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Abstract   
 

Cell therapy involving treatment of diseases with the body’s own cells would benefit both 

liver diseases and Type 1 diabetes.  Liver diseases are associated with a marked reduction 

in hepatocytes whilst Type 1 diabetes is characterized by the loss of functional insulin-

producing β-cells.  Treatment is currently achieved by whole organ liver (or hepatocyte) 

and islet transplantation methods respectively.  However the major limitation to this 

approach is the shortage of organ donors, thus alternative sources of cells must be found.  

Potential sources with enormous therapeutic potential are existing cells in the liver and 

pancreas involved during the regeneration process. In vivo studies have shown progenitor 

oval cells differentiate into hepatocytes during liver regeneration and α-cells 

transdifferentiate into β-cells during pancreas regeneration.  However neither can be fully 

exploited until the molecular mechanisms governing their proliferation and 

trans/differentiation are fully elucidated.  Herein we characterise two in vitro cell models, a 

mouse adult oval cell line, known as BMOL-TAT1.1, and mouse adult pancreatic α-cell 

line, known as α-TC19 by RT-PCR and immunofluorescent staining.  We found that under 

proliferating culture conditions BMOL-TAT1.1 were heterogenous consisting of two 

distinct cell types with different β-catenin signalling pathway activation.  Inducible 

differentiation (dexamethasone) induced hepatic and non-hepatic markers in specific cell 

subtypes, indicating multi-potentiality.  Ectopic expression of transcription factor HNF4α 

in homogenous small BMOL-TAT1.1 cells revealed no hepatic differentiation but potent 

expression of intestinal markers (Villin, ALPi, ApoAIV).  HNF4α was identified as a 

candidate transcriptional regulator in α- to β-cell transdifferentiation, as ectopic expression 

in α-TC19 cells, suppressed glucagon and induced expression of several functionally 

important β-cell markers (GLUT2, GCK, insulin).  The contribution of chromatin histone 

acetylation was also assessed, due to its importance in endocrine fate regulation.  In toto 

these results have important implications for the development of potential therapies to treat 

liver diseases and Type 1 diabetes. 
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GGT Gamma-Glutamyl Transpeptidase  IU Infection Units 

GLUT2 Glucose Transporter 2  K3Fe(CN)6 Potassium Ferricyanide 

GRE Glucocorticoid Response Element  
K4Fe(CN)6-

3H2O 
Potassium Ferrocyanide 

GSK-3β Glycogen Synthase Kinase 3 Beta  l Light Path Length 

HAT Histone Acetyltransferase  lacZ Lactose Operon Z 

HCC Hepatocellular Carcinoma  LAP Liver-Enriched Activator Protein 

HCl Hydrochloric Acid  LEF Lymphocyte Enhancer Factor 

HDAC Histone Deacetylase  LETF 
Liver-Enriched Transcription 

Factors 

HDACi HDAC inhibitors  LIP Liver-Inhibitor Protein 

HEK-293 Human Embryonic Kidney 293   LRP 
Low Density Lipoprotein Related 

Protein 

HeLa Henrietta Lacks Cell Line  LSM Laser Scanning Microscope 

HEPES 
4-(2-hydroxyethyl)-1-

piperazineethanesulfonic Acid 
 M Molar 

H2O Water  mAb Monoclonal Antibodies 

H2O2 Hydrogen Peroxide  MACS Magnetic  Activated Cell Sorting 

HNF1α Hepatocyte Nuclear Factor 1 Alpha  M2-PK Muscle Pyruvate Kinase 2 

HNF1β Hepatocyte Nuclear Factor 1 Beta  Me Methanol 

HNF3α/ 

FoxA1 

Hepatocyte Nuclear Factor 3 Alpha/ 

Forkhead Box A1 
 MEM MOPS, EGTA, MgSO4 

HNF3β/ 

FoxA2 

Hepatocyte Nuclear Factor 3 Beta/ 

Forkhead Box A2 
 MEMFA MEM + 3.8% Formaldehyde 
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mg Milligram  PCR Polymerase Chain Reaction 

MgCl2 Magnesium Chloride  PDGF Platelet Derived Growth Factor  

MgSO4 Magnesium Sulphate  Pdx1 Pancreatic Duodenal Homeobox 1 

ml Millilitre  PEPCK 
Phosphoenolpyruvate 

carboxykinase 

mm Millimetre  PFA PBS + 4% Formaldehyde 

mM Millimolar  PI-3K Phosphoinositide- 3 Kinase  

MOI Multiplicity Of Infection  PKA Protein Kinase A 

MOPS 4-morpholinepropanesulfonic Acid  PNA Peanut Agglutinin 

mRNA Messenger Ribonucleic Acid  PP Pancreatic Polypeptide 

Muc2 Mucin 2  PP Periportal 

Muc5ac Mucin 5, Subtypes A and C  PV Perivenous 

NaCl Sodium Chloride  Rev Reverse 

NaH2PO4-

H2O 
Monobasic Sodium Phosphate  RIN Rat Insulinoma  Cell Line 

Na2HPO4 Dibasic Sodium Phosphate  RIP Rat Insulin Promoter 

Ngn3 Neurogenin 3  RNA Ribonucleic Acid 

Nkx2.2 NK2 Homeobox 2  rpm Revolutions Per Minute 

ng Nanogram  rRNA Ribosomal Ribonucleic Acid 

Ngn3 Neurogenin 3  RSV Respiratory Syncytial Virus 

Nkx2.2 NK2 Homeobox 2  RT Reverse Transcription 

Nkx6.1 NK6 Homeobox 1  SDS Sodium Dodecyl Sulfate 

nm Nanometres  sFRP Secreted Frizzled-Related Protein 

Oligo (dT) Oligodeoxythymidylic Acid  SI Sucrase-Isomaltase 

OLT 
Orthotopic Whole-liver 

Transplantation 
 SMA α-Smooth Muscle Actin 

OPN Osteopontin  SSTR2 Somatostatin Receptor 2  

OV6 Oval Cell Marker  SV40 Simian Virus 40 

P Phosphate  TAE 
Tris Acetic Acid + 

Ethylenediaminetetraacetic Acid 

PAS Periodic Acid Schiff  TAT Tyrosine Aminotransferase 

Pax4 Paired Box Gene 4  TCF T Cell Factor 

Pax6 Paired Box Gene 6  TFF3 Trefoil Factor 3 

PBS Phosphate Buffered Saline  TGF-β1 Transforming Growth Factor Beta 1 
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TM Annealing Temperature  V Volts 

Tris Tris(hydroxymethyl)aminomethane  v/v Volume/ Volume 

U Units  vWFC Von Willebrand Factor C 

μg Microgram  WIF-1 Wnt Inhibitory Factor-1 

μl Microlitre  x g 
Times Gravity (Relative 

Centrifugal Force) 

μm Micrometre  X-gal 
5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside 

μM Micromolar  % Percent 

UV Ultraviolet    
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Chapter 1 Introduction 
 

1.1 Transdifferentiation definitions and explanations 

Transdifferentiation (also referred to as reprogramming)   belongs to a wider class of 

cell-type switches termed ‘metaplasias’, and is defined as the stable conversion of one 

cellular phenotype of an already differentiated cell to another type of normal differentiated 

cell (Okada, 1986, Slack and Tosh, 2001).  A differentiated cell is characterised by a 

distinct phenotype that demarcates it from other cells, either by functional, morphological 

or biochemical differences.  Eguchi and Kodama defined two important experimental 

criteria required to define a conversion as transdifferentiation.  First the two differentiated 

states must be clearly defined by biochemical and morphological characterisation, and 

secondly the cell lineage relationship between the two cell types must be established 

(Eguchi and Kodama, 1993).  Transdifferentiation is a consequence of a change in 

expression of master regulatory transcription factors (i.e. master switch genes) whose 

normal function is to distinguish the two tissues or cell types in normal development (Li, et 

al., 2005b).  The conversion of one differentiated cell type to another has been observed to 

occur by direct transdifferentiation or indirectly involving de-differentiation to a 

transitional cell state expressing a mixture of markers and transcription factors found in the 

progenitor and mature forms of both cell types, this confers multi-potentiality (Figure 1.1).     

One of the best documented examples of transdifferentiation is the experimental 

conversion of pancreas to liver (Shen, et al., 2003).  This reflects the close developmental 

relationship between the two tissues as they arise from adjacent regions of the anterior 

foregut endoderm, hence the tissues express common transcription factors during early 

stages of embryonic development (Wells and Melton, 1999) but during later development 

in response to tissue-specific inductive signals (e.g. FGF and BMP signalling in the liver) 

key master regulatory transcription factors are differentially expressed in each region, thus 

inducing the differentiation to the specific cell types.   

The process of transdifferentiation is important to study for a number of reasons.  

Firstly understanding the molecular basis of the conversions will extend our knowledge of 

the normal developmental mechanisms.  Secondly, some types of transdifferentiation 

which occur naturally predispose to neoplasia and are important in human pathology and 

the development of various cancers (Figure 1.1), for example Barrett’s oesophagus is a 
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switch from stratified squamous epithelium to columnar epithelium.  Barrett’s oesophagus 

is important because it is the only known precursor to oesophageal adenocarcinoma 

(Hameeteman, et al., 1989).  Thirdly, understanding the molecular rules for cell or tissue-

type conversions will improve our ability to reprogramme cells for the purpose of 

therapeutic transplantation (Sangan and Tosh, 2010b). 

 

 

Figure 1.1: Schematic representation of the relationship between differentiation during development, 

transdifferentiation and disease. Adapted from (Eberhard and Tosh, 2008). 

 

1.2 Transdifferentiation and regeneration 

Many organisms are capable of regenerating parts of their body that have been lost 

due to injury.  The origin of the cells that are involved in regeneration is of considerable 

debate.  It is possible that regeneration arises by transdifferentiation of existing cells.  It is 

equally possible that a reserve of undifferentiated cells, or in other words adult stem or 

progenitor cells exist, which, when subjected to appropriate cues can be activated to give 

rise to a whole array of cell types (Slack, 2003, Thowfeequ, et al., 2007).   
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1.3 The liver anatomy and physiology 

The liver represents the largest organ in the body and is specialized to perform a 

wide range of tissue-specific metabolic functions including: gluconeogenesis, 

detoxification, plasma protein synthesis, bile acid formation and drug metabolism. 

The functional units of the mature liver architecture are termed hepatic lobules 

(Kiernan, 1833) and these units assume a roughly hexagonal shape comprising of 

hepatocytes arranged in one cell thick plates radiating out from the central vein towards the 

portal triad (composed of a branch of the hepatic artery, portal vein and bile duct), with 

intervening sinusoids (Figure 1.2A,B).  The lobule can be divided into two zones, the 

periportal zone surrounding the portal triad and the perivenous zone surrounding the 

central vein.  Periportal and perivenous hepatocytes display the remarkable phenomenon of 

functional heterogeneity, as differences in ultra-structure and activities of key rate-limiting 

enzymes results in differences in cellular functions running along gradients from one zone 

to the other (Gebhardt, 1992) (Figure 1.2C).  For instance rate-limiting enzymes for 

pathways such as oxidative metabolism (succinate dehydrogenase), amino acid metabolism 

(serine dehydratase) and gluconeogenesis (phosphoenolpyruvate carboxykinase, glucose-6-

phosphatase) are higher in the periportal zone whereas activities of other enzymes such as 

in glycolysis (glucokinase), fatty acid synthesis (acetyl-CoA carboxylase) and xenobiotic 

metabolism (cytochrome P450) are higher in the perivenous zone (Jungermann and 

Kietzmann, 1996). 

 

1.4 Cell types present in the adult liver 

The pre-dominant parenchymal cells of the mature liver are the hepatocytes which 

constitute approximately 80% of the total hepatic cell volume (Blouin, et al., 1977).  The 

remaining cell volume consists intra-hepatic ducts which include cholangiocytes (biliary 

epithelial cells) and the hepatic sinusoid which is lined by four different cell types, each 

with specific phenotypic characteristics, function and topography, including sinusoidal 

endothelial cells,  Kupffer cells, hepatic stellate cells, and pit cells (Zaret, 2002, Zhao and 

Duncan, 2005). 
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Figure 1.2: Lobular Structure of the Liver and Hepatocyte Heterogeneity.  Schematic representation of 

the hexagonal hepatic lobule (A) and enlargement of a region labelled with micro-anatomical detail (B).  

Blood flows through the sinusoids between one cell thick hepatocyte plates, from the hepatic artery (HA) and 

portal vein (PV) towards the central vein (CV).  The Canal of Hering, which is the junction between terminal 

bile duct (cholangiocyte, BD) and hepatic plates is where oval cells are believed to originate from. (C) 

Hepatocytes exhibit gradients in metabolic functions.  

 

1.4.1 Hepatocytes 

Hepatocytes are characterised by a cuboidal epithelial cell morphology, ranging in 

size from 20-30μm.  Hepatocytes can be, mono- or bi-nucleated and are rich in organelles 

such as endoplasmic reticulum and mitochondria, in order to facilitate their enormous 

metabolic activity.  Hepatocytes are polarised, and although lack a basement membrane, 

have three functionally specialised membrane domains.  The basolateral domain consists of 

numerous surface microvilli to facilitate the flow of molecules between the sinusoidal 

blood, as it faces the space of Disse, which is the perisinusoidal space between the 

endothelium lining the sinusoids and the hepatocytes (Grisham, et al., 1975).  The lateral 

intercellular membrane domain connects the basolateral to the apical domain.  The apical 

domain forms channels known as canaliculi with the apical domain of opposing 

hepatocytes.  The canaliculi via site specific transport systems allow the bile secreted from 

the apical membrane of hepatocytes to be directed towards the periportal zone of the lobule 

so that it can be collected in the intra-hepatic bile duct and subsequently delivered to the 

gall bladder for storage before being transported to the intestine via the extra-hepatic bile 

duct.   
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1.4.2 Cholangiocytes 

Cholangiocytes, also known as bile duct (or biliary epithelial) cells constitute 

approximately 3-5% of the total hepatic cell population (Tavoloni, 1987).  Cholangiocytes 

line the small and large intra-hepatic ducts making up the biliary tree, with their primary 

function regulating, modifying and transporting secreted canalicular bile.  Research has 

shown cholangiocytes are morphologically and functionally heterogeneous, not only in 

their proliferative response to injury (Kanno, et al., 2000) but also differing in their bile 

(bicarbonate and water) secretion in response to a number of factors.  Gastrointestinal 

hormone secretin interacts with its own receptor thus increasing cyclic adenosine 

monophosphate (cAMP)-dependent protein kinase A (PKA) activity, which activates 

chloride channel cystic fibrosis transmembrane regulator (CFTR), leading to Cl2/HCO3 

exchanger activation and subsequent secretion of bicarbonate in water (Kanno, et al., 

2001).  On the other hand, gastrointestinal hormone somatostatin interacts with 

somatostatin receptor 2 (SSTR2) to inhibit secretin-stimulated bile secretion via inhibition 

of exocytic vesicle insertion into cholangiocyte apical membranes (Tietz, et al., 1995).  

Numerous studies in rats have also shown certain bile acids enter cholangiocytes through 

sodium-dependent apical bile acid transporters in order to modify secretin-stimulated bile 

secretion (Lazaridis, et al., 1997).  The expression of different proteins (e.g. receptors and 

transporters) important in regulating cholangiocyte function and conferring heterogeneity 

is dependent on the cholangiocyte’s location within the intra-hepatic duct.  Studies have 

shown that the secretin receptor and somatostatin receptor (SSTR2) are solely expressed by 

the progressively larger and columnar cholangiocytes in the extra-hepatic duct, hence the 

smaller cuboidal cholangiocytes in the small intra-hepatic duct do not participate in 

hormone-regulated ductal secretion (Alpini, et al., 1997).   

 

1.4.3 Sinusoidal endothelial cells  

Blood from the hepatic artery and portal vein mix before entering the hepatic 

sinusoids, which are the blood vessels radiating out between the hepatocyte plates.  The 

sinusoidal wall is lined with highly specialised sinusoidal endothelial cells with important 

filtration functions due to the presence of small fenestrations, which are small open pores 

lacking a diaphragm and a basal lamina underneath the endothelium.  This allows rapid 

diffusion of selective nutrients, lipids and lipoproteins between the blood and the 
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hepatocyte surface required for liver metabolism.  Sinusoidal endothelial cells also display 

a pronounced endocytotic capacity, this function is reflected by the presence of numerous 

endocytotic vesicles and by the effective uptake of a wide variety of substances (e.g. 

glycoproteins, extracellular matrix components and immune complexes) from the blood by 

receptor-mediated endocytosis (Kmiec, 2001, Smedsrod, et al., 1994). 

 

1.4.4 Kupffer cells 

Kupffer cells were named after German anatomist Karl Wilhelm von Kupffer when 

they were first described 1876.  Kupffer cells are specialised macrophages and hence 

possess a pronounced endocytotic and phagocytic capacity.  In the liver they are intra-

sinusoidally located, pre-dominantly in the periportal zone where the blood enters, in order 

to clear dysfunctional erythrocytes and pathogens (Arii and Imamura, 2000).  Kupffer cells 

are also potent mediators of the inflammatory response by the secretion of a variety of 

bioactive factors and thus play an important part in immune defence (Bouwens, et al., 

1992). 

 

1.4.5 Hepatic stellate cells 

Hepatic stellate cells (also referred to as Ito cells or fat-storing cells) are present in 

the perisinusoidal space of Disse, extending well-developed long processes around the 

sinusoidal endothelial cells (Sato, et al., 2003).  In the healthy liver, hepatic stellate cells 

are quiescent and the major site of vitamin A-rich lipid storage and possibly the 

predominant hepatic cell type in producing extracellular matrix components (Bouwens, et 

al., 1992, Friedman and Arthur, 1989, Gressner, 1995, Wake, 1971).  When the liver is 

damaged, hepatic stellate cells proliferate and become activated, which involves loss of 

vitamin A and morphological changes to adopt a myofibroblastic-like phenotype with 

well-developed stress fibres of actin cytoskeleton.  For instance the activated state of 

hepatic stellate cells can be distinguished by the expression of α-smooth muscle actin 

(Schmittgraff, et al., 1991).  In addition to producing extracellular matrix components, 

activated hepatic stellate cells also secrete transforming growth factor beta 1 (TGF-β1) and 

platelet derived growth factor (PDGF), the best characterised fibrogenic and proliferative 

cytokines, in order to facilitate liver regeneration, including both parenchymal cell 

proliferation and extracellular matrix remodelling (i.e. collagen synthesis) (Sato, et al., 
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2003).  However there is now substantial evidence that exists showing hepatic stellate cells 

as the major matrix producing cell in the process of liver fibrosis (Moreira, 2007).  

Cytokines TGF-β1 and PDGF are postulated to be the key mediators in fibrogenesis, as 

both have been shown to be increased in experimental and human hepatic fibrosis 

(Friedman, 2000, Pinzani, et al., 1998).  

 

1.4.6 Pit cells 

Pit cells represent a liver associated population of large granular lymphocytes i.e. 

liver-specific natural killer cells present in the hepatic sinusoidal lumen (Kaneda, et al., 

1983).  Therefore pit cells perform important anti-tumorigenic and anti-viral activity within 

the liver (Bouwens and Wisse, 1992).  It has also been reported that liver tumour cell 

killing is synergistically enhanced when pit cells attack tumour cells together with Kupffer 

cells (Wisse, et al., 1997). 

 

1.5 Liver disease and current treatments 

Liver disease is a broad term encompassing various specific diseases involving acute, 

mechanical, chemical or immune-related injury to the liver (e.g. cancer, cirrhosis and 

hepatitis).  At present for patients presenting with liver failure (i.e. the liver is incapable of 

regeneration and repair) the only curative treatment option is orthotopic whole-liver 

transplantation (OLT) which has become an almost routine procedure with one-year 

survival rates exceeding 80% (Neuberger, 2000).  This approach although successful 

possesses some serious limitations, primarily the availability of suitable donor livers.  In 

the USA, an estimated 17,000 patients were on the waiting list for liver transplantation 

surgery during 2002, from which less than 30% of these received transplants (Knight, et 

al., 2005).  Various investigations have therefore been stimulated to develop potential 

alternatives to OLT.  One area of research has focused on developing hepatocyte 

transplantation (HT), which involves transfer of healthy adult hepatocytes to the patient via 

intraperitoneal or intrasplenic injection or directly via portal vein infusion which is much 

less invasive then OLT (Knight, et al., 2005).  Because of the considerable regenerative 

capacity of the liver, a moderate size graft can, in principle, expand in size and colonise a 

significant fraction of a damaged liver.  Such approaches have been used to re-establish 
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liver function in a modest number of cases, especially for patients with fulminant hepatic 

failure and hereditary liver disease (Galvao, et al., 2006).  Unfortunately HT exhibits 

similar limitations to OLT, as currently the only source of hepatocytes for transplantation 

are those obtained from donor liver tissue deemed unsuitable for OLT, hence cells are of 

poor quality.  Other problems related to utilising freshly isolated hepatocytes are that they 

are unable to readily proliferate in culture, are difficult to freeze down and store 

(cryoperserve), and rapidly lose hepatic function (i.e. de-differentiate) when maintained in 

vitro for more than one week, due to changes in environmental conditions (Padgham, et al., 

1993).  There is also the problem of allo-immunity which exists for all organ 

transplantation and cell therapy (Chidgey, et al., 2008).  Much of the cost and complexity 

of organ transplantation arises because of the need for long term immunosuppression and 

the continual monitoring for rejection and treatment of opportunistic infections that is 

necessary as a result (Sangan and Tosh, 2010b).  Consequently, some researchers have 

begun exploring alternative sources of donor cells which are capable of functioning as 

adult hepatocytes in vivo but are void of the limitations associated with OLT and HT. 

Alternatives with therapeutic potential include: embryonic and adult stem cells, 

conditionally immortalised adult hepatocytes, fetal hepatocytes, differentiated hepatic 

progenitor cells (HPCs) and transdifferentiated non-liver progenitor cells.  In addition, 

generated hepatocytes would be suitable not only for transplantation but also bio-artificial 

liver systems, which are devices which can be connected to the patient’s bloodstream in 

order to take over liver function for a period allowing the patient’s own liver to recover 

from the damage it has sustained (Allen, et al., 2001, van de Kerkhove, et al., 2004).  

Despite fibrotic and cirrohotic livers being suboptimal for HT as described above, these 

livers provide a rich source HPCs, as HPCs have been shown to proliferate readily under 

chronic conditions.  Therefore the molecular mechanisms governing the proliferation and 

differentiation of adult-derived HPCs towards functional hepatocytes need to be fully 

elucidated. 
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1.6 Oval cells: progenitor cell mediated regeneration 

Progenitor cells (also known as transit amplifying cells) are defined as any rapidly 

dividing cells with the capacity to differentiate, but in contrast to bona fide stem cells  are 

more specific to certain cell lineages (i.e. in a further stage of cell differentiation) and do 

not possess the ability to indefinitely self-renew (Smith, 2006).  Progenitor cells have the 

potential to generate more than one differentiated cell type (e.g. hepatocytes) but cannot be 

serially transplanted (Potten, et al., 1997, Shafritz and Oertel, 2010).  In the supporting 

literature a variety of nomenclatures exist to describe hepatic progenitor cells (HPCs), the 

term oval cells is utilised primarily in animal studies, whereas the term “intermediate 

hepatobillary cells” refers to human hepatic progenitor cells (Roskams, et al., 2004).  

Additional terms utilised for HPCs include: ductular progenitor cells, atypical ductular 

cells or peri-ductular liver progenitor cells.  This thesis will utilise the nomenclature oval 

cells.   

 

1.6.1 History and features of oval cells 

During liver regeneration oval cells are essential at forming a ‘second line of 

defence’.  Although the liver has enormous potential to regenerate by replication of 

remaining healthy hepatocytes, numerous studies have exposed that when replacement of 

lost viable hepatic mass by remaining hepatocytes is partially or completely precluded, a 

distinct population of oval cells are induced to proliferate and differentiate towards 

hepatocytes (Knight, et al., 2005, Akhurst, et al., 2001).  This property can be observed in 

several studies which show that oval cell numbers induced in pathologies are proportional 

to the progression and severity of the underlying liver disease (Lowes, et al., 1999).. A 

diverse range of protocols have been established in order to induce oval cell proliferation 

as detailed in Table 1.1 (Dolle, et al., 2010). Lineage tracing experiments in mice 

expressing tamoxifen-inducible Cre recombinase under control of the HPC marker 

Osteopontin (OPN) regulatory region, have also confirmed the capacity of HPCs to 

differentiate into functional hepatocytes in vivo and contribute to liver regeneration in 

response to several forms of chronic liver injury (Espanol-Suner, et al., 2012).  
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Method  (Abbreviation) Model 

Phenobarbital mouse 

2-acetylamino-fluorene (AAF) 

Allyl alcohol (AA) 
mouse, rat 

2-acetylamino-fluorene (AAF) 

Carbone tetrachloride (CCl4) 
rat 

2-acetylamino-fluorene (AAF) 

Allyl alcohol (AA) 
rat 

Choline-deficient diet (CD) 

2-acetylamino-fluorene (AAF) 
rat 

Choline-deficient ethionine-supplemented diet (CDE) mouse, rat 

3-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse, rat 

N-acetyl-p-aminophenol (APAP) mouse 

Allyl alcohol (AA) mouse, rat 

Carbone tetrachloride (CCl4) mouse 

Diethylnitrosamine (DEN) mouse, rat 

Retrorsine  

Carbone tetrachloride (CCl4) 
rat 

Retrorsine  

Allyl alcohol (AA) 
rat 

Retrorsine  

 Partial hepatectomy (PH) 
rat 

1,4-bis[N.N’-di(ethylene)phosphamide]piperazine (DIPIN)  

Partial hepatectomy (PH) 
mouse, rat 

D-Galactosamine (GaIN)  

Partial hepatectomy (PH) 
mouse, rat 

Lasiocarpine  

Partial hepatectomy (PH) 
rat 

Long term ethanol mouse, rat 
 

Table 1.1: Experimental models for oval cell induction.                                                                                        

Most frequently utilised in rodents are highlighted in bold.  See (Dolle, et al., 2010). 

 

 

The first formal description of oval cells was in 1956 when it was suggested that they 

be termed “oval” due to their distinctive ovoid shape in cross section (Knight, et al., 

2005Farber, 1956).  They are substantially smaller than adult hepatocytes, ranging in size 

from 7-10μm, with scant organelle poor cytoplasm, and a distinctive ovoid nucleus.  Oval 

cells are scarce in the healthy liver, but upon stimulation from the Canals of Hering (a 

space lying between the terminal branch of the bile duct and the first row of adjacent 

hepatocytes in the periportal region of the liver near the portal triad) proliferate across the 

hepatic lobule infiltrating the liver parenchyma (Akhurst, et al., 2001, Factor, et al., 1994, 

Knight, et al., 2005).  

 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 26 ~ 
 

Marker Oval Cells Hepatocytes Cholangiocytes Representative Reference 

OV6 + -- + (Dunsford et al., 1989) 

A6 Antigen + -- + (Engelhardt et al., 1990) 

AFP + Fetal + (Kuhlmann and Peschke, 2006) 

Transferrin + + -- (Fiorino et al., 1998) 

M2-PK + Fetal + (Tian et al., 1997) 

E-cadherin + + + (Tirnitz-Parker et al., 2007) 

CK7 + -- + (Libbrecht and Roskams, 2002) 

CK8 + + + (Golding et al., 1995) 

CK14 +/-- -- -- (Bisgaard et al., 1994) 

CK18 + + -- (Golding et al., 1995) 

CK19 + -- + (Libbrecht and Roskams, 2002) 

OPN + -- + (Espanol-Suner, et al., 2012) 
 

Table 1.2: Markers of oval cells 

 

Oval cells are a heterogeneous population expressing an array of phenotypic markers 

in common with cholangiocytes, fetal and adult hepatocytes, as detailed in Table 1.2 

(Dorrell, et al., 2008).  They have multi-potency capability to not only differentiate into 

hepatic lineages (i.e. hepatocytes and cholangiocytes) but also some non-hepatic lineages, 

such as intestinal and pancreatic cell types as illustrated in Figure 1.3 (Leite, et al., 2007, 

Tatematsu, et al., 1985, Yang, et al., 2002).  

 

Figure 1.3: Multi-potent capability of oval cells.                                                                                      

Schematic representation of oval cell differentiation into hepatic or  non-hepatic lineages 
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1.7 Oval cells and cancer 

Figure 1.3 draws attention to the problem associated with oval cell differentiation 

during liver regeneration, in that these metaplasias (i.e. the irreversible conversion of one 

cellular phenotype of an already differentiated cell to another type of normal differentiated 

cell) result in cell types which can act as pre-cursors to neoplasia and thus carcinogenic.  

 

1.7.1 Hepatocellular carcinoma and cholangiocarcinoma 

To emphasis the potential for oval cells to be carcinogenic, studies have shown a 

correlation between oval cell appearance and the early stages of hepatocellular carcinoma 

(HCC) (Alison and Lovell, 2005, Hacker, et al., 1992), and cholangiocarcinoma (Roskams, 

2006a).  Research has also suggested that cholangiocarcinoma originates from HPCs 

(Komuta, et al., 2008, Nomoto, et al., 2006).  For instance it has been shown that 

transformation and transplantation by subcutaneous injection of the rat oval cell lines 

OC/CDE 6 and OC/CDE 22 gave rise to cholangiocellular carcinoma (Steinberg, et al., 

1994).  Similarly the chemical transformation and transplantation by subcutaneous 

injection of the first available rat oval cell line WB-FB344, extensively characterised by 

Grisham et al., led to the formation of HCC (Tsao and Grisham, 1987).  Also it has been 

demonstrated that the common option of intestinal metaplasia for oval cells is related to 

cholangiofibrosis and subsequent cholangiocarcinoma in livers of rats exposed to the 

carcinogen 2-acetylaminofluorene (AAF) (Barut and Sarraf, 2009, Tatematsu, et al., 1985). 

 

1.7.2 The maturation arrest hypothesis 

There are at least two possible cellular lineages of cancer during HCC formation.  

Tumours may arise by de-differentiation of adult hepatocytes or by the maturation arrest of 

a progenitor/ stem cell like population (Sell, 1993).  Therefore if maintained in a prolonged 

proliferative state, oval cells in the liver are likely candidates for transformation and 

subsequent progression of HCC and cholangiocarcinoma.  This theory originates from the 

concept of maturation arrest or blocked ontogeny attributed to Van Rensselaer Potter 

(Potter, 1978).  Potter in 1978 hypothesised that hepatic tumours are due to an 

accumulation of stem/ progenitor cells (i.e. oval cells) which are blocked from terminally 

differentiating, hence display an immature phenotype, partially differentiated towards 
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either hepatocytes or cholangiocytes and are unable to undergo apoptosis.  Studies 

supporting the idea of maturation arrest show the presence of these arrested transitional 

progenitor cells in both HCC and cholangiocarcinoma (Libbrecht, et al., 2000, Shachaf, et 

al., 2004). 

 

1.8 Transcriptional regulation of hepatocyte differentiation 

The step-wise acquisition of the hepatocyte phenotype is associated with the 

sequential expression of various hepatocyte-specific genes which encode key functional 

proteins (Costa, et al., 2003); and the temporal and tissue-specific expression of all these 

genes is orchestrated by the synergistic binding of certain combinations of liver-enriched 

transcription factors (LETFs) (Darlington, 1999, Lemaigre and Zaret, 2004).  Numerous 

investigations have focused on elucidating the roles of specific groups of LETFs during 

normal hepatocyte differentiation.  Figure 1.4 provides a simplified schematic 

representation of the transcriptional networks operating during liver development.  LETFs 

can be subdivided into two main groups.   

 

Figure 1.4: Transcriptional cascade during liver development.  Summary of the important regulatory 

roles of hepatocyte nuclear factors (HNFs) and CCAAT/enhancer binding protein alpha (C/EBPα) in 

hepatocyte and cholangiocyte differentiation.                                                          
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1.8.1 CCAAT/enhancer binding proteins (C/EBPs) 

The CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription 

factors comprising six members (C/EBP α, β, γ, δ, ε, ζ), each capable of interacting with 

CCAAT motifs present in numerous gene promoters (Lekstrom-Himes and Xanthopoulos, 

1998, Westmacott, et al., 2006).  C/EBPs have pivotal roles in numerous cellular 

processes, for example control of growth and differentiation and also immune and 

inflammatory responses (e.g. regulation of acute phase proteins during initial response to 

injury) (Kurash, et al., 2004, Ramji and Foka, 2002).  C/EBPα and C/EBPβ have been 

shown to be expressed at high levels in the liver, adipose and lung tissue.  Both have been 

suggested as important master regulators of liver development and differentiation, which 

via cooperation with other LETFs activate several liver specific genes with high specificity 

(Diehl, 1998, Takiguchi, 1998).  C/EBPα can activate the albumin promoter or 

phosphoenolpyruvate carboxykinase (PEPCK) promoter synergistically with HNF1α (Wu, 

et al., 1994, Yanukakashles, et al., 1994), whilst cooperation of C/EBPβ and HNF4α is 

essential for activation of the ornithine transcarbamylase enhancer (Nishiyori, et al., 1994).  

C/EBPα expression is rapidly induced during liver injury once the regeneration via 

differentiation of oval cells is nearly complete (Dabeva, et al., 1995).  This relates to the 

paradigm that C/EBPα may have a role in terminal differentiation of hepatocytes through 

regulation of promoter and enhancer sequences of several important liver genes involved in 

hepatic glycogen synthesis, gluconeogenesis (e.g. tyrosine aminotransferase (TAT)) and 

lipid homeostasis.  Furthermore, contrasting to increased C/EBPα expression being 

fundamental in hepatocyte differentiation, Yamasaki et al., have postulated that the absence 

of C/EBPα in cholangiocytes has an indirect effect of inducing the expression of the genes 

HNF6 and HNF1β (Yamasaki, et al., 2006).  Studies with targeted inactivation of HNF6 

and HNF1β genes demonstrate that both have important regulatory roles in cholangiocyte 

differentiation, and that HNF6 acts upstream of HNF1β (Clotman, et al., 2002, Coffinier, et 

al., 2002).  Therefore C/EBPα expression could be important in the decision of bi-potential 

precursors to differentiate towards hepatocytes or cholangiocytes (Figure 1.4).   

 

1.8.2 Hepatocyte nuclear factors (HNFs)  

The Hepatocyte nuclear factors (HNFs) encompass four families HNF1, HNF3 

(FoxA), HNF4 and HNF6.  HNF1, is a member of the POU homeobox gene family and 
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includes HNF1α and HNF1β which are involved in hepatocyte and cholangiocyte 

differentiation respectively (Figure 1.4).  The HNF3 (FoxA) gene subfamily is composed 

of three proteins (HNF3α, β, γ) which are also named Forkhead Box (Fox) A1, A2, A3 

respectively and play critical roles in organ formation and tissue specification.  HNF4 

belongs to the nuclear steroid-thyroid receptor super-family (Sladek, et al., 1990) and 

consists of members HNF4α, β, γ and many splice variants, however unlike HNF4α and β, 

HNF4γ is not expressed in the liver.  The final family HNF6, has been established as an 

important factor in liver cholangiocyte differentiation (Figure 1.4) (Nagaki and Moriwaki, 

2008). 

There is conflicting evidence for the role of HNF4α during differentiation of oval 

cells to hepatocytes.  Dabeva et al., investigated oval cell differentiation in vivo by 

analysing the expression of liver-enriched transcription factors (including: HNF1α; FoxA1, 

2, 3; HNF4α; C/EBPα, β, δ) following non-carcinogenic D-galactosamine (GaIN) induced 

liver injury in rats.  Dabeva and colleagues suggested that because  HNF4α and HNF1α 

are controlled by a higher order locus it is possible that in the oval cell differentiation 

program, when HNF1α is already expressed activation of high HNF4α levels are not 

required (Dabeva, et al., 1995).  However the normal developmental hepatocyte 

differentiation program is suspected to be similar to that of oval cells, as developing liver 

cells (hepatoblasts) may correspond to immature progenitor cells, which are maintained 

after birth and constitute a minor subpopulation in the adult liver giving rise to the oval 

cells during liver injury (Lemire, et al., 1991).  In normal development HNF4α may act 

upstream in a cascade to activate other hepatocyte transcription factors  and thus there is no 

compensation by other factors, as many nuclear hormone receptors, such as HNF4α are 

involved in chromatin remodelling via interaction with transcriptional co-activators (Li, et 

al., 2000).  In addition, from a morphological perspective, development of the normal liver 

architecture is crucial for correct liver function.  HNF4α has been shown to be essential in 

regulating epithelial morphogenesis and functional differentiation of hepatocytes (Figure 

1.5)  (Parviz, et al., 2003).  
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Figure 1.5: HNF4α is essential for maintenance of hepatic architecture.  A schematic model showing that 

increases in HNF4α expression drives differentiation of hepatoblasts to hepatocytes.  In addition, HNF4α is 

necessary for expression of cell adhesion molecules and junctional proteins that allow the hepatic cells to 

form a polarized epithelium.   

 

 Suetsugu et al., demonstrated that over-expression of HNF4α in vitro induced a 

mature gene expression pattern and liver function in fetal hepatic progenitor cells, which 

when transplanted into mice with liver fibrosis improved survival (Suetsugu, et al., 2008).  

This study highlights that although in vitro work is beneficial to identifying key factors 

important for oval cell hepatocyte differentiation, further complementary in vivo work is 

ultimately required, as other extracellular environmental factors may influence oval cell 

differentiation.  It is hypothesised that the adult hepatic progenitor cell population is 

located within a specialised environment, in which the extracellular matrix component 

laminin maintains the cells in a progenitor/ biliary undifferentiated state until proliferation 

in response to injury induces cells to leave the laminin region, and differentiate into a 

hepatocyte phenotype due to the effect of other matrix components (e.g. fibronectin) 

(Lorenzini, et al., 2010).  A review by Erker and Grompe emphasises the importance of 

extracellular factors secreted by surrounding non-parenchymal cells types, such as 

inflammatory, Kupffer and hepatic stellate cells in stimulating oval cell proliferation and 

differentiation (Erker and Grompe, 2008).  Indeed studies have shown differentiation of 

oval cells into mature hepatocytes to be induced by hepatic stellate cells (Chen, et al., 

2009), and recently it has been shown during hepatocyte regeneration, Wnt3a expression 

by Kupffer cells (macrophages) following engulfment of hepatocyte debris induces 

canonical Wnt signalling in nearby oval cells which maintains Numb (a cell fate 

determinant) expression and promotes their hepatocyte cell fate specification (Boulter, et 

al., 2012). 
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1.9 The pancreas: physiological function and anatomy 

The pancreas is a glandular organ divided into two separate functional units the 

exocrine and endocrine pancreas, which regulate the distinct physiological processes 

digestion and glucose metabolism respectively (Bardeesy and DePinho, 2002).  Within the 

exocrine compartment there are acinar cells which constitute the bulk of the mature 

pancreatic tissue, and primarily produce digestive enzymes such as amylase, serine 

proteases (elastase, chymotrypsin and trypsin), lipases, and procarboxypeptidases.  The 

acinar cells are organised into small grape like clusters located at the smallest termini of 

the highly branched ductal network (Figure 1.6B).  These ducts add mucous and 

bicarbonate to the digestive enzymes released from the acinar cells into the ductal lumen, 

hence facilitating their delivery to the duodenum (Figure 1.6A).  The endocrine pancreas 

on the other hand which is vital for regulation of blood glucose consists compact highly 

vascularised and highly innervated structures known as the islets of Langerhans which are 

embedded within acinar tissue and collectively constitute less than 2% of the pancreatic 

mass (Figure 1.6C). 

 

1.10 Cell types in the adult endocrine pancreas 

The endocrine islets of Langerhans are a heterogeneous cell population comprising 

five specialized cell types: alpha (α), beta (β), delta (δ), epsilon (ε), and pancreatic 

polypeptide (PP) cells, which produce the hormones glucagon, insulin, somatostatin, 

ghrelin, and PP, respectively.  This diverse range of islet hormones is vital for control of 

blood glucose homeostasis. 
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Figure 1.6: The pancreas functional anatomy.  (A) The gross anatomy of the pancreas.  (B) The exocrine 

pancreas. (C) The endocrine pancreas, islet of Langerhans embedded in the exocrine tissue.       

              

1.10.1 β-cell:  insulin  

The β-cells are the most prominent cell type in the islet, segregating to the islet core, 

and constitute 50-80% of the total islet depending on the species (Brissova, et al., 2005, 

Cabrera, et al., 2006, Murtaugh, 2007).  β-cells are approximately 9-15μm in size and are 

unique in their function, as in response to hyperglycaemia (i.e. increase in blood glucose 

concentrations after a meal) (Figure 1.7) the hormone insulin is transcribed, translated, 

processed (Figure 1.8) and secreted (Figure 1.9).  Insulin secretion into the bloodstream 

simulates glucose transport and uptake into most of the body’s cells (including muscle and 

adipocytes) and inhibits liver gluconeogenesis. 
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Figure 1.7: Control of blood glucose homeostasis.                                                                                        

The basic principle of how α- cells and β-cells regulate blood glucose levels. 

 

Most mammals contain one copy of the insulin gene, for example humans possess 

one insulin gene located on chromosome 11 at position p5.15 (Harper, et al., 1981).  Few 

species however, including the rodents (rat and mice) have two non-allelic-variants of the 

insulin gene, denoted insulin1 and insulin2, of which insulin2 corresponds to the single 

copy seen in humans.  It is postulated insulin1 was retroposed from the partially processed 

insulin2 mRNA (Hay and Docherty, 2006, Shiao, et al., 2008).  Control of the insulin gene 

expression is largely exerted at the transcriptional level through well-defined elements 

located within the promoter region (Chakrabarti and Mirmira, 2003). 
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Figure 1.8: Biosynthesis and enzymatic processing of insulin.  Following ribosome association with the 

rough ER, the leading region of synthesised pre-pro-insulin (A) is cleaved to produce pro-insulin (B). Once 

pro-insulin is packaged within the secretory granules, C-peptide is removed from pro-insulin via a multi-step 

proteolytic process to produce insulin (C).  

 

The biosynthesis of insulin from a large precursor known as pre-pro-insulin was first 

observed in 1967 and is shown diagrammatically in Figure 1.8 (Steiner, et al., 1967).   Pre-

pro-insulin bound to the ribosome is initially synthesised and cleaved to pro-insulin 

following the association of the ribosome with the rough endoplasmic reticulum (ER).  In 

the ER pro-insulin undergoes post-translational proteolysis prior to transport to the Golgi 

apparatus where it is packaged in β-cell characteristic small dense secretory granules close 

to the cell membrane.  Pro-insulin contains distinct carboxy-terminal A and amino-terminal 

B chains linked together by an important connecting peptide known as C-peptide.  C-
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peptide is essential for correct synthesis of insulin, as it links the A- and B- chains of 

insulin in a manner allowing correct assembly, folding and inter-chain disulphide bond 

formation.  Once in the secretory granule, C-peptide is removed from pro-insulin via a 

multi-step proteolytic process involving the enzymes prohormone convertase, 

endopeptidase and carboxypeptidase E (Halban, 1994).  This results in insulin’s A and B 

chains adopting an appropriate conformation for effective interaction with the insulin 

receptor.  Equimolar amounts of C-peptide and insulin are then subsequently stored in the 

granules until required to be released by exocytosis into the bloodstream (Wahren, et al., 

2000).  C-peptide has been considered for a long time to be biologically inert, however 

research now indicates that C-peptide is biologically active, as it has been shown to bind 

specifically to G protein coupled receptors on human cell membranes, and also ameliorate 

Type 1 diabetes-induced microvascular complications (nephropathy and neuropathy) (Ishii, 

et al., 2012, Rigler, et al., 1999, Wahren and Jornvall, 2003). 

In order to perform their function β-cells must express a range of genes/ proteins 

which enable the β-cell to sense changes in extracellular glucose concentrations and then 

release the necessary amount of stored insulin.  Glucose transporter 2 (GLUT2) is a 

transmembrane carrier protein found on the cell membrane of pancreatic β-cells, that 

enables the facilitated  movement of glucose from the bloodstream into the cell, due to its 

high affinity for glucose (Figure 1.9A).  Glycolysis then takes place inside the cell, where 

the islet-specific homolog of glucokinase (GCK) is the major glucose phosphorylating 

enzyme, hence due to its high flux control coefficient on glucose metabolism acts as the 

rate-limiting step (Figure 1.9B).  GLUT2 and GCK are frequently regarded as the indirect 

‘glucose sensors’ in β-cells responsible for triggering insulin secretion (Arden, et al., 

2004), as the increase in the ATP:ADP ratio as a result of glycolysis inhibits the hetero-

octomeric ATP-dependent transmembrane potassium (K
+
) channel which causes 

membrane depolarisation (Dunne, 2000).  Consequently, voltage-gated calcium (Ca
2+

) 

channels are activated and opened leading to the  influx of calcium, in addition to the 

inositol 1,4,5-triphosphate (IP3) mediated release of ER intracellular calcium stores, which 

causes a significant increase in intracellular calcium concentrations leading to exocytosis 

of the stored insulin secretory granules (Pertusa, et al., 1999).    
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Figure 1.9: Glucose stimulated insulin secretion in the β-cell. Indirect glucose sensors (A) Glucose 

Transporter 2 (GLUT2), which facilitates the movement of glucose into the β-cell and (B) Glucokinase 

(GCK) which determines the rate limiting step of glycolysis. 

 

1.10.2 α-cell: glucagon   

Glucagon producing α-cells are the next most common cell type constituting 

approximately 15-20% of the islet (Edlund, 2002).  Insulin and glucagon are counter-

regulatory hormones whose opposing actions ensure normoglycaemia, as shown in Figure 

1.7 (Goke, 2008).   Glucagon is released from α-cells during periods of hypoglycaemia 

(e.g. after exercise or fasting), stimulating hepatic gluconeogenesis and glycogenolysis, 

and mobilisation of glucose from peripheral tissues in order to raise blood glucose levels.  

Glucagon is synthesised from pre-pro-glucagon via the action of enzyme prohormone 

convertase 2.  Glucagons’ secretion is not only regulated by the direct effect of blood 

glucose concentrations but also by additional regulators including intra-islet paracrine 

signals, including insulin from β-cells (Diao, et al., 2005, Gerich, et al., 1975, Greenbaum, 
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et al., 1991, Maruyama, et al., 1984, Ravier and Rutter, 2005, Stagner and Samols, 1986) 

and somatostatin from δ-cells (Gerich, et al., 1975, Gromada, et al., 2007). 

 

1.10.3 δ cell: somatostatin  

Islet δ-cells constitute 5-10% of the islet endocrine cells, and secrete the hormone 

somatostatin in response to increased extracellular glucose.  This is similar to β-cells, 

however δ-cells respond to a lower threshold concentration of glucose.  Somatostatin 

receptors have been identified on both α- and β-cells, and studies have shown exogenous 

somatostatin can inhibit  insulin and glucagon secretion, consistent with a paracrine role 

for somatostatin in regulating α- and β-cell function (Hauge-Evans, et al., 2009). 

 

1.10.4 PP-cell: PP  

PP-producing-cells are very few in number (i.e. only 3-5% of the islet), 

approximately 140nm in size and identifiable by their polygonal shape and scant granules 

and organelles.  Data suggests that PP is released in response to ingestion of food and that 

it plays an important role in the reduction of appetite, although the mechanism of PP 

remains to be fully elucidated (Batterham, et al., 2003). 

 

1.10.5 ε-cell: ghrelin  

ε-cells have only recently been described to be present sparingly (<1%) in the 

pancreatic islets (Prado, et al., 2004).  ε-cells release the gastric hormone ghrelin, an 

acylated 28 amino acid peptide, postulated to be involved in down-regulation of glucose-

induced insulin release (Dezaki, et al., 2010), enhancement of appetite, metabolic 

regulation and energy balance (Wierup, et al., 2002).  

 

1.11 Diabetes mellitus and current treatments 

Diabetes mellitus is the most common disorder of the endocrine pancreas and is 

associated with failure to produce and/or use insulin effectively, resulting in chronic 

hyperglycaemia.  Diabetes mellitus affects approximately 180 million people world-wide 
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(World Health Organisation) and can be broadly classified as either Type 1, caused by the 

insufficient production of insulin or Type 2, caused by diminished response of the body to 

insulin.  There are also more specific cases of diabetes for example gestational diabetes 

seen in women during pregnancy, and maturity onset diabetes of the young (MODY) 

syndromes, which encompass several hereditary conditions which unlike polygenic 

recessive Type 1 and Type 2 diabetes are caused by mutations in a single autosomal 

dominant gene (HNF4α, GCK, HNF1α, Pdx1, HNF1β and NeuroD) leading to progressive 

impairment in β-cell insulin function and eventually diabetes (Fajans, et al., 2001).   

Type 1 diabetes is a serious metabolic disorder characterized by the auto-immune 

destruction of functional insulin producing β-cells, hence for the purposes of this thesis 

will be discussed in more detail.   In Type 1 diabetes, islets contain mostly hyperplastic α-

cells, producing an unregulated and inappropriate amount of glucagon.  In the absence of 

the opposing action of insulin, unrestricted hepatic gluconeogenesis and glycogenolysis 

occurs, resulting in high blood glucose levels and potentially dangerous episodes of 

hyperglycaemia, which can contribute to complications such as diabetic ketoacidosis (i.e. 

production of acidic ketone bodies), cardiopathy, nephropathy, neuropathy and 

retinopathy.    

At present the major method in order to manage Type 1 diabetes is to monitor blood 

glucose levels carefully and administer regular exogenous insulin, and although this allows 

a measure of control of blood glucose levels, patients are not void of the diabetes 

associated complications (Samson and Chan, 2006).  The ultimate objective of therapy for 

Type 1 diabetes is therefore to replace the functioning β-cell component of the body.  This 

can be achieved by an existing method of cell therapy: islet transplantation using the 

Edmonton protocol, in which islets are isolated from an organ donor and grafted into the 

liver of the patient via the portal vein.  Islet transplantation can produce some improvement 

in diabetic patients but the major limitation of this approach as with most transplantation 

procedures is the scarcity of suitable organ donors and the 3-year organ survival rates of 

70-80% (Shapiro, et al., 2006, Shapiro, et al., 2001).  Consequently alternative strategies to 

prevent/cure diabetes are under investigation including: (1) prevention of β-cell destruction 

(2) stimulation of β-cell differentiation and regeneration (1.12.1) (3) ectopic production of 

insulin by substitute cells via the exploration of methods of recreating β-cells from other 

cell types (Barbu and Welsh, 2007). 
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1.12  Potential sources of β-cells 

Four possible sources have been considered for obtaining β-cells.  (1) From the other 

pancreatic exocrine and endocrine cell types by provoking neogenesis.  Zhou et al., showed 

the in vivo reprogramming of adult pancreatic acinar cells into insulin secreting pancreatic 

β-cells via adenovirus mediated expression of pancreatic transcription factors Pdx1, Ngn3 

and MafA.  Lineage analysis utilising double heterozygous Cpa1CreER-R26R mice to 

permanently label mature exocrine cells with β-galactosidase confirmed the exocrine origin 

of the nascent insulin positive cells (Zhou, et al., 2008).  Also it has been shown that an 

incretin hormone glucagon-like peptide-1 can differentiate rat (ARIP) and human (PANC-

1) pancreatic ductal epithelial cell lines into insulin-secreting cells, although this effect 

requires the expression of the β-cell differentiation factor islet duodenal homeobox-1 

(IDX-1) (Hui, et al., 2001).  (2) From human embryonic stem cells (ESCs), by 

recapitulating the sequence of developmental events that normally leads to β-cell 

differentiation.  Lumelsky et al.,  described the first culture-based protocol for the in vitro 

generation of pancreatic cells from mouse ESCs using a five-step protocol that was 

reported to generate insulin-expressing cells by selecting for nestin-positive progenitor 

cells (Lumelsky, et al., 2001).  However the reliability of this strategy is questioned as the 

insulin expression may reflect uptake of insulin from the culture medium rather than the de 

novo synthesis associated with insulin gene expression.  Therefore alternative studies have 

shown successful generation of insulin-expressing cells from mouse ESCs via over-

expression of key β-cell transcription factors  Pdx1, Pax4 and Nkx2.2 (Blyszczuk, et al., 

2003, Miyazaki, et al., 2004, Shiroi, et al., 2005) or via exposure to extracellular factors 

and manipulation of signalling pathways (reviewed by (Tsaniras and Jones, 2010)).  (3) 

From other endodermal tissue types, particularly those of the liver, by transdifferentiation. 

Ferber et al., utilised a first-generation adenoviral vector containing Pdx1 to infect 

streptozotocin-induced diabetic mice.  The results showed that pancreatic genes insulin and 

prohormone convertase 1/3 (i.e. a functional marker for insulin maturation) were induced, 

and the levels of blood glucose were returned to normal levels (Ferber, et al., 2000).  

Moreover transdifferentiation of human HepG2 (hepatoma) cells to pancreatic cells 

following introduction of an activated version of the pancreatic transcription factor Pdx1 

(XlHbox8-VP16) has also been characterised, showing that during transdifferentiation the 

hepatic phenotype is suppressed and the Pdx1 transgene is only required temporarily to 

activate pancreatic differentiation (Li, et al., 2005a).  (4) From existing β-cells, by 

provoking multiplication. 

http://joe.endocrinology-journals.org/content/206/1/13.long#ref-85
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1.12.1 Normal β-cell regeneration  

β-cell regeneration is widely thought to rely on self-duplication as demonstrated in 

various models of partial β-cell ablation (Cano, et al., 2008, Nir, et al., 2007, Wang, et al., 

1996). This stems from an organisms needs to be able to control its β-cell mass in 

accordance with its insulin requirements, and although the rate of β-cell replication in the 

adult pancreas is generally low (2-3% per day) it can undergo dynamic shifts to 

compensate increased insulin demand, for example during pregnancy (Ackermann and 

Gannon, 2007, Bouwens and Rooman, 2005, Finegood, et al., 1995).  The regeneration of 

β-cells in the pancreas has been described in animal experiments and in human pathology, 

induced in response to various experimental treatments, for example following pancreatic 

duct ligation (O'Neill, et al., 2008, Xu, et al., 2008), streptozotocin-induced diabetes 

(Wang, et al., 1996) or following administration of exendin-4 (Xu, et al., 1999).  The 

phenomenon has also been observed in diabetic patients following autoimmune 

suppression (Herold and Taylor, 2003).  In some of these cases (e.g. following pancreatic 

duct ligation) the source of the regenerating β-cells has been characterised as originating 

from neurogenin-3-positive progenitor cells residing in the pancreatic ducts via neogenesis. 

 

1.12.2 α-cells as a potential source of β-cell regeneration 

Studies have recently successfully demonstrated the potential for reprogramming α-

cells to β-cells (Collombat, et al., 2009b, Thorel, et al., 2010).  Thorel et al., set out to 

examine the role of β-cell regeneration following total or near total β-cell ablation, in an 

experimental model recapitulating Type 1 diabetes.  In order to accomplish near-total 

specific β-cell ablation, transgenic mice were generated bearing a transgene containing the 

rat insulin promoter (RIP) and the diphtheria toxin receptor (DTR) coding sequence.  This 

approach was unique and an improvement from other examples of β-cell regeneration, 

because previous studies have relied on less severe models of β-cell ablation such as 

pancreatectomy, in which damage is caused to more than one cell type.  The overall aim of 

the study was to establish whether disparate mechanisms of β-cell regeneration, for 

example from other pre-existing endocrine cell types such as α-cells, were associated with 

increased β-cell ablation severity.  Therefore by placing the DTR downstream of the RIP, 

diphtheria toxin A (DT) administration mediated >99% specific β-cell ablation.  Analysis 

following β-cell regeneration in parallel with α-cell labelling experiments revealed the 
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appearance of bi-hormonal cells expressing both insulin and glucagon and nascent β-cells 

were confirmed to have originated from the transdifferentiation of the remaining α-cells by 

parallel cell lineage experiments (Sangan and Tosh, 2010a, Thorel, et al., 2010).  The 

challenge however remains to identify and validate the ‘master switch transcription 

factors’ required for reprogramming of α-cells to β-cells. 

 

1.13 Transcriptional regulation of β-cell differentiation 

Candidate transcription factors which may possess a critical role in the molecular 

mechanisms responsible for reprogramming α-cells to β-cells may include transcription 

factors known to be important in β-cell differentiation and function during normal 

development (Figure 1.10).  Pancreatic development is a highly coordinated process 

involving morphogenesis and differentiation, orchestrated by extracellular signals and 

transcription factor interactions. 

 

1.13.1 Hepatocyte nuclear factor 4 α (HNF4α)  

Hepatocyte nuclear factor 4α (HNF4α) (which as previously mentioned is important 

in liver development), has also been identified as a key transcription factor required for 

regulation of many genes and pathways responsible for the maintenance and proliferation 

of adult β-cells (Gupta, et al., 2005, Wollheim, et al., 2000).  The importance of HNF4α for 

β-cell function is also highlighted as Maturity-Onset Diabetes of the Young (MODY), an 

autosomal dominantly inherited form of Type 2 diabetes, which results from mutations in 

at least six different genes, one of which is HNF4α (MODY1) (Gupta, et al., 2007).   
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Figure 1.10: Summary of transcription factors important in endocrine islet-subtype specification. 

Highlighted in red are candidates for transdifferentiating α-cells to β-cells.  

  

1.13.2 Paired box gene 4 (Pax4) 

Paired box gene 4 (Pax4) is a member of the paired box family of transcription 

factors known to be important in β-cell differentiation.  Collombat et al., showed that the 

conditional ectopic expression of Pax4 in embryonic endocrine progenitor cells, as well as 

mature α-cells induces their conversion into β-cells in vivo (Collombat, et al., 2009a).  

Pax4 presumably induces the conversion from α-cells to β-cells by repressing the 

transcription factor Aristaless related homeobox (Arx).  Indeed a previous study has shown 

that deleting Arx in mouse pancreas induces a switch from an α-cell to a β-cell fate 

(Collombat, et al., 2003), whilst conversely in the absence of Pax4, the opposite phenotype 

is observed (SosaPineda, et al., 1997), suggesting a reciprocal relationship exists between 

Arx and Pax4 transcription factors in pancreas development determining α- or β-cell fate. 
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1.13.3 Pancreatic duodenal homeobox 1 (Pdx1)  

Pancreatic duodenal homeobox 1 (Pdx1) is believed to be a master switch gene for 

the formation of the pancreas, as homozygous Pdx1 knockout mice lack a pancreas 

(Jonsson, et al., 1994). During pancreas development Pdx1 is normally initially expressed 

in the pre-pancreatic endoderm at embryonic stage 8.5-9.0 expanding over the entire 

epithelial but prior to being progressively restricted to endocrine β-cells (Slack, 1995).   A 

number of investigations have demonstrated the utility of Pdx1 (either alone or in 

combination) to induce the conversion of pancreatic acinar cells (Zhou, et al., 2008) or 

hepatocytes to β-cells (Ferber, et al., 2000, Li, et al., 2005a).  Furthermore, Pdx1 also has 

the potential to suppress the α-cell phenotype and enhance the β-cell phenotype as it has 

been shown to bind directly to the glucagon and insulin promoters, respectively 

(Chakrabarti, et al., 2002b, Ritz-Laser, et al., 2003). 

 

1.13.4 NK6 homeobox 1(Nkx6.1) 

The homeodomain transcription factor Nkx6.1 is thought to be important in pancreas 

development, lying downstream of another NK-homeodomain transcription factor Nkx2.2 

in the major pathway of β-cell differentiation.  This is consistent with its restricted 

expression to β-cells and that disruption of Nkx6.1 in mice results in loss of β-cell 

precursors and blockade of β-cell neogeneis (Jensen, et al., 1996, Sander, et al., 2000).  

Therefore Nkx6.1 may also be involved in the switch from α- to β-cells, since it suppresses 

glucagon gene expression (independently of Pdx1) and can induce glucose-stimulated 

insulin secretion in islet β-cells (Schisler, et al., 2005). 

 

1.14 Thesis aims 

This thesis consists of two distinct sections.  The research contained in the first section 

originates from the fact that the therapeutic potential of hepatic progenitor cells (oval cells) 

cannot be harnessed until the factors and signalling pathways governing their proliferation 

and trans/differentiation are better understood.  This thesis will address this issue directly 

through studies utilising an in vitro model based on an adult liver derived oval cell line, 

specialised growth and differentiation mediums (containing dexamethasone) previously 

demonstrated to maintain oval cell proliferation and induce hepatocyte differentiation 
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respectively (Tirnitz-Parker, et al., 2007), and adenovirus vectors containing important 

transcription factor in hepatocyte differentiation (i.e. HNF4α and C/EBPα).  

Thesis aims for this section will include: 

(1) Characterisation of the murine oval cell line (BMOL-TAT1.1) and investigation into 

oval cell heterogeneity during proliferation.  

(2) Optimisation of an inducible hepatic differentiation protocol 

(3) Investigation into the effect of the optimised inducible hepatic differentiation protocol 

on hepatic and non-hepatic BMOL-TAT1.1 differentiation.  

(4) Investigation into the effect of ectopic expression of hepatocyte important 

transcription factors (HNF4α and C/EBPα) in a homogenous population of BMOL-

TAT1.1 cells negative for these transcription factors. 

 

The second section of this thesis is based on the recent study showing that following 

extreme β-cell ablation (i.e. resembling Type 1 diabetes), the remaining α-cells in the 

pancreas are involved in β-cell regeneration (Thorel, et al., 2010).  The therapeutic 

potential of pancreatic α-cells as a source of β-cells cannot be harnessed until the ‘master 

gene transcription factors’ responsible for reprogramming α-cells into β-cells are 

identified.  Whilst there is evidence for the role of Pax4 in converting α-cells into β-cells in 

vivo (Collombat, et al., 2009), this thesis is novel as it will utilise an in vitro adult α-cell 

model and an adenovirus ectopic expression strategy, in order to perform ‘proof-of 

principle’ studies aimed to address the fact that alternative players may exist in the form of 

HNF4α and Pdx1. Additionally the contribution of chromatin modification, in particular 

histone acetylation will also be assessed in the in vitro adult α-cell model as chromatin 

modification is involved in endocrine fate regulation, and hence may facilitate β-cell 

differentiation.  

Thesis aims for this section will include: 

(1) Characterisation of the pancreatic alpha cell line (α-TC19). 

(2) Investigation into the reprogramming potential of α-TC19 cells into β-cells via the 

ectopic expression of β-cell specific transcription factors (e.g. HNF4α) or histone 

deacetylase inhibitior induced chromatin modification (i.e. histone hyperacteylation).  
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Chapter 2 Materials and Method 
 

2.1 General laboratory chemicals 

General laboratory chemicals were of analytical research grade and from a range of 

manufacturers.  Most chemicals came from Sigma or Fisher Scientific.  For specialist 

reagents supplier specific information is provided. 

 

2.2 Solutions and buffers 

Water (H2O):  All general solutions were prepared with double-deionised water obtained 

from a Milli-Q Biocel System (Millipore).  For molecular techniques involving RNA, 

diethylpyrocarbonate (DEPC) treated cross-linked water was utilised.      

0.1M Phosphate Buffer pH 7.3 (X-gal Staining):  3.74g monobasic sodium phosphate 

(NaH2PO4-H2O) and 10.35g dibasic sodium phosphate (Na2HPO4) were dissolved in 1 litre 

of Milli-Q H2O and then stored at 4°C indefinitely. 

Fixation Buffer (X-gal Staining):  0.1M Phosphate Buffer (pH 7.3) was supplemented 

with 5mM ethylene glycol tetraacetic acid (EGTA), 2mM MgCl2 and 0.2% glutaraldahyde.  

The solution was stored at 4°C for up to 4 months. 

Wash Buffer (X-gal Staining):  0.1M Phosphate Buffer (pH 7.3) was supplemented with 

2mM magnesium chloride (MgCl2) and kept at 4°C indefinitely. 

X-gal Staining Solution (X-gal Staining):  0.1M phosphate buffer (pH 7.3) was 

supplemented with 2mM MgCl2, 5mM potassium ferrocyanide (K4Fe(CN)6-3H2O) and 

5mM potassium ferricyanide (K3Fe(CN)6).  The X-gal staining solution was wrapped in 

foil as the solution is light sensitive and stored at 4°C indefinitely.  Prior to use 1mg/ml X-

gal was added (a stock solution of 40mg/ml was prepared in dimethylformamide (DMF) 

and stored at -20°C). 

RNA 5X Loading Buffer 1ml (RNA Integrity Analysis):  Loading buffer was made up 

by adding 1.6μl bromophenol blue, 8μl 500mM ethylene diamine tetraacetic acid (EDTA), 

72μl 37% formaldehyde, 200μl glycerol, 308μl formamide, 400μl 10X 4-

morpholinepropanesulfonic acid (MOPS) buffer, 10.4μl Milli-Q H2O. 
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Running Buffer (RNA Integrity Analysis):  440ml Milli-Q H2O was supplemented with 

50ml 10x MOPS and 10ml 37% formaldehyde. 

2% Blocking Buffer (Immunofluorescent Staining): 10% blocking buffer stock was 

prepared by dissolving blocking buffer (Roche) in maleic acid buffer (100mM maleic acid, 

150mM sodium chloride (NaCl), pH 7.5).  The blocking buffer was then autoclaved and 

stored at -20°C.  Prior to use, the 2% blocking buffer was made by diluting the 10% stock 

in phosphate buffered saline (PBS).   The 2% blocking buffer was stored at 4°C.   

4% PFA Fixative (Immunofluorescent Staining): A 4% PFA stock solution was 

prepared by dissolving 20g paraformaldehyde crystals in 500ml PBS (pH 7.3-7.4) and 

heating to 60°C.  The 4% PFA solution was stored at -20°C (long term) or at 4°C (short 

term).   

Acetone: Methanol Fixative (Immunofluorescent Staining): 1:1 v/v and stored at -20°C 

prior to use. 

MEMFA Fixative (Immunofluorescent Staining):  A 10X MEM stock solution was 

prepared (0.15M MOPS pH7.4, 2mM EGTA, and 1mM MgSO4).  Prior to use 3.7% 

formaldehyde was added to 1X MEM stock solution and was stored at 4°C (short term).       

 

2.3 Cell culture reagents and media 

BMOL-TAT1.1 Proliferation Medium (cell line passaging and maintainence (2.8.3)):  

Williams’ E medium (Sigma) was supplemented with 2.5μg/ml fungizone, 10U/ml 

penicillin, 100μg/ml streptomycin, 2mM L-glutamine and 5% fetal bovine serum (FBS). 

BMOL-TAT1.1 Growth Medium (inducible differentiation protocol (2.8.6)):  

Williams’ E medium (Sigma) was supplemented with 2.5μg/ml fungizone, 10U/ml 

penicillin, 100μg/ml streptomycin, 2mM L-glutamine, 5% FBS, 30ng/ml insulin growth 

factor-2 (IGF-2), 20ng/ml epidermal growth factor (EGF), and 10μg/ml human insulin. 

BMOL-TAT1.1 Differentiation Medium (inducible differentiation protocol (2.8.6)):  

Williams’ E medium (Sigma) was supplemented with 2.5μg/ml fungizone, 10U/ml 

penicillin, 100μg/ml streptomycin, 2mM L-glutamine, 5% FBS, 20ng/ml EGF, 6.25μg/ml 

(each) insulin transferrin selenious acid+ (ITS+), 10mM nicotinamide, and 0.1μM 

dexamethasone. 
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BMOL-TAT1.1 Freezing Medium:  FBS was supplemented with 10% dimethyl 

sulfoxide (DMSO). 

α-TC19 Medium:  Dulbecco's Modified Eagle Medium (DMEM D5546; Sigma) was 

supplemented with 2.5μg/ml fungizone, 10U/ml penicillin, 100μg/ml streptomycin, 4mM 

L-glutamine, 10% Heat-Inactivated FBS, 15mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 3g/l glucose, 0.02% bovine serum albumin (BSA) 

and 1x MEM non-essential amino acids.  

α-TC19 Freezing Medium:  α-TC19 Medium was supplemented with 10% DMSO .  

Embryonic Culture Medium:  Basal Medium Eagle (BME) (Sigma) was supplemented 

with 10U/ml penicillin, 100μg/ml streptomycin, 2mM L-glutamine, 20μg/ml gentamicin, 

2.5μg/ml fungizone  and 10% FBS. 

HEK-293 Medium: Dulbecco's Modified Eagle Medium (DMEM 41966; Gibco) was 

supplemented with 2.5μg/ml fungizone, 10U/ml penicillin, 100μg/ml streptomycin and 

10% Heat-Inactivated FBS. 

 

 

2.4 Extracellular factors and additional compounds 

 
Supplier Details 

CONCENTRATION 

Stock Working 

GENERAL CELL CULTURE 

DMSO Sigma 100% 10% 

FBS Gibco 100% 5% or 10% 

FBS (Heat-Inactivated) Sigma 100% 10% 

Fungizone Gibco 250μg/ml 2.5μg/ml 

L-glutamine Sigma 200mM 2mM or 4mM 

Penicillin Sigma 5000U/ml 10U/ml 

Streptomycin Sigma 5mg 100μg/ml 

Gentamicin Gibco 10mg/ml 20μg/ml 

BMOL-TAT1.1  CELL LINE SPECIFIC 

Dexamethasone Sigma 1mM 0.1μM 

EGF Sigma 1mg/ml 20ng/ml 

IGF-2 R&D Systems 100μg/ml 30ng/ml 

Insulin (human) Sigma 10mg/ml 10μg/ml 

ITS+ BD Biosciences 625μg/ml 6.25μg/ml 

Nicotinamide Sigma 2.5M 10mM 
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α-TC19 CELL LINE SPECIFIC 

BSA Sigma 50mg/ml 0.02% 

Glucose Sigma 450g/l 3g/l 

HEPES Sigma 1M 15mM 

MEM non-essential amino acids Sigma 100x 1x 

ADENOVIRAL INFECTION 

DEAE-dextran Sigma 1mg/ml 5μg/ml 

HDAC INHIBITORS 

Trichostatin A (TSA) Sigma (T1952) 5μM 2, 5, 15 nM 

Sodium Butyrate (NaB) Sigma (B5887) 100mM 0.1, 0.3, 0.5 mM 

Valporic Acid (VPA) Sigma (P4543) 200mM 0.1, 0.3, 0.5 mM 
 

Table 2.1: Extracellular factors and additional compounds added to cell culture medium 

 

2.5 Antibodies for immunofluorescent staining  

Primary 

Antibody 
Species Supplier Details Dilution Fixation 

Antigen 

Retrieval 

A6 rat 
Kind Gift:  Dr. Factor, 

Bethesda, MD, USA 
1:50 Ac:Me Citrate 

Beta-Catenin mouse 
BD Transduction 

Laboratories 
1:50 PFA EDTA 

C/EBPα rabbit Santa Cruz Biotechnology 1:50 PFA Citrate 

C/EBPβ mouse Santa Cruz Biotechnology 1:100 PFA EDTA 

Cytokeratin 7 mouse Abcam 1:50 Ac:Me Citrate 

Cytokeratin 20 mouse Dako 1:50 Ac:Me Citrate 

E-Cadherin mouse 
BD Transduction 

Laboratories 
1:100 PFA ---- 

FoxA2 goat Santa Cruz Biotechnology 1:100 PFA ---- 

Glucagon mouse Sigma 1:300 PFA ---- 

GLUT2 rabbit Biogenesis 1:100 PFA Citrate 

HNF4α rabbit Santa Cruz Biotechnology 1:50 PFA Citrate 

Insulin guinea-pig Sigma 1:300 PFA ---- 

OV6 mouse 
Dr. Sells Ordway Research 

Institute, NY, USA. 
1:1000 Ac:Me Citrate 

Sox 9 rabbit Chemicon 1:100 PFA ---- 

Villin mouse Abcam 1:100 Ac:Me ---- 

Vimentin mouse Sigma 1:100 PFA ---- 
 

Table 2.2 List of primary antibodies.  All the antibodies were diluted in 2% Blocking Buffer (Roche). 
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Secondary Antibody Species Supplier Details Dilution 

Anti-guinea-pig FITC-conjugated IgG goat Vector Laboratories 1:200 

Anti-mouse FITC-conjugated IgG horse Vector Laboratories 1:200 

Anti-mouse Texas Red-conjugated IgG horse Vector Laboratories 1:200 

Anti-rabbit AMCA-conjugated IgG goat Vector Laboratories 1:200 

Anti-rabbit FITC-conjugated IgG goat Vector Laboratories 1:200 

Anti-rabbit Texas Red-conjugated IgG goat Vector Laboratories 1:200 

Anti-rat FITC-conjugated IgG rabbit Vector Laboratories 1:200 
 

Table 2.3 List of secondary antibodies.  All the antibodies were diluted in 2% Blocking Buffer (Roche). 

 

Lectin Conjugate Supplier Details Dilution Fixation 

Dolichos Biflorus Agglutinin 

(DBA) 
Fluorescein Vector Laboratories 1:100 PFA 

Peanut Agglutinin 

(PNA) 
Rhodamine Vector Laboratories 1:100 PFA 

 

Table 2.4 Lectin Conjugated Markers.  All lectins were diluted in 2% Blocking Buffer (Roche). 

 

2.6 Primers for polymerase chain reaction  

Polymerase chain reaction (PCR) primers were designed using the online Primer3
TM

 

software (Rozen and Skaletsky, 2000) and Premier Biosoft Net Primer
TM 

software 

(www.premierbiosoft.com), and purchased from Eurofins MWG Operon.  Primer forward 

and reverse sequences, annealing temperatures (TM), product sizes and number of RT-PCR 

cycles utilised are listed in Table 2.5.  

 

 

Gene Species Primer Sequences (5’-3’) TM (°C) 
Product 

Size (bp)  
Cycles 

AFP mouse 
Fwd:  GGAGGCTATGCATCACCAGT 

Rev:  CCGAGAAATCTGCAGTGACA 
58 207 33 

Albumin mouse 
Fwd:  GCAGAGGCTGACAAGGAAAG 

Rev:  TTCTGCAAAGTGAGCATTGG 
58 183 33 

ALPi mouse 
Fwd:  TGGATGCTGCCAAGAAGCTGC 

Rev:  AGAGATAGGCGGTTGCTGTGC 
56 243 35 

Amylase mouse 
Fwd:  GGGAGGACTGCTATTGTCCA 

Rev:  CATTGTTGCACCTTGTCACC 
56 241 35 

http://www.premierbiosoft.com/
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ApoA-IVi mouse 
Fwd:  GGTGTGGGATTACTTTACCC 

Rev:  CTTCACCCTCTCAGTTTCCT 
56 208 35 

Arx mouse 
Fwd:  GCTCTCCTCCTACTGCATCG 

Rev:  GTGCAGCTCAGCCTCGAA 
56 172 33 

β-actin mouse 
Fwd:  AAGAGCTATGAGCTGCCTGA 

Rev:  TACGGATGTCAACGTCACAC 
56 160 25 

C/EBPα mouse 

Fwd:  

GCCAAGAAGTCGGTGGACAAGAAC 

Rev:  CGGTCATTGTCACTGGTCAACTCC 

60 149 35 

C/EBPβ mouse 
Fwd:  ACAAGCTGAGCGACGAGTAC 

Rev:  ACAGCTGCTCCACCTTCTTC 
56 159 30 

CK7 mouse 
Fwd:  GCAGGATGTGGTGGAAGATT 

Rev:  CGTGAAGGGTCTTGAGGAAG 
58 182 30 

CK14 mouse 
Fwd:  TCTTCAGCAAGACAGAGGAG 

Rev:  GGAGAATTGAGAGGATGAGG 
56 398 35 

CK19 mouse 
Fwd:  ACCCTCCCGAGATTACAACC 

Rev:  AGAGTCAGCTCATCCAGCAC 
58 219 33 

CK20 mouse 
Fwd:  CGCATCTCTGTCTCCAAAGC 

Rev:  ACATTGTTGCCCAGCTGC 
56 538 33 

Connexin 43 mouse 
Fwd:  GAGGGAAGTACCCAACAGCA 

Rev:  CCCAGGAGCAGGATTCTG 
56 267 35 

E-Cadherin mouse 
Fwd:  TCGTTCTCCACTCTCACAT 

Rev:  GCTGGACCGAGAGAGTTA 
58 380 33 

Fabp2 mouse 
Fwd:  AAGTAGACCGGAACGAGAAC 

Rev:  GTCTGCTAGACTGTAGGGAAAG 
56 203 35 

FoxA1 

(HNF3α) 
mouse 

Fwd:  AGTCTCCAGCGTCTTCATCT 

Rev:  GTCTGGAATACACACCTTGG 
56 351 33 

FoxA2 

(HNF3β) 
mouse 

Fwd:  CAAGTGTGAGAAGCAACTGG 

Rev:  GATAGAGAAGGGGTGGTTGA 
56 373 30 

GCi mouse 
Fwd:  GACTGGACATAGTGCGAAAG 

Rev:  GTGTCGAGGTACATCTGGAA 
56 223 35 

GCK mouse 
Fwd:  TATGAAGACCGCCAATGTGA 

Rev:  CACTGAGCTCTCATCCACCA 
58 204 35 

GGT mouse 
Fwd:  GCTCATGAATGCCCACAGTA 

Rev:  CCAGCTCATAACCACGGATT 
58 203 33 

Glucagon mouse 
Fwd:  GCACATTCACCAGCGACTAC 

Rev:  CTGGTGGCAAGATTGTCCAG 
56 328 23 

GLUT2 mouse 
Fwd:  TGGACGAAGTGTATCAGGAC 

Rev:  CCTGACTTCCTCTTCCAACT 
57 298 35 

HNF1α mouse 
Fwd:  ACGTCCGCAAGCAGCGAG 

Rev:  TACACTCTTCCACCAAGGTC 
55 213 30 

HNF1β mouse 

Fwd:  

TTGAAATTCCAAGAGTGACTTGCTC 

Rev:  CTTTAATGGGAGGCTTCCTGAGATG 

56 279 33 

HNF4α mouse 

Fwd:  

CTCTTCTGATTATAAGCTGAGGATG 

Rev:  CACAGGAAGGTGCAGATTGATCTG 

58 377 30 

HNF4α human 
Fwd:  GAAATGCTTCCGGGCTGGC 

Rev:  CTGCAGCTCCTGGAAGGGC 
56 487 25 

HNF6 mouse 
Fwd:  GCAATGGAAGTAATTCAGGGCAG 

Rev:  CATGAAGAAGTTGCTGACAGTGC 
56 461 30 

Insulin 1 mouse 
Fwd:  TAGTGACCAGCTATAATCAGAG 

Rev:  ACGCCAAGGTCTGAAGGTCC 
56 289 35 

Insulin 2 mouse 
Fwd:  CCCTGCTGGCCCTGCTCTT 

Rev:  AGGTCTGAAGGTCACCTGCT 
58 278 27 

Mucin2 mouse 
Fwd:  GCAGTATCAGGCCTGTGGC 

Rev:  CACAATCTCGGTCTTCACTTCG 
56 430 35 

Mucin5ac mouse 
Fwd:  GTGCAGGGCTCAGTTCTTTC 

Rev:  TGGTCTGTTTTCGTGCTG 
56 224 35 

Nkx2.2 mouse Fwd:  TCTACGACAGCAGCGACAAC 56 220 33 
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Rev:  GCTTTGGAGAAGAGCACTCG 

Nkx6.1 mouse 
Fwd:  ACCTTTGGGCTCACATAACC 

Rev:  GCGCTGGGGCTAAAGTAGAG 
56 360 35 

Osteopontin mouse 
Fwd:  GAATGCTGTGTCCTCTGAAG 

Rev:  TTCATGTGAGAGGTGAGGTC 
56 366 33 

Pax4 mouse 
Fwd:  ACCCTGTGACATTTCACGGAG 

Rev:  GTACTCGATTGATAGAGGAC 
56 266 35 

Pax6 mouse 
Fwd:  ACCAACGATAACATACCCAG 

Rev:  CTGAAGTCGCATCTGAGCTT 
56 279 35 

Pdx1 mouse 
Fwd:  CCACCCCAGTTTACAAGCTC 

Rev:  TGTAGGCAGTACGGGTCCTC 
58 325 30 

PP mouse 
Fwd:  TACTGCTGCCTCTCCCTGTT 

Rev:  CCAGGAAGTCCACCTGTGTT 
56 224 35 

SMA mouse 
Fwd:  GTATTGTGCTGGACTCTGGA 

Rev:   AAGATGGCTGGAAGAGAGTC 
56 348 35 

Somatostatin mouse 
Fwd:  CCGTCAGTTTCTGCAGAAGT 

Rev:  CAGGGGCAAGTTGAGCATCG 
56 356 35 

Sox9 mouse 
Fwd:  CGCCTTGAAGATAGCATTAGGA 

Rev:  CAAGAACAAGCCAGCCGTCA 
58 322 30 

TAT mouse 
Fwd:  CGTAATCCAGACGAATGTCAA 

Rev:  AGATGGGGCATAGCCATTGTA 
58 325 33 

TFF3 mouse 
Fwd:  AGATTACGTTGGCCTGTCTCC 

Rev:  TCAGATCAGCCTTGTGTTGGC 
56 341 35 

Villin mouse 
Fwd:  TATGATATCCACTACTGGATTGGC 

Rev:  GCTTGAGTGCAGCCTTAGCG 
54 586 30 

Vimentin mouse 
Fwd:  AATGCTTCTCTGGCACGTCT 

Rev:  AGCCACGCTTTCATACTGCT 
56 207 33 

 

Table 2.5 Primer sequences 

 

2.7 Adenovirus reagents 

Adenovirus reagent titres and source from which they were provided are listed in 

Table 2.6.   

Adenoviral Construct Titre (IU/ml) Source 

Ad-RSV-GFP 2 x 10
10 

Emma Regardsoe, University of Oxford, Oxford, UK 

Ad-CMV-HNF4α 1.2 x 10
11 

Ramiro Jover,  Unit of Exp Hepatology, Valencia, Spain 

Ad-CMV-lacZ 7.74 x 10
10 

Andrew Byrnes, University of Oxford, Oxford, UK 

Ad-Null 6.7 x 10
10 

Harry Heimberg, Vrije Universiteit, Brussels, Belgium 

Ad-CMV-C/EBPα 5.44 x 10
11 

Vector Biolabs, Philadelphia, USA 

Ad-CMV-Pax4 2.4 x 10
10 

Harry Heimberg, Vrije Universiteit, Brussels, Belgium 

Ad-CMV-Pdx1 6 x 10
10 

Harry Heimberg, Vrije Universiteit, Brussels, Belgium 
 

Table 2.6: Adenoviral reagents 
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2.8 Cell culture techniques 

2.8.1 BMOL-TAT1.1 cell line 

BMOL-TAT1.1 cells were obtained from Professor George Yeoh, University of 

Western Australia, Perth, Australia.  Primary cultures of oval cells were isolated from 

TAT-GRE lacZ transgenic mice subjected to a choline-deficient, ethionine (CDE)-

supplemented diet.  The BMOL-TAT1.1 cell line was subsequently clonally derived, 

undergoing spontaneous immortalisation following prolonged maintenance in culture 

(Tirnitz-Parker, et al., 2007).  BMOL-TAT1.1 cells were serially passaged by the 

originators and survived cryopreservation and subsequent thawing. 

 

2.8.2 α-TC19 cell line 

α-TC19 cells were obtained from Professor Peter Jones, Kings College, London and 

were originally purchased from ATCC® (CRL-2350
TM

).  α-TC19 is a pancreatic alpha-cell 

line cloned (clone 9) from the α-TC1 cell line which was derived from an adenoma created 

in transgenic mice expressing the SV40 large T antigen oncogene under the control of the 

rat pre-pro-glucagon promoter.    

 

2.8.3 Cell line passaging and maintenance 

Prior to splitting BMOL-TAT1.1 cells, all medium and reagents were pre-warmed to 

37°C.  For a T-75 flask at approximately 80% confluency, the Proliferation Medium (2.3) 

was aspirated off and cells washed with 12ml autoclaved PBS.  Removal of the PBS was 

followed by the addition of 5ml 0.05% trypsin-EDTA solution (Gibco) and incubation at 

37°C for 5minutes in order to detach the cells from the flask.  An equal volume of BMOL-

TAT1.1 Proliferation Medium was added to neutralise the trypsin activity.  The cells were 

then centrifuged at 1000rpm for 4 minutes in a MSE Mistral 1000 centrifuge (MSE UK 

Ltd).  The supernatant was then removed and the cell pellet re-suspended in 1ml fresh 

medium and 20μl (split 1:50) of the total suspension was plated out on a new T-75 flask 

containing 12ml fresh Proliferation Medium.  All cells were incubated at 37°C in an 

atmosphere of 5% (v/v) CO2 in a humidified incubator. 
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Prior to splitting α-TC19 cells, all medium and reagents were pre-warmed to 37°C.  

For a T-75 flask at approximately 80% confluency, the culture medium was aspirated off 

and the cells incubated in 5ml cell dissociation buffer (Gibco) at room temperature for 2 

minutes with gentle movement followed by a further 5minutes stationary in order to gently 

detach all the cells from the flask.  An equal volume of α-TC19 Medium was added and 

the cells were then centrifuged at 125xg for 9 minutes in a MSE Mistral 1000 centrifuge 

(MSE UK Ltd).  The supernatant was then removed and the cell pellet re-suspended in 4ml 

fresh medium and 1ml (split 1:4) of the total suspension was plated out on a new T-75 

flask containing 12ml fresh medium.  All cells were incubated at 37°C in an atmosphere of 

5% (v/v) CO2 in a humidified incubator. 

 

2.8.4 Cell line storage and revival 

BMOL-TAT1.1 cells and α-TC19 cells were washed and detached as detailed above.  

After the centrifugation step, the cell pellet was re-suspended in 1ml of the appropriate 

freezing medium (2.3) and transferred into cryovials and stored in a Nalgene
TM

 Cryo 1°C 

Freezing Container (Nalgene® Labware, USA) at -80°C overnight.  The next day cryovials 

were transferred to liquid nitrogen for long term storage. 

Cells were revived from storage in liquid nitrogen by removal of the cryovial and 

rapidly thawing at 37°C.  The BMOL-TAT1.1 cells and α-TC19 cells were then seeded in 

a T-75 flask and cultured at 37°C in an atmosphere of 5% (v/v) CO2 in a humidified 

incubator.  The medium was replaced with fresh medium the following day and changed 

every two/three days thereafter. 

 

2.8.5 Culture of embryonic mouse pancreas, liver and intestine 

Isolated pancreatic buds, liver buds and intestine from embryonic stage E11.5 were 

kindly provided by Gabriela Miron and used for positive controls for immunofluorescent 

staining.  The embryonic organs were cultured on ‘subbed’ coverslips.  Glass coverslips 

were rinsed in 95% ethanol/ 0.1% acetic acid, and allowed to dry.  The coverslips were 

then immersed in 2% (3-amino-propyl1) triethoxysilane (APTS) (Sigma) in acetone for 10 

minutes followed by rinsing in acetone and then Milli-Q H2O.  Following drying at 37°C 

the coverslips were sterilised by baking at 180°C for 3 hours.  Individual coverslips were 
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placed into the well of a 4-well tissue culture plate (Thermo Scientific, Nunc).  40μl of 

50μg/ml fibronectin (Invitrogen) was then placed on the centre of the ‘subbed’ coverslip 

and dried in a class II tissue culture hood.  A sterile cloning ring was then placed at the 

centre of the dried fibronectin.  The required tissue was transferred to the centre of the 

sterile cloning ring and supplemented with 500μl of Embryonic Culture Medium (2.3) and 

incubated at 37°C in an atmosphere of 5% (v/v) CO2 in a humidified incubator for 24 

hours.  Once the tissue was attached the cloning ring was removed and the Embryonic 

Culture Medium replaced.  The culture was then incubated for the desired duration 

(approximately 7 days) with the Embryonic Culture Medium changed every 2 days. 

 

2.8.6 Inducible differentiation of BMOL-TAT1.1 cells 

In order to investigate oval cell differentiation, BMOL-TAT1.1cells were grown in 

the different culture conditions as listed in Table 2.7.  These conditions were modified 

from a previously published study utilising the BMOL-TAT1.1 cell line and the specialised 

‘growth’ and ‘differentiation’ medium (2.3) (Tirnitz-Parker, et al., 2007). 

 

CONDITION BMOL-TAT1.1 MEDIUM  

1 6 days Growth Medium 

2 17 days Growth Medium 

3 10 days Growth Medium  7 days Differentiation Medium 

4 7 days Growth Medium 10 days Differentiation Medium 

5 3 days Growth Medium 14 days Differentiation Medium 

6 17 days Differentiation Medium 

7 3 days Growth Medium 14 days ------ Medium 

8 3 days Growth Medium 14 days 20ng/ml EGF 

9 3 days Growth Medium 14 days 0.1μM Dexamethasone 

10 3 days Growth Medium 14 days 10mM Nicotinamide 

11 3 days Growth Medium  14 days 6.25μg/ml ITS 
 

Table 2.7:  BMOL-TAT1.1 culture conditions 
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2.9 Molecular biology techniques 

2.9.1 Adenoviral construct preparation 

All adenoviral constructs were prepared using the AdEasy
TM 

Adenoviral Vector 

System (Stratagene) (Appendix D).  Amplification of adenoviral constructs was performed 

in HEK-293 cells.  Four T-75
 
flasks were infected with 10μl, 1μl, 0.1μl and 0.01μl of 

concentrated adenovirus in HEK-293 Medium (2.3) to prepare a pre-stock.  When 50% of 

the HEK-293 cells demonstrated cytopathic effect (usually 2-4 days) the cells were 

detached from the flask by gently tapping and transferred to a 15ml tube.  A cell pellet was 

obtained by centrifugation at 1000rpm for 4 minutes and re-suspended in 1ml HEK-293 

Medium.  The HEK-293 cells were lysed with 4 freeze/ thaw cycles in a dry ice/ ethanol 

bath and 37°C water bath.  The appropriate quantity of pre-stock (usually 125µl, 12.5µl or 

2µl) which caused 50% cytopathic effect of HEK-293 cells in a T-175
 
flask, was utilised to 

infect 10 x T-175 flasks.  The cells were harvested as described before and centrifuged at 

2000rpm for 10 minutes and the supernatant discarded.  All 10 pellets were pooled and re-

suspended in 5ml 100mM Tris HCl pH 8.0, subjected to 4 freeze/ thaw cycles in a dry ice/ 

ethanol bath and 37°C water bath in order to release all the virus particles from the cells, 

and finally centrifuged at 2000rpm for 5 minutes to remove the cell debris.  To the 

supernatant containing the virus, 0.6 volumes of Caesium Chloride supersaturated 100mM 

Tris HCl pH 8.0 was added, mixed gently and transferred into 2 Beckman centrifuge tubes 

(Beckman 342412).  Following a centrifuge at 65000rpm at 22°C  for 4 hours in a 

Beckman Ultracentrifuge (LL-TB003) using a Beckman Vti90 rotor, the virus particle 

band was removed with a 25G needle and 2ml syringe.  The collected virus was added to a 

new Beckman centrifuge tube, which the remainder was filled with balance solution (1 

volume 100mM Tris HCl pH 8.0: 0.6 volumes of Caesium Chloride supersaturated 100mM 

Tris HCl pH 8.0) and re-centrifuged at 65000rpm at 22°C over night.  The resultant virus 

particle band was removed with a 25G needle and 1ml syringe and dialysed in a Gamma 

Irradiated Slide-A-Lyzer
TM

 Dialysis Cassette (Thermo Scientific) against a buffer 

containing 10mM Tris HCl pH7.5, 1mM MgCl2 and 135mM NaCl for 6 hours and 12 

hours at 4°C.  The virus was then filtered at 0.22μm, aliquoted and stored at -80°C.  The 

adenovirus utilised are recorded in Table 2.6.  
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2.9.2  Adenoviral titre 

Adenoviral constructs were titred using the Adeno-X
TM 

Rapid Titer Kit (BD 

Biosciences) according to the manufacturer’s guidelines.  HEK-293 cells were seeded onto 

a 12 well tissue culture plate and grown to 70% confluence.  To each well 100μl of 6 serial 

dilutions ranging from 10
2
 to 10

7
, or purified virus was added and incubated for 48 hours.  

The cells were fixed with 1ml per well of methanol at -20°C for 10 minutes after removal 

of the media.  The cells were washed three times with PBS, blocked with 2% Blocking 

Buffer (Roche, Germany) for 1 hour at room temperature and incubated with mouse anti-

Hexon primary antibody (1:1000 in 2% Blocking Buffer) at 37°C for 1 hour.  After three 

PBS washes, the cells were incubated with rat anti-mouse secondary antibody (HRP 

conjugate, 1:500 in 2% Blocking Buffer) at 37°C for 1 hour.  The peroxidase was 

developed using DAB Peroxidase Substrate Kit (Vector Laboratories) according to 

manufacturer’s guidelines.  Two drops of Buffer pH7.5, 4 drops of DAB substrate reagent 

and 2 drops of H2O2 were added to 5ml Milli-Q H2O.  To each well 500μl of this solution 

was added and incubated for 10 minutes at room temperature, each well was then 

quenched with water.  Using an inverted Leica DMIRB microscope the mean number of 

positive cells in a 20x field was calculated from 4 separate fields. The Infectious Units (IU) 

per ml titre was calculated by: 

IU/ml  =  (Positive Cell per 20x field) x 5730                                                                                           

vcvcvDilution Factor 

 

2.9.3 Adenoviral infection 

All cells were plated onto 35mm culture dishes at a density of approximately 1 x 10
5
. 

Specific Multiplicity of Infections (MOI) volumes i.e. number of virus particles per 

individual cell were calculated utilising the appropriate adenovirus titre (Table 2.6). 

Adenoviral infection of BMOL-TAT1.1 cells was carried out at a range of MOIs (50-300), 

with virus incubation at 37°C for 1 hour or overnight. Adenoviral infection of α-TC19 cells 

was carried out at 37°C a range of MOIs (50-300), with overnight virus incubation in the 

presence of 5μg/ml diethylaminoethyl (DEAE)-dextran to enhance infectivity.  For 

multiple simultaneous infections the individual MOI for each virus was kept constant, 

using the Ad-Null virus to moderate the total MOI. Cells were maintained after infection 

for a maximum of 7 days before transmitted light images were collected on the Leica 
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DMIRB microscope using SPOT
TM

 software and further analysis by immunofluorescent 

staining (2.10.1) and RT-PCR (2.9.4). 

 

2.9.4 Semi-quantitative RT- PCR 

2.9.4.1 RNA isolation, quantification and purity analysis 

Total cellular RNA was extracted from cultured cells at the appropriate time point 

using 1ml TRI® reagent (Sigma) per 35mm dish according to the manufacturer’s 

guidelines.  After addition of the reagent, the cell lysate was passed several times through a 

pipette to form a homogenous lysate.  After homogenization, the lysate was collected in 

and RNase-free eppendorf, and then 200μl of chloroform (Sigma) was added.  Covering 

the sample, it was shaken vigorously for 15 seconds and allowed to stand for 15 minutes at 

room temperature.  It was then centrifuged at 12100xg for 15 minutes at 4°C.  The aqueous 

phase was transferred to a fresh RNase-free eppendorf; 500μl of isopropanol (Sigma) was 

added, the sample vortexed and then allowed to stand for 10 minutes at room temperature.  

It was then centrifuged at 12100xg for 10 minutes at 4°C.  The supernatant was removed 

and the RNA pellet washed with 75% ethanol and centrifuged at 7600xg for 5minutes at 

4°C.  The RNA pellet was dried for 5-10 minutes, re-suspended in DEPC-treated water and 

incubated at 60°C for 10 minutes. 

An aliquot of re-suspended RNA was diluted in water and quantified using 

spectrophotmetery at 260nm.  The RNA concentrations (Appendix B) were calculated 

using the Beer-Lambert Law [A=ε c l; where A is the absorbance at a particular 

wavelength, ε is the extinction coefficient, c is the concentration and l is the light path 

length (1cm)] therefore: 

RNA Concentration (μg/ml) = A260 ε l x dilution factor 

Also samples with an A260/A280 ratio of below 2.0 and A260 value below 1.0 were 

considered to be without significant contamination (Appendix B) and hence stored at -

80°C. 
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2.9.4.2 RNA integrity analysis 

RNA samples were analysed by electrophoresis on a 2% agarose gel (with Milli-Q 

H2O) supplemented with 0.02% ethidium bromide, 2% formaldehyde, and 1X MOPS.  

Samples were loaded with RNA 5X Loading Buffer (2.2), electrophoresed at 110V in 

RNA Running Buffer and visualised using UV light.  Gel images were captured using 

Alphaimager
TM

 3400 (Alpha Innotech Corporation, San Leandro, CA, USA).  RNA 

specific gel electrophoresis was utilised to confirm all RNA isolated was intact, as RNA 

quality is a critical determinant for the success of many downstream applications.  This 

was deduced from the crisp 28S and 18S bands; and 28S:18S ratio of approximately 2.0 as 

shown in Figure 2.1. 

 

Figure 2.1: RNA integrity analysis.  

 

2.9.4.3 RNA DNase treatment 

Contaminating genomic DNA was removed using DNase (Ambion) according to the 

manufacturer’s guidelines.  5μg of RNA was added to a 25.23μl reaction consisting of 

cross-linked Milli-Q water with, 3μl 10X DNase Buffer and 1μl DNase and incubated at 

37°C for 30 minutes.  In order to stop the DNase reaction 0.77μl 200mM EDTA was added 

and samples then incubated at 75°C for 10 minutes.  Samples were then stored at -80°C. 
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2.9.4.4 Reverse transcription (RT) 

Messenger RNA (mRNA) was isolated from total RNA by using SuperScript
TM

 First 

Strand Synthesis System (Invitrogen) for RT-PCR. mRNA was isolated by incubation of 

Oligo (dT) oligonucleotides and 10mM dNTP with 1.5μg extracted total DNase-treated 

RNA at 65°C for 5 minutes.  First strand complementary DNA (cDNA) was synthesized 

by incubation with SuperScript
TM

 II Reverse Transcriptase (Invitrogen), 0.1M 

dithiothreitol (DTT) and 5X RT Buffer at 42°C for 52 minutes followed by inactivation at 

70°C for 15 minutes.  All cDNA samples were stored at -20°C.  In parallel the RT reaction 

was performed with DNase treated RNA but without the Reverse Transcriptase enzyme, in 

order to serve as a ‘RT no template control’, thus confirming that the samples were void of 

genomic contamination.  

 

2.9.4.5 Gene specific polymerase chain reaction (PCR) 

Each PCR reaction contained 1μl of cDNA (50ng of total RNA), 10μl of 2X Reddy 

Mix
TM

 PCR Master Mix Kit (Thermo Scientific), 0.5μl of each forward and reverse 

primers, and 8μl sterile cross-linked Milli-Q H2O, as according to the manufacturer’s 

guidelines.  PCRs were performed in a TC-412 Techne Thermal Cycler (Jencons Pls) 

using the following conditions: denaturing at 94°C for 5 minutes, followed by 25-35 cycles 

of denaturing at 94°C for 1 minute, amplification at the appropriate primer specific 

annealing temperature for 1 minute, and elongation at 72°C for 1 minute.  This was 

followed by a final extension step of 72°C for 10 minutes.  The primer sequences, 

annealing temperatures, product sizes and cycle number utilised for PCR reactions are 

detailed in Table 2.5.  PCR products were routinely analysed by electrophoresis on a 2% 

agarose gel supplemented with 0.02% ethidium bromide, in 1X tris acetic acid + 

ethylenediaminetetraacetic acid (TAE) Running Buffer.  Samples were loaded, 

electrophoresed at 110V and visualised using UV light.  Gel images were captured using 

Alphaimager
TM

 3400 (Alpha Innotech Corporation, San Leandro, CA, USA).  All PCR 

results included were repeated at least twice for confirmation. 
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2.10 Staining techniques 

2.10.1 Immunofluorescent staining 

2.10.1.1 Fixation of cultures 

Cell lines (BMOL-TAT1.1 and α-TC19) and embryonic cultures were cultured on 

appropriate coverslips until the desired time point for the specific experiment.  Coverslips 

were rinsed twice with PBS to remove excess medium.  The fixation conditions were 

dependent on the specific antigen being detected (Table 2.2), hence the cell lines were 

either fixed with 4% PFA at room temperature for 25 minutes, and the embryonic cultures 

with MEMFA Fixative (2.2) at room temperature for 30 minutes or Acetone-Methanol (1:1 

v/v) at -20°C for 7 minutes.  The coverslips were then rinsed twice with PBS and kept at 

4°C prior to staining.   

 

2.10.1.2 Fluorescent immuno-cytochemistry 

PFA and MEMFA fixed samples were permeabilised with 0.1% (v/v) Triton X-100 

(Sigma) or 1% (v/v) Triton X-100 (Sigma) respectively at room temperature for 20 

minutes.  Samples that were fixed in Acetone-Methanol (1:1 v/v) did not require 

permeabilisation.  Also antigen retrieval was performed for certain antigens (Table 2.2), 

either incubated in 1X Citrate Buffer (Lab Vision Corporation) at 37°C for 1 hour or 

incubated in ethylene diamine tetraacetic acid (EDTA) Buffer at 37°C for 30 minutes, 

before blocking.  Cells were incubated in 2% Blocking Buffer (Roche) for 45 minutes.  

The coverslips were then incubated with the appropriate primary antibody overnight at 

4°C.  The following day, coverslips were washed 3 x 10 minutes with PBS.  The 

fluorescently-conjugated secondary antibodies (Table 2.3) were added to the coverslips for 

1.5 hours and then washed 3 x 10 minutes with PBS.  For detection of two (glucagon and 

insulin) or three (glucagon, insulin and HNF4α) antigens, the primary antibodies were 

added simultaneously, and the secondary antibodies were added sequentially using the 

same protocol to prevent cross reactivity.  For detection of lectins DBA and PNA (Table 

2.4), the fluorescently labelled lectins were added simultaneously as primary antibodies 

and no secondary antibodies were required.  The cells were finally incubated with 4,6-

diamidino-2-phenylindole (DAPI) (Sigma) at room temperature for 5 minutes with light 

protection.  DAPI was dissolved in PBS at 500μg/ml and used at a 1:1000 dilution.  
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Coverslips were mounted on non-subbed slides (Fisher Brand®) with GelMount
TM

 

Aqueous Mounting Medium (Sigma).  For all antibodies utilised, positive and negative 

controls (i.e. no primary antibody) were performed in parallel (Appendix C1).  

 

2.10.2  X-gal staining for beta-galactosidase  

BMOL-TAT1.1 cells were analysed for lacZ transgene expression by performing X-

gal staining.  Cells were placed in Fixation Buffer (2.2) for 15 minutes at room 

temperature.  After fixation, 2 x 5 minute washes with Wash Buffer (2.2) were performed.  

Cells were then immersed in X-gal Staining Solution (2.2) at 37°C overnight with light 

protection.  The next day, cells were washed twice with Wash Buffer and mounted onto 

non-subbed slides (Fisher Brand®) using GelMount
TM

 Aqueous Mounting Medium 

(Sigma).  BMOL-TAT1.1 cells un-infected and infected with Ad-CMV-LacZ served as a 

negative and positive control respectively for the X-gal staining protocol (Appendix C2).   

 

2.10.3 Periodic acid schiff (PAS) staining 

Cells cultured on coverslips were initially fixed with 4% PFA at room temperature 

for 25 minutes.  The coverslips were washed for 3 minutes under running tap water and 

then immersed in 1% Periodic Acid (Sigma) diluted in Milli-Q H2O. The coverslips were 

washed for 3 minutes under running tap water and then incubated in Schiff Reagent 

(Sigma) with light protection for 2-6 minutes until the stain developed.  The coverslips 

were then washed for 10 minutes under running tap water in order to reduce non-specific 

background staining.  Finally coverslips were mounted on non-subbed microscope slides 

(Fisher Brand®) with GelMount
TM

 Aqueous Mounting Medium (Sigma). Primary 

hepatocytes serve as a positive control (Appendix C3).  

 

2.11 Image processing 

Fluorescent, X-gal and PAS stained cells were analysed under a Leica DMRB 

microscope (10x, 20x, 40x, 63xoil objective lens) with images taken with a digital SPOT 

camera using NIS Elements software or under a LSM510META Zeiss Confocal Laser 

Scanning Microscope (LSM) (60xoil objective lens) using LSM Image Browser software.  
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Transmitted light images of cells in culture were analysed under an inverted Leica DMIRB 

microscope using (10x, 20x, 40x objective lens) with images taken with RT Colour SPOT 

camera using SPOT
TM

 software.  All images captured were colour balanced, contrast-

enhanced and labelled using Adobe Photoshop Version CS.3 and Microsoft Office 

PowerPoint.   

 

2.12 Measurements and statistics 

Measurements of BMOL-TAT1.1 cell sizes (diameter) were performed using 

measurement tools on LSM Image Browser software.  All numerical values are presented 

as mean ± standard deviation.  The significance of the observed difference between the two 

distinctive BMOL-TAT1.1 cell types was tested by a Students t-test. 
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Chapter 3 Characterisation of the oval cell line 

BMOL-TAT1.1 and optimisation of 

inducible differentiation 
 

3.1 Introduction 

3.1.1 BMOL-TAT1.1 cell line 

The therapeutic potential of hepatic progenitor cells (oval cells) cannot be harnessed 

until the mechanisms governing their proliferation and trans/differentiation are better 

understood.  In order to fully elucidate the factors and signalling pathways governing oval 

cell proliferation and trans/differentiation, it is beneficial to utilise an in vitro model.  

Initially oval cell lines were generated primarily from rats (Lazaro, et al., 1998, Pack, et al., 

1993, Yin, et al., 2002), but investigators became keen to generate mouse oval cell lines 

instead.  Richards et al., produced one of the first mouse oval cell lines from TgN73/Rpw 

transgenic mice (Richards, et al., 1997). This shift from rat to mouse was due to the 

additional research benefits provided by mice, 99% of mouse genes have an equivalent in 

humans and they are the most amenable to genetic manipulation with many extensive 

knockout and over-expression mouse strains available, thus making them ideal for studying 

the function of human genes.  Prior to this research commencing Tirnitz-Parker et al., 

generated a novel immortalised, non-transformed, clonal murine adult oval cell line, 

defined as Bi-potential Murine Oval Liver – Tyrosine Aminotransferase (BMOL-TAT1.1) 

(Tirnitz-Parker, et al., 2007). This cell line was derived from highly enriched oval cell 

cultures, obtained from the liver of choline-deficient, ethionine-supplemented (CDE) diet 

fed 4 week old NMRI/Han-TAT-GRE lacZ mice (Akhurst, et al., 2001).  The BMOL-

TAT1.1 cell line was chosen for this research as it possesses the major advantage over 

other available adult oval cell lines as hepatic differentiation can be simply followed by X-

gal staining analysis, as expression of the lacZ-transgene, is driven by the promoter 

element from TAT, a marker of mature adult hepatocytes (Montoliu, et al., 1995).   

 

3.1.2 Inducible in vitro oval cell proliferation 

In order to investigate oval cell proliferation, the BMOL-TAT1.1 cell line was 

cultured in a previously published specialised ‘growth medium’ (2.3), supplemented with 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 65 ~ 
 

IGFII, insulin and EGF (Tirnitz-Parker, et al., 2007).  Control of cell proliferation is crucial 

for the oval cell response during liver regeneration.  A central role in regulation of 

proliferation is played by extracellular growth factors, which are secreted polypeptides 

interacting with specific high affinity plasma membrane anchored receptors in a paracrine 

or autocrine manner.  One of the most strongly implicated signalling systems in liver 

regeneration, responsible for rebuilding liver mass and also restoration of glucose 

homeostasis is the insulin-like growth factor (IGF) receptor and their binding proteins, 

such as insulin growth factor II (IGF-II) and insulin (Liu, et al., 1999).  IGF-II a 67 amino 

acid polypeptide is structurally related to pro-insulin and binds with high affinity to two 

structurally unrelated type 1 and type 2 IGF receptors.  Oval cells have been shown to be 

heterogeneous for IGFII expression and IGFII shown to mediate stimulation of oval cell 

proliferation (Zhang, et al., 1997).  Epidermal growth factor (EGF) is a member of the 

EGF family and binds the EGF receptor (EGFR) triggering a tyrosine kinase signalling 

system.  EGF has been suggested to have a fundamental role in liver regeneration.  EGF 

and EGFR-mediated autocrine signalling has been observed to elicit potent mitogenic 

activity in mouse oval cells in a dose responsive manner in vitro (Isfort, et al., 1997, 

Martinez-Palacian, et al., 2012, Michalopoulos and Khan, 2005).  Furthermore in vivo 

infusion with EGF amplifies liver progenitor expansion following 2-acetylamino-fluorene 

induced liver injury and decreases cell apoptosis (Nagy, et al., 1996). 

 

3.1.3 Inducible in vitro oval cell hepatocyte differentiation 

In order to investigate oval cell hepatic differentiation, the BMOL-TAT1.1 cell line 

was cultured in a previously published specialised ‘differentiation medium’ (2.3), designed 

to enhance hepatocyte differentiation (Tirnitz-Parker, et al., 2007).  The ‘differentiation 

medium’ is supplemented with EGF, dexamethasone, a synthetic glucocorticoid which has 

been reported to induce differentiation of liver progenitor cells (Yeoh, et al., 1979) and two 

other supplements, insulin-transferrin-selenium (ITS) and nicotinamide, both known to 

promote hepatocyte differentiation (Auth, et al., 2005, Inoue, et al., 1989).  

 

3.1.4 Experimental Aims 

The first phase of this research was to utilise the growth medium in order to perform 

a detailed characterisation of the proliferating BMOL-TAT1.1 cell line in terms of 
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morphology and protein expression of markers specific for oval cells, morphology and 

liver-enriched transcription factors.  As well as address the potential role of the Wnt/β-

catenin signalling pathway during BMOL-TAT1.1 proliferation via analysis of β-catenin 

cellular localisation.  Secondly culturing of BMOL-TAT1.1 cells in different culture 

conditions, with variances in specialised medium and culture time was performed in order 

to optimise the in vitro hepatocytic differentiation protocol. 
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3.2 Results 

3.2.1 Characterisation of the heterogeneous BMOL-TAT1.1 cell line 

BMOL-TAT1.1 cell cultures were maintained in growth medium for 6 days to mimic 

proliferation, and then subsequently their morphology and protein expression were 

analysed in detail.  Proliferating BMOL-TAT1.1 cells comprised monolayers of cells 

exhibiting two distinct morphological phenotypes (Figure 3.1).  Immunofluorescent 

staining of the heterogeneous cell population for two commonly used oval cell markers, A6 

and OV6 (Crosby, et al., 1998, Wang, et al., 2002b), confirmed their derivation from oval 

cells (Figure 3.2).  It was illustrated that within proliferative colonies, centrally located 

cells with very high nuclear: cytoplasmic ratio and irregular shaped nuclei maintained a 

relatively small size, and were OV6 positive and A6 negative, with a mean cell diameter of 

19.41μm (i.e. OV6 positive cells) (Figure 3.2).  The peripheral cells contrastingly with 

abundant cytoplasm and regular shaped nuclei possessed a significantly larger flattened 

cuboidal morphology, and were OV6 negative and A6 positive with a mean cell diameter 

of 39.37μm (i.e. OV6 negative cells) (Figure 3.2). 

 

Figure 3.1: BMOL-TAT1.1 cell line 

morphology.  (A, B) Transmitted light images of 

BMOL-TAT1.1 cells cultured for 6 days in growth 

medium.  (A) Dashed box indicates the area 

enlarged in the higher magnification view (B).  (C) 

DAPI staining of additional BMOL-TAT1.1 cells 

cultured for 6 days in growth medium.  The oval 

cell line is morphologically heterogeneous varying 

considerably from small primitive cells with scant 

cytoplasm (B, closed arrow head)  and irregular 

shaped nuclei with distinct nucleolus (C, closed 

arrow head) to large cuboidal cells with abundant 

cytoplasm (B, open arrow head) and large regular 

shaped nuclei (C, open arrow head). (A scale bar = 

200μm) (B,C scale bar = 50μm).  
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Figure 3.2: BMOL-TAT1.1 cell line 

heterogeneity.  Immunofluorescent staining for 

OV6 (A, C, E, green) and A6 (B, D, F, green) 

expression in BMOL-TAT1.1 cells cultured for 6 

days in growth medium. DAPI staining (blue) is 

included to distinguish the two different cell 

types based on their nuclear morphology.  The 

small cells are OV6 positive (C), A6 negative 

(D) whilst in contrast the large cells are OV6 

negative (E) and A6 positive (F). (G) Mean cell 

diameter for OV6+ and OV6- BMOL-TAT1.1 

cells were calculated from 100 cells from 3 

independent experiments, with all numerical 

results expressed as the mean ± standard 

deviation.  The significant difference in cell size 

was evaluated by a Students t-test * (p<0.05). (A, 

B scale bar = 200μm) (C-F scale bar = 50μm).  
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Immunofluoresecent staining revealed the larger flattened cells were positive for 

the epithelial cell marker E-cadherin, with E-cadherin localised primarily to the plasma 

membrane but also partially in the cytoplasm adjacent to the nucleus (Figure 3.3A).  

Contrastingly the smaller cells were negative for E-cadherin but positive for the 

mesenchymal/ ductal marker Vimentin (Ko, et al., 2004) (Figure 3.3B).  

We determined the expression of different liver-enriched transcription factors during 

BMOL-TAT1.1 cell proliferation.  Both large and small cell types were C/EBPα negative 

(Figure 3.4A), but C/EBPβ (Figure 3.4D,G) and FoxA2 (Figure 3.5G) positive.  However 

there was differential expression of HNF4α and Sox9, with the large cells appearing 

HNF4α positive and weakly Sox9 positive, whilst the small cells were HNF4α negative 

and strongly Sox9 positive (Figure 3.5A,D).   

All immunofluorescent staining negative results obtained were confirmed by 

repetition of the staining protocol with various different conditions (i.e. antibody dilution, 

fixation, antigen retrieval methods) and obtained when performed simultaneously with a 

positive control under identical conditions (Appendix C)  

In the liver, there is accumulating evidence that Wnt/β-catenin signalling plays a 

central role in various aspects of hepatic biology, including liver development, 

regeneration, growth and oncogenesis.  During liver development, β-catenin critically 

regulates oval cell proliferation, with its activation being determined and identified by its 

cellular localisation.  Analysis of β-catenin expression in the heterogeneous BMOL-

TAT1.1 cell line revealed β-catenin to be activated and translocated in the cytoplasm and 

nuclei of the small cells whilst inactivated and bound to the plasma membrane in the large 

cells (Figure 3.6).  
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Figure 3.3: BMOL-TAT1.1 cell line expression of morphological markers. Immunofluorescent staining 

to identify E-cadherin (C, green) and Vimentin (D, green) expression in BMOL-TAT1.1 cells cultured for 6 

days in growth medium. DAPI staining (E, F, blue) is included to distinguish the two different cell types 

based on their nuclear morphology.  Images A and B are overlays of C, E and D, F respectively.  The large 

cells are E-cadherin positive and Vimentin negative, whilst the small cells are E-cadherin negative and 

Vimentin positive. (scale bar =  50μm). 
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Figure 3.4: Expression of C/EBP transcription factors in BMOL-TAT1.1 cells. Immunofluorescent 

staining to identify C/EBPα (A, green) and C/EBPβ (D and G, green) expression in BMOL-TAT1.1 cells 

cultured for 6 days in growth medium. DAPI staining (B, E, H, blue) is included to distinguish the two 

different cell types based on their nuclear morphology. All cells are negative for C/EBPα expression (A) but 

positive for C/EBPβ expression both in the small cells (D) and large cells (G).  For all antibodies utilised, 

positive controls were performed in parallel and are included in Appendix C1.  Images C, F and I are 

overlays of A, B; D, E; and G, H respectively.  (scale bar =  50μm). 
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Figure 3.5: BMOL-TAT1.1 cell line expression of transcription factors. Immunofluorescent staining to 

identify HNF4α (A, green), Sox9 (D, red) and FoxA2 (G, green) expression in BMOL-TAT1.1 cells 

cultured for 6 days in growth medium. DAPI staining (B, E, H, blue) is included to distinguish the two 

different cell types based on their nuclear morphology. Both cell types express FoxA2, whilst the large cells 

are HNF4α positive, Sox9 weakly positive and the small cells HNF4α negative, Sox9 positive. Images C, F 

and I are overlays of A, B; D, E; and G, H respectively.  (scale bar =  50μm). 
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Figure 3.6: Expression of β-catenin in BMOL-TAT1.1 cells cultured under proliferating conditions. 

Immunofluorescent staining to identify β-catenin (green) expression in BMOL-TAT1.1 cells cultured for 6 

days in growth medium. DAPI staining (B, E, H, blue) is included to distinguish the two different cell types 

based on their nuclear morphology. Both small and large cells express β-catenin, however its localisation 

differs as seen in the mixture of small and large cells (A).  In the small cells β-catenin is located mainly in the 

nucleus with some minor membrane localisation (D).  However in the large cells β–catenin is only membrane 

bound and completely absent from the nucleus (G).  Images A, D and G are overlays of B, C; E, F; and H, I 

respectively. (scale bar =  50μm). 
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3.2.2 Optimisation of inducible differentiation of BMOL-TAT1.1 cells 

In order to investigate the mechanisms governing oval cell hepatocytic 

differentiation it was essential to set up a model of differentiation that could be compared 

to proliferating oval cells.  Therefore in order to assess which culture conditions could 

optimally enhance hepatocyte differentiation, BMOL-TAT1.1 cells were cultured for a 

total of 17 days under different culture conditions by varying the duration of exposure to 

growth and differentiation medium.  The conditions tested are outlined in Table 2.7.   

Cell proliferation under all conditions examined was accompanied by initial 

formation of a monolayer cell population (Figure 3.7A) prior to the establishment of 

spherical or ridge-like structures on top of the monolayer (Figure 3.7E).  Due to oval cells’ 

characteristic high proliferative rate, a correlation was observed between increasing the 

length of time cultured in growth medium, and an over-confluent cell population with large 

areas of detachment of cells from the culture dish.  This observation was also obtained 

when the experiment was repeated several times and also when repeated with reduced cell 

seeding density and medium glutamine levels reduced from 2mM to 2µM.   

The differentiation of cells towards a mature hepatocyte phenotype in the above 

culture conditions was subsequently analysed by X-gal staining, in order to detect cells 

which expressed the lacZ transgene under the promoter element of TAT (an adult 

hepatocyte marker).  Condition 1, a 6 day growth control culture at approximately 50% 

confluency was negative for X-gal (Figure 3.8A).  All of the other Conditions 2-6 

possessed X-gal positive cells (Figure 3.8B-F), with the most abundant expression in 

Condition 5 (Figure 3.8E) and Condition 6 (Figure 3.8F), which were cultured in 

‘differentiation medium’ for the longest period of time.  X-gal staining appeared punctuate 

in the cells and primarily in the cells on the periphery of the ridge-like structures between 

the two different cell types.  However these X-gal positive cells did not exhibit an altered 

morphology, hence did not possess the typical hepatocyte morphology. 

In order to validate that the X-gal staining observed was indicative of TAT 

expression, RNA was isolated and purified for Conditions1-6 and semi-quantitative RT-

PCR performed to determine TAT expression levels.  In Conditions 1 and 2 where cells 

were cultured solely in growth medium TAT expression was barely detectable although 

some cells may have potentially spontaneously differentiated.  In contrast for Conditions 3-

6 which included culture in ‘differentiation medium’ TAT was highly expressed, especially 

* 

G 
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in Condition 5 (Figure 3.8H).  To simplify future analysis Condition 5 (3G14D) was taken 

as the optimum model for oval cell hepatocytic differentiation to be compared against the 

control Condition 1 (6G) and Condition 2 (17G) which represented a model of oval cell 

proliferation.  Analysis of Condition 2 (17G) and Condition 5 (3G14D) revealed the 

growth medium (i.e. EGF, IGF-II, insulin) to preferentially enhance proliferation of the 

small cells (Figure 3.7B).  In contrast when cultured in differentiation medium (EGF, 

dexamethasone, nicotinamide, ITS) BMOL-TAT1.1 cells showed less proliferation 

maintaining a larger proportion of large cells in the culture (Figure 3.7E black asterisk).  

Glycogen storage is another characteristic indicator or hepatocytes, and cultures 

containing X-gal stained positive BMOL-TAT1.1 cells deduced to be expressing TAT also 

contained Period Acid Schiff (PAS) positive cells (Figure 3.9).  PAS is a technique used to 

detect glycogen and other polysaccharides PAS staining works via the periodic acid 

oxidising the diol functional groups in glucose and other sugars, creating aldehydes that 

react with the schiff reagent to give the pinkish colour.  
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Figure 3.7: BMOL-TAT1.1 cell line in different culture conditions.  Transmitted light images of BMOL-

TAT1.1 cells cultured for 6 days in growth medium (Condition 1, A)  or up to 17 days in specific culture 

conditions as detailed (Conditions 2-6, B-F).  Cells initially proliferated as a monolayer (A; E, black 

asterisk), then formed spherical or ridge-like structures on top (E, white asterisk). Abbreviations: D, 

Differentiation Medium; G, Growth Medium.  (scale bar = 200μm). 
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Figure 3.8: X-gal staining representing TAT expression in different BMOL-TAT1.1 culture conditions.  

(A-F) X-gal staining of BMOL-TAT1.1 cells cultured for 17 days in specific culture conditions as indicated.  

Black arrows identify areas of X-gal staining.  Conditions 5 (E1) and 6 (F1) exhibited the most X-gal 

staining, with the blue boxes indicating the region enlarged in higher magnification views (E2, F2).  This is 

supported by analysis of TAT expression by RT-PCR (H).   Abbreviations: D, Differentiation Medium; G, 

Growth Medium; TAT, tyrosine aminotransferase; RT, no RT control; (-) negative control; (+), positive 

control. (A-D,E1,F1 scale bar = 200μm) (E2, F2 scale bar = 50μm). 
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Figure 3.9: Periodic acid schiff (PAS) and X-gal staining of BMOL-TAT1.1 cells cultured in 

differentiation medium.  PAS staining (A, C, pink)  and X-gal staining  (B, D, blue) expression in BMOL-

TAT1.1 cells cultured for either 6 days in growth medium (Condition 1, 6G; A, B) or 3days in growth 

medium followed by 14 days in differentiation medium (Condition 5, 3G14D; C, D).  Staining revealed 

culturing in differentiation medium generated PAS positive cells and X-gal positive cells.  Staining is 

predominantly in the ridge like structures where the cells are very dense. (scale bar =  200μm). 
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3.3 Discussion 

3.3.1 BMOL-TAT1.1 cell line heterogeneity and the potential role of 

EGFR and β-catenin signalling 

The preliminary conclusion for this chapter is that the proliferating BMOL-TAT1.1 

cell line is heterogeneous possessing two distinctive morphological and antigenic 

phenotypes, denoted here as small and large BMOL-TAT1.1 cells.  Radaeva  and 

Steinberg observed a similar morphological heterogeneity in two different oval cell lines 

OC/CDE 6 and OC/CDE 22, with Transmission Electron Microscopy revealing small 

primitive elongated cells with a high nuclear: cytoplasmic ratio and larger cuboidal cells 

with abundant cytoplasm packed with organelles (Radaeva and Steinberg, 1995).  In the 

present study, the significantly larger flattened cells with abundant cytoplasm are positive 

for the A6 antigen (Figure 3.2B), E-cadherin (Figure 3.3A) and HNF4α (Figure 3.5A), 

whereas the smaller cells with higher nuclear: cytoplasmic ratio which are positive for 

OV6 (Figure 3.2A), Vimentin (Figure 3.3B) and Sox9 (Figure 3.5D), markers commonly 

associated with the cholangiocyte lineage.  This is consistent with the findings of Ishikawa 

et al., showing large A6 positive hepatocyte-like cells express HNF4α, an important 

transcription factor in hepatocytic differentiation, whereas smaller ductular oval cells are 

HNF4α negative (Ishikawa, et al., 2012).  

Another striking difference between the two cell types is the localisation of β-catenin 

expression.  β-catenin is a multifunctional protein found in three cell compartments: (i) the 

plasma membrane (ii) cytoplasm and (iii) nucleus.  The Wnt genes encode a large family 

of secreted glycoproteins that signal at the cell surface via at least two receptors: Frizzled, 

a seven-pass transmembrane domain-containing serpentine protein and the Low-density-

lipoprotein-related protein (LRP) receptor.  Transduction of the Wnt signal can be 

mediated through the canonical Wnt pathway dependent upon activation of β-catenin.  The 

Wnt–Frizzled–LRP complex leads to the recruitment and phosphorylation of the 

cytoplasmic protein Dishevelled, a key transducer of the Wnt signal. Subsequently, 

Glycogen Synthase Kinase 3 Beta (GSK3β) and Axin, two proteins that form part of a 

complex with the tumour suppressor protein Adenomatous Polyposis Coli (APC) that 

normally directs the phosphorylation and ubiquitination of β-catenin, are inhibited and 

degraded.  In the absence of the APC protein complex, dephosphorylated β-catenin is free 

to translocate to the nucleus where it can mediate transcription of Wnt target genes through 
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interaction with T-cell factor (TCF) and Lymphocyte Enhancer Factor (LEF) transcription 

factors (Burke and Tosh, 2006, Miller, et al., 1999).  EGF Receptor (EGFR) signalling has 

been demonstrated to cross-talk with the canonical Wnt/ β-catenin pathway resulting in the 

accumulation of β-catenin in the nucleus (Hu and Li, 2010).  Stimulation of the EGFR 

receptor by EGF family ligands on the plasma membrane activates the Phosphoinositide- 3 

Kinase (PI-3K)/ Protein Kinase B (Akt) pathway, causing phosphorylation and 

deactivation of GSK3β thus inhibiting the β-catenin destruction complex.  For 

characterisation of the BMOL-TAT1.1 cell line, cells were maintained in a specialised 

‘growth medium’ (2.3), supplemented with EGF in order to allow oval cell proliferation 

(Tirntiz-Parker, et al., 2007). 

β-catenin signalling has been proposed as a key pathway in biliary lineage 

determination, for example it has been shown that biliary differentiation is promoted by the 

Wnt/ β-catenin pathway in experiments utilising in vitro explants (Hussain, et al., 2004, 

Micsenyi, et al., 2004).  Also studies have shown inactivation of APC in hepatoblasts 

which results in ectopic β-catenin activation leads to commitment to an incomplete biliary 

fate and thus loss of hepatocytes, potentially through preventing hepatocyte differentiation 

as indicated by the strong and early repression of HNF4α and E-cadherin (Decaens, et al., 

2008).  E-cadherin is an important transmembrane epithelial cell adhesion molecule whose 

cytoplasmic domain has the potent ability to recruit and sequester β-catenin to the plasma 

membrane to form mutually exclusive complexes (Aberle, et al., 1994, Kemler, 1993, 

Orsulic, et al., 1999), with the knockdown of E-cadherin resulting in β-catenin activation 

and accumulation in the nucleus (Wang, et al., 2010).  Reduced membranous expression of 

E-cadherin and β-catenin (which has a dominant role in driving liver progenitor cells 

towards the cholangiocyte lineage (Hazan and Norton, 1998)) has been correlated with 

tumourigenesis and progression of many epithelial malignancies (Gu and Choi, 2012, Lim 

and Lee, 2002).  More specifically Wnt/ β-catenin signalling has been shown to contribute 

to the activation of normal and tumorigenic liver progenitor cells as Yang and colleagues  

identified a subpopulation of less differentiated progenitor-like cells in hepatocellular 

carcinoma (HCC) cell lines and primary HCC tissues, which were defined by expression of 

the hepatic progenitor marker OV6 and endowed with endogenously active β-catenin.  

These OV6-positive HCC cells possess a greater ability to form a tumour in vivo and show 

a substantial resistance to standard chemotherapy compared with OV6 negative cells 

(Yang, et al., 2008). 
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In support of the theory that ectopic β-catenin activation leads to commitment to an 

incomplete biliary fate, it is hypothesised that culturing in ‘growth medium’ (i.e. EGF) will 

have stimulated EGFR signalling and thus β-catenin activation in the BMOL-TAT1.1 cell 

line.  Therefore in the small BMOL-TAT1.1 cells associated with β-catenin accumulation 

in the nucleus (Figure 3.6A,D) is the expression of biliary associated markers Sox9 and 

Vimentin (Figure 3.3B; Figure 3.5D).  Vimentin, an intermediate filament protein 

primarily of mesenchymal cells is observed in proliferating biliary epithelial cells but not 

in the mature bile duct (Haruna, et al., 1996, Milani, et al., 1989).  Studies have 

demonstrated that subpopulations of oval cells express Vimentin and that the commitment 

of oval cells to the cholangiocyte lineage may involve the transient expression of Vimentin 

(Haruna, et al., 1996, Yovchev, et al., 2008).  Also the Vimentin promoter has been 

identified as a target of the β-catenin/ TCF pathway (Gilles, et al., 2003).   

Sox9, a member of the sry-related high mobility group transcription factors is known 

to have a pivotal role in embryonic intra-hepatic bile duct formation (Antoniou, et al., 

2009).  Cell tracking experiments have also suggested that in the adult Sox9 marks the oval 

cell population which contributes to the physiological regenerative process following liver 

injury, as Sox9 is expressed in the intra-hepatic bile duct and Canal of Hering, which is the 

area in the liver where oval cells are considered to originate from (Furuyama, et al., 2011).  

Recent results from our laboratories show in the normal mouse adult liver Sox9 expression 

is restricted to cholangiocytes.  Utilising a mutant mouse strain, with loxP-flanked 

(‘floxed’) Apc, and Cre-mediated excision/deletion of the floxed Apc; ectopic β-catenin 

activation results in an increase in Sox9 expression throughout the entire mouse adult liver 

as revealed by immuno-histochemistry and RT-PCR analysis (Personal communication 

Sheng Wen Yeh and David Tosh).  

In toto the supporting literature is consistent with BMOL-TAT1.1 cell line 

characterisation data.  The larger cells with inactivated membrane-bound β-catenin are 

positive for A6, HNF4α and E-cadherin represent a more hepatocyte phenotype, whereas 

the smaller cells with activated nuclear β-catenin are positive for OV6, Sox9 and Vimentin, 

but negative for HNF4α and E-cadherin represent a more cholangiocyte cell phenotype.  

Figure 3.10 shows a schematic summary of the postulated role of β-catenin in the BMOL-

TAT1.1 cell line. 

Proliferating BMOL-TAT1.1 cells express the phenotypic repertoire of both 

hepatocytes and cholangiocytes, hence can be considered to be an in vitro model of bi-
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potent oval cells.   The advantage of a heterogeneous culture is not only a closer analogy to 

an in vivo system, but it also serves as a starting point to dissect the mechanisms and 

specific cell types involved in oval cell differentiation to other cell types. Consequently the 

next stage of this chapter addressed optimising the protocol for the inducible differentiation 

of BMOL-TAT1.1 cells.  

 

Figure 3.10: Simplified view of the potential role of EGF activation of the Wnt/ β-catenin pathway in 

BMOL-TAT1.1 during oval cell proliferation.  (A) Large BMOL-TAT1.1 cells before EGF stimulation of 

the Wnt/β-catenin pathway.  β-catenin remains bound at the plasma membrane to E-cadherin and the 

cytoplasmic β-catenin is kept low through the destruction complex (GSK-3β, Axin, APC) which 

phosphorylates β-catenin triggering ubiquitination and degradation by the proteosome. (B) Small BMOL-

TAT1.1 cells following EGF stimulation of the Wnt/β-catenin pathway.  EGFR activation prevents β-catenin 

phosphorylation via activation of the PI-3K/Akt pathway inhibiting GSK-3β, thus β-catenin is translocated to 

the nucleus where it binds to LEF transcription factor, activating cholangiocyte genes such as Vimentin and 

Sox 9 and repressing hepatocyte genes such as E-cadherin and HNF4α.  Abbreviations: Akt, protein kinase B 

;APC, adenomatous polyposis coli ; EGFR. EGFR receptor; GSK3β, glycogen synthase kinase 3 beta ; LEF, 

lymphocyte enhancer factor; P, phosphate; PI-3K, phosphoinositide- 3 kinase. 
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3.3.2 LETF expression during BMOL-TAT1.1 cell line proliferation 

All BMOL-TAT1.1 cells were positive for the LETFs FoxA2 (Figure 3.5G) and 

C/EBPβ (Figure 3.4D,G), but C/EBPα was revealed to be barely detectable at the protein 

level during oval cell proliferation (Figure 3.4A).  The expression of FoxA2 is expected as 

it is critical for the initiation of liver specification, with expression persisting into adult 

hepatocyte and cholangiocytes (Besnard, et al., 2004, Kaestner, et al., 1994).  It is 

postulated that C/EBPα expression is induced during liver injury only once the 

regeneration via differentiation of oval cells is nearly complete (Dabeva, et al., 1995), 

relating to the paradigm that C/EBPα may have a role in terminal differentiation.  Also in 

liver regeneration during the early proliferation stage decreased C/EBPα levels are 

exhibited, whilst C/EBPβ levels are significantly increased, suggesting an anti-proliferative 

role of C/EBPα (Flodby, et al., 1993, Ramji and Foka, 2002).  Although C/EBPα is a 

transcription factor, its ability to negatively regulate proliferation does not require its 

DNA-binding activity, but instead is mediated via protein-protein interactions.  C/EBPα 

has been shown to interact with several proteins involved in control of cell-cycle 

progression. For example C/EBPα, mediates postnatal inhibition of hepatocyte 

proliferation via binding and stabilising p21 (Cdk inhibitor) or interfering with Cdk2 and 

Cdk4 function (Johnson, 2005, Wang, et al., 2001).  Therefore in the present study it is 

postulated that induction of the transcription factor C/EBPα may inhibit oval cell 

proliferation and stimulate hepatocyte differentiation.   

 

3.3.3 Optimal BMOL-TAT1.1 cell line inducible differentiation  

The optimal differentiation protocol was determined as the condition producing the 

maximum number of X-gal positive cells indicative of TAT expression (an adult 

hepatocyte marker), validated by the maximum level of TAT mRNA expression (Figure 

3.8).  Condition 5 involving a short culture period (3 days) in growth medium to allow 

proliferation, followed by a longer culture period (14 days) in differentiation medium was 

confirmed as optimal (Figure 3.8E,H) based on the conditions tested.  Hepatocyte 

differentiation in Condition 5 was also supported by PAS staining, which identified 

glycogen storage in the BMOL-TAT1.1 cells, a characteristic functional feature of mature 

hepatocytes (Figure 3.9A).  Oval cell proliferation was observed when cells were cultured 

in growth medium containing EGF and insulin.  Indeed previous studies have shown that 
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EGF and insulin act synergistically to increase DNA synthesis (i.e. S phase entry) (Sand 

and Christoffersen, 1987).  Culturing in growth medium preferentially enhanced the 

proliferation of the small BMOL-TAT1.1 cells (Figure 3.7B).  It is hypothesised that this 

observation may be due to increased EGFR signalling, as this is often associated with 

reduced  membranous expression of E-cadherin (and β-catenin) and driving oval cells 

towards a cholangiocyte lineage (Hazan and Norton, 1998).  Therefore for optimum 

differentiation an initial period of oval cell proliferation, whilst preventing over-

confluency, is important to increase cell numbers whilst maintaining a higher proportion of 

large cells.  This is necessary before culturing for a longer period of time in differentiation 

medium containing the synthetic glucocorticoid dexamethasone, which in addition to 

promoting hepatocyte maturation also suppresses growth (Michalopoulos, et al., 2003).  

Dexamethasone has been shown to inhibit proliferation of primary hepatocytes and cell 

lines (Loeb, et al., 1973) through blunting EGF-stimulated DNA synthesis.   It has been 

hypothesised dexamethasone inhibits EGF-stimulated tyrosine phosphorylation of the 

ErbB receptors (e.g. EGFR, ErbB2) via alteration of not only the expression and 

interaction of the ErbB proteins, but also up-regulates a number of negative growth 

regulatory proteins that either directly bind to the ErbB proteins or indirectly inhibit ErbB 

by inhibiting downstream signalling such as the ERK and PI-3K pathways (Scheving, et 

al., 2007).  The inhibitory effect of dexamethasone on the DNA synthesis of adult rat 

hepatocytes has also been shown to be enhanced in areas of high cell density, suggesting 

cell contact may contribute to the inhibition (Vintermyr and Doskeland, 1989) .  All 

BMOL-TAT1.1 cells treated with dexamethasone (i.e. differentiation medium) included 

areas of high cell density (Figure 3.7).  
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Chapter 4 Multi-potentiality of the oval cell line 

BMOL-TAT1.1 
 

4.1 Introduction 

4.1.1 Multi-potentiality of oval cell inducible differentiation 

During liver regeneration the key role of oval cells is to proliferate and differentiate 

towards hepatocytes.  The hepatocytic differentiation of the oval cell line BMOL-TAT1.1 

can be traced by measuring the expression of the lacZ transgene, which is driven by a 

promoter element from tyrosine aminotransferase (TAT), a marker of adult hepatocytes, 

suggesting that a portion of the BMOL-TAT1.1 cells under appropriate culture conditions 

differentiate towards a mature hepatocyte phenotype.  However expression of a single 

hepatocyte marker, such as TAT, does not provide conclusive evidence for full hepatocyte 

phenotype (Christoffels, et al., 1998, Nitsch, et al., 1993), therefore further phenotypic 

analysis is required.   

Oval cells are capable of differentiating into hepatic lineages (i.e. hepatocytes and 

cholangiocytes) and also some non-hepatic lineages, such as intestinal and pancreatic cell 

types (Leite, et al., 2007, Tatematsu, et al., 1985, Yang, et al., 2002).  These observations 

highlight the problem associated with oval cell differentiation during liver regeneration, in 

that these metaplasias (i.e. the irreversible conversion of one cellular phenotype of an 

already differentiated cell to another type of normal differentiated cell) can be pre-cursors 

to neoplasia and thus carcinogenic (Okada, 1986, Quinlan, et al., 2007, Roskams, 2006b, 

Slack and Tosh, 2001).  This possibility is further supported by the correlation between 

oval cell appearance and the early stages of hepatocellular carcinoma (HCC) (Alison and 

Lovell, 2005, Hacker, et al., 1992) and cholangiocarcinoma (Roskams, 2006b).  For 

instance, it has been shown that in livers of rats exposed to the carcinogen 2-

acetylaminofluorene, intestinal metaplasia is a common option for oval cells, and this is 

related to cholangiofibrosis and subsequent cholangiocarcinoma (Barut and Sarraf, 2009, 

Tatematsu, et al., 1985). 
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4.1.2 Experimental Aim 

The aim of the research described in this part of the thesis was to perform a more 

detailed phenotypic analysis utilising the optimised differentiation protocol of BMOL-

TAT1.1 cells determined in Chapter 3 (Condition 5, 3G14D) in order to address: (i) 

BMOL-TAT1.1 multi-potential capability via expression analysis by RT-PCR and 

immunofluorescent staining (with available antibodies) for a range of hepatic (hepatocyte 

and cholangiocyte) and non-hepatic (intestinal and pancreatic) cell type markers (ii) the 

influence of the individual differentiation medium components (dexamethasone, 

nicotinamide, EGF and ITS) on oval cell gene expression and thus ultimately (iii) identify 

the potential signalling and transcriptional mechanisms governing differentiation.  
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4.2 Results 

4.2.1 Inducible hepatic differentiation of BMOL-TAT1.1 cells 

Gene expression analysis was performed on BMOL-TAT1.1 cells subjected to the 

following culture conditions:  (Condition 1) 6 days in growth medium, 6G; (Condition 2) 

17 days in growth medium, 17G; (Condition 5) 3 days in growth medium followed by 14 

days in differentiation medium, 3G14D.  Cells grown for 17 days were allowed to grow to 

super-confluence in order to inhibit growth and promote differentiation.  Comparative 

analysis of Condition 2 (17G) and Condition 5 (3G14D) revealed the small cells to become 

the dominanting cell type when in growth medium (i.e. EGF, IGF-II, insulin) thus 

significantly increasing the ratio of small cells to large cells (Figure 4.1A).  In contrast 

when cultured in differentiation medium (EGF, dexamethasone, nicotinamide, ITS) 

BMOL-TAT1.1 cells maintained a larger proportion of large cells in the culture (Figure 

4.1B).  

 

 

Figure 4.1: Comparison of the proportion of small to large BMOL-TAT1.1 cells when cultured in 

growth or differentiation medium. Transmitted light images showing representative areas from Condition 2 

(17 days in growth medium, 17G) and Condition 5 (3 days in growth medium followed by 14 days in 

differentiation medium, 3G14D).  Areas of large cells (black asterisk) and small cells (white asterisk) are 

shown (dashed line).   In contrast to differentiation medium, the growth medium resulted in the enrichment 

of small cells compared to large cells (scale bar = 200μm). 

 

 Given the heterogeneous nature of the cultures, RNA isolated for subsequent RT-

PCR was representative of the whole culture hence comparison of Condition 2 to 

Condition 5 may allow deductions to be made about the phenotype of the small and large 

cells respectively.  Large cells appear positive for the markers HNF4α, E-cadherin and 
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Cytokeratin 20 (CK20) as deduced from their down-regulation in Condition 2 (i.e. when 

number of large cells is reduced) and maintenance in Condition 5 (Figure 4.2).  Small cells 

were revealed to be Vimentin and Sox9 positive as their expression was strongly 

maintained in Condition 2 (Figure 4.2).   Vimentin is often referred to as a mesenchymal 

cell marker, but has also been proposed as a ductal marker (Haruna, et al., 1996). Therefore 

to validate that the BMOL-TAT1.1 cells were not undergoing an epithelial to 

mesenchymal transition the gene expression of the mesenchymal cell marker α-smooth 

muscle actin (SMA) was determined.  All cells were negative for SMA (Figure 4.2).   

When cultured in differentiation medium (Condition 5), BMOL-TAT1.1 cells 

exhibited changes in gene expression (Figure 4.2).  As the differentiation medium was 

supplemented with various factors including: EGF, dexamethasone, nicotinamide and ITS, 

it was necessary to culture cells in the absence of supplements and also with the individual 

components.  This approach allowed us to determine if the gene expression changes were 

due to the effect of a single factor or a combination of factors.  RT-PCR data was therefore 

generated as shown in Figure 4.3, to facilitate the elucidation of the mechanisms governing 

the changes in gene expression observed.  Culturing BMOL-TAT1.1 to a super-confluent 

state whether in growth of differentiation medium resulted in the suppression of the 

hepatoblast marker alpha feto-protein (AFP) (Figure 4.3).  However up-regulation of the 

mature hepatocyte markers (Albumin and TAT) and maintenance and induction of 

hepatocyte associated transcription factors HNF4α and C/EBPα respectively, were 

dependent solely on dexamethasone and enhanced by the addition of the other supplements 

(Figure 4.2, Figure 4.3).  Cholangiocyte markers Connexin 43 (Cx43) and Osteopontin 

(OPN) were down-regulated under all conditions examined, with Connexin 43 most 

potently down-regulated in the absence of supplements or with EGF or nicotinamide alone 

(Figure 4.2, Figure 4.3).  In addition, cholangiocyte associated transcription factors 

including Sox9, HNF6 and HNF1β were down-regulated in differentiation medium (Figure 

4.2), with dexamethasone revealed to be crucial for Sox9 suppression (Figure 4.3).  Other 

striking observations were that dexamethasone completely suppressed expression of the 

transcription factor FoxA2, but up-regulated the expression of epithelial cytoskeletal 

markers Cytokeratin 20 (CK20) and Cytokeratin 7(CK7) (Figure 4.3).   

The RT-PCR data only provided an indication of changes in mRNA expression, 

therefore immunofluorescent staining was performed to look at the protein expression of 

several markers.  From immunofluorescent staining analysis it can be seen that culturing of 
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BMOL-TAT1.1 cells in differentiation medium (Condition 5): suppressed Sox9 and 

FoxA2 expression in all cells (Figure 4.4).  The large cells remained E-cadherin positive 

and up-regulated CK20 robustly and to a lesser extent CK7; while the small cells remained 

Vimentin positive, CK20 negative and up-regulated strongly CK7 (Figure 4.5).  

 Wnt/β-catenin signalling is believed to play a central role in various aspects of 

hepatic biology, including liver development, regeneration, growth and oncogenesis.  

Chapter 3 described the striking difference in β-catenin expression and localisation within 

small and large BMOL-TAT1.1 cells during oval cell proliferation (Condition 1, 6G) 

(Figure 3.6).  When BMOL-TAT1.1 cells were cultured in differentiation medium 

(Condition 5, 3G14D), β-catenin remained localised only to the plasma membrane in the 

large cells (Figure 4.6A,G), however in the small cells, the nuclear expression of β-catenin 

was reduced with the protein predominantly found in the cytoplasm with some weakly 

associated with the plasma membrane (Figure 4.6D,G).   
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Figure 4.2: Gene expression analysis of BMOL-TAT1.1 cells under different culture conditions.   
BMOL-TAT1.1 cells were cultured in either growth medium for 6 days (6G) or 17 days (17G)  and 3 days in 

growth medium followed by 14 days in differentiation medium (3G14D).  Gene expression was analysed for 

hepatocyte markers, cholangiocyte markers, transcription factors and morphological markers.  Abbreviations: 

RT, no RT control; (-) negative control; (+), positive control.   
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Figure 4.3: Dissection of effect of differentiation medium on BMOL-TAT1.1 gene expression.  BMOL-

TAT1.1 cells were cultured for 3 days in growth medium (3G) followed by 14 days with no supplementation 

(----), full differentiation medium (DIFF), EGF (EGF), dexamethasone (DEX), nicotinamide (NIC) or ITS 

(ITS).  BMOL-TAT1.1 cells cultured for 6 days in growth medium (6G) is included to represent proliferating 

oval cells prior to treatment.  Gene expression was analysed for a range of markers for hepatocyte, 

cholangiocyte (bile duct), transcription factors and morphology.  Abbreviations: RT, no RT control; (-) 

negative control; (+), positive control.   
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Figure 4.4: BMOL-TAT1.1 cell line expression of transcription factors when cultured in differentiation 

medium.  Immunofluorescent staining to identify Sox9 (A-C, red) and FoxA2 (D-F, green) expression in 

BMOL-TAT1.1 cells cultured for 3 days in growth medium followed by 14 days in differentiation medium 

(Condition 5).  DAPI staining (B, E, blue) is included to distinguish the two different cell types based on 

their nuclear morphology.  All cells are now negative for Sox9 (A) and FoxA2 (D). Images C and F are 

overlays of A, B and D, E respectively.  For all antibodies utilised, positive controls were performed in 

parallel and are included in Appendix C1.  (scale bar =  50μm). 

  

 

 

 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 93 ~ 
 

 

 

Figure 4.5: BMOL-TAT1.1 cell line expression of morphological markers when cultured in 

differentiation medium.  Immunofluorescent staining to identify E-cadherin (A-C, green), Vimentin (D-F, 

green), CK20 (G-I, green) and CK 7 (J-L, green) expression in BMOL-TAT1.1 cells cultured in Condition 

5 for 3 days in growth medium followed by 14 days in differentiation medium.  DAPI staining (B, E, H, K, 

blue) is included to distinguish the two different cell types based on their nuclear morphology. Large cells are 

E-cadherin and CK20 positive, Vimentin and CK7 negative, whilst the small cells are E-cadherin and CK20 

negative, Vimentin and CK7 positive.  Images A, D, G, and J are overlays of B, C; E, F; H, I and K, L 

respectively.  Abbreviations: CK7, Cytokeratin 7; CK20, Cytokeratin 20. (A-I scale bar = 50μm) (J-L scale 

bar = 200μm).  
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Figure 4.6: BMOL-TAT1.1 cell line expression of β-catenin when cultured in differentiation medium. 

Immunofluorescent staining to identify β-catenin (green) expression in BMOL-TAT1.1 cells cultured for 3 

days in growth medium followed by 14 days in differentiation medium (Condition 5).  DAPI staining (B, E, 

H, blue) is included to distinguish the two different cell types based on their nuclear morphology. Both small 

and large cells express β-catenin (A).  In the small cells β-catenin is located mainly in the cytoplasm with 

some minor membrane localisation (D).  However in the large cells β–catenin is solely membrane bound 

completely absent from the nucleus/ cytoplasm (G).  Images A, D and G are overlays of B, C; E, F; and H, I 

respectively. (scale bar =  50μm). 
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4.2.2 Inducible non-hepatic differentiation of BMOL-TAT1.1 cells 

Studies have shown that oval cells are capable of not only differentiating into hepatic 

lineages (i.e. hepatocytes and cholangiocytes) but also some non-hepatic lineages, such as 

intestinal and pancreatic cell types (Leite, et al., 2007, Tatematsu, et al., 1985, Yang, et al., 

2002).  Due to the nature of the oval cells it was therefore important to also analyse the 

expression of intestinal and pancreatic genes in BMOL-TAT1.1 cells subjected to the 

following experimental culture conditions:  (Condition 1) 6 days in growth medium, 6G; 

(Condition 2) 17 days in growth medium, 17G; (Condition 5) 3 days in growth medium 

followed by 14 days in differentiation medium, 3G14D.  Regarding pancreatic 

differentiation none of the culture conditions promoted expression of any key pancreatic 

cell markers including insulin (β-cell), glucagon (α-cell) and amylase (acinar cells) (Figure 

4.7A).  This suggests that under these conditions, oval cells are not amenable to 

differentiation to a pancreatic phenotype.  To investigate the potential for intestinal 

differentiation of BMOL-TAT1.1 cells an array of markers were analysed for the different 

intestinal cell types.  BMOL-TAT1.1 cells showed a weak expression for some intestinal 

absorptive cell markers, including Villin and Fabp2 during proliferation (6G) with the 

additional very weak induction of Apolipoprotein AIV (ApoAIV) and intestinal Alkaline 

Phosphatase (ALPi) when cultured in differentiation medium (3G14D).  There was no 

expression of intestinal Guanylate Cyclase (GCi) detected under any conditions.  The most 

striking change in gene expression during BMOL-TAT1.1 differentiation (3G14D), was 

the induction of genes Mucin 2 (Muc2), Mucin 5ac (Muc5ac) and Trefoil Factor 3 (TFF3) 

which are often associated with intestinal goblet cells.  Culturing of the BMOL-TAT1.1 

cells with the different supplements (Figure 4.7B) revealed dexamethasone as the key 

factor involved in the induction of all three genes, with Muc2 and TTF3 also induced to a 

lesser extent by EGF and nicotinamide respectively. 

 Lectins are sugar-binding proteins that are highly specific for their sugar moieties.  

Studies have suggested that specific lectins can be used as markers to determine specific 

cell types and that cell surface expression of glycoconjugates changes as a result of 

differentiation.  The differential binding of two lectins, Dolichos biflorus agglutinin (DBA) 

and Peanut agglutinin (PNA) were investigated during BMOL-TAT1.1 cell differentiation 

(3G14D).  Results show restricted binding of PNA to the small cells hence indicating the 

presence of galactose/N-acetylgalactosamine (Gal-β(1-3)-GalNAc) and  DBA to the large 

cells hence indicating the presence of N-acetylgalactosamine (GalNAc) (Figure 4.8). 

http://en.wikipedia.org/wiki/Galactose
http://en.wikipedia.org/wiki/N-Acetylgalactosamine
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Figure 4.7: RT-PCR analysis of non-hepatic gene expression in BMOL-TAT1.1 cells cultured in 

different conditions.  (A) BMOL-TAT1.1 cells were cultured in either growth medium for 6 days (6G) or 17 

days (17G) as proliferating oval cell controls  and 3 days in growth medium followed by 14 days in 

differentiation medium (3G14D).  (B) To dissect the effect of differentiation medium on BMOL-TAT1.1 

cells, cells were cultured for 3 days in growth medium (3G) followed by 14 days with no supplementation    

(--), full differentiation medium (DIFF), EGF (EGF), dexamethasone (DEX), nicotinamide (NIC) or ITS 

(ITS). Gene expression was analysed for intestinal and pancreatic markers.  Abbreviations: Muc2, mucin 2; 

Muc5ac, mucin 5ac, TTF3, trefoil factor 3; Fabp2, fatty acid binding protein; ApoAIV, apolipoprotein AIV, 

ALPi, alkaline phosphatise intestinal; GCi, guanylate cyclise intestinal; RT, no RT control; (-) negative 

control; (+), positive control.   
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Figure 4.8: Lectin staining of BMOL-TAT1.1 cells cultured in differentiation medium. 

Immunofluorescent images identifying DBA (C, green), PNA (D, red) lectin binding in BMOL-TAT1.1 cells 

cultured for 3 days in growth medium followed by 14 days in differentiation medium (Condition 5, 3G14D). 

DAPI staining (E, blue) is included to distinguish the two different cell types based on their nuclear 

morphology.  Large cells are DBA positive PNA negative (shown in high magnification (F)), whilst the 

small cells are DBA negative PNA positive. Images A and B are overlays of C-E and C, D respectively. 

Abbreviations: DBA, Dolichos Biflorus Agglutinin; PNA, Peanut Agglutinin. (A-E scale bar = 200μm; F 

scale bar = 50μm ).  
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4.3 Discussion 

4.3.1 Inducible hepatic differentiation of the BMOL-TAT1.1 cell line: 

glucocorticoid receptor and β-catenin signalling 

The overall aim of the research described in this part of thesis was to perform a more 

detailed phenotypic analysis of inducible hepatic and non-hepatic differentiation of the 

BMOL-TAT1.1 cell line, in order to elucidate the potential signalling and transcriptional 

mechanisms governing differentiation.  Analysis of BMOL-TAT1.1 inducible hepatic 

differentiation revealed the down-regulation of immature hepatoblast marker alpha-feto 

protein (AFP) and up-regulation of the mature hepatocyte markers TAT and Albumin.  Up-

regulation of hepatocyte markers was shown to be solely dependent on dexamethasone and 

enhanced by the addition of nicotinamide, ITS and EGF to the differentiation medium 

(Figure 4.2; Figure 4.3).  The glucocorticoid dexamethasone functions via binding and 

activation of the glucocorticoid receptor (GR) (Munck, et al., 1984).  The GR belongs to a 

super family of nuclear receptors, which are transcription factors that regulate diverse 

functions.  Binding of dexamethasone to the non-DNA binding oligomer of the GR in the 

cytoplasm displaces chaperone Heat-Shock Protein 90 (HSP90) thus allowing GR to 

undergo a conformational change which leads to exposure of its nuclear localisation signal.  

Dexamethasone-bound GR thereby translocates to the nucleus and binds as a dimer to 

DNA (Figure 4.9) (Htun, et al., 1996).  Nuclear receptors such as GR interact with the 

Wnt/β-catenin/TCF-LEF signalling axis mediating trans-repression of the signalling 

pathway (Olkku and Mahonen, 2009).  For example the GR and its ligand, dexamethasone, 

can manipulate β-catenin localization, recruiting β-catenin to the plasma membrane; 

activating GSK3β by way of inhibition of Akt
Ser473

 phosphorylation, thus promoting β-

catenin degradation (Mulholland, et al., 2005).  The model involving the 

transdifferentiation of the pancreatic exocrine cell line AR42J-B13 to functional 

hepatocytes utilising the established protocol of treatment with 1μM dexamethasone (Shen, 

et al., 2000) has been shown to result in the transient loss of constitutive Wnt3A 

expression, phosphorylation and depletion of β-catenin.  The subsequent loss of β-catenin 

nuclear localisation and significant reduction in TCF/LEF transcriptional activity occurs 

before overt changes in phenotype to hepatocyte-like cells (Wallace, et al., 2010).  This has 

also been confirmed by the ability of over-expression of β-catenin to block 

dexamethasone-dependent transdifferentiation (Wallace, et al., 2010).  Analysis of β-

catenin expression and localisation in the BMOL-TAT1.1 cell line treated with 
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differentiation medium containing dexamethasone revealed β-catenin expression remained 

localised to the plasma membrane in the large BMOL-TAT1.1 cells, whilst the small 

BMOL-TAT1.1 cells exhibited a particular loss of β-catenin nuclear localisation (Figure 

4.6) when compared to the proliferation control (Condition 1: 6G) (Figure 3.6).  This is 

therefore consistent with the hypothesis that the BMOL-TAT1.1 cells are differentiating 

towards a hepatocyte-like cell. 

 

4.3.2 Inducible hepatic differentiation of the BMOL-TAT1.1 cell line: 

transcription factors 

X-gal staining suggests culturing in the differentiation medium induces a proportion 

of the BMOL-TAT1.1 cells to express TAT.  Associated with the induction of mature 

hepatocyte genes is the up-regulation of the transcription factor C/EBPα.  C/EBPα may 

have an important role in terminal hepatocyte differentiation (Dabeva, et al., 1995), and 

also in the suppression of transcription factors HNF6 and Sox9.  It is these two 

transcription factors that are thought to have a pivotal role in cholangiocyte differentiation 

(Figure 4.2) (Antoniou, et al., 2009).  Previous published studies from our laboratories 

support this finding.  Firstly, during the hepatic transdifferentiation of the pancreatic 

exocrine cell line AR42J-B13 utilising the established 1μM dexamethasone treatment, it 

was revealed the LETFs C/EBPβ and C/EBPα were induced first, followed by HNF4α 

(Shen, et al., 2000).  Furthermore ectopic expression of C/EBPα in AR42J-B13 cells is 

sufficient to induce transdifferentiation (Burke, et al., 2006).  

While C/EBPα expression is critical for hepatocyte differentiation, suppression of 

C/EBPα expression is important during biliary cell differentiation (Shiojiri, et al., 2004). 

Yamasaki et al., have postulated that the absence of C/EBPα in biliary cells has an indirect 

(de-repressive) effect by inducing the expression of the genes HNF6 and HNF1β, both of 

which have important regulatory roles in biliary cell differentiation (Nagaki and Moriwaki, 

2008).  Liver-specific inactivation of HNF6 or HNF1β demonstrates that both are required 

for normal differentiation of biliary epithelial cells, for proper morphogenesis of the extra- 

and intra-hepatic bile ducts, and that HNF1β is controlled by HNF6 at the onset of biliary 

epithelial cell differentiation (Clotman, et al., 2002, Coffinier, et al., 2002).  In vitro 

transdifferentiation of the AR42J-B13 cell line to hepatocytes has been shown to involve 

the inhibition of cholangiocyte associated transcription factors Sox9 and HNF6 (Amani Al-
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Adsani Thesis).  This is consistent with observations that during BMOL-TAT1.1 hepatic 

differentiation up-regulation of C/EBPα is accompanied by the suppression of Sox9 

(Figure 4.2; Figure 4.4A) and weak down-regulation of HNF1β and HNF6 (Figure 4.2).   It 

has been postulated there is a mutual antagonism of C/EBPα and Sox9 which is the 

fundamental mechanism regulating differentiation of progenitor cells into hepatocytes or 

cholangiocytes (Antoniou, et al., 2009), as the Sox9 promoter contains C/EBPα binding 

sites, hence is likely to directly repress Sox9 transcription.  In relation to the cross-talk 

between dexamethasone stimulated GR and Wnt/β-catenin signalling, β-catenin activation 

via the presence of Wnt3A has been shown in studies to repress activation of C/EBPα 

(Kawai, et al., 2007).  Therefore based on supporting studies and results contained in this 

chapter it is hypothesised that during BMOL-TAT1.1 induced hepatic differentiation, 

dexamethasone reduces β-catenin activation and associated TCF/LEF transcriptional 

activity which suppresses Sox9 directly or indirectly through induction of C/EBPα 

expression (Figure 4.9).  

Treatment of the BMOL-TAT1.1 cell line with dexamethasone also revealed the 

striking suppression of the expression of the transcription factor FoxA2 (Figure 4.3; Figure 

4.4B).  FoxA2 is required for normal liver homeostasis in the adult liver, as approximately 

43% of genes expressed in the liver are associated with FoxA2 binding (Wederell, et al., 

2008).  Cerec et al., investigated the differentiation of human hepatoma-derived cell line 

(Cerec, et al., 2007).  HepaRG cells were isolated from a well differentiated liver tumour 

following chronic HCV infection.  HepaRG cells constitutively display morphological and 

immunological features of both hepatocytes and cholangiocytes resembling a hepatic 

progenitor cell phenotype.  Immunoblot analysis of  HepaRG cells cultured in medium 

containing the synthetic glucocorticoid hydrocortisone hemisuccinate for 2 weeks 

undergoing hepatic differentiation showed FoxA2 (HNF3β) expressed in HepaRG cells at 

the progenitor stage as in oval cells, but expression was completely suppressed by day 3 

(Cerec, et al., 2007).  FoxA2, has previously been shown to be induced by active Wnt/β-

catenin signalling (Yu, et al., 2011).  In HepaRG hepatic differentiation, FoxA2 down-

regulation following glucocorticoid treatment again was correlated with β-catenin 

inactivation and thus a change in β-catenin localisation from nucleus to cytoplasm and 

plasma membrane, a characteristic often observed during hepatocyte differentiation 

(Micsenyi, et al., 2004, Monga, et al., 2006).  Figure 4.9 shows a schematic summary of 

the postulated role of dexamethasone and the GR-dependent β-catenin signalling in 

BMOL-TAT1.1 hepatocyte differentiation. 
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Figure 4.9: Simplified view of the potential role dexamethasone on BMOL-TAT1.1 cells during oval 

cell differentiation. The glucocorticoid dexamethasone (dex) binds to the glucocorticoid receptor (GR) in 

the cytosol, which displaces Heat-Shock Protein 90 (HSP90) triggering a conformational change and 

dimerisation of the G, and its translocation to the nucleus.  Dex bound GR manipulates β-catenin signalling 

via GSK-3β mediated phosphorylation and degradation of β-catenin, loss of β-catenin nuclear localisation 

and significant reductions in LEF transcriptional activity.  The exact mechanisms governing the interaction 

between the GR and β-catenin signalling pathways remain to be fully elucidated.  However Dex treatment 

effects transcription factor expression. Up-regulation of hepatocyte specific C/EBPα is accompanied by the 

down-regulation of cholangiocyte specific transcription factors Sox9, HNF6 and HNF1β. This is consistent 

with other studies, for example it has been postulated there is a mutual antagonism between C/EBPα and 

Sox9.  Suppression of the transcription factor FoxA2 is also consistent with in-activation of β-catenin 

signalling and hepatic differentiation.  Abbreviations: APC, adenomatous polyposis coli ;Dex, 

dexamethasone; GR, glucocorticoid receptor; GSK3β, glycogen synthase kinase 3 beta; HSP90, heat-shock 

protein 90; LEF, lymphocyte enhancer factor; P, phosphate. 
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From a morphological perspective unlike hepatocyte-like cells derived from AR42J-

B13 exocrine cells, the BMOL-TAT1.1 cells which expressed TAT remained negative for 

HNF4α and displayed no obvious change in cell morphology to resemble normal 

hepatocytes.  This is consistent with studies showing in mice lacking  HNF4α expression, 

hepatocytes were small, round, loosely associated, had small cytoplasmic volumes, 

misshapen nuclei, and disrupted cell contacts  unlike normal hepatocytes which are large 

flat and tightly associated with canaliculi (Parviz, et al., 2003).   

Recently it has also been shown that dexamethasone treatment (10 days) also has the 

capacity to induce in AR42J-B13 cells the expression of some markers typical of 

cholangiocytes including: Cytokeratin 7 (CK7) and lectin PNA.  Interestingly the 

proportion of transdifferentiated cholangiocytes expressing these markers was enhanced by 

simultaneous treatment with dexamethasone and EGF (Al-Adsani, et al., 2010).  This 

resembled treatment of the BMOL-TAT1.1 cell line with differentiation medium, 

containing dexamethasone and EGF, as CK7 (Figure 4.3; Figure 4.4D) and PNA (Figure 

4.8) were also up-regulated in the small BMOL-TAT1.1 cells.  

 

4.3.3 Inducible non-hepatic differentiation of BMOL-TAT1.1 cell line: 

intestinal metaplasia 

Oval cells are capable of differentiation towards both hepatic lineages (e.g. 

hepatocytes and cholangiocytes) and non-hepatic lineages (e.g. intestinal and pancreatic 

cells).  In order to explore the possibility in the current BMOL-TAT1.1 model, we 

examined the expression of a range of pancreatic and intestinal markers.  From the RT-

PCR data, it can be seen that under the differentiation conditions examined, the main 

pancreatic cell type markers were absent in all BMOL-TAT1.1 cells (Figure 4.7A).  It is 

hypothesised this may be due to the absence of the specific extracellular factors and key 

pancreatic transcription factors required for transdifferentiation of hepatic oval cells into 

pancreatic islet cells.  Li et al., recently demonstrated that oval cells can be reprogrammed 

into β-like cells by an appropriate combination of high extracellular glucose, specific 

extracellular matrix proteins (laminin and fibronectin), cytokines (Activin A), and the 

expression of several β-cell specific transcription factors (Pdx1, Ngn3, MafA)  (Li, et al., 

2012). 
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As well as pancreatic markers we also examined the potential for the BMOL-TAT1.1 

cells to undergo differentiation towards an intestinal phenotype.  BMOL-TAT1.1 inducible 

differentiation involved the substantial induction of Muc2, Muc5ac and TFF3 expression 

primarily dependent on dexamethasone, and the weak induction of Villin, Fabp2, ApoAIV 

and ALPi (Figure 4.7).  Mucins are high molecular weight, heavily O-glycosylated 

glycoproteins secreted by the epithelial cells in many organs.  There are three types of 

mucins: (i) gel forming secreted types (ii) epithelial protective mucus gels and (iii) non-gel 

forming types.  Muc2 and Muc5ac represent secreted gel forming mucins.  Trefoil factor 

family (TFF) peptides are mucin-associated molecules co-expressed with mucins and are 

involved in the maintenance of the mucosal barrier and the biological behaviour of 

epithelial cells.  TFF3, formerly known as intestinal trefoil factor ITF, is a mature peptide 

composed of 59 amino acids, secreted as a monomer or dimer.  It promotes migration of 

epithelial cells in vitro and enhances mucosal healing in vivo where it co-localises with 

Muc2.  TFF3 in combination with Muc2 are the major products synthesised in intestinal 

goblet cells (Poulsom, et al., 1996).  

Within the normal adult liver intra-hepatic biliary system, biliary epithelial cells 

secrete mucins and TFF3 focally and faintly from large but not small cholangiocytes 

(Sasaki, et al., 2007, Sasaki, et al., 2004).  Altered mucin gene expression has been 

reported in various non-tumourous inflammatory or cystic hepatobiliary diseases.  For 

example increased expression of MUC5AC has recently been reported to be a highly 

specific tumour-associated mucin in cholangiocarcinoma (Mall, et al., 2010, Matull, et al., 

2008).  Most studies focus on hepatolithiasis, which involves the presence of calculi in the 

liver and is regarded as a model disease in cholangiocarcinogenesis arising in chronic 

inflammatory conditions, in which mucin is an important factor in the pathogenesis 

(Sasaki, et al., 2005, Sasaki, et al., 1998, Yamashita, et al., 1993).  Gastric mucosal 

metaplasia and intestinal metaplasia are common in the intra-hepatic biliary system in 

hepatolithiasis; where surface epithelial cells express MUC5AC, MUC2, MUC6, and 

MUC5B.  TFF1 and TFF3 are also augmented markedly in the biliary mucosa in 

hepatolithiasis co-expressed with MUC2 at the site of intestinal metaplasia (Sasaki, et al., 

2004).  It is believed the over-expression of TFF3 in the biliary tract increases the viscosity 

of the secreted mucin by interacting with the von Willebrand factor C (vWFC) cysteine-

rich domain of MUC2.  It has been suggested this enhances the structural integrity of the 

secreted mucins and that contributes to the formation of hepatoliths (Sasaki, et al., 2007, 

Tomasetto, et al., 2000).  Both at the level of sequence homology and in the molecular 
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mechanisms responsible for regulating transcription and translation, the MUC2 and 

MUC5AC genes have much in common, thus may account for the appearance of MUC2 

and MUC5AC simultaneously in mucin-secreting cells, during carcinogenesis (Van 

Seuningen, et al., 2001).  

It has been shown that intestinal metaplasia is a common option for oval cells in 

livers of rats exposed to the carcinogen 2-acetylaminofluorene, and this treatment can lead 

to the development of cholangiocarcinoma (Barut and Sarraf, 2009, Tatematsu, et al., 

1985).  Oval cells reside in the Canal of Hering which is the most distal part of the biliary 

tree connecting the intra-hepatic biliary system with the hepatocytic canaliculi, which is 

consistent with the observed pathological distribution of mucin and TFF expression. 

Based on the induction of mucins and TFF3 in BMOL-TAT1.1 cells it is 

hypothesised that the expression is in the large BMOL-TAT1.1 cells as these cells are 

uniquely positive for the lectin DBA (Figure 4.8).  DBA binds specifically to N-

acetylgalactosamine (GalNAc), one of the 5 sugars contributing to the oligosaccharide 

component of (goblet cell) mucin.  Regarding intermediate filament expression the large 

BMOL-TAT1.1 cells following differentiation are strongly CK20 positive and weakly 

CK7 positive (Figure 4.5C,D).  CK7, CK20, and MUC2 expression patterns have been 

reported to be useful in confirming the diagnosis of intestinal metaplasia (Schwerer and 

Baczako, 1996).  Intestinal metaplasia is also associated with the occurrence of intestinal 

brush border enzymes such as ALPi, another marker up-regulated following BMOL-

TAT1.1 differentiation.  Additional support of the large BMOL-TAT1.1 cells displaying 

intestinal differentiation is two-fold.  Firstly only the large BMOL-TAT1.1 cells are 

HNF4α positive, and HNF4α is suggested to be important in regulation of goblet cell 

maturation (Garrison, et al., 2006) and the expression of genes that are up-regulated during 

epithelial cell differentiation such as ApoAIV (Sauvaget, et al., 2002).  Secondly the large 

BMOL-TAT1.1 cells are also uniquely positive for E-cadherin (Figure 4.5A) and studies 

have shown the cell surface adhesion molecule E-cadherin is essential for ApoAIV 

expression (Peignon, et al., 2006) and also promotes EGFR activation and mucin 

production (Iwashita, et al., 2011, Kim, et al., 2005). 
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Chapter 5 Characterisation of a homogenous 

population of the BMOL-TAT1.1 cell 

line and over-expression of liver- 

enriched transcription factors  
 

5.1 Introduction 

5.1.1 Prolonged in vitro oval cell proliferation 

As outlined in the previous chapters the BMOL-TAT1.1 cell line displays a 

morphologically heterogeneous phenotype consisting of two major phenotypes; small and 

large.  It was observed that culturing of the BMOL-TAT1.1 cell line in growth medium 

(EGF, IGF-II and insulin) increased the ratio of small cells to large cells (Chapter 3).  

Therefore the initial aim of the research described in this chapter was to generate a more 

homogeneous population of small BMOL-TAT1.1 cells for study.  This would permit more 

robust conclusions to be developed.   

Strict control of oval cell proliferation is crucial for the oval cell response during 

liver regeneration.  However it has been hypothesised that maintenance of a progenitor/ 

stem cell like population such as oval cells in a prolonged proliferative state can result in 

maturation arrest, in which the oval cells are blocked from terminally differentiating, hence 

display an immature phenotype, partially differentiated towards either hepatocytes or 

cholangiocytes and are unable to undergo apoptosis (Potter, 1978, Sell, 1993).  The 

presence of arrested transitional hepatic progenitor cells has been observed in both HCC 

and cholangiocarcinoma (Libbrecht, et al., 2000, Shachaf, et al., 2004).  Therefore it was 

also important to investigate the effect of prolonged proliferation on the BMOL-TAT1.1 

cell line phenotype and differentiation capability. 

 

5.1.2 Recombinant adenovirus 

At present the most conventional differentiation protocols are aimed at inducing 

transcriptional changes by the application of external factors e.g. growth factors.  However 

an alternative experimental approach has evolved over the past several years that 

manipulates cell fate and phenotype changes by single or combinatorial ectopic over-
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expression of key transcription factors in target cell populations.  Recombinant  

adenoviruses are a versatile tool enabling  highly efficient gene delivery and expression in 

a broad spectrum of cell types, and have been used, both in vitro and in vivo, to achieve 

transient expression of specific transgenes (Howarth, et al., 2010).  The most commonly 

used adenoviral vector is human adenovirus serotype 5, which is rendered replication 

deficient by the deletion of the E1 and E3 viral cassettes (AdEasy
TM

 Adenoviral Vector 

System Instruction Manual).  The E1 gene is essential for the assembly of infectious virus 

particles as it attenuates its ability to replicate, hence it is necessary to propagate the virus 

in a helper cell line that supplies the E1 gene in trans, such as the HEK-293 cell line 

(Graham, et al., 1977).  The E3 gene encodes proteins involved in evading host immunity 

and hence is dispensable.  Removal of the viral encoded genes allows the incorporation of 

approximately 7.5kb foreign DNA i.e. the specific gene of interest (Bett, et al., 1994, 

Verma and Weitzman, 2005).  The recombinant adenovirus is produced by a double 

recombination event between the co-transformed adenoviral backbone plasmid vector, 

AdEasy
TM

, and a shuttle vector carrying the gene of interest (Appendix D).  The 

susceptibility of different cell types to adenoviral infection often varies and this reflected in 

the requirement to determine the specific conditions and multiplicity of infection (MOI) in 

order to achieve optimal infection, whilst preventing significant cytotoxity in infected 

cells, which E1-deficient adenoviruses can still produce. 

 

5.1.3 Liver-enriched transcription factors in inducible hepatic 

differentiation of the BMOL-TAT1.1 cell line 

Chapter 4 identified the liver-enriched transcription factors C/EBPα and HNF4α as 

potential transcription factors involved in oval cell hepatocyte differentiation (4.3.2).  In 

proliferating small BMOL-TAT1.1 cells both C/EBPα and HNF4α are absent. Inducible 

hepatocyte differentiation is accompanied by the up-regulation of C/EBPα and hepatocyte 

specific genes (TAT, Albumin), however the cells remained negative for HNF4α and 

displayed no change in cell morphology to resemble normal hepatocytes.  This is 

consistent with the known importance of C/EBPα during normal hepatocyte differentiation 

(Takiguchi, 1998) and importance of HNF4α in regulating morphogenesis and functional 

differentiation of hepatocytes (Parviz, et al., 2003).  Addionally Suetsugu et al., have 

shown that over-expression of HNF4α in fetal hepatic progenitor cells in vitro may 

enhance the therapeutic effects obtained from cell transplantation in vivo (Suetsugu, et al., 
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2008).  This work is therefore novel in one aspect as it will utilise adult ovals cells instead 

of fetal.  

 

5.1.4 Experimental Aim 

The homogenous small BMOL-TAT1.1 cell population was analysed in order to 

address the following questions: (1) does prolonged culturing in the growth medium effect 

the phenotype of the small BMOL-TAT1.1 cell type? and (2) is inducible differentiation 

consistent with previous low passage data?  Another key aim in this chapter was to 

optimise adenoviral infection of BMOL-TAT1.1 cells in order to determine the effects of 

ectopic C/EBPα and HNF4α expression alone and in combination.   
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5.2 Results 

5.2.1 Characterisation of the homogenous population of small BMOL-

TAT1.1 cells obtained from prolonged proliferation 

As stated in the results of Chapter 4 culturing of the BMOL-TAT1.1 cell line in the 

growth medium enriched the small BMOL-TAT1.1 cell type population. Therefore 

following approximately 13 serial passages in culture whilst maintained in growth medium 

resulted in the generation of a homogenous population of OV6 (i.e. oval cell marker) 

positive small cells (Figure 5.1).  

 

 

 

 

 

 

Figure 5.1: High passage BMOL-TAT1.1 

cells.  Transmitted images (A, B) of high 

passage BMOL-TAT1.1 small cells cultured for 

6 days in growth medium taken at the 20x (A) 

and 40x (B) objectives.  The high passage 

BMOL-TAT1.1 cells are morphologically 

homogenous consisting of small primitive cells 

with scant cytoplasm and distinctive nucleous.  

All cells are positive for the oval cell marker 

OV6 (C, green).  DAPI staining is also included 

to show the cell nuclei (C, blue).  (A scale bar = 

200μm) (B, C scale bar = 50μm) 
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The homogeneous small BMOL-TAT1.1 cell population generated was characterised 

by RT-PCR and complementary immunofluorescent staining utilising the same culture 

conditions as with the heterogeneous BMOL-TAT1.1 cell population i.e. Condition 1 (6G) 

and Condition 5 (3G14D).  This allowed the RT-PCR data collected to be compared to that 

obtained for lower passage cells with a heterogeneous population of small and large cells, 

as shown in Figure 5.2.  These small OV6 positive cells when cultured in growth medium 

for 6 days (Condition 1) maintain the expression of an array of cholangiocyte associated 

transcription factors, for example HNF1β, HNF6 and Sox9 (Figure 5.3A) and weakly 

FoxA2, whilst markers associated with the large BMOL-TAT1.1 cells such as HNF4α and 

morphological markers E-cadherin and CK20 were absent (Figure 5.2).  Although negative 

for mature cholangiocyte markers Connexin 43, Osteopontin (OPN) and CK19, they were 

strongly positive for Vimentin an early marker of cholangiocytes (Figure 5.3G).  Vimentin 

is also often categorised as a mesenchymal cell marker; however these cells are negative 

for another mesenchymal cell marker α-smooth muscle actin (SMA) (Figure 5.2).  

Therefore these small BMOL-TAT1.1 cells appear to display a cholangiocyte/ ductal 

precursor phenotype similar to that seen in the low passage BMOL-TAT1.1 cells.   

Consistent with the results obtained when the low passage cells were cultured with 

differentiation medium, the high passage small cells maintained Vimentin  expression 

(Figure 5.3J), increased C/EBPα and CK7 expression (Figure 5.2), but decreased FoxA1, 

FoxA2 (Figure 5.2), and cholangiocyte associated markers, such as HNF1β, HNF6 and 

Sox9 (Figure 5.3D).  The application of the differentiation medium resulted in the absence 

of pancreatic gene expression (Figure 5.4), and in contrast to the lower passage cells, 

differentiation medium failed to induce any mature hepatocyte markers, such as TAT and 

albumin (Figure 5.2) or intestinal markers in particular Muc2, Muc5ac and TFF3 (Figure 

5.4).  
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Figure 5.2: Gene expression analysis of high passage homogenous BMOL-TAT1.1 small cells cultured 

in different conditions. High passage homogenous BMOL-TAT1.1 small cells were cultured in either 

growth medium for 6 days (6G) or  3 days in growth medium followed by 14 days in differentiation medium 

(3G14D).  Gene expression was analysed for hepatocyte markers, cholangiocyte markers, transcription 

factors and morphological markers. Equivalent RT-PCR data from low passage heterogeneous BMOL-

TAT1.1 cells is also included for comparison. Abbreviations: RT, no RT control; (-) negative control; (+), 

positive control.   
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Figure 5.3: High passage small BMOL-TAT1.1 cells expression of Sox9 and Vimentin in different 

culture conditions.  Immunofluorescent staining to identify Sox9 (A, D, red) and Vimentin (G, J, green) 

expression.  BMOL-TAT1.1 cells were cultured for 6 days in growth medium (6G) or 3 days in growth 

medium followed by 14 days in differentiation medium (3G14D).  All cells are positive for Sox9 and 

Vimentin when proliferating but differentiation medium induces the suppression of Sox9.  DAPI staining (B, 

E, H, K, blue) is also included.  Images C, F, I, and L are overlays of A, B ; D, E; G, H; and J, K 

respectively. (scale bar =  50μm). 
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Figure 5.4: RT-PCR analysis of non-hepatic gene expression in high passage homogenous small 

BMOL-TAT1.1 cells cultured in different conditions. High passage homogenous small BMOL-TAT1.1 

cells were cultured in either growth medium for 6 days (6G) or  3 days in growth medium followed by 14 

days in differentiation medium (3G14D). Gene expression was analysed for intestinal and pancreatic 

markers.  Equivalent RT-PCR data from low passage heterogeneous BMOL-TAT1.1 cells is also included for 

comparison.   Abbreviations: Muc2, mucin 2; Muc 5ac, mucin 5ac, TTF3, trefoil factor 3; Fabp2, fatty acid 

binding protein; ApoAIV, apolipoprotein AIV, ALPi, alkaline phosphatise intestinal; GCi, guanylate cyclise 

intestinal; RT, no RT control; (-) negative control; (+), positive control.   
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5.2.2 Over-expression of liver-enriched transcription factors in the 

homogenous population of small BMOL-TAT1.1 cells  

  Initially it was critical to assess if BMOL-TAT1.1 cells were first infectable by 

adenovirus, secondly which Multiplicity of Infection (MOI) was appropriate to produce a 

high infection percentage without adverse toxic effects, and finally which infection 

conditions (e.g. duration of exposure to virus) were optimum.  BMOL-TAT1.1 cells were 

therefore initially infected with the adenovirus Ad-CMV-HNF4α, at a range of MOI’s 

(data not shown) with virus incubation times of 1hour or overnight, and then cultured for 7 

days in differentiation medium.  BMOL-TAT1.1 cells were proven to be infectable based 

on the detection of HNF4α, with optimum infection efficiency obtained at an MOI of 200 

(Figure 5.5).  In addition, the results showed that incubation of the cells with the virus 

overnight (Figure 5.5G) rather than for 1hour (Figure 5.5D) dramatically increased 

infection efficiency, whilst still having no obvious adverse effect on cell viability. 

  BMOL-TAT1.1 cells were infected with adenoviral vectors containing C/EBPα 

and/ or HNF4α, at an MOI of 200 (each) overnight, and then cultured for 7 days in 

differentiation medium (Figure 5.6B,E).  BMOL-TAT1.1 cells were also infected with 

adenovirus Ad-Null, which contained no transgene, in order to determine that any results 

obtained were due to the transgene expression and not the adenovirus.  RT-PCR analysis 

showed that following 7 days culture in differentiation medium, cells ectopically 

expressing the C/EBPα transgene and/or the HNF4α transgene did not express hepatocyte 

markers, such as TAT or Albumin (Figure 5.6A).  However, over-expression of HNF4α 

induced the mRNA expression of intestinal markers Villin, ALPi and ApoAIV, but there 

was no expression of other intestinal markers such as TFF3 and Muc2 (Figure 5.6A).  

Complementary immunofluorescent staining confirmed the induction of Villin protein 

expression in HNF4α-infected cells (Figure 5.7B) compared to un-infected control cells 

(Figure 5.7A). 
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Figure 5.5: Infection efficiency of the BMOL-TAT1.1 cell line. Immunofluorescent staining to identify 

HNF4α (A, D, G, green) expression in BMOL-TAT1.1 cells infected with Ad-CMV-HNF4α and cultured for 

7 days in differentiation medium. Included are a negative (un-infected) control (A); BMOL-TAT1.1 cells 

infected with Ad-CMV-HNF4α at 200MOI for 1hour (D) or overnight (G). DAPI staining is included to 

identify the cell nuclei and provide an indication of the percentage of cells infected (B, E, H, blue).  Images 

C, F and I are overlays of A,B ; D,E and G, H respectively.  (scale bar = 200μm). 
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Figure 5.6: RT-PCR analysis of over-expression of HNF4α and C/EBPα in high passage BMOL-

TAT1.1 cells.  High passage BMOL-TAT1.1 small cells were infected with Ad-CMV-HNF4α and Ad-CMV-

C/EBPα alone and in combination.  Controls included an un-infected control (---) and cells infected with Ad-

Null.  All cells once infected were cultured in differentiation medium for 7 days.  Gene expression was 

analysed for hepatocyte and intestinal markers.  C/EBPα had no effect on gene expression whilst HNF4α 

induced the expression of Villin and intestinal Alkaline Phosphatase (ALPi) (A).  Immunofluorescent 

staining for HNF4α (B, green), C/EBPα (E, green) and DAPI (C, F, blue) provided an indication of the 

percentage of cells infected.  Images D and G are overlays of B, C and E, F respectively. Abbreviations: RT, 

no RT control; (-) negative control; (+), positive control.  (scale bar = 50μm). 
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Figure 5.7: Over-expression of HNF4α in high passage small BMOL-TAT1.1 cells induces the 

expression of Villin.  Immunofluorescent staining to identify Villin expression (green) in high passage small 

BMOL-TAT1.1 cells which were un-infected (A) or infected with Ad-CMV-HNF4α (B) prior to culture in 

differentiation medium for 7 days.  DAPI staining is included to show the cell nuclei (C, D, blue).  Images E 

and F are overlays of A, C and B, D respectively.  (scale bar = 50μm).      
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5.3 Discussion 

5.3.1 Prolonged BMOL-TAT1.1 proliferation enriches for cells 

possessing an immature cholangiocyte phenotype. 

Maintenance of the BMOL-TAT1.1 cell line under conditions that promote a 

proliferative state (i.e. in growth medium) for a prolonged period of time (i.e. high 

passage) facilitated enrichment of the small BMOL-TAT1.1 cell population, possessing an 

immature cholangiocyte phenotype.  The phenotype was determined by RT-PCR analysis 

and demonstrated the potent expression of immature cholangiocyte markers including 

Sox9, Vimentin, HNF1β and HNF6 but the absence of mature cholangiocyte markers such 

as Connexin 43, Osteopontin (OPN) and CK19 (CK19) when compared to the low passage 

heterogeneous BMOL-TAT1.1 population (Figure 5.2).  This is consistent with the 

components of the ‘growth medium’, such as EGF favouring cholangiocyte differentiation 

(Figure 3.10B).  Similar to the heterogeneous BMOL-TAT1.1 cell population, inducible 

differentiation of the homogenous small BMOL-TAT1.1 cell population provoked changes 

in transcription factors (i.e. C/EBPα, Sox9, HNF6, FoxA2) and CK7 expression, consistent 

with dexamethasone treatment, as shown in Chapter 4.  However, in contrast to the data 

from Chapter 4, inducible differentiation failed to provoke the induction of mature 

hepatocyte markers (e.g. TAT and Albumin) (Figure 5.2).  This leads to two hypotheses 

that (i) hepatic differentiation requires the presence of the large BMOL-TAT1.1 cells 

which are present in the low passage heterogeneous BMOL-TAT1.1 cell population or (ii) 

prolonged proliferation of the small BMOL-TAT1.1 cells to an immature phenotype 

partially differentiated towards a mature cholangiocyte has resulted in maturation arrest, 

hence the cells are blocked from terminal differentiation (Potter, 1978, Sell, 1993).  

 

5.3.2 Extended adenovirus incubation time improves infection 

efficiency of the BMOL-TAT1.1 cell line  

Adenoviruses possess a capsid consisting of three main proteins: (i) hexon (ii) penton 

base and (iii) knobbed fiber proteins extending from the penton base.  The infection of host 

cells is initiated via the high-affinity binding of the fiber protein knob domain to cell 

surface receptors, such as the Coxsackie Adenovirus Receptor (CAR) (Figure 5.8) 

(Bergelson, et al., 1997, Roelvink, et al., 1998).  The efficiency of adenovirus binding and 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 118 ~ 
 

entry to particular cell types is directly related to the distribution and availability of 

specific receptors on the cell membrane (Mentel, et al., 1997, Russell, 2000) and the 

affinity of the adenovirus to its primary receptor.  Subsequent internalization of adenovirus 

requires a further interaction between the penton base protein of the viral capsid and α 

integrins on the host cells.  Optimisation of the adenoviral infection protocol utilising Ad-

CMV-HNF4α and BMOL-TAT1.1 cells revealed that the inefficiency of adenovirus 

mediated gene transfer (i.e. following 1 hour incubation) could be partially corrected when 

the contact time between adenovirus and cells was prolonged to overnight, as we observed 

a significant increase in the number of infected cells (Figure 5.5).   

 

 

Figure 5.8: Mechanism of adenovirus attachment to the target cell surface receptor 

 

5.3.3 Ectopic Expression of C/EBPα and/or HNF4α in the BMOL-

TAT1.1 cell line is insufficient to induce hepatic differentiation 

With regards to the interpretation of adenoviral infection results, it has been 

suggested that induction of genes may be dependent on the adenovirus itself, hence an 

artefact of viral infection.  Utilisation of the control virus Ad-Null confirmed this not to be 

the case; hence the adenovirus itself was not influencing gene induction.  The ectopic 
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expression of C/EBPα and/ or HNF4α appeared to have no effect on BMOL-TAT1.1 

hepatic differentiation as identified by the lack of induction of hepatocyte associated 

markers (Figure 5.6).  It is postulated this may be because the cells have undergone 

maturation arrest or that hepatic differentiation requires the concerted action of other 

important liver-enriched transcription factors.  In a recent study Icob and colleagues 

identified that upon the sequential ectopic over-expression of three transcription factors 

(FoxA2, HNF4α and C/EBPα) induces an advanced mature hepatocyte phenotype in an 

expandable adult liver derived progenitor cell population (ALDPC) (Iacob, et al., 2011).  

In addition Sekiya and Suzuki also recently established the combined expression of HNF4α 

with FoxA2 is sufficient to convert other non-hepatic cell types such as embryonic and 

adult mouse fibroblasts into epithelial hepatocyte-like cells (Sekiya and Suzuki, 2011).  

Compared to these studies therefore the weak expression of FoxA2 in the high passage 

small BMOL-TAT1.1 cells and complete suppression following culture in dexamethasone-

containing differentiation medium, may be the fundamental factor blocking hepatic 

differentiation.  The rapid and irreversible loss of differentiated functions (i.e. de-

differentiation) of primary hepatocytes in culture is related to the rapid down-regulation of 

LETFs such as FoxA2, during the first few days in culture.  FoxA proteins have been 

identified to act as “competence factors” promoting chromatin modification (i.e. opening) 

to facilitate the binding and transcriptional activity of other transcription factors in 

endodermal cells (Cirillo, et al., 2002, Zaret, 2008).  Also over-expression of FoxA2 in 

human bone marrow derived mesenchymal stem cells induced hepatic differentiation, as 

demonstrated by enhanced expression of albumin, AFP and TAT (Ishii, et al., 2008).  

 

5.3.4 Ectopic Expression of HNF4α in the BMOL-TAT1.1 cell line 

induces Villin expression 

The current study demonstrates for the first time that although the ectopic expression 

of HNF4α in BMOL-TAT1.1 cells has no impact on hepatic differentiation, HNF4α has 

the ability to induce intestinal genes in BMOL-TAT1.1 oval cells cultured in 

differentiation medium.  HNF4α was sufficient to provoke the induction of Villin, which is 

the best characterised microfilament-associated, actin-binding protein typical of brush-

border microvilli (Robine, et al., 1985), intestinal Alkaline Phosphatase (ALPi) and 

Apolipoprotein AIV (ApoAIV).  These markers were all robustly detected by RT-PCR 

(Figure 5.6), with Villin confirmed by immunofluorescent staining (Figure 5.7).  Most 
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studies have concentrated on the role of HNF4α in regulation of hepatic gene expression 

and hepatic lipid metabolism (Watt, et al., 2003).  However there are similarities in 

hepatocytes and enterocytes, which are the major epithelial cell type found in the intestinal 

mucosa, as both are columnar epithelium concerned with metabolism of lipids and 

carbohydrates.  The utility of HNF4α to induce an intestinal phenotype has been assessed 

in non-intestinal mouse embryonic fibroblast cell lines (NIH-3T3), with ApoAIV and 

Villin induced by stable HNF4α transfection (Babeu, et al., 2009).  Also in non-intestinal 

HeLa cell line HNF4α increases ALPi promoter activity, which supports ALPi induction in 

BMOL-TAT1.1 cells ectopically expressing HNF4α (Olsen, et al., 2005).  Both in vitro 

and in vivo ApoAIV and ALPi are associated with differentiated enterocytes and are up-

regulated by HNF4α, due to possession of an over-representation of HNF4α binding sites 

within their promoters (Archer, et al., 2005, Babeu, et al., 2009, Stegmann, et al., 2006).  

Additionally positive Villin expression is frequently observed in hepatocellular carcinoma 

(Karabork, et al., 2010, Moll, et al., 1987), a condition often associated with the 

appearance of oval cells. 
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Chapter 6 Characterisation of the α-TC19 cell 

line and inducible reprogramming to 

other pancreatic cell types. 
 

6.1 Introduction 

6.1.1 α-TC19 cell line 

The alpha-TC1 clone 9 (α-TC19) cell line is a pancreatic α-cell line cloned from the 

α TC1 cell line which was derived from an adenoma created in transgenic mice expressing 

the SV40 large T antigen oncogene under the control of the rat pre-pro-glucagon promoter.   

The clone 9 line is more differentiated than the original parental α-TC1 cell line, and 

represents an effective α-cell model, as it maintains many characteristics of differentiated 

α-cells, predominantly the production of glucagon but not insulin or pre-pro-insulin mRNA 

(Hamaguchi and Leiter, 1990).  

 

6.1.2 Over-expression of pancreatic transcription factors 

Recent in vivo studies have demonstrated the potential for reprogramming α-cells to 

β-cells during pancreatic β-cell regeneration following total or near total β-cell ablation 

(Thorel, et al., 2010).  The challenge however remains to identify and validate the ‘master 

switch transcription factors’ required for initiation of the conversion of α-cells into β-cells.   

Potential candidates include transcription factors involved in regulating β-cell 

differentiation and function, such as Paired box gene 4 (Pax4) (Collombat, et al., 2009) 

Pancreatic duodenal homeobox 1 (Pdx1) (Chakrabarti, et al., 2002a, Ritz-Laser, et al., 

2003) and Hepatocyte nuclear factor 4 alpha (HNF4α) (Gupta, et al., 2005, Wollheim, et 

al., 2000).  In the current chapter a recombinant adenoviral infection approach (as 

described in Chapter 5 (5.1.2)) was employed to transiently over-express these specific 

transgenes in the α-TC19 cell line.  
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6.1.3 Chromatin modification: histone acetylation  

Transcriptional regulation in eukaryotes occurs within chromatin, a complex of 

nucleic acid and proteins condensed to form a chromosome during cell division.  

Chromatin is comprised of nucleosome units entailing DNA wrapped around histone 

octamers, of which there are four histone types H2A, H2B, H3, H4 (Kornberg, 1974).  

Post-translational histone modifications loosen or compact the chromatin structure and/or 

recruit other chromatin binding proteins in order to regulate transcription factor access and 

hence influence transcriptional regulation.  Acetylation is one type of histone modification 

often observed in actively transcribed genes.  It involves Histone acetyltransferases (HAT) 

enzymes acetylating lysine residues, hence neutralising the positive charges on histones.  

This consequently loosens the chromatin structure allowing easier access for transcription 

factors to target DNA (Figure 6.1) (Choi and Howe, 2009).  HAT enzymes are balanced by 

Histone Deacetylase (HDAC) enzymes which deacetylate lysine residues on histones 

leading to chromatin compaction and transcriptional repression.  Mammals possess three 

main HDAC classes based on phylogenetic conservation, catalytic sites and cofactor 

dependency.  Class I HDACs (1-3, 8) are ubiquitously expressed and localised 

predominantly in the nucleus, whereas Class II HDACs (4-7,9,10) are only present in 

certain tissues (including pancreas) and shuttle between the nucleus and cytoplasm 

(Haberland, et al., 2009).  Class II HDACs contain an N-terminal extension that links them 

to specific transcription factors and confers responsiveness to a variety of signal 

transduction pathways hence connects the environment to the genome. 

 

 

Figure 6.1: Regulation of chromatin structure and associated transcriptional activity by histone 

acetylation and deacteylation.  Chromatin nucleosome buildings units comprising of histones (blue circles) 

and DNA (grey) are shown. Targeted enzymes, HAT and HDAC act to negotiate the acetylation status of 

chromatin.  Hyper-acetylation is induced by HDAC inhibitors.  Abbreviations: Ac, acetylated histone 

terminal domains; HAT, histone acetyltransferase; HDAC, histone deacetylase. 

 

The acetylation state of the histones within the nucleosome is responsible for 

modulating chromatin structure, hence epigenetically regulating gene expression.  
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Pharmacological small molecule HDAC inhibitors (HDACi) are useful tools for studying 

the link between histone hyper-acetylation and cell lineage specification (Figure 6.1).   

Four types of HDACi have been identified including: (i) short chain fatty acids, (ii) 

hydroxamates, (iii) benzamides, and (iv) cyclic tetrapeptides.  This study utilised one 

hydroxamate inhibitor Trichostatin A (TSA); and two short chain fatty acid inhibitors 

Sodium Butyrate (NaB) and Valproic Acid (VPA).  VPA preferentially targets Class I 

HDACs (Gottlicher, et al., 2001), whereas TSA and NaB inhibit both Class I and Class II 

HDACs (Davie, 2003, Yoshida, et al., 1990).  Confirmation that NaB, TSA and VPA are 

acting as HDAC inhibitors can be obtained from measuring HDAC activity utilising a 

HDAC enzymatic activity assay and analysis of histone acteylation by Western blotting 

with histone acetyl-H3 and –H4 antibodies (Haumaitre, et al., 2008). 

Scharfmann and colleagues discovered that alteration of histone acetylation via 

different HDACi can modify the timing and determination of pancreatic cell fate in an ex-

vivo rat embryonic pancreas model (Haumaitre, et al., 2008).  This demonstrates that 

histone modifications (such as acetylation) may play a crucial role in the formation of a 

transcriptionally competent environment with relaxed chromatin and therefore in the 

control of cell differentiation.  The effect of HDACi on adult pancreas and specific 

endocrine cell types has been extensively studied in adult β-cell lines (such as RIN cells) 

(Gardner, et al., 1989), however this research is novel in that it investigated the effect of 

HDACi on an adult pancreatic α-cell line (α-TC19).   

 

6.1.4 Experimental Aim 

In order to probe the molecular mechanism underlying the conversion of adult 

pancreatic α-cells into β-cells, required initial characterisation of the α-TC19 cell line.  The 

major aims in this chapter were to optimise adenoviral infection of the α-TC19 cell line in 

order to determine the effects of ectopic expression of transcription factors commonly 

associated with β-cell differentiation.  The final aim was to investigate if HDAC inhibition 

in the α-TC19 cell line impacted on regulation of the differentiation program, and through 

the use of different HDACi elucidate the mechanism involved.    

 

 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 124 ~ 
 

6.2 Results 

6.2.1 Characterisation of the α-TC19 cell line 

The α-TC19 cell line was maintained for 7 days in culture prior to morphological, 

gene and protein expression analyses.  α-TC19 cells proliferate as adherent single cell 

monolayers and loosely attached cultures (Figure 6.2A).  Immunofluorescent staining 

revealed α-TC19 cells were positive for the α-cell specific hormone glucagon but negative 

for the β-cell specific hormone insulin (Figure 6.2B).  This observation was confirmed by 

RT-PCR data which showed α-TC19 cells were also negative for the hormones associated 

with all other pancreatic endocrine cell types (somatostatin and pancreatic polypeptide) 

(Figure 6.3A).  We did not test for the expression of ghrelin.  Finally the expression of a 

number of pancreatic transcription factors was assessed by RT-PCR.  The α-TC19 cell line 

was positive for transcription factors important in α-cell specification (Nkx2.2, FoxA2, 

Arx, Pax6)  and negative for transcription factors important in β-cell specification (HNF4α, 

Pdx1, Pax4, Nkx6.1) (Figure 6.3A).  The transcription factors important in α- and β-cell 

specification are summarised in Figure 6.3B. 

 

6.2.2 Expression of adenoviral vectors in the α-TC19 cell line  

It was critical to assess if α-TC19 cells were first infectable, secondly which MOI 

was appropriate to produce a high infection percentage without adverse toxic effect, and 

finally which infection conditions were optimum.  To address these issues, α-TC19 cells 

were initially infected with the Ad-RSV-GFP adenovirus which expresses Green 

Fluorescent Protein (GFP) under the control of the Respiratory Syncytial Virus (RSV) 

promoter, at a range of MOI’s with virus incubation times of 1hour or overnight and with a 

range of DEAE-dextran concentrations (2-10μg/ml) (data not shown).  α-TC19 cells were 

proven to be infectable, with optimum infection efficiency obtained at an MOI of 100, 

overnight with additional treatment with 5μg/ml DEAE-dextran.  Results demonstrated 

adenoviral infection had no adverse effect on cell viability, with GFP expression first 

detectable 3 days after infection (Figure 6.4A) and maintained until day 7 (Figure 6.4D), 

which probably represents the minimum time point required for transdifferentiation. 
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Figure 6.2: α-TC19 cell line morphology.  (A) Transmitted light image of α-TC19 cells cultured for 7 days. 

α-TC19 cells grow as either monolayers (white arrow) or as loosely attached clusters (black arrow).  

Immunofluorescent staining confirms α-TC19 cells to be positive for glucagon expression (B, red) and 

negative for insulin expression (B, green). For all antibodies utilised, positive controls were performed in 

parallel and are included in Appendix C1. DAPI is also included to show the cell nuclei (B, blue). (A scale 

bar = 200μm) (B scale bar = 50μm). 
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Figure 6.3: Characterisation of 

the α-TC19 cell line.  (A) RT-

PCR analysis of α-TC19 cells 

cultured for 7 days. α-TC19 cells 

are positive for α-cell specific 

transcription factors and hormone 

glucagon and are negative for all 

other endocrine hormones (i.e. 

insulin) and also negative for β-

cell specific transcription factors. 

(B) Schematic representation of 

the transcription factors important 

in α- and β-cell type 

specification.  Highlighted in red 

are transcription factors specific 

to β-cells. Abbreviations: RT, no 

RT control; (-) negative control; 

(+), positive control.  
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Figure 6.4: Expression of adenoviral vectors in the α-TC19 cell line. In order to test whether the α-TC19 

cell line is amendable to adenoviral infection, we expressed Green Fluorescent Protein (GFP) in the cells 

under experimental conditions.  Expression of GFP in α-TC19 cells infected with Ad-RSV-GFP at an 

Multiplicity Of Infection (MOI) of 100 overnight with 5μg/ml DEAE-dextran and cultured for 3 (A, green) 

and 7 (D, green) days. (B, E) Transmitted light images are included to provide an indication of the 

percentage of cells infected.   Images C and F are overlays of A, B and D, E respectively.  (scale bar = 

200μm). 
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6.2.3 Over-expression of β-cell specific transcription factors in the α-

TC19 cell line  

Characterisation of the α-TC19 cell line revealed the transcription factors HNF4α, 

Pdx1 and Pax4, which are known to be important in β-cell differentiation and function are 

absent from the α-TC19 cell line (Figure 6.3A).  These properties make these transcription 

factors possible candidates for the master switch that regulates the conversion from an α- 

to a β-cell phenotype.  To test this, we infected α-TC19 cells with adenoviral vectors 

containing either HNF4α, Pdx1 or Pax4 under the experimental conditions determined 

utilising the Ad-RSV-GFP adenovirus (6.2.2).  RT-PCR analysis showed that following 7 

days in culture, cells ectopically expressing the Pax4 transgene had no change in the levels 

of pancreatic endocrine marker expression, ectopic expression of the Pdx1 transgene 

caused a weak increase in the expression of insulin1 and insulin2, whilst the most dramatic 

change in gene expression was observed with ectopic expression of the HNF4α transgene 

which weakly induced insulin1 and significantly induced expression of insulin2 and 

pancreatic polypeptide (PP) expression.  However mRNA levels of α-cell specific hormone 

glucagon appeared unchanged for all conditions (Figure 6.5).   

 

6.2.4 Over-expression of HNF4α in the α-TC19 cell line promotes 

conversion to a β-cell like phenotype 

Initial investigation into the ectopic expression of HNF4α in the α-TC19 cell line 

was based on analysis of the transcript levels of expression, and revealed up-regulation of 

insulin1 and insulin2 (6.2.3).  However RT-PCR data is limited as it does not take into 

account the expression levels of the functional protein or identify the proportion of cells 

expressing specific markers.  Therefore our initial observation was followed up by 

complementary immunofluorescent staining with the available antibodies.  Cells 

expressing the HNF4α transgene did not express the α-cell marker glucagon (Figure 6.6) 

suggesting that over-expression of HNF4α can suppress glucagon expression (and hence 

the α-cell phenotype). This result appeared inconsistent with the RT-PCR data showing no 

change in mRNA glucagon levels following ectopic expression of HNF4α (Figure 6.5).  It 

is hypothesised that this is due to a large number of un-infected cells remaining which are 

still expressing high levels of glucagon.  As the RT-PCR is only semi-quantitative and 

represents the whole population the levels appear unchanged.  We also found that a 
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subpopulation of glucagon negative HNF4α infected cells were positive for insulin 

expression (Figure 6.7).  In addition to insulin expression, over-expression of HNF4α in α-

TC19 cells induced the mRNA expression of other β-cell markers Glucose transporter 2 

(GLUT 2) and Glucokinase (GCK) (Figure 6.8A) which are important indirect glucose 

sensors involved in β-cell glucose stimulated insulin secretion.  Immunofluorescent 

staining confirmed the induction of GLUT2 in HNF4α infected cells (Figure 6.8C).  

 

Figure 6.5: RT-PCR analysis of over-expression of β-cell specific transcription factors in the α-TC19 

cell line.  α-TC19 cells were infected overnight with either Ad-CMV-HNF4α, Ad-CMV-Pdx1 or Ad-CMV-

Pax4 at an MOI of 100 with 5μg/ml DEAE-dextran and cultured for 7 days.  Controls included an un-

infected control (--).  Gene expression was analysed for over-expressed transcription factors and endocrine 

hormones. Abbreviations: Som, somatostatin; PP, pancreatic polypeptide; RT, no RT control; (-) negative 

control; (+), positive control. 

 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 130 ~ 
 

 

Figure 6.6: Over-expression of HNF4α in α-TC19 cells suppresses glucagon expression. α-TC19 cells 

were infected without (A) and with (B, C) Ad-CMV-HNF4α adenovirus (at an MOI of 100) with 5μg/ml 

DEAE-dextran and cultured for 7 days.  The cells were then fixed and immunofluorescent stained for 

glucagon (blue) and HNF4α (green).  (scale bar =50μm ).   
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Figure 6.7: Over-expression of 

HNF4α in α-TC19 cells suppresses 

glucagon expression and induces 

insulin expression. α-TC19 cells 

were infected without (A) and with 

(B, C) Ad-CMV-HNF4α adenovirus 

(at an MOI of 100) with 5μg/ml 

DEAE-dextran and cultured for 7 

days.  The cells were then fixed and 

immunofluorescent stained for 

glucagon (red), insulin (green) and 

HNF4α (blue).  Images B and C are 

overlays of D-F and G-I respectively. 

(scale bar =50μm).   
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Figure 6.8: Over-expression of HNF4α induces expression of genes important in β-cell glucose 

stimulated insulin secretion. (A) RT-PCR analysis of α-TC19 cells infected with Ad-CMV-HNF4α (at an 

MOI of 100) with 5μg/ml DEAE-dextran and cultured for 7 days.  α-TC19 cells are positive for β-cell 

specific hormone insulin (Insulin1/2), and markers for indirect glucose sensors GCK and GLUT2, which are 

involved in glucose stimulated insulin secretion.  Immunofluorescent staining confirms α-TC19 infected cells 

(C) are GLUT2 positive compared to the un-infected control (B). (scale bar = 50μm).  Abbreviations: GCK, 

Glucokinase; GLUT2; Glucose Transporter 2; RT, no RT control; (-) negative control; (+), positive control. 
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6.2.5 Effect of HDAC inhibitors (HDACi) on the α-TC19 cell line 

We were interested to see if changes in histone acetylation affect gene expression in 

the α-TC19 cell line.  To investigate this possibility, we treated α-TC19 cells with 0.5mM 

NaB for 7 days in culture.  RT-PCR analysis revealed that addition of this HDACi caused 

several changes in the gene expression mRNA levels in the α-TC19 cell line. NaB 

treatment appeared to cause no difference in the expression levels of glucagon mRNA, 

however treatment induced expression of the δ-cell specific hormone somatostatin and the 

transcription factor Pax4 (Figure 6.9A).   

NaB inhibits both Class I and Class II HDACs, and treatment with a similar HDACi 

TSA had the same effect on mRNA levels as treatment with NaB.  However the HDACi 

VPA (which preferentially only inhibits Class I HDACs) did not induce any changes in 

gene expression.  All HDACi were tested at a range of concentrations showing the effects 

observed were dose dependent (Figure 6.8B).  Concentrations above 1mM for NaB and 

VPA and 50nM for TSA, resulted in substantial cell death hence these concentrations were 

excluded from the results.  From the original stocks NaB and VPA were diluted in water 

and TSA in DMSO, therefore water and DMSO controls were included in order to 

demonstrate that all effects observed were solely dependent on the action of the HDACi 

added.    
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Figure 6.9: Effect of HDAC inhibitors on gene expression in the α-TC19 cell line. (A) RT-PCR analysis 

of α-TC19 cells treated with 5mM NaB for 7 days in culture. (B) RT-PCR analysis of α-TC19 cells treated 

with NaB, TSA or VPA for 7 days in culture at a range of concentrations. NaB and TSA treatment induced 

the expression of δ cell hormone somatostatin (Som) and transcription factor Pax4. α-TC19 cells treated with  

H2O and DMSO served as additional controls.  Abbreviations: ---, untreated α-TC19 cells; H2O, water; 

DMSO, Dimethyl Sulfoxide; NaB, Sodium Butyrate; TSA, Trichostatin A; VPA, Valporic Acid; Som, 

Somatostatin; PP, Pancreatic Polypeptide; TF, Transcription Factor; RT, no RT control; (-) negative control; 

(+) positive control. 
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6.3 Discussion 

6.3.1 Characterisation of the α-TC19 cell line 

We initially set out to characterise the phenotype of the α-TC19 cell line.  From the 

characterisation of the murine α-TC19 cell line we identified only expression of the 

endocrine hormone glucagon and transcription factors important in α-cell specification 

(Nkx2.2, FoxA2, Arx, Pax6), thus revealing a phenotype consistent with that of a 

differentiated adult pancreatic α-cell (Figure 6.2B; Figure 6.3).  The α-TC19 cell line was 

thus utilised in subsequent adenoviral infection experiments to investigate whether the 

over-expression of β-cell associated transcription factors could induce the conversion of α-

cells into β-cells.   

 

6.3.2 Enhancement of adenoviral infection of the α-TC19 cell line 

Poor efficiency of adenoviral gene transfer to target cells is a major limitation to 

adenoviral gene therapy.  Inefficient infection can occur for many reasons, for example the 

absence of the Coxsackie Adenovirus Receptor (CAR) on the cell surface, hence higher 

MOIs are required which can lead to unwanted cellular toxicity.  Therefore an alternative 

approach to improve adenovirus transgene expression whilst minimising adverse reactions 

is to enhance adenoviral entry with polycationic compounds (Bonsted, et al., 2004).  In 

vitro incubation of epithelial cells with a polycation such as Diethylaminoethyl (DEAE)-

dextran, has been shown to enhance adenovirus infection efficiency (Clark, et al., 1999).  

This is consistent with results showing the presence of 5μg/ml DEAE-dextran during 

adenoviral adsorption increases infection efficiency of the α-TC19 cell line (Figure 6.4).  It 

has been hypothesised that the epithelial cell membrane glycoconjugates contain sialic acid 

residues, thereby conferring a negative charge on the cell surface that contributes to 

impairment of adenovirus binding.  Further investigation is required to elucidate the 

mechanism involved in DEAE-dextran enhancement of adenoviral infection, however 

several possible mechanisms have been suggested: (i) neutralisation of the cell surface 

negative charge (ii) facilitation of binding of the viral capsid via the fibre protein knob or 

an alternative protein, and (iii) increase in the target cell membrane permeability (Figure 

6.10) (Arcasoy, et al., 1997).  
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Figure 6.10: Potential mechanisms involved in DEAE-dextran enhancement of adenoviral infection 

 

6.3.3 Ectopic expression of Pax4 in the α-TC19 cell line does not alter 

the α-cell phenotype 

Pax4 is an important transcription factor in β-cell fate determination during 

pancreatic development.  Pax4 knockout mice display a reduction in β- and δ-cells and an 

increase in α-cells (SosaPineda, et al., 1997).  Ectopic expression of Pax4 in the α-TC19 

cell line had no effect on gene expression.  This is in contrast to previous studies by 

Collombat et al., that showed the conditional ectopic expression of Pax4 in embryonic 

endocrine progenitor cells, as well as mature α-cells  could induce their conversion into β-

cells in vivo (Collombat, et al., 2009).  This discrepancy between our results and the 

published results could be due to these experiments being performed in vitro instead of in 

vivo.  This suggests that additional factors (other than Pax4) may contribute to the 

conversion of α-cells to β-cells.  Also a combination of transcription factors may be 

required, for example Pdx1-VP16 expression alone could only induce hepatic cell 

transdifferentiation into pancreatic precursor cells.  These cells failed to become glucose-

sensitive mature insulin-producing cells with a gene expression profile similar to the rat 

insulinoma cell line (INS-1), without the additional activation of the pancreatic 
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transcription factor Pax4, which promotes late-stage β-cell differentiation and maturation 

(Tang, et al., 2006). 

 

6.3.4 Ectopic expression of Pdx1 in the α-TC19 cell line induces weak 

insulin expression 

Ectopic expression of Pdx1 in the α-TC19 cell line induced weak expression of both 

insulin1 and insulin2 mRNA (Figure 6.5).  Transformation of α-cells using adenoviral 

transduced Pdx1 is not a new area of research.  Pdx1 has been demonstrated as a potent 

transcriptional regulator of endogenous insulin gene expression in α-TC1 cells (Watada, et 

al., 1996).  Control of insulin gene expression is largely exerted at the transcriptional level 

through well defined elements located within the promoter region that bind to β-cell 

restricted as well as ubiquitous transcription factors (Chakrabarti and Mirmira, 2003).  

Pdx1 can directly activate β-cell specific insulin gene expression, as Pdx1 binds to the A 

box enhancer element of the insulin promoter (Cerf, 2006), and chromatin immuno-

precipitation assays in Ad-Pdx1 α-TC1 cells have demonstrated Pdx1 occupancy and the 

hyper-acetylation of histone H4 in the insulin promoter region (Wang, et al., 2007).  

 

6.3.5 Ectopic Expression of HNF4α in the α-TC19 cell line induces a β-

cell like phenotype 

HNF4α has not been used previously to induce the reprogramming of adult 

differentiated α-cells into pancreatic β-like-cells.  Glucagon mRNA levels appeared 

unchanged whilst glucagon protein expression was suppressed in HNF4α over-expressing 

α-TC19 cells (Figure 6.7).  The mechanism involved in α-cell HNF4α related glucagon 

suppression remains to be elucidated, however it is possible HNF4α may directly/ 

indirectly interfere with the translation of glucagon into a functional protein.  Alternatively  

HNF4α may directly/ indirectly interfere with the transcription of the glucagon gene, 

highlighting a limitation of semi-quantitative RT-PCR method, as following infection a 

number of un-infected cells still remain abundantly expressing glucagon, hence any minor 

changes in glucagon mRNA levels were un-detectable.  Ectopic expression of HNF4α was 

capable of inducing high levels of insulin2 mRNA and insulin protein (Figure 6.5; Figure 

6.8).  Rat and mouse insulin1 and insulin 2 promoters contain a consensus binding site for 
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HNF4α (5′ACGGCAAAGTCC) located between nucleotides −69 and −57 (Hay and 

Docherty, 2006).  Bartoov-Shifman et al., have shown the direct activation of the rat 

insulin gene promoter by HNF4α, as computational analysis revealed potential HNF4α 

binding sites within the insulin promoter, which when mutated led to a 50-75% reduction 

in insulin expression in the transfected INS-1 β-cells (Bartoov-Shifman, et al., 2002).  One 

of the most important paracrine mechanisms responsible for inhibiting glucagon release is 

conducted by insulin negatively regulating glucagon at the transcriptional level.  Studies 

indicate that insulin, in a dose dependent fashion decreases steady-state glucagon mRNA 

levels in a clonal hamster glucagon producing cell line, InR1G9 (Philippe, 1989).  G3, a 

DNA control element located in the 5'-flanking sequence of the rat glucagon gene mediates 

the inhibition of transcription, which occurs in response to insulin (Philippe, et al., 1995).  

This is consistent with studies showing that in α-cell specific insulin receptor knockout 

mice and siRNA-mediated knockdown of the insulin receptor in glucagon-secreting InR1G 

cells promotes enhanced glucagon secretion in response to L-arginine (Kawamori, et al., 

2009).  Specifically regarding the α-TC1 cell line, recent studies utilising α-TC1 clone 6 

(i.e. α-TC16) have shown 1 nmol/L insulin concentrations slightly inhibit glucagon 

secretion (Shen, et al., 2012).  Therefore it can be postulated that HNF4α induced insulin 

expression may be involved in the observed suppression of glucagon protein.  

In addition to insulin, ectopic expression of HNF4α also induced high levels of 

GLUT2 and GCK gene expression (Figure 6.8), as well as yielding high levels of GLUT2 

protein (Figure 6.7; Figure 6.8B).  α-cells normally possess the high affinity, low capacity 

GLUT1, instead of the high capacity GLUT2 characteristic of β-cells (Gorus, et al., 1984, 

Heimberg, et al., 1995).  Two steps are important in the control of β-cell insulin secretion: 

(i) the rate of glucose transport into the β-cell and (ii) the rate of glucose metabolism of 

which glycolysis represents a major pathway.  HNF4α has been shown to regulate 

expression of pancreatic β-cell genes, including insulin and GLUT2, implicated in glucose 

metabolism and nutrient-induced insulin secretion (Wang, et al., 2000).  This correlates 

with the ability of a mutation in the HNF4α gene on chromosome 20, to form early-onset 

Type 2 diabetes (MODY1), involving impaired expression of genes involved in glucose 

transport and glucose metabolism, such as GLUT2 and GCK respectively (Stoffel and 

Duncan, 1997).  HNF4α infected α-TC19 cells remain negative for Pdx1 expression.  Pdx1 

controls not only the transcription of insulin but also expression of enzymes involved in its 

processing.  Suppression of Pdx1 function in INS-1 cells does not alter glucose metabolism 

but rather inhibits insulin release by impairing steps distal to the generation of 
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mitochondrial coupling factors (Wang, et al., 2002a).  Therefore although HNF4α induces 

the strong induction of insulin expression and other β-cell associated genes, gene 

expression does not represent function (i.e. glucose stimulated insulin secretion), hence the 

expression of other transcription factors such as Pdx1 or Pax4 may also be required in 

order to obtain fully functional β-cells. 

It is worth noting that ectopic expression of HNF4α in the α-TC19 cell line also 

induced the expression of Pancreatic Polypeptide (PP) mRNA (Figure 6.5).  In the mature 

pancreas HNF4α has been shown to be expressed in insulin positive β-cells and PP-cells 

(Nammo, et al., 2008).  A mutation in the HNF4α/MODY1 gene also correlates with 

reduced PP secretion in response to hypoglycaemia (Ilag, et al., 2000).  It is widely 

accepted that the production of insulin, glucagon, pancreatic polypeptide and somatostatin 

in islet cells is specific to β-, α-, PP- and δ-cells respectively.  However a recent study has 

been conducted to determine if single mouse β-cells co-express multiple islet hormone 

genes.  Katsuta et al., utilised transgenic mice with GFP driven by mouse β-cell insulin1 

promoter, to demonstrate that 60-80% embryonic and neonatal β-cells and 29% adult β-

cells co-express PP and insulin genes (Katsuta, et al., 2010).  It was hypothesised this co-

expression may be due to residual PP expression from β-cell precursors, consistent with 

other previous studies in a variety of species showing early progenitor endocrine cells are 

multi-potent hence co-activate more than one islet hormone gene (Chiang and Melton, 

2003, Teitelman, et al., 1993).  An alternative explanation is that co-expression of insulin 

and PP (particularly in the adult β-cells) may be unrelated to development, but related to 

the idea of adult β-cell functional heterogeneity, due to some environmental factor 

eliminating β-cell gene expression restraints.  Herrera et al., showed the selective ablation 

of cells expressing the PP gene in transgenic mouse embryos utilising PP promoter-

targeted expression of the toxigene diphtheria toxin A, resulted in a highly signigicant 

decrease in the volume density (i.e. development) of insulin and somatostatin producing 

cells.  This was in contrast to the embryos lacking glucagon- or insulin-containing cells 

which did not exhibit any alterations in the development of the non targeted islet cell types.  

These results suggest that PP-expressing cells are indispensable for the differentiation to 

insulin producing β-cells (Herrera, et al., 1994).  Herrera and colleagues later also showed 

insulin β-cell progenitors but not glucagon α-cell progenitors, transcribe the PP gene, 

suggesting a cell-lineage relationship (Herrera, 2000).  In toto, our data therefore supports 

the hypothesis that expression of PP mRNA may be a marker of nascent β-cells during 

HNF4α induced reprogramming of α-cells to β-cells.  
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6.3.6 Induction of somatostatin in the α-TC19 cell line following Class 

II HDAC inhibition  

Interestingly treatment of α-TC19 cells with Trichostatin A (TSA) and Sodium 

Butyrate (NaB), two inhibitors of Class I and Class II HDACs, induced mRNA expression 

of δ-cell specific hormone somatostatin in a dose dependent manner.  A result not 

replicated with Valporic Acid (VPA), which is a Class I HDAC specific inhibitor (Figure 

6.9B).  This result is consistent with previous studies showing in an ex vivo rat embryonic 

pancreas model VPA dramatically decreased β-/ δ-cell differentiation, whilst TSA and 

NaB enhanced the pool of β-/ δ-cells (Haumaitre, et al., 2008).  In addition NaB has been 

shown to stimulate somatostatin production in two different cultured cell lines, rat 

insulinoma cell line RIN, as well as the HeLa cell line (Ciardiello, et al., 2000, Green and 

Shields, 1984).  Pax4 has been shown to play an important part in β-/ δ-cell lineage 

specification during pancreatic development, with Pax4-deficient mice displaying a 

selective loss of β- and δ-cells with a proportional increase in α-cells (Collombat, et al., 

2003).  Induction of β-cell marker insulin was not observed in HDACi treated α-TC19 cells 

(Figure 6.9A), suggesting that an in vitro adult α-cell model may lack other important 

factors such as transcription factors (Pdx1 (6.3.4), HNF4α (6.3.5)) or cues from other cell 

types important for β-cell differentiation.  RT-PCR analysis revealed that the induction of 

somatostatin expression in the α-TC19 cells following 7 days of TSA and NaB treatment 

was accompanied by strong Pax4 expression activation, a transcription factor absent in 

adult differentiated α-cells (Figure 6.9B).  However the mechanism of induction of 

somatostatin expression via HDAC inhibition requires further investigation, as it may not 

be solely dependent on up-regulated Pax4 expression, as ectopic expression of Pax4 in the 

α-TC19 cell line was insufficient to induce somatostatin expression (Figure 6.5).  Lenoir et 

al., recently identified Class II HDAC4 and HDAC5 as important in the specific control of 

β-cell and δ-cell mass, as HDAC4 and HDAC5 were restrictively expressed in δ-cells and 

loss of function experiments showed an increase in δ-cell mass (Lenoir, et al., 2011).  This 

is supported by the present data, given the HDAC Class inhibition specificities of VPA and 

of TSA and NaB.  Therefore in toto, we propose that in α-cells Class II HDAC may 

possess a role in Pax4 inhibition, which prevents the reprogramming of α-cells to 

alternative pancreatic cell fates, such as somatostatin producing δ-cells.     
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Chapter 7 Conclusions 
 

7.1 Oval cell differentiation research (BMOL-TAT1.1 cell line) 

One of the cell types most in demand for therapeutic purposes is the hepatocyte.  

This is because liver diseases are associated with a marked reduction in the viable mass of 

hepatocytes.  The most severe cases of liver disease (liver failure) are treated by orthotopic 

liver transplantation or alternatively by hepatocyte transplantation, but the major problem 

to overcome is the shortage of organ donors.  Oval cells (i.e. hepatic progenitor cells) have 

been proposed as an alternative source of cells, with their therapeutic potential lying in 

their ability to proliferate and differentiate into hepatocytes and other hepatic and non-

hepatic cell types.  However, using oval cells as a cell therapy cannot be exploited fully 

until the mechanisms governing hepatocyte differentiation are elucidated.  Figure 7.1 

summarises the main findings obtained from the BMOL-TAT1.1 research carried out 

during the progress of my PhD.  

Chapter 3 detailed the in depth characterisation of the BMOL-TAT1.1 oval cell line, 

revealing a heterogeneous cell population consisting of two morphologically distinct cell 

types expressing a repertoire of hepatocyte and cholangiocyte markers.  Large BMOL-

TAT1.1 were identified as positive for A6, HNF4α and E-cadherin, whilst small BMOL-

TAT1.1 cells were identified as positive for OV6, Sox9 and Vimentin (3.2.1).  Due to the 

multi-potent capability of oval cells, heterogeneity of an oval cell line is a common 

phenomenon.  Radaeva and Steinberg observed a similar heterogeneity in two different 

oval cell lines OC/CDE 6 and OC/CDE 22 (Radaeva and Steinberg, 1995).  In the present 

study constitutive treatment with IGFII, insulin and EGF to promote oval cell proliferation 

resulted in enrichment of the small BMOL-TAT1.1 cell type, which was identified to 

express an array of cholangiocyte associated markers (3.2.1 and 4.2.1).  Investigation into 

the heterogeneity of the BMOL-TAT1.1 cell line could be extended beyond gene and 

protein expression by Transmission Electron Microscopy in order to analyse the ultra-

structure detail of the two distinctive morphologies.  The striking difference in β-catenin 

cellular localisation observed allowed hypothesis of the potential mechanism involved in 

distinguishing the two BMOL-TAT1.1 cell types, as it is postulated that the proliferation 

conditions promote EGFR signalling, which subsequently activates Wnt/β-catenin 

signalling pathway, resulting in  β-catenin nuclear accumulation (i.e. as observed in the 
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small BMOL-TAT1.1 cells) and altered gene expression.  β-catenin localisation was 

identified by immunofluorescent staining but further more quantitative approaches were 

considered such as western blotting of protein extracted from the nuclear and cytosolic cell 

lysate/ fractions of treated and un-treated BMOL-TAT1.1 cells.  Although this technique is 

limited as is prevents revelation of β-catenin localisation to a specific cell type.  In order to 

confirm that the increase in small BMOL-TAT1.1 cells and associated β-catenin activation 

was due to the specific effect of EGF treatment, we could inhibit the EGF signalling 

pathway or Wnt/ β-catenin signalling pathway from day 1 of EGF treatment.  There are 

two major classes of EGFR targeted inhibitors available.  Tyrosine kinase inhibitors are 

available such as gefitinib (ZD1839), erlotinib (OSI-774), or AG1478, which 

competitively bind to the ATP pocket of EGFR to inhibit its activity (Ciardiello, et al., 

2000,Grunwald and Hidalgo, 2003, Han, et al., 1996).  Monoclonal antibodies (mAb) 

against EGFR such as mAb 528 and C225 (cetuximab) competitively inhibit ligand 

binding and thereby prevent receptor activation (Gill, et al., 1984, Masui, et al., 1984).  

There is also an extensive list of compounds that can inhibit the Wnt/ β-catenin pathway at 

different levels.  Endogenous secreted Wnt antagonist Dickkopfs (Dkks), such as Dkk-1 

and Dkk-4 bind to the Wnt receptor to inhibit its activation, whilst secreted Frizzled-related 

proteins (sFRPs), such as sFRP2, sFRP3 and Wnt inhibitory factor-1 (WIF-1) bind to Wnt 

proteins (Kawano and Kypta, 2003). 

It remains to be elucidated if the differences in the BMOL-TAT1.1 cell phenotype 

are due to (i) large and small BMOL-TAT1.1 cells arising from a common precursor with 

EGFR and Wnt/β-catenin signalling enhanced proliferation of predominantly the small 

BMOL-TAT1.1 cells or (ii) EGFR and Wnt/β-catenin signalling promotes transformation 

of the large BMOL-TAT1.1 cells into the small BMOL-TAT1.1 cells.  Analysis of the 

BMOL-TAT1.1 cell line does not support the second hypothesis, as the cell sub-types 

grow as distinct colonies in culture instead of mixed colonies and there are no cells 

displaying a transitional state present in the cultures.  In order to confirm whether small 

BMOL-TAT1.1 cells arise from the transformation of the large BMOL-TAT1.1 cells, a 

cloning approach could be used in order to remove heterogeneity from the proliferating 

BMOL-TAT1.1 cell population via isolation of single cells.  Although review of the 

literature proves this method may not be applicable to oval cells, as following cloning, the 

progeny of oval cells have a mixed morphology, as when daughter clones were cultured in 

differentiating medium, their characteristic bi-potential state was shown to be inheritable 

(Strick-Marchand and Weiss, 2002). 
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Figure 7.1: Schematic representation of the main findings from the BMOL-TAT1.1 research. 

 

The overall aim of Chapter 4 and Chapter 5 was to investigate and therefore better 

understand the precise conditions and potential transcriptional mechanisms governing 

inducible oval cell differentiation in the BMOL-TAT1.1 cell line.  This utilised our current 

optimised in vitro hepatic differentiation protocol involving treatment for 3 days with 
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growth medium (EGF, Insulin, IGFII) followed by 14 days in differentiation medium 

(dexamethasone, nicotinamide, EGF, ITS).  Knowledge obtained could have significant 

implications in liver regeneration and associated liver pathologies, thus application in 

technologies for treatment of liver diseases, such as liver bioengineering. 

The liver has a multitude of functions including the synthesis and secretion of serum 

proteins (Morgan and Peters, 1971), regulation of carbohydrate metabolism (Mithieux, 

1997) and control of cholesterol homeostasis.  Hepatocytes also mediate detoxification 

through activation of Phase I and Phase II enzymatic pathways.  Following inducible 

hepatic differentiation BMOL-TAT1.1 cells expressed mature hepatocyte markers, such as 

TAT and Albumin, and appeared PAS positive suggesting the ability to store glycogen.  

However the data does not provide conclusive evidence for full hepatocyte phenotype and 

function (Christoffels, et al., 1998, Nitsch, et al., 1993).  Therefore further work should 

determine if the hepatocyte-like cells derived from BMOL-TAT1.1 cells express other 

mature hepatocyte markers and are able to exhibit more active indicators of hepatocyte 

function including:  (i) Albumin synthesis and secretion measured with a mouse albumin 

ELISA based assay (ii) Ureagenesis, detection of urea secretion and arginase activity 

(Corraliza, et al., 1994, Meng, et al., 2004)  and (iii) Appropriate response to xenobiotics 

(e.g. Phenobarbital induction of Phase I (cytochrome P450) and Phase II( testosterone/ 4-

nitrophenol UGT) enzymes and ciprofibrate induction of catalase enzyme) (Burke, et al., 

2006, Ritter, et al., 1999, Tosh, et al., 2002).  Furthermore it is believed that the current 

hepatic differentiation protocol could be improved further.  One approach might be to use 

our knowledge of the fact that functional hepatocytes have the ability to synthesise glucose 

from non-glucose precursors (gluconeogenesis). We propose that by placing differentiating 

hepatocyte-like cells into a new medium containing reduced levels of glucose (with 

pyruvate or oxaloacetate as substrates), only functional hepatocytes should survive based 

on their ability to synthesise their own glucose.   

Elucidation of the mechanism of action of the extracellular growth factors included 

in the specialised ‘differentiation medium’ in BMOL-TAT1.1 cells is extrapolated from 

data collected utilising the in vitro model with addition of individual growth factors. 

However liver regeneration in vivo may entail complex interactions of growth factors in 

orchestrated processes which result in novel cellular responses not previously identified.  

Induction of hepatic differentiation and suppression of cholangiocyte differentiation of the 

BMOL-TAT1.1 cell line was solely dependent on dexamethasone treatment. 
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Glucocorticoid Receptor (GR) signalling activation blocked β-catenin signalling activation 

and was accompanied by loss of β-catenin nuclear localisation.  This is consistent with 

over-expression of β-catenin blocking dexamethasone dependent transdifferentiation of 

pancreatic acinar cells to hepatocytes (Wallace, et al., 2010).  More detailed experiments 

should be performed to dissect out the affect of dexamethasone on the β-catenin signalling 

pathway in the BMOL-TAT1.1 cell line. 

Oval cell differentiation towards hepatocytes can be divided into two distinct phases, 

with phase 1 involving extracellular factors (e.g. EGF, dexamethasone) stimulating 

signalling pathways (e.g. GR and β-catenin signalling) which subsequently induce 

expression of phase 2 specific intracellular liver-enriched transcription factors responsible 

for regulating the expression of key mature liver proteins.  Therefore an important aim of 

this research was to investigate the potential transcription factors required during inducible 

BMOL-TAT1.1 hepatic differentiation.  C/EBPα and HNF4α have both been suggested in 

previous studies to be important in the onset of the hepatocyte differentiation program in 

oval cells (Nagy, et al., 1994, Suetsugu, et al., 2008).  Induction of hepatic differentiation 

in the BMOL-TAT1.1 cell line by differentiation medium and specifically dexamethasone 

coincided with induced expression of C/EBPα.  The small BMOL-TAT1.1 cells displaying 

a hepatocyte-like phenotype (i.e. TAT positive) showed no characteristic hepatocyte 

morphology and were negative for HNF4α expression.  This correlates with HNF4α’s 

known critical role in the development of the normal liver architecture, as the regulation of 

epithelial morphogenesis is crucial for correct liver function (Parviz, et al., 2003).  

Therefore C/EBPα and HNF4α were identified from initial BMOL-TAT1.1 differentiation 

studies as potential master transcription factor candidates.  In order to test this hypothesis 

BMOL-TAT1.1 cells were cultured to a high passage in order to enrich the small BMOL-

TAT1.1 cell type population and adenoviral mediated over-expression experiments 

performed.  Ectopic expression of C/EBPα and HNF4α alone or in combination failed to 

induce any hepatocyte marker gene expression in the high passage small BMOL-TAT1.1 

cells but also surprisingly culturing for these cells under the same inducible differentiation 

conditions (i.e. 3 days growth medium, 14 days differentiation medium) did not result in 

any signs of hepatic differentiation.  There are several possible hypotheses that can be 

suggested to explain this result.  Firstly hepatic differentiation may require the low passage 

heterogeneous cell environment hence displaying ‘Community Effect’, a term introduced 

by John Gurdon which denotes intra-territorial signalling amongst cells which constitute a 

particular tissue or progenitor field (Gurdon, 1988).  For instance cell-interactions or 
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factors secreted by the large BMOL-TAT1.1 cells may be important in hepatic 

differentiation of the small BMOL-TAT1.1 cells.  To test this hypothesis, high passage 

small BMOL-TAT1.1 cells should be cultured with an isolated homogenous cell 

population of low passage large BMOL-TAT1.1 cells, and hepatic differentiation 

monitored.  A review by Erker and Grompe emphasises the importance of factors secreted 

by surrounding cells types, such as inflammatory, Kuppfer and hepatic stellate cells in 

stimulating oval cell proliferation and differentiation (Erker and Grompe, 2008).  Indeed, 

differentiation of oval cells into mature hepatocytes has been shown to be induced by 

hepatic stellate cells (Chen, et al., 2009). Alternatively maintenance of the small BMOL-

TAT1.1 cells in a prolonged proliferative state may have altered the competence of the 

cells for hepatic differentiation (maturation arrest) via specific changes in gene expression 

in particular transcription factor expression.  For instance, analysis of the expression of the 

transcription factor FoxA2 in the high passage small BMOL-TAT1.1 cells revealed very 

weak expression of the transcription factor.  FoxA2 is required for normal liver 

homeostasis in the adult liver, as approximately 43% of genes expressed in the liver are 

associated with FoxA2 binding (Wederell, et al., 2008).  Therefore ectopic expression of 

additional transcription factors such as FoxA2 may be required for hepatic differentiation.  

Sekiya and Suzuki recently established the combined expression of HNF4α with FoxA2 is 

sufficient to convert other non-hepatic cell types such as embryonic and adult mouse 

fibroblasts into epithelial hepatocyte-like cells (Sekiya and Suzuki, 2011).  Whilst it has 

also been identified that upon the sequential ectopic over-expression of the three 

transcription factors FoxA2, HNF4α and C/EBPα an expandable adult liver derived 

progenitor cell population (ALDPC) can be converted into an advanced mature hepatocyte 

phenotype  (Iacob, et al., 2011).  

Iacob and colleagues cloned the murine liver enriched transcription factors FoxA2, 

HNF4α and C/EBPα into lentiviral vectors (Iacob, et al., 2011).  Ectopic over-expression 

studies on the BMOL-TAT1.1 could be improved by utilisation of lentivirus instead of 

adenovirus.  Adenoviral vectors induce large quantities of the protein of interest but the 

duration of protein production is short (2–3 weeks).  This is because adenoviral DNA does 

not integrate into the genome and hence is not replicated during cell division.  Therefore 

the concern is that adenoviral transient transcription factor expression may be insufficient 

to induce hepatic differentiation in the BMOL-TAT1.1 cell line in a biologically stringent 

environment.  Accordingly, there is interest in developing gene therapy strategies with 

vectors that can produce more prolonged transgene expression.  Lentiviruses represent a 
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subgroup of retroviruses, and comprise a lipid enveloped RNA virus (virion) which 

surrounds an inner core (nucleocapsid) of two identical copies of the viral RNA genome, 

reverse transcriptase, integrase and protease (Howarth, et al., 2010).  Their genomes are 

slightly more complicated, containing accessory genes that regulate viral gene expression, 

control the assembly of infectious particles, modulate viral replication in infected cells and 

contribute to the persistence of infection (Kay, et al., 2001).  Lentiviruses have evolved 

several remarkable features and advantages over adenoviral vectors in that they can stably 

transduce non-dividing cells (Naldini, et al., 1996); integrase integrates the DNA into the 

target host cell genome to enable long lasting stable gene expression (weeks to months); 

and also transfection shows little or no cell toxicity, hence do not elicit any detectable 

immune or inflammatory response.  For safety reasons lentiviral vectors never carry the 

genes required for their replication hence production involves the removal of all viral 

genes, except those required in order to complete a single round of replication.  All other 

components are supplied in trans from transient co-transfection of a stable packaging cell 

line such as HEK 293 with several plasmids.  The lentiviral vector particles are produced 

and released into the media by the budding process, and are then purified and concentrated 

by ultracentrifugation for use in experiments.  

Although it is now accepted that the function of oval cell activation during chronic 

liver injury is to facilitate liver regeneration, years of experimental evidence has exposed a 

second, seemingly paradoxical role for these cells during liver injury, carcinogenesis 

(Knight, et al., 2005).  There is a strong correlation between oval cell appearance and the 

early stages of hepatocellular carcinoma (HCC) and cholangiocarcinoma (Alison and 

Lovell, 2005, Hacker, et al., 1992).  Expression of Villin, the best characterised 

microfilament-associated, actin-binding protein typical of brush-border microvilli in 

intestinal enterocytes (Robine, et al., 1985),  is frequently observed in HCC (Karabork, et 

al., 2010, Moll, et al., 1987).  Ectopic expression of HNF4α in the high passage small 

BMOL-TAT1.1 cells induced the potent expression of Villin (5.2.2).  Transmission 

Electron Microscopy would be beneficial to analyse the ultra-structure detail in the HNF4α 

infected cells, and identify if these cells exhibit microvilli, which may have implications 

regarding cell function.  Although the BMOL-TAT1.1 cell line has been shown to be non-

tumorogeneic in a nude mouse assay, further work is required to validate whether 

transplantation of the modified HNF4α and Villin positive BMOL-TAT1.1 cells 

contributes to development of HCC in an in vivo mouse model.  Induction of several liver 

markers in the low passage heterogeneous BMOL-TAT1.1 cell line following culture with 

http://en.wikipedia.org/wiki/HEK_293
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differentiation medium and in particular dexamethasone was accompanied by potent 

induction of Mucin2, Mucin5ac and TFF3 expression.  Increased expression of MUC5AC 

has recently been reported to be a highly specific tumour-associated mucin in 

cholangiocarcinoma (Mall, et al., 2010, Matull, et al., 2008) and hepatolithiasis, which is 

regarded as a model disease in cholangiocarcinogenesis arising in chronic inflammatory 

conditions, in which mucin is an important factor in the pathogenesis (Sasaki, et al., 2005, 

Sasaki, et al., 1998, Yamashita, et al., 1993).  Further work could extend analysis of the 

differentiated BMOL-TAT1.1 cells to look at the expression levels of a wider repertoire of 

mucins (Muc6, and Muc5b) and TFFs (TFF1) and also measure synthesis and secretion 

with a mouse mucin ELISA based assay.  To validate if it is the large BMOL-TAT1.1 cells 

which are expressing the mucins and TFF3, Fluorescent activated cell sorting (FACS) or 

Magnetic activated cell sorting (MACS) could be utilised due to the reciprocal expression 

of cell surface markers DBA and PNA in order to isolate homogenous small and large 

BMOL-TAT1.1 cell type populations without compromising cell integrity.  For example 

cells labelled with the FITC–conjugated PNA or FITC-conjugated DBA antibodies could 

be sorted using the MiniMACS system.  Again long term future work could involve 

transplantation of isolated mucin and TFF positive BMOL-TAT1.1 cells into an in vivo 

mouse model, to determine if they contribute to cholangiocarcinoma.  In toto this research 

highlights the major advantage of in vitro transformation of cells providing greater quality 

control, as cells can be specifically selected for transplantation which are not potentially 

carcinogenic. 

An overall limitation of studies involving a specific oval cell line (i.e. BMOL-

TAT1.1) is that it is not phenotypically identical to other oval cell lines established in 

different laboratories, hence results cannot be generalized. Therefore in order to ultimately 

validate results, experiments should be replicated in other available oval cell lines, primary 

oval cells and oval cells from other species preferably humans. 

 

7.2 α-cell reprogramming research (α-TC19 cell line)  

One of the cell types most in demand for therapeutic purposes is the pancreatic β-

cell.  This is because Type 1 diabetes is a major healthcare problem in the world.  Type 1 

diabetes can be treated by islet transplantation, but the major limitation is the shortage of 

organ donors.  To overcome the shortfall in donors, alternative sources of pancreatic β-
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cells must be found.  There is now a startling new addition to this list of sources: the 

pancreatic α-cell.  Thorel and colleagues recently showed that under circumstances of 

extreme pancreatic β-cell loss, during pancreas regeneration α-cells may serve to 

transdifferentiate and replenish the insulin-producing compartment.  Chapter 6 focused on 

understanding the molecular basis behind α- to β-cell transdifferentiation utilising a murine 

adult pancreatic α-cell line (α-TC19).  This entailed initial characterisation of the α-TC19 

cell line and subsequent experiments to investigate the effect of chromatin modification 

(i.e. histone hyper-acetylation) and ectopic expression of β-cell specific transcription 

factors on α-cell reprogramming.  The knowledge obtained from this research may help 

enhance the generation of β-cells for the treatment of Type 1 diabetes.   

Chromatin modification via histone acetylation has been shown to be important in 

determination of pancreatic cell fate.  Inhibition of Class II HDACs (i.e. chromatin histone 

hyper-acetylation) has direct effects on endocrine cell fate regulation, promoting δ-cell 

somatostatin expression but not β-cell insulin expression in the adult α-TC19 cell line, 

possibly via a Pax4-dependent mechanism.  Unfortunately, no Class II specific HDACi 

were easily available during the commencement of this research in order to test this 

hypothesis.  However a selective Class IIa HDAC inhibitor MC1568 has since been 

identified in the literature, which could be employed in future work (Lenoir, et al., 2011).  

Also to support the hypothesis it will also be important to determine if the effect of Class II 

HDAC inhibition is transient and thus would be reversed on withdrawal of the treatment 

(Haumaitre, et al., 2008).  The precise role of somatostatin in islet function is unclear and 

currently studies are in progress with a somatostatin gene knock-out mouse model in order 

to investigate the role of somatostatin in islet development and the regulation of insulin 

secretion, as it has been shown somatostatin possesses potent anti-secretory activity, 

directly inhibiting insulin synthesis and release (Philippe, 1993).  In toto the knowledge 

regarding the impact of chromatin modification on endocrine fate regulation should be 

considered for enhancement of α- to β-cell reprogramming for therapeutic purposes.  

Chapter 6 identified that HNF4α may have the potential to promote the 

reprogramming of α-cells to β-cells.  The mechanism of HNF4α reprogramming may 

involve suppression of glucagon expression and the induction of a phenotype resembling a 

β-cell.  Given that we also observe expression of pancreatic polypeptide (PP) the 

reprogramming may also occur through a PP β-cell progenitor state.  HNF4α induced 

suppression of glucagon was detected at the protein level but not at the mRNA level, this 
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highlights that experiments could be repeated by Quantitative (QT)-PCR, as RT-PCR is 

limited as only semi-quantitative and hence as a proportion of cells are un-infected 

(HNF4α negative) minor changes in gene expression levels are undetectable.  Additionally 

we also believe an element of further refinement to the in vitro reprogramming protocol 

utilising several methods will ensure the number of β-like cells is enriched and maximised.  

Firstly adenoviral vectors expressing HNF4α could be replaced with lentiviral vectors 

expressing HNF4α because of the advantages detailed above and this would also help 

address if HNF4α is required transiently or permanently during reprogramming of α-cells 

to a stable β-cell phenotype.  Current demonstrations showing the reprogramming of 

pancreatic α-cells into pancreatic β-cells are all in vivo, therefore a long term goal based on 

this research would be to investigate the ability of HNF4α to drive reprogramming of 

mature adult α-cells in vivo.  Transgenic mice conditionally expressing HNF4α in glucagon 

producing α-cells utilising the Cre-ER/loxP system (i.e. glucagon-Cre-ER and loxP-stop-

loxP-HNF4α mice) could be generated for studies.  Extracellular growth factors have been 

reported to exert a stimulatory effect on β-cell replication in vivo (Bouwens and Rooman, 

2005, Garcia-Ocana, et al., 2000, Soria, 2001).  For example HGF and betacellulin can 

convert pancreatic acinar cells (AR42J cell line) to β-cells (Mashima, et al., 1996a, 

Mashima, et al., 1996b) and in α-TC16 cells Pdx1 expression in combination with 

betacellulin treatment, induces expression of several key β-cell markers (Watada, et al., 

1996). Therefore the effect of addition of extracellular growth factors including 

betacellulin, IGF-II, HGF, EGF and nicotinamide on HNF4α induced α- to β-cell 

reprogramming and β-cell maturation should also be investigated (Cho, et al., 2008, 

Tsaniras and Jones, 2010).  

Functional characterisation will also need to be carried out on the nascent β-cells in 

order to assess quantification of hormone content (e.g. ELISA hormone secretion assays) 

and monitor glucose homeostasis, including demonstration and measurement of dynamic 

biphasic insulin release upon glucose challenge.  Functional characterisation and certainly 

from the point of view of application for treatment, a more homogeneous population of 

generated β-cells using a functional selection strategy would be desirable.  This may 

involve strategies to: (i) isolate the β-cell population e.g.  Fluorescent Activated Cell 

Sorting (FACS) using the β-cell specific surface marker GLUT2  or (ii) remove the 

remaining α-cell population e.g. cell trapping by stably tranfecting the α-TC19 cells with a 

construct of a drug- resistance gene downstream of a promoter that is only active in β-cells, 

for example the promoter of the insulin gene.  Therefore following the reprogramming 



                                                          Reprogramming of Hepatic and Pancreatic Cells                             Caroline Beth Sangan                                                                                                                                                                                                                                                                         

        

 

                                                                                  “                                                                              

~ 151 ~ 
 

protocol generated β-cells could be selected by incubation with the chosen drug which only 

the β-cells would be resistant to. 

Importantly, we will need to determine whether the nascent β-cells produced from 

the conditional expression of HNF4α in glucagon producing α-cells are capable of 

restoring functional β-cell mass and normoglycaemia in mice where diabetes has been 

induced by administration of the β-cell toxin streptozotocin.  Streptozotocin is an antibiotic 

that can cause pancreatic β-cell destruction, so it is widely used experimentally as an agent 

capable of inducing Type 1 diabetes (Wu and Huan, 2008).  

Unfortunately limitations of this research are that α-TC19 cells are from a clonal cell 

line derived from an adenoma, hence may not completely recapitulate an adult α-cell in 

phenotype and function e.g. response to glucose, insulin, L-arginine and Kainate.  Future 

work will therefore be crucial to validate our results obtained; it is warranted to perform 

comparative experiments in primary murine α-cells.  Also mice/ rodents are not always 

reliable as models for human disease and the scientific literature is littered with examples 

of differences between rodents and human.  For instance the rat insulin 1 promoter has 

been shown to be activated directly by HNF4α, but in contrast, the HNF4α binding site 

does not exist in the human insulin promoter, and HNF4α fails to activate the gene in 

reporter assays (Matys, et al., 2003).  There is also no evidence of any HNF4α binding 

sites in other insulin promoters, thus HNF4α transactivation may be unique to rodents and 

may not have a function in insulin regulation (Hay and Docherty, 2006), therefore 

comparative experiments to support this research would ideally need to be performed with 

human α-cells.  
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Appendix A:  List of commercial suppliers 
 

Supplier Distributor Location Website Information 

Abcam Cambridge, UK www.abcamplc.com 

Acris Herford, Germany www.acris-antibodies.com 

Ambion Warrington, UK www.ambion.com 

Amersham Bioscience Buckinghamshire, UK  www.gelifesciences.com 

BD Bioscience Oxford,UK www.bdbiosciences.com 

BD Transduction Laboratories Oxford, UK www.bdbiosciences.com 

Beckman Coulter Inc. Buckinghamshire, UK  www.beckmancoulter.co.uk 

Biogenesis Poole, UK www.biogenesis.co.uk 

Carl Zeiss Ltd  Hertfordshire, UK www.zeiss.co.uk 

Cell Signalling Danvers, MA, USA www.cellsignal.com 

Clontech Laboratories Basingstoke, UK  www.clontech.com 

Cypex Ltd Dundee, UK www.cypex.co.uk 

DAKO Cytomation Ely, UK www.dako.co.uk 

Fisher Scientific Leicestershire, UK www.fisher.co.uk 

Gibco, Invitrogen Life Technologies Paisley, UK www.invitrogen.org.uk 

Jencons (Scientific) Ltd West Sussex, UK www.jencons.co.uk 

Leica Milton Keynes, UK  www.leica-microsystems.com 

Millipore Corporation (Chemicon, 

Upstate Biotechnology, Calbiochem) 
Co Durham, UK www.millipore.co.uk 

Eurofins MWG Operon Ebersberg, Germany www.eurofinsdna.com 

New England Biolabs Hertfordshire, UK www.neb.com 

National Diagnostics Atlanta, GA, USA www.nationaldiagnostics.com 

Promega Southampton, UK www.promega.com/uk 

R&D Systems Abingdon, UK www.rndsystems.com 

Roche (Boehringer Mannheim) West Sussex, UK www.roche.com 

Santa Cruz Biotechnology Santa Cruz, CA, USA www.scbt.com 

Scientific Laboratory Supplies Ltd  East Yorkshire, UK www.flowgen.net 

Sigma (-Aldrich) Poole, UK www.sigmaaldrich.com 

Thermo Scientific (Lab Vision Corp.) Winsford, UK www.thermoscientific.com 

Vector Laboratories Peterborough, UK www.vectorlabs.com 

Zymed Laboratories Inc. Cambridge, UK www.zymed.com 
 

Table A.1: List of commercial suppliers, distributor address and website information. 

http://www.abcamplc.com/
http://www.acris-antibodies.com/
http://www.ambion.com/
http://www.gelifesciences.com/
http://www.bdbiosciences.com/
http://www.bdbiosciences.com/
http://www.beckmancoulter.co.uk/
http://www.biogenesis.co.uk/
http://www.zeiss.co.uk/
http://www.cellsignal.com/
http://www.clontech.com/
http://www.cypex.co.uk/
http://www.dako.co.uk/
http://www.fisher.co.uk/
http://www.invitrogen.org.uk/
http://www.jencons.co.uk/
http://www.leica-microsystems.com/
http://www.millipore.co.uk/
http://www.eurofinsdna.com/
http://www.neb.com/
http://www.nationaldiagnostics.com/
http://www.promega.com/uk
http://www.rndsystems.com/
http://www.roche.com/
http://www.scbt.com/
http://www.flowgen.net/
http://www.sigmaaldrich.com/
http://www.thermoscientific.com/
http://www.vectorlabs.com/
http://www.zymed.com/
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Appendix B:  RNA quantification and             

integrity analysis 
 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

Condition 1: 6G 0.66 1.64 0.164 

Condition 2: 17G 3.46 1.53 0.864 

Condition 3: 10G7D 2.01 1.60 0.503 

Condition 4: 7G10D 2.56 1.62 0.640 

Condition 5: 3G14D 2.88 1.53 0.720 

Condition 6: 17D 1.55 1.64 0.387 
 

Table B. 1:RNA quantification and integrity data for Figure 3.8 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

Condition 1: 6G 1.57 1.46 0.393 

Condition 2: 17G 2.39 1.46 0.599 

Condition 5: 3G14D 1.88 1.46 0.472 
 

Table B. 2: RNA quantification and integrity data for Figure 4.2 and Figure 4.7A 

Figure 3.8 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

Condition 1: 6G 0.87 1.74 0.434 

Condition 7: 3G14---- 0.92 1.86 0.461 

Condition 5: 3G14DIFF 1.08 1.83 0.542 

Condition 8: 3G14EGF 1.47 1.88 0.741 

Condition 9: 3G14DEX 1.23 1.81 0.619 

Condition 10: 3G14NIC 1.38 1.88 0.695 

Condition 11: 3G14ITS 1.98 1.87 0.994 
 

Table B. 3: RNA quantification and integrity data for Figure 4.3 and Figure 4.7B 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

Low Passage: 6G 1.57 1.46 0.393 

Low Passage: 3G14D 1.88 1.46 0.472 

High Passage: 6G 1.52 1.45 0.380 

High Passage: 3G14D 1.97 1.46 0.492 
 

Table B. 4: RNA quantification and integrity data for Figure 5.2 and Figure 5.4 
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Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

Un-infected (----) 0.86 1.84 0.427 

Ad-Null 0.78 1.85 0.389 

Ad-CMV-HNF4α 0.72 1.84 0.359 

Ad-CMV-C/EBPα 0.79 1.83 0.396 

Ad-CMV-HNF4α 

Ad-CMV-C/EBPα 
0.55 1.80 0.275 

 

Table B. 5: RNA quantification and integrity data for Figure 5.6A 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

α-TC19 0.79 1.87 0.397 
 

Table B. 6: RNA quantification and integrity data for Figure 6.3A 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

α-TC19 (------) 2.01 1.90 0.991 

Ad-CMV-HNF4α 0.67 1.80 0.337 

Ad-CMV-Pdx1 1.71 1.91 0.859 

Ad-CMV-Pax4 1.15 1.85 0.575 
 

Table B. 7: RNA quantification and integrity data for Figure 6.5 

 

Samples Concentration (μg/μl) A260/A280 (<2) A260 (<1) 

α-TC19 (------) 1.64 1.91 0.822 

Ad-CMV-HNF4α 0.71 1.83 0.355 
 

Table B. 8: RNA quantification and integrity data for Figure 6.8A 
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Appendix C: Staining controls 

C.1   Immunofluorescent staining 

Positive controls 

All images detail the primary antibody, manufacturer and tissue utilised (scale bar = 

50μm). 
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Negative controls 

All images detail the secondary antibody utilised. All antibodies were from Vector 

Laboratories (scale bar = 50μm). 
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C.2   X-gal staining for beta-galactosidase  

 

 

Figure C.2: X-gal staining controls.  BMOL-TAT1.1 cells un-infected (A) and infected with Ad-CMV-

LacZ (B) served as a negative and positive control respectively for the X-gal staining protocol. (scale bar = 

200μm).   

 

C.3  Periodic acid schiff (PAS) staining 

 

 
 

Figure C.3: Period acid Schiff (PAS) staining positive control.  Rat hepatocytes can serve as a positive 

control for the PAS staining protocol (Li, et al., 2007). (scale bar = 50μm). 
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Appendix D:  Vector maps for the adenoviral 

vector utilised 
 

Vector Maps for the adenoviral vectors utilised.  All vector maps included are taken from 

AdEasy
TM

 Adenoviral Vector System Instruction Manual.  The genes of interest were 

initially cloned into pShuttle vectors.   

 

Figure D. 1: pShuttle vector map. For Ad-Null and Ad-RSV-GFP 

 

 

Figure D. 2: pShuttle-CMV vector map.  For Ad-CMV-Pax4; Ad-CMV-Pdx1;                                                         

Ad-CMV-C/EBPα and Ad-CMV-HNF4α. 
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Figure D. 3: pShuttle-CMV-lacZ vector map.  For Ad-CMV-LacZ 

 

The pShuttle vectors were linearised with PmeI before transforming the pAdEasy 

competent cells containing the pAdEasy-1 vector.  Transformants were selected for 

kanamycin resistance.  Successful recombinants were identified and produced in bulk in 

the recombinant-deficient XL10-Gold cells.  Purified recombinant adenovirus plasmid 

DNA was then subjected to PacI digestion before HEK-293 transfection for adenovirus 

construction. 

 

Figure D. 4: pAdEasy-1 vector map 


