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Abstract 

In recent years, research interest has increased regarding the influence of genetic factors on 

health, physical activity, and sports research. This is achieved through research study 

designs including ‘genetic variation’ as an independent variable. These studies aim to link 

gene variants (common difference in the genome of a population) with a trait of interest 

(phenotype), known as ‘genetic association’. Albeit, these genetic factors potentially only 

have a small influence. The aims of the present study were to determine the gene variants 

within genes that encode for proteins involved in homeostatic balance of tendon 

physiology, and the contribution to interindividual variability in patellar tendon structural 

and mechanical properties. Genotype and phenotype data was collected from 84 

asymptomatic men and women (aged 18-39 years). Gene variants in the COL5A1 and 

MMP3 genes were not associated with the variability in the patellar tendon phenotypes, in 

either sex (COL5A1 rs12722 –Male/Female - Volume, P = 0.936/0.938; Young’s Modulus, 

P = 0.897/0.227; Z-scores, P = 0.635/0.896: MMP3 679620 & 591058 – Male/Female – 

Volume, P = 0.796/0.532; Young’s Modulus, P = 0.238/0.680; Z-scores, P = 0.346/0.862: 

MMP3 650108 – Male/Female – Volume, P = 0.952/0.676; Young’s Modulus, P = 

0.170/0.557; Z-scores, P = 0.681/0.531). Furthermore, a polygenic profile including these 

gene variants could not account for the interindividual variability in patellar tendon 

properties (Male/Female - Volume, P = 0.359/0.949; Young’s Modulus, P = 0.073/0.067; 

Z-scores, P = 0.110/0.579). In conclusion, the data suggest that tendon properties are not 

influenced by the genetic variants studied here. In addition, there are no sex-specific 

associations. The research on gene variants and their influence on the risk of tendon injury 

and tendon properties remain quite limited, and the preliminary nature of this research, 

makes potential genetic influences difficult to quantify at this time. Continued 

investigations are encouraged into these genes/proteins named here (MMP3, COL5A1), as 

well as others that may influence the maintenance of tendon homeostasis. Future advances 

in determining the genetic components of tendon properties in an asymptomatic population 

may have implications for our understanding of the aetiology of tendinopathies, as well as 

physical performance potential. 
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1.1 Introduction 

Historically, tendons were considered bands of connective tissue with relatively no 

dynamic function (Neuberger et al., 1951, Peacock, 1967). More recently, a plethora of 

studies have highlighted the importance of a tendon’s ability to provide an integral 

interface for transmission of forces from muscle to bone in order to produce moments 

about joints. Tendons not only provide coordinated musculoskeletal movement but as a 

singularity are highly adaptable to this movement and therefore, a tendon’s function can 

change as a result. Hence, the mechanical properties of tendon contribute to the degree of 

joint motion in direct response to this movement (McGinnis, 2005). 

 

Biomechanically, internal structures such as tendon undergo deformation when resisting 

external loads that act on the body. The degree of deformation or strain produced is related 

to the stress caused by these external loads and the material that it acts upon (McGinnis, 

2005). Thus, knowledge of the mechanical properties of tendon can assist in understanding 

injury risk and physical performance capabilities. The primary parameters describing the 

mechanical properties of relevance to human physical performance include tendon stiffness 

and tendon modulus (Heinemeier and Kjaer, 2011). 

 

To further understand the mechanical properties of tendon, one needs to explore its 

structure, both its global characteristic dimensions (e.g. cross-sectional area and length) as 

well as its internal structural composition (e.g. cross-link density) whilst acknowledging its 

metabolically active state. Thus, an examination of its biochemical properties is necessary. 

The structure and biochemical dynamics of tendon and thus its function, is controlled by 

cells called tenocytes that maintain the extracellular matrix (ECM) (Arnoczky et al., 2008) 

and ultimately its material and mechanical properties. 

 

In the past few decades considerable time and effort has been channelled into discovering 

how tendon responds to mechanical loading in vivo within human populations. However, 

response has shown to differ substantially among individuals. This difference is due in part 

to exogenous factors such as body mass, sex, age and training status but this difference can 

also remain, even when accounting for such factors (Roth, 2007, Spurway, 2006). 

Endogenous or biological factors such as genetics may contribute in some part to these 

observed/measurable differences in the material and mechanical properties of tendon. 
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1.2 Interindividual variability  

For any physical trait/phenotype that can be observed or measured, for example tendon 

stiffness, there is likely to be a broad range of values within that population of individuals. 

A majority of the population will be represented within a narrow range surrounding the 

mean, which is the average value for the whole population. However, this average value 

does not represent each individual and so the standard deviation or variance observed 

between the two extremes of the phenotype is known as the ‘interindividual variability’. 

This variability among individuals for such phenotype measures can be explained by three 

major factors, experimental error, environmental factors, and genetic factors (Roth, 2007). 

 

Experimental error can be minimised by adopting both valid and reliable phenotype 

measurements that are established and follow strict operating procedures (Batterham and 

George, 2000, George et al., 2000), thus, the source of error variability can be controlled to 

a high degree. More importantly, environmental factors need careful consideration in the 

research design and/or in the statistical analysis, in order to minimise variability seen in 

measurement values across the population. However, measurement error and 

environmental factors may not completely explain all of the variability in the phenotype 

being measured. The remaining variability can be accounted for by the unique genetic 

profile of an individual. The focus of this thesis is on understanding the correlation of 

genetic variation and tendon material and mechanical properties. 

 

1.3 Genetic influences 

Genetic contribution to a phenotype can be explained through estimating heritability. In the 

1970s, twin studies were conducted on identical (monozygous) and non-identical 

(dizygous) twins to investigate this phenomenon (Howald, 1976, Klissouras, 1971, 

Klissouras et al., 1973, Komi et al., 1977). The assumption was that identical twins have 

identical genetic profiles (genotypes) and reside in similar environments. Non-identical 

twins also share similar environmental experiences yet have genetic profiles no different to 

any other siblings. Hence, any variability still evident in phenotype measures between twin 

pairs was assumed to be a result of genetic influences (Babraj et al., 2005). 

 

Educationalists in the 1920’s outlined methods used to quantitatively calculate this 

variance (heritability estimate) manifesting itself as the difference between the intraclass 

correlation for absolute agreement, values of both twin pairs (Spurway, 2006). Almost 50 

years later, Klissouras, (1971) and Klissouras et al. (1973) applied these same methods 
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when analysing the genetic contribution to human physical performance (VO2max) in 

individuals, from very young adolescents to middle-aged, and found that the genetic 

influence is maintained throughout life, in the region of 80-93%. Such high values were 

attributed to the indirect measures of the phenotype, as well as the suboptimal precision of 

these measures, small sample size, issues with determining zygosity and systematic error 

related to more equal environmental influences on monozygotes than the dizygotes. More 

recent values of human physical performance are typically in the range of 40-80% (Babraj 

et al., 2005).  

 

A recent twin study investigating the heritability of lumbar flexibility or range of motion 

which encompasses the muscle-tendon unit, found the proportion of variance attributable 

to genetic influences to be 47% (Battie et al., 2008). It is tempting to suggest genetic 

influence on the material and mechanical properties of tendon to have similar heritability 

estimates, leaving space for a significant amount of variability due to environmental 

influences.  

 

As well as classic twin studies being conducted to estimate heritability in human 

performance related phenotypes, family studies have become more desirable in that they 

provide a more flexible statistical approach (path analysis) and allow for larger samples 

and combinations of family members to be compared, the HERITAGE Family Study being 

the first to do so. Moreover, identification of genomic regions that might contain specific 

genes, gene-gene interactions and dominant alleles important to the phenotype is also 

possible with this type of analysis. However, this has only been conducted in physiological 

parameters related to aerobic exercise and not for example, tendon properties per se. 

Nevertheless, both twin and family studies provide us with a ‘top down’ approach or 

indirect measurement of genetic influences within a population. 

 

1.4 Genetic association studies 

Once a significant genetic influence is established, it is prudent to identify what genes are 

involved in causing this interindividual genetic variation, in the hope of discovering the 

biochemical mechanism of the variations observed in the measurable phenotype. ‘Bottom 

up’ or direct measures of the genetic factors involved are popular means of identifying one 

or more gene variants that may change the structural and functional aspect of a phenotype, 

from the DNA sequence up to the whole body level or measurable phenotype (Spurway, 

2006). Genetic association studies (GAS) allows such comparisons to be made.  
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Genetic association studies adopt cross-sectional, cohort, and case-control study designs of 

unrelated individuals in a population and arise from the fact that human populations share 

common ancestry. Moreover, GAS are a more powerful research tool in detecting variation 

explained by genetic factors than data from related individuals, but at the same time 

require sound  physiological rationale for examining certain genetic markers (Langberg et 

al., 2000). It is natural to turn to testing a comprehensive catalogue of common gene 

variants across the entire genome to pinpoint key genes and shed light on underlying 

mechanisms. A popular approach used toward this goal is the use of genome-wide 

association studies (GWAS), made possible by advancing technology that allows 

genotyping of as many as two million variants simultaneously (O'Dea et al., 2004). A 

genetic association study design will be employed to document the research in this thesis 

and will be discussed in more detail in further sections.  

 

1.5 Tendon properties 

The overall aim of this thesis is to identify gene variants that are involved in the material 

and mechanical properties of tendon in humans, which may influence the rate of torque 

development (RTD) during physical activity. The following sections of this thesis will 

provide a detailed overview of tendon material and mechanical properties and importantly, 

the functional changes that occur as a result of mechanical stimulus. This will provide an 

opportunity to understand the dynamic nature of tendon homeostasis, so that possible 

associations can be made with genetics in subsequent sections. 

 

1.5.1 Tendon structure and composition 

A tendon’s internal architecture is predominantly made up of insoluble fibrillar collagen 

comprising of molecules, fibrils, fibres and fascicles in a hierarchical manner and are 

aligned in parallel in accordance with the long axis of the tendon. These components of 

tendon have evolved to take the stresses of movement by resisting pulling forces (Sorensen 

et al., 2011), and it is thought that the mechanical behaviour of whole tendon derives from 

the arrangement of these fascicles (Sorensen et al., 2010). 

 

Fibrillar collagen type I is the most abundant collagen type in the human body and forms 

97-98% of the total portion of collagen in fibrils (Jozsa and Kannus, 1997), the most 

fundamental molecular structure of the tendon. The remaining portion is taken up by other 

types of collagen namely types II, III, V and XI (Eikenberry et al., 1984). Different 

collagen types can co-exist in the same fibril to form heterotypic fibres, for example, type I 
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and III (Surh et al., 2000) and type V and I, the latter combination is thought to regulate the 

diameter of these fibres (Svensson et al., 2012). At a molecular level fibrillar collagen is a 

trimeric molecule consisting of three polypeptide chains in a triple helix. These molecules 

are arranged end to end in a quarter-staggered array with an approximate length of 1nm, 

aggregating into fibrils with a length of about 300nm (Haraldsson et al., 2009). Finally, 

fibril formation is made possible by the biosynthesis of these collagens from procollagens, 

after the secretion into the ECM from inside the cell (e.g. tenocytes) (Haraldsson et al., 

2006). Moreover, collagens in the ECM are covalently cross-linked (Haraldsson et al., 

2005, Svensson et al., 2012) providing optimal force transmission between collagen 

molecules (intramolecular) (Eleswarapu et al., 2011). There are two mechanisms by which 

cross-linking occur, enzymatically and non-enzymatically. Enzymatic cross-linking 

involves the enzyme lysyl oxidase during development and maturation, to connect adjacent 

amino acids within the collagen molecule, whereas, non-enzymatic cross-linking occurs 

via the glycation of reducing sugars and matrix proteins, and is thought to be associated 

with increasing age (Doane and Birk, 1991, Bianchi, 1993). 

 

In addition to the fibrils resisting pulling forces and providing intra- and intermolecular 

stability, there are interfibrillar soluble polymers that resist compressive forces, known as 

proteoglycans (PGs). PGs are capable of binding and interacting electrostatically with 

fibrillar collagen largely due to their respective large surfaces (Limper et al., 1991). 

Electron microscopy has demonstrated that these interactions occur in multiple locations 

on the surface of the fibrils, interconnected through glycoaminoglycan (GAG) side chains 

(Silver et al., 2002). There are numerous PGs namely aggrecan and decorin (Silverman, 

2001), which in addition to resisting compressive forces may also facilitate further slippage 

during mechanical deformation, a finding associated with decorin. This behaviour 

essentially improves the tensile properties of collagen fibres (Linsenmayer et al., 1984). 

The remaining composites of tendon, such as glycoproteins (e.g. Tenascin-C and 

Fibronectin) as well as elastin, interact with collagen fibrils to provide elasticity (Fitch et 

al., 1988) and regenerative qualities when stretched (Birk et al., 1988). 

 

It is important at this stage to briefly introduce the possible role genetics may have in 

influencing tendon composition and function. The ECM proteins alluded to previously 

(e.g. collagens, proteoglycans, glycoproteins, elastin) are controlled and synthesised by the 

dominant cell type in tendon called ‘tenocytes’. These cells are aligned in rows between 

collagen fibre bundles (Jozsa et al., 1991) and are thought to ‘sense’ and respond to 
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mechanical stimuli, via complex interactions between the cells’ cytoskeleton and the ECM 

(Arnoczky et al., 2008, Lavagnino et al., 2008a, Eastwood et al., 1998a). This gives rise to 

gene regulation, expression and control of functional gene products or ECM proteins at a 

molecular level. All in all, these morphologies, arrangements and interactions that occur in 

tendon may contribute to its unique mechanical behaviour. 

 

1.5.2 Mechanical properties 

As tendon mediates force transmission of the musculoskeletal system, understanding 

tendon mechanical properties is essential, especially when alluding to the functional 

mechanisms by which physical performance can be enhanced (Gerecke et al., 1993, 

Linsenmayer et al., 1993, Chen et al., 1993), or when injury risk can be reduced (Hayashi 

et al., 1992, Speit et al., 1985, Drahovsky et al., 1985). Over the past two decades 

considerable effort has been channelled into assessing the mechanical properties of human 

tendon in vivo (Rees et al., 2009b, Rees et al., 2009a). 

 

The parameters that describe tendon mechanical properties derive from the force-

elongation relationship of tendon determined by mechanical testing. Traditionally, such 

testing was exclusively performed on ex vivo animal tendons (Forslund and Aspenberg, 

2002), however, the introduction of ultrasonography (US) has provided an opportunity for 

real-time monitoring of tendon excursions in recent years and made investigations of 

human tendons possible. Ramped isometric loading to maximum force production (MVC) 

of the tendon, correcting for other relevant parameters (joint moment arm length and 

muscle antagonist activation), will provide an estimate of actual forces applied to the 

tendon (Robinson et al., 2004b). Together with the amount of deformation or elongation of 

tendon, the tendons resistance can be calculated, thus, measures of strain and stiffness are 

made possible. Strain (ε) describes the absolute elongation from its original length, with 

stiffness (K) describing the elongation relative to the corrected forces applied to the 

tendon, as represented by the force-displacement curve (Figure 1). Stiffness is dependent 

on the cross-sectional area (CSA) and length of an individual’s tendon (i.e. a greater CSA 

and shorter tendon length equates to greater tendon stiffness). However, to account for 

interindividual dimensional variability, a reliable assessment of CSA and resting tendon 

length at a standardised joint angle using ultrasonography is necessary (Maganaris and 

Paul, 1999). This allows for a comparison of the material properties of tendon across a 

human population, independent of CSA and length, which are normalised to stress (σ) 

(Force/CSA) and strain values, respectively. The mechanical behaviour of the actual 
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tendon material properties is described by its modulus. Therefore, tendon modulus is 

defined as the relationship between stress and strain (Equation 1), and in effect represents 

the elasticity of the material or Young’s Modulus (E). Greater tendon modulus equates to a 

greater structural stiffness. 

 

 

Equation 1: E= σ / ε 

 

 

 

 

Many in vivo studies have investigated tendon stiffness in the lower limbs in several 

populations, which differ in the methodologies and study designs implemented. The 

majority of which have assessed Achilles (Erickson, 1993a, Jones and Jones, 2000b, Fessel 

and Snedeker, 2009, Aparecida de Aro et al., 2012, Fessel and Snedeker, 2011, Joshi et al., 

1993, Vollmer et al., 1993, Kannus et al., 1998, Martin et al., 2003a, Martin et al., 2003b, 

Riley et al., 1996) and patellar (Banes et al., 1999b, Ivanovic-Matic et al., 2000, Bergers et 

al., 2000, Yoshihara et al., 1995, Corps et al., 2005, Arnoczky et al., 2007, Storm et al., 

1994) tendon stiffness using cross-sectional study designs. These types of studies 

Figure 1. In vivo human patellar tendon force-elongation curve. Relationship between 

the force applied to tendon and the tendon elongation (Heinemeier and Kjaer, 2011) 
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investigate differences between subject groups that vary either in age, sex, level of 

expertise or sporting activity. For example, Onambele et al. (2007) were novel in their 

investigations in that they were the first to assess the structural and mechanical properties 

of the patellar tendon, for direct comparisons between the sexes, who were age-matched 

(young participants), and exhibited similar activity levels (recreationally active). They 

observed significantly greater mean CSA (112.5 mm² vs. 88.6 mm²), tendon stiffness 

(1940 N·mm
-1 

vs. 1080 N·mm
-1

) and Young’s Modulus (1.2 GPa vs. 0.8 GPa) values in 

males, compared to females. 

 

In subsequent sections, ways in which the mechanical properties of tendon can be modified 

are explored in great depth, relating to changes in structural and material properties. The 

following section however, will address the inherent complexity in measuring tendon 

mechanical properties in vivo in humans, which is characterised by the large variation in 

tendon stiffness measures, even across similar study designs and interventions. 

 

1.5.3 Assessment of mechanical properties in vivo  

The considerable variation in measuring tendon mechanical properties can be attributed to 

the different methodologies used by investigators in this area of study, owing to the fact 

that there is no agreed standard technique. Also, there is an inherent experimental error 

associated with instruments and techniques used to assess tendon behaviour in vivo. 

 

The majority of studies assessing the mechanical properties of tendon in vivo have 

investigated the Achilles and patellar tendons, and to a lesser degree the quadriceps 

tendons (Stafilidis et al., 2005, Kubo et al., 2000b, Kubo et al., 2001c, Wilson et al., 2009) 

and tibialis anterior tendon (Maganaris and Paul, 2000c, Maganaris and Paul, 1999, 

Maganaris and Paul, 2000b). From this point on, studies that only investigated patellar 

tendon and reported an increase in stiffness with mechanical loading will be of primary 

focus. This is to allow a better comparison of methodologies between such studies, which 

will in turn bring attention to discerning differences.  

 

Focusing on just one tendon type is particularly relevant when considering the following 

evidence. The collagen content has been reported to vary between different tendon types in 

normal tendon, albeit between patellar (~38%) and common biceps/supraspinatus (~ 65%) 

(Riley et al., 1994, Samiric et al., 2009), possibly due to the different habitual levels of 

mechanical stress placed upon. Therefore, as collagen type I fibrils and fibres are well 
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recognised to be involved in the mechanical stiffness of tendon matrix based on animal 

models (Birch, 2007, Eliasson et al., 2007, Reddy, 2004, Hansen et al., 2009c, Silver et al., 

2001, Silver et al., 2003), as well as on in vivo studies in humans through patellar tendon 

biopsies (Couppe et al., 2009), it is prudent to associate mechanical properties such as 

stiffness with only one type of tendon. Furthermore, the differences in plasticity of tendon 

properties of the patellar and Achilles tendons as previously described, substantiate this 

reasoning for just focusing on one tendon type (Kubo et al., 2009, Kubo and Ikebukuro, 

2012). 

 

Methodological differences between studies that introduce varying degrees of 

measurement error include; methods of obtaining CSA by imaging techniques, methods for 

controlling for the viscoelasticity of tendon, methods used to precondition the tendon 

before assessment,  methods for estimating actual tendon forces, and methods for 

computing stiffness estimates. 

 

1.5.3.1 Tendon size 

As alluded to previously, the CSA of a tendon is an integral characteristic for its 

mechanical properties; a tendon with a larger CSA will elongate less than a tendon with a 

smaller CSA at the same force and thus, it can be described as being ‘stiffer’, provided that 

the material properties of tendon are similar. Some studies have utilised magnetic 

resonance imaging (MRI) (Kongsgaard et al., 2007, Seynnes et al., 2009, Couppe et al., 

2008, Kubo et al., 2012), whilst others have used US (Kubo et al., 2009, Pearson et al., 

2007, Onambele-Pearson and Pearson, 2012, Reeves et al., 2003a) to assess CSA before 

and after a training regime. Both methods have been reported to be reliable when 

evaluating patellar tendons in vivo (Kartus et al., 2000) with US imaging providing higher 

reproducibility than MRI (Koivunen-Niemela and Parkkola, 1995). US is a well 

established 2D in vivo method for assessing fascicle movement and the CSA of tendon, 

with all internal threats to validity having been addressed and minimised (Magnusson et 

al., 2003b). Moreover, reliability of this method is maximised with an appropriate designed 

protocol and a single evaluator (Collinger et al., 2009). MRI mainly due to its capacity to 

image in 3D, provides a greater ability to image associated structures, which exhibit a non-

homogeneous thickness throughout its length (Basso et al., 2001). It has been reported that 

CSA increases due to mechanical loading, occurs only at certain points across the tendon, 

thus, implying that hypertrophy occurs only regionally (Kongsgaard et al., 2007, Couppe et 

al., 2008, Seynnes et al., 2009). Therefore, it would be prudent to assess the CSA of tendon 
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at as many locations as possible to enhance the ability to detect such changes. However, 

most studies using MRI assessed CSA at only three sites (Kubo et al., 2012, Kongsgaard et 

al., 2007, Couppe et al., 2008), the same being true for studies adopting US (Reeves et al., 

2003a, Kubo et al., 2009) with Onambele-Pearson and Pearson (2012) only measuring 

CSA at 50% of patellar tendon length. Further, Seynnes et al. (2009) assessed CSA at each 

10% interval of tendon length and found a mean increase of 3.7%, with tendon 

hypertrophy being heterogeneous across its length. This highlights a possible explanation 

as to why in previous studies reporting an increase in stiffness, there was no concurrent 

increase in CSA, as at most, only three locations were recorded (Pearson et al., 2007, Kubo 

et al., 2009, Kubo et al., 2012, Reeves et al., 2003a). Incidentally, these studies used US 

with the exception of Kubo et al. (2012) who only assessed CSA proximally and with a 

low number of locations. Even though studies utilising MRI and assessing tendon CSA at 

only three regions (proximal, mid, distal), region-specific hypertrophy was reported 

(Kongsgaard et al., 2007, Couppe et al., 2008), thereby emphasising the need for imaging 

techniques that are able to capture the non-uniform thickness of tendon structure, of which 

MRI proves to be a more suitable option (Figure 2). 

 

 

Figure 2. Sagittal magnetic resonance (MRI) scan of the patellar tendon (Seynnes et al., 

2009) 
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1.5.3.2 Tendon elongation 

Another possible methodological difference relates to how the elongation of tendon is 

assessed during the ramped isometric contractions using US imaging. When the patellar 

tendon is under investigation, some assessors position the ultrasound probe over both bony 

landmarks to which the patellar tendon is attached (the patella and the tibia), so that the 

entire length of the tendon is visible within the ultrasound image, throughout the 

contraction (Figure 3) (Kongsgaard et al., 2007, Couppe et al., 2008). Others make use of 

an external marker fixed on the skin distal to the origin of the tendon, in order to determine 

the proximal displacement relative to this particular bony end (patella) (Figure 4) (Reeves 

et al., 2003a, Storm et al., 1994, Li et al., 2004, Kubo et al., 2009, Reeves et al., 2003b). 

However, with the latter technique, there is no way of monitoring the degree of tendon 

displacement due to tibial movement in the longitudinal direction (Hansen et al., 2006). 

Therefore, tendon elongation would be underestimated and consequently tendon stiffness 

would likely be overestimated in these cases. An obvious way to correct this issue related 

to ultrasound probe length, would be to also assess the distal displacement of the tendon by 

applying an additional external marker, proximal to the tendons attachment to the tibial 

tuberosity (Onambele et al., 2007). However, two separate isometric contractions would be 

necessary to determine the tendon’s true stiffness value during one movement. 
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 Figure 3. Sagittal-plane scans of the entire length of the patellar tendon at rest (top) 

and at maximal force exertion (bottom) in order to measure the displacement of the 

patella and tibia (Kongsgaard et al., 2007) 

Figure 4. Sagittal-plane scans of the patella tendon (PT) at rest, during isometric 

contraction at 50 % of maximal and at maximal tendon force. Arrows indicate 

proximal displacement of the apex of the patella (P) during contraction with respect 

to an echo-absorptive external marker fixed on the skin distal to the displacement  

(Reeves et al., 2003a). 
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1.5.3.3 Viscoelasticity   

Viscoelastic behaviour of the tendon during the ramped isometric contractions to maximal 

force levels, also contributes to the methodological disparity between studies. Not only 

does elongation depend on the degree of force application but also on the time and history 

of force applied, termed its ‘viscoelastic’ properties. The viscoelasticity of a material 

encompasses creep, stress-relaxation and hysteresis, with creep and stress-relaxation 

defining the time-dependent behaviour (Figure 5), and hysteresis defining the history-

dependent behaviour (Figure 6) (Sorensen et al., 2010). Therefore, tendon is sensitive to 

varying strain rates with greater elongation occurring at low strain rates, with relatively 

less elongation occurring at high strain rates (greater stiffness) (Maniotis et al., 1997). 

Accordingly, the duration of the ramped isometric contractions used to quantify tendon 

elongation and the concurrent force levels, would need to be similar between studies to 

merit direct comparisons (Pearson et al., 2007), however, this is not the case with times 

varying from 4 s (Li et al., 2004, Reeves et al., 2003a) to 5 s (Kubo et al., 2009) to 6 s 

(Storm et al., 1994) to 10 s (Couppe et al., 2008, Kongsgaard et al., 2007). Pearson et al. 

(2007) investigated the in vivo effect of the duration of contraction on measured strain and 

stiffness of the patellar tendon, with particular emphasis being on the ‘creep’ characteristic 

of tendon, which describes the time-dependent increase in tendon elongation under 

constant force output. They found an increase in strain (~ 42%) with an associated decrease 

in stiffness (~ 77%), from 3-4 s contractions to 10-12 s contractions (Pearson et al., 2007). 

These results substantiate the importance of duration in respect to comparing mechanical 

properties within, or across studies. 
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Figure 5.  Creep (left) and stress-relaxation (right). In creep, constant compressive or 

tensile stress is applied to a tissue and corresponding strain is followed as a function 

of time. In stress-relaxation, predefined compressive or tensile strain is applied and 

corresponding stress is followed as a function of time (Smith et al., 2008). 

 

Figure 6.  Load-displacement plots of the TA tendon. The arrows indicate loading 

and unloading directions. The area of the loop between the loading and unloading 

curves represents hysteresis, which is the strain energy dissipated by viscous 

damping (Maganaris and Paul, 2000a) 
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1.5.3.4 Preconditioning  

Another related feature of the viscoelasticity of tendon is ‘conditioning’. Conditioning is a 

time and history-dependent property resulting from creep, which acts on the material of 

tendon during the loading and residual unloading of the tissue (Cohen et al., 1976). 

Complex interactions of collagen, the surrounding proteins, and ground substance reflect 

the time and history dependent behaviour associated with conditioning (Kwan et al., 1993, 

Haut and Haut, 1997). It has been suggested that conditioning causes progressive collagen 

fibre recruitment, which increases the stiffness of the toe and linear regions of the force-

elongation curves (Schatzmann et al., 1998). Conditioning also causes interstitial fluid loss, 

which in turn alters the PG’s and hyaluronic acid concentrations, ultimately altering 

hydrogen and salt-like bonds between the ECM and fibrillar structures (Haut and 

Powlison, 1990, Yahia and Drouin, 1990) The conditioning phenomenon manifests itself in 

the methodologies of in vivo tendon studies as warm-up contractions or preconditioning, 

used to condition the tendon prior to assessment. Some studies do not report any 

preconditioning (Kubo et al., 2009, Reeves et al., 2003a, Kubo et al., 2012), whilst others 

do specify one (Kongsgaard et al., 2007, Couppe et al., 2008, Li et al., 2004, Pearson et al., 

2007, Reeves et al., 2003b). Without any preconditioning it has been reported that the first 

five cycles of loading and unloading of the tendon in vivo, causes increased elongation as a 

function of contraction number. However, following these conditioning cycles tendon 

behaviour becomes more uniform between repeated loading cycles, as represented by 

similar force-displacement relationships (Figure 7) (Lavagnino and Arnoczky, 2005). Yet, 

even with a structured form of preconditioning or warm-up, the variability between the 

types of loading activity are likely to produce varying force-displacement curves and thus, 

stiffness values. Nonetheless, a preconditioning phase is an important step in producing 

reliable measures of mechanical properties for comparisons between studies. 
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1.5.3.5 Tendon force 

In order to determine tendon stiffness per se, it is essential that the actual force transmitted 

through it is calculated. The calculation of tendon force from in vivo assessment is very 

much an estimated value, in that separate methods used to calculate tendon force, such as 

antagonist co-activation and joint moment arm length are measures that may introduce 

error, due to the complexity of related anatomical and physiological characteristics. 

Compounding these issues are the different approaches used by investigators to estimate, 

for example, antagonistic co-activation and joint moment arm length. Some studies 

estimated internal moment arm from individually measured femur lengths (Kongsgaard et 

al., 2007, Couppe et al., 2008, Kubo et al., 2012), derived from methods described by 

Visser et al. (1990). Others used sophisticated and more reliable methods such as MRI 

(Onambele-Pearson and Pearson, 2012, Reeves et al., 2003a, Seynnes et al., 2009, Reeves 

et al., 2003b), deriving from methods described in previous reports (Baltzopoulos, 1995, 

Tsaopoulos et al., 2006), with even some estimates originating from average values from 

previous reports, obtained from anatomy-based mathematical models (Pearson et al., 

2007). These indirect methods of obtaining moment arm length from anthropometric 

variables, cannot explain the significant amount of inter-subject patellar tendon moment 

Figure 7. Tendon elongation at 80% MVC as a function of contraction number. No 

significant difference is observed in elongation following the fifth cycle. * p < 0.001, ** 

p < 0.01, *** p < 0.05, compared with the tenth contraction (Maganaris, 2003) 
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arm length (PTMA) variation (Tsaopoulos et al., 2007). These estimates are used to 

quantify PTMA for calculations in determining musculotendinous forces (Maganaris et al., 

2001) and ultimately tendon stiffness. Tendon stiffness may be underestimated if PTMA is 

overestimated, and so the accuracy in determining tendon mechanical properties is 

negatively affected. 

 

With regards to the correction for antagonist activation, all studies utilised the force-

electromyogram relationship to determine the net torque applied to the patellar tendon, 

during the isometric knee extension performances, by assessing the level of antagonistic 

muscle co-contraction of the biceps femoris (BF). Methods such as the placement of 

electrodes in relation to the BF for EMG measurements, can introduce measurement error 

(random error and systematic bias) (Batterham and George, 2000), and consequently 

makes comparisons difficult between studies, and thus, the extent to which the data 

generated is applicable to other populations, settings, or treatments, is made more difficult 

(George et al., 2000). Nevertheless, this technique for determining antagonist co-activation 

has been reproduced in several research papers (Reeves et al., 2004, Kellis and 

Baltzopoulos, 1997, Reeves et al., 2003a, O'Brien et al., 2009). 

 

1.5.3.6 Tendon stiffness computation 

There is a variety of calculation methods used in the research literature to ascertain tendon 

stiffness, which results in the inconsistencies evident between studies. In essence, tendon 

stiffness is determined from the gradient of the force-elongation relationship, in accordance 

with an appropriate function, generally a second degree polynomial function forced 

through zero. However, different studies utilise varying load levels as a proportion of the 

MVC, to which the stiffness function is adherent to. For example, Kongsgaard et al. (2007) 

adopted a MVC range of 90-100% linear, Reeves et al. (2003a), above 60% MVC linear, 

and Muraoka et al. (2005), 0-100% MVC linear, to which the gradient of the force-

elongation curve is fitted (Figure 8). 
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As a result of the differences in regression procedures (linear and tangential), different 

stiffness values become apparent for any given data set, since the gradient changes with the 

magnitude of load, owing to the curvilinear relationship between tendon force and tendon 

elongation. Numerically, this translates into a 26% underestimation and 51% 

overestimation of tendon stiffness, in relation to the gold standard methods (linear every 

10% MVC and tangent every 10% MVC) (Pearson and Onambele, 2012) (Figure 9). It is 

therefore a requirement to adopt one methodology, in order to bring together the findings 

from the literature, preferably one of the gold standards. 

 

Figure 8. Computation methods that are commonly applied in determining in vivo 

tendon stiffness. 90-100% MVC-full black line. 50-100% MVC-short grey dashed 

line. 0-100% MVC- long grey dashed line (Pearson and Onambele, 2012). 
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1.5.4 Material properties 

Not only are global characteristic dimensions (CSA) key in determining the mechanics of 

tendon, but also a change in the material properties is another way for tendon (see section 

1.5.2, Mechanical properties) to adapt to external loads and influence mechanical 

properties. This has only been demonstrated indirectly in humans, yet it is pertinent to 

conceive this interpretation; firstly, due to changes in tendon stiffness without a concurrent 

change in CSA, and secondly, the research on animal models points toward a qualitative 

change in tendon in response to long-term, high frequency, cyclic exercise. Animal studies 

allow a direct measurement of CSA and tendon mechanics in situ (Buchanan and Marsh, 

2001, Viidik, 1967, Woo et al., 1982), thus, supporting the generally agreed view that 

changes in material properties are valid with long-term mechanical loading, at least. The 

following section will review key structural and regulatory proteins at a microstructural 

level, studied intensively in animal models and scarcely in humans, which have shown to 

affect the mechanical properties of tendon. 

 

Figure 9. Gold standard methods of computing in vivo tendon stiffness. Every 10% 

MVC-full grey line. Tangent every 10% MVC-dashed black line (Pearson and 

Onambele, 2012). 
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1.5.4.1 Structural properties of ECM 

The ability of tendons to resist mechanical stress is directly related to the structural 

organisation of the ECM (Aparecida de Aro et al., 2012). An increase in collagen content 

may explain the adaptive response of tendon to this mechanical loading stimulus, and as a 

result enhance the mechanical properties of tendon (Parry et al., 1978).  

 

1.5.4.1.1 Collagen 

It is appropriate to introduce the most fundamental component of tendon material 

properties at this point. Collagen type I molecules have been reported to constitute 65-75% 

of tendon dry mass in cadaver tissue (Elliott, 1965) and more recently ~ 90% from in vivo 

patellar tendon biopsies (Lemoine et al., 2009). These molecules have been shown to 

impact on tendon tensile strength and mechanical properties (Kjaer, 2004, Kjaer et al., 

2005, Provenzano and Vanderby, 2006) and hence, have been shown to be of primary 

relevance to the material and mechanical properties of tendon. 

 

The collagen type I molecule has been reported in past studies to possess little flexibility 

and to be rod-like in nature, which is why it was thought to carry high mechanical strength 

(Diamant et al., 1972, Fletcher, 1976, Silver et al., 1979, Thomas and Fletcher, 1979). 

However, it was later reported that collagen type I molecules possessed numerous bands or 

crimps and was not entirely rigid (Silver and Birk, 1984). Described from a molecular 

basis, the flexibility evident in collagen type I derives from sequences that lack the amino 

acids, proline and hydroxyproline, so these sites are typically characterised by bends in the 

triple helix structure (Figure 10) (Hofmann et al., 1984). Alternatively, sequences with 

glycine-proline-hydroxyproline contribute to a very rigid structure (Kjaer et al., 2005, 

Silver et al., 2003).  
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There are a number of possible mechanisms in which collagen type I fibrils, the most 

fundamental force transmitting unit assembled from collagen molecules within the tendon 

matrix, can adapt morphologically to mechanical loading. These include changes to its 

diameter, length, intra- and inter- molecular cross-links, orientation and density (Parry et 

al., 1978). However, due to the complexity of tendon dynamics, as well as the effect of 

maturation and ageing, and form of fibril distribution may have on fibril morphology 

(Parry, 1988, Parry et al., 1978), a precise role for any one of these components is difficult 

to comprehend. It may be that interactions between the constituent components may 

influence tendon mechanics to a greater extent. Nevertheless, a better understanding of 

each component’s role in tendon function and mechanics is required. 

 

The diameter of collagen fibrils have been suggested to be associated with mechanical 

properties of tendon, in that fibril diameter appears to be inversely related to collagen 

molecule flexibility (Silver et al., 2001, Silver et al., 2003). Several in vitro animal studies 

support this association by reporting that the whole tendon Young’s Modulus and stiffness 

increases, due to an increase in collagen fibril diameter (Parry and Craig, 1977, Parry, 

1988, Diamant et al., 1972, Parry et al., 1978, Hansen et al., 2009c, Birch, 2007, Derwin 

and Soslowsky, 1999, Rigozzi et al., 2010, Patterson-Kane et al., 1997b). However, it has 

Figure 10.  Diagram of procollagen type I molecule. The circles in the triple helix 

represent sequences lacking the amino acids proline and hydroxyproline. More 

flexibility is evident in these regions of the triple helix in what is otherwise a rigid 

helix (Silver et al., 2003) 
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also been reported in an in vitro animal study that fibril diameter is not the main predictor 

of tendon mechanical properties. Instead, fibril volume fraction which includes both fibril 

density and mean fibril area as contributing factors, as determined by transmission electron 

microscopy, is fundamentally more influential (Lavagnino et al., 2005, Robinson et al., 

2004a). This discrepancy between these tendon components and tendon function may be 

explained by the lack of quantitative evidence that exists, correlating the exact roles and 

structural arrangement of distinct tendon components, and their effect on mechanical 

properties. These discrepancies are further compounded by the suggestion that there are 

complex structure-function relationships within the tendon fascicles (Robinson et al., 

2004a).  

 

A recent study on humans investigating the mechanical properties of tendon in a cohort 

with patellar tendinopathies, found that heavy slow resistance training for 12 weeks 

changed the collagen fibril morphology. Fibril density increased and mean fibril area 

decreased in patellar tendon biopsies, with a concurrent decrease of 9% in tendon stiffness 

(Kongsgaard et al., 2010). Interestingly, this suggests that mechanical loading actually 

decreases fibril diameter but at the same time increases the presence of more small-

diameter fibrils, supporting the findings in several animal studies (Michna, 1984, 

Patterson-Kane et al., 1997b). Smaller fibrils have been suggested to provide a greater 

contact area between the fibrils and ECM where shear stresses are likely to be enhanced, 

thus, increasing the elastic properties of the tissue (Haraldsson et al., 2005). In support of 

this assumption, the mechanical properties of the patellar tendon stiffness and modulus 

decreased by 9% and 17%, respectively, following the resistance training protocol 

(Kongsgaard et al., 2010). This indirectly implies that there is a positive correlation 

between the diameter of the fibril and tendon stiffness/modulus. However, whether this is 

the case in a healthy tendon has yet to be resolved in humans. Furthermore, it must be 

noted that fibril diameter distribution has been shown to differ between individual tendons 

in different anatomical positions (Davankar et al., 1996) and within individual tendon 

regions, in animal (Patterson-Kane et al., 1997b, Williams et al., 2008) and human (Hansen 

et al., 2010) tendon studies, thus, compounding the lack of clarity on this topic. 

 

Again, it can be inferred that variations in diameter of collagen type I fibrils between 

individuals, independent of mechanical loading and ageing for example, may be attributed 

to genetics. A possible mechanism by which collagen type I diameter may inherently vary 

may be the result of the temporal order of peptide removal of procollagen propeptides 
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during fibrillogenesis, as well as the amount of enzymatic activity (Birk et al., 1990), 

investigated in vitro using chick embryo tendons (Miyahara et al., 1984, Miyahara et al., 

1982). Therefore, the processing of these peptides may be important in the control of fibril 

assembly and variations in diameter.  

 

Collagen cross-links have been reported to play a crucial part in determining the stiffness 

of the fibrils when observing load-extension curves. An increased creep behaviour was 

evident in cross-link deficient collagen compared to in normal collagen (Puxkandl et al., 

2002). Supporting this observation, it has been reported that cross-linking between 

collagen molecules provides an opportunity for increased cross-link density, and has a 

direct association with increased matrix stiffness of the tendon in animal models (Reddy, 

2004, Eliasson et al., 2007, Reddy et al., 2002). More recently the importance of intra- and 

intermolecular covalent cross-linking, mediated by the enzymatically derived activity of 

lysyl oxidase (LOX) has been observed (Maruhashi et al., 2010a), which has shown to 

increase the modulus at the level of the collagen fibril (Hansen et al., 2009c). There is no 

evidence available from tendon biopsies of how a structured loading program affects cross-

link levels and the impact this has on mechanical properties in humans. Conjointly, a 

recent study investigating collagen cross-linking of the patellar tendon between old and 

young men, indirectly emphasises the importance of these cross-links. Even though 

collagen concentrations were 74% lower in old compared to young men, mechanical 

properties such as stiffness, stress, strain and modulus were all similar between groups, due 

to the concurrent increase in the density of the cross-links as a function of age (Couppe et 

al., 2009). However, a recent study investigating region-specific differences in material 

properties of anterior and posterior fascicles of human patellar tendon, reports no 

association between the mechanical properties (stress, strain, modulus) of the fascicles and 

the concentration of mature cross-links (Hansen et al., 2010). Yet, mechanical properties 

were not examined in vivo but in vitro, further highlighting the inherent complexity of 

associating material properties with mechanical properties. Notwithstanding, several 

animal studies support the common belief that the material levels of cross-links, are the 

primary contributors to tendon mechanical properties (Patterson-Kane et al., 1997a, Avery 

and Bailey, 2005, Bailey, 2001, Barnard et al., 1987), which is in direct opposition with the 

belief that fibre and tendon size is the overriding mechanism, by which tendon mechanical 

properties change. A combination of both parameters is more likely. 
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Cross-linking of collagen molecules can also impact upon collagen fibril length as it 

permits end to end in series connections between collagen molecules within fibrils 

(Provenzano and Vanderby, 2006, Silver et al., 2000b, Silver et al., 2000a). It has been 

proposed that longer fibrils provide an increased ultimate tensile strength, as well as 

increased elastic contribution to the stress-strain behaviour (Silver et al., 2000b). However, 

the relative contribution of cross-linking between collagen molecules to tendon mechanical 

properties, for example, Young’s Modulus, remains largely unclear (Eleswarapu et al., 

2011). 

 

As alluded to previously, different collagen types can co-exist or co-polymerise in the 

same fibril to form heterotypic fibrils in tendon, which may affect the mechanical 

properties of whole tendon, due to the role such interactions have in regulating the 

diameter of collagen type I. Collagen types III and V can be found in small quantities with 

collagen type I in a single fibril, suggesting that the mechanical properties may be different 

than that of unimodal fibril types (Silver et al., 2003). Moreover, it has been reported that 

the collagen type III molecule is more flexible than collagen type I, thus, the elastic 

modulus of such heterotypic fibrils may vary as a result (Silver et al., 2002). The 

interactions between collagen type I and V, have also been shown on in vitro self-assembly 

assays of chick cornea (Fitch et al., 1984, Fitch et al., 1988, Birk et al., 1988). These 

investigators report a decrease in fibril diameter of collagen type I with an increase in the 

ratio of collagen type V to I. High concentrations of collagen type V in this tissue are 

believed to result in small fibril diameters, possibly due to an increase in nucleation sites in 

the thin filaments of collagen type V, for a given quantity of collagen type I. These sites 

serve as steric hindrances for the addition of collagen type I molecules through amino-

terminal domains which project out, thereby regulating lateral growth and diameter 

(Linsenmayer et al., 1993). Increases in collagen type V have shown to correlate with 

diminishing mechanical properties, such as maximum stress and linear modulus in rabbit 

patellar tendon in vitro (Dressler et al., 2002). Therefore, varying quantities of collagens 

within the same fibril can affect fibril diameter and consequently, has the potential to 

modify mechanical properties in humans. 
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1.5.4.1.2 Proteoglycans 

Another notable structural property of tendon residing in the ground substance of ECM 

surrounding collagen, are proteoglycans (PGs). PGs are protein/polysaccharide complexes 

that consist of a protein core with attached glycoaminoglycans (GAGs). Tendon contains a 

wide variety of PGs, the vast majority of which are small-leucine rich PGs (Vogel and 

Heinegard, 1985). Decorin is the most abundant of these PGs (Scott, 1993). Transmission 

electron microscopy demonstrates that PGs attach to d-bands of type I collagen fibrils 

(Figure 11) (Scott and Orford, 1981), yet the amount of PGs decreases with increased 

collagen fibril diameter and age. Put another way, PGs may inhibit collagen fibril lateral 

growth through interference with cross-linking (Scott et al., 1981). The importance of PGs 

in relation to collagen fibrils has been demonstrated in animal models using gene-knockout 

of decorin in mice, whereby abnormal fibril morphologies were observed (Danielson et al., 

1997). Also, when decorin was down-regulated, larger diameters of collagen fibrils were 

observable (Nakamura et al., 2000). These observations suggest that PGs are required for 

normal collagen fibril development and maturation, and on a wider scale, increased PG 

turnover within normal physiological ranges, is essential in maintaining normal tendon 

homeostasis (Rees et al., 2009b). 
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Interestingly, when associating PGs to the mechanical properties of collagen fascicles, in 

tendon of transgenic mice models lacking decorin, there was no effect on maximum stress 

and modulus (Robinson et al., 2004b, Dourte et al., 2012). Consistent with this, adding 

decorin to self-assembled collagen fibrils does not significantly increase its maximum 

stress values, compared to controls (Pins et al., 1997). The absence of any significant 

effects on mechanical properties is also evident with other small leucine-rich PGs using 

similar animal models (Jepsen et al., 2002, Reuvers et al., 2011, Fessel and Snedeker, 

2009, Fessel and Snedeker, 2011), although PGs may have a strain rate dependent on 

viscoelastic properties, possibly facilitating slippage between collagen fibrils in close 

proximity (Robinson et al., 2004b, Reuvers et al., 2011, Dourte et al., 2012). Therefore, 

PGs are unlikely to be involved in direct force transmission of tendon (Provenzano and 

Vanderby, 2006) and so will not be discussed further in this thesis, with regard to the 

Figure 11. Electron micrograph of foetal calf flexor digitorum tendon. Lighter bands 

running from top to bottom are collagen fibrils. The orthogonal proteoglycans (o) and 

parallel proteoglycans (p) are 1 D-band apart (Scott, 1988). 
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genetic variation contributing to such protein structures, and the possible structural and 

functional roles they might have on mechanical properties of tendon. 

 

1.5.4.1.3 Glycoproteins 

Glycoproteins such as tenascin-c (TNC), fibronectin and cartilage oligomeric matrix 

protein (COMP) are ECM constituents that are involved in providing structural resilience 

to the ECM, and in mediating mechanical interactions between cells, as well as 

participating in cell growth and differentiation during morphogenesis. These proteins are 

also responsible for repair, regeneration, and overall tissue remodelling in tendon (Jozsa et 

al., 1991, Sage and Bornstein, 1991). Because most of the functional and regulatory studies 

on glycoproteins have concerned TNC (Jones and Jones, 2000a), as well as it being 

potentially a prominent constituent of tendon undergoing high tensile stress, as with the 

collagen fibrils (Jarvinen et al., 2003, Jarvinen et al., 1999), it will be the major focus of 

discussion, particularly when selecting proteins and their associated genes and SNPs, 

known to have a genetic influence on tendon material properties. 

 

1.5.4.2 Regulatory properties of ECM 

Evidence is evolving that tendon and their associated ECM tissues are dynamic structures 

with plastic properties that adapts in a functional way to an external mechanical stimulus 

(Banes et al., 1999a, D'Souza and Patel, 1999, Langberg et al., 1999). This observation is 

typified by TNC for example, which is recognised to be involved in both structural and 

regulatory behaviours in tendon ECM, further substantiating its role in regulating the 

organisation of the most domineering constituent, collagen. The proteins described below 

have predominantly regulating roles within tendon.  

 

1.5.4.2.1 Matrix Metalloproteinases  

Matrix Metalloproteinases (MMPs), a family of enzymes are also highly influential in 

regulating intact fibrillar collagen and non-collagenous proteins within the ECM. More 

specifically, their functions are to degrade and remodel the ECM during development, 

adaptation and repair, and even activate other MMPs (Sternlicht and Werb, 2001, Vu and 

Werb, 2000, Murphy and Knauper, 1997, Somerville et al., 2003, Birkedal-Hansen et al., 

1993). MMP-3, one of the most functionally diverse of the MMPs, will be discussed to a 

greater extent as to its possible role in genetic variation and tendon properties in 

subsequent sections.  
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1.5.4.2.2 Transforming Growth Factors-beta  

Transforming growth factors-beta (TGF-ß) belongs to a superfamily of 

growth/differentiation factors (GDFs), which play an essential role in the maintenance, 

growth and repair of bones, cartilage and musculoskeletal soft tissues, including tendon 

(Hotten et al., 1994, Storm et al., 1994, Thomas et al., 1996). TGF-ß1, an isoform of TGF-

ß has been identified as an important mediator of collagen synthesis, cross-link formation, 

and enhanced mechanical properties, following the introduction of mechanical stimuli to 

tendon fibroblasts in vitro (Yang et al., 2004, Keller et al., 2011), as well as in gene 

transfection studies on injured rat Achilles tendon (Rickert et al., 2005, Bolt et al., 2007, 

Heinemeier et al., 2007), rat supraspinatus tendon (Manning et al., 2011), and rabbit 

Achilles (Hou et al., 2009) and patellar tendons (Lyras et al., 2010). It must be affirmed 

that the levels of active TGF-ß are directly dependent on the levels of tensile loading, 

highlighting the critical role that mechanical loading plays in tendon homeostasis, as 

determined by a rodent model in vitro (Maeda et al., 2011). However, no correlation was 

found between circulating TGF-ß and tendon properties, at baseline and following a 

training stimulus, in human’s in vivo (unpublished data from our labs). The lack of 

evidence in vivo on tendon, casts questions on the possible causal mechanisms that TGF-ß 

may have on stimulating collagen synthesis (Heinemeier et al., 2011) This may be because 

of the unknown extent to which these mechanisms control and interact with the 

biochemistry, via signalling systems such as GDF (Eliasson et al., 2008). GDF5, a member 

of the GDF subfamily of TGF-ß proteins will also be discussed for its potential role in 

influencing tendon properties at a genomic level. 

 

It is rational to assume that regulating components of tendon ECM, which are highly 

involved in the adaptive responses of collagen structures to mechanical loading as 

discussed briefly above, are likely to have a defining role in modifying tendon structural 

and mechanical properties. These components are mediated via complex control centres of 

tendon, namely tenocytes. 
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1.5.5 Tenocytes 

Tendon cells or ‘tenocytes’ are elongated fibroblast-like cells which are the principal cell 

type in tendon tissue (Jozsa et al., 1979). These cells are embedded within the ECM but are 

sparsely distributed in longitudinal rows, yet closely packed between collagen fibres 

(Figure 12) (Ross et al., 1989). There are cell extensions that extend into the ECM 

providing a three-dimensional network of cell processes, associated with the proliferation 

and maintenance of all the macromolecular components that make up the ECM, namely 

collagen, proteoglycans, and specialised non-collagenous proteins (McNeilly et al., 1996). 

As discussed in the preceding sections, global dimensions and material properties of 

tendon are altered in response to mechanical stimuli, by changing their structures, 

compositions, and mechanical properties (O'Brien, 1997, Vogel and Heinegard, 1985). 

This assumption is epitomised in a study by Ippolito et al. (1977) who discovered that 

within the cytoplasm of tenocytes there are actin filaments, suggesting that tendon cells 

have contractile activity, and thus, the ability to respond, process, and adapt to mechanical 

forces. More recently this assumption has been extended upon by the suggestion that actin 

stress fibres when mechanically loaded, transforms into contractile components that are 

involved in active recovery after stretch, maintain the integrity of longitudinal tendon rows, 

monitor tensile load, and contribute in the gene regulation of tendon cells during 

mechanical loading (Ralphs et al., 2002). 
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Tenocytes are the major mechanoresponsive cells in tendon tissue (Yang et al., 2005), 

ultimately responsible for initiating changes within tendon by altering the expression and 

synthesis of ECM bio-molecules, involved in structure and regulation (Banes et al., 1999a, 

Benjamin and Ralphs, 2000, Kjaer, 2004, Sarasa-Renedo and Chiquet, 2005), such as 

collagen precursor molecules and growth factors (Lindahl et al., 2002, Schild and Trueb, 

2002). The initiation of changes in response to mechanical loads has recently been found to 

be mediated by a ‘mechanostat’ set point in vitro. This preset threshold is governed by 

complex interactions between the cells cytoskeleton and the ECM (Arnoczky et al., 2008, 

Lavagnino et al., 2008a). Mechanotransduction is the mechanism by which tenocytes sense 

and respond to mechanical signals bi-directionally, via the cell nucleus, cytoskeleton and 

ECM (Banes et al., 1995b, Brown et al., 1998, Ingber, 1997, Banes et al., 1995a, Banes et 

al., 1999a, Wang and Ingber, 1994, Eastwood et al., 1998a, Janmey, 1998, Wang et al., 

1993). The mechanostat set point relates to cytoskeletal tensional homeostasis, whereby 

the cell is thought to maintain its tensional integrity in response to differing force levels 

(Brown et al., 1998, Chicurel et al., 1998, Eastwood et al., 1998a, Ingber, 1997). The 

deformation of the cytoskeleton via membrane integrins and transmembrane proteins (G-

Figure 12. Tendon cells (tc) extend broad flattened lateral cell processes, meeting up 

with those from adjacent cells. Collagen fibre bundles (cf) are surrounded by the 

tendon cell processes (McNeilly et al., 1996) 
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protein receptors and kinases) (Wang, 2006), induced by mechanical forces (stress and 

strain), is thought to up-regulate the gene expression of catabolic and/or anabolic 

mechanisms, which would ultimately provide the basis for changes in structure and 

function (Lavagnino and Arnoczky, 2005). The levels of gene expression have been shown 

to change depending on the strain and frequency of cyclic mechanical forces (Lavagnino et 

al., 2003, Arnoczky et al., 2002b, Arnoczky et al., 2002a, Maeda et al., 2007, Lavagnino et 

al., 2008a, Arnoczky et al., 2008, Legerlotz et al., 2011). Furthermore, it has been shown 

that by blocking signalling pathways, in particular gap junctions (intercellular 

communicators), results in a decrease of collagen type I production (Waggett et al., 2006, 

Banes et al., 1999b, Wall et al., 2007). This highlights the critical role that mediators of 

mechanotransduction play in providing cell-ECM interactions for tendon homeostasis and 

adaptive changes. However, gene expression and protein synthesis of various proteins 

involved in tendon homeostasis between, and within animal and human populations, can 

still vary greatly even if the size and frequency of mechanical loading is controlled. This is 

where genetic variation is likely to influence observed/measurable differences in protein 

content, and thus, material and mechanical properties. 

 

1.5.6 Tendon function 

The tendon’s most fundamental function is the transmission of contractile forces from 

muscle to bone, in order to allow movement about joints. Tendons must be effective in 

resisting great tensile forces whilst being able to limit elongation (Jozsa and Kannus, 

1997), a characteristic of an inextensible tissue structure with efficient force transfer. 

However, tendon cannot be described as being inextensible as its internal structures 

undergo deformation in response to an applied external load, hence, the mechanical 

properties of tendon contribute to the degree of joint motion (Elliott, 1965, Butler et al., 

1978, Dunn and Silver, 1983, McGinnis, 2005), within anatomical constraints.  

 

Tendons are also well known to operate as spring-like structures exhibiting elastic and 

force-dependent attributes, which may impact upon the function of the muscle-tendon 

complex as a whole, and provide additional important functional characteristics. Not only 

is force transmission influenced by muscle-tendon interactions (Ettema, 1996) but also 

energy storage and return for locomotion (Alexander, 1991, Voigt et al., 1995, Fukunaga et 

al., 2001, Maganaris and Paul, 2002, Ishikawa et al., 2005, Lichtwark and Wilson, 2005a), 

joint positional control (Loram et al., 2004, Loram et al., 2005b, Loram et al., 2005a), and 

protection from muscle fibre injury (Griffiths, 1991, Lieber et al., 2000). 
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It is generally accepted that tendons possess the ability to store strain energy upon 

stretching and subsequently released during recoil, supplying considerable mechanical 

work during locomotion. These observations have been demonstrated in animal models 

during walking and running (Griffiths, 1991, Roberts et al., 1997). The increased strain 

energy recovered during running over walking highlights the importance of tendon’s 

elastic saving properties for the economy of movement (Cavagna, 1977, Magnusson et al., 

2008). 

 

As alluded to in preceding sections, US has provided a means of observing human tendon 

in vivo. Such studies have indicated that tendon can store and release elastic energy in 

accordance with the aforementioned animal studies (Kubo et al., 2000c, Fukunaga et al., 

2001, Kawakami et al., 2002b, Kurokawa et al., 2003, Lichtwark and Wilson, 2005a, 

Muraoka et al., 2005, Lichtwark and Wilson, 2005b, Ishikawa and Komi, 2004, Ishikawa 

et al., 2005), the majority of which included stretch-shortening cycles. For example, in a 

study by Lichtwark and Wilson, (2005b), they were able to calculate the average peak 

tendon strain (8.3%) during one-legged hopping in the Achilles tendon of humans in vivo, 

with the tendon contributing 16% of the total average mechanical work to the activity. 

However, the investigators did report that the individual variation across measures such as 

stiffness and elastic modulus did vary greatly pertaining to the individual’s variation in 

material properties, thus, the energy storing capacity of the structure is likely to differ as a 

direct result. Despite this discrepancy, the material properties of the group of participants 

were within previously published ranges, and therefore their results are viable. Moreover, 

modelling work involving the muscle and tendon in series, approximates the force 

delivered to an inertial load to be 40% greater than muscle alone, asserting once again the 

importance of tendon elastic recoil for mechanical efforts (Galantis and Woledge, 2003). 

 

The animal models are further substantiated by the findings that greater stretch and 

therefore strain energy storage, is achieved with a greater amount of active muscle fibres 

working isometrically during more dynamic tasks (Kubo et al., 2000c, Ishikawa and Komi, 

2004). For example, Kubo et al. (2000c) reported that during an isolated countermovement 

task involving a dorsiflexion followed by a plantarflexion of the ankle joint, tendon 

elongation was significantly greater during the fast countermovement (1.0 Hz) than the 

slow (0.3 Hz). Subsequently, a rapid shortening of the tendon occurred with little 

shortening of the muscle fascicle in the fast movement, with tendon structures contributing 

to 42.5% of the total amount of mechanical work, compared to 20.2% in the slow 
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movement. This highlights how the rate of force transmission contributes to the mechanics 

of tendon. 

 

The mechanical properties of tendon will impact upon the overall muscle-tendon unit to 

produce functional movements. Indeed there is substantial evidence that tendon 

mechanical properties such as stiffness influence the capacity of the muscle-tendon unit to 

produce force during activities of various kinds (Wilson et al., 1994, Wilson et al., 1992, 

Walshe and Wilson, 1997, Kubo et al., 1999, Lichtwark and Wilson, 2008, Lichtwark and 

Barclay, 2010, Kubo et al., 2007a, Stafilidis and Arampatzis, 2007). For example, it has 

been interpreted  that the optimal musculotendinous stiffness for maximal concentric and 

isometric muscle performance is toward the stiff end of the elastic continuum, as it may be 

more beneficial from a force-velocity perspective (Wilson et al., 1994, Burgess et al., 

2007), as well as improved running economy and low energy costs (Fletcher et al., 2010), 

by increasing the length and rate of shortening of the muscle fascicle. On the other hand, 

during cyclical contractions, low tendon stiffness (high tendon compliance) has been 

shown to improve muscle power and efficiency in vitro (Lichtwark and Barclay, 2010). 

Even though Lichtwark and Barclay (2010) use artificial tendons in their methodology, the 

compliance of the tendons can be fine-tuned by the preliminary assessment of the force-

extension properties of the latex strips (acting as artificial tendons), which vary in 

compliance, by the use of different widths or multiple strips in parallel. The power output 

and mechanical efficiency measures can then be directly related to tendon compliance. 

This is somewhat a limitation of in vivo studies, whereby separation of the human in vivo 

tendon and muscle behaviour is difficult to investigate. Therefore, the optimal level of 

tendon stiffness for functional performance on the contractile requirements of the activity 

has yet to be determined in vivo, due to the underwhelming evidence of the state dependent 

properties of muscle, as well as the complex interactions of the muscle-tendon unit in 

series (Lichtwark and Wilson, 2008).  

 

The mechanical properties of tendon can firstly be understood in relation to its global 

characteristic dimensions (CSA and length), as it can be theorised that a long, thin tendon 

exhibiting low stiffness will be advantageous for activities requiring stretch shortening 

cycles. This is because they will experience greater stress for a given load because of a 

small CSA, but also greater strain will favour increased storage and recovery of elastic 

strain energy (Cavagna, 1977, Morgan et al., 1978). It has been reported that tendons can 

store up to ten times more elastic strain energy than muscles in human running (Alexander 
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and Bennet-Clark, 1977), but it may be that a stiff muscle in series with the tendon 

exhibiting low stiffness, will optimise the utilisation of elastic energy (Hof et al., 1983).  

On the other hand, when force transmission is essential in activities not requiring a pre-

stretch, a short, thick tendon exhibiting high stiffness is desirable for joint movement 

(Alexander, 1974, Biewener and Roberts, 2000). 

 

An increase in tendon stiffness acts to improve the rate of torque development (RTD), 

which is indirectly supported by previous studies indicating an increase in stiffness with 

strength training (Hakkinen et al., 1985, Reeves et al., 2003a), and a decrease in 

electromechanical delay (EMD) (Cavanagh and Komi, 1979). Tendon stiffness also alters 

the joint angle during isokinetic and isometric maximal knee extensions (Kawakami et al., 

2002a), and the force-velocity characteristics (Wilson et al., 1994) of the contractile 

elements of muscle. Increased stiffness favours force transmission, as less muscle fibre 

shortening is needed for a given amount and rate of overall muscle-tendon shortening, 

shifting the length-tension relationship to the right, allowing muscle fibre contractile units 

to operate closer to the plateau region or resting muscle length (Cutts, 1988, Lieber and 

Friden, 2000, Lieber et al., 1992). Concurrently, the optimal angle of the functioning 

muscle is also shifted. 

 

The mechanical properties of tendon may also play a critical role in providing a protective 

mechanism against musculotendinous injury. An increase in tendon CSA and stiffness will 

decrease the stress and strain for a given magnitude of force per unit area, thus, dissipating 

the stress imposed on the structures, and potentially reducing injury risk (Couppe et al., 

2008, Ker et al., 1988, Seynnes et al., 2009). Alternatively, it has been theorised that a 

stiffer tendon will induce a relative increase in elongation of the muscle fibre in response 

to mechanical loading, and hence, the muscle fibre will potentially be at a greater risk of 

strain overload (Onambele et al., 2006). Whereas, a more compliant tendon has the 

capacity to act as a mechanical buffer and protect the muscle fibre from strain overload 

(Griffiths, 1991). However, it is too early to link tendon stiffness to musculotendinous 

injury susceptibility, until the exact mechanisms of such injuries have been determined. 

This ambiguity may originate from the inherent difficulty in defining muscle and tendon 

behaviour independently. For example, there are different muscles that contribute to the 

forces that are experienced by the Achilles tendon in vivo, which may be a source of non-

uniform stress distribution, and hence, the complexity of tendon injury aetiology is 

compounded (Arndt et al., 1998) 
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1.5.7 Tendon pathology 

Tendon pathologies or tendinopathies (including tendinosis and tendinitis) are primarily 

degenerative conditions that may or may not be associated with signs of inflammation 

(Maffulli et al., 1998, Khan et al., 1999). Tendon pathologies can be a result of acute injury 

(e.g. laceration or single trauma) or chronic impairment (overuse injury or degeneration) 

(Killian et al., 2012), and are common in both recreational and elite athletes as well as in 

the general population (Almekinders and Temple, 1998). In acute injuries, extrinsic factors 

are dominant, such as excessive load on the body, training errors, and environmental 

substandard conditions (Kannus, 1997). In overuse injuries, the reasons are multifactorial, 

with intrinsic and extrinsic factors contributing to the pathogenesis (Kannus, 1997). For 

example, patellar tendinopathies in athletic or elite populations have been reported to be 

linked to normal foot posture (de Groot et al., 2012), low range of ankle dorsiflexion 

(Backman and Danielson, 2011), high total amount of exposure (Hagglund et al., 2011, 

Ferretti, 1986, Gaida et al., 2004, Crossley et al., 2007), eccentric overload of leg extensors 

(Boublik et al., 2011, Lian et al., 2005b), and knee joint angle, which was determined using 

computational models of cadaveric human tendon fascicles (Lavagnino et al., 2008b). 

Major limitations associated with these study designs is the unspecific diagnostic criteria 

used to define a tendinopathy, as well as the lack of direct assessment on tendon per se. 

Therefore, the precise mechanism for tendon pathologies remains poorly understood, most 

likely due to the complex composition, structure and mechanical behaviour of the tendon, 

as well as its interaction in series with muscle dynamics. 

 

It is commonly reported that repetitive tissue micro-trauma resulting in injury to the 

material properties at a microscopic level, may be a major causative factor in the 

pathogenesis of overuse injury. Overuse or repeated overloading of tendon has been 

demonstrated in overuse animal models to lead to tendinopathies and microtearing of 

collagen fibrils, as well as weakening the tensile properties (Glazebrook et al., 2008, 

Huang et al., 2004, Perry et al., 2005, Soslowsky et al., 2002, Soslowsky et al., 2000, 

Neviaser et al., 2012, Andarawis-Puri et al., 2012, Andarawis-Puri and Flatow, 2011), 

which will consequently lead to rupture. It is believed that repetitive strains in the region of 

4-8% which are below the failure threshold of the tendon cause such damage to tissue at a 

microscopic level (Curwin and Stanish, 1984, Kannus, 1997). Specifically, it is assumed 

that tendon matrix damage is the major event resulting from this repetitive loading, 

preventing the ability of the tenocytes and associated cell population from repairing 

structural defects (Riley, 2004). From microscopic observations, histopathology indicates 
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changes in cellularity, cell rounding, decreased matrix organisation, (including collagen 

fascicles and proteoglycans) and neovascularisation (Astrom and Rausing, 1995, de Mos et 

al., 2007, Riley, 2005). Although the nature of these degenerative changes may vary 

because of different sites and tendon types (Kannus and Jozsa, 1991, Samiric et al., 2009). 

Homeostasis within connective tissues such as tendon requires cell activity, so it is possible 

that disturbances in cell metabolism will cause imbalances between the synthesis and 

degradation of the ECM, thus, influencing structural properties and ultimately mechanical 

properties. 

 

It is prudent to assume that by exploring tendon tissue at a biochemical and molecular 

level, a greater understanding of its dynamic function is possible. Indeed, during the last 20 

years much research has focused on increasing our understanding of the underlying 

pathology in this respect. Studies investigating major changes in the molecular structure of 

the ECM have used techniques allowing for the quantitative assessment of protein analysis 

and gene-expression levels (Riley, 2008). In the instance of human pathologic tendon, 

matrix proteins such as the collagens (collagen type I and collagen type III), glycoproteins 

(TNC and fibronectin) and the majority of proteoglycans, have exhibited an increased 

expression of messenger RNA (mRNA) (Riley, 2004). Another pattern of increased 

expression is evident with growth factors such as TGF-ß (Fu et al., 2002, Fenwick et al., 

2001), and cytokines, such as IL-6 (Legerlotz et al., 2011) and IL-1ß (Gotoh et al., 2001, 

Sun et al., 2008) involved in inflammatory responses, and glutamate (Schizas et al., 2010, 

Schizas et al., 2012), which is involved in the peripheral nervous system regulation of 

tendon homeostasis. 

 

In terms of ECM regulatory processes, high levels of matrix remodelling indicative of 

increased collagen turnover and expression of associated proteins (collagen type I and III), 

are consistent with the onset of degenerative pathology, which may be associated to a high 

degree with the increased expression and proteolytic activity of the regulatory enzymes of 

the MMP family (Riley, 2004). For example, the expression levels of MMP3 appear to be 

elevated in highly stressed tendons as well as tendons displaying pathological 

characteristics, compared to normal tendons, as determined by histological analyses in 

animal models in vitro (Maeda et al., 2009, Asundi and Rempel, 2008, Birch et al., 2008). 

This observation is thought to represent a repair or maintenance function that may be 

associated with an underlying degenerative process (Jones et al., 2006). In addition, ‘stress-

shielding’ or load deprived tendon has shown to increase the expression of MMP3 mRNA 
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in relation to normal tendon tissue samples (Asundi and Rempel, 2008, Leigh et al., 2008, 

Thornton et al., 2010). Collectively, these studies point toward a ‘U’ shape relationship 

between load and MMP3 expression levels. A loss of mechanical function may result from 

the extremes of this relationship which may relate to the subtle degradation of ECM 

components, notably those involved in cross-linking and/or stabilisation of the tendon 

structure (Leigh et al., 2008), such as minor collagens including collagen type V, as well as 

proteoglycans. 

 

In contrast to high levels of MMP3 expression in pathological tendon,  lower levels of 

MMP3 expression compared to normal tissue samples, have also been reported in human 

tendon pathologies (Ireland et al., 2001, Jones et al., 2006, Parkinson et al., 2010, de Mos 

et al., 2007). These observations may represent a failure of the normal matrix remodelling 

process (Riley et al., 2002). It should also be noted that even in normal tendon there is a 

significant difference between sexes, where males have twice the amount of resting mRNA 

expression levels of MMP3, compared to females (Sullivan et al., 2009). This may indicate 

an impaired ECM maintenance and weakening of the material properties in females, 

leading to an increase in injury susceptibility (Gray et al., 1985). 

 

The ambiguity of MMP3 expression levels (increased and decreased in pathologies) 

evident between studies, may lie in complexities of controlling for the levels of mechanical 

loading, in particular, between animal and human studies, as well as the retrospective or 

prospective nature of these studies (whether the pathology was induced or not). Also, 

investigations into determining the expression of MMPs have elicited excessive strain 

directly on the tenocytes in vitro, which is likely to trigger high levels of proteolytic 

activity (Archambault et al., 2002a). These strain levels are potentially much higher than 

the strains experienced by cells in vivo (Riley, 2008), so it is uncertain to what extent these 

observations can apply to the aetiology of human tendon pathologies. Furthermore, it may 

be that increased MMP3 mRNA expression does not mean that a given amount of MMP3 

protein will be produced, due to post-transcriptional and post-translational regulation 

(Matrisian, 1990, Riley et al., 2002). Therefore, the cellular and molecular processes 

associated with remodelling the ECM in tendinopathies remains largely elusive. 

There is conflicting evidence as to whether pathological tendons affect mechanical 

properties in humans in vivo, even though it is widely documented that there are material 

changes of tendon tissue at a macroscopic and microscopic level. Some studies report no 

significant difference in mechanical properties in patients with tendon pathologies from 
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healthy subjects (Kongsgaard et al., 2005, Kongsgaard et al., 2009, Kongsgaard et al., 

2010), possibly due to no change in fibril volume fraction. This assumption is supported by 

studies reporting no significant difference in total collagen content between normal and 

pathologic tendons (de Mos et al., 2007, Samiric et al., 2009). Other studies report a 

significant decrease in stiffness and an increase in compliance of the Achilles tendon, 

between middle-aged male running athletes with and without Achilles tendinopathies 

(Child et al., 2009), in similarly aged recreational active males (Arya and Kulig, 2010), and 

within elite athletes with unilateral tendinosis (Wang et al., 2012), as well as young healthy 

males with and without patellar tendinopathies (Liu et al., 2008). The decrease in stiffness 

observed in these studies may have negative implications for tendon function (refer to 

section on ‘tendon function’ 1.5.6) and movement production associated with the whole 

musculotendinous complex. However, the magnitude of stiffness changes in tendinopathies 

has yet to be determined particularly for clinical applications. Due to the cross-sectional 

design of these studies, no assumptions can be made about the temporal sequence of 

increased tendon compliance and tendon pathologic abnormalities, or the cause-effect 

relationship between mechanical properties and tendinopathies. For instance, whether the 

tendinopathy leads to decreased stiffness or alternatively, the decreased stiffness observed 

at region-specific lengths of the tendon (myotendinous junction) contributed significantly 

to the onset of the tendinopathy, remains to be determined. Also, the inconsistent results 

regarding human in vivo mechanical properties between studies on tendon pathology may 

be a consequence of different tendon types under investigation (total collagen levels vary 

between tendon types in normal tendons) (Riley et al., 1994, Samiric et al., 2009), activity 

levels in terms of degree of mechanical loading placed on tendon (higher in athletic 

populations) (Hansen et al., 2003, Kubo et al., 2002, Kubo et al., 2004, Reeves et al., 

2005a), and sex (Kubo et al., 2003a, Magnusson et al., 2007, Onambele et al., 2007, 

Onambele-Pearson and Pearson, 2012), all of which are frequently reported to be highly 

influential on tendon material and mechanical properties. 

 

Differential expression and/or changes in the metabolic turnover of specific 

macromolecules, known to serve important structural and functional roles in tendon 

homeostasis, are likely to influence changes in the mechanical properties of tendon, either 

with or quite separately from their influence on the incidence of pathologies. As alluded to 

in previous sections (1.5.4-material properties), TNC has both structural and regulatory 

roles within tendon tissue and may also be a strong candidate for involvement in the 

aetiology of tendinopathies and musculotendinous injuries. The expression levels of TNC 
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are altered with human tendinopathies, as determined by immunoblotting (Riley et al., 

1996) and cDNA expression arrays (Ireland et al., 2001), although as with MMP-3, levels 

of new TNC protein synthesis may not directly follow mRNA expression levels. 

Nonetheless, the role of TNC may be particularly relevant when engaging in intensive 

activity following prolonged periods of inactivity. Inactivity has been reported to decrease 

tendon stiffness in vivo, particularly at the myotendinous junction (Kubo et al., 2000a), yet 

TNC expression relies on mechanical loading, and as it is an ‘elastic’ protein, a relative 

decrease in stiffness due to inactivity makes intuitive sense, if TNC is more highly 

expressed. Indeed, the myotendinous interface has been reported to be mechanically the 

most vulnerable site for injury (Kaariainen et al., 2000a, Kaariainen et al., 2000b), thus, 

during reloading after inactivity the overall extensibility (strain to failure) would decrease, 

increasing the risk of tendon rupture due to experiencing greater strains for a given load 

(Onambele et al., 2006). It remains to be determined whether the change in TNC 

expression is part of the degenerative processes in tendon pathologies or is the 

consequence of microtears or rupture, which may indicate a repair and remodelling 

response. In addition, its role in normal and pathologic, animal and human tendon in vivo, 

in terms of modifying mechanical properties, has yet to be affirmed. 

 

1.5.8 Mechanical loading 

1.5.8.1 Short-term loading 

Numerous studies have reported the effects of short-term mechanical loading on observed 

changes in tendon stiffness in similar populations, with the same studies using different 

modes of mechanical loading to one another, namely static stretching, isometric 

plantarflexions, and two-legged hopping. Furthermore, these studies have assessed tendons 

in different anatomical positions; Achilles (Lin et al., 1996, Magnan et al., 1996, Liu et al., 

2004b, Yang et al., 2004) and patellar (Wang et al., 2004) tendon. Comparisons between 

these studies are therefore not possible. For example, even though Kubo et al. (2001d) and 

Kay and Blazevich (2009) reported significant decreases in tendon stiffness with static 

stretching of the Achilles tendon, in age and level of activity-matched individuals, of 

independent populations, closer examination of their respective methods reveals entirely 

different static stretching protocols. Intermittent stretching for a total of 180s in full 

dorsiflexion was utilised by Kay and Blazevich (2009), compared to 10 minutes of 

stretching at 35° dorsiflexion, in the study by Kubo et al. (2001d).  

 

Comparing studies that investigate tendons in different anatomical positions is of particular 

relevance when considering that, markedly lower increases in tendon stiffness of the 
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Achilles tendon compared to the patellar tendon, have been reported with plantarflexion 

and knee extension training, respectively ((36% (Arampatzis et al., 2007), 16% (Kubo et 

al., 2002), and 29% (Kubo et al., 2007b) versus 83% (Kubo et al., 2009), 58% (Kubo et al., 

2001a), and 65% (Reeves et al., 2003a), respectively)). These differences have been 

assumed to be related to differences in the plasticity of tendon properties of these tendons. 

The mechanisms for these results are currently unknown, however, greater increases in 

blood circulation from rest to after exercise within the patellar tendon, suggests a higher 

metabolism over the Achilles tendon (Kubo and Ikebukuro, 2012). Hence, it may explain 

in part the differing adaptational changes in material and mechanical properties between 

these tendons. 

 

It appears that tendon stiffness does change in response to short-term mechanical loading 

of different durations and tensions, however, the functional implications of this form of 

loading remains unclear. This is mainly due to the ambiguity across the methodologies 

between studies, as well as the lack of research in this area. 

 

1.5.8.2 Long-term loading 

When reviewing the mechanical properties of tendon in response to long-term loading, the 

ambiguity between studies still remains, and comparison of results between studies 

remains a difficult task, even with a greater amount of research having been conducted in 

this area (Table 1). These discrepancies are typified by the variations in the length of study 

(3-14 weeks), the number of participants undertaking the training protocol (7-33), and the 

modality of the training intervention. 

 

One notable discrepancy in a number of these studies’ designs is the combination of male 

and female subjects. This is problematic when attempting to interpret the results, 

considering that hormonal factors in females such as high oestrogen levels have shown to 

blunt the mechanical related adaptation of tendon tissue (Jemth et al., 2002, Rolny et al., 

2002, Lindahl et al., 2002, Siems et al., 2002). Studies not directly assessing oestrogen 

levels also support these sex-specific differences (Kubo et al., 2003a, Magnusson et al., 

2007, Onambele et al., 2007). Sex-specific factors will be discussed in more detail in a 

subsequent section of this thesis. 

 

On a positive note, two studies by Arampatzis and co-authors (Arampatzis et al., 2007, 

Arampatzis et al., 2010) are of notable significance, as they adopt very similar research 
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designs, especially in terms of the training volume. They were able to replicate their 

findings, thus, allowing a direct comparison of the results. Both studies demonstrated an 

increase in stiffness with isometric, plantar flexion contractions. Moreover, what was more 

enlightening about their findings was that they were able to provide evidence in vivo of a 

threshold in strain magnitude (4.55-4.72%) that corresponded to the mechanical stimulus, 

required to increase tendon stiffness and modulus, as well as the frequency of contractions 

(3 s loading, 3 s relaxation) that support these adaptations. Lower frequencies equate to an 

increase in stiffness due to higher tendon strain duration per contraction. Therefore, further 

research is needed to understand the different loads and frequencies of contraction at which 

mechanical properties are modified. The in vivo studies reporting no change in tendon 

stiffness with training, may not have adapted a training intervention that applied a strain 

magnitude in excess of those experienced during habitual activity, in order to trigger 

adaptational effects on the morphological and mechanical properties of tendon. For 

example, Mathieu et al. (2007) and Kay and Blazevich (2009) adopted static stretch 

protocols, which exerted a low magnitude of strain over 20 s and 60 s, respectively. 

Replication of research designs is crucial in substantiating findings between studies, and 

therefore should be considered in future research in this area, in order to better our 

understanding of the mechanics of tendon in humans. 
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Table 1. Longitudinal studies outlining the effect of a training intervention on tendon 

stiffness in vivo in humans 

Study Length/ 

frequency 

of study 

Participant 

numbers 

(intervention 

group) 

Demographic Training 

intervention 

Tendon Outcome 

measure 

(significance 

P < 0.05 for 

change) 

(Kubo et al., 

2012) 

12 

weeks/4 
times/wk 

9 Young active 

males 

Unilateral 

isometric 
plantarflexions 

Achilles Increase 

Arampatzis 

et al., 2010 

14 

weeks/4 

days/wk 

11 Young active 

males 

Unilateral 

isometric 

plantarflexions 

Achilles Increase 

Foure et al., 

2010 

14 

weeks/34 

one-hour 

sessions 

9 Young active 

males 

Plyometric 

training (~ 

6,800 jumps) 

Achilles Increase 

Seynnes et 

al., 2009 

9 weeks/ 3 

times/wk 

15 Young active 

males 

Unilateral 

resistance 

knee 

extensions 

Patellar Increase 

Kubo et al., 

2009 

12 

weeks/4 

days/wk 

10 Young active 

males 

Unilateral 

isometric knee 

extensions 

Patellar Increase 

Burgess et 
al., 2007 

6 
weeks/2/3 

times/wk 

13 Young active 
males 

Unilateral 
explosive 

isometric, 

Unilateral 

straight-legged 

jump 

Achilles Increase for 
both 

interventions 

Arampatzis 

et al., 2007 

14 

weeks/4 

times/wk 

11 Young active/ 

8 females/3 

males 

Unilateral 

isometric 

plantarflexions 

(low strain 

magnitude), 

Unilateral 

isometric 

plantarflexions 
(high strain 

magnitude) 

 

Achilles Increase in 

high strain 

intervention 

only 

Kubo et al., 

2007d 

12 

weeks/4 

days/wk 

10 Young active 

males 

Unilateral 

weight 

training, 

Unilateral 

plyometric 

training 

Achilles Increase in 

both 

interventions 

Kongsgaard 

et al., 2007 

12 weeks/ 

3 times/wk 

12 Young 

untrained 

males 

Heavy 

resistance 

knee extension 

training 

Patellar Increase 

Reeves et al. 
2003a 

14 
weeks/3 

times/wk 

9 Elderly 
active/5 

females/4 

males 

Isotonic 
resistance leg 

exercises 

Patellar Increase 

Reeves et 

al., 2003b 

14 

weeks/3 

times/wk 

7 Elderly 

active/3 

males/ 4 

females 

Isotonic 

resistance leg 

exercises 

Patellar Increase 

Kubo et al., 8 weeks/4 8 Young active Resistance Achilles Increase in 
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2002b times/wk males training with 
static 

stretching, 

Resistance 

training only 

both 
interventions 

       

(Foure et al., 

2011 

14 

weeks/34 

one-hour 

sessions 

9 Young active 

males 

Plyometric 

training (~ 

6,800 jumps) 

Achilles Decrease 

Mahieu et 

al., 2007 

6 

weeks/eve

ryday 

21 Young 

active/8 

males/13 

females 

Ballistic 

stretching 

Achilles Decrease 

Morrissey et 

al., 2011 

6 weeks/ 3 

times/wk 

19 Young 

active/6 
males/13 

females 

Eccentric 

training 

Achilles Decrease 

       

Morrissey et 

al., 2011 

6 weeks/ 3 

times/wk 

19 Young 

active/8 

males/11 

females 

Concentric 

training 

Achilles No change  

Fletcher et 

al., 2010 

8 weeks/3 

times/wk 

12 Young highly 

trained 

distance 

runners 

Isometric 

plantarflexions 

Achilles No change  

Mahieu et 

al., 2009 

6 

weeks/eve

ryday 

33 Young 

active/19 

males/14 

females 

PNF 

stretching 

Achilles No change 

Kubo et al., 
2009 

12 
weeks/4 

days/wk 

10 Young active 
males 

Unilateral 
isotonic knee 

extensions 

Patellar No change  

Mahieu et 

al., 2007 

6 

weeks/eve

ryday 

31 Young 

active/21 

males/10 

females  

Static 

stretching 

Achilles No change  

Kubo et al., 

2006 

12 

weeks/4 

days/wk 

8 Young active 

males 

Isometric 

squat training 

Patellar No change  

Kubo et al., 

2002a 

3 

weeks/eve

ryday 

8 Young active 

males 

Unilateral 

static 

stretching 

Achilles No change 
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1.5.8.3 Effect of mechanical loading on structural and material properties 

Having highlighted the variability in tendon responses to mechanical loading in vivo, 

between populations, and in the short and relatively long-term, described by tendon 

stiffness and modulus, it is important to try to understand how the mechanical properties 

change as a result. There is relatively strong evidence that tendons undergo hypertrophy or 

an increase in CSA with mechanical loading (Wang et al., 1994, Eastwood et al., 1998a, 

Eastwood et al., 1998b), with stiffness being directly dependent on CSA. Therefore, an 

increase in stiffness may be a result of increased CSA or tendon size (Arampatzis et al., 

2007, Kongsgaard et al., 2007, Li et al., 2004). A recent study typifies this association by 

reporting a significant increase in tendon stiffness (36%) (Figure 13) with an increase in 

CSA (20-28%) of the patellar tendon in the lead leg, compared with the non-lead leg of 

elite fencers and badminton players (Couppe et al., 2008). By investigating such a 

population, the authors were able to adopt a unilateral training intervention to demarcate 

issues such as interindividual variations, associated with cross-sectionally designed studies. 

 

 

 

Figure 13. Patellar tendon force-elongation relationship to a common force. Values 

are means of all subjects. Stiffness was higher on the lead extremity compared with 

the non-lead extremity (P < 0.05), (Couppe et al., 2008). 
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As well as CSA contributing to the mechanical properties of tendon, the majority of 

evidence indicates that stiffness can increase without changes in CSA, in response to 

relatively long-term loading (Banes et al., 1995a, Pearson et al., 2007, Staufenbiel et al., 

1989, Manning et al., 2011, Kubo et al., 2009, Pozio et al., 1989, Kabala et al., 1989, Kubo 

et al., 2002, Giaccari and Rossetti, 1989, Reeves et al., 2003a). Prime examples that 

highlight the evidence that CSA does not change in response to long-term loading include; 

Kubo et al. (2009) who found a substantial increase in stiffness of the patellar tendon of 

83% in young men, partaking in a static resistance training programme over 12 weeks. 

Also, Reeves et al. (2003a) reported an increase of 65% in patellar tendon stiffness, in 

older individuals who undertook a strength training programme lasting 14 weeks (Reeves 

et al., 2003a). However, other evidence suggests only small, yet significant increases in 

tendon stiffness without a marked increase in CSA. For example, Arampatzis et al. (2010) 

report an increase in stiffness of less than 15% of the Achilles tendon in young men, once a 

static resistance training programme of 14 weeks’ duration had been completed. These 

changes in stiffness without detectable changes in CSA may be attributed to the region-

specific hypertrophy, which could not be detected in the aforementioned studies, due to the 

low number of locations assessed. 

 

Qualitative changes to tendon tissue or material properties (modulus), reflecting 

adaptations of the underlying tendon microstructure to mechanical loading, may also be 

prominent in explaining changes in stiffness without marked changes in CSA. Numerous 

in vivo human studies indicate a net increase in collagen synthesis with exercise (Miller et 

al., 2005, Kjaer, 2004, Langberg et al., 1999, Langberg et al., 2000, Langberg et al., 2001, 

Langberg et al., 2007, Miller et al., 2007), which may in part contribute to the tendon’s 

immediate adaptational response to mechanical loading. Young’s Modulus (E) describes 

the mechanical properties of tendon when referring to the actual material properties, 

independent of CSA. Furthermore, a combination of changes in CSA and material 

properties are possible. Indeed, the studies that report an increase in CSA with a concurrent 

increase in stiffness cannot directly impute the increase in stiffness with an increase in 

CSA. The remaining variance observed once mechanical properties are calculated can be 

attributed to the modulus of the tendon (Equation 1) (Hou et al., 2009, Kongsgaard et al., 

2007, Li et al., 2004). Incidentally, no studies have reported an increase in stiffness entirely 

explained by tendon hypertrophy, further underlining the importance of the material 

properties adapting to mechanical loading. 
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1.5.9 Sex-specific influences 

It has been identified that female hormones may negatively affect collagen protein 

synthetic response in connective tissue, a possible underlying reason why there are sex-

specific differences in injury rates and rates of healing, associated with exercise related 

musculoskeletal injuries (Jones et al., 1993, Geary et al., 2002, Gray et al., 1985, Kannus et 

al., 1987). In the past before US was applied to quantifying in vivo human tendon 

mechanics, and the introduction of validated techniques used to measure physiological 

markers of collagen synthesis in humans, it was believed that the higher incidence of 

overuse injuries among females was primarily due to intrinsic factors, related to a weaker 

musculoskeletal system, compared to males of equal body mass (Kannus, 1997). These 

intrinsic factors include an average higher body fat percentage, less muscle mass per unit 

body weight, overall lower muscle strength, lower bone mass, and risk factors associated 

with body anatomy and biomechanics. 

 

In tendon, there are oestrogen receptors that are responsive to female sex hormones (Hart 

et al., 1998, Wentorf et al., 2006). Studies in animals have demonstrated that oestrogen 

may have an inhibiting effect on collagen synthesis (Fischer, 1973, Liu et al., 1997b, Irie et 

al., 2010, Yu et al., 1999), and indeed more recently, direct measurements of collagen 

synthesis at rest and after a single bout of mechanical loading in human tendon, have 

shown a significant blunting effect of oestrogen in young women administered synthetic 

oestrogen, over controls (Hansen et al., 2009b, Hansen et al., 2008). Indirectly, the 

negative relationship between oestrogen and collagen synthesis is emphasised in a cross-

sectional study that compared tendon collagen synthetic rates between men and women 

(Miller et al., 2007). This study shows that women had an approximately 50% lower 

collagen synthetic production at rest and after exercise compared to men, and is partly 

supported at a molecular level by reduced levels of regulatory mRNA expression (MMP-

3). In addition, the levels of resting collagen type III mRNA expression in women were 

greater than those of men. Enhanced production of collagen type III may be indicative of a 

reparative type response (Eriksen et al., 2002, Maffulli et al., 2000, Williams et al., 1984) 

with the tendency to produce smaller and less organised fibrils than collagen type I 

(Lapiere et al., 1977). These fibrils have found to exhibit inferior mechanical properties 

compared to normal healthy tendon (Tohyama et al., 2003). Therefore, this observation 

may be a possible explanation as to why women are more susceptible to tendinopathies 

than men (Riley et al., 1994). 
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From a functional perspective, mechanical properties of isolated collagen fascicles in 

women showed a reduced stress-to-failure and less than half the elastic modulus of that of 

men (576 MPa vs. 1231 MPa) (Magnusson et al., 2007). This finding correlates well with 

the sex-specific differences in the metabolic activity of tendon collagen and points toward 

a compromised collagen fibril, or a reduced capacity to regulate fibril diameter 

distribution. It has been reported that endogenous levels of oestrogen do not affect the 

strain behaviour of Achilles tendon, however long-term exposure to reduced oestrogen in 

females administered monophasic oral contraceptive pills, decreased tendon strain by 

25.5% (Bryant et al., 2008). The authors suggested that this was because collagen synthetic 

rates would be augmented following the habitual training loads of these females, who were 

highly trained runners, so it may be that oestrogen has a minimal effect on the material 

properties of tendon within normal physiological limits. 

 

In post-menopausal women there is a rapid decline in oestrogen levels (Bjornerem et al., 

2004), so it is assumed that sex-specific differences if any, on the mechanical properties of 

tendon in age and lifestyle matched males, would not be induced directly by oestrogen or 

indirectly by its effect on reducing the bioavailability of IGF-1 (Hansen et al., 2009b). 

Indirect support of these findings can be found by studies that reported no significant 

differences in tendon mechanical properties between sexes in vivo, when normalising for 

force output (Burgess et al., 2009b, Carroll et al., 2008, Carroll et al., 2011). Interestingly, 

a study by Onambele-Pearson and Pearson (2012) reported a reduced capacity of female 

tendon to adapt to a standardised resistance training protocol, than that of aged-matched 

males. Males exhibited a more dramatic increase in patellar tendon stiffness when 

normalising force output (317 to 580 N·mm
-1

 vs. 380 to 402 N·mm
-1

) and in addition, a 

sex-specific pattern of changes in tendon stiffness were identified, with males exhibiting 

greater increases above 40% MVC, and females below this level. Tendon stress, strain and 

Young’s Modulus showed similar changes between sexes. The authors suggested that sex-

specific differences in tendon stiffness changes may be a result of preferential adaptive 

responses to lower loads in females, possibly linked to the mechanotransduction 

mechanism. Seynnes et al. (2011) also reported a blunted increase in patellar tendon 

stiffness in post-menopausal women, following 12 weeks of alpine skiing training. A 7% 

increase in Young’s Modulus for women was demonstrated, whilst age and trained 

matched males demonstrated a 17% increase. However, sex-related differences in Young’s 

Modulus did not reach significance (P = 0.12). Therefore, it can be assumed from this 

particular study, that there are no sex-specific differences or adaptations.    
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In contrast to the reviewed studies previously, another study investigating the effect of 

stretching on the mechanical properties of Achilles tendon between males and females, 

found that females were more responsive, with a 22.4% and 20.5% decrease in stiffness 

and Young’s Modulus, respectively, versus 8.8% and 8.4% for males (Burgess et al., 

2009a). The mechanisms for this change were unidentified, although structural dimensions 

were ruled out due to no change in CSA or length after this intervention. Alterations in the 

material properties of tendon were proposed, with the effect of oestrogen being suggested 

as an influential factor on tendon tissue quality, although hormonal factors were not 

directly measured. Moreover, the shorter tendon moment arm length in females was also 

suggested to contribute to this disparity, with greater force being experienced in the tendon 

of females in the region of 13%. 

 

Interestingly, a study by O’Brien et al. (2010) found no difference in patellar tendon 

stiffness between adult males and females as well as pre-pubertal boys and girls, and so 

acknowledged that sex hormones are not playing an influential role in this case. Instead, it 

was proposed that the indifferent development of the tendon with maturation between 

males and females, may contribute to a greater extent to the mechanical properties, than 

mechanical loading or sex hormones, for example. Young’s Modulus was shown to 

increase in males, but both CSA and Young’s modulus increased in females. 

 

There appears to be a lack of unequivocal evidence for sex-specific differences on the 

mechanical properties of tendon in response to mechanical loading, and it is still unclear as 

to the extent sex hormones such as oestrogen can induce on its own, or in combination 

with mechanical loading, on the global dimensions (Finni et al., 2009, Cook et al., 2007), 

and material and mechanical properties of tendon.  

 

1.5.10 Ageing 

Ageing can be defined as a progressive functional decline or a gradual deterioration of 

physiological function with age (Partridge and Mangel, 1999). Ageing has been reported to 

have an adverse effect on tendon tissue, particularly on its associated collagenous and non-

collagenous structures (Thorpe et al., 2010, Butler et al., 1978, Diamant et al., 1972, Tuite 

et al., 1997, Kjaer, 2004). Further, biological maturation is any process that marks progress 

toward the adult (mature) state (Beunen et al., 2006).With increasing age or biological 

maturation, tendon collagen content increases and then plateaus after maturity, while 

proteoglycan content decreases and elastin increases (Elliott, 1965, Ippolito et al., 1980, 
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Vogel, 1991). Ageing and biological maturation are therefore separate processes that need 

to be examined independently, in order for comparisons between studies to be consistent.  

 

With ageing, collagen fibril distribution may change with an increase in the ratio of 

collagen type III and V to collagen type I (Riley et al., 1994, Kjaer, 2004), as well as a 

decrease in collagen fibril diameter (Nakagawa et al., 1994, Dressler et al., 2002, Gillis et 

al., 1997). The slower rate of turnover of collagen after maturity results in the 

accumulation of a number of irreducible cross-links. This occurs via the process of non-

enzymatic glycation which produces advanced glycation end-products (AGEs), such as 

pentosidine, of which is a widely accepted marker of tendon matrix age (Paul and Bailey, 

1996, Moriguchi and Fujimoto, 1978, Bank et al., 1999, Couppe et al., 2009). 

Consequently, the material properties are altered in ageing tendon, synonymous with 

reduced elasticity, increased stiffness, decreased solubility and increased thermal stability 

(Vogel, 1983). In addition, because of an increased collagen and decreased water content, 

the permeability of the matrix is reduced, which negatively affects tenocytes nutrition and 

energy production pathways (O'Brien, 1992). Therefore, there is a decrease in collagen 

turnover and cell-matrix activity, which reduces the capacity of the tendon to repair 

(Astrom and Rausing, 1995). Recent evidence suggests that there is an increase in partially 

cleaved collagen within the matrix with mechanically induced micro-damage with age 

(Thorpe et al., 2010). As a result, the functional capacity and material and mechanical 

integrity of tendon is compromised, which may explain the increased prevalence of 

degenerative changes and injury (Hess et al., 1989, Hess, 2010). 

 

When relating these findings to the mechanical properties of tendon, there are 

inconsistencies in the evidence provided. It appears that many animal studies investigating 

the role of ageing on tendon, use cross-sectional designs that include very young animals 

(Shadwick, 1990, Nakagawa et al., 1996, Ensey et al., 2009). Therefore, when comparing 

data from such populations, it is possible that maturation and the ageing process were not 

independently examined, thus, introducing confounding effects (Narici et al., 2008). When 

comparing mature tendon with tendons from older animals, such confounding effects are 

avoided and the general consensus is that older tendon tissue is less stiff and more 

compliant than mature tendon (Vogel, 1991, Vogel, 1980, Blevins et al., 1994, Nakagawa 

et al., 1996). However, relating in vitro mechanical tests to in vivo function with ageing 

should be interpreted with caution. 
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Recently, findings based on US techniques show that mechanical properties of human 

tendons in vivo, change considerably with the ageing process, with age associated 

reductions in stiffness (Reeves et al., 2003a, Reeves et al., 2005b, Magnusson et al., 2003a, 

Kubo et al., 2003b, Karamanidis and Arampatzis, 2006, Karamanidis and Arampatzis, 

2005, Narici et al., 2005, Maganaris et al., 2006, Morse et al., 2005, Onambele et al., 2006, 

Mian et al., 2007, Mademli et al., 2008, Baudry et al., 2012). For example, Onambele et al. 

(2006) reported a 48% decrease in Young’s Modulus of the Achilles tendon, in a cross-

section of old and young individuals (average age of 68 and 24 years, respectively). This 

decrease in Young’s Modulus was not attributed to the ageing process but instead a 

reduction in CSA of tendon, possibly induced by mechanical unloading or disuse. Other 

studies attribute the decreased stiffness with ageing to material changes, for example, a 

15% decrease in stiffness of the Achilles tendon was reported by Narici et al. (2008), yet 

no differences in tendon dimensions were detected. In contrast, a 22% thicker tendon was 

reported in elderly women compared to young women (Magnusson et al., 2003a). 

However, the exact mechanisms accounting for the compromised mechanical properties in 

tendon, cannot be assessed without analysing the composition of tendon at a 

microstructural level, and in a hierarchical order, which is not possible with current in vivo 

technology (Narici et al., 2008). 

 

A recent cross-sectional study examining the mechanical properties of patellar tendons in 

vivo in old and young men, found that neither the dimensions nor the mechanics changed 

with ageing, yet there was a marked difference in the material properties (Couppe et al., 

2009). Specifically, a seven-fold increase in AGEs cross-link density in older individuals 

was reported. An increase in cross-link density has shown to increase tensile stress and 

tendon stiffness (Andreassen et al., 1988, Andreassen et al., 1981, Bai et al., 1992, Galeski 

et al., 1977, Verzar, 1963, Reddy, 2004, Reddy et al., 2002), yet this was not the case. 

Furthermore, a 33% decrease in collagen concentration was present in older men, possibly 

indicating age-related mechanical unloading and signifying that other non-collagenous 

components of tendon may increase to maintain CSA. From a functional prospective, 

maintaining tendon stiffness would serve to maintain effective execution of motor tasks, 

through faster transmission of contractile forces.  

 

There is a plethora of evidence indicating that tendon stiffness is markedly reduced in old 

age, yet in this demographic, tendon still retains the plasticity to adapt to resistive loads by 

increasing tensile stiffness (Reeves et al., 2003a, Reeves et al., 2003b, Reeves et al., 2005b, 
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Onambele et al., 2008, Onambele-Pearson and Pearson, 2012). However, the underlying 

causal mechanism for alterations with ageing have not been defined, particularly at 

microstructural and molecular levels, and it remains to be determined whether ageing alone 

is associated with these observations. 

 

In summary, intrinsic factors such as age, sex and mechanical loading history as discussed 

in the preceding sections of this review, may be heavily implicated in the relationship 

between material and mechanical properties of tendon, via the control hub of tendon tissue, 

the tenocytes. Mechanical signalling from external loads related to training volumes, 

oestrogen’s effect on collagen protein synthesis, and age-related changes in enzymes 

regulating cross-linking, are notable mechanisms by which gene expression can possibly 

vary greatly in humans, regulated at a genomic level within the tenocytes’ nucleus. 

However, even if these intrinsic factors can be controlled so that they can be quantified and 

normalised to a baseline value, the associated gene products at a protein level can still 

vary. This is where genetic variation can potentially contribute to observed/measurable 

differences on complex traits, such as the material and mechanical properties of tendon. 
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1.6 Genetics of tendon 

A strong genetic component may influence tendon mechanical properties such as stiffness 

at a phenotypic level, through the functional capacity of the tendon’s material properties. 

Although to date, no genetic association has been reported on tendon properties per se. 

Recent work has associated tendinopathies with genetic variants in proteins that serve 

important structural and functional roles in tendon (Mokone et al., 2005, Mokone et al., 

2006, September et al., 2008, Raleigh et al., 2009, Posthumus et al., 2010a), so it is 

plausible that these same molecular characteristics may influence tendon mechanical 

properties per se. That is to say, the same gene variants and differential gene expression of 

these same proteins may directly influence tendon mechanical properties. To a lesser 

extent gene variants linked to the predisposition of incurring tendinopathies have also been 

reported to be influential on musculotendinous range of motion (Collins et al., 2009, 

Brown et al., 2011b) as well as endurance running performance (Brown et al., 2011a, 

Posthumus et al., 2011), which will be discussed later in this thesis. 

 

1.6.1 Genetic variation 

Generally, genetic association studies link a phenotype of interest (e.g. tendon mechanical 

properties) with genetic factors. Differences between individuals for a particular trait when 

referring to genetic influences may be a result of genetic variability somewhere in the 

genome. Simply put, nucleotide differences among the DNA sequence of individuals can 

influence function.  

 

Many types of genetic variation exist, though the most common form of genomic variation 

are single-nucleotide polymorphisms (SNPs), of which 11 million are estimated to exist in 

the human genome with a frequency of greater than 1% (Kruglyak and Nickerson, 2001). 

The SNPs within DNA coding regions are transcribed into their analogous mRNAs and 

these mRNAs are translated into their associated proteins, thus, SNP information is carried 

through three levels of information, from DNA to RNA to protein, by transcription and 

translation. Within these SNPs, different alleles are found in different individuals and these 

alleles can influence the three levels of information, by altering amino acid sequences or 

by influencing how the gene is regulated. This can have consequences for the type or 

amount of protein produced, potentially altering one or more phenotypes. However, these 

sequences of events are not straightforward, as the pathway from genotype to the 

phenotype can be complex. For instance, at the DNA level, methylation, and chromatin 

structural and biochemical changes may influence how the gene is transcribed to RNA. 

Indeed, this is possible at the transcription level where expression, microRNA (miRNA), 
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and post-transcriptional modifications can occur. Finally, at the translational level, splice 

variants, isoforms and tertiary/quaternary structural changes that occur via synonymous 

SNP variants, can affect the outcome or phenotype (Shapshak, 2012). For example, the 

activity of proteinases such as the MMPs that are primarily involved in the degradation of 

tendon ECM (refer to section 1.5.4.1-Regulatory properties of ECM), may be regulated at 

transcriptional or translational or post-translational levels (Jones et al., 2006). It is doubtful 

as to whether corresponding variation occurs at each level. Fundamentally the structure 

and function of the ECM, and consequently the end result mechanical properties at the 

phenotypic level, may not be directly related to the SNP information. Therefore, the 

heterogeneity of the SNPs can reduce the sensitivity required to detect gene associations in 

such studies, and ideally analysis at all three levels (DNA, RNA and protein) is warranted 

(Shapshak, 2012). 

 

1.6.2 Identifying candidate genes 

Genetic association studies in an exercise and health-related setting aim to investigate the 

correlation between the phenotype of interest and genetic variation, by identifying 

candidate genes that contribute to the variability within the phenotype. Ultimately, key 

gene variants may eventually be used clinically to improve the prevention and treatment of 

various diseases, by prescribing exercise, diet, and pharmacological interventions, based on 

an individual’s genetic profile (Roth, 2007). However, genetic research and its applications 

can potentially cause ethical concerns, in that genetic research can be used for early talent 

identification and screening for risks of sudden death, which in turn may have severe 

consequences for that individual, upon receiving such a diagnosis (Wackerhage et al., 

2009). In terms of genetics of tendon properties, candidate genes that relate to improved 

performance capacity and risk of incurring tendon pathologies is of primary importance.  

 

Discussed below are the rationales for determining the importance of genetic contribution 

to the phenotype, so that the result will be a specific testable hypothesis-driven research 

question (s). Three key components need considering when identifying candidate genes for 

a genetic association study; the phenotype, subject recruitment and of course candidate 

gene/SNP selection. 
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1.6.2.1 Phenotype 

Firstly, it is important to define the phenotype under investigation, whether it is to be 

discretely or continuously measured. For example, tendon stiffness is a quantitative trait 

that can have a range of values determined by force-displacement curves. By correctly 

defining the phenotype (s) of interest, the importance of genetic factors can be determined, 

as endpoint assessment may be too remote to detect the modifying genetic effects of the 

gene variants, if the phenotype was too generalised. Secondly, heritability has been 

reported for the specific phenotype that was previously defined. Low heritability suggests 

that there is a strong non-genetic contribution to the phenotype, which in essence decreases 

the power of genetic association studies (Sham et al., 2000). Heritability can be estimated 

using twin studies by looking for greater similarities of the phenotype measurement values, 

in related individuals (Kang et al., 1978) compared to between families, known as familial 

aggregation (Bouchard et al., 2000). Therefore, when embarking on an association study, 

prior evidences that genetic variation plays some role in determining the phenotype is 

desirable. 

 

No direct association has been reported for heritability and its effect on structural and 

mechanical properties of tendon, yet interpretation of research literature relating to this 

domain provides evidence for the importance of genetic factors. For example, genetic 

variants that have been reported in recent tendinopathy studies, encode for proteins directly 

involved in biological processes within tendon. Moreover, there are studies reporting a 

moderate to strong genetic component with measures of flexibility, 70% (Hakim et al., 

2004) and 47% (Battie et al., 2008), respectively. Flexibility is a composite measure of 

muscle-tendon joint dynamics and it has been suggested that candidate genes with respect 

to flexibility, include those related to structure and function in tendon, such as collagens 

and tenascins (Hakim et al., 2004). Therefore, these genes can also be considered as 

candidate genes for association with fundamental tendon properties. 

 

The ease and accuracy of measurement in large numbers of individuals would minimise 

measurement error, thus, the noise found to contribute to total variability can also be 

minimised (Newton-Cheh and Hirschhorn, 2005). Accurate and reproducible assessments 

of tendon properties in vivo are available, although as of yet these techniques have not been 

applied to genetic association studies in humans.  
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1.6.2.2 Subject recruitment 

Once the phenotype (s) has been clearly identified and genetic influences have been 

reported previously, the population sample can be selected. Within an exercise and health-

related domain, quantitative traits are common, whereby large sample sizes can be used to 

ensure the answers to the hypothesis-driven research question (s) are statistically robust, 

and numerical data can be attributed to the discrete genotypes. The classic ‘stress-the-

genotype’ approach has been popular when recruiting a particular group of subjects, as it 

aims to optimise the association of complex traits with genetic variation (SNPs), by virtue 

of enlisting a high proportion of homozygote individuals (Montgomery et al., 2002). Also, 

recruiting subjects based on randomised sampling that is prospective in nature is 

advantageous, as it permits the statistical control of environmental factors, reported in the 

research literature to affect the phenotype, as well as allowing the investigation of specific 

genetic factors (Kavvoura and Ioannidis, 2008). A vast majority of the genetic association 

studies, particularly in tendinopathies, have been retrospective and case-control type study 

designs. In these cases, knowledge of the pathology may influence recall of exposures to 

environmental factors and this can introduce responsive bias (Kopec and Esdaile, 1990). 

Randomised sampling of unrelated subjects is desirable as it avoids the difficulties in 

recruiting related individuals, but also avoids the possibility of committing ascertainment 

bias, if different generations of the family are included (Liu et al., 2011). However, 

recruiting unrelated subjects in this manner can introduce false-positives from admixture 

and population stratification, by misidentifying a genetic association with a trait. The main 

issue that arises is that populations with different geographic ancestries (e.g. African, 

Asian, Northern European), may have different allele and genotype frequencies for the 

polymorphisms under investigation, and so this can affect gene-gene interactions (alleles in 

one gene interact with alleles in another gene), and consequently the resulting combination 

can have unique influences on the phenotype (Lewis and Knight, 2012, Freedman et al., 

2004). Therefore, it is important to prospectively control for these factors, in order to 

detect true associations, by focusing on one specific ethnic group of origin. Besides, 

because genetic association studies only focus on one or two genes, mainly due to logistics 

of time and limited technologies used for genotyping, statistical power is also limited. This 

is because most genes contributing to a phenotype confer only a very modest effect, and to 

detect these associations with high power, requires large sample sizes (Lewis and Knight, 

2012, Newton-Cheh and Hirschhorn, 2005, Ioannidis et al., 2003, Long and Langley, 

1999).  
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1.6.2.3 Candidate gene selection 

Identifying potential candidate genes begins by identifying the proteins that are critical to 

the structural and regulatory systems that underlie the physiology of the phenotype. These 

proteins are coded for by genes, which become the candidate genes of interest (Roth, 

2007). Prioritising these candidate proteins is the next phase toward selecting the most 

appropriate candidate genes. This can be achieved by reviewing the existing literature that 

intensely focuses on these proteins, and their involvement in key physiological pathways, 

either in homeostatic or pathologic states. As a result, these proteins can then be paired 

with their coding gene (s) and further prioritising can be applied to the candidates at the 

level of the gene and known genetic variants. Genes that have been intensively studied for 

their importance to the underlying physiology of the trait should be considered first. 

Animal models that characterise the genes and their associated pathways should be 

established, for instance, genetic manipulations within the same models that use gene 

knockout methods, can be used to assess their importance functionally. Furthermore, genes 

that are expressed only within the tissues of interest for the phenotype should be 

considered priorities as well, above genes that are ubiquitously expressed in many tissues 

(Roth, 2007).  

 

The next step is to identify functionally significant SNPs within these genes that are likely 

to modify the protein. These include missense SNPs which have been intensively studied 

for their beneficial, as well as deleterious effects on the phenotype (Fay et al., 2001, Cargill 

et al., 1999), but also non-coding SNPs involved in regulating sequences, are becoming 

more appreciated for their role in complex traits (Newton-Cheh and Hirschhorn, 2005). 

Moreover, including multiple SNPs and indeed those involved in the same regulatory 

pathways for the phenotype, is likely to be a preferable approach in addressing their 

potential genetic influence in genetic association studies. Technological advancements in 

genotyping (SNP chips) have the potential to detect the vast majority of genomic variation 

for the phenotype, by assaying all gene variants known to be involved. This is made 

possible by the tightly correlated structures for which these gene variants reside in, termed 

haplotype blocks. Haplotype blocks are part of a classic concept known as linkage 

disequilibrium which describes the extent to which polymorphisms or alleles travel 

together during recombination events (Daly et al., 2001). However, the cataloguing of 

common gene variants involved in all exercise and health-related traits is very much in its 

infancy, and so currently genetic association studies investigating SNPs singularly, or as 

multiples, are of upmost importance, so that appropriate interventions can be developed 



58 
 

(Manolio, 2010). In addition, determining the functional basis for these associations is 

essential. 

 

1.7 Proteins, genes and SNPs of interest 

In the following section there will be a detailed review of candidate genes, as well as their 

respective SNPs, and the potential influences they may have on tendon properties at a 

protein level. Specifically, seven genes will be discussed together with the five tendon 

proteins they produce. Table 2 summarises this relationship. Four of the genes listed in 

Table 2 (COL5A1, TNC, MMP3, GDF5) have genetic variants reported in recent 

tendinopathy studies, that may predispose individuals to such conditions (Posthumus et al., 

2010a, Mokone et al., 2005, September et al., 2008, Mokone et al., 2006, Raleigh et al., 

2009). Figure 14 shows the key structural and regulatory proteins found in tendon, 

including those associated with tendon pathologies, musculotendinous ROM, and 

endurance running performance. These genes can be considered candidates for their 

association with fundamental tendon properties. In fact, two studies have recently reported 

an association between a SNP in one of these genes and measures of musculotendinous 

ROM in humans (Collins et al., 2009, Brown et al., 2011b). One study reports an 

association with musculotendinous ROM as well as endurance running performance 

(Brown et al., 2011a) with one similar study using an independent population, reporting an 

association with endurance running performance only (Posthumus et al., 2011). Table 3 

summarises the genetic association studies that have identified a polymorphic association 

with tendon pathologies, musculotendinous ROM, and endurance running performance in 

humans. In addition to the four genes associated with these phenotypes (COL5A1, TNC, 

MMP3, GDF5), COL5A2 will also be discussed because like COL5A1, it encodes for a 

protein which is a fundamental component of the collagen type V molecule (Col V) 

(quaternary protein). Collagen type I (Col I) and its two coding genes COL1A1 and 

COL1A2, will also be included in the proceeding discussion, because it forms the major 

structural component of tendon, even though genetic variation has not yet been associated 

with these phenotypes or tendon properties. Associations have however been observed 

between genetic variation in COL1A1, and risk of ligament injury, and so this rationale 

justifies its inclusion and further discussion. 
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Table 2. Tendon proteins, genes of focus, and abbreviations addressed in this thesis.  

Note: the two collagen proteins comprise numerous protein chains and therefore are 

dependent on more than one gene. 

 

 

 

 

 

 

 

 

 

 

 

 

Protein 

 

Abbreviation 

of protein used 

in this review 

 

Genes of focus in this 

review 

 

Abbreviation 

of gene of 

focus 

 

Type V collagen 

 

Col V 

collagen, type V, alpha 1 

collagen, type V, alpha 2 

COL5A1 

COL5A2 

 

Tenascin C 

 

TNC 

 

tenascin C 

 

TNC 

 

Matrix 

metalloproteinase-3 

 

MMP3 

 

matrix metalloproteinase 

3 (stromelysin 1, 

progelatinase) 

 

MMP3 

 

Growth/differentiation 

factor 5 

 

GDF5 

 

growth differentiation 

factor 5 

 

GDF5 

 

Type I collagen 

 

Col I 

collagen, type I, alpha 1 

collagen, type I, alpha 2 

COL1A1 

COL1A2 
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Figure 14. Major microstructural components of tendons associated with tendon 

pathologies/musculotendinous range of motion/endurance running performance, 

identifying related genes. * No genetic association with tendon pathologies/tendon 

properties yet reported, but its presence in this figure is warranted because it is the 

major structural component of tendon. Adapted from Collins and Raleigh (2009). 
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Table 3. Summary of genetic association studies that have identified a polymorphic 

association with tendon pathologies/musculotendinous range of motion and 

endurance running performance in humans.  

Gene Participants Gene variant Phenotype Findings/Observations Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COL5A1 

White 

Caucasian. 

72 with 

chronic 
ATP, 39 

with acute 

Achilles 
tendon 

rupture. 

129 control. 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Bst UI RFLP 
within 3’ 

untranslated 

region (UTR) 

(rs12722 C/T) 

 

 

 

 
 

 

 
Chronic 

ATP. 

 

 
 

 

Individuals with A2 (C) 

allele gene variant of 
this gene are less likely 

of developing 

symptoms of chronic 
Achilles tendinopathies 

 

 
 

 

(Mokone et 
al., 2006) 

White 
Caucasian. 

85 

Australian 
and 93 

South 

African 
patients with 

ATP, 

respectively. 

210 
Australian 

and 132 

South 
African 

control 

subjects. 

 

 

Individuals possessing 
‘CC’ genotype had 

decreased risk of 

developing chronic 

ATP compared with 
those individuals with 

T allele (TC or TT 

genotypes) in both 
populations 

 
 

 

(September et 

al., 2008) 

White 
Caucasian. 

50 with 

chronic 
ATP, 35 

with acute 

Achilles 

tendon 
rupture. 

34 control. 

 

Standing 

leg raise, 
sit-and-

reach. 

 
 

Individuals with CT 

genotype were found to 
be less flexible than 

homozygous 

individuals 

 
 

(Collins et 

al., 2009) 

White 
Caucasian. 

325 healthy 

and 

physically 
active 

cohort. 

 

Sit-and-

reach. 

Older individuals (≥35 
years) homozygous for 

the C allele showed 

greater flexibility 

 

(Brown et al., 

2011b) 

White 
Caucasian. 

72 runners 

(52 males, 

Sit and-
reach 

Time to 

completion 

 
TT individuals were 

less flexible than CC 

individuals but TT 

 
 

(Brown et al., 

2011a) 
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20 females) 

 

 
 

individuals were faster 

than CC individuals 

White 

Caucasian. 

313 male 
triathletes 

 

 
 

 

Time to 
completion 

of running 

component 

 

Individuals with TT 
genotype completed 

running component 

faster than CC 
individuals 

 
 

(Posthumus 

et al., 2011) 

 

 

TNC 

White 

Caucasian. 
72 with 

chronic 

ATP, 42 

with acute 
Achilles 

tendon 

rupture. 
127 control 

GT 

dinucleotide 

repeat 

polymorphism 
within intron 

17 

Chronic 

ATP. 

Acute 

Achilles 
tendon 

rupture. 

Individuals with 12 and 

14 GT repeats appear to 
have 6-fold risk of 

developing Achilles 

tendon injuries. 13 and 

17 repeats were 
underrepresented 

 

 

(Mokone et 
al., 2005) 

 

 

 

 

 

MMP3 

 

 

 
 

White 

Caucasian. 
75 with 

chronic 

ATP, 39 

with acute 
Achilles 

tendon 

rupture. 

(rs679620) 

A/G transition 

at nucleotide 
position 28 

within exon 2, 

(rs591058) 
T/C transition 

at nucleotide 

position 1547 
within intron 

4, (rs650108) 

G/A transition 

at nucleotide 
position 495 

within intron 

8. 

 
 

 

 
Chronic 

ATP. 

 

 

GG of rs679620, CC of 
rs591058, AA of 

rs650108 genotypes 

overrepresented in 
individuals with ATP 

but no association 

found independently 
with individuals with 

acute Achilles tendon 

rupture. 

Additional observation- 
inferred haplotype ATG 

greater in control 

subjects 

 

 

 
 

 

(Raleigh et 

al., 2009) 

 

 

 

 

 

 

GDF5 

White 

Caucasian. 

171 

recruited. 
Australian 

population-

59 with 
chronic 

ATP. South 

African 
population-

73 with 

chronic 

ATP, 39 
with acute 

Achilles 

tendon 
rupture. 

Australian 

population-

 
 

 

 
 

(rs143383) 

T/C 

substitution of 
functional 

promoter in 5’ 

UTR 

 

 
 

 

Chronic 
ATP. 

Acute 

Achilles 

tendon 
rupture. 

 
 

 

 
 

Individuals with TT 

genotype have twice 

the risk of developing 
both chronic ATP and 

acute Achilles tendon 

rupture 

 
 

 

 
 

 

(Posthumus 

et al., 2010a) 
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1.7.1 COL5A1 as a candidate gene 

Structure and function of protein and genes 

Col V is a widely distributed quantitatively minor fibrillar collagen forming between 1-3% 

of total collagen content of tendon ECM (Chanut-Delalande et al., 2004), although 

evidence suggests that in functional terms it is a major collagen of developing connective 

tissues (Roulet et al., 2007). Col V can assemble into a diverse number of molecular forms 

but all contain a pro α1(V) chain. This pro α1(V) chain is encoded for by the COL5A1 gene 

(9q34.3) and comprises 66 exons, distributed over 203.07 kilobases (kb) of genomic DNA. 

There is a pro α2(V) chain which is encoded for by the COL5A2 gene (2q32.2), comprising 

of 54 exons and 147.98kb (Birney et al., 2004). Together these chains form the 

heterotrimer protein structure of Col V ([α1(V)]2α2(V)), which is ubiquitous in human 

tendons.  

 

Col V plays a functionally important role in tendon via its relationship with Col I fibrils. It 

is thought to co-polymerise with Col I fibrils to form heterotypic fibres, and thereby 

organises and regulates the diameter of these fibres (Birk et al., 1988, Birk et al., 1990, 

Linsenmayer et al., 1990, Marchant et al., 1996) as well as forming intermolecular cross-

links with Col I fibrils (Niyibizi and Eyre, 1993). Both a decrease (Birk, 2001, Wenstrup et 

al., 2004) and an increase (Dressler et al., 2002) in Col V content, has been reported to 

decrease the diameter of the collagen fibril in vitro, which suggests there is an optimum 

amount of Col V for normal tendon function. Outside this optimum physiological range, a 

weakening of the material properties is possible, causing reductions in maximum stress and 

linear modulus (Dressler et al., 2002). 

 

Focusing attention to a molecular level, the COL5A1 gene and in particular a specific SNP 

in the 3’ untranslated region (UTR), thought to regulate gene expression, will subsequently 

be discussed in relation to its association with complex exercise-related phenotypes. 

Recently, the biological function of this region of the gene has been investigated to 

enhance our understanding of the molecular basis of such phenotypes (Laguette et al., 

2011). The investigators report novel findings that the mRNA stability is affected by gene 

142 control, 

South 

African 
population-

96 control. 

* ATP= Achilles Tendon Pathology 

 



64 
 

variability in this region, including that of the COL5A1 rs12722 gene variant, which will be 

introduced in the following section. An increase in mRNA stability associated with the T 

allele variant was proposed to produce more α1(V) chain protein, and thus, increased Col 

V production. Subsequently, a possible direct link can be established between this gene 

variant and the tendinopathic phenotype. 

 

Evidence of polymorphic associations with tendon pathologies 

The first study to report an association between variation in the COL5A1 gene and tendon 

pathology (Mokone et al., 2006), identified the COL5A1 gene as an ideal candidate genetic 

marker of Achilles tendinopathies, because it is on the same locus of genomic DNA as the 

ABO gene, which encodes for transferases as part of the structure of glycoprotein antigens 

in red blood cells (Jozsa et al., 1989). It has been reported to be associated with tendon 

injuries in Hungarian and Finnish patients with the blood group O, and it may also 

determine the structure of ECM proteins in tendon (Jozsa et al., 1989, Kujala et al., 1992). 

Two restriction fragment length polymorphisms (RFLPs) were identified within the 3’ 

UTR of the COL5A1 gene (BstUI and DpnII) that had no known role in the expression or 

function of Col V. An association was found between the BstUI RFLP (rs12722) and 

Achilles tendon pathology (ATP), and more specifically, chronic tendinopathy without 

rupture, with the ‘C’ allele being protective against ATP (control group-29.8% vs. ATP-

18%) (Mokone et al., 2006). As the authors rightly stated, this association does not show 

conclusively that Col V is involved in the development of these pathologies, and it is of 

course likely that there are numerous genetic variants that contribute to the overall 

heritability of such conditions (Magra and Maffulli, 2008). Magra and Maffulli (2008) did 

however emphasise that genes encoding for other collagens, known to interact with Col V 

during fibrillogenesis, such as COL1A1 and COL3A1, show variable levels of expression in 

normal tendons, and significantly increased levels of expression in tendinopathies. 

Therefore, further studies investigating these correlations as well as how they interact at a 

genomic level with COL5A1, is warranted. It is also possible that non-genetic factors 

influenced the results of the study described in this paragraph (Mokone et al., 2006), as 

body mass and physical activity were not controlled participant selection criteria, primarily 

due to the retrospective nature of such case-control studies. 

 

A subsequent study investigated the same variant of the COL5A1 gene but in two 

independent Caucasian populations, in South Africa and Australia (September et al., 2008) 

and the results generally concurred with the initial association study (Mokone et al., 2006), 
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in that COL5A1 rs12722 gene variant within the 3’ UTR, was associated with Achilles 

tendinopathies, and associated with individuals who possess a ‘T’ allele at this locus. Thus, 

individuals who were homozygous for the ‘C’ allele were apparently less likely to develop 

the condition. The authors investigated a combination of additional markers (inferred 

haplotypes) or neighbouring alleles in the same sequence region of the 3’ UTR of the 

COL5A1 gene, in order to provide more information as to the predisposing causative 

factor. They found that the haplotype consisting of markers rs12722 and rs3196378 (alleles 

‘T’ and ‘C’ respectively) was significantly overrepresented in the South African 

tendinopathy group, but not in the Australian group. The DNA sequence that contains the 

‘C’ allele at the rs3196378 marker forms part of a miRNA recognition sequence. miRNA 

are key regulators of gene expression at a posttranscriptional level, by inhibiting translation 

or inducing mRNA cleavage (Ambros, 2004, Carthew, 2006). Consequently, protein 

expression may be modified and in this instance one could speculate that COL5A1 

expression may be altered, leading to suboptimal levels of Col V protein and ultimately a 

compromised collagen fibre and healing process. Regarding COL5A2, no polymorphisms 

as of yet have been associated with tendon pathologies or function.  

 

Possible influences on tendon properties 

Two recent studies considered a measurable in vivo phenotype that may link the COL5A1 

gene variant to tendon injuries, by investigating flexibility – a possible intermediate 

phenotype (Collins et al., 2009, Brown et al., 2011b). Flexibility is an established 

determining factor for patellar tendinopathies in active populations (Witvrouw et al., 2003, 

Witvrouw et al., 2001). As alluded to previously, genetics has been reported to contribute 

substantially to the variability of certain flexibility phenotypes (Hakim et al., 2004, Battie 

et al., 2008), and although that is not the case in other studies (Maes et al., 1996, Chatterjee 

and Das, 1995), associations between gene variants and flexibility are therefore plausible. 

 

COL5A1 was hypothesised to be associated with flexibility following reports that 

mutations in the COL5A1 gene have been implicated in Ehlers Danlos syndrome, a 

condition characterised by joint hypermobility and laxity, possibly due to disturbed 

fibrillogenesis of the collagen fibril containing Col I and Col V (Malfait and De Paepe, 

2005). These disease-associated rare mutations may produce non-functional COL5A1 and 

COL5A2 alleles leading to haploinsufficiency of COL5A1 and COL5A2 mRNA, 

predictably resulting in the synthesis of around half the amount of normal Col V protein 

(Malfait et al., 2005, Malfait and De Paepe, 2005, Mitchell et al., 2009, Schwarze et al., 



66 
 

2000, Symoens et al., 2012). Phenotypically, this may result in abnormally large collagen 

fibrils (Vogel et al., 1979, Wenstrup et al., 2006) and impaired mechanical properties of 

tendon.  

 

An association has been reported between the common gene variant COL5A1 rs12722, and 

flexibility (Collins et al., 2009). Individuals heterozygous (CT) for this genotype were less 

flexible than homozygous individuals of either allele, however the study sample contained 

significant heterogeneity in terms of tendon injury history – i.e. participants with 

tendinopathies, history of rupture, and no history of tendon injury were combined in the 

genotyping results. Furthermore, measures used to quantify flexibility, such as an 

instrumental standing leg raise (Goeken and Hof, 1993) and a trunk flexion sit and reach 

test (2006), are rather crude measures of the function of the muscle-tendon unit as a whole, 

and certainly do not provide precise data on the mechanical properties of the tendon per se. 

Regarding the instrumental standing leg raise test, subjectivity (Goeken and Hof, 1991)  

and specifically the perception of pain onset, as well as abnormal defence reactions, 

(Goeken and Hof, 1994) could be particularly relevant to the participants with history of 

Achilles problems. However, the main critical comment on the instrumental standard leg 

raise test is that the measured phenotype is a composite of various factors including muscle 

and tendon stiffness, and does not take into account the dimensions of the structures, so the 

mechanical properties cannot be determined. Additionally, any kind of sit-and-reach test is 

a composite measure of various factors contributing to ‘flexibility’, including muscle-

tendon unit stiffness, (McHugh et al., 1998) limb lengths, and proportions (Fernandez and 

Stubbs, 1989). Furthermore, it has been reported that the mechanical properties of the 

series elastic component (tendon-aponeurosis) are independent of the parallel elastic 

component (passive muscle stiffness) in vivo (Kubo et al., 2001b). While their approach 

was a useful step in the study of the genetics of flexibility and range of motion, the 

mechanics of the tendon per se, were clearly not determined by Collins et al. (2009), so 

potential associations between tendon properties and genes coding for proteins expressed 

in tendon, could not be investigated directly in that study, or indeed any other study to 

date.  

 

With a similar study design to Collins et al. (2009), Brown et al. (2011b) investigated the 

COL5A1 rs12722 variant and sit-and-reach performance, in a healthy and physically active 

cohort (325 Caucasian subjects). Individuals homozygous for the ‘C’ allele had greater 

flexibility, but this was only observed in the older (≥ 35 years) subjects, where sex and 



67 
 

COL5A1 genotype accounted for approximately 23% of the variance. As per the previous 

study, some factors which may affect the material and mechanical properties of the tendon 

were not considered. For example, circulating oestrogen was not assessed in the female 

subjects – chronic oestrogen levels can influence tendon stiffness (Burgess et al., 2010). 

Also, a lack of detailed information regarding the habitual physical activity levels of the 

older subjects was another limitation noted by Brown et al. (2011b) themselves, because 

tendon stiffness can increase (Couppe et al., 2008, Kubo et al., 2001a) with higher physical 

activity and decrease (Kubo et al., 2000a, Reeves et al., 2005a) with lower activity. The 

issue of age and sex-related changes in the COL5A1 rs12722 variant genotype frequency 

has been explained by Collins and Posthumus (2011). Specifically, these authors 

highlighted the importance of controlling for these non-genetic factors in the 

methodologies of such association studies, by carefully selecting an asymptomatic control 

group, in order to better identify individuals at risk of injury. 

 

More recent studies have been conducted by the same group of investigators reporting an 

association between the COL5A1 rs12722 gene variant and endurance running 

performance, in two independent populations (Brown et al., 2011a, Posthumus et al., 

2011). Both studies found that individuals with a TT genotype were significantly faster 

than those individuals with a CC genotype. The investigators suggest that ROM of the 

lower limbs directly influenced endurance running performance, measured by time to 

completion. Previous research associating this SNP with ROM (Collins et al., 2009, Brown 

et al., 2011b) report that individuals with a TT genotype were less flexible than those with 

a CC genotype, with the investigators stipulating that a decrease in lower body flexibility 

has been associated with improved running economy. Therefore, they propose that the 

COL5A1 rs12722 gene variant is associated with endurance running performance. They 

also speculate that the TT genotype increases musculotendinous stiffness and thus, 

accommodates greater running economy. This assumption is supported by substantial 

evidence in humans relating muscle-tendon unit function to performance parameters, 

reviewed previously in this thesis (refer to 1.5.6-Tendon function). However, due to the 

multifactorial nature of endurance performance and the crude measures of intermediate 

phenotypes, as alluded to previously, it is less likely that a single genetic variant can 

explain this genotype-phenotype association. The complexity of such associations 

reinforces the need to comprehensively assess the intermediate phenotypes (separate in 

vivo assessment of composites of ROM, e.g. tendon) and careful consideration of the non-

genetic factors and variables known to contribute to the variability in the phenotype, so to 
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enhance our understanding of the link between genetic variation and exercise-related 

phenotypes. 

 

A biological link has recently been proposed between the COL5A1 rs12722 gene variant 

and the gene product (Col V) (Laguette et al., 2011), which goes some way in validating 

genetic association studies investigating this gene variant, although just how this directly 

or indirectly affects the mechanical properties of tendon remains to be tested. Collins and 

Posthumus (2011) proposed that increased Col V content within the normal physiological 

range as a result of the function of the TT genotype of the COL5A1 rs12722 variant, results 

in smaller fibrils with increased surface area (conducive to increased electrostatic 

interactions with ground substance) (Ottani et al., 2001). Consequently, these attributes 

may lead to increased creep resistance and increased stiffness, which describe the 

mechanical behaviour of tissue (Silver et al., 2003). Conversely, the functional significance 

of the CC genotype may translate into an increased collagen fibril diameter and increased 

intrafibrillar cross links at the phenotypic level, with the mechanical properties of the tissue 

displaying a greater ultimate tensile strength (Ottani et al., 2001). Due to the lower Col V 

content, the inhibition of collagen molecule slippage is likely to be reduced between 

collagen molecules, and thus, stiffness of the tissue is reduced (Silver et al., 2003). 

 

In conclusion for Col V, it is indeed possible that variations within the genes that encode 

for the molecular components of Col V may influence a tendon’s material and mechanical 

properties, although such gene variants have not yet been shown to influence tendon 

properties per se. Since Col V expression levels appear critical in determining a tendon’s 

fibre structure through diameter and fibril cross-linking (Wenstrup et al., 2004, Niyibizi 

and Eyre, 1993, Ottani et al., 2001), several testable hypotheses regarding genetic variants 

and mechanical properties of tendon such as stiffness, maximal strain, and elastic modulus 

are likely to be tested in the coming years. 

 

1.7.2 TNC as a candidate gene 

Structure and function of protein and gene 

The TNC isoform which comprises of 6 monomers is the best understood of the family of 

tenascins. After maturation, TNC expression is only detectable in tendon-associated tissues 

but is rapidly unregulated in tendon ECM, undergoing remodelling processes (Hsia and 

Schwarzbauer, 2005). It is specifically expressed in the myotendinous and osteotendinous 

junctions of tendons in response to mechanical stress (Erickson, 1993b, Riley et al., 1996, 
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Kannus et al., 1998, Jarvinen et al., 1999, Jarvinen et al., 2000, Ireland et al., 2001, Martin 

et al., 2003b). It is encoded by the TNC gene (9q33.1), which comprises 28 exons spanning 

97.63kb of genomic DNA (Birney et al., 2004). 

 

Intriguingly, tenascins such as TNC have been described as ‘elastic’ proteins, deduced 

using atomic-force microscopy techniques (Oberhauser et al., 1998). As they are expressed 

in mechanically loaded tendons, it may contribute to increased elasticity of the ECM in 

vitro (Oberhauser et al., 1998) and in vivo (Eliasson et al., 2009, Jarvinen et al., 2003), 

through mechanisms relating to the stretch of single molecules of tenascin (Chiquet, 1999).  

 

In addition to its structural roles, TNC performs various regulatory roles within the ECM. 

Due to its modular structure, the protein is able to interact with various other proteins 

involved in ECM integrity, as well as playing an important role in regulating cell-matrix 

interactions (Chiquet-Ehrismann and Tucker, 2004). It is also believed that TNC plays an 

invaluable role in regulating proper alignment and organisation of collagen fibrils (Mackie 

and Ramsey, 1996). Therefore, it could be postulated that an increase in TNC protein may 

contribute to an increased crimp angle, a region-specific morphological feature of collagen 

fibrils associated with the mechanical properties of tendon, due to the elastic properties of 

the TNC molecule. Specifically, alterations in crimp angle of collagen fibrils have been 

reported to affect tendon stiffness in trained rat tendons (Wood et al., 1988). It is 

perceptible to suggest that an increased crimp angle would reduce tendon stiffness. 

 

Evidence of polymorphic associations with tendon pathologies 

One study to date has investigated a guanine-thymine (GT) dinucleotide repeat 

polymorphism within the TNC gene, for potential association with the risk of incurring 

both chronic Achilles tendinopathies and Achilles tendon rupture (Mokone et al., 2005). 

Coincidentally, it was the first study to associate a gene variant with tendon-related 

phenotypes. This polymorphism is a tandem repeat, consisting of a two base pair sequence 

repeated a varying number of times within a non-coding region (intron 17). Variants 

containing 12 and 14 GT repeats were overrepresented in subjects with tendinopathies, 

while variants containing 13 and 17 repeats were underrepresented. The control group had 

been active in high impact sports for a considerable time (11.5 years) and were currently 

engaging in ~ five hours per week, and so their apparent resistance to tendinopathies was 

unlikely to be due to a significantly lower exposure to high impact loading. Thus, a genetic 

influence may indeed exist, although replication of these data would be a valuable 
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development. Furthermore, whether the TNC polymorphism is involved in causative 

mechanisms is still debatable. 

 

Possible influences on tendon properties 

Even though the GT repeat polymorphism in intron 17 is not part of the coding sequence, 

intronic variations may influence the binding of proteins involved in gene transcription, 

thus affecting gene expression. As TNC expression has been reported to be up-regulated in 

certain pathological conditions, (Chiquet-Ehrismann and Chiquet, 2003, Jones and Jones, 

2000a, Jones and Jones, 2000b) it could be postulated that the 12 and 14 GT repeats within 

intron 17 of the TNC gene may overexpress TNC, increasing the elastic properties of the 

myotendinous unit, as well as reducing the ultimate tendon strain to failure for a given load 

(Eliasson et al., 2009). Thus, TNC is a candidate gene with regards to determining the 

degree of passive stiffness/compliance of tendon. 

 

1.7.3 MMP3 as a candidate gene 

Structure and function of protein and gene 

MMP3 (otherwise known as stromelysin-1) is part of a group of five domain structures of 

zinc-dependent enzymes known as Matrix Metalloproteinases (MMPs), characterised 

according to the type of zinc binding. Structurally, the MMP3 protein constitutes a multi 

domain structure made up of a propeptide, a catalytic N-terminal domain and a 

haemopexin-like C-terminal, all of which combine to form functional MMP3 which has 

the capacity to interact with its substrates (Murphy and Knauper, 1997). The MMP3 

protein is encoded for by the MMP3 gene (11q22.2) which is 10 exons in length and covers 

7.79kb (Birney et al., 2004). 

 

MMP3 is one of the most functionally diverse of the MMPs, hydrolysing multiple 

substrates such as all types of collagens except collagen type I, the proteoglycans, and a 

wide range of ECM components (Matrisian, 1990), as well as activating several MMPs by 

cleaving the propeptide from the pro-MMP, the precursor molecule (Shapiro et al., 1995, 

van Meurs et al., 1999, Somerville et al., 2003, Visse and Nagase, 2003). MMP3 gene 

expression may be regulated at the transcriptional, translational or post-translational levels 

by interaction with inhibitors (Jones et al., 2006) and has shown to be increased by 

mechanical loading in vitro (Thornton et al., 2010, Tsuzaki et al., 2003, Archambault et al., 

2002b, Archambault et al., 2001). Recently, ECM regulation and MMP3 up-regulation in 

tendon, has shown to be determined by a combination of duration and magnitude of the 
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mechanical stimulus, in vitro (Maeda et al., 2009) and in vivo (Sun et al., 2010) in rodent 

models. This potentially represents the impact of differing forms of voluntary exercise in 

tissue remodelling processes in humans. 

 

Evidence of polymorphic associations with tendon pathologies 

Gene variants have been investigated in the MMP3 gene which have the potential to 

substantially alter its expression (Koch et al., 2010), particularly the 5A/6A polymorphism 

within the promoter region of human MMP-3. This polymorphism has been associated 

with a number of pathological states (Beyzade et al., 2003, Ye et al., 2007, Samnegard et 

al., 2005). The association between gene variants in MMP3 and tendon pathology was first 

postulated when immunochemically detectable MMP3 protein, was lower in a ‘normal’ 

region of Achilles tendon tissue, in patients with a degenerate core region nearby, 

compared to normal control tissue (Ireland et al., 2001). This suggests these patients with 

tendinosis were predisposed to developing the condition, due to inherently reduced MMP3 

protein levels. 

 

One study to date has reported an association between variation in the MMP3 gene and 

Achilles tendinopathy (Raleigh et al., 2009). Three SNPs spanning most of the gene were 

identified as being potentially informative, as they are part of all four major haplotypes 

within the MMP3 gene (one exon SNP – rs679620, two intron SNPs – rs591058, 

rs650108). All three MMP3 variants were found to be associated with Achilles 

tendinopathy individually, and as inferred haplotypes – particularly between the rs679620 

and rs591058 gene variants. These two variants were found to be in almost perfect linkage 

disequilibrium. In contrast, the ‘ATG’ inferred haplotype containing all three SNPs were 

significantly underrepresented in the tendinopathy group compared to the control group, 

suggesting this combination has a protective effect against the development of Achilles 

tendinopathy. 

 

Raleigh et al. (2009) were the first to demonstrate an interaction between variants on two 

different genes, vis-à-vis the development of Achilles tendinopathy (all three SNPs of the 

MMP3 gene and the marker rs12722 of the 3’ UTR region of COL5A1 gene). The 

rs679620 marker of the MMP3 gene and the rs12722 marker of the 3’ UTR region of 

COL5A1 gene, represent the best pair of genotypes for estimating the risk for Achilles 

tendinopathy, with the ‘G+T’ allele combination associated with tendinopathies. However, 

the authors do not address how the MMP3 variants alone, or as haplotypes and inferred 
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haplotypes between different genes, cause an increased/decreased risk of tendinopathies. 

Nevertheless, they do suggest that the rs679620 variant of MMP3, which is a non-

synonymous polymorphism, may influence the downstream function of the mature MMP3 

enzyme and its activation (Beyzade et al., 2003), due to the subtle change in the amino acid 

coding and its interaction with other amino acids (‘G’ allele = glutamate, ‘A’ allele = 

lysine). The ‘G’ allele may encourage elevated levels of MMP3 expression via increased 

MMP3 activation, as a result of altered interaction with other amino acids in the propeptide 

region. 

 

Possible influences on tendon properties 

As the COL5A1 rs12722 gene variant was shown to be associated with human flexibility, 

the MMP3 rs679620 variant was investigated for this same association, though no 

association was evident (Posthumus et al., 2010b). The precise rationale for investigating a 

link between this gene variant and flexibility is unclear, although as a link was previously 

identified between the MMP3 gene variant and Achilles tendon injuries (Raleigh et al., 

2009) and as flexibility has been reported to be a possible risk factor for these injuries, 

(Witvrouw et al., 2007) the investigation seems justified. It must be noted that the 

flexibility phenotype assessed was a measure of musculoskeletal passive flexibility, which 

encompasses tendons, ligaments, joint capsules, aponeuroses and fascia sheaths, as well as 

the muscle and not necessarily just the tendon. Thus, as previously mentioned in section 

1.7.1, there are limitations to the techniques used for measuring flexibility in these studies. 

 

As the mechanical properties of tendons are primarily a function of the ECM and because a 

majority of ECM components are substrates for the proteolytic activities of MMP3 

(Sternlicht and Werb, 2001), it may be that MMP3 expression would contribute to the 

material integrity and thus, tendon mechanical properties. It can be postulated that elevated 

expression levels of the MMP3 protein may put the ECM in a state of imbalance with 

greater degradation compared to synthesis, thus, substrates involved in cross-linking and 

stabilisation of intact fibrillar collagen may be degraded. This may ultimately weaken the 

material properties and result in a reduction in matrix stiffness (Eliasson et al., 2007, 

Reddy, 2004). However, within normal physiological ranges the activity of MMP3 is 

tightly controlled by tissue inhibitors of MMPs (TIMPs) (Riley, 2005), thus, inhibiting the 

degeneration of the ECM and loss of material properties. This has been reported in stress-

deprived tendons in vitro, subjected to inhibitors to prevent the activation of MMP activity 

(Arnoczky et al., 2007).  
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1.7.4 GDF5 as a candidate gene 

Structure and function of protein and gene 

GDF5 is a member of the transforming growth factor (TGF) super-family, encoded for by 

the GDF5 gene (20q11.22) of which its entire coding region comprises 4 exons and is 

approximately 21.42kb in length (Birney et al., 2004). Structurally, it is a ‘dimer’ 

consisting of two monomers interlinked by disulfide bonds. Mature forms of the protein 

are approximately 110-140 amino acids in length, and seven cysteine amino acid residues 

are involved in creating its rigid structure (Schreuder et al., 2005). 

 

GDF5 is involved in a variety of musculoskeletal processes including the growth and 

repair of tendon tissue (Aspenberg, 2007). When, GDF5 was first investigated for its 

possible role in tendon biology, it was found to possess a unique ability to induce a tendon-

like tissue rather than cartilage and bone, when implanted intramuscularly in rats 

(Wolfman et al., 1997). Further investigations found a significant role of GDF5 in rodent 

models with induced Achilles tendon injuries. Firstly, GDF5 was found to enhance tendon 

healing and tensile strength of the tendon when implanted on collagen sponges, in a dose-

dependent manner (Aspenberg and Forslund, 1999), a recent review article supports the 

notoriety of this significant dose-dependency of GDF5 (Moore et al., 2010). Also, more 

recently GDF5 has shown to enhance tendon healing and maximum load to failure in 

flexor tendons of rabbits in vivo (Henn et al., 2010). Further studies examined the 

ultrastructural, compositional and mechanical characteristics of the Achilles tendon in 

rodents deficient in GDF5. The maximum load to failure was found to decrease, possibly 

due to significantly less collagen, an increase in irregularly shaped collagen type I fibrils 

and compromised material behaviour (decrease in strength and stiffness) (Mikic et al., 

2001, Clark et al., 2001, Chhabra et al., 2003). Therefore unsurprisingly, GDF5 has been 

shown to increase mechanical strength in these rodent models (Loiselle et al., 2009, 

Rickert, 2008, Dines et al., 2007, Bolt et al., 2007). These studies are further supported at a 

cellular and gene level which show an improved collagen organisation with GDF5 

treatment (Hogan et al., 2010, Henn et al., 2010), as well as an increased expression of 

genes and synthesis of the components of tendon ECM discussed previously, in particular, 

collagen type I, TNC and MMP3 (Keller et al., 2011). GDF5 may also be involved in 

collagen cross-linking by promoting the proteolytic activation of LOX (Maruhashi et al., 

2010a), as well as mediating the collagen structure and organisation by increasing the 

thickness of collagen fibrils (Mikic et al., 2001). Again, it must be maintained that collagen 

cross-linking and diameter per se, have shown to increase tendon matrix stiffness in animal 
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models (Birch, 2007, Eliasson et al., 2007, Reddy, 2004), so all things considered, GDF5 

may influence tendon material and mechanical properties via mediating the growth and 

development of other structures, in particular collagen type I fibrils. 

 

Evidence of polymorphic associations with tendon pathologies 

The human GDF5 gene contains mutations known to cause a number of rare inherited 

disorders, including acromesomelic chondrodysplasia of the Hunter-Thompson and Grebe 

types as well as Du Pan Syndrome, all of which are characterised by musculoskeletal 

abnormalities, including shortened limb bones, brachydactyly and severe joint dislocations 

(Douzgou et al., 2008, Faiyaz-Ul-Haque et al., 2008, Schwabe et al., 2004). The 

hypothesised involvement of GDF5 in tendon pathologies derives from this evidence, as it 

was postulated that the observed joint dislocations may be attributed to abnormalities in 

tendons (Mikic et al., 2001). As well as genetic mutations within the GDF5 gene, a 

functional promoter SNP (rs143383; T/C) of the 5’ UTR of the GDF5 gene, has been 

associated with multifactorial disorders, such as osteoarthritis at different joint locations, 

across different ethnic groups, (Chapman et al., 2008, Egli et al., 2009, Waarsing et al., 

2011, Ji et al., 2010) congenital dislocation of the hip, (Rouault et al., 2010) as well as total 

body height, hip axis length and fracture risk, (Vaes et al., 2009, Sanna et al., 2008) and 

lumbar disc degeneration (Williams et al., 2011). In articular cartilage of individuals with 

osteoarthritis, there was a 12% lower expression of GDF5 associated with the ‘T’ allele at 

this SNP marker, compared to the ‘C’ allele (Southam et al., 2007). So, a reduction in the 

expression of the GDF5 gene associated with the ‘T’ allele, may contribute to tendon 

pathologies, and this has been investigated by one study. 

 

In a case-control study, an association was reported between the GDF5 SNP rs143383 

referred to above, and the risk of ATP (Posthumus et al., 2010a). Individuals of ‘TT’ 

genotype were found to have approximately twice the risk of developing ATP within an 

Australian population independently, and when combined with a South African population, 

which probably means it is less likely to be a false positive observation. No significant 

association between genotype and higher risk was shown in the South African cohort 

alone, although the observed odds ratio was still similar (~1.7). The relatively small sample 

size of the Australian tendinopathy group (n = 59) as well as the different physical 

characteristics (body mass and BMI), between the ATP and control groups of both 

populations, are perhaps limitations of the study. However, the odds ratios and confidence 

intervals observed suggest a robust association, and these findings complement those 
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studies demonstrating the impact on gene expression of the GDF5 variant in question 

(Southam et al., 2007, Miyamoto et al., 2007, Valdes et al., 2010). 

 

Possible influences on tendon properties 

It may be hypothesised that the material properties of the tendon are compromised in the 

presence of the rs143383 ‘T’ allele variant, i.e. a reduction in tensile strength and stiffness. 

GDF5 may be involved in collagen cross-linking by promoting the proteolytic activation of 

lysyl oxidase (Maruhashi et al., 2010a) as well as mediating the collagen structure and 

organisation, by increasing the thickness of collagen fibrils (Mikic et al., 2001). Collagen 

cross-linking and diameter per se, have been shown to increase tendon matrix stiffness in 

animal models (Birch, 2007, Eliasson et al., 2007, Reddy, 2004) and humans, (Hansen et 

al., 2009a) so the ‘T’ allele variant of GDF5 may hinder these processes, and thus, reduce 

tendon stiffness. Therefore, if gene variants within the GDF5 gene influence tendon 

material and mechanical properties, it is likely to be via mediating the growth of other 

structures, in particular Col I fibrils and TNC (Tan et al., 2012). 

 

1.7.5 COL1A1 as a candidate gene 

Structure of protein and genes 

Collagen comprises fibrillar collagen molecules containing more than 95% Col I (Riley et 

al., 1994). This collagen protein is encoded for by the COL1A1 gene (17q21.33), which 

constitutes 52 exons and is 18.34kb in length, and to a lesser extent by the COL1A2 gene 

(7q21.3), which constitutes 52 exons also, and is 36.67kb in length (Birney et al., 2004). 

The COL1A1 gene encodes for the alpha (α) 1 chain, while the COL1A2 gene encodes for 

the α 2 chain.  Two α 1 chains and one α 2 chain combine to form a heterotrimer protein 

structure. 

 

Col I is a major protein constituent contributing significantly to the structural integrity of 

soft tissues such as cruciate ligaments, joint capsules and tendons, via the formation of 

strong parallel bundles of fibres. Col I fibrils and fibres are well recognised to be involved 

in tensile strength and the stiffness of tendon matrix, based on its intra- and intermolecular 

cross links, orientation, density, diameter and length, all of which have been shown to 

affect the mechanical properties of the tendon as a whole in animal models (Eliasson et al., 

2007, Reddy, 2004, Maruhashi et al., 2010a, Hansen et al., 2009c, Hansen et al., 2009a, 

Silver et al., 2001, Silver et al., 2003, Birch, 2007). 
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Possible polymorphic associations with tendon pathologies 

Mutations as well as single nucleotide polymorphisms in the COL1A1 gene, particularly a 

SNP affecting the Sp1 binding site in the first intron of the COL1A1 gene (+1245; G/T; 

rs1800012), have been associated with lower bone mineral density and osteoarthritis (Lian 

et al., 2005a, Kuivaniemi et al., 1997, Jin et al., 2009, Liu et al., 2004a, McGuigan et al., 

2000, Tran et al., 2009, Van Pottelbergh et al., 2001, Jin et al., 2011), as well as being 

implicated in the disease osteogenesis imperfecta (OI), which is characterised by fragile 

collagen structures (Hasegawa, 2010, Mann et al., 2001, Barbirato et al., 2009). 

Additionally, a point mutation in the COL1A2 gene (nucleotide position 1121) that 

substitutes serine or cysteine for glycine residues (C-to-T transition and G-to-T 

transversion, respectively), also leads to the OI phenotype (Trummer et al., 2001). 

Consequently, sequence variants such as these and others, may be less clinically applicable 

but may still be associated with the risk of incurring soft tissue injuries. Indeed, 

associations have been reported between SNPs in the COL1A1 gene at the intronic Sp1 

transcription factor binding site, and the risk of cruciate ligament ruptures and shoulder 

dislocations, (Khoschnau et al., 2008, Posthumus et al., 2009), as well as upper limb 

muscle strength in elderly men (Van Pottelbergh et al., 2001). These associations may be 

mediated through reduced Col 1 content or a weaker form of Col 1, but as of yet no genetic 

association has been made with tendon pathologies or tendon properties. 

 

Possible influences on tendon properties  

No association has yet been reported between variation in the COL1A1 gene and tendon 

pathologies or properties. It is known that a SNP within the intronic Sp1 binding site 

(rs1800012) increases transcriptional activity of the COL1A1 gene, resulting in abnormal 

ratios of the α1 (1) protein relative to α2 (1), which possibly gives rise to weaker 

homotrimers being formed (three α1 (1) chains) instead of the conventional heterotrimers 

(two α1 (1) and one α2 (1) chains) (Mann et al., 2001). It has also been reported that two 

polymorphisms in the proximal promoter region of COL1A1 are in linkage disequilibrium 

with the Sp1 polymorphism, (Garcia-Giralt et al., 2002) and in fact form an extended 

haplotype with the Sp1 polymorphism to regulate COL1A1 transcription. This is achieved 

by affecting the binding affinity of important regulating factors, such as Sp1, with the ‘T’ 

allele at the Sp1 binding site, found to have a higher DNA binding affinity than the ‘G’ 

allele (Jin et al., 2009). Consequently, individuals who carry a ‘T’ allele instead of a ‘G’ at 

this SNP, highly express COL1A1, and thus, possess a greater proportion of the weaker α1 

homotrimers, and so may be more likely to have a compromised tendon internal structure. 
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It has also been suggested that overproduction of Col 1 α1 chains in tendon might result in 

a higher tensile strength, (Khoschnau et al., 2008) although that statement contradicts the 

mechanism just outlined and is not expanded upon by the authors. 

 

It is unlikely that tendon properties are affected solely by the Sp1 polymorphism of intron 

1 of the COL1A1 gene. It is more likely that the extended haplotype influences the 

transcription of COL1A1 (Jin et al., 2009) and the material quality of the Col I fibril, with 

individuals carrying a ‘T’ allele at the Sp1 polymorphism ultimately producing higher gene 

activity, which might contribute to a more adversely affected Col I fibril. In 

consummation, other genes and their respective SNPs such as those already reviewed in 

this thesis need to be considered at the same time. 

 

1.8 Overview 

The majority of research in human genetics and its association with tendon phenotypes 

focuses on tendinopathies. One research group from South Africa led by Malcolm Collins, 

have been working on identifying genes and alleles important for such phenotypes, 

including ROM and endurance running performance. However, on one hand it must be 

emphasised that few genes/gene variants have been conclusively identified as key 

contributors to these traits, and indeed this is true for all health and fitness phenotypes 

(Roth, 2007). This suggests that tendon phenotypes are likely to be polygenic and concurs 

with the expectation that a multitude of genes, their associated proteins, and their complex 

heterogeneous interactions are required to maintain normal tendon structure and 

homeostasis, through development and regeneration. Therefore, it is likely, even after 

controlling for other non-genetic parameters such as sex, age and habitual physical activity, 

that the intrinsic material (structural and regulatory) and mechanical properties of a tendon 

are influenced by polygenics. On the other hand, association studies are a major tool for 

identifying gene/gene variants for complex traits, particularly when constructing 

multifactorial models. These models will not only better our understanding of molecular 

mechanisms involved in such phenotypes, but could also be of practical importance for 

clinicians and other health and fitness-related professionals, to develop personalised 

interventions. However, investigations into genetic factors involved in their aetiology, thus 

far, are very much in their infancy (Lippi et al., 2010). 

 

The efficacy of association studies is undermined mainly due to pitfalls and problems in 

the design of such studies, which translates into the non-replication of significant findings. 
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These inherent issues include systematic errors leading to false-positive results, lack of 

power to detect true associations due to inadequate sample sizes, heterogeneity between 

studies in terms of imprecise classification of subjects and phenotypes, as well as 

heterogeneity across studies relating to population stratification (Lewis and Knight, 2012). 

Therefore, caution must be taken when interpreting the findings of these genetic 

association studies, yet these issues can be addressed sufficiently to justify the continual 

preferences of conducting such studies. For example, by beginning to assess the heritability 

of specific tendon phenotypes intra-ancestrally by conducting twin-family studies, the 

strength of these relationships can be enhanced and quantified, which has not yet been 

done. 

 

Regarding the ECM proteins reviewed extensively within this thesis at a protein, gene and 

SNP level, it appears they do not act as one single entity but subtly interact to form 

interlinked structures (refer to Figure 14) and govern dynamic processes within the ECM. 

Notably, Col V fibrils combine with Col I fibrils to regulate the diameter of the fibres (Birk 

et al., 1990) with TNC playing an invaluable role in regulating the proper alignment and 

organisation of the collagen fibres (Jarvinen et al., 2000). MMP3 may degrade minor 

collagens such as Col V, which may alter the cross-linking and stabilisation of the tendon 

structure (Matrisian, 1990). And lastly, an improved collagen organisation and cross-

linking density was observed with the addition of GDF5 (Maruhashi et al., 2010b, Hogan 

et al., 2010). The common theme in these associations is the integrity of the collagen fibre 

in conjunction with organisation, diameter and cross-linking, all of which have been linked 

to tendon properties such as tendon matrix stiffness (Parry, 1988, Birch, 2007). 

 

It is therefore reasonable to suggest that variants in genomic DNA sequence within these 

and other relevant proteins are likely to contribute to observed phenotypic variations in the 

tendon, most notably the mechanical properties, which may have implications for physical 

performance capabilities and the risk of incurring musculoskeletal injuries. However, no 

study has yet attempted to investigate genetic influences upon tendon properties per se in 

an asymptomatic population. 
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1.9 Future considerations for thesis 

When investigating a gene variant’s influences on tendon properties, it is important to 

negate factors other than genetics that are likely to contribute to tendon phenotypes. To 

establish a valid and reliable association between a gene variant and tendon mechanical 

properties, experimental error must be minimised and appropriate phenotype 

measurements utilised, which has not been adequately achieved in the previous genetic 

association studies investigating flexibility (Collins et al., 2009, Brown et al., 2011b). It 

would be more appropriate to measure the overall stiffness of the muscle-tendon unit to 

assess flexibility using for example, passive isokinetic dorsiflexion adopted by Morse et al. 

(2008) to assess the human gastrocnemius muscle-tendon unit. This comprehensive in vivo 

assessment utilises techniques such as dynamometry, electrogoniometry, 

electromyography (EMG) and ultrasonography. The mechanical properties of the tendon 

itself can be assessed in vivo, which would be in line with the objectives of associating 

genetics with tendon properties. A thorough and highly reliable assessment is detailed by 

Pearson and Onambele (2006) with respect to the tendon compliance of the patella tendon, 

in that dynamometry, EMG and ultrasonography were utilised as well as the force-

displacement relationship to calculate tendon mechanical stiffness. Therefore, an accurate, 

reproducible and non-invasive assessment of tendon properties in vivo is required to 

maximise the ability to detect a genetic contribution to the interindividual variability in 

mechanical properties of human tendon. 

 

From a genetic perspective, genotyping all candidate genes and gene variants discussed 

above would be ideal, although this is not possible due to logistics relating to time, expense 

and technologies available. The highest priority candidates are COL5A1 rs12722 and 

MMP3 rs679620, rs591058, and rs650108, for examination in relation to the main 

phenotypes ((tendon structural properties (volume), tendon functional properties (Young’s 

Modulus)). The selection of these specific polymorphisms was based on; (1) greater 

frequency of association with tendon phenotypes, particularly true of COL5A1 rs12722, 

with tendinopathies, ROM, and endurance running performance. All three MMP3 

polymorphisms were independently associated with chronic tendinopathies; (2) increased 

probability of them being functional, a higher number of gene transcription analyses have 

been conducted for COL5A1 and MMP3 genes; (3) the correlation with potential causal 

variants (linkage disequilibrium), high genetic linkage between the three MMP3 

polymorphisms, as well as between other polymorphisms in the MMP3 gene and flanking 
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sequences; (4) novel gene-gene interactions relating to tendinopathies between COL5A1 

rs12722 and MMP3 rs679620 polymorphisms. 

 

All in all, testable hypothesis-driven research questions can be established in relation to 

these SNPs independently, and when combining the alleles to form inferred haploypes, 

with tendon properties, based on established physiological theory discussed in great detail, 

in the preceding sections of this literature review. Statistical approaches will determine 

whether the SNPs independently or combined, are associated with the independent 

parameters, describing the structural and mechanical properties of tendon.  

 

1.10 Aims of the thesis 

A clearer picture of how to go about investigating the potential associations of key gene 

variants within genes which perform structural and regulatory functions in tendon, and 

definitive tendon phenotypes (i.e. in vivo structural and mechanical properties) was 

established via the interpretation of the literature in both research areas. Therefore, the 

overall aim of the work described in this thesis was to determine some of the genetic 

factors that contribute to independent parameters describing the structural and mechanical 

properties of tendon. Specific aims were: 

 

1. To determine whether the COL5A1 rs12722 gene variant and MMP3 rs679620, 

rs591058 and rs650108 gene variants are associated with tendon properties in a 

asymptomatic male and female population 

 

2. To determine whether allele combinations deriving from these gene variants 

associate with tendon properties 

 

These aims are integrated into the following section which provides an overview of each of 

the experimental chapters in this thesis. 

 

1.11 Overview of the experimental chapters 

In chapter 3, the main aim of the study was to investigate the discrete associations between 

genetic variations in the COL5A1 (rs12722) gene on tendon structural (volume) and 

functional (modulus) properties independently, and combined (z-scores), in asymptomatic 

men. It was hypothesised that an association would exist between the genetic variation and 

tendon properties. 
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The main purpose of the study described in chapter 4, was to determine whether sex (via 

the influence of relatively higher oestrogen in females) influences the ability to conduct 

research into tendon properties in asymptomatic individuals, and whether similar 

genotype-phenotype associations exist between the COL5A1 rs12722 gene variant and 

parameters of tendon properties described for chapter 3, in women as in men. It was 

hypothesised that research of this kind is possible in women and that similar genotype-

phenotype relationships would exist in women as in men. 

 

In chapters 5 and 6, the research design was applied in a similar manner to that in chapters 

3 and 4, although the genetic variation under investigation was within the MMP3 gene and 

included three common gene variants, one within exon 2 (rs679620) and two, within 

introns 4 (rs591058) and 8 (rs650108). Chapter 5 was exclusively investigating these 

associations in males, and chapter 6, in females only. 

 

In chapter 7, a polygenic profile and its association with tendon properties, including 

structure (volume), mechanics (modulus), and both in combination (z-scores) were 

assessed. It was hypothesised that a polygenic approach that included gene variants within 

the COL5A1 and MMP3 genes investigated in the preceding chapters, would collectively 

account for a greater proportion of the interindividual variability in tendon properties, than 

would be possible via a single gene variant approach. 
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Chapter 2. 

 

 

 

 

 

 

General Materials & Methods 
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2.1 Participants 

From the initial screening phase (See Appendix 4 for methods utilised for subject 

recruitment), 160 recreationally active volunteers were recruited (100 males and 60 

females). A general health questionnaire was used to screen volunteers, and they were 

excluded for the purposes of the study if they: were not of white Caucasian origin; were 

highly trained (over three structured training sessions on the lower limbs a week); were 

sedentary with no or irregular activity; had any current musculoskeletal problems 

especially of the knee; were aged under 18 or over 40 years; were using local or systemic 

steroids; were diabetic; smoke the equivalent of more than 10 cigarettes a day for at least 

one year; regular users of medication including anti-inflammatory drugs; had blood 

disorders; or had a body mass index (BMI) under 18.5 or over 30. With female 

participants, they were excluded from the study if they were pregnant or were using any 

form of hormone-based contraception. Accounting for as many non-genetic or 

environmental factors as possible, was crucial in allowing the greatest opportunity for 

defining phenotype differences due to genetic factors. The final screening phase provided a 

selective group of individuals based on their genetic profiles. 

 

The final screening phase related to the genotyping of the four gene variants (COL5A1 

rs12722, MMP3 rs679620, rs591058, rs650108) for each participant. For inclusion in the 

full range of tests of tendon properties, the participants were selected based on their genetic 

profiles for these four gene variants. By ‘stressing the genotype’ (Montgomery et al., 

2002), the genetic and potentially the phenotypic differences between the groups of 

individuals, could be maximised. This approach provided a model that may optimise the 

study of genetic variation at the SNPs in the COL5A1 and MMP3 genes. An algorithmic 

model provided a prediction of the number of participants from the larger groups (100 

males and 60 females), optimised for the phenotypic tests (refer to Appendix 1). 

Approximately 45 participants in each group of males and females would provide a high 

proportion of homozygotes (3 to 4 out of a total of 4 gene variants).  

 

Forty-five males and thirty-nine females took part in the full range of tests for tendon 

properties (characteristics shown in Table 4) by virtue of their high proportion of 

homozygosity for the four gene variants under investigation (see Table 5). Due to the 

initial sample size of the females being significantly lower than anticipated (n = 60), 

females displaying homozygosity for two gene variants were also recruited for the 

phenotype measures (n = 10), so to meet the minimum sample sizes required to detect 
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significant differences in phenotype measures, as determined by power calculations 

described above. 

 

Participants gave their written consent to participate in the study which conformed to the 

latest revision of the Declaration of Helsinki and was approved by the Manchester 

Metropolitan University Ethics Committee (Refer to Appendix 5). 

 

Table 4. Physical characteristics of participants  

 Males (N = 45) Females (N = 39) 

 Mean (SD) Range Mean (SD) Range 

Age (years) 22.9 (3.3) 19-32 22.4 (4.8) 18-39 

Height (cm) 179 (7) 157-191 166 (6) 153-183 

Body mass 

(kg) 

78.3 (10.9) 58.4-99.0 63.8 (9.0) 47.4-80.1 

BMI (kg/m
2
) 24.6 (2.6) 20.4-29.8 23.2 (2.8) 18.8-29.8 

Data is expressed as mean (standard deviation) 

 
 

Table 5. Proportion of homozygosity of the participants involved in genotype-phenotype 

investigations for the four gene variants  

Males (N = 45) Females (N = 39) 

Proportion of homozygosity Proportion of homozygosity 

Homozygote for 

all ‘4’ gene 

variants 

Homozygote for 

‘3’ gene variants 

Homozygote 

for all ‘4’ 

gene 

variants 

Homozygote 

for ‘3’ gene 

variants 

Homozygote 

for ‘2’ gene 

variants 

14 31 10 19 10 

 
 
 

2.2 Measurement of tendon structural and mechanical properties 

Measurement of maximal patellar tendon isometric force 

All measurements of torque were carried out on an isokinetic dynamometer (Cybex, 

Phoenix Healthcare, UK). The knee was fixed at 90º flexion (full extension = 0º) and hip 

angle at 85º (supine position = 0º). The centre of rotation of the dynamometer lever arm 

was aligned with the knee joint centre and straps were positioned at the hip, shoulders and 

over the left thigh to prevent any extraneous movement. All measurements were performed 

on the left lower limb. A lever attachment cuff was placed on the lower leg above the ankle 

joint at a length corresponding to 15% the distance from the lateral tibial condyle to the 

lateral malleolus, for each participant. Participants were instructed to perform ramped 
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isometric knee extensions to maximum over a 5-7 s period. Maximal tendon force was 

calculated as described previously (Equation 2), (Pearson and Onambele, 2006, Onambele-

Pearson and Pearson, 2007). 

 

Equation 2: FMax = (OT + CcT) / PTMA 

 

Where FMax is the maximal tendon force, OT the observed maximal isometric knee-

extensor torque (i.e. the measured torque during testing), CcT the knee flexion torque of 

the hamstrings during knee extension (antagonist co-contraction torque) (see section 

immediately below for the calculation of the latter), and PTMA the patellar tendon moment 

arm (see sections below for measurement).  

 

Estimation of co-contraction using electromyography 

Electromyographic (EMG) activity was assessed from the long head of the biceps femoris 

(BF) muscles (representative muscle of the knee flexors) to correct for co-activation during 

the isometric knee extension excursions. A pair of self-adhesive Ag-AgCl electrodes ~15 

mm in diameter (Ambu Neuroline 72000-S/25, Ballerup, Denmark) was placed in a bi-

polar configuration with a constant inter-electrode distance of ~20 mm, at a site 

corresponding to the distal one-third of the length (Zipp, 1982) in the mid-sagittal plane of 

the BF muscle. The reference electrode was placed on the lateral tibial condyle. Electrode 

placement was always preceded by shaving, abrading and cleansing with an alcohol-based 

tissue pad to minimise skin impedance to values below 5 kΩ. The raw EMG signal was 

collected at a frequency of 2000 Hz, pre-amplified (x 2000) and band pass filtered between 

500 and 10 Hz by the same system that processes the torque data (Acknowledge, Biopac 

Systems, Santa Barbara, CA, USA), and displayed in real-time on the same output graph 

(iMac, Apple, California). The video, EMG and torque traces were time locked with a 

synchronising signal triggered at the start of each measurement. The reported EMG 

activity corresponds to the root mean square (RMS) after correcting for baseline values. A 

series of three maximal isometric flexion contractions were carried out to obtain the EMG 

at a knee joint angle of 90º. The RMS EMG activity corresponding to the peak torque 

period was analysed and averaged for a 500 ms period during the plateau of peak torque 

(i.e. 250 ms either side of the instantaneous peak torque). As alluded to previously, the 

EMG of the long head of the BF was measured to ascertain the level of antagonist muscle 

co-contraction during isometric knee extension performances. The maximal activation of 

the BF when acting as an agonist during the knee-flexion contraction was calculated in a 
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manner similar to the methods described by Reeves et al. (2003), where the BF EMG 

activity during knee extension is divided by the BF peak flexor EMG at 90º knee flexion. 

The maximal flexor torque of the hamstrings was then multiplied by this value to 

determine co-contraction torque (Equation 3). These calculations are based on the 

assumptions that BF is representative of its constituent muscle group (Carolan and 

Cafarelli, 1992) and BF EMG relationship with knee flexor torque is close to linear 

(Lippold, 1952). The co-contraction torque values can then be used to correct the 

maximum voluntary knee extension torques (Equation 4) during the ramped knee 

extension contractions.  

 

Equation 3: CcT = (MaxTham × EMGham_KE) / EMGham_KF 

 

CcT is the co-contraction torque, MaxTham is the maximum torque of the hamstrings, 

EMGham KE is the EMG of the BF during knee extension MVC, and EMGham KF is the EMG 

of the BF during knee flexion MVC. 

 

 

Equation 4: CT = MVC KE + CcT 

 

Where CT equates to corrected knee-extensor torque, MVC KE is the maximum torque of 

the knee-extensors, and CcT the co-contraction torque (CcT is calculated above). 

 

Measurement of patellar tendon displacement 

Patellar tendon displacement was determined using real-time B-mode ultrasonography 

(AU5, Esaote, Biomedica, Italy) set to a depth resolution of 49.3 mm, during a ramp 

isometric knee extension performed over 5-7 s with the knee fixed at 90º flexion, and 

either a) patella proximal (inferior pole of the patella) or b) tibia distal (tibial tuberosity) 

excursions. Measurements were taken at a consistent time of day, i.e. early afternoon, to 

avoid confounding the measures between subjects, as it has been reported that there are 

trends for time-of-day variability in tendon stiffness (Pearson and Onambele, 2006). 

Measurements were also taken after five preconditioning contractions to ensure 

reproducibility (Maganaris, 2003). The ultrasound probe (7.5 MHz linear array probe, 40 

mm wide) was positioned in a sagittal plane over the patellar tendon at the above 

mentioned anatomical points of interest, on an echo-absorptive external marker fixed on 

the skin, which acted as a fixed reference from which relative measures of displacement 
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could be made. Any movement of the line cast by the external marker during contraction-

relaxation on the ultrasound image, indicated movement of the probe with respect to the 

patellar tendon as well as the skin (see Figure 15 A and B), and this data would therefore 

be omitted from further analysis. This method has been used in numerous research papers 

and is reported to have high reliability (e.g. (Pearson and Onambele, 2006, Kubo et al., 

2001d, Reeves et al., 2003a). Tendon displacements were determined at intervals of 10% 

of the maximal force (from 10-100%) using digitising software (Kinovea, version 0.8.15, 

Joan Charmant & Contributors, France), consistent with others (Onambele et al., 2007) 

Three MVC of the knee extensors were recorded for both the proximal (patella) and distal 

(tibia) displacements, but only the highest force excursions of each were utilised for the 

calculations of total tendon displacements (sum of tibial and patellar displacements) and 

subsequent tendon stiffness measures for each participant. 
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Figure 15. Sagittal-plane scans of the patella tendon at rest (above), and at maximal 

tendon force (below). Arrows indicate; A: proximal displacement of the apex of the 

patella. B: distal displacement of the tibial tuberosity, during contraction with 

respect to an echo-absorptive external marker fixed on the skin; A: distal to B: 

proximal to, the displacement (large arrow). 

 

A 

B 
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Measurement of patellar tendon moment arm length    

Patellar tendon moment arm length (PTMA) was measured from an 11 s sagittal scan of 

the left leg of each participant at rest, using a single, low-energy x-ray beam (0.9μSv), 

DEXA (Dual X-ray Absorptiometry) scan (Hologic QDR, Vertec, Reading, UK). The scan 

penetrates bone and soft tissue areas to a depth of approximately 30 cm. For the imaging 

limb, the participant lay on their side with the hip and knee flexed at 90º aided by a 

goniometer, whilst the contralateral limb was placed straight, so that the source detector 

probes could pass across the knee within a 20 cm scanning window. The PTMA was 

defined as the perpendicular distance from the patellar tendon to the midpoint of the 

distance between the estimated tibio-femoral contact points in the lateral and medial 

femoral condyles (See Figure 16 A and B) (Baltzopoulos, 1995, Tsaopoulos et al., 2006). 

Reliability measurements with the previously validated MRI for measuring PTMA 

indicates a very strong relationship with DEXA (r² = 0.962, P = 0.001, unpublished data 

from our labs). 

 

 

 

 

 

 

 

 

 

 

Figure 16. A: Diagrammatic representation of the measurement for PTMA using 

the tibio-femoral “contact point”. TFCP is the tibio-femoral contact point, d is the 

PTMA (Tsaopoulos et al., 2006). B: DEXA scan with measurement 1 showing the 

length of the patellar tendon, and measurement 2 is the PTMA (unpublished figure 

from our laboratory) 

A B 
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Calculation of patellar tendon stiffness 

Patellar tendon stiffness (K, N·mm
-1

), was calculated from the slope of the tangents of the 

force-displacement relations (at 10% force intervals), which were fitted with a second-

order polynomial function forced through zero (see Figure 17). The 10% force intervals 

derive from the estimated maximum force (FMax) experienced by the tendon during the 

ramped MVC (See Equation 2). The displacement of the tendon was measured as 

described previously. In addition, to allow for stiffness comparisons at an absolute load 

across populations, tendon stiffness was also calculated at a standardised force level which 

corresponded to just under the maximum baseline value of the weakest person (male = 

1067.2 N, female = 1033.9 N). 

 

 

 

 

 

 

 

Figure 17. Model data sets described by a second degree polynomial curve. Tendon 

stiffness can be calculated at every 10% force interval from the force-displacement 

relations. Model 1 represents a stiff tendon, Model 2 - a mid-range stiffness tendon, 

and Model 3 - a compliant tendon (Pearson and Onambele, 2012) 
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Calculation of Young’s Modulus 

Patellar tendon cross-sectional area (PTCSA) and patellar tendon length (PTL) were 

measured in the resting state at a knee joint angle of 90º. PTCSA was determined from the 

mean of transverse-plane ultrasound images taken at 25, 50 and 75% of patellar tendon 

length, and processed using digitising software (Image J, National Institute of Health, 

Bethesda, MD, USA). PTL was assessed from sagittal-plane ultrasound images and 

measured from the inferior pole of the patella to the superior aspect of the tibial tuberosity. 

Young’s Modulus (GPa) was calculated by multiplying the calculation of K by the ratio of 

PTL to PTCSA (E = K × (PTL ÷ PTCSA). 

 

Calculations of tendon strain and tendon stress 

Tendon strain (%) was calculated as the ratio of tendon displacement to PTL. Tendon 

stress (MPa) was calculated by dividing tendon force by PTCSA. 

 

Calculation of tendon volume 

Patellar tendon volume was calculated by geometric principles assuming a uniformly 

tapering truncated cone between measurement positions (i.e. the product of PTCSA at the 

three sections of the tendon, 25, 50, 75%, and PTL). Because three sections of the tendon 

are included in the measurement, separate measurements were made for top and bottom 

cones but overall volume is the sum of both calculations. Equation 5 was used to calculate 

tendon volume (Vt): 

 

Equation 5: Vt
 
= [(A25 + A50) + (A25 × A50)

0.5
 + (A50 +A75) + (A50 × A75)

0.5
] × h / 2 

 

Where A25 
 
and A50 are areas at the 1

st
 and 2

nd
 sections of the tendon (first cone) and A50  

and A75 are the areas at the 2
nd

 and 3
rd

 sections of the tendon (second cone), and h is the 

height of each cone (i.e. ¼ of the total length of tendon). Anthropometric measures of 

muscle and tendon tissue have been modelled using truncated cone geometry in previous 

studies (Jones and Pearson, 1969, Fuller et al., 1999, Tothill and Stewart, 2002). 
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2.3 Genetic analysis 

Sample collection 

To obtain large amounts of genomic DNA, buccal cell samples were collected in duplicate 

from each participant. This method of collection brings a new perspective to obtaining 

DNA (Saab et al., 2007), it is not as invasive as blood-taking so is better tolerated by 

participants, and the procedure has low cost. The participants providing the buccal cell 

samples were instructed to refrain from eating or drinking within one hour of giving the 

sample. The investigator wore biohazard-barrier gloves and care was taken to avoid 

contact with the OmniSwab collection tip (Whatman Sterile OmniSwab, GE Healthcare, 

USA). Participants were instructed to brush the swab firmly against the inside of the cheek 

for 30 s. The second swab was collected from the opposite side of the mouth. After each 

sample was taken, the collection tip was ejected by firmly pressing the plunger at the end 

of the handle into a 2 mL microcentrifuge tube. Tubes were labelled and coded to ensure 

participant anonymity. The samples were immediately stored in a freezer at -20ºC until 

DNA extraction. 

 

DNA extraction 

Genomic DNA was extracted from buccal swab samples using the Qiagen QIAcube spin 

column protocol in accordance with the manufacturer’s instructions (Qiagen, West Sussex, 

UK). All necessary buffers for DNA extraction were supplied in the Qiagen DNA blood 

Mini kit (Qiagen, West Sussex, UK). Briefly, buccal cells from the collection tip were 

heated to 56ºC in the QIAcube incubator for 10 min and lysed using Qiagen protease 

enzyme and briefly centrifuged, leaving ~ 900 µL of buccal swab lysate. The lysate was 

transferred to fresh 2 mL microcentrifuge tubes so that the purification phase could follow. 

This involved further centrifugation of the lysate at 8000 rpm for 60 s, and the addition of 

200 µL of ethanol. The DNA was then free to bind to a silica-gel membrane and impurities 

were washed away following three further buffer centrifugation cycles, and the remaining 

was eluted into 200 µL low salt buffer within a 1.5 mL collection tube (Microtube 1.5 mL 

Safety Cap, Sarstedt AG & Co, Numbrecht, Germany) (See Figure 18). A maximum of 12 

samples could be processed in this automated Qiagen QIAcube process. 
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Quantification of DNA 

The concentration and purity of the sample (i.e. successful removal of protein 

contaminants) was evaluated using a biophotometer (WPA UV1101, Biochrom, 

Cambridge, UK). Briefly, ~12 µL of the DNA sample was pipetted into a glass cuvette, the 

absorbance readings of ultra-violet light at wavelengths of 260 nm (optimal absorption 

wavelength of DNA) and 280 nm (optimal absorption wavelength of aromatic amino acids 

present in protein) were performed and the ratio of absorbance at 260 nm divided by the 

reading of 280 nm was determined. Good quality DNA will have a ratio of 1.7-2.0 (Glasel, 

1995); however any samples that were within 0.1units outside of this ratio range were also 

used for processing. Nevertheless, the best test of DNA quality is whether you achieve 

good results when determining the genotypes (e.g. real-time PCR-see below), so the 

Figure 18. Summary of processes 

involved in DNA extraction from 

lysis to elution (QIAamp DNA 

Mini and Blood Mini Handbook, 

2010) 
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remaining ~ 190 µL DNA sample was stored at 4ºC until genotyping analyses were 

performed. 

 

Genotyping 

COL5A1 genotyping 

The COL5A1 rs12722 genotype was determined using fluorescence-based TaqMan 

technique of polymerase chain reaction (PCR), based on the amplification of a fragment of 

genomic DNA overlapping the COL5A1 rs12722 polymorphism, within the 3’ untranslated 

region (UTR) of the COL5A1 gene. Flanking primers and allele-specific probes specific to 

this SNP were used (obtained from Applied Biosystems Inc, UK). Forward primers were 

used to identify the starting point of the fragment and the reverse primer was used to 

identify the end point of the fragment of DNA to be amplified. Allele-specific probes to the 

C allele (VIC) and T allele (FAM) (obtained from Applied Biosystems Inc, UK) attached 

to their respective complementary sequences and emitted a fluorescent dye signal that 

could be recognised by the PCR machine. 

 

The PCR assay volume within any given well of a 96 well PCR plate (Bio-Rad 

Laboratories Ltd, Herts, UK) was 10 µL, which contained 1 µL of purified DNA sample, 

and 5 µL of 2X TaqMan genotyping master mix. The master mix contained AmpliTaq 

Gold DNA polymerase, deoxyribonucleotide triphosphates (dNTPs), ROX Passive 

reference (an internal reference for reporter dye signal) and buffers (optimised for tight 

endpoint allelic discrimination) (Applied Biosystems Inc, UK). In addition, 0.5 µL of 20X 

SNP genotyping assay (Applied Biosystems Inc, UK) containing two primers and two 

probes (specific for the COL5A1 rs12722 polymorphism), and 3.5 µL of nuclease-free H2O 

(Qiagen, West Sussex, UK), contributed to the total PCR assay volume. Samples were run 

in duplicate to ensure minimal risk of genotyping errors, which can otherwise negatively 

affect the statistical power of genetic-association studies (Tintle et al., 2009). The PCR 

plate was sealed using Microseal ‘B’ Adhesive seals (Bio-Rad Laboratories Ltd, Herts, 

UK) and run on a Chromo4 Real-Time PCR Detection System (BioRad Laboratories Ltd, 

Herts, UK) for a total of 40 cycles of: 10 min at 95ºC to activate the DNA polymerase, 

denaturing at 95ºC for 15 s, primer annealing and extension at 60ºC for 60 s, and plate 

read. Genotypes were determined by endpoint fluorescence of VIC and FAM signals using 

the Chromo4 PCR machine, and results were analysed using Opticon Monitor Software 

(3.1.32: BioRad Laboratories Inc, Herts, UK). An example result is displayed in Figure 

19A, with a high VIC/FAM ratio indicating a CC homozygote. 
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A: COL5A1 genotype B: MMP3 rs591058 genotype 

C: MMP3 rs679620 genotype  D: MMP3 rs650108 genotype  

Figure 19. Example results of COL5A1 rs12722 (A), MMP3 rs591058 (B), MMP3 

rs679620 (C), and MMP3 rs650108 (D) genotypes, following PCR. Values for VIC 

and FAM (each emits a fluorescent dye signal when bound to complementary 

sequences) represent end-point values after 40 PCR cycles. 
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MMP3 genotyping 

The three MMP3 variants were genotyped using a modified version of the TaqMan PCR 

technique described above for the COL5A1 rs12722 assay. Briefly, the PCR reaction 

volume was 10 µL, containing 1 µL of purified DNA sample, 5 µL master mix, 3.5 µL 

H2O and 0.5 µL 20X SNP genotyping assay containing primers and probes, specific to the 

MMP3 rs591058, rs679620 and rs650108 polymorphisms (Applied Biosystems Inc, UK). 

Amplification of the samples was determined as described for the COL5A1 genotyping and 

example results are shown in Figure 19. B, C, D. A high VIC : FAM ratio indicates a CC 

homozygote for MMP3 rs591058, GG homozygote for MMP3 rs679620, and AA 

homozygote for MMP3 rs650108. 

 

2.4 Oestradiol measures 

Following the measures of tendon properties, female participants only, reported to the 

biochemistry laboratory. A trained phlebotomist inserted a 21-gauge 25mm ultrathin wall 

needle (Terumo Medical Corporation, New Jersey, USA), into a superficial forearm vein. 

Using a syringe and serum separator tubes containing anti-coagulant (EDTA) (Sarstedt 

Monovette-Red cap, Numbrecht, Germany), 5 mL blood samples were collected. After 

being kept on an ice-bed for approximately 30 minutes, the sample was then centrifuged at 

2-5°C for 10 min at 4100 rpm, with the supernatant of whole blood being extracted (~ 2 

mL) and stored in two separate 1.5 mL microcentrifuge tubes (~ 1 mL in each) at -20°C, 

for later analyses. 17ß-oestradiol (E2) in the serum of the females was quantitatively 

determined using standard enzyme-linked immunosorbent assay (ELISA) procedures 

(Alpha Diagnostic International, San Antonio, USA; minimal detectable conc. of ~ 10 

pg/mL, intra-assay precision of 9.87%, inter-assay precision of 10.11%). 

 

Principle of the test and assay procedure 

ELISA is based on the principle of competitive binding between endogenous E2 of the 

participants’ samples and E2-Biotin-Avidin Horse-Radish Peroxidise (HRP) conjugate, for 

binding to a constant amount of an antibody (anti-Oestradiol polyclonal rabbit antibody), 

directed towards a unique E2 antigenic site on the molecule. 

 

A 96 microwell plate (Alpha Diagnostic International, San Antonio, USA) was used to 

secure 39 samples, 6 standards of known quantity (ranging from 0-3200 pg/mL), 2 controls 

(‘LOW’=230-450 pg/mL and ‘HIGH’=750-1250 pg/mL) and 1 blank (dH2O), all ran in 

duplicate concurrently so that all conditions of testing were the same. Firstly, 200-300 µL 

(Raleigh et al., 2009) – Delete this table 
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of wash buffer (Alpha Diagnostic International, San Antonio, USA) was dispensed into all 

wells and then removed, so that 50 µL of the E2 standards, controls and samples could be 

dispersed into the appropriate wells coated with the antibody. An incubation period of 60 

min at room temperature followed to allow 100 µL of the HRP labelled E2 (Alpha 

Diagnostic International, San Antonio, USA) to compete with the endogenous E2 in the 

standard, sample, and control serum, for a fixed number of binding sites of the specific E2 

antibody. After incubation, unbound E2-HRP conjugate was removed by briskly shaking 

out the contents of the wells and rinsing the wells three times with diluted wash solution, 

interspersed each time with the sharp striking of the wells on absorbent paper to remove 

residual droplets. The premise in this instance is that the amount of the E2-HRP conjugate 

immunologically bound to the well progressively decreases as the concentration of E2 in 

the samples increases. Next, 150 µL of TMB HRP substrate solution (Alpha Diagnostic 

International, San Antonio, USA) was added to each well and a further incubation of 15 

min at room temperature followed, which resulted in the development of blue colour from 

the enzymatic reaction. The colour development was stopped with the addition of 50 µL of 

TMB stop solution containing 0.5 mol/L of H2SO4 (blue colour turns yellow) (Alpha 

Diagnostic International, San Antonio, USA).  The absorbance of each well was measured 

spectrophotometrically using a plate reader (Biotek Instruments Inc, Winooski, USA) at 

450 nm within 10 min of adding the stop solution. The intensity of the colour formed 

(yellow colour) is inversely proportional to the amount of E2 in the samples.  

 

Calculation of results 

By plotting the concentration of each of the six standards against the absorbance, a 

standard curve was constructed (Figure 20). The mean absorbance value of each sample 

and control was determined concurrently with the corresponding concentration from the 

standard curve, using Gen5 data analysis software (Biotek Instruments Inc, Winooski, 

USA). The concentration of the samples was read directly from the standard curve. 
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In order to standardise the E2 concentrations for all females to the same day of the 

menstrual cycle (day 1), further calculations were made with reference to range data for 

normal cycling women with similar characteristics to the females within this study (i.e. age 

range 20-36 years, no use of contraceptives) (Stricker et al., 2006). Table 6 displays the 

results of the oestradiol analyses for the female participants in this study.  

 

Table 6. Standardised oestradiol levels for day one of the menstrual cycle for all female 

participants in this study.  

Values are expressed as mean (standard deviation) 

 

 

 

 FEMALES (N=39) 

Mean (SD) 

Oestradiol (pg/mL) on day 1 34.70 (27.95) 

Figure 20. A standard curve constructed from our own laboratory data based on 

absorbance at 450nm vs. standard E2 concentrations.      represents the mean 

absorbance values of the standard E2 concentrations.     represents both absorbance 

values read at each E2 concentration   
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2.5 Statistical analyses 

All data were analysed with SPSS version 19.0.0. Before commencing any statistical 

analyses on the data obtained, parametricity tests checks were performed to determine 

whether the population was normally distributed and there was equal variance 

(homogeneity) in the variables of interest (Young’s Modulus and volume). The 

homogeneity of variance was assessed using Levene’s statistic. If the data set did not meet 

the assumptions of a parametric measurement scale, i.e. the data were not normally 

distributed, and the variance of the data sets was not equal (Williams and Wragg, 2004), 

then the appropriate non-parametric statistical tests were conducted. The Kruskal-Wallis 

test was performed instead of the ANOVA and the Mann-Whitney U test was performed 

instead of independent t-tests. 

 

Hardy-Weinberg Equilibrium 

Each SNP was tested for Hardy-Weinberg Equilibrium (HWE) (genotype and allelic 

associations) within each population (male and female), using a freely available software 

package (Rodriguez et al., 2009). This test was conducted before selecting individuals for 

the phenotype tests, based on a higher degree of homozygosity, in order to establish 

whether the genotype and allele frequencies were constant between this sample and the 

general population. All SNPs for each population were in HWE (P > 0.05 with 1df (one 

degree of freedom)). 

 

Statistical power to detect genotype-phenotype associations 

Once the participant subgroup had been identified based on a higher degree of 

homozygosity, for prospective correlations with the phenotype measurements, it was 

prudent to perform a-priori, statistical procedures to estimate the extent to which trait 

variation (i.e. tendon properties) is explained by particular polymorphisms. So, based on 

power calculations with alpha set at 0.05 and beta set at 0.80 and using mean and standard 

deviation data of tendon properties obtained in our lab, it was estimated that approximately 

40 of the original approximate 100 participants in both sexes would be required to 

complete the tests of tendon properties, in order to detect differences in tendon properties 

in the order of ~1-2% for tendon volume, and ~10-15% for tendon modulus. G*Power 

3.1.6 (Franz Faul, Universitat Kiel, Germany) was used to calculate sample size. 
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Differences between genotypes for the SNPs, COL5A1 rs12722 and MMP3 rs650108, and 

the continuous data, namely the Young’ Modulus (E) and the volume (mm³) of the patellar 

tendon, were determined by one-way analysis of variance (ANOVA). Where appropriate, 

and hypothesis-driven, the TT genotype group was compared to the combined TC and CC 

genotype groups of the COL5A1 SNP. Similarly, the GG genotype group of the MMP3 

rs650108 SNP was compared with the AG and AA genotypes combined, on the premise 

that the AA genotype has a low allele frequency in the population and sample. In these 

instances, independent t-tests were used to compare the two groups.  

 

In the case of the male genotype data, only two genotype groups were present for the 

MMP3 rs591058 and rs679620 SNPs, in accordance with one of the main hypothesis-

driven aims to ‘stress the genotype’, by only retaining homozygote genotype groups. 

Additionally, these two SNPs are in perfect linkage disequilibrium (LD) so ultimately they 

were analysed in combination using independent t-tests. Where data were non-parametric, 

appropriate equivalent tests were carried out (Kruskal-Wallis test for ANOVA, and Mann-

Whitney U test for independent t-tests), with values presented as median and interquartile 

range. 

 

For genotype effects on Young’s Modulus and volume, both unadjusted P values and P 

values adjusted for BMI, age, and oestradiol (in females only) were calculated where 

appropriate. Correlation analyses were used to determine any relationships between the 

variables of interest (Young’s Modulus and volume) and the aforementioned numerical 

characteristics (such as BMI, age, oestradiol). Where a significant correlation was 

determined, an ANCOVA was run with these characteristics acting as covariates on the 

data. Significance was set to P ≤ 0.05 with all data being presented as mean and standard 

deviation (SD). 

 

Z-score analyses 

To provide more stable measures of the overall impact of genotype on measures of tendon 

properties, composites were formed with unit-weighted z-scores of constituent tests 

(Ackerman and Cianciolo, 2000), i.e. Young’s Modulus and volume measures.  Z-scores 

are used to standardize scores from different groups of data such as Young’s Modulus and 

volume measures. So, in this instance, the structural (volume) and functional (Young’s 

Modulus) properties of tendon could be scaled and analysed together. Thus, the raw test 
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scores of Young’s Modulus in GigaPascals (GPa) and volume in cubic millimetres (mm³) 

were converted to z-scores using equation 6:  

 

Equation 6: z-score = (variable score-mean) / standard deviation 

 

Essentially, the z-score represents the number of standard deviations the raw score being 

converted, is from the mean. A value of ‘0’ is equal to the group mean of a particular 

variable so z-scores can be positive or negative depending on whether the unit weighted 

standard deviations are above the mean or below the mean (95% of the data should have a 

z-score between ‘-2’ and ‘+2’, if normally distributed).The complexity of data can be 

simplified and a more efficient explanation of the analyses can be presented by adding up 

the z-scores of each variable (Young’s Modulus and volume, combined). 

 

Reliability of measurements 

Reliability statistics for measures of tendon properties were computed as intraclass 

correlation coefficients (ICCs) using a two-way mixed, absolute agreement model (SPSS 

version 19.0.0). The intra-reliability (or test-retest reliability) for measuring constituent 

properties of tendon was assessed in one investigator between sessions; the repeated 

session was within 1-2 weeks of the first session for each participant. The ICC of the 

structural (volume) and functional (Young’s Modulus) properties of tendon were carried 

out on a total of five participants. However, the use of ICC to quantify reliability has been 

criticised (Bland and Altman, 1990) because the strength of the correlation is dependent on 

the range of values in the sample, and also because it is not entirely clear what value of R 

indicates ‘excellent’, ‘good’ or ‘poor’ reliability.  Therefore, together with the ICC 

measurement, the ratio limits of agreement (Nevill and Atkinson, 1997) was also used to 

detect systematic bias in the measures of tendon properties. Specifically, the absolute 

reliability or ‘agreement’ can be better detected between participants and provide a 

magnitude of disagreement between measurements on separate occasions, based on taking 

natural logarithms (Nevill and Atkinson, 1997). 
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Table 7. Reliability results showing the Intraclass Correlation (ICC) and ratio levels of 

agreement between volume and Young’s Modulus measures 

 Volume Young’s Modulus 

ICC 0.99 0.98 

 

Mean bias ratio 

 

0.998* (P = 0.62)  

 

 

1.059* (P = 0.36)  

 

Random error 

component 

×/÷1.019 ×/÷ 1.144 

Upper ratio limits 1.017 1.211 

Lower ratio limits 0.980 0.926 

*A significant correlation between test and re-test indicated by P-values (parentheses) 

 

 

When referring to Table 7, the ICC of both measurement parameters is excellent (volume- 

0.99; Young’s Modulus- 0.98); a general rule is that an ICC over 0.75 is considered good 

(Landis and Koch, 1977, Nussbaumer et al., 2010). In addition, the ratio levels of 

agreement measurement indicate that the volume re-test reliability show little bias (0.998, 

P = 0.62) and an excellent agreement ratio (×/÷ 1.019) - that is, 95% of ratios are 

constrained between approximately 1.9% of the mean bias ratio, either in a positive or 

negative direction. The Young’s Modulus re-test reliability shows little bias also, although 

not as good as the volume measure (1.059, P = 0.36) and good agreement ratio (×/÷ 1.144) 

with 95% of ratios constrained between approximately 14% of the mean bias ratio, either 

in a positive or negative direction . 
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Chapter 3. 
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3.1 Introduction 

The primary role of tendons is to transmit contractile forces from muscle to bone enabling 

movement to occur (Butler et al., 1978). Tendons are well known to operate as spring-like 

structures exhibiting elastic and force dependent properties, which provide important 

functional characteristics for the muscle-tendon complex as a whole. The interaction 

between muscle and tendon not only influences force transmission (Burgess et al., 2007, 

Reeves et al., 2003a), but also energy storage and return for locomotion (Alexander, 1991, 

Voigt et al., 1995, Fukunaga et al., 2001), joint positional control (Loram et al., 2004, 

Loram et al., 2005a, Loram et al., 2005b), and to protect from muscle fibre damage 

(Griffiths, 1991, Lieber and Friden, 2000). Therefore, the tendon mechanical properties 

play a pivotal role in determining the function of the overall muscle-tendon complex, The 

tendon mechanical property most commonly associated with in vivo function is the 

‘modulus,’ i.e. the relation between stress and strain. Modulus represents the material 

properties of tendon independent of its structural size, making it possible to compare 

tendon mechanical properties between individuals with different tendon dimensions. 

Essentially, a high tendon modulus represents a relatively stiff tissue. 

 

Recently, it has been reported that the COL5A1 gene is associated with tendon pathologies 

(Mokone et al., 2006, September et al., 2008), range of motion (ROM) (Collins et al., 

2009, Brown et al., 2011b), and endurance running performance (Brown et al., 2011a, 

Posthumus et al., 2011). The COL5A1 gene encodes the pro α1 chain of type V collagen 

(Col V), a quantitatively minor fibrillar collagen that through its heterotypic interactions 

with type I collagen (Col I), may have regulatory roles in controlling fibril diameter within 

connective tissues such as tendon (Birk et al., 1990, Wenstrup et al., 2011). In particular, 

the CC genotype of the COL5A1 rs12722 single nucleotide polymorphism (SNP) was 

significantly over-represented in asymptomatic participants compared with chronic 

Achilles tendinopathy (AT) in two independent Caucasian populations ((South Africa, 

(Mokone et al., 2006); Australia, (September et al., 2008)). Similarly, the CC genotype was 

significantly associated with increased sit and reach ROM (Brown et al., 2011b, Brown et 

al., 2011a), although Collins et al. (2009) reported that the CT genotype had significantly 

lower sit and reach, and standing leg raise ROM, than the homozygous individuals. In 

contrast, the TT genotype of the COL5A1 rs12722 SNP has been reported to be associated 

with enhanced endurance running performance (Posthumus et al., 2011, Brown et al., 

2011a).  
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The multifactorial nature of tendon pathologies (Riley, 2004), ROM (Gleim and McHugh, 

1997), and endurance running performance (Joyner and Coyle, 2008), reduces the ability to 

identify the main causative factors that contribute to the phenotype, although tendon 

stiffness may be one such intermediate phenotype linking genetic variation to risk of 

injury, ROM and endurance running performance. Independent of genetics, there are 

relationships that appear to exist between these phenotypes, in that ROM has been 

associated with tendon injuries (Witvrouw et al., 2004, Witvrouw et al., 2007). For 

instance, a more compliant tendon (low stiffness) is able to absorb more energy for a given 

mechanical load, and thus, reduce the risk of strain overload (Witvrouw et al., 2004). 

Tendon stiffness has been associated with running economy in that an inverse relationship 

between running economy and tendon stiffness has been reported to exist (Arampatzis et 

al., 2006, Fletcher et al., 2010). It may be that the COL5A1 rs12722 SNP is associated with 

structural and morphological changes to the collagen fibrils, which may directly or 

indirectly modify the mechanical properties of tendon.  

 

The mechanical properties of tendon itself can be assessed in vivo in humans with high 

accuracy and reliability, as detailed by Pearson and Onambele (2006), This in vivo 

assessment of tendon properties provides a more direct association with the role of 

COL5A1 rs12722 SNP, in contrast to the previous surrogate measures of tendon properties 

obtained from sit and reach, and standing leg raise tests (Collins et al., 2009, Brown et al., 

2011b). These tests are not precise measures of the phenotype under investigation, and 

hence, the assessment methods adopted in this study to measure tendon properties are in 

line with the objectives of associating the genetic contribution to the interindividual 

variability in mechanical properties of human tendon. The aim of this study was therefore 

to investigate whether the COL5A1 rs12722 gene variant influences the modulus of the 

patellar tendon, in an asymptomatic male population, using an accurate, reproducible and 

non-invasive assessment of tendon properties in vivo. In addition, the aim encompasses 

whether the structural volume of the tendon, and the composite effect of both modulus and 

volume, is influenced by this gene variant. 
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3.2 Method 

Participants: Forty-five male participants (age 22.9 (3.3) years; BMI 24.6 (2.6) kg/m²) 

were recruited for this study (as described in section 2.1). Physical characteristics of all 

participants are presented in Table 4 (section 2.1). Participants gave written informed 

consent (section 2.1). A detailed description of the methods for measures of tendon 

properties, and genotyping the COL5A1 rs12722 SNP is given elsewhere (section 2.2 and 

2.3, respectively).  

 

Tendon properties: Briefly, Young’s Modulus represented the mechanical properties of 

tendon and was calculated by multiplying the tendon stiffness (derived from the force-

elongation curve), by the ratio of patellar tendon length (PTL) to patellar tendon cross-

sectional area (PTCSA). The volume represented the structural extent of the patellar 

tendon and was calculated by geometric principles assuming a uniformly tapering 

truncated cone between measurement positions (i.e. the product of PTCSA at the three 

sections of the tendon, 25, 50, 75%, and PTL). The z-scores represented the scaling 

together of the structural (volume) and functional (Young’s Modulus) properties of the 

tendon, and was calculated from the combination of the scores derived from the means of 

each tendon measure (Young’s Modulus and volume), divided by their respective standard 

deviations.  

 

Genotyping: The COL5A1 rs12722 genotypes were determined using fluorescence-based 

TaqMan technique of polymerase chain reaction (PCR), based on the amplification of a 

fragment of genomic DNA overlapping the COL5A1 rs12722 polymorphism, within the 3’ 

untranslated region (UTR) of the COL5A1 gene. 

 

Statistical analyses: A one-way analysis of variance (ANOVA) was used to determine any 

significant difference between the characteristics of the genotype groups and where 

appropriate, independent t-tests were conducted when combining genotype groups, as well 

as non-parametric equivalents if the data set did not meet certain assumptions (section 2.5). 

As only age (z-scores, r = 0.308, P = 0.04) and BMI (Young’s Modulus, r = 0.348, P = 

0.019) showed a significant correlation with any of the phenotypic measures, age and BMI 

were used as covariates. Statistical significance was accepted when  P ≤ 0.05. All 

measurements showed high reliability (section 2.5). 
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3.3 Results 

An ANOVA was performed on all three genotype groups and the measures of patellar 

tendon volume and z-scores. The Kruskal-Wallis non-parametric equivalent statistical test 

was performed on Young’s Modulus and its association with the three genotype groups, as 

the data was not normally distributed. Independent t-tests were performed on the volume 

and z-score measures when combining two of the genotype groups. The Mann-Whitney U 

test was assigned to the Young’s Modulus measure, and its association with the two 

groups.   

 

There were no significant differences in patellar tendon volume and Young Modulus 

measurements and z-scores, between the genotype groups (Figure 21 A) (volume, P = 

0.936; Young’s Modulus, P = 0.897; z-scores, P = 0.820). The z-scores were co-varied for 

age but remained not significant (z-score, P = 0.635) (Table 8). In addition, there were no 

significant differences in volume, Young’s Modulus and z-scores when comparing the TT 

genotype group to the combined TC and CC genotype groups (Figure 21 B) (volume, P = 

0.765; Young’s Modulus, P = 0.768; z-scores, P = 0.744). The z-scores were also adjusted 

for age in the combined genotype groups (P = 0.694) (Table 9). In addition, there were no 

COL5A1 gene variant genotype effects on any of the participant characteristics (Table 8 

and 9). 
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Table 8. General characteristics with measures of patellar tendon properties for the TT, TC 

or CC COL5A1 rs12722 genotype groups 

N = 45 COL5A1 rs12722 genotype groups 

 TT (n=12) TC (n=28) CC (n=5) P-value  

Age (years) 22.5 (20-27) 22.5 (19-32) 23 (20-30) 0.651 

Height (cm) 177.1 (157-

191) 

180 (167-190) 183.5 (160-

187) 

0.366 

Weight (kg) 75.5 (66-95) 79.2 (58-99) 78.6 (60-88) 0.784 

BMI (kg/cm
2
) 24.3 (22-29) 23.8 (20-30) 23.4 (21-29) 0.728 

     

Volume 

(mm³) 

2315 (429) 2275 (246) 2280 (366) 0.936 

Young’s 

Modulus 

(GPa) 

0.48 (0.64)
 
 0.41 (1.23)

 
 0.37 (0.39)

 
 0.897 

Z-scores 0.128 (1.681) 0.031 (1.244) -0.332 (1.347) 0.820 (0.635) 

General characteristics are expressed as median (range) 

 

Volume and Z-scores are expressed as mean (standard deviation) 

 

Young’s Modulus is expressed as median (range)  

 

The P-value for Z-scores are reported with age as a covariant in parenthesis 

 

 

Table 9. General characteristics with measures of patellar tendon properties for the TT, or 

TC and CC COL5A1 rs12722 genotype groups  

N = 45 COL5A1 rs12722 genotype groups combined 

 TT (n=12) TC & CC (n=33) P-value  

Age (years) 22.5 (20-27) 23 (19-32) 0.806 

Height (cm) 177.1 (157-191) 180.5 (160-190) 0.248 

Weight (kg) 75.5 (66-95) 78.6 (58-99) 0.712 

BMI (kg/cm
2
) 24.3 (22-29) 23.4 (20-30) 0.438 

    

Volume 

(mm³) 

2315 (429) 2276 (261) 0.715 

Young’s 

Modulus 

(GPa) 

0.48 (0.64)
 
 0.41 (1.23)

 
 0.768 

Z-scores 0.128 (1.681) -0.024 (1.245) 0.744 (0.694) 
 

General characteristics are expressed as median (range) 

 

Volume and Z-scores are expressed as mean (standard deviation) 
 

Young’s Modulus is expressed as median (range) 

 

The P-value for Z-scores are reported with age as a covariant in parenthesis 
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3.4 Discussion 

This study shows no significant association between the COL5A1 rs12722 variant and any 

of the measures of tendon properties. These data suggest that the COL5A1 rs12722 variant 

does not associate with structural (volume) and functional (modulus) properties of the 

patellar tendon, or indeed as a composite (z-scores) (Tables 7 and 8), in an asymptomatic 

male population. The hypothesis of an association between COL5A1 rs12722 SNP and 

structural and mechanical properties of the patellar tendon was based on the role of the 

COL5A1 gene, as it encodes the pro α1 chain of type V collagen (Col V), which through its 

heterotypic interactions with type I collagen (Col I), may have regulatory roles in 

controlling fibril diameter within connective tissues such as tendon (Birk et al., 1990, 

Wenstrup et al., 2011). Indeed, previous published reports have shown that the COL5A1 

rs12722 variant associates with phenotypes such as Achilles tendon pathologies (Mokone 

et al., 2006, September et al., 2008), ROM (Collins et al., 2009, Brown et al., 2011b), and 

endurance running performance (Brown et al., 2011a, Posthumus et al., 2011); phenotypes 

that are likely to be influenced by tendon modulus. However, in the present investigation 

A B  

Figure 21. Young's Modulus values for the genotype groups of the COL5A1 rs12722 

gene variant. A: TT vs. TC vs. CC. B: TT vs. TC & CC. Between genotype group 

comparisons did not reach statistical significance as indicated by the P- values. Error 

bars represent the upper quartile range.  
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we have observed no link between the COL5A1 gene variant and tendon modulus (Figure 

21 A and B). This would suggest that where the COL5A1 gene variant has previously been 

associated with the tendon through some other surrogate of tendon modulus, other factors 

should be considered.  

 

Collins and Posthumus (2011) have proposed an association between injury, ROM and 

endurance running ability phenotypes, and the COL5A1 rs12722 variant, with the 

mechanical properties of musculoskeletal soft tissue being a possible intermediate 

phenotype. In this investigation, we have identified tendon modulus under isometric 

conditions, and although it is an established method for determining the material properties 

in vivo, it may be limited in defining the consequence of the muscle-tendon complex as a 

whole. For example, although endurance running performance is linked to the COL5A1 

rs12722 gene variant and here we report no relation, it is perhaps relevant to note that 

tendon hysteresis (viscoelastic property relating to energy economy) as opposed to 

modulus is likely to influence the performance of endurance running (Sano et al., 2012). 

Indeed, in regards to injury there remains no link between tendon properties and tendon or 

muscle damage. If anything, this data is consistent with what has previously been 

demonstrated, that flexibility or ROM (associated with the COL5A1 gene) has no 

association with tendon modulus (no association with COL5A1 gene). In addition, the 

patellar tendon may play a different functional role than the Achilles tendon, which is  

known to contribute significantly to ROM (Morse et al., 2008), and due to its greater 

length, contributes significantly to attenuating length changes in the muscle during 

eccentric loading of the lower limb (Spanjaard et al., 2008).  

 

The lack of association reported in this study between measures of patellar tendon 

properties and the COL5A1 rs12722 variant may indirectly suggest that tendon structural 

and functional properties do not associate with phenotypes previously reported to associate 

with this gene variant. The multifactorial nature of such phenotypes due to multiple factors 

(e.g. non-genetic) being implicated in their aetiology, such as different functional roles of 

tendon based on anatomical positions, makes observations of interindividual genetic 

variation in phenotypes such as tendon properties more complex. Compounding this 

complexity is the fact that non-genetic factors can be considered multifactorial phenotypes 

in their own right (Collins and Raleigh, 2009).  
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Within this study an attempt was made to maximise the ability to detect genotype-

phenotype associations by controlling for non-genetic factors and variables known to 

contribute to the variability on tendon structure and function, by adopting strict exclusion 

criteria (see methods, 2.1). For instance, an asymptomatic group of participants with a pre-

selected age range was recruited, because it has been reported that there is an age-

dependent increase in the distribution of the CC genotype of the COL5A1 rs12722 variant 

(Collins and Posthumus, 2011).  

 

In conclusion, there was no association between the COL5A1 rs12722 gene variant and 

measures of patellar tendon properties in an asymptomatic male cohort. Nevertheless, 

future identification of sequence variants within genes with structural and regulatory roles 

in the tendon extracellular matrix should be investigated for their potential influences on 

tendon properties, in coming years. Specifically, those of the lower limbs including the 

patellar and Achilles tendon would be of precedence. This could potentially enhance the 

efficacy of multifactorial models, developed to understand the molecular mechanisms that 

contribute to physical performance and cause tendon-specific injuries.  
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Chapter 4. 
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4.1 Introduction  

A higher incidence of tendon injuries among women suggests that the structure and/or 

metabolism of tendon may be different between the sexes (Trappe, 2007). Indeed, cross-

sectional studies highlight such sex-specific differences, in that it has been reported that 

sex hormones specific to women such as oestradiol have deleterious effects on tendon 

tissue quality (Hansen et al., 2009b, Hansen et al., 2008). In addition, collagen synthetic 

rates at rest and following an acute bout of exercise are lower in women than in men 

(Miller et al., 2007), suggesting an inferior responsiveness to adaptation. At a molecular 

level, structural and regulatory mRNA expression levels relating to collagen and matrix 

metalloproteinase-3 (MMP3) protein levels differ between the sexes, with women being 

more susceptible to tendon pathologies as a result (Sullivan et al., 2009). 

 

From a structural and functional perspective, women are less responsive to increases in 

tendon size or hypertrophy and exhibit a tendon elastic modulus (relation between stress 

and strain of material) less than half of that of men, as deduced from tendon biopsies 

(Magnusson et al., 2007). Indeed, in a cross-sectional study investigating the structural and 

mechanical properties of tendon in vivo between young men and women, has reported that 

females have a ~21% smaller CSA and  a 53% lower Young Modulus than males 

(Onambele et al., 2007). These sex-specific differences may be explained in some part by 

the effects of higher levels of circulating oestradiol in females. In an elderly cohort where 

oestradiol is not likely to have an effect on sex-specific differences in tendon properties, no 

differences in the mechanical properties of tendon between sexes in vivo were evident 

(Carroll et al., 2008, Carroll et al., 2011, Burgess et al., 2009b). It may also be that sex-

specific differences in metabolism, structure, and function reflect the levels of absolute 

loading, related to inferior force output in women.  

 

Variation in genes that code for proteins that have structural roles within tendon may 

associate with the mechanical properties of tendon. Indeed, the COL5A1 rs12722 gene 

variant has shown to be associated with Achilles tendinopathies (Mokone et al., 2006, 

September et al., 2008), range of motion measures (ROM) (Brown et al., 2011b, Collins et 

al., 2009), and endurance running performance (Brown et al., 2011a, Posthumus et al., 

2011). Recently, the biological function of the region of genomic DNA in which the 

COL5A1 gene is found (3’ UTR) has been investigated (Laguette et al., 2011). An increase 

in mRNA stability associated with the ‘T’ allele variant has been reported to produce more 

pro α1 (V) chain protein, and thus, increased collagen type V (Col V) production. 
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Phenotypically, it has been proposed that this particular genetic variation may result in 

structural and architectural changes within the collagen fibril, which could further result in 

altered mechanical properties of musculoskeletal soft tissues, such as tendon (Collins and 

Posthumus, 2011).However, we have shown previously that there is no significant 

association between the COL5A1 rs12722 gene variant and measures of structure and 

mechanical properties of the patellar tendon, in an asymptomatic male population (see 

chapter 3). The reported differences in tendon structure, function and metabolism between 

the sexes, as explained above, may be a result of gene-hormone interactions specific to 

women, and so the genotype-phenotypes association may differ as a result.  

 

The aim of this study was therefore to investigate whether the COL5A1 rs12722 gene 

variant within the 3’ UTR of the COL5A1 gene was partly responsible for the inter-

individual variation in structural size and modulus of the patellar tendon, independently, 

and in combination, in an asymptomatic female population.  

 

4.2 Method 

Participants: Thirty-nine female participants (22.4 (4.8) years; BMI 23.2 (2.8) kg/m
2
) were 

recruited for this study (as described in section 2.1). Physical characteristics of all 

participants are presented in Table 4 (section 2.1). Participants gave written informed 

consent (section 2.1). A detailed description of the methods for measures of tendon 

properties, and genotyping the COL5A1 rs12722 SNP is given elsewhere (section 2.2 and 

2.3, respectively).  

  

Tendon properties: Briefly, Young’s Modulus represented the mechanical properties of 

tendon and was calculated by multiplying the tendon stiffness (derived from the force-

elongation curve), by the ratio of patellar tendon length (PTL) to patellar tendon cross-

sectional area (PTCSA). The volume represented the structural extent of the patellar 

tendon and was calculated by geometric principles assuming a uniformly tapering 

truncated cone between measurement positions (i.e. the product of PTCSA at the three 

sections of the tendon, 25, 50, 75%, and PTL). The z-scores represented the scaling 

together of the structural (volume) and functional (Young’s Modulus) properties of the 

tendon, and was calculated from the combination of the scores derived from the means of 

each tendon measure (Young’s Modulus and volume), divided by their respective standard 

deviations.  
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Genotyping: The COL5A1 rs12722 genotypes were determined using fluorescence-based 

TaqMan technique of polymerase chain reaction (PCR), based on the amplification of a 

fragment of genomic DNA overlapping the COL5A1 rs12722 polymorphism, within the 3’ 

untranslated region (UTR) of the COL5A1 gene.  

 

Oestradiol: Oestradiol levels were analysed using standard ELISA procedures from serum 

content taken on the day of measures of tendon properties (see section 2.4 for more detail 

on this procedure), to assess the contribution of this ligand to measures of tendon 

properties. Serum levels of oestradiol have been associated with tendon stiffness in young 

females (Burgess et al., 2009c). Oestradiol was therefore factored into statistical analyses 

as a potential covariate. 

 

Statistical analyses: A one-way analysis of variance (ANOVA) was used to determine any 

significant difference between the characteristics of the genotype groups and values of 

volume and z-scores. Independent t-tests were conducted when combining genotype 

groups and its relation with volume and z-scores. The Kruskal-Wallis non-parametric 

statistical test was used for assessing differences between all three genotype groups and 

Young’s Modulus, with the Mann-Whitney U test being used when assessing differences 

between the combined genotype groups and Young’s Modulus. As only BMI showed a 

significant correlation with any of the phenotypic measures (volume, r =0.334, P = 0.038; 

Young’s Modulus, r = 0.440, P = 0.005; z-scores, r =0.473, P = 0.002) BMI was used as a 

covariate. Oestradiol showed no significant correlation with tendon properties (volume, r 

=0.010, P = 0.950; Young’s Modulus, r = 0.146, P = 0.375; z-scores, r =0.055, P = 0.740) 

and so was not used as a covariate. Statistical significance was accepted when P ≤ 0.05. 

All measurements showed high reliability (section 2.5). 

 

4.3 Results 

There were no significant differences in the patellar tendon volume and Young’s Modulus 

measurements and z-scores, between the genotype groups (Figure 22 A) (volume, P = 

0.667, Young’s Modulus, P = 0.227; z-scores, P = 0.398). P-values were adjusted for BMI 

where appropriate (volume, P = 0.938; z-scores, P = 0.896) (Table 10). In addition, there 

were no significant differences in volume, Young’s Modulus and z-scores when comparing 

the TT genotype group to the combined TC and CC genotype groups (Figure 22 B) 

(volume, P = 0.627; Young’s Modulus, P = 0.053; z-scores, P = 0.437). Again, the volume 

and z-scores were adjusted for BMI (P = 0.385; P = 0.720, respectively) (Table 11). There 
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were no COL5A1 gene variant genotype effects on any of the participant characteristics 

(Table 10 and 11) 

 

Table 10. General characteristics and measures of patellar tendon properties for the TT, 

TC or CC COL5A1 rs12722 genotype groups 

N = 39 COL5A1 rs12722 genotype groups 

 TT (n=14) TC (n=17) CC (n=8) P-value  

Age (years) 21 (19-23) 21 (18-39) 21.5 (19-24) 0.808 

Height (cm) 166.8 (154-179) 165.5 (153-183) 166.75 (159-

175) 

0.604 

Weight (kg) 63.5 (50-80) 63.2 (47-77) 68 (48-79) 0.655 

BMI (kg/cm
2
) 23.8(19-30) 24.1 (21-27) 21.3 (19-24) 0.075 

Oestradiol 

(pg/ml) 

24.6 (9-90) 27.1 (7-116) 26 (6-46) 0.839 

     

Volume 

(mm³) 

1505 (208) 1543 (195) 1457 (305) 0.667 (0.938) 

Young’s 

Modulus 

(GPa) 

0.64 (1.02) 0.49 (1.01)
 
 0.42 (0.84)

 
 0.227 

Z-scores 0.209 (1.731) 0.160 (1.385) -0.711 (1.972) 0.398 (0.896) 

General characteristics are expressed as median (range) 

 

Volume and Z-scores are expressed as mean (standard deviation) 
 

Young’s Modulus is expressed as median (range) 

 

The P-value for Volume and Z-scores are reported with BMI as a covariant in parenthesis 

 
 

Table 11. General characteristics and measures of patellar tendon properties for the TT, or 

TC and CC COL5A1 rs12722 genotype groups  

N = 39 COL5A1 rs12722 genotype groups combined 

 TT (n=14) TC & CC (n=25) P-value  

Age (years) 21 (19-23) 21 (18-39) 0.534 

Height (cm) 166.8 (154-179) 165.5 (153-183) 0.623 

Weight (kg) 63.5 (50-80) 64 (47-79) 0.685 

BMI (kg/cm
2
) 23.8 (19-30) 22.9 (19-28) 0.134 

Oestrodiol 

(pg/ml) 

24.6 (9-90) 27.1 (6-116) 0.598 

    

Volume 

(mm³) 

1505 (208) 1515 (233) 0.893 (0.755) 

Young’s 

Modulus 

(GPa) 

0.636 (1.02) 0.488 (1.13)
 
 0.151 

Z-scores 0.209 (1.731) -0.119 (1.608) 0.556 (0.689) 

General characteristics are expressed as median (range) 
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Volume and Z-scores are expressed as mean (standard deviation) 
 

Young’s Modulus is expressed as median (range) 

 

The P-value for Volume and Z-scores are reported with BMI as a covariant in parenthesis 

 

 
 
 

 
 
 
 

 

 

 

 

4.4 Discussion 

This study shows no significant association between the COL5A1 rs12722 variant and 

measures of patellar tendon properties. Specifically, these data suggest that structural 

(volume) and functional (modulus) properties of the tendon, or the interaction of both (z-

scores), do not associate with this gene variant in an asymptomatic female population. 

Previous published reports associate the COL5A1 rs12722 variant with Achilles 

tendinopathies (Mokone et al., 2006, September et al., 2008), as well as tendon phenotypes 

that partly rely on the functional ability of tendon, such as range of motion (ROM) (Brown 

et al., 2011b, Collins et al., 2009), and endurance running performance (Brown et al., 

2011a, Posthumus et al., 2011). 

A B 

Figure 22. Young's Modulus values for the genotype groups of the COL5A1 rs12722 

gene variant. A: TT vs. TC vs. CC. B: TT vs. TC & CC. Between genotype group 

comparisons did not reach statistical significance as indicated by the P- values. Errors 

bars represent the upper quartile range.  
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The COL5A1 gene encodes for the pro α1 (V) chain of type V collagen (Col V), a 

quantitatively minor fibrillar collagen which is thought to initiate fibril assembly and 

regulate lateral fibril growth within tendon (Birk et al., 1990, Wenstrup et al., 2004). A 

reduced Col V content has been reported to compromise the diameter of the collagen fibril 

on in vitro cultures (Birk, 2001, Wenstrup et al., 2004), which may reduce the linear 

modulus (Young’s Modulus), i.e. the material stiffness of tendon (Dressler et al., 2002). It 

is possible that variations within the COL5A1 gene may influence a tendon’s material and 

mechanical properties, and indeed from a functional perspective, the ‘T’ allele variant has 

been reported to produce more pro α1(V) chain protein and thus, increased Col V 

production (Laguette et al., 2011). As a mechanical consequence, this may translate into an 

increased tendon modulus when considering the above rational. However, no association 

was evident between the genotypes, individually and combined, with Young’s Modulus (P 

= 0.227; P = 0.151; Tables 7 and 8), although a linear trend does exist across the 

genotypes, such that Young’s Modulus is higher in the TT genotype groups compared to 

the CC genotype groups (0.64 GPa vs. 0.42 GPa) (Figure 22). It may be that the ‘T’ allele 

associates with higher tendon modulus and that a positive relationship exists between 

Young’s Modulus and the risk of tendon pathologies, as the ‘T’ allele has been generally 

identified in Achilles tendinopathic patients (Laguette et al., 2011).  

 

Various intrinsic risk factors have been proposed to be associated with female tendon 

injuries (Kannus, 1997), the exact mechanisms by which these factors contribute to an 

increased risk of tendon pathologies in women remains unknown. It may be that a gene-

hormone interaction exists, as sex hormones such as oestrogen are known to exert their 

biologic effects indirectly on collagen-rich tissues, through regulating gene expression of 

MMPs (matrix metalloproteinases) (Moalli et al., 2002, Sato et al., 1991); MMP3 gene 

expression has been reported to be higher in women compared with men (Slauterbeck et 

al., 2006). Although, no previous research has investigated the effect of female sex 

hormones such as oestrogen on the regulation of COL5A1 gene expression, Col V has been 

reported to be a substrate for MMP3 proteolytic activity (Birkedal-Hansen et al., 1993), so 

it is possible that the COL5A1 rs12722 gene variant interacts with oestrogen to modify 

material and mechanical properties of tendon, which makes this genetic association 

specific to females. Higher levels of oestrogen have however been linked to smaller tendon 

sizes, but this was suggested to be independent of genetic factors (Finni et al., 2009).  
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Within this study, oestradiol levels had no association with any of the measures of tendon 

properties, including volume, Young’s Modulus and z-scores, and as no association was 

observed between genotypes and these same measures of tendon properties, it is unlikely 

that there were gene-hormone interactions specific to females that influence the structural, 

material and mechanical properties of tendon in vivo, at least not in this study. 

 

To conclude, this study found no association between the COL5A1 rs12722 gene variant 

and measures of patellar tendon properties, although using genetic association studies still 

remains an important prelude in identifying genetic variants, which predispose individuals 

to altered risk of tendon injuries, as well as the potential for enhanced physical 

performance. Additional investigations into the effect of female sex hormones on the 

expression of genes which code for collagen structures, such as COL5A1, specifically 

relating to tendon, would enhance our understanding of sex-specific differences in the 

metabolism, structure and functional properties of tendon. 
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Chapter 5. 

 

 

 

 

 

Variants within the MMP3 gene and tendon 

properties in males 
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5.1 Introduction 

Internal structures such as tendon undergo deformation when resisting external loads that 

act on the body (McGinnis, 2005). The degree of deformation or strain experienced by the 

tendon structures is related to the stress caused by these external loads and the integrity of 

the material. Knowledge of the mechanical properties of musculoskeletal tissues including 

tendon, can assist in understanding the aetiologies of injury as well as physical 

performance potential. The primary parameters describing tendon material and mechanical 

properties is tendon stiffness, which describes the change in length in relation to the force 

applied (force-displacement relation) and is dependent on the volume of the tendon, and 

tendon modulus, which describes the relation between tendon stress and strain. Therefore, 

the mechanical properties of tendon are influenced by the volume of tendon as well as the 

tissue material properties. 

 

Recently, a genetic component has been associated with tendon phenotypes, particularly 

that of the COL5A1 rs12722 gene variant (Collins and Posthumus, 2011). In addition, gene 

variants within the MMP3 gene which encodes for matrix metalloproteinase-3 protein , a 

key regulatory enzyme of the extracellular matrix (ECM) capable of degrading multiple 

structural components of the ECM such as the collagens (Matrisian, 1990), has also been 

associated with tendinopathies (Raleigh et al., 2009). Specifically, three gene variants 

within the MMP3 gene (rs679620, rs591058, rs650108) have independently been 

associated with chronic Achilles tendinopathies. Furthermore, the rs679620 gene variant is 

non-synonymous, in that it causes a change in the amino acid sequence, and consequently 

an altered protein function. 

 

Even though no research literature exists associating these gene variants with tendon 

structural and mechanical properties per se, it is however important to state that all genes 

that contain sequence variants shown to be associated with tendon tissue injury to date, 

encode for proteins that serve essential structural and functional roles within tendon 

(Collins and Raleigh, 2009). Therefore, it could be postulated that relatively small changes 

in MMP3 expression within non-pathological ranges, as a result of the function of these 

gene variants, could result in interindividual variation in the degree of fibrillar collagen 

degradation, and ultimately the mechanical properties of tendon. 

 

The aim of this study was therefore to investigate whether the MMP3 rs679620, rs591058 

and rs650108 gene variants influence structural and functional roles within the patellar 
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tendon, through volume and modulus measures in vivo, in an asymptomatic male 

population. 

 

5.2 Method 

Participants: Forty-five male participants (age 22.9 (3.3) years; BMI 24.6 (2.6) kg/m²) 

were recruited for this study (as described in section 2.1). Physical characteristics of all 

participants are presented in Table 4 (section 2.1). Participants gave written informed 

consent (section 2.1). A detailed description of the methods for measures of tendon 

properties, and genotyping the MMP3 rs650108, rs591058 and rs679620 gene variants, are 

given elsewhere (section 2.2 and 2.3, respectively).  

 

Tendon properties: Briefly, Young’s Modulus represented the mechanical properties of 

tendon and was calculated by multiplying the tendon stiffness (derived from the force-

elongation curve), by the ratio of patellar tendon length (PTL) to patellar tendon cross-

sectional area (PTCSA). The volume represented the structural extent of the patellar 

tendon and was calculated by geometric principles assuming a uniformly tapering 

truncated cone between measurement positions (i.e. the product of PTCSA at the three 

sections of the tendon, 25, 50, 75%, and PTL). The z-scores represented the scaling 

together of the structural (volume) and functional (Young’s Modulus) properties of the 

tendon, and was calculated from the combination of the scores derived from the means of 

each tendon measure (Young’s Modulus and volume), divided by their respective standard 

deviations.  

 

Genotyping: The genotypes of the MMP3 gene variants were determined using 

fluorescence-based TaqMan technique of polymerase chain reaction (PCR), based on the 

amplification of a fragment of genomic DNA overlapping the each of the MMP3 

polymorphisms, within its non-coding regions (rs591058, rs650108) and coding regions 

(rs679620). 

 

Statistical analyses: A one-way analysis of variance (ANOVA) was used to determine any 

significant difference between the characteristics of the genotype groups of the MMP3 

rs650108 variant, and volume and z-scores. Independent t-tests were conducted when 

combining genotype groups and assessing an association with volume and z-scores, as well 

as when analysing the MMP3 rs591058 and rs679620 variants, due to only including 

homozygote genotype groups. Non-parametric statistical equivalent tests were conducted if 
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the data set did not meet certain assumptions (section 2.5). This was true of the Young’s 

modulus values and the independent variables (Kruskal-Wallis test for three genotype 

groups; Mann-Whitney U test for combined genotype groups). As only age (z-scores, r = 

0.308, P = 0.04) and BMI (Young’s Modulus, r = 0.348, P = 0.019) showed a significant 

correlation with any of the phenotypic measures, age and BMI were used as a covariates. 

Statistical significance was accepted when P ≤ 0.05. All measurements showed high 

reliability (section 2.5). 

 

5.3 Results  

There were no significant differences in patellar tendon volume and Young’s Modulus 

measurements and z-scores, between the genotype groups for MMP3 rs650108 (volume, P 

= 0.952; Young’s Modulus, P = 0.170; z-scores, P = 0.585), as well as when comparing 

the GG genotype group to the combined GA and AA genotype groups (volume, P = 0.825; 

Young’s Modulus, P = 0.103; z-scores, P = 0.470). In addition, when factoring in the 

covariate of age for the z-scores, there were no significant differences between all 

genotype groups (P = 0.681) and when combined (P = 0.629) (Table 12). Because the 

MMP3 gene variants rs591058 and rs679620 were in perfect disequilibrium, the results 

were identical with no significant differences between genotype groups (volume, P = 

0.796; Young’s Modulus, P = 0.238; z-scores, P = 0.450). When adjusting the z-scores 

statistic for age, there was still no significant difference (P = 0.346), (Table 13). There was 

a genotype effect evident from the MMP3 rs679620 and rs591058 gene variants on BMI, 

such that the GG and CC genotypes, respectively, presented a higher BMI than the AA and 

TT genotypes, respectively (P = 0.034) (Table 13), yet BMI did not correlate with any of 

the tendon properties. 
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Table 12. General characteristics and measures of patellar tendon properties for the GG, 

GA or AA MMP3 rs650108 genotype groups. Combined GA and AA genotype groups are 

also presented, together with the GG genotype group for this gene variant 

N = 45 MMP3 rs650108 genotype groups MMP3 rs650108 genotype groups 

combined 

 GG 

(n=38) 

GA 

(n=3) 

AA 

(n=4) 

P-value  GG 

(n=38) 

GA & 

AA 

(n=7) 

P-value 

Age 

(years) 

22.5 
(19-

32) 

23 (21-
27) 

24 (21-
27) 

0.466 22.5 
(19-32) 

22.5 
(19-32) 

0.218 

Height 

(cm) 

179.8 
(157-

190) 

180.5 
(177-

191) 

179.2 
(172-

184) 

0.715 179.8 
(157-

190) 

180.5 
(172-

191) 

0.730 

Weight 

(kg) 

76.5 

(58-
99) 

87.8 

(66-
95) 

74.7 

(64-82) 

0.550 76.5 

(58-99) 

81.7 

(64-95) 

0.865 

BMI 

(kg/cm
2
) 

23.5 

(20-
30) 

26 (24-

27) 

27.5 

(21-30) 

0.270 23.5 

(20-30) 

26 (21-

30) 

0.113 

        

Volume 

(mm³) 

2291 
(294) 

2293 
(492) 

2239 
(413) 

0.952 2291 
(294) 

2262 
(409) 

0.825 

Young’s 

Modulus 

(GPa) 

0.376 
(1.23)

 
0.452 
(0.14)

 
0.647 
(0.51)

 
0.170 0.376 

(1.23)
 

0.454 
(0.58)

 
0.103 

Z-scores -0.047 

(1.305) 

-0.087 

(1.639) 

0.698 

(1.865) 

0.585 (0.681) -0.047 

(1.305) 

0.361 

(1.677) 

0.470 (0.629) 

General characteristics are expressed as median (range) 

 

Volume and Z-scores are expressed as mean (standard deviation) 
 

Young’s Modulus is expressed as median (range) 

 

The P-value for Z-scores are reported with age as a covariant in parenthesis 
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Table 13. General characteristics and measures of patellar tendon properties for the CC 

and GG genotype groups of the MMP3 rs591058 and rs679620 gene variants, respectively, 

together with the TT and AA genotype groups of the same two variants, respectively 

N = 45 MMP3 rs591058 and rs679620 genotype groups 

 591058 (CC) 

679620 (GG) 

 (n=12) 

591058 (TT) 

679620 (AA)  

(n=33) 

P-value  

Age (years) 21.5 (19-27) 23 (21-27) 0.806 

Height (cm) 180.5 (172-191) 179 (157-187) 0.355 

Weight (kg) 81.8 (64-99) 75.4 (58-99) 0.404 

BMI (kg/cm
2
) 25.9 (21-30) 23.4 (20-30) 0.034* 

    

Volume 

(mm³) 

2306 (304) 2279 (336) 0.796 

Young’s 

Modulus 

(GPa) 

0.45 (0.75) 0.37 (1.23) 0.238 

Z-scores 0.273 (1.320) -0.077 (1.376) 0.450 (0.346) 

General characteristics are expressed as median (range) 

 

*Genotype effect on BMI significant (P = 0.034) 

 

Volume and Z-scores are expressed as mean and standard deviation (parentheses) 
 

Young’s Modulus is expressed as median and range (parentheses) 

 

The P-value for Z-scores are reported with age as a covariant in parenthesis 

 
 
 
 

5.4 Discussion 

In this study there were no significant associations between the MMP3 gene variants, 

rs679620, rs591058 and rs650108, and measures of patellar tendon properties, related to 

structure (volume), function (modulus), and both (z-scores). Although none of the variants 

investigated in this study were found to be associated with tendon properties (Tables 11 

and 12), it does not exclude the possibility that other variants within genes clustered in 

close proximity to the MMP3 gene on chromosome 11q22, such as MMP10, MMP1, and 

MMP12, associates with tendon properties. Like MMP3, the gene products of these genes 

are capable of degrading a diverse array of extracellular matrix (ECM) proteins (Pasternak 

and Aspenberg, 2009, Somerville et al., 2003), so it is prudent to assume that because 

MMP3 variants have been associated with tendinopathies (Raleigh et al., 2009), similar 

associations may be observed in tendon properties with these other MMP gene variants, by 



126 
 

virtue of the fact that the intrinsic regulatory proteins associated with tendon pathologies, 

are also directly involved in maintenance processes within tendon.  

 

The lack of associations between the three gene variants and tendon properties is as 

expected if one variant does not associate, given they are in high linkage disequilibrium 

with one another. In particular, the rs591058 and rs679620 variants are in perfect linkage 

disequilibrium, allele ‘C’ in the former corresponds to allele ‘G’ in the latter. In addition, 

the rs650108 variant displays high linkage disequilibrium with the rs679620 and rs591058 

variants (r = 0.673, P = 0.01). This non-random association suggests that one gene variant 

acts as a marker for the other, and so knowing if one variant is associated with tendon 

properties, provides information as to the likelihood of the other also being associated. 

 

A promoter polymorphism within the MMP3 gene (rs3025058) is also believed to be 

tightly linked to the rs679620 variant (Chen et al., 2012, Beyzade et al., 2003, Raleigh et 

al., 2009). Either marker is associated with MMP3 expression levels, notably the 

rs3025058 5A allele, and the rs679620 ‘A’ allele are associated with relatively lower levels 

of MMP3, and the highest level of pathological activity related to rheumatoid arthritis. In 

addition, lower MMP3 protein expression levels have been reported in human tendon 

displaying pathological characteristics (Ireland et al., 2001, Parkinson et al., 2010, de Mos 

et al., 2007, Jones et al., 2006, Riley et al., 2002). These observations may represent a 

failure of the normal matrix remodelling process (Riley et al., 2002). However within a 

non-pathological range, lower MMP3 levels may favour a state of imbalance with greater 

synthesis relative to degradation, thus, substrates involved in cross-linking and stabilisation 

of intact fibrillar collagen may be relatively less affected by degradation processes. 

Ultimately, the AA genotype of the rs679620 variant may associate with a higher matrix 

stiffness and higher Young’s Modulus, when considering the above rational. 

 

Although clearly not approaching statistical significance (P = 0.238), the AA genotype 

shows a weak tendency to associate with higher Young’s Modulus values, compared with 

the GG genotype (0.37 GPa vs. 0.45 GPa) (Table 12), and hence, the TT genotype of the 

rs591058 variant may also tend to associate with higher tendon modulus, compared with 

the CC genotype. However, the functional significance of the rs650108 variant has yet to 

be determined, most likely due to the fact that it resides in an intron, which makes it 

difficult to explain the association relationship, yet as part of a haplotype it associates with 

pathological states (Koch et al., 2010, Raleigh et al., 2009). 
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Future research should attempt to determine whether there is a differential expression of 

MMP3 genes in tendon displaying relatively high and low tendon modulus, to assist in 

determining whether these genes are causally implicated in modifying mechanical 

properties of tendon, through mechanisms which remodel its microstructure. Additionally, 

relationships can be established between protein expression levels and the genotypes of the 

three MMP3 sequence variants. 

 

In conclusion, the data suggests no evidence of an association between the variants of the 

MMP3 gene and structural and functional characteristics of the patellar tendon. Possible 

links between pathological states within tendon and tendon mechanical parameters should 

be investigated to aid in injury prevention models. 
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Chapter 6. 
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6.1 Introduction 

It has been identified that female hormones may negatively affect collagen protein 

synthetic rates in connective tissue such as tendon (Hansen et al., 2009b, Hansen et al., 

2008, Miller et al., 2007), which may be why there are sex-specific differences in injury 

rates and adaptational responses associated with healing related to physical activity (Gray 

et al., 1985, Kannus et al., 1987, Geary et al., 2002). In tendon, there are oestrogen 

receptors that are responsive to female sex hormones (Hart et al., 1998, Wentorf et al., 

2006), and it has been demonstrated in animal models that oestrogen may have an 

inhibiting effect on collagen synthesis (Fischer, 1973, Irie et al., 2010, Liu et al., 1997a, Yu 

et al., 1999). 

 

At a molecular level, a lower resting gene expression of MMP3 in women compared to 

men has been reported, which also has implications concerning tendon pathologies 

(Sullivan et al., 2009). Indeed, down-regulated expression levels of MMP3 mRNA and its 

associated proteins, have been found in injured or ruptured tendons (de Mos et al., 2007, 

Ireland et al., 2001, Jones et al., 2006, Riley et al., 2002, Lo et al., 2004). MMP3 (matrix 

metalloproteinase-3) is an essential and functionally diverse regulating enzyme, capable of 

degrading a wide range of extracellular matrix (ECM) components such as collagens 

(Matrisian, 1990). Ultimately, its function is thought to be crucial for the maintenance of a 

healthy ECM in tendon (Riley et al., 2002), so lower mRNA expression levels of this gene 

in women may indicate an impaired ECM state and thus, an increased susceptibility to 

tendon injuries (Sullivan et al., 2009). 

 

Sequence variants within the MMP3 gene (rs679620, rs591058, rs650108) have been 

associated with tendinopathies in a predominantly male cohort (Raleigh et al., 2009), 

however, there was no physiological evidence to explain as to why there was an 

increased/decreased risk of incurring a tendinopathy. The mechanical properties of tendon 

may contribute to the aetiology of the tendon injury model, namely stiffness (force-

displacement relationship dependent on structural dimensions), and modulus (stress and 

strain relation of tendon material). However, the role of stiffness in soft-tissue injury risk is 

far from conclusive (Witvrouw et al., 2004). In theory, an increase in stiffness of the 

tendon structure may lead to increased injury risk through lower force dissipation ability, 

and a smaller distance over which to absorb external or internal forces. 
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There was no evidence of an association between the variants of the MMP3 gene with 

structural and functional characteristics of the patellar tendon in males (chapter 5). 

However, it is unknown whether the same gene variants can be associated with tendon 

properties in females. Therefore, the aim of this study was to investigate whether the gene 

variants, rs679620, rs591058 and rs650108, influence structural and functional measures of 

patellar tendon properties in an asymptomatic female population. 

 

6.2 Method 

Participants: Thirty-nine female participants (22.4 (4.8) years; BMI 23.2 (2.8) kg/m
2
) were 

recruited for this study (as described in section 2.1). Physical characteristics of all 

participants are presented in Table 4 (section 2.1). Participants gave written informed 

consent (section 2.1). A detailed description of the methods for measures of tendon 

properties, and genotyping the MMP3 rs650108, rs591058 and rs679620 gene variants, are 

given elsewhere (section 2.2 and 2.3, respectively).  

 

Tendon properties: Briefly, Young’s Modulus represented the mechanical properties of 

tendon and was calculated by multiplying the tendon stiffness (derived from the force-

elongation curve), by the ratio of patellar tendon length (PTL) to patellar tendon cross-

sectional area (PTCSA). The volume represented the structural extent of the patellar 

tendon and was calculated by geometric principles assuming a uniformly tapering 

truncated cone between measurement positions (i.e. the product of PTCSA at the three 

sections of the tendon, 25, 50, 75%, and PTL). The z-scores represented the scaling 

together of the structural (volume) and functional (Young’s Modulus) properties of the 

tendon, and was calculated from the combination of the scores derived from the means of 

each tendon measure (Young’s Modulus and volume), divided by their respective standard 

deviations.  

 

Genotyping: The genotypes of the MMP3 gene variants were determined using 

fluorescence-based TaqMan technique of polymerase chain reaction (PCR), based on the 

amplification of a fragment of genomic DNA overlapping the each of the MMP3 

polymorphisms, within its non-coding regions (rs591058, rs650108) and coding regions 

(rs679620). 

 

Oestradiol: Oestradiol levels were analysed using standard ELISA procedures from serum 

content taken on the day of measures of tendon properties (see section 2.4 for more detail 
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on this procedure), to assess the contribution of this ligand to measures of tendon 

properties. Serum levels of oestradiol has been associated with tendon stiffness in young 

females (Burgess et al., 2009c). Oestradiol was therefore factored into statistical analyses 

as a potential covariate. 

 

Statistical analyses: A one-way analysis of variance (ANOVA) was used to determine any 

significant differences between the characteristics of the MMP3 rs650108 genotype 

groups, and volume and z-scores. Independent t-tests were conducted when combining 

genotype groups for these same two measures of tendon properties. Non-parametric 

equivalents of the ANOVA (Kruskal-Wallis test) and independent t-tests (Mann-Whitney 

U test) were conducted on Young’s Modulus values, for all three genotype groups and 

combined genotype groups, respectively. These same tests were performed on the MMP3 

rs591058 and rs679620 genotype groups, although only volume met the assumptions of a 

parametric test, with Young’s Modulus and z-scores being assessed using non-parametric 

tests. As only BMI showed a significant correlation with any of the phenotypic measures 

(volume, r =0.334, P = 0.038; Young’s Modulus, r = 0.440, P = 0.005; z-scores, r =0.473, 

P = 0.002) BMI was used as a covariate. Statistical significance was accepted when P ≤ 

0.05. All measurements showed high reliability (section 2.5). 

 

6.3 Results 

There were no significant differences in patellar tendon volume and Young’s Modulus 

measurements as well as the z-scores, between the genotype groups for MMP3 rs650108 

(volume, P = 0.828; Young’s Modulus, P = 0.557; z-scores, P = 0.719). This outcome 

holds true when comparing the GG genotype group to the combined GA and AA genotype 

groups (volume, P = 0.627; Young’s Modulus, P = 0.797; z-scores, P = 0.708). 

Furthermore, when factoring in the covariate of BMI, volume and z-scores remain 

insignificant between all genotype groups (volume, P = 0.676; z-scores, P = 0.531), and 

when combined (volume, P = 0.399; z-scores, P = 0.358) (Table 14). Results were 

combined between the MMP3 gene variants, rs591058 and rs679620, as they were in 

perfect disequilibrium with one each other. However, no significant differences were 

evident between genotype groups for measures of volume and Young’s Modulus and z-

scores (volume, P = 0.835; Young’s Modulus, P = 0.680; z-scores, P = 0.862). As volume 

was the only parametric measure, BMI was included as a covariate, but no significant 

difference between genotype groups were evident (P = 0.532) (Table 15). Oestradiol 

showed no significant correlation with volume (volume, r =0.010, P = 0.950) and so was 
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not used as a covariate. There were no MMP3 gene variant genotype effects on any of the 

subject characteristics (Table 14 and 15). 

 

Table 14. General characteristics and measures of patellar tendon properties for the GG, 

GA or AA MMP3 rs650108 genotype groups. Combined GA and AA genotype groups are 

also presented, together with the GG genotype group for this gene variant 

N = 39 MMP3 rs650108 genotype groups MMP3 rs650108 genotype groups 

combined 

 GG 

(n=23) 

GA 

(n=12) 

AA 

(n=4) 

P-value  GG 

(n=23) 

GA & 

AA 

(n=16) 

P-value 

Age 

(years) 

21 (18-

39) 

20 (18-

24) 

22 (20-

24) 

0.130 21 (18-

39) 

20 (18-

24) 

0.153 

Height 

(cm) 

166.5 

(153-

179) 

165.8 

(155-

183) 

167.8 

(158-

175) 

0.927 166.5 

(153-

179) 

165.8 

(155-

183) 

0.830 

Weight 

(kg) 

63.2 
(47-80) 

62.8 
(48-75) 

69.5 
(52-79) 

0.669 63.2 
(47-80) 

64.7 
(48-79) 

0.971 

BMI 

(kg/cm
2
) 

23.9 
(19-30) 

22.1 
(19-27) 

23.3 
(19-27) 

0.630 23.9 
(19-30) 

22.6 
(19-27) 

0.356 

Oestradiol 

(pg/ml) 
24.9 (6-

116) 

18.8 (8-

70) 

35.7 

(28-90) 

0.197 24.9 (6-

116) 

27.5 (8-

90) 

0.797 

 

Volume 

(mm³) 

1497 

(211) 

1521 

(257) 

1570 

(217) 

0.828 (0.676) 1497 

(211) 

1533 

(241) 

0.627 (0.399) 

Young’s 

Modulus 

(GPa) 

0.499 

(1.19)
 

0.547 

(0.90)
 

0.712 

(0.49)
 

0.557 0.499 

(1.19)
 

0.607 

(0.90)
 

0.797 

Z-scores -0.085 
(1.640) 

-0.056 
(1.729) 

0.643 
(1.636) 

0.719 (0.531) -0.085 
(1.640) 

0.119 
(1.680) 

0.708 (0.358) 

General characteristics are expressed as median (range) 

 

Volume and Z-scores are expressed as mean (standard deviation) 
  

Young’s Modulus is expressed as median (range) 

 

The P-value for Volume and Z-scores are reported with BMI as a covariant in parenthesis 
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Table 15. General characteristics and measures of patellar tendon properties for the CC 

and GG, CT and GA, and TT and AA genotype groups of the MMP3 rs591058 and 

rs679620 genotype groups, respectively 

N = 39 MMP3 rs591058 and rs679620 genotype groups  

 591058 (CC) 

679620 (GG) 

(n=17) 

591058 (CT) 

679620 (GA) 

(n=6) 

591058 (TT) 

679620 (AA) 

(n=16) 

P-value 

Age (years) 20 (18-24) 21.5 (21-23) 21.5 (18-39) 0.241 

Height (cm) 165.5 (154-183) 164.8 (163-179) 166.9 (153-175) 0.771 

Weight (kg) 64 (48-79) 61.9 (50-78) 67.7 (47-80) 0.868 

BMI 

(kg/cm
2
) 

22.7 (19-27) 23.8 (20-30) 23.7 (19-27) 0.343 

Oestradiol 

(pg/ml) 

28.3 (8-90) 20.5 (9-46) 28 (6-116) 0.544 

     

Volume 

(mm³) 

1534 (234) 1474 (314) 1502 (179) 0.835 (0.532) 

Young’s 

Modulus 

(GPa) 

0.558 (0.90)
 

0.715 (1.19)
 

0.493 (1.01)
 

0.680 

Z-scores -0.190 (5.69)
 

0.260 (7.93)
 

-0.465 (3.72)
 

0.862 

General characteristics are expressed as median (range) 

 

Volume is expressed as mean (standard deviation)  
 

Young’s Modulus and Z-scores are expressed as median (range) 

 

The P-value for Volume is reported with BMI as a covariant in parenthesis 

 

 

 

6.4 Discussion 

In this study no significant associations were found between the three MMP3 gene 

variants, rs679620, rs591058 and rs650108, and patellar tendon properties in an 

asymptomatic female population. These data suggest that the MMP3 gene does not 

associate with structural and mechanical characteristics of the patellar tendon, which is in 

agreement with data in a male population (chapter 5). No sex-specific differences were 

evident between these genotype-phenotype proposed associations, in that the results are 

similar between the male (chapter 5) and female cohorts. 

 

MMP3 is a potent degrading enzyme capable of degrading multiple ECM and non-ECM 

protein components (Visse and Nagase, 2003, Matrisian, 1990). MMP3 also indirectly 

affects the degradation of the ECM by activating the proteolytic activity of other MMPs. 

Both highly stressed (Maeda et al., 2009, Asundi and Rempel, 2008, Birch, 2007) and 
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load-deprived (Asundi and Rempel, 2008, Thornton et al., 2010, Leigh et al., 2008) tendon 

display elevated MMP3 protein expression levels compared to ‘normal’ tendon, 

determined in animal models and in vitro cell cultures. Conversely, relatively lower levels 

of MMP3 expression have been reported in human tendon displaying pathological 

characteristics (de Mos et al., 2007, Ireland et al., 2001, Jones et al., 2006, Riley et al., 

2002, Lo et al., 2004). This differential expression of MMP3 highlights the importance of 

negating non-genetic factors, when investigating the association of genetic factors with 

phenotypes. Controlling for non-genetic factors such as the level of activity and only 

recruiting individuals who have no history of tendon injury or pathology (see section 2.1), 

was a notable strength of this study design. In addition, a standardised measure of 

oestradiol was a necessary requirement in order to maximise the detection of measurable 

associations with genetic variation, as oestradiol may be a non-genetic variable 

contributing to tendon metabolism, structure and function of tendon in females (Burgess et 

al., 2009d, Miller et al., 2007). This consideration is of particular importance as the 

expression of MMP3 has reported to be suppressed in the presence of oestradiol, through a 

possible gene-hormone interaction (Moalli et al., 2002, Sato et al., 1991). However, within 

this study, oestradiol was found not to associate with any of the tendon measurement 

parameters (volume, r = -0.087; Young’s Modulus, r = 0.146; z-scores, r = -0.020). 

Oestrogen may not have an effect on the expression of MMP3 within normal physiological 

limits, and so is not likely to be a confounding variable in genotype-phenotype associations 

proposed in this study at least. 

 

Sex differences in the mechanical properties of tendon have been explored on numerous 

occasions previously (Onambele-Pearson and Pearson, 2012, Kubo et al., 2003a, 

Magnusson et al., 2007, Onambele et al., 2007), however in this study the aim was to better 

understand the role of genetic variation and in particular, MMP3 gene variants (rs679620, 

rs591058, rs650108) on the structural and functional characteristics of the patellar tendon, 

in an asymptomatic female population. The high P-values observed clearly indicate no 

significant association for all three gene variants, with measures of tendon properties 

(Tables 13 and 14).  

 

Previous research has associated these gene variants independently with chronic Achilles 

tendinopathies, in a predominantly male population (Raleigh et al., 2009), but it is not 

possible to elucidate between sex-specific associations from this data. It has also been 

reported that females have half the amount of resting mRNA expression levels of MMP3 in 
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patellar tendon, compared to men (Sullivan et al., 2009), which may indicate an impaired 

ability to maintain a healthy ECM, and thus, females may be more susceptible to tendon 

injury. Therefore, it could be postulated that the turnover of the ECM is relatively less than 

that of men, so the matrix stiffness is likely to be relatively higher, and hence, this may 

translate into a higher tendon modulus in vivo. Nevertheless, tendon modulus is evenly 

matched across all genotypes for all gene variants, which ultimately suggests that 

oestradiol has no influence on the MMP3 gene in females within normal physiological 

levels. 

 

In conclusion, the sequence variants rs679620, rs591058 and rs650108 within the MMP3 

gene, do not associate with patellar tendon properties in females. Other MMP gene variants 

displaying high heterozygous frequencies could be potentially informative, and should be 

considered as candidates for association studies, given their importance as regulatory 

components at a protein level, within human tendon.  
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7.1 Introduction 

It has been demonstrated that the MMP3 rs679620 single nucleotide polymorphism (SNP) 

interacts with the COL5A1 rs12722 SNP, in modifying the risk of chronic Achilles 

tendinopathies (AT) (Raleigh et al., 2009). Raleigh et al. (2009) report that individuals 

with the CC genotype of the COL5A1 rs12722 SNP, and the AA genotype of the MMP3 

rs679620 SNP, may be at less risk of developing AT compared to individuals with the TT 

genotype of the COL5A1 rs12722 SNP and the GG genotype of the MMP3 rs679620 SNP. 

They found that when combining the alleles of both gene variants (pseudo-haplotypes), a 

significant association was established between the controls (asymptomatic) and cases 

(tendinopathies), in that the frequency of the ‘A’ and ‘C’ alleles (MMP3 and COL5A1 

SNPs, respectively) were greater in the control group compared to the case group (P = 

0.002), whereas, the frequency of the ‘G’ and ‘T’ alleles were greater in the case group 

compared to the control group (P = 0.006). 

 

It is plausible that tendon injury can be linked to tendon mechanical stiffness in that both 

ends of the stiffness continuum can potentially lead to injury, as well as being protective 

against injury. A relatively stiffer tendon would decrease the stress and strain for a given 

magnitude of force per unit area, in direct contrast to a more compliant tendon, thus, 

dissipating the stress imposed on the structures, and as a consequence a reduced injury risk 

(Ker et al., 1988, Couppe et al., 2008, Seynnes et al., 2009). Conversely, a stiffer tendon 

would induce a relative increase in elongation of the contractile apparatus in response to 

mechanical loading, and hence, the myotendinous junction may be at greater risk of strain 

overload, whereas, a compliant tendon has a greater energy absorbing capacity (Witvrouw 

et al., 2004). 

 

Even in the absence of any significant associations between the genotypes of the 

previously mentioned COL5A1 and MMP3 SNPs independently, with volume, Young’s 

Modulus, and both in combination (z-scores), it is possible that the alleles of both gene 

variants interact to modify patellar tendon structural volume and modulus. The rationale 

supporting such an interaction derives from the premise that collagen type V (Col V) 

expression levels appear critical in determining a tendon’s microstructure, through 

diameter and cross-linking (Ottani et al., 2001, Wenstrup et al., 2004, Niyibizi and Eyre, 

1993), and as Col V is a possible substrate for the proteolytic activities of MMP3 protein 

(Sternlicht and Werb, 2001), the cross-linking and stabilisation of fibrillar collagen may be 
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degraded. As a result, there may be a reduction in fibril diameter and matrix stiffness 

(Eliasson et al., 2007, Reddy, 2004). 

 

Investigating the cumulative effect of several polymorphisms in genes related to tendon 

structural and regulatory processes will account for a larger proportion of the variability in 

the phenotypes, which could ever be possible by studying one gene variant at a time (Akey 

et al., 2001, Zollner and von Haeseler, 2000). By attempting to accumulate small 

tendencies (clearly no significant) for association between the genotypes and phenotypes 

reported in the previous chapters (chapters 3, 4, 5, 6), may provide a greater potential for 

something approaching statistical significance, so long as these associations are analysed 

appropriately (Akey et al., 2001).  

 

By applying a mathematical and statistical model, as well as using current knowledge and 

analysed data from our own research regarding polymorphic associations with related 

phenotypes, the assessment of a polygenic profile was made possible. Therefore, the aim of 

this investigation was to determine whether gene-gene interactions between the COL5A1 

and MMP3 SNPs were involved in modifying patellar tendon structural and functional 

properties, in asymptomatic males and females. 

 

7.2 Method 

Participants: Forty-five males (age 22.9 (3.3) years; BMI 24.6 (2.6) kg/m²) and thirty-nine 

females (22.4 (4.8) years; BMI 23.2 (2.8) kg/m
2
) took part in the full range of tests for 

tendon properties. Physical characteristics of all participants are presented in Table 4 

(section 2.1). Participants gave written informed consent (section 2.1). A detailed 

description of the methods for measures of tendon properties, and genotyping the COL5A1 

rs12722, MMP3 rs650108, rs591058 and rs679620 gene variants, are given elsewhere 

(section 2.2 and 2.3, respectively).  

 

Tendon properties: Briefly, Young’s Modulus represented the mechanical properties of 

tendon and was calculated by multiplying the tendon stiffness (derived from the force-

elongation curve), by the ratio of patellar tendon length (PTL) to patellar tendon cross-

sectional area (PTCSA). The volume represented the structural extent of the patellar 

tendon and was calculated by geometric principles assuming a uniformly tapering 

truncated cone between measurement positions (i.e. the product of PTCSA at the three 

sections of the tendon, 25, 50, 75%, and PTL). The z-scores represented the scaling 
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together of the structural (volume) and functional (Young’s Modulus) properties of the 

tendon, and was calculated from the combination of the scores derived from the means of 

each tendon measure (Young’s Modulus and volume), divided by their respective standard 

deviations.  

 

Genotyping: The genotypes of the COL5A1 and MMP3 gene variants were determined 

using fluorescence-based TaqMan technique of polymerase chain reaction (PCR), based on 

the amplification of a fragment of genomic DNA overlapping the each of the gene 

polymorphisms, within the 3’ untranslated region of the COL5A1 rs12722 gene variant, 

and the non-coding regions (rs591058, rs650108) and coding regions (rs679620) of the 

MMP3 gene. 

 

Oestradiol: In females only, oestradiol levels were analysed using standard ELISA 

procedures from serum content taken on the day of measures of tendon properties (see 

section 2.4 for more detail on this procedure), to assess the contribution of this ligand to 

measures of tendon properties. Serum levels of oestradiol has been associated with tendon 

stiffness in young females (Burgess et al., 2009c). Oestradiol was therefore factored into 

statistical analyses as a potential covariate. 

 

Data analyses:  

Allele combinations 

A simple additive model of continuous data was applied such that the allele combinations 

consisting of markers in two different genes were modelled together, and their association 

with measures of tendon properties was tested (volume, Young’s Modulus, z-scores).  

A detailed explanation of how the alleles were combined, and the model used for the 

purposes of analysing the combination of alleles are displayed in appendix 2 and 3, 

respectively. 

 

Ultimately, four independent groups of data with distribution of the weighted variables 

(‘Allele combination count’), relating to the four possible combination of alleles were 

entered into SPSS version 19.0.0. Because none of the datasets including volume, Young’s 

Modulus, and z-scores for both sexes met the assumptions of parametricity, the non-

parametric Kruskal-Wallis statistical test was used in these instances. 
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Total genotype score 

To examine the combined influence of the four gene variants on measures of tendon 

properties (volume, Young’s Modulus and z-scores), scores were allocated to each 

genotype within each of the polymorphisms. All four polymorphisms are bi-allelic, 

providing three possible genotypes. The homozygote genotype associated with the highest 

volume and Young’s Modulus values as well as z-scores were allocated a ‘score’ of 2, with 

a linear trend applied such that the heterozygotes scored 1 and the other homozygotes 

scored 0. Where only homozygotes were used in the case of the male group for MMP3 

rs591058 and rs679620 variants, heterozygotes were allocated an intermediate score of 1. 

 

Criteria for allocation of scores: As no previous research has associated genetics with 

tendon properties, scores were allocated based on the following rationale; Brown et al. 

(2011b) report a significant linear trend for the COL5A1 rs12722 variant and measures of 

flexibility or range of motion (ROM) ((sit and reach test, (SR)), in a mixed sex population. 

A greater SR ROM was associated with the CC genotype compared to the TT genotype 

(321 mm vs. 225 mm, respectively, P = 0.017), which indirectly suggests that individuals 

homozygote for the TT genotype are more ‘stiff’/inflexible than individuals homozygote 

for the CC genotype. Although SR ROM cannot be directly associated with mechanical 

properties of the patellar tendon, it does intuitively imply an association. SR ROM is partly 

determined by the function of the muscle-tendon unit, and therefore a relatively stiff 

tendon would contribute to the overall stiffness and inflexibility of the ROM phenotype. 

Therefore, for Young’s Modulus (male and female), individuals with the TT genotype 

were allocated a score of 2, and individuals with a CC genotype were allocated a 0 score. 

Heterozygotes were given a score of 1. 

 

As no significant findings exist in the research literature linking genetics with muscle 

and/or tendon stiffness, or ROM parameters, for the MMP3 gene variants (rs679620, 

rs591058 and rs650108), allocation of scores were based on our own Young’s Modulus 

results for these gene variants. Even though there were no significant associations between 

any of these gene variants and Young’s Modulus, a linear trend exists between the 

genotypes of the MMP3 rs650108 variant, so that the AA genotype was allocated a score 

of 2 and the GG genotype a score of 0. The AG genotype was allocated a score of 1. As for 

the gene variants MMP3 rs679620 and rs591058, the genotypes GG and CC, respectively, 

were allocated a score of 2, and the AA and TT genotypes, respectively, a score of 0. 
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For volume and z-scores, scores were allocated based on tendencies in our own data for all 

four gene variants. The homozygote genotype displaying the highest values for these 

measures of tendon properties were given a score of 2, with the corresponding homozygote 

given a score of 0. The heterozygote genotype was allocated a score of 1. It was not 

possible to assign scores to the z-score data in the male cohort, as the highest volume 

values for the MMP3 rs650108 gene variant were reversed in relation to the highest 

Young’s Modulus scores (volume – 2 for GG genotype, Young’s Modulus – 2 for AA 

genotype). Therefore in this instance, the z-scores could not represent the functional 

significance of the volume and Young’s Modulus values together. 

 

To quantify the combined influence of all four gene variants on tendon modulus, an 

algorithm was used to combine all four genotype scores (GS) for any given participant, in a 

simple additive model (Williams and Folland, 2008). The total score was then transformed 

mathematically to lie within the range of 0-100 (Equation 7), to allow a more meaningful 

interpretation of the results, and defined as the ‘total genotype score’ (TGS). Taking into 

account the four genotype scores and a maximum score of 8 before transformation for all 

GS combined, the TGS was calculated as: 

 

Equation 7: TGS = (100 / 8) × (GS1 + GS2 + GS3 + GS4) 

 

A TGS of 100 represents a polygenic profile which demonstrates the highest volume, 

tendon modulus, and z-scores, and a TGS of 0 represents a profile which demonstrates the 

lowest volume, tendon modulus, and z-scores in this particular model. 

 

In order to test whether an association exists between the TGS and volume, Young’s 

Modulus, and z-scores, the Spearman’s rho correlation co-efficient was conducted on all 

the variables, as the TGS did not meet the assumptions of a parametric statistical test. In 

addition, a linear regression model was applied to this association to predict the degree of 

variance in the outcome measures (volume, Young’s Modulus, z-scores), determined by 

the polygenic profile (TGS). Furthermore, to determine which predictive variables (gene 

variants that constitute the TGS) contribute to the variance in volume, Young’s Modulus 

and z-scores, a forward and backward stepwise regression model were used. Briefly, by 

adding each predictive variable one after another to the model, a test was made to check if 

some variables could be deleted without decreasing the predictive power of the model, and 

its effect on volume, Young’s Modulus and z-scores. All data were analysed with SPSS 
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version 19.0.0 software, with all data presented as mean (SD) unless otherwise stated. 

Statistical significance was accepted when P ≤ 0.05. 

 

7.3 Results 

Allele combinations 

Raleigh et al. (2009) have previously shown that the MMP3 gene variant rs679620 

interacts with the COL5A1 rs12722 gene variant to increase the risk of chronic Achilles 

tendinopathy. The four possible combinations of the alleles of these two gene variants and 

their respective values of volume, Young’s Modulus and z-scores, for both sexes, are 

represented in Table 16. No significant differences were observed in patellar volume and 

Young’s Modulus measurements as well as z-scores, between all four allele combinations, 

in either sex (males - volume, P = 0.359; Young’s Modulus, P = 0.073; z-scores, P = 

0.110. females - volume, P = 0.949; Young’s Modulus, P = 0.067; z-scores, P = 0.579). 

Even though no significant differences were evident in any of the measures, differences in 

Young’s Modulus values did however approach significance, in both sexes (males, P = 

0.073; females, P = 0.067). Figures 23 and 24 show the distributions between the weighted 

allele combinations for Young’s Modulus values, for males and females, respectively. All 

values are expressed as the median and range, as the data sets did not meet the assumptions 

of a parametric statistical test. The allele combinations for both sexes had an effect on BMI 

(Male/Female – P = < 0.001/0.028) (Table 16), yet BMI had no effect on tendon 

phenotypic measures. 
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Table 16. Four allele combinations constructed from the MMP3 rs679620 and COL5A1 

rs12722 SNPs, and their respective values for general characteristics and measures of 

patellar tendon properties in both sexes. First allele of each combination corresponds to the 

MMP3 SNP, and the second allele, the COL5A1 SNP. 

 Males  Females  

 A + C 
 

G + C A + T G + T  P-value A + C G + C A + T G + T  P-

value 

Age (years) 

 

23 
(19-
32) 

21.5 
(19-
27) 

23 (19-
32) 

21.5 
(20-27)  

0.900 21.5 
(18-39 

20 (18-
24) 

22 (20-
24) 

20 (18-
25) 

0.928 

BMI 

(kg/cm
2
) 

23.4 
(20-
30) 

27 (21-
30) 

23.5 
(20-30) 

25.5 
(21-30) 

< 0.001* 23.7 
(19-27) 

22.5 
(19-27) 

23.8 
(19-30 

24.4 
(19-30) 

0.028* 

Oestradiol 

(pg/ml) 

 27 (6-

116) 

27.1 (6-

90) 

25.9 

(6-
116) 

26.5 (8-

90) 

0.876 

           

Volume 

(mm³) 

2311 

(264) 

2243 

(990) 

2300 

(1592) 

2365 

(1179) 

0.359 1489 

(839) 

1585 

(1021) 

1489 

(642) 

1557 

(684) 

0.949 

Young’s 

Modulus 

(GPa) 

0.35 

(1.23

) 

0.45 

(0.64) 

0.39 

(1.23) 

0.45 

(0.75) 

0.073 0.50 

(1.13) 

0.44 

(0.96) 

0.56 

(1.07) 

0.66 

(1.04) 

0.067 

Z-scores -

0.290 

(6.02

) 

0.320 

(4.26) 

-0.285 

(6.72) 

0.675 

(4.26) 

0.110 -0.545 

(6.01) 

-0.190 

(7.17) 

-0.370 

(5.64) 

-0.170 

(6.41) 

0.579 

General characteristics are expressed as median (range) 

 

*Allele combinations have significant effects on BMI 

 

Values are expressed as median and range is presented in parenthesis 
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Figure 23. Allele combinations of MMP3 SNP rs679620 (A/G) and COL5A1 SNP rs12722 

(C/T) and median Young's Modulus values for males. Error bars represent the upper 

quartile range. Annotations above each error bar indicate the total number of allele 

combinations derived from the model (termed ‘Allele combination count’) 
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Figure 24. Allele combinations of MMP3 SNP rs679620 (A/G) and COL5A1 SNP rs12722 

(C/T) and median Young's Modulus values for females. Error bars represent the upper 

quartile range. Annotations above each error bar indicate the total number of allele 

combinations derived from the model (termed ‘Allele combination count’) 

 

Total genotype score 

The total genotype score (TGS) attempts to quantify the combined influence of all four 

gene variants (COL5A1 rs12722, MMP3 rs679620, rs591058 and rs650108) on the 

measures of patellar tendon properties (volume, Young’s Modulus, z-scores). There were 

very weak correlations with no significant associations with the TGS and each of the 

measures of tendon properties, both in males (volume, r = 0.067, P = 0.663; Young’s 

Modulus, r = 0.227, P = 0.134) and females (volume, r = 0.012, P = 0.942; Young’s 

Modulus, r = 0.125, P = 0.449; z-scores, r = 0.076, P = 0.645). In addition, a forward and 

backward stepwise regression model was used to assess the effect of adding and deleting, 

respectively, each independent variable (the gene variants) to the model at each step, on the 

volume and Young’s Modulus values as well as z-scores. None of the gene variants 
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included in this stepwise regression model, nor any combination of them in a regression 

equation, could predict an effect on volume, Young’s Modulus or z-scores. 

 

7.4 Discussion 

The main findings of this study were that the allele combinations constructed from the 

MMP3 rs679620 and COL5A1 rs12722 gene variants were not significantly associated 

with patellar tendon structural (volume) and functional (modulus) measures, independently 

and when combined (z-scores), and that a polygenic profile including the four tested 

polymorphisms (COL5A1 rs12722, MMP3, rs679620, rs591058, rs650108) does not 

significantly associate with patellar tendon volume, modulus, and z-scores in either sex.  

 

Akey et al. (2001) report that two and four marker locus haplotypes (combination of 

neighbouring alleles) offer higher power to detect associations than single marker tests, as 

was investigated in this study. In addition, even though in the previous chapters no 

associations were evident with single genetic markers and tendon properties, it is still 

possible to identify allele combination/phenotype associations (Fallin et al., 2001). 

However, none of the mathematical and statistical models investigated in this study were 

found to be associated with patellar tendon properties. Despite these findings, it does not 

exclude the possibility that additional variants and therefore gene-gene interactions within 

the MMP3 and COL5A1 genes associates with tendon properties. Although there was no 

significant association with the allele combinations and Young’s Modulus for both sexes, 

the association did however approach significance (male, P = 0.073; female, P = 0.067). 

There was a tendency toward higher Young’s Modulus values (0.45 GPa) for males with 

‘G’ and ‘T’ allele combinations of the MMP3 and COL5A1 gene variants, and a tendency 

toward lower Young’s Modulus values (0.35 GPa) for the same cohort of males, with an 

‘A’ and ‘C’ allele combination for these same gene variants (Figure 23). This represents 

~22% difference in material stiffness between male individuals for the allele combinations. 

In females, a similar trend was apparent (Figure 24), with higher Young’s Modulus values 

(0.66 GPa) evident with the ‘G’ and ‘T’ allele combination, and lower Young’s Modulus 

values (0.50 GPa) evident with the ‘A’ and ‘C’ allele combination, signifying an 

approximate difference of 24% in material stiffness between these two allele combinations. 

Interestingly, Raleigh et al. (2009) reported in the only other study to combine the alleles 

of these two gene variants and their association with a tendon phenotype (Achilles 

tendinopathies), that the ‘G’ and ‘T’ allele combination was significantly overrepresented 

in the tendinopathy group compared to the asymptomatic control group (P = 0.006), and 
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the ‘A’ and ‘C’ allele combination was significantly underrepresented in the tendinopathy 

group compared to the control group ( P = 0.002). Therefore, it could be speculated that 

higher Young’s Modulus values are associated with increased risk of tendon pathologies. 

Conversely, lower Young’s Modulus values may be associated with being protective 

against such pathologies, regardless of sex. This assumption makes intuitive sense in that a 

relatively stiffer tendon is less able to conform to elongation and thus, dissipate the force 

developed within the muscular system overtime, leading to an increased risk of strain 

overload to the tendon, particularly at the myotendinous junction (Witvrouw et al., 2007). 

However, the proposed relationship between tendon material stiffness and risk of injury 

remains far from conclusive. 

 

Further research is required to decipher whether significant associations exist between 

these allele combinations and patellar tendon modulus. By only assessing the Young’s 

Modulus of individuals with the AA genotype of the MMP3 rs679620 variant and the CC 

genotype of the COL5A1 rs12722 variant, and comparing it with individuals with the GG 

genotype and TT genotype of the same gene variants, respectively, the expected difference 

between groups (and thus statistical power) could be maximised, and thus the ability to 

detect an association between allele combinations. 

 

For the polygenic profile analyses which sought to identify the combined influence of the 

four gene variants, COL5A1 rs12722, MMP3 rs679620, rs591058 and rs650108, all of 

which have been shown to associate with tendinopathies, independently (COL5A1 rs12722 

(Mokone et al., 2006, September et al., 2008); MMP3 gene variants (Raleigh et al., 2009), 

there were no significant correlations with volume, Young’s Modulus in both sexes, and z-

scores in females (males - volume, r = 0.067, P = 0.663; Young’s Modulus, r = 0.227, P = 

0.134; females - volume, r = 0.012, P = 0.942; Young’s Modulus, r = 0.125, P = 0.449; z-

scores, r = 0.076, P = 0.645). Furthermore, a stepwise regression model could not predict 

an effect on volume, Young’s Modulus, and z-scores from any possible combination of 

these gene variants. Consequently, the polygenic profiling has no influence on patellar 

tendon structural and mechanical properties in vivo. The genes in which these four gene 

variants derive (COL5A1, MMP3), encode for proteins directly involved in biological 

processes within tendon (Collins and Raleigh, 2009), so a potential influence of these gene 

variants on tendon properties is rational.  
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A decrease in tendon size or CSA as well as tendon tissue stiffness in a murine model, can 

be explained by a decrease in Col V concentrations, and thus, a reduction in the assembly 

of fewer fibrils (Wenstrup et al., 2011). Even though these findings have been reported in 

COL5A1 gene knockout models in mice, it can be speculated that common gene variants 

such as COL5A1 rs12722 could be partly responsible for the normal interindividual 

variation in the tendon size and modulus at maturation. The functional significance of this 

gene and its 3’ UTR in which the rs12722 gene variant resides has been reported 

previously (Laguette et al., 2011). These findings suggest that the mRNA stability of the 

‘T’ alleles equates to a greater amount of Col V being produced. Ultimately, a relative 

increase in Col V compared to the amount produced by the ‘C’ alleles, would result in an 

increased fibril diameter and increased material stiffness (Wenstrup et al., 2011, Wenstrup 

et al., 2006). However, no differences were evident between the homozygotes of this gene 

variant and tendon volume and modulus, in the human cohorts studied in this thesis (see 

chapters 3 and 4). By factoring in the influence of the MMP3 gene variants with the 

COL5A1 gene variant on patellar tendon properties, there was a greater possibility that an 

association would be evident, than would be possible with these gene variants 

independently. From a physiological standpoint, the proposed interactions of these gene 

variants’ respective proteins could influence tendon structural and mechanical properties, 

in that Col V may influence the synthesis and activation of the MMP3 protein during 

catalysis, leading to an altered rate of degradation and change in the stiffness of the matrix. 

However, no significant differences were found between the TGS and all measures of 

tendon properties. 

 

Researchers should be encouraged to explore the influences of additional sequence variants 

within genes which assemble and regulate the microstructure of tendon, on tendon 

mechanical properties including those within collagens I and XI. These proteins have been 

reported to interact with Col V to regulate tendon fibril diameter and assembly (Birk, 2001, 

Segev et al., 2006). Ultimately, if these gene variants were to associate with tendon 

modulus for example, they could then be factored into a polygenic model, which would 

account for a greater proportion of the interindividual variability, than would be possible 

with only single marker genetic variants. 

 

A notable limitation of this method to categorise genotypes with scores, was the complete 

lack of data in the research literature associating the MMP3 gene variants with phenotypes 

related to tendon mechanical properties, owing to the novel associations proposed. 
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Genotype scoring was therefore based on non-significant tendencies in our own 

observations, which is inherently limited. 

 

In conclusion, the main finding of this study was that the mathematical and statistical 

approaches used to assess the associations of the gene variants with allele combinations 

and polygenic constructs, with measures of patellar tendon properties, yielded no 

significant findings. Previous findings have shown that allele combinations constructed 

from the COL5A1 rs12722 and MMP3 rs679620 gene variants, associates with discrete 

datasets of chronic Achilles tendinopathy and asymptomatic control groups. The findings 

of the current study do not support the notion that these two gene variants alter the 

structural and mechanical properties of patellar tendon, however, a tendency exists that 

may link the mechanical properties of tendon to risk of incurring tendon pathologies. 

Therefore, further research is required to investigate the effect of these associations and 

their clinical applications to injury prevention models. 
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Chapter 8. 

 

 

 

 

 

 

General discussion 
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8.1 Overview of rational for conducting genetic association studies on tendon 

properties 

The definitive aetiology of variability in structural and mechanical properties of tendon is 

not yet fully understood, in spite of a large volume of published research in this area 

(Mokone et al., 2006, September et al., 2008, Mokone et al., 2005, Posthumus et al., 

2010a, Raleigh et al., 2009), Brown et al., 2011a, Posthumus et al., 2011, Collins et al., 

2009, Brown et al., 2011b). Nonetheless, in reviewing the existing literature (chapter 1), it 

is clear that tendon properties are defined by a multitude of factors for which diverse 

extrinsic and intrinsic factors have been identified, for instance, mechanical loading 

(Hansen et al., 2003, Kubo et al., 2002, Kubo et al., 2004, Reeves et al., 2005a), sex (Kubo 

et al., 2003a, Magnusson et al., 2007, Onambele et al., 2007, Onambele-Pearson and 

Pearson, 2012) and ageing (Reeves et al., 2003a, Reeves et al., 2005b, Magnusson et al., 

2003a, Kubo et al., 2003b, Karamanidis and Arampatzis, 2006, Karamanidis and 

Arampatzis, 2005, Narici et al., 2005, Maganaris et al., 2006, Morse et al., 2005, Onambele 

et al., 2006, Mian et al., 2007, Mademli et al., 2008, Baudry et al., 2012).  

 

Previous research examining physical performance phenotypes related to tendon structure 

and function has been performed for which a genetic basis can be suspected. Specifically, 

these phenotypes include Achilles tendon pathologies (Mokone et al., 2006, September et 

al., 2008, Mokone et al., 2005, Posthumus et al., 2010a, Raleigh et al., 2009), range of 

motion measures of the lower limbs (Collins et al., 2009, Brown et al., 2011b), and 

endurance running performance (Brown et al., 2011a, Posthumus et al., 2011). In the latter 

two phenotypes, tendon function can be considered an essential contributing factor to the 

overall phenotype.  

 

Variations within genes that encode for protein components expressed and involved in 

structural and regulatory processes within tendon, are potential areas for investigation in 

genetic association studies. 

 

8.2 Limitations of genetic association studies  

Although genetic association studies such as the above, have achieved great successes in 

identifying a genetic component to complex exercise and health-related phenotypes, these 

type of studies only investigate variation at one loci, which only explains a limited 

proportion of heritability of the tendon phenotype, leaving the vast majority of heritability 

unexplained (Eichler et al., 2010). Hence, on the basis of current evidence, it is difficult to 
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assume that there is only a single causative gene variant or gene involved in tendon 

phenotypes, and it is more likely that a multitude of genes are involved (polygenics) 

(Spurway, 2006, Bray et al., 2009). This concurs with the expectation that tens or even 

hundreds of genes, their associated proteins, and their heterogeneous interactions, are 

required to maintain normal tendon structure, regulation and ultimately function, thus, the 

literature documenting genotype-phenotype associations is often ambiguous. 

Compounding the ambiguity with these associations is the lack of a systematic process, 

particularly when recruiting subjects, in that the vast majority of the genetic association 

studies on tendon phenotypes addressed above, do not maximise the effects of the genetic 

portion of the associations. Generally these studies are retrospective in nature, in that the 

phenotype was evident before genetic variables were considered, which invariably pertains 

to non-genetic factors being highly influential on the phenotype (Kavvoura and Ioannidis, 

2008). Age, body mass, and physical activity levels were notable non-genetic factors not 

controlled for in these studies. In addition, sample size is a reoccurring limitation in that 

the power to detect genotype-phenotype associations is limited when dealing with very 

small effects from the gene variant (s) under investigation (Hong and Park, 2012). 

 

With regards the phenotype in these association studies, there appears to be a clear lack of 

definition, in that they are too generalised to highlight the significance of genetic factors. 

The problem lies in the fact that the endpoint assessment may be too ubiquitous to detect 

the modifying effects of the gene variants on the phenotype under investigation. For 

instance, flexibility tests such as the sit and reach test were used in associating the COL5A1 

rs12722 variant and range of motion measures (Collins et al., 2009, Brown et al., 2011b), 

but flexibility is a broad ill-defined phenotype encompassing various tissues, such as 

tendon, ligament, joint capsules, aponeuroses and fascia sheaths, of which differential 

expression of the protein coded for by the COL5A1 gene between the tissues is likely. 

Hence, a precise relation between this gene variant and range of motion cannot be 

identified. To this end, it is essential that a direct and precise assessment of the phenotype 

is available to minimise noise, which may otherwise contribute to the variability between 

the measures (Newton-Cheh and Hirschhorn, 2005). This accuracy becomes particularly 

important when a specific intermediate phenotype is assessed. Therefore, when 

investigating the candidate gene variants and their association with tendon structural and 

mechanical properties, it was necessary to adopt a comprehensive in vivo assessment of the 

patellar tendon, whilst minimising the effect of confounding variables (non-genetic), 
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reported in the research literature to influence the structure, metabolism and function of 

tendon. 

 

8.3 Aim of the thesis 

The overall aim of the work described in this thesis was to examine some of the genetic 

factors that contribute to independent parameters describing the structural and mechanical 

properties of the patellar tendon. Specific aims were: 

 

1. To determine whether the COL5A1 rs12722 gene variant and MMP3 rs679620, 

rs591058 and rs650108 gene variants associate with patellar tendon properties in 

asymptomatic male and female populations  

 

2. To determine whether allele combinations deriving from these gene variants associate 

with patellar tendon properties 

 

8.4 Main findings and implications 

No variability was evident between the genotype groups of the four gene variants and any 

of the measures of patellar tendon properties investigated in this thesis. Common single 

nucleotide polymorphisms in two separate genes, COL5A1 rs12722 and MMP3 rs679620, 

rs591058 and rs650108, were investigated. 

 

The COL5A1 rs12722 gene variant has been associated with tendon pathologies, range of 

motion, and endurance running performance, through mechanisms proposed to be related 

to the structural and mechanical properties of soft-tissue, including that of tendon, so it was 

considered a rational candidate gene to examine. The MMP3 gene variants have also been 

associated with tendon pathologies, although there is a lack of replication in affirming this 

association, and there is no clear consensus over possible mechanisms through which any 

effect is mediated. Tendon structural and mechanical properties are therefore possible 

intermediate phenotypes, through which the effect of the gene variants on the phenotypes 

stated above, are related. 

 

The examination of the COL5A1 rs12722 genotypes are described in chapter 3 and 4. No 

significant associations were found between COL5A1 rs12722 genotypes and volume of 

tendon, modulus of tendon, or indeed both in combination, in either sex. Thus, the data 

suggests that the COL5A1 rs12722 gene variant does not make a discernible contribution to 
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the variability on the patellar tendon properties measured, and that there is no influence of 

sex on this genotype-phenotype association, at least not in the asymptomatic male and 

female cohorts studied here. 

 

The results from the examination of the MMP3 rs679620, rs591058, and rs650108 

genotypes are reported in chapters 5 and 6. Again, no significant associations were evident 

between the genotypes of the three MMP3 gene variants independently, with volume and 

modulus of tendon, as well as both in combination (z-scores), in either sex. Hence, the data 

suggests that the three MMP3 gene variants do not make discernible contributions to the 

interindividual variability of patellar tendon properties measured, and that there are no sex-

specific effects on the genotype-phenotype associations, in these asymptomatic cohorts. 

 

The results from the polygenic profile including the four tested gene variants (COL5A1 

rs12722, MMP3 rs679620, rs591058, rs650108) on structural (volume) and functional 

(modulus) measures of the patellar tendon are reported in chapter 7. No significant 

associations were evident between the allele combinations of the COL5A1 rs12722 and 

MMP3 679620 gene variants, as well as the total genotype scores (TGS), which included 

all four gene variants, on patellar tendon properties. In addition, no significant associations 

were evident when factoring in the influence of sex.  

 

The association between the allele combinations and Young’s Modulus, albeit not 

significant in either sex, did approach significance (male, P = 0.073; female, P = 0.067). 

What was intriguing about these findings was that there was a tendency for the allele 

combination counts to concur with a previous case-control study investigating the same 

combination of alleles, and risk of incurring a tendinopathy. Higher tendon modulus values 

were associated with increased risk of tendon pathologies, and conversely, lower tendon 

modulus values were associated with being protective against such pathologies, in relation 

to their respective combination of alleles. There was no influence of sex on these 

tendencies, as similar findings were evident in both male and female cohorts. 

 

Even though the link between tendon material stiffness and risk of injury remains a 

contentious issue (Witvrouw et al., 2004, Witvrouw et al., 2007), the findings documented 

in chapter 7 together with the previous association with risk of tendinopathies, suggests 

that the mechanical properties of tendon may be a possible causative factor and prelude to 

tendon injuries, through common genetic variation in proteins expressed in tendon. 
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Accordingly, these proposed relationships highlight the importance of investigating 

associations between sequence variants in DNA with more ‘immediate’ phenotypes (closer 

to the genotype), which are involved in complex phenotypes such as tendon injury. The 

advancements in technologies have made possible the in vivo assessments of soft-tissue 

structures and mechanics, associated with these ‘immediate’ phenotypes. It could therefore 

be assumed that there is a direct chain of influence on the interindividual variability from 

the genotype to the more easily measurable phenotypes. 

 

Ultimately, by establishing the intermediate phenotypes (in vivo structural and mechanical 

properties) that are influenced by the same genetic variants as tendon injury will enhance 

our understanding of the individual components that contribute to the complexities of 

tendon injury.  

 

8.5 Directions for future research 

When investigating a gene variant and its influence on tendon properties, it is crucially 

important to negate confounding variables that are likely to influence tendon phenotypes, 

specific to its anatomical region and physiological heterogeneity. Also, minimising 

experimental error associated with phenotype measurement techniques is paramount, in 

order to establish a valid and reliable association between gene variants, and tendon 

structural and mechanical properties. Previous genetic association studies on soft tissue-

related phenotypes have not adopted precise measurement techniques; hence, attempting to 

verify a specific gene-phenotype relationship is limited. Recent advances in technologies 

have allowed for the accurate, reproducible and non-invasive assessment of soft tissue 

properties in vivo, such as tendon, as utilised in chapters 3-6. In addition, such techniques 

enhance the power to detect a genetic influence on the interindividual variability of these 

types of phenotypes. Future efforts should be concentrated on associating gene variants 

with intermediate phenotypes, ordered more closely to the genotype, to further our 

understanding of the molecular mechanisms involved in the more outward phenotypes 

(whole body level). In addition, our understanding of these relationships may be 

accelerated by continuing to construct polygenic profiles through appropriate statistical 

techniques (such as those utilised in chapter 7). These profiles can be potentially more 

informative than single variant analyses, when associations are being proposed with tendon 

modulus. 

 



156 
 

A limitation of the studies documented in chapters 3, 4, 5, 6, and 7, were the relatively 

small sample sizes in the region of 40 participants for genotype-phenotype associations, for 

both sexes. However, the results from power calculations performed prior to conducting 

the experimental chapters (see section 2.1), suggests that the sample sizes were sufficient 

to detect true associations between the genotype groups and measures of tendon properties, 

albeit the sample sizes were at the lower end of the power continuum. In addition, even 

though by combining male and female data sets would inevitably enhance the statistical 

power analyses in detecting these genotype-phenotype associations, the hypothesis-driven 

research question relating to sex differences in tendon properties (see section 1.10-Aims of 

thesis), underlined the need to maintain separate subgroups. Accordingly, a larger sample 

size is encouraged in future research investigating these genotype-phenotype associations 

in order to increase the power, and thus, the ability to detect these proposed associations, 

particularly when investigating the contribution of a single genetic marker. Given that this 

thesis presents the first investigations into associations between the gene variants and 

patellar tendon properties, until a larger sample size is used, it remains a possibility that 

weak associations do exist. 

 

The approach undertaken in each of the experimental chapters (chapters 3 ,4 ,5 ,6) to 

maximise the detection of phenotypic variability, was to recruit a high proportion of 

participants from the original cohort (see section 2.1) who were homozygote for the gene 

variants under investigation, hence, the genotype was being ‘stressed’ (Montgomery et al., 

2002). This approach is pragmatic in that it represents an efficient model for future 

research in sport and exercise genetics. Therefore, future researchers investigating gene 

variants and their association with tendon properties should be encouraged to replicate this 

approach in synergy with a larger sample size, in order to maximise the ability to detect 

such associations. 

 

From a purely genetic standpoint, a more powerful approach is required to find significant 

DNA polymorphisms associated with a higher proportion of the variability in tendon 

phenotypes, especially those that display continuous or quantitative traits (i.e. tendon 

modulus), due to the likelihood of many polymorphisms on several loci on the genome, 

being influential. Genotyping arrays (SNP chips) can now assay upward of 2 millions 

variants simultaneously, which due to linkage disequilibrium captures a substantial 

proportion of total genomic variability (The International HapMap, 2005), so by 

cataloguing key genetic variants involved in tendon structure and function, genome-wide 
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association studies (GWAS) could pinpoint key genes/gene variants and shed light on 

underlying mechanisms with extensive scans of DNA. However, GWAS are considered to 

be non-candidate-driven approaches in contrast to candidate gene-specific studies, such as 

the genetic association studies within this thesis, and as with these candidate gene 

association studies cannot specify on their own which genes are causal in genotype-

phenotype associations (Manolio, 2010, Pearson and Manolio, 2008). Therefore, over the 

next decade to improve the strength of these associations, it would be beneficial to 1) 

conduct twin/family studies to provide estimated interindividual variability of specific 

tendon properties that is inherited, which has not yet been done; 2) conduct genetic 

association studies of thousands of asymptomatic individuals with measures of specific 

tendon properties; 3) use appropriate combinations of GWAS and sequencing; 4) conduct 

intensive functional studies to characterise the genes and pathways; 5) construct animal 

models that represent human tendon physiology. This would assist in eventually asserting a 

cause and effect relationship between the gene variants and tendinopathies as well as 

physical performance potential. 
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Appendix 1. Algorithmic model used to predict the number of participants from a 

hypothetical 100 individuals, optimised for the phenotypic tests 
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Appendix 2. Allele combination 

Four possible allele combinations were constructed from the two gene variants, MMP3 rs679620 and COL5A1 rs12722, for both sexes independently, such 

that the A and C, G and C, A and T, and G and T alleles were assembled for the aforementioned gene variants, respectively. 

 

 

For each participant a total score of 4 was allocated, although the distribution of this score was determined by their genotypes for both gene variants. For 

example, a score of 4 was allocated to one combination of alleles if the participant was homozygote for both gene variants. If the participant was 

heterozygote for one gene variant and homozygote for the other, a score of 2 was allocated to each of the two possible allele combinations. Finally, if the 

participant displayed heterozygosity for both gene variants, a score of 1 was given to each of the four possible allele combinations. 

 

 

The variable or measure of tendon properties (volume, Young’s Modulus, z-scores) was then weighted per allele combination for each participant, such that 

if the participant scored a 4 for one particular allele combination, the numerical value of the variable would appear four times for that allele combination. The 

variable would appear twice for two different allele combinations if a score of 2 was allocated for the two relevant allele combinations.  
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Appendix 3. The mathematical model used for the purposes of analysing the allele combinations 

MMP3 COL5A1         

YM 
A/G C/T A+C G+C A+T G+T 

G G T T       4 0.20 

A A T T     4   0.32 

A A T T     4   0.78 

G G T T       4 0.45 

G G C T   2   2 0.67 

A A C C 4       0.21 

A A C T 2   2   0.35 

A A T T     4   0.39 

A A C T 2   2   0.30 

A A C T 2   2   0.31 

A A C T 2   2   0.26 

A A C T 2   2   0.10 

A A C C 4       0.46 

A A T T     4   0.23 

G G C C   4     0.37 

A A  C T 2   2   0.27 

A A T T     4   0.56 

A A C T 2   2   0.41 

A A C C 4       0.34 

G G T T       4 0.51 

A A T T     4   0.51 

A A C T 2   2   0.31 

G G C T   2   2 0.45 

A A C T 2   2   0.36 

A A C T 2   2   0.61 

A A C T 2   2   0.35 
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A A C T 2   2   0.41 

A A C T 2   2   0.59 

A A C T 2   2   0.20 

G G C T   2   2 0.95 

A A C T 2   2   0.55 

G G C T   2   2 0.43 

A A C T 2   2   0.34 

G G C T   2   2 0.45 

A A C T 2   2   0.53 

A A C T 2   2   0.78 

A A C T 2   2   0.31 

G G C C   4     0.60 

G G C T   2   2 0.31 

G G T T       4 0.84 

A A T T     4   0.20 

A A T T     4   0.75 

A A C T 2   2   1.33 

A A C T 2   2   0.73 

A A C T 2   2   0.90 



194 
 

Variable weighted per allele combination 

A+C G+C A+T G+T 

                        0.20 0.20 0.20 0.20 

                0.32 0.32 0.32 0.32         

                0.78 0.78 0.78 0.78         

                        0.45 0.45 0.45 0.45 

        0.67 0.67             0.67 0.67     

0.21 0.21 0.21 0.21                         

0.35 0.35             0.35 0.35             

                0.39 0.39 0.39 0.39         

0.30 0.30             0.30 0.30             

0.31 0.31             0.31 0.31             

0.26 0.26             0.26 0.26             

0.10 0.10             0.10 0.10             

0.46 0.46 0.46 0.46                         

                0.23 0.23 0.23 0.23         

        0.37 0.37 0.37 0.37                 

0.27 0.27             0.27 0.27             

                0.56 0.56 0.56 0.56         

0.41 0.41             0.41 0.41             

0.34 0.34 0.34 0.34                         

                        0.51 0.51 0.51 0.51 

                0.51 0.51 0.51 0.51         

0.31 0.31             0.31 0.31             

        0.45 0.45             0.45 0.45     

0.36 0.36             0.36 0.36             

0.61 0.61             0.61 0.61             

0.35 0.35             0.35 0.35             
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0.41 0.41             0.41 0.41             

0.59 0.59             0.59 0.59             

0.20 0.20             0.20 0.20             

        0.95 0.95             0.95 0.95     

0.55 0.55             0.55 0.55             

        0.43 0.43             0.43 0.43     

0.34 0.34             0.34 0.34             

        0.45 0.45             0.45 0.45     

0.53 0.53             0.53 0.53             

0.78 0.78             0.78 0.78             

0.31 0.31             0.31 0.31             

        0.60 0.60 0.60 0.60                 

        0.31 0.31             0.31 0.31     

                        0.84 0.84 0.84 0.84 

                0.20 0.20 0.20 0.20         

                0.75 0.75 0.75 0.75         

1.33 1.33             1.33 1.33             

0.73 0.73             0.73 0.73             

0.90 0.90             0.90 0.90             
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Appendix 4. Recruitment materials 

EMAIL: 

Dear all,  

I am looking for some help for my PhD study I am conducting into the ‘genetics of tendon 

properties’. Basically, I am trying to see how our DNA/genes affect our physical performance 

capabilities as well as our risk of incurring injuries.  To do this, I’m studying how DNA influences 

how our tendons work. In total, 3 visits to the new Exercise and Sport Science laboratories would 

be required, so you get to see some cutting edge research in action.  Note that no strenuous 

activity is involved! 

Eligibility: Female, age 18-40, good health, no history of serious knee or ankle problems.  You 

don’t have to be very sporty – in fact, simply an average activity level would be perfect. 

If you are interested in participating in this study, and helping with my PhD research and the 

exercise science research going on here at MMU Cheshire, please reply to me using the address 

below or phone number. 

Thank You, 

Brandon Foster (PhD student) b.foster@mmu.ac.uk /07847820666 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:b.foster@mmu.ac.uk
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POSTER:

YOUR HELP REQUIRED FOR WORLD-CLASS RESEARCH INTO GENETICS OF 

SPORT AND EXERCISE SCIENCE! 

HI, MY NAME IS BRANDON FOSTER (BSC, MSC, CSCS) AND I AM A PHD 

STUDENT HERE AT CREWE CAMPUS AND I’M CONDUCTING A STUDY INTO 

HOW OUR GENETICS OR DNA/GENES AFFECT OUR PHYSICAL PERFORMANCE 

CAPABILITIES AS WELL AS OUR RISK OF INCURRING INJURIES. IN 

PARTICULAR, I’LL BE LOOKING AT HOW YOUR TENDONS WORK. I AM 

LOOKING FOR BOTH MALE AND FEMALE VOLUNTEERS TO HELP OUT WITH 

THIS STUDY. 

 

SUITABILITY FOR STUDY 

AGE- 18-40 

GOOD HEALTH 

NON-SMOKERS 

NO HISTORY OF KNEE OR ANKLE PROBLEMS 

YOU DON’T HAVE TO BE VERY SPORTY – IN FACT, AN AVERAGE ACTIVITY 

LEVEL WOULD BE PERFECT 

WHAT’S IN IT FOR ME? 

ABLE TO GAIN INCITE INTO WHAT GENES ARE POTENTIALLY AFFECTING 

YOUR EXERCISE PERFORMANCE AND RISK OF INCURRING INJURIES TO YOUR 

MUSCLES AND TENDONS 

YOU HAVE THE OPPORTUNITY TO TAKE PART IN A STUDY THAT MAY 

PROVIDE ANOTHER IMPORTANT PROSPECTIVE ON HOW SPORTING AND 

EXERCISE PERFORMANCE MAY DIFFER DRAMATICALLY BETWEEN 

INDIVIDUALS, SOLELY BECAUSE OF OUR DNA/GENES 

HAVE THE OPPORTUNITY TO GAIN EXPERIENCE OF THE 

PRACTICES/EXPERIMENTAL PROCEDURES INVOLVED IN A SPORT AND 

EXERCISE SETTING 

 

For more details and if you are interested and are willing to help me 

please contact me by email/mobile, 

(bpfoster@hotmail.co.uk/07847820666) 

Thank you! 

mailto:bpfoster@hotmail.co.uk/07847820666
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PRESENTATION: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



199 
 

Appendix 5. Ethical materials- participant ISP and ICF 

 

 

Department of Exercise and Sport Science 

Informed Consent Form 

  (Both the investigator and  

participant should retain a copy of this form) 

 

Name of Participant:     

Supervisor/Principal Investigator:  Brandon Paul Foster  

Project Title: Genetics of Tendon Properties 

Ethics Committee Approval Number: 08.06.10(i) 

Participant Statement 

I have read the participant information sheet for this study and understand what is 
involved in taking part. Any questions I have about the study, or my participation in it, 
have been answered to my satisfaction. I understand that I do not have to take part and 
that I may decide to withdraw from the study at any point without giving a reason. Any 
concerns I have raised regarding this study have been answered and I understand 
that any further concerns that arise during the time of the study will be addressed by 
the investigator. I therefore agree to participate in the study. 

 

It has been made clear to me that, should I feel that my rights are being infringed or 

that my interests are otherwise being ignored, neglected or denied, I should inform 

the The University Secretary and Clerk to the Board of Governors, Manchester 

Metropolitan University, Ormond Building, Manchester, M15 6BX. Tel: 0161 247 

3400 who will undertake to investigate my complaint. 

 

Signed (Participant)   Date 

 

 

Signed (Investigator)  Date 
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Prospective Participant Screening 

Questionnaire 

MMU Cheshire 

Department of Sport and Exercise Science 

Name: ............................................................................................................................... 

Date of birth:............................ Age: ............................... Gender:..................................... 

Height (m):................................................. Weight (kg): .................................................... 

Email address:............................................ Mobile phone number: .................................... 

Please answer the following questions by putting a circle round the appropriate response or 

filling in the blank. 

1. What is your ethnic group? (last 3 generations of your family history) 

White / Mixed heritage / Asian / Black / Chinese 

2. How would you describe your present level of activity? 

Less than 30 minutes of activity a day (excludes golf, gardening and fishing) 

Over 30 minutes of activity a day (includes walking) 

Structured physical exercise sessions more than 3 times a week (Give details please) 

..................................................................................... 

3. Have you ever been diagnosed by a doctor with any muscle and/or tendon problems of 

the knee and/or ankle?     Yes / No 

If you answered Yes, please give details............................................................ 

 

As far as I am aware the information I have given is accurate. 

Participant’s Signature:.................................................................................................... 

Supervisor’s Signature:..................................................................................................... 

Date:......../............./............. 
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MANCHESTER METROPOLITAN UNIVERSITY 

MMU Cheshire 

Department of Exercise and Sport Science 

Information Sheet for Participants (ISP Template) 

Title of Study: 

“Genetics of Tendon Properties” 

Ethics Committee Reference Number: 

08.06.10(i) 

Participant Information Sheet 

 

1) This is an invitation to take part in a piece of research.  

You are being invited to take part in a research study. Before you decide whether or not to take 

part, it is important for you to understand why the research is being done and what it will involve. 

Please take time to read the following information carefully and discuss it with others if you wish. 

Ask us if there is anything that is not clear or if you would like more information. Please take time 

to decide whether or not you wish to take part. 

 

2) What is the purpose of the research? 

To investigate whether the flexibility of people’s tendons is influenced by our genes. 

 

3) Why is the study being performed? 

Here at MMU we have track record of research into both the function of tendons, and the 

genetics of exercise performance.  We are now combining these areas of our expertise to 

investigate the genetics of tendon function.  This could help scientists understand why some 

people have more flexible tendons than others, why some people can perform better at certain 

sports than others, and even why some people are at greater risk of tendon injury than others. 
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4) Why am I being asked to take part? 

To do our research, we need the help of quite a large number of volunteers who are willing to 

provide some DNA for genetic testing and who are also willing to take part in some tests of 

tendon function.  We would like people who take part in normal amounts of physical activity to 

help us in this research – e.g. athletes in heavy regular training are not suitable for this research. 

 

5) Do I have to take part? 

You are under no obligation to take part in this study. If, after reading this information sheet and 

asking any additional questions, you do not feel comfortable taking part in the study you do not 

have to. If you do decide to take part you are free to withdraw from the study at any point, 

without having to give a reason. If you do withdraw from the study you are free to take any 

personal data with you and this will not be included when the research is reported. If you decide 

not to take part or withdraw from the study it will not affect the standard of care you receive in 

any way, nor will it affect your relationship with any of the staff at the Manchester Metropolitan 

University. 

 

If you do decide to take part you will be asked to sign an informed consent form stating your 

agreement to take part and you will be given a copy together with this information sheet to keep. 

 

6) What will happen to me if I agree to take part?  

You will be asked to visit the MMU laboratories on four separate occasions. The first visit consists 

of a few physical measurements, which will include your height and weight, followed by providing 

a small blood sample. All this should take less than 30 minutes. At a later date the investigator will 

analyse your blood sample (if you are a female, additional analysis of oestrogen levels will be 

performed using half of your blood sample), and will subsequently let you know if you are 

required for a second visit, which will involve a practice session on a machine designed to 

measure muscle and tendon function, so you become familiar with the process. This should take 

no longer than an hour out of your time. The third visit involves measurements of tendon 

function, and could take 1-2 hours of your time. Specifically, this third visit will involve 

measurement of the size and length of your patellar tendon (the tendon just below the kneecap) 

using ultrasound, as well as measurements of your maximum leg strength. The fourth and final 

visit involves a trip to the MMU laboratory on Oxford Road, Manchester, for a further measure of 

your tendon length using a MRI scan. This could take 1 hour of your time. 

The tests and procedures are given in more detail below: 

 

1ST Visit, expected to take less than 30 minutes: 

Questionnaire: We will ask you to fill in a medical questionnaire including questions about your 

lifestyle, to ensure you are eligible to take part in the study. The answers you give will be kept 

strictly confidential with only the principal investigators having access to them. 
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Body Composition: We will measure your height and weight and calculate your BMI (body mass 

index) from this information. 

 

Blood sample: A small blood sample (about 10mL) will be taken from a vein in your forearm by 

qualified personnel. The procedure is usually not painful nor particularly uncomfortable and you 

will remain seated or be lying down.   After leaving the laboratory, you can continue with your 

normal activities. 

 

2nd Visit, expected to take up to 1 hour: 

Familiarisation session: We will allow you to practice on a machine designed to measure your 

muscle and tendon function, so you will become more familiar with the process when you 

perform the test for real on the final visit. A description of this process is outlined below. 

 

3rd Visit, expected to take between 1 and 2 hours: 

Measurement of tendon size and stiffness: You will remain seated in a chair specially designed for 

testing muscle and tendon function.  With your knee bent, you will be asked to try to straighten 

your leg and push against a pad strapped to the lower part of your shin, increasing the force 

gradually over 4-6 seconds. However, your leg will not actually move because the pad you push 

against will be in a fixed position.  At the same time we will measure the amount your patellar 

tendon stretches using an ultrasound probe, which is completely painless.  In a separate test, you 

will be asked to try to bend your leg as hard as possible so we can measure your strength during 

this action, but again your leg will not move because the pad will be in a fixed position. 

Measurement of EMG activity: Small pads (EMG electrodes) will be stuck onto your skin near the 

front of the knee and on the back of your thigh. This will help us assess the contribution of the 

various muscles in your leg to the stretch of the tendon, during the measurements of tendon size 

and stiffness described above.  The use of EMG electrodes in this way is completely painless. 

 

4th Visit, expected to take up to 1 hour: 

Measurement of tendon length: With your knee straight or bent, we will measure the length of 

your patellar tendon using an MRI scan 

 

 

After leaving the laboratory, you can again continue with your normal activities. 

 

7) Are there any disadvantages or risks in taking part? 
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All the procedures we will use are regularly used in our laboratories. 

There is a small risk of a little muscle soreness for a day or two after the tests of tendon size and 

stiffness, but this would be minor and temporary. 

There is a small risk of infection when taking blood but every precaution will be taken to minimise 

this risk, with the use of sterile equipment. For example, one of the researchers (Dr Alun Williams) 

has taken over 500 blood samples without a single case of infection.  All blood samples will be 

drawn by qualified phlebotomists.  In some cases there is a little bruising after the blood sample is 

taken, but this would be temporary. 

 

8) What are the possible benefits of taking part? 

There may be no direct benefits gained from the study by you, except for experiencing how 

research is carried out in a sport and exercise setting. However, the results in a broader sense will 

contribute to our knowledge of how certain genes affect the way tendons work, why some people 

can perform better than others in certain sports and activities, and even the risk of tendon injury. 

In addition, we would be happy to talk to you about your own results from the tendon tests and 

any implications these might have for your future exercise and training.  We will not, however, be 

allowed to provide you with your own results from your genetic tests – this is standard practice in 

research of this kind. 

 

9) Who are the members of the research team? 

Principal investigators:  

Brandon Paul Foster- PhD student involved in every aspect of study including genetic analysis and 

tendon function measures. 

Dr Alun Williams- The main supervisor involved in the design of the whole study. 

Collaborators:  

Dr Gladys Pearson- Involved in design of tendon function measures and interpretation of data. 

Dr Christopher Morse- Involved in design of tendon function measures and interpretation of data. 

 

If you have any questions about the study now or at any time in the future, please contact 

Brandon Paul Foster (09985886@stu.mmu.ac.uk) or Dr Alun Williams (A.G.Williams@mmu.ac.uk). 

 

10) Who is funding the research? 

Myself (Brandon Foster) and the MMU Department of Exercise and Sport Science are funding this 

research study. 

 

mailto:09985886@stu.mmu.ac.uk
mailto:A.G.Williams@mmu.ac.uk
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11) Who will have access to the data? 

All information that is collected about you during the course of the study will be held securely in 

the Department of Exercise and Sport Science at Manchester Metropolitan University. Any 

information about you will have your name and details removed so that you cannot be recognised 

from it. Furthermore, to protect your privacy, confidentiality and security of the information you 

provide to the research team, a code number will be assigned to you. Only your code number will 

appear on your information generated for the study. 

Information you provide will not be used or made available for any purpose other than for 

research, which is likely to be communicated at conferences or published in scientific journals at 

some point in the future. 

As research into the genetics in exercise and health is in its infancy, the information we gain will 

be kept for future studies into establishing a link between genetics and physical performance 

capabilities. Only the members of the research team named in this document, who work in the 

Department of Exercise and Sport Science at MMU, will be permitted to access the data. 

After the conclusion of the study, we will compile a short report for all participants to inform you 

about the contribution you will have made to the progression of knowledge in this field. 

 

12) Who do I contact if I feel my rights have been violated? 

If in the event you feel the wish to complain about the way you were treated during the study, 

please contact: 

The University Secretary and Clerk to the Board of Governors, 

Manchester Metropolitan University, Ormond Building, 

Manchester, M15 6BX. Tel: 0161 247 3400. 

 

13)  Finally, a thank you! 

Finally, thank you very much for your time, interest and help! 

 

 

 

 


