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General introduction

Copper and copper containing compounds have been associated with maintenance of health

and the treatment of diseases for a very long time: as early as 400 BC, copper was used for

medical reasons, such as disinfecting 1, 2. However, it took until the nineteenth century, until

its presence in plants and animals was well-recognised 3. Only in 1926, the evidence was

presented that copper is an essential trace element in animal nutrition 4. The essentiality of

copper for humans was first shown during the 1960s in malnourished children in Peru 5.

In the course of time, copper appeared to be involved in many biochemical processes, e.g. the

formation of haemoglobin 6 and the biosynthesis of elastin and collagen 7-9. Copper

metabolism plays a central role in these biochemical processes. Disturbance of or disorders in

the copper metabolism may have serious consequences, such as liver cirrhosis and necrosis or

death, as is evident from Wilson and Menkes disease 10.

Copper metabolism actually starts with the copper entering the mammal through the

alimentary tract 11, 12. After the digestion of the food, the absorption of copper probably occurs

primarily in the small intestine. This process can be disturbed by other nutritional factors such

as high intakes of zinc, iron, or ascorbic acid decreasing copper absorption 13-16. Some

adaptation of absorption relative to need takes place 17, 18. After the absorption has taken

place, copper enters the interstitial fluid and blood plasma. The process of copper distribution

can be divided into three phases, i.e. transport of copper to the hepatocytes of the liver and to

a lesser extent to the kidneys, uptake of copper into the hepatocytes followed by incorporation

of copper into several enzymes (e.g. ceruloplasmin and Cu-Zn superoxide dismutase), and

transport of copper to and distribution over the other tissues 17, 19. Finally, most of the copper

has to find its way back to the liver. How this happens is unclear. Probably, ceruloplasmin,

transcuprein and albumin are involved in this process. The homeostasis of copper is primarily

maintained by biliary excretion via the faeces; little is excreted via the urine 20.

In order to be able to maintain copper homeostasis, the amount of copper that is excreted must

be compensated for by the absorption of copper from the food or vice versa. The amount that

should be compensated for differs during the various stages of life. In the adult stage,

compensation for endogenous loss of copper is needed, which can be expressed as the

requirement for maintenance. During growth, reproduction and lactation, more copper is
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needed to supply these processes, implying an additional need for copper in the form of a

certain requirement for ‘production’.

The copper requirements of different animal species, including mouse, rat and human, have

been published by the National Research Council (NRC) in the form of minimal requirements

or allowances 21. However, the requirements given for the mouse are not based on thorough

research and, therefore, the reliability can be questioned.

Based on similarities with the rat and research of Reeves et al. 22, Mulhern and Koller 23,

Knapka et al. 24 and Hurley and Theriault Bell 25, the NRC estimates the mouse’s copper

requirement for growth and maintenance to be 6 ppm of Cu and for pregnancy and lactation to

be 8 ppm of Cu 21. However, none of these experiments had the intention to make an

estimation of the mouse’s copper requirement during the various stages of its life. Reeves et

al. 22 limited their research to adult male mice, using only biochemical parameters with

sustainment of maximum serum copper and serum ceruloplasmin activity as criterion. No

zootechnical parameters, such as reproductive performance, were studied in order to arrive at

an estimation. Mulhern and Koller 23 followed mice from birth till 8 weeks of age, examining

the influence of copper status on the immune response. Knapka et al. 24 formulated an open

formula diet and examined whether differences in the results of biological research occurred

when this open formula was fed instead of a closed formula diet. Copper concentrations in

both the open formula as well as the closed formula diet were considerably higher than the

estimated requirement. The experiment of Hurley and Theriault Bell 25 was designed to

examine genetic influence on the effects of a dietary manganese deficiency during prenatal

development. This study did not have the purpose to propose a copper requirement or

allowance.

It may be obvious that more thorough research is needed in order to come to a proper and

reliable estimation of the mouse’s copper requirement. Therefore, an experiment was

designed to study both biochemical and zootechnical parameters over several generations of

mice in order to get more information about the copper requirement during the various stages

of life (chapter 2). Main criteria for proposing a copper allowance for the mouse are the

reproductive outcome, growth performance and sustainment of maximum plasma and hepatic

copper concentrations and of plasma ceruloplasmin.

However, knowing the level of copper required in the mouse’s diet does not necessarily mean

that this is the exact copper concentration found in commercially available diets. In fact,

analyses show that commercially available diets often contain much more copper than is

required by the mouse. Copper appears to be involved in the production of free radicals and
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reactive oxygen species (ROS), which are very reactive particles, through the Haber-Weiss

reaction, which may result in oxidative stress (chapter 3). The hypothesis investigated in

chapters 4 and 5 states that copper overload, caused by higher dietary copper concentrations

than required, may shorten life span and increases oxidative damage to macromolecules by

inducing oxidative stress.

Under normal conditions, a balance exists between the radical generating and the radical-

scavenging systems and free radicals and reactive oxygen species are playing an integral part

in normal cell physiology 26. However, they are also capable of damaging biological

macromolecules such as DNA and proteins. In the case of oxidative stress, which is the result

of an imbalance between the radical-generation and general-scavenging system, more free

radicals are being generated than being scavenged, resulting in damage to DNA, proteins,

saccharides and lipids 27. Oxidative stress has been suggested to be associated with

accelerating ageing. A number of age-related diseases, such as atherosclerosis and

cataractogenesis, and various neurological disorders, such as Parkinson’s disease,

Alzheimer’s disease and amyotrophic lateral sclerosis, are also associated with oxidative

stress 28. Chapter 3 provides a more detailed review on the role of copper in oxidative stress.

Within the range of possible dietary copper concentrations, a copper overload is one extreme;

the extreme at the opposite site is a copper deficiency. Several factors may influence the

copper status. One of these is dietary cholesterol concentration. Feeding cholesterol to rabbits

and rats may alter the metabolism of copper and may result in decreased liver copper

concentrations, though not inevitably in a copper deficiency 29, 30. A relationship between

copper and cholesterol is also indicated by the observation that experimental copper depletion

with a copper-deficient diet induced hypercholesterolemia in rats 31-33. This was the impetus

to compare the hepatic copper content of dietary cholesterol resistant (animals showing only a

slight response to dietary cholesterol and therefore also called hyporesponders) and dietary

cholesterol susceptible (animals showing an enormous increase in plasma and/or liver

cholesterol levels and therefore also called hyperresponders) inbred rat and rabbit strains on a

diet with or without added cholesterol. Based on literature, it was anticipated that on a

cholesterol-rich diet the hyperresponding rat and rabbit inbred strains would have a lower

liver copper content and thus would require a higher copper intake than their hyporesponding

counterparts. The results of the experiment are described in chapters 6 and 9.

In order to search for possible causative factors that might be involved in these strain-specific

differences, we have performed a genetic analysis in both species. The aim of these genetic

analyses was to identify the chromosomal regions that may be involved in controlling liver
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copper content after a cholesterol-rich diet. Identifying the chromosomal regions may provide

clues as to possible candidate genes that may be involved in controlling liver copper content.

Quantitative trait locus (QTL) analyses were performed in two sets of recombinant inbred rat

strains (derived from SHR/OlaIpcv and BN-Lx/Cub progenitors) and in an F2-intercross

progeny of a cross between hyporesponding and hyperresponding rats (derived from

LEW/OlaHsd and BC/CpbU inbred strains) that had been fed a cholesterol-rich diet (chapters 7

and 8). QTL-analysis was also performed in the F2-intercross progeny of a cross between

hyporesponding IIIVO/JU and hyperresponding AX/JU rabbits (chapter 10).

An overview of the results found during this PhD project is given in the Conclusions section

of this thesis (chapter 11). A short description of the results is reported in the summary; a

short description in more plain terms can be found in the ‘Nederlandse samenvatting voor

niet-vakgenoten’.
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Assessment of dietary copper requirement of the laboratory mouse (NMRI)

as based on reproductive performance in four successive generations

Abstract

The copper requirement of the laboratory mouse has not been well established, the current

minimal requirement being set at 6 mg Cu/kg diet for maintenance and 8 mg Cu/kg diet for

pregnant and lactating animals. We have attempted to estimate the copper requirement of the

mouse by performing an experiment in which the effects of four different levels of dietary

copper (1, 2, 4 or 8 mg Cu/kg diet) were studied in four generations of NMRI mice. The effects

of copper intake on reproductive outcome, growth performance and sustainment of maximum

plasma and hepatic copper concentrations and of plasma ceruloplasmin have been evaluated.

This study shows that in NMRI mice, a semipurified diet containing 1 ppm copper had a marked

depression on reproductive performance. Plasma, hepatic and carcass copper concentrations

were not or only moderately indicative as to the copper requirement. To take into account the

various factors affecting copper requirement and the availability of dietary copper, we suggest

the general copper allowance of laboratory mice to be set at 4 ppm.

Introduction

The mouse is the most commonly used laboratory animal, but its copper requirement is not well

established. The National Research Council (NRC, 1995) has set the minimal requirement for

both immature and adult mice at 6 mg Cu/kg diet and for pregnant and lactating animals at 8 mg

Cu/kg diet, but acknowledges that specific studies to determine the copper requirement of mice

have not been published. The recommendations of the NRC are based on four experiments with

mice (Hurley and Theriault Bell, 1974; Knapka et al., 1974; Mulhern and Koller, 1988; Reeves

et al., 1994) and two experiments with rats (Johnson et al., 1993; Klevay and Saari, 1993). Only

one experiment was designed to estimate the minimal requirement of adult male mice using the

sustainment of maximum serum copper and serum ceruloplasmin activity as criterion (Reeves et

al., 1994). The copper requirement of mice during life stages other than maintenance remains

unknown. Given this lack of information we decided to estimate the copper requirement of the

mouse by performing an experiment in which the effects of four different levels of dietary

copper (1, 2, 4 or 8 mg Cu/kg diet) were studied in four generations of NMRI mice. Based on the

effects of copper intake on reproductive outcome, growth performance and sustainment of
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maximum plasma and hepatic copper concentrations and of plasma ceruloplasmin, we attempted

to estimate the dietary copper requirement of the NMRI mouse.

Materials and methods

The experimental protocol was approved by the animal experimentation committee of the

Utrecht Faculty of Veterinary Medicine.

Animals

Male and female SPF-derived outbred NMRI mice (HsdWin:NMRI, Harlan Cpb, Zeist, The

Netherlands) were used. On arrival, the mice (212 females and 152 males) were aged 3 weeks.

They were weighed and 8 males and 8 females were killed to obtain zero-time control values.

The remaining mice were marked individually and assigned to one of the four experimental,

dietary groups. The mice were gradually transferred from a commercial diet (RMH-1110, Hope

Farms, Woerden, The Netherlands) to the experimental diets over a period of four days.

Housing

The mice were housed under conventional conditions. They were kept in Makrolon type II cages

(UNO BV, Zevenaar, The Netherlands) with a layer of sawdust as bedding. A controlled 12-h

light/dark cycle (light: 7.00-19.00 h), controlled temperature (19-21ºC) and relative humidity

(50-55%) were maintained in the room.

Diets

The semipurified, pelleted diets complied with the recommendations for mice (NRC, 1995), and

contained either 1, 2, 4 or 8 ppm Cu (Table 1). During the course of the experiment, separate

batches of diets were prepared. Each batch was analyzed for its copper level. The analyzed levels

were 0.66 ± 0.10, 2.00 ± 1.18, 2.80 ± 0.41 and 5.80 ± 0.92 ppm Cu, respectively. In the Tables

(Results) the concentrations as added to the experimental diets are used. The diets were stored at

4ºC until feeding. Diets and demineralised water were administered ad libitum throughout the

whole experiment. Feed intake was assessed for intervals of 7 days by weighing the amount

added onto the feed hopper and also weighing the leftovers and spilled feed that could be

recovered from the bedding. Body weights were determined at regular intervals.
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Experimental design

Fig. 1 shows the experimental design. As from the age of 3 weeks, the mice were housed three or

four of the same sex in Macrolon II cages. Feed intake and weight were recorded weekly. At

various intervals (Fig. 1), seven or eight mice of each sex from the various generations were

selected at random and killed for analyses. In a randomized order, the animals were

anaesthetized by exposure to diethyl ether. Blood was collected via aorta puncture or orbital

puncture into heparinized tubes. The animals were killed while they were still under anesthesia

and the liver was excised. The liver and carcass were weighed and frozen at -20ºC. Blood was

centrifuged at 1000x g for 15 min, after which plasma was collected and frozen at -20ºC.

When the mice were aged 9 weeks, reproduction was started to yield the F1, F2 and F3

generations (Fig. 1). One male mouse was housed with one female of the same dietary group in a

Makrolon II cage for a period of three days. In total, 24 breeding couples per generation per

dietary group were formed. After the three days of housing together, the males were separated

from the females and housed in their original cases. The females remained to be housed

individually  in the Makrolon II cages until the  pups were weaned. At  parturition, the number of

Table 1:  Ingredient composition of the experimental diets

Ingredient (g)

Corn oil
Coconut fat
Casein
Starch and dextrose (1:1 w/w)
Cellulose
CaCO3

MgCO3

NaH2PO4.2H2O
KCl
Mineral premix1

Vitamin premix2

CuSO4.5H2O:
     1 ppm Cu, or
     2 ppm Cu, or
     4 ppm Cu, or
     8 ppm Cu, or

Total

25.0
25.0
200.0
668.9
30.0
12.5
2.4
10.4
3.8
10.0
12.0

0.000
0.004
0.0118
0.0276

1000.0

1 The mineral premix consisted of (mg/10 g): FeSO4.7H2O: 174.4; MnO2: 15.8; ZnSO4.H2O: 82.3; KI:
0.1962; Na2SeO3.5H2O: 0.4996; Na2MoO4.2H2O: 0.378; Corn starch: 9726.4

2 The vitamin premix consisted of (mg/12 g): Retinol: 4.8 (≡ 2400 IU/kg); Cholecalciferol: 2.0 (≡ 1000 IU/kg);
RRR-α-tocopherol: 44.0 (purity: 50%); Phylloquinone: 1.0; Biotine: 0.2; Choline Chloride: 4000.0 (purity:
50%); Folium Acid: 0.5; Niacine: 15.0; Calcium Panthothenate: 80.0 (purity: 45%); Riboflavin: 7.0;
Thiamine: 5.0; Vitamin B6: 8.0; Vitamin B12: 10.0 (purity: 0.1%); Corn starch: 7822.5
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F0

 3  6  9 12  15  20

F1

0   3   6   9  12   15   20

F2

 0 3 6 9     12   15

F3

  0  3

Age (wk)

Figure 1:  Schematic presentation of breeding and sampling schedule to which mice were subjected in a parallel

feeding trial. The mice were fed semipurified diets containing either 1, 2, 4 or 8 ppm copper. Numbers below the

horizontal lines indicate the age of the mice. F0, F1, F2 and F3 indicate the subsequent generations. F1, F2 and F3

mice remained on the diet of their dams. Explanation of symbols:      : 7 or 8 male and female mice per dietary

group were killed and  plasma and tissues were collected;       : 7 or 8 male and female mice per dietary group

were killed with consecutive collection of plasma and tissues and start of conception;           : gestation in

selected females of each dietary group;            : lactation in selected females of each dietary group;      : 7 or 8

male and female mice per dietary group were killed with consecutive collection of plasma and tissues and

weaning of offspring.

pups was registered. Subsequently, the litters were standardized to 11 (F1) or 12 (F2) pups per

dam. Pups were exchanged between litters of the same dietary group. Weaning was performed at

three weeks after parturition and sex of the pups was registered.

Analysis of copper in diets, liver and carcass

Carcasses were freeze-dried and ground with a coffee mill. Diet pellets were also homogenized

using the coffee mill. Diet, liver and carcass samples were dried overnight at 105ºC and the dry

weights were measured. Subsequently, the samples were ashed at 200ºC for one hour, 300ºC for

two hours, 400ºC for three hours and 500ºC for ten hours. The remaining ash was dissolved in
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1.0 ml of concentrated HClO4, which was then evaporated at 225ºC, this procedure being

repeated until the ash was completely white. The ash was then dissolved in 1.0 ml of 6 M HCl.

Copper was measured by flame atomic absorption spectrophotometry on a Varian-AA275

(Varian, Springville, Australia). As a reference sample we used bovine liver sample (NBS

1577b, National Institute of Standards Technology, Gaithersburg, USA). Accuracy was 103%

(mean: 164 mg Cu/kg; reference value: 160 mg Cu/kg) and precision, expressed as s.e.m., was 9

mg Cu/kg.

Analysis of blood plasma

Plasma samples of the individual mice had to be pooled to determine the plasma copper and

ceruloplasmin concentration. Generally, seven or eight plasma samples of mice of the same age,

sex, and diet were pooled. Plasma copper was measured colorimetrically using a test kit

(Boehringer Mannheim GmbH, Mannheim, Germany). The assay was performed on a Cobas Bio

Auto-analyser (Roche Diagnostic Systems, Hoffman-La Roche, Basle, Switzerland). The

concentration of ceruloplasmin was determined with the method of Sunderman and Nomoto

(1970), also using the auto-analyser.

Statistical analysis

Analysis of variance (ANOVA) was performed with dietary copper concentration, gender, age

and generation as main effects. A chi square analysis was performed with reproductive

performance as main effect of dietary copper concentration, except for the average litter size

which was analysed with ANOVA. The level of significance was pre-set at P<0.05. Statistical

analyses were carried out according to Petrie and Watson (1999) using a commercially available

statistical package (SPSS, 1990).

Results

Reproduction outcome

Reproductive performance of the group fed the diet with 1 ppm copper was poor as based on

conception rate, percentage of litters born alive and pup mortality (Table 2). The conception rate

was only 68%, but an identical conception rate was found in the F2 females receiving the diet

with 8 ppm Cu. Litter size in the F0 group fed the diet with 1 ppm Cu was normal, but the

percentage of litters born alive was low. The low conception rate and low percentage of litters

born  alive  resulted in  a  relatively  small  number of offspring born alive (data not  shown). The
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Table 2: Effects of dietary copper level on reproduction in NMRI mice

Diet (ppm Cu) F0 F1 F2 Statistics1

Percentage of pregnant females
1 68 n.m.2 n.m.
2 82 86 82
4 86 77 86
8 90 86 68

Percentage of litters born alive
1 87a n.m. n.m. p=0.0594
2 94 100 100
4 100 100 100
8 100 100 100

Average litter size at birth
1 11.6 n.m. n.m.
2 12.1 11.4 11.8
4 12.4 12.5 10.1
8 11.9 11.5 12.7

Percentage of pups died between birth and weaning
1 96b n.m. n.m. p=0.000
2 0 2 2
4 0 2 18
8 0 0 4

1 In a number of chi square analyses, an expected value <5 resulted in less discriminating power; values
bearing a superscript letter are significantly different from the other values in the column.

2 n.m. means ‘not measured’.

 Table 3: Body weight (in g) of male and female mice aged 5 weeks and fed diets containing 1, 2, 4 or 8 ppm
 of copper1

Gender Diet F0 F1 F2 Statistics2

M3 1 ppm 28.1 ± 2.6 n.m.3 n.m.
M 2 ppm 27.9 ± 2.4 31.4 ± 2.1 31.4 ± 2.9
M 4 ppm 28.1 ± 2.5 32.0 ± 2.6 30.3 ± 2.3
M 8 ppm 27.6 ± 2.4 31.7 ± 1.9 31.1 ± 2.4

F3 1 ppm 24.0 ± 1.9 n.m. n.m.
F 2 ppm 23.7 ± 2.2 25.5 ± 1.9 26.0 ± 2.0a p=0.009
F 4 ppm 23.7 ± 2.2 26.0 ± 2.1 25.9 ± 2.2b p=0.019
F 8 ppm 24.2 ± 1.8 26.2 ± 1.9 24.8 ± 2.3a,b

1 Means ± s.d. for 7 or 8 animals per group.
2 Statistical analysis is show for dietary effects only; values bearing the same superscript letter are significantly

different.
 3 M means ‘male’, F means ‘female’ and n.m. means ‘not measured’.
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most dramatic effect, however, occurred between birth and weaning: pup mortality was 96% in

the F0 group fed the diet with 1 ppm Cu. The reproductive study could not be continued for the

diet with 1 ppm Cu. Remarkable pup mortality as high as 18% also occurred in the F2 group

receiving the diet with 4 ppm Cu. This pup mortality probably was unrelated to diet because in

the F2 group receiving the diet with 2 ppm Cu mortality was only 2%.

Weight and feed intake

Dietary copper level did not significantly affect growth as illustrated by the values of body

weight for the mice aged 5 weeks (Table 3). Body weight increased with age (not shown), males

having higher body weights than females of the same age. Feed intake was not affected by

dietary copper concentration (not shown). Feed intake increased with age until 15 weeks. Males

generally ate more than females.

Copper in plasma, liver and carcass

Plasma copper and ceruloplasmin concentrations were not significantly affected by dietary

copper concentration, gender, sex or generation (results not shown). Likewise, there was no

significant effect of dietary copper on plasma copper and ceruloplasmin concentrations of female

breeders.

The carcass copper concentration in the mice on arrival (F0 generation, aged 3 weeks) was 11.5 ±

2.1 mg Cu/g dry weight (means ± SD, n=8) for the males and for the females the value was 10.0

± 1.3. Lower dietary copper levels were associated with lower copper concentrations in carcass.

Table 4: Copper concentration (in mg/g dry weight) in carcass of mice fed diets containing 1, 2, 4 or 8 ppm of
copper1

Gender Diet F0, 6 wk F1, 3 wk F1, 6 wk F2, 3 wk F2, 6 wk F3, 3 wk
M2 1 ppm 2.7 ± 0.4a,b,c 4.03 n.m.2 n.m. n.m. n.m.
M 2 ppm 4.2 ± 1.1a 3.9 ± 1.1d,e 7.7 ± 1.9 5.2 ± 1.1f,g 4.3 ± 1.4 7.0 ± 1.8
M 4 ppm 4.5 ± 0.8b 6.6 ± 1.3d 7.5 ± 2.2 6.4 ± 0.6f,h 5.6 ± 2.1 8.8 ± 1.7
M 8 ppm 5.2 ± 0.5c 7.3 ± 1.4e 9.1 ± 2.4 9.1 ± 1.9g,h 5.4 ± 1.9 9.5 ± 2.2

F2 1 ppm 3.6 ± 0.7i,j 3.3 ± 0.84,k,l n.m. n.m. n.m. n.m.
F 2 ppm 4.7 ± 1.1 4.1 ± 0.8m 7.7 ± 3.0 6.3 ± 1.2 4.5 ± 0.4n 7.2 ± 2.0o

F 4 ppm 4.8 ± 0.5i 5.8 ± 0.9k,m 8.0 ± 1.8 7.0 ± 1.0 5.4 ± 1.4 8.7 ± 2.7
F 8 ppm 5.5 ± 0.4j 6.4 ± 1.1l 8.2 ± 2.0 7.8 ± 2.0 7.0 ± 1.9n 10.9 ± 1.50

 1 Means ± s.d. for 7 or 8 animals per group.
 2  M means ‘male’, F means ‘female’ and n.m. means ‘not measured’; letters indicate significant differences

(p<0.05) between dietary groups based on ANOVA.
 3 Data of the F1 at the age of 3 weeks receiving 1 ppm Cu are based on 1 male and 5 females.
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Table 4 documents the results for the mice aged 3 and 6 weeks. Copper concentration in carcass

was not influenced by gender; age and generation did influence copper concentration in carcass

in a number of cases significantly (p<0.044 and p<0.014, respectively), but no causal

relationship was found between age and generation, and copper concentration in carcass .

Liver copper concentration in the mice on arrival (F0 generation, aged three weeks) was 90.2 ±

63.6 mg Cu/g dry weight (means ± SD, n=8) for the males and for the females the value was 17.7

± 2.8. Liver copper at the age of six weeks in the F0 males receiving the diet with 1 ppm Cu was

statistically significant lower than that in the other mice (p=0.001) (Table 5). Liver copper at the

age of three weeks in the F1, F2 and F3 groups receiving the diet with 2 ppm Cu was significantly

lower than that in the groups receiving 4 or 8 ppm Cu (p<0.037) (Table 5). There was no

systematic dose-response relationship between copper intake in mice fed 4 or 8 ppm Cu and liver

copper concentration. The males of the F0 (except the males fed 1 ppm Cu), F1 and F2

generations had significantly higher values for liver copper than the females, except for the three

week old mice (Table 5, p<0.046). In the F2 generation, liver copper for the groups fed the diet

with either 4 or 8 ppm Cu was lower at the age of six weeks than at three weeks. In the breeders

no effect of dietary copper level on the liver copper concentration was found (results not shown).

Discussion

A dietary copper concentration of 1 ppm (analysis: 0.66 ppm Cu) resulted in a markedly

depressed reproductive performance so that it is obvious that the mice were copper deficient. The

dietary copper concentration of 2 ppm appeared (analysis: 2.00 ppm Cu) to sustain reproduction

in the NMRI mice and thus seemed to meet their copper requirement. Mulhern and Koller (1988)

fed mice semipurified diets containing either 0.5, 1, 2 or 6 ppm copper. The mice were studied

from birth until the age of 8 weeks and the authors also concluded, with the immune status of the

mice as criterion, that dietary copper concentrations of 0.5 and 1 ppm resulted in copper

depletion.

There are differences in copper requirement in relation to gender (Prohaska and Lukasewycz,

1981; Mulhern and Koller, 1988; Lynch and Klevay, 1994) or genetic background (Doyle, 1980;

Hurley et al., 1980) There also are interactions between copper and other nutrients that affect

copper absorption (Doyle, 1980). We used semipurified diets to which copper sulphate was

added so that it may be anticipated that the copper was highly available. In practice, diets based

on natural ingredients are used. The copper in those diets may be less available. Given the factors

affecting the copper requirement and availability, we suggest that the dietary copper allowance

of the laboratory mouse should be set at 4 ppm Cu rather than at 2 ppm. The allowance that we
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propose is lower than the NRC’s current recommendation of 6 ppm Cu for maintenance and 8

ppm for pregnant and lactating mice. Reeves et al. (1994) also estimated the copper requirement

of the adult male Swiss-Webster mouse to be between 2.5 and 4 mg Cu/kg diet depending on the

parameter used to estimate copper requirement.

The copper concentration in the diets did not affect body weight and feed intake of the mice.

Likewise, Prohaska and Lukasewycz (1989) reported no differences in body weight between

copper deficient and copper adequate mice, but reduced weight gain due to copper deficiency

was found by Blakley and Hamilton (1987). Reduced weight gain thus appears to be an

ambiguous indicator of copper deficiency and other indicators of copper deficiency may be more

appropriate to underpin the proposed allowance.

The concentration of copper and ceruloplasmin in plasma did not differ between the dietary

groups, but the within-group variation was considerable. A decrease in ceruloplasmin activity

has been described for copper-deficient mice and their offspring (Mulhern and Koller, 1988;

Prohaska and Lukasewycz, 1989; Arce and Keen, 1992; Kang et al., 2000), as well as a

significant decrease in serum copper concentration (Reeves et al., 1994). According to Milne

(1988), serum copper concentration and ceruloplasmin activity is not the best indicator of copper

status. Instead, enzyme activities of erythrocyte superoxide dismutase and platelet cytochrome-c

oxidase may be better indicators of metabolically active copper and copper stores than plasma

concentrations of copper or ceruloplasmin. The activities of these enzymes are sensitive to

changes in copper stores and are not as sensitive to factors not related to nutritious copper

(Milne, 1988).

Arce and Keen (1992) found that tissue copper levels were decreased in the offspring of copper-

deficient breeders. Our data show that copper intake was directly related with the copper content

of carcass. Low liver copper concentrations in mice fed a copper-deficient diet and their

offspring have been described by various authors (Blakley and Hamilton, 1987; Prohaska, 1991;

Arce and Keen, 1992; Reeves et al., 1994; Kang et al., 2000). Lynch and Klevay (1994) reported

that hepatic copper was significantly reduced in copper-deficient females, but not in males. Our

data show that liver copper at the age of six weeks in the F0 males receiving the diet with the

lowest Cu concentration was statistically significant lower than that in the other mice and that

liver copper at the age of three weeks in the F1, F2 and F3 groups receiving the diet with 2 ppm

Cu was significantly lower than that in the groups receiving the higher concentrations. At dietary

copper concentrations higher than 2 ppm, copper intake had no systematic impact on liver

copper. Although at the age of three weeks, liver copper appears to be lower in the groups

receiving 2 ppm Cu, the observed liver copper levels do not point at copper deficiency. At
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dietary copper concentrations of at least 2 ppm, an equilibrium may be established at which

sufficient copper is supplied to tissues in spite of low concentrations of copper in liver and

carcass. This idea is confirmed by the normal reproductive performance of the groups receiving

2 ppm Cu.

In conclusion, this study shows that NMRI mice fed a semipurified diet containing less than 2

ppm copper has a marked depression of reproductive performance. Plasma copper concentration

and ceruloplasmin activity were not indicative as to the copper requirement of the mice, whereas

hepatic copper concentrations were only indicative at lower dietary copper levels. To take into

account the various factors affecting copper requirement and the availability of dietary copper,

we suggest the general copper allowance of laboratory mice to be set at 4 ppm.
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Table 5: Copper concentration (in mg/g dry weight) in liver of mice fed diets containing 1, 2, 4 or 8 ppm of
 copper1

Gender Diet F0, 6 wk2 F1, 3 wk F1, 6 wk F2, 3 wk F2, 6 wk F3, 3 wk
M2 1 ppm 11.4 ± 2.7a,b,c 18.63 n.m.2 n.m. n.m. n.m.
M 2 ppm 19.0 ± 4.3a 13.4 ± 1.3d,e 22.1 ± 3.4 15.0 ± 2.9f,g 25.0 ± 1.4h 16.4 ± 0.8j

M 4 ppm 19.6 ± 3.0b 20.7 ± 6.0d 20.1 ± 5.5 35.6 ± 11.7f 21.5 ± 2.5h,i 27.7 ±13.1
M 8 ppm 22.5 ± 4.4c 26.0 ± 6.7e 23.3 ± 5.0 31.9 ± 6.3g 25.7 ± 3.2i 33.8 ± 10.0j

F2 1 ppm 13.7 ± 2.4 12.9 ± 1.73,k n.m. n.m. n.m. n.m.
F 2 ppm 15.5 ± 1.6 13.6 ± 0.8l,m 14.1 ± 1.7 17.6 ± 3.6n,o 16.8 ± 2.3 17.6 ± 2.8p

F 4 ppm 14.9 ± 1.6 23.9 ± 6.3l 14.1 ± 2.4 46.2 ± 13.4n 15.4 ± 1.7 31.6 ± 16.0
F 8 ppm 14.5 ± 2.2 27.0 ± 10.4k,m 14.8 ± 1.0 44.4 ± 15.3o 15.3 ± 0.9 39.7 ± 16.4p

1 Means ± s.d. for 7 or 8 animals per group
2 M means ‘male’, F means ‘female’ and n.m. means ‘not measured’; values bearing the same superscript letter are significant different (p<0.05)

between dietary groups based on ANOVA
3 Data of the F1 at the age of 3 weeks receiving 1 ppm Cu are based on 1 male and 5 females
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The possible role of copper in the development of

oxidative stress and associated disease

Abstract

Reactive oxygen species (ROS) and free radicals are chemical substances that play a role in

normal cell physiology. However, these molecules may also cause damage to biological

molecules such as DNA, proteins, and phospholipids, and thus leading to disease. Copper, as

a transition metal, is suggested to be critical in the formation of ROS and free radicals.

Although the body possesses an antioxidant defence and repair system, it can not always

protect itself against free radicals and ROS. Imbalance between the production of free radicals

and ROS and the antioxidant defence and repair system in favour of the free radicals and ROS

results in oxidative stress. In this review, we focus on the role of copper in the development of

oxidative stress. Evidence of the role of copper in the generation of free radicals and ROS has

been obtained mainly by in vitro research, in which combinations of copper and a reducing

agent were used. The results of these studies implicate an indirect, facilitating role of copper

in the development of oxidative stress. Suggestive evidence for copper facilitating oxidative

stress under in vivo conditions comes mainly from relationships between copper and various

multifactorial diseases. Because of the multifactorial character of these diseases, it is difficult

to determine if and, if yes, what role copper plays in the development of diseases that are

associated with oxidative stress. It is concluded that until now, no material proof exists for

copper being involved in the development of oxidative stress in vivo.

Introduction

This paper scrutinizes the possible role of copper in the development of oxidative stress and

associated disease. The basic concepts concerning free radicals, reactive oxygen species

(ROS), the antioxidant defence and repair system, and oxidative stress are described. The pro-

oxidant role of the transition metal copper is reviewed. It is stressed that the alleged

involvement of copper in the development of oxidative stress is based on in vitro experiments

mainly. Suggestive evidence for copper facilitating oxidative stress under in vivo conditions

comes from relationships between copper and various multifactorial diseases.
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In this review we have chosen to describe a limited number of examples that may illustrate

the possible role of copper in the process of oxidative stress rather then trying to give a

complete overview of the literature in this field.

What are free radicals and reactive oxygen species?

A free radical can be defined as any chemical species that can independently exist and

contains one or more unpaired electrons 1. Free radicals may be formed by the homolysis of

covalent bonds, the addition of an electron to a neutral atom or its loss of a single electron 2.

Reactive oxygen species (ROS) include oxygen-containing radicals as well as non-radical

derivatives of oxygen. Both free radicals and ROS, the terms being used interchangeably, are

formed in vivo in normal cell metabolism 1, 3. They play a crucial role in processes such as the

‘respiratory burst’ of phagocytically active cells and they may function as messengers and

also regulate oxidative inactivation of enzymes 4-8. However, free radicals may attack

biological molecules such as DNA, proteins and phospholipids, and thus cause damage at the

cellular level, for instance by affecting signal transduction, cell membrane functions and gene

expression 2, 8. DNA is a critical target because of its central role in cellular metabolism 9.

Some radicals and ROS are more damaging than others. The hydroxyl radical (OH•) is

considered to be the most reactive radical, attacking all biological molecules present at its site

of formation and usually setting off free radical chain-reactions 8, 10.

Formation of free radicals in the presence of transition metals

As stated by Saran et al. 11 “there is probably not a single radical chain process in vivo that

proceeds without the participation of some metal in loose or bound form, whether as a side

effect or even playing a dominant role”.

Transition metals are metals that have a variable oxidation number, which allows them to

participate in single electron transfer reactions 1. These transition metals are incorporated as

functional redox centres in antioxidant enzymes such as catalase and superoxide dismutase.

Therefore, these metals are often classified as antioxidant nutrients 12, 13. However, transition

metals may also be considered pro-oxidant nutrients because of their capability to facilitate

free radical reactions by converting H2O2, which is a product of normal cell physiology 14, via

the so-called Fenton reaction 1:

Mn+ + H2O2 → M(n+1)+ + OH• + OH−   (1)
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where Mn+ can be Ti3+, Cu+, Fe2+, Co2+, Cr4+ or Ni2+.

The Fenton reaction is the first step of the Haber-Weiss reaction, which results in the

formation of OH• and other reactive oxygen species 1, 15:

  Fe

O2
• − + H2O2 → OH• + OH− + O2   (2)

This reaction has also been shown to occur in the presence of other metals such as copper and

chromium 16.

The reactive oxygen species produced in the Haber-Weiss reaction, especially the OH•

produced in the Fenton reaction, may cause damage at (sub)cellular and macromolecular

levels, such as enhanced lipid peroxidation, DNA damage and protein damage 16-19.

A major argument against the occurrence of Fenton reactions in vivo is the unavailability of

metal catalysts under in vivo conditions 16, 20. Research, however, has indicated that metal

catalysts are available in vivo 16, 21-24. Another argument against the occurrence of the Fenton

reaction in vivo is the very low rate constant of the reaction. However, calculations suggest

OH• may be generated in the cell at a considerable rate 16, 20. Criticism regarding the Fenton

reaction also concerns the production of OH•, that critics believe not to be a product of the

Fenton reaction 16, 20. During the interaction of transition metal compounds with H2O2 metal

oxo and peroxo species, such as ferryl and perferryl, are formed as well, which are also

capable of damaging DNA and proteins in a site-specific manner 16, 20, 25-35. The ferryl ion is

kinetically indistinguishable from free OH•, which hinders determining whether the ferryl ion,

free OH• or both species are formed 24.

Certain metal ions catalyse the production of ROS in ways other than the Fenton reaction.

Metal ions such as mercury, cadmium and nickel react with and thereby deplete free

sulfhydryl groups 36. The decrease in free sulfhydryl groups may lead to the formation of

oxidative stress, resulting in tissue-damaging effects 37.

A single transition metal may initiate or catalyse the formation of ROS by more than one

mechanism involving more than one organelle or cell type. Transition metals are not only

involved in the formation of free radicals, but may also react with free radicals 10, 16, 24, 38-50,

yielding intermediary molecules with a metal-carbon σ-bond, which could also be a key step

in the induction of free radical damage 46-48.
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The antioxidant defence and repair system

To protect the body against free radicals and ROS, there is the so-called antioxidant defence

and repair system. An antioxidant is any substance that at low concentrations, when compared

with that of an oxidisable substrate, significantly delays or inhibits oxidation of the substrate
10. Three different ways in which the antioxidant defence and repair system acts can be

distinguished:

1. Antioxidants may scavenge free radicals and in the process be transformed into new, but

less reactive free radicals. The consequential chain reaction will be terminated when a

free radical reacts with the free radical form of the antioxidant 1. Examples of such

antioxidants are vitamin E, beta-carotene, quercetin and enzymes such as superoxide

dismutase 2.

2. Sequestration of transition metals into forms incapable of stimulating free radical

reactions and thus preventing the formation of free radicals 1. Proteins with sequestering

activity are e.g. ceruloplasmin, metallothionein, ferritin and transferrin 2.

3. Repairing, if possible, the biological damage caused by ROS and free radicals. An

example is the DNA repair process, which repairs most damage to DNA.

Under normal in vivo conditions, the antioxidant defence system is able to neutralise the ROS

generated. In response to increased oxidative stress, antioxidant defence can be induced 51, 52.

Oxidative stress

Oxidative stress can be defined as a situation in which the production of free radicals and

ROS overwhelms the antioxidant defence and repair system 53. The imbalance may be due to

an increased production of free radicals and ROS and/or a decreased functioning of the

antioxidant defence and repair system.

Oxidative stress is considered an important factor in the process of ageing 2, 10, 54-61. It may

also be involved in the development of diseases such as atherosclerosis, cancer and

neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer’s disease, and

Parkinson’s disease 2, 54, 62.

Evidence for a role of copper in oxidative stress

Most studies investigating the role of copper in the generation of free radicals and ROS

describe oxidative damage to DNA and lipid peroxidation as the main effects of oxidative

stress. Copper is thought to participate in the development of various multifactorial diseases.

Although the body possesses an antioxidant defence system to counteract oxidative stress,
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research on the role of copper in oxidative stress suggests that antioxidants exhibit pro-

oxidant characteristics in the presence of copper.

Copper-mediated damage to DNA

Copper has been found to bind to non-histone nuclear matrix proteins at sites where DNA

loops anchor, suggesting that the electron-rich DNA might be a target of copper-mediated

oxidative damage 43, 63-67. In vitro research showed that mixtures of Cu2+ and H2O2 caused

strand scission and modification of the bases in DNA, whereas H2O2 or Cu2+ alone did not

cause any of this damage 25, 68-73. Addition of a copper-reducing agent caused a very large

increase in base damage and strand breakage 68, 69, 74-77. The products of base damage in the

presence of Cu2+, cytosine glycol, thymine glycol, 8-hydroxyadenine and especially 8-

hydroxyguanine, suggest the involvement of OH• 68. Since DNA breakage often occurs near

guanine residues, it has been suggested that Cu2+ ions bind to DNA at guanine sites, where it

reacts with H2O2 and a reducing agent to generate OH•, which attacks the DNA bases in a

site-specific manner 9, 68, 78. Controversy exists about the nature of the ultimate DNA

damaging species. Some investigators consider OH• to be the culprit, whereas others suggest

that an oxidised metal-oxygen complex is responsible for the DNA damage 79. Copper-

containing complexes may also act as catalyst in the formation of ROS, which is evident from

the reaction of Cu2+-ethylenediamine with H2O2 
70.

In vitro research indicates that copper ions not only react with endogenous agents to generate

free radicals and ROS, but also can mediate the conversion of xenobiotics, leading to the

formation of reactive species and resulting in oxidative damage to DNA 28, 29, 80-82.

Hydroquinone is a polyphenolic constituent of tobacco smoke and a tumor promotor for the

development of lung carcinomas 83. During copper-mediated oxidation of hydroquinone in

benzoquinone and quinone, a copper-hydroquinone complex may be formed, this complex

enhancing the formation of ROS, resulting in site-specific DNA cleavage 84-86. It is

questionable whether OH• is formed during the Cu2+-mediated oxidation of hydroquinone. A

copper-peroxide complex with similar reactivity as singlet oxygen, rather than free OH• may

participate in the production of DNA damage in vitro 87.

Gossypol is a polyphenolic binaphthyl dialdehyde found in cotton seeds. In in vitro

experiments, gossypol may be oxidised to a gossypol radical in the presence of Cu2+.  The

gossypol radical may react with DNA, causing strand breakages in double and single stranded
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DNA 88. DNA cleavage by the gossypol-Cu2+ complex may also be the result of the

generation of active oxygen species, mainly singlet oxygen 89.

Discrepancy exists between the results of in vitro and in vivo results, since in mice fed

increasing concentrations of copper no indication of increased oxidative damage to DNA in

the form of  8-oxo-7,8-dihydro-2�-deoxyguanosine was found 90.

Copper-mediated lipid peroxidation

Cu2+ is suggested to catalyses lipid peroxidation. Although copper has been reported to

catalyse lipid peroxidation in human erythrocytes and of membrane lipids 91, 92, studies on the

role of copper in lipid peroxidation mainly focus on copper-mediated LDL oxidation. In order

to study oxidation of LDL in vitro, copper is often added to the reaction mixture to oxidise

LDL 93. Evidence for copper-mediated LDL oxidation in vivo is merely indirect. In vivo,

oxidised LDL mediates pathological events that are important in the development of

atherosclerosis 94-96. Copper is speculated to be involved in LDL oxidation as accelerated

progression of atherosclerosis and elevated levels of auto-antibodies against oxidised LDL are

associated with high serum copper concentrations 97-103. Furthermore, increased levels of

copper ion have been detected in advanced atherosclerotic lesions 104.

A very indirect indication on the role of copper in lipid peroxidation in vivo has obtained from

research in humans. In humans, serum total copper concentration is in the range of 17 ± 3 mM,

but increases with ageing 105-107. An increase in serum copper concentration may be associated

with higher levels of oxidative damage. Indeed, elderly have higher levels of systemic

oxidative stress, resulting in lipid peroxidation as measured by the indicators plasma TBARS

(thiobarbituric acid reactive substances) and FPL (fluorescent products of lipid peroxidation)
107. Whether the relationship between the increase in serum total copper and the higher levels

of oxidative damage is causally related needs to be investigated.

In vivo research in mice fed increasing concentrations of copper did not reveal increased lipid

peroxidation as no significant difference in the levels of malondialdehyde between the dietary

groups occurred 90.

The role of copper in diseases associated with oxidative stress and life span

Given the fact that free radicals and ROS can cause damage at (sub)cellular and

macromolecular level, it is not surprising that many diseases have been associated with

oxidative stress. One of them was already briefly mentioned in this review, viz.

atherosclerosis.
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Another intriguing disease, of which some pieces of the puzzle are already found but many

pieces still remain to be discovered, is Alzheimer’s disease. Copper may be of particular

importance in the development of this neurodegenerative disease as excellently reviewed by

Multhaup and Masters (1999)) 108. In Alzheimer’s disease, the Cu2+ binding amyloid

precursor protein (APP) accumulates in neurites 109-113. The accumulation of APP may lead to

disruption of copper compartmentalisation and thus to copper toxicity 114. The oxidative

modification of APP, following the binding of Cu2+, results in the formation of Cu1+ and

cystines. During the generation of cystine, electrons are liberated, which results in an

enhanced production of OH•, resulting in oxygen radical-induced neuronal damage and death

through lipid peroxidation 108. Research suggests that reaction between H2O2 as generated by

extracellular forms of Cu,Zn-SOD, and the APP-Cu1+ complex on the surface of neurons,

leads to amyloidogenic C-terminal fragmentation of APP 10, 115, 116. Recently, it was shown

that intact amyloid Aβ peptide (Aβ), which can be deposited in the brains as plaques, can be

generated by non-specific proteases from amyloidogenic C-terminal fragments of APP 117. Aβ

has been proposed to cause an overproduction of H2O2 or related peroxides and thus may act

on APP as a feedback reaction, thereby increasing oxidative stress 108, 118.

Oxidative stress is considered an important factor in the process of ageing 2, 10, 54-61. If copper

can induce oxidative stress by generating free radicals and ROS, the copper-mediated

oxidative stress may result in a shorter life span. However, no significant difference in life

span of mice fed increasing copper concentrations was found 119.

The various faces of the antioxidant defence system

As described above, the body possesses an antioxidant defence system to counteract the

generation of free radicals and ROS. In vitro research indicates that in the presence of copper,

some antioxidants may exert pro-oxidative behaviour.

Copper ion-binding to amino groups of proteins and other molecules, such as ascorbate, may

represent an antioxidant effect, because it prevents copper ions from entering into the redox

cycles necessary for OH• formation. In the presence of H2O2 or ascorbate, copper that is

bound can still be catalytically active and catalyse multihit oxidative reactions on the

molecule or amino acid it is bound to or on other biomolecules in its close vicinity 120-128. In

in vitro studies, Cu2+-dependent site-specific DNA damage has been found if ascorbate was

added to the reaction mixture. It has been suggested that a copper-peroxide complex with

reactivity similar to OH• rather than OH• itself participates in the DNA cleavages produced
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129. Research performed in vivo in rats exposed to a combination of CuSO4 and ascorbic acid,

however, showed through electron spin resonance spin-trapping technologies that copper

induced the production of OH• 130.

Glutathione (GSH) is another endogenous compound exerting a dual role in the antioxidant

defence system. GSH can induce site-specific oxidative DNA damage in the presence of Cu2+,

the addition of H2O2 to the in vitro systems increasing the DNA damage even further 129, 131,

132. At higher GSH:Cu ratios, GSH has, however, an effective antioxidant functionality 131.

A third example of an endogenous compound that, based on in vitro research, is thought to

exert both a antioxidant and a pro-oxidant function is the copper-binding enzyme Cu,Zn-

SOD, which catalyses the dismutation of two O2
• − ions into O2 and H2O2 

133-135. Using its

own dismutation product, H2O2, as a substrate, the enzyme can generate OH• by a Fenton-like

reaction involving its bound copper ions 136-138. The OH• may react with the Cu,Zn-SOD

molecule itself or with other molecules in the vicinity of its generation site. If OH• reacts

directly with Cu,Zn-SOD, copper ions can be released from the damaged enzyme, which in

turn can enhance the Fenton-like reaction by reacting with H2O2 
136, 139. According to

Hodgson and Fridovich 140, bound Cu2+-OH• rather than free OH• is generated during the

reaction of intact Cu,Zn-SOD with H2O2. This Cu2+-OH• intermediate may be responsible for

the inactivation of Cu,Zn-SOD by being scavenged intramolecularly, thereby producing

destruction of ligands for Cu2+ in Cu,Zn-SOD and fragmentation of SOD 139, 140.

Even biological antioxidants, such as α-tocopherol, of which the importance is recognised

widely may possess pro-oxidant properties 141-148. In vitro research indicated that each α-

tocopherol molecule can reduce two Cu2+ ions bound to DNA to Cu1+. The DNA-Cu1+

complex reacts with H2O2 to generate OH• or species of similar reactivity, leading to DNA

base oxidation and backbone cleavage 149.

Conclusion

Copper is suggested to play a role in the generation of free radicals and ROS through the

Fenton reaction:

Cu+ + H2O2 → Cu2+ + OH• + OH−     (3)

The free radicals and ROS generated in this reaction are thought to cause damage at the

(sub)cellular and macromolecular level.
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Evidence of the role of copper in the generation of free radicals and ROS has been obtained

mainly by in vitro research. In these studies, the role of copper in generating ROS and free

radicals was often studied in the presence of reducing agents. Much of the studies were

focussed on oxidative damage to DNA and lipid peroxidation as the main effects of oxidative

stress. The results of the in vitro studies implicate an indirect, facilitating role of copper in the

development of oxidative stress

Evidence for copper facilitating oxidative stress under in vivo conditions comes mainly from

relationships between copper and various multifactorial diseases. Because of the

multifactorial character of these diseases, it is difficult to determine if and what role copper

plays in the development of diseases that are associated with oxidative stress. Until now, no

material proof exists for copper being involved in the development of oxidative stress in vivo.
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Lack of oxidative damage in mice after high copper intake

Abstract

On the basis of in vitro experiments, copper (II) has been suggested to be involved in the

development of reactive oxygen species. We have tested whether high copper intakes would

cause oxidative stress in intact animals. Mice were fed diets containing either 5, 25, 125 or

625 ppm Cu. Oxidative damage to DNA, proteins and lipids was assessed by determining the

levels of 8-oxodG, oxidised lysine residues and MDA as indicators, respectively. In addition,

total antioxidant status was measured. The liver copper concentration was increased only in

the group fed the highest level of dietary copper. Increasing dietary copper levels did not

significantly influence levels of 8-oxodG, MDA and oxidised lysine residues in plasma

proteins, however there was a trend towards higher levels of protein and lipid oxidation with

increasing doses of copper. Likewise, the total antioxidant status was not affected by the

dietary copper level. We conclude that exposure to high copper levels does not result in

significant oxidative damage in plasma and liver under in vivo conditions.

Introduction

Copper (II) not only is an essential trace element for animals and human [1, 2], but it may also

be involved in the development of reactive oxygen species [3-10]. An increased formation of

reactive oxygen species may lead to oxidative stress due to an imbalance in the oxidant –

antioxidant system [11]. Oxidative stress causes oxidative damage to DNA, proteins and

lipids [12, 13], which in turn is associated with ageing and disorders, such as ischemic heart

disease and Parkinson disease [12, 14]. In diseases associated with oxidative stress, copper

might play a role through its participation in the formation of reactive oxygen species [15]. In

Alzheimer’s disease, high concentrations of copper as well as oxidative stress markers are

found near amyloid A beta peptide deposits. It has been put forward that copper may

exacerbate and facilitate amyloid A beta-mediated oxidative damage in Alzheimer’s disease

[16-18].

We wished to test our idea that high dietary copper levels would produce oxidative stress and

reduce antioxidant status. We performed an experiment with mice fed diets containing either

5, 25, 125 or 625 ppm Cu for a period of 6 weeks. At the end of the experimental period,

samples were taken to assess oxidative damage to DNA, proteins and lipids and to measure



Chapter 4

50

total antioxidant status. To assess copper status of the mice, we measured the hepatic copper

concentration.

Materials and methods

The protocol of the experiment was approved by the animal experimentation committee of the

Utrecht Faculty of Veterinary Medicine.

Experimental protocol

Sixty male SPF-derived outbred NMRI mice (HsdWin:NMRI, Harlan Cpb, Zeist, The

Netherlands), aged 10 weeks, were used. The mice were divided into five groups so that body

weight distributions of the groups were similar. Each group was assigned to one of the

experimental diets. The animals were housed under conventional conditions. The animal

room had a regulated temperature (19-21°C), relative humidity (55-65%) and controlled

lighting (12 h/day, light 07.00 to 19.00 h). The mice were housed  three  per cage in Makrolon

Table 1: Ingredient composition of the experimental diets

Ingredient Weight
(g)

Corn oil
Coconut fat
Casein
Starch + dextrose (1:1 w/w)
Cellulose
CaCO3

MgCO3

NaH2PO4.2H2O
KCl
Trace element premix1

Vitamin premix2

CuSO4.5H2O:
     5 ppm Cu, or
     25 ppm Cu, or
     125 ppm Cu, or
     625 ppm Cu

Total

25.0
25.0

200.0
668.9
30.0
12.5

2.4
10.4

3.8
10.0
12.0

0.0158
0.0944
0.4876
2.4538

1000.0

1 Composition of trace element premix (mg/10 g): FeSO4.7H2O: 174.4; MnO2: 15.8; ZnSO4.H2O: 27.4;
KI: 0.1962; Na2MoO4.2H2O: 0.378; Corn starch: 9781.8

2 Composition of the vitamin premix (mg/12 g): Retinol: 4.8 (≡ 2400 IU/kg); Cholecalciferol: 2.0 (≡
1000 IU/kg); Phylloquinone: 1.0; Biotin: 0.2; Choline chloride: 4000.0 (purity: 50%); Folic Acid: 0.5;
Niacine: 15.0; Calcium Panthothenate: 35.6 (purity: 45%); Riboflavin: 7.0; Thiamin: 5.0; Vitamin B6:
1.0; Vitamin B12: 10.0 (purity: 0.1%); Corn starch: 7917.9
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type II cages (UNO BV, Zevenaar, The Netherlands).

Over four days the mice were gradually transferred from a commercial, pelleted, natural-

ingredient  diet  (RMH-B, Hope Farms  BV, Woerden, The Netherlands)  to the  experimental

diet. The experimental, semi-purified, pelleted diets complied with the nutrient requirements

of mice [19], but contained as variable either 5, 25, 125 or 625 ppm Cu. Pure selenium and

RRR-α-tocopherol were not added to the diets because of their antioxidant properties and

possible attenuating influence on copper-induced antioxidant status. The ingredient

composition of the diets is described in Table 1. The analysed copper concentrations in the

experimental diets with 5, 25, 125 and 625 ppm added copper were 4, 23, 127 and 705 ppm

Cu, respectively. The diets were stored at 4°C until feeding. Diets and demineralised water

were administered ad libitum.

At the end of the 6 weeks during experimental period all animals were anaesthetised with

chloroform so as to reach the surgical phase. Subsequently, blood samples were taken by

heart puncture or orbital puncture and collected in heparin-coated tubes. Then, the animals

were killed while still under anaesthesia and livers were removed and frozen immediately at

-80ºC. Plasma was prepared by centrifuging the blood samples (1000x g, 15 min) and was

then stored at -20ºC until use.

Biochemical analysis

Liver copper concentration was determined as described [20]. The total antioxidant status was

determined in plasma using the Randox total antioxidant status colorimetric assay kit

(Randox, Crumlin, UK). The test was performed on a Cobas-BIO automatic micro-centrifugal

analyser (Roche Diagnostics Systems, Hoffmann-La Roche, Basel, Switzerland).

The level of hepatic 8-oxo-7,8-dihydro-2�-deoxyguanosine (8-oxodG), an indicator of

oxidation of DNA, was analysed according to the method of Helbock et al. [21]. Total

malondialdehyde (MDA) in plasma, an indicator of lipid oxidation, was determined as

described by Lauridsen et al. [22]. Plasma protein 2-adipic semialdehyde residues, a measure

of oxidised lysine residues in plasma protein, was measured according to Daneshvar et al.

[23].

Statistical analysis

The Kolmogorov-Smirnov one-sample test was used to check normality of the data. All

results within groups were found to be normally distributed. The data were subjected to one-

way analysis of variance (ANOVA). If the ANOVA showed a significant effect (p<0.05), the
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group means were further compared with the unpaired Student’s t test using pooled (for equal

variances) or separate (for unequal variances) variance estimates. The equality of variances

was tested using a F-test. All statistical analyses were carried out according to Petrie and

Watson [24] using a SPSS PC+ computer program [25].

Results

Liver copper concentration was markedly increased in the group exposed to the highest

dietary copper concentration, but at lower copper intakes there were no differences between

the groups (Table 2).

Total antioxidant status was not affected by the dietary copper level (Table 2). Likewise,

dietary copper concentration had no significant effect on plasma levels of the indicators of

oxidative damage, i.e. MDA and plasma protein 2-adipic semialdehyde residues (Table 2)

although these markers tended to increase with increasing doses of copper. Hepatic 8-oxodG,

an indicator of DNA damage, was not affected by copper intake (Table 2).

Discussion

As based on the observed similar hepatic copper concentrations, the mice were able to

maintain copper homeostasis when fed the diets with copper levels of either 5, 25 or 125 ppm.

There was a dramatic increase in hepatic copper concentration after feeding the diet

containing 625 ppm of copper. Apparently, at the high copper intake the liver’s excretory

mechanisms were saturated, resulting in copper accumulation.

The level of oxidative DNA damage in the liver reported in this study is about 10 times lower

than  the  level  of  hepatic  oxidative  DNA  damage  reported  by Bialkowski  et  al.  [26]  in

Table 2: Hepatic copper, levels of indicators of oxidative damage and antioxidant status in mice fed diets with
different copper concentrations1

Dietary
copper
(ppm)

Liver copper
concentration
(µg/g liver)

Total antioxidant
status

(mmol/l)

8-oxodG
(8-oxodG/106 dG)

Specific oxidised
amino acids

(pmol/mg protein)

MDA
(pmol/mg protein)

5 26.59 ± 6.61 0.74 ± 0.09 3.50 ± 1.74 42.16 ± 6.40 90.2 ± 9.8
25 31.96 ± 5.21 0.73 ± 0.05 2.89 ± 1.92 43.29 ± 5.45 97.5 ± 11.8
125 34.19 ± 18.84 0.73 ± 0.09 3.92 ± 1.49 47.34 ± 10.44 97.5 ± 9.8
625 547.35 ± 403.552 0.73 ± 0.05 3.47 ± 0.83 45.57 ± 13.04 100.0 ± 12.7

1 Results expressed as means ± SD for 12 mice per dietary group
2 Statistically significant difference (p<0.05) in liver copper concentration between mice fed the diet with 625

ppm Cu and the mice fed the other diets
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maternal healthy Swiss mice. This difference may be due to strain differences in the

susceptibility for oxidative damage or in the efficiency of the repair system. Differences in

dietary composition may also contribute to the observed difference in oxidative DNA

damage. Furthermore, the Swiss mice used in the study of Bialkowski et al. [26] were older

than the mice used in our experiment. Aging has been associated with increased 8-oxodG

levels in nuclear [27] but particularly mitochondrial DNA in rats and mice [28]. As far as we

know, up to now no data have been published on the total antioxidant status in the mouse in

vivo.  Likewise, no comparable data on mouse plasma MDA or on plasma protein lysine

residue oxidation in the mouse have been previously published, but the results are in

accordance with other ongoing studies in the authors’ laboratories. The levels of the latter

marker in this study are approximately 5-10 times lower than expected since this marker is

known in general to be related to the basal metabolic rate and to be inversely related to the

maximal life-span potential of various animal species [23]. Plasma MDA in the mouse seems

also to be 4-5 times lower than in the rat, indicating major differences in the redox regulation

in plasma between these two species.

Copper could play a role in the development of oxidative damage as it may catalyse the

formation of reactive oxygen species and free radicals through its participation in the Haber-

Weiss reaction [29, 30]. The liver is the main site of copper storage [31] so that we expected

the liver to be most susceptible to copper-induced oxidative damage. However, in the mice

fed the diet with 625 ppm of copper, no increase in hepatic 8-oxodG, an indicator of DNA

damage, was found. Thus, we did not find any evidence for oxidative damage in the liver,

despite the massive accumulation of copper. Evidence that copper increases the level of 8-

oxodG in tissue or plasma comes from studies in which copper is used as an intermediate to

produce free radicals [32-34]. Thus, evidence for the oxidative role of copper is obtained

mainly indirectly [29]. To our knowledge, no in vivo experiments studying the effect of

feeding mice increasing copper concentrations on oxidative DNA damage have been

performed before. The copper-loaded rat liver has been observed to be minimally affected and

to have increased resistance to galactosamine-induced inflammation and to the oxidation-

mediated toxicity by carbon tetrachloride [35, 36]. Thus, copper-mediated oxidative toxicity

in rodents was previously found to be minimal in accordance with our results.

Increasing copper intakes will cause increasing fluxes of copper through the blood [31].

Therefore, copper-mediated oxidative damage could occur in blood plasma. Evidence for this

hypothesis comes from in vitro studies and from in vivo studies, in which a combination of

copper and a reducing agent was used to induce free radicals [37]. As far as we know, no
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experiments studying a direct relationship between copper and oxidative damage in plasma of

mice have been performed. Plasma MDA, an indicator of lipid peroxidation, and the level of

oxidised lysine residues, an indicator of plasma protein oxidation, only increased non-

significantly with higher dietary copper levels. Thus, there was only limited evidence for

oxidative stress.

The outcome of this study is at variance with the concepts advanced in the literature in that

copper plays a role in the development of oxidative damage. The putative role of copper is

based on in vitro studies [29]. Under in vivo conditions, as in our study with intact mice,

various mechanisms may be operative in counteracting any copper-induced oxidative stress.

In the body, there is an active antioxidant defence and repair system capable of preventing

and repairing oxidative damage [38].

Our results do not exclude the possibility that copper is involved in free radical formation and

the occurrence of oxidative damage under specific conditions. In humans, serum copper

concentration increases with ageing [39, 40]. In the elderly, a high copper level could

contribute to their higher level of systemic oxidative stress as these people may have less

protective capacity [40]. However, our study could not confirm the pro-oxidant role of copper

in vivo, despite the copper accumulation in the liver at high copper intakes. More research

concerning the potential role of copper in oxidative stress under in vivo conditions is needed.
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High copper intake does not affect longevity of the laboratory mouse

Abstract

There is suggestive evidence that high copper intake promotes the generation of reactive

oxygen species through the Haber-Weiss reaction, resulting in oxidative stress, which may

cause accelerated ageing. Commercial rodent diets generally contain copper concentrations

that are up to 10 times higher than the copper requirement of mice. We investigated whether

high copper intake affects longevity. Male and female NMRI mice were fed semipurified

diets containing either 5, 25 or 125 ppm copper. There was no effect of copper intake on

lifespan of the mice. It is suggested that oxidative stress caused by high copper intake was

nullified by the body’s antioxidant defence and repair system.

Introduction

Copper is a transition metal and thus is involved in the formation of free radicals and reactive

oxygen species (ROS) through the Haber-Weiss reaction (De Wolf et al., submitted a).

Mammalian cells possess antioxidant defence and repair mechanisms to scavenge free

radicals and ROS (Halliwell, 1993; Knight, 1998), but oxidative stress will arise if these

mechanisms are overwhelmed (Sies, 1991). Oxidative stress is considered to accelerate the

process of ageing (Knight, 1998; Halliwell and Gutteridge, 1989; Harman, 1998; Kohn, 1985;

Upton, 1977; Harman, 1993; Harman, 1956; Harman, 1981; Harman, 1992).

In a feeding trial with mice we did not find evidence for high copper intake causing oxidative

stress (De Wolf et al., submitted b). However, oxidative stress was assessed using indicators

and it cannot be excluded that inappropriate indicators had been selected. In addition,

endpoint measures, such as longevity, would be more convincing as to negative effects of

high copper intake, if shown to be affected.

Commercial rodent diets generally contain copper concentrations that are up to 10 times

higher than the copper requirement of mice. We thus hypothesised that the high copper

intakes occurring in practice would reduce longevity of the laboratory mouse. The hypothesis

was tested in the present experiment.
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Materials and methods

The protocol of the experiment was approved by the animal experimentation committee of the

Utrecht Faculty of Veterinary Medicine.

Experimental protocol

78 Male and 77 female SPF-derived outbred NMRI mice (HsdWin:NMRI, Harlan Cpb, Zeist,

The Netherlands), aged 4 weeks, were used. The mice were divided into three groups so that

body weight distributions of the groups were similar. Each group was assigned to one of the

three experimental diets.

The animals were housed under conventional conditions. The animal room had a regulated

temperature (19-21°C) and relative humidity (55-65%), and controlled lighting (12 h/day,

light 07.00 to 19.00 h). The mice were housed three or four per cage in Makrolon type II

cages (UNO BV, Zevenaar, The Netherlands).

During four days upon their arrival, the mice were gradually transferred from a commercial,

pelleted, natural-ingredient diet (RMH-1110, Hope Farms BV, Woerden, The Netherlands) to

the experimental diets. The experimental, semi-purified pelleted diets complied with the

nutrient requirements of mice (National Research Council, 1995), but contained as variable

either 5, 25 or 125 ppm Cu. The ingredient composition of the diets is given in Table 1. The

analysed copper concentrations in the experimental diets with 5, 25 and 125 ppm added Cu

were 3.76 ± 0.34, 23.52 ± 1.56 and 129.47 ± 5.83 ppm Cu (means ± SD for 5 batches per

diet), respectively. The diets were stored at 4°C until feeding. Diets and demineralised water

were administered ad libitum. Food consumption was registered on a weekly basis. Body

weights were registered weekly until the age of 10 weeks and then every four weeks.

The mice remained in the experiment until dying spontaneously. If severe suffering of a

mouse was detected and death was expected within 24 hours, the animal was killed by

cervical dislocation. After 80 weeks, the experiment was stopped because the surviving mice

suffered from severe skin lesions, the incidence of the lesions being unrelated to the type of

diet. A piece of liver of each mouse was stored -20ºC for copper analysis as described by De

Wolf et al. (submitted c).

Statistical analysis

Differences between the dietary groups in longevity were statistically evaluated using Kaplan

Meier Survival Analysis. Diet was included as a factor; statistical significance was defined as
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p<0.05. The Kolmogorov-Smirnov one-sample test was used to check normality of the liver

copper concentrations. The results within groups were normally distributed. The data were

subjected to one-way analysis of variance (ANOVA). If the ANOVA showed a significant

effect (p<0.05), the group means were further compared with the unpaired Student’s t test

using pooled (for equal variances) or separate (for unequal variances) variance estimates. The

equality of variances was tested using a F-test. All statistical analyses were carried out

according to Petrie and Watson (1999) using a SPSS PC+ computer program (SPSS, 1990).

Results

Hepatic copper concentration

In the males, there was no effect of dietary copper concentration on liver copper. The

concentrations were 17.60 ± 8.01, 13.90 ± 3.81 and 19.21 ± 8.09 µg Cu/g liver (means ± SD)

for the groups fed the diets containing 5, 25 or 125 ppm of Cu, respectively.

Liver  copper  concentrations in  the  female  mice  fed diets with 5, 25  or 125 ppm  Cu  were

Table 1: Ingredient composition of the experimental diets

Ingredient
Weight

(g)

Corn oil
Coconut fat
Casein
Starch + dextrose (1:1 w/w)
Cellulose
CaCO3

MgCO3

NaH2PO4.2H2O
KCl
Trace element premix1

Vitamin premix2

CuSO4.5H2O:
     5 ppm Cu, or
     25 ppm Cu, or
     125 ppm Cu

Total

25.0
25.0

200.0
669.6
30.0
12.5

1.7
10.4

3.8
10.0
12.0

0.0158
0.0944
0.4876

1000.0

1 Composition of trace element premix (mg/10 g): FeSO4.7H2O: 174.4; MnO2: 15.8; ZnSO4.H2O: 27.4; KI:
0.1962; Na2MoO4.2H2O: 0.378; Corn starch: 9781.8

2 Composition of the vitamin premix (mg/12 g): Retinol: 4.8 (≡ 2400 IU/kg); RRR-α-tocopherol: 44.0 (purity:
50%); Cholecalciferol: 2.0 (≡ 1000 IU/kg); Phylloquinone: 1.0; Biotin: 0.2; Choline Chloride: 4000.0 (purity:
50%); Folic Acid: 0.5; Niacine: 15.0; Calcium Panthothenate: 35.6 (purity: 45%); Riboflavin: 7.0; Thiamin:
5.0; Vitamin B6: 1.0; Vitamin B12: 10.0 (purity: 0.1%); Corn starch: 7873.9
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Figure 1: Mortality among male and female mice fed diets with 5, 25 or 125 ppm Cu. Black: 5 ppm of Cu added
to the diet; red: 25 ppm of Cu; blue: 125 ppm of Cu.

Figure 2: Mortality among male mice fed diets with 5, 25 or 125 ppm Cu. Black: 5 ppm of Cu added to the diet;
red: 25 ppm of Cu; blue: 125 ppm of Cu.

Figure 3: Mortality among female mice fed diets with 5, 25 or 125 ppm Cu. Black: 5 ppm of Cu added to the
diet; red: 25 ppm of Cu; blue: 125 ppm of Cu.
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11.20 ± 3.71, 9.48 ± 3.46 and 19.30 ± 9.19 mg Cu/g liver, respectively. Liver copper

concentration in mice fed the diet containing 125 ppm Cu was statistically significantly higher

than liver copper concentrations in mice fed diets containing either 5 or 25 ppm Cu (p<0.01

and p<0.005, respectively).

Body weight and feed intake

No statistically significant differences for body weight and feed intake were found in the mice

fed the diets containing either 5, 25 or 125 ppm of Cu.

Longevity

After 80 weeks, when about 62% of the mice were still alive, we stopped the experiment

because the surviving mice suffered from severe skin lesions. There were no differences in the

frequency or severity of skin lesions between the dietary groups. Known causes of skin

lesions could be ruled out so that the aetiology of the skin lesions remained unknown.

We did not observe significant differences in mortality between the three dietary groups when

males and females were pooled (Figure 1). Although not statistically significant, mortality

tended to be lowest in mice receiving the diet with 125 ppm of Cu, except for the period up to

25 weeks. This tendency is stronger, though not significant, for the males as a separate group

(Figure 2). In the females, mortality in those mice receiving diets with 5 or 125 ppm of Cu

tended to be somewhat lower than in their counterparts fed the diet containing 25 ppm of Cu,

but cumulative mortality at 80 weeks did not differ between the groups (Figure 3).

Discussion

The hypothesis that high copper intake in the laboratory mouse reduces longevity was

rejected by this experiment. On the contrary, mortality in the mice fed the diet with 125 ppm

of Cu tended to be lower than in the groups with lower copper intake. Pathological

examination of the mice did not reveal any differences between the dietary groups (data not

shown). There is substantial evidence that copper is involved in the generation of reactive

oxygen species, which can result in oxidative stress (De Wolf et al., 2001a). There are at least

two explanations for this apparent discrepancy. First, the alleged role of copper in accelerating

the process of ageing is based on indirect evidence. As far as we know, this study is the first

controlled experiment on the effect of copper intake on the development of oxidative stress in

intact animals. Possibly, any oxidative stress caused by high copper intake was nullified by

the body’s antioxidant defence and repair system (De Wolf et al., submitted a and b).
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Secondly, copper metabolism in the mice was able to maintain copper homeostasis so that

copper did not accumulate and thus could not cause oxidative damage. This reasoning is

supported by the fact that in the male mice liver copper concentrations were similar for the

three dietary treatments and in the female mice liver copper concentration was only slightly

increased in the mice fed the diet with 125 ppm.

Commercial rodent diets generally contain levels of nutrients that are much higher than the

physiological requirements. The high dietary concentrations of protein and phosphorus

contribute to the development of glomerulonephrosis (Beynen and Meijer, 1995). So far, there

is no evidence that the high copper concentrations in commercial diets, which range from 6 to

43 ppm (data not shown), have undesirable effects on the health of mice.
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Liver copper content of rats hypo- or hyperresponsive to dietary cholesterol

Abstract

The question addressed is whether cholesterol intake reduces the hepatic copper content in rats.

For this purpose we have compared the hepatic copper content of two selected rat inbred strains

after feeding the animals a control or a high fat, high cholesterol diet. One strain was dietary

cholesterol resistant (SHR/OlaIpcv), whereas the other strain was susceptible to dietary

cholesterol (BN-Lx/Cub). Dietary cholesterol-susceptible rats have a lower baseline hepatic

copper content when compared with their resistant counterparts. The consumption of a

hypercholesterolemic diet decreased liver copper concentration (expressed in mg/g dry weight) to

about the same extent in both strains. However, dietary cholesterol did not reduce the absolute

(expressed as mg/whole liver) and relative (expressed as mg/whole liver/100 g body weight)

copper store of rats. The decrease of liver copper concentration after the high fat, high

cholesterol diet is probably not caused by a decrease in hepatic copper amount, but rather due to

dietary-induced hepatomegaly.

Introduction

Copper is an essential trace element for living systems, because it is used as a co-factor for

key-enzymes involved in various fundamental biochemical processes but copper can be very

toxic as well (1). Maintaining copper homeostasis via a well-functioning copper metabolism is

thus a critical process. Copper metabolism, however, is affected by numerous internal and

external factors, among which the pH in the gastrointestinal system, the hepatic and biliary

function and the composition of the diet (2, 3). One of the nutrients associated with copper

metabolism is cholesterol. For the rat, a substantial decrease in liver copper concentration has

been shown after feeding a cholesterol-rich diet (4). Moreover, feeding rats a copper-deficient

diet results in hypercholesterolemia (5, 6).

The mutual relationship between cholesterol and copper metabolism prompted us (i) to compare

the hepatic copper content of dietary cholesterol resistant (hyporesponding) and dietary

cholesterol susceptible (hyperresponding) rat inbred strains on a diet without added cholesterol

and (ii) to test whether hyperresponding rats show a more marked decrease in hepatic copper

content that their hyporesponding counterpart when fed a diet with added cholesterol.
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Materials and methods

The research project was approved by the Animal Experimentation Committee of the Utrecht

Faculty of Veterinary Medicine.

Animals, housing, diets and preparation of samples

Rats (Rattus norvegicus) of the SHR/OlaIpcv and BN-Lx/Cub inbred strain were used. The

spontaneously hypertensive rat (SHR) is a model of essential hypertension (7) and the

normotensive Brown Norway congenic strain, BN-Lx, is a model of genetically determined leg

malformation, the polydactyly-luxate syndrome (8). Furthermore, BN-Lx/Cub is a dietary

cholesterol susceptible (hyperresponding) strain and SHR/OlaIpcv is a dietary cholesterol

resistant (hyporesponding) strain (9).

After weaning up to an age of 7 weeks male SHR/OlaIpcv and BN-Lx/Cub rats were fed a

commercial, pelleted diet (RMH-B®, Hope Farms BV, Woerden, The Netherlands), containing

21.57 mg Cu/kg diet. The chemical composition of this commercial diet has previously been

described (10). After this pre-experimental period, the rats were divided into two groups per

strain so that within-strain body weight distributions of the groups were similar. One group of

each strain was transferred to a high-fat, high-cholesterol diet (SHR/OlaIpcv, n=5; BN-Lx/Cub,

n=7), while the other remained to be fed on the commercial, control diet (SHR/OlaIpcv, n=4;

BN-Lx/Cub, n=4). The high-fat, high-cholesterol diet was made from the commercial diet by

addition of 5.0% (w/w) olive oil (Reddy, Van de Moortele NV, Oudenbosch, The Netherlands)

and 2.0% (w/w) cholesterol (USP, Solvay-Parmaceutical BV, Weesp, The Netherlands). The

cholesterol and olive oil were mixed into the diet by the manufacturer (Hope Farms BV). The

high-fat, high-cholesterol diet was provided in pelleted form and was stored in the freezer until

use. The test period lasted 4 weeks.

The animals were housed and studied in the Institute of Physiology, Czech Academy of Sciences

under natural lighting conditions, temperature of 18-21oC and relative humidity of 55-65%. The

animals were housed as pairs or as groups of three animals in wire-topped Macrolon type III

cages with a layer of sawdust as bedding. The rats had free access to food and tap water. Body

weight was recorded at the beginning (day 0) and at the end (day 28) of the experimental period.

Blood samples were taken on days 0, 14 and 28 in random order between 08.00 and 10.00 h after

a 16 hour fasting period. Orbital puncture was performed, while the rats were under light diethyl

ether anesthesia. Blood was collected in tubes without anticoagulant. After clotting, serum was

prepared by low-speed centrifugation and stored in the freezer until use. At the end of the

experimental period the animals were anesthetized with diethyl ether, exsanguinated via the
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inferior vena cava and the livers were removed and weighed. For each animal aliquots of liver

(0.5 g) were immediately frozen (11).

Chemical analyses

Lipids were extracted from liver homogenates according to a modification of the method of

Abell et al. (12). The pieces of the liver were homogenized on ice in ten volumes 12.5% (v/v)

ethanol with a 180 s burst of an UltraTurrax tissue homogenizer (Janke and Kunkel, Staufen,

Germany) at 20000 rev./min. The homogenates were then frozen at -20oC, thawed and firmly

stirred. From this homogenate 200 ml was taken and 2.0 ml of an ethanol-solution containing

KOH (ethanolic alkali: 6 ml of 50%-KOH in a final volume of 100 ml absolute-ethanol) was

added. The saponification was carried out in closed tubes overnight at 50oC. After this reaction

the tubes were adjusted to room temperature and 2.0 ml distilled water plus 4.0 ml petroleum

ether (40oC-60oC) was added. The tubes were closed and shaken for 10 minutes with a frequency

of 500 movements/min. The liquids were allowed to separate for 10 minutes. Three ml of the

petroleum-ether fraction was evaporated under nitrogen at 70oC. The residue was dissolved in

0.5 ml of absolute-ethanol. A sample from this final solution was taken for cholesterol

determination.

Total cholesterol in the liver and the serum was measured enzymatically according to Siedel et

al. (13), using a kit (Monotest®) supplied by Boehringer Mannheim GmbH (Mannheim,

Germany). Cholesterol analyses were performed on a Cobas-BIO automatic micro-centrifugal

analyser (Roche Diagnostics Systems, Hoffmann-La Roche, Basel, Switserland). For each

individual animal the area under the curve (AUC) for the total experimental period was derived

from the measured concentrations by the trapezoidal rule.

Copper in the liver was determined by drying pieces of the liver overnight at 105oC, after which

the dry weights were measured. Subsequently, the samples were ashed at 200oC for one hour,

300oC for two hours, 400oC for three hours and 500oC for ten hours. The remaining ash was

dissolved in 1.0 ml concentrated HClO4 which was then evaporated at 225oC. This step was

repeated until the ash was completely white. The ash was then dissolved in 1.0 ml 6 M HCl.

Copper was measured by using flame atomic absorption spectrophotometry on a Varian-AA275

(Varian, Springville, Australia).

Statistical analyses

The animals were housed as pairs or as groups of three in a cage. Strictly speaking, a cage is the

experimental unit. However, in the statistical analyses we treated these data as if an individual rat
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was the experimental unit. Based on daily inspection of the rats (no signs of fighting among the

animals in one cage etc.) we felt that this could be justified. In fact, diet and strain were the only

important factors that discriminate between the individual rats.

The Kolmogorov-Smirnov one-sample test was used to check normality of the data. All results

within groups were normally distributed. The significance of the differences between groups was

calculated by a two-way analysis of variance (ANOVA). Homogeneity of the variances was

tested using Bartlett's test. When necessary, the variances were equalized by logarithmic (14)

transformation of the data. After transformation the variances were similar and the transformed

within-group data were still normally distributed. Thus, application of an analysis of variance on

the (transformed) data is then straightforward. If the analyses of variance showed significant

effects the group means were further compared with the unpaired Student's t test. These tests

were performed with pooled (for equal variances) or separate (for unequal variances) variance

estimates. The equality of variances was then tested using a F-test. To take into account the

greater probability of a type I error due to multiple comparisons, the level of significance for the

unpaired Student's t tests was pre-set at P<0.05/times a group is used for a comparison (i.e.

P<0.05/2 = 0.025) instead of P<0.05, according to Bonferroni's adaptation. In all other cases, the

probability of a type I error <0.05 was taken as the criterion of significance. Between selected

parameters, Spearman's coefficient of rank correlation (R) was calculated; significance was

assessed by a two-tailed test. Two-side probabilities were estimated throughout. All statistical

analyses were carried out according to Petrie and Watson (15) using a SPSS PC+ computer

program (15).

Results

Growth performance

At the beginning of the test period all rats were of the same age, but group mean body weight of

SHR/OlaIpcv rats, when compared to BN-Lx/Cub rats, was slightly higher (data not shown). As

would be expected, body weight increased, in an identical fashion, in the two rat inbred strains

during the course of the experiment. Thus, as a consequence the strain difference in body weight

was also present at the end of the experimental period (Table 1).

Serum cholesterol

At the end of the pre-experimental period, serum cholesterol levels (initial values) of the

BN-Lx/Cub rats (81±9 mg/dL n=11) were slightly, but significantly higher than those of

HR/OlaIpcv rats (72±8 mg/dL n=9) (Student's t test, p=0.029). The serum cholesterol response is
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expressed as the AUC (Table 1). The high-fat, high-cholesterol diet when compared with the

control diet produced in the SHR/OlaIpcv and BN-Lx/Cub strain a 1.3 and 2.5 times higher

AUC, respectively. On the control diet BN-Lx/Cub and SHR/OlaIpcv had a similar AUC,

whereas on the diet with added cholesterol the AUC of the BN-Lx/Cub strain was 1.7 times

higher than that of SHR/OlaIpcv strain.

Liver weight

Irrespective of the diet, SHR/OlaIpcv rats have higher absolute and relative liver (wet and dry)

weights than BN-Lx/Cub rats (Table 1). Previously we reported similar differences in liver wet

weight between other substrains of SHR and BN (SHR/Cpb and BN/Cpb) (16). The

consumption of fat and cholesterol raised in both strains absolute and relative liver (wet and dry)

weights. This may be caused by hepatic lipodystrophy as suggested previously for rats (17).

Table 1: Body weight, serum cholesterol content and liver weight of hypo- and hyperresponsive rats fed diets with or
without added cholesterol1

Diet without Diet with
added cholesterol added cholesterol

SHR/OlaIpcv BN-Lx/Cub SHR/OlaIpcv BN-Lx/Cub
Measure (n=4M) (n=4M) (n=5M) (n=7M) Sign.2

Final body weight (g) 217±4a4 171±11a 213±17b 175±14b S

Serum cholesterol content (AUC, day 0 to day 28)
(mg.day/dL) 2114±114b5 1881±156a 2713±177bc 4685±1127ac S,D,SxD3

Liver wet weight
Absolute (g) 6.77±0.16ac 4.32±0.20ad 7.80±0.56bc 5.40±0.28bd S,D
Relative (g/kg body wt.) 31.21±0.70ac 25.20±1.23ad 36.60±0.64bc 30.96±1.39bd S,D

Liver dry weight
Absolute (g) 2.01±0.04ac 1.28±0.09ad  2.84±0.26bc  2.19±0.13bd S,D,SxD3

Relative (g/kg body wt.) 9.29±0.18ac 7.46±0.40ab 13.33±0.47c 12.57±0.80b S,D

1 Values are means ± SD; n is the number of male (M) animals per group
2  Significance (P<0.05) based on two-way ANOVA with main factors strain and diet: S: effect of strain, D: effect

of diet, SxD: interaction.
3 ANOVA after logarithmic transformation of the data
4 Contrast significance (Student's t test; P<0.025); within rows, values bearing the same superscript letter are

significantly different
5 From this group there was no day 28-serum available for determination of serum cholesterol concentration.

Therefore, the AUC from day 0 to day 28 for this group was estimated by doubling the calculated AUC from
day 0 to day 14. We felt that this was allowed, since for the BN-Lx/Cub group on the diet without added
cholesterol the serum cholesterol concentration on day 0, 14 and 28 were not significantly different from each
other and the serum cholesterol level on day 0 and day 14 of the low-fat, low-cholesterol SHR/OlaIpcv dietary
group were also not significantly different.
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Liver cholesterol

The consumption of cholesterol and fat drastically raised liver cholesterol concentration (mg/g

wet weight and mg/g dry weight) in both strains (magnitude of the increase: SHR/OlaIpcv, 15

times; BN-Lx/Cub, 25 times) (Table 2). This corroborates previous work with inbred and outbred

strains of the rat (10, 18). This diet effect was also borne out if liver cholesterol content is

expressed as mg/whole liver or as mg/whole liver/100 g body weight (Table 2). BN-Lx/Cub rats

when compared with SHR/OlaIpcv rats had on both diets a higher liver cholesterol

concentration. On the high-fat, high-cholesterol diet absolute and relative liver cholesterol pool

of BN-Lx/Cub rats was significantly enlarged when compared with the pools of SHR/OlaIpcv

rats. However, on the control diet BN-Lx/Cub rats when compared with the SHR/OlaIpcv

counterparts had a lower absolute pool of liver cholesterol. The two strains had similar relative

pools of liver cholesterol on the low-fat, low-cholesterol diet.

Table 2: Liver cholesterol and copper content of hypo- and hyperresponsive rats fed diets with or without added
cholesterol1

Diet without Diet with
added cholesterol added cholesterol

SHR/OlaIpcv BN-Lx/Cub SHR/OlaIpcv BN-Lx/Cub
Measure (n=4M) (n=4M) (n=5M) (n=7M) Sign.2

Liver cholesterol concentration
(mg/g wet weight) 2.87±0.08ac4 3.49±0.21ad  38.65±3.59bc  70.71±7.71bd S,D3

(mg/g dry weight) 9.66±0.26ac   11.81±0.81ad 106.02±8.31bc 174.05±18.49bd S,D3

Liver cholesterol amount
(mg/whole liver) 19.47±0.80ac 15.06±0.75ad 302.36±42.75bc 381.31±43.14bd D,SxD3

(mg/100 g body wt.) 8.97±0.38a 8.80±0.64c 141.43±13.26ab 219.23±30.12bc S,D,SxD3

Liver copper concentration
(mg/g wet weight)  9.20±2.46  7.72±1.82  7.14±0.87  6.83±0.63 -
(mg/g dry weight) 30.93±8.32 26.06±5.90 19.58±2.03a 16.71±1.05a S,D3

Liver copper store
(mg/whole liver) 62.19±16.21a 33.40±8.27a 55.90±9.45b 36.76±2.77b S3

(mg/100 g body wt.) 28.66±7.47 19.30±3.72 26.15±3.44a 21.10±1.69a S3

1 Values are means ± SD; n is the number of male (M) animals per group.
2 Significance (P<0.05) based on two-way ANOVA with main factors strain and diet: S: effect of strain, D: effect

of diet, SxD: interaction.
3 ANOVA after logarithmic transformation of the data.
4 Contrast significance (Student's t test; P<0.025); within rows, values bearing the same superscript letter are

significantly different.
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Liver copper

There were no significant strain or diet effects on the levels of hepatic copper when the copper

concentration is expressed as mg/g wet weight (Table 2). Although, the diet with added

cholesterol produced lower group mean liver copper levels in both strains and the group means

of the BN-Lx/Cub strain were lower than those of the SHR/OlaIpcv strain. If liver copper

concentration is expressed as mg/g dry weight, there was a significant strain and diet effect.

SHR/OlaIpcv when compared with BN-Lx/Cub rats had higher group mean liver copper levels,

but in the multiple comparison procedure this strain effect reached the level of statistical

significance only on the diet with added cholesterol. The high-fat, high-cholesterol diet produced

in both strains lower group means of liver copper level (expressed as mg/g dry weight). After

calculation of the absolute (mg/whole liver) and relative (mg/whole liver/100 g body weight) liver

copper store and performing a statistical analysis only a strain effect was revealed: SHR/OlaIpcv

when compared with BN-Lx/Cub rats had enlarged stores of liver copper.

Of the parameters for liver copper content only the variable liver copper concentration expressed

as mg/g dry weight was significantly (negatively) correlated with the AUC (R=-0.8842, n=20,

p<0.001). Liver copper concentration expressed as mg/g dry weight was significantly

(negatively) associated with each parameter for liver cholesterol content (Table 3). If liver copper

concentration is expressed as mg/g wet weight there was a significant assocation with liver

cholesterol concentration (expressed as mg/g dry weight) and liver cholesterol amount

(expressed as mg/whole liver/100 g body weight) (Table 3). Absolute liver copper store was, in

contrast with relative copper store, significantly associated with liver cholesterol concentration

expressed as mg/g dry weight.

Discussion

In the literature substantial evidence for a relationship between cholesterol levels and copper

metabolism has been described. The aim of the present work was to determine whether

cholesterol in the diet influences liver copper content differently in rats which differ in their

hypercholesterolemic response to dietary cholesterol.

On the control diet the mean liver copper concentration was 26.06 and 30.93 mg/g dry weight for

BN-Lx/Cub and SHR/OlaIpcv, respectively (Table 2). This is in line with the range of hepatic

copper concentrations reported in Takahashi et al. (19) (10.7 - 29.9 mg/g dry weight) and

Veenendaal et al. (20) (31.0 - 41.0 mg/g dry weight).
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A high fat, high cholesterol diet produced in both rat inbred strains significantly lower liver

copper levels when expressed as mg/g dry weight (Table 2). We may assume that under the

conditions of ad libitum food consumption the animals maintain relatively constant intakes of

energy, regardless of the composition of the diet (21). Therefore on the test diet, when compared

with the control diet, copper intake was lower. In addition, the olive oil in the high fat, high

cholesterol diet, may also modify copper absorption: long-chain fatty acids may reduce the

copper absorption rate (22). However, the absolute and relative liver copper stores were not

influenced by the high fat, high cholesterol diet. Thus, the diet effect on hepatic copper levels

cannot readily be explained by a reduction in copper intake or absorption. Since the high fat,

high cholesterol diet induced hepatomegaly in both strains (Table 1), the decrease in liver copper

concentration might be explained by an enlargement of the liver. The decrease in liver copper

concentration in rats fed a high cholesterol diet or a diet supplemented with L-histidine as

reported by Abu-el-Zahab et al. (4) and Harvey et al. (23), respectively, is most likely caused

also by hepatomegaly.

The BN-Lx/Cub when compared with the SHR/OlaIpcv strain has, irrespective of the diet, lower

levels of hepatic copper and also lower liver copper stores (Table 2). As to the mechanism

accounting for the strain difference in liver copper content between these two rat strains we can

only speculate. Part of this effect may be due to lower feed intake by the BN rats when compared

with the SHR rats. A possible explanation for the observed strain difference in hepatic copper

may also be found in the relatively high glucocorticoid levels of SHR rats (24). Glucocorticoids

can stimulate synthesis of metallothionein and the copper-containing protein ceruloplasmin in

the liver (25). Copper, absorbed from the diet through the intestine, is transported to and taken up

by the liver. In part it is incorporated into newly synthesized ceruloplasmin that is excreted into

the plasma. Besides incorporation of copper in copper-containing proteins, part is stored as

metallothionein. The remaining copper is excreted into the bile. Thus, once ceruloplasmin and

metallothionein are synthesized, there might be both an increase in liver copper content and in

plasma copper concentration. It is interestingly to note that Berthelot et al. (26) reported that

plasma copper levels were similar in SHR and WKY rats at 5 and 7 weeks of age, but thereafter

plasma copper levels increased significantly more in SHR than WKY. Schedl et al. (27)

described a trend of increased serum copper concentrations in the SHR relative to the WKY

control rat. Furthermore, Apostolova et al. (28) found that SHR showed significantly higher

values of hepatic metallothionein when compared with WKY rats.

In conclusion, SHR/OlaIpcv and BN-Lx rat inbred strains differ in liver copper content.

Consumption of a high fat, high cholesterol diet reduced liver copper concentration, but not liver
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copper store. The strain effect may be explained by differences in circulating glucocorticoid

levels.
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Table 3: Associations between liver cholesterol and liver copper in rats1

Liver cholesterol concentration Liver cholesterol amount

mg/g wet weight mg/g dry weight mg/whole liver mg/100 g body weight

Spearman's R p-value Spearman's R p-value Spearman's R p-value Spearman's R p-value

Liver copper concentration
(mg/g wet weight) -0.3940  0.086 -0.4481   0.048 -0.2376  0.313 -0.4541  0.044
(mg/g dry weight) -0.8752 <0.001 -0.8857 <0.001 -0.8165 <0.001 -0.9038 <0.001

Liver copper store
(mg/whole liver) -0.4165  0.068 -0.4481   0.048 -0.0812  0.734 -0.3459  0.135
(mg/100 g body wt.) -0.3383  0.145 -0.4060   0.076 -0.0767  0.748 -0.2977  0.202

1 Association based on 20 animals.
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Genetic and correlation analysis of hepatic copper content in the rat

Abstract

Thirty recombinant inbred (RI) strains derived from the spontaneous hypertensive rat

(SHR/OlaIpcv) and the Brown Norway (BN-Lx/Cub) progenitors were used to search for

quantitative trait loci (QTLs) that are responsible for differences in liver copper between these

two strains. The heritability of liver copper concentration (expressed as mg/g liver w.w. and mg/g

liver d.w.) and liver copper store (mg/whole liver) was estimated to be 57%, 57% and 46%,

respectively. In a total genome scan of the RI strains, involving over 600 genetic markers,

suggestive association was found between liver copper store (mg/whole liver) and the D16Wox9

marker on chromosome 16 (lod score = 2.8), and between liver copper concentration (mg/g dry

weight) and the D10Cebrp1016s2 marker on chromosome 10 (lod score = 3.0). These putative

QTLs are responsible for nearly 34% and 40% of the additive genetic variability for liver copper

store and concentration, respectively.

Introduction

Differences between inbred strains of rats have been reported for liver copper content (1-4),

which suggests an important role for genetic factors. For instance, the Long-Evans Cinnamon

(LEC) mutant rat shows an excessive copper accumulation in the liver (5). Genetic analysis

revealed that a deletion mutation in the Atp7b gene, which codes for an ATPase that can either

transport copper into or out of the cell, is responsible for hepatic copper accumulation in the LEC

strain (6). This mutation of the Atp7b gene is the rat counterpart of the Wilson's disease gene in

humans (5) and is located on rat chromosome 16. However, QTL analyses have not yet been

carried out with other strains that differ for liver copper content. This prompted us to perform a

genetic analysis with the BN-Lx/Cub and SHR/OlaIpcv as progenitor strains. In a previous study

(1) we found that the hepatic copper content of the SHR/OlaIpcv strain was about 1.5 times

higher when compared with the BN-Lx/Cub strain. The aim of the present study was to locate the

QTLs influencing the liver copper content in these strains and to investigate how liver copper

content correlates with parameters for insulin resistance, fatty acid metabolism and blood

pressure. The results of the QTL-analysis and possible candidate genes located in the vicinity of

these QTLs will be discussed.
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Material and methods

The research project was approved by the Animal Experimentation Committee of the Utrecht

Faculty of Veterinary Medicine.

Animals

Genetic studies were performed in 30 recombinant inbred (RI) strains derived from

spontaneously hypertensive rats (SHR/OlaIpcv) and normotensive Brown Norway rats

(BN-Lx/Cub) (7). The SHR progenitor strain descends from inbred SHR originally obtained

from the National Institutes of Health. The BN-Lx progenitor is a congenic strain that carries a

segment of chromosome 8 from the polydactylous PD/Cub strain (7). All strains have been

maintained in Prague by inbreeding for more than 15 years. The RI strains were derived from an

(SHR x BN-Lx) F2 population: the F2 rats were paired off at random, and each of these F2 pairs

was used to generate a new inbred strain by repeated brother x sister mating of the offspring for

at least 20 generations. Currently, most of the RI strains reached more than 45 generations of

brother-sister inbreeding. From three to six males of each RI strain the liver copper content was

determined.

Experimental protocol

The animals were housed and studied in the Institute of Physiology, Czech Academy of Sciences

under natural lighting conditions, temperature of 18-21oC and relative humidity of 55-65% .The

animals were housed as pairs or as groups of three animals in wire-topped Macrolon type III

cages with a layer of sawdust as bedding. The rats had free access to food and tap water.

After weaning up to an age of 7 weeks, the animals were fed a commercial, pelleted diet

(RMH-B®, Hope Farms BV, Woerden, The Netherlands). The chemical composition of this

commercial diet has previously been described (8). Then, the rats received a commercial diet

supplemented with 5.0% (w/w) olive oil (Reddy, Van de Moortele NV, Oudenbosch, The

Netherlands) and 2.0% (w/w) cholesterol (USP, Solvay-Parmaceutical BV, Weesp, The

Netherlands). This diet had been fed for 4 weeks. In a previous experiment (1), we found that a

high-fat, high-cholesterol diet has no effect on liver copper content in BN-Lx/Cub or

SHR/OlaIpcv, whereas the decrease of liver copper concentration was identical in both strains

(i.e. there was no interaction-effect between the factors "strain" and "diet") (1).

At the age of 11 weeks the animals were anesthetized with diethyl ether, exsanguinated via the

inferior vena cava and the livers were removed and weighed. For each animal two liver specimen

(0.5 g) were immediately frozen (9).
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Chemical analyses

Liver copper concentration and liver copper content were determined by drying the liver

specimen overnight at 105oC, after which the dry weights were measured. Subsequently, the

samples were ashed at 200oC for one hour, 300oC for two hours, 400oC for three hours and

500oC for ten hours. The remaining ash was dissolved in 1 ml concentrated HClO4 which was

then evaporated at 225oC. This step was repeated until the ash was completely white. The ash

was then dissolved in 1 ml 6 M HCl. Copper was measured by using flame atomic absorption

spectrophotometry on a Varian-AA275 (Varian, Springville, Australia).

Genetic and statistical analyses

Heritability of liver copper content was estimated according to the method of Plomin and

McClearn (10) using the variances in liver copper between and within the RI and progenitor

strains. The additive genetic variance was estimated as 50% of the total variance between the

means of the RI strains; the environmental variance was estimated to be the average variance in

mean phenotypic values within the RI strains. Narrow heritability was calculated by dividing the

additive genetic variance by the sum of the additive genetic variance and the environmental

variance.

QTL mapping was performed using Map Manager QT (version b28) (11) and the strain

distribution patterns of more than 600 genetic markers previously mapped in the RI strains (7).

The marker data set covers approximately 1200 centiMorgans of the rat genome and has proved

effective in genome scanning for QTL regulating a variety of complex traits (12). Map Manager

QT was used to test for single locus associations by regression analysis and the significance of

each potential association was measured using the likelihood ratio statistics (LRS) of Haley and

Knott (13). The interval regression method of Map Manager QT was used to test for QTL within

marker intervals. The significance threshold for the genome wide scan was empirically

determined by the Map Manager QT permutation test, using the informative markers and 1000

permuted data sets as recommended by Doerge and Churchill (14). Significant linkage was

defined in accordance with the guidelines of Lander and Kruglyak (15) as statistical evidence

occurring by chance in the genome scan with a probability of 5% or less. Based on these criteria

and the results of the permutation test, a LRS threshold value of 15.9 and 16.4 (corresponding to

a lod score of 3.5 and 3.6, respectively) was established for significant linkage in the RI strain

data set for liver copper concentration (expressed per g dry weight) and hepatic copper content

(expressed as mg Cu/whole liver), respectively. The LRS threshold value for suggestive linkage
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was found to be 9.1 and 9.4 (corresponding to a lod score of about 2.0) for liver copper

concentration and hepatic copper content, respectively.

Results

Our previous studies with the progenitor strains revealed that liver copper content was higher in

SHR/OlaIpcv when compared with BN-Lx/Cub (1). In the RI strains derived from the

progenitors of these strains, the distribution of each parameter for liver copper content was

continuous, suggesting a polygenic mode of inheritance of the trait (Fig. 1). The BN-Lx/Cub

strain exhibited the lowest hepatic copper content, whereas the mean liver copper content of the

SHR/OlaIpcv progenitor arrived somewhat right to the middle of the distribution of this

parameter of the RI strains (Fig. 1c). For liver copper concentration neither the BN-Lx/Cub nor

the SHR/OlaIpcv were at the extremes of the distribution of this parameter of the RI strains (Fig.

1a and 1b). The observation of lower and higher hepatic copper contents in certain RI strains

than in either progenitor is consistent with multifactorial inheritance and suggests the possibility

of gene-gene interactions.

Based on the variances in hepatic copper content within and between the RI strains, the narrow

heritability of liver copper content was estimated to be 57%, 57% and 46% for hepatic copper

expressed as mg/g wet weight, mg/g dry weight and mg/whole liver, respectively. Given the

observed substantial genetic component to hepatic copper content in the RI strain model, we

scanned for QTLs influencing liver copper phenotypes using the Map Manager QT program.

Genome scanning of the RI strains revealed suggestive linkage of the hepatic copper phenotypes

to the D10Cebrp1016s2 marker on chromosome 10 (LRS = 13.9, lod score = 3.0, p = 0.00019)

and the D16Wox9 marker (coding for Mbpa, serum mannose binding protein A) on chromosome

16 (LRS = 13.5, lod score = 2.9, p = 0.00035) (Table 1). Interval mapping across the critical

regions of chromosome 10 and 16 revealed distinct LRS peaks near the D10Cebrp1016s2 and

D16Wox9 marker, respectively (Fig. 2). We designated the chromosome 10 QTL region Hcuc1

(hepatic copper content 1) and the chromosome 16 QTL region Hcuc2 (hepatic copper content

2). Hcuc1 accounts for 40% of the additive genetic variance of the hepatic copper concentration

phenotype, whereas Hcuc2 accounts for 34% of the hepatic copper store phenotype.

The HXB/BXH sets of RI strains are extensively used for mapping of genes involved in e.g.

blood pressure regulation, insulin resistance and fatty acid metabolism (12), and quantitative data

on these parameters are available. Several papers suggest for rats a relationship between copper

metabolism and hypertension (16, 17), between copper metabolism and diabetes (18, 19) and

between copper metabolism and fatty acid metabolism (20). Therefore, we searched for possible
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a.

b.

c.

Figure 1: The distribution of liver copper content (means ± SD) of recombinant inbred strains and the progenitor
strains. Liver copper content has been expressed as (a) mg/g wet weight, (b) mg/g dry weight and (c) mg/whole
liver.
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Figure 2: Interval mapping of the QTL regulating (a) liver copper concentration (mg/g dry weight) or (b) liver
copper store (mg/whole liver). Likelihood ratio statistics from the Map Manager QT linkage analysis are plotted
across the segment of chromosome 10 (a) or chromosome 16 (b). Estimated distance between markers in
centiMorgans were determined with the Haldane map function.

Table 1: Genetic markers associated with hepatic copper content in rats1.

Allele Lod

Phenotype Marker BN-Lx/Cub SHR/OlaIpcv  score

mg/g dry weight D10Cebrp1016s2 17.48 ± 0.85 23.74 ± 1.35 3.0

mg/whole liver D16Wox9 44.29 ± 2.35 57.78 ± 2.55 2.8

1 Means (± SEM) of hepatic copper content in RI strains that inherited BN-Lx/Cub and SHR/OlaIpcv alleles of
respective genetic markers.

correlations between parameters for liver copper content and blood pressure, insulin resistance or

fatty acid metabolism parameters. In table 2 the significant associations are summarized.

Discussion

Genetic analysis of the liver copper content in the recombinant inbred strains indicated that the

phenotypes are under polygenic control as suggested by the continuous variability (Fig. 1). The

narrow heritability was estimated to be between 46% and 57%, which motivated us to search for

responsible QTLs. Genome wide scanning for associations between marker genotypes and liver

copper resulted in the localization of a QTL on rat chromosome 10 (near the D10Cebrp1016s2

marker) for liver copper concentration (mg/g dry weight) and another one on chromosome 16

(near the D16Wox9 marker) for liver copper store (mg/whole liver) (Table 1 and Fig. 2).

Based on homology between the segment of rat chromosome 10, where the putative QTL has

been mapped (Fig. 2), and human chromosome 5q (21), it is possible that the Atox1 gene, which

codes for the antioxidant protein 1 (22), is a positional candidate for the regulation of liver

copper concentration. It has been suggested that in the liver this protein binds and delivers

cytosolic copper to the Wilson disease ATPase protein (ATP7B) in the trans-Golgi network. This

ATPase is required for incorporation of copper into ceruloplasmin (the major copper binding

protein in the circulation) during its formation and folding and/or to release hepatic copper into

bile (5). As a result of differential activity of antioxidant protein 1, more or less copper may be

excreted in bile or the circulation, implying that less or more copper may be stored in the liver.
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Hiromura and Sakurai (23) reported that rat Atox1 was found to be expressed at high levels in the

liver.

On rat chromosome 16 the Lod score peaked at the D16Wox9 marker (Fig 2). This marker codes

for Mbpa, serum mannose bindig protein A. The Atp7b gene has been located at the telomeric

part of the q-arm of rat chromosome 16 at a distance of about 55 cM from Mbpa (24). This

location excludes Atp7b as a positional candidate gene for the observed variation in liver copper

content in the present strains. The homologous human gene (MBL2) is on chromosome 10q (25).

In the vicinity of this gene, the COX15 gene is located (26). The cox15 protein is a constituent of

the inner mitochondrial membrane and is most likely involved in the assembly of the cytochrome

oxidase protein backbone (27). A mutation in the Cox15 gene might result in an impaired

assembly of the COX protein backbone. Since the normal COX protein backbone is bound to 2

copper-containing prosthetic groups, a mutation in the Cox15 gene could result in a reduced

capacity of the hepatic mitochondria to store copper.

The SHR strain is a frequently used model for hypertension studies. In the Dahl salt-sensitive rat,

which is another model for hypertension, Clegg et al. (16) have found that an increase of the

systolic blood pressure was associated with a decrease of the liver copper concentration. We also

found a significant negative correlation between these two parameters. D16Wox9 is located in

the region of chromosome 16, which was previously found to be linked to inherited variation in

salt-loaded blood pressure (28). Also, the D10Cebrp1016s2 marker has previously been shown

to indicate a QTL regulating blood pressure (29). It is not clear so far whether or not these two

parameters are functionally related. The positive correlation, found between hepatic copper

concentration and the parameters for insulin resistance and fatty acid metabolism, might be

explained by the fact that Srebf1 is closely linked to the D10Cebrp1016s2 marker (30). In man

this gene is a key regulator of genes that encodes enzymes in the biosynthetic pathways of

cholesterol, fatty acids and triglyceride metabolism (31, 32). Moreover, it has been demonstrated

that this gene plays a pivotal role in mediating the effects of insulin on the expression of genes

that regulate hepatic glucose and lipid metabolism (33, 34).

In summary, the present study indicates that both chromosome 10 and 16 contain a locus that

plays a role in controlling the hepatic copper content in rats. When considering the homology of

the rat chromosomal regions that contain a hepatic copper content (Hcuc) locus with those of

human, one might speculate about Atox1 and Cox15 genes as candidate loci for Hcuc1 (RNO10)

and Hcuc2 (RNO16), respectively. Further experiments, including the development of congenic

sublines of SHR into recombinant sublines of SHR.BN congenic strains, are necessary to

confirm and precisely map the QTLs on rat chromosome 10 and 16.



Chapter 7

90

References

1. De Wolf, I.D., Fielmich-Bouman, X.M., Lankhorst, Æ., Van Oost, B.A., Beynen, A.C., K�en, V., Pravenec,
M., Van Zutphen, L.F.M., and Van Lith, H.A. (2001). Liver copper content of rats hypo- or hyperresponsive to
dietary cholesterol. Thesis: chapter 6

2. Hayashi, M., Kuge, T., Endoh, D., Nakayama, K., Arikawa, J., Takazawa, A., and Okui, T. (2000). Hepatic
copper accumulation induces DNA strand breaks in the liver cells of Long-Evans Cinnamon strain rats.
Biochem. Biophys. Res. Comm. 276, 174-178.

3. Schilsky, M.L., Irani, A.N., Gorla, G.R., Volenberg, I., and Gupta, S. (2000). Biliary copper excretion capacity
in intact animals: correlation between ATP7B function, hepatic mass, and biliary copper excretion. J. Biochem.
Mol. Toxicol. 14, 210-214.

4. Yu, S., Beems, R.B., Joles, J.A., Kaysen, G.A., and Beynen, A.C. (1995). Iron and copper metabolism in
analbuminaemic rats fed a high-iron diet. Comp. Biochem. Physiol. 110A, 131-138.

5. Cox, D.W. (1999). Disorders of copper transport. Br. Med. Bull. 55, 544-555.
6. Muramatsu, Y., Yamada, T., Miura, M., Sakai, T., Suzuki, Y., Serikawa, T., Tanzi, R.E. and Matsumoto, K.

(1994). Wilson's disease gene is homologous to hts causing abnormal copper transport in Long-Evans
Cinnamon rats. Gastroenterology 107, 1189-1192.

7. Pravenec, M., K�en, V., K�enová, D., Bílá, V., Zídek, V., Šimáková, M., Musilová, A., Van Lith, H.A., Van
Zutphen, L.F.M. (1999). HXB/Ipcv and BXH/Cub recombinant inbred strains of the rat: Strain distribution
patterns of 632 alleles. Folia Biol. (Praha) 45, 203-215.

8. Bottger, A., den Bieman, M., Lankhorst, Æ., van Lith, H.A., and van Zutphen, L.F.M. (1996). Strain-specific
response to hypercholesterolaemic diets in the rat. Lab. Anim. 30, 149-157.

9. Cockell, K.A., Fischer, P.W.F., and Belonje, B. (1999). Elemental composition of anatomically distinct regions
of rat liver. Biol. Trace Elem. Res. 70, 251-263.

10. Plomin, R., and McClearn, G.E. (1993). Quantitative trait loci (QTL) analyses and alcohol-related behaviors.
Behav. Genet. 23, 197-211.

11. Manly, K.F., and Olson, J.M. (1999). Overview of QTL mapping software and introduction to map manager
QT. Mamm. Genome 10, 327-334.

12. Pravenec, M., Zídek, V., Landa, V., Kostka, V., Musilová, A., Kazdová, L., Fucikova, A., K�enová, D., Bílá,
V., K�en, V. (2000). Genetic analysis of cardiovascular risk factors clustering in spontaneous hypertension.
Folia Biol. (Praha) 46, 233-240.

13. Haley, C.S., and Knott, S.A. (1992). A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69, 315-324.

14. Doerge, R.W., and Churchill, G.A. (1996). Permutation tests for multiple loci affecting a quantitative character.
Genetics 142, 285-294.

15. Lander, E., and Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and
reporting linkage results. Nat. Genet. 11, 241-247.

16. Clegg, M.S., Ferrell, F., and Keen, C.L. (1987). Hypertension-induced alterations in copper and zinc
metabolism in Dahl rats. Hypertension 9, 624-628.

17. Leblondel, G., and Allain, P. (1988). Altered element concentrations in tissues of spontaneously hypertensive
rats. Biomed. Pharmacother. 42, 121-129.

18. Failla, M.L., and Kiser, R.A. (1983). Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am. J.
Physiol. 244, E115-E121.

19. Failla, M.L., and Gardell, Y.R. (1985). Influence of spontaneous diabetes on tissue status of zinc, copper, and
manganese in the BB Wistar rat. Proc. Soc. Exp. Biol. Med. 180, 317-322.

20. Cunnane, S.C., Horrobin, D.F., and Manku, M.S. (1985). Contrasting effects of low or high copper intake on rat
tissue lipid essential fatty acid composition. Ann. Nutr. Metab. 29, 103-110.

21. Knoblauch, M., Jacob, H., Ganten, D., and Lindpainter, K. (1999). Report on rat chromosome 10. J. Exp. Anim.
Sci. 40, 81-92.

22. Klomp, L.W.J., Lin, S.-J., Yuan, D.S., Klausner, R.D., Culotts, V.C., and Gitlin, J.D. (1997). Identification and
functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272,
9221-9226.

23. Hiromura, M., and Sakurai, H. (1999). Molecular cloning of rat ATX1 homologue protein. Biochem. Biophys.
Res. Commun. 265, 509-512.

24. Van Lith, H.A., Den Bieman, M., Levan, G., Matsumoto, K., Szpirer, C., and Van Zutphen, L.F.M. (1999).
Report on rat chromosome 16. J. Exp. Anim. Sci. 40, 121-127.

25. Schuffenecker, I., Narod, S.A., Ezekowitz, R.A., Sobol, H., Feunteun, J., and Lenoi, G.M. (1991). The gene for
mannose-binding protein maps to chromosome 10 and is a marker for multiple endocrine neoplasia type 2.
Cytogenet. Cell Genet. 56, 99-102.



91

26. Petruzzella, V., Tiranti, V., Fernandeze, P., Ianna, P., Carrozzo, R., and Zeviani, M. (1998). Identification and
characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved
in the formation and function of the mitochondrial respiratory chain. Genomics 54, 494-504.

27. Glerum, D.M., Muroff, I., Jin, C., and Tzagoloff, A. (1997). COX15 codes for a mitochondrial protein essential
for the assembly of yeast cytochrome oxidase. J. Biol. Chem. 272, 19088-19094.

28. Schork, N.J., Krieger, J.E., Trolliet, M.R., Franchini, K.G., Koike, G., Krieger, E.M., Lander, E.S., Dzau, V.J.,
and Jacob, H.J. (1995). A biometrical genome search in rats reveals the multigenic basis of blood pressure
variation. Genome Res. 5, 164-172.

29. Pravenec, M. et al. (unpublished).
30. Pravenec, M., Jansa, P., Kostka, V., Zídek, V., K�en, V., Forejt, J., and Kurtz, T.W. (2001). Identification of a

mutation in ADD1/SREBP-1 in the spontaneously hypertensive rat. Mamm. Genome 12, 295-298.
31. Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by

proteolysis of a membrane-bound transcription factor. Cell 89, 331-340.
32. Horton, J.D., and Shimomura, I. (1999). Sterol regulatory element-binding proteins: activators of cholesterol

and fatty acid biosynthesis. Curr. Opin. Lipidol. 10, 143-150.
33. Foretz, M., Guichard, C., Ferré, P., and Foufelle, F. (1999). Sterol regulatory element binding protein-1c is a

major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc.
Nat. Acad. Sci. USA 96, 12737-12742.

34. Shimomura, I., Bashmakov, Y., Ikemoto, S., Horton, J.D., Brown, M.S. et al. (1997). Isoform 1c of sterol
regulatory element binding protein is less active than isoform 1 a in livers of transgenic mice and in cultured
cell. J. Clin. Invest. 99, 846-854.



93

Table 2: Significant associations between liver copper and blood pressure, insulin resistance or fatty acid metabolism in rats1

Insulin resistance fatty acid metabolism

Blood pressure insulin-stimulated isoproterenol-induced
glucose uptake in lipolysis in isolated

systolic diastolic isolated adipocytes adipocytes

Pearson's r p-value Pearson's r p-value Pearson's r p-value Pearson's r p-value

Liver copper concentration
(mg/g wet weight) -0.43 0.02 -0.36 <0.05 0.51  0.01 0.40  0.04
(mg/g dry weight) -0.42 0.02 -0.46  0.01 not significant not significant

1 Association based on 30 RI strains. For each parameter the means from the RI strains have been used for calculation of the correlation coefficients.
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Quantitative trait loci influencing hepatic copper in rats

Abstract

Significant differences in liver copper content have been observed between rat inbred strains. To

define loci controlling this trait, the offspring (n=190) from an (LEW/OlaHsd x BC/CpbU)

F2-intercross was genetically analyzed. From each F2-animal liver copper content was

determined and genomic DNA was screened with polymorphic microsatellite markers. We found

a major quantitative trait locus (QTL) for liver copper content in females on chromosome 2 and

in males on chromosome 10. Both QTLs accounted for approximately 20% of the genetic

variance. In addition, suggestive linkage for liver copper content was found on rat chromosomes

1, 8, 12, 14 and 19. The regions on these chromosomes contain genes that are responsible for 9.0

to 15.5% of the genetic variance of liver copper content.

Introduction

Strain differences in rat liver copper content have been described by Yu et al. (1), Hayashi et al.

(2), Schilsky et al. (3) and De Wolf et al. (4). Previously, we have searched for the genetic

components associated with liver copper content using a set of recombinant rat inbred strains

derived from SHR/OlaIpcv and BN-Lx/Cub since no QTL analyses, except for the Long-Evans

Cinnamon (LEC) mutant rat, have been carried out with strains that differ in liver copper content.

It was suggested that at least two regions, one on chromosome 10 and one on chromosome 16,

are associated with liver copper content in male rats (5). However, the limited power of

recombinant inbred strains for detecting QTLs prompted us to perform a total genome scan of an

F2-population to search for additional genetic factors controlling liver copper content.

Furthermore, the previous study in which we used recombinant inbred strains included male rats

only. In this study, we included both male and female rats to study whether gender-related

differences in QTLs for liver copper concentration or liver copper content exist. The

F2-intercross from the LEW/OlaHsd and BC/CpbU inbred strains, previously used for testing the

genetic basis of the differences in susceptibility for cholesterol, was available for this study.
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Materials and methods

The research project was approved by the Animal Experimentation Committee of the Utrecht

Faculty of Veterinary Medicine.

Animals and housing

All animals were kept under SPF conditions and a 12 hours per day light-regimen (7.00 h - 19.00

h). The other laboratory conditions, temperature and humidity, were also controlled. From four

males and four females of the parental strains LEW/OlaHsd (obtained from Harlan, UK) (LEW)

and BC/CpbU (obtained from the Central Laboratory Animal Institute of the Utrecht University,

The Netherlands) (BC), the liver copper content was determined as described in the experimental

protocol (see below). The F1-generation consisted of 17 males and 15 females and was derived

by reciprocal matings of LEW and BC animals. The F1-hybrids were intercrossed (brother-sister

mating) producing F2-progeny. From 90 F2-males and 100 F2-females, the liver copper content

was determined.

Experimental protocol

The animals were housed as pairs or as groups of three animals in wire-topped Macrolon type III

cages with a layer of sawdust as bedding. The rats had free access to food and tap water. After

weaning up to an age of 7 weeks the animals were fed a commercial, pelleted diet (RMH-B®,

Hope Farms BV, Woerden, The Netherlands). The chemical composition of this commercial diet

has previously been described (6). Then, the rats received a commercial diet supplemented with

5.0% (w/w) olive oil and 2.0% (w/w) cholesterol. This diet had been fed for 4 weeks. In a

previous experiment, we found that this diet did not influence the strain difference in liver copper

content (4).

At the age of 11 weeks, body weight of the rats was determined. The animals were anesthetized

with diethyl ether, exsanguinated via aorta punction and the livers and spleens were removed and

weighed. For each animal, two pieces of liver (0.5 g) were immediately frozen (7). The spleen

was used for DNA isolation.

Chemical analyses

Copper in the liver was determined by drying the pieces of the liver overnight at 105oC, after

which the dry weights were measured. Subsequently, the samples were ashed at 200oC for one

hour, 300oC for two hours, 400oC for three hours and 500oC for ten hours. The remaining ash

was dissolved in 1 ml concentrated HClO4, which was then evaporated at 225oC. This step was
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repeated until the ash was completely white. The ash was then dissolved in 1 ml 6 M HCl.

Copper was measured by using flame atomic absorption spectrophotometry on a Varian-AA275

(Varian, Springville, Australia).

Genome scan

A total of 239 autosomal microsatellite (SSLP) markers, polymorphic between the LEW and BC

strain, were used for screening of the F2 progeny (8).

Statistical and QTL analyses

Both for the parental strains and for the F2-intercross rats, all statistical analyses were carried out

according to Petrie and Watson (9) using a SPSS PC+ computer program (10).

I. Parental strains

The Kolmogorov-Smirnov one-sample test was used to check normality of the measured

phenotypic characteristics of the BC and LEW rats. All results within groups were normally

distributed. The significance of the differences between groups was calculated by a two-way

analysis of variance (ANOVA) with strain and gender as main factors. Homogeneity of the

variances was tested using Bartlett's test. When necessary, the variances were equalized by

logarithmic transformation of the data (9). After transformation the variances were similar and

the transformed within-group data were still normally distributed. Thus, application of an

analysis of variance on the (transformed) data is then straightforward.

II. F2-animals

Within each gender, all liver copper traits were normally distributed (tested by

Kolmogorov-Smirnov one-sample test). The location of the QTLs affecting the measured

quantitative traits and the variance explained by each locus was determined using the MapQTL

computer package (11). The interval-mapping module was used (12). Results were expressed as

Lod scores. Lod score thresholds to achieve the genome-wide significance levels of 5%

(significant linkage) were, as proposed by Lander and Kruglyak (13), 4.3 when no model of gene

action was specified ("free" genetics), 3.4 when gene action was restricted to recessive or

dominant models, and 3.3 when gene action was restricted to an additive model. For suggestive

linkage, Lod score values were 2.8 ("free" genetics), 2.0 (recessive or dominant) and 1.9

(additive), respectively.
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Comparison of the liver copper traits of the F2 animals after grouping by genotype of a

microsatellite marker was also performed. If a microsatellite marker and the trait of interest are

segregating independently, the values of the trait will be equally distributed among the

homozygote and heterozygote genotypes. The Kolmogorov-Smirnov one-sample test was used

to check normality of these data. All results within genotype groups were found to be normally

distributed. For each gender, cosegregation of phenotypes with alleles at marker loci was

evaluated by comparing the values between different genotypes by one-way ANOVA.

Results

Parental strains

At the end of the test period the BC and LEW rats were of the same age, but LEW rats had a

higher body weight than BC rats. The strain effect on body weight was more pronounced in the

male rats. As would be expected males were significantly heavier than females (table 1).

Table 1: Body weight, liver weight and liver copper content of BC/CpbU and LEW/OlaHsd rats1

BC/CpbU LEW/OlaHsd

Males Females Males Females
Measure (n=4) (n=4) (n=4) (n=4) Sign.2

Final body weight (g) 220±21 177±5 352±34 224±12 S,G,SxG

Liver wet weight
Absolute (g) 10.0±1.2 9.3±0.4 13.4±1.8 8.1±0.4 G,SxG
Relative (g/kg body wt.) 45.2±2.6 52.2±1.3 38.0±1.8 36.3±0.7 S,G,SxG

Liver copper concentration
(mg/g wet weight) 8.7±2.0 8.1±2.4 6.3±0.4 7.9±2.0 -
(mg/g dry weight) 18.9±3.6 18.7±5.7 15.2±1.2 18.0±4.5 -

Liver copper store
(mg/whole liver) 85.3±10.0 75.2±23.5 83.3±6.3 64.0±14.4 -
(mg/100 g body wt.) 39.3±8.0 42.4±13.0 23.7±0.7 28.8±7.8 S3

1 Values are means ± SD; n is the number of animals per group.
2 Significance (P<0.05) based on two-way ANOVA with main factors strain and gender; S: effect of strain, G:

effect of gender, SxG: interaction.
3 ANOVA after logarithmic transformation of the data.
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Figure 1: Lod score plots of chromosomes exhibiting significant linkage of quantitative trait to microsatellite
markers. Quantitative trait linkage analysis was performed by interval mapping using MapQTL on data collected
from 190 (LEW/OlaHsd x BC/CpbU) F2-intercross rats investigated in this study. (A) Chromosome 2, females:
hepatic copper concentration (mg/g dry weight). (B) Chromosome 10, males: hepatic copper concentration (mg/g dry
weight). The distances are indicated in cM. The positions of selected marker loci genotyped in the F2 progeny are
indicated on the x-axis of each panel. The most likely position for each QTL, determined by its 2.0-Lod support
interval, is indicated by a solid, thick bar under the plot. The thin lines at both ends of the bar represent Lod scores
between 1.0 and 2.0. Thin and thick dotted lines represent threshold value of the Lod score considered as suggestive
and significant for linkage, respectively, in the model of inheritance chosen according to the Student’s t test analysis
(additive model).
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For both strains male rats have higher absolute liver weights than female rats. This gender effect

was higher in LEW than in BC rats. Relative liver weight was similar in male and female LEW

rats. In contrast, group means for relative liver weight of male BC rats were about 13% lower

when compared with those of female BC rats (table 1).

Group means of hepatic copper concentration (mg/g liver d.w.) and hepatic copper store

(mg/whole liver) were higher in BC when compared with LEW rats. However, only if liver

copper content was expressed relative to body weight (mg/whole liver/100 g body weight), the

difference reached statistical significance (table 1).

Genetic mapping of quantitative traits

The liver copper content of F2 rats was expressed in four different units, as mg/g wet weight, mg/g

dry weight, mg/whole liver and mg/whole liver/100g body weight. Whenever a (suggestive) QTL

was found using the MapQTL software, a one-way ANOVA with post hoc Student's t test was

performed for the markers flanking the peak of the QTL or at the peak of the QTL. The mode of

inheritance was chosen as free, additive, dominant or recessive according to the significance of

differences in the mean values of the traits between rats that were homozygous LEW,

heterozygous LEW:BC and homozygous BC. Results are shown in Table 2. For females we

found a significant QTL on chromosome 2 and suggestive QTLs on chromosomes 1 and 19. For

males a significant QTL was found on chromosome 10 and suggestive QTLs were detected on

chromosomes 1, 8, 12 and 14. Figure 1 shows the Lod score curve across chromosome 2

(females) and 10 (males) for hepatic copper concentration (mg/g dry weight). As shown in Table

3, the LEW alleles in the D2Rat185-D2Rat241 region increased liver copper concentration in

female rats in a recessive manner. In male rats, the LEW alleles in the D10Rat27-D10Rat98

region also increased the liver copper concentration in a recessive manner.

Discussion

In the present study, genome wide scanning for associations between marker genotypes and liver

copper content resulted in the localization of two significant (on rat chromosomes 2 and 10) and

eight suggestive QTLs (on rat chromosomes 1, 2, 8, 10, 12, 14 and 19) (Table 2, Fig. 1). There is

evidence that some QTLs are recessive and other QTLs are dominant with respect to the LEW

allele (Tables 2 and 3). Thus both progenitor strains contain "plus" and "minus" genes for hepatic

copper content, meaning that these genes increase or reduce the liver copper content in one of the

homozygous progenitor strains, whereas these genes reduce or increase the liver copper content

in the other homozygous progenitor strain.
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Previous genetic analysis of a large set of recombinant inbred strains derived from BN and SHR

revealed that a QTL on the central part of chromosome 10, tentatively indicated as Hcuc1,

influences hepatic copper concentration in male rats (5). In the present (LEW x BC)

F2-intercross, liver copper concentration expressed as mg/g dry weight in males was also found to

be associated with this part of chromosome 10 (Table 2). Based on the previous results we

hypothesized that the rat Atox1 (antioxidant protein 1) gene might be a positional candidate for

this QTL (5). It was suggested that in the liver the antioxidant protein 1 binds and delivers

cytosolic copper to the Wilson disease ATPase protein (ATP7B) in the trans-Golgi network. This

ATPase is required for incorporation of copper into ceruloplasmin (the major copper binding

protein in the circulation) during its formation and folding or to release hepatic copper into bile

(14). The present results support the presence of a candidate gene on chromosome 10.

The region of rat chromosome 2 that shows in female rats linkage to hepatic copper (Tables 2

and 3, Fig. 1) contains the gene Hsd3b coding for the enzyme 3beta-hydroxysteroid

dehydrogenase-delta5-delta4 isomerase (15). This enzyme plays a crucial role in the biosynthesis

of all classes of active steroids (16). It is known that glucocorticoids can stimulate synthesis of

the copper-containing protein ceruloplasmin in the liver. Copper, absorbed through the intestine,

is transported to and taken up by the liver. In part it is incorporated into newly synthesized

ceruloplasmin that is excreted into the plasma. Besides incorporation of copper in copper-

containing proteins, part is stored as metallothionein. The remaining copper is excreted into the

bile (17). Thus, once ceruloplasmin is synthesized, there might be a decrease in liver copper

content and an increase in plasma copper concentration. As a result of differential activity of the

enzyme 3beta-hydroxysteroid dehydrogenase-delta5-delta4 isomerase more or less circulating

glucocorticoids are produced resulting in more or less ceruloplasmin synthesis. This in turns

leads to less or more copper in the liver. BC rats when compared with LEW rats have higher

circulating concentrations of aldosterone and corticosterone (18). Thus, it could be anticipated

that rats with a BC allele for Hsd3b have a lower hepatic copper content when compared with

rats homozygous for the LEW allele (Table 3). We propose to the symbol Hcuc3 (hepatic copper

content 3) for the QTL on chromosome 2.

In summary, the present study confirms that chromosome 10 contains a QTL (Hcuc1) that plays

a role in controlling the hepatic copper content in male rats and indicates that a QTL (tentatively

indicated as Hcuc3) for liver copper content of female rats is located on chromosome 2. There is

some evidence that the Atox1 and Hsd3b genes are the candidate loci for Hcuc1 (rat chromosome

10) and Hcuc3 (rat chromosome 2), respectively. Furthermore, there was evidence that rat

chromosomes 1, 8, 12, 14 and 19 also contain QTLs involved in hepatic copper content. Further
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experiments including the development of congenic sublines of BC are necessary to confirm and

precisely map the QTLs on rat chromosomes 2 and 10.
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Table 2: Summary of the QTLs for hepatic copper content in rats1

Phenotypic trait Chromosome Gender Model2 Peak Lod3 Location4 % Variance5

Liver copper concentration
(mg/g wet weight) 2 Females Recessive 2.44 D2Rat234 (41.8 cM) 10.6

10 Males Dominant 2.37 D10Rat45 (84.0 cM) 11.4

(mg/g dry weight) 1 Females Dominant 2.23 D1Rat185-D1Rat29 (91.9 cM) 10.3
2 Females Recessive 3.87 D2Rat185-D2Rat241 (19.2 cM) 21.2
10 Males Dominant 4.15 D10Rat27-D10Rat98 (37.3 cM) 20.3
14 Males Dominant 2.59 D14Rat1 (75.6 cM) 12.5
19 Females Additive 2.36 D19Rat98 (51.6 cM) 10.3

Liver copper store
(mg/whole liver) 1 Males Dominant 2.02 D1Rat185 (90.4 cM) 9.9

8 Males Recessive 2.67 D8Rat156 (74.4 cM) 13.3
10 Males Dominant 2.30 D10Rat27-D10Rat98 (38.3 cM) 11.3
12 Males Dominant 2.59 D12Rat2-D12Rat56 (55.8 cM) 15.5

(mg/whole liver/100 g body weight) 1 Females Additive 1.97 D1Rat196-D1Rat19 (116.7 cM) 9.0
2 Females Recessive 2.48 D2Rat234 (41.8 cM) 10.9
8 Males Dominant 2.19 D8Rat71-D8Rat6 (0.5 cM) 10.6
8 Males Recessive 2.35 D8Rat156 (74.4 cM) 12.1
12 Males Dominant 2.30 D12Rat2-D12Rat56 (56.8 cM) 14.3
14 Males Dominant 2.59 D14Rat1 (75.6 cM) 12.7

1 QTLs were investigated using the MapQTL software on data collected from 190 (LEW/OlaHsd x BC/CpbU) F2-intercross rats.
2 Additive or dominant or recessive was defined with respect to the LEW/OlaHsd parent's allele.
3 Data were shown only when significant or suggestive results were found; thresholds for suggestive and significant linkage were those of Lander and Kruglyak (13); significant

results are indicated in bold characters, suggestive results in italics.
4 The location on the chromosome were the Lod score peaked is given in parentheses.
5 Percentage of the genetic variance explained by the QTL.
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Table 3: Co-segregation analysis results in F2 progeny of LEW/OlaHsd and BC/CpbU rats.1

Genotype2 p
Lod (one-way)

Marker Gender Phenotypic trait LL LB BB score3 ANOVA

Chromosome 2
D2Rat185 Females mg/g dry weight 15.8±3.2 (21) 13.6±2.6 (58) 13.3±2.3 (20) 2.60 0.0031

D2Rat241 Females mg/g dry weight 15.6±2.6 (25) 13.5±2.7 (54) 13.3±2.5 (20) 2.69 0.0025

D2Rat234 Females mg/g wet weight 6.4±1.3 (19) 5.7±1.0 (47) 5.5±0.8 (33) 2.44 0.01724

Females mg/whole liver/100 g body weight 28.7±6.9 (19) 25.6±4.3 (47) 24.0±4.0 (33) 2.48 0.02924

Chromosome 10
D10Rat27 Males mg/g dry weight 17.6±4.0 (13) 13.8±4.1 (43) 14.9±4.2 (32) 3.17 0.0198

Males mg/whole liver 72.2±16.2 (13) 67.4±16.8 (43) 78.6±21.5 (32) 1.82 0.0405

D10Rat98 Males mg/g dry weight 17.9±4.5 (14) 13.7±3.7 (45) 14.8±4.4 (30) 4.02 0.0053
Males mg/whole liver 70.8±16.5 (14) 68.4±15.8 (45) 78.3±23.0 (30) 2.30 0.0821

D10Rat45 Males mg/g wet weight 5.6±1.7 (24) 5.6±1.3 (43) 6.5±1.2 (22) 2.37 0.0547

1 Values are means ± SD; number of rats is given in parentheses; some DNA samples failed to give a conclusive genotype, hence the number of rats typed varied slightly with
each locus.

2 L = LEW/OlaHsd allele, B = BC/CpbU allele.
3 Lod scores reported are at the marker indicated; in some instances the Lod score between markers is higher (see Table 2).
4 P-value after logarithmic transformation of the data.
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Cholesterol and copper in the liver of rabbit inbred strains

with differences in dietary cholesterol response

Abstract

In order to investigate whether cholesterol intake influences the hepatic copper content of rabbits,

we compared the hepatic copper content of two rabbit inbred strains after feeding the animals a

control or a cholesterol-rich diet. One strain was dietary cholesterol resistant (IIIVO/JU),

whereas the other strain was susceptible to dietary cholesterol (AX/JU). Dietary

cholesterol-susceptible rabbits when compared with their resistant counterparts had a higher

hepatic copper content. The consumption of a hypercholesterolemic diet decreased liver copper

concentration (expressed in µg/g dry weight) in both strains of rabbits. A decrease in the absolute

hepatic copper content was found only in the dietary cholesterol-susceptible inbred strain. It is

discussed that differences in glucocorticoid levels may be responsible for the strain difference in

liver copper content. The cholesterol effect on the hepatic copper content in the hyperresponding

strain might be caused by an increased bilirubin secretion.

Introduction

Copper is an essential trace element that is necessary for adequate functioning of various

fundamental biochemical processes (1). Copper deficiency may have serious, and even lethal,

consequences as is shown in Menkes' Disease (2). Too much copper may also be harmful as is

evident from the liver and brain damage seen in the copper storage disorder Wilson’s Disease

(2). Maintaining copper homeostasis via a well-functioning copper metabolism is thus a very

critical process. Copper metabolism, however, is affected by numerous internal and external

factors, among which the pH in the gastrointestinal system, the hepatic and biliary function and

the composition of the diet (3, 4). One of the nutrients associated with copper metabolism is

cholesterol. For the rabbit, a dramatic decrease in liver copper concentration has been found after

feeding a cholesterol-rich diet (5). In rats, a decrease in liver copper concentration has also been

described after feeding a cholesterol-rich diet, while a reversed relationship has also been

observed (6, 7). In previous research, we confirmed the decrease in liver copper concentration

after feeding rats a hypercholesterolemic diet (8). However, dietary cholesterol did not reduce the

absolute nor the relative copper store of the rats. We concluded that the decrease in liver copper
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concentration in rats under influence of a hypercholesterolemic diet was not due to a decrease in

the amount of hepatic copper, but due to dietary-induced hepatomegaly (8).

These previous findings and the apparent relationship between liver copper concentration and

dietary cholesterol in rabbits prompted us to compare the hepatic copper content of dietary

cholesterol resistant (hyporesponding) and dietary cholesterol susceptible (hyperresponding)

rabbit inbred strains on a diet without added cholesterol and to test whether hyperresponding

rabbits show a more pronounced decrease in hepatic copper content than hyporesponding rabbits

when fed a diet with cholesterol.

Materials and methods

The research project was approved by the Animal Experimentation Committee of the Utrecht

Faculty of Veterinary Medicine.

Animals, housing, diets and preparation of samples

At the Department of Laboratory Animal Science (Utrecht, The Netherlands) two rabbit

(Oryctolagus cuniculus) inbred strains are available: AX/JU, which is a dietary cholesterol

susceptible (hyperresponding) strain and IIIVO/JU, which is a dietary cholesterol resistant

(hyporesponding) strain (9, 10). The strains originated from the Jackson Laboratory colony, Bar

Harbor, ME, USA (11). The two inbred strains are maintained by brother-sister mating. The

rabbits were housed and studied in the Central Laboratory Animal Institute from the Utrecht

University.

From weaning (i.e. at the age of 10 weeks) until the start of the experiment, the rabbits were fed a

commercial, pelleted, natural-ingredient diet (LKK-20®, Hope Farms BV, Woerden, The

Netherlands), containing 25.04 mg Cu/kg diet. The chemical composition of this commercial

rabbit diet has been described previously (12). The rabbits were housed individually in stainless

steel cages with wire mesh floors (Ruco BV, Waalre, The Netherlands) as previously described

(13). The cages were located in rooms with controlled lighting (light from 07:00 to 19:00 hours),

temperature (16-19oC) and relative humidity (55-65%).

In the experiment we used adult AX/JU and IIIVO/JU rabbits from both sexes. The animals were

fed daily the commercial pelleted diet with or without added cholesterol (0.3 g/100 g diet) for 42

days. Per strain the experimental groups had similar distributions of age (mean age: AX/JU, 79

weeks; IIIVO/JU 99 weeks).

The cholesterol (USP; Solvay Pharmaceuticals BV, Weesp, The Netherlands) was mixed into the

test diets by the manufacturer (Hope Farms BV). During the experiment restricted amounts of
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diet were given each day at 10:00 a.m. The daily amount of pellets was 100 g for each rabbit.

Acidified tap water was provided ad libitum. The rabbits were allowed to practice caecotrophy.

The cholesterol-rich diet was stored at 4oC until feeding. Body weight was measured at the

beginning (day 0) and at the end (day 42) of the experimental period. Food intake was recorded

once a week throughout the entire test period.

Blood samples were taken on days 0, 7, 14, 21, 35 and 42 in random order between 08.00 and

10.00 a.m. after a 16 hour fasting period. Samples of blood were taken from the lateral ear vein

without anesthesia (days 0, 7, 14, 21 and 35) or via heart punction with anesthesia (day 42).

Blood was collected in tubes without anticoagulant. To collect serum, the blood in the tubes was

allowed to clot and serum was prepared by low-speed centrifugation. The serum samples were

stored in the freezer until use.

At the end of the test period, the fasted rabbits were anesthetized in a random order by an

intravenous injection of Hypnorm® (Janssen Pharmaceutica BV, Beerse, Belgium) sufficient to

reach the surgical phase (approximately 0.3 ml/rabbit). Subsequently, the animals were killed by

cardiac exsanguination and the liver was removed. The autopsy wet weight of the livers (without

the gallbladder) was determined. From each animal aliquots of the liver (two pieces of 0.5 g from

the quadrate liver lobe) were frozen immediately.

Chemical analyses

Lipids were extracted from liver homogenates according to a modification of the method of

Abell et al. (14). The liver samples were homogenized on ice in ten volumes 12.5% (v/v) ethanol

with a 180 s burst of an UltraTurrax tissue homogenizer (Janke and Kunkel, Staufen, Germany)

at 20000 rev./min. The homogenates were frozen at -20oC, thawed and firmly stirred. From each

homogenate 200 µl was taken and 2.0 ml of an ethanol-solution containing KOH (ethanolic

alkali: 6 ml of 50%-KOH in a final volume of 100 ml absolute-ethanol) was added. The

saponification was carried out in closed tubes overnight at 50oC. After this reaction the tubes

were adjusted to room temperature and 2.0 ml distilled water plus 4.0 ml warm petroleum ether

(40oC-60oC) was added. The tubes were closed and shaken for 10 minutes with a frequency of

500 movements/min. The liquids were allowed to separate for 10 minutes. Three ml of the

petroleum-ether fraction was evaporated under nitrogen at 70oC. The residue was dissolved in

0.5 ml of absolute-ethanol and the cholesterol concentration was determined.

Total cholesterol in the liver lipid extracts and the serum was measured enzymatically according

to Siedel et al. (15), using a kit (Monotest®) supplied by Boehringer Mannheim GmbH

(Mannheim, Germany). Cholesterol analyses were performed on a Cobas-BIO automatic
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micro-centrifugal analyser (Roche Diagnostics Systems, Hoffmann-La Roche, Basel,

Switserland). In both experiments for each individual animal the area under the curve (AUC) for

the total experimental period was derived from the measured concentrations by the trapezoidal

rule.

Copper in the liver was determined by drying liver samples overnight at 105oC, after which the

dry weights were determined. Subsequently, the samples were ashed at 200oC for one hour,

300oC for two hours, 400oC for three hours and 500oC for ten hours. The remaining ash was

dissolved in 1.0 ml concentrated HClO4 which was then evaporated at 225oC. This step was

repeated until the ash was completely white. The ash was then dissolved in 1.0 ml 6 M HCl.

Copper was measured by using flame atomic absorption spectrophotometry on a Varian-AA275

(Varian, Springville, Australia).

Statistical analyses

Since the rabbits were housed individually, each animal formed an experimental unit in itself.

The Kolmogorov-Smirnov one-sample test was used to check normality of the data. All results

within groups were normally distributed. The significance of the differences between groups was

calculated by a three-way analysis of variance (ANOVA). Homogeneity of the variances was

tested using Bartlett's test. When necessary, the variances were equalized by

ranking-transformation (16) of the data. After transformation the variances were similar and the

transformed within-group data were still normally distributed. Thus, application of an analysis of

variance on the (transformed) data is then straightforward. If the analyses of variance showed

significant effects the group means were further compared with the unpaired Student's t test.

These tests were performed with pooled (for equal variances) or separate (for unequal variances)

variance estimates. The equality of variances was then tested using a F-test. To take into account

the greater probability of a type I error due to multiple comparisons, the level of significance for

the unpaired Student's t tests was pre-set at P<0.05/times a group is used for a comparison (i.e.

P<0.05/3 = 0.0167) instead of P<0.05, according to Bonferroni's adaptation. In all other cases,

the probability of a type I error <0.05 was taken as the criterion of significance. Between selected

parameters, Spearman's coefficient of rank correlation (R) was calculated; significance was

assessed by a two-tailed test. Two-side probabilities were estimated throughout. All statistical

analyses were carried out according to Petrie and Watson (17) using a SPSS PC+ computer

program (18).
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Results

Growth performance

At the beginning of the test period IIIVO/JU rabbits were significantly heavier than AX/JU

rabbits (results not shown) (two-way ANOVA, n=38: strain effect, p=0.001; gender effect,

p<0.001; interaction effect, p=0.231). Compared to females rabbits, male rabbits had a slightly

lower initial (results not shown) and final body weight (Table 1). Since the experiment was

carried out with adult rabbits, this strain difference could not be explained by the difference in

age (IIIVO/JU rabbits were on average 10 weeks older than AX/JU rabbits; see Materials and

Methods). Furthermore, it is known for a long time that in the rabbit the female, when mature, is

usually the larger one of the two sexes, which differs from most other mammals (19). During the

course of the experiment, body weights of the rabbits on the high-cholesterol diet did not change,

whereas body weights of the rabbits on the control diet were slightly, but significantly

diminished. As a consequence, in the analysis of variance, a diet effect was detected (Table 1).

Serum cholesterol

Baseline serum cholesterol levels of the IIIVO/JU rabbits were significantly higher than those of

AX/JU rabbits. Female rabbits when compared with male rabbits have higher initial serum

cholesterol levels (IIIVO/JU: � 28 ±6 mg/dL n=10, � 43±8 mg/dL n=9; AX/JU: � 16±3 mg/dL

n=10, � 29±3 mg/dL n=9; two-way ANOVA, n=38: strain effect, p<0.001; gender effect,

p<0.001; interaction effect, p=0.704). This is in line with earlier observations (20). The

cholesterol-rich diet dramatically increased the AUC in the two strains, the increment being

significantly greater in the AX/JU rabbits. On the control diet female rabbits also have a higher

AUC when compared with their male counterparts. In contrast, on the cholesterol-rich diet the

AUCs for male and female rabbits were similar (Table 1).

Liver weight

Irrespective of the diet, IIIVO/JU male rabbits have statistically significantly higher absolute and

relative liver (wet and dry) weights than AX/JU male rabbits (Table 1). In female rabbits this

difference did not reach the level of statistical significance in the multiple comparison procedure.

The consumption of cholesterol raised in both strains absolute and relative liver (wet and dry)

weights, albeit in the female IIIVO/JU this cholesterol effect was not statistically significant in

the multiple comparison procedure.
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Liver cholesterol

The consumption of cholesterol raised liver cholesterol concentration in both strains and both

sexes, although for female IIIVO/JU rabbits this increase was not statistically significant in the

multiple comparison procedure (Table 2). The magnitude of the increase in the male IIIVO/JU

and AX/JU is more than 5.3 and 9.5 times, respectively. In the female IIIVO/JU and AX/JU the

increase is more than 2.4 and 8.2 times, respectively. This diet effect was also found for liver

cholesterol content. On the diet without added cholesterol, liver cholesterol content (absolute and

relative)  of  the  two  strains  and  two  genders  was  similar.  The  consumption  of  cholesterol

Table 1: Body weight, serum cholesterol content and liver weight of hypo- and hyperresponsive rabbits fed diets
with or without added cholesterol1

Diet without Diet with
added cholesterol added cholesterol

IIIVO/JU AX/JU IIIVO/JU AX/JU
Measure Gender (n=5M,5F) (n=5M,5F) (n=5M,4F) (n=5M,4F) Sign.2

Final body weight Males: 2718±71 2650± 82 2782±131 2692±121a D,G
(g) Females: 2768±52 2691±129 2838±170 2903± 44a

Serum cholesterol level (AUC, day 0 to day 42)
(mg.day/dL) Males: 1311±114aeg  692±90bfg 7595±2008ah 28556±4817bh

S,D,G,SxD,
Females: 1858±187cei 1280±85dfi 7514±1749cj 28312±3173dj SxG,SxD,

SxDxG3

Liver wet weight
Absolute Males: 64.78±3.50ac 54.10±1.97ad 107.78±8.21bc 82.52±9.91bd S,D,SxG3

(g) Females: 63.62±2.19  56.50±7.46e  87.45±16.05   83.90±8.12e

Relative Males: 23.82±0.79ac 20.43±0.92ad 38.74±2.08bcf 30.62±3.15bd S,D,SxG,
(g/kg body wt.) Females: 22.98±0.86  20.98±2.35e 30.65±4.06f  28.90±2.73e DxG3

Liver dry weight
Absolute Males: 19.16±1.22ac 15.93±0.46ad 32.71±2.67bc 24.58±3.10bd S,D,SxG3

(g) Females: 18.45±0.59  16.68±1.94e 26.09±5.29   25.83±3.11e

Relative Males: 7.04±0.30ac 6.01±0.13ad 11.75±0.60bcf 9.12±0.98bd

S,D,G,SxG,
(g/kg body wt.) Females: 6.67±0.22  6.20±0.60e  9.14±1.38f  8.90±1.05e DxG3

1 Values are means ± SD; n is the number of male (M) and female (F) animals per group.
2 Significance (P<0.05) based on three-way ANOVA with main factors strain, diet and gender. S, effect of strain;

D, effect of diet; G, effect of gender; SxG, interaction; DxG, interaction.
3 ANOVA after ranking of the data.
4 Contrast significance (Student's t test; P<0.0167). Within two rows (i.e. the males plus females row), values

bearing the same superscript letter are significantly different.
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drastically raised liver cholesterol content in both strains and both genders. However, the effect is

most pronounced in the AX/JU strain and in males. The magnitude of the increase in liver

cholesterol content in the male IIIVO/JU and AX/JU rabbit is about 9.0 and 14.5 times,

respectively. In the female IIIVO/JU and AX/JU rabbit this increase is about 3.5 and 11.8 times,

respectively. The increase in liver weight of test animals when compared with control animals

(wet weight: 23.83 to 43.00 g; dry weight: 7.64 to 13.55 g) can only partly be attributed to the

increase in hepatic cholesterol amount (mg/whole liver); the latter represented about 0.48 to

2.33 g.

Liver copper

Irrespective of the dietary composition, there was a statistically significant strain effect on the

concentration and store of hepatic copper; the AX/JU rabbits having a much higher copper

concentration and total store than the IIIVO/JU animals (Table 2). The diet with added

cholesterol when compared with the control diet produced lower liver copper concentrations and

stores in AX/JU, but not in the IIIVO/JU rabbits.

Liver copper concentration, but not liver copper store, was weakly correlated with serum

cholesterol response. Both for µg Cu/g liver dry weight and µg Cu/g liver wet weight the R was

-0.3739 (n=38, p=0.021). In rabbits, none of the parameters for liver copper store were

significantly associated with the parameters for liver cholesterol content.

Discussion

In the literature substantial evidence for a relationship between cholesterol and copper has been

described (5-7). The aim of the present work was to determine whether cholesterol in the diet

influences liver copper content in rabbits. For this purpose we used two inbred rabbit strains

which differ markedly in their cholesterolemic response to dietary cholesterol (9, 10).

The mean liver copper concentration of male IIIVO/JU rabbits fed a diet without added

cholesterol was 18.06 µg/g dry weight; for female IIIVO/JU animals the value for this parameter

was 15.88 (Table 2). The liver copper concentrations of male and female AX/JU rabbits on the

control diet were remarkably higher than those of the IIIVO/JU, being 252.93 and 161.29 µg/g

dry weight, respectively (Table 2). Klevay (5) reported that liver copper concentrations in New

Zealand White rabbits fed a control diet ranged from 9.1 - 87.0 µg/g dry weight. Allain et al. (21)

reported similar copper levels in the livers of Watanabe Heritable Hyperlipidemic (WHHL)

rabbits and New Zealand White rabbits. Thus on a control diet, IIIVO/JU rabbits, which like

WHHL rabbits originate from a New Zealand White stock (11), have liver copper concentrations
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(range 14.5 - 21.7 µg/g dry weight) that fall in the range described in the literature. In contrast,

control AX/JU rabbits with liver copper concentrations that vary between 144.4 and 343.2 µg/g

dry weight have hepatic copper concentrations much higher than those reported thus far (5, 21).

The strain difference in hepatic copper content for these rabbits fed a normal diet might be

explained by differences in the serum glucocorticoid levels. Glucocorticoids are able to stimulate

the synthesis of metallothionein and ceruloplasmin in the liver (22). Dietary copper is absorbed

from the diet through the intestine and is transported to and taken up by the liver. There, copper

is partly incorporated into newly synthesized apoceruloplasmin, which is then excreted into the

plasma. Besides incorporation of copper in copper-containing liver proteins, a part of the copper

is stored as metallothionein, while the remaining copper is excreted into the bile. Thus, synthesis

of metallothionein and ceruloplasmin may result in an increase in plasma and liver copper

concentration (8). Recently we have reported that AX/JU when compared with IIIVO/JU rabbits

have higher levels of circulating corticosterone (23). A difference in copper intake between the

two strains could be excluded. During the experiment, the rabbits were fed restricted amounts of

diet and the animals consumed all the administered food.

The cholesterol-rich diet resulted in a lower liver copper store in AX/JU rabbit, whereas no

significant change was found in IIIVO/JU rabbits (Table 2). It is well-known that in rabbits a

cholesterol-rich diet leads to an increased biliary excretion of cholesterol and its metabolites,

(conjugated) bile acids. It is generally agreed that the bile is the main excretory route for copper

and that copper is excreted as complexes of amino acids and/or (conjugated) bile acids. During

biliary flow, the copper also becomes complexed with bilirubins; these complexes are

unavailable for reabsorption. Keeping this in mind, Klevay (5) hypothesized that dietary

cholesterol and (conjugated) bile acids, produce increased biliary loss of copper, which results in

a decreased liver copper content. However, bile acid excretion has been reported to be

consistently higher in the IIIVO/JU strain both on a control diet and on a cholesterol-rich diet

(13).

Meijer et al. (24) showed that adding cholesterol to the diet caused significantly higher bilirubin

concentrations in the serum of AX/JU rabbits, but not in IIIVO/JU animals. Dietary cholesterol

induced hypercholesterolemia associated with hemolytic anemia has also been reported (25).

Abnormally shaped erythrocytes are formed as a result of an increase in erythrocyte membrane

cholesterol and these red cells are removed from the blood stream by the reticuloendothelial

system. Within the phagocytic cells, hemoglobin and other heme proteins are catabolized to

bilirubin. After its formation within phagocytic cells, bilirubin is released into the circulation. In

this form the bilirubin is unconjugated and is cleared from the blood by the liver. In the liver
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bilirubin is conjugated with glucuronic acid and excreted via the bile into the duodenum. Thus an

increase in the serum concentration of bilirubin will be associated with an enhanced biliary

secretion of bilirubins. As pointed out above, during biliary flow, copper becomes complexed

with bilirubins, which cannot be absorbed. Therefore, it could be anticipated that on a

cholesterol-rich diet the biliary excretion of bilirubin and thus of copper is enhanced in AX/JU

when compared with IIIVO/JU rabbits.

In conclusion, the AX/JU and IIIVO/JU rabbit inbred strains show differences in liver copper

content. These strain effects perhaps could be explained by differences in circulating

glucocorticoid levels. In hyperresponding when compared with hyporesponding rabbits,

cholesterol loading produced a marked decrease in liver copper store. We hypothesised that this

cholesterol effect in rabbits is due to an enhanced hepatobiliary transport of copper via increased

bilirubin production.
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Table 2: Liver cholesterol content of hypo- and hyperresponsive rabbits fed diets with or without added cholesterol1

Diet without Diet with
added cholesterol added cholesterol

IIIVO/JU AX/JU IIIVO/JU AX/JU
Measure Gender (n=5M,5F) (n=5M,5F) (n=5M,4F) (n=5M,4F) Sign.2

Liver cholesterol concentration
(mg/g wet weight) Males: 2.71±0.12ac 3.19±0.23ad 14.96±4.57bc 30.70±3.74bd S,D,SxG,

Females: 2.90±0.11  2.96±0.21e 7.21±3.61f 25.43±2.92ef SxDxG3

(mg/g dry weight) Males: 9.18±0.44ac 10.83±0.73ad 49.23±14.73bc 103.17±13.25bd S,D,SxG,
Females: 9.99±0.43  10.01±0.60e 24.02±11.46f 82.86±10.23ef DxG3

Liver cholesterol store
(mg/whole liver) Males: 175±6a 172±7b 1618±508a 2504±78bc D,SxD,

Females: 184±9 166±14d  666±440e 2120±154cde DxG3

(mg/100 g body wt.) Males: 6.46±0.17a 6.51±0.41c 58.21±18.55ab 93.10±2.62bcd D,G,SxD,
Females: 6.66±0.35 6.18±0.32e 22.92±14.11f 73.09±5.71def SxG3

1 Values are means ± SD; n is the number of male (M) and female (F) animals per group.
2 Significance (P<0.05) based on three-way ANOVA with main factors strain, diet and gender. S, effect of strain; D, effect of diet; G, effect of gender;

SxD, interaction; SxG, interaction; DxG, interaction.
3 ANOVA after ranking of the data.
4 Contrast significance (Student's t test; P<0.0167). Within two rows (i.e. the males plus females row), values bearing the same superscript letter are

significantly different.
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Table 3: Liver copper content of hypo- and hyperresponsive rabbits fed diets with or without added cholesterol1

Diet without Diet with
added cholesterol added cholesterol

IIIVO/JU AX/JU IIIVO/JU AX/JU
Measure Gender (n=5M,5F) (n=5M,5F) (n=5M,4F) (n=5M,4F) Sign.2

Liver copper concentration
(µg/g wet weight) Males: 5.33±0.65a 74.23±17.84ac 4.19±0.86b 18.06±5.66bc S,D,SxG3

Females: 4.61±0.38d 47.63±3.65d 4.09±0.45 19.10±19.32

(µg/g dry weight) Males: 18.06±2.41a 252.93±64.03ac 13.81±2.76b 60.69±19.30bc S,D,G3

Females: 15.88±1.24d 161.29±15.06d 13.76±1.55 61.35±60.56

Liver copper store
(µg/whole liver) Males: 344±25ad 4020±968ac 449±77b 1472±438bc S,D,G3

Females: 293±27de 2702±494e 356±72 1714±1917

(µg/100 g body wt.) Males: 12.67±1.22ad 152.50±40.37ac 16.19±3.11b 54.52±15.54bc S,G,SxD3

Females: 10.58±0.85de 100.47±17.52e 12.51±1.94 58.79±65.65

1 Values are means ± SD; n is the number of male (M) and female (F) animals per group.
2 Significance (P<0.05) based on three-way ANOVA with main factors strain, diet and gender. S, effect of strain; D, effect of diet; G, effect of gender;

SxD, interaction; SxG, interaction; DxG, interaction.
3 ANOVA after ranking of the data.
4 Contrast significance (Student's t test; P<0.0167). Within two rows (i.e. the males plus females row), values bearing the same superscript letter are

significantly different.
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Mapping of QTLs for hepatic copper in rabbits

Abstract

After feeding a cholesterol-rich diet, a significant difference in liver copper content has been

observed between rabbits of the inbred strains AX/JU and IIIVO/JU. To define loci controlling

this difference, the offspring (n=138) of an (IIIVO/JU x AX/JU) F2-intercross has been analysed

genetically. From each F2-animal liver copper content was determined and tested for association

with each of the 310 previously mapped autosomal markers. A quantitative trait locus (QTL) for

liver copper content was found on linkage group (LG) U8 (Lod score = 3.68). This QTL

accounted for about 16% of the genetic variance within each gender group. In addition,

suggestive linkages for liver copper content were found on chromosomes 1, 7, 12 and 18 and on

LGs U2, U5 and U6. These regions explained 8.1 to 20.2% of the genetic variance.

Introduction

The trace element copper is essential for the adequate functioning of various fundamental

biochemical processes (1). Copper deficiency may have serious, or even lethal, consequences as

in Menkes' Disease (2). As is evident from the disturbed copper metabolism in Wilson’s Disease,

increases in copper content may also be harmful (2). Copper homeostasis is maintained by

numerous internal and external factors, among which hepatic and biliary function and diet

composition (3, 4).

Differences in copper metabolism may be influenced by genetic factors. Previously, we

described a strain difference in liver copper content, after feeding a cholesterol-rich diet, between

inbred strains of both rabbits (5) and rats (6). Recently, we have looked for genetic factors

associated with liver copper content in rats using a set of recombinant inbred strains (7) and an

F2-population (8). We found three chromosomal regions on rat chromosomes 2, 10 and 16

associated with liver copper content. Based on rat-human chromosomal homologies three

candidate genes (Atox1, Cox15 and Hsd3b) were proposed to be involved in the control of the

hepatic copper content in rats.

These results prompted us to perform a genome scan of a rabbit F2-population in search for

genetic factors controlling hepatic copper content after feeding a cholesterol-rich diet in this

species. 138 F2-intercross progeny from the AX/JU and IIIVO/JU inbred strains, previously used
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for testing the genetic basis of differences in susceptibility for dietary cholesterol (9), was

available for this study.

Materials and methods

The research project was approved by the Animal Experimentation Committee of the Utrecht

Faculty of Veterinary Medicine.

Animals and housing

At the Department of Laboratory Animal Science (Utrecht, The Netherlands) two rabbit inbred

strains (IIIVO/JU and AX/JU) are available. These strains originate from The Jackson

Laboratory colony, Bar Harbor, ME, USA (10). To produce F1-hybrids, IIIVO/JU females were

mated with one AX/JU male. The F1-hybrids were intercrossed (brother x sister mating)

producing F2-progeny. From 61 F2-males and 77 F2-females the liver copper content was

determined.

Experimental protocol

After weaning at the age of 10 weeks, all F2-rabbits were fed a commercial diet (LKK-20®, Hope

Farms B.V., Woerden, The Netherlands) and were housed individually. The chemical

composition of the commercial rabbit diet has been described elsewhere (11). At 12-16 weeks of

age, the commercial rabbit diet was replaced by a commercial diet, supplemented with 0.3%

(w/w) cholesterol. This diet was fed for 12 weeks in restricted amounts (100 g/rabbit/day). At the

end of this period, body weight was determined and the animals were anesthetized by an

intravenous injection of Hypnorm® (Janssen Pharmaceutica B.V., Beerse, Belgium) sufficient to

reach the surgical phase (approximately 0.3 ml/rabbit). After cardiac exsanguination, liver and

spleen were removed and weighed. Spleen was used for DNA isolation. From each animal two

liver samples (0.5 g) were frozen immediately frozen and used for copper determination (12).

Chemical analyses

The liver samples were dried overnight at 105oC and the dry weights were measured.

Subsequently, the samples were ashed at 200oC for one hour, 300oC for two hours, 400oC for

three hours and 500oC for ten hours. The remaining ash was dissolved in 1 ml concentrated

HClO4 which was then evaporated at 225oC. This step was repeated until the ash was completely

white. The ash was then dissolved in 1 ml 6 M HCl. Copper was measured by using flame

atomic absorption spectrophotometry on a Varian-AA275 (Varian, Springville, Australia). Liver
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copper levels were expressed as mg Cu/g liver wet weight, mg Cu/g liver dry weight, mg

Cu/whole liver and mg/whole liver/100 g body weight.

Genome scan

A total of 310 autosomal markers (6 biochemical, 44 microsatellite and 260 AFLP markers)

polymorphic between the AX/JU and IIIVO/JU strains were genotyped in the F2-progeny (13).

In total, 1262 cM was covered by 24 linkage groups with four or more markers. Assuming a total

length of 1500 cM this map covers about 84% of the total rabbit genome (14).

Statistical and QTL analyses

The Kolmogorov-Smirnov one-sample test was used to check normality of the liver copper traits

within the male and female population. Within males all traits were normally distributed, but

within females hepatic copper concentration (mg/g wet weight or mg/g dry weight) was not.

Gender appeared to have a significant influence on liver copper concentration (mg/g wet weight

or mg/g dry weight; Mann-Whitney U test, P<0.005), but not on liver copper store (mg/whole

liver or mg/whole liver/100 g body weight; unpaired Student's t test, p>0.05).

In order to carry out a genetic analysis using both males and females together for hepatic copper

concentrations, in each gender the traits were first normalized by logarithmic transformation. As

would be expected gender still had a significant effect on the transformed liver copper

concentrations (unpaired Student's t test, p<0.005). Therefore, for each gender the

logarithmically transformed liver copper concentrations were subtracted by the mean

transformed liver copper concentrations (of that gender) and then divided by the transformed

standard deviation (of that gender). Within the combined male and female population these final

transformed variables had a normal distribution according to the Kolmogorov-Smirnov

one-sample test.

The location of the QTLs affecting the measured (transformed) quantitative traits and the

variance explained by each locus were determined using the interval-mapping module of the

MapQTL computer package (15, 16). Results were expressed as Lod scores. Lod score

thresholds to achieve the genome-wide significance levels of 5% (significant linkage) were 4.3,

as proposed by Lander and Kruglyak (17), when no model of gene action was specified ("free"

genetics), 3.4 when gene action was restricted to recessive or dominant models, and 3.3 when

gene action was restricted to an additive model. For suggestive linkage, Lod score values were

2.8 ("free" genetics), 2.0 (recessive or dominant) and 1.9 (additive), respectively.
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Comparison of the liver copper traits of the F2-animals after grouping by genotype of each

marker was also performed. If a marker and the trait of interest are segregating independently,

the values of the trait will be equally distributed among the homozygote and heterozygote

genotypes. Again, the Kolmogorov-Smirnov one-sample test was used to check normality of

these data. All traits within genotype groups were found to be normally distributed. For each

population, co-segregation of phenotypes with alleles at marker loci was evaluated by comparing

the values between different genotypes by one- or two-way analysis of variance (ANOVA).

Homogeneity of the variances was tested using Bartlett's test. When necessary, the variances

were equalized by logarithmic transformation of the data. After transformation, the variances

were similar and the transformed within-genotype-group data were still normally distributed.

Thus, application of an ANOVA on the (transformed) data is then straightforward. All statistical

analyses were carried out according to Petrie and Watson (18) using a SPSS PC+ computer

program (19).

Results and discussion

Liver copper content of F2 rabbits was investigated on four quantitative traits, i.e. liver copper

was expressed as mg/g wet weight, mg/g dry weight, mg/whole liver and mg/whole liver/100g

body weight. The results of the QTL analysis using the MapQTL software are shown in Table 1.

Whenever a (suggestive) QTL was found, a one-way ANOVA with post hoc Student's t test was

performed for the markers flanking the peak of the QTL or at the peak of the QTL. The mode of

inheritance was chosen as free, additive, dominant or recessive according to the significance of

differences in the mean values of the traits between rabbits that were homozygous AX/JU,

heterozygous AX/JU:IIIVO/JU and homozygous IIIVO/JU.

For the combined population of males and females we found only one significant QTL, located

on the linkage group (LG) U8 and three suggestive QTLs on chromosome 7, LG U5 and U8. For

females we found suggestive QTLs on rabbit chromosome 18 and LG U2, U6 and U8. For males

suggestive QTLs were detected on chromosomes 1 and 12, and on LG U5 and U8. Some QTLs

are recessive with respect to the AX/JU allele and other QTLs are additive. Both progenitor

strains contain "plus" and "minus" genes for hepatic copper content (Table 1).

Figure 1 shows the Lod score curve across linkage group U8 for hepatic copper level (mg/g dry

weight). As shown in Table 2, the liver copper level seems to be under intermediary inheritance

of the G170 to P259 region from linkage group U8.
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Figure 1: Lod score plot of linkage group U8 exhibiting significant linkage of hepatic copper concentration (mg/g
dry weight) to microsatellite markers. The distances are indicated in cM. The positions of selected marker loci
genotyped in the F2 progeny are indicated on the x-axis of each panel. The most likely position for the QTL,
determined by its 2.0-Lod support interval, is indicated by a solid bar under the plot. Dotted lines represent the
threshold value of the Lod score considered as significant for linkage in the model of inheritance chosen according to
the Student's t test analysis (additive model).

The two rabbit inbred strains used for this study differ for their susceptibility to dietary

cholesterol (9, 11). It has been suggested that a relationship exists between cholesterol and

copper metabolism (20-24). The region of LG U8 which contains the significant QTL for hepatic

copper concentration also contains a suggestive QTL for liver cholesterol concentration

(population: %% + &&; Lod score: 2.61; Van Lith et al. unpublished). It is, however, unlikely

that these two QTLs are identical because the liver cholesterol concentration is affected by the

AX/JU alleles in a recessive manner (Table 3), whereas the liver copper concentration is under

intermediary inheritance (Tables 1 and 2) and, in corroboration with previous results (5), there

was no correlation between liver copper concentration and liver cholesterol content. Also, the

AX/JU progenitor strain contains a plus gene on LG U8 both for liver copper concentration and

for hepatic cholesterol level. Thus, a dilution effect due to a fatty liver as the cause for the

decreased copper levels can be rejected.

In conclusion, the present study showed that the linkage group U8 is significantly associated with

liver copper concentration in rabbits after feeding a cholesterol-rich diet. Furthermore, there is

evidence that other rabbit linkage groups (U2, U5, and U6) or chromosomes (1, 7, 12, and 18)

also contain QTLs involved in hepatic copper content. In order to speculate about candidate

genes it is necessary to assign the linkage groups to chromosomes. This can be realised by

generating polymorphic markers (SSLPs) from microsatellite enriched chromosome-specific

libraries (25). With the presently available BAC clones it is possible to orientate the linkage
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maps (26). Once it is known to which rabbit chromosomal region a QTL belongs, candidate

genes can be identified by using the results of the reciprocal chromosome painting between

rabbit and human (27).
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Table 1:  Summary of the QTLs for hepatic copper content in rabbits1

Phenotypic trait Trans.2 Population Model3 Peak Lod4 Chrom./LG Location5 % Variance6

Liver copper concentration
(mg/g wet weight) yes %% + && Recessive (-)7 2.56 7 J216 (50.8 cM) 8.2

no %% Free (H) 2.94 12 E257 (48.5 cM) 20.2
yes && Recessive (+) 2.60 U2 M244 (43.0 cM) 14.4
yes && Additive (-) 2.05 U6 J162 to Sat8 (6.6 cM) 11.8
yes && Additive (+) 2.82 U8 P259 (5.0 cM) 15.5
yes %% + && Additive (+) 2.68 U8 G170 to P259 (2.0 cM) 8.8

(mg/g dry weight) no %% Recessive (+) 2.50 1 C to D286 (71.9 cM) 17.2
yes %% + && Recessive (-) 2.52 7 J216 (50.8 cM) 8.1
yes && Free (H) 2.20 18 D476 to D57 (10.5 cM) 16.6
no %% Additive (+) 2.42 U8 G170 to P259 (0.5 cM) 16.9
yes && Additive (+) 2.93 U8 P259 (5.0 cM) 16.1
yes %% + && Additive (+) 3.68 U8 G170 to P259 (3.5 cM) 12.0

Liver copper store
(mg/whole liver) no %% Free (H) 2.43 12 E257 (48.5 cM) 16.8

no %% Additive (+) 2.23 U5 Q255 to R385 (9.4 cM) 16.7
no %% + && Additive (+) 3.00 U5 A194 to Q255 (1.8 cM) 9.9

(mg/whole liver/100 g no %% Additive (+) 2.49 U5 A194 to Q255 (3.3 cM) 18.6
body weight) no %% + && Additive (+) 2.72 U5 A194 to Q255 (2.3 cM) 9.1

1 QTLs were investigated using the MapQTL software on data collected from 138 (IIIVO/JU x AX/JU) F2-intercross rabbits.
2 In some cases the QTL analysis was performed on transformed (= yes) liver copper data, whereas in other cases this analysis was performed on the untransfomed (= no)

data.
3 Additive, dominant or recessive was defined with respect to the AX/JU grandparental allele.
4 Data are shown only when significant or suggestive correlations were found. Thresholds for suggestive and significant linkage were those of Lander and Kruglyak

(1995). Significant results are indicated in bold characters, suggestive results in italics.
5 The location on the chromosome or linkage group (LG) where the Lod score peaked is given in parentheses.
6 Percentage of the genetic variance explained by the QTL.
7 In parentheses is indicated that the AX/JU progenitor strain contains in the chromosomal region a "plus" (+) or a "minus" (-) gene. For some regions the heterozygous

genotype was higher than both homozygous genotypes (heterosis-effect, H). In these cases the two homozygous genotypes had an identical hepatic copper content.



Chapter 10

Table 2: Co-segregation analysis of liver copper level (mg/g dry weight) in an F2-progeny of IIIVO/JU and AX/JU rabbits1

Genotype2

Lod (p-value)
Marker Population AA AI II score3 ANOVA4

Linkage Group U8
G170 %% 11.9±2.6 (9) 10.4±1.3 (33) 9.8±0.8 (17) 2.42 G=0.002

&& 13.1±4.1 (20) 11.3±2.0 (39) 10.3±1.6 (14) 2.25 S=0.034
GxS=0.774

%% + && 12.7±3.7 (29) 10.9±1.8 (72) 10.0±1.2 (31) 3.40 G<0.001

P259 %% 11.8±2.4 (10) 10.3±1.3 (28) 9.9±1.0 (23) 2.05 G<0.001
&& 13.3±4.1 (19) 11.2±1.9 (45) 10.1±1.6 (12) 2.93 S=0.039

GxS=0.510

%% + && 12.8±3.7 (29) 10.9±1.8 (73) 10.0±1.2 (35) 3.64 G<0.001

1 Values are means ± SD; number of rabbits is given in parentheses. Some DNA samples failed to give a conclusive genotype, hence the number of rabbits typed varied slightly
with each locus.

2 A = AX/JU allele, I = IIIVO/JU allele.
3 Lod scores reported are at the marker indicated.
4 Analysis of the (%% + &&)-population: one-way ANOVA with main factor genotype. Simultaneous analysis of %%- and &&-population: two-way ANOVA with main factors

genotype and gender. G, effect of genotype at marker locus; S, effect of gender; GxS, interaction effect. The p-values are the values after logarithmic transformation of the
data.



QTLs for hepatic copper in rabbits

Table 3: Co-segregation analysis of liver cholesterol level (mmol/g wet weight) in an F2-progeny of IIIVO/JU and AX/JU rabbits (based on Van Lith et al. unpublished)1

Genotype2

Lod (p-value)
Marker Population AA AI II score3 ANOVA4

Linkage Group U8
G170 %% 95.6±26.7 (9) 82.7±7.7 (33) 80.1±16.9 (17) 0.96 G=0.001

&& 91.9±24.7 (20) 75.2±17.9 (39) 72.8±16.8 (14) 1.96 S=0.054
GxS=0.911

%% + && 93.1±24.9 (29) 78.7±18.1 (72) 76.8±17.0 (31) 2.59 G=0.002

P259 %% 96.4±25.3 (10) 84.2±16.8 (28) 78.0±16.7 (23) 1.53 G=0.002
&& 90.9±26.3 (19) 75.8±17.2 (45) 77.5±24.8 (12) 1.53 S=0.100

GxS=0.650

%% + && 92.8±25.6 (29) 79.0±17.4 (73) 77.8±19.5 (35) 2.50 G=0.0635

1 Values are means ± SD; number of rabbits is given in parentheses. Some DNA samples failed to give a conclusive genotype, hence the number of rabbits typed varied slightly
with each locus.

2 A = AX/JU allele, I = IIIVO/JU allele.
3 Lod scores reported are at the marker indicated.
4 Analysis of the (%% + &&)-population: one-way ANOVA with main factor genotype. Simultaneous analysis of %%- and &&-population: two-way ANOVA with main factors

genotype and gender. G, effect of genotype at marker locus; S, effect of gender; GxS, interaction effect.
5 P-value after logarithmic transformation of the data.
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Introduction

All research described in this thesis focuses on the role of copper in various biochemical

processes. It appears that copper has various faces in laboratory animals. On the one hand,

copper is an essential trace element, which implicates that a certain requirement for copper

exists. On the other hand, copper may be involved in the formation of free radicals and

reactive oxygen species (ROS), causing the development of oxidative stress. Oxidative stress

has been associated with reduced lifespan and various diseases as a consequence of oxidative

damage at the (sub)cellular level. Copper may not only affect biochemical processes in

laboratory animals, it may also be affected itself by endogenous and exogenous factors, such

as dietary cholesterol. Furthermore, strain differences in hepatic copper content and hepatic

copper concentration have been found, which can be (partly) explained by genetic differences.

All studies described in this thesis, except the review in chapter 3, were performed in

laboratory animals keeping the 3 R’s of laboratory animal science (reduction, refinement and

replacement) in mind. Some of the studies performed are for the benefit of the animal (chapter

2), in some studies the animal is used as a model (chapter 6-10) and in some studies, the

animal was used as a model, but the results of the study could be used for the benefit of the

animal (chapter 4 and 5). In case the animal was used as a model, the purpose of the

experiment was to study mechanisms in vivo rather than in vitro. The conclusions of all

studies described in this thesis are briefly summarized.

Chapter 2

Although the mouse is the most commonly used laboratory animal, its copper requirement has

not been well established, since specific studies that determine the copper requirement of the

mouse during its various stages of life have not been published. We have attempted to estimate

the copper requirement of the mouse by feeding groups of mice diets with 1, 2, 4 or 8 ppm Cu,

respectively. Based on the effects of copper intake on reproductive outcome, growth

performance and sustainment of maximum plasma and hepatic copper concentrations and of

plasma ceruloplasmin, a copper allowance for the mouse is proposed. This study showed that

NMRI mice fed a semipurified diet containing 1 ppm copper had a marked depression of

reproductive performance. Plasma, hepatic and carcass copper concentrations were not indicative
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as to the copper requirement of the mice. To take into account the various factors affecting

copper requirement and the availability of dietary copper, it is suggested to set the general copper

allowance of laboratory mice at 4 ppm.

Chapter 3

In chapter 3, the role of copper in the development of oxidative stress is reviewed. Copper

appears to be involved in the generation of reactive oxygen species (ROS) and free radicals

through the Haber-Weiss reaction. Evidence for the suggested relationship between copper and

ROS and free radicals is obtained mainly through in vitro research or through experiments in

which reducing agents such as paraquat were added as well. Copper seems to play an indirect,

facilitating role in the generation of ROS and free radicals. Whether copper itself possesses the

ability to generate ROS and free radicals without the presence of reducing agents remains

unclear.

Chapter 4

To study whether high copper intakes can cause oxidative damage at the macromolecular

level in intact animals, oxidative damage to DNA (8-oxodG), proteins (specific oxidised

amino acids) and lipids (MDA) were measured as indicators of oxidative damage in mice fed

diets containing 5, 25, 125 or 625 ppm Cu for 6 weeks. In addition, total antioxidant status

was measured. Dietary copper increased the liver copper concentration in mice fed the diet

with 625 ppm Cu, but did not significantly influence levels of 8-oxodG, MDA and specific

oxidised amino acids. Likewise, the dietary copper level did not affect the total antioxidant

status. We concluded that exposure to high copper levels do not result in oxidative damage

under in vivo conditions.

Chapter 5

The parameters used in the previous study may have been inappropriate for detection of

oxidative stress. Since longevity may be a more convincing parameter, we have studied

whether high copper intake in mice results in reduced life span due to the induction of

oxidative stress. No statistically significant decrease in survival was found in mice fed

increasing dietary copper concentrations (5, 25 or 125 ppm Cu). Most likely, the body’s

antioxidant defence and repair system is able to compensate for oxidative stress caused by

high copper intake.
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Chapter 6

From previous experiments it could be concluded that in mice copper deficiency rather than an

overload of copper has a negative effect on health and lifespan. The copper status of animals not

only depends on the amount of copper in the food, but is also influenced by other nutrients and

by genetic factors. In this thesis, the impact of these factors has been studied in rats and rabbits.

Cholesterol intake has been described in literature to affect the hepatic copper content and

hepatic copper concentration in rats. Since not all rats are equally sensitive to dietary cholesterol,

this triggered us to study (i) whether cholesterol intake influences the hepatic copper content of

rats and (ii) whether hyperresponsive rats with regard to cholesterol show a larger decrease in

hepatic copper than hyporesponsive rats. In order to answer both questions, the hepatic copper

content of two rat inbred strains was compared after feeding the animals a control or a high fat,

high cholesterol diet. One strain was dietary cholesterol resistant, whereas the other strain was

susceptible to dietary cholesterol. Analysis revealed statistically significant strain differences for

hepatic copper content. On the control diet, the dietary cholesterol-susceptible rats have a lower

hepatic copper content than their resistant counterparts. Furthermore, the consumption of a

hypercholesterolemic diet decreased liver copper concentration in both strains but this was

probably due to dietary-induced hepatomegaly, since dietary cholesterol did not reduce the

absolute and relative copper store of rats.

Chapter 7

In order to study the strain specific differences in liver copper content described in chapter 6 and

gain more insight in the genes that are involved in copper regulation, thirty recombinant inbred

(RI) strains were used in order to search for quantitative trait loci (QTLs) that are responsible for

these differences. The heritability of liver copper concentration and liver copper store was

estimated to be 57% and 46%, respectively. In a total genome scan of the RI strains, a suggestive

association was found between liver copper store (�g/whole liver) and the D16Wox9 marker on

chromosome 16 (lod score = 2.8), and between liver copper concentration (mg/g dry weight) and

the D10Cebrp1016s2 marker on chromosome 10 (lod score = 3.0). These putative QTLs are

responsible for nearly 34% and 40% of the additive genetic variability for these liver copper

content parameters.

Chapter 8

Because the previous QTL analysis, described in chapter 7, were performed with male rats only,

and because of the limited power of recombinant inbred strains for detecting QTLs, a total
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genome scan of a (LEW/OlaHsd x BC/CpbU) F2-intercross was performed to search for

additional genetic factors controlling liver copper content. A major QTL for liver copper content

was found for females on chromosome 2 and for males on chromosome 10. Both QTLs

accounted for approximately 20% of the genetic variance. In addition, suggestive linkage for

liver copper content was found on rat chromosomes 1, 8, 12, 14 and 19. The regions on these

chromosomes contain genes that are responsible for 9.0 to 15.5% of the genetic variance of liver

copper content.

Chapter 9

The results of the experiment described in chapter 6 encouraged us to investigate whether

differences in hepatic copper content also occur between cholesterol-resistant and cholesterol-

susceptible rabbits. The hepatic copper content of two rabbit inbred strains was compared after

feeding the animals a control or a cholesterol-rich diet. One strain was dietary cholesterol

resistant, whereas the other strain was susceptible to dietary cholesterol. Again, analysis revealed

statistically significant strain differences for hepatic copper content, dietary

cholesterol-susceptible rabbits this time having a higher hepatic copper content when compared

with their resistant counterparts. Furthermore, the consumption of a hypercholesterolemic diet

decreased liver copper concentration in both strains of rabbits. A decrease in the hepatic copper

store was found only in the dietary cholesterol-susceptible inbred strain. Increased bilirubin

secretion might play a role in the effect of cholesterol on the hepatic copper content in the

hyperresponding strain.

Chapter 10

In chapter 9, a significant difference in liver copper content between the AX/JU and IIIVO/JU

inbred strain of rabbits was shown. To define loci controlling this trait, the offspring from an

F2-intercross of these strains has been genetically analysed. A QTL for liver copper content was

found on linkage group (LG) U8 (Lod score = 3.68). This QTL accounted for about 16% of the

genetic variance within each gender. In addition, suggestive linkage for liver copper content was

found on chromosomes 1, 7, 12 and 18 and on LGs U2, U5 and U6. The regions on these

chromosomes and linkage groups explained 8.1 to 20.2% of the genetic variance for liver copper

content in these two rabbit inbred strains. In order to identify genes that may be involved in

copper regulation, the linkage groups need to be assigned to chromosomes first.
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Overall conclusions

I. Copper is an essential trace element, implicating that a certain copper requirement exists

to compensate for endogenous losses. The dietary copper allowance for the NMRI

outbred laboratory mouse, as determined in the study described in chapter 2, is 4 ppm Cu,

which is lower than the NRC’s estimated allowance of 6 ppm Cu for maintenance and 8

ppm for growing and lactating mice, but in line with results described by other authors.

The difference in dietary copper allowance probably stems from the fact that the

recommendation of the NRC is based on rats and on four studies in mice, of which three

were not designed to study copper requirement. We feel that this study contributes to a

soundly based estimated copper allowance for mice.

II. Evidence for the involvement of copper in the formation of free radicals and ROS comes

mainly from in vitro research (chapter 3). No evidence was found for copper-mediated

oxidative damage at the (sub)cellular level (chapter 4) nor a reduced lifespan was found

(chapter 5) in mice fed diets with increasing copper concentrations. These results raise

serious questions about the likelihood of developing oxidative stress in other rodents or in

human in vivo after high copper intakes.

III. In literature, dietary cholesterol has been associated with reduced liver copper

concentrations and/or liver copper content. Feeding a cholesterol-rich diet to rats did not

affect the liver copper content. In rabbits, a decrease in the hepatic copper store was found

only in the dietary cholesterol-susceptible inbred strain. The idea that cholesterol-susceptible

animals will show a greater decrease in hepatic copper content after being fed a cholesterol-

rich diet thus could not be consistently confirmed. In both rabbits and rats a decrease in liver

copper concentration was found, but the decrease in rats was probably due to diet-induced

hepatomegaly. The reduced liver copper concentrations in rats fed a cholesterol-rich diet as

described in literature may also be the result of dietary-induced hepatomegaly.

IV. Strain differences in liver copper store and liver copper concentrations can (partly) be

explained by genetic differences between the strains. QTL analysis can be helpful in

identifying genes that are involved in such quantitative traits. Some of the QTLs found in

rats may give a clue as to what genes are involved in copper regulation. In the rabbit,

however, more research on the structure of the genome is needed before candidate genes for

QTLs can be identified.
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Nederlandse samenvatting voor niet-vakgenoten

In dit proefschrift staat het metaal koper centraal. Koper komt vooral via de voeding in het

lichaam van mensen en dieren terecht. Daar wordt het in de lever opgeslagen, uitgescheiden

via het gal of in eiwitten ingebouwd. Distributie van koper vanuit de lever over de rest van het

lichaam vindt plaats door uitscheiding van deze eiwitten door de lever. Via allerlei

mechanismen komt koper uiteindelijk weer terug in de lever en wordt het via de in de feces

aanwezige gal uitgescheiden. Het koper dat door het lichaam wordt gebruikt en uitgescheiden,

moet worden aangevuld met koper uit de voeding. Dat betekent dat er een minimale

hoeveelheid koper in de voeding moet zitten die deze verliezen kan compenseren. Dit geldt

overigens niet alleen voor koper, maar voor een heleboel voedingsstoffen.

De Amerikaanse National Research Council heeft voor veel verschillende dieren schattingen

gemaakt van deze minimale hoeveelheden voedingsstoffen. Zij heeft ook een schatting

gemaakt van het koperniveau dat in de voeding van muizen zou moeten zitten. Als je de

onderbouwing van deze schatting bestudeert, blijkt dat eigenlijk nooit goed is onderzocht

hoeveel koper in de voeding van muizen zou moeten zitten om de verliezen weer aan te

vullen. Wij hebben daarom een onderzoek gedaan waarbij we muizen hebben onderverdeeld

in verschillende groepen. Elke groep kreeg een voer met een bepaald koperniveau. Door

biochemische parameters (bijvoorbeeld het koperniveau van de lever) en proefdierkundige

parameters (bijvoorbeeld groei of reproductie) te meten, hebben we een schatting kunnen

maken van het benodigde koperniveau in het voer van muizen. Onze schatting van dit

koperniveau ligt lager dan dat van de National Research Council, maar is wel in lijn met de

resultaten van andere onderzoekers.

Veel van de muizen die in zogenaamde dierenlaboratoria worden gehouden voor onderzoek

krijgen een commercieel verkrijgbaar voer. De koperniveaus in deze voeders blijken hoger te

zijn dan onze schatting van het benodigde koperniveau (soms wel een factor 10 zo hoog).

Hoewel de muizen niet direct ziek worden van wat extra koper in het voer, is het wel de vraag

of het wel goed is voor de muizen om ze (aanzienlijk) meer te voeren dan ze eigenlijk nodig

hebben. Koper lijkt namelijk betrokken te zijn bij het genereren van vrij radicalen en reactieve

zuurstofdeeltjes. Dit zijn moleculen die heel reactief zijn en met allerlei andere moleculen in

het lichaam kunnen reageren. Tijdens die reacties veroorzaken ze nogal wat schade in het
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lichaam. Opname van grotere hoeveelheden koper zou er toe kunnen leiden dat er meer vrije

radicalen en reactieve zuurstofdeeltjes worden gegenereerd en dat kan resulteren in schade

aan DNA, eiwitten en vetten.

Om dit idee te onderzoeken hebben wij muizen verschillende hoeveelheden koper gevoerd en

schade aan DNA, eiwitten en vetten gemeten. De hoeveelheid schade bleek niet verschillend

te zijn tussen de verschillende dieetgroepen. We weten uit de literatuur dat het lichaam een

mechanisme heeft om zich te beschermen tegen de effecten van deze reactieve moleculen. Het

lijkt er op dat dit mechanisme zo goed werkt dat het de productie van grotere hoeveelheden

reactieve moleculen in de aanwezigheid van koper kan opvangen.

Naast schade op moleculair niveau door vrije radicalen en reactieve zuurstofdeeltjes, hebben

onderzoekers ook een verband gelegd tussen deze reactieve moleculen en ouderdoms-

processen. Ook zouden deze moleculen betrokken zijn in de ontwikkeling van ziekten zoals

kanker, Parkinson en Alzheimer. Als een hogere koperinname er toe kan leiden dat er meer

vrije radicalen en reactieve zuurstofdeeltjes worden gevormd, zou dit betekenen dat muizen

die voer krijgen met een hogere concentratie koper korter leven dan muizen die voer  krijgen

met een lager koperniveau. Om dit te onderzoeken hebben wij muizen verdeeld over drie

dieetgroepen met oplopende koperconcentraties en hun levensduur bepaald. Wij hebben

echter geen statistisch significante verschillen in levensduur tussen de verschillende

dieetgroepen gevonden. Dit bevestigt het vermoeden dat het mechanisme van het lichaam om

zich te weren tegen de schade die reactieve moleculen kunnen veroorzaken uiterst effectief is

en dat hogere koperinnames niet resulteren in een verstoring van dit mechanisme.

Zoals reeds kort beschreven heeft het lichaam koper nodig voor een tal van biochemische

processen. Het is daarom belangrijk dat het koperniveau in het lichaam niet te laag wordt. Er

zijn tal van factoren die het koperniveau in het lichaam beïnvloeden. Een voorbeeld is

cholesterol. Uit de vakliteratuur blijkt dat verhoogde opname van cholesterol via de voeding

kan leiden tot een daling van het koperniveau. Omgekeerd is ook bekend dat een kopertekort

kan leiden tot verhoogde cholesterolniveaus in het lichaam.

Niet iedereen is even gevoelig voor cholesterol en ook binnen diersoorten bestaan er

verschillen in de gevoeligheid voor cholesterol. Zo bestaan er ratten en konijnen die heel

gevoelig zijn voor cholesterol en sterk reageren op cholesterolrijk voer (zogenaamde

hyperresponders) en ratten en konijnen die veel minder gevoelig zijn voor cholesterol

(zogenaamde hyporesponders). Wij verwachtten dat het koperniveau in de lever van

hyperresponderende ratten en konijnen sterker zal dalen als gevolg van een cholesterolrijk
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dieet dan in ratten en konijnen die niet zo gevoelig zijn voor cholesterol. Om dit te toetsen

hebben we twee soorten (stammen) konijnen (een hyper- en een hyporesponderende stam) en

twee rattenstammen (een hyper- en een hyporesponderende stam) een cholesterolrijk of een

controle dieet gevoerd en het koperniveau in de lever gemeten. In de rat werd geen effect van

cholesterol op de totale hoeveelheid koper in de lever gevonden. Wel werd een daling van de

koperconcentratie gevonden, maar dit is het gevolg van het zwaarder worden van de lever

door leververvetting. In de beide konijnenstammen werd ook een daling in de

koperconcentratie van de lever gevonden. Alleen in de hyperresponderende stam nam ook de

totale hoeveelheid koper in de lever af. Uit dit onderzoek blijkt dus dat het koperniveau in de

lever niet zondermeer daalt onder invloed van een cholesterolrijk dieet. Wel bleken er zowel

voor de konijnen als voor de ratten significante stamverschillen in het koperniveau van de

lever te bestaan en waren deze verschillen onafhankelijk van het dieet dat de dieren kregen.

Omdat we vermoedden dat de stamverschillen in het koperniveau van de lever deels erfelijk

bepaald zijn, hebben we het DNA van verschillende ratten- en konijnenstammen onderzocht

met behulp van een zogenaamde QTL (quantitative trait loci)-analyse. De QTL-analyse maakt

gebruik van het feit dat het DNA van deze diersoorten zo goed in kaart is gebracht dat we

bepaalde stukjes DNA kunnen herkennen. Het doel van ons onderzoek was het vinden van

stukjes DNA die betrokken lijken te zijn bij de koperhuishouding. Naarmate we meer weten

van de stukjes DNA die we met behulp van de QTL-analyse gevonden hebben, wordt het

mogelijk om hypothesen te formuleren over mogelijke manieren waarop het koper in het

lichaam gereguleerd worden. Zowel voor de rat als voor het konijn hebben we een aantal van

zulke stukjes DNA gevonden.
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Zoals iedere promovendus zou ook ik dit proefschrift niet hebben kunnen schrijven zonder de

hulp, steun en belangstelling van anderen. Ik zou graag een ieder met naam willen noemen die

op enigerlei wijze heeft bijgedragen aan de totstandkoming van dit boekje, maar loop daarmee

het risico mensen te vergeten. Het zou daarom wellicht verstandiger zijn om dan maar

helemaal geen namen te noemen. Toch vind ik dat een aantal mensen niet ongenoemd mogen

blijven.

Allereerst wil ik graag mijn promotoren, Prof. Dr. Ir. A.C. Beynen en Prof. Dr. L.F.M. van

Zutphen, bedanken. Anton en Bert, vanaf het begin hebben jullie mij volledige vrijheid

gegeven om dit promotieonderzoek naar eigen inzicht vorm te geven en uit te voeren. Door

deze blijk van vertrouwen heb ik mij maximaal kunnen ontplooien als zelfstandig

onderzoeker.

Mw. X.M. Fielmich-Bouwman, Æ. Lankhorst, Dr. Z.L. Haberham en Dr. A.H.M. Terpstra

wil ik bedanken voor hun belangstelling en interesse en de boeiende discussies. Daarnaast wil

ik Xandra ook ontzettend bedanken voor de analytische ondersteuning tijdens de

experimenten en Giet voor de gastvrijheid op ‘zijn’ lab. Zainal, jij was een toffe kamergenoot

met een unieke kijk op veel dingen! En Ton, dankzij jou weet ik nu een en ander af van ‘body

weight management’ en onderzoek dat er op dat gebied loopt.

Dr. H.A. van Lith wil ik bedanken voor de mogelijkheid die hij mij geboden heeft om een

stuk genetisch onderzoek te doen naar koperregulatie in de lever. Hein, ik vond de

samenwerking met jou bijzonder inspirerend en motiverend. Ik wil je graag bedanken voor de

prettige begeleiding en het mij wegwijs maken in de wereld van QTL’s en markers.

De medewerkers van het Gemeenschappelijk Dierenlaboratorium wil ik bedanken voor hun

belangstelling voor en de ondersteuning van mijn experimenten. Ik wil graag Mevr. A.S. van

der Sar in het bijzonder bedanken: Anja, bedankt voor leuke samenwerking en de hulp waar

ik altijd op kon rekenen.

Ook P. Roeleveld van het ILOB-TNO in Wageningen wil ik graag bedanken. Piet, je hebt er

op geweldige wijze voor gezorgd dat de voeders altijd op tijd beschikbaar waren. Klasse!

I would like to thank Prof. Dr. S. Loft of the Institute of Public Health of the University of

Copenhagen for his participation in my project (ch. 5). Prof. Loft, when I sent you a fax with

the request whether you could help me with my experiments on measuring damage to

macromolecules caused by reactive oxygen species, you almost immediately replied that you
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were interested in my project and that you could help me with performing the experiments. I

would also like to thank Dr. A. Wellejus of the Institute of Public Health of the University of

Copenhagen and Dr. L. Dragsted, Dr. B. Daneshvar and Dr. M. Hansen of the Institute of

Food Safety and Toxicology at the Veterinarian and Food Administration in Søborg,

Denmark for their enthusiastic participation in my project.

Furthermore, I would like to thank Dr. M. Pravenec of the Department of Genetics of Model

Diseases of the Academy of Sciences of the Czech Republic and the Institute of  Biology and

Medical Genetics of the Charles University in Prague, Czech Republic, for his great

participation in the experiments described in chapters 6 and 7. Dr. Pravenec, thanks for your

enthusiasm with which you worked on this project: mailing the data at the end of the day and

having the results back the next morning is really amazing.

Mijn collega’s van de afdeling Corporate Strategy van Essent hebben de laatste maanden

tijdens de afronding van mijn proefschrift tijdens alle ups en downs met mij meegeleefd.

Alexandra, Riksta, Willem, Karin, Esther, Job, Caroline en Ronald: bedankt voor de

belangstelling en support!

Tenslotte wil ik ‘het thuisfront’ bedanken voor alle steun die ik de afgelopen vier jaar heb

gekregen. Martijn, jou wil ik vooral bedanken voor alle onzinnige e-mailtjes die je me

regelmatig stuurde!

Papa en mama: tja, hoe ik jullie moet bedanken voor de grandioze wijze waarop jullie er altijd

voor mij zijn weet ik eerlijk gezegd niet zo goed. Ik heb bewondering en grote waardering

voor de manier waarop jullie altijd voor mij klaar staan en dat jullie nooit iets te veel is. Jullie

steun en liefde en jullie vertrouwen in mij hebben mij de ruimte gegeven om me te ontplooien

tot wie ik nu ben. Pap, ik ben er trots op dat jij mijn paranimf wilt zijn; ik vraag me trouwens

nog steeds af hoe het met dat meisje dat loos is is vergaan. En mam, als er iets is dat nog

korter is om te mailen dan . ben jij de eerste die dat ontdekt!

Lieve Marc, bedankt voor jouw geduld, steun en vertrouwen tijdens de afronding van mijn

proefschrift en scriptie. Het waren zeker niet de gezelligste maanden door de vele uren die ik

vaak verhit en geïrriteerd achter een dwarse computer met een eigen willetje heb

doorgebracht. Maar we gaan nu eindelijk echt leuke dingen doen (alvast inlopen voor Denali

of Kenai?)!
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…and though few believed any of his tailes,

he remained very happy to the end of his days,

and those were extraordinarily long.

J.R.R. TOLKIEN

THE HOBBIT
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Curriculum Vitae

Ingeborg de Wolf is geboren te Leimuiden op 30 augustus 1973. Het Voorbereidend

Wetenschappelijk Onderwijs werd grotendeels gevolgd aan het Eindhovens Protestants

Lyceum (1996-1991). Aan de Rijksuniversiteit Limburg werd de doctoraalstudie

Milieugezondheidkunde voltooid (1992-1996), na eerst de propedeuse Gezondheids-

wetenschappen te hebben behaald (1991-1992). Na een aantal maanden uitzendwerk,

waaronder het herschrijven van een wiskundecursus voor machinisten bij het

opleidingsinstituut van de Nederlandse Spoorwegen, volgde in 1997 een aanstelling bij de

vakgroep Proefdierkunde, Faculteit der Diergeneeskunde, Universiteit Utrecht als assistent-in-

opleiding. Het onderzoek dat in deze periode is verricht wordt in dit proefschrift beschreven.

In 1998 begon Ingeborg daarnaast aan het Parttime Doctoraal Programma Bedrijfskunde van

de Universiteit Nyenrode, hetgeen in september 2001 werd afgesloten met het cum laude

behalen van de doctorandustitel in de Bedrijfskunde. Momenteel is Ingeborg werkzaam als

medewerker strategie bij Essent.





Stellingen

behorende bij het proefschrift ‘The various faces of copper in laboratory animals’ door Ingeborg de Wolf

1. De muis heeft een dusdanig efficiënt antioxidant en defensie systeem, dat verhoogde opname van koper uit

het voer niet zal resulteren in radicaalschade. (dit proefschrift)

2. Koper speelt een rol in de ontwikkeling van de ziekte van Alzheimer door inductie van zuurstofradicalen

als gevolg van binding van koper aan het amyloid ß-4 eiwit.

3. Koper speelt een directe dan wel indirecte rol bij de verstoring van de oxidant – antioxidant balans, hetgeen

resulteert in oxidatieve stress. (dit proefschrift)

4. Vanuit sociaal-wetenschappelijk oogpunt is huisvesting van mannelijke muizen een probleem: het is

onwenselijk om de muizen individueel te huisvesten, maar huisvesting in groepjes resulteert eveneens in

niet-gewenste situaties.

5. “Het is heel goed om meer vrouwen in de exacte wetenschappen te hebben. Ze zijn namelijk beter. Door

jarenlang te knokken hebben ze uithoudingsvermogen gekweekt. Ze hebben eelt op de ziel en presteren

daardoor beter dan mannen.” (F.W. Saris, Natuur & Techniek, 10 (1997))

6. Het uitvoeren van een promotieonderzoek anno 2001 is niet zozeer een proeve van wetenschappelijke

bekwaamheid als wel een proeve van analytische bekwaamheid.

7. De kenmerkende arrogantie van veel randstedelingen ten opzichte van ‘de rest van Nederland’ is

buitengewoon betreurenswaardig daar Amsterdam gerekend wordt tot de regio Eindhoven. (Philips

Communicatiegids 1999: Eindhoven en omstreken (incl. Amsterdam))

8. Vanuit het oogpunt van verkeersveiligheid dienen ligfietsen, naar analogie van kinderfietsjes, voorzien te

zijn van een vlaggetje dat ca. 1.50 m boven het wegdek uitsteekt.

9. De weersgesteldheid is omgekeerd evenredig met het aantal e-mails dat men op een reguliere werkdag

ontvangt.

10. “Alle dingen worden overvloediger, gemakkelijker en kwantitatief beter voortgebracht als men datgene

doet, dat bij zijn aanleg past, dit op het juiste moment doet en de overige zaken aan anderen overlaat.”

(Plato, ca. 387 v. Chr.)




