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Summary 

 

A reduction in the sensitivity of tissue to insulin is termed insulin resistance. In the 

clinic this condition is associated with obesity and inactivity and often leads to the 

development of type 2 diabetes. A major focus of antidiabetic therapy is to develop 

novel interventions to alleviate insulin resistance. However, the initial physiological and 

molecular defects in the development of insulin resistance remain elusive. This 

knowledge would greatly aid the development of novel and more effective insulin 

sensitisers. 

 

In an effort to improve the understanding of insulin resistance this thesis establishes that 

culturing liver cells in sera from obese diabetic patients reduces the ability of insulin to 

repress the key gluconeogenic gene, phosphoenolpyruvatecarboxykinase (PEPCK). 

Cells cultured in serum from obese diabetic human subjects exhibited defective PEPCK 

mRNA suppression by 0.1 and 0.5 nM insulin compared to cells cultured in control 

serum (p<0.0001), representing a shift to the right of the insulin dose response curve. 

Classification of human sera, using the response of the cell model following incubation 

with the sera, was actually more reliable than any single clinical biomarker at 

establishing whether the serum came from a volunteer with insulin resistance. This 

suggests that the cell model could be developed as a means to classify insulin resistance 

in the human population more reliably than simply measuring fasting glucose. 

 

The system was developed and optimised as a cell based humanised model of insulin 

resistance to aid the search for a biomarker for the development of obesity related 

insulin resistance. However, there was no linear relationship between any single 

biomarker and the resistance causing ability of the sera. Interestingly, cells cultured 



xii 

chronically in the presence of fetal calf serum supplemented with 5 pM insulin (the 

average increase in insulin between cases and controls) also exhibited reduced 

suppression of PEPCK by 0.1 and 0.5 nM insulin compared to controls (p=0.03 and 

0.01 respectively). This has major implications for the understanding of how insulin 

resistance may develop. It suggests that minor increases in insulin release from beta 

cells, or minor loss of insulin clearance in the liver that elevate plasma insulin are 

potential initiating mechanisms for insulin resistance (at least in liver). Of course there 

may be many ways to initiate insulin resistance in vivo, but establishing the relative 

importance of the beta cell and the liver as an initial site for the development of insulin 

resistance is clearly important for effective intervention. Subsequent to the generation of 

insulin resistance in culture I could not detect significant differences in the response of 

the major post-receptor insulin signalling pathway components, between cells cultured 

under standard conditions and those cultured chronically in 5 pM insulin. Therefore the 

mechanism underlying this reduced insulin action on PEPCK gene transcription remains 

unclear. 

 

I then went on to develop reporter cell lines both for use in the study of the regulation of 

hepatic gene transcription by insulin and also as a potential screen for effective insulin 

sensitisers. Unfortunately the reporter cell lines did not turn out to be useful as hoped, as 

the reporter genes did not develop insulin resistance in response to chronic exposure to 

5 pM insulin. In addition there were some differences between the reporter genes and 

endogenous genes in response to specific signalling inhibitors. This questions their 

suitability for the purposes proposed. 

 

Finally, I examined the signalling connections between the class of insulin sensitiser 

known as biguanides, and DNA repair mechanisms, as an initial characterisation of 



xiii 

molecular links between diabetes and cancer. I established that inhibiting the DNA 

repair enzyme ATM reduces the phosphorylation of the biguanide target, AMPK in 

response to these drugs. However, although inhibition of ATM reduced biguanide 

suppression of G6Pase it had little effect on the regulation of PEPCK gene transcription 

by the drugs. This is consistent with AMPK not being the key mediator of biguanide 

regulation of PEPCK gene transcription and suggests that biguanide regulation of 

G6Pase and PEPCK gene transcription is mediated through distinct signalling pathways. 

 

In summary, I have developed a cell based model of insulin resistance that relies on 

factor (s) present in serum from humans with diabesity, and thus should be useful as a 

screen for more effective insulin sensitisers targeted at the population that donates the 

serum. It is likely that one of the factors responsible for generation of resistance is 

insulin itself as chronic exposure to low levels (albeit higher than background), of 

insulin reduces insulin sensitivity of the cells. The molecular details of the development 

of insulin resistance remain elusive as none of the major signalling pathways appear to 

be defective in the cells that have developed reduced insulin regulation of PEPCK. 

However, the data raise the intriguing possibility that chronic but mild hyperinsulinemia 

due to defective insulin secretion or clearance is an initial step in the development of 

insulin resistance. Hence, reducing insulin secretion (as opposed to current strategies of 

inducing insulin secretion) may be a more effective therapy for prevention of the 

development of insulin resistance. Finally, elements of the DNA repair pathways such 

as ATM may impinge on pathways that affect insulin sensitivity, including the 

biguanide target AMPK.  
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Chapter 1. Introduction 
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1.1. Insulin 

Insulin is a 51 amino acid (aa) polypeptide hormone produced in the β-cells of the 

pancreatic islets of Langerhans where it is transcribed from the INS gene (Joshi et al., 

2007).  There is significant conservation across species. Human insulin consists of a 21 

aa A chain and a 30 aa B chain linked by a pair of disulphide bonds  (Joshi et al., 2007) 

In solution, insulin forms dimeric structures due to hydrogen bonds between the C 

termini of the B-Chains. (Joshi et al., 2007) The hisitidine residues of the insulin 

molecules readily bind to zinc ions to form highly stable hexamers. 

 

Insulin synthesis initiates with translation of a single polypeptide chain of preproinsulin. 

During processing in the endoplasmic reticulum, the signal peptide is cleaved leaving 

proinsulin (Joshi et al., 2007). Proinsulin consists of the aforementioned N-terminal B 

chain and C-terminal A chain linked by C peptide. The C-peptide is removed by two 

endopeptidases, namely prohormone convertase 1 and 2 followed by carboxypeptidase 

E to leave the separate A and B chains linked only by disulphide bridges as described 

above (Joshi et al., 2007). 

 

1.1.1. Insulin Secretion 

Glucose enters β-cells of the pancreatic islets of Langerhans through the glucose 

transporter GLUT2 (Joshi et al., 2007). The Km value of GLUT2 for glucose lies within 

the physiological range of transition between fasted and fed plasma glucose levels 

allowing it to act as a glucose sensor. Once glucose enters the cell it is metabolised to 

glucose-6-phosphate by hexokinase and enters the glycolytic pathway (Joshi et al., 

2007). The formation of ATP closes ATP sensitive potassium channels, Kir 6.2, leading 

to depolarisation of the cell and the opening of voltage gated calcium channels.  

Calcium 
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activates phospholipase C, which in turn, converts phosphtidylinositol (4,5) 

bisphosphate (PIP2) into inositol trisphosphate (IP3). This leads to the release of insulin 

containing secretory vesicles from the endoplasmic reticulum which then fuse with the 

cell membrane allowing the contents to enter the circulation (Figure 1.1) (Joshi et al., 

2007). 

 

1.2. Clinical Insulin Resistance 

Insulin resistance can be defined as a diminished response of a target tissue to any given 

quantity of insulin, and in clinical practice, this would lead to a lesser reduction in 

circulating glucose level per unit of insulin. This was first shown in 1936 when those 

who developed diabetes later in life tended to be resistant to insulin (Himsworth, 1936). 

This concept subsequently became central to the development of a number of disease 

states. A number of clinical measures of insulin resistance have been developed. As the 

development of insulin resistance is so closely related to obesity, it is of no surprise that 

body mass index (BMI) and waist circumference correlate with the level of insulin 

resistance (Farin et al., 2005). Furthermore, raised fasting insulin levels are also present 

in insulin resistance. However, the presence of these 2 factors shows the presence of 

insulin resistance, but does not allow for the quantification of said resistance. 

 

The gold standard measure of insulin sensitivity is the hyperinsulinaemic euglycaemic 

clamp (DeFronzo et al., 1979). This is performed by intravenous infusion of a constant 

rate of insulin alongside a variable rate of glucose to maintain the blood sugar between 

5 and 5.5 mmol/l. The rate of glucose required can be used to measure insulin 

sensitivity (DeFronzo et al., 1979). Those requiring high rates of glucose to maintain 

blood sugar within the normal range are insulin sensitive and those requiring low levels 

are insulin resistant and this can be quantified by the glucose infusion rate or total 
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glucose disposal (M-value). This test is rarely performed in clinical practice due to the 

time taken and resources requires. 

 

A simpler test is an insulin tolerance test. After an overnight fast, the subject is exposed 

to insulin (0.1 units/kg) followed by repeated venous sampling for glucose. The slope of 

plasma glucose values correlates highly with the M-value of a hyperinsulinaemic-

euglycaemic clamp (Bonora et al., 1989). However, in clinical practice the length of 

time taken for these tests renders them impractical. 

 

Therefore, due to the impracticality of formal testing, a number of mathematical models 

of insulin sensitivity have been developed. The best known of these is the homeostatic 

model assessment of  insulin resistance (HOMA-IR) (Matthews et al., 1985). By 

comparing the levels of fasting plasma glucose and insulin, one can quantify the level of 

insulin resistance in an individual and correlates well with the values seen in 

euglycaemic clamp studies (Matthews et al., 1985). HOMA-IR is calculated thus 

 

HOMA-IR = Glucose (mmol/l) x Insulin mU/l 

22.5 

 

 

1.3. Diseases of Insulin Dysfunction. 

1.3.1. Type 2 Diabetes 

Type 2 Diabetes is a condition of glucose intolerance arising from a combination of 

insulin resistance and relative insulin deficiency resulting in enhanced hepatic glucose 

output. Although type 2 diabetes is often referred to as a single entity it is a 

heterogeneous group of conditions accounting for 90-95% of all diabetes, with some 

patients having a predominantly insulin resistant profile, and others insulin deficiency. 

However, it is widely accepted that the development of insulin resistance precedes 
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insulin deficiency. In contrast, patients with type 1 diabetes have an absolute deficiency 

of insulin.  

 

As patients become insulin resistant, there is a consequent rise in insulin production by 

pancreatic β-cells to overcome the resistance. To enhance insulin output, β-cells become 

hypertrophic followed by a gradual decrease in secretory ability leading to the 

development of relative insulin deficiency and type 2 diabetes. The decrease in 

secretory capacity manifests as post-prandial hyperglycaemia in the first instance, but 

progressive β-cell failure leads to worsening hyperglycaemia. It is at this point, when 

approximately 60% of a patients β-cell mass has been lost that type 2 diabetes manifests 

clinically (Butler et al., 2003). Hepatic insulin resistance, in combination with insulin 

deficiency also leads to increased hepatic gluconeogenesis which further exacerbates 

hyperglycaemia so that it occurs in the fasting state (Figure 1.2). The reduced effect of 

insulin on its target tissues also results in an adverse metabolic profile, with high levels 

of LDL-cholesterol and triglycerides along with low levels of HDL-cholesterol. When 

combined with hypertension, hyperglycaemia and microvascular disease, this leads to a 

vast increase in the levels of macrovascular disease within the diabetic population. This 

atheromatous vascular disease is the principal cause of morbidity and mortality and is 

currently considered a coronary vascular disease equivalent in the middle aged and 

older diabetic patient (Grundy et al., 2004). Hyperglycaemia also causes the 

microvascular complications associated with diabetes, namely retinopathy, neuropathy 

and nephropathy (UK Prospective Diabetes Study (UKPDS) Group, 1998). There are 

also links between type 2 diabetes and the development of cancers and Alzheimer’s 

dementia  (Vigneri et al., 2009, Biessels et al., 2006). 
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1.3.2. Non-Alcoholic Fatty Liver Disease 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the 

western world affecting around 20% of the population (McCullough, 2006, Bedogni et 

al., 2007) .  It covers a range of hepatic pathological changes from simple accumulation 

of triglycerides in hepatocytes (steatosis) through to fat accumulation with inflammation 

with or without fibrosis or cirrhosis (steatohepatitis) without alcohol as a causative 

factor.  The progression from simple steatosis to non alcoholic steatohepatitis (NASH) 

shows an increasing severity of disease and insulin resistance is either a cause or 

consequence of the fat accumulation in the liver (Seppala-Lindroos et al., 2002, Vanni 

et al., 2010). The prevalence of NASH is only 2-3% in non obese individuals  

(Neuschwander-Tetri and Bacon, 1996) but this rises to up to 50% in the morbidly 

obese (Silverman et al., 1990). Approximately 10% of patients with NAFLD will 

progress to NASH over the next 10 years, and between 5 and 25% of these will develop 

cirrhosis and up to 50% will die from liver disease (McCullough, 2005, Matteoni et al., 

1999). Furthermore, around 10% of those with cirrhosis will go on to develop 

hepatocellular carcinoma (McCullough, 2005).  

 

1.3.3. Polycystic Ovarian Syndrome (PCOS) 

The cluster of obesity, poor fertility, hirsutism and acne is known as PCOS and affects 

between approximately 4 and 18% of women of reproductive age (Knochenhauer et al., 

1998, March et al., 2010). The majority of those with PCOS are also insulin resistant 

(Dunaif et al., 1989). Therefore, the risk of developing diabetes in these individuals is 

much greater with a conversion rate of between 1 and 5% per year (Legro, 2006). 

Multiple defects in the insulin signalling pathway have been demonstrated in those with 

PCOS, with changes in glucose uptake, attenuation of extracellular signal related kinase 

(ERK)1/2 (Chapter 1.6.7) phosphorylation in skeletal muscle, decreased insulin receptor 
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substrate (IRS)-1 (1.6.2) expression and phosphorylation and decreases in insulin 

stimulated Phosphoinositide 3-Kinase (PI 3-K) (1.6.3) activity to name a few 

(Diamanti-Kandarakis and Papavassiliou, 2006, Rajkhowa et al., 2009). 

 

1.4. Contributing factors in insulin resistance 

1.4.1. Obesity and Diet 

Obesity is the single greatest risk factor for the development of insulin resistance and 

type 2 diabetes. This occurs when energy intake is greater than expenditure leading to 

increased adipose deposition. Men with a Body Mass Index (BMI) of 25 kg/m
2
 have a 

relative risk of 2.2 for the development of type 2 diabetes compared to those with a BMI 

of 21 kg/m
2
. This increases to a relative risk of 42.1 if they have a BMI of  35 kg/m

2
 or 

over  (Chan et al., 1994). The effect in women is even greater with a relative risk of 8.1 

at a BMI of 25 kg/m
2
 compared with 21 kg/m

2 
rising to 93.2 at a BMI of greater than 35 

kg/m
2
  (Colditz et al., 1995) (Figure 1.3).  The correlation of obesity with insulin 

resistance and type 2 diabetes is seen across all ethnic groups. However, this is an 

oversimplification of the problem. The distribution of body fat is also a determinant of 

insulin sensitivity with intra abdominal (visceral) fat more greatly associated with 

insulin resistance and type 2 diabetes than is subcutaneous fat (Kissebah and Krakower, 

1994), meaning that many normal weight individuals have an increasing prevalence of 

insulin resistance particularly in ethnic groups, such as those from south Asia, who have 

proportionally more visceral fat than a Caucasian with the same waist circumference 

(Lear et al., 2007). The plasma and tissue levels of free fatty acids (FFA) can be 

increased by the consumption of a high fat diet and this contributes to hepatic insulin 

resistance  (Boden et al., 1994, Samuel et al., 2004). With insulin resistance lipolysis is 

also increased due to a reduction in the inhibition of hormone-sensitive lipase.  This 

increases FFA levels and further impedes insulin signalling leading to a 
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vicious cycle. Furthermore, lipogenesis is decreased in adipocytes due to a reduction in 

the activity of transcription factors such as peroxisome proliferator activated receptor 

(PPAR)γ (Guilherme et al., 2008). Free fatty acids can also induce inflammation in 

adipose tissue. Tissue macrophages are recruited to visceral adipose tissue where FFAs 

activate Toll-like receptors and promote the production of pro-inflammatory cytokines, 

tumour necrosis factor (TNF) α, interleukin (IL)-1β, IL-6 and monocyte chemotactic 

protein (MCP), via the activation of  nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) (Shi et al., 2006). In the liver, TNFα induces insulin 

resistance by phosphorylation of IRS-1 at the inhibitory Ser307 site and also by 

increasing protein-Tyr phosphatase (PTP) 1-B production leading to the 

dephosphorylation of the active insulin receptor (Gao et al., 2002, Wu et al., 2011). 

Finally, a number of adipokines are disordered in obesity. In particular, the levels of 

adiponectin are lower and the leptin levels higher in the obese (probably generating 

leptin resistance) (Rabe et al., 2008). In leptin deficiency, exogenous leptin improves 

insulin sensitivity, but this does not occur in the presence of leptin resistance. Restoring 

levels of adiponectin can also enhance insulin sensitivity (Rabe et al., 2008). Therefore 

there are multiple potential molecular signals and pathways that could contribute to 

obesity induced insulin resistance and it remains unclear as to the relative importance of 

each, whether it is the same problem in all obese individuals or whether it is an 

accumulative effect of all of them that promotes insulin resistance in the obese 

population. 

 

The effects of diet on insulin resistance are greater than just the effects of the ingestion 

of a hypercaloric diet. For example, saturated fat appears to be a potent inducer of 

insulin resistance, an effect that can be negated if there is a significant proportion  of 

omega 3 fatty acid intake (Storlien et al., 1991, Storlien et al., 1987). On top of FFAs, 
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elevated triglycerides, which can occur as a result of high carbohydrate diets, 

independently can promote insulin resistance (Koyama et al., 1997).  Fructose 

consumption in the form of high fructose corn syrup, leading to higher levels of 

triglycerides, saturated fat and also leptin resistance, is a further potential cause of 

insulin resistance (Thorburn et al., 1989, Hudgins, 2000, Shapiro et al., 2008). 

 

1.4.2. Sedentary Lifestyle 

Inactivity is an important risk factor for the development of insulin resistance and 

therefore exercise is associated with prevention of its development (Helmrich et al., 

1991). Indeed, the higher the risk of an individual developing the disease, the more 

effective exercise becomes (Helmrich et al., 1991).  There is a positive correlation 

between physical activity and insulin sensitivity (Mayer-Davis et al., 1998). 

 

1.4.3. Other lifestyle factors 

Cigarette smoking is known to decrease insulin action (Attvall et al., 1993). However 

the effects of alcohol and caffeine are less well defined (Keijzers et al., 2002, Petrie et 

al., 2004, Villegas et al., 2004, Kawamoto et al., 2009). 

 

1.4.4. Genetic Factors in type 2 diabetes 

The risk of developing type 2 diabetes is higher if one has a first degree relative with the 

condition. Indeed, the more relatives with type 2 diabetes an individual has, then the 

greater the risk. In twin studies monozygotic twins have been reported to have a 

concordance for the development of type 2 diabetes of between 34 and 100% (Barnett et 

al., 1981, Kaprio et al., 1992, Poulsen et al., 1999). The concordance rates for dizygotic 

twins are always lower suggesting that genetics plays a significant part in the 
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development of type 2 diabetes. More recently, modern gene mining techniques have 

identified a number of nucleotide polymorphisms that are associated with an increased 

risk of developing type 2 diabetes (including TCF7L2, PPARG, FTO, KCNJ11, 

NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX) (Lyssenko et 

al., 2008). At this time around 40 type 2 diabetes risk genes have been proposed, mostly 

associated with beta cell function but also linked to other aspects of glucose metabolism 

(Petrie et al., 2011). However, despite the large number of genes, each has a minor 

effect, detectable only in large population studies, and thus this information is unlikely 

to be useful in the clinic for early diagnosis. For example, those homozygous for the 

risk allele of TCF7L2 (7% of the study population) the most common mutation found, 

have approximately double the risk of developing type 2 diabetes (Grant et al., 2006). In 

addition, variations in FTO, the locus associated with differences in BMI, account for 

less than 0.5% of the overall genetic variance of the disease (Frayling et al., 2007). The 

less common variants have a lesser effect and as such an interaction between genetics 

and environment is the likeliest cause of insulin resistance. 

 

1.5. Molecular Insulin Action 

1.5.1. Tissue Specific Effects of Insulin 

During fasting the levels of insulin are extremely low. After food intake, these rise 

rapidly to allow the metabolism and appropriate storage of ingested nutrients. Insulin 

sensitive tissues (liver, adipose and muscle) have common but also specialised 

responses to insulin stimulation (Table 1.1). 
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 Liver Adipose Muscle 

Glucose Uptake  ↑ ↑ 

Glycogenesis ↑  ↑ 

Glycogenolysis ↓  ↓ 

Amino Acid uptake   ↑ 

Protein Synthesis ↑ ↑ ↑ 

Protein Degradation ↓ ↓ ↓ 

Fatty Acid and Triglyceride Synthesis ↑ ↑  

Lipolysis ↓ ↓  

Lipoprotein Uptake  ↑  

Cellular Respiration ↑ ↑ ↑ 

Table 1.1 Tissue specific effects of insulin 
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1.5.1.1. Liver 

Unlike other insulin sensitive tissues, glucose uptake in liver is by passive diffusion and 

is not directly stimulated by insulin  (El-Munshid et al., 2000) (although insulin 

stimulated glucose metabolism would indirectly increase passive diffusion into the 

hepatocyte). This is due to the fact that liver does not express the insulin sensitive 

glucose transporter (GLUT4), but rather GLUT2.  Glucose in hepatic cells is rapidly 

converted to glucose-6-phospate (G6P) by glucokinase, an action opposed by glucose-6-

phosphatase (G6Pase) which in turn is negatively regulated by insulin (Chapter 1.8 and 

1.9.). The higher levels of glucose-6- phosphate induced by insulin can then be utilised 

in the glycolytic pathway.  Furthermore, insulin increases the activity of glycogen 

synthase both by increasing G6P levels and by inhibiting the action of Glycogen 

Synthase Kinase 3 (GSK-3), an inhibitory kinase (Chapter 1.6.6). At the same time 

insulin turns off glycogen breakdown (Sindelar et al., 1996). Gluconeogenesis is the de 

novo production of glucose from non-carbohydrate precursors. During early stages of 

fasting this process is the major source of glucose and allows the maintenance of plasma 

glucose levels (vital to prevent hypoglycaemia). After feeding, and the subsequent 

availability of glucose, gluconeogenesis is not required. Insulin prevents 

gluconeogenesis in large part by repressing the production of the rate controlling 

enzymes in the process, phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase 

(Chapter 1.9), and thus preventing de novo glucose formation.  

 

Insulin also has effects on lipid metabolism in hepatocytes. Once glycogen stores are at 

maximal remaining glucose is shunted to the fatty acid synthesis pathway. Pyruvate is 

converted to Acetyl-CoA and then Malonyl-CoA by pyruvate dehydrogenase and 

Acetyl-CoA carboxylase (ACC) respectively, both of which are insulin sensitive (El-
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Munshid et al., 2000).  Using Acetyl-CoA and Malonyl-CoA as substrates, the fatty acid 

synthase (FAS) complex performs multiple condensation reactions to form fatty acids. 

FAS transcription is up regulated by sterol regulatory element binding protein-1c 

(SREBP-1c) (Chapter 1.10.5). These fatty acids are then combined with glycerol, also 

derived from glucose, to form triglycerides which are exported to adipose tissue through 

the blood as lipoproteins. Finally, insulin increases protein synthesis in many tissues 

including the liver by increasing general  (El-Munshid et al., 2000) protein translation 

and also reducing proteolysis. (El-Munshid et al., 2000) 

 

1.5.1.2. Adipose tissue 

Lipogenesis occurs in adipocytes following feeding in response to insulin. Triglycerides 

absorbed from the intestine (chylomicrons), or those produced in the liver (lipoproteins), 

are hydrolysed to glycerol and free fatty acids by the action of lipoprotein lipase (LPL). 

Insulin induces LPL activity in adipocytes but also increases its secretion into the 

surrounding endothelium (El-Munshid et al., 2000). Fatty acids are taken up into the 

adipocytes by an insulin sensitive fatty acid transport protein (FATP1). Once in the 

adipocytes, free fatty acids must be combined with Co-enzyme A, another insulin 

induced process, before esterification to form triglycerides (El-Munshid et al., 2000). 

Glucose enters the adipocyte through the GLUT4 transporter and the number of GLUT4 

molecules in the cell membrane is increased by insulin stimulating its translocation from 

internal stores. The glycerol required for triglyceride formation is formed from glucose 

within the adipocytes (El-Munshid et al., 2000). Furthermore, the breakdown of 

triglycerides is prevented by the dephosphorylation of hormone sensitive lipase which 

leaves this inactive (El-Munshid et al., 2000). Insulin also modifies the transcription and 

production of lipogenic genes through activation of PPARγ switching the adipocyte 
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proteome to one more suitable for adipogenesis. The effects on protein synthesis are the 

same as those seen in liver. 

 

1.5.1.3. Muscle 

The effects of insulin in muscle are similar to those seen in liver. Glucose uptake differs 

because in muscle this is an insulin dependent process requiring the translocation of 

GLUT 4 glucose transporters to the cell membrane. However, once the glucose has 

entered the myocyte, the process of increased glycogenesis, reduced glycogenolysis, 

increased cellular respiration and protein synthesis are similar to those seen in liver (El-

Munshid et al., 2000). However, in contrast to liver, insulin increases amino acid uptake 

into skeletal muscle by increasing numbers of amino acid transporters in the cell 

membrane.  

 

1.6. Insulin Signal Transduction (Figure 1.4) 

1.6.1. Insulin Receptor 

The insulin receptor is a heterodimeric Tyr kinase receptor consisting of 2 α 

(extracellular) and 2 β (transmembrane) subunits. The α subunit is entirely extracellular 

and contains the insulin binding motif. The β subunit contains a short extracellular 

region that includes the domain for interaction with the α subunit, a transmembrane 

domain and an intracellular region containing the Tyr kinase domain. On binding to 

insulin, the IR undergoes autophosphorylation which induces the intrinsic Tyr kinase 

activity of the receptor. The activated receptor recruits a number of IR target proteins 

(IRS, Gab-1, p60dok, Cbl, APS) of which the insulin receptor substrates (IRS) have 

gained the most interest (Pessin and Saltiel, 2000). The activated insulin receptor is 
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internalised and packaged in the endosome, where the insulin is dissociated and then 

degraded. The receptor is dephosphorylated and then recycled to the cell membrane. 

 

1.6.2. Insulin Receptor Substrates (IRS). 

There are 6 IRS molecules numbered 1-6, with distinct tissue distributions. IRS-1 and -2 

are widely distributed, IRS-3 is mainly found in the brain and adipose tissue (rodents 

only), while IRS-4 is found only in embryonic tissues (Giovannone et al., 2000). There 

is little evidence for the involvement of IRS-5 and -6 in metabolic cell signalling (Cai et 

al., 2003). All of the IRS molecules have significant homology. They each have a 

pleckstrin-homology (PH) domain and a phospho-Tyr binding (PTB) domain close to 

the N-terminus which together mediate binding to the insulin receptor (IR), as well as 

other Tyr kinase receptors. In addition IRS contains a number of Tyr motifs, that when 

phosphorylated (e.g. by the IR) mediate binding to molecules containing src-homology 

(SH) 2 domains. Thus IRS proteins are often termed adaptor molecules as they link the 

insulin receptor to the downstream signalling cascade including key metabolic control 

pathways such as the phosphatidyl inositol (PI) 3-kinase. 

 

However, insulin, as well as fatty acids and inflammatory mediators, also induces 

phosphorylation of a number of Ser residues of IRS molecules which, in most cases, 

negatively affect signalling, and if sustained, may contribute to insulin resistance. A 

number of insulin activated kinases (e.g. S6 Kinase, ERK, JNK) have been proposed to 

mediate the Ser phosphorylation of IRS and in the normal physiological setting may 

represent a feedback inhibition of insulin signalling in response to pulsatile hepatic 

insulin delivery (Harrington et al., 2004, Bouzakri et al., 2003, Aguirre et al., 2000). 

Sustained induction of phosphorylation of IRS at these sites would be expected to 
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reduce downstream signalling since two of the target residues, Ser 307 and 270, lie 

within the PTB domain and their phosphorylation leads to decreased binding to the 

insulin receptor (Aguirre et al., 2002, Craparo et al., 1997). Furthermore, the 

phosphorylation of IRS on Ser residues can also enhance ubiquitylation and targeting to 

the proteosome, hence hyperinsulinaemia leads to the degradation of IRS-1. Finally, 

insulin is reported to promote transcriptional inhibition of IRS-2 (Hirashima et al., 

2003). A summary of IRS-1 phosphorylation sites is shown in Figure 1.5 

 

The critical role of IRS molecules in the insulin signalling pathway is highlighted by 

gene knockout studies. Animals deficient in IRS-1 are viable but have significant 

intrauterine growth retardation. They are insulin resistant and glucose intolerant and 

develop other conditions associated with type 2 diabetes, namely hypertension and 

hypertryglyceridaemia. Interestingly, they do not develop overt diabetes due to a 

simultaneous increase in β-cell mass and hyperinsulinaemia (Abe et al., 1998, Araki et 

al., 1994, Tamemoto et al., 1994). The reconstitution of IRS-1 signalling by adenoviral 

construct infection can reverse these changes in IRS-1 null mice (Ueki et al., 2000). 

IRS-2 knockout mice have a different phenotype. They exhibit both hepatic and 

muscular insulin resistance along with a β-cell deficit and therefore overt diabetes. This 

leads to a hyperosmolar state and subsequent mortality (Withers et al., 1998, Kubota et 

al., 2000). Therefore, it is likely that as both isoforms are present in similar tissues, then 

both are required for normal insulin signalling. Dual knockout of IRS-1 and IRS-2 is 

embryonic lethal, but mice lacking both isoforms only in liver were viable and exhibited 

insulin resistance, glucose intolerance and hepatic steatosis (Taniguchi et al., 2005). A 

70 -80% knockdown of IRS-1 led to increased expression of gluconeogenic enzymes 

and HNF- 4α, a decrease in glucokinase and a trend towards hyperglycaemia, whereas 

mice with a similar knockdown of IRS-2 upregulated SREBP-1c and FAS and therefore 
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had hepatic lipid accumulation. This suggests that there are different roles for each 

isoform, with IRS-1 involved mainly in glucose homeostasis and IRS-2 involved in 

lipid metabolism (Taniguchi et al., 2005). It is of note that in insulin receptor null 

hepatocytes IRS-1 phosphorylation in response to insulin is maintained, but 

phosphorylation of IRS-2 is not (Rother et al., 1998). In addition, liver specific 

knockout of IRS-2 on a global IRS-1 knockout produces a more profound effect on 

growth retardation and hyperglycaemia than IRS-1 -/- alone. Together these data 

suggest that IRS-2 is of particular importance in hepatic insulin signalling (Dong et al., 

2006) 

. 

IRS-3 was originally isolated from rat adipocytes and shares approximately 50% 

homology with both the PTB and PH domains of IRS-1 and IRS-2 (Lavan et al., 1997b). 

In mice, mRNA for IRS-3 was found not only in adipocytes, but also in hepatic and 

lung tissue (Sciacchitano and Taylor, 1997). There is, so far, no evidence of a human 

IRS-3 homolog, and an in silico screen provides evidence against its presence 

(Bjornholm et al., 2002).  Nevertheless, an IRS-3 knockout mouse model has been 

created. This displayed no altered phenotype in either growth or glucose homeostasis 

(Liu et al., 1999). However, mice with a dual knockout of IRS-1 and IRS-3 exhibit 

lipoatrophy, and overt hyperglycaemia associated with insulin resistance, В-cell 

hypertrophy, hyperinsulinaemia, but surprisingly no steatosis (Laustsen et al., 2002). 

These mice had decreased levels of leptin, the restoration of which improved their 

insulin sensitivity (Laustsen et al., 2002). 

 

Likewise, IRS-4 was isolated from the Human Embryonic Kidney (HEK293) cell line 

(Lavan et al., 1997a). This also shared a significant homology of PTB and PH domains 

(approximately 40%) with IRS-1, 2 and 3 (Lavan et al., 1997a). Knockout of IRS-4 
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promotes a phenotype which includes reduced growth (male mice only), a reproductive 

deficit and an impaired response to an oral glucose tolerance test (Fantin et al., 2000) 

1.6.3. Phosphoinositol 3-Kinase (PI 3-K) 

PI 3-Ks are a group of lipid kinases made up of 3 classes (I, II and III). Upon activation 

they elicit downstream signalling pathways. PI 3-K phosphorylates the D3 position of 

the inositol ring of phosphotidylinositol (PtdIns) , PtdIns (4)P and PtdIns (4,5)P2 

thereby generating PtdIns (3)P, PtdIns (3,4)P2 and PtdIns (3,4,5)P3 (PIP3) respectively. 

The latter two serve as intracellular messengers to propagate signalling pathways. Class 

I PI 3-Ks consist of a regulatory and a catalytic subunit and are further divided into 

Class Ia and Ib. Class Ia PI 3-K is a heterodimer containing one regulatory subunit 

(p85α, p85β, p55α, p55γ or p50α) and the catalytic p110 subunit (α, β or δ). Class Ib PI 

3-Ks have a different regulatory subunit (p101 or p87) and catalytic subunit (p110γ). 

Class II PI 3-Ks consist solely of a catalytic subunit of which there are 3 currently 

known (PI 3-K-C2 α, PI 3-K-C2 β and PI 3-K-C2 γ). Only one class III PI 3-K has been 

identified (Vps34).  This exists as a heterodimer with a regulatory subunit (p150) and is 

only able to convert PtdIns to PtdIns (3) P. There has been extensive study of the class I 

PI 3-Ks and their structure, function and role in intracellular signalling have been 

largely elucidated. Both p85α and β contain two SH2 domains at their C terminus, 

which allow binding to the IRS molecules along with other Tyr phosphorylated receptor 

kinases, but also have a breakpoint cluster domain and a SH3 domain at their N-

terminus (Escobedo et al., 1991, Otsu et al., 1991). The p110 catalytic subunit binds to 

the inter SH2 domain with its N-terminal adaptor binding domain (ABD) (Klippel et al., 

1993). The p110 subunit also contains a ras binding domain (RBD), a C2 domain which 

facilitates cell membrane binding, a helical domain and a catalytic domain at the C-

terminus. 
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Knockout studies have not clearly elucidated the importance of this node in the insulin 

signalling pathway. A triple knockout of p85α-p55α-p50α is generally perinatal lethal, 

however survivors are more insulin sensitive. Similarly, mice heterozygous for the gene 

encoding PI 3-kinase alpha regulatory subunit (Gonzalez and McGraw, 2009), or mice 

lacking either p85α alone, p55α/p50α or p85β all display improved PI 3-K signalling 

(Fruman et al., 2000, Chen et al., 2004, Terauchi et al., 1999, Ueki et al., 2002, 

Mauvais-Jarvis et al., 2002). This increase in insulin sensitivity is surprising and 

remains unexplained but could suggest that these regulatory subunits are actually 

inhibitory. Consistent with this hypothesis the microinjection of a glutathione S-

transferase-p85 fusion protein or a dominant-negative mutant of p85 prevents GLUT4 

translocation (Haruta et al., 1995). Attempts to make a p110 knockout resulted in 

embryonic lethality (Bi et al., 1999). More information has been gained from the use of 

PI 3-K inhibitors which prevent many of the actions of insulin including glucose uptake 

in adipocytes (Okada et al., 1994), activation of PKB  (Alessi et al., 1996) and 

repression of hepatic gluconeogenesis (Sutherland et al., 1995, Dickens et al., 1998). 

Furthermore, constitutively active mutants of PI 3-K are sufficient to mimic many 

actions of insulin, including stimulation of glucose uptake into adipocytes by 

translocation of GLUT4 to the cell membrane (Katagiri et al., 1996, Martin et al., 1996).  

 

1.6.4. 3-Phosphoinositide Dependent Protein Kinase-1 (PDK1) 

PDK1 is a master kinase of many AGC (cAMP-dependent, cGMP-dependent and 

protein kinase C) kinases most of which are involved in metabolism, cell survival and 

proliferation. The family includes, among others, PKB, p70S6K, SGK, RSK and 

atypical PKC (Alessi et al., 1997, Alessi et al., 1998, Kobayashi and Cohen, 1999, 

Frodin et al., 2000, Le Good et al., 1998).  PDK-1 has an N-terminal kinase domain and 

a C-terminal PH domain which mediates the interaction with lipid second messengers 
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PtdIns (3,4)P2 and PtdIns (3,4,5)P3. PDK-1 does not require insulin stimulation for its 

activation but like all AGC kinases does require phosphorylation of its T-loop residue 

(Ser241) for activation (Casamayor et al., 1999). The ability of PDK-1 to 

autophosphorylate at this site means that the kinase is constitutively active. Therefore, 

the regulation of the phosphorylation of PKB by PDK-1 upon insulin stimulation is due 

to the co-localisation of these two kinases at the cell membrane via the interaction of 

their PH domains with lipid second messengers (Filippa et al., 2000, Watton and 

Downward, 1999, Anderson et al., 1998). PDK-1 also has a hydrophobic pocket in the 

catalytic domain that regulates activity and interaction with substrates (Biondi et al., 

2000). The hydrophobic binding pocket interacts with a hydrophobic motif, PDK-1 

interacting fragment (PIF), present in many of its substrates. The binding and 

phosphorylation of the hydrophobic motif may induce a conformational change in the 

substrate allowing further phosphorylation. This explains how substrates lacking a PH 

domain, e.g. S6K, SGK and RSK are regulated by PDK-1 (Biondi et al., 2001, 

Balendran et al., 1999).  

 

Mouse models lacking PDK-1 are not viable (Lawlor et al., 2002). A 90% reduction in 

PDK-1 levels in all tissues produced animals which were small as a consequence of 

reduced cell size, but viable and fertile (Lawlor et al., 2002). Mutation of the PH 

domain of PDK-1 blocks its ability to activate PKB but leaves most of its other target 

phosphorylations intact. Mice expressing this mutant PDK-1 have small size and insulin 

resistance, emphasising the importance of the PDK-1-PKB interaction, although 

gluconeogenesis was still efficiently suppressed by feeding suggesting minimal PKB 

activity is required for this action of insulin (Bayascas et al., 2008). 
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1.6.5. Protein Kinase B 

Protein Kinase B (PKB), also called AKT, is an AGC kinase, one of the major 

downstream targets of PDK-1 in the insulin signalling pathway and is instrumental in 

cellular processes involved in metabolism, cell proliferation and transcription (Gonzalez 

and McGraw, 2009).  This protein contains an N terminal PH domain, a central Ser /Thr 

kinase domain and a C terminal regulatory domain containing a hydrophobic motif as 

with other AGC kinases.  

 

There are 3 isoforms of PKB designated α, β and γ (AKT1, 2 and 3) (Coffer and 

Woodgett, 1991, Cheng et al., 1992, Brodbeck et al., 1999).  There is differing tissue 

distribution of PKB isoforms. PKBα is ubiquitously expressed, but the lowest levels are 

found in pancreas and skeletal muscle, PKBβ is highly abundant in insulin responsive 

tissues and PKBγ although not highly expressed, is mostly found in brain and testis 

(Yang et al., 2003).  Phosphorylation of PKBα at Thr308 and Ser473 is induced by 

insulin in a PI 3-K dependent manner  (Kohn et al., 1995, Alessi et al., 1996) and all 

isoforms respond to PDK-1 in a similar fashion requiring phosphoinositides for this 

interaction (Walker et al., 1998). In the basal state, PKB is present in the cytoplasm, and 

the PH domain prevents phosphorylation. Upon insulin exposure, it is recruited to the 

cell membrane where the PH domain binds PIP3, inducing a conformational change that 

allows the phosphorylation of Thr308 by PDK1 (Filippa et al., 2000). The hydrophobic 

motif is phosphorylated at Ser473 by another kinase, most likely mTORC2 (Sarbassov 

et al., 2005). It can then interact with substrates, of which the two of the first 

characterised were GSK-3 and forkhead box O (FOXO). 

 

As expected, mice lacking the PKBβ isoform exhibit hepatic insulin resistance, whereas 

those without the α isoform are small, but have normal glucose homeostasis (Cho et al., 
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2001a, Cho et al., 2001b). In hepatocytes, inhibition of PKB (α + β) blocks insulin 

regulation of PEPCK and G6Pase (Logie et al., 2007). Immortalised adipocytes from 

PKBβ null mice have deficient glucose uptake and GLUT4 translocation and this can be 

rescued by the reintroduction of PKBβ, but not PKBα (Bae et al., 2003). The depletion 

of PKB by siRNA in mouse adipocytes reduces both PKB and phosphorylation of its 

substrate GSK-3 (Puri et al., 2007).  In contrast, a constitutively active PKB increases 

glucose uptake in an adipose cell line  (Kohn et al., 1996) 

 

1.6.6. Glycogen Synthase Kinase 3 (GSK-3) 

Glycogen Synthase Kinase 3 has 2 mammalian isoforms, GSK-3α (51 kDa) and GSK-

3β (47 kDa) and is one of the kinases able to phosphorylate Glycogen Synthase (GS) 

(Woodgett and Cohen, 1984). The two isoforms have near identical kinase domains, but 

differ considerably in both the N- and C-termini (Woodgett, 1990).  The 

phosphorylation of GS by GSK-3 occurs at 5 closely spaced Ser residues with the 

highly specific configuration SXXXS (P) (where X is any amino acid). For most GSK-3 

substrates including GS, phosphorylation by another kinase (priming) is required before 

recognition of substrates by GSK-3 (Fiol et al., 1987, Picton et al., 1982, Rylatt et al., 

1980). During basal conditions GSK-3 inhibits GS through phosphorylation of 4 Ser 

residues in the C-terminus, negatively regulating activity (Lawrence and Roach, 1997). 

On exposure of cells to insulin PKB phosphorylates GSK-3α/β at Ser21/9  (Cross et al., 

1995) which inhibits its activity (Sutherland et al., 1993) and removes the inhibitory 

action it has on GS (Parker et al., 1983). The phosphorylation of Ser21/9 GSK-3 α/β 

causes the N-terminal domain of GSK-3 to move into a phosphate binding pocket of the 

kinase domain which is required for recognition of primed substrates (i.e. it disrupts 

substrate association by acting as a pseudosubstrate) (Frame et al., 2001).  
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In addition to the N-terminal inhibitory phosphorylation, there is a facilitative Tyr 

phosphorylation in the catalytic loop (Tyr279 for GSK-3α and Tyr216 GSK-3β). This 

site is constitutively phosphorylated due to autophosphorylation, thus leading to 

constitutively active GSK-3 (Cole et al., 2004). It is therefore unique among kinases 

being constitutively active in resting cells, inhibited by phosphorylation following cell 

stimulation, mostly requiring a primed substrate and generally being a negative 

regulator of cellular processes.  

 

In addition to PKB regulating GSK-3 several other AGC kinases have been shown to 

phosphorylate the N-terminal site, at least in vitro (including p90RSK, p70S6K, PKC 

and PKA). Therefore, potentially, activation of the mitogen activated protein kinase 

(MAPK) and PI 3-K-mTOR pathways in cells could also promote phosphorylation of 

Ser21/9 (Sutherland and Cohen, 1994, Sutherland et al., 1993). However, inhibition of 

the mTOR pathway had no effect on the IGF-1/Insulin mediated phosphorylation of 

GSK-3 in L6 muscle cells, whereas inhibition of PI 3-K prevented the inactivation of 

GSK-3 (Cross et al., 1994). This strongly argues that insulin regulation of GSK-3 

requires PKB activation, however Krebs and colleagues have reported a requirement for 

p42/44MAPK and p90RSK in the regulation of GSK-3 by growth factors (Eldar-

Finkelman et al., 1995).  

 

GSK-3β knockout mice die in utero due to hepatic degeneration and a conditional 

knockout of hepatic GSK-3β shows no metabolic phenotype (Hoeflich et al., 2000, Patel 

et al., 2008). In contrast, knocking out GSK-3β in skeletal muscles leaves animals more 

glucose tolerant (Patel et al., 2008). GSK-3α knock out animals display enhanced 

insulin and glucose sensitivity, reduced fat mass and increased hepatic glycogen content. 

Muscle glycogen levels are unaltered. These mice also exhibit relatively higher insulin 
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stimulation of PKB phosphorylation and higher levels of IRS-1 (MacAulay et al., 2007). 

In mice with an S9A GSK-3α, S21A GSK-3β or dual  muscle knockin, only those with 

a mutation in β isoform showed a reduction in glycogen synthase activity (McManus et 

al., 2005).  These genetic studies highlight the key role of GSK-3β in development, 

confirms the importance of both isoforms in glucose homeostasis and suggests isoform 

specific functions (although the molecular basis for this remains unclear). 

 

1.6.7. Mitogen Associated Protein Kinase (MAPK) 

The Mitogen Associated Protein Kinase (MAPK) family comprises a group of Ser /Thr 

kinases activated by a diverse range of extracellular stimuli to control mitosis, 

cell proliferation or cell death. Mitogens (e.g. EGF, NGF, insulin and IGF-1), pro-

inflammatory cytokines (e.g. interleukins) and other cellular stressors (bacterial 

lipopolysaccharide, heat shock and osmotic stress) all stimulate this pathway. This 

family has four main groups (ERK1/2, JNK, p38 MAPK and ERK5) which are all 

regulated through a related tiered phosphorylation cascade. Each MAPK is 

phosphorylated by a MAPKK (MAP Kinase Kinase) which in turn is itself 

phosphorylated by a MAPKKK (MAP Kinase Kinase Kinase).  The ERK pathway 

(sometimes referred to as the classical MAPK pathway as it was the first to bear that 

name) is stimulated in response to insulin. This pathway consists of the MAPKKKs A-

Raf, B-Raf, and Raf-1, the MAPKKs MEK1 and
 
MEK2 (which are dual specificity 

kinases, phosphorylating both Tyr and Thr residues) and the MAPKs, ERK1 and ERK2. 

Upon insulin receptor activation, there is recruitment to the receptor/IRS complex of 

Grb2 (growth factor receptor-bound protein 2) which contains an SH2 domain (Pawson 

and Scott, 1997). Grb2 exists in a heterodimeric complex with SOS (son of sevenless), a 

guanine nucleotide exchange
 
factor that releases GDP from Ras allowing the binding of 

GTP required for Ras stimulation. This promotes the interaction of Ras with Raf and 
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activation of the subsequent phosphorylation cascade. Raf phosphorylates MEK at 

Ser217 and Ser221 resulting in the phosphorylation of MAPK on a specific TEY motif 

in the activation loop of the kinase domain (Ray and Sturgill, 1988, Alessi et al., 1994, 

Payne et al., 1991). In contrast to the MAPKKKs and MAPKKs the MAPKs have a 

large number of substrates with a diverse range of actions (Roux and Blenis, 2004). 

Many of the substrates of ERK1/2 are involved in the control of gene expression and the 

subsequent regulation of cellular growth and metabolism (Roux and Blenis, 2004). 

ERK1 knockout mice display, among other changes, decreased adiposity and resistance 

to obesity and insulin resistance in response to high fat feeding (Bost et al., 2005). 

Knocking out ERK2 is embryologically lethal (Saba-El-Leil et al., 2003). Again the 

basis of these apparent isoform specific phenotypes remains unclear but it appears the 

ERKs are strong candidates for co-ordinating growth responses with metabolic status of 

cells. Interestingly, abnormal regulation of ERK by insulin in human muscle is 

associated with insulin resistance in women with PCOS (Rajkhowa et al., 2009). 

 

1.7. Theory of Molecular Insulin Resistance 

The appearance of insulin resistance in vivo coincides with poorer responses of tissues 

to given concentrations of exogenous insulin (e.g. during clamps). There is also little 

evidence of loss of insulin receptors on target tissues in insulin resistant individuals. It is 

therefore assumed that a defect in post-receptor signalling exists in one or more tissues 

in these individuals (Marshall and Olefsky, 1980). Therefore, research focus on insulin 

resistance has moved to identification of the initial cause (lifestyle or genetic) and initial 

site (which signalling pathway/molecule) of post-receptor defects. 

 

Mouse genetic studies have suggested that the IRS proteins are required for almost all of 

insulins actions and as such a deficit at this level would seriously impair cellular insulin 
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sensitivity. Phosphorylation of IRS-1 at Ser307 is known to negatively regulate insulin 

signalling (Aguirre et al., 2002). Furthermore, phosphorylation of IRS-1 at Ser612 and 

632, close to the SH2 domain, reduces the ability of the p85 regulatory subunit of PI 3-

K to bind to IRS-1 (Gual et al., 2003). These are mediated through activation of, among 

others, the insulin sensitive MAPK and mTOR pathways. In vivo work shows that these 

mechanisms may be involved in the development of insulin resistance.  The culture of 

primary myotubes from type 2 patients show a decrease in PI 3-K activity due to 

increased Ser632 IRS-1 phosphorylation (Bouzakri et al., 2003). Furthermore, in vitro 

muscle biopsies from lean controls, obese non-diabetics and obese diabetics show an 

inverse correlation between insulin sensitivity and expression of PI 3-K, Ser307 IRS-1 

phosphorylation and PKC (protein Kinase C) (Bandyopadhyay et al., 2005). PKC, 

which can also be activated by free fatty acids, may have an important role in insulin 

resistance at the level of IRS-1. The θ isoform of PKC induces ser1101 IRS-1 

phosphorylation and a constitutively active PKCθ reduces phosphorylation of PKB (Li 

et al., 2004). In addition, PKCα is responsible for Ser24 IRS-1 phosphorylation. This is 

in proximity to the PH domain and may disrupt binding to lipid second messengers 

(Nawaratne et al., 2006). Phosphorylation of IRS-1 at ser522 also negatively affects 

insulin signalling. PKB is required for phosphorylation at this site (Giraud et al., 2007). 

However, another PKB dependent phosphorylation site (Ser629) has been shown to 

positively regulate insulin signalling by interfering with phosphorylation of Ser636/639 

by ERK (Luo et al., 2007). Finally, adipocytes from patients with diabetes showed a 

reduced ability of insulin to phosphorylate ser312 IRS-1 (Danielsson et al., 2005). The 

impairment of IRS-1 signalling in response to insulin may, in normal individuals, be 

responsible for the negative feedback response to allow the correct length and amplitude 

of response to insulin.  
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Muscles from obese diabetics have been shown to have lower PI 3-K activity, yet 

despite this, there is normal activation of PKB (Kim et al., 1999b). However, glucose 

transport into muscle remains impaired (Krook et al., 2000). So although there are 

changes in PI 3-K and this may explain some of the insulin resistance, it is likely that 

other deficits are present. Opposing the actions of PI 3-K is PTEN, and muscle specific 

deletion of this protects against insulin resistance (Wijesekara et al., 2005). However, 

polymorphisms of PTEN have no effect on the risk of developing type 2 diabetes 

(Hansen et al., 2001). 

 

PKB has received major interest as the focus of molecular insulin resistance. The 

comparison of myotubes from controls and type 2 diabetics show site and isoform 

specific changes in PKB phosphorylation. A reduction in Ser473 phosphorylation of 

total PKB was observed, yet the phosphorylation of Thr308 was the same between the 

two groups (Cozzone et al., 2008). In contrast there was a reduction in Thr308 

phosphorylation of PKBα, but no change in Ser473 phosphorylation, while the reverse 

was true for PKBβ (Cozzone et al., 2008). This suggests that PDK-1 activity is 

maintained in type 2 diabetes, but that either the effects of mTORC2 are diminished or 

that PHLPP1, reportedly specific for PKBβ Ser473 dephosphorylation and whose 

mRNA is upregulated in type 2 diabetes, promotes dephosphorylation of PKBβ but not 

PKBα (Cozzone et al., 2008). Furthermore, patients with type 2 diabetes exhibit higher 

levels of GSK-3 in muscle and correlates with a decreased GS activity (Nikoulina et al., 

2000). Furthermore, the phosphorylation of GSK-3 by PKB is reduced in the skeletal 

muscle of those with type 2 diabetes (Krook et al., 1998). 

 

In summary, there is evidence for defective insulin signalling in muscle from insulin 

resistant subjects, probably somewhere on the IRS-PKB pathway. However most of the 
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studies have been done in individuals with diabetes so these defects may not be initial 

problems rather a response to insulin resistance or hyperglycaemia or intervention. In 

addition most analysis is semi-quantitative and very difficult to perform in large 

numbers, so generally all studies are on small patient groups with little fine clinical 

phenotyping. The definitive answer to what is the initial post-receptor signalling defect 

that promotes clinical insulin resistance and whether it is the same in every insulin 

resistant individual (or in every tissue in the same individual) remains to be determined. 

 

1.8. Hormonal Regulation of Hepatic Glucose Production 

Gluconeogenesis is the de novo production of glucose from non-carbohydrate 

precursors (Figure 1.6). In the fasting state gluconeogenesis is responsible for 

approximately 80% of glucagon stimulated hepatic glucose output, but this falls to 50% 

in the fed state, with glycogenolysis making up the remainder (Beuers and Jungermann, 

1990). This process occurs for the most part in the liver with lesser contributions from 

kidney and intestine. The effects of insulin on insulin sensitive tissues have already been 

discussed (Chapter 1.5.1). However, regulation of gluconeogenesis and hepatic glucose 

output is now discussed in more detail as it is a major contributor to insulin regulation 

of blood glucose and is defective in type 2 diabetes. Pyruvate is converted to 

oxaloacetate by pyruvate carboxylase in the mitochondria. Oxaloactetate is 

decarboxylated and phosphorylated by Phosphoenolpyruvate Carboxykinase (PEPCK), 

a rate controlling step in gluconeogenesis, to form phosphoenolpyruvate and GDP. 

Fructose-1,6-bisphosphate is generated from phosphoenolpyruvate. This is used to 

generate fructose-6-phosphate via the action of fructose-1,6-bisphosphatase. Fructose-6-

phosphate is further transformed into glucose-6-phosphate. The dephosphorylation of 

G6P by glucose-6-phosphatase (G6Pase) is another rate-controlling step and is the final 

reaction in the production of glucose by both gluconeogenesis and glycogenolysis. The 
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PEPCK 

UDP Glucose 

Glycogen 

GS 

Glycogen Phosphorylase 

Plasma Glucose 

GLUT2 

Glucose 

Glucose-6-Phosphate 

GK G6Pase 

Fructose-6-Phosphate 

Fru-1,6,-Pase PFK 

Fructose-1,6-Bisphosphate 

Phosphoenolpyruvate 

Oxaloaceteate 

Pyruvate 

 

Figure 1.6 Schematic of gluconeogenesis in hepatocytes. + = stimulated by insulin, - = 

repressed by insulin, GLUT2 = glucose transporter 2, GK =  glucokinase, G6Pase = glucose-

6-phosphatase, GS = glycogen synthase, PFK = phosphofructokinase, Fru-1,6.-Pase = 

Fructose-1,6,bisphosphatase, PEPCK = phosphoenolpyruvate carboxykinase,  
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role of PEPCK and G6Pase in producing excess glucose has come under intense 

scrutiny in the development of diabetes. Both of these genes are regulated by diet and 

hormones and as such may provide a link between lifestyle and the development of 

hyperglycaemia. The induction of hepatic glucose production, in intact liver, occurs 

almost immediately on exposure to glucagon and cAMP. It is thought that the 

immediate increases in hepatic glucose output occur through induction of 

glycogenolysis and inhibition of glycolysis rather than through changes in gene 

expression which have effects in the medium term (Lin and Accili, 2011). Indeed, 

insulin promotes glycogen synthase activity (Chapter 1.6) and this is opposed by PKA 

(a mainstay of glucagon signalling). Furthermore, glucagon activates fructose-1,6-

bisphosphatase and inhibits pyruvate kinase driving the eventual formation of glucose-

6-phosphate and insulin inhibits and activates both of these respectively. The hormonal 

control of gluconeogenesis by altering the rate of gene transcription has been known 

about for many years, with both cAMP and glucocorticoids stimulating and insulin 

suppressing this process (O'Brien and Granner, 1996). Underlying these changes are 

complex gene promoters. 

 

1.9. Gene transcription 

1.9.1. Phosphoenolpyruvate carboxykinase (PEPCK) 

Phosphoenolpyruvate carboxykinase exists in two forms, cytosolic (cPEPCK) and 

mitochondrial (mPEPCK) which are transcribed from separate genes (Hanson and 

Reshef, 1997). Only the gene for the cytosolic isoform is regulated by diet and 

hormones, and from this point forward will be referred to as PEPCK. The tissue 

distribution of PEPCK is restricted mainly to liver, kidney and adipose tissue and to a 

lesser extent small intestine (Beale et al., 1985, Flores and Alleyne, 1971, Reshef et al., 

1970, Anderson, 1970). The regulation of PEPCK has been extensively studied and is 
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induced by glucocorticoids, cAMP, triiodothyronine and retinoic acid (Hall et al., 1992, 

Lamers et al., 1982, Park et al., 1995), and all of these stimuli are dominantly repressed 

by insulin (Granner et al., 1983). Glucose also represses PEPCK independently of 

insulin, but only after metabolism by glucokinase (Cournarie et al., 1999, Scott et al., 

1998). Conversely, lipids induce PEPCK transcription (Chen, 2007). The anatomy of 

the gene promoter and cis-acting elements has been mapped and a number of trans-

acting factors are known to associate with the PEPCK gene promoter (Figure 1.7). 

 

The PEPCK gene promoter can be divided into a basal regulatory unit, a cAMP 

response unit (CRU), a glucocorticoid response unit (GRU) and 2 accessory factor sites. 

The basal regulatory unit consists of the TATA box, a cAMP response element (CRE) 

and an NF-1 site. The CRE interacts with CREB and/or C/EBP (Faber et al., 1993). The 

CRU contains four C/EBP binding sites. Two separate CREs, CRE1 is a major target 

for PKA signalling whereas CRE2  is a weak C/EBP binding site, P3 and P4 sites (Liu 

et al., 1991, Roesler et al., 1989). Mutation of either CRE1 or P3 (I) completely 

abrogates the stimulation of gene expression by cAMP or PKA (Liu et al., 1991). An 

HNF-1 site is also present within the CRU. However, the deletion of this site has no 

effect on cAMP stimulated gene expression, but does reduce the basal expression of 

PEPCK  (Liu et al., 1991, Yanuka-Kashles et al., 1994) (Figure 1.7).  

 

The GRU contains two glucocorticoid response elements (GREs) and 3 Accessory 

Factor (AF-1, -2 and -3) binding sites and the two GREs, plus at least 2 out of 3 AFs are 

required for the induction of PEPCK by glucocorticoids (Imai et al., 1990). The AF1 

site binds HNF-4 and COUP-TF along with the retinoic acid receptor (RAR) which 

mediates the stimulation of the gene promoter by retinoic acid (Hall et al., 1992, Hall et 

al., 1995). Within AF2 is the Thymine rich Insulin Response Element (TIRE) which 
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mediates the dominant repression of the gene by insulin and phorbol esters over cAMP 

and glucocorticoids (O'Brien et al., 1990). This site also binds a number of transcription 

factors (e.g. HNF-3, C/EBP and FOXO1) (O'Brien et al., 1995, Puigserver et al., 2003, 

Wang et al., 1996). The AF3 site binds COUP-TF along with the RAR (Scott et al., 

1996). Furthermore, there is a thyroid hormone response element (TRE) which interacts 

with the C/EBP binding site in P3 (I) and mediates the induction by triiodothyronine 

(Hall et al., 1992, Park et al., 1995).  Remote from the GRU, there are 2 distal accessory 

factor sites (dAFs). These allow enhanced expression of PEPCK in response to 

glucocorticoids by binding HNF-4 and PPAR nuclear factors (Cassuto et al., 2005). 

 

The GRU alone does not explain the stimulation seen by glucocorticoids. In fact, the 

basal regulatory segment is required not only for promoter activity but also to synergise 

with the GRU for full stimulation of the PEPCK gene promoter (9 fold vs. 2 fold 

induction) (Imai et al., 1993). The CRE1 site enhances glucocorticoid stimulation by 

binding to CREB or C/EBPβ (Yamada et al., 1999), and the cross-talk between the 

GRU and CRU probably underlies the synergy between cAMP and glucocorticoid 

induction of the gene. 

 

It was originally thought that insulin blocked the binding of accessory factors at AF2. 

However, as AF1, AF2, and both GREs are permanently occupied it is thought that 

hormonal stimulation causes binding factors to switch thus causing stimulation of the 

gene promoter (Faber et al., 1993). However, although it is known that insulin causes 

the rapid dissociation of multiple transcription factors from the PEPCK promoter 

finding the crucial factor involved in insulin suppression has not yet been possible (Hall 

et al., 2007). Also, FOXO1 is removed from the nucleus in response to insulin. It was 

thought that this may explain how insulin represses PEPCK transcription. However, at 
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normal cellular levels, the binding of FOXO1 to the AF2 region does not correlate with 

the response to insulin (Hall et al., 2000). This suggests that although FOXO1 is 

involved in the insulin mediated suppression of the PEPCK gene promoter, there is a 

requirement for other factors. However, it is known that insulin disrupts the FOXO1- 

PGC-1α complex potentially inhibiting the transcription of PEPCK (Puigserver et al., 

2003).  Finally, other methods of transcriptional regulation such as histone modification 

have been postulated (Hall et al., 2007). 

 

1.9.2. Glucose-6-Phosphatase (G6Pase) 

The regulation of G6Pase has much in common with PEPCK. Fasting, and hence 

glucocorticoids and cAMP, induce its expression and this is once again dominantly 

repressed by insulin (Mithieux et al., 1996). The anatomy of the gene promoter  

and cis-acting elements have been mapped (Figure 1.7), while a number of trans-acting 

factors are known to associate with the G6Pase gene promoter. The G6Pase gene 

promoter contains 2 CRE regions, 2 GREs, a TIRE, five putative FOXA (HNF3) 

binding sites, an HNF1, HNF4 and HNF6 binding site (Lin et al., 1997). Three of the 

FOXA binding sites are proximal and the other 2 more distal. The penultimate one of 

these overlaps the most proximal CRE (Lin et al., 1997). The most distal FOXA site 

overlaps the most distal GRE and the TIRE. Much more distally there are also binding 

sites for C/EBP and HNF4. CRE1 is required for the basal and cAMP induced 

stimulation of the gene promoter (Lin et al., 1997, Schmoll et al., 2000). Furthermore, 

as with PEPCK, it is also required for maximal stimulation of the gene by 

glucocorticoids (Schmoll et al., 2000). This site can bind C/EBPα, C/EBPβ and CREB. 

However, of these it seems as though only CREB can bring about transactivation (Lin et 

al., 1997). 
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Stimulation of G6Pase gene expression by glucocorticoids involves the direct binding of 

the glucocorticoid receptor to the two GREs. However, as well as the CRE site 

previously mentioned, there is a requirement for intact HNF-1 and HNF-4 sites to allow 

complete promoter stimulation (Vander Kooi et al., 2005). Cyclic AMP stimulation of 

G6Pase gene expression requires the distal and proximal HNF4 sites and the distal 

C/EBP site (Gautier-Stein et al., 2005). These sites are not involved in basal expression 

of G6Pase. The final site shown to be involved in the cAMP induction is an HNF-6 site 

downstream of CRE1 (Streeper et al., 2001). Unlike PEPCK, G6Pase transcription is 

induced by glucose and lipids (Massillon et al., 1996, Massillon et al., 1997). The 

physiological role of this apparent paradox is unknown. The normalisation of glucose 

can reduce G6Pase gene expression, but only if the hyperglycaemia is not prolonged. 

However, these data suggest that both hyperglycaemia and hyperlipidaemia may, in the 

long term, lead to higher hepatic glucose output and diabetes, although the effects of 

insulin are dominant over those of glucose (Figure 1.7). 

 

Basal gene expression is influenced by the two overlapping HNF-4 sites (-266/-243 and 

-306/-247) (Hirota et al., 2005) (Figure 1.7). The action of HNF-4 on the G6Pase 

promoter is synergistically enhanced by FOXO1 (Hirota et al., 2008). PGC-1 enhances 

the transcription of G6Pase through interaction with HNF-4 at a proximal binding site (-

76/64) mutation of which destroys this interaction (Yoon et al., 2001, Boustead et al., 

2003).  

 

Insulin dominantly represses both basal and stimulated expression of G6Pase. Two 

regions, denoted A and B, are involved in this repression. The A region (-271/-199) 

overlaps an HNF-1 binding site (-226/-212) and the B region (-198/-159) contains 3 

copies of the TIRE sequence  (Streeper et al., 1997) (Figure 1.7). Interestingly, the 
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HNF-1 binding site in region A is required for full insulin mediated repression of gene 

expression, and as such is involved in both this and stimulation of the gene promoter 

(Streeper et al., 1998). One factor that interacts with the TIRE sequences of the B region 

is FOXO1. The binding of FOXO1 to this region correlates with the regulation of 

G6Pase gene transcription, but appears to involve only two of the TIRE sequences 

(named insulin response sequences originally, IRS-1 and IRS2) (Onuma et al., 2006, 

Ayala et al., 1999). Disruption of this interaction by nuclear exclusion of FOXO may be 

how gene transcription is down regulated by insulin. The role of the third TIRE is, as 

yet, unclear (Vander Kooi et al., 2003). 

 

1.9.3. Insulin like growth factor binding protein -1 (IGFBP-1) 

Although not involved in gluconeogenesis IGFBP-1 does indirectly affect insulin action 

through regulation of IGF-1 responses, while the regulation of IGFBP1 gene 

transcription has much in common with that of PEPCK and G6Pase. The promoter is 

stimulated by both cAMP and glucocorticoids and dominantly repressed by insulin 

(Powell et al., 1991, Suwanichkul et al., 1993). The promoter consists of a CRE, 2 

GREs, 2 TIRE sequences and an HNF-1 binding site (Suwanichkul et al., 1993, Suh et 

al., 1994, Suwanichkul et al., 1994). As with the other gene promoters, cAMP induces 

gene transcription through the CRE (Suwanichkul et al., 1993). The GRE bind the GR 

weakly and full glucocorticoid stimulation requires an intact TIRE which acts as an 

accessory element for gene transcription (Suwanichkul et al., 1994). Furthermore, the 

HNF1 binding site acts as an accessory element for induction of IGFBP-1 gene 

promoter transcription (Suh and Rechler, 1997). The IGFBP1 TIRE is, as with the 

PEPCK and G6Pase gene promoters, required for the repression of gene transcription by 

insulin (Suh et al., 1994). Mainly by inference from signalling studies and sequence 

homology, FOXO1 has been implicated in this response.  
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1.10. Molecular aspects of insulin regulation of gene transcription 

The effect insulin has on downstream gene promoters is through interaction of hormone 

regulated transcription factors.  

 

1.10.1. Forkhead Box (FOXO) proteins 

There are 19 classes of FOX proteins (A-S) of which FOXO contains four members 

(FOXO1, 3, 4 and 6). The C. elegans analog of FOXO1, daf-16, is genetically 

downstream of insulin signalling and so it was suggested that this transcription factor 

may be the link between the insulin receptor and suppression of gene transcription in 

mammalian cells (Ogg et al., 1997, Lin and Accili, 2011). FOXO proteins contain an N-

Terminal forkhead DNA binding domain, a nuclear localisation signal, a nuclear export 

sequence (NES) and a C-terminal transactivation domain (Obsil and Obsilova, 2008). In 

the presence of cAMP FOXO1 is retained in the nucleus, where it interacts with the 

TIRE sequence of insulin regulated genes (PEPCK, G6Pase, IGFBP-1), and remains in 

a dephosphorylated state (Durham et al., 1999, Hall et al., 2000, Schmoll et al., 2000). 

In the presence of insulin, which behaves in a dominant manner, PKB is phosphorylated 

(Chapter 1.6.5). The now active PKB phosphorylates FOXO1 on Thr24, Ser256 and 

Ser319 (Rena et al., 1999). The phosphorylation of FOXO1 by PKB creates binding 

sites for 14-3-3 proteins (Thr24 and Ser256). This complex is moved to the cytoplasm 

and the 14-3-3 proteins prevent nuclear re-entry due to interference with the nuclear 

localisation signal, thus preventing interaction with its target genes (Zhao et al., 2004, 

Nakae et al., 2001). In addition, the Ser256 site lies in proximity to the DNA binding 

domain and phosphorylation reduces the DNA binding capacity of FOXO1 (Zhang et al., 

2002).  Within the cytoplasm, FOXO1 is targeted for degradation by the proteosome 

through ubiquitination (Matsuzaki et al., 2003). 
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Although it has been shown that FOXO1 binds to TIRE sequences, how it regulates 

gene transcription is still unknown. In fact, FOXO1 and its interaction with the TIRE 

does not account for the total effect of insulin on G6Pase gene expression (Schmoll et 

al., 2000). Furthermore, more than one of the FOXO family may interact with the 

G6Pase gene promoter to induce transcription. Knockout mice with a liver specific 

deletion in FOXO1 show similar fasted, but greatly reduced fed levels of G6Pase, 

PEPCK and IGFBP-1 (Matsumoto et al., 2007). Whereas a triple knockout of FOXO 1, 

3a and 4 has no changes in the fasting levels of G6Pase or IGFBP-1, but a significant 

reduction in PEPCK mRNA (Haeusler et al., 2010).  FOXO1 also has differential 

effects on different insulin responsive genes.  For example, the overexpression of 

FOXO1 has been shown to reduce G6Pase mRNA, but not PEPCK. Conversely, the 

effect of a dominant negative FOXO1 mutant is to reduce cAMP and glucocorticoid 

stimulation of both PEPCK and G6Pase gene expression (Nakae et al., 2001). However, 

the decrease in the level of nuclear (unphosphorylated) FOXO1 correlates with the 

repression of both G6Pase and PEPCK mRNA in dogs subjected to hyperinsulinaemia 

(Ramnanan et al., 2010). Nevertheless, expression of a constitutively active FOXO1 

increases basal levels of G6Pase and IGFBP-1 mRNA, and prevents the insulin 

suppression of both genes, yet there is no effect on PEPCK mRNA (Nakae et al., 2002). 

In contrast, PEPCK is transactivated by overexpression of FOXO3, as is IGFBP-1 and 

in both cases this can be inhibited by insulin, although endogenous FOXO3 doesn’t 

appear to bind to these gene promoters (Hall et al., 2000). Therefore, although FOXO1 

binds to TIRE sequences, it remains unclear if it is the only or even the major mediator 

of insulin regulation of any or all of these 3 genes.  

 



44 

1.10.2. Peroxisome Proliferator-Activated Receptor γ Coactivator-1α (PGC-1α) 

Peroxisome Proliferator-Activated Receptor γ Coactivator-1α (PGC-1α) is a 

transcription factor that promotes transcription of gluconeogenic genes in the fasting 

state (Yoon et al., 2001). Levels of PGC-1α in the liver of models of type 2 diabetes 

have been shown to be elevated (Yoon et al., 2001). In primary hepatocyte cultures 

glucocorticoids and cAMP also induce PGC-1α production (Yoon et al., 2001). For full 

activation of the PEPCK gene promoter co-activation is required between PGC-1α and 

the GR and HNF4α (Yoon et al., 2001). Therefore, this transcription factor appears to 

be at the centre of fasting induced gluconeogenic gene expression. Furthermore, PGC-

1α requires the presence of FOXO1 to promote transcription (Matsumoto et al., 2007). 

However, PGC-1α knockouts have similar fasting levels of PEPCK and G6Pase to wild 

type animals and in the fed state knockout animals fail to suppress PEPCK and G6Pase 

levels. This suggests that PGC-1α is essential for the appropriate response to nutritional 

regulation or at least for proper expression of the transcription factors required for 

nutritional regulation, although because PGC-1α is such an important transcription 

factor, it must be remembered that these animals probably lack a significant number of 

other transcription factors. (Lin et al., 2004). However, whole body overexpression of 

PGC-1α leads to hepatic insulin resistance secondary to higher levels of gluconeogenic 

genes, but increased muscle sensitivity is also reported (Liang et al., 2009). 

 

1.10.3. cAMP Response Element Binding Protein (CREB) 

CREB is a transcription factor that although discovered nearly 20 years ago  (Montminy 

and Bilezikjian, 1987) is as yet incompletely understood. It acts as a scaffold allowing 

the interaction of other transcription factors (CBP, p300, TORC2) with gene promoters 

containing a CRE, thus inducing transcription (Koo et al., 2005). It is activated by PKA, 

via Ser133 phosphorylation which enhances interaction with TORC2 through the CREB 
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bZIP domain (Conkright et al., 2003, Gonzalez and Montminy, 1989). However, both 

insulin and glucagon lead to phosphorylation of the same site on CREB  (Koo et al., 

2005, Gonzalez and Montminy, 1989, Klemm et al., 1998) leaving us unsure how 

fasting and feeding regulate this transcription factor. Interestingly, GSK-3 can 

phosphorylate CREB at Ser129, after priming by PKA at Ser133 (Fiol et al., 1994), 

suggesting that insulin would reduce Ser129 phosphorylation although this remains to 

be validated. What is known is that a dominant negative CREB leads to fasting 

hypoglycaemia which can be reversed by overexpressing PGC-1α (Herzig et al., 2001). 

 

1.10.4. Transducer of Regulated CREB Activity 2 (TORC2) 

Transducer of regulated CREB activity 2 (TORC2), also called CRTC2 is a 

transcriptional coactivator that enhances CRE dependent gene transcription by 

interacting with the bZIP domain of CREB (Conkright et al., 2003).  In the 

dephosphorylated state TORC2 translocates to the nucleus with PKA where it recruits 

CBP, p300 and CREB, activates the complex and promotes transcription of PEPCK and 

G6Pase (Koo et al., 2005).   Levels of TORC2 are elevated in the livers of mouse 

models of obesity (Dentin et al., 2007). Liver specific and whole body knockout of 

TORC2 both show reduced hepatic gluconeogenic gene expression (Le Lay et al., 2009, 

Wang et al., 2010). SIK2 is a substrate of PKB and as such can be considered as part of 

the “classical” insulin signalling pathway (Dentin et al., 2007). Once phosphorylated by 

PKB at Ser358 it then phosphorylates TORC2 at Ser171. This leads to the translocation 

of TORC2 to the cytoplasm where it is targeted for ubiquitylation and proteasomal 

degradation (Dentin et al., 2007). This residue can also be phosphorylated by AMPK 

(Koo et al., 2005). Hence if TORC2 is part of the cAMP or glucocorticoid pathway to 

the PEPCK and G6Pase gene promoters then this PI 3-K-PKB-SIK pathway could 

explain the dominant repressive effect of insulin of these promoters. However this 
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remains to be conclusively proven as a key mediator of control of PEPCK and G6Pase 

gene transcription. 

 

1.10.5. Sterol Regulatory Element Binding Protein-1c (SREBP-1c) 

There are 3 members of the sterol regulatory element binding proteins (SREBP-1a, -1c 

and -2). They are transcription factors of the helix-loop-helix family, and their 

maturation is tightly controlled by the level of cholesterol in membrane. Therefore, they 

are responsible for cholesterol biosynthesis, but SREBP-1c also has a major role in fatty 

acid metabolism by inducing the transcription of FAS thereby promoting fatty acid 

synthesis (Desvergne et al., 2006). They also play a role in insulin regulated gene 

transcription. Indeed, the levels of SREBP-1c are increased by a high carbohydrate meal 

after fasting (Horton et al., 1998). Insulin, in a PI 3-K and PKB dependent manner 

increases the level of SREBP-1c (Fleischmann and Iynedjian, 2000), while 

overexpressing SREBP-1c leads to a reduction in the expression of PEPCK both in vitro 

and in vivo, without altering the levels of G6Pase mRNA (Foufelle and Ferre, 2002, 

Chakravarty et al., 2001, Becard et al., 2001). This suggests that SREBP-1c (and 

possibly other members of the family) may provide co-ordinated regulation of 

sterol/fatty acid synthesis and glucose synthesis, at least in the liver. 

 

1.10.6. Small Heterodimer Partner (SHP) 

SHP is an orphan nuclear hormone receptor that is most highly expressed in the liver 

and is best known for repressing gene transcription (Seol et al., 1996). It contains ligand 

binding and dimerization domains, but lacks a DNA binding domain (Seol et al., 1996). 

It can repress gene expression by inhibiting the transactivation ability of the retinoic 

acid receptor (RARα), retinoid X receptor (RXRα) or the thyroid receptor (TR) to which 

it binds (Seol et al., 1996). In addition, SHP inhibits the DNA binding of HNF-3α, β and 



47 

γ and HNF4 (Kim et al., 2004, Seol et al., 1997). Furthermore, SHP may antagonise the 

stimulatory effect of PGC1α on gene transcription and inhibit the DNA binding of 

CEBPα and the GR (Borgius et al., 2002, Park et al., 2007, Wang et al., 2005).  SHP 

suppresses gluconeogenic gene expression in response to bile acids through the 

inhibition of both HNF4 and FOXO1 (Yamagata et al., 2004).  

 

1.11. Intracellular signalling control of gluconeogenic genes 

The insulin signalling pathway (Chapter 1.6) that links the insulin receptor to 

gluconeogenic genes has been extensively studied (Chakravarty et al., 2005, Barthel and 

Schmoll, 2003, Mounier and Posner, 2006). Mouse liver specific knockouts of both 

IRS-1 and –2 lose the inhibitory effect of insulin on PEPCK, G6Pase and IGFBP-1, and 

this phenotype can be rescued by the liver specific knock out of FOXO1 (Dong et al., 

2008). Furthermore, blockade of the insulin signalling pathway at different levels yield 

similar results. The repression of PEPCK, G6Pase and IGFBP-1 is both PKB and PI 3-

K dependent as shown in studies with small molecule inhibitors (Logie et al., 2007, 

Gabbay et al., 1996, Patel et al., 2002, Band and Posner, 1997). Overexpression of the 

catalytic p110 subunit of PI 3-K is sufficient to suppress PEPCK and G6Pase 

transcription, whereas expression of a dominant negative mutant of the PI 3-kinase 

regulatory p85α subunit is sufficient to increase transcription of the same genes (Miyake 

et al., 2002, Dickens et al., 1998, Kotani et al., 1999). In addition, PEPCK, G6Pase and 

IGFBP-1 transcription can be repressed by a constitutively active PKB (Cichy et al., 

1998, Ono et al., 2003, Kotani et al., 1999). However, expression of a dominant 

negative form of PKB does not prevent the insulin induced repression of PEPCK or 

G6Pase transcription but does reduce regulation of IGFBP-1 (Cichy et al., 1998, Kotani 

et al., 1999, Dickens et al., 1998). Meanwhile, inhibition of mTOR by rapamycin 

prevents insulin repression of IGFBP-1 but has no effect on PEPCK or G6Pase (Patel et 
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al., 2002). This is only required for acute regulation of IGFBP1 as 24 hour inhibition 

with insulin is not rapamycin sensitive (Finlay et al., 2006). The role of GSK-3 in the 

regulation of all 3 genes is similar. The overexpression of GSK-3 has no effect on basal 

or insulin regulated levels of PEPCK or G6Pase but does increase levels of IGFBP-1 

(Lochhead et al., 2001, Finlay et al., 2004). However, inhibition of GSK-3 with a 

number of different classes of inhibitors mimics the effects of insulin by repressing all 3 

genes (Finlay et al., 2004, Lochhead et al., 2001). In contrast, mice expressing an 

insulin-insensitive GSK-3 do not have altered regulation of any of the genes in response 

to feeding (Lipina et al., 2005), suggesting that feeding does not need to inhibit GSK-3 

as part of its mechanism to turn the genes off, yet GSK-3 activity is required for activity 

of all 3 promoters. In summary, although there are common elements between the 

promoters, the differential regulation suggests that additional insulin signalling 

pathways other than PI 3-K/PKB/GSK-3 can mediate at least part of the insulin 

regulation of gene transcription and there may be a level of redundancy. It is likely that 

other transcription factors and regulatory elements remain to be discovered to account 

for these differences. 

 

There is evidence that other signalling pathways can influence insulin regulated gene 

transcription. Salt inducible kinases (SIK1 and 2) indirectly affect the stimulation of 

gluconeogenic genes. Under fasting conditions in mice, or under the effects of glucagon 

in primary hepatocytes, SIK1 levels were increased correlating with a decrease in the 

levels of PEPCK and G6Pase mRNA. This may be related to SIK regulation of TORC2 

which is discussed earlier. This is thought to be part of a negative feedback loop to 

contain gluconeogenesis (Koo et al., 2005).  
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In addition modulation of AMP activated protein kinase (AMPK) may also influence 

the transcription of the PEPCK and G6Pase genes. A large part of the maintenance of 

cellular energy homeostasis occurs through the AMPK, an enzyme that is activated by 

physiological increases in AMP (Carling, 2004, Hardie, 2011).  In times of energy 

deficiency, when AMP levels rise, the activation of AMPK appears central to stopping 

anabolic processes and shifting to catabolic processes to normalise ATP levels. The 

structure is a heterotrimeric complex consisting of a catalytic α subunit and two 

regulatory subunits (β and γ). There are 2 α isoforms (α1 and α2), 2 β isoforms (β1 and 

β2) and 3 γ isoforms (γ1, γ2, and γ3). The α1 subunit is expressed in most tissues, 

whereas the α2 subunit is mainly expressed in the liver, skeletal muscle and heart. The α 

subunit has an N-terminal catalytic domain, an autoinhibitory domain and a subunit 

binding domain at the C-terminus. The catalytic domain contains the Thr 172 T-loop 

phosphorylation site which is required for kinase activation (Hawley et al., 1996). The γ 

subunits contain 4 cystathione-β-synthase (CBS) domains which allow rapid sensing of 

changes in the AMP:ATP ratio. Each CBS domain can bind a single molecule of AMP 

(or ATP albeit with a much lower affinity), which increases the binding affinity of AMP 

to the next CBS domain (Carling, 2004, Adams et al., 2004). The binding of AMP 

induces a conformational change which exposes the α-subunit phosphorylation site 

allowing phosphorylation by an upstream kinase. AMP binding also inhibits the 

dephosphorylation by PP2A and PP2C along with allosteric activation of the 

phosphorylated kinase (Davies et al., 1995, Carling et al., 1989). Due to the fact that the 

α2 subunit is mostly present in insulin sensitive tissues, mice lacking this subunit are 

glucose intolerant, with a β-cell defect and skeletal muscle insulin resistance (Viollet et 

al., 2003). The currently validated upstream kinases are LKB1 and Calcium/calmodulin-

dependent protein kinase kinase (CAMKK). LKB1 exists in a heterotrimeric complex 

with STRAD and MO25, and is a master kinase of a number of AMPK –like kinases 
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(Lizcano et al., 2004). Particularly in neurons, CAMKK is responsible for the 

phosphorylation of AMPK in response to calcium flux (Hawley et al., 2005). 

 

The activity of the majority of AMPK in the liver appears to be under the control of 

LKB1, such that adult mice homozygous for LKB1 deletion in the liver display almost 

complete loss of AMPK activity. Furthermore, they also show decreased TORC2 

phosphorylation and subsequent upregulation of PGC1-α which is associated with 

enhanced hepatic glucose output. This phenotype could be rescued by the addition of 

shRNA against TORC2 (Shaw et al., 2005). 

 

The regulation of gluconeogenic gene expression by AMPK has mostly been performed 

in studies examining metformin action. Metformin treatment of liver cells (in culture or 

in vivo) reduces PEPCK and G6Pase gene expression (Kim et al., 2008, Foretz et al., 

2010). It has been proposed that metformin activates AMPK (Zhou et al., 2001), which 

then activates SHP or inhibits TORC2 (Koo et al., 2005, Kim et al., 2008). For example, 

AMPK phosphorylates TORC2 at the Ser171 site in vitro, a not entirely surprising 

discovery as SIK2 is a member of the AMPK superfamily (Koo et al., 2005). AICAR, a 

molecule that mimics AMP has been shown to induce TORC2 phosphorylation in 

hepatocytes (Koo et al., 2005). However, direct activation of AMPK in cells by A-

769662 does not increase the phosphorylation of TORC2 which suggests that AMPK 

doesn’t directly regulate TORC2 in cells (Foretz et al., 2010). However, these 

differences may be more representative of the differences in the mechanism of action of 

the compounds.  

 

Finally, expression of a constitutively active AMPK induces the transcription of SHP 

while a dominant negative AMPK does the converse (Kim et al., 2008). However, 
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changes in gluconeogenic gene transcription occur before changes in SHP gene 

transcription, which suggests that acute regulation of these genes by AMPK (and 

potentially metformin) is not through induction of SHP but it remains possible that SHP 

could mediate regulation in response to more chronic stimulation (Kim et al., 2008). 

 

1.12. Therapeutic interventions for Insulin Resistance 

1.12.1. Lifestyle 

Lifestyle modification is at the heart of the treatment of insulin resistance. It is also 

important for the prevention of the sequelae of diabetes. The cessation of smoking is of 

vast importance, not only due to its effects on insulin resistance, but also for the 

prevention of associated cardiovascular disease. The effects of exercise on the treatment 

of insulin resistance are great. For example, in those with impaired glucose tolerance, 

there is a relative risk reduction of between 46% and 58% in the development of type 2 

diabetes over 3-6 years with improved exercise (Tuomilehto et al., 2001, Lindstrom et 

al., 2003, Li et al., 2008, Knowler et al., 2002). Even in those with diabetes, exercise 

improved glycaemia and triglyceride levels whether performed in a structured or 

unstructured format suggesting an improvement in insulin sensitivity (Thomas et al., 

2006). Dietary intervention can also have large effects. Extensive calorie restriction 

(600Kcal/day) in those newly diagnosed with diabetes can normalise hepatic insulin 

sensitivity (Lim et al., 2011). Further evidence of the effects of dietary restriction on 

insulin sensitivity comes from trials of bariatric surgery (Levy et al., 2007). However, 

some of the effects of this will be mediated by lower levels of obesity. 
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1.12.2. Current Insulin Sensitising Drugs 

1.12.2.1. Metformin 

Metformin is currently the only Biguanide class of drug used in clinical practice. Its use 

leads to increased insulin sensitivity and a reduction in hepatic glucose output, but its 

mechanism of action remains a matter of intense study. In rats treated with metformin 

there are lower levels of SREBP-1 in the liver which may lead to lower gluconeogenic 

gene expression (Zhou et al., 2001). In addition, metformin has been shown to disrupt 

the interaction of CREB with TORC2 leading to a reduction in gluconeogenic gene 

expression (He et al., 2009, Le Lay et al., 2009). In liver from LKB-1 knockout mice, 

the action of metformin on gluconeogenesis is ablated, however it is preserved in liver 

from AMPK knockout mice suggesting that the action of metformin is downstream of 

LKB1, but not AMPK (Shaw et al., 2005, Foretz et al., 2010).  Metformin inhibits the 

complex 1 respiratory chain in mitochondria thus reducing the energy available for 

gluconeogenesis (Owen et al., 2000).  Metformin may also have benefits in the 

treatment of tumour development as metformin fed PTEN -/- mice exhibit decreased 

tumorigenesis, and this action, like its regulation of gluconeogenesis, is also LKB1 

dependent (Huang et al., 2008). Similarly there is evidence that DNA repair proteins 

may influence metformin action.  Patients with ataxia-telangiectasia have a higher rate 

of insulin resistance and diabetes with rates of up to 59% (Schalch et al., 1970). The 

ataxia-telangiectasia mutated (ATM) protein can phosphorylate and activate AMPK in 

an LKB-1 independent manner (Fu et al., 2008, Sun et al., 2007), while ionising 

radiation induces AMPK phosphorylation in an ATM dependent manner (Sanli et al., 

2010). This establishes a further link between metformin action and a reduction in 

neoplasia as the effects of metformin integrate pathways involved in DNA repair and 

nutrition, and this may explain the reduced cancer incidence in metformin users (Libby 

et al., 2009). Understanding how metformin reduces gluconeogenic gene expression 
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remains unknown, but could have major benefits for some of the most common diseases 

in our society. 

 

1.12.2.2. Thiazolidindediones 

The thiazolidinediones are PPAR-γ agonists. They have a multitude of effects in tissues 

that express PPAR-γ, mainly adipose tissue, pancreatic β-cells and vascular 

endothelium (Willson et al., 2001, Dubois et al., 2000). These drugs improve insulin 

sensitivity and lower both fasting and post prandial glucose, insulin and FFA (Nolan et 

al., 1994, Miyazaki et al., 2001). It is thought that the effects of thiazolidinediones are 

mainly due to an increase in the number of small adipocytes (Okuno et al., 1998). The 

increased number of adipocytes increases FFA uptake and thus reduces the triglyceride 

content of the liver. Furthermore, the larger number of adipocytes results in increased 

adiponectin production which itself has insulin sensitising effects on the liver (Maeda et 

al., 2001). This induction of adiponectin is proposed to lead to a reduction in levels of 

PEPCK and G6Pase mRNA independently of insulin action (Davies et al., 1999). 

 

It is also of note that, like metformin, they also inhibit the mitochondrial respiratory 

chain, which is thought to underlie their ability to induce AMPK activity, although it 

remains to be seen if this has any role in the beneficial effects of these drugs (Brunmair 

et al., 2004).  

 

1.12.3. Future Drugs to target hyperglycaemia and obesity 

1.12.3.1. Sodium/Glucose Co-Transporter 2 (SGLT-2) Inhibitors 

Sodium/glucose co-transporter 2 (SGLT-2) is a high capacity low affinity membrane 

transporter primarily present in the proximal segment of the proximal convoluted tubule 

of the nephron where the majority of glucose reuptake occurs (Kanai et al., 1994). In 
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contrast, SGLT-1 is expressed in the small intestine and distal proximal convoluted 

tubule, but has a greater affinity for galactose than SGLT-1 and is thought to be 

responsible for only minor amounts of renal glucose reuptake (Wright, 2001). SGLT-3 

act as skeletal muscle glucose sensors (Wright et al., 2007). Inhibiting glucose re-uptake 

in the proximal convoluted tubule of the nephron with SGLT-2 inhibitors induces 

glycosuria and reduces hyperglycaemia. This is likely to have a significant clinical 

impact.  Indeed, in high fat fed mice knocking out SGLT-2 prevented hyperglycaemia, 

hyperinsulinaemia and glucose intolerance (Jurczak et al., 2011). In diabetes, the re-

uptake of glucose is increased by a higher expression of SGLT-2 channels (Rahmoune 

et al., 2005). Therefore a number of inhibitors of this channel have been developed. 

Phlorizin was the first compound indentified, but was unsuitable for clinical practice. 

Due to its non-specific nature it also inhibited SGLT-1 leading to osmotic diarrhoea 

(Perez Lopez et al., 2010). More recently, specific SGLT-2 inhibitors have been 

developed, with dapagliflozin the best characterised. In diabetes models inhibition of 

SGLT2 by dapagliflozin reduces plasma glucose but also improves insulin secretion, 

insulin sensitivity and hepatic glucose production (Macdonald et al., 2010, Han et al., 

2008). In streptozotocin induced diabetes and Zucker diabetic rats, SGLT-2 inhibitors 

return hepatic glucose output to normal (Oku et al., 2000, Han et al., 2008). This may be 

due to a reduction in glucotoxicity and relief of inhibition of the insulin signalling 

pathway (Asano et al., 2004). However, it remains to be seen whether SGLT2 inhibitors 

are only of use in the presence of hyperglycaemia, which is absent in the first stages of 

the development of insulin resistance. 

 

1.12.3.2. Human Fibroblast Growth Factor (FGF) 19 

Human fibroblast growth factor 19 (FGF19) is produced in the small intestine in 

response to the uptake of bile acids. It has previously been shown to reduce levels of 
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both diet induced obesity and reverse diabetes in leptin deficient mice (Fu et al., 2004). 

These actions are independent of insulin action, most likely through the MAPK pathway, 

and selectively enhance glycogenesis without enhancing the lipolysis that leads to 

atherogenesis (Kir et al., 2011). Type 2 diabetes does not cause a deficiency of FGF19, 

and so the benefits of replacement are as yet unknown (Mraz et al., 2011). 

 

 

1.13. Models of Insulin Resistance 

1.13.1. Animal Models 

A number of animal models of insulin resistance exist (Table1.2). These can be split 

into 3 main categories. 

. 

1.13.1.1. Genetic models of obesity induced insulin resistance and type 2 diabetes 

The evidence that insulin resistance in humans is closely related to obesity is very 

strong; therefore modelling insulin resistance normally involves generating obesity. 

There are a number of obese rodent models available. The earliest obese rodent model 

discovered was the Ob/Ob mouse. This occurred due to a spontaneous autosomal 

recessive mutation of the leptin gene (Enser, 1972, Friedman et al., 1991, Zhang et al., 

1994). These mice develop obesity, hyperinsulinaemia and hyperglycaemia as early as 

four weeks of age (Dubuc, 1976). The db/db mouse arose due to another spontaneous 

autosomal recessive mutation, but this time of the leptin receptor (Chen et al., 1996). 

These mice develop obesity by 6 weeks of age, but do not show hyperinsulinaemia or 

glucose intolerance until 12 weeks (Dong et al., 2010, Winzell et al., 2010). The Zucker 

Diabetic Fatty (ZDF, Fa/Fa) rat was first identified in 1974, and arose due to the 

spontaneous mutation of  the leptin receptor (Leonard et al., 2005). These rats develop 
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hyperphagia, obesity and insulin resistance (Leonard et al., 2005, Peterson et al., 1990, 

Finegood et al., 2001). They have a period of hyperinsulinaemic euglycaemia after 

which hyperglycaemia develops, usually by 7-12 weeks (Peterson et al., 1990, Leonard 

et al., 2005, Kuhlmann et al., 2003). These models have been most useful for the 

identification of leptin, and are now mostly used as a model of hyperphagia and obesity. 

This is due to the fact that the disruption of leptin has many actions unrelated to the 

phenotypes, and although there have been families identified with congenital leptin 

deficiency (Montague et al., 1997, Farooqi et al., 1999, Gibson et al., 2004), these 

remain vanishingly rare. The Goto-Kakizaki (GK) rat is a model of insulin resistance in 

the absence of obesity, which does exist in the human population but at a much lower 

prevalence than obesity related insulin resistance. Interestingly this rat develops 

dyslipidemia and fatty liver, however the mechanisms remain unclear hence it may not 

be representative of the human state of lean insulin resistance. 

 

1.13.1.2. Genetically engineered mouse models 

Transgenic and knockout technology has enabled the generation of mouse models 

lacking individual proteins or expressing mutant forms of specific proteins. Therefore it 

has been possible to remove individual insulin signalling proteins (see Table 1.1 and 

Chapter 1.6) and establish their role in insulin action and/or the development of insulin 

resistance and obesity. Once again, although many knockout mice (e.g. insulin receptor 

KO) readily develop insulin resistance or obesity or both, they often have much more 

severe phenotypes and are unlikely to be representative of insulin resistant states found 

in humans (or represent extreme forms of these diseases). The generation of 

hypomorphic or heterozygotic KOs where signalling pathways are reduced has been 

informative but also identified the existence of pathway redundancies. Again, the main 

issue with genetically deleting insulin signalling pathways as a model of the human 
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disease is that mutations in these pathways are extremely rare in humans with only one 

example, an AKT2 mutation resulting in severe insulin resistance, being identified in 

humans to date (George et al., 2004). 

 

1.13.1.3. Diet induced obesity and insulin resistance 

The obesogenic western diet rich in carbohydrates and saturated fat has similar effects 

on the metabolism of mice as it does on humans, particularly those kept relatively 

inactive in laboratory cages. The best example of this is the diet-induced obese (DIO) 

mouse which develops obesity when fed an ad libitum high fat diet, but remains lean 

when fed a low fat diet (Surwit et al., 1995). These mice develop gradually worsening 

insulin sensitivity associated with hyperinsulinaemia from 1 week, but the development 

of diabetes takes at least 3 months (Ahren and Pacini, 2002). However this model does 

mimic the development of insulin resistance and diabetes in man and is thus a useful 

way to determine efficacy of insulin sensitisers and anti-obesity drugs being developed 

for obese, insulin resistant populations. 

 

1.13.2. Cell based models 

Animal models are expensive and time consuming, therefore only the most promising 

therapeutic leads are taken to animal model studies. Therefore an important stage in pre-

clinical drug development is finding cell based models of the disease to help identify 

leads with low toxicity and high efficacy and also provide information on mechanism of 

action. To date most insulin sensitising drugs are investigated in cell lines with ‘normal’ 

insulin sensitivity, efficacy being determined by improvements in insulin action in the 

absence of any defect in insulin signalling. This is not ideal however there is a complete 

lack of physiologically relevant insulin resistant cell models, with most being highly 

focussed and biased towards one or other of the many proposed mechanisms of obesity 
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induced diabetes (e.g. inflammatory markers, fatty acids and even hyperglycaemia). To 

induce insulin resistance cells are often cultured in comparatively extreme conditions of 

exposure to one or more agents related to obesity and insulin resistance. For example 

insulin resistance, as measured by complete loss of Tyr aminotransferase activity in 

response to insulin, can be induced in H-35 hepatoma cells by incubation for 4-6 hours 

in 50 nM insulin (Krett et al., 1983). It is also possible to induce insulin resistance with 

short term incubation of hepatoma cells with 30 mM glucose or high dose fatty acids 

(Nakamura et al., 2009, Zang et al., 2004). High dose fatty acids lead to a significant 

reduction in PKB phosphorylation (Nakamura et al., 2009). However, high glucose 

concentrations lead to a complete loss of insulin stimulated PKB and GSK-3 

phosphorylation (Zang et al., 2004).  In humans, there is not a complete loss of insulin 

action, but a shift in insulin sensitivity and as such these are poor models. Also, 

although these allow the rapid development of insulin resistance, they are not models of 

human insulin resistance which contains a milieu of factors, in physiological 

concentrations, all of which have effects on insulin sensitivity. Therefore an improved, 

more physiological and robust model of this disease is needed. 

 

1.14. Aims and Objectives 

• To optimise a cell based humanised model of insulin resistance, 

• To develop luciferase reporter cell lines under the control of insulin responsive 

genes, 

• Investigate which component (s) of serum from insulin resistant individuals is 

responsible for altering insulin sensitivity of cells, 

• Characterise the intracellular signalling defects associated with the early 

development of insulin resistance in the model developed, 

• Use the model to investigate the mechanism of action of metformin. 
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Model Diabetes 

Mellitus 

Phenotype Reference 

ob/ob Mice 

 (leptin deficient) 

Yes Obesity, hyperinsulinaemia, 

hyperglycaemia, fatty liver, 

hypotension 

 (Dubuc, 1976) 

 (Bigorgne et al., 2008) 

db/db mice 

 (leptin receptor 

mutant) 

Yes Obesity, dyslipidaemia, 

hyperglycaemia, 

hyperinsulinaemia, fatty liver 

 (Dong et al., 2010) 

 (Ge et al., 2010) 

Zucker Diabetic Fatty 

(ZDF) Fa/Fa rats 

 (leptin receptor 

mutant) 

No Obesity, hyperinsulinaemia, 

dyslipidaemia, fatty liver 

 (Zucker and Zucker, 1961) 

 (Chanussot et al., 1984) 

Otsuka Long Evans 

Tokushima Fatty 

(OTLEF) rats 

CCK-1 receptor 

deficient 

Yes Obesity, hypertension, 

hyperlipidaemia, fatty liver 

 (Kawano et al., 1994) 

 (Yagi et al., 1997) 

Goto-Kakizaki (GK) 

rats 

Yes lean, Dyslipidaemia, fatty liver, 

β-Cell defect,  

 (Goto et al., 1976) 

 (Portha et al., 2010) 

IR Knockout Yes Neonatal death from 

ketoacidosis, hyperglycaemia, 

hepatic steatosis, postnatal 

growth retardation 

 (Joshi et al., 1996) 

 (Accili et al., 1996) 

Liver IR Knockout 

 (LIRKO) 

Yes Hyperinsulinaemia, 

hyperglycaemia, dysregulation of 

hepatic gene expression, elevated 

hepatic glucose production,  

 (Michael et al., 2000) 

 (Biddinger et al., 2008) 

IRS-1 Knockout No Mild insulin resistance. growth 

retardation, decreased glucose 

uptake, hypertension, 

hyperlipidaemia, β-cell 

hyperplasia 

 (Abe et al., 1998) 

 (Araki et al., 1994) 

IRS2 Knockout Yes Hepatic and muscle insulin 

resistance, hyperinsulinaemia, no 

β-cell hyperplasia 

 (Kubota et al., 2000) 

 (Withers et al., 1998) 

IRS-1 and IRS3 dual 

knockout 

Yes Lipoatrophy, hyperglycaemia, 

hyperinsulinaemia, leptin 

deficiency 

 (Laustsen et al., 2002) 

AKT2 knockout Yes Hyperglycaemia, 

hyperinsulinaemia, insulin 

resistance, β-cell compensation 

 (Cho et al., 2001a) 

Diet Induced Obesity 

(DIO) mouse 

Yes Diet related obesity, insulin 

resistance, hyperglycaemia, 

hypoadiponectinaemia, leptin 

resistance, dyslipidaemia, islet 

dysfunction,  

 (Surwit et al., 1995) 

Table 1.2 List of mouse models of insulin resistance 
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2.1. Materials 

2.1.1. Chemicals and Equipment 

NU-PAGE Bis-Tris 4-12% precast gels, apparatus and NuPage buffers for SDS-PAGE, 

apparatus for Western blotting, molecular weight standards, Superscript™ III reverse 

transcriptase, TOPO TA cloning kit, PureLink™ Quick Plasmid Miniprep Kit and 

PureLink™ HiPure Plasmid Filter Maxiprep Kit were from Invitrogen (Groningen, The 

Netherlands). Mini ProteanTGX 4-15% precast gels, apparatus and molecular weight 

standards were from Bio-Rad® laboratories Inc (Hertfordshire UK). Dried skimmed 

milk (Marvel) was from Premier Beverages (Stafford, UK). T7 DNA Ligase, RQ1 

RNase-Free DNase, RQ1 Stop Solution, Random Primers for cDNA synthesis, 

Luciferase assay kit and all DNA restriction enzymes were from Promega 

(Southampton U.K.). 75 cm
2 

cell culture flasks and 6 well plates were from NUNC™ 

Thermo Fisher Scientific (Roskilde Denmark. Nitrocellulose membrane, Enhanced 

Chemiluminescence (ECL) reagent and Hyperfilm™ were from Amersham Biotech 

(Buckinghamshire, UK).  Autoradiography cassettes with intensifying screen were from 

Kodak (Liverpool UK). CL-XPosure film and bovine serum albumin for protein 

estimation was from Pierce (Chester UK). UV Biophotometer was from Eppendorf 

(Hamburg, Germany). DMEM, penicillin/streptomycin and trypsin for tissue culture 

were from Gibco (Paisley, UK). Foetal bovine serum was from PAN Biotech 

(Aidenbach, Germany). NucleoSpinR Extract II PCR clean-up gel extraction Kit was 

from Machery Nagel (Düren, Germany). 0.22 µm cellulose filters were from Millipore 

Ltd (Norwich, UK).  All DNA primers and probes, dexamethasone, phenformin, 

Metformin, Tri-reagent™, Phosphate buffered saline, 1-3-bromochloropropane, 

dimethylsulfoxide, Ponceau S (in acetic acid) solution and ethidium bromide solution 

were from Sigma-Aldrich (Dorset, UK).Taqman ® Universal PCR Master Mix, 96-well 

optical reaction plates and optical caps for reaction plates were from Applied 
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Biosystems (Foster City, CA, USA). Pipettes were from Grenier (Gloucester, UK). Cell 

scrapers were from Sarstedt (Nümbrecht, Germany). Actrapid insulin was from Novo 

Nordisk (Bagsværd, Denmark).  8- (4-Chlorophenylthio)-Adenosine 3′,5′-cyclic 

Monophosphate was from Calbiochem (San Diego, CA, USA).  

 

All other chemicals were of the highest grade available and purchased from Sigma 

Aldrich (Dorset, UK) or Calbiochem (San Diego, CA, USA) 

 

2.1.2. Small molecule Inhibitors and Activators 

The structures of small molecule inhibitors and activators used in this thesis are shown 

in Figure 2.1 

 

2.2. Methods 

2.2.1. Preparation of buffers 

Commonly used buffers are listed in Table 2.1. 

Lysis buffer contains EDTA as a chelating agent for magnesium ions and therefore 

inactivates protein kinases, phosphates and proteases. The inclusion of EGTA is to 

chelate calcium ions thus inactivating calcium dependent kinases, phosphatases and 

proteases, whilst sodium fluoride and sodium pyrophosphate inhibit Ser/Thr 

phosphatases. Sodium Orthovanadate inhibits phosphoTyr phosphatases. 
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Buffer  

Cell Lysis Buffer 25 mM Tris/HCl (pH 7.4), 50 mM NaF, 0.1 M 

NaCl, 5mM EGTA. 1mM EDTA, 20 mM 

NaPyPi, 1% (v/v) Triton X 100, 0.1 (v/v) β-

mercaptoethanol, 1mM Na3VO4, 0.27M sucrose 

and protease inhibitor cocktail tablet 

TAE 40mM Tris–acetate and 20mM EDTA pH 7.4 

PBS 137mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 

and 1.4 mM KH2PO4 

4 X Lauryl dodecyl sulphate 

(LDS) sample buffer (Invitrogen) 

4.3M glycerol, 563mM Tris Base, 41.9mM Tris-

HCl, 293mM LDS, 2mM EDTA, 7.5% (v/v) 1% 

Serva blue G250, 12.5% (v/v) 1% Phenol Red 

MOPS Running Buffer 

(Invitrogen) 

50mM MOPS ( (3-N-

morpholino)propanesulphonic acid), 50mM Tris, 

3.46mM SDS, 1mM EDTA, pH7.7 

Running Buffer (Bio-rad) 25 mM Tris, pH 8.3, 192 mM glycine, 0.1% (w/v 

SDS 

Laemmli sample Buffer (Bio-Rad) 62.5 mM Tris-HCl, pH 6.8, 2& (w/v) SDS, 25% 

(v/v) glycerol, 0.01% (w/v) Bromophenol Blue 

Transfer Buffer 25 mM Tris, 192 mM glycine, pH 8.3, 20% (v/v) 

methanol 

TBST 20 mM Tris/HCL pH7.5, 150mM NaCl, 0.05% 

(v/v) Tween 

2 x BES 50 mM N,N-Bis (2-hydroxyethyl)-2-

aminoethanesulfonic acid sodium salt (BES), 280 

mM NaCl, 1.5 mM NaHPO4, pH 6.95 

LB Medium 1% (w/v) Bacto-Tryptone, 0.5% (w/v) Bacto-

Yeast Extract, 0.5% (w/v) NaCl pH 7.0 

 

Table 2.1 List of commonly used buffers 
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A  B  

C  D  

E  F  

G  

H  

 

I 

 

 

J  K  

Figure 2.1 Structures of small molecules used in this thesis (A)Metformin, (B) 

Phenformin, (C)PD184352, (D)Nu7441, (E) MK2206, (F) Akti 1/2, (G) PI-103, (H) 

LY294002, (I) KU55993, (J)Rapamycin, (K) CT99021.  
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2.2.2. Cell Culture 

Cell culture media were warmed to 37°C prior to use. 

 

2.2.2.1. H4IIe cells 

Rat hepatoma H4IIe cells were used as an insulin responsive cell line. The cells were 

maintained in Dulbecco’s Modified Eagle’s medium (DMEM) containing 1g/L glucose, 

580 mg/L L-glutamine and 110 mg/L sodium pyruvate (Gibco cat no:31885-023). This 

was supplemented with 5% (v/v) foetal calf serum (FCS) (PAN cat no 3302-P291205) 

and 1% (v/v) penicillin/streptomycin solution (Gibco cat no: 15140-122). This is 

referred to as complete media. Cells were cultured in 75cm
2
 flasks at 37 °C with 5% 

CO2 in a water saturated incubator. The cells were passaged twice weekly after reaching 

80 -90% confluence. This was performed by aspiration of the culture medium followed 

by washing with 5ml of sterile PBS. The PBS was aspirated and 1ml of 0.05% 

Trypsin/EDTA (Gibco cat no: 25300-054) added. The cells were incubated for 3-5 

minutes until they were detached. The trypsin was neutralised by the addition of 4 ml of 

fresh complete media and the resulting suspension thoroughly mixed. 1 ml of the 

suspension was transferred to a sterile 75 cm
2
 flask and made up to a final volume of 10 

ml with complete media. Alternatively, cells were counted using a cytometer and used 

to seed 6 well plates at a concentration of 1 x 10
6
 cells per well for gene expression 

studies, or to plate at 50% confluence in 6 or 10 cm dishes. 

 

2.2.2.2. Reporter cell lines (LLRP7, CSHP12, LLHG4, CSHI4) 

The generation of these cells is described under Results. They were maintained in 

Dulbecco’s Modified Eagle’s medium (DMEM) containing 1g/L glucose, 580 mg/L L-

glutamine and 110 mg/L sodium pyruvate (Gibco cat no:31885-023), containing G418 

(500µg/ ml). Cells were cultured in 75cm
2
 flasks at 37 °C with 5% CO2 in a water 
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saturated incubator. Media was replaced once weekly and the cells passaged once 

weekly. Prior to their use in any experiments the cells were passaged into complete 

media without G418 and were cultured for 2 weeks as per H4IIe (Chapter 2.2.2.1). 

 

2.2.2.3. Freezing cells for storage 

Aliquots of all cell lines were frozen for long term storage as follows. The culture 

medium from a confluent 75cm
2
 flask was removed by aspiration followed by washing 

with 5ml of sterile PBS. The PBS was aspirated and 1ml of 0.05% Trypsin/EDTA 

added. The cells were incubated for 3-5 minutes at 37 °C with 5% CO2 in a water 

saturated incubator until they were detached. The trypsin was neutralised by the 

addition of 4 ml of fresh complete media and the resulting suspension thoroughly mixed. 

The cells were transferred to a clean 50 ml centrifuge tube and centrifuged at 3,500 rpm 

for 4 minutes. The media was aspirated and washed once with 5 ml PBS. The cells were 

centrifuged at 3,500 rpm for 4 minutes, the PBS aspirated and the cells suspended in 3 

ml complete medium containing 10% (v/v) DMSO and thoroughly mixed. 1 ml of cell 

suspension was transferred to a 1ml CryoTube
™

, placed in a Cryo 1°C Freezing 

container (Nalgene) and transferred to a freezer maintained at -80°C. After 48 hours, 

vials were transferred to liquid nitrogen for long term storage. 

 

2.2.2.4. Stimulation and harvesting of cells for RNA extraction 

Prior to treatment with hormones, compounds or inhibitors, H4IIe cells were counted 

with a haemocytometer and plated at a concentration of 1 x 10
6 

 cells per well of a six 

well plate. Cells were left to attach overnight. In all cases cells were washed with sterile 

PBS and incubated in serum free media for 3 hours (fasted) prior to treatment. Cells 

were then treated for 3 hours with serum free media (Serum Free), 500 nM 

Dexamethasone and 0.1 mM 8 CPT-cAMP (Stimulated) with or without the addition of 



67 

insulin (as indicated in Figure legends). If inhibitors were used, cells were incubated 

with these for 30 minutes prior to hormone treatment. 

 

2.2.3. RNA extraction from cells, cDNA preparation and analysis by Taqman 

Total cellular RNA was extracted using guanidinium isothiocyanate (TRI Reagent
®

), a 

chaotropic agent that denatures cell membranes, DNA and proteins whilst keeping the 

integrity of RNA intact. This is then mixed with chloroform, a trihalomethane that, 

when added to cell lysates containing guanidinium isothiocyanate separates the RNA 

(aqueous phase) from the protein (layers between aqueous and organic phases) and 

DNA (organic phase). Isopropanol is added to the isolated aqueous phase to precipitate 

the RNA. 

 

2.2.3.1. RNA extraction 

Following the treatment of H4IIe cells under appropriate conditions, media was 

aspirated and cells washed once in 1ml of sterile PBS per well of a 6 well plate. PBS 

was aspirated and 400 µl of TRI-reagent added to each well. Each well was scraped 

with a cell scraper to disrupt the cell membranes and the lysate transferred to a 1.5ml 

microcentrifuge tube and kept on ice. 40 µl of 1-bromo-3-chloropropane was added to 

each tube, mixed well by inversion and left at room temperature for 5 minutes. The 

tubes were then centrifuged for 15 minutes at 13,000 rpm at 4ºC. The clear aqueous 

layer (upper) was transferred to a clean microcentrifuge tube, 200 µl of isopropanol 

added and mixed well by inversion. This was left to stand at room temperature for 5 

minutes to allow precipitation of RNA then centrifuged at 13,000 rpm for 10 minutes at 

4 ºC to create a pellet. The supernatant was removed, 1ml of 75% ethanol added to 

gently wash the pellet followed by centrifugation at 13,000 rpm for 5 minutes at 4 ºC. 

The supernatant was removed and the pellet allowed to dry at 50 ºC for 5 minutes. The 



68 

resultant pellet was suspended in 30 µl of nuclease free water. The resuspended RNA 

was transferred to a 96 well PCR plate. 3µl each of DNase buffer and RQ1 DNase were 

added to each well and incubated at 37 ºC for 30 minutes in a thermocycler to degrade 

any contaminating DNA. RQ1 DNAse requires the presence of magnesium and calcium 

ions contained in the reaction buffer.  Following this, 3 µl of DNase stop solution which 

chelates the magnesium and calcium ions and terminates the reaction was added to each 

well and incubated at 65 ºC for 10 minutes in a thermocycler to allow heat denaturation 

of the enzyme. The purified RNA was stored at -80
◦
C until required. 

 

2.2.3.2. Measurement of RNA and DNA Concentration 

Nucleic acids absorb light at a wavelength of 260 nm (A260) and proteins at a 

wavelength of 280 nm (A280).  The concentration of RNA was determined using a 

spectrophotometer set at a wavelength of 260 nm with one absorbance unit equal to 

40µg/ ml. 5 µl of the DNase treated RNA sample was added to 400 µl of nuclease free 

water in a Uvette
®

 (Eppendorf) and the RNA concentration calculated. The ratio of 

A260/280 gave a measure of the purity of RNA. Pure RNA has an A260/280 of 2.  Only 

RNA with a ratio of greater than or equal to 1.6 was used for further assays. 

 

DNA was diluted 1:80 into RNAse free water in disposable UVette cuvettes 

(Eppendorf) and the absorbance measured at 260 and 280 nm using a UV 

Biophotometer (Eppendorf). An absorbance of 1 is equivalent to 50 ng/ ml of double 

stranded DNA. The ratio of A260/A280 indicates the purity of the sample and pure 

DNA would have an A260/A280 of 1.8. 
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2.2.4. cDNA synthesis for Real-Time PCR 

Reverse transcriptase polymerase chain reaction was performed using the Superscript III 

reverse transcriptase system from Invitrogen. This method uses an engineered mutant of 

the Moloney Murine Leukaemia Virus (M-MLV) reverse transcriptase enzyme with 

increased thermal stability allowing synthesis of first strand cDNA. All reactions were 

performed in a thermocycler. 1µg of total RNA was aliquoted into a well of a clean 96 

well PCR plate and the total volume made up to 11 µl with nuclease free water. In a 

clean microcentrifuge tube a mix containing a 0.25:0.75:1 ratio of random hexamers, 

nuclease free water and 10mM dNTPs was prepared and 2 µl of this mixture added to 

each well to prime the RNA for cDNA synthesis. The samples were mixed by vortex 

and briefly centrifuged before incubation for 5 minutes at 65 ºC. In a clean centrifuge 

tube a mix containing a 4:1:1:1 ratio of 5x first strand buffer, 0.1 M DTT, RNAse 

inhibitor and Superscript III was prepared and 7 µl of this mix was added to each well. 

The solutions were mixed by vortex followed by brief centrifugation and incubated at 

25 ºC for 5 minutes then 50 ºC for 50 minutes and finally 70ºC for 15 minutes. 180 µl of 

nuclease free water was added to each well (10x dilution) and cDNA samples were 

stored at -20 ºC until required for cDNA amplifications.  

 

2.2.5. Polymerase Chain Reaction (PCR) 

Polymerase Chain reaction is a semiquantative technique used to exponentially amplify 

DNA sequences. KOD Hot Start DNA Polymerase (Merck) and specific oligonucleotide 

primers (Sigma-Genosys) were used for all cloning reactions. KOD Hot Start 

Polymerase utilizes a premix of a DNA polymerase (KOD) with two monoclonal 

antibodies that inhibit the DNA polymerase and 3’ to 5’ exonuclease activity at ambient 

temperature. The DNA polymerase exhibits high fidelity and proof reading ability and 

comes from the Thermococcus kodakaraensis. PCR reactions are shown in Table 2.2. 
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2.2.5.1. Reverse Transcriptase polymerase chain reaction (RT-PCR) 

RT-PCR differs from conventional PCR insomuch as the initial template is mRNA. This 

two step PCR strategy includes an initial generation of a single cDNA molecule from 

every mRNA molecule in the sample of interest (Chapter 2.2.4). The second step is a 

standard PCR reaction or more quantitative Real-Time PCR.  

 

2.2.5.2. Real-Time PCR (Taqman
TM

) 

Taqman is a method used to quantify the absolute levels of a specific DNA (cDNA 

generated from mRNA when applied to measurement of gene expression) sequence in a 

sample. The template cDNA is primed and amplified in consecutive rounds of annealing, 

extension by polymerase and denaturing of the double stranded structure. In contrast to 

standard PCR, Taqman is designed to quantify the accumulation of the amplicon after 

every amplification cycle rather than at a single point. 

 

This process requires 3 specific oligonucleotides to bind to the target cDNA sequence. 

Two primers bind to the end of the sequence to be amplified and a labelled probe 

hybridizes to the target sequence between the primers. The probe is a complimentary 

oligonucleotide to the target DNA sequence covalently bonded to a fluorophore at the 5’ 

end and a quencher at the 3’ end. All reactions described here use a 5’ 6-

carboxyfluorescein (FAM) modification and a 3’ 6-carboxy-tetramethylrhodamine 

(TAMRA) modification.  As the fluorophore and quencher are in close proximity, any 

fluorescent activity is quenched.  
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During amplification the probe binds to the specific DNA region within the amplicon. 

As the primers are extended by the polymerase and the complementary strand is 

produced, the intrinsic 5’ to 3’ exonuclease activity of Taq polymerase breaks down the
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probe. This releases the probe from the proximity of the quencher, thus allowing the 

fluorophore to fluoresce. Therefore, the fluorescence increases with amplification and is 

directly proportional to the number of new amplicons generated at each cycle. Therefore 

the greater the number of cDNA molecules of the probe target sequence present at the 

start of the reaction the less cycles are required to reach predefined fluorescence levels.  

 

Reporter fluorescence values are detected and measured at the end of every cycle of 

amplification. The fluorescence is proportional to the quantity of amplified product and 

is recorded as relative fluorescence against cycle number. The first 15 cycles are used to 

generate average background fluorescence. This is generated by variations in 

fluorescence resulting from the background media and prior to significant amplification 

of the target sequence.  During the PCR process, a point is reached at which the 

fluorescence signal is significantly higher than the calculated background value. This is 

known as the threshold cycle and is used as a benchmark for further quantification. The 

threshold is reached during the period of most rapid change in the reaction and avoids 

the limiting factors which may occur in the plateau phase, i.e. self annealing of DNA 

products and competition for primer binding.  The quantification is based around the 

concept that the greater the amount of template at the start of the reaction, the fewer 

cycles will be required for the fluorescence to reach threshold and thus the threshold 

cycle is inversely proportional to the starting copy number of template DNA. When 

fluorescence of the reporter dye reaches this level, it is this Cycle Threshold (Ct) value 

which can be converted to the mRNA copy number using the following algorithm 

Copy Number = 2
 (40-Ct)

 

The greater the Ct value, the greater the number of cycles it takes for detection of 

reporter fluorescence, and the fewer copies of mRNA are present. 
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250 ng of template cDNA was added to each Taqman reaction and mixed with 5µl 2x 

TaqMan
®

 Universal PCR master mix (Applied Biosystems cat no: 4324018, containing 

reaction buffer, dNTPs and AmpliTaq Gold
®

 DNA Polymerase), 0.5µl of 5µM forward 

primer (final concentration 200 nM), 0.5µl of 5µM reverse primer (final concentration 

200nM), 0.25µl of 5µM probe (final concentration 100 nM) and 3.75µl of nuclease free 

water. Therefore, the total reaction volume for each sample was 12.5 µl. All samples 

were analysed in triplicate. Instruments used for Real-Time PCR use fluorescence to 

quantify PCR products as they accumulate. The ABI Prism 7700 (Perkin-Elmer-Applied 

Biosystems) detects fluorescence in the 500-660 nm range. Reactions are performed in a 

96 well plate and fluorescence is induced by a 10 mW Argon Ion Laser. Fluorescent 

emission is detected using a 64x512 pixel CCD detector. The PCR reaction was carried 

out as follows: 50 ºC for 2 minutes, 95 ºC for 10 minutes and forty cycles of 95 ºC for 

15 secs followed by 60 ºC for 1 min. 

 

2.2.5.3. Primer/Probe design 

Taqman primers are designed to have a melting temperature (Tm) between 58 and 60 ºC, 

a G/C content of 20-80% and a length of 90-40 nucleotides. Ideally, the difference in 

Tm between the primers should be less than 2 ºC and the last five nucleotides at the 3’ 

end should contain a maximum of 2 G/C nucleotides. Primers were designed to flank 

exon-intron boundaries and amplify a region of approximately 150 bp of the cDNA. 

Probes were designed to have a Tm 10 ºC higher than the primers. The probes also had 

a G/C content of 20-80%, guanine nucleotides were excluded from the 5’end and there 

were no more than 3 contiguous guanine nucleotides present in the sequence. All 

primers contained more cytosine than guanine nucleotides. All probes had a 5’ FAM 

dye and 3’ TAMRA modification. Primers used for Taqman analysis are shown in Table 

2.3. 
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2.2.6. Agarose Gel electrophoresis 

Agarose gel electrophoresis allows the separation of DNA species, and for linear 

species the separation is mainly on the basis of molecular weight. Uses include 

visualization of the products of PCR reactions (allows a check of the success and purity 

of the reaction), and analysis of restriction digests. Agarose gels were 1% (w/v) unless 

otherwise stated. They were made with molecular biology grade agarose in 1X TAE 

buffer (Table 2.1). Ethidium Bromide (5µl of 10mg/ ml per 100 ml gel) was added to 

the molten agarose gel prior to pouring and cooling.  Ethidium Bromide intercalates 

with DNA and fluoresces under UV light, this fluorescence increasing after intercalation 

and concentration. Gels were run for 60-80 minutes at a constant 55V and all gels 

included a lane of a standard DNA size ladder. DNA was visualized by a UV light in a 

transilluminator. 

 

2.2.7. Agarose Gel Purification 

After electrophoresis, DNA was extracted from the gel using the NucleoSpin
®

 Extract II 

PCR clean-up gel extraction Kit (Machery Nagel). This method allows the binding of 

DNA to a silica membrane in the presence of chaotropic salt. The membrane is washed 

with an ethanolic wash buffer before pure DNA can be eluted in nucleic acid free water. 

The required DNA band was visualized under ultraviolet (UV) light and excised from 

the agarose gel using a clean scalpel and placed in a clean microcentrifuge tube. The 

weight of the slice was determined and 200µL of buffer NT was added for each 100 mg 

of gel. The mixture was incubated for 10 minutes at 50
◦
C; with vortexing every 2-3 

minutes until the sample was completely dissolved. The sample was loaded into a clean 

NucleoSpin
®

 Extract II column in a collection tube and centrifuged at 13,000 rpm for 1 

minute. The flowthrough was discarded and the column returned to the collection tube. 
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700 µl buffer NT3 was added to the column and centrifuged for 1 minute at 13,000 rpm. 

The flow through was discarded and the column returned to the collection tube. The 

column was centrifuged for 2 minutes at 13,000 rpm to dry the silica membrane. The 

column was placed in a clean 1.5 ml microcentrifuge tube and 30 µl of nucleic acid free 

water was to the membrane. This was incubated at room temperature for 1 minute 

before centrifuging for 1 minute at 13,000 rpm. The elute was frozen at -20
◦
C until 

required.  

 

2.2.8. Purification of plasmid DNA 

Plasmids were extracted and purified using PureLink™ Quick Plasmid Miniprep Kit 

(small preparations) and PureLink™ HiPure Plasmid Filter Maxiprep Kit (large 

preparations). All procedures were performed according to the manufacturer’s protocol 

using buffers supplied with kits. 

 

For small plasmid preparations, 5 ml bacterial cultures were pelleted for 10 min in a 

Sigma 3K10 bench top centrifuge. The supernatant was removed; bacterial pellets were 

resuspended in 250 uL Buffer (R3) and transferred to 1.5 ml microcentrifuge tubes. The 

cells were lysed by the addition of Buffer L7 and lysis was terminated by the addition of 

Buffer N4. Samples were spun for 10 min at 13,000 rpm in a benchtop centrifuge. The 

supernatant was transferred to a spin column. The DNA was bound to the column by 

centrifugation for 1 min at 13,000 rpm and washed by adding 0.75 ml Buffer W10. The 

column was spun at 13,000 rpm for 1 minute, the flowthrough discarded and the column 

re-spun for 2 minutes to ensure all the ethanol was removed. DNA was eluted from the 

column in 50 µl nuclease free water, quantified and stored at -20
◦
C 
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For large scale plasmid preparations (Maxiprep), 200ml bacterial cultures were grown 

and harvested by centrifugation at 4000 rpm for 10 minutes. The pellets were 

resuspended in 10ml Resuspension Buffer R3 containing RNase A and the suspension 

mixed until homogeneous. The bacteria were lysed by adding 10 ml Lysis Buffer L7 

and allowing to stand at room temperature for 5 minutes. Lysis was terminated by the 

addition of 10 ml of Precipitation Buffer N3 and mixed until homogeneous. HiPure 

Filter Nidi Columns were prepared by adding 30 ml Equilibration Buffer EQ1 to the 

filtration cartridge and this was drained by gravity. The DNA was added to the column 

and drained by gravity. The filtration cartridge was discarded and the column containing 

bound DNA was washed using Wash Buffer W8 and drained by gravity. A 50 ml 

centrifuge tube was placed under the column and the DNA eluted by adding 15 ml 

Elution Buffer E4 to the column and allowing to drain by gravity flow. To precipitate 

the DNA, the eluate was incubated at room temperature with 10.5 ml 100% isopropanol 

for 2 minutes and collected by centrifugation at 13,000g for 30 minutes at 4
◦
C. The 

supernatant was discarded and the pellets air-dried at room temperature for 30 minutes 

prior to resuspension in 500 µl RNAse free water. The DNA was quantified and then 

frozen at -20
◦
C until required. 

 

2.2.9. Restriction enzyme digests of DNA 

Restriction Enzymes are endonucleases that cut single or double stranded DNA at 

specific nucleotide sequences. They are most commonly found in, and purified from, 

lower organisms. These enzymes have revolutionized molecular biology, allowing site 

specific cutting of DNA sequences, prior to ligation into alternative DNA sequences, 

often termed sub-cloning. In this way a specified piece of DNA can be moved from one 

genetic location to another, or multiple sequences ligated in series, by simple restriction 

digest, purification of fragments and ligation into new target sequence. A standard 
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restriction enzyme reaction combined 1 µg plasmid or PCR product, 1U of the 

restriction endonuclease, 1ul of 10X appropriate digestion buffer and 1 µl BSA (10 mg/ 

ml) to a final volume of 10 µl. Reactions were carried out at the appropriate temperature 

for maximal enzyme activity.  

 

2.2.10. DNA Ligations 

After DNA has been digested, the products were separated by agarose gel 

electrophoresis and purified as previously described (Chapter 2.2.6 and 2.2.7). For 

ligation reactions, 1µl purified linearised target vector (either with two distinct 

restriction ends to match the proposed insert, or dephosphorylated to prevent self 

ligation) was mixed with 1-7 µl of the insert to be ligated with 1 U of T4 DNA ligase 

and 1 µl 10X ligation buffer to a total volume of 10 µl. The reaction was carried out at 

4
◦
C for 16 hours. The ligation reaction was then transformed into chemically competent 

bacteria (Chapter 2.2.11), and antibiotic selection of bacterial clones containing the 

ligation product performed dependent on the resistance marker encoded by the target 

vector. Control ligation reactions containing no insert were also performed to ensure no 

self ligation of vector occurred. 

 

2.2.11. Bacterial Transformation 

For each transformation, 50 µl of chemically competent XL-1 Blue E.Coli were added 

to the plasmid. The cells were incubated on ice for 30 minutes prior to heat shocking at 

42 
◦
C for 90 seconds to aid DNA uptake and then immediately returned to ice for 2 

minutes. 500 µl of LB medium was added to the mixture and incubated at 37 
◦
C for 1 

hour. The bacteria were spread onto agar plates containing 50 µg/ ml ampicillin or 50 

µg/ ml kanamycin and allowed to air dry before overnight incubation at 37
◦
C. The DNA 

vector contains an antibiotic resistance marker which will only be expressed if the 
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vector is circular. Therefore, only bacteria containing this will grow, whilst those 

containing the linear, or no, vector will not.  

 

2.2.12.  TOPO TA
®
 cloning ligations 

The TOPO TA
®

 system (Invitrogen) uses a highly efficient one step cloning process for 

the direct insertion and propagation of PCR products into a plasmid vector which 

confers dual resistance to ampicillin and kanamycin. The linearised pCR 2.1
®

 TOPO 

plasmid has a single 3’ thymidine overhang and the DNA is covalently bound to 

Topoisomerase I at both the 5’ and 3’ thymidine phosphates of the linearised vector. 

The Topoisomerase, which originates from Vaccinia virus, cleaves the phosphodiester 

backbone of the vector. When the PCR product is mixed with the vector the 

topoisomerase allows the rapid ligation of the product into the vector followed by 

release of the enzyme rendering it inactive. 

 

PCR products to be ligated into pCR 2.1
®

 TOPO were purified by agarose gel 

electrophoresis prior to purification as previously described (Chapter 2.2.6 and 2.2.7). 

Reactions were performed by adding 4 µl of the purified PCR product to 1 µl salt 

solution (1.2M NaCl, 0.06M MgCl2) and 1 µl of pCR 2.1
®

 TOPO, prior to incubation at 

room temperature for 15 minutes and chilling on ice. The TOPO ligation reaction was 

then transformed into TOP10 One Shot
®

 competent cells (Invitrogen). The contents of 

the ligation were mixed with the competent cells and incubated on ice for 30 minutes. 

Following this, the mixture was heat shocked at 42
◦
C for 30 seconds to aid DNA uptake 

and immediately placed back on ice and incubated for 2 minutes. 250 µl S.O.C. media 

(2% (w/v) Tryptone, 0.5% (w/v) Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2 , 10 mM MgSO4, 20 mM Glucose) was added to the mixture and incubated at 

37
◦
C for 1 hour. The transformed bacteria were plated on agar plates containing 50 µg/ 
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ml kanamycin, 10 mM IPTG and 100 µl 2% X-Gal. The plates were air dried and 

incubated overnight at 37
◦
C. Vectors into which the insert has successfully ligated grow 

as white colonies on agar plates containing IPTG and X-gal because the insert disrupts a 

β-galactosidase expression cassette in TOPO. Therefore white colonies are selected and 

blue colonies (no insert- self ligation of TOPO) discarded. At least 8 white colonies 

from each cloning reaction were routinely selected and grown in Luria Broth containing 

50 µg/ ml ampicillin before purification of the DNA as previously described (Chapter 

2.2.8). 

 

2.2.13. DNA sequencing 

All Sequencing of PCR products and plasmids were carried out by Genetic Core 

Services Unit, Division of Medical Sciences, Ninewells Hospital, University of Dundee. 

 

2.2.14. Protein Extraction from cells 

Media was removed by aspiration and the cells were washed twice in ice cold PBS and 

aspirated to dryness. Cell lysis was performed by the addition of 100 µl (6 well plate), 

200 µl (6 cm dish) or 500 µl (10 cm dish) of ice cold lysis buffer (Table 2.1). Dishes 

were placed on ice and the cells disrupted by scraping into lysis buffer and the lysates 

transferred to microcentrifuge tubes. The samples were snap frozen in liquid nitrogen 

and thawed on ice before cellular debris was removed by centrifugation at 13,000 rpm 

for 15 minutes at 4
◦
C. The supernatant was transferred to a clean microcentrifuge tube, 

snap frozen and stored at -20 
◦
C. 
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2.2.14.1. Measurement of Protein Concentration using the Bradford Method. 

Bio-Rad Protein Assay (Bio-Rad) was used to determine the concentration of protein in 

cell lysates.  This is a modified colorimetric assay first developed by Bradford 

(Bradford, 1976). The reagent contains Coomassie brilliant blue G-250, a dye which 

changes colour when bound to protein.  This occurs due to binding of basic and 

aromatic amino acid residues to the dye producing a maximum absorption of 595 nm. 

The quantity of absorption is directly proportional to the bound dye and thus in theory 

also the amount of protein in the sample. Importantly the reading is only directly related 

to protein concentration between a specific range of protein concentrations, in this assay 

around 200µg/ ml to 1400 µg/ ml. The quantity of protein in an unknown sample can be 

calculated by comparing the level of absorption in a sample at 595nm with a standard 

curve (which also confirms the range of linearity of each assay). 

 

A standard curve was generated by determining the A595 readings of serial dilutions of 

the inert protein BSA. Dilutions containing 0, 0.125, 0.25, 0.5, 1 and 2 µg/µl in lysis 

buffer were made and 5 µl of each was transferred to disposable plastic cuvettes. The 

Protein assay reagent was diluted 1:5 in distilled water; 1ml was added to each cuvette 

and mixed thoroughly by vortexing. The cuvettes were incubated at room temperature 

shielded from the light for 10 minutes prior to the absorbance being read at 595nm. A 

standard Bradford curve is shown in Figure 2.2.  

 

2.2.15. Immunoprecipitation of proteins from cell extracts 

Protein G from bacteria binds non-covalently to the Fc region of IgG antibodies. The 

protein can be covalently linked to Sepharose beads and then used to immunoprecipitate 

specific proteins from cell lysates by centrifugation. Cell extract (at 1 µg/µL, between 

100 and 1000 µg total as indicated in Figure legends) was incubated with 1 µg primary 
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antibody overnight at 4
◦
C on a shaking platform. The following morning the Protein G 

sepharose beads were washed into lysis buffer. Specifically, 10 µL (per IP) of a 50:50 

bead slurry was washed twice in 1X lysis buffer lacking sodium orthovanadate or β- 

mercaptoethanol or protease inhibitors. Each step was followed by centrifugation at 

2000 rpm for 30 seconds at 4
◦
C followed by aspiration of supernatant. The beads were 

then diluted to a 50:50 slurry with lysis buffer. 10 µL of the bead slurry was added to 

each sample and incubated at 4
◦
C for 3 hours in a shaking platform. The 

immunocomplexes were pelleted by centrifugation at 2000 rpm for 0.5 min, and the 

supernatant transferred to clean microcentrifuge tubes. The beads were washed once in 

1 ml of lysis buffer containing 0.5M NaCl, followed by 2 further washes in lysis buffer 

alone. Bound proteins were released from the beads by denaturation at 95
◦
C in SDS 

PAGE loading buffer for 5 minutes followed by visualization by SDS-PAGE and 

Western blotting (Chapters 2.2.17 and 2.2.18). 

 

2.2.16. Cell lysis for PIP3 measurement 

H4IIe cells were plated at 60-80% confluence. Cells were fasted for 16 hours prior to 10 

minutes treatment in the presence or absence of insulin. Media was removed by 

aspiration and 1 ml of 0.5M trichloroacetic acid added. The cells were disrupted by 

scraping with a cell scraper and a further 0.5 ml of ice cold 0.5M trichloroacetic acid 

added. This was then transferred to a clean microcentrifuge tube and centrifuged at 

13,000 rpm for 15 minutes at 4
◦
C. The acid was carefully removed and the pellet snap-

frozen in liquid nitrogen and stored on dry ice. The pellets were delivered to Dr 

Alexander Gray at the College of Life Science, Dundee to analyse PIP3 levels using a 

previously described method (Gray et al., 2003). 
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2.2.17. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is a technique that separates proteins according to their electrophoretic 

mobility as determined exclusively by their molecular weight. An anionic surfactant, 

sodium dodecyl sulphate (SDS), denatures proteins by disrupting the secondary 

structure and imparting a negative charge. This means that during gel electrophoresis 

the denatured proteins separate by their molecular weight rather than being affected by 

the mass:charge ratio. Larger proteins move more slowly through the pores of the 

acrylamide matrix than smaller ones. Prior to electrophoresis, cell lysates were 

denatured in 4X SDS sample buffer containing 10 mM DTT by heating at 95 
◦
C for 10 

minutes. Prestained See Blue Plus2 markers (Invitrogen) or Precision Plus Protein 

Prestained Standards (Bio-Rad) were used on every gel as molecular weight standards. 

 

Protein electrophoresis was performed using either NuPAGE
®

 Novex 4-12% gradient 

Bis-Tris (Invitrogen) or Mini-PROTEAN TGX 4-15% (BioRad) pre-cast gels. 

Invitrogen gels were run in Xcell SureLock TM Mini-Cell tanks containing 1 X 

NuPAGE
®

 MOPS running buffer (Invitrogen) and NuPAGE antioxidant
® (

Invitrogen). 

Mini-Protean gels were run in the mini-PROTEAN tetra system tank containing 1 X 

Tris/glycine/SDS running buffer (BioRad). Gel tanks were run at 110V for the first 10 

minutes and then at 180 V for a further 70 minutes. When visualizing proteins of >170 

kDa a total running time of 2 hours was used.  

 

2.2.18. Western Blotting 

After separation of proteins by SDS-PAGE, they were transferred to nitrocellulose 

membranes using the Trans Blot cell system (Bio-Rad). Blotting pads, pre-cut 3mm 

filter paper and Hybond ECL nitrocellulose membranes (Amersham) were rinsed in 

distilled water and then soaked in 1X transfer buffer (Table 2.1) containing 20% (v/v) 
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methanol. The SDS-PAGE apparatus was carefully disassembled, the gels removed 

from their cartridges and also soaked in transfer buffer. The Western blot sandwich was 

assembled and loaded into the Trans Bolt tank and the tank filled with transfer buffer as 

per manufacturer’s instructions. Gels were transferred at 30V for 2 hours. 

 

The efficiency of protein transfer was assessed by soaking the membranes in 0.1% (w/v) 

Ponceau S (Sigma). The membranes were then washed in 1X TBST (Table 2.1) to 

destain and blocked in TBST containing 5% (w/v) fat free milk for 1 hour. Blots were 

then incubated overnight at 4
◦
C with primary antibody (as indicated in Table 2.3). The 

following morning blots were washed 3 times with 1X TBST and incubated at room 

temperature with secondary antibodies for 1 hour. Unbound secondary antibodies were 

removed with 3x10 minute washes in TBST prior to development by 

chemiluminescence (ECL) or scanning using the Odyssey® Infrared Imaging System 

(Licor), dependent on the secondary antibody used (shown in Tables 2.4). 

 

2.2.18.1. Chemiluminescence 

Secondary antibodies covalently linked to horseradish peroxidase (HRP) can be 

visualized using the ECL Detection Kit (Amersham). The HRP enzyme catalyses the 

oxidation of luminal, and in the presence of an enhancer (phenol), results in the 

emission of light. The treated membranes were incubated in the ECL detection reagent 

for 1 min before exposure of the membranes to the CL-Xposure™ Film (Thermo 

Scientific) for various times (10 secs to 15 minutes) and development in an automatic 

film developer (X-OGRAPH Compact X4-XOgraph, Gloucester, UK). 
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1.2.1.18.2 Quantification 

The images of blots were scanned using an Epson Perfection 2400 Photo scanner and 

quantified using the Aida Image Analyser software version 3.28 (Raytest).  

 

2.2.18.2. Odyssey
®
 Infrared Imaging System 

Infrared scanning allows the quantification of secondary antibodies labelled with infra-

red dyes. The scanner uses two separate channels, 700 and 800 nm, and as such allows 

analysis of both phosphorylated and total levels of the same protein on the same 

membrane as long as the primary antibodies are from different species to permit use of 

distinct secondary antibodies. Once the membranes had been washed for the final time, 

they were allowed to dry before scanning using both the 700 and 800 nm channels. 

Quantification was performed using the Odyssey Application Software version 3 (Licor). 

 

2.2.19. Stable Transfections  

Stable transfection occurs when the recombinant vector inserts into the genome of the 

host cell in a position that results in expression of the inserted gene or regulation of an 

inserted gene promoter. This can be achieved by culturing cells in a selective media, 

such that only those transfected cells, containing the resistance gene, will grow and non 

transfected cells will die. Similarly, as transiently transfected cells throw out the 

recombinant construct (or it becomes diluted during cell division) they become sensitive 

to the selection media. Prolonged resistance is only achieved by stable insertion of the 

DNA into the host genome in a fashion that results in equal transmission during cell 

division. Transfections were performed using the calcium phosphate technique 

(Sutherland, 1999). 
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2.2.19.1. Stable transfection of H4IIe cells 

H4IIe cells are resistant to DNA uptake, with an average transfection efficiency of <1%. 

Cells were cultured in T75 flasks until 50% confluent (approximately 5x10
6 

cells). 2 µg 

DNA (2-4 µl of 0.5-1 µg/µl) was precipitated in sterile 14 ml polypropylene tubes 

containing 250 µl 1X BES (Table 2.1),  216-218µl RNAse free water and 30µl 0.15 M 

CaCl2 for 20 minutes with gentle agitation every 2-3 minutes. During the incubation 

period, 1 flask of cells H4IIe cells per transfection  were isolated by trypsinisation, cells 

washed in 5 ml sterile PBS and centrifuged again for 4 minutes at 3,500 rpm. The PBS 

was aspirated, and the precipitated DNA mixture added to the cells which were mixed 

by flicking. The DNA/cell mixture was incubated at room temperature for a further 20 

minutes to allow the DNA complex to bind to cell membranes. 0.5 ml of the cell 

mixture was placed in 10 cm dishes containing 10 ml of complete media and allowed to 

settle for 4 hours in a 5% CO2 water saturated incubator. Following this, the media was 

aspirated and the cells were shocked with 20% (v/v) DMSO in complete media for 5 

minutes to facilitate DNA uptake into cells. The media was aspirated, the cells gently 

washed twice in complete media and 10 ml complete media added to the dishes which 

were then returned to a 5% CO2 water saturated incubator for 48 hours. Media was 

aspirated and replaced with complete media containing 500 µg/ ml G418, and this was 

replaced with fresh G418 media every 3-4 days. 

 

2.2.19.2. Isolating colonies of stably transfected H4IIe cells 

After 2 weeks in selection media, individual colonies of potential stable transfectants 

were identified. Media was aspirated from the cells which were then washed in 5 ml 

sterile PBS. Colony isolation rings (Sigma) were smeared with sterile Vaseline
®

 

petroleum jelly. These were placed over the colonies and 100 µl trypsin/EDTA added to 

the centre of each ring. The plates were returned to the incubator for 5 minutes after 
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Primary Antibody Molecular Weight 

(kDa) 

Dilution Species Company Catalogue 

Number 

Phospho-PKB 

 (Ser473) 

60 1:1000 Rabbit CST #9271 

Phospho- PKB 

 (Thr 308) 

60 1:1000 Rabbit CST #9275 

PKB 60 1:1000 Rabbit CST #9272 

PKB (pan) (40D4) 60 1:1000 Mouse CST #2920 

Phospho-AMPK 

 (Thr172) 

66 1:1000 Rabbit CST #2535 

Total AMPK      

Phospho-ACC 

 (Ser79) 

265 1:1000 Rabbit CST #3661 

Total p42/p44 42/44 1:1000 Rabbit CST #9102 

Phospho-p42/44 

 (Thr202/Tyr204) 

42/44 1:1000 Rabbit CST #9101S 

Phospho-S6 

 (Ser240/244) 

32 1:1000 Rabbit CST #2215 

Total S6 (5G10) 32 1:1000 Rabbit CST #2217 

Total IRS-1 165 1:1000 Rabbit MP 06-248 

Phospho-Tyr 

 (4G10) 

N/A 1:25000 Mouse MP 05-321 

Β-Actin 42 1:5000 Rabbit Sigma #A2066 

Phospho-IRS-1 

 (Ser307) 

180 1:1000 Rabbit CST #2381 

Phospho GSK-3α/β 

 (Ser21/9) 

51/46 1:1000 Rabbit CST #9331 

Total GSK-3β 46 1:1000 Mouse BD 610202 

Phospho FOXO1 

 (Ser256) 

82 1:1000 Rabbit CST #9461 

Total FOXO1 82 1:1000 Sheep DSTT N/A 

Phospho SMC 

 (Ser966) 

160 1:1000 Ra

bbi

t 

Bethyl A30-050A 

Total SMC1 160 1:1000 Rabbit Bethyl A300-

055A 

Table 2.4 List of Primary antibodies 
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Secondary Antibody Dilution Species Company Catalogue 

Number 

HRP Conjugated Rabbit Anti-Sheep 1:5000 Rabbit TS #31480 

HRP Conjugated Goat Anti-Rabbit 1:5000 Goat TS #31480 

HRP Conjugated Rabbit Anti-Mouse 1:5000 Rabbit TS #31480 

Alexa Fluor® 680 Goat Anti-Mouse 

IgG (H+L) 

1:5000 Goat Invitrogen A-21057 

IRDye800® Conjugated Goat Anti-

Rabbit IgG (H&L)  

1:5000 Goat Rockland 611-132-

122 

 

Table 2.5 List of secondary antibodies 
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which cells were dissociated by quickly pipetting up and down. The cell suspension was 

transferred to the single well of a 96 well plate containing 250 µl of complete media to 

neutralise the trypsin. These were returned to a 5% CO2 water saturated incubator until 

confluent. Once confluent, the cells were passaged into vessels of increasing size in 

selection media until adequate numbers of cells were obtained for analysis and freezing. 

 

2.2.20. Transcriptional Reporter Assays 

Reporter assays are a common way of analyzing gene transcription in cells. Production 

of the reporter protein is directly proportional to the activation of the gene promoter 

driving the reporter gene and can be used to measure the regulation of complete gene 

promoters. In this thesis, the reporter constructs have been stably transfected into H4IIe 

cells. 

 

2.2.20.1. Luciferase Assay 

Luciferase is an enzyme present in a number of bioluminescent organisms. Firefly 

(Photinus pyralis) luciferase is commonly used in molecular biology and is the reporter 

produced by pGL4.17. This enzyme oxidizes luciferin in the presence of ATP and 

magnesium ions to produce oxyluciferin, carbon dioxide and pyrophosphate ions as well 

as light in the range of 550-570 nm. 

 

Prior to the luciferase assay, media was aspirated and the cells washed once in ice cold 

PBS. Cells were lysed in 150 µl of Cell Culture Lysis Buffer (Promega) and disrupted 

with a cell scraper. The contents of each well were transferred to a clean 

microcentrifuge tube and placed on ice. Samples were centrifuged at 13,000 rpm, 15 

minutes 4
◦
C and the supernatant transferred to a clean microcentrifuge tube. The 

Luciferase Assay Reagent was reconstituted by adding 10ml Luciferase Assay Buffer 
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(Promega) to 1 vial lyophilized Luciferase Assay Substrate (Promega). For each sample 

100 µl of Luciferase Assay Reagent was added to a clean 5 ml clear plastic tube 

followed by 20 uL of lysates. This was mixed by briefly vortexing and then reading 

with a luminometer (Berthold Lumat LB9507 for 2 seconds. Each sample was measured 

in duplicate and the samples were normalized to total protein in each lysate (Chapter 

2.2.14.1). 

 

2.2.21. Collection and processing of human serum 

Prior to attendance for serum donation, volunteers were fasted for 12 hours. On arrival, 

they underwent anthropomorphometry prior to venepuncture and collection of 229 ml 

blood. Blood to be analysed by the Clinical Biochemistry Department, Ninewells 

Hospital Dundee was allocated as per Table 2.6. In addition, 8.5 ml whole blood was 

collected in a BD P100 collection tube to generate plasma. The tube was inverted gently 

10 times and then centrifuged at 3000 rpm for 5 minutes at room temperature. A 

maximum of 8 x 0.5 ml aliquots were transferred to clean 1.5 ml tubes, the samples 

snap frozen and stored at -80
◦
C. Serum was prepared for analysis of inflammatory 

markers from 5 ml of whole blood collected in a BD SST™ Tube with Silica Clot 

Activator. This was allowed to stand for 30 minutes at room temperature then 

centrifuged at 3000 rpm for 10 minutes. A maximum of 2x 0.5 ml and 8x 0.1 ml 

aliquots were transferred to clean storage tubes, snap frozen and stored at -80
◦
C. To 

obtain additional serum for cell culture, 200 ml whole blood was collected in 20x BD 

Serum Tubes with Increased Silica Act Clot Activator. These were allowed to stand at 

room temperature for 1 hour before centrifugation at 3000 rpm for 10 minutes. All 

serum was transferred to sample tubes in 10 ml aliquots, snap frozen and stored at -20 

◦C. 
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Collection Tube Volume Assays Requested 

Fluoride 4 ml Glucose 

EDTA 4 ml HbA1c 

Clotted Serum 5 ml Alanine Aminotransferase, Bilirubin, Alkaline 

Phosphatase, Albumin, Aspartate Transaminase, 

Total Cholesterol, HDL Cholesterol, LDL 

Cholesterol 

 

Table 2.6 Collection tubes and fate of collected blood from volunteers 
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Plasma and serum was sent to the TMRC, Ninewells Hospital, Dundee for assay of 

Leptin, Adiponectin, CRP and TNFα by sandwich ELISA (Logie et al., 2010).   

 

2.2.22. Statistical Analysis 

Logistical regression and contingency table analysis was performed using SPSS 

statistics 17.0 (IBM, USA). Comparison data between groups was analysed by students 

t-test using Microsoft Excel 2003 (Microsoft, USA). Graphical data is shown as mean 

+/- standard error of the mean unless otherwise stated.
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Chapter 3. Development and Validation of a 

Cell Based Model of Insulin Resistance. 
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3.1. Introduction 

Insulin resistance is a continuous variable inversely correlated with the risk of 

developing diabetes as well as the associated morbidity and mortality. Developing 

strategies and therapeutics to improve insulin sensitivity is a global healthcare priority. 

For this to be achieved, we must first understand what factors dictate the insulin 

sensitivity of a cell, organ and individual.  Insulin sensitivity is affected by multiple 

factors. For example adiponectin is reduced in obese individuals  (Hotta et al., 2001) 

and the administration of adiponectin reduces hepatic glucose output in mouse models 

of obesity (Yamauchi et al., 2001). Other factors such as fatty acids, (Massillon et al., 

1997) TNF-α  (Uysal et al., 1997) and IL-6  (Mooney et al., 2001) which are higher in 

individuals with obesity have all been found to have negative effects on insulin 

signalling. 

 

Our laboratory found that culturing rat hepatoma cells in serum from rats with diet 

induced obesity results in a 10 fold decrease in insulin sensitivity (Logie et al., 2010). A 

similar effect was obtained by culturing rat hepatoma cells in the serum from leptin 

receptor deficient obese rats (Logie et al., 2010). This effect is reversible both with the 

reversion of culture conditions to standard FCS and also by culturing cells in the 

presence of the common anti-diabetic drugs metformin or pioglitazone (Logie et al., 

2010). Taken together it is reasonable to assume that one or more components altered in 

the serum from the obese animals (potentially adiponectin, fatty acids, TNF-α or IL-6) 

was having an effect on insulin sensitivity. 

 

Current animal models of type 2 diabetes are often inbred strains with one or more 

genetic mutations that predispose the offspring to readily develop obesity, insulin 

resistance and hyperglycaemia (see Chapter 1.13). These models, although useful, do 
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not represent the changes seen in the majority of human disease where very few cases of 

T2DM develop due to a monogenetic disorder.  

 

I aimed to test whether serum from obese human diabetics would induce insulin 

resistance in H4IIe cells, in a similar manner to serum from obese rodents. In this 

chapter I describe the clinical parameters of volunteers recruited to supply the serum for 

culture with emphasis on the differences between them. I go on to describe the specific 

effects that serum from obese diabetic volunteers (in direct comparison with serum from 

lean individuals) has on insulin regulation of gene transcription and cell signalling. 

Finally, I search for biomarkers associated with the generation of the insulin resistance. 
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3.2. Results 

3.2.1. Characterisation of study groups 

Twenty lean male non-diabetic volunteers (controls) and twenty male obese diabetic 

individuals (cases) were recruited to the study. Controls were required to be 

euglycaemic and have no first degree relatives with diabetes and cases were all 

diagnosed as having diabetes according to WHO criteria (Alberti and Zimmet, 1998). 

None of the volunteers in either group were taking antihyperglycaemic medication at 

any point prior to the commencement of the study. Smokers and those taking the fibrate 

group of drugs were also excluded. Full inclusion and exclusion criteria are shown 

(Appendix 1). Volunteers were fasted for 12 hours prior to assessment. Basic clinical 

measurements are listed in Table 3.1. Each volunteer donated 290 ml of blood. The 

blood was processed to obtain serum for tissue culture (Chapter 2.2.21). Plasma was 

collected for insulin, CRP, adiponectin, leptin and TNF-α (performed by Dr Jeff Brady, 

TMRC), and for assessment of bilirubin, alanine amino transferase, aspartate 

aminotransferase, alkaline phosphatase, albumin, glucose, HbA1c, total HDL and LDL 

cholesterol, and triglyceride levels (performed by the Clinical Biochemistry Department, 

Ninewells Hospital). HOMA-IR was calculated from measured fasting insulin and 

glucose levels (See Chapter 1.2). 

 

Age, weight, height, waist circumference, BMI, hip circumference, waist:hip ratio, 

systolic blood pressure, pulse, HOMA-IR, Insulin, CRP, and leptin were all 

significantly higher in the cases compared to the controls and as expected, adiponectin 

was significantly lower in the cases. Surprisingly total cholesterol, LDL cholesterol and 

triglycerides were significantly lower in the cases. On further investigation, all 

volunteer cases were found to be receiving HMGCoA reductase inhibitors which 

accounts for this unexpected difference. Therefore I have collected two phenotypically
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defined cohorts to provide serum to test for the presence of components related to 

diabesity that generate insulin resistance in cell culture.  

 

3.2.2. The insulin sensitivity of the PEPCK gene promoter changes in cells grown 

in serum from patients with diabesity. 

H4IIe cells were cultured for 3 weeks in DMEM containing serum (at 5%) from each 

individual (20 controls and 20 cases). During the culturing and analysis I was blinded to 

the case or control status of each sample. After 3 weeks, all 40 pools of cells were fasted 

for 3 hours prior to stimulation with the synthetic glucocorticoid dexamethasone (500 

nM) and the second messenger cAMP (100 µM 8-CPTcAMP) in the presence or 

absence of increasing concentrations of insulin. Total cellular RNA was extracted and 

cDNA synthesised before assessment of PEPCK and actin mRNA levels by Taqman 

analysis. Data is shown as the ratio of PEPCK to actin mRNA (Figure 3.1). As expected, 

dexamethasone and cAMP stimulated the production of PEPCK mRNA, and this was 

dominantly repressed by the presence of insulin. Cells cultured in serum from cases 

exhibited insulin resistance relative to cells grown in control serum, as shown by the 

reduced ability of 0.1 and 0.5 nM insulin (p<0.0001 for both) to prevent induction of 

PEPCK (Figure 3.1). There was no difference in the basal levels of PEPCK (Figure 3.1). 

There was no difference in fold induction in PEPCK expression by dexamethasone and 

cAMP (Figure 3.1 and 3.2 A). However, the percentage repression of PEPCK by 0.1 

nM insulin was reduced from 113.4 ± 12.4% (i.e. below basal PEPCK levels) in the 

control cells to 53.7 ± 24.7% in cells grown in serum from the cases (Figure 3.2 B). 

Similarly, the percentage repression of PEPCK by 0.5 nM insulin was reduced 

from119.5 ± 11.1% in the control cells to 78.9 ± 13.6% in the cells cultured for 3 weeks 

in serum from obese diabetics (Figure 3.2 C). The basal level of PEPCK mRNA (serum 

free for 3h) of the cells grown in diabesity serum is generally lower than control cells,
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although this doesn’t reach significance as a group (Figure 3.1). In fact, 70% of the 

cases have levels below the lowest basal level of PEPCK in the controls. However, the 

remaining 30% are scattered throughout the range of basal PEPCK levels in the 

experimental group (Figure 3.3). Similarly, the induction in PEPCK mRNA levels by 

dexamethasone and cAMP is not significantly different between cases and controls. 

Nevertheless, 50% of cases have a higher fold induction than all of the controls (Figure 

3.4), and this means that the actual PEPCK mRNA levels in cells treated with 

dexamethasone and cAMP are very similar between the two groups (slightly lower basal 

but slightly higher induction of cases). The highest fold induction was observed in the 

cells with the lowest basal PEPCK mRNA (those grown in serum from case 16). 

 

There is clearly a reduced response of PEPCK to insulin in almost all 20 pools of cells 

grown in diabesity serum compared to cells grown in control serum (Figure 3.5). 

Namely, in 18 out of the 20 groups of cells in serum from cases PEPCK is repressed by 

0.1 nM insulin by less than 80%, whereas PEPCK is repressed greater than 80% in all 

but one group of cells grown in control serum (Figure 3.5). The cells with the lowest 

basal and highest induction of PEPCK mRNA (grown in Case 16) had one of the 

poorest responses to insulin. Conversely, the cell with the highest basal and the second 

lowest induction of PEPCK mRNA (grown in control 17) had the best insulin response. 

Likewise, PEPCK is reduced below basal by 0.5 nM insulin in 18 out of 20 of the 

control cells, but in only 1 out of 20 of the cells exposed to case sera (Figure 3.6). In 

fact, the top 42.5%  and 45% responses to 0.1 and 0.5 nM insulin respectively are from 

cells grown in control sera, and  conversely the lowest 42.5% responses to insulin are 

cells grown in sera from cases (Figures 3.5 and 3.6). These data indicate that culturing 

H4IIe cells in the serum from obese diabetics can induce insulin resistance as measured 

by a significantly reduced repression of PEPCK mRNA by insulin. 
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3.2.3. Identification of serum factors responsible for the generation of insulin 

resistance.  

There are significant differences between the levels of several serum factors in cases 

and controls but interestingly the concentration of TNFα is similar in each group (Table 

3.1). In an unbiased effort to find factors that may be responsible for the generation of 

insulin resistance, linear regression modelling was performed (Table 3.2). The aim was 

to see if the effect of insulin on PEPCK repression was independent of differences in the 

baseline data between groups. Non-normally distributed data was log transformed to 

allow for robust data analysis. The first model used age, BMI and case/control status as 

covariates. The second model added each of the other covariates of glucose, HbA1c, 

insulin, HOMA-IR, triglycerides, leptin, adiponectin, TNF-α, CRP, systolic blood 

pressure, diastolic blood pressure and pulse in turn. Modelling did not include any 

serum lipids due to the confounding factor of HMGCoA reductase inhibitor use. Height, 

weight and waist circumference, hip circumference and waist:hip ratio were also 

excluded as they are very strongly correlated with BMI. 

 

Analysis of covariance showed that case/control status predicted the ability of 0.1 nM 

insulin to repress PEPCK (p<0.001) (Table 3.2). This correlation is not diminished 

when data is corrected for the effects of BMI (Table 3.2). Addition of further covariates 

of glucose, HbA1c, insulin, HOMA-IR, triglycerides, leptin, adiponectin, TNF-α, CRP, 

systolic blood pressure, diastolic blood pressure and pulse did not eliminate the strong 

correlation of diabetes status with the repressive ability of insulin (Table 3.2). This data 

suggests that no single clinical or biochemical factor measured can explain the 

percentage repression of PEPCK by insulin in an individual. 
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Although it was not possible to find a single biomarker by logistic regression, I 

attempted to correlate percentage repression of PEPCK by 0.1 and 0.5 nM insulin with 

levels of particular serum factors (Figures 3.7 -3.11). As obesity increases, so leptin 

levels increase.  It is clear that those subjects with the highest leptin levels are cases, and 

that they also have the lowest levels of insulin repression. However, there is no simple 

linear correlation between fasting leptin levels and the level of PEPCK repression 

(Figure 3.7A and 3.7B). However if the data is split into quartiles by percentage 

repression of PEPCK by insulin, that is,  <50%, 50-75%, 75.1-110% and >110% for 0.1 

nM insulin and <75%, 75-100%, 100.1-120% and >120% for 0.5 nM insulin, there is a 

correlation between the mean leptin of each group and PEPCK repression (Figure 3.7 C 

and D, r
2
 value of 0.85 with 0.1 nM insulin and 0.94 with 0.5nM insulin). However, 

there is still sufficient variation in leptin concentration within these quartiles that would 

not permit the use of leptin concentration alone as a simple biomarker of insulin 

sensitivity (Figure 3.7C and D), at least as measured by repression of PEPCK mRNA in 

this cell model.  

 

As expected cases generally have a lower HOMA-IR compared to controls. 

Nevertheless, there is no correlation between HOMA-IR and the level of insulin 

resistance seen in the cell line (Figure 3.8A and B). As with leptin there is a correlation 

between quartile of PEPCK repression and mean HOMA-IR (r
2
 value of 0.99 and 0.91 

for 0.1 and 0.5 nM insulin respectively Figure 3.8 C and D). Insulin levels were 

significantly different between cases and controls. Despite this, there is no linear 

association between plasma insulin levels and the effect of the sera on the response of 

H4IIe cells to 0.1 or 0.5 nM insulin (Figure 3.9A and B). There is a strong correlation 

between fasting insulin levels and the effect of sera on the insulin sensitivity of the cells 

when the latter is grouped as quartiles (r
2
 value of 0.99 and 0.91 respectively for  
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response to 0.1 and 0.5 nM insulin Figure 3.9 C and D).  

 

Despite a significantly higher glucose level in the cases there was no linear relationship 

between fasting glucose level and the effect of the sera on the response of H4IIe cells to 

0.1 or 0.5 nM insulin (Figure 3.10 A and B).  Yet there is a strong correlation between 

fasting glucose levels and the effect of sera on the insulin sensitivity of the cells when 

the latter is grouped as quartiles (r
2
 value of 0.93 and 0.91 respectively for 0.1 and 0.5 

nM insulin Figure 3.10 C and D). 

 

There is no linear relationship between adiponectin level and the response of H4IIe cells 

to 0.1 or 0.5 nM insulin (Figure 3.11 A and B). However, there is a correlation between 

plasma adiponectin and response of the cell model to insulin when the latter is grouped 

in quartiles, but this is only evident at 0.1 nM insulin (r
2
 value of 0.93, Figure 3.11 C). 

There is no correlation when using data from cells exposed to 0.5 nM insulin (r
2
 value 

of 0.13 Figure 3.11 D). Scatter plots show no relationship between plasma TNFα levels 

and the ability of the sera to alter insulin sensitivity of the H4IIe cells (Figure 3.12 A to 

D). 

 

One of the potential aims of developing the cell based model was to determine whether 

it could be used in the future to identify individuals with pre-diabetes, at risk of 

progressing to full blown diabetes. As a first step to investigating this potential I 

attempted to define threshold values that would clearly dissociate cases from controls in 

the current study groups. I defined sera as insulin resistant if they altered the hormonal 

response of the H4IIe cells so that there was < 90% PEPCK repression by 0.1 nM 

insulin or <100% repression by 0.5 nM insulin (Table 3.3). To define the status of other 

biomarkers, the mid point between the means was used as a cut off. Any value nearer to 
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the mean of the cases was defined as being in the case group for this factor and vice 

versa. Data was analysed using 2 x 2 contingency tables looking at case/control status 

versus each factor. Sensitivity and specificity are statistical measures of a binary 

classification. Sensitivity is defined as the proportion of positives identified as such (the 

percentage of cases identified as insulin resistant by the cell model) and specificity 

measures the proportion of correctly identified (the percentage of controls identified as 

insulin sensitive by the cell model).  This showed that there is a 95% sensitivity and 

specificity of the cell model predicting case-control status with 0.1 nM insulin (Table 

3.3). This reduced to 95% sensitivity and 90% specificity when 0.5 nM insulin is used 

(Table 3.3). This is much better than any other measured serum biomarker, none of 

which reach a sensitivity of >80% (Table 3.3).   

 

Adiponectin is particularly disappointing with a specificity of only 60% and a 

sensitivity of 70% (Table 3.3).  It is not surprising that BMI has a 100% sensitivity and 

specificity, as this was one of the inclusion criteria by which controls and cases were 

defined (Table 3.3). Waist circumference is also 100% sensitive and specific, but this is 

intimately associated with obesity and as such would be expected to predict case and 

control status (Table 3.3). 

 

In conclusion, it is clear that sera from obese diabetics has a significant effect on the 

insulin sensitivity of cells when compared to lean controls. However, despite measuring 

many clinical and biochemical parameters I could not identify a unique serum factor 

that correlated closely enough with the change in response of the cells to insulin to 

suggest it was responsible for the generation of insulin resistance.  
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3.3. Discussion 

There were three major reasons for trying to develop a cell based model of human 

insulin resistance; 

To be used as a medium throughput screen to identify insulin sensitising agents, 

To help identify factors that could promote insulin resistance and investigate the 

molecular mechanism (s) involved, and 

To generate preliminary data that a cell based screen could help classify patients with 

diabetes by their molecular problem and thus guide choice of therapy. 

 

The first step for all three goals was to extend previous work in the lab that generated 

insulin resistance in cells by culture in serum from obese rats. I aimed to demonstrate 

that similar effects could be obtained using serum from human volunteers.  In this 

chapter I have described the recruitment and characterisation of two cohorts of 

volunteers both non-diabetic and diabetic. I confirmed a decrease in insulin sensitivity 

in H4IIe cells cultured in serum from insulin resistant individuals in comparison to cells 

cultured in control human serum.  This clearly demonstrates that the model is applicable 

to the study of the human condition, and it is worthwhile developing the model to 

achieve the goals listed above.  

 

3.3.1. Advantages of the cell model 

There is a wealth of literature implicating many different factors associated with obesity 

in the development of insulin resistance. Hyperglycaemia  (Oku et al., 2001) and 

hyperinsulinaemia  (Rizza et al., 1985) are in themselves proposed to induce insulin 

resistance. It is as yet unknown whether this is the primary event in the human that leads 

to the development of insulin resistance, or whether it is a consequence of the disease 

progression. It is also known that high levels of serum triglycerides can promote both 
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hepatic and muscle insulin resistance (Prada et al., 2005). Unfortunately, triglycerides 

were excluded from my statistical modelling due to the confounding factor of HMG 

CoA reductase inhibitor usage even though the cases retained significantly higher levels 

triglycerides. Free fatty acids have also been shown to induce insulin resistance by 

negatively regulating insulin signalling (Seppala-Lindroos et al., 2002), and these are 

increased in diabetes associated with obesity. Other markers of obesity such as high 

TNFα (Uysal et al., 1997, Plomgaard et al., 2005), low adiponectin (Hotta et al., 2001), 

high leptin  (Benomar et al., 2005) and high IL-6  (Kroder et al., 1996, Mooney et al., 

2001) are also proposed to reduce insulin action by negatively regulating the insulin 

signalling pathway. 

 

This suggests either that there are multiple different ways obesity can lead to insulin 

resistance or that each molecule contributes to only a part of the disease process. In the 

first scenario insulin resistance as observed in the clinic would actually be due to many 

different molecular diseases and potentially would require different therapeutic 

interventions. In the latter scenario a therapeutic effective against only one of the 

obesity-related factors involved would have limited clinical efficacy. Therefore a better 

understanding of the molecular development of diabetes associated with obesity is 

clearly of clinical importance. Serum has been stored for future metabolomic analysis to 

describe the differences between cases and controls in their metabolic profile.  

 

We decided to take an unbiased approach to the development of a cellular model of 

insulin resistance. Culturing cells in serum from obese patients with diabetes would 

hopefully generate a form of insulin resistance mechanistically related to that seen in the 

disease group of interest. It now also allows us to try to identify the actual serum 
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component responsible, and establish whether it is a single factor, and whether it is the 

same factor (s) in every patient.  

We have used the PEPCK gene promoter as a surrogate of insulin action. PEPCK is the 

endpoint of the major insulin signalling pathway downstream of the IRS-PI 3-K 

pathway. This signalling pathway contributes to most of the major metabolic actions of 

insulin, hence factors which improve sensitivity to insulin in this screen are likely to 

improve many actions of insulin.  The loss of insulin sensitivity is a shift in, rather than 

complete abrogation of, insulin action, and higher doses of insulin still completely 

repress PEPCK even in the most insulin resistant cases. This is more in keeping with the 

physiological disease state where obesity does not cause complete loss of insulin action 

and does not promote disease overnight. 

 

Another major use of the model would be a drug screen for insulin sensitisers and 

insulin mimetics. This has the advantage that any compounds that are effective in the 

model should be effective within the target population that donated the serum for the 

screen. It will also allow relatively rapid assessment of drug efficacy prior to proceeding 

to animal testing, thereby reducing the number and cost of research animal usage. 

 

3.3.2. Disadvantages of the cell model investigated here 

There is significant variation in insulin sensitivity in the cases as measured by the cell 

model. There is less variability in the controls which virtually all show more than 90 

and 100% repression of PEPCK with 0.1 and 0.5 nM insulin. However, it has been 

known for some time that there is large variation in insulin sensitivity present in the 

human population, even in healthy cohorts measured by the sensitive hyperinsulinaemic 

euglycaemic clamp method (Petrie et al., 1996). This could reflect the range of potential 

mediators of insulin sensitivity present in vivo and in serum, and suggests that it is 



123 

unlikely that a single biomarker exists that will diagnose insulin sensitivity deficits 

related to disease progression. Consistent with this, it was not possible to identify a 

single factor responsible for the generation of insulin resistance in the cell model using 

regression or linear association analysis. Interestingly, this variability even occurs in 

inbred rodent strains where animals placed on the same high fat diet develop different 

levels of obesity, insulin resistance and hyperglycaemia (Chapter 1.13.1.3). It is unlikely 

that the subtle changes in insulin sensitivity seen in this model will be apparent as large 

perturbations of the known signalling pathways if analysed by Western blotting. 

Proteomic comparison of these cell cohorts may allow a more refined analysis of known 

pathways to identify where any molecular deficits lie. The serum could also be 

subjected to proteomic, metabolomic and transcriptomic analysis to identify novel 

markers of insulin resistance. Ideally, this model could also be extended to other tissues, 

such as adipose, β-cells and skeletal muscle. For this to be a robust process, an accurate 

readout, such as PEPCK in hepatoma cells, would be required.  

 

The serum used in our study was obtained from peripheral blood. Blood from the portal 

circulation, to which the liver is usually exposed, has a different makeup (e.g. it will 

contain higher levels of glucose, lipids, amino acids, insulin, gut incretins and decreased 

glucagon concentration) and how this affects insulin sensitivity may be completely 

different from the effects of peripheral serum. However, obtaining human portal serum 

is not possible in the quantities required to generate the model.  

 

There is clearly a difference between insulin sensitive lean individuals and obese 

diabetics. However, insulin resistance is a continuum rather than a dichotomy. It would 

be useful to expand the groups to include obese non-diabetics and lean diabetics to 

assess whether the model is truly reflecting an aspect of obesity or a factor subsequent 
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to the development of type 2 diabetes. Indeed, it would be worthwhile performing a 

prospective study where we follow obese non-diabetics and establish if the model can 

identify those that go on to develop type 2 diabetes. 

 

The confounding use of HMGCoA reductase inhibitors may also have had an effect on 

the insulin resistance causing ability of serum from the cases. A recent meta-analysis of 

large scale clinical trials has shown that there may be an increase in the risk of 

developing type 2 diabetes in those taking statins (Rajpathak et al., 2009). However, the 

mechanism for this is not yet fully understood, and most theories appear to centre on 

their effects on β-cells and adipose tissue rather than liver (Ishikawa et al., 2006a, 

Takaguri et al., 2008, Ishikawa et al., 2006b, Takagi et al., 2008, Koh et al., 2009). 

 

To use the cell model in its current form as a drug screen would require significant 

development. An ideal compound screen is rapid, automated, cheap and robust. The 

multi-step nature of RNA extraction and Taqman assay make the analysis relatively 

slow and expensive for a large scale format. Ideally, a cell based screen would use 

reporter cell lines where the production of an easily quantifiable marker under the 

control of the PEPCK gene promoter could be analysed in a 96 well format. As well as 

this, it would be of interest to look at other gluconeogenic and insulin responsive genes, 

for example G6Pase and IGFBP-1 (Chapter 1.9.3 and 1.9.3), to assess whether any loss 

of insulin sensitivity observed measuring PEPCK was extended to other insulin 

responsive genes.  The development of such reporter cell lines forms the basis of 

Chapter 4. 

 

It would be of interest to follow the control group to determine whether any progress to 

diabetes. Only a couple of the control sera affected the insulin response of the H4IIe 
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cells within the range of response seen with the case sera. For example, cells grown in 

sera from control 10 had a relatively poor PEPCK suppression by insulin at both 0.1 and 

0.5 nM (Figures 3.3 and 3.4). Interestingly, this volunteer had the lowest level of 

adiponectin within the control group, and is actually lower than many of the cases. 

Control 10 also has a leptin level approximately 3 times higher than the mean of the 

control group (6376.89 compared to 1198.39), although not the highest within the group.  

 

Similarly, there are case sera which produce cell responses more similar to control sera. 

The best example of this is case number 33 (Figures 3.5 and 3.6). Basal PEPCK mRNA, 

and fold induction of PEPCK, in cells grown in case 33 are similar to the mean of the 

control group (Figures 3.3 and 3.4), and the percentage repression by 0.1 and 0.5 nM 

insulin is more in line with the effect of control sera rather than case sera (Figure 3.5 

and 3.6). There is no outstanding feature of the biochemistry of this sample that would 

explain the lack of development of insulin resistance. Volunteer 33 has a BMI of 34, 

hyperleptinaemia (14717.22 pg/ml), hyperinsulinaemia (21.2 iU/ml), high CRP (>5000) 

and is clearly insulin resistant (HOMA-IR of 2.9), all parameters higher than the mean 

for the cases. Likewise, adiponectin levels (4039 pg/ml) are lower than the mean for 

cases. Interestingly, fasting glucose and HbA1c are both lower than the mean for cases, 

so it is possible that good glucose control is having an effect on the sera component 

involved in generation of insulin resistance in the cells in culture. 

 

3.4. Conclusions 

I have developed a humanised model of insulin resistance which can be used to 

investigate the link between obesity and hepatic insulin resistance. Unfortunately, this 

initial study has not identified individual serum factors that could be responsible for the 

development of insulin resistance in the cells exposed to diabesity sera. It is likely that 
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there is a complex interplay between many of the factors involved. Thus, assessing the 

effects of several factors, individually and in combination, at the concentrations seen in 

the diabesity serum, may be a useful approach. This would be made technically possible 

by the development of reporter cell lines. 
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Chapter 4. Development of Reporter Cell 

Systems as Screens for Insulin Sensitisers 
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4.1. Introduction  

Drug discovery is a long process during which compounds are developed through 

several phases from identification to clinical use. Initial identification of novel small 

molecules is usually achieved by high throughput screening using assays for therapeutic 

targets (e.g. enzymes, protein-protein interactions, receptor agonists/antagonists etc). 

Lead compounds from initial screens are often made more ‘druggable’ by intelligent 

design (e.g. reduce molecular weight by identifying key motifs in structure or change 

hydrophobicity to improve pharmacokinetics). These optimised leads then undergo 

larger scale synthesis and selectivity characterisation. Ultimately the novel compounds 

need to be screened for efficacy and safety, which involves animal studies prior to 

clinical trials. The development costs and time start to escalate exponentially at the in 

vivo study stage therefore the more in vitro or cell based screens that can be applied 

prior to this stage the better. Clearly, establishing meaningful and informative cell based 

secondary screens is a vital part of drug development. The ideal cell based model to 

identify agents that would improve insulin sensitivity in a patient population would be a 

humanised insulin resistant system. It should be relatively inexpensive, be of medium 

throughput (96 well automated formats with procedure times of less than 24h) and be 

fully quantitative. 

 

There are a number of cell based systems available for screening the effects of 

compounds on the action of insulin. It is possible to assess the effects a compound has 

on the insulin signalling pathway, such as reduction or enhancement of the 

phosphorylation of PKB, measured by Western blotting or Mass Spectrometry. This is a 

relatively slow process, but can be useful in hepatic cell models where glucose uptake is 

a less useful tool. However, this marker of insulin sensitivity tends to have a very 

narrow range of insulin response, that is, small changes around the EC50 tend to have 
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large effects making the variability or noise of the assay problematic. Glucose uptake 

assays in muscle  (Bilan et al., 1992) or adipose tissue  (Frost and Lane, 1985) can also 

be utilised in efforts to identify compounds which modulate this insulin action. 

Although this is a physiological output, it is of less use in assessing changes in hepatic 

insulin sensitivity as glucose uptake in this tissue occurs through passive diffusion and 

is only indirectly related to insulin sensitivity of the cells. Also, this technique is low 

throughput, requires the use of radioactive isotopes and is costly. Finally, GLUT4 

translocation assays can be used as a surrogate marker of glucose uptake. Traditionally, 

the use of this technique required semi-quantitative imaging techniques. However, there 

have been recent developments to automate and quantify this process (Liu et al., 2009). 

The major criticisms of all of the above models is that compounds are often used to 

improve sensitivity in cells with physiological insulin sensitivity, or that resistance is 

induced by methods biased toward a specific factor of particular interest to the 

researcher, such as culturing in high levels of palmitate. The importance of developing 

an insulin resistant cell model lies in the fact that the effects of any compounds screened 

should translate to the clinic (human insulin resistance). By culturing H4IIe cells in 

human serum and using PEPCK mRNA as a readout of insulin sensitivity, an unbiased 

model of insulin resistance has been developed, and it may be possible to use this model 

to identify clinically effective insulin sensitisers. 

 

Extraction of mRNA, cDNA manufacture and Taqman analysis as described in the 

previous chapter does not fulfil the criteria of expediency and frugality, and so a 

different strategy was needed. An alternative approach is to generate stable cell lines 

incorporating recombinant genes which express easily quantifiable products under the 

control of gene promoters of interest (e.g. the PEPCK gene promoter).  
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Reporter assays using luciferase are most widely used due to their ease and rapidity of 

assay, high sensitivity, low cost and low endogenous activity. This protein is also stable 

and relatively non-toxic even at high levels in eukaryotic cells. Firefly luciferase is an 

enzyme that catalyses the oxidation step of luciferin, a process which is ATP dependent 

(Branchini et al., 1998). The reaction equation is 

 

Luciferin+Luciferase+ATP+O2 Oxyluciferin+Luciferase+AMP+Light+CO2 

 

The luciferase enzyme activity (light emitted) can be used as a surrogate of gene 

promoter activity. I decided to investigate whether this system could be used to develop 

a cell based model of insulin resistance. By fusing the gene promoters of gluconeogenic 

proteins to the firefly luciferase cDNA and stably inserting it into the H4IIe cell genome, 

luciferase activity in the cells should be directly proportional to the activity of those 

promoters, allowing simple assessment of hormone action in these cells. 

 

In this chapter I describe the manufacture and characterisation of reporter cell lines 

expressing luciferase in response to the transcriptional activity of the promoters of rat 

PEPCK and human PEPCK, G6Pase and IGFBP-1 genes. I go on to describe my 

attempt to develop a cell based model of insulin resistance using these reporter cells. 
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4.2. Results 

4.2.1. Rat PEPCK gene promoter-luciferase reporter cells 

4.2.1.1. Production of reporter cells with rat PEPCK gene promoter 

The first stage of generating a reporter cell line was to clone a large section of the rat 

PEPCK promoter into the pGL4.17 vector from Promega (Figure 4.1 and 4.2, performed 

by Lisa Logie). Firstly, 2189 base pairs (bp) of the rat PEPCK promoter were cloned by 

PCR from rat genomic DNA using primers designed to include 68 bp 3’ of the 

transcription start site (TSS) and 2121 bp 5’ of the TSS, as shown (Table 4.1). The PCR 

product was purified by agarose gel electrophoresis and ligated into the TOPO 2.1 

subcloning vector prior to full sequencing (Chapter 2.2.13). The vector pGL4.17 was 

linearised and the confirmed rat PEPCK gene promoter sequence isolated from TOPO 

2.1 using SacI and BglII restriction enzymes. The PCR fragment was ligated into the cut 

pGL4.17 vector and positive clones propagated in competent E.Coli. The pGL4.17 

containing the rat PEPCK plasmid was confirmed by in house sequencing (Appendix 2). 

 

The PGL 4.17 rat PEPCK construct (Figure 4.2) was transfected into H4IIe rat 

hepatoma cells using the calcium phosphate precipitation method (Chapter 2.2.19). The 

cells were cultured in the presence of neomycin to select for transfected cells only as the 

pGL4.17 includes a neomycin resistance gene. Once colonies of resistant H4IIe cells 

were established, they were isolated and cultured separately.  Eight such colonies were 

chosen for characterisation (LLRP1-8 = Lisa Logie Rat PEPCK and denotes who 

undertook the transfection and selection of colonies containing the reporter cassette). 

Cells from all colonies were frozen at -80 
◦
C and transferred to liquid nitrogen for long 

term storage (Chapter 2.2.2.3). 
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Generate PCR Fragment 

using Forward and Reverse 

Primers and Genomic 

DNA 

Subclone into TOPO 2.1 

and miniprep colonies 

containing PCR fragment 

Send TOPO 2.1 containing 

gene promoter for in house 

sequencing 

Cut TOPO2.1 containing 

gene promoter and 

pGL4.17 with appropriate 

restriction enzymes 

Ligate gene promoter 

fragment into pGL4.17 and 

transform into competent 

E.Coli 

Perform Miniprep of 

colonies and send DNA for 

in house sequencing 

Figure 4.1 Cloning strategy for creating pGL4.17 containing the gene promoters 

driving luciferase production 
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4.2.1.2.  Characterisation of LLRP Cells 

In an attempt to assess whether the stably inserted recombinant rat PEPCK promoter 

luciferase reporter was under normal hormonal control, all 8 colonies of LLRP cells 

were plated and allowed to reach 60% confluence. The cells were fasted for 3 hours 

prior to treatment for 16 hours with serum free media or  dexamethasone (500 nM) and 

the second messenger cAMP (100 µM 8-CPT cAMP) in the presence or absence of 

increasing concentrations of insulin. The cells were lysed and assayed for luciferase 

activity (Chapter 2.2.20.1).  All 8 colonies were found to be stimulated by 

dexamethasone and cAMP and in all cases induction was dominantly repressed by 

insulin (Figure 4.3). 

 

However absolute luciferase expression was variable between colonies (Figure 4.3), 

suggesting this was influenced by position and/or number of gene insertion. However 

the fold change by the addition of dexamethasone and cAMP was similar ranging from 

10 times for colony 5 to 15 times for colony 6 (Figure 4.4 A). The percentage reduction 

from maximal stimulation by the addition of 10 nM insulin ranged from 50% for colony 

4 to 68% for colony 7 (Figure 4.4 B). PEPCK gene transcription is regulated within 

minutes of cellular exposure to hormones, and changes in mRNA are apparent between 

1 and 3 hrs after exposure. Therefore to investigate optimal exposure time for 

assessment of luciferase activity the regulation of LLRP-3, -7 and -8 lines was further 

investigated by varying the length of time exposed to hormones. Cells were fasted for 3 

hours and then treated for either 3 or 16 hours with or without dexamethasone and 

cAMP in the presence or absence of increasing doses of insulin. At 3 hours stimulation 

of the cells with dexamethasone and cAMP, the fold change in luciferase activity was 

only 2.2, 2.3 and 2.1 respectively (Figure 4.5). This was much weaker than the 

stimulation at 16 hours (7.8, 10.6 and 11.2 fold for LLRP 3, 7 and 8 respectively)
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 (Figure 4.5). The percentage repression by 10 nM insulin at 3 hours was 63.1, 64.6 and 

33.1% in LRRP 3, 7 and 8 respectively (Figure 4.5). At 16 hours a similar response to 

insulin was obtained in at least 2 of the lines (68.7, 64.3 and 70.8% repression 

respectively) (Figure 4.5). As the response of the 3 lines was quite similar at the longer 

incubation times it was decided to focus on LLRP7 for further characterisation of 

insulin signalling to the recombinant gene and in the development of an insulin resistant 

model. All further experiments involved hormone exposure for 16 hours unless stated. 

 

The effect of higher doses of insulin (10 nM) on the repression of luciferase activity was 

not as great as one would expect i.e. complete repression of luciferase activity. 

Therefore, the effect of insulin alone on luciferase expression was assessed. LLRP7 

cells were fasted for 3 hours prior to incubation with 0.1, 1 or 10 nM insulin for 16 

hours before lysis and assay of luciferase activity. There was a 2-, 4.3- and 10.7-fold 

increase in luciferase expression by the addition of 0.1, 1 and 10 nM insulin respectively 

(Figure 4.6). This suggests there is an insulin enhancer within the reporter gene cassette 

that responds to higher concentrations of this hormone, thereby complicating our 

analysis of the PEPCK promoter. All further experiments investigating insulin action 

were performed at 1 nM insulin to optimise repression of luciferase and minimise 

induction of the enhancer.  

 

Regulation of the endogenous PEPCK gene promoter by insulin involves the PI 3-K, 

PKB and GSK-3 signalling pathway (see Chapter 1.6 and 1.11 for details). In order to 

establish whether the recombinant gene in LLRP7 cells maintained the same signalling 

connections downstream of the insulin receptor the cells were fasted for 3 hours prior to 

30 minutes pre-incubation the PI 3-K inhibitor PI-103 followed by stimulation with  

dexamethasone (500 nM) and the second 
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messenger cAMP (100µM 8-CPT cAMP) in the presence or absence of 1 nM insulin for 

16 hours (Figure 4.7 A). The addition of PI-103 slightly increased the stimulatory effect 

of dexamethasone and cAMP (Figure 4.7 A). However, this PI 3-K inhibitor did not 

block the repressive effects of insulin on luciferase activity (Figure 4.7A). The half life 

of PI-103 is short, and it is likely that the incubation time for the reporter assay (16-17h) 

was too long for it to be effective over the whole period. Therefore, LLRP7 cells were 

exposed to a more stable PI 3-K inhibitor, LY294002, the GSK-3 inhibitor CT99021 or 

the PKB inhibitor Akti 1/2 (Figure 4.7 B). In this case inhibition of PI 3-K had a much 

greater effect on the stimulatory effect of dexamethasone and cAMP, and completely 

blocked any repression of luciferase activity by insulin, similar to its effects on PEPCK 

gene transcription (Figure 4.7 B). The inhibition of PKB blocked the insulin mediated 

suppression of luciferase activity consistent with the effects on the PEPCK gene. 

Surprisingly, the inhibition of GSK-3 prevented, rather than mimicked, insulin 

stimulated suppression of PEPCK activity. (Figure 4.7 B). In summary, LLRP7 cells are 

a stably transfected reporter cell line that expresses luciferase under the control of 2 kbp 

of the rat PEPCK gene promoter. The reporter, like the endogenous gene, is responsive 

to stimulation by dexamethasone and cAMP, and is dominantly repressed by the 

addition of insulin. This is most robust with 16 hours of hormone treatment. Insulin 

signalling connecting the receptor to the recombinant gene promoter appears similar to 

that reported for the endogenous gene promoter since loss of PI 3-kinase or PKB 

signalling prevents the insulin repression of the reporter. However, GSK-3 inhibition 

fails to repress the reporter production. 
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4.2.2. Human PEPCK gene promoter-luciferase reporter cells 

4.2.2.1. Production of reporter cells with human PEPCK gene promoter 

Firstly, 3096 bp of the human PEPCK promoter were cloned by PCR from human 

genomic DNA using primers designed to include 105 bp 3’ from the TSS and 2991 bp 

5’ from the TSS, as shown (Table 4.1, Figure 4.1 and 4.2 performed by Lisa Logie)). 

The PCR product was purified by agarose gel electrophoresis and ligated into the TOPO 

2.1 subcloning vector prior to full sequencing (Ch 2.2.13). The vector pGL4.17 was 

linearised and the confirmed human PEPCK gene promoter sequence isolated from 

TOPO2.1 using SacI and XhoI restriction enzymes. The PCR fragment was ligated into 

the cut pGL4.17 vector and positive clones propagated in competent E.Coli. The 

pGL4.17 containing the human PEPCK plasmid was confirmed by in house sequencing 

(Appendix 2). 

 

The pGL4.17 human PEPCK construct (Figure 4.2) was then transfected into H4IIe rat 

human hepatoma cells using the calcium phosphate precipitation method (Chapter 

2.2.19). The cells were cultured in the presence of neomycin to select for transfected 

cells only as pGL4.17 includes a neomycin resistance gene. Once colonies of resistant 

H4IIe cells were established, they were isolated and cultured separately to obtain large 

numbers of cells.   Four such colonies were chosen for characterisation (CSHP 1,2,8 and 

12 = Chris Schofield Human PEPCK and denotes who undertook the transfection and 

selection of colonies along with the gene promoter). Cells from all colonies were frozen 

at -80 
◦
C and transferred to liquid nitrogen for long term storage (Chapter 2.2.2.3). 

 

4.2.2.2. Characterisation of CSHP Cells 

To assess whether the stably inserted recombinant human PEPCK promoter luciferase 

reporter was under normal hormonal control, all four colonies of CSHP cells were 
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plated and allowed to reach 60% confluence. The cells were fasted for 3 hours prior to 

treatment for 16 hours with serum free media or stimulation with dexamethasone (500 

nM) and the second messenger cAMP (100 µM 8-CPT cAMP) in the presence or 

absence of increasing concentrations of insulin. The cells were lysed and assayed for 

luciferase activity (Chapter 2.2.20) All colonies showed a stimulation of luciferase 

activity with dexamethasone and cAMP and this was dominantly repressed by insulin 

(Figure 4.8). 

 

The fold change by the addition of dexamethasone and cAMP ranged from 4.5 times for 

colony 8 to 5.6 times for colonies 1 and 12 (Figure 4.9 A). The percentage reduction 

from maximal stimulation by the addition of 10 nM insulin ranged from 65% for colony 

12 to 80% for colony 2 (Figure 4.9 B).  Therefore it was decided to use CSHP12, for 

further characterisation of insulin signalling to the recombinant gene and in the 

development of an insulin resistant model. 

 

 

PEPCK gene transcription is regulated within minutes of cellular exposure to hormones, 

and changes in mRNA are evident between 1 and 3 hours after exposure. Hence, to 

investigate the optimal exposure time for assessment of luciferase activity regulation, 

CSHP12 cells were further investigated by varying the length of time they were exposed 

to hormones. Cells were fasted for 3 hours and then treated for either 3, 8 or 16 hours 

with dexamethasone and cAMP in the presence or absence of 1nM insulin. At 3 hours 

stimulation of the cells with dexamethasone and cAMP there was no significant 

stimulation of luciferase activity with a fold change of 0.9 (Figure 4.10 A and B). As 

there was no stimulation, there was also no dominant repression by insulin. After 8 

hours, there was still minimal stimulation of luciferase activity with dexamethasone and
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cAMP, with a fold change of 1.1 (Figure 4.10 A and B). Despite very little stimulation, 

there was only a 21% reduction in luciferase activity by insulin (Figure 4.10 C). At 16 

hours there was a 2-fold change in luciferase activity expression with the addition of 

dexamethasone and cAMP and a 93% reduction with the addition of 1 nM insulin 

(Figure 4.10 A, B and C). Therefore, all further experiments involved exposure to 

hormones for 16 hours unless otherwise stated. 

 

Luciferase activity in LLRP7 cells was shown to be increased by culturing in increasing 

doses of insulin. Therefore, the effect of insulin alone on luciferase expression was 

assessed in CSHP12 cells. Cells were fasted for 3 hours prior to incubation with 0.1, 1 

or 10 nM insulin for 16 hours before lysis and assay of luciferase activity. In contrast to 

LLRP7 cells there was a repression of luciferase expression below basal by the addition 

of 0.1, 1 or 10 nM insulin (Figure 4.11). This could mean that the enhancement in 

LLRP7 is due to site of insertion in the genome, or there are different regulatory 

elements in the human PEPCK gene promoter. Further experiments were performed in 

the presence of 1 nM insulin to maintain constant conditions between each reporter cell. 

 

In order to establish whether the recombinant gene in CSHP12 cells maintained the 

same signalling connections downstream of the insulin receptor (see Chapter 1.6 

and1.11 for details) the cells were fasted for 3 hours prior to 30 minutes pre-incubation 

with the GSK-3 inhibitor CT99021, the PI 3-K inhibitor LY294002 or the PKB 

inhibitor Akti1/2 followed by stimulation with dexamethasone (500 nM) and the second 

messenger cAMP (100µM 8-CPT cAMP) in the presence or absence of 1 nM insulin for 

16 hours (Figure 4.12). The inhibition of GSK-3 had no effect on the ability of 

dexamethasone and cAMP to stimulate, or insulin to inhibit, luciferase activity (Figure 

4.12). The addition of LY294002 increased the stimulatory effect of dexamethasone and  
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cAMP on luciferase activity and prevented insulin mediated repression (Figure 4.12). 

Inhibition of PKB had no effect on stimulation, but completely blocked any insulin 

mediated repression of luciferase activity (Figure 4.12). 

 

In summary, CSHP12 cells are a stably transfected reporter cell line that express 

luciferase under the control of 3 kbp of the human PEPCK gene promoter. The reporter, 

like the endogenous gene, is responsive to stimulation by dexamethasone and cAMP, 

and is dominantly repressed by the addition of insulin. This is most robust with 16 hours 

of hormone treatments. Insulin signalling connecting the receptor to the recombinant 

gene promoter appears similar to that reported for the endogenous gene promoter since 

inhibition of insulin signalling pathway at the level of PKB or PI 3-K prevents the 

insulin repression of PEPCK. However it differs at other points as GSK-3 inhibition 

should represses PEPCK transcription in this cell line but does not. 
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4.2.3. Human G6Pase gene promoter-luciferase reporter cells 

4.2.3.1. Production of reporter cells with human G6Pase promoter 

Firstly, 2870 bp of the human G6Pase promoter were cloned by PCR from human 

genomic DNA using primers designed to include 85 bp 3’ of the TSS and 2785 bp 5’ of 

the TSS, as shown (Table 4.1, Figure 4.1 and 4.2). The PCR product was purified by 

agarose gel electrophoresis and ligated into the TOPO 2.1 subcloning vector prior to full 

sequencing (Chapter 2.2.13). The vector pGL4.17 was linearised and the confirmed 

human G6Pase sequence isolated from TOPO 2.1 using KpnI and XhoI restriction 

enzymes.  The PCR fragment was ligated into the cut pGL4.17 vector and positive 

clones propagated in competent E.Coli. The pGL4.17 containing the human G6Pase 

plasmid was then confirmed by in house sequencing (Appendix 2). 

 

The pGL4.17 human G6Pase construct (Figure 4.2) was then transfected into H4IIe rat 

hepatoma cells using the calcium phosphate precipitation method (Chapter 2.2.19). The 

cells were cultured in the presence of neomycin to select for transfected cells only as 

pGL4.17 contains a neomycin resistance gene. Once colonies of resistance H4IIe cells 

were established, they were isolated and cultured. Eight such colonies were chosen for 

characterisation (LLHG-4.-5,-8,-11,-16,-38,-56,-77 = Lisa Logie Human G6Pase and 

denotes who undertook the transfection and selection of colonies along with the gene 

promoter). Cells from all colonies were frozen at -80 
◦
C and transferred to liquid 

nitrogen for long term storage (Chapter 2.2.2.3). 
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4.2.3.2. Characterisation of LLHG Cells 

To assess whether the stably inserted recombinant human G6Pase promoter luciferase 

reporter was under normal hormonal control, all 8 colonies of LLHG cells were plated 

and allowed to reach 60% confluence. The cells were fasted for 3 hours prior to 

treatment for 16 hours with serum free media or with dexamethasone (500 nM) and the 

second messenger cAMP (100 µM 8-CPT cAMP) in the presence or absence of 

increasing concentrations of insulin. The cells were lysed and assayed for luciferase 

activity (Chapter 2.2.20).  All 8 colonies were found to have increased luciferase 

expression when incubated with dexamethasone and cAMP and in all cases induction 

was dominantly repressed by insulin (Figure 4.13). 

 

However, the luciferase levels were variable between colonies (Figure 4.13), suggesting 

that basal expression and regulation were influenced by the position and/or number of 

gene insertion.  The fold change by the addition of dexamethasone and cAMP ranged 

from 1.8 times for colony 8 to 2.88 times for colony 4 (Figure 4.14 A). The percentage 

reduction from maximal stimulation by the addition of 10 nM insulin ranged from 

54.4% for colony 8 to 148.9% for colony 11 (Figure 4.14 B).  It was decided to use 

LLHG4, for further characterisation of insulin signalling to the recombinant gene. 

 

Differing effects of insulin in the absence of dex/cAMP were obtained on luciferase 

expression in LLRP7 and CSHP12 cells. Therefore, the effect of insulin alone on 

luciferase expression was assessed in LLHG4 cells. Cells were fasted for 3 hours prior 

to incubation with 0.1, 1 or 10 nM insulin for 16 hours before lysis and assay of 

luciferase activity. There was no increase in luciferase activity with 0.1 or 1 nM insulin 

(Figure 4.15). However, 10 nM insulin increased luciferase activity by 1.7 fold (Figure  
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4.15). Further experiments were performed in the presence of 1 nM insulin to prevent 

this confounding effect. 

 

Regulation of the endogenous G6Pase gene promoter by insulin involves the PI 3-K, 

PKB and GSK-3 signalling pathway (see Chapter 1.6 and 1.11 for details). In order to 

establish whether the recombinant gene in  LLHG4 cells maintained the same signalling 

connections downstream of the insulin receptor, cells were fasted for 3 hours prior to 30 

minutes pre-incubation with the GSK-3 inhibitor CT99021, the PI 3-K inhibitor 

LY294002 or the PKB inhibitor Akti 1/2, followed by 16 hours stimulation with  

dexamethasone (500 nM) and the second messenger cAMP (100 µM 8-CPT cAMP) in 

the presence or absence of 1 nM insulin (Figure 4.16). Pharmacological inhibition of PI 

3-K by LY294002 increased the stimulation of luciferase activity by dexamethasone 

and cAMP and prevented its subsequent repression by insulin (Figure 4.16) consistent 

with its effects on G6Pase gene transcription. The pharmacological inhibition of GSK-3 

had no effect on either stimulation or repression of luciferase activity (Figure 4.16). The 

PKB inhibitor reduced the repressive effects of insulin on luciferase activity consistent 

with the effects seen on the endogenous G6Pase gene promoter (Figure 4.16). 

 

In summary, LLHG4 cells are a stably transfected reporter cell line that expresses 

luciferase under the control of 2.8kbp of the human G6Pase gene promoter. The reporter, 

like the endogenous gene is responsive to stimulation with dexamethasone and cAMP, 

and luciferase activity is dominantly repressed by the addition of insulin. Insulin 

signalling connecting the receptor to the recombinant gene promoter, appears similar to 

that reported for the endogenous gene promoter since inhibition of PI 3-K and
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PKB prevents the repression of reporter production by insulin. However, GSK-3 

inhibition represses endogenous G6Pase transcription but in this reporter cell line it does 

not.  

 

4.2.4. Human IGFBP-1 promoter-luciferase reporter cells 

4.2.4.1. Production of CSHI cells 

Firstly, 3186 bp of the human IGFBP-1 promoter were cloned by PCR from human 

genomic DNA using primers designed to include 229 bp 3’ of the TSS and 2957 bp 5’ 

of the TSS,  as shown (Table 4.1, Figure 4.1 and 4.2). The resulting PCR product was 

purified by agarose gel electrophoresis prior and ligated into the TOPO 2.1 subcloning 

vector prior to full sequencing (Ch2.2.13). The vector pGL4.17 was linearised and the 

confirmed human IGFBP-1 gene promoter sequence isolated from TOPO2.1 using SacI 

and XhoI restriction enzymes.  The PCR fragment was ligated into the cut pGL4.17 

vector and positive clones propagated in competent E.Coli. The pGL4.17 containing the 

human IGFBP-1 gene promoter was confirmed by in house sequencing (Appendix 2). 

 

pGL4.17 human IGFBP-1 construct (Figure 4.2) was then transfected into H4IIe human 

hepatoma cells using the calcium phosphate precipitation method (Chapter 2.2.19). The 

cells were cultured in the presence of neomycin to select for transfected cells only as 

pGL4.17 includes a neomycin resistance gene.  Once colonies of resistant H4IIe cells 

were established, they were isolated and cultured separately.  Six such colonies were 

chosen for characterisation (CSHI 1-6 = Chris Schofield Human IGFBP-1 and denotes 

who undertook the transfection and selection of colonies along with the gene promoter). 

Cells from all colonies were frozen at -80 
◦
C and transferred to liquid nitrogen for long 

term storage (Chapter 2.2.2.3). 
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4.2.4.2. Characterisation of CSHI Cells 

In an attempt to assess whether the stably inserted recombinant human IGFBP-1 

promoter luciferase reporter was under normal hormonal control, all six colonies of 

CSHI cells were plated and allowed to reach 60% confluence. The cells were fasted for 

3 hours prior to 16 hours treatment with serum free media or with dexamethasone (500 

nM) and the second messenger cAMP (100 µM 8-CPT cAMP) in the presence or 

absence of increasing concentrations of insulin. The cells were lysed and assayed for 

luciferase activity (Chapter 2.2.20).  All six colonies were stimulated by dexamethasone 

and cAMP and in all cases the induction of luciferase activity dominantly repressed by 

insulin (Figure 4.17). 

 

The levels of luciferase were variable between colonies (Figure 4.17), suggesting that 

the basal expression and regulation of luciferase were influenced by the number and 

position of gene insertion within the genome. The fold change in luciferase activity by 

the addition of dexamethasone and cAMP ranged from 5.9 times for colony 1 to 27.0 

times for colony 4 (Figure 4.18). The percentage reduction from maximal stimulation by 

the addition of 10 nM insulin ranged from 33.15% for colony 5 to 82% for colony 1 

(Figure 4.18). Colony 4 showed a fold change of 27.0 from basal levels and a repression 

of 61.9% by the addition of 10 nM insulin (Figure 4.18). Therefore CSHI-4 cells were 

chosen for further characterisation. 

 

As with the other gene promoter constructs, it was essential to assess the most robust 

conditions under which to perform the assay. Thus, to investigate the optimal exposure
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time for assessment of luciferase activity regulation, CSHI-4 cells were further 

investigated by varying the length of exposure to hormones. Cells were fasted for 3 

hours and then treated for either 3, 8 or 16 hours with dexamethasone and cAMP in the 

presence or absence of 1nM insulin. At 3 hours there was no significant stimulation of 

IGFBP-1 with dexamethasone and cAMP (Figure 4.19).  However, at 8 hours there was 

stimulation of luciferase activity by dexamethasone and cAMP 6.7 times above basal 

(Figure 4.19) and the percentage repression by 1 nM insulin was 17.8% (Figure 4.19).  

At the sixteen hour time point the fold change in luciferase activity with the addition of 

dexamethasone and cAMP was 34.4 times (Figure 4.19) and a 49.6% reduction with the 

addition of 1 nM insulin (Figures 4.19).  Therefore, all further experiments involved 

hormone exposure for 16 hours unless stated. 

 

As with the other cell lines I wished to assess the effects of insulin on luciferase activity 

in the absence of dex/cAMP. CSHI-4 cells were fasted for 3 hours prior to incubation 

for sixteen hours in either serum free media or serum free media with the addition of 0.1, 

1 or 10 nM insulin. The cells were lysed and luciferase activity measured (Chapter 

2.2.20). There was no effect of 0.1 nM insulin on luciferase activity. There was a 2.8 

fold increase in luciferase activity with 1 nM insulin (Figure 4.20) and a 7.5 fold 

induction with 10 nM insulin (Figure 4.20). Therefore, it was decided to use 1 nM 

insulin for further assessment to minimise the enhancement, and maximise the 

repression by insulin. 

 

Regulation of the endogenous IGFBP-1 gene promoter by insulin involves the PI 3-K, 

PKB, mTOR and GSK-3 signalling pathways (see Chapter 1.6 and 1.11 for details). In 

order to establish whether the recombinant gene in CSHI4 cells maintained the same 

signalling connections downstream of the insulin receptor the cells were fasted 
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for 3 hours prior to 30 minutes pre-incubation with the GSK-3 inhibitor CT99021, the 

PI 3-K inhibitor LY294002 or the PKB inhibitor Akti 1/2 followed by stimulation with  

dexamethasone (500 nM) and the second messenger cAMP (100 µM 8-CPT cAMP) in 

the presence or absence of 10 nM insulin for 16 hours (Figure 4.21). The inhibition of 

GSK-3 had no effect on the ability of dexamethasone and cAMP to stimulate IGFBP-1 

transcription (Figure 4.21). Pharmacological inhibition of PKB did not enhance the 

stimulatory effect of dexamethasone and cAMP, but did reduce the repressive ability of 

insulin on luciferase activity (Figure 4.21) consistent with its effects on IGFBP-1 

transcription. The pharmacological inhibition of PI 3-K increased the stimulation of 

luciferase production by glucocorticoids and cAMP and completely blocked the effects 

of insulin (Figure 4.21). Rapamycin had no effect on the stimulation of luciferase 

production by glucocorticoids and cAMP and there was no effect on the repressive 

ability of insulin on luciferase activity (Figure 4.22). 

 

In summary, CSHI4 cells are a stably transfected reporter cell line that expresses 

luciferase under the control of 3.2 kbp of the human IGFBP-1gene promoter. The 

reporter, like the endogenous gene is responsive to stimulation by dexamethasone and 

cAMP, and luciferase activity is dominantly repressed by the addition of insulin. This is 

most robust with 16 hours of hormone treatment. Higher doses of insulin stimulate 

luciferase activity. Insulin signalling connecting the receptor to the recombinant gene 

promoter has some similarities to that reported for the endogenous gene promoter as 

inhibition of the main insulin signalling pathway at the level of PKB or PI 3-K prevents 

the insulin repression of IGFBP-1. However GSK-3 inhibition represses endogenous 

IGFBP-1 transcription and rapamycin can reduce insulin regulation, however this was 

not observed in this cell line.   
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4.2.5. Completeness of inhibition by small molecule inhibitors in H4IIe cells 

To confirm that H4IIe cells respond to all of the inhibitors used in the reporter cell 

studies, cells were incubated for 30 minutes in the presence or absence of CT99021, 

LY294002 or Akti 1/2 for 30 minutes prior to exposure to 10 nM insulin for 1 hour. As 

expected both the PKB and PI 3-K inhibitor reduced the insulin stimulated Ser473 

phosphorylation of PKB (Figure 4.23). Furthermore, inhibition of PI 3-K prevented the 

phosphorylation of S6 ribosomal protein at Ser240/244, but inhibition of PKB did not 

(Figure 4.23). The effects of rapamycin on insulin signalling in H4IIe cells are shown in 

Chapter 5 (Figure 5.23). 

 

4.3. The development of reporter cells as a cell model of insulin resistance 

In Chapter 3 I demonstrated that growth of H4IIe cells in serum from humans with 

diabesity reduced the insulin sensitivity of the cells as measured using insulin repression 

of PEPCK mRNA. Therefore I attempted to generate similar insulin resistance in the 

luciferase reporter cells. LLRP7 cells were cultured for 3 weeks in DMEM containing 

5% serum from either a control patient (volunteer 2) or a diabetic patient (volunteer 36) 

(Figure 4.24). The serum from volunteer 36 induced insulin resistance in H4IIe cells 

(Figures 3.5 and 3.6). After 3 weeks, the cells were fasted for 3 hours prior to 

stimulation with  dexamethasone (500 nM) and the second messenger cAMP (100 µM 

8-CPTcAMP) in the presence or absence of increasing concentrations of insulin. After 

16 hours the cells were lysed and assayed for luciferase activity. Protein concentration 

was measured by Bradford assay and luciferase activity was corrected for protein 

concentration. Unfortunately, for an unknown reason the cells did not respond to 

dexamethasone and cAMP, making it impossible to examine the insulin sensitivity 

using the reporter system (Figure 4.24). Due to lack of time and a
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freezer failure that caused the loss of the patient serum samples I was not able to repeat 

this important experiment. 
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4.4. Discussion 

The major reason for developing these reporter cell lines was to increase the speed, ease 

and cost of the assay to  

i) permit development of a cell based screen,  

ii) aid the identification of the factor in diabesity serum responsible for insulin 

resistance; and 

iii) aid the analysis of the signalling pathways connecting the insulin receptor to each 

gene promoter 

 

The first step in achieving these 3 goals was to generate H4IIe cells stably transfected 

with constructs which produce luciferase in response to activity of the gene promoters 

of rat PEPCK, human PEPCK, human IGFBP-1 or human G6Pase. In this chapter I 

have described the production of these cells and the optimisation involved to establish 

and isolate the most appropriate lines and conditions to monitor reporter regulation. 

Clearly further investigation of these clones is required to be sure that they are really 

surrogate reporters of the endogenous gene promoters.  

 

4.4.1. Signalling analysis 

Previous work has established the importance of PI 3-K in the regulation of all of these 

gene promoters (Sutherland et al., 1995, Dickens et al., 1998, Band and Posner, 1997).  

The effect of PI 3-K inhibitors on reporter cells showed that this part of the insulin 

signalling pathway is intact in LLRP7, CSHP12 and LLHG4 cells. Activation of PKB is 

also required for insulin signalling to PEPCK, G6Pase and IGFBP-1 (Logie et al., 2007, 

Cichy et al., 1998). Inhibition of PKB had partial effects on insulin regulation of each of 

the reporter lines. Downstream of PKB there is evidence that inhibition of GSK-3 

regulates the PEPCK, IGFBP1 and G6Pase gene promoters  (Lochhead et al., 2001, 
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Finlay et al., 2004) . In my reporter cells, GSK-3 inhibition only had a minor effect on 

LLRP7 cells, and little effect on G6Pase or IGFBP1 reporter lines. It is not clear 

whether this means that the GSK-3 responsive element lies outwith the promoter 

regions cloned, whether the GSK-3 effect is primarily on mRNA stability rather than 

transcription, or it is related to the different time course of the experimental protocol (3 

hours for mRNA and 16 hours for luciferase), where the compound may not be stable 

for longer periods or only affect initial repression of the gene. Endogenous IGFBP-1 

differs from the other genes insomuch as insulin regulation requires mTOR (Patel et al., 

2002). However rapamycin had no effect on the insulin repression of the IGFBP1 

reporter line. Again this may be due to the longer incubation times of this system. 

Indeed there is evidence that an mTOR independent, PI 3-kinase dependent pathway 

becomes more important in the regulation of IGFBP-1 in longer incubations with 

insulin (Finlay et al., 2006). 

 

There is a difference in the response of rat and human PEPCK promoters to both 

inhibitors and in the response to insulin. For example, insulin stimulates the expression 

of luciferase in LLRP7 cells, but represses this in CSHP12 cells. The response to PI 3-K 

and PKB inhibition is similar, but inhibition of GSK-3 blocks the effects of insulin on 

the repression of luciferase activity in LLRP7 cells only. There are a number of 

possibilities for these differences. One of the reasons for creating these cell lines was to 

humanize the cell model by inserting human gene promoters into rat hepatoma cells. 

The differences between species may have an effect on signalling between the insulin 

receptor and the gene. Furthermore, in rats PEPCK is almost exclusively contained in 

the cytoplasm in contrast to humans where 50% of PEPCK is localized to the 

mitochondria (PEPCK-M). The two isoforms each have their own gene promoters. It is 

possible that there are parts of the gene promoter 5’ to that which has been cloned which 
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have effects on gene expression, and therefore luciferase activity. Because they are not 

present the size of the inserts may also have effects on the response to insulin and 

inhibitors. Finally, the site of insertion of the construct into the genome may also affect 

the expression of luciferase. The inherent activity, and any response elements in the area 

surrounding the gene promoter, could interfere with the signalling pathways that would 

normally stimulate or repress gene expression. 

 

4.4.2. Temporal effects of measuring luciferase rather than mRNA: 

The rationale for developing reporter cell lines was to increase the speed of analysis and 

for use as a cell based model of diabetes. It takes 16 hours for adequate stimulation of 

the reporter in all lines. This is despite the actions of dexamethasone and cAMP on the 

gene promoter occurring within 30 minutes and insulin being even faster (Duong et al., 

2002). This lag is likely due to the time it takes for translation of the luciferase protein. 

This length of time may limit the usefulness of the assay. The level of insulin resistance 

seen at mRNA level is not a complete abrogation of insulin action, but a shift in insulin 

sensitivity. It is, as yet, unknown how long it would take for insulin resistance to be 

reversed in the cell model. The reporter cell will be devoid of the insulin resistance 

generating serum for 19 hours at the time of analysis and this length of time may be 

enough to reverse any insulin resistance generated by exposure to diabesity sera. 

 

The cell model was designed to assess the transcriptional activity of each gene promoter. 

It takes 16 hours of stimulation with dexamethasone and cAMP for the most robust 

increase in luciferase activity. However, the protein produced is incredibly stable. This 

protein stability means that any that is produced remains in the cells and as such is not a 

direct reflection of only transcriptional activity. It may have been better to include a 

DEAD box within the protein sequence. These domains can interact with mRNA to 
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promote degradation more rapidly (Py et al., 1996). It also possible to use a luciferase 

vector containing protein destabilisation sequences such as hCL1 and hPEST (Li et al., 

1998, Gilon et al., 1998). These allow a more rapid turnover of luciferase protein 

making the reporter more sensitive to changes in transcription. If these approaches had 

been used, the luciferase activity may have been more responsive to hormonal 

manipulation, both stimulatory and repressive, and as such the readout may have more 

accurately represented the transcriptional activity of the gene promoters. 

 

4.4.3. Site of Insertion and pGL4.17 

The transfection process leads to integration of an unknown number of copies of the 

plasmid into random regions of the genome. The activity of the integrated DNA will be 

affected by the background activity of the surrounding genome, added to this, one needs 

to periodically maintain selection pressure to ensure that the transgene is not shed from 

the genome. To overcome this, several clones were investigated to ensure that the gene 

of interest was being studied rather than the flanking sequence. If a large number of 

copies of the gene are present, the response to hormones may swamp the effects of 

insulin resistance seen in the endogenous gene promoter of which there is one copy. I 

did attempt to make isogenic clones using the FLP-In system (Invitrogen), however this 

was ultimately unsuccessful.  

 

In addition insulin appears to acutely stimulate luciferase activity in many of the clones 

in the absence of dex and cAMP. This implies that the gene promoter-vector construct 

contains an enhancer element which responds to insulin. Interestingly this was not the 

case in every cell line suggesting that it is context dependent, influenced by flanking 

sequence. In these cases this confounds the repressive effects of insulin on 

glucocorticoid and cAMP induction of the reporters, resulting in weaker apparent 
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reduction of reporter. In most cases this could be minimised by using an insulin 

concentration more optimal for repression than induction, however it still complicates 

the study of insulin signalling and the use of the reporter in cell based screens for insulin 

sensitisers. This may underlie some of the distinct effects of signalling inhibitors seen in 

these cells compared to monitoring endogenous gene transcription (e.g. GSK-3 inhibitor 

studies). Indeed we also do not know what the generation of insulin resistance would do 

to the stimulatory effect of insulin on luciferase production. It is also possible that 

higher dose insulin is acting via the IGF-1 receptor leading to an increase in luciferase 

production, although this would not explain why the anticipated effect was only seen in 

three of the four cell lines. 

 

4.5. Conclusions 

I have developed and tested four reporter cell lines. This has increased the speed and 

ease of assay of transcriptional activity of insulin responsive genes. There appear to be 

some differences in the signalling pathways from the insulin receptor to the reporter 

genes compared to those regulating the endogenous genes, and these may be related to 

the presence of an insulin enhancer element in the vector used to generate the cells. This 

may limit the use of the cell model for the study of insulin signalling. In the next chapter 

I obtain further evidence that the reporter lines may not be useful as an insulin resistant 

cell model for the identification of insulin sensitising agents. 
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Chapter 5. Assessment of Post-Receptor 

Signalling in Insulin Resistant Cells 
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5.1. Introduction 

Insulin resistance, and relative insulin deficiency, is evident in type 2 diabetes. The 

underlying molecular mechanisms for the development of this resistance are as yet 

unknown. The milieu of serum components known to influence whole body insulin 

sensitivity includes endocrine factors (insulin, glucagon and adipokines), inflammatory 

mediators (IL-6 and TNFα) and nutrients (glucose and free fatty acids). The levels of 

these factors are all altered with obesity and in individuals with diabetes. However, 

before the clinical presentation of diabetes, insulin resistance develops along a 

continuum and the first molecular step and early influences in the generation of this 

resistance have remained elusive. 

 

There is little evidence for reduced number of insulin receptor on liver, muscle or 

adipose being the cause of insulin resistance. Therefore it is widely assumed that a post-

receptor signalling defect underlies the loss of tissue sensitivity to this hormone and 

subsequent clinical symptoms (see Chapter 1.7 for review). Identifying the exact 

location of the initial signalling problem leading to insulin resistance would aid the 

development of interventions with efficacy at this key stage of disease initiation, prior to 

the appearance of most of the diabetes associated health problems. The insulin 

signalling molecules IRS, PI 3-kinase, PKB and GSK-3 have all been implicated in 

cellular insulin resistance (Caro et al., 1987, Aguirre et al., 2000, Kim et al., 1999b, 

Cozzone et al., 2008, Nikoulina et al., 2000). However, it has never been elucidated if 

loss of regulation of any of these kinases is the initial causative problem associated with 

development of insulin resistance. Furthermore, the development of insulin resistance 

may involve different disturbances in the signalling pathway in different metabolic 

tissues. For example, the transcriptional co-activator, PGC1α has opposing actions in 
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healthy muscle and liver (Liang et al., 2009), hence a single problem with the regulation 

of this protein would not have the same effect in both tissues.  

 

Culturing H4IIe cells in the serum from individuals with diabesity induces insulin 

resistance as measured by the reduced ability of insulin to suppress PEPCK gene 

transcription (Chapter 3.2.2). In traditional models of insulin resistance, high doses of 

individual compounds, e.g. ceramide, are used to generate insulin resistance and 

subsequent signalling changes proposed to be key for the generation of resistance in 

humans (Ch 1.13.2). This focussed approach, although useful, does not really establish 

the effects of a more physiologically relevant mixture of endocrine, inflammatory and 

nutrient components on insulin signalling pathways. We argue that our unbiased 

approach is a better starting point to investigate signalling defects in response to the real 

disease. Subsequently, normal serum could be fortified with, or diabesity serum 

depleted of, many of the proposed individual factors associated with insulin resistance. 

This would assess the requirement and sufficiency of each factor to generate the same 

defects on insulin signalling seen with complete diabesity serum. 

 

Hyperglycaemia, although resistance generating, is the final step in the development of 

type 2 diabetes and it is therefore unlikely that this is the initial direct cause of insulin 

resistance. Also, the level of TNF-α in human serum (Chapter 3.2.1) was no different 

between cases or controls, so this rules it out as the cause of the different effects of the 

two sera. One of the largest differences between the control and diabesity sera was the 

insulin levels (Table 3.1). Hyperinsulinaemia is present prior to the development of 

diabetes, potentially as a normal mechanism to overcome the developing insulin 

resistance but it is also possibly due to defective insulin secretion or turnover in 
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response to dietary influences (e.g. obesity), and as such may be one of the first factors 

on the road to development of tissue insulin resistance. 

 

In this chapter I supplement cell culture medium with insulin to generate the same levels 

observed in the diabesity serum. H4IIe cells grown in this medium for a prolonged 

period developed insulin resistance, measured by regulation of the PEPCK gene 

promoter. I then investigate whether there are any significant changes in post-receptor 

signalling which could explain the effect on regulation of PEPCK. Finally, I alter post-

receptor signalling pharmacologically in an attempt to determine the level of signalling 

defect that would be required to alter regulation of PEPCK gene transcription.  
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5.2. Results 

5.2.1. Development of insulin resistance in H4IIe cells by prolonged culture in low 

level supplemented insulin 

Foetal calf serum was supplemented with 100 pM insulin and frozen at -20 
◦
C overnight. 

The following morning, the serum was thawed and diluted to 5% in DMEM leaving the 

total concentration of supplemented insulin in media at 5 pM. H4IIe cells were then 

cultured for 3 weeks in either media with standard FCS (Standard Media containing a 

final concentration of 3.8 pM insulin) or FCS supplemented with insulin (Supplemented 

Media, final insulin concentration 8.8 pM insulin). Cells were passaged twice weekly 

and each time the media was refreshed. After 3 weeks cells were plated, fasted for 3 

hours prior to stimulation with dexamethasone (500 nM) and cAMP (100 µM 8-

CPTcAMP) in the presence or absence of increasing concentrations of insulin (0.1 to 

10nM). Total cellular RNA was extracted and cDNA synthesised before assessment of 

PEPCK and actin levels by Taqman analysis. In both groups of cells dexamethasone and 

cAMP stimulated the production of PEPCK and this was dominantly repressed by 

insulin. Cells cultured in supplemented media exhibited insulin resistance relative to 

cells grown in standard media as shown by the reduced ability of 0.1 (p=0.03) and 0.5 

nM (p=0.01) insulin to repress PEPCK from maximal stimulation (Figure 5.1). There 

was no difference in ether the basal or stimulated levels of PEPCK (Figure 5.1). 

However, the mean repression by insulin reduced from 48.2 to 5.0% and from 105.6 to 

75.8% with 0.1 nM and 0.5 nM insulin respectively in cells exposed to supplemented 

serum (Figure 5.2).  There was no difference between cells grown in control and 

supplemented medium in the level of PEPCK repression with 1 and 10 nM insulin 

(Figure 5.2). 
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After culture of cells for 2 weeks in supplemented media there was no significant 

difference in the sensitivity of the PEPCK gene promoter to any concentration of insulin 

from that found in the control cells (Figure 5.3). However, there was a greater 

stimulation in cells cultured in standard serum which was repressed bu 0.1 nM insulin. 

Whereas cells cultured in supplemented serum were stimulated less well but were also 

not repressed by 0.1 nM insulin. Hence, 3 weeks of exposure to 5 pM insulin was usedd 

for the development of insulin resistance in the H4IIe cells as the results obtained were 

more consistent and  the effects on PEPCK stimulation were similar  

 

Interestingly, in cells grown in supplemented media for 3 weeks there was no loss of 

insulin sensitivity of the G6Pase gene promoter (Figure 5.4). It should be noted that the 

assessment of G6Pase gene transcription was much more variable than that of PEPCK. 

Nevertheless, it appears that supplemented media has differential effects on the insulin 

sensitivity of these two genes involved in gluconeogenesis. In standard H4IIe cells, the 

EC50 for insulin repression of PEPCK and G6Pase is similar, 0.2 nM and 0.16 nM, 

respectively. Hence the lack of response on insulin regulation of G6Pase is not due to 

differential sensitivities of these gene promoters for insulin. 

 

 

5.2.2. The effect of culturing in human serum supplemented with low level insulin 

To ensure that this effect was not specific to supplementation of FCS, I next 

supplemented a human control serum with insulin. Control sample 15, which contained 

the closest level of insulin to the mean of the controls, (39.6 pM compared to 38.9 pM) 

was used. The final insulin concentration in cell culture control media was therefore 

1.98 pM after dilution to 5% (v/v) serum. For supplemented serum the control serum 

was adjusted to 100 pM insulin by the addition of 1 uL of 60 nM human insulin to each  
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mL of control serum 15 resulting in an insulin concentration in complete media of 5 pM. 

H4IIe cells were cultured for 3 weeks in standard or supplemented medium, acutely 

exposed to dexamethasone and cAMP in the presence or absence of insulin and the 

mRNA extracted for analysis of PEPCK and actin levels by Taqman. Once again, 

insulin resistance is evident in cells cultured in supplemented media as shown by a 

reduction in the ability of both 0.5 and 1 nM insulin to suppress PEPCK (Figure 5.5). 

 

5.2.3. Insulin resistance is not evident in reporter cells cultured in media 

supplemented with low level insulin 

Reporter cells (Chapter 4) were cultured in either standard or supplemented serum as 

above. LLRP7, CSHP12 and LLHG4 cells were cultured for 3 weeks in each media. 

The cells were then fasted for 3 hours followed by treatment for 16 hours with 

dexamethasone and cAMP in the presence or absence of varying concentrations of 

insulin. Cells underwent lysis and assessment of luciferase activity. The protein 

concentration of each sample was assayed and luciferase activity corrected for protein 

level. Insulin resistance was not evident in any of the reporter cells (Figure 5.6). There 

is no real difference in either the basal, stimulated or insulin treated levels of luciferase 

in either  LLRP7 and LLHG4 cells cultured in supplemented serum and  CSHP12 cells 

have a lower level of stimulation under these conditions (Figure 5.6). Hence, when 

expressed as percentage repression by insulin there is no significant effect of culturing 

in supplemented medium compared to standard medium. This is similar to the effects 

witnessed when culturing reporter cells in control and diabesity serum as discussed in 

chapter 4. 
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5.2.4. Insulin signalling in insulin resistant cells 

I next investigated the insulin sensitivity of post-receptor signalling in the H4IIe cells 

(generated in 5.2.2) in order to establish whether loss of insulin regulation of PEPCK 

after exposure to supplemented medium could be explained by reduced signalling. After 

3 weeks incubation in either standard or supplemented serum the cells were fasted for 3 

hours followed by treatment for 1 hour with insulin. The cells were then lysed and 

analysed by Western blotting. There was no difference in the phosphorylation levels of 

PKB, S6 ribosomal protein or MAPK between cells cultured in standard medium and 

cells cultured in supplemented medium (Figure 5.7). However, as Western blotting is 

semi-quantitative it may not be a sensitive enough modality to see any subtle changes in 

phosphorylation that may influence insulin sensitivity of downstream targets. 

 

During these experiments I noticed that not all insulin signalling pathways were equally 

sensitive to insulin even in control cells. To investigate more thoroughly I exposed 

H4IIe cells to insulin ranging from 5 to 10,000 pM and monitored each of the main 

pathways by Western blotting (Figure 5.8). This showed that individual signalling 

molecules require different concentrations of insulin for significant changes in 

phosphorylation (Figure 5.8). There is clearly no induction in the phosphorylation of 

PKB or p42/44 MAPK by 5 pM insulin (Figure 5.8 A, B and D). However, 5 pM insulin 

has a small effect on phosphorylation of S6 ribosomal protein (Figure 5.8 A and C). In 

fact, the concentration of insulin required for 50% maximal phosphorylation of S6 is 65 

pM, whereas for p42/44 MAPK and PKB this is 1241 pM and 2738 pM respectively 

(Figure 5.9). 

 

S6 ribosomal protein kinase has negative regulatory effects on IRS-1 which may in turn 

impact on insulin signalling (see Chapter 1.6.2 for details), therefore it was possible that 
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chronic exposure to this low level of insulin (5 pM) could promote weak but chronic 

S6K activation that could antagonise IRS-1 signalling. However, there was no 

significant difference in the total levels of IRS-1 between the cells cultured in standard 

and supplemented insulin (Figure 5.10). I next investigated whether specific 

phosphorylation of IRS-1 had changed following culture in low level insulin. After 

culture for 3 weeks in standard or supplemented insulin the cells were fasted for 3 hours 

and then treated for 15 minutes with 1 nM insulin. The cells were lysed and 

immunoprecipitation performed with anti-IRS-1 antibody prior to SDS PAGE and 

probing with antibodies to phospho-Ser307 IRS-1 or phospho-Tyr (4G10). Again, there 

was no difference in Ser phosphorylation of IRS-1 detectable between cells cultured in 

standard or supplemented media (Figure 5.11). Similarly, when immunoprecipitation 

was performed with total IRS-1 antibody and this probed with a phospho-Tyr antibody 

(4G10), there was no difference between cells cultured in standard media or 

supplemented media (Figure 5.12). In contrast, when immunoprecipitation was 

performed with the phospho-Tyr antibody and this probed with total IRS-1 there was 

less signal from cells cultured in supplemented media compared to those cultured in 

standard medium (p=0.03 Figure 5.13). This was the only indication that there was a 

deficit in insulin signalling in cells cultured in 5 pM insulin (i.e. reduced Tyr 

phosphorylation of IRS-1), however it isn’t clear why it was only detected in pull downs 

in one direction (Fig 5.12 vs. 5.13). Further evidence that there is not a significant 

deficit in IRS-1 induction of PI 3-kinase comes from analysis of the cellular levels of 

PIP3 (the product of PI 3-kinase activity). H4IIe cells were cultured for 3 weeks in 

either standard or supplemented media. Cells were then fasted for 16 hours prior to 

incubation with or without 0.5 and 10 nM insulin for ten minutes prior to lysis. Dr Alex 

Grey analysed the PIP3 levels in the samples (Chapter 2.2.16), and found no difference 
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between cells cultured in either media (Figure 5.14). Hence, if there is reduce Tyr 

phosphorylation of IRS-1 it is not affecting this branch of IRS-1 signalling. 

 

5.2.5. Effects of inhibition of PKB and PI 3-kinase on PEPCK gene expression 

It has been known for some time that inhibition of PI 3-kinase and PKB reduces the 

ability of insulin to repress PEPCK, suggesting that they are both required for this 

action of insulin. However it was not clear how closely associated the degree of activity 

of each was to the repressive action of insulin on the gene. To assess the effect that 

minor perturbations in the phosphorylation status of PKB may have on insulin 

signalling, I performed a dose response with the highly specific PKB inhibitor MK2206. 

H4IIe cells were fasted for 3 hours and then pre-treated for 30 minutes with increasing 

doses of the inhibitor. Cells were then treated with or without 10 nM insulin, cell lysates 

generated and probed for PKB phosphorylation (Figure 5.15 A). Even though there is a 

71 to 78% reduction in the level of PKB phosphorylation with 100 to 500 nM MK2206, 

this has no effect on the downstream signalling to GSK-3 which maintains full 

phosphorylation response to insulin (Figure 5.15 A). Increasing the concentration of 

MK2206 to 1 µM further reduced the level of both phospho-Thr 308 and phospho-

Ser473 of PKB to >82% (Figure 5.15 C). Even with this level of inhibition there was 

only a 16 % reduction in the phosphorylation of GSK-3 compared to control (Figure 

5.15 C). A different PKB inhibitor, Akti1/2, completely abrogated the effects of insulin 

on phospho-Thr 308 and phospho-Ser473 PKB at 10 µM. This level of PKB inhibition 

reduced the phosphorylation of GSK-3 and FOXO1 to basal level (Figure 5.15 B and C). 

The PI 3-K inhibitor, PI-103 also reduced the phosphorylation of PKB at both Thr 308 

and Ser473 sites. 1, 2 and 5 nM PI-103 reduced the phosphorylation of Thr 308 by 51.2, 

53.85 and 100 % respectively.  The reduction in Ser473 phosphorylation was 44.1, 51.4 
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and 91.7 %. Similarly insulin stimulated GSK-3 phosphorylation was reduced by 19.7, 

30.0 and 81.5 % respectively (Figure 5.15 B and C). 

 

It was of interest to examine the effect of MK2206 on the repression of PEPCK by 

insulin. There was no effect of MK2206 on PEPCK transcription until a concentration 

that promoted more than 80 % reduction in PKB phosphorylation (1 µM) was used (Fig 

5.16), although this was still only partial (repression of PEPCK by 10 nM insulin from 

88.8% to 60.1% (p=0.02)). The stimulatory effect of glucocorticoids and cAMP on 

PEPCK was enhanced by 1 µM MK2206 (Fig 5.16). There was no effect of 100 or 500 

nM MK2206 on the ability of insulin to repress PEPCK despite partial inhibition of 

PKB activation.  

 

The effects of MK2206 on G6Pase gene expression were similar to those on PEPCK. 

Neither 100 nor 500 nM had any effect on the insulin repression of G6Pase. However, 

there was a reduction in the ability of 10 nM insulin to suppress G6Pase in the presence 

of 1 µM MK2206 (p=0.02 Fig 5.17). In contrast, the addition of between 100 nM and 1 

µM MK2206 reduced the stimulation of IGFBP-1 by dex/cAMP (Fig 5.18). There was 

no effect on the ability of 10 nM insulin to suppress IGFBP-1 gene expression (Fig 

5.18). 

 

Therefore, there is no direct correlation between the level of PKB activity and the 

percentage repression of PEPCK by 10 nM insulin in cells treated with different 

concentrations of MK2206 (Fig 5.19 A). In fact, the insulin repression of PEPCK is not 

affected by 60 to 80 % reduction in PKB activity, but is partially reduced when PKB 

phosphorylation is inhibited by more than 80% (Figure 5.19). Similarly, there is no 

correlation between the level of GSK-3 phosphorylation and the ability of insulin to 
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repress PEPCK, although perhaps surprisingly, there were very small effects of PKB 

inhibition on GSK-3 phosphorylation in these experiments (Figure 5.19 A). 

 

Conversely, PI 3-K inhibition by PI-103 (from 1 to 5 µM) produced a more graded 

inhibition of insulin induced phosphorylation of PKB at both Thr 308 and Ser473 (Fig 

5.20), and of phosphorylation of GSK-3 α and β at Ser9/21 (Fig 5.20). This allowed a 

direct comparison of the degree of pathway inhibition with the regulation of PEPCK 

expression by insulin (Fig 5.21). For example, the addition of 1 µM PI-103 reduces the 

percentage repression of PEPCK by 10 nM insulin from 98.7% to 58.5%, while 2 µM 

PI-103 reduces it to 56.5% and 5 µM PI-103 reduces this still further to 40.9% (Fig 5.21 

B). The reduction in the level of phosphorylation of PKB at Ser473 at these 

concentrations of PI-103 is 44.1, 51.4 and 91.7% respectively, and this correlates with 

the repression of PEPCK by insulin (Fig 5.22 A). Indeed, the line of best fit has an r
2
 

value of 0.94. The level of phospho-Thr 308 of PKB correlates just as well as Ser473 

with the level of PEPCK suppression by insulin, and produces an r
2
 value of 0.94 

(Figure 5.22 B). Together the data strongly suggests a relationship between the level of 

PEPCK suppression and the inhibition of signalling downstream of PI 3-kinase. That 

said, the level of GSK-3 phosphorylation downstream of PI 3-kinase inhibition did not 

correlate very closely with PEPCK repression by insulin (Figure 5.22 C), although 5µM 

PI-103 had a much greater effect on GSK-3 phosphorylation than MK2206, and at that 

concentration repression of PEPCK was blunted (Figure 5.22 C). 

 

It was surprising that selective inhibition of PKB using MK2206 had only a partial 

effect on insulin regulation of PEPCK transcription (Figure 5.16). Previous reports had 

suggested that the Ras-MAP kinase pathway can substitute for the PKB pathway and 

repress PEPCK gene transcription under certain circumstances. Therefore I investigated 
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whether these different pathways were redundant by exposing cells to inhibitors of each 

of these pathways (PKB, MEK and mTOR) simultaneously and checked whether 

increasing the concentration of MK2206 even further could completely blunt insulin 

regulation of the gene. H4IIe cells were incubated with MK2206, PD-184352 and 

rapamycin in the presence of insulin (Fig 5.23). In each case I confirmed efficacy of 

inhibitor treatment, for example MK2206 reduced Ser473 of PKB phosphorylation but 

not phosphorylation of S6 ribosomal protein or p42/44 MAP kinase in response to 

insulin (Fig 5.23 A). There was, however, a reduction in phosphorylation of S6 in the 

presence of either rapamycin or PD-184352 (Fig 5.23 A). This may reflect the fact that 

phosphorylation of Ser440/444 by S6K is dependent on prior phosphorylation at 

Ser235/236 by RSK, downstream of p42/44 MAPK. However the effect of PD-184352 

on S6 phosphorylation was enhanced by MK2206 (Fig 5.23 A). The insulin-induced 

phosphorylation of p42/44 MAPK was reduced by PD-184352 (Fig 5.23 A). It was not 

possible to treat cells with all 3 inhibitors without substantial cell loss. 

 

Once more MK2206 (1 µM) reduced basal and stimulated levels of PEPCK but also 

reduced insulin regulation of this gene (Fig 5.23 B). The presence of PD-184352 or 

rapamycin increased the stimulation of PEPCK mRNA level even in the presence of 

PKB inhibition (Fig 5.23 B). Dual inhibition of mTOR and PKB, with rapamycin and 

MK2206, did not have any greater effect on insulin regulation of PEPCK than MK2206 

alone (Fig 5.23 B and C). Most interestingly, dual inhibition of PKB and p42/44 MAPK 

by MK2206 with PD-184352 appeared to reverse the effect of MK2206 alone on this 

gene (Fig 5.23 B and C). It is difficult to understand why loss of MEK activation of 

p42/44 MAP kinase would overcome the need for PKB in insulin regulation of PEPCK 

gene transcription. 
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5.3. Discussion  

The work in this chapter attempted to create a more simplified cell based model of 

insulin resistance which would further knowledge in 3 main areas; 

• To identify whether insulin was the factor in human diabesity serum that 

promoted insulin resistance in chapter 3, 

• To identify the insulin signalling changes that occurred during the generation of 

insulin resistance, and 

• To create a version of the cell model for compound screening that did not 

require collection and storage of human diabesity serum. 

 

5.3.1. Is insulin the factor responsible for the effect of diabesity serum on H4IIe 

cells? 

There are clearly many differences in the components of the diabesity and control sera 

(Table 3.1). Many signalling pathways have inherent feedback controls that prevent 

chronic activation, for example adrenergic receptors are down regulated following 

stimulation.  Therefore one could envisage that prolonged exposure to insulin could 

generate downregulation of insulin signalling and hence insulin resistance. The mean 

insulin concentration in control sera was 39 pM, while in diabesity sera it was 105 pM, 

around 2.7 times higher. Therefore the cells cultured in diabesity sera were exposed to 

2.7 times higher insulin than those in control sera. Of course, as I dilute the sera to a 

final concentration of 5% (v/v) in the culture media this means the cells were only 

exposed to around 5 pM insulin, even with the diabesity sera. This is still much lower 

than normal fed levels of plasma insulin (up to 5000 pM in the portal circulation), 

although cells in the body will not be chronically exposed to this level of insulin. Using 

culture media supplemented with 5 pM insulin led to relatively poor insulin sensitivity 
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of the H4IIe cells compared to cells grown in control levels of insulin, at least as 

measured by insulin repression of PEPCK gene transcription. The magnitude of insulin 

resistance generated by addition of 5 pM insulin to FCS was greater than that seen in 

cells cultured in diabesity serum and also than that in cells cultured in supplemented 

human serum. There is no significant difference in the levels of PEPCK in either basal 

or stimulated conditions in the studies with supplemented calf sera. There are a couple 

of differences in the PEPCK responses in the studies with human serum. Firstly, 

culturing the cells in 5 pM insulin increased the level of PEPCK expression under all 

conditions. Despite this there was still a relative loss of insulin sensitivity in cells 

exposed to the chronic insulin. Secondly, the actual concentration at which the insulin 

does response shifted was different in the human sera studies (0.5 to 1 nM as opposed to 

0.1 to 0.5 nM in the calf sera cells). This may reflect the fact that the basal insulin levels 

between the calf and human sera are different or other factors present in the sera are 

having effects on insulin sensitivity, which is something that could easily be 

investigated. 

 

Interestingly, there is a differential effect of this cell culture manipulation on G6Pase 

and PEPCK response to insulin. This is despite the fact that the EC50 for the effects of 

insulin on both genes lies between 0.1 and 0.2 nM. It is known that both genes require 

PI 3-K activity for full suppression (Dickens et al., 1998, Miyake et al., 2002, 

Sutherland et al., 1995). However, the same cannot be said for PKB. There are 

conflicting results for the effects of PKB on PEPCK. It has been shown that dominant 

negative PKB mutants do not reduce the ability of insulin to suppress PEPCK, but also 

that expression of a tamoxifen regulated active PKB mimics the action of insulin by 

preventing gene induction by glucocorticoids and cAMP (Kotani et al., 1999, Liao et al., 

1998). The effects on G6Pase are somewhat different, with overexpression of PKB only 
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partially affecting G6Pase transcription (Schmoll et al., 2000). This suggests that PI3-

Kinase is a critical signalling node in the insulin suppression of both genes, but that 

other downstream targets of PI 3-K have a role to play in the suppression of G6Pase. In 

addition only a small activation of PKB is required to mediate its effects on PEPCK, 

explaining the need for almost full inhibition in my MK2206 studies.  

 

It has been known for some time that hyperinsulinaemia can lead to the development of 

insulin resistance (Rizza et al., 1985).  Insulin is usually secreted in a pulsatile nature, 

and this is tightly controlled in ~4 minute bursts (Song et al., 2000). The insulin levels 

seen in the portal circulation range from ~200-500pM in the fasting state and from 1000 

to 5000 pM in the fed state (Song et al., 2000, Porksen et al., 1996). Insulin sensitivity 

naturally decreases with age, and this is overcome by an increase in β-cell mass 

(Matveyenko et al., 2008). Conversely, in type 2 diabetes, there is approximately a 65% 

reduction in β-cell mass  (Butler et al., 2003) and these β-cells are also deficient in 

insulin secretion losing their pulsatile nature, but overall releasing higher levels of 

insulin particularly in the fasting state. An increase in the intraportal level of insulin can 

also induce insulin resistance  (Marban and Roth, 1996, McGuinness et al., 1990) even 

if there is an increase in the level by only 50% (McGuinness et al., 1990). 

 

This raises the distinct possibility that a β-cell defect in insulin secretion, causing even 

mild hyperinsulinemia, may actually be the first step in the development of insulin 

resistance. The offspring of patients with type 2 diabetes show both insulin resistance 

and β-cell dysfunction with higher insulin levels (Stadler et al., 2009). However, this β-

cell dysfunction is still present in those who are insulin sensitive (Stadler et al., 2009). 

Similarly, patients with insulinomas, which gives a persistent basal level of 

hyperinsulinaemia, are also insulin resistant (Nankervis et al., 1985). All of this data 
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together does indicate that loss of proper control of insulin secretion may be an initiator 

of many of the defects found in type 2 diabetes and if true calls into question the 

rationale of treating the disease with insulin secretagogues. In fact it is possible that 

what is actually required are interventions that reduce insulin secretion at the early stage 

of the disease, or alternatively restore normal control of secretion. There is clearly also 

an issue with proper control of insulin therapy in Type 1 diabetes to reduce the risk of 

insulin resistance associated with the use of long acting insulins. 

 

Furthermore, if mild continuous hyperinsulinaemia can lead to insulin resistance then 

this should be taken into account when developing dietary advice for the prevention of 

diabetes. For example if one is continually snacking (or consuming high sugar drinks) 

and therefore chronically delivering glucose to the pancreas, this will lead to a more 

persistent level of insulin delivery to the liver and the subsequent development of 

insulin resistance. Indeed, gluconeogenesis is suppressed less by insulin in those with 

physiological hyperinsulinaemia compared to controls. This higher glucose output is 

maintained in both the fasting and fed state leading to higher glucose output in all states 

(Gastaldelli et al., 2001).  The snacking behaviour of populations has increased over 

recent years, and this may go some way to explaining the increase in type 2 diabetes in 

industrialised countries.  

 

5.3.2. What molecular changes occur in cells cultured in low insulin for 3 weeks? 

The insulin resistance measured using the PEPCK gene promoter could in theory be due 

to a defect anywhere along the signalling pathway from receptor to gene promoter. The 

insulin receptor influences insulin sensitivity in a number of ways. Alterations in 

receptor number, affinity or signal transmission can all change insulin sensitivity of a 

given cell. The affinity of the receptor for insulin decreases as insulin levels increase 
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due to negative co-operativity (DeMeyts et al., 1976), and there is also a switch from the 

high affinity receptor type to a lower affinity receptor type after exposure to higher 

insulin levels (Seino and Bell, 1989). This aspect was not investigated in my studies but 

would be well worth checking, although downstream readouts (e.g. PKB) appeared 

relatively normal in the cells with insulin resistance. As with other hormone receptors, 

continued exposure to hormones leads to a down-regulation of extracellular receptors, 

both in vitro and in vivo (Caro et al., 1987, Gavin et al., 1974). In the presence of 

hyperinsulinaemia the Tyr kinase activity of the activated insulin receptor can be 

reduced due to negative feedback from Ser phosphorylation (Zick et al., 1983), the 

increased action of phosphatases on the receptor itself  (Kusari et al., 1994) and the 

effects of negative regulators of insulin signalling  such as SOCS1 (Krebs and Hilton, 

2003).  

 

Likewise, feedback phosphorylation of IRS-1 at Ser307 in response to prolonged insulin 

signalling reduces its ability to associate with the insulin receptor (Aguirre et al., 2002). 

There are many proposed IRS-1 Ser kinases, including JNK (Aguirre et al., 2000, Lee et 

al., 2003), m-TOR (Carlson et al., 2004), S6K (Harrington et al., 2004), GSK-3  (Eldar-

Finkelman and Krebs, 1997) and ERK  (De Fea and Roth, 1997) all proposed to couple 

prolonged signaling to downregulation of signaling and potentially, if not controlled, 

leading to insulin resistance. I have shown that not all insulin signalling kinases are 

equally insulin sensitive with S6 being approximately 20 and 42 times more sensitive to 

insulin than ERK or PKB. Therefore, chronic low concentrations of insulin may affect 

the signalling network, without direct effects on each kinase. However, I found no 

evidence of down regulation of either insulin receptors or IRS-1, as total basal and 

insulin stimulated PIP-3 levels were equal between insulin sensitive and insulin resistant 

cells and overall there was no difference in IRS-1 Tyr phosphorylation or Ser307 
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phosphorylation. However, it is worth noting that the cells had to be fasted for 16 hours 

prior to PIP3 analysis, during which time any deficits created by exposure to 

supplemented medium may have diminished.  

 

Therefore, I was unable to find any significant alterations in the sensitivity of the cells 

to insulin using these signaling components as readouts. It is possible that the chronic 

exposure to insulin has altered something more fundamental in the regulation of the 

PEPCK gene promoter (e.g. level of a transcription factor or an epigenetic regulation). 

Alternatively it could be simply that the sensitivity of PEPCK mRNA to changes in 

cellular insulin action is much greater than that of the signaling pathways or that the 

Taqman method is more sensitive at detecting small dynamic changes than semi-

quantitative Western blotting. In order to establish whether small changes in signaling 

would actually translate to changes in the regulation of the PEPCK gene promoter I then 

tried to establish the degree of change in the activity of signaling nodes that would be 

required to alter insulin sensitivity of the gene promoter. 

 

5.3.3. How great a change in signaling is required to affect regulation of PEPCK 

by insulin? 

I found that there is very little effect of preventing as much as 80% of potential PKB 

activation on the repression of PEPCK gene transcription by insulin. Concentrations of 

the PKB inhibitor MK2206 that achieved ~90% reduction in potential PKB 

phosphorylation did reduce insulin repression of the PEPCK gene. This is consistent 

with previous work where expression of a dominant negative PKB had no effect on the 

expression of PEPCK (Kotani et al., 1999) and where a different PKB inhibitor (Akti 

1/2) had no effect on insulin regulation of PEPCK until there was complete suppression 

of PKB phosphorylation (Logie et al., 2007).  Therefore, this suggests that major loss of 
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PKB activation by insulin would be required for this to be the molecular deficit 

responsible for the insulin resistance produced in my cell model, and such changes in 

PKB phosphorylation should certainly be evident. 

 

On the other hand, by using a PI 3-kinase inhibitor I was able to show a good 

correlation between the level of pathway activation and the level of PEPCK suppression 

by insulin. This suggests that the activity of PI 3-kinase is paramount in determining the 

translation of the strength of the signal from the insulin receptor to the gene. In 

agreement with this, a dominant negative PI 3-kinase mutant blocks insulin inhibition of 

PEPCK, and a constitutively active mutant behaves like an insulin mimetic, reducing 

PEPCK gene transcription (Kotani et al., 1999). All of this together suggests the change 

in insulin sensitivity of the PEPCK gene promoter after incubation in diabesity sera or 5 

pM insulin for 3 weeks could be due to reduced PI 3-kinase signaling. However, I could 

not detect changes in the insulin sensitivity of any of the major downstream signalling 

pathways in these cells. Interestingly incubation of cells with a PKB inhibitor in 

combination with either an mTOR or ERK inhibitor showed no greater effect on insulin 

regulation of PEPCK gene transcription than with a PKB inhibitor alone. Therefore, it is 

quite possible that although the PI 3-kinase pathway is required for this action of insulin, 

there is an as yet unidentified pathway or mechanism independent of PI 3-kinase 

signaling that is responsible for the development of insulin resistance.  

 

5.3.4. Potential mechanisms of insulin resistance: 

Mitochondrial dysfunction is proposed to be involved in the development of type 2 

diabetes, while in high fat feeding models of type 2 diabetes oxidative stress is evident 

in the liver (Raffaella et al., 2008).  However, hyperglycaemia itself is considered to be 

the major driver of the development of oxidative stress. That said, since insulin 
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resistance is evident years before the hyperglycaemia that defines overt diabetes it is 

unlikely that if oxidative stress is a cause of insulin resistance that high glucose is the 

driving factor in its creation. Early in the development of reduced insulin sensitivity 

hyperinsulinaemia develops to overcome it. Furthermore, in animal experiments of 

hyperinsulinaemia in the absence of hyperglycaemia, there is increased oxidative stress 

in the absence of an increased inflammatory response (Ling et al., 2007).  Clinically, 

hyperinsulinaemia is often a necessary part of the treatment of diabetes, and it has been 

known from the early days of insulin therapy that decreasing insulin dosages can 

actually improve hyperglycaemia, thereby by definition improving insulin sensitivity 

(Somogyi and Kirstein, 1938). In adipose tissue, chronic insulin treatment induces the 

development of reactive oxygen species (ROS) and these impair insulin signalling and 

subsequently glucose uptake (Ge et al., 2008). However, there was no impairment of 

insulin signalling in my H4IIe cells. It is possible to measure oxidative stress by 

assaying the levels of carbonyl groups introduced into proteins by ELISA or Western 

blotting. Other possible methods to assess oxidative stress in response to 5 pM insulin 

include measuring superoxide dismutase activity or Tyr nitrosylation. 

 

If hyperinsulinaemia is a cause of insulin resistance, then the current treatment of type 2 

diabetes with insulin, particularly in a non pulsatile nature, may contribute further to 

insulin resistance and be inadvertently worsening complications, albeit less than those 

caused by uncontrolled hyperglycaemia. Indeed, insulin therapy with long acting insulin 

analogues have been implicated in the development of certain cancers  (Hemkens et al., 

2009, Jonasson et al., 2009, Colhoun, 2009) and relief of insulin resistance with 

metformin can reduce cancer risk in type 2 diabetes (Evans et al., 2005). The problems 

of hyperinsulinaemia could be confounded if all tissues are not equally resistant. For 

example, if the brain remains insulin sensitive in the presence of peripheral resistance, 
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then insulin therapy may lead to an increase in Alzheimer’s dementia (Carro and 

Torres-Aleman, 2004). 

 

However, reactive oxygen species are not necessarily detrimental to health. Indeed, 

reactive oxygen species are generated in adipocytes after exposure for insulin and the 

hydrogen peroxide generated is essential for downstream intracellular insulin signalling 

(Mahadev et al., 2001b, Mahadev et al., 2001a).  In C. elegans, caloric restriction, 

which is concomitant with a decrease in insulin signalling, leads to a prolonged lifespan 

despite the greater oxidative stress due to higher levels of oxidative phosphorylation, 

and the prolongation of lifespan can be reduced by the addition of antioxidants (Schulz 

et al., 2007). It is important to note that the higher levels of ROS in this model are not in 

the presence of hyperglycaemia or hyperinsulinaemia. Nevertheless, the C. elegans 

analogue of AMPK, AAK-2, is required for lifespan prolongation (Schulz et al., 2007). 

In human insulin resistance when hepatocytes have more than sufficient energy, one 

could assume that glycolysis could supply the ATP required for cell metabolism. In the 

presence of metformin, which depletes cellular ATP (Foretz et al., 2010), more ATP 

will be required for cellular metabolism, i.e. the cell is in a state of relative energy 

restriction. This will cause a shift towards oxidative phosphorylation to make up the 

ATP debt, and therefore the production of ROS and an improvement in morbidity and 

mortality. 

 

An alternative explanation for the rather PEPCK focused effects of 5 pM insulin 

exposure would be changes in the levels, activity or localization of one or more 

transcription factors involved in the control of PEPCK gene transcription. PGC1α 

directly binds to HNF4α and promotes PEPCK expression. Overexpression of PGC1α 

increases hepatic glucose production through upregulation of PEPCK gene transcription 
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(Puigserver et al., 2003), and the effect of PGC1α on PEPCK is prevented by 

phosphorylation of FOXO (Hall et al., 2000). Insulin induction of SREBP-1 also 

represses PEPCK transcription (Chakravarty et al., 2001). Indeed there are a host of 

transcription factors known to bind to the PEPCK gene promoter including FOXA2, 

CREB, C/EBPβ, RXR, CAR, HNF1, TORC, CBP and of course the basal RNA 

polymerase II complex. It would be well worth examining whether chronic 

hyperinsulinaemia affects the expression or binding to the PEPCK gene promoter of 

these transcription factors in any way. Unfortunately it is not yet entirely clear which 

transcription factors are key to insulin repression of the gene promoter although FOXO, 

FOXA2, PGC1α, TORC and CBP are the most likely to influence insulin regulation.  
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5.4. Conclusions 

I have induced insulin resistance in H4IIe cells by culturing in the presence of 5 pM 

insulin implying that chronic raised insulin is potentially the serum factor in diabesity 

that promotes hepatic resistance to itself. A similar approach should be used to examine 

the effects of simply adding the other factors that are raised in human diabesity serum to 

culture medium to assess if they lead to the development of insulin resistance. The 

development of insulin resistance can be treated in two ways, either overwhelming the 

resistance with more insulin, which may be detrimental, or by relieving the insulin 

resistance. The latter approach would seem more logical. Currently weight loss or use of 

the biguanides can improve insulin sensitivity. The mechanism by which these drugs 

promote insulin sensitivity is still unknown, and investigation into one possible 

mechanism forms the basis of the following chapter. 
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Chapter 6. Molecular connections between the 

insulin sensitising actions of metformin and 

DNA repair. 
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6.1. Introduction 

The beneficial effects of biguanides on the symptoms of diabetes have been known for 

over 500 years. The isolation of guanidine from the French lilac led to the discovery of 

phenformin, no longer used due to the high risk of lactic acidosis, and subsequently 

metformin. Metformin remains the first line pharmacological agent in the treatment of 

type 2 diabetes and the most commonly prescribed oral anti-hyperglycaemic agent. The 

use of metformin continues to increase despite the fact that the mechanism of action 

remains uncertain and somewhat controversial. In an attempt to find mediators of 

metformin efficacy Pearson and colleagues recently performed a genome wide 

association study and surprisingly implicated the DNA repair enzyme, ATM (mutated in 

ataxia telangiectasia), in the glucose regulating actions of metformin (Zhou et al., 2011). 

The only previous indication that ATM may influence metformin action was the 

molecular connections between ATM and the metformin induced kinase, AMPK 

(discussed in Chapter 1.11). 

 

ATM is a Ser/Thr protein kinase activated in response to double stranded DNA breaks 

thus allowing either DNA repair or cell cycle arrest and apoptosis. The substrates of 

ATM are numerous but include SMC1, CHK1 and -2, BRCA1, NBS1, p53 and FANC-

D2, all of which are involved in genomic integrity (Kitagawa et al., 2004, Kim et al., 

1999a, Osborn et al., 2002). Therefore individuals with mutations in ATM, a condition 

known as ataxia telangiectasia (A-T), are more sensitive to ionising radiation leaving 

them susceptible to the development of carcinomata (Savitsky et al., 1995). Most 

interestingly, the families of patients with A-T have been reported to have a higher 

incidence of insulin resistance (Bar et al., 1978, Blevins and Gebhart, 1996). The 

ATM/p53 signalling pathway has long been associated with DNA repair and hence in 

the suppression of tumours but more recently has been linked to regulation of glucose 
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homeostasis  (Armata et al., 2010) and there is increasing awareness of the links 

between metabolism and cell growth (Najafov and Alessi, 2010).  

 

In addition to ATM, the related DNA repair kinase molecule, DNA-dependent protein 

kinase (DNA-PK), has recently been implicated in the control of glucose metabolism 

through the regulation of gluconeogenic gene expression. Upon feeding, DNA-PK is 

dephosphorylated and activated (Wong et al., 2009). DNA-PK is also activated by 

AMPK, a major downstream target of biguanides (see Chapter 1.11 and 1.12.2.1 and 

(Chanda et al., 2009)). DNA-PK then phosphorylates upstream stimulatory factor-1 

(USF-1) which induces the transcription of SHP (Chapter 1.10.6) leading to the 

repression of G6Pase and PEPCK gene transcription along with an increase in 

lipogenesis (Wong et al., 2009, Kong et al., 2011, Chanda et al., 2009). Therefore, it 

seems that cell cycle proteins are responsive to nutritional cues and hence contribute to 

the balanced regulation of gluconeogenesis and energy homeostasis.  

 

The energy balance within cells is maintained by cellular respiration. This is the method 

by which energy is liberated as ATP to fuel intracellular processes and occurs due to 2 

catabolic processes, glycolysis and oxidative phosphorylation. Glycolysis splits the 

glucose into two 3 carbon sugars liberating 2 molecules of ATP in the process. The 

products of glycolysis can then be used in oxidative phosphorylation yielding up to a 

further 34 molecules of ATP. The rate of oxidative phosphorylation is decreased under 

hypoxic condition by the induction of hypoxia-inducible factors (HIFs), and these 

transcription factors can also increase gluconeogenic gene expression (Choi et al., 2005). 

In LKB-1 and AMPK deficient fibroblasts, the levels of HIF-1α are also increased  

(Shackelford et al., 2009) suggesting a role for this pathway in the maintenance of 
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oxidative phosphorylation and also for a role of biguanides in the regulation of cellular 

respiration. 

 

The work in this chapter is an attempt to obtain mechanistic information on the link 

between ATM and metformin control of glucose production in the liver. In particular I 

investigate the possible role of DNA repair proteins in the control of AMPK and 

gluconeogenic gene expression by biguanides.  
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6.2. Results 

6.2.1. ATM and gluconeogenic gene expression 

To assess the influence of ATM on a well reported action of metformin and AMPK, 

namely the control of hepatic gene expression, this was monitored in H4IIe cells 

exposed to Ku55993, a specific inhibitor of ATM. Metformin stimulated the 

phosphorylation of AMPK and ACC within 30 minutes (Figure 6.1), while pretreatment 

of the cells with Ku55993 reduced both basal and metformin stimulated 

phosphorylation of AMPK and ACC (Figure 6.1). The inhibitor reduced the basal level 

of SMC phosphorylation (a reported substrate of ATM), and although metformin did 

not stimulate the phosphorylation of SMC, this phosphorylation appeared less sensitive 

to KU55993 in the presence of metformin (Figure 6.1).  Ku55993 also reduced basal 

and insulin stimulated phosphorylation of S6 (Figure 6.1). Etoposide, a compound often 

used to induce double stranded DNA breaks and hence activate ATM, had no effect on 

SMC, AMPK or ACC phosphorylation in my experiments (Figure 6.1). 

 

These experiments verified that metformin could induce AMPK under these conditions 

and that the relatively selective ATM inhibitor could reduce a number of signalling 

events involved in insulin action. Next H4IIe cells were fasted for 3 hours prior to 3 or 

16 hours stimulation with  dexamethasone (500 nM) and  cAMP (100 µM 8-CPTcAMP) 

in the presence or absence of insulin, metformin or etoposide (although I had no 

evidence that etoposide could activate ATM in these cells). Total cellular RNA was 

extracted and cDNA synthesised before assessment of PEPCK and actin levels by 

Taqman analysis. At both time points, there was stimulation of PEPCK expression by 

dexamethasone and cAMP and this stimulation was prevented by the presence of insulin 

(Figure 6.2). There was no effect on hormonal regulation of PEPCK expression by 

culturing in the presence of metformin or etoposide (Figure 6.2). 
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Metformin is a much weaker inducer of AMPK in cells than phenformin (Jalling and 

Olsen, 1984). Therefore it was possible that the regulation of PEPCK by AMPK 

required a more robust induction of this pathway than could be achieved by overnight 

exposure of cells to metformin. Hence, the optimal concentration of phenformin 

required to induce phosphorylation of AMPK was established (Figure 6.3). Phenformin 

(0.25mM) induced AMPK 3-fold, compared to a 1.3-fold rise with 2.5 mM metformin 

(Figures 6.1 and 6.3). Interestingly, there was a similar rise in the phosphorylation of 

ACC with both agents (Figure 6.3).  

 

H4IIe cells were fasted for 3 hours prior to 3 hours stimulation with  dexamethasone 

(500 nM) and  cAMP (100 µM 8-CPTcAMP) in the presence or absence of insulin or 

phenformin. Total cellular RNA was extracted and cDNA synthesised before 

assessment of PEPCK and actin levels by Taqman analysis. PEPCK expression was 

stimulated by dexamethasone and cAMP and this was prevented by culturing in the 

presence of either insulin or phenformin (Figure 6.4). Therefore phenformin had a 

greater effect on AMPK phosphorylation and prevented stimulation of PEPCK (Figures 

6.3 and 6.4). Thus, the effects of inhibition of ATM were assessed on these actions of 

phenformin. There was a trend towards phenformin stimulation of AMPK 

phosphorylation being reduced by the presence of Ku55993, but this was not 

statistically significant (Figure 6.5), mainly due to the fact  

that the data was quite variable between experiments even on the degree of induction in 

AMPK phosphorylation by phenformin. Again, the insulin stimulated phosphorylation



 

F
ig

u
r
e
 6

.1
 E

ff
ec

t 
o
f 

A
T

M
 i

n
h
ib

it
io

n
 b

y
 K

u
5
5
9
9
3
 o

n
 i

n
tr

ac
e
ll

u
la

r 
si

g
n
al

li
n
g
 i

n
 H

4
II

e 
ce

ll
s.

 C
el

ls
 w

er
e 

fa
st

ed
 f

o
r 

3
 h

o
u
rs

 p
ri

o
r 

to
 p

re
 t

re
at

m
e
n
t 

fo
r 

3
0
 m

in
u
te

s 
w

it
h
 o

r 
w

it
h
o
u
t 

in
h
ib

it
o
r 

as
 i

n
d
ic

at
ed

, 
th

e
n
 1

 h
o
u
r 

tr
ea

tm
en

t 
as

 s
h
o
w

n
. 

A
n
al

y
si

s 
b
y
 w

es
te

rn
 b

lo
tt

in
g
 w

it
h
 t

h
e 

in
d
ic

at
ed

 

an
ti

b
o
d
ie

s.
 (

n
=

2
) 

 

237 



 

238 

F
ig

u
r
e 

6
.1

 c
o
n
t 

D
en

si
to

m
et

ry
  

Phospho SMC : Actin Phospho AMPK: Actin 

Phospho ACC: Actin   

&
 

&
   

 

+
  

@
 

  

*
  

#
   

#
  

D
M

S
O

 

1
0
 µ

M
 K

u
5
5
9
9
2
 

2
.5

 m
M

 M
et

fo
rm

in
 

1
0
 n

M
 I

n
su

li
n
 

4
0
 µ

M
 E

to
p
o
si

d
e 

2
.5

 m
M

 M
et

fo
rm

in
 +

 

1
0
 µ

M
 K

u
5
5
9
9
2
 

 1
0
 n

M
 I

n
su

li
n
 +

 

1
0
 µ

M
 K

u
5
5
9
9
2
 

 

  

*
   

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
82

0

0.
51

1.
52

2.
5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

0

0.
51

1.
52

2.
53

3.
54

4.
55 Phospho S6 : Actin 



 

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

S
e

ru
m

 F
re

e
S

ti
m

u
la

te
d

S
ti

m
u

la
te

d
 +

 1
0

 n
M

 i
n

s
u

li
n

S
ti

m
u

la
te

d
 +

 2
.5

 m
M

M
e

tf
o

rm
in

S
ti

m
u

la
te

d
 +

 4
0

 u
M

E
to

p
o

s
id

e

C
o
n
d
it
io
n

PEPCK mRNA : Actin mRNA

F
ig

u
r
e
 6

.2
 T

h
e
re

 i
s 

n
o
 e

ff
ec

t 
o
f 

M
et

fo
rm

in
 o

n
 P

E
P

C
K

 g
en

e 
ex

p
re

ss
io

n
 i

n
 H

4
II

e
 c

el
ls

. 
 C

el
ls

 w
er

e 
fa

st
ed

 f
o
r 

3
 h

o
u
rs

 p
ri

o
r 

to
 

tr
ea

tm
e
n
t 

fo
r 

3
 h

o
u
rs

 (
W

h
it

e 
B

ar
s 

) 
o
r 

1
6
 h

o
u
rs

 (
B

la
c
k
 B

ar
s)

 a
s 

in
d
ic

at
ed

. 
A

n
al

y
si

s 
b
y
 R

T
P

C
R

 a
n
d
 e

x
p
re

ss
ed

 a
s 

ra
ti

o
 o

f 
P

E
P

C
K

 t
o
 

ac
ti

n
 m

R
N

A
 l

ev
e
ls

. 
n
=

2
 

PEPCK mRNA : Actin mRNA 

S
er

u
m

 F
re

e 
S

ti
m

u
la

te
d

 
S

ti
m

u
la

te
d

 +
 

1
0

n
M

 I
n

su
li

n
 

S
ti

m
u

la
te

d
 +

 

2
.5

m
M

 M
et

fo
rm

in
 

S
ti

m
u

la
te

d
 +

 

4
0

µ
M

 E
to

p
o

si
d

e 

239 



240 

of PKB was diminished in the presence of Ku55993 (Figure 6.5). Importantly, there was 

no effect of phenformin, insulin or Ku55993 on the phosphorylation of SMC (Figure 

6.5).  

 

Next I assessed the effects of the inhibition of ATM on phenformin regulation of gene 

expression in H4IIe cells. Cells were treated as in Figure 6.4 with or without the 

addition of Ku55993. Total cellular RNA was extracted and cDNA synthesised before 

assessment of mRNA of specific genes by Taqman analysis. Insulin prevented the 

stimulation of PEPCK expression by dexamethasone and cAMP (Figure 6.6 A), insulin 

being more effective than phenformin (Figure 6.6 A).The inhibition of ATM, consistent 

with the reduction of PKB phosphorylation, reduced the effects of insulin on PEPCK 

expression (Figure 6.6 A). Insulin also prevented the stimulation of expression of 

IGFBP-1 by dexamethasone and cAMP (Figure 6.6 B). However, phenformin had no 

effect on IGFBP-1 expression, and in contrast to its effects on PEPCK gene 

transcription there was no effect of Ku55993 on the insulin regulation of IGFBP-1 

(Figure 6.6 B).  Similarly, Ku55993 did not affect the action of insulin on G6Pase gene 

transcription either (Figure 6.6 C). Interestingly, phenformin repressed G6Pase gene 

transcription in these same cells where no effect on PEPCK was observed, and this 

effect was blocked by the presence of Ku55993 (Figure 6.6 C). The effects of 

phenformin and Ku55993 on the PEPCK gene promoter were also examined in reporter 

cells (Figure 6.6 D). LLRP7 cells were fasted for 3 hours prior to 16 hours stimulation 

with  dexamethasone (500 nM) and  cAMP (100 µM 8-CPTcAMP) in the presence or 

absence of insulin, or phenformin both with and without the presence of Ku55993.  The 

cells were lysed and luciferase activity measured (Chapter 2.20). There was stimulation 

of luciferase activity with dexamethasone and cAMP, and this stimulation was 

prevented by both insulin and  
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phenformin (Figure 6.6 D). In complete contrast to endogenous gene transcription, the 

effects of insulin on luciferase activity were not reduced by the presence of Ku55993, 

and the inhibitor enhanced the ability of phenformin to prevent the stimulation of 

luciferase activity in reporter cells (Figure 6.6 D) 

 

The inhibition of PKB phosphorylation by the ATM inhibitor was somewhat surprising; 

therefore I investigated the effects of this compound on insulin signalling in more detail 

(Figure 6.7). H4IIe cells were incubated for 1 hour in the presence or absence of insulin 

either with or without the presence of Ku55993 (Figure 6.7). The inhibitor prevented the 

insulin stimulated phosphorylation of PKB at both Thr 308 and Ser473 (Figure 6.7).  

Ku55993 also reduced the insulin stimulated phosphorylation of S6 (Figure 6.7). 

However, the inhibitor had no effect on the downstream phosphorylation of p42/44 

MAPK (Figure 6.7). 

 

6.2.2. DNA-PK and the regulation of gluconeogenic gene expression 

DNA-PK is closely related to ATM in structure, also involved in DNA repair and has 

been implicated in control of glucose metabolism (Wong et al., 2009). Therefore I 

decided to check whether hepatic gene transcription was affected by inhibition of DNA-

PK (Figure 6.8). H4IIe cells were fasted for 3 hours prior to 3 hours stimulation with  

dexamethasone (500 nM) and  cAMP (100 µM 8-CPTcAMP) in the presence or absence 

of insulin with or without the addition of 10 µM Nu 7441. Total cellular RNA was 

extracted cDNA synthesised before assessment of PEPCK, G6PAse, IGFBP-1 and actin 

levels by Taqman analysis.  Dexamethasone and cAMP stimulated the expression of 

PEPCK mRNA and this was prevented by insulin (Figure 6.8 A). The addition of a 

DNA-PK inhibitor increased both stimulated and insulin repressed levels of PEPCK 

mRNA (Figure 6.8 A). However, the inhibitor partly reduced the response to insulin 
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(80% repression without the DNA-PK inhibitor, and a 47% reduction with it (Figure 6.8 

A)). In contrast, inhibition of DNA-PK prevented the stimulation of G6Pase mRNA by 

dexamethasone and cAMP and therefore it is not possible to assess whether it blocked 

regulation by insulin (Figure 6.8 B). The effects of inhibition of DNA-PK on IGFBP-1 

gene expression were similar to the effects on PEPCK, with the inhibitor increasing 

both stimulated and insulin repressed levels of IGFBP-1 mRNA (Figure 6.8 C). Once 

more there was a reduction in the action of insulin with the percentage repression by 

insulin reducing from 95% to 50% when Nu 7441 was applied (Figure 6.8 C).  The 

effects of Nu7441 on LLRP7 reporter cells (Chapter 4) were similar to the effects on 

PEPCK mRNA (Figure 6.8 D). LLRP7 cells were fasted for 3 hours prior to 16 hours 

treatment with  dexamethasone (500 nM) and  cAMP (100 µM 8-CPTcAMP) in the 

presence or absence of insulin with or without the addition of 10 µM Nu 7441. Cells 

were lysed and then assessed for luciferase activity which was corrected for total protein 

level within each lysate. Dexamethasone and cAMP stimulated the expression of 

luciferase activity and this was prevented by the presence of insulin (Figure 6.8 D). The 

inhibitor increased the basal, stimulated and insulin repressed levels of luciferase 

activity, and almost completely removed any effect of insulin on the suppression of 

luciferase activity (Figure 6.8 D). 

 

There was approximately a 50% reduction in the protein levels in the sample treated 

with the DNA-PK inhibitor suggesting that the prolonged exposure to this compound 

was highly toxic to the cells and making interpretation of data difficult. Therefore, a 

second DNA-PK inhibitor, DMNB, was investigated to establish whether the cells 

simply couldn’t cope without DNA-PK activity. This compound was less toxic to the 

cells (as judged by visual inspection of cells) but had little effect on the expression of 
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PEPCK mRNA at concentrations ranging from 25 to 150 µM (Figure 6.9). In LLRP7 

cells, there was no alteration in hormonal regulation of the luciferase activity across the 

same range of DMNB concentrations (Figure 6.9), and no significant effect on thelevels 

of protein in the cells. The ATM inducer, etoposide appeared to reduce insulin 

regulation of the PEPCK promoter in the LLRP cells (Fig 6.10 A) however this agent is 

known to block protein synthesis. Indeed there was a dose dependent inhibition of 

cellular protein in response to etoposide treatment of the LLRP cells for 16 hours, most 

notable in the insulin treated cells (Fig 6.10 B). Therefore if the luciferase activity is not 

normalised to protein levels, then no effect of etoposide on insulin regulation of the 

PEPCK promoter is evident (Figure 6.10 C). This makes interpretation of the data 

difficult, as it is possible etoposide is indirectly antagonising insulin regulation of 

PEPCK, or is simply reducing insulin stimulation of protein synthesis thereby 

generating an artefact in the data analysis. 
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6.3. Discussion 

The aim of this chapter was to assess whether the ATM DNA repair kinase (or related 

kinases) influenced biguanide action on gluconeogenic gene expression. 

 

Metformin is a commonly used insulin sensitizer in the treatment of type 2 diabetes and 

insulin resistance. Despite the almost ubiquitous use of this drug, the mechanism of 

action is still unclear. The proposed mechanism of action of metformin in control of 

glucose homeostasis includes phosphorylation and activation of AMPK (Zhou et al., 

2001). Metformin probably induces AMPK as a result of its repressive action on the 

respiratory chain, promoting accumulation of AMP in cells with metformin transporters 

(OCT1). AMP allosterically induces AMPK by enhancing its phosphorylation by LKB1 

or CaMKK and reducing its dephosphorylation. However, genome wide association 

studies have demonstrated an association between ATM and the efficacy of metformin 

in the control blood glucose (Zhou et al., 2011). 

 

Polymorphisms in the ATM sequence could potentially influence metformin regulation 

of glucose control in multiple ways. Firstly, ATM could lie upstream of AMPK and 

directly regulate the activity of LKB1, CaMKK or AMPK itself. Alternatively, ATM 

could influence metformin uptake, its action on the respiratory chain, or the 

accumulation of AMP. Of course metformin regulation of glucose metabolism could be 

influenced by ATM activity totally independently of AMPK such as by affecting 

transcription factors. Finally, it remains possible that the GWAS has identified a 

polymorphism associated with a gene other than ATM despite the close chromosomal 

localisation of the polymorphisms to the ATM gene.  In support of ATM lying between 

metformin and AMPK there is evidence that ionising radiation  (Sanli et al., 2010) and 

etoposide  (Fu et al., 2008) both induce AMPK activity in an ATM-dependent fashion, 
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while ATM can phosphorylate LKB1 at Thr 366, and in HeLa cells which lack ATM, 

this phosphorylation is absent (Sapkota et al., 2002).  

 

Therefore, does the inhibition of ATM alter the regulation of gluconeogenic gene 

expression by biguanides? Previous work had shown that activation of AMPK by 

AICAR repressed PEPCK and G6Pase gene transcription (Lochhead et al., 2000), hence 

it seemed reasonable to assume that if ATM influenced AMPK activation by biguanides 

that we would detect this using the PEPCK and G6Pase gene promoters as readout. 

However, more recent work has established that although metformin induces AMPK 

phosphorylation, this is not essential for its effects on gluconeogenesis (Foretz et al., 

2010). Glucose production in hepatocytes is reduced by metformin, even in AMPK null 

cells (Foretz et al., 2010). Despite this, if ATM lies upstream of AMPK then it should 

still be possible to observe reduced regulation of AMPK by biguanides, and monitoring 

gene transcription would add to our knowledge on whether ATM influenced an AMPK-

independent effect of biguanides on gluconeogenesis. 

 

I have shown that phenformin treatment of H4IIe cells represses both PEPCK and 

G6Pase gene transcription, but it does not regulate IGFBP-1 gene transcription. 

Furthermore, inhibition of ATM prevented the repression of G6Pase but not PEPCK 

gene transcription by phenformin. Surprisingly, the insulin repression of PEPCK (but 

not G6Pase and IGFBP-1) was reduced in the presence of the ATM inhibitor. Inhibition 

of ATM antagonizes insulin induction of PKB phosphorylation in H4IIe cells, 

suggesting that ATM activation may enhance insulin signaling and this would provide 

an explanation for the antagonism of insulin repression of PEPCK by ATM inhibition, 

as the regulation of PEPCK gene transcription is affected by PKB inhibition (Logie et 

al., 2007). Indeed, ATM has been implicated in the phosphorylation of PKB at Ser473 
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(but my work is the first demonstration of an effect on Thr 308 phosphorylation), as has 

DNA-PK (Viniegra et al., 2005, Bozulic et al., 2008). In addition, ATM is required for 

full activation of PKB and the translocation of GLUT4 by insulin in muscle cells 

(Halaby et al., 2008). Therefore, ATM may be involved in a number of pathways 

involved in glucose homeostasis, affecting both the PEPCK response to insulin and the 

G6Pase response to biguanides. It is not clear why there are differential effects on 

PEPCK and G6Pase gene transcription, however previous work has found variation in 

the response of these gene promoters to signalling inhibitors (Lipina et al., 2005). The 

simplest explanation could be that ATM mediates the insulin receptor connection to 

PKB, and the metformin connection to AMPK, while PKB activation is not required for 

insulin repression of G6Pase but is required for repression of PEPCK by insulin. 

However, previous data implicates PKB in the insulin regulation of both genes  (Logie 

et al., 2007). 

 

In addition, increased ATM activity can downregulate mTORC1 signalling (Cam et al., 

2010). Downregulation of mTORC1 with rapamycin alters the metabolism of lipids by 

blocking insulin stimulated SREBP-1c expression, but rapamycin has no acute effect on 

insulin repression of PEPCK (Li et al., 2010). In contrast, chronic mTORC1 inhibition 

with rapamycin leads to insulin resistance and glucose intolerance, effects thought to be 

mediated in part by enhanced hepatic PEPCK and G6Pase expression (Houde et al., 

2010), suggesting that long term loss of this pathway (e.g. by enhanced ATM activity) 

could contribute to insulin resistance. If correct one could hypothesize that metformin 

insulin sensitising effects could then be mediated through inhibition of ATM and relief 

of mTORC1 inhibition. However, there is little evidence for metformin inhibition of 

ATM in cells. In addition many studies suggest that inhibition of mTORC1 reduces the 

S6 kinase induced negative feedback on the IRS molecules (see Chapter 1.6.2), thus 
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current models predict enhanced insulin signalling by mTORC1 inhibition. Consistent 

with this, adiponectin, which also induces AMPK phosphorylation, and reduces 

mTORC1 improves insulin signalling (Wang et al., 2007), as does overexpression of a 

dominant negative form of raptor (Koketsu et al., 2008). 

 

One of the major roles of ATM is in the repair of DNA damage, and it is sensible that 

there is a close relationship between continued cell growth and proliferation and the 

energy state of the cell, i.e. it would be foolish for cell growth and proliferation to 

continue in the presence of either gross DNA damage or energy deficit. Indeed patients 

with type 2 diabetes have an increased rate of most carcinomas, but a reduced level of 

prostatic cancer (Hemminki et al., 2010). In cancer cells, there is a switch from reliance 

on oxidative phosphorylation to dramatically enhanced aerobic glycolysis (Warburg, 

1956). This may be mediated by an upregulation of HIF-1 which is also seen in cells 

that lack ATM (Kim and Kaelin, 2004, Ousset et al., 2010), or by loss of p53 or by 

induction of the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase isoform 3 (PFKFB3) (Colombo et al., 2010). Interestingly, there is a 

reduction in the rates of cancer in metformin treated patients (Evans et al., 2005), and it 

may be that because metformin switches cellular glucose metabolism back to oxidative 

phosphorylation (Ousset et al., 2010).  

 

Of course there are many other possible mechanisms that could link ATM and glucose 

metabolism. For example, nibrin (NBS1) is part of the double stranded DNA repair 

complex, and its phosphorylation by ATM is essential for repair of double stranded 

DNA breaks. Phosphorylation can only occur if NBS1 has previously been deacetylated 

by SIRT1 (Yuan et al., 2007), a protein that also has a key role in the control of 

gluconeogenesis. The CRCT2-CREB-CBP complex activates PGC1α and leads to 
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increased gluconeogenic gene expression (Yoon et al., 2001, Koo et al., 2005, Dentin et 

al., 2007). The deacetylation of CRTC2 by SIRT1 targets CRCT2 for ubiquitin 

mediated degradation, and therefore subsequent suppression of gene expression that is 

dependent of PGC1α (such as PEPCK and G6Pase) (Liu et al., 2008). Treatment with 

metformin increases both SIRT1 levels and activity in a mouse model of diabetes and 

leads to a reduction in PEPCK and G6Pase gene transcription (Caton et al., 2010). The 

activation of ATM also increases SIRT1 levels (Wang et al., 2006), and thus SIRT1 

induction is associated with metformin action, ATM activity and the repression of 

PEPCK and G6Pase gene expression. In contrast, SIRT1 has also been implicated in the 

stimulation of gluconeogenesis in response to nutrient signalling. By directly 

deacetylating PGC1α and allowing its interaction with HNF4α and FOXO1, SIRT1 

leads to the induction of gluconeogenic genes, albeit not under the control of 

glucocorticoids and glucagon (Rodgers et al., 2005). This differential control may 

explain how nutrient overload, as one sees in obesity, may lead to increased 

gluconeogenesis. Different subcellular localisation of SIRT1, or priming by another 

kinase such as ATM, may go some way to explaining how the same protein can have 

two different effects, but the precise molecular link between SIRT1 and metformin 

action remains poorly studied. 

 

Inhibition of DNA-PK stimulated PEPCK and IGFBP-1 mRNA in the presence of 

cAMP and glucocorticoid and led to a modest reduction in response to insulin. In 

contrast, there was a reduction in glucocorticoid and cAMP stimulation of G6Pase. If 

DNA-PK regulates PKB in H4IIe cells by phosphorylating the Ser473 site  (Park et al., 

2009) then inhibition of DNA-PK would be expected to block insulin repression of PKB, 

similar to the effects seen with ATM inhibition. However, the toxic effects on the H4IIe 
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cells of the inhibitor employed made it difficult to interpret any effects on gene 

transcription. 

6.4. Conclusions 

In conclusion, studies with a selective inhibitor of ATM suggest it plays a role in the 

control of gluconeogenic gene expression, either in the response to insulin (PEPCK) or 

biguanides (G6Pase). This adds further credence to the GWAS identifying ATM as a 

‘metformin action gene’.  

. 
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 The work presented in this thesis has contributed to the understanding of the 

development of hepatic insulin resistance and the generation of tools that may aid the 

search for effective therapeutics for the prevention of T2DM. I have characterised an 

insulin resistant cell model as defined by a reduction in the ability of insulin to repress 

cAMP and glucocorticoid stimulated gene expression. The model was originally 

developed using serum from obese rats  (Logie et al., 2010) but I have extended the 

work and made it more clinically relevant by culturing in serum from human diabesity 

patients. Furthermore, the insulin response of the cell model was relatively accurate at 

diagnosing sera as case or control; indeed it was more effective than any single 

biochemical marker, including glucose, at identifying cases and controls (Table 3.3). 

However, there was not a linear relationship between the generation of insulin 

resistance ex vivo in culture by sera and any single serum or clinical factor, suggesting 

there is more than one factor in the sera contributing to generation of hepatic insulin 

resistance in culture. That said, I found that chronic exposure of cells to slightly 

elevated insulin concentration can affect the insulin sensitivity of the cells to a similar 

degree as complete diabesity sera. This points towards insulin as a significant promoting 

factor in the development of insulin resistance. It is of note that the development of 

insulin resistance in these experiments is not the complete loss of insulin action as one 

may see in other models of insulin resistance, but a shift in the potency of insulin action 

as observed in the pathophysiological state. 

 

Unfortunately, I was not able to identify the intracellular changes associated with the 

reduced insulin action in the cells. In particular there were no defects in the classical 

IRS-PI 3-K-PKB insulin signalling pathway, and since almost complete inhibition of 

PKB is required to alter the response of PEPCK gene transcription to insulin this argues 

against the diabesity sera effects being due to alterations in PKB signalling. Presumably  
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there are other pathways involved in the insulin repression of gluconeogenic genes. 

Future work could investigate other potential pathways to the PEPCK gene promoter, 

such as oxidative stress mediators, AMPK pathway, a pathway downstream of PI-3K 

but not involving PKB, microRNA, and histone modifiers, all within cells cultured in 

the presence of these higher levels of insulin (or diabesity sera) (Figure 7.1). The use of 

chromatin immunoprecipitation to establish changes in the binding of specific 

transcription factors to the PEPCK promoter would establish the endpoint changes 

associated with reduced insulin response. Unfortunately the factors that mediate insulin 

repression of this promoter have not been completely elucidated but PGC1α, FOXO, 

HNF3B, TORC and CBP are worthy of investigation. 

 

Due to time constraints I was unable to assess the effects of other constituents of 

diabesity serum on the development of insulin resistance in hepatoma cells. Future 

investigation would include culturing in serum containing leptin or glucose, or depleted 

of adiponectin, to the concentrations seen in the serum of our volunteers. If a similar 

change in insulin sensitivity was also seen by chronic exposure to leptin or glucose, it 

would indicate a redundant role of each of these components in the development of 

resistance and nullify any intervention designed to target only one component (i.e. 

hypoglycaemic agent that does not reduce leptin or insulin). This information would 

also permit the “manufacture” of a resistance causing serum by mixing all of these 

components, allowing future investigation of signalling changes and novel insulin 

sensitisers. However if only one component is responsible for the observed effect of the 

diabesity sera then that becomes the key therapeutic target.  

 

A weakness of the current work is the lack of data on sera from obese (insulin resistant), 

normoglycaemic individuals and from lean diabetic individuals. These populations 
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would permit clearer assessment of whether the resistance developing in response to 

culture in diabesity sera was more related to obesity or diabetes (both of which have 

associations with hyperinsulinaemia, so both could still generate resistance in our 

model). This work is key to evaluate potential target patient populations for therapeutics 

developed using this screen. In theory separate cell models generated using sera from 

each group could identify different lead compounds for improvement of insulin 

sensitivity. 

 

Unfortunately, culturing LLRP7 cells in the serum of insulin resistant humans did not 

alter insulin sensitivity of the transgene, despite it containing all of the gene promoter 

elements required for insulin repression of the PEPCK gene promoter. The reasons for 

this are not known, but it may be related to the longer experimental time required for 

luciferase production (compared to mRNA generation), the subsequent stability of 

luciferase (as we are measuring the negative effect of insulin on transcription if the 

protein is stable there would be a lag before detection of changes in protein) and, we 

had the complication of an off-target stimulation of luciferase production by insulin 

mediated possibly by a vector element. In addition, we did not assess the number or 

position of copies of the transgene inserted into the cellular genome of each reporter cell, 

all of which could affect the basal and stimulated expression of luciferase. There are 

ways to attempt to address each of these possible problems, for example, introduction of 

a destruction domain within the luciferase to increase its turnover, the generation of 

isogenic clones at a targeted location of the genome, (potentially even a knockin of a 

bicistronic PEPCK-luciferase gene in the position of the endogenous PEPCK gene). Our 

colleague, Dr Sakamoto is investigating infection of mice with an adenoviral construct 

including the PEPCK gene promoter luciferase construct, and this will help establish 
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reporter constructs that are less sensitive to insulin in obese mice (as these vectors do 

not integrate into host genome). 
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In conclusion, the work presented in this thesis shows that the serum from human 

diabetic subjects is able to induce insulin resistance in rat hepatoma cells and that 

chronic, albeit mild, hyperinsulinaemia may be sufficient to recapitulate this property of 

the serum. The importance of this finding is that it provides additional evidence that a 

defect in insulin secretion (producing even mild hyperinsulinaemia) may be a major 

cause of insulin resistance, placing β-cell problems earlier in the etiology of type 2 

diabetes than many believe. Indeed one could argue that if mild hyperinsulinaemia 

affects insulin sensitivity of hypothalamic neurons it could lead to or enhance 

hyperphagia and adiposity, hence beta cell defects could arise prior to obesity as well as 

clinical insulin resistance. These questions on the time line of development of endocrine 

and metabolic defects are crucial to the development of appropriate therapeutics to 

combat the underlying cause of type 2 diabetes rather than just the symptoms. One 

hopes that clinically relevant cell and animal models can be developed to accelerate the 

discovery of such agents before the diabesity epidemic cripples our health service. 
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Appendix 1 

 

Inclusion Criteria  

Patients must fulfil all of the following criteria:  

Obese Diabetic group 

• Diabetes (diet treated)  

• Hba1c ≤ 8%  

• Male  

• White European  

• Age  >35 and <60  

• BMI ≥ 30  

• Non−smoker  

• No treatment with fibrate or anti-diabetic medication 

 

Control group 

• Male  

• White European  

• Age = >35 and <60  

• BMI < 27  

• Non−smoker  

• No treatment with fibrate medication 
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Exclusion Criteria 

 

Patients are to be excluded from the study if they meet any of the following criteria: 

 

Obese Diabetic group 

• HbA1c >8%  

• Female  

• Age ≥ 60   

• BMI <30  

• Smoker  

• Concurrent treatment with fibrates or anti-diabetic 

• Family history of type 1 diabetes (defined as relative developing diabetes and 

commencing insulin treatment within 6 months)  

• Non White−European 

 

Controls. 

• Diabetes  

• Female  

• Age ≥ 60  

• BMI > 30  

• Smoker  

• Concurrent treatment with fibrates  

• Family history of diabetes in first degree relative 

• Non White−European
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Appendix 2 

 

Rat PEPCK sequence 

GTACGAGCGCTGAACATCACACAAGGTGGGCTGGGAGCTCTTTGGGGAGTC

CTAAGAGGGCAGCTGGCAATGGACACCTAGCAGTCCCTTTGAGACTTATTTC

AGATGGAGCTGTAGAAAGATGCCATGGCTCACAGTGCCTCCCTGGGAAGGG

GGCAGAGGGCTGCCCAGTGAGGCCTCTTGCGAGCAGGAAATCACCAGAGAC

AAGGAAAGACCAGACCCCAGGATGACCTCAGTTAGGCCTTGCCCGACTGTC

CTCAGAGTCCCATTCTCTGTGTCCTGGTTCTTTTAGAAGATCATGGACCTCC

AGGTCATTTCGTAACCGGAATCTGCCTTGCGGGGGGTTTTGACAAGCTATGG

TATAGTGTATGTGGGGGTACTGACGAATTGGAAGATCATGGAGACCCCTTC

TCCTCCTCCATCATTGGTCTGCCACATCCCTCCCAGGAGACTCACAGCAGAG

AGACCTTGGATGTATGTAGGGTGCTTTAAAACTCCAGCTGAGTTACAGTCTC

TCCTTTCTGTTTTCACCTTAACCTTCCAGGGATGCAAACCCACGACAGGTTT

AGCAGCAGAGTGGAGGCTGGCCATGAATCTCAGAGAAAGTGCTCACTGGAA

AGGCTGGTTTAGCCCAGGCCTGATGTGGAGGCACTGAGCTGGACGTTCTAG

CGGGGTTGACACCCAACAGTTTACATAGGGGGAGGCCACCCCTCCTGAGCA

GTCTCGGTGACTTGAAGAGGAAGCCGCTTCTTCTGTACCAACACAGAAGCT

CCAGCGAACCCCCAGAATGCTGGCAGTGTGGGTGCTATGTAAAAGTATTTA

CATAGCTTTGTAGAGTGAGCCAAGCCCAGTCTGTTTGGGATGACTCTTCACA

GTGCCTCGAATCTGTCACACGTCTTAGTAAGCAGAGTCACAGAGTTTCTGTC

ACATCATCCTCCTGCCTACAGGGAAGTAGGCCATGTCCCTGCCCCCTACTCT

GAGCCCAGCTGTGGGAGCCAGCCCTGCCCAATGGGCTCTCTCTGATTGACTT

CTCACTCACTTCTAAACTCCAGTGAGCAACTTCTCTCGGCTCGTTCAATTGG

CGTGAAGGTCTGTGTCTTGCAGAGAAGGTTCTTCACAACTGGGATAAAGGT
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CTCGCTGCTCAAGTGTAGCCCAGTAGAACTGCCAAGCCCCTTCCCCTCCTCT

CCCTAGACTCTTGGATGCAAGAAGAATCCAGGCAGCTCCAAGGGTGATTGT

GTCCAACCTAGAATGTCTTGAAAAAGACATTAAGGGGACTAGAGAAGACAG

GGGATCCAACGGTTCTCTGCAGCCCAGCCTGACTGACATGTAACTCTTCTGG

TTCTCACCAGCCAGCTGGACCTGCTTAGTATTCTTTCTGCCTCAGTTTCCCAG

CCTGTACCCAGGGCTGTCATAGTTCCATTTCAGGCAGTAGTAATGAATGAGC

TGACATAAAACATTTAGAGCAGGGGTCAGTATGTATATAGAGTGATTATTCT

ATATCAGGCATTGCCTCCTCGGAATGAAGCTTACAATCACCCCTCCCTCTGC

AGTTCATCTTGGGGTGGCCAGAGGATCCAGCAGACACCTAGTGGGGTAACA

CACCCCAGCCAACTCGGCTGTTGCAGACTTTGTCTAGAAGTTTCACGTCTCA

GAGCTGAATTCCCTTCTCATGACCTTTGGCCGTGGGAGTGACACCTCACAGC

TGTGGTGTTTTGACAACCAGCAGCCACTGGCACACAAAATGTGCAGCCAGC

AGCATATGAAGTCCAAGAGGCGTCCCGGCCAGCCCTGTCCTTGACCCCCAC

CTGACAATTAAGGCAAGAGCCTATAGTTTGCATCAGCAACAGTCACGGTCA

AAGTTTAGTCAATCAAACGTTGTGTAAGGACTCAACTATGGCTGACACGGG

GGCCTGAGGCCTCCCAACATTCATTAACAACAGCAAGTTCAATCATTATCTC

CCCAAAGTTTATTGTGTTAGGTCAGTTCCAAACCGTGCTGACCATGGCTATG

ATCCAAAGGCCGGCCCCTTACGTCAGAGGCGAGCCTCCAGGTCCAGCTGAG

GGGCAGGGCTGTCCTCCCTTCTGTATACTATTTAAAGCGAGGAGGGCTAGCT

ACCAAGCACGGTTGGCCTTCCCTCTGGGAACACACCCTTGGCCAACAGGGG

AAATCCGGCGAGACGCTCTGAGATCTCTGATCCAGACCTTCCAAAAGGAG  
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Human PEPCK sequence 

GAGCTCCCCAAAAGCTAGGAGGTCTCTATGGCATCCGTCCCAGAAACAACT

AACGCAACTCACAGGCAGCGTGAGCCACCTCCATGCCCCACCCACTGAGCA

CACACTGCAAAGTCCACTCGGCGGGTTAACTGGGGGTCCTCAGGGATCCCA

CCAGCAGGGTGGCTGTTTGGCTGCTTCTTCGGGTCCCTGTTGAAACCAACAG

ACAGTAGTTAGTTTTGAGGCTTACTTACAAATAAGCTGACAGTCAGATGAG

GAAGACCCATGCTTCCGGCCAGCCCCTTGAAATTGTTGTCAATGAGTCCCCA

CTGGGGCAGGGAGTCTCTAAGGACAGGAAAAATGGGGGCCCGAGGGCATC

ATCTGCCAAGACCTAAGGCAACTGTACCCATACTTTTGCCTGTGTGTCCTCA

AAACCCCTCTACTTTATCATGATTCTTCTTCCAGAGAACTCTGTCCTTTGAGG

CAAGTCTGTAAACCAATGTTTGCTTTTTAACATTTTGACAAGGGACAGTTGC

GGGGGAATCATTACCGTCCTTCCACGCTGTAAATGCAGGTAATGAAAGGAT

CGGATGAAGGTCGTTGGTGACTCACTGCTCTGACGTTTTACTTGAACTAGCT

GTTTCTCTCCCAGAAGACTCAGAACATAAGCACCTGGAATGGATGGGTCGC

ATTTAGGACTCCAAATGAGTTCTGCTTTCCCTTTTTGTTTTCAATCTATGTGC

TCTTTCAGGTACTCAAACCTGTTACCGTTTTATCAGCAAAATGGGACTTTCT

ACCAATTTGGTGGGATGAGTCTCGCCGGGAGTGATGTGTGTGTCACGGAAT

TGTGGTCATGCATCGGGATGGCTAATTCACTGATGTCAGATGCTAACGAAGT

GGCCTCGGCTACTGAGCATCACGTCACTGTTGGGTTTAGACACAACACGATC

TTATGTATGGATGACAGCACCACTAATAACAAATGCCAGTGACCTAAACGG

GGAATAACTTCAAATGAAACAAAAAGCACCTCATATCATATTTATCCTGAA

AGACACAACTGGCTGAATAAAATCTGAATACAGGAAACATAGCAATGGGTT

GATAATTTTGGTGGAACTTGATGATGTGTGACCCACGCCCAACACAGTGTG

ACCCAAGCCCCCAGGAGGGTTCTCTAAGTGAGTTTGGTCGGAGGCTGCCAT

TCACAGTGACTTGTATTTGCCACAGCAGCTCTTTCTAAGCCCAGTCCTGGGA
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TTATCTCAGGGATCATCCCACACCCCAGCGGGGAGATGGGCCAAGTCCCCA

CCTGACCTCATCTTAGGTAGAGAGGCTTCCATGGAAGTGTGGGCTGGCTGTG

GGGGGTTGAGACCTAGCCCCGTTCTTTTGACATTTCACCCTGTGTTCTCCAA

ACTCCAGCAAGCAGCTTCCATAGCTCATTAAATTTGACTGAAGGTCTGATGG

CTTGCAAAGCAAATTCTTTACAACTGTTATAAAGGTTTCATTGCTTAAGCAT

ATAATCTAGCAAAACTGCCAAGCCCCCTCCACTCCCTAAACTCTAAGACTTG

CCAGGGAAGAGAACAGTGGCCAGTGGACTGCAGGAGTAACTGCACTCAGC

CCAGAACTCCCTGGAGGACACAGGGAAGGTTCTGGAAAGGTGGCGGTACCT

CACAGGGAGAGACGTGGTGCTCCAGGGCCCAACTTGCTCATGTTCAGATCC

TCACTCTGCAACCCACCAGCCGGCTGTGAGTGGCTACACAATCTCTGCCTCA

GTTTCCCTATCTGTACATGGGTTGTTCATAGCCTCCACCTCAGAGGGTAGTA

ATGATGCCAAGCTCTTAGAACAGTGCTCAGCATGTGTGCATCCTGTGCCTAC

TCTATGCCAAGCACTACAGAGAGAAAAATGAACAAAATAGGGAGAAATCC

CTGCCCTCATGGAGTTTACATCGGGGCAGGGGGCGGGGGCGGCACAGAGCA

GACAATCAATACAGTGATTAGCCCCCAGTTAGGTTAGGCATTTCCAATCTTT

GCCAATAAGCCACATATTTGCCCAAGTTAGGGTGCATCCTTCCCATGAACTT

TGACTGTGACCTTTGACTATGGGGTGACATCTTATAGCTGTGGTGTTTTGCC

AACCAGCAGCTCTTGGTACACAAAATGTGCTGCTAGCAGGTGCCCCGGCCA

ACCTTGTCCTTGACCCACCTGCCTGTTAAGAAAAGGGTGTTGTGTTTTGCAA

CAGCAGTAAAATGGGTCAAGGTTTAGTCAGTTGGAAGTTGTGTCAAAACTC

ACTATGGTTGGTTGAGGGCTCGAAGTCTCCCAGCATTCATTAACAACTATCT

GTTCAATGATTATCTCCCTGGGGCGTGTTGCAGTGAGTTGGCCCAAAGCATA

ACTGACCCTGGCCGTGATCCAGAGACCTGCCCCCTGACGTCAGTGGCGAGC

CTCCCTGGGTGCAGCTGAGGGGCAGGGCTATTCTTTTCCACAGTATTTAAAG
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CTGGGAGGTTCTGCCACCAAGCACGGCCTTCCCACTGGGAACACAAACTTG

CTGGCGGGAAGAGCCCGGAAAGAAACCTGTGGATCTCCCTTCGAGAT  
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Human G6Pase Sequence 

CCTTTGAGAATCCACGGTGTCTCGATGCAGTCAGCTTTCTAACAAGCTGGGG

CCTCACCTGTTTTCCCACGGATAAAAACGTGCTGGAGGAAGCAGAAAGGGG

CTGGCAGGTGGAAAGATGAGGACCAGCTCATCGTCTCATGACTATGAGGTT

GCTCTGATCCAGAGGGTCCCCCTGCCTGGTGGCCCACCGCCAGGAAGACTC

CCACTGTCCCTGGATGCCCAGAGTGGGATGTCAACTCCATCACTTATCAACT

CCTTATCCATAGGGGTATTCTTCCTGAGGCGTCTCAGAAAACAGGGCCCTCC

CCATATGCTGACCACATAATAGAACCCCTCCCAACTCAGAGACCCTGGCTG

CTAGCTGCCCTGGCATGACCCAGACAGTGGCCTTTGTATATGTTTTTAGACT

CACCTTGACTCACCTCTGACCATAGAAACTCTCATCCCAGAGGTCACTGCAA

TAGTTACTCCACAACAGAGGCTTATCTGGGTAGAGGGAGGCTCCCTACCTAT

GGCCCAGCAGCCCTGACAGTGCAGATCACATATACCCCACGCCCCAGCACT

GCCTGCCACGCATGGGCTTACTTTACACCCACCCACAGTCACCAACACATTA

CCTGCTCTCCAAGGTTAGGCGTGGCAGGAGAAGTTTGCTTGGACCAGCAGA

AACCATGCAGTCAAGGACAACTGGAGTCAGCATGGGCTGGGTGCGAGCCCT

TGGTGGGGTGGGGAGGAGACTCCAGGTCATACCTCCTGGAGGATGTTTTAA

TCATTTCCAGCATGGAATGCTGTCAACTTTTGCCACAGATTCATTAGCTCTG

AGTTTCTTTTTTCTGTCCCCAGCTACCCCTTACATGTCAATATGGACTTAATG

ATGGGAAATTCAGGCAAGTTTTTAAACATTTTATTCCCCCTGGCTCTTATCCT

CAAAAAATGCATGAATTTGGAGGCAGTGGCTCATGCCTGTAATCCCAATGC

TTTGCTAGGTTGAGGCGGGAGGATCACTTGAAGCCAGGAATTTGAGACCAG

CCTGGGCCGCATAGTGAGACCCCGTTTCTACAAAAATAAATAAATAAATAA

TAAATAATAGTGATATGAAGCATGATTAAATAGCCCTATTTTTTAAAATGCA

TGAGTTCGTTACCTGATTCATTCCCTGGTTCCTTTCACAGTCCTCCGTGACCC

AAGTGTTAGGGTTTTGGTCTCTCTACTATTTGTAGGCTGATATATAGTATAC
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ACACACACACACACACACATATACACACACACAGTGTATCTTGAGCTTTCTT

TTGTATATCTACACACATATGTATAAGAAAGCTCAAGATATAGAAGCCCTTT

TTCAAAAATAACTGAAAGTTTCAAACTCTTTAAGTCTCCAGTTACCATTTTG

CTGGTATTCTTATTTGGAACCATACATTCATCATATTGTTGCACAGTAAGAC

TATACATTCATTATTTTGCTTAAACGTATGAGTTAAAACACTTGGCCAGGCA

TGGTGGTTCACACCTGTAATCCCAGAGCTTTGGGAAGCCAAGACTGGCAGA

TCTCTTGAGCTCAGGAATTCAAGACCAGCCTGGGCAACATGGAAAAACCCC

ATCTCTACAAAAGATAGAAAAATTAGCCAGGCATGGTGGCGTGTGCCTGTG

GTCCCAGCTACTCAGGAGGCTGAGGTGGGAGGATCACATTAGCCCAGGAGG

TTGAGGCTGCAGTGAGCCGTGATTATGCCACTGCACTCCAGCCTGGGAGAC

AGAGTGAGACCCTGTTTCAAAAAAAAGAGAGAGAAAATTTAAAAAAGAAA

ACAACACCAAGGGCTGTAACTTTAAGGTCATTAAATGAATTAATCACTGCA

TTCAAAAACGATTACTTTCTGGCCCTAAGAGACATGAGGCCAATACCAGGA

AGGGGGTTGATCTCCCAAACCAGAGGCAGACCCTAGACTCTAATACAGTTA

AGGAAAGACCAGCAAGATGATAGTCCCCAATACAATAGAAGTTACTATATT

TTATTTGTTGTTTTTCTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTAGAGA

CTGGGGTCTTGCTCGATTGCCCAGGCTGTAGTGCAGCGGTGGGACAATAGC

TCACTGCAGACTCCAACTCCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCC

TGAATAGCTGGGACTACAAGGGTACACCATCACACACACCAAAACAATTTT

TTAAATTTTTGTGTAGAAACGAGGGTCTTGCTTTGTTGCCCAGGCTGGTCTC

CAACTCCTGGCTTCAAGGGATCCTCCCACCTCAGCCTCCCAAATTGCTGGGA

TTACAGGTGTGAGCCACCACAACCAGCCAGAACTTTACTAATTTTAAAATTA

AGAACTTAAAACTTGAATAGCTAGAGCACCAAGATTTTTCTTTGTCCCCAAA

TAAGTGCAGTTGCAGGCATAGAAAATCTGACATCTTTGCAAGAATCATCGT

GGATGTAGACTCTGTCCTGTGTCTCTGGCCTGGTTTCGGGGACCAGGAGGGC
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AGACCCTTGCACTGCCAAGAAGCATGCCAAAGTTAATCATTGGCCCTGCTG

AGTACATGGCCGATCAGGCTGTTTTTGTGTGCCTGTTTTTCTATTTTACGTAA

ATCACCCTGAACATGTTTGCATCAACCTACTGGTGATGCACCTTTGATCAAT

ACATTTTAGACAAACGTGGTTTTTGAGTCCAAAGATCAGGGCTGGGTTGACC

TGAATACTGGATACAGGGCATATAAAACAGGGGCAAGGCACAGACTCATA

GCAGAGCAATCACCACCAAGCCTGGAATAACTGCAAGGGCTCTGCTGACAT

CTTCCTGAGGTGCCAAGGAAATGAGG 
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Human IGFBP1 sequence 

GTTCCCAGAAATGGCTGTGTGAGCAGTCACATCATCGGCTGTAACTCCAACC

TGCCAGGGCAGGGCCGCTCACTCCCACACAGGATGGACGGATGGACAGTCG

GCCTACACAGGCCTGTAGGGAGGGGCTTGGCTCCATCTGTGTTGACAGAGG

GTCAGGAGTAGGAGGAGAGCTCTCTCTTGATTTGGGGGCTGTTTGGGTTTGC

TGTTGCTATGAAGCAAGCAAGGAAAACATTTGGGAAATCGATCCTTGAGGG

GAGGAATTTTCACTACATGCAGGACAAGTGAGACCTCAGGGAGGATGGGTG

GGACGAATGCTGAGCAAGTGCACAACTATCCAGGGCGGAGTACACTGCCTG

GCACACAGCAGGTGGCCTCTAGATATTTACCAAAGAATTGCCTCTTTCATGT

GTTTCATTAAGAAAACATTTCAGCTGTGGGCACTGATTGCAAGCTGAGGAA

GTCAGAGAGAAAATACAGAGCACACATTCTTCTTCTGGAAATCAAATTGCT

TAGGCATCTACCCTAAAAATAATGTCAAAAAATTCAAAACCGTTGGTCAGT

TCCTTTACCAAACACCAAACTCTGCTCTGTAAAGAAATAATGACAAACAAT

CATAAACTTCCAACTGCAGTGACCTCACTGCCTTATTTTGATTTTTGCAGGA

GACGCTGGGGCCATTACTCTTTGGAGACTTTAGAGGTAGAACAAAAGCCAG

CTTGGCAAATCCAAGTCACTTCCCGAAGGCCACAGAAACAGGAAAGTGGTG

AGAAAAGGAGGTCGTCAGTTAATTTCAACTTGGTTATTTTTTTATTTTTATTT

TTTGAGTCAGAGTCTCGCTCTTGTCTCCCAGGCTGGAGTGCAATGGCATGAT

CTTGGCTCACTGCAACCTCTGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCA

GCCTCCTGAGTAGCTGGGATTGCAGGTGACTGACACCATGCCTGGATAATTT

TTGTATTTTTAGTAGAGATGGGGTTTTGCCATGTTGGTCAGTCTGGTCTCGA

ATTCCTGATCTCTGGTGATCCGCCCACCTTGGCCTCCCAAAGTGTTGGGATT

ACAGGCATGAGCCACTGAGCCTGGCCCCTTGGTTATTCTTTAGATTGATAAT

GTAACAGACAGTGTAAATACATCTACAAATTCAGAAGGTTAAGAAAGGGTA

TGCAAGGAAAACCGGTCTGTCCCTCAGTCACATTTTTCACCACCACCCACAA



281 

GAAGGCATTGCTATCAATTTATGTATTCCTCCCAAAACATTCAATAAATGTA

GAATCAGTTGCATACATTCATCTTGCTTTTATTGTACACAAACAGTACCACA

CTCTGTACTTTCTCATTTGTACTTAGCTAGGAGATTTTACTTCAGTTGAATCA

CTTTACTTTTAGAGATTTTTCTCTATAAGAAAATCAGAGTTGCTCTTTCTTGT

TGATAGCTGTCTATCTTCCAGTGGAAGGATGCCCCAGGATTTATGTATCCAG

CACCTAGAGATGGGCATTTAGGTTACTTGCAGTATGGCTTCCAGATAGGGAT

TGGTTCGCGTATTTTTTCACATAAGTTTAAAATGATCTCTCACGTCTGTCTCA

TCATCTGTAGGATAAACAGCTGAGGGTGGCATTGTTAGCACAGACCATTCT

ACCTCCAGCTTCAGAATTTCAGGGTAGTTATTATTTTCACCTGCCCTTACACC

TTCCCTGAAGGGAGCAGCAGGGATCATTTCCTTGAATGTAAGAATGACTGT

CACTTGAGGTGATTCAGCAATGCTCTACTGTTTTAGAGTGTTTTAGCCAGAT

TACAGAGAAAGGCATTTACTTAGGGCTTGCTTACAGTAAACAGGACTGTAT

GGGCATCAGAAATGTGAATTCTTGTTCAGGATCCACCGTTATAGCCTCTGTG

ACTTTGACCTGGCAATAGCCTTCCTTCTCTGGCCTCAGTGTTCTCCTCTATAA

AGCAAGGGGCTGGACAAGCCATCTCCAGTTTCCCAGTTTGGCAACACCACT

CCTAAAGGATCTGAAGGGACAACAGGAGGCCCAGGCCTGGAGGTAGGGTA

GCCCTGAGCCTGTGCCTAGAATGGGAGGCAAAGATGGTGGCAGGTGGGTGG

GAAAATGTGGGGTTTGGGGGTCACAGGAGAGACCAAGGGGCAGGCCTGGA

GCATGGCACGCTCCCTGATCACAGCTCTCCACTGGAAGGCCATGGAGGGAG

TGATGGGGAGAGCCTGCAACTCCTGGAGATAAGCCTGATTCTGACTTTCTTT

GAAGGATTTTTTTCTTTCGACTTCTTTCCTGTGAAAGAGAATATCCGAGAAA

TGAGAATTTTAACTAAAGAGAAAACCTTTGCATTTGCTACTGATAAATATCT

GGCCTATGCGGGAAAGTCATGGGTGCCCTGGGATTCTGGCTCCACTGCTAA

CAAGACCTTGTTAGACCTTCTTAACTGCCCCTCCAGAGAGGAGAAAGGCTCT

TGGAGGTAGAGTGAGATTGGGGAGCTTGGCAGAGCCCTAGGATGAACTGTG
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TTTTTGTTTTGTTTTGTTGCAGGTTGGAGCCTTTTTCCTGCAGAAAGAGAAGC

AATTCCGGGCTTTTCCACAGATAACCTGCTAGGGCTCGCAGAGACCTGGATT

CTAACCCCATCTCGCCTTTCCTCACCTGGGGCATTGTTTTCTGCGTTTGAGAA

CTGCTGGGTGGGCTGGTGTTACCCAGGATTTTTAAATTTTTGCAGGAGACGC

TTTGCAGGAGATCTCTAGGGCTTTTTTCTGTGTCAATTAAAGAGCCTGGCCA

GCTGGACCTGGGCTGTCTTTTTGACAAAAACAAACGTCATCCCCCTCCCAGC

TGAGCACTTGTTAGAACTGGACTTTAACTGAGGGCCTGAACCCCCTAACAA

CGGGACAAACAGTATGAAATCAAAACCGTTTACCCTCCTCCCACCAGCGGT

TTGCGTAGGGCCTTGGGTGCACTAGCAAAACAAACTTATTTTGAACACTCAG

CTCCTAGCGTGCGGCGCTGCCAATCATTAACCTCCTGGTGCAAGTGGCGCGG

CCTGTGCCCTTTATAAGGTGCGCGCTGTGTCCAGCGAGCATCGGCCACCGCC

ATCCCATCCAGCGAGCATCTGCCGCCGCGCCGCCGCCACCCTCCCAGAGAG

CACTGGCCACCGCTCCACCATCACTTGCCCAGAGTTT 
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