Western Samoa mangrove fish survey

Poissons de mangrove des Samoa Occidentales Mission d'expertise du 25/11/1992 au 05/12/1992 Rapport final

Plerre THOLLOT

Document de travail

L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPÉRATION Ĭ

RAPPORTS DE MISSIONS

SCIENCES DE LA MER

BIOLOGIE MARINE

N° 23

1993

CENTRE DE NOUMÉA

RAPPORTS DE MISSIONS

SCIENCES DE LA MER

BIOLOGIE MARINE

N° 23

1993

Western Samoa mangrove fish survey

Poissons de mangrove des Samoa Occidentales Mission d'expertise du 25/11/1992 au 05/12/1992 Rapport final

Pierre THOLLOT

L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPERATION

CENTRE DE NOUMÉA

© ORSTOM, Nouméa, 1993

/Thollot, P.

Western Samoa mangrove fish survey. Poissons de mangrove des Samoa Occidentales Mission d'expertise du 25/11/1992 au 05/12/1992 Rapport final

Nouméa : ORSTOM. Septembre 1993. 28 p. missions. : Sci. mer : Biol. Mar. ; 23

Ø36MILMAR ; Ø34BIOVERØ1

ICHTYOLOGIE ; MANGROVE ; INVENTAIRE FAUNISTIQUE ; COMMUNAUTE DE POISSON ; MILIEU MENACE ; POISSON MARIN ; MILIEU LITTORAL ; METHODE D'ECHANTILLONAGE ; ETUDE CONPARATIVE /SAMOA OCCIDENTAL

> Imprimé par le Centre ORSTOM Septembre 1993

-Western Samoa Mangrove Fish Survey - Final Report -

SUMMARY

EXECUTIVE SUMMARY	2
FOREWORD	3
BACKGROUND	3
MAIN GOALS	3
PRESENTATION OF THE STUDY AREA	4
MATERIAL AND METHODS	6 6 7 7 8
RESULTS AND DISCUSSION Preliminary checklist of the mangrove fish fauna Comparison of Sa'anapu-Sataoa and Vaiusu Bay sampling stations Comparison of the sampling methods Biological data	9 9 10 11 13
THEORETICAL ADVICE	13
CONCLUSION	14
REFERENCES	15
APPENDIX I	.17
APPENDIX II	.22
APPENDIX III	.25
APPENDIX IV	.28

RESUME

A la demande des autorités des Samoa Occidentales, l'ORSTOM a été pressenti pour réaliser une mission d'expertise concernant les mangroves et leurs communautés ichtyologiques. Cette mission, conduite à Apia par Pierre THOLLOT du 25 novembre au 05 décembre 1992, avait pour principaux objectifs :

- réaliser un inventaire préliminaire des poissons de mangrove;
- recueillir des informations nécessaires à la réalisation d'une base de donnée;
- définir un protocole d'échantillonnage adapté au suivi des communautés de poissons;
- familiariser aux techniques de pêche le personnel local qui sera chargé du suivi des communautés de poissons;
- fournir des conseils théoriques nécessaires à l'étude des communautés de poissons.

Cette action de coopération régionale a été réalisée avec succès. Elle a pleinement répondue aux besoins exprimés par les Samoa Occidentales en fournissant les données de base, l'expérience et les conseils nécessaires à la réalisation d'une étude des communautés de poissons par les membres de la "Division of Environment and Conservation".

EXECUTIVE SUMMARY

A preliminary survey of Western Samoa mangrove fish fauna was held in 1992, from November the 25th to December the 5th. Because of the short time available, it was not possible to undertake an exhaustive study of the fish fauna. However, field trips and samplings, using gill nets and rotenone poisonings, allowed a rapid but reasonable description of the fish communities from two mangrove areas : the first one in Vaiusu Bay, near Apia, the second one in Sa'anapu-Sataoa, on the south coast of Upolu.

The major findings are :

- 1) 35 species of fish, distributed among 22 families, were censused in Western Samoa mangroves;
- 2) the most speciose families are Gobiidae (5 spp.), Mullidae, Mugilidae and Ophichtidae (3 spp.);
- 3) numerically dominant species are the mullets (*Liza melinoptera* and *Valamugil engeli*), the pufferfish (*Arothron manillensis*) and the crescent perch (*Therapon jarbua*);
- the most important species, in fresh weight, are the crescent perch, the mullets and, to a lesser extent, the goatfishes (Mulloides flavolineatus, Parupeneus indicus and Upeneus vittatus) and the damsellfish (Chrysiptera notialis);
- 5) Vaiusu Bay and Sa'anapu-Sataoa sampling sites show similar species richness (20 spp.), however, their species composition is very different with only 6 species common to both sites; moreover the community structure of the communities is not similar, the one from Vaiusu Bay being highly dominated by a single species, *Liza melinoptera*, which is a common feature of heavily disturbed communities probably because of the pollution of this area, while Sa'anapu-Sataoa fish fauna seems to be a quite stable assemblage;
- 6) gill nets and rotenone are efficient complementary methods for a qualitative assessment of the mangrove fish fauna, gill nettings enabled the collection of large fish (8 species) while rotenone poisonings caught juveniles and small species (32 species);
- 7) the biology of 16 spp. has been studied, 154 records of the length, weight, sex, sexual maturity and feeding habits of these species were recorded.

Using the data recorded during this survey and the informations available in the litterature, it was possible to realize a preliminary data base for further studies of mangrove fish communities. For example, 216 additional species of fish, distributed among 61 families, have a potential to be found in Western Samoa mangroves. As a consequence, global species richness of Western Samoa mangrove fish fauna would be 251 species distributed among 65 families. A questionaire, allowing the use of fishermen's knowledge, could be used. It would give numerous informations on the dependence of villagers on mangroves for fishing or other purposes, the fishing effort and the catch of the fishermen, the use of edible fish living in the mangroves, and so on. Training of DEC's staff provided during the field trips, together with theoretical advice, have given the basic knowledge for a future monitoring of the mangrove fish fauna in Vaiusu Bay and Sa'anapu-Sataoa.

FOREWORD

This document is the final report of the Western Samoa mangrove fish fauna survey undertaken in November - December 1992 by Pierre THOLLOT from ORSTOM. A preliminary report has been prepared after the completion of field work for the Division of Environment and Conservation from the Department of Land and Surveys in Apia, Western Samoa. Results and interpretations presented here are limited by time and location of sampling. As a consequence, they must be used with caution. Furthermore, as this work will be published, data, tables and figures should not be used without prior approval of the author.

BACKGROUND

In September 1989, during SPREP's intergovernmental meeting held in Noumea, ORSTOM submitted a project dealing with the mangroves of the south-west Pacific. This project has been accepted and will be completed in 1993. Joe RETI became aware of the project and asked ORSTOM to undertake a survey of the mangroves in Western Samoa in order to assess the impacts of cyclone OFA and define the role of the mangroves in fish resources. In 1990, a proposal was sent to the French Foreign Office (DCSTE) to get funding. The fund were provided in late 1991. At that time, cyclone VAL occured and we were advised that a Japanese team of scientists (JIAM/ISME) had made a survey of the vegetation after the cyclone (Nakamura, 1992; Sasaki, 1992). However, Western Samoa was still interested by an assessment of the mangroves by ORSTOM.

As a consequence, the initial project was modified. Jean-François DUPON (ORSTOM representative for Asia and the Pacific : DEPAC) and Sam SESEGA (Department of Land, Surveys and Environment, Division of Environment and Conservation : DEC) agreed that the study should focus on the fish fauna of two mangroves. The first sampling site should be located in Vaiusu Bay, which is known to be very polluted, and the other one in Sa'anapu-Sataoa, a quite undisturbed area. It was planned to get preliminary data on the fish communities living in these mangroves which will be monitored in order to define the impacts of environmental parameters.

MAIN GOALS

According to the above proposal, the main goals of the survey was to provide :

- a prelimary checklist of the fish species occurring in the mangroves;
- a taxonomical and biological data base for further investigations;
- the definition of sampling methods that could be use for the monitoring of the mangrove fish communities;
- the training of staff who will be involved in this monitoring;
- theoretical advice for the study of this fish fauna.

PRESENTATION OF THE STUDY AREA

Western Samoa is located in the Central Pacific, approximatively 172° W - 14° S. Two islands (Upolu : 1,100 km² and Savai'i : 1,820 km²) and several islets cover a total area of 2,934 km² while the extent of the exclusive economic zone (EEZ) is only 120,000 km² (Antheaume & Bonnemaison, 1988). Recently, 160,000 inhabitants have been censused in an unofficial census (Liu, 1992), population density being 54.5 inhabitant per square kilometer. Average annual temperature is 27° C, total annual rainfall ranges from 2,500 to 5,000 mm, reflecting a tropical oceanic climate. South-east trade winds blow from May to August, they are north-westerly during the wet season (December to March). Cyclones can occur from November to April (Anonyme, 1986). As most published and unpublished data on geology, geomorphology and further informations on coastal ecosystems from Western Samoa have been reviewed recently (Anonyme, 1991; Pearsall & Whistler, 1991; Richmond, 1992), they will not be detailed here.

Western Samoa is at the eastern limit of Indo-Pacific mangrove distribution. Chapman (1976) has reported Bruguiera gymnorrhiza and Rhizophora spp. with associated species such as Heriteria littoralis, Exoecaria agallocha, Clerodendron inerme, Barringtonia racemosa and Scirpodendron costatum. Recently, Tomlinson (1986) identified B. gymnorrhiza and Rhizophora samoensis together with H. littoralis and E. agallocha. According to this author, R. samoensis is very similar to Rhizophora mangle which occurs in America, the Caribbean and Africa. These species could be the phytogeographical link between Indo-Pacific and American mangroves (Tomlinson, 1986). Botanical surveys of Western Samoa mangroves have been undertaken by Vodonovailu (undated), Nakamura (1992) and Sasaki (1992). An exhaustive inventory of the mangal vegetation is given, detailing 45 species (Table 1). Nine mangrove and closely related species have been recorded, it is therefore likely that a tenth species is present : Rhizophora x selala which is an F1 hybrid of R. samoensis and R. stylosa (Tomlinson, 1986).

Mangroves and associated species	n de la della de la companya de la del La companya de la com La companya de la comp	Associated species (Including epiphytes)	<u> </u>
Acrostichum aureum	Acanthus ilifolius	Davallia solida	Lycopodium phlegnaria
Avicennia marina	Anonaceae sp.	Dendrobium biflorum	Lycopodium trifoliatum
Bruguiera gymnorrhiza	Asplenium nidus	Dendrobium catillare	Ophioglossum pendulum
Exoecaria agallocha	Asplenium laserpitiifolium	Dendrobium tokai	Pandanus pyriformis
Heritiera littoralis	Asplenium polyodon	Drynaria rigidula	Paspalum distichum
Rhizophora samoensis	Bulbophyllum longiscapum	Earina sp.	Phreatia sp.
Rhizophora stylosa	Bulbophyllum sp.	Hibicus tiliaceus	Phymatosorus grossus
Sonneratia alba	Clerodendron inerme	Histiopteris incisa	Psilotum complanatum
Xylocarpus granatum	Ctenopteris sp.	Hoya australis	Pyrrosia adnascens
	Cyatea lunulata	Humanta banksii	Taeniophyllum fasciola
	Davallia epiphylla	Humata heterophylla	Thespesia populnea
	Davallia fejeensis	Hymenophyllum sp.	Vigna marina

 Table 1: Western Samoa mangrove species and associates

 Data from Vodonovailu (undated), Nakamura (1992) and Sasaki (1992).

To our knowledge, the only estimation of the area of mangroves from Western Samoa is the one of Liu (1992). Unfortunately, the given values (15,000 - 20,000 ha) are not correct, probably because of a misprint. It is likely that his original estimation is 150 - 200 ha, in other words 1.5 - 2.0 km². A planimetry of 1:20,000 topographical maps printed in 1983 (NZMS 174) gives a slightly greater value : 2.5 km². Obviously, this value is still an underestimation of Western Samoa mangroves area because only mappable stands were taken into an account. For instance on Savai'i, the *Xylocarpus* mangrove stand censused by Pearsall & Whistler (1991) could not be located using the topographical maps. Furthermore, some areas considered as marshes on the maps have been misidentified. In fact, some of them are mangrove forests, as in Sa'anapu-Sataoa for instance. The major mangrove stands are located on Figure 1. Sasaki (1992) has described four major vegetal communities and their zonation in Western Samoa mangroves (Figure 2). Threatened mangroves, because of drainage, reclamation and pollution, have been reported (Anonyme, 1991; Nakamura, 1992)). It is likely that mangrove area has been converted to other uses and most of the remaining stands are severely disturbed by adjacent and on-site land-use conversion, rubbish disposal and pollution.

-Western Samoa Mangrove Fish Survey - Final Report -

2: Bruguiera gymnorrhiza community

4 : Hibicus tiliaceus community

Figure 2 : Typical mangrove zonation in Western Samoa, from Sasaki (1992)

MATERIAL AND METHODS

Survey completion

The survey of Western Samoa mangrove fish fauna took place in 1992, from November the 25th to December the 5th (Table 2).

DATE	TIME	ACTION
25/11/1992	4.00 PM	Arrival from Nandi
26/11/1992	AM	Meeting with Cedric SCHUSTER (DEC) for details on the survey
	AM	Meeting with Fisheries Department
	AM-PM	Collect of the sampling equipment sent to SPREP
27/11/1002	A 3 4	Sempling and field trip propagation
2//11/1992		Visit to Vainer Ben compline stations
	PM	Visit to Valusu Day sampling stations
28/11/1992	AM-PM	Sa'anapu-Sataoa samplings with gill nets (11 AM - 04 PM / 02 PM - 03 PM)
29/11/1992		No Work on Sunday
30/11/1992	AM	Meeting with Cedric SCHUSTER for theoretical advice
	PM	Vaiusu Bay sampling with rotenone (2.30 PM - 04 PM)
01/12/1002		Solarow Setters compliant with materians (10.20 AM - 01.20 PM)
01/12/1992	AM-PM	Sa anapu-Sataoa sampling with rotenone (10.30 AM - 01.30 PM)
02/12/1992	12.00 AM	Presentation of the survey to DEC
03/12/1992	AM	Redaction of the preliminary report
	PM	Vaiusu Bay sampling with gill nets (12 AM - 01 PM)
	16.00 PM	Preparation of the equipment
04/12/1992	AM	Final meeting with DEC's staff
	PM	Equipment sent to SPREP for forward freight to New Caledonia
05/12/1992	7.00 PM	Departure to Nandi

Table 2: Schedule of western Samoa mangrove rish surve	Table 2:	Schedule of	Western Samoa	mangrove	fish surve
--	----------	-------------	---------------	----------	------------

-Western Samoa Mangrove Fish Survey - Final Report -

Sampling equipment

Two sampling techniques were used : gill-netting and rotenone poisoning (Table 2).

Three gill nets, 75m long and 3 m high, with stretched meshes of 40 mm, 60 mm and 80 mm, were set at the edge of the mangrove and in front of the main channels. These fishing gears enable the collection of small to large mobile species getting in and out of the mangrove.

Rotenone kills fishes by prevention of oxygen fixation on their gills. In a low energy zone surrounded by a small mesh gill net, the poison, mixed with soap and sea water in order to avoid sinking, was released. Fish were collected at the water surface by hand and with small landing nets. Sunk specimen were caught by snorkelling. Juveniles and small species, usually too small to be collected with gill nets, and sedentary species can be collected using rotenone poisoning.

Sampling stations

According to the survey proposal, the first sampling station is located in Vaiusu Bay $(171^{\circ}46'5 \text{ W} - 13^{\circ}49'5 \text{ S})$, a 76.2 ha mangrove stand in Apia (Figure 1 & 3). Sampling took place in the major mangrove area (52 ha), which lies between the old rubbish dump and petrol tanks. This place is known to be very polluted. Trees are small, less than 5 m high, *Rhizophora samoensis* and *Rhizophora stylosa* being the main components of the vegetal community.

The other sampling station is a quite undisturbed area in Sa'anapu-Sataoa $(171^{\circ}52' \text{ W} - 13^{\circ}58'7 \text{ S})$, on the south coast of Upolu (Figure 1 & 4). The vegetal community is larger (71.9 ha) and much more mature and healthy than the one from Vaiusu Bay. Large *Bruguiera gymnorrhiza* with numerous epiphytic species grow up to 15 m high in the inner side of the mangrove while a narrow fringe of *Rhizophora* spp. is located at the seashore. On each sampling site, at least one gill netting and one rotenone poisoning were performed, see Table 2 for date and duration.

Figure 3 : Location of Vaiusu Bay sampling stations

Figure 4 : Location of Sa'anu-Sataoa sampling stations

Biological data

For each fish collected, biological observations were recorded in order to assess basic informations necessary to the study of their biology, biometry and population dynamics.

Fork length was measured at the lower half centimeter. It should be noticed that in some instances the total length (eel-like species) or the disk width (rays) was recorded.

The fish were weighted at the lower gramme, as soon as possible after their collection.

Sex (immature, male and female) and sexual maturity were recorded as defined in Table 3.

Feeding habits were defined by macroscopical stomach content analysis. Various food items, such as fish, crabs, prawns, bivalves, worms, plankton, algae, and so on, were recorded with their volumic importance (as a percentage) in the stomach content.

Maturation index	Male	Female
0	Thin gonad	Thin gonad
1	Thin and elongated gonad	Vascular gonad
2	Gonad does not bleed after section	Opaque ovary, eggs not visible
3	Gonad bleeds a little after section	Granular ovary
4	Gonad bleeds after section	Eggs start to come loose
5	Gonad bleeds by pressure	Eggs come out of the ovary by pressure

Table 3 : Macrosco	pic definition	of sexual	maturity
--------------------	----------------	-----------	----------

RESULTS AND DISCUSSION

Preliminary checklist of the mangrove fish fauna

Thirty-five species distributed among 22 families were recorded during the survey (Table 4). The most speciose families are the Gobiidae (5 spp.), the Mullidae, the Mugilidae and Ophichthidae (3 spp.), the Carangidae and the Pomacentridae (2 spp.). Of course, further samples are needed before considering this checklist complete. Such samples have to be undertaken within the monitoring of the fish communities in Vaiusu Bay and Sa'anapu Sataoa mangroves. Such monitoring requires sampling at regular intervals, on, at least, a yearly basis. Further samples should also concern other mangrove areas in Upolu but also in Savai'i where there is a *Xylocarpus* mangrove stand, the rarest Western Samoa's ecosystem (Pearsall & Whistler, 1991). Data from these places could yield very interesting informations. Additional data can also be collected through enquiries to fishermen and villagers. This latter point will be developped in a further section.

Table 4 : Preliminary checklist of the mangrove fish from Western Samoa

Qualitative compilation of all samples and methods. Scientific names can be submitted to changes as some specimens were sent to taxonomists for confirmation of identification.

Family	(English name)	Scientific name	Samoan name
Muraenidae	(Moray eels)	Uropterygius concolor	Pusi
Ophichthidae	(Snake eels)	Cirrimuraena tapeinopterus	Gatauli
		Muraenichthys macropterus	
		Yirrkala lumbricoides	
Chanidae	(Milkfish)	Chanos chanos	Ava; Avali'i
Hemiramphidae	(Halfbeaks)	Zenarchopterus dispar	
Kuhliidae	(Mountain basses)	Kuhlia marginata	Lalele
Teraponidae	(Crescent perch)	Therapon jarbua	Ava'ava
Apogonidae	(Cardinalfishes)	Apogon lateralis	Fo
Carangidae	(Trevallies)	Caranx melampygus	Malauli apamoana
-		Caranx papuensis	Malauli sinasama
Leiognathidae	(Ponyfishes)	Leiognathus equulus	Mumu
Lutjanidae	(Snappers)	Lutjanus fulvus	Tamala (toau)
Lethrinidae	(Emperors)	Lethrinus harak	Filoa-vai
Gerreidae	(Mojarras)	Gerres macrosoma	Matu
		Gerres ovena	Matu-Ina
Mullidae	(Goatfishes)	Mulloidichthys flavolineatus	Pasina (<10 cm). Vete
		Parupeneus indicus	Ta'uleia
		Upeneus vittatus	Ula'oa
Monodactylidae	(Monos)	Monodactylus argenteus	
Cichlidae	(Tilapia)	Oreochromis mossambica	Tilapia
Poecilidae	(Livebearers)	Poecilia sp. cf. mexicana	
Pomacentridae	(Damselfishes)	Abudefduf septemfasciatus	Mutu
		Chrysiptera notialis	Tu'u'u
Mugilidae	(Mullets)	Liza melinoptera	Moi (<5 cm), Poi (5-8 cm),
		Valamugil engeli	Aua (8-12 cm), Fuafua (12-15 cm)
		Valamugil seheli	Popoto (15-20 cm), Anae (>20 cm)
Eleotrididae	(Sleepers)	Ophiocara porocephala	
Gobiidae	(Gobies)	Glossogobius biocellatus	Mano'o
		Oxyurichthys ophthalmonema	
		Periophthalmus cantonensis	
		novae-guineaensis	
		Taenioides jacksoni	
		Yongeichthys nebulosus	
Acanthuridae	(Surgeonfishes)	Acanthurus xanthopterus	Pone (<15 cm), Palagi (>15 cm)
Tetraodontidae	(Pufferfishes)	Arothron manillensis	Sue

Samoan names are those from Anonyme (1991). Bold printing is given when used for several species or the whole family.

- Pierre THOLLOT -

Yamasaki et al. (1985) and Knudsen (1991) reported respectively 13 and 70 species in American Samoa mangroves. Although methods and duration of the samplings are not similar (one day beach seining for Yamasaki et al. (1985) and for Knudsen (1991) 6 months with unknown methods), the number of species recorded during in this survey can be considered as a good starting point for further investigations.

Mangrove fish studies have been held in the region (American Samoa, Fiji, New Caledonia, Vanuatu) and elsewhere in the Indo-Pacific. The relevant inventories have been compiled and compared with the checklists of the fishes from Samoa (Wass, 1984; Andrews & Holthus, 1989; Anonyme, 1991). A list of all fish which can potentially use the mangrove during a part of their life is given (Appendix I). A total of 216 species distributed amongst 61 families have a potential to be found in mangroves from Western Samoa. Most speciose families would be Carangidae (14 spp.), Apogonidae (11 spp.), Gobiidae (10 spp.) and Clupeidae (9 spp.). As gobies are usually a main component of the mangrove fish fauna (Thollot, 1992), the number of Gobiidae species could probably be much greater (about 30 to 40 species). If the species recorded in Vaiusu Bay and Sa'anapu-Sataoa were taken into account, global richness of the fish fauna would be 251 species and 65 families. Of course, some species are more likely to occur in samoan mangroves, because they have already been censused in American Samoa (44 spp.), than others recorded only in mangroves from remote countries (59 spp., coded + in appendix I). Furthermore, seven species have also a high probability in belonging to samoan mangroves, even if they have not been collected yet in Western Samoa nor American Samoa. These species have a wide distribution and occur both in mangroves from Fiji, New Caledonia, Vanuatu and other Indo-Pacific places. Such species are Hemiramphus far, Lutjanus argentimaculatus, Lutjanus fulviflamma, Plectorhinchus gibbosus, Platax orbicularis, Chaetodon auriga and Mugil cephalus (Appendix I).

Comparison of Sa'anapu-Sataoa and Vaiusu Bay sampling stations

Both areas show similar species richness. Twenty species have been recorded in both Sa'anapu-Sataoa and Vaiusu Bay. However, the two fish communities do not have the same species composition, qualitatively and quantitatively (Table 5). They share only 6 species. Most of these species are known to live in extremely diverse habitats, from clear to brackish polluted waters : *Chanos chanos, Therapon jarbua, Caranx papuensis, Upeneus vittatus* and *Liza melinoptera*.

 Table 5 : Comparison of the catch composition according to the sampling stations.

 N = Number of fish - W = Fresh weight (g) - AW = Average Weight (g).

ST = Sampling Technique (R:Rotenone, G:Gill nets)	- Species followed by * we	ere collected on both sampling stations.
---	----------------------------	--

Catch composition in Vaiusu Bay					Catch composition in Sa'anau-Sataoa				
Species	N	W	AW	ST	Species	N	W	AW	ST
Uropterygius concolor	3	41	13.67	R	Chanos chanos *	2	460	230.00	G
Cirrimura tapeinotus	5	80	16.00	R	Zenarchopterus dispar	6	53	8.83	R
Muraenichthys macropterus	6	15	2.50	R	Therapon jarbua *	48	5710	118.96	R
Yirrkala lumbricoides	1	5	5.00	R	Kuhlia marginata	10	220	22.00	R
Chanos chanos *	1	41	41.00	G	Apogon lateralis	2	14	7.00	R
Therapon jarbua *	68	635	9.34	R	Caranx melampygus	6	71	11.83	G+R
Caranx papuensis *	5	28	5.60	R	Caranx papuensis *	4	137	34.25	G+R
Leiognathus equulus	15	9	0.60	R	Lutjanus fulvus	4	125	31.25	R
Gerres macrosoma	3	4	1.33	R	Gerres ovatus	3	175	58.33	R
Upeneus vittatus *	3	19	6.33	R	Lethrinus harak	5	270	54.00	R
Oreochromis mossambica	1	48	48.00	R	Mulloides flavolineatus	4	405	101.25	R
Poecilia sp. cf. mexicana	1	5	5.00	R	Parupeneus indicus	1	640	640.00	R
Liza melinoptera *	705	1810	2.57	R+G	Upeneus vittatus *	1	165	165.00	R
Ophiocara porocephala	2	6	3.00	R	Monodactylus argenteus	1	65	65.00	F
Glossogobius biocellatus	2	6	3.00	R	Abudefduf septemfasciatus	1	135	135.00	F
Oxyurichthys ophthalmonema	16	18	1.12	R	Chrysiptera notialis	22	692	31.45	R
Periophthalmus cantonensis	1	1	1.00	R	Liza melinoptera *	31	3000	96 .77	R
Taenioides jacksoni	2	1	0.50	R	Valamugil engeli	69	139 1	20.16	G+R
Yongeichthys nebulosus	19	50	2.63	R	Valamugil seheli	3	420	140.00	R
Arothron manillensis	172	82	0.48	R	Acanthurus xanthopterus	2	335	167.50	R
Total	1031	2904		-	Total	225	14483	-	-

The fish fauna from Vaiusu Bay and Sa'anapu-Sataoa do not have the same community structure. In Vaiusu Bay, one species highly dominates the catch : *Liza melinoptera*. This species contributes from 69% (rotenone) to 94% (gill nets) of the sample. As a consequence, diversity indexes are low (Table 6). This latter observation is very significant of disturbed communities, probably because of the pollution of the area. In Sa'anapu-Sataoa, the most important species do not make more than 31% of abundance and 43% of weight. Diversity index values are greater than those of Vaiusu Bay, eveness values being close to 0.8 which suggests that the community is quite stable (Table 6).

 Table 6 : Ecological characteristics of Vaiusu Bay and Sa'anapu-Sataoa mangrove fish fauna.

 SR = Species Richness - H' = Diversity index - E = Eveness - the indexes (n and w).

			Gill net	s				Rotenor	ie	
Sampling station	SR	H'n	En	H'w	Ew	SR	H'n	En	H'w	Ew
Vaiusu Bay	2	0.310	0.310	0.281	0.281	19	1.654	0.389	2.174	0.512
Sa'anapu-Sataoa	7	2.524	0.899	2.299	0.819	17	2.998	0.734	2.702	0.661

The composition of the fish communities is closely related to the nature of the substrate, and to a lesser extent to other biological and ecological parameters (Thollot, 1992). In this study, it is obvious that there are many differences in the nature of the substrate between Sa'anapu-Sataoa (sandy to muddy sediment with large volcanic rocks suitable for algae and invertebrates) and Vaiusu Bay (heavily silted sediment with trapping of organic matter). As underlined previously, another factor has to be taken into account : the pollution of Vaiusu Bay (chemical analysis not performed).

Comparison of the sampling methods

Gill nets (70 m x 3 m, stretched mesh 40, 70 and 80 mm) and rotenone (a chemical ichthyocide) have been used. The most successfull method is undoubtly rotenone poisoning (cf. Table 5 and 6). Using rotenone 32 species were collected 17 species in Sa'anapu-Sataoa and 19 species in Vaiusu Bay, while only 8 species were netted, 7 species in Sa'anapu-Sataoa and 2 species in Vaiusu Bay (Table 7). The efficiency of the sampling methods to collect complementary components of the fish communities appears clearly. Gill nets catch few but large fishes (average weight from 6.0 to 167.0 g per fish). On the opposite, rotenone poisonings enable the collection of very small specimen, usually represented by large number of individuals, such as juveniles of *Liza melinoptera* and *Arothron manillensis*. The average weight of the fish sampled with rotenone ranges from less than 1.0 g to 640.0 g. About half of the species (46.9%) have an average weight less than 10.0 g. The collection of large specimen (*Parupeneus indicus* and some *Therapon jarbua*) is probably linked to the use of Sa'anapu-Sataoa area by inshore species foraging in mangrove chanels for food.

Thus, the rotenone has been the best method during this survey (Table 7). If the checklist of the mangrove fish fauna from Western Samoa needs to be completed in the future, this sampling technique cannot be omitted. This method is widely used in all exhaustive ichthyofauna study. However, in Western Samoa, traditionnal rules exist in some villages banning the use of chemical substances for fishing. This is supported by most Samoan governmental agencies. It is then difficult to imagine the Department of Environment and Conservation (DEC) using such substance. Furthermore, as rotenone is quite expensive (about 20 US \$ per litre), it is doubtfull that DEC could afford the cost of an extensive survey using this substance.

At first glance, the failure of the gill nets can easily be explained. First, tidal range is low in Western Samoa, less or equal to one metre. As there is less water entering the mangroves with the incoming tide, it is not easy for large and numerous species to invade the mangrove and be captured by the nets. Second, stratification of the water (fresh water above and salt water below) has been observed. Large pools and channels can provide temporary habitat to most fish. In Sa'anapu-Sataoa, the fish could hide among the stems of *Brugueira gymnorrhiza* roots, but also in crevices and under volcanic rocks. Second, the average size of the fish observed during the survey seems to be low. As the mesh used were quite large (40 mm and more), most fish were seen going through the net. Large fish also jumped over the floating line. Gill netting in Vaiusu Bay has been undertaken under bad weather conditions, this may explain the low species richness recorded (2 species, in fact 3 species because a specimen of *Therapon jarbua* has been lost). A main difficulty for the use of these nets is the amount of rubbish in the water (plastic bags, empty cans, and so on).

 Table 7 : Comparison of the catch composition according to the sampling techniques.

 N = Number of fish - W = Fresh weight (g) - AW = Average Weight (g).

 Sampling Station (S. Salaram States Weight Rev).

SS =	Sampling	Station	(S:Sa'anapu-Sata	a, V:Vaiusu Bay)	 Species follow 	ed by * were	e caught using b	oth techniques.
------	----------	---------	------------------	------------------	------------------------------------	--------------	------------------	-----------------

Catch composition of gill nettings					Catch composition of rotenone poisonings				
Species	N	W	AW	SS	SS Species		W	AW	SS
Chanos chanos	3	501	167.00	S+V	Uropterygius concolor	3	41	13.67	V
Caranx melampygus *	1	6	6.00	S	Cirrimuraena tapeinotus	5	80	16.00	v
Caranx papuensis *	2	89	44.50	S	Muraenichthys macropterus	6	15	2.50	V
Monodactylus argenteus	1	65	65.00	S	Yirrkala lumbricoides	1	5	5.00	V
Abudefduf septemfasciatus	1	135	135.00	S	Zenarchopterus dispar	6	53	8.83	S
Chrysiptera notialis	4	132	33.00	S	Therapon jarbua	116	6345	54.70	S+V
Liza melinoptera	17	800	47.06	V	Kuhlia marginata	10	220	22.00	S
Valamugil engeli	5	23 1	46.20	S	Apogon lateralis	2	14	7.00	S
					Caranx melampygus *	5	65	13.00	S
					Caranx papuensis *	7	76	10.86	S+V
					Leiognathus equulus	15	9	0.60	V
	1				Lutjanus fulvus	4	125	31.25	S
					Gerres macrosoma	3	4	1.33	V
					Gerres ovatus	3	175	58.33	S
					Lethrinus harak	5	270	54.00	S
a de la construcción de la constru					Mulloides flavolineatus	4	405	101.25	S
					Parupeneus indicus	1	640	640.00	S
					Upeneus vittatus	4	184	46.00	S+V
					Oreochromis mossambica	1	48	48.00	V
					Poecilia sp. cf. mexicana	1	5	5.00	V
					Chrysiptera notialis *	18	560	31.11	S
					Liza melinoptera*	719	4010	5.58	S+V
	1				Valamugil engeli *	64	1160	18.12	S
					Valamugil seheli	3	420	140.00	S
	ļ				Ophiocara porocephala	2	6	3.00	V
					Glossogobius biocellatus	2	6	3.00	V
					Oxyurichthys ophthalmonema	16	18	1.12	V
	1				Periophthalmus cantonensis	1	1	1.00	v
	1				Taenioides jacksoni	2	1	0.50	V
					Yongeichthys nebulosus	19	50	2.63	v
					Acanthurus xanthopterus	2	335	167.50	S
					Arothron manillensis	172	82	0.48	V
Total	34	1959) -	-	Total	1222	215428	-	-

The choice of an adequate sampling method is of primary importance for the monitoring of the fish communities which will be undertaken in the future. Using the knowledge from this field trip, some conclusions can be made and new perspectives arise. Gill nets should not be used unless with caracteristics different from those which were used in this survey, specially smaller mesh size. Rotenone cannot be employed too often at the same place, because it changes the community structure. Alternative fishing methods are needed. Fish traps which are too selective should not be used. Fyke nets and cast nets could be used, if available in Western Samoa.

Last but not the least, fishermen's knowledge should be used. A questionnaire has been settled. The enquiry should provide additional possibilities for DEC's staff to undertake environmental education focused on mangroves and their protection. The questionnaire is presented in Appendix II with recommendations and details on its fulfillment. It could give numerous qualitative and quantitative informations on various topics :

- the dependence of villagers on mangroves for fishing or other purposes;
- the fishing effort intensity;
- the catch of the fishermen;
- the use of edible fish.

-Western Samoa Mangrove Fish Survey - Final Report -

Biological data

Biological data (fork or total length, fresh weight, sex with maturation, stomach content) were recorded for most of the species censused. It provides a data base for further investigation in order to assess the use of the mangrove by the fish fauna during different parts of their life-cycle (Appendix III). More than 150 records (154) have been collected for 16 species (Table 8). As most of the work is macroscopical analysis, all the fish collected with gill nets were dissected (34 fish) while only 10% of the rotenone catch was analysed (120 fish). Most of the observations deal with length and weight measurements, data on the sexual maturity of 10 species were also recorded, the feeding habits of only 5 species being investigated (Table 8).

Table 8 : Abstract of the biological data base.n = number of fish observed, detailed for sex and feeding habits analysis.I = Immature - F = Female - M = Male.Percentages of food items are volumic percentages.

Species	n	Len (m	ngth m)	We (ight g)	s	Sex and exual maturity	Food and Feeding habits		
-		min	max	min	max	n	Data	n	Data	
Chanos chanos	3	135	275	41	385	3	3 I	1	Algae (100%)	
Zenarchopterus dispar	5	155	170	80	110					
Therapon jarbua	47	120	290	28	435	20	20 F 2-4			
Kuhlia marginata	10	85	140	10	45					
Caranx melampygus	1	8	5		6					
Caranx papuensis	2	140	150	42	47					
Mulloides flavolineatus	3	165	200	80	140	3	M3/2F4-5	3	Crabs (75%), Bivalves (12.5%), Worms (10%), Algae (2.5%)	
Parupeneus indicus	1	30)5	6	40	1	M 2	1	Crabs (50%), Bivalves (50%)	
Upeneus vittatus	1	20	05	1	65	1	F 2	1	Crabs (100%)	
Monodactylus argenteus	1	13	35	6	55					
Abudefduf septemfasciatus	1	14	45	1	35	1	F 4			
Chrysiptera notialis	21	100	115	26	47	17	8 M 1-3 / 9 F 3-4	2	Algae (100%)	
Liza melinoptera	48	135	250	35	210	25	I/16 M 1-3/			
							8F1-4			
Valamugil engeli	5	150	170	41	53					
Valamugil seheli	3	181	230	95	165	3	I			
Acanthurus xanthopterus	2	185	190	155	180	2	I			

Such biological data base is needed if one wants to define the nature and importance of the mangroves in terms of nursery areas for juveniles, breeding sites and feeding grounds for adults. The structure and the functionning of mangrove fish communities will be available. This information is of primary importance for a rational use of mangroves by decision makers. Furthermore, many biological data are necessary for the management of fisheries : biometry of commercial species, their population dynamics and definition of stock protection measures (minimal length, breeding periods, and so on).

THEORETICAL ADVICE

There is a wealth of documentation dealing with the characterization of biological communities. Synthetic indices exist, they can be very usefull in comparing sets of samples and, above all, monitoring fish communities. Three simple, easy to compute and to understand indices were selected :

- species richness, SR :

SR = number of species;

- species diversity, H', from Shannon's information theory (Shannon & Weaver, 1949) expressed in bit ("binary digit") :

$$SR
 H' = -\Sigma p_i (\log_2 p_i)
 i=1$$

where pi is the proportion of the ith species in the community of which species richness is SR, pi is estimated by the ratio qi/Q, the relative frequency of the ith species in the sample, with :

qi = abundance or weight of the ith species,

Q = total abundance or total weight in the sample;

- eveness, E, Pielou's index (Pielou, 1969), its calculation is derived from H':

 $E = H'/H'_{max} = H'/log_2 SR$

E ranges from 0 (one unique species in the sample) to 1 (equal distribution of the species). Thus, eveness values describe if the sample is heterogeneous. Usually, values below 0.80 are the expression of unbalanced communities.

These indices can be used in space or time comparisons using ANOVA, Student's t test or Wilcoxon-Mann-Whitney's w test. All informations relevant to these classical statistical tests are available in Sokal & Rohlf (1981) and Siegel & Castellan (1988). A brief example of the use of these indices has been given in Table 6.

Sheets for data collection, both catch composition and biological analysis, are provided in Appendix IV.

CONCLUSION

The Western Samoa mangrove fish survey has been realized and most proposed applications have been successfully performed. Thirty-five species have been censused and biological data were recorded. These informations enabled the realisation of a preliminary data base. Field trips, sampling technique experiments and theoretical advice have provided training for DEC's staff and will give the basic knowledge for a future monitoring of the mangrove fish fauna in Vaiusu Bay and Sa'anapu-Sataoa.

Further studies on mangroves from Western Samoa should be undertaken. This place is located at the eastern limit of distribution of indo-pacific mangroves. As *Rhizophora samoensis* is very close from *Rhizophora mangle*, it may represent a phytogeographical link between american and indo-pacific mangroves. Furthermore, attention should be focussed on the fish communities in Western Samoa. As mangroves and reefs are not extensive, the description of these fish fauna would be very helpful in understanding the functionning of the communities. Such findings would give major informations for the study of more complex tropical coastal ecosystems.

REFERENCES

- Andrews G.J. & Holthus P.F., 1989. Marine environment survey : proposed Aleipata Islands national park, Western Samoa. South Pacific Regional Environment Programme, South Pacific Commission, 68 p.
- Anonyme, 1986. Atlas of the South Pacific. Government printing office : Welligton (New Zealand), 48 p.
- Anonyme, 1991. A preliminary check list of the major species of fishes and other marine organisms in Western Samoa (Samoan/Scientific/English). FAO/UNDP. SAM/89/002. Field Report, 1, 17 p.
- Antheaume B. & Bonnemaison J., 1988. Atlas des îles et états du Pacifique Sud. GIP Reclus/Publisud : Montpellier (France), 126 p.
- Chapman V.J., 1976. Mangrove vegetation. J. Cramer : Vaduz (Liechtenstein), 447 p.
- Knudsen P., 1991. Personal communication to BioSystems Analysis Inc. published in : A comprehensive wetlands management plan for the islands of Tutulia and Aunu'u, American Samoa. Unpublished draft report.
- Liu S.L., 1992. Country report on Western Samoa. In (Nakamura T., ed.) : Integrated research of mangrove ecosystems in Pacific Islands region. Part 1. Proceedings seminar & workshop on integrated research of mangrove ecosystems in South Pacific Islands region. JIAM, Japan : 51-55.
- Nakamura T., 1992. Mangroves and their ecology and distribution in Western Samoa. In (Nakamura T., ed.): Integrated research of mangrove ecosystems in Pacific Islands region. Part 2. Reports survey on mangrove ecosystems in the Pacific Islands. JIAM, Japan : 314-320.
- Pearsall S.H. & Whistler W.A., 1991. Terrestrial ecosystem mapping for Western Samoa : summary, project report, and proposed national parks and reserves plan. South Pacific Regional Environment Programme / East-west Center, Environment and Policy Institute, 72 p.
- Pielou E.C., 1969. An introduction to mathematical ecology. Wiley-Interscience : New-York (USA), 286 p.
- Richmond D., 1992. Coastal morphology, shoreline stability and nearshore resources of Upolu, Western Samoa : notes to accompany 1:25,000 coastal morphology maps. SOPAC miscellaneous Report, 111, 12 p. + 4 maps.
- Sasaki Y., 1992. Mangrove vegetation in Western Samoa. In (Nakamura T., ed.) : Integrated research of mangrove ecosystems in Pacific Islands region. Part 2. Reports survey on mangrove ecosystems in the Pacific Islands. JIAM, Japan : 327-331.
- Shannon C.E. & Weaver W., 1949. The mathematical theory of communication. Urbana Illinois Press (USA), 117 p.

- Siegel S. & Castellan N.J.Jr., 1988. Nonparametric statistics for the behavioral sciences. Mc Graw-Hill : New York (USA), 399 p.
- Sokal R.R. & Rohlf F.J., 1981. Biometry. Freeman : New York (USA), 2nd edition, 859 p.
- Thollot P., 1992. Les poissons de mangrove du lagon sud-ouest de Nouvelle-Calédonie. Ecologie des peuplements. Relations avec les communautés ichtylogiques côtières. Thèse de l'Université d'Aix-Marseille II (France), 406 p.
- Tomlinson P.B., 1986. The botany of mangroves. The press syndicate of the University of Cambridge : Cambridge (United Kingdom), 413 p.
- Vodonaivalu S., undated. A botanical survey of the tidal forest (mangal) of Fiji, Tonga and Western Samoa. Report of the Institute of Marine Resources. University of South Pacific, Suva (Fiji), 68 p.
- Wass R.C., 1984. An annotated checklist of the fishes of Samoa. NOAA tech. Rep., SSRF-781, 43 p.
- Yamasaki G., Itano D. & Davis R., 1985. A study of and recommendations for the management of the mangrove and lagoon area of Nu'uuli and Tafuna, American Samoa, 99 p.

Appendix I : Putative checklist of Western Samoa mangrove fish.

This list has been prepared by comparing Wass (1984), Andrews & Holthus (1989) and Anonyme (1991) checklists of samoan fishes to those from mangroves in American Samoa (Yamasaki *et al.*, 1985; Knudsen, 1991), Fiji (Lal *et al.*, 1984), New Caledonia (Thollot, 1992), Vanuatu (David, 1985) and various countries from the Indo-Pacific (data from Thollot (1992)).

Samoan names are those from Anonyme (1991). Bold words are family or multi-species names.

The last column (Indo-Pacific) tells in which country the species has been recorded : AS = American Samoa, F = Fiji, NC = New Caledonia, V = Vanuatu, + = various countries from the Indo-Pacific.

Family	(English name)	Scientific name	Samoan name	Indo-Pacific
Carcharhinidae	(Grey sharks)	Carcharhinus leucas	Malie	NC +
		Carcharhinus limbatus		NC +
		Carcharhinus melanopterus	Apeape	NC
		Negaprion acutidens		NC +
		Trianodon obesus	Malu	F
Sphyrnidae (Hammerhead sharks)	Sphyrna lewini	Mata'italiga	NC
Rhynobatidae	(Guitarfishes)	Rhynchobatus djiddensis	5	+
Dasvatidae	(Stingravs)	Dasvatis kuhlii	Fai-tala, Fai-malie	FNC+
Myliobatididae	(Eagle rav)	Aetobatus narinari	Fai-pe-a, Fai-manu	v
Megalopidae	(Tarpons)	Megalops cyprinoides	Ana analagi, fa	FNC+
Albulidae	(Bonefishes)	Albula vulpes	Ava	V +
Anguillidae	(Freshwater eels)	Anguilla australis	Tuna	+
Muraenidae	(Moray eels)	Echidna nebulosa	Pusi	+
	(2.2020)	Echidna polyzona		+
		Gymnothorax meleagris	Panali'i Ai'iivai	v
		Gymnothorax thyrsoideus		NC
		Gymnothorax undulatus	Pusi-pulepule	NC
		Muraenichthys laticaudatus	a nos puropuro	+
		Siderea picta		NC
Ophichthidae	(Snake eels)	Cirrhimuraena playfairi	Gatauli	AS
	(,	Leiuranus semicinctus		NC
		Myrophis uropterus		NC
Congridae	(Conger eels)	Conger cinereus	Гані	ASNC
Clupeidae	(Herrings)	Amblygaster clupeoides	Pelupelu	AS
		Amblygaster sirm	P	NC
		Herklotsichthys quadrimaculatus	Pelupelu	AS NC +
		Sardinella albella	Pelupelu	+
		Sardinella fimbriata		+
		Sardinella gibbosa		+
		Sardinella melanura		+
		Spratelloides delicatulus	Poi, Nefu	NC +
		Spratelloides gracilis	Poi. Nefu	NC
Engraulidae	(Anchovies)	Stolephorus indicus	Nefu	AS NC +
	. ,	Thryssa baelama	Nefu	NC +
Plotosidae	(Eel catfishes)	Plotosus lineatus	Apoa	AS F NC V +
Synodontidae	(Lizardfishes)	Saurida gracilis		FNC+
		Saurida nebulosa		AS NC +
		Synodus variegatus		+
Antennariidae	(Frogfishes)	Antennarius commersoni	la'otale, nofu	NC +
		Antennarius nummifer		F
Hemiramphidae	(Halfbeaks)	Hemiramphus archipelagicus		AS
		Hemiramphus far		FNCV+

4

ą.

Ŧ

.

Family	(English name)	Scientific name	Samoan пате	Indo-Pacific
Hemiramphidae	(Halfbeaks)	Hyporhampus affinis		+
		Hyporhampus dussumieri		NC +
Belonidae	(Needlefishes)	Strongylura incisa		FNC+
	. ,	Tylosurus crocodilus		NC +
Atherinidae	(Silversides)	Atherinomorus lacunosus		NC +
	. ,	Atherion elymus		v
		Hypoathrina ovalaua		+
		Hypoatherina temmincki		+
Holocentridae	(Squirrel fishes)	Myripristis adjusta	Malau	AS
		Myripristis murdjan		AS
		Myripristis pralinia	Malau va'ava'a	AS
		Neoniphon argenteus		NC
		Neoniphon samarra	Malau tui	ASNC
		Sargocentron rubrum		NC
		Sargocentron tiereoides		AS
Fistulariidae	(Cornetfishes)	Fistularia commersonii	Taoto-ama, Taotao	F+
		Fistularia petimba		+
Syngnathidae	(Pipefishes,	Corytoichthys amplexus		NC
	Seahorses)	Doryramphus excisus		NC
		Hippichthys spicifer		+
		Hippocampus kuda		+
		Syngnathoides biaculeatus		NC +
Dactylopteridae	(Flying Gurnards)	Dactyloptena orientalis		F+
Scorpaenidae	(Scorpionfishes)	Pterois volitans	Ia'otale (< 8cm)	FV+
·		Scorpaenodes guamensis	nofu.	+
		Scorpaenodes kelloggi	i'aotale (> 8cm)	AS
		Scorpaenopsis macrochir		AS
Svnanceiidae	(Stonefishes)	Svnanceia verrucosa	Ia'otale	V +
Centropomidae	(Perchlets)	Ambassis miops		NC +
Serranidae	(Groupers)	Anyperodon leucogrammicus	1	NC +
		Cephalopholis argus	Gatala uli, Loi	+
		Epinephelus fuscoguttatus		F
		Epinephelus lanceolatus	Ata'ata -uli	NC +
		Epinephelus maculatus	Gatala-pule-ule	NC
		Epinephelus merra	Gatala pulepule	NC V
		Epinephelus microdon	Gatala nifoli'i	NC
		Epinephelus tauvina		FNC+
Grammistidae	(Soapfishes)	Grammistes sexlineatus	1	v
		Pogonoperca punctata		v
Plesiopidae	(Roundheads)	Plesiops coeruleolineatus		v
Kuhliidae	(Mountain Basses)	Kuhlia mugil	Safole	+
		Kuhlia rupestris	Sesele, inato	ASFNC+
Priacanthidae	(Bigeyes)	Priacanthus hamrur		F
Apogonidae	(Cardinalfishes)	Apogon exostigma	Fo	v
		Apogon fraenatus		V +
		Apogon fragilis		NC
		Apogon guamensis		NC
		Apogon leptacanthus		NC +
		Apogon novemfasciatus		AS
		Cheilodipterus quinquelineatus		NCV+
		Fowleria aurita		+
		Fowleria marmorata		+
		Fowleria variegata		NC
		Pseudamia polystigma		+

Gatala (<30 cm), 'Ata'ata (30-90 cm), Vaolo (>90 cm).

1

4

6

ľ

Family	(English name)	Scientific name	Samoan name	Indo-Pacific
Echeneidae	(Remoras)	Echeneis naucrates	Talitaliuli	+
Carangidae	(Trevallies)	Alectis ciliaris	2	+
-		Atule mate		+
		Carangoides caeruleopinnatus	Filu (Lalafulu)	+
		Carangoides dinema		+
		Carangoides ferdau		· +
		Caranx hedlandensis	5	+
		Caranx ignobilis	Sapo'anae	ASFNC+
		Caranx lugubris	Tafauli	ASNC
		Caranx sexfasciatus	Malauli matalapo'a	ASFNC+
		Gnathanodon speciosus		F NC +
		Megalapsis cordyla		+
1		Scomberoides lysan	Lai (lai)	ASFNC+
		Trachinotus baillonii		+
		Trachinotus blochii		FV+
Leiognathidae	(Ponyfishes)	Gazza minuta	Mumu	F NC +
		Leiognathus equulus	Mumu	ASFNC+
		Leiognathus fasciatus	Mumu	FNC+
Lutjanidae	(Snappers)	Lutjanus argentimaculatus	Mu, Palu	FNCV+
		Lutjanus biguttatus		+
		Lutjanus bohar	Mu	NC V
		Lutjanus fulviflamma		FNCV+
4		Lutjanus kasmira	Savane (Ta'ape)	+
		Lutjanus monostigma	Taiva	FV +
		Lutjanus rivulatus		F+
Gerreidae	(Mojarras)	Gerres argyreus	Matu	AS+
		Gerres kapas		+
		Gerres oblongus	Matu-lua	+
Haemulidae	(Grunts)	Plectorhinchus chaetodonoides	Misimisi	V
		Plectorhinchus gibbosus		F NC V +
		Plectorhinchus orientalis	Mutumutu	V
Lethrinidae	(Emperors)	Gymnocranius lethrinoides	Filoa-mu	NC
		Lethrinus nebulosus	Ulusa'o, mulogo	NC +
		Lethrinus olivaceus	5	F NC
		Lethrinus ramak	Lauloa	AS NC
		Lethrinus rubrioperculatus	Filoa pa'o'omumu	NC
		Lethrinus variegatus		+
Nemipteridae	(Monocle breams)	Pentapodus caninus	Tivao-sugale	+
		Scolopsis trilineatus	Tivao	AS NC
Mullidae	(Goatfishes)	Parupeneus barberinus	Tusia	AS NC
		Parupeneus multifasciatus		AS
		Upeneus tragula		NC V +
Kyphosidae	(Rudderfishes)	Kyphosus bigibbus	Nanue	AS +
		Kyphosus cinerascens		AS
	<i></i>	Kyphosus vaigiensis	Nanue	F
Ephippididae	(Spadefishes,	Drepane punctata		NC +
	Battishes)	Platax orbicularis		FNCV+
Chaetodontidae	(Butterflyfishes)	Chaetodon auriga	Si'u, Si'usamasama	FNCV+
		Chaetoaon ephippium	Tititifi-tuauli	F
1		Chaetodon Kleinii		+
		Chaetodon iunula	Tititifi-laumela	+
		Chaetodon mertensu	Tuntuti-sega'ula	+
1		p naetoaon vagabundus	Titititi-matapua'a	FV+

2 3 Lupo (<8 cm), Lupota (8-20 cm), Malauli (20-50 cm), Ulua (50-80 cm), Sapo'anae (>80 cm).

Mata'eleele (<15 cm), Ulamalosi (15-30 cm), Flica (>30 cm).

.

*

Ŧ

,

Family	(English name)	Scientific name	Samoan name	Indo-Pacific
Chaetodontidae	(Butterflyfishes)	Heniochus acuminatus	Laulaufau-laumea	NC +
Pomacentridae	(Damselfishes)	Abudefduf sexfasciatus	Mamo	AS+
		Abudefduf sordidus	Mutu	+
		Abudefduf vaigiensis	Mamo	+
		Chrysiptera biocellata	Tu'u'u-mo'o	NC
		Dascyllus trimaculatus	Tu'u'u-pulelua	· +
		Plectroglyphidodon lacrimatus	-	AS
		Pomacentrus pavo	Tu'u'u-segasega	AS
		Stegastes nigricans	Tu'u'u-moi	v
Mugilidae	(Mullets)	Liza macrolepis	Апае	NC V +
		Liza melinoptera		AS NC +
		Liza subviridis	Anae	F+
		Liza vaigiensis	Fuitogo, afa, anaeafa	ASFNCV+
		Mugil cephalus	Anae	FNCV+
Sphyraenidae	(Barracudas)	Sphyraena barracuda	Saosao	ASFNCV+
		Sphyraena flavicauda	Sapatu	NC +
]		Sphyraena forsteri	Sapatu	FNC
		Sphyraena genie	-	AS +
Polynemidae	(Threadfins)	Polynemus plebeius		F +
		Polynemus sexfilis		AS+
Labridae	(Wrasses)	Cheilinus chlororous	Lalafi-matapua'a	AS
1		Cheilo inermis	Sugale	+
		Halichoeres biocellatus		NC
		Halichoeres trimaculatus		NC
		Hemigymnus melapterus		NC
		Labroides dimidiatus	Sugale-mo'otai	+
		Stethojulis strigiventer		ASNC
Scaridae	(Parrotfishes)	Leptoscarus vaigiensis	4	+
		Scarus ghobban	Fuga-alova	NC +
Blenniidae	(Blennies)	Istiblennius edentulus	Mano'o	NC +
		Petroscirtes mitratus		NC
Eleotrididae	(Sleepers)	Bostrychus sinensis		V +
		Eleotris fusca		NC V +
		Eleotris melanosoma		+
Gobiidae	(Gobbies)	Amblygobius nocturnus	Mano'o	NC
		Amblygobius phalaena		NC +
		Asterropteryx semipunctatus		NC
		Bathygobius fuscus		+
1		Cryptocentrus lutheri		NC
		Exyrias puntang		NC +
		Istigobius ornatus		NC +
		Oplopomus oploplomus		NC
		Periophthalmus koelreuteri		+
		Ptereleotris microlepis		NC
Acanthuridae	(Surgeonfishes,	Acanthurus mata	3	NC +
	Unicornfishes)	Acanthurus triostegus	Manini	AS +
		Naso unicornis	Ume-isu	NC
Siganidae	(Rabbitfishes)	Siganus argenteus	Loloa,Ofe'ofe,Malava	+
		Siganus fuscescens	Lo	ASV+
		Siganus spinus	Anefe, pa'ulu	ASFV+
	A A A A	Siganus vermiculatus		F+
Scombridae	(Mackerels)	Rastrelliger brachysoma	Ga	F+
		Rastrelliger kanagurta		ASV+

⁴ Fuga, Fugamea (reddish species), Fugausi (greenish species), Laea (20-50 cm), Galo (>50 cm). Pone (<15 cm), Palagi (>15 cm).

٠

ì

١.

I

4

Family	(English name)	Scientific name	Samoan name	Indo-Pacific
Bothidae	(Lefteye flounders)	Bothus mancus		AS
	-	Bothus pantherinus		FNC+
Balistidae	(Triggerfishes)	Aluterus scriptus	Ume-aleva, falala	+
		Cantherines pardalis	Pa'umalo	+
		Monacanthus chinensis		+
		Rhinecanthus aculeatus	Sumu-uo-uo	· +
Ostraciidae	(Trunkfishes)	Lactoria cornuta	Moamoa-ulutao	+
		Ostracion cubicus	Moamoa	+
Tetraodontidae	(Puffers)	Arothron hispidus	Sue-vaolo	NC V +
		Arothron immaculatus	Sue-va'a	F +
		Arothron nigropunctatus	Sue-uli, Sue-lega	+
		Arothron stellatus	Sue-gatala, sue-va'a	+
		Canthigaster valentini	Sue	+
Diodontidae	(Porcupinefishes)	Diodon hystrix	Tauta	NC

Sheet number :	TRADITIONAL USE OF MANGROVES / FISHING ACTIVITIES QUESTIONAIRE Department of Land, Surveys and Environment - Division of Environment and Conservation
Fishing in mangroves ? Yes	No Where the second sec
Number of daily hours fishing	In mangroves.: On reefs : Elsewhere : Location :
Access to mangroves : on foot	by boat Alone ? Yes No Number of people :
Equipment used ? Spears	Nets Lines Traps Chemical Other :
Number of day fishing per week \ldots	Average daily catch : English (Samoan) Juveniles Sub-Adults Adults Total (Nb) Mullet (Ange)
Number of hour fishing per day :	Milkfish (Ava)
Number of species collected daily,:	Mountain Bass (Lalele/Salele) Trevallies (Lal/Malauli/Sapo'anae) Snappers (Tamala)
Number of fish collected daily	Emperors (Filoa/Ulusa'o) Mojarras (Matu)
Weight of fish collected daily :	Goatfishes (Pasina/Tusia/Ta'uleia)
Locally eaten Sold	Bartered
Other use of mangroves : Fuelwood Other :	Mud Crabs Bivaives Dumping Sewage Medecine Tanin Honey
Fulfill this sheet with available inform	nation Additional notes :
Tick for a positive answer	· · · · · · · · · · · · · · · · · · ·
Use only data from the fisherman	,

.

ð

Appendix II : Questionaire for traditional fishing activities in Western Samoa mangroves

- Pierre THOLLOT -

Caution about the enquiry

The above questionaire have to be fulfilled, with caution and accuracy. The value of the data collected is closely related to this critical point. As the questionaire is quite long (6 topics : 25 questions), it is suggested that the respondent must be in a very receptive condition. In other words, the people undertaking the questionaire have to win the fisherman's trust. Of course, the questionaire will be DEC's property and DEC has to assure the fisherman that the use of the data is stricly restricted to fishery and environmental purposes. I do not think that DEC can undertake a long term enquiry and come back regularly in a given place to submit the questionaire. As a consequence, quantitative data on fishing effort and catch analysis should be likely estimations. The questioner must collect average values which take into account long term variations. Furthermore, in order to establish the checklist of mangrove fish, this questionaire includes a catch composition table which is very incomplete (still usefull to assess the distribution of juveniles, sud-adults and adults). It may be more clever to focus attention on one renowned fisherman, or more, for each village, to talk with him and to show him pictures of fishes and the potential checklist which has been provided (251 species).

Sheet content and fulfillement of the questionnaire

The questonaire can de divided in 6 main topics :

- Questionaire identification (1 question);
- General information (4 questions);
- Fishing effort (11 questions);
- Catch analysis (4 questions);
- Use of the finfish resource (3 questions);
- Miscellanous and additional informations (2 questions).

Some questions are very simple, other are much more difficult to answer. In such case, it needs all questioner's skills. Two kinds of questions are submitted :

- those which are answered by YES or NO (qualitative data);
- those which are answered by an information (qualitative or quantitative data).
- Two kinds of answers are proposed :
 - a tick in the appropriate box (qualitative data);
 - a sentence (qualitative data) or a number, be sure to use the correct unity (quantitative data)

Ouestionaire identification

1) Sheet number : Each sheet must have a specific number, which can be numerical or alphanumerical, in order to make the computing of the data, the checking of errors, and so on, easier. The choice of the encoding has to be made by DEC in relation with its computer system.

General information

- 2) Date : Date of submitting the questionaire. Use dd/mm/yy, as usual.
- 3) Location : Name of the place or village where the fisherman lives. It can be usefull to mention the name of the island and if the village is part of a district or whatever.
- 4) Questioner : Name of the people from DEC asking the questionaire to the fisherman.
- 5) Respondent : Name of the fisherman responding to the questionaire and eventually his social status and usual work (not mandatory).

Fishing effort

- 6) Fishing in mangroves ? : The answer must be YES or NO. Tick the appropriate case. If the answer is NO go to Other use of mangroves section (24). If the answer is YES go to the next question.
- 7) Where ? Indicate the name of the mangrove stand where the fisherman uses to go fishing.
- 8) Number of daily hours fishing in mangroves, on reefs, elsewhere ? Give average values. At this step of the questionaire, it is very important to help the fisherman to estimate this quantitative information. It is stated that usually reefs are the main fishing places.

9) Location : If a fishing activity is detected elsewhere than mangroves or reefs, indicate in which kind of ecosystem (outer reef slopes, seagrass beds, and so on).

1

.

- 10) Access to mangroves : Tick the appropriate answer on foot or by boat. If it is a powered boat get the power of the engine.
- 11) Alone ? According to the number of people fishing, check YES or NO.

12)Number of people : Indicate the relevant information.

- 13) Equipment used : Tick the appropriate answer. The use of chemicals for fishing is usually prohibited. However, it is possible that in some places they are still in use. Dynamite fishing, which is a very destructive method, should not be usual in mangroves.
- 14) Other : Indicate the name of the fishing gear (cast net, fyke net, tangle net, dynamite, and so on).

15)Number of day fishing per week : Give an average value on a yearly basis.

16)Number of hour fishing per day: Give an average value on a weekly basis.

Catch analysis

- 17)Number of species collected daily : Give an average value on a daily basis.
- 18)Number of fish collected daily : Give an average value on a daily basis.
- 19) Weight of fish collected daily : Give an average value on a daily basis.
- 20) Catch composition table : A part of the table asks for qualitative data, the other one for quantitative data. The first column is the average daily catch composition, names of the species are given in english and saoman.

Qualitative data : The questioner must try to know for each species, or group of species, if juveniles, sub-adults or adults are caught by the fisherman. Indicate the relevant information by any symbol in columns 2-4, "+" or "x" are suggested.

Quantitative data : Try to estimate the average numerical composition of the catch, on a daily basis (last column).

Others : Get both qualitative and quantitative informations if an additional fish species is caught by the fisherman. Write the name of the species in the *Additional notes* section (25). If there are different additional species (more than one), only quantitative data must be collected. Eventually, explicit juveniles, sub-adults or adults for each additional species in the *Additional notes* section (25).

Use of the finfish resource

- 21)Locally eaten Tick for a positive answer.
- 22) Sold Tick for a positive answer.
- 23) Bartered Tick for a positive answer.

Miscellanous and additional informations

24) Other use of the mangroves : Tick the appropriate answer and explicit which different use is made.

25)Additional notes : All relevant additional data can be writen in this section.

Write the name and the life-stage (juveniles, sub-adults, adults) of the species caught in the mangroves which are not in the table from the catch analysis (20).

Other informations, like the sale price, the exchange value of the fish bartered and the proportion of the fish eaten, sold and bartered must be estimated within the use of the resource sections (21-23).

If other uses of the mangroves are performed (any positive answer from section 24), try to know whether it is only in a subsistence way, in the other case, be as explicit as possible.

Finally, the questioner is supposed to make an evaluation of the quality of the answers from the respondent : a credibility rate. This point requires some experience, that is one of the reasons why it is suggested that the number of questioners should be limited. Such evaluation must be made as soon as possible after each talk.

NOTE: It is likely that average estimations will not be available from the fishermen. It is then necessary to collect the information from the day before the questionaire. In such case, questions #6 - 20 have to be modified: *Fishing in mangrove yesterday*? and so on.

Appendix III : Biological data base of Western Samoa mangrove fishes. Modified from ORSTOM biological data base (> 39,000 entries)

Legend :

ž

Ŧ

- nd : DATE = Date of the sampling HB = Time at the begining of the sampling HE = Time at the end of the sampling LONG = Longitude LAT = Latitude Z = Depth (m) S = Sampling (G=Gill net, R=Rotenone) SPECIES = Species L = Fork length (mm) W = Fresh weight (g)
- S = Sex (M=male, F=Female, I=Immature)
 M = Sexual maturity index (cf. Table 3)
 GW = Fresh weight of the gonads (g)
 F1 = First food item
 % = Volumic percentage of the first food item
 F2 = Second food item
 % = Volumic percentage of the second food item
 F3 = Third food item
 % = Volumic percentage of the third food item
 F4 = Fourth food item
 - % = Volumic percentage of the fourth food item

DATI	E HB	HE	LONG	LAT	Z	S Species	L	W	S	Μ	GW	F1	%	F2	%	F3	%	F4	%
Sa'anap	ou-Sata	oa Gil	1 Nets																
28 11 9	92 1100	1600	171520	13590	2	G Chanos chanos	275	385	I			Alg	99						
28 11 9	92 1 1 0 0	1600	171520	13590	2	G Chanos chanos	170	75	I			•							
28 11 9	92 1 1 0 0	1600	171520	13590	2	G Valamugil engeli	170	53											
28 11 9	92 1100	1600	171520	13590	2	G Valamugil engeli	150	41											
28 11 9	92 1100	1600	171520	13590	2	G Valamugil engeli	165	51											
28 11 9	92 1 1 0 0	1600	171520	13590	2	G Valamugil engeli	150	44											1
28 11 9	92 1100	1600	171520	13590	2	G Valamugil engeli	160	42											
28 11 9	92 1100	1600	171520	13590	2	G Caranx melamoyous	85	6											
28 11 9	92 1 1 0 0	1600	171520	13590	2	G Abudef, septemfasciatus	145	135	F	4									
Sa'anar	nu-Sata	na Gil	l Nets		-	••••••••••••••••••••••••••••••••••••••	- 10	100	-	·									
28 11 9	92 1400	1500	171515	13590	2	G Monodactvlus argenteus	135	65											
28 11 9	92 1400	1500	171515	13590	$\overline{2}$	G Caranx papuensis	150	47											
28 11 9	92 1400	1500	171515	13590	$\overline{2}$	G Caranx papuensis	140	42											
28 11 9	92 1400	1500	171515	13590	2	G Chrysiptera notialis	120	41											
28 11 9	92 1400	1500	171515	13590	2	G Chrysiptera notialis	110	30											
28 11 9	92 1400	1500	171515	13590	2	G Chrysiptera notialis	110	34											
28 11 9	92 1400	1500	171515	13590	2	G Chrysiptera notialis	110	27											
Sa'anar	ou-Sata	oa Ro	tenone																
1 12	92 1030	1330	171522	13590	2	R Parupeneus indicus	305	640	м	2		Cra	50	Biv	50				
1 12 9	92 1030	1330	171522	13590	2	R Upeneus vittatus	205	165	F	2		Cra	99						
1 12 9	92 1030	1330	171522	13590	2	R Mulloides flavolineatus	200	140	F	4		Cra	99						
1 129	92 1030	1330	171522	13590	2	R Mulloides flavolineatus	195	115	F	5		Ale	10	Riv	50	Wo	40		
1 129	92 1030	1330	171522	13590	2	R Mulloides flavolineatus	165	80	м	3		Cra	99						
1 129	92 1030	1330	171522	13590	2	R Acanthurus xanthopterus	190	180	I	-									
1 12 9	92 1030	1330	171522	13590	2	R Acanthurus xanthopterus	185	155	T										
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	130	32	-										
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	140	45											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	120	25											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	120	26											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	85	10											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	90	11											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	100	16											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	105	16											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	110	20											
1 12 9	92 1030	1330	171522	13590	2	R Kuhlia marginata	105	16											
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	105	32	М	3		Alg	99						
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	115	47	F	4		0							
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	115	36	M	1									
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	100	27	M	2		Ale	99						
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	105	30	F	4		-0							
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	105	28	F	3									
1 12 9	92 1030	1330	171522	13590	2	R Chrysiptera notialis	110	33	F	4									
				10070		it on jupici a noticula	110		1								_		

4

÷

.

i.

\$

ÿ

DATE	HB H	E LONG	LAT	Z	S Species	L	W	S	M	GW	F1	%	F2	%	F3	%	F4	%
1 12 92 1	103013	30 171522	13590	2	R Chrysiptera notialis	110	30	М	2									
1 12 92 1	103013	30 171522	13590	2	R Chrysiptera notialis	105	28	М	2									1
1 12 92 1	1030 13	30 171522	13590	2	R Chrysiptera notialis	105	28	F	3)
1 12 92	1030 13	30 171522	13590	2	R Chrysiptera notialis	105	27	М	1									ľ
1 12 92 1	1030 13	30 171522	13590	2	R Chrysiptera notialis	105	30	М	1									ľ
1 12 92 1	1030 13	30 171522	13590	2	R Chrysiptera notialis	105	29	F	3						_			
1 12 92	103013	30 171522	13590	2	R Chrysiptera notialis	115	42	F	4									
1 12 92 1	103013	30 171522	13590	2	R Chrysiptera notialis	105	26	F	4									
1 12 92 1	103013	30 171522	13590	2	R Chrysiptera notialis	110	33	Μ	2									
1 12 92 1	103013	30 171522	13590	2	R Chrysiptera notialis	105	30	F	4									
1 12 92 1	103013	30 171522	13590	2	R Valamugil seheli	230	165	I										
1 12 92	103013	30 171522	13590	2	R Valamugil seheli	225	160	I										
1 12 92	103013	30 171522	13590	2	R Valamugil seheli	185	95	Ι										
1 12 92 1	103013	30 171522	13590	2	R Zenarchopterus dispar	155	80											
1 12 92 1	1030 13	30 171522	13590	2	R Zenarchopterus dispar	170	100			•								i
1 12 92 1	1030 13	30 171522	13590	2	R Zenarchopterus dispar	165	90											
1 12 92 1	103013	30 171522	13590	2	R Zenarchopterus dispar	170	110											
1 12 92 1	103013	30 171522	13590	2	R Zenarchopterus dispar	170	100											
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	220	175	F	4									
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	235	205	F	2									
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	200	155											
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	205	145											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	200	150											
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	175	89											
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	160	72											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	165	73											
1 12 92 1	103013	30 171522	13590	2	R Therapon jarbua	115	26											(sum
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	175	83											
1 12 92	1030 13	30 171522	13590	2	R Therapon jarbua	125	36											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	140	44											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	140	46											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	140	47											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	200	145											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	185	105											1
1 12 92	1030 13	30 171522	13590	2	R Therapon jarbua	185	115											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	195	130											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	195	125											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	190	130											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	120	28											
1 12 92	103013	30 171522	13590	2	R Therapon jarbua	160	75											
1 12 92	103013	30 171522	13500	2	R Therapon jarbua	200	13	R	2									
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	220	375	F	1									
1 12 02	103013	30 171522	13500	2	P Therapon jarbua	230	105	L.	2									l
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	223	205	E.	2									
1 12 02	103013	30 171522	12500	2	R Therapon jarbua	105	125	ь. Г	2									
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	215	165	ь. Б	2 A									
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	210	150	F										
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	100	115	E.	+ 2									1
1 12 02	103013	30 171522	13200	2	R Therapon jarbua	175	100	F.	2									
1 12 02	103013	30 171522	13500	2	R Therapon jarbua	120	06	1	2									
1 12 02	103013	30 171522	13500	2	R Therapon jarhua	170	90 84	E I	2									
1 12 02	103013	30 171522	13500	2 2	R Theranon jarhua	1/0	04 AA	1,	3									
1 12 02	103013	30 171522	13200	2	R Therapon jarbua	120	-+0 20											
1 12 02	102013	30 171522	13200	2	R Therapon jarbua	120	105	c	2									
1 12 02	103013	30 171522	12500	2	R Therapon jarbua	220	105	r P	2									
1 12 92	103013	30 171522	13200	2	R Therapon jarbua	220	160	г Г	2									
1 12 02	103012	30 171522	12500	2	R Therapon jarbua	200	125	r F	2									
1 12 02	102012	30 171522	13200	2	R Therapon jarbua	200	122	r D	2 A									
1 12 92	102013	30 171522	13200	2	D Therapon jarbua	200	125	17 177	4									
1 12 92	103013	30 171522	13500	2	R Therapon jarbua	200	120	L,	د									
1 12 92	102012	30 171322	12500	2	R Therapon jarbua	145	7/U											
1 12 92	1020 12	30 171522	12500	2	R Therapon jurbua	103	00 62											
1 12 72	102013	20 111377	12220	- Z	K i nerupon jaroua	122	05											

8

i

*

DATE HB HE LONG	LAT	Z	S Species	L	W	S	M	GW	F1	%	F2	%	F3	%	F4 (16
1 12 92 1030 1330 171522	13590	2	R Therapon jarbua	170	93											
1 12 92 1030 1330 171522	13590	2	R Therapon jarbua	150	56											
1 12 92 1030 1330 171522	13590	2	R Therapon jarbua	130	41											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	215	140	М	3									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	225	165	F	4									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	250	210	F	3									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	225	150	•	5						-			
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	210	130	м	2									
1 12 92 1030 1330 171522	13590	$\tilde{2}$	R Liza melinoptera	210	135	F	Ĩ									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	190	100	•	-									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	190	110											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	200	115	м	3									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	190	115	F	2									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	200	125	м	3									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	190	105		5									
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	78											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	165	58											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	175	71											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	89											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	155	89											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	165	58											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	175	69											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	170	64											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	160	55											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	155	46											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	185	84											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	200	100											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	79											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	185	84											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	175	68											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	78											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	80											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	185	82											
1 12 92 1030 1330 171522	13590	2	R Liza melinoptera	180	76											
Vaiusu Bay Gill Nets																
3 12 92 1200 1300 171463	13494	2	G Chanos chanos	135	41	Ι										
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	160	72	F	3									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	155	52	F	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	155	50	I										
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	155	51	М	2									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	140	42	М	2									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	145	42	М	2									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	145	39	М	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	165	69	F	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	160	56	М	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	150	49	М	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	150	49	Μ	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	135	37	М	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	140	38	М	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	140	41	Μ	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	140	35	Μ	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	140	40	M	1									
3 12 92 1200 1300 171463	13494	2	G Liza melinoptera	135	37	F	1									1

- Pierre THOLLOT -

Appendix IV : Proposed models for data collection sheets. Each sheet should be be in a A4 format.

Catch composition sheet model

DATE :	BEGINING HOUR :	ENDING HOUR :	DURATION :
LONGITUDE :	LATITUDE :	DEPTH :	FISHING GEAR :
NB OF SPECIES :	NB OF FISH :	TOTAL WEIGHT :	

Species	Code	Number	Number Weight (g)				
1	1	I.	I	1			
				1			
1	1	1	1	1			
1		1	1	l I			
	1						

Biological analysis sheet model

DATE :

BEGINING HOUR :

ENDING HOUR :

۵

1

LONGITUDE :

LATITUDE :

DEPTH :

FISHING GEAR :

Species	Code	L (mm)	W (g)	S	SM	GW	F1	%	F2	%	F3	%	F4	%
														\vdash
					1									1 1
1														
1		1				1		1						
1	l	1 1	1		1									1 1

Where: Species can be coded;

L is fork lenght in mm; W is fresh weight in g;

S is sex (male, female or immature)

SM is sexual maturity index as defined in table 3;

GW is the weight of the gonad;

F1 is the first food item;

% is the volumic percentage of the first food item;

F2 is the second food item;

% is the volumic percentage of the second food item; F3 is the third food item;

% is the volumic percentage of the third food item; F4 is the fourth food item;

% is the volumic percentage of the fourth food item.

Centre ORSTOM de Nouméa 8.P. AS Nouméa Cédex Nouvelle Calédonie © 1993