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Summary 

The object of study in this thesis is a number of different models of branching Lévy 

processes in inhomogeneous breeding potential. We employ some widely-used spine 

techniques to investigate various features of these models for their subsequent compar

ison. The thesis is divided into 5 chapters. 

In the first chapter we introduce the general framework for branching Markov pro

cesses within which we are going to present all our results. 

In the second chapter we consider a branching Brownian motion in the potential 

β| · |p, β > 0, p ≥ 0. We give a new proof of the result about the critical value of p for 

the explosion time of the population. The main advantage of the new proof is that it 

can be easily generalised to other models. 

The third chapter is devoted to continuous-time branching random walks in the 

potential β| · |p, β > 0, p ≥ 0. We give results about the explosion time and the 

rightmost particle behaviour comparing them with the known results for the branching 

Brownian motion. 

In the fourth chapter we look at general branching Lévy processes in the potential 

β| · |p, β > 0, p ≥ 0. Subject to certain assumptions we prove some results about the 

explosion time and the rightmost particle. We exhibit how the corresponding results 

for the branching Brownian motion and and the branching random walk fit into the 

general structure. 

The last chapter considers a branching Brownian motion with branching taking 

place at the origin on the local time scale. We present some results about the population 

dynamics and the rightmost particle behaviour. We also prove the Strong Law of Large 

Numbers for this model. 
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Chapter 1 

Introduction 

This thesis is devoted to the study of branching Lévy processes. They are a natural 

generalisation of Branching Brownian Motion (BBM), a model extensively studied over 

the last few decades. Let us mention the paper of H.P. McKean [26] from 1975 as one 

of the earliest works in this subject. 

In this chapter we give some general definitions and state a few fundamental results 

valid within an even bigger class of branching Markov processes. The major reference 

for this chapter is the work of Hardy and Harris [19], where all the proofs and further 

references can be found. We shall use the BBM model whenever we need an example 

to illustrate some general idea. 

1.1 Some definitions and notation 

Let us begin with the description of a general branching Markov process, which is a 

sufficiently large class of processes for us to consider. 

Initially we have one particle at position x. It moves in space according to a certain 

Markov process. If it has position Xt at time t then it splits at instantaneous rate β(Xt) 
� t

at time t and we assume that 0 β(Xs)ds is well-defined for all t > 0. The function 

β( ) is called the branching rate (or the potential). ·
By splitting we mean that the original particle dies, and at the position where it 

died it is replaced with a number of new particles (children). If the death occured at 

location y then the number of children is 1 + A(y), where A(y) is a random variable 

with the probability distribution given by 

P(A(y) = k) = pk(y), where k ∈ {0, 1, 2, ...}. (1.1) 

Each new particle then, independently of the others and of its parent, stochastically 

repeats the behaviour of the initial particle. 

So if the initial particle moved like a Brownian motion in R we would roughly see 
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a picture as in Figure 1-1 below.


its children 

initial particle 

x 

t 

Figure 1-1: Branching process 

Remark 1.1. Let us note that the number of children of any particle is ≥ 1. Thus the 

process is guaranteed to survive and we don’t need to worry about its extinction. 

We reserve the letter m for the mean of A( ): ·

m(y) := EA(y) = kpk(y). (1.2) 
k≥0 

In our later applications we shall always take A( ) to be spatially independent. That ·
is, A(y) = A for all y and consequently m(y) = m for all y. 

Example 1.2. It is possible to simplify the model even further by taking A ≡ 1. In 

such model each particle when it dies produces exactly two children. The corresponding 

branching process is then called binary or dyadic branching process. In this case m = 1. 

Example 1.3. One should also keep in mind the degenerate case when A ≡ 0 or, equiv

alently, m = 0. In this instance a particle when it dies has always only one descendant, 

so the branching process reduces to a single-particle Markov process (Xt)t≥0. The same 

is true if the branching rate satisfies β( ) ≡ 0.·

Remark 1.4. We said that β( ) is the instantaneous branching rate. It means that ·
conditional on its path the (initial) particle will not split by time t with probability 

R t 
e− β(Xs)ds . Or, if we take away the conditioning, the actual probability of this event 

� 
R t � 

is E e− 0 β(Xs)ds . 

Alternatively, given that the particle is at position Xt at time t, the probability that 

it splits in the time interval [t, t + h) is β(Xt)h + o(h). 

Sometimes it makes more sense to talk about the cumulative branching rate which 
� t

equals to 0 β(Xs)ds. 

In the simplest models β( ) is a constant function. That is, β( ) ≡ β.· ·

8 
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In all our applications the underlying Markov process will be an R-valued Lévy 

process. 

We label particles according to the Ulam-Harris convention. That is, we call the 

original particle ∅. Its children are then labelled 1, 2, 3, ... and children of particle 

u (= ∅) are labelled u1, u2, u3, ... . So e.g. a particle with label 132 would be the 

second child of the third child of the first child of the initial ancestor ∅. 

For two labels v and u we shall write v < u to indicate that v is an ancestor of u 

(but not u itself). We shall say v ≤ u if v < u or v = u. We shall also write |u| for the 

generation of u. E.g. ∅ = 0, 132 = 3. |	 | | |

Definition 1.5. Nt is the set of (labels of) particles alive at time t. 

Below we give an illustration of the last couple of paragraphs. 

∅ 1 

2 

21 

22 
221 

t 

Nt = {1, 21, 22} 
∅ < 2 < 22 < 221 < ... 

222 

11 

223 

Figure 1-2: Particle labelling 

Let us introduce some more notation that we are going to need. 

Definition 1.6. 

•	 Xu is the position of a particle u (∈ Nt) at time tt 

•	 Su is the fission time (or death time) of particle u


σu is the lifetime of particle u, so Su = 
� 

σv
•	 v≤u 

•	 Au := (# of children of particle u) − 1 

•	 Xs
u 

0≤s≤t is the path of particle u ∈ Nt. That is, for 0 ≤ s ≤ t we take Xs
u to 

be the position of the unique ancestor of u alive at time s 

•	 Xt := {(u, Xt
u) : u ∈ Nt}, t ≥ 0 

9 
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To the branching process X we associate the probability measure P x (where x is the 

starting position of the first particle). We also let Ft t≥0 
denote the natural filtration 

of our branching process, so that Ft contains the information about the paths of all 

the particles as well as their genealogy up to time t. Formally, we define 

Ft := σ 
��
u, Xu, σu 

� 
: Su ≤ t; 

�
u, Xs

u : s ∈ [Su − σu, t)
� 

: t ∈ [Su − σu, Su) 
� 

. 

As always we write F∞ for σ ∪t≥0 Ft . 

1.2 Spines 

Description of the process given in the previous section is sufficient for understanding 

the questions studied in this thesis. However all these questions will be answered using 

different spine techniques. In this section we shall introduce spines. 

Definition 1.7. A set ξ = {∅, u1, u2, u3, ... } is a spine if u1 is a child of ∅, u2 is 

a child of u1, u3 is a child of u2, etc. In other words, a spine is a distinguished infinite 

line of descent. 

Definition 1.8. For a given spine ξ we define the process 

ξt := Xt
u if u ∈ Nt ∩ ξ , t ≥ 0. 

That is, ξt t≥0 
is the path corresponding to spine ξ. (Note that Nt ∩ ξ always has 

exactly one element in it.) 

ξ = {∅, 2, 22, 221, ... } as shown in Figure 1-3 below is a spine. Its path (ξt)t≥0 

is drawn with the bold line. 

∅ 1 

2 

21 

22 
221 

222 

11 

223 

ξ = {∅, 2, 22, 221, ...} 

Figure 1-3: An example of a spine 
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We can extend the original branching process by identifying a spine. Our sample space 

is therefore the space of all possible realisations of X with a distinguished spine ξ. Let 

us mention a couple more quantities, which we associate to a spine. 

Definition 1.9. For a given spine ξ we shall write nodet(ξ) for the unique particle u 

in Nt ∩ ξ. So that nodet(ξ) is the particle in the spine that is alive at time t. 

We also define nt to be the number of fissions that have occured along the path of 

the spine by time t, so nt = nodet(ξ) .| |

The spine process that we shall always assume can be described as follows. We 

start with the initial particle ∅. Whenever the current particle of the spine splits, we 

choose one of its children uniformly at random to continue the spine. One important 

observation is that for a particle u ∈ Nt 

P x(u ∈ ξ 1
Ft) = 
1 +Av 

. (1.3) 
v<u 

In the special case of binary branching


P x(u ∈ ξ Ft) =
 2−|u|. (1.4)


In the Figure 1-4 below we show in brackets the probability of particles belonging to 

the spine. 

∅ (1) 
1 (1 

2
) 

11 (1 
2
) 

22 (1 
4
) 221 ( 1 

12

222 ( 1 
12

223 ( 1 
12

2 (1 
2
) 

21 (1 
4
) 

) 

) 

) 

Figure 1-4: Particle weights 

Definition 1.10. P̃ x is the extension of the probability measure P x, under which the 

spine is chosen uniformly as described above. 
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Hence P x = P̃ x|F∞ . We shall write Ẽx for the expectation with respect to P̃ x and 

Ex for the expectation with respect to P x . 

For more details about the spine construction one should see [19]. 

Remark 1.11. Under the probability measure P̃ x the spine process 
�
ξt 

� 

t≥0 
has the 

same distribution as the Markov process Xt t≥0 
(corresponding to the motion of a 

single particle in the branching system). 

The next important step is to define a number of filtrations of our sample space, 

which contain different information about the process. 

Definition 1.12 (Filtrations). 

•	 Ft was defined earlier. It is the filtration which knows everything about the par

ticles’ motion and their genealogy, but it knows nothing about the spine. 

• We also define F̃t := σ
� 
Ft, nodet(ξ)

� 
. Thus F̃ has all the information about the 

process including all the information about the spine. This will be the largest 

filtration. 

•	 Gt := σ ξs : 0 ≤ s ≤ t . This filtration only has information about the path of 

the spine process, but it can’t tell which particle u ∈ Nt is the spine particle at 

time t. 

• G̃t := σ
� 
Gt, (nodes(ξ) : 0 ≤ s ≤ t), (Au : u < ξt)

� 
. This filtration knows 

everything about the spine including which particles make up the spine and how 

many children they have, but it doesn’t know what is happening off the spine. 

We shall use these filtrations extensively for taking various conditional expectations. 

Let us note that Gt ⊂ G̃t ⊂ F̃t and Ft ⊂ F̃t. 
We finish this section with a couple of important observations. 

Proposition 1.13. Under P̃ x, conditional on the path of the spine, (nt)t≥0 is an 

inhomogeneous Poisson process with instantaneous jump rate β(ξt). So conditional on 

Gt, k splits take place along the spine by time t with probability 

R 
P̃ x(nt = k|Gt) =

(
�

0 
t 
β(

k

ξ

! 

s)ds)
k 

e− 0 
t β(ξs)ds , 

or, taking away the conditioning, 

R

� (
� t 
β(ξs)ds)

k 
t 

� 

P̃ x(nt = k) = Ẽx 0 e− 
0 
β(ξs)ds . 

k! 

Proposition 1.14. Under P̃ x the entire branching process (with the spine) can be 

described in the following way. 
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•	 the initial particle (the spine) moves like some given Markov process. 

•	 At instantaneous rate β(·) it splits into a random number of particles. 

•	 The number of particles has the distribution of a random variable A(·) 

•	 One of these particles (chosen uniformly at random) continues the spine. That 

is, it continues moving as the given Markov process and branching at rate β( ).·

•	 The other particles initiate new independent P -branching processes from the po

sition of the split 

1.3 Many-to-One theorem 

The first very useful tool that we mention is the Many-to-One theorem. Let us state 

it in its general form as it was stated in [19]. 

Theorem 1.15 (Many-to-One). Let f(t) ∈ mGt. In other words, f(t) is Gt-measurable. 

Suppose it has the representation 

f(t) = fu(t)1{nodet(ξ)=u}, 
u∈Nt 

where fu(t) ∈ mFt, then 

R 
Ex 

� � 

fu(t) 
� 

= Ẽx 
� 

f(t)e 0 
t m(ξs)β(ξs)ds 

� 

. 
u∈Nt 

Remark 1.16. It was shown in the recent PhD thesis of M. Roberts [29] that any 

f(t) ∈ mGt has the required representation 

f(t) = fu(t)1{nodet(ξ)=u}, 
u∈Nt 

where fu(t) ∈ mFt. 

Here f is some functional f̂ of the spine’s path 
�
ξs 

� 

0≤s≤t . That is, 

f(t) = f̂((ξs)s∈[0,t]) and fu is the same functional of the path 
�
Xu

� 

0≤s≤t of a particle u ∈s 

Nt. That is, fu(t) = f̂((Xu)s∈[0,t]). Therefore the theorem reduces the expectation of s 

a sum over particles u ∈ Nt of functionals of paths of those particles to the expectation 

of a functional of only one particle. 

Let us give a couple of examples to make things more clear. 

13




Example 1.17. 
R 

• Take f(t) = e 0 
t α(ξs)ds for some function α. Then 

R R 
Ex 

� � 

e 0 
t α(Xs

u)ds 
� 

= Ẽx 
� 

e 0 
t α(ξs)+m(ξs)β(ξs)ds 

� 

. 
u∈Nt 

• Take f(t) = 1{sups∈[0,t] |ξs| ≤ c} for some number c. Then 

R 
Ex 

� � 

1{sups∈[0,t] |Xs
u| ≤ c} 

� 

= Ẽx 
��

1{sups∈[0,t] |ξs| ≤ c} 
� 
e 0 

t m(ξs)β(ξs)ds 
� 

. 
u∈Nt 

In the special case when the functional fu(t) only depends on the position of a 

particle u at time t (i.e. the endpoint of the path (Xu)0≤s≤t), the Many-to-One theorem s 

takes the following form:


Lemma 1.18 (special case of Many-to-One). Let g be some measurable function, then


R 
Ex 

� � 

g(Xt
u) 

� 

= Ẽx 
� 

g(ξt)e 0 
t m(ξs)β(ξs)ds 

� 

. 
u∈Nt 

Often we take g to be an indicator function of some event. 

1.4 Additive martingales and changes of measure 

In this section we give a construction of additive martingales, another very useful tool 

in the study of branching processes. One of the first mentions of these objects can be 

found in the paper of McKean [26]. They have been used vastly since then (see for 

example [27], [15] or [21]). 

A typical additive martingale has the form 

R t 
Mt = 

� 

e− 0 m(Xu)β(Xu)dsMu , t ≥ 0, s s 
t 

u∈Nt 

where Mu’s are single-particle martingales w.r.t (Xs
u)0≤s≤t. In the rest of this section 

we give a detailed sketch of the construction of (Mt)t≥0. 

From Proposition 1.13 we know that under ˜ the process (ξt)t≥0 moves as some P x 

Markov process, and, conditional on the path of this process, (nt)t≥0 is a Poisson 
� t

process with cumulative jump rate 0 β(ξs)ds. The following proposition as well as the 

whole subsequent construction in greater detail can be found in [19]. 

Proposition 1.19 (Scaling the birth rate along the spine). 

R 
M̃t 

(1) 
:= 

� � �
1 +m(ξSv )

�� 

e− 0 
t m(ξs)β(ξs)ds , t ≥ 0 

v<nodet(ξ) 
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is a martingale with respect to probability measure P̃ x and filtration (G̃t)t≥0. (Here m( )·
is the mean of A( ) as in (1.2).) ·

If we define the new measure Q̃1 
x via the Radon-Nikodym derivative 

dQ̃x 
1 

dP̃ x 
=
 M̃
 (1) 

t , t ≥ 0

F̃t 

then under Q̃x 
1 the process (nt)t≥0, conditional on G∞, becomes a Poisson process with 

t 
0cumulative jump rate
 (m(ξs) + 1)β(ξs)ds. That is, 

t
(m(ξs) + 1)β(ξs)ds)

k(
 R t
˜
Qx 

1(nt = k|Gt) = (m(ξs)+1)β(ξs)ds0 e− 0 .

k!


Example 1.20 (Binary branching). In the case of binary branching we have m ≡ 1. 

Therefore 
R t 

M̃
(1) β(ξs)ds2nte− t ≥ 0,
0=
 ,
t 

t 
2β(ξs)ds)

k(
 R t
˜
Qx 

1(nt = k|Gt) = 2β(ξs)ds0 e− 0 ,

k!


so Q̃1 
x simply doubles the jump rate of (nt)t≥0. 

Proposition 1.21 (Biasing family sizes along the spine). 

1 +Av
M̃

(2) 
t ≥ 0
:= ,


1 +m(ξSv )v<nodet(ξ) 

t 

is also a P̃ x-martingale. (Here 1 + Av is the number of children of particle v.) If we 

define the new measure Q̃2 
x as 

dQ̃x 
2 

dP̃ x 
=
 M̃
 (2) 

t , t ≥ 0

F̃t 

then under Q̃2 
x the random variables Av change their distribution in the following way: 

(1 + k)pk(ξSv )if v < ξt then P rob(Av = k) =
1 +m(ξSv ) 

, k ∈ {0, 1, 2, ...}. 

(Formally by P rob( ) we mean Q̃x · 2 ·
 |
 σ(Gt, nodes(ξ) : 0 ≤ s ≤ t) )


Example 1.22 (Binary branching). In the case of binary branching A( ) ≡ 1, m( ) ≡ 1· ·
and therefore M̃

(2) ≡ 1, so no changes take place. t 

Also suppose that we are given some mean-one positive P̃ x-martingale ( M̃t 
(3) 

)t≥0 

with respect to the filtration (Gt)t≥0, the natural filtration of (ξt)t≥0. We use it to 
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define the new measure Q̃3 
x via the Radon-Nikodym derivative: 

dQ̃x 
3 

dP̃ x 
=
 M̃
 (3) 

t , t ≥ 0, (1.5)

Ft 

Suppose that under Q̃3 
x the spine moves like some new Markov process. Let us illustrate 

this with a classical example. 

Example 1.23 (BBM). If the spine process (ξt)t≥0 is a (standard) Brownian motion 

started from 0 then we can take M̃ (3) to be a Girsanov martingale. Namely for some 
t 
γ(s)2ds < ∞ ∀t ≥ 0 we can take 0path (γ(t))t≥0 such that

t 1
2 

R t 
0
γ(s)2ds 

R 
(3) γ(s)dξs−M̃
 ,
 t ≥ 0.
0= e
t 

Then under Q̃3
0 the spine process (ξs)0≤s≤t moves like a (standard) Brownian motion 

t
with drift
 γ(s)ds.
0 

Given such martingales M̃ (1), M̃ (2) and M̃ (3) we have the following result. 

Proposition 1.24. 

M̃t := M̃t 
(1) 
M̃t 

(2) 
M̃t 

(3) 
, t ≥ 0 

is a martingale w.r.t the probability measure P̃ x and filtration (G̃t)t≥0. Moreover, prob

ability measure Q̃x defined as 

dQ̃x 

dP̃ x 

R t (3) 
=
 M̃t =
 m(ξs)β(ξs)dsM̃(1 +Av)e

− t ≥ 0 (1.6)
0
t , 

F̃t v<nodet(ξ) 

has the effect of changing the motion of the spine in space (according to the martingale 

M̃ (3)) as well as scaling the birth rate along the spine (according to the martingale 

M̃ (1)) and size-biasing the families along the spine (according to the martingale M̃ (2)). 

Under Q̃x the behaviour of the whole branching process (with the spine) can be 

described in the following way. 

Proposition 1.25 (Branching process under Q̃x). 

• The initial particle (the spine) moves like the measure-changed Markov process. 

1 +At instantaneous rate
 m( )· β( ) it splits into a random number of particles. ·•


• The number of particles follows the distribution


�(1 + k)pk( )·
: k = 0, 1, 2, ... .


1 +m( )·

16 
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•	 One of these particles (chosen uniformly at random) continues the spine. I.e. it 

continues moving as the measure-changed Markov process and branching at rate 

1 +m( ) β( ) producing a biased number of children. · ·

•	 The other particles initiate unbiased branching processes from the position of the 

split 

Remark 1.26. Note that although (1.6) only defines Q̃x on events in ∪t≥0F̃t, 
Carathéodory’s extension theorem tells that Q̃x has a unique extension on 

F̃∞ := σ(∪t≥0F̃t) and thus (1.6) implicitly defines Q̃x on F̃∞. 

Example 1.27 (Binary BBM). Let us consider a simple model of BBM with binary 

branching and homogeneous branching rate β( )	 ≡ β with the initial particle started ·
1
2For some γ > 0 let M̃t 

(3) 
= e γξt−

2tγfrom 0.
 t ≥ 0 and
,


1
2
γ2tM̃t = 2nte−βt e γξt− ,
 t ≥ 0.


Then under Q̃0 the spine process moves as a Brownian motion with (instantaneous) 

linear drift γ. Births occur along the spine at rate 2β and each time two children 

are born of which one continues the spine and the other starts an unbiased branching 

process. An illustration is given in Figure 1-5 below. 

t 

P - subtree 

P - subtree 

ξt 

γt 

occur at rate 2β 
Births on the spine 

Figure 1-5: Branching process under Q̃0 

Note that M̃ (3) must be some function of (ξs)0≤s≤t. For each particle u ∈ Nt let us 

denote by (Ms
u)0≤s≤t the same function of (Xs

u)0≤s≤t. 

17 
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Thus M̃t (recall equation (1.6)) has the following representation 

R� � t m(Xs
u)β(Xs

u 

M̃t 
)dsMu 

t)e−=
 (1 +Av 1
0 {ξt =u}. 
u∈Nt v<u 

Then, by projecting M̃ onto the filtration F and recalling (1.3) we get the following 

martingale w.r.t F and P x . 

Mt := Ẽx
�
M̃t

� 

� 

|Ft 
R t � � � 

= Mu e− m(Xs
u)β(Xs

u)ds Ẽx(1 +Av) 1
0 |Ft×
 ×
 {ξtt =u}
u∈Nt v<u 

R� t 

= Mt
u e− m(Xs

u)β(Xs
u)ds (1.7)
0 .


u∈Nt 

Martingales of the form (1.7) will be referred to as additive martingales. Note that by 

the Many-to-One Theorem (Theorem 1.15) E(Mt) = 1. 

Finally let us note that if we define Qx := Q̃x , where F∞ = σ(∪t≥0Ft), then |F∞

dQx 

dP x 

� 
� 
� 
� 
Ft 

= Mt , t ≥ 0. (1.8) 

We finish this section with an example. 

Example 1.28 (Binary BBM). Consider the model from Example 1.27. We’ve had


1
2
γ2)tM̃t = 2nte γξt−(β+ t ≥ 0.
,


The corresponding additive martingale is 

1
2
γ2)tγXt

u−(β+Mt = e
 t ≥ 0.
,

u∈Nt 

1.5 Spine decomposition 

Here the basic idea, already seen in Proposition 1.14, is that the tree made from the 

paths of all the particles can be decomposed into the spine’s path and the subtrees 

initiated from it. Each of those subtrees has the same law as the original branching 

process started at time Su from the position ξSu for u ∈ ξ. On the illustration below 

we have the spine process drawn with a bold black line and different subtrees on the 

spine drawn in different colours. 

The proof of the following theorem as well as some further discussion can be found in 

[19]. 
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ξt 

t 

Figure 1-6: Spine decomposition 

Theorem 1.29 (Spine decomposition). As a consequence of Proposition 1.14 and the 

martingale property of M we have the following decomposition: 

t 

EQ̃
x�
Mt

˜
� 

= M̃t 
(3) 
e− 

R 
0 m(ξs)β(ξs)ds + 

� 

AuM̃
(3) 
e− 

R 
0 
Su m(ξs)β(ξs)ds , t ≥ 0Su

|G∞ 
u<nodet(ξ) 

Recall that Su’s for u < nodet(ξ) are just the birth times along the spine before 

time t. We shall refer to the first term of this decomposition as the spine term or 

spine(t) and to the second one as the sum term or sum(t). 

This theorem is very helpful in analysing the asymptotic behaviour of (Mt)t≥0. For 

example, as we shall see later, it is useful in deciding whether M is uniformly integrable 

or not. In [19] Hardy and Harris used it to investigate Lp convergence of a family of 

additive martingales. 

Remark 1.30. We shall often assume (without loss of generality) that the branching 

process starts from 0 and in such cases we shall write P in place of P 0 and similarly 

for P̃ , Q and Q̃. 
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Chapter 2 

Branching Brownian Motion in a 

supercritical potential 

In this chapter we consider binary branching Brownian motion with branching rate 

β(x) = β|x|p, where β > 0, p ≥ 0. That is, single particles in the system move 

as standard Brownian motions splitting into two new particles at instantaneous rate 

β p.| · |
This model has been a subject of study before. J. Harris and S. Harris in [22] 

investigated the asymptotic growth of the rightmost particle in the case p ∈ [0, 2]. The 

asymptotic properties of the population growth in the case p ∈ [0, 2) are studied in the 

´ paper of J. Berestycki, E. Brunet, J. Harris, S. Harris and M. Roberts [3]. 

However, one fundamental question one needs to answer before studying various 

aspects of the model is whether the population size stays finite or explodes in finite 

time. Itô and McKean proved in their book [23] that if p ∈ [0, 2] then almost surely the 

number of particles stays finite at any time, whereas if p > 2 the number of particles 

almost surely explodes in finite time. 

The proof of Itô and McKean was in the spirit of Borel-Cantelli lemma and relied 

on knowing the distribution of passage time of a Brownian motion to a given level. The 

latter made it difficult to adapt the proof to processes other than Brownian motion. 

We wish to give an alternative proof using spine techniques discussed in the first 

chapter. The work of J. Harris and S. Harris [22] shows how in the case p ∈ [0, 2] to 

prove that with positive probability in the branching process there is a path, which 

asymptotically grows like some given deterministic function. We shall use a slightly 

modified argument to show that in the supercritical case (p > 2) with positive prob

ability there is a path in the branching process which drifts to infinity in finite time. 

That will be sufficient to deduce the almost sure population explosion in finite time as 

we shall see later. In Chapter 3 we shall adapt our proof to a branching Random walk. 
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2.1 Introduction 

Let us take a binary branching Brownian motion with the branching rate β(x) = β x p,| |
where β > 0, p ≥ 0. We shall denote by P x the law of such process if we want to 

emphasize that it starts from x. Otherwise we shall assume that it starts from 0 and 

denote its law by P . 

Definition 2.1. We define the explosion time as 

Texplo := sup{t : |Nt| < ∞}. 

In this section we give an overview of the properties of Texplo. Most of the things 

we say can be found in [23] in one form or another, so we shall not go into too much 

detail. 

We start with the following observation: 

Proposition 2.2. 

P x
�
Texplo = ∞ 

� 
= P y

�
Texplo = ∞ 

� 
∀x, y ∈ R. 

Proof. Take any x and y ∈ R and start a branching Brownian motion from x. Let Ty 

be the first passage time of the process to level y. That is, 

Ty := inf{t : ∃u ∈ Nt s.t. Xt
u = y}. 

Ty < ∞ because a Brownian motion started from any level x will hit any level y. Then 

by the strong Markov property of the branching process the subtree initiated from y at 

time Ty has the same law as a BBM started from y (see Figure 2-1 for an illustration). 

y 

Ty 

P y-subtree 

x 

Figure 2-1: P y-subtree 

Consequently, if the explosion does not happen in the big tree started from x, it cannot
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happen in its subtree started from y. Thus


P x
�
Texplo = ∞ 

� 
≤ P y

�
Texplo = ∞ 

� 
. 

Since x and y were arbitrary it follows that 

P x
�
Texplo = ∞ 

� 
= P y

�
Texplo = ∞ 

� 
∀x, y ∈ R. 

One important corollary of the previous result is the following 0-1 law. 

Corollary 2.3. 

P Texplo = ∞ ∈ {0, 1}. 

Proof. If X1 is the position of the first split then from the branching property we have 

P 
�
Texplo = ∞ 

� 
= E 

��
P X1(Texplo = ∞)

�2
� 

= 
�
P 

�
Texplo = ∞ 

��2 
. 

Thus P (Texplo = ∞) ∈ {0, 1}. 

Remark 2.4. This argument (Proposition 2.2 + Corollary 2.3) can be used to derive 

zero-one laws for various other events. We shall see in later chapters an alternative 

way to present this argument. 

It is also worth mentioning that it was crucial in the proof that a Brownian motion 

hits any point on the real line. Without this property the proof would not work. 

Let us state another useful fact. 

Proposition 2.5. Take some deterministic time t > 0. 

If P 
�
Texplo < t

� 
= 0 then P x

�
Texplo < t

� 
= 0 ∀x. 

Proof. Take any ǫ ∈ (0, t). Let Tx be the hitting time of level x as in Proposition 2.2. 

Then there is a positive probability that the process will hit level x before time ǫ. Then 

� � � � �
T x �

P Texplo < t ≥ P Texplo < t, Tx < ǫ ≥ P explo < t − ǫ, Tx < ǫ , 

=0 

where T x is the explosion time of the subtree started from x (drawn in blue in Figure explo 

2-2 below) 

= E 
� 

P 
�
T x < ǫ Tx 

�� 

= P 
�
Tx < ǫ

�
P x

� � 
.explo < t − ǫ, Tx |

� �� � 
Texplo < t − ǫ

>0 
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Thus 

P x
�
Texplo < t − ǫ

� 
= 0 ∀ǫ > 0. 

Letting ǫ 0 we get the result. ↓

ǫ 

x 

P x-subtree 

Tx 

> t − ǫ 

t 

Figure 2-2: Illustration of Proposition 2.5 

As a consequence of Proposition 2.5 we get the following corollary. 

Corollary 2.6. Let t > 0 be any deterministic time. 

if P Texplo ≥ t = 1 then P Texplo = ∞ = 1. 

The result follows by induction since if the original tree almost surely does not 

explode by time t then none of its subtrees initiated at time t will explode by time 2t 

and one can repeat this argument any number of times. 

Proof. If P (Texplo < t) = 0, then by Proposition 2.5 P x(Texplo < t) = 0 ∀x ∈ R. Let 

tn := t(1 − 2
1 
n ) for n ∈ N. Then 

P x(Texplo ≤ tn) = 0 ∀x ∈ R, ∀n ∈ N. (2.1) 

Let Tn := 
�

i
n 
=1 ti. Then 

P (Texplo ≤ T1) = 0. 

Suppose P (Texplo ≤ Tn) = 0 for some n ≥ 1. Then 

P (Texplo ≤ Tn+1) =P (Tn < Texplo ≤ Tn+1) 

=P (Tn < Texplo ≤ Tn + tn+1) 

≤E 
� � 

P XT
u
n 

�
Texplo ≤ tn 

�� 

= 0 by (2.1). 
u∈NTn 
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Thus P (Texplo ≤ Tn) = 0 for all n ≥ 1 and since Tn → ∞ it follows that 

P (Texplo < ∞) = 0. 

The main result of this chapter is the following dichotomy 

Theorem 2.7. 

a) If p ≤ 2 then Texplo = ∞ P -a.s.


b) If p > 2 then Texplo < ∞ P -a.s.


Case a) is easy and we give its proof now. Case b) is more involved and we devote 

the next section to its proof. 

Proof of Theorem 2.7 a). We use the fact 

E |Nt| < ∞ ⇒ |Nt| < ∞ P -a.s. ⇒ Texplo > t P -a.s. 

A simple application of the Many-to-One lemma (see Lemma 1.18) gives us 

R R

� � � � � � 
t 

� � 
t 

� 

E |Nt| = E 1 = Ẽ e 0 β(ξs)ds = Ẽ e 0 β|ξs|pds , 
u∈Nt 

where under P̃ the spine process (ξt)t≥0 is a standard Brownian motion. 

It then follows that 

R

� 
t 

� � 
p
� � � 

Ẽ e 0 
β|ξs|pds ≤Ẽ e tβ sup0≤s≤t |ξs| = Ẽ e tβ(sup0≤s≤t |ξs|)p

≤Ẽ e tβ(sup0≤s≤t ξs)
p 

+ e tβ(sup0≤s≤t −ξs)p

=2 Ẽ e tβ(sup0≤s≤t ξs)
p

� ∞ 22 x 

=2 e tβx
p 

e− 2t dx 
0 

√
2πt 

d d
using the well-known fact that sup0≤s≤t ξs = |ξt| = |N(0, t)|. 

Thus we see that if p < 2 then E(|Nt|) < ∞ ∀t > 0, and if p = 2 then E(|Nt|) < ∞ 
for t < √1

2β 
. In either case we have that E(|Nt|) < ∞ for some t > 0, and hence 

Texplo > t P -a.s. Then by Corollary 2.6 we deduce that Texplo = P -a.s. ∞

To end this section let us mention that the distribution of Texplo is known to be the 

solution of a generalised version of the FKPP equation. 

Proposition 2.8 (Itô and McKean). Let u(t, x) := P x(Texplo < t). Then u(t, x) solves 

the following partial differential equation: 

 
∂2

 
∂u = 1 u u(1 − u)β|x|p 

 ∂t 2 ∂x2 +

u(0, x) = 0 (2.2) 
 

0 ≤ u ≤ 1 
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Note that u ≡ 0 is always a solution of this equation. Moreover, if p ≤ 2 it can be 

shown using analytic methods that this is the only solution (see [23]). 

2.2 Population explosion in the case p > 2 

Consider binary BBM started from 0 with branching rate β x p, where β > 0, p > 2. | |
In this section we prove that for such model Texplo < ∞ P -a.s.


Proof of Theorem 2.7 b). We shall prove that for any deterministic T > 0


P Texplo ≤ T > 0. (2.3) 

This would tell us that Texplo < ∞ P -a.s. by Corollary 2.3 and would also give a 

non-trivial solution of the differential equation (2.2). 

Let us suppose for the rest of this section that (2.3) is false. That is, ∃ T > 0 s.t. 

P Texplo ≤ T = 0. (2.4) 

In other words, |NT | < ∞ P -a.s. Fix this T for the rest of the proof. 

Under the assumption (2.4) that there is no explosion before time T we can perform 

the usual spine construction on [0, T ). That is, if the original process restricted to 

[0, T ) is defined under the probability measure P with
 its natural filtration,
Ft t∈[0,T ) 

� 
∪ F[0,T ) tt∈ 

then we can define the BBM process with the spine process (ξt)t∈[0,T ) on the filtration 

under probability measure P̃ in the usual way. Then P = P̃
t∈[0,T ) 

� 
F̃t , where
FT 

G̃T and F̃T .σ
 Similarly we define GT ,FT =
 .


Then we can consider a P̃ -martingale of the form (1.6)


R R Rt t t 1
2
g ′ (s)dξs− ′ (s)2dsβ|ξs|pds2ntM̃(t) := e− g t ∈ [0, T ),
0 ×
 e
 0 0 ,


R is a function in C1
� t 

g (s)2ds < ∞ ∀t ∈ [0, T ). ′where g : [0, T )
 [0, T )
 satisfying
 0→

Here we have used the classical Girsanov martingale in the place of martingale (1.5). 

And via the Radon-Nikodym derivative we define a new measure Q̃

dQ̃


dP̃ 

= M̃(t), t ∈ [0, T ).


F̃t 

Under this measure the spine process diffuses as ξt = B̃t + g(t), where B̃ is a 
pQ̃-Brownian motion. P -subtrees are born along the spine at instantaneous rate 2β|ξt| . 

These subtrees don’t explode (up to time T ) by Proposition 2.5. Then we define the 

measure Q := Q̃
 so that FT 
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dQ
�
� 
� = M(t), t ∈ [0, T ), (2.5) 

dP � Ft 

where 
� �� t � t 

M(t) := exp 
0 
g′(s)dXu − 

0 2
g′(s)2 + β|Xu |p

�
ds 

� 

(2.6) s s 
u∈Nt 

�1 

is an additive P -martingale (recall (1.7)). 

We’ll be interested in paths g which explode at time T . In particular we consider 

paths of the form g(s) = c(T − s)−d − cT −d for c, d some positive constants so that 

g(s) → ∞ as s → T and g(0) = 0. There is the ’critical’ path g∗(s) = c∗(T − s)−d∗ − 
c T −d∗ , where ∗

� � 22 p−2 2 
c = , d = , (2.7) ∗ √

2β(p − 2) 
∗ 

p − 2

1 
which solves the equation 

g′(s)2 = βg(s)p (2.8) 
2

(ignoring the normalising constant cT −d). The meaning of this equation will become 

apparent later. Let us mention that equation (2.8) comes up quite often in the BBM 

model. For example in the model with subcritical branching rate (p ≤ 2) the solution 

of this equation describes the asymptotic growth of the rightmost particle. 

For our martingale (Mt)t∈[0,T ) we need to take a path which increases faster than 

g (s). So we let ∗
g(s) = c(T − s)−d∗ − cT −d∗ (2.9) 

for some c > c (e.g. c = c + 1). ∗ ∗ 
In Figure 2-3 we see how the branching process would typically look like under the 

probability measure Q̃. 

ξs 

g(s) = c(T − s)−d∗ − cT−d∗ 

s
T 

Figure 2-3: BBM under Q̃
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� 

We now recall the following measure-theoretic result taken from the book of R. Durrett 

[13]. 

Theorem 2.9 (Durrett). Let µ be a finite measure and ν a probability measure on 

(Ω, F). Let Fn ↑ F be σ-fields (i.e., σ(∪Fn) = F). Let µn and νn be the restrictions 

of µ and ν to Fn. 
Suppose µn ≪ νn for all n. Let Xn = dµn and let X = lim supXn. Then dνn 

µ(A) = 
A 
Xdν + µ(A ∩ {X = ∞}). 

This theorem gives Lebesgue’s decomposition of measure µ into absolutely contin

uous and singular parts. In our case Theorem 2.9 takes form of the following lemma. 

Lemma 2.10. Let M be as in (2.6) above with function g as in (2.9) and let measure 

Q be as in (2.5). Then for events A ∈ FT 

Q A = lim sup M(t)dP + Q A ∩ {lim sup M(t) = . (2.10) 
A t T t T 

∞} 
→ →

Our aim is to show that lim supt T M(t) < ∞ Q-a.s. This will enable us to deduce →
that for A ∈ FT P (A) > 0 whenever Q(A) > 0. In particular, knowing that under 

Q there is a particle that drifts to infinity, we can deduce that this also happens with 

positive P -probability. 

Let us consider the spine decomposition (recall Theorem 1.29) 

EQ̃
� 

M(t)�
� 

G̃T 

� 

= sum(t) + spine(t), t ∈ [0, T ), (2.11) 

where spine(t) = exp 
�� 

0 

t 

g′(s)dξs − 
� 

0 

t �1

2
g′(s)2 + β|ξs|p

�
ds 

� 

(2.12) 

� �� Su 
� Su �1 � 

and sum(t) = exp g′(s)dξs − 
2
g′(s)2 + β|ξs|p

�
ds (2.13) 

0 0u<nodet(ξ) 

= spine(Su).


u<nodet(ξ)


We want to show that lim supt T E
Q̃(M(t)�

� 

G̃T ) < ∞ Q̃-a.s. We start by proving the →
following assertion. 

Proposition 2.11. ∃ some Q̃-a.s. finite positive random variables C , C and a ran′ ′′ 

dom time T ∈ [0, T ) such that ∀t > T ′ ′ 

� � t � 

spine(t) ≤ C ′ exp − C ′′ (T − s)−pd
∗ 
ds . 

0 

27 



Proof of Proposition 2.11. Under Q̃, dξs = dB̃s +g
′(s)ds (where B̃ is a standard Brow

nian motion). So, 

spine(t) = exp 
�� 

0 

t 

g′(s)dB̃s + 

� 

0 

t �

2

1 
g′(s)2 − β|B̃s + g(s)|p

�
ds 

� 

, 

where g(s) = c 
�
T − s 

�−d∗ − cT −d∗ . Then 

� t � t 

0 
g′(s)2ds = 

0 
c 2d∗ 

2
�
T − s 

�−2(d∗+1)
ds 

=C1 

�
T − t 

�−2d∗−1 − C2 → ∞ as t → T , 

where C1, C2 are some positive constants. Then 

� t 
g′(s)dB̃s0 0 as t T Q̃-a.s. (2.14) � t 

0 g
′(s)2ds 

→ →

since by the Dubins-Schwarz Theorem 

� � t 

g′(s)dB̃s 

� 

= 
d 

� 

B̃R t 

� 

, 
0 t∈[0,T ) 0 g ′ (s)2ds t∈[0,T ) 

and B̃t 
t → 0 as t → ∞ Q̃-a.s. Also, g(s) → ∞ as s → T , whereas sups∈[0,T ) |B̃s| < ∞ Q̃

a.s., so 

˜|B̃s + g(s)| 
1 as s T Q-a.s. (2.15) 

g(s) 
→ →

Therefore for any ǫ, δ > 0 we can find random times Tδ, Tǫ ∈ [0, T ) s.t. 

p−(1 − ǫ)g(s)p ≤ |B̃s + g(s)| ≤ (1 + ǫ)g(s)p ∀s > Tǫ by (2.15) 
� t � t � t 

−δ g′(s)2ds ≤ g′(s)dB̃s ≤ δ g′(s)2ds ∀t > Tδ by (2.14) 
0 0 0 

So ∀t > Tδ ∨ Tǫ we have 

spine(t) ≤C3 exp 
� � t �

(1 + 2δ)
1 
g′(s)2 − β(1 − ǫ)g(s)p

�
ds 

� 

Tδ∨Tǫ 
2

=C4 exp 
� � t �

(1 + 2δ)
1 
g′(s)2 − β(1 − ǫ)g(s)p

�
ds 

� 

,
20 

where C3, C4 are some Q̃-a.s. finite positive random variables, which don’t depend on 

t. 
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� �� � 

� 

� 

Substituting g(s) = c 
�
T − s 

�−d∗ − cT −d∗ into this we get that for all t > Tδ ∨ Tǫ 

spine(t) ≤ C5 exp 
� �

(1 + 2δ)
1 
c 2d∗ 

2 − β(1 − ǫ)cp
�
� t �

T − s 
�−pd∗ ds 

� 

. (2.16) 
2 0� �� � � �� � 

:=Cδ,ǫ :=h(t) 

Let us note that: 

1) h(t) = 

� 

0 

t �
T − s 

�−pd∗ ds = 
� 

pd∗ 

1 

− 1 

�
T − s 

�1−pd∗ 
�

0 

t 

p+2 p+2 

= 
p − 2�� �−

p−2 p−2 

� 

as t T 
p + 2 

T − t − T − → ∞ →

p2) Cδ,ǫ = (1 + 2δ)
1 
c 2d2 

∗ − β(1 − ǫ)c
2 

= δ
� 
c 2d2

�
+ ǫ

�
βcp

�
+ c 2 

�1 
d2 
∗ − βcp−2

� 
< 0 for ǫ, δ chosen small enough ∗ 2 

1 
< d2 ∗−βcp∗−2=0 

2 

1) and 2) together show that spine(t) 0 Q̃-a.s. and this occurs ’rapidly’. To finish →
the proof of Proposition 2.11 let C ′ = C5, C

′′ = Cδ,ǫ and T ′ = Tδ ∨ Tǫ. 

Next we look at the sum term. 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

≤ spine(Su) 
′ u<nodet(ξ), Su≤T 

+ 
� 

C ′ exp 
� 

− C ′′ 
� Su 

(T − s)−pd
∗ 
ds 

� 

′ 0u<nodet(ξ), Su>T 

using Proposition 2.11. The first sum is Q̃-a.s. bounded since it only counts births up 

to time T . Call an upper bound on the first sum C6. Then we have ′ 

sum(t) ≤ C6 + C ′ �
∞

exp 
� 

− C ′′ 
� Sn �

T − s 
�−pd∗ ds 

� 

, (2.17) 
0 n=1 

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t∈[0,T ) conditional on the path of the spine is 

time-inhomogeneous Poisson process (or Cox process) with birth rate 2β|ξt|p at time t 
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(recall Proposition 1.13). Thus 

nt 
1 Q̃-a.s. as t T .� t 

0 2β|ξs|pds 
→ →

Also from (2.15) 
� t 
0 2β|ξs|pds 1 Q̃-a.s. as t T .� t 
2βg(s)pds 

→ →
0 

Hence 
nt 

1 Q̃-a.s. as t T (2.18) � t 
2βg(s)pds 

→ →
0 

and also 
n 

�

0 
Sn 2βg(s)pds 

→ 1 Q̃-a.s. as n → ∞. 

So for some Q̃-a.s. finite positive random variable C7 we have 

� Sn 
� Sn 

(T − s)−pd∗ ds = g(s)p + T −pd∗ ds ≥ C7n ∀n. 
0 0 

Substituting this into (2.17) we get that 

∞ � � 

sum(t) ≤ C6 + C ′ exp − C ′′C7n . 
n=1 

Thus sum(t) is Q̃-a.s. bounded by some finite random variable. We deduce that 

lim sup EQ̃
� 

M(t)�
� 

G̃T 

� 

= lim sup 
�
spine(t) + sum(t)

� 
< ∞ Q̃-a.s. 

t T t T→ →

By Fatou’s lemma 

EQ̃
� 

lim inf M(t)�
� 

G̃T 

� 

≤ lim inf EQ̃
� 

M(t)�
� 

G̃T 

� 

≤ lim sup EQ̃
� 

M(t)�
� 

G̃T 

� 

< ∞ Q̃-a.s. 
t T t T t T→ → →

Then lim inft→T M(t) < ∞ Q̃-a.s. and hence also Q-a.s. Since M
1
(t) is a positive 

Q-supermartingale on [0, T ), it must converge Q-a.s., hence 

lim sup M(t) = lim inf M(t) < ∞ Q-a.s. (2.19) 
t T t→T →

This is our sought result. That is, we have shown that 

lim sup M(t) < ∞ Q-a.s., 
t T→
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� � 

� � 

� � 

� � 

� � 

where 
dQ �

� 

� = M(t), t ∈ [0, T ). 
dP � Ft 

Lemma 2.10 now tells us that for events A ∈ FT 

Q(A) = lim sup MtdP . 
A t T→

Thus Q(A) > 0 P (A) > 0. Let us consider the event ⇒

A := Nt as t T| | → ∞ → ∈ FT . 

From (2.18) we recall that 

� nt 
� 

Q̃ � t 1 as t T = 1 
2βg(s)pds 

→ →
0 

⇒Q̃ nt → ∞ as t → T = 1 

⇒Q̃ |Nt| → ∞ as t → T = 1 

⇒Q |Nt| → ∞ as t → T = 1 

⇒P |Nt| → ∞ as t → T > 0 

⇒P Texplo ≤ T > 0, 

which contradicts (2.4). Therefore it must be the case that 

P (Texplo ≤ T ) > 0 ∀T > 0 

and consequently from Corollary 2.3 

Texplo < ∞ P -a.s. 
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Chapter 3 

Branching random walks 

This chapter is devoted to the study of continuous-time binary branching random walks 

with inhomogeneous branching rate β(x) = β|x|p, β > 0, p ≥ 0. 

We prove that the population almost surely explodes in finite time if p > 1 and 

stays finite otherwise. For the proof we adapt the methods from Chapter 2. 

In the case p ≤ 1 we give the asymptotic growth of the rightmost particle. For that 

we use ideas from the paper of J. Harris and S. Harris [22] that considers BBM in a 

similar inhomogeneous potential. 

3.1 Introduction 

3.1.1 Description of the model 

We consider a binary branching process started from 0, where branching occurs at 

instantaneous rate β( ) = β p and single particles move according to a continuous· | · |
time random walk. 

By continuous-time random walk we mean a Z-valued process (Xt)t≥0 under some 

probability measure P, which starts from 0 and makes jumps up or down of size 1 at 

constant rate λ in each direction. 

Thus (Xt)t≥0 can be viewed as a compound Poisson process: 

Pt 

Xt = Wi , t ≥ 0, 
i=1 

where Wi’s are i.i.d. random variables with P(W1 = 1) = P(W1 = −1) = 12 and Pt is a 

Poisson process 
d

(Pt)t≥0 = PP (2λ). 
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Alternatively, we can write 

Xt = Xt 
+ −Xt

− , t ≥ 0, 

where (X+)t≥0 and (X−)t≥0 are two independent Poisson processes of rate λ. A typical t t 

sample path of (Xt)t≥0 can be seen in Figure 3-1 below. 

t 

Xt 

∼ Exp(2λ) 

1 

Figure 3-1: Sample path of a random walk 

We are going to need the following basic fact about (Xt)t≥0: 

Proposition 3.1. The process (Xt)t≥0 is recurrent in the sense that ∀n ∈ Z 

lim sup 1{Xt =n} = 1 P-a.s. 
t→∞ 

In other words the process (Xt)t≥0 visits every state n ∈ Z infinitely often. 

Let us note that the model studied in this chapter is very similar to the BBM 

model considered in Chapter 2 with the only difference that single particles move as a 

continuous-time random walk rather than a Brownian motion. Thus we’ll be interested 

in comparing results for the two models. 

3.1.2 Main results 

Recall Definition 2.1 of the explosion time: 

Texplo = sup{t : |Nt| < ∞}. 

We have the following dichotomy for Texplo. 

Theorem 3.2. Consider branching random walk in the potential β(x) = β x p.| |
a) If p ≤ 1 then Texplo = ∞ P -a.s. 

b) If p > 1 then Texplo < ∞ P -a.s. 

Let us also define the process of the rightmost particle as 
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Definition 3.3. 

Rt := sup Xu , t ≥ 0.t 
u∈Nt 

When p ∈ [0, 1], we prove the following result about the asymptotic behaviour of 

Rt. 

Theorem 3.4. Consider branching random walk in the potential β(x) = β x p.| |

a) if p = 0 then 

lim 
Rt 

= â := λ(θ̂ − 1 

t ˆ
) P − a.s., (3.1) 

t→∞ θ 

where θ̂ is the unique solution of 

β 
g(θ) = on (1, ∞) (3.2) 

λ 

� 1� � 1�
and g(θ) = θ −

θ 
log θ − θ + 

θ 
+ 2 

b) if p ∈ (0, 1) then 
� log t�b̂ 

lim Rt = ĉ P − a.s., (3.3) 
t→∞ t 

where b̂ = 1 and ĉ = 
�
β(1−p)2 

�b̂ 
. p1−p 

c) if p = 1 then 
logRt �

lim = 2β a.s. (3.4) √
t

P −
t→∞ 

1 2 3 4 5 6 7 8 
0 

2 

4 

6 

8 

10 

12 

β 
λ 

g(θ) 

θ̂ θ 

Figure 3-2: Plot of g(θ) from Theorem 3.4 a) 

Part a) of Theorem 3.4 is a special case of a result proved by Biggins in [6] and [7].


34




� � � 

3.1.3 Comparison with BBM 

Theorem 3.2 must be compared with Theorem 2.7 in Chapter 2. We observe that in 

the BBM model p = 2 is the critical value for population explosion, whereas in the 

branching random walk model the critical value is p = 1. 

Also Theorem 3.4 should be compared with the following result from [22]: 

Theorem 3.5 (J. Harris and S. Harris).


Consider binary BBM in the potential β(x) = β|x|p, p ∈ [0, 2].


a) if p ∈ [0, 2) then 
Rt

lim 
ˆ

= â P − a.s. (3.5) 
tt→∞ b 

� 1 

where b̂ = 2−
2 
p and â = 

�
β (2 − p)2

2−p 
.2

b) if p = 2 then 
logRt �

lim = 2β P − a.s. (3.6) 
t→∞ t 

We see that even if we take spatially-independent branching rate β( ) ≡ β, the two ·
models will behave differently. Thus we conclude that the spatial motion of particles 

has a crucial effect on the behaviour of the model. 

A heuristic way to recover results from Theorem 3.5 for the BBM model is to 

consider the expected number of particles at time t staying close to a curve f in the 

sense that is made precise in [3]. That is, we look at 

E 1{Xs
u≈f(s) ∀s∈[0,t]} . 

u∈Nt 

Then the Many-to-One lemma (Lemma 1.18) reduces this to the expectation of a single 

Brownian motion (ξt)t≥0: 

R

� � � � 
t 

� 

E 1{Xs
u≈f(s) ∀s∈[0,t]} = Ẽ 1{ξs≈f(s) ∀s∈[0,t]}e 0 

β|ξs|pds . 
u∈Nt 

That can then be approximated by the Schilder’s theorem: 

log Ẽ
� 

1{ξs≈f(s) ∀s∈[0,t]}e 
R 
0 
t β|ξs|pds 

� 

∼ 
� 

0 

t 

βf(s)p − 1
2 
f ′(s)2ds. 

Hence the expected number of particles following the function f either grows expo

nentially or decays exponentially in t depending on the growth rate of f . The critical 

function f which solves the equation 

1 
f ′(s)2 = βf(s)p 

2 
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in fact corresponds to the position of the rightmost particle. The rigorous proof requires 

showing that almost surely there exists a particle staying close to the critical curve f . 

In principle a similar argument can be used for a branching random walk. Using 

heuristic methods which involve some large deviations theory we can get that 

� � � � t � �
logE 1{Xs

u≈f(s) ∀s∈[0,t]} ∼ 
0 
βf(s)p − Λ f ′(s) ds, 

u∈Nt 

where Λ : [0, ∞) [0, ∞) is the rate function for the random walk and →
√
x2 + 4λ2 + x � 

Λ(x) = 2λ + x log
�

2λ 

� 
− x2 + 4λ2 ∼ x log x as x → ∞. 

This heuristic argument actually gives the asymptotics of the rightmost particle from 

Theorem 3.4. 

3.1.4 Outline of the chapter 

In Section 3.2 we introduce a family of one-particle martingales. We also present some 

other relevant one-particle results, which will be used in later sections. Section 3.2 is 

self-contained and can be read out of the context of branching processes. 

In Section 3.3 we prove Theorem 3.2 about the explosion time by adapting the proof 

of Theorem 2.7 from Chapter 2. 

In Section 3.4 we give a proof of Theorem 3.4 about the rightmost particle using 

the ideas from [22]. 

3.2 One-particle results 

In the analysis of the BBM model in [22] one crucial component was exponential mar

tingales, also known as Girsanov martingales. They were used in place of martingale 

M̃ (3) in (1.5) and conditioned the spine process to stay close to a given deterministic 

path. 

In this section we introduce a family of martingales for continuous-time random 

walks, which will play the same role as the Girsanov martingales in the BBM model. 

3.2.1 Changes of measure for Poisson processes 

For this section let the time set for all the processes be [0, T ), where T ∈ (0, ∞]. 
d

Suppose we are given a Poisson process (Yt)t∈[0,T ) = PP (λ) under a probability 

measure P. Let us denote by Ji the time of the ith jump of (Yt)t∈[0,T ). Then we have 

the following result. 
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� � 

0 

Lemma 3.6. Let θ : [0, T ) [0, ∞) be a locally-integrable function. That is, →
� t 
θ(s)ds < ∞ ∀t ∈ [0, T ). Then the following process is a P-martingale: 

R t R t � � � 
R tλlog θ(s)dYs+λ (1−θ(s))ds (1−θ(s))dsMt := θ(Ji) , t ∈ [0, T ).
0 0 0e
 =
 e


i:Ji≤t 

Here dY puts a delta function at jump times of Y . That is, for any function f , 
� t � 

0 f(s)dYs := i:Ji≤t f(Ji). 

Example 3.7. If we take θ( ) ≡ θ then ·

Mt = θYte λ(1−θ)t , t ∈ [0, T ) 

and it is well-known that this is a martingale. In fact we have already seen it in 

Chapter 1 (recall Example 1.20). 

Our next result tells us what effect the martingale (Mt)t∈[0,T ) has on the process 

(Yt)t∈[0,T ) when used as a Radon-Nikodym derivative. 

Lemma 3.8. Let (F̂t)t∈[0,T ) be the natural filtration of (Yt)t∈[0,T ). Define the new 

measure Q as 
dQ �

� 

� = Mt , t ∈ [0, T ). 
dP �F̂t 

Then under the new measure Q 

d � �
(Yt)t∈[0,T ) = IPP λθ(t) , 

where IPP λθ(t) stands for time-inhomogeneous Poisson process of instantaneous 

jump rate λθ(t). 

Example 3.9. If we take θ( ) ≡ θ then under the new measure Q·

d � �
(Yt)t∈[0,T ) = PP λθ . 

Thus M has the effect of scaling the jump rate of Y by the factor of θ. 

To prove Lemma 3.6 and Lemma 3.8 we shall first prove the following identity. 

Proposition 3.10. 

� 
R t � 

e−λt 
λk � � t �k 

k! 
log θ(s)dYs 1 θ(s)ds ∀k ∈ N, (3.7)
E e
 0 =
{Yt =k} 

0 

where E is the expectation associated with P (and this will be the case throughout this 

section). 
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Proof of Proposition 3.10. For k = 0, P(Yt = 0) = e−λt, so equality in (3.7) holds 

trivially. Let us suppose that k ≥ 1. Then 

k k 
R

� 
t log θ(s)dYs 1

� �� � �� � 

E e 0 {Yt =k} = E θ(Ji) 1{Yt =k} = E θ(Ji) 1{Jk≤t<Jk+1} , 
i=1 i=1 

where Ji’s are the jump times of Y . Also Ji = S0 + ... +Si−1 where Si’s are the holding 

times, and it is known that Si ∼ Exp(λ) ∀i and that Si’s are independent. Hence 

k k i−1�� � �� �� � � 

E θ(Ji)1{Jk<t≤Jk+1} = E θ Sj 1�
Pk−1 Sj≤t< 

Pk Sj 

� 

j=0 j=0 
i=1 i=1 j=0 

� k i−1 � 

= E θ Sj 1�
Pk−1 

�1� 
Pk−1 

� 

j=0 Sj≤t Sk>t− j=0 Sj 
i=1 j=0 

� k i−1 

= 
�� 

θ
�� 

xj 
�� 

λk+1 e−λ 
P

j
k 
=0 xjdx 

Pk−1 Pk−1 
j=0 xj≤t,xk>t− j=0 xj i=1 j=0 

� k i−1


= λk e−λt 
� 

θ
�� 

xj 
� 

dxk−1 dx0 (after integrating out xk )

Pk−1 

· · · 
j=0 xj≤t i=1 j=0 

= λk e−λt 
� 

0 

t � 

0 

t−x0 

· · · 
� 

0 

t−x0−...−xk−2 

θ(x0) × · · · × θ(x0 + · · · + xk−1)dxk−1 · · · dx0, 

where for the k = 1 case we only have one integral going from 0 to t. Then, after 

making the natural change of variables yi = x0 + + xi, i = 0, , k − 1, we get · · · · · · 
� t � t � t 

λk e−λt 
0 y0 

· · · 
yk−2 

θ(y0)θ(y1) × · · · × θ(yk−1) dyk−1 · · · dy0 

� t � t 

=λk e−λt 
0 
· · · 

0 
1{y0<y1<···<yk−1}θ(y0) × · · · × θ(yk−1) dyk−1 · · · dy0 

=λk e−λt 
1 �

� t �k 
θ(y) dy . 

k! 0 

by the obvious symmetry. 

With identity (3.7) we can now prove lemmas 3.6 and 3.8. 

Proof of Lemma 3.6. Firstly note that 

R R 
EMt = Ee 0 

t log θ(s)dYs+λ 0
t(1−θ(s))ds 

R R

� ∞
t t� 
log θ(s)dYs 1{Yt =k} 

� 
λ (1−θ(s))ds0 0= E e e 

k=0 
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� � 

� ∞ � t 
R t� 

e−λt 
λk � �k

� 
λ (1−θ(s))ds = θ(s)ds e 0

k! 0k=0 

= 1. (3.8) 

Secondly we note that 

R R

� 
t t 

� 

E(Mt F̂s) = MsE e s 
log θ(u)dYu+λ 

s 
(1−θ(u))du F̂s| |

R R 
= MsE 

� 

e 0 
t−s log φ(u)dỸu+λ 0 

t−s(1−φ(u))du ˆ
� 

|Fs 

= Ms 

by (3.8), where (Ỹu)u∈[0,T −s) = (Ys+u − Ys)u∈[0,T −s) is a Poisson process independent 

of F̂s, and φ(u) = θ(s + u). 

Therefore we see that (Mt)t≥0 is a P - martingale. 

Let us now check that under probability measure Q we have 
d � �

(Yt)t∈[0,T ) = IPP λθ(t) . 

Proof of Lemma 3.8. 

It is sufficient to check that for 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn < T 

and for 0 ≤ k1 ≤ k2 ≤ · · · ≤ kn 

Q(Yt1 − Ys1 = k1, Yt2 − Ys2 = k2, , Ytn − Ysn = kn)· · ·

=Q(Yt1 − Ys1 = k1) × Q(Yt2 − Ys2 = k2) × · · · × Q(Ytn − Ysn = kn)


= 
k

1 

1! 

�� t1 

λθ(u)du 
�k1 

e
− 

R 
s

t

1
1 λθ(u)du × · · · × 

k

1 

n! 

�� tn 

λθ(u)du 
�kn 

e− 
R 
s
t

n
n λθ(u)du (3.9) 

s1 sn 

Let us prove (3.9) by induction on n. Suppose n = 1. Then the distribution of a single 

increment is 

Q(Yt1 − Ys1 = k1) = E Mt11{Yt1−Ys1 =k1} 

= E 
� 

E
�
Mt11{Yt1−Ys1 =k1}|F̂s1 

�� 

R R 

= E 
� 

E
�
Ms1e s

t

1
1 log θ(u)dYu+λ 

s

t

1
1(1−θ(u))du

1{Yt1−Ys1 =k1}|F̂s1 
�� 

(3.10) 
R R 

= E 
� 

Ms1E
� 
e 0 

t1−s1 log φ(u)d ˜
0 
t1−s1 (1−φ(u))du1 ˜

��
Yu+λ ˆ

{Yt1−s1 =k1}
|Fs1 

(3.7) 
e−λ(t1−s1)λ

k1 �
� t1−s1 �k1 λ 

R t1−s1 (1−φ(u))du = φ(u)du e 0 

k1! 0 

s1=
1 �

� t1 

λθ(u)du 
�k1 

e
− 

R t1 λθ(u)du 

k1! s1 
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� 

� 

� 

� 

� 

Here, as in the proof of Lemma 3.6, (Ỹu)u∈[0,T −s1) = (Ys1+u − Ys1)u∈[0,T −s1) is a 

Poisson process independent of F̂s1 and φ(u) = θ(s1 + u). 

Suppose now that (3.9) holds for n increments. Then 

Q(Yt1 − Ys1 = k1, , Ytn − Ysn = kn, Ytn+1 − Ysn+1 = kn+1)· · · 

=E Mtn+11{Yt1−Ys1 =k1, , Ytn−Ysn =kn}1{Ytn+1−Ysn+1 =kn+1}··· 

=E 
� 

E
�
Mtn+11{Yt1−Ys1 =k1, ··· , Ytn −Ysn =kn}1{Ytn+1−Ysn+1 =kn+1}|F̂sn+1 

�� 

=E Msn+11{Yt1−Ys1 =k1, , Ytn −Ysn =kn}··· 
R R 

� tn+1 log θ(u)dYu+λ tn+1 (1−θ(u))du �� 

E e sn+1 sn+1 1{Ytn+1−Ysn+1 =kn+1}|F̂sn+1 

=Q(Yt1 − Ys1 = k1, Yt2 − Ys2 = k2, , Ytn − Ysn = kn)Q(Ytn+1 − Ysn+1 = kn+1)· · · 

For the last line we used (3.10). Thus we see that (3.9) follows by induction. 

3.2.2 “Integration by parts” and applications 

Proposition 3.11 (Integration by parts for time-inhomogeneous Poisson processes). 

For T ∈ (0, ∞] let f ∈ C1
�
[0, T )

� 
and (Yt)t∈[0,T ) = 

d 
IPP (r(t)) defined on some proba

bility space, where r : [0, T ) [0, ∞) is a locally-integrable function. Then →
� t � t 

f(s)dYs = f(t)Yt − f ′(s)Ysds, 
0 0 

where dY counts the jumps of Y . That is, if J1, J2, are the jump times of Y then · · · 

� t Yt 

f(s)dYs = f(Ji). 
0 i=1 

Proof. On the right hand side we have 

� t Yt−1 � Ji+1 
� t 

f(t)Yt − f ′(s)Ys ds = f(t)Yt − f ′(s)Ysds − f ′(s)Ysds

0 i=1 Ji JYt


Yt−1 � Ji+1 
� t 

= f(t)Yt − i f ′(s)ds − Yt f ′(s)ds 
i=1 Ji JYt 

Yt−1 � � � � � 
= f(t)Yt − i f(Ji+1) − f(Ji) − Yt f(t) − f(JYt)

i=1 

Yt 

= f(Ji). 
i=1 
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Note that we didn’t need to know the distribution of jump times in the proof, so the 

proof works for a class of processes larger than time-inhomogeneous Poisson processes. 
� t

As one application of the above result we get the asymptotic behaviour of 0 f(s)dYs 

as t T . Before we present it let us mention a simple result about the asymptotic → 
growth of Yt as t T .→

d
Proposition 3.12. Let (Yt)t∈[0,T ) = IPP (r(t)) as in the previous proposition. 

� t
If limt r(s)ds = then →T 0 ∞ 

Yt 
1 a.s. as t T .� t 

r(s)ds 
→ →

0 

� t	 d
Proof. Let R(t) := r(s)ds. It is a well-known fact that (Yt)t∈[0,T ) = (ZR(t))t∈[0,T ),0 

Zt
where (Zt)t≥0 is a PP (1). It is also well-known that 

t 
→ 1 a.s. as t → ∞. Thus 

ZR(t) 
1 a.s. as t T 

R(t) 
→ →

Yt Yt 
= 1 a.s. as t T .⇒� t 

r(s)ds R(t) 
→ →

0 

That finishes the proof of Proposition 3.12. For completeness let us also prove that 
Zt 
t	

→ 1 as t → ∞:


(Zi+1 − Zi)i≥0 are independent Po(1) random variables, so for n ∈ N


Zn 
=

(Z1 − Z0) + · · · + (Zn − Zn−1) 
1 a.s. as n → ∞ 

n	 n 
→

by the Strong Law of Large Numbers. 

More generally, Z⌊t⌋ ≤ Zt ≤ Z⌈t⌉, so 

Z Zt Z

t 
⌊t⌋ ≤ 

t 
≤ 

t 
⌈t⌉

, 

but 
Z⌊t⌋ 

= 
Z⌊t⌋ ⌊t⌋ 

1 a.s. and similarly 
Z⌈t⌉ 

1. Thus 
t ⌊t⌋ t →	

t 
→

Zt 
t	

→ 1 a.s. as t → ∞. 

Now let us put together Propositions 3.11 and 3.12 to get the asymptotic behaviour 
� t

of 0 f(s)dYs, which will be useful to us later in this chapter. 

d
Proposition 3.13. Let (Yt)t∈[0,T ) = IPP (r(t)) as before. Let f : [0, T ) [0, ∞) be → 
differentiable such that f (t) ≥ 0 for t large enough and let r : [0, T ) [0, ∞) be locally ′ →
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integrable. Suppose r and f satisfy the following two conditions: 

� t
1. 0 r(s)ds → ∞ as t T→

R 

2. c := lim supt T
f
R 
(
t 

t) 0 
t r(s)ds 

f(s)r(s)ds 
< ∞→

0 

Then � t 
f(s)dYs0 1 a.s. as t T .� t 
f(s)r(s)ds 

→ →
0 

Note that the second condition is generally rather restrictive, but it is satisfied by 

the functions that we consider in this chapter. Also, since f is non-decreasing, c ≥ 1. 

Proof. Fix ǫ > 0. By Proposition 3.12 there exists a random time Tǫ < T such that 

∀t ≥ Tǫ: 

Yt
1 − ǫ ≤ � t ≤ 1 + ǫ 

r(s)ds0 
� t � t 

⇒(1 − ǫ) 
0 
r(s)ds ≤ Yt ≤ (1 + ǫ) 

0 
r(s)ds 

Also we can assume that f ′(t) ≥ 0 for t ≥ Tǫ. Hence ∀t ≥ Tǫ using Proposition 3.11 we 

have � t � t
f(s)dYs f(t)Yt − f (s)Ysds

′
0 0= � t � t
f(s)r(s)ds f(s)r(s)ds0 0 

t t s
(1 + ǫ)f(t)

�
r(s)ds − 

� Tǫ Ysf
′(s)ds − (1 − ǫ)

�
f ′(s)

�
r(v)dvds0 0 Tǫ 0 

� t≤ 
0 f(s)r(s)ds


(1 + ǫ)f(t)
� t 
r(s)ds − (1 − ǫ)

� t 
f ′(s)

� s 
r(v)dvds + Aǫ
0 0 0 = � t ,


f(s)r(s)ds
0 

where Aǫ = − 
� Tǫ f (s)Ysds + (1 − ǫ)

� Tǫ f (s)
� s 
r(v)dvds is an a.s. finite r.v., ′ ′

0 0 0 

(1 + ǫ)f(t)
�

0 
t 
r(s)ds − (1 − ǫ)

�
[f(s)

�

0 
s 
r(v)dv]t 0 − 

�

0 
t 
f(s)r(s)ds 

� 
+ Aǫ 

= � t 
f(s)r(s)ds0 

� t
f(t) 0 r(s)ds Aǫ 

= 2ǫ + (1 − ǫ) + .� t � t
f(s)r(s)ds f(s)r(s)ds0 0 

Thus, by taking the lim sup as t T and using condition 2. of the Proposition we get: →
� t 
f(s)dYs 

lim sup 0 ≤ 1 + ǫ(2c − 1). � t 
t→T 0 f(s)r(s)ds 
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Similarly we have 

� t � t
f(s)dYs f(t) r(s)ds Bǫ0 0 

� t � t � t
f(s)r(s)ds 

≥ −2ǫ
f(s)r(s)ds 

+ (1 + ǫ) + 
f(s)r(s)ds 

, 
0 0 0 

where Bǫ is some almost surely finite random variable, so 

� t 
f(s)dYs 

lim inf 0 ≥ 1 − ǫ(2c − 1). 
t→T 

�

0 
t 
f(s)r(s)ds 

Since ǫ was arbitrary we deduce that 

s

� t 
f(s)dYs0 1 as t T .� t 
f(s)r(s)ds 

→ →
0 

3.2.3 Changes of measure for continuous-time random walks 

Let T ∈ (0, ∞]. Recall the continuous-time random walk (Xt)t∈[0,T ) defined under some 

probability measure P from subsection 3.1.1. As it was already mentioned we can write 

Xt = X+ −X− , t ∈ [0, T ), t t 

where (Xt 
+)t [0,T ), (Xt

−)t∈[0,T ) = 
d 
PP (λ) independently of each other. →

From Lemmas 3.6 and 3.8 we get the following result. 

Proposition 3.14. Let θ+ , θ− : [0, T ) [0, ∞) be two locally-integrable functions. → 
Then the following process is a P-martingale: 

log θ−(s)dX−t 

0
t 

0
t 

0
t 

0

R + 
s

R R R

(1−θ−(s))dslog θ+(s)dX (1−θ+(s))ds+λ +λ+Mt := , t ∈ [0, T ). (3.11)
e


Moreover, if we define the new measure Q as 

dQ �
� 

� = Mt , t ∈ [0, T ),
dP �F̂t 

where (F̂t)t∈[0,T ) is the natural filtration of (Xt)t∈[0,T ), then under Q 

(Xt 
+)t∈[0,T ) = 

d 
IPP 

�
λθ+(t)

� 
, 

(Xt
−)t∈[0,T ) = 

d 
IPP 

�
λθ−(t)

� 
. 

In other words the martingale M used as the Radon-Nikodym derivative has the ef

fect of scaling the rate of upward jumps by the factor of θ+(t) and the rate of downward 

43




jumps by the factor θ−(t) at time t. 

Furthermore from Propositions 3.12 and 3.13 we know that Q-a.s. 

X+ 

lim t = 1, 
t→T 

�

0 
t 
λθ+(s)ds 

lim � t 
Xt

−
= 1, 

t→T 
0 λθ

−(s)ds 
� t 
f(s)dX+ 

lim � t 
0 s = 1, 

t→T 
0 λθ

+(s)f(s)ds 
� t 
f(s)dXs

−
lim � t 

0 = 1 
t→T 

0 λθ
−(s)f(s)ds 

provided that θ+ , θ− and f satisfy the conditions of Propositions 3.12 and 3.13. 

3.3 Explosion 

Consider a branching random walk in the potential β(·) = β| · |p, where β > 0, p ≥ 0, 

as it was described in Section 1. In this section we give the proof of Theorem 3.2. We 

shall apply the same methods as we did for the BBM model in Chapter 2. 

3.3.1 p ≤ 1 case 

Let us first prove part a) of Theorem 3.2 which is a lot simpler than part b). 

Proof of Theorem 3.2 a). We wish to show that if p ≤ 1 then P (Texplo = ∞) = 1. As 

for the BBM case it is sufficient to show that E(|Nt|) < ∞ for some t > 0. 

By the Many-to-One lemma (Lemma 1.18) 

R

� � � � � � 
t 

� 

E |Nt| = E 1 = Ẽ e 0 β|ξs|pds , 
u∈Nt 

where (ξt)t≥0 is a continouos-time random walk under P̃ . Then ξt = ξt 
+ − ξt

−, where 

(ξt 
+)t≥0 and (ξt

−)t≥0 are two independent Poisson processes with jump rate λ. Therefore 

R 
˜
� 

0 
t β|ξs|pds 

� 

˜
� 

tβ sup0≤s≤t |ξs|p
� 

E e E e≤

= Ẽ
� 

e tβ sup0≤s≤t |ξs 
+ −ξs 

− |p
� 

Ẽ
� 

e tβ sup0≤s≤t 

� 
(ξs 

+)p∨(ξs 
−)p 

�� 

≤

˜
� 

tβ 
� 
(ξt 

+)p∨(ξt 
−)p 

�� 

˜
� 

tβ 
� 
(ξt 

+)p+(ξt 
−)p 

�� 

= E e E e≤
� 

˜
� 

tβ(ξt 
+)p

��2 �

˜
� 

tβξt 
+
��2 

= E e E e≤ 
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because ξ+ is supported on {0, 1, 2, ...} whence (ξt 
+)p ≤ ξt 

+ for p ∈ [0, 1]. Then 

∞
Ẽ

� 

e tβξt 
+
� 

= 
� 

e βtn P̃ (ξt 
+ = n)


n=0

∞

= 
� 

e βtn (λt

n!

)n 

e−λt = exp 
� 
e βtλt − λt

� 
< ∞ ∀t ≥ 0. 

n=0 

Thus E( Nt ) for all t > 0 and this finishes the proof Theorem 3.2 a). | | < ∞

3.3.2 p > 1 case 

Let us now prove part b) of Theorem 3.2. 

Proof of Theorem 3.2 b). We wish to show that if p > 1 then P (Texplo < ∞) = 1. As 

in Chapter 2 it would be sufficient to prove that P (Texplo ≤ T ) > 0 for any T > 0. 

Assume for contradiction that ∃T > 0 s.t. 

P (Texplo ≤ T ) = 0. (3.12) 

Fix this T for the rest of this subsection. The key steps of the proof can then be 

summarised as follows: 

1. We choose appropriate functions θ+ , θ− : [0, T ) [0, ∞) for the one-particle → 
martingale of the form (3.11) from Proposition 3.14, such that under the new 

measure the process goes to ∞ at time T . 

2. For this choice of θ+ and θ− we define additive martingale (M(t))t∈[0,T ) and the 

corresponding probability measure Q. 

3. We show that lim supt T M(t) < ∞ Q-a.s. →

4. We deduce that Q ≪ P on FT , whence with positive P -probability one particle 

goes to ∞ at time T giving infinitely many births along its path. 

5. We get a contradiction to (3.12). 

To avoid unnecessary repetitions we shall omit some details, which can be found in 

Chapter 2. 

We start by defining the new measure Q̃ via the spine martingale M̃ as in Propo

sition 1.24. 

The spine process (ξt)t∈[0,T ) can be written as the difference of processes (ξt 
+)t∈[0,T ) 

and (ξt
−)t∈[0,T ), where under P̃ , ξ+ and ξ− are two independent PP (λ) processes. 
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�


Then recalling one-particle martingale (3.11) from Proposition 3.14 and letting 

θ−( ) ≡ 1 there we take ·
dQ̃

�
� 

˜� = M(t), 
dP̃ �

F̃t 

where 

R t � � t � t �
pdsM̃(t)
 e−β |ξs| exp


0 
log θ+(s)dξ++ λ(1−θ+(s))dss 

0 
,
 t ∈ [0, T ) (3.13)
=
 2nt 0

and θ+ : [0, T ) [0, ∞) is some function to be defined a little later. One important → 
feature of θ+ is that it explodes at time T . 

This gives rise to additive martingale (M(t))t∈[0,T ) and probability measure Q such 

that 
dQ �

� 

� = M(t) , t ∈ [0, T ) (3.14) 
dP � Ft 

and 

M(t) = 
� 

exp 
�� t 

log θ+(s)dXu 
+(s) + 

� t 

λ
�
1 − θ+(s)

�
ds 

u∈Nt 
0 0 

� t � 

− β 
0 
|Xu(s)|pds , t ∈ [0, T ), (3.15) 

where for a particle u ∈ Nt, (X+(s))s∈[0,t] is the process of its positive jumps. u 

There are lots of choices of θ+ that will make the proof work. The natural form of 

θ+ to look at is 

c1 � �−c2 
� � T ��c3 

θ+(s) = 
λ(p − 1) 

T − s log
T − s 

, s ∈ [0, T ) 

for c1, c2, c3 > 0 (see Figure 3-3 below). Again, we are only interested in the asymptotic 

growth of θ+(s) as s T , so it doesn’t really matter what values it takes away from →
T . Just as in the BBM model there is the ’critical’ path 

∗ c∗1 � ∗ 
� T ��c�−c 3 

θ+(s)∗ 
2= T − s
 log
 ,


λ(p − 1)
 sT −

where 
� p � 1 p 1 

c∗1 = 
p−1 

, c∗2 = , c∗3 = . (3.16) 
β(p − 1)2 p − 1 p − 1 

So that if we pick a path which grows faster than θ+ then spine(t) 0. Thus we take ∗ →
∗� � T ��c∗ 

2 
c1 � �−c 

s 
3 

θ+(s) =
 T −
 log
 (3.17)

λ(p − 1)
 sT −

for some c1 > c1
∗ (e.g. c1 = c∗1 + 1). 
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Figure 3-3: Plot of θ+(s) when p > 1 

As a special case of Theorem 2.9 we have the following lemma. 

Lemma 3.15. Let M be defined as in (3.15) with function θ+ as in (3.17). Let the 

probability measure Q be as in (3.14). Then for events A ∈ FT 

Q A = lim sup M(t)dP + Q A ∩ {lim sup M(t) = . (3.18) 
A t T t T 

∞} 
→ →

Our aim is again to show that lim supt T M(t) < ∞ Q̃-a.s. →
The spine decomposition (recall Theorem 1.29) tells us that 

EQ̃
� 

M(t)
�
�G̃T 

� 

= sum(t) + spine(t), 

where 

� � t � t � t 

spine(t) = exp 
0 

log θ+(s)dξs 
+ + 

0 
λ 1 − θ+(s) ds − 

0 
β|ξs|pds 

and 
R R R� 
0 
Su log θ+(s)dξs 

++ 0 
Su λ 

� 
1−θ+(s) 

� 
ds− 0 

Su β|ξs|pds sum(t) = e . 

u<nodet(ξ) 

If we can show that lim supt→T E
Q̃(M(t)|G̃T ) < ∞ Q̃-a.s. then it will follow that 

lim supt T M(t) < ∞ Q̃-a.s. →
We start by proving the following assertion about the spine term. 
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Proposition 3.16. There exist some Q̃-a.s. finite positive random variables C , C′ ′′ 

and a random time T ∈ [0, T ) such that ∀t > T ′ ′ 

� � t � 1 T �� p � 

spine(t) ≤ C ′ exp − C ′′ 
0 T − log

� 

T −
p−1 

ds . 
s s 

Note that as t T→
� t �� p � 1 

�� p� 1 � T p−1 
� 1 p−1 

� � T p−1 

0 T − s 
log

T − ds ∼ (p − 1) 
T − t 

log
T − t 

→ ∞. 
s 

Proof of Proposition 3.16. Under Q̃ the process (ξ+)t∈[0,T ) is an inhomogeneous Poist 

son process of rate λθ+(t) as it follows from Proposition 3.14. Also (ξ−)t∈[0,T ) is a t 

Poisson process of rate λ, which must be bounded on [0, T ). 

Simple calculus tells us that for constants k1 > 1, k2 > 0 

� t � T ��k2 1 � T ��k2 

0 
(T − s)−k1 log

� 

T − s 
ds ∼

k1 − 1
(T − t)−k1+1 log

� 

T − t 
as t → T . 

Hence one can check that the following are true as t T for θ+ defined in (3.17): →
1 � �� 1 

• 
�

0 
t 
λθ+(s)ds ∼ c1 

�
T − t 

�−
p−1 log

� 

T

T 
− t 

p−1 → ∞ 

p � �� p 

log θ+(t)λθ+(t) ∼ c1p �
T − t 

�−
p−1 log

� T p−1 • 
(p − 1)2 T − t 

log θ+(t)
�

0 
t 
λθ+(s)ds • lim supt→T �

0 
t 
log θ+(s) λθ+(s)ds 

= 1 < ∞ 

Hence from Proposition 3.12 and Proposition 3.13 we have that 

ξt • � t 
λθ+(s)ds 

→ 1 Q̃ -a.s. 
0 

� t 
log θ+(s)dξ+ 

0 s 1 Q̃ -a.s. • �

0 
t 
log θ+(s) λθ+(s)ds 

→

Combining these observations we get that ∀ǫ > 0 ∃ Q̃-a.s. finite time Tǫ such that 

∀t > Tǫ the following inequalities are true: 

� t � t 

log θ+(s)dξs 
+ < (1 + ǫ) log θ+(s) λθ+(s)ds, 

0 0 
� p 

p−1log θ+(t)λθ+(t) < (1 + ǫ)
(p

c

−
1p 
1)2

(T − t)
− p 

� 

log 
T

T 
− t 

p−1 
, 

� 1 
1 

� T p−1 
p−1|ξt| > (1 − ǫ)c1(T − t)

− 
log 

T − t 
, 

λ
�
1 − θ+(t)

� 
< 0. 
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� 

� 

Thus, for t > Tǫ we have 

spine(t) = exp 
� � 

0 

t 

log θ+(s)dξs 
+ + 

� 

0 

t 

λ
�
1 − θ+(s)

�
ds − 

� 

0 

t 

β|ξs|pds 
� 

� � t p 
� � p 

≤ Cǫ exp 
0 

(1 + ǫ)2 
(p

c

−
1p 
1)2

(T − s)− p−1 log 
T

T 
− s 

p−1 

p−1 p−1− β 
� 

(1 − ǫ)c1(T − s)− 1 �
log 

T

T 
− s 

� 1 �p 
ds 

� 

�� � � t � � p �p p 1 T p−1 
= Cǫ exp (1 + ǫ)2 c1

(p − 1)2 
− β(1 − ǫ)pc1

0 T − s 
log 

T − s 
ds , 

where Cǫ is some a.s. finite random variable, which doesn’t depend on t. Then 

p p 
�(1 + ǫ)2 p � 

(1 + ǫ)2 c1
(p − 1)2 

− β(1 − ǫ)pc1 = c1(1 − ǫ)pβ 
(1 − ǫ)p β(p − 1)2 

− c1 
p−1 

= c1(1 − ǫ)pβ 
�(1 + ǫ)2

1)
p−1 cp−1

� 

(1 − ǫ)p (c
∗ − 1 

< 0 

for ǫ small enough. So letting T ′ = Tǫ, C
′ = Cǫ and C ′′ = (1+ ǫ)2c1 (p−

p 
1)2 −β(1− ǫ)pcp 

1 

we finish the proof of Proposition 3.16. 

We now look at the sum term: 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

≤ spine(Su) 
′ u<nodet(ξ), Su≤T 

� � � Su � 1 T �� p � 

+ 
′ 

C ′ exp − C ′′ 
0 T − s 

log
� 

T − s 
p−1 

ds 
u<nodet(ξ), Su>T 

using Proposition 3.16. The first sum is Q̃-a.s. bounded since it only counts births up 

to time T ′ . Call an upper bound on the first sum C1. Then we have 

∞ � � 1 T p−1 
� 

sum(t) ≤ C1 + C ′ � 

exp − C ′′ 
� Sn 

log
� �� p 

ds , (3.19) 
s s 

n=1 0 T − T −

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t∈[0,T ) conditional on the path of the spine is 

time-inhomogeneous Poisson process (or Cox process) with birth rate 2β ξt
p at time t| |
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� 

� � 

(recall Proposition 1.13). Thus 

� t 
nt 

1 Q̃-a.s. as t → T . 
0 2β|ξs|pds 

→

Also 

� t � t
p�

p � � T p−1 

0 
|ξs|pds ∼ 

0 
c1 T − s 

�−
p−1 log

T − s 

�� p 

ds Q̃-a.s. as t → T . 

Hence 

� t � p � T p−1 
nt ∼ 2βcp 

0 
T − s 

�−
p−1 log

� 

T − s 

�� p 

ds Q̃-a.s. as t → T . (3.20) 1 

So for some Q̃-a.s. finite positive random variable C2 we have 

� Sn p � T �� p 

p−1 

0 

�
T − s 

�− 
log

� 

T − s 
p−1 

ds ≥ C2n ∀n. 

Then substituting this into (3.19) we get 

∞
sum(t) ≤ C1 + C ′ � 

e−C ′′ C2n , 
n=1 

which is bounded Q̃-a.s. We have thus shown that 

lim sup EQ̃
� 

M(t)�
� 

G̃T 

� 

< ∞ Q̃-a.s. 
t T→

Exactly the same argument as in the proof of Theorem 2.7 b) gives us that 

lim sup M(t) < ∞ Q-a.s. 
t T→

From Lemma 3.15 it now follows that for events A ∈ FT 

Q(A) = lim sup M(t)dP . 
A t T→

Therefore Q(A) > 0 P (A) > 0. Let us consider the event ⇒

A := Nt as t T| | → ∞ → ∈ FT . 
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� � 

� 

From (3.20) we have 

Q̃ as t T = 1nt → ∞ →

⇒Q |Nt| → ∞ as t → T = Q̃ |Nt| → ∞ as t → T = 1 

⇒P |Nt| → ∞ as t → T > 0 

⇒P Texplo ≤ T > 0, 

which contradicts the initial assumption (3.12). Therefore we must have 

P (Texplo ≤ T ) > 0 ∀T > 0 

s

and hence 

Texplo < ∞ P -a.s. 

This completes the proof of Theorem 3.2 

s

Remark 3.17. Recall Proposition 2.8. Replacing 
∂x
∂2

2 in (2.2) with the infinitesimal 

generator of a continuous-time random walk, we get an equation solved by u(t, x) := 

P x(Texplo ≤ t): 

 

 ∂u 
= λ

� 
u(t, x + 1) + u(t, x − 1) − 2u(t, x) + u(t, x)(1 − u(t, x))β x p 

∂t 
| |

(3.21) 
 u(0, x) = 0, 0 ≤ u ≤ 1 

3.4 The rightmost particle 

This section is devoted to the proof of Theorem 3.4. The method of proof comes from 

[22] and is based on the analysis of a family of additive martingales defined below. 

3.4.1 Additive martingales 

Take the spine process (ξt)t≥0, which under the probability measure P̃ is a continuous-

time random walk. As it was noted earlier, we can write ξt = ξt 
+ − ξt−, where (ξt 

+)t≥0 is 

the process of positive jumps of ξ and (ξt
−)t≥0 the porcess of its negative jumps. Then 

ξ+ and ξ− are independent processes and (ξt 
+)t≥0, (ξt

−)t≥0 = 
d 
PP (λ). 

Let θ = (θ+, θ−), where θ+ , θ− : [0, ∞) [0, ∞) are two locally-integrable func→ 
tions. From Lemma 3.6 we have that for a given θ the following is a martingale with 

respect to P̃ : 

log θ+(s)dξ+ log θ−(s)dξ−
R R R

0 
2−θ+(s)−θ−(s)ds ,
 t ≥ 0. (3.22)
+λ+

0 0e
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In the general setting decribed in Chapter 1 this would correspond to the martingale 

M̃ (3) in (1.5). Now, recalling (1.6), we define a P̃ -martingale w.r.t filtration ( G̃t)t≥0: 

R t � � t � t 

M̃θ(t) := e−β 0 |ξs|pds2nt × exp log θ+(s)dξ+ + λ(1 − θ+(s))dss 
0	 0 

� t	 � t � 

+ log θ−(s)dξ− + λ(1 − θ−(s))ds	 (3.23) s 
0	 0 

and the corresponding probability measure Q̃θ: 

d ˜
�

Qθ � � = M̃θ(t) , t ≥ 0.	 (3.24) 
dP̃ �

F̃t 

Under Q̃θ the branching process has the following description: 

•	 The initial particle (the spine) moves like a biased random walk. That is, at time 

t it jumps up at instantaneous rate λθ+(t) and jumps down at instantaneous rate 

λθ−(t). 

•	 When it is at position x it splits into two new particles at instantaneous rate 

2β(x). 

•	 One of these particles (chosen uniformly at random) continues the spine. I.e. it 

continues moving as a biased random walk and branching at rate 2β( ). ·

•	 The other particle initiates an unbiased branching process (as under P ) from the 

position of the split. 

Further, if we recall (1.7) and (1.8), we can define the probability measure Qθ := Q̃θ|F∞ 

so that 
dQθ �

� 

� = Mθ(t) , t ≥ 0,	 (3.25) 
dP � Ft 

where Mθ(t) is the additive martingale 

Mθ(t) = 
� 

exp 
�� t 

log θ+(s)dXu 
+(s) + 

� t 

log θ−(s)dXu
−(s) 

u∈Nt 
0 0 

+ 

� 

0 

t 

λ
�
2 − θ+(s) − θ−(s)

�
ds − β 

� 

0 

t 

|Xu(s)|pds 
� 

(3.26) 

and (X+(s))0≤s≤t is the process of positive jumps of particle u, (X−(s))0≤s≤t is the u	 u 

process of its negative jumps. 

Having defined this family of martingales we can control the behaviour of the spine 

process via the choice of parameter θ. 

In the BBM model in [22] this was achived with the use of exponential (Girsanov) 

martingales. 
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3.4.2 Convergence properties of Mθ (under Qθ) 

Before we proceed with the proof, let us emphasise that each Mθ is a positive P 

martingale and so it converges almost surely to a finite limit Mθ(∞) under P . 

The following result will be crucial for us. 

Theorem 3.18. Consider the branching random walk in the potential β(x) = β x p.| |
Let Mθ be the additive martingale as defined in (3.26). Then for different values of p 

we have the following. 

Case A (p = 0), homogeneous case: 

Recall the function g( ) from (3.2). Let θ̂ ∈ (1, ∞) be the unique solution of ·
g(θ) = βλ . 

Take a constant θ0 > 1 and consider θ = (θ+, θ−), where θ+( ) ≡ θ0 and θ−( ) ≡ 1 .· · θ0 

Then 

i) θ0 < θ̂ Mθ is UI and Mθ(∞) > 0 a.s. (under P ). ⇒ 
ii) θ0 > θ̂ ⇒ Mθ(∞) = 0 P -a.s.


Case B (p ∈ (0, 1)), inhomogeneous non-explosive case:


Let b̂ =
1 

, ĉ = 
�β(1 − p)2 �b̂ 

as in (3.3). 
p1 − p


Consider θ = (θ+, θ−), where θ−( ) ≡ 1 and for given b > 1, c > 0
·

θ+(s) := 
c sb−1 

, s ≥ 0 (see Figure 3-4 below). 
λ(1 − p) (log(s + 2))b 

Then 

i) b = b̂ and c < ĉ Mθ is UI and Mθ(∞) > 0 P -a.s. (the same is true if b < b̂)⇒ 
ii) b = b̂ and c > ĉ Mθ(∞) = 0 P -a.s. (the same is true if b > b̂)⇒ 
Case C (p = 1), inhomogeneous near explosive case: 

Again, consider θ = (θ+, θ−), where θ−( ) ≡ 1 and for given α > 0·

θ+(s) := e α
√
s , s ≥ 0 (see Figure 3-4 below) 

Then 

i) α < 
√

2β Mθ is UI and Mθ(∞) > 0 P -a.s. 

ii) α > 
√

2β 

⇒ 
Mθ(∞) = 0 P -a.s. ⇒ 

The importance of this Theorem comes from the fact that if the martingale Mθ is 

P -uniformly integrable and Mθ(∞) > 0 P -a.s. then, as we shall see later, the measures 

P and Qθ are equivalent on F∞. 

Since under Q̃θ the spine process satisfies 

ξt 
� t 
λ(θ+(s) − θ−(s))ds 

→ 1 a.s. as t → ∞ 
0 
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it would then follow that under P there is a particle with such asymptotic behaviour 

too. That would give the lower bound on the rightmost particle: 

Rt
lim inf ≥ 1, 
t→∞ 

�

0 
t 
λ(θ+(s) − θ−(s))ds 

which we can then optimise over θ+ and θ−. 

The upper bound on the rightmost particle needs a slightly different approach, 

which we present in the last subsection. 

30 25 

Figure 3-4: Plots of θ+(s) when p ∈ (0, 1]


Remark 3.19. Let us note that the only important feature of θ+( ) in cases B and C
·
is its asymptotic growth. By this we mean that we have freedom in defining θ( ) as long ·
as we keep 

θ+(t) ∼ c 
λ(1 − p) 

tb−1 

(log t)b 
as t → ∞ in Case A 

and 

log θ+(t) ∼ α
√
t as t → ∞ in Case B. 

Remark 3.20. Parts A ii), B ii) and C ii) of Theorem 3.18 will not be used in the proof 

of our main result, Theorem 3.4. We included them to better illustrate the behaviour 

of martingales Mθ. 

Recall Theorem 2.9. It gives the following decomposition of the probability measure 

Qθ. 
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� 

Lemma 3.21. Let Mθ be a martingale of the form (3.26) and let Qθ be the correspond

ing probability measure defined via (3.25). Then for events A ∈ F∞ 

Qθ A = lim sup Mθ(t)dP + Qθ A ∩ {lim sup Mθ(t) = (3.27) 
A t→∞ t→∞ 

∞} 

By taking A = Ω we see that 

1 = E(lim sup Mθ(t)) +Qθ(lim sup Mθ(t) = ∞) 
t→∞ t→∞ 

and so immediate consequences of this lemma are: 

1) Qθ(lim supt→∞Mθ(t) = ∞) = 1 lim supt→∞Mθ(t) = 0 P -a.s. So to prove ⇔ 
parts A ii), B ii) and C ii) of Theorem 3.18 we need to show that lim supt→∞Mθ(t) = 

∞ Qθ-a.s. 

2) Qθ(lim supt→∞Mθ(t) < ∞) = 1 EMθ(∞) = 1 and so in this case P (Mθ(∞) >⇒
0) > 0 and also Mθ is L

1-convergent w.r.t P as it follows from Scheffe’s Lemma. Thus 

Mθ is P -uniformly integrable. So to prove the uniform integrability in parts A i), B i) 

and C i) of Theorem 3.18 we need to show that lim supt→∞Mθ(t) < ∞ Qθ-a.s. 

The fact that Mθ(∞) > 0 P -a.s. (in parts A i), B i) and C i)) requires a separate 

proof, which we shall give at the end of this subsection. 

Proof of Theorem 3.18: uniform integrability in A i), B i), C i). We start with prov

ing that for the given values of θ in A i), B i) and C i) Mθ is UI. As we just said above, 

it is sufficient to prove that 

lim sup Mθ(t) < ∞ Qθ-a.s. (3.28) 
t→∞ 

for the given paths θ. And we have already seen how to do this using the spine 

decomposition. 

Recall that 

EQ̃θ(Mθ(t)|G̃∞) = spine(t) + sum(t), (3.29) 

where 

� � t � t 

spine(t) = exp log θ+(s)dξs 
+ + log θ−(s)dξs

−
0 0 

� t � t � 

+ λ 
0 

(2 − θ+(s) − θ−(s))ds − β 
0 
|ξs|pds (3.30) 
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� 

and


sum(t) = spine(Su) (3.31) 

u∈nodet(ξ) 

� � � Su 
� Su 

= exp log θ+(s)dξs 
+ + log θ−(s)dξs

−
0 0u<nodet(ξ) 

� Su 
� Su � 

+ λ 
0 

(2 − θ+(s) − θ−(s))ds − β 
0 

|ξs|pds , 

where {Su : u ∈ ξ} is the set of fission times along the spine. 

We shall prove the following fact. 

Proposition 3.22. 

lim sup EQ̃θ(Mθ(t)|G̃∞) < ∞ Q̃θ-a.s. 
t→∞ 

Then (3.28) follows from Proposition 3.22 just as we have seen it in Chapter 2: 

EQ̃θ(lim inf Mθ(t)|G̃∞) ≤ lim inf EQ̃θ (Mθ(t)|G̃∞) 
t→∞ t→∞ 

≤ lim sup EQ̃θ(Mθ(t)|G̃∞) < +∞ Q̃θ-a.s., 
t→∞ 

by conditional Fatou’s lemma. Hence 

lim inf Mθ(t) < ∞ Q̃θ-a.s. 
t→∞ 

� 1 � 

and thus also Qθ-a.s. Since is a positive Qθ-supermartingale (as it follows 
Mθ(t) t≥0 

from the definition of Qθ) it must converge Qθ-a.s. So Mθ(t) also converges Qθ-a.s. 

Thus 

lim sup Mθ(t) = lim inf Mθ(t) < ∞ Qθ-a.s. 
t→∞ t→∞ 

It remains to prove Proposition 3.22. The cases p = 0, p ∈ (0, 1) and p = 1 need 

slightly different approach and so will be dealt with separately. 

Proof of Proposition 3.22: Case A (p = 0). We start by looking at the spine 

term (3.30). The following proposition gives us a useful bound on spine(t). 

Proposition 3.23. There exist some positive constant C ′′ and a Q̃θ-a.s. finite time 

T such that ∀t > T ′ ′ 

spine(t) ≤ e−C ′′ t . 

Proof of Proposition 3.23. We are given parameter θ = (θ+, θ−), where θ+( ) ≡ θ0 and ·
θ−(·) ≡ θ

1 
0 
. Under Q̃θ, (ξt 

+)t≥0 = 
d 
PP (λθ0) and (ξt

−)t≥0 = 
d 
PP ( λ ). θ0 
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� 

From Proposition 3.12 we know that 

� t 
0 log θ0dξs 

+ ξt 
+ 

= 1 Q̃θ-a.s. 
λθ0 log θ0t λθ0t 

→

Hence there exists a Q̃θ-a.s. finite time Tǫ 
+ such that 

(1 − ǫ)λθ0t ≤ ξ+ ≤ (1 + ǫ)λθ0t ∀t > T + 
t ǫ 

Similarly there exists a Q̃θ-a.s. finite time Tǫ
− such that 

λ λ 
(1 − ǫ) t ≤ ξt

− ≤ (1 + ǫ) t ∀t > Tǫ
−

θ0 θ0 

Letting Tǫ = Tǫ
− ∨ Tǫ + we get 

� 1 � 1 �
spine(t) ≤ exp λ(1 + ǫ)θ0 log θ0t + λ(1 − ǫ) log t 

θ0 θ0 
� 1 � � 

+ λ 2 − θ0 − t − βt 
θ0 

�� � � 1 � � � � 

= exp λ g(θ0) + ǫ θ0 + log θ0 − β t ∀t ≥ Tǫ. 
θ0 

Since θ0 < θ̂ and g( ) is increasing (see Figure 3-2) we have ·

g(θ0) < g(θ̂) = 
β 

. 
λ 

Hence for ǫ small enough 

� � 1 � � 

λ g(θ0) + ǫ θ0 + log θ0 − β < 0. 
θ0 

We thus let T = Tǫ and C = −λ g(θ0) + ǫ
�
θ0 + θ

1 
0 

�
log θ0 − β to finish the proof of ′ ′′ 

Proposition 3.23. 

Now, for t > T the sum term is ′ 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

� � � � � 
′′ Su 

� 

≤ spine(Su) + e−C 

′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

using Proposition 3.23 for the inequality. The first sum is Q̃θ-a.s. bounded since it 

only counts births up to time T . Call an upper bound on the first sum C1. 
′ 
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Then we have 

sum(t) ≤ C1 + 

∞
e−C ′′ Sn , (3.32) 

n=1 

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t∈[0,∞) is a Poisson process with rate 2β 

(Recall Proposition 1.13). Thus 

nt 
2β Q̃θ-a.s. as t → ∞. 

t 
→

Hence 
Sn 1 

n 
→ 

2β
Q̃θ-a.s. as t → ∞. (3.33) 

So for some Q̃θ-a.s. finite positive random variable C2 we have 

Sn ≥ C2n ∀n. 

Then substituting this into (3.32) we get 

sum(t) ≤ C1 + 
∞
e−C ′′ C2n , 

n=1 

which is bounded Q̃θ-a.s. We have thus shown that 

lim sup EQ̃θ 

� 

Mθ(t)
�
�G̃∞ 

� 

< ∞ Q̃θ-a.s. 
t→∞ 

Proof of Proposition 3.22: Case B (p ∈ (0, 1)). We are given parameter θ = (θ+, θ−), 
c sb−1 

where θ−(·) ≡ 1, θ+(s) = 
λ(1 − p) (log(s + 2))b 

, s ≥ 0. Again, we start by giving an 

upper bound on the spine term (3.30). 

Proposition 3.24. There exist some Q̃θ-a.s. finite positive random variables C , C′ ′′ 

and a random time T < ∞ such that ∀t > T ′ ′ 

� � t sbp � 

spine(t) ≤ C ′ exp − C ′′ 
(log(s + 2))bp ds . 

0 

Proof of Proposition 3.24. Simple calculus tells us that for constants k1 > 0 and k2 ∈ R 

� t 

s k1
�
log(s + 2)

�k2ds ∼
k1 

1

+ 1 
tk1+1

�
log(t + 2)

�k2 as t → ∞. (3.34) 
0 

Hence one can check that the following are true as t → ∞ for θ+: 
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� t	 c tb 

0• λθ+(s)ds	 ∼ 
b(1 − p) (log(t + 2))b 

→ ∞ 

log θ+(t)λθ+(t) ∼ c(b − 1) tb−1 

•	
1 − p (log(t + 2))b−1


log θ+(t)
� t 
λθ+(s)ds
• lim supt→∞ �

0 
t 
log θ+(s

0 

) λθ+(s)ds 
= 1 < ∞ 

Under Q̃θ the process (ξ+)t∈[0,∞) is an inhomogeneous Poisson process with jump rate t 

λθ+(t) as it follows from Proposition 3.14 and (ξ−)t∈[0,∞) is a Poisson process of rate t 

λ. 

Hence from Proposition 3.12 and Proposition3.13 we have that 

ξt 
+ 

• �
λθ+(s)ds 

→ 1 Q̃θ -a.s. t 
0 

ξt
−

1 Q̃θ-a.s. • 
λt 

→
� t 
0 log θ

+(s)dξs 
+ 

1 Q̃θ -a.s. • � t 
log θ+(s) λθ+(s)ds 

→
0 

Since 
� t 
λθ+(s)ds ≫ λt the first two equations give 0 

ξt 
= 

ξt 
+ − ξt

−
1 Q̃θ-a.s. � t	 � t

λθ+(s)ds	 λθ+(s)ds 
→

0	 0 

Combining the previous observations we get that ∀ǫ > 0 ∃ Q̃θ-a.s. finite time Tǫ such 

that ∀t > Tǫ the following inequalities are true: 

(1− ǫ)
� t 

log θ+(s) λθ+(s)ds < 
� t 

log θ+(s)dξ+ < (1+ ǫ)
� t 

log θ+(s) λθ+(s)ds•	 0 0 s 0 

c(b − 1) tb−1 c(b − 1) tb−1 

• (1−ǫ)
1 − p (log(t + 2))b−1 

< log θ+(t) λθ+(t) < (1+ǫ)
1 − p (log(t + 2))b−1 

c tb	 c tb • (1 − ǫ)
b(1 − p) (log(t + 2))b 

< ξt < (1 + ǫ)
b(1 − p) (log(t + 2))b


tb−1


• −ǫ 
(log(t + 2))b−1 

< λ(1 − θ+(t)) < 0 

Thus, for t > Tǫ we have 

� � t � t � t � 

spine(t) = exp 
0 

log θ+(s)dξs 
+ + λ 

0 
(1 − θ+(s))ds − β 

0 
|ξs|pds 

s
< Cǫ exp 

�� t 

(1 + ǫ)2
c(b − 1) b−1 

0 1 − p (log(s + 2))b−1 

� c sb �p � 

− β (1 − ǫ)
b(1 − p) (log(s + 2))b 

ds , 
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where Cǫ is some a.s. finite random variable, which doesn’t depend on t. 

Then if b < b̂ it is true that bp > b − 1 and so sb−1 ≪ sbp. Hence the negative term 

in the exponential dominates the positive one and this proves Proposition 3.24. 

If b = b̂ (that is, if bp = b − 1) but c < ĉ then 

s b̂−1 � s b̂ �p 
= 

(log(s + 2))b̂−1 (log(s + 2))b̂ 

but 

(1 + ǫ)2
c(

1

b̂ 
−
−
p 
1) − β(1 − ǫ)p 

� 

b̂(1

c 

− p) 

�p 

=(1 + ǫ)2 c 
(1 −

p

p)2 
− β(1 − ǫ)pcp 

p �(1 + ǫ)2 � 

=cp(1 − ǫ)p 

(1 − p)2 (1 − ǫ)p c 
1−p − ĉ1−p 

<0 

for ǫ sufficiently small. So letting T ′ = Tǫ, C
′ = Cǫ and C ′′ = (1+ǫ)2c

(1−
p
p)2 

−β(1−ǫ)pcp 

we prove Proposition 3.24. 

For the sum term we have when t > T ′ 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

≤ spine(Su) 
′u<nodet(ξ), Su≤T 

� � � Su sbp � 

+ C ′ exp − C ′′ 
(log(s + 2))bp ds 

′ 0u<nodet(ξ), Su>T 

using Proposition 3.24 for the inequality. The first sum is Q̃θ-a.s. bounded since it 

only counts births up to time T . Call an upper bound on the first sum C1. Then we ′ 

have ∞ � � Sn bp �� s
sum(t) ≤ C1 + C ′ exp − C ′′ 

(log(s + 2))bp ds , (3.35) 
n=1 0 

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t∈[0,∞) conditional on the path of the spine is 

time-inhomogeneous Poisson process (or Cox process) with jump rate 2β|ξt|p at time t 
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� 

� 

(recall Proposition 1.13). Thus 

�

0 
t 
2β

n

|ξ
t

s|pds 
→ 1 Q̃θ-a.s. as t → ∞. 

Also � t � c �p 
� t sbp 

0 
|ξs|pds ∼ 

b(1 − p) 0 (log(s + 2))bp ds Q̃θ-a.s. as t → ∞. 

Hence 
� c �p 

� t sbp 

nt ∼ 2β
b(1 − p) (log(s + 2))bp ds Q̃θ-a.s. as t → ∞. (3.36) 

0 

So for some Q̃θ-a.s. finite positive random variable C2 we have 

�	 Sn bp s

(log(s + 2))bp ds ≥ C2n ∀n. 
0 

Then substituting this into (3.35) we get 

sum(t) ≤ C1 + C ′
∞
e−C ′′ C2n , 

n=1 

which is bounded Q̃θ-a.s. We have thus shown that 

lim sup EQ̃θ 

� 

Mθ(t)
�
�G̃∞ 

� 

< ∞ Q̃θ-a.s. 
t→∞ 

Proof of Proposition 3.22: Case C (p = 1). We are given θ = (θ+, θ−), where 

θ−( ) ≡ 1, θ+(s) = eα
√
s . We prove the following upper bound on spine(t). ·

Proposition 3.25. There exist some Q̃θ-a.s. finite positive random variables C , C′ ′′ 

and a random time T < ∞ such that ∀t > T ′	 ′ 

spine(t) ≤ C ′ exp 
� 

−C ′′ 
� t √

se α
√
sds . 

0 

Proof of Proposition 3.25. Simple calculus tells us that for constant k ≥ 0 

�	 t 
k k+s	 e α

√
sds ∼ 2 

t 2
1 

e α
√
t as t → ∞. (3.37) 

α0 

Hence as t → ∞ 
� t •	 0 λθ

+(s)ds ∼ λα 
2
√
teα

√
t → ∞


log θ+(t)λθ+(t) ∼ λα
√
teα

√
t
• 
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� 

� 

� 

log θ+(t)
�

0 
t 
λθ+(s)ds • lim supt→∞ �

0 
t 
log θ+(s) λθ+(s)ds 

= 1 < ∞ 

As in Case B it then follows that 

• �

0 
t 
λθ

ξ
+

t 

(s)ds 
→ 1 Q̃θ -a.s.


� t

log θ+(s)dξ+ 

0 s 1 ˜•	 �

0 
t 
log θ+(s) λθ+(s)ds 

→ Qθ -a.s. 

Combining the previous observations we get that ∀ǫ > 0 ∃ Q̃θ-a.s. finite time Tǫ such 

that ∀t > Tǫ the following inequalities are true: 

•	 (1− ǫ)
� t 

log θ+(s) λθ+(s)ds < 
� t 

log θ+(s)dξ+ < (1+ ǫ)
� t 

log θ+(s) λθ+(s)ds0	 0 s 0 

(1 − ǫ)λα
√
teα

√
t < log θ+(t) λθ+(t) < (1 + ǫ)λα

√
teα

√
t • 

(1 − ǫ)λ 2
√
teα

√
t < ξt < (1 + ǫ)λ 2

√
teα

√
t •	 α α


−ǫ
√
teα

√
t < λ(1 − θ+(t)) < 0
• 

Thus for t > Tǫ 

�� t � t	 � t � 

spine(t) = exp 
0 

log θ+(s)dξ+ + λ 
0 

(1 − θ+(s))ds − β 
0 
|ξs|dss 

< Cǫ exp 
� � t 

(1 + ǫ)αλ
√
se α

√
s �

(1 − ǫ)λ 
2
√
s
e α

√
s
�
ds 

� 

− β
α0 

for some finite random variable Cǫ. Then for α < 
√

2β we have that 

2 
(1 + ǫ)α − β(1 − ǫ) < 0 

α 

provided ǫ was chosen small enough and this proves Proposition 3.25. 

We then deal with sum(t) in the usual way: 

sum(t) ≤	 spine(Su) 
′ u<nodet(ξ), Su≤T 

+ 
� 

C ′ exp 
� 

− C ′′ 
� Su √

se α
√
sds 

′	 0u<nodet(ξ), Su>T 

≤ C1 + C ′
∞

exp 
� 

− C ′′ 
� Sn √

se α
√
sds 

� 

,	 (3.38) 
0 n=1 

where C1 < ∞ and Sn is the time of the nth birth on the spine. 
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� 

The birth process along the spine (nt)t∈[0,∞) satisfies 

�

0 
t 
2β

n

|ξ
t

s|pds 
→ 1 Q̃θ-a.s. as t → ∞. 

Hence 

nt ∼ 4βλ 
� t √

se α
√
sds Q̃θ-a.s. as t → ∞. (3.39) 

α 0 

So for some Q̃θ-a.s. finite positive random variable C2 we have 

� Sn √
se α

√
sds ≥ C2n ∀n. 

0 

Then substituting this into (3.38) we get 

sum(t) ≤ C1 + C ′
∞
e−C ′′ C2n , 

n=1 

which gives 

lim sup EQ̃θ 

� 

Mθ(t)�
� 

G̃∞ 
� 

< ∞ Q̃θ-a.s. 
t→∞ 

This completes the proof of Proposition 3.22 and hence also the proof of uniform 

integrability and the fact that P (Mθ(∞) > 0) > 0 in Theorem 3.18. 

Proof of Theorem 3.18: parts A ii), B ii), C ii). Since one of the particles at time t is 

the spine, we have 

� � t � t


Mθ(t) ≥ exp log(θ+(s))dξs 
+ + log(θ−(s))dξs

−

0 0 
� t � t � 

+ λ 
0 

(2 − θ+(s) − θ−(s))ds − β 
0 
|ξs|pds = spine(t). 

For the paths θ in parts ii) of Theorem 3.18 one can check (following the same analysis 

as in the proof of parts i) of the Theorem) that spine(t) → ∞ Q̃θ-a.s. Thus 

lim sup Mθ(t) = Q̃θ-a.s. ∞
t→∞ 

and so also Qθ-a.s. Recalling (3.27) we see that Mθ(∞) = 0 P -a.s. for the proposed 

choices of θ. 

It remains to show that in parts A i), B i) and C i) of Theorem 3.18 

P (Mθ(∞) > 0) = 1. The following lemma will do the job. 
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� � 

Lemma 3.26. Let q : Z [0, 1] be such that Mt := 
� 

q(Xu(t)) is a P -martingale. → u∈Nt 

Then q(x) ≡ q ∈ {0, 1}. 

Proof of Lemma 3.26. Since Mt is a martingale and one of the particles alive at time 

t is the spine we have 

q(x) = ExMt = ẼxMt ≤ Ẽx q(ξt). 

So q(ξt) is a positive P̃ -submartingale. Since it is bounded it converges P̃ -a.s. to some 

limit q∞. We also know that under P̃ , (ξt)t≥0 is a continuous-time random walk, which 

is recurrent (recall Proposition 3.1). Recurrence of (ξt)t≥0 implies that q∞ ≡ q(0) and 

that q(x) is constant in x. 

Now suppose for contradiction that q(0) ∈ (0, 1). Then 

Mt = 
� 

q(Xu(t)) = q(0)|Nt| 0→
u∈Nt 

because Nt Since M is bounded it is uniformly integrable, so q(0) = EM = 0, | | → ∞. ∞ 
which is a contradiction. So q(0) ∈/ (0, 1) and thus q(0) ∈ {0, 1}. 

Proof of Theorem 3.18: positivity of limits in A i), B i), C i). We apply Lemma 3.26 

to q(x) = P x(Mθ(∞) = 0). By the tower propery of conditional expectations and the 

branching Markov property we have 

q(x) = Ex 
� 

P x
�
Mθ(∞) = 0�

� 

Ft 
�� 

= Ex 
� � 

q 
�
Xu(t)

�� 

u∈Nt 

whence 
� 

u∈Nt 
q(Xu(t)) is a P -martingale. Also E(Mθ(∞)) = Mθ(0) = 1 > 0. There

fore P (Mθ(∞) = 0) �= 1. So by Lemma 3.26 P (Mθ(∞) = 0) = 0. 

One should note that the above argument is very similar to the zero-one law we 

proved in Chapter 2 (see Proposition 2.2, Corollary 2.3 and Remark 2.4). 

Let us summarise what we have shown in this subsection. Suppose parameter θ is 

chosen as in parts A i), B i) or C i) of Theorem 3.18. We have proved that in those 

cases: 

1. lim supt→∞Mθ(t) < ∞ Qθ-a.s. 

2. Mθ is P -uniformly integrable 

3. Mθ(∞) > 0 P -a.s. 

Thus from Lemma 3.21 for events A ∈ F∞ 

Qθ(A) = E 1AMθ(∞)
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and also 

Qθ(A) = 1 P (A) = 1. (3.40) ⇔

In other words Qθ and P are equivalent. 

3.4.3 Lower bound on the rightmost particle 

Now we can apply (3.40) to get lower bounds for Theorem 3.4. 

Proposition 3.27. Let â, b̂ and ĉ be as defined in Theorem 3.4. Then for different 

values of p we have the following. 

Case A (p = 0): 
Rt

lim inf a P -a.s. ≥ ˆ
t→∞ t


Case B (p ∈ (0, 1)):

� log t�b̂ 

lim inf Rt ≥ ĉ P -a.s.

t→∞ t


Case C (p = 1):

logRt �


lim inf √
t 

≥ 2β P -a.s. 
t→∞ 

Proof. 

Case A (p = 0):


We consider θ = (θ+, θ−), where θ+( ) ≡ θ0, θ
−( ) ≡ θ

1 
0 

and θ0 < θ̂.
· ·
Let a0 := λ(θ0 − 1 ). Take the event θ0 

� Xu(t) 
� 

Ba0 := infinite line of descent u : lim inf = a0∃
t→∞ t 

∈ F∞. 

Then 

Q̃θ( lim 
ξt 

= a0) = 1 
t→∞ t 

Q̃θ(Ba0) = 1⇒ 
Qθ(Ba0) = 1⇒
P (Ba0) = 1 by (3.40) ⇒

� Rt �
P lim inf a0 = 1. ⇒

t→∞ t 
≥

Taking the limit θ0 ր θ̂ we get a0 ր â and thus 

� Rt �
P lim inf ≥ â = 1. 

t→∞ t 

Case B (p ∈ (0, 1)): 
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ˆ
c sb−1 

Consider θ = (θ+, θ−), where θ−(·) ≡ 1, θ+(s) = 
λ(1 − p) (log(s + 2))b̂ 

and c < ĉ. 

Take the event 
� � log t�b̂ � 

Bc := ∃u : lim inf Xu(t) = c . 
t→∞ t 

Same argument as above gives that 

P (Bc) = 1 

� � log t�b̂ � 

P lim inf Rt ≥ c = 1 ∀c < ĉ⇒
t→∞ t 

� � log t�b̂ � 

P lim inf Rt ≥ ĉ = 1. ⇒
t→∞ t 

Case C (p = 1):


Consider θ = (θ+, θ−), where θ−( ) ≡ 1, θ+(s) = eα
√
s and α < 

√
2β. Take the
·

event 
� logXu(t) � � 

Bα := ∃u : lim inf √
t 

= 2β . 
t→∞ 

Same argument as above gives that 

P (Bα) = 1 
� logRt 

� �

⇒
t→∞ 

√
t 

≥ α = 1 ∀α < 2βP lim inf 

� logRt � � 

⇒P lim inf √
t 

≥ 2β = 1. 
t→∞ 

3.4.4 Upper bound on the rightmost particle 

To complete the proof of Theorem 3.4 and hence the whole section we need to prove 

the following result. 

Proposition 3.28. Let â, b̂ and ĉ be as defined in Theorem 3.4. Then for different 

values of p we have the following. 

Case A (p = 0): 
Rt

lim sup a P -a.s. ≤ ˆ
t→∞ t


Case B (p ∈ (0, 1)):


� log t�b̂ 
lim sup Rt ≤ ĉ P -a.s. 
t→∞ t 
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� 

Case C (p = 1):

logRt �


lim sup √
t 

≤ 2β P -a.s. 
t→∞ 

To prove Proposition 3.28 we shall assume for contradiction that it is false. Then 

we shall show that under such assumption certain additive P -martingales will diverge 

to ∞ contradicting the Martingale Convergence Theorem. 

We start by proving the following 0-1 law. 

Lemma 3.29. For all a0, b, c, α > 0 

In Case A (p = 0): 
� Rt 

� 

P lim sup 
t 

≤ a0 ∈ {0, 1}. 
t→∞ 

In Case B (p ∈ (0, 1)): 

� � log t�b
� 

P lim sup 
t

Rt ≤ c ∈ {0, 1}. 
t→∞ 

In Case C (p = 1): 

� logRt 
� 

P lim sup √
t 

≤ α ∈ {0, 1}. 
t→∞ 

Proof. We consider 

in Case A (p = 0):

� Rt 

�


q1(x) = P x lim sup 
t 

≤ a0 ,

t→∞ 

in Case B (p ∈ (0, 1)): 

q2(x) = P x 
� 

lim sup 
� log t�b

Rt ≤ c 
� 

,

t→∞ t


in Case C (p = 1):


q3(x) = P x 
� 

lim sup 
log√R

t 
t ≤ α 

� 

. 
t→∞ 

Then in Case A 

q1(x) = Ex 
� 

P x
�
lim sup 

R

t 
t ≤ a0

�
� 

Ft 
�� 

= Ex 
� � 

q1 
�
Xu(t)

�� 

t→∞ 
u∈Nt 

so that 
� 

u∈Nt 
q1(Xu(t)) is a martingale. Similarly 

� 

u∈Nt 
q2(Xu(t)) and 

u∈Nt 
q3(Xu(t)) are martingales in cases B and C respectively. Applying Lemma 3.26 

to q1( ), q2( ) and q3( ) we obtain the required result. · · ·
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Proof of Proposition 3.28. The first step of the proof is slightly different for cases A, 

B and C, so we do it for the 3 cases separately. 

Case A (p = 0) 

Let us suppose for contradiction that ∃a0 > â such that 

� Rt 
� 

P lim sup > a0 = 1. (3.41) 
t→∞ t 

1 
Choose any a1 ∈ (â, a0) and take θ = (θ+, θ−), where θ+(·) ≡ θA, θ−(·) = 

θA 
and θA 

is the unique solution of 
� 1 � 

a1 = λ θA − . 
θA 

Let 

fA(s) := a1s. 

Case B (p ∈ (0, 1))


Let us suppose for contradiction that ∃c0 > ĉ such that


� � log t�b̂
� 

P lim sup Rt > c0 = 1. (3.42) 
t→∞ t 

1 
Choose any c1 ∈ (ĉ, c0) and take θ = (θ+, θ−), where θ+(s) = θB(s), θ−(s) = 

θB (s) 
and 

c1 s b̂−1 

θB (s) = 
ˆ
. 

λ(1 − p) (log(s + 2))b 

Let 
� s �b̂ 

fB(s) := c1 . 
log(s + 2)


Case C (p = 1)


Let us suppose for contradiction that ∃α0 > 
√

2β such that


� logRt 
� 

P lim sup √
t 

> α0 = 1. (3.43) 
t→∞ 

Choose any α1 ∈ (
√

2β, α0) and take θ = (θ+, θ−), where θ+(s) = θC (s), θ
−(s) =

1 

θC (s) 
and 

1 α1
√
sθC (s) = e .√

s + 1 

Let 
α1

√
sfC (s) := e . 

The next step in the proof is the same for cases A, B and C.


Let us write f to denote fA, fB and fC . We define D(f) to be the space-time region
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� � 

bounded above by the curve y = f(t) and below by the curve y = −f (t). 

Under P the spine process (ξt)t≥0 is a continuous-time random walk and so 
|ξt| 

0 P -a.s. as t → ∞. Hence there exists an a.s. finite random time T ′ < ∞ such 
t 

→
that ξt ∈ D(f) for all t > T . ′ 

Since (ξt)t≥0 is recurrent it will spend an infinite amount of time at position y = 1. 

During this time it will be giving birth to offspring at rate β. This assures us of the 

existence of an infinite sequence {Tn}n∈N of birth times along the path of the spine 

when it stays at y = 1 with 0 ≤ T ′ ≤ T1 < T2 < ... and Tn ր ∞. 

Denote by un the label of the particle born at time Tn, which does not continue the 

spine. Then each particle un gives rise to an independent copy of the Branching random 

walk under P started from ξTn at time Tn. Almost surely, by assumptions (3.41), (3.42) 

and (3.43), each un has some descendant that leaves the space-time region D(f). 

Let {vn}n∈N be the subsequence of {un}n∈N of those particles whose first descendent 

leaving D(f) does this by crossing the upper boundary y = f (t). Since the breeding 

potential is symmetric and the particles un are born in the upper half-plane, there is at 
1 

least probability that the first descendant of un to leave D(f) does this by crossing 

the positive boundary curve. Therefore P -a.s. the sequence {vn}n∈N is infinite. 

Let wn be the decsendent of vn, which exits D(f) first and let Jn be the time when 

this occurs. That is, 

Jn = inf t : Xwn (t) ≥ f(t) . 

2 

ξt 

1 

T ′ T1 T2 T3 

J1 J2 

f(t) 

−f(t) 

u3 = v2 

w2 

u2 

u1 = v1 = w1 

Figure 3-5: Illustration to Proposition 3.28 
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�� � � 

Note that the path of particle wn satisfies 

|Xwn (s)| < f(s) ∀s ∈ [T ′, Jn). 

Clearly Jn To obtain a contradiction we shall show that the → ∞ as n → ∞. 

additive martingale Mθ fails to converge along the sequence of times {Jn}n≥1, where θ 

was defined above differently for cases A, B and C. Thus for the last bit of the proof 

we have to look at cases A, B and C separately again. 

Case A (p = 0) 

� � � Jn 
� Jn � 1 �


Mθ(Jn) = exp log θAdXu 
+(s) + log dXu

−(s)

0 0 θA


u∈NJn 

� Jn � 1 �
� Jn � 

+ λ 2 − θA − ds − β 1ds 
0 θA 0 

≥ exp 
� � Jn 

log θAdX+ (s) + 

� Jn 

log
� 1 �

dX− (s) 
0 

wn
0 θA

wn

� Jn � 1 �
� Jn � 

+ λ 2 − θA − ds − β 1ds 
0 θA 0 

= exp 
� 

log θAXw
+ 

n 
(Jn) − log θAXw

−
n 
(Jn) + λ

�
2 − θA − 1 �

Jn − βJn 

� 

θA 
� � 1 � � 

= exp log θAXwn (Jn) + λ 2 − θA −
θA 

Jn − βJn 

� � 1 � � 

≥ exp a1Jn log θA + λ 2 − θA −
θA 

Jn − βJn 

�� � 1 � � 1 � � � 

= exp λ (θA −
θA 

log θA + λ 2 − θA −
θA 

− β Jn 

= exp λg(θA) − β Jn . 

Then since g( ) is increasing, θA > θ̂ and g(θ̂) = βλ it follows that ·

λg(θA) − β > 0 

and thus Mθ(Jn) → ∞ as n → ∞, which is a contradiction. Therefore assumption 

(3.41) is wrong and we must have that ∀a0 > â

� Rt 
� 

P lim sup > a0 = 1. 
t 

�
t→∞ 
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It follows from Lemma 3.29 that ∀a0 > â

� Rt 
� 

P lim sup > a0 = 0 
t→∞ t 

� Rt 
� 

⇒P lim sup 
t 

≤ a0 = 1 
t→∞ 

� Rt 
� 

P lim sup a = 1⇒
t→∞ t 

≤ ˆ

after taking the limit a0 ց â. This proves Proposition 3.28 in Case A. 

Case B (p ∈ (0, 1)) 

� � � Jn 
� Jn � 1 �

Mθ(Jn) = exp log θB(s)dXu 
+(s) + log dXu

−(s) 
0 0 θB (s) 

u∈NJn 

� Jn � 1 �
� Jn � 

+ λ 
0 

2 − θB(s) −
θB(s)

ds − β 
0 

|Xu(s)|pds 

≥ exp 
�� Jn 

log θB(s)dX+ (s) + 

� Jn 

log
� 1 �

dX− (s)wn wn
0 0 θB(s) 

� Jn � 1 �
� Jn � 

+ λ 
0 

2 − θB(s) −
θB(s)

ds − β 
0 

|Xwn (s)|pds . 

Applying the integration by parts formula from Proposition 3.11 we get 

′ 
exp 

� 

log θB(Jn)Xw
+ 

n 
(Jn

� Jn θB(s)
Xw

+ 
n 
(s)ds) − 

0 θB(s) 
� Jn θB(s)′ 

− log θB(Jn)X
− (Jn) + 

θB(s) 
Xw

−
n 
(s)dswn 

0 
� Jn � 1 �

� Jn � 

+ λ 
0 

2 − θB (s) −
θB(s)

ds − β 
0 

|Xwn (s)|pds 
� � Jn θ′ (s) 

= exp log θB(Jn)Xwn (Jn) − B Xwn (s)ds 
0 θB(s) 

� Jn � 1 �
� Jn � 

+ λ 
0 

2 − θB (s) −
θB(s)

ds − β 
0 

|Xwn (s)|pds 
� � Jn θB

′ (s) ≥C exp log θB(Jn)fB(Jn) − 
θB(s) 

fB(s)ds 
0 

� Jn � 1 �
� Jn � 

+ λ 2 − θB (s) − ds − β fB(s)pds 
0 θB(s) 0 

using the facts that Xwn (Jn) ≥ fB(Jn) and |Xwn (s)| < fB(s) for s ∈ [T ′, Jn) and 

where C is some P -a.s positive random variable. Now asymptotic properties of θB( )·
and fB( ) of the form 3.34 give us that for any ǫ > 0 and n large enough the above ·
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expression is 

≥ Cǫ exp 
� 

(b̂ − 1)c1 
(Jn)

b̂ 

b̂−1
(1 − ǫ) − βcp 

ˆ

1 (Jn)
b̂ 

b̂−1
(1 + ǫ) 

� 

1 
(log Jn) b (log Jn)

for some P -a.s. positive random variable Cǫ. Then since c1 > ĉ

(b̂ − 1)c1(1 − ǫ) − βcp 1 
(1 + ǫ)1
b̂ 

p=c1(b̂ − 1)(1 − ǫ) 
� 

c 11
−p 1 + ǫ

β 
ˆ

1 � 

−
1 − ǫ b(b̂ − 1) 

� 1 + ǫ� 
p=c1(b̂ − 1)(1 − ǫ) c 11

−p − ĉ1−p 

1 − ǫ 

>0 

for ǫ small enough. Thus Mθ(Jn) → ∞ as n → ∞, which is a contradiction. Therefore 

assumption (3.42) is wrong and we must have that ∀c0 > ĉ

� � log t�b̂
� 

P lim sup Rt > c0 = 1. 
t 

�
t→∞ 

It follows from Lemma 3.29 that ∀c0 > ĉ

� � log t�b̂
� 

P lim sup Rt > c0 = 0 
t→∞ t 

� � log t�b̂
� 

⇒P lim sup 
t

Rt ≤ c0 = 1 
t→∞ 

� � log t�b̂
� 

⇒P lim sup 
t

Rt ≤ ĉ = 1 
t→∞ 

after taking the limit c0 ց ĉ. This proves Proposition 3.28 in Case B. 

Case C (p = 1) 

Essentially the same argument as in Case B gives that for any ǫ > 0 and n large 

enough 

Mθ(Jn) ≥ Cǫ exp 
� 

(1 − ǫ)α1 

� 

Jne 
α1

√
Jn − (1 + ǫ)

2β � 

Jne 
α1

√
Jn 

� 

α1 

for some Cǫ > 0 P -a.s. Then since α1 > 
√

2β 

2β 
(1 − ǫ)α1 − (1 + ǫ) > 0 

α1 

for ǫ chosen sufficiently small. Therefore Mθ(Jn) → ∞, which is a contradiction. Hence 

∀α0 > 
√

2β 
� logRt 

� 

P lim sup √
t 

≤ α0 = 1 
t→∞ 
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and therefore

� logRt � � 

P lim sup 2β = 1. √
t 

≤
t→∞ 

This finishes the proof of Proposition 3.28 and also Theorem 3.4
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Chapter 4 

Branching Lévy processes 

In this chapter we study branching processes in the potential β(x) = β|x|p, p ≥ 0, 

β > 0, where single particles in the system move according to a given Lévy process. 

Since Brownian motion and a continuous-time random walk are special instances of a 

Lévy process, we shall see how earlier results from [22] and Chapter 3 of this thesis fit 

into the general framework. 

The class of all the Lévy processes is quite large, and earlier proofs cannot be 

generalised to all the members of this class. An important restriction one has to 

impose on the processes is that they must have finite exponential moments. This will 

assure us of the existence of exponential martingales, which are crucial in the analysis. 

The case of homogeneous branching (p = 0) has been studied by J. Biggins in [6] 

and [7], where he gave the asymptotic growth of the rightmost particle. We shall give 

an alternative proof using spine techniques. We shall then extend this result subject to 

some further restrictions on the underlying Lévy processes to the case p ∈ (0, 1), which 

we show to be non-explosive. 

4.1 Lévy processes 

In this preliminary section we give some general information about Lévy processes that 

we need to know in order to understand the rest of the chapter. 

There are numerous books on the general theory of Lévy processes. Let us mention 

[1], [31], [4], [25]. Everything we shall claim about Lévy processes in this section can 

be found in one of these books. 

Definition 4.1 (Lévy process). An R-valued process (Xt)t≥0 on some probability space 

is said to be a Lévy process under probability P if 

• X0 = 0 P-a.s 

• The paths of X are P-a.s. càdlàg (that is, right continuous with left limits) 
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d •	 For 0 ≤ s ≤ t, Xt −Xs = Xt−s 

•	 For 0 ≤ s ≤ t, Xt −Xs is independent of σ(Xu : u ≤ s) 

4.1.1 Characterisation of Lévy processes 

From Definition 4.1 it is easy to check that for γ ∈ R 

Ee iγXt = eΨ(γ)t ∀t ≥ 0	 (4.1) 

for some function Ψ : R C, which is known as the characteristic exponent of the → 
process (Xt)t≥0. Lévy-Khintchine formula gives the following characterisation of Ψ. 

Theorem 4.2 (Lévy-Khintchine). There exists a triplet (a, σ, Π), which we shall call 

a Lévy triplet, where a ∈ R, σ ≥ 0 and Π is a measure on R\{0} satisfying 

(1 ∧ x2)Π(dx) < ∞, such that 
R

1 
� 

Ψ(γ) = iaγ − σ2γ2 + 
� 
e iγx − iγx1|x|<1 − 1

�
Π(dx). (4.2) 

2 R\{0} 

The triplet (a, σ, Π) fully describes the distribution of a Lévy process (Xt)t≥0. We 

shall refer to a, σ and Π as the drift term, the diffusion parameter and the jump 

measure respectively. 
1Note that Π might blow up at the origin, e.g. if Π(dx) = |x|1+α dx, α ∈ (0, 2). 

Example 4.3. Let us give a few examples. 

•	 Standard Brownian motion is a Lévy process with a = 0, σ = 1, Π = 0 and 

Ψ(γ) = 1
2γ

2 .−

•	 Poisson process with jump rate λ is a Lévy process with a = 0, σ = 0, Π = λδ1 

and Ψ(γ) = λ(eiγ − 1). 

•	 More generally, a Compound Poisson process with jump rate λ and jump distribu

tion F (dx) is a Lévy process with a = λ 0<|x|<1 xF (dx), σ = 0, Π(dx) = λF (dx) 

and Ψ(γ) = λ 
� � 

eiγx − 1
�
F (dx).

R\{0} 

Stable process with exponent α ∈ (0, 2) and the property that Xt = 
d 
t1/αX1 ∀t > 0• 

cis a Lévy process with a = 0, σ = 0, Π(dx) = |x|1+α dx for some c > 0. It has 

characteristic exponent Ψ(γ) = −C|γ|α for some C > 0. 

The following well-known theorem describes a general Lévy process as an indepen

dent sum of a Brownian motion with a drift, a Compound Poisson process and a certain 

square-integrable martingale. 
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Theorem 4.4 (Lévy-Itô decomposition). Given a Lévy triplet (a, σ, Π) there exist 

three independent Lévy processes (Xt 
(1) 

)t≥0, (Xt 
(2) 

)t≥0 and (Xt 
(3) 

)t≥0 on some probability 

space such that: 

X(1) is a Brownian motion with diffusion parameter σ and linear drift a, so that • 
it has the characteristic exponent 

Ψ(1)(γ) = aiγ − 1 
σ2γ2 ,

2 

X(2) is a Compound Poisson process with jump rate Π(R\(−1, 1))1 and •	
Π(dx) 

{|x|≥1} 
jump distribution Π(R\(−1,1)) , so that it has the characteristic exponent 

Ψ(2)(γ) = (e iγx − 1)Π(dx), 
|x|≥1 

X(3) is a square-integrable martingale with the characteristic exponent • 

Ψ(3)(γ) = (e iγx − iγx − 1)Π(dx). 
0<|x|<1 

Thus a general characteristic exponent from (4.2) can be decomposed as 

Ψ(γ) = Ψ(1)(γ) + Ψ(2)(γ) + Ψ(3)(γ), 

where Ψ(1)(γ), Ψ(2)(γ) and Ψ(3)(γ) correspond to a Brownian motion with a drift, a 

compound Poisson process and some square-integrable martingale. 

4.1.2 Recurrence and point-recurrence 

Let us now define various notions of recurrence of a Lévy process, that we are going to 

need later. 

Definition 4.5. A Lévy process (Xt)t≥0 is recurrent if 

lim inf Xt = 0 P-a.s. 
t→∞ 

| |

In other words, X returns to any open neighbourhood of 0 infinitely often. 

The following standard result can be found in [31] for example. 

Proposition 4.6. Suppose that a Lévy process (Xt)t≥0 is integrable. That is, E|X1| < 

∞. Then 

(Xt)t≥0 is recurrent EX1 = 0.⇔
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Moreover, it is true for a non-degenerate recurrent Lévy process that 

lim supt→∞Xt = ∞ and lim inft→∞Xt = −∞ P-a.s. 

A stronger notion is the notion of point-recurrence: 

Definition 4.7. A Lévy process (Xt)t≥0 is point-recurrent if 

lim sup 1{Xt=0} = 1 P-a.s. 
t→∞ 

In other words, X returns to {0} infinitely often. 

Example 4.8. The following processes are point-recurrent and thus also recurrent: 

Brownian motion. • 

•	 Continuous-time random walk with jumps of size ±1, which we have studied in 

Chapter 3. 

•	 Recurrent processes which experience jumps in only one direction. Such processes 

are called spectrally-negative or spectrally-positive depending on the direction of 

jumps. Point-recurrence follows from the fact that the process can get to the up

per/lower half-plane from the lower/upper half-plane only by continuously cross

ing the line x = 0. 

•	 Symmetric alpha-stable processes with exponent α ∈ (1, 2). For the proof of point

recurrence see [31]. 

Example 4.9. For an example of a recurrent process which is not point-recurrent 

consider a compound Poisson process which makes jumps of magnitude 1 at rate 1 and 
1jumps of magnitude −

√
2 at rate √

2 
. Such process has 0 mean and so it is recurrent, 

but it will never return to 0 after it made its first jump. 

A lot more discussion about point-recurrence can be found in the book of Sato [31]. 

4.1.3 Laplace exponent and Legendre transform 

As we already mentioned in the preface, we would have to impose the following restric

tion on the Lévy processes that we consider. 

Assumption 4.10. There exist γ−, γ+ ∈ (0, ∞] such that 

Ee γX1 < ∞ ∀γ ∈ (−γ−, γ+).	 (4.3) 

It is actually quite a strong restriction, which doesn’t allow heavy-tailed jumps in 

either direction. Nevertheless, it still leaves us with a large class of Lévy processes 
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to look at. Assumption 4.10 will be imposed on all the Lévy processes we consider 

throughout the rest of this chapter unless we specifically say that it isn’t. 

From Definition 4.1 subject to Assumption 4.10 it is easy to check that 

Ee γXt = e ψ(γ)t ∀t ≥ 0 (4.4) 

for some function ψ : (−γ−, γ+) R, which is known as the Laplace exponent of the →
process X. Analytic extension of the characteristic exponent Ψ gives us the following 

formula. 

Proposition 4.11. For γ ∈ (−γ−, γ+) 

ψ(γ) = aγ +
1 
σ2γ2 + 

�
� 
e γx − γx1|x|<1 − 1

�
Π(dx). (4.5) 

2 R\{0} 

Note that (4.3) tells that Π must have tails which decay (at least) exponentially 

fast. On Figure 4-1 below one can see some examples of a Laplace exponent. 

ψ 

−1 
γ 

1 

ψ 

γ 

γ2 
− γ, a = −1, σ = 1, Π = 0 (b) ψ(γ) = γ2 −|x|1

2
1
2

(a) ψ(γ) = 0, σ = 0, Π(dx) = dx
1−γ2 , a = e

Figure 4-1: Plots of ψ(γ) 

The function ψ is infinitely differentiable (see [25]) and consequently has the following 

properties. 

Proposition 4.12 (Properties of ψ). If we rule out the degenerate case (Xt)t≥0 ≡ 0 

then: 

• ψ(0) = 0, ψ (0) = EX1
′

• ψ(γ) ր ∞ as γ ր γ+ or γ ց −γ− 
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• ψ (γ) > 0 ∀γ ∈ (−γ−, γ+), i.e. ψ is strictly convex and ψ (γ) is strictly increasing ′′ ′

on (−γ−, γ+) 

Since ψ (γ) is increasing it must converge to a limit as γ γ+ . Thus we have two ′ →
possible behaviours of ψ (and this will be important later): 

Case (I): limγ γ+ ψ (γ) = This is the most common case, happening if, for ′
→ ∞. 

example, X makes positive jumps. 

Case (II): limγ γ+ ψ′(γ) < ∞. This is a somewhat degenerate case, which will be →
easy to handle. Note that we must necessarily have γ+ = in this situation and so ∞
we can define ψ (∞) := limγ→∞ ψ′(γ). ′

Since function ψ is convex, we can also define its Legendre transform Λ as follows: 

Definition 4.13. For ψ (0), limγ γ+ ψ (γ)′ ′x ∈ →

Λ(x) := sup 
p≥0

{xp − ψ(p)}. 

Note the domain of Λ. Here as before 

lim ψ′(γ) = 
∞ in Case (I) 

γ γ+ ψ′(∞) in Case (II) →

Λ(x) 

ψ′(0)p 

ψ(p) 

xp 

p 

Figure 4-2: Legendre transform 
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We have the following identity for Λ that will often appear in this chapter:


Λ
�
ψ′(γ)

� 
= γψ′(γ) − ψ(γ) ∀γ ∈ [0, γ+). (4.6) 

Thus Λ has the following geometrical interpetation: if we draw the tangent to ψ 

at a point γ then the intersection of this tangent with the y-axis would be −Λ ψ (γ)′

(see Figure 4-3(a)). 

Note that in Case (II) 

Λ(ψ′(∞)) := sup {ψ′(∞)p − ψ(p)}
p 

= lim Λ(ψ′(γ)) < ∞. 
γ→∞ 

See Figure 4-3(b) below for an illustartion. 

ψ(γ) 

γ 

−Λ
�
ψ ′ (γ)

� 

ψ 

−Λ(ψ′(∞)) 

ψ 

(a) Case (I): ψ(γ) = 1
2
γ2 ,a = 0, σ = 1, Π = 0 (b) Case (II): ψ(γ) = γ + e −γ 

− 1, 
a = 1, σ = 0, Π = δ−1 

Figure 4-3: Illustartion for Λ 

Also Λ (in the domain [ψ (0), limγ γ+ψ ′ (γ))) has the following useful properties. ′
→

Proposition 4.14 (Properties of Λ).	 If we rule out the degenerate case ψ( ) ≡ 0 then: ·

• Λ(ψ (0)) = 0, ′


Λ is strictly increasing, so Λ−1 is well-defined
• 

•	 Λ is strictly convex
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Let us also observe that 

•	 in Case (I) limγ→γ+ Λ(ψ (γ)) = ∞′

•	 in Case (II) limγ→γ+ Λ(ψ (γ)) = Λ(ψ (∞)) < ∞′ ′

Example 4.15 (Case (I)). 

•	 Suppose (Xt)t≥0 is a standard Brownian motion. Then ψ(γ) = 1γ2, the domain 2

of Λ is [0, ∞), Λ(ψ′(γ)) = 1γ2 and Λ(x) = 1x2 .2	 2

•	 Suppose (Xt)t≥0 is a continuous-time random walk from Chapter 3 that makes 

jumps of size ±1 at rate λ. Then ψ(γ) = λ(eγ + e−γ − 2), the domain of Λ 

is [0, ∞), Λ(ψ (γ)) = λ(γeγ γe−γ eγ e−γ + 2) ∼ λγeγ as γ and ′
�√

x2+4λ2+x 
�
− − −	 → ∞ 

Λ(x) = 2λ+x log 2λ −
√
x2 + 4λ2 ∼ x log x as x → ∞ (recall discussion 

at the end of subsection 3.1.3). 

To finish the overview of Lévy processes we give an example of a process from the 

degenerate Case (II). 

Example 4.16 (Case (II)). Let X0 := t − Pt, t ≥ 0, where (Pt)t≥0 = 
d 
PP (1). So X0 

t 

has constant linear upward drift and makes negative jumps of size 1 at rate 1. 

Then for such process ψ(γ) = γ + e−γ − 1 (see Figure 4-3(b)), ψ′(γ) = 1− e−γ → 1 

as γ → ∞, the domain of Λ is [0, 1) and Λ(ψ′(γ)) = 1 − γe−γ − e−γ → 1 as γ → ∞. 

Note that this process always stays below the line x = t (see Figure 4-4). 

X0 
t 

t 

Figure 4-4: Sample path of Xt 
0 with ψ(γ) = γ + e−γ − 1 
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4.2 Branching model and main results 

4.2.1 Description of the model 

We are going to study a binary branching process started from 0, where branching 

occurs at instantaneous rate β(·) = β| · |p, with β > 0 and p ≥ 0 and single particles 

move according to a given Lévy process (Xt)t≥0. 

That is, we start with a single particle at the origin, which moves in R according 

to a certain Lévy process. At instantaneous rate β x p, where x is the position of the | |
particle, it splits into two new particles. The new particles then, independently of each 

other and of the past, stochastically repeat the behaviour of their parent starting from 

the position where it died. 

4.2.2 Main Results 

Recall Definition 3.3 of the rightmost particle: 

Rt := sup Xt
u , t ≥ 0. 

u∈Nt 

We first state the following result in the simple case of homogeneous branching, which 

can be found in the works of Biggins (see [7], [6]). 

Theorem 4.17 (Rightmost particle growth in the case p = 0). Consider a branching 

Lévy process in the homogeneous potential β( ) ≡ β. Recall Assumption 4.10 on the ·
domain of ψ, the Laplace exponent of X: 

Ee γX1 < ∞ ∀γ ∈ (−γ−, γ+), 

where γ+ , γ− ∈ (0, ∞]. Under this assumption we have the following: 

Case (I) limγ γ+ ψ′(γ) = ∞: →

lim 
Rt 

= Λ−1(β) P -a.s., 
t→∞ t 

where Λ is the Legendre transform of ψ as given in Definition 4.13. 

Case (IIa) limγ γ+ ψ′(γ) = ψ′(∞) < ∞, β < Λ(ψ′(∞)): →

lim 
Rt 

= Λ−1(β) P -a.s. 
t→∞ t 

as in the previous case. 

Case (IIb) limγ γ+ ψ′(γ) = ψ′(∞) < ∞, β ≥ Λ(ψ′(∞)): →

Rt
lim = ψ′(∞) P -a.s. 
t→∞ t 
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If we define the leftmost particle to be 

Lt := inf Xt
u , t ≥ 0 

u∈Nt 

then we can get the same results for Lt as for Rt by replacing (Xt)t≥0 with (−Xt)t≥0 

in the theorem. 

The proof of Theorem 4.17 heavily relies on Assumption 4.10. If we drop this 

assumption then in general we would expect the growth of Rt to be faster than linear. 

Some examples of this will be given in the next subsection. 

Now take p > 0 and recall Definition 2.1 of the explosion time: 

Texplo := sup{t : |Nt| < ∞}. 

For the next results we assume that γ+ = γ− = ∞ in Assumption 4.10. 

Theorem 4.18 (Non-explosion). Consider a branching Lévy process in the potential 

β(x) = β|x|p, β > 0, p ∈ (0, 1], where single-particle process satisfies 

Ee γX1 < ∞ ∀γ ∈ R. (4.7) 

That is, γ+ = γ− = ∞. Then 

Texplo = ∞ P -a.s. 

Remark 4.19. Assumption (4.7) for Theorem 4.18 in principle can be weakened, but 

we would then have to impose some additional assumption such as point-recurrence of 

the underlying Lévy process. 

Remark 4.20. If p = 0 then the spatial component of the branching process has no 

effect on the population size (|Nt|)t≥0. In fact in such setting, under no assumptions 

on the underlying Lévy process, (|Nt|)t≥0 is a simple birth process and 

|Nt| = 
d 
Geom(e−βt) ∀t > 0, so Texplo = ∞ P -a.s. 

We shall discuss the case p > 1 in Section 4.3. Let us state it as a conjecture now. 

Conjecture 4.21. Consider a branching Lévy process in the potential β(x) = β x p,| |
β > 0, where one-particle motion satisfies condition (4.7) above. Then 

1. if (Xt)t≥0 is a Brownian motion with a linear drift 

• p ≤ 2 ⇒ Texplo = ∞ P -a.s. 

• p > 2 ⇒ Texplo < ∞ P -a.s. 

2. in all other cases 
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• p ≤ 1 ⇒ Texplo = ∞ P -a.s. 

• p > 1 ⇒ Texplo < ∞ P -a.s. 

In principle it seems possible to reduce the domain of ψ to (−γ−, γ+), where γ−, 

γ+ ∈ (0, ∞], in Theorem 4.18 and Conjecture 4.21 by imposing some other constraints, 

but for simplicity we shall adopt condition (4.7). However, if we drop Assumption 4.10 

completely then in general we might expect the critical value of p to be smaller than 1, 

for certain branching Lévy processes we would even expect it to be 0. Some examples 

of this will be given in Section 4.3. 

The next theorem gives the rightmost particle asymptotics in the case of inhomo

geneous branching. 

Theorem 4.22 (Rightmost particle growth in the case p ∈ (0, 1)). Consider a branch

ing Lévy process in the potential β(x) = β|x|p, β > 0, p ∈ (0, 1), where the single-

particle process fulfills the following conditions: 

1. ψ(γ) = log EeγX1 < ∞ ∀γ ∈ R, 

2. for all δ > 0 ψ (γ) < ψ (γ)1+δ for all γ large enough, ′′ ′

3. (Xt)t≥0 is point-recurrent in the sense of Definition 4.7,


d

4. (Xt)t≥0 is symmetric in the sense that (Xt)t≥0 = (−Xt)t≥0 

Then the rightmost particle satisfies 

Rt
lim = 1 P -a.s., (4.8) 
t→∞ f(t) 

where f(t) = F −1(t) and 

� t 1 
F (t) := 

Λ−1(β(s)) 
ds , t ≥ 0 (4.9) 

0 

is a strictly-increasing function. In particular, f is a nontrivial positive solution of the 

first-order autonomous differential equation 

Λ(f ′(s)) = β(f(s)) = βf(s)p , s ≥ 0 , f(0) = 0. (4.10) 

Observe that we have forced EX1 = ψ (0) = 0 and limγ→∞ ψ (γ) = ∞. Thus the ′ ′

domain of Λ is [0, ∞). 

Also note that condition 1 guarantees non-explosion (recall Theorem 4.18). 

Condition 2 adds some regularity to the Laplace exponent ψ( ) and is naturally ·
satisfied by most of the Lévy processes that we consider. One simple way to ensure 

condition 2 is e.g. to take the jump measure to be supported on a set bounded above. 
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Condition 3 will be necessary for zero-one laws similar to Lemma 3.26. 

Condition 4 on symmetry of the particles’ motion is reasonable due to symmetry 

of the potential β( ). ·
To check that f(t) is well-defined note that since Λ(0) = 0 and Λ is convex, there 

exist t0 > 0 and c > 0 such that Λ(t) ≤ ct ∀t ∈ [0, t0]. Hence 

� t0 1 
� t0 c 

F (t0) = 
Λ−1(βsp)

ds ≤ 
βsp ds < ∞. 

0 0 

Remark 4.23. Note that in (4.8) it is sufficient to know only the first-order asymp

totics of f defined via (4.9). 

If we drop condition 4 about symmetry of the underlying Lévy process then in 

general Theorem 4.22 may not hold for the reason explained in Section 4.6. However 

we can still prove the same lower bound on Rt assuming that the process (Xt)t≥0 is 

making positive jumps or is a Brownian motion. 

Theorem 4.24 (Lower bound on the rightmost particle in the case p ∈ (0, 1) under 

weaker assumptions). Consider a branching Lévy process in the potential β(x) = β x p,| |
β > 0, p ∈ (0, 1), where the single-particle process fulfills the following conditions: 

1. ψ(γ) = log EeγX1 < ∞ ∀γ ∈ R, 

2. for all δ > 0 ψ′′(γ) < ψ (γ)1+δ for all γ large enough, ′

3. (Xt)t≥0 is point-recurrent in the sense of Definition 4.7, 

4. (Xt)t≥0 makes positive jumps (that is, Π((0, ∞)) =� 0) or is a Brownian motion. 

Then the rightmost particle satisfies 

Rt
lim inf 

f(t) 
≥ 1 P -a.s., (4.11) 

t→∞ 

where f(t) = F −1(t) and 
� t 1 

F (t) := ds. (4.12) 
Λ−1(β(s)) 0 

Note that we have again forced the process (Xt)t≥0 to belong to Case (I). 

4.2.3 Examples 

Example 4.25 (Branching Brownian Motion). If (Xt)t≥0 is a standard Brownian 

motion then its Laplace exponent is ψ(γ) = 2
1γ2 and the Legendre transform of ψ is 

Λ(x) = 2
1 x2 . Thus if p = 0 then from Theorem 4.17 we have 

lim 
Rt 

= Λ−1(β) = 
� 

2β P -a.s. 
t→∞ t 
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and if p > 0 then 
1 2 2−p 

F (t) = √
2β 2 − p

t 2 t ≥ 0, 

�� � 2 

f(t) = 2β 
2 − p

t 
2−p 

,
2 

which agrees with Theorem 3.5 Also equation 4.10 which gives the growth of the right-

most particle becomes 

1 
f ′(s)2 = βf(s)p , s ≥ 0 , f(0) = 0 

2 

and we have already seen it in Subsection 3.1.3. 

Example 4.26 (Branching Random Walk). If (Xt)t≥0 is a continuous-time random 

walk that makes jumps of size ±1 at rate λ then its Laplace exponent is 

ψ(γ) = λ(eγ + e−γ − 2) and the Legendre transform of ψ is 

�
√
x2 + 4λ2 + x� � 

Λ(x) = 2λ + x log 
2λ 

− x2 + 4λ2 ∼ x log x as x → ∞ 

If p = 0 then from Theorem 3.4 a) we know that 

lim 
R

t 
t 

= λ(θ̂ − 1 

θ̂
) P − a.s., 

t→∞ 

where θ̂ is the unique solution of g(θ) = βλ and 

1	 1 
g(θ) = (θ − ) log(θ) − (θ + ) + 2 

θ	 θ 

It is easy to check that 

Λ
�
λ(θ̂ −	 1)

� 
= 2λ + λ(θ̂ − 1) log θ̂ − λ(θ̂ +

1
) = λg(θ̂) = β. 

θ̂ θ̂ θ̂

Thus 

lim 
Rt 

= λ(θ̂ − 1 

t→∞ t θ̂
) = Λ−1(β) P − a.s., 

so Theorem 4.17 is consistent with Theorem 3.4 a) from Chapter 3. 

If p > 0 then since Λ(x) ∼ x log x one can check that 

F (t) = 

� t 

Λ−1(

1 

βsp)
ds ∼

β(1

p 
− p) 

t1−p log t as t → ∞ 
0 

and 
� p � 1 � t � 1 

β(1 − p)2 log t 
f(t) ∼ 1−p 1−p 

, 

so Theorem 4.22 is consistent with Theorem 3.4 b) from Chapter 3. 
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Example 4.27. Recall the process X0 = t −Pt, where (Pt)t≥0 = 
d 
PP (1), from Example t 

4.16. This process belongs to Case (II). Its sample path can be seen in Figure 4-4. The 

Laplace exponent of X0 is ψ(γ) = γ + e−γ − 1 and the Legendre transform of ψ defined 

on [0, 1) is 

Λ(x) = x + (1 − x) log(1 − x) 

Thus ψ′(∞) = 1 and Λ(ψ′(∞)) = 1. Consider the branching system with branching 

rate β( ) ≡ β. Theorem 4.17 says that ·

• if β < 1 then limt→∞ 
Rt = Λ−1(β) P -a.s. t 

if β ≥ 1 then limt→∞ 
Rt = 1 P -a.s. • t 

Example 4.28. Consider a symmetric α-stable process (Xt)t≥0, where α ∈ (0, 2) and 
d 1 

Xt = tα X1 ∀t > 0. This process does not satisfy Assumption 4.10 due to heavy tails. 

Hence Theorem 4.17 can’t be applied. It is known that P(X1 > x) ∼ x
c 
α as x → ∞ for 

some constant c. So for a fast-increasing function f(t) we have 

1 ct 
P(Xt > f(t)) = P(X1 > f(t)t−α ) ∼

f(t)α . 

If we now consider a branching system with p = 0 then the Many-to-One Lemma says 

that the expected number of particles above the line f(t) at time t is 

ct 
e βtP(Xt > f(t)) ∼ e βt 

f(t)α . 

Thus if f(t) = eγt, where γ ∈ (0, β ) then the expected number of particles above the line α 

f(t) will be increasing rapidly suggesting exponential growth of the rightmost particle. 

4.2.4 Outline of the chapter 

In Section 4.3 we prove Theorem 4.18 about non-explosion and discuss Conjecture 4.21. 

In Section 4.4 we introduce a family of one-particle martingales and prove some 

associated one-particle results that we are going to use in later sections. 

Section 4.5 is devoted to the proof of Theorem 4.17 about the rightmost particle in 

the model with homogeneous branching. 

In Section 4.6 we present proofs of Theorems 4.17 and 4.24 about the rightmost 

particle in the model with inhomogeneous branching. 

4.3 Non-explosion 

Let us prove Theorem 4.18. That is, subject to the condition on finite exponential 

moments we want to show that in the branching system with the potential β(x) = β x p,| |
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where β > 0, p ∈ (0, 1] we have 

Texplo = ∞ P -a.s. 

The proof uses the same argument as we have used in Theorem 2.7 a) and Theorem 

3.2 a).


Proof of Theorem 4.18. By the Many-to-One Lemma (Lemma 1.18) for any t ≥ 0


R � � � � � � 
t pds 

� 

Ẽ β|ξs|E
 Nt E 1
 0|
 | =
 =
 e
 ,

u∈Nt 

pwhere (ξt)t≥0 moves as the given Lévy process under P̃ . For p ∈ (0, 1] x ≤ |x|
+ 1, so
|
 |

R R R

� 
t 

� � 
t 

� � 
t 

�
β|ξs|pds β(|ξs|+1)ds βt Ẽ β|ξs|dsẼ
 Ẽ
e
 0 e
 0 e
 0≤
 = e
 .


Next note that by Jensen’s inequality for any locally-integrable function f 

R t 1 
� t 

f(s)ds f(s)tds. (4.13) e
 0 ≤
 e 
t 0 

To see this take U ∼ Uniform([0, t]), X := tf (U). Then 

1 
� t 

R tf(s)tds = Ee X e EX f(s)ds = e
 0≥
e
 .

t 0 

Thus applying (4.13) we get 

� 
R t � �1 

� t � 

Ẽ
 β|ξs|ds Ẽ
 β|ξs|tdse
 0 ≤
 e
 .

t 0 

Then since 

� t � � � t � �


Ẽ e βt|ξs| ds ≤ Ẽ e βtξs + e−βtξs ds

0 0 

� t 

= e ψ(βt)s + e ψ(−βt)sds 
0 

=
1 

t 

� 

ψ(

1 

βt) 

� 
e ψ(βt)t − 1

� 
+ 
ψ(−

1 

βt) 

� 
e ψ(−βt)t − 1

�� 

< ∞ 

we have by Fubini’s Theorem that 

�1 
� t � 1 

� t � � 

Ẽ e β|ξs|tds = Ẽ e βt|ξs| ds < ∞
t 0 t 0 

and hence


E
� 
|Nt| 

� 
≤ e βt Ẽ

�1 

t 

� t 

e β|ξs|tds 
� 

< ∞ ∀t ≥ 0. 
0 
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Thus Texplo = P -a.s. ∞

We can also verify that E(|Nt|) = ∞ if p is too large. Note that this is not sufficient 

to deduce that Texplo = P -a.s., but it gives us some evidence to believe that this ∞
might be the case. 

For any t > 0 take any t0 ∈ (0, t) and x a large number. Then 

R 
E

� 
|Nt| 

� 
= Ẽ

� 

e 0 
t β|ξs|pds 

� 

R

� 
t 

� 

≥ Ẽ e 0 β|ξs|pds1{|ξt0 |>x+1}1{sups∈[t0,t] |ξs−ξt0 |<1} 
R 

≥ Ẽ
� 

e t

t 

0 
β|ξs|pds

1{|ξt0 |>x+1}1{sups∈[t0,t] |ξs−ξt0 |<1} 
� 

e β(t−t0)xp

P̃
� 
ξt0 > x + 1

�
P̃

� 
sup < 1

� 
≥ | |

s∈[t0,t]
|ξs − ξt0 |

>0 

p
If we now let x → ∞ we see that if P̃

� 
|ξt0 | > x + 1

� 
decays a lot slower than e−x then 

E(|Nt|) = ∞. 

As (ξt)t≥0 is a Lévy process, ξt0 is an infinitely-divisible random variable, so let us 

quote the following result about its tail behaviour from [34] (Chapter IV, Corollary 

9.9): 

Proposition 4.29 (F.W. Steutel and K. Van Harn). A non-degenerate infinitely-

divisible random variable X has a normal distribution iff it satisfies 

lim sup 
− log P(|X| > x)

= 
x log x 

∞. 
x→∞ 

In other words, unless X has a normal distribution, P(|X| > x) ≥ e−Cx log x for 

some C > 0 and x large enough. Thus if we take p > 1 then xp x log x, so unless ≫
(ξt)t≥0 is a Brownian motion with a linear drift we have 

E Nt =| | ∞ ∀t ≥ 0. 

If (ξt)t≥0 is a Brownian motion with a linear drift then 

E Nt = or | | ∞ < ∞ ∀t ≥ 0. 

according to whether p > 2 or p ≤ 2. 

Also if we for example take (ξt)t≥0 to be an α-stable process with α ∈ (0, 2), which 

no longer satisfies exponential moments assumption, then P̃
� 
|ξt0 | > x + 1

� 
∼ xα for 

some constant c and hence E(|Nt|) = ∞ for any p > 0. 
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4.4 One-particle results 

In this self-contained section we introduce a family of exponential martingales for a 

rather general Lévy process and derive some useful results concerning the asymptotic 

growth of the Lévy process under the changed measure. 

In later sections we are going to use these martingales in place of martingale M̃ (3) 

from (1.5) to condition the spine process to stay close to a deterministic path of our 

choice. 

4.4.1 Simple changes of measure for Lévy processes 

Let (Xt)t≥0 be a Lévy process under a probability measure P. Suppose that X satisfies 

Assumption 4.10 That is, there exist γ+ , γ− ∈ (0, ∞] such that 

Ee γX1 < ∞ ∀γ ∈ (−γ−, γ+). 

For γ ∈ (−γ−, γ+) let ψ(γ) = log EeγX1 be the Laplace exponent of X. Then we have 

the following well known results, which can be found for example in [25]. 

Theorem 4.30. Take γ ∈ (−γ−, γ+). Then the following process is a P-martingale: 

Mt := e γXt−ψ(γ)t , t ≥ 0. (4.14) 

Proof. It is clear that EMt = 1, and if ( F̂t)t≥0 is the natural filtration of (Xt)t≥0 then 

for s ≤ t 

E(Mt|F̂s) = E(e γXt−ψ(γ)t|F̂s) 
= e γXs−ψ(γ)sE(e γ(Xt−Xs)−ψ(γ)(t−s)|F̂s) 
= MsE(e γXt−s−ψ(γ)(t−s)) = Ms. 

Theorem 4.31. Let the measure Q be defined as 

dQ

dP


= Mt , t ∈ [0, ∞). 
F̂t 

Then under Q, (Xt)t≥0 is a Lévy process with parameters (ˆ Π), where a, σ, ˆ

â = a + γσ2 + x(e γx − 1)Π(dx) 
|x|∈(0,1) 

and ˆ = γxΠ(dx).Π(dx) e
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�	 � 

� �	 � 

To see this observe that ∀α ∈ (−γ− − γ, γ+ − γ) 

EQ
� 
αX1

� � 
αX1 γX1−ψ(γ)

� 

e = E e e 

= E e(α+γ)X1−ψ(α+γ) e ψ(α+γ)−ψ(γ) 

ψ(α+γ)−ψ(γ)= e . 

Thus the Laplace exponent of X with respect to Q is 

ψQ(α) = ψ(α + γ) − ψ(γ)


= a(α + γ) +

1 
σ2(α + γ)2 + 

�
� 
e(α+γ)x − (α + γ)x1|x|<1 − 1

�
Π(dx)

2 R\{0} 

− aγ −
2 

−	 |x|<1 − 1
1 
σ2γ2 

�
� 
e γx − γx1

�
Π(dx) 

R\{0} 

= α a + γσ2 + x(e γx − 1)Π(dx)

|x|∈(0,1)


1 
� 

+ σ2α2 + 
� 
e αx − αx1|x|<1 − 1

� 
e γxΠ(dx). 

2 R\{0} 

Note that the exponential moments of X under Q give us all the nth moments of X. 

In particular we have: 

EQXt = ψ′(γ)t, 

varQ(Xt) = ψ′′(γ)t. 

Example 4.32. 

•	 Take (Xt)t≥0 to be a standard Brownian motion. Then (a, σ, Π) = (0, 1, 0), 

ψ(γ) = 2
1γ2, so 

γ2tMt = e γXt− 1 , t ≥ 0 

and under the new measure Q, (Xt)t≥0 is a Lévy process with parameters 

(â, σ, ˆ =Π) (γ, 1, 0), in other words, a Brownian motion with linear drift γ. 

•	 Take (Xt)t≥0 to be a Poisson process with rate λ. Then (a, σ, Π) = (0, 0, λδ1), 

ψ(γ) = λ(eγ − 1), so 

Mt = e γXt−λ(eγ−1)t = θXte λ(1−θ)t , t ≥ 0, 

where θ = eγ (Recall Example 3.7). Under the new measure Q, (Xt)t≥0 is a Lévy 

process with parameters 

(â, σ, ˆ = = (0, 0, λθδ1),Π) (0, 0, λeγ δ1)

that is, (Xt)t≥0 a Poisson process with jump rate λeγ = λθ. 
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Thus we see that martingale (4.14) is the natural generalisation of martingales seen 

in Example 1.27 and Example 3.7. 

However martingale (4.14) does not include the martingales from Example 1.23 and 

Lemma 3.6. In the next subsection we deal with this issue. 

4.4.2 Stochastic integrals and more advanced changes of measure 

In this subsection we are going to use stochastic integrals with respect to (Xt)t≥0. 

Construction of such objects as well as their properties can be found in the book of D. 

Applebaum [1] or his lecture notes on this topic [2]. 

In this thesis we are only going to consider very simple cases of stochastic integrals 

where the integrand is a ’nice’ deterministic function. For such integrals the reader 

does not need to be familiar with the general theory of stochastic calculus for Lévy 

processes. 

Suppose for this subsection that we are given a function γ : [0 )∞, 
�

→
t 

(−γ−, γ+), 

which is differentiable and satisfies
 ψ(γ(s))ds < ∞ ∀t ≥ 0. For such function we
0 

consider the integral

t 
γ(s)dXs. The following integration-by-parts formula, which 0 

can be found e.g. in [1] reduces it to a Lebesgue integral. 

Proposition 4.33 (Integration by parts). 

� t � t 

γ(s)dXs = Xtγ(t) − Xsγ
′(s)ds. 

0 0 

The next result generalises Theorem 4.30 and can be found in [1]. 

Theorem 4.34. The following process is a P-martingale: 

R Rt t 

Mt := e 0 
γ(s)dXs− 0 

ψ(γ(s))ds , t ≥ 0. (4.15) 

If we now define the measure Q as 

dQ

dP


= Mt , t ∈ [0, ∞) 
F̂t 

then under Q, (Xt)t≥0 in general can not be characterised in a nice way. It is no longer 

a Lévy process nor a time-changed Lévy process. It can be thought of as a process 

with independent increments which has the instantaneous drift ât = a + γ(t)σ2 + 

|x|≤1 x(e
γ(t)x − 1)Π(dx) at time t, the diffusion parameter σ and the instantaneous 

jump measure Π̂t(dx) = eγ(t)xΠ(dx). 

In the special cases of a Brownian motion and a Poisson process (Xt)t≥0 has a nice 

characterisation under Q. 

92 



Example 4.35. 

• Take (Xt)t≥0 to be a standard Brownian motion. Then 

t γ(s)dXs− 1
2 

R t 
0
γ(s)2ds ,
 t ≥ 0


R 
Mt = e
 0

� t
and under Q, (Xt)t≥0 is a standard Brownian motion with drift γ(s)ds (Recall 0 

Example 1.23). 

• Take (Xt)t≥0 to be a Poisson process with jump rate λ. Then 

R R R Rt t t t(eγ(s) log θ(s)dXs+λγ(s)dXs−λ −1)ds (1−θ(s))dsMt t ≥ 0,
0 0 0 0= e
 = e
 ,


where θ(t) = eγ(t). Under Q, (Xt)t≥0 is a time-inhomogeneous Poisson process 

with instantaneous jump rate λeγ(t) = λθ(t). (Recall Lemma 3.6 and Lemma 

3.8.) 

We can still easily compute all the moments of Xt under Q. 

Proposition 4.36. Suppose α ∈ R is such that α + γ(t) ∈ (−γ−, γ+) and 
� t 
ψ(α + γ(s))ds < ∞ ∀t > 0 then 0 

R t 
EQ

� 
e αXt

� 
ψ(α+γ(s))−ψ(γ(s))ds = e
 0 ,


� t 

EQ
�
Xt 

� 
= ψ′(γ(s))ds, 

0 

� t 

varQ
�
Xt 

� 
= ψ′′(γ(s))ds. 

0 

Proof. 

R R

� 
t t 

� 

EQ
� 
e αXt

� 
αXt γ(s)dXs− ψ(γ(s))ds =
 E
 e
 0 0e

R R R

� 
t t 

� 
t(α+γ(s))dXs− ψ(α+γ(s))ds ψ(α+γ(s))−ψ(γ(s))ds = E e
 0 0 e
 0

R t ψ(α+γ(s))−ψ(γ(s))ds
0= e
 . 

th Differentiating with respect to α n times and letting α = 0 gives the n
 moment of


Xt. In particular, we get EQXt and varQXt. 

The most important feature of (Xt)t≥0 under Q to us will be its almost sure asymp

totic behaviour. This issue is addressed in the next subsection. 

4.4.3 Strong Laws of Large Numbers 

Let us start with a well-known result, which can be found for example in [31] or [4]. 
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Theorem 4.37 (SLLN). Suppose (Xt)t≥0 is a Lévy process such that E|X1| < ∞. 

Then 
Xt 

EX1 P-a.s. 
t 

→

Note that we don’t even need to assume finite exponential moments for this theorem. 

Corollary 4.38. Take (Xt)t≥0 to be a Lévy process under P and consider the martin

gale Mt = eγXt−ψ(γ)t and the corresponding measure Q from theorems 4.30 and 4.31. 

Then 
Xt 

ψ′(γ) Q-a.s. 
t 

→
R Rt t ψ(γ(s))dsγ(s)dXs−We now wish to prove that if we take the martingale Mt = e 0 0

from Theorem 4.34 and the corresponding measure Q then under some additional 

assumptions on ψ( ) and γ( ) we have · ·

Xt Xt 

EQXt 
= �

0 
t 
ψ′(γ(s))ds 

→ 1 Q-a.s. 

Theorem 4.39. Let (Xt)t≥0 be a Lévy process under probability measure P that satisfies 

Ee γX1 < ∞ ∀γ ∈ R 

and let ψ(γ) = log EeγX1 as always. Note that we assumed that γ−, γ+ = ∞ 
Suppose we are given a function γ : [0, ∞) R which satisfies: →

1. ψ′(γ(t)) ≥ 0, 
�

0 
t 
ψ(γ(s))ds, 

�

0 
t 
ψ′(γ(s))ds, 

�

0 
t 
ψ′′(γ(s))ds < ∞ ∀t ≥ 0 

� n+1 
ψ (γ(s))ds′

2. n � n 
ψ (γ(s))ds 

→ 0 as n → ∞ 
0 

′

� n 
ψ (γ(s))ds 1′′

3. ∃δ > 0 such that for n large enough � �
0 
n �2 ≤ n1+δ

ψ (γ(s))ds
0 
′

For such a function γ define the martingale 

R Rt t ψ(γ(s))dsγ(s)dXs−Mt := t ≥ 0
0 0e
 ,


and the corresponding measure Q as 

dQ �
� 

� = Mt , t ≥ 0,
dP �F̂t 

where (F̂t)t≥0 is the natural filtration of (Xt)t≥0. Then 

Xt 
� t 1 as t → ∞ Q-a.s. 
0 ψ

′(γ(s))ds 
→
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Note that conditions 1 - 3 say that 

1. ψ (γ(t)) ≥ 0, EQXt < ∞, varQXt < ∞ ∀t ≥ 0′

EQ(Xn+1 −Xn)
2. 0 

EQXn 
→ as n → ∞


varQXn 1

3. ∃δ > 0 such that for n large enough �

EQXn 
�2 ≤ n1+δ . 

Although these conditions may appear restrictive, they will be naturally satisfied by 

the functions γ that we consider in later sections. 

Proof. Take any ǫ > 0. Then using Chebyshev’s inequality and condition 3 

�� 
� n �

� n � 

Q �Xn − ψ′(γ(s))ds� > ǫ ψ′(γ(s))ds 
0 0 

varQXn
≤
ǫ2(EQXn)2


1

1+δ

≤
ǫ2n

for n large enough from condition 3. Thus 

� �� 
� n �

� n � 

Q �Xn − ψ′(γ(s))ds� > ǫ ψ′(γ(s))ds < ∞. 
n≥1 0 0 

Hence by the Borel-Cantelli lemma 

Q 
���

�Xn − 
� n 

ψ′(γ(s))ds 
�
� > ǫ 

� n 

ψ′(γ(s))ds 
� 

for infinitely many n ∈ N 
� 

= 0. 
0 0 

Therefore since ǫ was arbitrary it follows that for n ∈ N and n → ∞, we have 

ψ (γ(s))ds|Xn 
�
− 
0 
n 

�

ψ
0 
n 

′(γ(

′

s))ds 

| → 0 Q-a.s. (4.16) 

In other words, 
Xn 

� n 1 Q-a.s. 
0 ψ

′(γ(s))ds 
→

We now wish to prove this convergence along the reals. Fix n ∈ N. Then for each fixed 

n ∈ N the process 
� � n+t � 

Xn+t −Xn − ψ′(γ(s))ds 
t∈[0,1] n 
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 �
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is a Q-martingale since ∀t ∈ [0, 1]


� n+t 

Xn+t −Xn − ψ′(γ(s))ds 
n 

EQ 

� n+t 

Xn+t + EQ Xn≤EQ ψ
′(γ(s))ds < ∞
+ 
n 

¯and for 0 ≤ s ≤ t ≤ 1, with ( Ft)t≥0 the natural filtration of (Xn+t −Xn)t∈[0,1] 

� n+t 
¯
FsEQ Xn+t −Xn − ψ′(γ(s))ds 

n 
� n+s � n+t 

ψ′(γ(s))ds + EQ ′=Xn+s −Xn − 

=Xn+s −Xn − 

Xn+t −Xn+s − ψ
n+s 

(γ(s))ds

n 

� n+s 
′ψ (γ(s))ds.


n 

Therefore we also have that


� n+t 

Xn+t −Xn − ψ′(γ(s))ds 
t∈[0,1] n 

is a positive Q-submartingale and we can apply Doob’s martingale inequality to it. 

Take ǫ > 0, then 

� t � n+1 
′(γ(s))ds
Q sup
 ′Xt −Xn − ψ > ǫ ψ
(γ(s))ds


t∈[n,n+1] n 0 

Q(Xn+1 −Xn)var
≤

0 
n+1 

ψ′(γ(s))ds)2ǫ2(
n+1 

ψ (γ(s))ds′′
n =
 n+1 

ǫ2( ψ (γ(s))ds)2′
0 
n+1 

ψ (γ(s))ds′′
0≤
 n+1 

ǫ2( ψ (γ(s))ds)2′
0 

1 
1+δ

≤
ǫ2n

by condition 3. Thus by the Borel-Cantelli lemma 

� t � n+1 

Q sup
 ′(γ(s))ds
 ′Xt −Xn − ψ > ǫ ψ
(γ(s))ds

t∈[n,n+1] n 0 

for infinitely many n ∈ N = 0.
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Therefore


(γ(s))ds
t ′ψ
Xt −Xn −supt∈[n,n+1] n 
0 as n → ∞ Q-a.s. (4.17)


0 
n+1 

ψ′(γ(s))ds 
→

Combining (4.16) and (4.17) and using condition 2 which says that 

� ⌊t⌋
ψ (γ(s))ds′

0 → 1 as t → ∞
t 
0 ψ

′(γ(s))ds 

we get


⌊t⌋ − 
� ⌊t⌋
0 

tt ′ ψ
′(γ(s))ds
X
 ψ
(γ(s))ds + Xt −Xψ
′(γ(s))ds|
= 

| ⌊t⌋ − |
Xt −
t

|
 ⌊t⌋0 
t

ψ (γ(s))ds′ ψ (γ(s))ds′
0 0 

t ′ψ
�
−t⌊ ⌋
�

⌊t⌋
0 

Xt −X (γ(s))ds
⌊t⌋ −′X
 ψ
(γ(s))ds
|
 |
 ⌊t⌋
+
≤
 t t

ψ (γ(s))ds′ ψ (γ(s))ds′
0 0 

X⌊t⌋ − 
� ⌊t⌋

ψ (γ(s))ds′
0 

t 
0 ψ

′(γ(s))ds 

|
 |

≤


supr∈[⌊t⌋,⌊t⌋+1] (γ(s))ds
r ′ψ
Xr −X⌊t⌋ − ⌊t⌋
+
 t 

0 ψ
′(γ(s))ds 

→ 0 as t → ∞ Q-a.s. 

Hence 
Xt 

1 Q-a.s.

0 
t 
ψ′(γ(s))ds 

→

From this we can now also derive a result about the asymptotic growth of the

t t

“stochastic” integral
 γ(s)dXs. Firstly let us compute the moments of γ(s)dXs0 0 

under Q.


Proposition 4.40. Let α ∈ R be such that α + γ(t) ∈ (−γ−, γ+) and 
t 
ψ((α + 1)γ(s))ds < ∞ ∀t > 0. Then 0 

t tR R 
EQ

� 
e α γ(s)dXs ψ((α+1)γ(s))−ψ(γ(s))ds0 0= e
 ,


� t 

EQ
�

γ(s)ψ
′(γ(s))ds.
Xt = 
0 
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Proof.


EQ
� 
e α 

R γ 
0 (s)dXs 

R t 
0 γ(s)dXs e


R t 
0 γ(s)dXs− 

R t 
0α ψ(γ(s))ds =
 E
 e


= E e

t 

0
((α+1)γ(s))dXs− 

R t 

0
ψ((α+1)γ(s))ds 

R t 

0
ψ((α+1)γ(s))−ψ(γ(s))ds 

R

e

R t 
0 ψ((α+1)γ(s))−ψ(γ(s))ds .
= e


Differentiating with respect to α and letting α = 0 gives 

� t 

EQ
�
Xt 

� 
= γ(s)ψ′(γ(s))ds. 

0 

� t
Let us now prove the following result about Q-a.s growth of 0 γ(s)dXs. 

Corollary 4.41 (Corollary to Theorem 4.39). Let a Lévy process (Xt)t≥0 and a func

tion γ : [0, ∞) R satisfy the assumptions of Theorem 4.39. Also assume that γ is → 
differentiable with γ (t) ≥ 0 ∀t and make two additional assumptions on γ( ):′ ·

1. EQ 
� t 
γ(s)dXs = 

� t 
γ(s)ψ (γ(s))ds < ∞ ∀t ≥ 0′

0 0 

� t
γ(t) 0 ψ (γ(s))ds′

2. lim supt→∞ �
0 
t 
γ(s)ψ′(γ(s))ds

< ∞ 

Then � t � t
γ(s)dXs γ(s)dXs0 0 
t t

EQ 
�

0 γ(s)dXs 
= �

0 γ(s)ψ
′(γ(s))ds 

→ 1 Q-a.s. 

Proof. The proof is essentially the same as the proof of Proposition 3.13 for continuous-

time random walks. We are going to put together Theorem 4.39 and Proposition 4.33. 

Take δ > 0. Then from Theorem 4.39 we know that ∃ Q-a.s. finite random time Tδ 

such that 
Xt 

t ≥ Tδ 1 − δ ≤ � t ≤ 1 + δ.⇒ 
0 ψ

′(γ(s))ds 

That is, 
� t � t 

(1 − δ) ψ′�γ(s)
�
ds ≤ Xt ≤ (1 + δ) ψ′�γ(s)

�
ds. 

0 0 

So using the integration-by-parts formula from Proposition 4.33 we get for t ≥ Tδ 

� t � t


γ(s)dXs = γ(t)Xt − γ′(s)Xsds

0 0 

� t 

≤ (1 + δ)γ(t) ψ′�γ(s)
�
ds 

0 
� t � s 

− 
0 
γ′(s)(1 − δ) 

0 
ψ′�γ(u)

�
duds + Cδ, 
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where � Tδ 
� s	 � Tδ 

Cδ = γ′(s)(1 − δ) ψ′�γ(u)
�
duds − γ′(s)Xsds 

0 0	 0 

is some Q-a.s. finite quantity which doesn’t depend on t. 

Then, using the deterministic integration-by-parts formula, we get 

� t � t	 � t � s 

γ(s)dXs ≤ (1 + δ) γ(s)ψ′ γ(s) ds + 2δ γ′(s) ψ′ γ(u) du ds + Cδ 
0 0	 0 0 

Hence 

� t	 � t � s � �

0 γ(s)dXs	 0 γ
′(s) 0 ψ

′ γ(u) duds 
lim sup	 ≤ 1 + δ + 2δ lim sup � t	 � t 
t→∞ 

0 γ(s)ψ
′(γ(s))ds	 t→∞ 

0 γ(s)ψ
′(γ(s))ds 

� t � �′
= 1 + δ + 2δ lim sup 

�γ(t) 0 ψ γ(s) ds � 

t→∞ 
� t 
γ(s)ψ′(γ(s))ds 

− 1 
0 

= 1 + δc, 

where c is some finite constant. Thus after taking δ 0 we get →
� t 
γ(s)dXs 

lim sup � 0 ≤ 1. t 
t→∞ 

0 γ(s)ψ
′(γ(s))ds 

Similar argument shows that 

� t 

lim inf 0 γ(s)dXs 

t→∞ 
�

0 
t 
γ(s)ψ (γ(s))ds 

≥ 1 
′

completing the proof. 

4.5	 The rightmost particle in the case of homogeneous 

branching (p = 0) 

This section is dedicated to the proof of Theorem 4.17. The method of proof is going 

to be the same as the one we used for branching random walks in Section 3.4. 

We are going to study a family of additive martingales derived from exponential 

martingales of the form (4.14). We shall see that the additive martingales either con

verge to a positive limit and are UI or converge to 0 depending on the value of the 

parameter γ. The critical value of the parameter will give us the first-order approxi

mation of the rightmost particle. 

99




�
�
�
�


�
 � � 

�
�
�
�


4.5.1 Additive martingales 

Take the spine process (ξt)t≥0 which under the probability measure P̃ is a Lévy process 

with parameters (a, σ, Π) corresponding to the single-particle process. In particular for 

all γ ∈ (−γ−, γ+) it satisfies: 

Ẽeγξ1 < ∞. 

From Theorem 4.30 we have that the following process is a P̃ -martingale: 

e γξt−ψ(γ)t , t ≥ 0.	 (4.18) 

We now substitute it for M̃ (3) in equation (1.5) from the general setting described in 

Chapter 1. Hence, recalling (1.6), we define a P̃ -martingale with respect to filtration 

(G̃t)t≥0: 

M̃γ (t) := e−βt2nt × e γξt−ψ(γ)t , t ≥ 0	 (4.19) 

as well as the corresponding probability measure Q̃γ : 

dQ̃γ 

dP̃ 

= M̃γ (t) , t ≥ 0.	 (4.20) 

F̃t 

Under Q̃γ the branching process has the following description: 

•	 The initial particle (the spine) moves like a biased Lévy process with parameters 

(â, σ, Π̂) (recall Theorem 4.31). 

•	 At rate 2β it splits into two new particles. 

•	 One of these particles (chosen uniformly at random) continues the spine. I.e. it 

continues to move as a biased Lévy process and to branch at rate 2β. 

•	 The other particle initiates an unbiased branching process where all the particles 

move as a Lévy process with parameters (a, σ, Π) and branch at rate β. 

Projecting Q̃γ onto F∞ in the usual way we get the probability measure Qγ := Q̃γ |F∞ 

and the corresponding additive martingale 

γXt
u − ψ(γ)t − βt , t ≥ 0, (4.21)
Mγ (t) = exp


u∈Nt 

so that we have 
dQγ 

dP

= Mγ (t) , t ≥ 0.	 (4.22) 

Ft 

Having defined this family of martingales we can control the behaviour of the spine 

process via the choice of parameter γ. 
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4.5.2 Convergence properties of Mγ (under Qγ ) 

Just as before we want to show that either Mγ (∞) > 0 a.s. and Mγ is UI under P or 

Mγ (∞) = 0 P -a.s. depending on the value of γ. 

Theorem 4.42. Consider a branching Lévy process in the potential β( ) ≡ β. Let Mγ·
be the additive martingale defined in (4.21). Then we have the following for the three 

cases considered in Theorem 4.17. 

Case (I) and Case (IIa) β < limγ γ+ Λ(ψ (γ)):′
→

where lim Λ(ψ′(γ)) = 
∞ in Case (I) 

γ γ+ Λ(ψ′(∞)) < ∞ in Case (IIa) →

Let γ∗ be the unique solution of Λ(ψ′(γ)) = β. So that 

Λ
�
ψ′(γ∗)

� 
= γ∗ψ′(γ∗) − ψ(γ∗) = β. (4.23) 

Then 

i) if γ ∈ [0, γ∗) then Mγ is U.I. and Mγ (∞) > 0 a.s. under P 

ii) if γ ∈ (γ∗, γ+) then Mγ (∞) = 0 P -a.s. 

Case (IIb) limγ γ+ ψ′(γ) = ψ′(∞) < ∞, β ≥ Λ(ψ′(∞)): →

∀γ ≥ 0, Mγ is U.I. and Mγ (∞) > 0 a.s. under P . 

The proof of this theorem will be essentially a modified version of the proof of 

Theorem 3.18. 

If the martingale Mγ is P -uniformly integrable and Mγ (∞) > 0 P -a.s. then we 

shall see that P and Qγ are two equivalent measures on F∞. Since under Q̃γ the spine 

process satisfies 
ξt 

ψ′(γ) a.s. 
t 
→

it will follow that P -a.s. there is a particle with such asymptotic behaviour. This will 

give us a lower bound on the rightmost particle. 

Recalling Theorem 2.9 we have the following decomposition of the probability mea

sure Qγ (see also Lemma 3.21). 

Lemma 4.43. Let Mγ be a martingale of the form (4.21) and let Qγ be the corre

sponding probability measure defined via (4.22). Then for events A ∈ F∞ 

Qγ A = 
A 

lim sup Mγ (t)dP + Qγ A ∩ {lim sup Mγ (t) = ∞} . (4.24) 
t→∞ t→∞ 

To prove Theorem 4.42 we shall need the following simple corollary of this lemma. 
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Corollary 4.44. 

•	 Mγ (∞) = 0 P -a.s. ⇔ lim supt→∞Mγ (t) = ∞ Qγ -a.s. 

•	 lim supt→∞Mγ (t) < ∞ Qγ -a.s. ⇒ EMγ (∞) = 1, Mγ is P -uniformly integrable 

and P (Mγ (∞) > 0) > 0 

Also to show that P (Mγ (∞) > 0) > 0 P (Mγ (∞) > 0) = 1 we need a zero-one ⇒
law similar to Lemma 3.26. We shall present this result now before we proceed with 

the proof of Theorem 4.42. 

Lemma 4.45. Consider a branching Lévy process started from 0 in the potential 

β( ) ≡ β. Let q ∈ [0, 1] be such that ·

Mt := 
� 

q = q|Nt| , t ≥ 0 
u∈Nt 

is a P -martingale. Then 

q ∈ {0, 1}. 

Proof of Lemma 4.45. If q < 1 then since |Nt| → ∞ P -a.s. 

Mt = q|Nt| → 0 as t → ∞ P -a.s. 

so by the monotone convergence theorem 

q = E(M0) = E(M ) = 0∞

which is a contradiction unless q = 0. Thus q ∈ {0, 1}. 

Corollary 4.46. 

P (Mγ (∞) = 0) ∈ {0, 1} (4.25) 

Proof of Corollary 4.46. By taking q(x) := P x(Mγ (∞) = 0) we see that ∀x ∈ R 

q(x) = Ex 
� 

P x
�
Mγ (∞) = 0�

� 

Ft 
�� 

= Ex 
� � 

q(Xt
u) 

� 

. 
u∈Nt 

Hence 
� 

u∈Nt 
q(Xt

u) is a P -martingale. Also 

q(x) = P x(Mγ (∞) = 0) = P (e γxMγ (∞) = 0) = P (Mγ (∞) = 0). 

Thus q(x) ≡ q and by Lemma 4.45 q = P (Mγ (∞) = 0) ∈ {0, 1}. 

Proof of Theorem 4.42: uniform integrability of Mγ and positivity of the limit. Take 

γ ∈ [0, γ∗) in Case (I) and Case (IIa) or any γ ≥ 0 in Case (IIb). To show that under 
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P Mγ is U.I. and Mγ (∞) > 0 a.s. it is sufficient to prove that 

lim sup Mγ (t) < ∞ Qγ -a.s. (4.26) 
t→∞ 

as it follows from Corollary 4.44 and Corollary 4.46. 

Just as in the earlier chapters we are going to use the spine decomposition of Mγ (t) 

to prove (4.26). 

Proposition 4.47. 

lim sup EQ̃γ (Mγ (t)|G̃∞) < ∞ Q̃γ -a.s. 
t→∞ 

Proof of Proposition 4.47. Recall that 

EQ̃γ (Mγ (t)|G̃∞) = spine(t) + sum(t), (4.27) 

where 

spine(t) = exp γξt − ψ(γ)t − βt (4.28) 

and 

sum(t) = spine(Su) (4.29) 

u∈nodet(ξ) 

= exp γξSu − ψ(γ)Su − βSu , 

u<nodet(ξ) 

where {Su : u ∈ ξ} is the set of fission times along the spine. 

We start by proving that the spine term (4.28) decays exponentially fast. 

Proposition 4.48. There exist some positive constant C ′′ and a Q̃γ -a.s. finite time 

T such that ∀t > T ′ ′ 
′′ 

spine(t) ≤ e−C t . 

Proof of Proposition 4.48. Under Q̃γ the process (ξt)t≥0 is a Lévy process with mean 

ψ (γ)t (recall Theorem 4.31) so it satisfies ′

ψ

ξ

(γ
t 

)t 
→ 1 Q̃γ -a.s. ′

as it follows from Theorem 4.37. Hence for all ǫ > 0 there exists a Q̃γ -a.s. finite time 

Tǫ such that 

(1 − ǫ)ψ′(γ)t ≤ ξt ≤ (1 + ǫ)ψ′(γ)t ∀t > Tǫ. 

Thus 

spine(t) ≤ exp 
� 

(1+ǫ)γψ′(γ)t−ψ(γ)t−βt 
� 

= exp 
��

Λ
�
ψ′(γ)

�
+ǫγψ′(γ)−β

�
t 
� 

∀t > Tǫ 
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using (4.6). Since the map Λ(ψ′(γ)) = γψ′(γ) − ψ(γ) is increasing in γ (for γ ≥ 0) it 

follows that 

Λ(ψ (γ∗)) in Case (I) and Case (IIa) ′
Λ(ψ′(γ)) < 

Λ(ψ′(∞)) in Case (IIb) 

Thus in all the cases Λ(ψ (γ)) − β < 0 and so for ǫ sufficiently small ′

Λ
�
ψ′(γ)

� 
+ ǫγψ′(γ) − β < 0. 

Taking T ′ = Tǫ for such an ǫ and C ′′ = −(Λ(ψ′(γ)) + ǫγψ′(γ) − β) we complete the 

proof of Proposition 4.48 

Now, for t > T the sum term is ′ 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

� � � � � 
′′ Su 

� 

≤ spine(Su) + e−C 

′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

using Proposition 4.48. The first sum is Q̃γ -a.s. bounded since it only counts births 

up to time T . Call an upper bound on the first sum C1. Then we have ′ 

sum(t) ≤ C1 + 
∞
e−C ′′ Sn , (4.30) 

n=1 

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t∈[0,T ) is a Poisson process with rate 2β (Recall 

Proposition 1.13). Thus 

nt 
t 

→ 2β Q̃γ -a.s. as t → ∞. 

Hence 
Sn 1 

n 
→ 

2β
Q̃γ -a.s. as t → ∞. (4.31) 

So for some Q̃γ -a.s. finite positive random variable C2 we have 

Sn ≥ C2n ∀n. 
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Then substituting this into (4.30) we get 

sum(t) ≤ C1 + 

∞
e−C ′′ C2n , 

n=1 

which is bounded Q̃γ -a.s. We have thus shown that 

lim sup EQ̃γ 

� 

Mγ (t)
�
�G̃∞ 

� 

< ∞ Q̃γ -a.s. 
t→∞ 

proving Proposition 4.47 

Now from Proposition 4.47 we get the sought result (4.26) by the usual argument: 

˜ ˜EQ̃γ (lim inf Mγ (t) G∞) ≤ lim inf EQ̃γ (Mγ (t) G∞)

t→∞ 

|
t→∞ 

|


˜≤ lim sup EQ̃γ(Mγ (t)|G∞) < +∞ Q̃γ -a.s. 
t→∞ 

by conditional Fatou’s lemma. Hence 

lim inf Mγ (t) < ∞ Q̃γ -a.s. 
t→∞ 

� 1 � 

and thus also Qγ -a.s. Since is a positive Qγ -supermartingale (as it follows 
Mγ (t) t≥0 

from the definition of Qγ ) it must converge Qγ -a.s. So Mγ (t) also converges Qγ -a.s. 

Hence 

lim sup Mγ (t) = lim inf Mγ (t) < ∞ Qγ -a.s. 
t→∞ t→∞ 

We have thus proved that Mγ is uniformly integrable and has a strictly positive limit 

under P . 

Proof of Theorem 4.42: zero limits. In Case (I) and Case (IIa) let γ ∈ (γ∗, γ+). Then 

since one of the particles at time t is the spine we have 

Mγ (t) ≥ exp γξt − ψ(γ)t − βt = spine(t). 

It then can be checked using the same analysis as in the proof of part i) that spine(t) → 
∞ Q̃γ -a.s. Recalling Corollary 4.44 we get that 

Mγ (∞) = 0 P -a.s. 
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4.5.3 Lower bound on the rightmost particle 

Let γ ∈ [0, γ∗) in Case (I) and Case (IIa) and γ ∈ [0, ∞) in Case (IIb). We have shown 

in the previous subsection that for such values of γ: 

1. lim supt→∞Mγ (t) < ∞ 

2. Mγ is P -uniformly integrable 

3. Mγ (∞) > 0 P -a.s. 

Thus from Lemma 4.43 for events A ∈ F∞ 

Qγ (A) = E(1AMγ (∞)) 

and also 

Qγ (A) = 1 P (A) = 1. ⇔

In other words Qγ and P are equivalent on F∞. 

Let us exploit this fact to get a lower bound on the rightmost particle 

Proposition 4.49. 

Case (I) and Case (IIa): 

Let γ∗ be the unique solution of Λ(ψ (γ)) = β. Then ′

lim inf 
Rt ≥ ψ′(γ∗) = Λ−1(β) P -a.s. 

t→∞ t 

Case (IIb): 

lim inf 
Rt ≥ ψ′(∞) P -a.s. 

t→∞ t 

Proof. Consider the event 

� Xu � 

Bγ := infinite line of descent u : lim inf t = ψ′(γ)∃
t→∞ t 

∈ F∞. 

Then 

Q̃γ ( lim 
ξt 

= ψ′(γ)) = 1 
t→∞ t 

Q̃γ (Bγ ) = 1⇒ 
Qγ (Bγ ) = 1⇒
P (Bγ ) = 1⇒

P 
�
lim inf 

Rt ′(γ)
� 

= 1. ⇒
t→∞ t 

≥ ψ

Letting γ ր γ∗ in Case (I) and Case (IIa) and γ ր ∞ and Case (IIb) we obtain the 

required result. 
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4.5.4 Upper bound on the rightmost particle 

Proposition 4.50. 

Case (I) and Case (IIa): 

Let γ∗ be the unique solution of Λ(ψ′(γ)) = β. Then 

lim sup 
Rt ≤ ψ′(γ∗) = Λ−1(β) P -a.s. 

t→∞ t 

Case (IIb): 

lim sup 
Rt ≤ ψ′(∞) P -a.s. 

t→∞ t 

Proof. 

Case (I) and Case (IIa) 

Let us suppose for contradiction that there exists ǫ > 0 such that 

� Rt 
� 

P lim sup > ψ′(γ∗) + ǫ > 0. 
t→∞ t 

From this assumption with positive probability there exists a sequence of times (Jn)n≥1, 

Jn → ∞ and a sequence of particles (wn)n≥1, wn ∈ NJn , such that 

XJ
w
n

n > 
�
ψ′(γ∗) + ǫ

�
Jn. 

Thus with positive probability for the additive martingale Mγ∗ we have: 

Mγ∗ (Jn) ≥ exp γ∗XJ
w
n

n − ψ(γ∗)Jn − βJn 

> exp 
�� 

γ∗
�
ψ′(γ∗) + ǫ

� 
− ψ(γ∗) − β 

� 

Jn 

� 

= exp 
�� 

Λ
�
ψ′(γ∗)

�
+ ǫγ∗ − β 

� 

Jn 

� 

= exp ǫγ∗Jn → ∞ as n → ∞. 

That is, we have shown that 

P (Mγ∗ (∞) = ∞) > 0, 

which contradicts the Martingale Convergence Theorem. So it must be that 

� Rt 
� 

P lim sup > ψ′(γ∗) + ǫ = 0 
t→∞ t 

for all ǫ > 0. Letting ǫ ց 0 we get 

� Rt 
� 

P lim sup ≤ ψ′(γ∗) = 1. 
t→∞ t 

107 



�	 � 

��	 � � 

Case (IIb) 

Let us suppose for contradiction that there exists ǫ > 0 such that 

P 
� 

lim sup 
Rt 

> ψ′(∞) + ǫ 
� 

> 0. 
t→∞ t 

From this assumption with positive probability there exists a sequence of times (Jn)n≥1, 

Jn → ∞ and a sequence of particles (wn)n≥1, wn ∈ NJn , such that 

Xwn > 
�
ψ′(∞) + ǫ

�
Jn.Jn 

Take γ > β+1 . Then with positive probability for martingale Mγ we have: ǫ 

Mγ (Jn) ≥ exp γXwn − ψ(γ)Jn − βJnJn 

> exp 
�� 

γ
�
ψ′(∞) + ǫ

� 
− ψ(γ) − β 

� 

Jn 

� 

> exp γψ′(γ) − ψ(γ) + γǫ − β Jn 
�� � � � � 

> exp Λ ψ′(γ) + 1 Jn 

→ ∞ as n → ∞. 

Thus 

P (Mγ (∞) = ∞) > 0, 

which is a contradiction. So we have 

P 
� 

lim sup 
Rt 

> ψ′(∞) + ǫ 
� 

= 0 
t→∞ t 

for all ǫ > 0 and so 

P 
� 

lim sup 
Rt ≤ ψ′(∞) 

� 

= 1. 
t→∞ t 

Propositions 4.49 and 4.50 taken together prove Theorem 4.17 completing this sec

tion. 

4.6	 The rightmost particle in the case of inhomogeneous 

branching (p ∈ (0, 1)) 

In this section we prove Theorem 4.22. We shall follow the same steps as in the previous 

section. Analysis of additive martingales derived from exponential martingales of the 

form (4.15) will play the crucial role in the proof. 
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4.6.1 Additive martingales 

Recall the assumptions of Theorem 4.22 on the single-particle motion: 

1.	 ψ(γ) = log EeγX1 < ∞ ∀γ ∈ R, 

2.	 for all δ > 0 ψ (γ) < ψ (γ)1+δ for all γ large enough, ′′ ′

3. (Xt)t≥0 is point-recurrent in the sense of Definition 4.7,


d

4.	 (Xt)t≥0 is symmetric in the sense that (Xt)t≥0 = (−Xt)t≥0. 

Let us leave assumption 4 until the last subsection, where we shall prove the upper 

bound on the rightmost particle and replace it with a milder assumption from Theorem 

4.24: 

4∗. (Xt)t≥0 makes positive jumps (that is, Π((0, ∞)) =� 0) or it is a Brownian motion. 

Subject to these assumptions we construct the branching process with the spine under 

the probability measure P̃ in the usual way. 

Under P̃ the spine process (ξt)t≥0 is a Lévy process satisfying assumptions 1 - 3 
t

and 4∗ above. For a function γ : [0, ∞) R such that→ 0 ψ(γ(s))ds < ∞ ∀t ≥ 0 we


have from Theorem 4.34 that the following process is a P̃ -martingale: 

R Rt t 

e 0 γ(s)dξs− 0 ψ(γ(s) , t ≥ 0.	 (4.32) 

We now substitute it for M̃ (3) in equation (1.5) from the general setting described 

in Chapter 1. Hence, recalling (1.6), we define a P̃ -martingale with respect to the 

filtration ( G̃t)t≥0: 

R t � � t � t 

M̃γ (t) := e−β 0 |ξs|pds2nt × exp γ(s)dξs − ψ(γ(s))ds 
0 0 

,
 t ≥ 0 (4.33)


as well as the corresponding probability measure Q̃γ : 

dQ̃γ 

dP̃ 

= M̃γ (t) , t ≥ 0.	 (4.34) 

F̃t 

Under Q̃γ the branching process has the following description: 

•	 The initial particle (the spine) moves like a measure-changed Lévy process with 

time-dependent drift ât, the diffusion parameter σ and time-dependent jump 

measure Π̂t. 

•	 At rate 2β it splits into two new particles. 
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•	 One of these particles (chosen uniformly at random) continues the spine. I.e. it 

continues to move as a measure-changed Lévy process and to branch at rate 2β. 

•	 The other particle initiates an unbiased branching process where all the particles 

move as a Lévy process with parameters (a, σ, Π) and branch at rate β. 

Projecting Q̃γ onto F∞ in the usual way we get the probability measure Qγ := Q̃γ |F∞ 

and the corresponding additive martingale 

� �� t � t � t � 

Mγ (t) = exp γ(s)dXu + ψ(γ(s))ds − β(Xu) (4.35) s s 
u∈Nt 

0 0 0 

so that we have 
dQγ �

� 

� = Mγ (t) , t ≥ 0.	 (4.36) 
dP � 

Ft 

Having defined this family of martingales we can control the behaviour of the spine 

process via the choice of parameter γ. 

4.6.2 Convergence properties of Mγ (under Qγ ) 

Before we state the main result let us note the following: 

•	 EeγX1 < ∞ ∀γ ∈ R ⇒ γ−, γ+ = ∞, so the domain of ψ, ψ′ and ψ′′ is R. Also 

the process (Xt)t≥0 is in Case (I). That is, ψ′(∞) = ∞. 

•	 (Xt)t≥0 is point-recurrent ⇒ (Xt)t≥0 is recurrent ⇒ ψ (0) = EX1 = 0. So the ′

domain of Λ is [0, ψ (∞)). ′

In the rest of this section paths γ : [0, ∞) R are going to be positive and in•	
� t � t 

→
� t � t

creasing. Hence 0 ψ(γ(s))ds, 0 ψ (γ(s))ds, 0 ψ (γ(s))ds, 0 γ(s)ψ (γ(s))ds < ′ ′′	 ′

∞ ∀t ≥ 0. 

Theorem 4.51 (p ∈ (0, 1)). Consider a branching Lévy process in the potential β(x) = 

β|x|p, β > 0, p ∈ (0, 1), where single particles satisfy: 

1.	 ψ(γ) = log EeγX1 < ∞ ∀γ ∈ R, 

2.	 for all δ > 0 ψ′′(γ) < ψ (γ)1+δ for all γ large enough, ′

3.	 (Xt)t≥0 is point-recurrent, 

4.	 (Xt)t≥0 makes positive jumps or is a Brownian motion. 

Let Mγ be the additive martingale defined in (4.35). Then we have the following be

haviours of Mγ for various functions γ. 
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� �	 � � 
� 

� � � 

Let f(t) = F −1(t) as in Theorem 4.22, where 

�	 t 1 
F (t) = 

Λ−1(βsp)
ds , t ≥ 0. 

0 

Define 

γ∗(t) := (ψ′)−1
�
f ′(t)

� 

so that � t 

f(t) = ψ′(γ∗(s))ds 
0 

and also 
� � t �p 

Λ
�
ψ′(γ∗(t))

� 
= Λ(f ′(t)) = βf(t)p = β ψ′(γ∗(s))ds . (4.37) 

0 

Then we have the following.


i) For ǫ ∈ (0, 1) let γ(t) = 
�
ψ

�−1�
(1 − ǫ)f (t)

� 
, t ≥ 0, so that
′ ′

ψ
�
γ(t)

� 
= (1 − ǫ)f (t) = (1 − ǫ)ψ

�
γ∗(t)

� 
. Then ′	 ′ ′

Mγ is U.I. and Mγ (∞) > 0 P -a.s. 

ii) For ǫ > 0 let γ(t) = 
�
ψ

�−1�
(1 + ǫ)f (t)

� 
, t ≥ 0, so that ′ ′

ψ
�
γ(t)

� 
= (1 + ǫ)f (t) = (1 + ǫ)ψ

�
γ∗(t)

� 
. Then ′	 ′ ′

Mγ (∞) = 0 P -a.s. 

As always we have the following decomposition of the probability measure Qγ : 

Lemma 4.52. For events A ∈ F∞ 

Qγ A = lim sup Mγ (t)dP + Qγ A ∩ {lim sup Mγ (t) = . (4.38) 
A t→∞ t→∞ 

∞} 

Corollary 4.53. 

•	 Mγ (∞) = 0 P -a.s. ⇔ lim supt→∞Mγ (t) = ∞ Qγ -a.s. 

•	 lim supt→∞Mγ (t) < ∞ Qγ -a.s. ⇒ EMγ (∞) = 1, Mγ is P -uniformly integrable 

and P (Mγ (∞) > 0) > 0 

We also need to know that P (Mγ (∞) > 0) ∈ {0, 1} and the next lemma helps us 

to resolve this issue. 

Lemma 4.54. Consider a branching Lévy process started from 0 in the potential β(x) = 

β|x|p, p ∈ (0, 1), where p ∈ (0, 1) and the underlying Lévy process is point-recurrent. 

Let q : R [0, 1] be a function such that →

Mt := q Xu(t)
u∈Nt 
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is a P -martingale. Then 

q(0) ∈ {0, 1}. 

Proof of Lemma 4.54. 

Since


˜ ˜
q(0) = EMt = EMt ≤ Eq(ξt) 

we have that (q(ξt))t≥0 is a positive submartingale, so 

q(ξt) q P̃ -a.s. → ∞ 

Since (ξt)t≥0 is point-recurrent as in Definition 4.7 it returns to 0 infinitely often and 

hence q(0) = q∞. That is, 

q(ξt) q(0) P̃ -a.s. →

However, if we define another independent spine process (ξ̃t)t≥0 we would have 

Mt = 
� 

q 
�
Xu(t)

� 
≤ q(ξt)q(ξ̃t) for t large enough 

u∈Nt 

Thus by the uniform integrability of Mt and q(ξt)q(ξ̃t) we get that 

q(0) = EM∞ ≤ q 2 = q(0)2 ∞ 

and hence q(0) ∈ {0, 1}. 

Corollary 4.55. 

P (Mγ (∞) = 0) ∈ {0, 1}. (4.39) 

Proof. Let q(x) := P x(Mγ (∞) = 0). Then ∀x ∈ R 

q(x) = Ex 
� 

P x
�
Mγ (∞) = 0

�
�Ft 

�� 

= Ex 
� � 

q(Xt
u) 

� 

. 
u∈Nt 

Hence 
� 

u∈Nt 
q(Xt

u) is a P -martingale and 

P (Mγ (∞) = 0) = q(0) ∈ {0, 1}. 

Proof of Theorem 4.51 part i). In view of Corollary 4.53 and Corollary 4.55 it is suffi

cient to show that 

lim sup Mγ (t) < ∞ Qγ -a.s. (4.40) 
t→∞ 
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� 

Then absolutely identical argument to the one used in the case of homogeneous branch

ing in Subsection 4.5.2 shows that it is actually enough to prove that 

˜ ˜lim sup EQ̃γ (Mγ (t)|G∞) < ∞ Qγ -a.s. (4.41) 
t→∞ 

The spine decomposition gives 

EQ̃γ (Mγ (t)|G̃∞) = spine(t) + sum(t), (4.42) 

where 
�� t � t � t � 

spine(t) = exp γ(s)dξs − ψ(γ(s))ds − β|ξs|pds (4.43) 
0 0 0 

and 

sum(t) = spine(Su) (4.44) 

u∈nodet(ξ) 

� � � Su 
� Su 

� Su � 

= exp 
0 

γ(s)dξs − 
0 

ψ(γ(s))ds − 
0 

β|ξs|pds , 

u<nodet(ξ) 

where {Su : u ∈ ξ} is the set of fission times along the spine. 

In order to estimate the spine term we need to know the following about the asymp

totic behaviour of (ξt)t≥0 under Q̃γ : 

Proposition 4.56. 
ξt 

1 Q̃γ -a.s., (4.45) � t 
0 ψ

′(γ(s))ds 
→

� t 
γ(s)dξs0 1 Q̃γ -a.s. (4.46) � t 

0 γ(s)ψ
′(γ(s))ds 

→

Proof of Proposition 4.56. The result follows from Theorem 4.39 and Corollary 4.41. 

We only need to check the following three conditions on γ( ) and ψ( ): · ·
� n+1 

ψ (γ(s))ds′
n � n 

ψ (γ(s))ds 
0 as n → ∞, (4.47) 

0 
′ →

� n 

∃δ > 0 s.t. for n large enough 0 
n 
ψ′′(γ(s))ds 1 

, (4.48) 
(
�

0 ψ
′(γ(s))ds)2 

≤
n1+δ 

� t ′
lim sup 

γ
�
(
t 

t) 0 ψ (γ(s))ds
< ∞. (4.49) 

t→∞ 
0 γ(s)ψ

′(γ(s))ds 

The Lévy process that we are looking at either makes positive jumps (that is, 

Π((0, ∞)) =� 0) or is a Brownian motion. 

The case of a Brownian motion was considered in [22] where (4.45) and (4.46) were 
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� � 

� 

� 

proved under weaker assumptions, so there is no need to repeat it. Thus let us restrict 

our attention to the process with positive jumps. 

Firstly let us show that ψ( ) grows at least exponentially fast as ·	 γ → ∞. 

Since the Lévy process makes positive jumps there exists an interval (x0, x1), 0 < 

x0 < x1 such that Π (x0, x1) > 0. We then observe that from (4.5) 

ψ(γ) = aγ + 
1 
σ2γ2 + 

�
� 
e γx − γx1|x|<1 − 1

�
Π(dx)

2 R\{0}
1 

�
�	 �

= aγ + σ2γ2 + e γx − γx1|x|<1 − 1 Π(dx)
2 (−∞,0) 

+	
� 
e γx − γx1|x|<1 − 1

�
Π(dx) 

(0,∞) 

≥ aγ +
1 
σ2γ2 − Π

�
(−∞, −1]

� 
+ 

�
� 
e γx − γx − 1

�
Π(dx)

2 (−1,0) �	 �� � 

≥0 

+	
(0,∞) 

� 
e γx − γx1|x|<1 − 1

�
Π(dx) 

1	
� 

≥ aγ + σ2γ2 − Π
�
(−∞, −1]

� 
+ 

� 
e γx − γx − 1

�
Π(dx)

2 (−1,0) 

+ (e γx0 − γx0 − 1)Π
�
(x0, x1)

� 
, 

which grows exponentially fast due to eγx0 . Similarly one can show that ψ ( ) grows at ′ ·
least exponentially fast and so (ψ )−1( ) grows at most logarithmically fast. Then ′ ·

Λ
�
ψ′(γ)

� 
= γψ′(γ) − ψ(γ) ≤ γψ′(γ) 

⇒Λ(x) ≤ x 
�
(ψ′)−1(x)

� 
≤ x 1+η 

for any η > 0 and x large enough. On the other hand Λ(x) ≥ cx for some c > 0 and x 

large enough since Λ is convex. Thus we have shown that log Λ(x) ∼ log x. Then 

� t 1 
F (t) = 

Λ(βsp)
ds ≈ t1−p 

0 

in the sense that ∀η > 0 and t large enough 

t1−p−η ≤ F (t) ≤ t1−p+η . 

1 

Then f(t) = F −1(t) ≈ t 1−p in the same sense that ∀η > 0 and t large enough 

1	 1 

t 1−p
−η ≤ f(t) ≤ t 1−p 

+η 
. 

(Compare this with a more accurate result in Theorem 3.4 in the case of a continuous-

time random walk.) 
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p 
1−pThus it is also true that ψ (γ∗(t)) = f (t) = Λ−1(βf(t)p) ≈ t in the usual sense ′ ′

that ∀η > 0 and t large enough 

p p 

t 1−p
−η ≤ ψ′(γ∗(t)) ≤ t 1−p 

+η . 

Then since the functions γ that we consider satisfy ψ(γ(s)) = αψ(γ∗(s)) for some α > 0 

it follows that ∀η > 0 and n large enough 

� n+1 
ψ′(γ(s))ds 1 n �

0 
n 
ψ′(γ(s))ds 

≤
n1−η → 0 as n → ∞ 

proving (4.47). 

To prove (4.48) we note that from condition 2 in Theorem 4.51 ∀δ > 0 and γ large 

enough 

ψ′(γ)1−δ ≤ ψ′′(γ) ≤ ψ′(γ)1+δ , 

Hence ∀η > 0 and n large enough 

� n 
ψ′′(γ(s))ds 1 10 

(
� n 

ψ 1 1+ p . 
0 

′(γ(s))ds)2 
≤
n 1−p

−η 
= 
n 1−p

−η 

Choosing η small enough then proves (4.48). 

To prove (4.49) we note that ∀η > 0 and γ large enough 

ψ(γ) ≤ ηγψ′(γ) (4.50) 

⇒Λ(ψ′(γ)) = γψ′(γ) − ψ(γ) ∼ γψ′(γ). 

Also, by differentiating (4.37) with respect to t we can check that functions γ( ) that ·
we consider are increasing but γ′( )’s are decreasing. It then follows that ∀η > 0 and t·
large enough 

� t � t 

ηγ(t) ψ′(γ(s))ds > η γ(s)ψ′(γ(s))ds 
0 0 

(4.50) 
� t 

≥ 
0 
ψ(γ(s))ds 

� t � s 

= γ′(u)ψ′(γ(u))duds 
0 0 

� t � s 

> γ′(s) ψ′(γ(u))duds. 
0 0 
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� � 

Hence 

� t � t � t � s 

γ(s)ψ′(γ(s))ds = γ(t) ψ′(γ(s))ds − γ′(s) ψ′(γ(u))duds 
0 0 0 0 

� t 

∼ γ(t) ψ′(γ(s))ds 
0 

and thus � t
γ(t) 0 ψ (γ(s))ds′

lim sup � t = 1 < ∞. 
t→∞ 

0 γ(s)ψ
′(γ(s))ds 

So conditions of Theorem 4.39 and Corollary 4.41 are satisfied and this proves Propo

sition 4.56. 

Let us now prove the following bound on the spine term. 

Proposition 4.57. There exist some Q̃γ -a.s. finite positive random variables C , C′ ′′ 

and a random time T ′ < ∞ such that ∀t > T ′ 

spine(t) ≤ C ′ exp 
� 

− C ′′ 
� t �

� s 

ψ′(γ(u))du 
�p

ds 
� 

. 
0 0 

Proof of Proposition 4.57. Let us begin by observing the following two inequalities: 

Λ (1 − ǫ)x ≤ (1 − ǫ)Λ(x) ∀x ≥ 0. (4.51) 

ψ(γ) ≤ Λ
�
ψ′(γ)

� 
for γ large enough. (4.52) 

(4.51) follows from the convexity of Λ and the fact that Λ(0) = 0. 

For (4.52) note that in the case of Brownian motion ψ(γ) = Λ(ψ′(γ)) = 2
1σ2γ2 . 

Otherwise Λ(ψ (γ)) ≫ ψ(γ) as we have already seen in (4.50). ′

Then from Proposition 4.56 we have that for all δ > 0 there exists Q̃γ -a.s. finite 

random time Tδ such that ∀t > Tδ 

� t � t 

(1 − δ) ψ′(γ(s))ds ≤ ξt ≤ (1 + δ) ψ′(γ(s))ds 
0 0 

and � t � t � t 

(1 − δ) γ(s)ψ′(γ(s))ds ≤ γ(s)dξs ≤ (1 + δ) γ(s)ψ′(γ(s))ds. 
0 0 0 
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Thus ∀t ≥ Tδ 

�� t � t � Tδ 
� t � 

spine(t) = exp 
0 
γ(s)dξs − 

0 
ψ

�
γ(s)

�
ds − 

0 
β|ξs|pds − 

Tδ 

β|ξs|pds 
� � t � t 

≤ Cδ exp (1 + δ) γ(s)ψ′(γ(s))ds − ψ(γ(s))ds 
0 0 

� t �� s �p � 

− (1 − δ)pβ ψ′(γ(u))du ds 
0 0 

= Cδ exp 
� 

(1 + δ) 

� t 

Λ
�
ψ′(γ(s))

�
ds + δ 

� t 

ψ(γ(s))ds 
0 0 

� t �� s �p � 

− (1 − δ)pβ ψ′(γ(u))du ds , 
0 0 

where 
� � Tδ 

� Tδ � � s �p � 

Cδ = exp β ξs
pds + β

�
� ψ′(γ(u))du

�
� ds− 

0 
| |

0 0 

is a Q̃γ -a.s. finite random variable. Then by (4.52) 

� � t � �
� t � �

spine(t) ≤ Cδ 
′ exp (1 + δ) Λ ψ′(γ(s)) ds + δ Λ ψ′(γ(s)) ds 

0 0 
� t � � s �p � 

− (1 − δ)pβ ψ′(γ(u))du ds , 
0 0 

where 
� � τ � τ � 

Cδ 
′ = Cδ × exp δ ψ

�
γ(s)

�
ds − δ Λ

�
ψ′(γ(s))

�
ds 

0 0 

and τ > 0 is such that 

ψ
�
γ(s)

� 
≤ Λ

�
ψ′(γ(s))

� 
∀s ≥ τ . 

Thus using (4.51) we have 

� � t � �
� t �� s �p � 

spine(t) ≤ Cδ 
′ exp (1 + 2δ) Λ ψ′(γ(s)) ds − (1 − δ)pβ ψ′(γ(u))du ds 

0 0 0 
� � t � �

≤ Cδ 
′ exp (1 + 2δ)(1 − ǫ) Λ ψ′(γ∗(s)) ds 

0 
� t � � s �p � 

− (1 − δ)pβ ψ′(γ(u))du ds 
0 0 

� � t �� s �p 
= Cδ 

′ exp (1 + 2δ)(1 − ǫ)β ψ′(γ∗(u))du ds 
0 0 

� t � � s �p � 

− (1 − δ)pβ ψ′(γ(u))du ds 
0 0 

�� � � t �� s �p � 

≤ Cδ 
′ exp (1 + 2δ)(1 − ǫ) − (1 − δ)p β ψ′(γ(u))du ds 

0 0 
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� 

� 

� 

and for a given ǫ > 0 we can choose δ > 0 s.t. 

c− := (1 + 2δ)(1 − ǫ) − (1 − δ)p < 0. ǫ 

So, choosing such a δ and letting T = Tδ, C = C and C = ((1+2δ)(1−ǫ)−(1−δ)p )β′ ′ ′ ′′ 
δ 

we prove Proposition 4.57. 

For the sum term we have when t > T ′ 

sum(t) = spine(Su)


u<nodet(ξ)

� � � � � � 

= spine(Su) + spine(Su) 
′ ′ u<nodet(ξ), Su≤T u<nodet(ξ), Su>T 

≤ spine(Su) 
′ u<nodet(ξ), Su≤T 

� � � Su �
� s �p � 

+ C ′ exp − C ′′ ψ′(γ(u))du ds 
′ 0 0u<nodet(ξ), Su>T 

using Proposition 4.57 for the inequality. The first sum is Q̃γ -a.s. bounded since it 

only counts births up to time T ′ . Call an upper bound on the first sum C1. Then we 

have ∞ � � Sn �
� s �p � 

sum(t) ≤ C1 + C ′ exp −C ′′ ψ′(γ(u))du ds , (4.53) 
n=1 0 0 

where Sn is the time of the nth birth on the spine. 

The birth process along the spine (nt)t≥0 conditional on the path of the spine is 

time-inhomogeneous Poisson process (or Cox process) with jump rate 2β ξt
p at time t| |

(See Proposition 1.13). Thus 

� t 
2β

n

ξ

t

s
pds 

→ 1 Q̃γ -a.s. as t → ∞. 
0 | |

Also � t � t �� s �p 

0 
|ξs|pds ∼ 

0 0 
ψ′(γ(u))du ds Q̃γ -a.s. as t → ∞. 

Hence � t � � s �p 
nt ∼ 2β ψ′(γ(u))du ds Q̃γ -a.s. as t → ∞. (4.54) 

0 0 

So for some Q̃γ -a.s. finite positive random variable C2 we have 

� Sn �
� s �p 

ψ′(γ(u))du ds ≥ C2n ∀n. 
0 0 
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� 

Then substituting this into (4.53) we get 

sum(t) ≤ C1 + C ′
∞
e−C ′′ C2n , 

n=1 

which is bounded Q̃γ -a.s. We have thus shown that 

lim sup EQ̃γ 

� 

Mγ (t)�
� 

G̃∞ 
� 

< ∞ Q̃γ -a.s. 
t→∞ 

and hence 

lim sup Mγ (t) < ∞ Q̃γ -a.s. 
t→∞ 

Proof of Theorem 4.51 part ii). Since one of the particles at time t is the spine particle, 

we have 

�� t � t � t � 

Mγ (t) ≥ exp 
0 
γ(s)dξs − 

0 
ψ(γ(s))ds − 

0 
β|ξs|pds = spine(t). 

For γ( ) satisfying ψ (γ(t)) = (1+ ǫ)ψ (γ∗(t)) one can check following the same analysis ′ ′·
as in the proof of i) above that spine(t) → ∞ Q̃γ -a.s. Thus 

lim sup Mγ (t) = Q̃γ -a.s. ∞
t→∞ 

and so also Q̃γ -a.s. Recalling Corollary 4.53 we see that Mγ (∞) = 0 P -a.s. 

4.6.3 Lower bound on the rightmost particle 

We can now prove Theorem 4.24, which will also provide us with the lower bound for 

Theorem 4.22. 

Let γ( ) satisfy ψ (γ(t)) = (1−ǫ)ψ (γ∗(t)) = (1−ǫ)f (t). In the previous subsection ′ ′ ′·
we proved that 

1. lim supt→∞Mγ (t) < ∞ 

2. Mγ is P -U.I. 

3. Mγ (∞) > 0 P -a.s. 

Thus from Lemma 4.52 for events A ∈ F∞ 

Qγ (A) = E(1AMγ (∞)) 

and also 

Qγ (A) = 1 P (A) = 1. ⇔
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In other words Qγ and P are equivalent on F∞. 

Let us exploit this fact to get a lower bound on the rightmost particle 

Proof of Theorem 4.24. For ǫ ∈ (0, 1) take γ( ) such that ψ (γ(t)) = (1− ǫ)ψ (γ∗(t)) =′ ′·
(1 − ǫ)f (t) and consider the event ′

� Xu � 

Bγ := infinite line of descent u : lim inf � t
t = 1∃

t→∞ 
0 ψ

′(γ(s))ds 
∈ F∞. 

Then 

Q̃γ ( lim � t 

ξt 
= 1) = 1 

t→∞ 
0 ψ (γ(s))ds′

Q̃γ (Bγ ) = 1⇒ 
Qγ (Bγ ) = 1⇒
P (Bγ ) = 1⇒

� Rt � 
⇒P lim inf � t 

ψ (γ(s))ds 
≥ 1 = 1 

t→∞ 
0 

′

� Rt � 
⇒P lim inf 

f(t) 
≥ 1 − ǫ = 1. 

t→∞ 

Letting ǫ ց 0 we obtain the required result. 

4.6.4 Upper bound on the rightmost particle 

In this subsection we complete the proof of Theorem 4.22 by establishing the appro

priate upper bound. 

According with Theorem 4.22 we impose an additional condition that the single
d

particle motion is symmetric in the sense that (Xt)t≥0 = (−Xt)t≥0, which we did not 

need in the proof of the lower bound. 

Proposition 4.58. Consider a Branching Lévy process with a one-particle motion 

satisfying: 

1. ψ(γ) = log EeγX1 < ∞ ∀γ ∈ R, 

2. for all δ > 0 ψ (γ) < ψ (γ)1+δ for all γ large enough, ′′ ′

3. (Xt)t≥0 is point-recurrent in the sense of Definition 4.7, 

d
4. (Xt)t≥0 is symmetric in the sense that (Xt)t≥0 = (−Xt)t≥0 

Then 
Rt

lim sup 
f(t) 

≤ 1 P -a.s., 
t→∞ 

where f(t) = 
�

0 
t 
ψ (γ∗(s))ds as before. ′

120 



To prove Proposition 4.58 we shall assume for contradiction that it is false. Then 

we shall show that an additive martingale Mγ for the right choice of γ( ) will diverge ·
to ∞ contradicting the Martingale Convergence Theorem. 

We start by proving the following 0-1 law. 

Lemma 4.59. For all c > 0 

� Rt 
� 

P lim sup 
f(t) 

≤ c ∈ {0, 1}. 
t→∞ 

Proof. Let us consider 
� Rt 

� 

q(x) = P x lim sup 
f(t) 

≤ c . 
t→∞ 

Then 

q(x) = Ex 
� 

P x
�
lim sup 

f

R

(t
t 

) 
≤ c 

�
�Ft 

�� 

= Ex 
� � 

q 
�
Xu(t)

�� 

t→∞ 
u∈Nt 

so that 
� 

u∈Nt 
q(Xu(t)) is a P -martingale. Applying Lemma 4.54 to q(x) we deduce 

that 
� Rt 

� 

P lim sup 
f(t) 

≤ c = q(0) ∈ {0, 1}. 
t→∞ 

Proof of Proposition 4.58. Let us suppose for contradiction that ∃ǫ > 0 such that 

P 
� 

lim sup 
t→∞ 

Rt 
f(t) 

> 1 + ǫ 
� 

= 1. (4.55) 

Let 

h(t) := 
�
1 + 

ǫ 
2 

�
f(t) , t ≥ 0 

and 

γ(t) := (ψ′)−1
�
(1 + 

ǫ 
2
)f ′(t)

� 

so that � t 

0 
ψ′(γ(s))ds = (1 + 

ǫ 
2
)f(t) = h(t). 

We define D(h) to be the space-time region bounded above by the curve y = h(t) and 

below by the curve y = −h(t). 
Under P the spine process (ξt)t≥0 is a Lévy process with zero mean and so 

|ξt| 
0 P -a.s. as t → ∞. Hence there exists an a.s. finite random time T ′ < ∞ such 

t 
→

that ξt ∈ D(h) for all t > T . ′ 

Since (ξt)t≥0 is point-recurrent there exists an interval [a, b], 0 < a < b such that 

(ξt)t≥0 will spend an infinite amount of time in this interval giving birth to offspring 

at rate ≥ βap. This assures us of the existence of an infinite sequence {Tn}n∈N of birth 
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� � 

times along the path of the spine when it stays in [a, b] with 0 ≤ T ≤ T1 < T2 < ... ′ 

and Tn ր ∞. 

Denote by un the label of the particle born at time Tn, which does not continue the 

spine. Then each particle un gives rise to an independent copy of the Branching Lévy 

process under P started from ξTn at time Tn. Almost surely, by assumption (4.55), 

each un has some descendant that leaves the space-time region D(h). 

Let {vn}n∈N be the subsequence of {un}n∈N of those particles whose first descendent 

leaving D(h) does this by crossing the upper boundary y = h(t). Since the branching 

process is symmetric and the particles un are born in the upper half-plane, there is at 
1 

least probability that the first descendant of un to leave D(h) does this by crossing 
2 

the positive boundary curve. Therefore P -a.s. the sequence {vn}n∈N is infinite. 

Let wn be the descendent of vn, which exits D(h) first and let Jn be the time when 

this occurs. That is, 

Jn = inf t : Xwn (t) ≥ h(t) . 

b 

a 

−h(t) 

h(t) 

ξt 

T2T1 T3T ′ 

J2 

u2 

w2 

u3 = v2 

u1 = v1 = w1 

J1 

Figure 4-5: Illustration to Proposition 4.58 

Note that the path of particle wn satisfies 

|Xwn (s)| < h(s) ∀s ∈ [T ′, Jn). 

Clearly Jn → ∞ as n → ∞. To obtain a contradiction we shall show that the additive 
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martingale Mγ fails to converge along the sequence of times {Jn}n≥1. 

� � � Jn 
� Jn 

� Jn � 

Mγ (Jn) = exp 
0 

γ(s)dXu − 
0 

ψ(γ(s))ds − 
0 

β|Xu |pdss s 
u∈NJn 

� � Jn 
� Jn 

� Jn � 

≥ 
0 

γ(s)dXwn − 
0 

ψ(γ(s))ds − 
0 

β|Xwn |pds .s s 

Applying the integration-by-parts formula from Propostion 4.33 we get 

� � Jn 
� Jn 

� Jn � 

exp γ(Jn)X
wn − 

0 
γ′(s)Xs

wn ds − 
0 

ψ(γ(s))ds − 
0 

β|Xs
wn |pdsJn 

� � Jn 
� Jn 

� s 

≥C exp γ(Jn) ψ′(γ(s))ds − γ′(s) ψ′(γ(u))duds 
0 0 0 

� Jn 
� Jn 

� s � 

− 
0 

ψ(γ(s))ds − 
0 

β
� 

0 
ψ′(γ(u))du 

�p
ds 

using the facts that XJ
w
n

n ≥ h(Jn) and |Xs
wn | < h(s) for s ∈ [T ′, Jn) and where C is 

some P -a.s positive random variable. Then applying the classical integration-by-parts 

formula we get 

C exp 
� � Jn 

γ(s)ψ′(γ(s)) − ψ(γ(s))ds − 
� Jn 

β
�
� s 

ψ′�γ(u)
�
du 

�p
ds 

� 

0 0 0 

=C exp 
� � Jn 

Λ 
� 

ψ′�γ(s)
�� 

ds − 
� Jn 

β
�
� s 

ψ′�γ(u)
�
du 

�p
ds 

� 

0 0 0 

=C exp 
� � Jn 

Λ 
��

1 + 
ǫ �
ψ′�γ∗(s)

�� 

ds − 
�
1 + 

ǫ �p 
� Jn 

β
�
� s 

ψ′�γ∗(u)
�
du 

�p
ds 

� 

2 20 0 0 

≥C exp 1 + 
�� ǫ �

� Jn 

Λ 
� 

ψ′�γ∗(s)
�� 

ds − 
�
1 + 

ǫ �p 
� Jn 

β
�
� s 

ψ′�γ∗(u)
�
du 

�p
ds 

� 

2 0 2 0 0 

=C exp 
���

1 + 
2 

ǫ � − 
�
1 + 

2 

ǫ �p�
� Jn 

Λ 
� 

ψ′�γ∗(s)
�� 

ds 
� 

→ ∞ 
0 

since 1 + 
��

2 

ǫ � − 
�
1 + 

2 

ǫ �p� 
> 0. 

Thus Mγ (Jn) → ∞ as n → ∞, which is a contradiction. Therefore assumption 

(4.55) is wrong and we must have that ∀ǫ > 0 

� Rt 
� 

P lim sup > 1 + ǫ = 0. 
t→∞ f(t) 

It follows after taking the limit ǫ ց 0 that 

� Rt 
� 

P lim sup 
f(t) 

≤ 1 = 1. 
t→∞ 
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Let us note that the above proof relied on the symmetry of the branching process. 

This symmetry guaranteed the existence of an infinite sequence {vn}n∈N, which was 

crucial in the proof. 

If we don’t assume the symmetry of the particles’ motion then we might see the 

following picture: 

f(t) 

t 

Figure 4-6: Asymmetric branching process 

That is, we still have a lineage of particles staying near f(t) (drawn in red in Figure 

4-6 above), but due to asymmetry we might have that most of the particles’ mass is 

concentrated in the lower half-plane. Then it is possible that those particles from the 

lower half-plane ocasionally go above f(t) (such particles are drawn in blue in Figure 

4-6). In this case f(t) will underestimate the rightmost particle of the system. 
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Chapter 5 

BBM with branching at the 

origin 

In this chapter we study a branching Brownian motion in which binary fission takes 

place only at the origin at rate β on the local time scale. That is, the cumulative 

branching rate of each particle is βLt, where Lt is its local time at 0 and β is a positive 

constant. Heuristically, we can think of the instantaneous branching rate as βδ0(x) if 
� t

we accept that 0 δ0(Xs)ds = Lt. 

This model has been studied before in the context of superprocesses. See e.g. works 

of D. A. Dawson and K. Fleischmann [11], K. Fleischmann and J.F. Le Gall [17] or J. 

Engländer and D. Turaev [14]. In the discrete space similar models have been studied 

extensively as well. See e.g. some recent papers such as [9] or [12]. 

We shall prove results about the total number of particles in the system and the 

number of particles above the given line λt. In particular, we shall exhibit the asymp

totic behaviour of the rightmost particle. We shall also prove the strong law of large 

numbers for the branching process, adapting the proof of J. Engländer, S.C. Harris and 

A.E. Kyprianou from [16]. 

5.1 Introduction 

5.1.1 Local time of a Brownian motion 

Basic information about local times and the excursion theory can be found in many 

textbooks on Brownian motion (see e.g. [28]). Also a good introduction is given in the 

paper of C. Rogers [30]. Let us give a very brief overview of this topic. 

Suppose (Xt)t≥0 is a standard Brownian motion on some probability space under 

probability measure P. The following result due to Trotter is taken from [30]. 

Theorem 5.1 (Trotter). There exists a jointly continuous process {L(t, x) : t ≥, x ∈ R} 
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� 

such that for all bounded measurable f , and all t ≥ 0


� t � ∞
f(Xs)ds = f(x)L(t, x)dx. 

0 −∞ 

In particular, for any Borel set A 

� t � 

1A(Xs)ds = L(t, x)dx, 
0 A 

so L is an occupation density.


Definition 5.2. The process (L(t, x))t≥0 is called the local time of (Xt)t≥0 at x.


The following corollary of Theorem 5.1 can be found e.g. in [28] and it is often usen 

as the definition of the local times. 

Corollary 5.3. Almost surely 

1 
� t 

L(t, x) = lim 1{Xs∈(x−ǫ,x+ǫ)}ds 
ǫ→0 2ǫ 0 

for every x ∈ R and t ≥ 0. 

For the rest of this chapter we shall only be concerned with the local time at 0, 

which we shall denote as Lt rather than L(t, 0). We recall a couple of well-known 

results. 

Theorem 5.4 (Tanaka’s formula). 

� t 

|Xt| = sgn(Xs)dXs + Lt, 
0 

where 
1 if x > 0 

sgn(x) = 
−1 if x ≤ 0 

In a non-rigorous way this can be thought of as Itô’s formula applied to f (x) = x ,| |
where f (x) = sgn(x), f (x) = 2δ0(x) (where δ0 is the Dirac delta function). Then one ′ ′′

� t
can think of Lt as 0 δ0(Xs)ds. 

Another useful result is the following theorem. 

Theorem 5.5 (Lévy). Let (St)t≥0 be the running supremum of X. That is, St = 

sup0≤s≤t Xs. Then 
d

(St, St −Xt)t≥0 = (Lt, |Xt|)t≥0 

and as a consequence (|Xt| − Lt)t≥0 is a standard Brownian motion. 
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Corollary 5.6. ∀t ≥ 0 by the Reflection Principle 

d d d
Lt = St = Xt = N(0, t) .| | | |

5.1.2 Description of the model 

Under probability measure P we construct the branching process in the following way. 

Initial particle starts moving from 0 according to a standard Brownian motion with 

the position at time t denoted by Xt. 

If (Lt)t≥0 is the local time of (Xt)t≥0 at 0 then at cumulative rate βLt (See Remark 

1.4), where β > 0 is a given constant, the particle splits into two new ones. Note that 

since (Lt)t≥0 only increases on the zero set of (Xt)t≥0 the split can only occur at the 

position 0. 

The new particles then independently of each other and of the past repeat the 

behaviour of their father. 

5.1.3 Main results 

In this subsection we list all our main theorems and propositions in the order that we 

are going to prove them. 

Firstly we shall prove the following two lemmas about the expected population 

growth. 

Lemma 5.7. Recall that Nt is the set of particles alive at time t. Then 

� � 
β2 

E |Nt| ∼ 2e 2 
t as t → ∞. 

Lemma 5.8. For λ > 0 let Nλt := {u ∈ Nt : X
u > λt} be the set of particles at time t t 

t, which lie above λt. Then as t → ∞ 

1 � � 
� 

1β2 − βλ if λ < β 
t 

logE |Nt
λt | → Δλ := 2

2
1λ2 if λ ≥ β−

Note that Δλ is < 0 or > 0 according to whether λ is > β 
2 

β 
2or < (see Figure 5-1 

below). The next few results are concerned with the almost sure asymptotic behaviour 

of the population. 

Theorem 5.9. 

lim 
log |Nt|

=
1 
β2 P -a.s. 

t→∞ t 2 

Theorem 5.10. Take λ > 0. Then: 

1. if λ > β then limt→∞ |Nλt | = 0 P - a.s. 2 t 
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2. if λ < β 
2

log |Nt
λt |

t 
=
 Δλ =
 12β

2then limt→∞ − βλ P -a.s.


1 
2β

2 

−1 
2β

2 

β 
2

β λ 

Figure 5-1: Plot of Δλ 

From Theorem 5.10 we immediately get the growth of the rightmost particle. 

Corollary 5.11. Let (Rt)t≥0 be the rightmost particle of the branching process. Then 

Rt β 
lim = P -a.s. 
t→∞ t 2 

We also give a bit more information about |Nλt |t in the case λ > β 
2 .


Lemma 5.12. For λ > β 
2 

lim 
log P (|Nλt | ≥ 1) 

= Δλ =
1t 

t 
−

2 
λ2 . 

t→∞ 

Our final result is the Strong Law of Large Numbers for the branching system. 

Theorem 5.13 (SLLN). Let f : R R be some Borel-measurable bounded function. →
Then 

2 
� 

lim e− β
2 
t 

� 

f(Xt
u) = M∞ f(x)βe−β|x|dx P -a.s., 

t→∞ 
u∈Nt 

where M is the almost sure limit of the P -uniformly integrable additive martingale ∞ 

Mt = 
� 

exp 
� 
− β|Xt

u | −
2

1 
β2t 

� 
. 

u∈Nt 

One can observe that taking f( ) ≡ 1 in Theorem 5.13 would give Lemma 5.7 and ·
an even stronger result than in Theorem 5.9. However the proof of Theorem 5.13 relies 
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on Theorem 5.9 and the proof of Theorem 5.9 relies on Lemma 5.7. Thus it is necessary 

that we prove our results in the presented order. 

5.1.4 Outline of the chapter 

In Section 5.2 we shall introduce a certain change of measure, which we shall then use 

to prove Lemma 5.7 and Lemma 5.8. 

In Section 5.3 we shall present the additive martingale associated with the change 

of measure from Section 5.2 and discuss some of its properties. It will be the same 

martingale that features in Theorem 5.13. 

We shall then prove Theorem 5.9 in Section 5.4 making some use of this additive 

martingale. 

Section 5.5 is devoted to the proofs of Theorem 5.10, Corollary 5.11 and Lemma 

5.12. 

In Section 5.6 we prove Theorem 5.13. 

5.2 Expected population growth 

5.2.1 Brownian motion with drift towards the origin 

In this self-contained subsection we present a family of single-particle martingales and 

the corresponding changes of measure. Let (Xt)t≥0 be a standard Brownian motion 

under probability measure P and let (Lt)t≥0 be its local time at the origin. Then 

Theorem 5.5 says that 

(Zt)t≥0 := (|Xt| − Lt)t≥0 

is also a standard Brownian Motion under P. Hence for any γ ∈ R 

Wt = exp 
� 

γ
� 
|Xt| − Lt 

� 
−

2

1 
γ2t 

� 

= exp 
� 

γZt −
2

1 
γ2t 

� 

, t ≥ 0 

is a martingale (namely, a Girsanov martingale for Z). And more generally, for γ( ) a·
smooth path 

� � t 1 
� t � 

Wt = exp γ(s)dZs − γ2(s)ds 
20 0 

Tanaka 
� � t 1 

� t 

γ2(s)ds 
� 

(5.1) = exp γ(s)sgn(Xs)dXs −
20 0 

is a P-martingale. Used as the Radon-Nikodym derivative it puts the instantaneous drift 

sgn(Xt)γ(t) on the process (Xt)t≥0. Let us restrict ourselves to the case γ( ) ≡ −γ < 0·
so that W puts the constant drift γ towards the origin on (Xt)t≥0. The following result 

can be found in [8]. 
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� 

Proposition 5.14. Let Q be the probability measure defined as 

dQ
� � � � 1 � 

dP 
�
�
F̂t 

= exp − γ |Xt| − Lt −
2 
γ2t , t ≥ 0, 

where (F̂t)t≥0 is the natural filtration of (Xt)t≥0. Then under Q, (Xt)t≥0 has the 

transition density 

p(t;x, y) =
2
√1

2πt 
exp 

� 

γ(|x| + |y|) − γ
2 

2 

t − (x −
2t

y)2 � 

+ 
γ 
4 
Erfc 

� |x| + √|y
2

|
t 

− γt � 

with respect to the speed measure 

m(dy) = 2e−2γ|y|dy, 

so that 

Qx
�
Xt ∈ A

� 
= p(t;x, y)m(dy). (5.2) 

A 

Here Erfc(x) = √2
π 

�

x 
∞
e−u

2 
du ∼

x
√1 
π e

−x2 
as x → ∞. 

It also has the stationary probability measure 

π(dx) = γe−2γ|x|dx. (5.3) 

5.2.2 Expected asymptotic growth of Nt| | 

Let us now consider the branching process as described in subsection 5.1.2 with the 

spine process (ξt)t≥0 defined in the usual way under probability measure P̃ . Let (L̃t)t≥0 

be the local time of (ξt)t≥0 at 0. 

Recall the Many-to-one theorem (Theorem 1.15), which will take the following form 

in this chapter. 

Theorem 5.15 (Many-to-One). Suppose f(t) ∈ mGt has the representation 

f(t) = 
� 

u∈Nt 
fu(t)1{nodet(ξ)=u}, where fu(t) ∈ mFt, then 

� � � � � 

E fu(t) = Ẽ f(t)e βL̃t . 
u∈Nt 

Similarly Lemma 1.18 will take the following form. 

Lemma 5.16. Let g be some measurable function, then 

E 
� � 

g(Xt
u) 

� 

= Ẽ
� 

g(ξt)e 
βL̃t 

� 

. 
u∈Nt 

To evaluate the expectation on the right hand side of the this lemma one might use
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�


� 

the joint density of ξt and L̃t (see e.g. [24]): 

x + y � ( x + y)2 � 

P̃
�
ξt ∈ dx, L̃t ∈ dy 

� 
= 

|√|
2πt3 

exp − | |
2t 

dxdy , x ∈ R, y > 0. (5.4) 

However we shall be instead using the change of measure introduced in Proposition 

5.14. 

Since (ξt)t≥0 is a standard Brownian motion we can define the following 

P̃ -martingale with respect to the filtration (Gt)t≥0, the natural filtration of (ξt)t≥0: 

1
2M̃
 β 

t :=
 e−β|ξt|+βL̃t− β2t ,
 t ≥ 0. (5.5)


We also define the corresponding probability measure Q̃β as 

dQ̃β 
� 
� ˜ β 

dP̃
� 
Gt 

= Mt , t ≥ 0. (5.6) 

Then under Q̃β, (ξt)t≥0 has drift β towards the origin and from Proposition 5.14 we 

know its exact transition density as well as its stationary distribution. 

Let us now exploit this change of measure to prove Lemma 5.7 and Lemma 5.8. 

Proof of Lemma 5.7. From Lemma 5.16 we have 

� � � � � � 
βL̃t 

� �
1
2

1
2e
β ̃Lt−β|ξt|− β2t β|ξt|+e β2

Ẽ
 Ẽ
 tE Nt = E 1|
 |
 =
 e =

u∈Nt 

β2t 
� 

Q̃β 

� �
1
2

1
2
β2tM̃
 β β|ξt|+et 

β|ξt|Ẽ
 E
=
 =
 e
 e
 .


Then using the stationary measure from (5.3) we have 

EQ̃β 

� 

e β|ξt| 
� � ∞ 

e β|x|π(dx)→ 
−∞ 

= 

� ∞ 
e β|x|βe−2β|x|dx = β 

� ∞ 
e−β|x|dx = 2. 

−∞ −∞ 

Thus 
� � 

β2 
tE Nt| | ∼ 2e 2 .


Alternatively we could have evaluated Ẽ(eβL̃t) explicitly using the fact that 

L̃t = 
d |N(0, t)|. We would find that 

2 

2Φ(β
√
t)e


β

Ẽ(e βL̃t) =
 t
2 ,


where Φ(x) = P(N(0, 1) ≤ x). However we don’t need such precision as the main use
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of Lemma 5.7 will be in giving the upper bound for Theorem 5.9, which doesn’t require 

such an accurate convergence result. 

5.2.3 Expected asymptotic behaviour of |Nt
λt | 

Let us now prove that limt→∞ 
1 
t logE(|Nt

λt |) = Δλ, where Nt
λt = {u ∈ Nt : Xt

u > λt}
and � 

1β2 − βλ if λ < β 
Δλ = 2

1λ2 if λ ≥ β2−

Proof of Lemma 5.8. Following the same steps as in Lemma 5.7 we get 

E 
� 

|Nt
λt | 

� 

= E 
� � 

1{Xu>λt} 
� 

= Ẽ
� 

e βL̃t1{ξt>λt} 
� 

t


u∈Nt


= EQ̃β 

� 

e β|ξt|1{ξt>λt} 
� 

e 2
1β2t


β2t = EQ̃β 

� 

e βξt1{ξt>λt} 
� 

e 2
1 

= 

� ∞ 
e βx p(t; 0, x)m(dx)e 

1
2
β2t 

λt 

t = 

� ∞ 
e βx

� 1 
exp 

�
βx − β

2 x2 � 
+ 
β 

Erfc
�x − βt �� 

2e−2βxdx e 2
1β2

λt 2
√

2πt t 
−

2t 4 
√

2t 
2 

= 
�� ∞ 1 

e− x 
2t dx 

� 

+ 
� β 

� ∞
Erfc

�x − βt � 
e−βxdx 

� 

e 2
1β2t . 

λt 
√

2πt 2 λt 
√

2t 
� �� � � �� � 

(1) (2) 

Then for some functions ǫi(t) satisfying log ǫi(t) = o(t) we have the following: 

2λ

(1) = ǫ1(t)e
−

2 
t , 

2λ

if λ ≥ β then (2) = ǫ2(t)e
−

2 
t ,


if λ < β then (2) = ǫ3(t) 
� 

e−βλt − e−β
2t 

� 

e 
β
2

2 
t + ǫ4(t)e 

−
2 
β2 
t


β2 −β2 

= ǫ3(t)e
−βλt+

2 
t + ǫ5(t)e 2 

t . 

Here we have used that Erfc(x) ∼ 1 2 
e−x as x → ∞ and Erfc(x) → 2 as x → −∞. 

Thus E(|Nλt |) = (1) + (2) t 

 
2λ ǫ6(t)e

−
2 
t if λ ≥ β 

= 2 

ǫ7(t)e
−βλt+ β t 

2 if λ < β 

which proves the result after taking the logarithm and dividing by t. 

Remark 5.17. We see that λc := β 
2 is critical in the sense that for λ > λc the expected 

number of particles above λt is decaying to 0 exponentially fast whereas for λ < λc the 

x
√
π 
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�
�
�
�


�
 ��
 �
 �


�
 �
 �


� � �
 ��


expected number of particles above λt is growing exponentially. So we might guess that 

the rightmost particle satisfies Rt ≈ β t. This will be proved in Section 5.6. 2

Lemmas 5.7 and 5.8 were proved by S. Harris in his PhD thesis [20] using the 

excursion theory. The proofs that we presented here (using the change of measure) 

suggest the use of the certain additive martingale in the study of our model. The next 

section is devoted to this additive martingale. 

5.3 The additive martingale 

Let us substitute the martingale ( M̃β )t≥0 for the martingale ( M̃
(3) 

)t≥0 in Proposition t t 

1.24 to define the new probability measure Q̃: 

dQ̃


dP̃ 

= 2nte−βL̃tM̃β , t ≥ 0, t 

F̃t 

which has the effect of changing the spine’s motion by adding the drift β towards the 

origin and doubling the branching rate along the spine. We then define Q := Q̃|F∞ so 

that 

dQ

dP


�
�
�
� 
Ft 

1 
Xu + Lu β2
t t − βLu 

t = Mt := − β
|
 t
|
 −
exp

2


u∈Nt 

t , t ≥ 0, (5.7)

1 − β|Xt

u | −
2 
β2= exp


u∈Nt 

where Lut is the local time at 0 of Xt
u . This additive martingale will help us estimate


the almost sure growth of Nt and will also be used in the section about the SLLN. | |
The next theorem is a standard result for additive martingales, which we have already 

seen many times. 

Theorem 5.18. (Mt)t≥0 is P -uniformly integrable and M > 0 P -almost surely. ∞

Proof. Note that P (M > 0) ∈ {0, 1} as it follows from Lemma 4.54 since the proof ∞ 
of the lemma didn’t depend on the branching rate of the process. Another proof can 

be found in [22]. 

Then as usual, for an event A ∈ F∞ we have 

Q(A) = lim sup MtdP +Q A ∩
A 

lim sup Mt = ∞ .

t→∞ t→∞ 

Hence to prove the theorem it is sufficient to show that 

lim sup Mt < ∞ Q-a.s. (5.8) 
t→∞ 
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� 

Let us consider the spine decomposition of Mt 

EQ̃
� 

Mt
�
� 

G̃∞ 
� 

= spine(t) + sum(t), 

where 

spine(t) = exp 
� 

− β|ξt| −
2

1 
β2t 

� 

and 

sum(t) = 
� 

exp 
� 

− β|ξSu | − 2

1 
β2Su 

� 

. 

u<nodet(ξ) 

Note that under Q̃, (ξt)t≥0 is a Brownian Motion with drift β towards the origin. Thus 

ξt L̃t
0 and β Q̃-a.s. and so 

t 
→

t 
→

� 1 � 

spine(t) ∼ exp −
2 
β2t Q̃-a.s. 

In particular, there exists some random time T and a constant C > 0 such that ∀t > T ′ ′ 

spine(t) ≤ e−Ct . 

Then also 

sum(t) ≤ 
� 

e−CSu ≤ 
∞
e−CSn , (5.9) 

u<nodet(ξ) n=1 

where Sn is the nth birth on the spine. Let (nt)t≥0 be the number of births along the 

spine. Then given the path of the spine process (nt)t≥0 a time-inhomogeneous Poisson 

process (Cox process) with cumulative jump rate 2βL̃t. Hence 

2β

n

L

t 

˜
t 
→ 1 Q̃-a.s. as t → ∞ 

nt 
1 Q̃-a.s. as t → ∞ ⇒

2β2t 
→

n ⇒
2β2Sn 

→ 1 Q̃-a.s. as n → ∞. 

Thus for some random variable C1 > 0 

Sn ≥ C1n ∀n. 

Substituting this into (5.9) we get 

∞
sum(t) ≤ 

� 

e−CC1n . 
n=1 
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Thus sum(t) is bounded by some Q̃-a.s. finite random variable. We deduce that 

lim sup EQ̃
� 

Mt
�
� 

G̃∞ 
� 

= lim sup 
� 

spine(t) + sum(t) 
� 

< ∞ Q̃-a.s. 
t→∞ t→∞ 

Hence by the usual argument 

lim sup Mt < ∞ Q-a.s. 
t→∞ 

completing the proof of the theorem. 

The next theorem will be helpful in proving the Strong Law of Large Numbers in 

the last section. 

Theorem 5.19. For p ∈ (1, 2) (Mt)t≥0 is L
p-convergent. 

Proof. We use similar proof as found in [19]. It is sufficient to show that E Mt
p is 

bounded in t. 

E 
� 

Mt
p 
� 

= E 
� 

Mt
p−1Mt 

� 

= EQ
� 

Mt
p−1

� 

= EQ̃
� 

Mt
p−1

� 

= EQ̃
� 

EQ̃
� 

Mt
p−1 |G̃∞ 

�� 

. 

Then using the fact that for a, b ≥ 0, q ∈ (0, 1) (a + b)q ≤ aq + bq we see that 

Mt
p−1 ≤ e 

β
2

2 
(p−1)t 

� 

e−β(p−1)|Xt
u|. 

u∈Nt 

And hence 

EQ̃
� 

Mt
p−1 ˜

� � 

EQ
�
Mt

˜
��p−1˜|G∞ ≤ |G∞ 

2 2 

≤ e− β
2 

(p−1)t−β(p−1)|ξt| + 
� 

e− β
2 

(p−1)Su−β(p−1)|ξSu | 

u<nodet(ξ) 

using the spine decomposition. Then the same argument as in Theorem 5.18 completes 

the proof. 

5.4 Almost sure asymptotic growth of Nt| | 

In this section we prove Theorem 5.9 saying that 

log Nt 1 
lim 

| |
= β2 P -a.s. 

t→∞ t 2 
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Proof of Theorem 5.9. Let us first prove the lower bound: 

lim inf 
log

t

|Nt| ≥
2

1 
β2 P -a.s. (5.10) 

t→∞ 

We observe that 

� � 1 � 

exp Xt
u β2t

1
2
β2t≤ |
Nt|
e−Mt =
 − β
|
 | −
 .


2

u∈Nt 

Hence 

logMt ≤ log |Nt| −
2

1 
β2t 

⇒ log
t

|Nt| ≥ 1
2 
β2 + 

log

t

Mt 

⇒ log

t

|Nt| ≥
2

1 
β2lim inf 

t→∞ 

using the fact that limt→∞Mt > 0 P -a.s. proved in Theorem 5.18. 

Let us now establish the upper bound: 

lim sup 
log

t

|Nt| ≤ 1
2 
β2 P -a.s. (5.11) 

t→∞ 

We first prove (5.11) on integer (or other lattice) times. Take ǫ > 0. Then 

1
2
β2+ǫ)t 2
e−(E Nt|
 |
1

2
β2+ǫ)t > ǫ

�
Nt|
e−( e−ǫt P
 |
 ≤


ǫ 
∼
ǫ


using the Markov inequality and Theorem 5.7. So


∞
1
2
β2+ǫ)n > ǫ

�
Nn|
e−(P
 < ∞.
|


n=1 

Thus by the Borel-Cantelli lemma


1
2
β2+ǫ)nNn e

−( 0 P -a.s.
|
 |
 as n → ∞.
→


Taking the logarithm we get 

� 1 � 
−

2 
β2 − ǫ n + log |Nn| → −∞. 

Hence 
log Nn 1 

lim sup 
| | ≤ β2 + ǫ. 

n→∞ n 2 

Taking the limit ǫ 0 we get the desired result. To get the convergence over any → 
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real-valued sequence we note that Nt is an increasing process and so | |

|Nt| ≤ |N⌈t⌉| 
log Nt log N⌈t⌉| | ≤ ⌈t⌉ | |

⇒	
t t ⌈t⌉ 

log Nt log N⌈t⌉ 1 
β2 .⇒ lim sup 

t

| | ≤ lim sup ⌈
|
t⌉ 

|
≤

2t→∞ t→∞ 

(5.11) and (5.10) taken together prove Theorem 5.9. 

5.5 Almost sure asymptotic behaviour of |Nλt |t 

In this section we prove Theorem 5.10. Namely, that 

log |
t

Nt
λt | → Δλ P -a.s. if λ < 

β 
2 

and 

|Nλt | → 0 P -a.s. if λ > 
β 
2

.t 

Since the proof is quite long we break it down into two parts. In Subsection 5.5.1 we 

prove the upper bound and in Subsection 5.5.2 the lower bound. We also present the 

proofs of Lemma 5.12 and Corollary 5.11 in Subsections 5.5.3 and 5.5.4. 

5.5.1 Upper bound 

Lemma 5.20. 

lim sup 
log |Nt

λt | ≤ Δλ P -a.s. 
t→∞ t 

We start with the upper bound because it can be proved in a similar way that we 

proved the upper bound on Nt (recall 5.11). The main difference comes from the fact | |
that (|Nλt |)t≥0 is not an increasing process and so getting convergence along any real t 

time sequence requires some extra work. 

Proof. Take ǫ > 0 and consider events 

An = 
� � 

1{sup λn} > e(Δλ+ǫ)n 
� 

. 
s∈[n,n+1] Xs

u ≥
u∈Nn+1 

If we can show that P (An) decays to 0 exponentially fast then by the Borel-Cantelli 

Lemma we would have P (An i.o.) = 0 and that would be sufficient to get the result. 
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By the Markov inequality and the Many-to-one theorem (Theorem 5.15) we have


P 
�
An 

� 
≤ E 

� � 

1{sups∈[n,n+1] Xs
u ≥ λn} 

� 

e−(Δλ+ǫ)n 

u∈Nn+1 

= Ẽ
� 

e βL̃n+11{sups∈[n,n+1] ξs ≥ λn} 
� 

e−(Δλ+ǫ)n 

= Ẽ
� 

e βL̃n+11{ξn+1+ξ̄n ≥ λn} 

� 

e−(Δλ+ǫ)n , 

where ξ̄n := sups∈[n,n+1](ξs−ξn+1) is a sequence of i.i.d. random variables = 
d 

sups∈[0,1] ξs 

and (ξt)t≥0 is a standard Brownian motion under P̃ . 

To give an upper bound on the expectation we split it according to whether 

|ξn+1| < (λ − δ)(n + 1) or ≥ (λ − δ)(n + 1) for some small δ > 0 to be chosen later. 

Ẽ
� 

e βL̃n+11{ξn+1+ξ̄n ≥ λn} 

� 

e−(Δλ+ǫ)n 

= Ẽ e βL̃n+11{ξn+1+ξ̄n λn}1{|ξn+1| > (λ−δ)(n+1)} e
−(Δλ+ǫ)n 

≥

(1) 
� 

β ̃
� 

+ Ẽ e Ln+11{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)} e
−(Δλ+ǫ)n . 

(2) 

Then 

(1) ≤ Ẽ
� 

e βL̃n+11{|ξn+1| > (λ−δ)(n+1)} 
� 

e−(Δλ+ǫ)n 

= 2Ẽ e βL̃n+11{ξn+1 > (λ−δ)(n+1)} e
−(Δλ+ǫ)n 

≈ e Δλ−δn e−(Δλ+ǫ)n , 

where we used Theorem 5.8 to estimate the expectation. This quantity decays expo

nentially fast for δ chosen small enough since Δλ is continuous in λ. 

(2) = EQ̃β 

� 

e β|ξn+1|+ 2
1β2(n+1)1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)} 

� 

e−(Δλ+ǫ)n 

˜
� � 

Kn � EQβ 1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)} e 

≤ EQ̃β 

� 

1{ξ̄n ≥ δn+(δ−λ)} 

� 

e Kn 

= Q̃β 
�
ξ̄1 ≥ δn + (δ − λ)

� 
e Kn , 

where K = 1β2 + β(λ − δ) − (Δλ + ǫ). However Q̃β 
�
ξ̄1 δn + (δ − λ)

� 
decays faster 2 ≥ 

than exponentially because for any θ > 0, which we take to be large 

Q̃β 
�
ξ̄1 ≥ δn

� 
≤ EQ̃β 

� 

e θξ̄1 
� 

e−θδn , 
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but 

EQ̃β 

� 

e θξ̄1 
� 

= Ẽ
� 

e θξ̄1e−β|ξ1|+βL̃1− 2
1β2

� 

< ∞ 

by Cauchy-Schwarz inequality for example. 

Thus we have shown that P (An) = (1) + (2) decays exponentially fast. So by the 

Borel-Cantelli lemma P (An i.o.) = 0 and P (Acn ev.) = 1. That is, 

1{sups∈[n,n+1] Xs
u λn} ≤ e(Δλ+ǫ)n eventually. ≥

u∈Nn+1 

So there exists a P -almost surely finite time Tǫ such that ∀n > Tǫ 

� 

1{sups∈[n,n+1] Xs
u ≥ λn} ≤ e(Δλ+ǫ)n . 

u∈Nn+1 

Then 

|Nt
λt | ≤ 

� 

1{sups∈[⌊t⌋, ⌊t⌋+1] Xs
u ≥ λ⌊t⌋} 

u∈N⌊t⌋+1 

⇒|Nλt | ≤ e(Δλ+ǫ)⌊t⌋ for t > Tǫ + 1, t 

which proves that 

lim sup 
log |Nt

λt | ≤ Δλ P -a.s. 
t→∞ t 

Remark 5.21. Since |Nt
λt | takes only integer values we see that for λ > β the inequality 2 

lim sup 
log |Nt

λt | ≤ Δλ < 0 
t→∞ t 

actually implies that |Nt
λt | → 0 P -a.s. 

5.5.2 Lower bound 

Before we present the proof of the lower bound of Theorem 5.10 let us give a heuristic 

argument, which this proof will be based upon. 

Take λ > 0. Suppose we are given some large time t and we want to estimate the 

number of particles u ∈ Nt such that Xu > λt.t| |
1β2pt Let p ∈ [0, 1]. At time pt the number of particles in the system is |Npt| ≈ e 2

by Theorem 5.9. If we ignore any branching that takes place in the time interval (pt, t] 

then each of these particles will end up in the region (−∞, −λt]∪ [λt, ∞) at time t with 
2λ


2(1−p)
probability � e− t 
using the standard estimate of the tail distribution of a normal 

random variable. 
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�
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�
�
�


� 

pt 

λt 

−λt |Npt| ≈ e 
1 
2
β2pt 

P rob � e − 
λ2 

2(1−p) t 

t


Figure 5-2: Illustration for the lower bound of Theorem 5.10 

Thus a crude estimate gives us that the number of particles at time t in the region 

(−∞, −λt] ∪ [λt, ∞) is 

2 2 
t t

� e− 2(1
λ
−p) × |Npt| ≈ e

−
2(1

λ
−p) × e 

1
2
β2pt. 

The value of p which maximises this expression is 

p∗ = 
λ 

0 if λ ≥ β 

1 − β if λ < β 

and then 

2λ

e
− t

2(1−p)log
 ×
 |
Npt|
 1
2λ

2 

p=p ∗ 
≈
 if λ ≥ β
−


=
 Δλ.1
2β

2t
 − βλ if λ < β


Let us now use this idea to give a formal proof of the following lemma.


Lemma 5.22. Take λ < β 
2 . Then


lim inf 
log |Nt

λt | ≥ Δλ =
1 
β2 − βλ P -a.s. 

t→∞ t 2 

Proof. Take p := 1− β
λ ∈ (1

2 , 1). For integer times n we shall consider particles alive at


time pn (that is, particles in the set Npn). 
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For each particle u ∈ Npn we can choose one descendant alive at time n + 1. Let 

N̂n+1 be a set of such descendants (so that N̂n+1 = Npn ). 

ˆ
� � 

| | | |
Then, for u ∈ Nn+1, paths Xt

u 
t∈[pn, n+1] 

correspond to independent Brownian mo

tions (started at some unknown positions at time pn). Note that, wherever particle u 

is at time pn, 

�	 � 
λ2

1 

P |Xu| > λs ∀s ∈ [n, n + 1] � e− 2(1−p)
n 

= e− 2
βλn =: qn(λ)s 

using the tail estimate of the normal distribution. Take any small δ > 0 to be specified 

later. Then by Theorem 5.9 

|N̂n+1| = |Npn| ≥ e(
1
2
β2p−δ)n eventually. 

To prove Lemma 5.22 we take ǫ > 0 and consider the events 

Bn := 1{|Xs
u|>λs ∀s∈[n,n+1]} < e(Δλ−ǫ)n . 

u∈N̂n+1 

We wish to show that P (Bn i.o.) = 0. Now, 

� � 
ˆ ( 1β2p−δ)n�

�


P Nn+1 > e 2
Bn ∩	 | |

=P 
�� � 

1{|Xs
u|>λs ∀s∈[n,n+1]} < e(Δλ−ǫ)n 

� 

∩ 
� 
|N̂n+1| > e(

1
2
β2p−δ)n�

� 

u∈N̂n+1 

e( 2
1 β2 p−δ)n 

≤P	
� 

1Ai 
< e(Δλ−ǫ)n ,


i=1


where Ai’s are independent events with P (Ai) ≥ qn(λ) ∀i . Then 

� e( 2
1 β2 p−δ)n	 � 

P 
P	

� 

1Ai 
< e(Δλ−ǫ)n = P 

� 

e− 1Ai > e−e
(Δλ−ǫ)n 

� 

i=1 
P

(Δλ−ǫ)n 
� � 

≤ e e E e− 1Ai 

( 1 β2 p−δ)n e 2

e= e 
(Δλ−ǫ)n 

� 

E 
� 

e−1Ai 

� 

i=1 

(Δλ−ǫ)n 
� �	 � 

≤ e e 1 − P (Ai)(1 − e−1) 

(Δλ−ǫ)n 
� �	 � 

e≤ e 1 − qn(λ)(1 − e−1) 
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� 

� � 

e( 2
1 β2 p−δ)n 

≤ e e
(Δλ−ǫ)n 

� 

e−qn(λ)(1−e−1) 

i=1 

= exp e(Δλ−ǫ)n − (1 − e−1)qn(λ)e(
1
2
β2p−δ)n 

= exp e(Δλ−ǫ)n − (1 − e−1)e(Δλ−δ)n . 

This expression decays fast enough if we take δ < ǫ. Thus 

P 
� 

Bn ∩ 
� 
|N̂n+1| > e(

1
2
β2p−δ)n� 

i.o. 
� 

= 0. 

And since P 
�� 

N̂n+1 > e(
1
2
β2p−δ)n� 

ev. 
� 

= 1, we get that P 
� 

Bn i.o. 
� 

= 0. That is, | |

� 

1{|Xs
u|>λs ∀s∈[n,n+1]} ≥ e(Δλ−ǫ)n for n large enough 

u∈N̂n+1 

Now, since the process is symmetric, the probability that a particle u ∈ N̂n+1 such that 

|Xs
u| > λs ∀s ∈ [n, n + 1] actually satisfies Xs

u > λs ∀s ∈ [n, n + 1] is 2
1 . So applying 

the usual Borel-Cantelli argument once again we can for example prove that for some 

constant C > 0 

1{Xu>λs ∀s∈[n,n+1]} ≥ Ce(Δλ−ǫ)n eventually 
s 

u∈N̂n+1 

Then 

11{Xt
u>λt} ≥ {Xs

u>λs ∀s∈[⌊t⌋,⌊t⌋+1]} ≥ Ce(Δλ−ǫ)⌊t⌋. 
u∈Nt u∈N̂⌊t⌋+1 

So for t large enough and some other constant C ′ 

|Nt
λt | ≥ C ′ (Δλ−ǫ)t e

and hence 

lim inf 
log |Nt

λt | ≥ Δλ. 
t→∞ t 

Lemmas 5.20 and 5.22 together prove Theorem 5.10. 

5.5.3 Decay of P (|Nλt | ≥ 1) in the case λ > β 
t 2 

Theorem 5.10 told us that if λ > β 
2 then |Nt

λt | → 0. Let us also prove that 

log P (|N
t 

λt | ≥ 1) → Δλ = − 1
2 
λ2t 
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in this case. 

Proof of Lemma 5.12. Trivially 

P (|Nλt | ≥ 1) ≤ E|Nλt |t t 

lim sup 
logP (|Nλt | ≥ 1) ≤ Δλ 

t ⇒
tt→∞ 

by Theorem 5.8. 

For the lower bound we use the same idea as in Lemma 5.22. Let us take 

0 if λ > β 
p = 

1 − β
λ if λ ≤ β 

We define a set N̂t as in Subsection 5.5.2 That is, for each particle u ∈ Npt we choose 

one descendent alive at time t (so that N̂t ⊂ Nt, |N̂t| = |Npt|). Then for each u ∈ N̂t 

wherever it is at time pt we have 

2λ

P (|Xu| > λt) � e− 2(1−p)
t 
=: pt(λ). t 

Then 

P |Nt
λt | ≥ 1 ≥

2 
P |Nt

±λt | ≥ 1 , 

where Nt
±λt := {u ∈ Nt : |Xt

u| > λt}. And thus for some δ > 0 to be chosen later we 

have, ignoring any multiplicative constants of P , 

P 
� 

|Nt
λt | ≥ 1 

� 

≥ 1 
P 

� 

Nt
±λt ≥ 1, Npt > e( 2

1β2p−δ)t 
� 

:=nt(δ) 

≥ P 
� 
 

{|Xu| > λt}, |N̂t| > nt(δ) 
� 

t 

u∈N̂t 

≥ 
� 

1 − 
�
1 − pt(λ)

�nt(δ)
� 

P 
� 
|N̂t| > nt(δ)

� 
. 

P 
� 
|N̂t| > nt(δ)

� 
→ 1, so we can just ignore it. And 

� � �nt(δ)
� 

1 − 1 − pt(λ)

=nt(δ)pt(λ) − nt
2

(δ) 
pt(λ)2 + 

nt
3

(δ) 
pt(λ)3 − · · · 

≥nt(δ)pt(λ) − nt(δ)
2 pt(λ)2 1 + nt(δ)pt(λ) + nt(δ)

2 pt(λ)2 + .· · · 

Note that for δ small enough 

2 

nt(δ)pt(λ) = e(
1
2
β2p−δ)t e− 2(1

λ
−p)

t 
= e(Δλ−δ)t ≪ 1. 
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Hence


P (|Nλt | ≥ 1) ≥ e(Δλ−δ)t + o 
� 
e(Δλ−δ)t� .t 

Therefore 
tlim inf 

log P (|Nλt | ≤ 1) ≥ Δλ. 
t→∞ t 

This completes the proof of Lemma 5.12. 

5.5.4 The rightmost particle 

As it was observed earlier (in Remark 5.17), the number of particles above the line 

λt grows exponentially if λ < β 
2 and decays exponentially if λ > β 

2 . As a corollary of 

Theorem 5.10 we get that 
Rt β 

P -a.s., 
t 

→ 
2 

where (Rt)t≥0 is the rightmost particle of the branching process. 

Proof of Corollary 5.11. Take λ < β . By Theorem 5.10 |Nt
λt | ≥ 1 ∀t large enough, so 

Rt ≥ λt for t large enough. Thus 

Rt
lim inf ≥ λ P -a.s. 
t→∞ t 

Letting λ ր β we get 2 
Rt β 

lim inf P -a.s. 
t 

≥
2t→∞ 

Similarly, if we take λ > β then by Theorem 5.10 |Nλt | = 0 ∀t large enough and so t 

Rt ≤ λt for t large enough. Hence 

Rt
lim sup ≤ λ P -a.s. 
t→∞ t 

So, letting λ ց β we get 2 
Rt β 

lim sup P -a.s. 
t 

≤
2t→∞ 

and this proves Corollary 5.11. 

Note that the rightmost particle (i.e. the extremal particle) in our model behaves 

very differently from the rightmost particle in the model with homogeneous branching. 

Figure 5-3 below illustrates the difference. 

2

2 
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T 

≈ T 
2 

√
2βt β 

2
t 

tt 

Figure 5-3: Rightmost particle in models with homogeneous branching and branching at the 
origin 

On the left we see a branching Brownian motion with constant branching rate β. In 

such model with probability 1 there is a particle staying near the critical line 
√

2βt all 

the time. (Here the word particle is a bit ambiguous since we are really talking about 

an infinite line of descent, but this is a common description.) 

On the right we see a BBM with branching rate βδ0(x). Note that since branching 

is only allowed at the origin, no particle can stay close to a straight line λt, λ > 0 all 

the time. The optimal way for some particle to reach the critical line β 
2

is to wait near the origin until the time T 
2

as possible, and then at time T 
2

t at time T


in order to give birth to as many particles 
2β

one of ≈
 e 4 T particles will have a good chance of


reaching β 
2T at time T .


5.6 Strong law of large numbers 

2 

Recall the additive martingale Mt = e− β
2 
t � 

u∈Nt 
e−β|Xt

u|, t ≥ 0 from Section 5.3 and 

the measure π(dx) = βe−2β|x|dx from Proposition 5.14. 

In this section we shall prove Theorem 5.13 which says that for a measurable 

bounded function f( )·

2 
tlim e− β

2 

� 

f(Xt
u) = M

� ∞
f(x)βe−β|x|dx 

t→∞ 
u∈Nt 

∞ 
−∞ 

= M

� ∞
f(x)e β|x|π(dx) P -a.s. (5.12) ∞ 

−∞ 
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Remark 5.23. Observe that 

E 
� 

e− β
2

2 
t 

� 

f(Xt
u) 

� 

= Ẽ
� 

e− β
2

2 
tf(ξt)e 

βL̃t 

� 

u∈Nt 

= Ẽ
� 

f(ξt)e 
β|ξt|� e−β|ξt|+βL̃t− β

2

2 
t
�� 

= EQ̃β 

� 

f(ξt)e 
β|ξt| 

� � 

f(x)e β|x|π(dx)→ 

and that (Mt≥0) is UI with EM = 1.∞ 

Corollary 5.24. Taking f( ) ≡ 1 we get ·

|Nt|e− 2
1β2t → 2M∞ P -a.s. (5.13) 

This should be compared with results in Lemma 5.7 and Theorem 5.9. 

Corollary 5.25. 

� 
f(Xu � � 

u∈Nt t ) 1 
f(x)e β|x|π(dx) = 

β
f(x)e−β|x|dx P -a.s. |Nt|

→ 
2 2 

Proof. Dividing (5.12) by (5.13) gives the required result. 

The Strong Law of Large Numbers was proved in [16] for a large class of general 

diffusion processes and branching rates β(x). In our case the branching rate is a 

generalised function βδ0(x), which doesn’t satisfy the conditions of [16]. Nevertheless 

we can adapt the proof to our model if we take the generalised principal eigenvalue 

λc = β2 

2 

and eigenfunctions φ(x) = e−β|x|, φ̃(x) = βe−β|x| in [16]. 

In the rest of this section we present the proof of Theorem 5.13. We only need to 

consider functions of the form f(x) = e−β|x|1{x∈B} for measurable sets B. After we 

prove the result for such functions we can derive the general result by approximating 

a general function with linear combinations of functions of the above form. 

Proof of Theorem 5.13. Take B a bounded measurable set and for this set B let 

2 2 
t tUt := e− β

2 

� 

e−β|Xt
u|1{Xt

u∈B} = e− β
2 

� 

f(Xt
u) 

u∈Nt u∈Nt 

So for example if B = R then Ut = Mt and generally Ut ≤Mt. We wish to show that 

Ut → π(B)M∞ = f(x)e β|x|π(dx)M∞ as t → ∞. 

The proof can be split into three parts. 

Part I: 
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Let us take K > 0. At this stage it doesn’t matter what K is, but in Part II of 

the proof we shall choose an appropriate value for it. Let mn := Kn (using the same 

notation as in [16]). Also fix δ > 0. We first want to prove that 

lim

n→∞ 

U(n+mn)δ − E U(n+mn)δ |Fnδ =
 0 P -a.s. (5.14)


We begin with the observation that


=

2 

2e− β tUs 
(u),
 (5.15)
∀s, t ≥ 0 Us+t 

u∈Nt 

where conditional on Ft, Us 
(u) 

are independent copies of Us started from Xt
u . 

To prove (5.14) using the Borel-Cantelli lemma we need to show that for all ǫ > 0 

∞

Let us take any p ∈ (1, 2).Then 

� 

=1 n

> ǫ < ∞. (5.16)
P
 U(n+mn)δ − E U(n+mn)δ|Fnδ 

P
 U(n+mn)δ − E U(n+mn)δ > ǫ
|Fnδ 
1 
E 

ǫp 

p� 

U(n+mn)δ − E U(n+mn)δ≤
 |Fnδ .


Next we shall apply the following inequality, which was used in the proof of the SLLN 

in [16] and can also be found in [5]: if p ∈ (1, 2) and Xi are independent random 

variables with EXi = 0 (or they are martingale differences), then 

E

n 

Xi 
p 
≤ 2p 

n 
pXi (5.17)
E| |
 .


i=1 i=1 

Then by (5.15) 

2 

U (u) 
s |Ft ,


β

U (u) 
s 

t e−Us+t − E Us+t − E
2|Ft =

u∈Nt 

where conditional on Ft, U (u) 
s 

(u)− E
 U
 are independent with 0 mean. Thus ap
|Fts 

plying (5.17) and Jensen’s inequality we get 

p 
E
 Us+t − E Us+t|Ft |Ft 

E
 |
Ft) 
p 
|Ft 

2β

U (u) − E(U (u) 
s s 

t≤2pe−p 
2 

u∈Nt 

2 

E
 2p−1 U (u) 
s 

p 
+
 E(U (u) 

s |
Ft) p |Ft 
β t≤2pe−p 
2 

u∈Nt 
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� 

� | � 

� � � � 

≤2pe−p β
2

2 
t 

� 

E 
� 

2p−1
��
�Us 

(u)
�
�p 

+ E
��
�Us 

(u)
�
�p|Ft 

�� 

|Ft 
� 

u∈Nt 

=22pe−p β
2

2 
t 

� 

E 
�

�
�

Us 
(u)

�
�p|Ft 

� 

. (5.18) 
u∈Nt 

Hence by (5.18) 

∞ �� � ��p� 

E �
U(n+mn)δ − E U(n+mn)δ Fnδ 

� 

n=1 

β2 

≤22p 
�∞

e−p 
2 
δnE 

� � 
δn 

� �p
� 

EX
u 

Umnδ 

n=1 u∈Nδn 

∞
β δnE 

� � 

EX
u 

� 

≤22p 
� 

e−p 
2

2 

δn 

�
Mmnδ 

�p

n=1 u∈Nδn 

=22p 
�∞ β2 

δnE 
� � 

e−βp|X
u �

Mmnδ 
�p

� 

e−p 
2 δn|E0 

n=1 u∈Nδn 

∞
β β� 2 
δn 

2 
δn ≤ e−p 

2 e 2 ×C, 
n=1 

where C is some positive constant and we have used the Many-to-One Lemma (Lemma 

5.16) and and Theorem 5.19 in the last inequality. Since p > 1 the sum is < ∞. This 

finishes the proof of (5.16) and hence (5.14). 

Part II:


Let us now prove that


lim �
�
E U(n+mn)δ |Fnδ − π(B)M∞�

� 
= 0 P -a.s. (5.19) 

n→∞ 

Together with (5.14) this will complete the proof of Theorem 5.13 along lattice times 

for functions f(x) of the form e−β|x|1{x∈B}. 

We begin by noting that 

E 
� � 

= E 
� � β

2

2 
tU (u) 

� 

Us+t|Ft e− 
s |Ft 

u∈Nt 

= 
� 

e− β
2

2 
tEXt

u 

Us 

u∈Nt 

� β2 � � β2 � 

t= e− 2 
tEX

u 

e− 2 
s−β|Xs

u|1{Xs
u∈B} 

u∈Nt u∈Ns 

= 
� 

e− β
2

2 
tẼXt

u 
� 

e− β
2

2 
s−β|ξs|1{ξs∈B}e 

βL̃s 

� 

u∈Nt 
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�	 � 

� 

� β2 
Q̃

Xt
u � � 

= e− 2 
t−β|Xt

u|E β 1{ξs∈B} 
u∈Nt 

� β2 
� 

= e− 2 
t−β|Xt

u| p(s, Xt
u , y)m(dy), 

u∈Nt 
B 

where Q̃β and p( ) were defined in (5.6) and Proposition 5.14. Thus ·
� � � β2 

� 

2 
nδ−β|Xu 

δ, XuE	 U(n+mn)δ|Fnδ = e− 
nδ

| 
B 
p(mn nδ , y)m(dy). (5.20) 

u∈Nnδ 

Recalling that mn = Kn where K > 0 we have 

� � � β2 
� 

E	 U(n+mn)δ|Fnδ = e− 
nδ

| 
B 

nδ , y)m(dy). 2 
nδ−β|Xu 

p(Knδ, Xu 

u∈Nnδ 

Now choose M > β and consider events 2 

XuCn := | nδ| < Mnδ ∀u ∈ Nnδ . 

Then 

2 
�

� β

e− 2 nδ| p(Knδ, Xunδ−β|Xu 

nδ, y)m(dy) 
u∈Nnδ 

B


� β2 
�


= e− 2 nδ| 
nδ, y)m(dy)

n 

nδ−β|Xu 

p(Knδ, Xu 1Cc 

u∈Nnδ	
B 

2 
�

� β

+ e− 2 nδ| 
nδ, y)m(dy) . nδ−β|Xu 

p(Knδ, Xu 1Cn 

u∈Nnδ	
B 

The first sum is 0 for n large enough by Corollary 5.11 (or even earlier by Theorem 

5.10). To deal with the second sum we substitute the known transition density p( ): ·

p(Knδ, Xu 1Cnnδ , y)m(dy)

B


1 � � β2 (Xu 

= 

� 

exp 

� 

β Xu y Knδ − nδ − y)2
� 

nδ √
2πKnδ 

| | − | | − 
2 2Knδ B 

nδ + 
β 
Erfc 

� |Xu | + |y| − βKnδ 
� 

e−2β|y| dy 1Cn . 2 
√

2Knδ 

Then for any given M > β 
2 we can choose K > 2

β
M and hence 

� 
1 

� � � β2 (Xu � 

exp β Xu y Knδ − nδ − y)2 

B	
√

2πKnδ 
| nδ | − | | − 

2 2Knδ 
dy 1Cn 

�� β2 � � 

≤ exp βM − 
2 
K nδ × C ′ → 0 as n → ∞, 
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2 

where C is some positive constant and ′ 

|
Xu + y − βKnδ nδ| | |√
2Knδ 

β

e−2β|y| dy 1Cn βe−2β|y|dy =Erfc
 π(B) as
 n → ∞
→


B B 

since Erfc(x) 2 as x → −∞ and 1Cn 1 as n → ∞. Then going back to (5.20) → →
and we see that 

E U(n+mn)δ |Fnδ − π(B)Mnδ lim
 0 P -a.s.
=

n→∞ 

and so also 

lim
 E U(n+mn)δ |Fnδ − π(B)M 0 P -a.s.
=
∞
n→∞ 

As it was mentioned earlier parts I and II together complete the proof of Theorem 

5.13 along lattice times for functions of the form f(x) = e−β|x|1B(x). To see this put 

together (5.14) and (5.19) to get that 

lim
 U(n+mn)δ − π(B)M = 0 P -a.s.
∞
n→∞

That is, 

lim Un(K+1)δ − π(B)M = 0 P -a.s.
∞
n→∞ 

Then K + 1 can be absorbed into δ which stayed arbitrary throughout the proof. Also 

as it was mentioned earlier we can easily replace functions of the form e−β|x|1B (x) with 

any measurable functions. To see this we observe that given any meausurable set A 

and ǫ1 > 0 we can find constants c1, . . . , cn, c̄1, . . . , c̄n and measurable sets A1, . . . , 

An such that 

n n 

c̄i1Ai
(x)e−β|x| (x)e−β|x|− ǫ1 ≤ 1A(x) ≤ c̄i1Ai

i=1 i=1 

and 
n n 

(x)e−β|x| ≤ 1A(x) ≤ (x)e−β|x|ci1Ai
ci1Ai

+ ǫ1. 
i=1 i=1 

Similarly given any positive bounded measurable function f and ǫ2 > 0 we can find 

simple functions f and f̄ such that 

¯ ¯f(x) − ǫ2 ≤ f(x) ≤ f(x) 

and 

f(x) ≤ f(x) ≤ f(x) + ǫ2. 

Thus given any positive bounded measurable function f and ǫ > 0 we can find functions 

f̄ ǫ(x) and f ǫ(x), which are linear combinations of functions of the form e−β|x|1A(x) such 
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that 

f̄ ǫ(x) − ǫ ≤ f(x) ≤ f̄ ǫ(x) 

and 

f ǫ(x) ≤ f(x) ≤ f ǫ(x) + ǫ. 

Then 

f̄ ǫ(x)βe−β|x| ≤ (f(x) + ǫ)βe−β|x| 
� ∞ � ∞

f̄ ǫ(x)βe−β|x|dx ≤ f(x)βe−β|x|dx + 2ǫ⇒ 
−∞ −∞ 

and hence P -almost surely we have 

β
2

2 
nδ 

� 

f(Xu β
2

2 
nδ 

� 

f̄ ǫ(Xulim sup e− 
nδ) ≤ lim sup e− 

nδ) 
n→∞ 

u∈Nnδ 
n→∞ 

u∈Nnδ 

= M

� ∞
f̄ ǫ(x)βe−β|x|dx∞ 

−∞ 
�� ∞ � 

≤M∞ f(x)βe−β|x|dx + 2ǫ . 
−∞ 

Since ǫ is arbitrary we get 

lim sup e− β
2

2 
nδ 

� 

f(Xu 
� ∞

f(x)βe−β|x|dx.nδ) ≤M∞
n→∞ 

u∈Nnδ 
−∞ 

Similarly 
2 

lim inf e− β
2 
nδ 

� 

f(Xu 
� ∞

f(x)βe−β|x|dx. 
n→∞ 

u∈Nnδ 

nδ) ≥M∞ 
−∞ 

Also any bounded measurable function f can be written as a difference of two positive 

bounded measurable functions. This completes the proof of Theorem 5.13 with the 

limit taken along lattice times. Now let us finish the proof of the theorem by extending 

it to the continuous-time limit. 

Part III: 

As in the previous parts of the proof it is sufficient to consider functions of the form 

f(x) = e−β|x|1B (x) for measurable sets B. 

Let us now take ǫ > 0 and define the following interval 

Bǫ(x) := B ∩ 
� 

− |x| −
β 
1 

log(1 + ǫ), |x| + 
β 
1 

log(1 + ǫ) 
� 

. 

Note that y ∈ Bǫ(x) iff y ∈ B and e−β|y| > e
−β|x| 

. Furthermore, for δ, ǫ > 0 let 1+ǫ 

δ,ǫ ΞB (x) := 1{Xs
u∈Bǫ(x) ∀s∈[0,δ] ∀u∈Nδ} 
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and

δ,ǫ δ,ǫ ξ
B (x)
 := Ex Ξ
 (x) .
B 

Then for t ∈ [nδ, (n + 1)δ]


2β

e−β|Xt
u|1te−Ut 2=
 {Xt

u∈B} 
u∈Nt 

β2 
nδU

(u) β2 

t−nδ ≥
(u) δ,ǫ nδe− e− (Xu 

nδ)U
 Ξ
2 2=
 Bt−nδ 
u∈Nnδ u∈Nnδ 

e−β|X
u 
nδ|2 2 

nδβ β

Ξ
δ,ǫ B (X
u 
nδ)

δ e− e− (5.21)
2 2≥

1 + ǫ


u∈Nnδ 

because at time t there is at least one descendent of each particle alive at time nδ. Let 

us consider the sum 
2β nδ e−β|X

u δ,ǫ 
nδ|Ξe− (Xu 

nδ ). 2 
B 

u∈Nnδ 

Note that 

(XuΞδ,ǫ nδ) are independent conditional on Fnδ, (5.22) B 

e−β|X
u 
nδ |Ξδ,ǫ B (X

u 
nδ) 

2 2 
nδβ β

e−β|X
u 
nδ|ξδ,ǫ B (X

u 
nδ ), (5.23)
nδE
 e− e−2 2Fnδ = 

u∈Nnδ u∈Nnδ 

and 
β2 

lim
 e− 2 
nδ e−β|X

u δ,ǫ (Xu = ξδ,ǫ nδ|ξB nδ) (x)π(dx)M∞. (5.24) B n→∞ 
u∈Nnδ 

The last equation follows from the SLLN along lattice times which we already proved.


Also we should point out that if we further let δ 0, ξδ,ǫ (x) will converge to 1B (x)
→ B 

and (5.24) will converge to π(B)M∞. Our next step then is to show that 

e− e−β|X
u 
nδ

|ξδ,ǫ B (X
u 
nδ) =
 0. (5.25)


2 2 
nδβ δ,ǫ β

nδ ) −e−β|X
u 
nδ

|Ξnδ e−(Xulim
 2 2 
B n→∞ 

u∈Nnδ u∈Nnδ 

In view of (5.22) and (5.23) we prove this using the method of Part I. That is, we 

exploit the Borel-Cantelli Lemma and in order to do that we need to show that for 

some p ∈ (1, 2) 

∞� 

n=1 u∈Nnδ 

2β

e−β|X
u δ,ǫ 
nδ|Ξnδe− (Xu 

nδ)E
 2 
B 

(Xu 
nδ ) Fnδ 

p2β

e−β|X
u δ,ǫ 
nδ|Ξnδ− E
 e− < ∞.
2 

B 
u∈Nnδ 
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� 

A similar argument to the one used in Part I (see (5.18) gives us that 

� � 
δ,ǫ 

∞ �

�
�

�e− β
2 
nδ e−β|X

u 

B nδ)E 2 nδ|Ξ (Xu 

n=1 u∈Nnδ 

� 

e− β
2

2 
nδ 

� 

e−β|X
u δ,ǫ (Xu 

� ��
�p

� 

− E nδ|ΞB nδ )
�
�Fnδ � 

u∈Nnδ 

∞
β2 � � �� 

22p nδE e−βp|X
u δ,ǫ e−p 

2 nδ|ξ (Xu ,≤ B nδ) 
n=1 u∈Nnδ 

where Ξδ,ǫ (Xu ) is an indicator function and therefore raising it to the power p leaves B nδ

it unchanged. Using once again the Many-to-One Lemma and the usual change of 

measure we have 

∞
β

�� 2 
nδE 

� � 

e−βp|X
u δ,ǫ 22pe−p 

2 nδ|ξ (Xu 
B nδ) 

n=1 u∈Nnδ 

∞
β2 � � � 

≤ 
� 

22p nδE e−βp|X
u 

e−p 
2 nδ| 

n=1 u∈Nnδ 

2 ��∞
e−(p−1)β nδEQ̃β 

� � 

e−β(p−1)|Xu 

= 22p
2 nδ | . 

n=1 u∈Nnδ 

Thus we have proved (5.25), which together with (5.24) implies that 

β2 
nδ 

� 

e−β|X
u δ,ǫ β2 

nδ 
� 

e−β|X
u δ,ǫ lim inf 2 nδ|Ξ (Xu = lim inf 2 nδ |ξ (Xu e− 

B nδ) e− 
B nδ ) n→∞ 

u∈Nnδ 

n→∞ 
u∈Nnδ 

δ,ǫ = ξB (x)π(dx)M∞. 

Putting this into (5.21) and letting n = ⌊ δt ⌋ gives us 

2 

2e− β δ � 

δ,ǫ lim inf Ut ≥ 
1 + ǫ

ξB (x)π(dx)M∞. 
t→∞ 

Letting δ, ǫ ց 0 we get 

lim inf Ut ≥ π(B)M
t→∞ ∞. 

Since the same result also holds for Bc we can easily see that 

lim sup Ut ≤ π(B)M∞. 
t→∞ 

Thus 

lim Ut = π(B)M∞. 
t→∞ 
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Then the same argument as at the end of Part II of the proof extends the result for 

functions of the form 1B (x)e
−β|x| to all bounded measurable functions. 
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Statistics, 2009 
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