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Abstract

It is shown that every topos with enough points is equivalent to the clas-

sifying topos of a topological groupoid.

1 De�nitions and statement of the result

We recall some standard de�nitions ([1, 5, 9]). A topos is a category E which is
equivalent to the category of sheaves of sets on a (small) site. Equivalently, E is
a topos i� it satis�es the Giraud axioms ([1], p. 303). The category of sets S is a
topos, and plays a role analogous to that of the one{point space in topology. In
particular, a point of a topos E is a topos morphism p:S ! E. It is given by a
functor p�: E ! S which commutes with colimits and �nite limits. For an object
(sheaf) E of E, the set p�(E) is also denoted Ep, and called the stalk of E at p. The
topos E is said to have enough points if these functors p�, for all points p, are jointly
conservative (see [9], p. 521, [1]). Almost all topoi arising in practice have enough
points. This applies in particular to the presheaf topos Ĉ on an arbitrary small
category C , and to the �etale topos associated to a scheme. In fact, any \coherent"
topos has enough points (see Deligne, Appendix to Expos�e VI in [1]).

We describe a particular kind of topos with enough points. Recall that a groupoid
is a category in which each arrow is an isomorphism. Such a groupoid is thus given
by a set X of objects, and a set G of arrows, together with structure maps

G�X G //m
G

//s

//
t

07??12
i

34
X:oo u (1)

Here s and t denote the source and the target, u(x) 2 G is the identity at x 2 X,
i(g) = g�1 is the inverse, and m(g; h) = g � h is the composition. A topological
groupoid is such a groupoid in which X and G are each equipped with a topology,
for which all the structure maps in (1) are continuous.

Given such a topological groupoid, a G{sheaf is a sheaf on X equipped with a
continuous G{action. Thus a G{sheaf consists of a local homeomorphism p:E ! X

together with a continuous action map E �X G ! E, de�ned for all e 2 Ex and
g: y! x in G, and denoted e; g 7! e � g; this map should satisfy the usual identities
for an action.
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The category ShG(X) of all such G{sheaves, and action preserving maps between
them, is a topos. It is called the classifying topos of the groupoid G � X. Such
a classifying topos always has enough points. In fact, any (ordinary) point x 2 X
de�nes a point �x:S ! ShG(X), by

�x�(E) = Ex = p�1(x):

The collection of all these points �x is jointly conservative.
Our main aim is to prove that every topos with enough points is, up to equiva-

lence, the classifying topos of some topological groupoid:

Theorem 1.1 Let E be any topos with enough points. There exists a topological
groupoid G� X for which there is an equivalence of topoi

E �= ShG(X):

We end this introductory section with some comments on related work. Repre-
sentations of categories of sheaves by groupoids go back to Grothendieck's Galois
theory ([4]). In [8], a general theorem was proved, which is similar to our result,
and which states that for every topos E (not necessarily with enough points) there
is a groupoid G� X in the category of locales (\pointless spaces") for which there
is an equivalence E �= ShG(X). This theorem was sharpened, again in the context
of locales, in [7]. The basic idea for our construction comes from the latter paper.

We wish to point out, however, that our result for topoi with enough points is not
a formal consequence of any of these theorems. Moreover, our proof is di�erent. The
proofs in [8] and [7] depend essentially on change{of{base techniques, the internal
logic of a topos, and the behaviour of locales in this context. These techniques
cannot be applied to the present situation. In fact, we believe that the proof of our
theorem is much more accessible and direct.

2 Description of the groupoid

Let E be a topos with enough points. We recall the de�nition of the space X = XE

from [2], x2, and show that it is part of a groupoid G � X. First, although the
collection of all points of E is in general a proper class, there will always be a set of
points p for which the functors p� are already jointly conservative [5], Corollary 7.17.
Fix such a set, and call its members small points of E. Next, let S be an object
of E with the property that the subobjects of powers of S, i.e., all sheaves B � Sn

for n � 0, together generate E. For example, S can be the disjoint sum of all the
objects in some small site for E. Let I be an in�nite set, with cardinality so large
that

card(Sp) � card(I)

for all small points p of E.
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In general, if A is any set with card(A) � card(I), we call an enumeration of A
a function �:D = dom(�)! A, where D � I and ��1(a) is in�nite for each a 2 A.
These enumerations carry a natural topology, whose basic open sets are the sets

Vu = f� j u � �g; (2)

here u is any function fi1; : : : ; ing ! A de�ned on a �nite subset of I, and u � �

means that ik 2 dom(�) and �(ik) = u(ik), for k = 1; : : : ; n. Leaving the index set
I implicit, we denote this topological space by

En(A);

and call it the enumeration space of A.
The space X, involved in the groupoid, is de�ned by gluing several of these

enumeration spaces together. A point of X is an equivalence class of pairs (p; �),
where p is a small point of E and � 2 En(Sp) is an enumeration of the stalk Sp.
Two such pairs (p; �) and (p0; �0) are equivalent, i.e., de�ne the same point of X,
if there exists a natural isomorphism � : p� ! p0� for which �0 = �S � �. (Note that
for such a � , its component �S is uniquely determined by � and �0, because � is
surjective.) In what follows, we will generally simply denote a point of X by (p; �),
and we will not distinguish such pairs from their equivalence classes whenever we
can do so without causing possible confusion. The topology on the space X is given
by the basic open sets Ui1 ;:::;in;B, de�ned for any i1; : : : ; in 2 I and any B � Sn, as

Ui1;:::;in;B = f(p; �) j (�(i1); : : : ; �(in)) 2 Bpg: (3)

Observe that this is well{de�ned on equivalence classes; i.e., if (p; �) � (p0; �0)
by an isomorphism � as above, then �(i) 2 Bp i� �0(i) 2 Bp0, where we write
�(i) = (�(i1); : : : ; �(in)) and similarly for �0.

Next, we de�ne the space G of arrows. The points of G are equivalence classes
of quintuples

(p; �)
�
! (q; �);

where (p; �) and (q; �) are points of X as above, and �: p� ! q� is a natural

isomorphism. (We do not require that � = �S � �.) Two such (p; �)
�
! (q; �)

and (p0; �0)
�0

! (q0; � 0) represent the same point of G whenever there are isomor-
phisms � : p� ! p0� and �: q� ! q0� such that �0 = �S � � and �0 = �S � �,
while in addition �� = �0� . The topology on G is given by the basic open sets
Vi1;:::;in;B;j1;:::;jn;C = Vi;B;j;C de�ned by

Vi;B;j;C = f(p; �)
�
! (q; �) j �(i) 2 Bp; �(j) 2 Cq; and �(�(i)) = �(j)g:

Here we have again used the shorter notation �(i) for (�(i1); : : : ; �(in)), etc. Note, as
above, that these basic open sets are well{de�ned on equivalence classes. It remains

to de�ne the structure maps (x1(1)) of the groupoid. For an arrow g = [(p; �)
�
!

(q; �)], its source and target are de�ned by

s(g) = (p; �) and t(g) = (q; �):
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The maps s and t are well{de�ned on equivalence classes, and are easily seen to
be continuous for the topologies on X and G as just de�ned. For two arrows g =

[(p; �)
�
! (q; �)] and h = [(q0; �0)

�
! (r; 
)] for which [q; �] = [q0; �0] as points of X,

the composition h � g in G is de�ned as follows: since (q; �) � (q0; �0), there is an
isomorphism � : q� ! q0� so that � 0 = �S � �. De�ne h � g to be the equivalence class
of

(p; �)
���S���! (r; 
):

It is easy to check that his de�nition does not depend on the choice of � , is again
well{de�ned on equivalence classes, and is continuous for the given topology on
G and the �bred product topology on G �X G. Finally, the identity u:X ! G

and the inverse i:G ! G are the obvious maps u(p; �) = [(p; �)
id
! (p; �)] and

i[(p; �)
�
! (q; �)] = [(q; �)

��1

! (p; �)].
This completes the de�nition of the topological groupoid G� X.

3 Review of locally connected maps

Before we turn to some basic properties of the groupoid G � X, we need to recall
some elementary properties of locally connected (or \locally 0-acyclic" [10]) maps
between topological spaces. These properties are all analogous to well-known prop-
erties of locally connected maps of topoi. For spaces, however, the de�nitions and
proofs are much simpler, and it seems worthwhile to give an independent presenta-
tion.

A continuous map f :Z ! Y of topological spaces is called locally connected (l.c.)
if f is an open map, and Z has a basis of open sets B with the property that for
any y 2 Y , and any basic open set B 2 B, the �bre By = f�1(y) \ B is connected
or empty.

Lemma 3.1 (i) The composition of two locally connected maps is l.c.

(ii) In a pullback square

Z 0 //

��
f 0

Z

��
f

Y 0 // Y;

if f is l.c. then so is f 0.

(iii) Any local homeomorphism (sheaf projection) is l.c.

(iv) If the composition f = p � g:Z ! E ! Y is l.c. and p:E ! Y is a local
homeomorphism then g is l.c.

Proof. These are all elementary. We just remark that for (i), one �rst proves
that for a l.c. f :Z ! Y with basis B as above, f(S)\B is connected for every open
B 2 B and any connected subset S � f(B). Then, if g:Y ! W is another l.c. map
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with basis A for Y , the sets B \f�1(A), for B 2 B and A 2 A with A � f(B), form
a basis for Z witnessing that g � f is l.c. 2

Proposition 3.2 For any l.c. map f :Z ! Y there exists a unique (up to homeo-
morphism) factorization

Z
c
� �0(f)

p
! Y; f = p � c;

where p is a local homeomorphism and c is a l.c. map with connected �bres.

Proof. We de�ne the space �0(f): the points are pairs (y;C) where y 2 Y and
C is a connected component of f�1(y). To de�ne the topology on �0(f), let B be
the collection of all those open sets B � Z for which By is empty or connected
(8y 2 Y ). Then B is a basis for Z. The basic open sets of �0(f) are now de�ned to
be the sets

B� = f(y; [By]) j y 2 f(B)g;

where [By] is the connected component of f�1(y) which contains By = f�1(y) \ B,
and B ranges over all elements of B.

To see that this is a basis, suppose (y;C) 2 B� \ A�. Thus, A;B 2 B and
C � Ay \ By. Since C is connected, there is a chain of basic open sets

A = B0; B1; : : : ; Bn = B

in Z with the property that Bi \ Bi+1 \ C 6= ; (i = 0; : : : ; n� 1). Now let

D = (B0 [ � � � [Bn) \ f
�1(

n�1T

i=0
f(Bi \Bi+1)):

Then D 2 B, and (y;C) 2 D� � B� \A�.
Now f :Z ! Y factors into a map c:Z ! �0(f), c(z) = (f(z); [z]) where [z] is

the component of f�1f(z) containing z, and a map p:�0(f)! Y , p(y;C) = y. This
map p restricts to a homeomorphism B� ! f(B) for each B 2 B, hence is a local
homeomorphism. Thus c is a locally connected map by 3.1(iv) and the �bers of c
are evidently connected, since c�1(y;C) = C � f�1(y).

The uniqueness of this factorization is easy, and we omit the proof. 2

Corollary 3.3 (i) Let f :Z ! Y be a l.c. map. Then the pullback functor of
sheaves

f�: Sh(Y )! Sh(Z)

has a left adjoint f!: Sh(Z)! Sh(Y ).

(ii) For any pullback square of topological spaces

Z 0

��
f 0

//b
Z

��
f

Y 0 //
a Y

and f l.c. the projection formula a�f 0! = f!b
� holds.
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One also says, that the \Beck{Chevalley condition" holds for this square.
Proof. In the proof, we identify the category of sheaves E over Z with that of

local homeomorphisms p:E ! Z.
Ad (i). For a local homeomorphism p:E ! Z, the composite f � p is l.c. by

Lemma 3.1(i) and (iii), so factors uniquely as f � p = (E � �0(f � p) ! Y ) as in
Proposition 3.2. De�ne f!(E) to be the sheaf �0(f � p)! Y . Thus, by construction,
the stalk of f!(E) at y is the set of connected components of (f � p)�1(y),

f!(E)y = �0((fp)
�1(y)): (4)

For adjointness, let q:F ! Y be a sheaf on Y , and let �:E ! f�(F ) = F �Y Z be
a map. Then �� = �1 ��:E ! F is a map over Y , i.e., q � �� = f � p. Since the �bres
of q are discrete, �� is constant on the connected components of each �bre (fp)�1(y),
hence factors uniquely as a map f!(E)! F .

Ad (ii). For a sheaf E on Z, the adjointness of part (i) provides a canonical map
f!b

�(E) ! a�f 0! (E). It follows from (4) that this map is an isomorphism on each
stalk, hence an isomorphism of sheaves. 2

4 Properties of the groupoid

In this section, we present some properties of the groupoid G � X, de�ned in x2,
which will enter into the proof of the theorem, to be given in the next section.

Before going into this, we recall from [2] that the enumeration spaces En(A)
described in x2 are all connected and locally connected; in fact, each basic open set
of the form Vu is connected. For a (small) point p:S ! E, the enumeration space
En(Sp) is contained in our space X, via the obvious map

ip: En(Sp)! X; ip(�) = (p; �):

This map is a continuous injection (but not necessarily an embedding).

Proposition 4.1 The �bres of the source and target maps s; t:G ! X are enu-
meration spaces: for a point (p; �) 2 X, there are homeomorphisms s�1(p; �) �=
En(Sp) �= t�1(p; �).

Proof. It su�ces to prove this for the source map. Fix (p; �) 2 X. Note �rst

that any point (p; �)
�
! (q; �) in G is equivalent to the point (p; �)

id
! (p; ��1

S � �);
in other words, each equivalence class has a representation of the form

(p; �)
id
! (p; �): (5)

Thus, the evident map j(p;�): En(Sp) ! G de�ned by � 7! [(p; �)
id
! (p; �)] is a

bijection into s�1(p; �). Now consider a basic open set V in G as described in x2, of
the form

V = f(p; �)
�
! (q; �) j �(i) 2 Bp; �(j) 2 Cq; �(�(i)) = �(j)g:
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Representing equivalence classes in the form (5), we can also write

V = f(p; �)
id
! (p; �) j �(i) 2 Bp; �(j) 2 Cq; �(i) = �(j)g:

Thus, for (p; �) �xed, and for s1 = �(i1),: : : , sn = �(in), we see that

j�1
(p;�)(V ) = f� 2 En(Sp) j s1 = �(i1); : : : ; sn = �(in)g; (6)

if (s1; : : : ; sn) 2 Bp\Cp, and empty otherwise. But the right hand side of (6) exactly
describes a standard basic open set (x2(2)) in the enumeration space En(Sp). 2

Proposition 4.2 The source and target maps are locally connected.

Proof. Again, it su�ces to do one of the two, say the source map. Consider a
basic open set V � G as in the previous proof,

V = f(p; �)
id
! (p; �) j �(i) 2 Bp; �(j) 2 Cq; �(i) = �(j)g:

Then s(V ) = f(p; �) j �(i) 2 Bp and 9� 2 En(Sp)(�(i) = �(j) 2 Cp)g = f(p; �) j
�(i) 2 Bp\Cpg, and this is the union of basic open sets Vu inX, where u ranges over
all partial functions u: fi1; : : : ; ing ! Sp with u(i) = (u(i1); : : : ; u(in)) 2 Bp \ Cp.
Thus s is an open map. Furthermore, the proof of Proposition 4.1 shows that under
the identi�cation En(Sp) �= s�1(p; �), the set V \s�1(p; �) corresponds to a standard
basic open set in En(Sp). In particular, V \ s�1(p; �) is connected. This shows that
s is a locally connected map. 2

Next, we recall from [2] that there is a topos morphism

': Sh(X)! E;

described at the level of the stalks by

'�(E)(p;�) = Ep;

for each point (p; �) 2 X. The following lemma was proved in [2]:

Lemma 4.3 The functor '�: E ! Sh(X) has a left adjoint '!. Furthermore, for
each (small) point p:S ! E, there is a commutative (up to isomorphism) square

Sh(En(Sp)) //
ip

��
�

Sh(X)

��
'

S //p
E

for which the projection formula

�!i
�

p = p�'!

holds.
(Here S = Sets = Sh(pt), while � and ip are induced by the continuous maps of

spaces pt
�
 En(Sp)

ip
! X.)
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Proposition 4.4 The source and target maps s; t:G� X �t into a square of topos
morphisms

Sh(G) //t

��
s

Sh(X)

��

'

Sh(X) //'
E

which commutes up to a canonical isomorphism �: s�'� �= t�'�. Moreover, the
projection formula holds for this square, i.e., the induced natural transformation

�: s!t
�! '�'!

is an isomorphism.

Proof. For a point g = [(p; �)
�
! (q; �)] of G, and for any object E of E, we

have

s�'�(E)g = Ep;

t�'�(E)g = Eq;

and the stalk of the isomorphism �E: s�'�(E)! t�'�(E) at the point g is de�ned to
be the isomorphism �E:Ep ! Eq. (It is easy to check that �E is continuous, using
the explicit description of the topology on '�(E) given in [2].)

Next, we prove for each sheaf F on X that s!t�(F ) = '�'!(F ) (or more precisely,
that the canonical map s!t�(F )! '�'!(F ) is an isomorphism.) It su�ces to check
that s!t�(F )x = '�'!(F )x for the stalks at an arbitrary point x = (p; �) in X.
Consider for this the diagram

Sh(En(Sp))

��
�

//
j(p;�)

Sh(G)

��
s

//t Sh(X)

��

'

S //x Sh(X) //'
E

(7)

Here the left-hand square comes from a pullback of topological spaces (Proposi-
tion 4.1), and j(p;�) is as de�ned in the proof of 4.1. Since s is locally connected by
Proposition 4.2, Corollary 3.3(ii) gives the projection formula

x�s! = �!j
�

(p;�) (8)

for the left hand square in (7). Moreover, since t�j(p;�) = ip and '�x = p, Lemma 4.3
gives that

(' � x)�'! = �!(t � j(p;�))
� (9)

for the composed rectangle. Thus

s!t
�(F )x = x�s!t

�(F )
= �!j

�

(p;�)t
�(F ) (by (8))

= x�'�'!(F ) (by (9))
= '�'!(F )x;

2
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5 Proof of the theorem

We will now prove the theorem stated in x1, and repeated here in the following form.

Theorem 5.1 The functor '�: E ! Sh(X) induces an equivalence of categories
E �= ShG(X).

Proof. By de�nition of the set of small points p of E, the functor '� is faithful.
It follows that '� induces an equivalence between E and the category of coalgebras
for the comonad '�'� on Sh(X) (see e.g. [9]). By standard category theory ([3, 9])
the latter category is in turn equivalent to that of algebras for the monad '�'!

on Sh(X). Thus, to prove the theorem, it su�ces to show that for any sheaf F
on X, algebra structures

� :'�'!(F )! F (10)

are in bijective correspondence to groupoid actions

�:F �X G! F: (11)

By the projection formula '�'!(F ) = s!t
�(F ), maps � as in (10) correspond to maps

s!t
�(F ) ! F over X, and hence to maps ~� : t�(F ) ! s�(F ) over G, since s! is left

adjoint to s�. By composing with the projection s�(F ) = G�X F ! F , these maps
~� correspond to maps

� �:F �X G = s�(F )! F:

For an arrow g in G and a point � 2 Fs(q), we write

� � g =def �
�(�; g): (12)

To prove of the theorem, it now su�ces to verify that � in (10) satis�es the unit
and associativity axioms for an algebra structure if and only if the corresponding
multiplication (12) satis�es the unit and associativity laws for an action.

To this end we �rst make the correspondence between (10) and (12) more explicit:
For a point (p; �) 2 X, we have by 4.3 and 4.4,

'�'!(F )(p;�) = �!i
�

p(F )

= the set of connected components of i�p(F ).

So for a point (p; �) 2 X, any � 2 F(p;�) de�nes a connected component [�] 2 i�p(F ),
and �(p;�)([�]) then de�nes a point in F(p;�). Now let g be any arrow in G. Since

(p; �)
�
! (q; �) is equivalent to (i.e., de�nes the same point of G as) (p; �)

id
!

(p; �S � �) we may represent g in the form

g = [(p; �)
id
! (p; �)]:

Then, for � 2 F(p;�), the action (12) is de�ned from � by

� � g = �(p;�)([�]): (13)
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For � , the laws for an algebra structure assert that for any � 2 F(p;
),

�(p;
)([�]) = � (14)

�(p;�)([�(p;�)([�])]) = �(p;�)([�]): (15)

But clearly, (14) states that � � 1 = �, where 1 is the identity arrow [(p; 
)
id
! (p; 
)]

in G, while (15) states that (� � h) � g = � � (h � g), where g and h are the arrows in
G represented by

[(p; �)
id
! (p; �)] and [(p; �)

id
! (p; 
)];

respectively. Since any composable pair of arrows in G can be represented in this
form, (15) is equivalent to the associativity condition for the action by G on F , and
the theorem is proved. 2

6 The action by the group Aut(I)

We conclude this paper with some remarks on the action by the group H = Aut(I)
of bijections �: I ! I, from the set I to itself. There is a natural continuous action
of H on the space X, de�ned explicitly by

(p; �) � � = (p; � � �);

and which is well{de�ned on equivalence classes.
Let ShH(X) denote the topos of H{equivariant sheaves on X. We observe �rst

that each sheaf '�(E) onX carries a natural action byH, so that from ' one obtains
a topos morphism  :

 : ShH(X)! E:

Explicitly,  �(E) is the same sheaf on X as '�(E),

 �(E) = f(p; �; e) j (p; �) 2 X; e 2 Epg

and H acts on  �(E) by acting trivially in the e{coordinate.
We will prove the following proposition:

Proposition 6.1 The morphism  : ShH(X)! E has the following properties:

(i)  � is full and faithful.

(ii)  � commutes with exponentials, i.e., the canonical map

 �(FE)!  �(F ) 
�(E)

is an isomorphism, for any two sheaves E and F in E.
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(iii)  � is bijective on subsheaves, i.e., for any sheaf E in E,  � induces an iso-
morphism

SubE(E)! SubH( 
�(E)):

Here SubE(E) is the set of subsheaves of E in E, while SubH( 
�(E)) is the set

of H{invariant subsheaves of  �(E).
Property (i) is actually a consequence of property (iii). Using standard terminol-

ogy ([6]), (i) expresses that  is connected, (iii) that it is hyperconnected. Since any
hyperconnected (in fact, any open) morphism with property (ii) is locally connected,
we can rephrase Proposition 6.1 as

Corollary 6.2 The morphism  : ShH(X) ! E is locally connected and hypercon-
nected.

Note that ShH(X) is an �etendue ([1]). Thus any topos with enough points
admits a locally connected hyperconnected cover from an �etendue. This is related
to a result of [12], stating that any topos (not necessarily with enough points) admits
a hyperconnected morphism from a (\localic") �etendue.

Proof of Proposition 6.1. As said, (i) is a consequence of (iii). For (ii), note �rst
that ' naturally factors as

Sh(X) //�

%%
'

L
L
L
L
L
L
L
L
L
L
L

ShH(X)

��
 

E:

The inverse image �� simply `forgets' the H{action. In particular, �� is conservative
(i.e., re
ects isomorphisms). Moreover, since H is a discrete group, �� preserves
exponentials. (In fact, � is an `atomic' morphism.) To show that  � preserves
exponentials, it therefore su�ces to show that '� does. We prove this in a separate
lemma.

Lemma 6.3 The functor '�: E ! Sh(X) preserves exponentials.

Proof. This follows from Theorem 5.1 and [11], Theorem 3.6(b), because
s; t:G � X are locally connected. Alternatively, from the explicit description
of '! in [2] together with Lemma 4.3, one easily checks that the canonical map
'!(S�'�E)! '!(S)�E is an isomorphism for each sheaf S on X and each E 2 E.
It then follows in the standard way by adjointness that '� preserves exponentials.

2

We return to Proposition 6.1, and prove part (iii). Let E 2 E, and let S � '�(E)
be an arbitrary subsheaf. We have to show that if S is H{invariant, then S = '�(U)
for a (necessarily unique) subsheaf U � E. By Theorem 5.1, it su�ces to prove that
if S isH{invariant then it is also G{invariant. To this end, consider any arrow g inG.

As in the the proof of 5.1, it can be represented in the form g = [(p; �)
id
! (p; �)].
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Let e 2 Ep and assume that s = (p; �; e) 2 S(p;�) � E(p;�) ' Ep. We have to show
that s � g = (p; �; e) 2 S(p;�). Choose a section �:Ui;C ! S through s, de�ned on
a basic open neighbourhood Ui;C of (p; �). By the description of the topology on
'�(E) in [2], we may assume that � is of the form �(q; 
) = fq(
(i)) where f :C ! E

in E. In particular, s = �(p; �) = fp(�(i)).
Now choose � 2 H so that � � �(i) = �(i). Then (p; � � �(i)) 2 Ui;C , so

(p; � � �; e) = �(p; � � �) 2 S(p;���). By invariance of S under the action by �, also
(p; �; e) 2 S(p;�), as was to be shown. 2
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