaf shape, e.g. Figure 5.4.1 [d]. 

Cuspate chromite grains are characterised by smooth, intricate embayment 

features e.g. Figure 5.4.1 [a, b and c].  

1 mm 
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The holly leaf and cuspate morphologies are most prevalent in harzburgite, and 

dunite in the  hanging wall and footwall. Subidiomorphic grains are most common 

in the dunite units, although occurrences in  harzburgite are recorded (e.g. Figure 

5.4.1 [e]). In the dunite halo and ore zone dunites, euhedral chromite is most 

common. 

 

  

  

  

Figure 5.4.1: Cuspate, holly leaf and subidiomorphic chromites  

(a), (b) and (c) Cuspate chromites; (d) holly leaf chromites; (e) and (f) subidiomorphic 

chromites. (a) V05-24-301 hanging wall dunite; (b) V05-24-306 upper contact dunite halo; (c) 

V05-24-309 upper contact dunite halo; (d) V05-24-341 footwall harzburgite; (e) V05-24-327 

hanging wall harzburgite; (f) V05-24-F1971 ore zone dunite,.  (Scale bar = 1 mm) 

a b 

c d 

e f 
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Subidiomorphic chromites  range in size from small 10 µm (Figure 5.4.1[e]) to >1 

mm. The grains are subhedral with rounded edges (Auge, 1982). Euhedral 

chromites have octahedral, hexagonal or cubic forms and rarely exceed 0.5 mm 

(Figure 5.4.2)  (Dick, 1977; LeBlanc et al., 1980) In some sections two chromite 

morphologies co-exist within one slide, however, this is only observed in dunites 

(Figure 5.4.3 [d]). 

 

  

  

Figure 5.4.2: Euhedral chromites  

Euhedral chromites (a) and (b) are from the hanging wall, samples (c) and (d) are from the 

footwall. Sample (a) is from drillcore V06-S6, while samples (b), (c) and (d) are from drill core 

V05-24. 

(a) V06-S6-179 hanging wall dunite halo immediate prior to the start of the ore zone; (b) V05-

24-309 hanging wall dunite halo; (c) and (d) V05-24-328 footwall dunite halo. (Scale bar = 1 

mm) 

 

 

a b 

c d 
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Figure 5.4.3: Co-existing chromite types in hanging wall dunite 

(a-c) from V05-24-309 upper contact dunite halo; (a) holly leaf, (b) subidiomorphic and (c) 

euhedral; (d) V05-24-348 footwall dunite, co-existing holly leaf, subidiomorphic and euhedral 

morphologies. (Scale bar = 1 mm) 

a b 

c  

Euhedral 

Holly leaf 
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5.4.2 Poikilitic textures 

  

   

    

Figure 5.4.4: Poikilitic textures in holly leaf and subidiomorphic chromite types. 

(a) V05-24-350 dunite footwall, (b) V05-24-F1907 upper contact dunite halo, (c) V05-28-G1601 

hanging wall dunite, subidiomorphic chromite grain containing a single sub-rounded silicate 

inclusion; (d) V06-48-G1979 disseminated chromite ore (>40% chromite), subidiomorphic 

chromite with multiple, subhedral-angular, silicate inclusions; (e) V05-28-G1601 hanging wall 

dunite, subidiomorphic chromite with single sub-rounded-anhedral silicate inclusion; (f) V05-24-

F1907 upper contact dunite halo, holly leaf-cuspate chromite with a single, rounded silicate 

inclusion. (Scale bar = 1 mm) 

 

Poikilitic textures are commonly observed in holly leaf and subidiomorphic 

chromites from the Voskhod peridotites and dunites. Poikilitic chromites typically 

host one or more silicate inclusion (usually olivine). From the hanging wall and 

a b 

c d 

e f 
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footwall chromites studied, typically only a single, rounded silicate inclusion is 

present. However, dunite horizons from within the ore zone form subidiomorphic 

chromite that host multiple comparatively angular silicate inclusions (bottom left 

corner of Figure 5.4.4 b).  

 

5.4.3 Recording the chromite morphologies of the Voskhod deposit 

An intensive study of the chromite textures has not been conducted. However, 

based on the chromite grain morphologies identified, each sample analysed in this 

study was assigned to a category. These are presented in the data tables, 

Appendix B. The hanging wall and footwall harzburgite and dunite contain 

cuspate-holly leaf chromite, having concave embayment erosional edges. 

Subidiomorphic and euhedral grains (Figure 5.4.3), though less common in the 

hanging wall and footwall units are none-the-less present and may represent a 

second generation of chromite crystallised. 

 

5.5 The Voskhod deposit chromitite ore types 

The deposit Voskhod deposit is comprised of multiple chromite segregations 

encased in a dunite body.  A variety of chromite ore types and textures were 

identified grading from barren dunites where chromite is an accessory phase (<5% 

chromite) to massive chromite comprised of >90% chromite. A classification 

criteria developed by Greenbaum (1977) to describe the range of chromite and 

olivine modal proportions common in chromitiferous rocks, given in Table 5.5.1, is 

used to distinguish between the Voskhod chromite ore types. However, this criteria 

alone is insufficient owing to the variety of ore textures observed. Consequently 

subcategories detailing textural features are presented for each ore type. 

 

Chromite rock-type Modal proportion of chromite 

Dunite with accessory chromite Less than 5% chromite 

Chromitiferous dunite 5-50% chromite 

Olivine-chromitite 51-90% chromite 

Massive chromitite More than 90% chromite 

Table 5.5.1: Chromite rock classification criteria after Greenbaum (1977) 
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5.5.1 Massive Chromitite 

Massive chromitite ore is comprised of more than 90% chromite with olivine, 

altered to serpentine, accounting for the remaining modal proportion (<10%). 

Sheared and brecciated zones of massive chromitite (Figure 5.5.1[d]) are often 

filled with serpentine, although in rare occurrences ferroan tremolite and 

kämmererite are seen. The ore comprises extensive zones of mineralisation up to 

100 m thick. Three types of massive chromitite ore have been identified in the 

Voskhod deposit, these are; “Hard Massive Chromite”, “Soft Massive Chromite” 

and “Powdery Chromite”. These three ore types can be distinguished between on 

the basis of colour, chromite grain size and shape, as well as rock competence.  

 

                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.1: Massive chromite ore types 

[a] hard massive chromite, [b] soft massive chromite, [c] powdery massive chromite and [d] 

brecciated massive chromite.  

a b

c d

a b

c d
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5.5.1.1 Hard massive chromite (HMCR) 

HMCR ore is competent, dark grey-black, with a metallic lustre. It has a massive 

coarse granular texture with crystals ranging from 0.5-3.0 mm (Figure 5.5.1[a]). 

The whole rock Cr concentration is ~55% Cr2O3. Intersections of HMCR range 

from 20 cm to several tens of metres thick. Close to the base of HMCR intervals 

evidence of shearing and the development of a preferred fabric is common. 

5.5.1.2 Soft massive chromite (SMCR) 

SMCR is composed of a mixture of dull, mid-light brown, <1 mm ferrit-chromite 

grains and shiny, black, 0.5-1 mm grains of chromite (Figure 5.5.1[b]). This ore 

lacks competency and consists of poorly consolidated, small, competent fragments 

(1-3cm
2
) that readily separate. The whole rock grade is ~55-60% Cr2O3. 

 

5.5.1.3 Powdery chromite (PCR) 

 PCR ore is a fine grained (<1 mm wide), particulate ore that is silt-like, it has no 

structural integrity or competency (Figure 5.5.1[c]). The appearance varies from 

mid-brown, lacking lustre to grey-black with a metallic lustre. No silicate minerals 

are observed. In terms of ore grade, PCR is exceptionally high grade at > 60% 

Cr2O3 whole rock chemistry.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5.2: A micro-fracture network in HMCR ore: Alteration of chromite 

(black) to ferrit-chromite (brown). 

An increase in the intensity of the micro-fracture network in HMCR and subsequent chromite 

alteration is seen from [a] to [c]. 

a b c 
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Studies of the three massive chromite ore types indicate that the formation of PCR 

seems to derive from a progressive sequence of physical disaggregation and 

chemical alteration of HMCR; HMCR  SMCR  PCR. The process involves the 

combined effect of structural deformation, resulting from stress events that create 

fractures in the HMCR ore, and subsequent chemical alteration by the introduction 

of fluids along the fracture network. This causes a dissociation of the chromite 

grains, sometimes altering the chromite to ferrit-chromite and dissolving the 

interstitial silicate minerals, which further reduces the rock competency. 

 

5.5.2 Olivine-chromitite 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.3: Olivine-chromitite ore types from the Voskhod ore body. 

[a] Nodular, [b] spindle, [c] high-grade disseminated chromite grading into massive chromite 

and [d] high-grade disseminated chromite 

 

Olivine-chromitite ore comprises 51-90% chromite. The remaining modal 

proportion is composed of olivine which, in the Voskhod ores, has been altered to 

serpentine. Olivine-chromitite ore sections form metre-thick (typically >5 m) zones 

within the ore-body. This style of mineralisation is most common in between 

massive chromite and dunite (barren) units.  Three sub-types of  olivine-chromitite 
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are present in the Voskhod deposit, these are; “nodular”, “spindle” and high-grade 

disseminated chromite ore. These three ore types are distinguished between by 

the shape and texture of chromite grain accumulations. 

 

5.5.2.1 Nodular chromite  

Nodular chromite ore is comprised of black, metallic, rounded to elliptical 

aggregates of chromite crystals present in a pale green-grey serpentinised olivine 

matrix. The nodules vary from 2 mm to 1 cm in diameter (Figure 5.5.3 [a] large 

nodules and [c] small nodules). There is no evidence, physical or chemical, of 

zoning in the nodules. The whole rock grade of this ore type is 45-55% Cr2O3. 

Nodular ore is rare in the Voskhod deposit, when present it occurs as narrow 

centimetre wide intervals located between high-grade disseminated chromite and  

massive chromite, e.g. Figure 5.5.3 [c], forming a densification, transition phase 

between these two ore types. A similar abrupt change in the style of chromite 

mineralisation is observed in Figure 5.5.3 [a] where aligned nodules (up to 1cm in 

diameter) sharply juxtapose high-grade disseminated chromite ore where the 

chromite shows no evidence of having a preferred orientation or fabric. 

 

Although scarce in the Voskhod deposit, the nodular chromite texture is important 

to observe, as it is unique to ophiolite chromitite (Thayer, 1960; 1964; 1969; 

Dickey, 1975; Greenbaum, 1977; Brown, 1980) 

 

5.5.2.2 Spindle chromite 

Spindle chromite ore is characterised by thin, 1-3mm wide, elongate (up to several 

centimetres) bands of a chromite grains set in a serpentinised olivine (Figure 5.5.3 

[b]). The bands are aligned parallel to one another forming a lineation in the rock. 

Wider bands appear to form ellipsoid shapes that may be genetically associated 

with nodular ore that has been subject to intense ductile-deformation resulting in 

the elongation and alignment of the chromite.  

 

As with nodular chromite, spindle chromite is unusual in the Voskhod deposit and 

because of a lack of material it was not possible to study the composition. 
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5.5.2.3 High-grade disseminated chromite (50-90% chromite) 

High-grade disseminated chromite is comprised of a mixture of individual black, 

metallic, euhedral chromite grains (1-2 mm wide) and angular grain aggregates (2 

mm - 1 cm wide) set in serpentinised olivine Figure 5.5.3 [d]). The chromite grains 

and aggregates may link together to form chain network textures.  This ore type 

typically forms thick metre scale horizons throughout which the modal proportion of 

chromite may vary between 50% and 90%, these horizons are typically located 

between massive chromite segregations. The whole rock grade is ~45-55% Cr2O3. 

 

5.5.3 Chromitiferous dunite  

There is only one ore type at Voskhod that fits the chromitiferous dunite category 

that is disseminated chromite. Olivine is the dominant mineral in this ore and 

technically the composition is a chromite dunite. However, when logging the 

mineralised intersections of drill cores the term disseminated chromite was used. 

 

5.5.3.1 Disseminated chromite (5-50% chromite) 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.4: Chomitiferous dunite: Disseminated chromite 

 

Disseminated chromite is prevalent throughout the Voskhod deposit. It is similar to 

high-grade disseminated chromite, the fundamental difference being the greater 

modal proportion of olivine. The ore is comprised of a mixture of individual black, 

metallic, euhedral chromite grains (1-2 mm wide) and angular grain aggregates (2 
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mm to 1 cm wide) set in serpentinised olivine (Figure 5.5.4). It is common for the 

aggregates to connect forming chains, while individual chromite grains tend to 

remain isolated in the olivine matrix. The ore type is most prevalent at the 

periphery of the ore body and is often the first form of mineralisation intercepted 

when drilling after passing through the dunite envelop. The extent of mineralisation 

varies forming both metre thick units and centimetre scale layers within barren 

dunite and massive chromite; furthermore, within a unit the modal proportion of 

chromite will range from 10-50%.  

 

5.5.4 Dunite with accessory chromite 

The dunite halo that encompasses the Voskhod ore body is composed of dunite 

with accessory chromite. Chromite accounts for less that 5% of the rock 

composition with serpentinised olivine forming the bulk of the mineralogy. 

Chromite grains are black, small (1-2 mm wide) and typically have anhedral-

subhedral morphologies (Figure 5.5.5). In addition to the dunite halo, un-

mineralised  (barren) dunite horizons present within the defined limits of the ore 

body, separating the mineralised horizons, are composed of this rock type. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.5: Dunite with accessory chromite 

 

5.5.5 Vein and Lens Chromite 

The Greenbaum (1977) classification addresses the relative mineral proportions of 

chromite and silicate in a chromite-bearing rock. However, in the Voskhod deposit 
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two additional categories have been developed these are “vein chromite” (VCR) 

and “lens chromite” (LCR). These forms of chromite identify intermittent 

occurrences of mineralisation present on a cm scale set within otherwise un-

mineralised dunite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.6: Vein chromite 

[a] high-grade disseminate chromite veins, [b] massive chromite vein with altered serpentine 

(pale green) at the periphery of the dunite-chromite contact, [c] massive chromite vein, rounded 

small nodular aggregates can be distinguished along the contact edge and within the vein. 

 

Vein and lens chromite form mineralised, bands ranging from 2 cm to 20 cm thick  

and may be comprised of massive chromite (Section 5.5.1) or disseminated 

chromite (Sections 5.5.2.3 and 5.5.3.1). They are often surrounded by a diffuse 

zone of altered serpentinised dunite that grades into progressively less 

serpentinised dunite, however, sharp edge contacts may also be seen, though are 

less common. 

 

This style of mineralisation is typically found in the hanging wall and footwall of the 

ore body. 
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5.5.6 Reflected light petrology of massive chromite ore 

In addition to being an extraordinarily large chromite reserve the Voskhod deposit 

contains unusually thick intersections of massive chromite mineralisation these 

can be as thick as 100 m.  

 

Samples of massive chromite were studied under reflective light. Grain 

morphologies vary from euhedral to anhedral and sizes range from micron-scale 

(~0.10 mm) to >2 mm. The interstitial silicate mineral is serpentinised olivine. 

Observed features; grain boundary morphologies, grain organisation, inter-growth 

textures, compaction and annealing and silicate inclusions are described.   
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5.5.6.1 Connecting grains: Contact grain boundaries 

 

 

Figure 5.5.7: Connecting chromite grains present in interstitial silicate 

[a] Two grains, one engulfing the other, are seen right of centre, to the left grains are linked 

along grain boundaries. [b] Two small subhedral grains in silicate, left of centre,  surrounded by 

large, angular grains that lack clear grain boundaries. [c] A chain of subhedral to anhedral 

grains, in silicate, linked by boundary contacts, from left of centre to lower centre, other grains 

in the image are larger and grain boundaries are difficult to determine. [d] Inter-connecting 

grains where silicate material is present between grains. 

 

In massive chromite samples contact relationships between chromite grains were 

studied. Grain edges in contact with silicate material can be straight, rounded or 

uneven, appearing sinuous, cuspate or pitted (Figure 5.5.7 [a-d]). Subhedral to 

anhedral grains present within interstitial silicate regions appear to connect 

together (Figure 5.5.7 [c]). Two textures are identified, one grain engulfs another 

(Figure 5.5.7 [a]) or more commonly, side-by-side grain contact forming a chain 

texture (Figure 5.5.7 [a-d]).  
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Surface adsorption can result when the boundaries of two grains connect leading 

the grains to fuse together. When this happens the grain boundary contact 

changes to a faint, sometimes indistinguishable line (e.g. Figure 5.5.7 [d]).  

 

5.5.6.2 Chromite grain inter-growths 

Having identified that in many samples grain boundaries are absent or poorly 

defined, as well as, “engulfing” textures where one grain encompasses another, 

evidence of inter-grown grains possibly provide an intermediate scenario.  

 

 

Figure 5.5.8: Grain inter-growths within massive chromite 

[a] the intruding grain boundary edge of the upper left (outlined) grain appears faint. [b] a 

euhedral grain intrudes a larger, massive, neighbouring chromite. 

 

Inter-grown grains show one chromite grain intruding into a neighbouring grain 

(Figure 5.5.8). Evidence that boundaries may start to fuse, resulting in the 

intergrowth of the two grains, can be seen in Figure 5.5.8 [a]. However, this is not 
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a 
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always the case, in another example the boundaries remain clearly evident, Figure 

5.5.8 [b]. 

 

5.5.6.3 Compaction and annealing 

The ergonomic organisation of the grains; evidence of coalescing grains forming 

diffuse boundaries and grain intergrowths, are features that reflect an efficient 

accommodation of space as would result from compaction.  

 

 

Figure 5.5.9: Compaction and annealing 

Compaction intensifies (progressive examples [a] to [d]) grain boundaries fuse, grains merge 

and the boundaries anneal. The volume of interstitial silicate is reduced migrating along grain 

boundaries collecting in pockets or trapped within the chromite. 

 

The mechanism governing compaction does not appear to have a preferred 

orientation, or rather no evidence is preserved in these samples. There is no 

textural evidence of alignment, stretching, shearing or compressive flattening of 

b 

d c 

a 
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the grains; where grain boundaries remain visible the grains are equant. This 

indicates that pressure, at least, was equal in all directions. Equally though, 

pressure appears to have been greater in the regions where grains are more 

tightly packed and greater still where grains have fused and annealed. As 

compaction increases the volume of interstitial silicate material decreases. The 

interstitial silicates migrate along grain boundaries forming pockets or less 

commonly are trapped as inclusions inside merged grains.  

 

A sub-parallel fracture set is evident in some samples (e.g. Figure 5.5.9 [c] and [d]) 

indicating that a pressure event has affected these samples, the fractures crosscut 

grain boundaries indicating that they formed after compaction of the grains. In 

Figure 5.5.9 [c] two silicate inclusion trails are oriented parallel to the fractures and 

crosscut faint, annealed grain boundaries. 

 

There is no apparent relationship between the extent of fracturing observed in a 

sample and the abundance of silicate material.  

 

5.5.6.4 Chromite grain organisation 

Chromite grain contacts and packing relationships show a variety of grain sizes.  

 

Regions packed with small (0.1-0.3 mm) interlocking grains are often surrounded 

by massive chromite that lack evidence of grain boundaries, but where fracture 

networks are common forming straight edges (e.g. Figure 5.5.10 [a]). In areas 

where grain boundaries have been preserved, curved, undulate interlocking 

boundaries are common (e.g. Figure 5.5.10 [b]).  
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Figure 5.5.10: The organisation of chromite grains in massive chromite. 

[a and b] Regions of small subhedral and anhedral interlocked grains coexist with massive 

chromite that shows only faint grain boundaries and is fractured. [c and d] Densely packed 

grains with faint grain boundaries and cross-cutting fractures, silicate inclusions are present 

along boundaries and at boundary junctions.  
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5.5.6.5 Irregular grain edges; cuspate and embayment features 

 

Figure 5.5.11: Cuspate, pitted and undulating chromite grain edges in contact 

with interstitial silicate. 

 

Smooth chromite-chromite grain boundary contacts are common (e.g. Figure 

5.5.11 [d]) and similar to the chromite grain boundary contacts seen in some 

chromitiferous peridotite samples (chromite morphology descriptions are given in 

Section 5.4.1). Euhedral and subhedral grains form when chromite is in equilibrium 
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or close to being in equilibrium with the surrounding mineral and melt phases (Pike 

& Schwarzman, 1976). In contrast, chromite grains in contact with other chromite 

grains typically have smooth edges, though not necessarily straight. Grains in 

contact with silicates often display along at least one edge rounded, sinuous or 

pitted features and in extreme cases deep cusps or embayments form (Figure 

5.5.11 [a-f]). These corrosion textures are analogous to those of exhibited by 

cuspate accessory chromites present in peridotite (Section 5.4) and are 

characteristic of disequilibrium between chromite grains and the interstitial olivine 

(now serpentinised olivine) (e.g. Mercier and Nicolas, 1975) (as reviewed in 

Chapter 3, Section 3.6.1).  
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5.5.6.6 Triple junctions and silicate-filled grain boundary voids 

Grain boundaries serve as a pathway for fluid flow during metamorphism (Fyfe et 

al., 1978) as well as provide diffusion interfaces for solid-state mass transfer 

during metamorphic reactions (Fisher & Elliot, 1979; Lasaga et al., 1977) and 

deformation (White, 1976; Schmid et al., 1977).  

 

 

Figure 5.5.12: Triple junctions and boundary voids 

[a] Several triple junctions are evident (e.g. top, left of centre), silicate filled voids between 

grains (right of centre); [b] Triple junctions formed between grains with curved, undulate grain 

boundaries (left of centre), equant orthorhombic and triangle-shaped voids present where 

multiple (≥ 3) grain boundaries meet; [c] equant orthorhombic and triangle-shaped voids 

present where multiple (≥ 3) grain boundaries meet and silicate filled voids between grains; [d] 

a series of silicate filled voids between grains and evidence of micron-size chromite grains 

present ‘suspended’ in silicate (centre). 

 

Triple junctions between polygonal grains with straight or slightly curved crystal 

faces are frequently observed in the massive chromite. When triple junctions are 
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orientated at ~120 it is indicative of the system being in thermodynamic 

equilibrium. Such junction angles are characteristic of sintered grains (Voll,1960; 

Hulbert & Von Gruenewaldt, 1985) as are boundary curvatures that form as a 

result of triple junction migration (Voll, 1960). On the contrary, triple junctions 

where grain angles vary (are not 120) signify that the system is not in 

thermodynamic equilibrium.  

 

Triple junctions are observed in the massive chromites (Figure 5.5.12 [a]). In a 

single sample there is a diverse range in the size of chromite grains. It appears 

that the distortion of original grain boundaries during compaction, grain intergrowth 

and annealing has produced curved grain boundaries, evidence of triple-point 

migration or destroyed many triple junction boundaries. Golding (1975) observed 

and attributed similar features in podiform chromitite from the Coolac ultramafic 

belt in New South Wales, as evidence of the densification of chromite. 

 

Where small amounts of interstitial silicate (serpentinised olivine) is present 

between some chromites, an inter-granular film forms. Cuspate and polygonal, 

typically orthorhombic or triangular shaped, silicate filled regions along grain 

boundaries and at triple-points are common. The presence of these films indicates 

that not all of the interstitial silicate material has been expelled during densification.  

 

Silicate filled voids frequently observed along many grain boundaries (Figure 

5.5.12 [a-d]) are analogous to the observations and resulting grain boundary 

model proposed by White & White (1981) that was developed from the study of a 

series of polycrystalline tectonite rocks (Chapter 3; Section 3.6.4). Triangular, 

silicate filled divots form at triple junctions while trapped olivine fills voids present 

along grain boundaries. Polygonal, diamond-, square- or orthorhombic-shaped 

silicate structures are sometimes seen, these may form when two triple junctions 

coalesce or are the result of a negative crystal structure.  

 

5.5.6.7 Silicate inclusions 

Silicate inclusions composed of olivine are located within grains and along grain 

boundaries, as singular inclusions, clusters or trails and form variety of shapes.  
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Figure 5.5.13: Silicate inclusions in massive chromite. 

[a] Euhedral, negative crystal structure inclusion. [b] An arc-shaped cluster of anhedral and 

euhedral silicate inclusions, centre to right, elsewhere single inclusions (grey). [c] Two 

euhedral, square olivine inclusions. [d] Two euhedral olivine inclusions and a pool of trapped 

olivine at a multiple grain boundary junction. [e] single subhedral olivine inclusion. [f] multiple 

micron-sized inclusion trail extending across several fractures. 

 

Micron-sized inclusion trails are common in the massive, annealed chromites 

where grain boundaries are weakly defined, discontinuous or non-existent. The 

trails are comprised of multiple inclusions that are cross-cut by fractures indicating 

they formed earlier. The shape of the trails vary in some cases straight (Figure 

5.5.9 c) and in others creating a saw-tooth zig-zag pattern an apparent suture 
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texture (Figure 5.5.13 f). In some samples these inclusions appear to weakly 

outline possible, pre-existing chromite grains, which have since sutured together 

(Figure 5.5.13 f). In such circumstances the trail forms as a record of trapped 

olivine that was not expelled during compaction and annealing of the chromite 

grains. 

 

Square, rectangular and hexagonal olivine inclusions form as chromite grains have 

grown or coalesced trapping the interstitial silicate. The shape of these inclusions 

is dictated by the crystal structure of the encompassing chromites. 

 

5.6 Whole rock analyses 

5.6.1 Covariation diagrams 

To aid the interpretation of the Voskhod deposit peridotite and dunite units a whole 

rock geochemical study was performed for 15 hanging wall samples, 8 footwall 

samples and 7 dunite samples from barren horizons within the ore body. Of the 35 

samples collected, 24 were sourced from drill core V05-24 ,the central drill hole 

and 9 samples were collected from drill cores V05-21 to the west, V05-28 to the 

east, V06-48 to the south of the centre and V06-S6 the furthest south drill hole 

(refer to Figure 5.1.3).   

 

Lithologies studied included dunite, clinopyroxene-poor and -rich harzburgite and 

dunite. Samples of barren dunite from within the ore zone were included to enable 

the comparison of these results with those of the host rock dunite and the dunite 

halo surrounding the ore-body. Geochemical differences, in particular in the rare 

earth element (REE) patterns, could distinguish between different origins of the 

dunite groups, providing insight into the role of melts and associated fluids 

involved with the formation of the chromitite ore body. 

 

The whole rock geochemistry was analysed using both ICP-OES (Induced 

Coupled Plasma-Optical Emission Spectrometry) and ICP-MS (Induced Coupled 

Plasma-Mass Spectrometry). The ICP-OES  analysed for the abundance of major 

elements Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P and Cr, these were reported as oxide 

percent, in addition the minor elements Sc, V, Co, Ni, Cu, Zn, Sr, Y, Zr and Ba, 
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were reported as elements in ppm concentrations. The ICP-MS analysed for rare 

earth elements (REE), Ti, V, Cr, Mn, Co, Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, 

Hf, Ta, Pb and Th, these values were reported as elements in ppm concentrations. 

A detailed description of the procedure for sample preparation and instrument use 

given in Appendix A and full results are given in Appendix C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.6.1: Voskhod peridotite and dunite samples analysed for whole rock 

geochemistry. 

“Distance from mineralisation (m)” refers to the vertical distance in the drill core. 

 

 

Sample

I.D

Drill core 

I.D
Region 

Depth down 

hole (m)

Distance from 

mineralisation 

(m)

Location
Rock 

type

Chromite

 modal %

Grain

 Shape

G1815 V05-21 West 286.60 n/a n/a OZ Dun < 5% Eu

G1823 V05-21 West 297.65 48.80 Footwall Dist Dun < 5% SI

G1742 V05-24 Centre 141.30 142.92 Hanging wall Harz < 5% HL/SI

G1763 V05-24 Centre 167.60 116.61 Hanging wall Harz < 5% HL/SI

G1768 V05-24 Centre 176.94 107.26 Hanging wall Harz <5% HL/SI

G1777 V05-24 Centre 185.60 98.56 Hanging wall Dist Dun < 5% HL/SI

G1795 V05-24 Centre 231.90 52.30 Hanging wall Harz < 5% SI/An

G1798 V05-24 Centre 240.00 44.70 Hanging wall Dist Dun < 5% HL/SI

VOS-301 V05-24 Centre 249.53 34.67 Hanging wall Dist Dun < 5% HL/SI

VOS-303 V05-24 Centre 252.00 32.50 Hanging wall Dist Dun < 5% SI

VOS-306 V05-24 Centre 258.94 25.26 Hanging wall Dun Halo < 5% HL/SI

VOS-315 V05-24 Centre 270.10 14.10 Hanging wall
Dun/Chr

Stringer
~ 50% SI/Eu

VOS-320 V05-24 Centre 274.59 9.61 Hanging wall Dist Dun < 5% SI

VOS-322 V05-24 Centre 276.80 7.40 Hanging wall Harz < 5% SI/An

VOS-327 V05-24 Centre 282.72 1.48 Hanging wall Harz < 5% SI/Eu

F1907 V05-24 Centre 285.50 n/a n/a OZ Dun <5% SI

F1926 V05-24 Centre 296.70 n/a n/a OZ Dun <5% Eu

F1968 V05-24 Centre 341.70 n/a n/a OZ Dun <5% Eu

F1971 V05-24 Centre 343.00 n/a n/a OZ Dun ~ 15% Eu

F1978 V05-24 Centre 348.00 n/a n/a OZ Dun ~ 35% Eu

G1908 V05-24 Centre 373.42 n/a Footwall Dun Halo < 5% SI/Eu

VOS-328 V05-24 Centre 375.00 1.58 Footwall Dun Halo < 5% SI/Eu

VOS-341 V05-24 Centre 389.23 15.81 Footwall Harz < 5% HL

VOS-345 V05-24 Centre 394.00 20.69 Footwall Harz < 5% HL/SI

VOS-348 V05-24 Centre 398.63 25.21 Footwall Dist Dun < 5% HL/SI/Eu

VOS-350 V05-24 Centre 403.00 29.50 Footwall Dist Dun < 5% HL/SI

G1601 V05-28 East 322.09 5.15 Hanging wall Dun Halo < 5% An/SI

G1605 V05-28 East 325.52 1.72 Hanging wall Dun Halo < 5% An/SI

G1609 V05-28 East 333.85 n/a n/a OZ Dun < 5% Eu

G1654 V05-28 East 369.70 n/a n/a OZ Dun < 5% SI/Eu

G1983 V06-48 S. Centre 298.45 1.75 Footwall Dun Halo < 5% SI/Eu

VOS-185 V06-S6 South 93.95 8.08 Footwall Harz < 5% An/SI
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Whole rock data assists in confirming the interpretation of the hanging wall and 

footwall unit rock types that were made from the inspection of hand specimens 

during drill core logging. In addition, some samples were selected as being 

representative of unit types, thin sections were made of these and the samples 

were optically classified. 

  

The hanging wall and footwall peridotites of the Voskhod deposit have undergone 

extensive serpentinisation, consequently the rock samples exhibit high loss-on-

ignition (LOI) values that range from 12-17 wt%. (Whole rock data tables including 

LOI values are given in Appendix C).  

 

Whole rock data plots of Al2O3 wt% and CaO wt% against the incompatible, 

immobile trace element Y ppm (Figure 5.6.2) were used to investigate the mobility 

of elements during alteration. The Al2O3 against CaO co-variation plot (Figure 

5.6.3) was used to classify dunite, harzburgite and clinopyroxene-rich harzburgite 

rock types by applying the peridotite classification strategy derived from the results 

of the study by Pearce and Parkinson (1993). Chondrite-normalised REE plots 

(presented in Section 5.6.2) of the ultramafic hanging wall, footwall and ore zone 

dunite and peridotite samples were used to further support the categorisation of 

the samples. These plots were normalised to chondrite values using the values 

published by Sun and McDonough (1999). 

 

The Al2O3 wt.% and CaO wt% whole rock analysis values of the peridotite and 

dunite samples reflects the abundance of clinopyroxene (and to a lesser extent 

orthopyroxene) present in the samples; as the proportion of clinopyroxene 

decreases the Al and Ca contents also decrease. All of the harzburgites have 

elevated clinopyroxene contents compared to dunites and consequently have 

relatively higher Al2O3 wt.% and CaO wt.% contents. The dunite halo and ore zone 

dunites have lower CaO wt.% contents than the hanging wall and footwall dunites 

and peridotites. These findings conform with the documented reaction between a 

melt and host peridotite mantle that promotes clinopyroxene dissolution, a result of 

the de-stabilisation of the pyroxene stability field (Kelemen, 1992; Arai, 1994). In 

contrast, the dunite halo and ore zone dunites exhibit elevated Al2O3 contents 

owing to the increase in the proportion of chromite present in these samples. 
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The impact of serpentinisation on element mobility has been well documented 

(e.g. Niu, 2004; Iyer et al., 2008; Deschamps et al., 2010). High field strength 

elements (e.g. Ti, Zr, Al, Y and HREE) have been shown to be largely immobile 

during seafloor alteration processes (Niu, 2004) and serpentinisation of the fore 

arc mantle (You et al., 1996). Nui (2004) showed that in instances when 

serpentinisation effects only olivine, the major element geochemistry is largely 

unaffected with only MgO being slightly depleted. However, when clinopyroxene is 

altered CaO is removed (Ulrich et al., 2010). 

 

Co-variation diagrams of HFSEs and major elements help to determine the 

mobility of these elements during hydrothermal alteration processes such as those 

associated with serpentinisation and seafloor alteration. By understanding the 

impact of alteration (if any) on the whole rock geochemical composition of the 

samples analysed it is possible to use geochemistry to aid and verify the 

classification of the peridotite and dunite units of the Voskhod deposit and 

investigate earlier geochemical signatures related to primary processes or tectonic 

setting. 
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5.6.1.1   Al2O3 against Y and CaO against Y co-variation plots 

 

Figure 5.6.1: Al2O3 against Y whole rock  co-variation diagram  

Where “WR” denotes whole rock. The solid black line indicates the line of best fit through the 

data points. 

 

A positive correlation is observed between Al2O3 and Y in Figure 5.6.1 (annotated 

by the black solid line) indicates that aluminium was largely immobile during 

alteration of the peridotite and dunite units (Godard et al., 2000; Takazawa et al., 

2002). The “dunite” and “dunite halo” samples have lower Al2O3 contents (<0.5 

wt%) than the “harzburgite”, a reflection of the lower clinopyroxene content of 

dunite compared to harzburgite.  
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Harzburgite forms two groups, one having a higher Al2O3 wt% (>1 wt%) content 

than the other (<1 wt%). The more Al-rich harzburgite has correspondingly 

increased Y ppm contents, inferring that these samples have (or originally 

possessed) a higher proportion of clinopyroxene. 

 

The dunite samples (green triangles) and the dunite halo samples (purple 

diamonds) have similar Al2O3 contents of <0.5 wt.% (true for 13 of the 14 samples, 

the exception being sample Vos-301). The dunite samples have lower Y ppm 

contents (8 of the 10 samples Y contents <0.14 ppm) compared with the dunite 

halo samples, where the Y ppm content is >0.15 ppm. In contrast to both of these 

groups, the ore zone dunite data (yellow squares) scatters across the graph, with 

data plotting close to harzburgite, dunite and dunite halo samples. 

 

Figure 5.6.2: CaO against Y co-variation diagram 

 

The plot CaO against Y (Figure 5.6.2) shows a weak positive correlation, inferring 

that CaO has been mobilised within the geochemical system (Ulrich et al., 2010). 
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The four cpx-poor harzburgite samples plot with lower CaO values <0.2 wt% 

(empty blue circles, Figure 5.6.2). Three of these (circled in blue in Figure 5.6.2)  

correspond with low Al2O3 and Y contents identified in Figure 5.6.1. The 

complimentary low Al2O3 and low CaO contents of these samples implies that they 

have a lower cpx content than the other harzburgites.  

 

The dunite samples show no correlation between CaO wt% and Y ppm implying 

that CaO has been re-mobilised. Three samples from the hanging wall and 

footwall dunite exhibit anomalously high CaO wt% values lying above the 

annotated black dashed line in Figure 5.6.2, these are labelled Vos-301, Vos-348 

and Vos-350. Of these anomalous samples Vos-348 and Vos-350 do not show a 

corresponding increased Al2O3 wt% content (Figure 5.6.1). This infers that these 

samples have been subject to the addition of carbonate material during later-stage 

alteration, possibly in the form of magnesite, which is a common mineral phase bi-

product of serpentinisation. Sample Vos-301 has higher CaO and Al2O3 wt% 

values compared to the other dunite samples (labelled in both Figure 5.6.1 and 

Figure 5.6.2) and plots closer to the harzburgite samples. 

 

5.6.1.2 Co-variation plot Al2O3 against CaO  

Harzburgite and dunite can be distinguished between by the differing modal 

proportion of clinopyroxene. The plot Al2O3 wt% against CaO wt% can be used to 

chemically identify this compositional difference (Figure 5.6.3). The abundance of 

Al2O3 and CaO wt% in whole rock peridotite decreases as the clinopyroxene (and 

to a lesser extent orthopyroxene) content decreases. The peridotite type 

discrimination fields presented in Figure 5.6.3 are; lherzolite, clinopyroxene-rich 

harzburgite, harzburgite and dunite.  

 

The Voskhod harzburgite and dunite samples were classified optically by visually 

estimating the mineral proportions of olivine, clinopyroxene and orthopyroxene 

observed in hand specimen and thin section. The samples were categorised into 

three groups, harzburgite, clinopyroxene-poor harzburgite and dunite. 
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Figure 5.6.3: Al2O3 against CaO wt% co-variation plot 

The discrimination fields are created using whole rock geochemical data from peridotite and 

dunite samples sourced from the Oman ophiolite ultramafic sequence. The mineral proportions 

of clinopyroxene were known having been calculated chemically by mass balance using whole 

rock composition data in conjunction with mineral compositions (Takazawa et a., 2000; Godard 

et al., 2003; Dare, 2007).The solid black arrows indicate displacement of samples from the 

rock-type discrimination field. 

 

Harzburgite plots away from the harzburgite field as a result of low CaO values 

(indicated by the black horizontal arrows Figure 5.6.3), however, the Al2O3 values 

of these samples are sufficiently high that they do not plot in the dunite field. The 

cpx-poor harzburgite (<1% cpx, blue open circle) are the furthest removed from 

the harzburgite field having insufficient Al2O3 and CaO values, a reflection of a low 

clinopyroxene content. In contrast, Vos-345 plots in the cpx-rich harzburgite field, 

on optical examination this sample contains only ~2% clinopyroxene, consequently 

it is interpreted to exhibit elevated CaO wt%.  

 

The dunite, dunite halo and ore zone dunite plot within the dunite discrimination 

field. Two ore zone dunites plot with elevated Al2O3, however, the CaO values are 

low and in keeping with dunite geochemistry. The elevated Al2O3 content reflects 

the presence of chromite (>3%) in the whole rock sample analysed. Vos-348 plots 
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away from the dunite field having a high CaO value of 1.00 wt%. The Al2O3 value 

is not high enough for it to plot in the harzburgite field, implying that the CaO 

increase results from an alteration process rather than an increase in 

clinopyroxene (similar to that seen in sample Vos-345). 

  

A study conducted by Pearce and Parkinson (1993) examined the relationship 

between whole rock peridotite data and the percentage of non-exsolved 

clinopyroxene optically present in a sample series. The results showed that 

peridotite comprising 3% clinopyroxene has 0.08 wt% CaO in the whole rock while 

a peridotite with 0% clinopyroxene has <0.03 wt% CaO. The observations made 

and geochemistry presented on the Voskhod peridotites and dunites correspond 

well with the results of Pearce and Parkinson (1993).  

 

5.6.2 REE patterns 

Residual ultramafic rock formed by partial melting of the upper mantle is depleted 

in light rare earth elements (LREE = La to Nd). It has been reported that massive 

peridotite and dunite from ophiolites display chondrite-normalised ratios of LREE 

to heavy rare earth elements (HREE = Er to Lu) of less than one [(LREE/HREE)N 

< 1] (Melcher et al., 1999). However, massive peridotites have the potential to 

exhibit ratios (LREE/HREE)N > 1 if they have been subject to enrichment following 

interaction with metasomatic fluids, a process that may not significantly change the 

modal composition (Boudinier et al., 1988; McDonough and Frey, 1989; Bodinier 

et al., 1990). 

 

Complex REE patterns have been identified in mantle peridotite and dunite rocks 

from the Kempirsai Massif (Sharma et al., 1995, Sharma and Wasserburg, 1996,  

Savelieva et al., 1997, and Melcher et al., 1999). Studies have reported U-shaped 

patterns characterised by variable LREE enrichment, low to middle REE (MREE = 

Sm to Tb) and increasing HREE contents. Chondrite-normalised REE values vary 

by up to five orders of magnitude. Dunites from the MOF have the lowest REE 

concentrations, while harzburgites show elevated HREE concentrations that 

approach compositions analogous to those of lherzolite. Ultramafic cumulates 

were also significantly enriched in LREEs relative to MREEs producing U-shaped 

patterns. The large variation in REE concentrations has been interpreted to reflect 
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strong compositional heterogeneities within the Palaeozoic mantle of the southern 

Urals (Melcher et al., 1999). The coexistence of depleted and enriched peridotites 

has been interpreted to result from either varying degrees of partial melting 

(ranging from <10% to >30%) (Melcher et al., 1999) or alternatively to require re-

fertilisation of the mantle causing secondary enrichment (Sharma & Wasserburg, 

1996). REE profiles presented in the literature for the Southern Urals mantle units 

are characteristic of LREE enrichment of depleted mantle that is associated with 

the infiltration of subsequent melts or fluids.  

 

Fluid interaction with the mantle may be the result of fluids driven off from a 

downward subducting slab, or occur as a later-stage process by percolating waters 

associated with the obduction process of ophiolite emplacement. Deschamps et al. 

(2010) showed that the REE remain immobile during serpentinisation of abyssal 

and forearc peridotites and that the REE profiles reflect earlier magmatic 

processes or the effects of late-stage magmas or fluids.. 

 

Chondrite-normalised REE plots for representative harzburgite and dunite sourced 

from the hanging wall, footwall and ore zone of the Voskhod deposit are presented 

in Figure 5.6.4 [a-d]. The sample suite exhibits intermediate to low REE 

concentrations with Chondrite normalised value ranges; HREE 0.03-0.74, MREE 

0.03-0.58 and LREE 0.03-2.18. The solid grey line shown in each plot represents 

depleted MORB mantle (DMM) (Workman & Hart, 2005) normalised to chondrite 

(Sun & McDonough, 1989). The DMM/chondrite line provides a comparison for the 

REE geochemistry profiles of the Voskhod deposit mantle peridotite and dunite 

rocks.  

 

An important first order observation is that compared to the DMM REE profile, all 

lithologies in the Voskhod ore body and the  host harzburgite and dunite samples 

are depleted in terms of REEs. 

  

Although the Voskhod sample series studied lacks diversity in terms of 

mineralogical composition, the whole rock REE geochemistry identifies four 

different REE patterns in the suite.  

(i) LREE depleted (Figure 5.6.4[a]), HREE>MREE>LREE 
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(ii) LREE enriched (Figure 5.6.4 [b]), HREE≥MREE<LREE 

(iii) Flat (Figure 5.6.4 [c]), HREE=MREE=LREE 

(iv) U-shaped (Figure 5.6.4 [d]), HREE>MREE≤LREE  

 

Ulrich et al. (2010) reviewed the use of REE profiles for interpreting the 

petrogenesis of an ophiolite setting. Their findings showed that for chondrite-

normalised REE profiles produced from the analysis of mantle peridotite rocks, 

progressively decreasing values from HREE through MREE to LREE result from 

mantle melting. In contrast, LREE enrichment patterns are interpreted to indicate 

post-melting refertilisation of the mantle produced by interaction of comparatively 

fertile uprising melts with depleted residual mantle.   

  

5.6.2.1 REE profiles grouped by shape 

Individual REE profiles for Voskhod rocks do not correspond exclusively to specific 

rock types or the location of the sample with respect to surface space or proximity 

to the ore body (i.e. whether the sample is sourced from the hanging wall or 

footwall, or central, north, south, east or west of the ore body).  

 

Type (i) depleted LREE profiles (Figure 5.6.4 [a]) are produced by harzburgite and 

one ore-zone dunite sample.  This pattern represents depleted country rock, the 

residue of mantle melting. Depleted LREE patterns are characteristic of rocks that 

have undergone melt extraction, as has been demonstrated by standard melting 

models (e.g. Johnson et al., 1990). A slight LREE enrichment is seen in several  

profiles. The negative Eu anomalies in some harzburgites may be attributed to 

differential mobility of the light (Sm-La) and middle (Eu-Tb) REE during alteration, 

rather than being a primary process signature (Pearce., 2005). The positive Sm 

anomaly has no obvious explanation. 

 

Type (ii) enriched LREE profiles reflect varied levels of depletion combined with 

high levels of LREE re-enrichment (Figure 5.6.4 [b]). One sample of harzburgite is 

extremely enriched in LREE, more so than the dunite samples. If re-fertilisation of 

the mantle by interaction with an upwelling melt is responsible for the increase in 

LREE it implies that the LREE are trapped as LREE-enriched films along grain 
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boundaries (Niu, 2004). If this is the case, then the process of resorption of 

orthopyroxene from harzburgite is decoupled from the process by which the host 

rock is being enriched in LREE. From these observations it is proposed that 

magma in the conduit may not be the mechanism by which LREE enrich the 

mantle, but rather that an accompanying, unmixed volatile-rich fluid fulfils this role. 

 

Type (iii) flat patterns in lithologies from the ore zones that do not contain 

clinopyroxene, may imply the entrapment of all REE along grain boundaries, in the 

proportion they are present in the new percolating melt (Figure 5.6.4 [c]). The 

approximately flat pattern in the harzburgite may comprise a slight decrease from 

HREE to MREE, the result of mantle melting and a slight increase in LREE by re-

fertilisation (interaction with a new melt). This pattern may be transitional to the U-

shaped pattern (Figure 5.6.4 [d]).  

 

Type (iv) U-shaped patters are produced only by harzburgites and dunites from the 

host rocks. The pattern indicates that the rocks are depleted host-rocks (depleted-

LREE) that have been subject to an intermediate level of LREE enrichment from 

interaction with a later stage melt (or melt derived fluid). 
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Figure 5.6.4: Chondrite-normalised REE patterns for Voskhod peridotites and 

dunite.   

[a] LREE depleted, [b] LREE enriched, [c] Flat and [d] U-shaped REE profiles. C1 chondrite 

values from McDonough & Sun (1995). DMM (depleted MORB mantle) values from Workmann 

& Hart (2005). Sample number - (C=centre, E=east, CS=centre south, S=south, W=west - 

HW=hanging wall, FW=Footwall, OZ=ore zone - The distance from the orebody, perpendicular 

down hole is given in metres). Refer to Table 5.6.1 and Figure 5.1.3. 
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5.6.2.2 REE profiles grouped by rock-type 

It has been demonstrated in Section 5.6.2.1 that four REE profile shapes exist but 

that these are not associated with specific rock-types or proximity to the ore body. 

To further understand the relationship between the REE profiles and rock-types 

the patterns have been grouped according by rock-type (Figure 5.6.5).  

 

The harzburgite samples produce predominantly LREE-depleted profiles (Figure 

5.6.5 [a]). However, sample Vos185, sourced 8.08 m into the footwall from the 

south of the deposit is particularly LREE-enriched, it is the only sample analysed 

from the south of the ore body, the others being sourced from the centre of the ore 

body (drill core V05-24). In comparison, the other footwall harzburgite samples 

(Vos-341 and -345) are LREE-depleted. This result may indicate that the south of 

the ore body has been subject to greater degree of LREE-enrichment, although 

from one sample it is difficult to confirm this.  
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Figure 5.6.5: REE profiles grouped by rock-type. 

[a] Harzburgite, [b] Distal dunite, [c] Dunite halo, [d] Ore zone dunite. Positions are given next 

to the sample number (C=centre, E=east, CS=centre south, S=south, W=west - HW=hanging 

wall, FW=Footwall, OZ=ore zone - The distance from the orebody, perpendicular down hole is 

given in metres). Refer to Table 5.6.1 and Figure 5.1.3. C1 chondrite values McDonough & Sun 

(1995). 
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The distal dunite samples form flat, U-shaped and LREE-enriched profiles (Figure 

5.6.5 [b]). There are no LREE-depleted profiles indicating that all of these rocks 

have at some stage interacted, to variable extents, with a LREE-enriched liquid 

and are not solely the products of extensive degrees of partial melting, which 

would have formed LREE-depleted patterns. There is no apparent correlation with 

hanging wall or footwall localities, although it can be seen that generally samples 

sourced closer to the ore body have lower REE concentrations than those further 

away. 

 

The dunite halo samples produce LREE-enriched or flat with slightly elevated 

HREE profiles (Figure 5.6.5 [c]). The former indicates interaction with a LREE-

enriched liquid, while the slightly increased HREE concentrations of the flat profiles 

are evidence of melt extraction. There is no correlation with samples being 

collected from the upper or lower selvedge of the ore body, although sample 

G1605 is from the eastern periphery (drill core V05-28), upper selvedge of the ore 

body and has lower REE concentrations compared with those of dunite halo 

samples analysed from the centre of the ore body. 

 

The ore zone dunites display LREE-enriched, LREE-depleted and flat profiles 

indicating a multiple processes involving melting (to produce the LREE-depleted 

profiles) and later-stage enrichment to produce the flat and LREE-enriched 

profiles. The LREE-enriched profiles form by more intense interaction with a 

LREE-enriching liquid, while less extensive reaction produced the flat profiles. 

Samples G1609 and G1654 from the east of the ore body and sample F1971 from 

the centre have overall lower REE concentrations compared with the other ore 

zone dunites and form flat profiles.  

 

5.6.2.3 Extended trace element plots (spidergrams)  

Spidergrams provide extended element profiles that include the large ion lithophile 

elements (LILE) K, Rb, Cs and Ba and the high field strength elements (HFSE) Nb, 

Ta, Zr and Hf in addition to REE. The inclusion of these elements assist in finger 

printing the chemical signature and consequently the source, of any fluids and/or 

melts that may have interacted with the mantle rocks.  
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In Chapter 4, Section 4.3, it is noted that previous studies have suggested that 

boninite lavas and mantle hosted podiform chromites are genetically linked. 

Furthermore, boninites are present in the Baimak-Buribai Complex (BBC) located 

~150 km from the Kempirsai Massif. A genetic association between the two has 

never been established and there is some uncertainty whether these mantle and 

lava units are part of the same stratigraphic progression (mantle to crust) as the 

Main Uralian Fault transects between the two.  

 

Typically boninites are rich in SiO2, MgO, Cr, Ni, H2O, LILE, U, Th, Pb, Sr and 

LREE, but poor in many HFSE and MREE-HREE (Hickey & Frey, 1982; Pearce, 

1982; Crawford, 1989; Saunders et al., 1991; Pearce et al., 1992; Taylor et al., 

1994). The hydrous nature of these melts promotes extensive melting of the 

mantle (Dick & Bullen, 1984; Hamlyn et al., 1985; Bonatti & Michael, 1989; Dick, 

1989; Arai, 1994). This in turn can alter the relative proportions of the melt 

chemistry (Gaetani & Grove, 1998; Bizimis et al., 2000) and the ability of the melt 

to transport LILE and “hygrophile” elements (Pearce, 1982; Saunders et al., 1991). 

Boninite melt chemistry is further complicated by the unconstrained extent of 

melting required to form such a melt, the degree of depletion of the mantle source, 

the impact of melt-rock interaction during ascent to the surface and the undefined 

nature of associated fluids/melts produced by the devolatilisation and melting of 

sediment and/or crustal lavas brought down by the subducting slab, contributing 

what is a termed an ‘arc component’ to the melt signature (e.g. Gill, 1981; Hickey 

& Frey, 1982; Pearce, 1982; Saunders et al., 1991; Pearce et al., 1992; 

Hawkesworth et al., 1993; Pearce & Parkinson, 1993; Arculus, 1994; taylor et al., 

1994; Iwamori, 1998). 

 

Whole rock geochemical data for the BBC boninites (Spadea et al., 1998) has 

been plotted with the geochemical data collected from the Voskhod samples on 

the spidergrams for comparison. 
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Figure 5.6.6: Extended trace element plots for the Voskhod samples grouped by 

rock-type and normalised to chondrite. 

C1 chondrite values, McDonough & Sun (1995). 
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The chondrite-rock normalised spidergrams show that all of the Voskhod samples 

have positive Ba, Zr and Hf anomalies and many samples are anomalously 

enriched in the trace elements K, Th, Nb and Ta (Figure 5.6.6 [a-d]). The HFSE; 

Nb, Ta, Zr and Hf are immobile during alteration (Godard et al., 2000) and the 

values reported for the Voskhod samples are considered representative of the 

primary composition of these mantle rocks.  

 

Relative to the chondrite-normalised DMM line, all of the Voskhod samples are 

enriched in the LILE; Cs, K, Rb and Ba, elements that are commonly associated 

with boninite melts. The presence of such high concentrations in otherwise 

depleted mantle rocks would suggest these components have been introduced to 

the mantle rocks after depletion. In all of the samples the LILE enrichment order is 

Ba>K>Rb≈Cs. Although the Rb and Cs values are approximately similar, in the ore 

zone dunites Cs>Rb is seen (Figure 5.6.6 [d]), yet in the other sample groups 

Rb>Cs is typical (Figure 5.6.6 [a-c]).  

 

Increased Nb, Ta (±Th) values relative to LREE indicate that the mantle residue 

has been infiltrated by later-stage (post mantle melting and LREE-depletion), 

volatile-rich liquids such as those derived from the dehydration and/or melting of a 

downward sinking, subducting slab. This signature is present throughout the 

majority of the Voskhod sample series. Only samples: harzburgite; Vos-185, 

G1742 and Vos-345 (Figure 5.6.6 [a]), distal dunite; Vos-303 and -350 (Figure 

5.6.6 [b]), dunite halo; Vos-328 (Figure 5.6.6 [c]) and ore zone dunite; F1926 

(Figure 5.6.6 [d]) do not possess elevated Nb-Ta (±Th) values. Although the 

signature is present across the area sampled, it is not a rock-type specific 

signature. Instead it appears that the volatile-rich liquids may have formed isolated 

pathways and selectively enriched mantle regions of harzburgite and dunite as 

well as the ore zone.  

 

The positive Zr-Hf anomaly appears to be independent of the Nb-Ta (±Th) 

signature, indicating that it is sourced from a separate fluid or melt event. When 

the data is scrutinised profiles showing the greatest Nb-Ta enrichment typically 

have the least pronounced Zr-Hf anomalies, e.g. samples, Vos-322 (harzburgite), 

G1983 (dunite halo), F1907 and F1971 (ore zone dunite). A remarkably similar 

positive Zr-Hf anomaly has been reported by Page et al. (2009) in the Thetford 
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Mines Ophiolite (TMO) mantle rocks (in harzburgite and dunite units). Similarly, the 

TMO mantle rocks are enriched in Nb and Ta relative to the LREE, although the 

extent of enrichment in these elements is not as great as that seen in the Voskhod 

mantle rocks. Page et al. (2009) were able to demonstrate that these anomalies 

resulted from the introduction of a sediment from the downward subducting slab at 

the site of mantle melting.  

 

When the Voskhod rock suite spidergram plots are compared with the BBC 

boninite geochemistry (Spadea et al., 1998) there is a striking resemblance 

between the two. The BBC boninites show exceptionally strong positive Ba-K 

anomalies and positive Zr-Hf signatures. The Nb-Ta signature of the BBC 

boninites is more variable, however, the upper limit of the field indicates that some 

of the boninite samples analysed were enriched in Nb-Ta relative to the LREE.  

 

For comparison the average trace and rare earth element compositions for 

Voskhod harzburgite and ore zone dunite and the BBC boninite field are plotted 

with the average TMO harzburgite and podiform dunite (dunite from the TMO 

chromite ore body) and TMO boninite compositions (Figure 5.6.7). 
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Figure 5.6.7: A comparison of the trace and rare earth element for the Thetford 

Mines Ophiolite and Voskhod mantle and boninite rock series. 

 C1 chondrite values from McDonough & Sun (1995). TMO data from Page et al. (2009). Hz= 

harzburgite, Bon= boninite, Dun-P= Podiform dunite, OZ Dun= Ore zone dunite. 

 

The compositions of the BBC and TMO boninites are very similar. The BBC 

boninites are more enriched in MREE-HREE than the TMO boninites indicating 

that the source of the BBC boninites was either more fertile or underwent higher 

degrees of partial melting to liberate these elements from the mantle source. Both 

boninite series display positive K, Ba and Zr-Hf anomalies. However, the enriched 

Nb-Ta signature seen in the BBC boninites is not evident in the TMO boninites, in 

fact the TMO boninites are relatively depleted in these components compared to 

LREE concentrations.  

 

The Voskhod and TMO mantle rocks form similar patterns and profile 

relationships; the harzburgite profiles have higher element concentrations than the 

ore zone dunite profiles. As seen in the boninite data comparison, the Voskhod 

mantle rocks are more enriched than the TMO mantle rocks. The positive Zr-Hf 

signature is clearly evident in the Voskhod mantle rocks and is comparatively less 

prominent, although still present, in the TMO mantle rocks. Additionally the 
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Voskhod harzburgite and ore zone dunite profiles record a strong Ba-enriched 

signature and elevated Th, Nb and Ta values. In contrast, despite the Ba spike in 

the TMO boninite, the TMO harzburgite and podiform dunite profiles are depleted 

in Ba. The Th, Nb and Ta concentrations compare well with the composition of the 

TMO boninite profile, Th and Ta are relatively enriched, while Nb is comparatively 

depleted. However, it is noted that in the TMO mantle rocks Nb concentrations are 

still greater than the LREE. 

 

A steep increase in the HREE concentrations is seen in the TMO harzburgite and 

podiform dunite profiles, relative to the more gentle slope displayed by the 

Voskhod harzburgite and ore zone dunite profiles. This implies that the TMO 

mantle was subject to higher degrees of partial melting compared to the Voskhod 

mantle. Both display similar gradient LREE enrichment profiles, evidence of a 

LREE fluid or melt phase interacting with and re-enriching these rocks after the 

initial episode of melting and LREE depletion. 

 

Large, Cr-rich podiform chromite deposits are present in both the Voskhod and 

TMO mantle units. The migration of boninite melt through the mantle is associated 

with the genesis of podiform chromite. The geochemistry, specifically the positive 

Ba, Zr-Hf, Nb-Ta signatures, of the TMO and BBC boninites is remarkably similar 

as is the geochemistry of the TMO and Voskhod mantle units. The extended trace 

element plots for the harzburgite and podiform (or ore zone) dunite from the TMO 

and Voskhod rocks form near identical profiles. Page et al. (2009) demonstrated 

that the anomalous positive signatures (Ba, Zr-Hf, Nb-Ta) result from the 

introduction, and subsequent melting, of a continental margin sediment in the 

subduction zone. The addition of this contaminant at the site of boninite melt 

production has been recorded in the compositions of the boninites as well as the 

mantle rocks through which the boninite melt migrated. Based on these 

observations it is evident that a common genesis process, involving a SSZ fore-arc 

setting and the addition of a sediment component to the melts formed therein, has 

formed the Cr-rich podiform chromites present at both localities. 

 

A summary of the samples analysed for the data presented in this chapter is given 

in Table 5.7.1. 
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5.7 Summary of samples analysed and data presented in this chapter 

  
Sample

I.D

Drill core 

I.D
Region 

Depth 

down hole 

(m)

Distance from 

mineralisation 

(m)

Location
Rock 

type

Chromite

 modal %

Grain

 Shape
REE Profile shape

G1815 V05-21 West 286.60 n/a n/a OZ Dun < 5% Eu Flat

G1823 V05-21 West 297.65 48.80 Footwall Dist Dun < 5% SI U-shaped

G1742 V05-24 Centre 141.30 142.92 Hanging wall Harz < 5% HL/SI U-shaped

G1763 V05-24 Centre 167.60 116.61 Hanging wall Harz < 5% HL/SI LREE-Depleted

G1768 V05-24 Centre 176.94 107.26 Hanging wall Harz <5% HL/SI LREE-Depleted

G1777 V05-24 Centre 185.60 98.56 Hanging wall Dist Dun < 5% HL/SI LREE-Enriched

G1795 V05-24 Centre 231.90 52.30 Hanging wall Harz < 5% SI/An U-shaped

G1798 V05-24 Centre 240.00 44.70 Hanging wall Dist Dun < 5% HL/SI Flat

VOS-301 V05-24 Centre 249.53 34.67 Hanging wall Dist Dun < 5% HL/SI LREE-Enriched

VOS-303 V05-24 Centre 252.00 32.50 Hanging wall Dist Dun < 5% SI LREE-Enriched

VOS-306 V05-24 Centre 258.94 25.26 Hanging wall Dun Halo < 5% HL/SI LREE-Enriched

VOS-315 V05-24 Centre 270.10 14.10 Hanging wall
Dun/Chr

Stringer
~ 50% SI/Eu LREE-Depleted

VOS-320 V05-24 Centre 274.59 9.61 Hanging wall Dist Dun < 5% SI Flat

VOS-322 V05-24 Centre 276.80 7.40 Hanging wall Harz < 5% SI/An Flat

VOS-327 V05-24 Centre 282.72 1.48 Hanging wall Harz < 5% SI/Eu LREE-Depleted

F1907 V05-24 Centre 285.50 n/a n/a OZ Dun <5% SI LREE-Depleted

F1926 V05-24 Centre 296.70 n/a n/a OZ Dun <5% Eu LREE-Enriched

F1968 V05-24 Centre 341.70 n/a n/a OZ Dun <5% Eu LREE-Depleted

F1971 V05-24 Centre 343.00 n/a n/a OZ Dun ~ 15% Eu Flat

F1978 V05-24 Centre 348.00 n/a n/a OZ Dun ~ 35% Eu Flat

G1908 V05-24 Centre 373.42 n/a Footwall Dun Halo < 5% SI/Eu LREE-Enriched

VOS-328 V05-24 Centre 375.00 1.58 Footwall Dun Halo < 5% SI/Eu LREE-Enriched

VOS-341 V05-24 Centre 389.23 15.81 Footwall Harz < 5% HL LREE-Depleted

VOS-345 V05-24 Centre 394.00 20.69 Footwall Harz < 5% HL/SI LREE-Depleted

VOS-348 V05-24 Centre 398.63 25.21 Footwall Dist Dun < 5% HL/SI/Eu U-shaped

VOS-350 V05-24 Centre 403.00 29.50 Footwall Dist Dun < 5% HL/SI LREE-Enriched
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Table 5.7.1: A summary of the Voskhod samples analysed and data presented in this chapter, including the results of the Cr# - Fo 

(OSMA) clasification diagram and REE profile types. 

Rock type: Harz = Harzburgite, Dist Dun = Distal Dunite, Dun Halo = Dunite Halo, OZ Dun = Ore Zone Dunite, Dun/Chr Stringer = chromitiferous dunite 

(weakly mineralised) present outside of the classified ore zone region. Grain shape: HL = Holly Leaf, An = Anhedral, SI = Subidiomorphic, Eu = Euhedral. For 

the REE geochemistry results see Section 5.6.2. 

Sample

I.D

Drill core 

I.D
Region 

Depth 

down hole 

(m)

Distance from 

mineralisation 

(m)

Location
Rock 

type

Chromite

 modal %

Grain

 Shape
REE Profile shape

G1601 V05-28 East 322.09 5.15 Hanging wall Dun Halo < 5% An/SI LREE-Enriched

G1605 V05-28 East 325.52 1.72 Hanging wall Dun Halo < 5% An/SI Flat

G1609 V05-28 East 333.85 n/a n/a OZ Dun < 5% Eu LREE-Enriched

G1654 V05-28 East 369.70 n/a n/a OZ Dun < 5% SI/Eu LREE-Enriched

G1983 V06-48 S. Centre 298.45 1.75 Footwall Dun Halo < 5% SI/Eu Flat

VOS-185 V06-S6 South 93.95 8.08 Footwall Harz < 5% An/SI LREE-Enriched
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Chapter 6: Tectonic setting discrimination using chromite from 

the Voskhod deposit peridotite, dunite and chromitite units 

 

6.1 Aim of the Chapter 

The aim of this chapter is to determine the tectonic setting associated with the 

genesis of the Voskhod podiform chromitite deposit in the Main Ore Field (MOF) of 

the Kempirsai Massif. The formation of the collective group of large ore-bodies 

present in the MOF can be interpreted to be the result of the mantle region having 

been subjected to large volumes of focused melt flow. In this chapter a data subset 

of the least altered samples of harzburgite, dunite and chromitite, selected from 

the hanging wall, ore zone and footwall of the Voskhod deposit, is interrogated in 

an attempt to understand what is distinctive about the formational history of this 

mantle region. The chromites in these samples have been analysed by electron 

microprobe analysis (EMPA) to obtain accurate Fe
3+

 values that may be used to 

determine oxygen fugacity and Ga contents collected by laser ablation induced 

coupled plasma mass spectroscopy analysis (LA-ICP-MS) (Appendix E). These 

new chromite data provide the opportunity to determine the tectonic setting as well 

as provide an insight into the genetic processes associated with the formation of 

this super-size (>18 Mt of chromite ore) podiform chromitite deposit. 

 

6.1.1 Tectonic Settings 

For a section of oceanic crust the tectonic setting changes during the process of 

ocean basin opening and closure (see Chapter 2, Section 2.2). Melts and residues 

formed in each setting have characteristic, genetic geochemical fingerprints. 

 

6.1.2 Tectonic discrimination diagrams: An overview 

Characterisation of the setting e.g. back-arc, forearc, island arc or MOR that 

ophiolitic peridotite formed in is integral to interpreting the tectonic setting in which 

the unit formed and its evolutionary history.  
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In this chapter the harzburgite and dunite samples, collected from the Voskhod 

deposit and encompassing host units, are investigated by studying the 

geochemical composition of chromite in an attempt to determine the genetic 

history associated with the formation of the Voskhod deposit. 

 

6.2 Methodology 

6.2.1 Sample selection 

 

For the purposes of this study 46 samples, sourced from five drill cores, were 

selected for analysis. The sample number, location, rock-type (determined 

optically and verified by whole rock data analyses, see Chapter 5 Section 5.6), 

position relative to mineralisation, modal proportion of chromite and chromite grain 

shapes are provided for each sample in Table 6.2.1.   

 

Table 6.2.2 details the samples analysed and the analytical methods used to 

analyse the chromite, and where possible the olivine, composition in each sample.  

 

Analytical methods used are presented in Appendix A. 
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Table 6.2.1: The Voskhod sample suite used for the tectonic setting 

discrimination study. 

“Region” refers to the area of the ore body the drill core intercepts. Rock-type code: Harz= 

Harzburgite, Dun= Dunite and Dun Halo= Dunite Halo. Chromite grain shape codes: HL= Holly 

Leaf, SI= Subidiomorphic, An= Anhedral and Eu= Euhedral. 

Sample

 No.

Drill Core

 I.D

Region

in

ore body

Depth 

(down hole)

m

Rock 

Type

Position Dist from Min

(down hole)

m

Chromite 

Modal %

Grain

Shape

G1742 V05-24 Centre 141.30 Harz Hanging wall 142.92 < 5% HL/SI

G1791 V05-24 Centre 221.00 Harz Hanging wall 63.17 < 5% HL/SI

G1795 V05-24 Centre 231.90 Harz Hanging wall 52.30 < 5% SI/An

Vos-322 V05-24 Centre 276.80 Harz Hanging wall 7.40 < 5% SI/An

Vos-327 V05-24 Centre 276.80 Harz Hanging wall 1.48 < 5% SI/Eu

Vos-345 V05-24 Centre 394.00 Harz Footwall 20.69 < 5% HL/SI

Vos-341 V05-24 Centre 389.23 Harz Footwall 15.81 < 5% HL

G1798 V05-24 Centre 240.00 Dun Hanging wall 44.70 < 5% HL/SI

G1777 V05-24 Centre 185.60 Dun Hanging wall 98.56 < 5% HL/SI

Vos-301 V05-24 Centre 249.53 Dun Hanging wall 34.67 < 5% HL/SI

Vos-303 V05-24 Centre 252.00 Dun Hanging wall 32.50 < 5% SI

G1601 V05-28 East 322.09 Dun Hanging wall 5.15 < 5% An/SI

G1910 V06-48 S. Centre 200.75 Dun Hanging wall 0.56 < 5% SI/Eu

Vos-306 V05-24 Centre 258.94 Dun Halo Contact 25.26 < 5% HL/SI

Vos-309 V05-24 Centre 265.80 Dun Halo Contact 18.40 < 5% SI/Eu

F1901 V05-24 Centre 284.20 Dun Halo Contact 0.00 < 5% SI/Eu

Vos-174 V06-S6 South 66.45 Dun Halo Contact 13.05 < 5% SI

Vos-179 V06-S6 South 79.50 Dun Halo Contact 0.00 < 10% SI

G1989 V05-21 West 246.45 Dun Halo Contact 2.40 < 5% SI/Eu

G1991 V05-21 West 247.40 Dun Halo Contact 1.45 < 5% SI/Eu

G1605 V05-28 East 325.52 Dun Halo Contact 1.72 < 5% An/SI

Vos-348 V05-24 Centre 398.63 Dun Footwall 25.21 < 5% HL/SI/Eu

Vos-350 V05-24 Centre 403.00 Dun Footwall 29.50 < 5% HL/SI

Vos-328 V05-24 Centre 375.00 Dun Halo Contact 1.58 < 5% SI/Eu

G1983 V06-48 S. Centre 298.45 Dun Halo Contact 1.75 < 5% SI/Eu

G1988 V06-48 S. Centre 300.15 Dun Halo Contact 3.45 < 5% SI/Eu

F1907 V05-24 Centre 285.50 Dun Ore Zone n/a < 5% SI

G1908 V05-24 Centre 372.00 Dun Ore Zone 0.52 < 5% SI/Eu

G1631 V05-28 East 434.40 Dun Ore Zone n/a < 5% SI/Eu

G1623 V05-28 East 354.67 Dun Ore Zone n/a < 5% SI/Eu

G1624 V05-28 East 432.97 Dun Ore Zone n/a < 10% SI/Eu

G1956 V06-48 S. Centre 288.55 Dun Ore Zone n/a ~ 15% SI/Eu

G1941 V06-48 S. Centre 231.35 Dun Ore Zone n/a < 5% SI/Eu

Vos-312 V05-24 Centre 266.88 Chromitite Ore Zone n/a ~ 30% SI/Eu

Vos-315 V05-24 Centre 270.10 Chromitite Ore Zone n/a ~ 50% SI/Eu

F1920 V05-24 Centre 290.50 Chromitite Ore Zone n/a ~ 10% SI/Eu

F1925 V05-24 Centre 296.12 Chromitite Ore Zone n/a ~ 30% Eu

F1935 V05-24 Centre 311.60 Chromitite Ore Zone n/a > 90% Eu
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Table 6.2.2: The Voskhod sample suite analysed and analytical methods used. 

HGWL = Hanging wall, FTWL = Footwall and OZ = Ore Zone. For the SEM data (+ Olivine) 

indicates that olivine composition data was collected for these samples. For the EMPA data 

(n.d Olivine) signifies that no olivine composition data was collected. In the absence of EMPA 

data for olivine compositions it was not possible to calculate Δ log fO2 values for samples.  

Sample Rock Type Drill Core I.D

LEO 360 SEM CAMECA SX-50 EMP LA-ICP-MS (Laser)

G1742 Harzburgite - HGWL V05-24 Yes (+ Olivine) Yes Yes

G1791 Harzburgite - HGWL V05-24 Yes (+ Olivine) No No 

G1795 Harzburgite - HGWL V05-24 Yes (+ Olivine) Yes Yes

Vos-322 Harzburgite - HGWL V05-24 Yes (+ Olivine) Yes No - Failed Run

Vos-327 Harzburgite - HGWL V05-24 Yes (+ Olivine) Yes Yes

Vos-345 Harzburgite - FTWL V05-24 Yes No Yes 

Vos-341 Harzburgite - FTWL V05-24 Yes (+ Olivine) Yes Yes

G1798 Dunite - HGWL V05-24 Yes (+ Olivine) Yes - (n.d Olivine) Yes 

G1777 Dunite - HGWL V05-24 Yes (+ Olivine) Yes Yes

Vos-301 Dunite - HGWL V05-24 Yes (+ Olivine) Yes Yes

Vos-303 Dunite - HGWL V05-24 Yes Yes Yes

G1601 Dunite - HGWL V05-28 Yes (+ Olivine) No No 

G1910 Dunite - HGWL V06-48 Yes (+ Olivine) No No 

Vos-306 Dunite Halo - HGWL V05-24 Yes (+ Olivine) Yes Yes

Vos-309 Dunite Halo - HGWL V05-24 Yes No No 

F1901 Dunite Halo - HGWL V05-24 Yes No No 

Vos-174 Dunite Halo - HGWL V06-S6 Yes (+ Olivine) No No 

Vos-179 Dunite Halo - HGWL V06-S6 Yes (+ Olivine) No No 

G1989 Dunite Halo - HGWL V05-21 Yes No No 

G1991 Dunite Halo - HGWL V05-21 Yes No No 

G1605 Dunite Halo - HGWL V05-28 Yes (+ Olivine) No No 

Vos-348 Dunite - FTWL V05-24 Yes (+ Olivine) Yes Yes

Vos-350 Dunite - FTWL V05-24 Yes (+ Olivine) Yes Yes

Vos-328 Dunite Halo - FTWL V05-24 Yes (+ Olivine) Yes Yes

G1983 Dunite Halo - FTWL V06-48 Yes (+ Olivine) No No 

G1988 Dunite Halo - FTWL V06-48 Yes (+ Olivine) No No 

F1907 Dunite - OZ V05-24 Yes (+ Olivine) Yes Yes 

G1908 Dunite - OZ V05-24 Yes (+ Olivine) Yes Yes

G1631 Dunite - OZ V05-28 Yes (+ Olivine) No No 

G1623 Dunite - OZ V05-28 Yes (+ Olivine) No No 

G1624 Dunite - OZ V05-28 Yes (+ Olivine) No No 

G1956 Dunite - OZ V06-48 Yes No No 

G1941 Dunite - OZ V06-48 Yes No No 

Vos-315 Chromitite - OZ V05-24 Yes (+ Olivine) Yes Yes

Vos-312 Chromitite - OZ V05-24 Yes Yes - (n.d Olivine) Yes 

F1920 Chromitite - OZ V05-24 Yes No No 

F1925 Chromitite - OZ V05-24 Yes No No 

F1935 Chromitite - OZ V05-24 Yes No No 

F1965 Chromitite - OZ V05-24 Yes No No 

F1967 Chromitite - OZ V05-24 Yes No No 

F1971 Chromitite - OZ V05-24 Yes Yes - (n.d Olivine) Yes

Analytical Techniques
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6.3 The Voskhod Chromite Deposit: A Crustal or Mantle 
Chromitite? 

Chromite is commonly found in a many geological settings. Barnes and Roeder 

(2001) compiled a global spinel database to investigate the diverse range of 

chromite compositions in terrestrial mafic and ultramafic rocks.  

 

Chromite Type Category Locality (chromite data source) 

Stratiform Complex 
Bushveld Complex, South Africa 

Stillwater Complex, Montana, USA 

Ophiolite Complex 

Kempirsai Massif, Kazakhstan 

Limmasol, Cyprus 

Troodos, Cyprus 

Oman 

Luobousa, Tibet 

Voskhod (Kempirsai Massif), Kazakhstan (this study) 

 

Table 6.3.1:  Chromite source locations 

The location source for the chromite data of each chromite type category presented in Figure 

6.3.1.Chromite type categories and chromite source localities are from Barnes and Roeder, 

2001. 

 

Barnes & Roeder used 50
th
 percentile contours as a guideline to assist in the 

discrimination of chromite compositions and establish a parental source setting.  It 

is evident from Figure 6.3.1 that Mg# is the key discriminatory value that 

distinguishes between podiform and stratiform chromitites. The podiform 

chromitites have elevated Mg# (0.56 – 0.80) in comparison to the stratiform 

chromitites (0.25 - 0.56). In terms of Cr# the podiform chromitites span a greater 

range of values (0.48 – 0.86) than the stratiform chromitites (0.56 – 0.77).  

 

Chromite compositions from the Voskhod podiform chromitite are shown in Figure 

6.3.1. Cr# ranges from 0.83 to 0.86 and Mg# from 0.77 to 0.46. The Voskhod 

chromitite data plots in the ophiolite field, confirming its classification as a podiform 

chromite deposit.  

 

Chromite from Kempirsai and Voskhod possess the highest Cr# (average Cr# is 

0.85) content when compared to the composition of chromite sourced from other 

podiform chromitites (Figure 6.3.1). The Voskhod deposit chromite compositions 
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represent an end member of the podiform chromitite group in terms of Cr# 

contents that extend to higher values than are common for ophiolitic chromite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.1: A plot of Cr# against Mg# to discriminate between chromitites of 

differing genetic origins. 

The chromitites from the Voskhod deposit (this study), the Kempirsai Massif (Melcher et al., 

1997; Pavlov & Grigoryeva, 1977), Troodos (Greenbaum, 1977; Panayiotou et al., 1986), 

Limassol (Panayiotou, 1978), Oman (Leblanc & Nicolas, 1992; Peters & Kramers, 1974) and 

Luobousa (Zhou et al., 1994; Zhou & Robinson, 1994) are all ophiolite hosted, podiform 

chromitites. The chromitites from the Bushveld (Cameron, 1977; deWaal, 1975; Teigler & 

Eales, 1993; Scoon & Teigler, 1995) and Stillwater complexes (Howland, 1955; Stevens, 1944; 

Nicholson & Lipin, 1985)  are stratiform (mafic layered intrusion) hosted. (All fields are the 50
th
 

percentiles taken from Barnes and Roeder, 2001). 
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Having identified the Voskhod chromitite host environment as being the mantle, 

the next questions are; in what geotectonic setting did the chromite pod and the 

immediately surrounding host rocks form in and what processes led to the 

formation of the deposit? 

 

6.3.1 Petrogenesis of the Voskhod host peridotites using the 

Olivine-Spinel Mantle Array (OSMA) diagram  

The composition of olivine and chromite coexisting in the same peridotite can be 

used to decide whether the rock is a residue remaining after partial melting or 

whether it crystallised from new melt rising through a pre-existing mantle 

sequence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.2: An illustration defining the fields given in the Cr#-Fo diagram 

The dashed parallel lines define the olivine-spinel mantle array (OSMA), a spinel peridotite 

mantle restite trend as defined by Arai (1987,1994(a)). The FMM Fertile MORB mantle 

theoretical melting trend (Jacques and Green, 1980; Arai, 1994a). The abyssal (ocean ridge) 

field of Dick & Bullen (1984), the oceanic supra-subduction zone peridotite field and passive 

continental margin field estimated by Pearce et al. (2000) from published data.  
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In the Cr#(sp)-Fo(ol) diagram of Arai (1987, 1990(a) Arai 1994a, b), Cr#(sp)  is the 

Cr/(Cr+Al) ratio of chromite and Fo(ol) is the 100*Mg/(Mg+Fe
2+

) ratio in co-existing 

olivine (see Figure 6.3.2). During partial melting, the Cr# of chromite and Fo 

content of olivine comprising residual mantle increases; this trend forms the OSMA 

(olivine spinel mantle array). Residual peridotites plot within the OSMA. In 

contrast, olivine formed by fractional crystallisation from a magma has lower Fo 

values as the forsterite content of olivine decreases during fractional 

crystallisation.  The chromite-olivine pair in this rock-type plot to the right, outside 

of the OSMA boundary, although Arai (1994a) acknowledged that such 

discrimination was not always effective and that in some instances 'new' olivine 

crystallising from a melt may form dunite that plots within the OSMA lines, 

provided that the liquid does not fractionate 

 

Three peridotite-type fields are identified on the OSMA plot; passive margin 

peridotite, abyssal peridotite and SSZ peridotite (Dick and Bullen, 1984; Pearce et 

al., 2000) (Figure 6.3.2).  Ophiolitic – SSZ mantle and sub-continental mantle have 

a wide range of Cr# values from 0.08 to 0.95 (Arai, 1994a). Peridotite sourced 

from the harzburgite-lherzolite boundary typically has chromite with Cr# ~ 0.5. 

Ophiolitic lherzolite with Cr# < 0.3 is rare. Such chromite values are more 

commonly associated with lherzolite derived from a subcontinental setting (Arai, 

1994a,b). 

 

The majority of the Voskhod samples plot within the abyssal (ocean ridge) 

peridotite field (Figure 6.3.3). However, peridotites from passive margins, oceanic 

arcs and marginal basins also have the potential to plot in this field (Pearce et al., 

2000). One dunite footwall and three dunite halo samples plot in the oceanic SSZ 

peridotite field, indicating that these samples have experienced higher degrees of 

partial melting in comparison to those that plot in the abyssal peridotite field. The 

chromitites and remaining dunite halo samples plot within the OSMA, but outside 

of the three peridotite fields, these samples possess very high Fo(ol) and Cr#(sp) 

values that are consistent with a SSZ origin (Dick and Bullen, 1984; Bonatti and 

Michael, 1989, Arai, 1994a, 1997; Pearce et a., 2000; Tamura & Arai, 2006) 

 

The chemical composition of chromite allows the origin and evolution of its host 

peridotite to be constrained. This is achieved using the olivine-spinel mantle array 
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(OSMA) a field identified on the Cr#(sp)-Fo(ol) plot (Arai, 1987, and 1994a) that may 

be used to differentiate between residual mantle peridotite and peridotite formed 

by fractional crystallisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.3: A plot of Cr# spinel against the Fo content of olivine from the host 

peridotites and dunite, dunite halo and chromitite rocks of the Voskhod deposit. 

The dashed parallel lines define the olivine-spinel mantle array (OSMA), a spinel peridotite 

mantle restite trend as defined by Arai (1987,1994(a)). The FMM Fertile MORB mantle 

theoretical melting trend (Jacques and Green, 1980; Arai, 1994a). The abyssal (ocean ridge) 

field of Dick & Bullen (1984), the oceanic supra-subduction zone peridotite field and passive 

continental margin field estimated by Pearce et al. (2000) from published data. Data presented 

chromite compositions Appendix D, olivine Fo contents Appendix F . 

 

The Cr#(sp) compositions of the Voskhod silicate rocks range from 0.23 to 0.85 and 

Fo(ol) contents range from 90.2 to 93.5 (Appendix F).  All 26 samples fall within the 
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OSMA (Figure 6.6.3) implying that these rocks are likely to be of mantle origin and 

at first sight it might be expected that they are residues of partial melting. 

 

The rock types plot systematically in a progressive order along the OSMA, from 

low Cr#(sp) and Fo(ol) values (harzburgite), to high Cr#(sp) and Fo(ol) values (ore zone 

dunite). The sequence is as follows; harzburgite, dunite, dunite halo and ore zone 

dunite. The order may be considered to reflect an increase in the degree of partial 

melting of the host peridotite with increasing proximity towards the chromitite 

orebody; such that the peridotite immediately adjacent (dunite halo) and internal to 

the orebody (ore zone dunite) has been subject to the highest degrees of partial 

melting (as indicated by the blue arrow Figure 6.3.3). This is not to say that the 

chromitite formed by partial melting of the mantle or is itself residual; the high 

degrees of partial melting (>40%) required for chromitite to form (especially that of 

a monomineralic nature, possessing Cr# values >0.80 and forming an 18 Mt 

chromite deposit), would be unrealistically obtainable as results from experiments 

conducted by Jacques & Green (1980) demonstrate.  

 

A theoretical melting trend shows the percentage melting of a fertile MORB mantle 

(FMM) source. This is illustrated on Figure 6.3.3 by the sigmoid trend shown as a 

solid black line that extends through the centre of the OSMA plot (Jacques and 

Green, 1980; Arai, 1994a). Considering this theoretical melting curve, the range of 

Cr#(sp) values obtained for the Voskhod chromitite host peridotite samples 

indicates that 10 – 40% partial melting of the mantle peridotite has occurred. Arai 

(1994a) proposed that residual lherzolite would have a maximum Cr#(sp) of 0.3 

corresponding to ~10% partial melting, residual harzburgite to have Cr#(sp) ≤ 0.6 

associated with up to 30% partial melting and residual dunites, Cr#(sp) values 

between 0.6-0.75, resulting from 30-40% partial melting (of fertile MORB mantle).  

 

The harzburgite samples have the lowest Cr#(sp) and Fo(ol) values with Cr#(sp) 0.23 

– 0.47 and Fo(ol) 90.2 – 92.0. Samples G1742, from the hanging wall and Vos-341, 

from the footwall, are offset from the other harzburgite samples having especially 

low Cr#(sp) values that are comparable with chromites from a passive margin 

peridotite setting. From Table 6.2.1 it is seen that G1742 was collected furthest 

from the ore body, 141.30 m from the start of mineralisation (down hole), while 

Vos-341 at 15.81 m from the start of mineralisation is much closer to the ore body. 
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These Cr#(sp) values correlate with ~10% partial melting of the mantle. 

Petrographically the harzburgite samples are clinopyroxene poor (where 

clinopyroxene constitutes <3% of the modal proportion mineral assemblage see 

Appendix G) this suggests that the harzburgite is depleted (whole rock analyses 

also support this interpretation, see Chapter 5, Section 5.6). These are the most 

fertile peridotites in the Voskhod sample series, having undergone the lowest 

degrees of partial melting. 

 

The dunite and dunite halo samples have intermediate Cr#(sp) and Fo(ol) values, 

Cr#(sp) 0.42 – 0.66 and Fo(ol) 90.8 – 92.3. In the context of the OSMA diagram the 

higher Cr#(sp) values of the dunite compared to the harzburgite, may indicate that 

these rocks have undergone higher degrees of partial melting, approximately 20-

30%, or been subject to increased metasomatic interaction transforming 

orthopyroxene into olivine. The dunite halo samples have Cr#(sp) 0.50 – 0.84 and 

Fo(ol) 91.0 – 93.5 which are higher than the dunite samples perhaps indicating 

increased metasomatic interaction between the host and products of the invading 

melt. 

 

The ore zone dunite samples possess the highest Cr#(sp) values 0.77 – 0.85 and 

Fo(ol) 91.7 – 93.5, and are offset at elevated Cr#(sp) values from the partial melting 

curve.  There is a suggestion of a horizontal trend in these samples consistent with 

early fractionates from the invading melt, if this is the case fractionation has been 

insufficient to take them outside of the OSMA. 

 

Given that the compositions form a systematic trend (dunite appears to be an 

extension of harzburgite, and the dunite envelop an extension of dunite), with one 

group following on from the next, it is suggested that these sample groups are 

genetically linked. The trend formed by the series harzburgite, dunite, dunite halo 

corresponds with the rocks being progressively depleted. To distinguish between 

the effect of increased melting that produces increasingly depleted residue and 

late-stage melt-rock reaction that can further deplete existing residue, requires 

other geochemical evidence presented later in this chapter.   

 

Despite the appearance of the samples forming a progressive partial melting trend 

this genesis model is theoretically infeasible. Instead, it raises the question of 
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whether the samples could be related by melt-rock interaction; with harzburgite 

being the least reacted and ore zone dunite being the most reacted. This possible 

model is examined later in this chapter. 

 

The trend formed by the limited number of ore-zone dunite samples suggests that 

this rock-type is crystallising from a new melt and is beginning to form a 

crystallisation trend that if continued would progress outside the OSMA. 

 

6.4  Peridotite-type Discrimination and Significance 

 

The melt composition controls the Al2O3 content of mantle chromite (Maurel & 

Maurel. 1982). The melt composition may be influenced by several parameters; 

pressure, temperature, the extent of partial melting, the chemical nature of the 

source as well as phase compositions. Early stage melts derived from melting of a 

fertile mantle source are relatively more enriched in LILEs and LREEs with respect 

to HREEs and incompatible elements (e.g. LIP and OIB magmas) than melts 

produced by late stage melting of a depleted mantle source that are depleted in 

LREEs with respect to HREE (e.g. MORB magmas) (Chapter 5, Section 5.6). 

Changes to the pressure and temperature conditions at the time of melting impact 

the chemistry of the melts produced. Melts formed under high pressure and 

temperature conditions (e.g. boninites) have greater abundances of Mg, Fe and Ti 

in comparison to lower pressure and temperature melts (primary MORB melts) that 

are higher in Si and Al (Danyushevsky et al., 1987; Sobolev & Shimizu, 1993; 

Kamenetsky et al., 2001). 

 

The TiO2 against Al2O3 diagram (Figure 6.4.2) distinguishes between MORB and 

SSZ peridotite types and includes fields to differentiate between magma 

chemistries (determined by chromite compositions obtained from volcanic rocks) 

(Kamenetsky et al., 2001). Mantle chromite compositions that relate in terms of 

geochemical composition to a magma field (MORB, OIB, LIP, BAB and Arc) may 

provide evidence for reaction between the mantle and an ascending melt. 

Furthermore the diagram may be used to infer the chemistry of the reacting melt 

(Page & Barnes, 2009). 
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6.4.1 TiO2-Al2O3 Chromite Composition Variation: Host Peridotite- 

and Reacting Melt-type Discrimination Diagram 

 
TiO2 content in chromite is a useful parameter to use when investigating melt-rock 

reaction and interpreting tectonic setting (Arai, 1992; Kelemen et al., 1995; 

Edwards & Malpas, 1996; Edwards et al., 1996; Pearce et al., 2000).  The mantle 

TiO2 component is progressively depleted during partial melting (preferentially 

partitioning into the melt fraction) and is enriched by interaction with a melt. The 

TiO2 - Al2O3 content of chromite can be used to distinguish between different  

parent magma chemistries, by comparison with a set of fields  from volcanic rocks 

and mantle peridotites (Figure 6.4.1). Mantle chromite compositions that are 

geochemically similar to chromites in lavas (e.g. mid ocean ridge basalt - MORB, 

ocean island basalt - OIB, large igneous provinces - LIP, back arc basin - BAB and 

island arc – ARC settings) may provide evidence for  interaction between the 

mantle and ascending melts promoting the crystallisation of chromite in the mantle 

(Zhou et al., 1998 ; Edwards et al., 2000; Rollinson, 2008; Page & Barnes, 2009).  

Using the identified magma-type fields it may be possible to infer the parent of the 

reacting melt and subsequently constrain the tectonic setting with which the melt-

type is associated (Page & Barnes, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.1: TiO2 against Al2O3 illustrating the peridotite type and lava type 

defined field boundaries after Kamenetsky et al., 2001. 
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Kamenestsky et al., (2001) showed that the Al2O3 and TiO2 content of chromite is 

controlled by the parental melt. The composition of chromite reflects the 

composition of the melt it is in equilibrium with (Maurel & Maurel, 1982; Roeder & 

Reynolds, 1991). The Al2O3 and TiO2 contents of chromites from genetically- 

related peridotite, dunite and chromitite samples aids the interpretation of the 

tectonic setting in which they formed. Page and Barnes (2009) further investigated 

this theory for podiform chromitite from both MOR and SSZ tectonic settings. Their 

results showed that the composition of chromite from podiform chromitites ranges 

from arc to MORB melt type fields and they interpreted these findings as 

demonstrating that both melt types are capable of forming podiform chromitite 

(fields shown in Figure 6.4.2).  A similar conclusion was reached by Rollinson 

(2008) who concluded that two different magma types were responsible for the 

stratigraphically low, high-Cr chromites and the stratigraphically high low-Cr 

chromitites in the Oman ophiolite. 

 

On the TiO2 -Al2O3 diagram (Figure 6.4.2) the Voskhod sample suite chromites 

plot in a progressive order with high-Al harzburgite chromite in the MORB-type 

peridotite field progressing into the transitional MORB-type – SSZ-type peridotite 

region as the Al2O3 content of the chromites increases. Chromites from all dunite 

and five dunite halo samples plot in the transitional MORB-type – SSZ-type 

peridotite region. The dunite halo chromites lie close to the SSZ-type peridotite 

field boundary. Eight chromite analyses from dunite halo, ore-zone dunite and 

chromitite samples plot in the SSZ-type peridotite field. Chromite from ore-zone 

dunite and chromitite plot in the boundary overlap between the SSZ-type 

peridotite, modern back-arc basin and arc fields. In terms of the arc field 

characterisation these chromites have low Al2O3 wt % and intermediate TiO2 wt % 

compositions, that are comparable with the chemistry of a boninitie melt. (See 

also, Menzies & Hawkesworth, 1987; Arai & Yurimoto, 1994; Arai, 1997, Page et 

al. 2008 ). 
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Figure 6.4.2: TiO2-Al2O3 variation as seen in Cr-spinel with respect to modern 

day tectonic settings.  

Composition of chromites from the Voskhod podiform chromitite plotted in Kamenetsky et al., 

2001 fields for chromites from volcanic rocks. LIP = large igneous province basalt, OIB = ocean 

island basalt, MORB = mid ocean ridge basalt, ARC = arc related volcanic rocks (boninites = 

BON, island-arc tholeiites = IAT from Page and Barnes, 2009). Data presented in Appendix D. 

 

Chromites in harzburgite have the lowest TiO2 wt % (average, 0.06 wt%) and the 

highest Al2O3 wt % (average, 39.95 wt%) values of the dataset.  

 

From the harzburgite to dunite chromites there is an increase in the average TiO2 

content from 0.06 wt % to 0.12 wt % respectively. Chromites from the dunite 

samples have an average Al2O3 content of 26.90 wt % and TiO2 values ranging 

from 0.12 to 0.17 wt %. Within this sample subset is an anomalous data point with 

a low TiO2 value of 0.03 wt %. This TiO2 value is geochemically similar to that of 

chromite in harzburgite.  
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Between the dunite and dunite halo there is an increase in the average TiO2 wt % 

from 0.12 wt % to 0.15 wt%, respectively. Furthermore, the dunite halo chromites 

have a higher average Al2O3 content of 16.94 wt %.  

 

Chromites from the ore-zone dunite and chromitite samples both show average 

TiO2 values of, 0.16 wt %. However, it is evident that the average TiO2 wt% in the 

chromite of the ore zone dunite is skewed by an anomalous value of 0.25 wt %. 

Discarding this outlier, the average content of the ore-zone dunite chromite is 0.15 

wt %. This value is in keeping with the progressive increase in TiO2 composition 

seen with proximity towards the orebody and that peaks in the ore zone.   

 

Compositions of chromites analysed from the Baimak-Burabai Complex (BBC) 

boninites are also included in Figure 6.4.2. (data from Spaeda et al., 1998). The 

chromite values for Groups 2b–SU386 and 3a–LK148-4 are the similar to those of 

dunite halo and ore zone dunite chromites. They plot in the SSZ-peridotite field 

and possess an arc signature that is intermediate between a boninite and IAT 

composition.  

 

6.5 Cr# - TiO2 wt% diagram: Melt-mantle interaction 
discrimination 

 

The Voskhod samples are plotted on a Cr# - TiO2 wt % diagram (Figure 6.5.1). 

The Cr#-TiO2 composition relationships of chromite may be used to fingerprint the 

tectonic setting in which the samples formed. The diagram is effective at 

distinguishing between chromite formed by partial melting and melt rock interaction 

processes (e.g. Arai, 1992; Zhou et al., 1996; Pearce et al., 2000). The plot also 

provides information on the extent of partial melting of the mantle and the 

geochemistry of the melts associated with melt-rock interaction (Pearce et al., 

2000). 
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Figure 6.5.1: A plot of Cr# against TiO2 wt% annotated with reaction fields. 

Diagrammatic lava-type fields (MORB, IAT and BON), the theoretical fertile MOR mantle 

(FMM) melting curve and melt-mantle reaction trends (MORB and BON) after Pearce et al., 

2000.  

 

Interaction between a Ti-poor, depleted mantle peridotite and a Ti-rich melt will 

upgrade the Ti content of a peridotite. The extent of Ti incorporation into the 

peridotite is dependant on the availability of Ti from the melt (determined by the 

composition of the melt) and the extent of interaction between the melt and 

peridotite. Consequently, using chromite compositions obtained from dunites and 

harzburgites that are considered to be genetically linked (as a result of varying 

degrees of reaction between melt and residual mantle) it is possible to form a 

reaction trend that defines the composition of the reacting melt (Pearce, et al., 

2000).  

 

Pearce et al. (2000) modelled the change in the Ti component of chromite that 

results from fractional melting of a fertile MORB mantle (FMM). Typically a fertile 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TiO2 wt%

C
r#

BON

IAT 

M
O

R
B

IBM (b)

Lau Basin 

(i/b)

Lau Basin 

(m)

5%

10%

15%

20%

MOR Hz

B
o
n
in

it
e
 R

e
a
c
ti
o
n
 F

ie
ld

IAT Reactio
n Field

MORB Reaction Field

The melt-rock reaction 

model for chromite 

plotting in this region is 

difficult to determine 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TiO2 wt%

C
r#

BON

IAT 

M
O

R
B

IBM (b)IBM (b)

Lau Basin 

(i/b)

Lau Basin 

(m)

Lau Basin 

(m)

5%

10%

15%

20%

MOR Hz

B
o
n
in

it
e
 R

e
a
c
ti
o
n
 F

ie
ld

IAT Reactio
n Field

MORB Reaction Field

The melt-rock reaction 

model for chromite 

plotting in this region is 

difficult to determine 



Chapter 6: Tectonic setting discrimination using chromite 

                    171  

MOR mantle has chromite with approximately 0.08 wt % TiO2 prior to melting.  

This value rises to 0.18 wt% as a result of equilibration with the initial melt but 

subsequently decreases as the degree of melting increases and as Cr# increases. 

Chromites that plot close to the FFM melting curve are derived from peridotite that 

has experienced little reaction with a melt. In contrast, chromites that plot far from 

the FFM melting curve are from peridotite that has undergone more extensive 

melt-rock reaction  The varying degrees of Ti enrichment in peridotites result from 

the chromites equilibrating with melts of different compositions (Kelemen et al., 

1995; Edwards & Malpas, 1996; Edwards et al., 1996; Pearce et al., 2000). 

 

Data that plots away from the FMM fractionation curve provides evidence for melt-

rock reaction, the reaction between mantle lithosphere and an infiltrating melt. 

Depending on the source of the reacting melt, which will be in part a reflection of 

the tectonic setting, the chromites will form a particular vector to the right of the 

FMM melting curve. Reaction between residual mantle and MORB melt is 

characterised by a reaction trend towards a composition with relatively low Cr# 

and higher TiO2 wt % values (Figure 6.5.1). At the other extreme, reaction 

between residual mantle and a boninite melt is characterised by a trend extending 

to higher Cr# and very low TiO2 wt % values. 

 

Data from lava-fields representative of MORB, IAT and boninite lavas are shown in 

Figure 6.5.1. On this projection, chromites from the Voskhod peridotite, dunite and 

chromitite form a trend (Figure 6.5.2) from low Cr#, low TiO2 wt% compositions, 

that lie close to the melting curve, to high Cr# and comparatively elevated TiO2 

wt% compositions displaced significantly from the melting curve. This trend is 

marked by an increase in Cr# from the harzburgite (that plots in the MOR 

harzburgite field), through the dunite, dunite halo and ore zone dunite to the 

chromitite (the zone of mineralisation). It is possible to extrapolate a trend line 

back to the FFM melting curve. The point at which the line intercepts the FFM 

partial melting curve provides an approximation of the composition (inferred from 

the degree of partial melting) of the residual mantle that has reacted with the melt. 
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Figure 6.5.2: Plot of Cr# against TiO2 wt% for chromite from the host units and 

ore zone of the Voskhod deposit.  

The Cr# against TiO2 wt % plot for chromite after Pearce et al., 2000. The diagram 

discriminates between partial melting trends and melt-rock reaction as modelled by Pearce et 

al., 2000. Reaction Trend A (the broken black line) provides evidence that, the Voskhod ore 

zone originates from, and the encompassing host peridotite and dunite units have been 

influenced chemically by, interaction between a boninitic (SSZ) melt and a mantle that has 

experienced 15-20% partial melting. Subscripts; m - MORB, i – island arc tholeiite and b - 

boninite refer to the chemistries of the arc-basin lava chromite reference. IBM refers to the Izu-

Bonin-Mariana system. The FMM partial melting curve illustrates the theoretical partial melting 

of fertile MORB mantle. MOR Hz refers to the partial melt residue MORB harzburgite field. 

(Fields taken from Parkinson & Pearce, 1998; Pearce et al., 2000). Annotated fields Dun – 

Dunite, Dun Halo – Dunite Halo, Chr – Chromitite and B-BC – Baimak-Buribai Complex, are 

from this study. 

 

The point of intersection on the FMM created by the Voskhod chromite data suite 

indicates that the mantle is the product of an intermediate degree of ~15% partial 
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melting (annotated by the black dashed line labelled “Reaction Trend A” on Figure 

6.5.2). The trend to high Cr# and marginally increased TiO2 wt.% content, can be 

explained by melt-mantle interaction through reaction or melt impregnation of the 

mantle as discussed. The end members are considered to be unreacted 

harzburgite (with Cr#=0.22 and TiO2=0.06 wt%) and the extreme unreacted 

crystallate from the boninite melt, the chromitite (with Cr#=0.86 and TiO2=0.13 

wt%). Boninite melts typically characterise the forearc region of SSZ settings, 

indicating that the reacting melt associated with the genetic evolution of the 

Voskhod dunite halo, ore zone dunites and chromitite rocks, has a SSZ origin.  

This may or may not be the case for the residual harzburgite which has a Cr# 

consistent with both MOR and SSZ settings. 

 

Chromite data for boninite lava samples from the southern Urals Baimak-Buribai 

Complex (B-BC) form two groups on Figure 6.5.2 (boninite data source Spaeda et 

al., 1998). One group has a borderline IAT-MORB chemistry (B-BC (i/m)) and the 

other a boninite chemistry (B-BC (b)). The B-BC (b) chromites overlap with the 

compositions of the Voskhod deposit dunite halo and chromitite chromites. This 

may imply a genetic link between the two groups.  

 

The annotated reaction trend “A” in Figure 6.5.2 shows that the Voskhod chromite 

series is compositionally analogous to the Conical Seamount in the Izu-Bonin-

Mariana forearc system. This trend has been explained by interaction between 

residual MOR mantle harzburgite and a melt of a boninite composition associated 

with a SSZ, forearc tectonic setting (Parkinson & Pearce, 1998; Pearce et al., 

2000). A similar explanation could be invoked for the Voskhod mantle sequence. 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Tectonic setting discrimination using chromite 

                    174  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5.3: Plot of Cr# against TiO2 wt% for chromite from the Voskhod deposit 

host units and ore zone annotated with a two-part reaction trend “A” and “B”.  

Plot of Cr# against TiO2 wt% after Pearce et al., 2000. Reaction Trend “B” illustrates the 

reaction between residual mantle peridotite that has undergone ~18% partial melting and 

reacted with a SSZ melt of a borderline MORB-IAT chemistry (B-BC (i/m)). Reaction Trend “A” 

illustrates the reaction between mantle peridotite that has undergone ~15% partial melting and 

reacted with a SSZ melt of a boninite chemistry (B-BC (b)). Fields and subscripts are the same 

as those given in Figure 6.5.2. 

An alternative interpretation of the results may be made to infer two distinct 

reaction trends. "A" and "B" (Figure 6.5.3), where Trend "A"  extends from 

harzburgite to high chromite Cr# around 0.8 and Trend “B” extends from 

harzburgite with low to moderate chromite Cr# (0.3-0.4).  

Trend "A" intercepts dunite, dunite halo and ore zone dunite lithologies. As a melt-

rock reaction trend the direction (annotated by the solid black arrow) approximates 
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to the Lau Basin peridotite reaction trend (Pearce et al., 2000). In addition to the 

Voskhod samples, B-BC (b) chromite analyses cluster along this reaction trend 

line, with some plotting in the same space as the Voskhod chromitite values. This 

trend (A) results from melt-rock interaction between a boninitic melt (B-BC (b)) and 

residual mantle that has undergone ~15% partial melting.  

In contrast, proposed Trend B would be created by a melt of an IAT-MORB 

composition reacting with MOR residual mantle that has undergone intermediate 

partial melting of ~17%. This trend (B) is supported by the abrupt increase in the 

TiO2 wt% content of chromite observed between harzburgite (ave 0.06 wt% TiO2) 

and dunite (ave 0.12 wt% TiO2). Chromite compositions of the extrusive lava group 

B-BC (i-m) plot in a cluster at the far end of the trend B reaction vector (Figure 

6.5.3) indicating that melts of this composition are preserved in the Southern 

Urals.   

If this two-trend interpretation of the data is correct it implies that two, chemically 

different, melt compositions have percolated through the same region of the 

mantle. Of the extrusive B-BC rocks, samples that form the B-BC lava fields i/m 

and b, annotated in Figure 6.5.3, co-exist within the same stratigraphic horizons. 

For example, samples LK148-1 (B-BC(i/m)) and LK148-4 (B-BC(b)) were collected 

from the same stratigraphic horizon. Similarly, samples SU398 (B-BC(i/m)) and 

SU401 (BB-C(b)) were collected from the same, stratigraphically higher horizon 

(Spadea et al., 1998).  

Additional evidence supporting the two-trend model is given in Figure 6.5.4 where 

podiform chromite values from the neighbouring Batamshinsk ore field located to 

the north west of the MOF have been plotted (values from Pavlov & Grigoryeva, 

1977), reinforcing the bi-modality of the melt compositions as well as 

substantiating the likely polygenetic origin. The spread of the data points that 

comprise each field also suggests changing conditions within each geotectonic 

environment. 

The TiO2 -Al2O3 projection of Kamenetsky et al. (2001), in Figure 6.4.2, where TiO2 

plots on the vertical axis and Al2O3 on the horizontal axis, is very similar to the Cr#-

TiO2 plot. Cr# and Al2O3 contents of chromite are intrinsically linked, consequently, 

the TiO2-Al2O3 diagram has a similar role in chromite fingerprinting, illustrating the 
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same progression that is observed in the Cr#-TiO2 plot (Figure 6.5.4). A strength of 

the TiO2 - Al2O3 plot is the identification of the IAT/BON discrimination zone within 

the “ARC” field; IAT melts are associated with higher TiO2 contents in comparison 

to boninite melts that are characterised by lower TiO2 contents. This enables the 

melt chemistry association of the end member group (chromitite) to be more firmly 

established. 

 

 

Figure 6.5.4: Chromite Cr#vsTiO2 plot with data added from nearby areas. 

Low-Cr podiform chromite ore from north west Kempirsai data is sourced from Melcher et al., 

1997 and Pavlov & Grigoryeva, 1977. 
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Although the Cr# - TiO2 diagram provides a method with which to discriminate 

MOR from SSZ settings, there is ambiguity when using the diagram because of 

the significant overlap between the two fields, especially for Cr# values between 

0.4 and 0.6 (Figure 6.5.1).  The main reason for the overlap is that Cr# is strongly 

dependent on the degree of partial melting and melt-rock reaction in the two 

settings which themselves overlap.  For this reason, oxygen fugacity has been 

found to be an important additional discriminatory variable. As oxygen fugacity is a 

function of water-content, it reduces the overlap  between ‘dry’ MOR and ‘wet’ SSZ 

settings.  

 

It is seen in Figure 6.5.1 that the MORB and arc fields (IAT and boninite) overlap 

prominently at low TiO2 wt.% (0.1-0.4) and Cr# (0.4-0.7) values, causing 

uncertainty in the discrimination between differing early stages of melt-rock 

reaction.   

 

Oxygen fugacity (fO2) is a parameter that can be used to evaluate the oxidising 

conditions of a tectonic setting. The Fe
3+

 component of chromite is integral when 

calculating fO2 values. The most direct evidence for high fO2 conditions in SSZ 

settings is in the Fe
3+

 content: chromite in peridotites, dunites and lavas from SSZ 

tectonic settings tend to be more Fe
3+

 rich in comparison to the MORB equivalent 

(Arai, 1992).  

 

6.5.1 TiO2 – Fe3+# Diagram  

Arai (1992) used the TiO2–Fe
3+

# diagram to differentiate between MORB magma 

chromite phenocrysts that possessed high TiO2/Fe
3+

# ratios and arc magma 

chromites with comparatively lower ratios. Both TiO2 and Fe
3+

# increase during 

magmatic differentiation, Fe
3+

# is elevated in arc melt relative to MORB melt 

because the presence of water associated with a SSZ setting promotes oxidising 

conditions (Arai, 1992). 
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Figure 6.5.5: A schematic overview of the TiO2 wt% against Fe3+# plot. 

Annotated with lava fields; Bon – boninite, IAT – island arc tholeiite, MORB – mid-ocean ridge 

basalt. Two arrows are shown illustrating melt-rock reaction trends between residual mantle 

and melts of BON and MORB chemistries (Arai, 1992). 

 

The arrows annotated on the TiO2–Fe
3+

# diagram (Figure 6.5.5) show that it is 

possible to infer the chemical signature of a reacting melt (interacting with residual 

mantle) from the orientation of a trend line produced by harzburgite (less reacted) 

and dunite (more reacted) paired sample sets (Arai, 1992).  In both mono- or 

polygenetic situations chromite from dunite samples (of the harzburgite-dunite 

pairs) typically have higher TiO2 and Fe
3+

# contents than the corresponding 

residual harzburgite samples (Dare et al. 2009). 

 

The TiO2/Fe
3+

# ratio can therefore be used to assess melt-rock reaction as both Ti 

and Fe
3+

 increase during progressive melt-rock reaction. Residual harzburgite from 

a SSZ setting will possess progressively lower TiO2/Fe
3+

# ratios (see arrow 

labelled “reaction with BON melt” on Figure 6.5.5).  
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Figure 6.5.6: TiO2 wt% against Fe3+# in chromite from the Voskhod peridotite and 

dunite units. 

Chromite fields for MORB and IAT/CAB chromites are reproduced from Arai (1992) and for 

BON chromites reproduced from Dare et al. (2009). Data presented in Appendix E. 

 

The TiO2 – Fe
3+

# plot for the Voskhod sample suite (Figure 6.5.6) shows that there 

is a systematic increase in Fe
3+

# from the harzburgite, dunite, dunite halo and ore 

zone samples at low TiO2 compositions (<0.27 wt.%). This is analogous to the 

reaction between a residual mantle and a boninite melt as illustrated in Figure 

6.5.6 by the black arrow labelled “reaction with BON magma”.    

 

In addition, four of the six dunite samples show elevated TiO2 contents relative to 

the harzburgite samples, and could indicate the onset of a reaction between 

residual mantle and MORB- or IAT-melt (see the grey solid arrows annotated on 

Figure 6.5.6). However, interpretation using this diagram is ambiguous for low TiO2 

and Fe
3+

# values.  
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6.5.2 Fe2+/Fe3+ - Al2O3 Chromite Composition: Peridotite-type 

Discrimination Diagram 

The Fe
2+

/Fe
3+

 - Al2O3 plot uses chromite geochemistry to provide a basic 

discrimination of the mantle source peridotite into MORB-type and SSZ-type 

(Kamenetsky et al., 2001). This provides further supporting evidence for the 

interpretation of the geodynamic setting associated with the genesis of the  

chromites present in host peridotite and ore zone at Voskhod. Low Fe
2+

/Fe
3+ 

values reflect an increase in oxidising conditions and may reflect the presence of 

water in a melt.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5.7: Fe2+/Fe3+ - Al2O3 discrimination between SSZ-type and MORB-type 

mantle chromite.  

(Discrimination fields are from Kamenetsky et al., 2001). Data presented in Appendix D. 
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harzburgite and dunite, being 5.51 and 6.62 respectively. The average Fe
2+

/Fe
3+

 

values decline in the dunite halo and ore zone to 4.18 and 3.97, respectively. 

Within the ore zone, the average chromitite Fe
2+

/Fe
3+ 

is elevated (ave. 4.55) 

compared to the ore zone dunite values (ave. 3.66). 

 

Several observations can be made:   

i) As an increasing Fe
3+

/Fe
2+

 ratio in chromite is an indicator of rising ƒO2, the 

oxygen fugacity increased with proximity towards the ore-body.   

ii) A range of oxygen fugacity conditions are recorded within the ore-body 

chromitite, the most reduced of which are associated with massive chromite.    

iii) Two samples from the ore zone dunite have elevated Al2O3, one of which is 

similar in chemistry to the harzburgite in the hanging wall. These either represent 

regions of the ore-body that have not been exposed to the same processes 

responsible for the formation of high-chromium chromite or that syn-formational 

structural discontinuity has incorporated host dunite or dunite halo into the ore 

zone. 

iv) The Al2O3 contents of footwall and hanging wall harzburgite are not the same.  

The asymmetry of the chromite compositions, on either side of the ore-body, 

suggests that processes forming the ore have had a different effect on harzburgite 

above and below the ore-body.  

 

6.6 Oxygen fugacity as a tool for fingerprinting tectonic 
settings 

 

6.6.1 ∆log fO2(FMQ) against Cr# diagram: Tectonic discrimination 

of the Voskhod peridotites and dunites. 

The hydrous nature of SSZ environments promotes oxidation. Consequently,  

chromite formed in this environment is more oxidised and possesses higher fO2 

values than chromite formed in a MOR tectonic setting (Ballhaus et al., 1991; 

Parkinson & Pearce, 1998; Pearce et al., 2000; Parkinson & Arculus, 1999; Elburg 

& Kamenetsky, 2007). The work of Parkinson and Pearce (1998), identified the 

use of oxygen fugacity (fO2) as a means to differentiate between peridotites from 

MOR and SSZ tectonic settings.  
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To obtain oxygen fugacity values required electron probe micro-analysis (EPMA) 

using Mossbauer-analysed probe standards. Using the EPMA result oxygen 

fugacity values were calculated for a subset of 15 Voskhod sample chromites 

using the method described in Appendix A.  Values are reported as Δlog fO2 

(QFM) in Appendix E, Table E.1, where QFM refers to the deviation from the 

quartz-fayalite-magnetite (QFM) buffer at a specified temperature and pressure, 

expressed in log units. The plot, Δlog fO2 (QFM) (a value commonly termed fO2) 

against Cr# can be used to discriminate between tectonic settings and determine 

the formation environment of chromites from peridotites and dunites (Wood & 

Virgo, 1989).  

 

The plot of fO2 against Cr# (Figure 6.6.1) presents chromite data from Voskhod 

chromites. Discrimination fields and boundaries for lavas; island arc tholeiites 

(IAT), calc-alkaline basalts (CAB) and boninites (BON), as well as MOR- and SSZ-

type mantle dunite (labelled as MOR Dun and SSZ Dun) and harzburgite (labelled 

as MOR Hz and SSZ Hz) are also provided. The dunite boundary is displaced to 

higher (~0.5 log units) oxygen fugacity at similar Cr# and extends to higher Cr# (up 

to 0.75) than the harzburgite boundary. 

 

Chromite that formed under oxidising conditions, typical of SSZ settings, should be 

associated with IAT, calc-alkaline basalt (CAB) and boninite (BON) melts. 

Chromites crystallised from these subduction-related lavas, or formed in mantle 

units that have been subject to melt-rock reaction with subduction associated 

melts, exhibit higher fO2 values (>1.5 fO2). In contrast, chromites from mid-ocean 

ridge basalts or present in MOR mantle (either residual, or affected by melt-rock 

reaction with a MORB melt) are characterised by comparatively low fO2 values 

(<1.5 fO2), (Ballhaus et al., 1991 and Elburg & Kamenetsky, 2007). 

 

Monogenetic SSZ melt-rock reaction trends e.g. the Torishima Forearc Seamount, 

in the Izu-Bonin forearc (Parkinson & Pearce, 1998; Pearce et al., 2000), form 

under the oxidising conditions of a SSZ setting (Parkinson & Pearce, 1998). 

Reaction trends formed between co-existing harzburgite and dunite pairs from 

monogenetic SSZ settings show an increase in Cr# (from harzburgite to dunite) 

that is accompanied by a negligible increase in fO2 during interaction between SSZ 

harzburgite (residual mantle) and a SSZ melt (that forms the dunite). 
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Consequently, the orientation of the reaction trend vector is sub-parallel to the 

discriminating boundary for monogenetic SSZ settings. This is in contrast to the 

oblique orientation of the reaction trends of the  monogenetic MOR settings (Dare 

et al., 2009).  

 

The genesis of IAT, CAB and BON lavas are associated with the evolution of an 

arc setting. IAT arc lava chromites are characterised by Cr# (0.5 – 0.8) and exhibit 

fO2 values ranging from QFM +1 to QFM +2. This range has been interpreted as a 

reflection of the increase in fO2 during magmatic differentiation. In comparison, 

chromites sourced from boninites typically exhibit high Cr# values (0.75 - 0.9) and 

lower fO2 (0 < QFM < +2) (Ballhaus et al., 1991 and Elburg & Kamenetsky, 2007). 

Chromites from CAB lavas have similar Cr# compositions to chromites from IAT 

and BON lavas (Cr# 0.5 - 0.85).  However, the associated fO2 values of the CAB 

chromites are typically much higher (+2 < fO2  < +4, e.g. Eggins, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6.1: ∆log fO2(FMQ) against Cr# diagram for chromites from the Voskhod 

peridotites and dunites.  

fO2 values were calculated at 1.0GPa. The discrimination boundaries for dunites (solid line), 

harzburgites (dashed line) and lava fields are taken from Dare et al. (2009). MOR Hz = MOR 

harzburgite, SSZ Hz = SSZ harzburgite, MOR Dun = MOR dunite and SSZ Dun = SSZ dunite. 

Data presented in Appendix E.  
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The harzburgite samples (solid blue circles) display a wide range in oxygen 

fugacity (Δlog fO2 (QFM))  from -3.0 to 1.3 and a Cr# range of 0.22 to 0.46. One 

sample is an outlier which has an oxygen fugacity value of -3.0 (at Cr#, 0.22) plots 

in the MOR harzburgite (MOR Hz) region, indicating reducing conditions. The 

moderately elevated (0.2 to 1.3) oxygen fugacity values exhibited by the other four 

harzburgite samples indicate that these chromites formed under more oxidising 

mantle conditions, such as those likely to be associated with a SSZ setting. Three 

of the harzburgite samples plot as SSZ harzburgite (SSZ-Hz) with an additional 

sample lying just below the MOR-SSZ discrimination harzburgite boundary which 

would technically be characterised as a MOR harzburgite sample. One further 

harzburgite sample is well within the MOR field with oxygen fugacity of -3 and Cr# 

just above 0.2.  

 

The dunite samples (solid green triangles) plot below the solid line that 

distinguishes between MOR-Dun and SSZ-Dun in Figure 6.6.1. Consequently, 

these samples are characterised as MOR dunite. This sample group has an 

oxygen fugacity range of -1.04 to 0.78 and a Cr# range of 0.43 to 0.60. The higher 

Cr# values clearly distinguish the chromites in dunite from those in harzburgite. 

The oxygen fugacity range of the dunites is slightly lower than that of the three 

SSZ harzburgites, implying that these dunites formed under low to intermediate 

oxidising conditions in the mantle. Such conditions may arise during interaction 

between residual MOR mantle and MORB-melt. This theory is further supported by 

the fact that the dunite samples plot in the MORB lava field, indicating that the 

compositions of these samples resemble MORB lava chromites.  

 

Of the four dunite halo samples (solid purple diamonds), three plot in an oxygen 

fugacity range of 1.89 to 2.04 and a Cr# range of 0.57 to 0.72. These oxygen 

fugacities indicate a history of exposure to mantle conditions that were more 

oxidising than those that have affected the harzburgites and dunites. These dunite 

halo samples plot as SSZ dunites and plot in the IAT/CAB lava field. This is 

consistent with an origin by reaction with melts of arc lava affinities. There is a 

dunite halo outlier with an oxygen fugacity value of 0.67 and a Cr# of 0.39. This 

point plots in the MOR dunite region (within the MORB lava field) in close proximity 

to the dunite samples; this sample also lies close to the SSZ harzburgite samples.  
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The ore zone chromitite sample has the highest oxygen fugacity (2.81) and Cr# 

(0.84) values plotting as a SSZ dunite. This implies that the sample has been 

affected by the most oxidising conditions of all the samples analysed.  

 

Across the entire sample series, a progression of increasing oxygen fugacity 

accompanied by increasing Cr# is seen. The most oxidising conditions are 

concentrated at the site of the ore zone, i.e. in the chromitite and dunite halo 

regions. Evidence of MOR harzburgite reacting with a SSZ melt is recorded. The 

harzburgite, dunite halo and ore zone samples record the SSZ melt signature. In 

contrast, the dunite and two of the harzburgite samples provide evidence to 

support a MOR tectonic history also having been preserved.  

 

6.6.2 Limitations of the fO2 –Cr# discrimination diagram 

The fO2 - Cr# diagram is an effective tool for discriminating between harzburgite 

and dunite in monogenetic settings. Care is needed when interpreting polygenetic 

settings where a data point plotting in the harzburgite domain could represent 

smaller degrees of melt-rock interaction (i.e. a harzburgite may not be a simple 

residue), while a dunite may form from a greater degree of melt-rock interaction 

(Dare et al., 2009) within a gradational melt-rock interaction process (e.g. Pearce 

et al., 2000; Dare et al., 2009).  

 

There is also potential for some discrepancy in the interpretation of polygenetic 

settings, as the boundary between unreacted and reacted peridotites is dependent 

on the composition of the pre-existing mantle lithosphere. When MOR harzburgite 

interacts with a SSZ-melt the lesser-reacted MOR harzburgite may plot within the 

MOR harzburgite (MOR Hz) field. The intensity of the reaction between the MOR 

mantle and the reacting SSZ-melt can be traced by the least and most reacted 

sample end-members. In addition, reaction between MOR harzburgite and an 

evolving MORB melt (magmatic differentiation) can lead to an increase in the 

oxygen fugacity recorded by  chromite without change to the tectonic setting e.g. 

Hess Deep dunites (e.g. Allan & Dick, 1996; Arai & Mutsukage, 1996). In light of 

these observations, the tectonic discrimination boundaries presented on the fO2 – 

Cr# diagram are not independent of processes such as melt-rock reaction and 

magmatic differentiation. 
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The fO2 – Cr# plot also has limitations in very altered rocks or detrital chromites. 

To calculate the fO2 of a sample, co-existing chromite and olivine must be 

analysed (Ballhaus, 1991; Nell & Wood, 1991). This is not possible for samples 

where no fresh olivine exists, as is commonly the case with podiform chromitite 

and the encompassing dunite halo where olivine is often serpentinised. Equally, 

massive chromite with no co-existing silicate minerals is unsuitable for such 

analysis and cannot be plotted on the fO2 – Cr# diagram. 

 

To aid the tectonic discrimination of harzburgite and dunite using the oxygen 

fugacity of chromite, it is beneficial to conduct petrographic studies to look for; i) 

changes in the modal proportion of orthopyroxene, ii) evidence of melt 

impregnation textures and iii) chromite morphologies, these observation can 

provide evidence of melt-rock reaction (Pearce et al., 2000). However, the use of 

Ga, Ti and Fe
3+

 compositions from chromite as devised and implemented by Dare 

et al. (2009) potentially provides a more reliable method by which to separate a 

possible residual signature from a differentiating melt-rock reaction signature. 

 

6.7 The tectonic discrimination of the Voskhod peridotites and 
dunites using Ga-Ti-Fe3+ systematics in chromite  

 

Dare et al. (2009) devised and implemented the use of chromite Ga-Ti-Fe
3+

 

systematics as a means to develop further the tectonic discrimination between 

peridotites and dunite. Gallium (Ga) occurs in trace quantities (e.g. 10-120 ppm) in 

chromite (Kurat, 1980; McKay & Mitchell, 1980; O’Reilly et al., 1991; Griffin et al., 

1993, 1994; Paktunc & Cabri, 1995; Paktunc & Hulbert, 1996). The physical and 

chemical properties of Ga make it a practical tool to use in the tectonic 

discrimination of peridotite and dunite. 

 

Ga is a trivalent cation capable of substituting into the Y
3+

, octahedral site of the 

chromite lattice. As noted earlier, the chromite lattice Y
3+

 site occupants (Cr
3+

, Al
3+

, 

Fe
3+

, Ga
3+

, V
3+

 and Ti
4+

) are recognised to have a low diffusivity through silicate 

minerals and consequently are considered unlikely to re-equilibrate during cooling 

(Scowen et al., 1991). Both Ga and Fe
3+

 have the same ionic radii of 0.62A;  but, 

Ga is not redox-dependant (whereas Fe
3+

 is). Instead, its chemical behaviour is 
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similar to that of Al, which it neighbours in Group III of the Periodic Table 

(Goodman, 1972; Norman, 1998). 

 

Dare et al. (2009) developed the use of Ga
3+

-Ti
4+

-Fe
3+

 systematics in chromite as 

a tool to discriminate between tectonic settings, creating an analytical technique 

affective for use on samples where no co-existing silicate minerals exist. The Ga
3+

-

Fe
3+

-Ti
4+

 systematics of chromites provides a good opportunity to assess the origin 

and tectonic setting of the Voskhod chromitites and the co-genetic peripheral 

dunite halo and host mantle peridotite and dunite units.  

 

6.7.1 TiO2/Fe3+# against Ga/Fe3+# diagram 

The plot TiO2/Fe
3+

# against Ga/Fe
3+

# was devised and implemented by Dare et al. 

(2009). The diagram discriminates between low TiO2/Fe
3+

# residual harzburgite 

(residual mantle) and high TiO2/Fe
3+

# reacted harzburgite/dunite (residual mantle 

that has reacted with an upwelling melt) from MOR and SSZ settings. Typically 

MOR settings have higher Ga/Fe
3+

# ratios than SSZ settings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7.1: TiO2/Fe3+# against Ga/Fe3+# in chromite from the peridotite and 

dunite units of the Voskhod deposit. 

Field boundaries discriminating between MOR residual, MOR reacted, SSZ residual and SSZ 

reacted peridotite (and dunite) are from Dare et al., 2009. Data given in Appendix E 
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It is possible to determine whether a tectonic setting of a sample suite is mono- or 

polygenetic as harzburgite-dunite pairs from a monogenetic setting will plot only in 

the MOR residual and MOR reacted fields (or SSZ residual and SSZ reacted 

fields). In contrast, polygenetic harzburgite-dunite pairs will plot across the tectonic 

setting classification boundary that separates the MOR and SSZ fields (see  

Figure 6.7.1).  

 

A strength of this diagram is that it is able to take into account both magmatic 

differentiation (an increase in TiO2/Fe
3+

# but with no change in Ga/Fe
3+

#) and 

melt-rock reaction (an increase in TiO2/Fe
3+

# and a decrease in Ga/Fe
3+

#).  The 

insensitivity of Ga/Fe
3+

# magmatic differentiation may be attributed to the similarity 

in ionic radii of the two ions. The increase in TiO2/Fe
3+

# may be attributed to the 

greater incompatibility of Ti than Fe
3+

 in the chromite lattice. 

 

Of the four harzburgite samples, one plots in the residual MOR field and three plot 

in the reacted SSZ field. All harzburgite chromite morphologies are holly-leaf (HL) 

and/or subidiomorphic (with cuspate edges). Such chromite textures are 

characteristic of residual peridotites (Nicolas, 1986; Monnier et al., 2006 Dare et al 

2009) and would normally be interpreted as such. However, observations made by 

Dare et al. (2009) where harzburgite samples plotted in reacted-MOR and –SSZ 

fields yet contained holly-leaf chromite were explained as chromite that had not 

undergone a morphological change from anhedral to euhedral or alternatively on 

altering to a euhedral morphology had subsequently been deformed into an 

anhedral shape. Despite the petrological observations, the harzburgite samples 

that plot in the SSZ-reacted field may be interpreted as residual mantle that has 

interacted with SSZ melt.  

 

The dunite samples plot across two fields: four plot in the reacted-MOR field (one 

data point being on the MOR-SSZ reacted boundary); and two plot in the reacted-

SSZ field. Interestingly all dunite chromites also exhibit holly-leaf and 

subidiomorphic morphologies that are characteristic of a residual origin. Yet the 

degree of melting required to produce dunite would be unfeasibly high. It is 

proposed that the subidiomorphic chromites form during the melt-mantle reaction 

process and that the pre-existing residual chromite is chemically altered by 
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interaction with the melt, without any change to the primary residual morphology of 

the chromites. 

 

The dunite halo samples plot in two fields of the TiO2/Fe
3+

# - Ga/Fe
3+

# plot. The 

dunite halo chromite, F1907, lies in the MOR-reacted field and is chemically similar 

to the dunite samples that also plot in the MOR-reacted region (this was also noted 

in the plot of ∆log fO2(QFM) against Cr#, Figure 6.6.1). Sample F1907 displays 

holly-leaf and subidiomorphic chromite morphologies. The three dunite halo 

samples plot clearly inside the reacted-SSZ field. These chromites have formed by 

reaction between residual mantle and a SSZ melt and, unlike the other SSZ-

reacted dunite halo sample, the melt-rock interaction may have been more 

extensive. The chromites in these samples are primarily euhedral with lesser 

amounts of the subidiomorphic chromite. The predominant presence of euhedral 

chromite is an additional indicator that these chromites formed either as a result of 

melt-rock interaction (Nielson Pike & Schwarzman, 1976; Dick, 1977; Leblanc et 

al., 1980) or by magmatic crystallisation from a melt (e.g. Nielson Pike & 

Schwarzman, 1976).  

 

6.7.1.1 Anomalous distal dunite samples 

 

From the TiO2/Fe
3+

#-Ga/Fe
3+

# plot two types of distal dunite, MOR-reacted and 

SSZ-reacted, are identified. In contrast, on the fO2-Cr# plot, all distal dunites plot 

as MOR dunite. There is a discrepancy in the distinction of two distal dunite 

samples that have a SSZ-reaction origin on the TiO2/Fe
3+

#-Ga/Fe
3+

# plot and 

MOR origin on the fO2-Cr# plot, this could be the result of analytical error. Another 

possibility is that the samples fingerprinted as being MOR in origin by the fO2-Cr# 

plot, crossed the MOR-SSZ boundary on the TiO2/Fe
3+

#-Ga/Fe
3+

# plot as a result 

of reaction with an evolving SSZ melt. The two samples plot very close to the 

discrimination boundaries on both of the TiO2/Fe
3+

#-Ga/Fe
3+

# and fO2-Cr# plots 

which supports the possibility that these are transitional MOR-SSZ reacted 

dunites. Alternatively, the discrepancy may be a consequence of uncertainty on 

the position of the lines annotated on these plots by Dare et al. (2009), as 

relatively few data points were used when the boundary lines were constructed.  
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6.7.2 Chromite Cr# against Mg# diagram 

Use of the variation of Cr# and Mg# in considering the high temperature genesis of 

chromite containing ultrabasic rocks needs to acknowledge the possibility of lower 

temperature subsolidus re-equilibration between olivine and chromite. In this 

process Fe and Mg are progressively exchanged as the temperature falls, with 

olivine being enriched in Mg and chromite in Fe. The exchange process is 

predictable and the basis of a geothermometer that records the closing 

temperature of the system at which diffusional readjustment ceases (e.g. Irvine 

1967). When mass-balance considerations are made, the effect of subsolidus re-

equilibration on chromite composition (i.e. on Mg#) is greatest when the proportion 

of the chromite mineral phase in a peridotite or dunite sample is minor relative to 

the modal proportion of olivine (e.g. Irvine, 1967; Dick & Bullen, 1984; Scowen, 

1991). The opposite is also true, that the effect on olivine composition is greatest 

when olivine is the minor phase. 

 

Using only chromite compositions from chromitites where the chromite/olivine ratio 

is high, mantle chromite compositions plot at near constant Cr# values forming an 

array that extends parallel to the Mg# axis (e.g. Zhou et al, 1996; Barnes & 

Roeder, 2001). 
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Figure 6.7.2: Cr# against Mg# diagram of chromites from peridotite, dunite and 

chromitite units.  

The peridotites and dunites form a distinct field displaced to lower Mg# and Cr# than the 

chromitites. The chromitites exhibit a near constant Cr# [Cr/(Cr+Al)] yet a wide range of Mg# 

[Mg/(Mg+Fe
2+

)], a result of subsolidus re-equilibration and varying chromite/olivine ratios in 

chromitites. Data presented in Appendix D. 

 

Chromite compositions from Voskhod harzburgite, dunite and chromitite samples 

are plotted on the Cr# against Mg# chromite diagram (Figure 6.7.2). The 

harzburgite, dunite and seven of the dunite halo samples plot in a systematic 

sequential order, seen in other plots, forming a negatively-sloped linear trend with 

Mg# decreasing (from 0.76 to 0.49) as Cr# increases (from 0.22 to 0.68).  During 

refertilisation an increase in Cr# would be expected at any given Mg# (Le Roux et 

al, 2007). In addition, both Cr# and Mg# would be expected to change values 

towards the source of the refertilisation, irrespective of later subsolidus Fe-Mg 
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adjustments. The dunite halo sample group forms an end-member of the trend 

with the Mg# composition stabilising at 0.50, after which the Cr# increases from 

0.68 to 0.86. In contrast, the ore zone dunite and chromitite samples have 

stabilised Cr# values that range from 0.84 to 0.86, and Mg# values that cover 

almost the same range as the host rock samples collectively, these extend from 

0.46 to 0.73.  

 

One sample from the dunite halo hanging wall group with a very low Mg#, 0.31 is 

the only outlier. The Cr# of this sample, 0.66, lies within the range for dunite halo 

samples. The low Mg# value is interpreted to result from the chromite having 

undergone some degree of alteration, gaining Fe
2+

 and Fe
3+

 at the expense of 

Mg
2+

 and Al
3+

 (e.g. Evans & Frost, 1985) to form ferritchromite. Petrographically 

the sample is extensively serpentinised (>85% serpentinisation). Chromite grains 

have morphologies that vary from subhedral to cuspate and the “spongy” surface 

texture is a characteristic of ferrit-chromite (e.g. Ahmed & Hall, 1981).  

 

The high Mg# values of chromite seen in chromitite correspond to samples of 

massive chromite, where the olivine component is ≤ 5% of the rock composition.  

 

In rocks where chromite and olivine co-exist it is possible to calculate the closure 

temperature, from the partitioning of Fe
2+

 and Mg
2+

 between these two minerals, 

and from this it is possible to calculate the oxygen fugacity conditions during the 

formation of chromite (Ballhaus et al., 1991). Using this method, temperatures 

were calculated for the Voskhod harzburgites, dunites and, where possible, 

chromitites. However, given the extensive serpentinisation associated with the 

dunite halo, ore zone dunite and chromitite units, it was particularly difficult to find 

samples where fresh olivine was present for analysis. The average calculated 

closure temperatures from the Voskhod sample set analysed are; harzburgite 

650C ± 28C, dunite 657C ± 26C, dunite halo 678C ± 39C, ore zone dunite 

648C and chromitite 734C (there being only one ore zone dunite and chromitite 

sample for which olivine was successfully analysed). The closure temperatures for 

each sample are given in Appendix E, row labelled “T°C Ballhaus 1991”. 

 

The chromitite samples record a higher temperature than the dunite and 

harzburgite samples owing to the greater chromite content of this rock type. The 
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higher chromite/olivine ratio causes the effect of re-equilibration to be less 

extensive on mass balance grounds, as well as lower chromite having a lower 

diffusion rate compared to olivine (Irvine, 1965, 1967; Ballhaus, 1991).  

 

Of the ore zone samples, two are considered to be ore and both of these samples 

are of disseminated chromite (DCR), one composed of ~50% chromite (sample 

315- DCR) and the other ~30% chromite (sample 312-DCR). The third ore zone 

sample is from a barren dunite horizon where chromite constitutes less than 5% of 

the sample composition (sample F1971). It is noted that for all the groups 

presented in this plot, the ore zone group is the most tightly constrained in the 

TiO2/Fe
3+

# - Ga/Fe
3+

# plot, despite being the most varied in terms of the 

olivine/chromite ratio. Furthermore, Dare et al., (2009) acknowledged that 

interpretation of chromitite samples on the TiO2/Fe
3+

# - Ga/Fe
3+

# diagram is 

difficult, because the diagram is based on samples that have undergone a 

subsolidus exchange atypical for disseminated chromite. Their paper concluded 

that the samples should first have been subjected to a similar subsolidus re-

equilibration history (with respect to both temperature of equilibration and 

olivine/chromite ratio) as that of the peridotite accessory chromite used for the 

calibration (i.e. the oceanic and ophiolite peridotite chromite standards). They 

proposed that selection of suitable samples may be achieved by first filtering the 

chromite compositions through the peridotite trend on the Cr#-Mg# diagram, as 

more olivine-rich chromitites may be suitable. However, in the case of the Voskhod 

ore zone chromite samples, this statement does not hold true. Two of the three ore 

zone samples fall outside of the peridotite trend and yet all three are observed to 

plot in close proximity to one another and well within the SSZ-reacted field of the 

TiO2/Fe
3+

#  and Ga/Fe
3+

#  plot.  

 

6.8 Parent melt composition  

The composition of chromite reflects the geochemistry of either, the melt from 

which it crystallised or the last melt it equilibrated with (Dick and Bullen, 1984; Arai, 

1992; Barnes and Roeder, 2001; Kamenetsky et al., 2001; Page and Barnes, 

2009).  

 



Chapter 6: Tectonic setting discrimination using chromite 

                    194  

6.8.1 Al2O3 and TiO2 in the parent melt  

Relationships between the Al2O3 and TiO2 contents of chromite and melt have 

been established, both experimentally (Maurel and Maurel, 1982) and through the 

study of natural systems (Roeder and Reynolds, 1991; Kamenetsky et al., 2001). 

Page and Barnes (2009) proposed that the Al2O3 and TiO2 contents in chromite 

may be used to estimate the geochemical composition of a melt from which the 

chromite crystallised, as these components are not affected by subsolidus re-

equilibration with olivine or postcumulus reaction. They also proposed that reaction 

with trapped interstitial melt would have a minimum effect on the chromite 

composition given the high proportion of chromite relative to the amount of trapped 

melt (Page and Barnes, 2009). 

 

Kamenetsky et al., (2001) identified a relationship between the Al2O3 and TiO2 

content of chromite and the parent melt using chromite-olivine pairs and melt 

inclusion-chromite pairs from oceanic, arc and intraplate tectonic settings. Their 

work demonstrated that Al2O3 and TiO2 compositions can be used to distinguish 

between tectonic settings in which chromite forms (Figure 6.8.1). Page and Barnes 

(2009) used this to reason that podiform chromitites may be formed from arc to 

MORB melt types.  

 

The Al2O3 and TiO2, chromite – parent melt composition relationship (Figure 6.8.1) 

has been applied to the Voskhod harzburgite, dunite and ore zone chromites. The 

equation used to link the Al2O3 content in chromite to the associated parental melt 

is derived from the power best fit line through the data compilation of Kamenetsky 

et al. (2001) determined from natural sample suites (Eq.1) (Figure 6.8.1).  

 

Al2O3 wt% in melt = 5.356 ln(Al2O3 wt% in spinel) – 1.7852  (Eq.1) 

  

The work of Kamenetsky et al. (2001 identified different relationship trends 

between Al2O3 and TiO2 chromite contents of high-Al (> 19 wt% Al2O3) chromites 

and low-Al (<15 wt% Al2O3) chromites (Figure 6.8.2). Low-Al chromites are 

predominantly IAT-melt related and high-Al chromite, MORB-melt associated. 

Consequently, it is possible to determine two separate equations to calculate the 

TiO2 content of the parental melt. Given the significant spread in Al2O3 values from 



Chapter 6: Tectonic setting discrimination using chromite 

                    195  

the Voskhod chromite dataset two equations were formulated one for chromite 

with Al2O3 values <15 wt% (Eq.2) and a second for those >15 wt% (Eq.3) (see 

Figure 6.8.2 for data trendlines and equations). 

 

TiO2 wt% in melt = 1.7336 (TiO2 wt.% in High-Al spinel)
0.7096  

 

          (Eq.2) 

 

TiO2 wt% in melt = 1.1993 (TiO2 wt.% in Low-Al spinel)
0.8259  

 

          (Eq.3) 

 

Low Al2O3 contents are associated with chromite in the chromitite and dunite halo. 

These units (the ore body and encompassing halo) appear to represent a boninite 

melt flow channel-way. The calculated TiO2 wt% melt content for the low Al2O3 

chromites ranges from 0.21 to 0.38 wt.%. These values are consistent with TiO2 

wt% boninite melt contents (Figure 6.8.3). In contrast the high Al2O3 chromites 

present in the mantle host units (through which the boninite melt has percolated) 

show to have last equilibrated with a melt having a TiO2 wt% content of between 

0.14 to 0.55 wt.%. These values indicate that the high Al2O3 chromites which plot 

outside of the boninite field have not formed from, or equilibrated (fully) with, the 

boninite melt (Figure 6.8.3). 
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Figure 6.8.1: Al2O3 melt-spinel relationship 

 

 

Figure 6.8.2: TiO2 melt-spinel relationships for high- and low-Al2O3 spinel 
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Figure 6.8.3: TiO2 wt% versus Al2O3 wt% melt compositions 

calculated to be in equilibrium with chromite from the Voskhod podiform chromite deposit and 

host rock. For comparison fields from the Thetford Mines Ophiolite (TMO), boninites (BON) and 

MORB  as identified by Page and Barnes (2009) are shown. 
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8.37 to 9.52 wt% Al2O3 (average = 8.86 ± 0.29) and  from 0.21 to 0.29 wt% TiO2 

(average = 0.26 ± 0.02). (These value ranges omit two ore-zone dunite anomalies 

that are geochemically similar to chromite from the dunite halo and dunite fields). 
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The calculated melt compositions are comparable with boninite lava values (BON 

field annotated in  

Figure 6.8.3) as well as the boninite lavas of the B-BC (Figure 6.5.2) 

 

The TiO2 melt compositions for the harzburgite, dunite and the majority of the 

dunite halo samples are calculated using equation 2 as these chromites have a 

high-Al content. 

 

There are at least two possible origins for the chromites in the Voskhod sample 

suite: 

 They are residual from harzburgite that has had orthopyroxene removed 

and the chromite composition changed, with increasing Cr and Ti. 

 They are chromite-bearing dunites, crystallised from the new percolating 

melt  

 

Since dunite halo chromites have higher Ti contents than both ore-zone chromite 

and harzburgite chromite, melts or fluids associated with neither of these would 

seem to be the source of the Ti.   

 

The increased TiO2 wt% content relative to both end member chromite sample 

groups, the low-Al podiform chromitite (ore zone) chromites and the high-Al 

harzburgite chromites suggests that an additional TiO2 source is required. It is 

proposed that this may be supplied by the selective dissolution of pyroxene from 

harzburgite, a reaction that could, as a result of environmental changes, cause the 

pyroxene field to destabilise and consequently form olivine. This would liberate Ti
4+

 

and Cr
3+

, that are present as minor element components in pyroxene, into the local 

system. These cations are not incorporated into the olivine structure however, the 

chromite structure can accommodate them.  

 

It is proposed that the chemical gradient observed in the dunite halo chromites is 

created by the release of Cr
3+

 and Ti
4+

 from orthopyroxene forming chromite that 

has an Al
3+

 content intermediate between that of the ore-zone (low-Al) and 

harzburgite (high-Al) compositions as well as contributing to the elevated Ti 

content.   
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Chromite within the dunite halo also has higher Fe2O3 contents than chromite in 

the ore-zone. This implies that the ƒO2 conditions were higher in the halo than in 

the ore-zone. This may indicate that the melts or fluids which dissolved the 

orthopyroxene, and were responsible for element transfer between the melt and 

host-rock, are not the same as the boninite melt that is interpreted to have formed 

the podiform chromite (ore zone chromite). The liquid may either be, a volatile-rich 

melt or a volatile phase that is independent of the boninite melt. 

 

6.8.2 FeO/MgO Melt Composition 

Calculating the FeO/MgO ratio of the parent melt composition from the chromite 

composition is difficult because subsolidus re-equilibration of Mg
2+

 and Fe
2+ 

cations between chromite and olivine has to be accounted for. Re-equilibration 

would alter the chromite composition significantly from its original composition, 

such that any calculated melt composition would not represent the parent melt. 

However, there should only be minimal changes to the Fe
2+

 and Mg
2+

 contents in 

samples where chromite is the primary mineral phase. In massive chromite, where 

chromite constitutes >90% of the modal composition, the primary geochemistry will 

be preserved during low temperature re-equilibration processes (e.g. Maurel & 

Maurel, 1982). Using equations determined by Maurel & Maurel (1982) the 

geochemical composition of massive chromite may be used to calculate FeO/MgO 

melt compositions. 
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Figure 6.8.4: V05-13 chromite dataset: The calculated FeO/MgO content of the 

parent melt from which the chromite crystallised plotted against down hole 

depth. 

The broken black line transects at the average FeO/MgO melt composition of all the samples. 

Black arrows indicate anomalously high FeO/MgO values. FeO/MgO melt composition values 

were aalculated using the equation of Maurel & Maurel, 1982. The FeO and MgO values used 

in the calculation were obtained from the massive chromite series V05-13, analyses were 

acquired using wave dispersive spectroscopy (WDS).  

 

The melt compositions of FeO/MgO, Al2O3 and TiO2 are calculated using 

equations that assume quartz-fayalite-magnetite (QFM) buffered  fO2 conditions. It 

is feasible that periodic pulses of volatile-rich boninite melt may have intermittently 

entered the system. These would cause the fO2 of the melt to fluctuate (Chapter 3, 
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Section 3.4.1) which would affect the availability of Fe
2+

 (and Fe
3+

) in the melt and 

consequently the partitioning of iron between the melt and crystallising chromite 

(Roeder & Reynolds 1991). Such changes would affect the results of the Maurel & 

Maurel (1982) calculation. This hypothesis provides one possible explanation for 

the fluctuations in the FeO/MgO of the melt seen in Figure 6.8.4. Variations in the 

Al2O3 and TiO2 melt compositions of the V05-13 massive chromite dataset (Figure 

6.8.5) do not correlate with one another or the FeO/MgO fluctuations (Figure 

6.8.4). These melt components are not reported to be affected by changes in fO2. 

A different process is required to explain the changes which reflect changes in the 

boninite parent melt chemistry. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8.5: V05-13 chromite dataset: Variation with depth of the Al2O3 wt% and 

TiO2  wt% content of the parent melt from which the chromite crystallised. 
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6.9 Results overview 

 

 The Voskhod hanging wall, footwall and ore zone dunites plot inside the 

OSMA trend indicating that they are residual mantle rocks. However, as 

acknowledged, it is possible for dunite cumulates to crystallise from melts in 

the mantle and plot within OSMA. Regardless of the dunites being residual 

or having crystallised in the mantle, the Voskhod deposit is mantle hosted. 

 

 The Voskhod podiform chromitite deposit plots in the same field as the 

Luobousa and Troodos podiform chromitites. The Kempirsai podiform 

chromitites (including Voskhod) have the highest Cr# values of podiform 

chromitite, being some of the most Cr-rich chromitites in the world. 

 

 With distance from the ore body the chromite composition changes from 

0.23 – 0.85 Cr#, this is consistent with reaction between a percolating melt 

and the residual mantle. 

 

 The chromite compositions from chromitite and ore zone dunite are 

analogous to chromites from boninite lavas. The data presented infers that 

interaction between residual mantle and a boninite melt has formed the 

Voskhod deposit. This finding is supported by the parent melt composition 

calculations which are compositionally analogous with boninite melt. 

Boninite melts characterise supra-subduction zone settings in particular the 

formation of island forearcs. 

 

 Dunite in the haning wall and footwall (distal dunite) has formed by reaction 

between mantle residue and a MORB melt (in a MOR setting) and appears 

unrelated to the SSZ-melt event responsible for the genesis of the Vokshod 

chromitite and the dunite halo.  

 

 The mantle sequence represented by the Voskhod harzburgite and distal 

dunite samples analysed, records the transition of an evolving geodynamic 

setting from a MOR to a SSZ tetonic setting.   
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 Chromite in the dunite halo is comprised of primary phase chromite 

crystallised from the percolating boninite melt (euhedral) and residual 

chromite that is thought to have been “up-graded” by re-equilibration with 

the interacting melt or a melt associated fluid phase (subidomorphic and 

anhedral grains). 

 

 The dunite and harzburgite samples have experienced less exposure to the 

melt and/or the melt associated liquids, consequently re-equilibration has 

been less extensive and possibly, in the case of some harzburgite samples, 

has not occurred at all.  

 

 The observed MOR- and SSZ-reaction signatures recorded in these mantle 

units over a small distance (142 m from ore zone to the other most 

harzburgite sample) it seems plausible that the region preserved evidence 

of subduction initiation (water-rich boninite melt genesis) at the site of a 

redundant MOR setting, possibly along a transform fault, where the mantle 

section would have previously been subject to MORB melt percolation 

(forming the MOR-reacted dunite). This hypothesis also provides an 

explanation for the evidence of MOR-mantle residue harzburgite.  

 

 Interaction between mantle residue derived from ~15% partial melting and 

a boninite melt is analogous to the present day tectonic setting of the 

Conical Seamount in the Izu-Bonin-Mariana forearc system. 

 

Table 6.9.1 provides a summary of the samples analysed and results presented in 

this chapter.
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Sample

I.D

Drill core 

I.D
Region 

Depth down 

hole (m)

Distance from 

mineralisation 

(m)

Rock 

type

Chromite

 modal %

Grain

 Shape

Cr#(chr)-Fo(ol)

[Peridotite type]

f O2-Cr# Ga-Fe
3+

-Ti REE Profile shape

G1815 V05-21 West 286.60 n/a OZ Dun < 5% Eu – – – Flat

G1823 V05-21 West 297.65 48.80 Dist Dun < 5% SI – – – U-shaped

G1742 V05-24 Centre 141.30 142.92 Harz < 5% HL/SI
Passive margin/

Abyssal
MOR Hz MOR-residual U-shaped

G1763 V05-24 Centre 167.60 116.61 Harz < 5% HL/SI – – – LREE-Depleted

G1768 V05-24 Centre 176.94 107.26 Harz <5% HL/SI – – – LREE-Depleted

G1777 V05-24 Centre 185.60 98.56 Dist Dun < 5% HL/SI Abyssal/SSZ MOR Dun MOR-reacted LREE-Enriched

G1791 V05-24 Centre 221.00 63.17 Harz < 5% HL/SI Abyssal – – –

G1795 V05-24 Centre 231.90 52.30 Harz < 5% SI/An
Passive margin/

Abyssal
SSZ Hz SSZ-reacted U-shaped

G1798 V05-24 Centre 240.00 44.70 Dist Dun < 5% HL/SI Abyssal/SSZ – MOR/SSZ-reacted Flat

VOS-301 V05-24 Centre 249.53 34.67 Dist Dun < 5% HL/SI Abyssal/SSZ MOR Dun MOR-reacted LREE-Enriched

VOS-303 V05-24 Centre 252.00 32.50 Dist Dun < 5% SI – MOR Dun MOR-reacted LREE-Enriched

VOS-306 V05-24 Centre 258.94 25.26 Dun Halo < 5% HL/SI SSZ SSZ Dun SSZ-reacted LREE-Enriched

VOS-312 V05-24 Centre 266.88 17.32
Dun/Chr

Stringer
~ 30% SI/Eu – SSZ Dun/Chr SSZ-reacted –

VOS-315 V05-24 Centre 270.10 14.10
Dun/Chr

Stringer
~ 50% SI/Eu outside field SSZ Dun/Chr SSZ-reacted LREE-Depleted

VOS-320 V05-24 Centre 274.59 9.61 Dist Dun < 5% SI – – – Flat

VOS-322 V05-24 Centre 276.80 7.40 Harz < 5% SI/An Abyssal/SSZ SSZ Hz – Flat

VOS-327 V05-24 Centre 282.72 1.48 Harz < 5% SI/Eu
Passive margin/

Abyssal/SSZ
MOR Hz SSZ-reacted LREE-Depleted

F1907 V05-24 Centre 285.50 n/a OZ Dun <5% SI Abyssal/SSZ MOR dun MOR-reacted LREE-Depleted

F1926 V05-24 Centre 296.70 n/a OZ Dun <5% Eu – – – LREE-Enriched

F1968 V05-24 Centre 341.70 n/a OZ Dun <5% Eu – – – LREE-Depleted

F1971 V05-24 Centre 343.00 n/a OZ Dun ~ 15% Eu – – SSZ-reacted Flat

F1978 V05-24 Centre 348.00 n/a OZ Dun ~ 35% Eu – – – Flat

G1908 V05-24 Centre 373.42 n/a Dun Halo < 5% SI/Eu SSZ SSZ Dun SSZ-reacted LREE-Enriched

VOS-328 V05-24 Centre 375.00 1.58 Dun Halo < 5% SI/Eu SSZ SSZ Dun SSZ-reacted LREE-Enriched

VOS-341 V05-24 Centre 389.23 15.81 Harz < 5% HL
Passive margin/ 

Abyssal
SSZ Hz SSZ-reacted LREE-Depleted

VOS-345 V05-24 Centre 394.00 20.69 Harz < 5% HL/SI – – – LREE-Depleted

VOS-348 V05-24 Centre 398.63 25.21 Dist Dun < 5% HL/SI/Eu SSZ MOR Dun SSZ-reacted U-shaped

VOS-350 V05-24 Centre 403.00 29.50 Dist Dun < 5% HL/SI Abyssal/SSZ MOR Dun SSZ-reacted LREE-Enriched

Diagram classification



Chapter 6: Tectonic setting discrimination using chromite 

205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.9.1: A summary of the Voskhod samples analysed and the results of  the tectonic setting discrimination diagrams and REE 

profile types. 

Rock type: Harz = Harzburgite, Dist Dun = Distal Dunite, Dun Halo = Dunite Halo, OZ Dun = Ore Zone Dunite, Dun/Chr Stringer = chromitiferous dunite 

(weakly mineralised) present outside of the classified ore zone region. Grain shape: HL = Holly Leaf, An = Anhedral, SI = Subidiomorphic, Eu = Euhedral. The 

tectonic discrimination diagram results (plots fO2-Cr# and Ga-Fe
3+

-Ti) of the underlined samples Vos-327, 348 and 350 are in disagreement. These samples 

plot close to discrimination boundaries. The REE geochemistry is presented in Chapter 5, Section 5.6.2. 

 

 

 

 

 

 

 

Sample

I.D

Drill core 

I.D
Region 

Depth down 

hole (m)

Distance from 

mineralisation 

(m)

Rock 

type

Chromite

 modal %

Grain

 Shape

Cr#(chr)-Fo(ol)

[Peridotite type]

f O2-Cr# Ga-Fe
3+

-Ti REE Profile shape

G1601 V05-28 East 322.09 5.15 Dun Halo < 5% An/SI Abyssal/SSZ – – LREE-Enriched

G1605 V05-28 East 325.52 1.72 OZ Dun < 5% An/SI Abyssal/SSZ – – Flat

G1609 V05-28 East 333.85 n/a OZ Dun < 5% Eu – – – LREE-Enriched

G1623 V05-28 East 354.67 n/a OZ Dun < 5% SI/Eu outside field – – –

G1654 V05-28 East 369.70 n/a OZ Dun < 5% SI/Eu – – – LREE-Enriched

G1624 V05-28 East 432.97 n/a OZ Dun < 10% SI/Eu outside field – – –

G1631 V05-28 East 434.40 n/a OZ Dun < 5% SI/Eu outside field – – –

G1910 V06-48 S. Centre 200.75 0.56 Dun Halo < 5% SI/Eu SSZ – – –

G1983 V06-48 S. Centre 298.45 1.75 Dun Halo < 5% SI/Eu outside field – – Flat

G1988 V06-48 S. Centre 300.15 3.45 Dun Halo < 5% SI/Eu outside field – – –

VOS-174 V06-S6 South 66.45 13.05 Dist Dun < 5% SI Abyssal/SSZ – – –

VOS-179 V06-S6 South 79.50 n/a OZ Dun < 10% SI Abyssal/SSZ – – –

VOS-185 V06-S6 South 93.95 8.08 Harz < 5% An/SI – – – LREE-Enriched

Diagram classification
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Chapter 7.   Major and minor element geochemistry 

variation on a 50 cm spaced scale, across a 45 m 

section of massive chromite from drill core V05-13 

 

This chapter presents data that was collected to investigate the variation in 

chromite composition with depth down hole. A 45 m intersection of continuous, 

massive chromite ore, from drill core V05-13 of the Voskhod deposit, was sampled 

at 50 cm intervals; 90 samples were collected. The extensive intersection of 

continuous, monomineralic chromite, mineralisation presents a unique opportunity 

to examine the geochemistry. The lack of olivine (<5% modal proportion) in the 

samples means that the potential for divalent cation (Mg
2+

 and Fe
2+

) exchange to 

take place between olivine and chromite is limited. Thus, the divalent cation 

compositions obtained from the chromite analyses are considered representative 

of the primary composition.  

 

The interval of massive chromite studied starts at 255.70 m (vertical depth down 

hole) and extends to 301.20 m. Samples were collected between 256.50 m and 

300.40 m; 87 were hard massive chromite (HMCr) and 3 were powdery chromite 

(PCr), taken from depths 259.0 m, 266.4 m and 285.4 m.  
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Figure 7.1.1: Drill core V05-13 lithological units log. 

 

Core V05-13 was drilled just off centre, to the northwest, of the Voskhod orebody 

(Chapter 5, Section 5.1.1, Figure. 5.1.1). The start of the 45 m intersection of 

massive chromite, at 255.70 m, is the first occurrence of mineralisation in the core. 

Overlying the mineralisation, the hanging wall is comprised of serpentinised 

harzburgite and dunite. At the base of the intersection are two further mineralised 

intervals of disseminated chromite, one 18 m thick and the other 22 m thick.  
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Mineralisation ceases at 361.3 m down hole. The footwall is comprised of dunite 

and serpentinised dunite units (Figure 7.1.1). 

 

From each of the 87, V05-13 samples of HMCr ore, a small, millimetre dimension 

sample was taken, these were mounted in resin blocks and polished. Each block 

held four sample fragments and careful note was taken of the position of each 

sample within the blocks. The PCr samples were prepared as polished thin 

sections, where the chromite ore powder was mixed with resin on the surface of a 

glass section slide, allowed to set and then polished. 

 

The major elements Cr
3+

, Al
3+

, Fe
2+

 and Mg
2+

 and trace elements V
5+

, Ti
4+

, Mn
2+

, 

Ni
2+

, Zn
2+

, Co
2+

 were analysed using a LEO 360 scanning electron microscope 

attached with a wavelength dispersive spectroscopy (WDS) analytical capability 

(Appendix A, Methods). From each sample three chromite grains were analysed 

twice at the grain centre, avoiding proximity to the grain boundaries where post 

magmatic alteration may have affected the composition.  

 

The chromite compositions were calculated by stoichiometry using the Barnes and 

Roeder (2001, amended 2004) spinel calculation spreadsheet to determine the 

cation concentrations.  

 

7.1 Interrogation of the V05-13 data series 

Variation in the chromite geochemistry will reflect changes in the melt composition 

and/or oxygen fugacity conditions either at the time of chromite crystallisation, or 

present during the most recent re-equilibration event, which could have occurred 

after the primary crystallisation event. Changes to temperature and pressure are 

unlikely to have affected the composition, as at the mantle depths where this 

chromite formed such conditions are deemed to have been constant over a 

distance of 45 m.  
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7.1.1 Data reliability 

The ranked, systematic order of the major element oxide compositions, of the V05-

13 chromite dataset, from most to least abundant are; Cr2O3, MgO, FeO(t), Al2O3. 

The range of each major element, as acquired by WDS, is shown in Table 7.1.1. 

 

 

  

 

 

 

 

Table 7.1.1: The data range of the major element compositions obtained from 

the analysis of  the V05-13 chromites. 

FeO(t) denotes total iron compositions presented in the divalent form Fe
2+

. For each major 
element the relative standard deviation (RSD%) was calculated and is presented as a ratio of 
the sample standard deviation to the sample mean expressed as a percentage.  

 

From each sample three grains were analysed, the compositions collected were 

averaged and the RSD% calculated for the major element oxide values; Cr2O3, 

Al2O3, MgO, FeO(t) and the trace element oxides MnO, TiO2, V2O5 and NiO. The 

Co and Zn analysis values were frequently below detection limit and are not 

presented. The highest, lowest and average RSD% value for a sample are 

presented in Table 7.1.2. The dataset was also considered in entirety and the 

RSD% was calculated for the same major and trace elements. The premise being 

that if the RSD% for the composition of the entire dataset (considered as one 

“sample”) was greater than the RSD% for the composition of a single sample it 

would demonstrate that the dataset was more heterogeneous than a single 

sample. 

 

 

 

 

 

Dataset V05-13

No. of analyses 270 grains

Values (%) Al2O3 Cr2O3 FeO(t)  MgO  

High 8.95 65.46 16.41 16.42

Low 6.70 62.03 11.85 12.37

Average 7.86 63.78 13.00 14.49

RSD% 3.67 0.91 6.77 4.71
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Table 7.1.2: The average chromite composition of the V05-13 dataset and the 

maximum, minimum and average relative standard deviation values for a sample 

compared with that of the entire dataset. 

 

The results show that the RSD% for a single sample can be as great, if not greater 

than that of the entire dataset (Figure 7.1.1), indicating that the composition within 

a sample can be varied. Consequently, each grain should be examined individually 

and the data collected from a sample should not be averaged. There is one 

exception, the values for FeO(t), where the variation in a single sample is always 

less than that of the dataset (or more tightly constrained) (Figure 7.1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset V05-13

Al2O3 Cr2O3 FeO(t)  MgO  MnO  TiO2 V2O5 NiO

Average composition 7.86 63.78 13.00 14.49 0.23 0.15 0.10 0.16

Average RSD% of a sample 2.06 0.45 1.39 1.28 5.85 6.36 16.15 10.83

Max RSD% of a sample 7.59 1.30 5.90 6.61 15.91 23.95 84.55 33.91

Min RSD% of a sample 0.21 0.08 0.18 0.11 0.49 0.29 0.49 1.63

RSDev of the dataset 3.67 0.91 6.77 4.71 11.97 10.38 20.00 15.35

Major elements Trace elements
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Figure 7.1.1: The major and trace elements, maximum, minimum and average 

RSD% values from samples compared with the complete dataset RSD%. 
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7.1.1.1 Comparison of the Voskhod sample variation with natural 

standards 

To investigate the composition homogeneity of the V05-13 dataset, comparisons 

were made with data collected from five chromite grains; MBD-7-G1, MBD-7-G2, 

MBD8-Std, C51 Std and Vos-Std (Table 7.1.3). These were sourced from podiform 

chromitites and were deemed to have formed under similar conditions in similar 

tectonic environments as Voskhod and served as natural standards.  

 

 

 

Table 7.1.3: Natural chromite standard samples, source localities, number of 

analyses and 2σ values for each of the major elements analysed using WDS. 

The data for grains MBD-7-G1, MBD-7-G2, MBD8-Std and C51 Std are from Brough (2011). 

 

Samples MBD-7-G1, MBD-7-G2 and MBD-8-Std were from podiform chromite in 

the Berit ophiolite, Turkey and C51-Std was from Al’Ays, Saudi Arabia. These data 

are taken from a study carried out by Brough (2011) that used the same SEM-

WDS analytical facilities that were used to collect the chromite data presented in 

this study. The Vos-Std chromite grain was sourced from the Voskhod podiform 

chromite deposit, Kazakhstan and analysed as part of this study. 

 

Each standard grain was analysed multiple times (between 28 and 256 times). The 

results provide some indication of the natural composition variation that can be 

present within a single grain, as well as the effect had by instrumental drift (during 

data acquisition) on the analyses collected. It is not possible to differentiate 

between the effects of these two variables, however, it is not of particular 

importance to be able to do so, as the dataset featured in this study could 

Sample
Ophiolite

 Source

No. 

Analyses
FeO(t) MgO Cr2O3 Al2O3

MBD-7-G1 Berit, Turkey 256 0.43 0.60 1.41 0.83

MBD-7-G2 Berit, Turkey 28 0.40 0.45 1.37 0.83

MBD8-Std Berit, Turkey 34 0.56 0.47 0.73 0.77

C51 Std Al'Ays, Saudi Arabia 81 1.29 0.47 0.95 0.67

Vos-Std Voskhod, Kazakhstan 56 0.19 0.31 0.35 0.23

V05-13 - dataset Voskhod, Kazakhstan 270 1.76 1.36 1.16 0.58

2σ
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potentially be affected by either, or both, of these factors. Thus, having an 

understanding of the effect had on the data acquired is important. 

 

The FeO(t)% composition of the V05-13 dataset is the only variable where the 

RSD% within a sample is consistently less than that of the RSD% for the whole 

dataset (Figure 7.1.1). Consequently, it is the best parameter to use to interrogate 

the dataset and it is important to compare this value with that obtained from the 

standards. The Cr2O3% composition of the V05-13 dataset, in contrast, is 

exceptionally uniform, with the greatest relative standard deviation of a sample 

being 1.30%. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7.1.2: FeO(t)% against Cr2O3% compares the composition variation of 

single chromite grain standards with the V05-13 chromite dataset. 

Error bars presented are to 2σ (2 standard deviation). 

 

Comparison of the standards MBD-7-G1, MBD-7-G2, MBD-8 Std, C51Std with 

Vos-Std (the Voskhod standard, red data point), shows that the composition of the 

Voskhod sourced standard, Vos-Std is the most homogeneous, both in terms of 

FeO(t) and Cr2O3% content (Figure 7.1.2).  

 

The 2 sigma range for the Cr2O3% content of the V05-13 dataset (grey data point) 

is similar to that of the standards MBD-7-G1, MBD-7-G2, MBD-8 Std and C51Std; 
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in fact, compared with the standards MBD-7-G1 and MBD-7-G2 the Cr2O3% 2 

sigma range of the V05-13 dataset is smaller. In contrast, the FeO(t)% 2 sigma 

range for the V05-13 dataset is significantly larger than those of the standards, 

although, as standard C51Std demonstrates, in a single grain this composition can 

vary. The 2 sigma range of the standards and dataset V05-13 for the other major 

element compositions Al2O3% and MgO% are presented in (Figure 7.1.3). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.3: MgO% against Al2O3% to compare the composition variation of 

single chromite grain standards with the V05-13 chromite dataset. 

Error bars presented are to 2σ (2 standard deviation). 

 

In the plot MgO% against Al2O3% (Figure 7.1.3) the 2 sigma error bars for the 

standard Vos-Std (red data point) are once again much smaller than the other 

standards, indicating that the composition of the grain analysed is comparatively 

more homogeneous. 

 

The Al2O3% 2 sigma range for dataset V05-13 (grey data point) is similar to the 

error bar range of the standards MBD-7-G1, MBD-7-G2, C51Std and MBD-8Std, 

demonstrating that the Al2O3% composition of the dataset is similar to that of a 

single grain. The MgO% 2 sigma range of dataset V05-13 is much greater than 

that of the standards error bars, reflecting greater compositional variation within 

the V05-13 dataset than is seen in a single grain. 
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The major element plots (Figure 7.1.2 and Figure 7.1.3) show that the variation in 

the Voskhod standard grain Vos-Std is consistently the smallest . This does not  

appear to be the consequence of a greater number of analyses as standards 

C51Std and MBD-7-G1 were analysed 81 and 256 times, respectively. In 

comparison, the Voskhod standard was analysed 56 times. The homogeneity of 

the Voskhod chromite composition appears to be the exception and not the rule. It 

is reasonable to assume that the Voskhod sourced standard (Vos-Std) has been 

exposed to the same formation process history as that of the V05-13 chromite 

samples and so is most likely to have an equally well constrained, comparable 

composition. This is supported by the comparisons made with the other standards. 

So as not to discard the small, but potentially significant, compositional variations 

that are present in the V05-13 dataset it is highlighted that the major element 2 

sigma error bar values for Vos-Std are much smaller than those presented by the 

V05-13 dataset or those of the other chromite grain standards. On this premise, all 

of the major elements will be considered when examining the V05-13 dataset, 

although it is recognised that the FeO(t) and MgO compositions are the most 

varied. 

  

The chromite analyses report iron values as FeO(t)% a value that represents the 

combined abundance of iron (total iron), both FeO% and Fe2O3%, expressed as 

FeO% (FeO(t) is the nomenclature used to express the value obtained). The FeO% 

and Fe2O3% values can be calculated from the FeO(t)% value using the ideal 

stoichiometric unit cell formula of chromite, an equation given in the Barnes and 

Roeder spinel calculation spreadsheet (2001, amended 2004).  

 

Of the calculated iron constituents FeO% and Fe2O3% (calculated for each grain 

analysed), the average FeO% composition for the V05-13 dataset is 10.98 (RSD% 

18.50) and the average Fe2O3% composition is 2.25 (RSD% 52.03). The Fe2O3% 

content of chromite records changes in the oxidising conditions effective during 

chromite crystallisation. Increased Fe2O3% values infer more oxidising conditions, 

resulting from the conversion of FeO to Fe2O3, to accommodate the additional 

oxygen available in the system.  
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7.1.2 V05-13 Chromite: Major element geochemistry 

The major element compositions for each of the V05-13 chromite samples were 

plotted against depth (Figure 7.1.4). The Al2O3% and Cr2O3% compositions are 

well constrained. In contrast, the MgO% and FeO(t)% composition variation is 

much greater.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.4: The major element geochemistry of chromite analyses from drill-

core V05-13 versus depth. 

Black filled symbols are 13 chromites where the FeO(tot) value exceeds the MgO value. 
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Typically, MgO% is greater than FeO(t)%, however, there are 9 samples where 

each of the three grains analysed have FeO(t)% compositions greater than MgO% 

(these samples are identified with solid black lines in Figure 7.1.4). Furthermore, 

there are 9 samples where one or two of the three grains analysed have 

compositions where FeO(t)% is greater than MgO% (these samples are identified 

with solid grey lines in Figure 7.1.4).  

 

It appears that for some of the samples where FeO(t)% exceeds MgO%, the 

Cr2O3% composition is slightly lower, but this is not a consistent observation. 

Additionally, there does not appear to be any relationship between depth and the 

variations seen in the chromite compositions that is to say, not all of the samples 

where FeO(t)% is greater than MgO% form groups at specific depth intervals or 

cluster together, on the contrary the spacing of these samples appears to be 

random. The greatest distance between two iron-rich chromites is 7.4 m (between 

points 261.5 m and 268.9 m) and the smallest interval is 0 m, where points 271.9 

m and 272.4 m are adjacent to one another in the series. 

 
Recognising that samples can contain grains of mixed compositions, i.e. grains 

where the MgO% content is greater than FeO(t)%, co-exist with grains where the 

FeO(t)% content is greater than MgO%, further validates the case for not averaging 

the sample compositions (Table 7.1.4). This observation also demonstrates that 

the samples are not compositionally homogeneous. Consequently, the 

composition of each grain must be considered independently. In terms of formation 

this observation identifies a process that causes some grains to be iron-rich and 

others to be magnesium-rich and for the two differing compositions to co-exist.  

 

Using the difference in the FeO(t)% and MgO% compositions, it is possible to 

distinguish two chromite types within the data series these are termed the 

MgO>FeO(t) chromite (where MgO% exceeds FeO(t)%) and the FeO(t)>MgO 

chromite (where FeO(t)% exceeds MgO%). These two groups are examined further 

to investigate whether additional geochemical characteristics exist. 
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Table 7.1.4: The 18 samples from the V05-13 dataset (location depths given) 

where results reported one or more FeO(t)>MgO chromite analysis. 

 

7.1.3    Determining the ferrous and ferric iron contents of 

MgO>FeO(t) and FeO(t)>MgO chromites 

The presence of iron-rich, FeO(t)>MgO chromites, distinguished on the basis of 

total iron content (i.e. combined Fe
2+

 and Fe
3+

) poses the questions; i) What has 

caused the increase in iron composition? ii) Do the values stem from increased 

FeO or Fe2O3 contents (or possibly both)?  

 

The plot FeO% against Fe2O3% is used to establish whether increased ferrous or 

ferric iron contents are responsible for high FeO(t) values (Figure 7.1.5). High 

FeO(t)% compositions resulting from increased FeO% would indicate that more 

iron was present in the reduced form (Fe
2+

) when the most recent closure 

temperature for chromite crystallisation and/or equilibration was achieved. This 

could be when the chromite crystallised from the parent melt, in which case it 

Sample

Depth (m) MgO>FeO(t) FeO(t)>MgO (FeO>MgO)

259.50 0 3 0

261.50 0 3 2

262.50 2 1 0

265.00 2 1 0

268.90 0 3 0

270.40 2 1 0

271.90 0 3 0

272.40 1 2 0

275.70 0 3 2

280.10 0 3 2

282.30 0 3 3

286.40 1 2 0

288.20 2 1 0

290.70 2 1 0

292.70 1 2 2

295.90 0 3 1

297.90 0 3 0

299.40 2 1 0

Number of chromites in group
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would indicate that these chromites crystallised from a more iron-rich pulse of melt 

compared with the MgO>FeO(t) chromites. An alternative hypothesis may be that  

there has been a post-crystallisation, sub-solidus re-equilibration event that has 

caused localised, iron enrichment within the chromitite pod. High FeO(t)% values 

that result from increased Fe2O3% contents would indicate that the most recent 

equilibration conditions were both iron rich and oxidising.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.5: FeO% against Fe2O3% 

The red filled triangle symbols represent the FeO(t)>MgO group and the yellow filled triangle 
symbols, the MgO>FeO(t) group. The black triangles are FeO(t)>MgO chromites with FeO 
values greater than MgO values. The R

2
 values provide an indication of the strength of 

correlation between the two variants. 

 

It is seen in the plot FeO% against Fe2O3% that the dominant trend of the V05-13 

dataset is for the FeO% content to increase as Fe2O3% decreases (Figure 7.1.5). 
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This is most readily seen from the negative correlation of the MgO>FeO(t) chromite 

data (yellow triangles, Figure 7.1.5). This relationship may be explained by 

changes to the oxidising conditions; as the oxygen availability in the melt 

decreases (conditions become reducing) iron will preferentially stabilise as FeO to 

optimise bonding with the limited available oxygen. The strength of this 

relationship is verified by the R
2
 value of 0.69 (black broken line, Figure 7.1.5) .  

 

The FeO(t)>MgO chromites behave differently (red triangles, Figure 7.1.5) plotting 

away from the main trend formed by the MgO>FeO(t) chromites (yellow triangles, 

Figure 7.1.5). Of the 39 FeO(t)>MgO chromites identified, 12 have FeO% 

compositions greater than MgO% (red/black triangles, Figure 7.1.5). The Fe2O3% 

compositions extend the same range as those of the MgO>FeO(t) chromites. In 

comparison to the MgO>FeO(t) chromites, the FeO(t)>MgO chromites possess 

higher Fe2O3% contents for FeO% values that are the same as, or greater than the 

MgO>FeO(t) chromites (blue arrows, Figure 7.1.5). This observation reaffirms that 

the Fe2O3% component is integral to the characterisation and genesis of the 

FeO(t)>MgO chromites. 

 

The relationship between the FeO% and Fe2O3% compositions of the FeO(t)>MgO 

chromites lack correlation, implying that there are at least two independent 

processes that control the partitioning of these components into chromite. It is 

proposed that the composition of the MgO>FeO(t) chromites results from a single 

process, where the system evolves resulting in the observed trend. 

 

Having established that the two chromite groups are at compositionally different, at 

least in terms of iron content, the respective major and trace element average 

compositions were calculated for each group (Table 7.1.5). 
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Table 7.1.5: The average major and trace element compositions of the 

MgO>FeO(t) and FeO(t)>MgO chromite groups and relative standard deviation for 

each value. 

The FeO and Fe2O3 values presented have been calculated using the Roeder & Barnes (2001, 
amended 2004) spinel calculation spreadsheet. No. denotes the number of grains analysed in 
each group. 

 

It is evident from the data presented in Table 7.1.5 that the effect of the MgO% 

and FeO% composition variations, which determine these two groups, have a 

negligible effect on the Cr2O3% and Al2O3% compositions. When compared with 

the composition variation seen in the chromite standards (Section 7.1.1) these 

data values are remarkably uniform. 

 

7.1.4   V05-13 Chromite: Trace element geochemistry 

The V05-13 chromites were analysed for the trace elements MnO, V2O5, TiO2 and  

NiO. The relative standard deviation expressed as a percentage (RSD%) of the 

trace elements is high (Appendix D, Table D2). Analyses show that there are no 

differences between the V2O5%, TiO2% and CoO% compositions of the two groups 

(Table 7.1.5), however, a difference is seen between the MnO% compositions. 

 

 

 

 

 

 

Dataset V05-13

FeO(t)>MgO
No = 231

Al2O3 Cr2O3 MgO  FeO(t)  FeO Fe2O3 MnO  TiO2 V2O5 NiO

Average 7.89 63.22 13.28 14.79 12.72 2.30 0.28 0.15 0.10 0.15

RSD% 4.69 1.06 3.48 5.22 4.92 22.90 10.63 15.43 18.25 23.57

MgO>FeO(t) No = 39

Al2O3 Cr2O3 MgO  FeO(t)  FeO Fe2O3 MnO  TiO2 V2O5 NiO

Average 7.85 63.95 14.63 12.70 10.68 2.24 0.23 0.16 0.10 0.16

RSD% 3.48 0.78 3.39 3.26 6.88 26.56 8.27 9.18 20.33 13.64

Major elements Trace elements

Major elements Trace elements

39

231

Dataset V05-13

FeO(t)>MgO
No = 231

Al2O3 Cr2O3 MgO  FeO(t)  FeO Fe2O3 MnO  TiO2 V2O5 NiO

Average 7.89 63.22 13.28 14.79 12.72 2.30 0.28 0.15 0.10 0.15

RSD% 4.69 1.06 3.48 5.22 4.92 22.90 10.63 15.43 18.25 23.57

MgO>FeO(t) No = 39

Al2O3 Cr2O3 MgO  FeO(t)  FeO Fe2O3 MnO  TiO2 V2O5 NiO

Average 7.85 63.95 14.63 12.70 10.68 2.24 0.23 0.16 0.10 0.16

RSD% 3.48 0.78 3.39 3.26 6.88 26.56 8.27 9.18 20.33 13.64

Major elements Trace elements

Major elements Trace elements

39

231
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Figure 7.1.6: FeO% against MnO% showing the chromite groups MgO>FeO(t) and 

FeO(t)>MgO 

 

MnO% is the most abundant, consistently detectable, trace element. 

Concentrations (across the whole V05-13 dataset, i.e. both chromite groups) range 

from 0.18% to 0.33%. Furthermore, the MnO% values stand up best to the scrutiny 

of relative standard deviation that ranges from 0.5 % to 16.0 % (pers comm. Dr. I. 

McDonald).  

 

The FeO(t)>MgO chromites have a higher average MnO% content of 0.28% 

compared with the MgO>FeO(t) chromites, where the average compositions is 

0.23%. The groups are formed based on the relative proportions of the divalent 

cations Mg and Fe
2+

. As Mn is also a divalent cation, it will substitute into the same 

tetrahedral sites as those filled by Mg and Fe
2+

. The MnO% content is seen to 

correlate positively with FeO% (Table 7.1.5 and Figure 7.1.6).  
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7.1.5 Mg#-Cr# diagram 

The Mg#-Cr# diagram shows the relationship between the divalent (Mg#) and 

trivalent (Cr#) cation ratios for the chromites (Figure 7.1.7). This plot provides an 

additional geochemical tool to study the chromite groups. Using the Mg#-Cr# 

diagram, Naldrett et al. (2009) documented trendlines, termed Trend A and Trend 

B (Chapter 3, Sections 3.4.4 and 3.4.5) that formed when a sample series of 

massive chromite compositions, sourced from the Bushveld Complex, were 

plotted. Magmatic processes were assigned to explain the compositional variation 

controlling the relationships observed. In this study the Mg#-Cr# diagram is used 

to compare and contrast the V05-13 data array with the observations made by 

Naldrett et al. (2009) to aid the interpretation of the processes responsible for the 

compositional variation and genesis of the massive chromite in the Voskhod 

deposit. 

 

The geochemical plots presented in this chapter illustrate that the V05-13 chromite 

compositions differ, principally in terms of the divalent cations, Mg, Fe
2+

 and Mn. 

Furthermore, it is evident from the scatter of the data points, seen in the plots 

presented, that the compositions do not vary systematically throughout the 

dataset, i.e. the groups do not plot in well constrained clusters along a single 

trend-line.  
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Figure 7.1.7: Mg# versus Cr# plot 

Where Mg# = [Mg/(Mg+Fe
2+

)] and Cr# = [Cr/(Cr+Al+Fe
3+

)] 

 

The Mg#-Cr# relationships for the two chromite groups identified in the V05-13 

dataset are shown in (Figure 7.1.7). The Cr# range is tightly constrained, 

extending from 0.79 to 0.85, (a range of 0.06 Cr#). This range is covered by the 

data arrays of both groups. The Mg# range is much greater; the FeO(t)>MgO 

chromites plot to lower Mg# values, between 0.62 to 0.68 and the MgO>FeO(t) 

chromites plot at higher Mg# values, from 0.67 to 0.79. There is little overlap 

between the data spread of the two groups. 

 

The MgO>FeO(t) group forms a weak negative correlation (R = 0.46); as Mg# 

increases, Cr# decreases (illustrated by the broken black trend line that passes 

through the data (Figure 7.1.7). A similar relationship is displayed by some, but not 

all, of the FeO(t)>MgO chromite data points forming a trend parallel to that of the 

MgO>FeO(t) chromites, but displaced to lower Mg# values (illustrated by the 
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broken grey line, (Figure 7.1.7). The FeO(t)>MgO chromite data points that form 

the parallel trend at lower Mg# values appear to be connected by a series of 

vertically aligned FeO(t)>MgO data points that descend from the MgO>FeO(t) 

chromite group (illustrated by a black arrow, Figure 7.1.7). 

 

 

Figure 7.1.8: Data point population density of the Mg# versus Cr# plot 

Here the plot is presented with equal scale x- and y-axes for clarity. 

 

When the V05-13 dataset is considered collectively, rather than as two groups, it is 

seen that the majority of the data (90%) plots between 0.812 to 0.836 Cr#, a range 
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of 0.024 (illustrated by broken black tram lines, Figure 7.1.8). As seen in Section 

7.1.3, Table 7.1.5, the Cr2O3% and Al2O3% compositions of V05-13 chromites are 

exceptionally uniform, so inevitably the Cr# values will be equally uniform. In light 

of this, the data is described as plotting within a well constrained Cr# range where 

the groups are readily distinguished on the basis of Mg#. Furthermore, it is noted 

that the vertical line of FeO(t)>MgO points that plot with decreasing Mg# from the 

MgO>FeO(t) chromite group, also plot in the Cr# region comprised of 90% of the 

chromite data. For the remaining 10% of data, which plot outside of the 0.812-

0.836 Cr# range, it is generally the case that Mg# and Cr# correlate negatively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.9: Mg# against Cr# annotated with individual grain analyses from 

seven samples to demonstrate compositional variation within a sample. 

 

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.78 0.80 0.82 0.84 0.86

Cr#

M
g

#

MgO>FeOt FeOt>MgO 259.8 261.5

262.5 268.9 272.4 275.7

288.2 282.0

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.78 0.80 0.82 0.84 0.86

Cr#

M
g

#

MgO>FeOt FeOt>MgO 259.8 261.5

262.5 268.9 272.4 275.7

288.2 282.0

FeO(t)>MgO MgO>FeO(t)

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.78 0.80 0.82 0.84 0.86

Cr#

M
g

#

MgO>FeOt FeOt>MgO 259.8 261.5

262.5 268.9 272.4 275.7

288.2 282.0

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.78 0.80 0.82 0.84 0.86

Cr#

M
g

#

MgO>FeOt FeOt>MgO 259.8 261.5

262.5 268.9 272.4 275.7

288.2 282.0

FeO(t)>MgO MgO>FeO(t)

2σ Vos Cr Std 



Chapter 7: Geochemical variation on a 50 cm spaced scale 

227 

To demonstrate the compositional variation present within a sample, as well as 

between samples, the data collected from eight samples is shown on the Mg#-Cr# 

plot (Figure 7.1.9). For each sample the respective number of FeO(t)>MgO and 

MgO>FeO(t) chromite analyses obtained are given in Table 7.1.6.  

 

 

 

 

 

 

 

 

 

 

Table 7.1.6: The depth interval and corresponding number of FeO(t)>MgO and 

MgO>FeO(t) grains for each of the samples presented in Figure 7.1.9. 

 
It is seen in Figure 7.1.9 that two samples, 259.8 and 268.9, form the vertical line 

present between the MgO>FeO(t) and FeO(t)>MgO chromite data clusters. These 

samples demonstrate the possibility for the Cr# of a sample to be nearly 

homogenous. In contrast, sample 282.0 plots horizontally showing that a sample 

can have a near constant Mg# composition. Samples 261.5 and 288.2 plot 

obliquely, aligned parallel with the extension of the two data groups, while samples 

262.5, 272.4 and 275.7 plot in no particular organised fashion. No systematic, 

compositional variation is seen within or between samples (e.g. with depth) 

irrespective of the chromite compositions (FeO(t)>MgO or MgO>FeO(t)). 

Furthermore, results of nine samples from the dataset indicate a mixed 

composition being comprised of both FeO(t)>MgO and MgO>FeO(t) chromites 

(Table 7.1.4).  

 

In light of the findings presented in this chapter the immediate questions are:  

1) Why is the Voskhod chromite composition so homogenous? 

2) What causes the change in iron content? 

3) How is it possible for MgO>FeO(t) and FeO(t)>MgO chromites to co-exist in 

a sample? 

Dataset V05-13

Sample depth (m) MgO>FeO(t) FeO(t)>MgO

259.8 0 3

261.5 0 3

262.5 2 1

268.9 0 3

272.4 1 2

275.7 1 2

282.0 3 0

288.2 2 1

No. of grains
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Chapter 8. Variation on a 1 cm spaced scale, in the major 

and minor element geochemistry of the Voskhod massive 

chromite. 

 

Chapter 7 documented the discovery of two different chromite compositions within a 50 

m intersection of massive chromite from the Voskhod deposit; FeO(t)>MgO chromite, 

where the FeO(t)% content exceeded that of MgO% and MgO>FeO(t) chromite where the 

MgO% content was greater than FeO(t)%. From the results it appeared that a chromite 

sample could be comprised of one chromite group (FeO(t)>MgO or MgO>FeO(t) 

chromite) or a mixture of both i.e. FeO(t)>MgO and MgO>FeO(t) chromite. The Cr2O3% 

and Al2O3% contents were remarkably uniform throughout the intersection.  

 

This chapter presents chromite geochemistry obtained from sections spaced 1 cm  

apart. The aim is to investigate whether small scale cryptic layering can be identified and 

whether this resembles in any way layering in stratiform chromitite deposits such as the 

Bushveld Complex, in South Africa (Naldrett et al., 2009). 

 

Drill hole V05-24 intercepts a mineralised zone 88.40 m thick starting at 284.20 m and 

ending at 372.60 m. Three chromitite samples; F1925, F1964-65 and F1996-97, each 15 

cm long, were selected from this drill hole. The samples were selected from intervals to 

examine the compositional variation in chromite from the upper, middle and base of the 

mineralised zone. 

 

 

Table 8.1.1: The sample numbers, start and end depths of the sample lengths (in 

meters) and chromite mineral content description. 

Sample Start (depth m) End (depth m) Description

F1925 296.05 296.18

massive chromite (8 cm) 

grading into disseminated 

chromite (6 cm) where 

chromite constitutes <20% 

F1964-65 341.45 341.59 massive chromite

F1996-97 359.01 359.15 massive chromite
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The core lengths were cut into 1 cm thick sections, perpendicular to the vertical axis of 

the drill core. Each 1 cm thick section was prepared as a polished thin section and 

analysed for the major elements; Cr, Al, Fe
2+

 (expressed as FeO(t)) and Mg and trace 

elements V
5+

, Ti
4+

, Mn
2+

, Ni
2+

, Zn
2+

, Co
2+

. From each section three chromite grains were 

analysed twice at the grain centre. Grain boundary edges, where post magmatic 

alteration may have occurred were avoided.  

 

Cation concentrations and the partitioning of Fe
2+

 and Fe
3+

 concentrations were 

calculated using 'spincalc' the Barnes and Roeder spinel calculation spreadsheet 

(Barnes & Roeder, 2001, updated 2004). The results are given in Appendix D, Tables 

D3, D4 and D5 for sections F1964-65, F1996-97 and F1925 respectively.  

 

8.1 Data reliability and the data distribution of samples F1964-65, 

F1996-97 and F1925 

In order to establish whether the three samples F1964-65, F1996-97 and F1925 are 

compositionally distinct from one another, as well as examine the extent of 

compositional diversity within each sample, the average compositions annotated with 2σ 

distribution bars are plotted on the FeO%- Fe2O3% and Mg#-Cr# diagrams (Figure 8.1.1 

and Figure 8.1.2). These diagrams were selected because in Chapter 7, where the two 

chromite groups MgO>FeO(t) and FeO(t)>MgO were identified, the discrimination 

between these groups was most effectively observed using these plots.  

 

The compositions of the 5 standards (see Chapter 7, Section 7.1) with error bars of 2σ 

are included in the plots to compare the compositional variation in a grain with that of the 

samples examined in this chapter.   
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8.1.1 The standard error and sample data distribution for FeO % against 

Fe2O3 % diagram 

The average composition for each standard and samples F1964-65, F1996-97, F1925-

massive chromite and F1925-disseminated chromite are shown on the FeO% against 

Fe2O3% diagram (Figure 8.1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1.1: FeO% against Fe2O3% showing the average compositions of the 

standards and samples F1964-65, F1996-97, F1925-massive chromite and F1925-

disseminated chromite.  

For the purpose of this plot F1925 is divided into two as the sample is composed of two mineralogically distinct 

portions; massive chromite and disseminated chromite where olivine is the dominant mineral phase. The error 

bars given for the standards are 2σ and the data distribution of each sample, shown as bars, is the calculated 2σ. 

Details of the natural podiform chromite standards MBD-7-G1, MBD-7-G2, MBD-8 Std and C51 Std (Brough, 

2011) are given in Chapter 7, Section 7.1.1.1. 
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Standards, C51Std, MBD-8 Std and MBD-7-G1 are compositionally more varied than 

standards MBD-7-G2 and Vos-Std (Figure 8.1.1). The 2σ of Fe2O3% is consistently 

greater than that of FeO%. The Voskhod standard (Vos-Std) has the smallest error bars, 

most notably the 2σ of FeO%. This reflects the compositional homogeneity of the grain. 

 

The average compositions of the samples F1964-65, F1996-97, F1925-massive 

chromite and F1925-disseminated chromite, plot separate from one another. There is 

some overlap of the 2σ data distribution between the samples e.g. F1996-97 and F1925-

massive chromite have near identical Fe2O3% compositions and the FeO% 2σ values 

overlap. Similarly the 2σ of the Fe2O3% and FeO% compositions for samples F1964-65 

and F1925-disseminate chromite partially overlap. However, although one sample may 

overlap with another, no two samples plot in exactly the same region. Furthermore, 

some clear distinctions are noted, e.g. F1996-97 is compositionally different from both 

F1964-65 and F1925-disseminated chromite, and F1925-massive chromite differs from 

F1925-disseminated chromite, there being no overlap between these samples. 

 

The 2σ of Fe2O3% for F1996-97 and F1925-massive chromite is comparable with that of 

the Voskhod standard. Samples F1964-65 and F1925-disseminate chromite show 

greater Fe2O3% variation, although when compared with the standards MBD-8 Std, 

C51Std and MBD-7-G1 it is evident that the compositions are fairly well constrained. 

Instead, it is the FeO% contents that most clearly distinguish the samples from one 

another. Whereas the 2σ of FeO% for the standards is typically smaller than the 2σ of 

Fe2O3%, for the Voskhod samples the reverse is seen, with FeO% being consistently the 

more variable component. 

 

Evaluation of the geochemical diversity of the standards and samples demonstrates: 

i) The Voskhod standard is compositionally the most homogeneous standard 

ii) The Fe2O3% variation of the standards is greater than the FeO% variation 

iii) In contrast, the FeO% variation of the Voskhod samples is greater than the Fe2O3% 

variation (the exception being F1925-massive chromite) 

 

As previously documented in Chapter 7 (Section 7.1) the Voskhod standard 

composition, which is the most uniform of all the standards, has been subject to the 

same (or most similar) genetic process history as that of the samples presented in this 

study. When compared with the standards C51Std, MBD-8 Std and MBD-7-G1 the 2σ 
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Fe2O3% variation of the Voskhod samples are similarly diverse. This implies that the 

variation within the samples could either result from instrumental drift or be similar to the 

natural variation present within a single grain. However, when compared with the 

Voskhod standard 2σ values the sample variations are clearly greater, particularly for 

samples F1964-65 and F1925-disseminated chromite. It is proposed that the variation 

seen results from genuine compositional diversity within the sample, but that the 

Voskhod chromite is apparently more homogeneous than other chromite (i.e. the 

standards). 

 

The FeO% and Fe2O3% composition variation seen in the samples (F1964-65, F1996-97 

and F1925-massive chromite and F1925-disseminated chromite) is taken to reflect true 

geochemical variations present within and between the groups showing them to be 

distinct from one another. 

 

8.1.2 The standard error and sample data distribution on the Mg# - Cr# 

diagram 

The average compositions for each standard and samples F1964-65, F1996-97 , F1925-

massive chromite and F1925-disseminated chromite are presented on the Mg#-Cr# 

diagram (Figure 8.1.2). 

 

The Cr# values of the Voskhod samples are well constrained, ranging from 0.794 to 

0.834. The Cr# variation of the Voskhod standard (ranging from 0.814 to 0.828) is only 

slightly less. It is the Mg# variation, which ranges from 0.542 to 0.723, that distinguishes 

the samples from one another, in much the same way as the FeO% composition was the 

principal discriminating variable in Figure 8.1.1 (the author acknowledges that the Mg# 

and FeO% compositions are intrinsically related).  

 

 

 

 

 

 

 



Chapter 8: Geochemical variation on a 1 cm spaced scale 

233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1.2: Mg# against Cr# showing the standard compositions and the average 

data for samples F1964-65, f1996-97, F1925-massive chromite and F1925-

disseminated chromite.  

For the purpose of this plot F1925 is divided into two as the sample is composed of two mineralogically distinct 

portions; massive chromite and disseminated chromite where olivine is the dominant mineral phase. The error 

bars given for the standards are 2σ and the data distribution of each sample, shown as bars, is the calculated 2σ. 

Cr# = [Cr/(Cr+Al+Fe
3+

)] and Mg# = [Mg/(Mg+Fe
2+

)]. 

The Voskhod standard has the smallest error bars. In comparison, the other standards 

have Cr# and Mg# error bar sizes that are similar to the 2σ data distributions of samples 

F1996-97 and F1925-massive chromite. Samples F1964-65 and F1925-disseminated 

chromite are compositionally the most diverse, more so in terms of Mg# than Cr#. 

Sample F1964-65 has the greatest Cr# distribution. 

 

The compositional diversity of the standards and samples shown on the Mg#-Cr# 

diagram, is similar to that seen on the FeO%-Fe2O3% diagram (Figure 8.1.1), reinforcing 

the deductions made in Section 8.1.1.  
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8.1.3 Examination of the trivalent cation geochemistry 

The Fe2O3% and Cr# compositions presented in Sections 8.1.1 and 8.1.2 both 

demonstrate that the trivalent cation, major element oxide geochemistry of the Voskhod 

samples and standard have a restricted range. The 2σ distributions of the Voskhod 

chromite analyses are comparable with that of the error bars (2σ) of the standards.  

 

The composition variation of the major elements, Cr2O3, Al2O3 and Fe2O3, provides 

information required to interpret the environment that the chromites form in. Thus, it is 

important to examine the analyses of these major elements, obtained from the 

standards, to identify the factors that could have caused the variation.   

 

The variation of these major element compositions could result for two possible reasons, 

either i) the instrument used to acquire the analyses or ii) the result of natural 

compositional variation within a grain or sample. In the event that the analytical 

instrument is responsible for the composition variations then a systematic compensation 

of one of the trivalent elements for another might be expected.  

 

The Al2O3%-Cr2O3% and Fe2O3%-Cr2O3% relationships for each standard are shown in 

Figure 8.1.3  the R-squared value is given on each plot as an indication of the strength 

of correlation. 
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Figure 8.1.3: Comparison of the trivalent, major element oxide compositions, Cr2O3, 

Al2O3 and Fe2O3 obtained from the analysis of the standards. 
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Figure 8.1.3 (cont): Comparison of the trivalent, major element oxide compositions, 

Cr2O3, Al2O3 and Fe2O3 obtained from the analysis of the standards. 

A black trendline and the corresponding R-squared value is shown on each plot.  

From the Al2O3%-Cr2O3% and Fe2O3%-Cr2O3%  plots given for each standard (Figure 

8.1.3) no systematic or consistent relationship between the elements is seen. In 

standards Vos Cr-Std, MBD-8 Std and C51Std there is no apparent reciprocal 

relationship between either Al2O3%-Cr2O3% or Fe2O3%-Cr2O3%, this is supported by R-

squared values of less than 0.15. Standards MBD-7-G1 and –G2 are two separate 

grains sourced from the same sample, it is of interest to note that in MBD-7-G1 there is a 

weak negative relationship between Fe2O3%-Cr2O3% (R = 0.34) , while in MBD-7-G2 a 

negative relationship between Al2O3%-Cr2O3% is evident (R=0.58). 

R
2
 = 0.04

29.5

30.0

30.5

31.0

31.5

32.0

32.5

32.0 34.0 36.0 38.0

Cr2O3%

A
l2

O
3
%

R
2
 = 0.34

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

32.0 34.0 36.0 38.0

Cr2O3%

F
e

2
O

3
%

R
2
 = 0.58

30.0

30.5

31.0

31.5

32.0

34.0 35.0 36.0 37.0 38.0

Cr2O3%

A
l2

O
3
%

R
2
 = 0.03

3.0

3.5

4.0

4.5

5.0

34.0 35.0 36.0 37.0 38.0

Cr2O3%

F
e

2
O

3
%

MBD-7-G1

MBD-7-G2

R
2
 = 0.04

29.5

30.0

30.5

31.0

31.5

32.0

32.5

32.0 34.0 36.0 38.0

Cr2O3%

A
l2

O
3
%

R
2
 = 0.34

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

32.0 34.0 36.0 38.0

Cr2O3%

F
e

2
O

3
%

R
2
 = 0.58

30.0

30.5

31.0

31.5

32.0

34.0 35.0 36.0 37.0 38.0

Cr2O3%

A
l2

O
3
%

R
2
 = 0.03

3.0

3.5

4.0

4.5

5.0

34.0 35.0 36.0 37.0 38.0

Cr2O3%

F
e

2
O

3
%

MBD-7-G1

MBD-7-G2



Chapter 8: Geochemical variation on a 1 cm spaced scale 

237 

 

No systematic or consistent chemical variation is seen between the standards. 

Furthermore, the trends identified within standards MBD-7-G1 and –G2 are different 

indicating that when present, systematic geochemical variation is detectable. These 

results indicate that the compositional variation does not result from the analytical 

instrument used to acquire the data. It is most likely that the variation in composition is a 

manifestation of subtle geochemical differences present within the standard grains 

analysed.  

 

From these observations it is proposed that the data distribution range (2σ) seen in the 

Fe2O3% and Cr# values of the Voskhod samples, despite being similar to the 2σ error 

bar values of the standards (MBD-8 Std, C51Std, MBD-7-G1 and –G2), does in fact 

represent a true geochemical variation preserved in the chromite. The homogeneity of 

the Voskhod standard supports that the small variations between and within the 

Voskhod sample groups are real and may provide information about changes to the 

conditions during the chromite formation. These variations should not be dismissed as 

analytical error. 

 

8.2 The geochemical distinction between samples F1964-65, 

F1996-97 and F1925 

Each dataset for samples, F1925, F1964-65 and F1996-97 is geochemically different, as 

demonstrated by the relative positions of the Mg# and Cr# for each sample, shown in 

Figure 8.2.1. Samples F1925 and F1964-65 are seen to have a bi-modal distribution that 

is defined by the Mg#, whereas sample F1996-97 plots in a comparatively well 

constrained cluster. The variation between the samples is principally controlled by the 

Mg# that ranges from 0.56 to 0.72, while the Cr# is well constrained between 0.78 and 

0.83, of which 90% of the data plot between 0.81 and 0.83. The Cr# range of 0.02 that 

encapsulates 90% of the data is comparable with the variation seen in a natural 

standard (refer to Section 8.1.2) and reflects the homogeneity of the trivalent cation 

compositions of the Voskhod samples. The chemical variation within and between the 

datasets is scattered, there is no single trend displayed by any one group, or by all the 

groups when viewed together. 
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Figure 8.2.1: The major element composition of chromitite samples F1964-65, F1996-

97 and F1925 presented on the plot Mg# against Cr# 

 

The data for each sample is displayed using the diagrams; depth vs. major element 

composition, FeO% vs. Fe2O3%, Mg# against Cr# and modal chromite mineral 

proportion in a section against Mg#. 
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8.3 Examination of dataset F1964-65 

The major element data for the three grains analysed in the 14 sections from F1964-65 

is given in Appendix D, Table D3. The average chromite composition for the whole 

sample is given in Figure 8.3.1. The element order, from most to least abundant, is 

Cr2O3 > MgO > FeO > Al2O3 > Fe2O3 (the same order is seen in the V05-13 chromite 

series). FeO(t)% is consistently greater than MgO% throughout the data set. 

 

 

 

 

Table 8.3.1: The average major element and manganese compositions for chromite 

sample F1964-65 

The RSD values show that Cr2O3% is the most constant major element (RSD, 1.05%) 

and iron, as both FeO% and Fe2O3%, is the most variable with RSD values of 5.46% 

and 21.04%, respectively.   

 

8.3.1 Variation with depth 

The major element chromite composition variation with depth for sample F1964-65 is 

shown in Figure 8.3.1.  

 

Following the chromite classification devised from the data presented in Chapter 7, the 

chromites in F1964-65 are FeO(t)>MgO chromites. Within a single section the greatest 

composition range is in Cr2O3%, seen in 46, 47 and 49 (the numbers refer to the depth 

in centimetres from 341 m, indicated by the grey arrows in Figure 8.3.1). The Al2O3% 

contents of the grains analysed in these sections, although more tightly constrained, 

also show a spread in composition that compliments the Cr2O3% variation.  

Sample Al2O3 Cr2O3 Fe2O3  MgO  FeO FeO(t) MnO  

Average (%) 8.25 62.77 2.32 13.13 13.01 15.10 0.30

RSDev 4.86 1.05 21.04 3.69 5.46 3.83 5.91F
1
9
6
4
-6

5
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Figure 8.3.1: Variation of the chromite major element chemistry with depth in sample 

F1964-65.  

Grey arrows indicate the sections with the greatest compositional diversity within the sample. 

The compositional variation between the sections is characterised by pronounced 

differences in MgO% and FeO(t)%. Sections 46 to 49 and 55 to 59 have higher FeO(t)% 

contents and lower MgO%, whereas in sections 50 to 54 the difference between MgO% 

and FeO(t)% is notably less.  

 

Further investigation of the FeO(t)% and MgO% relationship is made by assessing the  

FeO% and MgO% compositions.  
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Figure 8.3.2: The variation of FeO and MgO with depth in sample F1964-65 

The 2σ error bar value for both FeO and MgO is 0.63. 

The variation between FeO% and MgO% with depth (Figure 8.3.2) shows that sections 

46-49 and 55-59, where the difference between FeO(t)% and MgO% was greatest, have 

FeO% contents greater than MgO%. In contrast, sections 50-54 have MgO% contents 

greater than FeO%. The switch in composition is very clear and takes place over a 

distance of less than 1 cm. Furthermore, it is noted that none of the sections contain 

grains of mixed compositions; that is to say when FeO% is greater than MgO%, it is so 

for every grain analysed in a section and visa versa.   

 

For sections 50-54, the FeO(t)>MgO classification is evidently governed by the Fe2O3% 

content, indicating that these grains either crystallised from or last equilibrated with a 

melt under conditions that were comparatively more oxidising than those that sections 

46-49 and 55-59 were subject to. Given the close spaced proximity of the sections and 

the fact that no structural discontinuity is visible in the sample, it is suggested that the 
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geochemical signatures preserved are either remnant of the parent melt from which the 

grains crystallised or are a localised (centimetre-scale) post-crystallisation subsolidus 

artefact. 

 

On the basis of the chromite group classification developed in Chapter 7, all 14 of the 

F1964-65 chromitite sections are FeO(t)>MgO chromites. The only way that these 

chromites can be part of the same group in terms of FeO(t)%, yet in different groups 

when FeO% is examined, is if the partitioning of the iron oxidation state is altered by 

varying ƒO2.  

 

The variation with depth seen in the FeO%-MgO% plot (Figure 8.3.2) is used to form 

sub-groups within sample F1964-65. Sections 46 to 49 and 55 to 59 form a MgO>FeO 

group and 50 to 54 form an FeO>MgO group.  

 

8.3.2 FeO% vs. Fe2O3% 

The chromite grain compositions from the F1964-65 sections are plotted on the FeO% - 

Fe2O3% diagram, Figure 8.3.3.  
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Figure 8.3.3: FeO% against Fe2O3% showing the F1964-65 chromite compositions. 

(a) The three chromite grains analysed from each F1964-65 section are plotted and colour coded. The numbers 

given correspond with depth from 341.0 m. Triangles represent sections from the depth interval 46-49, circles 50-

54 and squares 55-59. Oblique lines connect the grain compositions for sections 50-54 as well as sections 48 

and 59. (b) the three groups are plotted; 46-49 - triangles, 50-54 - circles and 55-59 – squares. Grey cross-lines 

represent the 2σ range of the Vos_Cr Std single grain composition. 

The three chromite groups identified cluster in two regions on the FeO% - Fe2O3% 

diagram, the positions of which are principally controlled by the FeO% content. In 

contrast, the Fe2O3% compositions of each group are similar. 

 

The 50-54 chromites are displaced to lower FeO% values that align to form a negatively 

correlated trend (where R=0.84) characterised by increasing FeO%, from 11.47% to 

13.20%, at the expense of Fe2O3% which depreciates from 3.17% to 1.46%. This trend 

is formed collectively by the group, as well as being apparent from the chromite 

compositions of each section, indicated by the oblique lines that connect the grains 

(Figure 8.3.3 a).  
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The chromites comprising Groups 46-49 and 55-59, which are separated by 5 cm 

(positioned immediately above and below the down-hole position of Group 50-54), have 

higher FeO% values, yet similar Fe2O3%. This indicates that the oxidising conditions for 

the genesis of all three intervals of massive chromite were similar and that the 

compositional control is the result of a greater (Groups 46-49 and 55-59) or lesser 

(Group 50-54) availability of Fe
2+

 in the melt. Unlike the Group 50-54, the chromites in 

Groups 46-49 and 55-59 do not have aligning compositions, but plot scattered.  

 

A pronounced overlap in the Fe2O3% compositions is seen with Group 46-49 chromites 

plotting at marginally higher Fe2O3% values (1.97%-3.00%) than Group 55-59 chromites 

(1.30%-2.69%). In contrast, the Fe2O3% compositions of Group 50-55 chromites extend 

the range covered by these groups combined (1.46%-3.17%). It is noted that the 

Fe2O3% composition range of each group is only slightly greater than the 2σ range of 

Fe2O3% calculated for the Voskhod standard (annotated by the grey cross-lines Figure 

8.3.3 b) which is 1.08%. 

 

A comparison of the F1964-65 chromites is made with the V05-13 dataset (Figure 8.3.4). 

It is seen that Groups 46-49 and 55-59 plot in the same region as the V05-13 FeO>MgO  

chromites (black and dark red triangles), while Group 50-54 plot in the same space as 

the V05-13 FeO(t)>MgO chromites (open red triangles). The negatively correlated V05-

13 MgO>FeO(t) chromites (yellow filled triangles and solid black line) are aligned near 

parallel to the negative correlation of the Group 50-55 chromites from sample F1964-65 

(red circles and grey broken line). From this it might be suggested that the genesis 

mechanisms resulting in the formation of the V05-13 MgO>FeO(t) chromites were similar 

to those that formed the Group 50-55 chromites, although the melt chemistry 

composition, specifically the iron availability, would have been different. 

 

 

 

 

 

 



Chapter 8: Geochemical variation on a 1 cm spaced scale 

245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.4: FeO% against Fe2O3% a comparison of the V05-13 massive chromites 

with the three chromite groups identified in sample F1964-65. 

The solid black line is the trendline of the V05-13 MgO>FeO(t) chromites, yellow triangles. The grey broken line is 

the trendline for the F1964-65, Group 50-55 chromites. The R values are given respectively beside each 

trendline.   

Two questions are apparent:  

What controls the changes in the total iron content? 

What controls the inter-group ƒO2 variation which is most pronounced in Group 50-55? 
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8.3.3 Chromite mineral proportions vs. chromite Mg# 

The F1964-65 sections are composed of massive chromite, however, chromite is not the 

only mineral phase as small quantities of serpentinised olivine co-exist interstitially. 

Olivine coevally crystallising from a melt with chromite, will incorporate Mg reducing the 

availability of Mg for chromite. Thus, a greater the proportion of olivine co-existing with 

chromite will the lower the Mg# of chromite (see sample F1925 in Sections 8.4 and 8.5 

of this Chapter).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.5: The chromite content in a section against the chromite Mg# values for 

each section of sample F1964-65. 

The relationship between the percentage of chromite in a section and the Mg# does not 

strictly conform with the hypothesis, as is evident from Figure 8.3.5. The general trend is 

for the chromite content to increase as the Mg# of the chromite increases. However, 

there are anomalous points, and no single trend satisfies the data.  
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As these results demonstrate, it is not possible to explain the MgO%-FeO% contents of 

the chromites from the relative proportions of chromite and olivine that (presently) 

comprise the sections. That is to say, although contemporaneous crystallisation of 

olivine and chromite from a melt could account for the variation in Mg# seen, a 

subsequent, post crystallisation process resulting in the separation or the redistribution 

of the two mineral phases under subsolidus conditions, is required to explain the present 

mineral proportions seen. If such a process took place then it would explain how the 

chromite has inherited a composition characteristic of the co-crystallisation of chromite 

and olivine from a melt, while the mineral proportions seen are indicative of chromite 

crystallisation alone.  

 

8.3.4 Mg# vs. Cr#  

F1964-65 is comprised of three distinguishable chromite groups that differ in terms of 

trivalent and divalent cation ratios. The Mg#-Cr# diagram shows the relationship 

between the divalent (Mg#) and trivalent (Cr#) cation ratios for each sample and each 

chromite group (Figure 8.3.6). The compositional changes are persistent over 

incremental, centimetre scale, depth intervals that may be interpreted as chromite layers 

present within the podiform ore body. Changes to the processes responsible for 

chromite crystallisation affect the chromite chemistry and the chromite layers record 

these changes. 

 

The most obvious variation is that with depth (i.e. the inter-group variation) and the 

changes in Mg# which are more prominent than those of Cr#. Such changes may result 

from sub-solidus re-equilibration between olivine and chromite. Alternatively the changes 

could be caused by fluctuations in the relative proportions of chromite and olivine 

crystallising contemporaneously from a melt.  The latter introduces a complication when 

applied to this scenario where massive chromite is being examined as a post-

crystallisation process that separates the two mineral phases, is required to explain the 

formation of massive chromite e.g. densification of the chromite (see Chapter 3, Section 

3.6.1). Such a process would need to take place under tectonically stable conditions, 

such that the fine-scale layering and structural continuity identified could be preserved. 

 

In the literature, regarding work on stratiform intrusions, there is comparatively little 

information presented on the variation in total iron, which is the main inter-group 
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variation in this core-section.  However, Hulbert and Von Gruenewaldt (1985) noted that 

variation in total iron (as Cr/Fe
2+

+Fe
3+

) is linked to a variation in the ƒO2 (see also Hill 

and Roeder, 1974). This is comparatively difficult to achieve within the constraints of a 

stratiform magma chamber in the crust, but is more easily achieved in a SSZ ophiolitic 

setting where the water content is high and the confining pressure changes as magma 

ascends through the mantle. 

 

The Mg#-Cr# diagrams presented illustrate the geochemical variation in chromite of 

sample F1964-65 (Figure 8.3.6). From the evidence that fine, centimetre scale 

compositional changes are present within the F1964-65 chromitite sample, parallels can 

be drawn with the fine scale layering documented in stratiform chromitites e.g. the 

Bushveld Complex, S.A (e.g. Jackson, 1969; Cameron, 1975,1977; Hamlyn & Keays, 

1979; Naldrett et al., 2009) these aide the interpretation of the genesis history of the 

chromitite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.6: Mg# against Cr# 

(a) the individual chromite grain analyses obtained from each section are presented on the Mg#-Cr# diagram. (b) 

The three groups identified in sample F1964-65 are shown.  
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The Mg#-Cr# diagram supports the interpretation of there being three groups (Figure 

8.3.6b). The Cr# data spread of Group 46-49 is greater than that of Group 55-59, yet 

both have similar Cr# and Mg#. Group 50-54, on the other hand, has higher Mg# that 

spreads over a greater range, yet a Cr# range that is the same as that covered by 

Groups 46-49 and 55-59 combined. Distinction between the groups is based principally 

on the change in Mg#, no Mg#-Cr# varying trends are visible within any of the groups or 

formed by all the groups when viewed together. 

 

In terms of the individual chromite grain compositions (Figure 8.3.6a) no systematic 

variation in composition with depth down hole is seen. It may be suggested that the 

Group 50-54 chromites plot to form near vertical lines indicative of changes to Mg# at 

constant Cr#, this would seem reasonable in light of the alignment of this group on the 

FeO%-Fe2O3% diagram (Figure 8.3.3). The individual grain compositions from each 

section plot scattered and it is only when viewed as groups determined by depth and 

FeO%-MgO% composition that clusters are apparent. 

 

When compared with the V05-13 dataset the Groups 46-49 and 55-59 plot in the same 

space as the FeO>MgO chromites (black-red triangles, Figure 8.3.7), Group 50-55 

chromites plot in the vicinity of the FeO(t)>MgO chromites (red-white triangles, Figure 

8.3.7). Groups 50-54 and 55-59 form weak negative trends. In Group 55-59 this trend 

extends over a Cr# range of 0.01, given that the group is comprised of 12 analyses the 

degree of confidence is not considered sufficient to validate the trend. Group 50-54 

extends over a greater Cr# range of 0.03 that, as similarly observed in the FeO%-

Fe2O3% diagram, aligns parallel with the V05-13 MgO>FeO(t) chromites. This negative 

trend (R=0.40) is analogous with the Trend A identified by Naldrett et al. (2009). 
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Figure 8.3.7: Mg# against Cr# a comparison of the V05-13 massive chromites with 

dataset F1964-65, Groups 46-49, 50-54 and 55-59 

The trendline for the V05-13 MgO>FeO(t) chromites (yellow triangles) is shown as a broken black line. 

The spatial association of the groups is the same as that observed in the FeO%-Fe2O3% 

diagram and reiterates the minimal effect had by the Al2O3 and Cr2O3 contents on the 

characterisation of the groups identified. The constrained Cr# range (0.78-0.83), with 

75% of the data plotting between Cr# 0.80 and 0.82, is only slightly greater than that of 

the Voskhod standard and is comparable with, and in some instances more uniform 

than, the 2σ error bars of the chromite standards analysed (i.e. MBD-7-G1 and –G2) . 
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This further exemplifies the homogeneous nature of the Al2O3 and Cr2O3 compositions in 

the F1964-65 chromites, across all groups. 

 

8.4 Examination of dataset F1996-97 

Sample F1996-97 is located at 359.01 m, 17.5 m down hole from sample F1964-65. In 

comparison with sample F1964-65, the average composition of these chromites is higher 

in Cr2O3, Fe2O3 and MgO, and lower in Al2O3, FeO and MnO (Table 8.4.1). Here the 

MgO content is greater than FeO(t). In relation to the chromite groups presented in 

Chapter 7, the F1996-97 chromites are classified as MgO>FeO(t) chromite (Figure 8.4.1).  

 

 

 

 

 

 

 

Table 8.4.1  Comparison of the average compositions for the chromite datasets 

F19964-65 and F1996-97. 

The ordered element abundance of the F1996-97 chromite is Cr2O3> MgO>> FeO> 

Al2O3> Fe2O3. This is the same order as the majority of the V05-13 chromites (the 

MgO>FeO(t) chromites) and the F1964-65, Group 50-59 chromites. As seen in the other 

datasets, Cr2O3 is the most constant major element in sample F1996-97 having an RSD 

of 0.52% and Fe2O3 is the most variable having a RSD of 10.01%.  

 

 

 

 

Sample Al2O3 Cr2O3 Fe2O3  MgO  FeO FeO(t) MnO  

Average (%) 7.66 63.59 2.75 14.52 10.88 13.35 0.24

RSDev 2.18 0.52 10.01 1.36 3.19 2.27 6.19

Average (%) 8.25 62.77 2.32 13.13 13.01 15.10 0.30

RSDev 4.86 1.05 21.04 3.69 5.46 3.83 5.91
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8.4.1 Variation with depth  

The major element chemistry variation with depth in core-section F1996-97 is shown in 

Figure 8.4.1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4.1: Variation of the chromite major element chemistry with depth down hole 

in sample F1996-97.  

The composition of the 15 sections that comprise sample F1996-97 is remarkably 

homogenous, both the variation within a sample and between samples. MgO% is 

consistently greater than FeO(t)%, although it is seen that towards the base of the 

intersection, from 359.10 to 359.12 (inclusive), the difference between these 

compositions is less (the FeO% and MgO% data points appear to merge).  
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Table 8.4.2: Comparison of the F1996-97 dataset composition with the Voskhod 

standard chromite. 

To evaluate the homogeneity of the chromite compositions in sample F1996-97 the 

relative standard deviation values for the average composition of the dataset are 

compared with those of the Voskhod standard chromite grain (Table 8.4.2). A striking 

similarity between the values is seen, in particular the value for Fe2O3% which is less 

than that obtained from the Voskhod standard. The comparably low standard deviations 

of the two datasets imply that the chromite compositions of all the sections that comprise 

sample F1996-97 is nearly as well constrained as the composition obtained from a 

single grain. Furthermore, it is reiterated that the Voskhod standard analyses were 

considerably more uniform than those obtained from any other standard analysed (see 

Chapter 7, Section 7.1.1), this further confirms the exceptional homogeneity of sample 

F1996-97. 

 

The subtle, yet evident shift in MgO% and FeO(t)% compositions (Figure 8.4.1) is 

examined further in the plot depth against MgO% and FeO% (Figure 8.4.2).  

 

 

 

 

 

 

 

 

 

 

 Sample Al2O3 Cr2O3 Fe2O3  MgO  FeO FeO(t) MnO  

Average (%) 7.66 63.59 2.75 14.52 10.88 13.35 0.24

RSDev 2.18 0.52 10.01 1.36 3.19 2.27 6.19

Average (%) 7.73 63.97 2.51 14.76 10.53 12.79 0.24

RSDev 1.51 0.27 10.73 1.06 1.50 0.74 5.24
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Figure 8.4.2: Variation of FeO and MgO contents in F1996-97 

The 2σ error bar value for both FeO and MgO is 0.63. 

The comparison of the calculated FeO% composition with MgO% demonstrates that 

from the depth interval 359.01 to 359.08 the composition is most uniform, after which 

there is greater variability (depth interval 359.09 to 359.15) (Figure 8.4.2). However, the 

increased variation fluctuates within a very small compositional range of 1% for both 

MgO% (14.1-14.8%) and FeO% (10.5-11.5%). 

 

The homogeneous composition of the F1996-97 chromites propagates through into the 

plots FeO%-Fe2O3% (Figure 8.4.3 and Figure 8.4.4) and Mg#-Cr# ( Figure 8.4.5 and 

Figure 8.4.6) that have been used previously (Chapter 7 and this chapter, Section 8.2)  

to identify differences in chromite geochemistry. 
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8.4.2 FeO%- Fe2O3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4.3: FeO% against Fe2O3% showing the composition of sample F1996-97. 

The FeO% and Fe2O3% compositions of the chromite grains from each section of 

sample F1996-97 studied are plotted in Figure 8.4.3. Whereas previously trends and/or 

groups have been identified using the FeO%-Fe2O3% plot, in sample F1996-97 the data 

forms one group that has an FeO% range 10.14-11.54% and Fe2O3% range 2.23-

3.28%. The analyses scatter randomly, no outliers are noted and no systematic trends 

are seen within the individual sections. 
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Figure 8.4.4: FeO% against Fe2O3% diagram a comparison of the V05-13 massive 

chromites with the composition of sample F1996-97. 

When compared with the V05-13 MgO>FeO(t) chromites (yellow triangles, Figure 8.4.4), 

the F1996-97 chromites plot at intermediate FeO% and have slightly higher than 

average Fe2O3% compositions for the same FeO compositions, being displaced to the 

right of the main V05-13 MgO>FeO(t) chromite group.  

 

8.4.3 Mg#-Cr# 

When the F1996-97 data is plotted on the Mg#-Cr# diagram the uniform composition of 

the sample is once again confirmed (Figure 8.4.5). The data plots scattered within a 

confined Mg# range of 0.687-0.724 and a Cr# range of 0.81-0.826, the greatest variation 

being in the divalent cation compositions.  
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Figure 8.4.5: Mg# against Cr# diagram for sample F1996-97 

 

No groups are established between samples and no relationships or patterns are 

evident within individual sections. When the entire dataset is viewed collectively, there 

may be some inclination to propose a weak negative trend (R=0.23, Figure 8.4.6). 

However, the Cr# range (0.013) is very small and is comparable with the Cr# range 

recorded from the Voskhod standard. 
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When plotted with the V05-13 chromite dataset on the Mg#-Cr# diagram (Figure 8.4.6), 

the F1996-97 chromites (blue diamonds) lie close to the centre of the MgO>FeO(t) 

chromite field, the group is displaced to slightly lower Cr# values than those that typify 

the V05-13 MgO>FeO(t) chromites (yellow triangles, Figure 8.4.6). The negatively 

correlated trendline shown for the F1996-97 chromites (solid black line, Figure 8.4.6), 

although weak (R-squared = 0.23), aligns almost parallel with the trendline of the V05-

13, MgO>FeO(t) chromites (broken black line, Figure 8.4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

Figure 8.4.6: Mg# against Cr# diagram a comparison of the V05-13 massive chromites 

with the composition of sample F1996-97. 
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8.5 Massive chromitite grading into a silicate-rich horizon         

The compositional variation of massive chromite has been examined on a centimetre 

scale from the study of samples F1964-65 and F1996-97. Sample F1925 is located at 

296.05 m down drill core V05-24, stratigraphically higher (in terms of the present day 

position) than samples F1964-65 and F1996-97.  

 

 

Figure 8.5.1: Schematic of sample F1925 illustrating the change in style of chromite 

mineralisation across the drill core intersection. 

 

The sample was collected from the base of a 25 cm thick lens of massive chromite. It is 

a transitional chromite ore sample comprised, at the top, of massive chromite that 

grades into disseminated chromite becoming progressively chromite-poor (from 40% - 

2% chromite content) over a 6 cm interval, (Figure 8.5.1).  

 

 

 

 

 

 

Massive chromite

Disseminated chromite

40%-20% 5%-2%
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Table 8.5.1: Chromite and olivine mineral proportions and corresponding down hole 

depth intervals of sample F1925. 

Table 8.5.1 provides the chromite-olivine proportions with depth for sample F1925.  The 

14 sections, spaced 1 cm apart, were analysed to assess the chromite composition 

variation, traversing from massive chromite to disseminated chromite. Extensive 

serpentinisation of the olivine meant that it was not possible to obtain olivine analyses. 

 

8.6 Examination of dataset F1925 

The 14 sections from sample F1925 can be divided into two groups based on the modal 

proportions of chromite and olivine. Group 1 consists of massive chromite (296.05 m to 

296.12 m) and Group 2, disseminated chromite, where chromite constitutes less than 

40% of the section (296.13 m to 296.18 m). The change in the chromite geochemistry 

affects both the divalent and trivalent cation species and corresponds with the changing 

modal proportions of chromite and olivine. This implies that the composition variation is 

not simply a result of re-equilibration between olivine and chromite that would affect only 

the divalent species. It is inferred that the process responsible for the crystallisation of a 

Depth from 

296 m in cm
Chromite % Olivine %

5 80 20

6 88 12

7 87 13

8 93 7

9 95 5

10 95 5

11 90 10

12 82 18

13 40 60

14 30 70

15 24 76

16 5 95

17 2 98

18 3 97

Sample: F1925
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silicate phase affects the melt composition from which chromite is contemporaneously 

crystallising. 

 

The study of sample F1925 aims to identify the geochemical changes in chromite that 

take place as a result of increasing the silicate modal proportion. Three genesis 

scenarios are to be considered when examining co-existing chromite and silicate 

phases:  

 

1) The olivine present in the disseminated chromite intervals originates from residual 

mantle, through which a chromite bearing melt has percolated and crystallised chromite 

interstitially, at some localities more extensively forming massive chromite.  

 

2) The olivine may be a contemporaneous mineral phase that has crystallised from the 

melt with chromite when conditions have permitted two mineral phases to crystallise.  

 

3) The infiltrating melt interacts with and absorbs the mantle olivine through which it is 

percolating, this could cause the melt to enter the chromite stability field, resulting in the 

crystallisation of chromite (with or without olivine).  

 

Examination of the chromite composition variation with increasing silicate proportion will 

assist with explaining; i) changes in conditions that took place during chromite 

crystallisation; ii) the process required for the crystallisation of a contemporaneous 

silicate phase and iii) what controls the chromite and olivine mineral proportions. 
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Table 8.6.1: The average composition of the F1925 chromite compared with samples 

F1964-65 and F1996-97. 

Comparing the average chromite compositions for samples F1964-65 and F1996-97 with 

the average composition of sample F1925 shows that it is geochemically most similar to 

F1964-65 in terms of the divalent cation proportions (Fe
2+

, Mg and Mn), yet is distinct 

from both in terms of the trivalent cations, having the lowest Al2O3%, intermediate 

Cr2O3% and highest Fe2O3% values (Figure 8.6.1). 

 

However, the F1925 average chromite composition combines both the massive chromite 

and disseminated chromite compositions, this obscures the average. When the 

composition of the massive chromite portion alone, is compared with the other samples, 

it is evident that it is compositionally intermediate between samples F1964-65 and 

F1996-97 (Table 8.6.2). 

 

 

 

 

 

 

 

 

 

 

Sample Al2O3 Cr2O3 Fe2O3  MgO  FeO FeO(t) MnO  

Average (%) 7.26 63.02 3.02 13.08 12.93 15.65 0.28

RSDev 3.05 1.39 17.20 7.78 11.53 11.84 11.89

Average (%) 7.66 63.59 2.75 14.52 10.88 13.35 0.24

RSDev 2.18 0.52 10.01 1.36 3.19 2.27 6.19

Average (%) 8.25 62.77 2.32 13.13 13.01 15.10 0.30

RSDev 4.86 1.05 21.04 3.69 5.46 3.83 5.91F
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Table 8.6.2: The average composition of the F1925 massive chromite and 

disseminated chromite portions compared with samples F1964-65 and F1996-97. 

In contrast, the chromite in the disseminated portion of F1925 has a composition that, 

compared with the massive chromite portion of the sample, is higher in FeO%, MnO% 

and Fe2O3% and lower in Cr2O3% and Al2O3% (Table 8.6.2).  

 

When compared with the chromite groups determined in Chapter 7, the F1925 massive 

chromite portion is categorised as FeO(t)>MgO chromite. The Cr2O3% content is the 

most constant major element having an RSD of 0.61% and Fe2O3% is the most variable, 

having a RSD of 13.08%. This observation is consistent with that seen in the other 

massive chromite samples V05-13, F1964-65 and F1996-97. 

 

 

 

 

 

 

Sample Al2O3 Cr2O3 Fe2O3  MgO  FeO FeO(t) MnO  

Average (%) 7.38 63.64 2.73 13.88 11.77 14.23 0.26

RSDev 2.38 0.61 13.08 1.39 2.30 1.48 7.82

Average (%) 7.11 62.21 3.42 12.03 14.47 17.55 0.30

RSDev 2.49 1.04 12.64 5.12 6.38 7.03 5.12

Average (%) 7.66 63.59 2.75 14.52 10.88 13.35 0.24

RSDev 2.18 0.52 10.01 1.36 3.19 2.27 6.19

Average (%) 8.25 62.77 2.32 13.13 13.01 15.10 0.30

RSDev 4.86 1.05 21.04 3.69 5.46 3.83 5.91
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8.6.1 Variation with depth 

The major element chemistry for F1925 chromite is shown with depth and corresponding 

chromite content in Figure 8.6.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6.1: Variation of the chromite major element chemistry with depth down hole 

in sample F1925. 

Throughout the massive chromite portion, from 296.05 m to 296.11 m (inclusive), the 

MgO% and FeO(t) % values are similar.  At 296.12 m FeO(t) % starts to increase and 

continues to do so systematically with depth to 296.18 m. This relationship is examined 

further looking the MgO% and FeO% contents (Figure 8.6.2). 
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Figure 8.6.2: The variation of MgO and FeO with depth in sample F1925 

The chromites comprising the massive chromite, from 296.05 m to 296.12 m, have 

higher MgO% than FeO% compositions (Figure 8.6.2). In contrast, chromites from the 

disseminated chromite portion (296.13 m to 296.18 m), where the chromite modal 

proportion is less than 40%, have FeO-rich compositions. MgO% depreciation starts at 

296.12 m, this trend corresponds with the increasing modal proportion of silicate. It is at 

the centimetre interval between 296.12 m and 296.14 m that FeO% first exceeds 

MgO%, it is also at this point where the modal proportion of chromite decreases 

substantially, from 82% to 40% and olivine becomes the abundant mineral phase.  

 

Also evident from the major element geochemistry (Figure 8.6.1) is a subtle relationship 

between Cr2O3% and MgO%. In the massive chromite Cr2O3% and MgO% vary in 

opposition, this relationship changes at 296.11 m, and continues to 296.18 m, with Cr2O3 

and MgO varying in unison, decreasing together (Figure 8.6.3). 
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Figure 8.6.3: The variation of Cr2O3 and MgO with depth in sample F1925. 

The red line drawn at 296.11 m indicates where the Cr2O3-MgO relationship changes. 

Furthermore, Cr2O3 is seen to vary antithetically with Fe2O3 (Figure 8.6.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6.4: The variation of Cr2O3, Al2O3 and Fe2O3 with depth in sample F1925 
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The relationships between Cr2O3, Al2O3 and Fe2O3, presented in Figure 8.6.4, show that 

the antithetic relationship between Cr2O3 and Fe2O3 is evident in both the massive and 

disseminated chromite compositions of F1925, consistent with the substitution of Fe
3+

 for 

Cr. In contrast, a sympathetic relationship between Al2O3 and Fe2O3, that is seen in the 

massive chromites, is not apparent in the disseminated chromites. The relationships 

produced by variations in the chromite major element geochemistry indicate that the 

conditions in the melt, from which chromite was being crystallised, changed. 

 

8.6.2 FeO%-Fe2O3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6.5: FeO% against Fe2O3%   

(a) The chromite analyses for each section of sample F1925 are plotted individually. Circles correspond with 

massive chromite and squares with disseminated chromite. (b) The sections are plotted by rock types ‘chromitite’ 

– massive chromite, green circles and ‘chromite & silicate’ - disseminated chromite, purple squares. 
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It has been established that the chromite composition of the massive chromite sections 

classifies them as FeO(t)>MgO chromites (Table 8.6.2), however, the MgO% content is 

greater than the FeO% content. In contrast, the silicate-rich, disseminated chromite 

sections (≥60% silicate), which are also classified as FeO(t)>MgO chromites have FeO% 

contents greater than MgO%. 

 

The FeO-Fe2O3 plot shows that the high FeO(t)% composition of the disseminated 

chromites results from an increase in both the FeO% and Fe2O3% contents. These 

increase together forming a positive trend (purple squares, Figure 8.6.5b).  

 

The high FeO(t)% contents of the massive chromite sections are the result of high 

Fe2O3% contents. The data for these sections form a negative trend, as FeO% 

increases, Fe2O3% decreases (green circles, Figure 8.6.5b). When the chromite 

compositions from each section analysed are plotted independently there is an 

indication that the negative trend is evident within some of the sections e.g., 296.09 and 

296.10 (blue and purple circles, Figure 8.6.5a) however, not every section produces this 

trend e.g., 296.06 (orange circles, Figure 8.6.5, Figure 8.6.5a). 

 

The F1925 and V05-13 chromite data is compared on the FeO%-Fe2O3% diagram, 

(Figure 8.6.6). The FeO(t)>MgO chromite compositions of the F1925 massive chromite 

sections (green circles, Figure 8.6.6) plot to high Fe2O3% values in the region of overlap 

between the V05-13 MgO>FeO(t) and FeO(t)>MgO chromites (solid yellow and solid red 

triangles, respectively). The Fe2O3-rich compositions imply that the chromite crystallised 

(or last equilibrated) with a melt under oxidising conditions. The compositions align 

parallel with the V05-13 MgO>FeO(t) chromite trend. This may indicate that the two 

chromite groups formed by a similar process, but that the conditions were comparatively 

more iron-rich and oxidising when the F1925 massive chromite formed. 
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Figure 8.6.6: FeO% against Fe2O3% comparison of the V05-13 massive chromite 

dataset with sample F1925. 

The massive chromite green circles, disseminated chromite, purple squares. The V05-13 MgO>FeO(t) chromites, 

yellow triangles with trendline given as a solid black line, the V05-13 FeO(t)>MgO chromites, red triangles and the 

V05-13 FeO>MgO chromites dark red/black triangles.  

The disseminated chromite data (purple squares, Figure 8.6.6) form a positive trend 

characterised by increasing FeO% and Fe2O3% (R-squared value, 0.53). The FeO% and 

Fe2O3% values are higher than those seen for any of the other chromite analyses that 

have been obtained from massive chromite samples. The disseminated chromites plot in 

the same region, and beyond to higher FeO% and Fe2O3% values, as the V05-13 

FeO>MgO chromites (black outline, dark red triangles). One data point plots in the 

FeO(t)>MgO chromite region (solid red triangles). It is suggested that the progressive 

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5

Fe2O3 %

F
e

O
 %

MgO>FeO FeO>MgO FeO>>MgO

chromitite silicate (>60%)

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5

Fe2O3 %

F
e

O
 %

MgO>FeO FeO>MgO FeO>>MgO

chromitite silicate (>60%)

FeO(t)>MgO FeO>MgOMgO>FeO(t)

F1925 sections:

V05-13:

chromite & silicate

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5

Fe2O3 %

F
e

O
 %

MgO>FeO FeO>MgO FeO>>MgO

chromitite silicate (>60%)

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5

Fe2O3 %

F
e

O
 %

MgO>FeO FeO>MgO FeO>>MgO

chromitite silicate (>60%)

FeO(t)>MgO FeO>MgOMgO>FeO(t)

F1925 sections:

V05-13:

chromite & silicate

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5

Fe2O3 %

F
e

O
 %

MgO>FeO FeO>MgO FeO>>MgO

chromitite silicate (>60%)

FeO(t)>MgO FeO>MgOMgO>FeO(t)

F1925 sections:

V05-13:

chromite & silicate

R=0.53 

R=0.58 

2σ Vos Cr Std 



Chapter 8: Geochemical variation on a 1 cm spaced scale 

270 

 

trend that correlates with the increasing abundance of olivine in the disseminated 

chromite sections, is the hallmark of a genesis process involving the co-existence of 

both chromite and olivine. However, although these results demonstrate that the 

introduction and subsequent increase of silicate co-existing with chromite increases the 

FeO% and Fe2O3% compositions of the chromite, it is not possible to determine with 

certainty the relative timings of crystallisation of the two mineral phases (chromite and 

olivine).  

 

8.6.3 Mg#-Cr# 

The Mg#-Cr# plot for sample F1925 (Figure 8.6.7), further supports the identification of 

the two chromite trends (Figure 8.6.4). Two well formed, differently orientated 

relationships can be seen, a negative trend that is formed by the massive chromites and 

a positive trend formed by the disseminated chromites. The trends form across a very 

small Cr# range, of approximately 0.02 Cr# for both groups and is only slighter greater 

than the 2σ error bar range for the Cr# of the Voskhod standard. None-the-less, the 

variation is genuine and is explained by changes in the abundance of Fe2O3 

(demonstrated in Section 8.6.1, Figure 8.6.4).  
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Figure 8.6.7: Mg# versus Cr# 

The black dashed line represents the orientation of Trend A and the grey solid line Trend B, after Naldrett et al., 

2009. The fine black dotted line is the line of best fit through the F1925 disseminated chromite, the black solid 

line is the line of best fit through F1925 massive chromite. 

The Mg#-Cr# relationship formed by the massive chromites has an orientation similar to 

that of Trend A described by Naldrett et al. (2009) (refer to Chapter 3, Section 3.5.4). It is 

consistent with the earlier observation that Cr and Mg vary antithetically (Section 8.6.1, 

Figure 8.6.3). Between points 12 and 13, where the silicate content increases rapidly 

from 18% to 60% over a 1 cm interval, Trend A terminates. The relationship formed by 

the disseminated chromites is analogous with Trend B (Naldrett et al., 2009; refer to 

Chapter 3, Section 3.5.4) where Cr and Mg vary together (Section 8.6.1, Figure 8.6.3).  
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Figure 8.6.8: Mg# against Cr#; comparison of chromite composition datasets V05-13 

and F1925. 

When compared with the V05-13 chromite dataset, the massive chromites plot 

predominantly in the same space as the MgO>FeO(t) chromites (yellow triangles, Figure 

8.6.8) although some data points fall in the region of overlap between the MgO>FeO(t) 

and FeO(t)>MgO chromite groups (yellow and red-white triangles, Figure 8.6.8). The 

disseminated chromites plot in the same region as the V05-13 FeO>MgO chromites 

(dark red-black triangles) as well as to lower Mg# values. The Cr# of both the massive 

and disseminated chromites plot in the same range as the majority (~90%) of the V05-13 

dataset, and the Cr# range of the disseminated chromites is more tightly constrained 

than that of the massive chromites.  
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8.7 Summary 

 

Sample F1964-65 (massive chromite) 

Fine, centimetre-scale geochemical layering is identified within sample F1964-65. Three 

groups are identified on the basis of geochemistry and depth. Groups 46-49 and 55-59 

are comprised of MgO>FeO(t) chromite and are each 4cm thick and Group 50-55 is 

comprised FeO(t)>MgO chromite and is 5 cm thick. The switch in composition occurs 

with depth, such that the FeO(t)>MgO chromites (Group 50-55) is sandwiched between 

the two MgO>FeO(t) chromite groups (Groups 46-49 and 55-59, respectively). 

 

In Group 50-55 (MgO>FeO(t) chromites) as the Fe2O3% increases the FeO% decreases, 

the trend aligns sub-parallel to that formed by the V05-13 MgO>FeO(t) chromites. 

Whereas Groups 46-49 and 55-59 (composed of FeO(t)>MgO chromites) cluster, and do 

not form trends. 

 

On the Mg#-Cr# diagram, Group 55-59 forms a trend that is oriented similar to Trend A 

described by Naldrett et al. (2009). 

 

Sample F1996-97 (massive chromite) 

No geochemical layering is observed in sample F1996-97. The compositions of each of 

the 15 sections analysed are classified as MgO>FeO(t) chromites and are considered to 

be nearly homogeneous, no trends or clusters are observed in any of the plots used to 

examine the data. 

 

Sample F1925 (massive chromite grading to disseminated chromite) 

The massive chromite portion of sample F1925 is comprised of FeO(t)>MgO chromite. 

The high FeO(t)% contents result from high Fe2O3% values. The iron content of the 

chromite increases (both FeO% and Fe2O3%) as the modal proportion of olivine 

increases, while the MgO% and Cr2O3% contents decrease. 

 

On the FeO%-Fe2O3% and  Mg#-Cr# diagrams the massive chromite compositions align 

parallel with the V05-13 MgO>FeO(t) chromites. This could indicate that the genesis of 

these two groups, although chemically different, may be related by a common process.  
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On the Mg#-Cr# diagram the massive chromites form a negative trend that aligns with 

Trend A and the disseminated chromites form a positive trend that is similar to Trend B 

described by Naldrett et al. (2009). Furthermore, the differences in the modal proportions 

of chromite and olivine and the compositions of the chromites comprising sample F1925 

is evidence of two different formation processes (or a change in the formation process). 

 

The effect of chromite and olivine modal proportions on chromite compositions 

Examination of the chromite Mg# and modal proportion of olivine present in a section 

(for samples F1964-65 and F1925) has shown that the two do not correlate. 

Contemporaneous crystallisation of chromite and olivine from a melt could explain the 

variations in Mg# seen. To explain how these compositional changes are recorded in 

massive chromite, where the olivine proportion is less than 20%, requires a post 

crystallisation process to have taken place. The process would need to physically 

separate the chromite and olivine, without altering the geochemistry. Such a process 

would explain how the massive chromite has, in places, inherited a composition 

characteristic of the co-crystallisation of chromite and olivine from a melt, while the 

mineral proportions infer that only chromite has crystallised. It is suggested that a 

densification process, e.g. sintering, could produce this effect (see Chapter 3, Section 

3.6.4). From the samples studied evidence for sintering, resulting in the separation of 

olivine and chromite (to form massive chromite) is further evidenced in the textures of 

the massive chromite ore (Chapter 5, Section 5.5.6). The effect of this process on the 

composition of chromite and grain textures is addressed further in the discussion, 

Chapter 9. 
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Chapter 9: Discussion 

 

9.1 The tectonic evolution of the Uralian basin recorded by the 

mantle hosted Voskhod chromite deposit 

Evidence of the tectonic processes responsible for the opening and closure of the 

palaeo-Uralian ocean basin are recorded in the mineralogy and whole rock 

geochemistry of the mantle harzburgite and dunites that host the Voskhod deposit. 

These same processes have contributed to the genesis of the Voskhod deposit.  

 

9.1.1 Whole rock geochemistry  

Rare earth element profiles 

Whole rock geochemistry of the Voskhod harzburgite and dunite suite can be used 

to identify and discriminate between mantle depletion and enrichment processes. 

REE profiles show that host rocks have undergone varying degrees of depletion, 

the result of mantle melting, prior to being re-enriched with LREE, a signature 

imparted by interaction between the mantle and SSZ derived melts and associated 

liquids. Four REE profile types have been identified; LREE depleted, LREE 

enriched, flat and U-shaped. These do not correlate systematically with a particular 

lithology (harzburgite or dunite) or distance from the ore-body (distal, halo or ore 

zone dunites). LREE-enrichment of peridotite mantle has been shown to result 

from post-melting refertilisation by new melts that percolate upwards through 

overlying mantle lithosphere during ascent to the crust (Niu, 2004). Accounting for 

the extent of depletion or enrichment in terms of the characteristics resulting  from 

partial melting or melt-rock reaction and magma transport, as well as identifying 

the process and source of LREE enrichment, is extremely complex (e.g. Vernieres 

et al., 1985; Page et al., 2009) and beyond the scope of this thesis. Some general 

observations can be made. 

 

The Voskhod harzburgite and dunite units are depleted mantle rocks forming REE 

profiles that plot below the DMM line (Workmann & Hart, 2005) (Chapter 5, 

Section 5.6.2, Figures 5.6.4 and 5.6.5). The differences between the REE profile 
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shapes and concentrations, demonstrate that depletion and enrichment processes 

have varied in intensity (Chapter 5, Section 5.6.2, Figure 5.6.4). The different 

lithologies have not formed simply by partial melting, as ratios of light to heavy 

REE are too high to be explained in terms of residue of equilibrium partial melting 

(Prinzhofer and Allegre, 1985; Nicolas, 1989) (Chapter 5, Section 5.6.2, Figure 

5.6.5).  

 

It is widely documented that mantle harzburgites typically produce U-shaped 

profiles (e.g. Van der Wal & Bodinier, 1996; Parkinson & Pearce, 1998; Proenza et 

al., 1999; McDonough & Frey, 1989). However, four harzburgite samples produce 

LREE-depleted profiles and a further three form weakly LREE-enriched U-shaped 

profiles (Chapter 5, Section 5.6.2, Figure 5.6.5 [a]). The dunites (distal, halo and 

ore zone) typically have a LREE-enriched component forming either LREE-

enriched or U-shaped profiles (Chapter 5, Section 5.6.2, Figure 5.6.5 [b, c and d]). 

 

REE mobilisation episodes are recorded in the ore zone, dunite halo, distal dunite 

and harzburgite units.  

 The first event is LREE depletion caused by incremental partial melting 

forming residual mantle harzburgite (Johnson et al., 1990).  

 The second is LREE-enrichment that has an arc component signature, 

formed by reaction with a SSZ melt (e.g. a boninite melt). This signature is 

particularly prominent in rocks sourced from within, and close to, the ore 

zone, inferring that the ore zone was a conduit through which the SSZ-melt 

migrated.  

 

LREE-enriched signatures in ophiolite peridotites have been explained by 

secondary processes relating to serpentinisation, oceanic alteration or 

contamination by crustal fluids contemporaneous with ophiolite obduction (Sharma 

& Wasserburg, 1996;  You et al., 1996; Gruau et al., 1998; Niu, 2004; Iyer et al., 

2008; Deschamps et al., 2010). The Voskhod rocks are recognised to be highly 

serpentinised. The Al2O3 wt% - Y ppm diagram showed that Al was largely 

immobile during alteration of the harzburgite and dunites (Chapter 5, Section 5.6.2, 

Figure 5.6.1), whereas the CaO wt% - Y ppm plot inferred that Ca had been 

remobilised (Chapter 5, Section 5.6.2, Figure 5.6.2). It cannot be discounted that 

LREE-enrichment has resulted from late-stage, ophiolite emplacement associated 
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processes. Throughout the hanging wall and footwall LREE-depleted rocks are 

inter-layered with LREE-enriched rocks, both are serpentinised to approximately 

the same extent and are typically no more than 50 m apart (vertically down hole). 

No obvious structural discontinuities or faults are identified between the units. 

These observations indicate that LREE-enrichment resulted from focused melt or 

fluid flow pathways that were constrained to metre-wide specific horizons within 

the mantle. There is no apparent relationship between the extent of 

serpentinisation and LREE enrichment or depletion.  

 

LREE-enriched signatures permeate beyond the confines of the ore zone into the 

host rocks (Chapter 5, Section 5.6.2, Figure 5.6.4 [b]). This indicates that there has 

been diffusion of a LREE-bearing melt (or liquid) away from the main conduit into 

the wall rock.  

 

Partial melting and interaction between percolating melts and residual mantle 

removes orthopyroxene from harzburgite (Boudier & Nicolas, 1972; Boudier, 1978; 

Cassard et al., 1981; Quick, 1981; Fisk, 1986; Kelemen, 1990; Arai & Yurimoto, 

1994; Arai, 1997). The resulting mantle residue is depleted in the REEs with the 

LREEs lost preferentially first (Johnson et al., 1990; Johnson & Dick, 1992; Seyler 

et al., 2001; Hellebrand et al., 2001, 2002). LREE-depleted profiles in mantle 

residue (Chapter 5, Section 5.6.2, Figure 5.6.4 [a]) are characteristic of dry stage 

melting such as that associated with a MOR setting (Frey, 1984; McDonough & 

Frey, 1989; Rampone et al., 1996, Zhou et al., 2001; Urlich et al., 2010), the 

LREE-depleted profiles produced by the harzburgites at Voskhod are consistent 

with this model. These REE profiles are the same as those seen in lherzolites that 

host the Sartohay high-Al chromite deposits in the Dalabute ophiolite (NW China) 

(Zhou et al., 2001) as well as mantle peridotites from massifs in the western Alps 

(Frey, 1984; McDonough & Frey, 1989; Rampone et al., 1996). 

 

U-shaped profiles cannot be explained by batch melting or fractional melting 

(Prinzhofer & Allegre, 1985) (Chapter 5, Section 5.6.2, Figure 5.6.4 [d]). The 

apparently selective MREE-depletion requires a two stage process (at least), one 

of depletion and a subsequent refertilisation process. Interaction between depleted 

mantle and a percolating arc derived melt, will destabilise and scavenge ortho- and 

clinopyroxene but will also enrich the rocks in the LREEs, forming U-shaped or 
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LREE-enriched profiles (Prinzhofer & Allegre, 1985; Stopler, 1987; Bodinier et al., 

1990; Takazawa et al., 1992, 2003; Nui, 2004; Li & Lee, 2006; Ulrich et al., 2010).  

 

LREE enriched harzburgite (Chapter 5, Section 5.6.2, Figures 5.6.4. [d] and 5.6.5 

[a]) has been documented in other ophiolites e.g. the Finero massif (western Alps), 

the Zabargad peridotites of the Red Sea, the Oman ophiolite (Oman) (Bodinier, 

1988; Bodinier et al., 1988) and the Dalabute ophiolite (NW China) (Li et al., 1987). 

LREE-enrichment is attributed to the post-melting addition of highly incompatible 

elements by interaction between a metasomatic fluid or melt with the mantle 

(Bodinier, 1988. 1990; McKenzie, 1984; Navon and Stolper, 1987;Bodinier et al., 

1988; Bodinier et al., 1990; Vasseur et al., 1991) and is a signature that typifies the 

addition of an arc component derived from melting of a subducting slab in a SSZ 

setting (Gill, 1981; Pearce, 1982; Saunders et al., 1991; Bédard, 1999). The 

addition of a hydrous component at the site of slab subduction is commonly 

proposed for arc and boninite melt sources (e.g. Hickey and Frey, 1982; 

Woodhead et al., 1998; Bédard, 1999; Kimura and Yoshida, 2006) that are formed 

by hydrous melting of refractory, depleted peridotite (e.g. Crawford et al., 1981; 

Bizimis et al., 2000; Arndt, 2003). Furthermore, melts generated by fluid circulation 

through forearc mantle typically display U-shaped REE profiles, similar to those of 

boninites (Urlich et al., 2010). 

 

Determining how the LREE-signature is retained in the rocks is unclear. Owing to 

the dissolution of clinopyroxene (and orthopyroxene) it is not possible that the 

LREEs are accommodated in these mineral structures. Olivine, the most abundant 

mineral does not readily incorporate REE into its structure. Nui (2004) proposed 

that LREEs could be present trapped along mineral grain boundaries as thin films.  

 

It is proposed that the LREE-enriched profiles seen in the Voskhod rocks (Chapter 

5, Section 5.6.2, Figure 5.6.4 [b]) result either from i) interaction between highly 

LREE-enriched melt (or melt associated fluids) and residual mantle that has been 

subject to varying degrees of depletion, or ii) olivine that has crystallised directly 

from a melt generated from, or that is contaminated by, subducting slab LREE-

enriched fluids (Takahashi, 1991, 1992; Niu, 1997).  

U-shaped profiles are more LREE- and HREE-enriched than flat profiles (Chapter 

5, Section 5.6.2, Figure 5.6.4 [c and d]). The variability in the MREE-HREE 
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portions of these profiles, the U-shaped having HREE>MREE and the flat, 

MREE≈HREE, result from differing degrees of partial melting and primary 

extraction of REE. Flat profiles, seen in all of the rock types studied, have been 

subject to more extensive partial melting and consequently have lost more MREE 

and HREE than U-shaped profiles. This implies that the extent of mantle melting 

(and REE depletion) in the region around the ore body has not been uniform.  

 

In general terms the LREE-depleted harzburgite and LREE-enriched ore zone 

dunite profiles represent REE-profile end members. The rocks correspond with the 

two processes; depletion by partial melting (harzburgite) and enrichment by 

interaction with an arc derived liquid (ore zone dunite). The distal dunite and dunite 

halo display a range of REE profiles; U-shaped, flat or LREE-enriched. There is no 

characteristic “type” profile that defines these units.   

 

Spidergrams 

Positive Ba and Zr-Hf anomalies are present in all of the extended trace element 

plots for the Voskhod harzburgite and dunite rocks (Chapter 5, Section 5.6.2, 

Figure 5.6.6). Similarly, a positive Nb-Ta (±Th) signature (relative to the LREE) is 

also evident in the majority of samples, but not every sample. Some samples have 

extremely enriched Nb-Ta anomalies that are more than an order of magnitude 

greater than the LREE concentrations. In other samples the signature is less 

prominent and concentrations are greater than, but still similar to, the LREE 

concentrations. The positive Ba and Zr-Hf anomalies appear to be independent of 

the Nb-Ta (±Th) signature. The elements Th, Nb and Ta are reported to be 

immobile during alteration (e.g. Godard et al., 2000) so it seems unlikely that some 

samples underwent selective depletion in these elements, removing the positive 

signature. Consequently, the positive Ba, Zr-Hf and Nb-Ta (±Th) signatures are 

considered to be derived from two different melt events. 

 

The BBC boninite spidergram profile possesses the same positive anomalies (Ba, 

Zr-Hf, Nb-Ta ±Th) as those seen in the Voskhod mantle rocks (Chapter 5, Section 

5.6.2, Figure 5.6.7). The Ba anomaly appears to have survived in the melt to the 

surface where the signature is equally prominent as that retained in the mantle 

rocks. In contrast, the Nb-Ta (±Th) anomaly is less prominent. The Nb-Ta 
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concentration range covered by the BBC boninite composition field shows that 

concentrations can be less than the neighbouring LREEs. This is similar to the 

composition variation seen in the mantle rocks and demonstrates that some of the 

boninite samples possess a positive Nb-Ta signature, while others do not. The 

positive Zr-Hf anomaly is present in all the BBC boninites. It is possible that 

enrichment of the LILE (Cs, K, Rb, Ba and Sr) may result from a secondary 

remobilisation process, such as serpentinisation (Godard et al, 2000). This is one 

explanation for the prevalent and strong Ba signature seen in both the BBC 

boninites and Voskhod mantle rocks.  

 

A comparison of the Voskhod mantle units and BBC boninite geochemistry with 

the TMO mantle units and boninites shows that both possess the same positive 

Ba, Zr-Hf, Nb-Ta ±Th signatures (Page et al., 2009) (Chapter 5, Section 5.6.2, 

Figure 5.6.7). Page et al. (2009) were able to demonstrate that the addition of a 

distal continental margin sediment contaminant (the Caldwell sediment), at the site 

of melting in the subduction zone, would produce a melt with a highly enriched 

LILE, Th, Nb, Ta, LREE profile, a strong positive, Zr-Hf anomaly and depleted in 

HREE. Their study concluded that this accounted for the geochemical signatures 

seen in the TMO mantle and boninite units. Furthermore, it was noted that the 

proposed continental margin sediment contaminant produced similarly shaped 

REE profiles as those formed by sediments from the Marianas Trough (Elliott et 

al., 1997), although the Caldwell sediment geochemical profiles formed slightly 

higher Rb, Ba, Th, Nb and Ta, and much higher Zr and Hf anomalies. 

 

An alternative explanation for the positive Nb-Ta (±Th) signatures could be 

infiltration of late-stage (post mantle melting and LREE-depletion) volatile-rich 

liquids. Such liquids could be derived from the dehydration and/or melting of a 

subducting slab in a SSZ setting (Eggler, 1987; Schiano & Clochiatti, 1994; 

Bodinier et al., 1996; Proenza et al., 1999). However, such a process does not 

account for the positive Zr-Hf  anomaly. 

 

Boninites are hydrous melts rich in SiO2, MgO, Cr, Ni, the LILE (K, Rb, Cs, Ba), U, 

Th, Pb and Sr, and in LREE (La, Ce and Pr); yet poor in many HFSE (Nb, Ta, Zr, 

Hf, Ti) and MREE and HREE (e.g. Hickey and Frey, 1982; Pearce, 1982; 

Crawford, 1989; Saunders et al., 1991; Pearce et al., 1992; Taylor et al.,1994). 
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Brenan et al. (1995) reported that LREEs, Th, Nb and Ta are immobile in hydrous 

fluids, as are the HFSE (which include Zr and Hf) (Pearce et al., 2000). 

Consequently, the enriched Zr-Hf signature seen in the Voskhod mantle rocks and 

BBC boninites cannot be attributed solely to the presence of water in the melt 

(Chapter 5, Section 5.6.2, Figure 5.6.7). 

  

On the basis of the findings presented in this study and the comparison with the 

TMO complex rocks, it is proposed that the positive element anomalies; Ba, Zr-Hf, 

Nb-Ta ±Th, characterise boninite lavas formed when a distal continental margin 

sediment component is added to the mantle wedge at the site of slab subduction 

and melt generation. Furthermore, the apparent associated formation of large Cr-

rich podiform chromitites with these enriched boninite melts implies that the 

chromium availability may be enhanced as a result of the added sediment 

contaminant.  

 

The BBC boninites and Voskhod mantle rocks: A proposed genetic relationship 

It is recognised that the BBC boninites and mantle rocks of the Kempirsai massif 

(in which Voskhod is located) are separated by a major geological fault, the MUF. 

From this it might appear, spatially, that the two are not genetically associated. 

However, the formation of both the BBC boninites are Kempirsai massif are 

associated with the evolution of the Magnitogorsk island arc system (Zonenshain 

et al., 1984; Lennykh et al., 1995; Melcher et al., 1997). The initiation of subduction 

within the palaeo-Uralian basin, which marked the start of the ocean basin closure, 

led to the development of a SSZ and a fore arc setting where boninite melts 

formed (preserved as the BBC boninites, Spadea et al., 1998, 2002; Brown & 

Spadea, 1999). With maturation of the SSZ-setting the Magnitogorsk island arc 

formed. It has been proposed by Melcher et al. (1997) that the boninite melts were 

the parent melt source from which the MOF podiform chromite crystallised. Until 

now, no evidence has been presented to show the geochemical association 

between the BBC boninites, the only occurrence of boninite reported in the 

southern Urals (Ivanon et al., 1989; Seravkin et al., 1992; Brown & Spadea, 1998; 

Spadea et al., 2002), and the mantle rocks that host the giant chromite deposits of 

the MOF (hosted in the Kempirsai massif). The similarity between the geochemical 

signatures is indisputable. The genetic association is further endorsed by the 

similarities between the TMO mantle and boninite rocks and the Voskhod mantle 
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and BBC boninite rocks. In the TMO complex the stratigraphic relationship and 

genetic association of the mantle to crust progression is well preserved and clearly 

exposed (Page et al., 2009a, 2009b).  

 

A complete ophiolite stratigraphy is reportedly preserved in the Kempirsai massif 

where the lava units documented are of MORB compositions (Savelieva and 

Nesbitt, 1996; Savelieva et al., 1997, 2002; Melcher et al., 1999). No boninites 

have been documented. The MORB composition pillow lavas are reported to be of 

Mid-Ordovician age (Ivanov, 1988; Fershtater et al., 1997) while the BBC boninites 

formed later during the Early to Mid-Devonian (Spadea et al., 1998; Brown et al., 

2006). Neither the geochemistry nor the Mid Ordovician age of the MORB pillow 

lavas are compatible with the timing of SSZ initiation and the subsequent 

Magnitogorsk formation. The BBC boninites are dated as Early to Mid-Devonian in 

age. A possible explanation for the separation of the BBC boninite lavas from the 

Kempirsai mantle section, through which it is proposed the melts migrated, is that 

the boninite melt did not ascend upwards through the mantle but instead migrated 

at an oblique angle, moving both upwards and laterally through the mantle, before 

being expelled onto the ocean floor. Subsequent uplift, thrust development, 

obduction and emplacement of the Kempirsai massif resulted in the separation of 

the preserved mantle conduit pathway (the podiform chromitite) from the crustal 

expression of the boninite lavas.  

 

In terms of the lava types geochronology; the MORB lavas preserved in the 

Kempirsai Massif are the products of fertile mantle melting associated with the 

opening of the palaeo-Uralian ocean basin during the Mid-Ordovician. The BBC 

boninites and, from the findings of this study the formation of the podiform 

chromitites that are preserved in the Kempirsai Massif, formed during the Early to 

Mid-Devonian. The BBC boninites are the product of depleted mantle melting (the 

depleted mantle being the residue left from the extraction of the MORB melts) in a 

fore-arc setting and mark the onset of the development of the Magnitogorsk island 

arc. 
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9.1.2 The OSMA  

Harzburgite and dunite, which host the Voskhod ore body, plot as mantle residues 

inside of the OSMA field (Arai, 1994) (Chapter 6, Section 6.3.1, Figure 6.3.3). 

These rocks form a systematic trend with both Cr# and Fo increasing from 

harzburgite (passive margin peridotite), through distal dunite, dunite halo to ore-

zone dunite. It appears that the rocks are increasingly residual and that the degree 

of partial melting intensifies with proximity towards the ore body. However, it is 

extremely unlikely that the 18 Mt Voskhod chromite deposit formed by extreme 

partial melting of the mantle. Experiments have shown that 20% partial melting of 

fertile lherzolite forms harzburgite and dunite forms at ~50-60% melting (Jaques & 

Green, 1980; Duncan & Green, 1980, 1987; Bonatti & Michael, 1989; Kostopoulos, 

1991). To satisfy these results the degree of melting required to form chromitite 

would have to exceed 60% partial melting of a fertile lherzolite. The degree of 

partial melting and the longevity of the partial melting event required to form a 

chromite volume of this size is considered to be unfeasibly high. 

 

It has been proposed that early crystallised dunite cumulates could also plot within 

the OSMA, provided that fractionation has not been significant (Quick, 1980; Lago 

et al., 1982; Arai & Yurimoto, 1994). On these grounds, the application of the 

diagram to infer formation processes, particularly those associated with the dunite 

rocks, yields limited information.  

 

9.1.3 Chromite composition: The Cr#-TiO2 relationship 

The Cr# of chromite increases as the degree of partial melting of the mantle 

increases (e.g., Dick & Bullen, 1984;Arai, 1991, 1992, 1994a, 1994b, Arai & Abe, 

1994; Ninomiya & Arai, 1992). Partial melting of fertile mantle lherzolite forms 

harzburgite and at high degrees, >40% partial melting, residual dunite may form 

(Arai, 1987, 1994a). Melt-rock interaction has also been shown to raise the Cr# of 

mantle chromite (Arai, 1992; Zhou et al., 1996; Pearce et al., 2000; Dare et al., 

2008). Variation in the composition of chromite in the Voskhod harzburgite and 

dunite suite plot on the Cr#-TiO2 diagram forming a trend characteristic of a 

reaction between depleted MOR harzburgite and boninite melt (Arai, 1992; Zhou et 

al., 1996; Pearce et al., 2000) (Chapter 6, Section 6.5, Figure 6.5.2). The boninite 
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melt signature is most prominent in the ore zone dunites and chromitite, and is 

less so in the distal dunite and harzburgites.  Harzburgite plots in the residual 

MOR harzburgite field close to the FMM partial melting curve having undergone 

15-20% partial melting. Dunite plots away from the partial melting curve indicating 

that it is not a product of extreme mantle melting, but rather a reaction product.  

 

It is widely reported that podiform chromite genesis, especially that of high-Cr 

chromitite, is associated with the migration of boninite melt through mantle 

harzburgite (Paktunc, 1990; Zhou et al., 1994; Leblanc, 1995; Ballhaus, 1998; 

Ishikawa, 2002; Rollinson, 2005; 2008). The Cr#-TiO2 plot identifies this 

association at the Voskhod deposit. 

 

9.1.4 Chromite composition: fO2-Cr# and TiO2/Fe3+#-Ga/Fe3+# 

relationships 

The fO2-Cr# and TiO2/Fe
3+

#-Ga/Fe
3+

# diagrams identify MOR- and SSZ-type, 

harzburgite and dunite (Chapter 6, Section 6.6, Figure 6.6.1 and Section 6.7, 

Figure 6.7.1, respectively). The diversity of the tectonic signatures determined 

from the 15 samples, collected over 260 m (down hole vertical depth) indicate that 

the region has been subject to a polygenetic tectonic evolution that is recorded by 

these mantle units.  

 

The residual-MOR harzburgite and MOR-reacted dunite, provide evidence of a 

MOR setting that would have formed as the palaeo-Uralian ocean basin opened 

and spread. The SSZ-reacted harzburgite and dunites record the onset of basin 

closure and the formation of a SSZ and associated fore-arc, a setting with which 

boninite melts are typically associated.  

 

Residual-MOR Harzburgite 

Residual-MOR harzburgite is located furthest from the chromitite ore body (142 

m). It represents the original mantle residue formed from decompressional, partial 

melting of a fertile mantle source. It marks the tectonic evolution from a passive 

continental margin (fertile mantle lherzolite) to a spreading centre mid-ocean ridge 
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system. The upwelling of a fertile mantle diapir would have undergone partial 

melting of ~15% creating MORB melts and mantle residue of harzburgite.  

 

MOR-reacted Dunite 

The distal dunites are MOR-reacted dunites. These formed by interaction between 

residual mantle harzburgite and a MORB melt. Referring to the Cr#-TiO2 diagram 

the reaction trend indicates reaction with a boninite melt, not a MORB melt, where 

higher TiO2 values would be anticipated (Chapter 6, Section 6.5, Figure 6.5.2). 

However, the Cr#-TiO2 plot also identifies an increase in TiO2 between the residual 

harzburgite and distal dunite. This is interpreted to represent a reaction between 

mantle residue and a percolating MORB melt in channel-ways at a mid-ocean 

ridge spreading centre.  

 

The distal dunites are not residual dunites formed by high degrees of partial 

melting of the mantle as might be inferred from the OSMA diagram (Chapter 6, 

Section 6.3.1, Figure 6.3.3).    

 

SSZ-reacted harzburgite and dunite 

The dunite halo and ore zone dunites plot as SSZ-reacted dunites, formed by 

reaction between mantle harzburgite and a SSZ arc derived melt, identified as a 

boninite melt, e.g. the Cr#-TiO2 diagram (Chapter 6, Section 6.5, Figure 6.5.2). 

Spatially, these samples are closest to the chromitite ore body, inferring that the 

chromitite marks the focus of a boninite melt passage through the mantle. Melt has 

diffused through and reacted with the harzburgite wall rock.  

 

The SSZ-reacted harzburgites record having undergone ~18% partial melting. This 

appears to be the result of localised enhanced melting of the host peridotite wall-

rock which the melts have interacted with.  

 

The implication that the Voskhod mantle units preserve a boninite-melt interaction 

signature, where boninites characterise forearc settings, provides further evidence 

that the mantle units formed in a SSZ setting. The Kempirsai Massif (in which 

Voskhod is located) is interpreted as the mantle units of the Sakmara Allochthon 

(Savelieva et al. 1997), an accretionary complex that formed during the early stage 
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evolution of the Magnitogorsk island arc system; a setting synonymous with 

boninite melt genesis. 

 

Discrepancy using the fO2-Cr# plot to determine melt composition  

On the fO2-Cr# diagram the chromitite and dunite halo chromites have high fO2 

values (+1.5< QFM > +3.0) plotting in the composition field of CAB lava spinel 

(Chapter 6, Section 6.6 Figure 6.6.1).  However, the very high Cr# values ≥0.80 

are characteristic of boninite. It is reported that chromites formed in oxidised 

environments, such as those associated with arc settings, possess higher fO2 

values than chromites formed in a MOR setting (Ballhaus et al., 1991; Parkinson & 

Pearce, 1998; Pearce et al., 2000; Parkinson & Arculus, 1999; Elburg & 

Kamenetsky, 2007). Additionally, studies on IAT lavas have shown that fO2 can 

increase as a result of magmatic differentiation (Ballhaus et al., 1991 and Elburg & 

Kamenetsky, 2007). It is proposed that the boninite parent melt that crystallised 

the Voskhod chromitite pod was especially water-rich, hence the fO2 values are 

higher than expected for a boninite melt. This may, in part, contribute to the unique 

physico-chemical conditions required for the genesis of such an unusually large 

chromitite. 

 

9.1.5 Host rock geochemistry: A record of the palaeo-Uralian 

ocean basin evolution. 

Inter-layered harzburgite and dunite intervals comprise the hanging wall and 

footwall host units of the Voskhod chromite deposit. Decompression induced 

partial melting of fertile mantle forms harzburgite and MORB melt. The presence of 

this rock type in the host units is interpreted as a record of the tectonic setting 

transition from a passive continental margin to a MOR setting. It marks the split of 

the East European craton from the Kazakh and Siberian cratons, during the Late 

Cambrian to Early Ordovician and subsequent opening of the palaeo-Uralian 

ocean basin during the Mid-Ordovician to Late-Silurian.  

 

Harzburgite 

Mineralogically the harzburgites are cpx-poor (<3% cpx modal proportion) 

indicating that they are depleted rocks. The whole rock major element chemistry 
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supports this interpretation as seen from the Al2O3-CaO diagram (Chapter 5, 

Section 5.6.1, Figure 5.6.3). The chromite Cr# range is 0.23-0.47. Two harzburgite 

samples have a particularly low Cr# of 0.23 (Vos-341 and G1742), a value that is 

typically associated with fertile mantle rocks such as passive continental margin 

peridotite or lherzolite (Arai, 1994a). This observation contradicts the mineralogical 

evidence which infers that the harzburgites are highly depleted. No relationship is 

seen between the Cr# of the harzburgites and the proximity or distribution of the 

samples relative to the ore body, although mineralogically lower Cr# are 

associated with comparatively higher cpx modal proportions (though still cpx-poor). 

These findings cannot be explained readily by a single localised event associated 

with mantle melting or the genesis of the podiform chromite ore body. 

  

The chromite grains in samples Vos-341 and G1742 (Cr# 0.23) are holly-leaf 

shaped and are characteristic of aggressive resorption. This implies that during the 

most recent liquid-mantle interaction event, equilibrium between the chromites and 

liquid was not reached. The disparity between the Cr# compositions and the 

mineralogy of the harzburgites results from the chromite compositions retaining a 

fertile mantle signature, possibly the result of mantle conditions restricting the 

grains from equilibrating during partial melting or interaction with subsequent 

liquids that have infiltrated the mantle. The mineralogy is consistent with mantle 

melting and depletion. 

 

In contrast, harzburgites with higher Cr# (>0.40) chromites, which are more typical 

compositions for depleted harzburgite (Arai, 1994a; Arai & Yurimoto, 1994), tend 

to be subidiomorphic or anhedral. These morphologies indicate that the grains 

have equilibrated, at least to a greater extent than the holly-leaf shaped grains, 

during the most recent liquid-mantle interaction event. It is proposed that the 

greater extent of equilibration achieved accounts for the higher Cr# seen.  

 

Distal dunite 

Inter-layered between intervals of harzburgite in the hanging wall and footwall is 

dunite (distal dunite). These units are comprised of olivine which has been altered 

to serpentine, the absence of pyroxene porphyroblasts distinguishes the rock type  

from harzburgite in hand specimen. In thin section, patches of fibrous actinolite are 

seen. On the Al2O3-CaO diagram these samples plot in the dunite field.  
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The chromite Cr# range is 0.42-0.60, values that increase systematically from the 

harzburgite Cr# range. The mineralogy and Cr# ratios could be interpreted to 

result from high degrees of partial melting of the mantle. However, as 

demonstrated by the tectonic discrimination diagrams, this is not the case. The 

fO2-Cr# and TiO2/Fe
3+

# - Ga/Fe
3+

# plots show that the dunites formed by 

interaction between residual mantle and a percolating melt, i.e. by melt-rock 

reaction.  

 

The dunites record a pathway of melt through the mantle. The source of the melt, 

whether a MOR- or SSZ- setting derived melt, is not clear. From the fO2-Cr# plot it 

appears that the reacting melt has a MORB composition, with fO2 values 

approaching the MOR-SSZ discrimination boundary. On the TiO2/Fe
3+

# - Ga/Fe
3+

# 

diagram the compositions appear to be transitional having formed from the 

reaction of melts derived from both a MOR- and SSZ-setting. The samples plot 

either side of and close to the MOR- and SSZ- discrimination boundaries on both 

plots. The ambiguous classification of the distal dunite results from the low Fe
3+

 

chromite compositions that reflect the chemistry of the melt that the grains last 

equilibrated with. The Fe
3+

 contents are lower than are expected from equilibration 

with a melt produced in a SSZ setting. In comparison, three harzburgite samples 

have higher fO2 values implying that they have interacted with a more oxidising 

melt than the dunites, although the Cr# of the harzburgite chromites are lower

 

Subidiomorphic chromite morphologies are most common in distal dunites, 

although, holly-leaf and euhedral shaped grains are also seen. In the distal dunite 

samples it is common for more than one type of chromite grain morphology to be 

identified within a single section, despite being compositionally similar. The mixture 

of grain shapes identified in a sample implies that equilibrium between the 

chromites and melt was not always achieved, yet the similar compositions of the 

grains within a sample indicates that chemical equilibrium was reached. It is 

proposed that the different grain shapes represent multiple generations of chromite 

that either crystallised from, or equilibrated with, melts of differing compositions. As 

new melts infiltrated chromites crystallised from previous melt events equilibrated 

chemically with the new melt composition. The equilibration process is not one of 

dissolution and re-crystallisation but of chemical exchange, consequently, the 
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structure of earlier chromite phases are affected by the compositional change 

causing the grain shape to be distorted (Mercier and Nicolas, 1975; Auge, 1982).  

The units of distal dunite inter-layered with harzburgite provide evidence of 

multiple, and based on the geochemistry, compositionally different melt events. 

Had the melt events infiltrated outwards from the podiform chromitite then a 

systematic, concentric rock-type progression might be expected as follows; 

 

 

 

 

This is not the case. Consequently, the distal dunites are not considered to have 

formed from the same process as that which formed the chromitite and peripheral 

dunite halo.  

 

From the TiO2/Fe
3+

#-Ga/Fe
3+

# diagram the distal dunites are interpreted to have 

formed by interaction between residual mantle harzburgite and a MORB melt. It 

would not be expected for these units to show significant REE enrichment relating 

to this event. The reduced pressures in the upper mantle (relative to the lower 

mantle) result in the destabilisation of orthopyroxene. However, this is at the 

expense of olivine which crystallises from the melt, forming the dunite melt-rock 

reacted pathways seen. Furthermore, the REE remain partitioned in the MORB 

melt. Consequently although MORB melts are primary and LREE-enriched 

(relative to the residue they form and percolate through) this signature is not 

inherited by the MORB-reacted dunite formed. In contrast, boninite melts are 

extremely LREE-enriched, derived from higher degrees of hydrous partial melting 

they are capable of partitioning greater quantities of LREE into the melt phase 

(Pearce et al., 2000). It is proposed that the REE-enriched profiles seen in the 

distal dunites, in particular the LREE-enriched profiles, result from a later-stage 

over-print by the boninite melt or fluids associated the melt. Alternatively it could 

be that metasomatic fluids introduced during ophiolite emplacement resulted in the 

remobilisation of these elements and subsequent enrichment profiles seen. A 

requirement of the LREE-enrichment process is that it occurred without impacting 

the chromite composition so as to explain why these dunites, in terms of chromite 

composition and melt-rock reaction model results, possess characteristics of 

MORB melt-mantle reacted dunite.  

Harzburgite           Distal         Dunite        Chromitite         Dunite         Distal          Harzburgite 

     dunite          halo        Pod   halo           dunite 
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The whole rock geochemistry REE patterns and spidergrams indicate that the 

distal dunite units have been infiltrated by one or more of the liquid events 

associated with the genesis of the podiform chromitite. On the contrary, the 

chromite compositions apparently record a different melt-rock reaction event, one 

that is not associated with the SSZ melt-related podiform chromitite genesis event. 

The intervals of distal dunite range in thickness from 10 m to approximately 100 m 

(vertical down hole). They are interpreted to represent focused melt channel-ways 

where multiple, compositionally different melt events have percolated and reacted 

with the mantle harzburgite. This explanation accounts for the transitional MOR- 

and SSZ-melt signatures present in the chromite compositions, the range of 

chromite morphologies seen, as well as the varying levels of REE depletion and 

subsequent LREE re-enrichment identified. These dunites record the change 

between the MOR-setting associated with the palaeo-Uralian ocean basin opening 

and the SSZ-setting associated with the Magnitogorsk island arc formation.  

 

Dunite halo and ore zone dunite 

The halo of dunite that surrounds the chromitite pod is formed of highly 

serpentinised olivine (>80% serpentinisation). On the Al2O3-CaO diagram these 

samples plot in the dunite field close to the distal dunites and ore zone dunites.  

 

The dunite halo chromites have a Cr# range of 0.50-0.76, they are more 

chromium-rich than the distal dunite and harzburgite chromites, but less so than 

the ore zone dunites (Cr# range, 0.77-0.84). A progressive increase in chromite 

Cr# is noted from the outermost edge of the halo towards and into the ore zone 

and as the units are located next to one another they are thought to be genetically 

linked. The Cr#-TiO2 diagram shows that these dunites formed from the interaction 

of residual mantle harzburgite with a boninite melt. The ore zone dunites plot in the 

same field as chromites in peridotites sourced from the present day Izu-Bonin-

Mariana fore-arc system. The fO2-Cr# diagram shows that the chromites record 

equilibration and/or crystallisation under oxidising conditions, approximately Δlog 

fO2 (QFM) 2, values that are synonymous with melts of arc lava affinities. On the 

TiO2/Fe
3+

#-Ga/Fe
3+

# diagram the samples plot in the SSZ-reacted field also 

supporting the arc signature interpretation.  

 



Chapter 9: Discussion 

291 

 

The REE profiles of both the dunite halo and ore zone dunite are typically LREE-

enriched and are characteristic of an arc derived REE signature. The dunite halo 

chromite grains are either subidiomorphic or euhedral. The euhedral grains will 

have crystallised from a boninite melt. In contrast, the subidiomorphic grains result 

from re-equilibration between earlier stage chromite grains (e.g. chromites in the 

residual harzburgite) and the infiltrating boninite melt. This would explain the 

difference between the co-existing morphologies as well as the elevated chromium 

contents. Only euhedral chromites are seen in the ore zone dunites and it is 

interpreted that these either crystallised directly from the boninite melt, or that melt 

through-flow in the ore zone was sustained long enough for total equilibration of 

any residual chromites (low Cr#) present to be achieved.  

 

9.2 Parental melt composition of the high-Cr Voskhod 

chromitite  

High-Cr chromitite deposits have been interpreted to form from high-Mg boninitic 

melts (e.g. Zhou & Robinson, 1994, 1997; Rollinson, 2005, 2008; Page & Barnes, 

2009). The Voskhod chromite ore body is characterised by high-Cr chromite (Cr# ≥ 

0.80) having high Mg# and low Ti contents, a composition indicative of having 

formed from a boninitic parent melt. 

 

Chromite composition is controlled by several factors, the most influential being; 

oxygen fugacity, pressure and temperature (Barnes, 1986; Murck & Campbell, 

1986; Roeder & Reynolds, 1991). Additionally, subsolidus equilibration drives 

divalent ion exchange between co-existing chromite and olivine phases changing 

the Mg# of chromite and Fo of olivine (Irvine, 1967; Lehmann, 1983). The trivalent 

ion contents of Cr and Al in chromite are considered relatively immobile, although 

this is a point of some debate. Chromite in equilibrium with a melt will have a Cr/Al 

ratio that is determined by the Cr2O3 and Al2O3 composition of the melt (e.g. 

Maurel & Maurel, 1982)  
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9.2.1 The role of boninite in forming podiform chromitite 

Boninite melts characterise forearc settings, forming as a result of intra-oceanic 

subduction initiation. The melts are typified by high-Mg and high-water contents. 

The solubility of Cr increases as a function of increasing water content (Wood & 

Fraser, 1984; Lange, 1994; McMillan, 1994; Richet et al., 1996), hence boninites 

are more Cr-rich compared to other melt types. The BBC boninite lava 

assemblages located in the south Urals formed in the forearc setting of the 

Magnitogorsk arc complex. Although not found within the Kempirsai Massif 

ophiolite sequence, this is the only boninite complex identified in the south Urals to 

date. The BBC boninites show evidence of having been especially water- and 

volatile-rich (Spadea et al., 1998) and it is inferred that these boninites would have 

been capable of transporting high Cr contents in the melt phase. It has been 

reported that boninites are capable of carrying up to 1,200 ppm Cr in the melt  

(Cameron & Nisbet, 1982; Malpas et al., 1997) and experimental melts similar to 

boninites in composition have been shown to have contents of nearly 2% Cr2O3 

(Klingenberg and Kushiro, 1996). Freeman (1996) calculated that  the melting of 

highly refractory mantle harzburgite could generate melts with Cr contents as great 

as 3,250 ppm. The potential for high chromium contents mean that a boninite melt 

is capable, more so than any other arc derived melt, of generating significant 

quantities of chromite if conditions permit crystallisation. However, even at high Cr 

concentration levels a significant volume of melt will be required. 

 

Simple calculations of Cr2O3 melt content show that for a melt with a Cr2O3 content 

of 2%, to form an 18 Mt chromite deposit with an average Cr2O3 grade of 58% 

would require, 10.44 Mt of Cr2O3 and 522 Mt of melt. A melt with a Cr2O3 content of 

1,200 ppm to form the same sized deposit would require 8,696 Mt of melt.  

 

High-Cr podiform chromitites are considered to have formed deep in the mantle 

while high-Al chromitites are emplaced at stratigraphically higher levels in the 

mantle closer to the Moho (Leblanc & Violette, 1983). The extremely high Cr 

content of the Voskhod chromitites (Cr2O3 ≥60 %) implies that the deposit is 

located deep in the mantle. 
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9.2.2 Water and chromite crystallisation 

It has been established that the hydrous component of boninite melts increases 

the solubility of the Cr in the melt. So it is that a loss of water from the melt would 

lead to a reduction in the chromium solubility and promote crystallisation. 

Observations by Pearce et al. (1984) and Roberts (1988) proposed that lavas 

erupted in SSZ settings had fractionated greater quantities of chromite during 

ascent through the mantle than lavas that had erupted in MOR settings. However, 

work by Edwards et al. (2000) predicts that water contained in the melt will not be 

dissolved prior to the onset of chromite crystallisation, they predict that water will 

remain dissolved in the melt until after the crystallisation of pyroxenite. Instead of 

water loss their proposed model causes water to destabilise orthopyroxene which 

will simultaneously increase the stability field of olivine. The destabilisation of 

orthopyroxene will increase the SiO2 content of the melt which will increase the 

polymerisation network of the melt and decrease the availability of octahedral sites 

in the melt. The result is that Cr will no longer be soluble in the melt and chromite 

crystallises. However, the system can change to favour the retention of Cr in the 

melt if olivine should start to crystallise, this reduces the SiO2 content of the melt, 

having the reverse effect on the melt polymerisation network causing Cr to remain 

soluble.  

 

9.2.3 Melt-rock reaction  

Melt-rock reaction, as a mechanism for initiating chromite crystallisation, requires 

melt to react with mantle harzburgite (or lherzolite) and dissolve pyroxene. The 

percolation of melt allows for interaction with pyroxenes which increases the Cr 

and SiO2 content of the melt providing the chemical conditions required for the 

crystallisation of chromite (e.g. Arai 1997).  According to an unpublished 

calculation by Page (pers comm., 2010) the quantity of orthopyroxene required to 

cause the precipitation of 18Mt of chromitite is some 7,200 Mt.  This raises the 

question as to whether the reaction between melt and host rock can be 

maintained. Once the initial wall-rock reaction has taken place there will be a 

buffer zone of dunite between the channel-way and harzburgite, preventing further  

interaction.  This would seem to hinder continued wall-rock reaction (Brough pers 
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Comm 2010), unless the melt channel-way migrated around the edge of the dunite 

buffer zone to regain contact with the outer harzburgite. 

 

In relation to the Voskhod deposit there are other possible difficulties with this 

model. Most crucial is the presence of harzburgite in the hanging wall, situated 

below a chromite stringer prior to the start of the main ore zone (identified in the 

down hole profile of drill core V05-24). Had melt-rock reaction accounted for the 

formation of the 18 Mt Voskhod chromite deposit it would seem likely that this 

harzburgite unit would have been involved with the melt rock reaction event that 

took place immediately next to chromite forming channel that required additional 

silica to continue precipitation of chromite in each new batch. Nevertheless, the 

addition of silica must be continuous somewhere during the transit to the chamber. 

It could be argued that this harzburgite unit remained unscathed and that it's 

reaction with the melt was not required. However, chromite composition and REE 

data infer otherwise. The chromite in the harzburgite present between the stringer 

and ore zone has Cr# compositions of 0.47 and 0.36. In contrast, harzburgite 

further away from the ore zone, in the hanging wall, has Cr# compositions of 0.23, 

0.33 and 0.36. Given the difference in composition and the proximity to the ore 

body, one possibility is that this section of harzburgite has an altered chromite 

composition that results from buffering  between the boninite melt and the residual 

mantle, however the question still remains why has dunite not formed. 

 

A counter argument may be that the melt has scavenged Cr and SiO2 through melt 

interaction with a distal harzburgite source. However, this theory would put the 

proposed explanation for the formation of the characteristic dunite halo into 

dispute. The dunite halo that shrouds podiform chromitite deposits, is thought to 

form by interaction between the melt and country rock. The dissolution of pyroxene 

phases is deemed to add to the supply of Cr in the melt as well as enhance the 

SiO2 content, so promoting the crystallisation of chromite. Given that it is widely 

noted that the thickness of the dunite halo and chromite deposit size are 

independent of one another, it seems unfeasible to suggest that the dissolution of 

pyroxene from the halo would account for the concentrations present in chromitite. 

However, the increase in SiO2 in the melt from the dissolution of pyroxene could 

initiate chromite crystallisation. The crystallisation of chromite from the melt would 

maintain the silica levels perhaps to those required to sustain chromite 
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crystallisation. In this sense, once chromite crystallisation is initiated (by an 

increase of SiO2 in the melt) the reaction could be self maintaining depending on 

the availability of Cr in the melt and whether or not olivine also crystallises. 

 

It appears that melt-rock reaction is instigated and driven by the presence of a 

hydrous component that leads to changes in the melt which promote the 

crystallisation of chromite 

 

9.3 The Voskhod orebody 

The Voskhod chromite deposit is an elongate, sack-like shape ore body, orientated 

at an oblique angle that narrows (stratigraphically upwards) towards the south 

west. The encompassing harzburgite host lithology, the internal layering of 

chromitite and dunite lenses combined with the chromite composition (ore 

chromite Cr#>0.8) and relative stratigraphic position within the ophiolite sequence 

are features that characterise this deposit as a podiform chromitite. The data 

available on the Voskhod ore body has provided a unique opportunity to study the 

genesis of this massive chromitite deposit, recognised as being one of the largest 

in the world, contributing to the world’s largest podiform chromite ore field, the 

MOF.  

 

9.3.1 The Voskhod orebody: A record of melt migration through 

the mantle.  

Melcher et al. (1997) documents that the MOF chromite deposits (including the 

Voskhod deposit) are concordant, deformed type orebodies (following the chromite 

pod classification of Cassard et al., 1981). Although the majority of the cores 

drilled from the Voskhod deposit were angled perpendicular, the attempts to 

retrieve orientated core by drilling at an oblique angle failed. Consequently, it has 

not been possible in this study to document the relationship between the mineral 

foliation preserved in the host harzburgite and the orientation of the orebody.  

 

Irrespective of the present day orientation of the orebody relative to the host 

mantle harzburgite (reportedly concordant (Melcher et al., 1997) the Voskhod 
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chromite pod would originally have been aligned discordant to the mantle mineral 

foliation (Cassard et al., 1981). It is the effect of tectonic rotation, post formation at 

depth in the mantle, that aligns the pods concordant with the host rock mineral 

foliation (Cassard et al., 1981; Nicolas & Jackson, 1982). This has implications for 

the formation and emplacement of the chromitite pod.  

 

If the Voskhod chromitite pod is considered as a dyke-like structure, as other 

authors have previously proposed podiform chromitite pods to be (e.g. Lago et al., 

1982; Leblanc & Ceuleneer, 1992), then the mechanisms of dyke emplacement in 

the mantle may provide insight into the genesis of these deposits.  

 

The orientation of a mantle hosted dyke preserves the stress field controlling 

deformation (Boudier & Nicola, 1972). Paterson (1978) and Shaw (1980), 

proposed that melts could be extracted from the mantle by high pressure, 

hydraulic fracturing and that this process would create discordant dyke structures. 

Fluid pressure plays a fundamental role in hydraulic fracturing; the greater the fluid 

content of the melt the higher the pressure. High fluid pressures can be achieved 

by melting mantle peridotites (Nicolas & Jackson, 1982). If mantle melting is 

enhanced by the addition of fluids, as is the case in the melting of the mantle in a 

SSZ setting, then the fluid pressure of the melt generated will be greater still. 

Large volumes of melt increase the pore pressure in the peridotite, this eventually 

exceeds the confining pressure (Nicolas & Jackson, 1982) leading to melt 

extraction from the mantle. Melt migration pathways will be orientated 

perpendicular to the direction of principal stress, forming extensional dykes. 

 

The fluid-rich boninite melts generated in the extensional tectonic setting of a SSZ 

fore arc, possess all the attributes that facilitate hydraulic fracturing in the mantle; 

i.e. large volumes of melt and high pressures resulting in the formation of brittle 

fractures in the mantle. The melt migration preferentially focuses along the brittle 

fracture network that is aligned perpendicular to the orientation of principal stress 

(the mantle minerals aligned parallel to the direction of principal stress), forming 

discordantly orientated dykes. The crystallisation of chromite and olivine from the 

melt fills the dyke conduits and forms podiform chromitite. Late-stage plastic flow 

deformation may cause the dykes to become aligned with the peridotite mineral 

foliation, forming concordant chromitite pods (Cassard et al., 1981). 
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Alternatively, in the event that the melt pressure was insufficient to induce brittle 

fracturing of the mantle, it has been proposed that kinked, shear zone regions may 

be exploited by melts percolating through the mantle (Nicolas & Jackson, 1982; 

Python & Ceuleneer, 2003). 

 

 

 

Figure 9.3.1: A 3.D model of the Voskhod chromite deposit 

The red mass identifies the ore body. The blue lines indicate the levels planned for mining. 

Black arrows are drawn to indicate the movement of melt through the region, identifying 

hypothetical entrance and exit points of the melt flow. Image created with Gemcom software 

(Matt Boyes, 2006) using data collected by the author. 

 

The detailed 3.D ore body model generated by block modelling of the drilling data 

provides new information on the structure of chromitite pods (Figure 9.3.1). Such 

regions form sites of focused melt flow during ascent to the crust. The ore body 

morphology of the Voskhod deposit, is interpreted to be a preserved site of 

focused melt flow.  

 

Melt  entrance

Melt exit

Lag in melt flow rate 

creates a melt pocket
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9.3.2 Genesis of ore zone dunite and the dunite halo 

The multiple stacked chromitite lenses that comprise the ore body are separated 

by barren dunite units. It is proposed that the interleaved barren dunite units  

formed from the accumulation of interstitial olivine that was squeezed out from 

between the chromite grains during densification of the chromite. The evidence of 

densification, by a process analogous to sintering, is seen preserved in the 

massive chromite textures i.e. chain textures, grain boundary intergrowths, 

compaction and annealing textures, corrosion features, triple junctions and grain 

boundary voids. These features indicate that an unknown volume of olivine was, at 

one point during the chromitite genesis, present between chromite grains. During 

chromite densification the olivine migrated, becoming physically separated from 

the chromite, a process that could explain the barren ore zone dunite. This 

process may also account, at least in part, for the formation of the dunite halo that 

characteristically surrounds a podiform chromitite. The deposit could be 

considered as being comprised of a series of stacked chromitite lenses, each 

surrounded by a dunite halo and that internally juxtaposing dunite halos form the 

separating ore zone barren dunite intervals.  

 

It is acknowledged that the formation of the dunite halo by melt-rock reaction 

between a percolating melt and the host harzburgite, resulting in the dissolution of 

orthopyroxene and formation of dunite, is also plausible (Quick, 1981; Fisk, 1986; 

Kelemen, 1990; Arai & Yurimoto, 1994; Arai, 1997). However, the proposed model 

that localised high degrees of partial melting of harzburgite during the orebody 

formation (Boudier & Nicola, 1972; Boudier, 1978; Cassard et al., 1981) produces 

the dunite halo is improbable in the case of the Voskhod deposit where the Cr# of 

chromite in the dunite halo reaches 0.76. The degree of partial melting required to 

achieve a Cr# of 0.76 would have to be greater than 40% (Jacques & Green, 

1980). Additionally, if high degrees of partial melting were responsible highly 

depleted LREE profiles would be expected from the dunite halo rocks and these 

are not seen. 

 

The composition of chromite present in the ore zone dunite is the same as that 

comprising the chromitite (ore). These chromites may have crystallised from the 

inter-granular melt. Alternatively the compositions could be achieved by chemical 
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equilibration between interstitial melt and the chromite in the chromitites and 

dunites respectively. In contrast, the peripheral dunite halo chromite has a slightly 

lower Cr# than chromite within the ore body, although the REE and spidergram 

profiles of the dunite halo and ore zone dunite are similar. The chromite 

compositions and REE patterns result from equilibration (or melt-rock interaction) 

between the host harzburgite and small amounts of interstitial melt percolating 

outwards into the wall-rock away from the ore zone (that is the focus of the melt 

pathway). 

 

9.4 Compositional variations in chromite from the ore zone 

Down hole sampling of massive chromite from drill core V05-13 identified 

compositional variations in the chromite. The compositional differences are 

controlled by variations in the MgO%, FeO% and Fe2O3% contents of the 

chromites.  It has previously been documented that within a chromitite ore body 

the chromite composition is essentially homogenous (Golding, 1975; Melcher et 

al., 1997). The findings of this study, in a broad context, support this statement. 

However, the minor variations identified reveal important information on the 

genesis of the chromite.   

 

9.4.1 Massive chromite composition variations 

MgO>FeO(t) Chromite 

The majority of the V05-13 chromites have compositions characterised by MgO% 

being greater than FeO(t)% (classified as MgO>FeO(t) chromites). On the FeO%- 

Fe2O3% diagram these chromites form a negative trend, as FeO% increases 

Fe2O3% decreases. This trend reflects the oxidising conditions that the chromites 

have been subject to during crystallisation. Under more oxidising conditions FeO 

will convert to Fe2O3 to accommodate the increased availability of oxygen present 

in the system, under more reducing conditions FeO is favoured. The oxidising 

conditions are controlled by the chemistry, principally the water content, of the 

melt. Changes at the source of melting resulting from; the introduction of crustal 

contaminants (e.g. continental margin sediment), the dehydration of minerals and 

subsequent production of volatile-rich liquids during slab subduction and/or 
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variations in the degree of partial melting of the mantle, affect the composition of 

the melt formed. In addition, the melt will also inherit chemical signatures from the 

composition of the mantle melted, these are determined by the fertility of the 

mantle being melted, the degree of partial melting and the composition of the 

mantle rock which the melt has percolated through and that is present at the site of 

chromite crystallisation.  

 

The chromites crystallised with greater Fe2O3% compositions, under more 

oxidising conditions, do so from melt pulses that are comparatively more water-rich  

than melts which crystallise chromites with higher FeO% contents (and lower 

Fe2O3% contents). The trend formed by the MgO>FeO(t) chromites is interpreted to 

reflect variations in oxygen fugacity conditions within a melt.  

 

The role of water in a melt is two fold. As stated, it will promote the oxidation of 

FeO to Fe2O3. In addition, water also lowers the SiO2 content of the melt (Wood & 

Fraser, 1984; Lange, 1994; McMillan, 1994; Richet et al., 1996). Lower SiO2 

contents lead to decreased polymerisation of the melt, this increases the 

availability of octahedral sites causing Cr
3+

 to be more soluble and partition into 

the melt (Hess, 1971; 1980; Dick & Bullen, 1984; Murck & Campbell, 1986; Peck & 

Keays, 1990; Melcher et al., 1997; Edwards et al., 2000). Consequently, the 

crystallisation of chromite is inhibited. The retention of Cr
3+

 in the melt results in 

Al
3+

 and/or Fe
3+

 substituting into the chromite lattice.  

 

FeO(t)>MgO Chromite 

In the V05-13 chromite dataset a second chromite group was identified with 

FeO(t)% contents greater than MgO% (FeO(t)>MgO chromites). These chromites 

do not form a trend, but plot scattered away from the main MgO>FeO(t) chromite 

trend to higher FeO% and/or higher Fe2O3% values. The higher iron contents of 

these chromites could result for several reasons; 

 

(i) Subsolidus re-equilibration with interstitial residual olivine 

(ii) Contemporaneous crystallisation of olivine and chromite from the melt 

(iii) The introduction of a new water-rich pulse of melt interacts with a 

comparatively reduced (Fe
2+

-rich) previous melt pulse.  
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(iv) Chromite composition variation resulting from the melt source and/or mantle 

heterogeneities 

 

The rationale behind each of these proposed genesis models follows: 

 

Crystallisation of olivine from the melt increases the Fe
2+

# of the melt and 

consequently the Fe
2+

# of contemporaneously crystallised chromite (Roeder & 

Reynolds, 1991). Two mechanisms are proposed that involve chromite and olivine 

co-existing (i) and (ii).  

 

(i) Subsolidus re-equilibration of chromite with interstitial residual olivine 

It is seen from the OSMA plot that harzburgite and distal dunite olivine Fo contents 

are lower than ore zone dunite olivine Fo contents, which are more magnesium 

rich. From this it is deduced that residual mantle olivine is more fayalitic than 

olivine crystallised from the magnesium-rich boninite melt. Alternatively, it may be 

that olivine is not crystallised directly from the melt, but that in the melt saturated 

region of the mantle (where chromite crystallisation is most intense) the residual 

olivine (around which the melt percolates) equilibrates with the melt. This would 

cause the magnesium content of the residual olivine to increase and the iron 

content of the melt to be increased, owing to the reciprocal exchange of Fe
2+

-Mg 

that occurs during equilibration. Chromite crystallised in the presence of the 

equilibrated melt would be more comparatively iron-rich. Furthermore, this process 

would also account for the higher Fo contents of the olivine present within the ore 

zone. 

 

(ii) Contemporaneous crystallisation of olivine and chromite from the melt 

Similar to the process invoked for the subsolidus re-equilibration with interstitial 

residual olivine, the contemporaneous crystallisation of chromite and olivine will 

have a similar affect on the melt composition. It is possible for the onset of olivine 

crystallisation to drive chromite crystallisation. Crystallisation of olivine lowers the 

SiO2 content of the melt (Murase & McBirney, 1973), causing a decrease in the 

polymerisation of the melt and in turn the number of octahedral sites available to 

accommodate Cr in the melt (Hess, 1971, 1980). Subsequently the solubility of 

Cr
3+

 decreases resulting in the crystallisation of chromite (Dick & Bullen, 1984, 
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Murck & Campbell, 1986; Peck & Keays, 1990; Melcher et al., 1997, Edwards et 

al., 2000). The contemporaneous crystallisation of the two mineral phases, which 

both incorporate Fe
2+

 and Mg into their respective lattice structures, results in 

competition for magnesium as well as to obtain chemical equilibrium. This will 

cause the chromite to have a lower Mg# (be more iron-rich) than if it were the only 

phase crystallising. The increased availability of iron in the melt explains the 

compositions of the FeO(t)>MgO chromites. Furthermore, a hydrous melt would 

promote the oxidation of FeO increasing the Fe2O3 content of the melt, which 

could increase the availability of Fe
3+

 to partition into the chromite lattice. 

 

(iii) Melt mixing: The introduction of a new water-rich pulse of melt interacts with a 

comparatively reduced earlier stage melt.  

This model requires that melt is introduced to the mantle in batches, rather than as 

a continuous flow. If a hydrous (more oxidising, Fe
3+

-rich) melt batch interacts with 

a comparatively reduced (Fe
2+

-rich) melt pulse, the chromite crystallised will have 

higher FeO% and Fe2O3% contents than if chromite crystallised from either of the 

unmixed melts. 

 

(iv) Chromite composition variation resulting from the melt source and/or mantle 

heterogeneities 

A more simplistic explanation for the differences in the FeO and Fe2O3 contents of 

the chromites could result from compositional differences between melt pulses. 

Possible causes of compositional difference include ;  

 the introduction of a crustal component from the subducting slab (Gill, 1981; 

Crawford et al., 1981; Hickey and Frey, 1982; Cameron et al., 1983; 

Tatsumi et al., 1986; Taylor & Nesbitt,1992; Stolper & Newman, 1994; 

Schiano & Clocchiati, 1995; Olive et al.,1997) 

 the addition of fluids, derived from the devolatilisation and melting of 

hydrous minerals (e.g. amphibole) present in the subducting slab to the site 

of mantle melting (Gill, 1981; Pearce, 1982; Saunders et al., 1991; Bédard, 

1999, Page et al., 2009) 

 the melting of heterogeneous mantle (Hart, 1988; Van Keken et al., 2002), 

could feasibly produce melts with varying compositions.  
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Chromite crystallising from and equilibrating with these melts will record the 

chemical difference. The results of sample F1925 help to determine which of these 

genesis models best fits the Voskhod chromite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4.1: FeO% against Fe2O3% annotated with processes that control 

chromite and olivine crystallisation from a melt. 
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Massive chromite grading into disseminated chromite 

The chromites in sample F1925 have FeO(t)>MgO compositions. However, when 

viewed in terms of MgO% and FeO% it is seen that the massive chromite sections 

have MgO% contents greater than FeO and the disseminated chromites have 

FeO% contents greater than MgO%. The change in composition occurs when the 

olivine content increases from 18% to 60%, this happens over a 1 cm interval. 

Simultaneously, the Cr# of chromite decreases with both Cr
3+

 and Al
3+

 decreasing 

as Fe
3+

 increases. The increase in Fe
3+

 implies that the crystallisation conditions 

are more oxidising, indicating a more water-rich melt. As the proportion of olivine 

increases from 60% to 97% the Cr# and Mg# of the co-existing chromite decrease 

(and FeO% and Fe2O3% increase). These observations are consistent with the 

findings of Roeder & Reynolds (1991) that the crystallisation of olivine increases 

the Fe
2+

# of the melt and consequently the Fe
2+

# of contemporaneously 

crystallised chromite. 

 

It is possible that the olivine is residual olivine from the host rocks (proposed 

genesis model (i). The progressive increase in olivine content (into the 

disseminated section of sample F1925) and cessation of chromite crystallisation 

could indicate the limit of melt percolation into the host rock. The absence of clino- 

and orthopyroxene can be explained by melt-rock reaction owing to the presence 

of water in the melt which would destabilise these minerals and at the same time 

increases the olivine stability field (Nicholls & Ringwood, 1973; Kushiro, 1975; 

Ulmer, 1989). The decrease in Mg# of the chromite is the result of equilibration 

between the comparatively iron-rich residual mantle olivine and the magnesium-

rich boninitic melt. Equilibration between the melt and olivine raises the Fe
2+

 

content of the melt at the expense of Mg which is incorporated into the olivine. The 

increase in Fe
2+

 in the melt is recorded in the chromite crystallised (hence 

disseminated chromite has a lower Mg# than massive chromite where no olivine 

was present to alter the melt composition). Furthermore, the increased abundance 

of Fe
2+

 in the melt combined with the oxidising conditions (the presence of water) 

results in Fe
3+

. The increased availability of Fe
3+

 competes with Al
3+

 and Cr
3+

 for 

octahedral sites in the chromite lattice. Consequently, the Fe
3+

 content of the 

chromite also increases. 
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An alternative model is that olivine crystallises from the melt with chromite 

(proposed genesis model (ii). In terms of Fe
2+

-Mg exchange between coexisting 

melt, chromite and olivine phases, and the potential for the oxidising conditions of 

the boninite melt to convert Fe
2+

 to Fe
3+

 that subsequently partitions into the 

chromite lattice, this model is chemically the same as genesis model (i). However, 

there is one observation that this model (ii) satisfies, that genesis model (i) does 

not and that is the notable increase in Fe
3+

 in the massive chromite immediately 

prior to the increase in the modal proportion of olivine. This implies that the 

conditions of chromite crystallisation become increasingly more oxidising prior to 

the onset of disseminated chromite, interpreted to reflect an increase in the 

availability of water in the melt. This would increase the stability field of olivine (and 

suppress orthopyroxene) and consequently promote olivine crystallisation. The 

increase in olivine crystallisation would consume SiO2 from the melt. This would 

reduce the polymerisation of the melt and increase the availability of octahedral 

sites in the melt to accommodate Cr
3+

, causing Cr
3+

 to become more soluble in the 

melt and consequently inhibit the crystallisation of chromite. As a consequence the 

crystallisation of chromite would decrease (Figure 9.4.1). 

 

Although this interpretation does not discredit genesis model (i) it is apparent that 

the observations, both chemical and mineralogical, are better supported by 

genesis model (ii). 

 

The formation of massive chromite 

The crystallisation, or formation, of monomineralic, massive chromite in podiform 

chromitites has been explained by; 

 Cotectic crystallisation of chromite and olivine followed by mechanical 

separation (e.g., Thayer, 1969; Lago et al., 1982).  

 Magma mixing resulting in chromite being the only phase to crystallise (Arai 

and Yurimoto, 1994; Zhou et al., 1996; Zhou and Robinson, 1997). 

 Variations in the oxygen fugacity of a vapour-rich parent melt and volatile-

rich fluids/liquids (Johan et al., 1983; McElduff and Stumpfl, 1991; Melcher 

et al., 1997).  
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 Post-crystallisation densification by a process similar to that of sintering 

resulting in the transfer of interstitial minerals (olivine) away from chromite 

grain boundaries (Golding, 1975; Hulbert & Von Gruenewaldt, 1985). 

 

Proenza et al. (1999) state that coevally crystallised chromite and olivine, which is 

subsequently separated by physical processes, should produce dunite rocks 

containing chromite with the same composition as that in the chromitite. Further to 

this statement it is proposed that massive chromite with chromite compositions 

FeO(t)>MgO (formed when both chromite and olivine crystallise from a melt) results 

from the post-crystallisation separation of chromite and olivine. This being the case 

the question is, where is the olivine now? The mechanism for chromite-olivine 

phase separation is unclear, however some suggestions can be made.  

 

The explanations for massive chromite formation by magma mixing (Arai and 

Yurimoto, 1994; Zhou et al., 1996; Zhou and Robinson, 1997) and vapour-rich melt 

(Johan et al., 1983; McElduff and Stumpfl, 1991; Melcher et al., 1997) propose that 

changes to the composition or oxygen fugacity conditions of the melt result in 

chromite crystallisation. Consequently, this model is not applicable when 

addressing the separation of coevally formed chromite and olivine.  

 

The mechanical separation model (e.g., Thayer, 1969; Lago et al., 1982) 

addresses the requirement of contemporaneous chromite-olivine crystallisation 

from a melt. The process is driven by active melt flow through a conduit as well as 

convection within the conduit resulting in the separation and dispersion of the 

chromite and olivine minerals. The samples analysed were collected from drill core 

where the surrounding three dimensional variations in mineralogy are unknown. It 

is possible that the co-crystallised olivine may be present nearby. 

 

The effect of post-crystallisation densification (Golding, 1975; Hulbert & Von 

Gruenewaldt, 1985) causes the ore to be exposed to high pressures at 

temperatures that are not sufficient to cause melting. The result is that co-

crystallised, interstitial olivine is squeezed out leaving only chromite. Textural 

evidence to support densification is preserved in the textures of the massive 

chromite samples. Furthermore, this model provides an explanation for the 

composition of the FeO(t)>MgO chromites as well as an explanation for the 
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formation of the dunite halo and inter-layered barren dunite horizons present in the 

ore zone (see Section 9.3.2). The near constant trivalent cation geochemistry 

accompanied by the varied divalent geochemistry (changes in Mg#) indicate that 

the geochemical signature of chromite crystallised with olivine has been 

preserved, despite the present mineralogy inferring that only chromite crystallised. 

 

Evidence for fine scale cryptic layering within massive chromite 

The chromite composition of massive chromite sample F1964-65 changed with 

depth. The upper and lower 4 cms of the sample recorded lower FeO% values 

than the middle 5 cms of chromite, where the FeO% was higher (Figure 9.4.4, 

purple squares). When viewed in comparison with all of the massive chromite data 

collected (samples V05-13, F1996-97 and F1925, Figure 9.4.4) it appears that the 

shift to higher FeO% can be explained by a change in the melt conditions towards 

a phase where chromite and olivine crystallised together. In contrast the upper and 

lower 4 cms of chromite crystallised from a melt where less or no olivine was 

contemporaneously crystallising. In terms of the sample mineralogical 

composition, there is no noticeable increase in the olivine content of the middle 5 

cms, meaning that the coevally crystallised olivine has been removed to produce 

the massive chromite (>80% modal chromite) composition seen. 

 

Similar scale, fine cryptic layering has been reported in massive chromite 

segregations from the Bushveld Complex (Naldrett et al., 2009). The layers were 

distinguished between using the Mg#-Cr# diagram and resulted in the identification 

of two compositional trends, termed Trend A and Trend B. These trendlines have 

been annotated on the Mg#-Cr# diagram for the Voskhod massive chromite data 

(Figure 9.4.2). 
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Figure 9.4.2 : Mg# against Cr# for all massive chromite data collected from the 

Voskhod deposit. 

Annotated with trendlines, Trend A  (broken black line) and Trend B (solid grey line) after 

Naldrett et al. (2009). Black arrow indicates the progression of the chromite compositions 

across sample F1925-disseminated chromite. 

 

Trend A was interpreted to form as a result of the equilibration between chromite 

and melt only, while Trend B resulted from equilibration between chromite, melt 

and silicate minerals (namely, olivine and/or orthopyroxene, with/without 

plagioclase). The principal data trend of the Voskhod massive chromites (formed 

by datasets V05-13, F1996-97, and F1925-massive chromite) aligns with the 

orientation of Trend A. This compares favourably with the interpretation presented 
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in this study where it is proposed that these chromite compositions result from the 

crystallisation of chromite only from the melt. Furthermore, it is noted that the 

chromites with lower Mg# values (V05-13 FeO(t)>MgO chromites and sample 

F1964-65) that it is proposed have crystallised out of a melt from which olivine was 

also crystallising, plot nearly parallel to the orientation of the Trend A trendline as 

well. This relationship reflects the preferential cation pairing of Cr
3+

 and Fe
2+

 that is 

complimented by the pairing of Al
3+

 and Mg
2+

 (Henderson , 1975; Henderson & 

Wood, 1981; Barnes & Roeder, 2001; Naldrett et al., 2009) 

 

None of the Voskhod chromite samples align with Trend B, although the chromites 

from the disseminated chromite section of sample F1925 (green squares, Figure 

9.4.2) plot to form a weak negatively correlated trend. The principal control on the 

formation of Trend B requires that a  co-existing trivalent cation-bearing mineral 

(orthopyroxene or plagioclase) is crystallised contemporaneously from the melt 

with chromite. The addition to the chromite crystallising system of a mineral into 

which trivalent cations can partition, introduces another control on the chromite 

composition (the introduction of olivine controls the Mg-Fe
2+

 composition). In the 

case of the Voskhod chromite genesis, no other mineral phase present can 

accommodate trivalent cations and consequently there is no competition for these 

components. As a result, the controls governing the formation of Trend B are not 

applicable to the formation of the Voskhod chromite. Instead, the variation in Cr# is 

interpreted to be controlled solely by the presence of water and the potential this 

has to increase in Fe2O3 in the melt system (which could lower the chromite Cr#). 

Water will also promote olivine stabilisation at the expense of orthopyroxene; an 

increase in olivine would lower the Mg# of chromite. The addition of water alone to 

the system can potentially explain the weak negative trend produced by F1925-

disseminated chromite.  

 

9.4.2 A rationale for the genesis of co-existing MgO>FeO(t) and 

FeO(t)>MgO chromites in massive chromite 

In dataset V05-13, nine samples were found to contain a mixture of both 

MgO>FeO(t) and FeO(t)>MgO chromites. 
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Melt-crystallisation models have been proposed to explain the genesis of each 

chromite group defined (i.e. MgO>FeO(t) and FeO(t)>MgO chromites). The models 

are independent of one another, such that the two types of chromite cannot 

crystallise simultaneously from the same parent melt. Consequently, the 

observation that both types of chromite are present in a single sample (of 

millimetre dimension) requires explanation.  

 

The post-crystallisation densification model does not explain the mixed chromite 

compositions, however, the mechanical separation model can (e.g. Thayer, 1969; 

Lago et al., 1982). It allows for the accumulation of chromite grains some of which 

may have crystallised from melts with olivine. In addition to the chromite and 

olivine minerals separating, it seems feasible that the accumulating chromite 

grains could become mixed together. After all, the region of melt flow is not a 

stagnant environment. This could result in chromite grains crystallised from 

different melt batches to settle in close proximity to one another and become 

mixed. 

 

An alternative explanation centres on subsolidus equilibration and the interaction 

of small quantities of interstitial olivine with chromite grain boundaries. 

 

Subsolidus re-equilibration: Interstitial olivine and chromite grain boundaries 

During post-crystallisation cooling of a system where chromite and olivine coexist, 

subsolidus re-equilibration can take place. When chromite is the dominant mineral 

phase substitution of Mg (from chromite) into olivine occurs at the expense of Fe
2+

. 

Although the effect will be most notable in the composition of the minor mineral 

phase present (i.e. olivine) the process can potentially cause the Mg# of the 

chromite to decrease while the trivalent cations remain essentially unaffected 

(Kamenetsky et al., 2001).  It was stated in the analytical procedure that during 

data acquisition the centre of grains were analysed so as to avoid any grain 

boundary, alteration-induced, compositional variations that might be present. The 

study of the massive chromite textures found small amounts of interstitial olivine 

present between grains, trapped along grain boundaries and as inclusions within 

some grains. Despite the efforts taken to avoid grain boundary edges there is no 

way on knowing the proximity of a grain boundary edge with depth from the 

sample surface. Consequently, it is feasible that some analyses may have been 



Chapter 9: Discussion 

311 

 

acquired from some grains where a sub-surface grain boundary was present and 

where it is possible that subsolidus equilibration could have taken place between 

the trapped olivine and the chromite grain boundary. If this were the case, the 

composition of chromite at the grain boundary edge would be expected to have a 

lower Mg# (Figure 9.4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4.3: A schematic cross section profile of a massive chromite sample 

illustrating the unknown proximity of a grain boundary with depth. 

 

It is not possible to determine whether or not subsolidus re-equilibration at 

chromite grain boundary edges has occurred. However, the process could explain 

the formation of sections that are comprised of mixed FeO(t)>MgO and MgO>FeO(t) 

chromite compositions (as seen in dataset V05-13), in particular when only FeO% 

is increased and Fe2O3% values are maintained in a range characteristic of the 

MgO>FeO(t) chromites. Similarly this mechanism would explain the close proximity 

of the V05-13 FeO(t)>MgO chromites (from mixed chromite composition samples) 
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to the main data trend (formed by the MgO>FeO(t) chromites) on the Mg#-Cr# plot 

(Figure 9.4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4.4: Mg# against Cr# indicating the proposed geochemical change in 

chromite composition resulting from subsolidus re-equilibration between 

chromite with interstitial olivine. 

The coloured triangles correspond to the 9 samples in dataset V05-13 with results of mixed 

FeO(t)>MgO and MgO>FeO(t) chromite compositions. With the exception of sample 292.7, the 

FeO(t)>MgO chromites plot close to the main data trend formed by the MgO>FeO(t) chromites. 

 

Corrosion textures in massive chromite 

Irregular, cuspate grain morphologies present in the massive chromite samples 

are evidence of disequilibrium, indicating that the grains were not in chemical 

equilibrium with the melt, crystallised olivine and/or host rock they were 
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crystallising from and/or within (Chapter 5, Section 5.5.6). Two theories are 

proposed: 

 

1)  It is possible that olivine was not necessarily squeezed out, but could have 

been squeezed in, as a melt from which olivine later crystallised. It is possible that 

a later stage melt could have percolated been between chromite grains before the 

grains had fully consolidated. An influx of new melt of a different composition could 

feasibly be out of equilibrium with the compositions of the chromite grains, 

resulting in the development of the corrosion textures seen. 

 

2)  Is the olivine a product of crystallisation from a melt or a constituent of mantle 

residue host? If it is sourced from the mantle residue then it is feasible that the 

chromite Mg# will be out of equilibrium with that of the mantle olivine. In contrast, 

contemporaneously crystallised chromite and olivine, derived from the same 

parent melt, would be expected to be in equilibrium with one another and corrosion 

textures would not be expected to form. 

 

A proposed source of chromium and other unique conditions that contributed to 

the formation of the Voskhod deposit 

The source of the chromium that has formed the Voskhod deposit is an enigmatic 

point. It seems that to generate the volume of chromite contained in the Voskhod 

pod (18 Mt), (remembering that an additional 220 Mt is present close by in the 

MOF), an extraordinary amount of chromium must first be concentrated in the 

melt. It does not seem realistic for such quantities to have been solely scavenged 

from clinopyroxene present in depleted mantle harzburgite. However, the 

geochemical evidence indicates that the mantle may not have been a depleted 

harzburgite, at least not in the usual sense, given the low Cr# values (0.2) and 

LREE-depleted REE profiles are analogous with fertile mantle lherzolite. Yet the 

modal mineral proportions of olivine, clino- and orthopyroxene are analogous with 

harzburgite. It seems that the contrasting and unusual geochemistry and 

mineralogy is key to understanding the unique processes that resulted in such an 

enormous amount of chromite to crystallise. If an exceptionally water-rich boninite 

melt had percolated through a section of fertile mantle, the unusually high water 

content would be favourable for the destabilisation and dissolution of the pyroxene 

phases, which would be abundant in a fertile mantle section. It is possible that the 
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initial stage did not involve a melt but was a fluid driven event and that the 

resulting chromium-enriched fluid contemporaneously traversed the same conduit 

pathways through the mantle as the boninite melts. This would effectively 

“upgrade” the boninite chromium content.  

 

Also in support of the unique setting conditions required for the genesis of the 

Voskhod deposit, it seems that the melt flow was particularly well focused as 

demonstrated by the change in Cr# from 0.84 to 0.2 over a distance of 142 m. It is 

possible that reports of other high-Cr podiform chromite deposits being set in 

depleted harzburgite result from widespread, diffuse melt percolation. Depleted 

harzburgite host rocks with Cr# of ~0.5 that typically host the high-Cr podiform 

chromitites (e.g. Arai, 1994a) may in fact be an extension of melt percolation 

resulting in melt-rock interaction and the incomplete re-equilibration of residual 

mantle chromite, in mantle regions where melt channel-ways are not well 

established. The typical U-shaped REE profiles of harzburgite rocks support this 

concept. The U-shaped REE profiles resulting from LREE-depletion followed by an 

LREE-enrichment event could be explained by late-stage boninite melt infiltrating a 

mantle residue. The pervasive infiltration of the boninite would also account for the 

widespread intermediate Cr# values that typify depleted harzburgite. A diffused, 

percolating boninite will not crystallise mass concentrations of chromite in localised 

pockets. It is proposed that the low Cr# values seen at Voskhod represent the limit 

of the diffusion of the boninite (and/or melt associated fluids) into the mantle. If this 

scenario is correct, then the intense focused flow of the boninite melt would also 

contribute to the favourable conditions that permitted the crystallisation and 

concentration of chromite that forms the Voskhod ore body.  

 

Conditions that would favour the formation of a large accumulation of chromium-

rich chromite would be: 

 A fertile source from which large amounts of chromium could be 

acquired/extracted. 

 A suitable fluid-rich melt that could accommodate and transport the 

chromium at high concentrations.  

 A source of the fluid-rich melt that could be sustained for a long time period. 

 A localised site where conditions promoted the crystallisation and 

accumulation of chromite.  
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 A focused melt flow, such that melt does not diffuse into the mantle wall 

rock being ‘lost’. 
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10.    Conclusions 

Since the early attempts to develop a podiform chromitite genesis model (e.g. Thayer, 

1964, 1969, 1970; Dickey, 1975; Greenbaum, 1977) to those of more recent times 

(e.g. Rollinson, 2005, 2008; Page & Barnes. 2009; Page et al., 2009; Merlini et al., 

2011) the research conducted frequently propose models substantiated on the basis 

of a relatively one dimensional investigative approach. Studies have been conducted 

to assess the;  

 Ore body chromite compositions 

 Mineralogy inclusions trapped in chromite ores  

 Whole rock geochemistry of the host peridotite and dunite assemblages  

 Mineralogy  and ore textures  

 

The results of each study have provided new insights and developed new concepts 

that have helped to determine the processes responsible for podiform chromitite 

formation. However, as yet, no one study has provided a coherent model to satisfy all 

podiform chromitite deposits. 

 

The samples analysed from the Voskhod deposit ore zone and the hanging wall and 

footwall, form a unique dataset acquired from an orebody that forms part of the 

world’s largest podiform chromitite ore field, the MOF. As part of a world class ore 

field it is likely that the genesis of the Voskhod deposit resulted from unique 

processes. None-the-less, the detailed study of the mantle host-rocks and ores; 

mineralogy, textures, whole rock geochemistry, spatial relationships, as well as grain 

specific chromite and olivine composition studies, combine the approaches taken by 

previous workers to create a genesis model for the Voskhod deposit.   

 

Geological setting, deposit morphology and internal variation 

The Voskhod deposit is a podiform chromitite deposit hosted in the upper mantle of 

the Kempirsai Massif. The mantle host lithologies are dominantly comprised of fertile 

MOR harzburgite and depleted harzburgite that has undergone between 15-18% 

partial melting. Dunites (termed distal dunites) are also present in the hanging wall 
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and foot wall units. These possess a transitional MOR-SSZ setting geochemical 

signature the result of mantle that has interacted with MORB and boninite melts. 

 

The ore body has an elongate, kinked, pod morphology that narrows at either end. It 

is orientated at ~35°, being closest to surface in the south west, deepening to the 

north. The internal structure of the ore body is comprised of a series of stacked 

chromitite lenses. In some cases these appear to be interconnected forming a 

chromitite network. Chromitite lenses are separated by barren or weakly mineralised 

intensely serpentinised dunite units. The style of chromite mineralisation varies, 

massive chromite is most prevalent at the centre and to the north of the ore body 

where layers of massive chromitite (>80% chromite) reach up to 45 m in thickness. To 

the south of the centre and south west mineralisation is less intense; lenses become 

thinner and are often comprised of disseminated chromite. 

 

Chromite grain morphologies 

The holly-leaf shape and subidiomorphic chromite grain morphologies indicate that 

the most recent chromite and melt interaction event did not reach equilibrium. These 

grain shapes are found in the hanging wall and footwall host harzburgite and distal 

dunite units where evidence of MORB and SSZ melt percolation is recorded.  

 

Euhedral grains are found in the dunite halo and ore zone. The shape is consistent 

with full equilibration between melt and residual chromite. Alternatively these grains 

may have crystallised directly from the melt. A SSZ melt signature is recorded in the 

composition of these chromites. It is not feasible for the exceptionally large volume of 

chromite that comprises the ore body to have formed from equilibrated residual 

chromite, rather the ore zone chromite has crystallised directly from the SSZ melt. 

 

Whole rock geochemistry 

REE profiles indicate that the host units have been subject to multiple melt (and or 

fluid) events which caused element mobilisation. The first phase resulted in the 

depletion of the host rocks forming LREE-depleted profiles, this event is associated 

with partial melting of the mantle. The second, a later stage event, resulted in 

refertilisation of the mantle by a LREE-enriched boninite melt. There is some 
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indication that there has been a late stage fluid remobilisation event, this would have 

occurred during ophiolite emplacement. However, the evidence to support this theory 

is inconclusive. 

 

Spider diagrams show the Voskhod host and ore zone rocks have strong positive Ba, 

Nb-Ta (±Th), Zr-Hf signatures. The Nb-Ta (±Th) and Zr-Hf positive anomalies are 

independent of one another; each signature is the result of a different melt or fluid 

event, neither is associated with LREE-enrichment or LREE-depletion. The Nb-Ta 

(±Th) and Zr-Hf anomalies are identical to those identified of the TMO Quebec, 

Canada (Page et al., 2009). In addition, comparison of the TMO boninites with the 

TMO mantle rock signatures and the Voskhod mantle rocks with the BBC boninite 

signatures shows remarkable similarities. It is thought that the BBC boninites are the 

surface expression of the boninite melt which when percolating the upper mantle 

formed the Voskhod podiform chromite. The anomalous trace element signatures are 

attributed to the addition of a continental margin derived sediment contaminant at the 

site of melting. It is proposed that the addition of fluids or water associated with the 

sediment component have enhanced the melt’s capability to carry chromium. 

 

Tectonic evolution recorded  by the Voskhod host and ore rocks 

A complex tectonic evolution is evident from the multiple geochemical signatures 

recorded in the host harzburgite and dunite rocks. These are interpreted to result from 

subduction beneath an oceanic ridge system, i.e. the initiation of subduction along a 

transform fault (Meijer, 1980). In this scenario boninite melts would have formed when 

slab-derived fluids percolated the former MOR spreading region while a MORB-type 

geotherm was still present, causing shallow melting of a refractory source. This model 

explains the presence of: 

 

i) Residual-MOR harzburgite; the result of dry partial melting of a fertile 

mantle source. This is remnant of the uprising mantle diapir that formed 

during the opening of the palaeo-Uralian ocean basin, marking the 

transition from a passive continental margin to a mid ocean ridge setting. 
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ii) MOR-reacted dunite; MORB melt-rock reaction pathways that are the 

remnant conduit feeders previously supplying the mid ocean ridge 

spreading site in the palaeo-Uralian ocean basin.  

iii) SSZ-reacted harzburgite and dunite; record a boninite melt-rock reaction 

pathway. The initiation of subduction instigated by the onset of the palaeo-

Uralian ocean basin closure resulted in hydrous melting of the depleted 

mantle. This formed boninite melts that ascended and erupted in a forearc 

setting. The BBC boninite lavas are the preserved crustal expression of the 

erupted boninite melts. The forearc was the tectonic setting precursor to 

the development of the Magnitgorsk island arc. 

 

A modern day tectonic setting which is analogous to that recorded by the Voskhod 

deposit and its surrounding host rocks would be the Conical Seamount in the Izu-

Bonin-Mariana forearc system (Pearce et al., 2000). It is a site where reaction 

between a mantle residue of ~15% partial melting and a boninite melt is taking place.  

 

Conditions required for the formation of a super-sized podiform chromitite deposit 

A boninite melt enriched with fluids, contaminated by distal continental margin 

sediments, provided the source of chromium that formed the deposit. The continental 

margin sediment component may well have contributed significantly to enhancing the 

chromium content of the melt. Boninites are typically water-rich melts and high water 

contents are favourable for the transport of chromium in the melt promoting chromium 

solubility. The initiation of orthopyroxene dissolution, induced by the reaction between 

water and the mantle, would have increased the SiO2 content of the melt and caused 

a reduction in the number of octahedral sites available in the melt to accommodate 

chromium. Consequently chromite crystallised. 

 

To form an 18 Mt chromite deposit where the average Cr2O3% composition of 

chromite is ~ 58% Cr2O3%, not only must the chromium concentration of the melt be 

high, exceptionally large quantities of melt are also needed. This is likely to have been 

achieved by a long lived subduction event. The hydrous nature of the boninite melt 

resulted in high fluid pressures in the melt that exceeded the confining pressure of the 

mantle rock. The high pressure difference led to hydraulic fracturing and brittle failure 
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of the mantle creating a conduit pathway that the boninite melt exploited and migrated 

through. This conduit must have been open and subjected to large volumes of melt 

through-flow, without redirection, to allow such massive volumes of chromite to 

accumulate in one place. The short distance (142 m) between the ore zone and 

occurrence of residual MOR harzburgite indicates that little melt was lost from the 

melt conduit by outward melt percolation into the wallrock. This is additional evidence 

of the contrasting pressure difference between the melt and the host mantle.  

 

A theory to explain the genesis of massive chromite 

The study of massive chromite identified two chromite groups on the basis of MgO 

and FeO(t) contents termed MgO>FeO(tot) and FeO(tot)>MgO chromites. The 

MgO>FeO(t) chromite composition was dominant throughout the 45 m V05-13 drill 

core section, while FeO(t)>MgO chromite was identified at irregular intervals. The 

FeO(t)>MgO chromites occurred either as a single anomalous grain within a sample 

otherwise comprised of MgO>FeO(t) or as the composition of all three grains analysed 

in a sample. The MgO>FeO(t) chromite forms when chromite is the only phase 

crystallizing from a melt. In contrast, the FeO(t)>MgO chromites form from another 

process involving the co-existence of olivine, either by contemporaneous 

crystallisation of olivine with chromite from the melt, or as a re-equilibration effect 

resulting from the interaction of chromite grain boundaries and small amounts of 

interstitially trapped olivine. The olivine involved in the latter scenario may either have 

crystallised contemporaneously from the melt with chromite, or alternatively be olivine 

from the mantle that was interstitially trapped between crystallising chromite grains 

during melt percolation. FeO(t)>MgO chromites that crystallised with olivine from a 

melt have lower Mg# than chromite that re-equilibrated with interstitial olivine. 

 

The formation of FeO(t)>MgO massive chromite (that is interpreted to have crystallised 

with olivine from the melt) is explained to result either from mechanical sorting (by 

models such as that proposed by Lago et al. (1982) or, and the more favourable 

explanation, by the densification of chromite (Golding, 1975). Densification occurs as 

a post crystallisation process, similar to sintering, which results in the separation of 

the olivine and chromite phases. Olivine is effectively squeezed out from between the 

chromite grains and relocated away from the chromite. The separation of olivine by 



 

Conclusions 

321 

 

this process explains the inter-layered barren dunite intervals that exist between the 

mineralized chromitite horizons, as well as possibly contributing the formation of the 

dunite halo. The interpretation is supported by the evidence of densification features; 

e.g. grain boundary merger, annealing textures, chain textures and olivine filled micro-

voids along chromite-chromite grain boundaries that are seen in the massive chromite 

sections. 

 

Fine scale cryptic layering 

There is some indication that fine scale layering (4-5 cm scale layers) has been 

preserved in the chromite (sample F1964-65), however further work is required to 

substantiate this as the evidence to date is limited. 

 

Grading from massive chromite to disseminated chromite: Changes in melt conditions 

Grading from massive chromite into disseminated chromite is driven by the addition of 

water-rich fluids to the melt. This results in the destabilisation of orthopyroxene, the 

stabilisation and crystallisation of olivine from the melt. The SiO2 content of the melt is 

lowered, reducing the polymerisation of the melt and increasing the availability of 

octahedral sites in the melt that accommodate chromium. Consequently chromium is 

retained in the melt, chromite crystallisation is inhibited and the modal chromite 

content decreases. For contemporaneous chromite and olivine crystallisation to be 

sustained the abundance of chromium in the melt must exceed the ability of the melt 

to carry incorporate chromium, so forcing chromite to crystallise. This might be 

achieved by fluctuations in the introduction of water-rich melt pulses.  
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Sample Preparation of powders 

 

Rock samples collected from the Voskhod drill core were prepared following 

the standard procedures of the analytical geochemical facilities at Cardiff 

University during 2008-2010. Specimens weighing between 100 – 150 g were 

cut to size, weathered surfaces and vein material was removed using a 

diamond saw. The specimens were crushed to chip size using a clean steel 

jaw crusher and then milled to a fine powder using an agate planetary ball mill. 

The powders produced were collected and stored in clean plastic bags. 

 

Loss on Ignition (LOI) analysis 

Of the powders produced approximately 2g was placed in a small ceramic 

crucible and heated for two hours in a muffle furnace at 900°C to drive off 

volatiles, CO2 and H2O. After 2 hours the sample residues were removed from 

the furnace, allowed to cool and re-weighed to calculate the loss on ignition 

(LOI). The ignited powders were placed in sealed plastic bags and stored in a 

desiccator.  

 

The LOI was calculated using the equation 

 

LOI (wt.%) = 100 x (Mass of wet powder-Mass of ignited powder)/Mass of wet powder 

 

The process of heating in the furnace resulted in all iron being oxidised from 

Fe2+ to Fe3+ hence all iron in analyses obtained from the ignited powders was 

reported as Fe2O3.  

 

Sample preparation for dissolution of peridotites by LiBO2 fusion: 

1 – 0.1 g (± 0.001 g) of the ignited sample was mixed with 0.6 g (± 0.005g) of 

lithium metaborate flux (Alfa Aesar Spectroflux 100B) in acid washed platinum-

rhodium crucibles. 

2- 10-15 drops of lithium iodide wetting agent (20% vol LiI) was added to the 

sample/flux mixture. 
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3- The crucibles were then placed on a Claisse FLUXY automated fusion 

system and heated at 900°C over a propane burner fusing the sample/flux 

mixture. 

4- After fusion the melt was poured into a 250 ml Teflon beaker containing 30 

ml of 10% HNO3 and 20 ml 18.2 MΩ deionised water. 

5- The solution was stirred on a hotplate using a magnetic stirrer until the entire 

fused glass sample dissolved. 

6- The resulting clear solution was spiked with 1ml of 100 ppm Rh solution as 

an internal standard. 

7- Using deionised water (18.2 MΩ) the solution volume was made up to 100 

ml. 

Certified reference materials JB-1A and BIR-1 as well as a blank were 

prepared and run with each round of analyses. These samples were used for 

calibration and monitoring data quality. 

 

Analysis of fusion solutions on ICP-OES 

 

The major element components (Si, Ti, Al, Fe, Mn, Mg, Ca, K, Na and P 

reported as oxides wt %) and minor elements (Sc, V, Cr, Co, ni, Cu, Sr, Zr, Y 

and Ba reported as elements in ppm) were measured using the Jobin Yvon 

Horiba ULTIMA 2 ICP-OES instrument at Cardiff University operated by Dr. I. 

McDonald and Dr. L. Woolley. 

 

Calibration was performed using a procedural blank and solutions of the 

international certified materials JB-1A and BIR-1. The addition of 1 ppm Rh 

spike to the fusion solution was used as an internal standard to allow for 

correction of drift over the course of the run. Analysis of JB-1A solution was 

repeated every 6 unknowns as an external check on instrumental drift and 

corrected by interpolation. Each analysis of a solution was the average of 3 

repeat measurements of intensity from which the standard deviation was used 

to calculate the limits of detection and quantification. Accuracy was assessed 

by routine analysis of certified reference materials JB-1A (basalt) and BIR-1 

(peridotite) as unknowns.  
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Analysis of Fusion Solutions by ICP-MS 

The rare earth elements (REE), Ti, V, Cr, Mn, Co, Fe, Ni, Cu, Zn, Ga, Rb, Sr, 

Y, Zr, Nb, Ba, Hf, Ta, Pb, Th and U were analysed on the Thermo Elemental X 

Series (X7) ICP-MS system at Cardiff University, operated by Dr. I. McDonald. 

 

The same rock solutions including standards and blanks used in calibration 

and monitoring, that were used for the ICP-OES were diluted for the ICP-MS 

using 1 ml of a Rh spike was added as an internal standard to 1 ml of sample 

solution to correct for instrumental drift at high masses. This was diluted with 8 

ml of 2 % HNO3 to produce a working volume of 10 ml solution, calibration was 

performed using the procedural blank reference materials, BIR-1 and JB-1A. 

Analysis of solution X was repeated every six unknown analyses as an external 

check on instrumental drift. Each analysis of a solution was the average of 4 

repeat measurement of counts per second from which the standard deviation 

was used to calculate limits of detection and quantification (see section X). 

Accuracy was assessed by routine analysis of certified reference materials JB-

1A (basalt) and BIR-1 (peridotite) as unknowns.  
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Procedure: SEM analysis 

 

The 46 chromite samples selected were analysed at Cardiff University using an 

analytical LEO S360 scanning electron microscope (A-S.E.M) using wave-

dispersive (W.D) analysis.  

 

The A-SEM comprises; a Cambridge Instruments (ZEISS SMT) LEO S360 

scanning electron microscope, an Oxford Instruments INCA ENERGY X-ray 

analyser, for energy dispersive X-ray analysis (EDX) and an Oxford Instruments 

INCA WAVE X-ray analyser, for wave dispersive X-ray analysis (WDX).  

 

Registered standards (No. 2399) from Micro-Analysis Consultants Ltd. provided a 

range of natural and artificial standards used to calibrate the SEM. A cobalt 

standard was used for quantitative optimisation to correct for machine drift. When 

conducting W.DX analysis an automated screen prompt from the INCA software to 

quantitatively optimise appeared every 20 minutes. Additionally when changing 

between samples quantitative analysis was carried out on the cobalt standard.  

 

During quantitative optimisation a count time of 70 s was selected and a dead time 

of 40-45% was run. The major and minor element compositions of the chromite 

samples were determined using in-situ microbeam techniques. Major elements Cr, 

Al, Fe and Mg and trace elements Ti, V, Mn, Co, Ni and Zn were analysed by 

WDX with count times of 20 s and an additional 15 s background count. Chromites 

were analysed using an electron gun to generate an electron beam. The electron 

beam was accelerated to 20 kV, having a 20 nA beam current and a uniform beam 

diameter (approximately 10-15 nm). Result totals exceeding 100  1.0 % were 

discarded. 
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Procedure: Standard EMP 

Chromite and olivine were analysed for the major and minor element compositions 

using a wavelength dispersive electron microprobe on the three – spectrometer 

CAMECA SX50 at the Open University, Milton Keynes. Samples were analysed 

with a 15kV accelerating voltage, 20nA beam current and a fixed beam size of 

approximately 1µm. Calibration was carried out on metals (Cr, Fe, Ti, V, Mn, Ni 

and Zn), synthetic oxides (Al2O3, Cr2O3 and Fe2O3). Counting times for the 

analysis of chromite were 15s for Si, Fe, Mg, Al, Cr, Ni, Mn and Zn. The analysis of 

the minor element Ti, integral to the study and work of this chapter, was analysed 

for a longer count time of 50s. The detection limit was 0.02 wt %.  

 

PAP Φ – ρ – Z corrections were used in the data reduction (Pouchou & Pichoir, 

1991). FeO and Fe2O3 in chromite were determined using the charge balance and 

stoichiometry calculations of Carmichael, 1967. 

 

The standard EMP procedure was carried out on 3 chromites and 3 olivines per 

sample to enable oxygen fugacity and Cr# values to be calculated and an average 

value obtained for each slide. 

 

Oxygen fugacity: detailed procedure for accurate ferric iron 

 

The method for determining oxygen fugacity (fO2) from chromite in this study 

follows the procedure employed by the authors whose data are used to define the 

discrimination fields MOR, arc and SSZ peridotites in Chapter 6 (i.e. Bryndzia & 

Wood, 1990; Parkinson & Pearce, 1998; Parkinson & Arculus, 1999; Pearce et al., 

2000). This ensures that the data from this study is directly comparable to their 

data. 

 

Oxygen fugacity (fO2) was determined from the Fe
2+

-Fe
3+

 equilibria between 

olivine, orthopyroxene and spinel based on the reaction 6Fe2SiO4 + O2 = 3 

Fe2Si2O6 + 2Fe3O4. Oxygen fugacity is presented as ∆log fO2(FMQ), which refers 

to the deviation from the quartz-fayalite-magnetite (QFM) buffer at a specified 

temperature and pressure and is expressed in log units. Temperatures are 

calculated using the Fe-Mg olivine spinel exchange thermometer of Ballhaus et al. 
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(1991). The lack of a suitable barometer for spinel peridotites means that 1GPa 

was used in the calculation following Parkinson and Pearce (1998) and Parkinson 

& Arculus (1999). Calibrations using ol-opx-sp equilibria (Nell & Wood, 1991) and 

ol-sp equilibria (Ballhaus et al., 1991) five fO2 values within 0.2-0.3 log units of 

each other (Parkinson & Arculus, 1999). The calibration of Ballhaus et al. (1991) 

was used in this study so that it could be applied to both harzburgite and dunite 

samples. 

 

Accurate and precise determination of ferric iron content of chromite is required to 

calculate fO2. This was achieved using the method of Wood  & Virgo (1989) which 

is based on chromite standards that have well characterised Fe
3+

/ΣFe ratios (by 

Mossbauer spectroscopy) to correct the EMP data. Wood & Virgo (1989) argue 

that ferric iron concentrations calculated by EMP analysis using charge balance 

and assuming spinel stoichiometry is not accurate enough for fO2 calculations 

because they are sensitive to errors in Al2O3 in the spinel analyses. Wood & Virgo 

(1989) utilise the systematic errors imparted by Al2O3 on the calculated Fe
3+

/ΣFe 

ratios are the basis for a correction scheme for EMP analyses. The difference 

between Fe
3+

/ΣFe measured by Mossbauer and Fe
3+

/ΣFe measured by electron 

microprobe is proportional to the Cr# of chromite. Thus, using secondary 

standards (analysed by Mossbauer) allows an effective correction of the spinel 

ferric iron contents and results in a consistent data set of chromite analyses (e.g. 

Wood & Virgo, 1989; Parkinson & Arculus, 1999). 

 

This detailed procedure for fO2 of chromite was carried out on 3 chromites and 3 

olivines per sample for precise determination of ferric iron. The resulting dataset 

was corrected using the secondary internal natural standards with known Fe
3+

 

contents from Mossbauer analysis (Wood & Virgo, 1989) and three additional 

samples (Pearce samples that had been previously analysed). The Cr-rich 

standards plot on the same trend as that defined by the Wood & Virgo (1989) 

standards. These standards were analysed 10 times each at the start and end of 

each run to correct the EMP data collected from that analytical session. Typical 

errors in fO2 calculations are given in Parkinson & Arculus (1999). 
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Laser Ablation Induced Coupled Plasma Mass Spectroscopy 

The laser ablation induced coupled plasma mass spectroscopy (LA-ICP-MS) 

methodology implemented follows the procedure of Dare et al., 2008. 

 

The chromites were analysed for Al2O3, TiO2, Cr2O3, V, FeO, Co, Ni, Zn and Ga by 

LA-ICP-MS using a New Wave 213 nm UV laser at Cardiff University and matrix-

matched chromite standards. Isotope 
71

Ga has been documented (Dare et al., 

2008) to provide relatively interference free data and is preferential to use over 

isotope 
69

Ga. The isotopes Mg
24

, Al
27

, V
51

, Cr
53

, Co
59

, Ni
60

 and Zn
66

 were also 

measured to establish the chromite compositions of the grains analysed to could 

be monitored  throughout the analysis of Ga and compared with the SEM and 

EMP data collected. Ablation of the chromites was undertaken at 15 Hz using 

helium in the sealed laser cell. The vapour produced was combined with argon 

prior to delivery into the ICP-MS. Time intervals of 250 ms were allowed for data 

acquisition in the time-resolved analysis (TRA) mode. The ablation process was 

initiated with a 20 s measurement of the gas blank prior to a 50 s interval of 

sample ablation by rastering along a line (40 µm wide, 10 µm deep and ~ 250 µm 

long) instead of spot analysis.  

 

Each run analysed 6 unknown samples. Three grains from each sample were 

analysed (the same three grains had been analysed using the EMP) and one line 

per grain was analysed. Typically two runs were conducted daily. Following 

background correction of the data, the average signals were normalised to Mg, 

which had previously been analysed for, in each grain, using the EMP analytical 

method. This enabled differences in the absolute amount of material ablated and 

transported during individual analysis to be corrected for. 
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Appendix B 

Drill Core Logs 
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Drill core log V06-48 

Drill Core V06-48

From To Rep (m) Rec (m) Litho code Min Code Description
0.00 0.20 0.20 0.20 OVB Dark brown TOPSOIL, with rootlets.

0.20 1.80 1.60 1.40 OXY
Pale yellowish-brown, becoming greenish-brown weathered CLAY, with minor 

weathered rock/rubble fragments.

1.80 6.20 4.40 3.80 AHRTZ
Pale brownish-green weathered AHRTZ/HRTZ, with extensive fracturing 

along whitish lizardite stockwork veins.

6.20 7.30 1.10 0.85 FZ AHRTZ/HRTZ, as above - rubble zone.

7.30 15.30 8.00 7.30 AHRTZ

Generally pale brownish-green, with occasionally dark grey patches, 

AHRTZ/HRTZ, with relict rounded porphyroblastic texture.  Whitish lizardite 

stockwork veins, up to 8mm thickness, very strongly fractured.  Occasionally 

broken entirely to rubble.

15.30 26.60 11.30 9.80 AHRTZ/FZ
As above, almost entirely reduced to rubble - fault zone?  More intact 

between 16.2-16.8m, 20.7-21.1m, 21.5-22.0m, and 23.5-24.0m.

26.60 32.50 5.90 5.80 AHRTZ

Generally pale brownish-green, with occasionally dark grey patches, 

AHRTZ/HRTZ, with relict rounded porphyroblastic texture.  Whitish lizardite 

stockwork veins, up to 8mm thickness, strongly fractured with occasional 

rubble.

32.50 39.20 6.70 6.50 AHRTZ/FZ
As above, almost entirely reduced to rubble - fault zone?  More intact 

between 33.6-34.6m, 34.9-35.5m, 37.0-37.6m, and 38.2-38.4m.

39.20 64.00 24.80 22.00 AHRTZ
AHRTZ as above, very strongly fractured/broken, ~50% rubble.  [About 50% 

of core is rubble between 1.6-64.0m, rest is very strongly broken].

64.00 94.20 30.20 26.30 PDUN

Sharp weathering transition into dark greenish-black porphyroblastic PDUN, 

with about 2-10% porphyroblasts (variable).  Irregular whitish lizardite/pale 

green serpentine veins/veinlets throughout.  Core is quite strongly broken 

between 75-90.5m (possibly drilling-induced?).  

94.20 96.50 2.30 2.10 SDUN As above, more serpentinised, dark greenish-grey colour.

96.50 101.00 4.50 3.90 PDUN

Dark greenish-black porphyroblastic PDUN, with about 2-10% porphyroblasts 

(variable).  Irregular whitish lizardite/pale green serpentine veins/veinlets 

throughout.  

101.00 103.65 2.65 2.45 SDUN As above, more serpentinised, dark greenish-grey colour.

103.65 120.80 17.15 15.70 PDUN

Dark greenish-black porphyroblastic PDUN, with about 2-10% porphyroblasts 

(variable).  Irregular whitish lizardite/pale green serpentine veins/veinlets 

throughout, occasional bleaching around veins.  

120.80 122.75 1.95 1.55 SDUN As above, more serpentinised, dark greenish-grey colour.

122.75 143.20 20.45 18.10 PDUN

Dark greenish-black porphyroblastic PDUN, with about 2-10% porphyroblasts 

(variable).  Irregular whitish lizardite/pale green serpentine veins/veinlets 

throughout, occasional bleaching around veins.  Strongly broken to rubble 

between 133.7-136.3m.  With gradual loss of porphyroblasts grades into…

143.20 159.55 16.35 14.50 CDUN

Quite massive dark greenish-black serpentinised CDUN, with relatively few 

porphyroblasts, but patchily more porphyroblastic.  Minor whitish lizardite/pale 

green serpentine veins/fractures.  151.2-153.7m : quite fractured, altered to 

paler greenish-grey colour (possible FZ?).

159.55 168.50 8.95 8.20 HRTZ

In places very coarsely porphyroblastic HRTZ, porphyroblasts up to 10-30mm 

in size, up to 50% in places, sometimes showing shearing? alignment at 

about 45o to core.  Pale green serpentine veinlets, with associated wallrock 

bleaching/serpentinisation.  Grades into less porphyroblastic…
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Drill Core V06-48

From To Rep (m) Rec (m) Litho code Min Code Description

168.50 185.40 16.90 15.40 PDUN

Finer-grained, quite massive, dark greenish-black PDUN, 0-5% 

porphyroblasts.  Minor whitish lizardite and veins/veinlets/fractures and pale 

apple green serpentine veinlets.  Occasional rubbly zones.

185.40 191.10 5.70 5.20 CDUN

Transition to dark greenish-black strongly serpentinitic CDUN.  Minor whitish 

lizardite and veinlets/fractures and pale apple green serpentine veinlets.  

Rubble zones at 187.1m, 189.2-189.6m, paler greyish-green, altered 

between 188.5-189.6m (FZ?).

191.10 193.60 2.50 1.80 FZ
Rubble zone - FZ?  Broken CDUN, as above, pale greenish-grey, 

serpentinised in places.

193.60 199.00 5.40 4.95 CDUN

Dark greenish-black strongly serpentinitic CDUN.  Minor whitish lizardite and 

veinlets/fractures and pale apple green serpentine veinlets.  Rubble zones 

(possibly drilling -induced?) at 194.2m, 197.6-198.2m.

199.00 201.40 2.40 2.20 FZ

Weakly to moderately weathered rubbly CDUN, more intact between 199.2-

200.2m.  Biotite (possible bronzite?) on undulating, slickensided, serpentine 

fractures.  Sheared hangingwall contact to mineralisation.

201.40 201.80 0.40 0.35 MCR Moderately weathered MCR : brown, reasonably intact

201.80 201.95 0.15 0.15 CDUN Dark greenish-black, very serpentinised SDUN.

201.95 204.30 2.35 2.15 OCR

Variable zone of mostly OCR - rounded 1mm diameter grains in whitish/pale 

green serpentine matrix.  Some lenses of MCR, with about 90% chromite; 

gritty/powdery PCR; and quite fresh SDUN.  Partially weathered to clay in 

places.  A few white lizardite veins throughout.

204.30 204.90 0.60 0.60 SDUN Dark greenish-black, very serpentinised SDUN.

204.90 205.75 0.85 0.81 OCR

Variable zone of mostly OCR - rounded 1mm diameter grains in whitish/pale 

green serpentine matrix.  Some lenses of MCR, with about 90% chromite, 

which are about 60% weathered to gritty/powdery PCR; and some quite fresh 

SDUN.  Partially weathered to clay in places.  A few white lizardite veins 

throughout.

205.75 214.95 9.20 8.75 TDUN

Dark greyish-green fine-grained serpentinised DUN, quite massive.  Virtually 

no lizardite or serpentine veining.  Minor anastomosing chlorite veinlets - 

typical of TDUN.  Patchily more serpentinised to a paler green colour.

214.95 215.80 0.85 0.85 ADUN Pale green bleached/altered TDUN, as above, with chlorite veinlets.

215.80 219.75 3.95 3.65 TDUN

Dark greyish-green fine-grained serpentinised DUN, quite massive.  Virtually 

no lizardite or serpentine veining.  Minor anastomosing chlorite veinlets - 

typical of TDUN.  Patchily more serpentinised to a paler green colour.  217.2-

217.65m : FZ, broken, rubbly, bleached, some clay gouge.

219.75 222.40 2.65 2.25 OCR

Sharp contacts to variable zone of mostly OCR - rounded 1mm diameter 

grains in whitish/pale green serpentine matrix.  Some lenses of MCR, with 

about 90% chromite; these zones about 30% weathered to gritty/powdery 

PCR.  Partially weathered to clay in places.  A few white lizardite veins 

throughout.  Zone very broken and rubbly.

222.40 225.50 3.10 2.75 TDUN

Quite broken, dark greenish-black serpentinised TDUN.  Moderately altered.  

Fractured, with minor white lizardite, and pale apple green serpentine filled 

micro-fractures.  

225.50 226.30 0.80 0.65 TDUN VCR
Quite strongly altered TDUN, as above, with veins/aggregates of brown 

weathered chromite.  Some minor disseminated and 'ryabchik' textured DCR.

226.30 227.30 1.00 0.85 PCR
Weathered brown PCR, about 25% grit, ~75% fine-grained powder.  Intact 

core in places.

227.30 231.05 3.75 3.35 OCR
Quite massive OCR, with specular chromite grains in fine-grained pale green 

serpentine matrix.  229.0-229.3m : lens of TDUN.

231.05 231.70 0.65 0.60 TDUN Massive dark greenish-black TDUN, with anastomosing chlorite veins. 

231.70 242.10 10.40 9.40 OCR

Quite massive OCR, with specular chromite grains in fine-grained pale green 

serpentine matrix, in places almost lensoidal/vein-like in form.  Occasional 

minor PCR grit/powder, and lenses of TDUN.  Grades into...

242.10 244.70 2.60 2.25 TDUN VCR
Massive green TDUN, with anastomosing chlorite veins.  Chromite 

veins/aggregates decreasing towards the base of the interval.

244.70 246.40 1.70 1.65 TDUN VCR
Massive green TDUN, with anastomosing chlorite veins.  Only minor chromite 

veins/aggregates.
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246.40 248.80 2.40 2.20 BX

Massive green TDUN, with anastomosing chlorite veins.  In places quite 

strongly brecciated, with dark green chloritic matrix infill between wallrock 

fragments.

248.80 271.50 22.70 20.90 TDUN

Green to dark greenish-black serpentinitic TDUN, with minor chlorite veining.  

Weak brecciation between 251.0-251.5m.  Minor VCR/DCR aggregates at 

259.5-259.7m, 260.6-260.8m, and  267.2-267.4m.

271.50 285.30 13.80 12.30 OCR

Generally quite massive OCR, as above.  Rounded ~1mm grains in fine-

grained white/pale green serpentine matrix.  Rubbly in places with very 

limited PCR grit/powder, <5%.  Sharp hanging and footwall contacts.  Very 

occasional fracture-controlled lenses of unmineralised TDUN.  Relatively 

minor white lizardite filled fractures.

285.30 290.10 4.80 4.45 TDUN

Green massive TDUN, with chlorite veining.  Minor pale apple green 

serpentine veining, and whitish lizardite veining/fractures.  Small OCR 

aggregate at 289.5m.

290.10 297.00 6.90 6.55 OCR

Generally quite massive OCR, as above.  Rounded ~1mm grains in fine-

grained white/pale green serpentine matrix.  Rubbly in places with very 

limited PCR grit/powder, <5%.  Sharp brecciated footwall contact into 

unmineralised TDUN.  Very occasional fracture-controlled lenses of 

unmineralised TDUN.  Relatively minor white lizardite filled fractures.

297.00 301.55 4.55 4.10 TDUN

Green massive TDUN, with chlorite veining.  Minor pale apple green 

serpentine veining, and whitish lizardite veining/fractures.  Strongly 

fractured/brecciated in places with chloritic fracture infill.  Small VCR/DCR 

aggregate at 299.5m.

301.55 303.15 1.60 1.30 BX
Zone of strongly brecciated TDUN.  Dark green chloritic infill, and well 

developed clay gouge in places.

303.15 316.00 12.85 12.45 TDUN
Massive green to dark greenish-grey TDUN, with chloritic veinlets/micro-

fractures.

316.00 320.10 4.10 4.10 TDUN

Massive green to dark greenish-grey TDUN, with chloritic veinlets/micro-

fractures, with some VCR/DCR aggregates.  Becomes 

paler/bleached/serpentinised ADUN between 319.0-320.1m.

320.10 323.10 3.00 3.00 TDUN Dark green massive TDUN, with chloritic veinlets.
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Drill core log VS6-06 

 

 

 

 

 

 

 

 

 

Drill Core VS6-06

From To Rep (m) Rec (m) Litho code Min Code Description

0.00 0.35 0.35 0.35 OVB
Dark brown silty, gritty CLAY with rock fragments (possibly weathered 

AHRTZ?).

0.35 2.50 2.15 1.80 OXY
Pale cream/pale brown gritty, silty CLAY with weathered rock fragments - 

weathered AHRTZ.

2.50 4.90 2.40 2.10 OXY
Khaki-green gritty, silty CLAY with weathered rock fragments, and in places 

intact core fragments - weathered AHRTZ.

4.90 5.65 0.75 0.70 OXY Brownish-green sticky silty CLAY - weathered AHRTZ. 

5.65 7.20 1.55 1.40 OXY
Dark brown sticky silty, gritty pisolitic CLAY - weathered AHRTZ (or possibly 

transported lacustrine clays?). 

7.20 20.80 13.60 12.85 AHRTZ

Greyish-green moderately weathered AHRTZ, with minor relict 

porphyroblastic texture.  Extensive whitish stockwork lizardite veining.  Core 

generally intact, with minor rubble zones.

20.80 26.00 5.20 4.75 AHRTZ

Greyish-green moderately weathered AHRTZ, with minor relict 

porphyroblastic texture.  Extensive whitish stockwork lizardite veining.  ~50% 

rubble zones.

26.00 40.70 14.70 13.40 AHRTZ

Greyish-green moderately weathered AHRTZ, with minor relict 

porphyroblastic texture.  Extensive whitish stockwork lizardite veining.  Core 

more intact with ~20% rubble from about 34m.

40.70 47.50 6.80 6.20 AHRTZ

Greyish-green moderately weathered AHRTZ, with minor relict 

porphyroblastic texture.  Extensive whitish stockwork lizardite veining.  ~50% 

rubble zones, weathered along fractures to clay in places.

47.50 66.00 18.50 17.40 AHRTZ

Greyish-green moderately weathered AHRTZ, with minor relict 

porphyroblastic texture, becoming more porphyroblastic towards base of 

interval.  Extensive whitish stockwork lizardite veining.  Core more intact, 

~20% rubble.

66.00 67.00 1.00 0.95 AHRTZ
Dark brownish-grey, less weathered AHRTZ, with strong porphyroblastic 

texture.  Whitish stockwork lizardite veining, as above.  Core mostly intact.
Drill Core VS6-06

From To Rep (m) Rec (m) Litho code Min Code Description

67.00 72.50 5.50 5.10 FZ DCR

Very broken zone, especially from 70m onwards, heavily veined with lizardite 

and serpentine, with minor associated bleaching/alteration in places, and 

brecciated texture.  Trace DCR/VCR aggregates/disseminations/blebs in 

places from 71.5m onwards.

72.50 75.80 3.30 3.10 CDUN DCR

More intact darker greenish-black massive CDUN, altered and weathered 

along fractures to pale greyish-green colour.  About 50% rubble.  Trace DCR 

only.

75.80 78.10 2.30 2.10 CDUN/FZ DCR
Very rubbly/broken interval - apparently more weathered CDUN, as above.  

Partially weathered to clay along fractures (possible gouge?).

78.10 88.90 10.80 10.10 CDUN/PDUN DCR

Dark greenish-black CDUN, in places with strong porphyroblastic texture - 

PDUN.   Minor white lizardite veining/fractures.  Core is ~75% intact, in 

places weathered/broken to rubble, sometimes to clay, and broken along 

fractures, in zones up to 30cm thick.  Very minor trace DCR seen throughout 

the interval, generally in greenish serpentinised patches.

88.90 94.10 5.20 4.80 PDUN

Massive dark greyish-green serpentinitic PDUN, with ~5% relict 

orthopyroxene porphyroblasts throughout.  Minor white lizardite/pale apple 

green serpentine veinlets.  Fresh.

94.10 95.10 1.00 0.90 FZ Weathered rubble zone, clay weathering/gouge in fractures.

95.10 96.80 1.70 1.53 CDUN
Massive dark greenish-black serpentinitic CDUN, with minor clay-filled 

broken fractures.

96.80 98.70 1.90 1.80 CDUN

Massive dark greenish-black serpentinitic CDUN, with minor clay-filled 

broken fractures.  More broken, ~30% clay-filled/rubbly fractures, and strong 

pale apple green stockwork serpentine veining, up to 30mm thick, with minor 

weak bleaching of wallrock.

98.70 104.10 5.40 5.30 PDUN/CDUN

More massive dark greenish-black CDUN, patchily PDUN with well 

developed porphyroblastic texture.  Minor lizardite/serpentine veining, with 

weak associated alteration in places.  Core is generally intact, with only 

minor clay/rubbly fractures.

104.10 110.10 6.00 5.45 PDUN/CDUN

More massive dark greenish-black CDUN, patchily PDUN with well 

developed porphyroblastic texture.  Minor lizardite/serpentine veining, with 

weak associated alteration in places.  Core more broken, ~40% rubble 

zones.

110.10 123.70 13.60 13.60 PDUN

Dark greenish-black massive PDUN, with ~2-5% relict porphyroblasts.   

Minor white lizardite veins.  Core is generally intact, only minor 

broken/rubble zones.

123.70 127.90 4.20 3.80 PDUN
Dark greenish-black massive PDUN, with ~2-5%    Minor white lizardite 

veins.  Core is ~50% broken to rubble.

127.90 150.50 22.60 22.10 PDUN/CDUN

More massive dark greenish-black CDUN, patchily PDUN with well 

developed porphyroblastic texture.  Minor lizardite/serpentine veining, with 

weak associated alteration in places.  Core is generally intact, with only 

minor broken/rubble zones.
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Drill core V05-28
From To Litho code Min code Description

0.00 0.19 OVB Dark brown - Organic rich soil

0.19 0.70 OVB/HRTZ Brown stained hartzburgite fragments - Grey colour

0.70 10.70 HRTZ Highly weathered and fragmented hartzburgite - Microfractures - Little lizardite

10.70 13.00 HRTZ Much less fragmentation - 'Spidery' lizardite veining - Bleached due to weathering

13.00 24.10

HRTZ

Weakening alteration - Mixture of fragmented/rubbly rock and solid core 60:40 - Lizardite 

veining throughout up to 1cm thick - Light grey colour to darker grey downhole

24.10 26.00
HRTZ

Bleached hartzburgite - Difficult to determine if it's HRTZ - Light green - Fine grained - 

Reasonbly competent - No visible phenocrysts

26.00 36.10

HRTZ

Weakening alteration - Mixture of fragmented/rubbly rock and solid core 60:40 - Lizardite 

veining throughout up to 1cm thick - Light grey colour to darker grey downhole

36.10 39.60

HRTZ

Mostly competent - Darker grey colour - Fresher hartzburgite - Some black microfractures - 

Lizardite/Green mineral veining - Some alteration halos on some veins

39.60 45.60
HRTZ

Mainly rubble and small rock fragments - Powdery in places possibly fault gauge - Some 

lizardite veining

45.60 52.40
HRTZ

Darker grey - Looks less altered - Fractured core - Pink/orange phenocrysts in a darker 

blue/black groundmass

52.40 56.60 HRTZ Core is rubble - Fragments 1-6cm

56.60 65.90
HRTZ

Mixture of rubble and solid core - Little lizardite veining - Green colour with brown/orange 

altered phenocrysts

65.90 77.00
HRTZ

Fresh harzburgite - Some small areas of rubble/fractured rock - Phenocrysts approx 4mm

77.00 89.60

HRTZ

Spidery' lizardite veining - Most of the core is bleached a light grey/green - Some areas of 

rubble - Small patches of darker/fresher HRTZ approx. 30cm - Alteration of core

89.60 104.50
CDUN

Lizardite veining spread throughout - Some bleaching - Green/grey fine to medium grained 

- Not fractured - Very competent

104.50 146.65
PDUN

Grey/green - Slightly porphyritic - Core is mostly competent and fresh - Intermittent zones 

of strongly fractured/high angle lizardite veins

146.65 155.55
CDUN

Black/green - Fine grained - Weakly serpentinised - Very competent - Not fractured - 20-

30cm of slighlty porphyritic rock with brown/orange altered phenocrysts

155.55 156.30 CDUN Black/grey

156.30 161.80
PDUN

Faulted - Grey/green - Moderately bleached - 20/30cm segments are fresh PDUN - Core 

is rubble with predominantly clay infill

161.80 194.20
PDUN

Black/grey - Minor lizardite veining - Mostly competent - Intermittent zones of bleaching 

with altered lizardite/clay infill

194.20 227.30 CDUN Grey/black - Fine grained CDUN - Broken core/rubble intervals

227.30 229.00
BRZ

Emerald green - Appears brecciated -Lizardite/silica/green mineral vein infill with 

browny/red altered phenocrysts close to vein boundaries - Interval mostly competent with 

10cm of broken core/rubble

229.00 231.70

PDUN

Black/green - 4/5 zones of strongly microfractured PDUN - Weathered lizardite/green 

mineral veins - Core broken at these points - Solid core between fractures is very 

competent

231.70 242.05 PDUN Green/grey - Massive - Very minor fracturing almost devoid

242.05 242.11 PER White/grey completely bleached dunite - Intensely fractured - Lizardite/chlorite infill

242.11 242.92 PDUN Green/black with minor fracturing with lizardite infill

242.92 243.32
PER

Light green/grey strongly fractured/broken dunite - Moderately bleached with lizardite 

veinlets

243.32 247.20 PDUN Green/grey - Fresh - Very minor fracturing with lizardite infill

247.20 247.40 FL Fault - Light green - 10cm of lizardite infill - Broken core - Minor clay

247.40 252.30 PDUN Green/grey predominantly competent

252.30 252.70
BRZ

Strongly brecciated - Lizardite veinlet/weathered clay - Light green - Talc smooth fracture 

planes - Very soft core

252.70 281.70
PDUN

Green/grey  - Intermittent medium angled faults approx. 1cm wide with green lizardite infill - 

Core predominantly very competent

281.70 282.50
TDUN

Light green/grey - Multiple microfractures - Moderately bleached groundmass - Approx. 

10cm of broken core

282.50 302.70
PDUN

Green/grey moderately fractured - With frequent high angle fractures/faults often broken 

due to weathered lizardite/clay fault gauge - Unbroken core lengths no greater than 30cm
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Drill core V05-28
From To Litho code Min code Description

302.70 314.60
PDUN

Grey/green - Mostly competent - Infrequent lizardite veinlets - Mostly unbroken - Weakly 

tectonised

314.60 327.10
TDUN

Green/grey strongly tectonised dunite - Core moderately broken - Frequently weathered 

fractures leading to broken core

327.10 330.84
MCR MCR

Reddy/brown - Weak orbicular texture - Short intervals of oxidised chromite less than 

10cm

330.84 333.35 OCR OCR Lime green serpentinised matrix

333.35 335.65 SDUN Weakly tectonised

335.65 336.46 OCR OCR Serpentinised matrix - Fragments of bleached dunite

336.46 336.60 PCR PCR Dark brown PCR

336.60 341.17 OCR OCR

341.17 342.60 MCR MCR Strong lizardite veining - Weak orbicular texture in last 5cm

342.60 343.20 TDUN Green - Moderately serpentinised and tectonised dunite

343.20 347.75 OCR OCR Brown with lime green serpentinised matrix

347.75 348.30 OCR OCR Interlayered OCR with serpentinised dunite

348.30 355.70
TDUN DCR

Light grey/green tectonised dunite - Blebs of DCR - Strongly fractured in places with pale 

green lizardite/chlorite infill - Core is predominantly not broken

355.70 357.40 MCR MCR Last 10cm is interlayered MCR with SDUN/bleached dunite

357.40 372.60
SDUN DCR

Light green - Strongly serpentinised - DCR blebs - Core is competent - Low level of 

fracturing - Weakly tectonised

372.60 373.50 TDUN DCR Green/grey - Minor DCR - Relatively unaltered

373.50 380.30
TDUN DCR

Green/grey - Strongly tectonised dunite - Minor DCR - 10cm of chromite blebs at 377.0m

380.30 382.40
SDUN DCR

Lime green - Strongly serpentinised and tectonised dunite - Cut by large low angle fault 

with weathered lizardite/talc chlorite infill - 10% DCR

382.40 392.70 TDUN DCR Light green/grey - Less than 1% DCR - Core predominantly unbroken

392.70 394.45
TDUN DCR

Bleached TDUN - Light grey/green - Moderately broken/fractured - Lizardite fracture infill 

weathered to clay - Dunite relatively soft - Minot DCR less than 1%

394.45 399.28 OCR OCR Light lime green serpentinised matrix

399.28 400.10 TDUN DCR Light grey/green - DCR blebs approx. 2%

400.10 400.27
OCR OCR

Lime green serpentinised matrix - Chromite blebs show layering at low angle to the core 

axis

400.27 406.80
TDUN DCR

Strongly tectonised and bleached dunite - Low angle fracturing interlayered with DCR 

approx. 25 degrees to core axis - DCR blebs 5%

406.80 410.90 TDUN Grey/light green - Minor lizardite veining - Large bleb of chromite at 409.1m

410.90 412.50 OCR OCR Interlayered OCR with serpentinised dunite/lizardite - Multiple lizardite veinlets

412.50 415.30

TDUN DCR

Light green/grey - Very broken core - Large sub-vertical lizardite/chlorite filled structure - 

Strongly fractured - Weathered to clay in places - Very smooth - Minor DCR

415.30 417.40

TDUN DCR

Grey/green - Strongly altered with multiple low angle fractures infilled with 

lizardite/chlorite/green mineral - Significant amounts of DCR approx. 20% aligned with 

fractures - Core weak

417.40 424.60
TDUN DCR

Green/grey - Minor blebs of DCR - Several large low angle structures - Core compentcy 

decreases in final metre becoming poor - Considerable bleaching

424.60 427.30 OCR OCR Serpentinised matrix

427.30 428.60 TDUN Multiple lizardite veinlets - Light green/grey - Very broken

428.60 430.30 OCR OCR Serpentinised matrix

430.30 430.52 TDUN DCR Green/grey - Minor DCR

430.52 430.90 OCR OCR 5cm band of bleached dunite within OCR

430.90 433.20 TDUN DCR Green/grey with minor DCR, less than 1%

433.20 433.65 OCR/MCR OCR/PCR Multiple high angle fractures with lizardite infill

433.65 433.98
BRZ

Light green/cream/grey - Seemingly brecciated dunite - Completely serpentinised breccia 

matrix made up of lizardite/green mineral

433.98 434.30 OCR/PCR OCR/PCR Light brown - Strongly oxidised OCR - Rubble - 10cm core loss approx.

434.30 435.40 TDUN Green/grey

435.40 439.85
MCR MCR

Dark brown metallic MCR - Weak orbicular texture in places - Multiple sub-parallel and 

high angle lizardite veinlets

439.85 441.50 TDUN DCR Minor DCR

441.50 442.10 TDUN DCR Light grey/green - Multiple blebs of disseminated chromite

442.10 465.50
TDUN DCR

Black/grey  - Filled with black microfractures - 455.7m is a 2cm wide large fracture which 

is broken, and very smooth

465.50 466.10
FL

Light green/light brown - Large brecciated fault zone - Strongly serpentinised - Angular 

clasts of dunite caught up in a lizardite/green mineral infill - Very broken - Smooth fracture 

planes

466.10 503.90 TDUN Light green/grey - Very competent

503.90 523.50 PDUN/TDUN Grey/green - Competent - Widely spaced lizardite veinlets

523.50 539.50 TDUN Light grey - Slightly bleached TDUN

539.50 549.80
TDUN

Strongly tectonised - Porphyritic in places - Intensely fractured at 540.4m - Multiple 

lizardite veinlets - Core less competent
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Drill core V05-24 

Drill core V05-24

From To Rep (m) Litho code Min code Chromite% Description

0.00 0.20 0.20 OVB Dark brown soil with organic material

0.20 1.70 1.50 OVB

Light yellow-brown saprolitic clay fragments roughly 1-2cm of 

weathered Hartzburgite

1.70 4.30 2.60 OVB

Extremely weathered Hartzburgite rubble with some saprolitic clay 

Gravel for 1m with some Hartzburgite fragments up to 3-4cm 

maximum size

4.30 10.80 6.50 HRTZ

Light grey strongly weathered/altered Hartzburgite all interval is 

rubble with several sections of core roughly 10cm in length 

becoming more competent towards end interval

10.80 19.40 8.60 HRTZ

Light grey more competent than above with roughly 50% interval 

still rubble Moderate level of Lizardite veining some microfractures

19.40 29.70 10.30 HRTZ

Characteristic light grey altered Hartzburgite 'Spidery' stockwork 

texture of Lizardite veining rock is moderately competent with 

sections of SCR up to 30cm in length Some small sections of 

rubble still evident usually < than 10cm in length, Some apple 

green Lizardite veining visible 

29.70 34.10 4.40 HRTZ

Dark brown fresher looking Hartzburgite with intense green 

mineral (Tremolite ferro) veining giving rock an almost brecciated 

appearance Moderate Lizardite veining also present with roughly 

30% core reduced to rubble

34.10 73.40 39.30 HRTZ

Light to Dark brown Hartzburgite with very well defined 

phenocrysts roughly 5mm in diameter, Moderate to abundant 

Lizardite and apple green Lizardite veining, Roughly 40% of 

interval is rubble with 3-5cm fragments of semi fresh Hartzburgite 

Rock becoming far more competent towards end of interval

73.40 80.80 7.40 PDUN/HRTZ

Dark grey-black porphyritic Dunite/Hartzburgite minor Lizardite 

veinlets some white Lizardite infilled microfractures, some 

phenocrysts are altered to an orange-brown colour, rock is 

moderately competent although core is often broken

80.80 86.70 5.90 BRZ

Intensely altered bleached and in places brecciated Dunite all 

centred upon a large Shear/Fault structure @ 81.5m-81.8m within 

this zone rounded clasts of dunite are set in a bleached white clay 

matrix. Shear zone contact sits @ roughly 45 deg to core axis 

Core is generally solid with some rubble with moderate to strong 

white and green varieties of Lizardite veining

86.70 139.40 52.70 PDUN

Dark grey-black Pdun moderate Lizardite veining and fractures 

core usually competent, phenocrysts have a sunken glassy almost 

transparent Small sections of rubble after alteration/weathering of 

Lizardite to clay, Short sections exhibit zones of microfracturing 

and possible tectonisation

139.40 158.50 19.10 PDUN

Dark grey to black Pdun some bleaching and intense 

microfracturing minor white/apple green Lizardite veining 

158.50 206.90 48.40 PDUN

Dark grey to black Pdun competent with only small sections of 

rubble Moderately fractured in places with very minor Lizardite 

veining some sections are weakly bleached adjacent to larger 

joints/faults

206.90 208.70 1.80 ADUN

Light grey bleached Dunite loss or destruction of rock fabric due to 

intense alteration, half of the interval is rubble very minor veining 

with a small section that appears to be brecciated

208.70 266.40 57.70 PDUN

Light grey to dark grey mostly competent Pdun, Increasing 

tectonised with weak bleaching and serpentinisation in places 

becoming less porphyritic and more tectonised towards end of 

interval

266.40 273.80 7.40 CDUN DCR <5%

Tectonised grey-black Cumulate dunite small intervals of rubble 

no greater then 10cm with core being badly broken in places 

although predominantly solid,Black microfractures abundant with 

some apple green Lizardite veining Minor blebs of DCR 

273.80 287.60 13.80 CDUN <5%

Dark grey-black tectonised cumulate Dunite, zones of moderate 

serpentinisation Minor Lizardite both white and apple green 

variety Minor DCR present in more bleached zones of core, Core 

is generally competent but broken in places becoming more 

porphyritic towards end of interval

287.60 290.30 2.70 MCR 0.9

Chocolate brown intensely oxidised massive Chromite Very soft 

and badly broken with fianl 30cm a brown Chromite clay, 2 

Fragments of bleached Serpentinised Dunite interlayered within 

Massive Chromite @ 287.7m and 289.85 both <10cm in length

290.30 291.00 0.70 SDUN

Light grey-green sheared/brecciated serpentinised Dunite 15cm of 

light grey clay with sub angular clasts of Dunite plus or minus 

altered Lizardite, @ 291.0m 2cm of fault gauge
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 Drill core V05-24

From To Rep (m) Litho code Min code Chromite% Description

287.60 290.30 2.70 MCR 0.9

Chocolate brown intensely oxidised massive Chromite Very soft 

and badly broken with fianl 30cm a brown Chromite clay, 2 

Fragments of bleached Serpentinised Dunite interlayered within 

Massive Chromite @ 287.7m and 289.85 both <10cm in length

290.30 291.00 0.70 SDUN

Light grey-green sheared/brecciated serpentinised Dunite 15cm of 

light grey clay with sub angular clasts of Dunite plus or minus 

altered Lizardite, @ 291.0m 2cm of fault gauge

291.00 299.20 8.20 SDUN DCR <2%

Green fine grained moderately jointed serpentinised Dunite, Joint 

planes usually have green Lizardite infill roughly 2mm in width 

Joint planes are very smooth when broken, Multiple blebs of 

Disseminated Chromite as small black flecks with one large bleb 

@ 296.2m 

299.20 302.35 3.15 MCR >90%

Chocolate brown to dark brown extremely oxidised very massive 

Chromite, predominantly reduced to rubble with some minor 

powdery Chromite 95cm of core is still solid

302.35 304.00 1.65 PCR >90%

Light to dark brown strongly oxidised/weathered massive 

Chromite with fragments of semi fresh MCR

304.00 305.00 1.00 MCR >90%

Dark brown massive Chromite exhibits a weakly orbicular texture 

in places

305.00 305.45 0.45 PCR >90% Dark brown powdery Chromite

305.45 308.10 2.65 MCR >90%

Light to dark brown weakly orbicular Chromite strongly oxidised @ 

305.7m 10cm is powder, core is badly broken with possible core 

loss

308.10 308.70 0.60 PCR >90%

Dark brown powdery Chromite with sub angular fragments of 

massive Chromite

308.70 317.90 9.20 MCR >90%

Dark brown to light brown strongly oxidised badly broken and 

crumbly massive Chromite, rubble in places 4-5 short sections of 

Powdery Chromite < 15cm in length distributed throughout interval

307.90 318.86 10.96 MCR 0.75

Dark brown massive Chromite with angular fragments of 

serpentinised dunite

318.86 320.00 1.14 PCR >90%

Dark brown powdery Chromite with 20cm of massive Chromite 

rubble

320.00 326.60 6.60 MCR >90%

Dark brown strongly jointed weakly oxidised massive Chromite, 

predominantly rubble solid core recoveries are usually no greater 

than 5-15cm in length

326.60 327.90 1.30 PCR >90%

Very dark brown to Black fine grained powdery Chromite, possible 

'sulphides' present non characteristic PCR

327.90 330.20 2.30 OCR 0.75

Not classic orbicular texture as Chromite is near massive with 

intense apple green serpentinised matrix plus 25cm of 

serpentinised Dunite @ 329.5m

330.20 331.85 1.65 PCR/MCR >90%

Dark brown Metallic/Specular massive Chromite grading into a 

gritty powdery Chromite at end of interval

331.85 333.50 1.65 MCR >90%

Dark brown massive Chromite with 10cm of Black powdery 

Chromite @ 332.15m

333.50 334.45 0.95 PCR >90% Dark brown to Black gritty powdery Chromite

334.45 340.90 6.45 MCR >90%

Dark brown weakly oxidised badly broken Massive Chromite with 

6 intervals of powdery Chromite roughly 10cm in length evenly 

spaced throughout interval, 90% is MCR

340.90 341.80 0.90 DCR 0.35

Light brown to brown disseminated Chromite within an intensely 

bleached serpentinsed Dunite, core is predominantly competent 

with several low angle planes being smooth when broken

341.80 349.20 7.40 SDUN DCR <5%

Light green to grey weakly tectonised serpentinised Dunite, 

weakly jointed with joint planes often infilled by aplle green 

Lizardite, Disseminated Chromite is present throughout interval 

<5%

349.20 349.90 0.70 MCR 0.85

Dark brown massive Chromite exhibits low angle tension fractures 

perpendicular to joint planes infilled predominantly with Lizardite

349.90 353.75 3.85 SDUN <5%

Lime green to grey serpentinised Dunite moderately bleached in 

places with blebs of disseminated Chromite throughout interval 

Rock becoming more strongly serpentinsed towards Hanging wall 

contact with second Chromite lense
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Drill core V05-24

From To Rep (m) Litho code Min code Chromite% Description

360.60 361.60 1.00 DCR 0.3

Dark brown disseminated Chromite as rounded blebs within an 

intensely bleached serpentinised Dunite core is badly broken 

361.60 367.30 5.70 MCR 0.9

Dark brown specular massive Chromite weakly oxidised very hard 

and moderately fractured

367.30 367.60 0.30 PCR 0.9 Muddy brown powdery Chromite clay

367.60 368.10 0.50 DCR 60-70%

Light brown to brown disseminated Chromite within a matrix of 

Lizardite, associated with a large low angle structure running 

parallel to core axis, very smooth when broken

368.10 372.95 4.85 MCR >90%

Chocolate brown intensely oxidised weakly orbicular massive 

Chromite, very soft in places 25cm is reduced to mud caused by 

drilling, Badly broken in places but predominantly whole, Footwall 

contact is characterised by large Lizardite vein cutting the core 

axis @ roughly 45 degrees

372.95 377.50 4.55 TDUN DCR <1%

Dark grey-green moderately jointed tectonised Dunite with very 

minor disseminated Chromite

377.50 383.80 6.30 TDUN

Light grey-green intensely fractured/brecciated tectonised Dunite, 

large rounded clasts of serpentinised Dunite are evident within a 

green fibrous possibly Lizardite matrix, Core is moderately broken 

with 1m of rubble @ 380.85m becoming less fractured and 

tectonised

383.80 403.00 19.20 TDUN

Light grey-green fine grained very competent classic tectonised 

Dunite almost devoid of joint planes
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Drill core V05-21 

Drill core V05-21
From To Rep (m) Min code Litho code Description

0.00 1.00 1.00 OVB Organic rich - Brown colour

1.00 3.00 2.00 OVB Saprolitic clay - Hartzburgite fragments - last 10cm is oxidised

3.00 36.40 33.40 HRTZ

Thick, chaotic lizardite veining 0.5/3cm thick- Light green to brown colour - Rock 

generally competent - Minor brecciation in places

36.40 41.00 4.60 HRTZ Large low angle fault, 1cm wide, infilled with green mineral

41.00 42.10 1.10 BRZ Brecciated Harzburgite - Multiple microfractures with violet/green colour

42.10 51.70 9.60 HRTZ

Reddy-Brown-Light green colour - Phenocrysts are altered - Less frequent fracturing - 

Lizardite infill ususally less than 0.5cm thick

51.70 52.00 0.30 HRTZ Green to light green - Lizardite and Green mineral altered to clay

52.00 58.40 6.40 HRTZ Brown/Red/Green colour - Competent

58.40 61.60 3.20 SDUN Green - Stongly serpentinised and altered dunite, no rock fabric is visible

61.60 108.20 46.60 PDUN

Porphyritic - Moderately fractured becoming fresh and more competent - Minor faulting 

- weathered/oxidised lizardite - Rubble in places

108.20 111.40 3.20 CDUN

Green/Grey - Strongly sheared/faulted dunite with moderate serpentinisation - Clay 

alteration in fracture infill - Core is rubble

111.40 130.20 18.80 TDUN/PDUN

Grey/Black tectonised porphyritic CDUN - Strongly fractured - Fractures about 1/2mm 

with chlorite+green mineral+lizardite infill - 129.6m-130.2m core is brecciated with 

carbonate alteration - About 20cm rubble

130.20 133.50 3.30 CDUN Black/Grey fine grained CDUN - Predominantly no fractures - Very competent

133.50 136.60 3.10 TDUN

Green/Grey tectonised dunite - Moderately altered, possible serpentinisation - 

Microfractures abundant, high angle

136.60 143.30 6.70 CDUN/TDUN Grey/Black - Weakly altered, bleached in parts - Competent

143.30 195.30 52.00 PDUN

Medium grained porphyritic dunite - Generally competent - Moderate to little fracturing - 

Infill predominantly lizardite - Some bleaching next to fractures

195.30 209.90 14.60 PDUN

Lots of the core is rubble - Intense alteration adjacent to fractures - Some carbonate - 

Green mineral is common infill - Small brecciated zones - Core competent only in short 

lenghts, 30cm max.

209.90 241.40 31.50 PDUN

Strongly porphyritic dunite - Very competent - Green/Black - Few fractures - Very weak 

serpentinisation in places - Minor areas of total bleaching

241.40 241.85 0.45 VCR PDUN Brown/Green low angle chromite veinlet

241.85 241.95 0.10 PDUN 10cm of porphyritic dunite

241.95 242.00 0.05 VCR PDUN 5cm green chromite veinlet

242.00 242.20 0.20 PDUN Fresh and non altered

242.20 242.50 0.30 OCR OCR Weakly obicular chromite

242.50 243.05 0.55 PDUN

243.05 243.15 0.10 OCR OCR 10cm of obicular chromite rubble

243.15 249.06 5.91 CDUN Grey/Green CDUN - 1 high angle chromite veinlet at 244.8m

249.06 249.80 0.74 MCR MCR Loss of chromite at hanging wall contact, approximately 30cm

249.80 250.40 0.60 TDUN

Green/Grey TDUN/CDUN - Strongly fractured - Microfractures less than 1mm - 

Lizardite+Green mineral infill

250.40 250.90 0.50 PCR Dark brown - Significant core loss approx. 50% - All rubble

250.90 251.23 0.33 DCR CDUN Light green/grey moderately altered - Has disseminated chromite within core

251.23 251.46 0.23 MCR MCR

251.46 251.80 0.34 PCR PCR Probable core loss approx. 40%

251.80 256.10 4.30 MCR MCR Roughly 20cm oxidised/powdery material

256.10 256.21 0.11 SDUN Stongly serpentinised porphyritic dunite

256.21 256.90 0.69 PCR PCR Light brown highly oxidised - Approx. 20cm core loss

256.90 258.28 1.38 MCR MCR Strongly fractured - Low oxidisation - 50% rubble

258.28 258.90 0.62 PCR PCR Light brown, strongly oxidised and highly fractured - Possible core loss

258.90 261.30 2.40 TDUN

Weakly serpentinised - Brecciated in places - Core broken - Talc/chlorite infill - Minor 

infill with disseminated chromite

261.30 263.85 2.55 CDUN

Very competent, no fractures - Green/Black fine grained CDUN - Fresh - 5cm bleb of 

chromite

263.85 274.36 10.51 TDUN Weakly serpentinised - Strongly microfractured - Green/Grey

274.36 274.86 0.50 TDUN Green/Brown/Grey - 20% disseminated chromite blebs

274.86 275.34 0.48 TDUN Grey/Green - Weakly altered

275.34 276.06 0.72 TDUN

Sheared approx. 45 degrees - Light green/white/grey -Strongly altered green 

mineral+clay+carbonate

276.06 278.10 2.04 TDUN Green/Black/Grey - Very weakly altered - 20% core is rubble

278.10 280.80 2.70 TDUN

Light green/grey - Intensely fractured/altered tectonised dunite - Core very broken - 

Lizardite/Green mineral fracture infill - Minor brecciation+carbonates

280.80 280.90 0.10 MCR MCR Massive chromite only

280.90 282.80 1.90 TDUN Grey/Black TDUN - Moderate fracturing - Very weak alteration

282.80 283.40 0.60 DCR TDUN Green/Brown/Grey TDUN with approx. 15% chromite blebs

283.40 287.70 4.30 TDUN Green/Black unbroken fine to medium grained TDUN

287.70 288.40 0.70 SDUN

Light green strongly serpentinised, fractured non-competent - 90% interval is rubble - 

Green mineral+Lizardite fracture infill

288.40 288.50 0.10 MCR MCR Brown - Rubble

288.50 288.60 0.10 SDUN Rubble

Core Loss

289.02 289.10 0.08 TDUN Unaltered - Light green colour

289.10 289.29 0.19 DCR TDUN 60% chromite blebs

289.29 296.10 6.81 TDUN Grey/Black TDUN - High level of microfracturing with no infill

296.10 296.15 0.05 DCR TDUN 5cm disseminated chromite

296.15 298.38 2.23 TDUN Black/Grey

298.38 298.48 0.10 DCR TDUN 10cm disseminated chromite in a TDUN
298.48 300.00 1.52
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Core Loss

289.02 289.10 0.08 TDUN Unaltered - Light green colour

289.10 289.29 0.19 DCR TDUN 60% chromite blebs

289.29 296.10 6.81 TDUN Grey/Black TDUN - High level of microfracturing with no infill

296.10 296.15 0.05 DCR TDUN 5cm disseminated chromite

296.15 298.38 2.23 TDUN Black/Grey

298.38 298.48 0.10 DCR TDUN 10cm disseminated chromite in a TDUN
298.48 300.00 1.52
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Drill core V05-13 

Drill Core V05-13

From To Rep (m) Rec (m) Litho code Min Description

0.00 0.15 0.15 0.15 OVB BROWN CLAY

0.15 1.00 0.85 0.65 OVB LIGHT BROWN CLAY AND GRAVEL

1.00 3.90 2.90 2.40 OVB LIGHT BROWN - GREEN FIRM CLAY

3.90 5.10 1.20 1.00 HRTZ WEATHERED PYROXENITE, LIME GREEN, SERPENTINIZED

5.10 10.80 5.70 5.47 HRTZ LIGHT GREEN WITH KAOLIN VEINING

10.80 16.40 5.60 5.60 HRTZ THICK KAOLIN VEINING AND GREENISH CARBONATE ALTERATION

16.40 21.60 5.20 5.20 HRTZ THICK KAOLIN VEINING AND GREENISH CARBONATE ALTERATION

21.60 27.50 5.90 5.47 HRTZ KAOLIN STOCKWORK

27.50 33.00 5.50 5.70 HRTZ KAOLIN STOCKWORK BECOMING LESS STOCKWORKED IN FINAL 3M

33.00 38.60 5.60 5.70 HRTZ THICK KAOLIN VEINING BECOMING STOCKWORK - SOME BROKEN GROUND

38.60 44.70 6.10 5.73 HRTZ LIGHT GREEN KAOLIN AND SERPENTINITE VEINING

44.70 46.00 1.30 1.27 HRTZ

DARK GREEN SLIGHTLY SERPENTIZED FINE GRAINED WITH A FEATHERY 

TEXTURE

46.00 50.40 4.40 4.40 HRTZ LIGHT GREEN WEAKLY KAOLIN VEINED

50.40 55.90 5.50 5.50 HRTZ LIGHT - DARK GREY GREEN PATCHY KAOLIN VEINING 

55.90 61.30 5.40 5.38 HRTZ

LIGHT - DARK GREY GREEN FINE KAOLIN STOCKWORK SOME CARBONATE 

ALTERATION

61.30 66.80 5.50 5.50 HRTZ

DARK GREY WITH GRANULAR BLUISH INTRUSIONS, KAOLIN AND SERPENTINITE 

VEINS

66.80 72.60 5.80 5.76 HRTZ DARK GREY BECOMING FRESHER, PATCHY SERPENTINITE AND KAOLIN VEINING

72.60 78.60 6.00 5.77 HRTZ DARK GREEN, REDUCED VEINING

78.60 84.80 6.20 5.74 HRTZ

DARK GREEN, REDUCED VEINING BECOMING FRESHER AND HARDER, SOME 

SOFT GROUND

84.80 90.60 5.80 5.62 HRTZ

DARK GREEN, REDUCED VEINING BECOMING FRESHER AND HARDER, SOME 

SOFT GROUND

90.60 96.00 5.40 5.40 HRTZ DARK AND FINE GRAINED WITH KAOLIN VEINLETS

96.00 101.80 5.80 5.64 HRTZ DARK AND FINE GRAINED WITH KAOLIN VEINLETS AND PATCHY SERPENTINITE

101.80 107.40 5.60 5.60 HRTZ

DARK AND FINE GRAINED WITH KAOLIN VEINLETS AND SERPENTINITE IN FIRST 

2M

107.40 113.00 5.60 5.60 HRTZ DARK AND FINE GRAINED WITH KAOLIN VEINLETS AND SLIGHT SERPENTINITE

113.00 118.80 5.80 5.77 HRTZ DARK AND FINE GRAINED WITH KAOLIN VEINLETS AND SERPENTINITE VEINING

118.80 124.70 5.90 5.71 HRTZ VERY DARK FINE GRAINED, SERPENTINITE AROUND LARGER JOINTS

124.70 130.40 5.70 5.41 HRTZ

VERY DARK FINE GRAINED INCREASING KAOLIN VEINLETS, BROKEN GROUND 

AROUND 128.5M

130.40 136.40 6.00 5.86 HRTZ VERY DARK FINE GRAINED, SERPENTINITE AROUND LARGER JOINTS

136.40 142.60 6.20 5.74 HRTZ

DARK TO MID GREEN, INCREASING SERPENTINITE CONTENT AND WEAKENING 

GROUND CONDITIONS

142.60 149.00 6.40 5.74 HRTZ

DARK TO MID GREEN, INCREASING SERPENTINITE CONTENT AND WEAKENING 

GROUND CONDITIONS

149.00 154.80 5.80 8.20 HRTZ FINE GRAINED DARK GREEN/BLACK WITH SMALL ZONES OF KAOLINIZATION

154.80 162.00 7.20 7.10 HRTZ

BECOMING MORE APPLE GREEN (DUNITE?) PATCHY KAOLIN, MINOR 

SERPENTINITE

162.00 167.10 5.10 4.90 HRTZ VERY DARK FINE GRAINED, MINOR SERPENTINITE ON JOINTS

167.10 176.70 9.60 8.30 HRTZ WEAKER ROCK WITH INCREASED SERPENTINITE VEINING

176.70 181.40 4.70 4.00 HRTZ WELL BROKEN UP ~205, SERPENTINITE VEINING

181.40 194.10 12.70 11.30 HRTZ MODERATE KAOLIN VEINING WITH BROKEN SECTIONS

194.10 206.70 12.60 12.00 DUN MORE COMPETENT DARK TO APPLE GREEN POSSIBLY DUNITE TILL 197m

206.70 212.00 5.30 5.10 HRTZ

DARK GREEN WITH LARGE (5cm) MIXED KAOLIN/SERPENTINITE VEINING 

(WEAKLY LAYERED)

212.00 223.10 11.10 11.10 HRTZ

COMPETENT ROCK WITH FEW DISCONTINUITIES, APPLE GREEN BETWEEN 220-

223m

223.10 237.80 14.70 14.20 HRTZ

DARK, FINE GRAINED BECOMING BRECCIATED WITH MICRO FRACTURES AND 

SERPENTINITE  VEINING

237.80 243.80 6.00 5.90 HRTZ LESS BROKEN UP, SERPENTINITE VEINS/VEINLETS AT NORMAL TO CORE AXIS

243.80 249.90 6.10 6.10 HRTZ DARK GREEN WITH KAOLIN/SERPENTINITE VEINS NORMAL TO CORE AXIS

249.90 255.70 5.80 5.50 DUN SLIGHTLY SERPENTINIZED APPLE GREEN, WELL BROKEN IN LAST 3M

255.70 264.10 8.40 8.05 MCR

MASSIVE BROWN/BLACK CHROMITE WITH SMALL PATCHES OF POWDERY 

CHROMITE @ 258m

264.10 271.70 7.60 7.60 MCR

MASSIVE CHROMITE WITH KAOLIN/CHALCEDONIC VEINS AND INCLUSIONS OF 

SERPENTINIZED HOST

271.70 277.60 5.90 5.90 MCR MASSIVE CHROMITE WITH SLIGHTLY LESS VEINING

277.60 285.50 7.90 7.90 MCR MASSIVE CHROMITE WITH SLIGHTLY LESS VEINING

285.50 290.00 4.50 4.50 MCR MASSIVE CHROMITE WITH  SERPENTINITE VEIN PARALLEL TO CORE AXIS

290.00 296.40 6.40 6.30 MCR MASSIVE CHROMITE WITH SUB-PARALLEL VEINING AND BECOMING BROKEN

296.40 298.70 2.30 2.10 PCR DARK SANDY/POWDERY CHROMITE

298.70 299.30 0.60 0.60 MCR MASSIVE CHROMITE

299.30 301.20 1.90 1.10 MCR

WITH PATCHY SECTIONS OF MASSIVE CHROMITE, IRREGULAR CONTACTS, HOST 

INTRUDING CHROMITE?

301.20 306.20 5.00 5.00 SDUN PROGRESSIVELY LESS SERPENTINITE, APPLE GREEN DUNITES

306.20 312.40 6.20 6.00 DUN SLIGHT SERPENTINITE AND MINOR CHROMITE VEINING

312.40 315.40 3.00 3.00 DUN FINE GRAINED SERPENTINITE DUNITE 
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315.40 318.50 3.10 3.10 SDUN FINE GRAINED SERPENTINITE DUNITE WITH CHROMITE VEINS

318.50 321.50 3.00 3.00 SDUN SERPENTINITE DUNITE WITH SPOTTED CHROMITE

321.50 330.40 8.90 8.70 SDUN PROGRESSIVELY LESS SERPENTINITE AND PATCH SPOTTED CHROMITE

330.40 336.50 6.10 6.00 DUN

SLIGHT SERPENTINIZATION, PATCHY SPOTTED CHROMITE AND MASSIVE 

CHROMITE @ 333.5m (3m)

336.50 339.60 3.10 3.10 DUN DARK GREEN, WITH SERPENTINITE VEINS

339.60 345.70 6.10 6.10 DUN

DARK GREEN, WITH SERPENTINITE VEINS, SOME SPOTTED CHROMITE AND 

CEMENTED JOINTS

345.70 351.50 5.80 5.70 SDUN

MILD TO STRONG SERPENTINIZATION OF LIGHT GREEN DUNITE WITH PATCHY 

SPOTTED AND MASSIVE CHROMITE

351.50 361.30 9.80 9.60 SDUN

2m OF MILD SERPENTINITE DUNITE BECOMING SERPENTINITE VEINED WITH 

DISSEMINATED CHROMITE. MCR @ 359.8

361.30 366.40 5.10 5.10 SDUN PROGRESSIVELY LESS SERPENTINITE AND MILDLY BROKEN UP

366.40 375.10 8.70 8.00 DUN

MORE COMPETENT PYROXENE DUNITE WITH MINOR SERPENTINITE RUNNING @ 

HIGH ANGLES. BRECCIA AT 373.5 + SERPENTINITE

375.10 382.90 7.80 7.80 DUN

VERY DARK PYROXENE WITH SOME SERPENTINITE/CHALCEDONIC VEINING WITH 

POSSIBLE SHEARING

382.90 391.00 8.10 8.00 DUN

VERY DARK PYROXENE WITH SOME SERPENTINITE/CHALCEDONIC VEINING WITH 

POSSIBLE SHEARING
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Table A 1: Results for whole rock analyses of Voskhod rocks 
 

 

Sample G1742 G1777 G1795 G1798 Vos 301

Drillcore V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 141.28 185.64 231.90 239.50 249.53

Zone Hanging wall Hanging wall Hanging wall Hanging wall Hanging wall

Rock Type Harzburgite Dunite Harzburgite Dunite Dunite

SiO2 wt% OES 42.11 37.94 39.25 38.86 39.51

TiO2 wt% OES 0.032 0.008 0.011 0.007 0.045

Al2O3 wt% OES 1.31 0.11 0.76 0.51 0.77

Fe2O3 wt% OES 7.28 5.76 6.94 6.66 8.03

MnO wt% OES 0.11 0.08 0.10 0.09 0.10

MgO wt% OES 33.51 39.22 35.40 35.71 33.51

CaO wt% OES 0.93 0.16 0.15 0.04 0.42

Na2O wt% OES 0.053 0.087 0.032 0.067 0.024

K2O wt% OES 0.0038 0.0102 0.0089 0.0076 0.0322

P2O5 wt% OES 0.003 0.001 0.005 0.003 0.003

Cr2O3 wt% OES 0.35 0.67 0.32 0.39 0.41

LOI wt% OES 13.53 15.63 16.34 16.34 16.25

Total wt% OES 99.22 99.68 99.31 98.68 99.11

Sc ppm OES 11.37 2.46 7.44 5.57 5.81

V ppm OES/MS (ave) 59.23 19.50 34.43 29.56 19.43

Cr ppm OES/MS (ave) 2368 4610 2194 2670 2756

Co ppm OES/MS (ave) 86.62 87.78 83.24 86.39 104.01

Ni ppm OES/MS (ave) 1981 2710 2130 2115 1848

Cu ppm OES/MS (ave) 25.27 17.21 17.86 23.40 49.07

Zn ppm OES/MS (ave) 79.97 26.68 35.49 33.65 168.16

Sr ppm OES/MS (ave) 2.48 2.07 1.98 1.15 1.80

Y ppm OES/MS (ave) 0.82 0.10 0.25 0.05 0.56

Zr ppm OES/MS (ave) 1.05 1.14 0.58 1.08 1.46

Ba ppm OES/MS (ave) 16.74 8.94 13.68 5.86 9.13

Ti ppm OES/MS (ave) 192.36 49.17 67.08 44.35 272.85

Mn ppm OES/MS (ave) 857.81 643.35 802.40 710.13 742.24

Ga ppm MS 1.33 0.29 0.69 0.45 0.50

Rb ppm MS 0.29 0.15 0.29 0.25 0.45

Nb ppm MS 0.03 0.04 0.05 0.02 0.20

Cs ppm MS 0.02 0.02 0.02 0.01 0.02

La ppm MS 0.1212 0.0109 0.0282 0.0095 0.2239

Ce ppm MS 0.2027 0.0641 0.1033 0.0431 0.3770

Pr ppm MS 0.0290 0.0110 0.0160 0.0079 0.0459

Nd ppm MS 0.0945 0.0211 0.0498 0.0314 0.1274

Sm ppm MS 0.0238 0.0083 0.0139 0.0097 0.0259

Eu ppm MS 0.0139 0.0031 0.0050 0.0031 0.0076

Gd ppm MS 0.0508 0.0141 0.0191 0.0119 0.0414

Tb ppm MS 0.0126 0.0020 0.0029 0.0021 0.0091

Dy ppm MS 0.1135 0.0123 0.0289 0.0109 0.0481

Ho ppm MS 0.0275 0.0021 0.0049 0.0027 0.0092

Er ppm MS 0.0899 0.0063 0.0217 0.0073 0.0262

Tm ppm MS 0.0148 0.0011 0.0039 0.0018 0.0033

Yb ppm MS 0.1117 0.0102 0.0353 0.0132 0.0398

Lu ppm MS 0.0188 0.0010 0.0046 0.0025 0.0039

Hf ppm MS 0.0287 0.0211 0.0187 0.0201 0.0356

Ta ppm MS 0.0028 0.0021 0.0029 0.0010 0.0126

Th ppm MS 0.0130 0.0109 0.0173 0.0099 0.0138
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 Sample Vos 303 Vos 306 Vos 312 Vos 315 Vos 322 Vos 327 F1907

Drillcore V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 251.70 258.94 266.88 270.10 276.80 282.72 282.80

Zone Hanging wall Upper Contact
Stringer (Hanging 

wall)

Stringer (Hanging 

wall)
Hanging wall Hanging wall Ore Zone

Rock Type Dunite Dunite DCR (~40%)

DCR (~10%) + 0.5cm 

wide vein of 

chromite

Harzburgite Harzburgite Dunite

SiO2 39.35 42.63 39.28 32.99 39.66 39.53 41.43

TiO2 0.009 0.033 0.053 0.052 0.040 0.011 0.047

Al2O3 0.42 0.38 1.10 1.01 0.78 0.74 0.88

Fe2O3 7.13 7.28 10.79 9.13 7.12 6.93 8.14

MnO 0.10 0.09 0.14 0.12 0.09 0.10 0.12

MgO 35.09 32.91 39.24 34.56 34.24 36.12 33.49

CaO 0.08 0.04 0.09 0.07 0.17 0.11 0.11

Na2O 0.031 0.017 0.001 0.003 0.016 0.029 0.012

K2O 0.0064 0.0279 0.0174 0.0183 0.0299 0.0101 0.0203

P2O5 0.003 0.003 0.004 0.003 0.003 0.002 0.003

Cr2O3 0.37 0.32 9.55 6.43 0.42 0.36 0.47

LOI 16.50 16.22 -0.21 15.79 16.85 15.95 16.41

Total 99.10 99.94 100.06 100.16 99.42 99.89 101.12

Sc 5.12 3.55 3.86 3.30 6.53 8.65 7.43

V 25.39 23.06 124.83 64.34 31.48 49.18 35.58

Cr 2560 2436 66560 43636 2864 2511 3073

Co 87.64 134.83 151.34 110.02 102.49 84.62 94.90

Ni 2459 2443 1988 1981 1660 2184 1830

Cu 14.24 75.20 40.92 74.50 24.53 16.16 19.33

Zn 35.24 77.10 117.29 83.81 97.98 40.78 45.57

Sr 1.76 3.39 1.11 0.79 1.47 1.47 0.65

Y 0.11 0.44 0.49 0.32 0.44 0.21 0.36

Zr 0.57 1.29 1.04 1.49 1.00 4.03 0.64

Ba 11.08 11.54 8.27 6.13 7.40 7.44 9.21

Ti 54.72 195.66 317.00 314.52 242.70 68.33 283.46

Mn 777.84 683.04 1097.90 925.80 725.22 783.03 899.77

Ga 0.48 1.25 2.08 1.36 0.57 0.72 0.66

Rb 0.19 0.50 0.81 0.34 0.76 0.41 0.41

Nb 0.03 0.19 0.15 0.32 0.29 0.05 0.45

Cs 0.01 0.04 0.03 0.03 0.03 0.02 0.05

La 0.1361 0.1733 0.0320 0.0083 0.0098 0.0089 0.0086

Ce 0.2596 0.3384 0.0597 0.0188 0.0225 0.0186 0.0193

Pr 0.0335 0.0367 0.0088 0.0047 0.0044 0.0025 0.0034

Nd 0.0871 0.1551 0.0498 0.0152 0.0230 0.0129 0.0185

Sm 0.0131 0.0277 0.0094 0.0084 0.0165 0.0040 0.0102

Eu 0.0050 0.0067 0.0110 0.0049 0.0038 0.0020 0.0030

Gd 0.0144 0.0295 0.0218 0.0121 0.0181 0.0086 0.0257

Tb 0.0032 0.0035 0.0066 0.0036 0.0053 0.0019 0.0054

Dy 0.0165 0.0334 0.0199 0.0196 0.0523 0.0272 0.0406

Ho 0.0030 0.0065 0.0052 0.0037 0.0119 0.0060 0.0083

Er 0.0165 0.0197 0.0276 0.0162 0.0324 0.0162 0.0280

Tm 0.0027 0.0024 0.0064 0.0050 0.0060 0.0028 0.0052

Yb 0.0210 0.0352 0.0212 0.0196 0.0505 0.0230 0.0388

Lu 0.0028 0.0030 0.0033 0.0031 0.0066 0.0043 0.0057

Hf 0.0169 0.0412 0.0321 0.0269 0.0320 0.1028 0.0166

Ta 0.0019 0.0121 0.0127 0.0229 0.0189 0.0029 0.0299

Th 0.0147 0.0294 0.0143 0.0027 0.0064 0.0139 0.0018
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 Sample F1971 G1908 Vos 328 Vos 341 Vos 345 Vos 348 Vos 350

Drillcore V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 343.55 373.42 375.00 389.23 394.11 398.63 403.00

Zone Ore Zone Ore Zone Lower Contact Footwall Footwall Footwall Footwall

Rock Type Dunite Dunite Dunite Harzburgite Harzburgite Dunite Dunite

SiO2 36.94 38.66 37.94 39.03 40.51 44.20 39.89

TiO2 0.036 0.029 0.013 0.024 0.029 0.009 0.009

Al2O3 0.57 0.30 0.24 1.09 1.27 0.27 0.35

Fe2O3 6.64 7.81 6.89 7.23 7.35 6.61 7.90

MnO 0.08 0.10 0.10 0.11 0.11 0.10 0.12

MgO 34.44 35.88 37.72 35.96 36.34 32.73 37.56

CaO 0.02 0.02 0.06 0.54 1.42 1.00 0.33

Na2O 0.014 0.029 0.022 0.054 0.046 0.019 0.035

K2O 0.0223 0.0295 0.0107 0.0066 0.0054 0.0074 0.0063

P2O5 0.004 0.002 0.002 0.002 0.004 0.003 0.002

Cr2O3 4.30 1.05 0.43 0.35 0.35 0.31 0.29

LOI 16.29 16.43 15.71 14.48 12.18 13.36 13.08

Total 99.36 100.34 99.14 98.86 99.61 98.61 99.58

Sc 1.63 2.56 3.37 8.20 9.59 7.48 6.09

V 42.65 26.29 20.33 41.15 47.09 40.34 27.93

Cr 29839 7286 2987 2408 2413 2109 1979

Co 110.36 120.42 93.50 87.74 84.38 82.16 93.52

Ni 2493 1822 2403 2162 2135 2250 2113

Cu 20.39 26.81 12.70 25.93 16.66 31.76 23.45

Zn 64.77 53.00 49.77 77.33 39.99 43.52 37.21

Sr 1.64 3.82 1.40 2.32 3.42 3.09 3.25

Y 0.29 0.52 0.35 0.69 0.96 0.11 0.14

Zr 0.55 1.33 1.66 3.79 9.21 0.96 1.69

Ba 7.41 11.33 9.41 6.44 9.36 7.48 12.37

Ti 217.10 171.20 80.01 143.74 171.95 52.54 54.51

Mn 641.95 768.76 753.43 852.88 849.06 763.83 899.58

Ga 1.04 0.61 0.34 1.10 1.16 0.47 0.51

Rb 0.47 0.55 0.17 0.28 0.29 0.14 0.30

Nb 0.37 0.25 0.04 0.29 0.05 0.03 0.08

Cs 0.08 0.09 0.01 0.02 0.03 0.01 0.03

La 0.0175 0.1075 0.1442 0.0349 0.0839 0.0243 0.1370

Ce 0.0415 0.1940 0.2616 0.0745 0.1940 0.0852 0.2610

Pr 0.0054 0.0191 0.0325 0.0150 0.0301 0.0130 0.0340

Nd 0.0279 0.0765 0.1085 0.0706 0.1161 0.0200 0.1030

Sm 0.0083 0.0194 0.0303 0.0340 0.0500 0.0060 0.0190

Eu 0.0030 0.0039 0.0100 0.0156 0.0204 0.0020 0.0040

Gd 0.0101 0.0202 0.0377 0.0534 0.0687 0.0075 0.0090

Tb 0.0026 0.0026 0.0058 0.0117 0.0176 0.0022 0.0015

Dy 0.0117 0.0158 0.0553 0.1047 0.1481 0.0179 0.0160

Ho 0.0028 0.0028 0.0110 0.0205 0.0293 0.0036 0.0027

Er 0.0087 0.0096 0.0359 0.0783 0.1067 0.0148 0.0094

Tm 0.0025 0.0015 0.0057 0.0116 0.0145 0.0022 0.0010

Yb 0.0103 0.0149 0.0392 0.1007 0.1235 0.0208 0.0146

Lu 0.0027 0.0016 0.0037 0.0141 0.0179 0.0027 0.0020

Hf 0.0180 0.0286 0.0407 0.1106 0.2361 0.0267 0.0360

Ta 0.0249 0.0150 0.0029 0.0289 0.0028 0.0019 0.0040

Th 0.0092 0.0248 0.0182 0.0193 0.0317 0.0165 0.0370
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Table D 1: Chromite Analyses by Scanning Electron Microscope using Wave- Dispersive 

Spectroscopy 

 
Sample Vos 174 Vos-179 G1742 G1777 G1910 G1791 G1941

Drill Core V06-S6 V06-S6 V05-24 V05-24 V06-48 V05-24 V06-48

Depth (m) 66.45 79.50 141.28 185.64 200.75 221.03 231.35

Zone Upper Contact Upper Contact Hanging wall Hanging wall Hanging wall Hanging wall Ore Zone

Rock Type Dunite Dunite Harzburgite Dunite Dunite Harzburgite Dunite 

% Chromite <5% <10% <5% <5% <5% <5% <5%

Chromite Morphology SI SI HL/SI HL/SI SI/Eu HL/SI SI/Eu

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 35.28 41.83 20.94 36.38 44.84 31.21 60.92

Al2O3 30.84 25.76 46.08 30.94 15.44 37.58 6.66

FeO  19.10 17.98 13.67 17.25 32.13 14.81 21.29

MgO  13.74 13.62 17.97 14.55 6.24 15.29 10.31

TiO2 0.15 0.12 0.06 0.17 0.16 0.04 0.13

V2O5 0.18 0.25 0.17 0.30 0.19 0.15 0.11

MnO  0.25 0.26 0.14 0.23 0.33 0.18 0.32

CoO 0.08 0.08 0.06 0.08 0.06 0.07 0.08

NiO 0.12 0.09 0.25 0.13 0.08 0.15 0.05

ZnO  0.20 0.21 0.17 0.20 0.13 0.20 0.07

Total 99.94 100.20 99.50 100.21 99.58 99.68 99.96

Cr#    [Cr/(Cr+Al)] 0.434 0.521 0.234 0.441 0.661 0.358 0.860

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.415 0.502 0.227 0.426 0.592 0.354 0.809

Al# 0.541 0.461 0.746 0.540 0.304 0.637 0.132

Fe
3+

# 0.044 0.037 0.027 0.033 0.104 0.009 0.059

Mg# 0.611 0.617 0.739 0.640 0.311 0.659 0.518

Fe
2+

# 0.389 0.383 0.261 0.360 0.689 0.341 0.482

Fe
2+

/Fe
3+ 4.437 5.153 4.753 5.421 3.296 19.021 4.072

Fo (Olivine) 0.910 0.915 0.902 0.909 0.923 0.920 n.d  
 

 

 
Sample G1795 G1798 G1989 G1991 Vos 301 Vos 303 Vos 306

Drill Core V05-24 V05-24 V05-21 V05-21 V05-24 V05-24 V05-24

Depth (m) 231.90 239.50 246.45 247.40 249.53 251.70 258.94

Zone Hanging wall Hanging wall Hanging wall Hanging wall Hanging wall Hanging wall Upper Contact

Rock Type Harzburgite Dunite Dunite Dunite Dunite Dunite Dunite

% Chromite <5% <5% <5% <5% <5% <5% <5%

Chromite Morphology An/SI HL/SI SI/Eu SI/Eu HL/SI SI HL/SI

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 29.62 35.72 47.26 57.97 40.61 41.10 44.41

Al2O3 38.34 32.22 19.74 8.96 26.96 26.18 22.67

FeO  14.80 16.58 20.52 21.94 18.35 18.37 20.37

MgO  16.22 14.27 11.60 9.93 13.21 12.88 11.66

TiO2 0.03 0.03 0.06 0.17 0.12 0.12 0.16

V2O5 0.16 0.28 0.29 0.20 0.16 0.28 0.19

MnO  0.16 0.22 0.29 0.37 0.26 0.27 0.31

CoO 0.08 0.08 0.09 0.08 0.07 0.07 0.07

NiO 0.15 0.19 0.07 0.05 0.11 0.13 0.15

ZnO  0.21 0.20 0.17 0.12 0.19 0.19 0.12

Total 99.76 99.80 100.08 99.78 100.05 99.60 100.11

Cr#    [Cr/(Cr+Al)] 0.341 0.426 0.616 0.813 0.503 0.513 0.568

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.333 0.417 0.589 0.768 0.486 0.498 0.547

Al# 0.643 0.561 0.367 0.177 0.481 0.473 0.416

Fe
3+

# 0.024 0.022 0.044 0.055 0.033 0.030 0.037

Mg# 0.693 0.632 0.546 0.496 0.599 0.589 0.542

Fe
2+

# 0.307 0.368 0.454 0.504 0.401 0.411 0.458

Fe
2+

/Fe
3+ 6.389 8.888 5.114 4.541 6.105 7.341 6.208

Fo (Olivine) 0.912 0.916 n.d n.d 0.910 n.d 0.911  
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Sample Vos 309 Vos 312 Vos 315 Vos 322 Vos 327 F1901 F1907

Drill Core V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 265.80 266.88 270.10 276.80 282.72 284.20 285.80

Zone Upper Contact Ore Zone Ore Zone Hanging wall Hanging wall Upper Contact Upper Contact

Rock Type Dunite DCR DCR Harzburgite Harzburgite Dunite Dunite

% Chromite <5% ~30% ~50% <5% <5% <5% <5%

Chromite Morphology SI/Eu SI/Eu SI/Eu An/SI An/SI SI/Eu SI

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 44.66 60.25 60.56 37.21 31.14 59.98 33.87

Al2O3 22.51 7.01 7.32 28.40 34.24 6.79 31.90

FeO  19.81 22.77 20.68 19.86 18.52 22.19 19.09

MgO  12.27 8.98 10.27 13.22 14.79 9.94 14.15

TiO2 0.17 0.15 0.18 0.12 0.07 0.16 0.13

V2O5 0.24 0.11 0.11 0.29 0.20 0.11 0.28

MnO  0.28 0.38 0.35 0.26 0.22 0.35 0.21

CoO 0.07 0.07 0.07 0.07 0.07 0.07 0.07

NiO 0.09 0.04 0.04 0.13 0.19 0.05 0.14

ZnO  0.21 0.05 0.03 0.19 0.19 0.05 0.21

Total 100.30 99.82 99.61 99.75 99.63 99.69 100.07

Cr#    [Cr/(Cr+Al)] 0.571 0.852 0.847 0.468 0.379 0.856 0.416

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.548 0.808 0.806 0.445 0.359 0.800 0.396

Al# 0.412 0.140 0.145 0.506 0.589 0.135 0.556

Fe
3+

# 0.040 0.052 0.049 0.049 0.051 0.064 0.048

Mg# 0.567 0.456 0.516 0.596 0.648 0.501 0.624

Fe
2+

# 0.433 0.544 0.484 0.404 0.352 0.499 0.376

Fe
2+

/Fe
3+ 5.361 5.898 4.731 4.097 3.568 3.856 3.937

Fo (Olivine) n.d n.d 0.927 0.913 0.909 n.d 0.913  
 

 

 

 
Sample G1956 F1920 F1925 F1925 F1935 F1964/65 F1967

Drill Core V06-48 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 288.55 290.30 296.05 296.18 311.24 341.46 342.36

Zone Ore Zone Ore Zone Ore Zone Ore Zone Ore Zone Ore Zone Ore Zone

Rock Type Dunite Dunite HMCR DCR HMCR HMCR DCR

% Chromite ~15% ~10% >95% ~30% >90% >95% ~50%

Chromite Morphology SI/Eu SI/Eu Eu Eu Eu Eu SI/Eu

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 60.57 61.31 63.69 61.41 63.07 62.77 61.78

Al2O3 7.66 7.30 7.23 7.10 7.97 8.25 7.23

FeO  19.50 17.97 13.80 11.31 12.86 15.10 18.04

MgO  11.39 12.40 14.24 18.99 15.21 13.13 11.98

TiO2 0.16 0.16 0.17 0.15 0.17 0.12 0.14

V2O5 0.10 0.12 0.10 0.09 0.13 0.10 0.10

MnO  0.32 0.31 0.28 0.33 0.24 0.30 0.30

CoO 0.07 0.06 0.05 0.06 0.04 0.04 0.06

NiO 0.06 0.07 0.10 0.07 0.17 0.10 0.08

ZnO  0.07 0.05 0.00 0.02 0.01 0.03 0.02

Total 99.91 99.74 28.73 31.02 99.86 99.94 99.74

Cr#    [Cr/(Cr+Al)] 0.841 0.849 0.855 0.853 0.841 0.836 0.851

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.796 0.802 0.827 0.812 0.807 0.812 0.811

Al# 0.150 0.142 0.140 0.140 0.152 0.159 0.142

Fe
3+

# 0.054 0.055 0.033 0.048 0.041 0.029 0.048

Mg# 0.565 0.612 0.675 0.565 0.733 0.643 0.594

Fe
2+

# 0.435 0.388 0.325 0.435 0.267 0.357 0.406

Fe
2+

/Fe
3+ 3.996 3.507 4.909 4.483 3.297 3.884 4.251

Fo (Olivine) n.d n.d n.d n.d n.d n.d n.d
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Sample F1971 F1978 F1996/97 G1908 Vos 328 Vos 341 G1964

Drill Core V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V06-48

Depth (m) 343.55 348.34 359.01 373.42 375.00 389.23 291.35

Zone Ore Zone Ore Zone Ore Zone Ore Zone Lower Contact Footwall Ore Zone

Rock Type DCR DCR HMCR DCR Dunite Harzburgite Chromitite

% Chromite ~15% ~35% >95% <5% <5% <5% ~70%

Chromite Morphology SI/Eu SI/Eu Eu SI/Eu SI/Eu HL SI/Eu

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 62.02 60.95 63.59 54.40 47.14 20.66 62.19

Al2O3 6.80 7.05 7.66 11.39 17.46 47.68 7.23

FeO  18.73 18.82 13.35 22.89 23.70 13.07 17.36

MgO  11.43 12.19 14.52 10.29 10.86 17.66 12.55

TiO2 0.14 0.15 0.16 0.16 0.24 0.05 0.15

V2O5 0.09 0.11 0.11 0.18 0.17 0.12 0.09

MnO  0.33 0.32 0.24 0.34 0.32 0.15 0.33

CoO 0.07 0.06 0.04 0.06 0.09 0.07 0.07

NiO 0.04 0.05 0.11 0.07 0.08 0.18 0.04

ZnO  0.05 0.05 0.01 0.12 0.15 0.26 0.05

Total 99.70 99.76 99.80 99.89 100.21 99.89 100.05

Cr#    [Cr/(Cr+Al)] 0.860 0.853 0.848 0.762 0.644 0.225 0.852

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.819 0.799 0.819 0.709 0.596 0.223 0.811

Al# 0.134 0.138 0.147 0.221 0.329 0.766 0.140

Fe
3+

# 0.048 0.063 0.034 0.069 0.075 0.011 0.049

Mg# 0.570 0.604 0.704 0.506 0.517 0.723 0.618

Fe
2+

# 0.430 0.396 0.296 0.494 0.483 0.277 0.382

Fe
2+

/Fe
3+ 4.506 3.199 4.404 3.563 3.273 12.013 3.884

Fo (Olivine) n.d n.d n.d 0.922 0.924 0.908 n.d  
 

 
Sample G1979 G1983 G1988 G1601 G1608 G1605 G1623

Drill Core V06-48 V06-48 V06-48 V05-28 V05-28 V05-28 V05-28

Depth (m) 296.70 298.45 300.15 322.09 328.70 325.52 354.67

Zone Ore Zone Lower Contact Lower Contact Hanging wall Ore Zone Upper Contact Ore Zone

Rock Type Chromitite Dunite Dunite Dunite Chromitite Dunite Dunite

% Chromite ~70% <5% <5% <5% ~50% <5% <5%

Chromite Morphology SI/Eu SI/Eu SI/Eu An/SI Eu An/SI SI/Eu

Chromite (n )= 3 3 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9 9 9

Cr2O3 62.77 58.98 59.03 40.18 64.03 42.40 58.07

Al2O3 7.45 7.50 8.18 27.67 7.20 24.78 7.20

FeO  15.25 22.58 21.68 16.72 13.56 18.99 24.27

MgO  13.74 9.95 10.34 14.62 14.63 12.98 9.32

TiO2 0.16 0.18 0.15 0.12 0.16 0.20 0.15

V2O5 0.09 0.14 0.15 0.18 0.10 0.23 0.16

MnO  0.26 0.37 0.37 0.22 0.26 0.28 0.39

CoO 0.05 0.09 0.08 0.07 0.03 0.09 0.09

NiO 0.08 0.06 0.03 0.11 0.09 0.08 0.05

ZnO  0.02 0.16 0.10 0.17 0.02 0.21 0.11

Total 99.87 100.02 100.10 100.07 100.09 100.24 99.81

Cr#    [Cr/(Cr+Al)] 0.850 0.841 0.829 0.493 0.856 0.534 0.844

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.812 0.783 0.778 0.475 0.823 0.514 0.776

Al# 0.144 0.148 0.161 0.488 0.138 0.448 0.144

Fe
3+

# 0.044 0.068 0.061 0.036 0.039 0.039 0.080

Mg# 0.670 0.500 0.515 0.654 0.709 0.592 0.471

Fe
2+

# 0.330 0.500 0.485 0.346 0.291 0.408 0.529

Fe
2+

/Fe
3+ 3.759 3.649 3.983 4.746 3.771 5.250 3.288

Fo (Olivine) n.d 0.932 0.935 0.919 n.d 0.916 0.917  
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Sample Vos 345 Vos 348 Vos 350 G1624 G1631

Drill Core V05-24 V05-24 V05-24 V05-28 V05-28

Depth (m) 394.11 398.63 402.92 432.97 434.40

Zone Footwall Footwall Footwall Ore Zone Ore Zone

Rock Type Harzburgite Dunite Dunite Dunite Dunite

% Chromite <5% <5% <5% <10% <5%

Chromite Morphology HL/SI HL/SI/Eu HL/SI SI/Eu SI/Eu

Chromite (n )= 3 3 3 3 3

Analyses per sample 

(n) = 
9 9 9 9 9

Cr2O3 20.15 46.33 42.94 59.15 54.98

Al2O3 47.35 20.76 23.95 7.57 11.13

FeO  12.74 21.02 20.23 22.24 21.14

MgO  18.71 10.79 11.77 10.24 11.59

TiO2 0.05 0.15 0.14 0.17 0.25

V2O5 0.15 0.42 0.30 0.11 0.15

MnO  0.15 0.31 0.28 0.37 0.28

CoO 0.07 0.09 0.08 0.09 0.08

NiO 0.26 0.06 0.07 0.06 0.13

ZnO  0.16 0.19 0.23 0.09 0.19

Total 99.79 100.11 100.00 100.08 99.93

Cr#    [Cr/(Cr+Al)] 0.222 0.599 0.546 0.840 0.768

Cr#
1
   [Cr/(Cr+Al+Fe

3+
)] 0.216 0.581 0.527 0.782 0.712

Al# 0.757 0.388 0.438 0.149 0.215

Fe
3+

# 0.027 0.031 0.035 0.068 0.073

Mg# 0.762 0.507 0.544 0.513 0.566

Fe
2+

# 0.238 0.493 0.456 0.487 0.434

Fe
2+

/Fe
3+ 4.427 7.964 6.589 3.552 2.981

Fo (Olivine) n.d 0.909 0.908 0.935 0.933  



353 

 

Table D 2: Drill core V05-13 FeO(t)>MgO Chromite Group - Chromite Analyses by 

Scanning Electron Microscope using Wave- Dispersive Spectroscopy 
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Table D 3: Drill core V05-13 MgO>FeO(t) Chromite Group - Chromite Analyses by 

Scanning Electron Microscope using Wave- Dispersive Spectroscopy 
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Table D 4: Sample F1964-65 drill core V05-24. Chromite Analyses by Scanning Electron 
Microscope using Wave- Dispersive Spectroscopy 
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Table D 5: Sample F1996-97 drill core V05-24. Chromite Analyses by Scanning Electron 
Microscope using Wave- Dispersive Spectroscopy 
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Table D 6: Sample F1925 drill core V05-24. Chromite Analyses by Scanning Electron 
Microscope using Wave- Dispersive Spectroscopy 
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Appendix E – EMPA and LA- ICP- MS Analyses
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Table E 1: Chromite Analyses by Electron Microprobe and Laser Ablation (LA-ICP-
MS) 

 

 
Sample G1742 G1777 G1795 G1798 V05-24-301 V05-24-303 V05-24-306

Drill Core V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 141.28 185.64 231.90 239.50 249.53 251.70 258.94

Zone Hanging wall Hanging wall Hanging wall Hanging wall Hanging wall Hanging wall Upper Contact

Rock Type Harzburgite Dunite Harzburgite Dunite Dunite Dunite Dunite Halo

% Chromite <5% <5% <5% <5% <5% <5% <5%

Chromite Morphology HL/SI HL/SI SI/An HL/SI HL/SI SI HL/SI

Spinel EMPA (n=) 3 3 3 3 3 3 3

SiO2 0.04 0.07 0.06 0.10 0.06 0.09 0.08

TiO2 0.06 0.18 0.02 0.03 0.07 0.06 0.16

Al2O3 47.60 31.38 39.02 33.73 26.95 26.76 23.01

V2O3 0.14 0.22 0.13 0.16 0.17 0.14 0.19

Cr2O3 20.16 35.99 29.79 33.53 40.57 40.45 44.74

FeO 14.14 17.89 15.24 17.73 18.36 18.40 20.11

MnO 0.15 0.27 0.20 0.23 0.26 0.29 0.30

MgO 17.58 13.87 15.64 14.23 13.21 13.52 11.57

CaO 0.00 0.00 0.01 0.01 0.01 0.01 0.01

Na2O 0.01 0.01 0.02 0.01 0.01 0.01 0.00

ZnO 0.18 0.20 0.20 0.30 0.19 0.20 0.20

NiO 0.25 0.12 0.17 0.10 0.11 0.09 0.08

Total 100.32 100.21 100.49 100.16 99.97 100.02 100.45

Mg# 0.72 0.61 0.67 0.63 0.60 0.61 0.54

Cr#            [Cr/(Cr+Al)] 0.22 0.43 0.34 0.40 0.50 0.50 0.57

Fe
+3

# 0.01 0.02 0.06 0.02 0.04 0.02 0.10

Fe
3+

/∑Fe (probe) 0.13 0.13 0.09 0.14 0.14 0.17 0.11

Fe
3+

/∑Fe (corrected) 0.14 0.16 0.11 0.17 0.18 0.21 0.15

Fa (Ol) 0.098 0.091 0.088 nd 0.090 0.082 0.090

T°C (Balhaus) 637 651 690 nd 696 657 733

∆log ƒO2 (FMQ) (Balhaus) -2.81 -0.46 1.36 nd 0.34 -1.05 1.87

T°C 1100 1100 1100 1100 1100 1100 1100

∆log ƒO2 (FMQ) (Balhaus) -3.20 -0.55 1.18 nd 0.32 -1.05 1.89

Spinel LA-ICP-MS

TiO2 wt.% 0.06 0.22 0.02 0.02 0.08 0.06 0.12

Ga ppm 47.94 41.49 27.10 19.81 38.11 23.18 29.28

100*TiO2/Fe
3+

# 1161.38 866.31 37.67 116.87 181.97 335.95 110.61

Ga/Fe
3+

# 8836.97 1669.33 450.39 964.66 896.73 1305.12 280.83  
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Sample V05-24-312 V05-24-315 V05-24-322 V05-24-327 F1907 F1971 G1908

Drill Core V05-24 V05-24 V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 266.88 270.10 276.80 282.72 285.80 343.55 373.42

Zone Ore Zone Ore Zone Hanging wall Hanging wall Upper Contact Ore Zone Ore Zone

Rock Type Chromitite Chromitite Harzburgite Harzburgite Dunite Halo
Ore Zone 

Dunite
Dunite Halo

% Chromite ~30% ~50% <5% <5% <5% ~15% <5%

Chromite Morphology SI/Eu SI/Eu SI/An SI/Eu SI SI/Eu SI/Eu

Spinel EMPA (n=) 3 3 3 3 3 3 3

SiO2 0.07 0.12 0.07 0.06 0.05 0.11 0.08

TiO2 0.13 0.14 0.10 0.07 0.10 0.13 0.17

Al2O3 7.09 7.56 29.44 34.03 33.72 7.03 13.16

V2O3 0.07 0.08 0.19 0.20 0.21 0.06 0.15

Cr2O3 61.30 61.00 37.30 31.22 31.85 62.43 50.74

FeO 22.71 20.78 19.49 18.63 18.91 19.62 24.28

MnO 0.42 0.38 0.26 0.23 0.24 0.37 0.37

MgO 8.57 10.01 13.06 14.88 14.39 10.67 10.49

CaO 0.00 0.02 0.01 0.00 0.01 0.02 0.00

Na2O 0.01 0.01 0.01 0.02 0.01 0.01 0.00

ZnO 0.07 0.05 0.19 0.20 0.20 0.06 0.14

NiO 0.03 0.06 0.11 0.18 0.16 0.05 0.08

Total 100.47 100.20 100.23 99.72 99.86 100.55 99.65

Mg# 0.43 0.50 0.59 0.65 0.63 0.53 0.51

Cr#            [Cr/(Cr+Al)] 0.85 0.84 0.46 0.38 0.39 0.86 0.72

Fe
+3

# 0.14 0.15 0.07 0.04 0.05 0.15 0.10

Fe
3+

/∑Fe (probe) 0.12 0.14 0.16 0.24 0.21 0.14 0.27

Fe
3+

/∑Fe (corrected) 0.19 0.21 0.19 0.26 0.23 0.21 0.32

Fa (Ol) nd 0.073 0.087 0.091 0.088 nd 0.078

T°C (Balhaus) nd 846 665 671 649 nd 729

∆log ƒO2 (FMQ) (Balhaus) nd 2.71 1.31 0.30 0.78 nd 1.77

T°C 1100 1100 1100 1100 1100 1100 1100

∆log ƒO2 (FMQ) (Balhaus) nd 2.81 1.26 0.18 0.66 nd 1.89

Spinel LA-ICP-MS

TiO2 wt.% 0.15 0.15 nd 0.05 0.11 0.14 0.19

Ga ppm 11.06 11.43 nd 28.51 35.40 10.35 17.38

100*TiO2/Fe
3+

# 107.60 99.14 n.d 144.91 231.46 91.05 194.62

Ga/Fe
3+

# 81.12 74.36 n.d 755.76 756.27 67.64 181.17  
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Sample V05-24-328 V05-24-341 V05-24-345 V05-24-348 V05-24-350

Drill Core V05-24 V05-24 V05-24 V05-24 V05-24

Depth (m) 375.00 389.23 394.11 398.63 402.92

Zone Lower Contact Footwall Footwall Footwall Footwall

Rock Type Dunite Halo Harzburgite Harzburgite Dunite Dunite

% Chromite <5% <5% <5% <5% <5%

Chromite Morphology SI/Eu HL HL/SI HL/SI/Eu HL/Si

SEM

Spinel EMPA (n=) 3 3 3 3 3

SiO2 0.08 0.05 0.00 0.07 0.07

TiO2 0.24 0.03 0.05 0.14 0.12

Al2O3 14.78 47.88 47.35 20.95 24.20

V2O3 0.12 0.12 0.15 0.34 0.23

Cr2O3 48.90 20.96 20.15 46.07 42.62

FeO 24.83 13.14 12.74 21.46 20.66

MnO 0.36 0.16 0.15 0.34 0.31

MgO 10.01 17.65 18.71 10.82 11.75

CaO 0.02 0.00 0.00 0.00 0.00

Na2O 0.01 0.01 0.00 0.02 0.01

ZnO 0.16 0.17 0.16 0.21 0.22

NiO 0.08 0.27 0.26 0.07 0.09

Total 99.59 100.45 99.72 100.49 100.29

Mg# 0.49 0.72 0.76 0.51 0.54

Cr#            [Cr/(Cr+Al)] 0.69 0.23 0.22 0.60 0.54

Fe
+3

# 0.12 0.06 0.03 0.06 0.05

Fe
3+

/∑Fe (probe) 0.25 0.07 0.19 0.13 0.15

Fe
3+

/∑Fe (corrected) 0.30 0.08 0.18 0.19

Fa (Ol) 0.076 0.092 nd 0.093 0.095

T°C (Balhaus) 699 710 nd 674 674

∆log ƒO2 (FMQ) (Balhaus) 2.28 1.51 nd 0.74 0.57

T°C 1100 1100 1100 1100 1100

∆log ƒO2 (FMQ) (Balhaus) 2.40 1.22 nd 0.78 0.58

Spinel LA-ICP-MS

TiO2 wt.% 0.27 0.07 0.06 0.14 0.15

Ga ppm 21.12 42.69 44.21 29.07 30.99

100*TiO2/Fe
3+

# 231.47 117.10 n.d 243.34 292.35

Ga/Fe
3+

# 178.64 717.56 n.d 504.08 601.27  
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Appendix F – Voskhod Olivine (Fo) – SEM and EMPA Analyses
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Table F 1: Olivine Forsterite Analyses by Scanning Electron Microscope 
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Table F 2: Olivine Forsterite Analyses by Electron Microprobe 
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Evaluation of precision 
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Graphs to show the relationship and strength of correlation (given as R2) for the 

Al2O3, Cr2O3, FeO, V and TiO2 contents of chromites analysed using LA-ICP-MS and 

EMPA techniques. 
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Graphs to show the relationship and strength of correlation (given as R2) for the 

minor element oxides NiO, ZnO, V2O5, TiO2 and MnO present in chromites analysed 

using the SEM and EMPA techniques. Error bars are given to 1.s.d. Where bars are 

not observed the symbol size exceeds the length of the bar. 
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Graphs to show the relationship and strength of correlation (given as R2) for the 

major element oxides Cr2O3, Al2O3, FeO and MgO present in chromites analysed 

using the SEM and EMPA techniques. Error bars are given to 1.s.d. Where bars are 

not observed the symbol size exceeds the length of the bar. 
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Graphs to show the relationship and strength of correlation (given as R2) for the 

major element oxides FeO and MgO present in olivine analysed using the SEM and 

EMPA techniques. Error bars are given to 1.s.d. Where bars are not observed the 

symbol size exceeds the length of the bar. 
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Appendix H  

Voskhod Samples: Petrographic Tables 
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Table H 1: Petrography of Voskhod harzburgite, dunite, dunite halo and ore zone sample suite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample

I.D

Drill core 

I.D

Region in  ore 

body

Depth down 

hole (m)

Distance from 

mineralisation 

(m)

Rock type
Chromite

 modal %

Grain

 Shape
Serpentinisation % LOI

Olivine Clinopyroxene Orthopyroxene Chromite

G 1815 V05-21 West 286.60 n/a O Z  Dun < 5% 97 3 >90

G 1823 V05-21 West 297.65 48.80 Dist Dun < 5% 95 2 3 ~80

G 1742 V05-24 C entre 141.30 142.92 Harz < 5% HL /S I 84 3 10 3 ~70 13.53

G 1763 V05-24 C entre 167.60 116.61 Harz < 5% HL /S I 83 2 12 2 ~70

G 1768 V05-24 C entre 176.94 107.26 Harz <5% HL /S I 85 2 10 3 ~70

G 1777 V05-24 C entre 185.60 98.56 Dist Dun < 5% HL /S I 90 2 5 3 ~70 15.63

G 1791 V05-24 C entre 221.00 63.17 Harz < 5% HL /S I 87 3 7 3 ~70

G 1795 V05-24 C entre 231.90 52.30 Harz < 5% S I/An 85 3 10 2 ~80 16.34

G 1798 V05-24 C entre 240.00 44.70 Dist Dun < 5% HL /S I 92 5 3 ~80 16.34

VO S -301 V05-24 C entre 249.53 34.67 Dist Dun < 5% HL /S I 95 3 2 ~75 16.25

VO S -303 V05-24 C entre 252.00 32.50 Dist Dun < 5% S I 95 2 3 ~75 16.5

VO S -306 V05-24 C entre 258.94 25.26 Dun Halo < 5% HL /S I 97 3 ~90 16.22

VO S -312 V05-24 C entre 266.88 n/a
Dun/C hr
S tringer

~ 30% S I/E u 70 30 ~90

VO S -315 V05-24 C entre 270.10 n/a
Dun/C hr
S tringer

~ 50% S I/E u 50 50 ~90 -0.21

VO S -320 V05-24 C entre 274.59 9.61 Dist Dun < 5% S I 97 3 ~90 15.79

VO S -322 V05-24 C entre 276.80 7.40 Harz < 5% S I/An 88 2 7 3 ~90 16.85

VO S -327 V05-24 C entre 282.72 1.48 Harz < 5% S I/E u 86 1 8 3 ~90 15.95

F 1901 V05-24 C entre 284.2 n/a Dun Halo < 5% S I/E u 97 3 ~80

F 1907 V05-24 C entre 285.50 n/a O Z  Dun <5% S I 97 3 >90 16.41

F 1920 V05-24 C entre 290.3 n/a DC R 10% E u 92 8 >90

F 1925 V05-24 C entre 296.05 n/a HMC R >95% E u 3 97 >90

F 1925 V05-24 C entre 296.18 n/a DC R ~30% E u 70 30 >90 16.57

F 1926 V05-24 C entre 296.70 n/a O Z  Dun <5% E u 97 3 >90

F 1935 V05-24 C entre 311.24 n/a HMC R >90% E u 7 92 >90

F 1964/65 V05-24 C entre 341.46 n/a HMC R >95% E u 3 97 >90

F 1967 V05-24 C entre 342.36 n/a DC R ~50% S I/E u 50 50 >90 12.91

F 1968 V05-24 C entre 341.70 n/a O Z  Dun <5% E u 97 3 >90

F 1971 V05-24 C entre 343.00 n/a DC R ~ 15% E u 85 15 >90 16.29

F 1978 V05-24 C entre 348.00 n/a DC R ~ 35% E u 65 35 >90

F 1996/97 V05-24 C entre 359.01 n/a HMC R >95% E u 3 97 >90

G 1908 V05-24 C entre 373.42 n/a Dun Halo < 5% S I/E u 97 3 ~90 16.43

VO S -328 V05-24 C entre 375.00 1.58 Dun Halo < 5% S I/E u 97 3 ~90 15.71

VO S -341 V05-24 C entre 389.23 15.81 Harz < 5% HL 85 3 9 3 ~70 14.48

VO S -345 V05-24 C entre 394.00 20.69 Harz < 5% HL /S I 84 3 10 3 ~65 12.18

VO S -348 V05-24 C entre 398.63 25.21 Dist Dun < 5% HL /S I/E u 95 2 3 ~70 13.36

VO S -350 V05-24 C entre 403.00 29.50 Dist Dun < 5% HL /S I 96 1 3 ~65 13.08

Composition (%)
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Table H 2: (Cont) Petrography of Voskhod harzburgite, dunite, dunite halo and ore zone sample suite. 

 

 Sample

I.D

Drill core 

I.D

Region in  ore 

body

Depth down 

hole (m)

Distance from 

mineralisation 

(m)

Rock type
Chromite

 modal %

Grain

 Shape
Serpentinisation % LOI

Olivine Clinopyroxene Orthopyroxene Chromite

G 1601 V05-28 E ast 322.09 5.15 Dun Halo < 5% An/S I 97 3 ~70 14.35

G 1605 V05-28 E ast 325.52 1.72 Dun Halo < 5% An/S I 97 3 ~70 14.28

G 1608 V05-28 E ast 330.25 n/a DC R ~50% E u 50 50 >90 16.4

G 1609 V05-28 E ast 333.85 n/a O Z  Dun < 5% E u 97 3 >90

G 1623 V05-28 E ast 354.67 n/a O Z  Dun < 5% S I/E u 97 3 >90 14.1

G 1654 V05-28 E ast 369.70 n/a O Z  Dun < 5% S I/E u 97 3 >90

G 1624 V05-28 E ast 432.97 n/a DC R < 10% S I/E u 92 8 >90

G 1631 V05-28 E ast 434.40 n/a O Z  Dun < 5% S I/E u 97 3 >90

G 1910 V06-48 S . C entre 200.75 0.56 Dun Halo < 5% S I/E u 97 3 ~70

G 1941 V06-48 S . C entre 231.35 n/a O Z  Dun <5% S I/E u 97 3 >90

G 1956 V06-48 S . C entre 288.55 n/a DC R ~15% S I/E u 85 15 >90

G 1964 V06-48 S . C entre 291.35 n/a HMC R ~70% S I/E u 30 70 >90

G 1979 V06-48 S . C entre 296.7 n/a HMC R ~70% S I/E u 30 70 >90 13.99

G 1983 V06-48 S . C entre 298.45 1.75 Dun Halo < 5% S I/E u 97 3 ~80 16.97

G 1988 V06-48 S . C entre 300.15 3.45 Dun Halo < 5% S I/E u 97 3 ~70

VO S -174 V06-S 6 S outh 66.45 13.05 Dist Dun < 5% S I 97 2 3 ~70

VO S -179 V06-S 6 S outh 79.50 n/a DC R < 10% S I 93 7 >90

VO S -185 V06-S 6 S outh 93.95 8.08 Harz < 5% An/S I 85 3 9 3 ~75

Composition (%)
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