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Abstract

High resolution crossed-beam laser spectroscopy has been used to measure the isotope

shifts and hyperfine parameters of nineteen transitions in atomic ruthenium. These re-

sults have been used in conjunction with four other existing transition measurements to

determine accurate values for the change in mean-square charge radius between the iso-

topes of ruthenium. The new charge radii measurements exhibit up to an order of mag-

nitude improvement in accuracy compared to the previously published results. These

accurate charge radii systematics in ruthenium provide additional data for the interest-

ing N = 60 region of the nuclear chart. The transitions measured have been assessed

in terms of their suitability for use in future collinear laser spectroscopy measurements

of radioactive ruthenium isotopes. One transition in particular, the 349.8942nm 0 −→

28571.890cm−1 transition, has the potential to be highly efficient.
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Chapter 1

Introduction

The year 2011 marked the centenary of Rutherford’s discovery of the atomic nucleus.

During the last century the nuclear chart has grown to include many thousands of differ-

ent nuclei of which only a few hundred are stable. Nuclear structure theories can repli-

cate experimental data well where it exists for the stable nuclei and radioactive isotopes

near the valley of nuclear stability. However when extending beyond regions of exper-

imental measurements to increasingly unstable nuclei different nuclear theories diverge

rapidly indicating that our understanding of the nuclear force remains incomplete. It is

clearly important to extend experimental measurements as far from stability as possible

to provide guidance points to assist the development of nuclear theory.

One nuclear property which is particularly useful is the nuclear charge distribution.

A number of different types of experiment utilise the electromagnetic force to probe

the charge distribution of the atomic nucleus. These include electron scattering, muonic

atom spectroscopy, K X-ray measurements and laser spectroscopy. Each of these ex-

periments measure different properties of the nuclear charge distribution with varying

degrees of accuracy[1]. Combining the results from these experiments together enables

accurate model independent values for the mean-square charge radius (MSCR) of the

nucleus to be determined[2].

On initial inspection, laser spectroscopy seems an unlikely method for studying small

changes in nuclear size due to the relative magnitudes of the nuclear radius and the wave-

length of visible light photons. Laser spectroscopy photons typically have a wavelength

of ∼ 10−7m which is several orders of magnitude greater than a typical nuclear radius

of ∼ 10−15m. Clearly this mismatch is far too great for laser spectroscopy to directly
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probe the nuclear radius. Instead laser spectroscopy stimulates transitions between the

atomic energy levels in order to gain accurate transition energies. The magnitude of each

individual atomic energy level is perturbed by small amounts due to the properties of the

nucleus (which will be discussed in chapter 2 of this thesis). This leads to small changes

in the transition energies for different isotopes. Laser spectroscopy experiments have

great enough sensitivity and parts in 109 resolution to be able to detect these small shifts

in transition energies and therefore provide an indirect method of measuring nuclear

properties. Due to the fact that laser spectroscopy is an indirect method for probing the

nucleus it is necessary to calibrate the measured data in order to extract the interesting

nuclear information. Calibration is achieved by combining laser spectroscopy measure-

ments with those obtained from the alternative experimental methods mentioned above.

This combined analysis technique is discussed at length in section 5.4 of this thesis. Due

to its high level of sensitivity, laser spectroscopy is the only technique capable of study-

ing the properties of short lived radioactive isotopes and isomers. Laser spectroscopy is

therefore an incredibly important tool for expanding nuclear measurements to isotopes

further from stability.

An area of the nuclear chart that has been investigated by a significant number of

laser spectroscopy experiments in recent years is the Z ' 40, N ' 60 region. Figure

1.1 below displays the change in MSCR, δ〈r2〉, with neutron number N for the elements

36 ≤ Z ≤ 42. At the N = 50 shell closure 〈r2〉 is at a minimum in all element chains

indicating very little nuclear deformation. This is true for all shell closures throughout

the nuclear chart. As neutrons are added to the nucleus the charge radius increases in an

approximately linear manner until N = 60. At N = 60 a sudden onset of deformation

is observed for several elements. The sudden onset is initially observed in rubidium and

increases in magnitude with Z until it reaches a maximum in the yttrium chain. The

magnitude of this increase in deformation then decreases with Z and becomes washed

out by the molybdenum chain. However, it should be noted that whilst the molybdenum

chain does not exhibit a sudden onset of deformation at N = 60 it does still become

significantly deformed by N = 60. Instead, the molybdenum chain increases in defor-

mation much more gradually.

Currently no laser spectroscopy experiments have been conducted for the elements

immediately above molybdenum in the nuclear chart. Technetium, Z = 43, possesses no

stable isotopes which presents an experimental challenge as stable isotope measurements

2
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are typically used to calibrate δ〈r2〉 values for the unstable isotopes. The next element

of ascending atomic number is Z = 44, ruthenium.

Neutron Number, N

(f
m

  
)

45 50 55 60 65

Krypton (Z=36)

Rubidium (Z=37)

Strontium (Z=38)

Yttrium (Z=39)

Zirconium (Z=40)

Niobium (Z=41)

Molybdenum (Z=42)

2
<

r 
 >2

δ

Figure 1.1: Change in mean-square charge radii, δ〈r2〉 for Kr[3], Rb[4], Sr[5], Y[6], Zr[7],
Nb[8] and Mo[9]. Each isotope chain for an element Z has been offset in the y-axis from the
previous chain by an arbitrary amount for clarity. Error bars are smaller than the data points.

Ruthenium has seven stable isotopes; 96Ru, 98Ru, 99Ru, 100Ru, 101Ru, 102Ru and
104Ru. Despite being relatively abundant and possessing a large number of stable iso-

topes surprisingly little experimental nuclear charge distribution data exists for stable

ruthenium. A review by Fricke et al[2] reports that only muonic atom spectroscopy data

exists for ruthenium and no laser spectroscopy, electron scattering or K X-ray work.

Whilst no laser spectroscopy work has been performed for ruthenium a single optical

transition has previously been measured using a hollow-cathode experiment[10]. The

best set of MSCR data currently available for ruthenium is based upon a combined anal-

ysis of the muonic data and the hollow-cathode data performed by Fricke et al[2]. The
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accuracy of these MSCR values is limited by the accuracy of the hollow-cathode exper-

iment which is considerably lower than that from a laser spectroscopy experiment.

The main disadvantage of hollow-cathode experiments is the production of emission

lines with a significant Doppler width. Laser spectroscopy experiments intersect a laser

beam with a beam of atoms in order to dramatically reduce the Doppler broadening of

spectral lines relative to a hollow-cathode light source[11]. There are two common laser

spectroscopy geometries; crossed-beam spectroscopy, where the laser and atomic beams

cross perpendicularly, and collinear laser spectroscopy where the laser and atomic beams

are overlapped parallel to each other. For this thesis, crossed-beam laser spectroscopy

was used to measure nineteen optical transitions in atomic ruthenium at the University of

Birmingham. These measurements complement four other ruthenium transitions mea-

sured using the same experimental set-up by E. Cochrane in 1999.

This thesis will catalogue the measurement and analysis of these spectra in order to

extract more accurate values for the MSCR of the stable ruthenium isotopes. Chapter 2

discusses the theoretical background to isotope shifts and hyperfine structures which are

caused by interactions between the nucleus and the surrounding electron cloud. Chapter

3 gives an outline of high resolution laser spectroscopy techniques. Line broadening

mechanisms are discussed and two experimental approaches to reduce this effect are

considered. These are the crossed-beam technique, which was used for the data taken in

this thesis and the collinear method which would be required in the future to extend the

data to include radio-nuclides. A more detailed description of the laser and experimen-

tal equipment used to perform crossed-beam laser spectroscopy is discussed in chapter

4. Chapter 5 discusses at length the various analysis techniques required to extract the

relevant atomic and nuclear parameters (such as the change in MSCR between isotopes)

from the measured atomic spectra. This chapter also lists the various results obtained

during this work. Chapter 6 considers the consequences of the work carried out dur-

ing this thesis for future collinear measurements of the unstable isotopes of ruthenium.

Finally, chapter 7 summarises the results obtained from this work.
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Chapter 2

Theory

The gross structure of the electronic energy levels of an atom or ion can be calculated

using the non-relativistic Schrödinger equation by assuming that the nucleus is infinitely

massive and point-like. These calculations yield energy levels separated by the order of

eV. Taking account of the interactions between the spin and orbital angular momenta of

the electrons refines this model and splits the gross structure levels into the fine structure

levels that are spaced by the order of meV. In reality the nucleus is neither infinitely

massive nor point-like and accounting for the finite mass and volume of the nucleus

causes further perturbations of the fine structure levels of the order of µeV. In atomic

laser spectroscopy spectral lines are formed by stimulating transitions, via radiative ab-

sorption, between the electronic energy levels of an atom or ion and then observing the

subsequent fluorescence. The frequency at which a spectral line occurs is therefore de-

termined by the energy values of the electronic energy levels. The tiny perturbations of

these energy levels due to the properties of the nucleus therefore results in small fre-

quency shifts of spectral lines with respect to the infinite mass point-like nucleus model

lines. Laser spectroscopy therefore provides an indirect method of measuring nuclear

properties. The two nuclear effects which cause measureable perturbations on the elec-

tronic energy level structure are the isotope shift and hyperfine splitting.

2.1 Isotope Shift

For a given transition the corresponding spectral line will undergo a small frequency

shift for different isotopes of the same element. This effect is known as the isotope shift

and is expressed as follows [1],
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δνA,A
′

IS = νA
′ − νA, (2.1)

where νA and νA′ represent the frequency of the transition in isotopes of mass number

A and A′ respectively (as illustrated in figure 2.1 below). The isotope shift is caused

by the change in mass and charge distribution of the nucleus caused as neutrons are

added or removed from the nucleus between different isotopes. It is separable into two

components,

δνA,A
′

IS = δνA,A
′

MS + δνA,A
′

FS , (2.2)

known as the mass shift δνA,A
′

MS and the field shift δνA,A
′

FS .
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Figure 2.1: Simulated spectra illustrating the isotope shift between isotopes of different mass.
The transition centroids are marked with dashed lines.
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2.1.1 Mass Shift

The mass shift is a result of the change in mass between two isotopes. The variation in

mass leads to a change in the recoil kinetic energy of the nucleus which in turn shifts

the electronic energy levels. The total kinetic energy operator of an atom, T , can be

calculated as follows,

T =
pn

2

2M
+
∑
i

pi
2

2me

, (2.3)

where pn and M are the momentum and mass of the nucleus and pi and me are the

momentum and mass of the ith electron. Conservation of momentum dictates that∑
i pi = −pn for a stationary atom. Substituting this relation into equation 2.3 yields

the following,

T =
(
∑

i pi)
2

2M
+

∑
i pi

2

2me

=

∑
i pi

2

2M
+

1

M

∑
i>j

pi.pj +

∑
i pi

2

2me

=

∑
i pi

2

2µ
+

1

M

∑
i>j

pi.pj, (2.4)

where µ = meM
me+M

is the reduced mass. The first term in equation 2.4 is known as the

normal mass shift whereas the second term is known as the specific mass shift. The

normal mass shift is caused by the recoil kinetic energy of the nucleus as it orbits around

the centre of mass it shares with the atomic electrons (see figure 2.2). An electronic

energy level E(M) for an atom with a nucleus of mass M is shifted with respect to the

idealised case of an atom with a nucleus of infinite mass E(∞) as follows,

E(M) = E(∞)
M

M +me

. (2.5)

For an atom with an infinitely heavy nucleus the energy required to excite an electron

from a low lying electronic energy level EL(∞) to high lying energy level EH(∞) can

be calculated as follows,

E∞ = hν∞ = EH(∞)− EL(∞), (2.6)

where ν∞ is the transition frequency. For an atom with a nuclear mass M1 the excitation

energy E1 can be calculated by substituting equation 2.5 into equation 2.6 as follows,

7



Chapter 2. Theory

E1 = hν1 = EH(∞)
M1

M1 +me

− EL(∞)
M1

M1 +me

,

= [EH(∞)− EL(∞)]
M1

M1 +me

,

=
M1

M1 +me

hν∞. (2.7)

Similarly a second isotope with nuclear mass M2 has an excitation energy E2 given

by,

E2 =
M2

M2 +me

hν∞. (2.8)

The different nuclear masses M1 and M2 result in the transition energy being dif-

ferent for the two isotopes. The shift in transition energy is calculated to an excellent

approximation as follows,

δEM1,M2 =
M2

M2 +me

hν∞ −
M1

M1 +me

hν∞,

=

(
M2

M2 +me

− M1

M1 +me

)
hν∞,

≈ M2 −M1

M1M2

mehν∞. (2.9)

The shift in transition energy results in a shift in transition frequency known as the

normal mass shift (NMS) δνA1,A2

NMS which is expressed as,

δνA1,A2

NMS =
A2 − A1

A1A2

me

u
ν∞ = N

A2 − A1

A1A2

(2.10)

where A1 and A2 are the atomic mass numbers of the isotopes with nuclear masses M1

and M2 respectively, u is the atomic mass unit and N = mν∞
u

.

The second term in equation 2.4 is known as the specific mass shift (SMS) and is a

consequence of correlations between the momenta of the atomic electrons. It is called

the SMS because the magnitude of the correlation is dependent upon the specific state

properties of the atomic electrons[1]. The SMS is expressed as,

δνA1,A2

SMS = S
A2 − A1

A1A2

(2.11)

where S is an atomic factor dependent upon the electronic configurations of the transition

states. Unlike the NMS (which is defined so that it is always positive) the SMS can be

8
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either positive, so that it enhances the effect of the NMS, or negative so that it partially

cancels out the NMS. For the case of a two electron atom, a positive specific mass shift

is associated with the case where the electrons’ spatial overlap is high and the electrons

can be treated as a single particle of mass 2me orbiting the nucleus (see figure 2.3a

below). A negative SMS (see figure 2.3b below) is associated with the case where the

electrons orbit on opposite sides of the nucleus and in opposite directions so that their

motion cancels out the nuclear motion[1]. The calculation of the SMS requires detailed

knowledge of the electron wavefunctions which determine the value of the atomic factor

S. This is challenging for multi-electron atoms.

Centre of mass

Nucleus

Electron

Figure 2.2: The Normal Mass Shift arises from the electron and nucleus of the atom orbiting
around a common centre of mass.

(b)

Nucleus

Electrons

Electron

Electron

Centre of mass

Centre of mass

Nucleus

(a)

Figure 2.3: The effect of the Specific Mass Shift varies depending upon the configuration of the
electrons.a) Two electrons with high spatial overlap. b) Two electrons with opposite momentum
vectors.
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The total mass shift can be found be adding together equations 2.10 and 2.11 as

follows,

δνA,A
′

MS =

(
me

u
ν0 + S

)
A′ − A
AA′

=
A′ − A
AA′

Mi, (2.12)

where Mi is a factor that contains all of the electronic information for the transition. The

mass shift contains no interesting nuclear information as it is dependent only on atomic

factors and isotopes’ masses. However, the mass shift must be evaluated in order to

extract the more valuable field shift from the total isotope shift.

2.1.2 Field Shift

The field shift is caused by the change in nuclear charge density between isotopes as

neutrons are added to or removed from the nucleus. A nucleus that has infinite mass and

is point-like produces an entirely Coulombic potential (see figure 2.4). If the nucleus has

a finite size and mass then the electrostatic potential created by the nucleus deviates from

the 1/r potential whilst inside the nuclear volume so that it has a finite value at r = 0.

This effect shifts the electronic states upwards to less bound energies. The minimum

of the nuclear potential varies depending upon the size of the nuclear radius so that the

potential for a larger nucleus is shallower than that of a smaller nucleus. The field shift

is most significant for transitions involving s (and to a lesser extent p 1
2
) electrons which

have a high probability of entering the nucleus.
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r
2

r

V(r)

r

c)

b)

1

a)

Figure 2.4: The nuclear potentials for: a) a point-like nucleus. b) a nucleus with radius r1. c) a
nucleus with radius r2.

The magnitude of the field shift can be approximated using non-relativistic first or-

der perturbation theory [12]. Starting from the simple case of a spherically symmetric

nucleus with liquid-drop model radius r0 = R0A
1
3 (where R0 = 1.2fm), the first or-

der contribution to the energy shift is the expectation value of the electrostatic potential

energy difference V (r)− V0(r),

∆E =

∞∫
0

ψ∗(V (r)− V0(r))ψ4πr2dr,

≈ |ψ(0)|2
r0∫
0

(V (r)− V0(r))4πr2dr. (2.13)

where V0(r) and V (r) represent the electrostatic potential energy for a point like nucleus

and a nucleus of radius r0 respectively. The range of integration is restricted to 0 ≤ r ≤

r0 as V (r) = V0(r) for r ≥ r0. The electron probability density |ψ(0)|2 is assumed to

be approximately constant over the nuclear volume allowing it to be taken outside of the

integral. The electrostatic potential for a finite uniformly charged spherically symmetric

nucleus can be expressed as follows,
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V (r) =
Ze2

4πε0r0

(
− 3

2
+

1

2

r2

r20

)
, 0 ≤ r ≤ r0 (2.14)

V (r) = − Ze2

4πε0r
, r ≥ r0. (2.15)

Substituting equations 2.14 and 2.15 into equation 2.13 gives,

∆E =
4π

10
|ψ(0)|2 Ze

2

4πε0
r20. (2.16)

The difference in the energy shift ∆E between two isotopes with different nuclear sizes

is therefore as follows,

δ(∆E) =
4π

5
|ψ(0)|2 Ze

2

4πε0
r20
δr0
r0
. (2.17)

which is more conventially rearranged as,

δ(∆E) = |ψ(0)|2 πa
3
0

Z

2

5
R∞

(
2Zr0
a0

)2
δr0
r0

(2.18)

δ(∆E) = |ψ(0)|2 πa
3
0

Z
C

(
Z, r0,

δr0
r0

)
, (2.19)

where a0 is the Bohr radius,R∞ is the Rydberg constant andC is a factor dependent upon

the changes of the nuclear charge density between two isotopes. Whilst equation 2.19

has the correct functional form it can only provide an order of magnitude estimate for

the energy shift [12]. This is because the non-relativistic first order perturbation method

fails to account for the distortion of the electron wavefunction inside a nucleus of finite

volume. The electric potential is much less attractive for a finite nucleus compared to

the standard Coulomb potential and so the electron density at the nucleus is reduced

[1]. Equation 2.19 will therefore overestimate the extent of the field shift between two

isotopes. Broch[13] developed a non-perturbative method for calculating the field shift

which took into account the distortion of the electron wavefunction inside the nucleus.

Bodmer extended this work and developed the following equation for the field shift[14],

δE = |ψ(0)|2 πa
3
0h

Z
f(Z)δ〈r2〉A,A′

(2.20)

where f(Z) is a factor that corrects the electron wavefunction for relativistic effects and

the finite extent of the nucleus and δ〈r2〉A,A′ is the change in mean-square charge radius

(MSCR) of the nucleus between isotopes of mass numbers A′ and A. Equation 2.20

12



Chapter 2. Theory

has the same form as equation 2.19 with C = f(Z)δ〈r2〉A,A′ . The mean-square charge

radius is a model-independent quantity defined as,

〈r2〉 =

∞∫
0

4πr2ρ(r)r2dr

∞∫
0

4πρ(r)r2dr

=

∞∫
0

ρ(r)r4dr

∞∫
0

ρ(r)r2dr

, (2.21)

where ρ(r) is the nuclear charge density. Equation 2.20 yields the field shift for a single

electron energy level between two isotopes however the experimentally observed quan-

tity is the field shift for a transition between two atomic energy levels. The observed

field shift in transition frequency δνA,A
′

FS is,

δνA,A
′

FS =
πa30
Z

∆ |ψ(0)|2 f(Z)δ〈r2〉A,A′
(2.22)

= Fiδ〈r2〉A,A
′
, (2.23)

where Fi is the field factor and ∆ |ψ(0)|2 is the change in electron charge density between

the two transition levels. The field factor contains all of the electronic dependence for a

given transition, i.

In reality, the electron wavefunction is not constant across the whole nuclear volume.

This is especially true for heavier elements and a more accurate description of the field

shift can be expressed as follows,

δνA,A
′

FS = Fiλ
A,A′

, (2.24)

where λA,A′ , is the nuclear factor known as the Seltzer moment [15]. The Seltzer mo-

ment accounts for variations in electron wavefunction by expanding the nuclear charge

dependence as a power series of radial moments as follows,

λA,A
′

= δ〈r2〉A,A′
+
C2

C1

δ〈r4〉A,A′
+ . . . , (2.25)

where C2 and C1 are factors tabulated by Seltzer [15]. The Seltzer moment can be

simplified as follows,

λA,A
′
= kδ〈r2〉A,A′

. (2.26)

where k accounts for the effect of higher order moments. The field shift can therefore be

expressed as,
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δνA,A
′

FS = Fikδ〈r2〉A,A
′
. (2.27)

where δ〈r2〉A,A′ is the change in mean-square charge radius (MSCR) between the two

isotopes. For ruthenium, higher order moments typically contribute ∼2 – 3%[2] to the

Seltzer moment resulting in k ' 0.97 – 0.98.

2.1.3 Total Isotope Shift

Substituting equations 2.12 and 2.27 into equation 2.2 yields the total isotope shift be-

tween isotopes A and A′ (where k in equation 2.27 has been set to one for simplicity).

δνA,A
′

IS =
A′ − A
AA′

Mi + Fiδ〈r2〉A,A
′

(2.28)

Laser spectroscopy measurements of the isotope shift between two isotopes can be

used to determine the change in mean-square charge radius between them. The method

of extracting δ〈r2〉A,A′ is discussed in detail in chapter 5.

2.2 Hyperfine Structure

Interactions between the electromagnetic multipole moments of the nucleus and the elec-

tromagnetic properties of the electron cloud lead to splitting of the fine structure energy

levels. This effect is known as hyperfine splitting. The two dominant nuclear electro-

magnetic moments are the magnetic dipole moment and the electric quadrupole moment.

2.2.1 Magnetic Dipole Moment

The first hyperfine structure effect to be considered is the interaction between the nuclear

magnetic dipole moment and the magnetic field at the nucleus produced by the orbiting

electrons. The nuclear magnetic dipole moment (µI) is aligned in the same direction as

the nuclear spin vector I and hence its operator can be defined as follows,

µI =
µI
I
I, (2.29)

where µI is the scalar magnetic dipole moment. Similarly, the magnetic field, Bel,

is aligned anti-parallel to the total electronic angular momentum vector, J, and so its

operator can be defined as,
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Bel = −Bel

J
J, (2.30)

where Bel is the scalar magnetic field and J is the scalar electronic angular momentum.

The interaction energy can be determined using the following Hamiltonian [16],

HM = −µI.Bel, (2.31)

which can be expanded using equations 2.29 and 2.30 to produce the following,

HM = (
µIBel

IJ
)I.J = AJI.J, (2.32)

where,

AJ =
µIBel

IJ
, (2.33)

is the magnetic hyperfine constant. By treating HM as a small perturbation the first

order approximation of the energy shift caused by this interaction is determined by the

expectation value of HM . In the absence of hyperfine interactions there is no coupling

between the angular momenta of the electrons and nucleus. The wavefunctions of the

whole system can therefore be separated into nuclear and electronic coordinates,

|γIMIJMJ〉 = |αIMI〉 |βJMJ〉 , (2.34)

where MI and MJ are the z projections of I and J and α, β and γ represent any other

quantum numbers required to represent the nuclear, electronic and total systems respec-

tively. Using this uncoupled representation the energy shift has the following form,

∆EM = 〈γIMIJMJ |HM |γIMIJMJ〉 = AJ 〈γIMIJMJ | I.J |γIMIJMJ〉 . (2.35)

This expectation value cannot be evaluated because I.J does not commute with operators

IZ or JZ . A new coupled representation is therefore required and can be formed from

linear combinations of the unperturbed wavefunctions |γIMIJMJ〉 as follows,

|γIJFMF 〉 =
∑
MIMJ

〈IMIJMJ |IJFMF 〉 |γIMIJMJ〉 , (2.36)

where F is a new quantum number representing the total angular momentum of the

system. The total angular momentum vector F, is defined as follows,
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F = I + J, (2.37)

where vector coupling allows the quantum number F to range from |I − J | to I + J in

increments of one. F is a good quantum number as operators F2 and Fz commute with

the unperturbed Hamiltonian with eigenvalues of the standard angular momentum form

F (F + 1) and MF respectively. Importantly, F also remains a good quantum number

under the application of the perturbation HM as I.J commutes with the sum Iz + Jz.

Using the new coupled basis the expectation value becomes,

∆EM = AJ 〈γIJFMF | I.J |γIJFMF 〉 . (2.38)

The vector product I.J can be evaluated by squaring both sides of equation 2.37 to give,

F2 = (I + J)2, (2.39)

F2 = I2 + J2 + 2I.J, (2.40)

I.J =
1

2

[
F2 − I2 − J2

]
. (2.41)

Substituting equation 2.41 into equation 2.38 yields the following expression for the

interaction energy:

∆EM =
AJ
2
〈γIJFMF |

[
F2 − I2 − J2

]
|γIJFMF 〉 , (2.42)

∆EM =
AJ
2

[F (F + 1)− I(I + 1)− J(J + 1)] =
AJ
2
K, (2.43)

where K = [F (F + 1) − I(I + 1) − J(J + 1)]. From equation 2.43 it is clear that

there will be no interaction if the nuclear spin I = 0. This is because a nucleus with

zero spin has no associated magnetic dipole moment. Similarly if J = 0 there will be no

interaction as there will be no net magnetic field at the nucleus.

As previously mentioned, the quantum number F can take on any incremental value

in the range |I−J | to I+J . Equation 2.43 therefore has different values for each allowed

value of F . The magnetic dipole interaction therefore splits a given fine structure level

into 2I + 1 (if I ≤ J) or 2J + 1 (if J ≤ I) hyperfine structure levels [16] each of which

possesses a specific value of F . If only the magnetic dipole interaction is considered, the

separation between different F states obeys the following interval rule,
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∆E(F )−∆E(F − 1) = AJF, (2.44)

where the magnetic hyperfine parameter, AJ , determines the magnitude of the splitting.

Measuring the frequency shift between hyperfine structure components in a spectrum

therefore enables the value of AJ to be determined.

2.2.2 Electric Quadrupole Moment

The nuclear electric quadrupole moment can also contribute to the hyperfine structure

by interacting electrostatically with the atomic electrons. The electrostatic interaction

between a proton of charge e and an electron of charge −e is,

HE =
−e2

4πε0 |re − rp|
, (2.45)

where re and rp, see figure 2.5, are the coordinates of the electron and proton respec-

tively with respect to the centre of mass of the nucleus (which is defined as the origin of

the system). The total electrostatic interaction between the nucleus and the electrons is

calculated by summing equation 2.45 over all electrons and protons in the system.

p
r

r
e

θ

y

x

z

φ
p

φ
e

p
θ θ

e

ep

Figure 2.5: Coordinate system used to describe the electric quadrupole interaction.

So far the nucleus has been considered as point-like and spherically symmetric. In

order to examine the effect of non-spherical nuclear charge distributions the nucleus
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must be assigned electric multipole moments. This can be achieved through use of the

following expression,

(re − rp)2 = r2e + r2p − 2rerpcosθep, (2.46)

where θep is the angle between the re and rp. Substituting equation 2.46 into equation

2.45 for the electrostatic interaction yields,

HE =
−e2

4πε0

{
r2e + r2p − 2rerpcosθep

}− 1
2 . (2.47)

The term in braces is the generating function for the Legendre polynomials which en-

ables (assuming that re > rp ) the interaction Hamiltonian to be expressed as:

HE =
−e2

4πε0

∑
k

rkp
rk+1
e

Pk(cosθep), (2.48)

=
−e2

4πε0re
− e2rp

4πε0r2e
P1(cosθep)−

e2r2p
4πε0r3e

P2(cosθep)... (2.49)

where k is the order of the polynomial. The first term in equation 2.49 represents the

electric monopole interaction which is used to determine the atomic gross structure en-

ergy levels. The second term represents the electric dipole interaction. This interaction

is not allowed by nuclear symmetry and will be ignored. The third term represents the

electric quadrupole interaction. The spherical harmonic addition theorem enables the

Hamiltonian to be separated into nuclear and electronic coordinates,

HE =
−e2

4πε0

∑
k

rkp
rk+1
e

4π

2k + 1

k∑
q=−k

(−1)qY −qk (θp φp)Y
q
k (θe φe), (2.50)

where Y q
k are spherical harmonics of rank k and projection q. Equation 2.50 is the

complete multipole expansion of the electrostatic interaction between the electrons and

the nuclear charge distribution. The order of the multipole is denoted by the rank k

where k = 0 is the monopole, k = 1 the dipole and k = 2 is the quadrupole. For most

nuclei the highest significant multipole is the quadrupole and all other multipoles with

k > 2 are negligible. The electric quadrupole interaction Hamiltonian is,
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HQ =
2∑

q=−2

(−1)q

{(
4π

5

) 1
2

er2pY
−q
2 (n)

}{(
4π

5

) 1
2 −e

4πε0r3e
Y q
2 (e)

}
, (2.51)

≡
2∑

q=−2

(−1)qQ−q2 (p)W q
2 (e) (2.52)

a scalar product between two rank two tensors. When summed over the protons and

electrons this gives the total electric quadrupole interaction between the nucleus and

the electrons. Classically, the electric quadrupole interaction energy has the following

form[17],

EQ ∝ (rr).(∇E), (2.53)

where rr is the quadrupole tensor and ∇E is the electric field gradient. Comparing

equation 2.53 to equation 2.52, the nuclear tensor Q−q2 (p) (∝ r2p) corresponds to the

quadrupole moment and the electric tensor W q
2 (e) (∝ 1/r3e) corresponds to the electric

field gradient.

The electric tensor can be expressed in cartesian coordinates in terms of the electric

potential at the nucleus Ve,

W ∝


∂2Ve
∂x∂x

∂2Ve
∂x∂y

∂2Ve
∂x∂z

∂2Ve
∂y∂x

∂2Ve
∂y∂y

∂2Ve
∂y∂z

∂2Ve
∂z∂x

∂2Ve
∂z∂y

∂2Ve
∂z∂z

 (2.54)

In order to simplify matters, the electronic coordinate system (x, y, z) can be chosen so

that the non-diagonal elements of the electric tensor are equal to zero (i.e. W becomes

diagonal). The electronic potential has axial symmetry about the total electronic angular

momentum vector J so that,

∂2Ve
∂x2

=
∂2Ve
∂y2

, (2.55)

Also, by assuming that the electric field has a source external to the nucleus and falls to

zero at the centre of the nucleus, Laplace’s equation applies as follows,

∇2Ve =
∂2Ve
∂x2

+
∂2Ve
∂y2

+
∂2Ve
∂z2

= 0, (2.56)

and using equation 2.55,
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∂2Ve
∂x2

=
∂2Ve
∂y2

= −1

2

∂2Ve
∂z2

. (2.57)

Therefore the diagonal components of the electronic tensor W can all be expressed

in terms of the z component. In spherical coordinates this is equivalent to the expectation

value of the W 0
2 component of the electronic tensor for the state |J,MJ = J〉. Therefore

the average gradient of the electric field produced by the electrons at the nucleus is

defined as follows,

1

e
〈J, J | ∂

2Ve
∂z2
|J, J〉 =

2

e
〈J, J |

∑
i

W 0
2 (e)i |J, J〉 (2.58)

= −〈J, J |
∑
i

(3cos2θei − 1)

r3ei
|J, J〉 , (2.59)

where the sum is over all i electrons. Similarly, the nuclear electric quadrupole tensor

can be determined by rotating the nuclear coordinate system (x′, y′, z′) so that the nuclear

tensor Q−q2 is diagonalised. The intrinsic nuclear electric quadrupole moment can then

be defined as the expectation value of the Q0
2 component of the nuclear tensor for the

state |I,MI = I〉 as follows,

Q0 ≡
2

e
〈I, I|

∑
i

Q0
2(p)i |I, I〉 , (2.60)

= 〈I, I|
∑
i

r2pi(3cos
2θpi − 1) |I, I〉 . (2.61)

where the sum is over all i protons in the nucleus. In the nuclear coordinate system,

z′ = rpcosθp so that in Cartesian coordinates the intrinsic quadrupole moment is,

Q0 = 〈I, I|
∑
i

(3z′i
2 − r2pi) |I, I〉 . (2.62)

From equation 2.62 it can be shown that when the nuclear charge is distributed pri-

marily in the x′ − y′ plane (so that distribution in z′ is small), Q0 < 0. This charge

distribution is known as oblate deformation. When the nuclear charge is distributed

along the z′ axis (i.e. along the axis of I so that rpi ≈ z′2), Q0 > 0. This charge dis-

tribution is known as prolate deformation. When the nucleus is spherical in shape (i.e.

x′2 = y′2 = z′2 so that r2p = 3z′2) Q0 = 0.
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z

(a) (b)

z

Figure 2.6: (a) Prolate quadrupole deformation. (b) Oblate quadrupole deformation.

The full evaluation of the scalar product in equation 2.52 was performed by Casimir

[18] and gives the Hamiltonian for the quadrupole interaction as,

HQ = eQs

〈
∂2Ve
∂z2

〉
[3(I.J)2 + 3

2
I.J− I(I + 1)J(J + 1)]

2I(2I − 1)J(2J − 1)
, (2.63)

where Qs is the spectroscopic quadrupole moment. The intrinsic quadrupole moment

Q0 is defined in the body-fixed nuclear coordinate system (x′, y′, z′). However, experi-

mental measurements are made in the space-fixed system (x, y, z) of the electrons. The

electric quadrupole moment measured in the electronic coordinate system is known as

the spectroscopic quadrupole moment Qs. The intrinsic and spectroscopic quadrupole

moments can be related using the following equation,

Qs = Q0

[
3Ω2 − I(I + 1)

(I + 1)(2I + 3)

]
(2.64)

where Ω is the projection of the nuclear spin vector onto the nuclear symmetry axis. For

most ground state nuclei it can be assumed that Ω = I [19].

The first order energy shift due to the electromagnetic quadrupole interaction can

therefore be calculated as follows,

∆EQ = 〈IJFMF |HQ |IJFMF 〉 (2.65)

=
1

4
e

〈
∂2Ve
∂z2

〉
Q0

[
3Ω2 − I(I + 1)

(I + 1)(2I + 3)

] 3
2
K(K + 1)− 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
(2.66)

=
B

4

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
(2.67)
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where K has the same definition as in equation 2.43 and B is the electric quadrupole

hyperfine parameter defined as follows,

B = eQs

〈
∂2Ve
∂z2

〉
. (2.68)

From equation 2.64 it can be shown that for I = 0 or I = 1/2 the spectroscopic

quadrupole moment Qs = 0 and therefore there is no electric quadrupole interaction.

This is because for I < 1 the nucleus appears spherical in the electronic space-fixed

frame and so there can be no observable quadrupole interaction (even if Q0 is non-zero).

Similarly, if J = 0 or J = 1/2 the electron charge distribution appears spherical and

there is no quadrupole interaction.

2.3 Total Hyperfine Splitting

The total change in energy of a fine structure level due to hyperfine interactions is the

sum of equations 2.43 and 2.67,

∆Ehf =
A

2
K +

B

4

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
. (2.69)

Figure 2.7 displays two fine structure levels J = 0 and J = 1. If the nucleus has

non-zero nuclear spin, for example I = 1, the upper fine structure level will split due

to the magnetic dipole interaction. The lower energy level will not split as J = 0 and

therefore there is no net magnetic field produced by the electrons. If the nucleus is

spherical (i.e. Q0 = 0) there will be no electromagnetic quadrupole interaction and the

separation between the hyperfine levels will obey the interval rule outlined in section

2.2.1 above. If Q0 6= 0 the electric quadrupole interaction causes further shifting of the

hyperfine energy levels and the magnetic dipole interval rule is no longer valid.
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Figure 2.7: The fine structure spectral line is split into three hyperfine structure lines by the
magnetic dipole interaction. The electric quadrupole interaction causes further perturbation to
the hyperfine energy levels resulting in a different observed spectrum.

The images below the level diagrams in figure 2.7 display how the spectrum obtained

from transitions between the two fine structure levels varies as the effect of the hyperfine

interactions are considered. The magnitude of the hyperfine shifts are determined by the

hyperfine parameters A and B. The frequency of a transition between hyperfine states

can be expressed in terms of A and B as follows,

ν(FL → FU) = AUα(FU) +BUβ(FU) + ω − ALα(FL)−BLβ(FL), (2.70)

where ω is the frequency of the transition in the absence of hyperfine interactions and

α(FU,L) and β(FU,L) are expressed as follows,

α(FU,L) =
K(FU,L)

2
, (2.71)

β(FU,L) =
3
2
K(FU,L) {K(FU,L) + 1} − 2I(I + 1)JU,L(JU,L + 1)

I(2I − 1)JU,L(2JU,L − 1)
. (2.72)

23



Chapter 2. Theory

The measurement of the transition frequencies ν(FL → FU) between hyperfine

structure levels therefore enables A and B to be experimentally determined.

2.4 Extraction of Nuclear Parameters

Measuring the frequency of the transitions between hyperfine energy levels via laser

spectroscopy enables the hyperfine parameters A and B to be determined. Once A and

B have been measured the magnetic dipole moment µI , and electric quadrupole moment

Q, can be extracted from them. It is clear from equations 2.33 and 2.68 that determining

µI and Q from the A and B parameters requires knowledge of the magnetic field at the

nucleus Be and the electron electric field gradient ∂2Ve
∂z2

, respectively. These factors are

extremely difficult to calculate accurately [20]. In order to remove these two factors the

ratio between hyperfine parameters is used as follows [21],

A1

A2

=
(µ/I)1
(µ/I)2

, (2.73)

B1

B2

=
Q1

Q2

, (2.74)

where the subscripts 1 and 2 denote different isotopes. If the moments are known for one

isotope then equations 2.73 and 2.74 can be used to determine the unknown moments

for the second isotope.

The magnitude and sign of the intrinsic quadrupole moment provides a measure of

the size and shape of the deformation of the nucleus. The intrinsic quadrupole moment

can be approximated in terms of the quadrupole deformation parameter, β2 as follows

[19],

Q0 ≈
3Z 〈r〉20√

5π
〈β2〉(1 + 0.36〈β2〉), (2.75)

where Z is the atomic number and 〈r〉20 is the MSCR of a spherical nucleus of the same

volume.

The nuclear mean-square charge radius is also dependent upon the nuclear deforma-

tion as follows,

〈r2〉 = 〈r20〉
(

1 +
5

4π

∑
i

〈β2
i 〉
)

(2.76)
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where 〈β2
i 〉 is the mean-square deformation parameter, i is the order of multipole defor-

mation and 〈r20〉 is the MSCR of a spherical nucleus of the same volume as the distorted

nucleus. The quadrupole is the most dominant multipole and so the MSCR can be ap-

proximated as being dependent upon the mean-square quadrupole deformation param-

eter, 〈β2
2〉. If the nucleus exhibits large quadrupole deformation (i.e. large β2) then the

MSCR will be substantially affected [19].The MSCR is also sensitive to the dynamic

nature of the deformation of the nucleus. This is due to the fact that the MSCR is de-

pendent upon the mean-square quadrupole deformation parameter, 〈β2
2〉, which may be

large due to nuclear fluctuations about the zero point (see figure 2.8), even if there is no

net nuclear deformation (i.e. if β2 itself is small or negligible).

2

β

<β  >2

2

Time

<β  >

2

Figure 2.8: Quadrupole deformation parameter, β2, as a function of time for a nucleus exhibiting
dynamic deformation.

In comparison, the quadrupole moment is only dependent upon the mean-quadrupole

deformation parameter 〈β2〉 which averages out dynamic deformation effects. The ex-

tent of dynamic nuclear deformation can therefore be determined by comparing 〈β2〉2,

obtained from Q0, to 〈β2
2〉, obtained from 〈r20〉.
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High Resolution Laser Spectroscopy

Laser spectroscopy involves stimulating transitions between the electronic energy levels

of an atom or ion in order to produce a spectrum. Figure 3.1 displays an electronic

energy level system with two levels E1 and E2. An electron in the lower energy level

E1 can be excited to the upper energy level E2 by absorbing a photon of energy E and

frequency ν where,

E = hν = E2 − E1. (3.1)

E
1

E
2

Figure 3.1: Laser Spectroscopy.

Once excited to E2 the atoms may relax back down to state E1 by spontaneously

emitting a photon of energy E and frequency ν.

Due to it possessing a high energy density localised over a small spatial beam and

narrow frequency range, a laser is an ideal source of photons for use in spectroscopy

work. The standard laser spectroscopy procedure is to direct a laser beam onto a sample

of atoms or ions and to vary the laser frequency ν. When the laser frequency matches

the resonant frequency of the atom or ion, fluorescent photons will be emitted. As a
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typical laser has a frequency width less than the natural line-width of the transition being

stimulated all of the laser power has the potential to stimulate the desired transition. A

spectrum is then formed by measuring the production of resonant photons as a function

of laser frequency. The power of laser spectroscopy as an experimental method is due

to its high sensitivity and resolution. The sensitivity of laser spectroscopy is due to the

fact that the resonant photon absorption cross-section of an atom is roughly proportional

to the square of the photon wavelength [22, 23]. For visible photons this results in an

absorption cross-section that is approximately six orders of magnitude greater than the

physical size of the atom. The high level of sensitivity ensures that a detectable number

of resonant photons can be produced from even very small samples of material.

3.1 Line Broadening Mechanisms

3.1.1 The Natural Linewidth

In an idealised situation the transition wavelength between two electron energy levels is

monochromatic. In reality this is never the case due to the uncertainty principle,

∆E.τ ' ~ (3.2)

All electronic energy levels (with the exception of the ground state level) have a relax-

ation lifetime, τ . According to equation 3.2 the lifetime of the state results in each level

possessing a finite spread in energy, ∆E. The emitted photons can therefore exhibit a

narrow range of frequencies centered on the idealised transition frequency, ν0, as illus-

trated by figure 3.2.

The total energy uncertainty for a spectral line is therefore determined by the sum of

the lifetimes of the transition upper and lower states, τu and τl respectively, as follows,

∆E = ∆Eu + ∆El = ~
(

1

τu
+

1

τl

)
. (3.3)

This frequency distribution of the emitted intensity is known as the natural linewidth

and it provides a fundamental limit to the resolution of laser spectroscopy measurements.

Other line broadening mechanisms discussed later in this section can be reduced via

careful experimental design however the natural linewidth is dependent upon the state

lifetime and therefore cannot be circumvented. A full semi-classical calculation reveals
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Figure 3.2: Natural Linewidth.

that the natural linewidth induced intensity distribution of a transition is described by a

Lorentzian profile [24],

L(ν) = L0
Γ2

(ν0 − ν)2 + Γ2
, (3.4)

where 2Γ = 1/τu + 1/τl is the full-width-half-maximum (FWHM) of the distribution

and L0 is the maximum intensity at ν = ν0. In the case of optical transitions from

the ground state the natural linewidth is determined by the upper state lifetime only.

For typical transitions used in laser spectroscopy experiments the upper state lifetime is

∼ 10−7s which results in a natural linewidth of a few tens of MHz. The natural linewidth

is therefore much narrower than the frequency spacing associated with hyperfine struc-

ture and isotope shifts which are typically a few hundred MHz in magnitude. The laser

used in this work has a frequency width of ∼2MHz. This would mean that for interac-

tions with a stationary atom the measured intensity profile would be determined by the

Lorentzian profile of the transition. Unfortunately this is not often the case due to the

other broadening mechanisms that will be discussed now.

3.1.2 Power Broadening

For high incident laser power it is possible that the rate of absorption of electrons from

the transition lower state to the upper state exceeds the rate of relaxation transitions
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from the upper state back to the lower state. In this situation the transition lower state

becomes depopulated and unable to absorb further laser photons. Just as the emitted

intensity distribution possesses a Lorentzian profile due to the natural width, the atom

also has a Lorentzian shaped absorption profile centred on the transition frequency. The

absorption rate is therefore greater at the absorption profile central frequency than in

the wings of the distribution. This results in the centre of the profile depopulating more

rapidly than those atoms in the wings. The photon emission profile therefore saturates at

the central frequency for high laser power whereas the intensity of the wings is able to

increase resulting in a broadened profile. This effect, known as power broadening, can

be overcome by ensuring that the laser power density is not too high when interacting

with the atom sample. This can be achieved by reducing the laser power or increasing

the size of the laser beam spot.

3.1.3 Doppler Broadening

A significant source of line-broadening is the Doppler shift of the atomic transition due

to the velocity distribution of the atoms. Those atoms with a velocity component that

is anti-parallel to the incident laser beam, v, observe a Doppler shifted laser frequency,

νobs,

νobs ' ν0

(
1 +

v

c

)
, (3.5)

where ν0 is the unshifted atomic transition frequency. An atom travelling towards the

laser beam, with velocity component +v, will therefore observe a different laser fre-

quency than a stationary atom, v = 0, or an atom moving away from the laser beam

with velocity −v. Different atoms will therefore undergo resonant transitions at differ-

ent laser frequencies depending upon their velocity. For a gas at thermal equilibrium, the

velocity distribution of its atoms can be represented by a Maxwell distribution which,

when ignoring the natural linewidth, results in the Doppler intensity profile having the

following form [24],

G(ν) = I0exp

(
− mc2

2kBT

(
ν − ν0
ν0

)2
)

(3.6)

where T is the temperature of the gas and I0 is the maximum intensity at the centre of

the profile where ν = ν0. The Doppler broadened line profile, G(ν) given by equation
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3.6, is a Gaussian lineshape with a full-width-half-maximum, FWHM , of,

FWHM =
(ν0
c

)√8kBT ln2

m
. (3.7)

Using equation 3.7, the FWHM of the 349.8942nm transition for 102Ru at T ∼

2600K (the melting point of ruthenium) is '1.5GHz. This is considerably greater than

the natural line-width and importantly it is much larger than the typical isotope shifts

observed in ruthenium (which are typically ∼ 100 – 500MHz). Doppler broadening is

therefore a factor that can severely limit the ability of laser spectroscopy experiments to

measure isotope shifts and hyperfine structure.

In reality the Doppler broadened linewidth is not represented by a pure Gaussian line

profile because each population of atoms, with velocity component v, possesses a range

of absorption/emission frequencies due to the natural linewidth. The natural line width

has a Lorentzian profile as defined in equation 3.4 so the total observed line profile is

a Gaussian distribution of velocity populations which each exhibit a Lorentzian natural

line profile. The observed line profile can therefore be represented by a Voigt profile,

V (ν), which is a convolution of Lorentzian and Gaussian line shapes:

V (ν) =

∫ ∞
−∞

G(ν ′)L(ν − ν ′)dν ′, (3.8)

where L(ν − ν ′) and G(ν ′) are expressed in equations 3.4 and 3.6 respectively.

3.2 Doppler Reduced High Resolution Laser Spectroscopy

Methods

3.2.1 Crossed Beam Laser Spectroscopy

Crossed-beam laser spectroscopy experiments overlap a laser beam perpendicularly with

an atomic beam in order to reduce Doppler broadening. Figure 3.3 displays a schematic

outline of a typical crossed-beam experiment. An oven is used to form a plume of

the atoms of the element under study which is then formed into a beam through the

use of narrow collimation slits. The slits only allow atoms with near-vertical velocity

components to reach the region where interaction with the laser beam occurs. The atoms

in the collimated atomic beam therefore possess only a small velocity component in
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Figure 3.3: Outline of a crossed-beam laser spectroscopy experiment.

the direction travelling parallel to the laser beam. As it is only atomic motion directly

towards (or away) from the laser beam that contributes towards Doppler broadening, the

crossed-beam experimental geometry has a reduced Doppler width.

It can be shown[24] that the Doppler width, dν, of a spectral line measured using

crossed-beam spectroscopy is reduced to,

dν = dν0 sin θ, (3.9)

where dν0 is the Doppler width for an uncollimated beam of thermal atoms and the

Doppler width reduction factor, sin θ, is calculated as follows,

sin θ ' x

2d
, (3.10)

where θ is the collimation angle, x is the slit width and d is the oven to slit distance as

displayed in figure 3.3. Typically, crossed-beam experiments utilise narrow slits with
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x ∼1mm and large oven-to-slit distances of d ∼a few tens of centimetres in order to

reduce the Doppler width by two to three orders of magnitude. At this level of reduc-

tion, the Doppler width is of a similar magnitude as the natural linewidth enabling the

resolution of isotope shifts and hyperfine structure.

The crossed-beam spectroscopy method is advantageous due to the simplicity of the

equipment involved. An atomic beam can be formed relatively easily via the heating

of a sample in an oven and collimated sufficiently over a small distance of a few tens

of centimetres. Over such small distances a vacuum pressure of approximately 10−6

mbar is required to ensure that the mean-free path of the atomic beam is greater than the

oven-to-laser distance and this can be achieved simply with diffusion or turbo pumps.

The main disadvantage of this method is that it is not very efficient[22]. A significant

percentage of the atoms produced by the oven are blocked by the collimation slits and

therefore never interact with the laser beam to produce resonance photons. As a result of

this, the technique is limited to the use of stable isotopes or long-lived radioactives [20].

3.2.2 Collinear Laser Spectroscopy

Collinear laser spectroscopy experiments overlap a laser beam with an electrostatically

accelerated beam of ions travelling in a direction parallel to the laser beam. Kaufman[25]

and Wing et al.[26] independently determined that accelerating a beam of ions reduces

the width of their velocity distribution. The kinetic energy of an ion is,

E =
1

2
mv2, (3.11)

and differentiating yields

dE = mvdv, (3.12)

dv =
dE

mv
. (3.13)

For a constant energy spread, dE, the velocity spread of a beam of the ions, dv

is reduced by increasing the velocity of the ions, v. This effect is illustrated in figure

3.4. The Doppler width of a measured spectral line is determined by the magnitude

of the velocity distribution dv and is therefore reduced by ion acceleration. Typically

electrostatic acceleration voltages of the order of tens of kilovolts are used in order to

reduce Doppler broadening to the same magnitude as the natural line-width.
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Figure 3.4: Reduction in velocity distribution of ion beam as beam velocity is increased.

As well as significantly reducing Doppler-broadening, the collinear method is ad-

vantageous as it is very efficient and hence can be used to study very small samples

of ions. A high percentage of the ions in the beam are steered to the light collection

region and are therefore able to produce detectable fluorescent photons. This enables

successful measurements to be made for even short lived radioactive isotopes (which

can only be produced in small quantities). The disadvantage of the collinear laser spec-

troscopy method is its complexity. Long beam lines with high-voltage acceleration re-

gions and substantial vacuum systems are required and so collinear lines are usually built

at large radioactive beam facilities such as the IGISOL at the University of Jyväskylä,

and ISOLDE at CERN. As a result, collinear experiments are often time consuming and

expensive to operate.
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Experimental Equipment and

Techniques

The experimental work conducted for this thesis utilised crossed-beam laser spectroscopy

in order to reduce the Doppler broadening of the measured spectral lines. As outlined

earlier in chapter 3, crossed-beam laser spectroscopy overlaps a laser beam at right-

angles to an atomic beam. The experiment used during this work overlapped a horizontal

laser beam with a vertical beam of atoms in order to achieve this geometry. This chapter

will discuss this experimental setup in detail.

4.1 The Dye Laser

The tuneable laser used during this work was a Spectra Physics 380 Ring Dye Laser.

A dye laser is an ideal tool for use in spectroscopy due to its ability to produce narrow

bandwidth beams across a wide range of wavelengths. This enables a large number of

atomic transitions to be studied. A laser has three main components; an active medium

which produces and amplifies the laser photons, a pump mechanism that puts energy into

the active medium and creates the population inversion required to produce amplification

and finally a resonator cavity to reflect the generated laser photons back to the active

medium for amplification [24]. Each of these components plays an important role in the

output wavelength of the Spectra Physics 380 dye laser.
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4.1.1 The active medium

In a dye laser, the active medium is a liquid of organic dye molecules dissolved in a

solvent. The complex dye molecules possess a large number of rotational and vibrational

energy states that broaden each electronic energy level into continuous bands (see figure

4.1). A diode-pumped solid state (DPSS) laser is used to optically pump an electron from

the lower energy band (S0) to the upper energy band (S1). Once in the upper band the

electron rapidly relaxes to the bottom of the band via non-radiative phonon interactions

due to collisions between the dye and solvent molecules. The electron may then relax

to any of the rotational/vibrational states that make up the lower energy band (S0), by

spontaneously emitting a photon. The continuous band of lower energy states enables

a large number of photon wavelengths to be produced. The lifetime of the intraband

phonon relaxation process is of the order of 10−12s. This is significantly shorter than the

lifetimes of the radiative transitions between bands which is of the order of 10−9s [24].

This results in electrons rapidly relaxing and accumulating at the bottom of the upper

state (S1) and producing the population inversion required for laser action.

Emitted Photon

T0

S1

S0

T1

Pump
Photon

Phonon
Transition

Spin−Flip
Transition Optical Excitation

Spontaneously 

Figure 4.1: Dye molecule energy level scheme. The electronic energy levels are split into vibra-
tional and rotational bands of levels

It is also possible for an electron in the upper singlet state (S1) to relax to a state

in the lower energy triplet band (T0). This transition requires a spin-flip of the electron

and such a transition between a singlet state and a triplet state is much less likely than a

transition between two singlet (or two triplet) states. The lifetime for the relaxation of the
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triplet state to singlet ground state is long as this transition would also require an electron

spin-flip. Electrons inhabiting the lower triplet band are readily able to absorb energy via

excitation to higher triplet bands (T1). The longer a dye laser operates the more electrons

pass into triplet states reducing the number available to produce photons, and the more

electrons in triplet states the more laser energy that is lost via triplet excitations. These

two factors reduce the laser gain. This problem is removed by using a jet of circulating

dye inside the cavity. The time taken for the dye to circulate around the dye circulatory

system and back to the pumping location is longer than the lifetime of the spin transitions

from the triplet band to the singlet ground state. This ensures that the triplet states remain

sparsely populated.

4.1.2 The pump beam and laser cavity

Figure 4.2 below displays a schematic of the Spectra Physics 380 dye laser cavity. The

pump beam is provided by a Millenia Pro 6sJ Neodymium Yttrium Vanadate (Nd:YVO4)

solid state laser capable of producing up to 6W of laser power with a wavelength of

532nm. The pump beam is vertically polarised however the dye laser only supports hor-

izontally polarised beams. To overcome this discrepancy the pump beam passes through

a polarisation rotator when entering the dye laser cavity which rotates the pump beam

polarisation by 90 degrees. It is then directed onto the dye jet by the pump mirror. As

described above, the optically pumped dye produces photons with a range of different

wavelengths. Some of these photons are directed around the cavity and back to the

dye jet by four mirrors set up in a figure-of-eight configuration. The returning photons

generate more photons by stimulated emission and hence instigate laser action.

In a conventional resonator cavity the laser beam produced forms a standing wave

with longitudinal modes separated in frequency by,

dν =
c

2L
, (4.1)

where L is the length of the cavity. This condition follows as a result of the cavity’s

ability to only support laser modes with an integer number of half-wavelengths inside

the cavity. Standing waves exhibit maxima and minima that remain at fixed locations

around the cavity. This results in only those parts of the dye jet that coincide with the

position of a wave maximum being stimulated by the returning photons. Those regions of
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the dye that overlap with wave minima are not stimulated and so maintain a sufficiently

high enough level of gain to stimulate lasing at other cavity modes. This effect is known

as spatial hole burning and destroys the single-mode single-frequency nature of the laser

output beam.
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Figure 4.2: Schematic diagram of the Spectra Physics 380 ring dye laser cavity.

The figure-of-eight configuration of the Spectra Physics 380 cavity produces travel-

ling waves instead which possess modes with the following frequency separation,

dν =
c

L
. (4.2)

These travelling wave modes propagate continuously around the cavity ensuring that all

of the dye is utilised by a single cavity mode. This removes the spatial hole burning

effect. However, the travelling waves produced are free to propagate around the cavity

in both directions. This is unfavourable as only half of the cavity power is travelling in

the desired direction. A unidirectional device (UDD) is used to ensure single-direction

operation. The light travelling inside the cavity is horizontally polarised. The UDD

consists of a Faraday rotator and a quartz plate that combine to produce a net polarisation

rotation of a few degrees to the travelling wave propagating in the undesired direction

around the cavity. Multiple circuits of the cavity lead to a large net rotation of the

polarisation of the undesired beam direction. A number of the components inside the

cavity are positioned at Brewster’s angle relative to the beam causing the rotated beam
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to suffer losses as it propagates around the cavity and rapidly preventing laser operation.

The travelling wave propagating in the desired direction receives no net polarisation

rotation as the rotation produced by the quartz plate and Faraday rotator are of near

equal magnitude but act in opposite direction. Consequently the desired beam propagates

without loss.

The galvanometer plates enable the output frequency of the laser beam to be scanned.

They consist of quartz plates on galvanometer mounts which rotate when a current is

applied. Rotating the plates in opposite directions changes the optical path length of the

cavity without changing the path of the beam. From equation 4.2 varying the path length,

L, causes the frequency separation of the laser modes to change therefore enabling the

frequency of the laser beam to be tuned continuously.

4.1.3 Frequency Selection

The laser cavity can support a large number of laser modes with a frequency separation

of'230MHz. Single mode operation is achieved by aligning the transmission profiles of

the thick and thin etalons and the birefringent filter with a chosen laser mode. An etalon

consists of two parallel partially-reflecting surfaces separated by a distance, d. Construc-

tive and destructive interference occurs inside an etalon as an incident beam is reflected

between its two surfaces. The transmission profile of an etalon therefore consists of

regularly spaced interference maxima. The frequency separation of two transmission

maxima is known as the free-spectral range (FSR) of the etalon and can be calculated

from the etalon mirror separation as follows,

FSR = δν =
c

2dn
, (4.3)

where n is the refractive index of the medium inside the etalon. The width of the trans-

mission peaks is related to the property of an etalon known as the finesse, F ,

F =
π

2

√
4R

(1−R2)
, (4.4)

whereR is the reflectivity of the etalon mirrors. The higher the reflectivity of the mirrors

the larger the finesse of the etalon and the narrower the etalon transmission peaks. Figure

4.3 displays the transmission profiles of etalons with different mirror reflectivities, R.
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For large values of R the full-width-half-maximum, FWHM , of an etalon transmission

profile is [24],

FWHM =
4√

4R/(1−R2)
. (4.5)

The thick etalon in the Spectra Physics 380 cavity consists of two glass plates sep-

arated to create an FSR of 75GHz. The glass plates are mounted in a temperature con-

trolled housing (to limit the effect of thermal fluctuations upon the plate separation) with

one of the plates positioned upon a piezoelectric mount. This allows the plate separation

d, and hence the FSR, of the etalon to be changed in order to track a single laser cavity

mode when the laser frequency is scanned (see section 4.3.4). The thin etalon consists

of a 0.1mm thick glass plate and has an FSR of 900GHz. Both etalons have relatively

low finesse. Only cavity modes that occur at frequencies where the transmission maxima

in both etalon transmission profiles overlap will be able to propagate around the cavity.

This severely limits the number of modes that are supported by the cavity.
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Figure 4.3: Transmittance of an etalon with mirror reflectivity of 0.1 (blue, dashed), 0.55 (red,
dotted) and 0.9 (black, solid).

Further mode selection is provided by the broad transmission profile of the bire-

fringent filter. The birefringent filter consists of up to three quartz plates positioned at
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Brewster’s angle to the laser beam. Only certain wavelengths are able to pass through

the filter without suffering a net polarisation rotation and hence losses at the Brewster

surfaces. Figure 4.4 illustrates how the transmission profiles of the various cavity com-

ponents align to select a single cavity mode. The mode selected can be coarsely tuned

by the user by rotating the birefringent crystal about the beam axis. This shifts the wave-

length at which the peak in the birefringent filter’s intensity profile occurs and changes

the laser wavelength.
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Figure 4.4: Schematic diagram of the transmission profiles of the mode selection components of
the dye laser cavity (not to scale).

4.1.4 Laser Wavelength Range

The operational wavelength range of the dye laser cavity is dependent upon three compo-

nents: the type of dye, the wavelength of the pump laser and the reflectivity of the cavity

components and mirrors. Primarily the type of dye molecule restricts the range of output

wavelengths that can be produced by the laser. Different dye types have different molec-

ular structures and therefore absorb and emit light over different wavelength ranges.

Figure 4.5 displays the absorption and emission spectrum for a typical dye molecule. A

typical dye will allow laser operation over a range of approximately 50 – 70nm. For all
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dyes the emission profile peaks at longer wavelengths than the absorption profile. The

reason for the offset between peak absorption and emission wavelength can be appreci-

ated from figure 4.1. The range of absorbed photon energies will be mostly larger than

the range of photon emission energies due to the rapid non-radiative relaxation lifetime

of the upper band. This directly leads to the observed offset in peak wavelengths. Figure

4.5 also displays the absorption profile of triplet states. As discussed above in section

4.1.1, the triplet state absorption profile overlaps the dye emission profile and can lead

to a drop in photon production efficiency.

In principle a dye laser can produce an output of any wavelength provided an ap-

propriate dye can be found. However the choice of laser dye is restricted by the fixed

wavelength of the available pump laser beam. The Nd:YVO4 pump laser used for this

experiment has a wavelength of 532nm and therefore only dyes which absorb strongly

at this wavelength could be used during this experiment.
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Figure 4.5: The absorption and emission profiles of a typical dye molecule (reproduced from the
Ph. D. thesis of M. D. Gardener[27]).

Finally, the photons emitted from the dye must be redirected to the jet by the cavity

mirrors for lasing to occur. The cavity mirrors used in this work use multi-layer dielectric

coatings to produce high levels of reflectivity over wavelength ranges of approximately

50 – 100nm (depending upon the particular mirror and wavelength). Outside of these

wavelength ranges the mirrors rapidly become transparent to the laser beam. Table 4.1

displays the various laser dyes that were used during this work along with both the range
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of absorption and the range of emission wavelengths associated with each dye molecule.

Dye Minimum

wavelength (nm)

Maximum

wavelength (nm)

Peak Emission

wavelength (nm)

Rhodamine 6G 560 650 590

Rhodamine B∗ 605 675 640

Sulforhodamine 101 636 675 655

Pyridine 1 670 780 710

Pyridine 2 685 820 720

Table 4.1: Emission wavelength properties[28] for dyes used during this work. ∗Rhodamine B
was not used by the author but was used previously to obtain transitions by E. Cochrane.

4.1.5 Second Harmonic Generation

The majority of transitions from the atomic ground state multiplet of ruthenium have

wavelengths in the 200-400nm range. These wavelengths can be produced by utilising

the frequency-doubling properties of non-linear crystals. A beta-barium borate (β-BBO)

frequency doubling crystal is positioned at the auxiliary beam waist in the dye laser

cavity between mirrors M2 and M3. When tilted to the correct matching angle (to ensure

that the path length of the fundamental and frequency-doubled beams match up inside

the crystal[29]) a beam of UV photons is produced which travels towards M3. M3 has

a dielectric coating that is highly reflective for the wavelength of the fundamental beam

but transparent for UV wavelengths. The UV beam therefore exits the cavity through

M3 and is then steered and focused through a series of mirrors and lenses into the region

where it interacts with the atomic beam.

4.2 The Atomic Beam Unit

Figure 4.6 displays a diagram of the atomic beam unit (ABU) used to produce colli-

mated atomic beams during this work. The ABU consists of a central cylindrical vessel

made up of either two or three chambers of equal height, with two arms extending per-

pendicularly from the upper chamber. At the base of the bottom chamber is positioned

a small tantalum oven which is used to produce the atomic beam. The oven consists

of a tube of tantalum approximately 1mm in diameter and 5cm in length. A sample
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of ruthenium sponge was positioned inside the oven and resistively heated by passing

a current of approximately 70 – 80A between the oven’s arms and base. As the oven

heats up the sample placed within it melts and evaporates producing a dense plume of

atoms that travels upwards through the beam unit. The ABU is held at a low pressure of

2× 10−6mbar by three diffusion pumps. At this low pressure the mean-free-path of the

atoms travelling up through the unit is significantly larger than the size of the unit itself.

This ensures that the atoms travel from the oven to the top of the unit without colliding

with any air molecules and therefore maintain the velocity vector that they obtain from

the oven. The laser beam enters the ABU along the horizontal arms and crosses the

atomic beam perpendicularly at the centre of the top chamber. The three chamber sys-

tem provides a greater distance between the mouth of the oven and the collimation slits

in the top chamber. Increasing this distance provides improved angular collimation and

hence reduces the magnitude of Doppler broadening as described in section 3.2.1. The

two chamber system does not have the same level of angular collimation and therefore

has poorer experimental resolution. However more beam atoms reach the interaction

point with the laser beam for a two chamber system which increases the experimental

efficiency.
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Figure 4.6: Schematic diagram of the Atomic Beam Unit

4.2.1 Producing the Atomic Beam

The narrow bore of the tantalum oven ensures that the velocity vectors of the atoms

emerging from the oven are predominantly orientated up through the unit. However

a significant portion of the plume of atoms emitted from the oven will still possess a

velocity component in the direction of the laser beam. Provided that the oven is vertically

aligned the atomic horizontal velocity distribution will be symmetric about zero so that a

measured resonance will be symmetrically Doppler broadened. This Doppler width can

be significantly reduced by positioning apertures along the axis of the atomic beam. The

apertures cut out the atoms with large horizontal velocity components and hence reduce

the velocity spread of the atomic beam.

Careful oven alignment is imperative. If the oven is offset then a significant propor-

tion of the atomic beam will be blocked by the apertures and not reach the interaction
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region. This will significantly reduce the number of atoms available to interact with the

laser beam and produce resonant photons, resulting in a decreased experimental effi-

ciency. It is also important to ensure that the oven is vertical. If the oven is tilted slightly

then the atoms will receive a horizontal velocity component directed with the tilt of the

oven. This will lead to asymmetric resonances due to Doppler shift of the resonances

observed by the atoms.

4.2.2 The Light Collection Region

The interaction region, where the laser intersects the atomic beam, is positioned within

the light collection region (LCR). The LCR is a black metal box, positioned inside the

upper chamber of the ABU, with apertures in its side and base to allow the laser and

atomic beams to enter (see figure 4.7). The LCR contains a spherical mirror and a Fres-

nel lens which are used to collect resonant photons from the interaction region and to

direct them towards the photomultiplier tube (PMT). Baffles are positioned along the

axis of the PMT to reduce the number of scattered photons entering the PMT which

contribute to spectrum background. The aperture in the base of the LCR is enclosed by

a pair of adjustable jaws that can be closed and shaped to reduce the velocity spread

of the incoming atomic beam. Typically the jaws are positioned in order to produce a

rectangular aperture that is ∼1mm wide in the direction of the laser beam and ∼1cm

wide in the direction perpendicular to the laser. This geometry is chosen to reduce the

velocity spread (and hence the transition Doppler width) of the atomic beam in the di-

rection of the laser whilst providing a wider atomic beam in the plane perpendicular to

it to provide a larger target for the laser. The jaws at the base of the LCR also provide

the important function of reducing the amount of oven glow that is scattered into the

PMT. When heated to the temperatures required to produce a beam of ruthenium the

oven glows white-hot and is the dominant contributor to spectrum background.
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Figure 4.7: The Light Collection Region. The laser is directed out of the page.

4.2.3 Photomultiplier and Data Acquisition System

The photomultiplier tube is positioned with its photocathode facing onto a window look-

ing into the LCR (see figure 4.7). One of two photomultiplier tubes were used during

this work each with a peak quantum efficiency at different wavelength regions. The

Hamamatsu R1527 tube can measure photons over the 185-680nm range and has peak

quantum efficiency of '20% for wavelengths in the range 200-400nm. The THORN

EMI 9863B/350 tube is sensitive over the wavelength range 300-800nm and has peak

quantum efficiency of '20% at approximately 430nm. Selection of a PMT is based

upon the atomic transition being measured and the wavelength of the range of resonant

photons that are produced. A blue-glass, BG-12, filter is positioned between the win-

dow and the PMT. The transmission profile of a BG-filter allows 200-400nm light to

pass with minimum absorption losses but prevents light outside of this range from enter-

ing the PMT. This reduces the scattered oven light detected by the PMT and lowers the

experimental background signal.
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4.3 The Optical bench

Figure 4.8 displays a schematic of the optical bench and electronics systems used to

perform crossed beam laser spectroscopy experiments during this work. The UV beam

from the laser is steered through to the atomic beam unit where it interacts with the

atomic beam to produce resonant photons. The fundamental beam from the laser is

steered and split into a number of components on the optical bench which are used to

measure the laser wavelength and maintain its stability. The experimental equipment will

be discussed in the following sections according to the roles that each part performs.
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Figure 4.8: Schematic diagram of the optical bench and scanning electronics. Red lines indicate
the fundamental laser beam. Blue lines indicate the UV beam. Black lines indicate electronic
connections.

4.3.1 Wavelength Selection

In order to perform laser spectroscopy the wavelength of the laser beam must be ac-

curately measured and tuned to the atomic transition wavelength. The exact transition

wavelength is achieved in three steps. Firstly a coarse measurement of the laser’s wave-
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length is achieved using a wavemeter. The wavemeter (see figure 4.9) was designed and

built at the University of Birmingham by J. A. R. Griffith and is essentially a Michelson

interferometer. The incident dye laser beam is split down the two arms of the wavemeter

by the beam splitter at its centre. The optical path length of each arm is varied by a

pair of corner-cube reflectors that oscillate in a regular manner. The beams from each

arm are then recombined and the interference pattern is monitored on a photodiode. The

beam from a helium-neon (He-Ne) laser of a known wavelength is also steered around

the wavemeter and its interference pattern is also measured. The wavelength of the dye

laser beam is then determined by comparing the interference pattern of the dye laser

beam to that of the He-Ne. The wavemeter’s accuracy is dependent upon the stability

of the He-Ne laser which allows the dye laser wavelength to be measured to the nearest

0.01nm. Unfortunately this level of accuracy is not sufficient to guarantee that the laser

is at the atomic transition wavelength.
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Figure 4.9: Schematic diagram of the wavemeter.

Further tuning of the laser wavelength is achieved by steering a fraction of the dye

laser beam through an iodine vapour cell and measuring the absorption spectrum on a
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photodiode. The absorption spectrum is observed by scanning the laser over a range of

30GHz and viewing the output of the photodiode using an oscilloscope. The absorp-

tion spectrum of molecular iodine is extremely detailed across the majority of the visible

spectrum and is also well known and recorded. Comparing the observed absorption spec-

trum to a published atlas of molecular iodine [30] therefore enables the laser wavelength

to be determined to an accuracy of 0.001cm−1 which corresponds to 0.00015nm (figure

6.5 in chapter 6 displays an example iodine spectrum from the iodine atlas). The laser is

then scanned manually by applying an offset current to the dye laser galvanometer plates

and the piezo mount of the thick etalon. The thick etalon must be scanned simultane-

ously with the galvanometer to ensure that the laser continues to operate in the desired

mode. When the laser frequency matches the atomic transition frequency, fluorescent

photons are observed on a ratemeter.

4.3.2 Frequency stabilisation

As described in section 4.1.2, scanning the laser frequency is achieved by changing the

optical path length of the dye laser cavity. However thermal and acoustic fluctuations in

the cavity result in the laser frequency jittering (and even mode jumping) during a scan.

In order to measure a spectrum accurately the laser frequency must be scanned in a linear

manner and without jitter. The laser frequency is stabilised by electronically locking the

laser frequency to a transmission peak of the “locking” etalon positioned on the optical

bench.

The “locking” etalon used during this work was a temperature controlled Tropel

T240 confocal etalon. A confocal etalon consists of two spherical mirrors facing each

other with radius of curvature equal to their separation distance, d (see figure 4.10).

Confocal etalons are significantly easier to align than plane surface etalons due to the

focusing effect of the curved surfaces. For an incident beam that enters a confocal etalon

above or below the central axis the light travels the length of the cavity four times before

returning to the entrance point on the first mirror (see figure 4.10). This results in the

FSR of a confocal etalon, as expressed in equation 4.6, being half that of a plane etalon

with the same mirror separation d (see equation 4.3).

FSR =
c

4nd
, (4.6)

49



Chapter 4. Experimental Equipment and Techniques

d

Frequency

Intensity

b)

a)

Central Axis

Figure 4.10: a) Diagram of the off-axis optical path through a confocal etalon. b) Transmission
profile of a mode-matched confocal etalon.

The locking etalon has a free spectral range of 1.5GHz. However, the FSR of an

etalon can drift in time due to two effects. Firstly, fluctuations in temperature and air

pressure can lead to the refractive index of the air inside the etalon changing which, by

equation 4.6, leads to the FSR changing. Secondly, temperature changes can lead to tiny

fluctuations in the cavity length causing the mirror separation d, and hence the FSR, to

vary. Passive frequency control mechanisms are employed to reduce the influence of

these two effects. Refractive index variations are limited by encasing the etalon inside a

temperature controlled vessel that also reduces the effect of atmospheric pressure varia-

tions. The effects of thermal length variations are combated by constructing the etalon

out of materials, such as INVAR, that possess a low thermal expansion coefficient.

A portion of the fundamental output beam is steered though the locking etalon and its

transmission profile is monitored via a photodiode. A 56.4kHz and 2V amplitude dither

signal is generated by a programmable function generator and sent to a mirror of the

locking etalon that is mounted upon a piezoelectric motor. The dither voltage changes the
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etalon mirror separation distance and hence the FSR of the locking etalon from equation

4.6. As the FSR of the etalon is dithered the intensity of the light transmitted through

the etalon will also oscillate, with frequency νtran, in a manner that is characterised by

the difference between the laser frequency and the peak transmission frequency of an

adjacent etalon mode. This effect is illustrated in figure 4.11.
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Figure 4.11: Locking to an etalon transmission peak. The etalon transmission peak is dithered by
applied frequency νdi (green trace). The horizontal travelling waveforms indicate the observed
transmitted wave νtran when the laser frequency is a) lower than (red trace on left side of dia-
gram), b) equal to (blue trace) or c) greater than (red trace on right side of diagram) the etalon
peak transmission frequency .

If the laser frequency is slightly lower (as illustrated by the red vertical line labelled

(a) in figure 4.11) or higher than the transmission frequency of the etalon (as illustrated

by the red vertical line labelled (c) in figure 4.11) then as the etalon is dithered at fre-

quency νdi the transmitted intensity will vary with the same frequency (νtran = νdi). The

relative phase difference between νdi and νtran indicates whether the laser frequency is

higher or lower than the actual transmission peak frequency. If the laser frequency is the
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same as the etalon transmission frequency (as illustrated by the blue vertical line in fig-

ure 4.11) then the transmitted intensity will oscillate at twice the dither frequency (νtran

= 2νdi). This provides a direct means of monitoring the laser frequency during operation.

A phase sensitive detector (PSD) is used to compare the oscillation frequencies νtran and

νdi and is used to generate an appropriate error signal to return the laser frequency to the

peak etalon transmission frequency.

The error signal is then sent to a servo which generates both a low and high frequency

output. The low frequency output amends the current sent to the galvanometer plates and

thick etalon in the dye laser cavity and can compensate for noise with a frequency less

than 100Hz. For noise of higher frequency than this the galvanometer plates cannot be

moved quickly enough. The high frequency servo output is thus sent to a piezoelectric

mount on mirror M2 in the dye laser cavity which makes subtle changes to its optical

path length.

Overall, the locking etalon enables the laser frequency to be kept within 1MHz of

the desired laser frequency as it is scanned.

4.3.3 Frequency calibration

The data acquisition system measures the number of fluorescent photons as a function

of the ramp voltage applied to scan the laser wavelength. In order to convert the ap-

plied ramp voltage into the generated change in laser frequency the output profile of the

calibration etalon is measured. The calibration etalon is a confocal etalon with an ac-

curately known FSR of 299.63(1)MHz. A portion of the fundamental beam of the dye

laser is directed through the calibration etalon onto a photodiode to monitor its intensity

(see figure 4.8). During a spectrum scan, the intensity profile of the calibration etalon

is measured in conjunction with the resonant photons produced inside the ABU. The

intensity profile forms a frequency ruler with markers separated in frequency space by

the FSR of the calibration etalon. The frequency spacing of atomic spectrum lines can

then be determined by comparing the atomic spectrum to the frequency markers in the

calibration etalon spectrum. The calibration process is discussed further in chapter 5.

The calibration etalon is carefully aligned so that the incident laser beam is nearly

steered along its central axis (see figure 4.10a). For this geometry a confocal etalon

closely resembles a plane surface etalon and the confocal modes are suppressed. This
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results in a distinctive transmission profile (see figure 4.10b) where every-other etalon

peak has a lower intensity than the adjacent peaks. This arrangement is known as mode-

matching and provides a useful means of identifying specific calibration etalon peaks to

determine whether the laser frequency has jumped during a scan.

4.3.4 Scanning the Laser Frequency

In order to perform accurate measurements of atomic transition spectra it is necessary

to scan the fundamental laser frequency over a range of a few GHz in a stable manner.

Laser frequency scanning is achieved via a linear ramp signal generated by the data

acquisition computer. An offset voltage is sent from the computer to the laser servo

unit which adjusts the position of the galvanometer plates. After a user specified dwell

time, the computer then increases the magnitude of the offset voltage by a user specified

step size which adjusts the galvanometer plates (and thick etalon) again. This process

is repeated until the galvanometer plates have rotated by the amount required to achieve

the maximum desired change in laser frequency. As the frequency of the cavity mode

changes, its position relative to the transmission peak of the cavity thick etalon also

changes (see figure 4.4). Eventually the desired laser mode is no longer the closest

laser mode to the transmission peak of the thick etalon. This can cause the laser to

hop frequency to a new laser mode that is approaching the transmission peak of the

etalon. These mode-hops are avoided by sending a portion of the ramp signal to a piezo-

mounted mirror inside the thick etalon. This adjusts the FSR of the thick etalon so that

its transmission peaks change in frequency at the same rate as the desired laser mode.

Laser stability is maintained during a scan by locking the frequency of the laser to

the transmission peak of the locking etalon as described in section 4.3.2. When scanning

the laser, the ramp signal is also sent to the piezo-mount of one of the mirrors inside

the locking etalon in order to shift its transmission peak at the same rate as the laser

frequency. If the locking etalon was not scanned simultaneously, as the laser frequency

is scanned it would move away from the transmission peak of the etalon and generate an

error signal. This signal would be sent to the laser and drag its frequency back towards

the etalon transmission peak. The frequency of the locking etalon peak determines the

start frequency of the scan. Ideally the laser start frequency should be close to the atomic

transition frequency so that the entire spectrum can be measured without resorting to
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long scans. An offset voltage can be applied to the piezo-mounted mirror of the locking

etalon so that the position of the locking etalon peaks can be shifted to achieve the best

locking position.

Figure 4.12 displays an example of the data obtained from the data acquisition system

during a laser scan of atomic ruthenium. The photomultiplier signal passes through an

amplifier and discriminator prior to entering the data acquisition computer. A National

Instruments 6602 Counter/Timer card is used to count the number of detected fluorescent

photons. The iodine absorption and calibration etalon spectra are obtained by the output

of photodiodes passed through voltage-to-frequency converters and fed into separate

inputs of the counter/timer card.
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Figure 4.12: Example spectrum of the 329.4112nm transition in ruthenium. a) The iodine ab-
sorption profile. b) The calibration etalon transmission profile. c) The atomic fluorescent spec-
trum.

54



Chapter 4. Experimental Equipment and Techniques

4.4 Laser Spectroscopy of Ruthenium

4.4.1 Choice of atomic transition
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Figure 4.13: Optical transitions between two energy levels. a) Stimulated absorption. b) Stim-
ulated emission. c) Spontaneous emission of a photon by returning to the transition lower state.
d) Spontaneous emission to a state other than the transition ground state (a lost state).

A successful transition measurement is dependent upon producing a large enough num-

ber of resonant photons for efficient detection by the photomultiplier tube via the reflec-

tion optics inside the light collection region. Figure 4.13 displays the optical processes

that occur when a laser beam of energy density, ρ, is directed at an atom. An electron

in the lower state, E1, will absorb an incoming photon and become excited to the upper

energy level, E2. This process is called stimulated absorption (see figure 4.13a) and the

probability that it will occur, Pabs is calculated as follows,

Pabs = B12ρ, (4.7)

where B12 is the Einstein coefficient for stimulated absorption. The presence of the laser

beam may also cause an electron in state E2 to relax to the lower state by emitting a

photon. This processes is known as stimulated emission (see figure 4.13b) and results

in the emission of a photon that is identical to the original photon. The probability that

stimulated emission will occur, Pstim is calculated as follows,

Pstim = B21ρ, (4.8)

where B21 is the Einstein coefficient for stimulated emission. An electron in state E2

may also relax to a lower energy level in the absence of any incoming photons. This
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process is known as spontaneous emission and the probability that an electron will spon-

taneously return to state E1 is,

Pspon = A21, (4.9)

where A21 is the Einstein spontaneous emission coefficient. Unlike the stimulated emis-

sion process, an electron in E2 may relax by spontaneous emission to any lower energy

level allowed by electric dipole (E1) transition rules (see figure 4.13d).

For an E1 transition to occur there must be a change in parity between the upper and

lower transition states. For spontaneous emission to be possible from state E2 to state

E1 and any of the states Ei it must be the case that states E1 and Ei have the same parity.

Therefore once an electron has entered a state Ei it can not return directly to the state E1

via E1 spontaneous emission. The states Ei will henceforth be referred to as lost states

as an electron that relaxes to one of these states is unable to return quickly to E1 for

re-excitation by the laser beam. The atom is therefore lost to the possibility of producing

further photons via spontaneous emission.

The probability for a transition occurring from state E2 to any of the states Ei is,

Plost =
∑
i6=1

A2i, (4.10)

where
∑

i6=1A2i is the sum of the Einstein spontaneous emission coefficients to each of

the individual lost states. If E1 transitions are forbidden it is possible for a lost state to

decay via higher order radiation such as magnetic dipole (M1) and electric quadrupole

(E2) transitions. However the spontaneous emission transition probabilities of these

higher order transitions are considerably lower than E1 with AM1/AE1 ' 10−5 and

AE2/AE1 ' 10−6[31]. It is highly unlikely that such a transition will occur during the

interaction time between the laser and atom and so the effect of higher order radiation is

neglected. Similarly, a lost state could also return to stateE1 via a non-radiative collision

transition however the time-scales for such an interaction in an atomic beam are also

significantly longer than the transit time of the atom crossing the laser beam. Return to

E1 via this collisional de-excitation is therefore also neglected. From equations 4.7 to

4.10 it is possible to form equations for the time-dependent change in state population

due to the presence of a laser beam of energy density ρ,
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dN1

dt
= A21N2 +B21ρN2 −B12ρN1, (4.11)

dN2

dt
= B12ρN1 −B21ρN2 − (A21 + Alost)N2. (4.12)

where N1 and N2 are the populations of states E1 and E2 respectively. Laser spec-

troscopy experiments are only sensitive to the detection of photons produced by spon-

taneous emission. This is because spontaneously emitted photons can be emitted in any

direction whereas photons produced by stimulated emission always travel in the direc-

tion of the laser beam. Stimulated emission photons can therefore not be detected by the

PMT positioned at right-angles to the beam. The rate of spontaneously emitted photons,

ṅγ , is calculated as follows,

dnγ
dt

= (A21 +
∑
i6=1

A2i)N2. (4.13)

From equation 4.13 it is apparent that in order to produce a large number of sponta-

neously emitted photons it is necessary to:

• choose a strong transition with a large A21-value for its upper state. Upper states

which relax to lost states also produce detectable photons however lost state tran-

sitions also act to remove atoms from the system. Transitions with a high value of∑
iA2i therefore have a lower probability of producing multiple photons per atom.

The effect of lost state transitions upon the experimental efficiency is of greater

importance for collinear laser spectroscopy experiments than crossed-beam work.

Collinear experiments tend to utilise low density atomic beams and therefore it is

advantageous to excite each atom multiple times.

• effectively populate the transition upper state, N2. From equation 4.12, the popu-

lation of the upper state is determined by the transition stimulated absorption rate

B12 and also the energy density of the laser beam ρ. It can be shown that [24, 31],

B12 =
g2
g1
B21, (4.14)

where g1 and g2 are the degeneracies of the lower and upper states and,

A21 =
8πν3h

c3
B21, (4.15)
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i.e. the stimulated absorption rate is related to the spontaneous emission rate A21.

It is therefore still favorable to choose a transition with a high A21 value and to

optimise laser power to increase ρ. From equation 4.12, it is also important to

ensure that the lower state population, N1, is initially high in order to achieve ef-

fective population of the upper state. Table 4.2 displays the percentage population

of the energy levels in the ground state multiplet of ruthenium at different thermal

temperatures calculated using the Boltzmann distribution. The thermal percentage

population of energy levels greater than the 3105cm−1 state is effectively negligi-

ble which prevents laser spectroscopy being performed from these levels.

Oven Temperature (K)

E (cm−1) 1500 1750 2000 2250 2500 2750

0 71.6 66.6 62.4 58.6 55.2 52.1

1190.64 18.7 20.5 21.7 22.4 22.8 22.9

2091.54 6.1 7.6 8.8 9.8 10.5 11.1

2713.24 2.4 3.3 4.0 4.7 5.3 5.7

3105.49 1.0 1.4 1.8 2.2 2.5 2.8

Table 4.2: Boltzmann distribution calculation of the percentage population of the energy levels
in the ground state multiplet for various oven temperatures.

4.4.2 Ruthenium transition measurements

Nineteen atomic transitions in ruthenium were measured during this work across a wide

range of laser wavelengths. All the transitions measured were from the 0 – 3105.49cm−1

ground state multiplet and had strong A-coefficients of > 106s−1. These were comple-

mented by four transitions measured in 1999 by E. Cochrane on the same experimental

set-up at the University of Birmingham. The details for all of these transitions are dis-

played in table 4.3. The measurement of these transitions will now be discussed in order

of the various laser dyes used to record them.

4.4.3 The Rhodamine 6G range

The eleven transitions in the wavelength range 296.5166 – 309.9280nm were measured

using the dye Rhodamine-6G (R6G). R6G is a very popular and commonly used dye due
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λ (nm) A (s−1) El (cm−1) Jl Config. Eu (cm−1) Ju Config.

296.5166 1.926× 107 2091.540 3 4d75s 35806.620 3 4d65s5p

297.6925 1.109× 107 1190.640 4 4d75s 34772.550 5 4d65s5p

298.8947 1.856× 107 0.000 5 4d75s 33446.840 4 4d65s5p

299.4968 1.040× 107 2091.540 3 4d75s 35471.150 4 4d65s5p

300.6586 2.746× 107 2713.240 2 4d75s 35963.870 2 4d65s5p

301.7235 3.218× 107 3105.490 1 4d75s 36238.770 1 4d65s5p

302.0873 1.118× 107 2713.240 2 4d75s 35806.620 3 4d65s5p

304.0314 3.184× 106 1190.640 4 4d75s 34072.410 3 4d65s5p

304.2478 1.254× 107 3105.490 1 4d75s 35963.870 2 4d65s5p

304.8788 3.521× 106 2091.540 3 4d75s 34881.920 2 4d65s5p

309.9280 1.089× 107 1190.640 4 4d75s 33446.840 4 4d65s5p

315.9929† 5.696× 106 2091.540 3 4d75s 33728.660 2 4d65s5p

318.6043† 7.590× 106 2713.240 2 4d75s 34091.060 1 4d65s5p

318.9979† 2.699× 106 2091.540 3 4d75s 33430.650 3 4d65s5p

319.6605† 2.424× 107 3105.490 1 4d75s 34379.640 0 4d65s5p

329.4112 2.781× 106 0.000 5 4d75s 30348.450 4 4d75p

330.1594 2.786× 106 0.000 5 4d75s 30279.680 5 4d75p

342.8318 1.994× 107 0.000 5 4d75s 29160.460 6 4d65s5p

343.6736 4.900× 107 1190.640 4 4d75s 30279.680 5 4d75p

349.8942 8.955× 107 0.000 5 4d75s 28571.890 6 4d75p

358.9213 8.221× 107 3105.490 1 4d75s 30958.800 2 4d75p

359.3018 7.904× 107 2713.240 2 4d75s 30537.060 3 4d75p

359.6178 4.354× 107 2091.540 3 4d75s 29890.910 4 4d75p

Table 4.3: Measured transitions listed in order of ascending wavelength. † indicates transitions
measured in 1999 by E. Cochrane. All transition information was taken from the Kurucz Atomic
Database[32]
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to its ability to produce a stable fundamental beam with good power over a broad wave-

length range[28]. Using a β-BBO frequency doubling crystal, UV laser beams of typi-

cally 0.3 – 0.5mW (for 4.5 – 5W pump laser power) were produced to measure the tran-

sitions. For all R6G region transitions, very small isotope shifts were observed resulting

in very narrow spectra with difficult to resolve structure. The reason for this is due to the

configurations of the electrons involved in the transitions. The ground state configura-

tion of ruthenium is 1s22s22p63s23p63d104s24p64d75s. The Kurucz atomic database[32]

lists all of the measured R6G transitions as 4d75s to 4d65s5p type transitions. Transi-

tions involving d-electrons (or indeed any transitions not involving s-electrons) have low

field shifts due to the zero (or very small for p 1
2

electrons) probability of the electron in-

habiting the nuclear volume (see section 2.1.2). Figure 4.14 shows a measured spectrum

for the 304.8788nm transition in ruthenium. A visual comparison of figures 4.14a and

4.14b shows that nearly the entire atomic spectrum fits within two calibration FSR. This

corresponds to a frequency range of '1.2GHz.
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Figure 4.14: Spectrum of the 304.8788nm transition in ruthenium. a) The calibration etalon
profile. b) The atomic fluorescent spectrum.
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4.4.4 The Sulforhodamine 101 range

Following on from the R6G region, the 329.411nm and 330.159nm transitions were mea-

sured using the laser dye Sulforhodamine-101 (SR-101). SR-101 enabled the production

of UV beams with a typical power of 0.4mW (for ∼4W pump laser power). These tran-

sitions were selected as they are 4d75s to 4d75p type transitions and were therefore likely

to exhibit larger field shifts than those observed in R6G due to the change in the num-

ber of s electrons during the transition. Figure 4.15 below displays a spectrum of the

329.4112nm transition. This transition covers a significantly greater frequency range

than the R6-G transitions (see figure 4.14) and hence justified the change in laser dye.

Generally the ruthenium transitions in the SR-101 region are much weaker than those in

R6G. Several transitions, other than the 329.411nm and 330.159nm, were attempted in

the SR-101 wavelength range however they could not be experimentally detected. This

is most likely due to the low spontaneous emission coefficient resulting in an insufficient

number of resonant photons being produced.
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Figure 4.15: Spectrum of the 329.4112nm transition in ruthenium. a) The calibration etalon
profile. b) The atomic fluorescent spectrum.
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4.4.5 The Pyridine 2 range

The lack of strong measurable transitions in ruthenium in the SR-101 wavelength region

prompted another change in dye. Pyridine 2 (P-2) produces a wide range of output

wavelengths however its absorption peak is not as well matched to the wavelength of

the dye laser pump beam as R6G. To combat this a 4mmol solution (double the regular

concentration[28]) of P-2 dye was used and the power of the pump laser beam was

increased to 6W to boost the absorption rate of the dye. It was found that P-2 produced

very good UV beams with a power ∼1 – 1.5mW.

Pyridine-2 was used to successfully measure the six transitions in the wavelength

range 342.8318 – 359.6178nm. The majority of these transitions are 4d75s to 4d75p

type transitions and exhibit well-spaced spectra. The measured transitions also have

very high A-coefficients which enabled their successful detection. Further high-strength

(A-coefficient >107 s−1), 4d75s to 4d75p type transitions exist at wavelengths greater

than 360nm. These wavelengths can be produced using P-2 however it was observed

that for fundamental laser beam wavelengths greater than 700nm the reflection coatings

on the mirrors of the locking and calibration etalons became increasingly transparent.

As the reflectivity of an etalon decreases, its finesse decreases and the width of its trans-

mission peaks increase according to equations 4.4 and 4.5 respectively. The increase in

the calibration etalon transmission peak width can be seen when comparing figure 4.16a

to figure 4.15a. At ∼720nm the calibration and locking etalon mirrors became com-

pletely transparent and it was no longer possible to produce the regular intensity profiles

required for locking operation or calibration referencing. No long-wavelength etalon

mirrors or alternative etalons were available during this work so ruthenium transitions

beyond 720nm proved to be inaccessible.
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Figure 4.16: Spectrum of the 358.9213nm transition in ruthenium. a) The calibration etalon
profile illustrating the decrease in etalon finesse. b) The atomic fluorescent spectrum.

Before P-2 was successfully employed, Pyridine-1 (P-1) was tested as an alternative

dye for the same wavelength region. The absorption peak of P-1, however, is even

further separated from the wavelength of the pump laser and it was found that even high

dye concentrations were unable to produce sufficient power for use during experiments.

P-1 was therefore abandoned in favour of P-2.

4.4.6 Atomic beam unit configuration

As discussed at the beginning of section 4.2, the central cylindrical vessel of the ABU

consists of either two or three chambers depending upon the need for higher experimen-

tal efficiency or higher angular collimation respectively. The eleven R6-G transitions

were measured using a two-chamber atomic beam unit arrangement in order to ensure

that a large number of ruthenium atoms reached the interaction region with the laser.

This decision was made prior to the discovery that (as discussed in 4.4.3) the R6-G

transitions exhibited small isotope shifts which were difficult to resolve with the exper-

imental resolution provided by a two-chamber ABU configuration. When moving to
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other laser dyes the ABU was modified to a three-chamber configuration to improve the

angular collimation of the experiment and hence improve the experimental resolution.

4.4.7 Oven damage

Ruthenium is a highly refractory element with a high melting point of 2607K[33]. Due

to its high melting point, it was found that oven currents of 70-80A were required to

produce atomic beams of sufficient density at the laser interaction region to produce a

detectable number of fluorescent photons. At these temperatures, the tantalum ovens

used during this work had an unusually high failure rate. Typically an oven can be used

for many days of operation before a weakness develops in the tantalum and the oven

breaks (usually at one of the arms). However, during ruthenium experiments a tantalum

oven would often only last a few hours before developing a hole in the main oven body

and then breaking. It would seem that at the high operation temperatures used during

experiments the ruthenium would alloy with the tantalum of the oven and that the alloy

produced had a lower melting point than the surrounding tantalum. As the ruthenium-

tantalum alloy melted holes would develop in the oven. A series of tests were conducted

where an element was positioned inside the oven and heated until largely evaporated. It

was hoped that some of the melted element would alloy with the tantalum oven and form

a protective layer that would prevent the formation of the damaging ruthenium-tantalum

alloy. Copper, iron, aluminium and hafnium were tested, but no improvement in the

average oven lifetime was observed.
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Analysis and Results

As described in section 4.4.2, nineteen electric dipole transitions were measured in

atomic ruthenium by crossed-beam laser spectroscopy. In order to extract the physi-

cal parameters of interest from the measured spectra the data were analysed in three

stages,

1. The x-axis of each spectrum was converted from channel numbers to relative laser

frequency using a calibration based on the frequency spacing of the calibration

etalon transmission peaks.

2. The various peaks in the atomic structure were identified and the centroids were

fitted. From the atomic peak centroids the isotope shifts were determined and the

hyperfine parameters extracted.

3. A combined analysis method was utilised in order to determine the change in

mean-square-charge-radius (MSCR) between isotopes from the already extracted

isotope shifts.

This chapter will discuss each of these steps in more detail and present the final

experimental results. In addition to the nineteen transitions measured by the author,

a further four transitions in atomic ruthenium were measured by E. Cochrane in 1999

using the same fundamental experimental set-up (see table 4.3). These four transitions

were not published by E. Cochrane and have been analysed independently by the author

of this work .
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5.1 Data Calibration

5.1.1 Etalon drift

The measured fluorescence spectra are calibrated by comparison to the intensity profile

of the calibration etalon. The calibration etalon transmission peaks provide regularly

spaced frequency markers that can be used to convert data acquisition channels into

frequency. However, before applying the calibration it is necessary to quantify and com-

pensate for etalon drift. In an idealized situation the FSR of the calibration etalon would

be constant over the course of a measurement of a single spectrum. In reality this is not

the case due to changes in atmospheric conditions. The FSR of a confocal etalon is given

by equation 4.6. Changes in air pressure and temperature result in the refractive index

of the air inside the etalon changing (slowly) in time. This changes the speed of the light

traveling inside the etalon and results in a small drift in FSR. Similarly, changes in tem-

perature can lead to thermal changes in the length of the etalon. This will also contribute

to a shift in etalon FSR. A change in etalon FSR, δFSR, causes the frequency of the nth

transmission peak to shift. The change in frequency of the nth etalon peak, δνn, can be

calculated as follows,

δνn = νn − ν∗n, (5.1)

δνn = n(FSR + δFSR)− nFSR, (5.2)

δνn = nδFSR, (5.3)

where νn and ν∗n are the shifted and un-shifted frequency of the nth etalon peak respec-

tively. For visible light wavelengths n ∼ 106 for the etalon peaks measured during a

scan[20]. Therefore even small changes in the FSR due to atmospheric changes can

result in a measurable shift in an etalon peak’s frequency.

Figure 5.1 illustrates the experimental difficulties that arise as a result of etalon drift.

The measurement of a spectrum typically takes a few minutes to complete. At time t0

during a laser scan the nth etalon peak is measured at frequency ν∗n(t0). The next etalon

peak (the (n + 1)th mode) would occur at frequency ν∗n+1(t0) if the whole spectrum

could be measured instantaneously. Instead the (n + 1)th etalon peak is measured at

frequency νn+1(t1) at the later time t1. In the time taken for the laser to scan between

the two etalon peaks, changes in the etalon FSR cause the peak frequencies to drift. The

measured FSR, FSRmeas = νn+1(t1)−ν∗n(t0) is therefore larger than the FSR if it could
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be measured instantaneously (= ν∗n+1(t0)− ν∗n(t0)). Etalon drift results in the measured

FSR changing over the course of a scan. Before using the position of the calibration

etalon peaks to calibrate a spectrum it is important to first correct for etalon drift and

move the etalon peaks back to their correct positions.

δ

Frequencyν (t1)νn n
ν ν

n+1 n+1
(t0) (t1)

FSR

(t0)* *

δ= FSR + (n+1)     FSRFSR

FSR +   FSR

measured

Figure 5.1: Etalon drift shifts the absolute frequencies of the etalon peaks in time. The measured
etalon FSR (FSRmeasured) is therefore greater than the instantaneous FSR.

D. Forest[20] proposed a method for returning the calibration etalon peaks to their

correct positions by assuming that the etalon drift rate, ρ, expressed in channels per

second, is linear in time. Equation 5.4 then relates the measured etalon peak centroid

position, cn, measured in channels, to its un-drifted centroid position, c∗n, also measured

in channels,

cn = c∗n + ρτcn, (5.4)

where τ is the time spent by the laser at each frequency increment measured in units of

seconds per channel. In order to use equation 5.4 to correct the etalon centroid positions

the etalon drift rate, ρ must be determined. This is achieved by comparing a calibration
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etalon centroid, cn, to the centroid of an atomic resonance, cat. The centroid of the

atomic resonance provides a fixed frequency reference. For a scan started at time, t, the

difference in channels between a specific etalon centroid and an atomic centroid, δ, is

[20],

δ = cat − cn = δ0 − ρ(t+ τcn) (5.5)

where δ0 is the difference between the two peaks in the absence of drift. The drift rate

can therefore be determined by plotting δ against t + τcn for a series of successive

measurements and by fitting equation 5.5 to the resulting data. The gradient of the line

yields the drift rate, ρ. Figure 5.2 shows an example of such a plot for ten measurements

of the 358.921nm transition. Three different isotopes are used as frequency references to

three different etalon peaks. All three data sets are linear which justifies the assumption

made earlier that the etalon drift rate is constant.
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Figure 5.2: Graph displaying the difference between 104 (diamond), 102 (circle) and 100
(square) isotopes and specific etalon peaks for ten measurements of the 358.921nm transition
taken at different times. The errors are smaller than the data points.

Figure 5.3 illustrates the difference between a spectrum calibrated with and without

etalon drift correction. As the scan progresses, the effect of etalon drift leads to an

increasing difference in frequency calibration which can lead to a significant change in
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peak centroid frequency.
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Figure 5.3: a) Spectrum of the 358.921nm transition calibrated with (black, solid trace) and
without (red, dashed trace) etalon drift compensation. Enlargement of b) the start and c) the end
of the scan region.

5.1.2 Calibration Methods

Once etalon drift has been compensated for and the calibration etalon peak centroids

returned to their correct channels the spectrum can be calibrated. A version of xm-

grace[34] (modified by D.Forest to include calibration and peak fitting routines) is used

to determine the centroids of the calibration etalon peaks in terms of channel numbers

and to perform the calibration. Each of the m etalon peaks in the spectrum is assigned a

frequency, νm,

νm = (m− 1)FSR, (5.6)

so the first etalon peak in the spectrum, m = 1, is designated the frequency 0MHz.

One of three functions is then fitted to the calibration etalon centroids to determine the

laser frequency assigned to each channel. Figure 5.4 displays plots of calibration etalon

peak centroids in channels versus the corresponding laser frequency (determined using

equation 5.6) along with the three types of calibration functions. The data points plotted

in figure 5.4 have been synthesized to illustrate the small non-linearities that are observed
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in most experimental scans however the magnitude of those non-linearities have been

exaggerated here to make them more visible. Each calibration function will now be

discussed in more detail.
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Figure 5.4: Plots of laser frequency (MHz) against calibration etalon peak centroids (channels)
with a) a local linear fit, b) a cubic spline fit and c) a global linear fit.

5.1.3 Local Linear Calibration

The local linear calibration method assigns each etalon centroid channel with a frequency

determined by equation 5.6 and then assumes a linear frequency per channel relationship

between adjacent etalon peaks. Each spectrum channel, cx, in between two etalon peaks

with centroids at channel cm and cm+1 is then assigned a frequency, νx, given by,

νx = νm + (cx − cm)
FSR

(cm+1 − cm)
. (5.7)

Figure 5.4a shows the local linear function applied to a synthesized data set. The

spectrum channels prior to the first calibration etalon peak are extrapolated using the

frequency per channel relationship between the first two etalon peaks. Similarly, the

channels after the last etalon peak in the scan are extrapolated using the frequency per

channel ratio from in between last two etalon peaks.

The local linear calibration utilises the calibration etalon peaks as markers in a spec-

trum where the laser frequency is known and then assumes that the laser frequency

changes linearly in the space between adjacent markers. By fitting separate linear re-

lationships to the space between each pair of etalon peaks this method can compensate

for any small non-linearities in the scan of the laser frequency.
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5.1.4 Cubic Calibration

The cubic calibration method uses an interpolated cubic spline function to determine

the relationship between channel number and laser frequency. Figure 5.4b shows an

example cubic spline function. Like the local linear calibration, the cubic calibration

function utilises the calibration etalon peak centroids as fixed frequency markers. The

cubic spline function however is able to fit more smoothly to the whole data set and

provides a more realistic representation of the change in laser frequency between etalon

peaks. The channel numbers before the first etalon peak and after the last etalon peak

are calibrated by extrapolating the cubic spline out to those channel numbers. Unlike

the local linear fit, the cubic spline extrapolation can lead to unrealistic calibrations at

the front and end of a scan. This effect is evident (although exaggerated due to the

deliberately emphasized non-linearities in the synthesized example data set) in figure

5.4b where the fit curves back around after the last etalon peak. The cubic calibration,

whilst providing a more realistic fit to scan non-linearities, should be used carefully.

5.1.5 Global Linear Calibration

The global linear calibration method performs a linear regression on the frequency and

channel numbers assigned to the calibration etalon centroids. The equation obtained

for the linear fit is then used to convert spectrum channel numbers into laser frequency.

This method does not require that the fit passes through all of the measured calibration

etalon peak values, as illustrated by figure 5.4c, however it does demand that the laser

frequency scan is linear across the whole spectrum. This method allows for errors in

etalon peak positions by not forcing the fit to go through all of the etalon data points.

The local linear calibration method was the most commonly used calibration method

during this work. This is because this method is the most simple and utilises each of the

calibration etalon peaks as reference points in the spectrum where the laser frequency is

known. If a fit to a spectrum calibrated using the local linear method produced a large

χ2 value then the spectrum was re-calibrated using either the cubic or global calibration

methods in an attempt to achieve an improved fit χ2 value. If the χ2 value for the fit

was then still large then it was assumed that a substantial glitch had occurred during the

laser scan (causing irregular etalon spacing) and the spectrum was not included when

averaging the repeat measurements together to yield the final results.
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5.2 Fitting the Spectra

Ruthenium has seven naturally occurring isotopes, 96Ru, 98Ru, 99Ru, 100Ru, 101Ru, 102Ru

and 104Ru. Each of the even isotopes contributes a single peak to the observed spectrum.

The odd isotopes have spin I = 5/2 and therefore each contribute several hyperfine

(HF) structure component peaks to the spectrum. Figure 5.5 displays a calibrated mea-

surement of the 349.8942nm transition. This transition is a J = 5 to J = 6 transition

so each odd isotope contributes fifteen HF structure peaks to the spectrum. Overall,

the 349.8942nm transition produces thirty five potentially measurable peaks of various

intensities in the spectrum.

In order to calculate the isotope shifts evident in a spectrum it is necessary to accu-

rately determine the centroid of each peak in the spectrum. This is achieved by using

a chi-squared minimisation fitting routine in a modified (by D. Forest) version of xm-

grace[34] which attempts to fit a function to the data. Every component in the spectrum

is described by a line shape P (Γ) where Γ represents the width parameter (or parameters

for the case of a Voigt profile). The contribution of the ith component to the fit function

is,

Fi(ν) = IiPi(Γ, ν − ωi), (5.8)

where Ii and ωi are the intensity and centroid of the ith component respectively. The full

fit is therefore given by the sum of all of the individual components,

y(ν) =
∑
i

Fi(ν). (5.9)

For hyperfine structure components the parameter ωi is dependent upon the hyperfine A

and B parameters of the transition states and the weighted centroid of the isotope (see

equation 2.69). The values for ωi for all of the HF structure components of a single

isotope are therefore interlinked via these isotope dependent properties.

The fitting routine compares the fitted line function, y(ν), to the measured spectrum

and determines the chi-squared value for the fit function. The programme then varies

the aforementioned line function variables in an iterative process in order to achieve the

minimum value for chi-squared. The final values for the isotope centroids generated by

the fitting routine can then be used to calculate isotope shifts. By fitting the whole spec-

trum using a single function the fitting routine takes into account the relative positions
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of all of the peaks. This is advantageous for determining accurate HF parameter values.

Separate aspects of the fitting routine will now be discussed in more detail.
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Figure 5.5: Calibrated spectrum of the 349.8942nm transition. The even isotope centroids are
labeled. The remaining unlabeled peaks are hyperfine structure components.

5.2.1 The Fitted Line-Shape

As discussed above, the fitted spectrum consists of a sum of line-shape functions. The

shape of the line-shape function is determined by the dominant line-broadening mecha-

nism that is evident in the measured spectrum. Therefore the same line-shape and line-

width is applied to every peak in the spectrum (see section 3.1). The programme user

may choose which line-shape function is used by the fitting routine. The available op-

tions are Lorentzian, Gaussian and Voigt profiles. The Lorentzian function is best suited

to spectra where the natural-line width defines the measured peak shape. The Gaussian

function is required for spectra where Doppler broadening is the dominant broadening

mechanism. The Voigt profile is used when the natural line-width and Doppler broaden-

ing are of similar magnitude. Ultimately, the final choice of line-shape is made by the

chi-squared minimisation fitting routine. The line-shape that produces the best fit (i.e.

the smallest reduced χ2/degree of freedom value) is used as the final choice for a spec-
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trum. For the vast majority of analysed spectra, a Voigt profile was found to produce the

best fit.

5.2.2 Identifying the Spectrum Peaks

In order for the fitting routine to correctly fit a measured spectrum the user must enter

preliminary values for each of the variable parameters. It is therefore important to be

able to identify which peaks correspond to each isotope so that initial estimates for the

isotope centroids can be determined. The even isotopes can be identified by comparing

the relative measured peak intensities to the known atomic abundances of ruthenium

displayed in table 5.1.

Istope Abundance (%) Abundance relative

to 102Ru

Spin (Iπ)

96Ru 5.54 0.176 0
98Ru 1.87 0.059 0
99Ru 12.76 0.404 5/2+
100Ru 12.60 0.399 0
101Ru 17.06 0.541 5/2+
102Ru 31.55 1.000 0
104Ru 18.62 0.591 0

Table 5.1: Ruthenium naturally occurring atomic abundances [35].

This method was used to label the even isotopes in figure 5.5. The remaining unla-

beled spectrum peaks are hyperfine structure components belonging to either 101Ru or
99Ru. A preliminary value for the centroid of the odd isotope structures can be deter-

mined by examining the centroid positions of the even isotopes. An approximate linear

relationship exists between the even isotope centroid positions and mass number (see

figure 5.6). This linear relationship is confirmed by examining the charge radii system-

atics for molybdenum for the same neutron number values (see figure 1.1). Molybdenum

has two fewer protons than ruthenium and would therefore be expected to exhibit similar

changes in isotope shift with neutron number. The values for δ〈r2〉A,A′ for molybdenum

are approximately linear across the range 50 < N < 60 which (from equation 2.28)

implies a linear change in isotope shift with neutron number.
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Assuming that this linear relationship is also valid for the odd mass isotopes allows

approximate centroid frequencies for 101Ru and 99Ru to be interpolated. In reality it

is likely that the odd mass ruthenium isotopes will be staggered relative to the even

isotopes. Odd-even staggering (OES) is evident in the isotope chains of all elements

in this region of the nuclear chart as displayed in figure 1.1. However the magnitude

of OES is sufficiently small in the neighbouring isotope chains that its effects can be

assumed negligible for the purpose of an initial estimate of the centroid values for the

odd ruthenium isotopes.
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Figure 5.6: Graph displaying peak centroid frequency against mass number for the 349.8942nm
transition. The odd isotope centroids (o) are calculated using the line of best fit through the
plotted even isotopes (x). Error bars are comparable to the size of the data points.

It is also necessary to provide the fitting routine with preliminary values for the HF

parameters. For the four lowest atomic energy levels the HF A and B parameters have

been measured accurately for both 101Ru and 99Ru by magnetic resonance experiments

(Büttgenbach et al[36]). These values are listed in table 5.6 in section 5.3 below. For

transitions from these energy levels, only the values of the upper state HF parameters

are unknown. The parameters AU and BU are determined for each isotope separately by

setting up and solving simultaneous equations of the form,

νi = AUα
U
i +BUβ

U
i + ω − ALαLi +BLβ

L
i , (5.10)
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where νi is frequency of the ith HF structure component, the parameters α and β are

given by equations 2.71 and 2.72 respectively, ω is the isotope centroid that was esti-

mated above (using figure 5.6) and AL and BL are known. To solve for one of the odd

isotopes it is necessary to identify two peaks belonging to that isotope with frequency ν1

and ν2.

The intensity of each HF structure component can be predicted through a series of

scaling relations. Firstly, the intensity of a specific HF structure component between two

F states, FL and FU , can be calculated using the Racah intensity equation,

Intensity ∝ (2FU + 1)(2JL + 1)(2JU + 1)

∣∣∣∣∣∣
JL FL I

FU JU 1


∣∣∣∣∣∣
2

, (5.11)

where the subscripts U and L denote the transition upper and lower state respectively.

For more information on the origin of equation 5.11 see Edmonds[37]. The relative

intensity of each hyperfine component can then be scaled relative to the most intense

HF component. Table 5.2 below displays the Racah intensities (relative to the most

intense component) of the 15 HF components for the 349.8942nm transition. The Racah

intensities were calculated by a subroutine (written by D. Forest) of xmgrace[34].
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FL FU Intensity

15/2 17/2 1

13/2 15/2 0.839506

11/2 13/2 0.699301

9/2 11/2 0.578512

7/2 9/2 0.476618

5/2 7/2 0.393939

11/2 11/2 0.085823

13/2 13/2 0.077355

9/2 9/2 0.076183

15/2 15/2 0.049383

7/2 7/2 0.048634

11/2 9/2 0.002755

13/2 11/2 0.002331

9/2 7/2 0.001871

15/2 13/2 0.001122

Table 5.2: Racah intensity† (expressed as a fraction of the most intense component) for the HF
components of the 349.8942nm (JL = 5 −→ JU = 6) transition. Nuclear spin I = 5/2. †
calculated using a subroutine of the program xmgrace.

The expected intensity can then be determined for that peak by scaling to the iden-

tified even isotopes according to the atomic abundance. Comparing the predicted inten-

sities to the measured spectrum enables two peaks to be selected for use in the simul-

taneous equations. From table 5.2 it can be seen that whilst each odd isotope has 15

HF components for the 349.8942nm transition only six HF components (including the

most intense component) have an intensity greater than ten percent of the most intense

component. This is true for most of the transitions measured during this work and hence

typically only a few HF components are visible for each odd isotope in a spectrum.

As the HF parameters are not known for the 3105.49cm−1 state it is necessary to

assemble a set of four simultaneous equations in order to determine preliminary values

of AL, BL, AU and BU for any transition from this state.

Determining intial values for the HF parameters in this manner can be challenging

for narrow spectra as the HF structure lines are often close together or obscured by even
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isotopes and hence are difficult to identify. For these spectra it can be useful to generate a

chi-squared surface plot of the fit using various input values forAU andBU . The method

for generating a chi-squared surface plot is discussed in appendix B. Initial values for

AU and BU can then be determined by identifying the position of the global minimum

in the chi-squared surface plot. This method can be time consuming and is generally not

necessary for well spaced spectra.

5.2.3 Reducing the Number of Fit Parameters

In order to ensure that the fitting routine finds the global chi-squared minimum a number

of the fit parameters are initially either fixed or linked together using known physical

values and scaling relationships. As has previously been mentioned the lower state HF

parameters are known for many transitions from magnetic resonance experiments. AL

and BL are therefore held fixed to these measured values during the fitting process. Fix-

ing these parameters is justified by the fact that the accuracy of the magnetic resonance

measurements is significantly greater than the accuracy that can be obtained in a laser

spectroscopy experiment.

As outlined in section 2.3, the ratio of the upper state HF A parameters is equal to

the ratio between the lower state HF A parameter as follows,

A99
L

A101
L

=
µ99/I99
µ101/I101

=
A99
U

A101
U

. (5.12)

The HF upper parameter of one isotope can therefore be scaled to the other odd

isotope as follows.

A99
U = A101

U

A99
L

A101
L

. (5.13)

Equation 5.13 is also true for the HF B parameters. The peak intensities are also

scaled during the fitting process. Firstly, the isotope intensities are all scaled to an even

isotope, usually 102Ru as it has the greatest intensity, according to atomic abundances.

The measured intensities should replicate the atomic abundances provided that the detec-

tion system was not saturated during the measurement. Secondly, the hyperfine structure

peaks are scaled relative to the most intense HF peak according to the Racah intensities.

It is often the case that some HF components are found underneath the considerably

more intense even isotope peaks. Scaling the HF components’ intensities according to

78



Chapter 5. Analysis and Results

the HF components ensures that even peaks masked in this way are considered correctly

by the fitting routine.

The scaling ratios described above were enforced during the chi-squared minimisa-

tion process in order to obtain initial values for the peak centroids and HF parameters.

Once obtained, the scaling ratios were released one-by-one and the fitting routine was

repeated to assess the impact of the scaling factor on the chi-squared per degree of free-

dom value for the fit. It was found that releasing the scaling ratios produced a negligible

change in the chi-square per degree of freedom value for the majority of spectra. This

justified the use of scaling ratios to fit the data.

5.3 Isotope Shifts and Hyperfine Parameters
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Figure 5.7: a) A fitted 349.8942nm transition (χ2 per degree of freedom = 1.59). b) The 101Ru
peaks with the centroid marked with a dashed line. c) The 99Ru peaks with the centroid marked
with a dashed line.

Figure 5.7 displays an example of a fully calibrated and fitted spectrum. Once the isotope

centroids are determined using the fitting routine, the isotope shift between two isotopes

can be calculated using equation 2.1. Table 5.3 displays the measured isotope shifts,

relative to the 104Ru isotope, for eight of the transitions measured during this work and
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the four transitions measured by E. Cochrane. Each value in the table is an average

of at least five repeat measurements. The fitting routine also calculates the fitting error

for each centroid which can be used to determine a value for the isotope shift error. The

error on the fit to the data is typically very small∼0.1MHz. The error values displayed in

the table are the standard errors calculated from the standard deviations between repeat

measurements. This value is larger than the error on the fit and, for this reason, is chosen

as the definitive error on the isotope shift as it better reflects the level of experimental

uncertainty.

Table 5.4 displays the hyperfine structure coefficients of the transition upper energy

levels for the same twelve transitions displayed in table 5.3. As for the isotope shift

values, the displayed HF parameters are an average of at least five repeat measurements.

Similarly, the displayed error values are calculated from the standard deviation of the

repeat measurements. For all measured transitions, the error on the B parameters is

always much larger than that for theA parameters. This is due to the fact that the electric

quadrupole interaction has a considerably smaller perturbative effect upon the electronic

energy levels than the magnetic dipole interaction. Changing B therefore has a small

effect on the spectrum. This leads to larger variation in fitted B values between repeated

measurements which in turn leads to a greater standard error.

Table 5.5 displays the hyperfine structure components of the 3105.49cm−1 state ex-

tracted from analysis of the 319.6606nm and 358.9213nm transitions. There is generally

good agreement between the two transition measurements except for the 99Ru B coef-

ficient. There is no obvious reason for this discrepancy other than the previously men-

tioned fitting routines’ lack of sensitivity to the value of the HF B parameters. Using the

B HF coefficient equivalent of equation 5.13 it is possible to estimate the expected HF

B coefficient for 99Ru from the HF B coefficient for 101Ru by multiplying the 101Ru B

coefficient extracted from measurements with the ratio of B coefficients from a different

atomic energy level (such as those obtained by magnetic resonance measurements[36]

in table 5.6). Scaling the 101Ru B coefficient for the 319.6606nm transition (displayed

in table 5.5) in this way replicates (within errors) the measured 319.6606nm 99Ru B co-

efficient. However, scaling the 101Ru B coefficient for the 358.9213nm transition (dis-

played in table 5.5) in this way yields a results that is not consistent with the measured

358.9213nm 99RuB coefficient. The 358.9213nm transition has a large number of small

hyperfine structure components that are easily lost in the spectrum background which
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may cause the fitting routine to provide an inaccurate value for the B HF coefficients.

This suggests that the HF coefficients obtained from the 319.6606nm transition are more

reliable than those obtained from the 358.9213nm transition. For this reason, the HF

coefficients obtained from the 319.6606nm transition are used as the definitive HF co-

efficients for the values 3105.49cm−1 and are displayed in table 5.6 with the magnetic

resonance measurements for the HF parameters of the other members of the ground state

multiplet. This is the first measurement of the HF parameters for the 3105.49cm−1 state.

As discussed in section 4.4.3, the 296 – 310nm transitions studied during this work

exhibit extremely small isotope shifts and hence have very narrow spectra. For this rea-

son, these spectra proved very difficult to analyse as it is often the case that large numbers

of hyperfine components are masked beneath the closely spaced even isotopes. This is

also true for the 342.8318nm transition. Small isotope shifts make these transitions un-

suitable for extracting nuclear mean-squared charge radii (as will be discussed in section

5.4) and for this reason the isotope shifts and HF parameters determined for these transi-

tions (with the exception of the 298.8947nm transition) are not displayed here. However,

the transitions were fitted and values for the measured isotope shifts and HF parameters

can be found in appendix C. It is worth noting that the fit to the 304.2478nm transition

provides HF coefficient values for the 3105.49cm−1 energy level (see table C.2) that are

consistent with the values obtained from the 319.6606nm transition displayed in table

5.5. This provides further confirmation for selecting the HF coefficients obtained from

the 319.6606nm transition as the definitive values for the 3105.49cm−1 state.
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99 101

λ (nm) Eu (cm−1) J Au Bu Au Bu

298.8947 33446.84 4 -156.6(2) -6.1(36) -175.2(2) -10.7(35)

315.9929 33728.66 2 -105.2(1) -7.7(9) -117.8(1) -47.0(6)

318.6043 34091.06 1 -97.8(2) 8.3(13) -109.7(1) 39.6(9)

318.9979 33430.65 3 -133.1(1) -26.7(29) -149.3(1) -149.7(28)

319.6605 34379.64 0 0 0 0 0

329.4112 30348.45 4 -78.0(2) 8.5(54) -87.3(3) 16.3(86)

330.1594 30279.68 5 -66.5(2) 33.8(45) -74.3(5) 226.1(91)

343.6736 30279.68 5 -66.5(2) 39.8(38) -74.5(3) 243.6(75)

† 30279.68 5 -66.5(1) 37.3(29) -74.5(2) 236.6(58)

349.8942 28571.89 6 -86.7(1) 55.7(38) -97.1(1) 349.6(38)

358.9213 30958.80 2 -224.1(10) 9.7(82) -249.1(5) 162.8(28)

359.3018 30537.06 3 -109.9(5) 28.5(50) -123.4(3) 178.9(27)

359.6178 29890.91 4 -114.6(1) 19.0(43) -128.8(5) 125.2(88)

Table 5.4: Measured hyperfine structure parameters (MHz) of the transition upper states for both
99Ru and 101Ru. † signifies the weighted mean values for the 30279.68cm−1 state using the
343.67nm and 330.16nm transition data.

99 101

Transition λ (nm) A B A B

319.6605 107.1(2) 7.3(6) 119.6(2) 39.0(3)

358.9213 105.3(8) 0.8(13) 121.0(7) 40.8(13)

Table 5.5: Measured hyperfine structure parameters (MHz) of the 3105.49cm−1 state for both
99Ru and 101Ru.
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99 101

E (cm−1) J A B A B

0.00 (†) 5 -204.5514(33) 27.281(62) -229.2881(33) 158.934(62)

1190.64 (†) 4 -163.6845(36) 17.455(52) -183.4744(36) 101.799(52)

2091.54 (†) 3 -135.0294(37) 10.164(50) -151.3502(38) 59.323(50)

2713.24 (†) 2 -82.5325(27) 5.457(22) -92.4974(27) 31.869(23)

3105.49 1 107.11(15) 7.28(64) 119.63(20) 38.97(34)

Table 5.6: Hyperfine structure parameters (MHz) for the ground state multiplet. States labelled †
are values from Büttgenbach et al.[36] whereas the 3105.49cm−1 values are the weighted mean
of results listed in table 5.5.

5.4 Extracting the Change in Mean Square Charge Ra-

dius between Isotopes

The change in mean-squared charge radius, δ〈r2〉A,A′ , between isotopes A and A′ was

determined using the combined analysis technique discussed in detail by Fricke et al.[38,

2]. The combined analysis method draws together data from numerous different types

of experiments in order to determine a more accurate value for δ〈r2〉A,A′ . Data from the

following four types of experiment are typically used in the technique:

1. Optical isotope shift measurements (such as those measured during this work).

Optical isotope shifts (such as those in table 5.3) are related to the change in mean

square charge radius between isotopes as outlined in section 2.1.3. Optical isotope

shifts can be measured to a relatively high level of accuracy however extraction

of δ〈r2〉A,A′ values requires knowledge of the electronic factors Fi and Mi. Ab

initio calculations of Fi are often very challenging due to the non-trivial task of

calculating the change in electron charge density at the nucleus which requires

detailed knowledge of the electron wavefunction. Similarly ab initio calculations

of Mi are difficult as they require calculation of the specific mass shift which also

requires knowledge of the electron wavefunction.

2. K X-ray measurements. Like optical transitions, K X-ray transitions exhibit mass

and field shifts which are similarly related to the δ〈r2〉A,A′ . The advantage of K

X-ray measurements over optical transitions is that the electronic parameters Fi
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and Mi can be calculated considerably more accurately for inner electrons than

valence electrons. The disadvantage of K X-ray measurements is the much poorer

experimental accuracy relative to optical isotope shift measurements[1].

3. Muonic X-ray measurements. Muon X-ray experiments measure the transition en-

ergies between the levels of a muon bound in an atom. As a muon is considerably

heavier than an electron it orbits much closer to the nucleus and is very sensitive

to its size. Perturbations in the muon energy levels due to the size of the nucleus

are related to the Barrett equivalent radius, Rkα[2].

4. Electron scattering measurements. Electron scattering experiments provide accu-

rate measurements of the nuclear charge distribution ρ(r) which enables calcula-

tion of all of the nuclear radial moments, 〈rn〉1/n . Electron scattering data also

enables values of Rkα to be determined, however to a lower degree of accuracy

than that from muon experiments.

Each experiment measures a different property of the charge distribution of the nu-

cleus. Figure 5.8 displays a flow chart of the processes required to produce a combined

value for δ〈r2〉A,A′ . The ratio of the radial moments from electron scattering data, V e
n ,

is used in conjunction with the Barrett equivalent radius extracted from muon data, Rµ
kα,

to obtain precise model-independent radii values, 〈rn〉1/nµe . The change in nuclear Seltzer

moments between isotopes can then be determined using equation 2.25. A more accu-

rate value for the Seltzer moment, λAA′
oµe , is formed via a graphical technique known as

a King plot. This technique, first proposed by King[1], will now be described in more

detail.
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5.4.1 The King Plot Method

For a transition, i, the measured isotope shifts, δνA,A
′

i , are related to the nuclear Seltzer

moment, λAA′ as follows,

δνA,A
′

i =
A′ − A
AA′

Mi + Fiλ
AA′

. (5.14)

In order to extract λAA′ it is necessary to determine values for the atomic factors Fi

andMi. For many transitions, determining Fi is incredibly difficult due to the non-trivial

task of calculating the change in electron charge density at the nucleus which requires

detailed knowledge of the electron wavefunction. King [1] developed a graphical method

for determining the electronic factors using empirical measurements. The technique,

known as a King plot, involves plotting a set of modified optical isotope shifts against

modified values for the change in Seltzer moments between the same isotope pairs. The

plotted values are modified by multiplication with a modification factor,

µAA
′
=

AA′

A− A′
µref , (5.15)

where µref is a constant reference factor, used to maintain the order of magnitude of

δνA,A
′

i , that is evaluated as follows,

µref =
Aref − A′ref
ArefA′ref

. (5.16)

Multiplying both sides of equation 5.4.1 by the modification factor, µAA′ , removes

the isotopic dependency in the equation as follows,

µAA
′
δνA,A

′

i =
A′ − A
AA′

µAA
′
Mi + Fiµ

AA′
λAA

′
(5.17)

µAA
′
δνA,A

′

i =
Aref − A′ref
ArefA′ref

Mi + Fiµ
AA′

λAA
′
. (5.18)

The gradient and intercept of a King plot of µδνA,A
′

i against µλAA′ are therefore

equal to Fi and
Aref−A′

ref

ArefA
′
ref

Mi respectively.

By plotting Seltzer moments determined from combined muonic and electron scat-

tering data, λAA′
µe , in a King plot with optical isotope shifts, accurate Fi and Mi values

can be determined. Seltzer moments for each optically measured isotope shift can then

be calculated using equation 5.4.1 and the new values for Fi and Mi.
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Table 5.7 below displays the isotope shift (δνA,A
′

IS ) values for the 349.8942nm transi-

tion in ruthenium measured during this work and Seltzer moments of ruthenium obtained

from muonic atom spectroscopy[38]. Also displayed in table 5.7 are modified isotope

shifts and Seltzer moments obtained using modification factors calculated with equation

5.15 and reference masses Aref = 104 and A′ref = 102.

A′ A µ δνA,A
′

IS (MHz) λAA
′
(fm2) µδνA,A

′

i (MHz) µλAA
′
(fm2)

101 100 1.90 -77.2(19) 0.0707(41) -146.9(36) 0.1346(78)

99 98 1.83 -103.9(16) 0.1013(68) -190.0(30) 0.185(12)

98 96 0.89 -396.1(17) 0.2649(68) -351.3(15) 0.2349(60)

104 102 1.00 -346.6(18) 0.2515(48) -346.6(18) 0.2515(48)

100 99 1.87 -232.2(18) 0.1626(96) -433.4(33) 0.304(18)

102 101 1.94 -248.4(20) 0.1731(63) -482.5(38) 0.336(12)

Table 5.7: Isotope shifts for the 349.8942nm transition in ruthenium along with Seltzer
moments[38] and modified values

Figure 5.9 below displays the King plot obtained by plotting the modified isotope

shifts against the modified Seltzer moments displayed in table 5.7. A linear fit to the data

points in figure 5.9 provides values for the gradient and intercept of Fi=-1826(200)MHzfm−2

and µrefMi=105(48)MHz respectively. Not all of the data points fall on the straight line

fit to the data. However, substituting the measured isotope shift values from table 5.7

along with the transition factors Fi and Mi obtained from the King plot into equation

enables new accurate Seltzer moments (based upon both muonic and laser spectroscopy

data) to be calculated.
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Figure 5.9: King plot of modified isotope shift values versus modified Seltzer moments for the
349.8942nm transition in atomic ruthenium

Finally, the change in mean-squared charge radius between isotopes, δ〈r2〉A,A′
oµe , can

be determined by removing the contribution from higher order moments using equation

2.25 which is repeated below for convenience,

λAA
′
= δ〈r2〉A,A′

+
C2

C1

δ〈r4〉A,A′
+
C3

C1

δ〈r6〉A,A′
+ . . . , (5.19)

where values for the Seltzer coefficients are available from literature [39]. The higher

order radial moments can be determined from the electron scattering and muonic atom

data.

5.4.2 Ruthenium

For ruthenium there is an extremely limited set of experimental data available. Fricke

et al.[38] lists a set of Barrett equivalent radii obtained from muonic atom experiments.

Fricke et al. also reports that, up to 2004, no electron scattering or K X-ray experimental

data exist for ruthenium. A literature review by the author of this work has confirmed

that there has been no change to this situation before the completion of this work. It
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is therefore not possible to produce a set of Seltzer moments by combining the values

of electron and muon experiments. Fricke et al. presents a set of Seltzer moments

determined from the muonic atom data only.

It is also the case that prior to this work there was very little optical isotope shift

data for ruthenium. The only optical isotope shift data available is for a single transition

measured using a hollow-cathode experiment [10]. Fricke used the combined analysis

technique to obtain values of δ〈r2〉A,A′ by combining λAA′
µ , obtained from muonic data,

and δνA,A
′

i , obtained via optical hollow-cathode work, in a King plot. The Fricke et al.

δ〈r2〉A,A′ values are displayed in table 5.8.

A′ A δ〈r2〉A,A′
(10−3fm2)‡ δ〈r2〉A,A′

(10−3fm2)† δ〈r2〉A,A′
(10−3fm2)?

98 96 287.4(20) 288.3(20) 281(23)

100 98 253.8(21) 253.5(21) 263.9(93)

102 100 244.2(25) 244.2(25) 245(15)

104 102 255.0(17) 254.9(17) 256(21)

99 98 91.7(15) 91.5(16) 98.8(93)

101 100 73.7(18) 73.7(18) 71.3 (76)

Table 5.8: Final δ〈r2〉A,A′
results‡ determined from the weighted mean of the twelve analysed

transitions.† indicates the δ〈r2〉A,A′
weighted mean not including the 298.8947nm transition re-

sults. The δ〈r2〉A,A′
results produced by Fricke et al.?[38] are also provided for comparison.

The Seltzer moments determined by Fricke et al.[38] were used to produce a King

plot for each of the optical transitions measured during this work. The King plot was

fitted by a linear regression method in order to determine values for the electronic factors

Fi and Mi (tabulated in appendix A) and the uncertainty of each value. A combined

optical and muonic atom value for the Seltzer moment, λAA′
oµ , was then obtained using

equation 5.4.1 with the extracted F and M values and the isotope shifts in table 5.3. The

contributions of the higher order moments to the Seltzer moment were evaluated using

muonic atom data published by Fricke et al.[38] and subtracted in order to determine

δ〈r2〉A,A′ for each transition. The combined analysis values for δ〈r2〉A,A′ obtained for

each measured laser spectroscopy transition are displayed in appendix A.

Table 5.8 contains the weighted mean value of δ〈r2〉A,A′ for the 12 transitions. On

initial inspection of the δ〈r2〉A,A′ data presented in appendix A it would seem that the

298.8947nm transition data is notably different to the other transitions. However, per-
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forming a standard t-test[40] reveals that the 298.8947nm transition δ〈r2〉A,A′ values are

consistent with a distribution centred upon the weighted mean δ〈r2〉A,A′ values of the

other eleven transitions. Table 5.8 also includes the weighted mean value of δ〈r2〉A,A′ for

the eleven transitions other than the 298.8947nm transition. The two weighted mean val-

ues agree, considering errors, indicating that it is acceptable to include the 298.8947nm

transition in the final weighted mean calculation of δ〈r2〉A,A′ .

The error on the weighted mean of the full set of twelve transition values for δ〈r2〉A,A′

is an order of magnitude smaller than the error on Fricke’s δ〈r2〉A,A′ values. Figure 5.10

below shows a King plot of the isotope shifts obtained from the 349.8942nm transition

plotted against the MSCR obtained by Fricke et al. and also the final weighted mean

δ〈r2〉A,A′ values obtained from this work. The χ2 per degree of freedom of the line

fit is more favourable for the plot versus the weighted mean obtained from this work.

This suggests that the new weighted mean values are more accurate than the Fricke et

al. values that are based upon only one optical transition. This is due in part to the

large number of transitions that were used to evaluate the values in table 5.8 but is also

because the isotope shift measurements obtained from laser spectroscopy measurements

are considerably more accurate than those obtained from hollow-cathode experiments

used by Fricke et al.
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Figure 5.10: King plot of measured isotope shifts from the 349.8942nm transition plotted against
δ〈r2〉A,A′

values from this work (+, dashed-red trace) and values published by Fricke et al.[38]
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5.4.3 The R6G transitions

The isotope shifts displayed in table 5.3 do not include the majority of the transitions

measured using R6G in the 296 – 310nm wavelength region. This is due to the fact

that, as discussed previously in this chapter, the majority of these transitions exhibit ex-

tremely small isotope shifts resulting in very narrow spectra. As the spectra are very

narrow many of the peaks are very close together and difficult to accurately resolve.

This results in larger errors for the fitted isotope shifts than those displayed in table 5.3.

The combination of small isotope shifts and large errors on those isotope shifts leads to

relatively high percentage errors for these transitions. When plotted as a King plot the

narrow spacing of data points and the large error bars makes it very difficult to deter-

mine reliable values for Fi and Mi. This effect is illustrated below for the 304.0314nm

and 343.6736nm transitions. The data points in the 304.0314nm transition King plot,

figure 5.11a, are considerably more bunched than those in the equivalent plot for the

343.6736nm (figure 5.11b), however, both plots have similar sized error bars.

For this reason it was not possible to extract sensible δ〈r2〉A,A′ values for the majority
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of the transitions in the 296 – 310nm range. These transitions are therefore not included

in the weighted-mean final δ〈r2〉A,A′ values presented in table 5.8.
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Figure 5.11: King plot of measured isotope shifts against muonic Seltzer moments, λAA
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µ for a)
the 304.0314nm transition and b) the 343.6736nm transition. Note change of scale on y-axis.
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Chapter 6

Interpretation of Results and

Consequences for Future Work

Whilst crossed beam laser spectroscopy is ideal for the study of stable isotopes, collinear

laser spectroscopy is more appropriate for the measurement of the ground and isomeric

state properties of radioactive isotopes. As outlined in chapter 3, the collinear laser spec-

troscopy technique is able to successfully measure resonant spectra for small samples of

atoms or ions and hence is ideal for the study of short-lived radioactive isotopes. This

chapter will discuss the collinear laser spectroscopy method in more detail before as-

sessing the consequences of the data obtained during this work for future measurements.

6.1 Collinear Laser Spectroscopy

As discussed in section 3.2.2, in collinear laser spectroscopy a beam of ions or atoms

interacts with a laser beam travelling along a common axis. Collinear laser spectroscopy

experiments are mainly performed at three experimental facilities around the world;

JYFL (Finland), ISOLDE (CERN) and TRIUMF (Canada). Currently, only the IGISOL

facility at JYFL is capable of producing beams of ruthenium atoms or ions. This is be-

cause the IGISOL radioactive beam production method is independent of the reactive

or refractory nature of the element being produced[41, 42]. For other beam produc-

tion methods the beam yield[43] is highly dependent upon these element properties and

highly refractive elements such as ruthenium cannot be extracted. For this reason the

equipment and techniques discussed during this chapter are specific to the JYFL experi-
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Figure 6.1: Schematic of a collinear laser spectroscopy line.

ment.

Figure 6.1 displays a schematic diagram of the charge exchange and light collec-

tion section of the collinear laser spectroscopy line, built by a collaboration between the

University of Birmingham and the University of Manchester, at JYFL. Resonant pho-

tons emitted by atoms or ions travelling in front of the PMT are focused onto the PMT

photocathode for detection. In order to measure a resonance spectrum it is necessary to

scan the laser frequency observed by the ion or atom beam in a controlled manner. This

is achieved by holding a section of the beam line, known as the light collection region

(LCR), at high voltage which is used to electrostatically accelerate (or decelerate) the ion

beam towards the laser. By ramping the acceleration voltage up and down the Doppler

shifted laser frequency observed by the ion beam is also scanned in a controlled manner.

The Doppler shifted laser frequency, ν, that is observed by the ion beam is related to the

acceleration voltage, V , as follows,

ν = νL[1 + α +
√
α2 + 2α], (6.1)

where α = eV
Mc2

, M is the mass of the ion and νL is the unshifted laser frequency.

When the Doppler shifted laser frequency matches the transition frequency of the ions

resonance occurs and fluorescent photons are emitted.

6.1.1 Unwanted optical pumping effects

When the ion or atom beam is accelerated onto resonance with the laser beam stimulated

absorption excites electrons from the transition lower state E1 to the upper state E2.

Electrons in the upper state are then free to relax, by spontaneously emitting a photon,
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to either E1 or any other allowed state Ei. As discussed in section 4.4.1, the parity of E1

and Ei must be the same and so further optical relaxation of an electron in state Ei to

state E1 is not allowed. An atom that relaxes into a lost state Ei can therefore no longer

interact with the laser and produce fluorescent photons. Equation 6.2 allows the number

of spontaneously emitted photons, Nγ , produced prior to falling into a lost state to be

calculated,

Nγ = 1 +
A21∑
i6=1A2i

, (6.2)

where (as in section 4.4.1) A21 is the rate of spontaneous emission from E2 to E1 and∑
i6=1A2i is the sum of spontaneous emission rates from state E2 to all accessible lost

states Ei. If
∑

i6=1A2i � A21 the number of spontaneously emitted photons per atom or

ion tends towards one. This has direct consequences for the efficiency of collinear laser

experiments as if the atom or ion relaxes into a lost state prior to crossing in front of the

PMT no fluorescent photons will be detected. In ionic beam experiments the acceleration

voltage can be tuned so that the ion beam comes onto resonance in front of or very close

to the PMT. This ensures that, even when
∑

i6=1A2i is high, fluorescent photons will be

emitted by the ion beam as it crosses in front of the PMT.

This type of tuning cannot be performed for atomic beams. In order to perform

collinear laser spectroscopy on atomic beams a charge exchange cell is positioned in

the beam line before the LCR (see figure 6.1) to neutralise the incident ion beam. It is

necessary to accelerate the ion beam to the atomic resonance velocity prior to entering

the charge exchange cell as those ions that are neutralised into atoms can no longer

be electrostatically accelerated. The atomic beam is therefore on resonance with the

laser beam from the charge exchange cell onwards. If
∑

i6=1A2i � A21 there is a high

probability that the majority of the atoms in the atomic beam will be optically pumped

into a lost state prior to crossing in front of the PMT.

The negative effect of unwanted optical pumping upon detection efficiency has been

experimentally observed at ISOLDE for investigations of atomic gallium[44]. The COL-

LAPS collinear experiment at ISOLDE has successfully measured the 0 – 30535.3cm−1

transition in copper[45] and 0 – 24788.6cm−1 in gallium[46]. Both transitions have high

A-coefficients however the gallium transition initially suffered from poor efficiency.

The poor experimental efficiency of gallium can be understood by considering equa-
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tion 4.13. Figure 6.2 displays the change in the number of photons emitted by an atom

as it travels on resonance down the beam line for transitions in atomic gallium (Ga I) and

copper (Cu I). The number of emitted photons per atom was calculated using equation

4.13 where N2 was evaluated by numerically integrating the coupled equations 4.11 and

4.12 with respect to time. The time intervals were then converted to distance travelled

by using typical acceleration voltages to calculate the beam velocity.
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Figure 6.2: Graph comparing the calculated number of photons emitted per atom per length
increment (' 0.0035cm) as a function of distance travelled for the Cu I, 0 – 30535.3cm−1 (red
dashed trace) and the Ga I, 0 – 24788.6cm−1 (black solid trace) transitions.
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The Cu I 0 – 30535.3cm−1 transition (see figure 6.3a) has a high transition A-

coefficient ACu21 = 1.361× 108s−1 and only one allowed lost state transition with A-

coefficient ACu2i = 1.9× 106s−1. As ACu21 is two orders of magnitude greater than ACu2i

limited pumping occurs as the atom beam travels down the beam line. This results in

a gradual reduction in the number of photons emitted per atom from the initial point of

resonance onwards.

The gallium 0 – 24788.6cm−1 transition (see figure 6.3b) also has only one allowed

lost state transition however its A-coefficient, AGa2i (= 1.028× 108s−1), is nearly twice

the size of the transition A-coefficient AGa21 (= 4.916× 107s−1). For this transition there

is a high probability that the upper state will relax into the lost state. The longer the

interaction time on resonance with the laser beam the more atoms will be pumped out of

the ground state and therefore be unavailable for the production of fluorescent photons.

For a charge exchange cell positioned approximately 20cm away from the PMT the

Ga I transition will exhibit significant amounts of unwanted optical pumping into lost

states prior to reaching the PMT. In fact a small fluorescent signal would be produced as

confirmed by the experiments at ISOLDE[44]. In comparison, the Cu I transition suffers

only moderate amounts of optical pumping and a significant fluorescent signal would be

produced at the PMT.

Successful measurement of gallium was eventually achieved by reducing the power

density of the laser beam (by reducing the laser power and expanding the width of the

beam)[44]. Reducing the power density of the beam reduces the rate at which atoms are

excited to the transition upper state and hence ensures that a significant number of atoms

are available to produce fluorescent photons at the PMT. This is, however, a compromise

as reducing the laser power will reduce the number of fluorescent photons produced

whilst crossing the PMT. The effect of unwanted pumping into optical states should be

considered when selecting a transition to use for a collinear experiment.

6.1.2 Locking the Laser Frequency

In a collinear laser spectroscopy experiment at JYFL the laser frequency is scanned by

accelerating ions towards a laser of fixed frequency. In order to ensure that the spec-

trum measurements are accurate and reproducible it is necessary to ensure that the laser

frequency is held fixed for the duration of a measurement. Due to the small radioactive
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beam fluxes used, collinear laser spectroscopy measurements often take many hours to

complete. It is therefore necessary to employ active frequency locking techniques in or-

der to ensure that laser frequency drift is minimised. For experiments at the University

of Jyväskylä (JYFL), this is achieved using two servo-loop systems that are capable of

keeping the laser frequency “locked” to within 2MHz of the desired frequency for long

periods of time [20].

The first servo loop is provided by the Spectra-Physics Stabilok device. The Stabilok

consists of a “reference” etalon and a “slave” etalon with FSR’s of 500MHz and 8GHz

respectively. The “reference” and “slave” etalons are tuned so that the laser frequency

is aligned with a transmission peak in each etalon. The “reference” etalon is tuned so

that the laser frequency is aligned at approximately half the maximum of a transmission

profile whereas the “slave” etalon is aligned to approximately a third of the maximum

transmission profile. The light transmitted through each etalon is measured using a pho-

todiode. If the laser frequency drifts, the intensity of the light transmitted through the

etalons will increase or decrease depending on which way the frequency is changing (see

figure 6.4).
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Figure 6.4: The transmission profiles for the Stabilok a) “reference” and b) “slave” etalons
showing the desired laser frequency (vertical solid line) and the laser frequency following a
mode hop (vertical dashed line).

The locking system then acts to drive the laser frequency back to the half-maximum

99



Chapter 6. Interpretation of Results and Consequences for Future Work

position on the “reference” etalon. If a mode hop occurs such that the laser leaves the

transmission peak of the “reference” etalon, the “slave” etalon is used to retrieve the laser

frequency. This is possible due to the large FSR and low finesse of the “slave” etalon

which makes it highly unlikely that the laser will hop off the selected transmission peak

(see figure 6.4). The Stabilok provides a frequency lock that is limited by the stability

of the transmission peaks of the etalon. However, the etalon peaks are prone to drifting

over long periods of time according to temperature and atmospheric fluctuations. If

the FSR of the etalons varies then the laser frequency will drift even if it maintains the

same position on the etalon transmission profiles. The second servo loop eliminates this

limitation by comparing the laser frequency to an absorption line in molecular iodine

that provides an absolute frequency reference.

The laser frequency is tuned to the minimum of an iodine absorption line. When the

Stabilok is activated, a glass plate in the centre of the “reference” etalon oscillates and so

changes the optical length of the etalon. This changes the FSR of the “reference” etalon

which causes the transmitted intensity of the laser to oscillate. The Stabilok locking

system then adjusts the laser frequency to correct for the change in transmission inten-

sity. This results in the laser frequency oscillating about the minimum of the iodine line

by ∼ 1 MHz. The iodine cell transmission profile is then compared to the oscillation

frequency of the laser in a phase sensitive detector (PSD) in a manner comparable to

that illustrated in figure 4.11. If the laser frequency deviates from the base of the iodine

line an error signal is generated and sent to the “reference” etalon so as to correct the

laser frequency. Molecular iodine is chosen as it possesses a large number of absorption

lines over a wide range of wavelengths. This ensures that for the majority of transitions

in the element being studied there is a suitable iodine line nearby that can be used as a

frequency reference for locking.

6.1.3 Atomic or Ionic Laser Spectroscopy

Collinear laser spectroscopy can be performed using either atomic or ionic beams pro-

vided that an appropriate optical transition can be found in the chosen beam type. The

electric dipole transitions stimulated during laser spectroscopy require that there is a

change in parity between the transitions’ lower and upper energy levels. For atomic

ruthenium, the ground state multiplet of energy levels have even parity and the lowest
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energy odd parity state is at 25214cm−1[47]. The resulting allowed electric dipole tran-

sitions from the ground state multiplet have a range of wavelengths from 207 – 412nm.

This work has demonstrated that a large number of these transitions can be measured by

a dye laser and a frequency doubling crystal.

For ionic ruthenium, the energy levels in the ground state multiplet also have even

parity, however the lowest energy odd parity state is at 46471cm−1[47], a considerably

higher energy than the equivalent in atomic ruthenium. As a result the allowed electric

dipole transitions in ionic ruthenium have the wavelength range 147 – 202nm. These

wavelengths are very challenging to produce, with the power and line widths required

for efficient high resolution laser spectroscopy. Also, for sub-200nm UV wavelengths

absorption of the laser beam by air molecules becomes significant which would cause

considerable laser beam losses during steering from the dye-laser cavity to the ion beam

line.

At thermal energies only the ground state multiplet of a ruthenium atom or ion

is sufficiently populated for use in laser spectroscopy experiments. However, previ-

ous collinear experiments[8, 48] have utilised optical pumping techniques to enable the

successful measurement of transitions from high-lying metastable energy levels. Op-

tical pumping uses a tunable laser to excite electrons from the thermally populated

ionic/atomic low-lying energy levels into a high-lying energy state. The high-lying en-

ergy state then relaxes to a number of intermediate states and enhances their population.

Laser spectroscopy can then be performed from these newly populated states. A more

detailed description of this process is given by B. Cheal[8] and in the PhD thesis of K.

A. Baczynska[49]. In ionic ruthenium optical pumping would prove challenging as the

initial pump stage would still require a pump laser beam capable of producing decent

amounts of power in the 147 – 202nm wavelength range. For this reason any future

work involving ruthenium is likely to be carried out on atomic ruthenium which makes

the data measured for this work even more significant.

6.2 Suitable transitions for collinear spectroscopy

As discussed in section 3.2.2 collinear laser spectroscopy experiments require large and

complex equipment that is often located at international experimental facilities. Prior to

conducting a collinear experiment with radioactive beams at such a facility it is usual
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to perform a number of optical tests using stable ionic or atomic beams to determine

the optimum optical transitions and experimental set-up required for a successful mea-

surement. These tests, known as offline runs, can be time consuming. During this work

a significant number of the transitions in stable atomic ruthenium have been measured

using crossed-beam spectroscopy (see table 4.3). This data can be used to select effi-

cient optical transitions and the necessary laser conditions required to measure them.

This removes the need for significant offline testing and in doing so saves a considerable

amount of time that can be used for online radioactive experiments.

Before this work, an initial assessment of the transition properties outlined in table

4.3 suggests that the atomic ruthenium transitions in the 295 – 310nm wavelength region

seem ideal for use in collinear laser spectroscopy work as they have high (∼107s−1) tran-

sition strengths. These transitions also coincide with the output wavelength range of the

frequency doubled laser dye rhodamine-6G (R6G). R6G is commonly used in laser spec-

troscopy experiments due to its ability to produce beams with good power over a wide

range of wavelengths from 560 – 650nm (or 280 – 325nm after frequency doubling).

However, the study of these transitions in the R6G region for this work has revealed that

they exhibit extremely narrow spectra with small optical isotope shifts (all measured

spectra are displayed in appendix C) which prevented the extraction of nuclear parame-

ters. Collinear laser spectroscopy measurements are able to use mass selected ion beams

so that they can measure the structure associated with each isotope separately. This

would enable, particularly for odd isotopes, the isotope shifts to be determined more

easily than from atomic beam measurements where all isotopes are measured simulta-

neously which can result in the masking of weak structures. Despite this, the isotope

shifts of these transitions are small and therefore unsuitable for forming King plots and

extracting accurate δ〈r2〉 values (as discussed in section 5.4.3).

The other transitions measured for this work in the wavelength range 315 – 360nm

all exhibit much more suitable isotope shifts for the extraction of δ〈r2〉 values (see table

5.3). Each of these transitions therefore could potentially be used in a collinear exper-

iment. Transitions with a lower state other than the ground state would require some

offline testing to check that they are sufficiently populated, after passage through the

charge exchange cell, in order to generate a measurable quantity of resonant photons.

The 349.8942nm transition is the most promising transition for use in collinear work

as its upper state only relaxes back to the ground state i.e. there are no allowed lost state
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transitions from the upper state. The absence of lost state transitions means that an atom

is free to recycle without loss between the transition states when passing through the

laser beam at resonant velocity. Each atom therefore has the potential to produce several

resonant photons for detection as it traverses the LCR. This transition therefore has the

potential to be very efficient which enables the use of extremely weak atomic beams.

Conventionally, the transitions used for collinear laser spectroscopy experiments are

often chosen so that the spins of the transition levels are as small as possible. This

ensures that there are fewer hyperfine structure components to measure. Many of the

transitions studied during this work, including the 349.8942nm transition, have high J

values due to the high spin of the atomic ruthenium ground state multiplet. However, as

the HF parameters for the transition lower states are known[36] and have been measured

during this work for the upper states, the frequency of each hyperfine component can be

estimated. This enables the acceleration voltages required to measure these components

to be predicted (see section 6.2.2).

6.2.1 Suitable iodine locks for the 349.8942nm transition

Locking is performed using the fundamental output beam from the dye laser rather than

the frequency doubled UV output beam. Therefore, in order to successfully use the

349.8942nm transition in a collinear experiment, suitable iodine absorption lines are

required close to the fundamental laser wavelength of ∼699nm. An iodine atlas[30] can

be used to search for suitable iodine absorption lines. The iodine atlas lists transitions

according to wavenumber and uses units of cm−1. It is therefore convenient to calculate

the required locking frequency in terms of wavenumber. The 349.8942nm transition

has wavenumber 28571.89cm−1 which corresponds to a fundamental wavenumber of

14285.945cm−1.

Figure 6.5 displays a section of the iodine atlas[30] around 14285.945cm−1. The

dashed lines represent the locking wavenumber required in order for typical acceleration

voltages to Doppler shift the 104Ru isotope onto resonance. These values were calculated

using equation 6.1 where νL is the laser locking wavenumber and ν is the transition

resonance wavenumber. The iodine atlas lists six potential absorption lines that could be

used as locking peaks with acceleration voltage around 30kV≤V≤40kV. These locking

lines are listed in table 6.1 below.
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Voltage (V)

Wavenumber(cm−1) A=94 A=104 A=110

14273.07 35618 39407 41680

14273.65 32455 35907 37979

14273.97 30772 34045 36010

14274.05 30360 33589 35527

14274.55 27894 30861 32642

14274.83 26521 29343 31036

Table 6.1: Iodine absorption lines within 30 – 40kV acceleration voltage of the 349.8942nm
transition resonance frequency along with the acceleration voltages for each line for different
isotopes.

Also displayed in table 6.1 are the acceleration voltages required to kinematically

Doppler shift various ruthenium isotopes, with mass number A, onto resonance with the

locking lines. These voltages were calculated using the following equation,

α =
eV

Mc2
=

(ν − νL)2

2ννL
. (6.3)

where, as for equation 6.1, ν is the transition frequency, νL is the locked laser frequency

and M is the isotope mass.

Offline testing is required to test that the lines listed in table 6.1 are strong enough

to be used for locking purposes. For wavelengths longer than 660nm the iodine absorp-

tion lines become progressively weaker and spaced further apart. For the crossed beam

work conducted for this thesis the absorption profile of molecular iodine was used for

frequency navigation (see section 4.3.1). For wavelengths >660nm the absorption lines

were observed to be very weak but still visible using an oscilloscope. However, previous

collinear laser spectroscopy measurements of yttrium[6, 27] at a wavelength of 363.3nm,

suggests that it is possible to successfully lock to the iodine lines listed in table 6.1 in

the vicinity of the shorter wavelength 349.8942nm ruthenium transition.

6.2.2 Predicting the position of radioactive isotopes’ spectral lines

During collinear laser spectroscopy experiments the observed laser frequency is scanned

over a range determined by the change in acceleration voltage. The acceleration volt-

age is ramped across a user specified range and a single spectrum measurement consists
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Figure 6.5: The absorption spectrum of molecular iodine in the vicinity of the 349.8942nm
transition from Atlas du Spectre D’Absorption de la Molecule d’Iode[30]. The dashed lines show
the locking laser frequency required for 40 kV and 30 kV acceleration voltages for 104Ru.
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of many repeat scans of the selected region. The stable isotopes can be produced in

sufficiently large quantities that the fluorescence signal can be observed simply using

a ratemeter. This enables the acceleration voltages of the stable isotopes to be easily

determined for a given lock. However, the radioactive isotopes are produced in con-

siderably smaller quantities and so do not produce sufficient fluorescent photons to be

monitored in this manner. The acceleration voltages required to Doppler shift the un-

stable isotopes onto resonance can be determined by trial and error by performing scans

over large regions (' 100V) in acceleration voltage space. However, such scans are

time consuming and are likely to have poor resolution. Better quality scans are produced

by scanning over smaller voltage regions (' 50V), however these type of measurements

make it difficult to locate the unstable isotope resonances by trial and error. It is therefore

extremely useful to predict the frequency at which the unstable isotopes occur relative to

the stable isotopes prior to an experimental run. Good frequency predictions enable the

acceleration voltages to be identified much more quickly.

An initial estimate for the acceleration voltage required to Doppler shift an unstable

isotope onto resonance is obtained by calculating the kinematic shift using equation

6.3. This provides the acceleration voltage for an isotope assuming no isotope shift

or hyperfine splitting. In reality this is not the case and a more accurate prediction is

obtained by estimating the magnitude of the isotope shift and, for odd isotopes, the

hyperfine structure. For ruthenium, the various atomic parameters measured during this

work can be used to estimate the size of these effects.

The isotope shift, δνA,A
′

IS , can be calculated (see section 2.1) using equation 2.28

which is repeated below for convenience.

δνA,A
′

IS =
A′ − A
AA′

Mi + Fiδ〈r2〉A,A
′

(6.4)

During this work, values for the field and mass factors, Fi andMi respectively, have been

determined for a number of transitions (see table A.3). Therefore, in order to estimate

the isotope shift for an unstable isotope A using equation 6.4 the only unknown parame-

ter is the change in mean-square charge radius (MSCR), δ〈r2〉A,A′ . Values for δ〈r2〉A,A′

can be estimated by considering the charge radii systematics of the element and also

neighbouring elements. For ruthenium, new accurate measurements of δ〈r2〉A,A′ for the

stable isotopes have been determined during this work via the combined analysis method
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(see table 5.8). These values, rearranged to give the change in MSCR relative to the 104

isotope (N=60), are plotted against neutron number N in figure 6.6. The increase in

δ〈r2〉60,N with neutron number is approximately linear across the stable ruthenium iso-

topes with odd-even staggering (OES) observed between adjacent isotopes. Assuming a

linear relationship between δ〈r2〉A,A′ and A enables δ〈r2〉A,A′ values to be estimated for

the unstable isotopes near or in between the stable isotopes. Fitting a linear relationship

does not allow the effect of OES in δ〈r2〉A,A′ to be predicted. However for ruthenium

the magnitude of this effect is small and contributes only a small change to the applied

acceleration voltage. For example, for the 349.8942nm transition OES causes the 101

isotope shift (relative to the 104 isotope) to differ from that predicted by a linear regres-

sion by' 82 MHz. This corresponds to a change in acceleration voltage of' 8 V which

is within a typical experimental scan region.

In order to check the accuracy of isotope shift predictions for high-N unstable iso-

topes it is useful to compare the δ〈r2〉N ′,N to neighbouring elements. For ruthenium the

closest element with a large measured chain of δ〈r2〉N ′,N is molybdenum, Z = 42. The

known δ〈r2〉60,N values for molybdenum[9] are plotted in figure 6.6. Like ruthenium, the

δ〈r2〉60,N of molybdenum increases linearly, except for some OES, across the N = 50 –

60 region. For N > 60 the δ〈r2〉60,N of molybdenum begins to level off with increasing

N , however the charge radii systematics of molybdenum are similar to the ruthenium

linear extrapolation in this region. This similarity between experimental data and the

linear extrapolation justifies the use of the extrapolation method for predicting isotope

shifts in unstable ruthenium isotopes.
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Figure 6.6: Change in 〈r2〉 systematics for ruthenium (+). The solid black line indicates a linear
fit to the ruthenium data points. Also displayed is δ〈r2〉60,N for the neigbouring molybdenum
isotope chain (o, red dashed line). Error bars are smaller than data points.

Odd mass number isotopes exhibit hyperfine structure which splits the spectrum line

into a series of peaks (see section 2.2). Each hyperfine structure (HFS) line is related to

the isotope centroid by equation 2.70. The isotope centroid can be estimated using the

steps for predicting the isotope shift described above. In order to estimate the position of

a HFS peak using equation 2.70 it is necessary to know the hyperfine parameters of the

transition states. For the stable isotopes, 99Ru and 101Ru, the parameters for the ground

state multiplet are known[36].The upper state parameters for several transitions have

also been measured during this work and are displayed in table 5.4. The transition upper

(U) and lower (L) state HF parameters of an unstable isotope (with mass number x) can

be calculated using the standard scaling relations (outlined in section 2.4) as follows,

AxU,L = A99,101
U,L

(µ/I)x
(µ/I)99,101

, (6.5)

Bx
U,L = B99,101

U,L

Qx

Q99,101

, (6.6)

provided that the nuclear spin Ix, magnetic dipole moment µx and electric quadrupole

moment Qx of isotope x are known. Table 6.2 lists the currently measured[50] electro-
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magnetic multipole moments for ruthenium. The magnetic dipole moments are known

for four unstable isotopes however the signs are either unknown or tentatively assigned.

By assuming that the unstable isotopes have the same negative sign as the stable 99 and

101 isotopes these values can be used in equation 6.5 to estimate the unstable isotope

HF A-parameters.

A Iπ µ (nm) Q (b)

95 5/2+ 0.861(7)

97 5/2+ (-)0.787(8)

99 5/2+ -0.641(5) +0.079(4)

101 5/2+ -0.719(6) +0.46(2)

103 3/2+ 0.200(7) (+)0.62(2)

105 3/2+ (-)0.32(8)

Table 6.2: Nuclear spin, parity, magnetic dipole moments and electric quadrupole moments for
ruthenium compiled by N. Stone[50]. For the EM multipole moments, +/- signs in brackets
indicate a tentative sign assignment. The lack of a +/- sign indicates that the sign is unknown.

The electric quadrupole moments are mostly unknown for the unstable ruthenium

isotopes. This makes it difficult to accurately estimate the magnitude of the electric

quadrupole parameter, B. However, as discussed in section 5.3, the electric quadrupole

interaction has a considerably smaller effect upon the position of a spectral HFS struc-

ture line than the magnetic dipole interaction. It is therefore possible to generate a suf-

ficiently accurate prediction of the frequency of a HFS line by neglecting the electric

quadrupole interaction. Once the frequency of a HF spectral line has been estimated the

corresponding acceleration voltage can be calculated using equation 6.3.

For unstable isotopes with A ≤95 and A ≥105 the nuclear spins are only tentatively

known[35] and no electromagnetic multipole data is available. For these isotopes it is

not possible to estimate the position of hyperfine structure lines relative to the transition

centroid. However, rough acceleration voltage estimates for the transition centroids can

still be made using kinematic and isotope shifts only.
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Conclusion

Crossed beam laser spectroscopy has been used to measure nineteen optical transitions

in atomic ruthenium across a wavelength range of 296 – 360nm. Of these transitions,

twelve exhibit significant isotope shifts which are displayed in table 5.3. These iso-

tope shifts have been used with muonic atom spectroscopy Seltzer moment data[38] to

produce, via a combined analysis technique, new values for the change in mean-square

charge radius, δ〈r2〉A,A′ , between the seven stable ruthenium isotopes. The δ〈r2〉A,A′

values obtained for each of these transitions are displayed in appendix A. The weighted

mean values for δ〈r2〉A,A′ obtained during this work (see table 5.8) exhibit up to an

order of magnitude improvement in accuracy compared to previously published MSCR

data[38]. These values therefore provide the best set of charge radii systematics currently

available for stable ruthenium.

The isotope shift, hyperfine structure parameters and electronic factors Fi and Mi

presented in this thesis are also of value to theorists in a number of physics fields. For

example, the transition isotope shifts and values for Fi and Mi (displayed in appendix

A) can be used to evaluate the specific mass shift and to test the accuracy of electronic

wavefunction calculations[2]. The isotope shift values along with the hyperfine A and

B parameters are also of interest to astrophysicists when identifying spectral lines in

stars[51]. The 343.6736nm and 349.8942nm transitions in particular are used as good

indicators of the solar abundance of ruthenium[52].

Figure 7.1 displays the charge radii systematics for ruthenium along with those of the

elements 36 ≤ Z ≤ 42. This region of the nuclear chart is well known for exhibiting a

sudden-onset of deformation atN = 60. The sudden-onset of deformation first occurs in
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the rubidium (Z = 37)[4] chain. It then gets progressively larger with increasing Z be-

fore reaching a maximum in the yttrium (Z = 39)[6] chain. For Z > 39 the step change

in the deformation decreases until it seems entirely washed out in the molybdenum chain

(Z = 42)[9].
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Figure 7.1: Change in mean-square charge radii, δ〈r2〉 for Kr[3], Rb[4], Sr[5], Y[6], Zr[7],
Nb[8] and Mo[9]. Also displayed are the ruthenium δ〈r2〉 values obtained during this work.
Each isotope chain has been offset in the y-axis from the previous chain by an arbitrary amount
for clarity.

Figure 7.2 displays the charge radii systematics, δ〈r2〉, for the even Z elements in the

N = 60 region of the nuclear chart. In this figure no offset has been applied to the indi-

vidual element chains so that the differences between the element chains are clearer. The

krypton chain shows a linear increase in δ〈r2〉, with the exception of odd-even isotope

staggering, across N = 60. The zirconium and strontium chains both exhibit sudden

increases in charge radii at N = 60. The molybdenum and ruthenium charge radii sys-

tematics are similar up until N = 58. At N = 60 the ruthenium deformation is only
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slightly larger than that shown in the krypton chain indicating that for Z ≥ 44 atN = 60

there is no sudden onset of deformation observed. Interestingly, the molybdenum defor-

mation at N = 60 increases by a greater amount than that of ruthenium and eventually

at N > 60 obtains a similar level of deformation to that seen in the zirconium and stron-

tium chains. This implies a behaviour that is significantly different to the ruthenium

chain suggesting that the molybdenum isotopes are still influenced by the N = 60 onset

of deformation. To confirm the behaviour of the ruthenium isotope chain for N > 60 it

would be useful to perform laser spectroscopy measurements on radioactive neutron-rich

ruthenium isotopes.
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Figure 7.2: Change in mean-square charge radii relative to the N = 52 isotope, δ〈r2〉52,N for
elements Kr[3], Sr[5], Zr[7], Mo[9] and Ru. Only the even Z elements are displayed for clarity.
Error bars are smaller than the size of the data points.

In order to measure the properties of radioactive ruthenium it is necessary to perform

collinear laser spectroscopy measurements at a radioactive ion beam facility. Currently

the only ion beam facility able to produce a beam of ruthenium is the IGISOL facility

at JYFL. As discussed in chapter 6 this is because other ion beam production methods
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are dependent upon the chemical properties of the element and cannot extract highly

refractive elements such as ruthenium[43]. It is also necessary to perform laser spec-

troscopy on atomic ruthenium as the optical transitions in ionic ruthenium cannot be

used with the laser currently available at JYFL. The optical transitions in atomic ruthe-

nium measured during this work therefore fulfil a large portion of the preliminary tests

usually performed prior to conducting a collinear laser spectroscopy experiment. The

349.8942nm, 0 −→ 28571.890cm−1, transition in particular exhibits high experimental

efficiency due to the absence of available lost state transitions to depopulate the atomic

beam prior to crossing in front of the PMT. Figure 7.3 displays the calculated number of

photons emitted per atom as a function of distance from the initial point of resonance for

three of the transitions measured during this work. The data in the graph were calculated

using the same method described in section 6.1.1 to produce graph 6.2.
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Figure 7.3: Graph comparing the calculated number of photons emitted per atom per length
increment (' 0.0027cm) as a function of distance travelled for the 343.6736nm (dashed red
trace), the 349.8942nm transition (solid black trace) and the 358.9213nm (dotted blue trace)
transitions in atomic ruthenium.

The 349.8942nm transition exhibits no drop in photon production as the atom beam

travels on resonance down the beam line due to the absence of allowed lost state tran-

sitions. This transition is therefore likely to possess good experimental efficiency as all
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of the atoms in the beam have the potential to produce resonant photons whilst crossing

in front of the PMT. In contrast, the 343.6736nm and 358.9213nm transitions suffer a

drop in photon production due to the laser pumping atoms into lost states. For the typical

case where the charge exchange cell is∼30cm from the PMT very few resonant photons

would be produced by the atom beam via the 343.6736nm and 358.9213nm transitions

whilst passing in front of the PMT. The calculations used to produce figure 7.3 assumed

a laser power of 1mW, a laser beam diameter of 1mm and perfect overlap between the

atomic and laser beam. In order to measure the 343.6736nm and 358.9213nm transitions

effectively figure 7.3 suggests that it would be necessary to reduce the laser beam power

density to decrease the pump rate into lost states. Whilst ensuring that more atoms reach

the PMT without being pumped into a lost state, reducing the power density also re-

duces the production rate of photons whilst the beam is passing in front of the PMT. The

efficiency of these transitions is therefore still likely to be poorer than the 349.8942nm

transition.

The isotope shift data and hyperfine parameters of the transition states displayed

in tables 5.3 and 5.4 respectively can be used to predict the resonance frequency for

radioactive ruthenium isotopes. These predictions can be used to calculate the acceler-

ation voltages required to measure these isotopes via collinear laser spectroscopy. The

procedure required to make these prediction was discussed at length in section 6.2.2.

In summary, this thesis has presented improved values for the change in mean-square

charge radius between the stable isotopes of ruthenium. Comparing these values to

the neighbouring element isotope chains indicates that ruthenium behaves differently

at N = 60 to the other elements 37 ≤ Z ≤ 42 with no sudden onset of deformation

observed. In order to investigate this trend further it would be advantageous to study

the radioactive neutron-rich ruthenium isotopes. The work conducted for this thesis pro-

vides a valuable set of offline test data that can be used to assist in the planning of future

experiments at a radioactive ion beam facility. One atomic transition in particular has

been identified as particularly promising for collinear laser spectroscopy work and the

necessary experimental conditions have been considered. The MSCR values obtained

during this work can be used in conjunction with future isotope shift measurements to

provide accurate model-independent values for the MSCR of neutron-rich ruthenium

isotopes. Extending the charge radii systematics of ruthenium beyond N = 60 in this

way offers the opportunity to firmly establish the upper atomic number boundary for the

114



Chapter 7. Conclusion

sudden onset of deformation in this interesting region of the nuclear chart.
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Appendix A

Mean-Square Charge Radii Values and

King Plot Parameters

This appendix contains a series of data tables for the twelve transitions used to produce

the weighted mean values for δ〈r2〉A,A′ displayed in table 5.8. Tables A.1 and A.2 display

the values of δ〈r2〉A,A′ obtained for the individual transitions used to produce the final

weighted mean δ〈r2〉A,A′ values.

Table A.3 contains the field shift parameter, Fi and scaled mass shift parameter

µrefMi obtained from King plots of isotope shifts (measured during this work) plot-

ted against Seltzer moments (tabulated by Fricke et al.[2]). The reference parameter

µref was calculated using equation

µref =
Aref − A′ref
ArefA′ref

, (A.1)

with A = 104 and A′ = 102.
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λ (nm) Fi (MHzfm−2) µrefMi (MHz)

298.8947 -136(9) -104(2)

315.9929 -609(59) -48(14)

318.6043 -623(65) -48(15)

318.9979 -376(32) -82(8)

319.6605 -533(57) -59(13)

329.4112 -2584(277) 210(65)

330.1594 -2637(253) 208(60)

343.6736 -2775(332) 231(79)

349.8942 -1826(200) 105(48)

358.9213 -2764(296) 209(70)

359.3018 -2737(231) 222(55)

359.6178 -1180(155) 14(37)

Table A.3: King plot values of Fi and µrefMi for each transition.
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Chi-squared surface plot

When fitting a spectrum using the routine described in section 5.2 it is necessary to

provide the chi-squared minimisation routine with initial values for the fit parameters.

Section 5.2.2 explains the methods used to identify the peaks in a measured spectrum

however for some spectra it is difficult to definitively identify spectral peaks. For these

spectra it is useful to map the chi-squared surface for the fitting parameters in order to

identify the true fit values.

Figure B.1 displays an example of a chi-squared surface plot for a measurement of

the 359.6178nm transition. The plot was formed using the data obtained from a specially

modified version of xmgrace using the following procedure:

1. Initial values for the isotope centroids were inputted.

2. The relative intensities of the different isotopes were scaled to a selected isotope

according to atomic abundances.

3. The hyperfine parameters of the transition lower state, AL andBL, were fixed to

the values given by Büttgenbach[36] for both 99Ru and 101Ru.

4. The transition upper state hyperfine parameters, AU and BU , of 99Ru were scaled

to those in 101Ru according to the ratio between the lower state HF parameters (see

section 5.2.2).

5. An initial guess for the values of AU and BU of 101Ru were then entered into the

programme. The fitting routine then varied the free line function parameters in

order to obtain the best possible fit to the spectrum whilst keeping AU and BU for
101Ru fixed to the guess values entered by the user.
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Appendix B. Chi-squared surface plot

6. The χ2 of the fit for the fixed A101
U and B101

U values was then recorded.

7. The values for A101
U and B101

U were then increased by a user specified amount

and the other fit parameters (such as isotope centroids) reset to their original user

specified values. The fitting routine then obtained a new value of χ2 for the new

A101
U and B101

U values.

8. This process was repeated for many sets of values of A101
U and B101

U .

9. The obtained χ2 values were then plotted against the values forA101
U andB101

U used

during each fit to create a χ2 surface plot such as that displayed in figure B.1.

Figure B.1 is a typical example of a chi-squared plot for many of the transitions mea-

sured during this work. A clear chi-squared minimum value for the hyperfine parameter

A101
U is evident at'129MHz. For B101

U there is a range of possible values which produce

similarly small values for chi-squared. The global minimum value is not clear. This

is because the electric quadrupole interaction has a smaller perturbative effect upon an

atomic energy level than the magnetic dipole interaction. The position of a spectral line

is therefore less sensitive to the hyperfine B parameter than the hyperfine A parameter.

This results in the characteristic broad furrow in the chi-squared surface and also leads

to larger experimental uncertainties for the extracted B values (as mentioned in section

5.3). Regardless of this fact, mapping the chi-squared surface can be a useful method of

obtaining initial values for the hyperfine parameters to input into the fitting routine.
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Figure B.1: A chi-squared surface plot for a spectrum measurement of the 359.6178nm transi-
tion. The colour-scale indicates the value of χ2.
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Spectrum Catalogue

This appendix contains a spectrum for each of the optical transitions measured dur-

ing this work (as listed in table 4.3). The 315.9929nm, 318.6043nm, 318.9979nm and

319.6605nm transitions were measured by E. Cochrane in 1999 but the spectra were

analysed and fitted by the author of this work. Each spectrum has been calibrated ac-

cording to the procedures described in section 5.1. Each spectrum has been fitted with

a line function using the programme xmgrace and the various methods discussed in sec-

tion 5.2. This catalogue of spectra provides a useful guide for future laser spectroscopy

measurements of atomic ruthenium.

The isotope shifts and hyperfine parameters obtained from the fitting routine for those

transitions that were used to generate new ruthenium mean-square charge radii values

are displayed in the main thesis in tables 5.3, 5.4 and 5.5 respectively. As discussed in

sections 4.4.3 and 5.4.3, the majority of the 4d75s to 4d65s5p type transitions exhibit

incredibly narrow spectra. These transitions proved difficult to fit as a number of hy-

perfine structure component are screened by the larger even isotopes. Tentative values

for the hyperfine parameters and isotope shifts observed in these spectra are displayed

in tables C.1 and C.3 respectively, below. These values provide the only known isotope

shift measurements for these transitions in atomic ruthenium and the only known values

of the hyperfine parameters for these high-lying atomic states. As a point of interest, the

297.6925nm transition exhibits almost no isotope shift indicating that the mass and field

shift components nearly perfectly cancel each other out.

The 301.7235nm and 342.8318nm transitions could not be fitted. Due to the small

isotope shifts exhibited by these transitions it was decided that it was unnecessary to
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commit large amounts of time to the fitting process as these transitions would not be

used to extract values for the mean-square charge radius of ruthenium. The unfitted

spectra for these transitions are also presented in this appendix for reference.

99 101

λ (nm) Eu (cm−1) J Au Bu Au Bu

296.5166 35806.620 3 -108.9(9) 25.8(22) -123.1(4) 150(13)

297.6925 34772.550 5 -197.5(4) 84.3(29) -221.4(4) 491(17)

299.4968 35471.150 4 -131.6(2) 46.4(7) -147.4(2) 270.8(41)

300.6586 35963.870 2 -73.2(6) 14.4(6) -81.7(7) 81.6(36)

301.7235 36238.770 1 * * * *

302.0873 35806.620 3 -111.9(3) 33.5(65) -123.9(4) 136.2(80)

304.0314 34072.410 3 -204.7(3) 3.0(11) -229.5(3) 17.6(66)

304.2478 35963.870 2 -73.8(3) 16.9(17) -82.4(4) 95.6(95)

304.8788 34881.920 2 -144.8(3) -8.7(11) -162.3(4) -50.5(63)

309.9280 33446.840 4 -156.1(6) 0.5(20) -175.0(6) 2(12)

342.8318 29160.460 6 * * * *

Table C.1: Measured hyperfine structure parameters (MHz) of the transition upper states for both
99Ru and 101Ru. * signifies that this transition could not be fitted.

99 101

λ (nm) AL BL AL BL

304.2478 108.6(26) 7.1(13) 121.3(29) 40.2(71)

Table C.2: Measured hyperfine structure parameters (MHz) of the 3105.49cm−1 state for both
99Ru and 101Ru. The values are in agreement with those found in table 5.5.
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Figure C.1: 296.5166nm transition: 2091.540 (J=3)→ 35806.620cm−1 (J=3).
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Figure C.2: 297.6925nm transition: 1190.64 (J=4)→ 34772.550cm−1 (J=5).
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Figure C.3: 298.8947nm transition: 0.000 (J=5)→ 33446.840cm−1 (J=4).
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Figure C.4: 299.4968nm transition: 2091.540 (J=3)→ 35471.150cm−1 (J=4).
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Figure C.5: 300.6586nm transition: 2713.240 (J=2)→ 35963.870cm−1 (J=2).
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Figure C.6: 301.7235nm transition: 3105.490 (J=1)→ 36238.770cm−1 (J=1).
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Figure C.7: 302.0873nm transition: 2713.240 (J=2)→ 35806.620cm−1 (J=3).
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Figure C.8: 304.0314nm transition: 1190.640 (J=4)→ 34072.410cm−1 (J=3).
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Figure C.9: 304.2478nm transition: 3105.490 (J=1)→ 35963.870cm−1 (J=2).
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Figure C.10: 304.8788nm transition: 2091.540 (J=3)→ 34881.920cm−1 (J=2).
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Figure C.11: 309.9280nm transition: 1190.640 (J=4)→ 33446.840cm−1 (J=4).
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Figure C.12: 315.9929nm transition: 2091.540 (J=3)→ 33728.660cm−1 (J=2).
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Figure C.13: 318.6043nm transition: 2713.240 (J=2)→ 34091.060cm−1 (J=1).
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Figure C.14: 318.9979nm transition: 2091.540 (J=3)→ 33430.650cm−1 (J=3).

139



Appendix C. Spectrum Catalogue

-5
0

0
0

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
F

re
q

u
e
n

c
y

 (
M

H
z
)

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

Intensity (Counts)
T

ra
n
si

ti
o

n
 w

a
v

e
le

n
g

th
: 

3
1

9
.6

6
0

5
n

m

3
1

0
5

.4
9

0
c
m

-1
 (

J=
1

) 
->

 3
4

3
7

9
.6

4
0

c
m

-1
 (

J=
0

)

Figure C.15: 319.6605nm transition: 3105.490 (J=1)→ 34379.640cm−1 (J=0).
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Figure C.16: 329.4112nm transition: 0.000 (J=5)→ 30348.450cm−1 (J=4).
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Figure C.17: 330.1594nm transition: 0.000 (J=5)→ 30279.680cm−1 (J=5).
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Figure C.18: 342.8318nm transition: 0.000 (J=5)→ 29160.460cm−1 (J=6).
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Figure C.19: 343.6736nm transition: 1190.640 (J=4)→ 30279.680cm−1 (J=5).
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Figure C.20: 349.8942nm transition: 0.000 (J=5)→ 28571.890cm−1 (J=6).
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Figure C.21: 358.9213nm transition: 3105.490 (J=1)→ 30958.800cm−1 (J=2).
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Figure C.22: 359.3018nm transition: 2713.240 (J=2)→ 30537.060cm−1 (J=3).
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Figure C.23: 359.6178nm transition: 2091.540 (J=3)→ 29890.910cm−1 (J=4).
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[36] S. Büttgenbach et al., Z. Phys 269, 189 (1974).

[37] A. R. Edmonds, ‘Angular Momentum in Quantum Mechanics’, Princeton Univer-

sity Press, (1974).

[38] G. Fricke and K. Heilig, ‘Nuclear Charge Radii’, Springer, (2004).

[39] S. A. Blundell et al., J. Phys. B: At. Mol. Phys. 20, 3663 (1987).

[40] J. H. Pollard, ‘A Handbook of Numerical and Statistical Techniques’, Cambridge

University Press, (1977).
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