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Abstract 

 

A number of transgenic mouse models have been developed to study the  

molecular and pathological alterations associated with Alzheimer’s disease (AD). 

The 3xTg mouse is widely used as a research tool and carries mutations in the 

amyloid precursor protein (Swedish APP K670N/M671L), presenilin 1 (PS1M146V) and 

tau (TauP301L) which results in the development of pathological features simlar to 

the plaques and tangles observed in human AD. The TASTPM mouse carries both 

the APP K670N/M671L and PS1M146V  mutations but does not possess a tau transgene, 

so develops only plaque-like structures in the brain. 

This thesis aims to systematically characterise biochemical, electrophysiological 

and behavioural changes present in the 3xTg and TASTPM mouse models of AD. 

The widely studied amyloid cascade hypothesis proposes that the generation of 

Aβ through abnormal APP  processing is a key initiating process in AD, and so 

molecular or electrophysiological changes which are observed in both models 

could represent a common pathway of disease development. In addition, 

comparison between the two models could help to elucidate the role of the tau 

transgene in early phenotypic changes. 

The studies of hippocampal electrophysiology presented in this thesis show that 

the marked deficits in long-term potentiation (LTP) originally reported at the age 

of 6 months (Oddo et al., 2003) are not present in our colony of 3xTg mice. In 

support of this, although these mice do overexpress APP and tau the expected 

hyperphosphorylation of tau is not observed even at the advanced ages of 12-17 

months. This suggests that some of the processes associated with the development 
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of pathological features are occurring more slowly in our colony. In addition, 

studies using a T-maze paradigm in 6 month 3xTg mice suggest that major 

cognitive deficits are not present at this age. This suggests that drift of the 

phenotype has occured in the 3xTg mouse and has implications for further studies 

using this model. 

The 3xTg mouse does, however, present a deficit in basal synaptic transmission 

which is progressive with increasing age from 6-17 months. Similarly, 

hippocampal synaptic function is normal in TASTPM mice studied at 2 months, 

when no biochemical changes are present, but is markedly reduced at the age of 6 

months when it proved difficult to make any electrophysiological recordings. The 

data in this thesis shows that treatment with 1mM kynurenic acid during the 

slicing process markedly improved baseline synaptic transmission to the level 

observed in control mice. This shows that kynurenic acid can improve the 

viability of the slices, and as the compound is a glutamate receptor antagonist, 

suggests that reduction of glutamate-induced excitotoxicity during the slicing 

process results in its neuroprotective effects. This data suggests that alterations 

common to the 3xTg and TASTPM models, and therefore due to the presence of 

the APP or PS1 transgenes, may result in an increased susceptibility of 

hippocampal neurons  to cellular stressors such as excitotoxicity. 

To summarise, this thesis presents data which characterises in detail aspects of the 

electrophysiological, biochemical and behavioural phenotype of the 3xTg and 

TASTPM mouse models of AD, with the aim of observing early changes which 

may be associated with the mechanisms of AD development. 
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1.1 Alzheimer’s disease 

 

Alzheimer’s disease (AD) is a progressive form of dementia which is becoming 

increasingly common in today’s aging population. Dementia is classed as an 

impairment of memory, particularly in the learning of new information. It may 

also include other cognitive symptoms such as deterioration in judgement, 

planning, and information processing of a severity that causes impairment in 

daily living. In addition, dementia often causes alterations in emotional 

behaviour, such as apathy or emotional lability, or difficulties with social 

functioning (ICD-10, World Health Organisation). Dementia progresses over a 

number of years from mild memory loss to a condition where the individual 

affected is completely reliant on others for their care. 

In the UK, 820 000 individuals suffer from dementia with the cost to the 

economy reaching £23 billion per year. The majority of dementia sufferers (61%) 

are 80 years or older, but 8% of sufferers are under 65 years of age. There is 

currently no conclusive test for AD: a definitive diagnosis can only be obtained 

post mortem so the exact number of sufferers of the condition is unknown. 

However, it is the most common form of dementia, making up 50-60% of all 

cases (Dementia 2010, Alzheimer’s Research Trust). 

 

1.1.1: Risk factors in AD 

 

 

The majority of cases of AD are sporadic and occur in individuals without a 

family history of the disease. The causes of AD are currently unknown and it can 

be considered a multifactorial condition. However, a number of non-genetic risk 
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factors are associated with the development of AD. Clearly, the most important is 

age, as the prevalence of AD increases exponentially from the age of 65 onwards 

(Fig. 1.1A). This suggests that mechanisms occur within the ageing brain which 

make it more susceptible to neurodegeneration. However, due to the difficulties 

of studying the intact human brain, the effects of ageing are not well understood 

although they are hypothesised to include alterations in gene transcription, 

neurotransmitter release and neuronal plasticity, with a reduction in brain weight 

and loss of grey matter associated with increasing age (Good et al., 2001). 

However, the age-dependent mechanisms which promote the increased formation 

and aggregation of proteins such as Aβ or tau are not currently well understood. 

There are many lifestyle and environmental factors which have been associated 

with AD risk but scientific studies into many of these factors have given mixed 

and often inconclusive results. One of the most significant correlations is with 

education, as individuals with a low education level are at increased risk of 

developing AD; it is suggested that mentally stimulating activities have a 

preventative effect (Gatz et al., 2007). Another major risk factor is previous 

neuronal damage due to traumatic head injury; this has been shown to result in a 

transient increase in brain amyloid levels and may have long-term effects 

(Hartman et al., 2002). Cardiovascular risk factors, such as hyperlipidaemia, 

hypercholesterolaemia, high blood pressure and smoking markedly increase the 

risk of vascular forms of dementia such as multi-infarct dementia. However, 

there is evidence to suggest these factors may also be associated with AD 

(Altman and Rutledge, 2010), and other medical conditions such as 

hyperinsulinaemia and type II diabetes also increase the risk of AD (Cole et al., 

2007a).  
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Figure 1.1A: Prevalence of dementia by age and gender. Data from the 

MRC CFAS study of England and Wales (1998). 

Figure 1.1B: Pathological features of AD. Amyloid plaque (A, black 

arrow) and neurofibrillary tangles (B, black arrows) in human brain tissue 

visualised with silver staining. Image from Gorrie et al. 2007. 
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Finally, multiple other variables such as diet, exercise, and psychological factors 

such as stress and depression may also influence susceptibility. It is likely that a 

number of diverse and overlapping genetic, biological and environmental factors 

play a role in the likelihood of an individual developing AD in later life. 

 

1.1.2: Genetic risk factors in AD 

 

 

The second greatest risk factor for AD, following age, is the apolipoprotein E 

(ApoE) genotype carried by an individual. ApoE can bind to Aβ to regulate its 

clearance and degradation (Jiang et al., 2008). The protein has three alleles, ε2, 

ε3 and ε4; carriers of the ApoE ε4 allele have an increased probability of 

developing AD with a lower age of onset (Corder et al., 1993).  

A number of other genes have been implicated in susceptibility to AD using 

genome-wide association studies and are shown in Table 1.1. The most 

frequently observed associations are with the CLU and PICALM genes, 

encoding clusterin/apolipoprotein J protein and phosphatidylinositol-binding 

clathrin assembly protein respectively. Clusterin is a protein upregulated in states 

of cellular stress and is involved in pro- and anti-apoptotic events and protein 

clearance, while PICALM is involved in clathrin-mediated endocytosis (Harold 

et al., 2009). Other genes implicated in AD can be broadly divided into proteins 

mediating synaptic vesicle fusion or protein endocytosis, and those involved in 

immune responses or the breakdown and clearance of cellular products. This 

suggests that mechanisms which are not yet fully understood such as cellular 

protein trafficking may have an important role in the pathogenesis of AD.  
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Table 1.1: Genetic risk factors for AD    

 

Gene Protein Odds 

ratio 

Function Reference 

ApoE Apolipoprotein E (ε4 allele) 4.1 Lipoprotein and cholesterol transport, enhances 

proteolytic breakdown of Aβ peptide 

 

Bertram et al. 2007 

CLU Clusterin/ apolipoprotein J 0.86 Regulates apoptotic mechanisms, involved in the 

clearance of cellular proteins including Aβ peptide 

 

Harold et al. 2009 

PICALM Phosphatidylinositol-binding 

clathrin assembly protein 

0.85 Involved in clathrin-mediated endocytosis. 

Directs the trafficking of synaptic vesicle fusion proteins 

Harold et al. 2009 

CR1 Complement receptor 1 1.21 Processing and clearance of immune complexes 

 

Lambert et al. 2009 

BIN1 Bridging integrator 1 1.18 Involved in synaptic vesicle endocytosis Hollingworth et al. 2011 

EPHA1 Epherin receptor A1 0.85 Influences cell morphology and motility 

 

Naj et al. 2011 

CD33 Myeloid cell surface antigen 

CD33 

0.88 Involved in immune responses, mediates endocytosis 

through a clathrin-independent mechanism 

 

Naj et al. 2011 

CD2AP CD2-associated protein 1.14 Scaffold adaptor protein 

 

Naj et al. 2011 

ABCA7 ATP-binding cassette, subfamily 

A, member 7 

1.22 Involved in lipid transport across membranes, regulates 

APP processing, modulates phagocytosis of apoptotic 

cells 

Hollingworth et al. 2011 
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A small proportion of cases of AD are familial with a clear monogenetic link, 

however these affect only an estimated 1% of sufferers. The majority of these 

cases result from genetic mutations (discussed in section 1.2) which cause an 

early-onset form of the disease, affecting individuals in their 60s and younger. 

The most common cause of familial AD are mutations in the presenilin genes, 

primarily PS1, with over 170 different mutations recorded to date and new 

mutations still being discovered (Antonell et al., 2011). In addition, over 20 

mutations have been reported in the APP gene (Basun et al., 2008). Tau 

mutations are not associated with AD but with other neurodegenerative 

conditions such as frontotemporal dementia (Hutton et al., 1998). It is these 

familial genetic mutations that have been used to generate transgenic animal 

models which develop features of AD. 

 

1.1.3: Diagnosis of AD 

 

 

AD is usually diagnosed based on a detailed clinical history and the presence of 

memory impairment in structured tests. Neuronal loss is a prominent feature of 

the disease with an average loss of 8% of total brain weight (Terry et al., 1981) 

and cortical atrophy is often observable on a brain scan. However, a definitive 

diagnosis of AD can only be obtained post mortem, and relies on the presence of 

two main pathological features within the brain: the extracellular deposition of 

amyloid plaques, and intraneuronal neurofibrillary tangles (Fig. 1.1B). 

Neurofibrillary tangles are a feature of other forms of dementia, such as 

frontotemporal dementia, but plaques are only found in AD. However, the 

presence of some plaques and tangles is common in the brain of cognitively 

normal individuals (Fukumoto et al., 1996). Variation between pathological 
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features in individuals with AD is often apparent, with amyloid plaques being 

diffuse or focal and tangles present in the cell body, axon or dendrites. These 

may be present in cortical regions as well as subcortical areas such as the 

hippocampus and can be graded according to severity (Braak and Braak, 1991). 

The progression of tangle pathology is used as the grading scale for post-mortem 

analysis of AD brain tissue, and this follows severity of clinical symptoms more 

closely than plaque deposition. 

 

1.1.4: Treatment of AD 

 

 

The current treatments available for AD are able to slow the progression of the 

disease in some cases but do not cure or reverse it. Two types of medication are 

currently available: acetylcholinesterase (AChE) inhibitors (donepezil, 

galantamine, rivastigmine) and memantine, a glutamate receptor antagonist.  

In AD, one of the earliest pathological events is a loss of cholinergic basal 

forebrain neurons and a reduction in cortical acetylcholine (ACh) (Perez et al., 

2007). AChE inhibitors such as donepezil prevent the breakdown of ACh by 

these enzymes, leading to an increased level of the neurotransmitter within the 

synaptic cleft. This may result in an improvement of some of the cognitive 

symptoms and behavioural alterations associated with AD, such as apathy and 

attention, which involve cortical circuits (Rockwood et al., 2004).  

Memantine is a NMDA receptor channel blocker which is used therapeutically to 

prevent glutamate-induced neuronal death. It has been shown to act preferentially 

at extrasynaptic NMDA receptors (Bordji et al., 2010), which are activated by 

synaptic glutamate spillover and play a role in excitotoxicity (Frasca et al., 2011). 
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In addition, the modulation of glutamatergic synaptic transmission may have an 

important role in memory processes. Treatment with memantine, as well as 

prolonging neuronal survival, may therefore also enhance cognitive function in 

AD.  

Unfortunately, despite a number of new treatments aimed at preventing or 

disrupting amyloid pathology showing potential in animal models none of these 

have translated into clinical progress. An initial trial of anti-Aβ immunisation, 

which stimulated plaque clearance and improved cognitive function in mice 

(Schenk et al., 1999), was halted due to the development of meningoencephalitis 

in several patients (Vellas et al., 2009). Work continues into the development of 

other Aβ peptide vaccines along with novel strategies such as γ-secretase 

inhibition (Basi et al., 2010), although the first phase III trial of a γ-secretase 

inhibitor was recently halted with the finding that it worsened the symptoms of 

AD (Eli Lilly, press release, August 2010). It is clear that a better understanding 

of the initiation and progression of AD is needed to allow future treatments to be 

developed against novel drug targets. 

 

 

1.2: Proteins involved in AD 

 

 

Analysis of the familial forms of AD has identified several proteins crucial to the 

disease process, with the most important being amyloid precursor protein (APP), 

presenilin 1 (PS1) and tau. APP is cleaved to form a small peptide, Aβ, which 

forms the amyloid plaques characteristic of the disease. Also mutated in some 

cases of familial AD are the presenilins, a component of the γ-secretase complex 
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involved in the processing of APP. Tau is the major protein constituent of 

neurofibrillary tangles and its abnormal aggregation is crucial for tangle 

generation. Mutated and overexpressed forms of these three proteins have been 

used to develop the majority of mouse models for the study of AD. The role of 

these proteins in normal function and the effects of their mutation are discussed 

below. 

 

1.2.1: Amyloid precursor protein (APP) 

 

 

Amyloid precursor protein (APP) is a type I transmembrane protein with an 

intracellular cytoplasmic C-terminal, an extracellular N-terminal and a single 

alpha-helical transmembrane domain. The gene for APP is located on 

chromosome 21 and contains 19 exons, with alternative splicing creating three 

major human isoforms of APP of 695, 751 and 770 amino acids; the isoform of 

695 amino acids is the most abundant in neuronal tissue (Konig et al., 1992). 

 

1.2.1.1: Physiological functions of APP  

 

 

The normal cellular function of APP is not clear, although there is most evidence 

for its role as a trophic factor as APP has been shown to stimulate neural 

outgrowth (Qiu et al., 1995). APP knockout mice show reactive gliosis and 

locomotor deficits (Zheng et al., 1995), along with abnormal neuronal 

morphology, impairments in long-term potentiation (LTP) and cognitive deficits 

(Seabrook et al., 1999, Dawson et al., 1999). There is evidence to suggest APP 

may have a role as a modulator of synaptic function through Ca
2+

 channel 

regulation and alterations in GABAergic short term plasticity (Yang et al., 2009), 



 

 

29 

or by the promotion of NMDA receptor activity (Hoe et al., 2009). APP 

possesses a heparin binding domain which allows binding to proteoglycans in the 

extracellular matrix (Small et al., 1994). Consistent with this finding, it has been 

suggested that APP may act as a synaptic adhesion molecule through studies of 

the mouse neuromuscular junction (Wang et al., 2009) and also mediate cell-cell 

and cell-surface adhesion (Breen et al., 1991).  

 

1.2.1.2: Cleavage of APP 

 

 

APP undergoes a two-step process known as regulated intramembrane 

proteolysis, with an extracellular N-terminal cleavage step followed by cleavage 

within the transmembrane domain of the protein and the release of an 

intracellular C-terminal fragment. APP can be cleaved through one of two 

pathways: the amyloidogenic and non-amyloidogenic pathways (Fig. 1.2). 

Although it is thought that the non-amyloidogenic pathway is regulated in part 

by protein kinase C (PKC) (Hung et al., 1993), the reason for the cellular choice 

between the two pathways is not fully understood. In familial AD, increased 

levels of the peptide Aβ are caused by a shift to processing through the 

amyloidogenic pathway. 

The initial enzymatic processing step, which determines the final cleavage 

products, is mediated by α or β-secretase and releases the majority of the N-

terminal domain. This produces either the soluble APP-α or β protein fragments, 

and leaves the C-terminal domain attached to the membrane, either as the α (C83) 

C-terminal fragment (if cleaved by α -secretase) or β (C99) C-terminal fragment 

(if cleaved by β-secretase). The α-secretase zinc metalloproteinase enzymes 
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mediate the non-amyloidogenic pathway by cleavage within the Aβ sequence, 

preventing the generation of Aβ (Allinson et al., 2003). Processing by the 

aspartic-acid protease β-secretase (BACE1) generates the longer N-terminal 

extension of Aβ within the β C-terminal fragment and thus mediates the 

amyloidogenic pathway. 

The second enzymatic processing step involves the cleavage of either the α or β 

C-terminal fragment by an enzyme complex known as γ-secretase. This complex 

consists of four proteins: presenilin, nicastrin, APH-1 (anterior pharynx 

defective-1) and PEN2 (presenilin enhancer 2). The catalytic subunit is the 

presenilin protein, which can be either the PS1 or PS2 isoform (DeStrooper et al., 

1995, Francis et al., 2002). Cleavage of the α C-terminal fragment results in the 

generation of the cytoplasmic APP intracellular domain (AICD) and a small 

peptide known as p3, while cleavage of the β C-terminal fragment results in the 

generation of AICD and Aβ. Dependent on the cleavage site several forms of Aβ 

can be generated, ranging from 39-43 amino acids in length. Although the 40 

amino acid (Aβ40) is the most commonly produced form of the peptide, the 42 

amino acid (Aβ42) is thought to be the more ‘toxic’ form of Aβ; it has a tendency 

to aggregate more readily than Aβ40 and is the predominant form deposited in 

human amyloid plaques (Gravina et al., 1995). The role of Aβ in the 

pathogenesis of AD is discussed in more detail in section 1.3. 
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Figure 1.2: APP processing. APP can be cleaved by α-secretase to progress down the non-amyloidogenic pathway or by β-

secretase in the amyloidogenic pathway. Processing of APP by α-secretase results in the generation of the α-CTF and sAPPα, with 

further processing by γ-secretase generating AICD and a small fragment p3. Processing of APP by β-secretase results in the 

generation of the β-CTF and sAPPβ, while further processing by γ-secretase generates AICD and the Aβ peptide. The most common 

forms of Aβ are 40 and 42 amino acids in length, with the 42 amino acid form most prone to aggregation. 

 

Abbreviations: APP (amyloid precursor protein), α-CTF (alpha C-terminal fragment), sAPPα (soluble APP alpha), sAPPβ (soluble 

APP beta) AICD (APP intracellular domain), Aβ (beta amyloid). 
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1.2.1.3: Familial APP mutations 

 

 

There are around 20 known APP mutations, each named after the country (or 

region) in which they were discovered (Fig. 1.3). For example, the 

K670N/M671L mutation was first observed in two large Swedish families with 

early-onset AD (Mullan et al., 1992), while the Indiana mutation (V717F) was 

observed in an American family with markedly early-onset AD beginning in the 

mid to late- thirties (Murrell et al., 2000). The common feature of all APP 

mutations is that they increase brain levels of the Aβ42 form of the peptide, either 

through an overall increase in Aβ production or an alteration in the ratio of Aβ40 

to Aβ42 generated. For example, the Swedish mutation lies within the N-terminal 

sequence of Aβ (Fig. 1.3) and results in an alteration of the cellular location of β-

secretase cleavage, putting it in direct competition with α-secretase and resulting 

in a three to six-time increased production of Aβ (Haass et al., 1995). Multiple 

mutations are also clustered round the C-terminal γ-secretase site (e.g. Florida, 

London, Indiana), where they result in a selective increase of Aβ42 generation 

(De et al., 2001). Finally, several mutations near the α-secretase site (Dutch, 

Flemish, Arctic) result in the generation of forms of Aβ which show an enhanced 

propensity to form fibrils and a resistance to proteolytic degradation (Walsh et al., 

2001, Tsubuki et al., 2003).  
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Selecte

d 

familia

l APP 

mutati

ons 

 

K670N + M671L Swedish 

A673T  

H677R  

D678N Tottori 

A692G Flemish 

E693Q / E693G Dutch / Arctic 

D694N Iowa 

A713T  

T714I / T714A Austrian / Iranian 

V715A / V715M German / French 

I716V Florida 

V717I  / V717F London / Indiana 

T719P  

ISEVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITL 

671 

Aβ1-42 

713 

β γ α 

Selected familial APP mutations 

β 

Figure 1.3: Amino acid sequence of the Aβ42 peptide. Residues mutated 

in familial AD are shown in bold. The majority of familial AD mutations, 

shown in the table on the left, are clustered around the two terminals of the 

protein at the β- and γ-secretase cleavage sites. Some mutations also occur 

at the α-secretase cleavage site. These mutations all increase the levels of 

Aβ generated within the neuron. 
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1.2.2: Tau 

 

 

Tau is a microtubule-stabilising protein generated from the MAPT (microtubule-

associated protein tau) gene present on chromosome 17. In humans, there are six 

tau isoforms generated by alternative splicing of this gene. At the N-terminus, 

zero, one or two 28 amino-acid inserts can be present through the alternative 

splicing of exons 2 and 3, while at the C-terminus, three or four 31-35 amino-

acid microtubule-binding inserts can be present, giving rise to 3R (3 repeat) or 

4R tau (4 repeat) tau. Functionally, the ability of 4R tau to stabilise and prevent 

microtubule shortening is greater than 3R tau due to the presence of the 

additional insert (Panda et al., 2003). There are species-dependent differences in 

isoform expression, as adult humans express approximately equal ratios of 3R 

and 4R tau (Takuma et al., 2003), while adult mice and rats express only the 

three 4R forms (Kampers et al., 1999).  

Although it would be expected that tau is critical for neuronal function, tau 

knockout mice are viable and show only minor changes in neuronal maturation 

and outgrowth in culture (Dawson et al., 2001). This suggests that compensatory 

mechanisms such as the expression of other microtubule-associated proteins 

(MAP1/MAP2) can maintain microtubule function in the absence of tau. 

 

1.2.2.1: Phosphorylation of tau 

 

 

The primary role of tau is to bind and stabilise tubulin within microtubules and 

help maintain cellular structure and axonal transport. The phosphorylation of tau 

is an important mechanism to regulate this interaction with microtubules, with its 
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biological activity dependent on the degree of phosphorylation. There are over 40 

different phosphorylation sites on tau, with multiple sites in the microtubule-

binding domains. These are a mixture of serine, threonine and tyrosine residues 

which can be phosphorylated by a number of kinases, including glycogen 

synthase kinase 3 (GSK3), cyclin-dependent kinase 5 (Cdk5), protein kinase A 

(PKA) and casein kinase 1 (CK1) (Hanger et al., 2009a). The regulation of tau 

phosphorylation is a complex process and the role of individual phosphorylation 

sites on tau function is not fully established. 

Tau can be transiently hyperphosphorylated in a number of states such as 

hypothermia (Planel et al., 2007). However, long-term hyperphosphorylation of 

tau at a number of sites is a characteristic feature of AD and a subset of diseases 

known as tauopathies (Grundke-Iqbal et al., 1986). This hyperphosphorylation 

results in the disruption of microtubule function and the formation of insoluble 

tau aggregates, resulting in the characteristic tangle pathology observed in AD. 

This is discussed further in section 1.3.4. 

 

1.2.2.2: Familial tau mutations 

 

 

There are around 25 mutations which have been discovered in the tau protein. 

However, these are not associated with AD but with a rare form of dementia, 

frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-

17). Individuals with FTDP-17 show behavioural and personality changes, with 

symptoms of dementia and motor difficulties such as frequent falls, bradykinesia 

and rigidity (Wszolek et al., 2006). Pathologically, this is accompanied by 
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progressive cortical atrophy and the presence of tau-positive inclusions 

containing both 3R and 4R tau (Cairns et al., 2007). 

Familial tau mutations consist of missense, silent or deletion mutations in the 

coding region of the gene, with several intronic mutations also discovered 

(Spillantini and Goedert, 2000). All tau mutations are autosomal dominant, and it 

has been suggested that this is due to the production of tau with altered 

conformational states and a tendency for hyperphosphorylation which can 

sequester normal tau into fibrils, causing a toxic gain of function (Alonso et al., 

2004). The coding region mutations generally result in a reduced ability of tau to 

bind to and stabilise microtubules, or the generation of forms of tau with an 

increased propensity to form fibrils. Several coding region mutations and all 

those observed in the intron region of the gene influence alternative splicing, 

resulting in the overproduction of 4R tau and an alteration of the 3R:4R ratio. As 

4R tau has an enhanced ability to bind to microtubules, it displaces the 3R tau, 

resulting in an alteration of microtubule binding kinetics and the formation of 

fibrillar tau aggregates (Lu and Kosik, 2001). 

 

1.2.3: Presenilins 

 

 

The presenilin proteins, presenilin 1 (PS1) and presenilin 2 (PS2), are encoded 

by the PSEN1 and PSEN2 genes present on chromosome 14. They are the main 

catalytic component of the γ-secretase enzyme complex which is involved in the 

second enzymatic cleavage step of APP, resulting in the generation of Aβ (see 

section 1.2.1.2). PS1 and PS2 show a high degree of structural similarity (~65%), 

with both proteins highly expressed in the neuronal population (Lee et al., 1996). 
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Although widely known for its role in APP processing, the γ-secretase complex 

has a number of type I membrane protein substrates, including the Notch 

receptor (De et al., 1999). Notch is a protein which is critical for the control of 

cellular differentiation during embryonic development, (Ables et al., 2011) and 

likely due to disruption of this signalling pathway PS1 knockout mice die shortly 

after birth with a phenotype of marked skeletal deformities, cerebral 

haemorrhage and neuronal loss (Shen et al., 1997). In contrast, PS2 knockout 

mice are viable and show only mild pulmonary haemorrhage and fibrosis with 

age, suggesting that its role in development can be compensated for by PS1 

(Herreman et al., 1999). However, mice in which PS1 knockout is conditionally 

restricted to postnatal cortex show reduced Aβ accumulation and mild 

impairments of spatial memory (Yu et al., 2001). In addition to its role in APP 

processing, PS1 has been suggested to be involved in the regulation of 

intracellular Ca
2+

 homeostasis and synaptic plasticity (discussed in detail in 

Chapter 3).  

 

1.2.3.1: Familial presenilin mutations 

 

 

The majority of known familial AD mutations are associated with presenilin 

function. Over 170 mutations in PS1 and over 10 mutations in PS2 have been 

reported which are all autosomal dominant. In general, PS1 mutations result in 

an earlier age of onset and more rapid disease progression than PS2 mutations 

(Bertram and Tanzi, 2004). PS1 is an eight-pass transmembrane protein, and the 

majority of mutations are clustered within the transmembrane domain, although 

some are also observed in the cytoplasmic or extracellular regions. Almost all of 

these are single amino acid point mutations, suggesting that minor sequence 
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changes within the structure of the protein may have a major effect on its 

function. 

The majority of known PS1 mutations result in an overall increase in Aβ42 

generation through an influence on γ-secretase cleavage of the β C-terminal 

fragment. As different mutations widely spread throughout the protein can cause 

a similar phenotype it has been suggested that these result in similar 

conformational changes. Several mutations result in alterations in the distance 

between the N and C-termini in the tertiary structure of the protein, which may 

alter interactions with APP and favour generation of the Aβ42 peptide 

(Berezovska et al., 2005). Some PS1 mutations also cause a concomitant 

reduction in Aβ40 levels, which is not simply a result of a shift in substrate 

preference but rather appears to be a distinct inhibition of Aβ40 generation (Shen 

and Kelleher, III, 2007). However, the precise effect of PS1 mutations on γ-

secretase activity is not currently fully understood. PS2 mutations have been 

shown to alter the ratio of Aβ40/ Aβ42 in a similar manner to PS1. Familial PS2 

mutations must result in a dramatic alteration of PS2 function to produce an 

observable effect, due to the predominant role of PS1 in Aβ generation (Walker 

et al., 2005). 

 

1.3: Molecular pathways of AD 

 

 

AD is a complex disorder and all of the molecular mechanisms which lead to 

disease progression are not yet fully understood. The predominant hypothesis in 

the field is the ‘amyloid cascade hypothesis’ in which elevated levels of Aβ form 

soluble aggregates followed by insoluble plaques. This leads to synaptic 
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dysfunction and eventually neurodegeneration through a number of downstream 

mechanisms such as inflammation and oxidative damage (Fig 1.4). AD is also 

characterised by the activation of a number of protein kinases which result in 

hyperphosphorylation of cellular proteins such as tau, leading to the generation 

of neurofibrillary tangles. An overview of the main events involved in AD 

pathogenesis is given in the following sections. 

 

1.3.1: The amyloid cascade hypothesis 

 

 

This hypothesis proposes that the primary event in the progression of AD is the 

deposition of Aβ, with tau phosphorylation and neuronal death occurring 

subsequent to this event (Hardy and Allsop, 1991). Evidence for the amyloid 

cascade hypothesis comes from the numerous familial mutations in APP and 

PS1/PS2 which increase Aβ generation and subsequently lead to AD (see section 

1.2.1, 1.2.3), while animal models have been generated which overexpress Aβ 

and subsequently develop memory deficits (see section 1.4.1). 

However, the initiating event in sporadic forms of AD is not yet known. It has 

been suggested that a failure of Aβ clearance mechanisms may result in a 

gradually increasing concentration of the peptide in the brain until it reaches a 

level at which it becomes harmful to neuronal function (Mawuenyega et al., 

2010). Alternatively, an increase in β-secretase activity is associated with ageing, 

and so changes in the function of this enzyme could enhance Aβ formation (Cole 

and Vassar, 2007). 
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Figure 1.4: The amyloid cascade hypothesis. Increased levels of the peptide Aβ, in particular Aβ42, occur both in sporadic and familial 

forms of AD. This leads to oligomerisation and aggregation of Aβ and subsequent amyloid plaque formation. A number of harmful 

downstream effects include synaptic dysfunction and loss, the initiation of inflammatory processes and oxidative damage. In addition, 

hyperphosphorylation of tau results in its aggregation and the formation of neurofibrillary tangles. A combination of these factors leads 

to eventual neuronal death which is a contributing factor to dementia. (Modified from Hardy and Allsop, 1991).
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1.3.1.1: The role of oligomeric Aβ 

 

 

There is ongoing debate about the form of Aβ responsible for its toxic 

downstream events. Initially, it was proposed that insoluble plaques were the 

main cause of toxicity but this idea has fallen out of favour as plaque load has 

been shown to correlate poorly with dementia (Giannakopoulos et al., 2003). 

Attention has therefore turned to the role of intraneuronal, oligomeric forms of 

Aβ as the toxic moiety.  

Treatment with oligomeric and fibrillar forms of Aβ causes toxicity in neuronal 

culture (Deshpande et al., 2006) and significantly inhibits the magnitude of long-

term potentiation (LTP) in hippocampal slice preparation (Townsend et al., 2006). 

The field is complicated in this respect by the wide variety of oligomeric 

preparations of Aβ which have been used, including Aβ-derived diffusible 

ligands (ADDLs), dimers/trimers and protofibrils. However, it has been 

suggested that all these forms share conformational similarities which may result 

in a common mechanism of toxicity (Glabe and Kayed, 2006). In addition, a 

number of transgenic mouse models exhibit deficits in memory and reduction in 

LTP well before the development of plaques (see section 1.4). This suggests a 

role for oligomeric Aβ in the production of early cognitive deficits. The exact 

conformation of these oligomers is unknown, but in the Tg2576 model a 56 kDa 

soluble protein known as Aβ*56 has been suggested to impair memory function 

independent of the generation of amyloid plaques (Lesne et al., 2006).   
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1.3.2: Early events in AD progression 

 

 

There are a number of findings which are associated with the early stages of AD 

in human studies and  mouse models. One of the major features thought to 

contribute to the early cognitive deficits in AD is synaptic loss and alterations in 

neuronal synaptic transmission. Other changes observed include mitochondrial 

dysfunction, which contributes to metabolic abnormalities and enhanced 

oxidative stress, and the initiation of low-grade inflammatory processes. 

 

1.3.2.1: Aβ and synaptic dysfunction  

 

 

It is thought that many of the early symptoms in AD may result not from overt 

neuronal death but by more subtle effects of Aβ on synaptic transmission and 

function. Again, a large body of evidence comes from APP transgenic mice 

which show alterations in synaptic plasticity and basal synaptic transmission, 

suggesting that this may be an important mediator of cognitive deficits in models 

of AD. In hippocampal slices from APPSwe mice the processing and secretion of 

Aβ is activity-dependent with the secreted Aβ acting to depress excitatory 

synaptic transmission through an NMDA receptor-dependent mechanism 

(Kamenetz et al., 2003). In support of this, Aβ has been shown to regulate 

NMDA receptor surface expression (Snyder et al., 2005). This suggests that there 

may be a feedback loop between the processing of neuronal Aβ and hippocampal 

excitatory transmission. Hippocampal slice studies have shown that the 

exogenous application of Aβ oligomers results in an impairment of not only LTP 

but also forms of long-term depression (LTD) (Li et al., 2009) which may occur 

through activation of mitogen-activated protein kinase (MAPK) resulting in 



 

 

43 

AMPA receptor phosphorylation and endocytosis (Hsieh et al., 2006). Alteration 

of different forms of synaptic plasticity through regulation of receptor expression 

may underlie the effects of Aβ on excitatory neuronal transmission.  

Synaptic loss is a common feature of AD and synaptic density within the brain 

may correlate with the severity of cognitive symptoms (Scheff et al., 2006). Aβ 

has been shown to cause a loss of dendritic spines and reduction in synaptic 

number in both slice preparations (Wei et al., 2010) and transgenic mouse 

models (Bittner et al., 2010). This is thought to occur through an NMDA 

receptor and Ca
2+

-mediated pathway in a mechanism similar to that involved in 

the induction of LTD (Shankar et al., 2007). It is likely that a reduction in 

synapse number in AD within regions of the brain such as the hippocampus is 

associated with memory deficits, particularly in the early stages of the disease. 

Therefore, Aβ can affect multiple synaptic mechanisms resulting in a reduction 

of excitatory transmission and structural alterations such as a loss of spine 

density. 

 

1.3.2.2: Glucose hypometabolism 

 

 

Metabolic dysfunction is associated with the early stages of AD, and this has 

been shown in a number of studies in which glucose uptake is regionally reduced, 

particularly in cortical areas, in AD patients (Foster et al., 1984). This glucose 

hypometabolism has marked effects on brain function, as the brain relies on 

glucose as its primary energy source and utilises 20% of the body’s total supply 

(Murray et al., 2011). It has been suggested that this feature occurs prior to 

disease onset in high-risk individuals such as those with mild cognitive 



 

 

44 

impairment (MCI) which may progress to AD, and presymptomatic individuals 

with familial AD mutations (Mosconi et al., 2008), and that it may be prognostic 

of further cognitive decline (Silverman et al., 2001). The major determinant of 

glucose utilisation in the brain is synaptic function, and so it has been suggested 

that synaptic loss, combined with alterations in cerebral blood flow and glucose 

transport, may underlie the observed hypometabolism (Piert et al., 1996).  

 

1.3.2.3: Oxidative stress 

 

 

The major risk factors for AD include increasing age, cardiovascular disease and 

diabetes, and these are all associated with elevated reactive oxygen species 

(ROS), oxidative and inflammatory stress. 

One hypothesis is that the endogenous systems for protection against ROS and 

oxidative stress are somehow compromised or insufficient in early AD. In 

support of this, an increased level of lipid peroxidation, a marker of oxidative 

stress, has been observed in human AD brain (Pratico 2008), while key anti-

oxidant enzymes such as glutathione peroxidise and superoxide dismutase (SOD) 

are depleted in animal models of AD (Resende et al., 2008). Reduction of 

manganese SOD enhances the pathological phenotype of an APP transgenic 

mouse model (Li et al., 2004), which strongly supports the notion that 

impairment of anti-oxidant defence systems enhances AD pathology. In addition, 

a mouse has been generated with reduced levels of nitric oxide (NO) due to the 

knockout of nitric oxide synthase 2 (NOS2), with the expression of the Swedish 

mutant form of APP  (APPswe/NOS2
-/-

). Nitric oxide is a molecule which is 

involved in neuroinflammation and is also an effective antioxidant. The double 
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transgenic APPswe/NOS2
-/-

 mouse exhibits more severe amyloid and tau 

pathology compared to the single APPswe model and has evidence of neuronal 

loss and behavioural deficits characteristic of AD (Colton et al., 2008) .  

There is also evidence for mitochondrial dysfunction in AD, which can lead to 

oxidative stress. Aβ can enter mitochondria to cause deficits in mitochondrial 

respiration and energy production, and the generation of harmful ROS (Pagani 

and Eckert, 2011). It has been shown that increased ROS production can enhance 

APP processing, Aβ levels and tau phosphorylation. These data suggest that the 

oxidant or anti-/pro-inflammatory balance in the brain modifies AD-like 

pathology.  

 

 

1.3.3: Neuronal death in AD 

 

 

In more advanced cases of AD marked neuronal loss is observed in regions of the 

hippocampus and cortex. This feature is not observed in transgenic mouse 

models of the disease and it is unclear why the human brain is particularly 

vulnerable to age-related neuronal death. This is thought to occur primarily 

though activation of apoptotic pathways and the continued contribution of 

oxidative stress, mitochondrial dysfunction and inflammatory processes.  

Aβ has been shown to interact, either directly or indirectly, with a number of 

cellular signalling proteins. These include components of the apoptotic signalling 

pathway, such as activation of c-Jun N-terminal kinase (JNK) which results in 

downregulation of anti-apoptotic proteins (Yao et al., 2005a), and the activation 

of calpain and caspase-3 through an increase in intracellular Ca
2+

 concentration 

(Kuwako et al., 2002).  
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Also important in the progression of AD are inflammatory processes, with 

elevated levels of astrocytes and microglia associated with areas of plaque 

deposition. Activation of microglia results in the clearance of Aβ deposits, but 

with the simultaneous release of ROS and proinflammatory mediators such as 

cytokines, chemokines and complement factors (Heneka et al., 2010). This 

perpetuates a cycle resulting in the promotion of further inflammation and 

ultimately leading to cell death.  

The relative contribution of each of these complex factors in the promotion of 

neuronal apoptosis is not currently known. Therefore, it is likely that a number of 

overlapping and interacting factors, each increasing susceptibility to apoptosis, 

are involved in the mechanisms of neuronal cell loss in AD. 

 

1.3.4: Protein kinases in AD  

 

 

Another feature of AD is an alteration of protein kinase activity. Aβ causes the 

aberrant activation of neuronal signalling pathways, which leads to the 

dysregulation of kinase activity and altered phosphorylation of downstream 

target proteins. For example, an increase in phosphorylation of the microtubule 

associated protein tau is a characteristic feature of AD which is discussed in 

section 1.2.2.1. Studies have implicated a number of kinases including glycogen 

synthase kinase 3 (GSK3), cyclin-dependent kinase 5 (Cdk5) and MAPK in the 

pathogenesis of AD. 

The serine-threonine kinase GSK3 is thought to contribute to Aβ-induced 

neurotoxicity and is one of the major contributors to tau hyperphosphorylation in 

AD. Studies of GSK3 levels in human AD have given mixed results, with some 
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reporting an increase in GSK3 activity and some no change, likely due to the 

technical difficulties of measuring enzyme activity in post mortem brain tissue 

(Hooper et al., 2008). In cell models, the activity of GSK3 is increased by Aβ, 

contributing to neurotoxicity (Koh et al., 2008), and in turn GSK3 facilitates the 

processing of Aβ  peptides (Phiel et al., 2003). Further evidence for the role of 

GSK3 comes from transgenic mouse models where conditional overexpression 

results in hyperphosphorylation of tau and neuronal death (Lucas et al., 2001). 

Currently, interest is growing in the use of GSK3 inhibitors such as lithium and 

more selective synthetic compounds as treatments for AD, as GSK3 inhibition in 

transgenic mouse models reduces tau phosphorylation and appears to be 

neuroprotective (Noble et al., 2005). 

In addition to its role in the hyperphosphorylation of tau, GSK3 is involved in the 

phosphorylation of other cellular proteins. For example, phosphorylation of the 

GSK3 target collapsin response mediator protein 2 (CRMP2) has been observed 

in transgenic models of AD and may be one of the early biochemical changes 

associated with the disease (Cole et al., 2007b). This protein plays a role in 

neuronal polarity and axon guidance and promotes the association of tubulin into 

microtubule filaments (Soutar et al., 2009). Therefore, hyperphosphorylation of 

CRMP2 could alter its functional properties and contribute to neurodegeneration. 

Other kinases such as Cdk5 have been suggested to play a role in AD-associated 

neurodegeneration. For example, an increased level of the Cdk5 cofactor protein 

p25 has been reported in AD brain tissue, which results in the prolonged 

activation and altered cellular localisation of Cdk5 (Tseng et al., 2002).  
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Figure 1.5: Protein kinases and phosphorylation in AD. In AD the regulation of a number of protein kinases is altered. The activity of 

GSK3 may be increased; one mechanism by which this occurs is through downregulation of the PI3K-PKB pathway by Aβ, resulting in a 

decrease of the inhibitory phosphorylation of GSK3 at Ser9. Another feature of AD is an increase in levels of the p25 cofactor of Cdk5 which 

results in altered localisation and increased activation of the enzyme. Cdk5 can phosphorylate substrates such as CRMP2 and tau, while 

acting as a priming kinase for further phosphorylation of these proteins by GSK3. Other signalling cascades such as the MAPK cascade may 

also be activated and associated with tau phosphorylation. The result is a hyperphosphorylation of these cellular proteins which is a 

characteristic feature of AD. 

 

Abbreviations: P = phosphorylation. For others, see main text. 

CRMP2 Tau 
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Overexpression of p25 in transgenic mice results in phosphorylation and 

aggregation of tau, associated with neuronal toxicity (Cruz et al., 2003). 

Also implicated in the pathogenesis of AD are members of the MAPK cascades. 

Activation of p38 MAPK in AD has been suggested to contribute to 

inflammatory processes in microglia and astrocytes (Munoz and Ammit, 2010) 

and to be involved in tau phosphorylation (Hanger et al., 2009b). 

Protein kinases have an important role in the regulation of synaptic plasticity (see 

section 1.5.3.4). Aβ treatment of cells reduces the activity of Ca
2+

/ calmodulin-

dependent protein kinase II (CaMKII) and the phosphoinositide 3-kinase/ protein 

kinase B (PI3K/PKB) pathway (Townsend et al., 2007) and in this way Aβ can 

indirectly modulate LTP. The reduction in the activity of PKB prevents the 

inhibitory phosphorylation of GSK3 leading to its activation (Hernandez et al., 

2010). Recently, GSK3 has been shown to play an important role in synaptic 

plasticity with inhibition of the kinase necessary for the induction of LTP 

(Hooper et al., 2007) and activation required for LTD (Peineau et al., 2007). In 

this way, GSK3 may contribute to the alterations in hippocampal synaptic 

plasticity and subsequent memory deficits which are a feature of mouse models 

of AD. 

 

1.3.5: Insulin signalling in AD 

 

 

Insulin receptors are expressed in many parts of the brain and physiological roles 

for insulin action on the brain are starting to be more clearly defined. In addition, 

exposing primary neuronal cultures to low levels of insulin can be 

neuroprotective, reducing vulnerability to oxidative stress and ischaemic damage 
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(Duarte et al., 2008, Sun et al., 2010), while culturing neurons in high insulin is 

neurotoxic (Noh et al., 1999). This has led to the hypothesis that disrupted 

neuronal insulin action may underlie the link between diabetes and 

neurodegenerative disorders. There are three potential mechanisms proposed, 

firstly that lifestyle factors promote a decline in the insulin sensitivity of the 

brain, in line with the peripheral tissues, leading to loss of protective/vital actions 

of insulin on neurons/synapses (Steen et al., 2005); secondly that the 

hyperinsulinemia that occurs due to insulin resistance reduces insulin transport 

across the blood brain barrier generating insulin deficiency in the brain (Urayama 

and Banks, 2008); and thirdly that hyperinsulinemia in the periphery generates 

hyperinsulinemia in the brain promoting neuronal damage (Cole et al., 2007a). It 

remains to be seen which, if any, of these mechanisms contributes to the 

development of dementia. 

 

1.3.6: The role of tau 

 

 

Although somewhat neglected due to the prominence of Aβ in the study of AD, 

tau plays an important role in the progression of the disease. The best 

pathological correlation of the cognitive deficits present in AD is the extent of 

neurofibrillary tangle deposition within the brain (Giannakopoulos et al., 2003). 

Familial mutations in the tau gene which cause an increase in tau filament 

formation do not result in AD, but in a form of dementia called frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17). In transgenic 

mouse models the expression of a familial tau transgene alone results in marked 

neuronal death (discussed in section 1.4.2). This shows that the aggregation of 
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tau is a critical event in the progression of forms of dementia including AD, and 

so AD could be considered a specific form of tauopathy. 

Oligomerisation of tau is enhanced by hyperphosphorylation of the protein which 

increases its propensity to form filaments. This results in not only a loss of the 

normal function of tau in stabilising microtubules but also a toxic gain of 

function as it sequesters normal tau and other microtubule-associated proteins to 

cause further disruption of microtubule function (Alonso et al., 1997). This 

results in compromised axonal function, synapse loss and neuronal degeneration 

(Alonso et al., 2010). It has been suggested that oligomeric tau may have a 

deleterious role on other cellular processes such as actin binding and cellular 

signalling, and cause mitochondrial dysfunction as a result of impaired 

intracellular transport (Gendron and Petrucelli, 2009). However, the exact 

mechanisms by which tau mediates its neurotoxic effects are not currently 

understood. The tau present in neurofibrillary tangles is relatively inert and does 

not appear to cause cellular death, and it is proposed that tangle formation may 

act as a neuroprotective mechanism by removing oligomeric tau forms (Lee et al., 

2005).  

Although tau pathology is widely thought to be downstream of amyloid 

pathology, it may still play a key role in the generation of the cognitive deficits 

observed in the disease. For example, clearance of soluble Aβ by immunization 

does not improve cognitive deficits in the 3xTg mice, with reduction of both Aβ 

and soluble tau required for improvement in performance on a memory task 

(Oddo et al., 2006b). Similarly, the reduction of tau levels in APP-

overexpressing mice leads to an improvement in cognitive symptoms (Roberson 
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et al., 2007). Therefore, it is clear that the contributions of Aβ and tau to the 

progression of AD are closely linked and both should be considered in models of 

the disease. 

 

 

1.4: Transgenic mouse models of AD 

 

 

Multiple different mouse models have been generated using familial AD 

mutations as a basis (see Tables 1.2, 1.3). Although these models do not 

completely replicate all aspects of the disease, they have been useful in 

understanding some of the mechanisms involved in the progression of AD.  

Mice are a particularly attractive model system due to their relatively easy 

genetic manipulation, short lifespan and ease of breeding. They can be 

engineered to develop specific pathological features which closely mimic aspects 

of human AD, and they perform well in cognitive tasks which involve areas of 

the brain affected by AD in humans, such as the hippocampus.  However, there 

are a number of caveats and limitations which must be considered. 

In the majority of mouse models of AD, including the 3xTg and TASTPM 

models, the transgene construct, comprising the gene of interest, enhancer and 

promoter regions, is microinjected into the nucleus of a mouse ovum and 

integrates randomly into the genome. Disadvantages of this approach include the 

insertion of the transgene into other gene sequences potentially altering 

regulation of those sequences, and the influence of surrounding sequence regions 

on transgene expression, with effects such as gene silencing. The insertion of 

multiple transgene copies is common, resulting in different levels of the gene 
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product being produced and the possibility of excessive overexpression (Nature 

Online, Cell Migration Gateway). For this reason, most models are generated 

using multiple founder lines which are individually characterized. Another 

approach, used in the generation of the PS1 M146V knock-in model (Guo et al., 

1999), is the targeted knockin approach. A culture of embryonic stem cells is 

exposed to the vector containing the gene of interest and a neomycin resistance 

gene. In some cells this gene will be taken up and inserted into the mouse 

genome by homologous recombination; these cells can be selected by the use of 

neomycin then injected into a mouse blastocyst. An advantage of this approach is 

the integration of the transgene at a known site, and of a single copy only. 

However, this method is more time consuming and technically difficult (Nature 

Online, Cell Migration Gateway). 

When generating mouse models, the choice of promoter is important as it drives 

the regional expression of pathology. The commonly used promoters are Thy-1, 

platelet-derived growth factor β (PDGF-β) and the mouse or hamster prion 

protein (PrP) promoter which are considered neuron-specific. However, each has 

its own region-specific expression.  For example, Thy-1 is expressed in the 

highest levels in the hippocampus and striatum, followed by the cortex and 

cerebellum (Seki et al., 2002). For a model of AD, it is desirable that the 

promoter produces an expression pattern which mimics that of the protein in the 

human disease. 

The background strain must also be carefully considered as there are biochemical 

and behavioural differences between a number of commonly used inbred mouse 

strains. For example, in the Morris water maze (MWM) task, C57BL/6 mice 
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perform better than DBA2 mice, and use a different search strategy which is 

associated with alterations in hippocampal gene expression (Sung et al., 2008). 

Strain-dependent differences in a range of behavioural tasks, such as the elevated 

plus maze and object recognition tasks, are widely reported (Brooks et al., 2005). 

Linked to this, electrophysiological studies show altered induction and 

maintenance of  LTP between a number of commonly used strains such as 

C57BL/6 and 129/Sv (Nguyen 2006). Unfortunately, the use of one single strain 

is not without its difficulties, as C57BL/6 sub-strains with different genetic 

backgrounds also show behavioural differences (Matsuo et al., 2010). Due to this, 

the choice of transgenic background strain must be carefully considered when 

choosing behavioural readouts, and reported in detail.  

One of the difficulties with transgenic mouse models of this disease is that they 

do not fully replicate all aspects of AD. APP transgenic mice develop plaques, 

cognitive deficits and related pathological changes such as inflammation. 

However, one of the major features of human AD is marked neuronal loss 

resulting in atrophy of the brain (Terry et al., 1981). So far, there is no 

convincing evidence for the presence of this feature in any transgenic models. In 

addition, the marked overexpression of human APP required for plaque 

formation does not result in the generation of tangle pathology in the mouse. 

Only with the presence of both an APP and tau mutation, as in the 3xTg mouse, 

are both plaques and tangles apparent (Oddo et al., 2003).  

All transgenic mouse models that have been generated have focused, by 

necessity, on the familial mutations associated with AD. It is possible that 

although the initiating mechanisms vary between sporadic and familial AD this 
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results in the same pathogenic endpoint. However, in studies designed to identify 

a treatment to prevent the early development of features of the disease there may 

be critical differences between sporadic and familial AD. For this reason, mouse 

models of the sporadic form of AD are desperately needed, along with a renewed 

focus on gene-environment interactions in transgenic mice, which look at the 

effects of stress, exercise and other ‘lifestyle’ factors on the development of 

pathology. 

Despite their limitations, transgenic mouse models have provided much valuable 

information about the pathology of AD and greatly contributed to the 

advancement of the field. The models available can be broadly divided into three 

groups: single transgenic mice, expressing APP, PS1 or tau, double transgenic 

mice, expressing APP and PS1, and the triple transgenic mouse, expressing all 

three transgenes. The following sections will describe some of the most 

commonly used mouse models, their phenotype, and relevance to the disease. A 

summary table of single transgenic mouse models is presented in Table 1.2 and 

double/ triple transgenic models in Table 1.3. 
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Table 1.2: Selected single transgenic mouse models of AD  

 

Model Mutation Promoter Background Pathology (age 

in months) 

Behavioural 

phenotype (age in 

months) 

Electrophysiology 

studies (age in 

months) 

References 

Tg2576 APP695 

K670N 

/M671L 

(Swedish) 

Hamster 

prion 

C57BL/6SJL 

x C57BL/6 

Soluble Aβ (6) 

Amyloid 

plaques (12-18)  

Impairment in Y-

maze(3) 

and MWM (9) * 

 

 

Reduced basal 

transmission (5) * 

Reduced LTP (5) * 

 

 

Hsiao et al 1996 

Jacobsen et al. 2006 

Lesne et al. 2006 

Westerman et al. 2002 

PDAPP APP(all 

isoforms) 

V717F 

(Indiana) 

PDGF-β C57BL/6 x 

DBA2 

Amyloid 

plaques (6-9) 

Hippocampal 

atrophy (3) 

Impairment in 

MWM (6 – 18) 

Object recognition 

(6) 

Reduced LTP (4) * 

Reduced basal 

transmission (8) 

Chen et al. 2000 

Dodart et al. 1999 

Games et al. 1995 

 

CRND8 APP695 

K670N 

/M671L and 

V717F 

Hamster 

prion 

C3H/HeJ x 

C57BL/6 

Aβ deposition 

(3) 

Amyloid 

plaques (3-5) 

Impairment in 

MWM (3) 

Reduced seizure 

threshold 

Reduced basal 

transmission (5) 

Increased LTP (5) 

Increased synaptic 

excitability 

Chishti et al. 2001 

Del Vecchio et al. 2004 

Jolas et al. 2002 

 

PS1 

knockin 

PS1 M146V  129/Sv x 

C57BL/6 

None None Reduced basal 

transmission (6) 

Increased LTP (6) 

Alterations in Ca
2+

 

signalling 

Guo et al. 1999 

Oddo et al. 2003 

Stutzmann et al. 2006  

Wang et al. 2004 

 

JNPL3 Tau P301L Mouse 

prion 

C57BL/6 x 

DBA2 x SW 

Neurofibrillary 

tangles (4-7) 

Progressive motor 

disturbances 

 Gotz et al. 2001 

* Differences reported by other experimental groups (see text) 
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1.4.1: Single transgenic models: APP 

 

 

Single transgenic APP mice express a human APP transgene with one of a 

number of familial AD mutations. There are a vast number of models now 

available using different mutations, promoters or strains; all develop plaque 

pathology and cognitive deficits, but the time course of these events is variable. 

Some of the most commonly studied models have subsequently been used in 

crosses with mice expressing other transgenic proteins in an attempt to replicate 

more fully the pathological features of AD.  

The PDAPP mouse was the first model to be generated, which expresses the 

V717F (Indiana mutation) under the PDGF-β promoter, resulting in a selective 

increase in Aβ42 levels. This mouse develops plaque pathology by 6-9 months in 

the hippocampus and, though it does not show neuronal loss, is one of the few 

models with hippocampal atrophy (Games et al., 1995). It shows age-

independent deficits in the Morris water maze (MWM), a spatial learning task 

which is thought to be hippocampal-dependent, and age-dependent deficits in 

object recognition memory from 6 months, which correlate with the development 

of amyloid plaque pathology (Dodart et al., 1999, Chen et al., 2000). 

Electrophysiological studies have shown a reduction in basal synaptic 

transmission from mice as young as 1 month suggesting there are age-

independent deficits associated with the expression of the transgene (Hsia et al., 

1999). The same study found no impairment in LTP in the hippocampal cornu 

ammonis 1 (CA1) region at 8 months, in contrast with another study which found 

a more rapid decline in LTP from 4 months (Hsia et al., 1999, Larson et al., 

1999). A lack of consensus, particularly in electrophysiological studies, between 
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research groups represents one of the difficulties in working with these 

transgenic models. 

Another widely used model is the Tg2576 mouse, which expresses the APP695 

isoform with the K670N/M671L (Swedish mutation) under the hamster PrP 

promoter. This results in overexpression of both Aβ40 and Aβ42 leading to plaque 

generation. The Tg2576 mouse develops plaques relatively late on in the lifespan, 

from between 12 and 18 months in the cortex and hippocampus (Hsiao et al., 

1996). The large number of studies using this mouse have resulted in a number 

of disparate findings which may in part be due to the use of different behavioural 

tests and electrophysiological protocols. For example, deficits were observed in 

the MWM at 9 months by one group, but this was not replicated in another study, 

although deficits were reported at 3 months in a Y-maze spatial task (Hsiao et al., 

1996, King et al., 1999). In studies of synaptic plasticity, reduced basal synaptic 

transmission has been reported from 5 months, but this was not observed at 15 

months in another study (Chapman et al., 1999a, Jacobsen et al., 2006), while 

LTP in aged mice (over 12 months) is reduced in several studies (Chapman et al., 

1999a, Mitchell et al., 2009) but unimpaired in another (Fitzjohn et al., 2001). In 

the Tg2576 mouse, the late onset of plaque deposition and the lack of correlation 

between memory deficits and insoluble amyloid (Westerman et al., 2002) has 

been used to provide evidence for the toxicity of soluble, oligomeric forms of Aβ 

in AD.  

Finally, the CRND8 mouse model expresses the APP695 isoform with both the 

K670N/M671L (Swedish) and V717F (Indiana) mutations. Due to the 

combination of two familial mutations this mouse develops early and marked Aβ 
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deposition from the age of 3 months which is accompanied by premature 

mortality (Chishti et al., 2001). In addition, cognitive deficits in the MWM are 

observed at this early age (McCool et al., 2003). Interestingly, although reduced 

basal synaptic transmission is observed in these mice, LTP is increased in 

magnitude at 5 months of age. This has been linked to altered neuronal 

excitability, with a reduction in GABAergic and enhancement in glutamatergic 

function (Jolas et al., 2002). In support of this, CRND8 mice show an enhanced 

susceptibility to seizures induced by pentylenetetrazole, a GABA receptor 

antagonist (Del Vecchio et al., 2004). This suggests that changes in hippocampal 

network function and an alteration of the balance between excitatory and 

inhibitory transmission may occur in APP transgenic mice. 

 

1.4.2: Single transgenic models: tau 

 

 

There are several transgenic models developed which express familial tau 

mutations. However, mutations in tau are not observed in human AD, but in 

other forms of dementia such as frontotemporal dementia (Hutton et al., 1998). 

In addition, tangle pathology is observed in a number of neurodegenerative 

conditions (classified as ‘tauopathies’) such as corticobasal degeneration and 

progressive supranuclear palsy which generally involve a component of 

movement disorder. 

Tau mutant mice develop marked motor deficits, a feature characteristic of other 

tauopathies and not generally observed in AD. For example, the JNPL3 mouse, 

which expresses the tau P301L mutation under the mouse PrP promoter, shows 

degeneration of motor neurons in the spinal cord, neuropathy and muscular 
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atrophy. Neurofibrillary tangles are apparent in regions not widely affected in 

AD such as the brainstem and cerebellum (Lewis et al., 2000). Severe motor 

impairments occur from the age of 6 months which progress rapidly to a terminal 

state within 4-5 weeks.  

The JNPL3 mouse does however develop several features which mimic those 

observed in AD. Hyperphosphorylation of tau occurs at several AD-related 

epitopes, such as the AT8 epitope, and tau deposition is observed in the cortex, 

hippocampus and amygdala (Gotz et al., 2001). This suggests that tau mutant 

mice might be useful for studying aspects of AD pathology; for example the 

JNPL3 mouse has been used in the study of tau filament formation (Sahara et al., 

2002). 

The primary value of tau transgenic mice in AD research has been to study the 

interactions between Aβ and tau. For example, injection of Aβ fibrils exacerbates 

pathology in the JNPL3 mouse, resulting in a fivefold increase in tangles in the 

amygdala (Gotz et al., 2001). In another study, a cross between Tg2576 and the 

JNPL3 mouse results in an enhancement of neurofibrillary tangle pathology 

when compared to the tau mutants alone (Lewis et al., 2001), showing that Aβ 

overexpression can interact with tau protein to cause an enhancement of tangle 

pathology. 

 

1.4.3: Single transgenic models: presenilin 

 

 

Mouse models have been generated using a number of mutations in the PS1 gene 

such as M146V or M146L, PS1∆e9 (exon 9 deleted), and A246E. Although 

human mutant PS1 expression in mice causes a selective increase in the levels of 
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Aβ42 (Sudoh et al., 1998),  this does not result in the development of plaque or 

tangle pathology. The homozygous PS1 M146V knockin mouse shows no overt 

biochemical or cognitive phenotype (Guo et al., 1999). However, these mice 

appear to have an enhanced susceptibility to excitotoxicity, with an increased 

vulnerability to seizure-induced neurodegeneration in vivo and glutamate-

induced toxicity in hippocampal culture (Guo et al., 1999). In addition to this, 

they have been shown to possess alterations in intracellular Ca
2+

 signalling 

(Stutzmann et al., 2006). Studies of synaptic function have shown a reduction in 

basal synaptic transmission at 6 months, but an enhancement in PPF and the 

initial phase of LTP, which involve Ca
2+

-mediated signalling (Oddo et al., 2003). 

A similar phenotype of facilitated LTP and enhanced excitotoxicity is observed 

in another PS1 model, A246E (Schneider et al., 2001). Therefore, PS1 mutant 

mice may be useful for studying the role of Ca
2+

 in the pathogenesis of AD.  

In addition to this PS1 transgenic mice have been used in the generation of 

multiple other models, including the 3xTg mouse, and these are discussed in the 

following sections. 

 

1.4.4: Double transgenic models  

 

 

The two most commonly used APP x PS1 mice are the PSAPP and the TASTPM 

models. Biochemical and electrophysiological characterisation of the TASTPM 

mouse is a focus of this thesis. 
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Table 1.3: Selected double/triple transgenic mouse models of AD  

 

Model Mutation Promoter Background Pathology (age in 

months) 

Behavioural 

phenotype (age 

in months) 

Electrophysiolog

y studies (age in 

months) 

References 

PSAPP APP695 

K670N/ 

M671L x 

PS1M146V 

PDGF-β/ 

prion 

promoter 

C57BL/6 x 

DBA2 

Amyloid plaques 

(3-6)  

Impairment in 

radial arm water 

maze (15) 

 Holcomb et al. 

1998 

Gordon et al. 2001 

McGowan et al. 

1999 

 

TASTPM APP695 

K670N/ 

M671L 

(TAS10 

line) x PS1 

M146V 

Thy-1 C57BL/6 x 

C3H 

backcrossed 

to C57BL/6 

Aβ deposition (3) 

Amyloid plaques 

(6) 

Deficits in object 

recognition (6) 

Aggression 

Premature 

mortality 

Alterations in 

intracellular Ca
2+

 

signalling 

Goussakov et al. 

2010 

Howlett et al. 2004 

Howlett et al. 2008 

Pugh et al. 2006 

3xTg APP695 

K670N/ 

M671L, 

TauP301L x 

PS1M146V 

Thy-1 C57BL/6 x 

129X1/SvJ 

x 129S1/Sv 

Soluble Aβ(3-9)* 

Amyloid plaques  

(6-12)* 

Tau 

hyperphosphory-

lation (6-12)* 

Tangles (18) 

Deficits in 

MWM (4-6)* 

Increased 

contextual fear 

conditioning (6) 

Reduced basal 

transmission (6)* 

Reduced LTP 

(6)* 

Billings et al. 2005 

Espana et al. 2010 

Hirata-Fukae et al. 

2008 

Mastrangelo et al. 

2008 

Oddo et al. 2003 

 

* Differences reported by other experimental groups (see text) 
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The cross of an APP and PS1 transgenic mouse results in the acceleration of Aβ 

pathology. For example, the PSAPP mouse, generated by crossing the Tg2576 

(APPSwe) with the PS1 M146V model, shows the onset of plaque deposition at 3 

months in the cortex and hippocampus, with extensive deposition by 6 months, 

(McGowan et al., 1999). This is markedly faster than in the single transgenic 

Tg2576, and the PSAPP mice show a four- to six-fold elevation of Aβ42 levels 

due to the presence of the PS1 mutation (Holcomb et al., 1998). 

The TASTPM mouse was generated by a cross of the PS1 M146V mouse with 

the previously generated TAS10 line, which expresses the APP695 

K670N/M671L (Swedish) mutation under the Thy-1 promoter on a C57BL/6 

background. The TAS10 mouse shows Aβ deposition from the age of 12 months 

in hippocampus and cortex, which increases progressively to the age of 24 

months. Cognitive deficits are present in the MWM from 6 months, when initial 

structural changes are observed such as dystrophic neurites and activated 

microglia (Richardson et al., 2003). In electrophysiological studies at 12 months, 

these mice show impaired basal synaptic transmission but normal LTP induction, 

with altered synchronous activity suggesting a disruption of neuronal network 

function in the hippocampus (Brown et al., 2005). 

The development of Aβ deposition occurs more rapidly in the TASTPM model 

than in the parent TAS10 line. At 3 months of age, amyloid deposition is 

apparent in the cortex, with mature plaques developing by 6 months; by 6-8 

months the plaque levels are similar to those observed in 16 month TAS10 mice. 

There is a gender-dependent difference, with Aβ load higher in female mice at all 

ages studied (Howlett et al., 2004). Other pathological features include neuronal 
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loss in the vicinity of amyloid plaques and hyperphosphorylated tau associated 

with dystrophic neurons (Howlett et al., 2008a); this shows that in mice 

overexpression of mutant APP in combination with mutant PS1 can induce 

biochemical changes in wild type tau. 

In comparison to the widely studied 3xTg model there have been relatively few 

electrophysiological or behavioural studies of the TASTPM mice. These mice 

show a marked behavioural phenotype characterised in males by a high level of 

aggression which requires individual housing. They also exhibit weight loss, 

despite a higher food intake, and premature mortality which is particularly 

apparent in female mice.  In addition, they show alterations in circadian rhythm, 

disinhibition and locomotor hypoactivity (Pugh et al., 2007). This has been 

suggested to replicate some of the behavioural alterations in human AD, such as 

a fragmented sleep-wake cycle and personality changes such as irritability and 

aggression, however it is difficult to make correlations between mouse and 

human behaviour. 

Studies of cognitive behaviour in the TASTPM mouse have shown deficits in the 

hippocampal and cortical-dependent novel object recognition task from the age 

of 6 months (Howlett et al., 2004). At this age, there is marked amyloid 

deposition with mature plaque formation, suggesting these mice require a 

significant Aβ load before cognitive deficits are observed in this task. 

Electrophysiological studies have shown a marked reduction in basal synaptic 

transmission in the TASTPM mice at the age of 8 months (Spencer et al., 2004) 

similar to that observed in the parent TAS10 line (Brown et al., 2005). In 

addition, these mice show an alteration in intracellular Ca
2+

 signalling, likely due 
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to the presence of the PS1 mutation (Goussakov et al., 2010). This suggests that 

there are alterations in synaptic function in the TASTPM mice which have not 

been fully characterised. 

 

1.4.5: The triple transgenic (3xTg) mouse 

 

 

The triple transgenic (3xTg) mouse is the primary mouse model investigated in 

this thesis. It was generated at the University of California, Irvine, by a group led 

by Dr. Frank LaFerla. A homozygous PS1M146V mutant mouse was used which 

was developed from a hybrid C57BL/6 x 129/Sv strain. cDNA constructs 

containing an hAPP K670N/M671L Swedish mutation and a P301L tau mutation 

were microinjected into the embryos of these mice and expressed using the 

Thy1.2 neuronal-specific promoter to produce a triple APPK670N/M671L, TauP301L 

and PS1M146V mouse. In the founder line, these integrated at the same locus, 

allowing co-transmission of the transgenes. The homozygous mouse shows a 3-4 

fold increased steady state level of APP and a 6-8 fold increased level of tau 

above endogenous levels in the brain (Oddo et al., 2003). 

 

1.4.5.1: Pathological features of the 3xTg mouse: amyloid pathology 

 

 

The pathology in these mice has been extensively characterised, but there are 

some discrepancies in the findings, in particular between studies from distinct 

groups. It was originally reported that intraneuronal Aβ reactivity was present at 

3-4 months in the cortex and by 6 months in the CA1 region of the hippocampus. 

Within the hippocampus the majority of neurons expressing intraneuronal Aβ 

may be outside the pyramidal layer and instead within the stratum oriens, 
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subiculum and corpus callosum (Mastrangelo and Bowers, 2008). The 

intraneuronal Aβ is monomeric until around 4-6 months of age, at which stage it 

may begin to oligomerise within the neurons (Oddo et al., 2006a). However, a 

recent paper has suggested that the intraneuronal Aβ is not present as a free 

peptide but as the uncleaved peptide within the APP protein, which the majority 

of antibodies are unable to distinguish between (Winton et al., 2011), and that 

free Aβ may not be required for pathogenesis in these mice. Extracellular plaques 

begin to develop at 6 months in the frontal cortex and are clearly apparent by 12 

months, when plaques begin to develop in other regions of the cortex and 

hippocampus (Oddo et al., 2003); plaque pathology initiates at the interface 

between the subiculum and CA1 region before spreading to involve the entire 

hippocampus (Mastrangelo and Bowers, 2008). España et al., (2010) also 

observed intraneuronal Aβ at 6 months in the cortex and hippocampus, with 

plaques present by 12 months. Interestingly, they highlight the importance of the 

basolateral amygdala in the pathological staging as this region shows the highest 

levels of intraneuronal Aβ at 6 months. Intraneuronal Aβ is also present within 

midbrain and brainstem regions from the age of 2 months (Overk et al., 2009).  

The development of pathology is reported by others to occur more slowly than 

originally reported. Hirata-Fukae et al. (2008) observed intraneuronal Aβ at 6 

months in the cortex and 9 months in the hippocampus, a full 3 months later than 

the original report. Mastrangelo et al. (2008) observed the early development of 

intraneuronal Aβ from the age of 2 months but report no plaque pathology within 

the hippocampus until mice are older than 15 months of age, and none within the 

cortex until 18 months of age. 
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The late onset of plaques was also observed by Hirata-Fukae et al. (2008) who 

did not report their development until the age of at least 14 months, and initially 

only in female mice, in contrast with the original study by Oddo et al. (2003) 

who observed no gender-dependent differences in brain pathological features. 

More pronounced pathology in female mice has also been reported by Overk et 

al., (2009) who observed plaques in the pons of female mice only at the age of 9 

to 12 months. Hirata-Fukae et al. (2008) suggest that an upregulation of Aβ 

production, as measured by soluble levels, and a reduction in the activity of the 

Aβ degrading enzyme neprilysin may be the cause of the more severe 

pathological features in females.  

Although the exact time course remains unclear, it is therefore evident that 

intraneuronal Aβ accumulation precedes plaque deposition by a number of 

months with plaque formation a relatively late event in the lifespan of this model. 

In addition, the amyloid pathology shows a region-specific progression within 

the mouse brain, affecting the cortex first and followed by the hippocampus.  

 

1.4.5.2: Pathological features of the 3xTg mouse: tau pathology 

 

 

Tau pathology occurs initially with somato-dendritic accumulation (Clinton et al., 

2007) and sequential phosphorylation of multiple residues, which can be shown 

using antibodies raised against the different phosphorylatable sites on the tau 

protein. At 6 months, increased phosphorylation is present at sites recognised by 

the AT100 and 12E8 sites (Thr 212/Ser 214 and Ser262) but the AT8 (Ser 202, 

Thr 205) and AT180 (Thr 231) sites are not phosphorylated until 12-15 months, 

along with conformational changes detected by the MC1 antibody (Oddo et al., 
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2003). Neurofibrillary tangles, to which the PHF-1 antibody reacts, are not 

evident until 12 - 18 months of age. In contrast to the APP pathology, which 

initiates in the cortex and then spreads to the hippocampus, the tau pathology is 

first apparent in the hippocampus, in particular the neurons of the CA1 region, 

and develops to involve the cortex (Oddo et al., 2003, Oddo et al., 2007). The 

development of biochemical changes in tau is not thought to show any gender-

dependent differences (Hirata-Fukae et al., 2008). It is generally accepted that 

tau hyperphosphorylation and tangle generation occurs much later than the 

development of amyloid pathology, but again there are some discrepancies 

between groups. Mastrangelo et al. (2008) observed AT180 staining suggesting 

phosphorylation of Thr231 as early as six months of age in the hippocampus, in 

contrast with Oddo et al. (2007) who observed such phosphorylation at 12 

months. This group also failed to observe substantial tangle pathology until the 

late age of 23 months although they did detect some PHF-1 reactivity at 15 

months within the hippocampus, a similar age to Oddo et al. (2007).  One group 

has detected multiple phospho-tau isotopes, including AT180, as early as three 

weeks of age in the amygdala and cortex, although tangles do not appear until the 

age of 23 months (Oh et al., 2010). There is a general consensus that the tangle 

pathology appears late in the lifespan of the mouse but the expression of 

phosphorylated tau epitopes may be time and brain-region specific and vary 

between individual colonies of 3xTg mice.  

 

1.4.5.3: Pathological features of the 3xTg mouse: other alterations 

 

 

An important feature that should be replicated in a mouse model of AD is the 

presence of an inflammatory response at sites adjacent to amyloid deposition. 
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Localised inflammation surrounding plaques is observed in AD and is 

characterised by the presence of activated microglia and astrocytes. In the 3xTg 

mouse there is a progressive increase in activated microglia with age, although 

this occurs relatively late in the lifespan from the age of 12 months (Kitazawa et 

al., 2005). However, there is no alteration in the levels of activated astrocytes 

with age (Mastrangelo and Bowers, 2008). This shows that in the 3xTg model 

there is a limited inflammatory response; however, this may still mirror some 

aspects of this feature of human AD.  

Alterations in adult neurogenesis (Rodriguez et al., 2008, Hamilton et al., 2010), 

serotonergic function (Noristani et al., 2010), and the presence of dendritic spine 

loss (Bittner et al., 2010) have also been observed in this model. However, 

further studies are required to understand the relevance of each of these features 

and how they relate to the cognitive and electrophysiological deficits observed. 

Also widely reported are alterations in neuronal Ca
2+ 

homeostasis, with an 

increase in resting Ca
2+ 

levels and enhanced ryanodine receptor (RyR)-mediated 

Ca
2+ 

release (Stutzmann et al., 2006, Lopez et al., 2008). This may be due to the 

presence of the PS1M146V mutation and may result in modulation of synaptic 

plasticity, which is discussed further in Chapter 3. 

 

1.4.5.4: Behavioural phenotype of the 3xTg mouse 

 

 

A number of studies have analysed the learning ability and general behaviour of 

3xTg mice in an attempt to correlate deficits in these measures with the time 

course of the development of pathology. 
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3xTg mice, unlike the TASTPM strain, do not show abnormally aggressive 

behaviour and are reasonable docile and easy to handle. Young 3xTg mice 

appear healthy, with no apparent increase in premature mortality. At the age of 6 

months, 3xTg mice have a significantly higher body weight than their control 

counterparts and this is accompanied by an increased food intake. In contrast, 12 

month mice, despite an increased food intake, show reduced body weight and an 

increase in metabolic rate (Knight et al., 2010). There are also circadian rhythm 

changes prior to 6 months of age, with both male and female mice showing 

decreased nocturnal behaviour compared with control. Males show greater 

locomotor activity during the day and females a decrease in activity levels during 

their normal active phase (Sterniczuk et al., 2010b). These behavioural 

abnormalities occur at ages before the development of major plaque and tangle 

pathology.  

 

1.4.5.5: Cognitive testing of 3xTg mice 

 

 

3xTg mice show no impairment of performance in the MWM at 2 months but at 

4 months show retention deficits from day to day during acquisition training and 

deficits in a 24 hour probe trial, showing impaired long-term memory. By 6 

months the mice also have impairment in a 1.5 hour probe trial, showing that by 

this age they have marked deficits in spatial reference memory (Billings et al., 

2005). There is a gender-dependent effect on this task, with females showing 

poorer performance than males, possibly linked to an increased stress response 

and corticosterone levels (Clinton et al., 2007). A further study has shown that 

previous experience of testing at 2, 6 and 9 months can markedly improve 

performance in the MWM of 12 month 3xTg mice, with experienced mice 
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showing a reduced plaque load at 12 months and decreased phosphorylation of 

tau compared with naïve mice (Billings et al., 2007). In the novel object 

recognition task the 3xTg mice show impaired performance at the age of 12 

months (Arsenault et al., 2011), an age at which amyloid deposition should be 

well established within the hippocampus. 

3xTg mice have also been tested in a contextual fear conditioning task, in which 

a freezing response is elicited from a tone or light which was previously paired 

with a footshock; this involves both the hippocampus and amygdala. At 6 months, 

3xTg mice show improved performance when compared to control, characterised 

by an increased freezing response when tested 24 hours after the initial footshock. 

This may be associated with the increased anxiety behaviour observed in these 

mice (see Chapter 5), as they also show enhanced freezing behaviour when first 

placed in the test chamber (Espana et al., 2010).  

Finally, a recent study has used a five-choice serial reaction time test, which 

involves the mouse reacting to a light stimulus by pressing a touchscreen to 

subsequently receive a food reward (Romberg et al., 2011). 9 month old 3xTg 

mice are impaired in this task and this may represent a deficit in attention, 

mediated by cholinergic inputs to the frontal cortex, as these effects are rescued 

by the cholinesterase donepezil. In addition, 3xTg mice show a higher rate of 

perseverative responses (i.e. the continued repetition of behaviour in the absence 

of the stimulus). It has been suggested that alterations in behavioural measures 

such as attention may also influence the performance of 3xTg mice on other 

cognitive tasks. 
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In summary, the behavioural phenotype of this model has been extensively 

examined but these studies did not attempt to link synaptic or 

electrophysiological deficits to the appearance of behavioural deficits. 

 

 

1.5: The hippocampus 

 

The hippocampus is a region of the brain important in memory processes, 

including the retention of spatial information and memory for recent events. It is 

also one of the earliest regions to be affected by tau pathology in AD and is 

thought to contribute to the early memory deficits which are a symptom of the 

disease. Forms of synaptic plasticity such as long-term potentiation (LTP), 

thought to be a cellular correlate of memory, have been widely studied, with 

alterations in the magnitude of LTP associated with cognitive deficits in mouse 

models of AD. The following sections describe the anatomy of the hippocampus, 

its role in memory processes and the molecular mechanisms of synaptic plasticity. 

 

1.5.1: Structure and anatomy of the hippocampus  

 

 

The hippocampus is a paired structure located within the medial temporal lobe of 

the brain. It has a curved appearance, resembling the body of a seahorse, which 

gives the region its name. This structure is unique within the brain as it possesses 

a mainly unidirectional neuronal circuit which lies within the same orientation, 

allowing the experimental preparation of hippocampal slices in which the 

synaptic contacts are largely preserved. A diagram of the hippocampus (sagittal 

orientation) is shown in Fig. 1.5.  



 

 

73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.6: Sagittal section of the rodent hippocampus. Input comes from the 

EC via the perforant path where it synapses with DG granule cells. The granule 

cells project to the CA3 region via the mossy fibres and synapse with the 

pyramidal cells in this region. CA3 pyramidal cells then project to the CA1 

pyramidal cells via the Schaffer collateral-commissural pathway. This pathway is 

primarily unidirectional and is so often called the ‘trisynaptic pathway’.  

 

Abbreviations: EC (entorhinal cortex), DG (dentate gyrus), CA3 (cornu ammonis 

3), CA1 (cornu ammonis 1). 
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 The primary input pathway to the hippocampus occurs through the entorhinal 

cortex (EC) which projects to the dentate gyrus (DG) through the perforant 

pathway. In addition, the EC provides an output pathway for information leaving 

the hippocampus through the subiculum. The EC projects widely to a number of 

other cortical regions, including the piriform, temporal and frontal cortex 

(Burwell and Amaral, 1998) and also to other brain regions such as the amygdala 

and thalamus (Amaral and Lavenex, 2007).   

From the DG to the CA1 region the pathway is unidirectional and is often called 

the ‘trisynaptic circuit’ i.e. EC to DG, DG to CA3, CA3 to CA1. The principal 

neurons of the DG, the granule cells, project via the mossy fibre pathway to the 

CA3 (cornu ammonis 3) region where they synapse with CA3 pyramidal neurons. 

From this region, the CA3 neurons project to the CA1 pyramidal neurons via the 

Schaffer-collateral commissural pathway. The CA1 region projects both to the 

hippocampal subiculum which is linked to the EC, and the EC directly to allow 

information to leave the hippocampus. Although the primary granule cells and 

pyramidal neurons are glutamatergic, the hippocampus also contains a network 

of GABAergic interneurons which modulate neuronal transmission (Amaral and 

Lavenex, 2007).   

 

1.5.2: Function of the human hippocampus  

 

 

Studies involving patients with hippocampal lesions have shown unequivocally 

that the human hippocampus plays a critical role in aspects of memory. However, 

the concept of ‘memory’ is complex and can be divided into a number of 

subtypes, the most basic being the division between short-term and long-term 
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memory. Within the category of long-term memory are procedural memory 

(carrying out skills or motor tasks) and declarative memory (recollection of facts 

and events). It is in this latter process the hippocampus is thought primarily to be 

involved. This theory was first developed using the case of the famous patient 

H.M., who underwent bilateral removal of the medial temporal lobe as a 

treatment for intractable epilepsy. Following the procedure, he was unable to 

retain memory for new events (anterograde amnesia) or recent previous events 

(retrograde amnesia) although his short term and procedural memory were 

unaffected, along with his memory of early life events (Corkin et al., 1997). 

Short-term memory and the prolonged storage of declarative memories are 

thought to involve regions of the brain distinct from the hippocampus, such as 

the cerebral cortex (Squire and Zola-Morgan, 1991). Similar amnesia is observed 

in a number of individuals who have experienced ischaemic damage to the 

hippocampal formation (Rempel-Clower et al., 1996).  

Overall, data supports the existence of a ‘medial temporal lobe memory system’ 

consisting of the hippocampus, EC and adjacent parahippocampal cortex, 

involved in the acquisition of facts (semantic memory) and events (episodic 

memory (Squire and Zola-Morgan, 1991)). Another widely studied function of 

the hippocampus is its role in spatial memory and processing. The existence of 

hippocampal place cells, which encode spatial location, has been demonstrated 

and widely studied in the mouse and rat. Performance in tasks such as the Morris 

water maze (MWM), in which the animal must form a spatial representation of a 

pool, is impaired in rats with hippocampal lesions (Morris et al., 1990). In 

humans, a subset of neurons within the hippocampus fire in response to specific 

spatial locations (Ekstrom et al., 2003) suggesting the existence of place cells 



 

 

76 

within this structure. However, it has been suggested that the role of the 

hippocampus in human spatial memory is more complex and involves the 

integration of aspects such as episodic memory and contextual information 

(Good et al. 2002). 

The divergent roles of the hippocampus are consistent with damage in this region 

leading to some of the cognitive deficits observed in human AD. The EC and the 

hippocampus are one of the earliest regions to be affected by pathological 

changes such as tangle deposition (Braak and Braak, 1991). Early AD is 

primarily characterised by deficits in declarative memory, with an inability to 

learn new information and remember recent events, and this has been shown to 

correlate with the degree of hippocampal atrophy (Walker et al. 2007). Another 

early symptom is disorientation, with individuals ‘getting lost’ initially in 

unfamiliar environments but subsequently in their own homes. Damage to the 

hippocampal regions may result in an impaired memory for relevant places 

which may result in difficulties with spatial navigation. Therefore, neuronal 

damage and atrophy within the hippocampus and EC is likely to explain the 

impairments in spatial processing and anterograde amnesia in AD.  

A number of other memory impairments are also reported in AD, and this is 

reflected in the varied cognitive tests required to form a preliminary diagnosis. 

An inability to recognise objects (visual agnosia), difficulties in performing tasks 

or movements (apraxia) and language difficulties may reflect increasing cortical 

involvement in the disease (Walker et al. 2007). This shows that, although the 

hippocampus plays a critical role in human memory, a number of other brain 
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regions are damaged in AD leading to the cognitive deficits observed, 

particularly in the later stages of the disease. 

 

1.5.3: Synaptic plasticity in the hippocampus 

 

 

There are several activity-dependent forms of synaptic plasticity in the 

hippocampus which last from milliseconds to several hours, days or longer. 

Synaptic plasticity is an alteration of the efficiency of synaptic transmission, 

which may involve both increases and decreases in synaptic strength and is 

characterised by biochemical and morphological alterations of the synapse. 

Short-term forms of plasticity include paired-pulse facilitation (PPF) which 

occurs on the scale of several hundreds of milliseconds, and post-tetanic 

potentiation (PTP) which may last several minutes, while long-term potentiation 

(LTP) and depression (LTD) result in sustained changes in synaptic strength 

which may last for several hours or longer.  

 

1.5.3.1: Paired-pulse facilitation (PPF) 

 

 

Facilitation is a form of short-term synaptic enhancement which occurs over a 

period of several hundreds of milliseconds and results in an enhanced probability 

of neurotransmitter release. PPF occurs at CA1 hippocampal synapses when two 

stimuli are given within around 50 – 500ms of each other. The amplitude of the 

second synaptic response recorded is typically greater than that of the first 

stimulus. PPF is largely due to presynaptic mechanisms, in particular the 

transient increase in Ca
2+

 generated by an incoming action potential. The residual 

Ca
2+ 

present in the terminal following the first stimulus is combined with the 
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Ca
2+ 

influx occurring from the second stimulus to cause an enhancement of the 

magnitude of the second synaptic response. It has been shown that the level of 

PPF is linearly related to the concentration of residual Ca
2+ 

within the terminal 

(Wu and Saggau, 1994).  

 

1.5.3.2: Induction of LTP 

 

 

Following an initial stimulus, an activity-dependent increase in the strength of 

synaptic transmission is observed which can be maintained for several hours or 

indeed many days in vivo. This was first observed in the anaesthetised rabbit, 

where brief high-frequency stimulation resulted in a long-lasting potentiation of 

the synaptic response obtained by stimulation of the perforant path (Bliss and 

Lomo, 1973). The clear laminar structure of the hippocampus lends itself well to 

such experiments, and over several decades the mechanisms of hippocampal LTP 

have been extensively studied. These are discussed in the following sections and 

summarised in Fig. 1.6. 

In the two most commonly studied pathways, the Schaffer collateral-

commissural pathway to CA1 pyramidal synapses and the perforant path to DG 

granule cell synapses, induction of LTP is dependent upon the activation of the 

NMDA receptor (Collingridge et al., 1983). This receptor is subject to a voltage-

dependent Mg
2+ 

block under conditions of basal synaptic transmission. However, 

in the presence of enhanced glutamate release, Na
+
 influx through postsynaptic 

AMPA receptors results in a sustained depolarisation of the postsynaptic spine. 

This relieves the Mg
2+ 

block of the NMDA receptor, allowing Ca
2+

 influx and the 

activation of Ca
2+

-dependent enzymes. Inhibitory GABAergic interneurons 
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which act on the postsynaptic spine usually act to limit depolarisation, however 

sustained depolarisation (as delivered by a LTP induction protocol) results in the 

fatigue of these interneurons through the activation of inhibitory GABAB 

autoreceptors. For this reason stimulation protocols such as the theta burst have 

been developed which deliver stimuli at the time of maximal presynaptic 

GABAB autoreceptor activation, leading to a reduction in GABA-mediated 

hyperpolarisation of the postsynaptic cell (Davies and Collingridge, 1996).  

 

1.5.3.3: Post-tetanic (PTP) and short-term (STP) potentiation  

 

 

Immediately following the induction stimulus there is an increase in synaptic 

strength which is often substantial and characteristic of PTP. This is a short term 

form of plasticity which declines within several minutes and, similar to PPF, is 

thought to depend upon the presynaptic Ca
2+ 

concentration. Following this, the 

amplitude of the synaptic response should become stable and elevated for at least 

40-60 minutes to be considered as LTP. A return to basal synaptic strength prior 

to this period is usually considered STP, but the cutoff points vary between 

groups, as the two forms of plasticity overlap and cannot be distinguished 

without pharmacological means. STP can be generated by performing the 

stimulation protocol in the presence of broad spectrum protein kinase inhibitors 

which prevent the kinase activity necessary for LTP induction (Malenka et al., 

1989). It is thought to be a presynaptic phenomenon which decays in an activity-

dependent manner (i.e. if the input stimulation is stopped for any period of time, 

STP will resume at the same magnitude when it is restarted) and the level of STP 

varies with the strength of induction protocol used (Volianskis and Jensen, 2003). 
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1.5.3.4: Early phase LTP (E-LTP) 

 

 

The initial phase of LTP occurs as a result of the marked rise in intracellular Ca
2+ 

caused by influx though NMDA receptors and other mechanisms such as 

voltage-gated Ca
2+ 

channel activation and release of Ca
2+ 

 from internal stores 

(Alford et al., 1993). Studies of the molecular mechanisms of this process has 

been largely determined by the availability of selective inhibitors and transgenic 

models. A number of kinases have been implicated in this mechanism, although 

most play a regulatory rather than an essential role. 

Thought to be most important in LTP expression is Ca
2+ 

/calmodulin-dependent 

protein kinase (CaMKII) which undergoes autophosphorylation when associated 

with the Ca
2+ 

-associated form of the protein calmodulin. This results in the 

persistent activation of the enzyme despite the reduction in intracellular Ca
2+ 

which occurs subsequent to LTP induction. Evidence for the role of CaMKII 

comes from studies in which a peptide inhibitor blocks LTP induction (Malinow 

et al., 1989). In addition, a transgenic mouse with a point mutation in which 

autophosphorylation of CaMKII is prevented shows a reduction of LTP in the 

CA1 region (Giese et al., 1998). Activation of CaMKII results in a cascade of 

downstream events which allow the persistent expression of LTP and are 

discussed in the following section. 
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Figure 1.7: Mechanisms of LTP. Sustained glutamate release from the 

presynaptic terminal and depolarisation of the postsynaptic terminal mediated 

by AMPA receptor activation is sufficient to relieve the Mg
2+ 

block of the 

NMDA receptor and allow Ca
2+ 

influx. This is subsequently enhanced by the 

entry of Ca
2+ 

through voltage dependent Ca
2+ 

channels and release from 

intracellular stores. Ca
2+ 

bound to calmodulin activates the kinases CaMKII and 

PKC, which phosphorylate existing AMPA receptors and initiate the 

translocation of new receptors to the synapse. Activation of PKA and MAPK 

results in phosphorylation of the transcription factor CREB which translocates 

to the nucleus and initiates gene transcription, promoting the synthesis of new 

proteins essential for the maintenance of LTP.   

 

Abbrevations: Glu (glutamate), AMPAR (AMPA receptor), NMDAR (NMDA 

receptor), VGCC (voltage gated Ca
2+ 

channels), P (phosphorylation). 
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A number of other kinases are thought to have a regulatory role in E-LTP. 

Protein kinase C (PKC), in particular the PKCγ isoform, may be persistently 

activated following LTP induction and may initiate an alternative kinase cascade 

in parallel with CaMKII. Inhibitors of PKC applied into the postsynaptic neuron 

can inhibit both the induction and  maintenance of LTP (Wang and Feng, 1992). 

Also implicated in LTP are protein tyrosine kinases such as fyn (Grant et al., 

1992), MAPK (English and Sweatt, 1997) and protein kinase A (PKA), although 

these are thought to have a greater role in L-LTP. 

In conclusion, there are a number of protein kinases which modulate the 

expression of E-LTP. However, the exact role of each kinase and its downstream 

effects are not fully understood. It is likely that there are multiple and 

overlapping cascades which result in a number of downstream mechanisms 

allowing the prolonged maintenance of synaptic potentiation.  

 

1.5.3.5: Postsynaptic expression mechanisms 

 

  

The most important postsynaptic expression mechanisms in E-LTP involve the 

alteration of AMPA receptor function. This occurs both through the modification 

of existing receptors and the trafficking of new receptors into the synapse. 

Activation of CaMKII results in the phosphorylation of the GluR1 subunit 

membrane AMPA receptors at Ser831. This alters the single-channel 

conductance of the receptor to increase its permeability to Ca
2+

 (Lee et al., 2000). 

In addition, it has been suggested that there are alterations in the subunit 

composition of these AMPA receptors, with the transient expression of GluR2-

lacking (Ca
2+

-permeable) receptors prolonging the rise in intracellular Ca
2+ 

(Plant 
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et al., 2006). New AMPA receptors enter the synapse through two distinct 

mechanisms: trafficking from intracellular compartments and lateral diffusion 

from perisynaptic regions (Makino and Malinow, 2009). This may result in the 

activation of previously ‘silent’ synapses which lack functional AMPA receptors 

at resting membrane potential (Kullmann 2003). The subunit composition of 

these AMPA receptors varies and this may regulate the insertion or replacement 

of existing receptors through interactions with intracellular proteins (Shi et al., 

2001). The overall increase in cell surface AMPA receptor number as a result of 

these mechanisms is responsible for maintaining a sustained increase in synaptic 

strength. 

 

1.5.3.6: Late phase LTP (L-LTP) 

 

 

The second stage of LTP is known as late LTP (L-LTP) and commences from 

roughly one to five hours after LTP induction, although there is substantial 

overlap with E-LTP. L-LTP is protein-synthesis dependent and can be prevented 

by the application of protein synthesis or transcriptional inhibitors (Nguyen et al., 

1994). Activation of protein kinases initiate signalling cascades which result in 

the recruitment of nuclear transcription factors. Particularly important in this 

process is PKA, as inhibition of this kinase blocks L-LTP (Frey et al., 1993) but 

the MAPK cascade is also involved in nuclear signalling (English and Sweatt, 

1997). One of the most important downstream targets of PKA (and members of 

the MAPK family) are cAMP response element binding (CREB) proteins, which 

bind to cAMP response elements (CREs) in the regulatory region of genes to 

modulate transcription. This results in the activation of immediate early genes 

such as zif268 and arc which encode proteins associated with synaptic 
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scaffolding complexes and influence receptor trafficking and cytoskeletal 

function. These and other newly synthesised proteins contribute to structural 

remodelling of dendritic spines and the enlargement and growth of new synapses 

(Okuno 2011). Such morphological alterations allow the prolonged maintenance 

of synaptic potentiation in hippocampal neurons. 

 

1.5.3.7: LTP and memory 

 

 

Although LTP has been primarily studied in the hippocampus, it is also apparent 

in other regions of the brain such as the cortex and cerebellum, and has been 

linked to motor learning in these areas (Rioult-Pedotti et al., 2000, Coesmans et 

al., 2004). It is hypothesised that LTP may be a cellular correlate of certain types 

of memory. A number of studies in mice have correlated deficits in spatial 

memory with reductions in LTP both in vitro and in vivo,  including in transgenic 

models of AD (see section 1.4). These have attempted to link the induction and 

maintenance of LTP within individual neuronal populations more closely to 

particular behavioural tasks although this is technically challenging. Ideally, 

blocking LTP generation should impair the formation of new memories, and 

reversal of established LTP should induce amnesia. A pioneering study has 

shown the latter, as an inhibitor of the atypical PKC isoform PKMζ that reverses 

established LTP results in the loss of previously obtained place-avoidance 

memory (Pastalkova et al., 2006). This is consistent with LTP having a role in 

encoding subtypes of hippocampal-dependent memory. Overall, evidence 

suggests that it is valid to link alterations in LTP, such as those observed in 

transgenic models of AD, with observable memory deficits in hippocampal-
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dependent tasks. It is also probable that LTP and other forms of synaptic 

plasticity occur in the human brain and interest is growing in how alterations in 

these processes may result in the cognitive symptoms of AD. 
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1.6: Aims and objectives of this thesis 

 

1.6.1: Background 

 

 

The 3xTg mouse is one of the most commonly used transgenic models of AD 

and is unique as it is the only available model to develop both plaque and tangle 

pathology, due to the presence of three transgenes: APPSwe, PS1M146V and 

TauP301L. Previous studies of this mouse are described in detail in section 1.4.5, 

however in brief, the original paper by Oddo et al. described deficits in 

electrophysiological studies of LTP at the age of 6 months, accompanied by Aβ 

accumulation (4-6 months) and subsequent plaque deposition (6-12 months). Tau 

hyperphosphorylation is present at the age of 6 months onwards, while tangle 

formation occurs later in the lifespan, from around 12 months of age. A number 

of published biochemical studies have replicated the presence of these 

pathological features in the model, although the time course of their development 

varies widely between reports. Behavioural studies of this mouse have shown the 

presence of cognitive deficits in a water-maze paradigm from 4 - 6 months, 

which may be linked to the rising intraneuronal Aβ levels apparent with age 

(Billings et al., 2005).  

The TASTPM mouse, described in section 1.4.4, carries both the APP K670N/M671L 

and PS1M146V  mutations but does not possess a tau transgene, so develops only 

plaque-like structures in the brain. This mouse possesses an earlier onset of the 

biochemical phenotype, with elevated Aβ present at 3 months of age and plaque 

deposition at 6 months. Few electrophysiological studies have been carried out in 

these mice and LTP has not previously been characterised, however reduced 

basal synaptic transmission is reported at the age of 8 months (Spencer et al., 



 

 

87 

2004). Behavioural studies have shown deficits in the novel object recognition 

test, along with a phenotype of markedly aggressive behaviour and premature 

death (Howlett et al., 2004).  

 

1.6.2: Aims 

 

 

Although there are a number of published studies of the 3xTg mouse, the 

majority have carried out biochemical analysis alone, or linked this to either 

electrophysiological or behavioural studies. In addition, there are a number of 

discrepancies between groups regarding the rate at which the pathological 

features develop in this model. One of the major aims of this thesis is to 

systematically characterise the time course of development of the phenotype 

using electrophysiological, behavioural and biochemical studies in the same 

colony of 3xTg mice, with a particular focus on any early phenotypic changes 

which could be relevant to the initial stages of AD development. There are fewer 

published studies on the TASTPM mouse, and in particular as LTP has not 

previously been reported in this model an aim of the thesis is to carry out 

electrophysiological studies to observe if, similar to the 3xTg mouse, reductions 

in synaptic plasticity or basal synaptic transmission become apparent with age. 

Another primary aim of this thesis is the comparison of the 3xTg and TASTPM 

models. The predominant hypothesis in the field, the amyloid cascade hypothesis 

(see section 1.3.1) states that the generation of Aβ through the abnormal 

processing of APP is a key initiating factor in the development of AD. Therefore, 

as both these models possess the human APPSwe transgene, any molecular or 
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electrophysiological changes which are observed in both could represent a 

common mechanism of disease progression.  

The key difference between the 3xTg and TASTPM models is the presence of 

the TauP301L  transgene in the 3xTg mouse which results in tau 

hyperphosphorylation and subsequent tangle generation. An aim of this thesis is 

to observe the contribution of the tau transgene, and particularly early changes 

such as tau hyperphosphorylation, to the development of the phenotype in 3xTg 

mice. It is hoped that by comparison of the 3xTg and TASTPM mice the role of 

tau in early biochemical or electrophysiological deficits can be assessed. 

 

1.6.3: Summary  

 

 

 

1.  Characterise the development of any electrophysiological, biochemical or 

behavioural changes in the 3xTg or TASTPM mouse models of AD. 

 

2. Link any observed alterations in synaptic function with the development 

of pathology in these models. 

 

3. Observe any early features of these models that might be associated with 

the initial stages of AD. 

 

4. Compare the 3xTg and TASTPM models to observe the role of tau in the 

development of AD pathology. 
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Chapter 2 

 

Materials and Methods 
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2.1: Materials 

2.1.1: Antibodies  

 

Primary antibody Source Species 

 

Actin Sigma Rabbit 

6E10 Covance Mouse 

Total CRMP2 DSTT, University of 

Dundee 

Sheep 

CRMP2 pSer509/514 DSTT, University of 

Dundee 

Sheep 

CRMP2 pSer522 DSTT, University of 

Dundee 

Sheep 

Total GSK3β BD Biosciences Mouse 

GSK3α/β pSer21/9 Cell Signalling Rabbit 

Total MAPK Cell Signalling Rabbit 

MAPK pThr202/Tyr204 Cell Signalling Rabbit 

Total PKB Cell Signalling Rabbit 

PKB pSer 473 Cell Signalling Rabbit 

Tau5 Millipore Mouse 

Tau AT8 (Ser202/Thr205) Autogen Bioclear Mouse 

Tau pSer396 Cell Signalling Mouse 

Tau pSer404 Millipore Rabbit 

Synaptophysin Abcam Rabbit 

p35 Cell Signalling Rabbit 

 

All primary antibodies were diluted 1/1000 in TBST containing 1% milk with the 

exception of actin which was diluted 1/5000. 

 

Secondary antibodies: HRP-conjugated anti-mouse, rabbit and sheep (Pearce) 

were diluted 1/10 000. Infrared-dye conjugated anti-mouse (Rockland) was 

diluted 1/5000 while Infrared-dye conjugated anti-sheep (Rockland) was diluted 

1/10 000. 

 

2.1.2: Buffer composition 

 

Buffer Ingredients 

aCSF 124mM NaCl, 3mM KCl, 26mM NaHCO3, 1.25mM 

NaH2PO4, 1mM MgSO4, 10mM D-glucose, 2mM CaCl2 

 

RIPA buffer  50mM Tris base, 0.1mM EGTA, 1mM EDTA, 1% Triton-

X 100, 1mM Na3VO4, 50mM NaF, 5mM Na4P2O7, 0.27M 

sucrose, 0.1% β-mercaptoethanol, 1 Complete Protease 

Inhibitor Cocktail tablet (Roche) 
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NuPage LDS 

sample buffer 

(Invitrogen) 

10% glycerol, 141mM Tris base, 2% LDS, 0.51mM 

EDTA, 0.22mM SERVA Blue G250, 0.175mM Phenol 

Red (pH 8.5) 

 

NuPage MOPS 

SDS running buffer 

(Invitrogen)               

50mM MOPS, 50mM Tris base, 0.1% SDS, 1mM EDTA 

(pH 7.7) 

NuPage transfer 

buffer (Invitrogen) 

25mM glycine, 50mM Tris base, 0.1% SDS, 1mM EDTA, 

20% methanol 

 

Tris-buffered saline 

with Tween 

(TBS-T) 

50mM Tris base, 150mM NaCl, 0.1% v/v Tween 20 

Laemmli sample 

buffer 

63mM Tris base, 10% glycerol, 2% SDS, 0.0025% 

bromophenol blue (pH 6.8) 

Running buffer 250mM Tris base, 1.92M glycine, 1% SDS, pH 8.3 

Transfer buffer 48mM Tris base, 39mM glycine, 20% methanol 

 

 

2.1.3: Chemicals  

 

Chemical Supplier 

β-mercaptoethanol, CaCl2, D-glucose, 

KCl, NaCl, NaHCO3 , NaH2PO4, 

MgSO4 

 

VWR 

Bromophenol blue, EDTA, EGTA, 

kynurenic acid, NaF, Na4P2O7, Na3VO4, 

SDS, Tris base, Triton X, Tween  

 

Sigma 

Methanol, sucrose Fisher 

Glycine Melford 

 

 

2.1.4: Transgenic mice 

 

 

 

3xTg mice were originally generated at the University of California (Irvine, USA) 

by the insertion of a transgene containing the human APP695 isoform with the 

Swedish (K670M, N671L) double mutation and human 4R0N tau with the P301L 

mutation, under the Thy1.2 promoter, into PS1M146V mice (Oddo et al., 2003). 

The generation of PS1 M146V mice from a C57BL/6 x 129/Sv background has 
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been previously described (Guo et al., 1999). Male and female 3xTg founder 

mice for our colony were provided by Stuart Allan (Manchester). Additional 

female mice were provided by Karen Horsburgh (Edinburgh); these were 

maintained separately and not used for breeding purposes. Genotyping was 

carried out from ear punch biopsy in several 3xTg mice to confirm the presence 

of the transgenes (performed by Linda Gallacher). Control mice were generated 

from a mixed C57/BL6 x 129/Sv background and were initially provided by 

Stuart Allan (Manchester). 

TASTPM mice were generated at GlaxoSmithKline (Harlow, UK) by the cross 

of two previously available lines, TAS10 and TPM (Howlett et al., 2004). 

TAS10 mice were generated by the insertion of a transgene containing the human 

APP695 isoform with the Swedish (K670M, N671L) double mutation, under the Thy1 

promoter, into C57BL/6 mice (Richardson et al., 2003). TPM mice were 

generated by the insertion of a transgene containing the human PS1 gene with the 

M146V mutation, under the Thy1 promoter, into C57BL/6 mice (Howlett et al., 

2004). Following this, TAS10 mice were backcrossed onto a pure C57BL/6 line 

and then crossed with TPM to produce TASTPM mice with the double APPSwe 

and PS1M146V mutations.  

All mice were maintained on a 12 hour light/dark schedule with free access to 

food (RM1, Special Diet Services) and water, and were group housed with the 

exception of a number of male TASTPM which had to be separated due to 

aggressive behaviour. All animal procedures were carried out under the Animals 

(Scientific Procedures) Act 1986. 
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2.2: Methods 

2.2.1: Electrophysiology methods 

 

2.2.1.1: Hippocampal slice preparation 

 

 

Each mouse was killed by cervical dislocation under Schedule 1 of the Animals 

(Scientific Procedures) Act 1986, the brain was removed and placed in a dish of 

artificial cerebrospinal fluid (aCSF) at room temperature. The cerebellum and 

lateral portion of the temporal lobes were removed, and the brain was halved 

down the midline and glued by its flat edge to a metal plate with cryanoacrylate. 

400µM thick sagittal brain sections were then cut using a Vibratome (Intracel, 

Herts, UK) with the brain submerged in room-temperature aCSF and oxygenated 

with a 95% O2/ 5% CO2 mixture. Following sectioning the slices were placed on 

netting in a glass chamber containing oxygenated aCSF which was able to flow 

freely around the tissue. They were then allowed to recover for at least one hour 

before use in electrophysiological recording.  

 

2.2.1.2: Extracellular recording 

 

 

The slice was placed in an electrophysiological recording chamber (Scientific 

Systems Design, Mississauga, Ontario, Canada) which allowed extracellular 

submerged recording from the hippocampus. The aCSF within the chamber was 

maintained at 31-32°C using a temperature controller (Digitimer, Hertfordshire, 

UK) with an oxygenated water chamber which circulated the warmed water 

beneath the slice. The slice itself was oxygenated in the perfusion system with a 

95% O2/ 5% CO2 mixture at a flow rate of approximately 2ml/min. 



 

 

94 

Electrical stimulation was given using a stimulator box (Digitimer, Hertfordshire, 

UK) which was electrically isolated to prevent interference from mains electrical 

noise. A bipolar stimulating electrode either hand-made from twisted Teflon 

coated tungsten wire (Advent Research Materials, Oxford, UK) or a commercial 

electrode (World Precision Instruments, Florida, USA) with a resistance of 1 MΩ 

was used; responses were comparable using both types of electrode.  

Recordings were made using an electrode made of borosilicate glass (King 

Precision Glass, California, USA) which had a resistance of 3-4 MΩ and was 

filled with aCSF. In the centre of the electrode was a silver wire (Advent 

Research Materials, Oxford, UK) and this, along with a ground electrode of 

silver wire, was attached to an isolated differential amplifier where the signal 

was amplified and filtered (Warner Instrument Corporation, Conneticut, USA). 

Both the stimulating and ground electrodes were electrically chlorided by 

immersion in 1M KCl solution.  The output from the amplifier was fed through 

an oscilloscope (Tektronix, Oregon, USA) and digitised through an acquisition 

board (BNC-2090, National Instruments, Berkshire, UK). A schematic diagram 

of the setup is shown in Fig. 2.1. The responses evoked from the slice were 

visualized using a computer running WinLTP software (v. 0.95b, Anderson, 

www.winltp.com). 
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Figure 2.1: Diagram of the electrophysiology setup. The pump-controlled 

perfusion system provides oxygenated aCSF to the slice in the tissue bath, 

while a controller maintains the temperature at 32°C. A stimulating electrode 

is placed in the slice which is connected to an isolated stimulator unit to allow 

electrical pulses to be given to the tissue. The recording electrode is connected 

to an amplifier which enhances the output signal, then a data acquisition board 

via an oscilloscope. The acquisition board feeds into a PC running WinLTP 

software which allows visualisation of the evoked electrical responses from 

the tissue.  
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2.2.1.3: Measurement of the fEPSP 

 

 

In the hippocampus, the presence of well-defined synaptic layers facilitates the 

measurements of field extracellular postsynaptic potentials (fEPSPs). These are 

generated by electrical stimulation of the Schaffer collateral fibres which project 

from the CA3 region to pyramidal neurons in the CA1 region. Stimulation of 

these presynaptic fibres results in glutamate release at the synapse between the 

axons of the CA3 region and dendrites of the CA1 neurons. This results in a 

synchronous postsynaptic depolarisation which occurs as a result of ionotropic 

receptor activation (primarily AMPA receptors) and influx of positive ions into 

the postsynaptic terminal. This can be detected by placing a recording electrode 

within the CA1 dendritic layer (stratum radiatum). 

The WinLTP software provides a visual representation of the evoked fEPSP and 

can also be used to alter the stimulation protocol (e.g. the number or duration of 

pulses) or the parameters of the fEPSP recording (e.g. the length of recording or 

amplitude and slope detection values). All pulses given were 0.1ms in length. 

During the experiment stimulation was given at thirty second intervals to record 

dynamic changes in the fEPSP. 

The fEPSP has a number of characteristic features (shown in Fig. 2.2). The two 

main measurements which are recorded are the amplitude and slope of the fEPSP 

which can be measured to give an indication of synaptic activity within the 

neuronal population. The slope is most commonly measured as it is less subject  

to interference by other sources of current flow such as feedforward GABAergic 

inhibition or action potential firing.  
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Figure 2.2: A field extracellular postsynaptic potential (fEPSP). The 

amplitude is calculated as the measurement from the baseline to the peak of 

the fEPSP while the slope is 20-80% of the initial phase. The stimulus artefact 

appears as a spike immediately before the fEPSP. An increase in the slope and 

amplitude values of the fEPSP is characteristic of LTP. The fEPSP represents 

the simultaneous depolarisation of a population of CA1 pyramidal neurons, 

which is recorded as a negative voltage deflection due to the flow of positive 

ions away from the recording electrode into the postsynaptic terminals. 
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The peak amplitude was usually measured 4-15 ms after the pulse and the slope 

was taken as 20-80% of the peak, with a baseline of at least 8-2ms before the 

pulse. An increase in the amplitude and slope is characteristic of LTP. However, 

the baseline fEPSP measurements can be used as a measure of the synaptic 

strength within the neuronal population. This is the likelihood of a synaptic 

response following an input stimulus and involves both presynaptic components 

(e.g. release probability, quantal size) and postsynaptic components (e.g. receptor 

function and density). For LTP experiments, a baseline fEPSP of  approximately 

40% of the maximum fEPSP was established to ensure that synaptic potentiation 

following theta burst was possible.  

 

2.2.1.4: Input-output function 

 

 

Basal synaptic transmission can be studied more systematically with an input-

output curve. This is a measure of synaptic recruitment, which increases with the 

input stimulus due to the activation of a greater population of neurons.  Input-

output response can vary due to differences in synaptic density and the strength 

of individual synapses within the population (Usdin et al., 1999). Curves were 

generated using an increasing stimulus intensity and recording the slope and 

amplitude of each evoked fEPSP. The intensity was initially set at 0.2mA and 

manually increased in 0.1mA increments which provided a sigmoidal shaped 

input-output response. Three slope and amplitude readings were recorded for 

each stimulation intensity at thirty second intervals and averaged. The slope of 

the fEPSP was then plotted as a function of stimulus strength. The curve was 

completed when a plateau phase was reached with the amplitude and slope of the 



 

 

99 

field remaining similar at several increasing stimulus intensities (usually 1-

1.2mA). 

 

2.2.1.5: Paired-pulse facilitation 

 

 

PPF was recorded at interstimulus intervals of 20ms, 50ms, 100ms, 200ms, 

300ms, 400ms and 500ms. The optimum interstimulus interval was 50ms, with 

shorter intervals causing reduced PPF or even synaptic depression likely due to 

Ca
2+

 depletion, and longer stimulus intervals less effective at inducing PPF due 

to a gradually decreasing concentration of Ca
2+

 in the presynaptic terminal.  

PPF was graphed using the paired pulse ratio, which is the amplitude of the 

second fEPSP divided by the amplitude of the first. Values of greater than 1.0 

indicate facilitation. 

 

2.2.1.6: Stimulation protocols for the induction of LTP 

 

 

There are a number of stimulation protocols which have been used to induce LTP 

in the hippocampal slice preparation. The appropriate choice of stimulation 

protocol is important as different protocols are thought to work through diverse 

cellular signalling mechanisms, which may be initiated by the dynamics of Ca
2+

 

release (Smith et al., 2009). 

The theta burst protocol is characterised by an interburst interval of 200ms, and 

is thought to be relatively physiological as a hippocampal theta rhythm (6-10 Hz) 

is commonly observed in living animals. It is generally involved with states of 
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attention and movement but has also been associated with learning (Otto et al., 

1991). 

The theta burst protocol used in these experiments was a four-pulse theta burst 

consisting of 4 pulses at a frequency of 100 Hz, repeated 10 times with an 

interburst interval of 200ms. 

 

2.2.1.7: Measurement of LTP 

 

 

A typical LTP experiment has several characteristic features (Fig. 2.3) which 

allows for several parameters to be compared between experiments. The 

measurement of LTP is complicated by the existence of several mechanisms of 

potentiation which superimpose and overlap. Following the theta-burst 

stimulation there is an immediate and often dramatic increase in both the slope 

and the amplitude of the fEPSP, which usually reaches its peak in the 30 seconds 

following LTP induction. This is related to an initial phase of post-tetanic 

potentiation (PTP) which decays rapidly, causing a steep decrease in the slope 

and amplitude of the fEPSP, typically over the first 10-15 minutes following 

theta burst. PTP is thought to be presynaptic and caused by an increase in the 

intra-terminal Ca
2+

 concentration causing enhanced neurotransmitter release 

(Delaney and Tank, 1994). 

This initial phase is followed by a plateau phase in which the amplitude and 

slope of the fEPSP remain stable for at least 60 minutes following theta burst 

stimulation. Experiments which decay to baseline before this time (<5% of total) 

are described as showing short-term potentiation only and were discarded. The 

plateau phase corresponds to early LTP (E-LTP), characterised by protein-
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synthesis independent mechanisms such as receptor phosphorylation and 

trafficking, and generally thought to persist over several hours (see Chapter 1). 

Late phase LTP (L-LTP), which involves gene transcription and protein 

synthesis, allows the prolonged expression of potentiation over many hours and 

shows overlap with early LTP (Frey and Morris, 1997). However, without using 

pharmacological treatments such as protein synthesis inhibitors, it is impossible 

to dissociate the phases of LTP; based on the time scale of these experiments it is 

likely that the majority of LTP recorded is E-LTP. 

The peak potentiation following theta burst was used as a measure of PTP, and 

LTP was measured using the average potentiation of the plateau phase, taken as 

50-60 minutes following theta burst stimulation. The mean value was calculated 

firstly for each individual mouse then for the group as a whole at all time points. 

The average potentiation of the graph during the complete experiment from 0-60 

minutes was also used for statistical comparison between groups. LTP was 

plotted either conventionally using the normalised fEPSP slope values, which 

standardises differences in the size of the fEPSP between experiments, or as a 

non-normalised graph to show the actual recorded values of the fEPSP. 

 

2.2.1.8: Statistics and analysis 

 

 

All electrophysiology graphs were created using Origin software version 7 

(www.originlab.com). Statistical analysis was carried out using SPSS version 17 

(www.spss.com). For input-output curves, an unpaired t-test was used to 

compare groups at each stimulus intensity. Paired-pulse facilitation was analysed 

using repeated measures ANOVA, followed by unpaired t-test at individual 
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interstimulus intervals to establish those which were statistically significant. LTP 

measurements were analysed using repeated measures ANOVA with strain as the 

between subjects factor and time as the within subjects factor. Post hoc analyses 

for time were only performed if the interaction between mouse strain and time 

was statistically significant. The analysis used for each experiment is indicated in 

the text where appropriate, and values are expressed as ± standard error of the 

mean (s.e.m.). A p value of < 0.05 was considered to be significant. 
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Figure 2.3: Long-term potentiation. Following at least ten minutes of stable 

baseline, a four-pulse theta burst stimulation is given. This causes a marked 

increase in the slope of the fEPSP which immediately reaches its peak and then 

declines to a sustained plateau phase. The peak value was used as a measure of 

PTP and the average from 50-60 minutes when the slope of the fEPSP has 

plateaued as a measure of LTP. Typical fEPSPs obtained at the labelled points 

of the experiment are represented below the graph. 
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2.2.2: Biochemical methods 

 

2.2.2.1: Brain lysate preparation 

 

 

Samples were prepared using a method to separate soluble and insoluble tissue. 

RIPA buffer was added at approximately double the volume of the sample and 

the tissue was homogenized using a pellet mixer. The lysate was then centrifuged 

in a chilled desktop centrifuge (Fisher Scientific, Leicestershire, UK) at 12 000 

rpm for ten minutes and the supernatant removed and retained as the soluble 

protein fraction. Half the volume of RIPA buffer was then added to the pellet, the 

process repeated and the supernatants combined; the insoluble material was 

discarded. The soluble fraction was again centrifuged to remove any remaining 

insoluble material and then frozen at -80°C for future use. 

The concentration of protein in each brain lysate was determined using the 

Bradford method (Bradford 1976). This uses the Coomassie Blue G-250 dye, 

which shifts absorbance from 465nm to 595nm when bound to proteins within a 

sample. 980 µl of reagent (Bio-Rad, California, USA) was added to 20µl of an 

appropriate dilution of brain lysate (e.g. 1/10, 1/20), triturated and incubated at 

room temperature for 10 minutes and the absorbance read using a 

spectrophotometer (Pharmacia Biotech, Uppsala, Sweden). The values obtained 

were compared against a standard curve generated using serial dilutions of 

bovine serum albumin to determine the protein concentration within each sample. 
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2.2.2.2: Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

 

Samples were diluted in RIPA buffer to a known concentration (i.e. 0.5 or 

1mg/ml). Two methods were used for SDS-PAGE due to a change in laboratory 

protocol. NuPAGE SDS sample buffer (Invitrogen, California, USA) or LDS 

sample buffer was added to each sample; the negatively charged SDS/LDS 

within the sample buffer binds to the protein to provide a uniform charge density 

which allows each protein to migrate through the gel based solely on its 

molecular weight. The sample buffer also contained 10mM of the reducing agent 

dithiothreitol (DTT) to break up the native structure of the protein. As each 

sample was of known concentration an equal weight of protein could be loaded 

onto the gel. Samples were then loaded and run using either the Novex or 

BioRad systems. 

Using the NuPage Novex system, (Invitrogen, California, USA) a current of 

180V was applied for one hour through a graded 4-12% polyacrylamide gel, with 

a prestained molecular weight marker run alongside to provide bands of known 

molecular weight for comparison (SeeBlue, Invitrogen, California, USA). 0.5ml 

of antioxidant was added to the upper buffer chamber to prevent reoxidisation of 

the samples during electrophoresis.    

Using the BioRad system, a current of 120V was applied for one and a half hours 

through a graded 4-15% polyacrylamide gel, with Plus Protein Dual Colour 

Standard, (BioRad, California, USA) used as the molecular weight marker. 
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2.2.2.3: Western blotting 

 

 

Following SDS-PAGE, a 0.45mm nitrocellulose membrane (Hybond-C, GE 

Healthcare, Buckinghamshire, UK) was placed on top of the gel to allow for 

protein transfer. The gel and membrane were then sandwiched between filter 

paper and placed in a transfer cassette containing nylon sponges soaked in 

transfer buffer (Invitrogen, California, USA), dehydrated with 20% methanol to 

allow for more efficient transfer. The cassette was placed in a chamber filled 

with transfer buffer and a current of 35V was applied for 2 hours, causing the 

proteins within the gel to migrate onto the nitrocellulose membrane.  

Following transfer, the membrane was stained with the reversible protein dye 

Ponceau-S (Sigma-Aldrich, Missouri, USA), to assess efficiency of transfer and 

allow cutting of the membrane, and was then washed off. 

For use with the enhanced chemiluminescence (ECL) development method, 

membranes were blocked with 5% milk powder in TBS-T for one hour to 

prevent non-specific binding of the primary antibody to the membrane. They 

were then incubated overnight at 5ºC with the appropriate primary antibody. 

Following multiple washes, the membrane was incubated with a horseradish 

peroxidase (HRP)-conjugated secondary antibody for one hour at room 

temperature. 

The membrane was then washed several times in TBS-T and 1ml of ECL reagent 

(GE Healthcare, Buckinghamshire, UK) was added to the surface of the 

membrane for one minute. This causes a chemiluminescent reaction with the 

secondary antibody that can be detected using photographic film. In a dark room, 
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either X-ray Film (CL-EXposure, Thermo Scientific, Illinois, USA) or high-

sensitivity film (Hyperfilm, GE Healthcare, Buckinghamshire, UK) was used in a 

film cassette (Kodak, New York, USA) to develop multiple exposures of each 

membrane dependent on the strength of the signal. 

For use with the Li-Cor Odyssey system, membranes were blocked in 3% bovine 

serum albumin for one hour and a primary antibody in 1% milk powder in TBS-

T was then added overnight at 5ºC. Following washing of the membrane, the 

infrared dye-conjugated secondary antibody was added for one hour at room 

temperature. Membranes were then developed using the Li-Cor Odyssey. 

 

2.2.2.4: Densitometry and analysis 

 

 

Densitometry of LiCor Odyssey-developed films was carried out using the 

Odyssey software (version 2.1). Actin was used as a loading control for each 

protein except the phosphorylated forms of tau and CRMP2 which were 

normalised to the total protein levels. All graphs were created using Origin 

software version 7 (www.originlab.com). Statistical analysis was carried out 

using SPSS version 17 (www.spss.com) and consisted of unpaired t-test, one-

way ANOVA and two-way ANOVA dependent on the number of groups and 

number of variables (detailed in results where appropriate). All values are 

expressed as ± standard error of the mean (s.e.m.).  Post-hoc analysis was carried 

out using Student-Newman-Keuls testing and a p value of < 0.05 was considered 

to be significant. 
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2.2.3: Behavioural methods 

 

 

All behavioural experiments were carried out under license PPL 60/3766 from 

the Home Office under the Animals (Scientific Procedures) Act 1986. 

2.2.3.1: Rewarded alternation T-maze  

 

 

The T-maze consists of three arms: the start arm and two goal arms arranged in a 

T shape, with two removable doors that can be used to block the arms. A food 

reward is placed in a well at the end of each goal arm. 

Mice were placed in the T-maze with their littermates for ten minutes on at least 

five days, with all arms open and a 1:1 solution of condensed milk (Carnation, 

Nestlé) placed within the food well at the end of each goal arm. At the same time, 

mice were provided with several drops of condensed milk in a food well 

overnight within their home cage to allow habituation to the apparatus and to the 

reward. 

During the testing phase, mice were maintained at 85-90% free-feeding weight to 

increase motivation for the task. Mice were tested in squads of equal numbers 

(six to eight), with all mice having run the first trial before commencing the 

second trial which provided a similar inter-trial interval for each mouse. The 

apparatus was cleaned with 70% ethanol solution between individual mice. Four 

trials were carried out each day for nine or ten consecutive days. 

The mouse was placed at the far end of the start arm, with access to the rest of 

the maze blocked by a removable door. After five seconds, the door was lifted 

and the mouse allowed to run down one of the goal arms and consume the 
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reward, with the other blocked by the second removable door. This forced 

direction was chosen in a pseudorandom manner, with no more than two 

consecutive left or right presentations to prevent the development of place 

preference. Following consumption of the condensed milk reward, the mouse 

was again placed in the start arm for five seconds. The doors blocking access to 

the rest of the start arm and to one of the goal arms were then lifted, allowing 

free access to all arms. The mouse was allowed to run down a goal arm; if the 

choice was correct it obtained another reward, if incorrect the door was lowered 

and it was ensured that the mouse had found the food well was empty before 

being removed from the maze. Each mouse was returned to its home cage 

between trials. Mice which were reluctant to run were encouraged initially by 

several drops of condensed milk placed in the start arm; if a mouse failed to 

complete the task within three minutes on either the forced or choice element of 

the trial they were returned to the home cage. 

Where a delay was introduced, the mouse was placed in the start box for 0, 30 or 

60 seconds following the forced element of the trial. The length of delay was 

varied and spread equally between left and right presentations. Trials in which 

the mouse failed to choose a goal arm within the first 30 seconds of the choice 

element were excluded from analysis. 

 2.2.3.2: Activity box 

 

 

The activity box used was a clear Perspex box of diameter 32 x 20 x 19 cm with 

a wire lid. An activity monitor (Benwick Electronics, Norfolk, UK) consisting of 

a 1 inch grid of infrared beams was used, with two sets of beams spaced 2cm 

vertically apart to measure both horizontal movement and rearing behaviour. 
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When the animal moved either horizontally or vertically the beam was broken 

and an activity count was recorded electronically. The break of two consecutive 

beams was considered a count to minimise the effect of static movements such as 

grooming. The parameters which were recorded were fast and slow mobile 

counts, fast and slow rearing counts and the percentage and time the mouse spent 

mobile. 

Mice were placed in the box for fifteen minutes and allowed to explore freely, 

with measurements being recorded every five minutes. This was carried out on 

four consecutive days to allow both intra-trial and inter-trial habituation to be 

measured.   

2.2.3.3: Statistical analysis 

 

 

All behavioural graphs were created using Origin software version 7 

(www.originlab.com). Statistical analysis was carried out using SPSS version 17 

(www.spss.com). The appropriate statistical test was carried out for each 

experiment and is noted in the results chapter. A p value of < 0.05 was 

considered to be significant. 
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Chapter 3 

 

Electrophysiology 
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3.1: Introduction 

 

Studies using electrophysiological techniques have given an important insight 

into synaptic transmission and plasticity in mouse models of AD. In this chapter, 

I have used extracellular recording in the hippocampal slice preparation to 

examine basal synaptic function and LTP in the 3xTg and TASTPM mouse 

models. 

It has previously been reported that the 3xTg mouse shows a reduction in basal 

transmission as shown by a smaller fEPSP, accompanied by deficits in LTP at 

the age of 6 months associated with an increase in intraneuronal Aβ (Oddo et al., 

2003). For this reason, I studied measures of synaptic function in this model at a 

range of ages from 2 – 17 months when the pathological features such as Aβ 

accumulation should be present in our colony of 3xTg mice. I have measured 

both LTP, basal synaptic transmission and other forms of short-term plasticity 

such as PPF.   

There is currently no published hippocampal slice electrophysiology data on the 

TASTPM model. I therefore studied synaptic function in this model including 

basal transmission, PPF and LTP to observe any alterations in these measures 

that might be associated with the biochemical changes in these mice. 

The final section of this chapter describes treatment of both 3xTg and TASTPM 

slices with the glutamate receptor antagonist kynurenic acid during slicing to 

reduce excitotoxicity and improve slice viability. It has previously been reported 

that deficits in fEPSP amplitude in APP-overexpressing mice can be reversed by 

incubation with this compound (Fitzjohn et al., 2001). I have observed the effects 
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of kynurenic acid treatment in the 3xTg and TASTPM mice to determine 

whether an increased susceptibility to excitotoxicity is a feature of these models.  

 

 

3.2: Results 

 

 

In the 3xTg, TASTPM and control mice a number of parameters were measured 

to give a measure of synaptic function. These experimental approaches are 

discussed in more detail in the methods section (Section 2.2.1) and include: 

input-output function and fEPSP amplitude/slope measurements, PPF and LTP. 

Briefly, an input-output curve was generated by measuring the slope of the 

fEPSP at gradually increasing stimulus intensities to give a measure of basal 

synaptic transmission. PPF, a form of short-term plasticity, was also recorded to 

test presynaptic function Finally, LTP was induced using a four pulse theta burst 

protocol, with the change in the slope of the fEPSP (quantified as mV/ms) used 

as a measure of synaptic plasticity.  

The notation (n = x / y) following a group indicates the number of brain slices 

used and the number of mice from which these slices came i.e. (n = 6/4) denotes 

six slices obtained from four mice. All experiments were carried out on 

hippocampal slices from at least three individual mice in each group. 

 

 

3.2.1: Control data 

 

 

LTP was reliably obtained in slices from control mice at ages up to 17 months 

maintained for up to eight hours in vitro following initial slice preparation. LTP 
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could be induced and maintained for 60 minutes post-theta burst in control mice, 

and in some slices for up to 120 minutes (data not shown) although this was 

difficult due to technical limitations (e.g. the formation of air bubbles underneath 

the slice). This shows that the slices remain viable throughout the duration of the 

experiments reported in this thesis.  

 

 

3.2.2: Electrophysiological characterisation of 2 month old 3xTg 

mice 

 

3.2.2.1: Input-output function  

 

 

Input-output curves were generated and compared for 2 month old 3xTg mice 

and 2 month old control mice of both genders. A normalised input-output curve, 

where the maximum field slope is set to 100%, was generated, along with a non-

normalised input-output curve using the actual values (mV/ms) obtained. 

In 2 month old control mice, there is no significant difference (p > 0.05, unpaired 

t-test) between the normalised input-output curve of male (n = 5/3) and female (n 

= 8/3) mice (Fig. 3.1A). Similarly, for the 2 month 3xTg mice, there is no 

significant difference (p > 0.05, unpaired t-test) between the normalised input-

output curve for male (n = 5/3) and female (n = 8/3) mice (Fig. 3.1B).  

Given these findings the male and female data was pooled together. When the 

two groups are compared, there is no significant difference (p > 0.05, unpaired t-

test) between the normalised input-output curve of the control mice (n = 12/7) 

and the 3xTg mice (n = 13/8) (Fig. 3.2A).  
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For the non-normalised input-output curve, the control mice exhibit an fEPSP 

slope at 1 mA of 0.46 ± 0.11 mV/ms, while the 3xTg mice exhibit an fEPSP 

slope at 1 mA of 0.71 ± 0.14 mV/ms (Fig. 3.2B). There is no significant 

difference (p > 0.05, unpaired t-test) between the two groups. The large error 

bars are due to the marked variability in the size of the fEPSP between individual 

slices, which occurs even in tissue from the same mouse.  

 

 

3.2.2.2: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was compared between 2 month old 3xTg mice and 2 

month old control mice, and the effect of gender was also investigated.  In all 

experiments the maximum facilitation was observed at an interstimulus interval 

of 50ms, which is in agreement with previously published work (Nathan et al., 

1990). 

In control mice, the paired-pulse ratio at 50ms is 2.0 ± 0.06 for males (n = 6/3) 

and 1.79 ± 0.13 for females (n = 5/3) mice (Fig. 3.3A). There is no significant 

difference (p > 0.05, repeated measures ANOVA) in the paired-pulse ratio in 

male or female control mice at interstimulus intervals ranging from 20 – 500ms. 

In 3xTg mice, the paired-pulse ratio at 50ms is 1.45 ± 0.08 for male (n = 5/3) and 

1.57 ± 0.06 for female (n = 8/5) mice (Fig. 3.3B). There is no significant 

difference (p > 0.05, repeated measures ANOVA) in the paired-pulse ratio in 

male or female 3xTg mice at interstimulus intervals ranging from 20 – 500ms. 

Given that gender did not influence the paired-pulse ratio for either genotype the 

data for male and female mice were combined. Collectively, the paired-pulse 
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ratio at 50ms is 1.90 ± 0.07 for control (n = 11/6) and 1.52 ± 0.05 for 3xTg (n = 

13/8) mice (Fig. 3.4). There is a significant decrease in the paired-pulse ratio in 

3xTg when compared to control mice (p < 0.05, repeated measures ANOVA, 

followed by unpaired t-test at individual intervals) at interstimulus intervals of 50, 

100, 200, 300, 400 and 500 ms.  

 

 

3.2.2.3: Long-term potentiation  

 

 

LTP was measured in the CA1 region for 2 month 3xTg and control mice. These 

experiments were performed in both male and female mice and both normalised 

and non-normalised data were generated. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 2 month old control male mice (n = 7/5), the peak enhancement of the slope of 

the fEPSP is 225 ± 11%, with a mean from 50-60 minutes following the theta 

burst stimulus of 155 ± 11%. In 2 month old control female mice (n = 6/3), the 

peak enhancement is 185 ± 28%, with a mean from 50-60 minutes of 131 ± 7% 

(Fig. 3.5A). 

In 2 month old 3xTg male mice (n = 7/3), the peak enhancement of the slope of 

the fEPSP is 263 ± 47%, with a mean from 50-60 minutes following the theta 

burst stimulus of 187 ± 23%. In 2 month 3xTg female mice (n = 9/5), the peak 
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enhancement is 191 ± 17%, with a mean from 50-60 minutes of 146 ± 4 % (Fig. 

3.5B).  

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of LTP in any of the four groups. There is a trend for 

enhanced LTP in the male 3xTg mice which reflects variability between the data 

obtained (at all times points determined), shown by the relatively large error bars 

associated with this group. 

Combining the results obtained for each gender, a comparison was then made 

between the 3xTg and control mice. In 2 month control mice (n = 15/8), the peak 

enhancement of the slope of the fEPSP is 223 ± 12%, with a mean from 50-60 

minutes following the theta burst stimulus of 152 ± 9%. In 2 month old 3xTg 

mice (n = 17/8), the peak enhancement is 221 ± 23%, with a mean from 50-60 

minutes of 163 ± 11% (Fig. 3.6).  

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of LTP in 2 month old 3xTg and control mice. This is the 

case for all phases of LTP, from the initial peak to the plateau phase.  

 

 

3.2.2.4: Non-normalised long-term potentiation 

 

 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 2 month control mice the mean baseline fEPSP is 0.21 ± 

0.03 mV/ms, the peak enhancement following theta burst is 0.51 ± 0.10 mV/ms, 

and the mean from 50-60 minutes is 0.32 ± 0.05 mV/ms. In 2 month 3xTg mice, 
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the mean baseline fEPSP is 0.36 ± 0.05 mV/ms, the peak enhancement is 0.87 ± 

0.16 mV/ms, and the mean from 50-60 minutes is 0.57 ± 0.09 mV/ms (Fig. 3.7).   

There is a significant increase in the baseline fEPSP slope and the magnitude of 

LTP (p < 0.05, repeated measures ANOVA) in 2 month 3xTg mice when 

compared to control mice. This is present in all phases of LTP, from the initial 

peak to the plateau phase.  

 

3.2.2.5: Summary 

 

 

There are several differences in hippocampal CA1 synaptic function apparent in 

the 3xTg mice at 2 months old. No gender-dependent effects were observed on 

the magnitude of LTP in either 3xTg or control mice therefore both male and 

female data were pooled together. The 3xTg mice show a decrease in PPF, with 

no differences in input-output function, but a trend for an increased fEPSP at 

higher intensities. This is replicated in the non-normalised LTP graph with a 

baseline fEPSP slope value that is significantly greater than control. However, 

the normalised LTP graph shows that the magnitude of LTP is similar between 

the two groups. These data suggests that, although 2 months is an age prior to the 

intraneuronal accumulation of Aβ observed by Oddo et al., there are measurable 

electrophysiological changes in the 3xTg mice. 
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Figure 3.1: Normalised input-output curves obtained from 2 month old 

male and female 3xTg and control mice. The fEPSP slope was measured at 

a range of stimulus intensities and then normalised in male (n = 5/3) and 

female (n = 6/3) control mice (A) and male (n = 5/3) and female (n = 8/5) 

3xTg mice (B). p > 0.05, unpaired t-test. 
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Figure 3.2: Normalised and non-normalised input-output curves obtained from 

2 month old 3xTg and control mice. The fEPSP slope was measured at a range of 

stimulus intensities and then normalised in control (n = 12/7) and 3xTg mice (n = 

13/8) (A). The non-normalised fEPSP slope measurement in control (n = 11/7) and 

3xTg mice (n = 14/8) is shown in (B). p > 0.05, unpaired t-test. 

 

0.2 0.4 0.6 0.8 1.0 1.2
0

20

40

60

80

100

 Stimulus intensity (mA)

 2 month 3xTg (n = 13)

 2 month control (n = 12)

N
o
rm

a
lis

e
d

 f
E

P
S

P
 s

lo
p

e
 (

%
)

p > 0.05, unpaired t-test

B 



 

 

121 

Figure 3.3: Paired-pulse facilitation determined in 2 month old male and female 

3xTg and control mice. The paired-pulse ratio was calculated at a range of inter-

stimulus intervals in (A) male (n = 6/3) and female (n = 5/3) control mice and (B) in 

male (n = 5/3) and female (n = 8/5) 3xTg mice. p > 0.05, repeated measures 

ANOVA. 
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Figure 3.4: Paired-pulse facilitation determined in 2 month old 3xTg and control 

mice.  The paired-pulse ratio was calculated at a range of interstimulus intervals in 

control mice (n = 11/6) and 3xTg mice (n = 13/8).  � = p < 0.05, repeated measures 

ANOVA followed by unpaired t-test at individual intervals. 
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Figure 3.5: The influence of gender on long-term potentiation recorded from 2 

month old 3xTg and control mice. The potentiation of the fEPSP slope obtained 

following four-pulse theta burst was measured in (A)  control male (n = 7/5) and 

female mice (n = 6/3) and (B) 3xTg male (n = 7/3) and female mice (n = 9/5). All data 

are normalised to the average slope of the fEPSP for each genotype prior to delivery 

of the theta burst stimulus. p > 0.05, repeated measures ANOVA. 

0 20 40 60

0

20

40

60

80

100

120

140

160

180

200

220

240

N
o

rm
a

lis
e
d

 f
E

P
S

P
 s

lo
p

e
 (

%
)

 2 month control male (n = 7)

 2 month control female (n = 6)

Time (min)

p > 0.05, repeated measures ANOVA

0 20 40 60

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

N
o

rm
a

lis
e

d
 f

E
P

S
P

 s
lo

p
e

 (
%

)

Time

 2 month 3xTg male (n = 7)

 2 month 3xTg female (n = 9)

p > 0.05, repeated measures ANOVA

A 

B 



 

 

124 

0 20 40 60

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

2 month 3xTg (n = 17)

2 month control (n = 15)
N

o
rm

a
lis

e
d

 f
E

P
S

P
 s

lo
p

e
 (

%
)

Time (min)

p > 0.05, repeated measures ANOVA

Figure 3.6: Long-term potentiation in 2 month old 3xTg and control 

mice. The enhancement of the fEPSP slope following a 4 pulse theta burst 

protocol was measured in control mice (n = 15/8) and 3xTg mice (n = 17/8). 

All data are normalised to the average slope of the fEPSP for each genotype 

prior to delivery of the theta burst stimulus. p > 0.05, repeated measures 

ANOVA. 
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Figure 3.7: A comparison of long-term potentiation in 2 month old 3xTg and 

control mice (non-normalised).  The enhancement of the fEPSP slope following 4 

pulse theta burst was measured in control (n = 15/8) and 3xTg mice (n = 17/8) and 

is presented here as the actual values obtained in mV/ms.  p < 0.05, repeated 

measures ANOVA. 
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3.2.3: Electrophysiological characterisation of 6 month old 3xTg 

mice 

 

 

Following experiments with 2 month old 3xTg mice, another subset of mice were 

allowed to age to 6 months and studies were carried out to observe any 

differences between the transgenic and control mice. 

 

 

3.2.3.1: Input-output function  

 

 

Input-output curves were generated and compared for 6 month old 3xTg mice 

and 6 month old control mice of both genders. A normalised input-output curve, 

where the maximum field slope is set to 100%, was generated, coupled with a 

non-normalised input-output curve using the actual values (mV/ms) obtained. 

In 6 month control mice, there is no significant difference (p > 0.05, unpaired t-

test) between the normalised input-output curve of male (n = 5/3) and female (n 

= 9/4) mice (Fig. 3.8A). Similarly, in 6 month 3xTg mice, there is no significant 

difference (p > 0.05, unpaired t-test) between the normalised input-output curve 

of male (n = 5/3) and female (n = 12/4) mice (Fig. 3.8B). 

Given these findings the male and female data were pooled together. When the 

two groups are compared, there is no significant difference (p > 0.05, unpaired t-

test) between the normalised input-output curve of the 3xTg (n = 15/7) and 

control (n = 15/7) mice (Fig. 3.9A).  

For the non-normalised input-output curve, the control mice exhibit an fEPSP 

slope at 1 mA of 0.60 ± 0.05 mV/ms, while the 3xTg mice exhibit an fEPSP 

slope at 1 mA of 0.41 ± 0.05 mV/ms. There is no significant difference (p > 0.05, 
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unpaired t-test) between the two groups, although there is a trend for a reduced 

fEPSP slope at higher stimulus intensities in the 3xTg mice (p = 0.058 at 1mA, 

unpaired t-test) (Fig. 3.9B).   

 

 

3.2.3.2: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was compared between 6 month old 3xTg mice and 

control mice, and the effect of gender on both genotypes was determined. In all 

experiments the maximum facilitation was observed at an interstimulus interval 

of 50ms. 

In control mice, the paired-pulse ratio at 50ms is 1.47 ± 0.05 for male (n = 5/3) 

and 1.52 ± 0.03 for female (n = 8/4) mice (Fig. 3.10A). There is no significant 

difference (p > 0.05, repeated measures ANOVA) in the paired-pulse ratio in 

male or female control mice at interstimulus intervals from 20 – 500ms.  

In the 3xTg mice, the paired-pulse ratio at 50ms is 1.52 ± 0.08 for male (n = 6/3) 

and 1.60 ± 0.12 for female (n = 7/4) mice (Fig. 3.10B). There is no significant 

difference (p > 0.05, repeated measures ANOVA) in the paired-pulse ratio in 

male or female 3xTg mice at interstimulus intervals from 20 – 500ms.  

Given that gender did not influence the paired-pulse ratio for either genotype, the 

data for male and female mice were combined. Collectively, the paired-pulse 

ratio at 50ms is 1.49 ± 0.03 for control (n = 13/7) and 1.56 ± 0.07 for 3xTg (n = 

13/7) mice. There is no significant difference in the paired-pulse ratio between 

the 3xTg and control mice (p > 0.05, repeated measures ANOVA) at any 

interstimulus interval measured from 20-500 ms (Fig. 3.11).  
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3.2.3.3: Long-term potentiation 

 

 

LTP was measured in the CA1 region for 6 month 3xTg and control mice. These 

experiments were divided by gender and both normalised and non-normalised 

data was generated. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 6 month control male mice (n = 6/5), the peak enhancement of the slope of the 

fEPSP is 222 ± 14%, with a mean from 50-60 minutes following the theta burst 

stimulus of 165 ± 6%. In 6 month control female mice (n = 8/3), the peak 

enhancement is 229 ± 29%, with a mean from 50-60 minutes of 178 ± 10% (Fig. 

3.12A). 

In 6 month 3xTg male mice (n = 8/4), the peak enhancement of the slope of the 

fEPSP is 258 ± 36%, with a mean from 50-60 minutes following the theta burst 

of 181 ± 25%. In 6 month 3xTg female mice (n = 12/4), the peak enhancement is 

250 ± 34%, with a mean from 50-60 minutes of 151 ± 16% (Fig. 3.12B). 

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of LTP in any of the four groups.  

Combining the results obtained for each gender, a comparison was then made 

between the 3xTg and control mice. In 6 month control mice (n = 14/8), the peak 

enhancement of the slope of the fEPSP is 225% ± 14%, with a mean from 50-60 

minutes following the theta burst stimulus of 170 ± 6%. In 6 month 3xTg mice (n 
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= 20/8), the peak enhancement is 254 ± 25%, with a mean from 50-60 minutes of 

164 ± 14%. 

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of LTP in 6 month 3xTg and 6 month control mice (Fig. 

3.13). This is the case for all phases of LTP, from the initial peak to the plateau 

phase.  

 

 

3.2.3.4: Non-normalised long-term potentiation 

 

 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 6 month control mice the mean baseline fEPSP is 0.23 ± 

0.04 mV/ms, the peak enhancement following the theta burst stimulus is 0.52 ± 

0.06 mV/ms, and the mean from 50-60 minutes is 0.41 ± 0.07 mV/ms. In 6 

month 3xTg mice the mean baseline fEPSP is 0.20 ± 0.02 mV/ms, the peak 

enhancement is 0.52 ± 0.07 mV/ms, and the mean from 50-60 minutes is 0.38 ± 

0.05 mV/ms. (Fig. 3.14).  

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between LTP in the 6 month 3xTg and control mice using the non-normalised 

LTP values.  
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3.2.3.5: Summary 

 

 

At 6 months of age there are no differences in hippocampal CA1 synaptic 

function apparent in the 3xTg mice. In addition, no gender-dependent effects 

were observed so both male and female data were pooled together. The 3xTg 

mice show no alterations in PPF, in input-output function or in normalised or 

non-normalised LTP values. These data show that in our colony of 3xTg mice 

there are no electrophysiological changes which could be linked to the reported 

development of pathological features at this age. 
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Figure 3.8: Normalised input-output curves obtained from 6 month old male 

and female 3xTg and control mice. The fEPSP slope was measured at a range of 

stimulus intensities and then normalised in (A) male (n = 5/3) and female (n = 9/4) 

control mice and (B) male (n = 5/3) and female (n = 12/4) 3xTg mice. p > 0.05, 

unpaired t-test. 
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Figure 3.9: Normalised and non-normalised input-output curves obtained 

from 6 month old 3xTg and control mice. The fEPSP slope was measured at 

a range of stimulus intensities and then normalised in control (n = 15/7) and 

3xTg mice (n = 15/7) (A). The non-normalised fEPSP slope measurement in 

control (n = 8/4) and 3xTg mice (n = 16/ 8) is shown in (B).  p > 0.05, 

unpaired t-test. 
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Figure 3.10: Paired-pulse facilitation determined in 6 month old male and 
female 3xTg and control mice. The paired-pulse ratio was calculated at a range of 

interstimulus intervals in (A) male (n = 5/3) and female (n = 8/4) control mice and 

(B) in male (n = 6/3) and female (n = 7/4) 3xTg mice. p > 0.05, repeated measures 

ANOVA. 
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Figure 3.11: Paired-pulse facilitation determined in 6 month old 3xTg and 
control mice. The paired-pulse ratio was calculated at a range of interstimulus 

intervals in control mice (n = 13/7) and 3xTg mice (n = 13/7). p > 0.05, repeated 

measures ANOVA. 
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Figure 3.12: The influence of gender on long-term potentiation recorded from 

6 month old 3xTg and control mice. The potentiation of the fEPSP slope obtained 

following four-pulse theta burst was measured in (A) control male (n = 6/5) and 

female mice (n = 8/3) and (B) 3xTg male (n = 8/4) and female mice (n = 12/4). All 

data are normalised to the average slope of the fEPSP for each genotype prior to 

delivery of the theta burst stimulus. p > 0.05, repeated measures ANOVA. 
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Figure 3.13: Long-term potentiation in 6 month old 3xTg mice and control. 

The potentiation of the fEPSP slope following four pulse theta burst was measured 

in control mice (n = 14/8) and 3xTg mice (n = 20/8). All data are normalised to the 

average slope of the fEPSP for each genotype prior to delivery of the theta burst 

stimulus. p > 0.05, repeated measures ANOVA. 
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Figure 3.14: A comparison of long-term potentiation in 6 month old 3xTg and 

control mice (non-normalised).  The potentiation of the fEPSP slope following 

four pulse theta burst was measured in control (n = 10/8) and 3xTg mice (n = 16/8) 

and is presented here as the actual values obtained. p > 0.05, repeated measures 

ANOVA.  
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3.2.4: Electrophysiological characterisation of 12 month old 3xTg 

mice  

 

 

3.2.4.1: Input-output function  

 

 

As there was no difference in input-output function or LTP at 6 months of age in 

3xTg mice, it was decided to use older mice for the study to see if the 

electrophysiological deficits previously reported (Oddo et al., 2003) could be 

obtained. At 12 months 3xTg mice are reported to show not only intraneuronal 

amyloid accumulation, but the deposition of amyloid plaques in cortex and 

hippocampus (Oddo et al., 2003). Electrophysiological measurements were 

therefore carried out at 12 months when the pathology was expected to be well 

established. 

Input-output curves were generated and compared for 12 month old 3xTg mice 

and control mice of both genders. A normalised input-output curve, where the 

maximum field slope is set to 100%, was generated, along with a non-normalised 

input-output curve using the actual values obtained. 

In 12 month old control mice, there is no significant difference (p > 0.05, 

unpaired t-test) between the normalised input-output curve of male (n = 6/3) and 

female (n = 8/4) mice (Fig. 3.15A). Similarly for the 12 month old 3xTg mice 

there is no significant difference (p > 0.05, unpaired t-test) between the 

normalised input-output curve of male (n = 6/3) and female (n = 5/4) mice (Fig. 

3.15B). 
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The male and female data were pooled together, which resulted in a significant 

reduction (p < 0.05, unpaired t-test) in the normalised fEPSP slope in the 12 

month 3xTg mice (n = 11/7) compared with control mice (n = 14/7) (Fig. 3.16A). 

For the non-normalised input-output curve, the control 12 month old mice exhibit 

an fEPSP slope at 1 mA of 0.40 ± 0.04 mV/ms while the 3xTg mice exhibit a 

fEPSP slope at 1 mA of 0.17 ± 0.02 mV/ms (Fig. 3.16B). There is again a 

significant reduction (p < 0.05, unpaired t-test) in the fEPSP slope in the 12 

month 3xTg mice compared with control.  

 

 

3.2.4.2: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was compared between 12 month old 3xTg mice and 12 

month old control mice, and the effect of gender was also investigated. In all 

experiments, the maximum facilitation was observed at an inter-stimulus interval 

of 50ms. 

In control mice, the paired-pulse ratio at 50ms is 1.70 ± 0.07 for male (n = 8/3) 

and 1.62 ± 0.09 for female (n = 6/3) mice. There is no significant difference (p > 

0.05, repeated measures ANOVA) in the paired-pulse ratio in male or female 

control mice at interstimulus intervals from 20 – 500ms (Fig. 3.17A). 

In the 3xTg mice, the paired-pulse ratio at 50ms is 1.71 ± 0.10 for male (n = 7/3) 

and 1.65 ± 0.11 for female (n = 6/3) mice. There is no significant difference (p > 

0.05, repeated measures ANOVA) in the paired-pulse ratio in male, or female 

3xTg mice at interstimulus intervals from 20 – 500ms (Fig. 3.17B). 



 

 

140 

Given that gender did not influence the paired-pulse ratio for either genotype, the 

data for male and female mice were combined. Collectively, the paired-pulse 

ratio at 50ms is 1.67 ± 0.05 for control (n = 14/6) and 1.68 ± 0.07 for 3xTg (n = 

13/6) mice. There is no significant difference in the paired-pulse ratio in 3xTg 

when compared to control mice (p > 0.05, repeated measures ANOVA) at any 

inter-stimulus interval measured from 20-500 ms (Fig. 3.18).  

 

 

3.2.4.3: Long-term potentiation 

 

 

LTP was measured in the CA1 region for 12 month old 3xTg and control mice. 

These experiments were divided by gender and both normalised and non-

normalised data was generated. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the 4 pulse theta burst stimulus. In the following section the slope of 

the fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 12 month control male mice (n = 11/3), the peak enhancement of the slope of 

the fEPSP is 252 ± 24%, with a mean from 50-60 minutes following the theta 

burst stimulus of 184 ± 12%. In 12 month control female mice (n = 6/4), the peak 

enhancement is 197 ± 19%, with a mean from 50-60 minutes of 163 ± 10% (Fig. 

3.19A). 

In 12 month 3xTg male mice (n = 6/3), the peak enhancement of the slope of the 

fEPSP is 314 ± 27%, with a mean from 50-60 minutes following the theta burst 

stimulus of 240 ± 7%. In 12 month 3xTg female mice (n = 5/3), the peak 
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enhancement is 287 ± 35%, with an average from 50-60 minutes of 155 ± 13% 

(Fig. 3.19B). 

There is a significant difference (p < 0.05, repeated measures ANOVA) between 

the magnitude of LTP in male and female 3xTg mice, with enhancement greater 

in males in the plateau phase following theta burst stimulation. There is no 

significant difference (p > 0.05, repeated measures ANOVA) between LTP in 

male and female control mice. 

Combining the results for both genders, a comparison was then made between 

the 3xTg and control mice. In 12 month control mice (n = 17/7), the peak 

enhancement of the fEPSP slope is 233 ± 18%, with a mean from 50-60 minutes 

of 177 ± 8%. In 12 month 3xTg mice (n = 11/6), the peak enhancement is 302 ± 

21%, with a mean from 50-60 minutes of 210 ± 13% (Fig 3.20).  

There is a significant difference (p < 0.05, repeated measures ANOVA) in the 

magnitude of LTP in the initial phase from 0-20 minutes following theta burst 

stimulation, with LTP greater in 3xTg mice than in control mice. This is caused 

by the increased potentiation observed in male 3xTg mice.  

 

3.2.4.4: Non-normalised long-term potentiation 

 

 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 12 month control mice, the mean baseline fEPSP is 0.31 

± 0.04 mV/ms, the peak enhancement following four pulse theta burst is 0.76 ± 

0.10 mV/ms, and the mean from 50-60 minutes is 0.55 ± 0.07 mV/ms. In 12 

month 3xTg mice the mean baseline fEPSP is 0.11 ± 0.01 mV/ms, the peak 
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enhancement is 0.34 ± 0.04 mV/ms, and the mean from 50-60 minutes is 0.24 ± 

0.04 mV/ms.  

There is a clear reduction in the magnitude of LTP in the 12 month old 3xTg 

mice compared with control which is statistically significant (p < 0.05, repeated 

measures ANOVA) (Fig. 3.21). 

 

 

3.2.4.5: Summary 

 

 

There are several differences in hippocampal CA1 synaptic function observed in 

12 month 3xTg mice. Although there are no changes in PPF, there is a significant 

reduction in the fEPSP slope as measured in both the normalised and the non-

normalised input-output curve. This is mirrored in the non-normalised LTP data 

where the values for 3xTg are significantly lower than control. However, the 

normalised LTP graph shows that the magnitude of LTP is slightly increased 

relative to baseline measurements. This data shows that an age-dependent 

reduction in basal synaptic transmission and alterations in LTP are apparent by 

12 months in the 3xTg mice. 
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Figure 3.15: Normalised input-output curves obtained from 12 month old 

male and female 3xTg and control mice. The fEPSP slope was measured at a 

range of stimulus intensities and then normalised in (A) male (n = 5/3) and female 

(n = 8/4) control mice and (B) male (n = 6/3) and female (n = 5/4) 3xTg mice. p > 

0.05, unpaired t-test. 
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Figure 3.16: Normalised and non-normalised input-output curves obtained 

from 12 month old 3xTg and control mice. The fEPSP slope was measured at a 

range of stimulus intensities and then normalised for both the 3xTg mice (n = 

11/6) and the control mice (n = 14/7) (A). The non-normalised fEPSP slope 

measurement in control (n = 14/7) and 3xTg mice (n = 11/6) is shown in (B).  

p < 0.05, unpaired t-test. 
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Figure 3.17: Paired-pulse facilitation determined in 12 month old male and 

female 3xTg and control mice. The paired-pulse ratio was calculated at a range of 

interstimulus intervals in (A) male (n = 8/3) and female (n = 6/3) control mice and 

(B) male (n = 7/3) and female (n = 6/3) 3xTg mice. p > 0.05, repeated measures 

ANOVA. 



 

 

146 

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
a
ir

e
d

-p
u

ls
e
 r

a
ti
o

Interstimulus interval (ms)

 12 month 3xTg (n = 13)

 12 month control (n = 14)

p > 0.05, repeated measures ANOVA

Figure 3.18: Paired-pulse facilitation determined in 12 month old 3xTg and 

control mice. The paired-pulse ratio was calculated at a range of interstimulus 

intervals in 3xTg mice (n = 13/6) and in control mice (n = 14/6). p > 0.05, repeated 

measures ANOVA. 
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Figure 3.19: The influence of gender on long-term potentiation recorded from 

12 month old 3xTg mice and control mice. The potentiation of the fEPSP slope 

obtained following four-pulse theta burst was measured in (A) control male (n = 

11/3) and female mice (n = 6/4) and (B) 3xTg male (n = 6/3) and female mice (n = 

5/3). All data are normalised to the average slope of the fEPSP for each genotype 

prior to delivery of the theta burst stimulus. � = p < 0.05, repeated measures 

ANOVA. 
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Figure 3.20: Long-term potentiation in 12 month old 3xTg mice and control. 

The potentiation of the fEPSP slope following four pulse theta burst was measured 

in control mice (n = 17/7) and 3xTg mice (n = 11/6). All data are normalised to the 

average slope of the fEPSP for each genotype prior to delivery of the theta burst 

stimulus. 
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Figure 3.21: A comparison of long-term potentiation in 12 month old 3xTg 

and control mice (non-normalised).  The potentiation of the fEPSP slope 

following four pulse theta burst was measured in control (n = 17/7) and 3xTg mice 

(n = 11/6) and is presented here as the actual values obtained.  p < 0.05, repeated 

measures ANOVA. 
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3.2.5: Electrophysiological characterisation of 17 month old 3xTg 

mice 

 

 

3.2.5.1: Input-output function  

 

 

17 month old 3xTg mice were used as the final group for electrophysiological 

measurements. Mice of this age have not previously been studied, but should 

fully express all the pathological features of the AD model, including 

extracellular amyloid plaques and intraneuronal tangle formation. 

Input-output curves were generated and compared for 17 month old 3xTg mice 

and 17 month old control mice; due to the limited number of mice available it 

was not possible to divide these investigations by gender. A normalised input-

output curve, where the maximum field slope is set to 100%, was generated, 

together with a non-normalised input-output curve using the actual values 

obtained. 

There is a significant reduction (p < 0.05, unpaired t-test) in the normalised 

input-output curve values for 17 month old mice 3xTg mice (n = 6/3) when 

compared to control mice (n = 11/6). This difference is particularly apparent at 

low stimulus intensities (Fig. 3.22). 

For the non-normalised input-output curve, the control mice exhibit an fEPSP 

slope at 1 mA of 0.45 ± 0.06 mV/ms, while the 3xTg mice exhibit an fEPSP 

slope at 1 mA of 0.15 ± 0.04 mV/ms. There is a significant reduction (p < 0.05, 

unpaired t-test) in the fEPSP slope in the 17 month old 3xTg mice when 

compared with control (Fig. 3.23). 
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3.2.5.2: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was compared between 17 month old 3xTg mice and 17 

month old control mice. In all experiments, the maximum facilitation was 

observed at an interstimulus interval of 50ms. 

In control mice (n = 13/6), the paired-pulse ratio at 50ms is 1.58 ± 0.04, while in 

3xTg mice (n = 11/6) it is 1.64 ± 0.11. There is no significant difference (p > 

0.05, repeated measures ANOVA) in the paired-pulse ratio in 3xTg when 

compared to control mice at any interstimulus interval measured from 20-500ms 

(Fig. 3.23). 

 

 

3.2.5.3: Long-term potentiation 

 

 

LTP was measured in the CA1 region for 17 month 3xTg and control mice. The 

results were separated by gender and both normalised and non-normalised data 

was generated. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 17 month control male mice (n = 8/3), the peak enhancement of the slope of 

the fEPSP is 256 ± 14%, with a mean from 50-60 minutes following the theta 

burst stimulus of 183 ± 9%. In 17 month old control female mice (n = 9/3), the 
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peak enhancement is 205 ± 11%, with a mean from 50-60 minutes of 169 ± 11% 

(Fig. 3.24A). 

In 17 month 3xTg male mice (n = 7/3), the peak enhancement of the slope of the 

fEPSP is 300 ± 79%, with a mean from 50-60 minutes following the theta burst 

stimulus of 211 ± 23%. In 17 month 3xTg female mice (n = 3/3), the peak 

potentiation is 277 ± 84%, with a mean from 50-60 minutes of 230 ± 35% (Fig. 

3.24B). The large error bars are due to the limited number of female mice used in 

this experiment. 

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of potentiation in male and female control, or male and 

female 3xTg, in any phase of LTP. 

Combining the results obtained for each gender, a comparison was then made 

between the 3xTg and control mice. For 17 month old control mice (n = 17/6), 

the peak enhancement of the slope of the fEPSP is 227 ± 12%, with a mean from 

50-60 minutes following the theta burst stimulus of 176 ± 7%. In 17 month 3xTg 

mice (n = 10/6), the peak enhancement is 294 ± 58%, with a mean from 50-60 

minutes of 217 ± 18%.  

There is a significant difference (p < 0.05, repeated measures ANOVA) between 

the magnitude of LTP in 17 month 3xTg and control mice in the plateau phase 

from 40 minutes onwards following theta burst stimulation (Fig. 3.25). 
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3.2.5.4: Non-normalised long-term potentiation 

 

 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 17 month control mice the mean baseline fEPSP is 0.24 

± 0.03 mV/ms, the peak enhancement following theta burst is 0.57 ± 0.06 mV/ms, 

and the mean from 50-60 minutes is 0.39 ± 0.03 mV/ms. In 17 month 3xTg mice 

the mean baseline fEPSP is 0.11 ± 0.02 mV/ms, the peak enhancement is 0.29 ± 

0.07 mV/ms, and the mean from 50-60 minutes is 0.23 ± 0.05mV/ms.  

There is a significant decrease (p < 0.05, repeated measures ANOVA) in the 

potentiation of the fEPSP slope in 17 month 3xTg mice when compared to 

control mice (Fig. 3.26). 

 

 

3.2.5.5: Summary 

 

 

At 17 months, the oldest age group studied, there are a number of changes in 

hippocampal CA1 synaptic function in the 3xTg mice. There is no alteration in 

PPF, but a significant reduction in the slope of the fEPSP as measured by both 

the normalised and non-normalised input-output curves. Despite this, however, 

there is an increase in the magnitude of LTP when normalised to the baseline 

values, which becomes significant in the plateau phase. These 

electrophysiological changes may be related to the progressive nature of the 

pathology reported in these mice. 
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Figure 3.22: Normalised and non-normalised input-output curves obtained 

from 17 month old 3xTg and control mice. The fEPSP slope was measured at a 

range of stimulus intensities and then normalised in control (n = 11/6) and 3xTg 

mice (n = 6/3) (A). The non-normalised fEPSP slope measurement in control (n = 

14/7) and 3xTg mice (n = 11/6) is shown in (B).  p < 0.05, unpaired t-test. 
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Figure 3.23: Paired-pulse facilitation determined for 17 month old 3xTg and 

control mice. The paired-pulse ratio was calculated at a range of interstimulus 

intervals in 3xTg mice (n = 11/6) and in control mice (n = 13/6). p > 0.05, repeated 

measures ANOVA. 
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Figure 3.24: The influence of gender on long-term potentiation obtained in 17 

month old 3xTg mice and control mice. The potentiation of the fEPSP slope 

obtained following four-pulse theta burst was measured in (A) control male (n = 

8/3) and female mice (n = 9/3) and (B) 3xTg male (n = 7/3) and female mice (n = 

3/3). All data are normalised to the average slope of the fEPSP for each genotype 

prior to delivery of the theta burst stimulus. p > 0.05, repeated measures ANOVA. 
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Figure 3.25: Long-term potentiation in 17 month old 3xTg and control mice. 
The potentiation of the fEPSP slope following four pulse theta burst was measured 

in control mice (n = 17/6) and 3xTg mice (n = 10/6). All data are normalised to 

the average slope of the fEPSP for each genotype prior to delivery of the theta 

burst stimulus. � = p < 0.05, repeated measures ANOVA. 
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Figure 3.26: A comparison of long-term potentiation in 17 month old 3xTg 

and control mice (non-normalised).  The potentiation of the fEPSP slope 

following four pulse theta burst was measured in control mice (n = 17/6) and 3xTg 

mice (n = 10/6) and is presented here as the actual values obtained. p < 0.05, 

repeated measures ANOVA. 
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3.2.6: Comparison of results obtained in 3xTg and control mice 

by age 

 

 

The following graphs present a summary of some of the results obtained over the 

full age range studied (2 – 17 months old) for 3xTg and control mice. This allows 

comparison to be carried out not only within but between different age groups. 

 

 

3.2.6.1: Input-output function  

 

 

Input-output curves were generated at the ages of 2, 6, 12 and 17 months in 3xTg 

and control mice. The non-normalised input-output curve, which uses the actual 

fEPSP slope values, was compared between all ages of 3xTg mice and all ages of 

control mice studied. 

In the control mice, the 2 month group has an fEPSP slope at 1 mA of 0.46 ± 

0.11 mV/ms (n = 12/7), the 6 month group (n = 15/7) of 0.60 ± 0.05 mV/ms, the 

12 month group (n = 14/7) of 0.40 ± 0.04 mV/ms and the 17 month group (n = 

11/6) of 0.45 ± 0.06 mV/ms (Fig. 3.27A).  

There is a statistically significant effect of age on the fEPSP slope (p < 0.05, 

repeated measures ANOVA) but this is not a progressive age-dependent deficit 

as observed in 3xTg mice.  

In the 3xTg mice, the 2 month group (n = 13/8) has an fEPSP slope at 1 mA of 

0.71 ± 0.14 mV/ms, the 6 month group (n = 15/7) of 0.41 ± 0.05 mV/ms, the 12 

month group (n = 11/7) of 0.17 ± 0.02 mV/ms, and the 17 month group (n = 6/3) 

of 0.15 ± 0.04 mV/ms (Fig. 3.27B). 
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There is a progressive reduction in the fEPSP slope from the ages of 2 months to 

12 months, which then stabilises between 12 and 17 months. There is a 

statistically significant effect of age between the 2 month group and the other 

groups (p < 0.05, repeated measures ANOVA, Newman-Keuls post hoc). 

 

 

3.2.6.2: Maximum fEPSP slope and amplitude 

 

 

The maximum fEPSP slope in 3xTg and control was calculated in a number of 

slices (n = 6-14 slices per age group) using a stimulus intensity of 1.5mA, at the 

plateau region at the top of the input-output curve. There is a reduction in the 

fEPSP slope with age in 3xTg mice which is not apparent in control mice. By the 

age of 12 months in the 3xTg mice the fEPSP slope is significantly lower than 

that observed in the control and remains so at 17 months (p < 0.05, unpaired t-

test) (Fig. 3.28). 

 

 

3.2.6.3: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was measured and the paired-pulse ratio was recorded 

from 2, 6, 12 and 17 month 3xTg and control mice and compared.  

In the control mice, at 2 months (n = 11/6) the paired-pulse ratio at 50ms is 1.90 

± 0.07, at 6 months (n = 13/7) it is 1.49 ± 0.03, at 12 months (n = 14/6) it is 1.67 

± 0.05, and at 17 months (n = 13/6) it is 1.58 ± 0.04 (Fig. 3.29A). 
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There is a significant difference in the paired-pulse ratio in 2 month old mice 

compared with 12 and 17 month mice (p < 0.05, repeated measures ANOVA, 

Newman-Keuls post-hoc).  

In the 3xTg mice, at 2 months (n = 13/8) the paired-pulse ratio at 50ms is 1.52 ± 

0.05, at 6 months (n = 13/7) the paired-pulse ratio at 50ms is 1.56 ± 0.07, at 12 

months (n = 13/6) the paired-pulse ratio at 50ms is 1.68 ± 0.07, and at 17 months 

(n = 11/6) the paired-pulse ratio at 50ms is 1.64 ± 0.11 (Fig. 3.29B). 

There is no significant difference in the paired-pulse ratio overall with age in the 

3xTg mice (p > 0.05, repeated measures ANOVA). 

 

 

3.2.6.4: Long-term potentiation 

 

 

In control mice when LTP was normalised the following values were obtained. 

In 2 month control mice (n = 15/8), the mean enhancement of the fEPSP during 

the plateau phase from 50-60 minutes following theta burst is 152 ± 9%, in 6 

month control mice (n = 14/8) it is 170 ± 6%, in 12 month control mice (n = 17/7) 

it is 177 ± 8% and in 17 month control mice (n = 17/6) it is 176 ± 7% (Fig. 

3.30A). 

LTP is significantly lower at 2 months than at the older age ranges (p < 0.05, 

repeated measures ANOVA, Newman-Keuls post hoc). 

In 3xTg mice when LTP was normalised the following values were obtained. In 

2 month 3xTg mice (n = 17/8), the mean enhancement of the fEPSP during the 

plateau phase from 50-60 minutes following theta burst is 163 ± 11%, in 6 month 
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3xTg mice (n = 20/8) it is 164 ± 14%, in 12 month 3xTg mice (n = 11/6) it is 210 

± 13% and in 17 month 3xTg mice (n = 10/6) it is 217 ± 18% (Fig. 3.31A). 

There is an increase in the magnitude of LTP with age which is statistically 

significant in the 17 month group when compared with the 2 and 6 month groups 

(p < 0.05, repeated measures ANOVA, Newman-Keuls post hoc). 

 

 

3.2.6.5: Non-normalised long-term potentiation 

 

 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 2 month control mice, the mean enhancement of the 

fEPSP from 50-60 minutes following theta burst is 0.32 ± 0.05 mV/ms, in 6 

month control mice, the mean enhancement is 0.41 ± 0.07 mV/ms, in 12 month 

control mice, the mean enhancement is 0.55 ± 0.07 mV/ms and in 17 month 

control mice (n = 17/6), the mean enhancement from 50-60 minutes is 0.39  ± 

0.03 mV/ms (Fig. 3.30B). 

In the control mice, there is a significant effect of age on the magnitude of LTP 

with it appearing lowest at 2 months and highest at 12 months. 

When the slope of the fEPSP is not normalised to control and the actual values 

(mV/ms) are utilised, in 2 month 3xTg mice the mean enhancement of the fEPSP 

from 50-60 minutes is 0.57 ± 0.09 mV/ms, in 6 month 3xTg mice the mean 

enhancement is 0.38 ± 0.05 mV/ms, in 12 month 3xTg mice the mean 

enhancement is 0.24 ± 0.04 mV/ms, and in 17 month 3xTg mice (n = 10/6), the 

mean enhancement from 50-60 minutes is 0.23 ± 0.05 mV/ms (Fig. 3.31B). 
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In the 3xTg mice, there is a decrease in the magnitude of non-normalised LTP 

with age which appears to stabilise between 12 and 17 months of age. There is a 

statistically significant difference between 17 months and the other groups, and 

between 2 and 12 months (p < 0.05, repeated measures ANOVA, Newman-

Keuls post hoc). 

 

 

3.2.6.6: Summary 

 

 

There are several alterations in synaptic transmission which can be observed in 

the 3xTg mice at different ages. PPF is the only measurement that remains stable 

with age from 2-17 months. There is a progressive reduction in the fEPSP slope 

along with a decreased magnitude of non-normalised LTP between 2-12 months. 

Despite the decrease in the fEPSP slope, there is actually an increased magnitude 

of LTP with age when the data are normalised. All measurements remain stable 

between 12 and 17 months. These data show that in the 3xTg mice there are 

progressive and age-dependent differences in a number of the parameters that 

measure synaptic function. 
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Figure 3.27: Non-normalised input-output curve for slope obtained at all ages 

in 3xTg and control mice. The fEPSP slope data generated at the ages of 2, 6, 12 

and 17 months is displayed together for (A) control and (B) 3xTg mice. p < 0.05, 

repeated measures ANOVA. 

 

A 

B 



 

 

165 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

*

 3xTg

 Control

M
a

x
im

u
m

 f
E

P
S

P
 s

lo
p

e
 (

m
V

)

2          6                   12               17

*

Age (months)*p < 0.05, unpaired t-test

0.2mV

20ms

0.2 mV

20 ms

2 months 

Control 3xTg 

17 months 

Figure 3.28: Average maximum fEPSP slope in 3xTg and control at different 

ages.  The maximum fEPSP slope obtained in a number of slices (n ≥ 6 slices per 

group) is shown for 3xTg and control mice of 2, 6, 12 and 17 months (A).  

� = p < 0.05, unpaired t-test. Sample fEPSP traces for 2 and 17 months are shown 

below the graph (B).  
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Figure 3.29: Paired-pulse facilitation determined at all ages in 3xTg and 

control mice. The paired-pulse facilitation data generated at the ages of 2, 6, 12 

and 17 months is displayed together for (A) control and (B) 3xTg mice. For A, p 

< 0.05, repeated measures ANOVA between 2 and 12, and 2 and 17 month 

groups. p > 0.05 for all other comparisons.  For B, p > 0.05, repeated measures 

ANOVA. 
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Figure 3.30: A comparison of normalised and non-normalised LTP in control 

mice from 2-17 months.  The enhancement of the fEPSP slope obtained following 

four-pulse theta burst was measured in 2, 6, 12 and 17 month control mice and 

normalised to the average slope of the fEPSP prior to delivery of the theta burst 

stimulus (A). The potentiation of the fEPSP slope is also presented here as the 

actual values obtained (B). For A, p < 0.05, repeated measures ANOVA between 2 

month and other groups. p > 0.05 for all other comparisons.  For B, p < 0.05, 

repeated measures ANOVA. 
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Figure 3.31: A comparison of normalised and non-normalised LTP in 3xTg 

mice from 2-17 months.  The enhancement of the fEPSP slope obtained following 

four-pulse theta burst was measured in 2, 6, 12 and 17 month 3xTg mice and 

normalised to the average slope of the fEPSP prior to delivery of the theta burst 

stimulus (A). The potentiation of the fEPSP slope is also presented here as the 

actual values obtained (B). For A, p < 0.05, repeated measures ANOVA between 2 

and 17 month, and 6 and 17 month groups. p > 0.05 for all other comparisons.  For 

B, p < 0.05, repeated measures ANOVA between 2 and 12 months, 2 and 17 

months, 6 and 17 months and 12 and 17 months. p > 0.05 for all other 

comparisons.   
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3.2.7: Electrophysiological characterisation of 2 month old 

TASTPM mice 

 

 

The TASTPM mouse, which carries both mutant APP and PS1 transgenes, shows 

Aβ deposition from the age of 3 months, and cognitive deficits from the age of 6 

months (Howlett et al., 2004). For this reason, it was decided to use mice of 2 

and 6 months of age for electrophysiological studies. 2 month old mice should be 

free from pathology and should therefore possess normal synaptic function, 

while 6 month old mice may show electrophysiological deficits, as at this age the 

Aβ deposition is well established. The control mice for the 3xTg transgenic line 

were used as a comparison, and due to availability a mixture of male and female 

TASTPM mice were used for this study. 

 

 

3.2.7.1: Input-output function  

 

 

Input-output curves were generated and compared for 2 month old TASTPM and 

2 month old control mice. A normalised input-output curve, where the maximum 

field slope is set to 100%, was generated, along with a non-normalised input-

output curve using the real values. 

There is no significant difference (p > 0.05, unpaired t-test) in the normalised 

input-output curve in 2 month control (n = 12/7) and TASTPM mice (n = 9/6) 

(Fig. 3.32A). 

For the non-normalised input-output curve, the control mice exhibit an fEPSP 

slope at 1 mA of 0.46 ± 0.11 mV/ms while the TASTPM mice exhibit an fEPSP 
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slope at 1 mA of 0.45 ± 0.08 mV/ms. There is no significant difference (p > 0.05, 

unpaired t-test) between the TASTPM and control mice (Fig. 3.32B). 

 

 

3.2.7.2: Paired-pulse facilitation  

 

 

Paired-pulse facilitation was compared between 2 month old TASTPM and 

control mice. In all experiments, the maximum facilitation was observed at an 

interstimulus interval of 50ms. 

In control mice (n = 11/6), the paired-pulse ratio at 50ms is 1.90 ± 0.07 while in 

TASTPM mice (n = 11/7) the paired-pulse ratio at 50ms is 1.64 ± 0.09. 

There is a significant decrease in the paired-pulse ratio of 2 month TASTPM 

when compared to control mice (p < 0.05, repeated measures ANOVA followed 

by unpaired t-test) at an interstimulus interval of 50ms, but not at other 

interstimulus intervals (Fig. 3.33).  

 

 

3.2.7.3: Long-term potentiation 

 

 

LTP was measured in the CA1 region for 2 month TASTPM and control mice. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 2 month control mice (n = 15/8), the peak enhancement of the slope of the 

fEPSP is 223 ± 12%, with a mean from 50-60 minutes following the 4 pulse theta 
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burst stimulus of 152 ± 9%. In 2 month TASTPM mice (n = 10/6), the peak 

enhancement is 198 ± 17%, with a mean from 50-60 minutes of 148 ± 9%.  

There is no significant difference (p > 0.05, repeated measures ANOVA) 

between the magnitude of LTP in 2 month TASTPM and control mice (Fig. 3.34). 

 

3.2.7.4: Summary 

 

There are no differences in electrophysiology measurements at 2 months in 

input-output function or LTP, with the sole change a minor reduction in PPF at 

this age. This suggests that there are few functional changes in the TASTPM 

mice at 2 months, an age reported to be prior to the development of any overt 

pathological features.  
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Figure 3.32: Normalised and non-normalised input-output curves obtained 

from 2 month old TASTPM and control mice. The fEPSP slope was measured at 

a range of stimulus intensities and then normalised in control (n = 12/7) and 

TASTPM mice (n = 9/6) (A). The non-normalised fEPSP slope measurement in 

control mice (n = 12/7) and TASTPM mice (n = 9/6) is shown in (B). p > 0.05, 

unpaired t-test. 
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Figure 3.33: Paired-pulse facilitation determined in 2 month old TASTPM 

and control mice. The paired-pulse ratio was calculated at a range of interstimulus 

intervals in control mice (n = 11/6) and TASTPM mice (n = 11/7). � = p < 0.05, 

repeated measures ANOVA followed by unpaired t-test. p > 0.05 for all other 

interstimulus intervals. 



 

 

174 

0 20 40 60

0

20

40

60

80

100

120

140

160

180

200

220

240

    2 month TASTPM (n = 10)

2 month control  (n = 13)

N
o

rm
a

lis
e

d
 f
E

P
S

P
 s

lo
p

e
 (

%
)

Time (min)

p > 0.05, repeated measures ANOVA

Figure 3.34: Long-term potentiation in 2 month TASTPM and control mice. 

The potentiation of the fEPSP slope following four pulse theta burst was 

measured in control mice (n = 15/8) and TASTPM mice (n = 10/6). All data are 

normalised to the average slope of the fEPSP for each genotype prior to delivery 

of the theta burst stimulus. p > 0.05, repeated measures ANOVA. 
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3.2.8: Electrophysiological characterisation of 6 month old TASTPM mice 

 

 

In the 6 month old TASTPM mice it was much more difficult to obtain an fEPSP 

of reasonable size to allow further experiments to take place. A large number of 

slices had to be discarded as an fEPSP could not be obtained or was too small to 

use. Of the 30 slices tested, only 8 were useable (a total of 27%) and LTP was 

only induced in 3 of these slices. It is normal for an fEPSP to be obtained in 

around 80-90% of healthy slices with LTP being induced in the majority of these. 

LTP was measured in the CA1 region for 6 month TASTPM and control mice. In 

all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

In 6 month TASTPM mice (n = 3/2) the peak enhancement of the slope of the 

fEPSP is 361 ± 39%, with a mean from 50-60 minutes following the theta burst 

stimulus of 231 ± 40% (Fig. 3.35).  

There is a significant increase (p < 0.05, repeated measures ANOVA) in the 

magnitude of LTP obtained in the TASTPM slices. However it should be noted 

that, as stated above, these slices in which LTP were induced were a very small 

proportion of those tested and so may not be representative of the functional 

changes overall in the TASTPM mice. There are also large error bars due to the 

low number of slices used in the experiment. 
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Figure 3.35: Long-term potentiation in 6 month TASTPM and control mice. 

The potentiation of the fEPSP slope following four pulse theta burst was measured 

in control mice (n = 14/8) and TASTPM mice (n = 3/2). All data are normalised to 

the average slope of the fEPSP for each genotype prior to delivery of the theta burst 

stimulus. p < 0.05, repeated measures ANOVA. 
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3.2.9: Treatment of 6 month TASTPM slices with kynurenic acid 

 

 

3.2.9.1: Introduction 

 

 

As a result of the difficulties in obtaining an fEPSP in 6 month TASTPM mice, 

measures were attempted to improve neuronal viability in the hippocampal slices.  

Neuronal injury is an inevitable consequence of the slicing process and is due to a 

transient period of hypoxia combined with the mechanical severance of dendritic 

processes. This results in an initial phase of cytotoxic oedema where the opening 

of membrane cation channels causes Na
+
 influx and a concomitant increase in 

intracellular Cl
-
 and water, leading to neuronal swelling and possible rupture 

(Siklos et al., 1997). The following, more slowly-evolving phase, delayed Ca
2+

-

induced neuronal degeneration, results in downstream mitochondrial dysfunction, 

caspase and calcineurin activation and eventual neuronal death (Dong et al., 

2009). Excitotoxic mechanisms in brain slices may be different to those observed 

in vivo due to the changes in brain metabolic processes and lack of cerebral blood 

flow in the isolated preparation. 

The initial trigger for these degenerative processes appears to be the simultaneous 

fusion and exocytosis of multiple synaptic vesicles resulting in a marked increase 

in extracellular glutamate concentrations (Fiala et al., 2003) which causes the 

simultaneous activation of glutamate receptors, in particular the NMDA receptor. 

There are several methods that can be used to reduce the effects of glutamate 

toxicity during slicing, including modification of the ionic composition of the 

aCSF or the addition of the compound kynurenic acid. The ability of kynurenic 

acid to guard against excitotoxicity is due to its actions as a NMDA receptor 
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antagonist at the glycine site; although it appears to have little effect on protecting 

against the initial neuronal swelling it is effective at preventing Ca
2+ 

- induced 

neuronal degeneration (Richerson and Messer, 1995). 

Fitzjohn et al., (2001) reported the ability of kynurenic acid to reverse 

electrophysiological deficits obtained in the APPSwe mouse when added during 

the slicing process. They suggested that an increased susceptibility to 

excitotoxicity might underlie some of the observed deficits in these mice, and that 

the neurons might be more sensitive to insults including hypoxia. The 3xTg and 

TASTPM mice have also been generated to carry the APPSwe mutation. For this 

reason, experiments were carried out with kynurenic acid added to the aCSF 

during tissue slicing from the 3xTg and TASTPM mice to observe if this 

improved slice viability. 

 

 

3.2.9.2: Methods  

 

 

To improve the chances of obtaining successful fEPSPs in the 6 month old 

TASTPM mouse, 1mM of kynurenic acid was added to the aCSF during slicing 

and for one hour subsequent to this. Slices were then transferred to an incubation 

pot containing normal aCSF to ensure that the kynurenic acid was washed off 

prior to transfer to the recording bath. This process was repeated in control mice. 
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3.2.9.3: fEPSP measurements 

 

 

The fEPSP amplitude at an input stimulation of 1.5mA, at the top of the input 

output curve, was recorded for a number of slices. The amplitude rather than the 

slope was chosen as it is easier to record the amplitude in smaller fEPSPs where 

the shape of the field may be altered. In control mice, the maximum amplitude of 

the fEPSP is 1.2 ± 0.15 mV under normal conditions. However, in 6 month 

TASTPM mice the fEPSP amplitude is very small, with an average of 0.4 ± 0.10 

mV/ms. When treated with 1mM kynurenic acid, the amplitude increases 

significantly (p < 0.05, unpaired t-test) to 1.72 ± 0.27 mV (Fig. 3.36A). 

The percentage of slices which showed useable fEPSPs in the 6 month TASTPM 

slices was only 27%. However, when kynurenic acid was added during slicing 

the percentage of slices in which fEPSPs could be obtained increased to 100%, 

showing that the compound increases slice viability (Fig. 3.36B).  

 

 

3.2.9.4: Long-term potentiation 

 

 

LTP was measured in the CA1 region in slices treated with 1mM kynurenic acid. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  

The magnitude of LTP obtained in slices treated with 1mM kynurenic acid was 

also recorded. In untreated TASTPM slices (n = 3/2) the peak enhancement of 
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the slope of the fEPSP is is 361 ± 39%, with a mean following 4 pulse theta burst 

stimulus from 50-60 minutes of 231 ± 40%. In slices treated with kynurenic acid, 

(n = 10/4), the peak enhancement is 263 ± 14%, with a mean from 50-60 minutes 

of 166 ± 7%. This is similar to the results obtained in control mice (n = 14/8), 

where the peak enhancement is 225% ± 14%, with a mean from 50-60 minutes of 

170 ± 6% (Fig. 3.37A). 

Incubation with 1mM kynurenic acid significantly reduces the magnitude of LTP 

in 6 month TASTPM slices (p < 0.05, repeated measures ANOVA). There is no 

difference between LTP obtained in kynurenic acid treated TASTPM slices 

compared with control (p > 0.05, repeated measures ANOVA) (Fig. 3.37B). 
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Figure 3.36: Maximum fEPSP amplitude and percentage of successful fEPSPs 

obtained from slices in 6 month old TASTPM mice treated with 1mM 

kynurenic acid. The fEPSP amplitude at 1.5mA input (which produces the 

maximum fEPSP) was recorded in slices incubated in normal aCSF (n = 10) and 

aCSF containing 1mM kynurenic acid (n = 13) (A). The percentage of slices in 

which an fEPSP could be successfully obtained is shown in (B). p < 0.05, unpaired 

t-test. 
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Figure 3.37: Long term potentiation in 6 month TASTPM mice, with and 

without treatment with 1mM kynurenic acid, and control mice. The 

potentiation of the fEPSP slope obtained following four-pulse theta burst was 

measured in 6 month control mice (n = 14/8), TASTPM slices incubated in normal 

aCSF (n = 3/2) and aCSF containing 1mM kynurenic acid (n = 10/4). All data are 

normalised to the average slope of the fEPSP for each genotype prior to delivery of 

the theta burst stimulus. p < 0.05, TASTPM and control. p > 0.05, TASTPM + 

1mM KA and control.   
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3.2.10: Treatment of 12 month 3xTg slices with kynurenic acid 

 

 

Following the results obtained in the TASTPM mice, studies were conducted on 

12 month 3xTg mice to see if the fEPSP amplitude was increased following 

treatment with 1mM kynurenic acid. A more detailed analysis including input-

output function and PPF could be carried out as fEPSPs are readily obtained in 

both 12 month control and 3xTg slices. 

 

 

3.2.10.1: fEPSP measurements 

 

 

The fEPSP amplitude at an input stimulation of 1.5mA, at the top of the input 

output curve, was recorded for a number of slices. In control slices, the 

maximum fEPSP amplitude is 1.28 ± 0.1 mV. In 3xTg slices incubated in normal 

aCSF, the fEPSP amplitude is 0.61 ± 0.2 mV. Under normal conditions, there is a 

significant difference between 3xTg and control (p < 0.05, unpaired t-test).  

Following incubation with 1mM kynurenic acid, there is a slight, but not 

significant increase in the maximum fEPSP amplitude (p > 0.05, unpaired t-test) 

in the control mice, to 1.5 ± 0.2 mV/ms. However, there is a significant increase 

(p < 0.05, unpaired t-test) in the maximum fEPSP amplitude in 3xTg mice, to 

1.54 ± 0.2 mV/ms (Fig. 3.38). This shows that incubation with kynurenic acid 

recovers the fEPSP amplitude in 3xTg mice to a level similar to control, where 

there is no significant difference between the two groups (p > 0.05, unpaired t-

test). 
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3.2.10.2: Input-output function 

Input-output function was also measured in 12 month 3xTg and control mice 

treated with 1mM kynurenic acid. A normalised input-output curve, where the 

maximum field slope is set to 100%, was generated, along with a non-normalised 

input-output curve using the actual values obtained. 

In the 12 month control mice, there is no significant difference in the input-

output curve between treated and untreated slices (p > 0.05, unpaired t-test) (Fig. 

3.39A). However in 3xTg mice there is a significant increase in the normalised 

input-output curve following incubation with kynurenic acid (p < 0.05, unpaired 

t-test) (Fig 3.39B). 

For the non-normalised input-output curve, the untreated control mice have an 

fEPSP slope at 1 mA of 0.40 ± 0.04 mV/ms, and in slices incubated with 1mM 

kynurenic acid, the control mice have an fEPSP slope at 1 mA of 0.67 ± 0.14 

mV/ms (Fig. 3.40A) 

For the non-normalised input-output curve, the untreated 3xTg mice have an 

fEPSP slope at 1 mA of 0.17 ± 0.02 mV/ms, and in slices incubated with 1mM 

kynurenic acid, the 3xTg mice have an fEPSP slope at 1 mA of 0.82 ± 0.13 

mV/ms (Fig. 3.40B). 

There is a significant increase (p < 0.05, unpaired t-test) in the fEPSP slope at 

0.2 and 0.3mA only in control mice, while there is a significant increase (p < 

0.05, unpaired t-test) at all stimulus intensities from 0.2mA – 1mA in 3xTg mice 

after kynurenic acid treatment.  
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3.2.10.3: Paired-pulse facilitation 

 

 

Paired-pulse facilitation was measured in slices from 3xTg and control mice 

incubated in kynurenic acid. In all experiments, the maximum facilitation was 

observed at an interstimulus interval of 50ms.  

In control mice (n = 14/6) the paired-pulse ratio at 50ms is 1.67 ± 0.05. In slices 

treated with 1mM kynurenic acid (n = 14/5), the paired-pulse ratio at 50ms is 

1.45 ± 0.04 (Fig. 3.41A).  

In 3xTg mice (n = 13/6), the paired-pulse ratio at 50ms is 1.68 ± 0.07. In slices 

treated with 1mM kynurenic acid (n = 11/5), the paired-pulse ratio at 50ms is 

1.34 ± 0.03 (Fig. 3.41B).  

There is a significant decrease in PPF in control mice only at interstimulus 

intervals up to 100ms (p < 0.05, repeated measures ANOVA followed by 

unpaired t-test). There is a significant decrease in PPF at all intervals when 3xTg 

mice are treated with 1mM kynurenic acid (p < 0.05, repeated measures 

ANOVA).  

 

 

3.2.10.4: Long-term potentiation  

 

 

LTP was measured in the CA1 region in slices treated with 1mM kynurenic acid. 

In all experiments a baseline fEPSP was recorded at 30 second intervals until the 

slope of the fEPSP was stabilised and constant over a 10 min period before 

delivery of the theta burst stimulus. In the following section the slope of the 

fEPSP is normalised to baseline (i.e. 100%) for each recording.  
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In untreated slices, in 12 month control mice (n = 17/7), the peak enhancement of 

the slope of the fEPSP is 233 ± 18%, with a mean from 50-60 minutes following 

the theta burst stimulus of 177 ± 8%. In slices incubated with 1mM kynurenic 

acid, in 12 month control mice (n = 11/4), the peak enhancement is 176 ± 14%, 

with a mean from 50-60 minutes of 155 ± 8% (Fig. 3.42A).  

In untreated slices, in 12 month 3xTg mice (n = 11/6), the peak enhancement of 

the fEPSP slope is 302 ± 21%, with a mean from 50-60 minutes of 210 ± 13%. In 

slices incubated with 1mM kynurenic acid, in 12 month 3xTg mice (n = 8/4), the 

peak enhancement is 183 ± 18%, with a mean from 50-60 minutes of 140 ± 5% 

(Fig 3.42B).  

There is no difference in the magnitude of LTP in control mice with (n = 10/4) 

and without (n = 17/7) kynurenic acid. There is a significant decrease in the 

magnitude of LTP in 3xTg mice (n = 11/6) with the addition of 1mM kynurenic 

acid during slicing (n = 8/4).  

 

 

3.2.10.5: Summary 

 

 

Incubation of slices with 1mM kynurenic acid improves slice viability in both 

3xTg and TASTPM mice. This is shown by the increase in fEPSP amplitude and 

markedly higher percentage of successful fEPSPs in slices treated with kynurenic 

acid. In 3xTg mice when other electrophysiological parameters are studied there 

is found to be a decrease in PPF at all stimulus intensities, and a significant 

decrease in the magnitude of LTP with kynurenic acid treatment which is not 

observed in control mice. 
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Figure 3.38: A comparison of fEPSP amplitude in 12 month 3xTg and control 

mice with and without treatment with 1mM kynurenic acid. The fEPSP 

amplitude at 1.5mA input (which produces the maximum fEPSP) was recorded in 

control slices (n = 10/5) and 3xTg slices (n = 11/6) incubated in normal aCSF, and 

compared with control slices (n = 12/4) and 3xTg (n = 12/4) incubated in aCSF 

containing 1mM kynurenic acid. � = p < 0.05, unpaired t-test. 
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Figure 3.39: Normalised input-output curves obtained from 12 month old 

male and female 3xTg and control mice treated with 1mM kynurenic acid. 

The fEPSP slope was measured at a range of stimulus intensities and then 

normalised in slices from control (n = 14/7) and control (n = 10/4) incubated in 

1mM kynurenic acid (A). p > 0.05, unpaired t-test. This was repeated in slices from 

3xTg mice (n = 11/6) and 3xTg mice (n = 11/5) incubated in 1mM kynurenic acid 

(B). p < 0.05, unpaired t-test. 
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Figure 3.40: Non-normalised input-output curves obtained from 12 month old 

male and female 3xTg and control mice treated with 1mM kynurenic acid. 

The fEPSP slope was measured at a range of stimulus intensities in slices from 

control (n = 14/7) and control incubated in 1mM kynurenic acid (n = 10/4) (A).  p 

< 0.05, unpaired t-test, at stimulus intensities of 0.2 and 0.3 mA only. The fEPSP 

slope was measured at a range of stimulus intensities in slices from 3xTg mice (n = 

11/6) and 3xTg mice incubated in 1mM kynurenic acid (n = 11/5) (B). p < 0.05, 

unpaired t-test. 
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Figure 3.41: Paired-pulse facilitation determined in 12 month 3xTg and control 

treated with 1mM kynurenic acid. The paired-pulse ratio was calculated at a range 

of interstimulus intervals in control mice in untreated slices (n = 14/7) and slices 

incubated in 1mM kynurenic acid (n = 11/4) (A). p < 0.05, repeated measures 

ANOVA followed by unpaired t-test, at interstimulus intervals up to 100ms only. 

The paired-pulse ratio was calculated at a range of interstimulus intervals in 3xTg 

mice in untreated slices (n = 13/6) and slices incubated in 1mM kynurenic acid (n = 

11/4) (B). p < 0.05, repeated measures ANOVA 
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Figure 3.42: Long term potentiation in 12 month 3xTg and control with and 

without 1mM kynurenic acid. The potentiation of the fEPSP slope obtained 

following four-pulse theta burst was measured in slices from control mice (n = 

17/7) and control slices incubated in 1mM kynurenic acid (n = 10/4) (A). p > 0.05, 

repeated measures ANOVA. The potentiation of the fEPSP slope was measured in 

3xTg mice (n = 11/6) and 3xTg mice incubated in 1mM kynurenic acid (n = 8/4). 

All data are normalised to the average slope of the fEPSP for each genotype prior 

to delivery of the theta burst stimulus (B).  p < 0.05, repeated measures ANOVA. 
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3.3: Discussion  

 

Alterations in synaptic transmission and plasticity have been observed in mouse 

models of AD including the 3xTg and TASTPM models, however results from 

different research groups have proved inconsistent. Electrophysiological 

recordings were made from 3xTg and TASTPM mice to observe if there were 

any differences in synaptic function in these models and if these findings were 

consistent with previously reported results.  

 

 

3.3.1: Technical aspects 

 

 

There are a number of technical variables which can affect slice viability and 

LTP measurements, such as the mechanisms of slice preparation, temperature 

and recording used (summarised in Table 3.1). For this reason, it is difficult to 

compare studies of hippocampal electrophysiology between individual research 

groups if these variables are not standardised. Critically, the stimulation protocol 

used may result in the activation of distinct signalling pathways; for example the 

ability of acutely applied Aβ oligomers to impair LTP depends upon the 

paradigm used (HFS vs. TBS) (Smith et al., 2009).  

Other technical issues associated with electrophysiological recordings are the 

biochemical changes which inevitably occur during the preparation of the 

hippocampal slice. This may involve alterations in phosphorylation of cellular 

proteins, such as the AMPA receptor, CaMKII and Src family kinases (Ho et al., 
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2004) and in gene regulation and transcription (Taubenfeld et al., 2002). Specific 

to transgenic models of AD, it has been suggested that extracellular soluble Aβ 

may in fact diffuse out of slices, resulting in a reduction of the concentration of 

Aβ within the tissue (Waters 2010).  

The acute slice preparation is a useful experimental tool to study hippocampal 

synaptic function, but these examples highlight the limitations present with the 

technique. There may be biochemical and functional differences in the transgenic 

mice which might only become apparent using studies in the intact animal e.g. in 

vivo electrophysiology. 

 

 

Table 3.1: Technical variables in hippocampal slice recordings 

Variable Effect Reference 

Hippocampal 

subdivision 

(CA1, DG) 

Regional anatomical and 

functional differences  

Swanson-Park et al. 

1999 

Ionic composition of 

aCSF (Mg
2+

,Ca
2+

, 

glucose) 

Altered neuronal viability and 

synaptic transmission, 

likelihood of epileptiform 

activity 

Richerson et al. 1995 

Slice preparation (ice 

cold aCSF, glutamate 

receptor antagonists) 

Degree of excitotoxicity and 

neuronal viability 

Fitzjohn et al. 2001 

Slice recovery 

temperature (cold, 

room temp., 37°C) 

Metabolic alterations, 

susceptibility to epileptiform 

activity 

Watson et al. 1997 

Stimulation protocol  

(HFS, TBS) 

Activation of alternative 

signalling pathways 

Hernandez et al. 

2005 

Interface or 

submerged recording 

Activation of alternative 

signalling pathways 

Capron et al. 2006 

Bath temperature 

(30°C - 37°C) 

Reduction of fEPSP amplitude 

at higher temperatures 

Masino et al. 2000 

 

 



 

 

194 

3.3.2: Characterisation of the 3xTg mouse 

 

 

In the 3xTg mouse model, multiple parameters were recorded including input-

output function, PPF and LTP. The results obtained are discussed below in the 

following sections. 

 

3.3.2.1: Paired-pulse facilitation in the 3xTg model 

 

 

PPF was measured from 2 to 17 months in 3xTg and control mice. In control 

mice, PPF remained stable with a ratio of 1.5 – 1.7 at 50ms from 6 to 17 months, 

but there was a significant increase in PPF at 2 months compared with the other 

ages studied (a ratio of 1.9 at 50ms), a difference that was most marked in male 

mice. In 3xTg mice, the magnitude of PPF remained stable with age (1.5 – 1.7), 

with a similar ratio to that of control mice. Consequently, this results in a 

significant difference between the magnitude of PPF in 3xTg and control mice at 

2 months only. However, it is not clear whether this is due to an enhancement of 

PPF in the younger control mice or a reduction in PPF in the 3xTg mice.  The 

magnitude of PPF recorded in the mouse hippocampus shows variation between 

research groups; values are generally within the range of 1.3 – 2.0, so PPF in 

control mice is of the expected range in our colony. Age-dependent differences 

have not previously been observed in control mice (Ris et al., 2005, Fitzjohn et 

al., 2010) but a comprehensive analysis of the effects of PPF with ageing has not 

been carried out so developmental changes, strain or gender-dependent 

differences can not be ruled out.  
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PPF is dependent on the intracellular Ca
2+ 

concentration within the presynaptic 

terminal, with the residual rise in Ca
2+ 

following the first stimulus allowing 

enhanced vesicular neurotransmitter release on the second stimulus (Nathan et al., 

1990). The difference in the paired-pulse ratio between 2 month old 3xTg and 

control mice suggests an alteration in presynaptic function between the two 

groups. Of the three transgenes present in the 3xTg mouse, PS1 is widely known 

to be involved in neuronal Ca
2+ 

regulation, with the PS1M146V mutation markedly 

increasing Ca
2+ 

release and signalling in cortical neurons (Stutzmann et al., 2004). 

Oddo et al (2003) reported that the PS1M146V mutation increased PPF at 6 months 

in transgenic mice, and this was also observed in double transgenic mice with the 

additional tauP301L transgene. The presence of the single APPSwe mutation alone 

has no effect on the magnitude of PPF (Fitzjohn et al., 2001). Surprisingly, the 

combination of the three transgenes together in the 3xTg mouse results in a 

masking of the effects of the PS1M146V mutation as PPF has been reported to be 

normal at 1 and 6 months (Oddo et al., 2003). This result has been replicated in 

our colony of 3xTg mice at older ages showing that the progression of pathology 

in these mice does not result in an age-dependent effect on presynaptic function. 

 

3.3.2.2: Basal synaptic transmission in the 3xTg model 

 

 

The normalised input-output curve reveals the electrical stimulation required to 

elicit an fEPSP of increasing magnitude. There is a significant rightward shift in 

12 and 17 month 3xTg mice. This shows that a higher input current is required to 

obtain an fEPSP of similar magnitude to control and shows that deficits in basal 

synaptic transmission are present in these mice at older ages.  
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The non-normalised output curve provides the actual numerical fEPSP slope 

values obtained at each stimulus intensity. Control mice show no age-dependent 

changes in input-output function, but in contrast, 3xTg mice demonstrate a 

progressive reduction in the fEPSP slope from the ages of 2 to 12 months. In our 

colony of 3xTg mice at 6 months, there is no difference in input-output function 

or baseline fEPSP recordings compared to control, while at 12 and 17 months 

both the input-output curve and the baseline fEPSP recordings are markedly 

reduced. These findings may reflect the recruitment of a smaller population of 

neurons at each input intensity, which could be due to neuronal damage through 

excitotoxicity (discussed in more detail in Section 3.3.1.7.)  However, at 2 

months there is a significant enhancement in the baseline fEPSP. These results 

show that basal synaptic transmission is enhanced in young 3xTg mice. The 

mechanism of this perturbation is not known and may vary depending on the 

stimulus intensity, as experimental stimulus strength can differentially affect 

presynaptic and postsynaptic function (Chakroborty et al., 2009). However, it 

may involve an increase in neuronal excitability as 3xTg mice show a 

hyperactivity of glutamatergic synapses in the hippocampus observed as an 

increased rate of spontaneous firing in patch clamp studies (Arsenault et al., 

2011). This increased excitatory drive may result in a degree of network 

dysfunction; this has been suggested as a factor contributing to cognitive 

dysfunction in other transgenic models of AD and is discussed further below in 

Section 3.3.2.6.  

The fEPSP slope value obtained in the 3xTg mice at 2 months of 0.4mV/ms at 

1mA is similar to that obtained by Chakroborty et al. (2009), showing that the 

magnitude is within the normal range, but the values are markedly less than the 
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1mV/ms at 1mA obtained by Oddo et al. (2003), which may reflect differences 

in experimental protocol for extracellular recording. Oddo et al. (2003) reported 

a normal input-output function in the 3xTg mouse at 1 month of age, but a 

reduction in the fEPSP slope at 6 months; this occurred in control but was more 

marked in 3xTg mice. At this age, the fEPSP slope in 3xTg mice was ~ half that 

of control, a ratio which is not observed in our colony of mice until 12 months of 

age. This suggests that the development of pathological features has occurred 

more rapidly in the colony of mice studied by Oddo et al. This group also 

observed identical changes in the single-transgenic PS1M146V and double-

transgenic PS1M146V, tauP301L models, implicating the PS1 transgene in alterations 

of basal synaptic transmission. However, these results were not replicated by 

another group who noted no difference in synaptic function in PS1 M146V mice 

(Wang et al., 2004). In 3xTg mice, Chakroborty et al. (2009) reported no 

differences in input-output function at 6-8 weeks of age, but noted the presence 

of alterations in evoked postsynaptic Ca
2+

 release (see Section 3.3.2.5). It is 

possible that there are age-independent changes in basal synaptic transmission 

due to the presence of the transgenes during development, as observed in our 

colony of mice at 2 months where despite the lack of observed biochemical 

changes (see Chapter 4) there are electrophysiological differences at this age. 

These alterations in basal synaptic transmission are followed by age-dependent 

deficits linked to the development of pathological features in 3xTg mice. 

 

3.3.2.3: Long-term potentiation in the 3xTg model 

 

 

LTP was measured in our colony of 3xTg mice at ages from 2 to 17 months to 

observe if there were any alterations in this form of synaptic plasticity. To 
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summarise, in our colony at 2 and 6 months there are no differences in the 

enhancement of the fEPSP slope observed relative to the baseline following the 

theta burst stimulus compared to control mice. However, at 12 and 17 months 

there is a significant increase in the enhancement following theta burst which 

occurs during the initial peak phase at 12 months and the plateau phase 

(characteristic of LTP) at 17 months. However, it should be remembered that the 

overall magnitude of LTP still remains reduced when compared to control due to 

the smaller baseline fEPSP amplitude (see Section 3.3.2.2). However, these 

results show that despite the reduction in basal synaptic transmission, LTP can 

still be induced in the 3xTg mice and appears to show an age-dependent 

enhancement. There are several possible reasons for this finding which will be 

discussed in more detail below.  

A distinction should be made between enhancement of the peak phase following 

the theta burst protocol, observed in 12 month 3xTg, and enhancement of the 

later plateau phase observed in 17 month 3xTg. The peak phase incorporates a 

short-term process of synaptic facilitation known as post-tetanic potentiation 

(PTP). While LTP is considered to involve both pre- and post-synaptic 

mechanisms (see Chapter 1.5.3), PTP is regarded as a purely presynaptic 

phenomenon. Similar to PPF, it is dependent on intracellular Ca
2+ 

and involves 

enhanced neurotransmitter release, a consequence of an increase in the Ca
2+

 

sensitivity of vesicular fusion (Korogod et al., 2007). In these experiments there 

is an overlapping contribution of PTP and LTP and it is likely that in the 3xTg 

mice there are alterations in both processes. 



 

 

199 

As the increase in LTP occurs at older ages in the 3xTg mice it is conceivable 

that this change in synaptic plasticity is linked to the development of pathology 

and Aβ deposition. The enhanced susceptibility to excitotoxicity observed in 

these mice at older ages will result in many neurons showing dysfunction or even 

death. As a result, LTP may be induced only in a subset of neurons which remain 

healthy; it is possible that compensatory mechanisms are present which may 

influence plasticity in these remaining neurons. Even though a smaller fEPSP is 

generated the enhancement in the 3xTg mice following theta burst is greater than 

in control, but this may not be representative of the full neuronal population. The 

reported perturbations in Ca
2+

 homeostasis could also affect the magnitude of 

LTP, which is critically dependent on the intracellular Ca
2+

 concentration for its 

induction. Finally, the presence of the PS1 and APP transgenes can alter the 

magnitude of LTP obtained (see Section 3.3.2.4 below). 

Several groups have studied synaptic plasticity in the 3xTg mouse model. Oddo 

et al. (2003) reported a decrease in the magnitude of LTP at 6 months in the 

3xTg mouse when compared to control, but there are several differences in this 

study which should be taken into consideration. This group observed a marked 

increase in LTP in control mice between the ages of 1 month and 6 months, from 

around 140% to 190%, which served to enhance the reported deficit in the 3xTg 

mice. Although an age-dependent increase was observed in our colony of mice 

from 2 to 6 months this was not as marked; the magnitude of potentiation was 

157% at 2 months and 170% at 6 months. An important observation is the use by 

Oddo et al. of four bursts of high-frequency stimulation (HFS) repeated at 20 

second intervals for the induction of LTP. This is characterised as a very strong 

stimulation protocol in comparison to TBS, and it is known that the choice of 
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induction protocol recruits different biochemical pathways (Hernandez et al., 

2005). Another technical difference that can influence the interpretation of 

results is the use of an interface chamber by Oddo et al.  rather than a submersion 

recording chamber as used in my experiments. In other studies of 3xTg mice, 

Chakroborty et al. (2009) showed no changes in the magnitude of LTP induced 

in young 3xTg mice at 6-8 weeks. This finding would be expected if the 

perturbation of LTP is linked to the age-dependent development of pathological 

features. Another group to have studied synaptic plasticity in the 3xTg mouse 

reported that at 10 months the magnitude of LTP induced by TBS was similar to 

that obtained in control mice, which is in contrast to the original findings (Zhang 

et al., 2010b). From these studies it is evident that the measurement of LTP in the 

3xTg mouse has given inconsistent results and must be interpreted with care due 

to variations in technical protocol between individual groups.  

 

3.3.2.4: Effects of the individual transgenes on synaptic plasticity 

 

 

A number of studies have been carried out to investigate the effects of APP, PS1 

and tau transgene expression on synaptic plasticity. In the original paper which 

characterised the 3xTg model, Oddo et al. reported that LTP could be induced 

normally in both the single transgenic PS1M146V and the double transgenic 

PS1M146V, tauP301L mice at 2 and 6 months of age. Immediately following 

induction there was actually a significant increase in the magnitude of 

potentiation in the PS1 M146V mice at 6 months of age when compared to control. 

Similar effects of the PS1M146V mutation were observed in another study, but 

interestingly this change was accompanied by a decrease in the magnitude of the 

sustained phase of LTP, L-LTP, and both E-LTP and L-LTP reduced with 
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advancing age in older mice (Auffret et al., 2010). These findings suggest that 

there may be a dissociation between the effects of PS1 M146V on E-LTP and L-

LTP. As my studies of the 3xTg mice only examined E-LTP, it would be of 

interest to investigate whether there were differences in L-LTP in these mice. 

Studies using other PS1 transgenic mice suggest that familial AD mutations may 

have an overall effect of enhancing the magnitude of LTP. Both PS1∆E9 (exon 9 

deleted) and PS1A246E mice exhibit increased potentiation compared to control 

following LTP induction, an effect which has been attributed to an enhancement 

in postsynaptic intracellular Ca
2+

 following NMDA receptor activation (Parent et 

al., 1999, Zaman et al., 2000). A similar mechanism could be present in the 3xTg 

mice, which might result in the observed increase in LTP. If alterations in Ca
2+

 

signalling become more pronounced with age this could result in the increased 

potentiation observed in older mice relative to the baseline fEPSP. 

In contrast, there is evidence that familial APP mutations may reduce the 

magnitude of LTP, although there have been conflicting results between research 

groups, with some reporting no effect of APP mutation on synaptic plasticity 

(Fitzjohn et al., 2001). This inconsistency may be due to differences in 

experimental protocol (see Section 3.3.1) which can have a marked effect on the 

results obtained. In the commonly used Tg2576 model, which expresses the 

single APPSwe transgene, several groups have reported reduced hippocampal LTP. 

For example, in the CA1 region, LTP is normal until 8 months, but there is a 

decrease in the magnitude of LTP at 15 months with no reduction in basal fEPSP 

amplitude  (Chapman et al., 1999b). Similarly, reduced LTP has been reported in 

another region of the hippocampus, the DG, from the age of 4 months (Jacobsen 

et al., 2006). This suggests that the APPSwe transgene causes an age-dependent 
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reduction of synaptic plasticity in the hippocampus. However, the mechanism 

underlying this is not fully understood.  

Several studies have used the application of Aβ oligomer preparations to study 

the effects of acute exposure to Aβ on synaptic plasticity in hippocampal slices. 

This may mimic some of the effects of excessive Aβ generation associated with 

APP transgene expression. The treatment of isolated hippocampal slices with Aβ 

oligomers reduces the magnitude of LTP which can be obtained (Walsh et al., 

2002, Shankar et al., 2008) although this may also be dependent on the 

stimulation protocol used (Smith et al., 2009). This perturbation is thought to 

occur through an NMDA receptor-mediated pathway, with Aβ causing AMPA 

receptor endocytosis and leading to loss of dendritic spines (Hsieh et al., 2006). 

Another possibility is that Aβ oligomers increase susceptibility to excitotoxicity, 

and this is discussed in Section 3.3.2.7. 

The 3xTg mouse also carries the tauP301L transgene, but relatively little work has 

been carried out on the effects of tau mutations on synaptic plasticity. One study 

found that LTP was enhanced in 2 month tauP301L mice prior to the development 

of tau hyperphosphorylation (Boekhoorn et al., 2006). Another investigation 

reported a requirement for the tau protein in acute Aβ-induced impairment of 

LTP, although the mechanism underlying this interaction is not known (Shipton 

et al., 2011). This finding reveals that the presence of the tauP301L transgene may 

also affect synaptic plasticity. However, the similar results obtained in this thesis 

for the 3xTg and for the TASTPM mice that do not carry the tau transgene, 

suggest that tau may have little effect on synaptic function in these models. 
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In conclusion, there may be differential effects of the APP and PS1 transgenes on 

LTP. This complexity highlights the difficulties of using models such as the 

3xTg that contain multiple transgenes, which may have conflicting effects on 

synaptic function. Further work is required using standardised procedures 

between laboratories to help explain the discrepancies in the 3xTg model and 

other mouse models of AD. It is likely that alterations in synaptic plasticity occur 

through a number of different age-dependent and age-independent processes and 

further work would be required to separate the mechanisms involved. It would be 

interesting to use immunohistochemical approaches and neuronal imaging to 

study glutamate receptor localisation and other molecular alterations which occur 

in LTP and link this more closely to the development of pathological changes.  

 

 

Alterations in synaptic function in the 3xTg model: multiple hypotheses 

 

 

There are several factors which have been mentioned above that could result in 

alterations in synaptic function, and it is likely a combination of these which 

cause the electrophysiological changes in the 3xTg mice. These include 

alterations in Ca
2+

 regulation and homeostasis, neuronal network dysfunction and 

the progressive development of pathological features causing an increased 

susceptibility to excitotoxicity. The overall effects of these on synaptic function 

will be discussed in more detail below.  

 

3.3.2.5: Calcium regulation in the 3xTg model 

 

 

The regulation of neuronal Ca
2+ 

regulation is critical for all forms of plasticity 

from PPF to LTP, and the dynamics of Ca
2+ 

release influences the magnitude and 
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direction of synaptic plasticity (Cormier et al., 2001). Disruptions in Ca
2+ 

homeostasis have been suggested as a cause of alterations in synaptic function in 

the 3xTg model. From an early age, neurons from 3xTg mice show enhanced 

Ca
2+ 

-induced Ca
2+ 

release (CICR), a process whereby the influx of Ca
2+ 

into the 

neuron, primarily
 
through the NMDA receptor, results in activation of the 

ryanodine receptor (RyR) and the consequent release of further Ca
2+

 from the 

endoplasmic reticulum (ER) stores (Sandler and Barbara, 1999). Cortical neurons 

from 3xTg mice at ages from 6 weeks to 18 months display enhanced CICR in 

response to RyR activation (Stutzmann et al., 2006), as do hippocampal CA1 

neurons at 6-8 weeks, which is accompanied by an increase in expression of the 

RyR in the ER membrane (Chakroborty et al., 2009). Interestingly, these 

alterations in Ca
2+

 release appear to be solely due to the presence of the PS1M146V 

mutation, as similar changes are observed in single transgenic PS1M146V mice, but 

not in the double transgenic APPSwe, tauP301L mice (Stutzmann et al., 2006). 

Presenilins may function as leak channels to control steady state Ca
2+ 

levels in 

the ER, with impairment due to mutation resulting in a higher concentration of 

Ca
2+ 

in the ER and increased RyR expression (Zhang et al., 2010a). In addition, 

Ca
2+ 

responses in neuronal dendrites and spines are enhanced in response to 

NMDA receptor activation in the 3xTg mice and the TASTPM mice, both of 

which carry the PS1 M146V mutation (Goussakov et al., 2010). 

These results suggest that there may be age-independent, lifelong disruptions in 

Ca
2+ 

functioning in the 3xTg mice which affect aspects of synaptic plasticity. It 

has been reported that PPF and input-output function are similar to control in the 

3xTg mice under normal conditions, but are altered by the presence of the RyR 

antagonist dantrolene in 3xTg mice only (Chakroborty et al., 2009). These results 
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suggest that there may be compensatory mechanisms present in these mice to 

maintain neuronal homeostasis. However, it is possible that under conditions of 

neuronal stress both pre- and post-synaptic alterations in synaptic function could 

manifest themselves; these changes could contribute to the differences in input-

output function and LTP observed in the 3xTg mice. Further work would be 

required to investigate whether alterations in Ca
2+ 

function are a feature of our 

colony of 3xTg mice. Such studies could deploy techniques such as whole-cell 

voltage clamp or Ca
2+

 imaging with fluorescent dyes to observe Ca
2+

  transients 

in individual neurons.  

 

3.3.2.6: The network dysfunction hypothesis  

 

 

There is growing interest in the way that individual molecular and neuronal 

alterations may affect functioning at the network level. It has been suggested that 

an imbalance between excitatory and inhibitory transmission in the hippocampus 

results in alterations in synaptic function in mouse models of AD. A general 

increase in neuronal excitability, which manifests as an increased amplitude of 

evoked excitatory postsynaptic currents (EPSCs) and a decreased amplitude of 

evoked inhibitory postsynaptic currents (IPSCs), occurs in the CA1 region of the 

CRND8 mouse, which expresses both the APPSwe and APPInd (V717F) mutations 

(Jolas et al., 2002). This mouse shows a decrease in the maximum fEPSP 

amplitude and an increase in the magnitude of LTP, similar to my findings in the 

3xTg mouse. In the J20 mouse, which expresses the same mutations on a 

different background strain, GABAergic fibre sprouting in the dentate gyrus (DG) 

is observed and suggested to be a compensatory remodelling of the hippocampal 

circuits to protect against abberant excitatory network activity (Palop et al., 
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2007). These models suggest that widespread changes in inhibitory and 

excitatory activity may result in alterations of neuronal circuitry. 

In the 3xTg mouse model, studies in the entorhinal cortex (EC) have shown a 

higher frequency of spontaneous EPSCs in 6-8 week old mice, suggesting an 

increased activity of glutamatergic synapses. This perturbation does not appear to 

alter total synapse number as levels of the presynaptic protein synaptophysin 

remain unchanged (Arsenault et al., 2011). The EC, DG and CA1 regions are 

linked through a primarily unidirectional neuronal pathway, and Aβ pathology in 

the EC has been shown to affect functioning of CA1 neurons (Harris et al., 2010). 

In my study of 3xTg mice, alterations in the fEPSP amplitude in the CA1 region 

occured from the age of 12 months, but no increased frequency of epileptiform 

bursting was observed. This suggests that there are no major abnormalities in 

GABAergic functioning, although confirmation of this would require a more 

detailed study. It would be interesting to observe the frequency of spontaneous 

EPSCs and amplitude of evoked EPSCs/ IPSCs in the 3xTg mice with the use of 

whole-cell voltage clamp techniques. Interestingly, it has been suggested that the 

relative contribution of glutamatergic and GABAergic neurons may depend on 

the LTP induction protocol used; differences may occur between HFS and TBS 

(Jolas et al., 2002) and this should be taken into account when comparing 

experimental results from different laboratories. Overall, it is possible that 

alterations in the balance between excitatory and inhibitory transmission within 

the hippocampal network could be a mechanism involved in changes in synaptic 

plasticity in 3xTg mice. 
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3.3.2.7: Excitotoxicity and its mechanisms 

 

 

In both the 3xTg and the TASTPM mouse models (discussed in Section 3.3.3), 

there is a marked reduction in the magnitude of the fEPSP in the CA1 region 

with increasing age. However, incubation with 1mM kynurenic acid during 

slicing enhanced neuronal viability as shown by an increase in the fEPSP 

amplitude combined with a higher percentage of slices in which an fEPSP could 

be obtained. This suggests that a susceptibility to excitotoxicity may underlie 

some of the observed results in these mice, in particular the age-dependent 

reduction of fEPSP amplitude. This feature appears to be due to the presence of 

the APP or PS1 transgenes, as it is common to both strains of transgenic mice. 

Neuronal death and dysfunction due to glutamate excitotoxicity is a mechanism 

considered to be important in AD. This form of neurotoxicity involves the influx 

of Ca
2+ 

through the NMDA receptor and subsequent release of Ca
2+

 from internal 

stores, resulting in the activation of downstream signalling pathways (Dong et al., 

2009). Consequently, the NMDA receptor channel blocker memantine is now 

used therapeutically as a treatment for AD. The increased susceptibility to 

excitotoxicity in transgenic mice could be associated with a number of different 

biochemical and functional changes, which could be studied using several 

different techniques. 

It is most likely that this feature is due to dysfunction of the glutamatergic 

neurotransmitter system, although alterations in other neurotransmitters such as 

GABA could alter the inhibitory-excitatory balace within the hippocampus. The 

role of the NMDA receptor in this process could be confirmed by the use of 

selective antagonists, for example the use-dependent channel blocker MK-801. 
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Alterations could occur at any stage during glutamatergic synaptic transmission, 

for example in transmitter release, glutamate uptake and transport, or the 

intracellular Ca
+
 response to NMDA receptor activation.  

The release of glutamate in response to neuronal damage could be measured 

using electrochemical techniques, as it is possible that increased presynaptic 

vesicular release in response to hypoxic or mechanical insult could contribute to 

enhanced excitotoxic damage. Alternatively, glutamate uptake could be 

indirectly measured using techniques such as the measurement of synaptically 

activated glutamate transporter currents; astrocytes within the CA1 region are 

thought to take up the majority of glutamate released through a high level of 

expression of glutamate transporters (Diamond 2005). These cells rapidly 

decarboxylate and inactivate glutamate to form glutamine, which diffuses across 

the extracellular space and can enter presynaptic terminals.   It is possible that in 

transgenic mice there is an alteration in glutamate uptake by astrocytic cells and 

this could be measured using antagonists for the most abundant transporter 

proteins, excitatory amino-acid transporters 1 and 3 (EAAT1, EAAT3), such as 

the commonly used TBOA (Danbolt 2001) . Evidence suggests that in conditions 

of cellular stress such as ischemia, alterations in ionic balance such as an increase 

in extracellular K
+ 

 caused by disrupted metabolic function may result in the 

reversal of transporter uptake. This occurs because the movement of glutamate 

across the transporter is dependent on the electrochemical gradient of  cations 

such as K
+ 

 and Na
+ 

and could contribute to an increase in the synaptic glutamate 

concentration, which promotes excitotoxicity (Roettger and Lipton, 1996) . 
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There is evidence that both APP and PS1 can influence neuronal sensitivity to 

cellular stressors and may have their effects through alterations of neuronal Ca
2+ 

homeostasis. Aβ oligomers interact with the NMDA receptor in a binding 

complex and increase intraneuronal Ca
2+

, an effect blocked by the clinically used 

antagonist memantine (De Felice et al., 2007). In human cortical neurons, 

application of β-amyloid peptides enhances neurotoxicity mediated by the 

NMDA receptor and increases the Ca
2+ 

response to excitotoxic insult (Mattson et 

al., 1992). It is therefore possible that neuronal tissue containing elevated levels 

of Aβ peptide, as in the 3xTg and TASTPM mice, may be ‘primed’ to show an 

enhanced response to an external excitotoxic event.  In addition, single 

transgenic PS1M146V knock-in mice show enhanced kainic acid-induced 

neurodegeneration in vivo, with dissociated neurons showing a greater 

intracellular Ca
2+

 response to exogenous glutamate exposure, an enhancement of 

glutamate-induced oxidative stress, and mitochondrial dysfunction (Guo et al., 

1999). It is possible that in 3xTg and TASTPM mice the combination of the 

APPSwe and PS1 M146V mutations may result in an enhanced Ca
2+ 

response to 

glutamate release during excitotoxic insults such as brain slicing, which increases 

the level of neuronal degeneration observed in these mice. 

The increased susceptibility to excitotoxicity is age-dependent as there is a 

progressive reduction in the magnitude of the fEPSP with increasing age. It is 

known that Ca
2+

 regulation in hippocampal neurons alters with age as a result of 

a reduction in NMDA receptor expression combined with an increase in Ca
2+ 

channel expression (Kumar et al., 2009). It is possible that this feature of the 

ageing brain is exacerbated in the 3xTg and TASTPM mice due to the presence 

of pathological features such as Aβ deposition. Fitzjohn et al. (2001) have 
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reported that in aged APPSwe mice kynurenic acid is only partially successful in 

restoring the fEPSP to normal magnitude, suggesting that a point is reached 

when pathological features in these mice are sufficiently advanced to affect basal 

synaptic transmission through a different mechanism. 

Pre-treatment of 3xTg hippocampal slices with kynurenic acid increased the 

fEPSP slope, measured by the input-output curve, showing that the same current 

evokes a larger synaptic response and therefore that the viability of the slice has 

improved. This occurs in 3xTg mice at all stimulus intensities and in control 

mice at lower stimulation intensities, showing that kynurenic acid has an effect, 

although more modest, in normal brain slices. These observations suggest that 

some neuronal damage through excitotoxicity is an inevitable part of the slice 

preparation process. In addition in 3xTg mice there is a decrease in PPF and a 

reduced magnitude of LTP with kynurenic acid treatment. These findings suggest 

that the prevention of excitotoxicity may result in alterations in pre- and 

postsynaptic function which may alter electrophysiological measurements. 

Previously published work has shown similar conclusions in two other mouse 

models of AD. Age-related deficits are apparent in basal synaptic transmission in 

12 month old single-transgenic APPSwe transgenic mice and in 14 month old 

APPSwe x PS1A246E mice (Fitzjohn et al., 2001, Fitzjohn et al., 2010). However, 

these deficits can be abolished by incubation of the hippocampal slices in aCSF 

containing 1mM of kynurenic acid during preparation, suggesting that these mice 

also have an increased susceptibility to excitotoxic neuronal damage. The authors 

suggest this may be a result of the background strain, but the presence of similar 

findings in our colony of TASTPM mice argue against this as the C57BL/6 
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background is relatively resistant to excitotoxicity (Schauwecker and Steward, 

1997). 

Several methods are used by research groups to improve slice viability and 

reduce glutamate release. Most commonly used are slicing in ice-cold aCSF, the 

use of a glutamate receptor antagonist such as kynurenic acid, or slicing in aCSF 

with a different ionic composition from the recording solution. The use of each 

of these processes may have a different effect on slice recordings. In 

hippocampal extracellular recordings the use of the fEPSP as a measure of slice 

‘health’ may result in recordings being made from viable but damaged neurons, 

or from a subset of CA1 neurons which are for some reason less susceptible to 

injury. This makes comparison between groups challenging when different slice 

preparation methods are used. For example, Oddo et al. (2003) used ice-cold 

aCSF in their 3xTg hippocampal preparation which acts to limit glutamate 

release but has been also shown to cause metabolic alterations within the slice 

(Watson et al., 1997). In my studies, none of these measures were routinely used 

due to the ease at which an fEPSP could be obtained in non-transgenic mice. 

However, based on the findings in this thesis I would take measures to reduce 

excitotoxicity during slice preparation in any future experiments carried out. 

In conclusion, these results have shown that an altered susceptibility to 

excitotoxicity following neuronal stressors may be a feature of mouse models of 

AD possessing the APPSwe or PS1 transgenes. It is likely that this involves 

alterations in glutamatergic transmission, such as neurotransmitter release, 

receptor or transporter function, but the mechanisms underlying this would 

require further study. It is not known whether this phenomenon is observed in 
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other APP transgenic mice and it is likely that this will be affected by the 

background strain of the mouse and the variables inherent in each model. It also 

highlights that differences in experimental procedures between research groups 

which influence excitotoxic mechanisms could explain some of the disparate 

findings in measurements of synaptic function in mouse models of AD. 

 

3.3.2.8: Summary of electrophysiological findings in 3xTg mice 

 

 

In summary, the 3xTg mice show several electrophysiological changes including 

an age-dependent decrease in the fEPSP amplitude and an increase in the 

magnitude of LTP when normalised from 12 months onwards. This suggests that 

the development of pathological changes is linked to alterations in synaptic 

function in these mice. In particular, these mice may show a particular 

susceptibility to excitotoxicity under conditions of enhanced cellular stress. 

There may also be a contribution of other age-dependent and -independent 

mechanisms, which have been previously explored by other groups, such as 

alterations in Ca
2+

 functioning, although further experiments would be required 

to ascertain if this was a significant factor in our colony of 3xTg mice. 

 The deficits originally reported by other groups initially occurring at 6 months 

of age were not observed in our 3xTg mice. Firstly, differences in experimental 

protocol may also affect measurements of synaptic function and this should be 

taken into consideration when comparing results. However, the lack of observed 

changes at this age, when Aβ deposition should be established, shows that the 

development of pathological features occurs later in this colony than previously 

reported, and this is supported by the biochemical data presented in Chapter 4. 
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The presence of such differences between individual colonies of 3xTg mice 

should be taken into account for future studies of this model. 

 

3.3.3: TASTPM mouse 

 

 

Studies of synaptic function and plasticity were carried out in TASTPM mice at 

2 months and 6 months of age. The aim was to compare results obtained in the 

3xTg mice with the TASTPM mice to attempt to elucidate the effects of the 

individual transgenes, in particular the tau transgene, and to see if similar 

changes in synaptic function were observed in the two models.  

 

 

3.3.3.1: Synaptic function in 2 month TASTPM mice 

 

 

PPF, input-output function and LTP were measured in 2 month old TASTPM 

mice. In these mice, cerebral Aβ accumulation occurs from the age of 3 months 

(Howlett et al., 2004). As Aβ pathology initiates in the cortex and then 

progresses to the hippocampus, it is unlikely that there is any Aβ accumulation in 

the hippocampus by 2 months and as a result the presence of electrophysiological 

changes was not expected. 

In the TASTPM mice at 2 months old an fEPSP is readily obtainable and this is 

of similar magnitude to the control mice, resulting in a normal input-output curve. 

This finding shows that at 2 months there are no differences in basal synaptic 

transmission. There is a reduction in the magnitude of PPF, which is only 

significant at an interstimulus interval of 50ms. The value obtained at this 

interval is similar to that obtained in the 3xTg mice, and due to the lack of other 
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alterations in TASTPM mice it is likely that the effect is due to an increase in the 

magnitude of PPF in control mice, the mechanism of which is unknown. 

Importantly, the control mice used are of mixed C57BL/6 x 129/Sv background, 

similar to the 3xTg mice, while the TASTPM mice are on a pure C57BL/6 

background. Strain-dependent differences have been observed in measures of 

synaptic function (Nguyen 2006) and so this could account for the minor 

difference observed in PPF between the control and TASTPM. Preliminary 

experiments (data not shown) using C57/BL6 mice have shown a similar level of 

PPF to that observed in TASTPM mice, suggesting the difference may be due to 

background strain. 

There is no difference in the magnitude of LTP obtained in 2 month TASTPM 

mice and control mice, showing that LTP can be induced and maintained 

normally in TASTPM mice of this age. Overall, these results show that prior to 

the development of Aβ deposition there are no functional changes observed due 

to the presence of the transgenes. 

 

3.3.3.2: Synaptic function in 6 month TASTPM mice 

 

 

By 6 months, the TASTPM mice show plaque deposition in the cortex and 

marked APP expression in the hippocampus, in particular in the CA1 and CA3 

regions (Howlett et al., 2004). At this age, marked abnormalities in synaptic 

function were observed in hippocampal slices. It proved difficult in the majority 

of slices to obtain an fEPSP of sufficient magnitude for meaningful experiments 

to be performed. This suggests the presence of significant neuronal dysfunction 

or toxicity in hippocampal neurons in the TASTPM mice at the age of 6 months. 
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A similar reduction in basal synaptic transmission has been observed previously 

in TASTPM mice at 8 months (Spencer et al., 2004). 

As the TASTPM mouse carries the APPSwe and PS1M146V transgenes similar to 

the 3xTg mouse, it is likely that similar mechanisms account for the alterations in 

synaptic function observed. In particular, treatment with 1mM kynurenic acid 

markedly increased the magnitude of the fEPSP to the levels obtained in control 

mice. This observation suggests that an increased susceptibility to excitotoxicity 

is also a feature of the TASTPM mouse model (see Section 3.3.2.7). This shows 

that the susceptibility is due to the presence of the APPSwe or the PS1M146V 

mutations, with the major contribution likely to be the APPSwe mutation as this 

feature also occurs in single APP transgenic mice (Fitzjohn et al., 2001). 

Considering the data obtained from the TASTPM and the 3xTg mice together, it 

is likely that the presence of the tauP301L transgene has little effect on the changes 

to the fEPSP and LTP. It also shows that, as the TASTPM mouse is generated on 

a different background strain than the 3xTg mouse, the susceptibility appears to 

be independent of the strain used to generate the model.  

Synaptic plasticity was studied in slices from 6 month old TASTPM mice either 

in normal aCSF or aCSF additionally containing kynurenic acid. In normal aCSF, 

LTP was only induced in a small subset of the experiments due to the marked 

reduction of fEPSP amplitude in the slices. Therefore, it is probable that the 

increased magnitude of LTP observed in the TASTPM mice is due to the low 

sample size used, reflecting a neuronal population which for some reason was 

less susceptible to the effects of excitotoxicity. When LTP was induced in slices 

incubated with kynurenic acid, the magnitude was similar to that obtained in 
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control slices. This finding shows that despite the presence of the APP transgene, 

LTP can be expressed at normal levels in TASTPM mice. As this model was 

only studied up to the age of 6 months, it is not known whether age-dependent 

alteration in synaptic plasticity would become evident, particularly due to the 

presence of plaque deposition at older ages.   

In conclusion, the TASTPM mice exhibit electrophysiological changes which are 

similar to those observed in the 3xTg mice, suggesting that a susceptibility to 

excitotoxicity may be a feature of multiple mouse models of AD. However, 

direct comparisons between the two models are made difficult due to the marked 

differences in the time course of the development of pathology in the 3xTg and 

TASTPM mice.  In the TASTPM mice this occurs much earlier in the lifespan, 

possibly due to the more rapid onset of Aβ deposition in this mouse model. Due 

to this feature, this model may be a useful tool for electrophysiology studies. 

3.3.3: Summary 

 

 

Changes in synaptic function are a feature of a number of mouse models of AD 

including the 3xTg and TASTPM mice. In particular, an age-dependent reduction 

in the amplitude of the fEPSP is observed in both models. This is accompanied 

by a relative increase in the magnitude of LTP in aged 3xTg mice. However, the 

mechanism of these changes are not fully understood and are complicated by the 

difficulties in the use of the hippocampal slice model, where alterations in 

experimental protocol can cause marked differences in the results obtained. In 

addition, the slow development of pathological features in our colony of 3xTg 

mice, as shown by the biochemical measurements in Chapter 4, made studies 

difficult and complicates comparisons with the work of other groups. These 
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findings show that it is important to characterise the development of biochemical 

changes in individual colonies of the 3xTg mice in order to link this with other 

findings, such as studies of synaptic function. Further work, which could include 

more detailed electrophysiological studies (eg single cell voltage-clamping), 

immunohistochemistry, imaging, and in vivo studies, is required to elucidate the 

mechanisms which underlie changes in synaptic functioning in mouse models of 

AD. In particular, studies of our colonies of 3xTg and TASTPM mice have 

shown that an increased susceptibility to excitotoxicity may be a characteristic of 

multiple mouse models. This observation could be used to further study the 

mechanisms which underlie the excitotoxic neuronal death which is present in 

AD and its relationship to cellular stressors.  However, the use of multiple 

models, combined with a standardised experimental approach, is required to give 

a full picture of synaptic function in AD. 
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Chapter 4 

 

Biochemistry 
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4.1: Introduction  

 

 

One of the aims of this thesis is to observe at which stage of phenotype 

development in the 3xTg and TASTPM models the molecular changes occur 

relative to the electrophysiological deficits. It is hypothesised that events such as 

kinase activation and hyperphosphorylation of cellular proteins may occur in 

parallel to functional alterations in synaptic activity and plasticity; any 

biochemical changes which are present at this time point may therefore be a 

contributory factor to synaptic dysfunction. The links between these different 

aspects are summarised in Fig. 4.1. 

In this chapter, the levels and phosphorylation of a number of proteins are 

measured by Western blotting in both the 3xTg and TASTPM models at several 

ages and in different regions of the brain. A homogenised lysate of frozen brain 

tissue (cortical samples for all experiments except those described in section 

4.2.3 and 4.2.7) was used; sample preparation is discussed in section 2.2.2. 

To establish that transgene expression was present, overexpression of APP was 

confirmed using the antibody 6E10, raised against the first 16 residues of the 

amyloid β protein. 6E10 only recognises human protein, which contains three 

amino acid differences within the 6E10 recognition region, compared to the 

mouse orthologue (DeStrooper et al., 1995). Although 6E10 is directed against 

Aβ it also recognises this sequence within full length APP, and so can be used to 

measure the expression of human APP which has a high molecular weight on a 

Western blot. 
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The 3xTg mouse also has a mutated tau transgene, so the use of the total tau 

antibody Tau5, was used to verify this. Measurement of total tau protein 

expression also allowed analysis of the stoichiometry of phosphorylation of 

specific residues on the protein to be carried out. The antibody AT8, which 

recognises phosphorylated serine 202 and threonine 205, and antibodies for 

serine 396 and 404 were chosen as these are sites which are known to be 

hyperphosphorylated in Alzheimer’s disease and associated with the kinase 

GSK3 (Mandelkow et al., 1992).  

CRMP2 is a protein which regulates microtubule assembly and has been 

previously studied in our lab. Importantly,  hyperphosphorylation of CRMP2 has 

been shown to be an early marker of AD progression in both human and 

transgenic mouse tissue (Cole et al., 2007b). An antibody to total CRMP2 was 

used, along with two different phospho-specific antibodies, for CRMP2 at the 

509/514 and 522 sites. These sites are key residues for phosphorylation of the 

protein, with the 509/514 sites phosphorylated by the enzyme GSK3. Prior to 

GSK3 phosphorylation of the 509/514 sites, the 522 site must be phosphorylated 

by the priming kinase Cdk5.  

Cdk5 is regulated by an activator protein known as p35, and cleavage of p35 by 

calpain results in the generation of a fragment known as p25. p25 binding results 

in altered cellular localisation and activation of Cdk5. Increased p25 levels or 

altered Cdk5 activity have been reported in some studies of AD brain and may 

contribute to disease progression (Patrick et al., 1999). A p35 antibody, which 

also detects p25, was used to examine any possible changes in these proteins. 
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Finally, an antibody to the synaptic vesicle protein synaptophysin was also used 

as synaptic loss is reported to be present in mouse models of AD. As synaptic 

dysfunction was observed in the 3xTg and TASTPM models (see Chapter 3) I 

wanted to observe if there were global changes in the expression of synaptic 

proteins. 

In summary, in this chapter I have used Western blotting to examine a range of 

proteins which are associated with AD in the 3xTg and TASTPM mouse models.  
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 APP transgene  
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Figure 4.1: Synaptic and biochemical alterations in mouse models of AD. In mouse models expressing the APP transgene the excessive 

generation of Aβ results in direct effects on synaptic function and alterations in synaptic plasticity. Additionally, hyperphosphorylation of 

cellular proteins such as CRMP2 and tau occur through the activity of cellular protein kinases; kinases such as GSK3 may themselves have a 

influence on synaptic function and plasticity. These processes occur at an early stage of pathological development but the exact time course 

of progression is not known. It is hypothesised that if molecular changes such as protein phosphorylation occur prior to or concurrently with 

observed alterations in synaptic transmission that they may have a role in the development of synaptic dysfunction.  
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4.2: Results 

4.2.1: Age dependent effects on cortical expression of AD-related 

proteins in 3xTg mice 

 

 

Western blotting was carried out on cortical lysates from mice of different ages 

to chart any differences in pathological features which might be linked to the 

electrophysiological findings. 3xTg mice of 2 months of age, before the 

appearance of any deficits, were compared to 12 month old mice, an age when 

the changes in synaptic function were first noted. At 2 months of age there is no 

evidence reported of Aβ or tau deposition or any cognitive deficits in this model 

(Billings et al., 2005). In addition, only very minor differences are observed in 

specific aspects of electrophysiology at this age, including changes in PPF and 

non-normalised LTP, suggesting the mice may show some molecular 

abnormalities despite undetectable pathology at 2 months. At 12 months old the 

electrophysiological deficits are more pronounced with a reduction in fEPSP 

amplitude and alterations in LTP; these coincide with detection of amyloid 

plaques and hyperphosphorylated tau (Oddo et al., 2003). It was therefore 

hypothesised that biochemical changes responsible for the major 

electrophysiological deficits would become apparent between the ages of 2 and 

12 months. In these experiments, male and female mice were analysed separately 

to see if there were gender-specific differences in the expression or modification 

of AD related proteins during ageing. 
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4.2.1.1: APP 

 

 

The presence of the APPSwe transgene in the 3xTg mice was confirmed by 

genotyping (carried out by Linda Gallacher). As expected, there is a significant 

difference (p < 0.05, two-way ANOVA) in the levels of  human APP between 

the 3xTg and control mice at both 2 and 12 month of age in both male (Fig. 

4.2A) and female (Fig. 4.3A) mice with expression of this protein absent in 

control mice. There is a trend for increased hAPP expression as the mice age, in 

both male and female 3xTg mice (Fig. 4.2A - males, 4.3A - females). This 

confirms that the transgene is present and functional (Fig. 4.2A - males, 4.3A - 

females).  

 

4.2.1.2: CRMP2 (total and phosphorylated) 

 

 

There is no difference in the expression of total CRMP2 between 3xTg and 

control (p > 0.05, two-way ANOVA) at 2 or 12 months (Fig. 4.2B - males, Fig. 

4.3B - females), and in contrast to previous findings in this model (Cole et al., 

2007b) the CRMP2 protein from 3xTg cortex did not exhibit increased 

phosphorylation at either the 509/514 (Fig. 4.2C - GSK3 sites) or 522 (Fig. 4.2D 

- Cdk5 sites) residues in males at both ages examined (p > 0.05, two-way 

ANOVA). Identical findings were obtained from cortex of the female 3xTg mice 

(Fig. 4.3C and D). 

 

4.2.1.3: Tau (total and phosphorylated) 

 

 

The presence of the tauP301L transgene in the 3xTg mice was confirmed by 

genotyping (carried out by Linda Gallacher). There is a significant increase (p < 
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0.05, two-way ANOVA) in the levels of total tau in the male 3xTg mice 

compared to the control, although in contrast to APP there is no significant 

difference in expression of the transgenic tau between 2 month and 12 month 

3xTg (p > 0.05, two-way ANOVA). However this may be related to the small 

sample set as the average expression was greater in 12 month old 3xTg than 2 

month old 3xTg, yet endogenous tau expression in the control male mice showed 

a trend for a decrease with age (Fig. 4.4A). There is also a strong trend for 

increased total tau in the female 3xTg compared to control at both ages, although 

this does not reach significance (p = 0.067) (Fig. 4.5A). In contrast to the male 

mice there is no difference in tau expression (p > 0.05, two-way ANOVA) 

between 2 or 12 month old animals in either genotype (Fig. 4.5A). 

There is no increase in phosphorylation of tau (p > 0.05, two-way ANOVA) at 

the AD related AT8 or 404 epitopes in the male 3xTg compared to controls at 

either age (Fig. 4.4B and C). In fact, there seems to be a decreased level of tau 

396 phosphorylation in the 12 month male 3xTg compared to the control 

although this does not reach significance (Fig. 4.4D). Perhaps surprisingly 

phosphorylation at the AT8 epitope in female 12 month old 3xTg mice is 

reduced (p < 0.05, two-way ANOVA) compared to controls (Fig. 4.5B), and this 

seems to be related to an increase in AT8 phosphorylation in the older control 

mice that is not recapitulated in the older 3xTg female mice (Fig. 4.5B). As in the 

male mice, there are no differences observed in 404 phosphorylation (p > 0.05, 

two-way ANOVA) across all 4 groups (Fig. 4.5C); there is a slightly reduced 

level of tau 396 phosphorylation in the female 3xTg compared to control in both 

2 and 12 month old mice (Fig. 4.5D), which just fails to reach significance in the 

12 month mice (p = 0.054). This suggests that although the levels of total tau are 
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increased this is not matched by an increase in phosphorylation at the sites 

investigated.  

 

 

4.2.1.4: Other proteins 

 

 

There are no clear differences (p > 0.05, two-way ANOVA) in the levels of 

synaptophysin or the Cdk5 co-factors p35 or p25 in male (Fig. 4.6) or female 

(Fig. 4.7) 3xTg compared to control mice at the ages measured, and the 

expression of these proteins does not alter with age or gender in either genotype.  

 

4.2.1.5: Summary 

 

 

Although the expression of the APP and tau transgenes is confirmed these results 

suggest that some of the processes associated with the development of pathology, 

such as the hyperphosphorylation of tau originally observed by Oddo et al. and  

the hyperphosphorylation of CRMP2 which was observed previously in our lab 

from tissue from a different colony (Cole et al., 2007b) are developing more 

slowly in our colony of 3xTg mice. There appears to be higher tau expression in 

female 3xTg mice at 12 months than in control animals or in male 3xTg mice. 

However the level of phosphorylation of some key residues on tau in the female 

3xTg actually appears to decrease compared with control animals. No changes in 

expression or modification of APP, tau, CRMP2, synaptophysin, or p35 in 3xTg 

cortex were observed that could explain the reported electrophysiological or 

behavioural abnormalities in these animals. 
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Figure 4.2: APP, total and phosphorylated CRMP2 in 2 and 12 month 

male 3xTg and control mice. 10µg of cortical lysate (n = 3 in each group) was 

used in SDS-PAGE, transferred to a nitrocellulose membrane and probed with 

the following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 

509/514 (C), CRMP2 phospho 522 (D). Representative blots are displayed 

along with the graphs showing densitometry calculations. APP and total 

CRMP2 are normalised to actin while phosphorylated CRMP2 is normalised to 

total CRMP2 protein. � = p < 0.05, two-way ANOVA. 
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Figure 4.3: APP, total and phosphorylated CRMP2 in 2 and 12 month  
female 3xTg and control mice. 10µg of cortical lysate (n = 3 in each group) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 

509/514 (C), CRMP2 phospho 522 (D). Representative blots are displayed 

along with the graphs showing densitometry calculations. APP and total 

CRMP2 are normalised to actin while phosphorylated CRMP2 is normalised 

to total CRMP2 protein. � = p < 0.05, two-way ANOVA. 
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Figure 4.4: Total and phosphorylated tau in 2 and 12 month male 3xTg 

and control mice. 10µg of cortical lysate (n = 3 in each group) was used in 

SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), Tau 

phospho 404 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. Total tau is normalised to actin while 

phosphorylated tau is normalised to total tau. � = p < 0.05, two-way 

ANOVA. 
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Figure 4.5: Total and phosphorylated tau in 2 and 12 month female 3xTg 

and control mice. 10µg of cortical lysate (n = 3 in each group) was used in 

SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), Tau 

phospho 404 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. Total tau is normalised to actin while 

phosphorylated tau is normalised to total tau.  � = p < 0.05, two-way 

ANOVA. 
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Figure 4.6: Synaptophysin, p35 and p25 in 2 and 12 month male 3xTg and 

control mice. 10µg of cortical lysate (n = 3 in each group) was used in SDS-

PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), 

and actin. Representative blots are displayed along with the graphs showing 

densitometry calculations. Synaptophysin, p35 and p25 are normalised to 

actin. 
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Figure 4.7: Synaptophysin, p35 and p25 in 2 and 12 month female 3xTg 

and control mice.  10µg of cortical lysate (n = 3 in each group) was used in 

SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), 

and actin. Representative blots are displayed along with the graphs showing 

densitometry calculations. Synaptophysin, p35 and p25 are normalised to actin. 
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4.2.2: Analysis of cortical expression of AD-related proteins in 

aged 3xTg mice 

 

 

Western blotting was carried out on mice of 17 months of age, when the 

pathology was expected to be well developed with amyloid plaques and 

neurofibrillary tangles apparent. It was hoped to find biochemical differences 

that might correlate with the electrophysiological alterations that occur at this age, 

which include a marked reduction in fEPSP amplitude and changes in LTP 

expression. Due to the late occurrence of electrophysiological deficits in our 

colony of 3xTg mice, it seemed important to characterise the development of 

biochemical changes as the mice aged to see if this too differed from that 

previously reported. In contrast to the original report of this model studies by 

Mastrangelo et al. (2008) and Hirata-Fukae et al. (2008) suggested that plaque 

pathology may not be apparent until 14 or 15 months of age, and it is known that 

tangle pathology occurs late in the lifespan at around 12-18 months. 

The experiments at 17 months were carried out in male mice only due to 

availability and the potential for gender-dependent differences.  
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4.2.2.1: APP 

 

 

As expected there is a significant difference in APP expression in 17 month old 

3xTg mice compared to control (p < 0.05, unpaired t-test), with no expression 

detected in control mice (Fig. 4.8A) which confirms that the transgene is present 

in these mice.  

 

 

4.2.2.2: CRMP2 (total and phosphorylated) 

 

 

There is no difference (p > 0.05, unpaired t-test) in the levels of total CRMP2 

between 17 month old 3xTg and control mice (Fig. 4.8B). However, there is a 

significant increase in phosphorylation (p < 0.05, unpaired t-test) at the 509/514 

residues (Fig. 4.8C – GSK3 sites). This was previously observed in our lab in 6 

month old 3xTg mice Cole et al (2007), so this biochemical change is occurring 

at a much later stage of development in the 3xTg colony than that observed 

previously. There is no difference (p > 0.05, unpaired t-test) in phosphorylation 

at the 522 residues between the 3xTg and controls (Fig. 4.8D – Cdk5 sites), in 

contrast to previous work in the model. 

 

 

4.2.2.3: Tau (total and phosphorylated) 

 

 

There is a significant increase (p < 0.05, unpaired t-test) in the expression of tau 

in 3xTg mice at 17 months compared to control (Fig. 4.9A). There is no increase 

(p > 0.05, unpaired t-test) in phosphorylation at the AT8 (Fig. 4.9B) or 396 (Fig. 

4.9C) epitopes, although this may be due to the small sample set as there is a 
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trend for increased phosphorylation, particularly at the 396 and 404 epitopes 

(similar to data from 12 month old mice, see section 4.2.1.3). This very nearly 

reaches significance at the 404 epitope (p = 0.054, independent t-test) (Fig. 

4.9D).  

 

4.2.2.4: Other proteins 

 

 

There is no difference (p > 0.05, unpaired t-test) in the levels of synaptophysin or 

p35/p25 Cdk5 co-factors in 3xTg mice compared to control mice at 17 months 

(Fig. 4.10). 

 

4.2.2.5: Summary 

 

 

Although APP and tau are overexpressed, the only other molecular changes 

detected are an increase in phosphorylated CRMP2 at the 509/514 epitope, and a 

slight increase in tau phosphorylation. This suggests that the marked 

hyperphosphorylation of cellular proteins expected is not occurring at this age in 

our colony of 3xTg mice. As tau hyperphosphorylation occurs prior to tangle 

formation this suggests this feature has not developed in these mice, although 

confirmation of this would require further studies such as immunohistochemical 

analysis. 
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Figure 4.8: APP, total and phosphorylated CRMP2 in 17 month 3xTg and 

control mice. 10µg of cortical lysate (n = 4 in each group) was used in SDS-

PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 509/514 

(C), CRMP2 phospho 522 (D). Representative blots are displayed along with 

the graphs showing densitometry calculations. APP and total CRMP2 are 

normalised to actin while phosphorylated CRMP2 is normalised to total 

CRMP2 protein. � = p < 0.05, unpaired t-test. 
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Figure 4.9: Total and phosphorylated tau in 17 month 3xTg and control 

mice. 10µg of cortical lysate (n = 4 in each group) was used in SDS-PAGE, 

transferred to a nitrocellulose membrane and probed with the following 

antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), Tau phospho 404 

(D). Representative blots are displayed along with the graphs showing 

densitometry calculations. Total tau is normalised to actin while 

phosphorylated tau is normalised to total tau. � = p < 0.05, unpaired t-test. 
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Figure 4.10: Synaptophysin, p35 and p25 in 17 month 3xTg and control 

mice.  10µg of cortical lysate (n = 4 in each group) was used in SDS-PAGE, 

transferred to a nitrocellulose membrane and probed with the following 

antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), and actin. 

Representative blots are displayed along with the graphs showing densitometry 

calculations. Synaptophysin, p35 and p25 are normalised to actin. 
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4.2.3: AD related protein expression and phosphorylation in 

different brain regions in 17 month mice 

 

 

It is known that different areas of the brain are more susceptible to the 

development of pathology in AD than others. The entorhinal cortex and 

hippocampus seem particularly vulnerable to tau pathology, as it is there that 

neurofibrillary tangle formation initiates. Later affected are areas of the cortex 

such as the frontal and temporal regions. However, some areas of the brain such 

as the somatosensory cortex and the cerebellum are relatively spared from the 

pathological features. Little is known about the mechanisms that control the 

susceptibility of particular subsets of neurons. 

A similar progression from one brain region to another occurs in the 3xTg mouse 

model. Tau pathology is first apparent in the hippocampus, in particular the 

neurons of the CA1 region, and spreads to involve the cortex (Oddo et al., 2003, 

Oddo et al., 2007). The Aβ pathology initiates in the cortex, in particular the 

frontal regions, before spreading several months later to the hippocampus in a 

progression that appears to be a reversal of the pattern of tau deposition. 

For this reason it was decided to study three brain regions in the 3xTg mouse: the 

hippocampus, the region used for electrophysiological experiments, the cortex, 

which was used for the majority of biochemical analysis, and the cerebellum, 

which should be relatively free of pathological features. This was carried out in 

17 month old male mice using the same cortical samples as in the previous 

experiments (section 4.2.2). The samples consisted of cortex from one 

hemisphere which was mainly the frontal/temporal regions, the hippocampal 

formation from the same hemisphere, and the whole cerebellum. If a difference 
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between brain regions was observed then the experiment was repeated in control 

mice to determine if this was a region-specific effect observed in the normal 

mouse brain. 

 

4.2.3.1: APP 

 

 

There is a significant difference in APP expression between the cortex and the 

cerebellum, and the hippocampus and cerebellum, with APP levels being lowest 

in the cerebellum (p < 0.05, one-way ANOVA) (Fig. 4.11A), suggesting that the 

transcription of the APPSwe transgene is likely reduced in this region or the 

stability of APP is reduced in the cerebellum. There is no difference (p > 0.05, 

one-way ANOVA) between APP expression in the hippocampus and cortex (Fig. 

4.11A).  

 

4.2.3.2: CRMP2 (total and phosphorylated) 

 

 

There is no difference (p > 0.05, one-way ANOVA)  in the level of total CRMP2 

between the cortex, hippocampus and cerebellum (Fig. 4.11B). There is a 

significant difference (p < 0.05, one-way ANOVA) in the level of 

phosphorylated CRMP2 at the 509/514 residues between the hippocampus and 

the cerebellum but no difference (p > 0.05, one-way ANOVA) between 

hippocampus and cortex. The cortical phosphorylation of CRMP2 falls between 

that of cerebellum and hippocampus but the sample number was too small to 

provide statistical difference between measures in the cortex and other tissues 

(Fig. 4.11C – GSK3 sites). There is also no difference (p > 0.05, one-way 

ANOVA)  in the level of phosphorylated CRMP2 at the 522 residue (Fig. 4.11D 
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– Cdk5 sites). However phosphorylation of CRMP2 at both residues shows the 

same pattern of distribution in the brain regions measured, with levels lowest in 

the hippocampus  and highest in cerebellum (Fig. 4.11B - D). 

 

4.2.3.3: Tau (total and phosphorylated) in 3xTg mice 

 

 

There is no difference (p > 0.05, one-way ANOVA) in the levels of total tau 

between the hippocampus, cortex and cerebellum (Fig. 4.12A). However, there is 

significantly higher phosphorylation of tau at the AT8 epitope (Fig. 4.12B) and at 

the 396 epitope (Fig. 4.12C) in the cerebellum compared to the other brain 

regions (hippocampus and cortex) (p < 0.05, one-way ANOVA). In contrast there 

is significantly reduced phosphorylation of tau at 404 in the cerebellum 

compared to hippocampus (p < 0.05, one-way ANOVA) but no difference 

between hippocampus and cortex, or cerebellum and cortex (Fig. 4.12D). 

As the region-specific phosphorylation of tau appeared markedly different in the 

cerebellum, control mouse samples were probed with the Tau5, AT8, 396 and 

404 antibodies to determine if this was a hallmark of the disease process or 

normal regulation of tau in mice. 

 

4.2.3.4: Tau (total and phosphorylated) in control mice 

 

 

There is no difference (p > 0.05, one-way ANOVA)  in levels of total tau 

between 17 month old control hippocampus, cortex and cerebellum (Fig. 4.13A). 

However, there is a significant increase (p < 0.05, one-way ANOVA) in the 

levels of tau phosphorylation at the AT8 epitope (Fig. 4.13B) and the 396 epitope 

(Fig. 4.13C) between the cerebellum and the other brain regions. There is also a 
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significant reduction (p < 0.05, one-way ANOVA) in tau 404 phosphorylation in 

the cerebellum compared to cortex (Fig. 4.13D) but no difference (p > 0.05, one-

way ANOVA) between hippocampus and cortex, or hippocampus and 

cerebellum. This is very similar to the observations in the 3xTg mice and 

suggests that there are region-specific differences in the phosphorylation of tau in 

normal mice, a pattern which is not altered in this AD model. 

 

4.2.3.5: Other proteins 

 

 

There is a trend for higher levels of synaptophysin in the cortex which nearly 

reaches significance (p = 0.054, compared with cerebellum, p = 0.059, compared 

with hippocampus, one-way ANOVA) (Fig. 4.14A).  

There is a significant difference (p < 0.05, one-way ANOVA) between the levels 

of p35 in the hippocampus and the other brain regions (cortex and cerebellum), 

with p35 lower in the hippocampus (Fig. 4.14B). There is also a significant 

difference (p < 0.05, one-way ANOVA) between the levels of p25 in the cortex 

compared with the other brain regions (Fig. 4.14C), with levels higher in the 

cortex and at a similar level in hippocampus and cerebellum.  

 

4.2.3.6: Summary 

 

 

These results show that the most marked differences in protein levels occur in the 

cerebellum, with many of the proteins in the cortex and hippocampus expressed 

and regulated at similar levels. Therefore the biochemical analysis carried out in 

the cortex should be a reasonable surrogate for the biochemical status of the 

hippocampal slices from these mice used in the electrophysiology studies. 
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Figure 4.11: APP, total and phosphorylated CRMP2 in 17 month 3xTg 

hippocampus, cortex and cerebellum. 10µg of hippocampal, cortical and 

cerebellar lysate from 17 month old 3xTg male mice (n = 4 of each region) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 

509/514 (C), CRMP2 phospho 522 (D). Representative blots are displayed 

along with the graphs showing densitometry calculations. APP and total 

CRMP2 are normalised to actin while phosphorylated CRMP2 is normalised 

to total CRMP2 protein. � = p < 0.05, one way ANOVA. 
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Figure 4.12: Total and phosphorylated tau in 17 month 3xTg 

hippocampus, cortex and cerebellum.  10µg of hippocampal, cortical and 

cerebellar lysate from 17 month old 3xTg male mice (n = 4 of each region) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), 

Tau phospho 404 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. Total tau is normalised to actin while 

phosphorylated tau is normalised to total tau. � = p < 0.05, one way ANOVA. 
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Figure 4.13: Total and phosphorylated tau in 17 month control 

hippocampus, cortex and cerebellum.  10µg of hippocampal, cortical and 

cerebellar lysate from 17 month old control male mice (n = 4 of each region) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), 

Tau phospho 404 (D). Representative blots are displayed along with the 

graphs showing densitometry calculations. Total tau is normalised to actin 

while phosphorylated tau is normalised to total tau. � = p < 0.05, one way 

ANOVA. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

lis
e

d
 v

a
lu

e
s

Total tau

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

*

P
h

o
s
p

h
o

/t
o
ta

l 
ra

ti
o

Phospho tau AT8 *

= p < 0.05, one way ANOVA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

*

P
h

o
s
p

h
o

/t
o
ta

l 
ra

ti
o

Phospho tau 396 *

= p < 0.05, one way ANOVA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

*

P
h

o
s
p

h
o

/t
o
ta

l 
ra

ti
o

Phospho tau 404
*

= p < 0.05, one way ANOVA

A B

C D



 

 

246 

Figure 4.14: Synaptophysin, p35 and p25 in 17 month 3xTg hippocampus, 

cortex and cerebellum.  10µg of hippocampal, cortical and cerebellar lysate 

from 17 month old 3xTg male mice (n = 4 of each region) was used in SDS-

PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), 

and actin. Representative blots are displayed along with the graphs showing 

densitometry calculations. Synaptophysin, p35 and p25 are normalised to 

actin. � = p < 0.05, one way ANOVA. 
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4.2.4: Correlations between APP, tau and electrophysiology in 

3xTg mice 

 

 

Cortical tissue was stored from some mice which had also been used for 

hippocampal extracellular recording, so data from Western blotting and 

electrophysiology was available from the same animals. I attempted to detect 

correlations between the levels of proteins such as APP and tau and 

measurements such as the maximum fEPSP amplitude and LTP values in the 

same mice. Experimental data were available from 6 of the 3xTg mice at 12 

months and 4 at 17 months. Densitometry values were used for 6E10 (used to 

measure total APP) and Tau5 (used to measure total tau) blots as a measure of 

the levels of these proteins, and the average maximum fEPSP amplitude and 

average magnitude of LTP in the plateau phase were used as electrophysiological 

measurements. Each mouse was ranked by transgene expression level (a 

surrogate measure of pathology development) and by electrophysiological 

measures from the highest to lowest values, and I looked for an inverse 

correlation between the levels of APP and/or tau and the fEPSP/LTP 

measurements. 

The data collected (Fig. 4.15) shows there is no simple correlation between the 

levels of APP and tau and the electrophysiological measurements, suggesting 

that larger numbers of experimental animals and a more complex statistical 

investigation will be required for such an analysis. As expected a mouse 

expressing higher levels of APP usually also expresses a higher level of tau (due 

to co-integration of the transgene) and the mice with the highest APP/tau 

expression (mouse B at 6 months and mouse J at 12 months) had the smallest (or 

second smallest) fEPSP amplitude and magnitude of LTP of the group.  
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Mouse APP Rank Tau Rank fEPSP Rank LTP Rank 

A 

 1.00 2 1 5 0.94 3 205.1 2 

B 
1.01 1 3.33 =2 0.28 5 142.1 6 

C 
0.54 5 3.33 =2 0.67 4 188.9 3 

D 

0.67 4 2.71 4 
Not 
measured        N/A 181.9 4 

E 
0.27 6 0.73 6 1.15 1 226.5 1 

F 
0.85 3 6.81 1 1.13 2 161.5 5 

 

G 
1.00 4 1 3 1.19 1 242.3 3 

H 
1.07 3 0.65 4 0.36 3 294.7 1 

I 
3.01 2 1.38 2 0.36 2 249.3 2 

J 
3.37 1 3.29 1 0.34 4 167.4 4 

 

 

Figure 4.15: Biochemical and electrophysiological measurements in 

individual 3xTg mice.  Mice A – F are 6 months of age while mice G – J are 

12 months of age. Densitometry values from APP and tau blots are shown in 

the table along with measurements of the average maximum fEPSP amplitude 

and average magnitude of LTP after 60 minutes. Each mouse is given a ranking 

based on the highest values for the group. Cells shaded in grey represent the 

subgroup with highest protein expression and lowest electrophysiological 

measurements. 
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Conversely mouse E had lowest APP/tau expression and the largest fEPSP and 

LTP of the 6 month old animals. However, other than these extreme measures 

little is gained from the analysis. 

 

4.2.5: Biochemical profiles in 2 month old TASTPM mice 

 

 

4.2.5.1: Overview 

 

 

Hippocampal slices were prepared from the TASTPM mouse at 2 months and 6 

months of age for electrophysiological analysis, with 2 month old mice showing 

normal synaptic plasticity and 6 month old mice showing marked deficits, with a 

reduction in fEPSP amplitude (Chapter 3.2.6, 3.2.7). Previous reports indicated 

that TASTPM mice show Aβ deposition in the cortex and hippocampus; cortical 

Aβ deposition initiates at 3-4 months and is well established by 6 months, and 

this is also the age when cognitive deficits present (Howlett et al., 2004). The 

pathology develops more rapidly in these mice than in single transgenic APP 

mice due to the additional expression of mutant human PS1. Therefore I 

examined protein expression in 2 and 6 month old brain lysates to directly 

compare with the electrophysiological studies and as likely representations of 

pre- and post-plaque deposition.  

Male and female mice were analysed separately as it is known that the pathology 

initiates earlier in female TASTPM mice (Howlett et al., 2004).  
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4.2.5.2: APP 

 

 

As expected there is a significant increase in the level of APP (measured using 

the 6E10 antibody) in TASTPM compared with control mice (p < 0.05, two-way 

ANOVA), with 6E10 staining of APP effectively absent in control mice (Fig. 

4.16A). There is no effect of gender (p > 0.05, two-way ANOVA)  on APP 

expression in TASTPM mice. 

 

 

4.2.5.3: CRMP2 (total and phosphorylated) 

 

 

Total CRMP2 levels (Fig. 4.16B) and phosphorylated CRMP2, at either the 

509/514 (Fig. 4.16C – GSK3 sites) or 522 sites (Fig. 4.16D – Cdk5 sites) are not 

significantly different (p > 0.05, two-way ANOVA) between the 2 month old 

TASTPM mice and age-matched controls. There is also no effect of gender (p > 

0.05, two-way ANOVA) on total CRMP2 or CRMP2 phosphorylated at the 

509/514 residues.  

 

 

4.2.5.4: Tau (total and phosphorylated) 

 

 

There is no difference (p > 0.05, two-way ANOVA) in total tau levels in the 

TASTPM mice compared with control mice which is expected as these mice do 

not possess a tau transgene (Fig. 4.17A). There is a decrease (p < 0.05, two-way 

ANOVA)  in the phosphorylation of tau at the AT8 epitope (Fig. 4.17B), but no 

changes (p > 0.05, two-way ANOVA)  at the 396 (Fig. 4.17C) or 404 (Fig. 

4.17D) phosphorylation sites in TASTPM compared to control. There is no effect 



 

 

251 

of gender (p > 0.05, two-way ANOVA) on total tau or phosphorylation at the 396 

or 404 epitopes with either genotype. However, there is a significant difference 

(p < 0.05, two-way ANOVA) between the levels of 404 phosphorylation in male 

and female TASTPM mice with a higher level of phosphorylation in female 

mice. 

 

4.2.5.5: Other proteins 

 

 

There is no difference (p > 0.05, two-way ANOVA)  in synaptophysin levels in 

the TASTPM mice compared to control (Fig. 4.18A). In addition, there is no 

effect of genotype or gender (p > 0.05, two-way ANOVA)  on the levels of p35 

(Fig. 4.18B) or p25 (Fig. 4.18C). 

 

4.2.5.6: Summary 

 

 

The only biochemical changes detected in 2 month TASTPM mice are the 

expected high levels of APP expression and a reduction in the phosphorylation of 

the tau 404 epitope compared to control mice. However as there are no detectable 

deficits in electrophysiology at this age it must be assumed that these 

biochemical alterations do not themselves directly affect LTP in 2 month old 

hippocampal slices.  

 



 

 

252 

2 month TASTPM 2 month control 

Males         Females     Males       Females      
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Figure 4.16: APP, total and phosphorylated CRMP2 in 2 month TASTPM 

male and female mice. 10µg of cortical lysate from 2 month old TASTPM 

and control male (n = 3 in each group) and female (n = 3 in each group) mice 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 

509/514 (C), CRMP2 phospho 522 (D). Representative blots are displayed 

along with the graphs showing densitometry calculations. APP and total 

CRMP2 are normalised to tubulin while phosphorylated CRMP2 is normalised 

to total CRMP2 protein. � = p < 0.05, two way ANOVA. 
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Figure 4.17: Total and phosphorylated tau in 2 month TASTPM male and 

female mice. 10µg of cortical lysate from 2 month old TASTPM and control 

male (n = 3 in each group) and female (n = 3 in each group) mice was used in 

SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), Tau 

phospho 404 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. Total tau is normalised to tubulin while 

phosphorylated tau is normalised to total tau. � = p < 0.05, two way ANOVA. 
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Figure 4.18: Synaptophysin, p35 and p25 in 2 month TASTPM male and 
female mice. 10µg of cortical lysate from 2 month old TASTPM and control 

male (n = 3 in each group) and female (n = 3 in each group) mice was used in 

SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), 

and actin. Representative blots are displayed along with the graphs showing 

densitometry calculations. Synaptophysin, p35 and p25 are normalised to 

tubulin.  
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4.2.6: Biochemical profiles in 6 month old TASTPM mice 

 

 

At 6 months of age the TASTPM mice show marked electrophysiological 

deficits including a reduction in fEPSP amplitude (Chapter 3.2.7), while plaque 

pathology is reported to be well established (Howlett et al., 2004). Western 

blotting was carried out on brain lysates from mice of this age to investigate 

whether any biochemical changes might be responsible for the 

electrophysiological deficits. 

 

4.2.6.1: APP 

 

 

As expected the 6E10 antibody shows the presence of the human APP transgene 

in all of the TASTPM mice, while this human protein is not present in control 

mice (p < 0.05, two-way ANOVA). There is no difference (p > 0.05, two-way 

ANOVA) in the levels of APP at this age between male and female TASTPM 

mice (Fig. 4.19A).  

 

4.2.6.2: CRMP2 (total and phosphorylated) 

 

 

There is no difference (p > 0.05, two-way ANOVA)  in levels of total CRMP2 in 

six month old TASTPM mice (Fig. 4.19A). However, there is a significantly 

higher level (p < 0.05, two-way ANOVA) of phosphorylated CRMP2 at the 

509/514 residues (Fig. 4.19C - GSK3 sites) compared to age-matched controls. 

This hyperphosphorylation of CRMP2 is in agreement with work previously 

carried out in the lab (Cole et al., 2007b). The data suggests that the presence of 

both the APP and PS1 transgenes promotes increased phosphorylation of 
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CRMP2 at this residue. However, there is no difference (p > 0.05, two-way 

ANOVA) in the levels of phosphorylation at the 522 residue (Fig. 4.19D – Cdk5 

sites). There is no effect of gender (p > 0.05, two-way ANOVA) on total CRMP2 

or phosphorylated CRMP2 (Fig. 4.19A - D) in either TASTPM or control mice. 

 

4.2.6.3: Tau (total and phosphorylated) 

 

 

There is no difference (p > 0.05, two-way ANOVA)  in levels of total tau (Fig. 

4.20A) in the 6 month old TASTPM mice compared with age matched controls, 

or in the levels of tau phosphorylation at the AT8 (Fig. 4.20B), 396 (Fig. 4.20C) 

or 404 (Fig. 4.20D) epitopes. There is also no effect of gender (p > 0.05, two-

way ANOVA)  on tau phosphorylation. 

 

4.2.6.4: Other proteins 

 

 

There is no difference (p > 0.05, two-way ANOVA)  in synaptophysin levels in 

the TASTPM mice compared to control (Fig. 4.21A). In addition, there is no 

effect of genotype or gender (p > 0.05, two-way ANOVA)  on the levels of p35 

(Fig. 4.21B) or p25 (Fig. 4.21C). 

 

4.2.6.5: Summary 

 

 

As expected, the 6 month TASTPM mice express a high level of APP although, 

unlike the findings at 2 months, there is no difference in APP levels between 

male and female mice. The hyperphosphorylation of CRMP2 at the 509/514 

residue observed at 6 months of age (but not at 2 months of age) suggest that 

pathological alterations subsequent to APP processing by PS1 are beginning to 
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develop between 2 and 6 months and could be linked to the reported cognitive 

decline and the deficits I observed in the electrophysiological measurements. 

However, whether the abnormal changes in CRMP2 are linked to any of these 

deficits requires further study. 
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Figure 4.19: APP, total and phosphorylated CRMP2 in 6 month TASTPM 

male and female mice. 10µg of cortical lysate from 6 month old TASTPM and 

control male (n = 3 in each group) and female (n = 3 in each group) mice was 

used in SDS-PAGE, transferred to a nitrocellulose membrane and probed with 

the following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 

509/514 (C), CRMP2 phospho 522 (D). Representative blots are displayed 

along with the graphs showing densitometry calculations. APP and total 

CRMP2 are normalised to tubulin while phosphorylated CRMP2 is normalised 

to total CRMP2 protein. � = p < 0.05, two way ANOVA. 
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Figure 4.20: Total and phosphorylated tau in 6 month TASTPM male 

and female mice. 10µg of cortical lysate from 6 month old TASTPM and 

control male (n = 3 in each group) and female (n = 3 in each group) mice was 

used in SDS-PAGE, transferred to a nitrocellulose membrane and probed with 

the following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), Tau 

phospho 404 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. Total tau is normalised to tubulin while 

phosphorylated tau is normalised to total tau.  
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Figure 4.21: Synaptophysin, p35 and p25 in 6 month TASTPM male and 

female mice.  10µg of cortical lysate from 6 month old TASTPM and control 

male (n = 3 in each group) and female (n = 3 in each group) was used in SDS-

PAGE, transferred to a nitrocellulose membrane and probed with the following 

antibodies: Synaptophysin (A), p35 (B) which also shows p25 (C), and actin. 

Representative blots are displayed along with the graphs showing densitometry 

calculations. Synaptophysin, p35 and p25 are normalised to tubulin. 
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4.2.7: AD related protein expression and phosphorylation in 

different brain regions of TASTPM mice  

 

 

Much less is known about the spatial progression of Aβ pathology in the 

TASTPM mice, however it is hypothesised to follow the same pattern as other 

models, with initiation in the cortex which then spreads to the hippocampus, with 

the cerebellum relatively spared. Samples from 6 month old TASTPM 

hippocampus, cortex, and cerebellum were used to compare the levels of protein 

expression in these regions. Male mice only were used for this experiment. 

 

4.2.7.1: APP 

 

There is a significant difference (p < 0.05, one-way ANOVA) in APP expression 

between the cortex, hippocampus and cerebellum, with levels highest in the 

cortex and lowest in the cerebellum (Fig. 4.22A). Similar to the 3xTg mice, the 

APP transgene is expressed under the Thy-1 promoter which results in a lower 

level of expression in the cerebellum. 

 

4.2.7.2: CRMP2 (total and phosphorylated) 

 

 

There is a significant difference (p < 0.05, one-way ANOVA) in levels of total 

CRMP2 between cortex, hippocampus and cerebellum (Fig. 4.22B), with levels 

lowest in the hippocampus and highest in the cerebellum. There is a significant 

difference (p < 0.05, one-way ANOVA) in CRMP2 phosphorylation at the 

509/514 residues between the cortex and cerebellum, with levels lowest in the 

cerebellum. There is no difference (p > 0.05, one-way ANOVA) between 

hippocampus and cortex, or hippocampus and cerebellum (Figure 4.22C – GSK3 
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sites). Despite the higher expression of CRMP2 in the cerebellum the levels of 

CRMP2 phosphorylated at the 522 residue are significantly higher (p < 0.05, 

one-way ANOVA) in the cortex and hippocampus compared with the cerebellum 

(Fig. 4.22D – Cdk5 sites). 

 

 

4.2.7.3: Tau (total and phosphorylated) 

 

 

Total tau levels are significantly higher (p < 0.05, one-way ANOVA) in the 

cerebellum, with no difference (p > 0.05, one-way ANOVA) between 

hippocampus and cortex (Fig. 4.23A). The cerebellum also shows significantly 

lower (p < 0.05, one-way ANOVA) levels of tau phosphorylated at the 396 (Fig. 

4.23B) and 404 (Fig. 4.23C) epitopes compared to the other regions. However 

between the cortex and hippocampus there is little difference, apart from tau 404 

phosphorylation which shows a trend for a reduction in the cortex (p = 0.06). 

These results show that, overall, the pattern of tau phosphorylation in the 

cerebellum of the TASTPM mice (as seen with control and 3xTg mice at an older 

age) is different from other brain regions. 

 

4.2.7.4: Other proteins 

 

 

There is no difference (p > 0.05, one-way ANOVA) in synaptophysin levels 

between the cortex, hippocampus and cerebellum (Fig. 4.24A). Levels of p35 are 

significantly lower (p < 0.05, one-way ANOVA) in the hippocampus compared 

with the cortex and cerebellum, but there is no difference between the two latter 

regions (Fig. 4.24B) Levels of p25 are significantly higher (p < 0.05, one-way 
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ANOVA) in the cortex than in the hippocampus and cerebellum; there is no 

difference between these regions  (Fig. 4.24C).  

 

4.2.7.5: Summary 

 

 

Similar to the 3xTg and control mice there are marked differences in CRMP2 

and tau regulation in the cerebellum relative to the cortex and hippocampus in 

the TASTPM model. There does not appear to be any major spatial alterations 

specific to this model or to the transgenes expressed. Therefore, the biochemical 

assessment of the cortex should be a reasonable surrogate for what is happening 

in the hippocampus and allow comparisons with deficits in hippocampal 

electrophysiology. 
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Figure 4.22: APP, total and phosphorylated CRMP2 in 6 month TASTPM 

hippocampus, cortex and cerebellum. 10µg of hippocampal, cortical and 

cerebellar lysate from 6 month old TASTPM male mice (n = 4 of each region) was 

used in SDS-PAGE, transferred to a nitrocellulose membrane and probed with the 

following antibodies: 6E10 (A), Total CRMP2 (B), CRMP2 phospho 509/514 (C), 

CRMP2 phospho 522 (D). Representative blots are displayed along with the graphs 

showing densitometry calculations. APP and total CRMP2 are normalised to actin 

while phosphorylated CRMP2 is normalised to total CRMP2 protein. � = p < 0.05, 

one way ANOVA. 
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Figure 4.23: Total and phosphorylated tau in 6 month TASTPM 

hippocampus, cortex and cerebellum. 10µg of hippocampal, cortical and 

cerebellar lysate from 6 month old TASTPM male mice (n = 4 of each region) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: Tau5 (A), Tau AT8 (B), Tau phospho 396 (C), 

Tau phospho 404 (D). Representative blots are displayed along with the 

graphs showing densitometry calculations. Total tau is normalised to actin 

while phosphorylated tau is normalised to total tau. � = p < 0.05, two way 

ANOVA. 
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Figure 4.24: Synaptophysin, p35 and p25 in 6 month TASTPM 

hippocampus, cortex and cerebellum. 10µg of hippocampal, cortical and 

cerebellar lysate from 6 month old TASTPM male mice (n = 4 of each region) 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: Synaptophysin (A), p35 (B) which also shows 

p25 (C), and actin. Representative blots are displayed along with the graphs 

showing densitometry calculations. Synaptophysin, p35 and p25 are 

normalised to actin. � = p < 0.05, two way ANOVA. 
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4.2.8: Kynurenic acid treatment 

 

The presence of kynurenic acid during hippocampal slice preparation was able to 

rescue the deficits in fEPSP amplitude in 12 month old 3xTg and 6 month old 

TASTPM mice (Chapter 3.2.8, 3.2.9). Therefore, I examined expression and 

regulation of the proteins found to be altered in these models in slices treated 

with or without kynurenic acid to further correlate slice biochemistry with 

electrophysiological measurements. 

Brain slices from the hippocampus and cortex of 12 month old control and 3xTg 

mice were prepared as for electrophysiology (Chapter 2.2.1) and then incubated 

for one hour at room temperature in aCSF or aCSF containing 1mM kynurenic 

acid. The slices were then snap frozen, stored at -80ºC and subsequently 

processed for Western blotting (Chapter 2.2.2). Blotting was performed to detect 

the following: total CRMP2, phosphorylated CRMP2 509/514, total GSK3β, 

Phospho GSK3α/β Ser 21/9, total tau, phosphorylated tau AT8 epitope, 

phosphorylated tau 404 epitope, total MAPK, phosphorylated MAPK 

Thr209/Tyr 204, total PKB, phosphorylated PKB at serine 473, and actin as a 

loading control. Slices from 3 mice were used in each group. 

No differences were observed in the levels or regulation of any of these proteins 

(Fig. 4.25). This argues against alterations in their expression or regulation 

underlying the kynurenic acid-sensitive electrophysiological deficits in these 

models. 
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Figure 4.25: Kynurenic acid treatment of slices from 12 month old 3xTg 

and control mice. 10µg of hippocampal/cortical slice lysate from 12 month 

old 3xTg and control mice, incubated in normal aCSF or 1mM kynurenic acid, 

was used in SDS-PAGE, transferred to a nitrocellulose membrane and probed 

with the following antibodies: total CRMP2, phosphorylated CRMP2 509/514, 

total GSK3β, Phospho GSK3α/β Ser 21/9, total tau, tau AT8, tau 404, total 

MAPK, phosphorylated MAPK Thr209/Tyr 204, total PKB, phosphorylated 

PKB Ser 473, and actin. Representative blots are shown above. 



 

 

269 

4.3: Discussion 

 

4.3.1: Technical aspects 

 

 

There are a number of technical limitations which must be considered when 

interpreting the data obtained in the Western blot experiments. Firstly, an 

average of three mice of each gender and genotype were used for each 

experiment and, due to the marked variability in protein expression between 

individual animals, it would be advisable to increase the sample size to improve 

the robustness of the data. Western blotting is a semi-quantitative technique, 

which measures relative protein expression, although I have attempted to limit 

the inherent variability of the technique by focusing on comparisons within gels 

and normalising to actin. In many cases I carried out multiple experiments using 

the same samples which provided similar results, suggesting that the Western 

blotting protocol used is a highly reproducible method of measuring protein 

levels. However, a greater sample size and use of additional loading controls, 

such as GAPDH or tubulin, and internal standards (where available) would 

improve the robustness of the results obtained.  

The use of Western blotting has provided an indirect measure of some of the 

biochemical changes which may be associated with the development of the 

pathological features in the transgenic mice. However, no direct conclusions 

about the progression of amyloid and tau pathology can be drawn from this data; 

this would require the use of other techniques such as immunohistochemical 

staining of brain slices to examine Aβ deposition and tangle formation. 

Unfortunately, these additional experiments were not possible during the time 
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course of my PhD studies but would be necessary to give a full analysis of the 

development of pathological features in the 3xTg and TASTPM mice.  

 

4.3.2: Analysis of cortical expression of AD-related proteins in 

3xTg mice 

 

 

The expression of a number of proteins was analysed at 2, 12 and 17 months in 

3xTg cortex to provide a biochemical assessment at the same developmental 

stage as the electrophysiological measurements. The 3xTg mouse is a widely 

used model of AD, and as such biochemical or electrophysiological changes 

linked to disease progression would hopefully mirror at least some aspect of the 

development of the human pathology. One key aim of my thesis was to identify 

any biochemical changes associated with the genetic modification of the 3xTg 

mice that could be used as early-stage biomarkers of cellular damage, or 

developed as possible drug targets for the treatment of AD. 

 

4.3.2.1: APP expression in 3xTg mice 

 

 

Expression of the APPSwe transgene was studied in order to confirm the excess 

APP generation during the lifespan of this model. I observed that there was a 

significantly higher level of APP present at all ages studied.   

In AD, the deposition of Aβ is a progressive process, which involves not only a 

gradual increase in plaque load but also a regional dependence with pathology 

initiating in the cortex then later spreading to the hippocampus (Braak and Braak, 

1991). Ideally a mouse model would replicate these characteristics of the 

condition. In this respect the 3xTg mouse has been reported to show an age-
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dependent increase in Aβ levels and plaque formation, with a brain region-

specific progression similar to human AD. 6E10 staining occurs exclusively in 

the CNS and most strongly in the cortex, hippocampus and thalamus showing 

that the expression of the APPSwe transgene is region specific (Oddo et al., 2003). 

The presence of region-specific Aβ accumulation suggest that the 3xTg mouse is 

a good model for studying this feature of AD, although marked differences in the 

time course of this process are now being reported, with plaque development in 

the cortex ranging from 6 months to over 18 months (Oddo et al., 2003, 

Mastrangelo and Bowers, 2008). The original report observed the early 

deposition of intraneuronal Aβ between 3 and 4 months in the cortex, and by 6 

months in the hippocampus (Oddo et al., 2003). In our colony of 3xTg mice, 

APP expression shows a trend for an increase with age between 2 and 12 months 

although this does not reach statistical significance. This suggests that APP 

accumulation may not be maximal at 2 months, or even at 12 months of age. In a 

previous study, cortical 6E10 staining was found to be present from 2 months at 

low levels and increased progressively to the age of 26 months; this age-

dependent increase occured gradually and was purely intraneuronal until the 

development of plaques at 18 months (Mastrangelo and Bowers, 2008). In our 

colony of 3xTg mice it is likely that plaque development occurs late in the 

lifespan, although further immunohistochemical studies would be required to 

confirm this. 

To further explore this area, and to confirm the presence of elevated Aβ levels in 

our colony of 3xTg mice, would require the use of more specific Aβ antibodies 

which is technically more difficult due to the small molecular weight of the 
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protein and its lower abundance. Immunohistochemical techniques could also be 

used to give a measure of amyloid plaque deposition in the 3xTg mice. Both 

methods have been successfully used by other research groups to give a more 

detailed analysis of the development of pathology in these mice (see Chapter 

1.4.5). 

Although not studied in detail, gender did not affect APP expression at 2 or 12 

months in our colony of 3xTg mice. It has been suggested by others that female 

3xTg mice exhibit more extensive amyloid pathology, which manifests as an 

increase in Aβ load and plaque numbers, and also develop plaques earlier in the 

lifespan (Hirata-Fukae et al., 2008, Carroll et al., 2010). These effects become 

markedly more pronounced with ageing, so it is possible that a difference might 

be observed in our colony at older ages such as in the 17 month group; these 

experiments were not carried out due to low numbers of mice available at this 

age. 

 

4.3.2.2: Tau expression in 3xTg mice 

 

 

The method of derivation of the model means that in the founder line the APP 

and tau transgenes are co-integrated at a single locus, hence both human genes 

(APP and tau) are expressed at a similar level (Oddo et al., 2003).  

I found a higher level of tau expression relative to controls in all ages of 3xTg 

mice. The 3xTg mouse carries both human tau and the endogenous mouse tau 

genes, and both are recognised by the tau5 antibody, so the two to threefold 

higher levels of tau in these mice suggest that the human protein has been 
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expressed. However, Oddo et al. (2003) reported up to an eightfold increase in 

total tau levels; this is much higher than observed in our colony and could 

contribute to the slower development of disease-related symptoms.   

I observed no age-dependent increase in total tau expression in our colony of 

3xTg mice. The development of tau pathology is known to occur subsequent to 

that of Aβ, and studies using antibodies specific for human tau have suggested 

this is relatively late in the lifespan of the model. Immunohistochemical studies 

have observed human-specific tau immunoreactivity to a limited extent in 

animals from 2 months onwards, but this only becomes pronounced from around 

6 months of age (Oddo et al., 2003, Mastrangelo and Bowers, 2008); The tauP301L 

mutation in the 3xTg mice is known to accelerate the process of filament 

formation which eventually leads to tangle generation (vonBergen et al., 2001), 

however the original report suggests that this does not occur until approximately 

12 months and tangles are initially observed in hippocampus only (Oddo et al., 

2007). It is therefore likely that in our colony of 3xTg mice the deposition of tau 

was not sufficient even in older mice to allow any age-dependent differences to 

be observed. 

One limitation of using only the Tau5 antibody is that it detects both human and 

mouse tau and so the individual levels of these cannot be calculated. To 

complicate matters further, human and mouse tau can co-aggregate in tangles 

(Sydow and Mandelkow, 2010). A combination of total tau and human or mouse 

specific antibodies, combined with immunohistochemical studies, would be 

required to study further the expression of tau in the 3xTg mice and its 

relationship to the tangle pathology observed in AD. There is also a distinction 
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between soluble tau and insoluble, tangle-associated tau, with the two pools 

separable by fractionation. Insoluble tau increases with ageing and may show a 

distinct pattern of phosphorylation compared to soluble tau (Hirata-Fukae et al., 

2009). In our colony of 3xTg it is likely that only soluble forms of tau were 

present even at 17 months of age. 

The levels of tau expression at 2 and 12 months in our male and female 3xTg 

mice were similar. In comparison to the Aβ pathology, little has been reported on 

gender-dependent differences in tau pathology. No gender difference was found 

in hippocampal total tau levels at ages up to 9 months (Clinton et al., 2007) or in 

the phosphorylation of tau at several epitopes in aged 3xTg mice (Hirata-Fukae 

et al., 2008). Overall this suggests that tau expression is not affected by gender in 

this mouse model. 

 

4.3.2.3: Tau phosphorylation in 3xTg mice 

 

 

Hyperphosphorylation of tau occurs prior to tangle formation in AD and has been 

reported previously to occur in the 3xTg mouse. For example, increased 

phosphorylation occurs at sites recognised by the AT100 and 12E8 antibodies 

(Thr 212/Ser 214 and Ser262) in 6 month old 3xTg mice, but not at the AT8 (Ser 

202, Thr 205) and AT180 (Thr 231) sites until around 12-15 months (Oddo et al., 

2007). In our colony of 3xTg mice there was no difference in levels of 

phosphorylation at any site investigated (including AT8) compared to control 

mice. The possible exception was in males at 17 months where there was a trend 

for an increase at the 396 and 404 epitopes.  
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In human AD, in contrast to Aβ pathology, tau pathology initiates in the 

hippocampus and spreads to the cortex (Braak and Braak, 1991), so the 

hyperphosphorylation of tau in the 3xTg mice may be expected to occur later in 

this region of the brain. There are, however, marked differences between 

experimental reports with regard to the time course of these phosphorylation 

events. In the original paper by Oddo et al. (2003), increased phosphorylation at 

the AT8 epitope was apparent at 12 months of age in the hippocampus and 

previous work in our lab, using tissue from a different colony of 6 month old 

3xTg mice, found increased phosphorylation at the AT8 epitope in the cortex 

(Cole et al., 2007b). However, one study reports that PHF-1 phosphorylation 

(which recognises phosphorylated residues including both 396 and 404 sites) is 

not apparent until 15 or 16 months in the 3xTg and may not be detectable in the 

cortex until 26 months of age (Mastrangelo and Bowers, 2008), while another 

reports a low level of cortical staining at this site from 9 months (Oh et al., 2010). 

Such discrepancies between groups serve to highlight the inconsistencies of the 

3xTg model and the differences between individual colonies of these mice. In 

our colony of 3xTg mice it is likely that the lack of a significant difference in 

AT8, 396 or 404 phosphorylation reflects a very slow progression of tau 

pathology compared to previous studies.  

It should not be forgotten that there are a large number of potentially 

phosphorylatable sites on human tau and over 35 sites are phosphorylated in 

tangles from AD brain (Hanger et al., 2007). Many of the AD-related 

phosphorylation sites have not been studied in the 3xTg model, mainly as it is 

technically challenging to quantify phosphorylation of so many tau residues from 

a single sample. However this will be essential to establish whether each 



 

 

276 

becomes hyperphosphorylated in the model and if they follow separate time 

courses which may permit correlation to symptoms of the disease.  

4.3.2.4: CRMP2 phosphorylation in 3xTg mice 

 

 

Previous work in our lab, using samples from a different colony of 3xTg mice, 

showed an increase in CRMP2 phosphorylation at both the 509/514 GSK3 sites 

and the Cdk5 site at serine 522 in the cortex at 2 months of age (Cole et al., 

2007b). However, in our 3xTg colony an increase in CRMP2 phosphorylation is 

only apparent at the 509/514 sites and occurs in older animals, again suggesting 

that the pathological features are developing more slowly in these mice. A 

marked decline in the inactive serine 9-phosphorylated form of GSK3β (an 

indication of increased GSK3β activity) has previously been reported between 12 

and 15 months of age in 3xTg mice (Oddo et al., 2007) and this could be 

associated with the increase in CRMP2 509/514 phosphorylation observed. It is 

unclear why there is no concomitant increase in CRMP2 522 phosphorylation, as 

this is the Cdk5 priming site for GSK3 phosphorylation of the 509/514 residues, 

and thus is a limiting step in the phosphorylation of 509/514. The data is 

consistent with my analysis of the regulatory subunits of Cdk5 (see sections 

4.2.1.4 / 4.2.2.4) which are not altered in my 3xTg mice compared to control. An 

alternative explanation is that the change in 509/514 phosphorylation is due to a 

change in phosphatase activity rather than an increase in GSK3 activity. 

Phosphorylation at the GSK3 and Cdk5 sites is regulated by separate protein 

phosphatases (Cole et al., 2008). 

The phosphorylation of CRMP2 is increased in human AD cortical tissue (Cole 

et al., 2007b) so the higher level of phosphorylation observed in the 3xTg mouse 
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may suggest a mechanistic link between APP or tau pathology and the regulation 

of CRMP2, and hence may be a useful characteristic of this model; indeed the 

late development of this feature in our colony of mice is consistent with CRMP2 

phosphorylation changes occurring subsequent to abnormal APP processing.  

 

4.3.2.5: p35/p25 in 3xTg mice 

 

 

The generation of p25 from p35 and subsequent activation of Cdk5 has been 

suggested to contribute to neurodegeneration in AD but this has been disputed 

(Patrick et al., 1999, Tandon et al., 2003).  I did not find any difference in the 

levels of the Cdk5 co-factor p35 or its cleavage product p25 at any age in the 

3xTg mice compared to controls. This is in agreement with previous work in our 

lab which found no differences in p35 or p25 levels, or Cdk5 expression or 

activity, in the cortex of 6 month old 3xTg mice compared to age matched 

controls (Cole et al., 2007b). In contrast, an age-dependent increase in Cdk5 

activity has been reported in another study by Oddo et al. (2007) which studied 

mice of 6, 12 and 17 months. An increase in p25 levels, the co-factor which 

causes prolonged activation of Cdk5, could account for the increased Cdk5 

activity in these mice. In contrast, there were no changes in p35 levels (Oddo et 

al., 2007). It was suggested that these changes could partially mediate the 

increase in tau phosphorylation observed with advancing age in their study, when 

accompanied by a higher level of GSK3β activity. The discrepancies between 

these reports suggest that further studies of p35/p25 and Cdk5 activity are 

required in the 3xTg mice. However, the lack of any differences in our colony of 

3xTg mice could be explained by the relatively slow development of pathology 
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resulting in a delay in alterations of Cdk5 or p35/p25 activity which may also 

partly explain the slow development of tau hyperphosphorylation in these mice. 

4.3.2.6: Synaptophysin in 3xTg mice 

 

 

In AD, the majority of studies have shown a decrease in synaptophysin levels in 

both cortex and hippocampus and this is due to an initial loss of synapses 

followed by neuronal death (Masliah et al., 1991). I found no difference in 

synaptophysin levels in 3xTg mice compared to control at any age. As 

synaptophysin is a synaptic vesicle protein, this suggests that even at 17 months 

of age the synapses within the cortex remain relatively well preserved. However, 

there is the possibility that synaptophysin is still present in neurons, and thus 

detectable by Western blotting, despite the retraction of dendritic spines and so 

this would have to be confirmed by immunohistochemical or imaging studies. 

However,  the results in our colony of 3xTg are in agreement with several groups 

who have reported no change in synaptophysin levels in 3xTg mice (Hirata-

Fukae et al., 2009, Julien et al., 2010, Arsenault et al., 2011), and levels of other 

presynaptic proteins such as dynamin and synaptotagmin are also unchanged 

(Yao et al., 2005b). It would be interesting to look at postsynaptic proteins such 

as PSD-95 as alterations in these have previously been reported (Arsenault et al., 

2011).  

The lack of alterations in synaptic proteins or neuronal loss in the 3xTg mice 

highlights the limitations of this model in that it only replicates some of the 

pathological features of AD.  
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It is likely that in 3xTg mice the synapses remain intact, but this does not rule out 

the possibility of structural changes within the synapse.  Hirata-Fukae et al. 

(2009) report no changes in synaptophysin at ages up to 23 months but a trend 

for reduced NMDA receptor 2A and AMPA GluR2 subunit expression with 

ageing. I attempted to characterise NMDA receptor levels in our 3xTg mice but 

this was unsuccessful due to a lack of antibody specificity. It would be 

interesting to study glutamate receptor expression in these mice which would 

require the use of imaging and immunohistochemical techniques and could 

further correlate biochemical and electrophysiological data.  

4.3.2.7: Summary 

 

 

The increased levels of APP and tau protein shows that the 3xTg mice are 

expressing the transgenes as expected. An age-dependent increase in the 

expression of APP mirrors that observed in AD, although no such gradual 

increase is observed with transgenic tau. Other features such as 

hyperphosphorylation of CRMP2 are observed, albeit relatively late in the life of 

our colony of 3xTg mice, and this late onset significantly limits the use of the 

model. Unfortunately, the lack of biochemical changes in the 3xTg mice means 

that it is difficult to carry out one of the early aims of the project which was to 

provide links between synaptic function and alterations in protein 

phosphorylation. 

An ideal model of AD would develop pathological features earlier than 12 to 18 

months aiding more rapid assessment of the contribution of pathology to 

behavioural or electrophysiological changes. Unfortunately, the delayed onset of 

the phenotype and lack of biochemical differences observed at earlier ages have 
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made studies in our colony of 3xTg mice difficult in the timeframe of PhD 

studies. However, variability within this model has been reported by other groups 

(Hirata-Fukae et al., 2008), and it is this variability from colony to colony and 

research group to research group which is the most frustrating aspect of the 

model. It becomes almost impossible to design studies using the model, as the 

timeframe for development of features is difficult to predict. In addition, crossing 

onto other lines with different aspects of AD would have to be very carefully 

controlled with littermates from the original cross. These technical problems will 

limit the usefulness of the 3xTg in the study of AD.  

 

 

4.3.3: AD related protein expression and phosphorylation in 

different brain regions of 3xTg 

 

 

Protein expression was measured in the hippocampus, cortex and cerebellum of 

17 month 3xTg mice. This was primarily to ensure that there were no obvious 

biochemical differences between the cortex (main biochemical studies) and 

hippocampus (electrophysiological studies). Cerebellar tissue was used as a 

control as levels of the transgenic human APP are much reduced in this region. 

As expected, APP levels in our colony of 3xTg mice were significantly higher in 

the cortex and hippocampus than in the cerebellum. It is likely that this is due to 

protein stability, as the transgene is driven by the Thy-1 promoter which is 

expressed at its highest levels in this region (Andra et al., 1996). This mirrors 

human AD, where the cerebellum is relatively resistant to developing the 

pathological features of the disease, possibly due to a lower level of APP protein 

expression (Causevic et al., 2010).  
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The levels of total tau in 3xTg mice remain stable across the cortex, 

hippocampus and cerebellum. This is likely due to the high abundance of 

endogenous mouse tau which is detected by the antibody. In humans total tau 

levels are similar in the cortex and hippocampus and again reduced in the 

cerebellum (Causevic et al., 2010), but the phosphorylation status of tau has not 

been studied. In 3xTg mice there is a marked increase in tau phosphorylation at 

the AT8 and 396 epitopes, with a reduction at the 404 epitope in the cerebellum 

compared to the other brain regions. However the level of tau phosphorylation is 

similar between cortex and hippocampus. This is also observed in control mice, 

suggesting that regulation of tau phosphorylation is region-specific in the mouse 

brain, and the regional variation is not related to the genetic modification. 

In the 3xTg mouse the levels of p25 and p35 also vary across different brain 

regions, with p35 levels highest in the cerebellum and p25 highest in the cortex. 

However, this may be related to the normal distribution of these proteins in 

mouse brain, as region-specific differences have previously been observed in 

rodents (Wu et al., 2000).  

In conclusion, I have observed region-specific differences in tau protein levels 

and phosphorylation in both 3xTg and control mice but it is not known if similar 

changes are apparent in human brain. As abnormal phosphorylation of tau is 

associated with tangle formation and thus AD development it is important to 

understand the normal physiological regulation of tau by phosphorylation. If 

there are brain region specific differences this implies differential activity of 

pathways that control tau phosphorylation in healthy brain, and has to be kept in 

mind when developing interventions targeting tau phosphorylation. 
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4.3.4: Correlations between biochemical changes and 

electrophysiology in 3xTg mice 

 

 

For some of the 3xTg mice the hippocampus was used for electrophysiological 

recordings while the cortex from the same animal was homogenised to generate 

protein lysates. In these samples, I tried to correlate levels of APP and tau to 

deficits in the maximum fEPSP amplitude and LTP values but the number of 

animals available was too small to reach solid conclusions. 

I could not demonstrate a direct linear association between the fEPSP amplitude 

(the strength of basal synaptic transmission) and the magnitude of LTP obtained 

suggesting that even in the mice with some neuronal dysfunction the ability of 

the neurons to undergo synaptic plasticity is not affected. However, it should be 

noted that due to the nature of the technique there is significant variation between 

individual slices even in the same mouse and that the values reported are an 

average of several results pooled together. It is interesting that the two 12 month 

old mice with the highest levels of tau had the smallest fEPSP, while the mouse 

with the lowest APP and tau expression had the highest fEPSP amplitude and 

magnitude of LTP. At 17 months, the mouse with the highest levels of APP and 

tau also had the lowest fEPSP amplitude and magnitude of LTP. This suggests 

that there is some link between the expression of the transgenic proteins and the 

electrophysiological changes. However, this clearly needs a more robust 

investigation with larger numbers of animals. Indeed ideally an inducible system, 

where the transgenes could be activated to specific levels, would be needed to 

truly show a cause and effect relationship between protein expression and 

electrophysiological deficit. Another group has reported that in double transgenic 
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APPSwe x PS1M146L mice there was no correlation between brain Aβ levels and 

basal synaptic transmission or LTP, although there was a weak correlation 

between LTP and cognitive deficits in a Morris water maze task (Trinchese et al., 

2004).  

The biochemical analysis was done in the cortex and the electrophysiology in the 

hippocampus, and although the levels of APP and tau are similar in both there 

may still be some variation between the brain regions. To improve this 

experiment, it would be necessary to carry out the Western blotting in the 

hippocampus; the cortex was generally used for experiments as a larger volume 

of tissue could be obtained. In our colony of 3xTg mice, no correlation was 

attempted between behavioural performance and electrophysiological or 

biochemical changes; Aβ load has been linked to cognitive deficits in a number 

of transgenic mouse models and has been suggested to correlate with synaptic 

loss (Gordon et al., 2001). 

 

4.3.5: Analysis of cortical expression of AD-related proteins in 

TASTPM mice 

 

 

I analysed the same set of proteins in the cortex of the TASTPM mouse to extend 

the search for abnormal expression or regulation of proteins that could be linked 

to the electrophysiological deficits in these models. I also wanted to compare the 

development of pathology between the double-transgenic TASTPM and the 

3xTg model. One consideration in interpreting this data is that the TASTPM 

mice are derived from a C57BL/6 background, while the control mice used are 

mixed C57BL/6 x 129/Sv, due to limitations in the animals available for these 
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experiments. Anatomical and metabolic differences have been observed in the 

brains of different inbred mouse strains (Penet et al., 2006), and so  it would be 

desirable to confirm the results obtained and compare any differences observed 

in the TASTPM mice with the pure C57BL/6 strain. 

 

4.3.5.1: APP expression in TASTPM mice 

 

 

I confirmed APPswe expression in the TASTPM mice, with none detectable in 

age-matched control mice. Amyloid deposition initiates at 3 months and shows 

an age-dependent progression in the cortex of this model (Howlett et al., 2004). 

Limited biochemical and immunohistochemical studies of Aβ pathology have 

previously been carried out in the TASTPM mouse. However, one study found 

both extensive APP and punctuate Aβ staining by the age of 6 months in the 

cortex and hippocampus (Maheswaran et al., 2009). The progression of plaque 

pathology has been better characterised in the TAS10 mouse from which the 

TASTPM mouse is derived. The TAS10 mouse shows significant age-dependent 

increases in Aβ in the hippocampus and cortex, with plaque deposition most 

marked in the cortex (Richardson et al., 2003). In theory  the development of 

pathology should occur more rapidly in the TASTPM mouse compared to the 

TAS10 line due to the presence of the PS1M146V transgene. 

 

 

4.3.5.2: Tau expression and phosphorylation in TASTPM mice 

 

 

I observed no difference in levels of total tau in TASTPM mice at either 2 and 6 

months, which is expected as these mice express only endogenous mouse tau 

protein.  I also checked whether the presence of the APPSwe and PS1M146V 
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transgenes are capable of causing biochemical alterations in tau. At 2 months of 

age tau phosphorylation is similar to control levels at the 396 and 404 epitopes, 

the only exception being a reduction in the phosphorylation of tau at the AT8 

epitope in the TASTPM which is not present at 6 months. Indeed at 6 months of 

age there are no significant differences in tau phosphorylation between TASTPM 

and controls. 

It has previously been reported that an increase in tau phosphorylation at the AT8 

epitope is associated with dystrophic neurites in the cortex of 8 month old 

TASTPM mice. These neurites are closely associated with amyloid plaque 

deposition (Howlett et al., 2008b). The location of the hyperphosphorylated tau 

suggests that it may be regulated by the functional alterations that occur in 

neuronal processes disrupted by amyloid deposition. This feature has also been 

reported in other mouse models. For example, a similar pattern of 

hyperphosphorylated tau has been observed adjacent to amyloid plaques in the 

APP23 model, which expresses the APPSwe mutation (Sturchler-Pierrat et al., 

1997). This implies that the presence of the APP mutation alone is sufficient to 

alter the pattern of phosphorylation at multiple tau residues and this may be 

associated with early tau pathology.  

However, the progression to neurofibrillary tangles has not been observed in 

mice in which a tau transgene is not present. This suggests that although there is 

an interaction between Aβ deposition and tau phosphorylation other mechanisms 

(or distinct phosphorylation sites) are involved in the initiation of tangle 

pathology.  

 



 

 

287 

4.3.5.3: CRMP2 phosphorylation in TASTPM mice 

 

 

I observed no difference in CRMP2 levels or phosphorylation at either the 

509/514 or 522 sites in 2 month old TASTPM mice compared with controls. 

However, by 6 months of age there is an increase in CRMP2 phosphorylation 

observed in the TASTPM mice at the 509/514 sites. Previous work in our lab on 

a different cohort described an increase in phosphorylation at these sites from 2 

months of age (Cole et al., 2007), again indicating some variability in the rate of 

progression of the disease between individual colonies. Cole et al. also showed 

that CRMP2 hyperphosphorylation is only observed in models which express a 

PS1 mutation which accelerates the deposition of Aβ and was not found in single 

transgenic mice such as the Tg2576 (APPSwe) model. This suggests that double or 

triple transgenic models such as the 3xTg or TASTPM may be better models of 

this aspect of human AD, with the more rapid development of this feature in the 

TASTPM mice making it a particularly useful model. Interestingly abnormally 

high CRMP2 phosphorylation appears very specific to AD, not being detectable 

in other forms of human dementia including tauopathy (Cole, AR, personal 

communication). Therefore the pathways responsible for the change in 

phosphorylation may represent AD specific cellular defects and CRMP2 

phosphorylation may provide an additional biochemical means to distinguish AD 

from non-AD dementia. 

 

4.3.5.4: p35/p25 in TASTPM mice 

 

 

In our colony of TASTPM mice there is no significant difference in p35 or p25 

levels compared to controls at 2 months or 6 months. This suggests that the 
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levels of this co-factor and subsequent alterations in Cdk5 activity do not make a 

major contribution to the biochemical changes observed in TASTPM mice. 

 

4.3.5.5: Synaptophysin in TASTPM mice 

 

 

In both 2 and 6 month TASTPM mice there is no difference in the levels of 

synaptophysin, which implies that there is no synaptic loss associated with the 

progression of Aβ deposition in TASTPM mice. This is in agreement with 

previously published work where no difference in synaptophysin levels was 

found in these mice (Hirata-Fukae et al., 2009), suggesting that the cognitive 

decline described in these mice is not associated with synaptic loss. This synaptic 

stability may explain reflect the lesser magnitude of cognitive changes in the 

TASTPM mice compared with the memory loss observed in AD (Howlett et al., 

2008b). It is not known whether synaptic loss would occur with further ageing of 

these mice, as the pathological features become more advanced and cognitive 

deficits become more severe. However, the lack of changes in synaptophysin at 6 

months suggest that, similar to the 3xTg mouse, the TASTPM mouse fails to 

model the synaptic loss observed in AD. As with the 3xTg mouse, it would be 

interesting to investigate more thoroughly if there were functional alterations 

occurring within the synapse, for example in the molecular composition or 

receptor numbers and distribution. This would be particularly relevant in the 

hippocampus where I observed that neuronal plasticity is impaired and this could 

potentially be linked to synaptic alterations. 
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4.3.5.6: Summary 

 

 

Although 2 month and 6 month old mice were not directly compared, the 

changes present in 6 month mice such as hyperphosphorylation of CRMP2 and 

suggest that there is an age-dependent increase in the severity of the biochemical 

phenotype observed. This correlates temporally with the reported cognitive 

deficits in these mice and the electrophysiological changes observed. However, 

one caveat is that the control mice were of a mixed background; to improve these 

experiments they would need to be repeated with pure C57BL/6 mice as a 

control and with a larger number of mice. However, the biochemical and 

electrophysiological differences in the TASTPM mice at 6 months show that the 

development of disease features occurs much earlier in this mouse model 

compared to the 3xTg mice. There are several possible reasons for this: 

differences in background strain, the method of transgene integration and 

generation of the model, and genetic drift in the 3xTg colony. Alternatively tau 

expression may have a protective effect when combined with APP and PS1 

mutations, although there is little other evidence for this. Therefore, the 

TASTPM mice appear a more practical model for the study of certain aspects of 

AD. However, they are not useful for the study of mechanisms related to tangle 

pathology. The TASTPM mouse does develop minor changes in the 

phosphorylation of tau, but it is not clear whether the pattern of phosphorylation 

is that similar to that observed in human AD. It is likely that there are multiple 

biochemical changes present in each transgenic model and further work is 

required to understand which of these is most important in the progression of AD. 
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4.3.6: AD related protein expression and phosphorylation in 

different brain regions of TASTPM mice 

 

 

Similar to the 3xTg mouse, the TASTPM mouse expresses the transgenes under 

the Thy-1 promoter, so as was expected the cerebellum expressed relatively low 

levels of APP even in 6 month old male mice. The expression pattern was similar 

to that observed in the 3xTg mice, with levels lowest in the cerebellum and 

highest in the cortex. In the TASTPM mouse, amyloid deposition initiates in the 

cortex (Howlett et al., 2004) so it is not surprising that this region shows the 

highest levels of APP. In contrast to 3xTg and control mice, there is a 

significantly elevated level of total tau in the cerebellum compared with the other 

brain regions; there is also a different pattern of phosphorylation in these mice, 

with the highest phosphorylation at the 396 epitope in the cortex and 

hippocampus, and the 404 epitope in the cortex. This shows that there is altered 

phosphorylation at these epitopes which may suggest that the levels of APP or 

APP processing is higher in these brain regions in the TASTPM compared to 

3xTg, but this was not assessed. Similarly, there is a higher level of 

phosphorylation of CRMP2 at the 509/514 and 522 sites in the hippocampus and 

cortex compared to cerebellum, despite higher total CRMP2 in the cerebellum. 

 

4.3.7: Effects of kynurenic acid 

 

 

In Chapter 3 I demonstrated that hippocampal slice viability was markedly 

improved by incubation with 1mM kynurenic acid, as observed by an increased 

probability of obtaining an fEPSP and an increase in the maximum fEPSP 

amplitude in both aged 3xTg and TASTPM mice. Identifying molecular 
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processes associated with the electrophysiogical deficits that are prevented by 

kynurenic acid would give clues to the underlying cause of the deficit. 

A number of signalling pathways have been implicated in glutamate-induced 

excitotoxicity, for example the mitogen-activated protein kinase cascade (MAPK 

cascade) which is one of the most important signalling pathways within the cell. 

In neurons, Ca
2+ 

influx through the NMDA receptor or voltage-dependent Ca
2+ 

channels leads to the sequential activation of the proteins Ras, Raf, MAPK/ERK 

kinase (MEK), and finally MAPK. This is followed by the activation of multiple 

cytoplasmic and nuclear targets including other kinases and transcription factors 

(Thomas and Huganir, 2004). Pharmacological inhibitor studies have shown that 

MAPK is involved in the induction of LTP in the hippocampus (English and 

Sweatt, 1997). In addition, there is a transient increase in the phosphorylation of 

MAPK at the activation sites (Thr 202/Tyr 204) in slices maintained in vitro in 

the first hour following slicing (Ho et al., 2004). However, no differences are 

observed in our colony of control or 3xTg mice in either total MAPK or Thr 202/ 

Tyr 204 phosphorylation between slices incubated in normal aCSF and 1mM 

kynurenic acid. 

The PI3K (phosphoinositide 3-kinase)/PKB (protein kinase B) cascade is also an 

important signalling pathway which regulates neuronal survival and aspects of 

cellular metabolism. The generation of phosphoinositides such as PIP3 by the 

enzyme PI3K results in the localisation of PKB to the membrane, where it is 

phosphorylated and activated by another kinase, PDK-1. This results in the 

activation of downstream signalling pathways, including the regulation of 

apoptotic proteins (Brunet et al., 2001). Although this pathway is usually 
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activated by trophic factors, stimulation of the NMDA receptor leads to a Ca
2+ 

-

dependent phosphorylation and activation of PKB (Perkinton et al., 2002).  

However, there is no difference in either total levels of PKB or activated PKB 

(phosphorylated at the Ser 473 site) in slices treated with 1mM kynurenic acid. 

GSK3β is activated downstream of the PI3K/PKB pathway and has a number of 

diverse actions. It has been linked to neuronal survival following glutamate-

induced excitotoxicity, with activation resulting in neuronal death (Liang and 

Chuang, 2007). However, the expression of GSK3β and its phosphorylation at 

the activation site Ser 9 was not affected by kynurenic acid treatment of the slices, 

and not different between control and 3xTg tissue.  

As well as phosphorylation by GSK3, CRMP2 can be cleaved by neuronal 

calpains, and this modification is one of the main features observed in neurons 

surviving NMDA toxicity (Bretin et al., 2006). However, I found no differences 

in the phosphorylation or cleavage of CRMP2 following treatment with 

kynurenic acid in 3xTg mice or control. 

 

4.3.7.1: Technical aspects  

 

 

Although the data obtained in this study was negative there are a number of 

procedures that could be optimised or altered that may improve the chances of 

finding the molecules responsible for the electrophysiological deficits observed. 

Firstly there is a high degree of variation between individual slices when probing 

for expression and modification of these proteins (especially tau).  I would 

therefore recommend much larger sample sizes for each group when attempting 

this type of experiment. Unfortunately due to time and cohort numbers I was not 
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able to generate these sample sizes to give greater confidence in the data. In 

addition it should be noted that slices were incubated for one hour at room 

temperature before being snap frozen for analysis. Alterations in protein 

phosphorylation have been reported up to six hours after slicing (Taubenfeld et 

al., 2002) and so it may be worthwhile to obtain slices from several time points 

to investigate any delayed biochemical changes. However, my 

electrophysiological measurements were obtained in hippocampal slices 

maintained from one hour up to eight hours in vitro, therefore the changes 

responsible for the electrophysiological differences should be apparent in the 

timeframe studied. Thirdly, the slices which were used for biochemical analysis 

were maintained at room temperature while slices used for electrophysiological 

recordings were subsequently placed in a heated bath at approximately 32°C; 

previous work in our lab has shown that the phosphorylation of some proteins 

such as tau can be temperature-dependent (Ritchie Williamson, personal 

communication). Another limitation is that the recordings of neuronal function 

were made solely from the hippocampus while the whole slice was used for 

biochemical analysis, which included the full hippocampus and an area of cortex. 

This means that any region-specific differences might not be apparent in a whole 

slice lysate. The CA1 pyramidal neurons of the hippocampus are particularly 

susceptible to the effects of cellular stressors such as ischemia (Taubenfeld et al., 

2002) and so it is possible that a degree of neuronal dysfunction occurred in this 

population which was not observed in other cellular types. An alternative 

approach would be to employ microscopy to observe the morphology of the 

neurons within the hippocampus and assess single cell biochemical parameters 



 

 

294 

including neuronal death. However this also comes with limitations, in particular 

the semi quantitative nature and quality of antibodies. 

Finally, I have focused on specific candidate proteins based on current 

knowledge of signalling pathways and disease pathology. The key proteins in 

these neuronal changes in response to APP and tau overexpression may be 

unrelated to the biochemical pathways I studied. Other enzymes such as 

calmodulin-dependent kinase II (CaMKII) and Src family kinases, which can 

modulate NMDA receptor function, are transiently activated in hippocampal 

slices (Ho et al., 2004) along with the induction of multiple transcription factors 

which could mediate cellular survival (Taubenfeld et al., 2002). It would be 

interesting to know the levels of glutamate receptor subunits in case there are any 

alterations in receptor expression; this was attempted but was not successful due 

to the poor quality of Western blots with the specific antibodies available. 

Similarly, there might be alterations in other proteins associated with glutamate 

signalling such as amino-acid transporters. Therefore, further work is needed to 

elucidate the mechanisms by which kynurenic acid treatment protects neurons 

against the cellular stresses associated with the slicing process specifically in the  

AD model tissue. 
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Chapter 5 

 

Behaviour 
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5.1: Introduction 

 

 

3xTg mice show behavioural alterations such as alterations in circadian rhythm, 

locomotor activity and exploratory behaviour prior to 6 months of age, before the 

development of significant plaque pathology (see Chapter 1.4.5). In addition, 

cognitive deficits have been reported in the 3xTg mouse model from the age of 4 

months, when impairment is seen in long-term spatial learning in the MWM, and 

deficits in short-term memory are observed at 6 months (Billings et al., 2005). 

This chapter aims to characterise aspects of the behavioural and cognitive 

phenotype in 3xTg mice. These experiments used male mice only to avoid the 

complications of the oestrous cycle on mouse behaviour. Initially, 4 month old 

3xTg mice were placed in an activity box for 15 minutes on four consecutive 

days to observe locomotor and exploratory activity. When the mice reached 6 

months old, an age at which cognitive deficits are reported to be apparent, they 

were subsequently tested in a rewarded alternation T-maze task. This is a spatial 

learning task which measures aspects of hippocampal function and has not 

previously been reported in 3xTg mice. Initially, mice were tested without a 

delay between the phases of each trial, with a time delay added later to increase 

the difficulty of the task.  

In summary, the first section of this chapter describes the use of the activity box 

to characterise locomotor activity, while the second section reports the results of 

the rewarded alternation T-maze task used as a test of cognitive function in the 

3xTg mice.  
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5.2: Results 

 

 

5.2.1: Activity box in 4 month 3xTg males 

 

 

 

4 month 3xTg and control male mice were tested in an activity box, which 

consisted of a Perspex box attached to an activity monitor which used infrared 

beams to measure the movements of each mouse (see Chapter 2.2.3). Measures 

recorded were slow and fast mobile counts, which are a measure of horizontal 

exploratory activity, slow and fast rearing counts, which are a measure of vertical 

activity, and total mobile time. 

 

 

5.2.1.1: Mobile counts 

 

 

Mobile counts were recorded from the number of horizontal beam breaks and 

divided into fast mobile counts (Fig. 5.1A) and slow mobile counts (Fig. 5.1B). 

Main effects analysis of the slow mobile counts shows  a significant effect of 

strain (F(1,20) = 5.3,  p < 0.05, repeated measures ANOVA), day (F(3,60) = 3.2,  p < 

0.05, repeated measures ANOVA), and time (F(2,40) = 3.2,  p < 0.05, repeated 

measures ANOVA), with the interaction between these factors also significant 

(strain x day x subtrial F(6,120) = 3.8,  p < 0.05, repeated measures ANOVA). 

Main effects analysis of the fast mobile counts shows a significant effect of strain 

(F(1,20) = 7.8,  p < 0.05, repeated measures ANOVA), day (F(3,60) = 4.2,  p < 0.05, 

repeated measures ANOVA), and time (F(2,40) = 117.3,  p < 0.05, repeated 

measures ANOVA), with the interaction between these factors also significant 
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(strain x day x subtrial F(6,120) = 6.3,  p < 0.05, repeated measures ANOVA). This 

shows that there is a difference in activity between the control and 3xTg mice in 

this task. 

The significant effect of time suggests that habituation occurs to the novel 

environment in both strains of mice within each individual trial. However, 

control mice appear to show inter-trial habituation which is absent in the 3xTg 

mice; this is particularly noticeable in the first five minutes of each trial. This can 

be confirmed statistically, as for the slow mobile counts there is a significant 

interaction between the first time bin and the trial day in control mice (day x 

subtrial F(3,30) = 7.1,  p < 0.05, repeated measures ANOVA) while in the 3xTg 

mice there is no significant difference (day x subtrial F(3,30) = 8.5,  p > 0.05, 

repeated measures ANOVA). Similarly, in the fast mobile counts there is a 

significant interaction between the first time bin and the trial day in control mice 

(day x subtrial F(3,30) = 6.3,  p < 0.05, repeated measures ANOVA) while in the 

3xTg mice there is no significant difference (day x subtrial F(3,30) = 1.2,  p > 0.05, 

repeated measures ANOVA). 

 

 

5.2.1.2: Total mobile time 

 

 

When total mobile time is calculated (Fig. 5.2), main effects analysis of the slow 

mobile counts shows a significant effect of strain (F(1,20) = 6.3,  p < 0.05, repeated 

measures ANOVA), and time (F(2,40) = 124.2,  p < 0.05, repeated measures 

ANOVA), with the effects of day just failing to reach significance (F(3,60) = 2.7,  

p = 0.052, repeated measures ANOVA), The interaction between all three factors 

is significant (strain x day x subtrial F(6,120) = 4.1,  p < 0.05, repeated measures 
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ANOVA) showing that there is a difference between 3xTg and control, with 

3xTg mice less active overall in the activity box.  

As with the fast and slow mobile counts, the control mice appear to show inter-

trial habituation which is absent in the 3xTg mice. In control mice there is a 

significant interaction between the first time bin and the trial day (day x subtrial 

F(3,30) = 6.5,  p < 0.05, repeated measures ANOVA) while in the 3xTg mice there 

is no significant difference (day x subtrial F(3,30) = 0.5,  p > 0.05, repeated 

measures ANOVA). 

 

 

5.2.1.3: Other measures 

 

The slow and fast rearing counts were used as a measure of vertical exploratory 

behaviour, and there is no difference observed at any time point between 3xTg 

and control mice in this measure (p > 0.05, repeated measures ANOVA). 

 

 

5.2.1.4: Summary 

 

When performance of 4 month 3xTg male mice is measured in the activity box, 

the 3xTg mice show a decrease in the mobile counts and total mobile time 

calculated. This shows that there is a reduction in exploratory activity in 3xTg 

mice compared to control and this is particularly apparent during the first five 

minutes of each trial.  
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Figure 5.1: Fast and slow mobile counts measured in the activity box. Mean 

counts for each 5 minute time bin over four consecutive days are shown for fast 

mobile (A) and slow mobile (B) counts in 4 month 3xTg and control mice. 
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Figure 5.2: Total mobile counts measured in the activity box. Mean counts for 

each 5 minute time bin over four consecutive days are shown for the total mobile 

counts in 4 month 3xTg and control mice. 
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5.2.2: T-maze performance in 6 month 3xTg male mice 

 

 

6 month 3xTg and control mice were trained in a rewarded alternation T-maze 

task (see Chapter 2.2.3) and the mean percentage of correct entries was 

calculated for each group for each day of the trial. In 3xTg mice, the percentage 

of correct entries remains relatively stable over all days; this is similar to the 

control mice although the percentage correct in the control group is on average 

slightly higher (Fig. 5.3A). As there was no significant difference between the 

individual days (p > 0.05, repeated measures ANOVA), the data from all nine 

trials was pooled together. Overall, the mean percentage correct in the 3xTg mice 

is 74.2 ± 1.2% while in the control it is 80.6 ± 2.2% (Fig. 5.4) There is a small 

but statistically significant reduction in performance (p < 0.05, unpaired t-test) in 

the 3xTg mice compared with the control.  

 

5.2.2.1: T-maze results (delay) 

 

 

Following the initial experiments, further trials were carried out with a delay of 

either thirty or sixty seconds introduced between the forced stage and the choice 

stage. This makes the task more difficult and was intended to make any cognitive 

deficits in the 3xTg mice more apparent. A longer 120 second delay was also 

attempted, but the mice were unable to perform above chance levels on this task 

so further trials were not carried out with this time delay. Due to similar 

performance of the control and 3xTg mice on the delayed T-maze task only six 

trials were carried out. 

There is no difference between the performance of 3xTg and control at either 

delay time on any of the six trials (Fig. 5.3B). When the overall performance is 
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meaned, with a thirty second delay the percentage correct for 3xTg mice is 79.8 

± 4.2% while for the control mice it is 78.2 ± 3.3%. With a sixty second delay, 

the percentage correct for 3xTg mice is 75.5 ± 4.4% while for the control mice it 

is 67.8 ± 4.8% (Fig 5.4). The sixty second delay increases the difficulty of the 

task and the performance of the control mice is significantly lower (p < 0.05, 

paired t-test) while that of the 3xTg mice remains stable. There is however no 

difference in performance between the 3xTg and control mice at either a thirty or 

sixty second delay. 

 

5.2.2.2: Summary 

 

 

There is a minor reduction in performance in the no-delay T-maze task by the 

3xTg mice at 6 months but overall the marked cognitive deficits expected at this 

age are not observed. This is in agreement with the lack of electrophysiological 

and biochemical phenotype at this age. 

 

 



 

 

304 

 

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

M
e

a
n

 p
e

rc
e

n
ta

g
e
 c

o
rr

e
c
t 
(%

)

Trial number

 6 month 3xTg males (n = 9)

 6 month control males (n = 9)

Figure 5.3: Percentage of correct entries in 3xTg and control. The mean 

percentage correct for each group over nine consecutive days is shown in A. The 

mean percentage correct when a delay of thirty seconds or sixty seconds is added 

for six consecutive days is shown in B. 
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Figure 5.4: Mean percentage of correct entries for all trials. The graph 

shows the percentage correct when all the days of the trial are pooled together 

for 3xTg and control, with no delay, a thirty second delay or a sixty second 

delay. 
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5.3: Discussion 

 

 
In male 3xTg mice, the activity box was used to measure exploratory and 

locomotor activity, while the T-maze test was used to test cognitive function. 

Mice were tested in the activity box at 4 months and trained in the T-maze task at 

6 months, as this was an age when intraneuronal Aβ was expected to be present 

based on previous reports (Oddo et al., 2003). Previous studies have also shown 

an impairment in hippocampal-dependent cognitive performance from the age of 

4 months, which is though to be linked to Aβ accumulation (Billings et al., 2005). 

 

 

5.3.1: Activity box 

 

 

The activity box was used as a measure of spontaneous locomotor activity in 4 

month old 3xTg and control male mice. Mobile counts were used as a measure of 

horizontal exploratory activity and horizontal counts as a measure of vertical 

activity. It was found that the 3xTg mice were markedly less mobile in the initial 

five minutes after they are placed in the box, and this was most pronounced on 

the first of the four trials, showing that the 3xTg mice remain stationary for 

prolonged periods of time when first placed in the box. The 3xTg mice also show 

lower inter-trial habituation than the control mice, which showed a marked 

reduction in the number of mobile counts over the first three days. However, 

there was no difference in the number of rearing counts between the two groups, 

showing that vertical exploratory activity is similar. 
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Several other groups have carried out behavioural tests on the 3xTg mice at 

various ages using the activity box and larger open field, with similar findings. In 

young (2.5 month old) male 3xTg mice, there was no difference in activity in the 

two tests, showing that there are no locomotor changes present prior to the 

development of pathology. However, reduced activity was reported in 6 month 

male and 12 month female 3xTg mice, with the presence of ‘strong initial 

freezing behaviour’ in the open field test in the male mice (Gimenez-Llort et al., 

2007). Similarly, the behaviour of 8 month 3xTg mice in the open field was 

characterised by limited exploratory behaviour and freezing (Sterniczuk et al., 

2010a). Finally, in a ten minute activity box study, 3xTg mice showed both 

reduced horizontal and vertical activity with frequent short episodes of low 

activity lasting from 5-30 seconds (Arsenault et al., 2011). Importantly, these 

mice do not show any locomotor or co-ordination difficulties which could affect 

their behaviour (Sterniczuk et al., 2010a). This was also observed in our colony 

of 3xTg mice which could successfully complete a rotarod task (data not shown) 

and showed no noticeable differences in locomotion. These data are not included 

in the thesis as both groups of mice showed a high level of passive rotations 

(clinging onto and rotating with the rod) which prevented analysis of the results.  

It is clear that the phenotype of the 3xTg involves a reduction in exploratory 

behaviour and increased freezing which is linked to the development of 

pathological features in these mice. However, the motivating factor behind this 

behaviour is unclear. One study suggests it represents a higher level of anxiety 

and reduced fear threshold, another increased emotionality, and the other 

suggests the behaviour is ‘seizure-like’, although no evidence for the presence of 

seizures has been noted in the 3xTg mice (Gimenez-Llort et al., 2007, Sterniczuk 
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et al., 2010a, Arsenault et al., 2011).  It has been shown that freezing responses 

of 3xTg mice in a brightly lit chamber is significantly higher than control and can 

be reduced by the administration of the anxiolytic benzodiazepine diazepam 

(Espana et al., 2010).  This suggests that the freezing response may partially be 

an anxiety-linked behaviour. The presence of increased urination and defecation, 

an index of emotional behaviour, was also reported by Gimenez-Llort et al. in 

their study; this was also observed in our colony of 3xTg mice. However, in the 

elevated plus maze test, which is classically used as a measure of anxiety, no 

difference was observed between 3xTg and control by two separate groups 

(Gimenez-Llort et al., 2007, Sterniczuk et al., 2010a). In addition, it has been 

reported that there is no increase in plasma corticosterone levels, which can be 

used as a biochemical marker of the response to stressful tasks, in male 3xTg 

mice following testing in the MWM (Clinton et al., 2007). This suggests that the 

reduction in exploratory behaviour in the 3xTg mouse is a complex response to a 

novel environment which is not yet fully understood. In addition, a 

comprehensive study of both male and female mice at similar ages has not been 

carried out and would be required to fully characterise this type of behaviour. In 

our colony of 3xTg mice, only male mice were used and this was at 4 months of 

age, early in the time course of Aβ deposition. As the evidence suggests that the 

development of pathology is occurring more slowly in our colony of 3xTg mice, 

the behavioural changes are likely due to age-independent effects of transgene 

overexpression or very early biochemical alterations. Emotional behaviour in the 

3xTg mouse has been linked to the amygdala, where intraneuronal Aβ has been 

shown to accumulate at 6 months, earlier than in the cortex or the hippocampus 

(Espana et al., 2010). As biochemical changes in the amygdala were not studied 
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in our colony of 3xTg mice, the possibility of a link between Aβ accumulation in 

this region of the brain and the observed behaviour in the activity box cannot be 

ruled out. Further work would be required using a range of tests to examine 

emotional behaviour in 3xTg mice and how this may relate to behavioural 

disturbances which are observed in AD. 

 

5.3.2: T-maze performance 

 

 

At 6 months, both 3xTg and control mice were tested in a T-maze task to observe 

any hippocampal-dependent cognitive deficits that might be apparent at this age. 

Initially, mice were habituated to the apparatus by being placed inside with their 

littermates. It was observed at this stage and in the initial stages of testing that 

many of the 3xTg mice showed reduced activity and a reluctance to explore, 

which could be linked to the low levels of activity observed in the activity box. 

For this reason, food restriction was required to encourage the mice to carry out 

the task. Our colony of 3xTg mice showed a significantly higher body weight 

than control mice, which is thought to be due to increased appetite and food 

intake (Knight et al., 2010). In this respect, motivation to obtain a food reward 

might be different between the 3xTg mice and control. For this reason, food 

restriction was carried out proportionally to body weight to negate any 

differences in food-motivated behaviour. 

In the no-delay T-maze task, which was carried out for nine consecutive days, 

the mice show the ability to complete the task from the first trial, reaching rates 

of 70-80% correct choices. No improvement or decline was observed throughout 

subsequent trials. On nearly all days, there was a trend for the performance of the 
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3xTg mice being slightly lower than the control mice, suggesting that there may 

be a degree of cognitive decline in these mice. This results in a small but 

significant reduction of the percentage correct from 81% in the control mice to 

74% in the 3xTg mice. However, there was marked variation between individual 

mice in both the control and 3xTg groups, with some making consistently correct 

choices and others multiple errors. This shows the importance of using a large 

sample size of mice; an increased number of mice could not be used in this study 

due to the time constraints of the task, but would be a way to improve 

experiments by reducing the effects of individual variability. In addition, it 

would be interesting to measure biochemical changes in individual mice to see if 

there was any correlation between performance in the task and the levels of AD-

associated proteins. 

Following this task, a delay of 30 or 60 seconds was introduced in an attempt to 

make the trials more difficult, and this was carried out for six consecutive days. 

However, in this task there was no significant difference between the 

performance of control and 3xTg mice at either delay time on any of the trials. 

Overall, the percentage correct for the 30 second delay is slightly greater than the 

60 second delay, reflecting the additional difficulty produced by increasing the 

time between trials. Unfortunately, due to the way the study was carried out there 

is no coexisting data for these trials for responses without a delay. It would be 

interesting to observe if there was still a difference in this task between the two 

groups or if the 3xTg mice had shown an improvement. As the two sets of 

experiments were carried out back-to-back on the same cohort of mice, it is 

possible that the average performance of the 3xTg mice would have increased. 

Overall, the results on the harder 30 and 60 second delay trials show that the 
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3xTg mice are able to carry out this task without difficulty. This contrasts with 

previous work in which these mice show marked cognitive deficits at the same 

age (Billings et al., 2005). 

Surprisingly, relatively few cognitive tests have been carried out in 3xTg mice. 

Deficits have been observed in the MWM at 6 months (Billings et al., 2005) but 

enhanced performance in a contextual fear conditioning task, which depends 

upon both amygdala and hippocampus, is observed at the same age (Espana et al., 

2010).  One study using an object recognition task did not report deficits in 

performance in the 3xTg mice until the age of 9 months (Clinton et al., 2007); 

such a task requires hippocampal functioning but may also involve some cortical 

processing (Broadbent et al., 2004). It is therefore likely that the onset of 

cognitive deficits may vary depending on the specific task used.  

The rewarded alternation T-maze is also thought to be a task which is primarily 

hippocampal-dependent. Deficits in T-maze performance have previously been 

correlated to impairments in LTP in the CA1 and DG regions in APPSwe mice 

(Chapman et al., 1999b). However, at this age there are no electrophysiological 

changes apparent in our colony of 3xTg mice (see Chapter 3). The pathological 

features present in 3xTg mice have also been linked to the onset of behavioural 

deficits, with Aβ oligomers linked to cognitive performance in the Morris water 

maze (Billings et al., 2007) and intraneuronal Aβ accumulation in the amygdala 

thought to contribute to alterations in inhibitory avoidance learning (Espana et al., 

2010). A role has been suggested for both Aβ and tau, as reduction of the levels 

of both proteins is required to improve cognitive performance in aged 3xTg mice 

(Oddo et al., 2006b). In our colony of 3xTg mice, there is a lack of marked 
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biochemical changes in APP or tau at 6 months (see Chapter 4), suggesting that 

the pathological features are not yet well developed at this age. Overall, the lack 

of an electrophysiological or biochemical phenotype in these 3xTg mice at 6 

months therefore correlates with the behavioural findings which show that 

hippocampal functioning remains relatively unaffected at this age. 
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Table 6.1: Summary of main findings in 3xTg mice 

 
Electrophysiology 

 

Biochemistry Behaviour  

 

Age I/O  PPF Normalised 

LTP 

Non-norm. 

LTP 

Deficits  

prevented  

by KA 

APP Tau P-Tau 

AT8 

P-Tau 

396 

P-Tau 

404 

P-CRMP2  

 

 

2 months 

 

 

 

NC 

 

 

↓ 

 

 

NC 

 

 

↑ 

 

 

- 

 

 

↑ 

 

 

↑ 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

6 months  

 

 

NC 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

↓ locomotor 

activity (4 

months) 

 

NC in T-maze 

alternation task 

(6 months) 

 

 

 

12 months 

 

 

 

↓ 

 

 

NC 

 

 

↑
 

initial
 

 

 

↓
 

 

 

YES 

 

 

↑ 

 

 

↑ 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

- 

 

 

17 months  

 

 

 

↓ 

 

 

NC 

 

 

↑
 

plateau
 

 

 

↓ 

 

 

- 

 

 

↑ 

 

 

↑ 

 

 

NC 

 

 

NC 

 

 

NC 

 

↑ 
509/514 

 

 

- 

 

All data are in comparison with control mice. NC = no change, ↑ = increase, ↓ = decrease, - = not measured. 

I/O = input-output, PPF = paired-pulse facilitation, LTP = long-term potentiation, KA = kynurenic acid, P-tau = phosphorylated tau, P-CRMP2 = 

phosphorylated CRMP2. 



 

 

315 

Table 6.2: Summary of main findings in TASTPM mice 

 
Electrophysiology 

 

Biochemistry  

 

Age I/O  PPF Normalised 

LTP 

Non-norm. 

LTP 

Deficits  

prevented  

by KA 

APP Tau P-Tau 

AT8 

P-Tau 

396 

P-Tau 

404 

P-CRMP2 

 

 

2 months 

 

 

 

NC 

 

 

↓ 

50ms only 

 

 

NC 

 

 

NC 

 

 

- 

 

 

↑ 

 

 

↑ 

 

 

↓ 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

6 months  

 

 

 

 

Not measured due to marked reduction in 

fEPSP amplitude 

 

 

YES 

 

 

↑ 

 

 

↑ 

 

 

NC 

 

 

NC 

 

 

NC 

 

 

↑ 

 

All data are in comparison with control mice. NC = no change, ↑ = increase, ↓ = decrease, - = not measured. 

I/O = input-output, PPF = paired-pulse facilitation, LTP = long-term potentiation, KA = kynurenic acid, P-tau = phosphorylated tau, P-CRMP2 = 

phosphorylated CRMP2. 
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Conclusions and perspectives 

 

 

The work presented here has further characterised the phenotype of the 3xTg and 

TASTPM mouse models of AD through biochemical, behavioural and 

electrophysiological studies. This section summarises the key findings of this 

thesis and the contribution of these to AD research, limitations of these studies 

and suggestions for alternative approaches or further work. 

 

The major biochemical, behavioural and electrophysiological findings reported 

for 3xTg mice are summarised in Table 6.1, and for TASTPM mice in Table 6.2. 

 

6.1: Electrophysiology 

 

 

I have carried out experiments to study synaptic function, including basal 

synaptic transmission and LTP, in the 3xTg and TASTPM models. Previous 

work has shown that the 3xTg mice show an age-dependent reduction in the 

magnitude of LTP from the age of 6 months (Oddo et al., 2003) while no 

previous electrophysiological studies of the TASTPM mouse have been 

published.  

In this thesis, I have shown that in our colony of 3xTg mice early alterations in 

synaptic function occur at the age of 2 months and manifest as an increase in 

basal synaptic transmission with no change in the magnitude of LTP. The 

mechanisms underlying this are not known and would require further, more 

detailed studies, for example the use of voltage clamp techniques to measure the 

properties of individual neurons. It is possible that the elevation in basal 
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transmission may represent an increase in the intrinsic excitability of 

glutamatergic neurons which has previously been reported in this model 

(Arsenault et al., 2011) or alterations in postsynaptic Ca
2+

 regulation associated 

with the presence of the transgenes (Chakroborty et al., 2009).  

I have also shown that, in contrast to the colony of 3xTg mice studied by Oddo et 

al., alterations in synaptic function are not present in our colony of 3xTg mice 

until the age of 12 months.  This is observed as a marked reduction in the 

amplitude of the fEPSP suggesting a deficit in basal synaptic transmission. 

Despite this, LTP can be induced normally up to the age of 17 months although 

the absolute magnitude of potentiation is reduced due to the smaller fEPSP 

amplitude. This shows that there are major differences in the phenotype of our 

colony of 3xTg mice compared with that originally characterised. 

Previous studies in APP transgenic mice have shown a similar reduction in the 

fEPSP amplitude, but this could be reversed by the presence of the glutamate 

receptor antagonist kynurenic acid within the solution during hippocampal slice 

preparation (Fitzjohn et al., 2001). I replicated this in 3xTg mice and have shown 

that treatment with 1mM kynurenic acid during slicing restores fEPSP amplitude 

to the levels observed in control mice. Importantly, this shows that glutamate-

induced excitotoxicity is a major factor influencing slice viability and may have 

an effect on the results obtained using the hippocampal slice preparation. This 

has relevance for the wider study of synaptic plasticity in transgenic mouse 

models, as it highlights the importance of standardising extracellular recording 

protocols and taking measures to improve neuronal viability within the 

hippocampal slice.   
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I have shown that in the TASTPM mouse model, there are no alterations in basal 

synaptic transmission or LTP at the age of 2 months showing that synaptic 

function at this age remains normal.  However, at 6 months, there is a marked 

reduction in the amplitude of the fEPSP and the percentage of successful fEPSPs 

obtained. Similar to the 3xTg mice, this can be completely prevented by 

incubation with 1mM kynurenic acid during slicing.  

These findings suggest that a common feature of mouse models of AD 

possessing the APP and PS1 transgenes may be an enhanced vulnerability to the 

high levels of glutamate release associated with the slice preparation process. 

This increased susceptibility to excitotoxicity may represent the presence of 

neurons within the hippocampus which are ‘primed’ to undergo dysfunction 

under conditions of enhanced cellular stress. The molecular mechanisms 

underlying this process are not known, but are likely to involve dysfunction of 

components of the glutamatergic neurotransmitter pathway, for example 

alterations in glutamate release or uptake by astrocytes, the influence of  Aβ 

oligomers on NMDA receptor function, or the alterations in intracellular Ca
2+

 

regulation which can occur with the PS1 mutation. Further study of these 

mechanisms would require the combined use of several different techniques, for 

example the use of immunofluorescence to observe NMDA receptor numbers 

and localisation combined with electrophysiological techniques to measure 

glutamate uptake and release within the synapse or with neuronal Ca
2+ 

imaging 

to measure intracellular Ca
2+ 

transients. 

It is not known if the increased susceptibility to excitotoxicity occurs in 

hippocampal neurons in vivo in the 3xTg or TASTPM mice, and this would 



 

 

319 

require further studies in the intact animal. It would be interesting to observe if 

the hippocampal neurons of these mice are more susceptible to a variety of other 

cellular stressors, for example conditions of metabolic or oxidative stress, and if 

this is a contributory mechanism to neuronal dysfunction in AD. 

 

6.2: Biochemistry 

 

 

In this thesis I have quantified the expression of several AD-associated proteins 

associated with the pathological features of AD in order to observe the presence 

of any biochemical changes which might be associated with my 

electrophysiological findings in the 3xTg and TASTPM mice. 

I have found that in 3xTg mice, although the presence of elevated levels of APP 

and tau confirmed the presence of the transgenes, there was little age-dependent 

increase in the levels of these proteins. I did not observe hyperphosphorylation of 

tau at the AT8, 396 or 404 epitopes which has been reported to occur from the 

age of 12 months (Oddo et al., 2007) although there was a trend for increased 

phosphorylation at the age of 17 months. The lack of biochemical changes in our 

colony of 3xTg mice suggest that there may be a delayed onset of the 

pathological features associated with the phenotype, although this would require 

further imaging or immunohistochemical studies to observe plaque and tangle 

deposition. 

I have also studied other cellular proteins such as CRMP2, which may be 

phosphorylated in the early stages of AD progression and seems to be a feature 

relatively specific to AD (Williamson et al 2011, in press). At 17 months, 

enhanced phosphorylation of the 509/514 residues (GSK3 sites) was observed. 
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Although this is later than previously observed in our lab, it did occur prior to 

other biochemical changes in the 3xTg mice studied and thus may be an early 

feature of disease progression. Other proteins such as synaptophysin were not 

altered in this model, suggesting that synaptic loss does not occur; to provide a 

more sensitive measure of synaptic number this could be confirmed by imaging 

in these mice to observe the density of dendritic spines.  

The relatively minor biochemical changes in our colony of 3xTg mice supports 

the conclusion of my electrophysiological studies, which suggest the delayed 

onset of disease-related deficits in our colony (observed as a normal magnitude 

of LTP at 17 months). Unfortunately, I was unable to observe any molecular 

changes which might be associated with the enhanced susceptibility to 

excitotoxicity observed in these mice. Further work would be required to 

elucidate the biochemical pathways associated with this feature; candidates for 

further Western blotting or immunohistochemistry experiments include NMDA 

receptor subunits, α and β-secretase enzymes, and the excitatory amino acid 

transporters. 

I also carried out similar biochemical studies in the TASTPM mice. In these mice, 

I found no major alterations in protein levels at 2 months, supporting the finding 

that synaptic function is normal in these mice at this age. At 6 months, I observed 

increased phosphorylation at the CRMP2 509/514 residue, which suggests that 

the early development of biochemical changes occurs more rapidly in this model 

than in our 3xTg colony. This may explain the earlier onset of the reduction of 

fEPSP amplitude observed in slices prepared under normal conditions (6 months 

in TASTPM mice vs. 12 months in 3xTg mice). Unfortunately, I was unable to 
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characterise the progression of biochemical changes at older ages in these mice 

due to breeding difficulties and premature mortality; it would be interesting to 

follow the progression of pathology in these mice as they age and whether this is 

linked to the development of alterations in basal synaptic transmission or LTP.  

 

6.3: Behaviour 

 

 

In this thesis I also carried out behavioural experiments on the 3xTg mice, 

comprising an activity box study and cognitive testing in the rewarded 

alternation T-maze task. Performance in the T-maze has not previously been 

reported in these mice but is thought to be hippocampal-dependent, similar to the 

MWM. I found that in the activity box the 3xTg mice showed a reduced level of 

activity when compared to control mice, and this is in support of previously 

reported findings which have shown increased freezing and anxiety-like 

behaviour in this model. This is independent of the development of pathological 

features as it was observed at 4 months and shows that these mice have an early 

behavioural phenotype due to the presence of the transgenes. In cognitive studies 

of 6 month 3xTg mice, I did not observe any deficits in performance in the T-

maze alternation task. This is in agreement with the lack of biochemical changes 

present in these mice at this age. Based on this knowledge, it would be 

interesting to carry out cognitive testing in older 3xTg mice, for example at 12 or 

17 months, although it would be necessary to use a more complex task capable of 

detecting early, more subtle cognitive deficits.  
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6.4: Final conclusions  

 

The main aims of this thesis were to observe the progression of synaptic, 

biochemical and behavioural alterations in the 3xTg and TASTPM models of AD. 

Unfortunately, I did not observe the electrophysiological and cognitive deficits 

originally reported with the generation of the 3xTg model, and this is  supported 

by the lack of biochemical changes I observed using Western blotting. This 

suggests that the development of the pathological features is delayed in our 

colony of 3xTg mice. The most likely reason for the delay is a degree of genetic 

drift which has occurred in this model over multiple generations when housed in 

separate locations.  To resolve this, the only solution would be to re-derive the 

mice from the original colony. These findings show the importance of careful 

characterisation of the development of pathological features in individual 

colonies of transgenic mice in order to link this with other experimental findings 

such as electrophysiology studies. 

The delayed onset of the phenotype in the 3xTg mice has made it difficult to 

carry out one of the initial aims of my thesis, which was to observe any early 

biochemical alterations associated with disease progression. However, in the 

TASTPM mice the development of a biochemical phenotype occurred more 

rapidly and one of the early changes observed was the hyperphosphorylation of 

CRMP2 (also observed in the 3xTg mice at 17 months). This suggests that this 

feature is an early molecular change associated with APP transgene expression. 

As it has been suggested that hyperphosphorylation of CRMP2 is an event 

specific to AD, this could be an important marker of disease progression and 
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suggests that the activation of protein kinases such as GSK3 is an important early 

feature of AD development. 

Another initial aim of my thesis was to directly compare electrophysiological and 

biochemical decline in the 3xTg and TASTPM models in order to gain insight 

into the role of tau in AD pathology, but the dramatic differences observed 

between different cohorts of 3xTg mice makes this difficult. However, the 

presence of an enhanced susceptibility to excitotoxicity in both the 3xTg and 

TASTPM mice does suggest that this feature is independent of the expression of 

the tau transgene.  As the TASTPM mouse develops both electrophysiological 

and biochemical changes at a relatively early age, it may be a useful model for 

studying aspects of AD associated with Aβ pathology. It would be interesting to 

add a mutant tau transgene into this model to establish whether tau mutation has 

any effect on these features.  

One of the major findings of my thesis is the enhanced susceptibility of 

hippocampal neurons to excitotoxicity which occurs in both the 3xTg and 

TASTPM mouse models and so may represent a common feature of transgenic 

mouse models of AD possessing the APP transgene. The molecular mechanisms 

which underlie this process require further study, but could result in a degree of 

neuronal dysfunction which, if present in the intact animal, could render 

hippocampal neurons more susceptible to the effects of cellular stressors and 

accelerate the progression of AD pathology.  

Although transgenic mice such as the 3xTg or TASTPM mice have their 

limitations and cannot model all aspects of AD they have been critical in 

increasing our understanding of the disease. I hope that the work presented in this 
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thesis and the characterisation of the phenotype of these mice can contribute to 

our knowledge of the molecular mechanisms underlying human AD and 

subsequently provide a means to confirm whether potential interventions have 

physiological or behavioural outcomes prior to human studies. 
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