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The sensitivity to the reinforcing effects of drugs of abuse constitutes a risk factor for drug 

dependence. The overall objective of this thesis was to investigate the neurobiological 

mechanisms of cocaine reinforcement and in particular the role of µ-opioid receptors in 

cocaine reinforcement.  

 

General Introduction - In Chapter 1 of this thesis, an introduction to drug addiction and 

preclinical addiction research is provided. Existing theories for mechanisms of addiction 

processes are discussed, with emphasis on the role of neurotransmitter systems, including 

endogenous dopamine and opioid systems, in drug reinforcement. In addition to 

pharmacological approaches, more recent studies have used gene knockout strategies to 

determine the role of specific genes in amongst others drug reinforcement. An overview of 

genetic approaches in addiction research, particularly preclinical, is provided in Chapter 2.  

 

Endogenous opioid systems - The primary aim of the studies described in this thesis was to 

establish the role of the endogenous opioid system and, more specifically, of µ-opioid 

receptors in cocaine reinforcement. The studies in Chapter 3 were designed to establish the 

involvement of µ-opioid receptors in cocaine reinforcement, which was determined with 

acquisition of cocaine self-administration by µ-opioid receptor knockout mice as a measure. It 

appears from previous studies with the opioid antagonist naltrexone (NTX), that opioid 

receptors in the ventral tegmental area (VTA) are of particular importance in endogenous 

opioid modulation of cocaine reinforcement (Ramsey et al., 1999). We therefore focused on 

the VTA and performed electrophysiology studies in horizontal slices of the VTA of µ-opioid 

receptor knockout and wild-type mice. Inhibitory post-synaptic current (IPSC) recordings 

were made from dopamine neurons in order to assess GABA mediated neurotransmission in 

the VTA in absence of µ-opioid receptors (Chapter 3). In addition, signal transduction 

pathways coupled to µ-opioid receptors in the VTA were explored in an in vitro study as 

described in Chapter 4. Slices of the VTA were treated with a specific µ-opioid receptor 

agonist, fentanyl, and were processed for immunohistochemistry with antibodies for different 

phospho-specific proteins for quantification of phospho-protein immunoreactivity.  

Long-term exposure to drugs such as cocaine causes sensitization to that particular drug, 

which is manifested both by increased locomotor stimulant effects and augmented reinforcing 

properties of the drug and is considered to reflect neuroadaptations, which contribute to the 

actual development of drug dependence. In Chapter 5, the role of µ-opioid receptors in the 

acute locomotor response and in cocaine-induced behavioural sensitization was studied using 

µ-opioid receptor knockout mice, as a model for ectopic absence of µ-opioid receptors, and 

chronic NTX pre-treated mice, which is a model for transient opioid receptor over-expression 

(Chapter 7).  

Besides endogenous opioid systems, dopamine is generally regarded to be a common factor in 

the effects of different drugs of abuse. Previous anatomical and electrophysiology studies 
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suggested interactions between opioid and dopamine systems in amongst others the 

mesolimbic system. Such interaction may be of relevance to µ-opioid receptor-induced 

modulation of drug reinforcement. In Chapter 6 we therefore quantified levels of mRNA 

encoding the rate-limiting enzyme in dopamine synthesis, TH, and levels of dopamine 

receptor binding for mice with reinforcement relevant changes in µ-opioid receptor levels: µ-

opioid receptor knockout mice and chronic NTX treated mice. In addition, locomotor activity 

in the open field and spontaneous climbing, behaviours which both involve dopamine were 

assessed for these mice. 

In Chapter 7, the effects of chronic treatment with the opioid antagonist NTX upon opioid 

receptor levels were determined using quantitative autoradiography. Chronic NTX treatment 

has been shown to induce supersensitivity to morphine’s analgesic effects and is known to 

increase opioid receptor numbers as assessed using whole brain homogenates. Interestingly, 

this same treatment is also effective in potentiating the reinforcing effects of both drugs of 

abuse, such as cocaine (Ramsey & Van Ree, 1990) and alcohol (Phillips et al., 1997). We 

performed a full quantitative mapping study for the three main opioid receptor subtypes: µ-, δ- 

and κ-opioid receptors. The chronic NTX model was used to investigate the role of (µ-)opioid 

receptors in cocaine-induced sensitization (Chapter 5) and in the study of opioid-dopamine 

interactions (Chapter 6). 

 

Endogenous Cannabinoid systems – Recently, the endogenous cannabinoid system has been 

implicated in addiction processes. The studies described in Chapter 8 were designed to 

further investigate the role of endogenous cannabinoids, through interactions with the CNS 

cannabinoid type 1 (CB1) receptor, in cocaine reinforcement and cocaine-induced behavioural 

sensitization. CB2 receptor expression is restricted to the periphery. For this purpose we used 

the selective CB1 receptor antagonist SR141716A, which was administered prior to cocaine 

self-administration or before the repeated intermittent cocaine injections for sensitization. 

 

The results described in this thesis demonstrate an important and specific role of µ-opioid 

receptors in cocaine reinforcement, thus suggesting that variations in µ-opioid receptor levels 

might alter an individual’s proneness to develop cocaine dependence. Further the 

neurobiological and behavioural findings are combined to a proposed mechanism through 

which µ-opioid receptors might modulate cocaine reinforcement in the General Discussion 

(Chapter 9). 

 





CHAPTER 1 

DRUG ADDICTION AND UNDERLYING NEUROBIOLOGICAL 

MECHANISMS; A PRECLINICAL PERSPECTIVE 
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Drug addiction is a major health issue worldwide and is characterised by its persistence and 

high rates of relapse. The mechanisms of this complex disease are only partly understood. In 

this chapter an overview will be provided of pre-clinical addiction research that has 

contributed to our present understanding of addiction processes. To this end, paradigms used 

in experimental addiction research and involvement of different neurotransmitter systems, i.e. 

dopamine, opioid, GABA, glutamate, serotonin and cannabinoid systems in experimental 

addiction will be discussed.  

 

VULNERABILITY TO DRUG ADDICTION 

Does drug use lead to drug abuse? Numbers from national drug surveys show that this is not 

necessarily the case: an individual who is exposed to an addictive drug does not in any case 

become an addict. For cocaine use, approximately 5-10% of the individuals who ever used 

cocaine in their life had recently used the drug, which is considered indicative of problematic 

cocaine use (Table 1A). The overall numbers for alcohol are higher, the percentage of the 

population that ever drank alcohol being approximately 80-85% as compared 2% (the 

Netherlands) and 12% (the United States) for cocaine. In the United States, approximately 7% 

of the population that ever drank alcohol in their lifetime was categorized as heavy drinkers 

(Table 1B). In the Netherlands 13% of the alcohol consuming population was categorized as 

heavy drinkers. These numbers suggest individual variation in the risk to develop drug 

dependence after being exposed to a drug. The current challenge is to determine which factors 

cause such individual variations in vulnerability for drug dependence. There is evidence for 

heritability in addiction proneness (see Chapter 2), although the manifestation of a genetic 

high risk to become an addict requires in any case the voluntary decision to use drugs in the 

first place and therefore depends upon environmental factors (Leshner, 2000).  

It is likely that the sensitivity to the positive reinforcing effects, euphoric effects in humans, 

induced by a drug determine or at least contribute to repeated drug use, which may eventually 

lead to drug addiction (Haertzen et al., 1983) and hence is a possible risk factor for drug 

addiction. The aim of the studies described in this thesis was therefore to investigate the 

mechanisms underlying the reinforcing effects of in this case cocaine (see Box 1). As outlined 

TABLE 1A Cocaine use in the Northern American and Dutch population: numbers from national 

drug surveys 

Country Year % life time % recent use % recent of life time users 

United States1 2000 11.2 0.5 4.9 

United States1 2001 12.3 0.7 6.0 

The Netherlands2 1997 2.1 0.2 9.5 

The Netherlands2 2001 2.9 0.4 13.8 

1 SAMHSA, National Household Survey on Drug Abuse 

2. National Drug Monitor 2002, Trimbos Institute 
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in the next section, animal models have been developed which allow the investigation of 

addiction processes, including drug reinforcement, which is a measure of facilitation by a drug 

of the acquisition of an instrumental response required to earn the drug. Reward, another 

widely used term in addiction research, expresses the positive subjective effects of a stimulus. 

 

ANIMAL MODELS IN ADDICTION RESEARCH 

Drug addiction is, as compared to other psychiatric diseases, relatively easy and reliably 

measurable in laboratory animals. Subjective measures such as reward or euphoria can not be 

measured as such in laboratory animals. However, operant conditioning tasks, amongst others 

based on Thordike´s law of effect “behaviour that produces ´satisfying´ outcomes tends to be 

repeated”, Skinner’s analytic operant approach (Zimbardo et al., 1995), and conditioning 

paradigms based on, amongst others, classical conditioning introduced by the Russian 

physiologist Ivan Pavlov (1927, see Zimbardo et al., 1995), allow the investigation of 

addiction processes in laboratory animals (Van Ree, 1996).  

In literature the effects of drugs of abuse are described in terms of reward and reinforcement. 

The distinction between reward and reinforcement is often vague and confusing. Reward 

expresses the positive subjective effects of a stimulus, which is not experimentally 

measurable. On the contrary, positive reinforcement can be assessed experimentally. For 

positive reinforcement is a measure of the facilitation by a stimulus, e.g. drugs of abuse, of the 

acquisition of an instrumental response required to earn the stimulus.  

Drug addiction is a complex trait involving amongst others reinforcement, motivation and 

craving for the drug. The initiation of self-administration is mainly determined by the 

reinforcing effects of a drug (Van Ree et al., 1999) and is therefore most informative about 

drug reinforcement per se. In contrast, drug-maintained responding, drug-induced conditioned 

place preference (CPP) and relapse involve multiple factors such as motivation and craving, in 

addition to reinforcement.  

 

TABLE 1B Alcohol consumption in the Northern American and the Dutch population: numbers from 

national drug surveys 

Country Year % life time % heavy drinkers 
% heavy of life time 

drinkers 

United States1 2000 81 5.6 6.9 

United States1 2001 82 5.7 7.0 

The Netherlands2 2000 86 13 15 

1 SAMHSA, National Household Survey on Drug Abuse. Heavy drinking being defined as drinking five or more 

drinks on the same occasion on each of five or more days in the past 30 days  

2 National Drug Monitor 2002, Trimbos Institute. Heavy drinking was defined as drinking more than 6 units of 

alcohol for at least one day every week 



Chapter 1 

16 

BOX 1. COCAINE – A HISTORICAL PERSPECTIVE 

Coca chewing is a Southern American habit/tradition, archaeological evidence for which 

dates back to at least 2500 BC when the first discoveries of the continent were made 

(Deng et al., 2002; Gardner & Vorel, 1998). South Americans chew coca, in combination 

with alkali, for medicinal reasons, but more importantly coca chewing was and still is 

essential to their daily life. Coca chewing makes people stronger and fitter, enabling 

them to work harder and longer, even without eating. In 1859, the German chemists 

Albert Niemann and Friedrich Wöhler isolated cocaine from Coca leaves, after which 

scientists and doctors started experimenting with cocaine. The effects of cocaine were 

magical: cocaine appeared a miraculous cure for different symptoms and pathologies. 

Ironically, heroin addiction was one of the diseases which people, including Sigmund 

Freud, believed they could now cure with cocaine. However as we realize today, cocaine 

was not a true medicine in this respect, it merely made the patients feel great for a while. 

Soon afterwards many of the patients, and their doctors, developed cocaine 

dependence: the first cocaine epidemy had emerged.  

When dissolved in water cocaine can be snorted, i.e. nasally administered, or injected 

intravenously. Cocaine can not be smoked for it is unstable at high temperatures. South 

Americans did smoke cocaine, but this was a crude mixture, which included cocaine 

sulphate, which they called basé. North Americans though basé was the freebase of 

cocaine, i.e. lacking the hydrochloride group which is easily removed by adding strong 

alkali. The resultant product, which the North Americans started to smoke, was in fact 

pure cocaine base: the highly addictive crack, much different form the basé the South 

Americans smoked. 

Cocaine is, like amphetamine, an indirect dopamine agonist. Upon interaction with 

monoamine transporters (Ritz et al., 1987), cocaine blocks dopamine re-uptake thereby 

increasing the available dopamine in the synaptic cleft thus causing more dopamine 

binding to post-synaptic dopamine receptors (see Figure). Recent studies, which used 

gene knockout mice for different monoamine transporters suggest that dopamine 

transporters (DAT) probably do not solely account for the effects of cocaine. Involvement 

of other monoamine transporters was suggested (Uhl et al., 2002). 
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In this thesis, the term reinforcement will be used in the context of acquisition of drug self-

administration, while reward is chosen in the context of intracranial self-stimulation, 

maintenance (and relapse) of self-administration and in case of CPP.  

 

Self-administration 

The most widely used model in experimental addiction research is the self-administration 

paradigm. In this case, rats, monkeys and more recently also mice, earn an intravenous or 

intracerebral infusion of the drug of interest by execution of the instrumental response, i.e. 

lever pressing, nose pokes or head dipping. Researchers have shown, using this paradigm, that 

animals self-administer drugs which are known to have addictive potential in humans, e.g. 

morphine, heroin, fentanyl, cocaine, amphetamine, nicotine and alcohol whereas drugs with a 

low addictive potential are not readily self-administered by animals (Van Ree et al., 1978; 

Criswell, 1982; Grahame & Cunningham, 1995; Kuzmin et al., 1996; Kuzmin et al., 1997a).  

Acquisition of drug self-administration is predominantly determined by the positive 

reinforcing efficacy of the drug of interest (Van Ree et al., 1999). Acquisition of self-

administration is of particular interest with respect to individual variation in drug dependence 

for repeated exposure is required to become dependent upon a drug. Repeated drug exposure 

and hence drug dependence will not develop if the positive reinforcing efficacy is low to a 

given individual. Once the self-administration is acquired, animals will maintain stable 

responding. Secondary reinforcers such as environmental stimuli may contribute to 

maintenance of responding for self-administration.  

Subsequently forced withdrawal of the drug can be induced by the experimenter, which 

typically leads to physical withdrawal signs that are best described for opioid dependence. The 

relevance of physical dependence, induced either by cessation of drug self-administration or of 

drug administration by an experimenter, is questionable. Dependence syndromes differ 

substantially across drugs of abuse. The dependence syndromes associated with 

psychostimulants, e.g. amphetamine and cocaine, are even the reverse of withdrawal 

syndromes characteristic for depressants, e.g. opioid drugs. Moreover, relief of withdrawal 

distress has not proven effective in the treatment of drug addiction (Wise & Bozarth, 1987).  

After abstinence and extinction of responding on the previously drug-paired lever or hole, 

reinstatement of responding can be triggered in laboratory animals with a history of drug self-

administration. Drug cues but also environmental cues associated with previous self-

administration or stressors have been shown to induce reinstatement of lever pressing even if 

the drug is not available (Shalev et al., 2002). The reinstatement of responding on the 

previously drug-paired lever or hole is considered to reflect drug seeking and may reflect drug 

craving. As such, reinstatement may resemble human relapse (Epstein & Preston, 2003).  

The self-administration paradigm has contributed substantially to our current knowledge of 

drug reinforcement. Moreover it has face and construct validity and has therefore been used 
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repeatedly to screen promising novel treatments. Drug self-administration is thus a powerful 

tool in experimental addiction research.  

 

Conditioned place preference (CPP) 

Another commonly used paradigm to evaluate rewarding effects of drugs of abuse is 

conditioned place preference (CPP). The place preference paradigm is based on the principal 

introduced by Pavlov, that neutral environmental cues can, by pairing them to affective 

stimuli, evoke similar approach behaviour as the affective (rewarding) stimuli. Typically a 

conditioned place preference apparatus consists of at least two compartments, one of which is 

paired to administration of a drug of interest. After the conditioning the animals will be 

allowed to choose between the two compartments in a drug-free state. If the animals spend 

more time in the previously drug-paired compartment the animal displays CPP. CPP has been 

described for morphine, heroin, cocaine, amphetamine, nicotine, alcohol and ∆9-

tetrahydrocannabinol (∆9-THC) (Stewart & Grupp, 1981; Mucha et al., 1982; Spyraki et al., 

1982; Spyraki et al., 1983; Fudala et al., 1985; Lepore et al., 1995). Place preference probably 

reflects the desire/motivation to re-experience the rewarding effects of the drug, although the 

validity of CPP for the investigation of drug reward relevant to humans is speculative (Bardo 

& Bevins, 2000). For example, amphetamine-induced CPP was not predictive of subsequent 

intravenous self-administration of amphetamine (Bardo et al., 1999). 

 

Intracranial self-stimulation (ICSS) 

Intracranial self-stimulation has been widely used to explore the involvement of brain circuits 

in reward. In this paradigm, animals are trained to press a lever, nose poke or head-dip in 

order to obtain electrical stimulation in so-called ´pleasure centers´ i.e. the medial forebrain 

bundle, particularly the ventral tegmental area (VTA), and the lateral hypothalamus (Wise, 

1998). Here the electrical stimuli serve as positive reinforcers. Different drugs of abuse, i.e. 

morphine, heroin, amphetamine, cocaine, phencyclidine and ∆9-THC, all reduce the threshold 

current for ICSS. This facilitation of ICSS appears to be a common effect of drugs of abuse, 

despite their different primary sites of action (see Van Ree et al., 1999).  

 

THEORIES FOR COMMON MECHANISMS OF DRUG REWARD 

Intriguingly, various drugs of abuse, which use different primary targets, can all lead to the 

same phenomenon: drug dependence. Opioid drugs, such as morphine and heroin, interact 

with opioid receptors in the brain (Snyder & Pasternak, 2003), whereas psychostimulants, i.e. 

cocaine and amphetamine, act as indirect dopamine agonists through blockade of the 

dopamine transporter and the vesicular monoamine transporter (VMAT), respectively (Ritz et 

al., 1987; Pifl et al., 1995). Alcohol is thought to act through interactions with ligand-gated ion 

channels, examples of which are gamma-aminobutyric acid (GABA), serotonin, nicotinic 
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acetylcholine (nACh) and glutamate receptors (Soderpalm et al., 2000). Further, nicotine 

probably exerts its actions through interaction with nicotinic acetylcholine (nACh) receptors 

(Corrigall et al., 1992; Picciotto et al., 1998) and the effects of ∆9-THC, the active component 

of cannabis/marihuana, involve binding to cannabinoid receptors (Gardner & Vorel, 1998; 

Childers & Breivogel, 1998). Despite their diverging primary sites of action these drugs all 

reduce the threshold for intracranial self-stimulation, illustrative of their rewarding properties 

(for review see Koob et al., 1998). Furthermore these drugs are self-administered by rodents 

and monkeys in operant tasks, indicative of reinforcing properties of these drugs (see Van Ree 

et al., 2000). ∆9-THC may be an exception to this, for this drug is not readily self-administered 

by laboratory animals (Maldonado, 2002), although self-administration of ∆9-THC by rats and 

squirrel monkeys has been shown (Van Ree et al., 1978; Tanda et al., 2000). It is likely that 

the actions of different classes of drugs converge to the same system, a ´reward system´. Here 

examples of candidates for a common ‘reward system’ will be outlined, with particular focus 

on endogenous dopamine and opioid systems. 

 

Dopamine systems in reward 

Dopamine systems and their topographical organization have been well described. There are 

different groups of dopamine neurons in the central nervous system (see Figure 1). The A8 

and A10 neurons in the retrorubral nucleus and ventral tegmental area (VTA), respectively, 

constitute the mesolimbic and mesocortical systems with projections to limbic areas and the 

ventral striatum, olfactory tubercle, nuclei of the stria terminalis and the neocortex. A9 

neurons in the substantia nigra account for the major input of the mesostriatal system with 

projections to the caudate putamen, globus pallidus, subthalamic nucleus and neocortex. 

Further, dopaminergic nuclei are organized in A11, A12, A13 and A14 diencephalic 

dopaminergic cell groups, A15 hypothalamic cells, A16 neurons in the olfactory bulb and 

retinal A17 dopaminergic neurons (Role & Kelly, 1991). 

The existence of dopamine receptors in the brain was first proposed in 1978. Two subtypes of 

dopamine receptors were suggested, one of which was positively coupled to adenylyl cyclase 

(AC) whereas the other was not coupled to AC (Spano et al., 1978). The AC coupled receptors 

were called dopamine D1 receptors; the others were called D2 subtypes (Kebabian & Calne, 

1979). The classification in D1 and D2 subtypes is still valid today and has been extended 

with pharmacological, biochemical, physiological and anatomical findings in which these 

subtypes have been shown to differ substantially (Missale et al., 1998). The first dopamine 

receptor to be cloned was the D2 receptor in 1988 (Bunzow et al., 1988). Two years later the 

dopamine D1 receptor was cloned by three different groups (Dearry et al., 1990; Monsma, Jr. 

et al., 1990; Zhou et al., 1990). Subsequently D3-, D4- and D5-dopamine receptors and 

several splice variants were identified, which will not be discussed here. The dopamine 

receptors are classified to D1-like receptors, comprising D1 and D5 receptor subtypes, and 

D2-like receptors, which include dopamine D2, D3 and D4 receptors, based on sequence 

homology, function and anatomical distribution (Missale et al., 1998). 
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FIGURE 1 

Dopamine systems in the brain.  

A Dopamine cell groups in the midbrain, A8 (retrorubral nucleus), A9 (substantia nigra) and A10 

(ventral tegmental area), form the mesostriatal  and mesolimbic systems.  

B Other dopamine cell groups in the brain: A11-A14 (diencephalic dopaminergic cell groups), A15 

(including preoptic areas and hypothalamus), A16 (contains the olfactory bulb) and A17 (retinal 

dopaminergic neurons). 

Dopamine appears to be a common mediator of effects of different classes of drugs of abuse. 

An overview of studies to suggest a role of dopamine in drug reward/reinforcement but also of 

studies arguing against involvement of dopamine in these processes will be provided here. 

 

 

 

 

 

 

 

 

 

 

Intracranial self-stimulation (ICSS) 

The mesolimbic dopamine system, which originates in the VTA with projections to the 

nucleus accumbens and prefrontal cortex (the medial forebrain bundle), is generally 

considered the ´reward system´. In 1954 Olds and Milner first recognized the rewarding 

effects of electrical brain stimulation. They noted that rats acquired lever pressing in order to 

obtain electrical stimulation when the electrode was placed in certain brain regions. In their 

study the septum was particularly sensitive to the rewarding effects of electrical stimulation 
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(Olds & Milner, 1954). Later other groups described electrical self-stimulation for more brain 

regions. The medial forebrain bundle, the lateral hypothalamus and the VTA were most 

sensitive for ICSS (Wise, 1998). Although it is evident that the mesolimbic system supports 

ICSS, dopamine may not be critically involved in the rewarding aspects of ICSS as was 

demonstrated with haloperidol and 6-hydroxydopamine (6-OHDA) lesions (Fibiger et al., 

1976).  

 

Dopamine release 

Further support of a role of dopamine in reward was provided by microdialysis studies. It was 

shown using this technique that drugs abused by humans, e.g. morphine, methadone, cocaine, 

amphetamine, alcohol and nicotine all increase dopamine release from the nucleus accumbens 

(Di Chiara & Imperato, 1988a; Pontieri et al., 1996; Tanda et al., 1997), particularly from the 

shell (Pontieri et al., 1995). Dopamine release from the nucleus accumbens shell is not only 

enhanced after experimenter-delivered drugs, but also after self-administration of cocaine and 

heroin (Gerrits et al., 2002). Related to dopamine release may be the psychomotor stimulant 

effects, which are common for different drugs of abuse. As proposed by Wise and Bozarth 

(1987), psychomotor activation induced by a drug is predictive of the reinforcing effect of the 

drug and thus its addiction liability.  

 

Lesions 

Different research groups have made use of 6-hydroxydopamine (6-OHDA) lesions of the 

mesolimbic dopamine system in order to determine the role of this system in drug 

reinforcement/reward. Cocaine-maintained self-administration was reduced in rats with 6-

OHDA lesions in the nucleus accumbens or VTA (Roberts et al., 1977; Roberts & Koob, 

1982; Pettit et al., 1984), although 6-OHDA lesions had only minor effects on the acquisition 

of cocaine self-administration (Gerrits & Van Ree, 1996). Acquisition and maintenance of 

amphetamine self-administration were reduced by 6-OHDA lesions in the nucleus accumbens 

(Lyness et al., 1979). In disagreement with the latter findings, facilitated acquisition of 

amphetamine self-administration was reported after radiofrequency or 6-OHDA lesions of the 

VTA (Le Moal et al., 1979; Deminiere et al., 1984). The discrepancies between these studies 

might be ascribed to differences in the extent of the lesion. Incomplete neuron loss may 

prompt the remaining neurons to compensate thereby facilitating rather than abolishing drug 

reinforcement. 6-OHDA lesions in the nucleus accumbens were however without effect on 

acquisition or maintenance of heroin self-administration (Pettit et al., 1984; Gerrits & Van 

Ree, 1996). In line with these findings, 6-OHDA lesions of the nucleus accumbens did not 

alter the dose-response curve for morphine-maintained self-administration (Dworkin et al., 

1988) although the same group reported augmented morphine maintained self-administration 

after 6-OHDA lesions of the nucleus accumbens in a prior study (Smith et al., 1985). Finally, 

alcohol self-administration, both acquisition and maintenance, were not affected by 6-OHDA 
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lesions of the nucleus accumbens (Rassnick et al., 1993; Koistinen et al., 2001). To 

summarise, 6-OHDA lesion studies have shown a critical role of accumbens dopamine in 

cocaine and amphetamine reinforcement while dopamine in the nucleus accumbens is not 

required for the reinforcing effects of alcohol and opiates.  

 

Dopamine receptors 

If dopamine release in the nucleus accumbens contributes to the reinforcing/rewarding effects 

of drugs of abuse then dopamine antagonists should reduce these actions of drugs of abuse. 

Interestingly in this respect is the finding that dopamine D1 and D2 receptor antagonists 

increase the threshold for intracranial self-stimulation, indicative of reduced reward after 

dopamine receptor blockade (Baldo et al., 1999). Further evidence for a role of dopamine 

receptors in addiction processes from self-administration and CPP induced by different drugs 

will be outlined below. 

Dopamine D1 receptor antagonists (SCH23390, A69045), D2 receptor antagonists (raclopride, 

eticlopride, YM-09151-2) or the mixed D2/5HT2 antagonist risperidone, administered either 

systemically or directly into the VTA, nucleus accumbens or the amygdala, were shown 

repeatedly to enhance the rate of cocaine-maintained self-administration (Koob et al., 1987; 

Britton et al., 1991; Corrigall & Coen, 1991; Hubner & Moreton, 1991; Maldonado et al., 

1993; McGregor & Roberts, 1993; Caine et al., 1995; Ranaldi & Wise, 2001). Interestingly, 

these effects of D1 and D2 antagonists upon cocaine-maintained responding were strain-

dependent (Haile & Kosten, 2001). In contrast to the above, minor or no effects of the 

dopamine antagonist flupentixol (Negus et al., 1996), the D1 receptor antagonist SCH23390 

and the D2 receptor antagonist pimozide (Woolverton & Virus, 1989) or the D2 antagonist 

spiperone (Koob et al., 1987) were also reported. The increase in cocaine-maintained 

responding induced by dopamine receptor blockade was interpreted as a compensation for the 

reduced reinforcing effects of cocaine. Studies which used a progressive ratio schedule of 

reinforcement, in which increasingly more instrumental responses are required in order to 

obtain a cocaine infusion, provided further evidence for this interpretation. In fact, progressive 

ratio studies revealed that dopamine D1 and D2 antagonists reduced the ‘break-point’, i.e. the 

maximum number of responses for a single reinforcer (Hubner & Moreton, 1991; McGregor 

& Roberts, 1993; Fletcher, 1998; Ranaldi & Wise, 2001). This reduction in the ‘break-point’ 

as observed for cocaine and amphetamine self-administration suggests that dopamine D1 and 

D2 antagonists indeed reduce the reinforcing effects of psychostimulant drugs.  

Alcohol reward may also be modulated by dopamine. For example, the partial D1 agonist 

SKF38393 reduced both alcohol consumption and preference (Silvestre et al., 1996). Further, 

the dopamine antagonists fluphenazine and haloperidol reduced alcohol consumption and 

preference (Rassnick et al., 1992; Panocka et al., 1993). Similarly, alcohol but also sucrose-

maintained self-administration was reduced by the dopamine D2 antagonist raclopride when 

injected in the VTA, although only the highest dose of raclopride was effective (Samson & 

Chappell, 1999). Hodge and colleagues studied the effects of agonists and antagonists for 
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dopamine D1 and D2 receptors upon alcohol-maintained responding. Reductions in alcohol 

self-administration were apparent after treatment with the D1 antagonist SCH23390, with high 

doses of the D2 receptor agonist quinpirole (which at low doses enhanced responding) and the 

D2 antagonist raclopride. The D1 agonist SKF38393 was without effect (Hodge et al., 1997). 

However, dopamine D1 and D2 receptor antagonists did not affect alcohol consumption in 

another study, at least not without a concomitant reduction in water intake (Silvestre et al., 

1996). In agreement with these findings, Czachowski and co-workers reported reduced 

appetitive responding for alcohol after intra-accumbal raclopride administration, while alcohol 

consumption was not affected by this treatment (Czachowski et al., 2001). Further, clozapine, 

a dopamine D4 receptor antagonist, did not affect alcohol-induced CPP, although the 

locomotor activating effects of alcohol were reduced as was alcohol-induced conditioned taste 

aversion, although only for one dose (Thrasher et al., 1999). 

With respect to opiates, acquisition of heroin self-administration was reduced but not 

abolished by systemic injections of haloperidol. In contrast, intracerebral injections of 

haloperidol in terminal areas of dopaminergic pathways, i.e. the striatum, nucleus accumbens, 

amygdala, prefrontal cortex and pyriform cortex, did not affect heroin self-administration in 

drug naive rats. The authors concluded that dopamine is not critically involved in opiate 

reward (Van Ree & Ramsey, 1987). No effects on acquisition of heroin self-administration 

were observed after intra-accumbens administration of the dopamine D1 antagonist 

SCH23390, although motor activity was effectively reduced by the same doses of SCH23390 

demonstrating its effective blockade of D1 receptors at these doses. In the same study, 

systemic SCH23390 did reduce acquisition of heroin self-administration but responding on the 

non-reinforced lever was also reduced suggesting dopamine D1 receptors are not involved in 

heroin reinforcement (Gerrits et al., 1994).  

At the time just prior to a scheduled self-administration session dopamine levels in the nucleus 

accumbens were reduced as compared to naive rats. This finding was interpreted such that 

dopamine may be involved in the desire for the drug or drug seeking (Gerrits et al., 2002). 

Reinstatement studies provided evidence for involvement of dopamine in drug seeking after a 

period of withdrawal. Cocaine-primed reinstatement of responding for cocaine was reduced by 

the D1 receptor antagonist SCH23390 but only when SCH23390 was injected in the 

accumbens shell and not the core or lateral septum (Anderson et al., 2002). A role of D1 

receptors in cocaine reinstatement was however not supported by another study, which did 

describe reduced cocaine-induced reinstatement of responding for cocaine by the dopamine 

D2 antagonist eticlopride (Schenk & Gittings, 2002). Dopamine D1 and D2 antagonists 

reduced stimulus-induced reinstatement of alcohol seeking (Liu & Weiss, 2002). Finally, the 

D1 antagonist SCH23390, the D2 antagonist raclopride and mixed dopamine antagonists 

flupentixol and haloperidol reduced heroin-primed reinstatement of responding for heroin 

(Shaham & Stewart, 1996; Ettenberg et al., 1996). 

The antipsychotic clozapine (D4 receptor antagonist) reduced cocaine-induced CPP and 

haloperidol reduced CPP induced by electrical prefrontal cortex stimulation (Duvauchelle & 

Ettenberg, 1991; Kosten & Nestler, 1994). D1 receptor antagonists consistently impaired 
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acquisition of CPP induced by cocaine, amphetamine, morphine, nicotine or diazepam 

(Acquas et al., 1989; Cervo & Samanin, 1996; Baker et al., 1998; Bardo et al., 1999; Rezayof 

et al., 2002; Zarrindast et al., 2003). Place aversion induced by naloxone or the κ-opioid 

receptor agonist U69593 was also reduced by the D1 antagonist SCH23390 (Shippenberg & 

Herz, 1988). It is not clear whether dopamine D1 receptors are involved in the expression of 

CPP for one study did and another did not observe effects of dopamine D1 receptor 

antagonists. Similarly, the role of dopamine D2 receptors in CPP is questionable for 

inconsistent findings were reported on this matter (Shippenberg & Herz, 1988; Cervo & 

Samanin, 1996; Baker et al., 1996; Bardo et al., 1999; Rezayof et al., 2002; Zarrindast et al., 

2003). Taken together, these findings suggest a contribution of dopamine to motivational 

aspects of drugs of abuse. 

Recently dopamine D3 receptors have received considerable attention in addiction research. 

Dopamine D3 receptors are potential targets in treatment of drug addiction (Le Foll et al., 

2000). D3 receptor selective agonists have been shown to decrease cocaine self-administration 

in trained rats, indicating that dopamine D3 receptor agonists enhance cocaine’s reinforcing 

effects (Caine & Koob, 1993). The partial D3 receptor agonist BP897 was found to reduce 

cue-controlled cocaine seeking without intrinsic reinforcing effects and without affecting 

cocaine self-administration on an FR1 schedule (Pilla et al., 1999). More recently, disruptions 

of amphetamine and nicotine cue-conditioned hyperactivity by BP897 were reported (Aujla et 

al., 2002; Le Foll et al., 2003). BP897 is currently in phase II clinical trials for it is regarded a 

potential therapeutic target in the treatment of cocaine abuse (Beardsley et al., 2002). Studies 

on a novel selective D3 receptor antagonist, SB-277011-A, showed reduced cue-controlled 

cocaine-seeking and reduced cocaine-enhanced reward in rats after treatment with SB-

277011-A, although cocaine reinforcement was not affected (Di Ciano et al., 2003). In mice, 

reduced nicotine cue-conditioned hyperactivity has been shown after treatment with SB-

277011-A (Vorel et al., 2002; Le Foll et al., 2002). Cocaine-induced place preference 

appeared not to be modulated by dopamine D3 receptor ligands (Gyertyan & Gal, 2003), 

whereas morphine-induced CPP was enhanced in dopamine D3 receptor knockout mice 

(Narita et al., 2003). A recent study reported that BP897 attenuated both the development and 

the expression of cocaine-induced CPP while not affecting morphine or food-induced CPP 

(Duarte et al., 2003). In summary, the notion has emerged that dopamine D3 receptors can 

modulate drug reinforcement, although they appear to have a more prominent role in drug 

seeking behaviour.  

To summarise, dopamine systems are involved in reward as is evident from the support of 

intracranial self-stimulation by the mesolimbic system and the modulation of self-

administration of different drugs after 6-OHDA lesion or dopamine antagonist treatment. 

However, it is important to note that acquisition and maintenance of heroin, morphine and 

alcohol were insensitive to 6-OHDA lesions and dopamine antagonists did not affect 

acquisition of heroin self-administration. These findings suggest that dopamine is not 

generally involved in reinforcement across drugs of abuse.  
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Endogenous opioid systems in reward 

In the early 1970s, opioid binding sites were demonstrated in brain tissue (Pert & Snyder, 

1973; Terenius, 1973; Simon et al., 1973). Shortly thereafter endogenous opioid peptides were 

identified: first Met-enkephalin and Leu-enkephalin (Hughes et al., 1975) and later β-

endorphin (Bradbury et al., 1976) and dynorphin (Goldstein et al., 1979). Enkephalin, β-

endorphin and dynorphin are derived from different precursor molecules, i.e. proenkephalin, 

pro-opiomelanocortin (POMC) and prodynorphin, respectively. Around the same time the 

existence of multiple opioid receptors was suggested based on pharmacological findings. 

Martin et al. described different syndromes in dogs that were chronically exposed to morphine 

(µ), ketocyclazocine (κ) or SKF-10,047 (σ) (Martin et al., 1976). Since σ-mediated effects 

were shown insensitive to naloxone, σ-sites are considered non-opiate sites. Another example 

for different opiate sites was the finding that, in contrast to guinea pig ileum, mouse vas 

deferens exhibited a higher affinity for enkephalins than for morphine, which suggested 

enkephalin-preferring sites (Lord et al., 1977). Besides the main opioid receptor classes, which 

are the µ-, δ- and κ-opioid receptors, other subtypes such as ε-, ι-, λ- and ζ-opioid receptors 

have been proposed (for review Akil et al., 1998). In the early 1990s the main opioid receptor 

subtypes were cloned and further characterized. The first to be identified was the δ-opioid 

receptor in 1992 (Evans et al., 1992; Kieffer et al., 1992). In the following year the µ- and κ-

opioid receptors were also cloned (Thompson et al., 1993; Meng et al., 1993; Yasuda et al., 

1993; Chen et al., 1993; Wang et al., 1993). Opioid receptors belong to the 7-transmembrane 

G-protein coupled receptor family; they are negatively coupled to Gi and induce a reduction in 

cyclic AMP. As reviewed elsewhere, µ-, δ- and κ-opioid receptors have a widespread 

expression pattern in the brain yet distinct from each other (Mansour et al., 1988; Mansour et 

al., 1995; Lesscher et al., 2003a). Amongst the areas where opioid receptor binding has been 

demonstrated are regions of the mesolimbic system. Interestingly, the endogenous opioid 

peptides have some selectivity for the µ-, δ- and κ-opioid receptors. β-Endorphin is relatively 

selective for µ-opioid receptors while enkephalin is more selective to δ-opioid receptors and 

dynorphin binds selectively to κ-opioid receptors (see Akil et al., 1998 and Gutstein & Akil, 

2001 for review).  

Endogenous opioids, particularly β-endorphin, have reinforcing properties. It has, for example, 

been demonstrated that β-endorphin is self-administered by rats (Van Ree et al., 1979) and 

that β-endorphin can induce conditioned place preference (Amalric et al., 1987). The 

reinforcing effects of endogenous opioid peptides suggested a potential role of these 

neuropeptides in reinforcement/reward induced by drugs of abuse. The impressive body of 

evidence for involvement of endogenous opioid systems in the effects of drugs of abuse, 

particularly alcohol, cocaine and heroin, has been reviewed elsewhere (see amongst others 

Ulm et al., 1995; Van Ree, 1996; Herz, 1997; Herz, 1998; Van Ree et al., 1999; Van Ree et 

al., 2000). Here, an overview will be given of pharmacological studies, which dealt with 

endogenous opioid systems in experimental addiction. This overview is not exhaustive and 
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further evidence for endogenous opioids in drug addiction from genetic studies will be 

discussed separately in Chapter 2 of this thesis.  

Intracranial self-stimulation (ICSS) studies provided support for a role of endogenous opioid 

systems in brain reward. The non-selective antagonist naloxone (NLX) reversed cocaine-, 

amphetamine- and morphine-induced facilitation of ICSS (Bain & Kornetsky, 1987; Schaefer 

& Michael, 1990), although NLX was ineffective in reversing cocaine-induced facilitation of 

ICSS in another study (Van Wolfswinkel et al., 1988). The reduction of cocaine-induced brain 

reward by naltrindole may suggest involvement of δ-opioid receptors in drug reward (Reid et 

al., 1993). When administered alone, the opioid antagonists NLX and diprenorphine reduce 

ICSS responding, however only using a fixed-ratio schedule (Schaefer & Michael, 1988). 

Furthermore the µ- and δ-opioid receptor agonists DAMGO and DPDPE, administered in the 

nucleus accumbens, both reduced the threshold for ICSS (Duvauchelle et al., 1996; 

Duvauchelle et al., 1997). 

Further, drugs of abuse induce changes in endogenous opioids in the brain. For example, β-

endorphin immunoreactivity was reduced in limbic structures 18 hours after heroin and 

cocaine self-administration (Sweep et al., 1988). In a subsequent study Sweep and co-workers 

reported enhanced plasma β-endorphin levels in addition to the previously described 

reductions of β-endorphin in limbic regions. In contrast, immediately after the last self-

administration session minor changes in β-endorphin immunoreactivity were noted (Sweep et 

al., 1989). More recently, Gerrits et al. studied opioid release using the indirect approach of in 

vivo autoradiography with the non-selective opioid antagonist [
3H]diprenorphine. Marked 

increases in opioid release were noted in restricted areas of the mesocorticolimbic system just 

before the scheduled self-administration session for both alcohol and cocaine. These findings 

suggested a role of endogenous opioids in drug craving (Gerrits et al., 1999). With 

microdialysis, enhanced β-endorphin levels in the nucleus accumbens were observed after 

acute administration of cocaine, alcohol and amphetamine treatment, while nicotine was 

without effect (Olive et al., 2001). Similar findings for cocaine were reported by Roth-Deri 

and co-workers who further reported enhanced brain activity in the nucleus accumbens and the 

arcuate nucleus, where the cell bodies of β-endorphin producing POMC neurons are localised 

(Roth-Deri et al., 2003). Marinelli and co-workers determined dopamine and β-endorphin 

concurrently after alcohol administration. An interesting observation was that the increase in 

dopamine release appeared to occur prior to the rise in β-endorphin levels in the nucleus 

accumbens, suggesting independent or at least different mechanisms of dopamine versus β-

endorphin release (Marinelli et al., 2003).  

 

Endogenous opioids and cocaine  

Endogenous opioid systems are involved in cocaine reinforcement. This is evident from the 

impaired acquisition of operant responding for intravenous cocaine by NLX or naltrexone 

(NTX) treatment. Acute treatment with NLX and NTX just prior to self-administration caused 

rightward shifts in the dose-response curves for cocaine self-administration in naive rats and 
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mice, which is indicative of reduced reinforcing properties of cocaine (De Vry et al., 1989; 

Ramsey & Van Ree, 1991; Kuzmin et al., 1997a; Kiyatkin & Brown, 2003). Ramsey et al. 

have shown by local injections of NTX in different regions that the effects of NTX upon 

cocaine reinforcement are mediated by the ventral tegmental area (VTA) while NTX was 

ineffective when injected in the amygdala, caudate putamen, nucleus accumbens or prefrontal 

cortex (Ramsey et al., 1999). In contrast to the acute effects of opioid antagonists, chronic 

exposure to NTX facilitated the acquisition of cocaine self-administration (Ramsey & Van 

Ree, 1990). Several studies have addressed possible involvement of κ-opioid receptors in 

initiation of cocaine intake, which provided some conflicting findings. The κ-opioid receptor 

antagonist nor-binaltorphimine (nor-BNI) impaired acquisition of cocaine self-administration 

in rats (Kuzmin et al., 1998) while the same group reported enhance reinforcing effects of 

cocaine after treatment with the κ-opioid receptor agonist U50,488H in drug naïve rats 

(Kuzmin et al., 1997b). Another study reported impaired acquisition of cocaine self-

administration in rats treated with the κ-opioid receptor agonist U69593 (Schenk et al., 2001). 

Interestingly, acquisition of cocaine self-administration was also facilitated in adult rats that 

were prenatally exposed to the opioid agonist morphine (Ramsey et al., 1993). A recent study 

demonstrated altered µ-opioid receptor binding in amongst others the nucleus accumbens and 

the amygdala after prenatal morphine treatment in rats, although unfortunately the VTA was 

not included in their analysis (Vathy et al., 2003).  

The involvement of opioid systems in cocaine-maintained self-administration is less clear as is 

apparent from the conflicting literature on this matter. In rats that were trained to self-

administer cocaine, NTX was either ineffective (Ettenberg et al., 1982; Stromberg et al., 2002) 

or NTX enhanced cocaine-maintained responding (Carroll et al., 1986). In contrast, the µ-

opioid receptor agonist DAMGO consistently reduced cocaine self-administration when 

administered in the VTA or the pontine nucleus (Corrigall et al., 1999a; Corrigall et al., 

1999b; Corrigall et al., 2000). The shift in the dose-response curve for cocaine self-

administration by intra-VTA DAMGO infusions was interpreted by Corrigall et al. to reflect 

increased reinforcing value of cocaine. However the same group failed to show convincing 

effects of the µ-opioid receptor antagonist CTOP upon cocaine responding (Corrigall et al., 

1999a; Corrigall et al., 1999b). The irreversible µ-opioid receptor antagonist β-funaltrexamine 

(β-FNA) did not affect cocaine self-administration on a Fixed Ratio (FR) 1 schedule while 

responding for cocaine on a progressive ratio schedule of reinforcement was attenuated by β-

FNA injected in the VTA or the nucleus accumbens (Ward et al., 2003). Conflicting results 

were obtained with the δ-opioid antagonist naltrindole, which reduced cocaine-maintained 

self-administration in one study (Reid et al., 1995) while naltrindole was ineffective in 

modulating cocaine responding in another study (De Vries et al., 1995). κ-Opioid receptors are 

probably not involved in cocaine dependence for only minor or no effects upon cocaine-

maintained self-administration were noted after treatment with the κ-opioid receptor agonists 

U50,488H or U69593 and the κ-opioid receptor antagonist nor-BNI (Corrigall et al., 1999b; 

Schenk et al., 2001).  
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With respect to reinstatement, κ- but not µ-opioid receptors modulate reinstatement to cocaine 

seeking. For example, Comer et al. reported no effect of NTX or the µ-opioid receptor agonist 

etonitazene upon cocaine-primed reinstatement of cocaine seeking while the mixed µ-/κ-

opioid receptor agonist/antagonist buprenorphine reduced cocaine seeking reinstated by 

cocaine (Comer et al., 1993). Schenk et al. later observed reduced cocaine-induced 

reinstatement after treatment with the κ-opioid receptor agonist U69593. This effect, which 

was reversed by the κ-opioid receptor antagonist nor-BNI, was also observed for reinstatement 

of cocaine seeking induced by the cocaine analogue RTI-55 but not for reinstatement induced 

by the dopamine transporter inhibitors GBR12909 and WIN35,428 (Schenk et al., 2000).  

Also motivational aspects of cocaine involve endogenous opioid activity. NLX and NTX 

reduced the development of cocaine-induced CPP in rats and mice (Bilsky et al., 1992; Gerrits 

et al., 1995; Kuzmin et al., 1997a),  although  in one study effects of NTX were only noted on 

the third test day for expression of CPP (Houdi et al., 1989). Further the µ1-opioid receptor 

selective antagonist naloxonazine and the mixed µ-/κ-opioid receptor agonist/antagonist 

buprenorphine also reduced cocaine-induced place preference (Kosten et al., 1991; 

Rademacher & Steinpreis, 2002). Also δ-opioid receptors may contribute to the motivation for 

cocaine reward. Antisense oligonucleotides for the δ-opioid receptor reduced cocaine-induced 

CPP in mice and the δ-opioid receptor antagonist naltrindole reduced place preference cocaine 

(Suzuki et al., 1994), although these findings were not supported by another study (De Vries et 

al., 1995). More specifically, δ2- rather than δ1-opioid receptor subtypes have been implicated 

in cocaine-induced CPP (Suzuki et al., 1994). 

Taken together, endogenous opioid systems are important in cocaine reinforcement and 

motivational aspects of cocaine, although their contribution to cocaine-maintained self-

administration is less prominent.  

 

Endogenous opioids and alcohol  

Endogenous opioid systems have also been implicated in alcohol reinforcement. For example, 

NTX impaired the acquisition of alcohol self-administration and alcohol preference in mice 

and rats (Phillips et al., 1997; Davidson & Amit, 1997). In contrast, chronic exposure to NTX 

facilitated the initiation of alcohol consumption and enhanced alcohol preference (Phillips et 

al., 1997).  

The effect of opioid antagonists upon alcohol-maintained self-administration has been widely 

investigated. The relatively non-selective opioid antagonists NLX and NTX were repeatedly 

shown to reduce alcohol maintained self-administration and alcohol preference in mice, rats 

and monkeys (Froehlich et al., 1990; Kornet et al., 1991; Hyytia, 1993; Phillips et al., 1997; 

Stromberg et al., 1998; June et al., 1999; Middaugh et al., 1999; Parkes & Sinclair, 2000; 

Koistinen et al., 2001; Goodwin et al., 2001; Hyytia & Kiianmaa, 2001; Shoemaker et al., 

2002; Stromberg et al., 2002). Similar reductions in alcohol intake were noted after 

intracerebroventricular (i.c.v.) injection or local administration of NLX in the nucleus 

accumbens and the amygdala (Heyser et al., 1999). In contrast, Bienkowski and co-workers 
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did not observe effects of acute NTX upon alcohol consumption while small reductions in 

alcohol intake were noted after subchronic NTX treatment (Bienkowski et al., 1999). 

Similar findings have been reported for µ-opioid receptor antagonists, e.g. the irreversibly µ-

opioid receptor alkylating β-funaltrexamine (β-FNA) and the µ-opioid receptor antagonist 

CTOP reduced alcohol maintained responding (Hyytia, 1993; Stromberg et al., 1998; Hyytia 

& Kiianmaa, 2001). In contrast, the µ-opioid receptor agonist DAMGO enhanced alcohol 

intake when injected in the nucleus accumbens (Zhang & Kelley, 2002). The literature dealing 

with the involvement of δ-opioid receptors in alcohol maintained self-administration is 

ambiguous. Some groups found no modulation of alcohol intake by δ-opioid receptor 

antagonists naltrindole or ICI 174,864 (Hyytia, 1993; Stromberg et al., 1998; Middaugh et al., 

2000) while another study reported reduced alcohol self-administration after naltrindole 

treatment (Hyytia & Kiianmaa, 2001). Further, June and co-workers described a similar 

reduction in alcohol responding induced by the δ2-opioid receptor antagonist naltriben (June et 

al., 1999). There is no clear evidence for involvement of κ-opioid receptors in maintenance of 

alcohol self-administration, although the κ-opioid receptor agonist CI-977 may modulate 

alcohol drinking in a dose-dependent way (Holter et al., 2000). 

With respect to relapse to alcohol consumption, the non-selective opioid receptor antagonist 

NTX, the δ-opioid receptor selective antagonist naltrindole and the µ1-opioid receptor 

selective antagonist naloxonazine all reduced alcohol seeking in rats (Ciccocioppo et al., 

2002). Moreover, renewed alcohol consumption by monkeys after a short period of abstinence 

was reduced by NTX (Kornet et al., 1991).  

It is clear from these studies that endogenous opioid systems can modulate alcohol 

reinforcement and that opioid receptor activity may contribute to relapse to alcohol intake. In 

addition, the contribution of endogenous opioid systems to the motivational aspects of alcohol 

has been evaluated in alcohol-induced place conditioning paradigms. NTX did not affect the 

development and expression of conditioned place aversion induced by alcohol in rats 

(Bormann & Cunningham, 1997). Kuzmin et al. also failed to show effects of NLX upon the 

acquisition of alcohol-induced CPP although expression of CPP was reduced by NLX 

(Kuzmin et al., 2003). The latter study further demonstrated that NLX inhibited alcohol-

primed expression of CPP after extinction of preference.  

 

Endogenous opioids and opiates 

Endogenous opioid involvement in heroin self-administration has also been demonstrated. For 

example, Martin et al. found a rightward shift in the dose-response curve for heroin self-

administration after NTX treatment in drug naive rats. This suggests reduced reinforcing 

effects of heroin in presence of the opioid antagonist NTX (Martin et al., 1996). In drug-naive 

mice, the κ-opioid receptor agonist U50,488H facilitated morphine self-administration 

(Kuzmin et al., 1997b). Van Ree investigated the effects of β-endorphin and related peptides 

upon initiation of heroin self-administration in rats. He did not find heroin intake affected by 

β-endorphin itself although non-opioid fragments of β-endorphin either reduced (γ-type 
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endorphins βE2-17 and βE6-17) or facilitated (β-endorphin2-9) acquisition of heroin self-

administration (Van Ree, 1983).  

Opioid receptor antagonists also affected heroin-maintained self-administration. NLX and 

NTX enhanced heroin maintained responding when administered systemically, but also in the 

VTA, nucleus accumbens and lateral hypothalamus whereas local administration of NLX in 

the prefrontal cortex did not affect heroin self-administration (Koob et al., 1984; Vaccarino et 

al., 1985; Corrigall, 1987). In contrast, another study reported reduced heroin self-

administration in trained rats (Oei, 1980) and Walker et al. found reduced heroin intake after 

NLX was administered in the bed nucleus of the stria terminalis (BNST) or the nucleus 

accumbens, but only in morphine dependent rats (Walker et al., 2000). Martin and co-workers 

made use of the irreversible µ-opioid antagonist β-FNA, which alkylates the µ-opioid 

receptor. I.c.v. β-FNA reduced heroin maintained self-administration (Martin et al., 1995), 

which was repeated in a later study by the same group (Martin et al., 1998). In yet another 

study β-FNA was injected in the caudal part of the nucleus accumbens and was found to cause 

a rightward and downward shift in the dose-response curve for heroin-maintained self-

administration (Martin et al., 2002). The dose-effect curves for heroin responding in relation 

to β-FNA doses in time and the concurrently determined [
3H]DAMGO binding are complex. 

Nonetheless, it is clear from these studies that µ-opioid receptors are involved in heroin-

maintained responding in rats. Finally, the δ-opioid receptor antagonist naltrindole did not 

affect morphine maintained responding (Reid et al., 1995) whereas the δ2-opioid receptor 

antagonist naltrindole-5´-isothiocyanate attenuated heroin-maintained self-administration 

(Martin et al., 2000b). 

With respect to reinstatement of extinguished responding for heroin, Stewart and Wise showed 

that morphine facilitated reinstatement of heroin self-administration. In contrast, NTX reduced 

the propensity to resume heroin consumption (Stewart & Wise, 1992).  

NLX further impaired the development of place preference for heroin (Braida et al., 2001) and 

for  β-endorphin (Amalric et al., 1987). Interestingly, chronic exposure to NTX enhanced 

cocaine-induced CPP (Bardo & Neisewander, 1987). This was however dose- and regimen-

dependent: differences between chronic NTX and control rats were only observed in single 

trial morphine-induced CPP. There is no evidence for involvement of endogenous opioid 

systems in the expression of heroin-induced CPP (Hand et al., 1989).  

 

Endogenous opioids and nicotine 

Besides its involvement in alcohol, cocaine and opiate reward, endogenous opioid systems 

also modulate nicotine reward, although the literature dealing with opioids in nicotine 

addiction is relatively limited (Pomerleau, 1998). The role of endogenous opioids in the 

initiation of nicotine self-administration has not been investigated. However, reduced nicotine 

maintained self-administration in rats has for example been shown after administration of the 

µ-opioid receptor agonist DAMGO into the VTA (Corrigall et al., 2000).  
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Endogenous opioids and cannabinoids 

The contribution of endogenous opioid systems to cannabinoid reward has been addressed 

using knockout studies, which will be discussed in chapter 2. However, there is also 

pharmacological evidence for opioid modulation of cannabinoid reward. For example, Braida 

et al. described reduced place preference induced by the cannabinoid agonist CP55,940 when 

given concurrently with NLX (Braida et al., 2001).  

 

Mechanisms of opioid modulation of reward 

As evident from the previous sections, endogenous opioid systems are involved in addiction 

processes of different classes of drugs of abuse. It appears that particularly opioid receptors in 

the VTA have a key role in opioid modulation of reinforcement. The µ-opioid receptor is most 

likely involved in this, for example because the VTA is relatively rich in µ-opioid receptors 

whereas the VTA contains little δ-opioid receptor binding sites (Lesscher et al., 2003a). 

Secondly, studies, which dealt with opioid modulation of initiation of drug self-administration, 

which involves predominantly the positive reinforcing effects of drugs, used either naloxone 

or naltrexone. These opioid antagonists have some selectivity for µ- over δ- and κ-opioid 

receptors, (Gutstein & Akil, 2001). Thus µ-opioid receptors in the VTA appear to have an 

important role in drug reinforcement. According to the current theory, µ-opioid receptors in 

the VTA increase dopamine neuron activity through disinhibition through a relief of 

GABAergic tone (Figure 2). In the VTA, two types of neurons have been characterised: 

principal dopamine-containing neurons and secondary non-dopaminergic neurons. The latter 

are sensitive to µ-opioid agonists and are presumably GABAergic interneurons (Gysling & 

Wang, 1983; Johnson & North, 1992b). Indeed, in the VTA µ-opioid receptors are expressed 

mainly by non-dopaminergic, presumably GABA containing neurons (Garzon & Pickel, 

2001). Activation of µ-opioid receptors causes hyperpolarization of the secondary GABA 

containing neurons, thereby relieving inhibitory input to dopaminergic projection neurons 

(Johnson & North, 1992a). In line with this is the finding that intra-VTA administration of the 

GABAB receptor agonist baclofen impaired acquisition of cocaine self-administration and 

reduced responding for cocaine using a progressive ratio schedule of reinforcement (Brebner 

et al., 2000; Campbell et al., 2002). Baclofen locally injected in the VTA further reduced 

acquisition of heroin self-administration, enhanced the rate of heroin-maintained self-

administration and reduced heroin-induced dopamine release (Xi & Stein, 1999). Similarly, 

increased mesolimbic GABA concentration which was achieved by local administration of the 

GABA transaminase inhibitor gamma-vinyl GABA (GVG) also impaired acquisition of heroin 

self-administration and reduced heroin reinforcement during maintenance of heroin self-

administration (Xi & Stein, 2000). Corrigall and co-workers compared the effects of the 

GABAA and GABAB receptor agonists muscimol and baclofen, respectively. Both GABA 

agonists reduced nicotine self-administration in trained rats but did not affect cocaine self-

administration (Corrigall et al., 2000). It is further interesting to note in this context, that the 
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GABAA antagonist bicuculline is self-administered directly in the VTA by mice (David et al., 

1997).  

 

Other neurotransmitter systems in reward 

Besides dopamine and opioids, other neurotransmitters have also been implicated in 

modulating rewarding effects of drugs of abuse of which GABA was already mentioned in the 

previous section.  

FIGURE 2 

Schematic drawing of principal dopamine and secondary GABA neurons in the ventral tegmental area. 

A Dopamine neurons are tonically inhibited by GABA, which is released from the GABA 

(inter)neurons and interacts with GABA receptors, which are localized on these dopamine neurons.  

B µ-Opioid receptors are localized on the GABA (inter)neurons in the VTA and when activated by 

opioids, either endogenous or exogenous, they cause the GABA neuron to hyperpolarize. Thereby, 

opioid ligands can relieve the inhibitory input onto dopamine neurons in the VTA thus causing 

increased activity of the dopamine neuron and hence of dopamine output to amongst others the nucleus 

accumbens. 
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Glutamate and reward 

Glutamate is among the examples of other neurotransmitters, which was studied by several 

groups for its possible contribution to drug addiction. A recent study, which used the mGluR5 

antagonist MPEP, described reduced cocaine- and nicotine-maintained self-administration in 

mice after treatment with MPEP. In naive mice, MPEP reduced responding for nicotine 

although the intake of nicotine was not affected (Paterson et al., 2003). In line with these 

findings, NMDA antagonists dizolcipine, ketamine and AP-5 locally administered in the VTA 

reduced heroin reinforcement. AMPA antagonists only partly reduced heroin reinforcement 

(Xi & Stein, 2002) and did not affect cocaine-maintained responding when administered in the 

nucleus accumbens (Cornish et al., 1999). The latter study also explored the effects of AMPA 

agonists upon cocaine reinforcement and cocaine seeking. In fact, AMPA agonists effectively 

enhanced the reinforcing effects of cocaine as was evident from a reduction in the rate of 

cocaine-maintained self-administration. Moreover, AMPA agonists potentiated reinstatement 

of extinguished cocaine seeking. The NMDA antagonist MK-801 further impaired the 

acquisition of cocaine- and morphine-induced CPP (Cervo & Samanin, 1996; Kim et al., 

1996), although amphetamine-induced CPP was not affected by MK-801 treatment (Hoffman, 

1994). Interestingly, the AMPA antagonist DNQX impaired the expression but not the 

acquisition of cocaine-induced CPP (Cervo & Samanin, 1996). Of further interest in relation 

to glutamatergic involvement in addiction processes is the notion that synaptic plasticity 

(memory-like processes) occurs in reward-related regions such as the VTA. In 1999, Bonci 

and Malenka demonstrated long-term potentiation at synapses onto dopamine neurons in the 

VTA, which they induced with a pulse pairing protocol (Bonci & Malenka, 1999). 

Subsequently, a single exposure to cocaine was shown to induce long-term potentiation (LTP) 

of AMPA receptor-mediated currents at excitatory synapse onto dopaminergic neurons in the 

VTA (Ungless et al., 2001).  

 

Serotonin and reward 

Using agonists and antagonists selective for different subtypes of serotonin receptors, the 

contribution of serotonin systems to drug reward has also been investigated. The 5-HT1B 

antagonist GR127935 did not affect cocaine self-administration (Castanon et al., 2000). 

Studies with 5-HT1A and 5-HT1B agonists yielded conflicting results. For example, the 5-HT1B 

agonist CP93,129, but not the 5-HT1A agonist 8-OH-DPAT, in the nucleus accumbens reduced 

amphetamine reinforcement as was concluded based on a reduction in the break-point for 

responding using a progressive ratio schedule of reinforcement (Fletcher et al., 2002). Another 

group reported enhanced cocaine reinforcement after treatment with the 5-HT1B agonists 

RU24969, CP94,253 and CP93,129 (Parsons et al., 1998). Cocaine-induced CPP was not 

affected by the 5-HT1A agonist buspirone (Ali & Kelly, 1997). Most studies agree on the lack 

of involvement of 5-HT2 receptors in drug reinforcement. Neither the 5-HT2 agonist DOI nor 

the 5-HT2 antagonist ritanserin affected responding for amphetamine using a progressive ratio 

schedule (Fletcher, 1998; Fletcher et al., 2002). Moreover, the 5-HT2 antagonist ritanserin did 
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not alter alcohol preference (Panocka et al., 1993) nor did another 5-HT2 antagonist ketanserin 

affect cocaine-maintained self-administration (Ranaldi & Wise, 2001). In contrast, reduced 

alcohol consumption and cocaine reinforcement were observed after treatment with the 5-

HT2C antagonist amperozide (McMillen et al., 1993). Yet another study described reduced 

cocaine reinforcement after exposure to the 5-HT2C agonist Ro 60-0175 although food-

maintained responding and cocaine-induced hyperactivity were also reduced by this treatment 

(Grottick et al., 2000). Finally 5-HT3 receptor antagonists did not affect cocaine-maintained 

responding (Peltier & Schenk, 1991) but reduced alcohol intake (Knapp & Pohorecky, 1992) 

and impaired the facilitation of intracranial self-stimulation by cocaine (Kelley & Hodge, 

2003). Taken together serotonin systems can modulate drug reward. Knockout studies 

contribute further insight into the role serotonin systems have in reward processes, these will 

be discussed in Chapter 2 of this thesis.  

 

Endogenous cannabinoids and reward 

Endogenous cannabinoids have recently received substantial attention for their possible 

involvement in reward, as reviewed by Gardner and Vorel (Gardner & Vorel, 1998). Two 

cannabinoid receptors have been identified: the CB1 and the CB2 receptor (Childers & 

Breivogel, 1998). The CB1 receptor is expressed in brain while localisation of the CB2 

receptor is restricted to the periphery. The central effects of ∆9-tetrahydrocannabinol (∆9-

THC), the active component of marijuana, are mediated by cannabinoid type 1 (CB1) 

receptors. Intracranial self-stimulation studies have confirmed the rewarding aspects of ∆9-

THC as was concluded from the reduction in threshold for ICSS caused by ∆9-THC (Gardner 

et al., 1988) although the rewarding properties of ∆9-THC seem to be strain-dependent for ∆9-

THC facilitated ICSS in Lewis but not Fisher rats (Lepore et al., 1996). In further support of 

involvement of cannabinoid systems in reward, the CB1 receptor antagonist SR141716A 

reduced responding for ICSS indicative of reduced rewarding effects of brain stimulation 

(Deroche-Gamonet et al., 2001). However, other studies suggest only a minor contribution of 

cannabinoid neurotransmission to reward. For example, the CB1 receptor agonist WIN55,212-

2 did not affect ICSS itself, but impaired cocaine-induced facilitation of ICSS. This effect of 

WIN55,212-2 upon cocaine reward was blocked by the CB1 receptor antagonist SR141716A 

which itself was without effect on ICSS (Vlachou et al., 2003). Another study failed to show 

effects of another CB1 receptor agonist, CP55,940, upon ICSS while in this case SR141716A 

reduced ICSS responding however only at a very high dose at which SR141716A acts as an 

inverse agonist (Arnold et al., 2001).  

Besides their possible intrinsic rewarding properties, endogenous cannabinoids have also been 

implicated in rewarding aspects of different classes of drugs of abuse. For example, the CB1 

receptor antagonist SR141716A reduced heroin self-administration although the effects 

depended on the schedule of reinforcement. SR141716A effectively reduced heroin self-

administration on a progressive ratio schedule of reinforcement while being modestly effective 

/ ineffective on heroin-maintained behaviour (Solinas et al., 2003 but Navarro et al., 2001). 



Introduction - Drug addiction and underlying mechanisms  

35 

SR141716A further reduced acquisition of morphine self-administration, morphine-induced 

CPP in mice (Navarro et al., 2001) and heroin-induced CPP in rats (Braida et al., 2001). 

Further, pre-exposure to the CB1 agonist CP55,940 potentiated acquisition of morphine self-

administration and morphine-induced CPP in rats (Norwood et al., 2003). Cocaine-maintained 

self-administration was not sensitive to effects of SR141716A but WIN55,212-2 reduced 

cocaine-maintained responding (Fattore et al., 1999). This may suggest either enhanced 

reinforcing effects of cocaine but may also reflect reinforcing effects of WIN55,212-2 itself.  

Endogenous cannabinoid systems have been extensively studied for their role in alcohol 

reward. The cannabinoid agonist Win55,212-2 enhanced alcohol intake while water, food or 

sucrose intake were not affected (Colombo et al., 2002). Another CB1 agonist CP55,940 

enhanced the breakpoint for self-administration of beer in a progressive ratio paradigm 

(Gallate et al., 1999). The CB1 receptor antagonist SR141716A reduced acquisition of alcohol 

drinking (Serra et al., 2001), it reduced alcohol and sucrose intake but not water or food intake 

in another study (Arnone et al., 1997), while yet another study did not reveal effects of 

SR141716A on alcohol intake (Colombo et al., 2002). An interesting study by Wang and co-

workers demonstrated age-dependent effects of SR141716A on alcohol preference in mice. 

Young C57Bl/6 mice display greater alcohol preference as compared to adult mice from the 

same strain. While adult mice were not sensitive to SR141716A in relation to alcohol 

preference, SR141716A effectively reduced alcohol preference in young C57Bl/6 mice. This 

difference in sensitivity to cannabinoid receptor blockade may be related to reduced CB1 

receptor G-protein coupling in old versus young C57Bl/6 mice (Wang et al., 2003). Further, 

SR141716A reduced the break-point for beer intake on a progressive ratio schedule of 

reinforcement, which was alcohol concentration dependent (Gallate & McGregor, 1999). This 

finding provided further evidence for cannabinoid involvement in alcohol reinforcement.  

Cannabinoid involvement has further been suggested in MDMA-maintained self-

administration, which was reduced when CP55,940 was co-administered with MDMA, and 

augmented with co-infusion of SR141716A (Braida & Sala, 2002). Further, nicotine-

maintained self-administration was impaired by CB1 receptor blockade (Cohen et al., 2002) 

Interestingly, the CB1 antagonist SR141716A effectively reduced reinstatement of cocaine 

seeking in rats primed by either cocaine, cues associated with cocaine or the CB1 agonist 

HU210 (De Vries et al., 2001). Footshock-induced reinstatement of cocaine seeking was not 

affected by SR141716A. Cocaine- or sucrose maintained self-administration was not affected 

by SR141716A in the latter study. Recently, the same group demonstrated that SR141716A 

also effectively reduced reinstatement of responding for heroin (De Vries et al., 2003). These 

findings suggest that CB1 receptors are promising targets for relapse prevention therapy.  
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CONCLUDING REMARKS 

In this chapter an overview of the experimental addiction field is provided with particular 

focus on the role of different neuromodulators in reward and/or reinforcement. These appear 

to be more or less involved in different aspects of addiction processes.  

A striking difference was noted in the involvement of dopamine in the reinforcing effects of 

classes of drugs: dopamine is required for the reinforcing effects of psychostimulants but not 

of alcohol and opiates. In contrast, the endogenous opioid system is involved in reinforcement 

across classes of drugs of abuse. Therefore, variations in the endogenous opioid system, which 

may be genetic or environmental in nature, might contribute to an individual’s vulnerability to 

develop drug dependence in general.  

The role of specific genes, including opioid genes, has been studied in experimental addiction 

using gene knockout studies, which will be discussed and related to genetic risk to develop 

drug dependence in humans in Chapter 2. 

 





 

 



CHAPTER 2 

GENETIC APPROACHES IN ADDICTION RESEARCH 

 



Chapter 2 

40 

Twin studies, with 1000-2500 twin pairs included, for alcohol, cocaine and opiates estimated 

that genetic factors account for 40-60% of the variation in liability to drug dependence 

(Prescott et al., 1999; Prescott & Kendler, 1999; Kendler et al., 2000). Such a high genetic 

contribution to vulnerability to drug addiction demands for knowledge of the role specific 

genes may play in addiction processes. Genetic technology advances of the past decade have 

allowed the investigation of specific genes, which may contribute to various diseases, 

including drug addiction. With the completion of the mapping and sequencing of the human 

genome (The International Human Genome Sequencing Consortium, 2001), the focus is now 

on the function of different genes and the contribution of mutations in specific genes to 

disease or vulnerability to disease, for example by single-nucleotide polymorphism (SNP) 

analysis. Efforts are currently made world-wide in order to establish a catalogue of common 

variants in the human population DNA, including SNP´s (Sachidanandam et al., 2001; Collins 

et al., 2003). 

While appreciating the complexity of diseases such as psychiatric disorders, pre-clinical 

studies provide a unique tool for investigation of the function of specific genes in specific 

traits, including drug reinforcement for which excellent animal models have been developed 

over the years (Chapter 1). Here an overview will be provided of genetic pre-clinical studies, 

particularly using gene knockout mice, which have thus far contributed to our understanding 

of genes involved in addiction. 

 

GENETIC STUDIES IN RODENTS 

An impressive amount of literature is available dealing with rat strains, which were selectively 

bred for high or low alcohol preference. In 2002 Murphy and co-workers have reviewed the 

literature describing differences between the Indiana University Rat lines bred for high or low 

alcohol preference, i.e. the high/low alcohol drinking (HAD/LAD) rats and the alcohol-

preferring/nonpreferring (P/NP) lines (Murphy et al., 2002). These lines obviously differ in 

their alcohol consumption and preference, but also in neurotransmitter systems including the 

serotonin, dopamine, GABA and opioid systems. Other lines selectively bred for their alcohol 

preference are the ALKO alcohol/nonalcohol lines (AA/ANA, the University of Chile A and 

B lines (UChA/UChB) and the Sardinian alcohol-preferring/nonpreferring lines (sP/sNP) 

(Murphy et al., 2002). Similarly, different strains of rats and mice have been compared for 

their reward profile. For example, C57Bl/6 mice appear more sensitive to cocaine 

reinforcement than BALB/c mice (Deroche et al., 1997) and DBA mice (Grahame & 

Cunningham, 1995), although DBA mice may acquire self-administration faster than C57Bl/6 

mice (Rocha et al., 1998b). Further, alcohol consumption by C57Bl/6 mice is also higher as 

compared to DBA mice (Lessov et al., 2001). C57Bl/6 and DBA mice were also compared for 

morphine reinforcement. Drug naive DBA mice self-administered morphine while C57Bl/6 

mice failed to do so. Interestingly, the same study demonstrated that emotional stress 

enhanced morphine self-administration in both strains: the dose-response curve for DBA mice 

was shifted to the left while C57Bl/6 mice responded for morphine with similar rates as DBA 
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mice after emotional stress (Kuzmin et al., 1996). Thus, both genetic and environmental 

factors determine the actual reinforcement phenotype of mice in this case. Studies, which used 

genetically distinct strains or selectively bred lines of rats or mice have pointed out that 

genetic influence exists in sensitivity to drugs of abuse. It is however difficult to identify 

specific genes, which may determine such differential sensitivity to drugs.  

In order to pinpoint specific loci in the genome, which may determine for example an 

individual’s sensitivity to alcohol reinforcement, Quantitative Trait Loci (QTL) studies have 

been exploited. These efforts in fact yielded several QTL’s for murine responses to drugs of 

abuse (Crabbe et al., 1999). Knowledge of such gene locations enables us to pinpoint certain 

candidate genes, probably largely aided by pharmacology-based knowledge of systems 

involved in drug addiction.  

The function of individual genes thus identified can and has been studied using gene knockout 

animals or using antisense oligodeoxynucleotides (ODN’s). In the last decade knockout mice 

for genes encoding a wide variety of proteins have been generated (see Box 1 for gene 

knockout technology) and used to explore the role of specific opioid genes in 

reward/reinforcement.  

In the next section, opioid gene knockout studies in addiction research are summarised. 

Subsequently, the contribution of gene knockout mice to the understanding of dopamine 

involvement in drug reward is discussed. Finally, an overview of the reward-related 

phenotypes described for miscellaneous other gene knockout mice, e.g. for serotonin, GABA, 

cannabinoid and other systems is provided. 

 

Opioid gene knockout mice 

As outlined in Chapter 1 of this thesis, endogenous opioid systems have been implicated in 

drug reinforcement. Endogenous opioids appear to be particularly involved in the initiation of 

drug self-administration. This has been shown both with opioid antagonists for different drugs 

of abuse, i.e. cocaine, alcohol and opiates. In the last decade knockout mice for genes 

encoding for opioid receptors and opioid precursors have been generated and used to explore 

the role of specific opioid genes in drug dependence. In this section, opioid gene knockout 

studies in drug dependence research are summarised. 

 

Opioid receptor knockout mice   

Of the opioid receptor null mutants, the µ-opioid receptor knockout mouse was most 

extensively studied in drug reinforcement. Matthes and colleagues were the first to publish on 

µ-opioid receptor knockout mice (Matthes et al., 1996). These mice were generated by 

insertion of a Neo cassette in exon 2 of the µ-opioid receptor gene. In the years to follow other 

groups also developed µ-opioid receptor knockout mice, either by deletion of exon 1 (Sora et 

al., 1997; Tian et al., 1997; Schuller et al., 1999) or deletion of both exons 2 and 3 (Loh et al., 
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BOX 1. GENE KNOCKOUT TECHNOLOGY 

 

The most widely used approach to generate knockout mice lacking a specific gene 

is schematically represented in the figure below. 

First mutant DNA should be prepared, which is usually done by replacement of the 

DNA containing the gene or part of the gene of interest, typically with marker-

containing DNA such as the neomycine gene (1). Embryonic stem (ES) cells, 

usually derived from 129/Sv mice, will be transfected with the targeting vector. A 

proportion of the ES cells will incorporate the mutant DNA by homologous 

recombination. Subsequently the marker DNA, such as the neomycine gene 

encoding for neomycin-resistance enzymes, are used to select those ES cells in 

which the mutant DNA was successfully incorporated (2). The selected ES cells are 

injected into host blastocysts, typically taken from C57Bl/6 mice (3). These 

blastocysts containing the mutant-DNA containing ES cells are then applied to the 

uterus of a usually a C57Bl/6 pseudo-pregnant female (4). If the mutated stem cells 

developed into germ cells the offspring may contain chimeras, i.e. mice which have 

the mutation (5). The chimera males are then allowed to mate with wild-type, 

typically C57Bl/6, females (6). Successful germline transmission will yield mice 

heterozygous for the mutation in the offspring of this mating (7). Subsequent 

breeding of heterozygous females and males results in offspring containing 

knockout (-/-), wild-type (+/+) and heterozygous (+/-) mice in a ratio of 1:1:2 (8). 
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1998). Several groups have used these knockout mice as tools to investigate the role of the µ-

opioid receptor in drug dependence processes. With regard to opiates µ-opioid receptor null 

mutants did not self-administer morphine (Becker et al., 2000). Moreover, morphine- and 

heroin-induced conditioned place preference (CPP) was respectively abolished (Matthes et al., 

1996) or did not develop in these mice (Contarino et al., 2002). Alcohol reward in the µ-

opioid receptor deficient mice was investigated in three laboratories. Roberts et al (2000) 

reported reduced alcohol intake in an operant self-administration paradigm, although 

responding for water was also reduced in µ-opioid receptor null mutants. µ-Opioid receptor 

knockout mice further displayed reduced preference for alcohol over water in a two-bottle 

choice task (Roberts et al., 2000). Data from another laboratory confirmed a role for µ-opioid 

receptors in alcohol consumption as evident from a two-bottle choice paradigm and CPP 

experiments, although the genotype effects were only observed in female mice (Hall et al., 

2001). Finally, Becker et al. also observed reduced alcohol intake by µ-opioid receptor 

knockout mice as compared to wild-types, but alcohol-induced CPP was not different between 

genotypes in this study (Becker et al., 2002). With respect to psychostimulants, no difference 

was found between µ-opioid receptor knockout mice and wild-type controls in cocaine-

induced CPP (10 mg/kg) (Contarino et al., 2002). Another group reported reduced CPP 

induced by 5 mg/kg cocaine in µ-opioid receptor knockout mice, whereas 10 mg/kg cocaine 

induced CPP in the knockout but not in the wild-type mice (Becker et al., 2002). Finally, place 

preference for ∆9-tetrahydrocannabinol (∆9-THC) (Ghozland et al., 2002), nicotine 

(Berrendero et al., 2002) and deltorphin-II (Hutcheson et al., 2001) were also abolished in µ-

opioid receptor null mutants.  

δ-Opioid receptor null mutants self-administered more alcohol than wild-type controls. The δ-

opioid receptor null mutants further displayed a greater preference for alcohol over water as 

compared to wild-type mice, but only after operant self-administration experience (Roberts et 

al., 2001). Ghozland and colleagues reported no difference in the development of place 

preference for low doses of ∆9-THC (1 mg/kg) and place aversion for a high dose of ∆9-THC 

(5 mg/kg) between δ-opioid receptor knockout and wild-type mice (Ghozland et al., 2002). 

κ-Opioid receptor knockout and wild-type mice were comparable in ∆9-THC-induced place 

preference (low dose, 1 mg/kg), whereas place aversion induced by higher doses of ∆9-THC (5 

mg/kg) was impaired in κ-opioid receptor null mutants (Ghozland et al., 2002).  

 

Opioid peptide precursor knockouts 

Knockout mice for opioid peptide precursor genes have also been developed and used in 

research on the role of opioid peptides in drug dependence. β-Endorphin knockout mice were 

developed through truncation of the pro-opiomelanocortin (POMC) prohormone gene. These 

β-endorphin null mutants were used to investigate directly the role of β-endorphin in alcohol 

intake. Heterozygous mice (50% β-endorphin expression) consumed more alcohol than wild-

type mice did in a two-bottle choice paradigm. The null mutants consumed more alcohol 
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compared to wild-type controls, but only for the 7% alcohol solution and not when 10% 

alcohol was presented (Grisel et al., 1999). In addition to this finding, β-endorphin deficient 

mice acquired operant responding for alcohol, although in this study wild-type mice did not 

(Grahame et al., 1998). 

Preproenkephalin knockout mice were not different from wild-type mice with regard to 

alcohol consumption and preference in a two-bottle choice test nor were there differences 

between genotypes in alcohol-induced CPP (Koenig & Olive, 2002). 

Prodynorphin null mutants developed morphine-induced CPP comparable to wild-type mice. 

In agreement with the κ-opioid receptor, place aversion induced by 5 mg/kg ∆9-THC was 

impaired in mice lacking the prodynorphin gene (Zimmer et al., 2001). Place preference for a 

lower dose of ∆9-THC, such as described by Ghozland et al. (2002), was not studied in 

prodynorphin null mice. 

 

Dopamine gene knockout 

The mesolimbic system is considered to play a key role in drug addiction. For example, 

intracranial self-stimulation is supported when electrodes are placed in the medial forebrain 

bundle (Koob et al., 1998, Chapter 1). In support of involvement of dopamine in reward is the 

finding that all drugs of abuse increase dopamine release from the nucleus accumbens, despite 

their different primary targets of action (Di Chiara & Imperato, 1988a; Pontieri et al., 1996; 

Tanda et al., 1997). Moreover, studies which used either 6-hydroxydopamine (6-OHDA) 

lesions or dopamine antagonists suggest a role of dopamine in reward (see Chapter 1), 

although dopamine may not be crucial to drug reinforcement (Pettit et al., 1984; Van Ree & 

Ramsey, 1987; Gerrits et al., 1994; Gerrits & Van Ree, 1996). To further evaluate the 

significance of dopamine genes to drug reward, knockout mice strategies for specific 

dopamine genes have been applied in experimental addiction research.  

Dopamine receptors are classified to D1- or D2-like receptors. The D1-like receptors comprise 

the D1 and D5 receptor subtypes and D2-like receptors are subdivided in D2, D3 and D4 

receptors (Missale et al., 1998). Of further interest is the primary target of cocaine, the 

dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT) through 

which amphetamine is thought to act. Mice lacking either the dopamine D1, D2, D3, D4 or D5 

receptor gene, DAT or VMAT have been developed, some of which were characterized with 

respect to their reinforcement phenotype as outlined below. 

 

Dopamine receptor knockout mice 

Mice deficient in dopamine D1 receptors consumed less alcohol and displayed less preference 

for alcohol over water as compared to wild-type mice (El Ghundi et al., 1998). In contrast, 

cocaine-induced place preference was not affected by dopamine D1 receptor knockout (Miner 

et al., 1995). 
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Studies with dopamine D2 receptor knockout mice have yielded conflicting results. 

Intracranial self-stimulation of the nucleus accumbens was retained in dopamine D2 receptor 

null mutants. Cocaine reinforcement was not affected by dopamine D2 receptor gene 

knockout: the D2 null mutants acquired cocaine self-administration as the wild-type mice 

(Caine et al., 2002). Morphine-induced CPP was acquired by wild-type and dopamine D2 

receptor knockout mice when the mice were naive to morphine prior to conditioning. In 

contrast, dopamine D2 receptor knockout mice withdrawn from morphine did not develop 

morphine-induced place preference even though withdrawal signs were comparable between 

genotypes (Dockstader et al., 2001). Of the D2 receptor short and long forms have been 

identified. Genetic deletion of the D2 long gene abolished morphine-induced place preference 

as well as place aversion induced by naloxone-precipitated withdrawal (Smith et al., 2002). 

Finally, D2 receptor null mice, trained to lever press for water, did not maintain morphine-

induced responding suggesting that morphine is not reinforcing in D2 receptor knockout mice 

(Elmer et al., 2002). Alcohol reinforcement probably also requires D2 receptor activity for D2 

receptor knockout mice did not increase lever pressing for alcohol (Risinger et al., 2000) while 

consuming comparable amounts of water and food as wild-type mice. Alcohol consumption 

and preference were also reduced in dopamine D2 receptor null mutants while saccharin and 

quinine consumption was not affected by deletion of the D2 receptor gene (Phillips et al., 

1998). Further, dopamine D2 receptor null mutants did not develop place preference for 

alcohol, although this finding may have been confounded by increased preference of 

dopamine D2 receptor knockout mice for the drug-paired grid floor when paired to saline 

(Cunningham et al., 2000).  

There is little literature available on studies, which investigated the contribution of the other 

dopamine receptor subtypes, i.e. D3, D4 and D5 receptors, to addiction processes by means of 

gene knockout strategies. The role of dopamine D3 receptors in drug reinforcement has 

recently been studied by different groups with dopamine D3 receptor selective drugs (see 

Chapter 1). Dopamine D3 receptor knockout mice are also available, but thus far only one 

study reported on their reward-relevant phenotype: morphine-induced CPP was enhanced in 

dopamine D3 receptor knockout mice (Narita et al., 2003). Dopamine D4 receptor knockout 

mice were supersensitive to the locomotor activating effects of alcohol, cocaine and 

methamphetamine, however the reinforcing effects of these drugs are yet to be investigated in 

these D4 receptor deficient mice (Rubinstein et al., 1997). 

 

Dopamine transporter knockout mice 

Studies with dopamine transporter (DAT) mice have lead to unexpected findings. Most 

important in this respect was the finding that DAT null mutants acquired cocaine self-

administration although slower than their wild-type littermates. Similarly, cocaine-induced 

CPP was retained in DAT knockout mice. This implicates that the DAT, which was 

considered the primary target for cocaine, is not required for the reinforcing effects of cocaine. 

Serotonin transporters (SERT) have been suggested to account for the retained rewarding 
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effects of cocaine in these mice (Sora et al., 1998; Rocha et al., 1998a). Interestingly, 

morphine-induced CPP was potentiated in absence of the DAT gene as was the increase in 

extracellular dopamine levels induced by morphine (Spielewoy et al., 2000). Further evidence 

for a role of the dopamine transporters in drug reward is derived from alcohol studies. Hall 

and co-workers described increased alcohol intake in heterozygous DAT knockout mice and 

mice deficient in the vesicular monoamine transporter 2 (VMAT2) gene (Hall et al., 2003b). 

However this increment in alcohol consumption was only observed for male mice. A trend 

towards reduced alcohol consumption and preference in DAT and VMAT2 knockout females, 

which is in agreement with another study (Savelieva et al., 2002), suggests a gender dependent 

role of DAT in drug reinforcement. Finally, mice heterozygous for the VMAT2 gene 

displayed impaired amphetamine-induced CPP, which underlines the critical role of VMAT2 

in the actions of amphetamine (Takahashi et al., 1997). 

Besides the dopamine transporter, cocaine can also act through other catecholamine re-uptake 

transporters, namely through norepinephrine and serotonin transporters (NET and SERT, 

respectively). Mice with a genetic deletion of the gene encoding the NET, display augmented 

CPP induced by cocaine (Xu et al., 2000). Similarly, cocaine-induced CPP is enhanced in 

SERT knockout mice (Sora et al., 1998; Sora et al., 2001). Combined knockout mice with 

genetic deletions of both the dopamine and the serotonin transporter gene caused a reduction 

in cocaine-induced CPP (Sora et al., 2001). These findings suggest that the NET and the 

SERT are, in addition to the DAT, involved in rewarding aspects of cocaine, which may 

explain the retained self-administration of cocaine by DAT knockout mice.  

 

DARPP-32 knockout mice  

An important regulator in dopaminoceptive neurons is dopamine and cyclic adenosine 3´5´- 

monophosphate-regulated phosphoprotein 32 kDa, abbreviated as DARPP-32. Upon 

activation of dopamine D1 receptors, DARPP-32 is phosphorylated while it is 

dephosphorylated upon activation of dopamine D2 receptors. When phosphorylated, DARPP-

32 acts as an inhibitor of protein phosphates-1 (PP-1), which in a phosphorylated state 

regulates various downstream targets such as neurotransmitter receptors, ion channels and 

transcription factors (Greengard et al., 1999). Knockout mice for the protein phosphatase-1 

(PP-1) inhibitors DARPP-32 and Inhibitor-1 (I-1) were impaired in cocaine-induced CPP 

while cocaine-induced locomotor activity and cocaine-induced dopamine release were not 

affected in these mice (Zachariou et al., 2002). Further, alcohol consumption and alcohol-

induced CPP were also reduced in DARPP-32 null mutants (Risinger et al., 2001). These 

findings suggest a role of DARPP-32 and hence possibly dopaminoceptive neurons in 

rewarding aspects of alcohol and cocaine. 
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GABA-related gene knockout mice 

Genetic deletion of the α1 subunit of the GABAA receptor did not affect CPP induced by 

either cocaine (Reynolds et al., 2003) or alcohol (Blednov et al., 2003). Similarly, alcohol-

induced place preference was not different for GABAA α1 subunit knockout mice. However, 

α1 subunit null mutants displayed reduced alcohol and saccharin consumption, while their 

quinine consumption was comparable to that of wild-type mice (Blednov et al., 2003). In the 

same study the involvement of β2 subunits was also assessed using knockout mice. Reduced 

saccharin and quinine consumption were apparent in β2 null mutants while their alcohol 

consumption was comparable to wild-type mice. The authors concluded that neither α1 nor β2 

subunits of the GABAA receptor are involved in alcohol reinforcement. Finally, knockout 

mice for the δ subunit of GABAA receptors consumed less alcohol and also displayed less 

severe withdrawal signs after discontinuation of chronic alcohol exposure (Mihalek et al., 

2001). 

 

Serotonin receptor knockout mice 

A substantial amount of literature is available which deals with the role of 5HT1B receptors in 

addiction processes, as studied using gene knockout strategies, which will be outlined here. 

Drug reinforcement is enhanced in 5HT1B knockout mice as is evident from facilitated 

initiation of cocaine and alcohol self-administration (Rocha et al., 1997; Risinger et al., 1999) 

and enhanced cocaine self-administration using a progressive ratio schedule (Rocha et al., 

1998c; Castanon et al., 2000). Once self-administration of cocaine or alcohol was acquired, 

the 5-HT1B knockout mice were not different from wild-type control mice (Rocha et al., 1997; 

Risinger et al., 1999). Oral alcohol intake studies yielded contradicting results. Alcohol 

consumption was enhanced according to one study (Crabbe et al., 1996) while no difference 

between 5-HT1B knockout mice and wild-type controls in alcohol consumption was apparent 

in another study where alcohol was continuously available in a two-bottle choice paradigm 

(Gorwood et al., 2002). Further, cocaine-induced locomotor activity was also potentiated in 

5HT1B null mutants (Rocha et al., 1998c; Castanon et al., 2000) indicative of a phenotype 

which was not limited to reinforcement. Castanon and colleagues included an analysis of the 

effects of a specific 5-HT1B receptor antagonist in their study and found no knockout-like 

effects of acute 5-HT1B receptor blockade upon cocaine self-administration (Castanon et al., 

2000). The latter finding suggests that the reinforcement phenotype of 5-HT1B null mutants 

probably reflects compensatory changes rather than merely the lack of 5-HT1B receptors. In 

contrast to the studies above, suggesting enhanced rewarding effects of drugs in mice with a 

deletion of the 5-HT1B receptor gene, alcohol-induced CPP was abolished in 5-HT1B knockout 

mice (Risinger et al., 1996) while cocaine-induced place preference was retained (Belzung et 

al., 2000). Thus although the reinforcing effects of cocaine and alcohol appear to involve 5-

HT1B receptor activity this receptor may not play a key role in drug dependence. 

 



Chapter 2 

48 

Cannabinoid receptor 1 knockout mice  

Mice deficient in the cannabinoid receptor subtype 1 (CB1) gene have been reported to fail to 

self-administer the cannabinoid agonist WIN55,212-2 and morphine while cocaine, nicotine 

and amphetamine self-administration is retained in these mice (Ledent et al., 1999; Cossu et 

al., 2001). Also reductions in alcohol consumption have been reported for CB1 receptor 

knockout mice, while food and fluid intake were not different from wild-type controls 

(Hungund et al., 2003). This study by Hungund and co-workers further revealed that alcohol 

did not enhance dopamine release from the nucleus accumbens in CB1 receptor null mutants. 

Place preference for morphine and nicotine was also abolished in CB1 receptor knockout mice 

(Martin et al., 2000a; Castane et al., 2002 but Rice et al., 2002). Further, conditioned place 

aversion induced by the κ-opioid receptor agonist U50,488 was absent in CB1 receptor 

knockout mice (Ledent et al., 1999). In contrast, cocaine-induced place preference was not 

different between CB1 receptor null mice and wild-type controls (Martin et al., 2000a). 

Interestingly, despite comparable alcohol preference of CB1 receptor knockout and wild-type 

mice, CB1 receptor null mutants failed to show a stress-induced increase in alcohol preference 

(Racz et al., 2003). This finding suggests an interaction between the CB1 receptor gene and an 

environmental factor, stress, which together determined the reinforcement phenotype in this 

case.  

 

Miscellaneous other knockout mice 

Further findings relevant to addiction processes obtained with knockout mice for various 

genes are summarised in Table 1. These include knockout mice lacking genes encoding the 

glutamate receptor mGluR5, nicotinic and muscarinic acetylcholine receptors, growth factors 

or protein kinase isoforms.   

 

HUMAN GENETICS, SINGLE NUCLEOTIDE POLYMORPHISMS 

With the completion of the human genome mapping, the focus in genetic research is now on 

functional mutations, such as single nucleotide polymorphisms (SNP’s). Different groups have 

identified SNP’s in various genes (Collins et al., 2003) and attempts have been made to find 

associations of SNP’s with certain traits, including drug addiction. As an example of recent 

advances in human genetics in addiction research by SNP analysis, an interesting SNP in the 

µ-opioid receptor gene will be discussed here.  

Amongst several SNPs identified in the µ-opioid receptor gene is the nucleotide substitution at 

position 118 (A118G), predicting an Asp40Asn amino acid change (Bergen et al., 1997; Bond 

et al., 1998). The A118G variant was associated with enhanced affinity for the endogenous 

opioid peptide β-endorphin, suggesting this is a functional variant of the human µ-opioid 

receptor gene (Bond et al., 1998, but Befort et al., 2001). Some studies suggested a significant 

association of the A118G variant with opiate dependence (Szeto et al., 2001; Tan et al., 2003)  
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TABLE 1  

Overview of reward-related phenotypes of miscellaneous gene knockout mice. 

Gene Major findings Reference 

mGluR5 × cocaine self-administration (Chiamulera et al., 

2001) 

= cocaine self-administration β2 subunit nACh             

receptor × nicotine-maintained self-administration when 

substituted for cocaine 

(Picciotto et al., 1998; 

Epping-Jordan et al., 

1999) 

nACh receptor = morphine and cocaine CPP (Zachariou et al., 

2001) 

M5 Ach receptor × morphine CPP (Basile et al., 2002) 

dopamine                       

β-hydroxylase  

↓ alcohol consumption and preference (Weinshenker et al., 

2000) 

α1b adrenergic                 

receptor 

↓ cocaine and morphine consumption (two-bottle 

choice) 

(Drouin et al., 2002) 

 × morphine CPP  

Nociceptin = alcohol CPP (Kuzmin et al., 2003) 

CRH ↑ alcohol consumption (Olive et al., 2003) 

 ↓ alcohol CPP  

CRH1 receptor = alcohol consumption, enhanced alcohol intake 3 

weeks post-exposure to stress 

(Sillaber et al., 2002) 

Neuropeptide Y ↑/= alcohol consumption and preference 

(background dependent; NPY overexpression  

↓  alcohol intake & preference) 

(Thiele et al., 1998; 

Thiele et al., 2000a) 

NPY5 receptor = alcohol consumption (Thiele et al., 2000a) 

Alcohol dehydrogenase  ↓ alcohol consumption and preference (Isse et al., 2002) 

RIIβ subunit of PKA ↑ alcohol consumption and preference (Thiele et al., 2000b) 

PKCγ × morphine CPP (Narita et al., 2001) 

PKCε ↓ alcohol consumption and preference            

(rescued by conditional expression of PKCε, 

Choi et al., 2002) 

(Olive et al., 2000) 

Nurr1 ↓ alcohol consumption and reward (Werme et al., 2003) 

Neurokinin 1 × morphine CPP and naloxone place aversion (Murtra et al., 2000) 

GDNF ↑ cocaine CPP (heterozygous mice) (Messer et al., 2000) 

BDNF ↓ cocaine CPP (heterozygous mice) (Hall et al., 2003) 

NOS × cocaine CPP (Itzhak et al., 1998) 

Ca channel Cav2.3α1ε = cocaine induced CPP, but insensitive to D1 

receptor antagonist SCH23390 

(Han et al., 2002) 

GIRK2 K
+
 channel = alcohol preference (Blednov et al., 2001) 

 × alcohol CPP (Hill et al., 2003) 

Kir3.2/3.3 ↓ cocaine self-administration (Morgan et al., 2003) 

CD81 × cocaine CPP (Michna et al., 2001) 

tPA = cocaine self-administration (acquisition and 

maintenance) 

(Ripley et al., 1999) 

mutant mice versus wild-type controls, = not different; × abolished; ↓ reduced and ↑ increased  
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or with alcohol dependence (Town et al., 1999; Schinka et al., 2002), the frequency of the 

A118G variant being lower in drug dependent subject groups. However, other studies failed to 

show a significant association of the A118G variant of the µ-opioid receptor gene with either 

opiate (Bond et al., 1998; Franke et al., 2001; Shi et al., 2002) or alcohol dependence (Bergen 

et al., 1997; Sander et al., 1998; Gelernter et al., 1999; Franke et al., 2001; Rommelspacher et 

al., 2001). Recent findings by Oslin and co-workers, although preliminary in nature, revealed 

an association of A118G with the effectiveness of naltrexone in relapse prevention. Relapse 

rates were lower and time to relapse was higher in naltrexone-treated subjects bearing the 

Asp40 variant as compared to subjects homozygous for the Asn40 allele (Oslin et al., 2003). 

Thus, A118G is an example of human gene variants that may contribute to individual variation 

in drug dependence and in addiction treatment efficacy. 

 

CONCLUDING REMARKS 

Genetic approaches, particularly gene knockout strategies, have been used extensively to 

explore the role of specific genes in addiction processes. Fascinating findings such as those 

regarding the role of the dopamine transporter in the rewarding effects of cocaine illustrate the 

value of such approaches. Particularly because cocaine is itself a catecholamine re-uptake 

inhibitor and selective blockers of catecholamine re-uptake transporter subtypes are not 

available. However, knockout technology is also limited in nature because of possible 

adaptation and compensation, which may have occurred in response to absence of the gene of 

interest from gestation. Knockout mice, conditional in time or place, may provide a much 

more reliable tool in that respect. These preclinical genetic studies guide the selection of 

candidate genes in human association studies. Human geneticists currently explore the 

association of specific gene mutations, such as the single nucleotide polymorphisms, with 

diseases or disease-related traits.  





 

 



CHAPTER 3 

REDUCED COCAINE REINFORCEMENT AND INCREASED 

GABAERGIC INHIBITION IN THE VTA OF µ-OPIOID 

RECEPTOR KNOCKOUT MICE 

 

 

 

 

Heidi M.B. Lesscher, Daniel S. Mathon, Mirjam A.F.M. Gerrits, Amer Kamal, L. 

Tabatabaie, John E.  Pintar1, Alwin G.P. Schuller1, Marten P. Smidt, Berry M. 

Spruijt2, J. Peter H. Burbach, Jan M. van Ree and Geert M.J. Ramakers 

 

D.S. Mathon and H.M.B. Lesscher contributed equally to this work 

 

 

1 Dept. of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 

Piscataway, NJ, USA 

2 Animal Welfare Centre (AWC), Utrecht University, The Netherlands 

 

 

IN PREPARATION 



Chapter 3 

54 

ABSTRACT 

Endogenous opioid systems and particularly µ-opioid receptors have been implicated in 

modulating the reinforcing effects of drugs of abuse like cocaine and have been suggested to 

be involved in vulnerability to develop drug dependence.  

We studied the role of the µ-opioid receptor in cocaine reinforcement using cocaine self-

administration by drug-naive µ-opioid receptor knockout and wild-type mice. Compared to 

wild-type mice, cocaine self-administration by µ-opioid receptor knockout mice was impaired, 

thus demonstrating the critical role of µ-opioid receptors in cocaine reinforcement. In order to 

determine the regulation of µ-opioid receptor ligands by cocaine and the involvement of 

endogenous µ-opioid receptor ligands in cocaine reinforcement, the effects of actively self-

administered or contingently administered cocaine on POMC mRNA expression in the arcuate 

nucleus was assessed in wild-type mice. Cocaine intake (mg/kg) was positively correlated 

with POMC mRNA levels after active cocaine self-administration but not in the case of 

contingently administered cocaine. In order to determine the mechanism underlying impaired 

cocaine reinforcement in µ-opioid receptor knockout mice electrophysiological recordings 

were made from neurons in the ventral tegmental area (VTA). The frequency of spontaneous 

inhibitory post-synaptic currents (sIPSC’s), as recorded from dopamine neurons in the VTA, 

was increased in µ-opioid receptor knockout mice as compared to wild-type controls.  

It is concluded, that µ-opioid receptors in the VTA are, through regulation of inhibitory input 

onto dopamine neurons in the VTA, important modulators of cocaine reinforcement. 
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INTRODUCTION 

The positive reinforcing effects of drugs of abuse, i.e. the positive subjective effects which 

increase the probability of subsequent drug use, are important in the initiation of drug use, 

which may ultimately lead to drug dependence. Positive reinforcing effects of drugs of abuse 

can be readily assessed by intravenous self-administration in laboratory animals (Van Ree et 

al., 1999). 

An impressive amount of preclinical research using this paradigm has pointed to a role of 

endogenous opioid systems in drug reinforcement (for review see Van Ree et al, 1999; Herz, 

1997). Opioid antagonists reduce the acquisition and maintenance of cocaine and ethanol self-

administration (e.g. De Vry et al., 1989; Van Ree et al., 1999;.Froehlich et al., 1990; Kornet et 

al., 1991; Phillips et al., 1997; Kuzmin et al., 1997a; Stromberg et al., 1998). Further, µ-opioid 

receptor knockout mice are impaired in self-administration or conditioned place preference for 

morphine, heroin, alcohol, ∆9-tetrahydrocannabinol (THC), nicotine and deltorphin (Matthes 

et al., 1996; Becker et al., 2000; Roberts et al., 2000; Hall et al., 2001; Hutcheson et al., 2001; 

Ghozland et al., 2002; Contarino et al., 2002; Berrendero et al., 2002). Primarily opioid 

receptors in the ventral tegmental area (VTA) account for opioid modulation of drug self-

administration as was demonstrated by local injection of the opioid receptor antagonist 

naltrexone in different areas of the mesolimbic system (Ramsey et al., 1999). Moreover, in 

support of involvement of µ-opioid receptors in cocaine reinforcement, intra-VTA 

administered DAMGO, a specific µ-opioid receptor agonist, enhanced cocaine-maintained 

self-administration in rats as was apparent from a left-ward shift in the dose-response curve 

for cocaine self-administration (Corrigall et al., 1999b). The µ-opioid receptor selective 

endogenous opioid peptide β-endorphin is likely involved in opioid modulation of drug 

reinforcement, particularly since it possesses reinforcing properties itself (Van Ree et al., 

1979). Indeed, the expression of pro-opiomelanocortin (POMC, the precursor of amongst 

others β-endorphin) in the arcuate nucleus is regulated by cocaine (Zhou et al., 2002).  

In the VTA µ-opioid receptors are present on secondary, GABAergic, neurons (Garzon & 

Pickel, 2001; Garzon & Pickel, 2002). Activation of the µ-opioid receptors hyperpolarizes 

these secondary GABAergic neurons, resulting in a disinhibition of the principal dopamine 

neurons (Johnson & North, 1992a). Indeed, GABAergic neurotransmission in the VTA has 

been implicated in drug reinforcement (David et al., 1997; Xi & Stein, 1999; Corrigall et al., 

2000). As increased dopaminergic output, at least in part due to an increased firing frequency 

or switch to burst firing of the principal dopamine neurons (Miller et al., 1981; Overton & 

Clark, 1997), is a common effect of drugs of abuse (Di Chiara & Imperato, 1988a), increased 

inhibitory, GABAergic, input onto the principal dopaminergic neurons could provide an 

explanation for the reduced susceptibility of µ-opioid receptor knockout mice for drug 

reinforcement. 

 

The primary aim of this study was to establish the role of µ-opioid receptors in cocaine 

reinforcement. In addition, the involvement of endogenous µ-opioid ligands and of 
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GABAergic neurotransmission in the VTA in cocaine reinforcement were assessed. We report 

that cocaine self-administration is impaired in µ-opioid receptor knockout mice and that 

POMC mRNA levels in the arcuate nucleus are correlated with cocaine self-administration. 

Further, GABAergic input onto dopaminergic neurons in the VTA is enhanced in µ-opioid 

receptor knockout mice.  

 

MATERIALS AND METHODS 

 

Animals 

Male mice aged 2-3 months for behavioural studies, and male and female mice aged 10-17 

days for electrophysiological studies, were group housed (2-4) in extended Macrolon© type I 

cages with water and food pellets available ad libitum. Environmental conditions were 

controlled (22°C and 50% humidity; lights on at 7:00 am and lights off at 7:00 pm, GDL 

Utrecht University). The experimental procedures were approved by the Ethical Committee 

for Animal Experiments of the University Medical Center Utrecht. 

Wild-type C57Bl6/Jico mice were obtained from Charles River (l’Arbresle, France). The µ-

opioid receptor knockout mice used in this study have been described previously and were on 

a mixed 129Sv/C57Bl6 background (Schuller et al., 1999). No detectable binding of 

[3H]DAMGO or µ-opioid receptor transcript was present in µ-opioid receptor knockout mice 

(Schuller et al., 1999). There is no evidence for compensatory changes in other opioid receptor 

subtypes: binding to δ-opioid receptor subtypes was comparable between genotypes and δ- 

and κ- and ORL-1 receptor mRNA levels were also unchanged (Schuller et al., 1999). Wild-

type (+/+) and homozygous knockout (-/-) mice were obtained from heterozygous breeding. 

The mice used in the present study were on a C57Bl6/Jico background after 6-7 back-

crossings to C57Bl6/Jico mice (Charles River, l´Arbresle, France). The mice were genotyped 

by Polymerase Chain Reaction on genomic DNA isolated from tail tips. The mutant product 

was 700 bp, the wild-type product 525 bp; the three primers used were outside the mutation 

site (5′ GAC TTT CCT GGC TGA TGC AAA CAA CCT 3′), within the mutation site (5′ 

CAT GGT TCT GAA TGC TTG CTG CGG ACT 3′) and within the neomycin box (5′ CTA 

CCT GCC CAT TCG ACC ACC AA 3′).  

 

Intravenous cocaine self-administration  

µ-opioid receptor knockout and wild-type mice were tested for cocaine self-administration as 

described previously (Kuzmin et al., 1997b). Briefly, the mice were tested in pairs, one active 

and one yoked control, in identical 8×8×8 cm test cages made from non-transparent material 

(RITEC, St. Petersburg, Russia). Each cage has a frontal nose-poking hole supported with 

infrared sensors interfaced to a computer. Mice were partially immobilized by fixing their 



Impaired cocaine reinforcement in µ-opioid receptor knockout mice  

57 

tails, which protruded through the vertical slot in the back wall, to the horizontal surface using 

tape. A ten minutes pre-test was performed on the test day. Based upon the pre-test results the 

mice were paired according to basal nose-poke responding. During the 30 minutes self-

administration session, which commenced at least 2 hours after the pre-test, each nose-poke by 

the active mouse resulted in a contingent injection of 1.6 µl of either saline or cocaine solution 

in the lateral vein of both the active and yoked control mouse. The active groups were slightly 

bigger in number than the yoked control groups (1-2 more per group) for it was not always 

possible to form pairs due to failure in needle insertion. Nose-pokes by the yoked control mice 

were counted but had no programmed consequences.  

Cocaine self-administration by µ-opioid receptor knockout mice and wild-type mice was 

compared. The doses used were 0.4, 0.8 or 1.6 µg per infusion. The data are expressed as the 

total number of nose poke responses or as total cocaine intake (mg/kg bodyweight) during the 

30 minutes experiment. N = 6-8 per dose per type (active or yoked) per genotype. 

 

POMC mRNA expression 

In this experiment, C57Bl/6Jico (wild-type) mice were allowed to self-administer either 0.2, 

0.4 or 0.8 µg per infusion with yoked controls as described for experiment 1. N = 5-6 mice per 

type (active or yoked) per dose. Because of failures in needle insertion, pairs could not always 

be formed, resulting in a slightly larger active group than the yoked control group (1-2 more 

mice per dose). The environmental conditions were different from those in the µ-opioid 

receptor knockout cocaine self-administration experiment, which might account for 

differences in the number of nose-poke responses between the experiments. One hour after the 

30 minutes self-administration session was completed, the mice were sacrificed by cervical 

dislocation after which the brains were quickly dissected and frozen on crushed dry ice. The 

brains were stored at –80°C until further processing.  

For in situ hybridisation, 16 µm coronal sections were cut at the level of the arcuate nucleus, 

nucleus accumbens and ventral tegmental area according to the mouse brain atlas (Paxinos & 

Franklin, 2001) using a cryostat (Leica, Rijswijk, NL) and thaw-mounted on Superfrost slides 

(Menzel, Germany). A 190 bp pro-opiomelanocortin cDNA fragment spanning exon 2 and the 

first 20 bp of exon 3 was subcloned into a PBS +/- vector (Promega, Leiden, NL). An 

antisense RNA probe was generated by in vitro transcription with 120 ng of linearised 

template DNA, 20 µCi [33P]-UTP and 40 units SP6 RNA polymerase. The sections were post-

fixed in a 4% paraformaldehyde solution in phosphate-buffered saline (PBS, pH 7.4) for 10 

minutes at room temperature (RT), washed twice in PBS for 5 minutes at RT and treated with 

0.25% acetic anhydride in tri-ethanolamine (0.1 M, pH 8.0) for 10 minutes at RT. The sections 

were then rinsed in PBS for 5 minutes and in 0.83% NaCl for 5 minutes at RT. Subsequently 

the sections were dehydrated by immersing them in solutions with increasing concentrations 

of ethanol (50%, 70%, 80% and 100%) and dried to air. Hybridisation was performed in 50% 

deionised formamide, 10% dextran sulphate, 2×SSC (SSC = 0.15 M NaCl, 0.015 M sodium 

citrate), 1x Denhardt’s solution, 5 mM EDTA (pH 8.0), 10 mM phosphate buffer (pH 8.0) and 
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12.5 mg/ml tRNA, containing 0.8×106 cpm of the probe. The hybridisation mix was heated at 

65°C for 5 minutes, transferred to ice and DTT was added to a final concentration of 2.5 M. 

Hybridisation was performed overnight at 55°C in a moist chamber, 100 µl hybridisation mix 

per slide. Coverslips were removed in 5×SSC at RT and the slides were briefly dipped in 

2×SSC at RT, treated with RNAse A (2 mg/100 ml in 5 M NaCl, 1 M Tris, pH 8.0) for 15 

minutes at 37°C and washed for 15 minutes at 37°C in 2×SSC. The slides were then washed 

twice in 2×SSC/50% formamide for 15 minutes at 60°C, twice in 2×SSC for 15 minutes at 

RT, dehydrated in graded ethanol concentrations and dried to air. Slides were apposed to 

Kodak Biomax MR films for 6 days. 

Quantitative analysis of the POMC mRNA levels in the arcuate nucleus was performed by 

freehand drawing of the arcuate nucleus according to the mouse brain atlas (Paxinos & 

Franklin, 2001) using MCID image analyser (Interfocus, Suffolk, UK). There was no POMC 

mRNA expression in the nucleus accumbens or VTA. POMC mRNA levels are expressed in 

counts per minute (cpm) as calculated from a standard curve of diluted hybridisation mix, 

which was laid down with the film. For each animal 2-3 measurements were made for each 

hemisphere. Since no significant differences were found between hemispheres, the data were 

pooled. Each measure thus represents a mean of 4-6 measurements per animal. 

 

Electrophysiology 

Whole-cell patch-clamp recordings were made from VTA neurons in 200 µm thick horizontal 

slices. Animals were anaesthetised with isoflurane, decapitated and the brain was rapidly 

removed and kept in ice-cold high-magnesium artificial cerebral spinal fluid containing (in 

mM): NaCl 124, KCl 3.3, KH2PO4 1.2, MgSO4 2.6, CaCl2 2.5, NaHCO3 20, glucose 10, 

saturated with 95% O2- 5% CO2. Slices were cut in a horizontal plane using a vibratome 

(Leica, Rijswijk, NL). After preparation the slices were kept at 32°C for at least an hour in 

aCSF containing (in mM): NaCl 124, KCl 3.3, KH2PO4 1.2, MgSO4 1.3, CaCl2 2.5, NaHCO3 

20, glucose 10, saturated with 95% O2- 5% CO2. Slices were then transferred to the recording 

chamber, where they were perfused at 2-3 ml/min with aCSF at RT. 

Whole cell recordings from VTA neurons were made using borosilicate glass pipettes with a 

resistance of 4-6 MΩ. Individual neurons were identified using an upright differential 

interference contrast microscope (Olympus), with a differential interference contrast 

enhancement CCD camera. Presence of an Ih (> 100 pA) was used to distinguish between 

principal dopamine (DA) neurons and secondary GABAergic neurons (Mathon et al., 2003). 

In current clamp experiments, action potential characteristics were determined and used as an 

additional criterion to discriminate between principal DA and secondary GABA neurons. For 

current-clamp recordings the recording pipettes contained (in mM): K-gluconate 155, HEPES 

10, Na+-ATP 2, Na+-GTP 0.4, EGTA 1, adjusted to pH 7.4 with KOH. For voltage-clamp 

recordings the recording pipettes contained (in mM): K-gluconate 78, KCl 77, HEPES 10, 
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Na+-ATP 2, Na+-GTP 0.4, EGTA 1, adjusted to pH 7.4 with KOH. For recording spontaneous 

and miniature inhibitory post-synaptic currents, cells were clamped at –70mV. To isolate 

inhibitory post-synaptic currents, 10 µM DNQX was added to the perfusion medium. When 

recording miniature post-synaptic currents additionally 10 µM TTX was present in the 

perfusing medium. Whole cell current- and voltage-clamp experiments were done using an 

EPC-9 patch-clamp amplifier (HEKA). Whole cell access resistance was typically between 10 

and 35 MΩ. During recordings the access resistance was monitored and an increase of larger 

than 10% resulted in the experiment being terminated. Data was stored for analysis using 

Pulse software version 8.53 (HEKA) and on digital analogue tape. The voltage-clamp and 

current-clamp data was analysed using Signal (CED), WinWCP and WinEDR Strathclyde 

software.  

 

Statistical analysis 

SPSS10.1 was used for statistical analyses. The self-administration data were analysed by 

three-way ANOVAs. The independent factors were type (active or yoked), dose (µg/infusion) 

and genotype (+/+ or -/-). The intake data were analysed for the active mice only by two-way 

ANOVA with dose and genotype as factors. 

The self-administration data for the POMC experiment were analysed by two-way ANOVA 

with dose and type (active or yoked) as factors and the number of nose-poke responses as the 

dependent variable. Since each mouse received a different amount of cocaine, depending on 

the number of nose-poke responses, bivariate correlation analysis was used to assess the 

effects of cocaine upon POMC mRNA expression in the arcuate nucleus. The POMC mRNA 

expression data were analysed separately for the active and yoked control mice.  

sIPSCs, mIPSCs and firing frequencies were compared between µ-opioid receptor and wild-

type mice by Student’s t tests. The IPSC probability data were statistically analysed using the 

Kolmogorov-Smirnov test.  

The data are expressed as mean ± SEM. Statistical significance was accepted at P < 0.05. 
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  Cocaine (µg/infusion) 

        0.4        0.8        1.6 

Active 50.3 ±  8.2 62.9 ±  8.2 41.4 ±  8.2 
+/+ 

Yoked 53.6 ± 13.4 52.0 ± 13.0 38.9 ±  7.9 

Active 39.2 ± 11.1 56.2 ±  5.8 46.8 ±  9.4 
-/- 

Yoked 53.7 ±  6.9 55.1 ±  7.4 39.0 ±  7.0 

TABLE 1  

Nose poke responding during the 10 minutes pre-test for µ-opioid receptor knockout and wild-type 

mice. Data is expressed as mean ± SEM nose poke responses during 10 minutes per genotype per type 

(active or yoked) per dose. N = 6-8 per genotype per dose. 

RESULTS 

 

Intravenous cocaine self-administration by µ-opioid receptor knockout 

mice 

In order to establish the role of µ-opioid receptors in cocaine reinforcement, cocaine self-

administration by µ-opioid receptor knockout and wild-type control mice were compared.  

Mice were placed in the self-administration boxes for 10 minutes at least 2 hours prior to the 

actual self-administration session to determine baseline levels of nose-poke responding. 

During this 10 minutes pre-test nose-poke responses did not result in a cocaine infusion. 

Baseline nose poke responding by µ-opioid receptor knockout mice was not different from 

wild-type littermates nor was there a difference between the dose groups (Table 1). During the 

30 minutes cocaine self-administration test, the number of nose-poke responses by the active 

self-administering mice was significantly higher than the responding by yoked control mice 

(effect of type F(1,75)=6.6, P < 0.05, Figures 1A and 1B). This difference in nose-poke 

responding between active and yoked control mice is indicative of reliable cocaine self-

administration in this experiment.  

A significant effect of genotype on cocaine self-administration was revealed (F(1,75)=5.8, P < 

0.05). Further, post-hoc analysis showed a significant genotype effect for the active 

responding mice (F(1,36)=4.0, P = 0.05) but not for the yoked control mice (F(1,28)=2.7, 

N.S.). These data demonstrate impaired cocaine self-administration by drug-naive µ-opioid 

receptor knockout mice as compared to wild-type littermates. Total intake is considered a 

more informative measure for the reinforcing efficacy of cocaine, and other drugs of abuse 

(Van Ree et al., 1999). Total cocaine intake, as calculated for the active mice of both 

genotypes, was reduced in µ-opioid receptor knockout mice, as is evident from a significant 

genotype effect (Figure 1C, genotype effect F(1,41)=6.3, P < 0.05), in addition to a significant 

effect of dose (F(2,41)=12.3, P < 0.001). These data further support a reduction in cocaine 

reinforcement in µ-opioid receptor knockout mice. 
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FIGURE 1

Cocaine self-administration by 

µ-opioid receptor knockout (-/-) 

and wild-type (+/+) mice. The 

number of nose-poke responses 

during the 30 minutes self-

administration session by (A) the 

active mice for graded doses of 

cocaine by mice of both 

genotypes and (B) the yoked 

control mice of both genotypes 

across the different dose groups 

(0.4, 0.8 or 1.6 µg/infusion) are 

shown. The intake of cocaine by 

active µ-opioid receptor 

knockout and wild-type mice 

during the 30 minutes self-

administration session is plotted 

in (C). Mean ± SEM; N=6-8 per 

genotype.  

* P ≤ 0.05, significant different 

from wild-type mice 
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Effects of active self- versus yoked-administered cocaine upon POMC 

mRNA expression in the arcuate nucleus 

In this experiment the regulation of POMC, precursor of the µ-opioid receptor selective 

endogenous opioid peptide β-endorphin, by actively self-administered cocaine and by 

passively administered cocaine was determined and compared. C57Bl6/Jico mice were 

allowed to self-administer either 0.2, 0.4 or 0.8 µg cocaine/infusion. The yoked control mice 

received cocaine injections whenever the active mice responded. Overall analysis of the self-

administration data revealed a significant effect of type (active or yoked; F(1,29)=5.6, P < 

0.05), indicative of reliable cocaine self-administration in this experiment (Figure 2A). 

Inherent to the self-administration paradigm, each mouse received a different dose of cocaine 

depending on the number of nose poke responses exerted by each individual mouse. Therefore 

levels of POMC mRNA in the arcuate nucleus were plotted against the individual cocaine 

intake for each mouse (Figures 2B and 2C). Correlation analysis revealed a significant 

correlation between total cocaine intake and POMC mRNA levels in the arcuate nucleus of the 

active mice, which self-administered cocaine (R2 = 0.27, P < 0.05). In contrast, total cocaine 

intake for the yoked control mice, which was controlled by the active mice, was not correlated 

with POMC mRNA levels in the arcuate nucleus (R2 = 0.02, N.S.). Post-hoc analysis after 

correction for incomplete pairs (active N = 17, passive N = 13) confirmed significant positive 

correlation between the level of POMC expression and total cocaine intake for active self-

administered cocaine (N = 13, R2 =  0.61, P < 0.05, incomplete pairs are indicated by # in 

Figure 2B). These findings demonstrate regulation of POMC expression by active cocaine 

self-administration, which is a measure for cocaine reinforcement. Therefore POMC, and its 

derivative β-endorphin, could be involved in the regulation of cocaine reinforcement. 
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FIGURE 2

Effects of active and yoked 

administered cocaine upon 

POMC mRNA expression in the 

arcuate nucleus. The nose-poke 

responses (mean ± SEM) of active 

and yoked control C57Bl/6 mice 

is shown (A); N = 5-6 mice per 

dose per type (active or yoked). 

POMC mRNA plotted against 

individual cocaine intake is 

depicted for active (B) and 

yoked control (C) mice with N = 

17 and N = 13 per group, 

respectively. R = Pearson-

correlation coefficient. (D) 

Representative image of POMC 

mRNA expression in a coronal 

section of the arcuate nucleus, 

taken from an active mouse (0.8 

µg cocaine/infusion). 

* P < 0.05, overall significant 

different from yoked control 

mice.  

# Active mice from incomplete 

pairs, tested without a yoked 

control mouse. 
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GABAergic neurotransmission in the VTA 

Here the consequence of the absence of µ-opioid receptors for GABAergic neurotransmission 

in the VTA was determined. Spontaneous IPSC’s were recorded from dopaminergic neurons, 

firing frequencies of both GABAergic neurons and dopaminergic neurons were determined 

and miniature IPSC’s were compared for wild-type and µ-opioid receptor knockout mice. 

Principal neurons in the VTA were identified by the presence of a large hyperpolarization-

activated depolarizing current, Ih. To evoke this current 2-second hyperpolarizing pulses (up to 

-120 mV) were given. To determine the GABAergic input onto principal dopaminergic 

neurons in the VTA, spontaneous inhibitory post-synaptic currents (sIPSCs) were recorded 

from dopamine neurons (Figure 3). The frequency of sIPSCs was significantly higher in µ-

opioid receptor knockout mice as compared to wild-type mice (3.38 ± 1.01 Hz versus 1.40 ± 

0.17 Hz, P < 0.05, Student’s t-test, Figure 3A), resulting in a rightward shift in the cumulative 

frequency distribution curve (P < 0.001, Kolmogorov-Smirnov, Figure 3B). The amplitude of 

sIPSCs was not different between µ-opioid receptor knockout mice and wild-type mice (34.24 

± 3.91 pA versus 28.77 ± 1.66 pA, N.S. Student’s t-test, N.S. Kolmogorov-Smirnov, Figure 

3C, 3D).  

To determine the firing frequency of secondary GABA neurons, current-clamp recordings 

were made. Furthermore, current-clamp recordings were made from principal neurons to 

determine whether the increased inhibitory input resulted in a reduced activity of these 

neurons. In these experiments a number of action potential characteristics were also examined 

to add an extra criterion for establishing the identity of the neuron recorded from. Principal 

neurons had more depolarised action potential thresholds, longer duration action potentials 

and larger undershoots compared to secondary neurons (Table 2). Cells whose action potential 

characteristics did not correspond to the identification on basis of the presence of a large Ih 

were excluded from further analysis.  

 

 

 Threshold Amplitude Undershoot Width at ½ max 

Principal  -21.17 ± 3.04 67.13 ± 1.92 -25.67 ± 3.43 4.27 ± 0.20 

Secondary  -31.29 ± 1.70 74.61 ± 1.63 -20.74 ± 2.07 2.58 ± 0.15 

TABLE 2  

Action potential characteristics of principal dopamine and secondary GABA neurons in the VTA. The 

data represent mean ± SEM values for action potential threshold (mV), amplitude (mV), undershoot 

(mV) and the action potential width (ms at ½ max). 
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FIGURE 3 

Enhanced IPSC frequency onto dopaminergic cells in VTA of µ-opioid receptor knockout mice. 

EPSC’s were recorded from dopaminergic cells in the VTA from µ-opioid receptor knockout mice and 

wild-type controls.  

(A) The average frequency of spontaneous IPSC’s of -/- mice  is enhanced as compared to +/+ mice 

(mean ± SEM). (B) Cumulative probability plots of the frequency distribution of spontaneous IPSC’s of 

+/+ mice (●) and -/- mice (○) with significant genotype differences. (C) The average amplitudes of 

spontaneous IPSC’s of +/+ and -/- mice (mean ± SEM). (D) Cumulative probability plots of the 

amplitude distribution of spontaneous IPSC’s of +/+ and -/- mice. (E) and (F) Representative traces 

from wild-type (+/+) and µ-opioid receptor knockout (-/-) mice, respectively.  
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In both the wild-type and µ-opioid receptor knockout mice the majority of the secondary 

GABA neurons were silent. Only a small proportion of secondary neurons (WT: 3/12, KO: 

3/10) fired sporadic action potentials (interval > 5 sec). The cumulative probability plots of the 

interval of the remaining neurons showed a significant leftward shift for the knockout animals 

compared to the wild-type animals showing an increase in firing activity (P < 0.001, 

Kolmogorov-Smirnov, Figure 4B). The resting membrane potential of the silent neurons was 

unaltered between the wild-type and µ-opioid receptor knockout mice (-35.7 mV ± 4.6 versus 

–39.7 mV ± 1.5 respectively, N = 9 versus 7, P > 0.05, Student’s t-test). Principal neurons 

showed a much larger proportion of silent neurons: wild-type animals 16 of 22 neurons tested, 

knockout animals 21 of 27 neurons tested. The cumulative probability plot of the remaining 

neurons (Figure 4F) showed a small, but significant, rightward shift for knockout animals 

compared to wild-type animals indicating a decreased firing activity (P < 0.001, Kolmogorov-

Smirnov). The resting membrane potential of the silent neurons was significantly more 

hyperpolarized in principal neurons from µ-opioid receptor knockout mice as compared to 

wild-type mice (-43.9 mV ± 1.6 versus -38.4 mV ± 1.7, N = 21 and N = 16, respectively, P < 

0.05, Student’s t-test). The increased sIPSC frequency observed in dopaminergic neurons of 

µ-opioid receptor knockout animals therefore appears to be at least partly due to an increase in 

firing frequency of local GABAergic interneurons. Furthermore, the increased GABAergic 

input results in reduced activity of the dopaminergic neurons. 

There are indications that µ-opioid receptors are present on presynaptic GABAergic nerve 

terminals that synapse on dopaminergic neurons (Garzon & Pickel, 2001; Bergevin et al., 

2002). The absence of µ-opioid receptors on presynaptic nerve terminals in knockout mice 

could increase the spontaneous release of GABA and thus contribute to the observed increased 

amount of sIPSCs observed in dopaminergic neurons. We therefore also examined action 

potential-independent release of GABA in wild-type and µ-opioid receptor knockout mice by 

recording mIPSCs in the presence of 1 µM TTX. The cumulative probability plot of the 

frequency was significantly shifted to the right for knock-out animals compared to wild-type 

animals (Figure 5B, P < 0.01, Kolmogorov-Smirnov), whereas the amplitude was unaltered 

(Figure 5D, P > 0.05, Kolmogorov-Smirnov). The increase in sIPSC frequency might 

therefore also be due to an increase in spontaneous GABA release in the µ-opioid receptor 

knockout mice. 
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FIGURE 4 

Firing frequency of secondary GABA neurons and principal dopamine (DA) neurons of wild-type 

(+/+) and µ-opioid receptor knockout (-/-) mice. Current-clamp recording were made from secondary 

GABA neurons and principal dopamine neurons in the VTA of +/+  and -/- mice. 

(A) Between-event intervals for the firing GABA neurons. (B) Cumulative probability plot of the 

interval distribution of GABA neurons in the VTA of +/+ (●) and -/- (○) mice. (C) and (D) Example 

traces of secondary GABA neurons in the VTA of +/+ and -/- mice, respectively.  

(E) Between-event intervals for the firing dopamine neurons. (F) Cumulative probability plot of the 

interval distribution of principal dopamine neurons in the VTA of +/+ (●) and -/- (○) mice. (G) and (H) 

Example traces of principal dopamine neurons in the VTA of +/+ and -/- mice, respectively.  
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DISCUSSION 

Endogenous opioid systems may modulate drug reinforcement through opioid receptors in the 

VTA (Herz, 1997; Van Ree et al., 1999). However, direct involvement of µ-opioid receptors 

in drug reinforcement as determined by acquisition of drug self-administration has not been 

established. We report that cocaine self-administration by drug naive µ-opioid receptor 

knockout mice is impaired as compared to cocaine self-administration by wild-type mice. This 

FIGURE 5 

Miniature IPSC’s recorded from principal dopamine neurons in the VTA of wild-type (+/+) and 

µ-opioid receptor knockout (-/-) mice in the presence of TTX. The average mIPSC frequencies and 

amplitudes are shown in (A) and (C) for +/+ (●) and -/- (○) mice, respectively (mean ± SEM). (B) and 

(D) represent cumulative probability plots of the mIPSC frequency and amplitute, respectively. 

Representative traces are shown for +/+ (E) and -/- (F) mice. 
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shows an important role of µ-opioid receptors in cocaine reinforcement. The association of 

cocaine self-administration with POMC mRNA levels in the arcuate nucleus further suggests 

involvement of POMC, and possibly also of POMC-derived peptides such as β-endorphin, in 

the regulation of cocaine reinforcement. Finally, our data suggest that increased inhibitory 

GABAergic input onto principal dopaminergic neurons in the VTA of µ-opioid receptor 

knockout mice could provide a mechanism for the reduced reinforcing efficacy of cocaine in 

µ-opioid receptor knockout mice.  

 

Involvement of µ-opioid receptors in cocaine self-administration  

Cocaine self-administration by drug-naive µ-opioid receptor knockout mice is impaired as 

compared to wild-type control mice. This is the first report on cocaine self-administration in 

µ-opioid receptor knockout mice. Previous studies reported reduced self-administration or 

place preference for morphine, heroin, alcohol, nicotine, ∆9-THC and deltorphin in µ-opioid 

receptor knockout mice (Matthes et al., 1996; Becker et al., 2000; Roberts et al., 2000; Hall et 

al., 2001; Hutcheson et al., 2001; Ghozland et al., 2002; Becker et al., 2002; Contarino et al., 

2002; Berrendero et al., 2002). Merely the motivational properties of cocaine have been 

assessed in µ-opioid receptor knockout mice and were found not involve µ-opioid receptors 

(Contarino et al., 2002). The present findings demonstrate that µ-opioid receptors play a 

critical role in cocaine reinforcement.  

The observed reduction in cocaine self-administration in µ-opioid receptor knockout mice can 

not be attributed to different activity levels as compared to wild-type mice, because there was 

no difference between genotypes in the number of nose poke responses during the 10 minutes 

pre-test. Furthermore, the nose poke responding of the yoked control mice was not different 

between genotypes although wild-type yoked control mice appeared to respond slightly more 

than yoked µ-opioid receptor knockout mice, which may in fact reflect the higher amount of 

cocaine to which yoked wild-type mice were exposed. The lack of a genotype effect upon 

non-reinforced nose pokes, both during the pre-test or by the yoked control mice, supports the 

specific involvement of µ-opioid receptors in cocaine reinforcement. Importantly, the 

locomotor response to cocaine in an open field is normal in µ-opioid receptor knockout mice 

(Lesscher et al., 2003c), showing that µ-opioid receptors are not required for the locomotor 

stimulant effects of cocaine. Thus, µ-opioid receptors may be specifically involved in cocaine 

reinforcement.  

In wild-type mice, actively self-administered but not passively administered cocaine was 

positively correlated with POMC mRNA levels in the arcuate nucleus, that is POMC mRNA 

levels increased as total active cocaine intake increased. POMC is the precursor of, amongst 

others, the µ-opioid receptor selective endogenous opioid peptide β-endorphin. Indeed, 

β-endorphin levels increase in response to cocaine and also after administration of 

amphetamine and alcohol, at least in the nucleus accumbens of rats (Olive et al., 2001; Roth-

Deri et al., 2003; Marinelli et al., 2003). Also, in vivo autoradiography revealed that opioid 

levels are increased after cocaine self-administration in rats (Gerrits et al., 1999). Active self-
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administration is a measure for cocaine reinforcement, which requires µ-opioid receptor 

activation. The positive correlation of active cocaine self-administration with POMC mRNA, 

the precursor of β-endorphin, therefore suggests that β-endorphin, through interactions with µ-

opioid receptors, may contribute to opioid modulation of cocaine reinforcement. However, 

other endogenous opioids such as the novel µ-opioid receptor selective endomorphins 1 and 2 

(Zadina et al., 1997) or enkephalins, which also have affinity for µ-opioid receptors, may also 

be involved.  

 

Electrophysiological changes in VTA of µ-opioid receptor knockout mice 

The dopaminergic projections of the VTA to the nucleus accumbens are involved in mediating 

the reinforcing properties of cocaine (Koob & Nestler, 1997). The opioid antagonist 

naltrexone (NTX) reduced the initiation of cocaine self-administration and cocaine 

reinforcement only when naltrexone was administered directly in the VTA and not when NTX 

was applied to terminal regions of the mesolimbic system, i.e. striatum, prefrontal cortex, 

amygdala and nucleus accumbens (Ramsey et al., 1999). Based on these findings, it is likely 

that particularly the loss of µ-opioid receptors in the VTA contributes to the reinforcement 

phenotype of µ-opioid receptor knockout mice. 

In the VTA µ-opioid receptors are located on secondary, GABAergic, neurons, of which at 

least a subset are thought to be local interneurons providing inhibitory input onto principal, 

dopaminergic, neurons (Johnson & North, 1992a; Johnson & North, 1992b; Garzon & Pickel, 

2001; Garzon & Pickel, 2002). Activation of µ-opioid receptors on secondary neurons results 

in hyperpolarization and subsequent depression of spontaneous inhibitory potentials on 

principal neurons (Johnson & North, 1992a). Here, we show that the basal frequency of 

sIPSCs onto principal dopaminergic neurons is increased in mice lacking the µ-opioid receptor 

compared to wild-type mice, whilst the amplitude is unaltered. This shows an increased 

inhibitory input onto principal dopaminergic neurons in these mice.  

The increased sIPSC frequency might be a reflection of increased secondary cell firing, as we 

find an increased firing frequency of spontaneously active secondary neurons in µ-opioid 

receptor knockout mice compared to wild-type mice. In addition, the increased inhibitory 

input onto principal neurons might also result from enhanced action potential-independent 

GABA release from GABAergic nerve terminals synapsing onto principal neurons. The 

increase in the frequency but unchanged amplitude of mIPSC’s show that also action 

potential-independent release is increased. We therefore conclude that the increase in sIPSC 

frequency results from both increased secondary cell firing and increased action potential-

independent GABA release.  

The firing activity of active principal dopamine neurons was reduced in µ-opioid receptor 

knockout mice as compared to wild-type mice. Also, the resting membrane potential of 

principal neurons from µ-opioid receptor knockout mice was more hyperpolarized than that of 

principal neurons from wild-type mice, possibly as the result of increased inhibitory input to 

these neurons. GABAergic inhibition can indeed affect the firing activity of dopaminergic 
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cells. For instance, blockade of GABAergic projections to principal dopamine neurons in the 

substantia nigra pars compacta, caused burst firing in vivo (Tepper et al., 1995). Furthermore, 

activation of GABA GABAA and GABAB receptors reduces drug self-administration (Xi & 

Stein, 1999; Brebner et al., 2000; Corrigall et al., 2000; Xi & Stein, 2000; Campbell et al., 

2002) and bicuculline, a GABAA receptor antagonist is self-administered locally in the VTA 

by mice (David et al., 1997). Addition of agonists for the µ-opioid receptor, which reduces 

firing of secondary neurons, does not result in increased firing of principal neurons in vitro 

(Johnson & North, 1992a; Korotkova et al., 2002). In addition, principal neurons do not show 

spontaneous burst firing behaviour in vitro (Johnson & North, 1992b; Seutin et al., 1993; 

Wang & French, 1993). This burst firing, which is observed in vivo, is an important 

mechanism through which principal dopamine neurons can increase their dopamine release in 

the nucleus accumbens (Suaud-Chagny et al., 1992). Principal neurons switch to burst firing 

when the animal is presented with certain salient stimuli that result in a behavioural response 

of the animal (Miller et al., 1981; Schultz et al., 1997; Schultz, 1998). Differences between µ-

opioid receptor knockout mice and wild-type mice in the activity of principal neurons may 

only become apparent when bursting of principal neurons is required. In case of the µ-opioid 

receptor knockout mice the increase in inhibitory GABAergic input may result in a heightened 

threshold for the induction of burst firing and accompanying behavioural response.  

 

In conclusion, the present finding of impaired self-administration by µ-opioid receptor 

knockout mice demonstrate an important role of µ-opioid receptors in cocaine reinforcement, 

probably through regulation of inhibitory neurotransmission in the VTA.  
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ABSTRACT 

Opioid receptors in the ventral tegmental area, predominantly the µ-opioid receptors, have 

been suggested to modulate reinforcement sensitivity for both opiate and non-opiate drugs of 

abuse. The present study was conducted to study signal transduction proteins, which may 

mediate the functioning of µ-opioid receptors in the neurons of the ventral tegmental area. 

Therefore, brain slices of the ventral tegmental area were exposed in vitro to the specific µ-

opioid receptor agonist fentanyl and immunohistochemically stained for four different 

activated proteins using phospho-specific antibodies. Fentanyl dose-dependently activated 

extracellular signal-regulated protein in brain slices of the ventral tegmental area. This 

activation was reversible with naloxone. Furthermore, naloxone itself also activated 

extracellular signal-regulated protein kinase. Under the present conditions fentanyl did not 

affect extracellular protein kinase kinase 1 and 2 (MEK1/2), Stat and cyclic AMP-response 

element-binding protein (CREB) activity. The direct activation of extracellular signal-

regulated protein kinase in ventral tegmental area slices by the µ-opioid receptor agonist 

fentanyl may suggest a role of extracellular signal-regulated protein kinase in reward 

processes. 
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INTRODUCTION 

Endogenous opioid systems have been implicated in reinforcement. Especially µ-opioid 

receptors in the ventral tegmental area (VTA) appear to be involved in both cocaine and 

ethanol reinforcement (Van Ree et al., 1999). For instance, self-administration studies in rats 

suggest that µ-opioid receptors in the VTA can modulate the initiation of cocaine self-

administration. In both drug-naive rats and mice, treatment with opioid antagonists decreased 

cocaine intake (De Vry et al., 1989; Kuzmin et al., 1997a). In fact, naltrexone caused a 

rightward shift in the dose-response curve for cocaine, indicating that cocaine is less 

reinforcing after opioid blockade. Furthermore local injection of the opioid antagonist 

naltrexone into the VTA also reduced acquisition of cocaine self-administration, whereas 

injections of naltrexone in the caudate, amygdaloid or accumbens nuclei as well as in the 

prefrontal cortex did not affect cocaine self-administration (Ramsey et al., 1999). Injection of 

the specific µ-opioid receptor agonist DAMGO and the antagonist CTOP into the VTA also 

altered reinforcement processes for cocaine (Corrigall et al., 1999b). Taken together these 

studies suggest that µ-opioid receptors in the VTA are involved in sensitivity to drugs of 

abuse.  

 

The cloning of the opioid receptors has facilitated the investigation of signalling pathways 

involved in opioid receptor mediated functioning. The elucidation of signal transduction 

pathways coupled to the µ-opioid receptor in neurons in the ventral tegmental area may add 

further to the understanding of mechanisms underlying differences in sensitivity to drugs of 

abuse. From studies using transfected cell lines it appears that opioid receptors are coupled to 

multiple signal transduction pathways. Due to the availability of antibodies against different 

phospho-proteins it is now possible to investigate signal transduction pathways in situ 

(Reijmers et al., 2000). In vivo studies suggest a role of cAMP-response-element binding 

protein (CREB), extracellular signal-related protein kinase (ERK) and ERK kinases 1 and 2 

(MEK1/2) in opioid receptor mediated signalling (Guitart et al., 1992; Ortiz et al., 1995; 

Berhow et al., 1996; Widnell et al., 1996; Lane-Ladd et al., 1997; Schulz & Höllt, 1998). 

However these studies used nonselective opioid agonists which were injected systemically, 

either acute or chronically. Most of these studies did not concern the VTA: only Berhow et al. 

(1996) described activation of ERK in the VTA after chronic but not acute systemic morphine 

treatment. In the present study, signal transduction proteins coupled to the µ-opioid receptor in 

brain slices of the VTA were investigated. The in vitro approach was chosen to ensure 

detection of acute and local effects in the VTA. After stimulation with the specific µ-opioid 

receptor agonist fentanyl immunoreactivity was determined for phosphorylated CREB, ERK, 

MEK1/2 and Stat. These proteins were chosen based on known signal transduction pathways 

for µ-opioid receptors and availability of phospho-specific antibodies.  
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MATERIALS AND METHODS 

 

Animals and tissue preparation  

Male Wistar rats (200 gram; GDL Utrecht University) were housed in pairs in Macrolon type 

III cages with water and food pellets ad libitum; environmental conditions were controlled 

(22°C and 50% humidity; lights on at 7:00 h and lights off at 19:00 h). The experimental 

procedures were approved by the Ethical Committee for Animal Experiments of the 

University Medical Center Utrecht. 

For the in vitro procedures rats were killed by decapitation and brains were quickly dissected 

and transferred to ice-cold Krebs-Ringer solution (124 mM NaCl, 3.3 mM KCl, 1.2 mM 

KH2PO4, 1.3 mM MgSO4, 10 mM glucose, 20 mM NaHCO3, 2.5 mM CaCl2). Midbrain tissue 

blocks were cut from approximately -4.8 mm to -7.3 mm posterior to bregma, according to the 

Rat Brain atlas (Paxinos & Watson, 1998). The tissue was fixed on a specimen plate with 

cyanoacrylate glue and 2% agarose and subsequently 500 µm coronal vibratome (Vibratome 

Series 1000) slices were cut in ice-cold Krebs-Ringer solution, oxygenated with 95%O2 / 

5%CO2. As an example, one hemisphere of a slice is schematically depicted in figure 1A. Of 

each animal two slices cut at the level of the VTA were included in the experiment, which 

were assigned to one treatment group and were considered one sample.  

 

In vitro procedures 

The 500 µm thick VTA slices were allowed to rest for 1.5 h at room temperature in 

oxygenated Krebs-Ringer solution. Slices were then transferred to oxygenated 30°C Krebs-

Ringer solution for another 30 minutes: 15 minutes acclimatisation followed by 15 minutes 

treatment.  

 

Experiments 

Experiment 1, screening   

With phospho-specific antibodies the possible involvement of four intracellular signal 

transduction proteins in ventral tegmental µ-opioid receptor mediated signalling was studied. 

Herefore, rat VTA brain slices were stimulated with the µ-opioid receptor agonist fentanyl 

(Janssen Pharmaceutica B.V., Tilburg, The Netherlands) in vitro (N=4). The experimental 

procedures were validated using three control groups. Fresh tissue and pre-incubated tissue, 

i.e. tissue that was fixed after a total 2 h (1.5 h room temperature + 30 min 30°C) incubation in 

Krebs-Ringer without additives, were included to check for pre-incubation effects. Further, to 

check for tissue viability, tissue was stimulated with 50 mM KCl (KCl was added to the 

medium at t = 105 min). For the experimental groups the sodium channel blocker tetrodotoxin 

(TTX, 1 µM, Tocris, UK) was used to prevent indirect effects due to depolarization of target 
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cells (TTX was added to the incubation medium at t = 90 min). The three experimental groups 

were TTX alone, TTX+ 0.1 µM fentanyl and TTX+ 0.5 µM fentanyl (fentanyl was added to 

the medium at t= 105 min). The 15 minutes incubation time with fentanyl was chosen since 

according to many studies the peak activity of most phospho-proteins lies within the range of 

10-20 minutes. The fentanyl concentrations were chosen from a study on inositol (1,4,5)-

triphosphate formation by fentanyl in SH-SY5Y neuroblastoma cells (Smart et al., 1994) and 

comparable studies on cell cultures which used either DAMGO or morphine (KD in the range 

of that of fentanyl, (Johnson et al., 1994; Fukuda et al., 1996; Li & Chang, 1996; Gutstein et 

al., 1997; Selley et al., 1997; Polakiewicz et al., 1998; Ai et al., 1999; Schmidt et al., 2000). 

After a total 2 h of incubation the slices were fixed in 4% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7.4) overnight. The slices were stored in 0.1% sodium-azide in 0.1 M 

Tris-buffered saline (TBS, pH 7.4) until further processing.  

 

Experiment 2, ERK activation repeat experiment   

To confirm the observed dose-dependent activation of ERK by acute stimulation with fentanyl 

the experiment was repeated with the same doses of fentanyl: TTX alone, TTX + 0.1 µM 

fentanyl and TTX + 0.5 µM fentanyl (N=6). Fresh tissue was not included since ERK activity 

was not different in pre-incubated tissue compared to fresh VTA slices in experiment 1. As an 

internal control, additional measurements were made in the substantia nigra reticularis, in 

which area moderate levels of µ-opioid receptors are expressed (Ding et al., 1996).  

 

Experiment 3, Specificity of ERK activation for the µ-opioid receptor  

To check for specificity of the effects of fentanyl upon p-ERK immunoreactivity for the µ-

opioid receptor the opioid antagonist naloxone was used. The concentration of naloxone was 5 

µM; naloxone was added at t = 100 min. Previous studies used either 1 or 10 µM naloxone to 

demonstrate opioid receptor involvement in responses to DAMGO or morphine (Smart et al., 

1994; Fukuda et al., 1996; Gutstein et al., 1997; Polakiewicz et al., 1998; Ai et al., 1999; 

Schmidt et al., 2000). Based on these studies the intermediate dose of 5 µM naloxone was 

chosen to examine opioid receptor involvement in the fentanyl-induced activation of ERK in 

this study. 1 µM TTX-treated slices and tissue slices exposed to the combination of 1 µM 

TTX and 0.5 µM fentanyl were included, which had been incubated in presence or absence of 

naloxone (N=8). 

 

Immunohistochemistry 

Polyclonal rabbit antibodies against phosphorylated kinases and transcription factors were 

chosen from a broad range of signal transduction pathways. We used antibodies against 

phosphorylated ERK (=p42/p44 ERK) from Promega (Madison, WI, USA), MEK1/2 (p-

MEK1/2; Ser217/221) and p-Stat (Tyr705) from New England Biolabs (Beverly, MA, USA), 
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and p-CREB antibody from Upstate Biotechnology (Waltham, MA, USA). These antibodies 

were specific as checked on a western blot loaded with VTA homogenate. 

The fixed VTA slices were cut down to 40 µm thick vibratome slices and free-floating 

immunohistochemistry was performed. Slices (one in experiment 1, two in experiment 2) from 

two to three animals within one treatment group were processed within the same incubation 

chamber and a net-well system was used to ensure that incubation times were exactly the same 

for all groups. Slices were rinsed with TBS, preincubated with 5-10 mg/ml 

sodiumborohydride in TBS for 20 minutes, rinsed with TBS, preincubated with 3% H2O2 in 

TBS and rinsed again. The slices were incubated in supermix (TBS with 0.5% triton-X-100 

and 0.25% gelatine) containing a phospho-specific antibody (anti-p-ERK (1:3200), anti-p-

MEK1/2 (1:800), anti-p-Stat (1:800) or anti-p-CREB antibody (1:2500)) for 1 h at room 

temperature followed by 48 h at 4°C while shaking on a rocking table. Slices were again 

rinsed with TBS and incubated with biotinylated goat anti-rabbit IgG (1:500; Vector, 

Burlingame, USA) in supermix for 1 h at room temperature while shaking. After rinsing with 

TBS the slices were then incubated with avidin-biotin complex coupled to peroxidase (1:1000 

Vectastain ABC; Vector) in supermix for 2 h at room temperature. Finally, the slices were 

rinsed with TBS and stained with 0.5 mg/ml diaminobenzidine (Sigma, Zwijndrecht, 

Netherlands) in TBS containing 0.2% nickelammoniumsulphate and 0.01% H2O2. The 

enzymatic reaction was stopped in TBS and the slices were mounted on gelatine-coated slides, 

dehydrated in graded ethanol, embedded and coverslipped.  

 

Image Analysis 

Slices were examined and images were taken using a MCID image analyser (Interfocus, 

Suffolk, UK) coupled to a microscope (Zeiss, NL). For quantitative analysis of the 

immunoreactivity (IR) for the different phospho-proteins, performed with the same MCID 

system, we used images of the VTA (20× objective) at -5.80 mm posterior to bregma, 

according to the Rat Brain atlas (Paxinos and Watson, 1998).  

The staining pattern for p-CREB, p-MEK1/2 and p-Stat was punctate, hence proportional 

grain area was chosen for quantification of the IR for these proteins. The staining pattern for 

p-ERK was more diffuse and therefore optical density was used as the parameter for the 

quantification of p-ERK IR. Per animal average immunoreactivity was calculated from single 

measurements from both hemispheres of either one (experiment 1) or two slices (experiments 

2 and 3).  

 

Statistical Analysis 

For statistical analysis of the data one- or two-way ANOVA (SPSS 9.0 for Windows) was 

used, followed by post-hoc comparisons using Student’s t tests. Overall analysis compared 

TTX, TTX + 0.1 µM fentanyl and TTX + 0.5 µM fentanyl groups for experiments 1 and 2. 

Similar analysis was performed after combination of the data of the experiments 1 and 2, 
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taking the factor experiment into account. For the naloxone experiment an overall analysis 

was performed for TTX, TTX + naloxone, TTX + fentanyl and TTX + fentanyl + naloxone. In 

addition, separate analyses examined the effects of fentanyl (TTX versus TTX + 0.5 µM 

fentanyl, in absence of naloxone) and effects of naloxone itself. Data are represented as mean 

± SEM; significance was accepted at P < 0.05.  

 

RESULTS 

 

Validation of experimental procedures 

The data for the control groups for the different experiments are summarised in Table 1. 

Compared to fresh tissue, p-MEK1/2, p-Stat and p-CREB immunoreactivity (IR) was reduced 

after pre-incubation (Table 1a). 50 mM KCl stimulation did not affect the immunoreactivity 

for p-MEK1/2, p-Stat and p-CREB. For p-ERK no difference between fresh and pre-incubated 

tissue was observed (Table 1b). In the repeat experiment only pre-incubated tissue was 

included. Exposure to 50 mM KCl increased p-ERK immunoreactivity. TTX did not 

significantly affect IR for p-MEK1/2, p-Stat, p-CREB and p-ERK as compared to pre-

incubated tissue (compare Tables 1 and 2).  

 

In vitro activation of signal transduction proteins by fentanyl in the ventral 

tegmental area 

Out of four antibodies tested only phosphorylated ERK (p-ERK) showed a response to 15 

minutes in vitro incubation with fentanyl, a specific µ-opioid receptor agonist. Microscopic 

examination of the VTA slices stained for p-ERK revealed differences in the density of the 

staining across groups (Figure 1): p-ERK IR was more dense for the fentanyl-treated slices 

than for the TTX-treated control slices.  

FIGURE 1 

Phospho-ERK immunoreactivity in VTA brain slices treated in vitro with fentanyl. Images were taken 

at –5.80 mm to bregma according to the Rat Brain Atlas (Paxinos and Watson, 1998) as schematically 

drawn in (A). Panel (B) shows p-ERK immunoreactivity for TTX-treated tissue and in panel (C) a 

representative example is shown of TTX + 0.5 µM fentanyl-treated VTA slices. Calibration bar: 100 

µM 



Chapter 4 

80 

TABLE 1 

Validation of experimental procedures. The data for the control groups for p-MEK1/2, p-Stat and 

p-CREB IR from experiment 1 (N=4) are shown in (A). The data for the control groups for p-ERK IR 

of experiments 1 and 2 together (N=10) and p-ERK IR of control tissue from the naloxone experiment 

(N=8) are summarised in (B). Data are represented as mean ± SEM. 
a Pre-incubated tissue, b Data from experiment 1 only 

A p-MEK1/2 p-Stat p-CREB 

 Proportional grain area 

fresh tissue 0.046 ± 0.001 0.044 ± 0.009 0.038 ± 0.008 

pre-incubated tissue 0.015 ± 0.002 0.015 ± 0.006 0.019 ± 0.008 

50 mM KCl
a 

0.020 ± 0.005 0.015 ± 0.006 0.020 ± 0.021 

B p-ERK optical density 

 Experiments 1 + 2 Naloxone experiment (3)

fresh tissue 0.171 ± 0.037
b 

- 

pre-incubated tissue 0.247 ± 0.039 0.237 ± 0.018 

50 mM KCl
a 

0.338 ± 0.029 - 

Quantitative analysis of the slices, for which we used optical density as a parameter, 

confirmed the microscopic observations (Table 2). Fentanyl increased p-ERK 

immunoreactivity (IR) in in vitro treated VTA slices (overall effect: F(2,11)=9.6, P < 0.01). 

Post-hoc analysis revealed significant differences between TTX and TTX + 0.1 µM fentanyl 

(P < 0.05) and TTX + 0.5 µM fentanyl (P < 0.01), thus the ERK activation by fentanyl was 

dose-dependent. No effects of fentanyl upon p-MEK1/2, p-Stat or p-CREB IR (proportional 

grain area) were observed (see Table 2). Western blot proved specificity of the antibody for 

phosphorylated ERK (p42/p44 ERK) as shown in Figure 2. 

 p-ERK p-MEK1/2 p-Stat p-CREB 

 Optical density 

 

Proportional grain area 

TTX 0.115 ± 0.021 0.013 ± 0.004 0.016 ± 0.004 0.005 ± 0.002 

TTX + 0.1 µM fentanyl 0.219 ± 0.013
a
 0.022 ± 0.009 0.024 ± 0.003 0.010 ± 0.003 

TTX + 0.5 µM fentanyl 0.246 ± 0.017
b
 0.020 ± 0.008 0.017 ± 0.003 0.008 ± 0.002 

TABLE 2 

Exposure of ventral tegmental brain area slices to fentanyl: effects upon signal transduction proteins 

(experiment 1). 

TTX was added during pre-incubation. The data are shown for p-ERK (optical density) and for 

p-MEK1/2, p-Stat and p-CREB (proportional grain area). Data are represented as mean ± SEM.  

Student’s t-tests: a  vs. TTX tissue, P < 0.05 and b vs. TTX tissue, P < 0.01 (N=4) 
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FIGURE 2

Representative autoradiogram of a phospho-ERK Western blot 

loaded with VTA homogenate. The detection of merely p42 and 

p44 ERK confirms the specificity of the antibody for 

phosphorylated ERK (=p42/p44 ERK). 

 

 

ERK activation by fentanyl in VTA slices in vitro 

To verify the finding that fentanyl activated ERK in the in vitro approach the experiment was 

repeated and similar results were found. Data for p-ERK IR from the two experiments 

revealed that there was an overall dose-dependent effect of fentanyl upon p-ERK IR: fentanyl 

increased p-ERK IR relative to TTX control slices (F(2,30)=6.7, P < 0.01) (Figure 3a). No 

interaction between treatment and experiment was present (F(2,30)=0.37, P = 0.70). Post-hoc 

analysis revealed significant differences in p-ERK IR between TTX and both 0.1 µM fentanyl 

and 0.5 µM fentanyl treated tissue (P < 0.05 and P < 0.01, respectively). Additional 

measurements from the substantia nigra reticularis (SNR), which were included as internal 

controls, not reveal activation of ERK by fentanyl. p-ERK IR in SNR: 0.124 ± 0.031 for TTX, 

0.130 ± 0.015 for TTX + 0.1 µM fentanyl and 0.116 ± 0.028 for TTX + 0.5 µM fentanyl.  

 

Involvement of µ-opioid receptors in fentanyl-induced activation of ERK  

Overall analysis revealed a significant interaction between naloxone and fentanyl treatment 

(treatment×naloxone F(1,19)=4.6, P < 0.05, Figure 3b). Consistent with previous experiments 

we observed an increase in p-ERK IR in VTA slices after treatment with 0.5 µM fentanyl in 

presence of TTX (F(1,15)=9.2, P < 0.01). Naloxone itself increased p-ERK IR both in pre-

incubated tissue without TTX treatment and in TTX treated tissue. A two-way ANOVA 

revealed an effect of naloxone (F(1,28)=5.3, P < 0.05). 
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FIGURE 3 

ERK activation by fentanyl in VTA brain slices in vitro. Fentanyl increased p-ERK IR dose-

dependently in rat VTA slices (A) (N=10). The activation of ERK by fentanyl was reversed by the 

opioid antagonist naloxone (B) (N=8). Data are represented as mean ± SEM.  

* P < 0.05, ** P < 0.01, significant from TTX treatment. 
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DISCUSSION 

In the present study we show activation of ERK, a member of the mitogen-activated protein 

kinase (MAPK) family, by the specific µ-opioid receptor agonist fentanyl in rat VTA brain 

slices. Further, the opioid antagonist naloxone reversed the fentanyl-induced activation of 

ERK. Our data suggest that fentanyl activates ERK dose-dependently via an opioid-receptor 

mediated mechanism in VTA brain slices in vitro.  

 

Out of four phospho-proteins only ERK showed a dose-dependent response to fentanyl 

treatment in VTA slices in an in vitro approach. Although opioid-mediated regulation of Stat 

has not been reported previously, effects upon ERK, MEK1/2 and CREB activity could be 

expected considering previous studies. For example, MEK1/2 activation by an opioid has been 

described previously, however only for the δ-opioid receptor agonist deltorphin (Hedin et al., 

1999). Several studies reported CREB regulation by opioids. For example, Guitart and 

colleagues reported that acute morphine decreased the state of phosphorylation of CREB 

(Guitart et al., 1992). Acute precipitation of opiate withdrawal increased the levels of 

phosphorylated CREB. Further, chronic exposure to morphine increased levels of CREB in 

the locus coeruleus of the rat (Lane-Ladd et al., 1997). Widnell et al. (1996) showed decreased 

CREB immunoreactivity in the nucleus accumbens after chronic but not acute morphine. The 

lack of opioid-mediated regulation of MEK1/2 and CREB in the present study may be 

explained by the use of different opioid agonists. CREB and MEK1/2 activation has only been 

reported for the relatively non-specific opioid agonist morphine and for the δ-opioid receptor 

agonist deltorphin, respectively. Therefore opioid-induced activation of CREB and MEK may 

be mediated by δ- and κ- but not by µ-opioid receptors. Further different experimental 

conditions e.g. treatment time and the brain region studied may explain the lack of MEK1/2 or 

CREB activation in the present study. For example, MEK1/2 activation by deltorphin peaked 

at 5 min treatment time and reached basal levels after 10 min (Hedin et al., 1999), suggesting 

that after 15 min exposure as was done in the present study MEK1/2 phosphorylation levels 

may have returned to basal levels. Thus although no effects upon MEK1/2, CREB or Stat 

phosphorylation state were observed, the possibility of their involvement in opioid-mediated 

signalling can not be ruled out. 

In transfected cell lines, ERK activation by opioid agonists has been shown previously 

(Fukuda et al., 1996; Li & Chang, 1996; Gutstein et al., 1997; Polakiewicz et al., 1998; 

Belcheva et al., 1998; Ai et al., 1999; Schmidt et al., 2000). In vivo studies on opioid-mediated 

ERK activation have mostly dealt with chronic effects of systemic morphine. Moreover, 

results of these studies were controversial: chronic exposure to morphine decreased ERK 

activity in one study (Schulz & Höllt, 1998), whereas the same treatment, but not acute 

morphine administration, increased ERK activity in other studies (Berhow et al., 1996; Ma et 

al., 2001). Berhow et al. found increased ERK activity after chronic morphine in the VTA and 

hence their results may agree with the present findings obtained in brain slices after in vitro 

exposure.  
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ERK activation induced by an acute stimulation with a specific µ-opioid agonist in a 

physiologically relevant system, as the VTA brain slices used for the present study has not 

been shown previously. Further, the in vitro approach, the use of the sodium channel blocker 

tetrodotoxin (TTX), preventing depolarisations, and naloxone blockade ensured the detection 

of merely direct cellular µ-opioid receptor mediated effects. Our findings indicate a possible 

role of ERK in the acute effects of µ-opioid agonists in the VTA. As such ERK may have a 

role in reward processes. In fact, a role of the mitogen-activated protein kinases (MAPK), of 

which ERK is a subtype, in cocaine responsiveness has been suggested previously. Treatment 

with a MAPK Kinase (MEK) inhibitor before cocaine reduced cocaine-induced 

hyperlocomotion (Valjent et al., 2000) and blocked sensitisation to the locomotor activating 

effects of cocaine (Pierce et al., 1999). Valjent et al. (2001) demonstrated ERK activation in 

the striatum and nucleus accumbens by ∆9-tetrahydrocannabinol (∆9-THC). Furthermore 

inhibition of ERK by the MEK inhibitor SL327 impaired THC induced place preference. With 

regard to opioid reward, involvement of ERK has not been studied so far. It has been shown 

that MAPK is involved in µ-opioid receptor desensitisation: a feedback signal emanating from 

the MAPK pathway appears to be required for µ-opioid receptor desensitisation, although 

internalisation is not required for MAPK activation by opioids (Polakiewicz et al., 1998; 

Kramer & Simon, 2000). 

 

Since ERK activation by fentanyl was dose-dependent, an in vitro approach as described here 

may further be applicable to monitor changes in sensitivity of the µ-opioid receptor system in, 

for example, animal models for altered sensitivity to reinforcing effects of drugs. 

 

Interestingly, naloxone activated ERK in VTA slices for both preincubation and TTX 

conditions. Naloxone did block the effects of fentanyl upon ERK phosphorylation, thus acting 

as an antagonist in the presence of fentanyl as expected. Our data suggest that naloxone may 

act as a partial agonist in absence of fentanyl with antagonistic properties in presence of 

fentanyl. In support of non-classical behaviour of this opioid antagonist, partial agonist actions 

as well as inverse agonist properties have been suggested for naloxone previously in 

transfected cell lines (Fukuda et al., 1998; Wang et al., 1999). Further, Cruz and colleagues 

(1996) showed inverse agonist activity of naloxone in guinea-pig ilea preparations. However, 

studies which used µ-opioid receptor transfected cell lines do not support the present findings: 

naloxone blocked opioid-induced effects upon ERK activity, but when administered alone 

naloxone did not affect basal ERK activity in transfected CHO-K1 cells (Ai et al., 1999). 

Since there are no indications of partial agonist-like properties of naloxone in ERK-activation 

from studies using cell lines, we may speculate that cell-specific properties of receptor 

activation or participation of other receptor systems in the VTA may account for the naloxone-

induced activation of ERK in the present study.  
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In conclusion we show that the specific µ-opioid receptor agonist fentanyl induced ERK 

activation in a dose-dependent manner in rat VTA brain slices. Assuming a significant role of 

VTA µ-opioid receptors in reward processes (Van Ree et al., 1999) the signal transduction 

pathways involving ERK may be involved in the cellular mediation of reward as supported by 

cocaine sensitization and ∆9-THC place preference studies (Pierce et al., 1999). The direct and 

dose-dependent activation of ERK may further provide a tool to test opioid efficacy, possibly 

in animal models relevant for addiction proneness. Future research on the intracellular 

mechanisms coupled to µ-opioid receptor activation in the VTA may provide more insight in 

the mechanisms underlying individual proneness to addiction and hence may contribute to the 

prevention of drug dependence.  
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ABSTRACT 

Although µ-opioid receptors have been extensively investigated for their role in drug 

reinforcement, little is known about the contribution of these receptors to the acute and 

sensitized locomotor response to cocaine. In this study µ-opioid receptor involvement in acute 

cocaine-induced locomotor activity and in the development of cocaine-induced behavioural 

sensitization was evaluated using µ-opioid receptor knockout mice and chronic naltrexone 

(NTX) pre-treatment as models. In addition, co-administration of the specific µ-opioid 

receptor antagonist CTOP with repeated saline or cocaine injections was used to establish the 

involvement of µ-opioid receptors in sensitization to the locomotor stimulant effects of 

cocaine.  

The acute locomotor response to cocaine (3, 10, 20 or 30 mg/kg i.p.) of µ-opioid receptor 

knockout or chronic NTX pre-treated mice was not different from the cocaine response of 

their respective controls. With respect to cocaine-induced behavioural sensitization, induced 

by daily injections of 20 mg/kg cocaine for 11 subsequent days, µ-opioid receptor knockout 

mice developed behavioural sensitization to the locomotor stimulant effects of cocaine 

(challenge 10 mg/kg i.p.) comparable to wild-type littermates and the µ-opioid receptor 

antagonist CTOP did not affect cocaine-induced sensitization either. However, mice which 

were pre-treated with NTX exhibited augmented cocaine-induced behavioural sensitization 

relative to placebo pre-treated controls, which may be ascribed to increased δ-opioid receptor 

levels as has been described for chronic NTX pre-treated mice. The present findings suggest 

that µ-opioid receptors are not required for the acute locomotor response to cocaine nor are 

they essential for the development of cocaine-induced behavioural sensitization.  
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INTRODUCTION 

Repeated intermittent exposure to cocaine enhances the locomotor stimulant effects of cocaine 

upon a subsequent exposure. This phenomenon, behavioural sensitization to the motor 

stimulant effects of drugs, is thought to reflect long-term adaptations to chronic drug exposure 

that may underlie certain aspects of drug addiction (Robinson & Berridge, 2000). A single 

exposure to cocaine can be sufficient to induce long-lasting sensitization to the locomotor 

stimulant effects of cocaine (Vanderschuren et al., 1999), possibly through long-term 

potentiation of dopamine neurons in the ventral tegmental area (VTA) (Ungless et al., 2001). 

Repeated intermittent pre-exposure to cocaine also facilitated the subsequent acquisition of 

cocaine self-administration (Horger et al., 1990; Piazza et al., 1990). Furthermore pre-

exposure to e.g. amphetamine, cocaine and morphine enhanced the conditioned motivational 

effects of the respective drug (Lett, 1989; Shippenberg & Heidbreder, 1995a). Thus, repeated 

exposure to drugs of abuse induces long-term adaptations, which contribute to sensitization to 

the locomotor stimulant and motivational effects of these drugs.  

Involvement of endogenous opioid systems in drug reinforcement has been demonstrated 

repeatedly in laboratory animals (Herz, 1997; Van Ree et al., 1999). Opioid antagonists reduce 

cocaine and ethanol self-administration (De Vry et al., 1989; Froehlich et al., 1990; Kornet et 

al., 1991; Kuzmin et al., 1997a; Stromberg et al., 1998), primarily through µ-opioid receptors 

in the VTA (Ramsey et al., 1999; Lesscher et al., 2003b). Endogenous opioid systems have 

also been implicated in behavioural sensitization induced by psychostimulants. For example, 

the non-selective opioid antagonist naltrexone (NTX) prevented the development of cocaine-

induced behavioural sensitization (Sala et al., 1995). The selective δ-opioid receptor 

antagonist naltrindole blocked the development, but not the expression, of sensitization to the 

locomotor stimulant effects of cocaine (Heidbreder et al., 1993a; Heidbreder et al., 1996). 

Moreover, sensitization to the conditioned effects of cocaine was prevented when naltrindole 

was given together with repeated cocaine injections (Shippenberg & Heidbreder, 1995b). 

Effects of κ-selective opioid receptor agonists, both exogenous and endogenous, upon 

behavioural sensitization have been reviewed elsewhere (Shippenberg & Rea, 1997). In short, 

sensitization to the conditioned effects of cocaine or amphetamine, as apparent after pre-

exposure to a psychostimulant, was abolished when κ-opioid receptor agonists were 

administered in combination with the psychostimulant (Shippenberg et al., 1996). In addition, 

κ-opioid receptor agonists reduced sensitization to the locomotor stimulant effects of cocaine 

(Heidbreder et al., 1993b; Heidbreder et al., 1995 but Vanderschuren et al., 2000). Taken 

together, these studies indicate that δ- and κ-opioid receptors are involved in the development 

of cocaine-induced behavioural sensitization. In contrast, little is known about the role of µ-

opioid receptors in sensitization to the (locomotor) effects of cocaine. Interestingly, data from 

a recent study suggested that µ-opioid receptors may also contribute to cocaine-induced 

behavioural sensitization (Yoo et al., 2003).  

The aim of this study was to establish the involvement of µ-opioid receptors in acute cocaine-

induced locomotor activity and in cocaine-induced behavioural sensitization. The possible role 
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of µ-opioid receptors in the acute locomotor response to cocaine and in cocaine-induced 

behavioural sensitization was investigated using µ-opioid receptor knockout mice, co-

administration of the µ-opioid receptor selective antagonist CTOP (Hawkins et al., 1989)  and 

by means of chronic NTX pre-treated mice. Chronic NTX pre-treatment was included in this 

study because chronic exposure of mice to NTX results in an increase in µ-opioid receptor 

binding sites, although δ-opioid receptor binding is also increased by this pre-treatment albeit 

to a lower extent and up-regulation of κ-opioid receptors after chronic NTX exposure is 

restricted to cortical regions (Yoburn et al., 1988; Lesscher et al., 2003a).  

 

MATERIALS AND METHODS 

 

Animals 

Male mice, either C57Bl/6Jico mice (Charles River, l’Arbresle, France) or µ-opioid receptor 

knockout and wild-type mice derived from heterozygous breeding (GDL, Utrecht), aged 2-3 

months were group housed (2-4) in extended Macrolon© type I cages with water and food 

pellets available ad libitum. Environmental conditions were controlled (22°C and 50% 

humidity; lights on at 7:00 a.m. and lights off at 7:00 p.m., GDL Utrecht University). The 

experimental procedures were approved by the Ethical Committee for Animal Experiments of 

the University Medical Center Utrecht. 

 

µ-Opioid receptor knockout mice 

The µ-opioid receptor knockout and wild-type mice used for this experiment have been 

described previously and were on a mixed 129Sv/C57Bl6 background (Schuller et al., 1999).  

No detectable binding of [3H]DAMGO or µ-opioid receptor transcript was present in µ-opioid 

receptor knockout mice and there is no evidence for compensatory changes in other opioid 

receptor subtypes: binding to δ-opioid receptor subtypes was comparable between genotypes 

and δ- and κ- and ORL-1 receptor mRNA levels were also unchanged (Schuller et al., 1999). 

Wild-type (+/+) and homozygous knockout (-/-) mice were obtained from heterozygous 

breeding. The mice used in the present study were on a C57Bl6/Jico background after 6-7 

back-crossings to C57Bl6/Jico mice (Charles River, l´Arbresle, France). The mice were 

genotyped by PCR on genomic DNA isolated from tail tips. The mutant product was 700 bp, 

the wild-type product 525 bp; the three primers used were outside the mutation site (5′ GAC 

TTT CCT GGC TGA TGC AAA CAA CCT 3′), within the mutation site (5′ CAT GGT TCT 

GAA TGC TTG CTG CGG ACT 3′) and within the neomycin box (5′ CTA CCT GCC CAT 

TCG ACC ACC AA 3′). 
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Chronic naltrexone (NTX) treated mice 

At least one week after transportation, C57Bl/6Jico mice from Charles River (L’Arbresle, 

France) received a pellet containing 15 mg NTX or a corresponding placebo pellet, which was 

implanted subcutaneously in the nape of the neck under isoflurane anaesthesia (2% / 53% N2O 

/ 45% O2) (day 1). NTX and placebo treatments were randomly assigned and mice of both 

treatment groups were housed together (2 of both per cage). On day 8 the pellet was removed 

(2% isoflurane / 53% N2O / 45% O2). All experiments described here commenced 48 hrs after 

pellet removal, i.e. on day 10. 

 

Acute cocaine-induced locomotor activity 

Experiment 1. µ-Opioid receptor knockout mice; Experiment 2. Chronic NTX treated 

mice 

Clear plexiglass cylinders of 20 cm in diameter and 30 cm in height were used as open fields. 

The mice were allowed to acclimatise to the experiment room for at least 1 hour prior to 

placement in the open field. The mice were then placed in the open field and motor activity 

was monitored for 1 hour. Thereafter saline was injected i.p. and the mice were monitored for 

another hour. Finally, cocaine was injected i.p. (3, 10, 20 or 30 mg/kg) after which the mice 

were returned to the open field and their locomotor activity was determined for another 30 

minutes. During the total 2.5 hour of the experiment, the activity pattern of the mice was 

tracked and analysed for the total distance moved in the open field per 5 minutes intervals 

using Ethovision Color-Pro 2.3 software (Noldus Information Technology, Wageningen, NL). 

N = 6 for 3, 20 and 30 mg/kg treatment groups. N = 8 for the 10 mg/kg cocaine treatment 

group of the µ-opioid receptor knockout experiment. N = 10 for the 10 mg/kg cocaine treated 

chronic NTX or placebo pre-treated groups. 

 

Cocaine-induced behavioural sensitization 

Experiment 3. Cocaine-induced behavioural sensitization in wild-type mice 

16 C57Bl/6Jico mice were randomly assigned to either cocaine or saline treatment groups. 

During 11 days the mice received a daily i.p. injection of either cocaine (20 mg/kg) or saline. 

72 Hrs after the last cocaine or saline injection, the mice were transported and allowed to 

acclimatise to the experiment room for at least 1 hour. Thereafter, the mice were placed for the 

first time in the open field as described. During the first hour in the field the locomotor 

activity was measured to monitor the adaptation of the mice to the novel environment. 

Subsequently all mice received a saline injection (i.p.) after which they were returned to the 

open field and monitored for another hour. Thereafter all mice received a cocaine challenge 

(10 mg/kg i.p.) and their locomotor activity in the open field was determined during 30 

minutes. The distance moved in the open field was measured as described above.  
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Experiment 4. µ-Opioid receptor knockout and wild-type mice 

At 2-3 months of age the behavioural sensitization commenced as described for experiment 3. 

Mice of both genotypes (wild-type (+/+) and µ-opioid receptor knockout mice (-/-)) were 

randomly assigned to either saline or cocaine treatment groups. Group sizes were either 7 mice 

for the +/+ saline treatment group or 8 mice for +/+ cocaine, -/- saline and -/- cocaine 

treatment groups. 

  

Experiment 5. CTOP co-administration 

For this experiment 32 male C57Bl/6JIco mice from Charles River (L’Arblesle, France) were 

used. After transportation, the mice were allowed to acclimatise for at least one week before 

the behavioural sensitization commenced. The mice were randomly assigned to one of four 

treatment groups: placebo/saline, placebo/cocaine, CTOP/saline or CTOP/cocaine. CTOP (1 

mg/kg) or placebo was administered i.p. 30 minutes prior to the daily saline or cocaine 

injections (co-administration) (Kim et al., 2000). Further procedures were similar to those 

described for experiment 3. N = 8 per treatment group. 

 

Experiment 6. Effects of chronic NTX pre-treatment upon cocaine-induced 

behavioural sensitization  

For this experiment mice were, prior to the behavioural sensitization protocol, pre-treated with 

naltrexone or placebo by subcutaneous implanted pellets as described above for experiment 2. 

The sensitization protocol (see Experiment 3) commenced 48 hrs after removal of the pellet, 

i.e. on day 10. N = 8 for placebo/saline, placebo/cocaine, NTX/saline and NTX/cocaine 

treatment groups. 

 

Drugs 

Cocaine (cocaine-HCl, OPG, Utrecht, The Netherlands) and CTOP (Tocris, Bristol, UK) were 

dissolved in saline, control mice received saline injections. Cocaine, CTOP and saline were 

injected i.p. in a volume of 5 ml/kg. NTX and corresponding placebo pellets (Research 

Triangle Institute, North Carolina, USA) were implanted subcutaneously in the nape of the 

neck as described above.  

 

Statistical analysis 

For statistical analyses SPSS10.1 was used. Open field activity is expressed as distance moved 

in 5 minutes intervals. Analyses of variance (ANOVAs) with repeated measurements were 

used to analyse the data with distance moved as the dependent variable. For the acute 

experiment only the locomotor activity data for the 30 minutes after cocaine injection was 

analysed with genotype (+/+ or -/-, experiment 1) or pre-treatment (placebo or NTX, 
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experiment 2) as factors. For the sensitization experiment, the data for the first hour, the hour 

after saline injection and the 30 minutes after cocaine challenge were analysed separately. The 

independent factors were treatment (saline or cocaine) and either genotype (+/+ or -/-, 

experiment 4), co-administration (placebo or CTOP, experiment 5) or pre-treatment (placebo 

or NTX, experiments 6). When appropriate, post-hoc analyses were performed using Student’s 

t-tests. The data are expressed as mean ± SEM distance travelled in 5 minutes intervals in 

centimetres. Statistical significance was accepted at P < 0.05. 

 

RESULTS 

 

Acute cocaine-induced locomotor activity 

Experiment 1. Acute locomotor response to cocaine in µ-opioid receptor knockout 

versus wild-type mice 

After two hours adaptation to the open field (data not shown), the mice received 3, 10, 20 or 

30 mg/kg cocaine i.p. The dose-response curve for cocaine-induced locomotor activity of 

µ-opioid receptor knockout mice and wild-type mice is shown in Figure 1. Cocaine increased 

the locomotor activity of both µ-opioid receptor knockout and wild-type mice in the open field 

in a dose-dependent way (dose effect F(3,48)=31, P < 0.001). The genotypes were comparable 

in their response to cocaine for there was no significant time × genotype × dose interaction, no 

significant effect of genotype, nor was there a genotype × dose effect. 

 

Experiment 2. Effects of chronic NTX pre-treatment upon acute cocaine-induced 

locomotor activity 

After two hours adaptation to the open field (data not shown), the mice received 3, 10, 20 or 

30 mg/kg cocaine i.p.. The dose-response curve for cocaine-induced locomotor activity of 

chronic NTX and placebo pre-treated mice is depicted in Figure 2. Cocaine increased the 

locomotor activity of the mice in this experiment in a dose-dependent manner as is apparent 

from a significant dose effect (F(3,47)=45, P < 0.001) and a significant time × dose interaction 

(F(15,235)=4.2, P < 0.001). Further, a significant time × pre-treatment × dose interaction was 

observed (F(15,235)=2.9, P < 0.001), which was caused by a significant time × pre-treatment 

interaction within the 30 mg/kg cocaine dose group (F(5,50)=3.0, P < 0.05). It appears that the 

response to cocaine is somewhat altered for the NTX pre-treated mice as compared to the 

placebo controls (Figure 2). 
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FIGURE 1  

Acute cocaine-induced locomotor activity for µ-opioid receptor knockout (-/-) and wild-type (+/+) 

mice. The distance moved in cm during 30 minutes subsequent to 3, 10, 20 or 30 mg/kg cocaine 

administration i.p. is shown for both genotypes. N per genotype was 6 for 3, 20 or 30 mg/kg and N = 8 

for 10 mg/kg cocaine. Mean ± SEM. 
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FIGURE 2  

Effects of chronic NTX pre-treatment upon the acute response to cocaine. The distance moved in cm 

during 30 minutes subsequent to 3, 10, 20 or 30 mg/kg cocaine administration i.p. is shown for both 

pre-treatment groups. N per NTX or placebo pre-treatment group was 6 for 3, 20 or 30 mg/kg and N = 

10 for 10 mg/kg cocaine. Mean ± SEM. 
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Cocaine-induced behavioural sensitization 

Experiment 3. Cocaine-induced behavioural sensitization in wild-type mice 

The locomotor activity in the open field and the response to a 10 mg/kg cocaine challenge of 

C57Bl/6Jico mice after repeated administration of 20 mg/kg cocaine or saline injections is 

shown in Figure 3.  

During the first hour in the open field the activity of the mice declined (time F(11,143)=7.5, P 

< 0.001) and there was no effect of cocaine treatment upon the activity in the unfamiliar open 

field. Subsequent to saline administration, a further decline in the activity of the mice was 

apparent (time F(11,143)=3.2, P < 0.01) without cocaine treatment effects. After the 2 hours of 

adaptation to the open field, 10 mg/kg cocaine was administered and induced an increase in 

the locomotor activity of the mice (Figure 3). The cocaine and saline treated mice responded 

differentially to the 10 mg/kg cocaine challenge, as is evident from a significant time × 

treatment interaction (F(5,65)=4.8, P < 0.01) and an overall effect of treatment (F(1,13)=4.9, P 

< 0.05). Post-hoc analyses revealed significant differences between saline and cocaine treated 

mice for the first 15 minutes after the 10 mg/kg cocaine challenge was administered; P < 0.05, 

P < 0.01 and P < 0.05 for the locomotor activity during 0-5, 5-10 and 10-15 minutes after 

cocaine injection, respectively. This sensitization protocol was subsequently used for the 

experiments 4, 5 and 6. 

FIGURE 3 

Development of behavioural sensitization in C57Bl6/Jico mice. Sensitization was induced by repeated 

intermittent treatment of C57Bl/6Jico mice with saline or cocaine (20 mg/kg) for 11 days. The time-

course of the activity in the open field, 72 hrs after cessation of the sensitization protocol,  is shown 

with 1 hour adaptation to the field, followed by 1 hour in the field after an i.p. saline injection and 30 

minutes after an i.p. injection of 10 mg/kg cocaine. The activity in the open field is expressed in the 

total distance moved in centimetres during 5 minutes intervals. Mean ± SEM, N = 8 per treatment.  

* P < 0.05, ** P < 0.01, significant difference between saline and cocaine treated mice. 
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FIGURE 4 

Behavioural sensitization in µ-opioid receptor knockout mice (-/-) and wild-type controls (+/+). 

Sensitization was induced by repeated intermittent treatment with saline or cocaine (20 mg/kg) for 11 

days. The time-course of the activity in the open field, 72 hrs after cessation of the sensitization 

protocol, is shown with 1 hour adaptation to the field, followed by 1 hour in the field after an i.p. saline 

injection and 30 minutes after an i.p. injection of a 10 mg/kg cocaine challenge. The activity in the 

open field is expressed in the total distance moved in centimetres during 5 minutes intervals. Mean ± 

SEM, N = 7-8 per treatment per genotype.  

* P < 0.05, significant difference between saline and cocaine treated subjects. 
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Experiment 4. Cocaine-induced behavioural sensitization in µ-opioid receptor 

knockout and wild-type mice 

Locomotor activity and the response to a cocaine challenge of µ-opioid receptor knockout 

mice (-/-) and wild-type controls (+/+) are shown in Figure 4.  

The locomotor activity of µ-opioid receptor knockout and wild-type mice reduced during the 

first hour in the open field (effect of time: F(11,297)=10, P < 0.001). During the 60 minutes 

after saline injection the locomotor activity of the mice did not further decline and a 

significant time × genotype interaction was observed (F(11,297)=2.0, P < 0.05): the µ-opioid 

receptor knockout mice were less active as compared to wild-type mice 15-20, 35-40 and 40-

45 minutes after saline injection (P < 0.05). There was no effect of treatment upon the activity 

of the mice in the open field and all mice were comparable in their locomotor activity just 

prior to cocaine injection.  

The locomotor response to the 10 mg/kg cocaine challenge was augmented in cocaine treated 

mice as compared to saline treated mice, illustrating the occurrence of behavioural 

sensitization to cocaine (time × treatment F(5,135)=2.3, P < 0.05). Subsequent post-hoc tests 

revealed that cocaine treated mice responded with a higher increase in locomotor activity as 

compared to saline treated mice during 0-5, 5-10 and 15-20 minutes after the cocaine 

challenge was administered (P < 0.05). No genotype or genotype × treatment interaction was 
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observed, suggesting that the development of cocaine-induced behavioural sensitization was 

comparable for µ-opioid receptor knockout and wild-type mice. There was no difference 

between saline treated wild-type and µ-opioid receptor knockout mice in their locomotor 

response to cocaine in the open field. 

 

Experiment 5. Effects of CTOP co-administration upon cocaine-induced behavioural 

sensitization 

In Figure 5 the locomotor activity and the locomotor response to a cocaine challenge is shown 

for mice, which received either CTOP or placebo co-administered with the repeated 

intermittent saline or cocaine injections.  

During the first hour in the open field the mice reduced their activity (effect of time, 

F(11,308)=28, P < 0.001), indicative of adaptation to the open field. There was a significant 

co-administration × treatment effect upon the activity during the first hour in the open field 

(F(1,28)=6.8, P < 0.05), which was caused by higher locomotor activity of the CTOP/saline 

treated mice as compared to saline/saline and CTOP/cocaine treated mice. The locomotor 

activity declined further during the hour after saline injection (time effect F(11,308)=4.9, P < 

0.001) and a significant time × co-administration × treatment effect was observed 

(F(11,308)=2.1, P < 0.05), which as post-hoc tests revealed was caused by minor differences 

between groups. That is, 0-5 minutes after saline administration the saline/cocaine treated 

mice were more active than CTOP/cocaine treated mice (P < 0.05). Further, 20-25 minutes 

after saline was administered, CTOP/cocaine treated mice were more active than mice from 

the CTOP/saline group (P < 0.05) and 35-40 minutes after saline injection, the mice which 

received repeated CTOP/saline treatment were more active in the open field as compared to 

saline/saline treated mice (P < 0.05). All groups were comparable in their locomotor activity 

during the last intervals prior to cocaine administration.  

Overall analysis of the locomotor activity of all groups during the 30 minutes after 

administration of the 10 mg/kg cocaine challenge dose revealed a significant time × treatment 

(saline or cocaine) interaction (F(5,140)=28, P < 0.001). Cocaine treated mice responded with 

a higher increase in locomotor activity to the 10 mg/kg cocaine challenge during 0-5, 5-10 and 

10-15 minutes after cocaine was injected (P < 0.001, P < 0.001 and P < 0.01). There was no 

effect of CTOP co-administration nor was there a significant time × co-administration × 

treatment interaction, suggesting that the µ-opioid receptor antagonist CTOP did not affect the 

development of cocaine-induced behavioural sensitization. CTOP co-administration did not 

affect the acute locomotor response to cocaine as CTOP/saline treated mice were not 

significantly different in their response to cocaine from placebo/saline treated mice. 
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Experiment 6. Effects of chronic NTX pre-treatment upon cocaine-induced 

behavioural sensitization 

The locomotor activity in the open field and the response to a 10 mg/kg cocaine challenge of 

chronic NTX and placebo pre-treated mice is depicted in Figure 6.  

During the first hour in the open field the mice adapted to the open field, as reflected by a 

decrease in locomotor activity (effect of time F(11,308)=14, P < 0.001). There was no effect 

of chronic NTX pre-treatment upon the locomotor activity during the first hour in the open 

field. The locomotor activity during the hour subsequent to saline injection declined further 

(effect of time: F(11,308)=3.7, P < 0.001), without group differences.  

The cocaine-induced locomotor response was augmented in cocaine treated mice (effect of 

treatment F(1,28)=58, P < 0.001). Chronic NTX pre-treatment enhanced the development of 

behavioural sensitization to cocaine, which was apparent from a significant pre-treatment × 

treatment interaction (F(1,28)=7.2, P < 0.05). Separate analyses of the groups confirmed the 

development of cocaine-induced behavioural sensitization in placebo pre-treated mice (time × 

treatment F(5,70)=4.8, P < 0.01 and treatment F(1,14)=10, P < 0.01) and chronic NTX pre-

treated mice (treatment F(1,14)=62, P < 0.001). Post-hoc analyses revealed that 

placebo/cocaine treated mice were significantly more active than placebo/saline treated mice 

during the first 20 minutes after cocaine challenge injection (P < 0.01). Across the entire 30 

FIGURE 5 

Effects of CTOP upon the development of cocaine-induced behavioural sensitization. CTOP or 

placebo were injected 30 minutes prior to repeated intermittent saline or cocaine (20 mg/kg) injections 

for 11 days (co-administration). The time-course of the activity in the open field, 72 hrs after cessation 

of the sensitization protocol, is shown with 1 hour adaptation to the field, followed by 1 hour in the 

field after an i.p. saline injection and 30 minutes after injection of a 10 mg/kg cocaine challenge. The 

activity in the open field is expressed in the total distance moved in centimetres during 5 minutes 

intervals. Mean ± SEM, N = 8 per treatment (saline or cocaine) per co-administration (placebo or 

CTOP). * P < 0.01, ** P < 0.001, significant difference between saline and cocaine treatment groups. 
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minutes after cocaine injection, the NTX pre-treated mice that received repeated intermittent 

cocaine injections were significantly more active than NTX pre-treated mice that received 

repeated saline injections (P < 0.01). Placebo and chronic NTX pre-treated mice, which 

received repeated saline injections during the 11 days of sensitization protocol, were not 

different in their response to the 10 mg/kg cocaine challenge. 

 

DISCUSSION 

Here we investigated the role of µ-opioid receptors in the acute locomotor response to cocaine 

and in the development of cocaine-induced behavioural sensitization using µ-opioid receptor 

knockout mice, co-administration of the µ-opioid receptor antagonist CTOP and chronic NTX 

pre-treatment. Chronic NTX pre-treatment is known to induce increases in µ-opioid receptor 

binding, but also in δ- and κ-opioid receptor binding, although to a lesser extent (Lesscher et 

al., 2003a). Our findings indicate that µ-opioid receptors are not required for acute cocaine-

induced locomotor activity nor are they essential for cocaine-induced behavioural sensitization 

to develop. 

 

FIGURE 6 

Effects of chronic placebo or NTX pre-treatment upon the development of behavioural sensitization. 

Starting 48 hrs after placebo or NTX pellet removal, repeated intermittent daily injections of saline or 

cocaine (20 mg/kg) were given for 11 days. The time-course of the activity in the open field, 72 hrs 

after cessation of the sensitization protocol, is shown with 1 hour adaptation to the field, followed by 1 

hour in the field after an i.p. saline injection and 30 minutes after an i.p. injection of a 10 mg/kg 

cocaine challenge. The total distance moved in centimetres during 5 minutes intervals is shown. Mean 

± SEM, N = 8 per treatment (saline or cocaine) per pre-treatment (NTX or placebo).  

* P < 0.05, ** P < 0.01, significant difference between saline and cocaine treated mice within the 

placebo pre-treated group. § P < 0.05, ¶ P < 0.01, ¶¶ P < 0.001, significant difference between NTX 

pre-treated, saline controls and NTX pre-treated, cocaine treated mice.  
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Acute cocaine-induced locomotor activity 

The locomotor response to cocaine was not different between µ-opioid receptor knockout and 

wild-type mice suggesting that µ-opioid receptors are not required for cocaine-induced motor 

activity. Similarly, no differences were apparent between chronic NTX pre-treated mice and 

placebo pre-treated controls, except for the response to 30 mg/kg cocaine, which appeared 

somewhat altered for the chronic NTX pre-treated group. Cocaine-induced locomotor activity 

has not been described previously for chronic NTX pre-treated animals. With respect to µ-

opioid receptor knockout mice, the present findings are in agreement with those of Becker and 

co-workers who also reported comparable cocaine-induced locomotor activity for µ-opioid 

receptor knockout mice, which lack exons 2 + 3 of the µ-opioid receptor gene, and wild-type 

controls (Becker et al., 2002). Taken together, µ-opioid receptors are not required for the acute 

locomotor response to cocaine in mice.  

 

Cocaine-induced behavioural sensitization 

Opioid modulation of psychostimulant-induced behavioural sensitization has been described 

previously, at least for δ- and κ-opioid receptors. The δ-opioid receptor antagonist naltrindole 

and κ-opioid receptor selective agonists impaired the development of behavioural 

sensitization, which occurs after repeated intermittent treatment of rats with psychostimulant 

drugs (Heidbreder et al., 1993a; Heidbreder et al., 1993b; Heidbreder et al., 1995; Shippenberg 

& Heidbreder, 1995b; Shippenberg et al., 1996; Heidbreder et al., 1996; Shippenberg & Rea, 

1997 but Vanderschuren et al., 2000). A role of µ-opioid receptors in psychostimulant 

sensitization was suggested first of all by impaired cocaine-induced sensitization after NTX 

co-administered with cocaine (Sala et al., 1995) and also by findings of two recent studies. 

Expression of mRNA encoding µ- and δ-opioid receptors was increased in the ventral 

tegmental area (VTA) of amphetamine sensitised rats (Magendzo & Bustos, 2003). Another 

study dealt with cocaine-induced behavioural sensitization in mice with a targeted deletion of 

exons 2 and 3 of the µ-opioid receptor gene. These µ-opioid receptor knockout mice 

developed a sensitized locomotor response to cocaine, although the temporal pattern of 

responding was different from wild-type mice (Yoo et al., 2003).  

The present data show, that cocaine-induced behavioural sensitization is retained in exon 1 µ-

opioid receptor knockout mice suggesting that µ-opioid receptors are not required for cocaine-

induced behavioural sensitization. However, inherent to application of classic knockout 

strategies and hence lack of a specific gene from gestation, the possibility that for example δ-

opioid receptors have compensated for the loss of µ-opioid receptors in this case can not be 

ruled out. Retained cocaine-induced behavioural sensitization for µ-opioid receptor knockout 

mice is not in agreement with previous studies, which suggested a role of µ-opioid receptors in 

psychostimulant sensitization (Sala et al., 1995; Magendzo & Bustos, 2003; Yoo et al., 2003). 

Therefore, a subsequent experiment was performed to elucidate the role of µ-opioid receptors 

in cocaine-induced sensitization. For this experiment, the µ-opioid receptor selective 
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antagonist CTOP, which is approximately 2000-fold more specific for µ- over δ-opioid 

receptors (Hawkins et al., 1989), was co-administered with cocaine. In agreement with the µ-

opioid receptor knockout experiment, CTOP co-administration did not affect cocaine-induced 

behavioural sensitization. These findings indicate that µ-opioid receptors are not required for 

behavioural sensitization to the locomotor stimulant effects of cocaine to develop. 

In the final experiment augmented behavioural sensitization to cocaine was observed in case 

of over-expression of predominantly µ-, but also δ-, opioid receptors as induced by chronic 

NTX pre-treatment. This is an interesting finding considering that the acute locomotor 

response to cocaine was not affected by chronic NTX pre-treatment, although at the 30 mg/kg 

dose the cocaine response appeared higher for mice that were pre-treated with NTX as 

opposed to placebo pre-treated controls. However, µ-opioid receptors seem not to be required 

for cocaine-induced behavioural sensitization to develop, as can be concluded from the µ-

opioid receptor knockout and CTOP experiments, respectively. Therefore it appears unlikely 

that enhanced µ-opioid receptor levels in chronic NTX treated mice contribute to enhanced 

behavioural sensitization to the locomotor stimulant effects of cocaine in these mice. Rather, 

the augmented sensitized locomotor response to cocaine of chronic NTX pre-treated mice may 

be attributable to increased number of δ-opioid receptors, the subtype of opioid receptors 

which has indeed been implicated in cocaine-induced behavioural sensitization (Heidbreder et 

al., 1993a; Shippenberg & Heidbreder, 1995b; Heidbreder et al., 1996). 

In contrast to retained cocaine-induced behavioural sensitization observed for µ-opioid 

receptor knockout mice, µ-opioid receptor knockout mice failed to self-administer cocaine 

(Lesscher et al., 2003b), suggesting that µ-opioid receptors are critically involved in cocaine 

reinforcement but are not required for cocaine-induced behavioural sensitization. For chronic 

NTX treatment, a striking parallel increase is apparent in the development of cocaine-induced 

sensitization and cocaine reinforcement, both of which are augmented after chronic NTX pre-

treatment. Chronic treatment with NTX facilitated the initiation of cocaine self-administration 

in rats (Ramsey & Van Ree, 1990) and initiation of alcohol consumption has been shown to be 

potentiated by chronic NTX treatment in mice (Phillips et al., 1997). It appears that similar 

mechanisms might be involved in both phenomena. However, since chronic NTX treatment 

causes increases both in µ- and δ-opioid receptor levels (Lesscher et al., 2003a), the increased 

reinforcing effects of cocaine and the augmented cocaine-induced behavioural sensitization in 

chronic NTX pre-treated mice are likely to entail distinct mechanisms, that is through 

increased µ- and δ-opioid receptors, respectively. 

 

In conclusion, the present findings show that µ-opioid receptors are not required for the acute 

locomotor response to cocaine nor for the development of cocaine-induced behavioural 

sensitization.  
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ABSTRACT 

Endogenous opioid systems have been implicated in drug reinforcement and drug seeking. 

Although the mechanism through which opioid systems modulate drug reinforcement and 

drug seeking, interactions of opioid systems with dopamine systems are likely involved. The 

present study was designed to investigate the dopamine system of mice with altered opioid 

receptor expression levels and with a reinforcement phenotype, i.e. the µ-opioid receptor 

knockout mice and mice with transient opioid receptor over-expression induced by chronic 

naltrexone (NTX) treatment. For both models, dopamine receptor expression and TH mRNA 

levels were determined. In addition, locomotor activity in a novel open field and climbing, 

behaviours which both involve dopamine, were assessed. 

µ-Opioid receptor knockout mice, but not chronic NTX treated mice, displayed decreased 

dopamine D3 receptor binding. D1- and D2-like receptor binding were not changed in either 

model. Further, µ-opioid receptor knockout mice were less active than wild-type mice in the 

open field as opposed to chronic NTX treated mice, which displayed increased activity in the 

open field as compared to placebo controls. µ-Opioid receptor knockout mice and chronic 

NTX treated mice were not different from their controls in climbing behaviour. The 

differences in dopamine D3 receptor binding and open field behaviour of µ-opioid receptor 

knockout and chronic NTX treated mice suggest functional opioid control over dopamine 

systems. Moreover, the reduction in dopamine D3 receptors in µ-opioid receptor knockout 

mice is an interesting observation considering the increasing evidence that D3 receptors may 

be a target for treatment of drug addiction. 
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INTRODUCTION 

Endogenous opioid systems have been shown to modulate drug reinforcement in animals 

(Herz, 1997; Van Ree et al., 1999). For example, opioid antagonists reduce cocaine and 

ethanol self-administration (De Vry et al., 1989; Froehlich et al., 1990; Kornet et al., 1991; 

Kuzmin et al., 1997a; Stromberg et al., 1998), primarily through µ-opioid receptors in the 

ventral tegmental area (VTA) (Ramsey et al., 1999). Although the mechanism through which 

endogenous opioid systems modulate drug reinforcement is unknown, opioid-dopamine 

interactions may be involved.  

 

Anatomical and electrophysiology studies have provided evidence for opioid-dopamine 

interactions in the mesolimbic system with dopaminergic neurons in the VTA projecting to the 

nucleus accumbens, the prefrontal cortex and the striatum (Oades & Halliday, 1987). In the 

VTA principal dopamine-containing neurons and secondary non-dopaminergic neurons have 

been characterised, the latter being sensitive to µ-opioid agonists and presumably GABAergic 

interneurons (Gysling & Wang, 1983; Johnson & North, 1992b). Indeed, in the VTA µ-opioid 

receptors are expressed mainly by non-dopaminergic, presumably GABA containing neurons 

(Garzon & Pickel, 2001). Activation of µ-opioid receptors causes hyperpolarization of the 

secondary GABA containing neurons, thereby relieving inhibitory input to dopaminergic 

projection neurons (Johnson & North, 1992a), which in turn causes increased dopamine output 

in the nucleus accumbens. µ-Opioid receptors are also expressed in the nucleus accumbens 

where they are localised mainly on GABA-containing medium spiny neurons (Svingos et al., 

1997). Although opioid agonists have been suggested to modulate dopamine release from the 

nucleus accumbens through local µ-opioid receptors (Yoshida et al., 1999), another study did 

not provide evidence for local modulation of accumbens dopamine release through µ-opioid 

receptors (Spanagel et al., 1992). 

 

The aim of this study was to investigate opioid-dopamine interactions in relation to drug 

reinforcement. Two distinct mouse models were chosen for this study, which are characterised 

by altered opioid receptor expression and have a distinct reinforcement phenotype, i.e. µ-

opioid receptor knockout mice and chronic naltrexone (NTX) treated mice. µ-Opioid receptor 

knockout mice, which lack the µ-opioid receptor gene from gestation, are impaired in drug 

reinforcement: self-administration or place preference for morphine, heroin, ethanol, cocaine, 

nicotine and ∆9-tetrahydrocannabinol (∆9-THC) are reduced in µ-opioid receptor deficient 

mice (Matthes et al., 1996; Becker et al., 2000; Roberts et al., 2000; Hall et al., 2001; 

Ghozland et al., 2002; Becker et al., 2002; Contarino et al., 2002; Berrendero et al., 2002). 

Chronic treatment of mice with the opioid antagonist NTX results in an overall, but transient, 

upregulation of predominantly µ-opioid receptors, although to a lesser extent also of δ- and κ-

opioid receptors, in brain (Yoburn et al., 1988; Lesscher et al., 2003a). Chronic NTX 

treatment further enhances the reinforcing efficacy of drugs of abuse: acquisition of cocaine 

self-administration was facilitated by chronic NTX treatment in rats (Ramsey & Van Ree, 
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1990) and chronic NTX exposed mice consumed more alcohol and displayed increased 

preference for alcohol (Phillips et al., 1997).  

We hypothesised, based on available evidence for dopamine-opioid interactions, that in µ-

opioid receptor knockout mice (ectopic lack of µ-opioid receptors) or in chronic NTX treated 

mice (transient opioid receptor over-expression), the dopamine system may have adapted, 

which might in turn contribute to the reinforcement phenotype of either model. 

 

By quantitative in vitro autoradiography, binding to D1-like, D2-like and dopamine D3 

receptors was determined. The D3 receptor was included in our analysis for its high 

abundance in the nucleus accumbens, a key area involved in reinforcement/drug seeking 

(Missale et al., 1998). Moreover, the D3 receptor has recently received considerable attention 

for its possible role in reinforcement/drug seeking (Pilla et al., 1999; Le Foll et al., 2000; 

Vorel et al., 2002; Di Ciano et al., 2003; Le Foll et al., 2003). In addition, TH mRNA levels 

were determined by in situ hybridisation. Further the behaviour of both µ-opioid receptor 

knockout mice and chronic NTX treated mice was assessed in two tasks, both known to 

involve dopamine, i.e. activity in an unfamiliar open field and spontaneous climbing (Costall 

et al., 1982; Sundstrom et al., 1990; Wolterink et al., 1990; Hooks & Kalivas, 1995).  

 

MATERIALS AND METHODS 

 

Animals 

Male mice aged 2 - 3 months were group housed (2 - 4) in extended Macrolon© type I cages 

with water and food pellets available ad libitum. Environmental conditions were controlled 

(22°C and 50% humidity; lights on at 7:00 a.m. and lights off at 7:00 p.m., GDL Utrecht 

University). The experimental procedures were approved by the Ethical Committee for 

Animal Experiments of the University Medical Center Utrecht. 

The µ-opioid receptor knockout mice used in this study have been described previously and 

were on a mixed 129Sv/C57Bl6 background (Schuller et al., 1999).  No detectable binding of 

[3H]DAMGO or µ-opioid receptor transcript was present in µ-opioid receptor knockout mice 

(Schuller et al., 1999). There is no evidence for compensatory changes in other opioid receptor 

subtypes: binding to δ-opioid receptor subtypes was comparable between genotypes and δ- 

and κ- and opioid receptor-like 1 (ORL-1) receptor mRNA levels were also unchanged 

(Schuller et al., 1999). Wild-type (+/+) and homozygous knockout (-/-) mice were obtained 

from heterozygous breeding. The mice used in the present study were on a C57Bl6/Jico 

background after 6-7 back-crossings to C57Bl6/Jico mice (Charles River, l´Arbresle, France). 

Mice were genotyped by Polymerase Chain Reaction on genomic DNA isolated from tail tips. 

The mutant product was 700 bp, the wild-type product 525 bp; the three primers used were 

outside the mutation site (5′ GAC TTT CCT GGC TGA TGC AAA CAA CCT 3′), within the 
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mutation site (5′ CAT GGT TCT GAA TGC TTG CTG CGG ACT 3′) and within the 

neomycin box (5′ CTA CCT GCC CAT TCG ACC ACC AA 3′).  

For the chronic NTX experiments, male C57Bl/6JIco mice were obtained from Charles River 

(L’Arbresle, France). After transportation, the mice were allowed to acclimatise for at least 

one week before the experiment. Pellets containing 15 mg naltrexone or corresponding 

placebo pellets were implanted subcutaneous in the nape of the neck under isoflurane 

anaesthesia (2% / 53% N2O / 45% O2) (day 1). Naltrexone and placebo treated mice were 

housed together (2 of both per cage). On day 8 the pellet was removed (2% isoflurane / 53% 

N2O / 45% O2).  

The mice were tested once and were naïve to the respective behavioural tasks. For 

autoradiography and in situ hybridisation experiments the chronic NTX / placebo treated mice 

were killed and brains were dissected 24 hours after pellet removal. Behavioural experiments 

for the chronic NTX mice were performed either 24 or 48 hours after the pellet was removed. 

At these time-points after removal of the pellet opioid receptors are still up-regulated (Tempel 

et al., 1982; Lesscher et al., 2003a). All experiments were performed during the light phase. 

Open field and climbing experiments were performed in reduced lighting conditions (50 and 

30 Lux, respectively). 

 

In vitro autoradiography for dopamine receptors 

16 µm coronal sections were cut for nucleus accumbens, VTA and striatum according to the 

mouse brain atlas of Paxinos and Franklin (2001). The limbic regions, i.e. the nucleus 

accumbens and the VTA, were chosen for their role in drug reinforcement (Wise, 1998). The 

striatum is considered to be involved in habit learning and compulsive drug seeking at later 

stages of the addiction process (Robbins & Everitt, 2002). The sections, cut using a cryostat 

(Leica, Rijswijk, NL), were thaw-mounted on gelatine-subbed slides and stored at -80°C until 

use.  

Autoradiography procedures were based on previous studies (Tarazi et al., 1998; Diaz et al., 

2000). Sections were pre-incubated at room temperature (RT) for either 1 hour in 50 mM Tris-

HCl (pH 7.4) containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl2 and 1 mM MgCl2 for D1-

like and D2-like receptors or 3 times 5 minutes in 50 mM HEPES buffer, pH 7.5, containing 

1mM EDTA and 0.1% BSA for D3 receptors. Subsequently the slides were incubated for 1 

hour at RT in the before mentioned buffers containing 1.0 nM [3H]SCH-23390 (in the 

presence of 40 nM ketanserin) or 1.0 nM [3H]nemonapride (YM-09151-2) (in the presence of 

0.5 µM DTG and 0.1 µM pindolol) for D1-like and D2-like receptors, respectively. For D3 

receptor binding slides were incubated for 45 minutes with 0.2 nM [125I]trans-7-OH-PIPAT in 

50 mM HEPES buffer, pH 7.5, containing 1mM EDTA and 0.1% BSA. Non-specific binding 

was determined on adjacent sections in the presence of 1 µM cis-flupentixol, 10 µM S(-)-

sulpiride or 1 mM dopamine for D1-like, D2-like and D3 receptors, respectively. 

Subsequently, the slides were washed either twice 5 minutes in ice-cold buffer (D1-like and 
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D2-like) or four times 2 minutes in ice-cold HEPES buffer containing 100 mM NaCl (D3). 

Thereafter slides were dried to air and exposed to Kodak Biomax MS film with Kodak 

Biomax Transcreens (Amersham, UK) for two (D1-like) or three weeks (D2-like) at -80°C. 

For D3 autoradiography slides were exposed to Kodak Biomax MR film (Amersham, UK) for 

3 days. 

 

In situ hybridisation for TH mRNA 

For TH mRNA in situ hybridisation, 16 µm coronal sections were cut and thaw-mounted on 

Superfrost slides (Menzel, Germany). An 1151-bp TH cDNA fragment spanning nucleotides 

14 – 1165 was subcloned into a PBS +/- vector (Promega, Leiden, NL). An antisense RNA 

probe was generated by in vitro transcription with 554 ng of linearised template DNA, 20 µCi 

[33P]-UTP and 40 units T3 RNA polymerase. The sections were post-fixed in a 4% 

paraformaldehyde solution in phosphate-buffered saline (PBS, pH 7.4) for 10 minutes at RT, 

washed twice in PBS for 5 minutes at RT and treated with 0.25% acetic anhydride in tri-

ethanolamine (0.1 M, pH 8.0) for 10 minutes at RT. The sections were then rinsed in PBS for 

5 minutes and in 0.83% NaCl for 5 minutes at RT. Subsequently the sections were dehydrated 

by immersing them in solutions with increasing concentrations of ethanol (50%, 70%, 80% 

and 100%) and dried to air. Hybridisation was performed in 50% deionised formamide, 10% 

dextran sulphate, 2×SSC (SSC = 0.15 M NaCl, 0.015 M sodium citrate), 1x Denhardt’s 

solution, 5 mM EDTA (pH 8.0), 10 mM phosphate buffer (pH 8.0) and 12.5 mg/ml tRNA, 

containing 0.8×106 cpm of the probe. The hybridisation mix was heated at 65°C for 5 

minutes, transferred to ice and DTT was added to a final concentration of 2.5 M. 

Hybridisation was performed overnight at 55°C in a moist chamber, 100 µl hybridisation mix 

per slide. Coverslips were removed in 5×SSC at RT and the slides were briefly dipped in 

2×SSC at RT, treated with RNAse A (2 mg/100 ml in 5 M NaCl, 1 M Tris, pH 8.0) for 15 

minutes at 37°C and washed for 15 minutes at 37°C in 2×SSC. The slides were then washed 

twice in 2×SSC/50% formamide for 15 minutes at 60°C, twice in 2×SSC for 15 minutes at 

RT, dehydrated in graded ethanol concentrations and dried to air. Slides were apposed to 

Kodak Biomax MR films (Amersham, UK) for 11 days. 

 

Image Analysis  

Quantitative analysis of receptor binding and TH mRNA was performed using an MCID 

image analyser (Interfocus, Suffolk, UK). Specific binding was determined through 

subtraction of non-specific binding from total binding with the overlay-function (MCID 

analysis software). Binding or TH mRNA levels were determined by freehand drawing of the 

regions of interest according to the mouse brain atlas of Paxinos and Franklin (2001), i.e. 

striatum (D1-like, D2-like and D3; 1.10 mm from bregma), nucleus accumbens core and shell 

(D1-like, D2-like and D3; 1.10 mm from bregma) and VTA (D1-like and TH mRNA; -3.52 
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mm from bregma). Fmol/mg tissue equivalents of specific binding were determined from [3H] 

or [125I] microscales (Amersham, UK), which were laid down with each film. TH mRNA 

levels were expressed in counts per minute (cpm) as calculated from a standard curve of 

diluted hybridisation mix, which was laid down with the film. For each animal 2-3 

measurements were made for each hemisphere. Since no significant differences were found 

between hemispheres, the data were pooled. Each measure thus represents a mean of 4-6 

measurements per animal. N = 5-7, representing the number of animals per group.  

 

Behavioural experiments 

(1) Locomotor activity in an open field 

The open field was a clear Plexiglas cylinder of 20 cm in diameter and 30 cm in height. The 

mice (8-10 per treatment or genotype) were placed in the cylinder and locomotor activity was 

measured for one hour. Using a camera-linked computerised tracking system with Ethovision 

Color-Pro 2.3 software (Noldus Information Technology, Wageningen, NL) the distance 

moved in the open field was measured in 5 minutes intervals.  

 

(2) Climbing 

The climbing cage consisted of wire-mesh netting walls and ceiling (mesh size 1.3 × 1.3 cm). 

The mice were placed in a climbing cage for 30 minutes. During this period the behaviour in 

the climbing cage was recorded on videotapes for subsequent analysis. The experimenter, 

blind to genotype or treatment, scored the time the mice spent climbing during the 30 minutes 

test using Observer Video-Pro 4.1 software (Noldus Information Technology, Wageningen, 

NL). Climbing was defined as ‘all four paws holding on to the wire mesh’. N = 8 mice per 

treatment or genotype. 

 

Statistical analysis 

For statistical analyses SPSS10.1 was used. Data for dopamine D1-like, D2-like, D3-receptor 

binding were analysed separately by two-way ANOVA with area and genotype or 

NTX/placebo treatment as factors. When appropriate post-hoc Student’s t-tests were 

performed. TH mRNA expression data was analysed by Student’s t-tests with genotype or 

treatment as factor. Locomotor activity in the open field is expressed in distance moved in 5 

minutes intervals. One-way ANOVA with repeated measurements was used for analysis of the 

open field data with genotype or NTX/placebo treatment as factor. Climbing was compared 

between groups with Student’s t tests. Data are expressed as mean ± SEM. Statistical 

significance was accepted at P < 0.05. 
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RESULTS 

 

In vitro autoradiography for dopamine receptors 

Dopamine receptor binding for µ-opioid receptor knockout mice and chronic NTX treated 

mice are summarised in Tables 1 and 2, respectively.  

 

Total binding of the D1-like antagonist [3H]SCH23390 was not different between µ-opioid 

receptor knockout and wild-type mice (F(1,47)=2.3, P = 0.14). Specific binding to D1-like 

receptors was different between genotypes (F(1,47)=8.8, P < 0.01), although the change in 

specific D1-like binding was small (+8% relative to wild-type). Non-specific binding of 

[3H]SCH23390, in presence of an excess of the non-radioactive D1-agonist cis-flupentixol, 

was also different between genotypes (-15% relative to wild-type, F(1,47)=16.7, P < 0.001).  

No differences between wild-type and µ-opioid receptor knockout mice were observed for 

total binding of [3H]nemonapride (F(1,35)=0.1, P = 0.82), specific D2 binding (F(1,35)=0.0, P 

= 0.91) or non-specific binding of [3H]nemonapride (F(1,35)=0.02, P = 0.89).  

Total binding of [125I]trans-7-OH-PIPAT, a selective D3 ligand, was reduced in tissue of µ-

opioid receptor knockout mice as compared to wild-type mice (F(1,29)=7.6, P < 0.05). 

Similarly, specific binding to dopamine D3 receptors was also significantly different between 

the genotypes (F(1,29)=16.4, P < 0.001) without regional differences as apparent from the lack 

of genotype×region interaction. The mean percentage change in specific binding to dopamine 

D3 receptors in µ-opioid receptor knockout mice relative to wild-type was –34% (Figure 1). 

Further, µ-opioid receptor knockout mice displayed increased non-specific binding of 

[125I]trans-7-OH-PIPAT in presence of unlabelled dopamine (+13% compared to wild-type, 

F(1,29)=5.6, P < 0.05). 

 

Chronic NTX treatment did not affect total binding of [3H]SCH23390 (F(1,46)=0.002, P = 

0.96) 24 hrs after removal of the pellet. Specific D1-like receptor binding was decreased in 

NTX treated mice as compared to placebo controls (F(1,46)=17.2, P < 0.001), although the 

overall effect of NTX treatment was small (-11.5%). There was variation between regions in 

the effects of chronic NTX upon specific binding of [3H]SCH23390 to D1 receptors as 

apparent from a significant treatment×region interaction (F(3,46)=3.0, P < 0.05). Post-hoc 

analysis indicated that D1-like receptors were decreased in core and shell of the nucleus 

accumbens (P = 0.01 and P < 0.05, respectively) and in striatum (P < 0.05), but not in the 

VTA (P=0.78). Non-specific binding was also different between treatment groups (+47% 

compared to wild-type, F(1,46)=11.1, P < 0.01). 

24 Hours after removal of the pellet, chronic NTX treated mice were not different from 

placebo controls in total [3H]nemonapride binding (F(1,35)=0.01, P = 0.94), specific binding 
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FIGURE 1 

Computer-enhanced colour autoradiograms of dopamine D3 receptor binding in coronal sections from 

wild-type (+/+) and µ-opioid receptor knockout (-/-) mice. Images for +/+ and -/- groups were taken 

from the same film. Dopamine D3 receptor binding was determined by labelling coronal sections with 

the [125I]7-OH-PIPAT (Total binding) and non-specific binding was determined by co-administration 

of 1 mM dopamine with [125]7-OH-PIPAT. The colour bars show pseudo-colour interpretation of 

relative density of black and white film image calibrated in fmol/mg tissue.  

to D2-like receptor sites (F(1,35)=0.3, P = 0.60) and non-specific binding of [3H]nemonapride 

(F(1,35)=0.27, P = 0.61).  

NTX treatment did not affect total binding of the D3 receptor ligand [125I]trans-7-OH-PIPAT 

(F(1,35)=0.37, P = 0.55). Overall analysis did not reveal differences between chronic NTX 

and placebo treated mice in specific D3 receptor binding (F(1,32)=2.0, P = 0.17). Non-specific 

binding of [125I]trans-7-OH-PIPAT was slightly increased in mice exposed to NTX 

(F(1,35)=6.0, P < 0.05).  

 

In situ hybridisation for TH mRNA 

TH mRNA expression levels for µ-opioid receptor knockout mice and chronic NTX treated 

mice and the appropriate controls are shown in Tables 1 and 2, respectively. There was no 

difference in TH mRNA in the VTA between genotypes (P = 0.88) nor did chronic NTX 

treatment affect TH mRNA expression (P = 0.63). 
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Region mm to bregma    

         +/+       -/-  % change  

D1-like 
nucleus accumbens 

 
  

      core 1.10 212.1 ± 4.9 221.0 ± 9.7 3.8  

      shell 1.10 213.0 ± 3.6 221.1 ± 6.6 3.8  

 striatum 1.10 217.7 ± 5.9 242.1 ± 7.3 11.2  

 ventral tegmental area -3.52   63.3 ± 4.9   71.4 ± 7.0 12.8  

D2-like nucleus accumbens    

      core 1.10 55.2 ± 3.1   50.1 ± 3.7 -9.3  

      shell 1.10   59.2 ± 3.3   56.3 ± 3.5 -4.9  

 striatum 1.10   85.3 ± 4.1  94.6 ± 10.3 10.9  

D3 nucleus accumbens    

      core 1.10 8.1 ± 0.7 5.7 ± 0.7 -29.6   

      shell 1.10 9.4 ± 0.7 7.4 ± 0.9 -21.3      

 striatum 1.10 3.8 ± 0.5 1.9 ± 0.3 -50.0  

     

TH mRNA ventral tegmental area -3.52 67.9 ± 6.4 69.2 ± 4.2 1.9  

   

 
TABLE 1  

Specific binding to dopamine D1-like, D2-like and D3 receptors (fmol/mg) and TH mRNA (cpm) in 

wild-type (+/+) and homozygous µ-opioid receptor knockout mice (-/-). Data represent mean levels ± 

SEM per brain area (N = 5-7 per genotype). The mean percentage change (%) represents the change in 

specific binding in µ-opioid receptor knockout (-/-) tissue as compared to wild-type sections.  

* P < 0.001, significant different from wild-type mice. 

Genotype differences in non-specific binding of [3H]SCH23390 caused false group differences in calculated 

specific D1-like receptor binding, which are therefore not highlighted here (see Discussion). 

* 
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Region mm to bregma  

  

         placebo    NTX   % change  

D1-like 
nucleus accumbens 

 
  

      core 1.10 122.3 ± 3.9 106.8 ± 3.6 -12.7  

      shell 1.10 131.9 ± 3.5 119.6 ± 4.0 -9.3  

 striatum 1.10 136.1 ± 4.6 113.3 ± 5.7 -16.8  

 ventral tegmental area -3.52 32.9 ± 3.8 34.8 ± 6.1 5.8  

D2-like nucleus accumbens    

      core 1.10 99.6 ± 4.0 101.6 ± 3.9 2.0  

      shell 1.10 102.8 ± 3.1 105.2 ± 3.7 2.3  

 striatum 1.10 126.0 ± 8.0 127.7 ± 6.3  1.3  

D3 nucleus accumbens    

      core 1.10 7.5 ± 0.3 6.6 ± 0.9 -12.0  

      shell 1.10 8.5 ± 0.6 8.7 ± 0.8 2.4  

 striatum 1.10 3.6 ± 0.6 2.3 ± 0.5 -44.4  

     

TH mRNA ventral tegmental area -3.52 34.6 ± 2.8 36.2 ± 2.3 4.6  

 
TABLE 2  

Specific binding to dopamine D1-like, D2-like and D3 receptors (fmol/mg) and TH mRNA (cpm) in 

placebo and naltrexone (NTX) treated mice 24 hrs after pellet removal. Data represent mean levels ± 

SEM per brain area (N = 6-7 per group). The mean percentage change (%) represents the change in 

specific binding in tissue of naltrexone (NTX) treated mice as compared to placebo treated sections. 

Treatment differences in non-specific binding of [3H]SCH23390 caused false group differences in calculated 

specific D1-like receptor binding, which are therefore not highlighted here (see Discussion).   
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Behavioural experiments 

 

(1) Locomotor activity in an open field 

The locomotor activity of µ-opioid receptor knockout mice (Figure 2A) and chronic NTX 

treated mice 24 and 48 hrs after removal of the pellet (Figures 2B and 2C, respectively) was 

determined in an open field.  

There was an overall effect of time on locomotor activity of µ-opioid receptor knockout and 

wild-type mice in the open field (F(11,176)=13, P < 0.001), indicative of adaptation of the 

mice to the open field. Further statistical analysis of the data revealed an overall effect of 

genotype (F(1,16)=6.8, P < 0.05), i.e. the µ-opioid receptor knockout mice were less active 

relative to the wild-type mice. There was no significant time×genotype interaction.  

During the 60 minutes in the open field the chronic NTX and placebo mice 24 hrs after pellet 

removal adapted to the open field (effect of time F(11,154)=12, P < 0.001). Further, the 

analysis revealed a significant time×treatment interaction (F(11,154)=2.0, P < 0.05) indicative 

of effects of chronic NTX exposure upon the activity of the mice in the open field. More 

specifically, NTX treated mice were more active than placebo controls during intervals 35-40, 

40-45 and 50-55 minutes (Student’s t-tests, P < 0.05). In contrast, 48 hours after removal of 

the pellets chronic NTX treated mice were not different from their placebo controls in open 

field behaviour. There was a significant effect of time (F(11,198)=19, P < 0.001), but there 

was no overall effect of chronic NTX treatment nor a time×treatment interaction.  

 

(2) Climbing  

The percentage time the µ-opioid receptor knockout mice and chronic NTX treated mice spent 

climbing was determined during 30 minutes in metal wire climbing cages. The climbing 

behaviour thus determined for µ-opioid receptor knockout mice, chronic NTX treated mice 

(24 and 48 hrs post-removal) and the respective controls is depicted in Figures 3A, 3B and 3C, 

respectively.  

µ-Opioid receptor knockout mice and wild-type mice were not different in the time they spent 

climbing during the 30 minutes in the climbing cage (F(1,15)=0.001, P = 0.98).  

Climbing behaviour was not affected by chronic NTX treatment either. NTX and placebo 

treated mice were comparable in the percentage time they spent climbing 24 hrs (F(1,15)=0.3, 

P = 0.60) and 48 hrs after removal of the pellet (F(1,15)=0.5, P = 0.49).  
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FIGURE 2 

Locomotor activity of µ-opioid 

receptor knockout and chronic 

NTX treated mice in an 

unfamiliar open field. The 

locomotor activity during a 60 

minutes trial is shown for (A) 

µ-opioid receptor knockout mice 

(-/-) and wild-type (+/+) 

littermates, (B) chronic NTX and 

placebo treated mice 24 hours 

after pellet removal and (C) 

chronic NTX and placebo treated 

mice 48 hours after surgical 

removal of the pellets. Data are 

expressed as mean ± SEM 

distance moved (cm) in the open 

field in 5 minutes intervals (N = 

8-10).  

# P < 0.05, significant from +/+ 

mice, overall genotype effect; * 

P < 0.05, significant from 

placebo treated controls. 
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FIGURE 3  

Climbing behaviour of µ-opioid 

receptor knockout and chronic 

NTX treated mice. The 

percentage of the time the mice 

spent climbing during the 30 

minutes trial is shown for (A) 

µ-opioid receptor knockout mice 

(-/-) and wild-type (+/+) 

littermates, (B) chronic NTX and 

placebo treated mice 24 hours 

after pellet removal and (C) 

chronic NTX and placebo treated 

mice 48 hours after surgical 

removal of the pellets. Data are 

expressed as mean ± SEM 

percentage (%) of the time spent 

climbing (N = 8).  
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DISCUSSION 

 

Endogenous opioid systems, and particularly µ-opioid receptors, have been implicated in drug 

reinforcement (Herz, 1997; Van Ree et al., 1999). Interactions between opioid and dopamine 

systems may contribute to opioid modulation of drug reinforcement. We hypothesised, based 

on anatomical and functional evidence for opioid-dopamine interactions, that alterations in 

opioid receptor expression might lead to concurrent changes in dopamine parameters which 

may in turn contribute to altered drug reinforcement. This was explored using two models 

with distinct opioid receptor levels and reinforcement phenotypes, i.e. µ-opioid receptor 

knockout mice, which are characterised by impaired drug reinforcement and chronic NTX 

treatment, which is known to enhance drug reinforcement. The latter model is further 

characterised by transient over-expression of µ- and to a lesser extent also δ- and κ-opioid 

receptors (80%, 39% and 11% increase, respectively, (Lesscher et al., 2003a)) and hence is a 

valuable tool in this study. Decreased dopamine D3 receptor binding in tissue of µ-opioid 

receptor knockout mice in addition to reduced locomotor activity of these mice and increased 

activity in the open field 24 hrs after cessation of chronic NTX treatment indeed suggest that 

alterations, although subtle, in dopamine systems emerge in case of absence or over-

expression of (µ-)opioid receptors.  

 

Dopamine receptor binding 

µ-Opioid receptor knockout mice displayed decreased dopamine D3 receptor binding in 

nucleus accumbens and striatum. This is an interesting finding because dopamine D3 receptors 

are potential targets in treatment of drug addiction (Le Foll et al., 2000). Both the partial D3 

receptor agonist BP897 and the selective D3 receptor antagonist SB-277011-A reduced cue-

controlled cocaine seeking (Pilla et al., 1999; Di Ciano et al., 2003). Also, BP897 and SB-

277011-A reduced nicotine and amphetamine cue-conditioned hyperactivity (Vorel et al., 

2002; Aujla et al., 2002; Le Foll et al., 2002; Le Foll et al., 2003). BP897 and SB-277011-A 

did not affect responding for cocaine on an FR1 schedule of reinforcement, suggesting that D3 

receptors are in fact not involved in drug reinforcement (Pilla et al., 1999; Di Ciano et al., 

2003). Taken these facts into account, it is unlikely that the reduction in dopamine D3 

receptors in nucleus accumbens and striatum of µ-opioid receptor knockout mice as described 

here contributes to their reduced sensitivity to drug reinforcement as compared to wild-type 

mice (Matthes et al., 1996; Becker et al., 2000; Roberts et al., 2000; Hall et al., 2001; 

Ghozland et al., 2002; Becker et al., 2002; Contarino et al., 2002; Berrendero et al., 2002). 

Reduced dopamine D3 receptor binding in µ-opioid receptor knockout mice might contribute 

to a drug seeking phenotype of µ-opioid receptor deficient mice, which is yet to be 

investigated. No overall change in dopamine D3 receptor binding was apparent for the chronic 

NTX treated mice.  
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The present autoradiography data further revealed small differences in calculated specific 

dopamine D1 receptor binding between genotypes and treatment groups. However, total 

binding of [3H]SCH23390 did not reflect this difference in specific binding. Rather, non-

specific binding of [3H]SCH23390 in presence of an excess of cis-flupentixol was different 

between groups and caused apparent changes in calculated specific binding to dopamine D1-

like receptors. Clearly, these data do not point to altered dopamine D1-like receptor expression 

in chronic NTX treated mice nor in µ-opioid receptor knockout mice as compared to their 

respective controls, but rather point to changes in binding of [3H]SCH23390 to as yet 

undetermined non-D1 sites. Increased dopamine D1 and D2 receptor mRNA expression has 

been described for µ-opioid receptor knockout mice (Park et al., 2001). The lack of effect of 

µ-opioid receptor deficiency upon dopamine D1- and D2-like receptor binding suggests that 

the altered mRNA levels as reported by Park et al. may not reflect protein levels.  

 

Open field and climbing behaviour 

Interestingly, opposing effects of µ-opioid receptor gene knockout and chronic NTX treatment 

were observed upon locomotor activity in an unfamiliar open field, but no differences were 

found for climbing behaviour. Compared to wild-type mice, µ-opioid receptor knockout mice 

were hypoactive upon exposure to the novel environment, which is in agreement with 

previous studies (Matthes et al., 1996; Tian et al., 1997; Hall et al., 2003a). In contrast, 

chronic NTX treated mice were more active as compared to placebo treated controls during 

the hour in the unfamiliar open field 24 hrs after removal of the NTX pellet. Important to note, 

chronic NTX treated mice were no longer different from placebo treated controls at 48 hrs of 

withdrawal from NTX. The transient character of chronic NTX effects upon locomotor 

activity may be related to the relatively short-lived changes in opioid receptor levels after 

withdrawal from NTX, returning to placebo-like levels after 6 days withdrawal from NTX 

exposure (Tempel et al., 1982). The respective reduction and increase in locomotor activity of 

µ-opioid receptor knockout mice and chronic NTX treated mice may reflect reduced and 

increased (novelty-induced) dopamine levels.  

 

Opioid-dopamine interactions 

The adaptations in the dopamine system described here for mice, which either lack µ-opioid 

receptors from gestation or are characterised by transient over-expression of (µ-)opioid 

receptors, confirm opioid control over dopamine systems.  

With regard to the µ-opioid receptor knockout mice, both a decrease in novelty-induced 

locomotor activity and a reduction in dopamine D3 receptor binding were noted. The exact 

mechanisms underlying these adaptations are not known, but reduced dopamine levels are 

likely involved. Indeed, dopamine depletions in accumbens and striatum after 6-OHDA 

lesions of the medial forebrain bundle have been associated with reduced locomotor activity 

(Sundstrom et al., 1990) and with reductions in D3 receptor binding and mRNA (Wolterink et 
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al., 1990; Vos et al., 1995; Levesque et al., 1995; Guillin et al., 2001). Moreover, activation of 

µ-opioid receptors causes hyperpolarization of GABA containing neurons in the VTA, thereby 

relieving inhibitory input to dopaminergic projection neurons (Johnson & North, 1992a). In 

absence of µ-opioid receptors, such disinhibition can not occur and therefore increased 

inhibitory input to dopamine neurons and concurrent reductions in dopamine levels in the 

nucleus accumbens and striatum might be expected for µ-opioid receptor knockout mice. 

However, microdialysis revealed no change in basal extracellular dopamine levels in the 

nucleus accumbens of µ-opioid receptor knockout as compared to wild-type mice (Tang et al., 

2002) nor did we find changes in TH mRNA expression in these mice. Differences between 

genotypes in novelty-induced dopamine levels can however not be ruled out.  

Hyperactivity of chronic NTX treated mice, 24 hrs after withdrawal from NTX, might involve 

enhanced (novelty-induced) dopamine levels in nucleus accumbens and/or striatum. However, 

previous studies have shown that basal dopamine levels, dopamine synthesis or dopamine 

metabolite levels were not different between chronic NTX and placebo treated rats 24 hrs after 

withdrawal from NTX or placebo treatment (Bardo et al., 1988; Ahtee et al., 1990).  

 

In conclusion, the present findings confirm opioid control over dopamine systems. It is 

important to take into account the interaction between opioid and dopamine systems 

considering the role of both systems in mediating the effects of drugs of abuse. Further, the 

reduction in dopamine D3 receptors may suggest a drug seeking phenotype of µ-opioid 

receptor knockout mice, which is yet to be investigated. 
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ABSTRACT 

Chronic treatment with the opioid antagonist naltrexone (NTX) induces functional 

supersensitivity to opioid agonists, which may be explained by receptor upregulation induced 

by opioid receptor blockade. In the present study the levels of opioid receptor subtypes 

through the brain of mice were determined after chronic NTX treatment using quantitative in 

vitro autoradiography. This is the first complete mapping study in mice for µ-, δ- and κ-opioid 

receptors after chronic NTX exposure. Treatment with naltrexone clearly induced upregulation 

of µ- (mean 80%) and, to a lesser extent, of δ-opioid receptors (mean 39%). The upregulation 

of µ- and δ-opioid receptors was evident throughout the brain, although there was variation in 

the percentage change across brain regions. In contrast, consistent upregulation of κ-opioid 

receptors was observed in cortical structures only and was not so marked as for µ- and δ-

opioid receptors. In non-cortical regions κ-opioid receptor expression was unchanged. Taken 

together, the present findings suggest opioid receptor subtype selective regulation by chronic 

NTX treatment in mice. 
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INTRODUCTION 

Chronic exposure to opioid antagonists is known to result in supersensitivity to opioid 

agonists. For example, chronic treatment with naltrexone (NTX) has been shown to enhance 

the analgesic, lethal and respiratory depressant potency of opioids (Tempel et al., 1985; 

Yoburn et al., 1986b; Yoburn et al., 1995; Diaz et al., 2002). Further, chronic treatment with 

NTX alters reward sensitivity in rats. Morphine-induced place preference and the acquisition 

of cocaine self-administration were enhanced in rats pre-treated with NTX (Bardo & 

Neisewander, 1987; Ramsey & Van Ree, 1990). In addition, increased heroin-induced 

facilitation of intracranial self-stimulation has been observed after chronic NTX treatment 

(Schenk & Nawiesniak, 1985).  

Several studies have shown upregulation of opioid receptors, particularly of the µ- but also the 

δ-subtype, after chronic NTX treatment using whole brain homogenates (Tempel et al., 1985; 

Yoburn et al., 1986b; Yoburn et al., 1988; Yoburn et al., 1989; Cote et al., 1993; Unterwald et 

al., 1995; Yoburn et al., 1995; Castelli et al., 1997; Duttaroy et al., 1999). Zukin et al. (1982) 

described increased [3H]etorphine binding in homogenates of limbic structures. 

Autoradiography revealed highest increases in opioid receptor binding in the hypothalamus, 

hippocampus, substantia nigra, amygdala and basal ganglia (Tempel et al., 1984; Morris et al., 

1988; Unterwald et al., 1998; Diaz et al., 2002).  

The upregulation of opioid receptors in the brain may underlie the effects induced by chronic 

opioid antagonist treatment. NTX treatment is one of the pharmacotherapies to treat heroin or 

alcohol addicts (Kreek et al., 2002).  It is therefore of major interest to learn about the effects 

of chronic NTX treatment upon opioid receptors, which may have implications for drug 

dependent patients after cessation of NTX treatment (Yoburn et al., 1986b). Moreover, 

chronic NTX treatment may be used as a model to gain insight into the role of opioid receptors 

in various processes. For this purpose, however, a detailed description of opioid receptor 

upregulation throughout the brain is required. Previous autoradiographic studies either 

described opioid receptor binding for a limited number of regions or dealt with µ- and not δ- 

and κ-opioid receptor binding. In addition, all autoradiographic studies dealing with opioid 

receptor regulation by chronic NTX treatment have used rats. Taken together a detailed 

account of the effects of chronic exposure to NTX upon µ-, δ- and κ-opioid receptor binding 

across the brain is lacking, especially for mice. Data regarding the effects of NTX in mice is 

essential, particularly in light of extensive new data on opioid systems from gene knockout 

mice (Kieffer & Gaveriaux-Ruff, 2002). The aim of the present study was therefore to 

determine in mice µ-, δ- and κ-opioid receptor levels in different regions in the brain after 

chronic naltrexone treatment. Quantitative autoradiography was applied using radioligands 

selective for the µ-, δ- or κ-opioid receptors.  
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MATERIALS AND METHODS 

 

Animals and treatment 

Male C57/Bl6 mice, 2 months of age, were obtained from Charles River (L’Arbresle, France) 

and were housed in groups of 4 mice in extended Macrolon type I cages with water and food 

pellets available ad libitum. Environmental conditions were controlled (22°C and 50% 

humidity; lights on at 7:00 h and lights off at 19:00 h). After transport the mice were allowed 

to acclimatise for at least one week before the experiment. The experimental procedures were 

approved by the Ethical Committee for Animal Experiments of the University Medical Center 

Utrecht. 

Pellets containing 15 mg naltrexone or corresponding placebo pellets were implanted 

subcutaneously in the nape of the neck under halothane anaesthesia (5% / 95% O2) (day 1). 

Naltrexone and placebo treated mice were housed together (2 of both per cage). On day 8 the 

pellet was removed (5% halothane / 95% O2). 24 Hours after pellet removal the mice were 

killed by cervical dislocation. Brains were rapidly dissected, frozen in crushed dry ice and 

stored at –80°C until use.  

 

Autoradiographic procedures 

The autoradiographic procedures used have been described previously (Kitchen et al., 1997). 

Briefly, 20 µm coronal sections were cut 300 µm apart using a cryostat (Leica, Rijswijk, The 

Netherlands) and thaw-mounted on gelatin-subbed slides. The tissue was left to dry at –20°C 

in air-tight boxes containing CaSO4 until further processing. 

Tissue was pre-incubated for 30 minutes in 50 mM Tris-HCl pH 7.4 containing 0.9 % NaCl. 

Thereafter the sections were incubated in 50 mM Tris-HCl pH 7.4 containing either 5 nM 

[3H]DAMGO (µ-opioid receptors), 8 nM [3H]deltorphin-1 (δ-opioid receptors) or 2.5 nM 

[3H]CI-977 (κ-opioid receptors). Ligand concentrations approximated 3-4 × KD. Non-specific 

binding was determined on adjacent sections in presence of 1 µM naloxone (µ- and κ-opioid 

receptors) or 10 µM naloxone (δ-opioid receptors). After incubation the slides were rinsed 

three times in ice-cold 50 mM Tris-HCl pH 7.4 and subsequently dried to cold air.  

Slides were apposed to [3H]Hyperfilm (Amersham, UK) for three, four or six weeks for µ-, δ- 

and κ-opioid receptors, respectively. Slides of both naltrexone and placebo treatment groups 

were apposed to the same film (2 mice/group/film). Films were developed using Kodak D19 

developer and fixed using Kodak Rapid Fixer (Sigma, UK).  

 

Image Analysis 

Quantitative analysis of receptor binding was carried out by video-based computerised 

densitometry using an MCID image analyser (Imaging Research, Canada). Specific binding 
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was determined by subtraction of the non-specific binding from the total binding, using the 

overlay function. Specific binding is expressed in fmol/mg tissue, as derived from calibrated 

[3H] microscale standards (Amersham, UK) laid down with each film. For each region, 

quantified measures were taken from both hemispheres. Measures of binding therefore 

represent a duplicate determination for each brain region. Cortical areas, olfactory tubercle 

and hippocampus were analysed by sampling 5-8 times with a box tool. All other regions were 

analysed by freehand drawing of anatomical areas. Structures were identified according to the 

mouse brain atlas of Paxinos and Franklin (2001). The N value refers to the number of mice 

per treatment group. 

 

Statistical Analysis 

For statistical analysis of the data SPSS 10.1 was used. The data for the three opioid receptor 

subtypes were analysed separately. Since binding was determined for both hemispheres, 

paired-sampled Student’s t tests were performed to determine hemisphere effects. Because 

there were no significant differences between hemispheres, the data for left and right 

measurements were pooled. The mean values per area per animal were used in further 

analyses. An overall analysis (two-way ANOVA) was performed with treatment and area as 

factors. In addition, separate analyses were carried out for cortical regions, limbic structures 

and regions involved in movement or in pain/sensory functions. Data are represented as mean 

± SEM; significance was accepted at P < 0.05. 

 

RESULTS 

The mean values of the quantitative µ-, δ- and κ-opioid receptor binding for placebo and 

chronic naltrexone treated mice are summarised in Tables 1, 2 and 3 respectively. To enable 

comparison of opioid receptor regulation between neuroanatomical and functional distinct 

systems, the data are categorised by cortical regions, limbic structures, regions involved in 

movement or in pain/sensory functions and regions such as hypothalamus and thalamus (for 

details see Tables 1, 2 and 3). Representative images for µ-, δ- and κ-opioid receptor 

autoradiography are shown in Figure 1. Non-specific binding was low and did not differ 

between placebo and naltrexone treated mice. 

 

µ-Opioid receptor autoradiography: specific [3H]DAMGO binding 

Quantitative analysis of µ-opioid receptors revealed upregulation of µ-opioid receptors after 

chronic NTX treatment (Table 1). The mean percentage change of [3H]DAMGO binding 

across all regions was 80%; changes in µ-opioid receptor levels per region ranged from 22 to 

308%. There was a significant overall effect of chronic NTX treatment upon µ-opioid receptor 

densities (P < 0.001). Further, two-way ANOVA revealed a significant treatment by area 

interaction (P < 0.001), indicative of interregional differences in upregulation.  
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FIGURE 1 

Computer-enhanced colour autoradiograms of coronal sections from placebo and NTX treated mice. 

Images for placebo and NTX treatment groups were taken from the same film. Panel (A) represents µ-

opioid receptor binding of [3H]DAMGO. In panel (B) images are shown of δ-opioid receptors, labelled 

with [3H]deltorphin-1. Panel (C) represents images for κ-opioid receptor binding with [3H]CI-977. The 

colour bars show pseudo-colour interpretation of relative density of black and white film image 

calibrated in fmol/mg tissue. The autoradiograms for non-specific binding (NSB) are taken from 

placebo treated mice; non-specific binding was very low and was not different between placebo and 

NTX treated groups. 
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Separate analyses for distinct neuroanatomical and functional systems revealed significant 

increases in µ-opioid receptor expression in cortical regions (102.1%, P < 0.001), limbic 

structures (64.5%, P < 0.001), regions involved in motor activity (58.6%, P < 0.01) and in 

pain/sensory related structures (62.5%, P < 0.001). The data suggest an overall upregulation of 

µ-opioid receptors after chronic NTX treatment, which was highest in cortical regions and was 

less pronounced in a small number of regions, e.g. septum and substantia nigra compacta.  

 

δ-Opioid receptor autoradiography: specific [3H]deltorphin-1 binding 

δ-Opioid receptor binding was increased with a mean percentage change of 39% across all 

regions; the percentage change per area varied from 1 to 109%  (Table 2). There was a main 

effect of chronic NTX exposure upon [3H]deltorphin-1 binding (P < 0.001) and a significant 

treatment by area interaction (P < 0.001), indicative of regional differences in δ-opioid 

receptor upregulation. Further analyses for separate functional systems revealed significant 

increases of δ-opioid receptors in cortical regions (34.4%, P < 0.001), limbic regions (43.2%, 

P < 0.001) and regions involved in motor activity (38.8%, P < 0.001) or in pain/sensory 

functions (39.6%, P < 0.001). The data for δ-opioid receptor binding suggest an overall 

upregulation of δ-opioid receptors after chronic NTX pre-treatment. It should be noted that the 

upregulation of δ-opioid receptors was less pronounced in some regions, e.g. amygdala, 

medial geniculate nucleus, ventral tegmental area and hypothalamus.  

 

κ-Opioid receptor autoradiography: specific [3H]CI-977 binding 

Across all regions the mean percentage change in κ-opioid receptor binding was 11% (Table 

3). Statistical analysis of the [3H]CI-977 binding revealed a significant effect of chronic 

naltrexone treatment (P < 0.01) but no significant treatment by area interaction. Further 

analysis of the data revealed significant increases in κ-opioid receptor expression in cortical 

regions (24.7%, P < 0.001). There was no significant change in κ-opioid receptor binding in 

limbic regions (2.5%) and regions involved in motor activity (6.5%) or in pain/sensory 

functions (-4.1%). Thus chronic NTX-induced upregulation of κ-opioid receptors was 

restricted to cortical regions. 
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TABLE 1 Quantitative analysis of µ-receptor binding in placebo and chronic NTX treated mice (N = 6) 

Region Bregma [3H]DAMGO binding (fmol/mg) Change (%) 

  Placebo  Chronic NTX  

Cortical regions  

    Motor Superficial      2.10 10.1 ± 2.8  19.3 ± 3.6 92 

 Deep   16.2 ± 2.8  32.2 ± 6.5 98 

    Prelimbic Superficial      2.10 47.5 ± 7.2  90.1 ± 12.5 90 

 Deep   43.3 ± 4.6  74.8 ± 7.1 73 

    Infralimbic    Superficial   2.10 53.4 ± 6.0  89.8 ± 8.1 68 

 Deep  52.8 ± 5.6  80.3 ± 6.2 52 

    Orbital Superficial   2.46 35.1 ± 4.0  77.2 ± 7.0 120 

 Deep  33.6 ± 4.9  68.8 ± 4.5 105 

    Rostral somatosensory      Superficial   1.10 6.2 ± 1.0  18.7 ± 5.3 200 

 Deep  14.8 ± 3.5  33.8 ± 3.7 128 

    Cingulate       Superficial   1.10 26.0 ± 5.1  49.9 ± 7.6 92 

 Deep  32.9 ± 4.5  55.2 ± 8.2 68 

    Caudal somatosensory      Superficial   -1.70 5.9 ± 1.9  16.6 ± 3.0 182 

 Deep  10.4 ± 3.2  23.5 ± 3.8 127 

    Auditory        Superficial   -2.54 16.4 ± 7.9  23.3 ± 1.6 42 

 Deep  24.1 ± 5.9  35.3 ± 3.7 46 

    Visual         Superficial   -2.54 3.3 ± 0.9  13.3 ± 1.3 308 

 Deep  11.3 ± 3.1  21.3 ± 2.2 89 

    Retrosplinial        Superficial   -2.54 16.1 ± 2.0  26.4 ± 1.0 64 

 Deep  8.9 ± 1.6  16.7 ± 1.3 89 

    Entorhinal Superficial   -3.64 18.7 ± 2.9  31.3 ± 4.5 67 

 Deep  30.7 ± 3.6  45.2 ± 3.7 47 

Limbic regions          

    Olfactory tubercle 1.10 9.3 ± 3.7  22.3 ± 3.7 140 

    Nucleus accumbens Core         1.10  160   ± 12.7   250 ± 18.7 57 

 Shell  131 ± 11.4   207 ± 12.3 57 

    Medial Septum 0.74 44.3 ± 3.4  58.2 ± 4.9 31 

    Lateral Septum 0.74 21.6 ± 4.2  26.4 ± 3.4 22 

    Ventral Pallidum 0.02 63.9 ± 9.0   121 ± 12.6 89 

    Stria Terminalis -0.22 57.0 ± 9.0  92.8 ± 8.9 63 

    Bed Nucleus of the Stria     -0.22 92.5 ± 7.5   144 ± 11.0 55 

    Amygdala        Basolateral     -1.46  131 ± 10.1   200 ± 13.0 53 

 Basomedial   104 ± 7.3   180 ± 7.9 73 

 Medial   100 ± 16.6   154 ± 9.7 53 

    Hippocampus -2.54 10.2 ± 1.8  15.8 ± 3.3 55 

        Dentate Gyrus  9.2 ± 0.9  16.5 ± 2.0 80 

    Ventral tegmental area -3.28 52.7 ± 4.4  91.7 ± 2.8 74 

Motor regions          

    Caudate putamen 1.10  123 ± 16.7   183 ± 25.5 49 

    Globus Pallidus -0.22 14.7 ± 1.6  28.8 ± 4.2 95 

    Substantia Nigra Compacta      -3.28 45.4 ± 6.2  57.9 ± 3.5 27 

 Reticularis  10.7 ± 1.9  17.4 ± 1.6 63 

Sensory / pain regions          

    Red Nuclei -3.40 18.2 ± 3.0  33.6 ± 3.6 84 

    Superficial gray of superior collicus -3.64  110 ± 8.8   164 ± 8.1 49 

    Intermediate gray of superior collicus       -3.64 74.9 ± 6.1   118 ± 9.8 57 

    Medial geniculate nucleus -3.40 51.9 ± 5.1  85.7 ± 5.9 65 

    Periaqueductal gray -3.64 68.5 ± 8.0   107 ± 6.8 56 

Habenula -1.70  250 ± 17.1   334 ± 3.4 34 

Thalamus -1.70  133 ± 10.2   223 ± 12.4 67 

Zona Incerta -1.46  101 ± 7.7   155 ± 7.0 54 

Hypothalamus -1.70 77.4 ± 6.7   137 ± 6.0 78 

    Ventromedial  90.4 ± 11.7   129 ± 5.2 43 

Interpeduncular nucleus -3.28  327 ± 42.1   465 ± 15.3 42 

Pontine nucleus -3.88 N.D.    N.D.    

N.D. = not detectable 
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TABLE 2 Quantitative analysis of δ-receptor binding in placebo and chronic NTX treated mice (N = 6) 

Region Bregma [3H]deltorphin-1 binding (fmol/mg) Change (%) 

  Placebo   Chronic NTX  

Cortical regions  

    Motor  Superficial 2.10 69.1 ± 4.6  95.4 ± 5.0 38 

 Deep  74.8 ± 6.2   107 ± 4.0 42 

    Prelimbic Superficial 2.10  101 ± 7.3   127 ± 1.5 25 

 Deep  98.9 ± 5.9   133 ± 3.0 34 

    Infralimbic Superficial 2.10 84.9 ± 8.9   112 ± 6.9 31 

 Deep  80.3 ± 4.9   110 ± 6.8 37 

    Orbital Superficial 2.46 75.9 ± 5.8  93.6 ± 2.8 23 

 Deep  72.0 ± 7.0  90.2 ± 2.7 25 

    Rostral somatosensory Superficial 1.10 75.8 ± 3.3  99.6 ± 0.6 31 

 Deep  75.9 ± 3.5  95.0 ± 3.3 25 

    Cingulate Superficial 1.10 85.4 ± 6.9   116 ± 7.3 36 

 Deep  84.8 ± 5.4   117 ± 7.8 38 

    Caudal somatosensory Superficial -1.70 67.3 ± 3.6  94.1 ± 5.8 40 

 Deep  61.1 ± 4.2  80.9 ± 3.9 32 

    Auditory Superficial -2.54 69.8 ± 2.6  91.2 ± 6.2 31 

 Deep  68.0 ± 2.0  85.9 ± 5.4 26 

    Visual Superficial -2.54 71.3 ± 3.7  97.7 ± 3.0 37 

 Deep  62.2 ± 2.4  89.6 ± 5.2 44 

    Retrosplinial        Superficial -2.54 53.4 ± 2.3  72.4 ± 3.3 36 

 Deep  57.0 ± 2.2  79.5 ± 4.8 39 

    Entorhinal        Superficial -3.64 30.5 ± 3.0  39.7 ± 3.7 30 

 Deep  40.1 ± 5.7  61.9 ± 4.1 54 

Limbic regions         

    Olfactory tubercle 1.10 93.3 ± 8.8   148 ± 5.3 59 

    Nucleus accumbens         Core         1.10 83.5 ± 1.5   121 ± 5.1 45 

 Shell  84.4 ± 7.6   125 ± 5.7 48 

    Medial Septum 0.74 28.6 ± 3.7  39.7 ± 2.2 39 

    Lateral Septum 0.74 10.3 ± 2.4  19.1 ± 2.2 86 

    Ventral Pallidum 0.02 68.7 ± 6.4  97.6 ± 7.6 42 

    Stria Terminalis -0.22 18.6 ± 2.3  22.6 ± 2.2 22 

    Bed Nucleus of the Stria     -0.22 20.1 ± 1.6  29.2 ± 2.0 45 

    Amygdala        Basolateral      -1.46  109 ± 7.7   130 ± 11.0 19 

 Basomedial  41.2 ± 2.6  61.6 ± 7.5 49 

 Medial  33.6 ± 2.3  38.9 ± 2.1 16 

    Hippocampus -2.54 34.7 ± 3.7  52.1 ± 3.1 50 

        Dentate Gyrus  46.1 ± 4.2  77.7 ± 5.5 69 

    Ventral tegmental area -3.28 14.1 ± 2.8  16.3 ± 3.6 16 

Motor regions         

    Caudate putamen 1.10  135 ± 5.1   177 ± 7.7 31 

    Globus Pallidus -0.22  109 ± 5.7   152 ± 4.3 39 

    Substantia Nigra         Compacta       -3.28 11.5 ± 1.3  15.3 ± 1.8 33 

 Reticularis  8.4 ± 1.7  12.9 ± 1.2 53 

Sensory / pain regions         

    Red Nuclei -3.40 13.1 ± 1.6  17.8 ± 0.7 36 

    Superficial gray of superior colliculus -3.64 5.2 ± 1.1  9.5 ± 1.8 82 

    Intermediate gray of superior colliculus    -3.64 9.6 ± 1.8  12.9 ± 1.4 34 

    Medial geniculate nucleus -3.40 16.4 ± 1.7  19.1 ± 2.1 16 

    Periaqueductal gray -3.64 15.6 ± 2.0  20.3 ± 1.2 30 

Habenula -1.70 6.8 ± 0.7  11.6 ± 1.1 71 

Thalamus -1.70 34.6 ± 2.0  44.5 ± 3.8 29 

Zona Incerta -1.46 25.0 ± 2.2  35.2 ± 2.4 41 

Hypothalamus -1.70 21.5 ± 1.5  25.1 ± 2.5 17 

    Ventromedial  23.4 ± 3.8  23.7 ± 4.2 1 

Interpeduncular nucleus -3.28 29.3 ± 11.2  36.4 ± 10.7 24 

Pontine nucleus -3.88 35.2 ± 10.4  73.7 ± 6.9 109 
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TABLE 3 Quantitative analysis of κ-receptor binding in placebo and chronic NTX treated mice (N = 6) 

Region Bregma  [3H]CI-977 binding (fmol/mg) Change (%) 

  Placebo   Chronic NTX  

Cortical regions  

    Motor  Superficial 2.10 10.8 ± 1.3  19.3 ± 2.6 79 

 Deep  14.5 ± 2.5  22.3 ± 3.0 53 

    Prelimbic Superficial 2.10 19.9 ± 4.1  26.8 ± 2.1 35 

 Deep  31.0 ± 5.1  40.9 ± 4.3 32 

    Infralimbic Superficial 2.10 18.8 ± 4.7  26.4 ± 3.0 40 

 Deep  22.8 ± 8.5  26.2 ± 3.5 15 

    Orbital Superficial 2.46 16.9 ± 4.3  24.3 ± 2.8 43 

 Deep  18.9 ± 2.7  21.2 ± 1.1 12 

    Rostral somatosensory Superficial 1.10 15.2 ± 2.9  19.4 ± 3.5 28 

 Deep  16.1 ± 2.0  23.2 ± 4.0 44 

    Cingulate Superficial 1.10 12.6 ± 1.8  17.8 ± 3.0 41 

 Deep  26.6 ± 3.2  34.5 ± 3.4 30 

    Caudal somatosensory Superficial -1.70 16.5 ± 1.5  20.3 ± 4.3 23 

 Deep  14.8 ± 2.3  20.1 ± 2.5 36 

    Auditory Superficial -2.54 16.6 ± 0.8  15.8 ± 3.9 -5 

 Deep  16.2 ± 1.9  18.7 ± 3.2 16 

    Visual Superficial -2.54 16.6 ± 1.9  17.0 ± 3.3 3 

 Deep  13.2 ± 2.5  15.1 ± 2.6 15 

    Retrosplinial Superficial -2.54 12.2 ± 2.0  10.6 ± 2.2 -13 

 Deep  12.2 ± 2.2  10.2 ± 2.7 -16 

    Entorhinal Superficial -3.64 14.1 ± 3.8  13.1 ± 3.7 -7 

 Deep  13.1 ± 1.7  18.3 ± 3.1 39 

Limbic regions         

    Olfactory tubercle 1.10 23.3 ± 4.2  36.3 ± 5.7 56 

    Nucleus accumbens         Core         1.10 43.8 ± 4.8  40.5 ± 5.2 -7 

 Shell  42.3 ± 3.0  42.7 ± 4.3 1 

    Medial Septum 0.74 11.3 ± 1.5  9.0 ± 2.1 -20 

    Lateral Septum 0.74 10.3 ± 1.4  9.8 ± 1.9 -5 

    Ventral Pallidum 0.02 35.6 ± 3.2  39.4 ± 4.4 11 

    Stria Terminalis -0.22 24.5 ± 3.7  22.9 ± 2.7 -7 

    Bed Nucleus of the Stria     -0.22 30.1 ± 3.9  34.7 ± 2.6 15 

    Amygdala        Basolateral      -1.46 85.6 ± 6.6  84.2 ± 8.6 -2 

 Basomedial  20.3 ± 3.7  15.9 ± 4.0 -22 

 Medial  68.3 ± 6.8  60.5 ± 4.4 -12 

    Hippocampus -2.54 6.5 ± 1.0  8.0 ± 1.0 23 

        Dentate Gyrus  5.8 ± 1.6  5.5 ± 1.4 -5 

    Ventral tegmental area -3.28 34.4 ± 4.6  37.4 ± 5.1 9 

Motor regions         

    Caudate putamen 1.10 24.2 ± 1.2  24.1 ± 2.2 -1 

    Globus Pallidus -0.22 12.5 ± 1.2  13.9 ± 1.1 11 

    Substantia Nigra         Compacta       -3.28 22.1 ± 2.7  23.2 ± 2.4 5 

 Reticularis  19.6 ± 2.6  21.6 ± 1.5 11 

Sensory / pain regions         

    Red Nuclei -3.40 8.5 ± 2.6  10.8 ± 2.3 28 

    Superficial gray of superior colliculus -3.64 15.4 ± 2.7  10.0 ± 3.0 -35 

    Intermediate gray of superior colliculus    -3.64 10.1 ± 2.6  9.2 ± 3.0 -9 

    Medial geniculate nucleus -3.40 7.0 ± 2.8  6.7 ± 2.7 -5 

    Periaqueductal gray -3.64 35.0 ± 2.3  35.0 ± 1.4 0 

Habenula -1.70 5.1 ± 1.2  4.8 ± 2.0 -6 

Thalamus -1.70 14.6 ± 1.6  16.2 ± 2.0 11 

Zona Incerta -1.46 36.3 ± 4.2  33.5 ± 4.8 -8 

Hypothalamus -1.70 35.9 ± 1.5  36.4 ± 3.3 1 

    Ventromedial  35.3 ± 2.2  35.4 ± 3.0 0 

Interpeduncular nucleus -3.28 19.5 ± 4.2  12.7 ± 3.9 -35 

Pontine nucleus -3.88 N.D.    N.D.    

N.D. = not detectable 
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DISCUSSION 

Chronic NTX is known to induce supersensitivity to opioid agonists. This study provides a 

quantitative mapping for regional changes in the main opioid receptor subtypes throughout the 

brain in mice treated chronically with NTX. This is the first full quantitative mapping of µ-, δ- 

and κ-opioid receptors in chronic NTX treated mice. There was a clear upregulation of µ-

opioid receptors and a lower but significant increase in δ-opioid receptors throughout the 

brain. In contrast, upregulation of κ-opioid receptors was restricted to cortical structures.  

 

Ligand binding assays on whole brain homogenates of mice and rats showed chronic NTX-

induced upregulation of µ- and δ-opioid receptors, with a mean percentage change of 43 to 

90% and 20 to 70%, respectively (Tempel et al., 1985; Yoburn et al., 1986b; Danks et al., 

1988; Yoburn et al., 1988; Yoburn et al., 1989; Cote et al., 1993; Unterwald et al., 1995; 

Yoburn et al., 1995; Castelli et al., 1997; Kest et al., 1998; Duttaroy et al., 1999). For κ-opioid 

receptor binding either no change or an increase in κ-opioid receptor binding by 30% were 

described (Tempel et al., 1985; Yoburn et al., 1995). Although these studies provided 

evidence for chronic NTX-induced upregulation of opioid receptors, they do not provide 

insight into regional changes in opioid receptor densities.  

 

In the present study opioid receptor regulation induced by chronic NTX in mice was studied 

using quantitative autoradiography.  

• µ-opioid receptor autoradiography  

Without exception upregulation of µ-opioid receptors was observed for all regions. The data 

from this study show inter-regional variation in upregulation, but provide no evidence for 

upregulation of µ-opioid receptors in specific functional neuroanatomical systems. For 

example, µ-opioid receptor densities were enhanced in limbic structures but also in basal 

ganglia and structures involved in pain and sensory-motor functions, such as the 

periaqueductal gray, red nuclei and colliculi. Although different authors suggested there were 

regional differences, they disagree on exactly which areas are sensitive to chronic NTX-

induced µ-opioid receptor upregulation. In fact, comparison of the different previous studies 

on this matter, which all used rats, reveals that the data to support regional differences are 

rather weak. Zukin et al. (1982) suggested high increases in opioid receptors in the limbic 

system whereas others found relatively low increases in µ-opioid receptors in limbic structures 

compared to other areas (Tempel et al., 1984; Morris et al., 1988). Further, Diaz et al. 

described highest increases in [3H]DAMGO binding in caudate putamen and nucleus 

accumbens, while Unterwald et al. found highest increments in µ-opioid receptors in central 

grey and hypothalamus (Unterwald et al., 1998; Diaz et al., 2002). The data from the present 

mapping study suggest that chronic NTX exposure induces a general upregulation of µ-opioid 

receptors in mice, although the percentage increase may be highest in some cortical regions.  
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• δ-opioid receptor autoradiography  

There was an upregulation of δ-opioid receptors after treatment with NTX, although the mean 

percentage change was lower as compared to the µ-opioid receptor data. This finding 

corresponds well to data of homogenate binding assays for chronic NTX treatment in mice 

(Yoburn et al., 1986b; Yoburn et al., 1988; Yoburn et al., 1989; Yoburn et al., 1995; Duttaroy 

et al., 1999) and an autoradiographic study by Morris et al. (1988). Although there was 

variation between regions, upregulation of δ-opioid receptor binding was not restricted to a 

specific functional neuroanatomical system, which contrasts with earlier work by Morris et al. 

(1988). In summary, chronic NTX treatment results in a general increase in δ-opioid receptor 

binding across the brain. 

• κ-opioid receptor autoradiography 

The nature of the differences between placebo and NTX treated mice for κ-opioid receptor 

binding did not mirror those for µ- and δ-opioid receptors. Cortical regions showed 

upregulation, whereas in non-cortical regions there was no change in binding compared to 

placebo treated controls. It can be concluded, that 15 mg NTX pellets implanted 

subcutaneously for 1 week causes an upregulation of κ-opioid receptors in merely cortical 

structures in mice. Morris et al. (1988) described effects of chronic naloxone treatment in rats 

upon κ-opioid receptor binding, but this was found for the high dose (3.0 mg/kg/hr) and not 

the low dose (0.5 mg/kg/hr). Apparently dependent on the dose, naloxone, and probably also 

NTX, can induce upregulation of κ-opioid receptors.  

 

In this study, a single time-point after chronic NTX treatment is addressed: 24 hours after 

NTX was removed, based upon studies that showed functional opioid supersensitivity in mice 

after chronic NTX treatment. At this time-point most of the NTX is eliminated (T½ = 4.6 hr, 

Yoburn et al., 1986a; 23 hr post-removal approximately 97% is eliminated). Tempel et al 

(1982) studied the time course of [3H]etorphine binding after chronic NTX treatment in rats. 

[3H]etorphine binding  was enhanced by chronic NTX after 8 days of NTX treatment, which is 

the time-point of pellet removal in the present study. During NTX withdrawal Tempel et al 

(1982) showed that receptor levels declined and reached baseline levels by day 6 after removal 

of the pellets.  

 

Quantitative autoradiography cannot discriminate between changes in Bmax and KD values. 

However, whole brain homogenate binding assays consistently showed increases in Bmax 

without any changes in KD for µ-, δ- and κ-opioid receptors (Yoburn et al., 1989; Giordano et 

al., 1990; Cote et al., 1993; Unterwald et al., 1995; Yoburn et al., 1995; Castelli et al., 1997; 

Duttaroy et al., 1999). It is therefore likely that the results described here in fact represent 

increases in Bmax as opposed to changes in affinity.  
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The mechanism of opioid receptor upregulation induced by chronic NTX is not known, 

although different theories have been addressed. Opioid receptor upregulation is probably not 

due to increased transcription of the opioid receptor gene or related to altered opioid receptor 

mRNA stability (Unterwald et al., 1995; Jenab et al., 1995; Castelli et al., 1997; Duttaroy et 

al., 1999). Danks and Rothman (Danks et al., 1988; Rothman et al., 1989) observed µ- and δ-

opioid receptor upregulation induced both by chronic morphine and naltrexone, which they 

suggested might be explained by agonist- and antagonist-induced release of ‘anti-opiates’, i.e. 

endogenous peptides such as cholecystokinin-8, α-MSH, dynorphin, β-endorphin and Met-

enkephalin, which participate in opioid receptor upregulation. Data concerning G-protein 

changes are contradictory; one study reported increased sensitivity of the newly synthesised or 

unmasked opioid receptors to guanyl nucleotides (Tempel et al., 1985), although in another 

study no changes in G-protein mRNA levels after chronic exposure to NTX were observed 

(Rubino et al., 1994). Further, mechanisms such as changes in receptor protein stability, 

changes in receptor turnover or degradation and unmasking of ‘silent’ receptors have been 

proposed (Castelli et al., 1997). Unterwald et al. (1995) suggested that naltrexone might 

inhibit normal downregulation of opioid receptors, presumably by preventing endogenous 

opioids to bind. Finally, discrepancies between quantitative µ-opioid receptor 

immunoreactivity and quantitative µ-opioid receptor autoradiography led to suggest that the 

percentage of active receptors may be increased without a change in the total number of 

receptors (Unterwald et al., 1998). 

 

The data of the present study clearly show chronic NTX-induced upregulation of µ- and δ-

opioid receptors while κ-opioid receptor expression was enhanced in cortical but not in non-

cortical regions. The pattern of upregulation induced by chronic naltrexone treatment (µ > δ > 

κ) as described here does not parallel the ratio in affinity of naltrexone for µ-, δ- and κ-opioid 

receptors (µ > κ > δ, Kieffer, 1995; Gutstein & Akil, 2001). This suggests that the affinity of 

naltrexone to a receptor is not predictive of the extent of naltrexone-induced supersensitivity 

of that receptor. It is further interesting to note that µ- and κ-opioid receptors are thought to 

have different, even opposing functions (for review see Pan, 1998; Narita et al., 2001). For 

example, µ-opioid agonists induce antinociception and tolerance, µ-opioid agonists are 

rewarding (Van Ree et al., 1999), µ-agonists impair memory, cause euphoria, increase 

dopamine release from the nucleus accumbens (Di Chiara & Imperato, 1988b) and are 

proconvulsant. In contrast, κ-opioid receptor agonists have anti-µ-opioid actions, i.e. they 

block morphine analgesia, reduce morphine tolerance and they improve µ-opioid agonist-

induced memory impairment. Moreover κ-opioid agonists induce µ-opioid opposing effects 

(but see Van Ree et al, 1999): they induce dysphoria, are aversive, improve memory 

processes, act as anticonvulsants and decrease dopamine release from the nucleus accumbens. 

The present data suggest that µ- and κ-opioid receptors are also differentially regulated by 

chronic NTX.  
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In conclusion, the present full quantitative mapping study of µ-, δ- and κ-opioid receptors 

revealed clear effects of chronic NTX exposure upon opioid receptors in mice. Chronic NTX 

induced overall increases in µ- and, although to a lesser extent, in δ-opioid receptor binding. 

Changes in κ-opioid receptors were restricted to cortical regions. The findings described here 

suggest opioid receptor subtype selective regulation mechanisms.  
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ABSTRACT 

The endogenous cannabinoid system is a relatively recently discovered system consisting of 

cannabinoid CB1 receptors, which are expressed both in the periphery and in the central 

nervous system, peripheral cannabinoid CB2 receptors and endogenous cannabinoids, that is 

anandamine and 2-arachidonyl glycerol. The cannabinoid CB1 receptors have recently been 

implicated in rewarding aspects of not only the cannabinoid drug ∆9-tetrahydrocannabinol (∆9-

THC), but also of other drugs of abuse, including cocaine. The present study was designed to 

further investigate the role of CB1 receptors in reward-related effects of cocaine. Using the 

CB1 receptor selective antagonist SR141716A, the involvement of CB1 receptors in cocaine 

reinforcement was determined by intravenous cocaine self-administration. In addition, the 

effects of the CB1 receptor selective antagonist SR141716A upon the development of 

cocaine-induced behavioural sensitization were investigated.  

SR141716A did not affect cocaine reinforcement nor did it affect the development of 

behavioural sensitization to the locomotor stimulant effects of cocaine. These findings suggest 

that CB1 receptors are not involved in acute cocaine reinforcement nor in cocaine-induced 

behavioural sensitization. 
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INTRODUCTION 

The endogenous cannabinoid system consists of cannabinoid type 1 receptors (CB1), CB2 

receptors, which are restricted to the periphery, and the endogenous cannabinoids anandamide 

and 2-arachidonyl glycerol (2-AG) (Childers & Breivogel, 1998). Cannabinoid CB1 receptors 

have been implicated in the rewarding aspects not only of the Cannabis Sativa derived 

compound ∆9-tetrahydrocannabinol (∆9-THC, Maldonado & Rodriguez, 2002), but also of 

opiates such as heroin and morphine (Chaperon et al., 1998; Navarro et al., 2001; Solinas et 

al., 2003; De Vries et al., 2003). Moreover, endogenous cannabinoids may be involved in 

reward-related effects of other drugs of abuse such as alcohol (Arnone et al., 1997; Freedland 

et al., 2001; Gallate & McGregor, 1999; Serra et al., 2001; Lallemand et al., 2001 but Vacca et 

al., 2002; Colombo et al., 2002; Wang et al., 2003), nicotine (Cohen et al., 2002), 3,4-

methylenedioxymethamphetamine (MDMA) (Braida & Sala, 2002) and cocaine (Chaperon et 

al., 1998; De Vries et al., 2001 but Fattore et al., 1999).  

 

Here we further investigated the role of CB1 receptors in acute and chronic reward-related 

effects of cocaine. For this purpose we used the selective CB1 receptor antagonist SR141716A 

(Rinaldi-Carmona et al., 1995). First, the involvement of CB1 receptors in the initiation of 

intravenous cocaine self-administration in drug-naive mice was studied. Initiation of cocaine 

self-administration is predominantly determined by the positive reinforcing properties of 

cocaine and is not or less influenced by effects of repeated drug administration (Van Ree et 

al., 1999). In a yoked-controlled self-administration paradigm the effects of acute CB1 

receptor blockade with SR141716A upon cocaine reinforcement were determined. In the 

second part of this study, the involvement of CB1 receptors in chronic effects of cocaine was 

determined. Prolonged exposure to cocaine, or other drugs of abuse, leads to sensitization of 

brain systems, which mediate incentive salience or ‘drug wanting’ (Robinson & Berridge, 

2000). Here behavioural sensitization to the locomotor stimulant effects of cocaine, which is 

assumed to involve the same neural substrates, was studied for involvement of CB1 receptors. 

SR141716A or placebo was co-administered with repeated intermittent cocaine or saline 

sensitization injections for 11 subsequent days. 

 

MATERIALS AND METHODS 

 

Animals 

Male C57Bl/6Jico mice (Charles River, l’Arbresle, France) aged 2-3 months were group 

housed (2-4) in extended Macrolon© type I cages with water and food pellets available ad 

libitum. Environmental conditions were controlled (22°C and 50% humidity; lights on at 7:00 

a.m. and lights off at 7:00 p.m., GDL Utrecht University). The experimental procedures were 
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approved by the Ethical Committee for Animal Experiments of the University Medical Center 

Utrecht. 

 

Effects of SR141716A upon intravenous cocaine self-administration 

This experiment was designed to determine the effects of the CB1 antagonist SR141716A 

upon intravenous (i.v.) cocaine self-administration in drug-naive mice. As described 

previously (Kuzmin et al., 1997a; Kuzmin et al., 1997b), mice were tested in pairs, one active 

and one yoked control, in identical 8×8×8 cm test cages made from non-transparent material 

(RITEC, St. Petersburg, Russia). Each cage has a frontal nose-poking hole supported with 

infrared sensors interfaced to a computer. Mice were partially immobilized by fixing their 

tails, which protruded through the vertical slot in the back wall, to the horizontal surface using 

tape. A 10 minutes pre-test was performed at least 2 hours prior to the self-administration 

session. The mice were subsequently paired according to basal nose-poke responding.  

SR141716A was dissolved in a mixture of 0.5% Tween/Ethanol in saline, which was also used 

as the control solution (placebo). 30 Minutes prior to the self-administration session, the mice 

received either a placebo or a 1 mg/kg SR141716A injection intraperitoneally (i.p.) (Chaperon 

et al., 1998; Serra et al., 2001; De Vries et al., 2001). During the self-administration session 

(30 minutes) each nose-poke response by the active mouse resulted in a contingent i.v. 

injection of 1.6 µl of a cocaine solution (0.2, 0.4 or 0.8 µg cocaine per infusion) in the lateral 

tail vein of both the active and the yoked control mouse. Nose-pokes by the yoked control 

mice were counted but had no programmed consequences. The data are expressed as total nose 

poke responses or total cocaine intake (mg/kg bodyweight) during the 30 minutes experiment. 

N = 6-8 per dose per type (active or yoked) per treatment. 

 

Effects of SR141716A upon cocaine-induced behavioural sensitization  

This experiment was designed to determine the effects of the CB1 antagonist SR141716A 

upon the development of behavioural sensitization induced by cocaine. 16 Mice received daily 

saline injections and another 16 mice received 20 mg/kg cocaine once daily for 11 subsequent 

days. These saline and cocaine groups were subdivided into two groups of 8 mice each, which 

received either placebo (0.5% Tween/Ethanol in saline, i.p.) or SR141716A (1 mg/kg, i.p.) 30 

minutes prior to the daily saline or cocaine injection (co-administration). All injections during 

the 11 days of sensitization were administered from the home cage. 72 Hrs after the last 

cocaine or saline injection, the mice were transported and allowed to acclimatise to the 

experimental room for at least 1 hour. Then the mice were placed in the open field, which was 

a clear Plexiglas cylinder of 20 cm in diameter and 30 cm in height. During the first hour in 

the open field the locomotor activity was measured to monitor the adaptation of the mice to 

the novel environment. Subsequently all mice received a saline injection (i.p.) after which they 

were returned to the open field and monitored for another hour. Thereafter all mice received a 

cocaine challenge (10 mg/kg i.p.) and their locomotor activity in the open field was 
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determined during 30 minutes. The distance moved in the open field was measured in 5 

minutes intervals using a camera-linked computerised tracking system with Ethovision 

software (Noldus, Wageningen, NL). N = 8 mice per group, except for the placebo/cocaine 

treatment group. One mouse was discarded from this group because it escaped from the open 

field during the hour after saline injection. 

Since the results of this initial experiment suggested a slight reduction in behavioural 

sensitization (see results section), an additional experiment was performed for verification. For 

this experiment, 72 mice were used. No SR141716A/saline control was included because the 

initial experiment (see above) revealed no effect of SR141716A upon acute cocaine- induced 

locomotor activity. In this case, 24 mice received daily saline injections and 48 mice received 

20 mg/kg cocaine once daily for 11 subsequent days. All saline treated mice received placebo 

injections (0.5% Tween/Ethanol in saline) 30 minutes prior to saline administration. The 

cocaine group was subdivided in two groups of 24 mice each: a placebo group and a 

SR141716A group (1 mg/kg in 0.5% Tween/Ethanol in saline). Placebo or SR141716A were 

administered 30 minutes prior to saline or cocaine injections. 72 Hrs after the last sensitization 

injection, the mice were tested in the open field as described. In this experiment the mice were 

allowed to adapt to the open field for 1.5 hr after which saline was injected and either 1, 3 or 

10 mg/kg cocaine challenge doses were given at 2 hr after placement in the open field. N = 8 

per group. 

 

Statistical analysis 

For cocaine self-administration, the number of nose pokes for the 10 minutes pre-test and the 

nose poke responding during the 30 minutes cocaine self-administration session were analysed 

by three-way ANOVAs using SPSS 10.1 software. The independent factors were type (active 

or yoked), dose (µg/infusion) and treatment (placebo or SR141716A). The intake data of the 

active mice were analysed by two-way ANOVA with dose and pre-treatment as factors.  

Open field activity is expressed as distance moved in 5 minutes intervals. Separate analyses of 

variance (ANOVAs) with repeated measurements were used to analyse the data for the 

adaptation to the open field, the period after saline injection as well as the 30 minutes after 

cocaine challenge. Distance moved was the variable and co-administration (placebo or 

SR141716A) and treatment (saline or cocaine) were the independent factors. When 

appropriate, one-way ANOVA’s with repeated measurements were performed. In the second 

sensitization experiment with 1, 3 or 10 mg/kg cocaine challenge doses no SR141716A/saline 

group was included because there was no effect of SR141716A co-administration upon the 

acute locomotor response to the cocaine challenge in the initial experiment. Because the 

SR141716A/saline group was absent, separate analyses were performed (1) for the saline and 

cocaine treated mice within the placebo co-administration group with treatment (saline or 

cocaine) and dose (1, 3 or 10 mg/kg) as factors and (2) for the cocaine treated mice, which 

received either placebo or SR141716A co-administration, with co-administration (placebo or 



Chapter 8 

144 

  Cocaine (µg/infusion) 

 0.2 0.4 0.8 

Active 51.0 ± 11 69.1 ± 6.1 59.3 ± 4.4 
placebo 

Yoked 42.7 ± 13 63.5 ± 4.0 55.0 ± 8.7 

Active 74.0 ± 13 57.7 ± 12 59.0 ± 9.2 
SR141716A 

Yoked 62.3 ± 18 49.8 ± 2.9 73.9 ± 7.2 

SR141716A) and dose (1, 3 or 10 mg/kg) as the independent factors. All data are expressed as 

mean ± SEM and statistical significance was accepted at P < 0.05. 

 

RESULTS 

 

Effects of SR141716A upon intravenous cocaine self-administration 

Overall analysis of the nose-pokes during the 10 minutes pre-test revealed no effect of 

SR141716A treatment nor were there differences between active and yoked control mice or 

between cocaine doses (Table 1), showing that during the initial pre-test all mice were equally 

active in their nose-poke responding. 

During the cocaine self-administration session, the active mice responded with significantly 

more nose-pokes than the yoked control mice did (Figure 1A, overall analysis, effect of type 

F(1,73)=10, P < 0.01). Although the number of nose poke responses was not dependent upon 

the unit cocaine dose, total cocaine intake by the active responding mice increased with rising 

amounts of cocaine administered per infusion (Figure 1B, effect of dose F(2,40)=13, P < 

0.001). These findings demonstrate reliable i.v. cocaine self-administration in this experiment. 

With respect to involvement of endogenous cannabinoids, acting through CB1 receptors, there 

was no effect of SR141716A treatment upon the number of nose-pokes nor was there an 

interaction between SR141716A treatment and type, thus indicating that SR141716A treated 

mice responded for cocaine in i.v. self-administration as placebo treated controls did. 

Moreover, analysis of the total cocaine intake, which is considered indicative of the 

reinforcing efficacy of cocaine (Van Ree et al., 1978; Van Ree et al., 1999), revealed no effect 

of SR141716A upon total cocaine intake during the 30 minutes self-administration session.  

 

TABLE 1  

Nose poke responding during the 10 minutes pre-test for placebo and SR141716A -treated mice. Data 

is expressed as mean ± SEM nose pokes during 10 minutes per treatment per type (active or yoked) per 

dose. 
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Effects of SR141716A upon cocaine-induced behavioural sensitization  

The time-course of open field activity of the mice tested for behavioural sensitization to the 

locomotor stimulant effects of cocaine and the effects of SR141716A co-administration upon 

cocaine-induced behavioural sensitization is shown in Figure 2. During the first hour in the 

open field, the mice adapted to the open field as was reflected by a reduction in their activity 

over time (F(11,297)=26, P < 0.001). Cocaine treatment or SR141716A co-administration did  

FIGURE 1 

Effects of SR141716A upon cocaine self-administration in C57Bl/6JIco mice. (A) Total number of 

nose-poke responses during the 30 minutes session as a function of cocaine dose (µg per infusion) is 

shown for the active responding mice (right panel) and the yoked controls (left panel). The data 

represent the mean nose poke responses ± SEM. In (B) the total cocaine intake (mg/kg) by the active 

responding mice, which received either placebo or 1 mg/kg SR141716A 30 minutes prior to the self-

administration session, is shown as a function of the unit cocaine dose (µg/infusion). The data 

represent the mean intake (mg/kg) ± SEM. N = 6-8 per group. 
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FIGURE 2 

Effects of SR141716A upon the development of cocaine-induced behavioural sensitization. 

SR141716A or placebo were injected 30 minutes prior to repeated intermittent saline or cocaine (20 

mg/kg) injections for 11 days (co-administration). The time-course of the activity in the open field, 72 

hrs after the last sensitization injection, is shown with 1 hour adaptation to the open field, followed by 

1 hour in the field after an i.p. saline injection and 30 minutes after an i.p. injection of a 10 mg/kg 

cocaine challenge. The data represent the mean total distance moved in cm during 5 minutes intervals 

± SEM. N = 7-8 per group. * P < 0.01, ** P < 0.001, significant difference between placebo/saline and 

placebo/cocaine treatment groups; ¶ P < 0.05, significant difference between SR141716A/saline and 

SR141716A/cocaine treated subjects. 

0

200

400

600

800

1000

1200

1400

1600

1800

0 60 120 Time 

(min)

D
is
ta
n
c
e
 m

o
v
e
d
 (
c
m
)

placebo/saline SR141716A/saline

placebo/cocaine SR141716A/cocaine

saline cocaine

¶

**
**

*

not affect basal activity of the mice during the first hour in the open field. Subsequent to the 

saline injection, the mice further reduced their activity (F(11,297)=6.5, P < 0.001) and no 

cocaine or SR141716A effects were observed.  

Repeated intermittent administration of cocaine (20 mg/kg) resulted in behavioural 

sensitization (Figure 2) as was evident from a significant effect of cocaine treatment upon the 

locomotor response to a 10 mg/kg cocaine challenge (F(1,27)=10, P < 0.01) and a significant 

time × treatment (saline or cocaine) interaction (F(5,135)=20, P < 0.001). Overall analysis of 

the data of the last 30 minutes period further revealed a significant co-administration (placebo 

or SR141716A) × treatment (saline or cocaine) interaction (F(1,27)=5.7, P < 0.05), although 

there was no time × co-administration × treatment interaction (F(5,135)=1.5, P = 0.2). These 

findings suggest an effect of the cannabinoid CB1 receptor antagonist SR141716A upon 

cocaine-induced behavioural sensitization. Post-hoc analyses revealed significant effects of 

cocaine treatment for the mice, which received placebo co-administration during the intervals 

0-5, 5-10 and 10-15 minutes after cocaine challenge (P < 0.001, P < 0.001 and P < 0.01, 

respectively). For the mice, which received SR141716A co-administration with the repeated 

intermittent cocaine injections, cocaine sensitization was only apparent during the first 5 

minutes interval after cocaine challenge (P < 0.05).  
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To verify and extend these findings, the effects of SR141716A upon cocaine-induced 

sensitization were further explored in an additional experiment with three different cocaine 

challenge doses (1, 3 or 10 mg/kg, Figure 3). No SR141716A/saline group was included 

because in the initial experiment no effects of SR141716A upon the acute locomotor response 

induced by cocaine were observed (see above).  

Separate analysis of the mice within the placebo co-administration group revealed an overall 

effect of time during the first 1.5 hrs in the open field (F(17,714)=36, P < 0.001) and no effect 

of saline versus cocaine treatment. The activity of the mice reduced further during the minutes 

subsequent to saline injection (F(5,200)=3.3, P < 0.01) and was not different between the 

planned cocaine challenge dose groups. Analysis of the activity after cocaine challenge 

injection of mice, which received placebo co-administration, revealed a significant time × 

cocaine challenge dose (1, 3 or 10 mg/kg) interaction (F(10,210)=4.0, P < 0.001), a significant 

time × treatment interaction (saline or cocaine, F(5,210)=8.7, P < 0.001) and a significant time 

× treatment × dose interaction (F(10,210)=3.9, P < 0.001) thus showing challenge dose-

dependent cocaine-induced behavioural sensitization in this experiment. 

Subsequent analysis for the cocaine-treated groups, which was performed in order to assess 

the effect of SR141716A co-administration upon cocaine-induced behavioural sensitization, 

revealed again a significant effect of time upon locomotor activity during the first 1.5 hrs in 

the open field (F(17,714)=52, P < 0.001) with comparable locomotor activity of mice which 

received either SR141716A or placebo co-administration and no difference between cocaine 

dose groups. A significant time effect was observed after saline injection at 90 minutes after 

placement in the open field (F(5,190)=7.3, P < 0.001). Analysis of the locomotor activity in 

the open field after cocaine challenge injection revealed a significant time × dose interaction 

(F(10,210)=5.4, P < 0.001). However, SR141716A did not affect the development of cocaine-

induced behavioural sensitization, as there was no significant effect of SR141716A co-

administration upon the cocaine challenge-induced locomotor response (F(1,42)=1.6, N.S.) 

nor were there a significant dose × co-administration (F(2,42)=0.4, N.S.), time × co-

administration (F(5,210)=1.2, N.S.) or time × dose × co-administration (F(10,210)=1.6, N.S.) 

interaction effects upon the cocaine challenge-induced locomotor response.  

 

DISCUSSION 

Endogenous cannabinoid systems have been implicated in the rewarding aspects not only of 

the Cannabis Sativa derived compound ∆9-THC, but also of opiates, alcohol and 

psychostimulants. Here we investigated the involvement of cannabinoid CB1 receptors in 

cocaine reinforcement and cocaine-induced behavioural sensitization. Neither cocaine self-

administration in drug-naive mice nor cocaine-induced behavioural sensitization was affected 

by co-administration of the CB1 receptor selective antagonist SR141716A. The present data 

suggest that CB1 receptors are not required for cocaine reinforcement or for sensitization to 

the locomotor stimulant effects of cocaine.  
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FIGURE 3

Effects of SR141716A and 

placebo co-administration upon 

the development of behavioural 

sensitization induced by repeated 

intermittent treatment with saline 

or cocaine (20 mg/kg) for 11 

days.  

The activity in the open field, 72 

hrs after the last sensitization 

injection, is shown for 1.5 hour 

adaptation to the open field, 30 

minutes after an i.p. saline 

injection and 30 minutes after an 

i.p. injection of (A) 1 mg/kg 

cocaine, (B) a 3 mg/kg cocaine 

challenge and (C) 10 mg/kg 

cocaine.  

The data represent the mean total 

distance moved in cm during 5 

minutes intervals ± SEM. N = 8 

per group. * P < 0.05, ** P < 

0.01, significant difference 

between placebo/ saline and 

placebo/cocaine treated mice; § P 

< 0.05, §§ P < 0.01, significant 

difference between placebo/ 

saline treated mice and cocaine 

treated mice (placebo + 

SR141716A). 
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The selective CB1 receptor antagonist SR141716A did not affect cocaine self-administration 

by drug naive mice, thus showing that CB1 receptors are not involved in cocaine 

reinforcement. Previous studies have shown that comparable doses of SR141716A did not 

affect cocaine self-administration in rats during maintenance (Fattore et al., 1999; De Vries et 

al., 2001) and cocaine self-administration by cannabinoid CB1 receptor knockout mice was 

normal (Cossu et al., 2001). In contrast, SR141716A impaired cocaine-induced conditioned 

place preference (CPP) (Chaperon et al., 1998), although such a role of CB1 receptors in 

cocaine-induced CPP was not confirmed by another group using CB1 knockout mice (Martin 

et al., 2000a). Further, SR141716A was shown to reduce both cocaine and cue-induced relapse 

to cocaine seeking (De Vries et al., 2001). The present findings demonstrate that SR141716A 

co-administration with repeated intermittent saline or cocaine treatment was without effect on 

the development of cocaine-induced behavioural sensitization in mice. This finding is in 

agreement with a previous study, which described normal cocaine-induced sensitization in 

CB1 receptor knockout mice (Martin et al., 2000a).  

 

When reviewing the literature dealing with cannabinoid modulation of drug reward it is 

striking that depressants such as opiates or alcohol involve CB1 receptor activity while 

psychostimulants do not, at least with regard to their reinforcing efficacy. For example, mice 

treated with cannabinoid antagonists or CB1 receptor knockout mice consistently displayed 

reduced opiate self-administration (Ledent et al., 1999; Cossu et al., 2001; Navarro et al., 

2001; Solinas et al., 2003; De Vries et al., 2003), impaired opiate-induced CPP (Martin et al., 

2000a; Braida et al., 2001) and impaired morphine-induced behavioural sensitization (Martin 

et al., 2000a), although normal morphine-induced CPP for CB1 knockout mice (Rice et al., 

2002) and normal behavioural sensitization to morphine after SR141716A co-administration 

(Norwood et al., 2003) were also reported. Similarly, most studies dealing with alcohol reward 

reported reducing effects of SR141716A or CB1 receptor gene knockout upon either alcohol 

preference or intake (Arnone et al., 1997; Gallate & McGregor, 1999; Serra et al., 2001; 

Lallemand et al., 2001; Freedland et al., 2001; Hungund et al., 2003; Poncelet et al., 2003) 

whilst others reported no effect of either SR141716A (Colombo et al., 2002; Wang et al., 

2003) or CB1 receptor knockout (Racz et al., 2003). In contrast, studies on cocaine self-

administration, which include the present study, consistently demonstrate that the endogenous 

cannabinoid system is not involved in cocaine reinforcement (Fattore et al., 1999; Cossu et al., 

2001; De Vries et al., 2001) or amphetamine reinforcement (Cossu et al., 2001). Yet, 

cannabinoid CB1 receptor blockade impaired cocaine-induced CPP (Chaperon et al., 1998) 

and reinstatement of cocaine self-administration (De Vries et al., 2001), possibly suggesting 

that the endogenous cannabinoid system might modulate conditioned responses to cocaine 

rather than cocaine reinforcement. Thus, depressant drugs such as opiates and alcohol appear 

sensitive to cannabinoid modulation, while reinforcing effects of psychostimulants do not 

involve CB1 receptor activity.  
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In conclusion, the cannabinoid CB1 receptor antagonist SR141716A did not affect cocaine 

self-administration or cocaine-induced behavioural sensitization, thus demonstrating that 

cocaine reinforcement and sensitization to the locomotor stimulant effects of cocaine do not 

involve cannabinoid CB1 receptors.  
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The sensitivity to the reinforcing effects of drugs of abuse constitutes a likely vulnerability 

factor for drug dependence. The overall objective of the studies described in this thesis was to 

investigate the role of µ-opioid receptors in cocaine reinforcement and the underlying 

neurobiological mechanisms. In this chapter the findings of this thesis will be discussed 

accordingly.   

 

µ-OPIOID RECEPTORS AND COCAINE REINFORCEMENT 

The studies described in Chapters 3 and 5 of this thesis demonstrate that µ-opioid receptor 

knockout mice were impaired in cocaine self-administration while, on the other hand, no 

differences between µ-opioid receptor knockout mice and wild-type controls were observed in 

cocaine-induced locomotor activity or cocaine-induced behavioural sensitization. These 

findings show (1) that µ-opioid receptors are specifically involved in cocaine reinforcement, 

and (2) that the mechanisms involved in cocaine reinforcement are divergent from those 

involved in acute cocaine-induced locomotor activity and sensitization to the locomotor 

stimulant effects of cocaine, at least with regard to µ-opioid receptor involvement.  

Previous studies demonstrated, by local administration of the opioid antagonist naltrexone, 

that particularly opioid receptors in the ventral tegmental area (VTA) account for opioid 

modulation of cocaine reinforcement (Ramsey et al., 1999). In the VTA of wild-type mice, µ-

opioid receptors are present on GABAergic neurons (Figure 1A; Garzon & Pickel, 2001; 

Garzon & Pickel, 2002). Opioids can activate µ-opioid receptors in the VTA, which involves 

intracellular signalling through the ERK1/2 pathway (Chapter 4), causing hyperpolarization 

of the GABAergic neurons (Johnson & North, 1992a; Johnson & North, 1992b). These 

GABAergic neurons are thought to be local interneurons, although GABAergic projection 

neurons from the VTA to amongst others the nucleus accumbens and prefrontal cortex have 

also been described (Van Bockstaele & Pickel, 1995; Steffensen et al., 1998; Carr & Sesack, 

2000). The local GABAergic interneurons in the VTA synapse onto dopaminergic neurons 

that form a major output pathway from the VTA (Johnson & North, 1992a). In µ-opioid 

receptor knockout mice, the inhibitory GABAergic input onto dopamine neurons in the VTA 

was increased in a cocaine free state, as is evident from increased spontaneous inhibitory 

postsynaptic currents (IPSC’s) measured from dopamine neurons (Chapter 3, Figure 1C). 

Interestingly, actively self-administered, but not passively administered, cocaine was 

positively correlated with pro-opiomelanocortin (POMC) mRNA levels in the arcuate nucleus 

(Chapter 3), that is POMC mRNA levels increased as total active cocaine intake increased. 

POMC is the precursor of the µ-opioid receptor selective endogenous opioid peptide 

β-endorphin. Indeed, β-endorphin levels increase in response to cocaine and also after 

administration of amphetamine and alcohol, at least in the nucleus accumbens (Olive et al., 

2001; Roth-Deri et al., 2003; Marinelli et al., 2003). Also, in vivo autoradiography revealed 

that opioid levels are increased after cocaine self-administration (Gerrits et al., 1999). Active 

self-administration is a measure for cocaine reinforcement, which requires µ-opioid receptor 

activation (Chapter 3). The positive correlation of active cocaine self-administration with 
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POMC mRNA, the precursor of β-endorphin, therefore suggests that β-endorphin, through 

interactions with µ-opioid receptors, may account for opioid modulation of cocaine 

reinforcement (Figure 1B). However, other endogenous opioids such as the novel µ-opioid 

receptor selective endomorphins 1 and 2 (Zadina et al., 1997) or enkephalins, which also have 

affinity for µ-opioid receptors, may also be involved. It is through inhibition of the 

GABAergic neurons that µ-opioid receptors cause disinhibition of dopamine neurons in the 

VTA, thereby presumably contributing to augmented dopamine release from the nucleus 

accumbens in response to different drugs of abuse (Di Chiara & Imperato, 1988a) and to burst 

FIGURE 1 

Proposed mechanism for µ-opioid receptor mediated cocaine reinforcement in the VTA. The cocaine-

free state of the VTA of wild-type (+/+) and knockout (-/-) mice, obviously with differences in µ-

opioid receptors and consequent changes in GABAergic transmission are shown in (A) and (C), 

respectively. Addition of cocaine causes endogenous opioid peptides to be released, which through 

activation of µ-opioid receptors cause hyperpolarization of GABA neurons and consequently 

disinhibition of dopamine neurons, facilitation of burst firing of dopamine neurons and enhancement of 

dopamine output. As a result, cocaine is reinforcing to wild-type (+/+) mice (B). In contrast, 

endogenous opioid peptides, released in response to cocaine, can not activate µ-opioid receptors in the 

µ-opioid receptor knockout (-/-) animals. As a consequence, disinhibition of dopamine neurons does 

not occur, dopamine output is not enhanced and cocaine is not reinforcing in µ-opioid receptor 

knockout mice (D). 
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firing of dopamine neurons (Schultz et al., 1997; Cooper, 2002), which may ultimately lead to 

cocaine reinforcement (Figure 1B).  

POMC mRNA levels were not different between µ-opioid receptor knockout mice and wild-

type controls (Zhou et al., 2002), suggesting that similar levels of β-endorphin, the major 

endogenous µ-opioid receptor ligand, are released in response to cocaine in both genotypes. 

However, in case of µ-opioid receptor knockout mice, this or other endogenous opioids 

obviously cannot activate a µ-opioid receptor. Consequently, the GABA neurons cannot be 

hyperpolarized and disinhibition of dopamine neurons cannot occur as in wild-type mice. We 

propose that impaired disinhibition of dopamine neurons together with the increased 

GABAergic inhibitory input onto the dopamine neurons contributes to impaired cocaine self-

administration by µ-opioid receptor knockout mice (Chapter 3). There is no evidence for 

altered basal firing frequency of dopamine neurons in vitro in the VTA of µ-opioid receptor 

knockout mice (Chapter 3) nor are there indications for altered dopamine release from the 

nucleus accumbens, both under basal conditions and in response to alcohol (Tang et al., 2002). 

Rather, the threshold for burst firing of dopamine neurons might be augmented in these mice, 

which is yet to be investigated (Figure 1D).  

 

DRUG REINFORCEMENT 

 

µ-Opioid receptors and drug reinforcement 

This thesis provides evidence for an important role of µ-opioid receptors in cocaine 

reinforcement. Previous studies substantiate the involvement of the µ-opioid receptor in drug 

reinforcement across pharmacological classes. For instance, µ-opioid receptor knockout mice 

do not self-administer morphine (Becker et al., 2000) and consume less alcohol (Roberts et al., 

2000; Hall et al., 2001; Becker et al., 2002).  

Thus, drugs of abuse from different pharmacological classes have µ-opioid receptor mediated 

modulation of their reinforcing efficacy in common. This is interesting considering the 

different primary targets that are used by different drugs of abuse. Opiates interact with opioid 

receptors (Snyder & Pasternak, 2003), cocaine acts as a dopamine transporter blocker (Ritz et 

al., 1987), amphetamine interacts with the vesicular monoamine transporter (Pifl et al., 1995), 

alcohol is considered to act through interactions with ligand-gated ion channels (Soderpalm et 

al., 2000), nicotine acts through nicotinic acetylcholine receptors (Corrigall et al., 1992; 

Picciotto et al., 1998) and cannabinoids act through cannabinoid receptor interactions 

(Gardner & Vorel, 1998; Childers & Breivogel, 1998). It is likely that the actions of different 

classes of drugs converge to a common system. µ-Opioid receptors in the VTA may form part 

of such a common system, which is relevant for drug reinforcement. 

How does µ-opioid receptor modulation of drug reinforcement relate to the mesolimbic 

dopamine system? It appears likely, that µ-opioid receptors modulate drug reinforcement by 

affecting dopamine output of the mesolimbic system. For, as outlined previously in this 
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chapter, µ-opioid receptors in the VTA cause, by disinhibition of dopamine neurons, enhanced 

dopamine output of the mesolimbic system.  

Yet, the importance of the mesolimbic dopamine system in drug reinforcement is a matter of 

debate. For example, opiate reinforcement does not require intact dopamine input to the 

nucleus accumbens (Gerrits & Van Ree, 1996) and haloperidol or the D1 receptor antagonist 

SCH23390 could not abolish the initiation of heroin self-administration (Pettit et al., 1984; 

Van Ree & Ramsey, 1987; Gerrits et al., 1994, see Chapter 1). Apparently, opiates can 

support self-administration independent of dopamine. There is an interesting parallel in the 

effects of opiates and dopamine upon GABAergic medium spiny neurons in the nucleus 

accumbens, which form the main output neurons of the nucleus accumbens (Tzschentke & 

Schmidt, 2000). Opiates, dopamine and also psychostimulants depress excitatory postsynaptic 

currents (EPSC’s) in the nucleus accumbens as measured from medium spiny neurons in the 

nucleus accumbens (Pennartz et al., 1992; Harvey & Lacey, 1996; Nicola et al., 1996; Martin 

et al., 1997; Hoffman & Lupica, 2001). Inhibition of these GABAergic medium spiny 

neurons, and not so much dopamine, may therefore be an important common effect of drugs of 

abuse that may be required for drug reinforcement. The relevance of medium spiny neuron 

inhibition in the nucleus accumbens for reinforcement could be subject of future research. 

Obviously, the model outlined here is simplified; other brain regions, such as the ventral 

pallidum, are also likely involved in drug reinforcement.  

 

Cannabinoid CB1 receptors and drug reinforcement 

In Chapter 8 of this thesis the involvement of cannabinoid CB1 receptors in behavioural 

effects of cocaine was investigated. No effects were observed of the CB1 receptor antagonist 

SR141716A upon cocaine reinforcement nor was cocaine-induced behavioural sensitization 

affected by SR141716A treatment. When reviewing the available literature dealing with CB1 

receptor involvement in reward-related effects of drugs of abuse, in combination with the 

present findings, a discrepancy between CB1 involvement in opiate and alcohol but not 

psychostimulant reinforcement is apparent.  

Other studies also suggest that the endogenous cannabinoid system is not involved in cocaine 

reinforcement (Fattore et al., 1999; Cossu et al., 2001; De Vries et al., 2001) or amphetamine 

reinforcement (Cossu et al., 2001), although cannabinoid CB1 receptor blockade impaired 

cocaine-induced CPP (Chaperon et al., 1998) and reinstatement of cocaine self-administration 

(De Vries et al., 2001). In contrast to these findings, other studies reported CB1 receptor 

mediated modulation of opiate reinforcement (Ledent et al., 1999; Cossu et al., 2001; Navarro 

et al., 2001; Solinas et al., 2003; De Vries et al., 2003) and CB1 modulation of alcohol 

reinforcement (Arnone et al., 1997; Serra et al., 2001; Lallemand et al., 2001), although others 

found no effect of SR141716A upon alcohol preference or intake (Colombo et al., 2002). With 

respect to drug-induced behavioural sensitization, CB1 receptor knockout mice were impaired 

in morphine-induced behavioural sensitization (Martin et al., 2000a), although behavioural 

sensitization to morphine was not affected by SR141716A co-administration (Norwood et al., 
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2003). Thus, the reinforcing effects of and sensitized responses to depressant drugs such as 

opiates and alcohol are sensitive to cannabinoid modulation while CB1 receptors appear not to 

modulate psychostimulant reinforcement or behavioural sensitization.  

Little is known about the mechanisms, which may explain the discrepancy in CB1 receptor 

involvement in the effects of different drugs of abuse. A likely site of CB1 receptor mediated 

involvement in drug reinforcement is the VTA. Interestingly, strikingly similar mechanisms of 

action of CB1 receptors in the VTA were observed as for µ-opioid receptors: CB1 receptors 

inhibit GABA neurons in the VTA resulting in disinhibition of dopamine neurons and causing 

enhanced dopamine output to the nucleus accumbens (Szabo et al., 2002). Tanda and co-

workers however described non-reciprocal cannabinoid-opioid interactions in dopamine 

release from the nucleus accumbens. They reported that the µ-opioid receptor antagonist 

naloxonazine, administered in the VTA, reduced both the cannabinoid and heroin-induced 

increase in dopamine release from the nucleus accumbens. In contrast, intra-VTA 

administered SR141716A only inhibited the effects of cannabinoids upon dopamine release 

but failed to affect the response to heroin. It thus appears that CB1 receptors are not required 

for µ-opioid receptor mediated effects in the VTA, thus suggesting that VTA CB1 receptors 

might not be involved in CB1 receptor effects upon opiate reinforcement. Future studies could 

use local injections of antagonists to pinpoint the site and mechanism of interaction between 

µ-opioid and CB1 receptors in modulation of drug self-administration and explore the 

differential involvement of CB1 receptors in opiate/alcohol but not psychostimulant 

reinforcement.  

 

µ-OPIOID RECEPTORS AND VULNERABILITY FOR DRUG DEPENDENCE 

What are the implications for human drug addiction of the important role of µ-opioid receptors 

in drug reinforcement? Drug reinforcement is a key factor in vulnerability for drug 

dependence. Therefore, involvement of µ-opioid receptors in the sensitivity to drug 

reinforcement across pharmacological classes suggests that variations in µ-opioid receptors, 

either genetic or environmental in nature, may contribute to an individual’s vulnerability for 

drug dependence.  

 

Genetic variation in the human µ-opioid receptor gene 

Single nucleotide polymorphisms (SNP’s) make up for genetic variations between individuals. 

They occur everywhere in the genome and can affect the expression or function of genes. A 

number of SNP’s in the human µ-opioid receptor gene have been identified and studied for 

association with drug addiction in humans. An example is the relatively extensively studied 

nucleotide substitution at position 118 (A118G), predicting an Asp40Asn amino acid change 

(Bergen et al., 1997; Bond et al., 1998). Different studies suggested a significant association of 

the A118G variant with opiate dependence (Szeto et al., 2001; Tan et al., 2003) or with 

alcohol dependence (Town et al., 1999; Schinka et al., 2002). The frequency of the A118G 
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variant is lower in drug dependent subject groups. However, other studies failed to show a 

significant association of the A118G variant of the µ-opioid receptor gene with either opiate 

(Bond et al., 1998; Franke et al., 2001; Shi et al., 2002) or alcohol dependence (Bergen et al., 

1997; Sander et al., 1998; Gelernter et al., 1999; Franke et al., 2001; Rommelspacher et al., 

2001). Such genetic studies may define genetic predisposition and associated risk for drug 

addiction in individuals. Moreover, they can contribute to delineate the importance of specific 

genes in the neurobiological mechanisms of addiction. 

 

Environmental factors, endogenous opioids and reinforcement 

In contrast to genetic, intrinsic factors, environmental influences may also affect the 

functionality of the endogenous opioid system and could thereby contribute to the reinforcing 

efficacy of drugs of abuse and hence, the vulnerability for drug dependence. In this section, 

prenatal morphine, emotional stress and play deprivation will be outlined briefly as examples 

of such environmental factors, which facilitate drug reinforcement, presumably through 

changes in endogenous opioid systems. 

(1) Prenatal morphine treatment leads to increased µ-opioid receptor binding in rats (Vathy et 

al., 2003). Interestingly, prenatal morphine treatment also causes rats, as adults, to be more 

sensitive to the reinforcing effects of both heroin and cocaine (Ramsey et al., 1993). (2) 

Another example is emotional stress, which is a witness stress: the emotional stressed animal 

can see, hear, smell but not touch the physically stressed subject, that receives uncontrollable 

footshocks (Takahashi et al., 1987). Cocaine and morphine self-administration was facilitated 

by emotional stress in rats and mice (Ramsey & Van Ree, 1993; Kuzmin et al., 1996) and also 

intracranial self-stimulation was facilitated by emotional stress (Bespalov, unpublished data). 

By means of autoradiography and naloxone administration, changes in the endogenous opioid 

system were demonstrated after emotional stress (Van den Berg et al., 1998; Pijlman, 

unpublished data). (3) Further, isolation of rats during postnatal weeks 4-5 in which rats 

normally display high levels of play behaviour, which involves increased endogenous opioid 

peptide release (Panksepp & Bishop, 1981), has been associated with adaptations in opioid 

peptide and opioid receptor levels (Vanderschuren et al., 1995; Van den Berg et al., 1999). 

Recent findings revealed, that play deprivation caused facilitation, although modest, of the 

acquisition of cocaine self-administration in adults rats (Gerrits, unpublished data). 

 

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

This study revealed that µ-opioid receptors have an important role in cocaine reinforcement, 

suggesting that variations in µ-opioid receptors might contribute to vulnerability to develop 

drug dependence. Factors that affect the function of the µ-opioid receptor should be 

considered to influence drug dependence. The genetic make-up of the µ-opioid receptor gene 

and developmental and environmental factors affecting its expression could be part of a 

neurobiological process underlying vulnerability for drug dependence. An important next step 
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will be to confirm that variations in µ-opioid receptors indeed contribute to liability to develop 

drug dependence.  

Repeated and extended self-administration sessions in models that mimic human addiction 

more are required in preclinical studies. Such models of extended access, described by 

different groups, are for example characterized by escalating and irregular patterns of drug 

intake and would be valuable tools in this respect (Ahmed & Koob, 1998; Tornatzky & 

Miczek, 2000; Mantsch et al., 2001). Important to consider in this context is the notion that, 

based on previous studies which for instance described a rightward shift in cocaine self-

administration after naloxone treatment (Kuzmin et al., 1997a), µ-opioid receptors probably 

modulate drug reinforcement but may not be required as such for drugs to act as reinforcers. 

Therefore, µ-opioid receptor knockout mice may eventually acquire cocaine self-

administration. If true, it will also be interesting to investigate the reinstatement behaviour of 

µ-opioid receptor knockout mice, considering the reduction in dopamine D3 receptor levels 

observed for these mice (Chapter 6). 

Clearly the present findings suggest further human research to determine the role of µ-opioid 

receptor variations in susceptibility to drug dependence. Since variations in µ-opioid receptors 

may be genetic in nature or may be induced by environmental factors, such as traumatic life 

events, attempts should be made to differentiate between variations in µ-opioid receptors 

caused by genetic and environmental factors. Moreover it is interesting to consider gene × 

environment interactions in connection to vulnerability for drug dependence.  

Although the main output of the VTA is formed by dopamine projections to amongst others 

the nucleus accumbens, GABA projections to nucleus accumbens and prefrontal cortex have 

also been described to originate in the VTA (Steffensen et al., 1998). These projections have 

been poorly studied in relation to addiction processes and it will be interesting to focus more 

on these projections and to investigate their role in drug reinforcement. Also, it is interesting 

to consider in future studies the role of nucleus accumbens medium spiny neurons in drug 

reinforcement. 

Finally, future studies could also focus on cannabinoid CB1 receptors, which appear to 

differentially modulate opiate and alcohol as opposed to psychostimulant reinforcement. 

Knowledge of the mechanisms through which cannabinoid CB1 receptors interfere with opiate 

and alcohol reinforcement may provide more insight into the distinct mechanisms of action of 

depressant and psychostimulant drugs. 

 

The findings described in this thesis suggest a role of µ-opioid receptors, and neurobiological 

mechanisms associated to µ-opioid receptors, in vulnerability for drug dependence. This 

knowledge may lead to improvement of strategies in prevention and treatment of addiction. 
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Drugsverslaving 

Drugsverslaving is een wereldwijd gezondheidsprobleem dat gekarakteriseerd wordt door 

dwangmatig drugsgebruik en een hoge mate van terugval na afkicken. Voorbeelden van 

verslavende stoffen zijn morfine en heroïne (opiaten), cocaïne en amfetamine 

(psychostimulantia), alcohol, nicotine en ∆9-tetrahydrocannabinol (∆9-THC, de actieve stof in 

marihuana). Deze verslavende stoffen behoren tot verschillende farmacologische klassen, wat 

wil zeggen dat ze elk een ander primair werkingsmechanisme hebben.  

Circa 5-15% van diegenen die ooit een verslavende stof gebruikt hebben ontwikkelt 

daadwerkelijk problematisch gebruik van die stof. Drugsgebruik leidt dus niet altijd tot 

drugsverslaving. Er bestaan individuele verschillen in de gevoeligheid voor verslaving en 

vermoedelijk bestaan er dus risicofactoren voor problematisch drugsgebruik en 

drugsverslaving. Verslavende stoffen hebben gemeen dat ze positief bekrachtigende 

(reinforcing) eigenschappen bezitten. Positieve reinforcement is een maat voor de facilitering 

van gedrag dat nodig is om bijvoorbeeld de verslavende stof te verdienen of te verkrijgen. De 

gevoeligheid voor de reinforcing effecten van verslavende stoffen is waarschijnlijk een 

belangrijke bepalende factor voor het risico op herhaling van drugsgebruik, hetgeen 

uiteindelijk tot afhankelijkheid van de verslavende stof, ofwel tot drugsverslaving, kan leiden.  

Reeds in de jaren zeventig werd een proefdiermodel ontwikkeld waarmee deze positieve 

reinforcing effecten van verslavende stoffen kunnen worden gemeten: de intraveneuze 

zelftoediening. In dit model leert bijvoorbeeld een muis om zichzelf een verslavende stof zoals 

cocaïne direct in de bloedbaan toe te dienen, door bijvoorbeeld zijn neus in een opening in de 

wand te steken (nose-poke). De straal die door de nose-poke wordt doorbroken wordt door een 

computer geregistreerd. Vervolgens wordt een signaal doorgegeven naar een pomp, die via 

een in de staartvene aangebrachte naald en canule zorgt voor een intraveneuze injectie in de 

staartvene van de muis (zie Figuur 1).  

FIGUUR 1

Intraveneuze zelftoediening. De muis in A zit in 

de zelftoedieningsopstelling maar laat geen 

nose-poke respons zien en krijgt dus ook geen 

injectie. De muis in B steekt zijn neus door de 

opening, wat door de computer wordt 

geregistreerd. De pomp wordt geactiveerd en de 

muis krijgt een injectie. De snelheid waarmee 

de stof in het bloed komt is via intraveneuze 

injectie zeer snel, waardoor de muis het effect 

van de stof zal associëren met de nose-poke 

respons.  
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Voorgaande studies hebben, onder meer met behulp van intraveneuze zelftoediening door 

proefdieren, inzicht verschaft in de neurobiologische mechanismen van verslaving (hoofdstuk 

1) en in de rol van specifieke genen in verslavingsprocessen (hoofdstuk 2). Er zijn in dit 

verband meerdere systemen beschreven, waaronder het dopamine-, het opioid- en het 

cannabinoid-systeem.  

Hoewel het dopamine-systeem als belangrijke speler in verslavingsprocessen wordt gezien is 

dit systeem niet noodzakelijk voor de reinforcing effecten van alle verslavende stoffen. Zo 

leidt beschadiging van dopamine neuronen met behulp van het toxine 6-hydroxydopamine of 

blokkade van dopamine receptoren met dopamine antagonisten wel tot een verlaging van 

intraveneuze zelftoediening van psychostimulantia, maar niet van opiaten of alcohol. Met 

andere woorden, dopamine is wel noodzakelijk voor de reinforcing effecten van 

psychostimulantia, maar is niet vereist voor de reinforcing effecten van opiaten en alcohol. 

Een ander belangrijk systeem in verslavingsprocessen is het endogene opioid systeem, dat 

bestaat uit de lichaamseigen opioiden β-endorphine, enkephaline en dynorphine, die 

respectievelijk binden aan µ-, δ- en κ-opioid receptoren. Blokkade van opioid receptoren met 

behulp van de opioid receptor antagonisten naltrexone of naloxone, verlaagt zelftoediening 

van cocaïne en alcohol door ratten, muizen en apen. Hiermee lijkt het opioid systeem wel een 

centrale rol te kunnen spelen in de bekrachtigende werking van verschillende farmacologische 

klassen van verslavende stoffen. Een andere belangrijke vinding was die van Ramsey en 

collegae (1999). Zij lieten, met behulp van lokale injecties van naltrexone in verschillende 

hersengebieden, zien dat met name de opioid receptoren in het ventrale tegmentum (VTA), 

een kleine structuur in het midbrein, belangrijk zijn voor de reinforcing effecten van cocaïne. 

Omdat naltrexone en naloxone relatief selectief zijn voor µ-opioid receptoren en omdat de 

VTA relatief rijk is aan µ-opioid receptoren, wordt verondersteld dat voornamelijk µ-opioid 

receptoren in belangrijke mate betrokken zijn bij cocaïne reinforcement, hetgeen het 

onderwerp is van de in dit proefschrift beschreven studies. 

 

Doelstelling 

Het doel van de studies beschreven in dit proefschrift is om de rol van de µ-opioid receptor in 

cocaïne reinforcement te bepalen en om inzicht te verkrijgen in de daaraan ten grondslag 

liggende mechanismen.  

 

µ-opioid receptoren en gedragseffecten van cocaïne  

Voor het bestuderen van de rol van de µ-opioid receptor in de reinforcing effecten van cocaïne 

werd in hoofdstuk 3 gebruik gemaakt van muizen waarin het gen voor de µ-opioid receptor 

blijvend is uitgeschakeld, ‘uitgeknockt’ (zie hoofdstuk 2). Met behulp van deze ‘µ-opioid 

receptor knockout muizen’, die dus functionele µ-opioid receptoren missen, is een cruciale rol 

van µ-opioid receptoren in cocaïne reinforcement aangetoond. Vergeleken met wild-type 

controle muizen bleek de zelftoediening van cocaïne door µ-opioid receptor knockout muizen 
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verlaagd: het aantal nose-pokes voor cocaïne injecties was significant lager. Dit duidt op 

verlaagde gevoeligheid voor de reinforcing effecten van cocaïne in afwezigheid van µ-opioid 

receptoren. De µ-opioid receptor blijkt dus een belangrijke en specifieke rol te spelen in 

cocaïne reinforcement. Dit betekent dat variatie in µ-opioid receptoren inderdaad een 

risicofactor kan zijn voor de ontwikkeling van cocaïne verslaving.  

Vervolgens is onderzocht of de µ-opioid receptor ook andere effecten van cocaïne moduleert. 

Naast de reinforcing effecten verhoogt cocaïne ook de motorische activiteit. In hoofdstuk 5 

werd de rol van de µ-opioid receptor in de acute motorische effecten van cocaïne bestudeerd. 

Hiervoor werd opnieuw gebruik gemaakt van de µ-opioid receptor knockout muis. Daarnaast 

werden ook muizen gebruikt die juist gekenmerkt worden door een verhoogde expressie van 

opioid receptoren. Deze muizen werden gedurende 1 week met de opioid receptor antagonist 

naltrexone (NTX) behandeld, waardoor de opioid receptoren geblokkeerd werden. Vervolgens 

werd deze behandeling met NTX gestaakt. In reactie op chronische blokkade van opioid 

receptoren trad er compensatie op in de vorm van meer opioid receptoren. Dit werd met 

behulp van in vitro receptor binding aangetoond, zoals in hoofdstuk 7 beschreven. Noch de 

afwezigheid (µ-opioid receptor knockout) noch een toename van het aantal µ-opioid 

receptoren (chronisch NTX) bleek van invloed op de acute cocaïne-geïnduceerde motorische 

respons. Hieruit kan geconcludeerd worden dat de µ-opioid receptor niet belangrijk is voor 

acute motorische effecten van cocaïne.  

Naast de betrokkenheid van het µ-opioid receptor systeem bij acute effecten van cocaïne werd 

tevens de rol van de µ-opioid receptor in chronische effecten van cocaïne bestudeerd. 

Verschillende studies laten zien dat er, bij langdurige blootstelling aan verslavende stoffen, 

adaptaties optreden in de hersenen die vermoedelijk bijdragen aan dwangmatig drugsgebruik 

en het daadwerkelijk verslaafd raken. Langdurige blootstelling aan cocaïne leidt eveneens tot 

een versterkte motorische respons op cocaïne, een effect dat wordt toegeschreven aan 

veranderingen in dezelfde hersengebieden als die verantwoordelijk zijn voor dwangmatig 

drugsgebruik. Om deze reden is de versterkte motorische respons op cocaïne, ofwel cocaïne-

geïnduceerde gedrags-sensitizatie een interessant fenomeen. In hoofdstuk 5 werd daarom de 

rol van de µ-opioid receptor in cocaïne-geïnduceerde gedragssensitizatie onderzocht. De µ-

opioid receptor knockout muizen ontwikkelden sensitizatie zoals wild-type muizen dat deden. 

Bovendien had ook de specifieke µ-opioid receptor antagonist CTOP geen effect op de 

ontwikkeling van cocaïne-geïnduceerde sensitizatie. Daarentegen lieten muizen, die chronisch 

behandeld waren met NTX, een versterkte cocaïne-geïnduceerde gedragssensitizatie zien. Het 

lijkt onwaarschijnlijk, gezien de vindingen uit het experiment met de µ-opioid receptor 

knockout muizen en die uit het experiment met CTOP, dat de versterkte sensitizatie in 

chronisch NTX behandelde muizen toe te schrijven is aan een verhoogd aantal µ-opioid 

receptoren. Het is mogelijk, dat δ-opioid receptoren, die onder invloed van chronisch NTX 

ook in aantal toenemen (hoofdstuk 7), hebben bijgedragen aan de versterkte cocaïne-

geïnduceerde gedragssensitizatie in ‘chronisch NTX muizen’.  
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Neurobiologische mechanismen 

De overige experimenten beschreven in dit proefschrift gaan in op het neurobiologisch 

mechanisme via welke µ-opioid receptoren cocaïne reinforcement moduleren. Het is bekend 

dat cocaïne een verhoogde afgifte van endogene opioiden, zoals β-endorphine, veroorzaakt. In 

hoofdstuk 3 is een interessant experiment beschreven, waarbij gebruik werd gemaakt van het 

zelftoedieningsmodel. Zoals uitgelegd kan een muis zichzelf cocaïne toedienen door middel 

van nose-poke responsen. Ter controle werd altijd een tweede muis gekoppeld aan dezelfde 

pomp als deze ‘actieve’ muis. Omdat stoffen als cocaïne ook de motorische activiteit kunnen 

verhogen is een dergelijke controle van belang. In tegenstelling tot de ‘actieve’ muis had deze 

tweede, ‘passieve’, muis geen controle over de cocaïne die hij kreeg toegediend, maar kon 

deze wel nose-poken, wat een maat is voor activiteit. Op deze manier werd het effect van 

‘actief’ en ‘passief’ toegediende cocaïne op de expressie van POMC, de voorloper van het µ-

opioid receptor selectieve endogene opioid β-endorphine, bestudeerd en vergeleken. De 

‘actieve’ en ‘passieve’ muizen werden 30 minuten na beëindiging van een 

zelftoedieningssessie gedood. Vervolgens werd de expressie van POMC mRNA bepaald in de 

hersenen van deze dieren. Er werd een positief verband tussen cocaïne inname en POMC 

mRNA expressie gevonden, echter alleen voor ‘actieve’ en niet voor ‘passieve’ cocaïne 

inname. Hoe meer cocaïne actief werd toegediend hoe meer POMC mRNA tot expressie 

kwam. Aangezien actieve zelftoediening een maat is voor cocaïne reinforcement geven deze 

bevindingen aan dat endogene opioiden inderdaad betrokken zijn bij cocaïne reinforcement.  

Voorts werd de aandacht gericht op µ-opioid receptoren in het ventrale tegmentum (VTA), 

waar een sleutelrol voor opioid-modulatie van cocaïne reinforcement is weggelegd. In 

hoofdstuk 3 is gekeken naar veranderingen in signaaloverdracht in de VTA van µ-opioid 

receptor knockout muizen, die mogelijk de verlaging in cocaïne zelftoediening zouden kunnen 

verklaren. µ-Opioid receptoren bevinden zich in de VTA op GABA neuronen. Activering van 

µ-opioid receptoren leidt tot een verlaging van de activiteit van deze GABA neuronen, die op 

hun beurt een remmend effect uitoefenen op dopamine neuronen in de VTA. Deze dopamine 

neuronen projecteren onder meer naar de nucleus accumbens en de prefrontale cortex. 

Dopamine neuronen in de VTA van µ-opioid receptor knockout muizen, die zoals gezegd 

geen functionele µ-opioid receptoren bezitten, bleken sterker geremd te worden door GABA 

neuronen. Dit betekent dat de activiteit van het zogenaamde mesolimbische dopamine 

systeem, met projecties vanuit de VTA naar onder meer de nucleus accumbens en prefrontale 

cortex, is verlaagd. Deze verandering in signaaloverdracht in de VTA zou daarom inderdaad 

kunnen bijdragen tot de verlaagde cocaïne reinforcement in deze knockout muizen.  

Het endogene opioid systeem interacteert dus met het dopamine systeem, zoals reeds eerder 

door andere onderzoekers werd aangetoond. Dit riep vragen op over mogelijke veranderingen 

in het dopamine systeem die opgetreden zouden kunnen zijn in afwezigheid van de µ-opioid 

receptor, zoals dat bij de µ-opioid receptor knockout muis het geval is, of in het geval van 

overexpressie van opioid receptoren in het geval van chronisch NTX behandelde muizen 

(hoofdstuk 7). In hoofdstuk 6 werden de dopamine receptor niveaus bepaald met behulp van 
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in vitro receptor binding. Dopamine receptoren zijn ingedeeld in ‘D1-like’ en ‘D2-like’ 

receptoren. Er werd geen effect gevonden van afwezigheid of over-expressie van opioid 

receptoren op de expressie van beide hoofdklassen van dopamine receptoren. Verder 

onderzoek wees uit dat de dopamine D3 receptor, een D2-subtype, verlaagd was in de nucleus 

accumbens en het striatum van µ-opioid receptor knockout muizen. Dit is een interessante 

vinding omdat uit recent onderzoek in proefdieren is gebleken dat D3 receptor blokkade 

terugval na afkicken kan verlagen. Mogelijk zijn de µ-opioid receptor knockout muizen 

eveneens afwijkend in terugval in drugsgebruik na een periode van onthouding, hetgeen 

onderwerp moet zijn van toekomstig onderzoek.  

In hoofdstuk 6 is eveneens gekeken naar dopamine-gemedieerd gedrag van de µ-opioid 

receptor knockout en chronisch NTX behandelde muizen. In een open veld waren de µ-opioid 

receptor knockout muizen minder actief terwijl chronisch NTX behandelde muizen juist 

actiever waren ten opzichte van hun controles in een open veld. Dit kan duiden op verschillen 

in het dopamine systeem. Dit onderstreept het belang van goede controles, met name voor 

activiteit, in cocaïne zelftoediening.  

 

Het cannabinoid systeem en cocaïne 

Tot slot is in hoofdstuk 8 gekeken naar de rol van het endogene cannabinoid systeem in het 

moduleren van cocaïne reinforcement en van cocaïne-geïnduceerde gedragssensitizatie. Er 

werd geen effect op cocaïne zelftoediening waargenomen van blokkade van cannabinoid CB1 

receptoren door middel van de CB1 antagonist SR141716A. Verder had SR141716A ook geen 

effect op cocaïne-geïnduceerde gedragssensitizatie. Uit deze bevindingen kan geconcludeerd 

worden dat CB1 receptoren niet betrokken zijn bij cocaïne reinforcement en bij lange-termijn 

adaptaties die zouden kunnen bijdragen tot het ontwikkelen van cocaïneverslaving. 

 

Conclusie 

De belangrijkste bevinding van dit proefschrift is dat de µ-opioid receptor een belangrijke en 

specifieke rol speelt in cocaïne reinforcement. Op basis daarvan en in combinatie met overige 

studies, die laten zien dat de µ-opioid receptor ook belangrijk is voor alcohol en opiaat 

reinforcement, zou variatie in µ-opioid receptor niveaus inderdaad een risicofactor kunnen 

vormen voor het ontwikkelen van cocaïneverslaving. Momenteel wordt veel aandacht besteed 

aan varianten van het µ-opioid receptor gen in relatie tot drugsverslaving bij de mens. De 

resultaten beschreven in dit proefschrift onderstrepen het belang van verder onderzoek naar µ-

opioid receptoren met betrekking tot het risico voor het ontwikkelen van drugsverslaving. 
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NAWOORD  

 

Het is af! Na 4 jaar experimenteren, toch wel behoorlijk wat zweet, stress, kleine en grote 

tegenslagen, ligt het eindresultaat voor u: mijn proefschrift. Omdat ik mij er zeer van bewust 

ben dat dit proefschrift niet alleen mijn persoonlijke verdienste is, besluit ik met enkele 

woorden van dank aan een ieder die in meer of mindere mate heeft bijgedragen aan het 

totstandkomen van dit boekje. 

 

Allereerst wil ik mijn begeleiders bedanken. Mirjam, je enthousiasme, onze vele informele 

gesprekjes, onze brainstorm sessies en niet te vergeten je steun bij die laatste zware loodjes 

heb ik enorm gewaardeerd. Zeer veel dank hiervoor! Jan, mijn oprechte dank voor de vele 

kennis, die je me hebt overgedragen en je onovertroffen snelheid en grondigheid van 

correcties. Een betere leermeester heb ik me niet kunnen wensen. Peter, bijzonder veel dank 

voor je inzet in de eerste fase van mijn promotie-onderzoek en je interesse in mijn onderzoek, 

ook toen dat steeds meer op gedrag werd gericht. Mirjam, Jan en Peter, de vrijheid die jullie 

mij gaven en het vertrouwen dat jullie in mij toonden heb ik zeer gewaardeerd.  

Geen leuke en succesvolle promotie-periode zonder collega’s, voor hun hulp maar zeker ook 

voor de nodige ontspanning. Iedereen van de afdeling farmacologie en anatomie hartelijk 

bedankt! Een aantal personen wil ik nog in het bijzonder bedanken. Allereerst mijn 

kamergenoot Leontien: bedankt voor de leuke discussies en alle gezelligheid zowel op het lab 

als daarbuiten. Ik ben blij dat je me dadelijk als paranimf wilt bijstaan en daarna ben je al 

gauw zelf aan de beurt, succes met die laatste loodjes! Mijn oud-kamergenootjes: Lisette, 

Leon, Robert (het is toch nog wat geworden met dit project) en Hans. Annemarie, dank je wel 

voor al die uurtjes achter de barrière, je hulp met de UB-tjes, operaties, je vertrouwen in de 

intraveneuze zelftoediening bij muizen, en je spontane inzet waar het soms even nodig was. 

Inge, jammer dat ik uiteindelijk toch op de muis overgestapt ben en minder dan verwacht 

samen met je ging opereren of dissecteren, met de radio op 10! Bedankt voor je gezelligheid 

en soms je luisterend oor. De (oud-)collega’s van 5, in het bijzonder Femke, Roelof, Jeroen, 

Geert-Jan en John: bedankt voor de heerlijke hangstoel en jullie geweldige inloop-kamer. Ook 

mogen hier Jan en Joost niet ontbreken: bedankt voor alle hulp bij operatiebenodigdheden, 

lachgasperikelen en ongewenste booracties. Daniel, Geert en Martien, ik heb met veel plezier 

met jullie samengewerkt aan zijdelingse experimenten met de µ-opioid receptor knockout 

muis, veel dank daarvoor! Verder wil ik nog de collega’s van de ‘mesDA’ groep bedanken 

voor de interessante en inspirerende discussies tijdens werkbesprekingen. En last but not least 

veel dank aan de secretaresses. Ria, Jetty en in het bijzonder Marijke: bedankt voor de altijd 

zo snelle en accurate hulp op secretarieel gebied.  

Ik had het geluk een viertal enthousiaste studenten te mogen laten meewerken aan mijn 

project. Matthijs, Michiel, Emily en Leyla bedankt voor jullie inzet en soms verfrissende blik. 

Ik hoop dat het voor jullie net zo leerzaam was en wens jullie veel succes in jullie carrières. 
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Special thanks to my temporary colleagues of the Pharmacology Group at the University of 

Surrey in Guildford. Ian, thank you for enabling me to visit your lab, which resulted in such 

fine results in such little time! Alexis, thanks for helping me with the autoradiography and for 

the great discussions we had! Also I would like to thank Mary, Elin and all other members of 

the lab for making my stay as efficient and pleasant as it was! 

Josefien, Johanneke, Femke, Marjan en Leontien bedankt voor de gezelligheid binnen onze 

meiden-eetclub! Wanneer spreken we weer eens af voor een gezellig klets-avondje?  

Ook de BFW-studiegenoten mogen in dit dankwoord niet ontbreken: Suzanne, Aukje, Ciska, 

Mascha, Ine, Rosanne, Hanneke en Marieke. Ik ben blij dat we elkaar nog zo regelmatig zien, 

ook al worden we zo langzaam aan wel een erg wereldwijd gezelschap.  

En dan de ‘Doeza-genootjes’ of voor mij nog altijd gewoon mijn huisgenootjes. Jolanda, 

Marijenne, Martine, bedankt dat jullie er altijd zijn. Ik heb jullie interesse in mijn onderzoek 

enorm gewaardeerd! Marijenne, bedankt voor je kritische noot bij de nederlandse 

samenvatting en maak je er in Nieuw Zeeland toch een beetje een feestje van op de 20e?  

Bart en Silvana, mede-studenten, mede-AIO’s en mede-‘med-farm stel’. Bedankt voor al die 

gezellige avondjes ‘Kolonisten’, die toch altijd gepaard gaan met enkele wetenschappelijke 

discussies. Ik kijk uit naar jullie boekjes…! 

 

Mijn ouders, Kirsten, Martijn, Rogier (bijzonder veel dank voor de mooie omslag!) en Annet: 

bedankt voor zo’n gezellig thuis en voor alle hulp op de meest onmogelijke momenten. 

Kirsten, ik ben bijzonder trots dat jij mijn tweede Paranimf zal zijn. Ook mijn schoonfamilie 
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onderzoekers doen. Henk, al mag je dan het eindresultaat niet meer bewonderen, de 

belangstelling die je altijd toonde in mij en in mijn onderzoek zal ik niet vergeten.  

 

Tot slot enkele speciale woorden van dank aan mijn lieve Adriaan. Druk met je eigen boekje 

vond je zo nu en dan toch nog een gaatje om mij te helpen met mijn manuscript, bedankt voor 

al je last-minute computer hulp, nuttige tips en je steun. Wel jammer dat die omruil-actie van 

huishoudelijke klussen voor schrijven er nooit echt van gekomen is, maar goed… De boekjes 

zijn af, het is ons saampjes gelukt en een nieuwe avontuur lacht ons alweer toe. We are going 

to San Francisco…! 

 



 

 




