Murine norovirus-1 cell entry is mediated through a non-clathrin, non-caveolae, dynamin and cholesterol dependent pathway

Andreas Gerondopoulos 1,3, Terry Jackson 2, Paul Monaghan 2,4 Nicole Doyle 1 and Lisa O. Roberts 1*

1 Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
2 Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
3 Present address: University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK
4 Present address: Australian Animal Health Laboratory, 5, Portarlington Road, Geelong VIC 3220, Australia

*Author for correspondence. Tel: 44 1483 686499; Fax: 44 1483 300374; e-mail: l.roberts@surrey.ac.uk

Running title: Murine norovirus-1 cell entry

Keywords: norovirus, endocytosis, clathrin, dynamin, cholesterol

No. words in summary: 225
No. words in text: 5451
No. figures: 6
For many viruses, endocytosis and exposure to the low pH within acidic endosomes is essential for infection. It has previously been reported that FCV uses clathrin-mediated endocytosis for entry into mammalian cells. Here we report that infection of RAW264.7 macrophages, by the closely related murine norovirus-1, does not require the clathrin pathway, as infection was not inhibited by expression of dominant-negative Eps15 or by knock down of the AP-2 complex. Further, infection was not inhibited by reagents that raise endosomal pH. RAW264.7 macrophages were shown not to express caveolin, and flotillin depletion did not inhibit infection, suggesting that caveolae and the flotillin pathway are not required for cell-entry. However, MNV-1 infection was inhibited by methyl-β-cyclodextrin and the dynamin inhibitor, dynasore. Addition of these drugs to the cells after a period of virus internalisation did not inhibit infection, suggesting the involvement of cholesterol sensitive lipid-rafts and dynamin in the entry mechanism. Macropinocytosis was shown to be active in RAW264.7 macrophages (as indicated by uptake of dextran) and could be blocked by EIPA, which is reported to inhibit this pathway. However, infection was enhanced in the presence of EIPA. Similarly, actin disruption, which also inhibits macropinocytosis, resulted in enhanced infection. These results suggest that macropinocytosis could contribute to virus degradation or that inhibition of macropinocytosis could lead to the up-regulation of other endocytic pathways of virus uptake.
Introduction

The Caliciviridae are divided into four genera; Vesivirus, Lagovirus, Sapovirus and Norovirus. The human noroviruses are the most common cause of acute viral gastroenteritis, especially in industrialised countries (Lopman et al., 2003); there is currently no treatment or vaccine for these viruses. In addition, there is still no routine tissue culture system for the propagation of human noroviruses, but the recent discovery of murine norovirus-1 (MNV-1) has provided an efficient model system for the study of norovirus replication, as this virus replicates efficiently in murine macrophages and dendritic cells (DCs) (Karst et al., 2003; Wobus et al., 2004). MNV-1 is highly prevalent in laboratory mice and has been shown to be lethal to mice with impaired innate immunity (Hsu et al., 2006; Karst et al., 2003; Muller et al., 2007).

Noroviruses are non-enveloped and contain a single-stranded RNA genome of about 7.3 kb, which is linked to the viral VPg protein at the 5’ end and is polyadenylated at the 3’ end (Karst et al., 2003; Wobus et al., 2004). The genome is organised into 4 open-reading frames (ORF1-4). ORF-1 encodes the non-structural proteins whereas ORF-2 and ORF-3 encode structural proteins (Sosnovtsev et al., 2006). ORF-4 was recently identified within the MNV-1 genome and encodes a single protein of unknown function (Thackray et al., 2007).

For many viruses, infection requires virus uptake by endocytosis. A number of different endocytic pathways have been identified in mammalian cells. Broadly, these are divided into clathrin-mediated endocytosis and clathrin-independent endocytosis (CIDE) pathways which include caveolin-dependent endocytosis (or caveolae-mediated endocytosis) and a number of caveolin-independent pathways such as macropinocytosis,
and the flotillin-dependent and CLIC/GEEC (clathrin-independent cargos/GPI-AP-enriched early endosomal compartment) pathways (Glebov et al., 2006; Marsh & Helenius, 2006; Miaczynska & Stenmark, 2008). CIDE pathways show different requirements for cellular proteins such as dynamin, flotillin and small GTPases (Glebov et al., 2006; Marsh & Helenius, 2006; Miaczynska & Stenmark, 2008). Although each endocytic pathway was originally thought of as being distinct, it is now clear that they can overlap considerably and vesicles derived from CIDE can fuse with vesicles derived from the clathrin-dependent pathway (Doherty & McMahon, 2009).

Viruses can exploit CME and CIDE for entry into cells (Marsh & Helenius, 2006). Further, a number of viruses have been shown to utilize more than one pathway for internalization. For example, influenza virus has been shown to utilize both CME and a CIDE pathway for infection (Rust et al., 2004) and SV40 can use at least two distinct lipid raft-mediated endocytic pathways for uptake (Damm et al., 2005; Pelkmans et al., 2001; Pelkmans et al., 2002).

Currently, little is known of the mechanisms used by noroviruses to bind and enter cells. Recently, it was shown that feline calicivirus (FCV) uses junctional adhesion molecule A (JAM-A) as an attachment receptor (Makino et al., 2006). In addition, FCV has been shown to bind to 2,6-sialic acid (Stuart & Brown, 2007), which could serve as a co-receptor for infection. Also, FCV is known to be internalised by CME as infection is inhibited by expression of dominant-negative mutants of proteins (Eps15 and Rab5) that are normally involved in clathrin-mediated endocytosis (Stuart & Brown, 2006).

MNV-1 replicates efficiently in macrophages and dendritic cells (Wobus et al., 2004) and recently sialic acid was identified as a cellular receptor for MNV-1 on the
mouse macrophage cell line, RAW264.7 cells (Taube et al., 2009). However, in contrast to FCV, a recent report (Perry et al., 2009) showed that MNV-1 infection of RAW264.7 cells and primary DCs is pH-independent, suggesting that the entry pathway is clathrin independent. Here, we have investigated the cell entry mechanism used by MNV-1 to infect RAW264.7 cells. Our results suggest that MNV-1 entry can occur via a pathway that is clathrin- and caveolae-independent but requires dynamin and cholesterol.

Results

MNV-1 infection of RAW 264.7 cells is clathrin-independent

As FCV is closely related to MNV-1 and has been shown to utilize CME for entry into cultured cells, we determined if MNV-1 also utilizes this same pathway to infect RAW264.7 cells. Eps15 is a molecular scaffold protein which associates with both the AP-2 adaptor protein complex (Benmerah et al., 1996; Benmerah et al., 1995; Iannolo et al., 1997) and epsin 1 (Chen et al., 1998), and is required for CME of transferrin. RAW264.7 cells were transfected to express a dominant-negative (DN) form of Eps15 that is known to inhibit clathrin-mediated endocytosis (DN-Eps15 E\textsubscript{\Delta95/295}; (Benmerah et al., 1999), or a control form of Eps15 (DIII\textsubscript{\Delta2}) that lacks one of the AP-2 binding sites and does not interfere with the clathrin pathway. The transfected cells were identified by confocal microscopy via an eGFP tag on the Eps15 proteins (shown in green in Figure 1). At 12 h post-transfection, the cells were infected with MNV-1 at a low multiplicity of infection (MOI ~ 2), to favour virus uptake via the most efficient entry pathway. After 12 h, the cells were fixed and labelled using antisera to the viral NS7 polymerase protein to
identify infected cells. The Eps15-expressing cells (green) were scored for infection (red) and the number of infected cells in the DN-Eps15 expressing cell population normalised to the level of infection of the cells expressing the control protein (DIIIΔ2). This showed that expression of the DN Eps15 did not appear to inhibit MNV-1 infection (Figure 1A) suggesting that CME is not the entry route used by MNV-1 to infect RAW264.7 cells. To confirm that expression of DN-Eps15 inhibited CME, transfected RAW264.7 cells were also incubated with Alexa-labelled transferring, a commonly used marker for CME (Hinrichsen et al., 2003). As expected, expression of the control Eps15 DIIIΔ2 protein had no effect on transferrin (red) uptake, whereas cells expressing the dominant negative Eps15 showed reduced transferrin uptake (Figure 1B and 1C).

To confirm that CME is not required for MNV-1 infection, RAW264.7 cells were transfected with siRNA targeted to the AP-2 adaptor complex. AP-2 is one of the major components of clathrin coat assembly and plays a central role in formation of clathrin coated pits (Mills, 2007). Following transfection, immunoblotting was performed to confirm a knock-down of AP-2 (Figure 1E). Transfection with AP-2 siRNA also inhibited transferrin uptake, confirming that CME was inhibited (Figure 1D and 1G). siRNA-transfected cells were also infected with MNV-1 and infection scored by confocal microscopy, as described above. Although AP-2 levels were greatly reduced and CME was inhibited, knockdown of AP-2 expression had no effect on MNV-1 infection (Figure 1F). Taken together, these results strongly suggest that MNV-1 does not use CME as the major entry route of RAW 264.7 cells.

Inhibition of endosomal acidification does not affect MNV-1 infection
A recent study has suggested that MNV-1 infection does not require endosome acidification (Perry et al., 2009). To confirm this, we investigated the effect of concanamycin A on MNV-1 infection. Concanamycin A is a potent and specific inhibitor of the vacuolar proton ATPase (Huss et al., 2002) and is commonly used to raise the pH within endosomes. RAW264.7 cells were treated with concanamycin A (or with DMSO as control) for 0.5 h prior to MNV-1 infection for 1 h. The cells were washed and incubated for a further 11 h, and infection quantified using the ELISPOT assay (Figure 2A) (Berryman et al., 2005). Treatment of cells with concanamycin-A had no effect on MNV-1 infection (Figure 2B), confirming that MNV-1 infection does not require virus exposure to the low pH within acidic endosomes.

Depletion of cellular cholesterol inhibits MNV-1 endocytosis

Cholesterol depletion affects a number of endocytic pathways, including caveolin-dependent endocytosis (Pelkmans et al., 2001; Smith et al., 2003), as well as other lipid-raft mediated pathways ((Damm et al., 2005; Vidricaire & Tremblay, 2007). MβCD depletes cholesterol from the plasma membrane and disrupts lipid rafts and endocytic pathways that involve these structures. RAW264.7 cells were pre-treated with MβCD (or DMSO) for 0.5 h and then infected with MNV-1 in the presence, or absence (no drug control) of the drug for 1 h. The virus inoculum and drug were removed by washing and infection continued at 37 °C for a further 11 h, before quantification using the ELISPOT assay. Treatment of cells with MβCD decreased MNV-1 infection by approximately 50% (Figure 3A). To confirm that the drug affected only an early step in infection, and not subsequent virus replication, the drug was also added immediately after, or 1.5 h after the
virus inoculum was removed. Under these conditions, no effect on infection was observed (**Figure 3A**), indicating that MβCD inhibited only the cell entry process and not subsequent steps in the replication cycle.

To ensure that MβCD did not inactivate the virus itself, virus was incubated with MβCD or DMSO (control) and residual infectivity measured by TCID50. This analysis showed that MβCD treatment had no effect on MNV-1 infectivity for RAW264.7 cells (data not shown). Addition of soluble cholesterol to RAW264.7 cells after MβCD treatment reversed the inhibitory effect of MβCD on infection (**Figure 3C**), further suggesting cholesterol is required for MNV-1 entry.

To confirm that MβCD treatment resulted in inhibition of lipid raft-dependent endocytosis, we analysed the effect of the drug on cholera toxin B (CTB) uptake. CTB is internalised in a lipid raft-dependent manner after binding to its receptor GM1 ganglioside (Fujinaga *et al.*, 2003). CTB internalisation was blocked when RAW264.7 cells were treated with MβCD, confirming that lipid raft-dependent endocytosis was inhibited (**Figure 3B**). Furthermore, as severe cholesterol depletion has been shown to also inhibit CME (Vela *et al.*, 2007), we confirmed that MβCD treatment did not inhibit uptake of Alexa-568 transferrin (data not shown). These data suggest that MNV-1 infection is cholesterol-sensitive and likely to be mediated by a lipid-raft dependent pathway.

Caveolin-1 is not expressed in RAW 264.7 cells

The above results show that MNV-1 infection is sensitive to cholesterol depletion and may therefore be mediated via lipid rafts. Caveolae-mediated endocytosis is initiated
at lipid rafts and inhibited by cholesterol depletion. Therefore, we investigated the role of

caveolae in MNV-1 infection. Caveolae formation requires the caveolin (Morrow &
Parton, 2005), however a number of reports have shown that RAW264.7 cells lack
caveolin and therefore caveolae (Cameron et al., 1997; Fra et al., 1994; Gorodinsky &
Harris, 1995; Lyden et al., 2002). In order to confirm the absence of caveolin-1 in our
RAW264.7 cells, we subjected RAW264.7 cell lysates to immunoblotting. Figure 3D
shows that caveolin was detected in HEK293 cells but not in RAW 264.7 cells (Figure
3D). This is entirely consistent with previous reports that RAW264.7 cells lack this
protein. Thus, the MNV-1 entry pathway in RAW264.7 cells is not dependent on
caveolae.

MNV-1 endocytosis is dynamin-dependent

Dynamin-2 is a GTPase that mediates vesicle fission from the plasma membrane
and is required for both clathrin- and caveolae-mediated endocytosis (Damke et al., 1994;
Henley et al., 1998; Oh et al., 1998). To assess if dynamin is involved in MNV-1
infection, we used dynasore, a small-molecule inhibitor of dynamin (Macia et al., 2006).
RAW264.7 cells were treated with dynasore (or DMSO) for 0.5 h, prior to MNV-1
infection. The virus inoculum was removed and the cells were incubated at 37°C for a
further 11 h in the presence, or absence (control) of dynasore (as the effects of dynasore
are rapidly reversible). The cells were then fixed and infection quantified using the
ELISPOT assay. Treatment of RAW264.7 cells with dynasore inhibited infection by
85% (Figure 4A). Addition of the drug immediately after, or 1.5 h after the virus
inoculum was removed, had no effect on infection, suggesting that the drug only affected
entry and not a subsequent intracellular replication step. We also confirmed that dynasore
did not inactivate virus in solution using the same approach as described for MβCD
above (data not shown). As the drug remained present throughout the entire assay, we
also assessed any cytotoxic effects on the cells. This analysis showed that only ~5% of
cells displayed signs of cytotoxicity after 12 h treatment with dynasore (data not shown).
In order to confirm that dynasore inhibited dynamin-dependent endocytosis, we analyzed
the effect of the drug on uptake of Alexa-labelled transferrin. As expected, transferrin
uptake was inhibited by dynasore (data not shown). These results suggest that dynamin is
required for MNV-1 infection of RAW264.7 cells.

Microtubules are involved in MNV-1 infection

Nocodazole interferes with microtubule function and vesicular trafficking through
the endosomal pathway (D'Hondt et al., 2000). RAW264.7 cells were treated with
nocodazole (or DMSO) for 0.5 h prior to MNV-1 infection and infection was quantified
using the ELISPOT assay. Nocodazole treatment inhibited MNV-1 infection by 40-50 %
(Figure 4B), suggesting that an early stage of MNV-1 infection requires intact
microtubules. Addition of the drug immediately after the virus inoculum was removed
also had a small inhibitory effect on infection, suggesting that microtubules may also be
involved in trafficking of the virus post-entry. At the concentrations used, nocodazole
was shown to disrupt the microtubules, as revealed by indirect immunofluorescence
confocal microscopy using anti-tubulin antisera (data not shown).

Blocking macropinocytosis enhances MNV-1 infection
Macropinocytosis (MPC) is used by a number of viruses for infectious entry (Mercer & Helenius, 2008). To determine if MPC is active in RAW264.7 cells, we used uptake of Alexa-labelled dextran (Dharmawardhane et al., 2000). Figure 5B shows that dextran was internalised by RAW264.7 cells, indicating that MPC was active. Next, we investigated the effect of EIPA on infection. EIPA is an analogue of amiloride and inhibits Na+/H+ exchangers and MPC without affecting other endocytic pathways such as CME, or cavoelae-mediated endocytosis (West et al., 1989). We first confirmed that EIPA blocked MPC in RAW264.7 cells by showing that treatment of the cells with this drug inhibited dextran uptake (Figure 5B). However, we found that EIPA had an unexpected effect on MNV-1 infection, as treatment of cells with EIPA resulted in enhanced MNV-1 infection (by 47% at 25 µM and 67% at 50 µM) (Figure 5A). Actin filaments are important for MPC, therefore we investigated the effect of actin disruption on MNV-1 infection using cytochalasin-D, which prevents actin polymerization and disrupts the actin cytoskeleton (Brenner & Korn, 1980). Consistent with the effect of EIPA, cytochalasin-D treatment of RAW264.7 cells also enhanced MNV-1 infection (Figure 5C) by about 60%. At the concentrations used, cytochalasin D was shown to disrupt actin filaments, as revealed by indirect immunofluorescence confocal microscopy using Alexa-conjugated phalloidin (Figure 5D).

Depletion of flotillin-1 does not inhibit MNV-1 internalisation

We also analysed the effect of flotillin-1 depletion on MNV-1 infection. Flotillin-1 is associated with lipid rafts and was recently identified as a component of a novel CIDE pathway (Glebov et al., 2006; Lang et al., 1998; Volonte et al., 1999). RAW264.7
cells were transfected with siRNA against flotillin-1 and inhibition of flotillin-1 expression confirmed by immunoblotting (Figure 6A); no effect on flotillin-1 expression was observed when compared to cells transfected with a control siRNA targeted to GFP. This knock-down of flotillin-1 had no effect on MNV-1 infection (Figure 6B), suggesting that the flotillin-1-dependent pathway is not involved in MNV-1 entry.

Discussion

Viruses have been shown to utilize a number of different endocytic pathways to enter and infect cells. CME would appear to be the most commonly used but it is increasingly clear that a number of CIDE pathways are also used by several different viruses. It has recently been shown that entry of MNV-1 into RAW264.7 cells is pH-independent (Perry et al., 2009). In this study we have further examined the entry route used by MNV-1 to infect RAW264.7 cells. Initially, we investigated if infection by MNV-1 is dependent on CME, since FCV (which is closely related to MNV-1) is internalised via this pathway (Stuart & Brown, 2006). Our experiments show that dominant negative Eps-15 and AP-2 knock-down inhibited transferrin uptake but had no effect on MNV-1 infection, strongly suggesting that the mechanism of MNV-1 entry is clathrin-independent. Similarly, concanamycin A treatment confirmed that a low pH within endosomes is not required for MNV-1 infection, further supporting the conclusion that a clathrin-independent pathway is most likely required for MNV-1 entry.

A number of CIDE pathways originate from lipid rafts. These pathways require cholesterol and can be inhibited by the cholesterol-depleting agent MβCD. We found that treatment of RAW264.7 cells with MβCD inhibited MNV-1 infection, but only when the
drug was added during virus entry and not when added after virus uptake. Repletion of cholesterol after MβCD treatment restored infection, further suggesting that cholesterol is required for MNV-1 infection.

Our data suggests that MNV-1 entry into RAW264.7 cells is cholesterol and hence lipid raft-dependent. Caveolae-dependent endocytosis also requires intact lipid rafts and hence, is normally inhibited by cholesterol depletion (Murata *et al.*., 1995). Caveolin is a key component of caveolae (Morrow & Parton, 2005); however, a number of previous studies have shown that RAW264.7 cells lack caveolin (Cameron *et al.*, 1997; Fra *et al.*, 1994; Gorodinsky & Harris, 1995; Lyden *et al.*, 2002) and we have confirmed these observations in our RAW264.7 cells. These data do not rule out the possibility that MNV-1 infection may occur through a caveolae-dependent pathway in other cell types which express caveolin. The recently described flotillin-dependent pathway is also raft-associated (Glebov *et al.*, 2006) and may be inhibited by cholesterol depletion; however, our results showed that flotillin-1 depletion had no effect on MNV-1 infection, suggesting that this pathway is also not used for MNV-1 infection.

The role of dynamin in both CME and caveolae-dependent endocytosis is well-established, whereas its role in other endocytic pathways is less clear (Marsh & Helenius, 2006; Miaczynska & Stenmark, 2008). Here we show that inhibition of dynamin using dynasore decreased MNV-1 infection of RAW264.7 cells, but only when added at the entry stage of infection, indicating that MNV-1 entry is dynamin-dependent.

Treatment of RAW.264.7 cells with nocodazole (which disrupts microtubules) also inhibited MNV-1 infection. However, at this stage we cannot be certain if microtubules are required for entry or post-entry virus trafficking as the drug also
inhibited infection when added immediately after the virus inoculum was removed and further studies are required to understand the precise role for microtubules during virus entry.

Recently, a number of viruses have been shown to use MPC, or MPC-like entry pathways for infection (reviewed in Mercer and Helenius, 2009). MPC is especially active in specialised antigen-presenting cells, such as macrophages and dendritic cells. Therefore, we also investigated a role for MPC in MNV-1 infection. We established that MPC was active in RAW264.7 cells but surprisingly, inhibition of MPC, by either EIPA or cytochalasin D, resulted in an increase in MNV-1 infection. At present we do not know why inhibiting MPC should lead to an increase in infection. A possible explanation is that MPC is responsible for a large proportion of fluid-phase uptake and inhibition of MPC could result in up-regulation of other endocytic pathways (by way of compensation) that could then be used for MNV-1 uptake. Alternatively, it is possible that a proportion of virus enters RAW264.7 cells by MPC and is delivered to lysosomes for destruction. If this is the case then inhibition of MPC may lead to enhanced infection. However, further studies are needed to understand this phenomenon.

In conclusion, we have presented evidence that infection of RAW264.7 cells by MNV-1 is mediated by a clathrin-, caveolae-, flotillin- and pH-independent pathway that requires intact lipid-rafts, dynamin and microtubules. Together these studies suggest that different members of the calicivirus family may utilize different cell entry pathways for infection.

Methods
Cell culture and viruses

RAW264.7 and HEK293 cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) and modified Eagle’s medium (MEM), respectively, supplemented with 10% foetal bovine serum, non-essential amino acids (1%), penicillin (100 U/ml) and streptomycin (100 mg/ml; Gibco-BRL) at 37 °C with 5% CO₂. MNV-1 (strain CW.1) was the gift of Prof. Herbert Virgin (Washington University, St. Louis, MO) and was propagated in RAW264.7 cells. The virus titre was determined by TCID50 on RAW264.7 cells.

Antibodies and reagents

The anti-α-tubulin antisera (DM1A) was from Sigma. Anti-flotillin-1 antisera (clone 18) was from BD Biosciences. Anti-adaptin-2 (AP-2) monoclonal antibody (sc-55497) and polyclonal anti-caveolin-1 sera (sc-894) were from Santa Cruz Biotechnology. The anti-GAPDH monoclonal antibody (6C5) was from Ambion. The anti-MNV NS7 polymerase polyclonal sera was a gift of Dr Ian Goodfellow (Imperial College, London, UK). Alexa-568 transferrin, alexa-555 cholera toxin B and alexa-555 dextran were all from Invitrogen, as were the Alexa-Fluor-conjugated secondary antibodies. 5-(N-Ethyl-N-isopropyl) amiloride (EIPA), concanamycin A, cytochalasin D, nocodazole, dynasore, and methyl-β-cyclodextrin (MβCD) and water soluble cholesterol (C4951) were from Sigma. Stock solutions of concanamycin A, EIPA, cytochalasin D, dynasore and nocodazole were prepared in dimethyl sulfoxide (DMSO). A stock solution of MβCD
was prepared in DMEM. Where appropriate, an equivalent dilution of DMSO was included as the control treatment.

Quantification of virus infection assays

To quantify MNV-1 infection, a modification of an enzyme-linked immunospot (ELISPOT) assay was used (Berryman et al., 2005). Briefly, 3x10^4 cells were seeded per well in 96-well tissue culture plates and grown overnight until approximately 80% confluent. The cells were incubated for 1 h at 37°C with MNV-1 at a multiplicity of infection (MOI) of ~2 pfu/cell. The cells were washed to remove excess virus and incubated in growth media at 37°C for a further 11 h. Cells were fixed by the addition of cold 4% paraformaldehyde (PFA; Sigma) in phosphate-buffered saline (PBS) for 1 h. The cells were then permeabilized with 0.1% Triton X-100 in PBS for 15 min. Following incubation for 0.5 h in blocking buffer (0.5% BSA in PBS), the cells were incubated with anti-MNV NS7 polymerase antisera (1:1500) for 1 h at RT. The cells were washed again and incubated with a biotinylated goat anti-rabbit IgG antisera (1:400; Southern Biotechnologies) followed by a streptavidin-conjugated alkaline phosphatase (1:1000; Caltag Laboratories) in blocking buffer for 1 h at RT. The alkaline phosphatase substrate (Bio-Rad) was added for 10 min, according to the manufacturer’s instructions. The infected cells stained dark blue and were quantified using an ELISPOT plate reader (Zeiss KS ELIspot). Nonspecific labelling was determined by performing the assay on mock-infected cells.

To determine the effect of pharmacological inhibitors of endocytosis on MNV-1 infection, cells were (i) pre-treated with the drug for 0.5 h prior to infection with MNV-1
for 1h, also in the presence of the drug; or (ii) treated with the drug for 1.5 h immediately after the virus inoculum was removed, or (iii) the drug was added 1.5 h after the virus inoculum was removed. In the case of the dynasore, the drug was present throughout the assay.

To control for effects of the inhibitors on virus in solution, virus was incubated with 7.5 mM of MβCD or 50 µM dynasore for 15 mins at RT. Control virus was incubated with DMSO alone. Drug treated and control viruses were then titrated by TCID50 assay as described previously (Bailey et al, 2008).

Following MβCD treatment, cells were treated with 400 µg/ml water soluble cholesterol for 15 mins at RT, before removing the medium, to replete the cholesterol in the plasma membrane. Cells were subsequently infected with MNV-1 as described above and virus infection quantified by confocal microscopy.

Transfections

Transient transfection of RAW264.7 cells with plasmids expressing dominant negative or control Eps15 (gift from Alexandre Benmerah, Université Paris Descartes, Paris, France) was performed using Fugene HD (Roche) and 2 µg DNA per well (24 well plate), according to the manufacturer’s instructions. siRNAs targeted against flotillin-1 (5’ GCUACACUUUGAAGGAUAU) or adaptin-2 (AP-2; 5’ GACCCACAUGAUACAGUU; Eurogentec) were transfected into RAW264.7 cells as follows; cells (3x10^4) were seeded on 13-mm glass coverslips (BDH) and 0.1 µM of the siRNA, or a control siRNA duplex targeted against GFP, was added per well. Forty-eight hours post-transfection, the cells were infected with MNV-1 (MOI ~ 2) for 1 h at 37°C.
Excess virus was removed and the cells incubated for a further 11 h. The cells were washed with PBS, fixed with cold 4% PFA for 1 h and processed for confocal microscopy using the anti-MNV NS7 polymerase antisera (1:1500) as described below. To confirm siRNA-mediated knockdown of the targeted proteins, cell extracts were subjected to SDS-PAGE and immunoblotting using anti-flotillin-1 and anti-AP-2 antisera. Membranes were re-probed with anti-GAPDH antisera as a loading control.

Immunofluorescence confocal microscopy

RAW264.7 cells (3 x 10^4 cells/well) were seeded onto 13-mm glass coverslips (BDH) and infected with MNV-1 in the presence/absence of endocytosis inhibitors, as described above. Cells were washed with PBS, fixed with cold 4% PFA for 1 h, and permeabilized for 15 min with 0.1% Triton X-100 in blocking buffer. The cells were incubated with primary antibody for 1 h at RT, washed and incubated with the appropriate Alexa-conjugated secondary antibody in blocking buffer for 1 h at RT. After washing, the cells were incubated with TO-PRO-3 iodide (Invitrogen) for 10 min at RT to stain the cell nuclei. The cells were mounted onto slides using Vectashield mounting medium (Vector Labs) and sealed. Uptake of Alexa-labelled ligands (Dextran 0.5µg/ml, Cholera toxin B 10µg/ml and Transferrin 15 µg/ml) was carried out for the times indicated in the figures before fixing the cells and processing for microscopy as described above. If labelling with antibodies was not required, cells were processed without permeabilization. Microscopy was performed using a ZEISS 510Meta, equipped with a 63x 1.4 NA Zeiss apochomat objective. All data were collected sequentially, to eliminate cross talk between the fluorescent dyes, using the same microscope settings.
Cell pellets were resuspended in RIPA buffer (50mM Tris-cl pH 7.4, 150mM NaCl, 1% NP40, 0.25% Na-deoxycholate, 1mM PMSF) and centrifuged at 14,000 rpm for 5 min at 4 °C. Lysates were subjected to SDS-PAGE (12%) and proteins transferred to nitrocellulose membranes. Membranes were probed with the indicated primary antibodies followed by horseradish peroxidase (HRP)-conjugated species-specific secondary antibodies (1:2000; Dako). Proteins were visualised by chemiluminescence (Pierce).

Statistical analysis

All studies were performed independently at least three times. The mean and standard error of the mean are shown. GraphPad prism 5 (GraphPad) was used to perform the statistical analysis. One way Anova with Dunnett post-hoc test was used to evaluate the differences between treatments. Significance was determined by a P value of < 0.05, and significance is indicated in each figure.

Acknowledgements

We thank Prof. Herbert Virgin for MNV-1 and Dr Stephen Berryman for technical help with the Elispot assay.

Figure legends
Figure 1: MNV-1 entry is clathrin-independent

(A) RAW264.7 cells were transiently transfected to express control Eps15 (DIIIΔ2) or dominant negative Eps-15 (ED95/295 Eps15) as fusions with eGFP. Transfected cells were identified by eGFP expression. At 12 h post-transfection, cells were infected with MNV-1 (MOI ~2) for 12 h. Infected cells were quantified by confocal microscopy using an antibody to the viral NS7 polymerase protein. Results are shown as the level of infection of the DN Eps15-expressing cells normalized to the level of infection of the cells expressing the control protein. The mean ±SE of 3 independent experiments is shown. (B) RAW264.7 cells were transfected to express the control or DN-Eps15 as described in panel A. At 12 h post-transfection, Alexa-568-conjugated transferrin (red) was internalized for 10 min and then chased for 20 min in the absence of transferrin. The nuclei were stained with TO-PRO-3 iodide and are shown in blue. Scale bar 10 µm. (C) Transferrin internalization was quantified by confocal microscopy. Results are shown as the level of transferrin uptake by the DN Eps15-expressing cells normalized to the level of uptake by the cells expressing the control protein. The mean ±SE of 3 independent experiments is shown. (D) RAW264.7 cells were transfected with siRNA targeted against AP-2 or a control siRNA against GFP. At 48 h post-transfection, Alexa-568-conjugated transferrin (red) was internalized for 10 min and then chased for 20 min in the absence of transferrin. The nuclei were stained with TO-PRO-3 iodide and are shown in blue. Scale bar 10 µm. (E) RAW264.7 cells were transfected with siRNA targeted against AP-2 or siRNA against GFP and at 48 h post-transfection, cell lysates were analyzed by SDS-PAGE and immunoblotting with AP-2 and GAPDH antisera. (F) 48 h post-transfection with the AP-2 and GFP siRNAs, cells were infected with MNV-1 (MOI ~ 2) for 12 h and
infected cells quantified as above. Results are shown as the level of infection of the AP2
siRNA-transfected cells normalized to the level of infection of the cells transfected with
the control GFP siRNA. The mean ±SE from 3 independent experiments is shown. (G)
The siRNA-transfected cells were quantified for transferrin internalization by confocal
microscopy. Results are shown as the level of transferrin uptake by the AP-2 siRNA
transfected cells normalized to the level of uptake by the cells transfected with the control
siRNA. The mean ±SE of 3 independent experiments is shown.

Figure 2: MNV-1 entry is not pH-dependent
(A) RAW264.7 cells were infected with MNV-1 (MOI ~2), or mock-infected, for 1 h at
37°C. The cells were washed and incubated in culture medium for a further 11 h and then
fixed and permeabilized. Infected cells were quantified using the ELISPOT assay. Panel
(i) shows a mock-infected cell monolayer. Panel (ii) shows an infected cell monolayer.
(B) RAW264.7 cells were pre-treated with different concentrations of concanamycin A
for 0.5 h prior to infection with MNV-1 (MOI ~ 2) for 1 h in the presence of the drug.
Control-treated cells were treated with an equivalent dilution of DMSO. The cells were
then washed and incubated in culture medium for a further 11 h, and infection quantified
using the ELISPOT assay. Results are shown as the level of infection of the drug treated
cells normalized to the level of infection in the absence of the drug. The mean ±SE from
3 independent experiments is shown.

Figure 3: MNV-1 entry is cholesterol-dependent
(A) RAW264.7 cells were pre-treated with different concentrations of MβCD prior to infection with MNV-1 (MOI ~ 2) for 1 h in the presence (or absence) of the drug. Virus and drug were removed and infection quantified at 12 h.p.i using the ELISPOT assay. To control for effects on intracellular virus replication, the drug was added for 1.5 h either immediately after the virus inoculum had been removed, or 1.5 h after the virus inoculum was removed. The results are shown as the level of infection of the drug-treated cells normalized to the level of infection in the absence of the drug. The mean ±SE from 3 independent experiments is shown. *p<0.05, **p<0.01 (B) RAW264.7 cells were treated (or control treated) with 7.5 mM MβCD for 0.5 h, prior to the internalization of Alexa-555-conjugated CTB (shown in green) for 0.5 h. The nuclei were stained with TO-PRO-3 iodide (blue). Scale bars = 10 µm. (C) For repletion of cholesterol following MβCD treatment, cells were treated with 400ug/ml water soluble cholesterol prior to infection, as above. Results shown are representative of two independent experiments. (D) RAW264.7 cell and HEK293 cell lysates were subjected to SDS-PAGE and immunoblotting with anti-caveolin-1 and anti-GAPDH antisera.

Figure 4: MNV-1 entry is dynamin-dependent and involves microtubules

(A) RAW264.7 cells were treated with dynasore (or DMSO) for 0.5 h prior to infection with MNV-1 (MOI ~2) for 12h, with the drug remaining present throughout the assay. Infected cells were quantified by ELISPOT assay as described in Figure 2. To control for post-entry effects on virus replication, the drug was added immediately after, or 1.5 h after, the virus inoculum was removed. The results are shown as the level of infection of the drug-treated cells normalized to the level of infection in the absence of the drug. The
mean ±SE from 3 independent experiments is shown. **p<0.001. (B) RAW264.7 cells
were pretreated with nocodazole (or DMSO) prior to infection with MNV-1 (MOI of ~2)
for 12 h. Infection was quantified by ELISpot assay. The drug was also added post entry
as described above. The results are shown as the level of infection of the drug-treated
cells normalized to the level of infection in the absence of the drug. Shown is the mean ±SE from 3 experiments. *p<0.05, **p<, ***p<0.001.

Figure 5: Role of macropinocytosis and F-actin in MNV-1 infection

(A) RAW264.7 cells were pretreated with 25 µM and 50 µM EIPA prior to infection with
MNV-1 (MOI of ~2) for 12 h. Infection was quantified by ELISPOT assay as described
in Figure 2. The results are shown as the level of infection of the drug treated cells
normalized to the level of infection of the mock treated cells. Shown is the mean ±SE
from 3 experiments. *p<0.05. (B) RAW264.7 cells were pretreated with 50 µM EIPA for
0.5 h and incubated with 0.5 µg/ml Alexa-labelled dextran (red) for 0.5 h. The
intracellular distribution of fluorescent dextran in EIPA-treated samples was compared to
that in the untreated cells. The nuclei were stained with TO-PRO-3 iodide (blue). Scale
bars = 10 µm. (C) RAW264.7 cells were pretreated with 2, 4 or 8 µM cytochalasin D
prior to infection with MNV-1 (MOI of ~2). Infection was quantified by ELISPOT.
Shown is the mean ±SE from 3 experiments. (D) RAW264.7 cells were pretreated with 4
µM cytochalasin D and the actin microfilaments stained with phalloidin. Nuclei were
stained as described above. Scale bars = 10 µm.

Figure 6: Flotillin-1 is not involved in MNV-1 infection
RAW264.7 cells were transfected with siRNA targeted against flotillin-1 or GFP (control). (A) 48 h post-transfection, cell lysates were prepared and analyzed by immunoblotting with anti-flotillin-1 and anti-GAPDH antisera. (B) 48 h post-transfection, cells were infected with MNV-1 (MOI ~ 2), virus inoculum was removed after 1h and the infection continued for a further 11 h. The cells were fixed and permeabilized and infected cells detected using anti-MNV-1 NS7 polymerase antisera and an Alexa-543 goat anti-rabbit IgG antibody before visualization by confocal microscopy. Results are shown as the level of infection of the flotillin-1 siRNA transfected cells (Flot-1) normalized to the level of infection of the cells transfected with the GFP siRNA. The mean ±SE from 3 independent experiments is shown.
References

single genogroup exhibit biological diversity despite limited sequence divergence.
Journal of virology 81, 10460-10473.

Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-

Vidricaire, G. & Tremblay, M. J. (2007). A clathrin, caveolae, and dynamin-
independent endocytic pathway requiring free membrane cholesterol drives HIV-
1 internalization and infection in polarized trophoblastic cells. Journal of
molecular biology 368, 1267-1283.

Flotillins/cavatellins are differentially expressed in cells and tissues and form a
hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-
mapping of a novel flotillin-1 monoclonal antibody probe. The Journal of
molecular biology 274, 12702-12709.

epidermal growth factor-stimulated human carcinoma A431 cells. The Journal of
cell biology 109, 2731-2739.

Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot,
Replication of Norovirus in cell culture reveals a tropism for dendritic cells and
Figure 1
Figure 3

A

![Graph showing infected cells % of mock](image1)

- Infected cells % of mock:
 - Uninfected
 - Infected (pre-treating MβCD)
 - 7.5 mM MβCD
 - 7.5 mM MβCD + 10 mM CTB

B

![Images of cells with CTB](image2)

- 7.5 mM MβCD + CTB

C

- 264.7 RAW cells
- 293 cells
- Caveolin (p22)
- GAPDH
Figure 4
Figure 5
Figure 6

A

Control Flotillin-1

Flotillin
GAPDH

B

Mock Flot-1

Infected cells (% of mock)