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Abstract 

 

In southern Africa, coal is a relatively abundant and cheap fossil fuel which is a 

major source of energy and a huge income generator. Although coal has found a 

lot of use, it is an anthropogenic source of trace element emissions and although 

these trace elements (TEs) may occur in parts per million, mass consumption of 

coal during utilisation results in the release of large quantities of potentially 

harmful TEs to the environment. With reported diseases like arsenism, minamata 

disease and selenosis (Zheng et al., 1999) from coal combustion emissions, it is 

important to regulate TE emissions. Due to global perception, the following TEs 

were chosen for consideration: As, B, Be, Co, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se 

and V (which were analysed by ICP-MS) and Hg (which was analysed using an 

automatic Hydride Generation-Flow Injection Mercury System).  

There is limited data on TEs in African coals and whilst no TE control legislation 

exists, Pb in petrol is currently being regulated in South Africa. Important factors 

such as the mode of occurrence of TEs and their associations with other minerals 

in coal influence, or affect, the fate of TEs release during coal utilisation.  

Three run-of-mine (ROM) belt cut coal samples were supplied by Hwange 

Colliery and two South African samples were used for comparison. The coal 

samples were subjected to density fractionation and sequential leaching. Mineral 

matter was determined using XRD and coal petrography was used to consider the 

organic components. Comparisons of the ROM coals with average global and 

mean South African values were carried out. Generally, TEs like Cd, Sb and Se in 

ROM samples of both coalfields appear consistent with published SA data and 

global average values, whilst values of Hg and Mn in all the coal samples are 

above the global and SA average values.  

Density fractionation data show most TEs are concentrated in higher density 

fractions, hence showing an association with minerals over organic matter. Most 

TEs in Zimbabwean coals seem to show a strong correlation with mineral matter 
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which should be able to be removed prior to coal utilisation during efficient 

beneficiation practises.  
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Chapter 1 

Introduction 

Coal still remains a versatile fossil fuel, finding use in a variety of domestic and 

industrial applications. About 25% of the world’s primary energy is thermal 

energy (IEA, 2012); America’s coal use accounts for 39% of its electricity 

(ACCCE, 2013). Following the Fukushima nuclear disaster in Japan, countries 

like Germany have passed legislation to stop using nuclear energy and build more 

thermal power stations as well as opting for renewable means to provide 

electricity for their huge economy (Carrasco, 2011). In southern Africa coal is 

relatively abundant, and in Zimbabwe it is being produced for both local and 

global markets. In South Africa, coal is a major abundant indigenous resource 

accounting for more than 70% of coal resources in Africa and generating over 

94% of electricity used around the country (World Coal Association, 2013).  It is 

the back bone of South Africa’s industry, finding use both in the energy sector as 

well as the metallurgical industry where it is used to reduce iron and steel 

(Snyman and Botha, 1993). South Africa is also expanding its energy supplies to 

assist its growing economy by building two new thermal power stations, namely 

Medupi in the Limpopo province and Kusile in the Mpumalanga province. 

Due to large quantities of coal burnt, coal combustion is an anthropogenic (man-

made) way of releasing large quantities of trace elements (TEs) into the 

environment, creating environmental and health risks (Wagner and Hlatshwayo, 

2005). Release of these TEs has become an area of great concern due to their 

detrimental effects to health and environment. Important factors like their mode of 

occurrence and their associations with other minerals in coal influence or affect 

the fate of TEs during coal combustion (Spears et al., 2007). The mode of 

occurrence of TEs in coal refers to the organic and inorganic affinity of that 

element in coal. Selective mining and/or coal washing could be applied effectively 

to reduce the emission of these TEs after understanding the distribution of these 

TEs in coal. 

Trace elements in coal are elements which occur at concentrations less than 1000 

ppm. Although they occur at low concentrations (even parts per billion, ppb, or 



2 

 

parts per trillion, ppt, in coal), due to the high quantities of coal which are utilised, 

their quantities emitted to the environment are potentially high. Though some TEs 

are essential for normal growth in plants and human beings, when concentrations 

exceed their nutritional needs, they become toxic. Gupta (1999)  listed 25 TEs 

including Al, Sb, Hg, Cd, Ge, V, Si, Rb, Ag, Pb, Bi, and Ti, which are not needed 

for human growth, development, and reproduction, but still occur more or less 

constantly in living tissues. These TEs are usually acquired by the body through 

environmental contaminants. Trace elements usually find their way into the 

human body either by direct absorption through the skin, by inhalation or 

ingestion. The extent to which these TEs may have hazardous impact is dependent 

on the period of exposure, concentration and quantity of material used (Gupta, 

1999). Zheng et al. (1999) attributed diseases like arsenism and endemic selenium 

intoxication in southern China to the use of high As and Se coals in unvented 

ovens.  

Literature reveals that there is great variation in concentration of TEs in coals 

from different parts of the globe (Swaine, 1990; Ketris and Yudovich, 2009). 

These differences exist due to differences in the factors controlling the dispersion 

and accumulation of chemical elements in coal forming basins. This project aimed 

to determine TEs in selected Zimbabwe Hwange coals (no previous data available 

in literature) and two selected South African coals, and to compare the TE 

fingerprints of these two Karoo-aged coal sample sets from different coal basins 

with each other and with global values. 

Hwange Colliery is located in Hwange town, in the Matabeleland North Province 

in Zimbabwe. During early lower Permian age at the end of glaciatial period, a 

large inland sea was formed between Zambia and Zimbabwe, forming the mid 

Zambezi valley basin (Duguid, 1980). The mid Zambezi Valley basin contains 

approximately 92.5% of Zimbabwe’s coal reserves, which contain immense 

amounts of steam coal and relatively very little coking coal (Moyo, 2012). 

1.1 Research problem  

Trace elements have become a major concern due to their detrimental effects on 

the environment as a result of large quantities emitted during coal utilisation; 
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hence there is a need to study and understand their occurrence and determine 

mitigation options. Whilst there is limited South African data on TEs (Willis, 

1983; Waitling and Waitling, 1982; Cairncross, 1990; Wagner and Hlatshwayo, 

2005; Dabrowski et al., 2008; Bunt and Waanders 2009; Wagner and Tlotleng, 

2012), there is no published data on TE in Zimbabwean coals.  

1.2 Aim 

To determine TEs in selected Zimbabwean coals and hence compare with TEs in 

selected South African coals.  

1.3 Objectives  

 To compare the TE values obtained for the selected southern African coals 

with average global values and mean South Africa (SA) values. 

 To compare the data from both coalfields and find correlations between 

them. 

 To infer the modes of occurrence of trace elements in these coal samples 

by using density fractionation and leaching sample preparation techniques. 

 To compare the density fractionation and leaching sample preparation 

methods. 

1.4 Scope of the dissertation 

This document outlines the work which was covered during the research project to 

achieve a MScEng in Chemical Engineering.  Chapter 2 presents the Literature 

Review. Chapter 3 outlines the methodology undertaken to fulfill the work of this 

project, first discussing the coal characterization techniques, followed by the 

density fractionation and leaching experiments.  Chapter 4 concerns the Results 

and Discussion section of this document, laid out in the same format as the 

methodology section. The conclusions of this work are outlined in Chapter 5, 

followed by recommendations. 
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Chapter 2 

Literature Review 

In this chapter a theoretical framework for the research is provided. Coal origin 

and formation in both Zimbabwean and South African coalfields are outlined. The 

structure and constituents of coal are discussed. Previous work on TEs is 

discussed, as well as methods of identifying TEs in coal. Health and 

environmental effects of TEs in coal are outlined in this chapter. 

Understanding the origin of coal and the factors influencing coal formation are 

important to locate coal resources, their extent, and quality, as well as utilising 

them in an environmentally friendly manner (Malvadkar et al, 2004). This project 

seeks to address TEs in coal and their modes of occurrence as a means of utilising 

the information to reduce emissions of hazardous air pollutants.  

2.1 The Origin of Coal 

Coal is a combustible sedimentary rock composed of lithified plant debris which 

was originally deposited in a swampy depositional environment to form soft, 

spongy sediment called peat (Ward and Suárez-Ruiz, 2008). Coal contains 

varying amounts of C, H, N, O, S, as well as trace amounts of other elements and 

mineral matter. It is a heterogeneous and extremely complex material which 

exhibits a wide range of physical properties and varies in colour from brown to 

black due to rank changes. There are two sequential processes of coal formation, 

peatification and coalification.   

2.1.1 Peatification  

Peatification is the biochemical process of converting plant material into peat by 

anaerobic bacteria (Malvadkar et al., 2004). 

2.1.2 Coalification  

Coalification is the conversion of buried peat to increasingly higher ranking coal 

by geological processes. Physical and chemical processes brought about by 

compaction and elevated temperatures with prolonged burial at depths of up to 

several kilometers and over periods of up to several hundred million years lead to 

the coalification process (Ward and Suárez-Ruiz, 2008). Coalification is a 
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continuing process involving increases in both temperature and pressure resulting 

from burial in the Earth, and as it proceeds coal of increasing hardness, calorific 

value and reduced tar, oil and gas content is produced (Schweinfurth and 

Finkelman, 2003). Organic matter, which is relatively rich in water, oxygen, and 

hydrogen gradually loses these constituents, becoming highly enriched in fixed 

carbon as coalification proceeds. Some of the carbon and hydrogen are converted 

to methane gas (CH4) in this process. Coalification of the less massive parts of 

trees and small plants resulted in the formation of open structure deposits, fusain 

(mineral charcoal) and durain (dull coal) which enabled enrichment by mineral 

matter both by chemical reactions and by simple admixture (Schweinfurth and 

Finkelman, 2003). 

Increasing temperature is considered more important than increasing pressure in 

promoting coalification, as higher temperatures eliminate moisture and volatile 

elements therefore producing coals of higher rank and higher calorific value 

(Schweinfurth and Finkelman, 2003).  

Different geological ages have led to the formation of coal in the northern and 

southern hemispheres. The Carboniferous Period in the northern hemisphere 

(Europe and North America), which consisted of warm periodic flooding or 

drought conditions, led to the formation of vitrinite rich deposits varying in rank 

from brown coal to anthracite coal (Malvadkar et al., 2004). In the southern 

hemisphere, which is also known as Gondwanaland (Africa, Australia, South 

America and the Antarctic),  Permian swamps existed under cold to cool 

temperature conditions associated with the decline of a massive cold ice age 

(Falcon, 1986) resulting in thinner inertinite-rich deposits. The main differences in 

northern and southern Hemisphere coals are shown in Table 2.1. 
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Table 2. 1: Main Features distinguishing Northern and Southern Hemisphere 

coals (Falcon, 1986) 

 

Feature Northern hemisphere Southern Hemisphere 

Climate Hot, humid, equatorial Cold-cool-warm temperature; 

  

wet and dry 

Plant growth 

Rapid, long continuous 

growing  

Moderate, short growing 

seasons 

 

Seasons 

 Rate of plant degradation Relatively rapid Slow to moderately rapid 

Geological setting and 

coal- Uncompacted deep, rapidly  Relatively stable continental   

bearing basins subsiding geosynclines (cratonic and  

  

intercratonic) regions 

Depositional conditions Wide coastal lowlands Fluviatile, lacustrine, deltaic,  

  

coastal back swamps 

Geochemical conditions Predominately marine Fresh water, brackish to marine 

Plants Lycopod flora Glossopterid flora 

Factors inducing rank Geothermal heat from deep   Geothermal heat from crustal  

 

burial and  fractures and local igneous 

  pressure ( regional) intrusions (regional and local) 

 

2.2 Coal formation in southern Africa 

Gondwana coal deposits in southern Africa are found in two major tectonic 

settings: cratonic platforms and rifted fault-bounded basins (Snyman and Botha, 

1993). The major coal-bearing strata in southern Africa occur in the Karoo 

Sequence and these coals range from Early Permian through to Early Triassic, and 

are predominately bituminous to anthracite in rank (Falcon, 1989). Trace elements 

may be concentrated in specific coal beds and have different affinities for either 

the organic compounds or the mineral matter of the coal. The coals are 

characterised by high inertinite, variable semifusinite, vitrinite, and low sulphur 

content (Cadle et al., 2000). South African coal basins occur in intracratonic rifts 

whilst the Hwange (Zimbabwe) coal basins occur in the craton of the Zambezi 

basin.  



7 

 

2.2.1 Coal Formation in Zimbabwe 

In Zimbabwe, coal deposits occur in the lower part of the thick succession in the 

Lower Karoo and are all of the Permian age. The main areas of coal deposition are 

the mid-Zambezi basin in the north and north-west (where Hwange coalfields 

are), the Mazunga basin in the south (which constitutes the eastern part of the Tuli 

basin), and the Sabi-Limpopo in the south and the south-east which are the Save 

and Tuli basin put together (Johnson et al., 1996), as shown in Figure 2.1. The 

Hwange (formerly Wankie) coalfields are shown in Figure 2.2 

 

Figure 2.1: Karoo basins in Zimbabwe (Johnson et al.,1996) 

 

Figure 2.2: Hwange (Wankie) coalfield in the Mid Zambezi basin (Moyo, 

2012) 
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Hwange Colliery is the only commercial coal mine in the Hwange coalfield and it 

is located in Hwange town (Matabeleland North Province), Zimbabwe. Duguid 

(1986) explained the Hwange coal measures using a facies model as shown in 

Figure 2.3.  The model shows the transgression of a freshwater lake (post-glacial) 

over a shoreline plain. 

 

 

Figure 2.3: The generalized facies model of the Hwange coal measures, 

during peat swamp times, based on borehole and field evidence (Duguid, 

1986) 

The coals in Zimbabwe are palaeoshoreline deposits, and peatification took place 

on the gently-shelving paleoplain (Duguid, 1980). Though deposition started on 

metamorphosed rocks, the coal bearing strata are unmetamorphosed. Coal-bearing 

strata were laid down on belts of crustal weakness which probably sagged as a 

result of high heat flow of the mantle. The Mid-Zambezi Basin was largely 

stripped by erosion, whilst the Mazunga Basin in the south and the Sabi-Limpopo 

Basin in the south and south-east were mostly covered by flood basalts, which 

terminated Karoo sedimentation (Duguid, 1980). A general stratigraphy of the 

Hwange main seam is shown in Figure 2.4. 
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Figure 2.4: The general stratigraphy of the Hwange Main Seam coal and the 

position of the No. 1 Seam around Hwange (Duguid, 1980) 

 

2.2.2 Coal Formation in South Africa 

South African coal deposits are hosted in the Karoo sequence of Carboniferous to 

Jurassic age (Snyman and Botha, 1993) primarily in the Permian as shown in 

Figure 2.5. The stratigraphy of the Karoo basin comprises Dwyka, Ecca, Beaufort 

and Stormberg groups, which represent sediments deposited in glacial, marine, 

fluviodeltaic, fluviolacustrine, dry and wet environments (Cadle et al., 2000). In 

South Africa, coal is found in 19 coal fields which contain coal ranging from low 

rank bituminous in the Free State to anthracite in Kwazulu Natal (KZN). Though 

these coalfields occur in the Karoo basin, coal formation in the KZN, Limpopo, 

Springbok Flats, and Waterberg coalfields have different stratigraphic 

terminologies (Cairncross, 2001). With the commercially exploited Witbank and 

Highveld coalfields nearing depletion, the Waterberg seems a likely replacement 

as it has the potential to contain the vast majority of the country’s remaining in 

situ virgin coal resources (Jeffrey, 2005).  



10 

 

 

Figure 2.5: The distribution of rocks of the Karoo sequence in South Africa 

and the subdivision of the Sequence within the main basin (Snyman and 

Botha, 1993). 

The Witbank-Highveld coals are hosted in the sedimentary succession of the 

Vryheid Formation of the mid-Permian Ecca Group of the Karoo Supergroup 

(Wagner and Hlatshwayo, 2005). These coals which formed in a cool to warm 

environment are low rank bituminous coals with high ash content of 20-30% 

(Wagner and Hlatshwayo, 2005). 

Waterberg coals occur in two basins, the Warmbaths and the Middleburg basins  

which have sedimentary rocks up to 5 000 m thick (Callaghan, 1993) and 

typically contain high vitrinite, high ash coals in the Kungurian Grootegeluk 

formation and high inertinite, low ash coals in the Artinskian Vryheid Formation 

(Wagner and Tlotleng, 2012). These two basins are both fault bonded grabens.  

2.3 Coal Classification 

Coal can be classified or grouped into different types, rank, carbon-hydrogen 

ratio, and volatile matter (Speight, 2005) according to certain properties.  
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2.3.1 Coal Rank 

Coal rank refers to the degree of metamorphism or coalification undergone by a 

coal and is a measure of the maturity of coal. It is assessed in terms of the fixed 

carbon content (the combustible solid matter left in coal after lighter volatile 

hydrogen rich compounds are driven off during coalification), moisture, calorific 

value, volatile matter and vitrinite reflectance; hence coal quality is largely 

determined by coal rank. 

As coal rank increases, the chemical composition of the vitrinite correspondingly 

changes; the vitrinite macerals become increasingly reflective as viewed under the 

petrographic microscope. The percentage reflection of a beam of normal incident 

white light from the surface of polished vitrinite is a function of the rank 

(maturity) of the maceral (Schweinfurth and Finkelman, 2003). Higher rank coals 

were buried more deeply and they were subjected to higher temperatures and 

pressures during and after burial; hence, older coals tend to be of a higher rank. 

Figure 2.6 shows the successive transformation of peat into different types of coal 

as geological processes apply pressure on the peat (Bowen and Irwin, 2008). 

 

Figure 2.6: Coal Formation (Bowen and Irwin, 2008) 
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Coal is usually divided into four ranks, from highest to lowest rank: anthracite, 

bituminous, subbituminous to lignite (which is comparable to brown coal) 

(Bowen and Irwin, 2008). About 1% coal reserves in a few countries is anthracite, 

which is mostly used in the metallurgical industry. In South Africa, 2% of the coal 

reserves are anthracite (Eberhard, 2011), whilst in Zimbabwe there have not been 

reports on anthracite reserves, although there is coking coal. 

Bituminous coal is used for electricity generation as well as for steel production. 

This category of coal dominates global coal with South Africa’s reserves 

constituting 90% bituminous coal found in South Africa and 100% of coal 

reserves found in Zimbabwe are bituminous. Brown coal is a third rank coal 

which is found in South Africa in very low amounts. 

2.3.2 Coal Type 

Coal type refers to the kind of plant material, which is the nature of the organic 

components of the coal. This is based on the relative amounts of constituent 

macerals (vitrinite, liptinite and inertinite) (Snyman, 1989; Moore and Shearer, 

2003). Coal type differences show most clearly in differences of volatile matter 

and hydrogen, which progressively diminish at higher ranks (Suggate and 

Dickinson, 2004).   

In hand specimens, coal usually shows more or less pronounced banded 

appearance due to accumulation of duller and brighter coal laminae (Van 

Krevelen and Schuyer, 1957). According to Van Krevelen and Schuyer (1957), 

Stopes in 1919 classified bright coal into vitrain and clarain and dull coal into 

durain and fusain on a macroscopic level. Microscopically coal is identified via 

macerals. 

2.3.2.1 Macerals 

Macerals are entities evolved from different organs and tissues of the original 

plant material during primary accumulation, peatification and the early stages of 

coalification (Falcon and Snyman, 1986). These are the particles of the organic 

matter. Identification of the plant materials of an individual coal maceral is 

important for determining the quality of the coal and hence its use.  
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The Heerlen nomenclature distinguishes between lithotypes (types of coal with 

the nature dependent on the original plant structure) and macerals, which are the 

homogenous microscopic organic constituents of coal (Van Krevelen  and 

Schuyer, 1957). Formation of macerals is dependent on a number of factors like 

type of plant community, climatic controls, ecological conditions, acidity value 

and the redox values. There are three maceral groups which occur in coal: 

liptinite, vitrinite, and inertinite. Each maceral group exhibits a distribution of 

densities; liptinite distributions do not overlap with other macerals (vitrinite and 

inertinite) whilst vitrinite density distributions overlap significantly with inertinite 

distributions (Dyrkacz et al., 1984). 

Liptinite 

Liptinite are finely ground macerated remains originally formed by spores, pollen, 

dinoflagellate cysts, leaf cuticles, plant resins and waxes (Padley, 1995). The 

liptinite group contains several subgroups based on these original plant parts 

namely alginite, reinite and sporinite. Liptinite macerals are more enriched in 

hydrogen than either vitrinite or inertinite, producing larger amounts and higher 

grades of liquid fuel when subjected to destructive distillation (Schweinfurth and 

Finkelman, 2003). Liptinite reflectance is the lowest among the maceral groups 

due to their dark colour in reflected light (Suárez-Ruiz and Ward, 2008). 

Vitrinite 

Vitrinite is one of the primary components of coal which results from the 

coalification of amorphous humic plant material.  It is derived from cell-wall 

material and the woody tissue of plants. Vitrinite has a shiny appearance 

resembling that of glass. Chemically vitrinite is composed of polymers, cellulose 

and lignin. Vitrinite is highly sensitive to heat and it becomes more vitreous, 

denser and tougher as it is subjected to higher heat levels. Coal scientists use an 

index of vitrinite reflectance to determine the level of heat or maturity to which 

coals have been subjected (Schweinfurth and Finkelman, 2003). Vitrinite 

dominates in northern hemisphere coals. 
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Inertinite 

Inertinite is a common maceral in most southern African coals. These are formed 

from barks, stem, leaves and roots that have been strongly altered and degraded 

under oxidising conditions before deposition, or by redox, biochemical, and 

chemical processes at the peat stage (Suárez-Ruiz and Ward, 2008). These 

macerals exhibit high degrees of aromatization and condensation with high levels 

of cross-linking (Suárez-Ruiz and Ward, 2008). A representative of inertinite is 

fusinite, or mineral charcoal, which formed when occasionally or seasonally peat 

swamps dried out and the surface peat either slowly got oxidised or caught fire, or 

growing plants were partially charred (Schweinfurth and Finkelman, 2003). Sub 

categories of inertinite include semifusinite and inertodetrinite. Compared to other 

macerals, inertinite is more inert and hence less reactive in carbonisation. 

 

2.3.3 Coal Grade 

Coal grade refers to the range of impurities in the coal, which is the extent of 

dilution by mineral matter. Coal grade reflects the extent to which accumulation 

of plant debris has been kept free of contamination by mineral matter including 

the periods before burial (i.e., during peat accumulation), after burial, and during 

rank advance (Ward and Suárez-Ruiz, 2008). Coal grade is based on the quantity 

of inorganic material (ash) left after complete combustion. Typically southern 

African coals have a low grade, that is they are rich in mineral matter.  

2.3.3.1 Mineral matter in coal 

The inorganic constituents of coal are all compounds that are not part of the 

organic coal. These are referred to as the mineral matter in coal (Speight, 2005). 

These minerals are made up of common elements including O, Al, Si, Fe, S and 

Ca. In coal, minerals normally occur as single crystals or clusters of crystals 

intermixed with the organic matter or fill void spaces in coal (Schweinfurth and 

Finkelman, 2003; Schweinfurth , 2009). Ash is formed from mineral matter in 

coal which is burnt in oxygen or air. The amount of mineral matter in coal varies 

from seam to seam and even within seams. Mineral matter in coal may be 
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classified as inherent mineral matter or adventitious mineral matter. Inherent 

mineral matter cannot be readily separated from the coal substance as it is closely 

associated with it. Adventitious mineral matter is inorganic material which is less 

loosely associated with coal and can be readily separated. Syngenetic minerals 

were initially present in the original plant tissue or they were introduced into the 

swamp from waterborne or windborne sediments. Epigenetic minerals followed 

the initial stages of coalification and were produced by water .precipitation.  

Trace elements associated with syngenetic minerals are finely disseminated in the 

coal matrix, hence they are difficult to fully separate from the organic substrate, 

whilst TEs associated with epigenetic or extraneous minerals may be liberated 

through coal washing (Bergh et al., 2011). 

Minerals can be subdivided into major, minor and trace elements. Trace elements 

and the main mineral groups are discussed further. Although 120 different 

minerals have been identified in coal, out of 33 common minerals only 8 are 

abundant enough to be termed major constituents of coal. Common minerals 

found in coal are shown in Table 2.2. Minerals mainly fall into five main groups: 

silicates, sulphide and sulphate minerals, carbonates and other minerals that 

include elements that may occur in trace amounts (Speight, 2005). Minerals 

contribute very little, if anything to coal utilisation (Ward, 2002) but can cause 

slagging, fouling, clinker formation or high ash formation. Coal ash can be used 

for various applications such as brick making or road building. After fully 

understanding the minerals in coarse and fine ash particles from the Sasol 

gasification process, anorthite/mullite is used in the refractory industry, whilst 

coarse ash size fractions are used as aggregates in road construction and bricks 

manufacture (Matjie and Van Alphen, 2008). The -38+ 20µm ash size fraction 

which is characterised by high proportions of aluminosilicates enhances 

pozzolanic reactivity which makes it suitable for the cement/concrete industry 

(Matjie and Van Alphen, 2008). The main mineral groups are discussed further 

below: (silicates, sulphides, sulphates and carbonates).  
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Table 2.2: Common minerals found in coal and their elemental composition 

(Schweinfurth and Finkelman, 2003; Nalbandian, 2012) 

 

Mineral matter Chemical Composition Remarks 

  Major Mineral Constituents   

      

Quartz SiO2   

Clay Minerals     

    Kaolinite Al2Si2O5(OH)4   

    Illite KAl4(AlSi7O20)(OH)4   

    Montmorilinite (1/2Ca.Na)0.7(Al,Mg,Fe)4[(Si,Al)4O10]2(OH)4.nH2O   

    Chlorite (Mg,Al,Fe)12[(Si,Al)8O20](OH)16 

May contain Mn, Be,Cr,Ni 

and other TEs 

Pyrite FeS2 

May contain As, Cd, Co, Hg, 

Ni, Sb and Se 

Calcite CaCO3   

Siderite FeCO3 May contain Mn. 

      

  Minor Mineral Constituents   

Analcime NaAlSi2O6.H2O   

Apatite Cas(PO4)3(OH,F,Cl)   

Barite BaSO4   

Chalcopyrite CuFeS2   

Clausthalite PbSe   

Crandalilite 

Group     

    Crandallite CaAl3(PO4)2(OH)5.H20   

    Florencite CeAl3(PO4)2(OH)6   

    Gorceixite BaAl3(PO4)2(OH)5.H20   

    Goyazite SrAl3(PO4)2(OH)5.H20   

Dolomite CaMg(CO3)2   

Feldspars (Ca,K,Na)AlSi3O8   

Galena PbS   

Marcasite FeS2 

May contain same elements as 

pyrite 

Monazite (Ce,La,Y,Th,Nd)PO4   

Rutile/Anatase TiO2   

Sphalerite ZnS May contain Cd 

Xenotime YPO4   

Zircon Zi[SiO4]   

  Trace Mineral Constituents   

Chromite FeCr2O4   

Gibbsite Al(OH)3   

Gold Au   

Gypsum CaSO4.2H2O   

Halite NaCl   

Magnetite Fe3O4   

Muscovite KAl2(AlSi3O10)(OH)2   
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Silicate Minerals 

Silicate minerals occur in coal chiefly as aluminosilicates (clays) and quartz and 

constitute between 60-90% of the total mineral matter in most bituminous coals 

(Raask, 1985). The presence of clays results in a loss in calorific value, and an 

additional economic penalty associated with ash handling and disposal (Spears, 

2000).  Some TEs such as Cr and V are associated with clay.  The most common 

clay mineral is kaolinite which is usually found within and associated with coals 

in most of the coal basins in the world (Speight, 2005). Clays may be of either 

syngenetic or epigenetic or detritus origin (Xiuyi, 2009). The second most 

abundant silicate is quartz, with up to 20 weight percent being common (Renton, 

1986). Ruppert et al. (1985) interpreted quartz to be dominantly authigenic with 

an association with vitrain and mineral-rich bands from petrographic data. About 

20% quartz is of detrital origin with an association with mineral-rich bands and 

clay-parting material. 

Sulphide Minerals 

The most common sulphides associated with coal are pyrite (FeS2) and marcasite 

(FeS2). Though pyrite and marcasite have the same chemical formula they have 

different crystal structures: pyrite is isometric whilst marcasite is orthorhombic. 

These two minerals contribute significantly to the total sulphur content which 

causes boiler tube fouling, corrosion and pollution (Speight, 2005). Pyrite and 

marcasite break down upon combustion into individual elements Fe and S which 

combine with O2 to become iron oxide, a heavy solid which becomes part of the 

ash and a gas SOx , which is emitted as part of flue gas (Schweinfurth and 

Finkelman, 2003). Certain trace elements like Cd, Co, Ni are associated with 

sulphides. 

Sulphate Minerals 

Sulphate minerals are not that significant in unoxidised coal. They result mostly 

from oxidation (weathering) of pyrite to form hydrated states of ferrous and ferric 

sulphates (FeSO4.xH2O). The sulphates gypsum (CaSO4.2H2O) and barite 

(Ba2SO4) are found in fresh coal (Speight, 2005). According to Silva et al. (2012), 

Cr, Mn, Mo and Ni may be associated with sulphate minerals.  
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Carbonate Minerals 

Calcium, iron and magnesium are the major cations found in carbonate minerals 

in coal. Calcite (CaCO3) and ankerite (mixed crystal of Ca, Mg, and Fe 

carbonates) are abundant in some coals, whilst siderite (FeCO3) is dominant in 

other coals (Speight, 2005). These minerals make up about 10 weight percent of 

each group of minerals in coal  (Renton, 1986), with calcite being the most 

common carbonate mineral, frequently occurring in veins or cleat infillings as 

well as in cell cavities of macerals. These minerals are all from authigenic origin 

which may be either syngenetic or epigenetic.  

 

2.4 Trace Elements in coal 

Many geological factors and coal forming periods influence the enrichment of 

TEs in coal (Dai et al., 2003). Coal contains approximately 120 inorganic 

compounds which were either derived directly from the vegetation or were 

introduced by either waterborne or windborne sediments (Schweinfurth and 

Finkelman, 2003). Coal may contain 76 of the 92 naturally occurring elements in 

the periodic table and some tend to be detrimental and hazardous to humans and 

the environment (Schweinfurth and Finkelman, 2003). Trace elements are emitted 

during coal combustion or utilisation, and the quantities emitted are dependent on 

the physical and chemical properties of the element, its concentration in coal, 

combustion conditions as well as the particulate control devices used (Nalbandian, 

2012).  Organically bound TEs are difficult to remove using precombustion 

cleaning processes as they are released only upon combustion. They can be 

released by deep chemical leaching processes, but this technology is expensive. 

Table 2.3 shows the average global (Ketris and Yudovich, 2009) and mean SA 

(Wagner and Hlatshwayo, 2005) values of selected TEs in coal. 
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Table 2.3: Average global (Ketris and Yudovich, 2009) and mean SA 

(Wagner and Hlatshwayo, 2005) trace elements values in coal. 

Element(ppm) Avg global values Mean SA values 

As 9.0±0.8 2.7±1.0 

Cd 0.2±0.03 0.24±0.17 

Co 6±2.0 6.9±1.6 

Cr 17.0±1.0 43.2±12.0 

Cu 17.0±1.0 12.6±1.6 

Hg 0.1±0.01 0.15±0.05 

Mo 2±0.1.0 2.09±1.06 

Mn 76.0±6.0 99.1±8.4 

Ni 16.0±1.0 16.6±3.4 

Pb 9.0±0.9 7.0±2.6 

Sb 1.0±0.09 <0.136±0.06 

Se 1.4±0.1 0.99±0.24 

V 29.0±1.0 31.2±3.9 

 

Recently concerns have been raised about reducing the emissions of certain TEs 

(specifically As, Be, Cd, Cl, Co, Cr, Hg, Mn, Ni, Pb, Sb, Se, and U) following 

coal combustion. According to Schweinfurth and Finkelman (2003), the U.S. 

Environmental Protection Agency (EPA) in 1996 indicated that TE emissions 

from coal-burning power plants that use coal with relatively low to moderate TE 

concentrations, or that have efficient pollution control devices, may not present a 

significant health risk.  

In other countries, TE emissions from coal burning power plants have been shown 

to cause severe health problems: for example, Bencko et al. (1977) found that in 

Czechoslovakia, children living in the vicinity of a power plant suffered hearing 

loss which resulted from As poisoning from the power plant emission. These 

lignite coals contained high levels of As (1000 ppm). The most widespread health 

effect of trace elements emissions has been experienced in domestic coal use in 

developing countries such as China. Zheng et al. (1999) discussed diseases like 

arsenism and endemic selenium intoxication due to the use of high As and Se 

coals in unvented ovens in southern China. 
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Finkelman (1999) argued that the widespread health problems associated with 

emission of TEs is caused by domestic coal combustion in developing countries 

where thousands suffer from arsenism.  

The effects of the TEs to humans and the environment have led to the introduction 

of emission standards for some TEs. Many countries like Canada, China and the 

USA have implemented legislation to control trace element emissions from 

thermal power stations (Sloss, 2012). China’s Hg emission limit is 30 µm/m
3 

and 

the Canadian and USA standards are shown in the Tables 2.4 and 2.5. In southern 

Africa there is no legislation concerning TEs emissions from combustion: the 

National Environment Management: Air Quality Bill (2003) in South Africa only 

regulates emission control for Pb which basically results from petrol based 

sources. 

Table 2.4: Canadian Hg standards (Sloss, 2012) 

 

 

 

Table 2.5: USA Hg and Air Toxics Standards (MATS) (Sloss, 2012) 

Input-based emission limits for existing facilities 

Coal-fired unit(any coal other than lignite) 1.8 g/GWh 

Coal-fired unit(lignite units) 6.2 g/GWh 

IGCC unit (any fuel-coal or petcoke) 3.8 g/GWh 

Petcoke fired unit 1.3 g/GWh 

Alternative output-based emission limits for existing facilities 

Coal-fired unit(any coal other than lignite) 5 g/GWh 

Coal-fired unit(lignite units) 17 g/GWh 

IGCC unit (any fuel-coal or petcoke) 13 g/GWh 

Petcoke fired unit 0.8 g/GWh 

Output-based emission limits for new facilities  

Coal-fired unit(any coal other than lignite) 0.08 g/GWh 

Coal-fired unit(lignite units) 17 g/GWh 

IGCC unit (any fuel-coal or petcoke) 1.3 g/GWh 

Petcoke fired unit 0.8 g/GWh 

Coal type 

Required 

Capture, % 

Emission Rate, 

kg/TWh 

Bituminous 85 3 

Subbituminous 75 8 

Lignite 75 15 

Blends 85 3 
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2.4.1 Classification of trace elements 

Coal undergoes complex changes during combustion and gasification, which 

include thermal decomposition, fusion, disintegration, agglomeration, formation 

of char, and volatisation of volatile elements. Minerals in coal also undergo the 

same processes, where non-combustible minerals form either slag or fly ash or 

bottom ash. The classification of TEs is related to their enrichment where the 

relative enrichment, RE of an element in ash is defined as: 

                  2.1  

According to the way TEs behave upon combustion and gasification they can be 

classified into 3 classes (Clarke, 1993):  

 

 Class 1 elements concentrate in coarse residues or become equally 

partitioned between coarse residues and finer particles. They therefore 

become enriched in the bottom and fly ash (Nalbandian, 2012). The 

release of these elements is directly related to efficient control of total 

particulate emissions. Examples include Mn, Be, Co and Cr.  

 Class 2 elements are volatilised in the combustor or gasifier but condense 

downstream. They become concentrated in the finer particles (fly ash) 

which may escape particulate control systems. Many studies have shown 

the enrichment of Group 2 elements with decreasing particle size because 

volatile elements condense preferentially on the surface of smaller 

particles in the flue gases as cooling occurs. Smaller particles have a 

greater ratio of surface area to volume (Clarke, 1993). These elements are 

enriched in the fly ash and the control of these elements is dependent on 

the collection of fine particles. These elements include As, Cd, Pb and Sb.  

 Class 3 elements are the most volatile elements and are not enriched in 

solid phases like in the bottom and fly ash (Nalbandian, 2012); they are all 

emitted in the vapour phase. In both combustion and gasification systems 

the most volatile elements like Hg may remain in the gas phase during 

passage through the plant, and particulate controls may have a limited 
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impact on the emission of these elements. However, it has been shown that 

highly efficient flue gas detail and particulate control devices can reduce 

oxidised Hg emissions by flue gas desulphurisation (FGD) (Sloss and 

House, 1995; Davidson et al., 2003; Sloss, 2012), though FGD cannot 

guarantee elemental Hg reductions.   

 

The overlap between the classes of certain elements shows volatile behaviour in 

some studies but partitioning into solid residues in others,  due to wide variations 

in the operating conditions, especially temperature, that control element volatility 

(Clarke, 1993).  Figure 2.7 shows the categorisation of TEs behaviour during 

combustion and gasification. 

From a computer based thermodynamic model (Fact-Sage), Bunt and Waanders 

(2010) successfully predicted the elemental ash phase partitioning behaviour of 

Class I non-volatile elements: Ba, Co, Cr, Mn and V. Bunt and Waanders (2008) 

found As and Se to be highly volatile, partitioning into the gas phase whilst Hg 

was found to be the most volatile. In fixed bed gasification, Hg was found present 

in the gas phase in the form of elemental Hg(g). The volatilities of these elements 

vary in the order: Hg > Se > Cd > Pb > As (Bunt and Waanders, 2008).  Class II 

elements like Zn showed limited de volatilization behaviour in the drying and 

pyrolysis zone of the fixed-bed gasifier (Bunt and Waanders, 2009).  
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Figure 2.7: Classification of TEs based on their volatility behaviour  

(Xu et al., 2003) 

 

2.5 Modes of occurrence or speciation of trace elements in coal 

The mode of occurrence refers to the organic or inorganic affinity of the element, 

and how an element is chemically bound and physically distributed in coal 

(Finkelman, 1994). Modes of occurrence of TEs determine the behaviour of the 

element during cleaning, combustion, conversion, or leaching of the coal, or 

during the weathering of the coal or its products upon disposal (Finkelman, 1980). 

Understanding this helps in determining which measures can be undertaken to 

reduce the emissions of these TEs from coal combustion.  

Raask (1985) stated that the distribution and mode of occurrence of TEs in the 

coal substance and mineral matter depends on the chemical characteristics of the 

elements and also on the age, i.e. rank of coal deposits. Trace elements may be 

associated with either organic or inorganic matter, or both, with proportions 

varying with coals globally. There are certain groups of organic matter in which 

TEs may be associated, either free or embedded, namely: carboxylic acid               
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(-COOH), imino (-NH), marcapto (-SH) and phenolic hydroxyl (-OH) (Swaine 

and Goodarzi, 1995). Many TEs are associated with mineral matter as discrete 

minerals, as replacement ions in minerals, or absorbed on minerals as shown in 

Figure 2.8.   

 

Figure 2.8: Modes of occurrence of TEs in coal (Swaine, 1990). 

 

2.5.1 Determination of Modes of occurrence 

There is limited literature which gives general rules or trends which can be used to 

predict elemental modes of occurrence for coal. Due to a wide variation of 

elemental modes of occurrence it is difficult to determine how specific elements 

occur in coal when their concentrations are less than 100 ppm. Literature portrays 

various direct and indirect methods being used to determine elemental modes of 

occurrence with various degrees of success. Information on modes of occurrence 

should include the textural relationships of the minerals and the chemical form of 

the elements (i.e. organic/inorganic associations). This will enable prediction 

regarding how the inorganic constituents will behave upon cleaning, combustion, 

conversion, or leaching of the coal. 

Huffman et al. (1994) demonstrated the capability of X-ray absorption fine 

structure spectroscopy (XAFS) to provide speciation information about most TEs 

in coal at realistic concentration levels of 10-100 ppm provided a solid-state 
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multielement germanium detector is used. Huggins and Huffman (1996) found the 

XAFS efficient for determination of elements greater than 5ppm.  

Finkelman (1994) showed that using scanning electron microscopy-energy 

dispersive X-ray analysis (SEM-EDX) is another effective method of detecting 

and analysing TEs in coal as small as one micron in diameter. Micron sized 

minerals can be detected in situ in polished blocks (Finkelman, 1980). Swaine and 

Goodarzi (1995) suggested that the most effective method for determining the 

mode of occurrence of TEs is SEM-EDX, as it also provides textural relationships 

of the minerals.  

Kolker et al. (2000) used selective leaching, XAFS spectroscopy and electron 

microbe analysis to determine the mode of occurrence of As in US coals. Arsenic 

was shown to be largely found in pyrite in bituminous coals from XAFS 

spectroscopy data. Huggins et al. (2000) examined the mode of occurrence of Cr 

using XAFS spectroscopy and a selective leaching protocol supplemented by 

scanning electron microscopy (SEM) and electron microprobe measurements. 

These techniques provide a basic model of predicting the fate of trace elements 

during combustion. 

Riley et al. (2012) used sequential extraction which they compared with XAFS 

and near edge structure (XANES) spectroscopy. They concluded that chemical 

extraction gives a good indication of the speciation of TEs, if data is generated 

and interpreted with care. One limitation is that TEs detected in the residue may 

be assumed to be associated only with the organic matter of coal which may not 

be completely so, as some mineral matter may be shielded by organic matter or 

trace elements may occur in acid resistant minerals. 

Li et al. (2005) felt it better to understand TE partitioning in combustion ash and 

determine the association of TEs with mineral matter or organic matter by using 

float–sink and sequential leaching experiments. Instrumental Neutron Activation 

Analysis (INAA) was employed to determine TE content in float and sink 

fractions of fly ash as well as in three major phases in the bottom ash.  
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Density fractionation to infer modes of occurrence 

Density fractionation, or float-sink analysis, is an effective technique for the study 

of TE in high mineral matter coals (Davidson, 2000), and in determining their 

mode of occurrence. Van Krevelen and Schuyer (1957) suggested density 

fractionation as an indirect method of determining modes of occurrence. Querol et 

al. (2001) obtained seven density fractions between < 1.3 and > 2.8 g/cm
3
 using 

heavy liquid mixtures of bromoform, tetrachloroethylene, and xylene, and 

combined density fraction with mathematical deconvolution of chemical analyses 

of whole coals and their density fraction to determine modes of occurrences of 

TEs in coal. Intercorrelation of TE contents with ash contents, major elements and 

mineral phases can be applied to study distributions of TEs (Querol et al., 2001) in 

density fractions. Wagner and Tlotleng (2012) used density fractionation for 

sample preparation in the determination of TEs and their  affinities in coal, 

following Huggins et al. (2000), followed by ICP-MS analysis. Several other 

authors who have used density fractionation include Finkelman (1980), Feng and 

Hong (1999), Wagner and Hlatshwayo (2005), Huggins et al. (2009) and Bergh et 

al. (2011). 

Various techniques, including XRD, can be used to analyse and identify various 

minerals in each float and sink fraction. Feng and Hong (1999) and Querol et al. 

(2001) have used XRD to determine mineral contents in the coals in an effort to 

infer modes of occurrence in density fractions.Wagner and Tlotleng (2012) used 

scanning electron microscopy with energy dispersive spectroscopy to determine 

pyrite and other minerals. In this project XRD will be used to determine minerals 

in coals. 

Conaway (2001) and Wagner and Tlotleng (2012) performed washability tests on 

float and sink fractions. Finkelman (1980) calculated correlation coefficients of 

float and sink fractions of coal to investigate common modes of occurrence for 

TEs. Gluskoter et al. (1977) performed statistical analysis on washed coals which 

were separated by specific gravity methods. 
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Sequential Leaching to infer Modes of occurrence 

Sequential chemical leaching, a long established method for determining the 

mineral fractions in which TEs occur (Spears, 2012), is another way of indirectly 

determining modes of occurrence of TEs. Different TEs are removed by different 

chemicals. Palmer et al. (1996) used sequential selective leaching with slight 

modification to Finkelman et al. (1990). Coal samples were sequentially leached 

with 35 ml each of 1N CH3COONH3, 3N HCl, concentrated HF (48%) and 2N 

HNO3  and the leachate was analysed using ICP (inductively coupled plasma) 

analysis while the residue was analysed using instrumental neutron activation 

analysis (INAA). Various authors who have used sequential leaching include 

Wang et al. (2004b), Wang et al. (2008), Dutta el al. (2009), Norris et al. (2010), 

Spears (2012), and Neupane and Donahoe (2013). 

Various chemicals are used in sequential leaching to destroy certain minerals and 

organic matter, and liberate TEs which are associated with these minerals.  

Extraction is carried out in stages were a chemical liberates certain elements and 

the residue is taken to the next stage. Wang et al. (2008) used a 10 mm diameter 

and 70 cm long column to leach 20 g of coal samples with 3 different acidic pH 

solutions of distilled water and HNO3.  

Distilled or deionised water (H2O) can be the chemical solution used in the first 

stage to remove elements present in pore fluids and water soluble elements 

(Norris et al., 2010; Spears, 2012). Ammonium acetate (CH3COONH4) removes 

exchangeable cations and a portion of the carbonate-hosted cations. (Hlatshwayo, 

2008). Hydrochloric acid (HCl) removes carbonates like calcite and exchangeable 

cations and monosulphides (Spears, 2012).  Dilute nitric acid (HNO3) can be used 

to remove TEs associate with pyrite and carbonates mainly dolomite and ankerite 

(Spears, 2012). Spears (2012) used concentrated HNO3 to destroy organic matter 

and liberate TEs associated with organic matter. Hydrofluoric acid (HF) is used to 

liberate silicate bound TEs.  

Kolker et al. (2000) outlines the sequential leaching procedure depicted in Figure 

2.9; various elements associated with different minerals are removed by specific 

chemicals. Elements which are not removed by the leaching process may be 
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present in the organic matrix, or occur in insoluble phases such as zircon or 

titanium dioxide (Kolker at al., 2000). In this project distilled water was used first 

to remove water soluble TEs, by the sequence of steps described by Kolker et al. 

(2000). 

 

 

Figure 2.9: Sequential steps used in selective procedure leaching of coal 

samples (Kolker at al., 2000) 

 

2.6 Trace elements considered in this study 

Trace elements considered to be hazardous air pollutants (HAPs) will be 

discussed in this section. Their health and environmental effects will be outlined 

as well as their modes of occurrence. The elements which are of health and 

environmental concern include As, Be, B, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mn, Mo, 

Ni, Sb, Se, U and V.  Table 2.6 shows the likely modes of occurrence of some of 

the TEs as determined by Finkelman (1995). A higher level of confidence, for 
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example 8, shows that there is a greater correlation of the TE with the mineral or 

organic matter, whilst a low level of confidence for example 2, shows a lower 

level of confidence of the suggested possible associations. 

Table 2.6: Likely mode of occurrence of trace elements in coal (Finkelman, 

1995) 

Element Mode of occurrence Level of confidence 

Antimony Pyrite and accessory sulphides 4 

Arsenic Pyrite  8 

Beryllium Organic association 4 

Boron Organic association 6 

Cadmium Sphalerite 8 

Chromium Organic or clay association 2 

Cobalt Pyrite, some in accessory sulphides 4 

Copper Chalcopyrite 8 

Lead Galena 8 

Mercury Pyrite 6 

Manganese 

Carbonates, especially siderite and 

ankerite 8 

Molybdenum Probably sulphides 2 

Nickel Unclear 2 

Selenium Organic association, pyrite and accessory 8 

 

sulphides, selenides 

 Uranium Organic and some in Zircon 7 

Vanadium  Clays and organic association 3 

 

Antimony (Sb) 

According to Cooper and Harrison (2009), chronic exposure to Sb results in eye, 

skin and lung irritations with pneumoconiosis, altered electrocardiograms and 

stomach ulcers resulting from long-term exposure. Limited information is 

available on the modes of occurrence of Sb in coals. From float-sink data, 

Finkelman (1995) suggested that ambiguous results are obtained for the modes of 

occurrence of some Sb as it showed organic association, while others concluded it 

was inorganically bound. According to Finkelman (1980), Goldschmidt (1954) 

suggested that Sb is a chalcophile element with a high association with sulphides 

and hence it is found in sink fractions from density fractionation separation. 

Gluskoter et al. (1977) indicated that Sb is associated with organic matter in coal. 
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Finkelman (1995) concluded that the most likely modes of occurrence of Sb are 

with pyrites and minute accessory sulphides dispersed throughout the organic 

matrix, whilst some may be organically bound. According to Zeng et al. (2001), 

previous research showed that Sb is associated with pyrites.  

Arsenic (As) 

The International Agency for Research on Cancer (IARC) (1987) classified As 

and the As compounds as Group I carcinogens. Arsenic is a chronic poison which 

never leaves the body once it enters (Hatt, 2008), hence it is a major health 

concern. Zheng et al. (1999) discusses diseases like arsenism intoxication in 

southern China, due to the use of high As coals in unvented ovens. It is estimated 

that 252 tonnes of As have been emitted from coal-fired plants every year in 

China (Kang et al., 2011). Arsenic concentration varies with coal-forming age 

(rank) and the accumulation of As in coal is controlled by many geological factors 

during coal-forming processes, including plant decomposition, sedimentary 

environments, and epigenetic hydrothermal activity (Kang et al., 2011). Arsenic is 

not as big an environmental concern as Hg, because it does not leave the stack as 

a vapour, but it vaporises in the flame and condenses out in the boiler causing a 

build-up of As in the boiler (Hatt, 2008). Arsenic also poisons the catalyst used in 

selective reduction of NOx. 

Arsenic has several modes of occurrence, but from literature it appears that As is 

mainly associated with mineral matter such as pyrites as well as other sulphide 

minerals, and also organic matter (Kang et al., 2011). The distribution of As 

varies with each geological basin. Arsenic is a chalcophilic element with an 

affinity for organic and inorganic matter (Finkelman, 1980).  

Beryllium, Be 

Beryllium has adverse health effects associated with its exposure. It affects the 

respiratory system, the lymph nodes, the skin, and other target organs (Brisson, 

2009). The US Department of Energy (DOE)  (1999) passed a final rule 

implementing the chronic beryllium disease prevention program (CBDPP) to 

reduce the exposure of humans to Be. There is no data on mean global values of 
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Be since Be presents difficulties in determining its modes of occurrence because 

of its low atomic number (4). According to Finkelman (1994), Be has a high 

affinity for the organic components of coal and may be associated with clays. 

Boron, B 

Crop yields become poor due to high B soils (Nalbandian, 2012). The American 

Environmental Protection Agency (US EPA) and the Australian National 

Pollution Inventory consider B in coal utilisation to be a great concern due to its 

toxic effects on land plants (Boyd, 2002). Swaine (1990) indicated that B may be 

associated with the organic matter in coal though Boyd (2002) also found it to be 

associated with clays (illite) as well as bound to the crystal lattice of tourmaline. 

Boron associated with the organic matter is found to have a greater environmental 

impact than B associated with tourmaline (Boyd, 2002), as it can be released 

during combustion with fly ash unlike B associated with tourmaline which can be 

removed through coal washing.  

Cadmium, Cd 

Cadmium accumulates in the kidneys and the liver and its carcinogenic properties 

result in emphysema and fibrosis of the lung (Nalbandian, 2012). The US EPA in 

2012 classified Cd as one of the HAPs of major concern which is highly toxic to 

biological systems at values above critical levels (Nalbandian, 2012). According 

to Finkelman (1994), Cd in coal occurs in sphalerite though there may be minor 

amounts of Cd associated with other minerals, generally in sulphides. 

Chromium, Cr 

Chromium in its hexavalent state, Cr (VI), is highly carcinogenic and very toxic. 

Compared to Cr (III), which is less toxic and is an essential element for metabolic 

processes, Cr (VI) is very mobile in the environment. The valence of Cr in coal 

and coal ash was determined as Cr (III) using XAFS (Huffman et al., 1994; 

Huggins and Huffman, 1996). Finkelman (1994) suggested that there was 

insufficient data to specify the modes of occurrence of Cr in coal. According to 

Huggins et al. (2000), most of the Cr is associated with macerals whilst some Cr 

seems to be associated with clays as most of the Cr was removed by HF. It is very 
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important to understand Cr’s modes of occurrence and the form it occurs in as it is 

emitted during combustion. 

Data from sequential leaching led to the conclusion that Cr is mostly associated 

with silicates with minor associations with carbonates or monosulphides and the 

residual organic matter (Riley et al., 2012). 

Cobalt, Co 

Cobalt is essential to humans in the form of vitamin B12, as it supports important 

synthetic reactions in metabolic processes and is essential for the production of 

red blood cells (Facts, 2006). Compared to other metals, Co’s level of toxicity is 

quite low and high levels of exposure have effects on the respiratory organs like 

the lungs (MOE, 2001). The level of Co’s toxicity increases at any concentration 

in more acidic soils (MOE, 2001).   

Finkelman (1994) suggested that there is a degree of uncertainty of the modes of 

occurrence of Co in coal.  Although it has a high association with sulphides 

especially pyrites, most of it reported in floats from float and sink experiments 

also indicating an organic association (Finkelman, 1994). 

Lead, Pb 

Lead is a poisonous heavy metal to both animals and humans and is highly 

detrimental to the neurological development of children (US EPA, 1991). It 

causes damage to the brain, red blood cells and kidneys of young children and 

pregnant women.  

Lead occurs as sulphides or is associated with sulphides and it can occur as 

galena, PbS (Finkelman, 1994). Although Pb seems to have a high inorganic 

association, in coal cleaning less than 50% of it is removed, hence showing that it 

occurs as micron-size crystals of galena or PbSe in the organic matrix. From 

studies carried out using secondary ion mass spectrometry (SIMS), synchrotron 

radiation induced X-ray fluorescence (SXRF) and laser ablation inductively 

coupled plasma mass spectrometer (LA-ICP-MS), Pb shows a great association 

with pyrite (Kolker and Finkelman, 1998). 
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Manganese, Mn 

Manganese is an essential nutrient in human and animal health which serves as a 

cofactor for various enzymes (Jankovic, 2005; WHO, 2011). High Mn exposure 

leads to neurotoxicity in both humans and animals (WHO, 2011). In coals Mn is 

generally present in greater concentrations than any of the HAPs. From float-sink 

experiments and leaching experiments, Finkelman (1994) suggests an association 

with carbonates though small amounts may be associated with clays, pyrites or 

organic components of coal. 

Mercury, Hg 

Mercury is viewed as a very dangerous pollutant due to its tendency to 

bioaccumulate in the food chain (Speight, 2005). The large amounts of coal 

consumed during coal combustion account for huge anthropogenic emissions of 

Hg into the atmosphere (Yudovich and Ketris, 2005a). US EPA (1990) proposed 

rules to reduce Hg emissions from coal-fired power plants. There are no laws in 

South Africa which regulate the emission controls of TEs except for Pb (National 

Environment Management: Air Quality Bill, 2003); Hg is a HAP which should be 

included in the New Air Quality Bill. In order to apply proper Hg emission 

control strategies it is very important to understand the modes of occurrence of Hg 

in coals used for thermal energy power stations.  

Mercury’s greatest adverse impact occurs in the aquatic ecosystem where after a 

series of chemical reactions it is converted by bacteria in the sediments to 

methylmercury. This state of Hg is very toxic to humans and wildlife. Fish absorb 

methylmercury from the water through their gills and as they feed on other 

organisms. Bioaccumulation of Hg occurs as methylmercury concentrations 

increase in the bigger fish as they feed on the smaller fish. Consequently, larger 

predator fish usually have higher concentrations of methylmercury from eating 

contaminated prey. Humans, birds and other wildlife that eat fish are exposed to 

methylmercury in this way.  Methylmercury poisoning leads to minamata disease 

which is characterised by neurological paralysis (Ekino et al., 2007). 
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In the atmosphere, Hg vapour is present mainly as Hg
0
 (elemental Hg, which 

comprises about 90%) and the rest is most likely Hg
2+

 (probably HgCl2 and 

methylmercury) (Yudovich and Ketris, 2005a; Gibb et al., 2000). Mercury and its 

compounds are highly toxic and mutagenic (Yudovich and Ketris, 2005b). The 

primary cause of Hg poisoning in humans is mostly due to eating poisoned fish. 

Mercury is a neurotoxin that harms the brain, heart, central nervous system, 

kidneys, lungs, and immune system (Risher and Amler, 2005). Young children 

and developing foetuses are most at risk, and can suffer developmental problems 

from mercury poisoning. 

Mercury is generally present in low concentrations (ppt) but it is highly volatile 

and hence offers challenges in determining its modes of occurrence. Generally Hg 

is an authigenic chalcophile element which has a strong affinity for organic and 

inorganic coal matter (Yudovich and Ketris, 2005a).  

In coal there are no fewer than three Hg forms which may be present, which are: 

clays (Hgclay), organic matter (Hgorg), and sulphides (Hgsulf). Finkelman (1994) 

concluded that most of the Hg is present in pyrites. Diehl et al. (2004) showed a 

pyritic association of Hg using LA-ICP-MS. Kolker (2012) showed the presence 

of Hg in Fe disulphides in coal at concentrations below detection by electron 

beam instruments through the use of LA-ICP-MS, selective leaching studies of 

bulk coal, and by correlation with Fe disulphide proxies such as total Fe and 

pyritic sulphur. High sulphur coals tend to contain most of the Hg found in the 

coals and this has been proven by Feng and Hong (1999) who used sequential 

leaching experiments where most of the Hg was removed by HNO3. From 

sequential leaching extraction, Lusialo-Makiese et al. (2012) found a substantial 

proportion of Hg associated with organic constituents and pyrite. Density 

fractionation experiments also showed a correlation of mineral sulphides and Hg, 

and also managed to show a correlation between Hg and total sulphur (Wagner 

and Hlatshwayo, 2005; Wagner and Tlotleng, 2012). 

Maceral concentrates may be used to indicate the Hgorg form in parent coals; 

however these results should be interpreted cautiously because an apparent 

organic Hg enrichment of a maceral concentrate may result from micro-sulphide 
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inclusions (Yudovich and Ketris, 2005b). The anticipated removal of Hg by 

conventional coal cleaning procedures can be great for coals with Hg associated 

with minerals. 

Molybdenum, Mo 

High levels of Mo in pastures cause diseases in cattle and sheep which results in 

poor growth and anemia (Nalbandian, 2012). Molybdenum affects the lactation of 

cows and it also affects absorption and metabolism of Cu, an essential element for 

growth. Ambiguous results have been reported for the modes of occurrence of 

Mo, especially in float sink data (Finkelman, 1994). According to Goldschmidt 

(1954), Mo is a chalcophile element with a high affinity for sulphides. Finkelman 

(1994) suggested perhaps an association with pyrites and sulphides. 

Nickel, Ni 

Nickel’s adverse effects depend on the route of exposure which can be through 

inhalation, oral or dermal means (Das et al., 2008). In both humans and animals, 

Ni exposure causes formation of free radicals in various tissues which leads to 

various modifications to DNA (Deoxyribonucleic acid) bases, enhanced lipid 

peroxidation, and altered calcium and sulphhydryl homeostasis (Das et al., 2008).  

According to Finkelman (1994) there is insufficient direct evidence to show the 

modes of occurrence as the indirect evidence appeared contradictory.  According 

to Swaine and Goodarzi (1995), Swaine in 1980 concluded that much evidence 

pointed to Ni’s association with organic constituents of coal. Inorganically bound 

Ni seems to be largely associated with sulphides. Kolker and Finkelman (1998) 

suggested a pyritic association from XAFS data though this is not a dominant 

mode of occurrence of Ni. 

Selenium, Se 

Selenium is a non-metal with intermediate properties between S and Te. Selenium 

has photoelectric and semiconductor properties which make it useful in solar cells, 

rectifiers, photographic exposure meters and xerography (Dhanjal and Cameotra, 

2010). Selenium exists naturally in the environment and can be released from both 

natural and manufacturing processes. 
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Selenium is a biophilic element (Liu et al., 2007) which, although in trace 

amounts is necessary for cellular function, in large amounts it becomes very toxic 

to both animals and plants. At elevated levels, Se causes anemia, gastrointestinal 

disturbance, liver and spleen damage (Nalbandian, 2012).  According to 

Goldschmidt (1937), Se is a coalphile element. Finkelman (1994) suggested 

sufficient evidence to suggest the bulk association of Se with the organic 

components of coal.  Data also suggest minor associations with pyrite and other 

small associations with other minerals such as chausthalite and galena. 

Uranium, U 

Uranium is a naturally radioactive element hence radioactivity from U in coal has 

been cited as a potential health problem (Finkelman and Repetski, 1999). 

Although there is no evidence to date that radioactivity from coal or coal-

combustion products has caused any human health problems (Finkelman and 

Repetski, 1999), it is important to regulate U emissions. In the body, U, which is a 

heavy metal, acts similarly to other heavy metals like Hg, Mo or Pb (Kathren and 

Burklin, 2008). 

During coal combustion most of the U is released from the original coal matrix 

and distributed between the gas phase and solid combustion products. Since U is 

less volatile it is almost entirely retained in solid combustion wastes and in 

modern power plants in USA 99.5% of U is retained in the solid combustion 

wastes (Zielinski and Finkelman, 1997). Uranium is found in both the organic and 

mineral matter of coal and some U may have been slowly added through organic 

matter extracting it from ground water over geological time (Zielinski and 

Finkelman, 1997). Finkelman (1995) suggested that U may be organically 

associated with some being found in Zircon. 

Vanadium, V 

Vanadium is a toxic non-volatile metal which may be emitted as oxides in coal 

combustion (Gummow, 2011). Carbonaceous deposits have unusually high V 

concentrations (Finkelman, 1980). From density fractionation studies, Gluskoter 
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et al. (1977), V generally showed an organic association. According to Finkelman 

(1995), V may be found in clays or the organic matter of coal. 

2.7 Sample Preparation methods for trace element determination 

With most of the analytical methods, the decomposition of solid samples is of 

utmost importance. X-ray fluorescence (XRF) analysis can analyse solid samples 

(Vandecasteele and Block, 1993) without dissolution procedures (Chand et al., 

2009). However, other analysis techniques, like inductively couple plasma (ICP) 

techniques, require dissolution of solid samples for analysis. Ashing or digestion 

are usually done at elevated temperatures to decompose solid samples for 

analysis. During ashing or digestion, volatile elements like Hg may escape; hence 

elemental preconcentration and chemical separation is also required to improve 

the quality of measurements. Several authors have discussed various sample 

preparation methods, and they still continue to improve sample preparation time 

and liberation of all elements for analysis. Lachas et. al. (1999) evaluated two 

digestion methods to extract 17 elements from coal and coal ash.  Acid digestion 

which uses H2SO4, HF, HClO4 and HNO3 in open vessels was compared to sealed 

microwave digestion using HNO3 only. The microwave digestion method using 

HNO3 only may not break down silicates which harbour many TEs, but can 

extract As and Se (which are highly volatile) quantitatively (Lachas et al., 1999). 

Wagner and Hlatshwayo (2005) used microwave digestion as a preparation 

technique to determine 14 TEs using ICP-AES (discussed further in Section 

2.7.1).  

The volatility of Hg causes errors during quantification when methods based on 

acid digestion are used. Richaud et al. (1998) determined Hg using an atomic 

absorption spectrometry.  Jongwana and Crouch (2012) used an automatic 

mercury analyser (AMA-254) and a capillary electrophoresis (CE) coupled with a 

photodiode array (PDA) detector for determining the mode of occurrence of Hg in 

coal. Automatic analysers for mercury are now possible instruments to use for 

analysis. 
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2.7.1 Microwave Coal Digestion 

Microwave digestion is a high-pressure dissolution in a sealed vessel/system, 

where the elevated temperatures attained lead to faster sample breakdown and 

analyte dissolution. Microwave pressure digestion has been shown to provide 

considerable time savings, reduce sample contamination risks and reduce risks of 

sample loss as there is no need of dry ashing to eliminate organic carbon 

compared to ashing and other dissolution techniques (Alvarado et al.,1990; 

Watkins et al.,1995). Different methods have been used for digestion of coal 

samples. Alvarado et al. (1990) placed a known amount of coal sample (0.1-l.5 g) 

inside glass test-tubes, to which 5 ml of concentrated HNO3 and 2 ml of 

concentrated HF were added. Each test-tube was closed and submitted to 

microwave heating at high pressures to test the convenience of total extraction of 

V (Alvarado et al.,1990).  

Rodushkin et al. (2000) evaluated four microwave assisted digestion methods 

using different dissolution mixtures of HNO3 and HF acids, aqua regia and H2O2. 

They found that the dissolution mixture which provided the best agreement of 

results with certified, recommended, literature-compiled or consensus values was 

a mixture of HNO3, HF and H2O2, though fusion was necessary to obtain 

quantitative recoveries for Si, Cr and Zr.  

Sun and Hoffman (1996) used concentrated H2SO4 which they found to be a 

highly effective solvent for destroying all organic compounds, concentrated HNO3 

to liberate many TEs associated with most of the matrices, and concentrated HF 

acid for coal dissolution and preserving Hg. Though several authors found the 

need to use HF to destroy and liberate TEs associated with silicates and sulphides, 

trials that Sun and Hoffman (1996) carried out after digestion with the former 

described acids showed no difference in analysis results. 

Antes et al. (2010) and Picoloto et al. (2011) applied microwave induced 

combustion (MIC) and used ICP-MS for determining TEs, as well as for the 

determination of Hg. Microwave induced combustion promises to be an even 

more efficient method  compared to microwave assisted digestion as it uses no 

chemicals, has a shorter digestion time and liberates more TEs for analysis. 
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Microwave induced combustion is based on sample ignition by microwave 

radiation using closed quartz vessels pressurized with O2 and the use of NH4NO3 

as an ignition aid (Mello et al., 2008).  Antes et al. (2010) combusted 500 mg 

pellets of coal in a Multiwave 3000 (Anton Paar, Graz, Austria) equipped with up 

to eight high-pressure quartz vessels using 20 bar of O2 and NH4NO3.  

In this current research HNO3, HCl and HF were used in the Department of 

Chemistry at University of the Witwatersrand and HNO3, HF, and H2O2 were used 

at the UIS analytical services for microwave digestion. 

2.8 Analytical techniques for trace element analysis 

Several ISO, ASTM (ASTM D6357–11) and SABS (SANS406:2006 trace 

elements) methods can be used to determine TEs in coal. Several analytical 

techniques are destructive (as the sample may require ashing and dissolution), 

whilst others are nondestructive (Nalbandian, 2012) such as X-ray absorption fine 

structure (XAFS) spectroscopy. Since TEs occur in minute quantities, it is 

important to pick sensitive techniques which give very reliable results.  

SANS 411:2006 is a standard for determining As, Sb and Se in higher rank coals 

using the hydride generation method. A known mass of coal sample is ignited in 

intimate contact with the Eschka mixture in an oxidizing atmosphere at 800°C to 

decompose the organic matter. Hydrochloric acid is used to extract the residue 

and the analytes are determined by atomic absorption or atomic fluorescence 

spectrometry after conversion to their volatile hydrides. 

SANS 412:2006 is also used for determining B after ashing the coal sample in the 

presence of Eschka mixture. A known mass of the coal sample is ignited in 

intimate contact with Eschka mixture in an oxidising atmosphere at 800 °C to 

decompose the organic matter. Hydrochloric acid is used to extract the residue 

and boron is determined by ICP-AES. 

Huggins (2002) reviewed analytical methods for determining the inorganic 

constituents of coal in three fronts as shown in Figure 2.10. In this work XRD was 

used to determine minerals in coal. 
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Figure 2.10: A subdivision of analytical methods for determining inorganics 

in coal (Huggins, 2002). 

 

Many authors have used different analytical methods to determine the 

concentration of TEs in coal (Sun and Hoffman, 1996 ; Lachas et al., 1999; 

Rodushkin et al., 2000; Querol et al., 2001; Wang et al., 2004a; Wagner and 

Hlatshwayo, 2005; Antes et al.,2010; Picoloto et al., 2011; Wagner and Tlotleng, 

2012). Huggins (2002) separated methods of elemental concentrations into four 

broad groups:  

a) Instrumental X-ray/-γ techniques 

b) Optical absorption/emission techniques 

c) Mass spectrometric techniques 

d) Miscellaneous techniques. 

a. Instrumental X-ray/- γ ray techniques 

These techniques are usually capable of determining many elements 

simultaneously and depend on the generation, detection and measurement of 

characteristic X-rays and/or γ-rays for element determination. X-ray fluorescence 

analysis (XRF) is the use of an automated instrument that has been extended to 

determine TEs in coal (Kuhn et al., 1975). It is a fully automated instrument, 

although it has low sensitivity to TEs and needs matrix corrections for best 

precision (Huggins, 2002).  
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Several authors have used XRF and XRD analysis for their analysis (Ward et al., 

1999; Bergh et al., 2011). XRD is used for identifying and quantifying mineral 

species in coal, and it was used in this project to aid in identifying modes of 

occurrence in density fractionation samples. X-ray absorption fine structure 

(XAFS) spectroscopy provides details of how X-rays are absorbed by an atom at 

energies near and above the core-level binding energies of that atom (Newville, 

2004). XAFS is the modulation of an atom’s X-ray absorption probability due to 

the chemical and physical state of the atom, hence it provides practical and simple 

ways to determine the chemical state and local atomic structure for a selected 

atomic species (Newville, 2004).  

b. Optical absorption/emission techniques 

Optical emission spectroscopy (OES), also known as atomic emission 

spectroscopy (AES) (Swaine, 1990), depends on the generation, detection and 

measurement of characteristic atomic transitions in the visible and near-visible 

regions of the electromagnetic spectrum for elemental determination (Huggins, 

2002). In ICP-OES, the sample is introduced to the core of the inductively 

coupled argon plasma which generates temperature of approximately 8000ºC 

where elements become thermally excited and emit light of their characteristic 

wavelengths. The light is collected in the spectrometer and passes through a 

diffraction grazing which resolves the light into a spectrum of its constituent 

wavelengths. The diffracted light within the spectrometer is collected by 

wavelength and amplified to yield intensity measurements which are converted to 

elemental concentrations by comparison with calibration standards. The ICP-OES 

has very good detection power with medium to low detection limits of ~0.2-100 

ppm and it offers efficient conditions for determining analytes concentrations 

reliably and rapidly (Eschnauer et al., 1990). This technique requires sample 

digestion before analysis.  

Suzuki (2006) used ICP-OES to determine the bulk elemental content to 

determine trace metals in his aim to characterise airborne particulates and 

associated trace metals deposited on tree bark. Mujuru et al. (2009) applied ICP-

OES for elemental analysis of bituminous coal. In this project this technique was 
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used in both the School of Chemistry at the University of the Witwatersrand and 

an external laboratory, UIS analytical services. 

c. Mass spectrometric methods 

Mass spectrometric techniques are highly sensitive techniques capable of 

determining most elements in the periodic table simultaneously including metals 

at concentrations below one part per billion (ppb). Mass spectrometric methods 

depend on total volatilization of the sample and its introduction in such form into 

a mass spectrometer so that the atomic mass can be used to discriminate 

quantitatively among the different elements (and isotopes) (Huggins, 2002). 

Inductively coupled plasma mass spectroscopy (ICP-MS) is finding great use in 

determining trace elements in coal (Antes et al., 2010; Picoloto et al., 2011). 

Wang et al. (2004a) found that the ICP-MS showed an improvement in accurate 

and precise determination of some TEs when compared to ICP-OES.  

The ICP-MS has a sample introduction system which consists of a torch, water 

cooled spray chamber and nebulizer as shown in Figure 2.11. The nebulizer 

converts the sample solution initially to an aerosol mist which is then carried to 

the plasma by argon gas. There is a spray chamber which acts as a filter and 

removes droplets that are too large and cannot be excited by the plasma. The 

plasma is the gas which contains a sufficient concentration of ions and electrons 

to make the gas electrically conductive which dries the aerosol, dissociates the 

molecules, removes an electron from the components rendering them single-

charged ions which are then directed to the mass spectrometer which is a mass 

filtering device. 
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Figure 2.11: A schematic of the ICP-MS showing the sample introduction 

system (Thomas, 2001) 

ICP-MS, unlike ICP-AES, is able to monitor isotopic speciation for the ions of 

choice with a superior detection limit as well. It is able to handle both simple and 

complex matrices with a minimum of matrix interferences due to the high-

temperature of the ICP source (Thomas, 2001). Both ICP-MS and ICP-OES will 

be used for analysis of most TEs in this project.  

d. Miscellaneous techniques 

Miscellaneous techniques generally determine one or more elements that, for one 

reason or another, cannot be adequately determined by other more general 

methods such as ICP-MS. Miscellaneous techniques include wet chemical and 

various electroanalytical methods (Huggins, 2002). Examples of these methods 

include cold vapour atomic absorption spectrometry (CVAAS) and direct mercury 

analysers. Wagner and Hlatshwayo (2005) used CVAAS to determine Hg in coal. 

In this project a direct Hg analyser was used. CVAAS reduces ionic Hg in the 

digested solution to elemental state and transfers it into the absorption cell of the 
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atomic absorption spectrometer (Nguyen et al., 1998). Standard solutions ranging 

from 0.2 to 10 ppb can be used to calibrate the machine (Nguyen et al., 1998).       

Another technique showing much potential is LA-ICP-MS which can be applied 

directly to analyse the TEs in coal using polished sections or blocks (Spears et al., 

2007). Trace element concentrations of minerals are measured with a high degree 

of accuracy and precision by firing a laser beam at a flat surface of a sample and 

introducing the ablated material into the ICP-MS for quantification (Sylvester and 

Ghaderi, 1997).   

2.9 Chapter Summary 

The geological coal formations of both the Zimbabwean and the South African 

basins have been compared. Trace elements have been discussed and according to 

literature, most of the TEs are associated with the mineral matter of the coal. The 

following TEs were considered in this project: As, B, Be, Co, Cd, Cr, Cu, Hg, Mn, 

Mo, Ni, Pb, Sb, Se, U and V. Classification and modes of occurrence of TEs have 

been discussed, as well as the health and the environmental effects.   

Density fractionation and sequential leaching are typically used to infer modes of 

occurrences of TEs in coal. Sample preparation techniques like microwave 

digestion are undertaken on solid samples which include ROM, density fractions 

and leach residues prior to analysis by various analytical techniques including 

ICP-OES, ICP-MS, and direct Hg analyser. Leach solutions may be analysed 

directly on the ICP-OES, ICP-MS and direct Hg analyser. 
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Chapter 3  

Methodology 

3.1 Introduction 

This chapter outlines the methods carried out in order to achieve the objectives of 

this project. Sample acquisition and characterisation are detailed. All chemicals 

used in this project were pure analytical grade chemicals purchased from 

reputable chemical suppliers MERCK and SIGMA ALDRICH.  

Characterisation analysis experiments including petrography, TGA, carbon / 

sulphur Leco analysis, and XRD analysis were carried out in order to determine 

coal composition.  

Density fractionation and sequential leaching were sample preparation techniques 

used to determine the modes of occurrence of TEs. Microwave digestion was 

done on all solid samples before analysis on the ICP-MS and direct Hg analyser. 

Leach solutions were directly analysed on the ICP-MS and the direct Hg analyser. 

ICP-MS analysis was performed on all products from preparation techniques. 

Most of the techniques were carried out in the School of Chemical and 

Metallurgical Engineering at the University of the Witwatersrand, whilst XRD 

and ICP-MS were carried out at external laboratories. Direct Hg analysis was 

carried out in the School of Chemistry at the University of the Witwatersrand 

using an automated Perkin Elmer Flow Injection Analysis-Mercury Hydride 

System (FI-MH-AAS). A schematic of the experiments carried out is as shown in 

Figure 3.1. 
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Figure 3.1: Schematic of Methodology 

3.2 Sample acquisition and initial preparation 

Three run of mine (ROM) coal samples, each 20 kg, of size passing through 4 mm 

(≤ 4 mm), were supplied by the Hwange Colliery in Zimbabwe. Two South 

African ROM samples also 20 kg each, were included in this project; these 

samples were cone and quartered and then crushed using jaw crushers to give size 

passing 4 mm. All samples were milled in the Retsch mill ZM200 in the School of 

Chemical and Metallurgical Engineering to sizes ≤ 1000 µm and ≤ 250 µm for 

relevant analysis.  
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3.3 Characterisation Analysis 

Since coals are heterogeneous it is important to give detailed characterisation 

analysis which helps classify coal and hence predict its most appropriate use. Coal 

characterisation can be carried out on two levels: 

i) empirical (chemical and physical properties) and  

ii) fundamental (organic and inorganic constituents).  

Empirical analysis includes proximate and ultimate analysis, whilst fundamental 

analysis includes petrographic analysis which is carried out using a microscope 

(Falcon and Ham, 1988). 

3.3.1 Proximate Analysis 

Proximate analysis of coal is the determination of the inherent moisture, volatile 

matter, ash and fixed carbon by a series of standard methods. Several test methods 

of proximate coal analysis including ASTM D3172, ISO 1171 (Speight, 2005), 

SANS 5925, SABS ISO 562. However, a rapid technique using a Perkin Elmer 

STA 6000 Thermogravimetric analyser (TGA) housed in the School of Chemical 

and Metallurgical Engineering was used for proximate analysis in this research. 

All ROM, density fractions, and leached residues were analysed using this 

technique. 

The TGA measures the mass loss a coal sample undergoes when heated to 900°C 

under a N2 atmosphere, followed by a switch to O2 combustion. Between 10 and 

15 mg samples of size ≤ 250 µm were placed in the TGA crucible. Please refer to 

Appendix A for a curve depicting TGA proximate analysis determination. 

The inherent moisture content is the water which may be physically or chemically 

bound in coal, and is determined by the mass loss that a coal sample undergoes 

when it is heated to 110°C under a N2 atmosphere. This is the water which is 

retained within the pores and tissues of coal after all superficial surface moisture 

has been removed. The percentage of water present in coal varies with the rank of 

the coal. Anthracite has the lowest moisture, then bituminous coal, followed by 

subbituminous coal, and lignite has the most.  
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Volatile matter, which is derived from both the organic and the mineral matter in 

coal, varies with rank of coal, with anthracite coal having the least volatile matter 

(typically 2-12%) (Donahue and Rais, 2009). Volatile matter is slowly removed 

during the coalification process (Schweinfurth and Finkelman, 2003). The volatile 

products evolved between 110–900°C under N2 using a TGA result from thermal 

decomposition and correspond to the volatile matter content of coal. 

The fixed carbon content in coal is the solid combustible material that remains 

after the volatile matter has been removed. The combustion of the fixed carbon 

occurs when the sample is held at 900°C and the atmosphere is switched from N2 

to O2 using the TGA. Anthracite has the highest fixed carbon content (75–85%), 

bituminous coal 50-70%, subbituminous coal 30-57%, and lignite 25-30% 

(Speight, 2005). 

The residue that remains after coal has lost its moisture, volatile matter, and fixed 

carbon during combustion in O2 is called the ash. Ash is therefore a product of 

mineral matter that has undergone thermal decomposition. Ash is composed of the 

major oxides of Al, Ca, Fe, Mg and Si. 

3.3.2 The Leco Carbon Sulphur analyser 

The Leco SC 632 analyser is used to determine the amount of C and S in a coal 

sample. This is an ASTM approved method for carbon and sulphur determination. 

A sample of weight between 0.25-0.35 g, of size ≤ 250 µm is combusted in pure 

O2 to produce CO2 and SO2, which are then detected and quantified by infrared 

detection.   

Standards CRM 502-383, CRM 502-435, CRM 502-385 and CRM 502-388 with 

C and S content comparable to the anticipated level in the samples were used to 

calibrate the instrument. The samples certifications are shown in Appendix B. 
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3.3.3 Coal Petrography 

According to Van Krevelen and Schuyer (1957), Hutton in 1830 laid the basis of 

coal petrography. He developed a technique of examining thin coal sections by 

transmitted light under a microscope. It was observed that bright coals are 

composed of translucent and homogeneous materials which cause reflectance and 

hence vegetation structures could be recognized. According to Van Krevelen and 

Schuyer (1957), Winter in 1913 then developed the examination of polished 

surfaces by reflected light under a metallurgical microscope. As years passed coal 

petrography has been further improved and oil immersion techniques are used to 

enhance the refractive index of the image. 

Various authors have used coal petrography as a tool in their projects to 

characterise coal including Hower et al. (2008), Hower and Robertson (2003), 

O’Brien et al. (2003), Wagner and Tlotleng (2012). Falcon and Snyman (1986) 

characterised the petrographic constituents of bituminous coals in Southern 

Africa, which is an invaluable reference source.  

ROM and float and sink fraction coal samples were crushed to -1 mm and epoxy-

bound particulate pellets of each coal sample were prepared using epoxy resin. 

Polishing was done on these blocks using a Struers Tegraforce polisher to achieve 

highly reflective surfaces with a final stage of using MD Chem with a 0.05 µm 

alumina oxide solution following SAB ISO 7404-2. Microscopic examination was 

carried out using reflected light and an oil immersion objective on a Leica 

DM4500P petrographic microscope. A detailed maceral analysis including 

subdivisions of mineral matter was conducted following SAB ISO 7404-4; 500 

points were determined per sample. Vitrinite reflectance (mean random) was 

conducted using a J and M spectrolytic system attached to the Leica microscope 

following SABS ISO 7404-3. Petrographic analyses were undertaken by Professor 

Nicola Wagner in the School of Chemical and Metallurgical Engineering. 

Micrographs were taken using a Zeiss Universal microscope with an Axiocam 

digital camera and software.  
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3.3.4 X-ray Diffraction (XRD) 

X-ray diffraction is a non-destructive technique which uses the technique of 

scattering (diffracting) X-rays from an ordered crystal, giving the crystalline 

structure of minerals, and both qualitative and quantitative chemical analysis of 

both natural and synthetic materials (Sharma, 2012). XRD compares the Bragg 

intensity data of unknown spectra to known spectra generated by standard 

samples to evaluate the concentration of mineral components in multicomponent 

mixtures of minerals, like coal (Renton, 1986). Each mineral has its own set of 

spacing which allows for its qualitative determination (Studer, 2008). Each crystal 

has its distinct diffraction pattern, where positions of the lines are determined by 

the spacing of corresponding planes (Hull, 1917) based on Bragg’s equation: 

       3.1 

where θ is the angle between the incident ray and the plane (hence 2θ is the 

angular deviation), d is the distance between consecutive planes, λ is the 

wavelength of incident rays and n is the order of the reflection. Mineralogical 

analysis of coal and the density fractions help determine the modes of occurrence 

of TEs in coal. All ROM, density fractionated and leach residue samples were 

analysed using XRD. 

Samples were run by Dr Sabine Verryn of XRD Analytical and Consulting. 

Samples of size passing 250 µm were mounted and pressed onto a sample holder 

and then exposed to X-rays for a given amount of time. The samples were 

prepared for XRD analysis using a back loading preparation method and were 

analysed with a PANalytical Empyrean diffractometer with PIXcel detector and 

fixed slits with Fe filtered Co-Kα radiation. The phases were identified using 

X’Pert Highscore plus software. The relative phase amounts (weight %) of coal 

were estimated using the Rietveld method (Autoquan Program).  
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3.4. Methods for Inferring Modes of Occurrence of Trace Elements in Coal  

3.4.1 Density Fractionation  

Float and sink analysis, or density fractionation, is a laboratory method used to 

determine the specific gravity of coal which assesses its quality and washability. 

Commercially, heavy medium density separation (HMS) is used in the coal 

industry to pre-concentrate minerals (coal washing) to produce a commercially 

graded end product (Wills and Napier-Munn, 2006). Viscosities of liquids 

determine the speed of separation of solid particles during the float and sink 

procedure. Stoke’s law states that velocity of separation is inversely proportional 

to viscosity (Rhodes and Miles, 1991). 

Several authors have used density fractionation as a means of sample preparation 

to determine TEs and their affinities in coal (Hower et al., 1994; Aktas et al., 

1998; Davidson, 2000; Querol et al., 2001; Wagner and Hlatshwayo, 2005; Bergh 

et al., 2011; Wagner and Tlotleng, 2012). Various dense liquids have been used at 

different densities to affect separation; for example, Aktas et al. (1998) used a 

mixture of isopropyl alcohol (IPA)-carbon tetrachloride mixture and zinc chloride 

solution to effect separation.  

Although many researchers have concluded that organic liquids are the most 

suitable heavy liquids due to their high densities and relatively low viscosities 

(Browning, 1961; O’Connell, 1963), bromoform is very toxic both to human 

health and the environment (Munsterman and Kerstholt, 1996). Zinc chloride, 

which is used as an alternative to bromoform, is noxious (physically harmful) and 

has high viscosities (Wills and Napier-Munn, 2006). Sodium polytungstate (SPT) 

has very low viscosity in aqueous salt solutions at densities from 1.0 to 3.1 g cm
-3

, 

and can be used for float and sink analysis of coal. Float and sink samples have to 

be washed thoroughly with distilled/ deionised water because sodium 

polytungstate contains TEs which may interfere with analysis (Callahan, 1987). In 

this project, sodium tungstate dihydrate (Na2WO4.2H2O) was used in solution 

with warm deionised water and ZnCl2 for higher densities. 
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The method undertaken in this project followed Querol et al. (2001), Bergh et al. 

(2011) and Wagner and Tlotleng (2012), and involved the following: 

1. 100 g of coal sample of size ≤ 1000 µm was climatised to the laboratory 

temperature of 23.5°C in a fume cupboard before float and sink analysis. 

2. Solutions of sodium tungstate dihydrate of densities 1.3 (ρ1.3) and 1.5 g cm
-3

 

were prepared in warm deionised water. Density solutions of 1.7 and            

1.9 g cm
-3

 were prepared with ZnCl2 with deionised water and measured with 

a hydrometer. For the density of 1.9 g cm
-3 

a centrifuge was used to separate 

the sink product from solution. 

3. The coal sample was placed in a beaker containing 1.3 g cm
-3

 density solution 

and allowed to separate completely overnight into float and sink fractions, as 

shown in Figure 3.2. 

4. Floats were removed and filtered in a Buchner funnel and dried in an oven at 

35°C for 6 hours. The sink fraction was placed into the next density separating 

vessel. The mass of the floats and sink were measured for each density 

fraction and cumulative yield determined.   

5. All fractions were analysed using petrography, as discussed in Section 3.3.3.  

The material was then further milled to ≤ 250 µm and analysed using XRD 

(refer to section 3.3.4), ICP-MS, FI-MH-AAS (Flow Injection Analysis 

Mercury Hydride System Atomic Absorption Spectrometry), TGA 

(Thermogravimetric analysis, section 3.3.1) and Leco SC 632 (refer to section 

3.3.2). 
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Figure 3. 2: Density fractionation of coal samples (ρ/ g cm
-3

) 

 

3.4.2 Sequential Leaching 

Column leaching experiments were carried out to determine the elements removed 

by certain chemicals so as to investigate their association with certain minerals.  

All leaching apparatus was soaked in HNO3, washed and rinsed with distilled 

water. Samples were crushed and milled to a particle size ≤ 250 µm (refer to 

section 3.2). 5 g of sample was loaded into the column leaching tube. Cotton wool 

was fitted at both ends of the bed as shown in Figure 3.3.  
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Figure 3.3: Column leaching apparatus (Hlatshwayo, 2008) 

 

The 5 g samples were sequentially leached with 35 ml of the following solutions 

based on the methods of Palmer et al.  (1996), Hlatshwayo (2008) and Wang et al. 

(2008): 

Stage 1: 5 g of coal was leached with 35 ml distilled water (H2O) for an hour to 

remove elements associated with soluble minerals like sulphates and 

sparingly soluble calcite.  

Stage 2 : To the residue remaining from stage 1, 35 ml 1 M ammonium acetate 

(CH3COONH4) was added over an hour to remove elements associated 

with exchangeable cations and a portion of carbonate-hosted cations 

(Palmer et al., 1996). 

Stage 3 : 35 ml 3 M hydrochloric acid (HCl) was added to the residue remaining 

from stage 2 to remove cations associated with carbonates and 

monosulphides (sphalerite, galena and chalcopyrite) (Spears, 2012). 
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Stage 4 : 35 ml concentrated hydrofluoric acid (i.e. 48 % HF) was added to the 

residue remaining from stage 3 to dissolve silicates and liberate elements 

present in silicates, including those associated with clays, illite and 

kaolinite (Palmer et al., 1996; Hlatshwayo, 2008). 

 

Stage 5 : 35 ml 2 M nitric acid (1:7) (i.e. HNO3 ) was added to the remaining 

residue from stage 4 to remove insoluble fluoride compounds that form 

during the leaching process and also dissolve pyrites and marcasites 

(disulphides) (Jorjani et al., 2011). 

 

Residence time allowed for each reaction was 1 hour and 70 ml of distilled water 

was used in between each step to thoroughly wash the previous solution; this 

leachate was added to the previous solution. The remaining residue was weighed. 

The leachates and remaining residue were analysed using ICP-MS, ICP-OES and 

the direct Hg analyser. 

3.5 Sample preparation for Trace elements determination 

Two laboratories were used for TE determination: the School of Chemistry at the 

University of the Witwatersrand and UIS Analytical services (an external 

commercial laboratory). Some problems were encountered with equipment at both 

laboratories during the project. 

3.5.1 Microwave Digestion: School of Chemistry 

Microwave digestion was carried out in the School of Chemistry on solid samples 

i.e. ROM, leach residues and density fractions, prior to Hg analysis and IC-AES 

analysis of TEs.  Known amounts of coal (250 mg) were digested using acid 

solutions of 6 ml HNO3 (55%), 2 ml HCl (32%) and 1 ml HF (40%) for 45 

minutes at 240ºC, 800 W in a closed microwave assisted extraction (MAE) 

system. The microwave digester the Multiwave 3000 was equipped with PTFE-

TFM liners, as shown in Figure 3.4 using the program conditions shown in Table 

3.1. 
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6.0 ml of boric acid was then added to each microwave digested sample to 

neutralise the damaging effects of HF for glass made materials such as the ICP 

torch. 

 

Figure 3.4: Multiwave 3000 MAE system and the vessel design (Lusilao-

Makiese, 2012) 

 

Table 3.1: Microwave programme for sample preparation (School of 

Chemistry) 

Phase Power (W) Ramp (min) Hold (min) Fan 

1 800 5 15 1 

2 600 5 10 1 

3 0 5 5 3 

 

3.5.2 Microwave digestion: UIS 

Due to equipment breakdowns at the School of Chemistry, samples were sent to 

an external laboratory, namely UIS Analytical Services, which is a SABS 

accredited laboratory. Microwave digestion was carried out on solid samples prior 

to ICP-MS analysis on ROM, leach residue and density fractionation samples. 200 

mg samples were digested using a Microwave High Pressure labstation (Milestone 
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Ethos). The reagents used for digestion for each coal sample were 10 ml 65% 

HNO3, 3 ml 40% HF, and 1 ml 30% H2O2. The Guaranteed-Reagent (GR Grade) 

HNO3 and HF for sample digestion were further purified by sub-boiling 

distillation. The maximum pressure reached was 30 bars whilst the highest 

temperature was set at 220°C for 30 minutes.   

3.6 Trace element analysis techniques 

After dissolution of organic and mineral matrices using microwave digestion these 

liquid solutions were submitted for direct analysis using ICP-OES and ICP-MS 

techniques.  Leached solutions were analysed directly using the ICP. The ICP is 

able to identify and quantify a number of elements in a very short space of time 

whilst requiring fairly little solution of sample (Savic, 2008), as discussed in 

Section 2.8. Though several methods exist, the ICP technique is best for the 

analysis of the TEs: Ba, Be, Cr, Mn, Ni, P, Sr, Ni, V and Zn, as its detection limit 

is better or may be comparable to other atomic spectral procedures.  

In this work the ICP techniques were used at UIS and the School of Chemistry; 

and Hg was determined at the School of Chemistry using the FI-MH-AAS. The 

combined use of ICP-OES and –MS enables more accurate determinations of the 

TEs at UIS analytical laboratory. The procedures are described in the sections that 

follow. 

3.6.1 Inductively coupled plasma (ICP) techniques at UIS 

The ICP-MS (Perkin Elmer Elan 6100 DRC) an automatic pulse/analogue 

counting mode using 15 sweeps per reading and 3 replicates per analysis was used 

to determine TEs in coal samples.  

For As and Se, the dynamic reaction cell technology (DRC) was used in order to 

avoid disturbance of polyatomic ions. Arsenic was measured at mass 75 and Se 

was measured at mass 78. Methane gas was used for the DRC cell to minimize the 

interferences of ArCl (mass 40 + mass 35 = mass 75) on As and Ar2 (mass 38 + 

mass 40 = 78) on Se. 
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The inductively coupled plasma optical emission spectrometer (ICP-OES) (Perkin 

Elmer Optima 5300 DV) at UIS was used to determine other TEs like Mn. The 

oxides of major elements like MnO were determined. The coal ash samples were 

prepared by lithium tetraborate fusion in a platinum crucible and leached in 

diluted HCl to get the sample into solution. The solutions were then analysed by 

ICP-OES to determine the percentage of the total oxides in the ash.  

All coal solid samples analysed using the ICP-MS and ICP-OES were microwave 

digested, whilst leach solutions were analysed directly using the ICP-MS and the 

ICP-OES. 

NIST traceable Multi-element standards were used for calibration of TE 

concentrations whilst coal certified reference materials SARM (South African 

Reference material) 18, 19 and 20 were used as quality check standards for TEs 

determination. 

3.6.2 Inductively coupled plasma atomic emission spectroscopy (ICP-AES) at 

the School of Chemistry 

A Genesis Spectro ICP-AES machine was calibrated using multi element 

standards prepared from SARM standards of concentrations 0.1, 0.5, 1 and 2 ppm. 

The elements to be analysed were selected from the Spectro Genesis software. 

The liquid solution samples were analysed. 

3.6.3 Mercury Analysis at the School of Chemistry 

Mercury in coal occurs at very low concentrations, and some techniques are not 

able to detect these low concentrations. Coal leachate samples were analysed for 

total Hg using a Perkin Elmer automated FI-MH-AAS after preconcentration. The 

basic principle of the instrument consists of reducing the different mercury 

species into the elemental form (Hg
0
) prior to analysis using a mixture of aqueous 

solutions of sodium borohydride (NaBH4) and HCl. The reduced Hg is then 

transferred via a carrier gas (Argon) to the electrodeless discharge lamp (EDL) for 

detection. The calibration of the instrument was performed at the limit of µg L
-1

 

(ppb) and the obtained calibration line is presented in Figure 3.5. The method 
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detection limit which was calculated as three times the standard deviation of six 

blank measurements was 0.056 µg L
-1

. 

 

Figure 3.5: Standards calibration line obtained for the coal leachate samples 

analysis 

3.7 Washability Data Analysis 

Washability curves were constructed according to Gluskoter et al. (1977) and 

England et al. (2002). Washability curves are graphical presentations of the 

density fractionation test results (Meyers et al., 2002).  The cumulative grade of 

the TE’s is plotted against cumulative mass yield. Washability curves are types of 

cumulative curves from which the expected concentration of an element at any 

given recovery rate of a coal can be read, assuming the separation was based on 

specific gravity differences (Gluskoter et al., 1977). Uniformly distributed 

elements in all or most of the various fractions of washed coal will be 

characterised by flat washability curves (with a zero gradient). A negative slope 

on the other hand indicates the element’s concentration with the organic matter of 

the coal whilst a positive slope indicates the element’s concentration in the 

inorganic portion of the coal (Gluskoter et al., 1977).  
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3.8 Chapter Summary 

Two sample preparation techniques, density fractionation and sequential leaching, 

to infer the modes of occurrence have been outlined. All solid samples were 

characterised using petrography, TGA, C/S Leco analysis and XRD. Trace 

element determination was conducted using ICP-MS and ICP-OES at UIS 

analytical laboratories, whilst Hg analyses were done using FI-MH-AAS. Trace 

elements were determined in the School of Chemistry. The data will be assessed 

by the production of washability curves. Certified reference materials certificates 

are shown in the appendices.  
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Chapter 4 

Results and Discussion 

4.1 Introduction 

In this chapter, the results from the two different sample preparation techniques 

(density fractionation and sequential leaching), and the analytical techniques used 

for coal characterisation are presented and then discussed.  Results from the three 

samples (HS1, HS2 and HS3) from Zimbabwe and two South African samples (A 

and B) are provided.  

4.2 Characterisation analysis of ROM samples 

Characterisation analysis data, which includes proximate analysis, petrographic 

data and total sulphur, is shown in Table 4.1.a, whilst Table 4.1.b shows XRD 

data. The full petrographic results are shown in Appendix C. Petrographic pictures 

show the different constituents in coal which include the macerals, and minerals 

like pyrite and clays (Figures 4.1a-c). From Figure 4.1.c semifusinite and fusinite, 

subcategories of inertinite are shown. 
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Figure 4.1.a: Petrographic images of pyrite minerals in coal (taken using an 

oil immersion lens, x500 magnification; scale bar shown). 

 

 

Figure 4.1.b: Petrographic images of clays (taken using an oil immersion lens, 

x500 magnification). 

pyrite 

clays 
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Figure 4.1.c: Petrographic images of different macerals (taken using an oil 

immersion lens, x500 magnification). 

 

The proximate data (Table 4.1.a) shows higher fixed carbon and lower ash content 

in the Zimbabwe coal samples compared to South African coal samples.  HS1 and 

Coal B have sulphur contents more than 2%.  

Sample HS2 seems to have the highest reflectance readings, hence making it a 

better coking coal due to the slightly higher rank. The macerals which dominate in 

almost all of the coals is inertinite, which is typical for southern African coals. 

The coal samples have relatively low vitrinite content ranging from 14-37.6%. 

Coal A has a relatively high mineral content and the lowest rank. 

According to the XRD data (Table 4.b), the most dominant mineral in all the 

samples is kaolinite; it comprises about 10% in HS1 and 35% in Coal A. Pyrite is 

the second dominant mineral in all coal samples, and may be a major host of TEs 

in coal (Diehl, 2004). The Zimbabwean coal samples seem not to have anatase (a 

mineral of TiO2) and dolomite minerals compared to the South African coal 

samples.  

Table 4.1.c shows the mineral matter content in vol % from petrographic analysis. 

It can be seen that Coal A has the highest quartz and mineral content. 

fusinite 

Semi-fusinite vitrinite 
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Table 4.1.a: Characterisation data of ROM samples 

Sample        Proximate Analysis (wt%)                                Petrographic data (vol %) Rank Total  

 

H2O Ash Volatile Fixed  Vitrinite Liptinite Inertinite Mineral  RoVmr% Sulphur 

      Matter Carbon       Matter     (wt%) 

HS1 0.91 8.45 26.20 64.68 37.60 1.00 58.00  3.40 0.82 2.22 

HS2 0.86 13.00 22.40 64.04 27.40 1.00 63.60  8.00 1.01 1.88 

HS3 1.27 14.44 20.69 64.05 14.00 3.40 74.60  8.00 0.90 1.78 

Coal A 2.72 55.77 18.18 24.29 14.10 6.30 26.40 53.30 0.73 0.77 

Coal B 1.77 19.05 22.65 56.19 14.80 2.00 74.50  9.10 0.81 2.48 

 

Table 4.1.b: XRD Data on ROM (all values in wt %) 

  Graphite Anatase Calcite Dolomite Kaolinite Muscovite Pyrite Quartz 

HS1  85.78 0.00 0.46 0.00 9.20 1.65 2.90 0.00 

HS2  78.76 0.00 0.88 0.00 10.60 1.77 2.12 5.87 

HS3  81.92 0.00 0.00 0.00 11.50 3.17 2.46 0.94 

Coal A 39.50 0.83 0.23 0.33 34.14 3.25 0.26 21.44 

Coal B 68.32 0.09 0.05 1.53 21.24 0.75 3.93 4.10 
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Table 4.1.c : Mineral matter as determined by petrographic analysis (all 

values in vol %) 

  Clays Quartz Pyrite Carbonate Other % Total Mineral 

HS1  0.20 1.00 1.60 0.60 0.00 3.40 

HS2  1.00 1.60 4.40 1.00 0.00 8.00 

HS3  0.20 2.80 4.80 0.00 0.20 8.00 

Coal A 4.50 46.50 1.80 0.50 0.00 53.30 

Coal B 0.30 4.00 1.50 3.00 0.30 9.10 

 

4.3 Trace Elements in ROM samples 

The as-received results obtained from the ICP-MS are shown in Appendices D 

and E. ICP-MS results of TEs in ROM coals are shown in Table 4.2.a. Most of the 

TEs in the Zimbabwean coal samples seem to fall in the range of average global 

and mean South Africa values, as indicated in Figures 4.2 a-d. The values of Cu, 

Cr, Pb, and V in South African coal sample A are greater than both the average 

global and mean South Africa values. The values of Cr and Ni in South African 

coal sample B exceed the average global and mean South Africa values.  

No results from the ICP-AES used in the School of Chemistry are given in this 

section, as the machine could not detect most of the TEs (as shown in Appendix 

F).  
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Table 4.2.a: ICP-MS data on TEs in ROM samples 

Element(ppm) HS1 HS2 HS3 A B 

Average global 

(Ketris and 

Yudovich,2009)  

Mean SA 

(Wagner and 

Hlatshwayo,2005) 

As 3.45 3.17 8.15 7.66 3.58 9.0±0.7 2.7±1.0 

Cd 0.029 0.028 0.053 0.239 0.219 0.2±0.04 0.24±0.17 

Co 5.03 7.54 5.00 8.76 10.9 6.0±0.2 6.9±1.6 

Cr 25.5 57.7 42.9 116 117 17.0±1 43.2±12.0 

Cu 10.7 12.0 13.8 54.5 21 16.0±1 12.6±1.6 

Mn 90.4 123 57.9 106 95 71.0±5 99.1±8.4 

Mo 1.77 4.46 2.1 4.66 6.63 2.1±0.1 2.09±1.06 

Ni 35.4 35.2 25.0 35.5 83.7 16.0±1 16.6±3.4 

Pb 4.16 5.17 10.2 33.7 15.1 9.0±0.7 7.0±2.6 

Sb <0.1 <0.1 0.31 0.51 0.17 1.0±0.09 <0.136±0.06 

Se 0.20 0.38 0.35 0.91 0.36 1.6±0.1 0.99±0.24 

V 9.71 11.70 17.1 96.7 22.3 28.0±1 31.2±3.9 
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Cd, Sb and Se values (Figure 4.2.a) are lower in the Zimbabwe coal samples 

compared to the two SA coal samples, as well as the average global and mean SA 

values. The Sb value is greater in HS3 than in coal B. The South African coal 

samples seem to have higher TEs compared to the Zimbabwean coal samples 

although the values of Cd and Se are still within the mean SA and average global 

elements limit as shown in Figure 4.2.a.  

 

Figure 4.2.a: Comparison of Cd, Sb, and Se with average global and mean SA 

values. 

Arsenic in all coal samples seems to be within the average global values (Figure 

4.2.b). Cobalt values show some variance especially with Zimbabwean coals. 

Cobalt values in HS1 and HS3 are almost the same whilst the Co value of HS2 is 

the highest of all 3 selected Zimbabwean samples. The Co values in the selected 

South African coal samples analysed in this project are slightly above the average 

global and mean SA ranges. South African coal samples analysed here seem to 

have greater Cu and Pb values than the average global and mean SA values. South 

African coal sample A seems to have highest values of TEs as shown by the 

comparisons of Cu and Pb. 
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Figure 4.2.b: Comparison of As, Co, Cu, Mo, Pb with average global and 

mean SA values. 

 

Figure 4.2.c shows comparison of Cr, Mn, Ni, and V in the Zimbabwean and 

South African samples with average global and mean SA values. The values for 

Cr, 116 ppm for coal A and 117 ppm for coal B (see Table 4.5) are high, but 

comparable to other values obtained for SA coals (see Wagner and Tlotleng, 

2012). Certain sample analyses were repeated, and comparable values were 

obtained. Vanadium in the Zimbabwean coal samples and coal B is less than the 

average global and mean SA values. Coal A, on the other hand, shows the highest 

value of V and Ni compared to other coal samples; these values are higher than 

the average global and mean SA values. 
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Figure 4.2.c: Comparison of Cr, Mn, Ni, and V with average global and mean 

SA values. 

 

The Hg data, which was analysed using the FI-MH-AAS, is shown in Table 4.2.b 

and comparisons with the global mean and South African average values are as 

shown in Figure 4.2.d. 

Table 4.2.b: FI-MH-AAS Mercury data on Average global and mean SA and 

ROM values 

Sample Hg (ppm) 

Average global  0.1000±0.01 

Mean SA  0.1500±0.05 

HS1  0.1497 

HS2  0.5343 

HS3  0.6397 

Coal A  0.4069 

Coal B  0.4609 

 

The sample HS1 seems to be comparable to the average global and mean SA 

values if a deviation of ± 30% is allowed (Richaud et al., 1998). The other 

samples seem to have Hg values much higher than the average global and mean 

SA values. High Hg concentrations could be due to the geology of both the 

Zimbabwean and SA sampling areas, with two of the Zimbabwean coal samples 
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reporting values far higher than the two SA coal samples. High Hg values could 

also be attributed to equipment error or Hg build up in the system. Some concern 

is noted regarding these analyses. The Zimbabwean coal samples generally report 

low TE contents compared to global average and mean SA values, apart from Hg. 

Wagner and Tlotleng also obtained high values of Hg in the South African coal 

samples from Waterberg coalfield. 

 

Figure 4.2.d: Comparison of Hg with average global values and mean SA 

values. 

 

4.4 Density fractionated samples 

ROM samples were density fractionated (Section 3.3.1) to obtain different 

fractions that would allow modes of occurrence to be inferred. HS1 ROM was not 

density fractionated due to the low ash content. From Table 4.3, which shows the 

results of proximate, %S, and petrographic analysis on ROM and density 

fractionated samples, S may be seen to increase with increasing density and is 

highly concentrated in the sink fractions, as expected if S occurs primarily as 

pyrite. Mineral matter and ash are highly concentrated in the sink fractions, again 

as expected. Minerals have a higher density compared to the organic component 

of coal, hence they concentrate in sink fractions. HS2, HS3 and B are inertinite-
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rich coals, and this maceral is highly dominant in the float fractions. Vitrinite 

content decreases with increasing density, since it has a lower density. 

Tables 4.4 and 4.5 show XRD and ICP-MS data for ROM and density 

fractionated samples. Yield data from density fractionation is shown in Table 4.5. 

The yield data shows that HS2 has over 50% of coal reporting to the ρ1.3 float 

fraction. Samples HS3 and B have an almost equal proportion of coal reporting to 

all density fractions. In coal A about 17% is reporting to the ρ1.5 fraction whilst 

most of the coal reports to the sink fraction due to its high mineral matter. Coal A 

has a high proportion of vitrinite to inertinite compared to other coal samples. 

About 2% each of coal reported to the float fractions of densities ρ1.7 and ρ1.9. 

Kaolinite is the most dominant mineral in both the Zimbabwean and South 

African ROM samples; HS1 and Coal B have the highest pyrite and sulphur 

content values. 

Minerals like anatase and dolomite were not detected in the Zimbabwean ROM 

coal samples, but anatase was determined in the 1.7 float and sink products.  

Scheelite was found only in HS2, concentrated in higher density fractions, but was 

not found in the HS2 ROM (Table 4.1.b). South African coal samples do not have 

the mineral scheelite.  

Most of the TEs concentrate in the sink fractions (Table 4.5), showing an affinity 

for mineral matter. There are high values of some TEs like Cr, Mn and Pb in some 

ROM samples like HS2, A and B and in their density fractions. Wagner and 

Tlotleng (2012) also showed high concentrations of these elements in the 

Waterberg samples. Beryllium seems to show equal distributions in all float 

fractions for all samples which were density fractionated. For TEs like Co, Cr, 

Mn, Mo, Ni, Pb, Sb and V, the concentration in coal A decreases with increasing 

density fractions unlike the other coal samples. The Hg values are reported in 

Table 4.13.a below.  
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Table 4.3: Characterisation data on ROM and density fractions 

Sample      Proximate Analysis (wt%)                              Petrographic data (vol%) Total  

 

H2O Ash Volatile Fixed  Vitrinite Liptinite Inertinite Mineral  Sulphur 

      matter carbon       Matter   (wt%) 

HS1 ROM 0.91 8.45 26.2 64.68 37.6 1.00 58.00 3.40 2.22 

          HS2 ROM 0.86 13.00 22.4 64.04 27.40 1.00 63.60 8.00 1.88 

HS2 ρ1.3 float 1.61 11.67 22.46 64.09 27.30 0.30 67.30 5.40 1.91 

HS2 ρ1.5 float 1.00 13.55 22.82 62.63 33.50 1.30 56.70 8.80 2.52 

HS2 ρ1.5 sink 0.86 33.15 23.33 42.65 20.10 0.00 34.10 45.90 5.09 

          HS3 ROM 1.27 14.4 20.69 64.05 14.00 3.40 74.60 8.00 1.78 

HS3 ρ1.3 float 1.32 10.81 22.50 65.37 24.80 4.20 66.50 4.20 1.52 

HS3 ρ1.5 float 1.48 9.61 21.83 67.09 21.50 3.30 73.00 2.60 1.06 

HS3 ρ1.7 float 1.36 13.60 19.36 65.67 9.20 3.30 81.20 7.10 1.03 

HS3 ρ1.7 sink 1.32 21.73 18.97 57.98 10.50 0.60 58.50 30.60 5.62 

          A ROM 2.72 55.8 18.18 24.29 14.10 6.30 26.40 53.30 0.77 

A ρ1.5 float 2.52 28.36 26.35 44.77 65.90 4.80 15.70 13.60 0.71 

A ρ1.7 float 2.47 24.06 27.70 45.77 58.10 5.30 27.90 9.20 0.62 

A ρ1.9 float 1.94 42.58 21.78 33.71 27.50 6.00 42.70 23.00 0.48 

A ρ1.9 sink 1.17 63.18 15.92 19.74 12.00 9.00 22.50 56.50 0.67 

          B ROM 1.77 19.10 22.65 56.19 14.80 2.00 74.50 9.10 2.48 

B ρ1.3 float 2.94 15.91 22.72 58.43 16.60 4.50 73.70 5.70 1.60 

B ρ1.5 float 2.96 11.45 22.83 62.76 12.40 1.50 84.40 2.10 0.89 

B ρ1.7 float 2.10 17.64 21.23 59.02 10.60 2.00 78.70 9.20 1.31 

B ρ1.7 sink 1.97 28.79 19.85 28.79 6.10 3.50 64.20 26.70 4.81 
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Table 4.4: XRD Data on ROM and density fractions (all values in wt%) 

Sample Graphite Anatase Calcite Dolomite Kaolinite Muscovite Pyrite Quartz Scheelite 

  

 

                

HS1 ROM 85.78 0.00 0.46 0.00 9.20 1.65 2.90 0.00 0.00 

          HS2 ROM 78.76 0.00 0.88 0.00 10.60 1.77 2.12 5.87 0.00 

HS2 ρ1.3 float 82.28 0.00 0.60 0.00 8.41 1.27 1.95 5.36 0.14 

HS2 ρ1.5 float 80.29 0.00 0.61 0.00 9.18 1.43 2.62 4.68 1.18 

HS2 ρ1.5 sink 61.46 0.00 3.70 0.00 13.49 2.11 6.51 8.09 4.65 

          HS3 ROM 81.92 0.00 0.00 0.00 11.50 3.17 2.46 0.94 0.00 

HS3 ρ1.3 float 86.26 0.00 0.00 0.00 8.92 2.68 1.95 0.19 0.00 

HS3 ρ1.5 float 88.76 0.00 0.00 0.00 7.66 2.47 1.12 0.00 0.00 

HS3 ρ1.7 float 85.96 0.19 0.00 0.00 9.43 2.10 1.22 1.10 0.00 

HS3 ρ1.7 sink 77.14 0.14 0.00 0.00 11.29 2.37 7.28 1.79 0.00 

          A ROM 39.50 0.83 0.23 0.33 34.14 3.25 0.26 21.44 0.00 

A ρ1.5 float 54.29 0.61 0.41 0.19 26.69 2.80 1.04 13.97 0.00 

A ρ1.7 float 61.90 0.47 0.00 0.17 23.40 2.22 0.24 11.60 0.00 

A ρ1.9 float 45.68 0.81 0.12 0.61 32.93 3.47 0.38 15.99 0.00 

A ρ1.9 sink 35.70 0.84 0.26 0.72 37.81 4.81 0.65 19.25 0.00 

          B ROM 68.32 0.09 0.05 1.53 21.24 0.75 3.93 4.10 0.00 

B ρ1.3 float 70.92 0.08 0.00 1.35 21.59 0.60 2.23 3.22 0.00 

B ρ1.5 float 77.84 0.04 0.00 0.30 17.14 0.51 0.93 3.23 0.00 

B ρ1.7 float 69.89 0.14 0.00 1.34 22.80 0.67 1.66 3.50 0.00 

B ρ1.7 sink 59.13 0.07 0.22 2.27 23.80 0.79 7.99 5.72 0.00 
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There are concerns with high TE values which are indicated by *. Wagner and Tlotleng (2012) also observed high values these TEs. At this point no values may be thought to be in error as the Hwange coalfield is of Permian age and the coalfield highlighted by 

Wagner and Tlotleng (2012)  is also a Permian coalfield. Though the location of the South African coalfield remains anonymous it is still possible to assume that the values are reflective of the trace elements in the selected coal samples.   

 

Table 4.5: ICP-MS data on Trace Elements in ROM and density fractions (all values in ppm) 

SAMPLE  Yield As B  Be Cd Co Cr  Cu  Mn Mo Ni Pb Sb Se U V 

  (%) 

 

                            

HS1 ROM 

 

3.45 29.3 1.04 0.029 5.03 25.5 10.7 90.4 1.77 35.4 4.16 <0.10 0.2 0.06 9.71 

                 HS2 ROM 

 

3.17 20.90 3.52 0.03 7.54 57.7* 12.00 123.00* 4.46 35.20 5.17 <0.10 0.38 0.66 11.70 

HS2ρ1.3 float 54.73 3.76 22.50 3.36 0.06 6.54 23.3 10.50 40.5 2.51 30.40 8.60 0.12 0.66 0.79 13.20 

HS2ρ1.5 float 33.38 5.68 19.30 3.41 0.03 6.34 25.9 9.96 67.8 3.04 28.80 7.19 <0.10 0.29 0.84 15.30 

HS2ρ1.5 sink 11.89 12.2 28.90 3.73 0.10 8.8 39.7 17.2 68.3 5.74 35.80 12.70 0.22 0.82 1.05 17.10 

                 HS3 ROM 

 

8.15 18.90 2.00 0.05 5.00 42.90 13.80 57.90 2.08 25.0 10.2 0.31 0.35 1.48 17.10 

HS3ρ1.3 float 19.96 8.17 15.20 2.05 0.07 5.10 23.20 10.60 16.90 1.33 28.60 7.56 0.356 0.354 1.61 15.30 

HS3ρ1.5 float 21.08 3.77 14.30 1.99 0.04 4.66 25.00 11.10 35.60 1.19 20.80 7.25 0.18 0.433 1.47 15.80 

HS3ρ1.7float 33.94 4.73 25.10 2.04 0.22 3.18 32.40 11.50 32.00 1.06 42.00 13.80 0.29 0.113 1.84 15.40 

HS3ρ1.7sink 25.02 34.30 29.50 2.30 0.30 5.97 45.70 23.70 113.50 4.04 40.90 20.90 1.43 0.85 2.32 17.70 

                 A ROM 

 

7.66 19.70* 3.34 0.24 8.76 116.00* 54.50 106.00* 4.66 35.50 33.70 0.51 0.91 3.71* 96.70 

A ρ1.5float 17.33 3.65 27.38 3.12 1.01 9.59 91.23 55.02 42.33 5.63 43.30 37.00 1.07 0.5 5.06 110.00 

A ρ1.7float 3.22 2.81 27.70 3.16 0.74 8.16 72.85 31.57 38.35 4.37 30.10 36.70 1.00 0.36 5.24 111.00 

A ρ1.9float 2.73 5.56 28.54 3.37 0.62 5.83 77.67 30.16 33.83 3.65 33.10 43.70 0.73 0.29 5.53 92.00 

A ρ1.9sink 76.72 6.45 29.44 2.96 0.95 3.58 73.95 28.30 34.14 3.94 34.60 27.80 0.63 0.26 5.09 68.30 

                 B ROM 

 

3.58 3.70* 2.37 0.22 10.90 117.00* 21.00* 95.00 6.63* 83.70 15.10* 0.17 0.36 1.39 22.30 

B ρ1.3float 19.68 2.31 14.73 1.91 0.59 7.59 66.81 28.35 44.06 1.82 51.00 20.70 0.26 0.34 1.35 15.80 

B ρ1.5float 21.39 1.83 12.23 2.82 0.44 8.99 56.28 24.39 31.34 1.47 63.10 16.50 0.23 0.08 1.59 21.90 

B ρ1.7float 30.74 2.04 12.33 3.28 0.67 8.70 65.91 26.71 59.19 2.17 71.60 17.00 0.26 0.12 2.17 25.00 

B ρ1.7sink 28.19 6.72 11.88 2.64 2.64 10.49 103.88 57.25 160.70 4.57 112.50 26.20 0.40 0.66 2.10 25.90 
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4.5 Washability Analysis 

Washability curves were constructed according to Gluskoter et al. (1977) and 

England et al. (2002), to help draw possible conclusions on the modes of 

occurrence of the TEs in the coals. ICP-MS and XRD data (Tables 4.4 and 4.5) 

were used to draw the washability curves and correlations diagrams. The 

washability curves of the concentration of trace elements were plotted versus the 

cumulative mass yield. Whilst many correlations were tested, those of As, B, Be, 

Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, Pb, Sb, Se, U and V are discussed in this 

section.  

To establish relationships between the different coal matrices and TEs in the coal 

samples, correlation coefficients were determined. The Pearson product moment 

correlation coefficient (r) is the statistical analysis which was performed on the 

data following Conaway (2001). Correlation coefficient, r, is a dimensionless 

index that reflects the extent of the linear relationship between two data sets and it 

ranges from –1 to +1.  

4.4.1 Arsenic Washability Curves 

In bituminous coals, As is believed to be associated with pyrite (Kolker et al., 

2000). Correlation of pyritic sulphur and As showed an As association with pyrite 

in eastern Kentucky coals (Hower et al., 1997). In Figure 4.3 and Table 4.6, As 

generally seems to concentrate with increasing yield for samples HS2, HS3 and B, 

hence showing a possible association with pyrite. Coal A ROM has high As but 

the lowest pyrite content (reference to Table 4.4); hence not all pyrite in coal 

contain high amounts of As. The correlation coefficient of A, r = 0.0608 (Table 

4.6) is too low to show a correlation of As with pyrite in coal A. The correlation 

coefficients of samples HS2, HS3 and B (Table 4.6, r ≈ +1) show a strong 

correlation of As and pyrite, suggesting that As may be strongly associated with 

pyrite in these coal samples. Whilst As may be associated with pyrite, this is not 

always the case in coal sample A, as demonstrated here; As may also have an 

organic affinity. 
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Figure 4.3: Arsenic washability curves for Zimbabwean coal samples HS2 

and HS3, and South African coal samples A and B. 

 

Table 4.6: Correlation coefficient (r) of As: Pyrite in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

As: Pyrite R 

HS2 0.9966 

HS3 0.9999 

A 0.0608 

B 0.9966 

 

4.4.2 Boron Washability Curves 

Boron is typically associated with organic fractions (Finkelman, 1995). The 

washability curves of coal samples HS2 and A are almost linear, whilst the 

washability curve of HS3 shows a positive slope with boron increasing with 

increasing yield (Figure 4.4). Coal sample B shows a slight decrease of boron 

with increasing yield.  From the correlation coefficients of coal samples HS2, HS3 

and A (Table 4.7), B shows strong negative correlation coefficients with macerals, 

which are the inferred organic content in coal from petrographic analysis. Boron 

may not be associated with organic matter in Zimbabwean coal samples HS2 and 
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HS3 and South African coal sample A.  The correlation coefficient of sample B 

may suggest an association of Boron with organic matter.  

 

 

Figure 4.4: Boron washability curves for Zimbabwean coal samples HS2, 

HS3 and South African coal samples A and B 

 

Table 4.7: Correlation coefficient (r) of B: Macerals in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

 

B:Macerals r 

HS2 -0.91761 

HS3 -0.82189 

A -0.93413 

B            0.44238 
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4.4.3 Be Washability Curves 

According to Finkelman (1995), Be has an organic association. The washability 

curves (Figure 4.5) seem linear for coal samples HS2, HS3 and A. Beryllium 

increases with increasing density in coal sample B as seen in Table 4.5.  The 

strong negative correlation coefficients (Table 4.8) of samples HS2 and HS3 show 

that there is no linear relationship of Be with macerals, hence suggesting that Be 

is not associated with organic matter in these Zimbabwean coal samples, but 

rather with mineral matter.  

 

Figure 4.5: Be washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

Table 4. 8: Correlation coefficient (r) Be: Macerals in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

 

Be: Macerals r 

HS2          - 0.9988 

HS3 - 0.9934 

A - 0.5664 

B - 0.0600 

 



79 

 

4.4.4 Cd Washability Curves 

According to Finkelman (1994), Cd is associated with sphalerites. Sphalerite is a 

sulphide which mostly consists of Zn. Coal sample HS3 and B show increasing 

concentrations of Cd in higher densities (Table 4.5). The concentration of Cd 

decreases with increasing yield in coal sample A (Figure 4.6). Wagner and 

Tlotleng (2012) found that in SA coals, Cd exhibited an organic association and 

might have an affinity for pyrite in some SA coals. Correlation coefficients were 

determined (Table 4.9) to investigate the dependence of Cd with pyrites in both 

the Zimbabwe and SA samples. The correlation coefficients of all the selected 

samples suggest a strong dependence of Cd with pyrite.  

 

Figure 4.6: Cd washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B  

Table 4.9: Correlation coefficient (r) of Cd: Pyrites in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

Cd:Pyrites r 

HS2 0.73729 

HS3 0.84652 

A 0.85545 

B 0.99262 
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4.4.5 Cr Washability Curves 

Chromium has either an organic or clay association (Finkelman, 1994). Figure 4.7 

shows the washability curves of coal samples HS2, HS3 and B show a slight 

increase in Cr concentration with increasing yield. The washability curve of coal 

sample A shows a decrease in Cr with increasing yield. The correlation 

coefficients in Table 4.10 show that Cr may not be associated with organic matter. 

The strong negative correlation coefficients of Cr: Kaolinite for coal samples HS2 

(r= -1.0000), HS3 (r= -0.9129) and B (r= -0.7261), suggest that Cr may not be 

associated with kaolinite whilst for sample A it may be otherwise. The strong 

correlation coefficient r = 0.9192 for Cr: Muscovite in coal sample B suggests that 

Cr may be associated with muscovite in sample B. Muscovite is a silicate which 

could be inferred to be a type of clay (Mcdowell, 1983). 

 

Figure 4.7: Cr washability curve for for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B. 
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Table 4.10: Correlation coefficient (r) of Cr:Maceral, Cr:Kaolinite, 

Cr:Muscovite in Zimbabwean coal samples HS2 and HS3, and South African 

coal samples A and B. 

  Cr:Maceral Cr:Kaolinite Cr:Muscovite 

HS2 - 0.9973 - 1.0000 - 0.9995 

HS3 - 0.9482 - 0.9129 - 0.4727 

A - 0.5461 - 0.2651 - 0.8198 

B - 0.9889 - 0.7261   0.9192 

 

4.4.6 Co Washability Curves 

Cobalt may be associated with pyrite, or may have an affinity for accessory 

sulphides (Finkelman, 1995). The washability curves of HS2 and B (Figure 4.8) 

show slight increases in Co concentration with increasing yield. The washability 

curve of HS3 shows a sharp decrease in Co in ρ1.7 float and then increase in the 

sink fraction. This may be attributed to possible depletion of Co in the ρ1.7 float 

sample. Cobalt concentration decreases with increasing yield for the washability 

curve of Co. The correlation coefficients of HS2 and HS3 suggest that Co may be 

associated with pyrite (Table 4.11) whilst r of A and B suggests that Co may not 

be associated with pyrite.  

 

Figure 4.8: Co washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 
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Table 4.11: Correlation coefficient (r) of Co:Pyrite, in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

Co:Pyrites r 

HS2  0.9781 

HS3  0.7569 

A - 0.2827 

B - 0.7745 

 

4.4.7 Cu Washability Curves 

According to Finkelman (1995), Cu is associated with chalcopyrite. The 

washability curves of coals HS2, HS3 and B show that Cu concentrates with 

increasing yield (Figure 4.9). The washability curve of A shows a decrease of Cu 

with increasing yield. The high positive correlation coefficients of all coal 

samples show that Cu is associated with pyrite (Table 4.12).  

 

Figure 4.9: Cu washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 
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Table 4.12: Correlation coefficient (r) of Cu:Pyrite, in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

 

Cu:Pyrites r 

HS2 0.9794 

HS3 0.9841 

A 0.8193 

B 0.9982 

 

4.4.8 Hg Washability Curves 

Table 4.13.a provides the Hg results as determined by FI-MH-AAS. According to 

literature, Hg is mostly associated with pyrite (Finkelman, 1994; Yudovich and 

Ketris, 2005a). Mercury in the Zimbabwean coal samples increases with 

increasing density (Table 4.13.a). The washability curves of the Zimbabwean coal 

samples show that Hg is dominant in the sink fractions, increasing with increasing 

yield (Figure 4.10). In the SA coal samples, the washability curves seem linear; 

Hg may be associated with both organic and inorganic matter. This trend was 

observed by Wagner and Tlotleng (2012) who found similar results in SA coals.  
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Table 4.13.a : Hg data from the FI-MH-AAS 

Sample  Hg (ppm) 

HS1 ROM 0.1497 

  HS2 ROM 0.5343 

HS2 p1.3 float 0.3720 

HS2 p1.5 float 0.7170 

HS2 p1.5 sink 1.0457 

  HS3 ROM 0.6397 

HS3 p1.3 float 0.1698 

HS3 p1.5 float 0.1722 

HS3 p1.7 float 0.2165 

HS3 p1.7 sink 0.7399 

  Coal A ROM 0.4069 

Coal A p1.5 float 0.2167 

Coal A p1.7 float 0.1790 

Coal A p1.9 float 0.1903 

Coal A p1.9 sink 0.2401 

  Coal B ROM 0.4609 

Coal B p1.3 float 0.1466 

Coal B p1.5 float 0.1373 

Coal B p1.7 float 0.0968 

Coal B p1.7 sink 0.1511 

 

Figure 4.10: Hg washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 
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Table 4.13.b: Correlation coefficient (r) of Hg:Pyrite, in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

 

Hg:Pyrite r 

HS2 0.9207 

HS3 0.9848 

A 0.6785 

B 0.4969 

 

4.4.9 Mn Washability Curves 

According to Finkelman (1994), Mn is associated with carbonates, especially 

siderite and ankerite. Coal A seems to give an almost flat washability curve, hence 

showing an equal distribution of Mn with all density fractions. In the Zimbabwean 

coal samples and coal sample B, Mn seems to concentrate with increasing yield 

(Figure 4.11.a). Ankerite (Ca(Fe,Mg,Mn)(CO3)2 ) is closely related to dolomite 

(CaMg(CO3)2) so correlation coefficients between Mn and dolomite were 

calculated for South African coals (Figure 4.11.b). The correlation coefficient r = 

0.8381 for Mn: dolomite suggests a strong possible association of Mn with 

dolomites. With just density fractionation results, it is not sensible to make 

conclusions of Mn association with carbonates. Dolomite is closely related to 

ankerite which was not determined by XRD. Direct methods of determining 

modes of occurrence could help determine possible modes of occurrence in both 

Zimbabwean and SA coals.  
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Figure 4.11.a: Mn washability curve for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

 

Figure 4.11.b: Correlation of Mn: Dolomite in South African coal samples A 

and B 

4.4.10 Other trace elements Washability Curves 

Molybdenum has a probable association with sulphides (Finkelman, 1995). In 

coal samples HS2, HS3 and B, Mo seems to associate with sink fractions (Table 

4.5). The washability curves of samples HS2, HS3, and B show an increase in Mo 
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concentration with increasing yield (Figure 4.12.a). The washability curve of coal 

A shows that Mo is highly concentrated in the float fractions as it decreases with 

increasing yield. 

 

Figure 4.12.a: Mo washability curves for Zimbabwean coal samples HS2, 

HS3 and South African coal samples A and B 

According to Finkelman (1995), the mode of occurrence of Ni is unclear. The 

washability curves of Ni (Figure 4.12.b) in coal samples HS2, HS3 and B show an 

increase in Ni concentration with increasing yield. The washability curve of 

sample A shows decreasing Ni concentrations with increasing yield. Direct 

methods of determining modes of occurrence could assist in determining the 

modes of occurrence of Ni in coal. 
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Figure 4.12.b: Ni washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

The Pb washability curves (Figure 4.12.c) of coal samples HS2, HS3, and B show 

minimum increase in Pb content with increasing yield, whilst that of coal A shows 

a decrease in Pb content with increasing yield. The strong negative correlation 

coefficients of coal samples HS2, HS3 and A (Table 4.14.a) show that Pb may not 

be associated with sulphur. The strong coefficient of correlation of coal sample B 

(r = 0.945) shows that Pb may be associated with sulphur. Coal B ROM sample 

has the highest sulphur value of all five samples.  
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Figure 4.12.c: Pb washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

Table 4.14. a: Correlation coefficient (r) of Pb: Sulphur, in Zimbabwean coal 

samples HS2 and HS3, and South African coal samples A and B. 

Pb:Sulphur r 

HS2 - 0.9083 

HS3 - 0.8571 

A - 0.7163 

B   0.9549 

 

Antimony has a mode of occurrence with pyrite and accessory sulphides, whilst 

Se can be associated with organic matter, pyrite, accessory sulphides and 

selenides (Finkelman, 1994). In some SA coals, Se was found to report to middle 

fractions, and a silicate association was proposed by Wagner and Tlotleng (2012).  

The washability curves (Figure 4.12.d) of coals HS3 and B show slight increases 

of concentration of Sb with increasing yield, whilst that of A shows a decrease 

with increasing yield.  The washability curve of HS2 is almost flat, hence 

suggesting that washing the coal may have no effect on the concentration 

distribution of Sb in the clean coal.   From Table 4.14.b, samples HS3 and B show 

very strong correlations (r ≈ +1) of Sb with pyrite. Coal samples HS2 and A show 

that Sb may not be associated with pyrite, especially with r = - 0.9357 in HS2. 
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The washability curves of Se (Figure 4.12.e) show high concentrations in the float 

and sink fractions. The washability curve of A shows decreasing Se 

concentrations with increasing yield (Figure 4.12.e). The high correlation 

coefficients of Se: pyrite (Table 4.14.b) show that Se may be associated with 

pyrite for the Zimbabwean coal samples HS2 and HS3, and South African coal 

samples A and B.  

Selenium may not be associated with macerals in samples HS2 and HS3, as can 

be seen from their negative correlation, whilst for coals A and B, Se may also be 

associated with macerals.  

 

Figure 4.12.d: Sb washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

Table 4.14. b: Correlation coefficient (r) of Sb: Pyrite, Se: Maceral, Se: Pyrite 

in Zimbabwean coal samples HS2 and HS3, and South African coal samples 

A and B. 

  Sb:Pyrite Se:Maceral Se:Pyrite 

HS2 - 0.9537 - 0.6776 0.6314 

HS3   0.9976 - 0.8370 0.8997 

A - 0.2600   0.6608 0.6404 

B   0.9929   0.8864 0.9526 
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Figure 4.12.e: Se washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

U may be organically bound or found in zircon whilst V may be associated with 

clays or organic matter (Finkelman, 1995). The washability curves of U (Figure 

4.12.f) are almost flat in all coal samples suggesting that washing the coal may 

have no effect on the concentration distribution of U in the clean coal. Uranium in 

the Zimbabwean coal samples HS2 and HS3 and the selected SA coal samples 

does not show a correlation with the organic matter (Table 4.14.c).  

The washability curves of V (Figure 4.12.g) in both the selected Zimbabwean and 

SA coal sample B, show an almost uniformly distribution of V with clays or 

organic matter (Figure 4.12.g). The washability curve of coal sample A shows a 

decrease in V concentration with increasing yield. From the correlation 

coefficients in Table 4.14.c, the values indicate possible association of V with 

both kaolinite and muscovite in the Zimbabwean coal samples HS2 and HS3 and 

SA coal samples A and B. Vanadium has a clay association in all selected coal 

samples analysed in this project.  
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Figure 4.12.f: U washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

Table 4.14.c: Coefficient of determination (R
2
) of U: Maceral, V: Kaolinite 

and V: Muscovite in Zimbabwean coal samples HS2 and HS3, and South 

African coal samples A and B. 

  
Zimbabwe coal 

samples 
South African coal samples 

  HS2 and HS3 A and B 

U:Maceral - 0.1118 - 0.4761 

V:Kaolinite  0.7008  0.4893 

V:Muscovite  0.5856  0.7033 

 

 



1 The external laboratory experienced several staff changes during the submission of the samples, which resulted in 

significant delays in the release of results and inconsistencies in the data. Samples were rerun, but time and costs 

prohibited a complete preparation and re-analysis of all the leachate samples. The commercial, certified laboratory 

closed down soon after completion of this project due to mismanagement. 
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Figure 4.12.g: V washability curves for Zimbabwean coal samples HS2, HS3 

and South African coal samples A and B 

 

4.6 Sequential Leaching  

The following TEs will be discussed, As, Be, Co, Cr, Cu, Mn, Mo, Ni and V. 

Table 4.15.a illustrates the percentages of TE extracted at each stage of leaching. 

The XRD data in Table 4.15.b shows mineral analysis results of ROM samples 

and leach residues. To try and maintain accuracy, all equipment was washed 

initially with 2 M HNO3 and rinsed with deionised water. Care was taken while 

carrying out the sample preparation, and leachate bottles were stored in the fridge 

prior to being taken to UIS the next day for analysis. There is a concern regarding 

the results obtained, as the mass balances of several TEs either show huge losses 

or over balances. There is a possibility of errors, contamination and possible 

sample mishandling, especially in the external analytical laboratory
1
.  Several 

samples, including the residues, were re-analysed and very different results were 

obtained. Some TEs like Hg are very volatile and may escape from solution; 

hence its mass balance could not get to 100%. 
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Table 4.15. a: Sequential leaching results (Trace elements, ppm) 

Sample Element ROM H2O % leached CH3COONH4 % leached HCl % leached HF % leached HNO3 % leached Total % leached Residue % in residue Recovery(%)

Coal A As 7.660 0.0000 0.0000 0.2520 3.2898 0.0210 0.2742 0.2520 3.2898 0.0210 0.2742 7.1279 6.4165 83.77 90.89

Coal B 3.580 0.0000 0.0000 0.0000 0.0000 0.0210 0.5866 0.0420 1.1732 0.0000 0.0000 1.7598 2.7577 77.03 78.79

HS1 Be 1.040 0.0000 0.0000 0.0000 0.0000 0.0420 4.0385 0.1890 18.1731 0.0420 4.0385 26.2500 0.6920 66.54 92.79

HS2 3.520 0.0000 0.0000 0.0000 0.0000 0.1680 4.7727 0.6720 19.0909 0.3360 9.5455 33.4091 2.2500 63.92 97.33

HS3 2.000 0.0000 0.0000 0.0000 0.0000 0.0840 4.2000 0.5460 27.3000 0.2100 10.5000 42.0000 1.3700 68.50 110.50

Coal A 3.340 0.0456 1.3644 0.0000 0.0000 0.5089 15.2363 0.7359 22.0337 0.1299 3.8894 42.5237 2.7326 81.81 124.34

Coal B 2.370 0.0000 0.0000 0.0000 0.0000 0.0774 3.2670 0.2666 11.2478 0.0474 2.0016 16.5165 2.5917 109.36 125.87

HS1 Co 5.030 0.0000 0.0000 0.0420 0.8350 0.2310 4.5924 0.5250 10.4374 0.1890 3.7575 19.6223 3.8100 75.75 95.37

HS2 7.540 0.0210 0.2785 0.0210 0.2785 0.1680 2.2281 0.4410 5.8488 0.3360 4.4562 13.0902 6.2600 83.02 96.11

HS3 5.000 0.0000 0.0000 0.2940 5.8800 0.9870 19.7400 1.0710 21.4200 0.4410 8.8200 55.8600 3.4100 68.20 124.06

Coal A 8.760 0.0421 0.4807 0.1970 2.2484 1.1820 13.4930 2.8784 32.8580 0.5047 5.7618 54.8419 5.5786 63.68 118.52

Coal B 10.900 2.7158 24.9158 1.0677 9.7952 0.8744 8.0218 1.6041 14.7170 0.5409 4.9626 62.4124 7.6523 70.20 132.62

HS1 Cr 25.500 0.0000 0.0000 0.0000 0.0000 4.5150 17.7059 7.5600 29.6471 6.1110 23.9647 71.3176 11.9000 46.67 117.98

HS2 57.700 0.0630 0.1092 0.0420 0.0728 5.0820 8.8076 17.4300 30.2080 13.4610 23.3293 62.5269 14.4000 24.96 87.48

HS3 42.900 0.0210 0.0490 0.0000 0.0000 3.6330 8.4685 11.9700 27.9021 7.1820 16.7413 53.1608 23.1000 53.85 107.01

Coal A 116.000 0.0458 0.0395 0.0357 0.0308 21.313 18.3730 33.5673 28.9373 7.8947 6.8058 54.1864 5.5786 4.81 59.00

Coal B 117.000 0.0818 0.0699 0.0406 0.0347 19.578 16.7336 18.5744 15.8756 8.1571 6.9718 39.6856 7.6523 6.54 46.23

HS1 Cu 10.700 0.0420 0.3925 0.1050 0.9813 1.0290 9.6168 1.5960 14.9159 0.5880 5.4953 31.4019 8.4800 79.25 110.65

HS2 12.000 0.0630 0.5250 1.7850 14.8750 1.3650 11.3750 1.3860 11.5500 0.8190 6.8250 45.1500 7.6100 63.42 108.57

HS3 13.800 0.0420 0.3043 0.1050 0.7609 1.5960 11.5652 1.1760 8.5217 0.5460 3.9565 25.1087 11.8000 85.51 110.62

Coal A 54.500 0.1417 0.2600 0.7412 1.3600 14.092 25.8567 11.4994 21.0998 3.4100 6.2569 54.8334 24.3696 44.71 99.55

Coal B 21.000 0.1132 0.5391 0.2603 1.2396 3.5859 17.0756 2.9801 14.1911 1.2292 5.8534 38.8988 20.2084 96.23 135.13

HS1 Hg 0.150 0.0029 1.9038 0.0029 1.9639 0.0139 9.2719 0.0047 3.1263 0.0048 3.2331 19.4990 0.1146 76.55 96.05

HS2 0.534 0.0027 0.4979 0.0027 0.5054 0.0138 2.5830 0.0039 0.7300 0.0030 0.5690 4.8852 0.3962 74.15 79.04

HS3 0.640 0.0110 1.7196 0.0110 1.7196 0.0210 3.2828 0.0190 2.9702 0.0140 2.1885 11.8807 0.5396 84.35 96.23

Coal A 0.407 0.0025 0.6164 0.0037 0.9019 0.0018 0.4378 0.0137 3.3648 0.0024 0.5942 5.9151 0.2622 64.44 70.35

Coal B 0.461 0.0029 0.6274 0.0033 0.7108 0.0025 0.5376 0.0144 3.1256 0.0030 0.6561 5.6575 0.2610 56.63 62.29

HS1 Mn 90.400 0.1890 0.2091 4.8930 5.4126 42.630 47.1571 23.3100 25.7854 9.3450 10.3374 88.9015 9.5500 10.56 99.47

HS2 123.000 0.4830 0.3927 1.5330 1.2463 53.130 43.1951 21.8400 17.7561 19.5510 15.8951 78.4854 6.3900 5.20 83.68

HS3 57.900 0.0630 0.1088 2.1000 3.6269 9.8070 16.9378 16.7790 28.9793 7.9800 13.7824 63.4352 12.2000 21.07 84.51

Coal A 106.000 1.2600 1.1887 10.5000 9.9057 39.270 37.0472 40.9500 38.6321 10.9200 10.3019 97.0755 26.0627 24.59 121.66

HS1 Mo 1.770 0.0000 0.0000 0.0210 1.1864 0.1680 9.4915 0.5670 32.0339 0.2100 11.8644 54.5763 0.8810 49.77 104.35

HS2 4.460 0.0000 0.0000 0.0000 0.0000 0.1050 2.3543 0.8820 19.7758 0.8190 18.3632 40.4933 2.0000 44.84 85.34

HS3 2.080 0.0000 0.0000 0.0000 0.0000 0.0840 4.0385 0.5880 28.2692 0.3360 16.1538 48.4615 1.6400 78.85 127.31

Coal B 6.630 0.0000 0.0000 0.0268 0.4045 0.6545 9.8722 3.2561 49.1118 1.0970 16.5457 75.9342 1.9860 29.95 105.89

HS1 Ni 35.400 0.0000 0.0000 0.0997 0.2817 1.8176 5.1345 5.0489 14.2625 2.7560 7.7854 27.4641 29.5000 83.33 110.80

HS2 35.200 0.1013 0.2879 0.0574 0.1629 1.2093 3.4354 5.6036 15.9192 4.4922 12.7621 32.5675 24.4000 69.32 101.89

HS3 25.000 0.0319 0.1277 0.7567 3.0267 2.2870 9.1479 5.8156 23.2623 2.8866 11.5464 47.1110 26.4000 105.60 152.71

Coal A 35.500 0.1191 0.3355 0.6615 1.8633 7.0657 19.9033 20.2415 57.0183 4.2202 11.8880 91.0084 31.4247 88.52 179.53

Coal B 83.700 8.7497 10.4536 3.4885 4.1679 7.0534 8.4270 19.7923 23.6467 6.7905 8.1129 54.8081 64.5410 77.11 131.92

HS2 V 11.700 0.0000 0.0000 0.0000 0.0000 0.2094 1.7900 1.9111 16.3342 0.9735 8.3207 26.4449 10.1000 86.32 112.77

HS3 17.100 0.0000 0.0000 0.0000 0.0000 0.2700 1.5787 4.7960 28.0468 1.8935 11.0728 40.6983 11.6000 67.84 108.53

Coal A 96.700 0.0000 0.0000 0.4200 0.4343 2.5200 2.6060 30.6600 31.7063 5.6700 5.8635 40.6101 77.1692 79.80 120.41

Coal B 22.300 0.0000 0.0000 0.6300 2.8251 0.4200 1.8834 4.2000 18.8341 1.0500 4.7085 28.2511 17.7913 79.78 108.03  
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Table 4.15. b: XRD data on ROM and leach residues (all values in wt%) 

  Graphite Anatase Calcite Dolomite Kaolinite Muscovite Pyrite Quartz 

HS1 ROM 85.78 0.00 0.46 0.00 9.20 1.65 2.90 0.00 

HS1 leach residue 98.13 0.00 0.00 0.00 0.00 0.00 1.87 0.00 

     

  

  HS2 ROM 78.76 0.00 0.88 0.00 10.6 1.77 2.12 5.87 

HS2 leach residue 98.74 0.00 0.00 0.00 0.00 0.00 1.26 0.00 

         HS3 ROM 81.92 0.00 0.00 0.00 11.5 3.17 2.46 0.94 

HS3 leach residue 92.89 0.00 0.00 0.00 4.31 0.77 1.60 0.42 

         A ROM 39.5 0.83 0.23 0.33 34.14 3.25 0.26 21.44 

A leach residue 72.1 0.93 0.00 0.00 5.24 1.18 0.71 19.84 

         B ROM 68.32 0.09 0.05 1.53 21.24 0.75 3.93 4.10 

B leach residue 92.44 0.05 0.00 0.00 2.4 0.09 2.07 2.94 
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5 g of coal was leached with 35 ml of each solution followed by 70 ml of distilled 

water to leach the previous solution completely; hence a dilution factor had to be 

factored into the calculations to cater for volumes used to get the concentration.  

5 g was leached therefore with 105 ml of solution 

Hence 5 g →105 ml 

To account for the concentration of the leachates, the concentration obtained from 

the machine (ICP-OES, ICP-MS and FI-MH-AAS) is multiplied by (105/5), 

which is 21. 

Mass balances of some elements like Co, Ni, and V are considerably more than 

100%, suggesting possible mass accumulation of the elements or possible 

contamination during analysis. The TEs which gave mass balances slightly below 

100% include As and Hg. All these results are shown in the Appendix E.  

Various authors have used selective leaching to determine the modes of 

occurrence of TEs (Palmer et al., 1996; Norris et al., 2010; Jorjani et al., 2011; 

Spears, 2012). Pyrite is a great host of many TEs; pyrite was leached by dilute 

HNO3 in stage 5 during sequential leaching. Some TEs may be removed by 

concentrated HF which is stage 4 of the sequential leaching process. Concentrated 

HF liberates elements associated with silicates (clays).   

Arsenic is believed to be associated with pyrite in bituminous coals (Kolker et al., 

2000). Coal A and B have over 75% of As remaining in the residue which still 

contains pyrites, hence indicating that the leaching was not effective. Hydrofluoric 

acid removed the highest percentage of As (3%) out of all chemicals used in coal 

A. Coal A has quite a high proportion of kaolinite (Figure 4.15.b), and As could 

be associated with clays in this coal sample.  

Beryllium has an affinity for organic matter or it may be associated with clays in 

coal (Finkelman, 1994). Acids used to extract Be (HCl and HF) exhibit problems 

and issues such as interference and material compatibility when analysing by ICP-

AES or ICP-MS (Archuleta and Duran, 2009). From the results, Be may be also 

associated with silicates as over 10% of Be was removed by HF in each sample 
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(Table 4.15.a), whilst more than 50% remained in the residue, hence also showing 

an association with the organic component or incomplete extraction.  

Cobalt is associated with pyrite and some occur in accessory sulphides 

(Finkelman, 1995), hence most Co would be removed by HNO3 during sequential 

extraction. For samples HS1, HS2, HS3 and A, high Co extraction occurred in 

stages 3 (HCl), 4 (HF), and 5 (HNO3). Hence, some Co could occur with the 

carbonate minerals, clays, and pyrite. For sample B, 25% extraction occurred in 

the extraction process by H2O. Possible contamination could have led to high 

observations of Co being extracted by H2O. 

According to Finkelman (1995), Cr has either an organic or clay association. It is 

expected that a high extraction of Cr would occur in stage 4 or some Cr would 

remain associated with organic matter in the residue. High levels of extraction of 

Cr occurred in stages 3, 4, and 5, with over 15% of Cr extraction occurring in 

stage 4 for all coal samples. In HS1 and HS2 no kaolinite (Table 4.15.b) was 

identified in the residue, hence Cr may have both clay and organic associations in 

these samples as some Cr still remained in the residue. Sample HS3 residue 

contains kaolinite which could still host Cr. The SA samples A and B had very 

low percentages of Cr in the residue, since most of the Cr was extracted by HF; Cr 

may be associated with clays in these SA coal samples. 

It is expected that Cu could be removed by HNO3 since Cu is associated with 

chalcopyrite (Finkelman, 1994). The extraction of Cu by HNO3 was highest 

compared to extraction by the other chemicals. As some pyrite remained in the 

residues of all samples (Table 4.15.b), Cu could be associated with pyrite. 

Although Hg was detected in the residues, HF and HNO3 removed high 

percentages of Hg in all coal samples. Mercury may be associated with clays, 

pyrites and organic matter for these samples. In HS1, 9.3% extraction was 

observed in stage 3 (HCl), the highest of all chemicals hence suggesting a possible 

association of Hg with carbonates. 

Manganese is associated with ankerite (Finkelman, 1994). Ankerite specifically 

was not identified in these coal samples by XRD; ankerite is a type of carbonate, 
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and carbonate minerals were determined by petrographic analysis of ROM 

samples (Table 4.1.c) in all samples except HS3. Dolomite and calcite are types of 

carbonates which were determined by XRD. Extraction of Mn using HCl (stage 3) 

was over 35% in samples HS1, HS2 and A giving an indication that Mn in these 

samples could be associated with carbonates. Less than 25% of Mn remained in 

the residue for all samples (Table 4.15.a). No petrographic analysis was done on 

the sequential leaching residues due to minimal samples remaining after 

sequential extraction. A greater percentage of Mn (28.97%) was removed by HF 

in HS3, hence suggesting a possible association of Mn with silicates in this 

sample. The analysis of coal B could not give comprehensive results possible due 

to mass accumulation of Mn or contamination during ICP-MS analysis 

A probable association of Mo with sulphides was suggested by Finkelman (1995).  

Over 2% Mo extractions in samples HS1, HS2, HS3, and B were observed in 

stages 3, 4 and 5. The highest extraction of Mo in samples HS1, HS2, HS3, and B 

were observed in stage 4 (HF, Table 4.15.a); fairly high quantities of Mo were 

also extracted in stage 5; for a sulphide association, it is expected that major 

extraction would occur in stage 5. Molybdenum could be associated with silicates 

and sulphides in coal samples HS1, HS2 and B. It is difficult to make a sensible 

conclusion for sample HS3 as the mass balance is slightly higher than 100%; it is 

possible that some mass accumulation could have occurred in the residue which 

seems to have about 78.85% of Mo still present in the residue after 48.46% 

extraction from leaching. 

According to Finkelman (1995), the association of Ni in coal is unclear. From 

sequential leaching results of all coal samples, most of the Ni still remained in the 

residue which unfortunately still contained mineral matter as well. It is difficult to 

make a sensible conclusion pertaining the association of Ni with any component 

in these coal samples, as the results show both high extraction of Ni by the 

chemicals used and still high proportion of Ni still remaining in the residue.  
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Vanadium may be associated with clays or the organic matter in coal (Finkelman, 

1995). Very high proportions of V were removed by HF in coal samples HS2, 

HS3, A, and B (Table 4.15.a), hence suggesting a possible association of V with 

clays in these samples. Some V still remained in the residues (Figure 4.15.a) as 

well as kaolinite (Figure 4.15.b) in samples HS3, A and B. Some V could still 

remain in the kaolinite in the residue.   

Some TEs and minerals remained in the residue possible due to low volumes of 

lixiviant (Riley et al., 2012). In future the volume of acids used could be 

comparable to those used by Riley et al. (2012) to increase the extraction of TEs 

and minerals. 
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Chapter 5  

Conclusions and Recommendations 

This is the concluding chapter of the dissertation, and will provide a summary of 

the work conducted, as well as the conclusions regarding the TE levels 

determined in these coal samples, with inference to the possible mode of 

occurrence of selected TE’s. Three coal samples from Hwange coalfield, 

Zimbabwe, were compared to 2 South African coal samples.  

The project aim and objectives have been fulfilled by determining TEs in ROM, 

density fractionated, and leached products for all 5 samples. Two Hwange, 

Zimbabwe coals were density fractionated along with the other 2 SA coals. All 

selected sampled were sequentially leached. ROM TE values were compared with 

average global and mean SA values. To infer modes of occurrence, two 

preparation techniques, density fractionation and sequential leaching were used 

and compared. 

5.1 Conclusions 

1. Proximate analysis of ROM samples show higher fixed carbon and lower 

ash content in the select Zimbabwean coals compared to the selected SA 

coals. The total %S in all selected coal samples is less than 3%. 

Petrographic analysis show that Zimbabwean coal ROM samples HS1, 

HS2, and HS3, and SA coal sample B are inertinite-rich coals compared to 

the SA coal sample A, which has high vitrinite content. Coal A has the 

highest ash content (55.80%) of all selected coal samples analysed in this 

project. XRD analysis show that coal A has the highest percentage of 

kaolinite (34.14%) and lowest graphite (39.50%) content compared to all 

selected coal samples in this project. Kaolinite is the highest dominant 

mineral in all the ROM samples followed by quartz except in sample HS1 

and HS3. The coal ROM samples HS1 and B have the highest values of 

pyrite as well as sulphur content. 

2. Trace element distribution between the ROM samples from both localities 

show some variations. Broadly speaking, TEs in the selected Zimbabwean 
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ROM samples appear consistent with published SA data, including higher 

Cr values and low As values, when compared to average global averages. 

Many of the TEs, especially in the selected SA coal samples, are above the 

global and mean SA values, including Co, Cr, Cu, Mo, Ni, Pb, and V. In 

comparison to the Waterberg coal samples analysed by Wagner and 

Tlotleng (2012), the TE values of Co, Cr, Ni, Pb, and V in the selected SA 

coals are high. The values of Hg (except in sample HS1) and Mn in all the 

coal samples analysed during the current project are above the global and 

SA average values. However, the selected SA coal samples analysed in 

this project showed lower Hg content compared Waterberg coals analysed 

in Wagner and Tlotleng (2012).  

3. The values for Cd, Sb, and Se are within the global and SA mean 

averages. Coal A seems to show the highest values of Cu, Cd, Mn, Pb, and 

V, hence showing a great relationship of TEs with mineral matter as coal 

A has the highest ash content (from proximate analysis). At highly critical 

levels (for example 2 µg m
-3

 is the limit of exposure for an eight-hour 

time-weighted average for Be), these TEs are toxic to biological systems 

or have adverse environmental effects.  

4. Petrographic analysis of  float and sink fractions show a high 

concentration of inertinite in the float fractions of the inertinite-rich coals 

samples HS2, HS3 and B; whilst coal A shows a high vitrinite 

concentration in the float fractions, as expected. The %S and ash content 

increase with increasing densities. The XRD data of the density 

fractionated samples show an increase of minerals like pyrite, kaolinite 

and quartz with increasing densities.   

5. An understanding of the mode of occurrence of TEs is important as it 

helps identify possible measures to utilise for prevention of environmental 

release of TEs during coal preparation and utilisation. Based on density 

fractionation, TEs seem to concentrate in higher densities in the 

Zimbabwean coal samples, hence showing that most TEs are inorganically 

bound. The washability curves of As and Pb for HS2, HS3, and coal 
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samples A and B show increasing concentrations with increasing yield. 

The washability curves of samples HS2, HS3, and coal B seem to show 

that the concentration of most TEs increase with increasing yield, 

especially for B, Be, Cd, Co, Cr, Cu, Mn, Mo and Ni. Coal A, perhaps 

because of its high ash content, shows some variations of modes of 

occurrence from those suggested in literature for some elements. In this 

coal sample, the least amount of pyrite was present (compared to the other 

4 samples); according to literature, pyrite is believed to host most of the 

TEs (which include elements like As, B, Be, Cd, Cu, Hg, Mn, Mo, Ni, Pb, 

Se, U and V).  

The correlation coefficients (r ≈ 1) for coal samples HS2, HS3 and B show 

that As is associated with pyrite whilst r = 0.0608 for sample A is too low 

to suggest an association of As with pyrite. From the strong correlation 

coefficients of Hg and pyrite it may be concluded that Hg is associated 

with pyrite in Zimbabwean sample HS2 and HS3. In SA coals A and B, 

Hg could be associated with pyrite as well as other matter in coal.  

Trace elements like Be and B, which are associated with organic matter 

according to Finkelman (1994), show no correlation with macerals in 

Zimbabwean coal samples HS2 and HS3. Boron and Be seem to show 

high association with mineral matter, especially in coal samples HS2, 

HS3, and A hence it may be concluded that these TEs may occur in 

association with mineral matter in these samples. From the correlation 

coefficients, South African coal sample B shows that B and Be may be 

associated with organic matter.  

From the strong positive correlation coefficients of Cd, Co, Cu, and Se 

with pyrite in the Zimbabwean coal samples it can be concluded that these 

TEs occur in pyrite in samples HS2 and HS3. Correlation coefficients with 

sulphur show that Pb could be associated with other matter in samples 

HS2, HS3 and A besides sulphur. The correlation coefficient, r = 0.945 for 

Pb:S for sample B shows that Pb is highly associated with sulphur and 

sample B has the highest sulphur content of all samples (2.48%). The 
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correlation coefficients of V with kaolinite and muscovite suggest that in 

samples HS2, HS3, A and B, V may be associated with clays. It can be 

concluded that most of the TEs in Zimbabwean coals HS2 and HS3 are 

hosted by pyrite whilst in SA coals they may also occur in association with 

clays and other matter in coal. 

6. Density fractionation seemed to give more comprehensible results 

compared to sequential leaching. Sequential leaching, due to the number 

of chemicals and handling techniques used, introduces higher levels of 

contamination compared to density fractionation. Interference of acids 

when taking the readings from the ICP-MS may make it impossible to 

obtain readings, especially with Be (Archuleta and Duran, 2009). Based on 

the results obtained, a major challenge appears to be the complete leaching 

of all minerals in each stage, to obtain a carbon residue. According to the 

results received, over 50% of some TEs remained in the residue after 

sequential leaching. The volume of acids used should have been 

comparable to those used by Riley et al. (2012). A high percentage of 

kaolinite, pyrite, and quartz remained in samples HS3, A and B after 

sequential leaching;  in these samples  over 7% of mineral matter remained 

in the residue after sequential leaching, whilst in coal samples HS1 and 

HS2 less than 2% of mineral matter remained in the residue. Some TEs 

may be present in the minerals remaining in the residue. A high proportion 

of pyrite remained in the residue which is a great host of TEs according to 

literature. Some kaolinite and quartz still remained in samples HS3, A and 

B these could still have been a host of some TEs. 

7. During this research, a number of analytical techniques were investigated 

for TE determination. Generally TE values were determined by ICP-MS 

and ICP-OES (carried out by UIS), as these instruments are more sensitive 

to low level detection. The ICP-AES method used in the School of 

Chemistry was not as effective in determining TEs compared to ICP-MS, 

as most of the TEs were below the detection limit, as shown in Appendix 

F. Since Hg occurs in very low concentrations (ppb), the FI-MH-AAS 
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from the School of Chemistry was used for analysis. This technique 

proved to be an efficient and reliable method to analyse Hg compared to 

ICP-MS. 

8. With most of the TEs reporting to the sink fractions, coal beneficiation 

may be an option to remove the TEs prior to coal utilisation. Proper 

disposal practices have to be factored in to make sure that the TEs do not 

leach to underground sources.  

9. According to Goodarzi (1995), TEs in coal are greatly influenced by the 

geological settings, hydrological conditions and tectonic settings. Hence, 

different depositional environments may be the cause of variances in the 

modes of occurrence of TEs in both coalfields assessed in this 

investigation, namely the Hwange coalfield, and a coalfield in 

neighbouring SA. A detailed discussion regarding the influence of TE 

distribution during the formation of the coalfields is beyond the scope of 

this investigation, but could be a recommendation for future work. 

5.2 Recommendations 

In this project, indirect methods were employed to infer the modes of occurrence 

of TEs as these are cheaper and more readily available options. Direct methods 

could be applied, such as XAFS and the SEM-EDX to improve the reliability of 

results. XAFS was not available for this project. Laser ablation inductively 

coupled plasma mass spectrometry (LA-ICP-MS) could also be explored for more 

accurate modes of occurrence determination; LA-ICP-MS can be applied directly 

to analyse the TEs in coal using polished sections. 
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Appendices 

Appendix A TGA profile 

 

 

Figure Appendix A: Typical TGA graph obtained from the TGA machine 

The remaining residue after the coal sample has undergone moisture loss, volatile 

matter loss and fixed carbon loss through all the TGA conditions is the ash. 
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Appendix B Leco CRM standards 
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Appendix C Petrographic analysis results 
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CLIENT: NG. Mguni, MSc student, Wits

PROJECT: 

DATE: 30-Jul-13

JOB / SAMPLE NUMBERS: Job 1349

ANALYST: Prof NJ Wagner; Coal & Carbon Research Group, School of Chemical & Metallurgical Engineering, University of the Witwatersrand

ICCP ACCREDITATION: ICCP/SCAP-056/AB; ICCP/CBAP/056 

 MACERAL ANALYSIS (ISO 7404 PART 3)

MACERAL GROUP MACERAL SUB GROUP SAMPLE NUMBER / ID

1A 2B 5E 3C 4D 10J 11K
HS2 1.3 FLT HS2 1.5 FLT HS2 1.5 SINK HS3 1.3 FLT HS3 1.5 FLT HS3 1.7FLT HS3 1.7 SINK

VITRINITE VITRINITE (collotelinite) 24.5 32 16.3 22.2 20 7.1 9.3

PSEUDOVITRINITE 0 0.0 0.5 0 0 0.3 0

DETROVITRINITE 2.5 1.5 2.8 2.2 1 0.5 1.3

CORPOGELINITE 0 0 0 0.2 0.5 0.5 0

OTHER VITRINITE 0.3 0 0.5 0.2 0 0.8 0.3

27.3 33.5 20.1 24.8 21.5 9.2 10.9 0.0 0.0

LIPTINITE CUTINITE 0 0 0 0.5 1.5 0.5 0.3

SPORINITE 0 0 0 1 0.8 0.3 0.3

RESINITE 0.3 1.3 0 2.7 1 2.5 0

ALGINITE 0 0 0 0 0 0 0

LIPTODETRINITE 0 0 0 0 0 0 0

OTHER LIPTINITE 0 0 0 0 0 0 0

0.3 1.3 0.0 4.2 3.3 3.3 0.6 0.0 0.0

INERTINITE R. SEMIFUSINITE 6 7.8 0.8 1.7 2.3 4.3 2

I. SEMIFUSINITE 27.3 26.5 16.3 40.1 39 36.5 20.5

FUSINITE 11.5 5.5 3.5 2 2.8 2.5 2.3

SECRETINITE 4.5 3.8 3 11 11.3 11.8 5

MACRINITE 1 0.3 0 0.2 0 0.8 0

MICRINITE 0.5 1.8 0 0.7 1.8 2 0.3

FUNGINITE 0 0 0.5 0 0 0 0.3

R.INERTODETRINITE 1.5 1 10 2.7 6.3 14.2 7.3

I.INERTODETRINITE 15 10 0 8.1 9.5 9.1 20.8

67.3 56.7 34.1 66.5 73.0 81.2 58.5 0.0 0.0

33.6 42.6 21.4 30.7 27.1 16.8 13.8 0.0 0.0

MINERAL MATTER CLAYS 2 0.3 4.8 0 0.3 0.8 0.5

QUARTZ 1.3 4 8.8 2 0.8 3.5 6

PYRITE 2.1 4.5 10.3 1.5 1 2.5 22.8

CARBONATES 0 0 22 0.5 0 0 1

OTHER 0 0 0 0.2 0.5 0.3 0.3

5.4 8.8 45.9 4.2 2.6 7.1 30.6 0.0 0.0

 

% TOTAL REACTIVE MACERALS

% TOTAL MINERAL MATTER

MACERAL  ANALYSIS (PERCENT BY VOLUME) & RANK DETERMINATION (%RoVmr)

Trace elements in Zimbabawe coals

THESE RESULTS RELATE ONLY TO THE SAMPLES ANALYSED

% TOTAL VITRINITE

% TOTAL LIPTINITE

% TOTAL INERTINITE
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CLIENT: NG. Mguni, MSc student, Wits

PROJECT: 

DATE: 30-Jul-13 16-Jan-14

JOB / SAMPLE NUMBERS: Job 1349 1401

ANALYST: Prof NJ Wagner; Coal & Carbon Research Group, School of Chemical & Metallurgical Engineering, University of the Witwatersrand

ICCP ACCREDITATION: ICCP/SCAP-056/AB; ICCP/CBAP/056 

 MACERAL ANALYSIS (ISO 7404 PART 3)
MACERAL GROUP MACERAL SUB GROUP SAMPLE NUMBER / ID

6F 7G 8H 9I 12L 13M 14N 15O

B11 1.3 FLT B11 1.5 FLT B11 1.7 FLT B11 1.7 SINK

VITRINITE VITRINITE (collotelinite) 12 8.8 7.3 5 61.8 54.8 23.1 10

PSEUDOVITRINITE 0.3 1.3 0.3 0 1.5 0.3 0 1.5

DETROVITRINITE 3.8 2.3 3 0.8 2.3 3 3.8 0.5

CORPOGELINITE 0.5 0 0 0 0.3 0 0.3 0

OTHER VITRINITE 0 0 0 0.3 0 0 0.3 0

16.6 12.4 10.6 6.1 65.9 58.1 27.5 12.0 0.0

LIPTINITE CUTINITE 4 1.5 0 0 4.8 5.3 6.6 9

SPORINITE 0 0 2 3.5 0 0 0 0

RESINITE 0.5 0 0 0 0 0 0 0

ALGINITE 0 0 0 0 0 0 0 0

LIPTODETRINITE 0 0 0 0 0.5 0 0 0

OTHER LIPTINITE 0 0 0 0 0 0 0 0

4.5 1.5 2.0 3.5 4.8 5.3 6.6 9.0 0.0

INERTINITE R. SEMIFUSINITE 3.8 5 2.5 0.8 0.8 1.8 0.9 0

I. SEMIFUSINITE 29 39.3 31.8 22.5 5.8 15.5 22.2 8

FUSINITE 1.8 3.5 3.8 2.3 3.3 5.5 2.5 1.5

SECRETINITE 6.5 5.3 2.3 1.3 2 2.8 5.4 1.5

MACRINITE 1.3 0.5 0 0 0 0.5 0 0

MICRINITE 0.8 2.5 0.5 0.8 0 0 0 0

R.INERTODETRINITE 0 0 4.8 1.5 0.5 0.3 2.5 0.5

I.INERTODETRINITE 4.5 3.5 33 35 3.3 1.5 9.2 11

FUNGINITE 26 24.8 0 0 0 0 0 0

73.7 84.4 78.7 64.2 15.7 27.9 42.7 22.5 0.0

24.9 18.9 19.9 11.9 72.0 65.5 37.5 21.5 0.0

MINERAL MATTER CLAYS 1.8 1 3.5 3.3 9.5 5.5 9.8 30.5

QUARTZ 1.8 0 2.3 7.8 3 2.8 12.3 24.5

PYRITE 1 0.3 2.3 11.8 0 0.3 0 1

CARBONATES 0.8 0.8 0.8 2.8 0.8 0.3 0.9 0.5

OTHER 0.3 0 0.3 1 0.3 0.3 0 0

5.7 2.1 9.2 26.7 13.6 9.2 23.0 56.5 0.0

% TOTAL REACTIVE MACERALS

% TOTAL MINERAL MATTER

MACERAL  ANALYSIS (PERCENT BY VOLUME) & RANK DETERMINATION (%RoVmr)

Trace elements in Zimbabawe coals

THESE RESULTS RELATE ONLY TO THE SAMPLES ANALYSED

% TOTAL VITRINITE

% TOTAL LIPTINITE

% TOTAL INERTINITE
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Appendix D UIS results on density fractionated samples and leach residues 

To: University Of Witwatersrand Date of Request 17.07.2013

Attention: Nonhlanhla Mguni

ORDER REF: 

Tel: +27 11 717 7397

Cell:

       Certificate of analysis: 8047

Lims Sample Note: all results in parts per million (ppm) unless specified otherwise

ID ID

Ag As Au B Ba Be Bi Cd Ce Co Cr Cs Cu Ga Ge Hf Hg Ho Ir La Li Mn Mo

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

8047 - 351701 08/07/2013/HS3/p1.7/float 0.016 4.73 2.78 25.1 82.0 2.04 0.868 0.219 7.03 3.18 32.4 8.37 11.5 4.85 2.85 2.44 0.071 0.067 0.015 2.41 53.0 32.0 1.06

8047 - 351702 08/07/2013/HS3/p1.7/sink 0.015 34.3 0.076 29.5 31.9 2.30 0.558 0.295 15.2 5.97 45.7 5.67 23.7 6.63 3.44 2.21 0.515 0.163 0.010 6.35 67.9 113.5 4.04

8047 - 351703 08/07/2013/B11/p1.3/float 0.012 2.31 0.026 14.7 39.0 1.91 0.410 0.586 9.35 7.59 66.8 0.366 28.4 5.15 1.380 1.79 0.067 0.207 0.003 4.71 9.4 44.1 1.82

8047 - 351704 08/07/2013/B11/p1.5/float 0.019 1.83 0.016 12.2 40.0 2.82 0.518 0.437 8.38 8.99 56.3 0.170 24.4 7.11 2.06 2.61 0.182 0.147 0.008 3.06 10.4 31.3 1.47

8047 - 351705 08/07/2013/B11/p1.7/float 0.016 2.04 0.023 12.3 38.3 3.28 0.602 0.668 10.5 8.70 65.9 0.103 26.7 7.80 1.563 2.78 0.178 0.179 0.008 3.75 14.6 59.2 2.17

8047 - 351706 08/07/2013/B11/p1.7/sink 0.018 6.72 0.030 11.9 345 2.64 0.820 2.64 19.5 10.49 104 0.459 57.2 7.87 1.405 2.71 0.31 0.399 0.005 13.2 16.0 161 4.57

8047 - 351707 08/07/2013/B5/p1.5/float 0.050 3.65 0.026 27.4 368 3.12 1.64 1.01 19.4 9.59 91.2 1.88 55.0 17.2 3.36 8.03 0.142 0.280 0.010 7.41 18.4 42.3 5.63

8047 - 351708 08/07/2013/B5/p1.7/float 0.049 2.81 0.024 27.7 385 3.16 1.57 0.742 15.0 8.16 72.9 1.35 31.6 17.2 3.45 8.30 0.125 0.182 0.010 5.10 16.6 38.4 4.37

8047 - 351709 08/07/2013/B5/p1.9/float 0.041 5.56 0.032 28.5 403 3.37 1.74 0.616 10.4 5.83 77.7 0.487 30.2 17.0 2.30 7.28 0.100 0.118 0.010 2.95 32.1 33.8 3.65

8047 - 351710 08/07/2013/B5/p1.9/sink 0.036 6.45 0.024 29.4 255 2.96 1.46 0.945 9.22 3.58 73.9 0.524 28.3 15.4 1.532 6.93 0.217 0.016 0.009 2.11 37.1 34.1 3.94

8047 - 351711 08/07/2013/B5/residue 0.054 6.42 0.036 54.5 557 2.73 0.995 0.894 39.4 5.58 67.9 4.17 24.4 9.23 2.22 9.51 0.367 0.422 0.011 21.2 9.1 26.1 4.33

8047 - 351712 08/07/2013/B11/residue 0.019 2.76 0.013 39.2 59.8 2.59 0.332 0.461 26.3 7.65 42.9 1.16 20.2 4.36 1.497 2.51 0.261 0.153 0.005 4.54 3.60 77.5 1.99

8047 - 351713 02/02/2013/B15 0.031 4.73 0.016 91.4 363 2.39 1.20 0.171 81.3 7.47 63.6 1.94 17.7 15.8 1.537 5.06 0.231 0.519 0.007 32.6 90 77.7 1.28

Mo Na Nb Nd Ni Pb Pt Rb Sb Sc Se Sn Sr Ta Te Th Tl U V W Y Zn Zr

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

8047 - 351701 08/07/2013/HS3/p1.7/float 1.06 261 5.52 1.68 42.0 13.8 0.011 22.8 0.290 2.06 0.113 1.41 35.3 0.533 0.079 1.76 0.729 1.84 15.4 664 2.62 728 81.8

8047 - 351702 08/07/2013/HS3/p1.7/sink 4.04 120 6.39 4.88 40.9 20.9 0.007 33.5 1.43 4.42 0.85 1.82 31.8 0.574 0.138 8.39 3.727 2.32 17.7 1135 4.83 805 75.8

8047 - 351703 08/07/2013/B11/p1.3/float 1.82 192 4.18 4.04 51.0 20.7 0.006 1.29 0.260 2.68 0.34 1.42 14.3 0.531 0.097 2.18 0.175 1.35 15.8 2506 6.87 228 59.5

8047 - 351704 08/07/2013/B11/p1.5/float 1.47 452 5.71 2.67 63.1 16.5 0.007 0.447 0.228 2.86 0.077 2.16 18.6 0.561 0.110 3.21 0.052 1.59 21.9 2183 4.40 112.3 106.9

8047 - 351705 08/07/2013/B11/p1.7/float 2.17 346 6.78 3.52 71.6 17.0 0.010 0.57 0.264 4.46 0.122 1.99 18.3 0.777 0.135 3.72 0.195 2.17 25.0 3712 5.18 1082 92.2

8047 - 351706 08/07/2013/B11/p1.7/sink 4.57 989 7.23 9.68 112.5 26.2 0.009 1.69 0.396 6.3 0.66 2.09 23.3 0.95 0.140 5.53 0.423 2.10 25.9 6203 14.4 1539 88.6

8047 - 351707 08/07/2013/B5/p1.5/float 5.63 346 15.6 6.68 43.3 37.0 0.019 6.90 1.07 7.2 0.50 7.06 89.6 1.13 0.202 7.96 0.341 5.06 110 1663 8.75 257 275

8047 - 351708 08/07/2013/B5/p1.7/float 4.37 442 15.4 5.09 30.1 36.7 0.020 7.44 1.00 5.75 0.36 6.06 65.3 1.04 0.194 9.6 0.461 5.24 111 1137 5.39 810 274

8047 - 351709 08/07/2013/B5/p1.9/float 3.65 315 17.9 3.94 33.1 43.7 0.016 6.56 0.732 9.5 0.29 6.33 58.7 1.49 0.272 13.8 0.997 5.53 92.0 2111 2.89 1157 228

8047 - 351710 08/07/2013/B5/p1.9/sink 3.94 286 19.1 0.465 34.6 27.8 0.014 5.61 0.627 10.1 0.26 5.95 12.4 1.53 0.323 3.57 0.768 5.09 68.3 83.8 0.345 1241 188

8047 - 351711 08/07/2013/B5/residue 4.33 192 25.1 13.7 31.4 31.4 0.019 13.2 0.872 5.82 0.40 4.38 104.0 2.02 0.192 12.9 0.565 5.50 77.2 72.7 15.0 219 292

8047 - 351712 08/07/2013/B11/residue 1.99 237 6.23 3.03 64.5 13.5 0.010 4.96 0.277 1.45 0.35 1.50 31.8 0.539 0.090 0.78 0.216 1.90 17.8 40.2 4.52 113.6 87.4

8047 - 351713 02/02/2013/B15 1.28 1136 15.2 16.8 25.7 278.2 0.012 9.18 0.429 8.8 0.79 3.66 298 1.24 0.201 20.7 0.312 4.19 45.7 3.19 27.4 16.3 177

Chemical elements: Ag,  As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Ga, Ge, Hg, Ho, Ir, La, Li, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pt, Rb, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr

Instrument: ICP-MS Perkin Elmer NexION 300D

Date: 20.08.2013 Date: 20.08.2013

Analysed by: Walter Masoga Authorised : JJ Oberholzer Page 1 of 1
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To: WITS University Date of Request: 05.11.2012 From : UIS Analytical Services

Attention: Sibongile Maswanganye Analytical Chemistry

Order No.: 3293671 Laboratories 4, 6

Tel: (012) 665 4291

Tel: (011) 717 7587 Fax: (012) 665 4294

Fax: +27 86 553 6475

Certificate of analysis: 6654

Note: all results in parts per million (ppm) unless specified otherwise

Sample ID Lims ID Ag Al As Au B Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Ga Ge Hf Hg Ho Ir K La Li Mg

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Det. Lim <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <1.0 <0.01 <0.10 <0.10 <0.10 <0.10 <0.10 <1.0 <0.10 <0.10 <0.10 <0.01 <0.10 <0.10 <1.0 <0.10 <0.10 <1.0

Hwange/Sample/3/p1.3/float 6654-321624 <0.1 20400 8.17 <0.1 15.2 34 2.05 0.13 696 0.069 7.2 5.10 23 7.60 10.6 8180 5.0 5.16 1.37 5.46 <0.1 <0.1 2880 1.99 54.9 21

Hwange/Sample/3/p1.5/float 6654-321625 <0.1 17700 3.77 <0.1 14.30 58.6 1.99 0.14 1090 0.042 11.3 4.7 25 5.87 11.1 4840 4.82 4.19 1.60 5.48 <0.1 <0.1 3660 1.1 39.2 15

Hwange/Sample/2/p1.3/float 6654-321626 <0.1 10500 3.76 <0.1 22.50 21 3.36 0.13 1990 0.060 9.7 6.5 23.3 4.29 10.5 8360 10.00 29.20 1.07 15.7 <0.1 <0.1 1300 1.8 21.7 20

Hwange/Sample/2/p1.5/sink 6654-321627 <0.1 27100 12.20 <0.1 28.90 31.7 3.73 0.16 35100 0.101 18.7 8.8 39.7 2.99 17.2 44600 10.60 23.40 1.05 248.0 <0.1 <0.1 1900 5.2 51.7 178

Hwange/Sample/2/p1.5/float 6654-321628 <0.1 21900 5.68 <0.1 19.3 29.8 3.41 0.14 5780 0.031 12.90 6.34 25.9 3.00 10.0 13300 10.90 29.70 0.93 73.30 <0.1 <0.1 1090 3.94 25.6 55

Hwange/Sample/1/leach/residue 6654-321629 <0.1 4460 1.52 <0.1 15.6 18.3 0.69 <0.1 713 0.013 16.40 3.81 11.9 1.00 8.5 7490 3.7 7.7 0.85 1.10 <0.1 <0.1 72 2.56 1.0 35

Hwange/Sample/2/leach/residue 6654-321630 <0.1 4320 1.94 <0.1 5.2 12.8 2.25 <0.1 710 0.011 14.00 6.26 14.4 0.37 7.6 5760 4.98 21.70 0.66 0.40 <0.1 <0.1 4 2.54 0.9 33

H/Sample/3/HIC/residue/from/leaching 6654-321631 <0.1 10000 6.97 <0.1 9.13 20.2 1.37 0.19 598 0.052 27.1 3.41 23.1 2.26 11.8 8300 2.56 2.83 1.49 0.18 <0.1 <0.1 1210 1.44 16.10 15

B/5/residue/from/leaching 6654-321632 <0.1 16300 6.910 <0.1 25.80 144.0 2.58 0.432 1030 1.120 15.50 7.05 80.4 3.200 29.2 6280 11.40 2.07 9.06 0.288 <0.1 <0.1 1480 3.91 12.3 11.9

Sample ID Lims ID Mn Mo Na Nb Nd Ni Pb Pt Rb Sb Sc Se Si Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Det. Lim <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <5.0 <0.10 <0.10 <0.10 <0.10 <0.01 <5.0 <0.10 <0.01 <0.10 <0.10 <0.10 <0.10 <0.10

Hwange/Sample/3/p1.3/float 6654-321624 16.90 1.33 416.00 4.80 0.69 28.60 7.5600 <0.1 20.3000 0.356 5.84 0.354 24700 1.2800 12.9000 0.3430 <0.1 1.0780 1280.0000 0.4830 1.6090 15.3000 513.0000 0.9580 10.8000 50.7000

Hwange/Sample/3/p1.5/float 6654-321625 36 1.19 828 4.7 0.49 20.8 7.3 <0.1 12.6 0.18 5.6 0.43 23000 1.18 23.9 0.33 <0.1 1.06 1250 0.27 1.47 15.8 514.0 0.39 11 62

Hwange/Sample/2/p1.3/float 6654-321626 40.5 2.51 412 3.44 0.9 30.4 8.6 <0.1 10.70 0.12 6.79 0.66 30900 0.98 18.2 0.26 <0.1 1.03 944 0.99 0.79 13.2 2540.0 2.0 8 44.1

Hwange/Sample/2/p1.5/sink 6654-321627 68 5.74 1330 6.00 2.46 35.8 12.7 <0.1 14.50 0.22 17.00 0.82 72300 1.90 53.3 0.70 0.116 2.75 1810 1.81 1.05 17.1 55300 5.2 6 42.0

Hwange/Sample/2/p1.5/float 6654-321628 67.8 3.04 459 3.59 2.00 28.8 7.2 <0.1 9.54 <0.1 8.26 0.29 32200 1.23 20.4 0.31 <0.1 2.65 1020 1.15 0.84 15.3 13800 4.6 4 40.1

Hwange/Sample/1/leach/residue 6654-321629 9.6 0.88 238 2.62 1.56 29.5 2.99 <0.1 1.75 <0.1 1.35 0.18 2880 1.02 29.4 0.18 <0.1 0.66 726 0.17 0.63 10.90 88.5 0.84 2.21 47.4

Hwange/Sample/2/leach/residue 6654-321630 6 2.00 77 3.28 1.42 24.4 3.00 <0.1 1.6 <0.1 1.46 0.16 2160 0.69 20.4 0.23 <0.1 1.01 880 0.26 0.70 10.1 22.5 2.02 3.30 30.3

H/Sample/3/HIC/residue/from/leaching 6654-321631 12.2 1.64 130 5.50 0.80 26.4 5.8 <0.1 5.4 0.23 3.20 0.68 9640 0.95 20.6 0.38 <0.1 1.73 1380 0.23 1.24 11.6 5.1 0.45 6.6 61.9

B/5/residue/from/leaching 6654-321632 9.6 4.02 357 28.60 1.39 128.0 28.50 <0.1 10.50 0.82 9.81 1.64 40900 4.11 32.5 1.92 0.135 2.27 4890 0.16 3.22 109.0 4.4 2.00 56.00 335.0

Identification of test methods:

Analysed by:

Date:

W Masoga Authorised : E Kgosana

15.11.2012 Date: 15.11.2012

Instrument: ICP-MS Perkin Elmer NexIon 300D, ICP-OES

Documentation:

ANALYTICAL REPORT: ORE SAMPLE
           No unauthorised copies may be made of this report.

Comments / additional information: Results reported on an as received basis

Chemical elements: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe,Ga, Ge, Hg, Ho, In, Ir, K, La, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pt, Rb, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr
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Appendix E UIS TEs results on ROM and leachates  

To: WITS University Date of Request: 08.08.2012 From : UIS Analytical Services

Attention: Sibongile Maswanganye Analytical Chemistry

Order No.: 3279820 Laboratories 4, 6

Tel: (012) 665 4291

Tel: (011) 717 7587 Fax: (012) 665 4294

Fax: +27 86 553 6475

Certificate of analysis: 6174

Note: all results in parts per million (ppm) unless specified otherwise

Sample ID Lims ID Ag Al As Au B Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Ga Ge Hf Hg Ho Ir K La Li Mg

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Det. Lim <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <1.0 <0.01 <0.10 <0.10 <0.10 <0.10 <0.10 <1.0 <0.10 <0.10 <0.10 <0.01 <0.10 <0.10 <1.0 <0.10 <0.10 <1.0

B5/ROM 6174 - 309273 <0.10 91057 7.66 <0.10 19.7 395 3.34 1.09 4244 0.239 24.2 8.76 116 2.06 54.5 8806 22.9 1.77 5.40 0.49 0.20 <0.10 4624 7.97 41.3 1452

B11/ROM 6174 - 309274 <0.10 29323 3.58 <0.10 3.70 19.8 2.37 0.37 3191 0.219 64.3 10.9 117 0.18 21.0 16218 8.56 1.24 1.72 0.20 0.47 <0.10 785 27.3 13.3 1803

Bench/11/sink/p1.3 6174 - 309275 <0.10 30633 3.25 <0.10 4.46 121 2.53 0.43 3649 0.274 25.5 11.2 70.4 0.45 28.3 17607 7.49 1.21 2.01 27.9 0.29 <0.10 472 13.2 15.4 1907

Bench/11/float/p1.3 6174 - 309276 <0.10 13263 3.29 <0.10 4.56 25.2 2.51 0.46 1439 0.285 42.4 10.3 86.7 0.67 30.6 7848 9.00 1.39 1.78 36.9 0.33 <0.10 208 18.1 16.2 774

Hwange/Sample/1/ROM/HCC 6174 - 309277 <0.10 14027 3.45 <0.10 29.3 29.2 1.04 0.15 2897 0.029 2.63 5.03 25.5 5.28 10.7 11398 5.05 9.00 0.80 0.24 <0.10 <0.10 259 1.27 28.8 194

Sample/2/ROM/3/Main/Coal/LP 6174 - 309278 <0.10 15495 3.17 <0.10 20.9 26.6 3.52 0.19 6420 0.028 3.03 7.54 57.7 5.09 12.0 9187 10.3 25.9 0.91 0.19 <0.10 <0.10 966 2.04 42.9 204

Sample/3/ROM/HIC/Coal 6174 - 309279 <0.10 24044 8.15 <0.10 18.9 10.7 2.00 0.29 957 0.053 8.99 5.00 42.9 8.69 13.8 11629 6.42 3.22 1.48 0.16 0.12 <0.10 3903 8.60 56.9 393

NW/B11/float/p1.5 6174 - 309280 <0.10 15557 0.63 <0.10 6.07 21.6 2.22 0.31 508 0.024 11.1 9.42 27.7 0.25 14.4 309 9.20 1.54 1.62 0.17 0.11 <0.10 205 9.50 9.45 283

Sample ID Lims ID Mn Mo Na Nb Nd Ni Pb Pt Rb Sb Sc Se Si Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Det. Lim <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <5.0 <0.10 <0.10 <0.10 <0.10 <0.01 <5.0 <0.10 <0.01 <0.10 <0.10 <0.10 <0.10 <0.10

B5/ROM 6174 - 309273 106 4.66 1130 21.1 7.10 35.5 33.7 <0.10 40.2 0.51 19.4 0.91 164278 6.08 177.4 1.31 0.309 10.21 4651 0.47 3.71 96.7 51.5 4.77 98 234

B11/ROM 6174 - 309274 95.0 6.63 147 6.43 13.5 83.7 15.1 <0.10 1.70 0.17 6.15 0.36 40971 1.50 52.3 0.38 0.141 3.60 1668 0.14 1.39 22.3 16.0 19.5 115 66.5

Bench/11/sink/p1.3 6174 - 309275 117 3.30 412 7.13 7.76 73.5 13.2 <0.10 2.40 0.16 6.64 0.49 43855 2.06 38.4 0.48 0.173 2.32 1710 0.13 1.45 22.5 3039 11.3 138 68.3

Bench/11/float/p1.3 6174 - 309276 41.0 3.20 612 6.83 9.36 67.8 15.2 <0.10 4.32 0.17 6.16 0.37 18671 1.60 41.5 0.43 0.174 2.88 781 0.16 1.46 22.7 4454 15.7 149 72.2

Hwange/Sample/1/ROM/HCC 6174 - 309277 90.4 1.77 1399 2.65 1.32 35.4 4.16 <0.10 8.89 <0.10 2.93 0.20 15227 0.69 58.5 0.13 <0.10 0.53 743 1.10 0.57 9.71 18.0 1.84 7.21 24.4

Sample/2/ROM/3/Main/Coal/LP 6174 - 309278 123 4.46 1013 3.54 1.78 35.2 5.17 <0.10 35.5 <0.10 4.58 0.38 30898 0.93 62.2 0.16 0.107 0.61 938 1.65 0.66 11.7 13.8 2.38 7.11 33.1

Sample/3/ROM/HIC/Coal 6174 - 309279 57.9 2.08 366 5.75 3.47 25.0 10.2 <0.10 31.8 0.31 3.95 0.35 31237 1.31 25.0 0.36 0.120 1.55 1565 1.15 1.48 17.1 11.0 6.08 21.2 57.8

NW/B11/float/p1.5 6174 - 309280 25.9 0.67 134 4.97 3.18 51.0 8.07 <0.10 2.07 <0.10 3.60 0.49 20368 1.47 31.8 0.32 0.107 0.89 1150 <0.10 1.07 20.6 12.9 5.74 8.65 57.6

Identification of test methods:

Analysed by:

Date:

W Masoga Authorised : E Kgosana

03.10.2012 Date: 03.10.2012

Instrument: ICP-MS Perkin Elmer NexIon 300D, ICP-OES

Documentation:

ANALYTICAL REPORT: ORE SAMPLE
           No unauthorised copies may be made of this report.

Comments / additional information: Results reported on an as received basis

Chemical elements: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe,Ga, Ge, Hg, Ho, In, Ir, K, La, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pt, Rb, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr
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To: University of Witwatersrand Date of request: 05.12.2012 From : UIS Analytical Services

Attention: Nonhlanhla Mguni Analytical Chemistry

Order No.: 3298065 Laboratories 4, 6

Tel: (012) 665 4291

Tel: +27 11 717 7397 Fax: (012) 665 4294

Fax:

       Certificate of analysis: 6825

Note: all results in parts per million (ppm) unless specified otherwise

Sample  ID LIMS  ID As B Ba Be Cd Ce Co Cr Cs Cu Fe Ga Gd Ge Hg Mn Mo Nb Ni P Pb Pd Sb Sc Se Sn Th Tl U V Zn

mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

Detection Limits < 0.001 < 0.001 < 0.001 < 0.001 <0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01 < 0.001 < 0.001 < 0.001 <0.0001 < 0.001 < 0.001 < 0.001 < 0.001 <0.001 <0.001 <0.001 < 0.001 < 0.001 < 0.001 < 0.001 <0.0001 < 0.001 <0.0001 <0.001 < 0.001

1.HS1/H2O/leachate 6825 - 324456 < 0.001 0.025 0.010 <0.001 <0.0001 <0.001 <0.001 <0.001 < 0.001 0.002 0.032 <0.001 <0.001 <0.001 0.0016 0.009 <0.001 <0.001 < 0.001 0.455 0.001 <0.001 <0.001 <0.001 0.001 < 0.001 <0.0001 <0.001 <0.0001 <0.001 <0.001

2.HS2/CH3COONH3/leachate 6825 - 324457 0.001 0.029 0.168 <0.001 0.0002 <0.001 0.002 < 0.001 0.016 0.005 0.072 <0.001 <0.001 <0.001 0.0013 0.233 0.001 <0.001 0.005 2.56 0.005 <0.001 <0.001 0.003 0.003 < 0.001 <0.0001 0.005 0.0002 <0.001 <0.001

3.HS1/HCl/leachate 6825 - 324458 0.033 0.092 0.475 0.002 0.0008 0.018 0.011 0.215 0.028 0.049 3.06 0.002 0.006 0.004 0.0015 2.03 0.008 <0.001 0.087 9.27 0.034 <0.001 0.001 0.004 0.004 0.026 0.0009 0.003 0.0034 0.007 0.165

4.HS1/HF/leachate 6825 - 324459 0.407 1.86 0.136 0.009 0.0007 0.001 0.025 0.360 0.079 0.076 6.95 0.017 <0.001 0.034 0.0025 1.11 0.027 0.008 0.240 5.85 0.162 <0.001 0.001 0.090 0.011 0.077 0.0007 0.007 0.0035 0.029 0.142

5.HS1/HNO3l/leachate 6825 - 324460 0.021 0.150 0.300 0.002 0.0004 0.017 0.009 0.291 0.031 0.028 2.18 0.004 0.003 0.007 0.0009 0.445 0.010 < 0.001 0.131 3.10 0.057 <0.001 <0.001 0.018 0.002 0.026 0.0040 0.003 0.0020 0.007 0.051

6.HS2/H2O/leachate 6825 - 324461 0.002 0.028 0.021 <0.001 0.0000 <0.001 0.001 0.003 0.001 0.003 0.291 <0.001 <0.001 <0.001 0.0015 0.023 < 0.001 <0.001 0.005 2.08 0.001 <0.001 <0.001 < 0.001 0.002 < 0.001 <0.0001 <0.001 0.0002 <0.001 <0.001

7.HS2/CH3COONH4/leachate 6825 - 324462 0.001 0.038 0.134 <0.001 0.0002 <0.001 0.001 0.002 0.006 0.085 0.061 <0.001 <0.001 <0.001 0.0040 0.073 < 0.001 <0.001 0.003 6.72 0.002 <0.001 <0.001 0.003 0.003 <0.001 <0.0001 0.001 0.0003 <0.001 <0.001

8.HS2/HCl/leachate 6825 - 324463 0.020 0.099 0.302 0.008 0.0005 0.018 0.008 0.242 0.026 0.065 2.53 0.003 0.005 0.007 0.0028 2.53 0.005 <0.001 0.058 10.7 0.042 <0.001 < 0.001 0.006 0.004 0.006 0.0006 0.002 0.0064 0.010 0.165

9.HS2/HF/leachate 6825 - 324464 0.338 1.61 0.098 0.032 0.0005 < 0.001 0.021 0.830 0.075 0.066 7.28 0.091 <0.001 0.104 0.0013 1.04 0.042 0.004 0.267 7.37 0.116 <0.001 0.001 0.110 0.014 0.028 0.0005 0.011 0.0049 0.091 0.075

10.HS2/HNO3/leachate 6825 - 324465 0.078 0.467 0.143 0.016 0.0003 0.008 0.016 0.641 0.059 0.039 4.09 0.048 <0.001 0.057 0.0014 0.931 0.039 0.002 0.214 4.45 0.092 <0.001 < 0.001 0.053 0.005 0.015 0.0024 0.008 0.0043 0.046 0.035

11.HS3/H2O/leachate 6825 - 324466 0.002 0.037 0.012 <0.001 0.0000 <0.001 <0.001 <0.001 0.004 0.002 0.083 <0.001 <0.001 <0.001 0.0045 0.003 <0.001 <0.001 0.002 1.41 < 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.0001 <0.001 0.0002 <0.001 <0.001

12.HS3/CH3COONH4/leachate 6825 - 324467 0.002 0.046 0.143 <0.001 0.0002 <0.001 0.014 < 0.001 0.106 0.005 0.072 <0.001 <0.001 <0.001 0.0051 0.100 < 0.001 <0.001 0.036 8.24 < 0.001 <0.001 <0.001 0.002 0.003 <0.001 <0.0001 0.005 0.0004 <0.001 <0.001

13.HS3/HCl/leachate 6825 - 324468 0.046 0.088 0.235 0.004 0.0008 0.042 0.047 0.173 0.078 0.076 8.66 0.003 0.022 0.004 0.0061 0.467 0.004 <0.001 0.109 14.7 0.060 <0.001 0.002 0.003 0.004 0.004 0.0024 0.001 0.0093 0.013 0.330

14.HS3/HF/leachate 6825 - 324469 0.359 1.59 0.200 0.026 0.0007 0.010 0.051 0.570 0.108 0.056 33.0 0.111 0.001 0.026 0.0033 0.799 0.028 0.004 0.277 16.1 0.211 <0.001 0.003 0.167 0.018 0.030 0.0132 0.005 0.0203 0.228 0.283

15.HS3/HNO3/leachate 6825 - 324470 0.062 0.395 0.399 0.010 0.0004 0.062 0.021 0.342 0.125 0.026 14.9 0.045 0.021 0.011 0.0033 0.380 0.016 0.003 0.137 6.56 0.100 <0.001 0.002 0.064 0.004 0.011 0.0344 0.005 0.0119 0.090 0.135

Date: 16.01.2013 Date: 16.01.2013

Analysed by: W Masoga Authorised : E.Kgosana

Identification of test methods: Instrument: ICP-MS Perkin Elmer Elan NexION 300D

Documentation:

ANALYTICAL REPORT: ICP-MS FULL
           No unauthorised copies may be made of this report.

Chemical elements:
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To: University Of Witswatersrand Date of request: 20.03.2013 From : UIS Analytical Services

Attention: Nonhlanhla Mguni Analytical Chemistry

Order No.: 3309881 Laboratories 4, 6

Tel: (012) 665 4291

Tel:  +27 11 717 7397 Fax: (012) 665 4294

Fax:

       Certificate of analysis:

Note: all results in parts per million (ppm) unless specified otherwise

Sample  ID LIMS  ID Ag Al As Au B Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Ga Ge Hf Hg Ho Ir K La Li Mg Mn Mo Na Nb Nd Ni Pb Pt Rb Sb Sc Se Si Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr

mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

Detection Limits < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01 <0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01 < 0.001 < 0.001 <0.001 <0.0001 < 0.001 < 0.001 < 0.01 < 0.001 < 0.001 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.05 < 0.001 < 0.001 < 0.001 < 0.001 <0.0001 < 0.05 < 0.001 <0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1/B5/Distilled/H2O/leachate7316 - 335716 <0.001 2.64 0.008 < 0.001 0.034 0.040 0.002 < 0.001 21.3 0.0001 0.003 0.002 0.002 < 0.001 0.007 0.110 < 0.001 < 0.001 < 0.001 0.0036 <0.001 <0.001 2.97 < 0.001 0.018 8.38 0.060 < 0.001 34.6 < 0.001 < 0.001 0.006 0.002 <0.001 0.008 <0.001 0.003 0.006 4.78 <0.001 0.243 <0.001 <0.001 0.0005 0.030 < 0.001 0.0004 < 0.001 0.495 < 0.001 0.092 0.005

2/B5/CH3COONH4 7316 - 335717 <0.001 0.700 0.028 < 0.001 0.033 0.330 < 0.001 < 0.001 142 0.0008 < 0.001 0.009 0.002 0.011 0.035 0.040 < 0.001 < 0.001 < 0.001 0.0024 <0.001 0.003 5.91 <0.001 0.018 28.1 0.500 0.003 42.0 <0.001 <0.001 0.031 0.002 <0.001 0.028 <0.001 0.006 0.007 5.92 <0.001 0.820 <0.001 <0.001 <0.0001 0.060 < 0.001 0.0014 0.020 0.297 <0.001 0.076 < 0.001

3/B5/HCl/Leachate 7316 - 335718 0.001 13.4 0.732 0.001 0.078 0.800 0.024 0.035 162 0.0022 0.036 0.056 1.01 0.010 0.671 39.5 0.006 0.003 < 0.001 0.0021 0.012 <0.001 2.53 0.013 0.042 37.7 1.87 0.025 16.5 < 0.001 0.037 0.336 0.641 <0.001 0.018 0.003 0.024 0.013 18.5 0.023 0.883 <0.001 0.002 0.0103 0.190 < 0.001 0.0691 0.120 0.285 0.192 0.586 0.019

4/B5/HF/leachate 7316 - 335719 0.012 2825 0.430 <0.001 0.828 2.90 0.035 0.026 17.2 0.0023 0.564 0.137 1.60 0.053 0.548 145 1.02 0.038 0.058 <0.0001 0.003 <0.001 90.3 0.203 1.75 19.4 1.95 0.162 16.1 0.161 0.226 0.964 0.794 <0.001 0.921 0.006 0.783 0.653 4290 0.150 2.85 0.012 0.007 0.168 20.5 0.012 0.1335 1.46 0.622 0.078 0.751 1.46

5/B5/HNO3/leachate 7316 - 335720 0.001 485 0.102 < 0.001 0.154 5.85 0.006 0.006 39.0 0.0006 0.848 0.024 0.376 0.116 0.162 37.9 0.149 0.007 0.013 <0.0001 0.005 <0.001 20.3 0.411 0.235 16.7 0.520 0.034 6.74 0.032 0.374 0.201 0.471 <0.001 0.527 0.002 0.133 0.025 884 0.030 3.00 0.003 0.001 0.145 3.68 0.005 0.0369 0.270 0.336 0.111 0.443 0.243

6/B11/distilled/H2O/leachate7316 - 335721 <0.001 0.16 0.020 <0.001 0.024 0.050 < 0.001 < 0.001 50.3 0.0007 0.008 0.129 0.004 < 0.001 0.005 50.7 < 0.001 < 0.001 < 0.001 <0.0001 <0.001 <0.001 1.90 0.003 0.003 21.2 0.840 <0.001 26.1 <0.001 0.005 0.417 0.002 <0.001 0.006 <0.001 0.003 0.002 25.2 <0.001 0.562 <0.001 <0.001 0.0005 0.010 < 0.001 0.0001 < 0.001 0.023 0.005 0.452 < 0.001

7/B11/CH3COONH4 7316 - 335722 <0.001 0.18 0.014 <0.001 0.026 0.220 < 0.001 < 0.001 165 0.0005 0.002 0.051 0.002 0.001 0.012 6.69 < 0.001 < 0.001 < 0.001 0.0003 <0.001 < 0.001 5.30 0.001 0.002 47.5 0.960 0.001 76.5 <0.001 0.002 0.166 0.001 <0.001 0.005 <0.001 0.005 0.001 32.8 <0.001 0.710 <0.001 <0.001 <0.0001 0.010 < 0.001 0.0010 0.030 0.154 0.001 0.144 <0.001

8/B11/HCl/leachate 7316 - 335723 0.001 2.88 0.708 0.002 0.059 0.320 0.004 0.012 150 0.0010 0.321 0.042 0.932 0.001 0.171 53.8 0.008 0.004 < 0.001 0.0095 0.009 <0.001 1.60 0.078 0.004 69.6 2.32 0.031 20.9 <0.001 0.382 0.336 0.611 <0.001 0.003 0.003 0.012 0.008 15.0 0.008 1.10 <0.001 0.002 0.0156 0.030 < 0.001 0.0230 0.020 0.831 0.155 0.899 0.010

9/B11/FH/Leachate 7316 - 335724 0.002 895 0.407 < 0.001 0.875 0.090 0.013 0.008 6.56 0.0008 0.020 0.076 0.884 0.003 0.142 43.8 0.298 0.015 0.019 <0.0001 <0.001 <0.001 9.12 0.004 0.515 7.96 1.22 0.155 9.07 0.026 0.013 0.942 0.649 <0.001 0.267 0.003 0.216 0.737 1300 0.052 0.091 0.002 0.010 0.0516 3.66 0.001 0.0406 0.200 0.692 0.011 0.625 0.539

10/B11/HNO3/leachate 7316 - 335725 <0.001 208 0.078 <0.001 0.115 0.230 0.002 0.003 38.0 0.0003 0.235 0.026 0.388 0.005 0.059 13.2 0.052 0.004 0.005 <0.0001 0.004 <0.001 3.28 0.082 0.103 16.9 0.450 0.052 7.05 0.006 0.166 0.323 0.293 <0.001 0.032 < 0.001 0.048 0.022 332 0.012 0.307 < 0.001 < 0.001 0.0659 0.920 < 0.001 0.0119 0.050 0.469 0.074 0.189 0.114

7316 - 335725 QC <0.001 205 0.073 <0.001 0.116 0.230 0.002 0.003 37.7 0.0003 0.241 0.025 0.377 0.005 0.058 13.1 0.052 0.004 0.005 <0.0001 0.004 <0.001 3.13 0.086 0.103 16.9 0.450 0.053 6.92 0.007 0.170 0.322 0.296 <0.001 0.032 < 0.001 0.051 0.018 326 0.012 0.316 < 0.001 < 0.001 0.0661 0.900 < 0.001 0.0120 0.050 0.477 0.076 0.191 0.116

Sample  ID LIMS  ID Ag Al As Au B Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Ga Ge Hf Hg Ho Ir K La Li Mg Mn Mo Na Nb Nd Ni Pb Pt Rb Sb Sc Se Si Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Detection Limits <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.001 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1

HS1/Leaching/residue 7316 - 335726 0.25 3445 8.96 <0.1 16.9 22.9 1.40 0.493 1240 0.108 25.8 3.78 21.0 3.73 15.2 11173 2.64 2.30 1.39 0.697 0.129 <0.1 699 3.27 10.4 196 28.0 1.05 109 5.80 2.81 14.6 4.72 <0.1 7.95 0.278 1.74 0.222 3094 0.76 55.1 0.440 0.457 0.194 1650 2.79 1.31 10.45 67.4 2.61 9.19 39.8

HS2/Leaching/residue 7316 - 335727 0.25 3296 9.08 <0.1 16.4 35.3 1.40 0.575 1605 0.109 22.8 4.02 23.9 2.98 14.2 11021 2.72 2.42 1.73 0.696 0.062 <0.1 867 1.91 9.85 196 22.7 1.12 173 6.31 1.92 16.6 4.99 <0.1 9.27 0.274 1.47 0.240 3473 0.79 53.6 0.470 0.374 0.043 1793 2.69 1.49 11.48 68.1 0.90 9.88 56.9

HS3/Leaching/residue 7316 - 335728 0.19 5695 5.32 <0.1 24.8 33.3 0.749 0.337 1585 0.081 17.8 4.63 13.0 6.43 9.71 11682 4.67 8.03 0.656 1.35 0.062 <0.1 509 3.55 8.72 176 22.2 1.05 706 2.77 2.72 31.2 2.18 <0.1 4.09 0.091 1.36 0.192 5364 0.95 74.3 0.210 0.305 1.39 1058 2.29 0.311 9.98 114.1 1.10 5.89 10.6

7316 - 335728 QC 0.15 5602 5.17 <0.1 24.5 33.8 0.747 0.330 1570 0.090 18.1 4.52 13.0 6.36 9.67 11688 4.60 8.10 0.650 1.35 0.062 <0.1 516 3.55 8.66 176 22.7 1.06 701 2.75 2.72 31.5 2.12 <0.1 4.03 0.081 1.40 0.210 5332 1.00 69.0 0.207 0.310 1.39 1068 2.32 0.316 9.85 114.6 1.13 5.83 11.0

Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, GA, Ge, Hg , K, Li, Mg, Mn, Mo, Na, Ni, Pb, S , Sb, Se, Si, Sn, Sr,Th, U, Ti, Tl, V, W, Zn, Zr

Identification of test methods: Instrument: ICP-MS Perkin Elmer NEXION 300D

W Masoga

Documentation: ICP-MS FULL

Date: Date:

ANALYTICAL REPORT: ICP-MS FULL
           No unauthorised copies may be made of this report.

Analysed by: Authorised : E.Kgosana

20.05.201320.05.2013

Chemical elements:
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Appendix F ICP-AES results 

Element As  Be  Cd Co  Cr  Cu  Hg  Mn  Mo  Ni  Pb  Sb  Se  U  V  

Conc. Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

                                

Blank nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 

0.1 ppm 0.115 0.113 0.112 0.11 0.107 0.126 0.107 0.107 0.106 0.11 0.11 0.11 0.123 0.105 0.1 

1 ppm 1.084 1.045 1.06 1.05 1.051 1.052 1.042 1.052 1.068 1.04 1.011 1.04 1.073 1.009 1.018 

                B5 ROM nd nd nd 6.53 86.8 55.692 nd 84.252 nd 19.5 28.76 nd nd 126.9 81.91 

                B11 ROM nd nd nd 3.06 76.91 29.682 nd 79.9 nd 58.3 12.75 nd nd 148.2 18.87 

                B11 float 1.3 nd nd nd nd 78.44 29.784 nd 71.4 nd 55.5 nd nd 1428 145.8 15.1 

     
 

          B11 sink 1.3 nd nd nd nd 59.67 23.664 nd 7680.6 nd 48.1 nd nd 1102 135.2 15.4 

                HS 2 Rom nd nd nd nd 68.14 13.26 nd 94.146 nd 34.3 7.446 nd nd 142.4 10.2 

         
   

  
  

HS3 Rom Hic nd nd nd nd 40.5 16.463 nd 48.985 nd 19.5 nd nd nd 137.7 15.05 

                     

                nd = not 
detected 

               The concentrations are reported as average concentrations for 3 measurements 
       The relative standard deviation (RSD) is shown below concentration 
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Element As  Ba  Be  Ca  Cd Co  Cr  Cu  Fe  Hg  K  Mg  Mn  

Conc. Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

              Blank nd nd nd nd nd nd nd nd nd nd nd nd nd 

0.1 ppm 0.115 0.112 0.113 0.118 0.112 0.111 0.107 0.126 0.105 0.107 0.115 0.112 0.107 

1 ppm 1.084 1.086 1.045 1.061 1.06 1.049 1.051 1.052 1.057 1.042 1.02 1.058 1.052 

              B5 ROM nd 744.6 nd 2626.5 nd 6.528 86.802 55.692 9883.8 nd 3299.7 780.3 84.252 

  
0.3 

 
0.422 

 
4.896 0.175 0.86 0.787 

 
1.876 0.772 0.135 

B11 ROM nd 34.272 nd 1224 nd 3.06 76.908 29.682 19074 nd 622.2 632.4 79.9 

  
0.391 

 
4.679 

 
9.264 0.634 1.222 2.083 

 
3.141 2.37 0.126 

B11 float 1.3 nd 37.026 nd 724.2 nd nd 78.438 29.784 17860.2 nd 632.4 795.6 71.4 

  
0.159 

 
1.457 

  
0.094 0.6 0.347 

 
0.788 0.334 0.59 

B11 sink 1.3 nd 27.54 nd 244.8 nd nd 59.67 23.664 18329.4 nd 530.4 520.2 7680.6 

  
4.311 

 
5.487 

  
6.711 7.426 0.518 

 
13.31 0.855 5.984 

HS 2 Rom nd 14.994 nd 2555.1 nd nd 68.136 13.26 9781.8 nd 856.8 100.776 94.146 

  
3.878 

 
1.588 

  
0.777 1.857 1.127 

 
0.894 1.905 1.368 

waterberg ash nd 2063.09 nd 4923.4 nd nd 394.49 62.006 38831 nd 196.833 78.486 59.843 

  
1.117 

 
28.169 

  
0.702 0.999 1.972 

 
1.505 1.425 1.037 

Witbank nd 2134.16 nd 48451.2 nd nd 137.608 63.757 42085.8 nd 4696.8 14739.3 421.27 

  
1.357 

 
2.03 

  
3.145 3.425 3.175 

 
2.419 0.788 1.836 

HS3 Rom Hic nd 23.331 nd 161.6 nd nd 40.501 16.463 13635 nd 3040.1 166.757 48.985 

  
1.941 

 
1.385 

  
1.526 3.474 1.334 

 
1.748 1.728 1.933 
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