
Turku Centre for Computer Science

TUCS Dissertations
No 183, October 2014

Adnan Ashraf

Cost-Efficient Virtual Machine
Management

Provisioning, Admission Control,
and Consolidation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Library of Finland DSpace Services

https://core.ac.uk/display/39963641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cost-Efficient Virtual Machine
Management

Provisioning, Admission Control, and
Consolidation

Adnan Ashraf

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in Auditorium

Alpha in the ICT Building, on October 09, 2014, at 11:00 a.m.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5, 20520 Turku, Finland

2014

Supervisor

Professor Ivan Porres
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5, 20520 Turku
Finland

Reviewers

Dr. Radu Calinescu
Senior Lecturer in Large-Scale Complex IT Systems
Department of Computer Science
University of York
Deramore Lane, York YO10 5GH
United Kingdom

Professor Kari Systä
Department of Pervasive Computing
Tampere University of Technology
Korkeakoulunkatu 1, 33720 Tampere
Finland

Opponent

Dr. Radu Calinescu
Senior Lecturer in Large-Scale Complex IT Systems
Department of Computer Science
University of York
Deramore Lane, York YO10 5GH
United Kingdom

ISBN 978-952-12-3111-7
ISSN 1239-1883

To my mother and late father.

i

ii

Abstract

One of the main challenges in Software Engineering is to cope with the
transition from an industry based on software as a product to software as
a service. The field of Software Engineering should provide the necessary
methods and tools to develop and deploy new cost-efficient and scalable
digital services. In this thesis, we focus on deployment platforms to ensure
cost-efficient scalability of multi-tier web applications and on-demand video
transcoding service for different types of load conditions.

Infrastructure as a Service (IaaS) clouds provide Virtual Machines (VMs)
under the pay-per-use business model. Dynamically provisioning VMs on
demand allows service providers to cope with fluctuations on the number
of service users. However, VM provisioning must be done carefully, be-
cause over-provisioning results in an increased operational cost, while under-
provisioning leads to a subpar service. Therefore, our main focus in this the-
sis is on cost-efficient VM provisioning for multi-tier web applications and
on-demand video transcoding. Moreover, to prevent provisioned VMs from
becoming overloaded, we augment VM provisioning with an admission con-
trol mechanism. Similarly, to ensure efficient use of provisioned VMs, web
applications on the under-utilized VMs are consolidated periodically. Thus,
the main problem that we address is cost-efficient VM provisioning aug-
mented with server consolidation and admission control on the provisioned
VMs. We seek solutions for two types of applications: multi-tier web ap-
plications that follow the request-response paradigm and on-demand video
transcoding that is based on video streams with soft realtime constraints.

Our first contribution is a cost-efficient VM provisioning approach for
multi-tier web applications. The proposed approach comprises two sub-
approaches: a reactive VM provisioning approach called ARVUE and a hy-
brid reactive-proactive VM provisioning approach called Cost-efficient Re-
source Allocation for Multiple web applications with Proactive scaling. Our
second contribution is a prediction-based VM provisioning approach for on-
demand video transcoding in the cloud. Moreover, to prevent virtualized ser-
vers from becoming overloaded, the proposed VM provisioning approaches
are augmented with admission control approaches. Therefore, our third con-
tribution is a session-based admission control approach for multi-tier web

iii

applications called adaptive Admission Control for Virtualized Application
Servers. Similarly, the fourth contribution in this thesis is a stream-based
admission control and scheduling approach for on-demand video transcoding
called Stream-Based Admission Control and Scheduling. Our fifth contribu-
tion is a computation and storage trade-off strategy for cost-efficient video
transcoding in cloud computing. Finally, the sixth and the last contribution
is a web application consolidation approach, which uses Ant Colony System
to minimize the under-utilization of the virtualized application servers.

iv

Sammanfattning

En av de största utmaningarna i programvaruproduktion är hanteringen
av överg̊angen fr̊an en industri baserad p̊a mjukvara som produkt till mjuk-
vara som tjänst. Forskningsomr̊adet för programvaruproduktion bör tillhan-
dah̊alla de nödvändiga metoderna och verktygen för att utveckla och ta nya
kostnadseffektiva och skalbara digitala tjänster i bruk. Denna avhandling
fokuserar p̊a utplaceringsplattformer för säkerställandet av kostnadseffektiv
skalning av webbapplikationer i flera lager och efterfr̊agansstyrda videotran-
skodningstjänster för olika sorters belastning.

Datormoln som tillhandah̊aller infrastruktur enligt en tjänstemodell
erbjuder virtuella maskiner enligt en affärsmodell där kunden betalar
enligt bruk. Dynamisk anskaffning av virtuella maskiner enligt behov
l̊ater tjänsteleverantörerna hantera fluktuationer i antalet användare. An-
skaffning av virtuella maskiner m̊aste dock göras försiktigt, eftersom
överanskaffning leder till ökad verksamhetskostnad, medan underanskaffn-
ing leder till försämrad tjänstekvalitet. Därför ligger huvudfokus i denna
avhandling p̊a kostnadseffektiv anskaffning av virtuella maskiner för web-
bapplikationer i flera lager och efterfr̊agansstyrd videotranskodning. För att
förhindra att virtuella maskiner blir överbelastade utökas anskaffningen med
en tillträdeskontrollsmekanism. För att säkerställa effektiv användning av
de virtuella maskinerna konsolideras applikationer p̊a underbelastade s̊adana
periodvis. S̊aledes är det främsta problemet kostnadseffektiv anskaffning
av virtuella maskiner utökad med tillträdeskontroll och serverkonsolidering.
Denna avhandling söker lösningar för tv̊a tillämpningar: Webbapplikationer
i flera lager som följer begäran-svarsparadigmen och efterfr̊agansstyrd video-
transkodning baserad p̊a videoströmmar med mjuka realtidsbegränsningar.

Den första kontributionen är ett kostnadseffektivt tillvägag̊angssätt
för anskaffning av virtuella maskiner för webbapplikationer i flera lager.
Det föreslagna tillvägag̊angssättet best̊ar av tv̊a delar: Ett reaktivt
tillvägag̊angssätt för anskaffning av virtuella maskiner kallat ARVUE och
en reaktiv-prediktiv hybridmetod kallad Cost-efficient Resource Allocation
for Multiple web applications with Proactive scaling. Den andra kon-
tributionen är ett prediktionsbaserat tillvägag̊angssätt för anskaffning av
virtuella maskiner för efterfr̊agansstyrd videotranskodning i ett datormoln.

v

För att förhindra överbelastning av servrarna har tillvägag̊angssätten för
anskaffning utökats med tillträdeskontroll. S̊aledes är den tredje kon-
tributionen sessionsbaserad tillträdeskontroll för webbapplikationer i flera
lager kallad Adaptive Admission Control for Virtualized Application Ser-
vers. P̊a liknande sätt är den fjärde kontributionen ett tillvägag̊angssätt
för strömbaserad tillträdeskontroll och schemaläggning för efterfr̊agansstyrd
videotranskodning kallat Stream-Based Admission Control and Scheduling.
Den femte kontributionen är en beräknings- och lagringsavvägningsstrategi
för kostnadseffektiv videotranskodning i ett datormoln. Den sjätte och sista
kontributionen är ett tillvägag̊angssätt för konsolidering av webbapplika-
tioner som använder Ant Colony System-metoden för att minimera graden
av underbelastning hos de virtuella maskinerna.

vi

Acknowledgments

First and foremost, I thank Allah (God), the Almighty, for giving me an
excellent opportunity to pursue the highest degree in my field of study and
providing me with the means to successfully complete my thesis.

I am glad that this day has arrived when I am writing this final part of my
thesis. This thesis is the result of the efforts and support of many people and
it gives me an immense pleasure to express my sincere and deepest gratitude
to all those who helped me complete my thesis.

I want to thank Professor Ivan Porres for his guidance, encouragement,
and kind supervision. Ivan is an excellent supervisor, an outstanding re-
searcher, and a wonderful person. It has been a privilege and an honor for
me to work closely with him. During the course of my PhD, Ivan provided
his full support through regular weekly meetings and fruitful discussions.
He not only gave me some excellent and concrete ideas to work on, but
also encouraged my own ideas and helped me in all aspects of research and
publishing.

I also wish to thank Dr. Radu Calinescu and Professor Kari Systä for
their time and efforts to review my thesis and for providing valuable feedback
and constructive comments, which helped me prepare the final manuscript of
my thesis. I am also grateful to Dr. Radu Calinescu for his kind acceptance
to act as the opponent at my doctoral defence.

I would like to thank all of my coauthors for their efforts, many inter-
esting discussions, and fruitful collaborations. In particular, I am grateful
to Benjamin Byholm, Fareed Ahmed Jokhio, Sébastien Lafond, Professor
Johan Lilius, Tewodros Deneke, and Niclas Snellman at Åbo Akademi Uni-
versity, Fahimeh Farahnakian at University of Turku, Joonas Lehtinen and
Marc Englund at Vaadin Ltd., and Professor Tommi Mikkonen and Timo
Aho at Tampere University of Technology. I am also thankful to Benjamin
Byholm and Fareed Ahmed Jokhio for their useful feedback on an initial
draft of my thesis.

I would like to extend my gratitude to my teachers at the Department
of Information Technologies, especially Dragos Truscan, Marta Olszewska,
Elena Troubitsyna, Professor Barbro Back, and Professor Pirkko Walden.
I also wish to thank my current and past colleagues in the Software En-

vii

gineering Laboratory, particularly Ali Hanzala Khan, Benjamin Byholm,
Irum Rauf, Dragos Truscan, Fredrik Abbors, Niclas Snellman, Thomas Fors,
Kristian Nybom, Marta Olszewska, Tanwir Ahmad, Max Weijola, Mehdi
Nobakht, and Jeanette Heidenberg. Furthermore, I want to acknowledge
the support of the administrative and technical personnel at the Depart-
ment of Information Technologies.

I am highly grateful and honored to receive generous scholarships from
the Higher Education Commission (HEC) of Pakistan, Nokia Foundation,
Åbo Akademi University, and Ulla Tuominen Foundation. I would also like
to express my gratitude to Turku Centre for Computer Science (TUCS) for
providing travel grants to support my conference and educational trips.

I also wish to thank my teachers and my current and past colleagues in
Pakistan. In particular, I am grateful to Dr. Naveed Ikram, Dr. Muham-
mad Jaffar-ur-Rehman (late), Dr. Aamer Nadeem, Dr. Muhammad Sher,
Muhammad Usman, Usman Nasir, and Sameer Akram.

Last but not least, I thank my family for their endless love, incredible
support, and prayers. I wish to express my deepest gratitude to my mother
and late father for their selfless love and profound dedication, my both sisters
and both brothers for their constant encouragement and support, my wife
for her unwavering love and understanding, and my daughter and son for
filling my days with joy and smiles.

Adnan Ashraf
Turku, October 2014

viii

List of Included Publications

This thesis is based on the following original publications. The publication
reprints of the included publications are presented in Part II of the thesis.

I Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen, and Ivan Porres.
Feedback Control Algorithms to Deploy and Scale Multiple Web Appli-
cations per Virtual Machine. In Proceedings of the 38th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA
2012), pp. 431–438, September 2012, Cesme, Izmir, Turkey.

II Adnan Ashraf, Benjamin Byholm, and Ivan Porres. A Session-Based
Adaptive Admission Control Approach for Virtualized Application Ser-
vers. In Proceedings of the 5th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC 2012), pp. 65–72, November
2012, Chicago, IL, USA.

III Adnan Ashraf, Benjamin Byholm, and Ivan Porres. CRAMP: Cost-
Efficient Resource Allocation for Multiple Web Applications with
Proactive Scaling. In Proceedings of the 4th IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom 2012),
pp. 581–586, December 2012, Taipei, Taiwan.

IV Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Porres,
and Johan Lilius. Prediction-Based Dynamic Resource Allocation for
Video Transcoding in Cloud Computing. In Proceedings of the 21st
EUROMICRO International Conference on Parallel, Distributed and
Network-based Processing (PDP 2013), pp. 254–261, February 2013,
Belfast, UK.

V Adnan Ashraf, Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien La-
fond, Ivan Porres, and Johan Lilius. Stream-Based Admission Control
and Scheduling for Video Transcoding in Cloud Computing. In Pro-
ceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2013), pp. 482–489, May 2013,
Delft, the Netherlands.

ix

VI Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, and Johan Lil-
ius. A Computation and Storage Trade-Off Strategy for Cost-Efficient
Video Transcoding in the Cloud. In Proceedings of the 39th EUROMI-
CRO Conference on Software Engineering and Advanced Applications
(SEAA 2013), pp. 365–372, September 2013, Santander, Spain.

VII Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Porres,
and Johan Lilius. Cost-Efficient Dynamically Scalable Video Trans-
coding in Cloud Computing. Turku Centre for Computer Science
(TUCS) Technical Reports, number 1098, pp. 1–25, December 2013.

VIII Adnan Ashraf and Ivan Porres. Using Ant Colony System to Consoli-
date Multiple Web Applications in a Cloud Environment. In Proceed-
ings of the 22nd EUROMICRO International Conference on Parallel,
Distributed and Network-Based Processing (PDP 2014), pp. 482–489,
February 2014, Turin, Italy.

x

Contents

List of Included Publications ix

List of Figures xiii

List of Tables xiii

I Research Summary 1

1 Introduction 3

1.1 Research Questions . 4

1.2 Overview of Research Contributions 6

1.3 Research Settings . 9

1.4 Validation of the Research Work 9

1.5 Thesis Organization . 10

2 Background and Related Work 11

2.1 Cloud Computing . 11

2.2 Multi-tier Web Applications 13

2.3 Video Transcoding . 14

2.4 VM Provisioning Approaches 16

2.5 Admission Control Approaches 18

2.6 Computation and Storage Trade-off Strategies 21

2.7 Consolidation Approaches and ACO 23

3 Contributions of the Thesis 25

3.1 VM Provisioning for Multi-tier Web Applications 26

3.2 VM Provisioning for Video Transcoding 29

3.3 Admission Control for Multi-tier Web Applications 32

3.4 Admission Control and Scheduling for Video Transcoding . . 33

3.5 Computation and Storage Trade-off Strategy 35

3.6 Web Application Consolidation using ACO 37

xi

4 Description of Papers 41
4.1 Overview of Original Publications 41
4.2 Discussion . 45

5 Conclusion 49
5.1 Future Work . 51

Bibliography 53

Acronyms 65

Complete List of Original Publications 67

II Original Publications 71

xii

List of Figures

2.1 Service and deployment models in cloud computing 13
2.2 Three-tier web applications 14

3.1 System architecture of the proposed VM provisioning, admis-
sion control, and consolidation approaches for multi-tier web
applications . 27

3.2 System architecture of the proposed VM provisioning and
admission control approaches for video transcoding 31

3.3 The estimated equilibrium point between the storage cost and
the transcoding cost of a transcoded video 36

3.4 A simple example to motivate the need to consolidate multiple
web applications in a cloud-based shared hosting environment 38

4.1 Relationship among original publications 47

List of Tables

4.1 Mapping between RQs and original publications 46

xiii

xiv

Part I

Research Summary

1

Chapter 1

Introduction

One of the main challenges and opportunities in the field of Software Engi-
neering is to cope with the transition from an industry based on software
as a product to Software as a Service (SaaS) [7]. The field of Software En-
gineering should provide the necessary methods and tools to develop and
deploy new cost-efficient, scalable, reliable, and secure digital services. In
this thesis, we focus on deployment platforms to ensure scalability [60] of
multi-tier web applications and on-demand soft realtime video transcoding
service for different types of load conditions.

Web applications are often deployed in a three-tier computer architec-
ture that consists of client, application, and database tiers [10]. The client
tier runs within the user web browser, while the application server and the
database server tiers run in the remote server infrastructure. Both the ap-
plication and the database tiers are implemented using a computer cluster
to be able to process many user requests simultaneously. In this configu-
ration, a load balancing subsystem distributes the user requests among the
computers in the cluster. Traditionally, these clusters are composed of a
fixed number of computers and are dimensioned to serve a predetermined
maximum number of concurrent users.

A web-based video streaming service is also implemented using a cluster-
based distributed system, which may consist of different types of servers,
such as, video streaming servers and video transcoding servers. A video
transcoding server converts a compressed video from one format to an-
other [93]. It may change video format, bit rate, frame resolution, frame
rate, or any combination of these [66]. Video transcoding is a compute-
intensive operation. For an on-demand video streaming service, it may be
necessary to transcode a large number of videos on-the-fly under soft re-
altime constraints. Transcoding of a large number of simultaneous videos
necessitates a cluster of video transcoding servers.

3

Infrastructure as a Service (IaaS) clouds, such as Amazon Elastic Com-
pute Cloud (EC2)1, provide Virtual Machines (VMs) under the pay-per-
use business model. Dynamically provisioning VMs on demand allows IaaS
users to deploy and scale their web applications and video transcoding ser-
vice without requiring to invest into large-scale Information Technology (IT)
infrastructures. With cloud elasticity, it is possible to create a dynamically
scalable cluster of servers consisting of a varying number of VMs. However,
VM provisioning must be done carefully because over-provisioning results
in an increased operational cost, while under-provisioning leads to a sub-
par service, which may violate users’ Quality of Service (QoS) requirements
concerning performance, resulting in a loss of revenue.

Determining the number of VMs to provision for a cluster is an important
problem as the exact number of VMs needed at a specific time depends upon
the user load and the QoS requirements, which are specified in the Service
Level Agreements (SLAs). In this thesis, our main goal is cost-efficient VM
provisioning for multi-tier web applications and video transcoding. More-
over, to prevent provisioned VMs from becoming overloaded, we augment
VM provisioning with an admission control mechanism. For cost-efficiency,
it is also necessary to reduce under-utilization of servers in a cluster. As a
recent study on physical servers showed that the under-utilization of servers
in enterprises is a matter of concern [94]. Under-utilization of VMs can be
reduced by using server consolidation techniques similar to those used in
data centers for power-efficiency [42,77,94].

1.1 Research Questions

The main problem that we intend to tackle is cost-efficient VM provisioning
augmented with server consolidation and admission control on the provi-
sioned VMs. We seek solutions for two types of applications: multi-tier
web applications that follow the request-response paradigm and on-demand
video transcoding that is based on video streams with soft realtime con-
straints. Although there are many similarities between VM provisioning for
web applications and VM provisioning for video transcoding, each one of
them also has its own challenges [9]. Some of the common challenges for
web applications and video transcoding include: ensuring dynamic scaling
under different load conditions, handling VM provisioning delay, preventing
servers from becoming overloaded, making load predictions under soft real-
time constraints, reducing oscillations in the number of provisioned VMs,
and reducing under-utilization of VMs. Moreover, for web application con-
solidation, the main challenge is to reduce both the total number of VMs
and the number of application migrations. Similarly, important challenges

1http://aws.amazon.com/ec2/

4

for video transcoding include: preventing transcoding jitters in the admitted
video streams and providing a good trade-off between the computation cost
and the storage cost.

The existing VM provisioning approaches for web-based systems [6, 26,
31,39,48,51,52,57,62,78,79,81,83,99,107,108] tend to use dedicated hosting
on the VM level, where each VM is used exclusively for one particular web
application. However, the main drawback of dedicated hosting is that it pro-
hibits sharing of VM resources among multiple concurrent web applications.
In contrast, the shared hosting [91] of web applications provides improved
VM resource utilization by allowing deployment of multiple web applications
on a VM [13]. Similarly, the existing admission control approaches for web-
based systems [3,29,30,58,76,82,85,95] tend to use the traditional on-off con-
trol and request-based admission. Moreover, most of them rely on rejection
of requests to prevent servers from becoming overloaded. All of the existing
VM provisioning and admission control approaches discussed in this thesis
were originally proposed for web-based systems. To the best of our knowl-
edge, there are currently no existing VM provisioning and admission control
approaches for video transcoding in cloud computing. Similarly, the existing
server consolidation approaches [18,19,33,40–46,54,61,71,72,77,94,96,100]
are used in data centers to consolidate VMs on Physical Machines (PMs).
To the best of our knowledge, there is currently no existing work on consol-
idating multi-tier web applications on VMs. The Research Questions (RQs)
that motivated this thesis are as follows:

• RQ1: How to ensure scalability of multi-tier web applications and on-
demand video transcoding service for different types of load conditions
while providing a good trade-off between performance and cost?

• RQ2: How to cost-efficiently prevent servers from becoming over-
loaded?

• RQ3: How to provide a good trade-off between the computation cost
and the storage cost when using a public IaaS cloud for on-demand
video transcoding?

• RQ4: How to consolidate multi-tier web applications on under-utilized
VMs to reduce under-utilization of the virtualized application servers
in a cloud-based shared hosting environment?

The above RQs are addressed in detail in the original publications in
Part II of the thesis.

5

1.2 Overview of Research Contributions

In this thesis, we propose a cost-efficient VM provisioning approach for
multi-tier web applications [2,10,11] and on-demand video transcoding [66].
Moreover, to prevent virtualized servers from becoming overloaded, the pro-
posed VM provisioning approach is augmented with an admission control
mechanism [12, 15]. Similarly, the under-utilization of the virtualized ap-
plication servers is minimized by providing a web application consolidation
approach [16]. We also present a computation and storage trade-off strat-
egy for cost-efficient video transcoding in cloud computing [64, 65]. These
contributions are presented in detail in the original publications in Part II
of the thesis. A brief overview of the main contributions is presented in the
following subsections.

1.2.1 VM Provisioning for Multi-tier Web Applications

As mentioned earlier, determining the number of VMs to provision for a
dynamic cluster of virtualized servers is an important problem as the exact
number of VMs needed at a specific time depends upon the user load and
the QoS requirements. In this thesis, our first contribution is a cost-efficient
VM provisioning approach for multiple multi-tier web applications. The
proposed approach comprises two sub-approaches: a reactive VM provision-
ing approach called ARVUE2 [2, 10] and a hybrid reactive-proactive VM
provisioning approach called Cost-efficient Resource Allocation for Multiple
web applications with Proactive scaling (CRAMP) [11]. ARVUE uses a re-
active feedback control loop to scale multiple web applications on a given
IaaS cloud. Since it is a reactive approach, the VM provisioning decisions
are based on the current and past load conditions. CRAMP is similar to
ARVUE, but it uses a hybrid reactive-proactive control loop.

In comparison to existing solutions, the proposed approach provides au-
tomatic deployment and scaling of multiple simultaneous web applications
on a given IaaS cloud in a shared hosting [91] environment. It monitors and
uses resource utilization metrics and does not require a performance model
of the applications or the infrastructure dynamics. The shared hosting en-
vironment allows us to share VM resources among deployed applications,
reducing the total number of required VMs. Performance under varying
load conditions is guaranteed by automatic adjustment and tuning of the
CRAMP parameters.

2The name ARVUE is not an acronym. It was invented by Marc Englund at Vaadin
Ltd. (https://vaadin.com). According to him, ARVUE is a wordplay on the term our
view.

6

1.2.2 VM Provisioning for Video Transcoding

The second contribution of this thesis is a novel VM provisioning approach
for video transcoding in the cloud [66]. The proposed approach uses load
prediction to proactively scale video transcoding service on a given IaaS
cloud. It provides mechanisms for allocation and deallocation of VMs to
a cluster of video transcoding servers in a horizontal fashion. We use a
two-step load prediction method [4, 5], which allows proactive VM provi-
sioning with high prediction accuracy under soft realtime constraints. For
cost-efficiency, our work supports transcoding of multiple on-demand video
streams concurrently on a single VM, resulting in a reduced number of re-
quired VMs. We use video segmentation at Group of Pictures (GOP) level,
which splits video streams into smaller segments that can be transcoded
independently of one another.

1.2.3 Admission Control for Multi-tier Web Applications

Our third contribution is a session-based admission control approach
called adaptive Admission Control for Virtualized Application Servers (AC-
VAS) [12]. ACVAS uses measured and predicted resource utilizations of a
server to make admission control decisions for new user sessions. Instead
of using the traditional on-off control [30], it implements per-session ad-
mission control [76], which reduces the risk of over-admission. Moreover,
instead of relying only on rejection of new sessions, ACVAS takes benefit of
the cloud elasticity to implement a simple session deferment mechanism that
reduces the number of rejected sessions while increasing session throughput.
Thus, compared to existing approaches that tend to rely only on request
rejection, each admission control decision in ACVAS has three possible out-
comes: admit, defer, or reject. Performance under varying load conditions is
guaranteed by automatic adjustment and tuning of the ACVAS parameters.

1.2.4 Admission Control and Scheduling for Video Trans-
coding

For video transcoding, we present a novel admission control approach called
Stream-Based Admission Control and Scheduling (SBACS) [15]. SBACS
uses queue waiting time of transcoding servers to make admission control
decisions for incoming video streams. It implements stream-based admis-
sion control with per-stream admission. To ensure efficient utilization of
the transcoding servers, video streams are segmented at the GOP level. In
addition to the traditional rejection policy, SBACS also provides a stream
deferment policy, which exploits cloud elasticity to allow temporary defer-
ment of the incoming video streams. In other words, the admission controller
can decide to admit, defer, or reject an incoming stream and hence reduce

7

the rejection rate. In order to prevent transcoding jitters in the admitted
streams, we introduce a job scheduling mechanism, which may drop a small
proportion of video frames from a video segment to ensure continued delivery
of the video contents to the user.

1.2.5 Computation and Storage Trade-off Strategy

Since video transcoding is a compute-intensive operation, transcoding of a
large number of on-demand videos requires a large scale cluster of trans-
coding servers. Moreover, storage of multiple transcoded versions of each
source video requires a large amount of disk space. As mentioned earlier,
IaaS clouds provide VMs for creating a dynamically scalable cluster of ser-
vers. Likewise, a cloud storage service may be used to store a large number
of transcoded videos. Moreover, it may be possible to reduce the total IaaS
cost by trading storage for computation, or vice versa.

We present a novel computation and storage trade-off strategy for cost-
efficient video transcoding in the cloud called cost and popularity score based
strategy [64,65]. The proposed strategy estimates computation cost, storage
cost, and video popularity of individual transcoded videos and then uses this
information to make decisions on how long a video should be stored or how
frequently it should be re-transcoded from a given source video.

1.2.6 Web Application Consolidation using ACO

The under-utilization of VMs becomes more pertinent when a SaaS or a
Platform as a Service (PaaS) provider wants to leverage an IaaS cloud to
cost-efficiently deploy a large number of web applications of varying re-
source needs. The solution to this problem is to create a dynamically
scalable application server tier that manages multiple applications simul-
taneously, while using shared hosting [91] to deploy multiple applications
on a VM [10, 11]. In comparison to the traditional dedicated hosting of
web applications where each VM is used exclusively for one particular web
application, the shared hosting of web applications allows improved VM
utilization by sharing VM resources among multiple concurrent web appli-
cations. However, in a shared hosting environment, dynamic scaling alone
does not minimize over-provisioning of VMs.

We present a novel approach to consolidate multiple web applications
in a cloud-based shared hosting environment [16]. The proposed approach
uses Ant Colony Optimization (ACO) [37, 38] to build a web application
migration plan, which is then used to minimize over-provisioning of VMs by
consolidating web applications on under-utilized VMs.

8

1.3 Research Settings

The research work presented in this thesis was carried out within the context
of the Cloud Software Program 2010-20133. Cloud Software was a Finnish
research program, whose goal was to significantly improve the competitive
position of the Finnish software-intensive industry in the global markets
in the field of cloud computing. More than 30 Finnish IT companies and
research organizations participated in the program.

The results presented in this thesis are an outcome of the research col-
laborations between Åbo Akademi University, its academic partner Tampere
University of Technology, and industry partners Vaadin Ltd.4 and Bambuser
AB5.

1.4 Validation of the Research Work

A convenient and quick way of testing new algorithms and solutions involv-
ing complex environments is to write and run software simulations [12]. A
special kind of simulations called discrete-event simulations are most ap-
propriate for simulating and evaluating cluster, grid, and cloud computing
environments and systems [24].

A discrete-event simulation [17] contains a relatively detailed represen-
tation of the internal components of a system and their interactions. It may
represent state variables, events, resources, processes, objects and their at-
tributes, sets, and queues, among others. In comparison to the traditional
mathematical and analytical models that tend to represent a system at a
fixed point in time, a discrete-event simulation is run by a mechanism that
imitates the actual clock time. Moreover, the state variables in a discrete-
event simulation change their values at discrete points in time at which some
events occur. Therefore, discrete-event simulations model the dynamic be-
havior of a system, where the passage of time and the occurrences of events
play important roles.

We have developed discrete-event simulations to validate our proposed
VM provisioning approach for video transcoding (Section 1.2.2), admission
control approach for multi-tier web applications (Section 1.2.3), admission
control and scheduling approach for video transcoding (Section 1.2.4), com-
putation and storage trade-off strategy for video transcoding (Section 1.2.5),
and web application consolidation approach (Section 1.2.6). The evaluation
comprises a series of experiments involving synthetic as well as realistic load
patterns. Moreover, for our VM provisioning approach for multi-tier web

3http://www.cloudsoftwareprogram.org/
4https://vaadin.com
5http://bambuser.com/

9

applications (Section 1.2.1), we have developed a prototype implementa-
tion, which has been evaluated in another series of experiments that involve
a synthetic load pattern.

A thorough and sound simulation study consists of a set of steps, such as
problem formulation, model conceptualization, data collection, coding, ver-
ification and validation of the simulation model, experimental design and
setup, simulation runs, and analysis of the results [17]. For the credibility
and acceptability of the simulation results, it is important that these steps
are performed carefully, correctly, and rigorously. Therefore, we took all
necessary steps to ensure the credibility and acceptability of our simulation
results. The problem formulation, model conceptualization, data collection,
and validation of the simulation models were performed with an active par-
ticipation from our industry partners Vaadin Ltd. and Bambuser AB. The
data used in the simulations comprise synthetic as well as realistic load
patterns. The realistic load patterns were used to provide representative
results under real load conditions. Moreover, the synthetic load patterns
were designed to simulate a richer set of scenarios. The experiments were
repeated several times to ensure that they are deterministic. In addition,
each experiment was preceded by a series of preliminary experiments that
were performed to obtain appropriate values for the experiment parame-
ters. Furthermore, in each simulation, the system components and their
interactions were modeled at a relatively lower level of abstraction, which
allowed detailed analyses of the important aspects pertaining to the dynamic
behavior of the system.

1.5 Thesis Organization

The thesis consists of two parts. Part I provides a research summary, while
Part II presents the original publications. Part I consists of five chapters.
Chapter 1 builds motivation of this work and presents RQs, a brief overview
of research contributions, research settings, and our approach to validate
research work. Chapter 2 provides background and discusses important
related works. Chapter 3 presents a summary of the main contributions,
while focusing on the challenges that they address. Chapter 4 provides
a description and organization of the original publications and provides a
mapping between the publications and the RQs. Finally, we present our
conclusions and some future directions in Chapter 5.

10

Chapter 2

Background and Related
Work

In this chapter, we first provide a brief overview of the background con-
cepts and technologies on which this thesis is based. These include cloud
computing, multi-tier web applications, and video transcoding. Then, we
present the most important related works on VM provisioning approaches,
admission control approaches, computation and storage trade-off strategies,
and consolidation approaches.

2.1 Cloud Computing

Cloud computing is a relatively new and emerging computing paradigm,
which promises to deliver computing as the fifth utility [22]. It leverages sev-
eral existing concepts and technologies such as data centers, clusters, grids,
and hardware virtualization, among others and gives them a new perspec-
tive and identity. From a business perspective, cloud computing provides
a pay-per-use business model which opens new avenues for the develop-
ment, deployment, and scaling of digital services. The dynamic on-demand
provisioning of computing resources allows companies to deploy their web
applications and web services without requiring an upfront investment into
large-scale IT infrastructures. Moreover, with cloud elasticity, it is possi-
ble to create a dynamically scalable cluster of servers, which scales up and
down based on the prevailing load conditions. A frequently cited paper by
Vaquero et al. [92] presented the following encompassing definition of the
cloud after studying more than twenty different definitions:

Clouds are a large pool of easily usable and accessible virtual-
ized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to
adjust to a variable load (scale), allowing also for an optimum

11

resource utilization. This pool of resources is typically exploited
by a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs [92].

Perhaps, the main distinguishing characteristics of cloud computing are
those enumerated in [14]:

• Computing resources can be purchased on-demand from a seemingly
unlimited supply.

• The capital expenses needed to purchase computing resources upfront
are changed to operational expenses, shifting the capital investment
risk for under or over provisioning to the cloud computing vendor.

• Computing is priced with a pay-as-you-go pricing model, where capac-
ity can be scaled up and down on a short term basis.

The National Institute of Standards and Technology (NIST) has also
emphasized on the elasticity of computing resources in their definition of
cloud computing [73]:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three
service models, and four deployment models. [73]

The five essential characteristics in the NIST definition are on-demand
self-service, broad network access, resource pooling, rapid elasticity, and
measured service [73]. The service models are IaaS, PaaS, and SaaS. Sim-
ilarly, the deployment models are private cloud, community cloud, public
cloud, and hybrid cloud. Figure 2.1 summarizes the service and deployment
models in cloud computing. It also shows that the three service models can
operate on top of any of the four deployment models [75, 88]. Armbrust et
al. [7] provided an excellent overview of the technology drivers behind cloud
computing. They also discussed the main obstacles and opportunities in
cloud computing.

An IaaS cloud, such as Amazon Web Services (AWS)1, allows its users
to provision processing, storage, network, and other fundamental comput-
ing resources. The users may deploy and run arbitrary software including
operating systems, applications, and web-based services. A PaaS cloud al-
lows its users to deploy and run applications created or tailored according

1http://aws.amazon.com/

12

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Community

Clouds

Public

Clouds

Private

Clouds

Hybrid Clouds

Deployment

Models

Service

Models

Figure 2.1: Service and deployment models in cloud computing

to the programming languages, frameworks, libraries, tools, and services
supported by the provider, for example, Google App Engine (GAE)2. The
users control their deployed applications. However, they do not control the
underlying operating system, storage, servers, and networks. Similarly, a
SaaS cloud allows its users to use certain applications provided by the cloud
provider. The users may have only a limited control on some user-specific
application configuration settings.

2.2 Multi-tier Web Applications

Web applications are often deployed in a three-tier computer architecture
that consists of client, application, and database tiers [10]. Figure 2.2
presents an overview of the three-tier computer architecture for web appli-
cation deployment. The client tier runs within the user web browser, while
the application server and the database server tiers run in the remote server
infrastructure. Both the application and the database tiers are implemented
using a computer cluster to be able to process many user requests simulta-
neously. In this configuration, a load balancing subsystem distributes the
user requests among the computers in a cluster. Traditionally, these clusters
are composed of a fixed number of computers and are dimensioned to serve
a predetermined maximum number of concurrent users.

With the advent of cloud elasticity, it is now possible to create a dy-
namically scalable cluster of servers consisting of a varying number of VMs.

2https://cloud.google.com/products/app-engine/

13

Application Servers

Web Server

Proxy Server
Database Servers

Users

HTTP

HTT
P

HT
TP

HTTP

Figure 2.2: Three-tier web applications

However, VM provisioning must be done carefully because over-provisioning
results in an increased operational cost, while under-provisioning leads to a
subpar service.

2.3 Video Transcoding

Streaming of digital videos is increasingly common among the Internet users.
Video streaming of a large number of videos may require a lot of resources
on the server-side. Therefore, for efficient use of storage and transmission
media, digital videos are often stored and transmitted in compressed for-
mats, such as MPEG-4 [97] and H.264 [98]. Client-side devices that are
used to play videos usually support only a subset of the existing video for-
mats. A video on the server-side may be stored in a different format than
those supported by a target device. Therefore, the video must be converted
into a format that is supported by the target device [86]. The process of
converting a digital video from one compressed format to another is known
as video transcoding [15, 93]. It may change video format, bit rate, frame
size, frame rate, or any combination of these [66].

Video transcoding involves decoding and encoding processes. It is a
compute-intensive process, usually performed at the server-side [63]. Video
transcoding may be done in soft realtime or in batch processing. However,
for an on-demand video streaming service, if the required video is not avail-
able in the desired format, the transcoding needs to be done on-the-fly in
soft realtime [89]. There are different types of video transcoding, for ex-
ample, bit-rate reduction transcoding is used to meet network bandwidth
availability, spatial resolution reduction transcoding is used for display size
adoption, and temporal resolution reduction transcoding is used for frame
rate reduction [28,63,93,101].

A web-based video streaming service is implemented using a cluster-
based distributed system, which may consist of different types of servers,
such as, video streaming servers and video transcoding servers. Since video

14

transcoding is a compute-intensive operation, transcoding of a large number
of simultaneous video streams requires a large-scale cluster of transcoding
servers. Moreover, to handle different load conditions in a cost-efficient
manner, the cluster should be dynamically scalable. IaaS clouds provide all
necessary computing resources to create a dynamically scalable cluster of
transcoding servers. However, the main challenge is to devise appropriate
algorithms and mechanisms, which should provide cost-efficient, dynami-
cally scalable video transcoding in the cloud.

Distributed video transcoding with video segmentation at the GOP level
was proposed in [67] and [68]. Jokhio et al. [68] presented bit rate reduction
video transcoding using multiple processing units. In [67], different video
segmentation methods were analyzed to perform spatial resolution reduc-
tion video transcoding. However, in both papers [67, 68], video transcoding
was not performed in the cloud and the VM provisioning problem was not
addressed. In contrast, the main focus of our VM provisioning approach for
video transcoding (Section 3.2) is on VM provisioning algorithms.

Huang et al. [59] presented a cloud-based video proxy to deliver trans-
coded videos for streaming. The main contribution of their work is a mul-
tilevel transcoding parallelization framework. They used Hallsh-based and
Lateness-first mapping to optimize transcoding speed and to reduce trans-
coding jitters. Li et al. [70] proposed a cloud transcoder, which uses a
compute cloud as an intermediate platform to provide transcoding service.
However, none of these papers [59,70] addressed the VM provisioning prob-
lem for video transcoding in cloud computing.

Zhu et al. [109] presented a framework for multimedia cloud computing.
It addresses two perspectives of the multimedia cloud computing namely
multimedia-aware cloud and cloud-aware multimedia. For video transcoding
in the multimedia-aware cloud, they presented a cloud-based video adapta-
tion and transcoding framework. However, they did not address the VM
provisioning problem for soft realtime video streams. Garcia et al. [47] used
a Hadoop-based3 cloud to aid transcoding of media content. Their results
show that the processing power of a Hadoop cluster can greatly reduce en-
coding times. Breitman et al. [21] and Pereira et al. [80] proposed a split
and merge architecture for high performance video processing by generaliz-
ing the MapReduce paradigm [35]. They also considered the use of dynamic
resource provisioning to reduce video encoding times. However, they did not
propose a VM provisioning algorithm for video transcoding in the cloud.

3http://hadoop.apache.org/

15

2.4 VM Provisioning Approaches

Most of the existing works on VM provisioning for web-based systems can
be classified into two main categories: plan-based approaches and control
theoretic approaches [39, 78, 79, 83]. Plan-based approaches can be further
classified into workload prediction approaches [6, 48, 81, 107] and perfor-
mance dynamics model approaches [26, 31, 51, 52, 57, 62, 99, 108]. One com-
mon difference between all existing works discussed here and our proposed
VM provisioning approach for multi-tier web applications (Section 3.1) is
that our proposed approach uses shared hosting [13]. Another distinguish-
ing characteristic of our approach is that in addition to VM provisioning
for the application server tier, it also provides dynamic scaling of multiple
web applications. In ARVUE [2, 10], we used shared hosting with reactive
VM provisioning. Moreover, our hybrid reactive-proactive VM provision-
ing approach CRAMP [11] provides improved QoS with prediction-based
VM provisioning. Similarly, a common difference between all of these VM
provisioning approaches and our proposed VM provisioning approach for
video transcoding (Section 3.2) is that they are not designed specifically for
video transcoding in cloud computing. In contrast, our proposed approach
is based on the important performance and VM provisioning metrics for
video transcoding service, such as video play rate and server transcoding
rate. Moreover, it is cost-efficient as it uses a reduced number of VMs for
a large number of video streams, it provides proactive VM provisioning un-
der soft realtime constraints, and it does not depend upon performance and
dynamics of the underlying system.

Ardagna et al. [6] proposed a distributed algorithm for managing SaaS
cloud systems that addresses capacity allocation for multiple heterogeneous
applications. Raivio et al. [81] used proactive resource allocation for short
message services in hybrid clouds. The main drawback of their approach
is that it assumes server processing capacity in terms of messages per sec-
ond, which is not a realistic assumption for the Hypertext Transfer Pro-
tocol (HTTP) and video traffic where different types of requests may re-
quire different amounts of processing time. Zhang et al. [107] introduced a
statistical-based resource allocation approach that performs load balancing
on PMs by predicting VM resource demands. It uses statistical prediction
and available resource evaluation mechanisms to make online resource allo-
cation decisions. Gong et al. [48] presented a predictive resource scaling sys-
tem, which leverages light-weight signal processing and statistical learning
methods to predict resource demands of applications and adjusts resource
allocations accordingly. Nevertheless, the main challenge in the prediction-
based approaches is in making good prediction models that could ensure high
prediction accuracy with low computational cost. In our proposed approach
for multi-tier web applications (Section 3.1), CRAMP uses a two-step load

16

prediction method [4, 5] with Exponential Moving Average (EMA) and a
simple linear regression model [12,74], which provides high prediction accu-
racy under soft realtime constraints. Moreover, it gives more or less weight
to the predicted utilizations based on the Normalized Root Mean Square
Error (NRMSE). Similarly, our VM provisioning approach for video trans-
coding (Section 3.2) is a prediction-based approach, which uses the two-step
load prediction method to predict video transcoding rate of the transcoding
servers and then uses this information to provision preemptively.

TwoSpot [99] supports hosting of multiple web applications, which are
automatically scaled up and down in a dedicated hosting environment. The
scaling down is decentralized, which may lead to severe random drops in
performance. Hu et al. [57] presented an algorithm for determining the min-
imum number of required servers, based on the expected arrival rate, service
rate, and SLA. In contrast, our proposed VM provisioning approaches do
not require knowledge about the infrastructure or performance dynamics.
Chieu et al. [31] presented an approach that scales servers for a particular
web application based on the number of active user sessions. However, the
main challenge is in determining suitable threshold values on the number
of user sessions. Carrera et al. [26] presented a utility-based web applica-
tion placement approach to maximize application performance on clusters of
PMs. Iqbal et al. [62] proposed an approach for multi-tier web applications,
which uses response time and Central Processing Unit (CPU) utilization
metrics to determine the bottleneck tier and then scales it by provisioning
a new VM. Calinescu et al. [25] presented a tool-supported framework for
QoS management and optimization of self-adaptive service-based systems.
Zhao et al. [108] addressed the problem of minimizing resource rental cost
for running elastic applications in the cloud while satisfying application-level
QoS requirements. They proposed a deterministic resource rental planning
model, which uses a mixed integer linear program to generate optimal rental
decisions based on fixed cost parameters. They also presented a stochastic
resource rental planning model that explicitly considers the price uncer-
tainty of the Amazon EC2 spot instances in the rental decision making.
However, they did not investigate cloud resource provisioning solutions for
time-varying workloads. Han et al. [52] proposed a reactive resource al-
location approach to integrate VM-level scaling with a more fine-grained
resource-level scaling. Similarly, Han et al. [51] presented a cost-aware,
workload-adaptive reactive scaling approach for multi-tier cloud applica-
tions. In contrast, our VM provisioning approach for video transcoding is a
proactive approach. Moreover, CRAMP supports hybrid reactive-proactive
VM provisioning with proportional and derivative factors to determine the
number of VMs to provision.

Dutreilh et al. [39] and Pan et al. [78] used control theoretic models
to design resource allocation solutions for cloud computing. Dutreilh et al.

17

presented a comparison of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI)-controllers to provide
QoS guarantees. Patikirikorala et al. [79] proposed a multi-model frame-
work for implementing self-managing control systems for QoS management.
The work is based on a control theoretic approach called the Multi-Model
Switching and Tuning adaptive control. Roy et al. [83] presented a look-
ahead resource allocation algorithm based on the model predictive control.
A common characteristic of the control theoretic approaches is that they de-
pend upon performance and dynamics of the underlying system. In contrast,
our proposed VM provisioning approaches for web applications and video
transcoding do not require any knowledge about the performance models or
infrastructure dynamics.

2.5 Admission Control Approaches

Admission control refers to the mechanism of restricting the incoming user
load on a server in order to prevent it from becoming overloaded. Server
overload prevention is important because an overloaded server fails to main-
tain its performance, which translates into a subpar service (higher response
time and lower throughput) [49]. Thus, if an overloaded server keeps on ac-
cepting new user requests, then not only the new users, but also the existing
users may experience a deteriorated performance.

The existing works on admission control for web-based systems can be
classified according to the scheme presented in Almeida et al. [3]. For in-
stance, Robertsson et al. [82] and Voigt and Gunningberg [95] are control
theoretic approaches, while Huang et al. [58] and Muppala and Zhou [76] use
machine learning techniques. Similarly, Cherkasova and Phaal [30], Almeida
et al. [3], Chen et al. [29], and Shaaban and Hillston [85] are utility-based
approaches.

Almeida et al. [3] proposed a joint resource allocation and admission
control approach for a virtualized platform hosting a number of web appli-
cations, where each VM runs a dedicated web service application. Their
admission control approach uses request-based admission, in which the op-
timization objective is to maximize the provider’s revenue, while satisfying
the customers’ QoS requirements and minimizing the cost of resource uti-
lization. It dynamically adjusts the fraction of capacity assigned to each VM
and limits the incoming workload by serving only the subset of the requests
that maximize profits. It combines a performance model and an optimiza-
tion model. The performance model determines future SLA violations for
each web service class based on a prediction of future workloads. The op-
timization model uses these estimates to make the resource allocation and
admission control decisions.

18

Cherkasova and Phaal [30] proposed a Session-Based Admission Con-
trol (SBAC) approach that uses the traditional on-off control. It supports
four admission control strategies: responsive, stable, hybrid, and predictive.
The hybrid strategy tunes itself to be more stable or more responsive based
on the observed QoS. Their proposed approach measures server utilizations
during predefined time intervals. Using these measured utilizations, it com-
putes predicted utilizations for the next interval. If the predicted utilizations
exceed specified thresholds, the admission controller rejects all new sessions
in the next time interval and only serves the requests from already admitted
sessions. Once the predicted utilizations drop below the given thresholds,
the server changes its policy for the next time interval and begins to admit
new sessions again.

Chen et al. [29] proposed Admission Control based on Estimation of
Service times (ACES). It differentiates and admits requests based on the
amount of the processing time required by the individual requests. In ACES,
admission of a request is decided by comparing the available computation
capacity to the predetermined delay bound of the request. The service
time estimation is based on an empirical expression, which is derived from
an experimental study on a real web server. Shaaban and Hillston [85]
proposed Cost-Based Admission Control (CBAC), which uses a congestion
control technique. Rather than rejecting user requests at high load, CBAC
uses a discount-charge model to encourage users to postpone their requests
to less loaded time periods. However, if a user chooses to proceed with the
request in a high load period, an extra charge is imposed. The model is
effective for e-commerce web sites when more users place orders that involve
monetary transactions.

Muppala and Zhou [76] proposed the Coordinated Session-based Admis-
sion Control (CoSAC) approach, which provides SBAC for multi-tier web
applications with per-session admission control. CoSAC also provides coor-
dination among the states of tiers with a machine learning technique using
a Bayesian network. The admission control mechanism differentiates and
admits user sessions based on their type. For example, browsing mix ses-
sion, ordering mix session, and shopping mix session. However, it remains
unclear how it determines the type of a particular session in the first place.

The on-off control in the SBAC approach of Cherkasova and Phaal [30]
turns on or off the acceptance of the new sessions for an entire admission
control interval. Therefore, the admission control decisions are made only
at the interval boundaries and can not be changed within an interval. Thus,
a drawback of the on-off control is that it is highly vulnerable to over-
admission, especially when handling a bursty load, which may result in the
overloading of the servers. To overcome this vulnerability of the on-off con-
trol, CoSAC [76] used per-session admission control. Our proposed admis-
sion control approach for multi-tier web applications, ACVAS (Section 3.3),

19

also implements SBAC with per-session admission control [12, 13]. Thus,
it makes an admission control decision for each new session. Similarly, our
proposed admission control and scheduling approach for video transcoding,
SBACS (Section 3.4), implements stream-based admission control with per-
stream admission [15].

Huang et al. [58] proposed admission control schemes for proportional
differentiated services. It applies to services with different priority classes.
The paper proposes two admission control schemes to enable proportional
delay differentiated service at the application level. Each scheme is aug-
mented with a prediction mechanism, which predicts the total maximum
arrival rate and the maximum waiting time for each priority class based on
the arrival rate in the current and last three measurement intervals. When a
user request belonging to a specific priority class arrives, the admission con-
trol algorithm uses the time series predictor to forecast the average arrival
rate of the class for the next interval, computes the average waiting time for
the class for the next interval, and determines if the incoming user request
is admitted to the server. If admitted, the client is placed at the end of the
class queue.

Voigt and Gunningberg [95] proposed admission control based on the
expected resource consumption of the requests, including a mechanism for
service differentiation that guarantees low response time and high through-
put for premium clients. The approach avoids over-utilization of individual
server resources, which are protected by dynamically setting the acceptance
rate of resource-intensive requests. The adaptation of the acceptance rates
(average number of requests per second) is done by using Proportional-
Derivative (PD) feedback control loops. Robertsson et al. [82] proposed an
admission control mechanism for a web server system with control theoretic
methods. It uses a control theoretic model of a G/G/1 system with an ad-
mission control mechanism for nonlinear analysis and design of controller
parameters for a discrete-time PI-controller. The controller calculates the
desired admittance rate based on the reference value of average server uti-
lization and the estimated or measured load situation (in terms of average
server utilization). It then rejects those requests that could not be admitted.

All existing admission control approaches discussed above, except
CBAC [85], have a common shortcoming in that they rely only on request
rejection to avoid server overloading. However, CBAC has its own disadvan-
tages. The discount-charge model of CBAC requires additional web pages
to be included in the web application and it is only effective for e-commerce
web sites that involve monetary transactions. In contrast, we introduce a
simple mechanism to defer user sessions that would otherwise be rejected. In
ACVAS, such sessions are deferred on an entertainment server, which sends a
wait message to the user and then redirects the user session to an application
server as soon as a new server is provisioned or an existing server becomes

20

less loaded [12]. However, if the entertainment server also approaches its
capacity limits, the new session is rejected. Therefore, for each new session
request, the admission controller makes one of the three possible decisions:
admit the session, defer the session, or reject the session. Likewise, our
admission control and scheduling approach for video transcoding, SBACS,
provides a stream deferment policy, which exploits the cloud elasticity to
allow temporary deferment of the incoming video streams. In other words,
the admission controller can decide to admit, defer, or reject an incoming
stream and hence reduce the rejection rate [15].

Cherkasova and Phaal [30] defined a simple method for computing the
predicted resource utilization, yielding predicted resource utilizations by as-
signing certain weights to the current and the past utilizations. Muppala
and Zhou [76] used the EMA method to make utilization predictions. Huang
et al. [58] used machine learning techniques called Support Vector Regres-
sion and Particle Swarm Optimization for time-series prediction. Shaaban
and Hillston [85] assumed a repeating pattern of workload over a suitable
time period. Therefore, in their approach, load in a future period is pre-
dicted from the cumulative load of the corresponding previous period. These
related works clearly indicate that admission control augmented with predic-
tion models tends to produce better results. Therefore, ACVAS and SBACS
also use a prediction model. However, for efficient runtime decision making,
it is essential to avoid prediction models which might require intensive com-
putation, frequent updates to their parameters, or (off-line) training. Thus,
ACVAS and SBACS use a two-step approach [4,5], which has been designed
to predict future resource loads under soft realtime constraints. The two-
step approach consists of a load tracker and a load predictor. We use the
EMA method for the load tracker and a simple linear regression model [74]
for the load predictor [12].

2.6 Computation and Storage Trade-off Strategies

There are currently only a few works in the area of computation and stor-
age trade-off analysis for cost-efficient usage of cloud resources. Shin and
Koh [87] presented a hybrid scheme to determine an optimal threshold be-
tween the static transcoding (batch processing) and the dynamic transcoding
(soft realtime). However, they did not consider the trade-off between the
computation cost and the storage cost in a cloud environment. One of the
earlier attempts concerning the computation and storage trade-off in cloud
computing include Adams et al. [1], who highlighted some of the important
issues and factors involved in constructing a cost-benefit model, which can
be used to analyze the trade-offs between computation and storage. How-
ever, they did not propose a strategy to find the right balance between

21

computation and storage resources. Deelman et al. [36] studied cost and
performance trade-offs for an astronomy application using Amazon EC2 and
Amazon Simple Storage Service (S3)4 cost models. They concluded that,
based on the likelihood of the reuse, storing popular datasets in the cloud
can be cost-effective. However, they did not provide a concrete strategy
for cost-effective computation and storage of scientific datasets in the cloud.
Nectar system [50] was designed to automate the management of data and
computation in a data center. It initially stores all the derived datasets
when they are generated. However, when the available disk space falls be-
low a threshold, all obsolete or least-valued datasets are garbage collected
to improve resource utilization. Although Nectar provides a computation
and storage trade-off strategy, it is not designed to reduce the total cost of
computation and storage in a cloud-based service that uses IaaS resources.

Yuan et al. [104] proposed two strategies for cost-effective storage of sci-
entific datasets in the cloud, which compare the computation cost and the
storage cost of the datasets. They also presented a Cost Transitive Tourna-
ment Shortest Path (CTT-SP) algorithm to find the best trade-off between
the computation and the storage resources. Their strategies are called cost
rate based storage strategy [103, 106] and local-optimization based storage
strategy [105]. The cost rate based storage strategy compares computation
cost rate and storage cost rate to decide storage status of a dataset. Whereas,
the local-optimization based storage strategy partitions a Data Dependency
Graph (DDG) of datasets into linear segments and applies the CTT-SP algo-
rithm to achieve a localized optimization. In contrast to the cost rate based
storage strategy [103,106], our proposed trade-off strategy (Section 3.5) es-
timates an equilibrium point on the time axis where the computation cost
and the storage cost of a transcoded video become equal [64,65]. Moreover,
it estimates video popularity of the individual transcoded videos to differ-
entiate popular videos. In our opinion, the DDG-based local-optimization
based storage strategy of Yuan et al. [105] is not much relevant for video
transcoding because video transcoding does not involve a lot of data depen-
dencies.

Kathpal et al. [69] analyzed compute versus storage trade-off for trans-
coded videos. They proposed an elimination metric to decide which trans-
coded videos can be removed from the video repository. However, in con-
trast to our proposed cost and popularity score based strategy, they did
not account for the video popularity score. Moreover, although their results
are also based on Amazon EC2 and Amazon S3, they used relatively short
videos, which comprise up to 60 second video clips.

Most of the existing computation and storage trade-off strategies de-
scribed above were originally proposed for scientific datasets. To the best

4http://aws.amazon.com/s3/

22

of our knowledge, there are currently only a few computation and storage
trade-off strategies for video transcoding, such as Kathpal et al. [69] and
our proposed strategy [64, 65]. The difference of the application domain
may play a vital role when determining cost-efficiency of the existing strate-
gies. Therefore, some of the existing strategies may have limited efficacy
and little cost-efficiency for video transcoding.

2.7 Consolidation Approaches and ACO

The existing VM management and consolidation approaches, such as [18,19,
33,40–46,54,61,71,72,77,94,96,100], are used in data centers mainly to min-
imize under-utilization of PMs and to optimize their power-efficiency. The
main idea in these approaches is to use live VM migration [32] to periodically
consolidate VMs so that some of the under-utilized PMs could be released
for termination. In this thesis, we propose to use a similar technique to cost-
efficiently consolidate multiple concurrent third-party web applications in a
cloud-based shared hosting environment [16]. Therefore, a key difference in
our proposed approach (Section 3.6) is that we consolidate applications on
VMs, rather than consolidating VMs on PMs. Thus, our prime concern is
to release some of the under-utilized VMs for termination so that the to-
tal number of provisioned VMs can be reduced without compromising the
overall performance.

Although the web application consolidation problem has certain simi-
larities with the VM consolidation problem, an important difference is that
the application consolidation problem is intrinsically more dynamic. This
is because, based on the user load, web applications keep on changing their
resource demands. On the other hand, the existing VM consolidation ap-
proaches tend to assume that the VMs are static in nature [42], that is, they
do not change their resource demands. Thus, one of the challenges in the
web application consolidation problem is to reduce the computation time of
the consolidation algorithm so that the dynamic nature of web applications
and their changing resource demands can be accommodated.

Since cost-efficient web application consolidation is a NP-hard combi-
natorial optimization problem, we apply a highly adaptive online optimiza-
tion [53] metaheuristic called Ant Colony Optimization (ACO) [37,38] to find
a near-optimal solution. ACO is a multi-agent approach to difficult combina-
torial optimization problems, such as, Travelling Salesman Problem (TSP)
and network routing [37]. It is inspired by the foraging behavior of real ant
colonies. While moving from their nest to the food source and back, ants
deposit a chemical substance on their path called pheromone. Other ants
can smell pheromone and they tend to prefer paths with a higher pheromone
concentration. Thus, ants behave as agents who use a simple form of in-

23

direct communication called stigmergy to find better paths between their
nest and the food source. It has been shown experimentally that this simple
pheromone trail following behavior of ants can give rise to the emergence of
the shortest paths [37]. It is important to note here that although each ant
is capable of finding a complete solution, high quality solutions emerge only
from the global cooperation among the members of the colony who concur-
rently build different solutions. Moreover, to find a high quality solution,
it is imperative to avoid stagnation, which is a premature convergence to a
suboptimal solution or a situation where all ants end up finding the same
solution without sufficient exploration of the search space [37]. In ACO
metaheuristic, stagnation is avoided mainly by using pheromone evapora-
tion and stochastic state transitions. There are a number of ant algorithms,
such as, Ant System (AS), Max-Min Ant System (MMAS), and Ant Colony
System (ACS) [37, 38]. ACS [37] improves the performance of AS and is
currently one of the best performing ant algorithms. Therefore, we apply
ACS to the web application consolidation problem.

One of the earlier works on applying ACO to the general resource allo-
cation problem include [102]. They applied ACO to the nonlinear resource
allocation problem, which seeks to find an optimal allocation of a limited
amount of resources to a number of tasks to optimize their nonlinear objec-
tive function. Chaharsooghi and Kermani [27] proposed a modified version
of ACO for multi-objective resource allocation problem. A more recent work
by Feller et al. [42] and Feller et al. [43] applied MMAS to the VM consoli-
dation problem in the context of cloud computing. However, to the best of
our knowledge, currently there are no existing works on using ACO meta-
heuristic to consolidate multiple web applications in a cloud-based shared
hosting environment.

24

Chapter 3

Contributions of the Thesis

In this thesis, we address the problem of cost-efficient VM provisioning aug-
mented with server consolidation and admission control on the provisioned
VMs. We seek solutions for two types of applications: multi-tier web ap-
plications that follow the request-response paradigm and on-demand video
transcoding that is based on video streams with soft realtime constraints.
Although there are many similarities between VM provisioning for web ap-
plications and VM provisioning for video transcoding, each one of them also
has its own challenges [9].

We present a cost-efficient VM provisioning approach for multi-tier web
applications [2, 8, 10, 11, 13, 23] and on-demand video transcoding [63, 66].
Moreover, to prevent virtualized servers from becoming overloaded, the pro-
posed VM provisioning approach is augmented with an admission control
mechanism [12, 15]. Furthermore, to minimize the under-utilization of the
virtualized application servers, we provide a web application consolidation
approach [16]. We also present a computation and storage trade-off strat-
egy for cost-efficient video transcoding in cloud computing [64, 65]. These
contributions are based on the following set of general assumptions:

• We assume homogenous VMs. For example, small (m1.small) in-
stances from the Amazon EC2 cloud.

• Our proposed algorithms are designed to work with on-demand in-
stances from an IaaS cloud. For instance, Amazon EC2 on-demand
instances.

• Since some contemporary IaaS clouds, such as Amazon EC2, charge
on hourly basis, it is assumed that the VM costing interval is one hour.

Our thesis contributions are presented in detail in the original publica-
tions in Part II of the thesis. This chapter presents a summary of our main
contributions while providing a brief overview of some of the most important
challenges that they address.

25

3.1 VM Provisioning for Multi-tier Web Applica-
tions

Our first contribution is a cost-efficient VM provisioning approach for multi-
ple multi-tier web applications. The proposed approach comprises two sub-
approaches: a reactive VM provisioning approach called ARVUE [2,10] and a
hybrid reactive-proactive VM provisioning approach called CRAMP [11,13].
The proposed approach provides automatic deployment and scaling of multi-
ple simultaneous web applications on a given IaaS cloud in a shared hosting
environment. It monitors and uses resource utilization metrics and does
not require a performance model of the applications or the infrastructure
dynamics. The shared hosting environment allows us to share VM resources
among deployed applications, reducing the total number of required VMs.
Performance under varying load conditions is guaranteed by automatic ad-
justment and tuning of the CRAMP parameters.

The main task of the proposed approach is to provision and remove VMs
for the application server tier and to deploy and remove applications from
each VM, in order to maintain a desired QoS. For cost-effectiveness, the
approach supports deployment of multiple simultaneous applications on a
single VM. At any given time, an application may be deployed in zero, one
or more VMs. Popular applications are often deployed in many VMs, while
sporadically used applications may not be deployed at all in order to save
resources. Moreover, due to memory limitations, it is also not possible to
assume that we can deploy all applications in one VM.

Figure 3.1 depicts the system architecture of our proposed VM provi-
sioning, admission control, and consolidation approaches for multi-tier web
applications. It consists of the following components: global controller, ad-
mission controller, application server, local controller, load predictor, appli-
cation repository, cloud provisioner, HTTP load balancer, and entertainment
server. The global controller implements VM provisioning and web applica-
tion consolidation (Section 3.6) algorithms along with the session-to-server
allocation and application-to-server allocation policies [10]. The admission
controller and the entertainment server are part of our admission control
approach for multi-tier web applications called ACVAS (Section 3.3).

An application server instance runs on a dynamically provisioned VM.
Each application server runs multiple web applications in an Open Services
Gateway initiative (OSGi) [90] environment. In such an environment, each
application runs as an OSGi component called a bundle. OSGi also intro-
duces the dynamic component model, which allows dynamic loading and
unloading of bundles. In addition to the web applications, each application
server also runs a local controller and a load predictor. The local controller
monitors and logs server resource utilizations. It also controls the OSGi

26

HTTP

Load

Balancer

HTTP

Global Controller

Entertainment

Server

Cloud

Provisioner

Application Server 1

Application 1

Application m1

O

S

G

i
Local Controller

Application 1

Application mn

O

S

G

i
Local Controller

HTTP

.

.

.
Application

Repository

Application Server n

Predictor

Predictor

Admission

Controller

Config

HTTP

ACVAS

CRAMP

External

Figure 3.1: System architecture of the proposed VM provisioning, admission
control, and consolidation approaches for multi-tier web applications

environment for loading and unloading of web applications. The load pre-
dictor predicts future load on an application server. It uses current and past
resource utilization data of the server to predict a few steps ahead in the
future. Our load prediction approach consists of a load tracker and a load
predictor [5]. It uses EMA for the load tracker and a simple linear regression
model [74] for the load predictor [11].

Web applications are stored in an application repository, from where
they are loaded onto application servers. The cloud provisioner refers to
the cloud provisioner in an external IaaS cloud, such as the provisioner in
Amazon EC2. While the VM provisioning and termination decisions are
made by the global controller, the actual lower level tasks of starting and
terminating VMs are done by the cloud provisioner. The HTTP requests
are routed through a high performance HTTP load balancer and proxy. For
this, we use HAProxy1, which balances the load of requests for new user ses-
sions among the application servers. For its functions, HAProxy maintains
a configuration file containing information about application servers and ap-
plication deployments on each server. As a result of the VM provisioning
and termination operations, the configuration file is frequently updated with
new information.

The most important characteristics of ARVUE are that it is based on
reactive feedback control [55], it does not depend upon a performance model
of the application or the infrastructure dynamics, it deploys multiple appli-

1http://haproxy.1wt.eu/

27

cations per VM, and it provides server level and application level scaling.
CRAMP is similar to ARVUE except that it is based on a hybrid reactive-
proactive control.

3.1.1 VM Provisioning Delay

In practice, it currently takes a few minutes to provision a VM from an
IaaS cloud [10, 11, 34]. Due to this inevitable VM provisioning delay, the
handling of a sudden spike in the incoming user load becomes a challenge.
Some of the strategies that we use to overcome this drawback of IaaS clouds
include provisioning multiple VMs at a time [10, 11], using additional VM
capacity [10,11], and using load prediction to provision preemptively [11].

3.1.2 Hybrid Reactive-Proactive VM Provisioning

Many traditional VM provisioning approaches, such as [10, 31, 57, 62, 99],
use reactive provisioning. However, the primary shortcoming of reactive
provisioning is that it starts a VM provisioning operation only after a sig-
nificant increase in the load is detected [81]. Therefore, the new VMs can
only be used instantly if the VM provisioning was instantaneous [11]. How-
ever, due to the VM provisioning delay, the reactive approach may fail to
handle increased load, especially under sudden load spikes. Alternatively,
some approaches use a prediction of the future load to provision preemp-
tively [6, 81]. In CRAMP [11], we provide a hybrid reactive-proactive ap-
proach for web applications, which assigns certain weights to the reactive and
the proactive provisioning. Nevertheless, the main challenge in prediction-
based approaches is in making predictions with high prediction accuracy
under soft realtime constraints [11]. Therefore, we use a two-step load pre-
diction method [4, 5] with EMA and a simple linear regression model [74],
which predicts a few steps ahead in the future with high prediction accuracy
under soft realtime constraints [12].

3.1.3 Reduced Oscillations in Number of VMs

Another important challenge is to reduce oscillations in the number of provi-
sioned VMs. This is desirable because oscillations in the presence of the in-
evitable VM provisioning delay may lead to a deteriorated performance [10].
Moreover, since some IaaS clouds, such as Amazon EC2, currently charge on
an hourly basis, oscillations in the number of provisioned VMs may result in
a higher provisioning cost [66]. Therefore, we use a few strategies to coun-
teract oscillations in the number of VMs, such as, delaying new provisioning
operations until previous provisioning operations have been realized [10,62]
and terminating only those VMs that were constantly under-utilized for a
longer period of time [10].

28

3.1.4 Sharing of VM Resources for Improved Utilization

For cost-efficient VM provisioning to deploy and scale multiple web applica-
tions, the proposed approach should provide a finer deployment granularity
than the smallest VM provided by the contemporary IaaS clouds [11]. This
is especially important when deploying a large number of web applications,
most of which may have very few users, while a few of them may have many
users. Therefore, we use shared hosting, which deploys one or more web
applications on each VM [10, 11]. Moreover, popular applications are often
deployed in many VMs, while sporadically used applications may not be
deployed at all in order to save resources [10]. Thus, instead of provision-
ing at least one full VM per application, shared hosting effectively supports
provisioning a fraction of a VM per application, resulting in a reduced num-
ber of total VMs. The deployment of multiple web application in a shared
hosting environment enables two levels of scaling, namely server-level scal-
ing and application-level scaling [10]. The server-level scaling provisions and
terminates VMs from an IaaS cloud to create a dynamically scalable clus-
ter of servers, whilst the application-level scaling deploys and removes web
applications from each virtualized server.

3.2 VM Provisioning for Video Transcoding

Our second contribution in this thesis is a VM provisioning approach for
video transcoding in the cloud [63, 66]. The proposed VM provisioning ap-
proach uses load prediction to proactively scale video transcoding service on
a given IaaS cloud. It provides mechanisms for allocation and deallocation
of VMs to a cluster of video transcoding servers in a horizontal fashion.
For cost-efficiency, our work supports concurrently transcoding multiple on-
demand video streams on a single VM, resulting in a reduced number of
required VMs.

Figure 3.2 presents the system architecture of our proposed VM provi-
sioning and admission control approaches for video transcoding. It consists
of a streaming server, a video splitter, a video merger, a video repository, a
dynamically scalable cluster of video transcoding servers, a load balancer, a
master controller, an admission controller, an entertainment server, and a
load predictor. The admission controller and the entertainment server are
part of our admission control and scheduling approach for video transcoding
called SBACS (Section 3.4). The video requests and responses are routed
through the streaming server. Since our main focus is on video transcoding,
we assume that the streaming server is not a bottleneck.

The video streams in certain compressed formats are stored in the video
repository. The streaming server accepts video requests from users and
checks if the required video is available in the video repository. If it finds

29

the video in the desired format and resolution, it starts streaming the video.
However, if it finds that the requested video is stored only in another for-
mat or resolution than the one desired by the user, it sends the video for
segmentation and subsequent transcoding. Then, as soon as it receives the
transcoded video from the video merger, it starts streaming the video.

After each transcoding operation, the computation and storage trade-off
strategy determines if the transcoded video should be stored in the video
repository or not. Moreover, if a transcoded video is stored, then the trade-
off strategy also determines the duration for which the video should be
stored. Therefore, it allows us to trade computation for storage or vice versa
in order to reduce the total operational cost and to improve performance of
the transcoding service.

The video splitter splits the video streams into smaller segments called
jobs, which are placed into a job queue. The video splitting or segmentation
is performed at the GOP level, where GOPs represent atomic units that can
be transcoded independently of one another [66]. The load balancer employs
a task assignment policy, which distributes the load on the transcoding
servers. In other words, it decides when and to which transcoding server a
transcoding job should be sent. The actual transcoding is performed by the
transcoding servers. A transcoding server runs on a dynamically provisioned
VM. It gets video segments, performs the required transcoding operations,
and returns the transcoded video segments for merging.

The master controller acts as the main controller and the resource allo-
cator. It implements prediction-based dynamic VM allocation and dealloca-
tion algorithms and one or more computation and storage trade-off strate-
gies. For load prediction, the master controller uses the load predictor, which
predicts future load on the transcoding servers. The video merger merges
the transcoded jobs into video streams, which form video responses.

3.2.1 Video Segmentation at GOP Level

As described in Section 3.1.4, improved utilization and sharing of the VM
resources are essential ingredients of a cost-efficient VM provisioning ap-
proach. Therefore, for video transcoding, we use video segmentation at
the GOP level, which splits video streams into smaller segments that can
be transcoded independently of one another [66]. It allows transcoding of
multiple video streams concurrently on a single VM. The sharing of the VM
resources among multiple concurrent video streams improves VM utilization,
which helps in reducing the total number of required VMs.

30

Streaming

Server

V
id

eo
 R

eq
u
es

ts
V

id
eo

 R
es

p
o
n
se

s

Video

Repository

Entertainment

Server

Admission

Controller

Load

Predictor

Merger

Master Controller

Load

Balancer
Splitter

Transcoding

Server 1

Transcoding

Server N

Video data Control signals

.

.

.

Input streams

Transcoded segments

Transcoded streams

Segments

SBACS

Figure 3.2: System architecture of the proposed VM provisioning and ad-
mission control approaches for video transcoding

3.2.2 Proactive VM Provisioning

Our VM provisioning approach for video transcoding is a proactive ap-
proach [63, 66]. It uses a two-step load prediction method [4, 5] with EMA
and a simple linear regression model [74], which allows proactive VM provi-
sioning with high prediction accuracy under soft realtime constraints.

3.2.3 Reduced Oscillations and Conservative Termination

As explained in Section 3.1.3, it is an important challenge to reduce oscilla-
tions in the number of provisioned VMs. Therefore, for video transcoding,
we use two different strategies to counteract oscillations in the number of
VMs. The first strategy delays new provisioning operations until previous
provisioning operations complete and their effect becomes visible in the sys-
tem [62, 66]. Our second strategy calculates the remaining time of each
transcoding server with respect to the completion of the renting period. For
instance, in the case of Amazon EC2, the renting period is one hour. Thus,
our proposed approach terminates a VM only when the VM renting period
approaches its completion and all jobs on the server complete their execu-
tion [63, 66]. Therefore, if a VM is under-utilized, but its renting period is
not close to completion, it will not be terminated.

31

3.3 Admission Control for Multi-tier Web Appli-
cations

Admission control is often implemented at the server level. A server with
admission control in place would stop accepting new user requests or ses-
sions when the server approaches its capacity limits. Therefore, overload
prevention relies on rejection of new requests or sessions. Most traditional
admission control approaches implement request-based admission control.
However, some recent approaches, such as [30], use SBAC, which often yields
better results for stateful web applications.

Our third contribution in this thesis is an admission control approach for
multi-tier web applications called ACVAS. It provides SBAC for a dynami-
cally scalable application server tier. Instead of relying only on the rejection
of new user sessions, ACVAS implements a simple mechanism that defers
such sessions and then serves them as soon as possible in the near future.
It implements per-session admission control and uses monitored resource
utilizations to predict a few steps ahead in the future. Then, based on the
measured and predicted utilizations, it computes weighted utilizations. The
weighted utilizations of individual server resources are used to make an ad-
mission control decision for each new session. Performance under varying
load conditions is guaranteed by automatic adjustment and tuning of the
admission control mechanism.

3.3.1 SBAC with Per-Session Admission Control

The SBAC approach in [30] implements on-off control, where acceptance of
new sessions is turned on or off for the entire admission control interval.
Thus, the admission control decisions are made at the interval boundaries,
which can not be changed inside an interval. A drawback of the on-off control
is that it may lead to over-admission, especially when handling a bursty
load, which can result in the overloading of the servers. To overcome this
drawback of the on-off control, CoSAC [76] proposed per-session admission
control. ACVAS also implements SBAC with per-session admission control.
Thus, it makes an admission control decision for each new session.

3.3.2 Session Deferment Mechanism

All existing admission control approaches discussed in Section 2.5, except
CBAC [85], have a common drawback that they rely only on request re-
jection to avoid server overloading. However, the discount-charge model in
CBAC requires additional web pages to be inserted into the web applica-
tion and it is only effective for e-commerce web sites that involve monetary
transactions. Therefore, in ACVAS, we introduce a simple mechanism to

32

defer user sessions that would otherwise be rejected. Such sessions are de-
ferred on an entertainment server, which sends a wait message to the user
and then redirects the user session to an application server as soon as a new
server is provisioned or an existing server becomes less loaded. However, if
the entertainment server also approaches its capacity limits, the new session
is rejected. Thus, for each new session request, the admission controller in
ACVAS makes one of the three possible decisions: admit the session, defer
the session, or reject the session.

3.3.3 Automatic Adjustment and Tuning for Better QoS

Schroeder et al. [84] considered automatic adjustment and tuning of the
admission control mechanism to be the most difficult part. The SBAC ap-
proach in [30] used a hybrid policy for automatic adjustment and tuning
of the admission control mechanism. It tries to achieve better QoS and
higher session throughput by using a parameter called admission control
weight, which gives more or less weight to the measured and the predicted
utilizations. In their approach, the weight parameter is adjusted and tuned
based on the number of aborted sessions and the number of refused connec-
tions [30].

For automatic adjustment and tuning of the admission control mech-
anism, ACVAS uses a similar approach as in [30]. However, it adjusts
and tunes the weight parameter based on the following metrics: number of
aborted sessions, number of deferred sessions, number of rejected sessions,
and number of overloaded servers [12].

3.4 Admission Control and Scheduling for Video
Transcoding

As our fourth contribution in this thesis, we present an admission control and
scheduling approach for a dynamically scalable cluster of video transcoding
servers called SBACS [15]. It provides video stream based admission control
on a per-stream level. SBACS uses queue waiting time of transcoding servers
to make admission control decisions. For preemptive control, it uses a two-
step load prediction approach [4, 5], which predicts queue waiting times
on individual servers. In addition to the traditional load rejection policy,
SBACS also provides a stream deferment policy, which allows temporary
deferment of an arrived stream until a new server is provisioned or an existing
server becomes less loaded. Moreover, to ensure efficient utilization of the
transcoding servers, server resources are shared among admitted streams
by performing video segmentation at the GOP level. The video segments
are then sent to the servers via a load balancer. SBACS also provides a

33

job scheduling algorithm, which aims to prevent transcoding jitters in the
admitted streams by possibly dropping a small proportion of video frames to
ensure continued delivery of the video contents to the users. Therefore, the
main tasks of the proposed SBACS approach are to make admission control
and job scheduling decisions for a scalable tier of transcoding servers, in
which each server runs on a VM.

3.4.1 Stream-Based Admission Control with Per-Stream
Admission

Some of the recent admission control approaches for web applications, such
as [12, 76], use SBAC with per-session admission. We present a similar
approach for video streams. SBACS provides stream-based admission con-
trol with per-stream admission, which reduces the risk of over-admission by
making an admission control decision for each incoming video stream.

3.4.2 Stream Deferment Mechanism

Most of the traditional admission control approaches rely only on the load
rejection policy to prevent server overloading. Therefore, as described in
Section 3.3.2, we introduced a simple session deferment mechanism in AC-
VAS [12]. SBACS presents a similar deferment mechanism for video streams,
which would otherwise be rejected. Such streams are deferred on an en-
tertainment server until a new server is provisioned or an existing server
becomes less loaded. However, if the entertainment server also approaches
its capacity limits, the new streams are rejected. Thus, for each new video
stream, the admission controller in SBACS makes one of the three possible
decisions: admit the stream, defer the stream, or reject the stream.

3.4.3 Job Scheduling Based on Queue Waiting Time

In addition to an admission control mechanism, SBACS also features a job
scheduling algorithm. The algorithm uses queue waiting time of individual
transcoding servers to complement admission control and to prevent trans-
coding jitters in the admitted video streams. For overload prevention on
a sufficiently utilized server, it starts dropping a small proportion of video
frames from each subsequent transcoding segment on the server. Likewise,
for preventing jitters in a video stream, it computes the estimated deliv-
ery deadline, the estimated transcoding time, and the estimated response
time of each video segment. If it finds a deadline violation, the violation
is prevented by dropping some video frames in proportion to the degree of
violation.

34

3.5 Computation and Storage Trade-off Strategy

Video transcoding of a large number of on-demand videos requires a large
scale cluster of transcoding servers. Moreover, storage of multiple trans-
coded versions of each source video requires a large amount of disk space.
IaaS clouds, such as Amazon EC2, currently provide VMs for creating a
dynamically scalable cluster of servers. Likewise, a cloud storage service,
such as Amazon S3, may be used to store a large number of transcoded
videos. However, the exact number of VMs and the exact amount of stor-
age needed at a specific time depend upon the incoming load from service
users and their performance requirements. Moreover, it may be possible to
reduce the total IaaS cost by trading storage for computation, or vice versa.
Therefore, finding a cost-efficient computation and storage trade-off strategy
for video transcoding in cloud computing is an important problem. In this
thesis, we investigate the computation and storage cost trade-off for video
transcoding in the cloud and present a cost-efficient strategy called cost and
popularity score based strategy [64,65]. The objective is to reduce the total
IaaS cost of the dynamically scalable on-demand video transcoding service
by trading storage for computation, or vice versa. The proposed strategy
estimates computation cost, storage cost, and video popularity of individual
transcoded videos and then uses this information to make decisions on how
long a video should be stored or how frequently it should be re-transcoded
from a given source video.

In an on-demand video transcoding service, the source videos are usually
high quality videos that comprise the primary datasets. Therefore, irrespec-
tive of their computation and storage costs, they are never deleted from the
video repository. The transcoded videos, on the other hand, are the de-
rived datasets that can be regenerated on-demand from their source videos.
Therefore, they should only be stored in the video repository when it is
cost-efficient to store them. Thus, the proposed strategy is only applicable
to the transcoded videos. In other words, since the computation and the
storage costs of the source videos are not relevant, the proposed strategy is
based only on the computation and storage costs of the transcoded videos.

3.5.1 Computation and Storage Costs

In cloud computing, the computation cost is essentially the cost of using
VMs, which is usually calculated on an hourly basis. The storage cost, on
the other hand, is often computed on a monthly basis. The computation
cost of a transcoded video depends on its transcoding time and on how often
the video is re-transcoded. Thus, if a video is frequently re-transcoded, the
computation cost would increase rapidly. On the other hand, the storage
cost of a transcoded video depends on the length of the storage duration and

35

Time

Cost

Transcoding Cost

Storage Cost

The point in time where the storage cost

 becomes higher than the transcoding cost

Figure 3.3: The estimated equilibrium point between the storage cost and
the transcoding cost of a transcoded video

the video size on disk. Therefore, it increases gradually with the passage
of time. The longer the duration, the higher the cost. Thus, our proposed
strategy estimates an equilibrium point on the time axis where the compu-
tation cost and the storage cost of a transcoded video become equal. This
estimated equilibrium point indicates the minimum duration for which the
video should be stored in the video repository. Figure 3.3 shows that if a
video is transcoded once and stored in the video repository, then initially the
computation cost is higher than the storage cost. However, with the passage
of time, the storage cost continues to increase until it becomes equal to the
computation cost and then it grows even further unless the video is removed
from the video repository. Thus, if the video is deleted before its estimated
equilibrium point and then it is subsequently requested, the computation
cost will increase due to unnecessary re-transcoding. Likewise, if the video
is stored beyond its estimated equilibrium point and then it does not receive
a subsequent request, the storage cost will increase unnecessarily.

3.5.2 Video Cost and Popularity Score

In an on-demand video streaming service, each transcoded video may be
requested and viewed a number of times. Frequently viewed, popular videos
receive a lot of requests. While, sporadically viewed, less popular videos
get only a few requests. For cost-efficient storage, it is essential to use
an estimate of the popularity of the individual transcoded videos. This
information can then be used to determine the exact duration for which
a video should be stored in the video repository. Therefore, the proposed
strategy accounts for the popularity of individual transcoded videos. It uses
the estimated computation cost, the estimated storage cost, and the video
popularity information to calculate a cost and popularity score for each

36

transcoded video. The higher the score the longer the video is stored in
the video repository. Thus, with the incorporation of the video cost and
popularity score, it becomes justifiable to store popular transcoded videos
beyond their estimated equilibrium point. In other words, it differentiates
popular videos that should be stored for a longer duration.

3.6 Web Application Consolidation using ACO

The under-utilization of VMs becomes more pertinent when a SaaS or a PaaS
provider wants to leverage an IaaS cloud to cost-efficiently deploy a large
number of web applications of varying resource needs. The solution to this
problem is to create a dynamically scalable application server tier that man-
ages multiple applications simultaneously, while using shared hosting [91] to
deploy multiple applications on a VM [10,11]. A similar fine-grained resource
sharing approach was used in Mesos [56]. However, it provides a platform
for multiple cluster computing frameworks rather than web applications.
Moreover, dynamic scaling [10, 11] alone does not guarantee cost-efficient
deployment. Figure 3.4 presents a simple hypothetical scenario to motivate
the need to consolidate multiple web applications in a cloud-based shared
hosting environment. Each application server in Figure 3.4 runs multiple
web applications. Moreover, some applications run on multiple servers. It
is assumed that due to some significant load variations, application server
2 and application server 3 have become under-utilized. The under-utilized
servers in such a scenario may continue to remain under-utilized for several
hours, days, or even weeks unless there is a significant increase in their load
or some new web applications are deployed on them. Thus, it is difficult to
provide cost-efficient deployment and scaling of multiple web applications
in a cloud-based shared hosting environment without consolidation of web
applications on under-utilized VMs.

As our sixth contribution in this thesis, we present a novel approach
to consolidate multiple web applications in a cloud-based shared hosting
environment [16]. We propose an application consolidation algorithm that
uses a metaheuristic [20, 53] called ACO [37, 38] to build a web application
migration plan, which is then used to minimize over-provisioning of VMs by
consolidating web applications on under-utilized VMs.

3.6.1 Shared Hosting of Web Applications

In our cloud-based shared hosting approach, each virtualized application
server runs multiple Java Servlet-based web applications in the same Java
Virtual Machine (JVM) [2, 10, 11]. However, since Java lacks some impor-
tant features needed to safely run multiple third-party web applications in

37

Application Server 1

Web App 1 (30%)

Web App 3 (40%)

Web App 2 (20%)

Unused capacity (10%)

Application Server 2

Web App 2 (20%)

Unused capacity (60%)

Application Server 3

Web App 3 (30%)

Web App 4 (20%)

Unused capacity (50%)

Web App 5 (20%)

Application Server 1 Application Server 2 Application Server 3

Figure 3.4: A simple example to motivate the need to consolidate multiple
web applications in a cloud-based shared hosting environment

one JVM, Aho et al. [2] extended and used a widely adapted OSGi specifica-
tion [90], which partly addresses this problem. Therefore, in this way, shared
hosting enables safe deployment of multiple concurrent third-party web ap-
plications on each virtualized application server. Thus, in our approach, each
application server runs multiple web applications in an OSGi [90] environ-
ment, where each application runs as an OSGi component called a bundle.
OSGi also introduces the dynamic component model, which allows dynamic
loading and unloading of bundles. In addition to the web applications, each
application server also runs a local controller, as shown in Figure 3.1. The
local controller controls the OSGi environment for loading and unloading of
web applications. Web applications are stored in an application repository,
from where they are loaded onto application servers.

3.6.2 Objective Function

The output of the application consolidation algorithm is a migration plan,
which, when enforced, would result in a reduced set of VMs needed to host
all web applications without compromising their performance. Thus, the
objective function for the proposed algorithm is defined in terms of number
of released VMs [16]. Moreover, it prefers larger migration plans because
with a large set of web applications in a shared hosting environment, each
VM typically hosts a number of applications, which makes it less likely to
find a feasible solution with a smaller migration plan. Later on, when a
migration plan is enforced, we apply a constraint which reduces the number
of actual migrations by restricting migrations to only those VMs that are
not included in the set of released VMs.

3.6.3 Stochastic State Transition Rule

In our proposed cloud-based shared hosting environment [16], each virtu-
alized application server hosts one or more web applications from the set

38

of applications. Moreover, since frequently used applications are often con-
currently run on multiple VMs, if a particular application is concurrently
hosted by two VMs, then each of its deployments is considered a different
application instance. An application instance not only contains a web ap-
plication, but also the user sessions that belong to it. Furthermore, for the
sake of application migration, each VM is a potential source VM. Both the
source VM and the application instance are characterized by their resource
utilizations, such as CPU load average and memory utilization. Likewise,
an application instance can be migrated to any other VM. Therefore, ev-
ery other VM is a potential destination VM, which is also characterized by
its resource utilizations. Thus, the proposed ACO-based algorithm makes
a set of tuples, where each tuple consists of three elements: source VM,
application instance, and destination VM.

Unlike the TSP, there is no notion of a path in the application consoli-
dation problem. Therefore, ants deposit pheromone on the tuples. Each ant
uses a stochastic state transition rule to choose the next tuple to traverse.
The state transition rule in ACS is called the pseudo-random-proportional-
rule [38]. It prefers tuples with a higher pheromone concentration and which
result in a higher number of released VMs [16].

3.6.4 Global and Local Pheromone Trail Evaporation Rules

In addition to the stochastic state transition rule, ACS also uses a global
and a local pheromone trail evaporation rule. The global pheromone trail
evaporation rule is applied towards the end of an iteration after all ants
complete their migration plans. On the other hand, the local pheromone
trail update rule is applied on a tuple when an ant traverses the tuple while
making its migration plan.

The pseudo-random-proportional-rule in ACS and the global pheromone
trail update rule are intended to make the search more directed. Therefore,
the ants try to search other high quality solutions in a close proximity of
the thus far global best solution. On the other hand, the local pheromone
trail update rule complements exploration of other high quality solutions
that may exist far from the thus far global best solution. This is because
whenever an ant traverses a tuple and applies the local pheromone trail
update rule, the tuple looses some of its pheromone and thus becomes less
attractive for other ants. Therefore, it helps in avoiding stagnation where all
ants end up finding the same solution or where they prematurely converge
to a suboptimal solution.

39

40

Chapter 4

Description of Papers

This chapter presents a summary of the original publications presented in
Part II of this thesis along with a description of the author’s contribution
in each publication. It also provides a mapping between the RQs posed in
Section 1.1 and the individual publications in Part II. Finally, it presents a
discussion on how the original publications relate to one another.

4.1 Overview of Original Publications

This thesis is a collection of 8 original publications, which are referred to in
the text by their roman numerals. In this section, we present a summary of
the individual publications while highlighting the author’s contribution in
each publication.

4.1.1 Paper I: Feedback Control Algorithms to Deploy and
Scale Multiple Web Applications per Virtual Machine

Paper I presents our reactive VM provisioning approach for multi-tier web
applications called ARVUE. It provides automatic deployment and scaling
of multiple simultaneous web applications on a given IaaS cloud in a shared
hosting [91] environment. The main task of the proposed approach is to
provision and remove VMs for the application server tier and to deploy and
remove applications from each VM, in order to maintain a desired QoS in a
cost-efficient manner. Therefore, our main contribution in this paper is feed-
back control algorithms for scaling up and scaling down of the application
server tier. It also provides algorithms for scaling individual web applica-
tions up and down. The results presented in this paper are based on our
prototype implementation. However, since the objective of the experimental
evaluation was to provide only a proof-of-concept, the paper did not provide
a comparison of the results with other approaches.

41

Author’s contribution: The main idea presented in this paper was
developed by the author in a close collaboration with coauthors Benjamin
Byholm and Joonas Lehtinen under the guidance of Professor Ivan Porres.
Adnan Ashraf is the main author of this paper. The paper also incorporates
some ideas of coauthor Joonas Lehtinen, such as, the idea of deploying mul-
tiple Java Servlet-based web applications in the same JVM. The ARVUE
prototype was jointly developed by Niclas Snellman, Thomas Fors, and Ben-
jamin Byholm at Åbo Akademi University and Marc Englund at Vaadin Ltd.

4.1.2 Paper II: A Session-Based Adaptive Admission Con-
trol Approach for Virtualized Application Servers

Paper II presents our session-based adaptive admission control approach for
virtualized application servers called ACVAS. Instead of using the tradi-
tional on-off control, ACVAS implements per-session admission, which re-
duces the risk of over-admission. Moreover, instead of relying only on re-
jection of new sessions, it takes benefit of the cloud elasticity to implement
a simple session deferment mechanism that reduces the number of rejected
sessions while increasing session throughput. Therefore, our main contribu-
tion in this paper is an admission control algorithm to prevent virtualized
application servers from becoming overloaded. Moreover, we extended the
two-step load prediction method proposed by Andreolini et al. [5] to use a
simple linear regression model [74] for load prediction. The results presented
in this paper are based on our discrete-event simulations. We also provide
a comparison of the results with an existing session-based adaptive admis-
sion control approach [30], which uses on-off control and does not provide a
session deferment mechanism.

Author’s contribution: The main idea presented in this paper was
developed by the author under the guidance of Professor Ivan Porres. Adnan
Ashraf is the main author of this paper. The discrete-event simulations were
also developed by Adnan Ashraf. Coauthor Benjamin Byholm derived the
traces from the IRCache1 project access logs and analyzed them to obtain
the realistic load pattern used in the second experiment.

4.1.3 Paper III: CRAMP: Cost-Efficient Resource Alloca-
tion for Multiple Web Applications with Proactive
Scaling

Paper III presents our hybrid reactive-proactive VM provisioning approach
called CRAMP. CRAMP is similar to ARVUE except that it is based on a
hybrid reactive-proactive control. Therefore, this paper extends the scaling
up and scaling down algorithms of Paper I with the extended two-step load

1http://www.ircache.net/

42

prediction method of Paper II. The results presented in this paper are based
on our prototype implementation. We also provide a comparison of the
results with our reactive VM provisioning approach in Paper I.

Author’s contribution: The main idea presented in this paper was
developed by the author under the guidance of Professor Ivan Porres. Adnan
Ashraf is the main author of this paper. The paper also incorporates some
ideas of coauthor Benjamin Byholm, such as, the idea of using NRMSE to
compute weighted load average. The CRAMP prototype was developed by
Benjamin Byholm.

4.1.4 Paper IV: Prediction-Based Dynamic Resource Allo-
cation for Video Transcoding in Cloud Computing

Paper IV presents our VM provisioning approach for video transcoding in
the cloud. It provides mechanisms for allocation and deallocation of VMs to
a cluster of video transcoding servers in a horizontal fashion. Therefore, our
main contribution in this paper are prediction-based dynamic VM allocation
and deallocation algorithms for video transcoding. The proposed algorithms
use our extended two-step load prediction method of Paper II to predict the
total transcoding rate of all transcoding servers. The results presented in
this paper are based on our discrete-event simulations. However, since the
objective of the experimental evaluation was to provide only a proof-of-
concept, the paper did not provide a comparison of the results with other
approaches.

Author’s contribution: The main idea presented in this paper was
developed jointly by coauthors Fareed Ahmed Jokhio and Adnan Ashraf.
The discrete-event simulations were developed by Adnan Ashraf. The paper
was written jointly by coauthors Fareed Ahmed Jokhio and Adnan Ashraf
under the guidance of Dr. Sébastien Lafond, Professor Ivan Porres, and
Professor Johan Lilius.

4.1.5 Paper V: Stream-Based Admission Control and Sched-
uling for Video Transcoding in Cloud Computing

Paper V presents our admission control and scheduling approach for video
transcoding called SBACS. SBACS implements stream-based admission con-
trol with per-stream admission. It uses queue waiting time of transcoding
servers to make admission control decisions for incoming video streams. In
addition to the traditional rejection policy, SBACS also provides a stream
deferment policy, which exploits cloud elasticity to allow temporary defer-
ment of the incoming video streams. In order to prevent transcoding jitters
in the admitted streams and to ensure continued delivery of the video con-
tents to the user, we introduce a job scheduling mechanism, which uses

43

temporal resolution reduction. Therefore, our main contributions in this
paper are admission control and job scheduling algorithms for video trans-
coding in the cloud. The results presented in this paper are based on our
discrete-event simulations. However, since the objective of the experimental
evaluation was to provide only a proof-of-concept, the paper did not provide
a comparison of the results with other approaches.

Author’s contribution: The main idea presented in this paper was
developed jointly by coauthors Adnan Ashraf and Fareed Ahmed Jokhio.
Adnan Ashraf is the main author of this paper. The discrete-event simula-
tions were also developed by Adnan Ashraf. The paper was written jointly
by coauthors Adnan Ashraf and Fareed Ahmed Jokhio under the guidance
of Dr. Sébastien Lafond, Professor Ivan Porres, and Professor Johan Lilius.

4.1.6 Paper VI: A Computation and Storage Trade-Off
Strategy for Cost-Efficient Video Transcoding in the
Cloud

Paper VI investigates the computation and storage cost trade-off for video
transcoding in the cloud and presents a cost-efficient strategy called cost and
popularity score based strategy. The proposed strategy estimates computa-
tion cost, storage cost, and video popularity of individual transcoded videos
and then uses this information to make decisions on how long a video should
be stored or how frequently it should be re-transcoded from a given source
video. The results presented in this paper are based on our discrete-event
simulations. We also provide a comparison of the results with two intuitive
computation and storage trade-off strategies called store all strategy and
usage based strategy [104].

Author’s contribution: The main idea presented in this paper was
developed jointly by coauthors Fareed Ahmed Jokhio, Adnan Ashraf, and
Sébastien Lafond. The paper was written jointly by coauthors Fareed
Ahmed Jokhio and Adnan Ashraf under the guidance of Dr. Sébastien
Lafond, Professor Ivan Porres, and Professor Johan Lilius.

4.1.7 Paper VII: Cost-Efficient Dynamically Scalable Video
Transcoding in Cloud Computing

Paper VII extends the works presented in Paper IV and Paper VI and pro-
vides an extended evaluation. It improves the VM provisioning algorithm of
Paper IV by taking into account the average queue length of the transcoding
servers. Similarly, it extends the cost and popularity score based strategy
of Paper VI by providing an algorithm to calculate the cost and popularity
score and an algorithm to decrement the score of an unpopular video and
finally remove the video from the video repository. The results presented in

44

this paper are based on our discrete-event simulations. We also provide a
comparison of the results with two intuitive computation and storage trade-
off strategies called store all strategy and usage based strategy [104].

Author’s contribution: The main idea presented in this paper was
developed jointly by coauthors Fareed Ahmed Jokhio and Adnan Ashraf.
The paper was also written jointly by coauthors Fareed Ahmed Jokhio and
Adnan Ashraf under the guidance of Dr. Sébastien Lafond, Professor Ivan
Porres, and Professor Johan Lilius.

4.1.8 Paper VIII: Using Ant Colony System to Consolidate
Multiple Web Applications in a Cloud Environment

Paper VIII presents a novel approach to consolidate multiple web applica-
tions in a cloud-based shared hosting environment. It uses a metaheuris-
tic [20,53] approach called ACO [37,38] to build a web application migration
plan, which is then used to minimize over-provisioning of VMs by consolidat-
ing web applications on under-utilized VMs. Therefore, our main contribu-
tion in this paper is a web application consolidation algorithm to minimize
over-provisioning of VMs in a cloud-based shared hosting environment. The
results presented in this paper are based on our discrete-event simulations.
We also provide a comparison of the results with a baseline, greedy applica-
tion consolidation approach, which is based on an extension of our previous
works in Paper I and Paper III.

Author’s contribution: The main idea presented in this paper was de-
veloped by the author under the guidance of Professor Ivan Porres. Adnan
Ashraf is the main author of this paper. The discrete-event simulations were
also developed by Adnan Ashraf. Benjamin Byholm at Åbo Akademi Uni-
versity derived the traces from the IRCache project access logs and analyzed
them to obtain the realistic load pattern used in the second experiment.

4.2 Discussion

Table 4.1 presents a mapping between the RQs posed in Section 1.1 and the
original publications in Part II of this thesis. RQ1 concerns the problem
of ensuring scalability of multi-tier web applications and on-demand video
transcoding service for different types of load conditions while providing
a good trade-off between performance and cost. This RQ is addressed in
Paper I, Paper III, Paper IV, and Paper VII. Paper I provides a reactive dy-
namic scaling approach for multi-tier web applications. Paper III improves
the work presented in Paper I and presents a hybrid reactive-proactive dy-
namic scaling approach for multi-tier web applications. Similarly, Paper IV
provides a prediction-based dynamic scaling approach for video transcoding

45

Table 4.1: Mapping between RQs and original publications
RQs Publications

RQ1 Paper I, Paper III, Paper IV, and Paper VII

RQ2 Paper II and Paper V

RQ3 Paper VI and Paper VII

RQ4 Paper VIII

service. Paper VII extends the work presented in Paper IV by taking into
account the average queue length of the transcoding servers.

RQ2 pertains to the problem of cost-efficiently preventing servers from
becoming overloaded. This RQ is addressed in Paper II and Paper V. Paper
II presents a session-based adaptive admission control approach for multi-
tier web applications. Similarly, Paper V provides a stream-based admission
control and scheduling approach for video transcoding service.

RQ3 seeks a strategy to provide a good-tradeoff between the computation
cost and the storage cost when using a public IaaS cloud for on-demand video
transcoding. This RQ is addressed in Paper VI and Paper VII. Paper VI
presents a computation and storage trade-off strategy for cost-efficient video
transcoding in the cloud. Paper VII extends the work presented in Paper
VI and provides an extended evaluation. It also provides an algorithm to
calculate the cost and popularity score and an algorithm to decrement the
score of an unpopular video and finally remove the video from the video
repository.

RQ4 concerns the problem of dynamic consolidation of multi-tier web
applications on under-utilized VMs to reduce under-utilization of the virtu-
alized application servers in a cloud-based shared hosting environment. This
RQ is addressed in Paper VIII. It presents a novel approach to consolidate
multiple web applications on under-utilized VMs.

Figure 4.1 illustrates the relationship among the original publications
presented in Part II of this thesis. Paper I provides our reactive VM pro-
visioning approach for multi-tier web applications called ARVUE. Paper II
augments ARVUE with a session-based adaptive admission control approach
for multi-tier web applications called ACVAS. It also extends the two-step
load prediction method proposed by Andreolini et al. [5] to use a simple
linear regression model [74] for load prediction. Paper III extends ARVUE
with the extended two-step load prediction method of Paper II and presents
a hybrid reactive-proactive VM provisioning approach called CRAMP. Pa-
per IV provides our prediction-based VM provisioning approach for video
transcoding in the cloud. Paper V presents a stream-based admission control
and scheduling approach for video transcoding called SBACS. It provides an
admission control algorithm for video transcoding servers and a job sched-

46

Paper III

Hybrid reactive-proactive VM provisioning approach

for multi-tier web applications (CRAMP)

Paper III

Hybrid reactive-proactive VM provisioning approach

for multi-tier web applications (CRAMP)

Paper I

Reactive VM provisioning approach for multi-tier

web applications (ARVUE)

Paper I

Reactive VM provisioning approach for multi-tier

web applications (ARVUE)

Paper II

Session-based adaptive admission control approach

for multi-tier web applications (ACVAS)

Paper II

Session-based adaptive admission control approach

for multi-tier web applications (ACVAS)

Paper IV

Prediction-based VM provisioning approach for

video transcoding

Paper IV

Prediction-based VM provisioning approach for

video transcoding

Paper V

Stream-based admission control and scheduling for

video transcoding (SBACS)

Paper V

Stream-based admission control and scheduling for

video transcoding (SBACS)

Paper VI

Computation and storage trade-off strategy for

video transcoding

Paper VI

Computation and storage trade-off strategy for

video transcoding

Paper VII

Cost-efficient dynamically scalable video

transcoding in cloud computing

Paper VII

Cost-efficient dynamically scalable video

transcoding in cloud computing

Paper VIII

Web application consolidation approach for multi-

tier web applications

Paper VIII

Web application consolidation approach for multi-

tier web applications

Figure 4.1: Relationship among original publications

uling algorithm for video segments. Paper VI provides a computation and
storage trade-off strategy for video transcoding in the cloud. Paper VII
extends the works presented in Paper IV and Paper VI, provides two new
algorithms, and presents an extended evaluation. Paper VIII uses ACS to
consolidate multiple web applications on under-utilized VMs.

47

48

Chapter 5

Conclusion

The main problem that we addressed in this thesis is cost-efficient Virtual
Machine (VM) provisioning augmented with server consolidation and ad-
mission control on the provisioned VMs. We sought solutions for two types
of applications: multi-tier web applications that follow the request-response
paradigm and on-demand video transcoding that is based on video streams
with soft realtime constraints.

For multi-tier web applications, we presented a reactive VM provisioning
approach called ARVUE and a hybrid reactive-proactive VM provisioning
approach called Cost-efficient Resource Allocation for Multiple web appli-
cations with Proactive scaling (CRAMP). These approaches provide auto-
matic deployment and scaling of multiple simultaneous web applications on
a given Infrastructure as a Service (IaaS) cloud in a shared hosting environ-
ment. The main task of the proposed approaches is to provision and remove
VMs for the application server tier and to deploy and remove applications
from each VM, in order to maintain a desired Quality of Service (QoS) in a
cost-efficient manner. The results from ARVUE and CRAMP are based on
our prototype implementation. We also provided a comparison of the results
between ARVUE and CRAMP using the Amazon Elastic Compute Cloud
(EC2) cloud. The results showed that both ARVUE and CRAMP pro-
vide good performance in terms of number of VMs and memory utilization.
When compared to the dedicated hosting approaches, the shared hosting of
web applications in ARVUE reduced the total VM provisioning cost up to
36%. Moreover, CRAMP provided significantly better performance in terms
of average response time and Central Processing Unit (CPU) load average.
In contrast to the reactive VM provisioning approach of ARVUE, the hy-
brid reactive-proactive VM provisioning approach of CRAMP reduced the
average response time up to 56% and the maximum CPU load average up
to 69%.

49

For dynamically scalable on-demand video transcoding in the cloud, we
proposed a prediction-based VM provisioning approach. It provides a mech-
anism to create a dynamically scalable cluster of video transcoding servers
by provisioning VMs from an IaaS cloud. The proposed approach is demon-
strated in a discrete-event simulation. The results indicated that it provides
cost-efficient VM provisioning for transcoding a large number of on-demand
video streams. The sharing of the VM resources among multiple streams
resulted in a reduced number of total VMs. The proposed algorithms did
not produce unnecessary oscillations in the number of VMs, which was also
desirable for cost-efficiency.

To prevent virtualized application servers from becoming overloaded,
we augmented ARVUE with a session-based admission control approach
called adaptive Admission Control for Virtualized Application Servers (AC-
VAS). ACVAS uses per-session admission, which reduces over-admission.
It also implements a simple session deferment mechanism, which decreases
the number of rejected sessions. The proposed approach is demonstrated in
a discrete-event simulation. We also provided a comparison of the results
between ACVAS and an existing session-based adaptive admission control
approach, which uses on-off control and does not provide a session deferment
mechanism. The results showed that ACVAS provides a good trade-off be-
tween the number of VMs used and the QoS requirements. In comparison
with the alternative admission control approach, ACVAS provided signifi-
cant improvements in terms of server overload prevention. It also outper-
formed the alternative approach in reducing the number of rejected sessions.

Similarly, to prevent virtualized video transcoding servers from becom-
ing overloaded, we presented an admission control and scheduling approach
called Stream-Based Admission Control and Scheduling (SBACS). It im-
plements stream-based admission control with per-stream admission. In
addition to the traditional rejection policy, SBACS also provides a stream
deferment policy. It also features a job scheduling algorithm, which com-
plements admission control and prevents transcoding jitters in the admitted
streams. The proposed approach is demonstrated in a discrete-event simu-
lation. The results showed that SBACS provides a good trade-off between
cost and QoS. It prevents servers from becoming overloaded, reduces over-
admission, reduces rejected streams, and reduces transcoding jitters in the
admitted streams while dropping only a small proportion of the video frames.

We also presented a computation and storage trade-off strategy for cost-
efficient video transcoding in cloud computing. The proposed strategy es-
timates the computation cost, the storage cost, and the video popularity
information of individual transcoded videos and then uses this information
to make decisions on how long a video should be stored or how frequently
it should be re-transcoded from a given source video. The proposed ap-
proach is demonstrated in a discrete-event simulation. We also provided a

50

comparison of the results with two intuitive computation and storage trade-
off strategies called store all strategy and usage based strategy. The results
indicated that our proposed strategy is more cost-efficient than the two intu-
itive strategies. It provided significant improvements in terms of the storage
cost and the total cost.

Our sixth and last contribution in this thesis is a novel web application
consolidation approach, which minimizes under-utilization of virtualized ap-
plication servers in a cloud-based shared hosting environment. It uses Ant
Colony System (ACS) to build a web application migration plan, which is
then used to minimize over-provisioning of VMs by consolidating web appli-
cations on under-utilized VMs. The proposed approach is demonstrated in a
discrete-event simulation. We also provided a comparison of the results with
a baseline, greedy application consolidation approach, which is based on an
extension of our VM provisioning algorithms in ARVUE and CRAMP. The
results showed that the proposed approach provides a more cost-efficient
solution for web application consolidation in a cloud-based shared hosting
environment. In comparison with the baseline approach, it provided signifi-
cant improvements in terms of the total number of VM hours, reducing the
total VM provisioning cost up to 28%.

5.1 Future Work

Important research directions for our future work include investigating
search based software engineering and machine learning approaches to im-
prove and optimize the proposed VM provisioning and admission control
approaches. Moreover, for our proposed web application consolidation ap-
proach, we used a single-objective ACS algorithm. However, the web appli-
cation consolidation problem may as well be viewed as a multi-objective com-
binatorial optimization problem with two objectives: maximize the number
of released VMs and minimize the number of application migrations. There-
fore, one of our future goals is to formulate the web application consolidation
problem as a multi-objective combinatorial optimization problem and then
apply a multi-objective Ant Colony Optimization (ACO) algorithm to solve
it. Furthermore, investigating other metaheuristic approaches for the web
application consolidation problem is also part of our future work.

The results presented in this thesis are promising, but are mostly based
on relatively small experiments. Therefore, one of our future goals is to
conduct larger and more realistic experiments to fully realize the benefits
and limitations of the proposed approaches.

Our proposed VM provisioning, admission control, and consolidation
approaches use a centralized controller, which may restrict the scalability of
the proposed algorithms. The centralized control in our proposed approaches

51

also lacks fault-tolerance. We intend to address these issues in the future.
One of the most intuitive ways to improve scalability and fault-tolerance of
the proposed algorithms is to use a distributed controller. Therefore, we
intend to replace the centralized controller with a distributed controller.

The ARVUE and CRAMP prototype implementations presented in this
thesis implement our proposed reactive and hybrid reactive-proactive VM
provisioning approaches for multi-tier web applications. However, the pro-
posed session-based admission control approach ACVAS and the ACS-based
web application consolidation approach are currently implemented only in
discrete-event simulations. Therefore, our future work includes implement-
ing and testing ACVAS and our proposed web application consolidation
approach on the ARVUE and CRAMP prototype implementations.

Other interesting lines of future work include implementing and testing a
prototype for our proposed prediction-based VM provisioning approach for
on-demand video transcoding. Similarly, prototype implementations of our
proposed stream-based admission control approach SBACS and our compu-
tation and storage trade-off strategy for video transcoding are part of our
future work.

52

Bibliography

[1] Ian F. Adams, Darrell D. E. Long, Ethan L. Miller, Shankar Pasupa-
thy, and Mark W. Storer. Maximizing efficiency by trading storage
for computation. In Proceedings of the 2009 conference on Hot topics
in cloud computing, HotCloud’09, Berkeley, CA, USA, 2009. USENIX
Association.

[2] Timo Aho, Adnan Ashraf, Marc Englund, Joni Katajamäki, Johannes
Koskinen, Janne Lautamäki, Antti Nieminen, Ivan Porres, and Ilkka
Turunen. Designing IDE as a service. Communications of Cloud Soft-
ware, 1(1), 2011.

[3] Jussara Almeida, Virǵılio Almeida, Danilo Ardagna, Italo Cunha,
Chiara Francalanci, and Marco Trubian. Joint admission control and
resource allocation in virtualized servers. J. Parallel Distrib. Comput.,
70(4):344–362, April 2010.

[4] Mauro Andreolini and Sara Casolari. Load prediction models in web-
based systems. In Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools, valuetools ’06, New
York, NY, USA, 2006. ACM.

[5] Mauro Andreolini, Sara Casolari, and Michele Colajanni. Models and
framework for supporting runtime decisions in web-based systems.
ACM Trans. Web, 2(3):17:1–17:43, July 2008.

[6] Danilo Ardagna, Carlo Ghezzi, Barbara Panicucci, and Marco Tru-
bian. Service provisioning on the cloud: Distributed algorithms for
joint capacity allocation and admission control. In Elisabetta Di Nitto
and Ramin Yahyapour, editors, Towards a Service-Based Internet, vol-
ume 6481 of Lecture Notes in Computer Science, pages 1–12. Springer
Berlin / Heidelberg, 2010.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

53

[8] Adnan Ashraf. Cost-efficient resource allocation for multi-tier web ap-
plications in a cloud environment. In PhD Symposium held in connec-
tion with the 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pages 1–2. Institute for Systems
Engineering and Automation, Johannes Kepler University Linz, Aus-
tria, 2012.

[9] Adnan Ashraf. Cost-efficient virtual machine provisioning for multi-
tier web applications and video transcoding. In Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM International Sym-
posium on, pages 66–69, 2013.

[10] Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen, and Ivan Porres.
Feedback control algorithms to deploy and scale multiple web applica-
tions per virtual machine. 38th EUROMICRO Conference on Software
Engineering and Advanced Applications, September 2012.

[11] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. CRAMP: Cost-
efficient resource allocation for multiple web applications with proac-
tive scaling. 4th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), December 2012.

[12] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. A session-based
adaptive admission control approach for virtualized application ser-
vers. 5th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC), November 2012.

[13] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. Prediction-based
virtual machine provisioning and admission control for multi-tier web
applications. In Ivan Porres, Tommi Mikkonen, and Adnan Ashraf,
editors, Developing Cloud Software: Algorithms, Applications, and
Tools, pages 71–112. Turku Centre for Computer Science (TUCS) Gen-
eral Publication Number 60, October 2013.

[14] Adnan Ashraf, Mikko Hartikainen, Usman Hassan, Keijo Heljanko,
Johan Lilius, Tommi Mikkonen, Ivan Porres, Mahbubul Syeed, and
Sasu Tarkoma. Introduction to cloud computing technologies. In
Ivan Porres, Tommi Mikkonen, and Adnan Ashraf, editors, Devel-
oping Cloud Software: Algorithms, Applications, and Tools, pages 1–
41. Turku Centre for Computer Science (TUCS) General Publication
Number 60, October 2013.

[15] Adnan Ashraf, Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien La-
fond, Ivan Porres, and Johan Lilius. Stream-based admission control
and scheduling for video transcoding in cloud computing. In Cluster,

54

Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Inter-
national Symposium on, pages 482–489, 2013.

[16] Adnan Ashraf and Ivan Porres. Using ant colony system to consolidate
multiple web applications in a cloud environment. 22nd EUROMICRO
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 482–489, 2014.

[17] Jerry Banks. Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications, and Practice. A Wiley-Interscience publication.
John Wiley & Sons, Inc., 1998.

[18] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-
aware resource allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer Systems,
28(5):755–768, 2012.

[19] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Con-
currency and Computation: Practice and Experience, 24(13):1397–
1420, September 2012.

[20] Christian Blum, Jakob Puchinger, Gnther R. Raidl, and Andrea Roli.
Hybrid metaheuristics in combinatorial optimization: A survey. Ap-
plied Soft Computing, 11(6):4135 – 4151, 2011.

[21] Karin Breitman, Markus Endler, Rafael Pereira, and Marcello Azam-
buja. When TV dies, will it go to the cloud? Computer, 43(4):81–83,
2010.

[22] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. Cloud computing and emerging IT plat-
forms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

[23] Benjamin Byholm. An autonomous Platform as a Service for stateful
web applications. Master’s thesis, Åbo Akademi University, 2013.

[24] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Csar A. F.
De Rose, and Rajkumar Buyya. CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and Experience,
41(1):23–50, 2011.

55

[25] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Miran-
dola, and Giordano Tamburrelli. Dynamic QoS management and opti-
mization in service-based systems. Software Engineering, IEEE Trans-
actions on, 37(3):387–409, 2011.

[26] David Carrera, Malgorzata Steinder, Ian Whalley, Jordi Torres, and
Eduard Ayguade. Utility-based placement of dynamic web applica-
tions with fairness goals. In Network Operations and Management
Symposium (NOMS), 2008 IEEE, pages 9–16, 2008.

[27] S. Kamal Chaharsooghi and Amir Hosein Meimand Kermani. An effec-
tive ant colony optimization algorithm (ACO) for multi-objective re-
source allocation problem (MORAP). Applied Mathematics and Com-
putation, 200(1):167–177, 2008.

[28] Shih-Fu Chang and Anthony Vetro. Video adaptation: Concepts,
technologies, and open issues. Proceedings of the IEEE, 93(1):148–
158, 2005.

[29] Xiangping Chen, Huamin Chen, and Prasant Mohapatra. ACES: An
efficient admission control scheme for QoS-aware web servers. Com-
puter Communications, 26(14):1581–1593, 2003.

[30] Ludmila Cherkasova and Peter Phaal. Session-based admission con-
trol: a mechanism for peak load management of commercial web sites.
Computers, IEEE Transactions on, 51(6):669–685, June 2002.

[31] Trieu C. Chieu, Ajay Mohindra, Alexei A. Karve, and Alla Segal.
Dynamic scaling of web applications in a virtualized cloud computing
environment. In e-Business Engineering, 2009. ICEBE ’09. IEEE
International Conference on, pages 281 –286, oct. 2009.

[32] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of the 2nd Confer-
ence on Symposium on Networked Systems Design and Implementa-
tion (NSDI), volume 2, pages 273–286. USENIX Association, 2005.

[33] Antonio Corradi, Mario Fanelli, and Luca Foschini. VM consolidation:
A real case based on OpenStack cloud. Future Generation Computer
Systems, 32(0):118–127, 2014.

[34] Pradipta De, Manish Gupta, Manoj Soni, and Aditya Thatte. Caching
VM instances for fast VM provisioning: A comparative evaluation. In
Euro-Par 2012 Parallel Processing, volume 7484 of Lecture Notes in
Computer Science, pages 325–336. Springer Berlin Heidelberg, 2012.

56

[35] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, January
2008.

[36] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and
John Good. The cost of doing science on the cloud: The Montage
example. In High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for, pages 1–12,
2008.

[37] Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant
algorithms for discrete optimization. Artif. Life, 5(2):137–172, April
1999.

[38] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a co-
operative learning approach to the traveling salesman problem. Evo-
lutionary Computation, IEEE Transactions on, 1(1):53–66, 1997.

[39] Xavier Dutreilh, Nicolas Rivierre, Aurélien Moreau, Jacques Malen-
fant, and Isis Truck. From data center resource allocation to control
theory and back. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 410–417.

[40] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. LiRCUP:
Linear regression based CPU usage prediction algorithm for live mi-
gration of virtual machines in data centers. In Software Engineering
and Advanced Applications (SEAA), 39th EUROMICRO Conference
on, pages 357–364, 2013.

[41] Fahimeh Farahnakian, Tapio Pahikkala, Pasi Liljeberg, and Juha
Plosila. Energy aware consolidation algorithm based on K-nearest
neighbor regression for cloud data centers. In Utility and Cloud Com-
puting (UCC), 6th IEEE/ACM Internatonal Conference on, 2013.

[42] Eugen Feller, Christine Morin, and Armel Esnault. A case for fully
decentralized dynamic VM consolidation in clouds. Cloud Computing
Technology and Science, IEEE International Conference on, pages 26–
33, 2012.

[43] Eugen Feller, Louis Rilling, and Christine Morin. Energy-aware ant
colony based workload placement in clouds. In Grid Computing
(GRID), 2011 12th IEEE/ACM International Conference on, pages
26–33, September 2011.

[44] Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable
and autonomic virtual machine management framework for private

57

clouds. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on, pages 482–489, 2012.

[45] Eugen Feller, Louis Rilling, Christine Morin, Renaud Lottiaux, and
Daniel Leprince. Snooze: A scalable, fault-tolerant and distributed
consolidation manager for large-scale clusters. In 2010 IEEE/ACM
International Conference on Green Computing and Communications
(GreenCom) and International Conference on Cyber, Physical and So-
cial Computing (CPSCom), pages 125–132, December 2010.

[46] Tiago C. Ferreto, Marco A.S. Netto, Rodrigo N. Calheiros, and César
A.F. De Rose. Server consolidation with migration control for virtual-
ized data centers. Future Generation Computer Systems, 27(8):1027–
1034, 2011.

[47] Adriana Garcia, Hari Kalva, and Borko Furht. A study of transcoding
on cloud environments for video content delivery. In Proceedings of the
2010 ACM Multimedia Workshop on Mobile Cloud Media Computing,
MCMC ’10, pages 13–18. ACM, 2010.

[48] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In Network and Service
Management (CNSM), 2010 International Conference on, pages 9–16,
2010.

[49] Jordi Guitart, Vicenc Beltran, David Carrera, Jordi Torres, and Ed-
uard Ayguade. Characterizing secure dynamic web applications scal-
ability. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), April 2005.

[50] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. Nectar: automatic management
of data and computation in datacenters. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[51] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle
Osmond. Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications. Future Generation Computer Systems, 32(0):82–
98, 2014.

[52] Rui Han, Li Guo, Moustafa M. Ghanem, and Yike Guo. Lightweight
resource scaling for cloud applications. In 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pages 644 –651, 2012.

58

[53] Mark Harman, Kiran Lakhotia, Jeremy Singer, David R. White, and
Shin Yoo. Cloud engineering is search based software engineering too.
Journal of Systems and Software, 86(9):2225–2241, 2013.

[54] Sijin He, Li Guo, Moustafa M. Ghanem, and Yike Guo. Improv-
ing resource utilisation in the cloud environment using multivariate
probabilistic models. In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 574–581, 2012.

[55] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M.
Tilbury. Feedback Control of Computing Systems. John Wiley & Sons,
2004.

[56] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
a platform for fine-grained resource sharing in the data center. In Pro-
ceedings of the 8th USENIX conference on Networked systems design
and implementation, 2011.

[57] Ye Hu, Johnny Wong, Gabriel Iszlai, and Marin Litoiu. Resource
provisioning for cloud computing. In Proceedings of the 2009 Confer-
ence of the Center for Advanced Studies on Collaborative Research,
CASCON ’09, pages 101–111, New York, NY, USA, 2009. ACM.

[58] Chenn-Jung Huang, Chih-Lun Cheng, Yi-Ta Chuang, and Jyh-
Shing Roger Jang. Admission control schemes for proportional dif-
ferentiated services enabled internet servers using machine learning
techniques. Expert Systems with Applications, 31(3):458 – 471, 2006.

[59] Zixia Huang, Chao Mei, Li Erran Li, and Thomas Woo. CloudStream:
Delivering high-quality streaming videos through a cloud-based SVC
proxy. In INFOCOM, 2011 Proceedings IEEE, pages 201–205, 2011.

[60] Sean Hull. 20 obstacles to scalability. Communications of the ACM,
56(9):54–59, September 2013.

[61] Inkwon Hwang and Massoud Pedram. Hierarchical virtual machine
consolidation in a cloud computing system. In Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, pages 196–
203, 2013.

[62] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek.
Adaptive resource provisioning for read intensive multi-tier applica-
tions in the cloud. Future Generation Computer Systems, 27(6):871–
879, 2011.

59

[63] Fareed Ahmed Jokhio, Adnan Ashraf, Tewodros Deneke, Sébastien
Lafond, Ivan Porres, and Johan Lilius. Proactive virtual machine
allocation for video transcoding in the cloud. In Ivan Porres, Tommi
Mikkonen, and Adnan Ashraf, editors, Developing Cloud Software:
Algorithms, Applications, and Tools, pages 113–143. Turku Centre for
Computer Science (TUCS) General Publication Number 60, October
2013.

[64] Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, and Jo-
han Lilius. A computation and storage trade-off strategy for cost-
efficient video transcoding in the cloud. 39th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pages 365–
372, September 2013.

[65] Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Porres,
and Johan Lilius. Cost-efficient dynamically scalable video transcoding
in cloud computing. Technical Report 1098, Turku Centre for Com-
puter Science (TUCS), December 2013.

[66] Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Por-
res, and Johan Lilius. Prediction-based dynamic resource allocation
for video transcoding in cloud computing. 21st EUROMICRO Inter-
national Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP), pages 254–261, 2013.

[67] Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond, and Johan
Lilius. Analysis of video segmentation for spatial resolution reduction
video transcoding. In Intelligent Signal Processing and Communi-
cations Systems (ISPACS), 2011 International Symposium on, pages
1–6, 2011.

[68] Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond, and Jo-
han Lilius. Bit rate reduction video transcoding with distributed com-
puting. In Parallel, Distributed and Network-Based Processing (PDP),
2012 20th EUROMICRO International Conference on, pages 206–212,
2012.

[69] Atish Kathpal, Mandar Kulkarni, and Ajay Bakre. Analyzing compute
vs. storage tradeoff for video-aware storage efficiency. In Proceedings
of the 4th USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’12, pages 13–13. USENIX Association, 2012.

[70] Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and
Yafei Dai. Cloud transcoder: Bridging the format and resolution gap

60

between internet videos and mobile devices. In 22nd ACM Work-
shop on Network and Operating Systems Support for Digital Audio
and Video, 2012.

[71] Xiaofei Liao, Hai Jin, and Haikun Liu. Towards a green cluster through
dynamic remapping of virtual machines. Future Generation Computer
Systems, 28(2):469–477, 2012.

[72] Moreno Marzolla, Ozalp Babaoglu, and Fabio Panzieri. Server consol-
idation in clouds through gossiping. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2011 IEEE International Sympo-
sium on a, 2011.

[73] Peter Mell and Timothy Grance. The NIST definition of cloud com-
puting. Recommendations of the National Institute of Standards and
Technology. Special Publication 800-145., September 2011. http://

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[74] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining.
Introduction to Linear Regression Analysis. Wiley Series in Probability
and Statistics. John Wiley & Sons, 2012.

[75] Gianmario Motta, Nicola Sfondrini, and Daniele Sacco. Cloud comput-
ing: An architectural and technological overview. In Service Sciences
(IJCSS), 2012 International Joint Conference on, pages 23–27, 2012.

[76] Sireesha Muppala and Xiaobo Zhou. Coordinated session-based ad-
mission control with statistical learning for multi-tier internet appli-
cations. Journal of Network and Computer Applications, 34(1):20 –
29, 2011.

[77] Aziz Murtazaev and Sangyoon Oh. Sercon: Server consolidation al-
gorithm using live migration of virtual machines for green computing.
IETE Technical Review, 28(3):212–231, 2011.

[78] Wenping Pan, Dejun Mu, Hangxing Wu, and Lei Yao. Feedback
control-based QoS guarantees in web application servers. In High
Performance Computing and Communications, 2008. HPCC ’08. 10th
IEEE International Conference on, pages 328 –334, sept. 2008.

[79] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang.
A multi-model framework to implement self-managing control systems
for QoS management. In 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages 218–227,
2011.

61

[80] Rafael Pereira, Marcello Azambuja, Karin Breitman, and Markus
Endler. An architecture for distributed high performance video pro-
cessing in the cloud. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 482–489, 2010.

[81] Yrjo Raivio, Oleksiy Mazhelis, Koushik Annapureddy, Ramasi-
vakarthik Mallavarapu, and Pasi Tyrväinen. Hybrid cloud architec-
ture for short message services. In Proceedings of the 2nd International
Conference on Cloud Computing and Services Science, CLOSER ’12,
2012.

[82] Anders Robertsson, Björn Wittenmark, Maria Kihl, and Mikael An-
dersson. Admission control for web server systems - design and exper-
imental evaluation. In Decision and Control, 2004. CDC. 43rd IEEE
Conference on, volume 1, pages 531 –536 Vol.1, dec. 2004.

[83] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient au-
toscaling in the cloud using predictive models for workload forecasting.
In Cloud Computing (CLOUD), 2011 IEEE International Conference
on, pages 500 –507, july 2011.

[84] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum,
and Adam Wierman. How to determine a good multi-programming
level for external scheduling. In Data Engineering (ICDE), Proceedings
of the 22nd International Conference on, April 2006.

[85] Yussuf Abu Shaaban and Jane Hillston. Cost-based admission con-
trol for internet commerce QoS enhancement. Electronic Commerce
Research and Applications, 8(3):142 – 159, 2009.

[86] Tamer Shanableh and Mohammed Ghanbari. Heterogeneous video
transcoding to lower spatio-temporal resolutions and different encod-
ing formats. Multimedia, IEEE Transactions on, 2(2):101–110, 2000.

[87] Ilhoon Shin and Kern Koh. Hybrid transcoding for QoS adaptive
video-on-demand services. Consumer Electronics, IEEE Transactions
on, 50(2):732–736, 2004.

[88] Ilango Sriram and Ali Khajeh-Hosseini. Research agenda in cloud
technologies. Technical report, Large Scale Complex IT Systems (LSC-
ITS), 2010.

[89] Klaus Stuhlmüller, Niko Färber, Michael Link, and Bernd Girod.
Analysis of video transmission over lossy channels. Selected Areas
in Communications, IEEE Journal on, 18(6):1012–1032, 2000.

62

[90] The OSGi Alliance. OSGi Service Platform Core Specification, Release
4, Version 4.3. 2011.

[91] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource
overbooking and application profiling in a shared internet hosting plat-
form. ACM Trans. Internet Technol., 9(1):1–45, February 2009.

[92] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lind-
ner. A break in the clouds: Towards a cloud definition. SIGCOMM
Comput. Commun. Rev., 39(1):50–55, December 2008.

[93] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun. Video
transcoding architectures and techniques: an overview. Signal Pro-
cessing Magazine, IEEE, 20(2):18–29, March 2003.

[94] Werner Vogels. Beyond server consolidation. ACM Queue, 6(1):20–26,
January 2008.

[95] Thiemo Voigt and Per Gunningberg. Adaptive resource-based web
server admission control. In Computers and Communications (ISCC),
2002 Seventh International Symposium on, pages 219–224.

[96] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating virtual
machines with dynamic bandwidth demand in data centers. In Pro-
ceedings of IEEE INFOCOM, pages 71–75, April 2011.

[97] John Watkinson. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-
4. Broadcasting and communications. Elsevier/Focal Press, 2004.

[98] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay
Luthra. Overview of the H.264/AVC video coding standard. Circuits
and Systems for Video Technology, IEEE Transactions on, 13(7):560–
576, July 2003.

[99] Andreas Wolke and Gerhard Meixner. TwoSpot: A cloud platform for
scaling out web applications dynamically. In Elisabetta Di Nitto and
Ramin Yahyapour, editors, Towards a Service-Based Internet, volume
6481 of Lecture Notes in Computer Science, pages 13–24. Springer
Berlin / Heidelberg, 2010.

[100] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin
Yousif. Sandpiper: Black-box and gray-box resource management for
virtual machines. Computer Networks, 53(17):2923–2938, 2009.

[101] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video trans-
coding. Proceedings of the IEEE, 93(1):84–97, 2005.

63

[102] Peng-Yeng Yin and Jing-Yu Wang. Ant colony optimization for the
nonlinear resource allocation problem. Applied Mathematics and Com-
putation, 174(2):1438–1453, 2006.

[103] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A cost-effective
strategy for intermediate data storage in scientific cloud workflow sys-
tems. In Parallel Distributed Processing (IPDPS), 2010 IEEE Inter-
national Symposium on, pages 1–12, 2010.

[104] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. Computation and
storage trade-off for cost-effectively storing scientific datasets in the
cloud. In Borko Furht and Armando Escalante, editors, Handbook of
Data Intensive Computing, pages 129–153. Springer New York, 2011.

[105] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A local-
optimisation based strategy for cost-effective datasets storage of sci-
entific applications in the cloud. In Cloud Computing (CLOUD), 2011
IEEE International Conference on, pages 179–186, 2011.

[106] Dong Yuan, Yun Yang, Xiao Liu, Gaofeng Zhang, and Jinjun Chen. A
data dependency based strategy for intermediate data storage in scien-
tific cloud workflow systems. Concurrency and Computation: Practice
and Experience, 24(9):956–976, 2012.

[107] Zhenzhong Zhang, Haiyan Wang, Limin Xiao, and Li Ruan. A statis-
tical based resource allocation scheme in cloud. In Cloud and Service
Computing (CSC), 2011 International Conference on, pages 266–273,
2011.

[108] Han Zhao, Miao Pan, Xinxin Liu, Xiaolin Li, and Yuguang Fang. Opti-
mal resource rental planning for elastic applications in cloud market. In
Parallel and Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 808–819, 2012.

[109] Wenwu Zhu, Chong Luo, Jianfeng Wang, and Shipeng Li. Multimedia
cloud computing. Signal Processing Magazine, IEEE, 28(3):59–69,
2011.

64

Acronyms

ACES Admission Control based on Estimation of Service times

ACO Ant Colony Optimization

ACS Ant Colony System

ACVAS adaptive Admission Control for Virtualized Application Servers

AS Ant System

AWS Amazon Web Services

CBAC Cost-Based Admission Control

CoSAC Coordinated Session-based Admission Control

CPU Central Processing Unit

CRAMP Cost-efficient Resource Allocation for Multiple web applications
with Proactive scaling

CTT-SP Cost Transitive Tournament Shortest Path

DDG Data Dependency Graph

EC2 Elastic Compute Cloud

EMA Exponential Moving Average

GAE Google App Engine

GOP Group of Pictures

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

65

IT Information Technology

JVM Java Virtual Machine

MMAS Max-Min Ant System

NIST National Institute of Standards and Technology

NRMSE Normalized Root Mean Square Error

OSGi Open Services Gateway initiative

PaaS Platform as a Service

PD Proportional-Derivative

PI Proportional-Integral

PM Physical Machine

QoS Quality of Service

RQ Research Question

S3 Simple Storage Service

SaaS Software as a Service

SBAC Session-Based Admission Control

SBACS Stream-Based Admission Control and Scheduling

SLA Service Level Agreement

TSP Travelling Salesman Problem

VM Virtual Machine

66

Complete List of Original
Publications

This thesis is composed of 8 original publications, which are included in
Part II of the thesis. However, the research work presented in this thesis
also closely relates to some other publications of the author. The complete
list of original publications published in relation to this thesis is as follows.
It includes all publications, whether or not included in Part II of the thesis.

1. Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen, and Ivan Porres.
Feedback Control Algorithms to Deploy and Scale Multiple Web Ap-
plications per Virtual Machine. In Proceedings of the 38th EUROMI-
CRO Conference on Software Engineering and Advanced Applications
(SEAA 2012), pp. 431–438, September 2012, Cesme, Izmir, Turkey.

2. Adnan Ashraf, Benjamin Byholm, and Ivan Porres. A Session-Based
Adaptive Admission Control Approach for Virtualized Application
Servers. In Proceedings of the 5th IEEE/ACM International Confer-
ence on Utility and Cloud Computing (UCC 2012), pp. 65–72, Novem-
ber 2012, Chicago, IL, USA.

3. Adnan Ashraf, Benjamin Byholm, and Ivan Porres. CRAMP: Cost-
Efficient Resource Allocation for Multiple Web Applications with
Proactive Scaling. In Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom
2012), pp. 581–586, December 2012, Taipei, Taiwan.

4. Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Porres,
and Johan Lilius. Prediction-Based Dynamic Resource Allocation for
Video Transcoding in Cloud Computing. In Proceedings of the 21st
EUROMICRO International Conference on Parallel, Distributed and
Network-based Processing (PDP 2013), pp. 254–261, February 2013,
Belfast, UK.

5. Adnan Ashraf, Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien La-
fond, Ivan Porres, and Johan Lilius. Stream-Based Admission Control

67

and Scheduling for Video Transcoding in Cloud Computing. In Pro-
ceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2013), pp. 482–489, May 2013,
Delft, the Netherlands.

6. Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, and Johan
Lilius. A Computation and Storage Trade-Off Strategy for Cost-
Efficient Video Transcoding in the Cloud. In Proceedings of the 39th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (SEAA 2013), pp. 365–372, September 2013, Santander,
Spain.

7. Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond, Ivan Porres,
and Johan Lilius. Cost-Efficient Dynamically Scalable Video Trans-
coding in Cloud Computing. Turku Centre for Computer Science
(TUCS) Technical Reports, number 1098, pp. 1–25, December 2013.

8. Adnan Ashraf and Ivan Porres. Using Ant Colony System to Consoli-
date Multiple Web Applications in a Cloud Environment. In Proceed-
ings of the 22nd EUROMICRO International Conference on Parallel,
Distributed and Network-Based Processing (PDP 2014), pp. 482–489,
February 2014, Turin, Italy.

9. Fahimeh Farahnakian, Adnan Ashraf, Pasi Liljeberg, Tapio Pahikkala,
Juha Plosila, Ivan Porres, and Hannu Tenhunen. Energy-Aware Dy-
namic VM Consolidation in Cloud Data Centers Using Ant Colony
System. In Proceedings of the 7th IEEE International Conference on
Cloud Computing (IEEE CLOUD 2014), pp. 104–111, June 2014,
Alaska, USA.

10. Ivan Porres, Tommi Mikkonen, and Adnan Ashraf (Editors). Devel-
oping Cloud Software: Algorithms, Applications, and Tools. Turku
Centre for Computer Science (TUCS) General Publication Number
60, October 2013.

11. Adnan Ashraf, Benjamin Byholm, and Ivan Porres. Prediction-Based
Virtual Machine Provisioning and Admission Control for Multi-Tier
Web Applications. Book chapter in Ivan Porres, Tommi Mikkonen,
and Adnan Ashraf (Editors). Developing Cloud Software: Algorithms,
Applications, and Tools. Turku Centre for Computer Science (TUCS)
General Publication Number 60, pp. 71–112, October 2013.

12. Fareed Ahmed Jokhio, Adnan Ashraf, Tewodros Deneke, Sébastien
Lafond, Ivan Porres, and Johan Lilius. Proactive Virtual Machine
Allocation for Video Transcoding in the Cloud. Book chapter in Ivan

68

Porres, Tommi Mikkonen, and Adnan Ashraf (Editors). Developing
Cloud Software: Algorithms, Applications, and Tools. Turku Centre
for Computer Science (TUCS) General Publication Number 60, pp.
113–143, October 2013.

13. Adnan Ashraf, Mikko Hartikainen, Usman Hassan, Keijo Heljanko,
Johan Lilius, Tommi Mikkonen, Ivan Porres, Mahbubul Syeed, and
Sasu Tarkoma. Introduction to Cloud Computing Technologies. Book
chapter in Ivan Porres, Tommi Mikkonen, and Adnan Ashraf (Ed-
itors). Developing Cloud Software: Algorithms, Applications, and
Tools. Turku Centre for Computer Science (TUCS) General Publi-
cation Number 60, pp. 1–41, October 2013.

14. Adnan Ashraf. Cost-Efficient Virtual Machine Provisioning for Multi-
tier Web Applications and Video Transcoding. In Proceedings of the
13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2013), pp. 66–69, May 2013, Delft, the
Netherlands.

15. Adnan Ashraf. Cost-Efficient Resource Allocation for Multi-Tier Web
Applications in a Cloud Environment. In PhD Symposium held in
connection with the 38th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA 2012), pp. 1–2, Septem-
ber 2012, Cesme, Izmir, Turkey. (Best Doctoral Research Proposal
Award)

16. Timo Aho, Adnan Ashraf, Marc Englund, Joni Katajamäki, Johannes
Koskinen, Janne Lautamäki, Antti Nieminen, Ivan Porres, and Ilkka
Turunen. Designing IDE as a Service. In Communications of Cloud
Software, 1(1), pp. 1–10, December 2011.

17. Niclas Snellman, Adnan Ashraf, Ivan Porres. Towards Automatic Per-
formance and Scalability Testing of Rich Internet Applications in the
Cloud. In Proceedings of the 37th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (SEAA 2011), pp. 161–
169, September 2011, Oulu, Finland.

69

70

Part II

Original Publications

71

Publication I

Feedback Control Algorithms to Deploy and Scale
Multiple Web Applications per Virtual Machine

Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen,
and Ivan Porres

Originally published in Proceedings of the 38th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA 2012), pp. 431–
438, September 2012, Cesme, Izmir, Turkey.

c©2012 IEEE. Reprinted with permission from the publisher.

Publication II

A Session-Based Adaptive Admission Control
Approach for Virtualized Application Servers

Adnan Ashraf, Benjamin Byholm, and Ivan Porres

Originally published in Proceedings of the 5th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC 2012), pp. 65–72,
November 2012, Chicago, IL, USA.

c©2012 IEEE. Reprinted with permission from the publisher.

Publication III

CRAMP: Cost-Efficient Resource Allocation for
Multiple Web Applications with Proactive Scaling

Adnan Ashraf, Benjamin Byholm, and Ivan Porres

Originally published in Proceedings of the 4th IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom 2012), pp.
581–586, December 2012, Taipei, Taiwan..

c©2012 IEEE. Reprinted with permission from the publisher.

Publication IV

Prediction-Based Dynamic Resource Allocation for
Video Transcoding in Cloud Computing

Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond,
Ivan Porres, and Johan Lilius

Originally published in Proceedings of the 21st EUROMICRO International
Conference on Parallel, Distributed and Network-based Processing (PDP
2013), pp. 254–261, February 2013, Belfast, UK.

c©2013 IEEE. Reprinted with permission from the publisher.

Publication V

Stream-Based Admission Control and Scheduling
for Video Transcoding in Cloud Computing

Adnan Ashraf, Fareed Ahmed Jokhio, Tewodros Deneke,
Sébastien Lafond, Ivan Porres, and Johan Lilius

Originally published in Proceedings of the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2013), pp.
482–489, May 2013, Delft, the Netherlands.

c©2013 IEEE. Reprinted with permission from the publisher.

Publication VI

A Computation and Storage Trade-off Strategy for
Cost-Efficient Video Transcoding in the Cloud

Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond,
and Johan Lilius

Originally published in Proceedings of the 39th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA 2013), pp. 365–
372, September 2013, Santander, Spain.

c©2013 IEEE. Reprinted with permission from the publisher.

Publication VII

Cost-Efficient Dynamically Scalable Video
Transcoding in Cloud Computing

Fareed Ahmed Jokhio, Adnan Ashraf, Sébastien Lafond,
Ivan Porres, and Johan Lilius

Originally published in Turku Centre for Computer Science (TUCS) Tech-
nical Reports, number 1098, pp. 1–25, December 2013.

c©2013 Turku Centre for Computer Science (TUCS). Reprinted with per-
mission from the publisher.

Cost-Efficient Dynamically Scalable
Video Transcoding in Cloud Computing

Fareed Jokhio
Adnan Ashraf
Sébastien Lafond
Ivan Porres
Johan Lilius

Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5A, 20520, Turku, Finland
{fjokhio, aashraf, slafond, iporres, jolilius}@abo.fi

TUCS Technical Report

No 1098, December 2013

Abstract

Video transcoding of a large number of on-demand videos requires a large scale
cluster of transcoding servers. Moreover, storage of multiple transcoded versions
of each source video requires a large amount of disk space. Infrastructure as
a Service (IaaS) clouds provide virtual machines (VMs) for creating a dynami-
cally scalable cluster of servers. Likewise, a cloud storage service may be used
to store a large number of transcoded videos. Moreover, it may be possible to
reduce the total IaaS cost by trading storage for computation, or vice versa. In
this paper, we present prediction-based dynamic resource allocation algorithms to
scale on-demand video transcoding service on a given IaaS cloud. The proposed
algorithms provide mechanisms for allocation and deallocation of VMs to a dy-
namically scalable cluster of video transcoding servers in a horizontal fashion. We
also present a computation and storage trade-off strategy for cost-efficient video
transcoding in the cloud called cost and popularity score based strategy. The pro-
posed strategy estimates computation cost, storage cost, and video popularity of
individual transcoded videos and then uses this information to make decisions on
how long a video should be stored or how frequently it should be re-transcoded
from a given source video. The proposed algorithms and the trade-off strategy are
demonstrated in a discrete-event simulation and are empirically evaluated using a
realistic load pattern.

Keywords: Video transcoding, dynamic resource allocation, computation and
storage trade-off, cost-efficiency, cloud computing

TUCS Laboratory
Embedded Systems Laboratory

Software Engineering Laboratory

1 Introduction
With an ever increasing number of digital videos delivered everyday via the Inter-
net, the number of video formats and video codecs used for digital video repre-
sentation are also increasing rapidly. Moreover, since video streaming of a large
number of videos requires a lot of server-side resources, digital videos are of-
ten stored and transmitted in compressed formats to conserve storage space and
communication bandwidth. With the emergence of a large number of video com-
pression techniques and packaging formats, such as MPEG-4 [32] and H.264 [33],
the diversity of digital video content representation has grown even faster. How-
ever, for a client-side device, it is practically impossible to support all the existing
video formats. Therefore, an unsupported format needs to be converted into one
of the supported formats before the video could be played on the device.

The process of converting a compressed digital video from one format to an-
other format is termed as video transcoding [31]. It may involve extracting video
and audio tracks from the file container, decoding the tracks, down-scaling frame-
size, dropping of frames, reducing bit-rate by applying coarser quantization, en-
coding the audio and video tracks into a suitable format, and packing those tracks
into a new container. Since video transcoding is a compute-intensive operation,
transcoding of a large number of on-demand videos requires a large scale clus-
ter of transcoding servers. Similarly, storage of multiple transcoded versions of
each source video requires a large amount of disk space. Moreover, in order to be
able to handle different load conditions in a cost-efficient manner, the cluster of
transcoding servers should be dynamically scalable.

Cloud computing provides theoretically infinite computing and storage re-
sources, which can be provisioned in an on-demand fashion under the pay-per-
use business model [4]. Infrastructure as a Service (IaaS) clouds, such as Amazon
Elastic Compute Cloud (EC2)1, provide Virtual Machines (VMs) for creating a
dynamically scalable cluster of servers. Likewise, a cloud storage service may be
used to store a large number of transcoded videos. Determining the number of
VMs and the amount of storage to provision from an IaaS cloud is an important
problem. The exact number of VMs and the exact amount of storage needed at
a specific time depend on the incoming load from service users and their perfor-
mance requirements.

In a cloud environment, a video transcoding operation can be performed in
several different ways. For example, it is possible to map an entire video stream
on a dedicated VM. However, it requires a large number of VMs to transcode sev-
eral simultaneous streams. Moreover, transcoding of high-definition (HD) video
streams may require a lot of time, which may violate the client-side performance
requirements of the desired play rate [9]. Another approach is to split the video
streams into smaller segments and then transcode them independently of one an-
other [19]. In this approach, one VM can be used to transcode a large number of

1http://aws.amazon.com/ec2/

1

video segments belonging to different video streams. Moreover, video segments
of a particular stream can be transcoded on multiple VMs.

In this paper, we present prediction-based dynamic resource allocation and
deallocation algorithms [22] to scale video transcoding service on a given IaaS
cloud in a horizontal fashion. The proposed algorithms allocate and deallocate
VMs to a dynamically scalable cluster of video transcoding servers. We use a two-
step load prediction method [2], which predicts the video transcoding rate a few
steps ahead in the future to allow proactive resource allocation under soft realtime
constraints. For cost-efficiency, we share VM resources among multiple video
streams. The sharing of the VM resources is based on video segmentation, which
splits the streams into smaller segments that can be transcoded independently of
one another [22]. We also investigate the computation and storage cost trade-off
for video transcoding in the cloud and present a cost-efficient strategy called cost
and popularity score based strategy [21]. The proposed strategy estimates compu-
tation cost, storage cost, and video popularity of individual transcoded videos and
then uses this information to make decisions on how long a video should be stored
or how frequently it should be re-transcoded from its source video. The objective
is to reduce the total IaaS cost by trading storage for computation, or vice versa.
Thus, the paper makes two contributions: (1) proactive resource allocation and
deallocation algorithms to scale video transcoding service on a given IaaS cloud;
and (2) a computation and storage cost trade-off strategy for video transcoding
in cloud computing. It extends the works published in [20], [21], and [22] and
provides an extended evaluation. The proposed algorithms and the trade-off strat-
egy are demonstrated in discrete-event simulations and are empirically evaluated
using a realistic load pattern.

We proceed as follows. Section 2 presents the system architecture of an on-
demand video transcoding service and sets the context for the proposed dynamic
resource allocation algorithms and the proposed trade-off strategy. Section 3 de-
scribes the proposed algorithms. The proposed trade-off strategy is presented in
Section 4. Section 5 describes experimental design and presents the results of the
experimental evaluation. In Section 6, we discuss important related works before
concluding in Section 7.

2 System Architecture

The system architecture of the cloud-based on-demand video transcoding service
is shown in Figure 1. It consists of a streaming server, a video splitter, a video
merger, a video repository, a dynamically scalable cluster of transcoding servers,
a load balancer, a master controller, and a load predictor. The video requests and
responses are routed through the streaming server. It uses an output video buffer,
which temporarily stores the transcoded videos at the server-side. Our resource
allocation algorithms are designed to avoid over and underflow of the video buffer.

2

Video

Repository

Streaming Server

Video

Splitter

Video segments

Load

Balancer
Master Controller

Config

Load Predictor

Transcoding

Server 1

.

.

.

Video requests/responses

Video segments

Transcoding

Server N

Video

Merger

Input video streams

Transcoded video streams

Transcoded jobs

Legend

Video data

Control

signals

Buffer

Figure 1: System architecture of the cloud-based on-demand video transcoding
service

The overflow occurs if the video transcoding rate exceeds the video play rate and
the capacity of the buffer. Likewise, the buffer underflow may occur when the
play rate exceeds the transcoding rate, while the buffer does not contain enough
frames either to avoid the underflow situation. Since the main focus of this paper
is on video transcoding, we assume that the streaming server is not a bottleneck.

The video streams in certain compressed formats are stored in the video repos-
itory. The streaming server accepts video requests from users and checks if the
required video is available in the video repository. If it finds the video in the de-
sired format and resolution, it starts streaming the video. However, if it finds that
the requested video is stored only in another format or resolution than the one de-
sired by the user, it sends the video for segmentation and subsequent transcoding.
Then, as soon as it receives the transcoded video from the video merger, it starts
streaming the video.

After each transcoding operation, the computation and storage trade-off strat-
egy determines if the transcoded video should be stored in the video repository
or not. Moreover, if a transcoded video is stored, then the trade-off strategy also
determines the duration for which the video should be stored. Therefore, it al-
lows us to trade computation for storage or vice versa in order to reduce the total
operational cost and to improve performance of the transcoding service.

The video splitter splits the video streams into smaller segments called jobs,
which are placed into the job queue. A compressed video consists of three

3

different types of frames namely, I-frames (intracoded frames), P-frames (pre-
dicted frames), and B-frames (bi-directional predicted frames). Due to inter-
dependencies among different types of frames, the video splitting or segmentation
is performed at the key frames, which are always I-frames. An I-frame followed
by P and B frames is termed as a group of pictures (GOP). GOPs represent atomic
units that can be transcoded independently of one another [22]. Video segmenta-
tion at GOP level is discussed in more detail in [19] and [23].

The load balancer employs a task assignment policy, which distributes load on
the transcoding servers. In other words, it decides when and to which transcoding
server a transcoding job should be sent. It maintains a configuration file, which
contains information about transcoding servers that perform the transcoding oper-
ations. As a result of the dynamic resource allocation and deallocation operations,
the configuration file is often updated with new information. The load balancer
serves the jobs in FIFO (First In, First Out) order. It implements one or more
job scheduling policies, such as, the shortest queue length policy, which selects a
transcoding server with the shortest queue length and the shortest queue waiting
time policy, which selects a transcoding server with the least queue waiting time.

The actual transcoding is performed by the transcoding servers. They get com-
pressed video segments, perform the required transcoding operations, and return
the transcoded video segments for merging. A transcoding server runs on a dy-
namically provisioned VM. Each transcoding server processes one or more simul-
taneous jobs. When a transcoding job arrives at a transcoding server, it is placed
in the server’s queue from where it is subsequently processed.

The master controller acts as the main controller and the resource allocator.
It implements prediction-based dynamic resource allocation and deallocation al-
gorithms, as described in Section 3. It also implements one or more computation
and storage trade-off strategies, such as the proposed cost and popularity score
based strategy, which is presented in Section 4. In our approach, the resource
allocation and deallocation is mainly based on the target play rate of the video
streams and the predicted transcoding rate of the transcoding servers. For load
prediction, the master controller uses load predictor, which predicts future load on
the transcoding servers. The video merger merges the transcoded jobs into video
streams, which form video responses. Our load prediction approach is described
in detail in [7] and [22]. It consists of a load tracker and a load predictor [2]. We
use exponential moving average (EMA) for the load tracker and a simple linear
regression model [26] for the load predictor.

3 Proactive VM Allocation Algorithms

In this section, the proposed dynamic VM allocation and deallocation algorithms
for video transcoding in the cloud are presented. The objective is to reduce the
over and under allocation of resources while satisfying the client-side performance

4

requirements. For the sake of clarity, the concepts used in the algorithms and their
notation are summarized in Table 1. The algorithms implement proactive control,
which uses a two-step load prediction approach [2] in which the current and the
past system load is tracked to predict the future system load. The predicted system
load is then used to make decisions on the allocation and deallocation of VMs to a
dynamically scalable cluster of transcoding servers. Moreover, a fixed minimum
number of transcoding servers is always maintained, which represents the base
capacity NB.

On discrete-time intervals, the master controller obtains the play rate of all
video streams and adds them together to get the total target play rate PR(t). It then
obtains the video transcoding rate from each transcoding server and calculates the
total transcoding rate TR(t). Moreover, for proactive VM allocation, it uses load
predictor to predict the total transcoding rate T̂R(t) a few steps ahead in the future.

The algorithms are designed to be cost-efficient while minimizing potential os-
cillations in the number of VMs [34]. This is desirable because, in practice, provi-
sioning of a VM takes a few minutes [5], [6]. Therefore, oscillations in the number
of VMs may lead to deteriorated performance. Moreover, since some contempo-
rary IaaS providers, such as Amazon EC2, charge on hourly basis, oscillations
will result in a higher provisioning cost. Therefore, the algorithms counteract os-
cillations by delaying new VM allocation operations until previous VM allocation
operations have been realized [18]. Furthermore, for cost-efficiency, the deallo-
cation algorithm terminates only those VMs whose renting period approaches its
completion.

3.1 VM Allocation Algorithm
The VM allocation algorithm is given as Algorithm 1. The first two steps deal with
the calculation of the target play rate PR(t) of all streams and the total transcoding
rate TR(t) of all transcoding servers (lines 3–7). The algorithm then obtains the
predicted total transcoding rate T̂R(t) from the load predictor (line 8). Moreover,
to avoid underflow of the output video buffer that temporarily stores transcoded
jobs at the server-side, it considers the size of the output video buffer BS(t). If
the target play rate exceeds the predicted transcoding rate while the buffer size
BS(t) falls below its lower thresholdBL (line 9), the algorithm chooses to allocate
resources by provisioning one or more VMs (line 10). The number of VMs to
provision NP (t) is calculated as follows

NP (t) =

⌈
PR(t)− T̂R(t)

TR(t)
|S(t)|

⌉
(1)

where |S(t)| is the number of transcoding servers at time t. The VM allocation al-
gorithm also takes into account the number of jobs waiting in the servers’ queues.
It checks the average queue length of all servers avgQJobs(t) and if the aver-
age queue length is above a predefined maximum upper threshold MAXQLUT

5

Table 1: Summary of concepts and their notation for VM allocation algorithms
Notation Description

avgQJobs(t) average queue length of all servers at discrete-time t
countover(t) over allocation count at t
NP (t) number of servers to provision at t based on PR(t) and T̂R(t)
NPQ

(t) number of servers to provision at t based on avgQJobs(t)
NT (t) number of servers to terminate at t
PR(t) sum of target play rates of all streams at t
S(t) set of transcoding servers at t
Sp(t) set of newly provisioned servers at t
Sc(t) servers close to completion of renting period at t
St(t) servers selected for termination at t
TR(t) total transcoding rate of all servers at t
T̂R(t) predicted total transcoding rate of all servers at t
RT (s, t) remaining time of server s at t with respect to renting hour
V (t) set of video streams at t

BL buffer size lower threshold in megabytes
BS(t) size of the output video buffer in megabytes
BU buffer size upper threshold in megabytes
CT over allocation count threshold
jobCompletion job completion delay
MAXQLUT maximum queue length upper threshold
NB number of servers to use as base capacity
RTL remaining time lower threshold
RTU remaining time upper threshold
startUp server startup delay

calcNP () calculate the value of NP (t)
calcNT () calculate the value of NT (t)
calcQNP () calculate the value of NPQ

(t) based on queue length
calRT (s, t) calculate the value of RT (s, t)
delay(d) delay for duration d
getPR() get PR(t) from video merger
getTR(s) get transcoding rate of server s
getT̂R() get T̂R(t) from load predictor
provision(n) provision n servers
select(n) select n servers for termination
sort(S) sort servers S on remaining time
terminate(S) terminate servers S

6

(line 12), it chooses to provision one or more servers (line 13). In this case, the
number of VMs to provision NPQ

(t) is calculated as follows

NPQ
(t) =

⌈
avgQJobs(t)

MAXQLUT

⌉
(2)

The algorithm then provisions NP (t) + NPQ
(t) VMs, which are added to the

cluster of transcoding servers (lines 20–21). To minimize potential oscillations
due to unnecessary VM allocations, the algorithm adds a delay for the VM startup
time (line 22). Furthermore, it ensures that the total number of VMs |S(t)| does
not exceed the total number of video streams |V (t)|. The algorithm adjusts the
number of VMs to provision NP (t) if |S(t)| + NP (t) exceeds |V (t)| (lines 16–
18). This is desirable because the transcoding rate of a video on a single VM is
usually higher than the required play rate.

Algorithm 1 VM allocation algorithm
1: while true do
2: NP (t) := 0, NPQ

(t) := 0
3: PR(t) := getPR()
4: TR(t) := 0
5: for sεS(t) do
6: TR(t) := TR(t) + getTR(s)
7: end for
8: T̂R(t) := getT̂R(TR(t))
9: if T̂R(t) < PR(t) ∧BS(t) < BL then

10: NP (t) := calcNP ()
11: end if
12: if avgQJobs(t) > MAXQLUT then
13: NPQ

(t) := calcQNP ()
14: end if
15: NP (t) := NP (t) +NPQ

(t)
16: if |S(t)|+NP (t) > |V (t)| then
17: NP (t) := |V (t)| − |S(t)|
18: end if
19: if NP (t) ≥ 1 then
20: Sp(t) := provision(NP (t))
21: S(t) := S(t) ∪ Sp(t)
22: delay(startUp)
23: end if
24: end while

7

3.2 VM Deallocation Algorithm
The VM deallocation algorithm is presented in Algorithm 2. The main objective
of the algorithm is to minimize the VM provisioning cost, which is a function of
the number of VMs and time. Thus, it terminates any redundant VMs as soon as
possible. Moreover, to avoid overflow of the output video buffer, it considers the
size of the output video buffer BS(t). After obtaining the target play rate PR(t)
and the predicted total transcoding rate T̂R(t) (lines 2–7), the algorithm makes
a comparison. If T̂R(t) exceeds PR(t) while the buffer size BS(t) exceeds its
upper threshold BU (line 8), it may choose to deallocate resources by terminating
one or more VMs. However, to minimize unnecessary oscillations, it deallocates
resources only when the buffer overflow situation persists for a predetermined
minimum amount of time.

Algorithm 2 VM deallocation algorithm
1: while true do
2: PR(t) := getPR()
3: TR(t) := 0
4: for sεS(t) do
5: TR(t) := TR(t) + getTR(s)
6: end for
7: T̂R(t) := getT̂R(TR(t))
8: if T̂R(t) > PR(t) ∧BS(t) > BU ∧ countover(t) > CT then
9: for sεS(t) do

10: RT (s, t) := calRT (s, t)
11: end for
12: Sc(t) := {∀sεS(t)|RT (s, t) < RTU ∧RT (s, t) > RTL}
13: if |Sc(t)| ≥ 1 then
14: NT (t) := calcNT ()
15: NT (t) := min(NT (t), |Sc(t)|)
16: if NT (t) ≥ 1 then
17: sort(Sc(t))
18: St(t) := select(NT (t))
19: S(t) := S(t) \ St(t)
20: delay(jobCompletion)
21: terminate(St(t))
22: end if
23: end if
24: end if
25: end while

In the next step, the algorithm calculates the remaining time of each transcod-
ing server RT (s, t) with respect to the completion of the renting period (lines 9–
11). It then checks if there are any transcoding servers whose remaining time is

8

less than the predetermined upper threshold of remaining timeRTU and more than
the lower threshold of remaining time RTL (line 12). The objective is to terminate
only those servers whose renting period is close to the completion, while exclud-
ing any servers that are extremely close to the completion of their renting period.
Therefore, it is not practically feasible to complete all running and pending jobs
on them before the start of the next renting period. If the algorithm finds at least
one such server Sc(t) (line 13), it calculates the number of servers to terminate
NT (t) as

NT (t) =

⌈
T̂R(t)− PR(t)

TR(t)
|S(t)|

⌉
−NB (3)

Then, it sorts the transcoding servers in Sc(t) on the basis of their remaining time
(line 17), and selects the servers with the lowest remaining time for termination
(line 18). The rationale of sorting of servers is to ensure cost-efficiency by select-
ing the servers closer to completion of their renting period. A VM that has been
selected for termination might have some pending jobs in its queue. Therefore, it
is necessary to ensure that the termination of a VM does not abandon any jobs in
its queue. One way to do this is to migrate all pending jobs to other VMs and then
terminate the VM [5], [6]. However, since transcoding of video segments takes
relatively less time to complete, it is more reasonable to let the jobs complete their
execution without requiring them to migrate and then terminate a VM when there
are no more running and pending jobs on it. Therefore, the deallocation algorithm
terminates a VM only when the VM renting period approaches its completion
and all jobs on the server complete their execution (line 20). Finally, the selected
servers are terminated and removed from the cluster (line 21).

4 Computation and Storage Trade-off Strategy

In this section, we present the proposed computation and storage trade-off strat-
egy. For the sake of clarity, we provide a summary of the notations in Table 2.
The proposed cost and popularity score based strategy estimates the computation
cost, the storage cost, and the video popularity of individual transcoded videos
and then uses this information to make decisions on how long a video should be
stored or how frequently it should be re-transcoded from a given source video. In
an on-demand video streaming service, the source videos are usually high quality
videos that comprise the primary datasets. Therefore, irrespective of their com-
putation and storage costs, they are never deleted from the video repository. The
transcoded videos, on the other hand, are the derived datasets that can be regener-
ated on-demand from their source videos. Therefore, they should only be stored
in the video repository when it is cost-efficient to store them. Thus, the proposed
strategy is only applicable to the transcoded videos. In other words, since the com-
putation and the storage costs of the source videos are not relevant, the proposed

9

Table 2: Summary of concepts and their notation for trade-off strategy
Notation Description

τ set of transcoded videos
τi ith transcoded video
NSτi new cost and popularity score of τi
RCT renting cost of a transcoding server per renting hour
Sτi total cumulative cost and popularity score of τi
SCτi storage cost of τi per time unit
SCm monthly storage cost per 1 gigabytes
SDτi storage duration for transcoded video τi
TCτi transcoding cost of τi
TTτi transcoding time of τi
V Smbτi transcoded video τi size in megabytes

DC decrement in Sτi
GBmb megabytes to gigabytes conversion factor
Hsec hour to seconds conversion factor
RPS month to desired time unit conversion factor

calcNS(τi) calculate NSτi
calcSC(τi) calculate SCτi
calcTC(τi) calculate TCτi
delay(SDτi) delay for SDτi

getS(τi) get Sτi
getSC(τi) get SCτi
getTC(τi) get TCτi
removeV ideo(τi) remove video τi

strategy is based only on the computation and storage costs of the transcoded
videos.

In cloud computing, the computation cost is essentially the cost of using VMs,
which is usually calculated on an hourly basis. The storage cost, on the other
hand, is often computed on a monthly basis. The computation cost of a transcoded
video depends on its transcoding time and on how often the video is re-transcoded.
Thus, if a video is frequently re-transcoded, the computation cost would increase
rapidly. On the other hand, the storage cost of a transcoded video depends on the
length of the storage duration and the video size on disk. Therefore, it increases
gradually with the passage of time. The longer the duration, the higher the cost.
Thus, our proposed strategy estimates an equilibrium point on the time axis where
the computation cost and the storage cost of a transcoded video become equal.
This estimated equilibrium point indicates the minimum duration for which the
video should be stored in the video repository. Figure 2 shows that if a video

10

Time

Cost

Transcoding Cost

Storage Cost

The point in time where the storage cost

 becomes higher than the transcoding cost

Figure 2: The estimated equilibrium point between the storage cost and the
transcoding cost of a transcoded video

is transcoded once and stored in the video repository, then initially the compu-
tation cost is higher than the storage cost. However, with the passage of time,
the storage cost continues to increase until it becomes equal to the computation
cost and then it grows even further unless the video is removed from the video
repository. Thus, if the video is deleted before its estimated equilibrium point
and then it is subsequently requested, the computation cost will increase due to
unnecessary re-transcoding. Likewise, if the video is stored beyond its estimated
equilibrium point and then it does not receive a subsequent request, the storage
cost will increase unnecessarily.

In an on-demand video streaming service, each transcoded video may be re-
quested and viewed a number of times. Frequently viewed, popular videos get a
lot of requests. While, sporadically viewed, less popular videos get only a few re-
quests. For cost-efficient storage, it is essential to use an estimate of the popularity
of the individual transcoded videos. This information can then be used to deter-
mine the exact duration for which a video should be stored in the video repository.
Therefore, the proposed strategy accounts for the popularity of individual trans-
coded videos. It uses the estimated computation cost, the estimated storage cost,
and the video popularity information to calculate a cost and popularity score Sτi
for each transcoded video τi. The higher the score the longer the video is stored
in the video repository. Thus, with the incorporation of the video cost and popu-
larity score, it becomes justifiable to store popular transcoded videos beyond their
estimated equilibrium point. In other words, it differentiates popular videos that
should be stored for a longer duration.

In our proposed strategy, the storage cost SCτi of a transcoded video τi is
calculated as

SCτi =
V Smbτi
GBmb

· SCm
RPS

· SDτi (4)

where V Smbτi is the size of the transcoded video τi in megabytes, GBmb is the

11

megabytes to gigabytes conversion factor, SCm is the monthly storage cost per 1
gigabytes of storage, RPS is the month to desired time unit conversion factor, and
SDτi is the length of the storage duration for the transcoded video τi. Similarly,
the transcoding cost TCτi of a transcoded video τi is calculated as

TCτi = TTτi ·
RCT
Hsec

(5)

where TTτi is the transcoding time of τi, RCT is the renting cost of a transcoding
server per renting hour, and Hsec is the hour to seconds conversion factor, which
is used to normalize the computation cost to a per second basis.

Whenever a new request for a transcoded video τi arrives at the streaming
server, the video cost and popularity score Sτi is updated to reflect the new costs
and the new popularity information. The new cost and popularity score NSτi
represents the estimated equilibrium point where the computation cost and the
storage cost of τi become equal. Therefore, it indicates the minimum duration for
which the video should be stored. The new cost and popularity score NSτi of a
video τi is calculated as the ratio of the transcoding cost TCτi and the storage cost
SCτi

NSτi =
TCτi
SCτi

(6)

Finally, the total cost and popularity score Sτi of a video τi is calculated by
accumulating the new cost and popularity score NSτi of the said video over time.
That is, for each new request of a transcoded video τi, we obtain the previous
value of the total cost and popularity score Sτi of the transcoded video, calculate
NSτi , and then add them together to produce the new value of the Sτi . Moreover,
the total cost and popularity score of a video that was not stored previously is set
to NSτi . The total cost and popularity score Sτi determines the exact duration
for which a video τi should be stored. The pseudocode for score calculation is
presented in Algorithm 3.

Algorithm 3 Calculation of cost and popularity score
1: while true do
2: if τi is requested then
3: SCτi := calcSC(τi)
4: TCτi := calcTC(τi)
5: NSτi := calcNS(τi)

6: Sτi :=

{
Sτi +NSτi , if τi was stored previously
NSτi , otherwise

7: end if
8: end while

Each transcoded video τi should be stored in the video repository for as long
as it is cost-efficient to store it. However, when a video loses its popularity, it

12

should be subsequently deleted to avoid unnecessary storage cost. Therefore, on
certain time intervals, the proposed strategy performs the following steps for each
transcoded video τi. It obtains the storage cost SCτi , the cost and popularity score
Sτi , and the transcoding cost TCτi . Then, it multiplies Sτi and TCτi and compares
it with SCτi as follows

SCτi > TCτi · Sτi (7)

If the inequality holds, it implies that it is cost-efficient to delete the transcoded
video. Therefore, the video is removed from the video repository. However, if the
inequality does not hold, it indicates that it is not cost-efficient to delete the video.
Therefore, the video is not removed. Moreover, the cost and popularity score Sτi
is decremented in accordance with the length of the time interval to reflect the
passage of time. In this way, when a popular video loses its popularity, it starts
losing its cost and popularity score as well until it is removed from the video
repository or it gets some new requests to regain its popularity. The pseudocode
to decrement cost and popularity score Sτi and to remove a video is given as
Algorithm 4.

Algorithm 4 Decrementing score and removing a video
1: while true do
2: for τiετ do
3: SCτi := getSC(τi)
4: TCτi := getTC(τi)
5: Sτi := getS(τi)
6: if SCτi > TCτi · Sτi then
7: removeV ideo(τi)
8: else
9: Sτi := Sτi −DC

10: end if
11: end for
12: delay(SDτi)
13: end while

5 Experimental Evaluation
Software simulations are often used to test and evaluate new approaches and
strategies involving complex environments [10], [8]. For our proposed resource
allocation algorithms and trade-off strategy, we have developed a discrete-event
simulation in the Python programming language. It is based on the SimPy simu-
lation framework [25]. Also, for a comparison of the results with the alternative
existing approaches, we have developed discrete-event simulations for two intu-
itive computation and storage trade-off strategies, which are the store all strategy

13

and the usage based strategy [36]. The store all strategy stores all transcoded
videos irrespective of their costs and popularity. While the usage based strategy
stores only popular videos and removes the rest. That is, it does not account for
the computation and storage costs.

5.1 Experimental Design and Setup

For the computation and storage costs, we used the Amazon EC2 and the Amazon
S32 cost models. The computation cost in Amazon EC2 is based on an hourly
charge model. Whereas, the storage cost of Amazon S3 is based on a monthly
charge model. In our experiment, we used only small instances. As of writing of
this paper, the cost of a small instance in Amazon EC2 is $0.06 per hour. Whereas,
the cost of storage space in Amazon S3 is based on a nonlinear cost model as
shown in Table 3.

The experiment used HD, SD (Standard-Definition), and mobile video
streams. Since SD videos currently have a higher demand than the HD and mo-
bile videos, we considered 20% HD, 30% mobile, and 50% SD video streams.
The GOP size for different types of videos was different. For HD videos, the av-
erage size of a video segment was 75 frames with a standard deviation of 7 frames.
Likewise, for SD and mobile videos, the average size of a segment was 250 frames
with a standard deviation of 20 frames.

In an on-demand video transcoding service, a source video is usually trans-
coded in many different formats. Therefore, we assumed that a source video can
be transcoded into a maximum of 30 different formats. Likewise, since in an on-
demand video streaming service, the number of source videos always continue to
grow, we used a continuously increasing number of source videos in our experi-
ment. However, since the number of the newly uploaded source videos is usually
only a small fraction of the total number of downloaded videos, the video upload
rate in our experiment was assumed to be 1% of the total number of the video
download requests. The desired time unit for storage, as used in the month to
desired time unit conversion factor RPS , was assumed to be one day. Therefore,
RPS was 30. Moreover, the minimum storage duration for a transcoded video
SDτi was also assumed to be one day.

The objective of the experiment was to evaluate the proposed algorithms and
trade-off strategy for a realistic load pattern. Therefore, it used a real load pattern,
which constitutes real video access data from Bambuser AB3. The load pattern
consists of approximately 40 days of real video access data. The total number of
frames in a video stream was in the range of 18000 to 90000, which represents an
approximate play time of 10 to 50 minutes with the frame rate of 30 frames per
second.

2http://aws.amazon.com/s3/
3http://bambuser.com/

14

Table 3: Amazon S3 storage pricing
Standard Storage

First 1 TB per month $ 0.095 per GB
Next 49 TB per month $ 0.080 per GB
Next 450 TB per month $ 0.070 per GB
Next 500 TB per month $ 0.065 per GB
Next 4000 TB per month $ 0.060 per GB
Over 5000 TB per month $ 0.055 per GB

5.2 Results and Analysis

In this section, we compare the experimental results of the proposed strategy with
that of the store all strategy and the usage based strategy. Each result in Figure 3 to
Figure 5 consists of seven different plots, which are number of user requests, num-
ber of transcoding servers, transcoding cost, storage cost, storage size, number of
source videos, and number of transcoded videos. The number of user requests plot
represents the load pattern of the video access data. In other words, it is the user
load on the streaming server. Due to data confidentiality, the exact volume of the
load can not be revealed. Therefore, we have omitted the scale of this plot from
all the results. The number of transcoding servers plot shows the total number
of transcoding servers being used at a particular time. The transcoding cost plot
represents the total computation cost of all transcoded videos in US dollars. Sim-
ilarly, the storage cost plot shows the storage cost in US dollars of all transcoded
videos, which are stored in the video repository. The storage size plot represents
the total size of the cloud storage used to store the transcoded videos. The number
of source videos plot shows the total number of source videos in the video reposi-
tory. Likewise, the number of transcoded videos is the total number of transcoded
videos in the video repository. The results are also summarized in Table 4.

Figure 3 presents the simulation results of the store all strategy. The results
span over a period of 40 days. At the end of the simulation, the total number of
transcoded videos in the video repository was 206590, while the total number of
source videos was 20902. The average number of transcoding servers was 102,
the total transcoding cost was $4458.42, the total storage cost was $4911.36, and
the total storage size was 42.16 terabytes. Since the store all strategy stores all
transcoded videos irrespective of their computation and storage costs, the storage
cost was very high due to a large number of transcoded videos stored in the video
repository. Therefore, the results indicate that the store all strategy is not cost-
efficient.

Figure 4 presents the results of the usage based strategy. At the end of the
simulation, the total number of transcoded videos in the video repository was
190734 for the same number of source videos as used in the store all strategy.

15

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 3: Store all strategy

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 4: Usage based strategy

16

Table 4: Summary of results
Strategy Avg. servers Transcoding cost Storage cost Total cost

Store all 102 $4458.42 $4911.36 $9369.78
Usage based 94 $4179.12 $4090.56 $8269.68
Score based 107 $4893.60 $2307.84 $7201.44

The average number of transcoding servers was 94, the total transcoding cost was
$4179.12, the total storage cost was $4090.56, and the total storage size was 34.19
terabytes. Since the usage based strategy stores only popular videos, the storage
cost of the usage based strategy was slightly less than that of the store all strategy.
Therefore, the results indicate that the usage based strategy is cost-efficient when
compared to the store all strategy. However, since it does not account for the
computation and the storage costs, it may remove some videos that have a high
transcoding cost.

Figure 5 presents the results of the proposed score based strategy. At the end
of the simulation, the total number of transcoded videos in the video repository
was 64392 for the same number of source videos as used in the store all strategy
and the usage based strategy. The average number of transcoding servers was 107,
the total transcoding cost was $4893.60, the total storage cost was $2307.84, and
the total storage size was 14.93 terabytes. Since the proposed strategy accounts
for the computation cost, the storage cost, and the video popularity information,
the storage cost was much less than that of the store all strategy and the usage
based strategy.

Figure 6 presents a comparison of the total costs, which consists of the com-
putation cost and the storage cost. The results show that the store all strategy has
the highest total cost. The usage based strategy has slightly less total cost than the
store all strategy. Moreover, the proposed storage has the least total cost among
all the three strategies. Therefore, the results indicate that the proposed strategy is
cost-efficient when compared to the store all and the usage based strategies.

6 Related Work

Distributed video transcoding with video segmentation was proposed in [19]
and [23]. Jokhio et al. [19] presented bit rate reduction video transcoding using
multiple processing units, while [23] analyzed different video segmentation meth-
ods to perform spatial resolution reduction video transcoding. Huang et al. [17]
presented a cloud-based video proxy to deliver transcoded videos for streaming.
The main contribution of their work is a multilevel transcoding parallelization
framework. Li et al. [24] proposed a cloud transcoder, which uses a compute cloud
as an intermediate platform to provide transcoding service. Shin and Koh [30]

17

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40
 0

 50000

 100000

 150000

 200000

 250000

time (days)

Number of source videos
Number of transcoded videos

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40Storage size (terabytes)
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000Transcoding cost (US dollars)

Storage cost (US dollars)

 0
 40
 80

 120
 160
 200
 240

 0
 40
 80
 120
 160
 200
 240

Number of transcoding servers

Number of user requests

Figure 5: Proposed score based strategy

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 5 10 15 20 25 30 35 40

C
o

s
t

(U
S

 d
o

lla
rs

)

time (days)

Store all strategy
Usage based strategy

Cost and popularity score based strategy

Figure 6: Cost comparison

18

presented a hybrid scheme to determine an optimal threshold between the static
and dynamic transcoding. Ashraf et al. [8] proposed an admission control and
job scheduling approach for video transcoding in the cloud. None of these papers
addressed the VM allocation problem for video transcoding in cloud computing.

6.1 VM Allocation Approaches

The existing works on dynamic VM allocation can be classified into two main cat-
egories: Plan-based approaches and control theoretic approaches. The plan-based
approaches can be further classified into workload prediction approaches and per-
formance dynamics model approaches. One example of the workload prediction
approaches is Ardagna et al. [3], while TwoSpot [34], Hu et al. [16], Chieu et
al. [11], Iqbal et al. [18] and Han et al. [15] use a performance dynamics model.
Similarly, Dutreilh et al. [13], Pan et al. [27], Patikirikorala et al. [28], and Roy
et al. [29] are control theoretic approaches. One common difference between all
of these works and our proposed approach is that they are not designed specif-
ically for video transcoding in cloud computing. In contrast, our proposed ap-
proach is based on the important performance and VM allocation metrics for video
transcoding service, such as video play rate and server transcoding rate. Moreover,
it is cost-efficient as it uses a reduced number of VMs for a large number of video
streams, it provides proactive VM allocation under soft real-time constraints, and
it does not depend upon performance and dynamics of the underlying system. A
more detailed analysis of the VM allocation approaches can be found in [22].

6.2 Computation and Storage Trade-off Strategies

There are currently only a few works in the area of computation and storage trade-
off analysis for cost-efficient usage of cloud resources. One of the earlier attempts
include Adams et al. [1], who highlighted some of the important issues and fac-
tors involved in constructing a cost-benefit model, which can be used to analyze
the trade-offs between computation and storage. However, they did not propose
a strategy to find the right balance between computation and storage resources.
Deelman et al. [12] studied cost and performance trade-offs for an astronomy ap-
plication using Amazon EC2 and Amazon S3 cost models. The authors concluded
that, based on the likelihood of reuse, storing popular datasets in the cloud can be
cost-effective. However, they did not provide a concrete strategy for cost-effective
computation and storage of scientific datasets in the cloud.

Nectar system [14] is designed to automate the management of data and com-
putation in a data center. It initially stores all the derived datasets when they
are generated. However, when the available disk space falls below a threshold, all
obsolete or least-valued datasets are garbage collected to improve resource utiliza-
tion. Although Nectar provides a computation and storage trade-off strategy, it is

19

not designed to reduce the total cost of computation and storage in a cloud-based
service that uses IaaS resources.

Yuan et al. [36] proposed two strategies for cost-effective storage of scien-
tific datasets in the cloud, which compare the computation cost and the storage
cost of the datasets. They also presented a Cost Transitive Tournament Shortest
Path (CTT-SP) algorithm to find the best trade-off between the computation and
the storage resources. Their strategies are called cost rate based storage strat-
egy [35], [38] and local-optimization based storage strategy [37]. The cost rate
based storage strategy compares computation cost rate and storage cost rate to
decide storage status of a dataset. Whereas, the local-optimization based storage
strategy partitions a data dependency graph (DDG) of datasets into linear seg-
ments and applies the CTT-SP algorithm to achieve a localized optimization. In
contrast to the cost rate based storage strategy [35], [38], our proposed trade-off
strategy estimates an equilibrium point on the time axis where the computation
cost and the storage cost of a transcoded video become equal. Moreover, it esti-
mates video popularity of the individual transcoded videos to differentiate popu-
lar videos. The DDG-based local-optimization based storage strategy of Yuan et
al. [37] is not much relevant for video transcoding because video transcoding does
not involve a lot of data dependencies.

Most of the existing computation and storage trade-off strategies described
above were originally proposed for scientific datasets. To the best of our lim-
ited knowledge, there are currently no existing computation and storage trade-off
strategies for video transcoding. The difference of application domain may play
a vital role when determining cost-efficiency of the existing strategies. Therefore,
some of the existing strategies may have limited efficacy and little cost-efficiency
for video transcoding.

7 Conclusion

In this paper, we presented proactive VM allocation algorithms to scale video
transcoding service in a cloud environment. The proposed algorithms provide
a mechanism for creating a dynamically scalable cluster of video transcoding
servers by provisioning VMs from an IaaS cloud. The prediction of the future
user load is based on a two-step load prediction method, which allows proactive
VM allocation under soft real-time constraints. For cost-efficiency, we used video
segmentation which splits a video stream into smaller segments that can be trans-
coded independently of one another. This helped us to perform video transcoding
of multiple simultaneous streams on a single server.

We also proposed a cost-efficient computation and storage trade-off strategy
for video transcoding in the cloud. The proposed strategy estimates the compu-
tation cost, the storage cost, and the video popularity information of individual
transcoded videos and then uses this information to make decisions on how long a

20

video should be stored or how frequently it should be re-transcoded from a given
source video. The objective is to reduce the total IaaS cost by trading storage for
computation, or vice versa.

The proposed approach is demonstrated in a discrete-event simulation and
an experimental evaluation involving a realistic load pattern. Also, for the sake
of comparison, we simulated two intuitive computation and storage trade-off
strategies and compared their results with that of the proposed strategy. The re-
sults show that the proposed algorithms provide cost-efficient VM allocation for
transcoding a large number of video streams while minimizing oscillations in the
number of servers. The results also indicate that our proposed trade-off strategy is
more cost-efficient than the two intuitive strategies as it provided a good trade-off
between the computation and storage resources.

21

References
[1] Ian F. Adams, Darrell D. E. Long, Ethan L. Miller, Shankar Pasupathy, and

Mark W. Storer. Maximizing efficiency by trading storage for computation.
In Proceedings of the 2009 conference on Hot topics in cloud computing,
HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[2] Mauro Andreolini, Sara Casolari, and Michele Colajanni. Models and
framework for supporting runtime decisions in web-based systems. ACM
Trans. Web, 2(3):17:1–17:43, July 2008.

[3] Danilo Ardagna, Carlo Ghezzi, Barbara Panicucci, and Marco Trubian. Ser-
vice provisioning on the cloud: Distributed algorithms for joint capacity al-
location and admission control. In Elisabetta Di Nitto and Ramin Yahyapour,
editors, Towards a Service-Based Internet, volume 6481 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2010.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, April 2010.

[5] Adnan Ashraf, Benjamin Byholm, Joonas Lehtinen, and Ivan Porres. Feed-
back control algorithms to deploy and scale multiple web applications
per virtual machine. In Software Engineering and Advanced Applications
(SEAA), 38th EUROMICRO Conference on, pages 431–438, September
2012.

[6] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. CRAMP: Cost-efficient
resource allocation for multiple web applications with proactive scaling. 4th
IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 581–586, 2012.

[7] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. A session-based adaptive
admission control approach for virtualized application servers. In Utility
and Cloud Computing (UCC), 5th IEEE/ACM International Conference on,
pages 65–72, 2012.

[8] Adnan Ashraf, Fareed Jokhio, Tewodros Deneke, Sebastien Lafond, Ivan
Porres, and Johan Lilius. Stream-based admission control and scheduling
for video transcoding in cloud computing. in Cluster, Cloud and Grid Com-
puting (CCGrid), 13th IEEE/ACM International Symposium on, pages 482–
489, 2013.

[9] N. Bjork and C. Christopoulos. Transcoder architectures for video coding.
Consumer Electronics, IEEE Transactions on, 44(1):88 –98, February 1998.

22

[10] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Csar A. F. De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

[11] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic scaling
of web applications in a virtualized cloud computing environment. In e-
Business Engineering, 2009. ICEBE ’09. IEEE International Conference on,
pages 281 –286, October 2009.

[12] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John
Good. The cost of doing science on the cloud: the Montage example. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08,
pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.

[13] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck. From data
center resource allocation to control theory and back. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, pages 410 –417,
July 2010.

[14] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,
Yuan Yu, and Li Zhuang. Nectar: automatic management of data and com-
putation in datacenters. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 1–8, Berke-
ley, CA, USA, 2010. USENIX Association.

[15] Rui Han, Li Guo, M.M. Ghanem, and Yike Guo. Lightweight resource scal-
ing for cloud applications. In Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on, pages 644 –651, May
2012.

[16] Ye Hu, Johnny Wong, Gabriel Iszlai, and Marin Litoiu. Resource provi-
sioning for cloud computing. In Proceedings of the 2009 Conference of
the Center for Advanced Studies on Collaborative Research, CASCON ’09,
pages 101–111, New York, NY, USA, 2009. ACM.

[17] Zixia Huang, Chao Mei, Li Erran Li, and Thomas Woo. CloudStream: De-
livering high-quality streaming videos through a cloud-based SVC proxy. In
INFOCOM, 2011 Proceedings IEEE, pages 201–205, 2011.

[18] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. Adap-
tive resource provisioning for read intensive multi-tier applications in the
cloud. Future Generation Computer Systems, 27(6):871 – 879, 2011.

[19] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius. Bit rate reduction video
transcoding with distributed computing. In Parallel, Distributed and

23

Network-Based Processing (PDP), 2012 20th Euromicro International Con-
ference on, pages 206 –212, February 2012.

[20] Fareed Jokhio, Adnan Ashraf, Tewodros Deneke, Sebastien Lafond, Ivan
Porres, and Johan Lilius. Developing Cloud Software: Algorithms, Appli-
cations, and Tools, chapter Proactive Virtual Machine Allocation for Video
Transcoding in the Cloud, pages 113–143. Turku Centre for Computer Sci-
ence (TUCS) General Publication Number 60, October 2013.

[21] Fareed Jokhio, Adnan Ashraf, Sebastien Lafond, and Johan Lilius. A com-
putation and storage trade-off strategy for cost-efficient video transcoding
in the cloud. In Software Engineering and Advanced Applications (SEAA),
39th Euromicro Conference on, pages 365–372, 2013.

[22] Fareed Jokhio, Adnan Ashraf, Sebastien Lafond, Ivan Porres, and Johan Lil-
ius. Prediction-based dynamic resource allocation for video transcoding in
cloud computing. In Parallel, Distributed and Network-Based Processing
(PDP), 21st Euromicro International Conference on, pages 254–261, 2013.

[23] Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond, and Johan Lil-
ius. Analysis of video segmentation for spatial resolution reduction video
transcoding. In Intelligent Signal Processing and Communications Systems
(ISPACS), 2011 International Symposium on, pages 1–6, December 2011.

[24] Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and Yafei
Dai. Cloud transcoder: Bridging the format and resolution gap between
internet videos and mobile devices. In The 22nd ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video. ACM, 2012.

[25] Norman Matloff. A Discrete-Event Simulation Course Based on the SimPy
Language. University of California at Davis, 2006.

[26] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Re-
gression Analysis. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2012.

[27] W. Pan, D. Mu, H. Wu, and L. Yao. Feedback control-based QoS guarantees
in web application servers. In High Performance Computing and Commu-
nications, 2008. HPCC ’08. 10th IEEE International Conference on, pages
328 –334, September 2008.

[28] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A multi-
model framework to implement self-managing control systems for QoS man-
agement. In Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, pages
218–227, 2011.

24

[29] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 500 –507, July 2011.

[30] Ilhoon Shin and Kern Koh. Hybrid transcoding for QoS adaptive video-on-
demand services. IEEE Trans. on Consum. Electron., 50(2):732–736, May
2004.

[31] A. Vetro, C. Christopoulos, and Huifang Sun. Video transcoding archi-
tectures and techniques: an overview. Signal Processing Magazine, IEEE,
20(2):18 – 29, March 2003.

[32] J. Watkinson. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Broad-
casting and communications. Elsevier/Focal Press, 2004.

[33] T. Wiegand, G. J. Sullivan, and A. Luthra. Draft ITU-T recommendation
and final draft international standard of joint video specification. Technical
report, 2003.

[34] Andreas Wolke and Gerhard Meixner. TwoSpot: A cloud platform for scal-
ing out web applications dynamically. In Elisabetta Di Nitto and Ramin
Yahyapour, editors, Towards a Service-Based Internet, volume 6481 of Lec-
ture Notes in Computer Science, pages 13–24. Springer Berlin / Heidelberg,
2010.

[35] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A cost-effective strategy
for intermediate data storage in scientific cloud workflow systems. In Par-
allel Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1–12, 2010.

[36] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. Computation and stor-
age trade-off for cost-effectively storing scientific datasets in the cloud. In
Borko Furht and Armando Escalante, editors, Handbook of Data Intensive
Computing, pages 129–153. Springer New York, 2011.

[37] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A local-optimisation
based strategy for cost-effective datasets storage of scientific applications in
the cloud. In Cloud Computing (CLOUD), 2011 IEEE International Confer-
ence on, pages 179–186, 2011.

[38] Dong Yuan, Yun Yang, Xiao Liu, Gaofeng Zhang, and Jinjun Chen. A data
dependency based strategy for intermediate data storage in scientific cloud
workflow systems. Concurrency and Computation: Practice and Experi-
ence, 24(9):956–976, 2012.

25

Publication VIII

Using Ant Colony System to Consolidate Multiple
Web Applications in a Cloud Environment

Adnan Ashraf and Ivan Porres

Originally published in Proceedings of the 22nd EUROMICRO International
Conference on Parallel, Distributed and Network-Based Processing (PDP
2014), pp. 482–489, February 2014, Turin, Italy.

c©2014 IEEE. Reprinted with permission from the publisher.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-3111-7
ISSN 1239-1883

A
dnan A

shraf

A
dnan A

shraf

A
dnan A

shraf
C
ost-Efficient V

irtual M
achine M

anagem
ent

C
ost-Efficient V

irtual M
achine M

anagem
ent

C
ost-Efficient V

irtual M
achine M

anagem
ent

