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ABSTRACT  

 

Cycling has grown in popularity as a sport and is rated as one of the top 15 most popular 

sports in South Africa with more than 420 000 participants. Cyclists spend long 

continuous hours on the bicycle in an awkward position, which leads to unique overuse 

injuries. Overuse injuries in cyclists have been estimated to be as high as 85% with lower 

back and pelvis pain (LBPP) among the most common.  

 

The lower back and pelvis is the foundation the cyclist use for powering and controlling 

the bicycle and optimal functioning thereof is essential for optimal comfort and 

performance in cycling. The prolonged forward flexed position of the cyclist on the bicycle 

is regarded as one of the main contributors to LBPP in cyclists. Cyclists with LBPP are 

known to assume a position of greater lumbar flexion compared to those without but the 

reason for this has not been extensively explored. The purpose of this study was 

therefore to not only establish the prevalence of LBPP in cyclists in South Africa, but also 

identify factors associated with it in cyclists. The factors were considered in three broad 

categories: (1) training methods used, (2) intrinsic functioning of the cyclist and (3) bicycle 

set-up. Intrinsic and bicycle set-up factors included were those proposed to influence the 

forward-backward and side-to-side position of the cyclist on the bicycle and thereby lead 

to the development of LBPP in cyclists.  

 

The study had a cross-sectional descriptive design and comprised of two parts: a 

questionnaire (survey) investigating the prevalence of LBPP in cyclists together with the 

training methods used, and a physical assessment of the factors proposed to be 

associated with LBPP in cyclists. All cyclists belonging to cycling clubs registered with 

Cycling South Africa were invited to complete the online survey. From there, cyclists could 

indicate willingness to undergo a physical assessment which was done in the greater 

Gauteng area. The physical assessment included the following measurements: the 

lumbar curvature on the bicycle in all three handlebar positions, strength of gluteus 

maximus and gluteus medius, extensibility of the hamstring muscle group, control of 

lumbar movement in the direction of flexion, neurodynamics, active straight leg raise for 

load transfer, one leg stance test for lateral shift of the pelvis, leg-length discrepancy and 

bicycle set-up (saddle height, set-back and angle, handlebar height, forward reach, cleat 

position). 
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The study revealed a lifetime prevalence of 65% for LBPP among cyclists in South Africa. 

Of the factors assessed, only the lumbar curvature in the brake lever position i.e. flexion 

of the lumbar spine (p=0.03) and the weakness of gluteus medius (Gmed) (p=0.05) were 

significantly related to LBPP in cyclists.  

 

This study was the first to assess the relationship between so many different factors and 

LBPP in cyclists, and the largest of its kind in cycling. Understanding the relationship 

between these factors and LBPP in cyclists can guide the development of preventative 

strategies and interventions with the aim of reducing the occurrence and recurrence of 

LBPP in cyclists and limiting the impact thereof.  
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OPERATIONAL DEFINITIONS 

 

Bottom dead centre: When the pedal is at the lowest position/bottom of the crank 

cycle/pedalling arch in the 6 o’clock position (Wanich et al 2007, De Vey Mestdagh 1998). 

 

Crank cycle: the circle (360° arch) made by the crank during a revolution (Wanich et al 

2007). 

 

Flexion relaxation: myoelectric silence in the erector spinae muscles at mid to end range 

of trunk flexion (Shin and Mirka 2007, Olson et al 2004). 

 

Intrinsic factor: An intrinsic factor is a factor that is attributable to athlete him/herself 

(person-related), coming from within the body, such as height, weight, flexibility and 

strength (Orchard et al 2001, Orchard 2001, Barker et al 1997, Meeuwisse 1994).  

 

Leg-length discrepancy: a condition where paired lower limbs are noticeably unequal 

(Gurney 2002). 

 

Lumbo-pelvic pain: Low back pain (LBP) is defined as “pain and discomfort localised 

below the costal margin and above the inferior gluteal folds, with or without referred leg 

pain” (Vleeming et al 2008, Koes et al 2006). Pelvic girdle pain (PGP) is defined as pain 

localised between the posterior iliac crest and the gluteal fold, especially in the area 

around the sacroiliac joints (SIJ) (Vleeming et al 2008). Vleeming and Stoeckart (2007) 

challenged the concept of categorising ‘spine’, ‘pelvis’ and ‘legs’ separately based on their 

anatomic location. Muscles of the ‘spine’ are strongly connected to the pelvis and to the 

ligaments around the SIJ. The pelvis (as the main bony platform) is connected to three 

levers (legs and spine) all of which have to be stabilised under continuously changing 

conditions. Viewing these areas separately impedes the understanding of the functional 

mechanisms at work in this complexly integrated area (Vleeming and Stoeckart 2007). 

These authors therefore proposed that PGP should rather be regarded as a specific form 

of LBP.  

 

In the literature, the term LBP is often used quite loosely and the areas included are not 

always specified. Some view the lower back and pelvic areas as distinctly different while 

others combine them through the term ‘lumbo-pelvic’ pain (LBPP) (Vleeming et al 2008, 

O'Sullivan and Beales 2007b, Pool-Goudzwaard et al 1998). Based on concepts 
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proposed by Vleeming and Stoeckart (2007) the author decided to use the term LBPP to 

describe the collection of patients with LBP and PGP.  

 

For the operational purposes of this dissertation, the term LBPP will be used in this study. 

Therefore, when referring to the literature, it will imply LBP as used by most, whereas 

when referring to this study, it will include LBP and PGP as described above. 

 

Relative stiffness-relative flexibility: When the range of movement at a joint is limited 

by stiffness (passive tension), the restriction will be compensated at the joint that is more 

flexible than the others (and supposed to remain stable) (Sahrmann 2012, Sahrmann 

2002). 

 

Top dead centre: When the pedal is at the top of the crank cycle in the 12 o’clock 

position (De Vey Mestdagh 1998). 

 

Uncontrolled movement: inefficient active control of movement of a specific motion 

segment and in a specific direction (Comerford and Mottram 2012) 
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CHAPTER 1: INTRODUCTION  

 

1.1 Background to the study 

Cycling is one of the most popular sports in the world (So et al 2005).  This popularity is 

also seen in South African cycling, where cycling has been rated as one of the top 15 

most popular sports (Sidenberg 2009). It is further estimated that there are approximately 

422 000 adult cyclists in South Africa of whom 78% participate actively at a social level 

(Sidenberg 2009). A number of cycling disciplines are available for cyclists to participate 

in, these include road racing, time trialling, mountain biking and track cycling (Hunter 

2011).  

 

Due to the nature of cycling, cyclists spend long continuous hours on the bicycle in 

training or in competition, which ultimately leads to the development of unique overuse 

injuries. These injuries are generally sustained in two different ways, through (1) direct 

injury with macro tissue trauma after a crash or fall from the bicycle or secondly, through 

(2) indirect overuse injury with micro-trauma to tissues (Callaghan 2005). Traumatic 

injuries sustained with cycling have been well documented in the literature whereas the 

body of evidence of non-traumatic or overuse injuries is still growing. The prevalence of 

non-traumatic cycling injuries has been estimated to be as high as 85% (Dettori and 

Norvell 2006, Wilber et al 1995). The most common areas for non-traumatic cycling 

injuries include the knees, hands, neck/shoulder, lower back, buttocks and perineum 

(Dettori and Norvell 2006). The world-wide prevalence of lumbo-pelvic pain (LBPP) in 

cyclists has been estimated to be between 2.7-58% (Clarsen et al 2010, Schultz and 

Gordon 2010, Marsden 2009, Dettori and Norvell 2006, Dannenberg et al 1996, Wilber et 

al 1995, Mellion 1991, Weiss 1985).  

 

Three broad categories have to be considered when assessing overuse injuries in 

cyclists: (1) the intrinsic biomechanics of the cyclist, (2) training methods used and (3) 

bicycle set-up (Schultz and Gordon 2010, Marsden 2009, Wilber et al 1995).  The 

sustained forward flexed position assumed by cyclists is regarded as one of the major 

contributing factors towards LBPP in cyclists (Van Hoof et al 2012, Muyor et al 2011a, 

Asplund and Ross 2010, Marsden and Schwellnus 2010, Srinivasan and 

Balasubramanian 2007, Dettori and Norvell 2006, Asplund et al 2005, Burnett et al 2004). 

Cyclists mostly adopt either a “round-back”/flexed or “flat-back” posture based on the 

extent to which the pelvis and spine has to flex to contribute towards the cyclist reaching 

the handlebars (Schulz and Gordon 2010, Burnett et al 2004). The seated position of the 

cyclist will increase the tendency towards a “round-back” or flexed lumbar spine position 
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(Burnett et al 2004) and cyclists will also often increase their forward-bent posture while 

pedalling to limit their aerodynamic drag (Srinivasan and Balasubramanian 2007, Burnett 

et al 2004).  

 

The lower back and pelvis is the foundation the cyclist uses for powering and controlling 

the bicycle and optimal positioning and functioning of this foundation will determine the 

comfort and quality of a cyclist’s ride (Asplund and Ross 2010, Abt et al 2007, Mellion 

1994). The forwards-and-backwards and the side-to-side balance of this foundation plays 

an important role in proper transmission of forces to the pedals. Optimal control of the 

lumbar spine, including the neutral alignment thereof, is essential for optimal functioning 

of this foundation (Asplund and Ross 2010, Abt et al 2007, Mellion 1994). To limit pain 

and injury and maximise power output, the pelvis should be well aligned, not tilted too far 

forward, nor too far back or shift (rock) from side-to-side (Abt et al 2007, Mellion 1994). 

The proposed optimal cycling position is one of increased hip flexion, anterior pelvic tilt 

and flattening of the lumbar kyphosis (Marsden and Schwellnus 2010, Marsden 2009, 

McEvoy et al 2007, Salai et al 1999, Mellion 1994). The ability to maintain this more 

neutral position of the spine allows the cyclist to remain in a more aerodynamic position 

for longer periods of time without injury or discomfort (Asplund and Ross 2010). 

 

The position of the spine and pelvis on the bicycle is mostly controlled by activity of the 

musculature surrounding it and therefore optimal functioning of the stabilizing muscles 

around the lumbo-pelvic area is essential (Abt et al 2007). In addition, optimal flexibility of 

the global musculature influencing the functioning of the global stabilisers and the neutral 

position of the spine and pelvis is just as important for efficient control of  the lumbo-pelvic 

area (Mellion 1994). An inability to control the movement and position of the lower back 

and pelvis, especially an inability to control the lumbar flexion, could cause an increased 

tendency to ride in a sustained lumbar flexion posture, placing undue strain on the lower 

back and pelvis, leading to pain and pathology (Burnett et al 2004). 

  

Various researchers have investigated the kinematics and curvature of the lumbar spine 

in an attempt to uncover the relationship between LBPP and cycling (Muyor et al 2013, 

Van Hoof et al 2012, Muyor et al 2011a, Chapman et al 2008b, Diefenthaeler et al 2008, 

Burnett et al 2004). Others have investigated the underlying electromyography (EMG) 

activity in various upper limb, trunk and lower limb muscles involved in cycling (Srinivasan 

and Balasubramanian 2007, Burnett et al 2004, Usabiaga et al 1997). Limited research 

focussed specifically on the intrinsic biomechanics of the cyclist and the efficient 

functioning of the stabilising and mobilising muscles for control of lumbo-pelvic movement. 
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Although is it hypothesised that control of forward-backward and side-to-side movement 

are essential in cyclists, no studies have comprehensively investigated the factors that 

could influence/cause movement in these directions. 

 

Training methods and their possible association with LBPP have to some extent been 

investigated. Cyclists spend many hours in training while preparing for various races and 

the possible influence of their training methods cannot be disregarded. Wilber et al 

(1995), Marsden (2009) and Schultz & Gordon (2010) have investigated the relationship 

between various training factors and LBPP and found only the distance cycled per week 

to be related to LBPP. Further exploration of the influence of training factors is however 

necessary. 

 

Besides the cyclist, the bicycle also plays an important role in the comfort of the cyclist 

while riding. A number of methods have been used to assess the multiple parameters of a 

bicycle set-up which can impact the comfort of the cyclist (Wanich et al 2007, Silberman 

et al 2005, De Vey Mestdagh 1998, Mellion 1994). The height of the saddle, distance from 

the saddle to the handlebars and height of the handlebars are often adjusted to alleviate 

LBPP in cyclists (Silberman et al 2005, Sanner and O'Halloran 2000, De Vey Mestdagh 

1998, Mellion 1994). Very few studies have investigated the association between LBPP 

and the various parameters of a bicycle set up and most of the information available is 

anecdotal (Marsden 2009, Silberman et al 2005, Salai et al 1999, De Vey Mestdagh 1998, 

Mellion 1994).  

 

1.2 Problem statement 

Pain in the lumbo-pelvic area has been reported as one of the most common non-

traumatic injuries in cycling (De Bernardo et al 2012, Clarsen et al 2010, Dettori and 

Norvell 2006, Wilber et al 1995, Mellion 1994, Weiss 1985). Previous studies on LBPP 

have investigated three aspects related to such injuries, which include the: (1) association 

between training factors and LBPP, (2) kinematics and position of the lower back on the 

bicycle and (3) surface EMG of the musculature of the hip, lumbar area, thoracic area and 

upper limbs (Muyor et al 2013, Van Hoof et al 2012, Muyor et al 2011a, Schultz and 

Gordon 2010, Schulz and Gordon 2010, Chapman et al 2008b, Diefenthaeler et al 2008, 

McEvoy et al 2007, Burnett et al 2004, Usabiaga et al 1997, Wilber et al 1995). Most of 

the studies have very small sample sizes and generally observed the population without 

testing for specific postural or movement dysfunctions. Only one Cape Town-based study 

has investigated the prevalence of LBPP in cyclists in South Africa and they only focused 
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on the participants of one cycling race (Marsden 2009). No studies have collectively 

investigated the numerous intrinsic, training methods and bicycle set-up factors that could 

be associated with LBPP in cyclists. This lack of data results in the inability of health care 

practitioners, coaches or cyclists to optimally prevent or manage LBPP in cyclists.  

 

1.3 Significance of the study 

Due to the support cycling enjoys and the resultant high number of participants, it is 

important to understand the factors that cause LBPP in cyclists. It is critical to understand 

which of the many factors actually play a role in LBPP. Knowing this will allow health care 

practitioners to better manage LBPP in cyclists. Cyclists may be prone to LBPP due to 

factors such as prolonged lumbar flexion on the bicycle with subsequent dysfunction of 

the musculature that controls spinal movement/function, sub-optimal training or inefficient 

bicycle set-up. The prevalence of LBPP in cyclists has not been fully established. This 

dissertation reports on the lifetime, one-year and point prevalence of LBPP in cyclists in 

South Africa. Furthermore, by understanding the factors associated with LBPP in cyclists 

in South Africa, preventative strategies and interventions can be developed to minimise 

the occurrence and reoccurrence of LBPP in cyclists. 

 

1.4 Research Question 

What is the prevalence of LBPP in cyclists in South Africa, what factors are associated 

with LBPP in cyclists and is there an association between these factors? 

 

1.5 Study Aim 

The aim of this study is to establish the prevalence of LBPP in cyclists in South Africa and 

the factors associated with it in cyclists in Gauteng, as well as the relationship between 

these factors. 

 

1.6 Objectives 

a. To determine the prevalence of LBPP in cyclists in South Africa 

b. To identify which factors are associated with LBPP in cyclists in the greater 

Gauteng area 

c. To establish if there is a relationship between the above factors  

d. To establish the intra-rater reliability of the measures assessed in the physical 

evaluation 
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1.7  Organisation of the dissertation 

 
1.7.1  Chapter 1: Introduction 

In this chapter an overview of the dissertation is given. Background information on the 

problem of lower back and pelvis pain in cyclists is presented and risk factors previously 

investigated in cyclists are discussed. The research question is formulated, the relevance 

and aim of the study is discussed. 

 

1.7.2 Chapter 2: Literature review 

This chapter contains a review of the literature concerning cycling and LBPP as an 

overuse injury in cycling is given. Included are: the prevalence of LBPP in cyclists, the risk 

factors associated with the development thereof and the mechanisms involved. 

 

1.7.3 Chapter 3: Justification of measuring instruments 

The measuring instruments and techniques used in this study are discussed and justified. 

The chapter is structured according to three sections a questionnaire, physical 

assessment of the various risk factors as well as an assessment of the bicycle set-up. 

 

1.7.4 Chapter 4: Methodology 

This chapter describes the study’s methodology, addressing: the research design, study 

population, selection criteria, outcome measures, procedure and statistical analysis. 

 

1.7.5 Chapter 5: Results 

Following the study objectives, the results derived from the statistical analysis are 

presented and interpreted. They include the prevalence of LBPP in cyclists, the risk 

factors derived from the questionnaire as well as the physical and bicycle set-up 

assessment and a summary of the main findings. 

 

1.7.6 Chapter 6: Discussion 

In this chapter, the main findings are discussed according to the objectives of the study: 

prevalence of LBPP in cyclists, risk factors for LBPP and any relationships between these 

factors. Study limitations are also discussed and recommendations are made for future 

research. 

 



 

6 

 

1.7.7 Chapter 7: Conclusion 

A summary of the findings and conclusions of the study is provided in this chapter.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction to the Literature Review 

This chapter will provide an overview of the literature on the prevalence of LBPP in 

cyclists and the factors proposed to be associated with the development thereof. An 

outline of the chapter can be seen in Figure 2.1.  

 

Over the years cycling has grown in popularity as a sport and a means of transport (Van 

Hoof et al 2012, Asplund and Ross 2010, Srinivasan and Balasubramanian 2007, Dettori 

and Norvell 2006, Asplund et al 2005, Callaghan 2005, So et al 2005).  The long 

continuous hours cyclists spend on the bicycle in training or in competition can ultimately 

lead to unique overuse injuries. These overuse injuries are often related to the prolonged 

periods spent in a flexed position on the bicycle, the riding technique used and the set-up 

of the bicycle (Van Hoof et al 2012, Dettori and Norvell 2006, Asplund et al 2005, Burnett 

et al 2004, Mellion 1994).  

 

The literature search was conducted using the following databases: CINAHL, EBSCO 

host, Google Scholar, PEDro and Pubmed, starting from 1977 as to include as many of 

the studies on bicycling and the development of the assessment techniques as possible. 

English articles relevant to this study up to October 2013 were identified and analysed for 

quality and reliability. Keywords used in the literature search were: low back pain and 

cycling, cycling injuries, road cycling and overuse injuries, prevalence and low back pain 

and cycling, motor control, gluteus medius, gluteus maximus, hamstrings, combination of 

the previous terms with low back pain and with cycling, slump, neurodynamics, lumbar 

curvature, lumbar lordosis, leg length discrepancy, lateral sway, lateral shift, active 

straight leg raise, one leg stance, load transfer, lumbar stability, stability of the spine, low 

back pain, pelvic girdle pain, motor control tests, bicycle set-up, saddle angle, saddle 

height and a combination of the bicycle set-up factors and low back pain. The Scopus 

database was not used in the literature search of this study. 
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Figure 2.1 Illustration of the presentation of Chapter 2  

 

2.2 Prevalence of lumbo-pelvic pain 

 
2.2.1 Lumbo-pelvic pain in the general population 

Lumbo-pelvic pain has become a major problem for many healthcare systems in 

developed countries in the western world (Balagué et al 2012, Louw et al 2007). The 

lifetime prevalence for LBPP in developed countries has been said to be as high as 84% 
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with a point prevalence ranging between 12-33% (Walker 2000). Statistics available from 

the African continent are very similar. In Africa the lifetime prevalence of LBPP ranges 

between 28-74%, with a point prevalence of 32% (range of 10-59%) (Louw et al 2007). 

Up to 85% of LBPP cases are classified as ‘non-specific’ as they have no definite 

diagnosis or specific anatomical problem/cause including negative X/rays and blood test 

results (Carlsson and Rasmussen-Barr 2013, O'Sullivan 2005, Waddell 2005). This has 

led to the classification of “non-specific low back pain” (NSLBP).  NSLBP is related to 

“mechanical low back pain” and defined as LBPP without a known specific pathology or 

cause (Balagué et al 2012, McCarthy et al 2004). In recent years the international 

guidelines for acute LBPP have proposed a specific diagnostic triage for LBP, this 

includes (Waddell 2005): 

 Nerve root/radicular pain (about 5% of cases, associated with disc prolapse or 

spinal stenosis) 

 Serious spinal pathology (about 1-2%, vertebral fractures, infections, cauda equine 

syndrome, tumours, cancer) 

 NSLBP (85-95% of cases) 

 

2.2.2 Lumbo-pelvic pain in cyclists 

Despite the non-weight bearing, low impact and smooth action of cycling, LBPP is still 

prevalent in cyclists. This may be because they spend considerably more time in training 

and racing compared to other sports which inevitably leads to the development of overuse 

injuries (Asplund and Ross 2010, So et al 2005). The prevalence of non-traumatic cycling 

injuries has been estimated to be as high as 85% (Wilber et al 1995). The most common 

areas for non-traumatic cycling injuries include the knees, hands, neck/shoulders, lower 

back, buttocks and perineum (De Bernardo et al 2012, Clarsen et al 2010, Marsden and 

Schwellnus 2010, Schultz and Gordon 2010, Marsden 2009, Dettori and Norvell 2006, 

Salai et al 1999, Callaghan and Jarvis 1996, Dannenberg et al 1996, Wilber et al 1995, 

Weiss 1985).  

 

A number of studies have investigated the incidence/prevalence of overuse injuries in 

elite and recreational cyclists (De Bernardo et al 2012, Clarsen et al 2010, Schultz and 

Gordon 2010, Marsden 2009, Salai et al 1999, Callaghan and Jarvis 1996, Wilber et al 

1995, Weiss 1985). The incidence of LBPP in recreational multiday long-distance tour 

cyclists varied from 1.6 – 16% (Townes et al 2005, Dannenberg et al 1996, Weiss 1985, 

Kulund and Brubaker 1978) and Callaghan & Jarvis (1996) reported a LBPP incidence of 

28-32% for a mixed group of track and road cyclists. Wilber et al (1995) proposed that the 
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injuries sustained during multi-day long-distance recreational tours are mostly acute 

overuse injuries and could not be compared to those reported in non-tour cyclists. 

Overuse injuries in long-distance tours are thought to be mostly due to poor rider 

condition and poor pre-tour preparation (Dannenberg et al 1996). 

 

The prevalence of LBPP varied from 15.7 – 58% in elite/professional cyclists (De 

Bernardo et al 2012, Clarsen et al 2010, Callaghan and Jarvis 1996) and     30.3 – 50% 

for non-competitive/recreational cyclists (Schultz and Gordon 2010, Salai et al 1999, 

Wilber et al 1995). Marsden (2009) investigated the prevalence of LBPP in a group of 

mixed recreational and competitive cyclists in South Africa and found a one-year 

prevalence of 42.9% and a lifetime prevalence of 50.7%. Details of the different 

populations can be found in Table 2.1 and Table 2.2.   

 

Table 2.1 Summary of the incidence of LBPP in cyclists in previous studies 

Population Study Details of study Participants 
Incidence of 

LBPP 

Multi-day  

long-

distance 

cyclists 

Kulund & Brubaker 

(1978) 

4500 miles over 

80 days 
- 15% 

Weiss (1985) 
496 miles over  8 

days 
132 2.7% 

Dannenberg et al 

(1996) 
339 miles 1140 16% 

Townes et al (2005) 520 miles 244 1.6% 

Elite/ 

professional 

cyclists 

Callaghan & Jarvis 

(1996) 

Mixed discipline 

(track, road and 

combination) 

elite British 

squad 

71 28-32% 
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Table 2.2 Summary of the prevalence of LBPP in cyclists in previous studies 

Population Study Details of study Participants 
Prevalence of 

LBPP 

Elite/ 

professional 

cyclists 

Clarsen et al 

(2010) 

7 professional 

European teams 
116 

58% (1-year 

prevalence) 

De Bernardo 

et al (2012) 

Top level road 

cyclists 
51 

15.7% 

(prevalence over 

4 years) 

Recreational 

cyclists 

Wilber et al 

(1995) 

Non-competitive 

cyclists 
518 

30.3% (possibly 

point 

prevalence) 

Salai et al 

(1999) 

Road 

bicycles/mountain 

bicycles/city 

bicycles 

80 
50% (point 

prevalence) 

Marsden 

(2009) 

Mixed recreational 

and non-elite 

competitive cyclists 

468 

42.9% (1-year 

prevalence) 

50.7% (lifetime 

prevalence) 

Schultz & 

Gordon 

(2010) 

Road cyclists from 

local clubs 
66 

50% 

(prevalence over 

last 6 months) 

 

The studies on the incidence and prevalence of LBPP were cross-sectional in design and 

had relatively large sample sizes as can be seen in Table 2.1 and Table 2.2. 

 
 

2.3 Factors proposed to be associated with lumbo-pelvic pain in 

cyclists 

 
2.3.1 Introduction 

The lower back and pelvis is at the centre of the functioning of the cyclist on the bicycle. It 

has to absorb and distribute loads from the upper limbs and lower limbs, yet in itself 

provide a stable base for the control and powering of the bicycle (Asplund and Ross 2010, 

Abt et al 2007, Mellion 1994). Optimal control of the lumbo-pelvic area will limit excessive 

movement in a forward-backward and side-to-side direction, increase power output and 

enable the cyclist to maintain a more aerodynamic position for longer periods of time, 

while limiting discomfort and injury (Asplund and Ross 2010, Abt et al 2007, Mellion 

1994).   

 

There are three main aspects around cycling that could influence the development of 

LBPP in cyclists: (1) training factors, (2) intrinsic physical factors of the cyclist and (3) 
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bicycle set-up factors. The association between training factors and LBPP in cyclists have 

been investigated to some extent, but the influence of both intrinsic factors and bicycle 

set-up factors have barely been assessed (Schultz and Gordon 2010, Marsden 2009, 

Wilber et al 1995). Poor positioning of the cyclist of the bicycle, sub-optimal bicycle set-up 

and the cyclist’s training method, intensity and frequency will all superimpose on any pre-

existing positional or control faults. These might over time overload the spinal structures 

and result in pain and pathology. The theoretical framework underlying these aspects as 

well as the possible influence of anthropometric factors will be discussed in the following 

sections. 

 

2.3.2 Training factors 

Mellion (1994) identified the necessity of including training factors as a possible reason for 

the development of back pain. Training factors and their influence in the development of 

LBPP were assessed by Weiss et al (1985), Wilber et al (1995), Marsden (2009) and 

Schultz and Gordon (2010). These factors include:  

 

 Intensity of training (average speed/pace during training) 

 Frequency of training (number of days cycled per week) 

 Duration of training (number of hours spent on the bicycle in training, number of 

kilometres per week and number of years cycled) 

 Cycling event participation 

 Cycling terrain 

 Cycle equipment 

 

When considering all these factors, distance cycled per week was the only factor 

consistently associated with LBPP (Schultz and Gordon 2010, Marsden 2009, Wilber et 

al 1995). This was quantified by Schultz and Gordon (2010) who indicated that cyclists 

who ride more than 160 kilometres (km) per week were more likely to experience LBPP. 

 

2.3.3 Anthropometric and demographic factors 

 
2.3.3.1 Height, weight and body mass index  

A large number of studies have been reported on the association between body weight 

and LBPP with outcomes that were often contradicting. Body weight is considered by 

some to be a strong contributing factor for the development of LBPP while others don’t 

regard it as a risk factor (Manchikanti 2000). The consensus from earlier studies, which 
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includes a large population study by Leboeuf-Yde (2000), was to regard body weight as a 

risk factor for LBPP until better evidence is available (Leboeuf-Yde 2000, Deyo and Bass 

1989). More recently a very large population-based study on 63 968 people done by 

Heuch et al (2010) concluded that obesity was associated with a high prevalence of 

LBPP. What is clear from the literature reviewed is that there is no evidence to conclude 

that weight is associated with the development of LBPP in cyclists. 

 

Walsh et al (1991) indicated an increase in risk with increased height in men in general, 

but not among women. This is supported by Manchikanti (2000) who also reported a 

positive relationship between height and LBPP. In direct contrast to this, Han et al (1997) 

in a large 1993-1995 Dutch cohort study (n=5887 males and n=7018 females), found no 

relationship between height and LBPP. Again the evidence is inconclusive with regards to 

height playing a role in the development of LBPP in cyclists. 

 

The association between height, weight and body mass index (BMI) and LBPP in cyclists 

was assessed in only one case controlled study by Marsden (2009) (n=40). This author 

compared height, weight and BMI in cyclists with and without back pain and concluded 

that cyclists with LBPP weighed significantly more and were significantly taller than those 

without. No relationship was however found between BMI and LBPP. This study will 

attempt to uncover if any of the above literature can be supported or refuted. 

 

2.3.3.2 Gender and age 

Studies on LBPP in cyclists mostly report only on the collective demographics of the 

population (age, height, weight, BMI) and not on the differences between males and 

females nor the association between various factors and LBPP (Van Hoof et al 2012, 

Muyor et al 2011b, Muyor et al 2011a, Clarsen et al 2010, Chapman et al 2008b, 

Diefenthaeler et al 2008, Abt et al 2007, McEvoy et al 2007, Srinivasan and 

Balasubramanian 2007, Burnett et al 2004, Bressel and Larson 2003, Salai et al 1999, 

Dannenberg et al 1996, Wilber et al 1995, Weiss 1985). Many of the studies that analysed 

association of clinical factors and LBPP only included male cyclists. This does not allow 

for comparisons to be made between male and female cyclists (Van Hoof et al 2012, 

Muyor et al 2011b, Chapman et al 2008b, Diefenthaeler et al 2008, McEvoy et al 2007, 

Srinivasan and Balasubramanian 2007). More information on the demographic 

characteristics of cyclists in the studies reviewed can be found in Appendix 1.  
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Of the studies reviewed for this literature review, only three studies reported on the 

influence of gender and age in cyclists (Dannenberg et al 1996, Wilber et al 1995, Weiss 

1985). Weiss (1985) reported on gender differences in knee injuries, but did not 

investigate LBPP. In a study conducted by Dannenberg et al (1996) it was noted that the 

prevalence of back complaints were three times higher in cyclists aged 10-19 years 

compared to those older than 40. Even though they did not investigate the reason for this, 

it can be hypothesised that older cyclists might be doing less mileage at a lower intensity 

or might have better cycling equipment and bicycle set-up because of better financial 

resources compared to the younger population, and hence the decrease in back and knee 

complaints.  

 

Wilber et al (1995) reported significant differences between male and female cyclists for 

height, weight, miles cycled per week, days cycled per week, average cycling pace, 

intensity of riding, the use of interval training and participation in other sports. They also 

reported that females are 1.5 times more likely to sustain an overuse injury of the neck 

compared to males, and 2.12 times more likely to sustain an overuse injury of the 

shoulder. In their study they found a statistically significant relationship between male 

cyclists who reported both more miles cycled per week and a fewer mean number of 

gears used, and back pain. From the literature reviewed, it would appear that clear 

evidence is not available to support the theory that gender plays a role in cyclists 

developing LBPP. 

 

2.3.4 Position of the cyclist on the bicycle 

The position of the cyclist on the bicycle is influenced by movement in two main directions 

– the forwards-and-backwards movement between the saddle and the handlebars and 

secondly the side-to-side movement between the saddle and the pedals (Mellion 1994). 

Previous studies that investigated LBPP in cyclists are sparse and generally conducted 

on small study populations, reducing the merit of such findings. These studies have 

mostly focussed on the forward-and-backward positioning of the cyclist on the bicycle 

through investigation of lumbar kinematics and positioning on the bicycle and the EMG 

activity of various trunk and limb muscles (Van Hoof et al 2012, Muyor et al 2011a, 

Srinivasan and Balasubramanian 2007, Burnett et al 2004).   

 

When cycling, cyclists will assume either a “round-back”/flexed or “flat-back” posture 

based on the extent to which the pelvis and spine have to flex to contribute towards the 

cyclist reaching the handlebars (Schulz and Gordon 2010, Burnett et al 2004). The seated 
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position of the cyclist leads to a natural increased tendency towards a “round-back”/flexed 

posture which is emphasised by the increased forward bent position often assumed by 

cyclists in an attempt to reduce their aerodynamic drag (Srinivasan and Balasubramanian 

2007, Burnett et al 2004).  

What further complicates this concept of posture is that no “ideal” sitting posture on a 

bicycle has been established for cyclists. Various authors have attempted to do this but 

consensus has not been reached. Most authors suggest that the lower back should be in 

a neutral position, that the pelvis should be positioned in an anterior tilt and that the 

forward flexion should be generated through hip flexion in order to flatten the kyphotic 

lumbar curve (Marsden and Schwellnus 2010, Marsden 2009, Abt et al 2007, McEvoy et 

al 2007, Salai et al 1999, Mellion 1994). Consensus on a neutral sitting posture for normal 

upright sitting on a chair/solid surface has not even been established which illustrates the 

complexity of quantifying what an ideal sitting posture should be (O'Sullivan et al 2010a).  

 

The literature indicates that there seems to be general consensus that sustained end-

range forward flexion of the lumbar spine during cycling could be pivotal to the 

development of LBPP in cyclists (Van Hoof et al 2012, Muyor et al 2011a, Schulz and 

Gordon 2010, Burnett et al 2004). Van Hoof et al (2012) and Burnett et al (2004) 

observed that, although all cyclists adopt a position of lumbar flexion, cyclists with LBPP 

assume a position of greater lumbar flexion on the bicycle compared to asymptomatic 

cyclists, which agrees with the hypothesis that LBPP is due to the flexed position on the 

bicycle.  

 

Muyor et al (2011a) assessed lumbar angles of 120 asymptomatic male master (n=60) 

and elite (n=60) cyclists while positioned on the bicycle in different handlebar positions. 

Both groups presented with variable degrees of lumbar flexion on the bicycle in all three 

handlebar positions (brake levers, drop position and seated upright position). Their 

findings indicate that elite cyclists assume a position of greater lumbar flexion and greater 

posterior pelvic tilt compared to master cyclists. This is in contrast with the proposed 

“neutral spine” which other authors proposed for the prevention of LBPP (Mellion 1994). It 

is therefore clear that all cyclists, including asymptomatic cyclists, assume a flexed lumbar 

posture on the bicycle (Van Hoof et al 2012, Muyor et al 2011a, Usabiaga et al 1997) and 

whether this will predispose them to injury is yet to be established.  

 

A combination of studies with small sample sizes (n=13-34) (Van Hoof et al 2012, Schulz 

and Gordon 2010, McEvoy et al 2007, Srinivasan and Balasubramanian 2007, Burnett et 

al 2004) to larger sample sizes (n=40-120) (De Bernardo et al 2012, Muyor et al 2011a, 
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Marsden 2009, Salai et al 1999) were included in the literature review on the lumbar 

positioning. Although the majority of studies were cross-sectional studies (which have 

their own limitations), some of the smaller studies were case controlled studies of 

participants with LBPP and those without (Van Hoof et al 2012, Marsden 2009, Srinivasan 

and Balasubramanian 2007, Burnett et al 2004). No studies with a higher level of 

evidence could be located on this topic. 

 

Several biomechanical and physiological responses have been described for the lumbar 

spine in response to prolonged flexion (Shin and Mirka 2007, Olson et al 2004, 

Solomonow et al 2000) (Figure 2.2): 

 With sustained flexion the passive spinal tissues deform at a slow rate. The 

increase in laxity in the passive tissues leads to a decrease in resistance to the 

forward flexion movement and is known as mechanical creep deformation of the 

visco-elastic tissues. Creep has been related to spinal instability under load and 

the development of LBPP. 

 Ligament inflammation and muscle spasms also follow the prolonged spinal 

flexion.  

 An increased demand is placed on the lumbar extensors to generate additional 

forces in compensation for the lack of resistance in the visco-elastic tissues 

resulting in muscle fatigue and an inability to maintain lumbar stability. 

 Flexion relaxation (myoelectric silence in the erector spinae muscles at mid to end 

range trunk flexion) occur, and with this reduced activity in the muscle, the passive 

structures (i.e. ligaments, intervertebral discs) are placed at higher risk.  

 

Constant increased loading of the passive posterior spinal structures and sustained 

increased pressure in the intervertebral discs can result in accumulated micro-damage 

as evident in the posterior annulus of the intervertebral discs (Burnett et al 2004, 

Solomonow et al 2003b, Callaghan and McGill 2001). The prolonged forward flexed 

position assumed on the bicycle could thereby potentially influence the development 

of LBPP in cyclists (Muyor et al 2011a, Smith et al 2008, Harrison et al 2005, Burnett 

et al 2004).  
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Figure 2.2  Conceptual model for risk factors with prolonged lumbar flexion 

(reproduced from Shin and Mirka (2007). 

 

Several patho-mechanical mechanisms have been proposed for the development of 

LBPP in cyclists following sustained forward flexion (Van Hoof et al 2012, Burnett et al 

2004).  These are: 

 

 Mechanical creep 

Burnett et al (2004) expressed that this might be unlikely in cyclists as part of the cyclist’s 

mass is also supported by the upper limbs on the handlebars and they are therefore not 

positioned in an open-ended position typically found in occupational settings. Two studies 

have assessed the possible development of creep in cyclists and one reported an 

increase in lumbar flexion (possible creep) in recreational cyclists (n=13) over a 10 minute 

Prolonged lumbar 

flexion 

Creep deformation and stress-relaxation of 

visco-elastic spinal tissues 

 Increased lumbar instability 

 Increased demand for muscle force 

 Degradation of muscle function 

Repeated exposure 

with insufficient rest 

 Increased laxity in lumbar spine 

 Micro-damage and acute inflammation in 

ligaments 

 Reduced force-generating capacity of muscles 

Elevated risk for LBPP 
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static cycling period (Schulz and Gordon 2010) whereas the other reported no change in 

the magnitude of lumbar flexion over a two hour outdoor training ride (n=17) (Van Hoof et 

al 2012). Both of these studies had a case-controlled, cross-sectional design but with 

relatively small sample sizes (n=13 and n=17). 

 

 Flexion relaxation phenomenon 

Juker et al (1998) proposed that flexion-relaxation might occur in certain cycling postures. 

An EMG study by Srinivasan and Balasubramanian (2007) illustrated fatigue in the right 

erector spinae muscle in cyclists with LBPP which could be indicative of asymmetrical 

loading of the spine. This is proposed to be reflective of the flexion relaxation 

phenomenon in the Erector Spinae muscles proposed as a mechanism for the increase in 

lumbar flexion in cyclists.  Even though the study by Srinivasan and Balasubramania 

(2007) was a case-controlled (LBPP vs. no LBPP) cross-sectional study, the sample size 

was small (n=14) and the results have to be interpreted with caution. 

 

 Transfer of mechanical loads generated by the lower extremities through a flexed 

and/or rotated lumbar spine. 

 

Limited anterior pelvic tilt due to shortening of the hamstring muscle group was in theory 

proposed as a reason for LBPP in cyclists by Mellion (1994). Muyor et al (2011b) 

investigated the association between hamstring extensibility and lumbar curvature on the 

bicycle based on the proposition that a decrease in extensibility will limit the anterior tilt of 

the pelvis and thereby demand an increase in lumbar flexion, yet they found no 

relationship. The study by Muyor et al (2011b) had a large sample size (n=96 cyclists) and 

only included highly trained cyclists (daily training of 2-4 hours, 3-6 days per week, 

minimum five years cycling experience) without hamstring or spinal pain in the last three 

months without comparing the findings of the asymptomatic cyclists to those of cyclists 

with LBPP.  

 

Though identified, none of these factors have been extensively investigated and many 

other factors that could influence the position assumed and sustained on the bicycle were 

not considered or investigated. Control of the side-to-side position on the bicycle is also 

considered important, yet no studies could be located where it was investigated (Mellion 

1994). In lieu of the limited research available on factors associated with LBPP in cyclists 

it was hypothesised that factors that could influence the forward-and-backward and side-

to-side position of the cyclist on the bicycle as illustrated in Figure 2.2, could be 

contributing to the development of LBPP in cyclists.  
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Figure 2.3 Factors influencing forward-and-backward and side-to-side position 

on the bicycle 

 
 
Control of the position on the bicycle is enhanced by efficient lumbo-pelvic stability. The 

theoretical framework underlying this stability will be briefly discussed in the next section 

followed by the discussion of the combined intrinsic and bicycle set-up factors that could 

influence the position of the cyclist on the bicycle, as illustrated in Figure 2.2. 

 

Position of 
cyclist on the 

bicycle 

2.3.4 

Forward-and-
backward 
position 

2.3.5 

Intrinsic factors: 
 

- Dysfunctional lumbar multifidi  

- Weak Gmax (delayed timing, 
lengthened position, overload 
hamstrings) 

- Decreased extensibility of 
hamstrings (posterior pelvic tilt, 
increased lumbar flexion) 

- Inability to control movement 
into lumbar flexion due to 
habitual poor positioning 

- Neural provocation 

Bicycle set-up factors: 
 

- Saddle set-back 

- Saddle angle 

- Handlebar height 

- Forward reach on the bicycle 

Side-to-side 
position 

2.3.6 

Intrinsic factors: 
 

- Poor load transfer through the 
pelvis 

- Inability to control lateral  
movement of the pelvis 

- Weakness of Gmed 

- Leg-length discrepancy 

Bicycle set-up factors: 
 

- Saddle height 
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2.3.4.1  Lumbo-pelvic stability 

Lumbo-pelvic stability is defined as “the ability to control movement of the lumbar spine 

and pelvis relative to an arbitrarily defined neutral position” (Mills et al 2005).  Panjabi 

(1992) proposed in a theoretical model that stability of the spine is mediated through three 

systems: the active, passive and neuromuscular control systems. The discs, spinal joint 

surfaces, spinal ligaments and joint capsules make up the passive control system and are 

responsible for passive restriction of movement. The active control system is made up of 

muscles and their tendons which actively cause movement and the neural control system 

is responsible for the control and coordination of the movement (Panjabi 1992). A similar 

model was proposed by Sahrmann (2002), which included the following elements: (1) 

base (muscular and skeletal systems), (2) modular (nervous system regulating and 

controlling movement), (3) biomechanical (statics and dynamics) and (4) support (cardiac, 

pulmonary and metabolic systems maintain the livelihood of the other systems). 

 

Dysfunction in any of these systems could lead to the development of pathology and pain. 

Disc degeneration, herniation, annular tears, continuous strain and overstretching of 

ligaments and degeneration of joint surfaces with subsequent osteophyte formation will all 

lead to the development of pain (Panjabi 1992). In sustained positions, as seen in cyclists, 

the active and passive control systems are under prolonged stress. With continuous 

stress the collagenous fibres elongate (creep) and strain develops. With continuously 

sustained strain in an incorrect posture/position, discs are subject to shear forces which 

eventually lead to damage of the annular fibres. When collagenous fibres are 

continuously exposed to strain, the tissues will slowly adapt to the forces and lengthen. 

Over time the tissue structures will habituate to the new elongated position and the 

collagenous fibres will remain lengthened, weakening the functioning of the system 

(Luomajoki 2010, Bogduk 2005). 

 

In the active control system, prolonged flexion will lead to changes in the length-tension 

relationships of muscles and to laxity of the visco-elastic structures. With prolonged 

flexion, the multifidus muscle first reacts with tension, which decreases after 2-3 hours of 

loading, rendering the spine to the risk of instability (Comerford and Mottram 2012, 

Luomajoki 2010). Jackson (2001) reported a sharp decrease in feline multifidus muscle 

(n=7) activity after static flexion loading for 20 minutes, which did not recover in the 

following seven hours. Dysfunction of the active control system will be explored in more 

detail in the next section. 
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Dysfunction can also occur in the neural control system. Activity of the neural control 

system is mediated through learning. Learning consists of conditioning and repetition 

which will lead to habit-forming behaviour. Specific activities with their respective neural 

pathways that are frequently used will strengthen the used pathways and through 

repetition automatize the activity. This process is entirely mediated through the neural 

control system and causes habituation. This explains why people persistently use 

incorrect and pain-provoking movements as they have become habituated to it and hence 

they are no longer aware of what is happening to their bodies (Luomajoki 2010, Moseley 

2008). 

 

Stability of the lumbo-pelvic spine through control of movement lies somewhere in the 

integration of the different control systems discussed above. Luomajoki (2010) proposed 

that neuromuscular control deficits may have the biggest impact on the development of 

uncontrolled movement resulting in LBPP. Discussions about the control of movement 

and the development of uncontrolled movement will be partly based on the theoretic 

model for control of movement developed by Sahrmann (2002) and Comerford & Mottram 

(2012, 2001b) which, although it has not been extensively tested, is the best available 

explanation of the topic. 

 

2.3.4.2 Muscular contributions to lumbo-pelvic stability 

Integrated functioning of the muscle system is essential for optimal movement and 

stability. The muscle system has been classified in various ways. Muscles were initially 

classified according to their function as mobilisers or stabilisers. The primary function of 

mobiliser muscles is to produce movement through concentric acceleration and the 

production of high forces.  Mobiliser muscles extend over two or more joints and tend to 

become overactive and lose their extensibility. Stabiliser muscles, such as the Gmed and 

Gmax, are important for postural holding tasks, anti-gravity function and control. These 

stabilisers generally extend over one joint and have a tendency towards weakness and 

inhibition (Sahrmann 2002, Comerford and Mottram 2001b, Norris 1999).  

 

Bergmark (1989) classified muscles according to the local or global function they 

displayed when controlling load transfer across the lumbar spine and pelvis. Local 

muscles control inter-segmental movement of the spine by increasing and maintaining the 

mechanical stiffness across joints. Local muscle function is biased towards low-load 

activities, but they also maintain control over inter-segmental translation during high load 

activities. Global muscles produce and control the range and the direction of movement 
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during load-transfer between the trunk and the pelvis (Bergmark 1989). Comerford and 

Mottram (2012, 2001b) further categorised global muscles as having a stabilising or 

mobilising role and integrated the two concepts into a model for muscle classification 

(Table A2.1, Appendix 2, p.165).  

According to Comerford and Mottram (2012, 2001b), the global stabilising muscles have 

four main functions: 

 to concentrically shorten to produce movement (“mobility function”) 

 to isometrically hold the position (“postural control function”) 

 to eccentrically lengthen to return to the resting position (“stability function”) 

 to provide proprioceptive feedback to the central nervous system. 

 

Normal function with efficient stability can only be mediated through integrated action from 

the local and global muscle systems (Comerford and Mottram 2012). Dysfunction in the 

local stability system primarily presents as (1) abnormal segmental control and (2) deficits 

in motor recruitment. There is wide-spread consensus that the local stability muscles are 

inhibited by pain and pathology and dysfunction therefore mostly appears after the 

development of pain and pathology (Hides et al 2008a, 1996, 1994). Dysfunction in the 

global muscle system predominantly surfaces in three different ways: (i) length associated 

changes, (ii) altered recruitment patterns and (iii) direction specific 

hypermobility/uncontrolled movement (Comerford and Mottram 2012, Sahrmann 2002). 

 

i. Length associated changes 

 The effective functioning of a muscle is directly related to its ability to produce 

tension which is again related to the number of linked actin-myosin cross-

bridges (Kendall et al 1993, Gossman et al 1982, Williams and Goldspink 

1978). The efficacy and force production of muscles are optimised in their 

mid-range position (close to their resting length) of functioning. Muscles that 

are elongated or shortened appear functionally weak and less efficient during 

contraction (physiological of mechanical insufficiency) (Sahrmann 2002, 

Williams and Goldspink 1978). Physiological insufficiency occurs when a 

muscle shortens into its inner range where the actin-myosin filaments are 

maximally overlapped and fewer cross-bridges can be linked. The shortened 

muscle loses sarcomeres and increases in connective tissue resulting in a 

reduction in force production. Mechanical insufficiency is the direct opposite of 

this phenomenon. When a muscle contracts in its lengthened position there is 

inadequate overlapping of the actin-myosin filaments, fewer cross-bridges can 
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be linked and again the muscle cannot produce adequate force. The 

lengthened muscle gains sarcomeres in series and is able to generate higher 

peak forces, but only in the outer ranges of movement. The muscle will test 

weak in its mid- and inner-range and fatigue more readily in postural control 

tasks. A muscle will change its functional resting length to adapt to the length 

that it is habitually used in, whether elongated or shortened (Lieber and Ward 

2011, Sahrmann 2002, Kendall et al 1993, Gossman et al 1982, Williams and 

Goldspink 1978). 

 

ii. Altered muscle recruitment patterns 

 Two different types of motor units have been predominantly identified in 

muscles: slow low threshold motor units (SMU) and fast high threshold motor 

units (FMU) (Levangie and Norkin 2011, Lieber 2009, Enoka and Fuglevand 

2001, Belanger and McComas 1981). SMU are resistant to fatigue and are 

mostly recruited in low-load activities and postural control tasks. FMU fatigue 

quickly when recruited, have a higher activation threshold and are mostly used 

as load increases. SMU are recruited in one-joint stability muscles during low-

load antigravity or postural control functions. They have a low threshold for 

activation and should react easily to low-force loading. Mobiliser muscles 

recruit their high threshold FMU for higher load, fast actions and should not be 

sensitive to low load SMU activation. In a dysfunctional situation the one-joint 

stabiliser muscles increase their threshold for activation and become less 

responsive to low load stimulation, only responding to greater loads. As a 

result, multi-joint mobiliser muscles reduce their threshold to take over the 

stability role and become more reactive to low load stimulation like postural 

sway and postural control. This inevitably leads to inappropriate recruitment of 

the mobiliser muscles for a stability task (Belanger and McComas 1981).  

 

 This concept is clearly illustrated in the changes in recruitment and 

sequencing between stabiliser and mobiliser muscles as reported by Janda 

(1985) and Sahrmann (2002). Sahrmann (2002) reported consistent 

imbalances in recruitment patterns between different muscle groups. These 

included imbalances between contralateral hamstrings and abdominal 

muscles during active straight leg raise in supine (ASLR); hamstrings and 

back extensors in forward bending; TFL, iliotibial band (ITB) and posterior 
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Gmed in hip abduction and hamstrings and gluteal muscles during prone hip 

extension. 

 

 The consistent pattern that emerges is that one-joint stabiliser muscles should 

activate before multi-joint mobiliser muscles in normal/no pain situations. 

Dysfunctional sequences and patterns of recruitment become evident in the 

presence of pain and pathology. Multi-joint mobiliser muscles are recruited 

earlier and often lack extensibility while one-joint stabiliser muscle recruitment 

is delayed and the muscles are inefficient in controlling an inner range 

contraction.  

 

iii. Direction specific increased movement 

 Sahrmann (2002) developed the concept of “relative stiffness-relative 

flexibility”. She proposed that one-joint muscles, if lengthened and unable to 

adequately shorten into inner range, will become more flexible and inadequate 

in preventing uncontrolled movement at that joint. Multi-joint muscles, if they 

lack extensibility and become stiffer, will limit normal range of motion (ROM) at 

that joint. When the range of movement at a joint is limited by stiffness, the 

restriction will be compensated for elsewhere in order to maintain function. If 

this occurs in muscles performing the same movement then excessive 

direction-specific uncontrolled movement will develop at the joint inadequately 

controlled by the one-joint stabiliser muscle. 

 

 Luomajoki et al (2007) reiterated this concept of movement occurring through 

the pathway of least resistance (relative flexibility theory). He indicated that 

more flexible structures will compensate for less flexible/stiffer ones during 

function which will create stress and strain in a specific direction. With 

repetitive loading, this direction-specific hypermobility will be reinforced 

resulting in tissue damage, pain and uncontrolled movement (Sahrmann 

2002). 

 

The clinical implication is that in ‘ideal’ functioning systems, relative stiffness and flexibility 

are well regulated by motor control processes. The body will however adapt in the 

presence of significant restrictions and compensate for these restrictions by increasing 

mobility elsewhere in the system in order to maintain function at all costs. This excessive 

increase in mobility often results in uncontrolled movement and may result in the 
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development of pain and pathology. There is a complex interaction between muscles to 

provide stability and control of the spinal joints during movement. Loss of this stability can 

also lead to LBPP.  

 

2.3.5 Factors influencing the forward flexed position on the bicycle  

 

2.3.5.1 Lumbar multifidi 

The lumbar multifidi are classified as local stabilisers of the spine and ideally situated to 

control segmental translation and create extension in the lumbar spine. Several studies 

have indicated localised atrophy of the lumbar multifidi in the presence of acute and 

chronic LBPP which does not recover spontaneously (Hides et al 2008a, Hides et al 

2008b). Therefore, in the presence of pain and pathology, local stability muscle 

dysfunction is expected and its influence on poor motor control and recurrence of 

symptoms is undeniable. In the pursuit of the factors that could contribute to the 

development of LBPP, it is difficult to establish if the local stability dysfunction causes the 

LBPP, was as a result of the LBPP or a combination of both. Dysfunction of the local 

stability system is therefore beyond the scope of this study and even though its 

contribution to LBPP is undeniable, its influence will not be further explored here. 

 

2.3.5.2 Gluteus Maximus 

Gmax is a primary extensor of the hip and although most studies on the anatomy of Gmax 

refer to the muscle as a whole (Barker et al 2013, Neumann 2010, Ward et al 2010), 

Grimaldi et al (2009) proposed that Gmax should be considered as having two 

functionally separate entities based on their position relative to the centre of rotation of the 

hip. The upper Gmax arises from the posterior iliac crest, acts above the centre of rotation 

of the hip and is active in hip abduction. Lower Gmax acts below the centre of rotation of 

the hip, is responsible for hip extension and originates from the inferior sacrum and upper 

lateral coccyx. Gmax is also strongly connected to the ITB with 80% of it inserting into the 

ITB (Antonio et al 2013, Reiman et al 2012, Conneely et al 2006). There seems to be 

some consensus that Gmax has a global stability role around the pelvis and that it plays a 

major role in postural holding/anti-gravity stability including stability of the SIJ, and in 

transferring forces from the lower extremities to the trunk (which would be more the 

function of the lower Gmax) (Antonio et al 2013, Kang et al 2013, Ward et al 2010, 

Gibbons 2007, Conneely et al 2006, Willson et al 2005). The evidence on the anatomy 

and function of Gmax ranges from literature reviews/clinical commentaries (Neumann 

2010, Ward et al 2010) and cross-sectional and case-controlled cross-sectional studies 
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(Antonio et al 2013, Kang et al 2013, Grimaldi et al 2009, Conneely et al 2006) to 

systematic reviews (Reiman et al 2012). 

 

Gmax has been described to be to the SIJ what the quadriceps is to the knee (Lee 1996). 

Through its extensive connections to the thoracodorsal fascia and to the sacrotuberous 

ligament, it aids in increasing force closure around the pelvis, thereby contributing to 

stability of the sacro-iliac joints (SIJ) and pelvis (Forst et al 2006, Cohen 2005, Hossain 

and Nokes 2005, Pool-Goudzwaard et al 1998, Lee 1996, Vleeming et al 1996). Barker et 

al (2013) reported that 70% of Gmax crossed the SIJ, indicating the ability of Gmax to 

increase the compressive forces across the SIJ and its role in assisting with load transfer 

between the lower extremities and the trunk.  

 

Reduced activity and poor endurance of the Gmax muscle has been observed in patients 

with chronic LBPP as described in several case controlled cross-sectional (Hungerford et 

al 2003, Leinonen et al 2000, Kankaanpää et al 1998), experimental (Sharma et al 2012) 

and prospective repeated-measures studies (Ekstrom et al 2007). Most muscles with an 

antigravity stability function use their middle and inner ranges for that stability role (like the 

Gmax) and when muscles are habitually used or positioned in a lengthened position, they 

will become elongated and will lack force efficiency in their shortened/inner range 

positions (“stretch weakness”) (Grimaldi 2011, Levangie and Norkin 2011, Ward et al 

2010, Sahrmann 2002, Norris 1999, Sims 1999, Norris 1995, Kendall et al 1993, 

Richardson and Sims 1991, Williams and Goldspink 1978). 

 

Gmax is susceptible to length-tension changes following its habitual use in an elongated 

position as with prolonged sitting. This is evident in cyclists who sustain a position of 

forward flexion for prolonged periods of time. Richardson and Sims (1991) investigated 

the length-tension relationship of Gmax in cyclists in a case-controlled cross-sectional 

study (n=29), and found that competitive road cyclists who habitually use their Gmax 

muscles in a lengthened position were unable to control/hold an inner range contraction of 

Gmax.  In their study the mean inner range holding time in the normal population was 

37.06 seconds compared to the 5.08 seconds mean holding time in competitive road 

cyclists. 

 

An elongated, weak Gmax will generate insufficient tension in the lumbo-pelvic 

ligamentous system, which could lead to decreased force closure, excessive movement 

and therefore poor control around the pelvis, SIJ and hip joints (Takasaki et al 2009, 

Hossain and Nokes 2005, Hungerford et al 2003, Sahrmann 2002, Pool-Goudzwaard et al 
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1998). Frequent, excessive movement (such as increased lumbo-pelvic rotation) induced 

by a weak Gmax may result in hypermobility of the joints in the lumbo-pelvic region 

following the imbalance in the passive tension of the muscles affecting the area and result 

in micro-trauma and eventual macro-trauma of the spinal structures (Sahrmann 2012).  

The gluteal muscles are prone to changes in recruitment sequence and several studies 

have consistently reported delayed activation of the gluteal muscles in individuals with 

LBPP (Sharma et al 2012, Takasaki et al 2009, Hungerford et al 2003, Comerford and 

Mottram 2001b, Nadler et al 2000). Delayed recruitment of Gmax is associated with an 

increase in the activation threshold of its SMU which in turn results in a decrease in the 

activation threshold of the FMU of the hamstring muscle group and earlier activation of the 

hamstrings (Jung et al 2013, Hungerford et al 2003) . Following on this, earlier activation 

of the hamstring muscle group to supplement decreased activity of Gmax, will lead to 

dominant use of the hamstrings which again could limit the opportunity to activate Gmax 

and consequently further weaken it (Jung et al 2013). Recruitment and sequencing of 

Gmax plays an important role in the functioning of the muscle, but is beyond the scope of 

this study. Both the Jung et al (2013) and the Hungerford et al (2003) were case-

controlled cross-sectional studies with relative small sample sizes (n=31 and n=28 

respectively). 

 

Lower Gmax is a primary extensor of the hip (Neumann 2010) and weakness of this 

muscle will place an increased compensatory demand on the hamstrings, leading to 

overuse of the hamstring muscles (Chance-Larsen et al 2010, Sahrmann 2002, Lee 

1996). As cyclists habitually use their Gmax in an elongated position, resulting in “stretch-

weakness” of the muscle, it could be expected that they will place an increased demand 

on their hamstring muscles to compensate for the change in its length-tension 

relationship. 

 

2.3.5.3 Hamstring muscle group 

The hamstring muscle group is another group of muscles that are often subject to length-

associated changes. The hamstrings have a global mobiliser function (active in knee 

flexion and hip extension) and are prone to shortening and over activity (Sahrmann 2002, 

Kendall et al 1993). The cycling action involves alternating flexion-extension movements 

of the hip and knee with the hip extension action mediated through the Gmax, hamstring 

muscle group, adductor magnus and adductor group as a whole at ranges of increased 

flexion (Neumann 2010). With the feet cleated into the pedals, cyclists use knee flexion 
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more powerfully to increase power output and speed, thereby further increasing the 

demand on the hamstring muscle group (Silberman et al 2005, De Vey Mestdagh 1998).  

 

The increased demand placed on the hamstring muscle group through the combined 

effects of a weak, elongated Gmax and the increased knee flexion moment created by the 

use of cleated pedals on the bicycle,  will result in hypertrophy of the hamstring muscle 

group (Sahrmann 2012). Hypertrophy of muscle is associated with an increase in myosin. 

With the increase in myosin there is a six fold increase in titin/contractin which will lead to 

increased passive stiffness of the muscle. The imbalance in the relative passive stiffness 

of the hamstrings and that of the lumbo-pelvic musculature will induce an increase in 

movement in the lumbo-pelvic area and over time result in joint hypermobility. The 

frequent use of this increased joint range will over time lead to micro-trauma and eventual 

macro-trauma in the spinal structures (Sahrmann 2012). The evidence presented by 

Sahrmann (2012) is based on previous studies done by them and was presented at the 

2012 International Federation of Physical Therapy conference in Quebec. 

 

In the forward flexed position adopted by cyclists on the bicycle, a decrease in the 

extensibility of the hamstrings could prevent the anterior tilt needed for optimal positioning 

of the spine during cycling (Mellion 1994). Biceps femoris is connected to the ischial 

tuberosity and a lack of extensibility will restrict the anterior motion of the pelvis, leading to 

the maintenance of a more posteriorly tilted position and restriction of hip flexion range 

during forward bending which is typical of a cyclist’s posture (Mellion 1994). To 

compensate for this and to maintain function, the lumbar spine will flex excessively, 

overstraining the extensor muscles of the spine (Sahrmann 2002). This in conjunction with 

poor control and stability from an elongated Gmax could result in uncontrolled movement 

of the lumbar spine in the direction of flexion. This direction specific hypermobility is 

reinforced during functional movements and will ultimately result in tissue pathology and 

pain if loaded repetitively (Sahrmann 2012, Sahrmann 2002, Hamilton and Richardson 

1998).  

 

Numerous studies have concluded that patients with a history of LBPP will have 

increased lumbar flexion during forward bending and stiffer hamstrings than those without 

LBPP (Sahrmann 2002, Hamilton and Richardson 1998). Muyor et al (2011b) investigated 

the influence of hamstring extensibility on spinal curvatures in 98 asymptomatic cyclists. 

They found that hamstring extensibility influence thoracic angle and pelvic position when 

performing maximal trunk flexion with the knees in extension (as for the sit-and-reach 

test). Hamstring extensibility did however not influence the spinal curvature in standing or 
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on the bicycle with the hands in the drop position. The difference in hamstring length 

between cyclists with and without LBPP was investigated by Marsden (2009) and they 

observed a significantly impairment in the hamstring length of cyclists with LBPP 

compared to those without. An important exclusion in the Marsden’s study is that the 

relationship between hamstring length and lumbar curvature was not investigated. The 

study by Marsden (2009) is a case-controlled cross-sectional study with a relatively small 

sample size (n=40) compared to the one by Muyor et al (2011b) where 98 asymptomatic 

cyclists participated, but the latter was not case-controlled (no symptomatic cyclists and 

hence no comparison between groups). No higher level evidence such as randomised 

controlled trials or systematic reviews on the relationship between hamsting length and 

LBPP and especially this relationship in cyclists could be found. 

 

2.3.5.4 Control of movement into lumbar flexion 

There are numerous ways to perform any specific task, which complicates defining 

normal/optimal movement. Comerford and Mottram (2012) defined optimal movement as 

the efficient execution of postural control tasks and functional activities in a way that 

creates the least amount of physiological stress. The coordinated interaction between the 

active, passive and neural control systems is essential for the controlled, optimal 

execution of movement.  

 

Uncontrolled movement (UCM) is defined as inefficient active control of movement at a 

specific motion segment and in a specific direction (Comerford and Mottram 2012). Many 

researchers have shown that in clinical tests, people with LBPP have earlier movement of 

their lumbo-pelvic spine during active leg movement (Sahrmann 2012, Scholtes and Van 

Dillen 2007). With early lumbo-pelvic movement comes an increased frequency of 

movement at a specific region which places increased stress and strain on tissues 

resulting in pain (Scholtes et al 2009, Van Dillen et al 2005, Sahrmann 2002). This 

concept of uncontrolled movement creating cumulative micro-trauma through increased 

loading and resulting in neuromusculoskeletal pain, is becoming increasingly popular 

(Sahrmann 2012, Van Dillen et al 2005, Sahrmann 2002). 

 

The very broad “diagnosis” of NSLBP has necessitated the development of a 

classification system for sub-groups of patients with NSLBP to enhance the effective 

management of this vast group (Dankaerts et al 2006, O'Sullivan 2005, Waddell 2005, 

McCarthy et al 2004, Petersen et al 2004, O'Sullivan 2000, Petersen et al 1999). Impaired 

control of movement is regarded as one of the main reasons for NSLBP (Reeves et al 
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2007, Moseley and Hodges 2006, Hodges and Moseley 2003). Based on this concept, 

O’Sullivan (2005) developed a mechanisms-based classification system for patients with 

NSLBP. With his classification system, patients present with either a movement 

impairment or a control impairment, with the latter more commonly observed in clinical 

practice (O'Sullivan 2005). Following this, O’Sullivan (2005) described the presentation of 

a control impairment as direction-dependant and sub-grouped them as: 

 Flexion pattern 

 Extension pattern (passive/active) 

 Lateral shift control impairment 

 Multi-directional control impairment 

 

Of these groups, the flexion pattern group and active extension group seem most 

common in patients with NSLBP (Dankaerts et al 2009). The “flexion pattern” pain 

disorder is related to a flexion strain on the lower back and is characterised by LBPP 

which is reproduced by sustained or repeated lumbar flexion and eased by extension of 

the lumbar spine. It is further associated with a loss of lower lumbar lordosis and 

dysfunction of the spinal multifidus even though there is no loss of spinal mobility (Burnett 

et al 2004, O'Sullivan 2000). The “flexion pattern” is hypothesised to result from a loss of 

control of the neutral zone of the spinal motion segment followed by a repetitive strain of 

that spinal segment and tissues (i.e. ligaments, intervertebral discs, zygapophyseal joints 

and capsular structures) at the end of the lumbar flexion range (Van Hoof et al 2012, 

Burnett et al 2004, O'Sullivan et al 2003). 

 

Control of lumbar movement in the direction of flexion is of particular interest in this study 

because of the biomechanics of cycling, the sustained forward flexed position of the 

cyclist on the bicycle and the nature of the sport. Observing cyclists in the prolonged 

forward flexion position on their bicycles almost immediately raises the question of their 

ability to control the lumbar flexion they sustain for long periods of time. Cyclists change 

their lumbar curve from a lordosis to a kyphosis when seated on the bicycle (Muyor et al 

2011a, Usabiaga et al 1997). It is this sustained positioning in flexion which seems to 

contribute to the development of their LBPP (Burnett et al 2004).  

 

Burnett et al (2004) propose that cyclists with LBPP commonly  present with a lumbar 

flexion strain pain disorder resulting in a pattern of uncontrolled lumbar flexion. They 

reported that cyclists with LBPP have a tendency towards increased spinal flexion and 

rotation when compared to asymptomatic cyclists. This was confirmed by Van Hoof et al 

(2012) who found that cyclists with LBPP assume and sustain a position of greater lower 
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lumber flexion compared to asymptomatic cyclists and that maintaining this increased 

flexion, significantly increased the LBPP during a two hour cycling field test.  Cyclists also 

present with greater mean trunk flexion values during fast cycling compared to slower 

intensity cycling (Chapman et al 2008b).  

 

With uncontrolled lumbar flexion there is inefficient active recruitment of the lumbar spinal 

muscles to prevent flexion of the lumbar spine (Comerford and Mottram 2012). Several 

factors may be contributing to the development of UCM (Comerford and Mottram 2012, 

Sahrmann 2002): 

 Compensation for a restriction 

 Direct overfacilitation 

 Sustained passive postural holding 

 Trauma 

 

Of the various factors related to the development of uncontrolled movement only two are 

proposed to be applicable to the development of overuse injuries in cyclists: 

 

 Compensation for a restriction 

 UCM develops over time in compensation for a myofascial, neurodynamic or 

articular restriction with the aim of maintaining normal function. Restriction in 

movement develops gradually in response to various factors of which habitual 

positioning in a shortened position, overuse and protective responses are just 

some of them. This restriction in movement has to be compensated for in order to 

maintain function. The body compensates for the restriction by increasing 

movement elsewhere in the system. Compensation can be a normal adaptive 

process if there is still efficient active control. In the presence of inefficient active 

control, various structures will be subjected to cumulative micro-trauma and if this 

exceeds the tissue tolerance will result in the development of pain and pathology 

(stability dysfunction) (Sahrmann 2012, Sahrmann 2002). An example of this is the 

compensation by the inefficient back extensor muscles for a shortened hamstring 

restricting hip flexion in forward bending resulting in uncontrolled lumbar 

movement in the direction of flexion. 

 Cyclists continuously sit with their hips in excessive flexion which ultimately leads 

to elongation of Gmax (one-joint stabiliser). A lengthened Gmax will have a 

reduced ability to shorten into a full inner range position and maintain that position 

for any length of time (Richardson and Sims 1991). Dysfunction in this one-joint 

stabiliser might lead to an increased threshold of the SMU to low load stimuli and 
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cause a decrease in stimulation threshold in the two-joint hamstrings. In 

compensating for the elongated Gmax, hamstrings might become overloaded and 

possibly shorten (Sahrmann 2012). The shortened hamstrings may in turn restrict 

the range of hip flexion necessary for forward reach to the handlebars. This 

restriction might be compensated for by the relatively less stiff back extensors 

creating hyper-flexion of the spine, eventually resulting in uncontrolled movement 

in the direction of flexion (Comerford and Mottram 2012, Sahrmann 2002).  

 

 Sustained passive postural holding  

Sahrmann (2002) propose that faulty/incorrect movement is not only the result of  

pain and pathology but can also create pain and pathology. Dysfunction in 

movement  often develops as a result of sustained postures and habitual 

movements (Sahrmann 2002). Static loading/holding pain, overuse pathologies 

(which includes low load repetitive strain or high load/impact repetitive strain) and 

postural pain all have a component of movement dysfunction which contributes to 

pain. 

 

The passive process of habitually positioning and sustaining a joint or region in an 

end of range position can result in UCM. Over time a lengthening strain of the 

stabiliser muscles and passive positional shortening of the mobiliser muscles will 

develop. Adding gravity and body weight will result in a sustained, direction-

specific loading mechanism. This is generally a passive insiduous process. 

Habitually sitting in a passive sustained slumped/flexed position will eventually 

result in uncontrolled lumbar flexion (Sahrmann 2002). This theory has been 

illustrated in the cycling population who assume and sustain a forward flexed 

position for hours when training or competing. Van Hoof et al (2012) found that 

cyclists with LBPP spend more than 38.5% of their total cycling time in an end of 

range position exceeding 80% of their total lumbo-pelvic flexion compared to the 

4% found in asymptomatic cyclists. Cyclists will often also further reduce their 

frontal cross-sectional area by adopting an even more flexed posture in order to 

reduce their aerodynamic drag, which could further contribute  to the development 

of UCM (Burnett et al 2004). 

 

Control of movement is to some extent still a theoretical concept and poorly researched, 

hence the limited experimental evidence available. The majority of evidence is from text 

books (Comerford and Mottram 2012, Sahrmann 2002) with a small number of case 

reports (Van Dillen et al 2005), cross-sectional studies (Muyor et al 2011a, Scholtes and 
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Van Dillen 2007, O'Sullivan et al 2003) and case-controlled studies (Van Hoof et al 2012, 

Scholtes et al 2009, Burnett et al 2004, Richardson and Sims 1991) starting to build the 

evidence. No systematic reviews or randomised controlled trials exist for the assessment 

of the control of lumbar flexion. 

 

2.3.5.5 Neural tissue provocation 

During normal movement nerves move in relation to the tissues that surround them and 

undergo mechanical deformation (Kuilart et al 2005). Normal movement of the neural 

tissue depends on three main functions: (1) the ability to withstand tension, (2) be 

compressible and (3) slide in its container/sleeve (Ellis and Hing 2008, Shacklock 2005).  

Nerves were made to move, but the extent of their movement is directly related to the 

movement of the tissues which surround them. This is an important factor, especially in 

less mobile people where tight musculature and old scarring might impede the movement 

of the neural structures (Butler 2000). Nerves are very dependent on an uninterrupted 

blood supply which emphasises the importance of preventing ischaemia. This is however 

not done easily as ischaemia in neural tissue occurs in response to tension and 

compression. Elongation of 8% results in a reduction of blood flow through the peripheral 

nerve. All circulation in and around the nerve is obstructed at 15% elongation.  

 

Intraneural tension is also closely related to time duration, with a longer duration of 

tension creating greater ischaemia and a longer recovery time (Shacklock 2005). When 

neural strain of 6% is maintained for an hour, a 70% reduction in nerve conduction 

occurs. This clearly portrays the increased likelihood of intra- and extraneural adverse 

events when the neural tissues are sustained in an elongated position (Davis et al 2008a, 

Kuilart et al 2005, Shacklock 2005). Elongation (tensioning) of the spinal neural structures 

(nerve roots and dural sleeve) also occurs with flexion of the spine (Cleland et al 2006). 

Considering the slumped position assumed and sustained by cyclists for the duration of 

their ride raises the question of possible adverse events occurring because of tension in 

the neural structures. Abnormal neural mechanosensitivity can also lead to a loss of 

extensibility in the mobility muscles which might in turn be implicated in the development 

of LBPP (Comerford and Mottram 2012). Tension of the nerve and nerve sleeve can 

therefore also produce symptoms and it is important to take these into account when 

considering the factors associated with LBPP in cyclists. 

 

Limited data exists on the presence and implication of neural dynamics and hence most 

of the literature available is still from textbooks (Shacklock 2005, Butler 2000), which is 
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generally regarded as having a lower level of evidence. Of the studies that have been 

done on the topic of neural dynamics, the majority were cross-sectional observational 

studies (Davis et al 2008b, Kuilart et al 2005). One pilot randomised controlled 

intervention study (Cleland et al 2006) was also located. Sample sizes varied from n=30 

for the intervention study to n=42 (Kuilart et al 2005) and n=84 (Davis et al 2008b). No 

studies have been done on adverse neural mechanics in cyclists. 

 

2.3.5.6 Bicycle set-up factors 

Proper bicycle set-up is essential for injury prevention, safety, comfort and peak 

performance (Silberman et al 2005). Bicycle set-up plays an important role in the 

development and treatment of LBPP in cyclists (Mellion 1994). Some might argue that 

bicycle set-up is the most important factor involved in the development of pain and 

pathology. With cycling, the asymmetrical variables of the body have to adapt to the 

symmetrical design of the bicycle to function as one unit (Holmes et al 1994). Often 

abnormal stress loads are placed on tendons and muscles because of the conflict 

between a symmetric bicycle and an asymmetric human body. Optimal fitting of the 

bicycle to the rider’s body geometry should result in less stress and strain on the body and 

decrease the incidence of injury (Wanich et al 2007, De Vey Mestdagh 1998, Holmes et al 

1994).  

 

Optimal cycling posture is dependent on two main variables: (1) posture height (saddle 

height, crank length, position of the cleats on the shoe, saddle setback) and (2) posture 

length (reach, handlebar level and handlebar width) (De Vey Mestdagh 1998). The cyclist 

has three contact points with the bicycle (saddle, handlebars and pedals), all of which 

play an important role in efficient alignment of the cyclist on the bicycle (Silberman et al 

2005). Contact with these three points will determine the forward-backward and side-to-

side position of the cyclist. The balance of the forward-backward and side-to-side position 

of the cyclist on the bicycle is critical for effective transmission of force to the pedals and 

optimal performance of the rider (Mellion 1994).  

 

Bicycle set-up varies substantially according to the goal of the cyclist, whether it is to 

increase performance or to attain a more comfortable ride. In setting up the bicycle, there 

is therefore a continuous play-off between performance and comfort. The ultimate goal 

should however be the prevention of injury, above enhancement of performance (De Vey 

Mestdagh 1998). The individual aspects of bicycle set-up will be reviewed to understand 

the role each plays in the development of LBPP. 
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 Saddle set-back 

Saddle set-back influences the cyclist’s reach distance towards the handlebars and hence 

the position of the lower back and pelvis. A saddle positioned further back will position the 

cyclist in a more extended posture but will also elevate the saddle. Moving the saddle 

forward will not only shorten the reach to the handlebars but also lower the saddle height 

(Silberman et al 2005, De Vey Mestdagh 1998, Mellion 1994).  Saddle set-back is 

measured by dropping a plumb line from the posterior aspect of the patella with the pedal 

positioned forward and parallel to the floor (3-o’clock position). The plumbline should fall 

directly through the pedal axle (Wanich et al 2007, Silberman et al 2005, De Vey 

Mestdagh 1998). This position will enable efficient functioning of the hip and knee flexors 

and extensors in a balanced relationship. A saddle positioned too far forward will increase 

the force needed by the quadriceps to extend the knee and lead to patellofemoral 

disorders while a saddle positioned too far backwards will reduce efficient functioning of 

the hamstrings, Gmax and gastrocnemius (De Vey Mestdagh 1998). 

 

 Saddle angle 

Saddle angle directly influences the angulation of the pelvis on the bicycle (Marsden and 

Schwellnus 2010, Salai et al 1999). Most of the studies on bicycle set-up recommend  

that the saddle should be level/parallel to the floor (Wanich et al 2007, Silberman et al 

2005). Salai et al (1999) decreased the occurrence of back pain in a group of cyclists by  

tilting the saddle anteriorly by 10-15°. Following this, an anteriorly tilted saddle has been 

related to an increased anterior pelvic tilt and a decrease in tension on the ligaments of 

the lumbar spine (Marsden and Schwellnus 2010, Salai et al 1999).  

 

 Handlebar height 

Handlebar height is directly associated with upper body posture, which again influences 

the aerodynamics of the cycling position (De Vey Mestdagh 1998). This is influenced by 

the goal of the ride, either performance or recreation. Handle bars are generally set lower 

in competitive cyclists for a more aggressive aerodynamic position compared to a more 

relaxed upright position with increased comfort observed in recreational riders (Wanich et 

al 2007, Silberman et al 2005, De Vey Mestdagh 1998). 
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 Reach 

Many problems experienced by cyclists are due to an incorrect posture length, mostly 

because of an incorrect reach distance (distance between the rear of the saddle and the 

transverse part of the handlebars) (De Vey Mestdagh 1998, Mellion 1994). Many studies 

have postulated that the reach distance should be shortened in cyclists presenting with 

LBPP so that the pelvis will go into a posterior tilt (Silberman et al 2005, Mellion 1994). De 

Vey Mestdagh (1998) disagreed with this and reasoned that lower back pain arises 

because of an insufficient reach distance.  

 

He proposed that a short reach distance will cause the cyclist to be too bunched up in a 

position of thoracic and lumbar flexion with posterior pelvic tilt. In the bunched up position 

too much stress will be placed on the natural form of the lumbar and cervical spine, strain 

is placed on the surrounding tissues all which will lead to the development of lower back 

or neck pain.  When the posture is too short, the arms will move into a more vertical 

position which will lead to “locking” of the upper limb making them absorb most of the 

shock, instead of providing supple support. The pelvis will be tilted backwards, the neutral 

curvature of the lumbar spine flattened (increased flexion) and more pressure will be 

placed on the intervertebral discs and posterior structures of the spine (De Vey Mestdagh 

1998). 

 

By increasing the reach distance, the pelvis will be positioned in a more anteriorly rotated 

position and the cyclist will be able to better maintain the neutral alignment of the spine 

(Sanner and O'Halloran 2000, De Vey Mestdagh 1998). A more extended cycling posture 

is therefore recommended as extension, rather than flexion, produces less of a strain on 

the lower back and enlarges the thorax for more efficient respiration (De Vey Mestdagh 

1998). 

 

 Cleat position 

The shoe-cleat-pedal interface is the last point of contact of the cyclist’s body with the 

bicycle and therefore important in the consideration of bicycle setup. The position of the 

cleats mostly influences the development of knee problems, but because of its direct 

impact on the set-back position of the saddle, it was included in this study (Silberman et al 

2005). There is general consensus among bicycle fitters that the cleat should be 

positioned in line with the first metatarsal head (Silberman et al 2005, De Vey Mestdagh 

1998) This optimises the use of the lever formed by the hind-foot and the mid-foot. If this 

preferred cleat position causes symptoms of compression of the digital nerves between 
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the metatarsals, the cleats can be moved slightly backwards. The cleats should not be 

moved further forward as this could lead to the overstressing of the Achilles tendon and 

the gastrocnemius (De Vey Mestdagh 1998). 

 

Many studies comment on the impact of “incorrect bicycle set-up” but only one study 

measured the association between bicycle set-up factors and the development of LBPP in 

cyclists. Marsden (2009) assessed various bicycle set-up factors which included saddle 

height, saddle angle, saddle set-back, forward reach and reach ratio. Of the factors 

assessed only reach ratio, which is the ratio between total reach (torso length plus arm 

length) divided by the reach distance from the saddle to the handlebars, was significantly 

related to LBPP. The implication and importance of reach ratio was not discussed in their 

study and hence the impact thereof cannot be established. 

 

The evidence available on bicycle set-up is mostly descriptive in nature (Wanich et al 

2007, Silberman et al 2005, Sanner and O'Halloran 2000, De Vey Mestdagh 1998, 

Mellion 1994) without any experimental support, except for the study done by Marsden 

(2009) which was a case-controlled cross-sectional study (n=40) and the study on seat 

angles and LBPP done by Salai et al (1999) which was an intervention study (n=80). The 

available evidence is general of a low standard and many of the statements on bicycle 

set-up have got no research supporting it. 

 

2.3.6 Factors possibly influencing side-to-side shift on the bicycle 

Side-to-side rocking (lateral pelvic tilt) occurs naturally during cycling, and is exaggerated 

at higher speeds (Farrell et al 2003). Chapman et al (2008a) reported that lateral tilt of the 

pelvis is the greatest movement that occurs during cycling. During slow intensity cycling 

lateral pelvic movement occurs towards the leg at its bottom dead centre (BDC) (when the 

pedal is in the 6 o’clock position at the bottom of the crank cycle), which increase with fast 

trials (Chapman et al 2008a). Increased lateral shift of the pelvis during the weight-shifting 

action of pedalling combined with an impairment of the lumbo-pelvic musculature in 

transferring loads between the trunk and the legs, could ultimately lead to the 

development of LBPP in cyclists. Both of these studies are observational cross-sectional 

studies with small sample sizes (n=9 and n=10 for Chapman et al (2008b) and Farrell et al 

(2003) respectively) which lowers the level of evidence, but was used as they were the 

only studies available that reflect on the side-to-side movement on the bicycle. 
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2.3.6.1 Control of load transfer across the lumbar spine and pelvis 

One of the main functions of the lumbar spine and pelvis is to effectively transfer the loads 

generated by body weight and gravity during sitting, standing and walking (Snijders et al 

1993). The efficacy of this load-transferral determines the effectiveness of function 

(Hungerford et al 2004).  Load transfer between the trunk and the legs is mediated 

through the pelvic girdle (Lee 2005, Mens et al 1999). Effective load-transfer between the 

trunk and the legs and efficient control of movement are essential for the prevention of 

injury (Mottram and Comerford 2008, Mens et al 2001).  

During weight bearing some movement also occurs at the sacroiliac joints (SIJ) and the 

pubic symphysis and therefore control of intrapelvic movement is also essential for 

effective  load-transfer (Hungerford et al 2004). Load transfer through an unstable SI joint 

will cause excessive loading and strain on the surrounding tissues and eventually result in 

pain and pathology (Pool-Goudzwaard et al 1998).  

 

Effective load transfer and stability of the pelvis is a dynamic process and depends on 

three main factors (Arumugam et al 2012, Roussel et al 2007, Hungerford et al 2004, 

Panjabi 1992): 

 Optimal functioning of the ligaments, joints and bones (Passive system - form 

closure) 

 Optimal functioning of muscles and fascia (Active system - force closure) 

 Appropriate neuromuscular control  

 

Following this model, form closure refers to the contribution of the bony anatomy of the 

sacro-iliac joints (SIJ) to resist shear forces whereas force closure refers to the dynamic 

contribution of the muscular system, augmented by ligaments and fascia. Neuromuscular 

control involves the involuntary activation of dynamic constraints to prepare for 

(feedforward) and/or respond to (feedback) loading or movement of joints. Through this 

system, joint stability is maintained and restored when under load (Arumugam et al 2012). 

Impairment in any of the three systems can be associated with pain dysfunctions in the 

lumbo-pelvic area (Arumugam et al 2012, O'Sullivan et al 2002). 

 

Active stability through force closure is of particular interest for physiotherapists as it is, 

when needed, the most important point of intervention. Many muscles and ligaments play 

a role in force closure of the pelvis and SIJ. Three muscle slings have been proposed for 

increased force closure (Pool-Goudzwaard et al 1998). These consist of the: 

 



 

39 

 

 Longitudinal sling (multifidus – sacrum – deep thoracolumbar fascia – 

sacrotuberous ligament – long head of biceps) through (1) nutation of the sacrum 

increasing tension in the interosseus and short dorsal SI ligaments (sacral 

multifidus), (2) inflation of the thoracolumbar fascia  through muscles and (3) 

increased tension in the sacrotuberous ligament (erector spinae and biceps 

femoris contractions). 

 Posterior oblique sling (1) directly through contraction of latissimus dorsi and 

Gmax and (2) indirectly through tension in the sacrotuberous ligament 

(connections with latissimus dorsi, Gmax and thoracolumbar fascia)  

 Anterior sling (external and internal obliques abdominal muscles and transversus 

abdominus) through connections to the rectus sheath. 

 

Delays in onset of EMG activity has been observed in the Gmax, multifidus and internal 

oblique abdominus muscles for participants with SIJ pain during single leg stance (Jung et 

al 2013, Hungerford et al 2003). EMG activity in biceps femoris also occurred significantly 

earlier in those with SIJ pain compared to asymptomatic participants (Hungerford et al 

2003). This reiterates the phenomenon observed in LBPP where with dysfunction there is 

a delay in activation of the stabilising muscles (local and global as with Gmax) with multi-

joint mobiliser muscles (hamstrings) being activated earlier. 

 

Childs et al (2003) hypothesised that a soft tissue or biomechanical dysfunction in the 

lumbo-pelvic area could manifest itself as a difference in side-to-side weight shift between 

the lower extremities, indicating inefficient load transfer.  In their study, patients with LBPP 

presented with an increased side-to-side weight shift as compared to asymptomatic 

patients. Dysfunction in lumbo-pelvic motor control has also been proposed to result in 

impaired load transfer through the pelvis contributing to pain (O'Sullivan and Beales 

2007b). 

 

Load transfer and the ASLR test has been investigated relatively extensively with the 

majority of studies being case-controlled observational studies with small to acceptable 

sample sizes (n=21-200) (Jung et al 2013, Hungerford et al 2004, Childs et al 2003, 

Hungerford et al 2003, O'Sullivan et al 2002, Mens et al 2001). One systemtematic review 

(high level of eveidence) was also included in this section (Arumugam et al 2012). 
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2.3.6.2 Control of Gluteus Medius 

Optimal load transfer is also dependant on efficient functioning of the lateral stabilising 

mechanism of the hip and pelvis (Grimaldi 2011). The lateral stabilising mechanism is 

made up of three different layers: 

 

 Gluteus minimus (deepest layer) 

 Gmed and piriformis (intermediate layer) 

 Muscles influencing tension in the ilio-tibial band (ITB) – Gmax, TFL and vastus 

lateralis (superficial layer) 

 

The gluteal muscles contributes to 70% of the abduction forces required to maintain the 

pelvis in a level position during single leg weight-bearing compared to the 30% provided 

by the muscles that increase tension in the ITB (Grimaldi 2011, Kummer 1993). The hip 

abductor muscles are primarily responsible for medio-lateral (frontal plane) stability in 

standing to maintain a level pelvis (Flack et al 2013, Semciw et al 2013, Osborne et al 

2012, Reiman et al 2012, Grimaldi 2011, O'Dwyer et al 2011, O'Sullivan et al 2010b, 

Ward et al 2010, Willson et al 2005, Mascal et al 2003). Gmed structurally comprises of 

three different parts: anterior, middle and posterior Gmed. While anterior and middle 

Gmed is proposed to be mainly responsible for abduction of the hip, with the anterior 

Gmed also doing internal rotation of the hip, the posterior Gmed actively abducts, extends 

and laterally rotates the hip, thereby stabilising the head of the femur in the acetabulum 

and initiating load transfer (Flack et al 2013, Semciw et al 2013, Hoffmann and Pfirrmann 

2012, Reiman et al 2012, O'Sullivan et al 2010b).  

 

The external rotators of the hip (piriformis, posterior Gmed, anterior fibres of Gmax) 

reverse their horizontal plane actions with greater hip flexion and become internal rotators 

of the hip, especially at angles greater than 60° (Neumann 2010). Hip flexion is one of the 

strongest actions during cycling and as the hip approaches the top dead centre (TDC) (12 

o’clock position during the pedalling action while cycling), the hip flexion angle also greatly 

increases. This increase in hip flexion is associated with a strong increase in the hip 

internal rotation moment (Neumann 2010). Hoffman et al (2011) investigated the effect of 

hip internal rotation on lumbo-pelvic rotation and observed that women moved through 

16° of hip internal rotation before the onset of lumbo-pelvic rotation, compared to 5.4° 

used by men. With the early onset of lumbo-pelvic rotation with hip internal rotation and 

the increase in hip internal rotation with greater ranges of hip flexion, the resultant 

increased lumbo-pelvic rotation during cycling, combined with the frequent use of this 

movement, will eventually lead to micro- and macro-damage of the lumbo-pelvic 
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structures (Sahrmann 2012). Weakness of Gmed has also been associated with 

increased hip adduction (Osborne et al 2012, Bolgla et al 2008, Piva et al 2005, Mascal et 

al 2003) which will further contribute to the increased lumbo-pelvic rotation and 

subsequent pathology. 

 

Weakness of Gmed has been noted in individuals with low back pain (Reiman et al 2012, 

Ekstrom et al 2007, Nadler et al 2002). This weakness could lead to an increased side-to-

side/lateral shift of the pelvis in cyclists with a subsequent loss of pelvic control 

(Preininger et al 2011). Poor endurance of the muscle could also result in early onset 

pelvic rotation as compensation (Lee and Powers 2013) and, combined with frequent 

movement in the increased range, result in joint hypermobility leading to micro-damage 

and eventual macro-damage of the lumbo-pelvic structures (Sahrmann 2012). Weakness 

in Gmed could also (i) place an increased load on the lateral structures in the lumbo-

pelvic area (including the lumbar facet joints, the SI-joints and soft tissues situated 

laterally in the area) (ii) demand increased activity from the lateral trunk stabilisers (like 

Quadratus Lumborum) to stabilise the pelvis and thereby possibly contribute to LBPP 

(Nadler et al 2002).  

“Stretch weakness” can occur in the hip abductors due to poor postural habits. This 

includes habitual standing postures in which the hip is positioned in hip adduction 

(“hanging on one hip”), sitting cross-legged with the hips in adduction and sleeping in 

side-lying with the hip positioned in flexion and adduction (Grimaldi 2011, Presswood et al 

2008). Habitual adduction of the hip with the pedalling action in cycling could therefore 

also lead to elongation and weakness in Gmed. Weakness in Gmed could therefore be 

the result of habitual unwanted hip adduction or lateral pelvic movement but if weak could 

also induce the increase in hip adduction or lateral shift of the pelvis. Delayed recruitment 

of the Gmed has also been demonstrated widely (Hungerford et al 2003, Nadler et al 

2000), but is beyond the scope of this study. 

 

The literature available on the function of Gmed ranges from low (case report by Mascal 

et al (2003)) to very good (systematic review by Reiman et al (2012)). The majority of 

studies were cross-sectional observation studies with sample sizes ranging from 2-102 

(Flack et al 2013, Lee and Powers 2013, Semciw et al 2013, O'Dwyer et al 2011, 

Preininger et al 2011, O'Sullivan et al 2010b). One intervention study (Osborne et al 2012) 

and one case-controlled study (Bolgla et al 2008) were included as well as numerous 

descriptive studies (Hoffmann and Pfirrmann 2012, Grimaldi 2011, Neumann 2010, Ward 

et al 2010, Presswood et al 2008). 
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In the cyclist, effective load transfer also involves optimal leg-length and correct bicycle 

set-up. Asymmetry in the lengths of the legs might affect efficient load transfer and could 

result in a lateral shift on the bicycle with subsequent weakness of Gmed and poor control 

of movement. 

 

2.3.6.3 Leg length discrepancy 

Leg length discrepancy (LLD) is defined as a condition where paired lower extremities are 

noticeably unequal (Gurney 2002). A big variance in prevalence (4-95%) has been 

reported because of poor agreement on what constitutes significant LLD (Brady et al 

2003). The 3-12.5mm discrepancy in leg-lengths in the normal population, observed in the 

studies reviewed by Brady et al (2003), resulted in them proposing that a big part of the 

population is intuitively likely to have a minor difference in leg-length while only a small 

part of the population is likely to have a big LLD.  

 

Leg-length discrepancy can be subdivided into two different groups: a structural or 

anatomic LLD (SLLD) and a functional or apparent LLD (FLLD). SLLD is defined as a 

shortening of the bony structures whereas with a FLLD there is no shortening of bone. 

FLLD is reported to be a result of asymmetric neurophysiological changes along the 

kinetic chain, like faulty foot mechanics (ankle pronation), pelvic rotation, muscle tightness 

(or weakness) or joint tightness in any joint in the lower extremity or spine (Woodfield et al 

2011, Brady et al 2003, Gurney 2002, McCaw and Bates 1991). 

 

Brady et al (2003) discussed a measuring classification system developed by Reid and 

Smith (1984) for categorizing LLD in which 0-30mm discrepancy is considered mild, a 30-

60mm discrepancy is considered moderate and a discrepancy of more than 60mm is 

considered severe. There seems to be a general consensus that a LLD of more than 20 

mm will have a significant impact on the development of various musculoskeletal 

pathologies like gait anomalies and spinal deformities (Woodfield et al 2011, Brêtas et al 

2009, Defrin et al 2005, Gurney 2002).  

 

Leg-length discrepancy has been implicated in various disorders including LBPP, pelvic 

and sacral mal-alignment, scoliosis, osteoarthritis and many other lower extremity 

disorders (Defrin et al 2005, Brady et al 2003, Krawiec et al 2003, Gurney 2002, McCaw 

and Bates 1991). Controversy still exists around the impact of LLD. Many authors have 

investigated the relationship between LLD and LBPP but no association has been 

unequivocally established (Brady et al 2003). Defrin et al (2005) hypothesised that LLD 
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resulted in a derangement of the normal biomechanical function of the spine and pelvis 

because of increased stress and strain caused by asymmetries in the lower limbs, spine 

and pelvis. Pelvic asymmetry has also been associated with LLD because of innominate 

rotation in adaptation for the LLD (Krawiec et al 2003). LLD correlated well with pelvic tilt 

which could lead to scoliosis, but could also result in SI-malalignment and innominate 

rotation, thereby negatively affecting the SIJ. Innominate rotation can also lead to 

asymmetrical loading of the SIJ and hence poor movement strategies and poor load 

transfer through the pelvis (Defrin et al 2005, Gurney 2002). 

 

Even though controversy exists around the impact of LLD, individuals who are involved in 

sport seem consistently more affected by LLD than others (Gurney 2002). LLD that could 

be tolerable during normal daily activities, including gait, can become problematic with 

cycling because of the fixed position the cyclist assumes as well as the high number of 

repetitive crank cycles the cyclist performs per minute whilst cycling (Burke and Pruitt 

2003). Silberman et al (2005) proposed that a LLD of more than 6 mm is of significance in 

cyclists with a detrimental effect on comfort, power output and prevention of overuse 

injuries while riding. 

 

Leg-length discrepancy has also been associated with an increased side-to-side shift of 

the pelvis during the cycling action (Mellion 1994). It is proposed that the increased side-

to-side shift will adversely affect optimal load transfer through the pelvis which could 

further lead to the development of lower back or pelvic pain (Childs et al 2003). This 

asymmetry in movement could increase the stress and strain in the pelvis and back, 

thereby increasing the workload exerted on various structures in the back region 

(muscles, ligaments, joint capsules) as well as the joints and discs. These changes could 

eventually lead to changes in the lumbar spine which includes facet joint degeneration, 

asymmetric facet joint angles, disc compression, traction spurs etc. (Defrin et al 2005). 

Leg-length discrepancy has also been identified as a risk factor for the development of 

sacroiliac joint pain as described by Cohen (2005) and Gurney (2002). The mechanism 

could be increased innominate rotation and asymmetrical loading of the SIJ combined 

with numerous repetitions of this action during the cycling mechanism (Gurney 2002).  

 

The literature available on LLD varies from literature review studies (Brady et al 2003, 

Gurney 2002), observational studies (Krawiec et al 2003) and reliability studies (Woodfield 

et al 2011, Brêtas et al 2009) to randomised controlled intervention studies (Defrin et al 

2005) with  a higher level of evidence. Sample sizes varied from 35-50. No systematic 

reviews or randomised controlled trials with larger sample sizes could be located. 
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2.3.6.4 Bicycle set-up factors 

Wanich et al (2007) and De Vey Mestdagh (1998) proposed that proper seat height and 

position may be the most important factors in bicycle set-up and in the prevention of LBPP 

in cyclists. 

 

 Saddle height 

The height of the saddle has a profound effect on the length-strength relationship of 

muscles. If the saddle is too high and the knee extends fully when the pedal is at the BDC 

position, the knee flexors (hamstrings and gastrocnemius) will not function to their full 

capacity and locking of the knee joint might occur. Rocking of the pelvis over the saddle 

(lateral shift) will also occur which could lead to the development of lower back pain. If the 

saddle is too low, the knee and hip extenders will be disadvantaged (quadriceps and 

Gmax) and the increased force needed from the quadriceps might lead to the 

development of patella-femoral problems (Wanich et al 2007, De Vey Mestdagh 1998). 

Even though a saddle positioned higher will result in better power output, a lower 

positioned saddle is generally recommended for power output over a longer period (De 

Vey Mestdagh 1998). A knee flexion angle of 25° to 30 ° with the leg in the bottom dead 

position (BDP) (6-o’clock position) is widely recommended for optimal performance and 

injury prevention (Silberman et al 2005, De Vey Mestdagh 1998). Peveler et al (2005) 

recommended relaxing that range to 25-35° for greater prevention of overuse injuries. 

 

2.4 Conclusion 

The available evidence for the prevalence and development of LBPP in cyclists has been 

discussed in this chapter. It must be noted that the evidence is limited and does not 

provide any conclusive evidence to support a link between LBPP and many of the aspects 

reviewed. The findings in this study may support or refute some of the claims made while 

seeking to understand the origins of LBPP in cyclists. The measuring instruments used in 

this study will be discussed and justified in Chapter 3. 
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CHAPTER 3: JUSTIFICATION OF MEASURING INSTRUMENTS 

 

3.1 Introduction 

The aim of this chapter is to describe the validity and reliability of the various measuring 

instruments used in this study. The measuring instruments/techniques will be reviewed 

and discussed as follows: Prevalence and training factors, intrinsic physical factors and 

bicycle set-up factors. 

 

3.2 Prevalence and training factors 

A questionnaire (see Appendix 6) was developed to obtain information on demographics, 

training characteristics as well as the prevalence and characteristics of LBPP. The 

questionnaire was based on validated questionnaires developed by Wilber et al (1995), 

Schultz and Gordon (2010) and Burger (2012). Wilber et al (1995) and Schultz and 

Gordon (2010) investigated the demographics, training characteristics and prevalence of 

LBPP in cyclists. Schulz and Gordon (2010) added some aspects of the behaviour of low 

back pain to the questionnaire initially developed by Wilber et al (1995). The study done 

by Burger (2012) was on a work-related low back pain population and some of the low 

back pain behavioural questions used in this questionnaire were adapted from there. The 

questionnaires developed by Wilber et al (1995), Schulz and Gordon (2010) and Burger 

(2012) included the following: 

 

 Demographics: such as age, gender and smoking history 

 Cycling history: which included the following aspects: 

o Number of years cycled 

o Number of hours cycled per week 

o How many days cycled per week 

o Average cycling pace 

o Type of terrain cycled 

o Number of cycling events participated in per year 

o Estimate of the percentage time spent cycling in different riding positions 

such as in an upright position, in the drops position, on the brake levers or 

on the aero bars 

 Presence of LBPP generally  

 Presence of LBPP during or after cycling 



 

46 

 

 Behaviour of the pain: the timing, number of incidences in the last five years, 

location of the pain, investigations (X-rays, magnetic resonance imaging (MRI), 

ultrasound scans etc.), referral of the pain, riding position that elicited the pain and 

the impact of the pain on cycling (training/competing) 

 Female participants were asked to report on the relationship between LBPP and 

their menstrual cycle, the number of children they have and when they had their 

last pregnancy. 

 

The following questions were added to those used from the questionnaires developed by 

Wilber et al (1995), Schultz and Gordon (2010) and Burger (2012):  

 In order to ensure that only cyclists eligible for participation in this study completed the 

questionnaire, which was made available online, a question stating the criteria of the 

study was added which included:  

o Cyclists must be 18 years or older 

o Cycling more than 3 hours but less than 12 hours per week 

o Previous participation in at least one race of more than 90km  

o Cycling with cleats 

o Participation in less than 20 races per year  

o Use of a road/racing bicycle when training or competing in races  

o Had been cycling for more than one year 

o No history of traumatic injury to the spine in the past two years  

o No low back pain with a specific or known structural pathology (e.g. 

spondylolisthesis) 

o No previous spinal surgery 

These conditions were excluded because any trauma or serious pathology involving 

the spine could cause LBPP. Surgery may also change the normal biomechanics of 

the spine or result in scarring that may lead to the development of pain and 

dysfunction.  

 A question on work-related activities and positions was included in an attempt to 

identify if any cyclists spent the majority of their working day in a flexed position which 

might predispose them for the development of LBPP 

 The pedalling technique used (high cadence, low cadence, big gears, small gears) as 

it changes the amount of effort needed to propel the bicycle which increases the 

demand on the stabilising muscles to stabilise the lower back and pelvis on the 

bicycle. 
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The study was aimed at the competitive cyclist with some experience and all novice and 

elite cyclists were excluded, based on the time spent cycling per week as well as the 

number of races done per year. Novice cyclists were excluded on the basis that the pain 

and discomfort experienced by them might be due to under training or poor conditioning 

prior to racing. All previous studies have focused on professional/elite cyclists and as 

these are a small percentage of the cycling population in South Africa, it was decided to 

focus on the competitive cyclists. 

 

The questionnaire used in this study was piloted on 12 cyclists (three of whom were 

experienced physiotherapists and biokineticists) for clarity and appropriateness of the 

individual questions to establish the validity of the questionnaire. They were asked to 

comment on the questionnaire and complete a feedback form depicting their suggestions. 

Small changes were made such as adding pictures illustrating the handlebar positions 

and the locations of the pain, but the overall content was satisfactory and acceptable (see 

Appendix 6). 

 

3.3 Intrinsic physical factors 

 
3.3.1 Height, weight and Body Mass Index 

In this study body weight was measured with a digital electronic scale in kilograms (kg) 

(Carmen Care) and standing height was measured with a portable stadiometer (HS, 

Scales 2000) in meters (m). 

 

Body Mass Index is an expression of the proportion of body weight-to-height and is 

supposed to reflect excess adiposity in individuals (Romero-Corral et al 2008, WHO 

2006). Body mass index was calculated according to the standard formula of body weight 

in kg divided by the square of the height in m² (kg/m²) (Romero-Corral et al 2008). 

Although BMI is fairly accurate, its greatest shortcoming is the inability to distinguish 

between lean mass and fat mass, especially at a BMI of less than 30 kg/m2  (Okorodudu 

et al 2010, Mei et al 2002, Gallagher et al 2000). Body mass index scores are also 

influenced by sex, age and ethnicity. Gallager et al (2000) observed that older men had 

higher fat percentages influencing their BMI and that the Asian population had a greater 

body fat percentage for any given BMI compared to African Americans and Whites.  

 

Romero-Corral et al (2008) reported a sensitivity of 83% and specificity of 76% for BMI to 

detect body fat percentage at a BMI cut-off of 25.5 kg/m2 (men: sensitivity 78%, specificity 

70%; women: sensitivity 85%, specificity 88%). A lower sensitivity (0.50) but higher 
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specificity (0.90) was reported by Okorodudu et al (2010). The classification of BMI is 

illustrated in Table 3.1 (WHO 2006, Gallagher et al 2000). 

 

Table 3.1 BMI classification 

BMI classification Status 

Underweight Under 18.5 kg/m2 

Normal 18.5-24.9 kg/m2 

Overweight 25.0-29.9 kg/m2 

Obese Over 30 kg/m2 

 

3.3.2 Lumbar position on the bicycle  

Various methods are used to measure lumbar movement and posture (Tyson 2003) and 

X-rays are still seen as the “gold standard” assessment tool. They are however relatively 

expensive, pose a low risk for radiation and are not readily available to clinicians during a 

routine clinical assessment of patients (De Carvalho et al 2010, Littlewood and May 2007, 

Norton et al 2004, Tyson 2003, Ng et al 2001). External measurements of spinal posture 

and ROM are frequently used in clinical practice because they are inexpensive and easy 

to apply and provide valuable information relating to lumbar posture and movement. 

External methods include observation, the fingertips-to-floor method (tape measurement), 

the Schöber, modified Schöber and modified-modified Schöber method (skin distraction 

method), flexible curve lineals, goniometry (electrical, electromagnetic, mechanical), the 

inclinometer (electrical and mechanical) and various computerised and photographic 

measurement systems (Muyor et al 2011a, Littlewood and May 2007, Norton et al 2004, 

Tyson 2003, Lee et al 2002, Ng et al 2001, Burdett et al 1986). 

 

Studies on lumbar curvature and kinematics in cyclists have mostly employed 

photographic measuring systems which involved reflective markers with anything from 2-

12 cameras or two-dimensional video analysis systems (Chapman et al 2008a, 

Diefenthaeler et al 2008, Sauer et al 2007) or computerised measurement systems such 

as the “spinal mouse system” (Muyor et al 2011a), the 3-space Fastrack electromagnetic 

tracking device (Burnett et al 2004) or the “Body Guard” spinal position monitoring system 

(Van Hoof et al 2012).  Changes in lumbar spine position have also been evaluated 

during different cycling positions in three professional cyclists with X-rays, using the upper 

level of S1 and the upper level of L1 as reference points (Usabiaga et al 1997). Schulz 
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and Gordon (2010) assessed the lumbar spine angle in 13 recreational cyclists and three 

different riding positions (upright, on-the-brakes and on-the-drops positions) with the use 

of a single digital inclinometer (recordings at S2 and T12/L1). They reported excellent 

intra-rater reliability for lumbar spine angle measurement with an inclinometer (ICC of 

0.97).  

 

A single digital inclinometer was used in this study to measure lumbar curvature, as it: 

 measures regional movement of the spine without including movement of the hip, 

whole spine or pelvis as seen with the various Schöber methods and the fingertip-

to-floor method (Lee 2002, Ng et al 2001) 

 is less affected by movement of the skin compared to the various Schöber 

techniques (Lee 2002, Ng et al 2001) 

 is more accessible, simpler to use and less expensive than computerised or 

photographic measuring systems (Norton et al 2004, Lee 2002, Ng et al 2001) 

 is not influenced by the presence of metal as with the electro-magnetic methods, 

which was important as the measurements were taken with the cyclist on the 

bicycle (Lee 2002) 

 

Various studies have reported the non-invasive inclinometer technique to be both reliable 

and valid (MacIntyre et al 2013, MacIntyre et al 2011, Norton et al 2004, Lee 2002, Ng et 

al 2001, Saur et al 1996, Mellin 1986). These studies reported intrarater correlation 

coefficients (ICC) and Pearson’s (r) correlation coefficients ranging from 0.73 -0.99. The 

ICC and reliability coefficients for the measurement of static lumbar position and lumbo-

sacral angle with a single digital inclinometer have been reported to range from 0.91 to 

0.97 for intra-rater reliability (MacIntyre et al 2013, MacIntyre et al 2011, Schulz and 

Gordon 2010) and 063-0.75 for inter-rater reliability (MacIntyre et al 2011, Sullivan et al 

2000). Criterion validity of pendulum inclinometer measurements for lumber ROM were 

demonstrated by comparison with X-ray measurements and showed a high correlation 

(r=0.73-0.98) (Tyson 2003, Lee et al 2002, Saur et al 1996, Burdett et al 1986, Mayer et al 

1984). No studies could be located which investigated the correlation between digital 

inclinometry and X-ray measurements. 

 

Different types of inclinometers (digital inclinometers, gravity inclinometers, bubble 

inclinometers) and methods of measurement (double and single inclinometer methods) 

are used to assess lumbar curvature (MacIntyre et al 2013, MacIntyre et al 2011, Schulz 

and Gordon 2010, Tyson 2003, Ng et al 2001, Saur et al 1996, Keeley et al 1986). 
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Measurements with an inclinometer involve making skin markings at the T12/L1 and 

L5/S1 interspinous spaces. With the single inclinometer method, the inclinometer is 

placed on the T12/L1 and L5/S1 interspinous spaces respectively with a reading taken at 

each of these positions. The lumbo-sacral measurement (L5/S1) is then deducted from 

the thoraco-lumbar measurement (T12/L1) to determine the lumbar position (MacIntyre et 

al 2011, Tyson 2003, Ng et al 2002, Ng et al 2001, Saur et al 1996, Portek et al 1983). A 

single digital Saunders inclinometer (Saunders Group) was used in this study to measure 

lumbar curvature according to the technique described in the preceding section. 

 

3.3.3 Muscular control of lumbo-pelvic stability 

Optimal functioning of lower extremity muscles, such as Gmax, Gmed and the hamstring 

muscle group, is important for optimal lumbo-pelvic stabililty as they play an important role 

in the transferral of forces from the lower extremities to the spine and could have an 

influence on the development of low back or pelvic pain (Antonio et al 2013, Barker et al 

2013, Kang et al 2013, Reiman et al 2012, Sharma et al 2012, Nadler et al 2002, Nadler 

et al 2001, Nadler et al 2000). 

 

3.3.3.1 Inner range control of Gluteus Maximus 

Various methods have been described in the literature to assess the functioning of Gmax. 

These include: 

 EMG to assess the activity of Gmax during functional activities, like walking,  as 

well as the pattern of activation of Gmax as a measure of its function (Chance-

Larsen et al 2010, Takasaki et al 2009, Hungerford et al 2003, Bullock-Saxton et 

al 1993) 

 the prone hip extension (PHE) test to assess: 

i. muscle recruitment patterns for activation of the Gmax (Kang et al 2013, 

Chance-Larsen et al 2010, Lewis and Sahrmann 2009, Sakamoto et al 

2009, Bruno et al 2008, Bruno and Bagust 2007, Lehman et al 2004, 

Hungerford et al 2003, Vogt and Banzer 1997) 

ii. the holding capacity of Gmax in its inner range (Norris 1999, Sims 1999, 

Richardson and Sims 1991). Richardson and Sims (1991) assessed the 

inner range holding capacity of Gmax in cyclists during hip extension (from 

relative flexion into inner range extension) in the prone, trunk support only, 

position, keeping the knee in flexion.  

iii. maximal voluntary contraction (MVC) using dynamometry (Thorborg et al 

2010, Takasaki et al 2009, Pua et al 2008, Piva et al 2005) 
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iv. motor control of the lumbar spine (Murphy et al 2006) while mostly 

keeping the knee in extension.  

 magnetic resonance imaging (MRI) to assess the cross sectional area of Gmed in 

relation to hip joint pathologies (Grimaldi et al 2009)  

 a MCD test in the prone trunk support only position assessing concentric 

shortening of the muscle, isometric inner range holding and eccentric lowering 

while controlling movement of the lumbar spine and pelvis (Comerford et al 2007). 

 

In this study a combination of the test procedures of the hip extension with knee flexion 

test in prone, trunk support only, as described by Richardson and Sims (1991) and 

Comerford and Mottram (2007) was used to measure the function of Gmax.  Richardson 

and Sims (1991) used various instruments, like a rod positioned to mark the inner range 

hip extension position and two pressure biofeedback units (PBU) to control for lumbo-

pelvic movement,  in order to improve the objective measurement of the inner range 

holding capacity of Gmax. In their study they measured maximal holding time in cyclists 

and non-cyclists to illustrate the relative inner range weakness of a muscle mostly used in 

its elongated position. Comerford et al (2007) proposed two repetitions of 15 second 

holds to assess for normal Gmax inner range holding while visually assessing for control 

of the lumbar spine throughout the movement. A combination of these tests was included 

in order to: 

 include objective measures to control for compensatory movements of the lumbar 

spine and pelvis as well as the inner range holding position for Gmax (positioning 

of a rod at the back of the thigh and of the pressure biofeedback units for lower 

back/pelvis movement) (Richardson and Sims 1991),  

 assess all three aspects of the muscle’s functioning (concentric shortening, 

isometric holding in inner range and eccentric lowering) (Comerford et al 2007) 

and 

 assess the stabilising role of Gmax compared to (1) a pure strength test as done 

with the use of a dynamometer or (2) test for recruitment as done with EMG 

studies (Kang et al 2013, Chance-Larsen et al 2010, Lewis and Sahrmann 2009, 

Sakamoto et al 2009, Takasaki et al 2009, Bruno et al 2008, Bruno and Bagust 

2007, Bullock-Saxton et al 1993).  

 

Reliability studies have been done on the use of a dynamometer in determining the 

strength of Gmax during prone hip extension (Stark et al 2011, Thorborg et al 2010, Pua 

et al 2008, Scott et al 2004, Bohannon 1986) and on the muscle recruitment patterns with 
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PHE (Azevedo et al 2013, Murphy et al 2006). Reliability of ĸ=0.72-0.76 and ICC of 0.69-

0.85 has been described for assessing lumbar movement during the PHE test (Azevedo 

et al 2013, Murphy et al 2006), but no studies commented on repeatability of the inner 

range holding capacity for hip extension. As far as could be determined, no reliability or 

validity studies are available for assessing both control through range and inner range 

strength of Gmax with the prone, trunk support only, hip extension test while keeping the 

knee in flexion. 

 

3.3.3.2 Hamstrings extensibility 

Four common methods of measuring hamstring muscle extensibility have been described 

in the literature and these are the passive straight leg raise (PSLR), knee extension angle 

(KEA), sit-and-reach (SR) and the sacral angle (SA) tests (Davis et al 2008b, Gajdosik et 

al 1993).  

 

The KEA test has been proposed as the gold standard for measuring hamstring muscle 

extensibility (Davis et al 2008b) and was used in this study as it:  

 has been shown to have significantly less pelvic rotation when compared to the 

SLR test (Davis et al 2008b, Bohannon et al 1985, Bohannon 1982)  

 does not involve any anthropometric factors (length of arms, trunk, legs) which can 

influence the measured ROM as in the SR and SA tests (Davis et al 2008b) 

 excludes the influence of neural tension compared to the SLR, SA and SR tests 

where resistance to elongation of the nerve/mechanosensitivity might influence the 

measurement (Davis et al 2008b, Gajdosik et al 1993, Gajdosik and Lusin 1983)  

 does not stretch the hip joint capsule and is not influenced by contralateral hip 

flexor tightness as evident in the PSLR test (Davis et al 2008b, Gajdosik et al 

1993) 

 limits the contribution of lumbar spine range of motion as the pelvis is stabilised on 

the plinth in the dissociated position and no lumbar flexion occurs as in the forward 

reach during the SR and SA tests (Davis et al 2008b).  

 has a more objectively repeatable point of hamstring length measurement 

(maximal knee extension) compared to the AKEA test and measures maximal 

elongation of the hamstring muscle (Gajdosik et al 1993). 

 

The KEA is measured using either an universal goniometer or an inclinometer. Both the 

inclinometer and the universal goniometer have been found to be reliable in measuring 

knee flexion and extension with the inclinometer showing better reliability (goniometer: 
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intrarater reliability ICC=0.91-0.97, interrater ICC=0.63-0.96; inclinometer: intrarater 

ICC=0.95-0.98, interrater ICC=0.98) (Dos Santos et al 2012, Borman et al 2011, Mayer et 

al 1997, Rothstein et al 1983). This is believed to be due to the ease of use of the 

inclinometer and that there is no need to align anatomic references to specific segments 

(Dos Santos et al 2012). A KEA of more than 20° is regarded a positive test for decreased 

hamstring muscle extensibility (Davis et al 2008b). Two methods are used in identifying 

the KEA, the active knee extension (AKE) test and the passive knee extension (PKE) test. 

Both tests have demonstrated good reliability in the literature. Ford et al (2005) and Davis 

et al (2008b) reported excellent intrarater reliability for the PKE test (ICC of 0.98, n=12 

and 0.94 respectively, n=10) using a universal goniometer and inclinometer. Kuszewski et 

al (2009) and Youdas et al (2005) also demonstrated excellent reliability (ICC >0.90, n=30 

and ICC of 0.97 for the right leg and 0.98 for the left leg respectively, n=43) while using an 

inclinometer. Gajdosik et al (1993) reported an ICC of 0.86 for the AKE test and 0.90 for 

the PKE test. Gabbe et al (2004) reported excellent inter-rater reliability for the AKE test 

(ICC =0.93, n=15) (bubble inclinometer), confirmed by Kuilart et al (2005) (ICC 0.99, 

n=42, goniometer and digital photography), Gajdosik and Lusin (1983) (r=0.99) and 

Sullivan et al (1992). The latter demonstrated an ICC of 0.99 (n=12) for the AKE test 

using a digital inclinometer. An interrater reliability of ICC=0.93 was reported by Gnat et al 

(2010) for the PKE test using a goniometer (n=30). 

 

Davis et al (2008b) reported poor to fair concurrent validity for the KEA, PSLR, SA and SR 

tests with correlations with the KEA test as follows: PSLR (ĸ=0.36, r=0.63, R2=0.40), SR 

(ĸ=0.42, r=0.57, R2=0.33) and SA (r=0.45, R2=0.20). They hypothesised that the 

differences in testing positions (supine vs. sitting), neural tension and pelvic and lumbar 

movement might be the reason for this. 

 

Most of the studies using the PKE test measured terminal (maximal) knee extension 

where the patient reported a strong but tolerable stretch sensation (Gnat et al 2010, 

Kuszewski et al 2009, Davis et al 2008b, Youdas et al 2005, Gajdosik et al 1993) 

compared to the point of onset of tension generally used in the AKE test (Kuilart et al 

2005, Norris and Matthews 2005). For the PKE test, the examiner moved the lower leg 

into knee extension until a firm end point was identified and it was thought that the PKE 

test was therefore more objective and repeatable (Gajdosik et al 1993).  

 

The PKE test was used in this study because of the reasons mentioned above and as it 

has been reported to have a more objectively repeatable point of hamstring length 
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measurement (maximal knee extension), measuring maximal elongation of the hamstring 

muscle (Gajdosik et al 1993).  

 

3.3.3.3 Through range control of gluteus medius 

Gmed function has mostly been investigated through: 

i. EMG studies assessing its activation and recruitment (Semciw et al 2013, 

Reiman et al 2012, O'Dwyer et al 2011, O'Sullivan et al 2010b, Distefano et 

al 2009, Marshall et al 2009, Nelson-Wong et al 2009, Souza and Powers 

2009, Nelson-Wong et al 2008) and  

ii. muscle strength testing (Lee and Powers 2013, Rabin et al 2013, Osborne 

et al 2012, Davis et al 2011, McMoreland et al 2011, O'Dwyer et al 2011, 

Marshall et al 2009, Nelson-Wong et al 2009, Bolgla et al 2008, Presswood 

et al 2008, Laheru et al 2007, Niemuth 2007, Piva et al 2005, Scott et al 

2004, Ireland et al 2003, Nadler et al 2002, Nadler et al 2000, Norris 1999, 

Sims 1999).  

 

The strength of Gmed has been tested in a variety of different ways, each inherently 

addressing a different aspect of the muscle’s function. The majority of studies measured 

the strength of Gmed by resisting hip abduction in supine or side lying either with manual 

muscle testing (Semciw et al 2013, Marshall et al 2009, Ekstrom et al 2007, Niemuth 

2007) or with the use of a dynamometer (Lee and Powers 2013, Osborne et al 2012, 

Grimaldi 2011, McMoreland et al 2011, O'Dwyer et al 2011, O'Sullivan et al 2010b, 

Thorborg et al 2010, Souza and Powers 2009, Bolgla et al 2008, Pua et al 2008, Youdas 

et al 2008, Laheru et al 2007, Robinson and Nee 2007, DiMattia et al 2005, Piva et al 

2005, Ireland et al 2003, Mascal et al 2003, Nadler et al 2002, Nadler et al 2000). This 

gives an indication of the MVC of the muscle, but does not reflect anything about the 

ability of Gmed to control the movement (Grimaldi 2011). MVC also does not reflect on 

the ability of a muscle to: 

o Concentrically shorten to produce the range of motion (‘mobility function’) 

o Eccentrically hold the position (‘postural control function’) 

o Eccentrically lengthen to lower the leg, resisting the pull of gravity (“stability 

function’) (Comerford and Mottram 2001a). 

 

Different variations of the side lying active hip abduction (AHAbd) test have been 

described for assessing the through range stabilising and inner range holding capacity of 
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Gmed through observation of the compensatory movements of the tested leg, lumbar 

spine and pelvis in the frontal plane (no associated loss into hip flexion or pelvic rotation) 

(Rabin et al 2013, Comerford and Mottram 2012, Davis et al 2011, Nelson-Wong et al 

2009, Comerford et al 2007, Sahrmann 2002, Norris 1999, Sims 1999, Norris 1995). 

Several other studies reported observing for pelvic movement in assessing strength of 

Gmed, but did not judge the test according to the observed pelvic control (Semciw et al 

2013, Preininger et al 2011, Piva et al 2005, Mascal et al 2003).  

 

The AHAbd test described by Rabin et al (2013), Davis et al (2011) and Nelson-Wong et 

al (2009) was developed to assess the individual’s ability to control the trunk and pelvis 

while raising the leg, thus focusing on the strength of Gmed as reflected by its stabilising 

capacity. They used a 4 point (0-3) rating scale, with “0” depicting smooth performance of 

the test and “3” major difficulty to control the movement with an inability to correct the 

movement, to rate the frontal plane control of the pelvis during active hip abduction. An 

interrater ICC of -0.09 (Rabin et al 2013) to 0.70 (Davis et al 2011) and an intrarater ICC 

of 0.74 (Davis et al 2011) was reported by them for the AHAbd test rating system. Rabin 

et al (2013) expressed the need for clearer guidelines for distinguishing deviations of the 

pelvis during AHAbd.  

 

Sims (1999) and Norris (1999) recommend using an inner range holding test in side lying 

hip abduction to assess for possible length-associated changes as well as the endurance 

of the Gmed muscle, with immediate loss of the position indicating elongation of the 

muscle and an inner range holding capacity of less than 10 seconds reflecting poor 

endurance of Gmed. Norris (1999) proposed that optimal endurance would be reflected 

by a full inner range holding capacity of 10-20 seconds. No indication was given as to the 

reliability of this method. Comerford et al (2007) and Sahrmann (2002) observed for 

control of (1) concentric shortening, (2) isometric holding in full inner range and (3) 

eccentric lowering during the AHAbd test in side lying. They propose that both a loss of 

control of the pelvis, hip or lumbar spine (thereby movement occurring) as well as a 

decrease in inner range holding capacity is indicative of weakness in Gmed. Full inner 

range for Gmed was proposed by some to be at 45° of hip abduction (Rabin et al 2013, 

Nelson-Wong et al 2009, Comerford et al 2007) and Comerford et al (2012, 2007) 

recommended that two repetitions of 15 second inner range holds would indicate 

acceptable endurance of the muscle. This test was chosen for use in this study as it 

assessed the primary stabilising role of Gmed necessary to control lateral movement of 

the pelvis on the bicycle vs. only the MVC.  
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As far as could be determined, no studies have assessed the reliability or validity of side 

lying AHAbd test used to investigate the control function of Gmed as was described by 

Comerford et al (2007), Sahrmann (2002), Sims (1999) and Norris (1999, 1995).  

 

3.3.4 Control of lumbar flexion 

Following the high prevalence of NSLBP, O’Sullivan (2005) developed a mechanism 

based classification system where poor control of movement is proposed as one of the 

major reasons for NSLBP. Various studies indicate substantial to excellent agreement 

(ĸ=0.65-0.96) between clinicians in classifying patients into the various motor control 

impairment groups as proposed by O’Sullivan (2005) or Sahrmann (2002) (Harris-Hayes 

and Van Dillen 2009, Vibe Fersum et al 2009, Dankaerts et al 2006, Van Dillen et al 

1998). The Flexion Pattern (FP) is described as one of the most common LBPP patterns 

and has been implicated in LBPP in cyclists (Carlsson and Rasmussen-Barr 2013, 

Lehtola et al 2012, Van Hoof et al 2012, Dankaerts et al 2009, Burnett et al 2004). It is 

hypothesised that cyclists will present with a flexion pattern of dysfunction of the lumbar 

spine because of the position they assume and sustain on the bicycle while riding (Van 

Hoof et al 2012, Schulz and Gordon 2010, Burnett et al 2004) and therefore lumbar 

flexion dysfunction/control of the lumbar spine was assessed in this study. 

 

Movement control tests are based on the concept of “dissociation”, where some muscles 

are isometrically contracted to retain control of one segment while movement is produced 

in a different segment/area (Carlsson and Rasmussen-Barr 2013). Control of movement is 

most commonly assessed through visual estimation using various visual rating systems 

(Comerford and Mottram 2012, Luomajoki et al 2008, Luomajoki et al 2007). 

 

Many tests have been described to assess control of lumbar flexion, which include the 

standing trunk lean/waiters bow, sitting knee extension, backward push in four-point-

kneeling/rocking backwards, double bent leg lift in crook lying, sitting forward lean, chest 

drop in sitting, double knee extension in sitting and ischial weight bearing measured from 

standing to sitting tests (Comerford and Mottram 2012, Enoch et al 2011, Roussel et al 

2009, Luomajoki et al 2008, Luomajoki et al 2007, Sahrmann 2002, Van Dillen et al 

1998).  

 

The sitting forward lean test as described by Enoch et al (2011) was considered to best 

represent/reflect the forward bending motion performed by the cyclist on the bicycle and 

was therefore chosen to assess control of lumbar flexion in this study.  With the sitting 
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forward lean test the participant should be able to dissociate the lumbar spine from the hip 

flexion and reach 30° of forward lean without movement of the lumbar spine.  

 

The accuracy of the visual estimate of lumbar movement during motor control tests has 

come under scrutiny (Enoch et al 2011).  Enoch et al (2011) expressed the need for more 

precise test descriptions as well as methods that are more quantitative and better 

reproducible in the assessment of motor control dysfunction. He subsequently described 

objectively measurable guidelines for the same test with the aim of increasing objective 

reproducibility and reported excellent interrater reliability (ICC of 0.96, n=40) for the test. 

No normative values for lumbar flexion control was provided in the article by Enoch et al 

(2011) but in personal correspondence with the author he recommended using a shift of 

less than one centimetre as the normative value for control of lumbar flexion.  

 

As far as could be determined, no studies have investigated the validity of the sitting 

forward lean test. It is however expected to have the same face validity as the “waiter’s 

bow”, “sitting knee extension” and “rocking on all fours” tests, where hip flexion is 

expected to occur while the lumbar spine is stabilised and flexion of the lumbar spine 

subsequently regarded as a positive test (Luomajoki et al 2008).   

 

Although test-retest reliability has to some extent been investigated for a few of these 

movement control tests, as far as can be determined, no studies have investigated the 

sensitivity or specificity of any of the motor control tests,  (Luomajoki et al 2008). 

Luomajoki (2010) proposes the lack of a “gold standard” for measuring dysfunction of 

movement control as a reason for the inability to determine sensitivity and specificity of 

the movement control tests.  He further proposes that kinematic analysis or functional MRI 

might become the “gold standard” against which to measure the validity, sensitivity and 

specificity of movement control tests.  

 

3.3.5 Neural tissue provocation 

The slump and straight-leg-raise (SLR) tests are the two most commonly used tests to 

assess the mechanosensitivity of the neural tissues in the lumbar spine and its 

involvement in lower back related leg pain (Walsh and Hall 2009, Walsh et al 2007, 

Shacklock 2005). The slump test is regarded as functionally more relevant than the SLR 

and occasionally more sensitive than other neurodynamic tests (Majlesi et al 2008, Butler 

2000). Reproduction of the patient’s symptoms during any neurodynamic test, with a 

subsequent change in the symptoms with the addition of structural differentiation is 
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generally considered to be a positive sign for impaired neural dynamics (Schmid et al 

2009, Walsh and Hall 2009, Walsh et al 2007, Coppieters et al 2005, Kuilart et al 2005, 

Shacklock 2005, Butler 2000, Turl and George 1998, Philip et al 1989).  

 

Neurodynamic testing does not only influence the nervous system, but also non-neural 

structures like muscles and fascia. Structural differentiating movements are hypothesised 

to selectively influence mechanical  loading of the nervous tissues (Herrington 2006, 

Coppieters et al 2005). In support of this, Coppieters et al (2005) illustrated that the 

addition of sensitizing (structural differentiation) movements to the  SLR and slump tests 

did not change the participants’ perception of experimentally induced tibial or calf pain 

respectively. Lew and Briggs (1997) further illustrated that no association existed between 

the increase in posterior thigh pain with the addition of cervical flexion to the slump test in 

asymptomatic individuals and a simultaneous increase in EMG activity in the hamstring 

muscle, adding to the validity of structural differentiating movements in neurodynamic 

testing.  

 

Shacklock (2005) indicated that the classification of neurodynamic tests as “positive” or 

“negative” in isolation will only help determine if a response is musculoskeletal or 

neurodynamic and that patients might present with a “covertly abnormal neurodynamic 

response”, where the neurodynamic test is positive and structural differentiation is 

positive, yet the patient’s symptoms were not elicited and the response therefore 

circumstantial and possibly irrelevant for the patient’s main complaint. He stressed the 

importance of the reproduction of the patient’s symptoms with the neurodynamic testing 

which would indicate an “overtly abnormal response” which could be regarded as a “true 

abnormal neurodynamic response”, which was reiterated by Walsh et al (2007).  

 

Considering the similarities in the slumped position assumed by cyclists when riding and 

the slump test, it was decided to use the slump test as described by Shacklock (2005) and 

Butler (2000) to assess the dynamics of the neural structures in this study. Philip et al 

(1989) reported excellent inter-rater reliability for the slump test k=0.83 while Gabbe et al 

(2004) reported excellent intra-rater (ICC=0.95 and 0.80) and inter-rater reliability 

(ICC=0.92). Substantial to excellent inter-rater reliability of 0.89 and 0.70 (ICC) (ĸ=0.71)  

was reported by Walsh and Hall (2009) for the slump test and Herrington et al (2008) 

reported an excellent intra-rater reliability of r=0.88.  

 

Walsh and Hall (2009) indicated substantial agreement (ĸ=0.69) between the SLR and 

slump tests. They also reported a strong correlation (r=0.64) between ROM of SLR and 
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slump on the symptomatic side in 45 patients with LBPP and unilateral leg pain, indicating 

substantial construct validity. They found that ICCs were higher on the symptomatic limb 

for both tests and proposed that pain as reported by the patient was more reliable than 

tester-interpreted resistance in determining the end position for the test. Opposing this, 

Davis et al (2008a) observed a high false positive rate of 33.3% for the slump test in 84 

asymptomatic people. They regarded the slump test positive if the participant reported a 

decrease in peripheral symptoms in the slumped position with the release of cervical 

flexion (structural differentiation) with no regard for the reproduction of the patient’s 

symptoms (as this was an asymptomatic population), which, together with the difference 

in test sequence, might explain the opposing findings. Majlesi et al (2008) reported a 

sensitivity of 0.84 and specificity of 0.83 for the slump test in patients with lumbar disc 

herniation when compared to MRI findings which supports the validity of the slump test. 

 

3.3.6 Load transfer through the pelvis 

The active straight leg raise test (ASLR) and one leg stance/standing hip flexion 

(Trendelenburg) test are both used clinically to evaluate the ability of the lumbo-pelvic 

area to transfer loads between the trunk and the legs (Roussel et al 2007). 

 

3.3.6.1 Active straight leg raise  

The ASLR is a valid and reliable technique for the assessment of load transfer between 

the spine and the legs through the pelvis, as will be illustrated in this section (Kwong et al 

2013, Beales et al 2010a, Mens et al 2010, Roussel et al 2007, O'Sullivan et al 2002, 

Damen et al 2001, Mens et al 2001, Mens et al 1999). A positive relationship has been 

observed radiographically between impairment in the ASLR and an unilateral increase in 

mobility of the pelvis at the symphysis pubis, but no reference was made as to the 

statistical magnitude of this relationship (Mens et al 1999). Many studies have observed a 

reduction in impairment in the ALSR with addition of pelvic compression, either manually 

or through a pelvic belt, simulating the action of the lumbo-pelvic stability muscles in 

providing force closure around the pelvis in order to restrict movement of the pelvic joints 

(Arumugam et al 2012, Hu et al 2012, Beales et al 2010a, Mens et al 2006, Lee and Lee 

2004, Damen et al 2002, O'Sullivan et al 2002, Mens et al 2001). This supports the 

hypothesis of impaired motor control and stability around the pelvis being the main cause 

of PGP (Damen et al 2002, O'Sullivan et al 2002).  

 

The ASLR was validated as a diagnostic tool for patients with posterior pelvic pain after 

pregnancy (PPPP) (Mens et al 2001, Mens et al 1999) but has since been accepted as an 



 

60 

 

important component in the assessment of LBPP (Hu et al 2012, Beales et al 2009, 

Vleeming et al 2008, Roussel et al 2007, O'Sullivan et al 2002).  Excellent test-retest 

reliability has been reported for the ASLR in women with PPPP (Pearson’s r=0.87, ICC = 

0,83; n=50) (Mens et al 2001) whereas Roussel et al (2007) and Kwong et al (2013) 

reported substantial to excellent interobserver reliability (ĸ=0.70 for the left ASLR and 

ĸ=0.71 for the right legs in patients with chronic NSLBP,n=36 and ĸ=0.87 in 31 non-

pregnant women respectively).  

 

The test is scored by the participant on a six point scale for perceived effort (Table 3.2). 

 

Table 3.2 ASLR score based on participant perceived effort 

Not difficult at all 0 

Minimally difficult 1 

Somewhat difficult 2 

Fairly difficult 3 

Very difficult 4 

Unable to do 5 

 

The score of both the left and right sides are added, resulting in a score ranging from 0-

10. In a study done by Mens et al (2001), a cut-off between 0 and 1 for the sum of the 

scores of the left and right ASLR tests resulted in high sensitivity (ĸ=0.87 or 54%, n=200) 

and specificity (ĸ=0,94 or 88%, n=50) for the ASLR test, indicating excellent discriminative 

validity (Mens and Pool-Goudzwaard 2012, Mens et al 2010, Mens et al 2001). Similar 

findings were reported by Kwong et al (2013) with a sensitivity and specificity of 71% and 

91% respectively for detecting LBPP. Damen et al (2001) reported a sensitivity of 0.58 

and specificity of 0.97 for the ALSR test in women with pregnancy related pelvic pain 

(PRPP).  

 

The score of the ASLR was compared to the posterior pelvic pain provocation test and a 

Pearson’s coefficient of r=0.27 observed (Mens et al 2001). They reasoned that the ASLR 

test must test aspects of PGP different to that of the posterior pelvic pain provocation test. 

Mens et al (2002) further explored the construct validity of the ASLR by comparing it to 

the Québec Back Pain Disability Scale (QBPDS) and observed a high correlation (r=0.70), 

indicating that the ASLR effectively measures disease severity in patients with PPPP. The 
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outcome of the ASLR was also compared to the Functional Pelvic Pain Scale and the 

Roland-Morris Disability Questionnaire and showed a substantial correlation (Spearman’s 

Rho of 0.77 and 0.70 respectively) (Kwong et al 2013). 

 

The ASLR test with a cut-off between 0 and 1 for the sum of the scores of the left and 

right ASLR tests was used in this study to assess for the control of load transfer through 

the pelvis and the presence of PGP. 

 

3.3.6.2 One leg stance test/standing hip flexion test 

The one leg stance test (Gillet’s test, standing hip flexion test, Trendelenburg test) is 

described as one of the tests that is used clinically to assess load transfer through the 

pelvis (Roussel et al 2007, Childs et al 2003). The basic test has been described in 

various ways, all assessing different aspects of pelvic stability. The Gillet/standing hip 

flexion test is used to assess the movement of the innominates, where posterior rotation 

of both the weight-bearing and the hip flexion leg indicates acceptable inherent stability of 

the pelvic girdle (Lee 2007, Hungerford et al 2004). In this way, it is by palpation that the 

assessor decides whether the pelvic girdle is inherently stable or not. Hungerford et al 

(2004) confirms that the reliability and predictive ability of the standing hip flexion test is 

still uncertain. Roussel et al (2007) describes this load transfer test as the 

“Trendelenburg”/standing hip flexion test and evaluated fatigue of maintaining the non-

weight bearing pelvis lifted above the trans-iliac line (in part assessing strength of Gmed).  

They observed that patients with LBPP fatigued faster than healthy participants and 

reported a substantial test-retest reliability of the Trendelenburg test, with a weighted к 

value of 0.79 (0.83 for the left side and 0.75 for the right side).  

 

The one leg stance test is also described as a movement control dysfunction (MCD) test  

that reflects control of lateral flexion and rotation of the lumbar spine (Luomajoki et al 

2008, 2007). MCD is characterised by a reduced control of active movement with the 

underlying hypothesis that people injure themselves by subconsciously moving in a way 

that aggravates their pain, due to a decreased ability to control the active movement of 

their backs (Luomajoki et al 2007). Following this theory, the expectation is that hip joint 

ab- and adduction should occur during the lateral weight shift, while the lumbar spine 

stays in a neutral position (Luomajoki et al 2008). They reported a high effect size for the 

ability to control movement between groups with and without low back pain (d=1.18) 

(Luomajoki et al 2008). With extension rotational dysfunction there will be a marked 

difference in the lateral shift of the pelvis (Luomajoki et al 2007). Luomajoki et al (2007) 
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reported significant to excellent intra-rater reliability (ĸ=0.84 and ĸ=0.67 for the left leg and 

right leg respectively) and moderate to substantial inter-rater reliability (ĸ=0.65 for left leg 

and ĸ=0.43 for right leg) for the one leg stance test. 

 

Childs et al (2003) assessed for differences in side-to-side weight shift between the lower 

extremities with two independent electronic scales and observed significant differences in 

side-to-side weight shift in participants with LBPP compared to a healthy control group. 

Mascal et al (2003) used movement from double leg stance to single leg stance to assess 

pelvic drop as well as lateral excursion of the pelvis in an intervention study in patients 

with patellofemoral pain syndrome (PFPS) but did not report on the reliability of the test. 

 

Optimal cycling performance and comfort is dependent on a minimal side-to-side shift on 

the bicycle. Poor control of side-to-side movement could result in an increased strain 

through the lumbo-pelvic region, resulting in pain and pathology (Chapman et al 2008a, 

Childs et al 2003, Mellion 1994). No test could be found that either assessed the 

magnitude of the lateral movement during weight shift or specified what a normal shift 

should be. The one leg stance MCD test as described by Luomajoki et al (2008, 2007) 

appeared to best assess the magnitude of lateral movement during weight shift and was 

therefore used in this study. Besides measuring the extension/rotation control of the 

lumbar spine, it seemed to be the most objective way of measuring a) the load transfer 

capacity of the pelvis and b) the ability of participants to actively control their lateral 

movement during one leg stance, as well as c) the magnitude of the lateral movement. 

Following their guidelines the test was deemed incorrect/abnormal if (1) lateral transfer of 

the umbilicus exceeded 10cm to either side or (2) if the difference in weight shift between 

the left and the right sides was more than two centimetres (Luomajoki et al 2008, 2007). 

 

3.3.7 Leg length discrepancy 

X-rays are seen as the gold standard in measuring LLD but even though X-rays and other 

imaging techniques (MRI, computer tomography) are more accurate, they are expensive, 

not readily available in clinical practice and contain some form of radiation risk (Brêtas et 

al 2009, Brady et al 2003, Petrone et al 2003, Gurney 2002, McCaw and Bates 1991). 

Subsequently, alternative clinical methods have been developed to measure LLD. The 

two main clinical methods that have emerged includes an “indirect” and a “direct” method. 

The indirect method uses visual estimates of the pelvic level and lift blocks under the 

short leg in standing to assess the presence and extent of a LLD whereas the direct 

method uses a tape measure to measure the distance between fixed bony landmarks in 
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the supine position (Brady et al 2003, Gurney 2002). Both methods serve well as a 

screening tool for patients with LLD who could then be further referred for radiological 

studies when appropriate (Gurney 2002). 

 

Two methods are used to determine LLD with a tape measure: measurement of the 

distance between the anterior superior iliac spine (ASIS) and the medial malleolus (MM) 

and the ASIS and the lateral malleolus (LM). ASIS to MM has been reported to have 

substantial to excellent intra- and intertester reliability (ICC=0.68-0.99) (Brêtas et al 2009, 

Terry et al 2005, Krawiec et al 2003, Hoyle et al 1991, Beattie et al 1990, Gogia and 

Braatz 1986) and correlated well with X-rays (r=0.98), a mini scanogram (ICC=0.79) and 

computed tomography scanogram (ICC=0.85) as a measure of criterion validity 

(Jamaluddin et al 2011, Beattie et al 1990, Gogia and Braatz 1986).  

 

Krawiec et al (2003) assessed the reliability of the ASIS to MM and the ASIS to LM and 

reported an ICC of 0.99 without specifying which test it was for. They observed a 

Pearson’s product correlation of r=0.75 between the measurements of ASIS to MM and 

ASIS to LM and recommended the ASIS to LM to the ASIS to MM measurement because 

of its proposed greater precision of measurement. An excellent intra- and interrater 

reliability was observed by Terry et al (2005) for both the ASIS to LM (ICC=0.88 and 0.83 

respectively) and ASIS to MM (ICC= 0.78 and 0.8 respectively) measurements. Using the 

average of two measurements between the ASIS and medial malleolus in screening for 

LLD has been found to increase the validity and reliability of the measurements 

(Jamaluddin et al 2011, Beattie et al 1990). Beattie et al (1990) observed an increase in 

reliability (ICC of  0.668 to 0.910) and criterion validity (ICC of 0.683 to 0.793) of the ASIS 

to MM measurement when the mean of two paired measurements were used. Similar 

findings were reported by Jamaluddin et al (2011) who also observed an increase in 

criterion validity with using the mean of two measurements of the ASIS to MM when 

compared to computed tomography scanogram (ICC of 0.81 to 0.85).  

 

The direct tape measure method measuring LLD from the ASIS to the LM was chosen for 

use in this study as it: 

 eliminates the contour of the thigh as a possible source of measurement error as 

reported with the ASIS to medial malleolus technique and has a more direct line 

of measurement (Sabharwal and Kumar 2008, Krawiec et al 2003, Woerman and 

Binder-Macleod 1984). Woerman and Binder-Macleod (1984) observed a smaller 

mean difference (0.025cm) with ASIS to LM measurement compared to ASIS to 
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MM (1.17cm) in participants with known LLD but made no reference as to the 

statistical analysis of this relationship. 

 eliminates the need for multiple blocks of known-height, a calliper spirit level to 

compare iliac crest heights as well as accurate location of the height of the iliac 

crests necessary for the indirect pelvic level method (Sabharwal and Kumar 2008, 

Brady et al 2003, Gurney 2002, Mann et al 1984, Woerman and Binder-Macleod 

1984) 

 is used more commonly in clinical practice, is inexpensive and reported to have 

acceptable reliability as a screening tool (Jamaluddin et al 2011, Brêtas et al 

2009, Sabharwal and Kumar 2008, Brady et al 2003, Gurney 2002, McCaw and 

Bates 1991, Beattie et al 1990)  

 

3.4 Bicycle set-up factors 

Bicycle set-up and the measurement thereof is a very controversial issue. Literature 

pertaining to bicycle set-up is sparse, often contradictory and is mostly concerned with 

improving the performance and efficiency of cycling rather than preventing overuse 

injuries (Marsden and Schwellnus 2010). Bicycle set-up will vary substantially according 

to the goal of the cyclist, whether it is to increase performance or to attain a more 

comfortable ride. A number of schools of thought seem to exist, some purely measuring 

the set-up of the bicycle in static conditions, but most taking some anthropometric 

measurements and relating them to some extent to the set-up of the bicycle. In the 

literature reviewed, most set-ups are described in static conditions and very few dynamic 

bicycle set-up assessments are described (Marsden 2009, Silberman et al 2005, De Vey 

Mestdagh 1998). A number of different anthropometric measuring systems with their 

corresponding computer programs and measuring instruments have been developed and 

are used by most bicycle shops offering bicycle set-ups. The “Cyclefit” protocol developed 

by De Vey Mestdagh (1998) is but one of them, and measurements of the set-up of the 

bicycle in this study were mostly based on the method he described as it best described 

the execution of the various measurements in what seemed to be the most objectively 

measurable way. He also included anthropometric measurements of the cyclist in his set-

up which contributes to the best fit of the bicycle to the cyclist and not just the cyclist to 

the bicycle. 

 

Optimal cycling posture is dependent on two main variables: posture height (saddle 

height, crank length, position of the cleats on the shoe, saddle setback) and posture 

length (reach, handlebar level and handlebar width) (De Vey Mestdagh 1998). A limited 
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number of studies provide guidelines of how these different variables should be assessed 

and very few have related the measurements to LBPP in cyclists (Schulz and Gordon 

2010, Marsden 2009, De Vey Mestdagh 1998).  Only one study has reported on the 

reliability or validity of some of the bicycle set-up measurements (Schulz and Gordon 

2010). These will be discussed individually in the section below. 

 

3.4.1 Saddle height 

Various methods have been proposed for the measurement of saddle height, most of 

which have focussed on power output (Ferrer-Roca et al 2012, Wanich et al 2007, 

Peveler et al 2005, Silberman et al 2005, Farrell et al 2003, De Vey Mestdagh 1998, 

Holmes et al 1994, Nordeen-Snyder 1977, Hamley and Thomas 1967). Various formulae 

involving inside leg length (inseam length, symphysis pubis length) have been used to 

determine seat height for optimal power output. Inside leg length was measured from the 

floor to the height of the symphysis pubis (Hamley and Thomas 1967). Hamley and 

Thomas (1967) recommended that a 109% of the inside leg length will produce maximum 

power over a short period (Hamley technique). Subsequently angles of between 101.7-

112.1% of the inside leg length has been recommended (Ferrer-Roca et al 2012, 

Silberman et al 2005, De Vey Mestdagh 1998, Nordeen-Snyder 1977).  

 

An alternative method of measuring saddle height was developed by Holmes et al (1994). 

They recommended using a knee angle of 25-35° in the BDC to reduce the risk of 

overuse injuries in cyclists. This has been confirmed by other researchers (Peveler et al 

2005). Knee angles of 25-30° have also been proposed (Wanich et al 2007, Silberman et 

al 2005, Farrell et al 2003, Burke 2002, De Vey Mestdagh 1998). Peveler et al (2007) 

reported significantly higher mean power output (increased performance) when the knee 

was at a 25° angle compared with 109% inside leg length. They recommended using a 

25-35° knee angle for injury prevention as well as more efficient performance (Peveler et 

al 2007) with the 25° knee angle for more power while still preventing injury (Peveler and 

Green 2011). The knee angle was consistently measured with a goniometer (Peveler and 

Green 2011, Peveler et al 2007). 

 

In this study a knee angle of 25-35° as measured with a goniometer with the pedal at the 

BDC was regarded as indicative of a normal saddle height. As far as could be 

determined, no studies have assessed the reliability or validity of measuring saddle height 

in cyclists. 
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3.4.2 Saddle set-back 

Saddle setback is measured uniformly in the literature. With the pedal positioned in the 

most forward position (pedals in the 3 o’clock and 9 o’clock positions), a plumb line is 

dropped from the posterior aspect of the patella (some describe it as the level of the tibial 

tuberosity) to the floor. The plumb line should dissect the axle of the most forward pedal 

when the saddle setback is optimal for the cyclist (Wanich et al 2007, Silberman et al 

2005, De Vey Mestdagh 1998). Again no studies could be located that assessed the 

reliability or validity of measuring saddle set-back in cyclists. 

 

3.4.3 Saddle angle 

Saddle angle has a profound effect on the position of the pelvis on the bicycle (Marsden 

and Schwellnus 2010, Salai et al 1999). It has been widely accepted that the saddle 

should be level/parallel to the floor (Wanich et al 2007, Silberman et al 2005) but following 

a decrease in the occurrence of LBPP in a group of cyclists with tilting the saddle 

anteriorly by 10-15° as observed by Salai et al (1999) an anteriorly tilted saddle has been 

related to a decrease in tension on the ligaments of the lumbar spine (Marsden and 

Schwellnus 2010, Salai et al 1999). In the studies reviewed, saddle angle was measured 

with a standard carpenter’s level (Wanich et al 2007) or with a goniometer (Van Hoof et al 

2012, Salai et al 1999) with no reference made to the reliability or validity of measuring 

saddle angle in cyclists. In this study a saddle angle which was level or tilted anteriorly 

was considered as acceptable for proper bicycle set-up. 

 

3.4.4 Handlebar height 

Handlebar height is often influenced by the goal of the ride, i.e. performance or recreation 

(De Vey Mestdagh 1998). Handle bars are generally set lower for more competitive 

cyclists to obtain a more aggressive aerodynamic position compared to a more relaxed 

upright position for recreational riders (De Vey Mestdagh 1998). Silberman et al (2005) 

recommend a 5-8 cm difference in height between the saddle and the handlebars, with 

the handlebars being lower than the saddle (dependant on the flexibility of the cyclist). 

Wanich et al (2007) recommend that the handlebars be set 3-10 cm below the saddle for 

road bicycling with the lower level being more aerodynamic. Asplund et al (2005) again 

recommend that the handlebars should ideally be even with the seat or between even and 

4cm below the seat in recreational riders and up to 5 to 9 cm below the seat in extremely 

fit and flexible cyclists.  
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As far as could be determined, no studies have assessed the influence of different 

handlebar heights on cycling performance, comfort or injury prevention and no reference 

has been made to the reliability or validity the measurements. Schulz and Gordon (2010) 

report excellent intrarater reliability for measuring the distance from the handlebars to the 

floor (ICC=0.98) and the seat to the floor (ICC=0.98) (n=13). As far as could be 

determined, no other studies reported on the validity and reliability of measuring 

handlebar height. A handlebar height of between 5 and 8 cm below the seat was taken as 

indicative of proper bicycle set-up in this study. 

 

3.4.5 Reach 

Reach distance is defined as the distance between the saddle and the handlebars 

(measured from the rear of the saddle to the transverse part of the handlebars) while 

considering contributions from the length of the arm and the upper body (Asplund et al 

2005, De Vey Mestdagh 1998, Mellion 1994). The position of the lumbar spine and pelvis 

is directly influenced by the reach distance (Sanner and O'Halloran 2000, De Vey 

Mestdagh 1998). 

 

De Vey Mestdagh (1998) calculated the correct reach distance  based on the length of the 

arm and the upper body and Marsden (2009) used this method in assessing the 

association between reach distance and LBPP in cyclists. Aplund et al (2005) and 

Silberman (2005) recommend using the distance between the bent elbows and the knees 

in the TDC, dropping a plumb line from the nose in the handlebar position or the cyclist’s 

view of the front hub as measures of determining correct reach based on the work of 

Burke (1994) and LeMond and Gordis (1990). None of the studies available have 

commented on the reliability and validity of any of the measuring techniques available. 

 

In this study an assessment of the reach distance was made, based on the sum of the full 

arm and upper body measurements according to measures suggested by De Vey 

Mestdagh (1998) as it included the influence of the length of the arms and upper body 

and appeared to be more objective in the absence of any reliability studies: 

 

 De Vey Mestdagh (1998) measured the length of the arm in upright standing from 

the superior aspect of the acromion to the distal aspect of the most distal 

metacarpal joint head. He proposed the use of sliding callipers to make this 

measurement. Marsden (2009) used a rigid tape measure to measure arm length 
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in cyclists. Neither of the studies reviewed mentioned the reliability of the 

measuring method used to measure arm length. 

 

 Upper body length is measured from a flat stool to the incisura jugularis of the 

manubrium sterni in the upright seated position (De Vey Mestdagh 1998).  De Vey 

Mestdagh (1998) again used sliding callipers to measure the distance while 

Marsden (2009) used a rigid tape measure. No indication was given of the 

reliability of either of these measuring techniques. 

 

3.4.6 Cleat position 

The position of the cleats mostly influences the development of knee problems, but 

because of its direct impact on the fore-aft position of the cyclist and hence the set-back 

position of the saddle, it was included in this study (Silberman et al 2005). Aligning the 

cleat on the shoe with the head of the first metatarsal bone positions the foot directly in 

line with the pedal spindle and is the most common technique used for setting the cleat 

position (Wanich et al 2007, Callaghan 2005, Silberman et al 2005, De Vey Mestdagh 

1998). As far as could be determined, no studies have investigated the reliability or 

validity of this technique. 

 

3.5 Conclusion 

The literature on the available and most suitable measuring instruments for the various 

factors observed in this study was reviewed in this chapter. Where available, the validity 

and reliability of the measuring instruments were reported, the instruments chosen for this 

study were justified and the measuring techniques used in this study were briefly 

discussed. The research methodology, including research design, sample selection, 

procedures and the statistical analysis for this study will be discussed in detail in Chapter 

four.  
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CHAPTER 4: METHODOLOGY 

 

4.1 Introduction 

This chapter describes the research design, study population, selection criteria, materials 

and apparatus, the procedure and the statistical analysis used in this study. The research 

method of this study is represented in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.1 Diagrammatic presentation of the research method used in this study 

 

4.2 Research Design 

A cross-sectional descriptive study design was used for this study.  
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70 

 

4.3 Sample selection 

 

4.3.1 Study population 

All cyclists who are members of Cycle Lab in Fourways, Johannesburg were contacted 

through an advertisement in their weekly electronic newsletter which included the link to 

the online questionnaire on the Qualtrics website. After only 34 responses were obtained, 

Club 100 Cycling club in Sandton was also contacted. Their cyclists were also reached 

through an advertisement in their electronic newsletter with the link to the online 

questionnaire embedded in the advertisement. A poor response rate from both clubs 

resulted in a more generalised approach being taken.  

 

An article was written for the Ride Magazine, which was placed in the February 2012 

issue, explaining the extent of the study and providing the contact details of the 

researcher as well as the web address to access the online questionnaire. An 

advertisement was also placed on thehub.co.za cycling chat room with a link to the online 

questionnaire. In addition, the researcher contacted Cycling South Africa (CSA) who 

provided the contact details of all the cycling clubs registered with them for the whole of 

South Africa. These clubs were then contacted via e-mail. The e-mail explained the extent 

of the study and included the link to the online questionnaire on the Qualtrics website. A 

request was made to all the club chairpersons to forward this e-mail to their members and 

for the members to follow the link to the online questionnaire. A few questionnaires were 

also handed out at the 94.7 cycling race in Johannesburg and after a talk at a breakfast 

ride for the Cradle Crawlers cycling club.  

 

A sample of convenience was used for the second part of the study from all the cyclists 

who completed the questionnaire and then volunteered to be tested in the second part. It 

was stated in the questionnaire that all assessments would be done in the greater 

Gauteng area and that they should be available in this area for the physical assessment. 

 

4.3.2 Sample selection 

 

4.3.2.1 Inclusion criteria: 

 Aged 18 years and older 

 Cycling more than three hours per week on a road bicycle 

 Cycling history of more than one year 

 Previous participation in at least one race of more than 90 km 
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 Cycling with cleats 

 History of either no low back pain or previous non-specific mechanical low back pain 

4.3.2.2 Exclusion criteria 

 Cycling more than 12 hours per week 

 Participation in more than 20 races per year 

 Use of a mountain bicycle or hybrid when cycling 

 History of traumatic injury to the spine in the past two years 

 Low back pain that has a specific/known structural pathology (e.g. spondylolisthesis)  

 Any spinal surgery 

 

4.3.3 Sample size 

From a cross-sectional study it is expected that following univariate analysis no more than 

10-12 factors would be associated with low back pain when testing at the liberal 0.15 level 

of significance (Nunnally 1978). These factors were then analysed using a logistic 

regression and by convention 10-15 subjects need to be included for each factor. Hence 

at least 120 volunteers were included. Furthermore, this sample size would estimate the 

expected prevalence of 35% to an accuracy well below 10% (nQuery Version 7). 

  

4.3.4 Ethical considerations 

Ethical approval was obtained from the Human Research Ethics Committee at the 

University of the Witwatersrand (Appendix 3). Participants were invited to participate in 

the study. They were informed that completion of the questionnaire in Part 1 of the study 

was considered as consent to participate in the first section of the study.  

The participants of Part 1 had the opportunity to volunteer again to participate in Part 2 of 

the study. Participants received an information sheet (Appendix 4) explaining the study 

before commencement of Part 2 of the study, and signed informed consent to participate 

in Part 2 of the study (Appendix 5). All data were coded and personal information kept 

separately and securely in order to guarantee confidentiality of the information received. 

Detailed written feedback was given to each participant after completion of the study and 

recommendations were made according to the findings. The results of the study were 

made known to all the participants of the study. 
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4.4 Procedure and measuring instruments 

All measuring instruments used in this study were discussed and justified in Chapter 3. 

The study consisted of two parts:  

 Part 1 included the completion of an online questionnaire depicting the 

demographics of the cyclists, training history and the behaviour of LBPP where 

applicable (see Appendix 6).  

 Part 2 consisted of a physical assessment of the factors hypothesised to 

contribute to the development of LBPP in cyclists (see Appendix 7).  

An expert group of physiotherapists experienced in the treatment of cyclists and/or motor 

control dysfunction were contacted prior to the commencement of the study. They 

provided input into the questionnaire and advised on the potential factors that could be 

associated with LBPP in cyclists. Their recommendations were included in the 

questionnaire as well as in the physical assessment.  

 

4.4.1 Pilot study 

 

4.4.1.1 Questionnaire 

A pilot study was done to assess the ease of following and completing the questionnaire. 

Twelve cyclists completed a trial version of the questionnaire on the Qualtrics website. 

They were asked to report on ease of understanding of the questions, time taken to 

complete the questionnaire and if they thought anything of importance was left out. 

Changes were made according to their suggestions (see section 3.2, Chapter 3).  

 

4.4.1.2 Physical assessment 

A pilot study was conducted to practice the flow of the physical assessment, the handling 

of the measuring instruments, use of the data collection sheet and to resolve some of the 

challenges that could arise from the execution of the actual physical assessment. Five 

volunteers participated in the pilot study of the physical assessment. The order of the 

physical assessment and the data collection sheet was adapted to match and improve the 

flow of the physical assessment and the time used to execute it. The execution of some of 

the tests, posterior Gmed through range control, Gmax inner range control, lateral shift 

with the one leg stance test, ASLR, hamstring extensibility test and aspects of the bicycle 

set-up, was adapted to be more precise during collection of data. The equipment used to 
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test the above factors was also adapted in order to increase the accuracy of the 

measurements. 

 

Following this, thirteen cyclists were included in a reliability study to assess the 

repeatability of the measurements of the physical factors taken by the researcher. During 

the reliability study all participants were assessed on two occasions, one week apart. The 

results of the factors assessed were compared and the repeatability of each factor was 

calculated. The intrarater reliability of each factor assessed can be found in Chapter 5. 

 

4.4.2 Questionnaire 

An online questionnaire was created on the Qualtrics website (2012) using a combination 

of the three previously validated questionnaires as discussed in Chapter 3. As mentioned 

previously, a description of the study with a link to this questionnaire was sent to all the 

cycling clubs country wide registered with CSA. The respective chair persons of the clubs 

were asked to forward the information to the cyclists belonging to their clubs. Cyclists 

followed the link to the questionnaire and were included or excluded from the study 

depending on their responses on the study requirements page of the questionnaire. A few 

printed questionnaires were also handed out by committee members of the South 

Gauteng South African Society of Physiotherapists (SASP) at the 94.7 cycling race expo 

as well as after a talk done by the author at a cycling breakfast of the Cradle Crawlers 

cycling club. The printed questionnaires were entered on the Qualtrics website by the 

author. The questionnaire was closed for responses after being available for eight 

months. 

 

4.4.3 Anthropometric measurements  

 

4.4.3.1 Body weight 

Body weight was measured with an electronic digital bathroom scale (Carmen Care) in 

kilograms (kg). The participants were dressed in cycling gear (cycling shorts and tops) 

without shoes and socks for the assessment of body weight.  

 

4.4.3.2 Standing Height 

The height of the participants was measured with a portable stadiometer (HS, 

Scales2000) in centimetres (cm). The participants had to stand upright and barefoot with 

their backs to the upright part of the stadiometer. The arm of the stadiometer was pulled 

http://www.qualtrics.com/
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down to make contact with the top of the participant’s head and the height was read from 

the stadiometer. 

 

4.4.3.3 Body mass index 

The body mass index was calculated with the standard formula: body weight in kg divided 

by height in m² and classified according to the groups specified in Table 3.1 (Chapter 3). 

 

4.4.4 Lumbar spine angle on the bicycle 

A Saunders digital inclinometer (Saunders Group) was used to measure the lumbar 

angles and curvature in this study. The inclinometer is a hand-held device and designed 

to measure spinal posture and mobility. Before measurement of the spinal posture, the 

following anatomical reference points were marked in the unsupported upright seated 

position on the bicycle (no hand contact was made with the handle bars): 

 The lumbo-sacral joint (L5/S1) – reference point A. The sacral midpoint was found 

midway on a line connecting the inferior aspects of the posterior superior iliac 

spine. The lumbo-sacral joint lies approximately 3 cm above this point. 

 The thoracolumbar joint (T12/L1) – reference point B. Starting from the L5/S1 joint 

as number one, six interspinous spaces were counted upwards to locate the 

T12/L1 joint. 

 

To measure lumbar spine posture, the participants were positioned in three different 

positions on the bicycle (Figure 4.2): 

 The “seated upright” position, with hands on the transverse part of the handlebar 

 The “brake lever” position, with hands placed on the brake hoods, and 

 The “drops” position, with hands placed on the drops (rounded bottom part of the 

handlebar).  

     

Key: Front left to right: Upright seated position, Brake lever position, Drops position 

Figure 4.2 Illustration of handlebar positions  
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Participants were instructed to perform a few peddling cycles on the bicycle per riding 

position and then instructed to stop peddling, keeping both feet in a position parallel to the 

floor (pedals at 3 and 9 o’clock positions) with the right foot always forward (Muyor et al 

2011a, Schulz and Gordon 2010). A measurement was then taken by placing the 

inclinometer with the short base on the L5/S1 joint (Position A). The inclinometer was then 

moved to the T12/L1 joint (Position B) where a second measurement was taken. The 

lumbar flexion curvature was calculated by subtracting the measurement at L5/S1 from 

the T12/L1 measurement (B-A). This process was repeated three times in all three riding 

positions and the mean of the measurements per riding position was used as the lumbar 

flexion angle for each riding position. 

 

4.4.5 Musculature involved in lumbo-pelvic stability: 

 

4.4.5.1 Inner range holding capacity of Gluteus maximus 

Inner range holding capacity of Gmax was tested according to the test described by 

Richardson and Sims (1991). After consultation with Dr C. Richardson (2012) it was 

decided to combine their test procedure with that of Comerford and Mottram (2012). 

The participant was positioned in prone with trunk support only over the treatment plinth. 

Both feet were supported on the floor with the knees slightly flexed.  Two PBU (Stabilizer 

Pressure Bio-feedback by Chattanooga) were positioned under the ASIS on the left and 

the right side and inflated to 20mmHg (as recommended by Dr Richardson). The 

participant’s lower back was positioned in the neutral lumbar position (long shallow 

lordosis).  

 

The examiner assessed the available passive range of hip extension, with the knee in 90° 

flexion while passively stabilising the lumbo-pelvic area in neutral. A rod was positioned to 

touch the posterior aspect of the thigh when the hip was in the neutral extension 

(0°)/horizontal position to serve as an objective benchmark of where neutral hip extension 

was. The participant was instructed to keep one leg on the floor and to lift the other into 

hip extension with the knee kept in 90° of flexion (to disadvantage the hamstrings). The 

participant was instructed to keep lifting until the back of the thigh touched the pre-

positioned rod and to maintain contact with the rod for 15 seconds before lowering it 

again. The neutral position of the lumbo-pelvic area had to be maintained throughout the 

lifting, holding and lowering of the leg and their ability do so was measured with the two 

PBF meters (20 mmHg). If the participant was able to concentrically shorten to full passive 

inner range, maintain that position for 15 seconds and eccentrically lower the leg again 
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with good, smooth control and no movement or substitution in the lumbo-pelvic area, a 

second repetition was done with the same leg.  

 

This test procedure was then repeated with the other leg. Successful completion of two 

repetitions of this procedure indicated normal inner range control of Gmax. The test was 

considered positive for insufficient inner range control of Gmax when the participant was 

unable to concentrically shorten into full passive inner range (0°) hip extension, smoothly 

maintain that position for 15 seconds and eccentrically lower again with good control and 

without shaking or substitution in the lumbo-pelvic area for two repetitions.  

 

The participant performed three practise sessions with feedback from the examiner as to 

movement occurring in the lumbar spine. The practise sessions did not involve holding the 

position for the required time, but to provide feedback to the participants on their ability to 

control the lumbar neutral position and reach the benchmark for testing (0° hip extension). 

 

4.4.5.2 Hamstring muscle extendibility  

Extendibility of the hamstring muscle was measured in supine on a treatment plinth. The 

leg to be tested was placed in 90° of hip flexion (measured with an inclinometer), with the 

thigh supported against a frame in that position. The participant was instructed to hold 

onto the frame to ensure good contact of the posterior thigh with the frame. The foot was 

supported on the frame with the knee relaxed in flexion. The opposite non-test leg was 

placed in a neutral hip position on the plinth under the frame. The knee of the tested leg 

was passively extended by the examiner until firm resistance was felt or the participant 

reported a strong stretch sensation (Gnat et al 2010, Kuszewski et al 2009, Davis et al 

2008b, Sauer et al 2007). The knee extension angle was then measured with a digital 

inclinometer placed midway between the patella and a line joining the two malleoli 

(Kuszewski et al 2009). The test was repeated three times on each leg to increase the 

accuracy of the measurement. No warm-up was done prior to testing. 

 

4.4.5.3 Through range control of Gluteus Medius 

The through range control and inner range holding capacity of Gmed was measured 

according to a combination of the tests described by Davis et al (2011), Comerford and 

Mottram (2012, 2007), Nelson-Wong et al (2009) and Sahrmann (2002), assessing for 

both inner range control and control of lumbo-pelvic movement. The participants were 

positioned in side lying with the lower back and pelvis in neutral alignment. Full passive 

range of motion was assessed by the examiner lifting the top leg into hip extension, 
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external rotation and abduction while stabilising the lumbo-pelvic area in the neutral 

position. A rod was positioned to touch the lateral aspect of the leg when the hip reached 

the benchmark of 45° abduction. The participant was positioned so that the spine and 

pelvis were in neutral alignment and the bottom leg in a slightly flexed position.  

 

The instruction was given to lift the uppermost extended leg up and backwards towards 

the ceiling while keeping the leg in an externally rotated position until contact was made 

with the rod. The participant then had to maintain controlled contact with the rod for 15 

seconds before smoothly lowering the leg again. Neutral alignment of the lower back and 

pelvis had to be maintained throughout this procedure and an inability to do so resulted in 

failure of the test. This procedure was repeated once more if the participant successfully 

completed the first movement. The test procedure was also repeated for the other leg. 

The ability to perform two smoothly controlled repetitions of this procedure without 

substituting with movement of the hip, lower back or pelvis was deemed as sufficient 

through range control of deep posterior Gmed. Three practise runs of the procedure were 

allowed with corrective verbal and tactile input from the examiner before commencement 

of the test procedure. 

 

4.4.6 Control of lumbar flexion 

The participant’s ability to control flexion of the lumbar spine was assessed with the 

sitting-forward-lean test as described by Enoch et al (2011). The test was performed in 

the sitting position with the knees and hips at 90° flexion with the hands relaxed on the 

thighs and the feet supported. The examiner positioned the participant’s lower back in a 

visually estimated neutral position (slight lumbar lordosis and a relaxed throrax) 

(O'Sullivan et al 2010a)  and made a mark at the S1 vertebra and at a point 10cm above 

that, with a non-permanent whiteboard marker using a flexible tape measure. The 

participant was instructed to keep the lower back in its neutral position with the two points 

10cm apart while leaning forwards to 120° of hip flexion as measured with a goniometer.  

 

Five practice runs of the test were allowed with verbal and tactile input from the examiner 

on the participant’s ability to maintain the neutral lumbar curvature. The test was then 

performed five times without any feedback from the examiner. The participant was 

instructed to lean forward to 120° hip flexion while keeping the back still (the two points 

10cm apart) and to sustain the forward lean position for a few seconds while the examiner 

measured the distance between the two marks with a flexible tape measure to the nearest 

mm. The mean value of the five repetitions was calculated. If the patient was able to 
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maintain a distance of 10cm between the two marks, or if there was a change of less than 

1cm, the test result was deemed negative, indicating adequate control of lumbar flexion 

(Enoch 2013). 

 

4.4.7 Neural tissue dynamics 

The mobility of the pain-sensitive neuromeningeal structures were assessed with the 

slump test. The slump test was performed following the six stage sequence as described 

by Butler (2000) and Shacklock (2005) (also described in Cleland et al (2006) and Kuilart 

et al (2005)): 

 

(1) The participant was positioned in sitting with the feet unsupported, knee creases at the 

edge of the treatment plinth and thighs lying parallel to each other. The participants were 

instructed to place their hands behind their back and to link their fingers. 

 

(2) The participant was instructed to flex the thoracic and lumbar spine while maintaining 

the neck in neutral and without rocking the pelvis backwards. The examiner applied 

overpressure through the C7 spinous process, directed towards the hips in the direction of 

flexion 

 

(3) While maintaining the thoracic and lumbar flexion, the participant was instructed to 

bend his neck down by pulling his chin to his chest (cervical flexion). Overpressure to 

cervical flexion was added (while maintaining overpressure of thoracic and lumbar 

flexion). 

 

(4) While maintaining overpressure of the cervical, thoracic and lumbar flexion, the 

participant was instructed to extend or straighten one knee 

 

(5) Dorsiflexion of the ankle was then added as the final component of the movement by 

asking the participant to pull their toes up towards them. 

 

(6) The neural tissue was then structurally differentiated from the musculo-skeletal 

tissues, by releasing the overpressure of the cervical spine and instructing the participants 

to extend their neck by looking up while maintaining the position of the thoracic spine, 

lumbar spine, knee and ankle. 
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The participant was asked about the presence or absence of symptoms throughout the 

testing sequence and the location of any reported symptoms were noted on the data 

collection sheet. The test was considered positive if the participant’s symptoms were 

reproduced at any point of the testing sequence and alleviated with the release of neck 

flexion indicating an overtly abnormal neurodynamic response (Schmid et al 2009, Davis 

et al 2008a, Cleland et al 2006, Coppieters et al 2005, Kuilart et al 2005, Shacklock 

2005). Including the reproduction of the patient’s symptoms as a diagnostic criterion for a 

positive slump test has been proposed to decrease the false positive rate for the slump 

test (Davis et al 2008a). 

 

4.4.8 Load transfer through the pelvis 

 

4.4.8.1 Active Straight leg raise test 

The ASLR test was performed in the supine position with the feet 20cm apart. The 

participant was asked to raise a straight leg, one after the other, 20cm off the bed and 

rate the perceived effort on a 6 point scale (Table 3.2, Chapter 3). 

 

The test was repeated twice to increase the precision and the mean of the values was 

used to calculate the sum of the two legs (Hu et al 2012). The scores of both sides were 

added, resulting in a score ranging from 0-10. The test was deemed positive if the mean 

of the scores was greater than 1 and negative if it was less than 1. A severe load transfer 

dysfunction was defined as a sum score of more than 4 (Mens and Pool-Goudzwaard 

2012). 

 

The ASLR was then repeated with the addition of manual pelvic compression through the 

ilia. An improvement in the ability to raise the leg (reduction in ASLR score) was also 

deemed a positive test (Hu et al 2012, Beales et al 2010a, O'Sullivan and Beales 2007a, 

Mens et al 2006, O'Sullivan et al 2002).  

 

4.4.8.2 One leg stance test 

Lateral shift of the pelvis was measured using the one-leg-stance movement control test 

as described by Luomajoki et al (2008, 2007). Besides measuring the extension/rotation 

control of the lumbar spine, it seemed to be the most objective way of measuring a) the 

load transfer capacity of the pelvis and b) the ability of participants to actively control 

lateral movement during one leg stance. 
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Participants were positioned in the normal upright standing position with their feet one 

third of their trochanteric distance apart and the umbilicus aligned with an upright pole. 

They were instructed to shift their weight from the normal standing position onto the left 

and the right leg respectively (standing on one leg). The lateral movement of the 

umbilicus from the midline (fixed pole) was measured with a spirit-level ruler at the 

completion of this weight transfer. The test was repeated three times to each side and the 

mean value of the weight shift to the left and the right was calculated. 

 

Symmetrical transfer of the umbilicus to the left and the right sides was considered a 

normal test, with the difference between sides being less than two centimetres. The test 

was deemed incorrect/abnormal if lateral transfer of the umbilicus exceeded 10cm or if the 

difference between the left and the right sides was more than two centimetres (Luomajoki 

et al 2008, 2007). 

 

4.4.9 Leg-length discrepancy 

The direct tape measure method, measuring the distance between the ASIS and the LM, 

was used to measure leg-length discrepancy (Terry et al 2005, Krawiec et al 2003, Beattie 

et al 1990, Woerman and Binder-Macleod 1984). Participants were positioned in supine 

on the treatment plinth and instructed to draw their legs up, perform a “bridge” and 

straighten the legs again before commencement of the measurement. The examiner 

palpated the ASIS and positioned the top edge of a flexible tape measure at that point. 

The most distal and lateral part of the LM was then palpated and a measurement taken 

with the tape measure. This measurement was taken for the left leg first and then for the 

right and repeated to increase the reliability of the measurement. The average of the two 

measurements was used as the value for the LLD.  

 

4.4.10 Bicycle set-up 

Inadequate bicycle set-up is regarded as one of the most important contributors to the 

development of LBPP in cyclists (Marsden and Schwellnus 2010, Asplund et al 2005, 

Silberman et al 2005, De Vey Mestdagh 1998).  The three points of contact the rider has 

with the bicycle are regarded as the key to proper bicycle set-up. These include: 

(1)  Contact of the shoe-cleat with the pedal 

(2)  Contact of the pelvis with the saddle 

(3) Contact of the hands with the handlebars (Silberman et al 2005). 

 



 

81 

 

De Vey Mestdagh (1998) regards posture height (which includes saddle height, crank 

length, shoe cleat position and saddle set-back) and posture length (reach, handlebar 

level and handlebar width) as crucial for a correct cycling position/posture. 

Incorrect saddle position (height and setback) and reach distance (which incorporates 

handlebar height) are generally described in the literature as the most problematic 

aspects of bicycle set-up in the development of lower back pain. 

 

4.4.10.1  Saddle height 

Saddle height was measured on the bicycle by assessing the angle of the knee with the 

pedal in the BDC. The participant was instructed to pedal and to stop with the right foot in 

the BDC position. The angle of knee flexion in the BDC position was measured with a 

universal goniometer. This procedure was repeated three times to increase the accuracy 

with the participant pedalling in between each measurement. This procedure was also 

repeated on the left leg, again measuring knee flexion angle with the pedal in the BDC 

position. The height of the saddle was considered acceptable if the knee flexion angle 

was between 25-35°(Peveler et al 2007, Peveler et al 2005). 

 

4.4.10.2  Saddle set-back  

Saddle set-back was measured with the participant on the bicycle and the crank arm of 

the tested leg in the horizontal forward position (3 o’clock). A plumb line was dropped from 

the posterior aspect of the patella. With proper saddle set-back the plumb line intersected 

the pedal axle and the posterior aspect of the patella was therefore directly above the 

pedal axle (Silberman et al 2005, De Vey Mestdagh 1998).  

 

4.4.10.3  Saddle angle 

The angle of the saddle has a direct influence on the position of the pelvis on the bicycle. 

Silberman et al (2005) recommended that the saddle should be close to level, thus 

parallel to the ground. Salai et al (1999) illustrated that 70% of cyclists  with low back pain 

experienced relief from pain when the saddle was tilted forward (anteriorly) by 10-15°. 

In this study the angle of the saddle was measured with a digital spirit level and recorded 

as level, anteriorly tilted or posteriorly tilted while noting the magnitude of inclination. A 

level or anteriorly tilted saddle was regarded as acceptable for optimal saddle angulation. 
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4.4.10.4  Cleat position  

Cleat position was measured by palpating the first metatarsal head with the participant in 

the standing position. The position of the first metatarsal head was marked with a pencil 

on the shoe. The participants were asked to remove their cycling shoes and the line 

drawn was followed through to determine if the cleat was aligned with this line. The line 

bisecting the first metatarsal head should lie directly over the pedal axle for proper shoe-

cleat to pedal contact and should therefore be in line with the position of the cleat 

(Silberman et al 2005, De Vey Mestdagh 1998). 

 

4.4.10.5  Posture length/reach 

Reach distance is at the centre of the debate on lower back problems and cycling (De 

Vey Mestdagh 1998). Reach distance is defined as the distance from the rear of the 

saddle to the transverse bar of the handlebars. The most accurate reach distance was 

calculated by considering the three factors involved in reaching forwards: the distance 

between the back of the saddle and the transverse bar of the handlebars, full arm length 

and the length of the upper body (De Vey Mestdagh 1998). The distance between the 

handlebars and the back of the saddle was measured with a tape measure in centimetres.  

 

Arm length is defined as the distance between the superior part of the acromion and the 

metacarpal heads. This was measured with the participant standing with the arms next to 

the side and hands relaxed in a fist. The distance between the acromion and the 

metacarpal heads was measured with a tape measure, the level of the acromion/starting 

position of measurement confirmed with a rigid spirit-level ruler. Upper body length is 

indicated by a measurement of the distance between the flat seat of a chair and the 

incisura jugularis of the manubrium sterni. The participant was placed in sitting position on 

the treatment plinth with the thighs and feet well supported. The distance between the flat 

surface of the plinth and the incisura jugularis of the manubrium sterni was measured with 

a rigid 1,5 meter metal ruler and a mathematical triangle with a sharp edge, levelled with a 

spirit level. The sharp point of the mathematical triangle was positioned at the incisura 

jugularis of the manubrium sterni and matched at right angles with the rigid metal ruler 

resting on the treatment plinth. A reading of the upper body length was taken from the 

rigid metal ruler. All measurements were repeated thrice and the mean of the three 

measurements was used as the reach distance, arm length and upper body length, 

respectively. 
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The three measurements were matched on a table of recommended reach distances 

developed by De Vey Mestdagh (1998), with the combined arm and upper body length 

determining what the reach should be (Appendix 7). 

 

4.4.10.6  Handlebar height 

Handlebar height is defined as the vertical distance between the handlebar stem and the 

top of the saddle (De Vey Mestdagh 1998). Silberman et al (2005) recommended that the 

vertical distance between the top of the saddle and the top of the handlebar stem should 

be 5-8 cm with the handlebar stem 5-8 cm below the top of the saddle.  

 

The height of the stem of the handlebars and the top of the saddle was measured with a 

tape measure with the bicycle mounted on an A-frame resistance trainer and the distance 

between the floor and the lifted wheels subtracted from the measurement. A handlebar 

height that fell within the 5-8cm difference parameter set by Silberman (2005) was 

considered as adequate. 

 

4.4.11 Data recording 

The data from the questionnaires were directly exported from Qualtrics into a Microsoft 

Excel spreadsheet with the participants’ reference numbers and the contact details of 

those who volunteered to participate in Part 2 of the study. The contact details and names 

of participants were placed in separate spread sheets to keep all personal information 

separate. The data were cleaned, column names adapted for ease of use in the statistical 

programme and the data checked for any inconsistencies. One participant was removed 

from the data sheet as he had completed the questionnaire twice. The data of another 14 

participants were removed as they did not meet the selection criteria for hours spent on 

the bicycle. The printed questionnaires received were manually entered into the Qualtrics 

website database by the researcher. 

 

The data obtained from the physical assessments were entered onto a standard data 

capturing form (Appendix 7) with each participant’s reference number as received from 

the Qualtrics website. This information was subsequently transferred into a Microsoft 

Excel spreadsheet. 
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4.5 Statistical analysis 

Intraclass correlations and Kappa values with their 95% confidence intervals were used to 

indicate the intrarater reliability of the tests expressed as poor (values less than 0.4), 

moderate (0.40-0.60), substantial (values greater than 0.60 but less than 0.75) and 

excellent (values higher than 0.75) (Portney and Watkins 2009).  

 

Prevalence was expressed as a percentage along with a 95% confidence interval. In 

univariate analyses subjects with and without low back pain were compared using 

Students’ two sample t-test and Mann-Whitney ranksum while for discrete variables 

Pearson’s Chi-square test or Fisher’s exact test was employed. The factors that were 

significant at the 0.20 level of significance were included into the multivariate analysis as 

to acquire a more generous look at the data and the influence of the factors on each other 

when put together in a logistic regression. From the multivariate analysis, i.e. logistic 

regression, the statistics of interest were odds ratios and their 95% confidence intervals 

for the exposure factors included in the regression. Testing was done at the 0.05 level of 

significance. Data analysis employed Stata Release 12.0 statistical software (StataCorp 

2011). 

 

For the purpose of the data analysis, categorisation of the data obtained in the physical 

assessment occurred as follows:  

 

 Body mass index 

Body mass index was divided into four sub-categories: underweight (if the BMI was less 

than 18.5), normal (BMI from 18.5 to less than 25), overweight (BMI from 25 to less than 

30) and obese (BMI more than 30) (WHO 2006, Gallagher et al 2000). Body mass index 

was further categorised into “BMI in normal limit” for those with a normal BMI and “BMI 

out of limit” for the overweight and obese participants. 

 

 Lateral shift 

Lateral shift was defined as within normal limits if the shift during one leg stance was less 

than 10cm for each leg and the difference in shift between the two legs was less than 2cm 

(Luomajoki et al 2008, Luomajoki et al 2007). 

 

 Sitting forward lean 

The sitting-forward-lean test, as an indication of lumbar flexion control, was classified as 

within normal limits if the change in lumbar curvature, as measured with a tape measure 
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between two pre-marked points, was less than one centimetre. The average of five 

measurements was used for the data analysis (Enoch et al 2011). 

 

 Slump 

The slump test, as a measure of the integrity of the neural dynamics, was divided into 

three groups. The slump test was defined as normal, if there were no abnormal symptoms 

indicating neural tension and if there was no limitation in range of motion for knee 

extension and dorsiflexion of the ankle. A covertly positive slump/neural dynamic test was 

defined as a positive neurodynamic test if there was a change in symptoms with structural 

differentiation (release of cervical flexion), but with no reproduction of the participant’s 

LBPP symptoms. With an overtly positive slump test, there was a change in symptoms 

with structural differentiation as well as reproduction of the LBPP symptoms. The results 

were further classified as “normal” if the test was normal or covertly positive and “positive” 

if the participant reported a change in symptoms with the release of cervical flexion as 

well as the reproduction of the LBPP (overtly positive neurodynamic response) (Shacklock 

2005). 

 

 Gluteus Maximus inner range holding capacity 

A normal inner range Gmax test encompassed all factors below (Richardson and Sims 

1991): 

 equal active and passive ROM to neutral hip extension in the prone upper 

body support position  

 ability to maintain the position for two repetitions of 15 seconds each for 

each leg 

 efficient control of the lumbo-pelvic region (less than 10 mmHg change in 

pressure measured with the PBF units) throughout the concentric 

shortening, isometric holding and eccentric lowering 

 

 Leg-length discrepancy 

The measured difference in lengths between the left and the right leg was divided into 

three categories: Discrepancy less than 6mm, discrepancy less than 10mm and 

discrepancy less than 20mm (Brêtas et al 2009, Defrin et al 2005, Silberman et al 2005, 

Gurney 2002). 

 

 Active straight leg raise 

The scores reported for the ASLR of the left and the right leg were added. If the mean of 

the sum of the scores added up to more than one out of ten, the ASLR test was regarded 
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as positive, indicating an impaired load transfer through the pelvis (Mens and Pool-

Goudzwaard 2012, Mens et al 2001). 

 

 Hamstring length 

Hamstring length was defined as normal if the KEA for both legs was less than 20 

degrees, as measured with a digital inclinometer (Davis et al 2008b). 

 

 Gluteus medius inner range holding capacity 

The inner range holding capacity of Gmed, as a measure of lumbo-pelvic stability, was 

regarded as within limit if the following conditions were met (Rabin et al 2013, Nelson-

Wong et al 2009, Comerford et al 2007): 

 

 Equal active and passive range of hip abduction to the benchmark of 45° 

hip abduction in the side lying position without substitution 

 Ability to maintain this position for two repetitions of 15 second holds 

without substitution  

 

 Lumbar spine curvature on the bicycle 

The position/curvature of the lumbar spine on the bicycle was measured in three different 

positions: brake lever position (hands on the brake hoods), seated upright position (hands 

on the transverse bar of the handlebars) and drops position (hands on the drops) (Muyor 

et al 2011a).  

 

 Saddle height 

The height of the saddle was defined by the KEA on the bicycle with the tested leg in the 

BDC position. The saddle height was considered to be in limit if the KEA for both legs 

were between 25-35 degrees (Peveler et al 2007, Peveler et al 2005). 

 

 Saddle set-back 

Saddle set-back was defined as within normal limits if a plumb line dropped from the 

posterior aspect of the patella of the knee was in line with the pedal spindle with the pedal 

in the forward horizontal position (3 o’clock) parallel to the floor (Silberman et al 2005, De 

Vey Mestdagh 1998). 
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 Saddle angle 

The angle of the saddle was classified as within normal limits if it was level or tilted 

anteriorly (Silberman et al 2005, Salai et al 1999). 

 

 Handlebar height 

Handlebar height was calculated by subtracting the actual height of the handlebars as 

measured from the floor from the height of the saddle (measured from the floor to the top 

of the saddle). It was defined as within normal limits if the handlebars were 5-8cm saddle 

below the saddle (Silberman et al 2005). 

 

 Reach 

Reach was calculated by adding the average arm length and upper body length, 

combining it with the reach distance from the rear of the saddle to the handlebars and 

comparing it to values set out by De Vey Mestdagh (1998). No literature could be found 

on whether the average length of the two arms, the shorter arm or the longer arm should 

be used in this calculation. For the purpose of this study, the average length of the two 

arms was used for the calculation of the reach distance (Marsden 2009). 

 

 Cleat position 

The position of the cleat on the shoe was deemed as within limits if the cleat was in line 

with the first metatarsal head and out of limit if it was either too far forwards or too far back 

(Wanich et al 2007, Silberman et al 2005, De Vey Mestdagh 1998). 

 

4.6 Summary 

The research design, sample selection, measuring instruments and procedure around 

these were described in this chapter. The procedures used in collecting and recording the 

data (and the statistical analysis) were also described and the results of the statistical 

analysis will be presented and described in Chapter 5. 
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CHAPTER 5: RESULTS 

 

5.1 Introduction 

The aim of this study was to determine the prevalence of LBPP in cyclists, the possible 

risk factors for LBPP in these cyclists and the association between these risk factors. Data 

were collected by means of a questionnaire and a physical assessment (as described in 

Chapter 4). This chapter is structured according to the objectives of the study as set out in 

Chapter 1. A summary of the presentation of the results is provided in Figure 5.1.  

 

Due to the tremendous number of results obtained from this study, only the main findings 

are presented in this chapter in order to ensure clarity of the findings. All data is available 

in Appendix 8-10 and will, as far as possible, be referred to in the text. Additional data 

was organised as follows: 

 Appendix 8 – Additional data on the reliability study 

 Appendix 9 – Additional data on the factors assessed in the physical examination 

(anthropometric, intrinsic and bicycle set-up factors) 

 Appendix 10 – Additional data on the interrelationships between factors 

Summaries of the main findings for the different sub-sections of the results are given in 

Table 5.10, Table 5.12, Table 5.13, Table 5.14, Figure 5.2, Figure 5.3 and Figure 5.4. 
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Figure 5.1 Schematic presentation of results 
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5.2 Reliability 

 

5.2.1 Physical assessment 

Intrarater reliability or repeatability was the measure used to establish the reliability of the 

measurements taken during the assessment. The reliability assessment was done on two 

occasions, seven days apart. The rater, namely the researcher, was blinded to any of the 

findings of the first assessment during the second assessment. A summary of the 

reliability of the factors measured in the physical assessment can be found in Table 5.1 

and Table 5.2. 

 

Table 5.1 Reliability of the physical assessment measures 

Factor 
Intra-class 

correlation (ICC) 
Kappa (ĸ) 95%CI 

Left arm length 0.99*** - 0.989-1.001 

Right arm length 1.00*** - 0.991-1.000 

Upper body length 0.95*** - 0.892-1.004 

Lateral sway to the left 0.73** - 0.461-0.988 

Lateral sway to the right 0.19 - 0.000-0.728 

Sitting forward lean average 

lean 
0.76*** - 

0.519-0.994 

Sitting forward lean distance 0.76*** - 0.522-0.994 

Leg-length left 1.00*** - 0.996-1.000 

Leg-length right 0.99*** - 0.988-1.000 

Hamstring KEA left 0.90*** - 0.795-1.005 

Hamstring KEA right 0.83*** - 0.672-1.003 

Lx position brake levers Tx/Lx 0.91*** - 0.802-1.019 

Lx position brake levers  Lx/Sx 0.86*** - 0.689-1.026 

Lx curvature brake levers 0.85*** - 0.680-1.026 

Lx position seated upright Tx/Lx 0.87*** - 0.714-1.017 

Lx position seated upright Lx/Sx 0.74** - 0.476-1.014 

Lx curve seated upright position 0.79*** - 0.554-1.017 

Lx position drops Tx/Lx 0.90*** - 0.777-1.028 

Lx position drops Lx/Sx 0.90*** - 0.777-1.028 

Lx curve drops position 0.90*** - 0.764-1.029 

Slump final category - -0.11 -0.619-0.390 

Gmax final category - 0.63** 0.124-1.133 

ASLR final category - 0.68** 0.131-1.219 

Gmed final category - 0.43* -0.014-0.883 

Key: Excellent intrarater reliability (ICC / Kappa > 0.75) = ***; Substantial intrarater reliability (ICC / Kappa of >0.60) = **, 

Moderate intrarater reliability (ICC / Kappa of 0.40-0.60) = *; Poor intrarater reliability (ICC / Kappa < 0.4).  
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Final categories were derived from the combined outcomes of the left and right sides. If 

either measurement did not fall in the recommended range for that factor it was taken as a 

negative outcome. Further information on the measurements for the left and right sides 

can be found in Appendix 8 (Table A8.1 and Table A8.2). 

 

The results of the repeatability assessment of the physical examination factors indicate 

excellent intrarater reliability/repeatability for the assessment of left and right arm length, 

upper body length, sitting-forward-lean average lean and lean distance, left and right leg-

lengths, left and right KEA, thoraco-lumbar angle and spinal curvature in the brake lever, 

seated upright and drops positions and lumbo-sacral angle in the brake lever and drops 

position. 

 

Two of the participants of the reliability study participated in endurance sporting activities 

(running marathon and endurance horse riding event) two days before the second 

measurement and first measurement respectively which, because of fatigue and lactose 

build-up, could act as confounding factors for the test-retest reliability of especially the 

measurements of Gmax, Gmed and the one-leg stance test. 

 

5.2.2 Reliability of bicycle set-up measurements 

The results of the intrarater reliability for the mearurement of bicycle set-up can be found 

in Table 5.2. Excellent intrarater reliability was obtained for the measurement of the 

saddle angle, saddle height measured from the floor, handlebar height measured from the 

floor, difference in the height of the handlebars and the saddle, reach from the rear of the 

saddle to the handlebars, and the final category of saddle set-back (classified following 

the measures obtained from the left and right leg as in limit or not in limit for both legs).  
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Table 5.2 Reliability of bicycle set-up measurements 

Factor ICC Kappa (ĸ) 95% CI 

Saddle height left leg 0.20 - 0.000-0.756 

Saddle height right leg 0.75** - 0.502-1.003 

Saddle angle 0.89*** - 0.771-1.010 

Saddle height (floor to top of saddle) 1.00*** - 0.996-1.000 

Top handlebar height (floor to 

handlebars) 
1.00*** - 

0.996-1.000 

Handlebar height (difference saddle 

height to handlebar height) 
1.00*** - 

0.989-1.001 

Reach (rear saddle to handlebars) 1.00*** - 0.994-1.000 

Saddle height final category - 0.43* -0.036-0.893 

Saddle set-back final category - 0.81*** 0.233-1.394 

Cleat position final category - 0.65** 0.140-1.158 

Key: Excellent intrarater reliability (ICC / Kappa > 0.75) = ***; Substantial intrarater reliability (ICC / Kappa of >0.60) = **, 

Moderate intrarater reliability (ICC / Kappa of 0.40-0.60) = *; Poor intrarater reliability (ICC / Kappa < 0.4).  

 

In an attempt to increase the reliability of the lateral shift (one leg stance) test, a spirit 

level ruler was used to measure the lateral excursion of the navel. Markers were also 

positioned on the greater trochanter, lateral malleolus and lateral knee joint line in an 

attempt to measure the angle of the knee more accurately on the bicycle when assessing 

the saddle height. At the time of testing, no further measures could be thought of to 

increase the accuracy of the Gmax and Gmed measurements as inclinometers, PBF units 

and rods were already utilised to control for as many of the confounding factors as 

possible. Both these tests were considered as the best available for assessing muscular 

control and functioning and were subsequently used despite the lower reliability.   

 

5.3 Questionnaire 

 

5.3.1 Demographics 

A link to the questionnaire on the Qualtrics website (Qualtrics 2012) was sent out via e-

mail.  A total of 414 people accessed the website of which 183 were automatically 

excluded on the Qualtrics website as they did not meet the inclusion criteria of the study.  

From the 414 cyclists who accessed the website, 231 were included in the study and 

completed the questionnaire. The mean age of the participants was 45 years (Standard 

Deviation (SD) = 11.12). Forty seven females (20%) and 184 males (80%) completed the 

questionnaire. The demographic factors and description of the population are summarised 

in Table 5.3 and Table 5.4. 
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Table 5.3 Demographic, anthropometric and training factors of the participants 

of the questionnaire  

Factor Category 
Participants 

n (%) 

Gender 
Male 184 (79.7) 

Female 47 (20.3) 

Smoking 

Currently 7 (3.0) 

Previously, but quit 66 (28.6) 

Never 158 (68.4) 

Daily activities 

Manual labour 10 (4.3) 

Desk/computer work 178 (77.1) 

Driving 9 (3.9) 

Other 34 (14.7) 

Work position 

Sitting 131 (56.7) 

Standing 6 (2.6) 

Combination  94 (40.7) 

Number of days cycling per week 

1-2 days/week 52 (22.5) 

3 days/week 54 (23.4) 

4 days/week 59 (25.5) 

5-6 days/week 66 (28.6) 

Average cycling pace 

≤25km/h 56 (24.2) 

26-30 km/h 128 (55.4) 

>30 km/h 47 (20.4) 

Type of training terrain 

Mostly flat 20 (8.7) 

Mostly hilly 31 (13.4) 

Combination 180 (77.9) 

Number of cycling events per year 

0-2 24 (10.4) 

3-5 98 (42.4) 

6-10 76 (32.9) 

>10 33 (14.3) 

Cycling technique mostly used 

High cadence 126 (54.6) 

Low cadence 65 (28.1) 

Bigger gears 106 (45.9) 

Smaller gears 65 (28.1) 
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Table 5.4 Additional demographic and training factors for participants of the 

questionnaire 

Factor Sub-categories Mean (SD) 
95% Confidence 

interval (CI) 

Age - 45.20 (11.13) 43.76-46.65 

Number of years cycling - 10.87 (10.52) 9.51-12.23 

Hours per week cycling - 6.51 (2.68) 6.16-6.85 

Percentage time spent 

per riding position 

Seated upright position 37.13(26.36) 33.71-40.55 

Drops position 9.67 (12.04) 8.11-11.23 

Brake levers 48.09 (26.67) 44.64-51.55 

Standing position 9.87 (7.91) 8.85-10.90 

 

5.3.2 Characteristics of lower back and pelvis pain in cyclists 

 

5.3.2.1  History of lumbo-pelvic pain  

The behaviour of the pain was investigated for all participants who reported lower back or 

pelvis pain during or after cycling. A summary can be found in Table 5.5. 

 

Table 5.5 Low back pain history in participants reporting LBPP during or after 

cycling 

History 

Respondents 

(n=148) 

n (%) 

Last episode of lower back or pelvis pain during or after cycling  

 Current pain 39 (26.4) 

 During the last week 31 (21.0) 

 During the last month 44 (29.7) 

 During the past 6 months 23 (15.5) 

 During the past 12 months 7 (4.7) 

 More than 12 months ago 4 (2.7) 

Number of episodes of lower back or pelvis pain during or after 

cycling in the last five years 
 

 1-5 incidences 36 (24.3) 

 6-10 incidences 36 (24.3) 

 11-15 incidences 12 (8.1) 

 More than 20 incidences 34 (23.0) 

 Lower back or pelvis pain most of the time 30 (20.3) 

 

The table above illustrates that the largest group of participants (n=44, 29.73%), reported 

experiencing lower back or pelvis pain during or after cycling in the last month. In addition 

to this, one to five episodes and six to ten episodes of lower back or pelvis pain in the last 
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five years were reported by an equal number of participants, 24.32% (n=36). From the 

information obtained from the questionnaire, the majority of participants reported not 

experiencing any pain referral into other areas (n=115, 77.7%). 

 

5.3.2.2  Area of lower back or pelvis pain symptoms 

Table 5.6 illustrates the area of pain as reported by the participants. 

 

Table 5.6 Report on the area of LBPP distribution 

Area of pain 

Respondents 

(n=148) 

n (%) 

Central lower back pain 60 (40.5) 

Unilateral lower back pain 40 (27.0) 

Sacro-iliac joint pain 74 (50.0) 

Other areas 8 (5.4) 

Participants were allowed to select more than one option for this question in the questionnaire 

 

Half the participants (50%, n=174) experienced pain in the sacro-iliac joint area during or 

after cycling. 

 

5.3.2.3 Impact of lower back or pelvis pain experienced during or after cycling 

The results of the impact of LBPP are illustrated in Table 5.7. 

 

Table 5.7 Reported impact of lower back or pelvis pain on training 

Impact on training 

Respondents 

(n=148) 

n (%) 

Training not affected 63 (42.6) 

Trained through pain 59 (39.9) 

Trained with the assistance of analgesics or 

anti-inflammatory medication 
16 (10.8) 

Unable to train for one week 4 (2.7) 

Unable to train for 1-3 weeks 3 (2.0) 

Unable to train for 4-8 weeks 2 (1.4) 

Unable to train for 9-12 weeks 0 

Unable to train for 3-6 months 1 (0.7) 
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The impact of LBPP on cycling training seemed to be limited as reported by the 

participants (Table 5.7).  Forty three percent (n=63) reported that their training was not 

affected by the LBPP they experienced during cycling and forty percent (n=59) reported 

that they could train through the pain. Training was ceased for various time frames in only 

7% of participants, indicating a limited impact of the LBPP on training. 

 

5.3.2.4 Behaviour of LBPP with cycling 

Table 5.8 illustrates the results of the behaviour of the LBPP during cycling as described 

by the participants. 

 

Table 5.8 Relationship between lower back or pelvis pain and cycling  

Behaviour of LBPP 

Respondents 

(n=148) 

n (%) 

Time to onset of lower back or pelvis pain while cycling  

 0-10 minutes 3 (2.0) 

 11-30 minutes 7 (4.7) 

 30 minutes to 1 hour 19 (12.8) 

 1-2 hours 42 (28.4) 

 More than 2 hours 75 (50.7) 

 After cycling 2 (1.4) 

Riding position associated with lower back or pelvis pain  

 Upright seated position 61 (41.2) 

 Drop position 37 (25.0) 

 Brake levers 92 (62.2) 

 Standing position 8 (5.4) 

Participants were allowed to select more than one option for this question on the riding position associated with the LBPP in  

the questionnaire 

 

The table above illustrates that 50.7% (n=75) only experienced LBPP after they had been 

cycling for more than two hours. In addition to this, cycling was attributed as the cause of 

the lower back or pelvis pain in 68.9% (n=102) of participants who reported LBPP during 

or after cycling. Riding with the hands on the brake levers was reported as the riding 

position where the majority of participants (62.2%, n=92) experienced their lower back or 

pelvis pain. 
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5.3.2.5 Summary of the characteristics of LBPP in cyclists 

The characteristics of lower back and pelvis pain experienced during or after cycling are 

summarised in Figure 5.2. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Characteristics of lower back and pelvis pain in cyclists 

 

Characteristics of 

lower back and pelvis 

pain in cyclists 

Prevalence 

Lower back and pelvis pain 

behaviour 
 

- Last episode mostly within the 

last   month (n=44, 29.7%) 

- On average 1 to 10 episodes in 

the last 5 years (n=72, 48.6%) 

- Mainly no referral of the pain 

(n=115, 77.7%) 

Area of the 

symptoms 
 

- Mainly into the 

sacro-iliac joints 

(n=75, 50%) 

Impact of the LBPP 
 

- Training mostly not 

affected (n=63, 

42.6%) or trained 

through pain (n=59, 

39.9%) 

Relationship between pain and cycling 
 

- The onset of pain mostly with riding for 

more than 2hours (n=75, 50.7%) 

- Pain mostly experienced when positioned 

on the brake levers (n=92, 62.2%) 

- Pain is mostly attributed to cycling 

(n=102, 68.9%) 



 

98 

 

5.3.3 Prevalence of lower back and pelvic pain 

The lifetime prevalence of LBPP in cyclists was 65.4% (n=151). Of the population that 

reported experiencing LBPP during or after cycling 117 (77.5%) were male and 34 

(22.5%) were female. Table 5.9 illustrates the prevalence of LBPP in cyclists. 

 

Table 5.9 Prevalence of LBPP 

History of lower back or pelvis pain 
Respondents 

n (%) 

General lifetime prevalence of LBPP in daily living 163 (70.6) 

LBPP with cycling: lifetime prevalence 151 (65.4) 

LBPP with cycling: one-year prevalence 144 (62.3) 

LBPP with cycling:  point prevalence 39 (16.9) 

 

 
5.3.4 Association between anthropometric factors, training factors and LBPP 

in cyclists 

None of the anthropometric or training factors assessed from the data provided in the 

questionnaire had a statistically significant association with the prevalence of LBPP 

(Table 5.10). All factors assessed from the questionnaire for their possible association 

with LBPP are summarised in Table 5.10 together with the significance of each factor.  

The individual results of the association of all the factors with the prevalence of LBPP in 

cyclists can be found in Appendix 9. 

 

 
. 
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Table 5.10 Summary of the association between various factors and LBPP as 

identified from the questionnaire 

 

None of these factors were further assessed as there were no statistically significant 

association between any of these factors and LBPP in cyclists. 

Factors Category 

Respondents 

no LBPP 

n (%) 

Respondents 

with LBPP 

n (%) 

p-value 

Gender  
Female 14 (17.5) 34 (22.5) 

0.37 
Male 66 (82.5) 117 (77.5) 

Age  Mean (SD) 45.31 (11.16) 45.15 (11.15) 0.91 

Smoking 

Currently 2 (2.5) 5 (3.31) 

0.96 
Previously, but 

quit 
22 (27.5) 44 (29.1) 

Never 56 (70) 102 (67.6) 

Number of days 

cycled per week 

1-2 days/week 18 (22.5) 34 (22.5) 

0.50 
3 days/week 16 (20) 38 (25.2) 

4 days/week 25 (31.3) 34 (22.5) 

5-6 days/week 21 (26.3) 45 (29.8) 

Average cycling 

pace 

≤25 km/h 21 (26.3) 35 (23.2) 

0.29 26-30 km/h 39 (48.8) 89 (58.9) 

>30 km/h 20 (25) 27 (17.9) 

Type of training 

terrain 

Mostly flat 7 (8.8) 13 (8.6) 

0.65 Mostly hilly 13 (16.3) 18 (11.9) 

Combination 60 (75) 120 (79.5) 

Number of cycling 

events per year 

0-2 9 (11.3) 15 (9.9) 

0.61 
3-5 32 (40) 66 (43.7) 

6-10 30 (37.5) 46 (30.5) 

>10 9 (11.3) 24 (15.9) 

Pedalling technique 

mostly used 

High cadence 47 (58.8) 79 (52.3) 0.35 

Low cadence 19 (23.8) 46 (30.5) 0.28 

Big gears 35 (43.8) 71 (47) 0.64 

Small gears 22 (27.5) 43 (28.5) 0.88 

Number of years 

cycled 

Mean (SD) 

(years) 
9.89 (9.73) 11.39 (10.91) 0.22 

Number of hours 

cycled per week 

Mean (SD) 

(hours) 
6.51 (2.51) 6.50 (2.77) 0.78 

Percentage of time 

spent in different 

handlebar positions 

Mean (SD) 

Seated upright 

position  
36.35 (25.8) 37.54 (26.73) 0.79 

Drop position 10.45 (12.89) 9.25 (11.58) 0.49 

Brake levers 47.81 (25.98) 48.25 (17.11) 0.81 

Standing 

position 
9.79 (8.58) 9.92 (7.57) 0.34 
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5.4 Physical and bicycle set-up assessment 

 

5.4.1 Demographics 

 

5.4.1.1 Number of participants, gender and age 

From the 231 cyclists who completed the questionnaire, 121 volunteers were included in 

the physical assessment. An analysis of the loss of participants from those who 

completed the questionnaire can be found in Table 5.11. Eighty percent (n=97) of the 

cyclists who volunteered to participate in the physical assessment were male and 20% 

(n=24) were female. The mean age per gender was 41.96 years for the females and 

47.38 years for the males. 

 

Table 5.11 Recalling of participants from questionnaire to physical assessment 

Participants 
Respondents 

n 
% 

Volunteered to participate in the physical assessment 

and were included 
121 52.38 

Did not volunteer to participate in the physical 

assessment 
51 22.08 

Did not meet the criteria for participation anymore 9 3.90 

Could not be reached  4 1.73 

Could not attend physical assessment during the data 

collection period 
10 4.33 

Excluded due to geographic location (out of Gauteng 

province) 
32 13.85 

Unable to participate due to unforeseen circumstances 

(emigrated, bicycle accident) 
4 1.73 

Total number of participants 231 100 

 

5.4.1.2 Characteristics of physical functioning 

A summary of the objective findings of the physical assessment and the bicycle-set up 

assessment can be found in Figure 5.3 and Figure 5.4. For the table of full results refer 

to Appendix 9. 
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Figure 5.3 Summary of the physical characteristics of cyclists  

 

Physical 
characteristics 
of cyclists in 

Gauteng 

BMI 
 

- An almost equal number 
of participants presented 
with normal BMI (n=55, 
45.5%) or were overweight 
(n=51, 42.2%) 
- Mean BMI (SD): 25.98 
(3.77) kg/m² 
- LBPP group: 48.89% 

(n=44) normal BMI, 
51.11% (n=46) 
overweight/obese 
- Mean BMI (SD): 25.8 

(3.8) kg/m² 

Lumbo-pelvic stability 
 
Active straight leg raise 

- Majority normal ASLR (n=78, 
64.5%) 
- LBPP group: majority normal 

ASLR (n=59, 65.6%) 
 
Lateral sway 

- Majority normal lateral sway 
(n=74, 61.2%) 
- Mean sway left (SD): 7.86 (1.94) 
cm 
- Mean sway right (SD): 7.21 
(1.92) cm 
- LBPP group: most normal lateral 

sway (n=52, 57.8%) 
 
Sitting-forward Lean 
- Majority no lumbar flexion give 
with sitting forward lean test 
(n=114, 94.2%) 
- Mean lean (SD): 0.3 (0.38) cm 
- LBPP group: Majority no flexion 

give/normal test (n=84, 93.3%) 
 

Neural mobility 
 
Slump 

- Majority presented with 
normal slump test/no 
neurodynamic dysfunction 
(70.25%) 
- LBPP group: Majority 
presented with normal 

slump (83.33%) 

Leg-length discrepancy 

 
- Majority less than 10mm 
difference in leg-length 
(76.86%) 
- 61.16% less than 6mm 
difference and 2.48% 
more than 20mm 
difference 
- Mean LLD: 0.632 (SD: 
0.060) 
- LBPP group: majority 

less than 10mm (77.78%), 
62.22% less than 6 mm 
and 1.11% more than 

20mm difference 

Muscle tests 
 

Hamstring length 

- Majority presented with 
shortened hamstrings – KEA >20° 
(n=84, 69.42%) 
- Mean Left KEA (SD): 23.73° 
(11.71)  
- Mean Right KEA (SD): 23.52°  
(11.11) 
- LBPP group: majority - 

decreased length/KEA >20° 
(n=63, 70%) 
 
Gmax inner range holding 

- Majority presented with poor 
Gmax inner range holding 
capacity (n=99, 81.8%) 
- LBPP group: Majority poor 
control (n=73, 81.1%) 
 
Gmed through range control 
- Majority poor control (n=107, 
88.4%) 
- LBPP group: mostly insufficient 

control (n=82, 91.1%) 
 
 

Lumbar position on 
bicycle 

 
Brake levers 

- Mostly in slump 
position/Lx flexion 
(87.60%) 
- Mean curvature: 15.93° 
(SD:10.11) 
- LBPP group: majority in 
Lx flexion (88.89%) 
 
Seated upright position 
- Majority in Lx flexion 
(86.78%) 
- Mean curvature: 15.23° 
(SD:10.31) 
- LBPP group: mostly in Lx 

flexion (87.78%) 
 
Drop position 

- Majority in Lx flexion 
(92.56%) 
- Mean curvature: 17.94° 
(SD:9.65) 
- LBPP group: mostly in Lx 

flexion (91.11%) 
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Figure 5.4 Summary of the bicycle setup factors  

 

 

 

 

Description of 
bicycle setup 

factors  

Position of the saddle 

 
Saddle Height 

- Majority of cyclists’ saddle 
height out of the recommended 
range (n=78, 64.5%) 
- Saddle too high in 10.7% 
(n=13) 
- Saddle too low in 21.5% 
(n=26) 
- Asymmetry between left and 
right sides in 33.9% (n=41) 
- LBPP group: Majority 
presented with saddle height 
out of range (n=55, 61.1%), 
with the majority presenting 
with asymmetry between sides 
(n=26, 28.9%) or too low saddle 
(n=20, 22.2%) 
 
Saddle set-back  

- Majority presented with a 
saddle set-back out of the 
recommended range (n=73, 
60.3%) of which the saddle was 
set too far forward for the 
majority  
- LBPP group: Majority – saddle 
set-back not in recommended 
range (n=57, 63.3%). 
 
Saddle angle 
- Majority of saddles are tilted 
anteriorly (n=58, 47.9%) 
followed by 38.8% (n=47) tilted 
posteriorly. 
- Mean (SD) tilt: 0.72° (2.5) 
- LBPP group: Majority of 
saddles tilted anteriorly (n=45, 
50%) followed by 35.6% (n=32) 
tilted posteriorly 
- Mean (SD) tilt: 0.81° (2.6) 
 
 

Cleat position 
 
- Majority of cyclists – 
cleats positioned incorrectly 
on shoes (n=68, 56.2%) 
- LBPP group: Majority of 
cleats positioned incorrectly 

on shoes (n=52, 57.8%) 

Handlebar height 
 

- In the majority of cyclists 
the handlebar height was 
out of the recommended 
limit of 5-8 cm below the 
saddle (n=84, 69.4%) 
- Majority of handlebars too 
high (n=66, 54.6%) 
-LBPP group: Majority out of 
the recommended range 
(n=64, 71.1%), with the 
majority of handlebars again 
set too high (n=53, 58.9%) 
 

Reach 

 
- Majority of cyclists’ have 
an incorrect reach distance 
(n=110, 90.9%) 
- Majority of cyclists are too 
bunched up (reach forward 
too short) (n=52.9, 52.9%). 
-LBPP group: Majority too 

bunched up (n=49, 54.4%) 
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5.4.2 Presentation of physical and bicycle set-up factors 

Of the 121 participants who volunteered to participate in the physical assessment, 74.4% 

(n=90) reported experiencing LBPP during or after cycling of whom 21.1% (n=19) were 

female and 78.9% (n=71) were male. All the results of the physical and bicycle set-up 

assessments are summarised in Table 5.12, Table 5.13 and Table 5.14.  

 

Table 5.12 Summary of the relationship between LBPP and lumbar angle and 

curvature on the bicycle 

Key: Factors with significance <0.2 to be included in the logistical regression = 
#
,  

statistically significant relationship (<0.05) =*  

 

 

 

 

 

 

 

 

 

 

 

 

Position Sub-categories 
Mean (SD) 

p-value 95% CI 
No LBPP LBPP 

Brake lever 

position 

Thoraco-lumbar 

(T12/L1) 

47.13 (6.85) 
49.8 (7.08) 0.06# 47.84-50.39 

Lumbo-sacral 

(L5/S1) 

34.87 (7.38) 
32.57 (8.21) 0.11# 31.71-64.60 

Lumbar curvature 12.23 (8.58) 17.20 (10.32) 0.01* 14.11-17.75 

Seated upright 

position 

Thoraco-lumbar 

(T12/L1) 

42.26 (7.53) 
44.48 (6.96) 0.15# 42.62-45.20 

Lumbo-sacral 

(L5/S1) 

30.55 (7.16) 
28.04 (8.68) 0.06# 27.18-30.19 

Lumbar curvature 11.65 (8.30) 16.46 (10.68) 0.01* 13.37-17.09 

Drop position 

Thoraco-lumbar 

(T12/L1) 

56.77 (7.34) 
59.8 (6.85) 0.05* 57.75-60.30 

Lumbo-sacral 

(L5/S1) 

42.26 (6.61) 
40.7 (8.24) 0.13# 39.69-42.51 

Lumbar curvature 14.59 (8.36) 19.10 (9.84) 0.02* 16.21-19.68 
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Table 5.13 Summary of the relationship between physical factors and LBPP 

Key: Factors with significance <0.2 included in the logistical regression = 
#
, statistically significant relationship (<0.05) =* 

 

 

Factor Sub-categories 

Respondents 

p-value 95% CI No LBPP 

n (%) 

LBPP 

n (%) 

Gender 
Female 5 (16.1) 19 (21.1) 

0.61 
0.58-0.93 

Male 26 (83.9) 71 (78.9) 0.63-0.82 

Distance 

cycled per 

week (km) 

Mean (SD) 176 (116.14) 191.7 (92.68) 0.19
#
 169.94-205.65 

Body mass 

index 

Mean (SD) 26.62 (3.61) 25.76 (3.82) 0.24 25.30-26.66 

Final category: 

In limit 

Out of limit 

 

11 (35.5) 

20 (64.5) 

 

44 (45.9) 

46 (51.1) 

0.20
#
 0.57-0.80 

Normal  11 (35.5) 44 (48.9) 

0.27 

0.67-0.90 

Overweight 14 (45.2) 37 (41.1) 0.58-0.84 

Obese 6 (19.4) 9 (10) 0.32-0.84 

Lateral sway 
In limit 

Out of limit 

22 (71.0) 

9 (29.0) 

52 (57.8) 

38 (42.2) 
0.19

#
 0.67-0.91 

Sitting forward 

lean 

In limit 

Out of limit 

30 (96.8) 

1 (3.2) 

84 (93.3) 

6 (6.7) 
0.68 0.42-1.00 

Slump 

Final category: 

In limit 

Out of limit 

 

29 (93.6) 

2 (6.5) 

 

75 (83.3) 

15 (16.7) 

0.23 0.64-0.99 

Normal  24 (77.4) 61 (67.8) 

0.38 

0.61-0.81 

Covertly positive 5 (16.1) 14 (15.6) 0.49-0.91 

Overtly positive 2 (6.5) 15 (16.7) 0.64-0.99 

Gmax 

In limit 

Out of limit 

5 (16.1) 

26 (83.9) 

17 (18.9) 

73 (81.1) 
1.00 0.64-0.82 

Asymmetry 6 (19.4) 23 (25.6) 0.49 0.60-0.92 

Leg-length 

discrepancy 

Mean (SD) (cm) 0.75 (0.92) 0.59 (0.55) 0.67 0.51-0.75 

> 6mm 13 (41.9) 34 (37.8) 0.68 0.57-0.84 

>10mm 8 (25.8) 20 (22.2) 0.68 0.51-0.87 

>20mm 2 (6.5) 1 (1.1) 0.16
#
 0.01-0.91 

Active straight 

leg raise 

In limit 

Out of limit 

19 (61.3) 

12 (38.7) 

59 (65.6) 

31 (34.4) 
0.67 0.56-0.85 

Hamstring 

length

Mean (SD) KEA 

left leg (°) 
21.3 (10.0) 24.6 (12.2) 0.22 21.62-25.83 

Mean (SD) KEA 

right leg (°) 
22.8 (9.6) 23.8 (11.6) 0.80 21.52-25.52 

In limit 

Out of limit 

10 (32.3) 

21 (67.7) 

27 (30) 

63 (70) 
0.81 0.64-0.84 

Asymmetry 5 (16.1) 13 (14.4) 0.78 0.35-0.90 

Gmed 

In limit 

Out of limit 

6 (19.4) 

25 (80.7) 

8 (8.9) 

82 (91.1) 
0.12

#
 0.67-0.84 

Asymmetry 8 (25.8) 32 (35.6) 0.32 0.64-0.91 
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Table 5.14 Summary of the relationship between bicycle set-up and LBPP 

Factor Subfactor 

Respondents 

p-value 95% CI No LBPP 

n (%) 

LBPP 

n (%) 

Saddle 

height 

Final category 

In limit 

Not in limit 

 

8 (25.8) 

23 (74.2) 

 

35 (38.9) 

55 (61.1) 

0.19# 0.59-0.80 

In limit 8 (25.8) 35 (38.9) 

0.45 

0.67-0.92 

Asymmetry 

between KEA 
13 (41.9) 26 (28.9) 0.50-0.81 

Too high 4 (12.9) 9 (10.0) 0.39-0.91 

Too low 6 (19.4) 20 (22.2) 0.56-0.91 

Saddle set-

back 

In limit 

Not in limit 

15 (48.4) 

16 (51.6) 

33 (36.7) 

57 (63.3) 
0.25 0.67-0.87 

Saddle angle 

Mean (SD) 0.42 (2.20) 0.81 (2.58) 0.44 0.26-1.17 

Final category 

In limit 

Not in limit 

 

16 (51.6) 

15 (48.4) 

 

58 (64.4) 

32 (35.6) 

0.21 0.53-0.81 

Level 3 (9.7) 13 (14.4) 

0.51 

0.54-0.96 

Tilted anterior 

down 
13 (41.9) 45 (50) 0.65-0.87 

Tilted posterior 

down 
15 (48.4) 32 (35.6) 0.53-0.81 

Handlebar 

height 

Mean (SD) 5.23 (3.11) 4.50 (3.79) 0.15# 4.09-5.29 

Final category 

In limit 

Not in limit 

 

11 (35.5) 

20 (64.5) 

 

26 (28.9) 

64 (71.1) 

0.49 0.66-0.85 

In limit 11 (35.5) 26 (28.9) 

0.20 

0.53-0.84 

Too high 13 (41.9) 53 (58.9) 0.69-0.89 

Too low 7 (22.6) 11 (12.2) 0.36-0.83 

Reach 

Average of 

limbs 

In limit 

Out of limit 

 

 

1 (3.2) 

30 (96.8) 

 

 

10 (11.1) 

80 (88.9) 

0.29 0.63-0.81 

In limit 1 (3.2) 10 (11.1) 

0.27 

0.59-1.00 

Too short 15 (48.4) 49 (54.4) 0.64-0.86 

Too far 15 (48.4) 31 (34.4) 0.52-0.80 

Reach ratio Mean (SD) 1.57 (0.06) 1.57 (0.07) 0.52 1.56-1.58 

Cleat 

position 

In limit  

Out of limit 

15 (48.4) 

16 (51.6) 

38 (42.2) 

52 (57.8) 
0.55 0.65-0.86 

Key: Factors with significance <0.2 included in the logistical regression = 
#
, statistically significant relationship (<0.05) = * 

 

Of all the factors assessed, only lumbar curvature was significantly related to LBPP in 

cyclists in the univariate analysis. From the univariate analysis, all factors with a 

significance value of less than 0.2 were included in a multivariate analysis, as indicated in 
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Figure 5.5. The thoraco-lumbar (T12/L1) and lumbo-sacral (L5/S1) angles were omitted 

from the multivariate analysis as they constituted the lumbar curvature in all three 

handlebar positions.  The results of all the factors assessed can be found in Appendix 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Summary of factors taken to the multivariate analysis 

 

 

 

 

 

Factors to be taken to multivariate analysis (p<0.2) 

 
- Distance cycled per week (p=0.19) 

- Lateral sway (p=0.19, n=38, 42.2%) 

- LLD >20mm (p=0.16, n=1, 1.1%) 

- Gmed control (p=0.12, n=82, 91.1%) 

- Lx curvature in the brake lever position (p=0.01) 

- Lx curvature in the seated upright position (p=0.01) 

- Lx curvature in the drops position (p=0.02) 

- Saddle height (p=0.19, n=55, 61.1%) 

- Handlebar height (p=0.15) 

Factors possibly 
associated with LBPP 

in cyclists  

LLD>20mm removed 
from list as only 1 
participant presented 
with it 
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5.5 Exploratory analysis of the relationship between factors and 

LBPP 

 
The results of the logistical regression of the factors that presented with significance lower 

than 0.20 in the univariate analysis is illustrated in Table 5.15. The category “LLD less 

than 20mm” was not included in the logistical regression as only one participant had a 

LLD greater than 20mm, which would skew the findings. 

 

Table 5.15 Logistical regression of factors from the univariate analysis 

Risk factor Odds ratio 95% Confidence interval p-value 

Handlebar height 0.90 0.78-1.03 0.11 

Saddle height 0.55 0.21-1.48 0.24 

Lumbar curvature in brake lever 

position 
1.01 1.00-1.09 0.03* 

Gmed 3.43 0.98-11.94 0.05* 

LLD <20mm 0.21 0.02-2.61 0.22 

Key: Factors with a statistically significant relationship (<0.05) =*  

 

 

In the multivariate analysis, only the lumbar curvature with the hands in the brake lever 

position (p=0.03) and weakness of Gmed (p=0.05) were significantly associated with 

LBPP in cyclists. The multivariate analysis indicates that the risk for LBPP increases by 

1.01 times for every degree of lumbar flexion added when seated in the brake lever 

position. Cyclists with weakness of Gmed are also 3.4 times more likely to develop LBPP 

than those without.  

 

The aim of this study was to investigate the association of various factors with LBPP. 

Those associated with LBPP can still not be regarded as risk factors as their sensitivity 

and specificity for identifying LBPP in cyclists need to be established, which is beyond the 

scope of this study. 

 

5.6 Associations of various factors with each other 

The significant relationships of all factors compared with each other in the univariate 

analysis are discussed in this section. A breakdown of the interrelationships of all relevant 

factors can be found in Appendix 10. 
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5.6.1 Gender 

Gender was significantly related to BMI (p=0.005), Gmax inner range holding capacity 

(p=0.006), hamstring length (p=0.001), Gmed through range control (p=0.003) and to the 

thoraco-lumbar and lumbo-sacral angles and curvatures in all three handlebar positions 

(Table 5.16). Interrelationships between gender and various factors are illustrated in 

Table A10.1 (Appendix 10). 

 

Table 5.16 Association between gender and lumbar position on the bicycle 

Factor Riding position Sub-factor p-value 

Lumbar position 

Brake levers 

T12/L1 0.044* 

L5/S1 0.001* 

Lumbar lordosis 0.023* 

Seated upright 

T12/L1 0.036* 

L5/S1 0.001* 

Lumbar lordosis 0.029* 

Drop position 

T12/L1 0.001* 

L5/S1 0.001* 

Lumbar lordosis 0.042* 

Key: Statistically significant relationship (<0.05) = * 

 

5.6.2 Distance cycled per week 

Distance cycled per week was significantly associated with gender (p=0.012) alone (Table 

A10.2, Appendix 10). 

 

5.6.3 Body mass index 

A statistically significant relationship was found between BMI and Gmed (p=0.01). Body 

mass index was also significantly associated with the thoraco-lumbar angle as well as the 

actual lumbar lordosis in all three riding positions on the bicycle. These relationships are 

illustrated in Table 5.17 and Table A10.3 (Appendix 10). 
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Table 5.17 Association between BMI and lumbar angle on the bicycle 

Riding position Lumbar position p-value 

Brake levers 
T12/L1 0.001* 

Lumbar lordosis 0.002* 

Seated upright 
T12/L1 0.001* 

Lumbar lordosis 0.004* 

Drop position 
T12/L1 0.001* 

Lumbar lordosis 0.001* 
Key: Statistically significant relationship (<0.05) = * 

 

5.6.4 Gluteus Medius 

Of all the factors compared to Gmed, only BMI (p=0.01), inner range holding capacity of 

Gmax (p=0.001) and the length of the hamstrings (p=0.02) had statistically significant 

relationships with Gmed (Table A10.4, Appendix 4). Most of the participants that 

presented with poor through range control of Gmed also presented with poor Gmax inner 

range holding (n=92; 85.98%) and with decreased flexibility of the hamstrings (n=78; 

72.90%).  

 

5.6.5 Hamstring length 

Holding capacity of Gmax (p=0.01) and control of Gmed (p=0.021) had statistically 

significant relationships with the length of the hamstrings. If hamstring length was poor, 

the majority of participants also had insufficient inner range control of Gmax (n=74, 

88.10%) and control of Gmed (n=78, 92.86%). Hamstring length was related to the lumbo-

sacral angle (L5/S1) on the bicycle in the seated upright position (p=0.03), drops position 

(p=0.03) and the brake lever position (p=0.07) on the bicycle (Table A10.5, A10.8, A10.11 

and A10.14, Appendix 10).  

 

5.6.6 Gluteus maximus  

Gmax inner range holding capacity was significantly related to lateral sway (p=0.031), 

Gmed control (p=0.001) and hamstring length (p=0.007) (Table A10.6, Appendix 10).  

 

5.6.7 Saddle height, set-back and angle 

Neither saddle height nor saddle set-back was significantly related to any other factors. 

The angle of the saddle was significantly related to the thoraco-lumbar angle (T12/L1) in 

the drops position (p=0.02) (see Table A10.13, appendix 10).  
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5.6.8 Lumbar angle and curvature on the bicycle 

Some of the interrelationships between the lumbar angle and curvature and various other 

factors have been previously mentioned. Lumbar curvature in the drops position was also 

significantly related to the sitting forward lean test. Besides the associations between 

lumbar angle and curvature measured on the bicycle with the factors mentioned in the 

preceding section, lumbo-sacral angle and lumbar curvature was also consistently related 

to the sitting forward lean test. This can be seen in (Table 5.18). For the detailed results of 

the interrelationships of various factors with the thoraco-lumbar and lumbo-sacral angles, 

as well as the curvature of the lumbar spine in all three handlebar positions, see Tables 

A10.7-A10.15, Appendix 10). 

 

Table 5.18 Association between lumbar angle and curvature on the bicycle and 

the sitting forward lean test 

Riding position Sub-factor p-value 

Brake levers Lumbar lordosis 0.08 

Seated upright 
L5/S1 0.16 

Lumbar lordosis 0.10 

Drop position 
L5/S1 0.08 

Lumbar lordosis 0.04* 

Key: Statistically significant relationship (<0.05) = * 

 

5.7 Conclusion 

The demographics and characteristics of the greater Gauteng cycling population are 

stated and illustrated in this chapter. The results of the relationships between various 

factors and LBPP from the univariate and multivariate analyses are also stated. The 

results of the logistic regression analyses are given and the factors possibly associated 

with LBPP in cyclists summarised. From the multivariate analysis only the lumbar 

curvature in the brake lever position (p=0.03) and the holding capacity of Gmed (p=0.05) 

were significantly related to LBPP in cyclists. The association between factors and LBPP 

in cyclists as well as the interrelationships between the relevant factors will be discussed 

in Chapter six.  
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CHAPTER 6: DISCUSSION 

 

6.1 Introduction 

The main findings of this study and how they relate to the literature are discussed in this 

chapter. The discussion will be based on the objectives of the study to include the 

prevalence of LBPP in cyclists, factors associated with LBPP, the interrelationships 

between the factors as well as a critical review of this study and recommendations for 

future research. 

 

6.2 Prevalence of LBPP 

The prevalence of LBPP in cyclists in this study was found to be high, with a lifetime 

prevalence of 65.4% and a one-year prevalence of 62.3%. The point prevalence was 

reported as much lower at 16.9% (Table 5.9, Chapter 5). A high prevalence of LBPP in 

cyclists has also been reported in other studies (Table 2.2, Chapter 2). Comparison of the 

results between studies is however limited because of methodological differences such as 

the definition of LBPP, the cycling populations studied (elite cyclists vs. competitive 

cyclists vs. long-distance tour cyclists) and differences in countries (De Bernardo et al 

2012, Clarsen et al 2010, Schultz and Gordon 2010, Marsden 2009, Townes et al 2005, 

Salai et al 1999, Callaghan and Jarvis 1996, Dannenberg et al 1996, Wilber et al 1995, 

Weiss 1985, Kulund and Brubaker 1978). The cycling population (South African cyclists) 

in this study compares best to that of Marsden (2009) who reported the  prevalence of 

LBPP in cyclists in South Africa (recreational and competitive cyclists) to be much lower at 

a 43% one-year prevalence and a 51% lifetime prevalence and Schultz and Gordon 

(2010) who reported a prevalence of 50% in recreational cyclists in Townsville, Australia.  

 

The prevalence in this study was higher compared to other studies. The more stringent 

inclusion criteria used in this study might be a reason for this. Cyclists had to have 

completed at least one race of 90 km or more and had to have been cycling between 

three and 12 hours per week, for a minimum of one year, whereas other studies included 

any cyclist who would volunteer to participate in the study regardless of their training 

structures.  The current study excluded novice cyclists and narrowed the population more 

down to competitive cyclists compared to the recreational cyclists mostly studied in other 

comparable studies (Schultz and Gordon 2010, Marsden 2009, Wilber et al 1995). In this 

study cyclists cycled on average further in a week compared to most other studies (191.7 

km compared to 103-250 km per week for those with LBPP) which might be another 
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reason for the higher prevalence observed. Nonetheless, the results of this study, as well 

as the results of other studies, indicate that LBPP is a common problem among cyclists. 

 

In this study, 50% of cyclists experienced pain in the area of the SI-joints, followed by 

40.5% central low back pain (Table 5.6, Chapter 5) The majority (50.7%) reported 

experiencing the pain after more than two hours on the bicycle which is similar to the 1.38 

hours reported by Marsden (2009) (Table 5.8, Chapter 5). Most cyclists experienced 

LBPP  while positioned with the hands on the brake levers (62.2%) which is similar to the 

findings of Schultz and Gordon (2010) (Table 5.8, Chapter 5). Training was generally not 

affected by the pain in 42.6% of cyclists while 39.9% trained through the pain and 10.8% 

trained with the assistance of analgesics (Table 5.7, Chapter 5). Similar findings were 

reported by Marsden (2009) and Schultz and Gordon (2010).  

 

6.3 Factors associated with LBPP in cyclists 

The results of this study indicate that flexion of the lumbar spine on the bicycle in the 

brake lever position and weakness of Gmed were significantly related to LBPP in cyclists 

(Table 5.15, Chapter 5). This is unexpected as multiple factors that could influence the 

lumbo-pelvic spine in the forward flexed position or induce an increase in lateral shift on 

the bicycle were assessed, and none of those factors were specificaly associated with 

LBPP.  

 

6.3.1 Lumbar curvature in the forward flexed position on the bicycle  

The curvature of the lumbar spine was significantly related to LBPP in all three handlebar 

positions in a univariate analysis.  The thoraco-lumbar and lumbo-sacral angles were 

often related to LBPP but the relationships were not always significant (see Table 5.12, 

Chapter 5).  

 

When taken to a multivariate analysis, only the lumbar curvature in the brake lever 

position was significantly related to LBPP (p=0.03) in cyclists. The majority of cyclists with 

LBPP reported experiencing pain when in the brake lever position which is similar to the 

findings of Schulz and Gordon (2010). This was also the most frequently adopted position 

with training (48% of time was spent in brake lever position by cyclists with and without 

LBPP). This position is midway between upright sitting and the drop position and might 

require more stability as the forward reach distance is increased.  
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Lumbar flexion curvature was the greatest in the drop position (19° in cyclists with LBPP 

compared to 15° in those without), yet the drops position was rarely used (10% of cycling 

time in cyclists with and without LBPP) during training. The curvature of the lumbar spine 

in the brake lever position (16.5° in cyclists with LBPP and 11.7° in those without) was 

very similar to that in the upright seated position (17° in cyclists with LBPP and 12° in 

those without). This is unexpected as riding with the hands in the brake lever position is 

thought to increase the reach distance towards the handlebars, thereby extending the 

posture and decreasing flexion of the lumbar spine. If cyclists are however positioned in a 

posterior pelvic tilt, the lumbar spine will have to hyper-flex instead of extend to reach the 

handlebars, which might in part account for the similar curve. The seated upright position 

might also be a more stable, supported position compared to the brake lever position and 

a better stabilising strategy might be required to maintain the position of the cyclist in the 

more unstable brake lever position. 

 

Even though all cyclists were positioned with the lumbar spine in flexion on the bicycle, 

cyclists with LBPP assumed a position of greater lumbar flexion in all three handlebar 

positions compared to those without pain (see Table 5.12, Chapter 5). Muyor et al 

(2011a) and Usabiaga et al (1997)  reported cyclists adopting a position of lumbar flexion 

on the bicycle while Van Hoof et al (2012) and Burnett et al (2004) observed that cyclists 

with LBPP assumed a position of greater lumbar flexion compared to those without. This 

is in contrast to the findings of Schulz and Gordon (2010) who found no relationship 

between lumbar curvature and LBPP. Van Hoof et al (2012) further observed that  cyclists 

with LBPP spend more than 38.5% of their cycling time in a near end of range lumbar 

flexion position exceeding 80% of their total lumbo-pelvic flexion, compared to the 4% 

found in asymptomatic cyclists.  

 

It has been well established that cyclists assume a position of lumbar flexion on the 

bicycle, regardless of the level of competing and that those with LBPP adopt a position of 

even greater lumbar flexion when on the bicycle (Van Hoof et al 2012, Burnett et al 2004). 

The mechanism by which this would lead to LBPP has however not been fully 

established. Several factors that could influence this forward flexed position of the spine, 

besides the influence of creep and flexion-relaxation partly investigated by others, have 

been assessed in this study, but none of them were significantly related to LBPP in 

cyclists. None of the factors, besides gender (p=0.03) and BMI (p=0.002), were also 

significantly related to the lumbar curvature in the brake lever position (Table A10.9, 

Appendix 10). Other studies have proposed that mechanical creep is not involved as 

there was no change in lumbar flexion while riding in a study done by Burnett et al (2004) 
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nor over the duration of a two hour ride as in the study by Van Hoof et al (2012). 

However, Schulz and Gordon (2010) observed a change of -1° to 12° in lumbar flexion 

over a 10 minute stationary ride in cyclists (n=13.) The flexion-relaxation theory has also 

been proposed as a reason for LBPP in cyclists. Usabiaga (1997) observed relaxation in 

the abdominal and paravertebral muscles during relaxed pedalling (n=3). Similarly, 

Srinivasan and Balasubranamian (2007) observed increased fatigue in the right erector 

spinae muscles in cyclists with LBPP compared to those without. These factors were 

however all beyond the scope of this study.  

 

Another reason for the observed increased lumbar flexion in cyclists with LBPP could be 

attributed to the influence of poor position sense (proprioception) with a subsequent spinal 

repositioning error in patients with LBPP (Petersen et al 2008, O'Sullivan et al 2003, 

Brumagne et al 2000). Following this theory, cyclists with LBPP might inherently assume 

a slumped position with increased lumbar flexion which could account for the increased 

lumbar flexion observed in cyclists with LBPP. The causative factor might therefore be 

initiated at the spine and not a result of what is happening further down the kinematic 

chain.  

 

6.3.2 Control of Gluteus Medius 

A lack of through range control of Gmed was significantly related to LBPP in this study 

(p=0.05). The majority of cyclists in this study were unable to concentrically shorten Gmed 

to inner range, isometrically hold an inner range contraction and eccentrically control the 

return (n=107, 88%) while controlling neutral alignment of the lumbar spine and pelvis. 

This was even more prevalent in cyclists with LBPP, where 91% (n=82) of cyclists were 

unable to do so. As far as could be determined, this is the first study that has investigated 

the stabilising capacity of Gmed in cyclists and hence no comparisons with other studies 

can be made.   

 

Poor habitual postures in daily life with the hip positioned in relative adduction as with 

“hanging on one hip” in standing, sitting with legs crossed or sleeping with the leg falling 

into adduction has been associated with weakness of Gmed (Grimaldi 2011, Presswood 

et al 2008). Neumann (2010) reported an increase in hip internal rotation at greater 

ranges of hip flexion. Cyclists are positioned in hip flexion and use increasing ranges of 

flexion during the pedalling action. Habitual use of this increased hip internal rotation as 

well as hip adduction or lateral shift in cyclists will lead to weakness of Gmed which in turn 

will result in more hip adduction and lateral shift when cycling. This increased movement 
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could induce an increase in lumbo-pelvic rotation and over time lead to micro- and macro-

trauma of the lumbo-pelvic structures (Sahrmann 2012).  

 

Gmed is responsible for 70% of the medio-lateral stability of the pelvis and weakness in 

Gmed could result in poor lateral control of the pelvis, presenting as an increase in lateral 

pelvic shift as mechanical loads are transferred from the legs through the pelvis with 

pedalling (Grimaldi 2011). Lateral pelvic tilt (side-to-side rocking) happens naturally during 

cycling and is exaggerated at higher speeds (Farrell et al 2003) and with increased 

fatigue. Chapman et al (2008a) assessed lateral movement of the pelvis in nine male 

competitive cyclists using 36 retro-reflective markers and a 12 camera motion analysis 

system to collect 3D kinematic data for 10 seconds . They observed that the pelvis did not 

remain static during cycling, even though cycling requires a stable lumbo-pelvic region, 

but that an increase in lumbo-pelvic flexion occurred when the leg was at the 3 o’clock 

and 9 o’clock position and that an increase in side flexion occurred towards the leg in the 

BDC.  With poor lateral control of the pelvis the side-to-side translation while pedalling will 

be exaggerated and possibly induce a side flexion and/or rotation moment through the 

lower back and pelvis as was observed by Chapman et al (2008a) and Burnett et al 

(2004). An increase in lumbo-pelvic rotation could over time lead to increased mobility in 

the area and result in micro-damage of the lumbo-sacral structures (Sahrmann 2012). The 

position of sustained flexion with rotation has been implicated in injury of the passive 

spinal structures such as the intervertebral disc because of the shear forces and resultant 

micro-damage to the annulus fibrosis (Chapman et al 2008a, Solomonow et al 2003a, 

Solomonow et al 2003b).  

 

The one leg stance test was used in this study to assess the ability to control lateral shift 

of the pelvis during load-transfer. No relationship was found between the one leg stance 

test and Gmed (p=0.24) in this study, which is unexpected as Gmed is proposed to have 

the primary role of controlling frontal plane stability of the pelvis during one leg stance 

(Flack et al 2013, Semciw et al 2013, Reiman et al 2012, Grimaldi 2011). One of the 

reasons for this might be that Gmed primarily controls pelvic tilt, as proposed with the 

Trendellenburg test, and to a lesser extent pelvic shift where other muscles like Gmax are 

activated as well (Grimaldi 2011, Roussel et al 2007). The impact of muscle fatigue must 

also not be disregarded. Studies investigating the impact of fatigue in cycling populations 

have illustrated the occurrence of fatigue in both mono-articular muscles as well as a 

general decrease in muscle output/torque of the muscles involved with pedalling (So et al 

2005, Lepers et al 2001, Hautier et al 2000). With increased muscle fatigue in Gmed, an 

increase in lateral pelvic shift might occur which with frequent repetition might induce an 
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increase in lumbo-pelvic movement, hypermobility and result in micro-damage of the 

spinal structures (Sahrmann 2012). 

 

Weakness in Gmed was significantly related to Gmax weakness (p=0.001) and decreased 

extensibility of the hamstrings (p=0.02) (section 5.3.4 and Table A10.4, Appendix 10) but 

neither extensibility of the hamstrings nor control of Gmax were significantly related to 

LBPP in cyclists. The relationship between these factors might be explained by 

dysfunction in the global muscle system where weakness in the global stabiliser muscles 

(Gmed and Gmax) increases the load on the global mobiliser muscles (hamstrings) 

leading to overuse of the muscle, hypertrophy and  subsequent loss of extensibility. Other 

reasons for this will be explored in the following sections.  

 

6.4 Factors not significantly related to the development of LBPP in 

cyclists 

 

6.4.1 Training factors 

None of the training factors assessed in this study were significantly related to LBPP 

(Table 5.13, Chapter 5). One of the reasons for this might be cyclists rode at a much 

higher intensity during races (with possible more lumbo-pelvic symptoms) compared to 

that during training which might account for the LBPP. Cyclists in this study also rode 

more competitively, possibly trained more and were in better form compared to the 

recreational or touring cyclists studied by others.  

 

This is different from the findings of Schultz and Gordon (2010), Marsden (2009) and 

Wilber et al (1995) who all reported significant relationships between the distance cycled 

per week and LBPP. The results here indicate that cyclists with LBPP covered more 

kilometres per week compared to those without pain (191.7km/week compared to 176 

km/week), but the relationship was not significant (p=0.19). The cyclists without LBPP 

generally cycled a greater distance per week compared to cyclists without LBPP in other 

studies. In most of the comparable studies reviewed, cyclists without LBPP cycled on 

average 150 km per week or less compared to the 176 km per week reported in this 

study. A mean of 158 km cycled per week for male cyclists and 103 km per week for 

female cyclists was reported by Wilber et al (1995). Marsden (2009) observed a mean 

cycling distance of 149.8 (SD:104.8) km per week for cyclists without pain compared to 

175.8 (SD:106.9) km per week for those with LBPP. Schultz and Gordon (2010) reported 

a much higher mean weekly cycling distance for those with LBPP (250 km/week, SD: 
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131.0 km) compared to those without (150.0 km/week, SD:135.0 km) and proposed that 

cyclists who cycled more than 160 km/week are significantly more likely to experience 

LBPP.  

 

The mean distance cycled per week in this study was more than 160 km for those with 

and without LBPP which might be the reason why no significant relationship was 

observed between the distances cycled per week and LBPP. The cycling population 

studied included competitive road cyclists, who on average cycled further than the 

recreational cyclists studied by others. In addition, training factors were controlled for and 

hence a more conditioned cyclist might have been included in this study who, because of 

the higher average mileage per week, is better conditioned for longer distance cycling 

than the previous populations with less weekly mileage. In the study by Marsden (2009) 

cyclists completed the questionnaires at the race expo, days before the actual race. 

Cyclists might have had an increase in mileage per week in preparation for the race and 

the unconditioned recreational cyclist might also have increased the mileage too quickly 

which might account for the LBPP experienced.  

 

6.4.2 Anthropometric factors  

None of the anthropometric factors assessed (height, weight, BMI, gender and age) were 

significantly related to LBPP which agrees with the findings of Schulz and Gordon (2010). 

Cyclists without LBPP presented with a slightly higher mean BMI compared to those with 

LBPP 26.6 kg/m2, SD=3.61 compared to 25.8 kg/m2, SD=3.82). This opposes the 

hypothesis that a high BMI is associated with LBPP (Heuch et al 2010). Overweight 

cyclists might train at lower intensities compared to those with normal weight, so even 

though they spend a similar amount of time on the bicycle, they might be much slower 

because of this lower cycling intensity and therefore experience less pain.  

 

Of the studies reviewed on LBPP in cyclists, the majority only reported on the 

anthropometric characteristics of the cycling population without investigating the 

relationship between them and LBPP. Comparisons of the anthropometric factors of 

cyclists between different studies are again limited because of the different cycling 

populations, but most studies reported a normal range  BMI (see Table 3.1, Chapter 3, 

p.46) opposed to the mean BMI in the overweight range as seen here  (BMI 26.0 kg/m2, 

SD=3.77).  
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Marsden (2009) investigated the relationship between height, weight, BMI and LBPP and 

reported  significant relationships between LBPP and self-reported height and weight in a 

questionnaire, but no significant relationship was observed when height and weight were 

measured by the researcher in a smaller case-controlled study (n=80). The mean height 

of the cyclists in this study is similar to those in the study done by Marden (2009) (1.77m 

in both the LBPP and no pain group compared to 1.75m in the no pain group and 1.77m 

in the LBPP group). The cyclists however weighed on average more and had a higher 

BMI compared to those in the study by Marden (2009) (mean weight 81.7kg and BMI 26.0 

kg/m2 compared to weight of 77.1-74.6kg and BMI of 24.1 kg/m2).  

 

6.4.3 Factors influencing the forward flexed position on the bicycle 

 

6.4.3.1 Inner range holding capacity of Gluteus Maximus 

Eighty one percent of all cyclists presented with elongated Gmax, as evident through the 

poor inner range holding of Gmax which is similar to the findings of Richardson and Sims 

(1991) (Table 5.13, Chapter 5). Weakness of Gmax was hypothesised to be related to 

LBPP because of its stability role around the SI-joints, lower back and pelvis and the 

evidence of its inner range weakness, but no such relationship existed (Richardson and 

Sims 1991). One of the reasons for this might be that a high percentage of both cyclists 

with and without LBPP (81%) presented with an elongated Gmax and weakness in its 

inner range. Most cyclists use Gmax in a lengthened (outer range) position and only need 

an inner range Gmax contraction and increased Gmax strength when they stand up out of 

the saddle to adopt a position of greater hip extension, which might be another reason for 

the lack of a relationship (So et al 2005). 

 

Gmax acts with the hamstrings and adductors to achieve hip extension in the position of 

hip flexion. Both the hamstring muscle group, Adductor Magnus and adductors as a whole 

might be better positioned for hip extension from the position of increased hip flexion due 

to a better length-tension relationship and a greater moment arm for extension (Neumann 

2010). In this way weakness of Gmax could be compensated for and its impact on the 

lumbo-pelvic area minimized. The majority of participants with poor inner range holding of 

Gmax were positioned in a slumped/flexed position of the lumbar spine in the brake lever 

(87%) and drop (92%) position which agrees with the findings of Kisner and Colby (2002), 

that participants with weakness of Gmax will sit in a more slouched position.  
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Gmax is proposed to be active during the downstroke phase of the crank cycle at around 

340-130° while hamstrings without biceps femoris function from 10-230° and biceps 

femoris is active from 350-230° of the pedalling cycle (So et al 2005). Gmax increases its 

activity from 340-180° when the cyclist stands up out of the saddle as is often seen in hill-

climbing or for increased power production to stabilise the pelvis without the support of 

the saddle (Duc et al 2008, So et al 2005). Activation patterns of these muscles are 

influenced by relative muscle strength and weaker one-joint hip extensors (Gmax) will 

demand the assistance of the multi-joint hamstrings (especially biceps femoris) to 

forcefully extend the hip joint (So et al 2005).  A lengthened, weak Gmax would therefore 

place an increased demand on the hamstring muscles which, in turn can become 

shortened (Chance-Larsen et al 2010, So et al 2005).  

 

Poor inner range holding of Gmax was significantly related to decreased hamstring 

extensibility (p=0.007) with 69% of all the cyclists presenting with poor extensibility of the 

hamstrings (70% of cyclists with LBPP) and 81% with poor inner range holding of Gmax. 

The hamstring muscle group could therefore be accommodating for weakness in Gmax 

during the pedalling action and be another reason why Gmax was not associated with 

LBPP in cyclists. The impact of muscle fatigue during cycling should once again not be 

dismissed, as a weak and fatigued Gmax will further increase its demand on the 

hamstring muscles to compensate (So et al 2005). 

 

6.4.3.2 Extensibility of the hamstring muscle group 

Seventy percent of the cyclists with LBPP presented with decreased extensibility of the 

hamstrings, but the relationship between hamstring length and LBPP was not statistically 

significant (p=0.81) (Figure 5.3 and Table 5.13, Chapter 5). This is in contrast with the 

findings of Marsden (2009) who reported that cyclists with LBPP presented with 

significantly decreased flexibility of the hamstring compared to those without pain.  This 

might again be due to the fact that 70% of all cyclists presented with decreased 

extensibility of the hamstrings and it is hence a problem for the entire cycling population 

and not only for those with LBPP.   

 

Decrease in hamstring extensibility might be indicative of hypertrophy of the muscle as 

proposed by Sahrmann (2012). Cleated cyclists will have a substantial “pull” through the 

hamstrings with the knee flexion moment of pedalling to increase power output. The 

combined increased load from “pulling” and a possible overload on the hamstrings from a 

weakened Gmax might be part of the reason for the hypertrophy and subsequent 
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shortening. The absence of a relationship between hamstring length and LBPP might also 

in part be explained by the dynamic functioning of the muscular system, where 

inefficiency in one muscle group will often be absorbed by another even if it is to the 

detriment of the other (as seen in the hamstrings and abdominal muscles and the 

hamstrings and Gmax). 

 

During the pedalling action the knee reaches a maximum of 25-35° of extension as it 

approaches the BDC and with the knee extension moment cyclists have a concurrent hip 

extension moment and vice versa, which will further limit any tension on the hamstring 

muscles. The hamstring muscle group is therefore not placed in an elongated/tensioned 

position during cycling which might partly explain why no association was observed 

between hamstring extensibility and LBPP.  

 

Previous studies have proposed that shortened hamstrings will keep the pelvis in a 

posterior tilt thereby limiting anterior pelvic tilt (Mellion 1994). Muyor et al (2011b) 

investigated the influence of hamstring extensibility on spinal curvature on the bicycle and 

found no relationship. It was initially hypothesised in the current study that pelvic 

inclination could be deduced from the lumbo-sacral angle (L5/S1), as proposed by Ng et 

al (2001). During the course of the study it however became clear that the lumbo-sacral 

angle does not necessarily accurately reflect the pelvic inclination and hence the influence 

of hamstring length on pelvic position could not be established in this study. The length of 

the hamstrings were however to some extent related to the lumbo-sacral angle in the 

seated upright (p=0.03), brake lever (p=0.07) and drops (p=0.03) positions with those with 

LBPP presenting with a smaller lumbo-sacral angle compared to those without, possibly 

indicating a pelvis positioned in a more posteriorly orientated direction (see Table 5.18, 

Chapter 5 and Table A10.8, Table A10.11 and Table A10.14 Appendix 9). Other studies 

on lumbar kinematics in the cycling population used the second sacral vertebra (S2) in 

their calculation of lumbar curvature which might be more appropriate in establishing 

pelvic inclination (Van Hoof et al 2012, Schulz and Gordon 2010, Burnett et al 2004).  

 

6.4.3.3 Control of lumbar flexion 

The position of increased lumbar flexion observed in cyclists with LBPP on the bicycle 

was proposed to be related to an inability to prevent/control flexion of the lumbar spine 

due to possible habitual slumped sitting. The cyclists’ ability to control lumbar flexion was 

assessed with the sitting-forward-lean test as described by Comerford and Mottram 

(2012) and Enoch et al (2011) but there were no significant relationships between the 
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sitting forward lean test and LBPP in the cyclists. As the sensitivity and specificity of this 

test has not yet been established it is possible that the test might not be sensitive enough 

to pick up, in isolation, uncontrolled lumbar flexion within the parameters recommended 

by Enoch (2013).  

 

Of late, studies on the assessment of UCM have proposed the use of a battery of tests to 

assess a person’s ability to control movement. Luomajoki (2008) used the summed total 

of six movement control tests in an attempt to differentiate between participants with 

LBPP and no pain. They found that participants with LBPP had 2.21 positive tests 

compared to the 0.75 positive tests in healthy controls. A battery of tests might therefore 

be better suited to assess control of lumbar flexion in future studies. Although most 

studies have found no change in lumbar flexion over a period of time riding, the effect of 

fatigue of the stabilising muscles in cyclists might be worth further investigation (Van Hoof 

et al 2012, Burnett et al 2004). 

 

6.4.3.4 Neurodynamics 

Dynamics of the neural system assessed with the slump test were not associated with 

LBPP in cyclists. Even though cyclists generally assume a supposedly provocative 

“slumped” position on the bicycle with the hips, thoracic and lumbar spine in flexion, they 

have extension of the neck and mostly keep the knee in flexion which will off -load tension 

on the neural tissues. Cyclists repetitively alternate hip and knee flexion and extension, 

which might simulate neural gliding and be a form of self-mobilisation. Both of the above-

mentioned theories could account for the absence of a relationship between neural 

dynamics and LBPP.  

 

6.4.3.5  Bicycle set-up factors 

Saddle height, set-back, angle, handlebar height, reach, reach ratio and cleat position 

were assessed in this study. None of these factors were significantly associated with 

LBPP (Table 5.14, Chapter 5). Though similar to  the findings of Marsden (2009), these 

findings were unexpected as most cyclists, bicycle shops and bicycle fitters regard bicycle 

set-up as the main reason for LBPP in cyclists (Silberman et al 2005, De Vey Mestdagh 

1998). The findings of the present study indicate that the majority of cyclists do not have a 

bicycle set-up that is specific to their body measurements (Table 5.14, Chapter 5) 

following the set-up parameters used in this study. Because of the many ways of 

measuring bicycle set-up, many controversies exist in what constitutes an acceptable set-

up, which might have also influenced the findings of this study. 
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The lack of a relationship between bicycle set-up and LBPP might also be explained by 

the fact that neither previous professional bicycle set-up nor self-set-up to improve riding 

comfort have been explored in this study. The more experienced cyclists probably have 

more knowledge about bicycle set-up and might be happy to change their own set-up as 

they deem fit in order to increase comfort or power output. The assessment of static 

bicycle set-up compared to dynamic bicycle set-up also needs to be considered as 

movement and position of the lumbo-pelvic spine could change substantially during active 

cycling. 

 
Findings indicated that saddles were set too far forward in the majority of cyclists (60.3%) 

which will lead to a more “bunched-up” position of the cyclist on the saddle. This is 

associated with an increase in posterior pelvic tilt and subsequent increased lumbar 

flexion (Silberman et al 2005, Sanner and O'Halloran 2000, De Vey Mestdagh 1998). 

Even though this position is proposed to be associated with LBPP in cyclists, no such 

relationship was observed in this study.  

 

Saddle angle was not significantly related to LBPP in cyclists. The mean saddle angle 

was 0.72° in the direction of a posterior tilt for the entire cycling population (0.81° for those 

with LBPP and 0.42° for those without LBPP), yet the majority of saddles were tilted 

anteriorly (48% for the entire population, 50% of those with LBPP). This is in conflict with 

the findings of Van Hoof et al (2012) who observed an increase in posterior tilt of the 

saddle in cyclists with LBPP compared to those without.  

 

Forward reach on the bicycle is another aspect of bicycle set-up proposed to contribute to 

LBPP in cyclists (De Vey Mestdagh 1998). In this study, the majority of cyclists presented 

with an inadequate forward reach on the bicycle with the reach distance mostly too short 

and the cyclists too bunched up during the ride (48.4% without pain and 54.4% with 

LBPP).  This again ties in with the proposition of De Vey Mestdagh (1998) that an 

inadequate reach distance (being too bunched up) positions the pelvis in an increased 

posterior tilt with subsequent increased flexion of the lumbar spine resulting in LBPP. In 

this study, no significant relationships were however found between either forward reach 

on the bicycle and LBPP (p=0.29) or forward reach and the lumbar curvature on the 

bicycle in the brake lever position (p=0.21). This might partially refute the proposition that 

the reach distance will influence the curvature of the spine, with a short reach distance 

being associated with LBPP in cyclists as proposed by De Vey Mestdagh (1998). 
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Marsden (2009) observed a significant relationship between the reach ratio and LBPP in 

cyclists (p=0.021), which is in contrast to these finding where no such relationship could 

be established (p=0.52). She proposed that the cyclists with LBPP and subsequent 

greater reach ratio will have to increase their reach and drop distance to match the 

asymptomatic controls. The reach ratio for both the LBPP and asymptomatic cyclists in 

this study was much lower than those observed by Marsden (2009) (1.57 for those with 

and without LBPP in this study compared to 1.99 for those with LBPP and 1.94 for those 

without LBPP in the study by Marsden). The full meaning and implication of reach ratio 

has however not been comprehensively described by Marsden (2009) and as far as could 

be determined, the concept was not discussed in any other literature which further 

complicates the interpretation thereof.  

 

In this study, the height of the handlebars was also not significantly related to LBPP in 

cyclists. The handlebars were set too high in the majority of cyclists with LBPP (59%) and 

the average drop distance (distance from the top of the saddle to the top of the 

handlebars) was 4.50 cm in those with LBPP compared to 5.92 cm in those without.  

These findings are similar to those of Marsden (2009) who also did not observe a 

significant relationship between handlebar height and LBPP in cylists. She reported a 

drop distance of 5.09 cm in cyclists with LBPP compared to 5.92 cm in those without, 

which also indicates that cyclists with LBPP have handlebars that are generally set higher 

than those without.  

 

6.4.4 Factors influencing the lateral position on the bicycle 

In this study, neither the one leg stance nor the ASLR tests were significantly related to 

LBPP in cyclists.  

 

6.4.4.1 Lateral shift of the pelvis 

The one leg stance test was used in this study to assess the ability to control lateral shift 

of the pelvis during load-transfer. No increase in lateral shift was observed in cyclists with 

LBPP compared to those without and no significant relationship existed between the one-

leg stance/lateral shift test and LBPP (p=0.19). As no previous studies have attempted to 

assess the relationship between lateral shift of the pelvis and LBPP in cyclists, no 

comparisons can be made. 
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The one leg stance test might not be the most appropriate test to measure side-to-side 

(lateral) shift and control of that shift in cyclists. The test was originally described by 

Luomajoki (2008, 2007) to assess control of lumbar extension/rotation and the 

parameters used in the test (shift magnitude of 10cm to either side) might be too lenient to 

assess control of side-to-side rocking in cyclists. During this test cyclists were also tested 

in a static standing position compared to the dynamic flexed position used on the bicycle 

when pushing and pulling through the pedals. This might be another reason for the lack of 

association observed and the lateral movement of the pelvis should rather be assessed 

with the cyclist on the bicycle to make it more appropriate to cycling. 

 

Fatigue might also be the factor that influences the magnitude of lateral shift that occurs 

during cycling, which is plausible, with most cyclists indicating the onset of pain occurring 

after more than two hours of cycling. It might also be that lateral pelvic tilt or rotation of the 

lumbo-pelvic area opposed to lateral shift of the pelvis occurs during cycling which 

warrants further investigation. 

 

6.4.4.2 Load transfer through the pelvis 

The majority of cyclists with LBPP reported experiencing the pain in the region of the SI-

joints, possibly indicating the presence of poor pelvic girdle control. Load transfer through 

the pelvis was assessed with the ASLR test and no relationship was found between the 

ASLR test and LBPP in cyclists (Table 5.13, Chapter 5). A positive ASLR test is proposed 

to be associated with an increase in movement of the pelvic bones in people with PGP 

(Mens et al 1999). LBPP experienced with cycling might not be due to increased pelvic 

bone movement but rather because of an inefficient stabilising strategy. The ALSR is 

interpreted based on a score of the perceived effort as reported by the individual which 

might not reflect the efficacy of lumbo-pelvic control. Some studies scored it according to 

the assessor’s observation of lumbo-pelvic control which might be more applicable to the 

cycling population (Mens et al 1999). 

 

The effect of fatigue on muscle recruitment and inhibition should again not be 

disregarded. Many studies have indicated changes in recruitment and inhibition of 

stabilisers after fatiguing tasks that can last for prolonged periods after cessation of the 

task and fatigue might therefore be a reason for not observing an inadequate load transfer 

strategy (Allison and Henry 2002, Dolan and Adams 1998, Kankaanpää et al 1998). 
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6.4.4.3 Leg-length discrepancy 

No association was established between LLD and LBPP in cyclists in this study. Against 

expectation, a LLD of greater than 20mm appeared to be protective for the development 

in LBPP in cyclists which is similar to the findings of Marsden (2009) where cyclists 

without LBPP presented with a greater discrepancy in leg-lengths compared to those with 

LBPP. This does not make logical sense as an increase in LLD is generally related to an 

increase in the development of pathology (Defrin et al 2005, Brady et al 2003, Krawiec et 

al 2003, Gurney 2002). Even though a high intrarater reliability has been illustrated for the 

clinical assessment of leg-lengths using the direct tape measure method, it has poor 

validity when compared to X-rays, which could explain these findings to some extent.  

 

A discrepancy in leg-lengths could also be compensated for by lowering the saddle for the 

shorter leg or by pedalling with the ankle in plantar flexion (on the toes) on the side of the 

shorter leg. Increased side-to-side movement of the pelvis might therefore be absorbed by 

the kinematic chain during cycling or the cyclist might shift the pelvis towards the shorter 

leg on the saddle as compensation, both of which might explain why LLD was not 

associated with LBPP in cyclists.  

 

6.4.4.5 Saddle height 

The height of the saddle was not significantly related to LBPP in cyclists. More cyclists 

had a saddle that was set too low (21.5%) as to one set to high (10.7%) while the biggest 

group (34% of the general cycling population, 29% of those with LBPP) presented with a 

discrepancy in the KEA of the left and right lower extremities as measured on the bicycle. 

This might be indicative of a compensation strategy or an increase in pelvic shift and 

warrant further investigation.    

 

6.5 Critical review of the study  

 
6.5.1 Strengths of the study 

 This study involved a larger cycling population than most others in the literature.  

 As far as is known, this study is the first to investigate such a large number of 

possible risk factors as well as the association between risk factors. It is also the 

first study, as far as could be determined, that investigated control of Gmax and 

Gmed, control of lumbar flexion, influence of neural dynamics, control of lateral 

movement and control of load shift through the pelvis.  
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6.5.2 Limitations of the study 

 A poor intra-rater reliability was obtained for the measurement of through range 

control of Gmed which would require attention in future studies. In an attempt to 

increase the test-retest reliability of the test, an inclinometer was used to establish 

the required angle of abduction and a rod was positioned as a guide for the 

required ROM. It was however difficult to control for movement of the lumbar spine 

and pelvis while ensuring that the participants maintained the required hip 

abduction/extension ROM for the required amount of time, which is in agreement 

with the findings of other studies (Lee and Powers 2013, Rabin et al 2013). The 

influence of Gmed on the development of LBPP in cyclists therefore also needs to 

be interpreted with caution and the reliability for assessing control of Gmed 

improved in future studies. A way to refine it would be to position the participant 

against a wall and instruct them to slide the upper leg up against the wall to control 

for the required hip extension during abduction. The required ROM could also be 

indicated for on the wall, which would enable the examiner to observe from a 

distance and thereby possibly increase the accuracy of the Gmed assessment. 

 

 The outcome measures used in this study is what was considered to be the best 

outcome measures available at the time and most applicable to the aim of the 

study. There are however many other outcome measures available which could be 

considered for use in future. 

 

 The “apparent” leg-length discrepancy (umbilicus to medial malleolus) was not 

measured in this study. Apparent leg-length could have been established to 

identify problems with leg-length that emanated from the hip. 

 

 No attempt was made in this study to classify/characterize the LBPP cyclists which 

could probably have contributed to the understanding of LBPP in cyclists. 

 

6.6 Recommendations for future research 

 Cycling appears to be an unidirectional activity involving flexion-extension but it 

also involves side-to-side or a lateral pelvic movement (Chapman et al 2008a, 

Farrell et al 2003). In a dysfunctional situation, as with poor control of Gmed 

and/or Gmax, asymmetrical tightness in hamstrings, poor control of lumbar 

movement, LLD or an incorrect height of the bicycle saddle, a rotation-motion 

could be induced around the spine and pelvis, which could eventually lead to the 
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development of pain and pathology. More lumbar rotation can occur in the 

seated/flexed position (Pearcy 1993) which, if repeated could also result in 

microscopic injury to the spinal structures. Cyclists are positioned in a flexed 

position of the spine and uncontrolled rotation-direction movement would be more 

feasible in this flexed position as more rotation is possible in the flexed position. 

An observation made during the assessment of the inner range holding capacity of 

Gmax in the prone hip extension test was that those unable to sustain an inner 

range contraction of Gmax often used rotation of the lumbo-pelvic area towards 

the weight-bearing leg to compensate for the weakness. Assessment of lumbar 

rotation dysfunction was not initially considered for inclusion into this study, but it is 

recommended that future studies explore the association between lumbar rotation 

dysfunction and LBPP in cyclists. 

 

 Control of lumbar flexion, as assessed with the sitting forward lean test, was not 

significantly related to LBPP in cyclists. The sensitivity and specificity of the test 

has not been established and the test might not be sensitive enough to identify a 

lumbar flexion dysfunction in isolation. It is recommended that in future a battery of 

movement tests be used in order to assess control of lumbar flexion and not only 

one test in isolation. 

 

 Length of iliopsoas was not included as a factor in this study. However, resistance 

against hip extension was noted in many of the participants during the assessment 

of passive hip extension range in the prone hip extension test. As cyclists 

repetitively use hip flexion during the cycling action and as the psoas muscle could 

also pull the lumbar spine into flexion due to its attachment to the lumbar spine, it 

is recommended that the length of the iliopsoas muscles in cyclists be assessed in 

future studies. 

 

 Spinal curvature was measured with the cyclists positioned on a stationary bicycle 

(mounted on an A-frame). It is recommended that future studies measure spinal 

curvature before and after a long bicycle ride or even preferably for the duration of 

the ride with an instrument such as the spinal mouse system, to assess for 

changes in lumbar curvature throughout the ride. 

 

 It is recommended that longitudinal cohort studies be done on cyclists in future to 

better determine the causal relationships of LBPP in cyclists. This study was a 

cross-sectional study and cross-sectional studies are limited in that they do not 
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take time-sequence or long-term exposure into consideration and it would 

therefore be impossible to establish if LBPP is the cause or the effect of the 

associated risk factors, which could be established in a longitudinal randomised 

controlled trial (Abramson and Abramson 2000). 

  

 There are many controversies in what should constitute an “optimal set-up” of the 

bicycle. The different ways of setting up the bicycle are often conflicting and very 

little evidence exists on what should be an ideal “static” set-up. It is recommended 

that the set-up of the bicycle, especially as it relates to LBPP in cyclists, be 

assessed in future with particular focus on what an “ideal set-up” should be. It is 

also recommended that future studies look at the dynamic set-up of the cyclist on 

the bicycle compared to only static set-up, as many factors might actually change 

during active cycling.  

 

 Only one “intervention” study was identified in the literature. Salai et al (1999) 

assessed the impact of tilting the saddle anteriorly on LBPP experienced by 

cyclists. It is recommended that in future more studies be done assessing the 

impact of various intervention programs on LBPP in cyclists, which should include 

strengthening of Gmed and training and education on flattening the lumbar 

kyphosis on the bicycle as well as the impact of other factors like retraining the 

lumbar multifidi, increasing hamstring length, etc. 

 

 Through the course of the study various other factors were identified as possible 

risk factors for LBPP in cyclists, which weren’t initially considered, but warrant 

further exploration. These included: 

 Strength of lumbar multifidi 

 Road vibration 

 Impact of fatigue 

 Spinal repositioning sense (proprioception) – kinaesthetic sense 

 Influence of various other sporting activities participated in 

 

6.7 Clinical recommendations 

As far as could be determined, this study was one of the first to assess for factors that 

could influence the lumbar position on the bicycle. Following the outcomes of this study, 

cyclists need to be educated on the impact of greater lumbar flexion during cycling. 

Retraining of the stabilising function of Gmed should also be emphasised in cyclists.  
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The findings of this study challenges the common belief that incorrect bicycle set-up is the 

reason for LBPP, which was an unexpected finding. From the findings on bicycle setup it 

is clear that the assumption cannot be made that “good” bicycle set-up will prevent or 

alleviate LBPP and “poor” bicycle set-up will cause LBPP, as there was no direct 

association between any of the bicycle set-up factors and LBPP. Because of the 

association between the flexed lumbar curvature in the brake lever position and LBPP, 

those involved in setting up bicycles should possibly rather focus on the influence of 

bicycle set-up on the lumbar position instead of only assessing the individual factors. In 

this way bicycle set-up might help to position the cyclist in a more neutral lumbar position 

with less lumbar flexion and thereby possibly influence the development of LBPP in 

cyclists. 

 

6.8 Conclusion 

The results of the study were discussed in this chapter according to the objectives of the 

study. The prevalence and the risk factors for LBPP in cyclists in Gauteng were given and 

the association between these risk factors was comprehensively discussed. The 

limitations of the study were identified and recommendations were given for future 

research. A summary of the findings will be provided in Chapter 7. 
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CHAPTER 7: CONCLUSION 

 
The prevalence of LBPP, the risk factors for LBPP in cyclists in the greater Gauteng area, 

as well as the association between these risk factors was assessed in this dissertation. 

The study design was a cross-sectional descriptive study and consisted of an online 

questionnaire, a physical assessment and an assessment of static bicycle set-up. In this 

chapter the conclusions of this study will be presented, based on the objectives of the 

study. 

 

 Prevalence of LBPP in cyclists in South Africa 

The results indicate a lifetime prevalence of 65.4%, a one-year prevalence of 62.3% and 

a point prevalence of 16.9% LBPP in cyclists. This is a high prevalence of LBPP in 

cyclists in Gauteng which is similar to the findings of other studies. 

 

 Factors associated with LBPP in cyclists in Gauteng 

The following factors were significantly related to LBPP in cyclists in the greater Gauteng 

area: 

o Stabilising function of Gmed  

o Lumbar curvature on the bicycle with the hands in the brake lever position  

o In the univariate analysis, the lumbar curvature on the bicycle in the brake 

lever position (p=0.01), the seated upright position (p=0.01), the drops position 

(p=0.02) and the thoraco-lumbar angle in the drops position (p=0.05) were 

significantly related to LBPP in cyclists. Cyclists with LBPP adopted a position 

of increased lumbar flexion in all three handlebar positions and presented with 

a decreased lumbo-sacral angle indicating a possible posterior tilt of the 

pelvis. 

 

None of the training factors assessed or any of the factors related to bicycle set-up were 

related to LBPP in cyclists in Gauteng. 

 

 Association between risk factors 

The noteworthy associations found between the various risk factors were: 

o Control of Gmed was significantly related to inner range holding capacity of Gmax 

(p=0.001) and the length of the hamstrings (p=0.02). 

o Length of the hamstrings was significantly related to the lumbo-sacral angle in the 

seated upright position (p=0.03) and in the drops position (p=0.03). 
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o Inner range holding capacity of Gmax was significantly related to the lateral sway 

test (p=0.03). 

 

This study contributed to the understanding of factors that could lead to the development 

of LBPP in cyclists. Although many of the factors assessed were not significantly related 

to LBPP in cyclists, the influence of increased lumbar flexion in the brake lever position on 

the development of LBPP was confirmed. This raises two important issues: (1) the need 

for further exploration of the reason for this increased flexion, (2) the responsibility of 

cyclists to reduce and control flexion of the lumbar spine on the bicycle.This study is the 

first step towards developing preventative strategies and interventions to mimimise the 

occurance and recurrence of LBPP in cyclists. More research is however required to 

further understand this topic. 
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APPENDIX 1 – DEMOGRAPHICS OF CYCLISTS IN PREVIOUS 

STUDIES 

 
 
 
 

Study 
Participants 

n 

Mean age 

(Range or 

SD) 

Male 

(%) 

Mean 

height/weight/BMI 

Kulund & 

Brubaker (1978) 

89 long-distance 

tour cyclists 

Male: 27.9 

(17-66) 

Female: 236 

(17-54) 

72 

- 

Weiss (1985) 

Arizona (USA) 

113 long-distance 

tour cyclists 

Male: 43 

(11.5) 

Female: 36 

(10.4) 

69 4 males BMI>30, all 

others had normal 

BMI 

 

Wilber et al 

(1995) 

California, USA 

 

518 long-distance 

tour cyclists 

Male: 40.4 

(10.7) 

Female: 36.6 

(9.1) 

57 Male:  

Height (in): 70.2 

(3.2) 

Weight (lb.): 171.4 

(24.2) 

Female: 

Height (in): 65.6 

(2.9) 

Weight (lb.): 134.2 

(17.9) 

Dannenberg et al 

(1996) 

Maryland, USA 

1638 long-distance 

tour cyclists 

(30 female, 50 

male) 

39 (7-79) 67 

- 

Salai et al  

(1999) 

Israel 

80 17-72 63 

- 

Bressel & Larson 

(2003) 

Utah, USA 

10 novice and 10 

experienced 

female cyclists 

Experienced: 

27.14 (5.15) 

Novice: 

21.0 (1.41) 

0 Experienced: 

Height (m): 1.65 

(0.07)  

Weight (kg): 63.57 

(9.38)  

BMI (kg/m2) :  

Novice: 

Height (m): 1.67 

(0.08) 

Weight (kg): 66.01 

(8.85)  

BMI (kg/m2):  
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Burnett et al 2004 

(Australia) 

18 mid-to high-

level 

cyclists/triathletes 

(8 male, 10 

female) 
- 

44 LBPP-group:  

Height: 1.70 (0.07) 

Weight: 67.0 (7.0)  

BMI: 22.9 (1.7) 

No LBPP-group: 

Height: 1.70 (0.07) 

Weight: 67.2 (7.0)kg 

BMI: 23.4 (2.0) 

McEvoy et al  

(2006) 

Australia 

17 elite cyclists (15 

males, 2 females) 

17 non-cyclists (15 

males, 2 females) 

Elite cyclists: 

23 (4.16) 

Non-cyclists: 

23 (4.1) 

88 Cyclists: 

Height (m): 180 (5.7) 

Weight (kg): 80.1 

(7.5) 

BMI (kg/m2) : 24.8 

(2.6) 

Non-cyclists: 

Height (m): 178 (6.2) 

Weight (kg): 75 

(10.6) 

BMI (kg/m2): 23.5 

(2.7)   

Abt et al (2007) 

(Pennsylvania, 

USA) 

15 local cyclists 

category 2-4 

34.5 (9.8) 

- 

Height (m): 1.77 

(0.11)  

Weight (kg): 76.3 

(11.1) 

Srinivasan & 

Balasubramanian 

(2007) 

(India) 

14 male cyclists 25.43 (1.87) 100 Weight (kg): 63.6 

(8.87) 

Chapman 

(2008) 

New Zealand 

9 male cyclists 34.8 (10.9) 

years 

100 Height (cm): 180.1 

(6.0) 

Weight (kg):  79.7 

(5.9) 

Diefenthaeler et al 

(2008) 

Brazil 

3 elite male 

cyclists 

23-30 100 Height (m): 1.66-

1.81 

Weight (kg): 63.6-

75.3  

Marsden (2010) 

South Africa 

460 competitive 

cyclists (70 female 

and 390 male) 

LBPP group: 

37.8 (11.4) 

No LBPP 

group: 

36.3 (12.1) 

85 

 

LBPP group: 

Height (m): 1.77 

(0.08) 

Weight (kg): 77.1 

(13.1)   

BMI (kg/m2): 24.1 

(4.1) 

No LBPP group: 

Height (m): 1.75 

(0.08) 

Weight (kg): 74.6 
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(12.2)  

BMI (kg/m2): 24.1 

(3.7) 

Clarsen et al 

(2010) 

Norway, Europe  

109 professional 

road cyclists  

(teams from 

Australia, 

Denmark, France, 

Norway, and 

Switzerland, 23 

different 

nationalities) 

Europe tour 

cyclists: 25 

(4) 

World tour 

cyclists: 28 

(5) 

- 

Europe tour cyclists: 

Height (m): 182 (6) 

Weight (kg): 71 (6)  

World tour cyclists: 

Height (m): 181 (6) 

Weight (kg): 69 (6) 

 

Muyor et al 

(2011a) 

Spain 

96 highly-trained 

cyclists 

30.36 (5.98) 

years 
- 

Height (m): 1.76 

(0.06) 

Weight (kg): 76.05 

(9.25) 

Muyor et al 

(2011b) 

Spain 

120 male cyclists 

60 elite and 60 

master cyclists 

Elite: 22.95 

(3.38) yrs 

Master: 

34.27 (3.05) 

yrs 

- 

Elite 

Height (m): 1.77 

(0.06) 

Weight (kg): 71.61 

(9.66) 

BMI (kg/m2): 22.62 

(2.54) 

Master 

Height (m): 1.75 

(0.05) 

Weight (kg): 77.12 

(8.52) 

BMI (kg/m2): 25.04 

(2.48)  

Van Hoof et al 

2012 

(Belgium) 

17 male local 

cyclists (n=8 with 

LBPP, n=9 without 

LBPP 

LBPP-group: 

28.3 (8.7) 

No LBPP-

group: 28.4 

(9) 

- 

LBPP-group:  

Height (m): 184.9 

(4.1) 

Weight (kg): 76.2 

(8.5) 

BMI (kg/m2): 22.3 

(2.7) 

No LBPP-group: 

Height (m): 181.2 

(2.7) 

Weight (kg): 75.1 

(7.7) 

BMI (kg/m2): 22.8 

(1.9) 
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APPENDIX 2 – CLASSIFICATION OF THE OF MUSCLES 

 

Table A2.1 Classification of the functional roles of muscles (Comerford and 

Mottram (2012) 

Local stability muscles Global stability muscles Global mobility muscles 

 Control of segmental 

translation through 

increased muscle 

stiffness 

 Controls the neutral 

position of the joint 

 No change in length 

with contraction – does 

not produce ROM 

 Anticipatory action to 

expected movement 

 Muscle activity not 

dependant of the 

direction of the 

movement 

 Muscle activity 

continuous throughout 

movement 

 Control range of motion 

 Eccentric lengthening 

with contraction to 

provide control through 

range 

 Ability to (1) shorten 

through full inner ROM; 

(2) isometrically hold 

that position; (3) 

eccentrically control the 

return 

 Eccentric deceleration of 

movement 

 Muscle activity is 

direction dependent and 

therefore influenced by 

antagonist muscles 

 Muscle activity is not 

continuous 

 Produce range of motion 

 Concentric shortening to 

produce movement 

 Concentric acceleration 

of movement 

 Muscle activity is 

direction dependent 

 Intermittent on-off 

muscle activity to 

accelerate movement 

Dysfunction: 

 Delayed timing, 

deficiency in 

recruitment 

 Inhibited by pain and 

pathology 

 Decreased segmental 

control  

Dysfunction: 

 Lack ability to (1) 

shorten through full 

inner range; (2) 

isometrically hold that 

position; (3) 

eccentrically control the 

return 

 Poor low threshold 

recruitment 

 Inhibited by antagonists 

 Changes in recruitment 

patterns 

 Inadequate control of 

high threshold 

movement 

Dysfunction: 

 Decreased extensibility 

 Limits ROM 

 Overactive low 

threshold, low load 

recruitment 

 Spasm in response to 

pain and pathology 
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APPENDIX 3 – ETHICS CLEARANCE CERTIFICATE 
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APPENDIX 4 – INFORMATION DOCUMENT 
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APPENDIX 5 – INFORMED CONSENT FOR ASSESSMENT
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APPENDIX 6 – QUESTIONNAIRE 
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APPENDIX 7 – DATA CAPTURING FORM FOR ASSESSMENT 
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APPENDIX 8 – RESULTS OF THE RELIABILITY STUDY  

Additional results related to intrarater reliability are presented in this appendix. Table 1 

depicts additional data for the intrinsic factors of the cyclist while Table 2 illustrates 

additional bicycle set-up factors. 

 

Table A8.1Reliability of the measurements of intrinsic factors 

Factor Kappa 

Slump Left 0.63** 

Slump Right 0.30 

GMax active=passive Left 0.41* 

GMax holding Left 1.00*** 

Gmax active=passive Right 0.63** 

Gmax holding right 0.32 

Gmax final category 0.63** 

ASLR Left 0.40 

ASLR Right 0.25 

ASLR Final category 0.68** 

Gmed active=passive Left 0.26 

Gmed holding Left 0.32 

Gmed active=passive Right 0.03 

Gmed holding right 1.00*** 

Gmed final category 0.43* 

Key: Excellent intrarater reliability (ICC / Kappa > 0.75) = ***; Substantial intrarater reliability (ICC / Kappa of >0.60) = **, 

Moderate intrarater reliability (ICC / Kappa of 0.40-0.60) = *; Poor intrarater reliability (ICC / Kappa < 0.4).  
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Table A8.2Reliability of bicycle set-up measurements 

Factor Intra class 

correlation (ICC) 

Kappa 

Saddle Height left leg 0.20  

Saddle Height Right leg 0.75*  

Saddle set-back left leg  0.48* 

Saddle set-back right leg  0.83** 

Saddle set-back final 

category 

 0.81** 

Cleat position left  0.32 

Cleat position right  0.70* 

Cleat position final 

category 

 0.65* 

Key: Excellent intrarater reliability (ICC / Kappa > 0.75) = ***; Substantial intrarater reliability (ICC / Kappa of >0.60) = **, 

Moderate intrarater reliability (ICC / Kappa of 0.40-0.60) = *; Poor intrarater reliability (ICC / Kappa < 0.4).  
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APPENDIX 9 – FURTHER RESULTS FOR INTRINSIC FACTORS 

 

 

 
Additional results related to the factors assessed in the physical examination 

(anthropometric, intrinsic and bicycle set-up) are presented in this appendix.  

 

1.1Description of the physical and bicycle setup factors for the cycling population 

A summary of the description of the sub-groups of the physical factors and the bicycle 

setup factors for the entire cycling population included in the physical assessment can be 

found in Table 1 and Table 2 respectively. 

 

 

Table A9.1 Summary of the physical factors in cyclists 

Physical Factors Respondents 

n (%) 

Gender  

Female 24 (19.8) 

Male 97 (80.2) 

BMI  

Normal 55 (45.5) 

Overweight 51 (42.2) 

Obese 15 (12.4) 

BMI – Mean (SD) 25.98 (3.77) 

Lateral sway  

Unequal shift left and right (>2cm) 41 (33.9) 

Shift greater than 10cm 21 (17.4) 

Normal lateral sway test 74 (61.2) 

Lateral sway to Left – Mean (SD) (cm) 7.86 (1.94) 

Lateral sway to Right – Mean (SD) (cm) 7.21 (1.92) 

Sitting forward Lean  

Sitting forward lean with <10mm change in lumbar 

position (normal) 

114 (94.2) 

Sitting forward lean lumbar movement – Mean (SD) (cm) 0.30 (0.38) 

Slump  

Normal 85 (70.3) 

Covertly positive 19 (15.7) 

Overtly positive 17 (14.1) 

Gluteus Maximus  

Insufficient inner range holding capacity Left  91 (75.2) 

Insufficient inner range holding capacity Right  83 (68.6) 

Insufficient inner range holding final category 99 (81.8) 

Asymmetry between sides 29 (24.0) 
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Physical Factors Respondents 

n (%) 

Leg-Length Discrepancy  

More than 6mm discrepancy 47 (38.8) 

More than 10mm discrepancy 28 (23.1) 

More than 20mm discrepancy 3 (2.48) 

Active straight-leg-raise  

Normal 78 (64.5) 

Impaired (sum of both legs ≥1) 43 (35.5) 

Hamstring length   

Left KEA within limits (less than 20°) 47 (38.8)  

Right KEA within limits (less than 20°) 45 (37.2) 

Left KEA – Mean (SD) (°) 23.7 (11.7) 

Right KEA – Mean (SD) (°) 23.5 (11.1) 

KEA out of limit - final category 84 (69.4) 

Asymmetry between sides 18 (14.9) 

Gluteus Medius inner range holding capacity  

Insufficient inner range holding capacity left 83 (68.6) 

Insufficient inner range holding capacity right 100 (82.6) 

Insufficient inner range holding final category 107 (88.4) 

Asymmetry between left and right sides 40 (33.1) 

Lumbar position on bicycle  

Brake levers  

Angle thoraco-lumbar spine (T12/L1) – Mean (SD) 49.12 (7.09) 

Angle Lumbo-sacral spine (L5/S1) – Mean (SD) 33.16 (8.04) 

Lumbar angle – Mean (SD) 15.93 (10.11) 

Seated upright  

Angle thoraco-lumbar spine (T12/L1) – Mean (SD) 43.91 (7.2) 

Angle Lumbo-sacral spine (L5/S1) – Mean (SD) 28.69 (8.4) 

Lumbar angle – Mean (SD) 15.23 (10.3) 

Drops  

Angle thoraco-lumbar spine (T12/L1) – Mean (SD) 59.02 (7.1) 

Angle Lumbo-sacral spine (L5/S1) – Mean (SD) 41.10 (7.9) 

Lumbar angle – Mean (SD) 17.94 (9.7) 

Distance cycled per week   

Mean (SD) 187.79 (98.79) 
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Table A9.2 Summary of the bicycle setup factors 

Bicycle set-up Factors 
Respondents 

n (%) 

Saddle Height  

Normal (25-35° KEA) 42 (35) 

Asymmetry between sides 39 (32.5) 

Too high 13 (10.8) 

Too low 26 (21.7) 

Righte leg saddle height – Mean (SD) (°) 31.86 (7.89) 

Left leg saddle height – Mean (SD) (°) 31.52 (7.69) 

Saddle set-back Left  

In limit (knee over spindle) 66 (54.6) 

Too far back 23 (19.0) 

Too far forward 32 (26.5) 

Saddle set-back Right  

In limit (knee over spindle) 55 (45.5) 

Too far back 28 (23.1) 

Too far forward 38 (31.4) 

Saddle angle  

Level 16 (13.2) 

Tilted anteriorly 58 (47.9) 

Tilted posteriorly 47 (38.8) 

Saddle angle – Mean (SD) (°) 0.72 (2.49) 

Handlebar Height  

In limit (5-8 cm below saddle) 37 (30.6) 

Too high 66 (54.6) 

Too low 18 (14.9) 

Handlebar height – Mean (SD) (cm) 4.69 (3.34) 

Reach  

Normal 11 (9.1) 

Too stretched out 46 (38.0) 

Too bunched up 64 (52.9) 

Cleat position – Left leg  

In limit (in line with 1st metatarsal head) 69 (57.0) 

Too far back 45 (37.2) 

Too far forward 7 (5.8) 

Cleat position – Right leg  

In limit 66 (54.6) 

Too far back 53 (43.8) 

Too far forward 2 (1.7) 

Cleat position – final category of left and right sides  

Correct cleat positioning 53 (43.80) 
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1.2 Further analysis between several factors and LBPP 

Additional comparison between groups for anthropometric and bicycle set-up factors can 

be found in Tables 3 and 4 respectively. 

 

Table A9.3 Additional information on anthropometric factors 

Factor No LBPP 

n=31 

Mean (SD) 

LBPP 

n=90 

Mean (SD) 

95% Confidence 

interval 

Age (years) 46.97 (9.57) 46.08 (11.48) 44.33-48.37 

Height (m) 1.77 (0.09) 1.77 (0.85) 1.75-1.78 

Weight (kg) 83.87 (15.86) 80.90 (15.34) 78.88-84.45 

Armlength (cm) 68.86 (3.60) 68.31 (3.78) 67.78-69.12 

Upper body length 

(cm) 

56.52 (3.10) 56.30 (3.31) 55.77-56.94 

Upper length (sum) 125.26 124.62 123.35-125.87 

 

 

Table A9.4 Additional comparison between groups for bicycle set-up factors  

Factor 

No LBPP 

n=31 

Mean (SD) 

LBPP 

n=90 

Mean (SD) 

95% confidence 

interval 
p-value 

Saddle height 

left leg 
30.84 (9.27) 31.76 (7.10) 30.14-32.90 0.83 

Saddle height 

Right leg 
29.39 (8.40) 32.71 (7.57) 30.44-33.28 0.08* 

Forward reach 

(cm) 
79.85 (3.59) 79.30 (5.02) 78.60-80.28 0.43 
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APPENDIX 10 – FURTHER RESULTS FOR INTERRELATIONSHIPS 

 

Details on the interrelationships of various factors with each other can be found in this 

appendix. The breakdown of the tables are as follows: 

 Table A10.1: Association of factors with gender 

 Table A10.2: Association of factors with distance cycled per week 

 Table A10.3: Association of factors with BMI 

 Table A10.4: Association of factors with Gmed 

 Table A10.5: Association of factors with hamstring length 

 Table A10.6: Association of factors with Gmax 

 Table A10.7: Association of factors with thoracolumbar angle in the brake lever 

position 

 Table A10.8: Association of factors with lumbo-sacral angle in the brake lever 

position 

 Table A10.9: Association of factors with lumbar curvature in the brake lever 

position 

 Table A10.10: Association of factors with thoracolumbar angle in the seated 

upright position 

 Table A10.11: Association of factors with lumbo-sacral angle in the seated upright 

position 

 Table A10.12: Association of factors with lumbar curvature in the seated upright 

position 

 Table A10.13: Association of factors with thoracolumbar angle in the drops 

position 

 Table A10.14: Association of factors with lumbo-sacral angle in the drops position 

 Table A10.15: Association of factors with lumbar curvature in the drops position 
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Table A10.1 Association of factors with gender 

Factor Sub-factor 
Female 

n (%) 

Male 

n (%) 
p-value 

BMI 

In normal limit 17 (30.91) 38 (69.09) 
0.01** 

Out of limit 7 (10.61) 59 (89.39) 

Mean (SD) 24.1 (4.05) 26.45 (3.57) 0.001** 

Lateral sway 
In normal limit 13 (17.57) 61 (82.43) 

0.43 
Out of limit 11 (23.40) 36 (76.60) 

Siting forward 

lean 

In normal limit 24 (21.05) 90 (78.95) 
0.34 

Out of limit 0 7 (100) 

Slump 
In normal limit 19 (18.27) 85 (81.73) 

0.33 
Out of limit 5 (29.41) 12 (70.59) 

Gmax 
In normal limit 9 (40.91) 13 (59.09) 

0.006** 
Out of limit 15 (15.15) 84 (84.85) 

ASLR 
In normal limit 15 (19.23) 63(80.77) 

0.82 
Out of limit 9 (20.93) 34 (79.07) 

Hamstring length 
In normal limit 14 (37.84) 23 (62.16) 

0.001** 
Out of limit 10 (11.90) 74 (88.10) 

Gmed 
In normal limit 7 (50.00) 7 (50.00) 

0.01** 
Out of limit 17 (15.89) 90 (84.11) 

Saddle height 

In normal limit 6 37 
0.23 

Out of limit 18 60 

In limit 6 37 

0.12* 

Asymmetry 

between KEA 

of left and right 

leg 

6 33 

Too high 5 8 

Too low 7 19 

Saddle set-back 
In normal limit 6 42 

0.10* 
Out of limit 18 55 

Saddle angle 

In limit 17 57 
0.28 

Not in limit 7 40 

Level 4 12 

0.57 
Tilted ant down 13 45 

Tilted post 

down 
7 40 

Handlebar 

height 

In normal limit 3 34 
0.05** 

Out of limit 21 63 

Reach 
In limit 0 11 

0.12* 
Not in limit 24 86 

LLD < 6mm 
In normal limit 15 (20.27) 59 (79.73) 

0.88 
Out of limit 9 (19.15) 38 (80.85) 

LLD < 10mm 
In normal limit 18 (19.35) 75 (80.65) 

0.81 
Out of limit 6 (21.43) 22 (78.57) 

LLD < 20mm 
In normal limit 23 (19.49) 95 (80.51) 

0.49 
Out of limit 1 (33.33) 2 (66.67) 
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Table A10.2 Association of factors with distance cycled per week 

 

 

Association of various factors with BMI 

The results of the association of various factors with BMI are presented in Table 3. 

Table A10.3 Association of factors with BMI 

Factor Subfactor 

Respondents 

n (%) 
p-value 

BMI in 

limit 

BMI not 

in limit 

Gender Female 17 (70.83) 7 (29.17) 
0.01** 

Male 38 (39.18) 59 (60.82) 

Lateral sway In limit 30 (40.54) 44 (59.46) 
0.17* 

Not in limit 25 (53.19) 22 (46.81) 

GMax Normal holding 9 (40.91) 13 (59.09) 

0.64 Insufficient 

holding 

46 (46.46) 53 (53.54) 

ASLR In limit 35 (44.87) 43 (55.13) 
0.86 

Not in limit 20 (46.51) 23 (53.49) 

Hamstring 

length 

In limit 20 (54.05) 17 (45.95) 
0.21 

Not in limit 35 (41.67) 49 (58.33) 

Gmed  Normal holding 11 (78.57) 3 (21.43) 

0.01** Insufficient 

holding 

44 (41.12) 63 (58.88) 

Factor Sub-factor 
Mean (SD) 

(km) 
z-value 95% CI 

Gender  
Female 143.13 (78.78) 

0.01 
109.86-176.39 

Male 198.96 (100.46) 178.60-219.31 

BMI 
Normal BMI 193.24 (89.00) 

0.29 
168.95-217.53 

BMI not in limit 183.33 (106.59) 158.13-209.54 

Lateral Sway 
In normal limit 184.38 (102.17) 

0.43 
160.55-208.22 

Out of limit 193.09 (94.13) 165.45-220.72 

Sitting forward 

lean test 

In normal limit 186.68 (98.09) 
0.65 

168.40-204.96 

Out of limit 205.71 (116.46) 98.011-313.42 

Slump 
In normal limit 186.73 (100.50) 

0.65 
167.19-206.27 

Out of limit 194.69 (89.51) 146.99-242.38 

Gmax 
In normal limit 168.41 (93.33) 

0.30 
127.03-209.79 

Out of limit 192.14 (99.91) 172.11-212.17 

ASLR 
In normal limit 196.54 (101.50) 

0.19* 
173.65-219.42 

Out of limit 171.55 (92.52) 142.72-200.38 

Hamstring 

length 

In normal limit 182.16 (103.88) 
0.58 

147.53-216.80 

Out of limit 190.30 (10.64) 169.13-211.48 

Gmed 
In normal limit 172.14 (118.64) 

0.37 
103.64-240.65 

Out of limit 189.86 (96.33) 171.31-208.41 
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Association of various factors with Gmed 

The results of the association of various factors with Gmed are presented in Table 4. 

 

Table A10.4 Association of factors with Gmed 

Factor Subfactor 

Respondents 

n (%) 
p-value 

Normal 

holding 

Insufficient 

holding 

BMI Normal 11 (20.00) 44 (80.00) 
0.01** 

Overweight 3 (4.55) 63 (95.45) 

Lateral sway In limit 11 (14.86)  63 (85.14) 
0.24 

Not in limit 3 (6.38) 44 (93.62) 

GMax Normal holding 7 (31.82) 15 (68.18) 

0.001** Insufficient 

holding 

7 (7.07) 92 (92.93) 

ASLR In limit 9 (11.54) 69 (88.46) 
1.00 

Not in limit 5 (11.63) 38 (88.37) 

Hamstring 

length 

In limit 8 (21.62) 29 (78.38) 
0.02** 

Not in limit 6 (7.14) 78 (92.86) 

Saddle height In limit 7 (16.28) 36 (83.72) 
0.23 

Not in limit 7 (8.97) 71 (91.03) 

Saddle set-

back 

In limit 7 (14.58) 41 (85.42) 
0.40 

Not in limit 7 (9.59) 66 (90.41) 

Saddle angle In limit 10 (13.51) 64 (86.49) 
0.56 

Not in limit 4 (8.51) 43 (91.49) 

 

 

Association of various factors with hamstring length 

The results of the association of various factors with the length of the hamstrings are 

presented in Table 5. 
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Table A10.5 Association of factors with hamstring length 

Factor Subfactor 

Respondents 

n (%) 
p-value 

Normal 

length 

Insufficient 

length 

GMax Normal holding 12 (54.55) 10 (45.45) 
0.01** 

Insufficient holding 25(25.25) 74 (74.75) 

Gmed In limit 8 (57.147) 6 (42.86) 
0.02** 

Not in limit 29 (27.10) 78 (72.90) 

Slump Normal holding 32 (30.77) 72 (69.23) 

1.00 Insufficient holding 5 (29.41) 12 (70.59) 

Not in limit 22 (34.92) 41 (65.08) 

Sitting forward 

lean 

In limit 36 (31.58) 78 (68.42) 0.67 

Not in limit 1 (14.29) 6 (85.71) 

Saddle height In limit 16 (37.21) 27 (62.79) 0.24 

Not in limit 21 (26.92) 57 (73.08) 

Saddle set-

back 

In limit 15 (31.25) 33 (68.75) 0.90 

Not in limit 22 (30.14) 51 (69.86) 

Saddle angle In limit 23 (31.08) 51 (68.92) 0.88 

Not in limit 14 (29.79) 33 (70.21) 

 

Association of various factors with Gmax 

The results of the association of various factors with Gmax are presented in Table 6. 

 

Table A10.6 Association of factors with Gmax 

Factor Subfactor 

Respondents 

n (%) 
p-value 

Gmax in 

limit 

Gmax not 

in limit 

Lateral sway In limit 18 (24.32) 56 (75.68) 
0.03** 

Not in limit 4 (8.51) 43 (91.49) 

Sitting forward 

lean 
Normal holding 21 (18.42) 93 (81.58) 

1.00 
Insufficient holding 1 (14.29) 6 (85.71) 

ASLR In limit 15 (19.23) 63 (80.77) 
0.69 

Not in limit 7 (16.28) 36 (83.72) 

Hamstring 

length 

In limit 12 (32.43) 25 (67.57) 
0.01** 

Not in limit 10 (11.90) 74 (88.10) 

Gmed  Normal holding 7 (50.00) 7 (50.00) 
0.001** 

Insufficient holding 15 (14.02) 92 (85.98) 

Saddle height 

 

In limit 11 (25.58) 32 (74.42) 0.12* 

Not in limit 11 (14.10) 67 (85.90) 

Saddle set-

back 

In limit 8 (16.67) 40 (83.33) 
0.73 

Not in limit 14 (19.18) 59 (80.82) 

Reach In limit 1 (9.09) 10 (90.91) 
0.69 

Not in limit 21 (19.09) 89 (80.91) 
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Association of various factors with thoraco-lumbar angle (T12/L1) in the brake lever 

position 

 

Table A10.7 Association of factors with thoracolumbar angle in the brake lever 

position 

 

  

Factor Subfactor 
Participants 

n 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender 
Female  24 51.75 (6.01) 0.04** 49.21-54.29 

Male 97 48.46 (7.22) 47.01-49.92 

BMI 
In limit 55 51.91 (6.86) 0.001** 50.06-53.76 

Not in limit 66 46.79 (6.46) 45.20-48.38 

Lateral sway 
In limit 74 49.10 (6.65) 0.72 47.55-50.63 

Not in limit 47 49.15 (7.82) 46.85-51.44 

Sitting 

forward lean 

In limit 114 48.99 (6.99) 0.27 47.69-50.29 

Not in limit 7 51.14 (9.04) 42.78-59.51 

Slump 
In limit 104 48.88 (7.15) 0.27 47.48-50.27 

Not in limit 17 50.59 (6.76) 47.12-54.06 

Gmax 
In limit 22 50 (6.41) 0.54 47.16-52.84 

Not in limit 99 48.92 (7.25) 47.47-50.37 

Hamstring 

length 

In limit 37 50.19 (7.26) 0.28 47.77-52.61 

Not in limit 84 48.64 (7.01) 47.12-50.16 

ASLR 
In limit 78 48.94 (7.00) 0.95 47.36-50.51 

Not in limit 43 49.44 (7.33) 47.19-51.70 

Gmed 
In limit 14 51.07 (6.68) 0.30 47.21-54.93 

Not in limit 107 48.86 (7.14) 47.49-50.23 

Saddle height 
In limit 43 50.19 (6.87) 0.38 48.07-52.30 

Not in limit 78 48.53 (7.19) 46.91-50.15 

Saddle set-

back 

In limit 48 49.69 (6.22) 0.61 47.88-51.49 

Not in limit 73 48.74 (7.63) 46.96-50.52 

Saddle-angle 
In limit 74 50.04 (7.25) 0.10* 48.36-51.72 

Not in limit 47 47.66 (6.65) 45.71-49.61 

Handlebar 

height 

In limit 37 50.19 (7.35) 0.17* 47.74-52.64 

Not in limit 84 48.64 (6.97) 47.13-50.16 

Reach 
In limit 11 49.91 (4.04) 0.69 47.20-52.62 

Not in limit 110 49.04 (7.34) 47.65-50.42 
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Association of various factors with lumbo-sacral angle (L5/S1) in the brake lever 

position 

 

Table A10.8 Association of factors with lumbosacral angle in the brake lever 

position 

  

Factor Subfactor 
Resp 

N 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender 
Female  24 40.29 (10.10) 

0.001** 
36.03-44.56 

Male 97 31.39 (6.36) 30.11-32.67 

BMI 
In limit 55 33.09 (8.37) 

0.79 
30.83-35.35 

Not in limit 66 33.21 (7.82) 31.29-35.14 

Lateral sway 
In limit 74 33.47 (8.38) 

0.74 
31.53-35.41 

Not in limit 47 32.66 (7.54) 30.44-34.87 

Sitting forward 

lean 

In limit 114 33.34 (8.08) 
0.35 

31.84-34.84 

Not in limit 7 30.14 (7.20) 23.49-36.80 

Slump 
In limit 104 32.90 (8.02) 

0.70 
31.35-34.46 

Not in limit 17 34.71 (8.27) 30.46-38.96 

Gmax 
In limit 22 35.05 (8.08) 

0.25 
31.46-38.63 

Not in limit 99 32.74 (8.01) 31.14-34.34 

Hamstring 

length 

In limit 37 35.81 (9.00) 
0.07* 

32.81-38.81 

Not in limit 84 31.99 (7.34) 30.40-33.58 

ASLR 
In limit 78 32.81 (8.41) 

0.40 
30.91-34.70 

Not in limit 43 33.79 (7.37) 31.52-36.06 

Gmed 
In limit 14 35.5 (9.98) 

0.27 
29.74-41.26 

Not in limit 107 32.85 (7.76) 31.36-34.36 

Saddle height 
In limit 43 32.53 (6.62) 

0.56 
30.50-34.57 

Not in limit 78 33.5 (8.75) 31.53-35.47 

Saddle set-

back 

In limit 48 32.73 (8.07) 
0.29 

30.39-35.07 

Not in limit 73 33.44 (8.06) 31.56-35.32 

Saddle-angle 
In limit 74 33.14 (8.15) 

0.79 
31.25-35.02 

Not in limit 47 33.19 (7.94) 30.86-35.52 

Handlebar 

height 

In limit 37 33.76 (6.90) 
0.25 

31.46-36.06 

Not in limit 84 32.89 (8.52) 31.04-34.74 

Reach 
In limit 11 30.27 (7.20) 

0.19 
25.44-35.11 

Not in limit 110 33.45 (8.09) 31.92-34.97 
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Association of various factors with the lumbar curvature in the brake lever position 

 

Table A10.9 Association of factors with lumbar curvature in the brake lever position 

Factor Subfactor 
Resp 

N 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 11.35 (10.88) 
0.03** 

6.75-15.94 

Male 97 17.06 (9.63) 15.12-19.01 

BMI In limit 55 18.82 (9.96) 
0.002** 

16.13-21.51 

Not in limit 66 13.52 (9.66) 11.15-15.89 

Lateral sway In limit 74 15.64 (9.54) 
0.74 

13.43-17.85 

Not in limit 47 16.38 (11.03) 13.14-19.62 

Sitting forward 

lean 

In limit 114 15.62 (10.03) 
0.08* 

13.76-17.48 

Not in limit 7 20.91 (10.91) 10.83-31.00 

Slump In limit 104 15.94 (10.34) 
0.89 

13.93-17.95 

Not in limit 17 17 (8.80) 11.34-20.39 

Gmax In limit 22 14.89 (9.61) 
0.67 

10.63-19.15 

Not in limit 99 16.16 (10.24) 14.12-18.20 

Hamstring 

length 

In limit 37 14.31 (10.65) 
0.25 

10.76-17.87 

Not in limit 84 16.64 (9.84) 14.51-18.78 

ASLR In limit 78 16.12 (10.24) 
0.76 

13.81-18.43 

Not in limit 43 15.59 (9.97) 12.52-18.66 

Gmed In limit 14 15.47 (12.69 
0.95 

8.14-22.80 

Not in limit 107 15.99 (9.79) 14.11-17.87 

Saddle height In limit 43 17.65 (9.20) 
0.13* 

14.81-20.48 

Not in limit 78 14.98 (10.51) 12.61-17.35 

Saddle set-

back 

In limit 48 16.90 (9.13) 
0.38 

14.25-19.56 

Not in limit 73 15.29 (10.71) 12.79-17.79 

Saddle-angle In limit 74 16.85 (9.81) 
0.21 

14.58-19.12 

Not in limit 47 14.48 (10.50) 11.40-17.56 

Handlebar 

height 

In limit 37 16.37 (11.52) 
0.66 

12.53-20.21 

Not in limit 84 15.74 (9.49) 13.68-17.80 

Reach In limit 11 19.65 (8.85) 
0.15* 

13.70-25.59 

Not in limit 110 15.56 (10.18) 13.63-17.48 
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Association of various factors with thoraco-lumbar angle (T12/L1) in the seated 

upright position 

 

Table A10.10 Association of factors with thoracolumbar angle in the seated upright 

position 

 

 

 

 

 

 

 

 

Factor Subfactor n 
Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 46.54 (5.13) 
0.04** 

44.39-48.71 

Male 97 43.26 (7.44) 41.76-44.76 

BMI In limit 55 46.44 (6.77) 
0.001** 

44.61-48.27 

Not in limit 66 41.80 (6.80) 40.13-43.48 

Lateral sway In limit 74 44.24 (6.83) 
0.70 

42.66-45.83 

Not in limit 47 43.38 (7.67) 41.13-45.63 

Sitting forward 

lean 

In limit 114 43.88 (7.11) 
0.67 

42.56-45.20 

Not in limit 7 44.43 (8.26) 36.79-52.07 

Slump In limit 104 43.58 (7.28) 
0.18* 

42.16-44.99 

Not in limit 17 45.94 (6.10) 42.91-49.08 

Gmax In limit 22 44.68 (6.34) 
0.48 

41.87-47.49 

Not in limit 99 43.74 (7.33) 42.28-45.20 

Hamstring 

length 

In limit 37 45.27 (7.90) 
0.22 

42.63-47.91 

Not in limit 84 43.31 (6.75) 41.85-44.77 

ASLR In limit 78 43.68 (7.29) 
0.88 

42.04-45.32 

Not in limit 43 44.33 (6.94) 42.19-46.46 

Gmed In limit 14 46.07 (7.16) 
0.19* 

41.94-50.21 

Not in limit 107 43.63 (7.13) 42.26-44.99 

Saddle height In limit 43 45.02 (7.00) 
0.44 

42.87-47.18 

Not in limit 78 43.29 (7.20) 41.67-44.92 

Saddle set-

back 

In limit 48 44.81 (6.16) 
0.37 

43.02-46.60 

Not in limit 73 43.32 (7.71) 41.52-45.11 

Saddle-angle In limit 74 44.64 (7.12) 
0.22 

42.98-46.29 

Not in limit 47 42.77 (7.11) 40.68-44.85 

Handlebar 

height 

In limit 37 44.97  (7.65) 
0.14* 

42.42-47.52 

Not in limit 84 43.44 (6.91) 41.94-44.94 

Reach In limit 10 44.73 (3.98) 
0.79 

42.06-47.40 

Not in limit 110 43.83 (7.40) 42.43-45.22 
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Association of various factors with lumbo-sacral angle (L5/S1) in the seated upright 

position 

 

Table A10.11 Association of factors with lumbo-sacral angle in the seated upright 

position 

 

 

 

 

  

Factor Subfactor 
Resp 

N 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 35.88 (10.68) 0.001** 31.37-40.38 

Male 97 26.91 (6.31) 25.57-28.24 

BMI In limit 55 28.67 (8.36) 0.79 26.41-30.93 

Not in limit 66 28.70 (8.43) 26.62-30.77 

Lateral sway In limit 74 29.23 (8.76) 0.34 27.20-31.26 

Not in limit 47 27.83 (7.71) 25.57-30.09 

Sitting forward 

lean 

In limit 114 28.97 (8.32) 0.16* 27.43-30.52 

Not in limit 7 24 (8.25) 16.37-61.63 

Slump In limit 104 28.40 (8.26) 0.69 26.80-30.01 

Not in limit 17 30.41 (9.03) 25.77-35.05 

Gmax In limit 22 30.77 (8.57) 0.29 26.97-34.57 

Not in limit 99 28.22 (8.29) 26.57-29.88 

Hamstring 

length 

In limit 37 31.84 (9.25) 0.03** 28.75-34.92 

Not in limit 84 27.30 (7.59) 25.65-28.94 

ASLR In limit 78 28.51 (8.68) 0.65 26.56-30.47 

Not in limit 43 29 (7.85) 26.58-31.42 

Gmed In limit 14 31.21 (10.28) 0.30 25.28-37.15 

Not in limit 107 28.36 (8.08) 26.81-29.90 

Saddle height In limit 43 28.07 (7.54) 0.40 25.75-30.39 

Not in limit 78 29.03 (8.81) 27.04-31.01 

Saddle set-

back 

In limit 48 28.21 (8.35) 0.28 25.78-30.63 

Not in limit 73 29 (8.41) 27.04-30.96 

Saddle-angle In limit 74 28.57 (8.36) 0.46 26.63-30.50 

Not in limit 47 28.87 (8.46) 26.39-31.36 

Handlebar 

height 

In limit 37 29.35 (6.70) 0.29 27.12-31.59 

Not in limit 84 28.39 (9.02) 26.44-30.35 

Reach In limit 10 25.18 (8.65) 0.14* 19.37-30.99 

Not in limit 110 29.04 (8.29) 27.47-30.60 
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Association of various factors with the lumbar curvature in the seated upright 

position 

 

Table A10.12 Association of factors with the lumbar curvature in the seated upright 

position 

  

Factor Subfactor 
Resp 

N 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 10.67 (11.40) 0.03** 5.86-15.48 

Male 97 16.36 (9.76) 14.39-18.33 

BMI In limit 55 17.84 (10.01) 0.01** 15.13-20.54 

Not in limit 66 13.06 (10.13) 10.57-15.55 

Lateral sway In limit 74 15.01 (9.72) 0.86 12.76-17.27 

Not in limit 47 15.57 (11.28) 12.26-18.88 

Sitting forward 

lean 

In limit 114 10.90 (10.26) 0.10* 13.00-16.81 

Not in limit 7 20.56 (10.56) 10.79-30.33 

Slump In limit 104 15.17 (10.60) 0.89 13.11-17.23 

Not in limit 17 15.59 (8.60) 11.16-20.01 

Gmax In limit 22 13.95 (10.54) 0.72 9.27-18.62 

Not in limit 99 15.52 (10.30) 13.46-17.57 

Hamstring 

length 

In limit 37 13.46 (11.29) 0.23 9.70-17.22 

Not in limit 84 16.01 (9.83) 13.88-18.14 

ASLR In limit 78 15.18 (10.47) 0.82 12.81-17.54 

Not in limit 43 15.33 (10.14) 12.21-18.45 

Gmed In limit 14 14.95 (11.82) 0.93 8.13-21.77 

Not in limit 107 15.27 (10.16) 13.32-17.22 

Saddle height In limit 43 16.95 (9.76) 0.14* 13.95-19.96 

Not in limit 78 14.28 (10.55) 11.90-16.66 

Saddle set-

back 

In limit 48 16.61 (8.76) 0.28 14.07-19.16 

Not in limit 73 14.32 (11.18) 11.71-16.93 

Saddle-angle In limit 74 16.09 (10.12) 0.21 13.74-18.43 

Not in limit 47 13.88 (10.58) 10.78-16.99 

Handlebar 

height 

In limit 37 15.59 (12.08) 0.57 11.56-19.61 

Not in limit 84 15.07 (9.51) 13.01-17.14 

Reach In limit 11 19.48 (9.69) 0.12* 12.97-25.99 

Not in limit 110 14.81 (10.32) 12.86-16.76 
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Association of various factors with thoraco-lumbar angle (T12/L1) in the drops 

position 

Table A10.13 Association of factors with the thoracolumbar angle in the drops 

position 

 

  

Factor Subfactor n 
Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 63.42 (4.76) 0.001** 61.41-65.43 

Male 97 57.94 (7.15) 56.50-59.38 

BMI In limit 55 61.82 (6.31) 0.001** 60.11-63.52 

Not in limit 66 56.70 (6.87) 55.01-58.39 

Lateral sway In limit 74 58.97 (7.12) 0.73 57.32-60.62 

Not in limit 47 59.11 (7.08) 57.03-61.19 

Sitting forward 

lean 

In limit 114 58.96 (7.04) 0.39 57.66-60.27 

Not in limit 7 60 (8.25) 52.37-67.63 

Slump In limit 104 58.70 (7.16) 0.21 57.31-60.09 

Not in limit 17 61 (6.41) 57.70-64.30 

Gmax In limit 22 59.81 (7.33) 0.40 56.57-63.07 

Not in limit 99 58.85 (7.04) 57.44-60.25 

Hamstring 

length 

In limit 37 60.70 (7.25) 0.15* 58.28-63.12 

Not in limit 84 58.29 (6.91) 56.79-59.79 

ASLR In limit 78 58.73 (6.86) 0.72 57.18-60.28 

Not in limit 43 59.56 (7.50) 57.25-61.87 

Gmed In limit 14 61.57 (6.62) 0.14* 57.75-65.39 

Not in limit 107 58.69 (7.10) 57.33-60.05 

Saddle height In limit 43 59.86 (7.49) 0.70 57.56-62.16 

Not in limit 78 58.56 (6.85) 57.02-60.11 

Saddle set-

back 

In limit 48 59.44 (6.35) 0.88 57.59-61.28 

Not in limit 73 58.75 (7.55) 56.99-60.51 

Saddle-angle In limit 74 60.27 (7.06) 0.02** 58.63-61.91 

Not in limit 47 57.06 (6.71) 55.09-59.03 

Handlebar 

height 

In limit 37 59.68 (7.44) 0.36 57.19-62.16 

Not in limit 84 58.74 (6.94) 57.23-60.24 

Reach In limit 11 60.36 (3.64) 0.48 57.72-62.81 

Not in limit 110 58.89 (7.33) 57.51-60.28 



 

193 

 

Association of various factors with lumbo-sacral angle (L5/S1) in the drops position 

Table A10.14 Association of factors with the lumbo-sacral angle in the drops 

position 

 

 

 

  

Factor Subfactor 
Resp 

N 

Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female  24 49.38 (8.70) 0.001** 45.70-53.05 

Male 97 39.05 (6.13) 37.82-40.29 

BMI In limit 55 40.89 (8.11) 0.65 38.70-43.08 

Not in limit 66 41.27 (7.70) 39.38-43.16 

Lateral sway In limit 74 41.5 (8.27) 0.64 39.58-43.42 

Not in limit 47 40.47 (7.20) 38.35-42.58 

Sitting forward 

lean 

In limit 114 41.42 (7.83) 0.08* 39.97-42.87 

Not in limit 7 35.86 (6.79) 29.57-42.14 

Slump In limit 104 40.87 (7.60) 0.81 39.39-42.34 

Not in limit 17 42.53 (9.37) 37.71-47.35 

Gmax In limit 22 42.90 (7.24) 0.32 39.70-46.12 

Not in limit 99 40.70 (7.96) 39.11-42.29 

Hamstring 

length 

In limit 37 43.97 (9.02) 0.03** 40.97-46.98 

Not in limit 84 39.83 (6.97) 38.32-41.35 

ASLR In limit 78 40.90 (8.15) 0.70 39.06-42.74 

Not in limit 43 41.47 (7.36) 39.20-43.73 

Gmed In limit 14 43.21 (10.15) 0.28 37.35-49.08 

Not in limit 107 40.82 (7.52) 39.38-42.26 

Saddle height In limit 43 39.93 (7.14) 0.17* 37.73-42.13 

Not in limit 78 41.74 (8.19) 39.90-43.59 

Saddle set-

back 

In limit 48 40.40 (8.03) 0.22 38.06-42.73 

Not in limit 73 41.56 (7.76) 39.75-43.37 

Saddle-angle In limit 74 41.53 (8.26) 0.74 39.61-43.44 

Not in limit 47 40.43 (7.20) 38.31-42.54 

Handlebar 

height 

In limit 37 41.11 (6.17) 0.48 39.05-43.17 

Not in limit 84 41.10 (8.52) 39.25-42.95 

Reach In limit 11 38.82 (7.72) 0.25 33.63-44.00 

Not in limit 110 41.33 (7.87) 39.84-42.81 
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Association of various factors with lumbar curvature in the drops position 

 

Table A10.15 Association of factors with the lumbar curvature in the drops position 

 

 

Factor Subfactor n 
Mean (SD) 

(°) 
p-value 

95% 

Confidence 

interval 

Gender Female 24 14.11 (10.05) 0.04** 9.87-18.35 

Male 97 18.89 (9.36) 17.00-20.78 

BMI In limit 55 20.99 (9.27) 0.001** 18.49-23.50 

Not in limit 66 15.40 (9.28) 13.12-17.68 

Lateral sway In limit 74 17.50 (9.31) 0.70 15.35-19.66 

Not in limit 47 18.64 (10.23) 15.63-21.64 

Sitting forward 

lean 

In limit 114 17.58 (9.49) 0.04** 15.82-19.34 

Not in limit 7 23.87 (11.09) 13.61-34.13 

Slump In limit 104 17.87 (9.79) 0.78 15.96-19.77 

Not in limit 17 18.41 (9.03) 13.77-23.05 

Gmax In limit 22 16.95 (9.85) 0.78 12.58-21.31 

Not in limit 99 18.17 (9.64) 16.24-20.09 

Hamstring 

length 

In limit 37 16.77 (10.28) 0.34 13.34-20.20 

Not in limit 84 18.46 (9.38) 16.42-20.49 

ASLR In limit 78 17.89 (9.82) 0.98 15.68-20.11 

Not in limit 43 18.03 (9.45) 15.12-20.94 

Gmed In limit 14 18.49 (11.83) 0.85 11.65-25.32 

Not in limit 107 17.87 (9.39) 16.07-19.67 

Saddle height In limit 43 19.91 (9.05) 0.11* 17.13-22.70 

Not in limit 78 16.86 (9.85) 14.64-19.08 

Saddle set-

back 

In limit 48 19.06 (8.49) 0.33 16.60-21.53 

Not in limit 73 17.21 (10.33) 14.80-19.62 

Saddle-angle In limit 74 18.77 (9.71) 0.18* 16.52-21.02 

Not in limit 47 16.64 (9.51) 13.85-19.43 

Handlebar 

height 

In limit 37 18.61 (11.16) 0.51 14.88-22.33 

Not in limit 84 17.65 (8.96) 15.71-19.60 

Reach In limit 11 21.44 (8.74) 0.18* 15.57-27.31 

Not in limit 110 17.59 (9.70) 15.76-19.43 


