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Chapter

General Introduction

- Alles wat je weet is geen probleem -
(Johan Cruijff, 1995)
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General Introduction
History of apocynin

Apocynin, 4'-hydroxy-3'-methoxy-acetophenone, a
small molecule with interesting activities, was first O\ _CHj
described by Schmiedeberg in 1883 and was isolated ¢
from the roots of Apocynum cannabinum (Canadian hemp)
(1). By then, extractions of Canadian hemp were used as
official remedies for dropsy and heart troubles (2).
In 1908, Finnemore re-investigated the constituents

H
of Canadian hemp and described a new procedure to OCH;
isolate apocynin on a larger, more adequate scale (3). He OH
also confirmed that apocynin was identical to Apocynin

acetovanillone which was synthesized and described by
Otto in 1891 (4).

Apocynin is an acetophenone with a molecular weight of 166.17 and forms fine
needles upon crystallization from water. It possesses a faint vanilla odor and has a
melting point of 115°C. The substance is slightly soluble in cold water, but freely
soluble in hot water, alcohol, benzene, chloroform, and ether. Although apocynin was
tirst discovered in A. cannabinum, its occurrence is not restricted exclusively to the
Apocynaceae family. In fact, it is a common compound in many plant species (5-9)
although the quantities in which apocynin is present may vary from species to species.
Furthermore, in the wood and paper industry, apocynin is known as one of the
degradation products of lignin (10, 11).

In 1971, Basu et al reported the isolation of apocynin from the roots of Picrorhiza
kurroa Royle ex Benth. (12). P. kurroa is a small, perennial plant growing at high
altitudes in the western Himalayas and which has been used extensively for ages and is
still in use in the Ayurvedic system of medicine in India and Sri Lanka. Major fields of
application are as a liver tonic, a cardiotonic, and the treatment of jaundice and asthma
(13). Although, at that time, no specific properties of apocynin were known which
could explain the effectiveness of P. kurroa, this compound was considered to be an
important constituent contributing to the medicinal potential of this herb. In 1990, in
our institute Simons et al. subjected the roots of P. kurroa to an activity-guided isolation
procedure which eventually established the pharmacological potential of apocynin
(14, 15). Apocynin proved to be a potent anti-inflammatory agent, based on the
selective inhibition of the production of reactive oxygen species (ROS) by activated
human polymorphonuclear neutrophils (PMNs). Since PMNs and ROS play an
important role in the innate host defense against invading microorganisms, the activity
of apocynin can be of significant importance in the treatment of diseases with
neutrophils as (pro)inflammatory mediators.

Neutrophils, Reactive Oxygen Species and the NADPH oxidase

In general, vertebrates possess two fundamental mechanisms to respond to
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infection, the innate and the acquired immune system (16). Innate, or natural immunity
is the ability to respond immediately to an infectious challenge, regardless of previous
exposure of the host to the invading agent. Elements of the innate system include
phagocytic cells, namely polymorphonuclear leukocytes (PMNs) and mononuclear
phagocytes (e.g. macrophages), and the complement cascade of circulating soluble pre-
enzymic proteins. These elements constitute a relatively nonspecific “pattern
recognition” system which has functional analogues in the immune system of a wide
variety of multicellular organisms, including plants (17) and insects (18). As such, these
evolutionary ancient elements represent a rapid and sensitive surveillance mechanism
of host defense when the organism is challenged with an invading microorganism
previously “unseen’ by the host’s immune system. In contrast to the innate system,
adaptive immunity is restricted to vertebrates and represents a precisely tuned system
by which host cells define specifically the nature of the invading pathogen or tumor
cell (19). Such precision, however, requires time for antigens to be processed and
specific lymphocytes and antibodies to be generated. Therefore the adaptive system is
slower to respond to new challenges than is the innate system which lacks specificity
(16).

Granulocytes arise from pluripotent stem cells located in the bone marrow, and
include eosinophils, basophils, and neutrophils. PMNs are the most numerous
leukocytes in the human peripheral circulation, and take their name from their
typically multilobed nucleus. The daily production of mature PMNs in a healthy adult
is in the order of 10" cells. During acute infection or other inflammatory stresses,
PMNs are mobilized from the marrow reservoir, containing up to 10 times the normal
daily neutrophil requirement (20). PMNs are motile, and very plastic cells which allows
them to move to sites of inflammation where they serve as a first line of defense against
infectious microorganisms. For this purpose, PMNs contain granules filled with
proteolytic and other cytotoxic enzymes (21, 22). Besides releasing enzymes, PMNs are
also able to phagocytose and to convert oxygen into highly reactive oxygen species
(ROS). Following phagocytosis, ingested microorganisms may be killed inside the
phagosome by a combined action of enzyme activity and ROS production.

Upon activation, PMNs start to consume a vast amount of oxygen which is
converted into ROS, a process known as the respiratory or oxidative burst (23, 24). This
process is dependent on the activity of the enzyme NADPH oxidase. This oxidase can
be activated by both receptor-mediated and receptor-independent processes. Typical
receptor-dependent stimuli are complement components Cba, C3b and iC3b (25), the
bacterium-derived chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) (26), the
lectin concanavalin A (27), and opsonized zymosan (OPZ) (28). Receptor-independent
stimuli include long-chain unsaturated fatty acids and phorbol 12-myristate 13-acetate
(PMA) (29). Upon activation, the oxidase accepts electrons from NADPH at the
cytosolic side of the membrane and donates these to molecular oxygen at the other side
of the membrane, either at the outside of the cells or in the phagosomes containing
ingested microorganisms. In this way, a one-electron reduction of oxygen to
superoxide anion ([(D2) is catalyzed at the expense of NADPH as depicted in the

10
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following equation:
20, + NADPH — 2> + NADP* + H*

Most of the oxygen consumed in this way will not be present as [(D>, but can be
accounted for as hydrogen peroxide which is formed from dismutation of the
superoxide radical (30, 31):

@Dy + e + 2HY ———» HXO»

However, hydrogen peroxide (H202) is bactericidal only at high
concentrations (32) while exogenously generated superoxide does not kill bacteria
directly (33, 34) because of its limited membrane permeability. Therefore, a variety of
secundary oxidants have been proposed to account for the destructive capacity of
PMN:s (see Figure 1).

Hydroxyl radicals ((DH), formed by the iron catalyzed Fenton reaction, are
extremely reactive with most biological molecules although they have a limited range
of action (35).

H,0, +e + H —F&/Fe” 0 10 + H

Singlet oxygen (102) is often seen as the electronically excited state of oxygen
and may react with membrane lipids initiating peroxidation (36). Most of the H2Oz
generated by PMNs is consumed by myeloperoxidase (MPO), an enzyme released
by stimulated PMNs (37-40). This heme-containing peroxidase is a major constituent
of azurophilic granules and is unique in using H>Oz to oxidize chloride ions to the
strong non-radical oxidant hypochlorous acid (HOCI) (41). Other substrates of MPO
include iodide, bromide, thiocyanite, and nitrite (42, 43).

MPO
HxO2 + (I ——» HOCI + OH-

HOCI is the most bactericidal oxidant known to be produced by the PMN
(44), and many species of bacteria are killed readily by the MPO/ H2O: /chloride
system (45).

In addition to these ROS, there is considerable interest in nitric oxide (NO)
and NO-derived peroxynitrite (ONOQO-) as potential cytotoxic agents produced by
inflammatory cells (46-48). Peroxynitrite is a potent, relatively stable oxidant (49)
with properties similar to those of hydroxyl radical. Although murine macrophages
are reported to generate NO in response to cytokines (50), studies to detect NO
production by stimulated human neutrophils have been contradictionary and mostly
negative (51, 52). However, in spite of some reports on nitric oxide synthase (NOS)
activity in human neutrophils (53), it is assumed that in vitro studies often have been

negative since the conditions necessary for induction may not have been completely
established (30).

11
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In experimental settings, ROS production by activated phagocytes can be
detected using enhancers such as luminol or lucigenin (54). For ROS-detection,
lucigenin must first undergo reduction, while luminol must undergo one-electron
oxidation to generate an unstable endoperoxide, the decomposition of which
generates light by photon-emission (55). Luminol largely detects HOCI, which
means that luminol detection is mainly dependent on the MPO/H20; system (56),
while detection using lucigenin is MPO-independent and more specific for > (57).
Luminol is able to enter the cell and thereby detects intra- as well as extracellularly
produced ROS (58), while lucigenin is practically incapable of passing the cell
membrane and thereby only detects extracellular events (59). However, results
should be interpreted with care, because real specificity can never be assumed with
any of these light-emission-enhancing compounds (60).

NADPH NADP*+H"*
NOS

Intracellular

NADPH

oxidase
Extracellular
(or phagosomal)

N\
02 'O 2_
A
ONOO®

Fiy H,0,
!
-OH
Quro>

Cl-

HOCI

2N
102 .

Figure 1. Reactive oxidant species production and reactions in stimulated neutrophils. [NOS: nitric

OH

oxide synthase, MPO: myeloperoxidase; adapted from Hampton et al.(30)]

Production of [, seems to occur within all aerobic cells, to an extent dependent
on Oz concentration. In mitochondria, 1-3% of electrons are thought to form [, The
fact that ROS are also quantitatively significant products of aerobic metabolism is
illustrated by the following calculation: a normal adult (assuming 70 kg body weight)
at rest utilizes 3.5 mL Oz/kg/min, which is identical to 352.8 1/day or 14.7 mol/day. If
1% makes [y this gives 0.147 mol/day or 53.66 mol/year or about 1.7 kg of Dy per
year. During the respiratory burst, the increase in O, uptake can be 10 to 20 times that
of the resting Oz consumption of neutrophils (61).
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The NADPH oxidase, responsible for ROS production, is a multi-component
enzyme system which is unassembled (and thereby inactive) in resting PMNs.
However, activation of the phagocyte, eg. by the binding of opsonized
microorganisms to cell-surface receptors, leads to the assembly of an active enzyme
complex on the plasma membrane (62, 63). The critical importance of a functioning
NADPH oxidase in normal host defense is most dramatically illustrated by the
recurrent bacterial and fungal infections observed in individuals with chronic
granulomatous disease (CGD), a disorder in which the oxidase is non-functional due
to a deficiency in one of the constituting protein components (64-68). PMNs from
such patients, lacking a functionally competent oxidase, fail to generate [(D>- upon
stimulation. Although the formation of ROS by stimulated PMNs may be a
physiological response which is advantageous to the host, it can also be detrimental in
many inflammatory states in which these radicals might give rise to excessive tissue
damage (69-71).

Essential components of the NADPH oxidase include plasma membrane and
cytosolic proteins. The key plasma membrane component is a heterodimeric flavo-
cytochrome b which is composed of a 91-kDa glycoprotein (gp91#x) and a 22-kDa
protein (p22vhox) (72, 73). Flavocytochrome b serves to transfer electrons from
NADPH to molecular oxygen, resulting in the generation of [D>. In PMN
membranes, a low-molecular-weight GTP-binding protein, RaplA, is associated with
flavocytochrome b and plays an important role in NADPH oxidase regulation in vivo
(74, 75). Furthermore, cytosolic proteins p47rhox, p67rhox, and a second low-molecular-
weight GTP-binding protein, Rac2 are absolutely required for NADPH oxidase
activity (68, 76, 77) and these three proteins associate with flavocytochrome b to
form the functional NADPH oxidase (78-81). Additionally, a cytosolic protein,
p40rhex, has been identified, but its role in oxidase function is not completely defined
(82). According to the current model of NADPH oxidase assembly, p47rior and
p67rhoxtranslocate en bloc to associate with flavocytochrome b during PMN activation
(81, 83, 84) (see also Fig. 2). Rac2 translocates simultaneously, but independently of
the other two cytosolic components, to associate with the membrane-bound
flavocytochrome b (85, 86). Studies of oxidase assembly in PMNs of patients with
various forms of CGD suggest that p47vhox binds directly to flavocytochrome b (79)
and at least six regions of flavocytochrome b have been identified as putative sites

for interaction with p47rivx, including four sites on gp91rx and two sites on
p22rhox (87-94).

Proposed mode of action of apocynin

Apocynin is a selective inhibitor of NADPH oxidase activity and concomitant
ROS production (IC50 value: 10 pM) in activated human neutrophils (14). Interestingly,
it does not seem to interfere with the PMNs other defense mechanisms, as it does not
affect phagocytosis or intracellular killing (95). For this reason apocynin has become an
important, widely used, experimental tool to block NADPH oxidase activity.

13
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Figure 2. NADPH oxidase assembly and subsequent ROS production by activated PMNs
(picture by courtesy of Dr. F.R. DeLeo)
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However, its mode of action is not completely elucidated and neither is the way
in which its anti-inflammatory properties are accomplished, but selective inhibition of
ROS production by activated phagocytes may be a valid explanation for the anti-
inflammatory activity of apocynin.

In order to further investigate the anti-inflammatory properties of apocynin,
many experiments, in vitro as well as in vivo, have been performed. In 1990, Simons
et al. hypothesized that apocynin has to be metabolically activated by stimulated
neutrophils by means of a ROS and MPO-dependent mechanism (14). This means that
the activity of apocynin is merely restricted to activated PMNs and thereby to actual
sites of inflammation. Evidence in favor of this theory could be their finding that
o-methoxy-substituted catechols, such as apocynin, do not inhibit D, release from rat
alveolar macrophages, which lack significant MPO activity. In fact, their theory was
supported by the findings of Stolk et al. (95) who performed three different
experiments which all pointed to metabolic activation of the molecule: (i) OPZ-
stimulated human alveolar macrophages, which are MPO-deficient (96), generate
superoxide anion in a way which could not be inhibited by apocynin in concentrations
active in experiments with neutrophils; (ii) the OPZ-induced respiratory burst of PMNs
that are MPO-deficient, was not inhibited to the same extent as the OPZ-induced burst
in normal PMNs; and (iii) human neutrophils, stimulated by PMA, release little or no
MPO (97), but do produce superoxide for a prolonged period of time, which could not
be inhibited by apocynin.

These findings clearly point to an important interaction between apocynin and
MPO and seem to indicate that apocynin is indeed selectively converted into an active
metabolite which may be responsible for the anti-inflammatory activity. Additional
experiments by the same authors also supported this theory: apocynin (or its active
metabolite) inhibits translocation of two essential cytosolic proteins, p47rhox and p67rho,
to the cell membrane, thereby inhibiting the assembly of NADPH oxidase (95). But,
complete inhibition only occurred after seven minutes. This lag time is consistent with
the idea that apocynin has to be converted into its active metabolite, before exerting
inhibitory activity.

't Hart and Simons et al. were the first to propose a conversion mechanism and a
possible structure for this active metabolite (a quinone methide), but no scientific
evidence was provided to confirm this theory (98). Recently, however, a new structure
has been postulated as the probable active metabolite of apocynin. Holland et al.
suggest that apocynin is metabolically converted into a dimer which they called
diapocynin (99). However, the actual existence, chemical properties, and activities of
this dimer need further confirmation as no precise chemical data were provided.
Recently, Miiller et al. also reported the isolation of an active metabolite after
incubation of apocynin with MPO, but again no characteristics about the structure of
this metabolite were presented (100). Still, these reports indicate that the idea of
metabolic conversion is more or less accepted. And although the exact mode of action
of apocynin is still not fully understood, its activities in different in vitro and in vivo
assays, together with its selectivity and lack of toxicity, are quite impressive. These
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features make apocynin a valuable lead compound in the search for new, non-steroidal
anti-inflammatory compounds.

Toxicity

Side effects of apocynin are not known. Apocynin has very low toxicity
(LD50: 9 g/kg) after oral administration in mice (101). Even when treated with
apocynin for a three-month period, rabbits do not show any signs of ill-health and
other parameters checked were comparable to control-treated animals (102). It has also
been reported that in an ongoing phase-I clinical study, apocynin is tested for the
treatment of lung emphysema.

The patients received, during 4 days, four daily dosages of 3 mL (1 mg
apocynin/mL) by inhalation and so far, no side effects, including no adverse
gastrointestinal effects, have been observed ( ]. Stolk and J. Brahim, Department of
Pulmonology, Leiden University Hospital, The Netherlands ; Personal Communication,
1998). Furthermore, when tested in the Salmonella typhimurium mutagenicity assay
(Ames test) and the sister chromatid exchange (SCE) test, which tests for DNA-
damaging properties, apocynin showed no genotoxic effects at concentrations up to
600 UM (103).

Kinetics of apocynin

Not much is known about the kinetics of apocynin in vivo, but interesting
metabolic aspects of apocynin were described by Daly (104) and Gjertsen (105). They
showed that after a period of 20 hours upon i.p. administration of 120 mg/kg apocynin
to rats, 80% of the apocynin was recovered unchanged in the urine of the animals.
Approximately 0.5% was converted into the para-isomer, acetoisovanillone. Also traces
of 3’ ,4’-dihydroxy-acetophenone were excreted. A further pathway of apocynin
metabolization, although of minor quantitative importance, was ketone reduction to
the 1-phenylethanol derivatives 1-(4'-hydroxy-3’-methoxyphenyl)-ethanol and 1-(3'-,4’-
dihydroxyphenyl)-ethanol. This pathway had not previously been reported for
acetophenone derivatives possessing hydroxyl substituents. This raises the question as
to whether one of these compounds may be a candidate for the active metabolite of
apocynin. In the next section of this chapter the biological activities of apocynin in
connection to inflammatory diseases will be reviewed.

USE OF APOCYNIN IN THE TREATMENT OF INFLAMMATORY DISEASES
Anti-arthritic activity of apocynin

It is known that in the pathogenesis of collagen-induced arthritis (CIA) in rats,
neutrophils play an important role, since depletion of this cell type reduces joint
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inflammation by more than 60% (106). In studies described by ‘t Hart et al., the anti-
inflammatory activity of apocynin was tested in a CIA rat model (107, 108).
Collagen type II-immunized rats were treated with different doses of apocynin in the
drinking water (0.3 - 200 pg/mL) starting 9 days after immunization (this is just
before the onset of arthritis, but after the development of a specific immune
response). The treatment was terminated 14 days later, at the time when joint
swelling in the control group was maximal. Surprisingly, the lowest apocynin
concentration protected the animals from joint swelling, whereas increasing the dose
up to 200 pg/mL did not improve the effect. Even 100 days after immunization, no
flare-up of the joint swelling was observed in apocynin-treated rats. Treatment of
rats with low doses of apocynin also reduced plasma IL-6 levels. Interestingly, it was
demonstrated that the severity of CIA correlates with increased IL-6 production
(109). However, in unpublished results of these authors it was observed that
apocynin is not able to cure an already existing inflammation. So, the activity of the
molecule seems to be restricted to mechanisms which take place during the onset of
the inflammation, which often is the period in which neutrophils play an important
role.

Another effect of apocynin which may emphasize its importance in the
treatment of rheumatoid arthritis (RA) is that apocynin inhibits inflammation-
mediated cartilage destruction in human articular cartilage explants, without having
adverse effects on the cartilage itself (110). In these experiments apocynin was added to
cultured peripheral blood mononuclear cells (PBMNCs) of RA patients. Cartilage-
destructive activity was determined after addition of culture supernatant to tissue
samples of the cartilage explants. Additionally, the proliferation of the PBMNCs and
their production of tumor necrosis factor alpha (TNFa), interleukin-1 (IL-1) and IL-10
were determined. Also the production of interferon gamma (IFNy) and IL-4 by T-cells
was measured. Apocynin (180 uM) was able to abolish RA PBMNC-induced inhibition
of cartilage matrix proteoglycan synthesis, while no effect on inflammation-enhanced
proteoglycan release was found. The effect was accompanied by a decrease in IL-1 and
TNFa production by the PBMNC. Such findings are in accordance with previously
reported experiments (107, 111). No effect on T-cell proliferation was observed, but the
production of IFNy, IL-4, and T-cell derived IL-10 was strongly diminished. Most
importantly, apocynin diminished the release of proteoglycans (responsible for the
typical consistency) from the cartilage matrix and did not show any direct adverse
effects on chondrocyte metabolism. These results underline the importance of further
in vivo studies to test apocynin’s effectiveness in the long-term treatment of chronic
inflammatory and degenerative joint diseases.

Apocynin in the treatment of inflammatory bowel disease

ROS have been reported to play an important role in the pathogenesis of
inflammatory bowel disease (IBD) (112, 113). In rat models of intestinal inflammation,
an increased production of ROS also contributes to tissue injury (71). Palmen et al.
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examined the effects of apocynin in acute and relapsing experimental colitis in rats,
which are models for inflammation in the large intestine (114, 115). In rats, acute colitis
was induced by intra-colonic administration of 24,6-trinitrobenzene sulfonic acid
(TNBS) in 30% ethanol (30 mg in 0.25 mL). Relapsing colitis was induced by a
subcutaneous injection of TNBS, 5 weeks after the induction of acute colitis. In both the
acute and relapsing colitis models, the animals received two intravenous injections of
apocynin (4 mg/kg bodyweight) at day 0 and 3 (acute) or day 35 and 38 (relapsing).
After sacrificing the rats, the influx of macrophages and PMNs into colon tissue as well
as MPO activity and macroscopical damage scores of the colon were determined. In the
acute model, apocynin significantly reduced the damage score, MPO activity, and the
number of macrophages and PMNs in the colon. Apocynin treatment in relapsing
colitis resulted in a striking improvement of the damage score to almost normal values,
significantly lower MPO-activity and in decreased numbers of colonic macrophages.
These experiments show that, besides inhibition of ROS production, apocynin may also
prevent tissue damage in IBD by inhibiting the influx of inflammatory cells into the
colon.

Another remarkable effect of apocynin in the treatment of IBD was reported
by Rachmilewitz et al. (116). Apocynin was tested in a rat model for Crohn’s disease,
which represents inflammation and damage in the small intestine. They showed that
the addition of 120 pg/mL of apocynin to the drinking water resulted in an effective
decrease in the extent and severity of jejunal damage. Furthermore, histological data
revealed that, after seven days, the villi of the jejunal wall were almost normal, while
no granulomas were observed in any of the rats. This effective modulation in the
pathogenesis of both small and large intestinal inflammation by apocynin in
experimental animals may stimulate further research on the use of apocynin in IBD.

Anti-asthmatic properties of apocynin

As mentioned previously, P. kurroa has been used for ages in the treatment of
asthma (13). Using different chemical and pharmacological methods, Dorsch et al. were
able to identify the glucoside of apocynin, androsin, as active compound which
prevented allergen- and PAF-induced bronchial obstruction in guinea pigs (117). Also
the aglucone, apocynin, was tested for similar activity. It appeared that inhalation of
apocynin was more effective than oral uptake. Apocynin was administrated as an
aerosol in the plethysmographic guinea pig model, using PAF and/or OVA as
challenging agents for the generation of bronchial constriction. In the OVA-model,

0.5 mg apocynin given by inhalation 30 minutes prior to the challenge, resulted in a
76% inhibition of bronchoconstriction after the first challenge while a 64% inhibition
was observed after the second challenge. In PAF-challenged animals, 0.34 mg apocynin
decreased the bronchoconstriction by 65%. In many experimental animal models for
respiratory diseases as well as in ex vivo studies, apocynin is used for its beneficial
effects (118-126). Because apocynin exhibited neither atropine- or theophylline-like, nor
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anti-histaminic or broncholytic modes of action, Dorsch et al. suggested that the anti-
asthmatic effect may be due to interference with cell or mediator systems involved in
inflammatory processes. However, apocynin (5 mg/kg body weight, administered
orally) was reported to inhibit the increase in airway responsiveness to bradykinin in
an ozone-induced airway hyperresponsiveness model in rats without affecting the
neutrophil counts in broncho-alveolar lavage fluid (127). Since production of ROS by
activated phagocytes are thought to play an important role in airway inflammation
(128, 129) it is most likely that the effect of apocynin must be attributed to inhibition of
ROS production.

Another possible explanation for the effectiveness of apocynin in the treatment
of respiratory diseases might be the fact that apocynin inhibits peroxynitrite (ONOO")
formation (130). ONOO:- is the very reactive product of the reaction of nitric oxide (NO)
and superoxide anion ([(D2). For many years, much attention has been paid to the
effects of NO in respiratory diseases (131), but recently the focus has been shifted
towards reactive nitrogen species (RNS) in general, and to peroxynitrite in particular
(132, 133). Peroxynitrite is suggested to induce epithelial damage, mediator release, and
consequently hyperresponsiveness (134). This finding may have important clinical
implications, since airway inflammation, epithelial damage, and hyperresponsiveness
are characteristic features in patients suffering from asthma.

Since apocynin inhibits NO production only at high concentrations (130, 135,
136), it is very likely that its potent (D> inhibition can be accounted for the eventual
ONOQO- inhibition. Since ROS appear to have a pivotal role in all pathways leading to
the production of RNS, inhibition of superoxide anion production by apocynin may
not only largely prevent the formation of peroxynitrite, but also that of other RNS.

Apocynin and atherosclerosis

Atherosclerosis is one of the most common cardiovascular diseases in
developed countries and is yet another disease in which ROS are thought to play an
important role (137, 138). Among the main causes of the development of
atherosclerosis is a high serum level of low-density cholesterol-containing lipoprotein
(LDL) (139). In the pathogenesis of atherosclerosis, much research has been directed
towards the role of the vascular endothelium. It has been suggested that LDL oxidation
by cells of the arterial wall may be a key event in early atherosclerosis (137, 140).

Recently, several reports have been published which claim that endothelial cells
may possess a functional NADPH oxidase, capable of producing ROS, similar to that of
phagocytes (141-145). Atherogenic levels of LDL have been shown to lead to a
significant increase in NADPH oxidase dependent ROS production by the
endothelium (146). Importantly, NADPH oxidase activation and concomitant ROS
production has been reported to be required for macrophage-mediated oxidation of
LDL which increases atherogenicity (138, 147). Although the immediate product of
NADPH oxidase ([D2) is not reactive enough to induce LDL oxidation, it can be
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converted into other, more reactive species which are able to directly oxidize the
lipoprotein, resulting in the formation and release of peroxidized fatty acids.

Aviram et al. tested apocynin in a J-774 A.1 murine macrophage model to
investigate its effect on macrophage-mediated oxidation of LDL. They showed that
inhibition of the macrophage NADPH oxidase with apocynin (600 pM) inhibited
macrophage-mediated oxidation of LDL by 89%, compared with levels in control cells
(148).

Experiments with apocynin in endothelial cells showed similar results
compared with the effects of apocynin in phagocytes. Holland et al. reported that
endothelial cells incubated with apocynin (600 pM) and stimulated with the
phospholipase A; activator thrombin, showed NADPH oxidase inhibition, resulting in
a significantly impaired ROS production (142). The same authors also state that
endothelial cell incubation with apocynin markedly diminished high LDL-induced
increases in cellular H>Oz concentrations (149). Furthermore, apocynin was shown to be
effective at suppressing atherogenesis in vivo in spite of highly elevated serum LDL
levels using a rabbit model (102). So, maybe apocynin has revealed a new strategy in
the treatment of atherosclerosis, and therefore future treatments should also focus on
NADPH oxidase inhibition as an effective way of preventing the endothelium from the
initiating events of atherosclerosis.

Effect of apocynin on mediators of inflammation

So far, all effects of apocynin described could be attributed more or less to the
inhibition of the NADPH oxidase in activated phagocytes and the consequent
inhibition of ROS production. But several reports indicate that apocynin may also have
other activities which may contribute to its effectiveness as an anti-inflammatory drug.

Engels et al. investigated the effects of apocynin on the production of
arachidonic acid-derived inflammatory mediators by guinea pig pulmonary
macrophages (150). They showed that apocynin inhibits the formation of the pro-
inflammatory compound thromboxane A, but stimulates the generation of the anti-
inflammatory prostaglandins E> (PGEz) and Faq (PGF2). They also demonstrated that
micromolar concentrations of apocynin (~30 pM) potently inhibited arachidonic acid-
induced platelet aggregation, important in thrombosis, possibly through the inhibitory
effect on thromboxane formation. The finding that apocynin stimulates PGE;
production may explain results published by Mattsson et al., who showed that
apocynin dose-dependently inhibits tumor necrosis factor-o (TNFa), an important
mediator in bacterial septic shock, in lipopolysaccharide (LPS) and peptidoglycan
(PG)-stimulated human monocytes (111). Because of the enhanced production of PGEz
by apocynin, levels of cyclic AMP will increase (151), resulting in a suppression of
TNFa production. These results suggest that apocynin not only derives its anti-
inflammatory effects from the specific inhibition of ROS production, but that it also
affects arachidonic acid-derived mediators, which are also of importance in
inflammatory processes.
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Reviewing all the previously described activities of apocynin and the frequent
use of this compound in modern research, two conclusions can be drawn. Firstly, the
frequent use of apocynin in the treatment of inflammatory diseases not only
demonstrates its effectiveness, but also stresses the importance of neutrophils and
PMN-derived ROS in these disease states. And secondly, for a potent compound used
this frequently, it is surprising that its exact mode of action is not completely
elucidated yet.

Summarizing all the applications of apocynin and taken into account its low
toxicity, selectivity, and lack of known side effects, it can be concluded that apocynin
deserves further attention and that studies to elucidate its mode of action may
contribute to the development of safe and selective anti-inflammatory drugs which
lack the often serious side effects of steroids.

Aim and outline of this thesis

It has been shown in experimental animal models that apocynin is a potent
drug in the treatment of inflammatory diseases such as colitis and rheumatoid
arthritis. Since its mode of action is not well defined, we tried to get a more precise
insight into the mechanisms by which apocynin exerts its activity. Effects on ROS
production by stimulated PMNs, as well as effects on other mediators of
inflammation were investigated. A better understanding of the mechanism(s) of
action of apocynin will contribute to its use as lead-compound in the development of
potent and safe non-steroidal anti-inflammatory drugs (NSAIDs).

It has been suggested previously that apocynin is converted into an active
metabolite responsible for the eventual activity. In this thesis, experiments providing
more information on its inhibitory effects on NADPH oxidase activity in stimulated
PMNs are described in Chapter 2. In Chapter 3, some structure-activity relationship
studies are presented. Since reactive nitrogen species (RNS) have been shown to play
an important role in several inflammatory diseases, effects of apocynin on
peroxynitrite formation in murine macrophages are described in Chapter 4. Chapter
5 deals with the isolation, characterization and activity of the possible active
metabolite of apocynin. Finally, effects of apocynin, its possible active metabolite,
and some apocynin analogs on the production of different cytokines by mononuclear
cells and on T cell proliferation are described in Chapter 6.

From the data obtained, we propose a model for the mechanism of action of
apocynin which is different from existing theories (Chapter 7).
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Abstract

Generation of superoxide anion ([(D27) by the NADPH-dependent oxidase of
activated polymorphonuclear neutrophils (PMN) is an essential aspect of the innate
immune response to invading microorganisms. In addition to >, other M>—derived
reactive oxygen species (ROS) are formed which contribute significantly to host
defense.

Apocynin, a compound originally isolated from the medicinal plant Picrorhiza
kurroa, is a potent inhibitor of the ROS production by activated human PMNs. To
gain mechanistic insights into the activity of apocynin we assessed the activation and
assembly of the NADPH oxidase of human PMNs stimulated with the particulate
stimulus opsonized zymosan (OPZ). The activity of apocynin on extracellular as well
as intracellular ROS production following OPZ-stimulation was assessed. To further
evaluate effects on NADPH oxidase activity, apocynin-induced inhibition of the
oxygen consumption of stimulated human PMNs was also investigated. Effects of
apocynin on the assembly of the NADPH oxidase were assessed in a cell-free system
and effects on the translocation of p47rhoX, an essential cytosolic component
necessary for a functional NADPH oxidase complex, to the cell membrane were also
evaluated.

Apocynin inhibited both intracellular and extracellular ROS production.
Examining the effects on the assembly of the NADPH oxidase at OPZ-containing
phagosomes showed that apocynin interferes with the phagosomal association of the
cytosolic protein p47rhox. This inhibition by apocynin was not instantaneous, but
showed a lag time. Inhibition of oxygen consumption by apocynin showed a similar
lag time, which may represent the time necessary for metabolic conversion of
apocynin into an active metabolite. PMNs incubated with OPZ in the presence of
apocynin, showed immediate inhibition upon a second stimulation with OPZ,
indicating that apocynin had been converted into its active metabolite inside the cell.
In the cell-free system, apocynin did not inhibit the assembly of the NADPH oxidase
complex, probably due to the lack of physiological mediators which are present only
in intact cells.

These data indicate that apocynin is capable of entering the PMN and may
inhibit the assembly of the NADPH oxidase complex by interfering with the
translocation of an essential cytosolic protein. Furthermore, these data support the
hypothesis that, upon stimulation of PMNs, apocynin is metabolically converted into
its active metabolite by the neutrophil granule enzyme MPO in combination with
ROS generated by the cells. These data suggest that apocynin is a selective inhibitor
of activated human neutrophils and may be a clinically useful, interesting lead-
compound for specific non-steroidal respiratory burst inhibitors.
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Introduction

Polymorphonuclear neutrophils (PMNs) are phagocytic cells that are readily
mobilized to sites of infection and ingest microorganisms such as bacteria by a
process known as phagocytosis (1, 2). The ingested microorganisms are killed by
reactive oxygen species (ROS) derived from superoxide anion ([(D2), produced by an
activated, phagosome-bound NADPH-dependent oxidase (3, 4). Besides being of
great importance in the innate immune system by defending the host against
microbial infection (5), the NADPH oxidase also prominently contributes to a variety
of inflammatory disorders (6, 7), and excessive production of ROS in some cases can
lead to tissue damage and subsequent exacerbation of infection (8, 9).

Apocynin (4'-hydroxy-3’-methoxy-acetophenone) is a small molecule with
interesting properties. It has been isolated from the Indian medicinal plant Picrorhiza
kurroa (10) and appeared to be a potent inhibitor of the NADPH oxidase-mediated
production of ROS in activated human PMNs (11, 12). Experimental studies on the
effectiveness of apocynin in the treatment of inflammatory diseases in which ROS
play an important role, such as arthritis (13), colitis (14), and atherosclerosis (15),
already have shown promising results. Despite its general acceptance as a potent
inhibitor of the phagocyte NADPH oxidase, neither the active form of apocynin nor
its mechanism of action has been defined.

Current models propose that apocynin is converted into an active metabolite
by the combined action of myeloperoxidase (MPO), a granule enzyme released from
PMNs upon stimulation, and ROS produced by the cell (16). To get a better insight
into the mechanisms underlying the activities of apocynin we examined its impact
on the assembly and activity of the NADPH oxidase in intact and broken cell assays.
Upon stimulation of PMNs, the NADPH oxidase complex, responsible for the
conversion of oxygen into ROS, assembles at the membrane of forming phagosomes.
The following production of ROS occurs mainly extracellularly or inside the formed
phagosomes. Two different probes, ferricytochrome c and dichlorofluorescein
(DCF), were used to discriminate between two possible targets for inhibitory effects
of apocynin. In contrary to DCF, ferricytochrome c is not capable of entering the cell
by passing the cell membrane (17), so only extracellularly produced > will be
detected using this probe. Comparison of results from these two analytical
approaches may give insight into the ability of apocynin to enter the cell and thereby
may provide an indication of its site of action in PMNs. Ferricytochrome c only
detects superoxide anion (D), and the rate of D, generation was measured by the
SOD-inhibitable reduction of ferricytochrome c at 550 nm. (18). DCF detects ROS and
while DCF is taken up by PMNs, the DCF assay mainly reflects intracellular ROS
generation (19). In addition to these assays, effects of apocynin were tested in the
oxygen consumption assay. In this assay the decrease of molecular oxygen, used by
the activated NADPH oxidase to form ROS, is measured. The advantages of this
assay are that it is independent of the type of ROS that is formed, and that
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interactions between produced ROS and the test-compounds (e.g. scavenging) do not
interfere with the measurements. Effects of apocynin on translocation of cytosolic
oxidase components to the membrane were also investigated by detecting the
presence of p47rhox in the membrane fractions of phagosomes of OPZ-stimulated
human PMNs at different time points. To determine whether effects of apocynin
take place at the level of assembly, activity or termination of the NADPH oxidase,
apocynin was tested in the cell-free assay. In the cell-free NADPH oxidase
reconstitution assay, PMNs are disrupted by nitrogen bomb cavitation and
separated into a membrane-enriched fraction (containing the flavocytochrome b
complex) and a cytosolic fraction (containing the p47rhox and p67rhox proteins) (20).
These proteins are necessary for a functional NADPH oxidase complex (21, 22). The
oxidase is dormant in resting neutrophils but acquires catalytic activity when cells
are exposed to appropriate stimuli. In a cell-free system, catalytic activity of the
NADPH oxidase in membranes from unstimulated PMNs can be induced by anionic
amphiphiles such as sodium dodecyl sulfate (SDS) or arachidonate, in the presence
of the cytosolic fraction (23, 24). When the two fractions are combined again in the
cell-free assay, a functioning NADPH oxidase complex will be assembled, capable of
producing [D,-. By adding apocynin before, or after addition of SDS, this assay may
also discriminate between effects on assembly or effects on the breakdown of the
already formed NADPH oxidase complex.

Materials & Methods

Materials

2',7’-Dichlorodihydrofluorescein diacetate (DCF) was obtained from
Molecular Probes, Inc. (Eugene, OR, USA). Superoxide dismutase (SOD) was
obtained from Roche Molecular Biochemicals (Indianapolis, IN, USA). Apocynin
was obtained from Carl Roth GmbH (Karlsruhe, Germany) and was purified by
recrystallization from water before use. Myeloperoxidase (MPO) was a gift from
Dr. J.P. Weiss, Department of Internal Medicine, University of Iowa College of
Medicine, IA, USA. All other reagents were purchased from Sigma (St. Louis, MO,
USA), unless specified otherwise.

Neutrophil isolation

Heparinized venous blood and normal human serum (NHS) were obtained
from healthy individuals in accordance with a protocol approved by the Institutional
Review Board for Human Subjects at the University of Iowa, IA, USA. PMNs were
isolated wusing dextran sedimentation and Hypaque-Ficoll density-gradient
separation followed by hypotonic lysis of erythrocytes as described by Boyum et al.
(25).
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Preparation of opsonized zymosan (OPZ)

For each experiment, 5008 particles of zymosan were resuspended in 1.0 mL
100% NHS and incubated under tumbling for 30 min at 37 °C. After centrifugation
and washing with DPBS, OPZ particles were resuspended in 5.0 mL of DPBS/g and
kept on ice until use. The OPZ particles/PMNs ratio used in ferricytochrome c, DCF,
and NADPH oxidase assembly assays was 5:1.

Measuring -Oz generation by the reduction of ferricytochrome c

Extracellular Oz generation was determined by the SOD-inhibitable reduction
of ferricytochrome c as described by DeLeo et al. (26), but with several modifications.
Briefly, PMNs (500° cells in DPBS/g), ferricytochrome c¢ (100 uM), OPZ (2.50107
particles) or PMA (1 pg/mL), apocynin, and buffer or SOD (40 pg/mL) were added
to each well of a chilled 96-well plate pre-coated with NHS for at least 1 hr at 37 °C,
and the plate was centrifuged at 400 x g for 5 min at 4 °C to synchronize
phagocytosis. Subsequently, the plate was warmed to 37 °C using a Benchmark
microplate spectrophotometer (Bio-Rad, Hercules, CA, USA), and the rate of Dy
generation was measured every 15 sec for 15 min (with plate agitation). Activity of
samples was calculated from the SOD-inhibitable reduction of ferricytochrome c at
550 nm using an extinction coefficient of 21.1 x 10> M1 cm and a platereader
pathlenght of 0.8 cm. In control experiments buffer replaced apocynin.

Measuring intracellular ROS production

The production of intracellular ROS was measured as described by DeLeo et
al. (27), but with a few modifications. Briefly, cells were suspended in DPBS/g
containing 25 pM DCF to 107 cells/mL and then equilibrated in the dark for 45 min
at room temperature under very gentle shaking. Subsequently, all wells of a 96-well
F-bottom microtiter plate were coated with 50 uL of NHS for at least 1 hr at 37 °C. In
all experiments, free NHS was removed from plates by two sequential washes with
0.9 % NaCl. PMNs (106 cells), buffer or SOD (40 pg/mL), apocynin, and OPZ
(106 particles) or PMA (1.0 pg/mL) were added to the NHS-coated wells of a chilled
96-well microtiter plate. Cold DPBS/g or sample was added to each well so that the
final volume of each well was 200 ul. The plate was centrifuged at 400 x g for 5 min
at 4 °C to synchronize phagocytosis. Generation of ROS was monitored continuously
(at 485 nm excitation and 538 nm emission) without shaking for 60 min at 37 °C
using a BMG FLUOstar 403 microplate spectrofluorometer (BMG Lab Technologies,
Durham, NC, USA). Results are expressed as fluorescence/10° PMNs.

Oxygen consumption

Oxygen consumption was measured polarigraphically using an oxygen
electrode (Radiometer, Copenhagen, Denmark) as described by Weening et al. (28).
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In the reaction chamber, 300 pL of a PMN suspension (3.500° cells/mL) was
equilibrated with 325 pL sample dilution (or buffer for control experiments) at 37 °C.
Subsequently, 25 pL OPZ (25 mg/mL) was added and the rate of oxygen
consumption monitored for 15 min. Oxygen consumption is expressed as nmoles
O2/10° PMNE.

NADPH oxidase assembly at OPZ phagosomes

PMNs were incubated with apocynin (100 uM) or buffer, and stimulated with
OPZ. Cells were placed on ice at 0, 5, 15 and 30 min to stop phagocytosis. OPZ
phagosomes and a plasma-enriched fraction from the OPZ-stimulated cells were
isolated using two separate Percoll gradients. Following nitrogen cavitation, cells
were centrifuged at 300 x g for 10 min to pellet unbroken PMNs, nuclei, and OPZ
phagosomes. Plasma membrane-enriched fractions were isolated from the
postnuclear supernatant using a Percoll step gradient as described by Borregaard et
al. (29). The pellet resulting from the centrifugation was resuspended in 1 mL of
relaxation buffer (29). OPZ phagosomes were isolated by density centrifugation
through an 8-mL self-forming Percoll gradient with an initial density of 1.065 g/mL
at 20.000 x g for 30 min. Phagosomes were collected from the gradient near the
buffer/Percoll interface (~1.037 g/mL); uningested OPZ sedimented 3-5 mm below
the phagosomes; unbroken cells and debris sedimented near the bottom of the
gradient (~1.09 g/mL). OPZ phagosomes and plasma-enriched fractions were each
washed twice in relaxation buffer, which included brief sonication using a low
setting, and recentrifuged twice. Membrane and phagosome pellets were
resuspended in SDS-sample buffer and subjected to 10% SDS-PAGE followed by
transfer to nitrocellulose. Immunoblots were probed with a polyclonal antibody to
p47rhox (27,30, 31) and then quantitated by densitometry using a GS-710 Calibrated
Imaging Densitometer (Bio-Rad, Hercules, CA, USA).

Fractionation of neutrophils

A plasma membrane-enriched fraction, a specific granule-enriched fraction,
and a cytosolic PMN fraction were isolated following nitrogen bomb cavitation and
separation on Percoll gradients using the method of Borregaard et al. (29).
Membrane fractions were used immediately or supplemented with 0.34 M sucrose
and stored at -70 °C for up to 1 month.

Alternatively, crude membrane-enriched fractions and a cytosolic fraction
were isolated by sequential centrifugation as described by Fujita et al. (20).

Cell-free NADPH oxidase reconstitution assay

The cell-free assay was carried out as previously described by Bromberg et al.
(23) but with several modifications. Briefly, 10 upM FAD, 100 pM ferricytochrome c,
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307 cell equivalents (CE) membrane-enriched fraction, 510° CE cytosol fraction,
10 uM GTPYS and 10 pM apocynin were combined in wells of a microtiter plate and
supplemented with cell-free assay buffer (27) to a final volume of 200 pL and the
mixture was incubated for 2 min at room temperature. NADPH oxidase assembly
was initiated by the addition of 100 pM SDS. In some experiments, apocynin was
added after the addition of SDS to determine whether it inhibited the activity of the
formed NADPH oxidase complex. The plate was incubated for another 4-10 min and
NADPH (200 pM) was added to all wells. Ferricytochrome c¢ reduction was
monitored continuously every 15 sec (with plate agitation) for 10 min at 23 °C using
a microplate spectrophotometer (Bio-Rad, Hercules, CA, USA), and D> production
was calculated as described above.

Results

To get a better insight in the mechanism by which apocynin affects the
NADPH-dependent ROS production we examined the effects of apocynin on ROS
production by PMNs during synchronized phagocytosis of OPZ, monitoring the
generation of both intracellular and extracellular ROS.

Measuring -Oz generation by reduction of ferricytochrome c

As described previously by others (12), apocynin treatment inhibited OPZ-
stimulated superoxide production, as measured by SOD-inhibitable reduction of
ferricytochrome c (Fig. 1).
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Figure 1. Effect of apocynin on the [ -induced reduction of ferricytochrome ¢ in OPZ-stimulated

human neutrophils. Plots depict representative curves of four separate experiments.
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This inhibition mainly reflects effects on extracellular [, production or on
[, escaping from forming phagosomes at the plasma membrane. Comparison of
the Vmax of the control experiment (1.63 nmoles [D>/10® PMNs/min) and that of
the apocynin treated PMNs (0.60 and 0.51 nmoles [D,"/10¢ PMNs/min for 1 tM and
10 pM apocynin respectively) showed that apocynin dose-dependently inhibited the
SOD-inhibitable reduction of ferricytochrome c (Fig. 1). Exposure to 1 UM apocynin
led to 63 % inhibition, whereas 10 UM apocynin yielded 69 % inhibition of maximum
[z production. Apocynin itself does not interfere with reduction of ferricytochrome
¢ (12). Using PMA as stimulating agent, apocynin did not show any inhibitory effects
(data not shown).

Measuring intracellular ROS production

Because ferricytochrome c reduction mostly detects extracellular [D>-, we used
an additional probe to assess ROS production. DCF measures intracellular ROS
production and was used to determine whether apocynin exerts its activity intra- or
extracellularly. Apocynin dose-dependently inhibited ROS-induced oxidation of
DCF compared with control PMNs (Fig. 2).
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Figure 2. Effect of apocynin on the ROS-induced oxidation of DCF in OPZ-stimulated human

neutrophils. Plots depict representative curves of three separate experiments.

Especially during the first 15 min of the measurement this inhibition was very
distinct, indicating that inhibition by apocynin may be affecting the onset of the
respiratory burst of OPZ-stimulated human PMNs. When cells were stimulated with
PMA, no inhibitory effects of apocynin were observed (data not shown). Maximum
inhibition of apocynin in this experiment, expressed in terms of percentage and
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compared with control PMNs, is presented in Fig. 3. Maximum inhibition of the
ROS-induced fluorescence occurs at t=15 min.
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Figure 3. Maximum inhibition of apocynin of ROS-induced oxidation of DCF in OPZ-stimulated
PMNs. Bars represent maximum inhibition at t=15 min and depict the Mean *+ Standard Errors of
the Mean (n=3).

* Statistically significant compared with control (Students paired t-test, p < 0.05)

At t=15 min, 1 pM of apocynin inhibited maximum ROS-induced fluorescence
by 27.3 + 18%, whereas 10 UM of apocynin yielded a significant inhibition of
50.4 £ 20% compared with control PMNs.

Oxygen consumption

To confirm that apocynin had a direct effect on the NADPH oxidase and to
gain insight into the inhibitory effects of apocynin independent of the type of
produced ROS, we assessed respiratory burst activity by measuring the oxygen
consumption of human PMNs upon OPZ stimulation. Upon stimulation, PMNs
show a dramatic increase in oxygen uptake, a process known as the oxidative burst
(32). In OPZ-stimulated PMNs, effects of apocynin on this consumption of oxygen,
preceding the production of ROS, were measured. The inhibitory effect of incubation
with 10 pM apocynin (curve B) compared with control PMNs (curve A) is depicted
in Fig. 4. Remarkably, a lag time of about 5 minutes could be observed, before
apocynin exerted its inhibitory activity. No significant differences in the Vmax of
control and apocynin-treated PMNs could be observed during the first 5 minutes
(15.2 vs. 154 nmoles O>/10° PMNs/min respectively). However, in the period
between 5 and 15 min, a 58% decrease in Vmax of the apocynin-treated cells could be
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observed compared with control cells (2.5 vs. 59 nmoles O2/10® PMNs/min
respectively). Apocynin did not inhibit oxygen consumption upon stimulation with
PMA (data not shown).
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Figure 4. Effect of apocynin on the oxygen consumption of OPZ-stimulated human neutrophils.
Curve A represents oxygen consumption of OPZ-stimulated PMNs without apocynin (control).
Curve B represents oxygen consumption of OPZ-stimulated PMNs in the presence of 10 UM
apocynin.

Curve C represents an experiment in which PMNs were incubated with a sub-optimal
concentration of OPZ (10 mg/mL) at 37°C. After 7 min, this reaction-mixture was centrifuged (3
min at 250 x g), the pellet was washed twice with cold buffer and resuspended in fresh buffer to its
original volume. Finally, cells were stimulated again with OPZ (10 mg/mL), and oxygen
consumption was measutred (control).

Curve D represents an experiment similar to that depicted by curve C, but in which PMNs were
incubated with 10 UM apocynin in the presence of OPZ (10 mg/mL) at 37 °C for 7 min. After being
washed and resuspended, PMNs were stimulated again with OPZ and oxygen consumption was

measured.

To assess the effect of intracellular conversion of apocynin on the lag time in
oxygen consumption inhibition, we performed an experiment in which cells were
incubated with a sub-optimal concentration of OPZ in the presence of apocynin for
7 min. Thereafter, cells were washed, resuspended in fresh buffer and oxygen
consumption was measured upon a second stimulation with OPZ. Strikingly, an
instant inhibition of Oz-consumption in PMNs previously incubated with both
apocynin and OPZ was observed (curve D, Vmax: 2.8 nmoles O2/10® PMNs/min).
A 57% inhibition compared with control PMNs (similar incubation but without
presence of apocynin) was observed (curve C, Vmax: 6.6 nmoles O2/10° PMNs/min).
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NADPH oxidase assembly at OPZ phagosomes

To investigate the mode of action of apocynin as an inhibitor of the OPZ-
induced oxidative burst in human neutrophils, the translocation of the cytosolic
NADPH oxidase component p47rhox ypon stimulation was studied. PMNs in the
absence or presence of 100 pM apocynin were stimulated synchronously with OPZ.
At different time points phagocytosis was stopped, OPZ-containing phagosomes
were isolated, and the presence of the cytosolic component p47rhox in the phagosome
membrane fractions was detected.

- N — —— e — i ‘_p47
Time (min) 0 5 15 30 0 5 15 30
Control 100 uM apocynin

Figure 5.

Effect of apocynin on the association of cytosolic oxidase component p47vtox with OPZ-
containing phagosome membranes. Immunoblotting was performed using specific antibodies
against p47rhox of OPZ-phagosome membranes isolated at 0, 5, 10, 15 and 30 min after OPZ

addition to control and apocynin-treated neutrophils.

Apocynin (100 pM) significantly affected the phagosomal association of the
cytosolic compound p47rhox to the phagosome membrane (Figs. 5 & 6).

Figure 6.
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Effect of apocynin (100 uM) on the kinetics of p47rhox during NADPH oxidase assembly at
phagosomal membranes. P47w'x was quantitated by densitometry and optical densities are

expressed as arbitrary units.
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From t=15 min, no p47rhox could be detected in the phagosome membrane
fractions of the apocynin-treated PMNs, indicating that there is a lag time in
inhibitory activity. This lag time is consistent to that observed in the oxygen
consumption assay.

Cell-free NADPH oxidase reconstitution assay

Data presented (Figs. 1-6) indicate that inhibition could occur at the level of

assembly, activity and/or termination of the respiratory burst.
To determine whether the inhibitory effect of apocynin reflects inhibition of the
assembly of the NADPH oxidase or that apocynin affects the degradation of the
already formed oxidase complex, we tested apocynin in the cell-free assay. In this
assay, essential components are combined in vitro in the presence of an amphiphile
upon which a functioning NADPH oxidase complex is formed.

Incubation with apocynin (10 pM) did not inhibit the [D,-dependent
reduction of ferricytochrome c when tested in the cell-free assay, compared with
control cells (Fig. 7). The Vmax of the control PMNs was identical to that of the
apocynin-treated PMNs (0.60 nmoles superoxide/10® PMNs/min).
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Figure 7. Effect of apocynin on the SDS-induced assembly of the NADPH oxidase complex in vitro,
measured as the [0);~induced, SOD-inhibitable reduction of ferricytochrome c. Plots depict

representative curves of three separate experiments.

In an attempt to mimic the possible conversion of apocynin into its active
metabolite inside PMNs, the effect of adding MPO to the assay was studied.
However, even when a lysate of MPO-containing azurophilic granules was added to
the assay, no significant inhibitory activity of apocynin was observed (data not
shown). Moreover, a 7 min incubation of apocynin with H>O2 (1%) and MPO
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(~ 0.01 mg/mL), prior to addition to the assay, did not result in inhibition (data not
shown). Incubations were carried out in cell- free assay buffer with pH 7.2 (27).

Moreover, no differences were observed between incubation with apocynin
before the addition of SDS, or addition of apocynin after SDS was added to the
assay.

Discussion

In order to gain insights into the mechanism by which apocynin inhibits the
phagocyte NADPH oxidase we examined the effect of apocynin on the OPZ-
triggered PMN respiratory burst. Results obtained in the ferricytochrome c
experiments are consistent with the inhibitory effect of apocynin on the ROS
production by activated PMNs measured by means of chemiluminescence as
described previously by Simons et al. (11) and in this thesis. Apocynin proved to be a
potent inhibitor of the [M-induced ferricytochrome ¢ reduction. Since
ferricytochrome c is not able to penetrate the cell and thereby mainly detects D>
escaping from forming phagosomes or that produced at the plasma membrane, the
inhibition most probably reflects effects on nascent phagosomes. As apocynin does
not show significant [, scavenging activity and has no effect on ferricytochrome c
itself (12), the effect should be ascribed to specific inhibition of the D, production.

DCF however, is a probe for intracellular ROS production and is reported to
be primarily oxidized by H>O:2 but also by several other intracellularly produced
species of ROS (33- 36), such as hydroxyl radical ([DH), hypochlorous acid (HOCI),
and peroxynitrite (ONOO-) but not [» (19). PMNs are incubated with
dichlorofluorescein diacetate (DCFH-DA), and this non-fluorescent DCFH-DA,
which is taken up by the PMNs, usually undergoes deacetylation by esterase
enzymes. Oxidation of DCFH-DA by ROS within the cells leads to fluorescent
dichlorofluorescein (DCF), which can easily be visualized (strong emission at 525 nm
with excitation at 448 nm). This technique became popular as a way of visualizing
oxidative stress in living cells (37). Hence this fluorescent imaging is an assay of
generalized oxidative stress rather than of production of any particular oxidizing
species, and it is not a direct measure of H>O; or [y levels. Thereby it may provide a
more physiological representation of processes inside activated neutrophils. Using
DCEF as a probe, apocynin showed significant inhibitory activity, which indicates that
apocynin passes the cellmembrane and can enter the cell where it exerts its activity.

The fact that apocynin acts as an inhibitor of NADPH oxidase-dependent ROS
production in both assays does not only indicate that it can penetrate the cell. It also
seems to confirm the hypothesis that apocynin, in the presence of MPO and ROS,
probably is converted into its active metabolite. Evidence for this mechanism was
provided by Simons et al. who showed that addition of sodium azide, an inhibitor of
MPO, abolished the inhibitory activity of apocynin in OPZ-stimulated human PMNs
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(12). Likewise, Stolk et al. described that in PMNs from MPO-deficient patients or in
human alveolar macrophages which lack MPO (38), oxygen consumption upon
OPZ-stimulation could not be inhibited by apocynin (39). The ‘active metabolite’
hypothesis seems to be supported by our experiments showing that apocynin
exerted its inhibitory activity only upon stimulation with OPZ. When PMA was used
as a stimulus, no inhibition was found, neither using ferricytochrome ¢ and DCF as
probes nor measuring oxygen consumption, probably due to the fact that no MPO is
released upon PMA-stimulation (40).

Stolk et al. previously suggested that apocynin inhibits ROS production in
PMNs by interfering with assembly of the NADPH oxidase complex (39). However,
in their experiments they used cytochalasin B, which adversely affects F-actin
polymerization, important for the stabilization of the cytoskeleton (41) and necessary
for phagocytosis (42, 43). Moreover, they analyzed plasma membrane fractions
rather than phagosomes in their experiments (39). Thus, the conditions used by Stolk
et al. may present a rather non-physiological view of the processes during
phagocytosis and NADPH oxidase assembly. Therefore, we investigated the effects
on translocation of cytosolic compounds to the actual sites of phagocytosis, the
phagosomes, by isolating the phagosomes containing the ingested zymosan
particles.

Apocynin altered association of p47rhox to the membrane of the phagosome.
These data may indicate that apocynin act at the level of assembly of the NADPH
oxidase as published by Stolk et al., but accelerated termination of the already
formed NADPH oxidase complex can not be excluded. The fact that the inhibition
was not instantly could be explained by the fact that apocynin first has to be
converted into an active metabolite inside the PMN, before actually affecting the
translocation. However, this lag time also fits very well in the hypothesis that
apocynin may accelerate the dissociation of the oxidase complex. This lag time also
can be observed in the oxygen consumption assay in which apocynin inhibits the
uptake of oxygen not until approximately 5 min after stimulation. However, when
PMNs were incubated with apocynin and OPZ, centrifuged, washed, and
resuspended in fresh buffer, this lag time was absent upon renewed stimulation with
OPZ. When the supernatant of the OPZ-stimulated, apocynin-incubated PMNs was
added to fresh PMNs, no inhibition was observed upon OPZ stimulation. This
experiment may indicate the formation of an active metabolite, formed inside the
PMN upon stimulation and excludes the presence of an active metabolite in the
supernatant.

Another possible confirmation of this ‘conversion theory” may come from the
experiments in the broken-cell NADPH oxidase reconstitution assay. Use of this
powerful analytical system has yielded much of our current understanding of
NADPH oxidase activation and assembly (23, 24, 44). In this system all the necessary
components of the NADPH oxidase are re-combined in vitro, and addition of an
amphiphile leads to a functional oxidase complex capable of producing [D:-.
Apocynin did not inhibit the [D>-induced reduction of ferricytochrome c in this
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system. Therefore, no effects of apocynin on the assembly of the NADPH oxidase
complex or on deactivation/termination of the already formed complex could not be
determined using this cell-free assay. Even when a lysate of MPO-containing
azurophilic granules (45), was added to the assay, no inhibitory activity of apocynin
was observed. This effect may be explained by the absence of H2O: in this system,
which acts as a substrate for MPO (46). However, after apocynin was incubated with
H>02 and MPO for 7 min before addition to the assay, still no significant inhibition
was observed. This lack of activity of apocynin might well be due to the fact that this
incubation did not mimic intracellular processes. It is well known that in PMNs
during phagocytosis pH plays an important role (46, 47), which may affect the
activity of the enzyme MPO and the following reactions. Also the lack of other
constituents of the intracellular granules of PMNs may play a role.

In summary, we conclude that apocynin is a potent and specific inhibitor of
the respiratory burst in stimulated human neutrophils. Although, not providing
definitive proof for its mechanism of action, some of our experiments indicate that
apocynin has to be converted into an active metabolite and that MPO is necessary in
this respect. Especially, the dependency on the presence of MPO and the lag time
observed in the oxygen consumption assay and the p47phox translocation assay,
support this conversion theory. However, using this experimental set up, it can not
be excluded that apocynin may (also) interfere with the deactivation or accelerated
dissociation of the assembled NADPH oxidase complex. Further experiments should
be designed in such a way that discrimination between inhibition of assembly and
accelerated termination of the NADPH oxidase complex may be possible.

Although these data may expand the understanding of the mechanism of
action by which apocynin affects the NADPH oxidase activity, some aspects of
apocynin certainly need further study. This underlines the importance of further
investigation of specific details concerning the exact mode of action in relation with
the use of apocynin in several inflammatory diseases in which ROS production plays
an important role. Especially the elucidation of the identity of the active apocynin
metabolite will be one of the first goals for further research.
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Abstract

Due to their multiple side effects, the use of steroidal drugs is becoming more
and more controversial, resulting in an increasing need for new and safer anti-
inflammatory agents. In the inflammatory process, reactive oxygen species (ROS)
produced by phagocytic cells are considered to play an important role.

We showed that apocynin (4-hydroxy-3'-methoxy-acetophenone or
acetovanillone), a non-toxic compound isolated from the medicinal plant Picrorhiza
kurroa, selectively inhibits ROS production by activated human neutrophils. Apocynin
proved to be effective in the experimental treatment of several inflammatory diseases
like arthritis, colitis and atherosclerosis.

These features suggest that apocynin could be a prototype of a novel series of
non-steroidal anti-inflammatory drugs (NSAIDs). So far, apocynin is mainly used
in vitro to block NADPH oxidase-dependent ROS generation by neutrophils. In order
to get a better insight in what chemical features play a role in the anti-inflammatory
effects of apocynin, a structure-activity relationship study with apocynin analogs was
performed.

We show here, that especially substances with an additional methoxy group at
position C-5 display enhanced anti-inflammatory activity in vitro. Our approach may
lead to the development of more effective steroid-replacing anti-inflammatory agents.
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Introduction

Reactive oxygen species (ROS), produced by stimulated polymorphonuclear
leukocytes (PMNs), play an important role in host defence against invading
microorganisms. Upon triggering, PMNs start to consume a large amount of oxygen
which is converted into ROS, which process is known as the respiratory or oxidative
burst (1, 2). Although ROS formation by neutrophils may be a physiological response
which is advantageous to the host, the process is certainly also disadvantageous since
it may give rise to excessive tissue damage (3, 4). Therefore, compounds that can
interfere with ROS production may be useful tools to prevent tissue destruction. In our
search for inhibitors of ROS production, we isolated apocynin (4'-hydroxy-3'-methoxy-
acetophenone) from the roots of Picrorhiza kurroa by means of activity-guided isolation
(4). Apocynin is a potent inhibitor of the superoxide-anion ([D2)-generating NADPH
oxidase of stimulated human neutrophils (IC50: 10 uM) (5, 6). Additional interesting
aspects of apocynin are its very low toxicity (LD50: 9 g/kg upon oral administration to
mice) (7) and the fact that it does not interfere with the killing capacities of PMNs (8).

In recent literature, there is growing interest in apocynin as an anti-inflammatory
agent. Although its full spectrum of activities is not fully understood yet, in many
laboratories apocynin is used under a wide variety of experimental conditions as a tool
to inhibit neutrophil NADPH oxidase activity, thereby preventing the production of
oxygen radicals (9-14). Furthermore, structure-activity relationship studies have been
performed to test a number of apocynin analogs and several suggestions have been
put forward with regard to the impact of different substitutions at the ring of the
molecule (15, 16).

Possible benificial effects of inhibitors of oxygen radical production in
inflammatory processes, prompted us to extend the number of apocynin analogs in
order to substantiate the effect of the different functional groups in apocynin and
related compounds.

Ri1 R2
. Rq
Apocynin (APO) -COCHs H
1
Vanillin (VAN) -CHO H
Vanillic acid (VAQ) -COOH H
5 3
Acetosyringone (ACS) -COCHs -OCHs R2 OCH3
Syringaldehyde (SAL) -CHO -OCHs OH
Syringic acid (SACQ) -COOH -OCHs

Table 1. Structures of apocynin, vanillin, and vanillic acid and their C-5 methoxylated derivatives.
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Here, we report the activity of several analogs of apocynin differing at positions
C-1 and C-5 (Table I), for their ability to inhibit ROS production by human neutrophils,
induced by two different stimuli (OPZ or PMA) and measured as luminol- or
lucigenin-enhanced chemiluminescence.

Materials & methods

Reagents

Apocynin, vanillin, and vanillic acid were obtained from Carl Roth GmbH
(Karls-ruhe, Germany). Before use, apocynin was purified by recrystallization from
water. Acetosyringone, syringaldehyde, and syringic acid were obtained from Fluka
Chemika (Buchs, Switzerland). Zymosan A, phorbol myristate acetate (PMA),
5-amino-2,3-dihydro-1,4-phthalazine-dione (luminol), bis-N-methylacridinium nitrate
(lucigenin), hypoxanthine, xanthine oxidase, superoxide dismutase (SOD), propidium
iodide (PI), 5-carboxy fluorescein diacetate (CFDA) were all purchased from Sigma
Chemical Co. (St. Louis, MO, USA). Hank's balanced salt solution (HBSS) was
obtained from Life Technologies (Paisley, Scotland).

Measuring ROS production

Neutrophils were isolated from venous blood of healthy volunteers (Bloedbank
Midden-Nederland, Utrecht, The Netherlands) as described by Verbrugh et al. (17). In
white 96-well, flat-bottom microtiter plates (Costar, Badhoevedorp, The Netherlands),
compounds were serially diluted to final volumes of 50 pUL. To each well, 50 UL of a
PMN suspension (1007 cells/mL) and 50 UL luminol (120 pM) or lucigenin (400 uM)
solutions were added. The neutrophils were triggered by adding 50 UL of opsonized
zymosan A (OPZ; final concentration: 200 pg/mL) or PMA (final concentration 10 nM)
and chemiluminescence was monitored every 2 min for 0.5 sec during a 30-min period
using a Titertek Luminoskan luminometer (TechGen International, Zellik, Belgium).
Peak levels were used to calculate the activity of test samples in relation to their
corresponding controls (identical incubations without test sample). Experiments were
performed in Hank's balanced salt solution (HBSS) buffered at pH 7.35 with NaHCO3
and supplemented with 0.1% (w/v) gelatin to avoid cell aggregation (HBSS-gel). OPZ
was obtained by incubation of washed commercial zymosan A with 1:10 diluted
human pooled serum (HPS) at 37 °C for 30 min. After washing, the opsonized product
was resuspended in HBSS (final concentration: 0.8 mg/mL). PMA was dissolved in
DMSO, stored at -20 °C, and diluted in HBSS to a final concentration of 40 nM
immediately before use.
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Inhibition of myeloperoxidase-release

PMNs were forced to release myeloperoxidase (MPO) by incubating them
(50 pL of 107 cells/ mL in HBSS) with 100 pL OPZ (0.83 mg/mL in HBSS) at 37 °C for 15
min in U-well microtiter plates (Greiner Labortechnik, Niirtingen, Germany). After
centrifugation (250 x g; 4 °C; 5 min), 100 UL of the supernatants were transferred to
96-well flat-bottom microtiter plates (Greiner Labortechnik) and MPO activity was
assessed by a modified version of the method described by Henson et al. (18) Briefly,
supernatants were mixed with 200 pL of 50 mM potassium phosphate buffer (pH 6.0)
containing 3,3'-dimethoxybenzidine (0.7 mM) and H202 (0.17 mM), and absorbance at
450 nm was read every 2 min during a 20-min period using an automatic ELISA reader
(SLT Labinstruments, Salzburg, Austria). Test samples were added to incubation
mixtures containing PMNs and OPZ or supernatants to determine the effects on both
MPO release and/or MPO activity. Since MPO release starts rapidly and slows down
after a few minutes, we calculated our data as the slope of the time curve in the linear
part of the ascending limb. Furthermore, non-specific release of MPO, eg. as
consequence of cell rupture, was excluded by determining the viability of the
neutrophils with and without OPZ incubation.

Scavenging of superoxide anion

In white 96-well, flat-bottom microtiter plates, test compounds were serially
diluted in phosphate-buffered saline (pH 7.4) to a final volume of 50 pL. Hypoxanthine
(50 pL; 4 mM), lucigenin (50 YL; 0.4 mM), and either buffer (PBS; 25 UL) or superoxide
dismutase (SOD; 25 pl; 80 U/mL) were added. Superoxide anion production was
initiated by the addition of 25 PL of xanthine oxidase (80 mU/mL) and the
chemiluminescence signal generated was monitored every min for 0.5 sec during a
15-min period using a Titertek Luminoskan luminometer. Activities of test compounds
were calculated using the SOD-inhibitable part of the chemiluminescence signal.

Cytotoxicity

A stock solution of 5-carboxyfluorescein diacetate (CFDA; 10 mg/mL) in acetone
was prepared and stored at -20 °C. Prior to use, this stock solution was diluted 1:1000
in the appropriate buffer. Propidium iodide (PI; 1.5 mg) was dissolved in 10 mL of
phosphate-buffered saline containing 2.5% quenching ink, 5% w/v EDTA, and 8 mg
bovine serum albumin. PMNs were labeled (20 °C, 15 min) with the vital stain CFDA
(10 pg/mL), washed, and resuspended to a concentration of 107 cells/mL. 100-puL
amounts of this cell suspension were incubated with equal volumes of graded sample
amounts at 37 °C for 15 min, whereafter the cells were washed and stained with 25 UL
of PI/ink solution for the detection of cellular death.

The percentage of dead cells was determined using a fluorescence microscope
(Fluovert, Leitz, Wetzlar, Germany).
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Statistical analysis

Student's paired f-test was used to evaluate the statistical significance of
differences. Differences with P values < 0.05 were considered statistically significant.

Results

Measuring ROS production

The effects of substitution with a methoxygroup at C-5 of apocynin, vanillin, and
vanillic acid on OPZ- or PMA-induced chemiluminescence by human neutrophils
were studied. For OPZ stimulation, it was clearly shown that methoxylation at C-5
(resulting in acetosyringone, syringaldehyde, and syringic acid, respectively) leads to a
significantly increased inhibitory activity on luminol- as well as lucigenin-enhanced
chemiluminescence (Fig. 1; Table I).
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Figure 1. Inhibitory effects of test substances on luminol- (open bars) or lucigenin- (hatched bars)
enhanced chemiluminescence response of OPZ-triggered human neutrophils (n=9). For
abbreveations, see table 1. Values are depicted as mean IC50 values £ Standard Errors of the Mean
(SEM). * Significantly different from the corresponding molecule without additional methoxy group,
P <0.05.

With PMA as stimulus, however, increased activities were observed for luminol-
enhanced, but not so for lucigenin-enhanced chemiluminescence (Fig. 2).
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Figure 2. [Inhibitory effects of test substances on luminol- (open bars) or lucigenin- (hatched bars)
enhanced chemiluminescence response of PMA-triggered human neutrophils (n=9).
* Significantly different from the corresponding molecule without additional methoxy group,
P <0.05.

Inhibition of myeloperoxidase

MPO is an enzyme released from azurophilic granules by stimulated neutrophils,
converting H202 into hypohalites (19). These hypohalites are very reactive metabolites,
which can only be detected with luminol as enhancer (20). This implicates that
deactivation and/or decreased release of MPO may be involved in inhibitory effects
on luminol-enhanced chemiluminescence. To exclude that test substances inactivate
MPO and/or inhibit its release, an MPO-inhibition assay was performed (Table II).
Syringic acid and vanillic acid were the only substances interfering with MPO-
mediated effects. The other compounds did not affect MPO release and/or activity. No
differences in neutrophil viability between OPZ-incubated and control mixtures were
observed.

Compounds IC50 (uM)
Apocynin >1250
Vanillin > 1250
Vanillic acid 165 + 53
Acetosyringone >1250
Syringaldehyde > 1250
Syringic acid 44+9.6

Table II. Inhibitory effects on MPO release and/or activity (n=6).
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Scavenging of superoxide anions

Scavenging is the term used to describe the interference of a test substance with
produced rather than the production of, in this case, reactive oxygen metabolites. To
distinguish between inhibition and scavenging, the superoxide anion scavenging assay
was carried out in which superoxide anions are generated in a cell-free
hypoxanthine/xanthine-oxidase system. All compounds tested were devoid of
superoxide anion scavenging activity (data not shown) indicating that they act at the
level of the Oz2-generating NADPH oxidase complex.

Calculated Lipophilicity

The lipophilicity (log P value) of the compounds was calculated using the
method of Rekker (21). No correlation between the activity and the log P values of
the test substances was found, which excludes that the activity could be due to
membrane-permeability only (data not shown).

Cytotoxicity

To exclude that the measured inhibitory effects of test substances are to be
attributed to cytotoxic activities, the 5-carboxyfluorescein/propidium-iodide toxicity
assay was used. The samples were tested in concentrations up to 500 UM. None of the
compounds showed any sign of toxicity (data not shown).

Discussion

In this study, we show that substitution of apocynin, vanillin, and vanillic acid
with a methoxy-group at position C-5 significantly increases their ability to interfere
with the generation of reactive oxygen species (ROS) by human polymorphonuclear
cells (PMNs). The C-5 substitution by a methoxy-group increases the electronic density
of the aromatic ring, which may increase its anti-oxidant activity. Since none of the
compounds showed significant signs of (D2 scavenging activity or cytotoxicity, we
suggest that these compounds interfere with signal-transduction that mediates
neutrophil activation.

Our in vitro findings are consistent with in vivo results of Dorsch et al., who
reported that acetosyringone shows stronger antiasthmatic properties than apocynin
in the plethysmographic guinea-pig model with ovalbumin as challenging agent (16).
Although ROS are thought to play a minor role in asthma, our findings help explain
the increased antiasthmatic properties of C-5 methoxylation.

To quantitate the inhibitory effects of the compounds on the generation of ROS
after stimulation of PMNs, we used two stimuli which represent different PMN-
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activation pathways. Opsonized zymosan (OPZ), was used as a model system for
opsonized microorganisms. OPZ consists of cell walls of baker’s yeast coated with IgG,
mannose-binding lectin, and C3bi) complement fragments (22). Phorbol myristate
acetate (PMA) is a soluble agent activating PMNs directly at the level of protein kinase
C (PKC) which also leads to the activation of the respiratory burst (23) (Fig 3).
Although OPZ and PMA both stimulate the [(D2-generating NADPH oxidase, their
transductional mechanisms within the neutrophil are quite different (24).

Specificity of the enhancers

PMA Luminol Lucigenin

I\/I -0, * ‘0,  +++
H,0, ++ H,0, ++

HOCI +++

NADPH

oxidase

Figure 3. Schematic representation of processes during the respiratory burst of neutrophils upon
stimulation with OPZ or PMA, and specificity of the chemiluminescence probes luminol and

lucigenin.
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The exact differences governing respiratory burst-triggering by these two stimuli,
however, are not fully understood yet.

The decreased ROS generation by PMNs incubated with the C-5 methoxylated
compounds acetosyringone, syringaldehyde, and syringic acid as compared with their
C-5 demethoxylated compounds apocynin, vanillin, and vanillic acid may indicate that
C-5 methoxylation may play an important role in ROS-inhibitory activity. Future
experiments have to show if these analogs have a similar mode of action as proposed
for apocynin.

Strikingly, when luminol was used as enhancer molecule, this ROS-inhibiting
effect was more or less independent of the stimulus used. However, upon PMA-
stimulation and lucigenin-enhancement, apocynin, vanillin, and vanillic acid did not
show any inhibitory activity and neither did the C-5 methoxylated analogs (Fig 2). The
particular difference between luminol and lucigenin as chemiluminescence enhancers
may be explained by the different levels they act at: luminol is known to detect both
intra- and extracellular ROS production (25), whereas the site of action of lucigenin is
the extracellular space, most probably since PMNs are practically impermeable to
lucigenin (26). Another aspect is that luminol-enhanced chemiluminescence is mainly
dependent on the MPO-H20z2 system, whereas experiments with MPO-deficient PMNs
have indicated that lucigenin-dependent chemiluminescence is independent of the
MPO-H202 system (27) (Fig 3).

A more likely explanation for the lack of inhibitory activity of apocynin and
analogs in PMA-induced, lucigenin-enhanced chemiluminescence could be the fact
that apocynin supposedly needs metabolic conversion by the combined action of MPO
and ROS to become activated (5). In contrast to OPZ, stimulation of human
neutrophils with PMA results in little or no MPO release (28) which may explain the
absence of inhibitory activity of apocynin upon PMA stimulation. Furthermore, it is
known that apocynin and analogs exhibit more or less H2O2-scavenging capacity (8),
which could explain the activities of the compounds after PMA stimulation in the
luminol-enhanced chemiluminescence assay. Based on the putative inhibition of
lucigenin-enhanced chemiluminescence by PMA-stimulated neutrophils, we
performed a discriminatory experiment with extrinsic myeloperoxidase. Indeed,
apocynin was able to inhibit ROS production in this set up, which is in favor of the
theory of metabolic activation and excludes a major role of H20O2- scavenging activity.

Besides being a potent inhibitor of ROS generation, apocynin also has other

significant anti-inflammatory properties (29-32) which deserve more thorough basic
studies, e.g. the impact of different substitution patterns on these activities.
In our efforts to elucidate the mode of action of apocynin, we are currently testing
apocynin and analogs in several in vitro and in vivo assays (e.. oxygen consumption in
human neutrophils and experimental colitis in rats). These structure-activity
relationship studies may highly contribute to unravel the mechanisms underlying the
anti-inflammatory activity of apocynin and to develop new apocynin-related anti-
inflammatory drugs.
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Chapter 4

Abstract

Peroxynitrite (ONOO-), the highly reactive coupling product of nitric oxide
(NO) and superoxide anion ([(D2), has been implicated in the pathogenesis of an
increasing number of (inflammatory) diseases. At present, however, selective
peroxynitrite antagonizing agents with therapeutic potential are not available.
Therefore, apocynin (4'-hydroxy-3’-methoxy-acetophenone), a potent inhibitor of
NADPH oxidase-dependent [, production was tested for its ability to interfere
with peroxynitrite formation in vitro.

The murine macrophage cell-line J774A.1, stimulated with IFNy/LPS, was
used as a model system. Conversion of 123-dihydrorhodamine (123-DHR) to its
oxidation product 123-rhodamine was used to measure peroxynitrite production.

Stimulated peroxynitrite formation could be completely inhibited by
apocynin, by the superoxide scavenger TEMPO, as well as by the nitric oxide
synthase inhibitor aminoguanidine. Apocynin and aminoguanidine specifically
inhibited superoxide anion and nitric oxide formation, respectively, which was
confirmed by measuring nitrite accumulation and lucigenin-enhanced
chemiluminescence.

We conclude that upon stimulation, J774A.1 macrophages produce significant
amounts of peroxynitrite, which is associated with nitric oxide production and
NADPH oxidase-dependent superoxide anion formation. The NADPH oxidase
inhibitor apocynin is a potent inhibitor of both superoxide anion and peroxynitrite
formation by macrophages, which may be of future therapeutic significance in a
wide range of inflammatory disorders.
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Introduction

Peroxynitrite, a relatively stable intermediate, is formed by the diffusion-
limited reaction of the free radicals nitric oxide (NO) and superoxide anion ([D2’)
(1-3). Inflammatory cells such as neutrophils (4) and macrophages (5), but also
endothelial cells (6) can release (D>~ and/or NO, potentially leading to peroxynitrite
(ONOO-) formation. Peroxynitrite is a highly reactive compound with various
harmful effects on cells (7) and could therefore be an important microbicidal
compound.

In contrast to the possible beneficial effects of peroxynitrite in host defense
mechanisms, the anion may have deleterious effects on host tissues. A role for
peroxynitrite has been hypothesized in a number of disorders. Examples are human
asthma (8), acute lung injury (9), idiopathic pulmonary fibrosis (10), inflammatory
bowel disease (11), and animal models for septic shock (12). Inhibition of
peroxynitrite formation, by inhibiting either NO or D> production, could be a useful
tool to limit tissue damage in various circumstances.

Apocynin is a strong inhibitor of the reactive oxygen species (ROS)-
generating enzyme NADPH oxidase in PMNs (13). This NADPH oxidase complex is
also present in macrophages (14, 15) and, since peroxynitrite is dependent on both
NO and [z, apocynin may also be an inhibitor of peroxynitrite formation as well.
This may be of importance because, at present, specific iNOS inhibitors or
peroxynitrite scavengers which can be used in vivo are not available. Apocynin has
previously been demonstrated to be a powerful anti-inflammatory agent in rat
models for arthritis (16), colitis (17), and ulcerative skin lesions (18) and in a rabbit
model for atherosclerosis (19).

In this study, apocynin was tested for its ability to inhibit peroxynitrite
formation by murine macrophages. Therefore, the 123-DHR oxidation assay was
validated as an index of peroxynitrite formation by immuno-stimulated J774A.1
macrophages, providing a tool to screen different compounds for their ability to
prevent peroxynitrite formation. Evidence for the dependence of 123-DHR oxidation
on both nitric oxide and superoxide was obtained by the use of inhibitors of nitric
oxide synthase (aminoguanidine) and by the superoxide scavenger TEMPO
(2,2,6,6-Tetramethylpiperidin). The specificity of aminoguanidine and apocynin was
confirmed by measuring lucigenin-enhanced chemiluminescence and nitrite
accumulation, respectively.

Materials & Methods
Materials

Apocynin was obtained from Carl Roth GmbH (Karlsruhe, Germany) and
was further purified by recrystallization from water.
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Aminoguanidine, LPS (E. coli 0111:B4), sulfanilamide, naphthyl-ethylene-
diamide, lucigenin, PMA, and TEMPO (2,2,6,6-Tetramethylpiperidin) were obtained
from Sigma (St. Louis, MO, USA). Murine recombinant IFNy was obtained from
Genetech Ltd. (USA), 123-DHR from Molecular Probes Europe (Leiden, The
Netherlands), and NaHCO3s and NaNO: from Merck (Darmstadt, Germany).

Murine Cell Culture

J774A.1 (ATCC, Manassas, VA, USA) macrophages were maintained in RPMI
1640 (supplemented with 10% fetal bovine serum, 10 mM Hepes, 4 mM glutamate,
2 mM pyruvate, 50 pg/mL gentamycin, Penicillin/Streptomycin and 100 uM B-
mercapto-ethanol, all from Gibco-BRL, Paisley, Scotland) and cultured at 37 °C with
5% COa. Cells were passaged every 3 days.

Oxidation of 123-Dihydrorhodamine

Cells were incubated for 20 h with or without stimuli and/or inhibitors in the
presence of 25 pM 123-dihydrorhodamine (123-DHR) in culture medium in 96-well
microtiter plates. After incubation, 123-DHR conversion into 123-rhodamine was
measured by fluorimetric analysis at excitation/emission wavelengths of 485 and
530 nm, respectively (Cytofluor 2350, B&L Systems, Maarssen, The Netherlands).
Fluorescence due to auto-oxidation of 123-DHR was subtracted from the original
measurements. Furthermore, oxidation of 123-DHR by the peroxynitrite donor SIN-1
(3-morpholinosydnonimine) was measured in the presence of 300 uM apocynin or
1.0 mM aminoguanidine in culture medium (2 h, 37 °C) as described above.

Griess assay

Nitrite concentrations were measured using the Griess reaction (20). Briefly,
100 pL of Griess reagent (1% sulfanilamide and 0.1% naphthyl-ethylenediamide in
5% phosphoric acid) was added to 100 pL of sample medium. After a 10-min
incubation at room temperature, optical density was measured at 550 nm using a
microplate reader (Bio-Rad, CA, USA). Calibration curves were obtained using
NaNO:; dissolved in incubation medium.

Measuring [y production

Macrophages, pre-stimulated overnight with IFNy (50 U/mL) and LPS
(10 pg/mL), were incubated in white 96-well (10° cells/well, 200 pL), flat-bottom
microtiter plates, in the presence of lucigenin (400 uM) with and without inhibitors.
Macrophages were additionally stimulated with PMA (phorbol-12-myristate-
13-acetate, 10 nM). Chemiluminescence was monitored every 3 min for 0.5 s, during
a period of 90 min using a Titertek luminoskan luminometer (TechGen International,
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Zellik, Belgium). Peak levels were used to quantitate chemiluminescence.
Subsequently, the nitrite concentration in the medium was detected using the Griess
assay. Experiments were performed in Hank’s balanced salt solution (HBSS, Life
Technologies, Paisley, Scotland) buffered at pH 7.35 with NaHCOs.

Data analysis

All data were expressed as mean * standard error of the mean (SEM). Data
were statistically analyzed using ANOVA followed by post-hoc pair-wise
comparison of the effects of different inhibitor concentrations compared to control
levels. Results were considered statistically different at the P < 0.05 level.

Results
Oxidation of 123-DHR and nitrite accumulation

To determine the effect of peroxynitrite formation by stimulated murine
macrophages, the oxidation of 123-DHR and nitrite accumulation was assessed.
Upon combined stimulation with recombinant murine IFNy (50 U/mL) and LPS
(10 ng/mL) a significant (P<0.001) increase in 123-rhodamine formation and nitrite
accumulation as compared with unstimulated macrophages was detectable in the
20-h supernatants (Fig. 1).
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Figure 1. Effect of IFNy (50 U/mL) and LPS (10 ug/mL) on 123-DHR oxidation (black bars) and
nitrite accumulation (open bars) by J774A.1 macrophages compared with unstimulated
cells (basal); (106 cells/mL incubated for 20 h). Data represent mean + SEM of six wells from
three independent experiments. * Statistically significant difference (P<0.001) compared with

controls.
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Effects of aminoguanidine, apocynin, and TEMPO on this stimulated
123-DHR oxidation and nitrite accumulation were determined after a 20-h
incubation period of the cells in the presence of these compounds.

Figure 2.

Figure 3.
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Effect of increasing dosages of aminoguanidine, TEMPO, and apocynin on IFNy/ LPS
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represent mean = SEM of six wells from three independent experiments. * Statistically significant
difference (P<0.0001) compared with control incubations.
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The nitric oxide synthase inhibitor aminoguanidine dose-dependently
inhibited 123-rhodamine and nitrite accumulation with logEC50 values of
-39 + 0.06 M (125 pM) and -3.4 = 0.03 M (398 uM), respectively (Figs. 2 & 3).
Furthermore, the superoxide scavenger TEMPO (2,2,6,6-Tetramethylpiperidin) dose
dependently inhibited 123-DHR oxidation [logEC50 -4.0 £ 0.1 M, (100 pM)] (Fig. 2),
whereas nitrite accumulation was not affected by TEMPO (Fig. 3). The NADPH
oxidase inhibitor apocynin completely inhibited 123-rhodamine accumulation
[logC50 -3.7 £ 0.03 M (199 uM)] (Fig. 2), whereas nitrite concentrations were
practically unaffected (Fig. 3).

123-DHR oxidation by SIN-1

The peroxynitrite scavenging abilities of apocynin and aminoguanidine were
investigated using the peroxynitrite donor SIN-1 (3-morpholinosydnonimine) which
releases equimolar amounts of nitric oxide and superoxide anion. Neither apocynin
(300 uM) nor aminoguanidine (1.0 mM) inhibited the SIN-1 mediated oxidation of
123-DHR (Fig. 4).
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Figure 4. Effect of 1mM aminoguanidine (black bars) and 300 uM apocynin (hatched bars) on 123-
DHR oxidation by the peroxynitrite donor SIN-1 (33 and 100 uM) in cell-culture medium
compared with control incubations (open bars). Data represent mean + SEM of four replicate

wells.
Lucigenin-enhanced chemiluminescence

Lucigenin-enhanced chemiluminescence (LUC-CL) was measured in cells
pre-stimulated with IFNy and LPS overnight and additionally stimulated with PMA
(10nM) just prior to chemiluminescence measurements. Apocynin dose-dependently
inhibited LUC-CL (Fig. 5) with a logEC50 -3.5 £ 0.1 M (316 uM). Aminoguanidine,
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Figure 5.

Figure 6.
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however, did not affect LUC-CL (Fig. 5). After the 90-min chemiluminescence
incubation, nitrite measurements revealed that aminoguanidine inhibited NO output
with a logEC50 of 4.7 + 0.1 (20 pM) during this short incubation period (Fig. 6).
Apocynin did not affect nitrite accumulation in this system, not even at the highest
concentration used (2 mM).

Discussion

It is important to stress that 123-DHR oxidation can only be attributed to
peroxynitrite formation when shown to be dependent on both nitric oxide and
superoxide anion. 123-DHR oxidation by stimulated human neutrophils, for
example, is largely dependent on hydrogen peroxide formation and peroxidase
activity (21) showing that 123-DHR is certainly not a specific probe for peroxynitrite.
Inhibition of nitric oxide synthase by aminoguanidine revealed that the release of
reactive oxygen species alone cannot explain 123-DHR oxidation measured in
stimulated macrophages. Similarly, scavenging (TEMPO) or inhibition of superoxide
formation (apocynin) showed that 123-DHR is insensitive to nitric oxide. Hence,
123-DHR oxidation by immuno-stimulated ]J774A.1 macrophages is mainly
dependent on the simultaneous release of nitric oxide and superoxide anion and is
therefore attributed to peroxynitrite considering the likelihood of the interaction
between the two precursors (22). Moreover, the present data suggest that NADPH
oxidase is the main source of superoxide leading to peroxynitrite formation in
J774A.1 macrophages since 123-DHR oxidation was completely inhibited by the
NADPH oxidase inhibitor apocynin.

Neither apocynin nor aminoguanidine are scavengers of superoxide anion,
nitric oxide, or peroxynitrite, since neither of the compounds inhibited SIN-1
mediated 123-DHR oxidation. SIN-1 is a donor of equimolar amounts of superoxide
and nitric oxide and consequently of peroxynitrite (23). Specificity of the inhibitors
was further supported by lucigenin-enhanced chemiluminescence, which detects
reactive oxygen species, but is insensitive to peroxynitrite and hypochlorous acid
(24). In this study, lucigenin-enhanced chemiluminescence could be completely
blocked by apocynin, but was unaffected by aminoguanidine. The other way
around, nitrite accumulation during these incubations was completely inhibited by
aminoguanidine and was unaffected by apocynin.

The fact that apocynin and TEMPO did not enhance nitrite accumulation in
the medium suggests that peroxynitrite mainly decays into nitrite during the
incubations. The exact metabolic fate of peroxynitrite once formed in a biological
environment, however, is not exactly clear at present. For example, several studies
have shown an important role of carbon dioxide in peroxynitrite-mediated reactions
(25-27). Furthermore, the activities/concentrations of cellular antioxidant
mechanisms are likely to play a pivotal role in downstream events initiated by
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peroxynitrite. Therefore, the reaction conditions for peroxynitrite and 123-DHR in
the presence or inside cells may differ significantly from those in cell-free systems.
For this reason, the calibration of the 123-DHR assay to exact concentrations of
peroxynitrite as detected in cell-free systems may be questionable. Moreover, it is
unknown whether peroxynitrite itself or downstream metabolites of the anion are
responsible for the 123-DHR oxidation detected in immuno-stimulated
macrophages.

Although the evidence for peroxynitrite formation in vivo is convincing,
recent studies have suggested that other reactive nitrogen species maybe equally, or
even more important mediators of oxidative tissue modifications during
inflammatory processes (28). The formation of the putative peroxynitrite footprint
3-nitrotyrosine, for example, has been demonstrated to be readily catalyzed by
myeloperoxidase with hydrogen peroxide and nitrite as substrates (29). Therefore,
nitric oxide formation as such may not be an essential factor in reactive nitrogen
species-mediated tissue alterations during inflammation. In contrast, superoxide and
its downstream metabolites appear to play a pivotal role in all pathways leading to
reactive nitrogen species described above. Consequently, limiting superoxide anion
production by apocynin may prevent the formation of peroxynitrite as well as other
reactive nitrogen species.

The present data clearly show that IFNy and LPS-stimulated murine J774A.1
macrophages release high amounts of NO and superoxide anion, most probably
leading to peroxynitrite formation. Moreover, stimulated 123-DHR oxidation by
J774A.1 macrophages is dependent on both [, and NO, and therefore likely to be
dependent on peroxynitrite or downstream metabolites of peroxynitrite.

This is the first time that the NADPH oxidase inhibitor apocynin is shown to
be a potent inhibitor of 123-DHR oxidation by murine macrophages in vitro.
Apocynin may therefore have potential therapeutic value as a tool to limit
peroxynitrite formation in inflammatory conditions in vivo. Considering the lack of
specific iNOS inhibitors that can be used therapeutically, apocynin could have
additive value since it is not only a potent inhibitor of superoxide anion release, but
also a powerful inhibitor of peroxynitrite formation.
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Abstract

Apocynin is a potent inhibitor of NADPH-dependent ROS production in
stimulated human PMNs. However, its mode of action has been subject of
speculations. It has been assumed that apocynin is converted into a metabolite which
accounts for its activity. A dimer of apocynin, diapocynin, was suggested to be this
active compound. We established the formation of diapocynin upon incubation of
apocynin with MPO and hydrogen peroxide. In addition, we showed the conversion
of apocynin into diapocynin by OPZ-stimulated PMNs; the identity of diapocynin
was unambiguously confirmed by NMR spectroscopy and mass spectrometry.
Diapocynin was also chemically synthesized to obtain sufficient amounts for in vitro
testing. Its activity on ROS-generation and oxygen consumption by stimulated
PMNs, however, seems not consistent with the existing theories. Diapocynin was
shown to be less active than apocynin, and, in contrast, appeared to be a potent
scavenger of superoxide anions. We hypothesize that conversion of apocynin into
diapocynin in activated PMNs results in an increased MPO activity which
eventually accelerates the termination of the respiratory burst, in this way inhibiting
production of ROS. Although not (very) active as exogenous agent, diapocynin as
endogenous metabolite is most active.
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Introduction

Reactive oxygen species (ROS) production by activated polymorphonuclear
neutrophils (PMNs) plays an important role in the host defense against invading
microorganisms. However, excessive production of ROS sometimes leads to tissue
damage (1,2). Therefore, inhibition of ROS production may be beneficial in certain
inflammatory conditions (3,4).

Apocynin is a potent and selective inhibitor of the NADPH oxidase-
dependent production of ROS by stimulated human PMNs (5). Apocynin was
isolated by activity-guided isolation from Picrorhiza kurroa (6), and in the years
following its discovery it has been used in many laboratories around the world.
Although apocynin exhibits most promising activities in experimental animal
models for colitis (7), rheumatoid arthritis (8), and atherosclerosis (9), its exact
mechanism of action has not been well defined. It has been proposed that conversion
of apocynin into an active metabolite is a prerequisite for displaying inhibitory
activity (5, 10). This conversion is supposed to take place by the combined action of
myeloperoxidase (MPO), an enzyme released from azurophilic granules by activated
PMN:s (11), and the produced ROS. In literature, some structures have been reported
for this ‘active’ apocynin metabolite. 't Hart et al. have suggested the formation of a
quinone methide (10), but so far no affirmative data have been published. In a
United States Patent, Holland et al. have described the formation of an apocynin
dimer, named diapocynin, upon treatment of apocynin with H2O2 and horse radish
peroxidase (HRP) and claim this compound to be the active metabolite (12).
However, evidence concerning its identity as well as its actual formation in PMNs is
lacking.

We decided to further investigate whether the formation of the postulated
‘active” apocynin dimer actually occurs. Besides cell-free transformations using HRP
as well as MPO, also in vitro conversion of apocynin by activated PMNs was studied.
In addition, diapocynin was subjected to several in vitro assays to gain insight into its
significance in the inhibition of NADPH oxidase-dependent ROS formation.

Materials & Methods
Reagents

Apocynin was purchased from Carl Roth GmbH (Karlsruhe, Germany). Before
use, apocynin was purified by recrystallization from water. Hank's balanced salt
solution (HBSS) was obtained from Life Technologies (Paisley, Scotland). MPO was a
gift from Dr. ]J.P. Weiss, Department of Internal Medicine, University of Iowa College
of Medicine, IA, USA. All other reagents were purchased from Sigma Chemical Co.
(St. Louis, MO, USA) unless specified otherwise.
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Derivatization of apocynin and GC-MS analysis

Apocynin was (trimethyl)silylated in ethyl acetate with MSTFA [N-methyl-
N-(trimethylsilyl)trifluoroacetamide; Sigma/ Aldrich, Zwijndrecht, The Netherlands]
in a sealed vial at 70 °C for 40 min. The TMS derivative was analyzed using a
Chrompack CP Sil 8 CB column (30 m; internal diameter 0.25 mm; film thickness
0.25 pm). After injection of the sample, the initial oven temperature of 100 °C was
maintained for 1 min and then raised to 290 °C with a rate of 8 °C/min. The latter
temperature was maintained for 5 min [Rt apocynin-TMS 12.20 min)].

Apocynin: Spectral data and physical constants
Melting point: 111 °C

TH NMR: For 'H chemical shifts of apocynin in DMSO-ds and CDCl; (300 MHz) see
Table 1. (NMR spectra were recorded using a Varian G-300 spectrometer).

13C NMR (APT and HETCOR; DMSO-d¢; 75 MHz): 8 196.3 (C; C=0), 151.9 (C; C-3),
147.7 (C; C-4), 129.1 (C; C-1), 123.6 (CH; C-6), 115.1 (CH; C-5), 111.3 (CH; C-2), 55.8
(CHs; OCH), 26.4 (CHs)

13C NMR-APT (CDCls; 75 MHz): 3196.7 (C; C=0), 150.4 (C; C-3), 146.5 (C; C-4), 130.1
(C; C-1), 123.8 (CH; C-6), 113.7 (CH; C-5), 109.7 (CH; C-2), 55.9 (CHs; OCHa), 25.9
(CHs)

EI-MS: (Relative abundances are given in parentheses)
[apocynin-TMS] m/z: 238 (51) [M]*, 223 (94) [M-CHs]*, 208 (61) [M-2CHs]*, 193 (100),
165 (10) [M-TMS]*, 149 (4) [M-OTMS]*.

Synthesis of diapocynin

Diapocynin (5,5'-dehydrodiacetovanillone) was synthesized according to a
method described by Elbs et al. for the synthesis of dehydrodivanillin (13). To a
solution of 1.0 g of apocynin (6 mMol) in 200 mL of hot water were added 75 mg of
ferrous sulfate heptahydrate (0.3 mMol) and 810 mg of potassium persulfate
(3 mMol). The reaction mixture was stirred on a boiling water bath for 30 min. After
cooling, the precipitate was collected and dissolved in 4N sodium hydroxide.
Subsequently, diapocynin was precipitated by addition of 4N hydrochloric acid,
filtered off, washed and dried (yield: 60%).

Derivatization of diapocynin and GC-MS analysis

Diapocynin was silylated using a reaction mixture containing 10 mL of
MSTFA, 20 mg of ammonium iodide, and 30 pL of ethanethiol. Derivatization was
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allowed to proceed in a sealed vial at 80 °C for 30 min. The TMS derivative was
subjected to GC-MS analysis using a HP Ultra 1 column (18 m; internal diameter
0.2 mm; film thickness 0.11 pm). After injection of the sample, the initial oven
temperature of 150 °C was raised to 250 °C with a rate of 10 °C/min [Rt diapocynin-
(TMS)4 9.88 min].

Diapocynin: Spectral data and physical constants
Melting point: >260 °C (decomposition)
TH NMR: see Table 1.

13C NMR-APT (DMSO-ds; 75 MHz): & 196.4 (C=0), 149.3 (C; C-3), 147.6 (C; C-4),
128.1 (C; C-1),125.5 (CH; C-6), 124.6 (C; C-5), 109.8 (CH; C-2), 56.2 (OCHs), 26.5 (CHs)

IR spectroscopy (KBr), Vimax cm! (%T) 3315 (34.2; OH), 1666 (21.1;, C=0), 1591 (24.3;
aryl C=C), 1284 (14.5), 1203 (22.9), 1182 (23.7)

EI-MS: (Relative abundances are given in parentheses).
TMS-derivative my/z 618 (100) [M]*, 603 (39), 587 (73), 529 (47), 441 (77) and 309 (34).

Enzymatic conversion of apocynin

To a solution of 2.0 mg of apocynin in 100 mL of water 100 pL HRP (0.1 mg/mL)
or 100 pL MPO (0.01 mg/mL) and 24 pL of hydrogen peroxide (3%) were added under
constant stirring. After 10 sec 1.5 mL of 0.1 M sodium thiosulfate was added. The
mixture was stirred vigorously and after 2 min, the reaction was terminated by
addition of 3 M sulfuric acid to pH < 3. The mixture was extracted three times with
diethyl ether. Combined fractions were dried over anhydrous sodium sulfate and the
solvent was evaporated.

The residue was subjected to thin layer chromatography (TLC) using precoated
Si60 Foss silica plates (Merck, Darmstadt, Germany). Typically, 10-puL solutions were
applied to the plate and dried. The plate was developed in a saturated chamber with a
mixture of dichloromethane and methanol (9:1). Plates were examined under UV light
at 254 nm and 366 nm.

Because enzymatic conversion as described above only yielded minute amounts
of metabolite, the original concentration of apocynin was increased and the experiment
was repeated several times. The residue obtained was subjected to column
chromatography using silica gel 60 (column size 40 cm x 1.5 cm diameter) with
dichloromethane/methanol (9:1) as eluent; fractions of 1 mL were collected. Fractions
containing the reaction product were combined and the solvent was evaporated. The
product was analyzed by TLC, GC-MS, TH NMR and IR-spectroscopy.
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Metabolic conversion of apocynin by activated PMNs

PMNs (1107 cells/mL) were incubated with apocynin (20 M) and stimulated
with OPZ (200 pg/mL). After 7 min, 3 M sulfuric acid was added until pH < 3. The
mixture was extracted three times with diethyl ether and dried over anhydrous sodium
sulfate. The solvent was evaporated under reduced pressure and the residue was
silylated and subjected to GC-MS analysis as described above for diapocynin.

Determining cytotoxicity

A stock solution of 5-carboxyfluorescein diacetate (CFDA; 10 mg/mlL) in
acetone was prepared and stored at -20 °C. Prior to use, this stock solution was diluted
1:1000 in buffer. Propidium iodide (PL 1.5 mg) was dissolved in 10 mL of phosphate-
buffered saline containing 2.5% quenching ink, 5% w/v EDTA, and 8 mg of bovine
serum albumin. PMNs were labeled with the vital stain CFDA (10 pg/mL) at 20 °C for
15 min, washed, and resuspended in buffer to a concentration of 107 cells/mL.
Amounts of 100 PL of this cell suspension were incubated with equal volumes of
serially diluted sample at 37 °C for 15 min. Subsequently, the cells were washed and
stained with 25 pL of PI/ink solution for the detection of cellular death. The percentage
of dead cells was determined using a fluorescence microscope (Fluovert, Leitz,
Wetzlar, Germany).

Measuring ROS production

Neutrophils were isolated from venous blood of healthy volunteers (Bloedbank
Midden-Nederland, Utrecht, The Netherlands) as described by Verbrugh et al.(14).

In white 96-well, flat-bottom microtiter plates (Costar, Badhoevedorp, The
Netherlands), compounds were serially diluted to final volumes of 50 puL. To each well,
50 puL of a PMN suspension (107 cells/mL) and 50 pL of luminol (120 pM) or
lucigenin (400 pM) solutions were added. The neutrophils were triggered by adding 50
ML of opsonized zymosan A (OPZ; final concentration: 200 pg/mL) or PMA (final
concentration 10 nM). Chemiluminescence was monitored every 2 min for 0.5 sec
during a 30-min period using a Titertek Luminoskan luminometer (TechGen
International, Zellik, Belgium). Peak levels were used to calculate the activity of test
samples in relation to their corresponding controls (identical incubations without test
sample). Experiments were performed in HBSS buffered at pH 7.35 with NaHCOs and
supplemented with 0.1% (w/v) gelatin to avoid cell aggregation (HBSS-gel). OPZ was
obtained by incubation of washed commercial zymosan A with 1:10 diluted human
pooled serum (HPS) at 37 °C for 30 min. After washing, the opsonized product was
resuspended in HBSS (final concentration: 0.8 mg/mL). PMA was dissolved in DMSO,
stored at -20 °C, and diluted in HBSS to a final concentration of 40 nM immediately
before use. In the experiments with azide, sodium azide (final concentration 1.0 mM)
was added to the wells before the addition of OPZ.
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Determining superoxide anion scavenging

In 96-well, white flat-bottom microtiter plates (Costar, Badhoevedorp, The
Netherlands) test compounds were serially diluted in PBS (pH 7.4) to a final volume
of 50 pL. Hypoxanthine (50 pL; final concentration 1 mM), lucigenin (50 pL; 0.1 mM),
and either buffer or superoxide dismutase (SOD; 25 pL; 10 U/mL) were added.
Superoxide anion ([Dy7) radical production was initiated by the addition of 25 YL of
xanthine oxidase (10 mU/mL) and chemiluminescence was monitored every min for
0.5 sec during 15 min using a Fluoroskan Ascent FL luminometer (Labsystems,
Breda, The Netherlands). Activity of the test compounds was calculated from the
SOD-inhibitable part of the chemiluminescence signal. To exclude direct effects of
test compounds on xanthine oxidase activity, uric acid formation was determined
spectrophotometrically at 290 nm.

Oxygen consumption

Oxygen consumption was measured polarigraphically using an oxygen
electrode (Radiometer, Copenhagen, Denmark) as described by Weening et al. (15).
In the reaction chamber, 300 pL of a PMN suspension (5400¢ cells/mL) was
incubated with 325 pL of sample dilution (or buffer for control experiments) at 37 °C.
Subsequently, 25 pL OPZ (25 mg/mL) was added and the rate of oxygen
consumption was monitored for 15 min under constant gentle stirring.

Statistical analysis

Student's paired t-test was used to evaluate the statistical significance of
differences. Differences with P values < 0.05 were considered statistically significant.

Results

Synthesis of diapocynin

Diapocynin was synthesized as described above. Its identity was confirmed
by NMR spectroscopy and EI-MS. The TH NMR spectrum of diapocynin in CDCl3
showed two doublets at & 7.62 and 7.58 (] = 2.0 Hz; H-6 and H-2, respectively), and
three singlets at 6 6.32 (4-OH), 4.01 (OCH3), and 2.57 (CH3). Chemical shifts, coupling
constants, and assignments for apocynin and diapocynin in CDCl3 and DMSO-ds are
shown in table 1.

After derivatization with TMS, the mass spectrum (EI) of diapocynin showed
a molecular ion [M]* at m/z 618 (also base peak) indicating its di-enol tautomer
coupled to 4 TMS groups (Fig. 2). Other fragment ions were found at
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m/z 603 [M-CHs]*, 587 [M-OCHzs]*, 529 [M-OTMS]*, 441 and 309, the latter fragment
representing an ion formed by cleavage of the silylated dimer between C5 and C5'.
The IR spectrum of diapocynin is shown in Fig. 3.

Apocynin Diapocynin
CDClI;
H-2/6 753 2H, m H-6 762 2H,d(J=2.0Hz)

H-2 758 2H,d(J=2.0Hz)
H-5 694 1H,d (J=8.5Hz)

4OH 606 1H,s 4OH 632 2H,s
OCH; 3.95 3H,s OCH; 4.01 6H,s
CH; 256 3H,s CH; 257 6H,s
DMSO-ds

H-6 750 1H,dd(J=18,]=8.2Hz) H-2/6 745 4H,m

H2 744 1H,d (J=18Hz)
H5 686 1H,d (J=82Hz)

4-OH 9.99 1H,s 4-OH 947 2H,s
OCHs 3.82 3H,s OCHs 3.89 6H,s
CHs 250 s* CHs 249 s*

* Signal obscured by residual protons in the solvent

Table 1. 1H NMR spectral data (ppm) of apocynin and diapocynin in CDCIl3 and DMSO-ds (300
MHz)

Enzymatic conversion of apocynin

Apocynin was subjected to the protocol described by Holland et al. (12), using HRP
and HxOz (Fig. 1).

O CHs CH; HyC,

MPO / HRP 5- 5
H202

H;CO OH HO OCH,;

Apocynin Diapocynin
(5,5'-Dehydrodiacetovanillone)

Figure 1. Peroxidase-mediated conversion of apocynin into diapocynin
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Figure 2. Mass spectrum of diapocynin
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Figure 3. IR spectrum of diapocynin
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TLC analysis of the resulting mixture showed two distinct spots, a major
compound at Rf 0.62 representing apocynin and a minor (conversion) compound at
Rf 0.46. The latter product was isolated by column chromatography. Using 'H NMR,
EI-MS and IR spectroscopy, the compound was shown to be 5,5-dehydro-
diacetovanillone (or diapocynin).

Using the above-mentioned protocol with MPO as enzyme, however, did not
result in the formation of diapocynin (or any other product) in detectable amounts.
Increasing MPO, HxOz or apocynin concentrations also failed to yield any product.
To determine whether the pH might play a role, the experiment was repeated using
apocynin solutions with pH values ranging from 55 to 8.5 (intervals of 0.5).
All reaction mixtures were analyzed using GC-MS.

Surprisingly, only at pH 8.0, MPO affected the conversion of apocynin into a
detectable amount of diapocynin.

Metabolic conversion of apocynin by activated PMNs

To determine whether apocynin was actually converted into diapocynin by
activated PMNs, cells were incubated with apocynin and triggered with OPZ. After
7 minutes, the process was terminated by the addition of sulfuric acid and the
mixture was extracted with diethyl ether. After evaporation, the residue was
silylated and subjected to GC-MS analysis.The El-spectrum obtained was shown to
be identical with that recorded for chemically synthesized diapocynin, proving the
ability of activated PMNs to convert apocynin into diapocynin.

No diapocynin could be detected in control PMNs, apocynin-incubated PMNss
without OPZ stimulation, and apocynin-incubated PMNs stimulated with PMA.

Determining cytotoxicity

To exclude any cytotoxic effects, we tested apocynin and diapocynin using the
vital stain CFDA. CFDA-labeled PMNs were incubated with apocynin and diapocynin
in concentrations up to 600 pM. Both compounds did not show any cytotoxic effects
compared with control PMNs.

Cytotoxic effects of sodium azide were also determined. Sodium azide was not
toxic in concentrations up to 2 mM.

Measuring ROS production

To investigate effects of diapocynin on the production of ROS by OPZ or
PMA-stimulated human PMNs, chemiluminescence was measured using either
luminol or lucigenin as enhancers. Activities of diapocynin were compared with
those of apocynin. IC50 values of both compounds for different enhancers and
stimuli are depicted in Fig. 4.
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Figure 4.  Inhibitory effects of apocynin and diapocynin on Iluminol and lucigenin-enhanced
chemiluminescence responses of OPZ and PMA-stimulated human PMNs (n=8). Values are
depicted as mean IC50 values + Standard Error of the Mean (SEM). * Significant difference compared
with apocynin-treated PMNs ; P < 0.005.

Upon stimulation with OPZ and luminol enhancement, the inhibitory activity of
diapocynin was significantly lower than that of apocynin (IC50 values: 84 pM vs.
10 pM, respectively). Upon PMA stimulation and lucigenin enhancement, however, the
inhibitory activity of diapocynin was significantly higher compared with apocynin
(76 pM vs. 1500 pM, respectively; Fig. 4).

600+ B OPZ/ Lucigenin
] OPZ/ Lucigenin
500+ T + azide
— 400+
=
2
3 300+
S
200
1 *
100+ N
L B
apocynin diapocynin

Figure 5. Effect of sodium azide on the inhibitory activity of apocynin and diapocynin measured as
the lucigenin-enhanced chemiluminescence responses of OPZ-stimulated human PMNs (n=8).
Values are depicted as mean IC50 values = Standard Error of the Mean (SEM). * Significant difference
compared with apocynin-treated PMNs; P < 0.005.
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To investigate the role of MPO, apocynin and diapocynin were tested in the
presence of the MPO inhibitor sodium azide using lucigenin as enhancer and OPZ as
stimulus. Sodium azide was added to the cells before the addition of samples or
stimulus. The concentration of azide used (ImM) did not show any cytotoxic effects.
It was found that in the presence of azide the inhibitory activity of apocynin was
completely diminished (20 pM vs. 470 uM respectively), whereas the activity of
diapocynin was almost unaffected by azide (87 pM vs. 107 uM; Fig. 5).

Detection of superoxide anion scavenging

To discriminate between direct effects on NADPH oxidase activity and >~
scavenging properties, [(D-scavenging abilities of apocynin and diapocynin were
assessed using the hypoxanthine-xanthine oxidase system (16). Lucigenin-enhanced
chemiluminescence was measured in the presence of apocynin and diapocynin.
Activity were calculated from the SOD-inhibitable part of the chemiluminescence
signal. It was found that apocynin did not inhibit lucigenin-enhanced
chemiluminescence (IC50 value: > 600 pM). However, diapocynin was shown to be a
potent scavenger of superoxide anions (IC50: 9.8 + 0.2 pM; Fig. 6). This effect could
not be ascribed to direct inhibitory effects on xanthine oxidase, since the production
of uric acid was not inhibited.

> 600
&z Apocynin
I Diapocynin
100.0+
§ 4
=
o
1)
S *
10.04
1.0

Figure 6. Effects of apocynin and diapocynin on the scavenging of superoxide anions (n=4).
* Significant difference compared with apocynin; P < 0.01.

Oxygen consumption

Upon activation, PMNs start to consume large amounts of oxygen
accompanying ROS production (17). To further evaluate the inhibitory effects of
diapocynin on this NADPH oxidase-dependent process, its impact on oxygen
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consumption by activated human neutrophils was determined in comparison with
apocynin.
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Figure 7. Effects of apocynin and diapocynin on oxygen consumption by OPZ-stimulated humnan

PMNs. Plots depict representative curves of three separate experiments.

PMNs were incubated with apocynin or diapocynin and oxygen uptake upon
OPZ stimulation was measured. Apocynin as well as diapocynin inhibited OPZ-
induced oxygen uptake similarly (Vmax: 10.4 nmoles O2/10® PMNs/min) compared
with control cells (Vmax: 16 nmoles O2/10® PMNs/min). No differences between
both compounds could be observed.

Discussion

Although apocynin is generally known to be a potent inhibitor of phagocyte
NADPH oxidase, its mechanism of action has not been well defined. It has been
suggested that stimulated PMNs convert apocynin into an active metabolite by the
action of MPO and ROS (5, 10). Recently, Holland et al. claimed diapocynin, a dimer
of apocynin, to be this active metabolite (12). They described the formation of this
compound, however, in a cell-free system using HRP, an enzyme not present in
PMN:s (11). In addition, no spectroscopic evidence for the formation and the identity
of diapocynin was provided.

In order to gain more insight into mechanisms underlying inhibitory activities
of apocynin, we further investigated the formation and activities of diapocynin.
Initially, we obtained diapocynin according to the protocol described by Holland
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et al. using HRP and H2O», but the yield was rather low (approximately 10%). In
order to obtain sufficient amounts for in vitro testing, diapocynin was synthesized by
the procedure described by Elbs ef al. using potassium persulfate, which led to a
much higher yield of 60%. The identity of diapocynin (5,5"-dehydrodiacetovanillone)
was confirmed by EI-MS, and TH NMR, 13C NMR, and IR spectroscopy.

Now that HRP-mediated conversion of apocynin was established, we
investigated the conversion of apocynin in the presence of MPO. Replacing HRP by
MPO in the experimental set up described by Holland et al. did not result in
detectable amounts of diapocynin or any other products. Further experimentation
showed that MPO only converted apocynin into diapocynin at pH 8.0, illustrating
the importance of pH for MPO activity. This finding seems to be consistent with the
fact that phagosomal pH is under tight control and that in the first few minutes after
phagosome formation a transient increase in pH to 7.8 - 8.0 is observed (18, 19). MPO
can reach levels of 1-2 mmol/L inside phagolysosomes (18) and it may well be
possible that in the first minutes after phagolysosome formation, apocynin is
converted into diapocynin.

Besides the MPO-mediated conversion described above, it was even more
important to investigate diapocynin formation in PMNs. It was found that only in
OPZ-stimulated PMNs apocynin was converted into diapocynin; in resting PMNs or
those stimulated with PMA no diapocynin could be detected. So, dimerization of
apocynin by stimulated human PMNs was demonstrated for the first time.

Although it was now established that activated PMNs convert apocynin into
diapocynin, the activity of the latter compound still had to be proven. Therefore,
diapocynin was tested in the chemiluminescence assay for its ability to inhibit
NADPH oxidase activity in activated PMNs. For the supposed active metabolite,
quite unexpectedly, diapocynin showed less inhibition of ROS production upon
OPZ-stimulation and luminol-enhancement in comparison to apocynin (Fig. 4).

Upon PMA-stimulation and lucigenin-enhancement, the inhibitory activity of
diapocynin was found to be similar to that in the OPZ/luminol system, whereas the
activity of apocynin significantly decreased (Fig. 4). PMA-stimulated PMNs do not
release MPO (20), which prevents apocynin from exerting its activity (21).
Apparently, in this respect, the activity of diapocynin does not depend on MPO.
Another indication came from experiments with sodium azide, an inhibitor of MPO
activity (22-24). It was observed that incubation of azide-treated PMNs with
apocynin resulted in a 23-fold decrease in inhibitory activity upon OPZ-stimulation
compared with control PMNs, whereas for diapocynin no significant difference was
observed (Fig. 5).

To further investigate the activity of diapocynin, its activity on oxygen uptake
by stimulated PMNs was examined. As previously described (20), inhibition of
oxygen consumption by apocynin showed a lag time of approximately 5 minutes. It
was supposed that this time was needed for conversion of apocynin into its active
metabolite. However, for diapocynin no differences in activity or inhibitory profile
could be observed in comparison with apocynin.
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Since the activity of diapocynin was shown to be independent of stimulus
(OPZ or PMA) or enhancer (luminol or lucigenin), a common phenomenon observed
for [M> scavengers, we determined the scavenging properties of diapocynin.
Diapocynin, in contrast to apocynin, appeared to be a potent D> scavenger (Fig. 6).
The scavenging properties of diapocynin may in part explain its activity in the
chemiluminescence experiments described above. However, its rather high IC50
value in the assay with OPZ and luminol, as well as its effect on oxygen
consumption seem not consistent with an active metabolite as meant by Holland
et al. (12). For an active metabolite in this sense, it would be expected that diapocynin
is at least as active as apocynin and shows a prompt inhibition of oxygen
consumption without displaying any lag time.

To better explain our results, the ‘active metabolite” theory may need to be
extented. It has been reported that MPO plays a crucial role in the termination of the
NADPH oxidase-dependent respiratory burst, since an increased MPO activity
results in an accelerated termination of the respiratory burst (25-27). It has also been
shown that decreased levels of hydrogen peroxide (the substrate of MPO) result in
increased MPO activity (25). It is obvious, that scavenging of superoxide anions
results in a decrease of hydrogen peroxide formation. So, besides effects due to
direct scavenging of superoxide anions, the activity of diapocynin may be explained
in terms of increasing MPO activity, resulting in an accellerated termination of the
respiratory burst.

Furthermore, it is known from literature that lignins and lignin-related
compounds not only scavenge (D> (28), but also potently stimulate the iodination of
cells that contain MPO, such as PMNs and monocytes (28-31). This increased
iodination, which reflects increase of MPO activity (32), was almost completely
inhibited in the presence of the MPO inhibitors sodium azide and aminotriazole
(30,31). Importantly, only polymerized phenolic lignin-related structures were
active, whereas degradation products of lignin had little or no effect (30). In
addition, diapocynin has been described to be a lignin model-compound (33),
whereas apocynin is considered to be a degradation product of lignin (34, 35). In
conlusion, we hypothesize that diapocynin increases MPO activity and thus
accelerates the termination of the NADPH oxidase-dependent respiratory burst of
stimulated human PMN.

A final proposal for the mechanism of action of apocynin will be presented in
the General Discussion (Chapter 7).
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Chapter 6

Abstract

Apocynin is a promising, plant-derived, nonsteroidal, anti-inflammatory
compound that has been studied in different in vitro systems as well as in in vivo
models for chronic inflammatory diseases. So far, apocynin is known as a specific
inhibitor of NADPH-oxidase activity in stimulated neutrophils. This paper is dealing
with possible other aspects of apocynin action, including inhibition of cytokine (IL-1,
TNFa, IFNY) production by cultured monocytes/ macrophages and T cells, as well as
inhibition of the proliferative response of T cells.

Our findings implicate that not only apocynin itself, but also combinations of
apocynin with one or more of its major in vivo metabolites may be involved in its net
in vivo effect. This putative synergistic activity will be subject of further in vitro
studies.
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Introduction

Apocynin has proven its potential value in the treatment of several
experimental inflammatory diseases such as colitis (1), atherosclerosis (2), and
rheumatoid arthritis (3). It is a potent inhibitor of NADPH oxidase-dependent
reactive oxygen species (ROS) production in activated human PMNSs. Its putative
mode of action involves metabolic conversion by MPO and ROS. Recently, Holland
et al. proposed diapocynin to be the active metabolite of apocynin (2). In Chapter 5,
we described the isolation, characterization, and activity of diapocynin, and
proposed a model for its mode of action. However, activities of other known
metabolites of apocynin have not been studied yet.

The metabolization of apocynin in vivo is partially known, since Gjertsen et al.
(4) and Daly et al. (5) reported that after a period of 20 hours following i.p.
administration, 80% of apocynin was recovered unchanged in the urine of the
animals, but that traces of apocynin had been converted into 3’,4’-dihydroxy-
acetophenone or into 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol.

So far, apocynin is known as a potent and selective inhibitor of ROS
production by activated PMNs (6, & this thesis). Although PMNs play an important
role in inflammatory diseases, they can not be accounted for all detrimental effects,
since monocytic cells, T cells, and mononuclear cells-derived production of cytokines
play a major role as well (7-10).

To determine whether the metabolites mentioned above, may contribute to
the activity of apocynin, these analogs were tested for their ability to inhibit ROS
production by activated human PMNs. Furthermore, a pilot-study was performed
on the activity of apocynin, diapocynin, 3’,4’-dihydroxy-acetophenone, and 1-(4’-
hydroxy-3’-methoxyphenyl)-ethanol to assess their effects on T-cell proliferation and
their ability to inhibit production of interferon y (IFNy), tumor necrosis factor o
(TNFa), interleukin 1 (IL-1), as well as IL-4 by T cells and monocytic cells.

Materials & Methods

Materials

Apocynin was obtained from Carl Roth GmbH (Karlsruhe, Germany) and was
purified by recrystallization from water before use. Diapocynin was synthesized as
previously described (Chapter 5). The apocynin analogs 3’,4’-dihydroxy-
acetophenone and 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol were synthesized as
described below. a-CD3/a-CD28 was obtained from the Central Laboratory of the
Blood Transfusion Service (CLB, Amsterdam, The Netherlands). All other reagents
were obtained from Sigma (St. Louis, MO, USA), unless stated otherwise.
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Synthesis of 3’,4"-dihydroxy-acetophenone

3,4’ -Dihydroxy-acetophenone was prepared by o-demethylation of apocynin
(11). Protected from atmospheric moisture, 4.4 g (33 mMol) of anhydrous aluminium
chloride (4.4 g,) was suspended in a solution of 5.0 g (30 mMol) of apocynin in 50 mL
of dichloromethane while stirring. The mixture was cooled and 11.1 mL (132 mMol)
of pyridine was added slowly (molar ratios of the reactants were pyridine:
aluminium chloride: apocynin = 4.4:1.1:1). Subsequently, the resulting orange
solution was refluxed at 45 °C for 24 h. After cooling to room temperature and
addition of hydrochloric acid (15%) to pH<4, the aqueous phase was extracted
exhaustively with diethyl ether. The diethyl ether extract was dried over anhydrous
sodium sulfate and the solvent was removed under reduced pressure. The residue
was found to contain a small amount of apocynin and was therefore purified by
column chromatography over silica gel with chloroform/methanol (90:10) as eluent.
Fractions containing 3’,4’-dihydroxy-acetophenone were combined and the solvent
was evaporated. Yellow-orange crystals were obtained by recrystallization from
chloroform (yield: 40%).

3’,4’-Dihydroxy-acetophenone: Spectral data and physical constants
Melting Point: 122-123 °C

TH NMR (CDsOD; 300 MHz): 6 2.48 (3H, s; CH3), 6.81 (1H, dd, ] =7.7 Hz, ] = 0.8 Hz;
H-5), 7.42 (2H, m; H-2/6)

13C NMR (CDs0D; 75 MHz): 6 199.7 (C=0), 152.3 (C-3), 146.4 (C-4), 130.8 (C-1), 123.5
(C-6),116.1 (C-5/2), 115.8 (C-5/2), 26.2 (CHs)

EI-MS my/z: 152 [M]*, 137 (base peak) [M-CHa]*, 109 [M-CH3CO]*

IR spectroscopy (KBr), v max cm (%T): 3375 (55.4; OH), 1664 (57.6; C=0), 1591 (55.2;
aryl C=C), 1525 (68.5; aryl C=C), 1446 (69.1; aryl C=C), 1367 (69.1), 1294 (59.7), 1230
(62.7), 1124 (68.2)

Synthesis of 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol

1-(4-hydroxy-3’-methoxyphenyl)-ethanol was obtained by reduction of
apocynin with sodium boron hydride. Sodium boron hydride (113 mg; 3 mMol) was
suspended in 10 mL of 1,2-dimethoxyethane (DME). The suspension was stirred and
a solution of 500 mg (3 mMol) of apocynin in 3 mL of DME was added slowly.
Methanol (1.2 mL; 30 mMol) was added after 6 h, and after another 16 h the reaction
was terminated by addition of 1N hydrochloric acid to pH< 4. Subsequently, the
mixture was extracted exhaustively with diethyl ether. The combined ether layers
were dried over anhydrous sodium sulfate and the solvent was evaporated under
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reduced pressure. The residue was purified by column chromatography over silica
gel using chloroform/methanol (90:10) as eluent. Fractions containing 1-(4’-hydroxy-
3’-methoxyphenyl)-ethanol were combined and the solvent was evaporated; a
crystalline product was obtained which purity was proven by GC-MS (yield: 50%).

Derivatization of 1-(4"-hydroxy-3’-methoxyphenyl)-ethanol and GC-MS analysis

1-(4’-hydroxy-3’-methoxyphenyl)-ethanol was (trimethyl)silylated in ethyl
acetate with MSTFA [N-methyl-N-(trimethylsilyl)trifluoroacetamide; Sigma/
Aldrich, Zwijndrecht, The Netherlands] in a sealed vial at 70 °C for 40 min. The TMS
derivative(s) was(ere) analyzed using a Chrompack CP Sil 8 CB column (30 m;
internal diameter 0.25 mm; film thickness 0.25 pm). After injection of the sample the
initial oven temperature of 100 °C was maintained for 1 min and then raised to
290 °C with a rate of 8 °C/min. The latter temperature was maintained for 5 min
[Rt 11.70 min].

1-(4’-hydroxy-3"-methoxyphenyl)-ethanol: Spectral data and physical constants
Melting Point: 107 °C

TH NMR (CDs0OD; 300 MHz) &: 6.95 (1H, d, ] = 2.1 Hz; H-2'), 6.77 (1H, dd, ] = 8.1 Hz,
] = 2.1 Hz; H-6), 6.73 (1H, d, | = 8.1 Hz; H-5'), 4.73 (1H, q, ] = 6.3 Hz;, H-1), 3.85
(3H, s; OCHs), 1.40 (3H, d, ] = 6.3 Hz; CHs)

TH NMR (DMSO-ds; 300 MHz) &: 9.14 (1H, s; 4-OH), 7.29 (1H, s; H-2'), 7.10 (2H, m;
H-5'/6"), 5.00 (1H, q, | = 6.3 Hz;, H-1), 415 (3H, s; OCHs), 3.74 (1H, d, ] = 6.6 Hz;
1-OH), 1.68 (3H, d, ] = 6.3 Hz; CHj3)

EI-MS: (Relative abundances are given in parentheses).
[1-(4'-hydroxy-3’-methoxyphenyl)-ethanol-(TMS)z] m/z: 312 (14) [M]*, 297 (100)
[M-CHs]*, 267 (8), 223 (14) [M-OTMS]*.

IR spectroscopy (KBr), v max cm (%T): 3446 (52.4; OH), 3128 (59.2; OH), 2968 (58.3),
1603 (63.1), 1527 (57.9), 1468 (67.1), 1385 (64.3), 1284 (54.6),1263 (56.7), 1217 (62.3),
1159 (59.2)

O%C _CHj

3',4'-dihydroxy-acetophenone 1-(4'-hydroxy-3'-methoxyphenyl)-ethanol
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Measuring ROS production

Neutrophils were isolated from venous blood of healthy volunteers (Bloedbank
Midden-Nederland, Utrecht, The Netherlands) as described by Verbrugh et al.(12).

In white 96-well, flat-bottom microtiter plates (Costar, Badhoevedorp, The
Netherlands), compounds were serially diluted to final volumes of 50 PL. To each well,
50 pL of a PMN suspension (1107 cells/mL) and 50 pL of a luminol solution (120 pM)
was added. The neutrophils were triggered by adding 50 pL of opsonized zymosan A
(OPZ; final concentration 200 pg/mL). Chemiluminescence was monitored every 2 min
for 0.5 sec during a 30-min period using a Titertek Luminoskan luminometer (TechGen
International, Zellik, Belgium). Peak levels were used to calculate the activity of test
samples in relation to their corresponding controls (identical incubations without test
sample). Experiments were performed in HBSS buffered at pH 7.35 with NaHCOs and
supplemented with 0.1% (w/v) gelatin to avoid cell-aggregation (HBSS-gel). OPZ was
obtained by incubation of washed commercial zymosan A with 1:10 diluted human
pooled serum (HPS) at 37 °C for 30 min. After washing, the opsonized product was
resuspended in HBSS (final concentration: 0.8 mg/mL).

Mononuclear-cell cultures

Peripheral blood mononuclear cells (MNCs) were isolated from healthy
volunteers according to standard procedures. Blood was diluted 1:1 with Dulbecco’s
Modified Eagle’s Medium (DMEM, Gibco BRL, Paisley, Scotland) containing
0.81 mM SO4?, supplemented with glutamine (2 mM), penicillin (100 IU/mL) and
streptomycin sulphate (100 pg/mL; DMEM?*). MNCs were isolated by density
centrifugation using Ficoll-Paque (Pharmacia, Uppsala, Sweden). The viability of the
cells, checked by trypan blue exclusion, always exceeded 95%. Subsequently, MNCs
were cultured (0.500° cells/mL) in 96-well plates (in the presence or absence of
compounds) in DMEM* supplemented with 10% human male AB* serum (Red Cross
Blood Transfusion Center, Utrecht, The Netherlands).

Experimental design

To mimic the conditions in the rheumatoid joint (13, 14), MNCs were
stimulated with the bacterial antigen E. coli lipopolysaccharide (LPS 0111:B4;
10 ng/mL). The production of TNFa, and IL-1 (in the presence or absence of
compounds) was determined in the 4-day culture supernatants of the cells.

T cells were stimulated with aCD3/aCD28 monoclonal antibodies (diluted
1:500.000). During the last 48 h of the cell culture, the cells were additionally
stimulated with ionomycin/PMA (1.0 pg/mL and 50 pg/mL, respectively). The
cytokines IFNy and IL-4, as estimates of T-helper 1 (Tul) or Tu2 cell activity,
respectively, were measured in the supernatants.

The effect of the compounds on T-cell proliferation was assessed in quadruplo
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per donor by [3H]-thymidine incorporation during the last 18 h of culture according
to standard procedures.

Measuring cytokines

Supernatants of PMNC cultures were harvested, separated from cellular
material by centrifugation (5 min, 450xg), frozen in liquid nitrogen, and stored at
-20 °C for no longer than 3 months. All cytokines were determined by ELISA
(Medgenix, Flerus, Belgium). The detection limits were 30, 10, 10, and 10 pg/mL for
IL-1, TNFa, IFNy, and IL-4, respectively.

Statistical analysis

Student’s paired t-test was used to evaluate the statistical significance of
differences. Differences with P values < 0.05 were considered statistically significant.

Results

Inhibition of ROS production
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Figure 1. Inhibitory effects of apocynin, diapocynin, 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol (1-
MPE), and 3’,4’-dihydroxy-acetophenone (3',4’-DHA) on the luminol-enhanced chemilumi-
nescence response of OPZ-stimulated human PMNs (n=6). Values are depicted as mean IC50
values * Standard Errors of the Mean (SEM). * Significant difference compared with apocynin-
incubated PMNs; P<0.001.
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To investigate the effects of the apocynin metabolites 1-(4’-hydroxy-3’-
methoxyphenyl)-ethanol and 3’,4’-dihydroxy-acetophenone on the production of
ROS by OPZ-stimulated human PMNs, chemiluminescence was measured using
luminol as enhancer. IC50 values were compared with IC50 values of apocynin and
diapocynin, which were determined previously (Chapters 3 & 5, respectively).

The IC50 wvalues of 1-(4-hydroxy-3’-methoxyphenyl)-ethanol and
3’ 4’-dihydroxy-acetophenone (10.5 pM and 8.5 pM, respectively) were not
significantly different from that of apocynin (10 pM). Diapocynin was significantly
less active (IC50: 84 uM), as previously reported in Chapter 5.

IL-1 and TNFa production by MNCs

To investigate the effects of the apocynin and apocynin metabolites on
cytokine release by MNCs, levels of cytokines in the supernatants of the cell cultures
were determined.

1250-

—
o
o
<

RN

9.5,

4
%Y
R

e
s
X

750—% l !

500-

X
R
8

XX
b2

...-.
00,000
’Q’Q’Q’Q’Q e
SRRRRRRRIRRRRRK

o
b

%%
XX
SRR

XX
b2

X
XL
ol

b
X

IL-1 production (pg/mL)

TXIIIRIIITI IR KX III IR XTI

%
X

RIBEBRKKL

RRRKKL

XX
b2
X

XRRX
R

e
X

o
X

T
o
%

9%

bt

,,
=
2

Q>
RRXIIIIR

.....
SRRRXK
R

-

e

%a%

K
XXX
R

[T T

R3IR
6%%%
SRR

9.3
=
oS

T T —

250-

0 ] |l| Il Il
10 30100 1030100 1030100 1030100
C-C+ apocynin diapocynin 1-MPE  3,4'-DHA

R X
XX

R X

ot
=
oS

%
%
S

|

dl

Figure 2. Effects of apocynin, diapocynin, 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol (1-MPE), and
3’,4’-dihydroxy-acetophenone (3’,4’-DHA) on the production of IL-1 by LPS-stimulated
MNCs (n=3). Values are depicted as mean values * Standard Errors of the Mean (SEM).
Concentrations of the compounds are depicted as ug/mL. C- and C+ represent control cells without

and with stimulation, respectively. * Significant difference compared with stimulated controls;
P<0.05.

Although IL-1 production was not inhibited by the three doses of apocynin
tested, diapocynin, 1-(4’-hydroxy-3’-methoxyphenyl)-ethanol (1-MPE), and
3’,4’-dihydroxy-acetophenone (3',4'-DHA) showed significant inhibition, albeit at the
highest concentration tested.

As shown in figure 3, apocynin, diapocynin, and 3’,4’-DHA, showed dose-
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dependent inhibition of TNFa production; significant results were only observed at
the highest concentration used. 1-MPE was found to be not active.
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Figure 3. Effects of apocynin, diapocynin, 1-MPE, and 3’,4-DHA on TNFa production by LPS-
stimulated MNCs (n=3). Values are depicted as mean values + SEM. * Significant difference

compared with stimulated controls; P<0.05.
T- cell derived cytokines

The Tnl and Tu2 cell cytokines IFNy and IL-4, respectively, were determined
in culture supernatants of aCD3/aCD28 and ionomycin/ PMA-stimulated MNCs.
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Figure 4. Effects of apocynin, diapocynin, 1-MPE, and 3’,4-DHA on IFNy production by
aCD3/aCD28 and ionomycin/PMA-stimulated MNCs (n=3). Values are depicted as mean
values + SEM. * Significant difference compared with stimulated controls; P<0.05.
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Unexpectedly, unstimulated cells showed increased levels of IFNy
production. Compared with the stimulated controls, no significant inhibitory effects
on IFNy production were observed for apocynin and diapocynin-incubated MNCs
(Fig. 4). 3',4-DHA, however, showed significant, dose-dependent inhibition,
whereas 1-MPE was only inhibitory at the highest concentration.

For IL-4, all values obtained were below the detection limit of the assay (data
not shown).

T-cell proliferation

T-cell proliferation, as measured by [3H]-thymidine incorporation, was
determined for all compounds.
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Figure 5. Effects of apocynin, diapocynin, 1-MPE, and 3’,4’-DHA on T-cell proliferation (n=3).
Values are depicted as SI (stimulation index) and represent mean values + SEM. * Significant

difference compared with stimulated controls; P<0.05.

All compounds showed dose-dependent inhibition of T-cell proliferation.
Significant inhibition of apocynin was only obtained at a level of 100 pg/mL;
diapocynin and 1-MPE showed significant inhibition at 30 and 100 pg/mL, whereas
3’,4-DHA was significantly active at all concentrations. Inhibitory effects could not
be attributed to cytotoxicity as tested by trypan blue exclusion.

Discussion

The nonsteroidal anti-inflammatory drug apocynin is a promising lead-
compound in the treatment of several experimental inflammatory conditions,

98



Effects of apocynin on cytokine production

including colitis ulcerosa and rheumatoid arthritis in rats (1, 2) and atherosclerosis in
rabbits (3). Although different inflammatory diseases may involve different sets of
inflammatory cells, including mast cells, neutrophils (PMNs), eosinophils,
monocytes, T cells, and even B lymphocytes (as antigen-presenting cells), the effects
of apocynin studied so far have been mostly restricted to the inhibition of NADPH-
dependent reactive oxygen species (ROS) production by neutrophils. Neutrophils
are considered to be involved in the onset (15, 16), rather than in later phases of
inflammatory processes wherein monocytes and T cells play a major role (17, 18).
Therefore, in order to get an impression of the effects of apocynin later on in a
monocyte- and/or T-cell-mediated inflammatory reaction, our attention in this
paper was focussed on the action of apocynin on the mononuclear blood cells of
healthy donors, with special reference to T-cell and monocyte-mediated effects
(17, 18).

Thus far, the in vitro effects of apocynin on monocyte- and/or T-cell-mediated
reactions have not been studied thoroughly, whereas the effects of the apocynin
metabolites on these processes have not been studied at all. Therefore, not only
apocynin, but also its major in vivo metabolites diapocynin (the putative active
principle in the inhibition of PMN-dependent ROS production), 3’,4’-dihydroxy-
acetophenone, and 1-(4’-hydroxy-3’-methoxy-phenyl)-ethanol were included in this
experimental study as well.

In contrast to what is known about mononuclear cells (MNCs) from patients
with rheumatoid arthritis (19), the production of the monocyte-derived, pro-
inflammatory cytokine IL-1 by mononuclear cells from healthy donors was not
affected by apocynin, at least in the concentrations tested (Fig. 2). In contrast, all
three apocynin metabolites inhibited IL-1 production by monocytes from healthy
subjects, albeit mostly only at the highest concentration tested.

Regarding TNFa production, the results obtained for apocynin were
consistent with those from Mattsson et al., who described a moderate inhibition of
TNFa production by adherent mononuclear cells in vitro (20). Diapocynin and
3,4’ -dihydroxy-acetophenone sorted similar effects as apocynin, whereas
1-(4’-hydroxy-3’-methoxy-phenyl)-ethanol was totally devoid of inhibitory effect.
Since all IL-4 levels remained below the detection limit of the assay, conclusions with
regard to possible inhibitory effects of apocynin and apocynin metabolites on Tn2
cells could not be drawn.

In contrast to previous observations on mononuclear cells from rheumatoid
arthritis (RA) patients (19), apocynin-incubated T cells were not inhibited in their
IFNy response. Although our unstimulated cells from healthy donors showed
already high levels of IFNy production, the highest concentration of 1-(4’-hydroxy-
3’-methoxy-phenyl)-ethanol and all three doses of 3’,4’-dihydroxy-acetophenone
tested showed significant inhibitory effects (Fig. 4).

Results obtained with the T-cell proliferation assay were the most consistent:
all three apocynin metabolites tested, inhibited the proliferative T-cell response, at
least at the two highest dose levels (Fig. 5).
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In conclusion, it can be stated that in this pilot-study, apocynin, diapocynin,
and the other metabolites only are able to inhibit monocyte cytokine production and
T-cell proliferation at concentrations which are significantly higher than the IC50
values obtained in the ROS inhibition assay. Considering the dosage of apocynin
and its metabolism in the in vivo situation (4), it may seem unlikely that the in vitro
effects reported here could contribute to the reported in vivo effects.

However, it should be noted that also the in vivo effects of apocynin in the
experimental rat RA model (19) were in fact much stronger than could be expected
on basis of established in vitro activity. Possible explanations for this inconsistency
between the in vivo and in vitro observations may be: (i) apocynin or one of its
metabolites are concentrated in the major inflammatory cell, (ii) apocynin and one or
more of its metabolites act synergistically, (iii) combinations of the latter two
possibilities or (iv) apocynin or its metabolites affect production (or activity) of other
important pro-inflammatory cytokines. Since the second possibility can easily be
studied in vitro as well as in vivo, near-future studies will be focused on the putative
synergistic effects between apocynin and its metabolites.
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- Je gaat het pas zien als je het doorhebt -
(Johan Cruijff, 1994)
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General Discussion

In recent years, there has been a gradual shift in immunological focus away
from the specific antigen recognition mechanisms of adaptive immunity, back to
primary host defense mechanisms. It has become clear that innate immune responses
exhibit a degree of specificity and are more complex than was ever supposed (1).
Studies on innate immunity have led to the discovery of common molecular
mechanisms used for host defense in mammals, insects, and even plants (2, 3). Innate
or natural immunity is the ability to respond immediately to an infectious challenge,
regardless of previous exposure of the host to the invading agent. Elements of the
innate immune system include phagocytic cells, i.e. polymorphonuclear leukocytes
(PMNs) and mononuclear phagocytes like macrophages, and the complement
cascade of circulating soluble pre-enzymic proteins. PMNs and macrophages play a
key role in the first line of defense against invading microorganisms, and conditions
in which these cells do not function properly can cause serious problems (4-6).
Besides their beneficial properties, PMNs may also have adverse effects, since the
production of reactive oxygen species (ROS) by activated PMNs may exacerbate the
inflammatory response and may give rise to tissue injury (7-9). Inflammation and
reactions of the innate immune system can often be controlled by the use of steroids,
but sometimes adverse effects of these drugs make the cure worse than the disease
(10-12). Therefore, advanced research is focused on the discovery of potent non-
steroidal anti-inflammatory drugs (NSAIDs).

In a search for such anti-inflammatory compounds, we obtained apocynin by
activity-guided isolation in 1989. Although apocynin as a molecule had been
described before (13-15), we discovered its potent inhibitory activity on NADPH
oxidase-dependent ROS production by stimulated human PMNs (16). In following
experiments, the activity of apocynin appeared to be dependent on myeloperoxidase
(MPO), an enzyme present in the azurophilic granules of PMNs and released upon
activation (17). A more detailed mode of action has been subject of speculations,
however. It has been proposed that apocynin has to be converted into an active
metabolite by the combined action of MPO and ROS (18-20). Several structures have
been suggested for this metabolite (18, 21), but no convincing evidence has been
provided. The studies described in this thesis contribute to the understanding of the
mode of action of apocynin.

In Chapter 2, we demonstrated that in activated PMNs, apocynin inhibits
extracellular as well as intracellular production of superoxide anions and other ROS.
Since it was established that apocynin does not act as a scavenger of superoxide
anions, this may point at a direct effect of this compound on the neutrophil NADPH
oxidase.

The proposed conversion of apocynin into an active metabolite by the
combined action of MPO and ROS was supported by experiments concerning the
increased oxygen uptake by activated PMNs which preceeds ROS production. The
inhibition of oxygen consumption by apocynin showed a lag time of approximately
5 min, which is probably the time needed for its conversion into the active substance.
Moreover, when PMNs had been incubated with apocynin in the presence of OPZ,
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upon a second stimulation with OPZ, no lag time was observed indicating the
presence of an active apocynin metabolite inside the PMN.

Previously, it was assumed that apocynin inhibited NADPH-dependent ROS
production by interfering with translocation of cytosolic components necessary for
the assembly of the NADPH oxidase complex (20). Based on our results, however,
no discrimination between inhibition of assembly or acceleration of dissociation of
the NADPH oxidase complex could be made.

In Chapter 3, structure activity relationship studies (SAR) are described; these
studies were performed to determine whether changes in the molecular structure of
apocynin would lead to the discovery of more potent inhibitors of NADPH oxidase
activity. SAR studies may also provide more information with regard to the active
site(s) of the molecule. Experiments with apocynin analogs showed that the
introduction of an additional methoxy-group at position C-5 leads to an increase in
inhibitory activity. Future experiments have to show if the analogs investigated have
a similar mode of action as proposed for apocynin.

In recent years, more and more attention has been paid to the role of reactive
nitrogen species (RNS) in inflammatory diseases. Nitric oxide and its derivative
peroxynitrite play an important role in inflammation of the respiratory tract (22, 23).
Apocynin was capable of inhibiting peroxynitrite formation by murine macrophages
(Chapter 4). This finding may explain the observations of Muijsers et al. who
reported that i.p. as well as orally administrated apocynin significantly inhibited
allergen-induced hyperresponsiveness in mice (24).

Since in literature diapocynin has been proposed to be the active metabolite of
apocynin (21), we focussed our attention on this dimer. First of all we proved its
actual existence: its formation from apocynin in a cell-free system with MPO and
hydrogen peroxide, as well as in OPZ-stimulated PMNs (Chapter 5). The identity of
diapocynin was confirmed by NMR spectroscopy and MS. Diapocynin was also
chemically synthesized for in vitro testing. The dimer appeared to be less active than
apocynin in inhibiting ROS production by stimulated PMNs. In contrast, it showed
similar inhibition of oxygen consumption, and appeared to be a potent scavenger of
superoxide anions. These findings strongly indicated that the existing theories had to
be revisited. A new model for the mode of action of apocynin is proposed below.

Finally, effects of apocynin and some metabolites [i.e. diapocynin,
3,4’ -dihydroxyacetophenone, and 1-(4-hydroxy-3’-methoxyphenyl)-ethanol] on
cytokine production by mononuclear cells and T cell proliferation are described in
Chapter 6. Studies on mechanisms underlying inhibition of cytokine production and
T cell proliferation by apocynin may contribute to the understanding of its long-term
effects in inflammatory conditions.

Proposed mechanism of action of apocynin

The fact that apocynin is converted into diapocynin by activated PMNs
(Chapter 5), makes this dimer a likely candidate for the suggested active metabolite.
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The activity of diapocynin, and thereby the mode of action of apocynin, may be
explained as follows.

It has been reported that polymerized phenolic lignin-related compounds
significantly increase iodination inside PMNs (25, 26). This iodination reflects the
MPO activity (27). It should also be noted here that diapocynin has been described as
a lignin model-compound (28). Furthermore, it is known that increased activity of
MPO leads to an accelerated termination of the NADPH oxidase-dependent
respiratory burst (29). The involvement of MPO was further demonstrated by
Klebanoff et al., who showed that respiratory burst activity was increased in MPO-
deficient PMNs (30-32) as well as in PMNs treated with the MPO inhibitor sodium
azide (29, 33).

Therefore, we hypothesize that in the phagolysosome, by combined action of
MPO and ROS, diapocynin is formed which increases MPO activity, and thereby
accelerates the termination of the respiratory burst resulting in decreased NADPH
oxidase activity.

Moreover, we discovered that diapocynin is a potent scavenger of superoxide
anions (Chapter 5). Since it has been shown that decreased levels of hydrogen
peroxide result in an accelerated termination of the respiratory burst (29),
scavenging of superoxide anions by diapocynin, and thereby a decrease of hydrogen
peroxide, is significant in this respect.

In understanding the activity of apocynin, the topology of events is really
crucial. There is a significant difference between extracellular events and those
taking place inside the phagolysosome (34, 35).

Our observation that diapocynin displayed a lower activity than apocynin in
the chemiluminescence assay upon OPZ-stimulation and luminol-enhancement
(Chapter 5) may be explained by the fact that incubation of PMNs with (exogenous)
diapocynin represents another condition than diapocynin being formed
(endogenously) from apocynin inside the phago(lyso)some. The log P value of
diapocynin, representing lipophilicity, calculated according to Hansch and Leo (36),
appeared to be significantly higher than that of apocynin (1.40 and 0.89,
respectively). Consequently, (exogenous) diapocynin will readily enter the cell
membrane of the PMN and stay there without migration to the cytosol. Also the
difference in pH between the extracellular space and the phago(lyso)some may be
quite important. Inside the phagolysosome, the pH can increase to 8 during the first
minutes of phagocytosis (34, 35). Calculated pKa-values of diapocynin and apocynin
were 8.4 and 8.9, respectively (36). This may mean that within the phagolysosome,
diapocynin is more likely to occur in a charged (deprotonated) form than apocynin.
In this way, endogenously formed diapocynin will not easily enter the cell
membrane, thus allowing the substance to exert its activity within the
phagolysosome. A schematic representation of our model is depicted in Figure 1.

However, there may be another mechanism involved in the activity of
apocynin. The formation of diapocynin within the phagolysosome is most likely to
proceed via an intermediate radical. A similar phenomenon has been reported by
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McCormick et al., who demonstrated the formation of a tyrosyl radical in the
conversion of L-tyrosine into its 3,3’-dimer upon incubation with H>O2 and MPO
(37). In our case, we could also confirm the existence of a relatively stable radical
derived from apocynin in the presence of HxO2 and MPO by experiments using
electron spin resonance (ESR) spectroscopy (unpublished results). Reactive apocynin
radicals will not pass the cell membrane, but may interact with the flavocytochrome
b at the intraphagosomal side causing conformational changes in this protein-
complex which may eventually lead to dissociation of the NADPH oxidase complex
(Fig. 1). However, this theory needs further confirmation; therefore, the effects of
apocynin radicals on NADPH oxidase activity will be subject of our future studies.
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Figure 1. Supposed mechanism of action of apocynin. (apo e represents the apocynin radical, MPO AN
represents increase of MPO activity).

108



General Discussion

The possibility of diapocynin being the active metabolite also makes the
theory of Stolk et al. less likely. These authors suggested that apocynin (or better its
active metabolite) inhibits the assembly of NADPH oxidase by interfering with the
translocation of the cytosolic proteins p47vhox and p67rtex (20). The release of MPO
and ROS, and thereby the conversion of apocynin into diapocynin, does only occur
in the phagolysosome. However, translocation of the cytosolic factors p47rx and
p67rox to the membrane-bound flavocytochrome b is a process that takes place in the
cytosol of PMNSs. So, diapocynin will only be able to inhibit the assembly of NADPH
oxidase when it passes the cell membrane and enters the cytosol. Considering its log
P and pKa-values, this seems unlikely. We suggest that the activity of apocynin
reflects rather the accelerated dissociation of the NADPH oxidase complex than
inhibition of its assembly.

Possible role of apocynin in the plant

Being a phytogenic compound, the activities of apocynin described so far
raise the question what role it may play in the plant. It is well known that many
plants produce certain chemicals upon wounding or threatening events like attacks
of insects or microorganisms (38-40). These secondary metabolites contribute to the
defense of the plant. For example, salicylic acid is a potent bactericidal and
fungicidal agent (41, 42). Its derivatives have been used effectively for many years to
treat inflammations in humans (43, 44). But also in the plant itself salicylic acid acts
as a protective compound; it plays a critical role in the activation of plant defense
responses after pathogen attack by inducing systemic resistance to infection (45, 46).
Experiments have shown that salicylic acid is required for signal transduction at
local levels in infected plants, and that its mode of action may include inhibition of
catalase activity which results in increased levels of hydrogen peroxide (47).

So, it may well be possible that anti-inflammatory properties of apocynin also
play a role in plant defense. Although apocynin is described to occur in many plants,
not much is known about its role in these species. It has been reported that in several
plants, fungal infections may give rise to the synthesis of fungitoxic compounds
(phytoalexins) (48-51). In Amelanchier ovalis and Photinia davidiana, infection was
accompanied by increasing amounts of antifungal phenolics, most of which
appeared to be released from bound (glycosidic) forms. One of these phenolics was
identified as apocynin (52). This indicates that in some plant species the increased
production of apocynin may correlate with fungal infection.

In contrast, it has also been described that small phenolic compounds like
apocynin, 4’-hydroxyacetophenone, and acetosyringone in particular, are able to
induce the virulence (vir) genes of Agrobacterium tumefaciens (53-55). This Gram-
negative soil bacterium causes crown gall tumors after infecting the wound sites of
most dicotyledonous plants (56, 57). In this case, apocynin is not beneficial to the
host, but may serve as a signal-molecule instead, which is recognized by receptors of
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A. tumefaciens and thereby used by the bacterium to invade the plant and induce
infection.

An approach to obtain more information about the role of apocynin in plants
(e.g. Picrorhiza kurroa) may be their infection with different pathogens and
subsequent analysis of apocynin levels in comparison with healthy controls.

Most interestingly, plants also possess an NADPH oxidase, which is quite
similar to that of mammals (58-60). So, future experiments focused on the interaction
of apocynin with this herbal enzyme complex may also contribute to a better
understanding of its mechanism of action and its potential anti-inflammatory
properties.

Future Perspectives

Considering the anti-inflammatory activities of apocynin, we may conclude
this compound definitely deserves further study. Besides providing data to further
prove its mechanism of action, apocynin may be an interesting model-compound in
the development of new potent NSAIDs.

Since ROS play an important role in many inflammatory diseases, there may
be quite some pathological conditions in which apocynin may prove its beneficial
activity. In particular in the treatment of colitis and atherosclerosis, apocynin may
serve as the basis for the development of useful drugs. In this respect, beneficial
effects of apocynin have been demonstrated in animal models (21, 61). As a
consequence, apocynin should further be tested in clinical trials, in particular since
this compound is virtually devoid of side effects (21, 62).

Apocynin may also become of interest in the relatively new and rapidly
increasing field of vanilloid receptors. The discovery of vanilloid receptors (63-67)
has led to extensive research on vanilloid-sensitive neurons (68, 69). Compounds
related to capsaicin, (E)-N-[(4-hydroxy-3-methoxyphenyl)-methyl]-8-methyl-
6-nonenamide, collectively referred to as vanilloids, interact at a specific recognition
site (vanilloid receptor), almost exclusively expressed by primary sensory neurons
involved in nociception (70, 71) and neurogenic inflammation (72, 73).
Desensitization to endogenous vanilloids is a promising therapeutic approach to
alleviate neuropathic pain and pathological conditions in which neuropeptides
released from primary sensory neurons play a major role (e.g. vasomotor rhinitis).
The use of capsaicin, however, is limited by its irritancy (72), and therefore the
synthesis of novel vanilloids with an improved pungency/desensitization ratio is an
on-going objective. Interestingly, it has also been reported that acute capsaicin
administration in rats protects against the ulcerative action of trinitrobenzene
sulfonic acid (TNBS), most likely via the release of protective neuropeptides from
capsaicin-sensitive nerve endings (74). Since apocynin shares the vanillyl-like motif
with capsaicin, its possible interaction with vanilloid receptors certainly deserves
attention. Investigations in this respect may contribute to the development of new
potent vanilloid-like drugs.
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Final conclusion

Apocynin is a tiny, but mighty molecule. Its proposed mode of action in
stimulated human PMNs involves endogenous formation of a dimer (diapocynin)
inside the phagolysosome, which leads to increase of MPO activity and eventually to
an accelerated termination of the NADPH oxidase-dependent respiratory burst.

Our investigations also indicate that molecules with so-called ‘a-specific
scavenger properties’ may be of greater significance than thus far assumed.
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IC50 Concentration giving rise to 50% inhibition
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1-MPE 1-(4'-Hydroxy-3'-methoxyphenyl)-ethanol
MNC Mononuclear cell

MSTFA N-methyl-N-(trimethylsilyl)trifluoroacetamide
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- Als ik zou willen dat je het begreep,
legde ik het wel beter uit -

(Johan Cruijff, 1992)
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Polymorfonucleaire neutrofielen (PMNs) zijn witte bloedcellen die behoren tot
de granulocyten. Zij danken hun naam aan hun typische kern die vaak uit meerdere
lobben bestaat. PMNs komen in grote aantallen voor in het bloed van gezonde
mensen en in het geval van een ontsteking kan het aantal cellen nog drastisch
toenemen. PMNs zijn beweeglijke cellen en kunnen de bloedbaan gemakkelijk
verlaten door tussen de endotheelcellen, die het bloedvat bekleden, heen te dringen
Hierdoor kunnen ze zich in de omringende weefsels begeven. PMNs zijn relatief
kortlevende cellen met een halfwaardetijd van 6-7 uur in het bloed en 1-4 dagen in
weefsels buiten de bloedbaan. PMNs vormen een eerste verdedigingslinie tegen
binnengedrongen micro-organismen. Bij ontstekingen worden PMNs in grote
aantallen aangetrokken naar de plek van infectie, waar ze de veroorzakers van de
infectie (bv. een bacterie) onschadelijk kunnen maken door die te omstulpen en
vervolgens op te nemen, een proces dat fagocytose wordt genoemd. Naast
fagocyteren kunnen PMNs ook allerlei enzymen en reactieve zuurstofmetabolieten
(reactive oxygen species = ROS) afgeven die de bacterie kunnen beschadigen en
eventueel doden. PMNs bezitten receptoren die binnengedrongen bacterién kunnen
herkennen en binden waarna de cel geactiveerd wordt. Wanneer PMNs geactiveerd
worden, nemen ze aanzienlijke hoeveelheden zuurstof op uit hun omgeving, een
proces dat bekend staat als de “oxidatieve burst”. Dit proces is onafthankelijk van de
normale cellulaire ademhaling en kan zelfs met cyanide niet geremd worden. De
opgenomen zuurstof wordt vervolgens omgezet in ROS zoals superoxide anion
(-O2), waterstofperoxide (H20z) en het hydroxyl radicaal (-OH). Na reactie van H>O»
met het eveneens door de geactiveerde PMNs vrijgezette enzym myeloperoxidase
(MPO), kan het uiterst reactieve hypochloriet (HOCl) worden gevormd.

Het enzymcomplex dat verantwoordelijk is voor de omzetting van zuurstof in
deze zuurstofradicalen is het NADPH-oxidase. Het NADPH-oxidase is een complex
enzym dat bestaat uit diverse eiwitbouwstenen. In ongestimuleerde cellen is het
NADPH-oxidase niet volledig geassembleerd en dus inactief. Het bestaat uit een
membraan-gebonden gedeelte en enkele essentiéle bouwstenen, waaronder p47phox
en p67rhox, die in het cytosol zijn gelokaliseerd. Wanneer de cellen geactiveerd raken,
migreren deze cytosolische eiwitten naar de celmembraan toe en binden zich aan het
membraan-gebonden gedeelte. Na de assemblage is het actieve NADPH-oxidase in
staat om de opgenomen zuurstof om te zetten in reactieve zuurstofmetabolieten.
Zoals reeds vermeld zijn deze zuurstofmetabolieten (ROS) erg belangrijk bij de
afweer tegen bv. bacterién, maar in sommige gevallen kan de productie van deze
zeer reactieve verbindingen leiden tot beschadiging van het omliggende weefsel.
Deze beschadigingen kunnen een nieuwe ontsteking tot gevolg hebben. Dit betekent
dat PMNs zowel gunstige als schadelijke effecten kunnen hebben bij de verdediging
van het lichaam tegen infecties. Daarom kan het bij ontstekingen gunstig zijn om de
productie van deze ROS te remmen.

Veel onderzoek is gericht op het vinden van verbindingen die heel specifiek de
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productie van ROS door geactiveerde PMNs remmen. Soortgelijk onderzoek leverde
aan het eind van de jaren tachtig de stof apocynin op. Apocynin werd op geleide van
activiteit geisoleerd uit de plant Picrorhiza kurroa. Deze medicinale plant groeit hoog
in de Himalaya en wordt in India en Nepal al eeuwenlang gebruikt bij de
behandeling van ontstekingen. Apocynin bleek een potente remmer van de
productie van ROS door geactiveerde PMNSs. Bovendien bleek apocynin niet toxisch
te zijn en geen bijwerkingen te hebben, en liet het de fagocyterende capaciteiten van
de cellen intact. Dit betekent dat apocynin een ideaal geneesmiddel zou kunnen zijn
bij de behandeling van ziektes waarbij de productie van ROS een rol speelt, omdat
het alleen de ROS-productie remt maar de cellen nog steeds in staat stelt om
bacterién op te ruimen door middel van fagocytose en deze in het fagolysosoom te
vernietigen met enzymen. Verder onderzoek aan apocynin leverde meer interessante
toepassingen van dit molecuul op. In de behandeling van darmontsteking (colitis) en
gewrichtsontsteking (artritis) in proefdiermodellen bleek apocynin een veelbelovend
experimenteel medicijn te zijn.

Alhoewel verschillende onderzoeken werden uitgevoerd om de activiteit van
apocynin te verklaren, werd er nooit een eenduidig model opgesteld dat
overtuigend bewijs opleverde voor het werkingsmechanisme van apocynin. Uit
experimenten was gebleken dat apocynin alleen actief was wanneer PMNs
gestimuleerd werden met gedpsoniseerd zymosan (OPZ), dat een experimentele
benadering is van een bacterie, en niet met de chemische stimulus PMA (een phorbol
ester). In tegenstelling tot stimulatie met PMA, heeft stimulatie met OPZ tot gevolg
dat PMNs MPO vrijzetten. Ook bleek dat apocynin niet actief was als bij stimulatie
van PMNs met OPZ de MPO-remmer azide werd toegevoegd. Toen vervolgens
bleek dat apocynin niet actief was in alveolaire macrofagen (die geen MPO bezitten),
werd al snel de conclusie getrokken dat de activiteit van apocynin MPO-afhankelijk
zou zijn. Het idee was nu dat apocynin onder invloed van een combinatie van MPO
en de geproduceerde reactieve zuurstofmetaboliet H2O», het substraat van MPO,
omgezet zou worden in een actieve metaboliet die verantwoordelijk zou zijn voor de
uiteindelijke activiteit. Uit verdere experimenten werd de conclusie getrokken dat
apocynin de assemblage van het NADPH oxidase zou remmen door de translocatie
van de cytosolische bouwstenen p47rhox en p67rhox naar het membraan-gebonden
gedeelte van het oxidase-complex te remmen.

In dit proefschrift is het werkingsmechanisme van apocynin nader onderzocht.
In Hoofdstuk 2 worden experimenten beschreven die de theorie bevestigen dat MPO
inderdaad noodzakelijk is voor de activiteit van apocynin. Hoewel apocynin
inderdaad een tijdsafhankelijke afname te zien geeft van de cytosolische bouwstenen
in het gevormde NADPH-oxidase-complex, is dit geen bewijs dat apocynin feitelijk
de assemblage van het NADPH-oxidase-complex remt. Het zou namelijk ook
mogelijk kunnen zijn dat apocynin de afbraak van het reeds gevormde oxidase-
complex versnelt. Door deze versnelde afbraak zouden de cytosolische eiwitten,
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nadat het complex eerst is opgebouwd, weer los kunnen laten van het
membraangebonden deel. Dit heeft een niet meer verder functionerend NADPH-
oxidase-complex tot gevolg en daardoor dus geen ROS-productie meer.

Om te bestuderen of een specifiek gedeelte van het apocynin-molecuul
verantwoordelijk zou kunnen zijn voor de activiteit, werden verschillende analogen
van apocynin getest, die alle slechts op één plek van het molecuul verschillen van
apocynin (Hoofdstuk 3). Wanneer de activiteit van deze stoffen op de ROS-productie
wordt vergeleken met die van apocynin, zou misschien iets kunnen worden gezegd
over het werkingsmechanisme van apocynin. Uit de experimenten bleek dat zodra er
een extra methoxy groep (-OCHs) op positie C-5 werd geintroduceerd, de
remmende activiteit op de ROS-productie duidelijk toenam. Zo'n onderzoek naar de
relaties tussen structuur en activiteit kan erg belangrijk zijn voor de ontwikkeling
van een eventueel medicijn.

Naast PMNs kunnen mononucleaire cellen (MNCs) ook een belangrijke rol
spelen bij ontstekingen. Vooral macrofagen spelen een grote rol bij het opruimen van
bacterién en restmateriaal. Macrofagen produceren voornamelijk reactieve
stikstofmetabolieten zoals stikstofmonoxide (NO) en in mindere mate ook ROS. Uit
de reactie van het gevormde NO en het tevens geproduceerde superoxide anion kan
het zeer reactieve peroxynitriet (ONOO-) worden gevormd. Deze reactieve
stikstofverbindingen (reactive nitrogen species = RNS) zijn vooral belangrijk bij
ontstekingen van de luchtwegen, zoals astma, waar ze voor een verslechtering van
de situatie kunnen zorgen. Uit de literatuur was reeds gebleken dat apocynin in een
cavia-model voor astma zorgde voor een afname in de vernauwing van de luchtpijp.
Om te onderzoeken of dit gunstige effect van apocynin te danken zou kunnen zijn
aan remming van stikstofmetabolieten, werd apocynin getest op geactiveerde
macrofagen en werd het effect op de productie van peroxynitriet gemeten. Zoals
blijkt uit de resultaten die beschreven worden in Hoofdstuk 4, remt apocynin
duidelijk de productie van peroxynitriet. Dit zou de eerder gevonden activiteit van
apocynin kunnen verklaren en zou tevens kunnen betekenen dat apocynin een
potentieel medicijn zou kunnen zijn in de behandeling van astma.

In 1999 werd beschreven dat apocynin door het enzym horseradish peroxidase
(HRP) en H>O2 omgezet werd in diapocynin. Dit molecuul, bestaande uit twee
gekoppelde apocynin-moleculen, zou als actieve metaboliet verantwoordelijk zijn
voor de uiteindelijke activiteit van apocynin. HRP, net als MPO een peroxidase,
komt van nature niet voor in PMNs. Experimentele gegevens over diapocynin
werden in de literatuur niet vermeld. In het in Hoofdstuk 5 beschreven onderzoek
wordt de vorming, de identiteit, en de uiteindelijke activiteit van diapocynin verder
onderzocht. Het beschreven protocol met HRP werd niet alleen succesvol herhaald,
maar ook de vorming van diapocynin door MPO en H>O2 werd voor het eerst
aangetoond. De identiteit van diapocynin werd gecontroleerd, bevestigd en
gedocumenteerd door verschillende detectiemethoden te gebruiken. Nu het
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mogelijk bleek te zijn om diapocynin via enzymatische omzetting in de reageerbuis
te maken, restte nog de vraag of diapocynin ook binnenin PMNs gevormd zou
worden. Uit experimenten waarin PMNs in de aanwezigheid van apocynin werden
gestimuleerd met OPZ bleek dat dit inderdaad het geval was. De enige voorwaarde
was echter dat de de oplossing waarin het proces plaatsvond een pH van 8 moest
hebben. Deze pH blijkt een fysiologische pH te zijn in de eerste minuten na
stimulatie van PMNs met OPZ. Na stimulatie met PMA werd geen diapocynin
gevonden, wat opnieuw de rol van MPO bevestigde. Uiteindelijk werd de activiteit
van diapocynin op de ROS-productie gemeten en vergeleken met die van apocynin.
Hieruit bleek dat de actieve metaboliet diapocynin niet een directe remmer van ROS-
productie was zoals apocynin, maar dat het de reeds gevormde ROS wegvangt: een
proces genaamd scavenging. De vraag was nu of deze activiteit van de actieve
metaboliet van apocynin de uiteindelijke activiteit van apocynin zou kunnen
verklaren. Uit bestudering van de literatuur bleek dat verschillende stoffen die qua
structuur op diapocynin lijken, de activiteit van MPO binnenin de PMN kunnen
verhogen, wat een versnelde beéindiging van de oxidatieve burst tot gevolg heeft.
Hieruit mag wellicht worden geconcludeerd dat ook diapocynin, als actieve
metaboliet van apocynin, de ROS-productie remt door het beéindigen van de
NADPH-oxidase- activiteit. Of scavenging van superoxide anionen door diapocynin
hierbij ook nog een rol speelt zal uit verder onderzoek moeten blijken.

Door hun grote mobiliteit zijn PMNs vaak de eerste cellen die bij ontstekingen
ter plaatse zijn. In ontstekingsreacties spelen geactiveerde PMNs en de
geproduceerde ROS meestal alleen een rol in de acute fase van de infectie. De lange
termijn-effecten van ontstekingen worden voornamelijk gestuurd door
mononucleaire cellen, zoals T-cellen die na stimulatie verschillende cytokinen
kunnen produceren. Deze cytokinen zijn belangrijke onstekingsmediatoren en
spelen vooral een rol bij meer chronische ontstekingen zoals reumatische artritis
(RA). Apocynin is getest in een RA-model in ratten en blijkt de bij RA veelvuldig
voorkomende zwellingen van de gewrichten te verminderen. In Hoofdstuk 6
worden experimenten beschreven met betrekking tot de effecten van apocynin,
diapocynin en enkele andere apocynin-metabolieten op de productie van
verschillende cytokinen die een rol spelen bij RA. Hieruit bleek dat apocynin en de
metabolieten de productie van verschillende cytokinen door gestimuleerde
mononucleaire cellen remmen. Het feit dat de remming plaatsvond bij concentraties
die veel hoger lagen dan bij remming van ROS-productie door PMNSs, zou kunnen
betekenen dat apocynin en metabolieten van apocynin in deze cellen elkaars
activiteit versterken. Dit fenomeen staat bekend als synergisme. Deze activiteit van
apocynin op mononucleaire- en T-cellen zou misschien de verklaring kunnen zijn
van de lange termijn-effecten van apocynin bij de behandeling van RA.

Concluderend kan gesteld worden dat apocynin een erg interessante
verbinding is die zeker verdere studie verdient. Dit kleine molecuul is een potente
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remmer van de ROS-productie door geactiveerde PMNs. Deze activiteit wordt
veroorzaakt doordat apocynin in de geactiveerde cellen wordt omgezet in een
actieve metaboliet. Deze actieve metaboliet zorgt, in tegenstelling tot wat in de
literatuur wordt beweerd, voor een versnelde beé¢indiging van de oxidatieve burst
en daardoor voor een afname van de ROS-productie. Het feit dat apocynin alleen
wordt omgezet onder invloed van het enzym MPO, betekent dat het een specifieke
remmer van het NADPH-oxidase is, want niet gestimuleerde cellen zetten geen
MPO vrij. Het belang van verder onderzoek naar apocynin wordt verder
onderschreven door de interessante resultaten die met deze stof werden verkregen
in verschillende diermodellen voor chronische ontstekingen. Mogelijk kan verder
onderzoek naar apocynin een veilig en werkzaam medicijn opleveren voor de
behandeling van ontstekingen waarbij geactiveerde PMNs een rol spelen.
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De schrijver van dit proefschrift werd geboren op 25 augustus 1966 in
Kampen. Zijn VWO diploma behaalde hij in mei 1986 aan het Johannes Calvijn
Lyceum te Kampen. In hetzelfde jaar begon hij aan de studie Biologie aan de
Rijksuniversiteit Utrecht. In augustus 1988 brak hij deze studie af en meldde zich aan
bij de Hogeschool Utrecht, waar hij de Hogere Laboratorium Opleiding volgde.
Tijdens deze opleiding verrichte hij een stage van 9 maanden bij de afdeling
Farmacologie van het RIVM onder begeleiding van Dr. M. A.M. Gouw en Dr. ].
Wemer. Deze studie werd in januari 1992 succesvol afgerond door het behalen van
het diploma.

Van januari 1992 tot augustus 1993 was hij werkzaam als zoologisch analist bij
de vakgroep Farmacotherapie van de Faculteit Farmacie, Universiteit Utrecht onder
supervisie van Dr. ].P.M. Dam en Prof. dr. A.]J. Porsius. Van augustus tot november
van hetzelfde jaar was hij kortstondig werkzaam als analist bij de vakgroep Klinische
Farmacie, sectie Biofarmacie, onder supervisie van Dr. C. Oussoren en Prof. Dr. G.
Storm.

Na een korte periode als vrijwilliger bij de vakgroep Farmacologie, werd in
juni 1994 begonnen met de aanstelling als analist bij de vakgroep Farmacognosie
(Faculteit Farmacie, Universteit Utrecht) onder supervisie van Dr. C.J. Beukelman en
Prof. dr. R.P. labadie.

Op 1 april 1998 werd deze functie omgezet in een AIO positie bij de vakgroep
Medicinal Chemistry, waarin het in dit proefschrift beschreven onderzoek werd
verricht onder begeleiding van Dr. C.J. Beukelman, Dr. A.].J. van den Berg, Prof. Dr.
H. van Dijk en Prof. dr. R.P. Labadie. Een deel van het onderzoek werd in deze
periode uitgevoerd op de University of Iowa College of Medicine (Department of
Internal Medicine, Division of Infectious Diseases) in Iowa City, Iowa, U.S.A. onder
supervisie van Prof. dr. W.M. Nauseef en Dr. F.R. DeLeo.
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