
Reinforcement Learning Applied to Option
Pricing

K.S. Martin

MSc in Computer Science,
University of the Witwatersrand,

Johannesburg.

June 12, 2014

Declaration
I declare that this project is my own, unaided work. It is being submitted

for the degree of Master of Science (Computer Science) in the University of

the Witwatersrand, Johannesburg. It has not been submitted before for any

degree or examination in any other University.

June 12, 2014

Abstract
This dissertation considers the pricing of European and American options.

European option prices are determined by the market and can be verified by

a closed-form solution to the Black-Scholes model. These options can only be

exercised at the maturity date. American option prices are not derived from the

market and cannot be priced using the same closed-form solution as in the case

of the European options because American options can be exercised at any time

on or before the maturity date. An initial method was investigated in pricing

a European option but could not price American options. Improvements were

made producing two robust option pricing models. The results of which were

compared to the closed-form solution in the case of European options and

a numerical approximation solution in the case of American options. The

improved models showed two significant benefits. The first benefit is the ability

to price both European and American options and the second is the ability

to calibrate the models to market prices using market data. Changes to the

parameters of the models showed the limitations of each improved model.

In conclusion, the improved methods are effective procedures for solving the

European and American option pricing problem.

Keywords: European options, American options, Markov Decision Pro-

cesses, Kernel-Based Reinforcement Learning, Calibration.

Acknowledgements
I would like to express my sincere appreciation to my supervisors, Professor

Clint van Alten and Pravesh Ranchod, for their tireless assistance and en-

couragement. I would also like to thank my family who provided support and

encouragement throughout this research.

Contents

1 Introduction 1
1.1 History of Options . 1
1.2 Brief introduction to financial options 2

1.2.1 Desirability of options 2
1.2.2 Importance of the premium for an option 2

1.3 Revealing the research problem 3
1.3.1 The problem . 3
1.3.2 The solution . 3

1.4 Structure of the dissertation . 4

2 Core Concepts 5
2.1 Finance Preliminaries . 5

2.1.1 Options and Option Types 5
2.1.2 American Options . 6
2.1.3 Black-Scholes . 7
2.1.4 Monte Carlo Simulation 10

2.2 Markov Decision Processes (MDPs) 15
2.2.1 Definitions . 15

2.3 Reinforcement Learning (RL) 16
2.3.1 Value Iteration . 17
2.3.2 Kernel-Based Reinforcement Learning 18

2.4 Summary . 21

3 European options 23
3.1 Initial Trajectory model . 23

3.1.1 Constructing an approximate KBRL MDP 25
3.1.2 Transition Probability refinement 32
3.1.3 Experiment (initial Trajectory model): Pricing a Euro-

pean put option . 36
3.2 Trajectory model using separated features and only hold action 38

3.2.1 Removing sell action . 38
3.2.2 Separating Risk/Time Component 39

i

CONTENTS ii

3.2.3 Experiment (Trajectory model using separated
features and only hold action): Pricing a European call
option . 42

3.3 Mapped model using separated features and only hold action . . 44
3.3.1 Mapping the state space 46
3.3.2 Kernel function amendment 47
3.3.3 Generating Transition Probabilities 49
3.3.4 Experiment (Mapped model using separated features and

only hold action): Pricing a European call 50
3.4 Value Iteration procedure to obtain the value function and an

optimal policy for the Option Pricing KBRL MDP 53
3.5 Calculating a price for unseen option 56
3.6 Summary . 57

4 American options 58
4.1 Changes to European option MDP 59
4.2 Trajectory model using separated features 60

4.2.1 Experiment (Trajectory model using separated
features): Pricing an American call option 60

4.3 Experiment (Mapped model): Pricing an American call 62
4.4 Analysis of execution time . 64
4.5 Pricing an American call option on a

dividend-paying asset . 65
4.5.1 Experiment (Trajectory model using separated

features): Pricing an American call option on a dividend-
paying asset . 65

4.5.2 Experiment (Mapped model): Pricing an American call
option on a dividend-paying asset 68

4.6 Summary . 70

5 Calibrating models 71
5.1 Calibrating improved trajectory model

using underlying stock trajectories 71
5.1.1 Replacing simulated Market State trajectories 73
5.1.2 Experiment (calibrating the improved Trajectory model):

Pricing a European call and an American call 75
5.2 Calibrating Mapped model using Option data 79

5.2.1 Experiment (calibrating Mapped model): Pricing a Eu-
ropean call and an American call 79

5.2.2 Comparison to market data prices 84
5.3 Summary . 85

CONTENTS iii

6 Effect of changing KBRL parameters 87
6.1 Standard deviation of kernels (b value) 87
6.2 Summary . 89

7 Conclusion 92
7.1 Significance of research . 92
7.2 Research Findings . 93
7.3 Future Research . 93

Bibliography 95

A Pseudocode 98

B Market Data 101
B.1 Stock options data . 101
B.2 Interest Rate Zero Curve (USD) 101

C Graphs 106

D Tables 112

List of Figures

2.1 European put & call price matrices (analytic Black-Scholes) . . 9
2.2 Monte-Carlo European put price matrix (Black-Scholes) 12
2.3 Monte-Carlo American call price matrix (Black-Scholes) 14
2.4 Value Iteration Algorithm via V-update 18
2.5 Illustration of transition probability function using a Gaussian

kernel on a Euclidean distance measure 21

3.1 Derivative sampling . 26
3.2 Market State sampling . 29
3.3 Transition Probability calculation 30
3.4 Kernel function . 31
3.5 Gaussian kernels . 33
3.6 Transition Probabilities from high risk 34
3.7 Transition Probabilities from low risk 35
3.8 European put price matrix (KBRL-derived model) 37
3.9 Market State sampling . 41
3.10 European call price matrix (KBRL with no sell action) 43
3.11 Market States mapping (1000 trajectories) 44
3.12 Trajectory model (only hold action) stock space mapping 45
3.13 Trajectory model (only hold action) stock space mapping 45
3.14 3-dimensional state space mapping) 46
3.15 Procedure to generate state space mapping 47
3.16 Stock vs Time-to-maturity - mapped model 48
3.17 Stock vs Volatility - mapped model 48
3.18 Volatility versus Time-to-maturity - mapped model 49
3.19 Lognormal Strike-Relative stock distribution 50
3.20 Mapped state space Transition Probability calculation 51
3.21 European call price matrix (KBRL with Mapped state space) . 52
3.22 Reward function . 54
3.23 Value Iteration . 55
3.24 Determing price of previously unseen option 56

4.1 American call price matrix (KBRL with no sell action) 61

iv

LIST OF FIGURES v

4.2 American call price matrix (KBRL with Mapped state space) . 63
4.3 Execution times graph (in seconds) 65
4.4 American call price matrix (KBRL with no sell action) 67
4.5 American call price matrix (KBRL with Mapped state space) . 69

5.1 Procedure to calculate Historical Volatility 73
5.2 Market data stock state space mapping 74
5.3 Volatility vs. Time-to-maturity 75
5.4 Calibrated European call price matrix (trajectory approach) . . 77
5.5 Calibrated American call price matrix (trajectory approach) . . 78
5.6 Market Data stock state space mapping 80
5.7 Volatility vs. Time-to-maturity 81
5.8 Calibrated European call . 82
5.9 Calibrated American call . 83
5.10 Consistency of Market Data prices 85

6.1 Bumpy European call price matrix (KBRL with Mapped state
space) . 88

6.2 Smooth European call price matrix (KBRL with Mapped state
space) . 90

6.3 Non-Zero flat European call price matrix (KBRL with Mapped
state space) . 91

A.1 Algorithm to generate Black-Scholes stock price paths 99
A.2 Monte Carlo Pricing model . 100

C.1 Black-Scholes stock price paths 106
C.2 Market States mapping (10 trajectories) 107
C.3 Market States mapping (100 trajectories) 108
C.4 Market States mapping (10000 trajectories) 109
C.5 Stock Gaussian Transition Probabilities 110
C.6 Risk biased Gaussian Transition Probabilities 111

List of Tables

4.1 Execution times table (in seconds) 64

5.1 List of companies for which market data was extracted from
Yahoo Finance . 72

5.2 Maturity dates of European call options from 8-Jan-2013 72

B.1 Excerpt Market Data of MSFT stock options for 8-Jan-2013 . . 102
B.2 Market Data for USD swap rate raw data 102
B.3 Market Data for stripped USD swap curve 103
B.4 Dividend payouts per stock . 104
B.5 Dividend payouts per stock (continued) 105

D.1 Basic kernel functions and the corresponding extended param-
eterizations . 112

vi

Chapter 1

Introduction

1.1 History of Options

The very first option in financial history dates back to Aristotle’s book on

Politics from Book 1 Chapter 11[6]. Aristotle describes a story about Thales

(a Greek astrologer and mathematician) in which he could observe the posi-

tion of the stars in winter and predict an extraordinary harvest of olives in

the following year. Based on this knowledge, Thales negotiated and bought

contracts from all the olive press owners in the area giving him the right to

lease the olive presses to the farmers at harvest time. He agreed to the leasing

prices but made no upfront payment for the lease so if the harvest prediction

turned out to be wrong, he would not have to lease the presses and would only

have lost the prepayment of the contract to the olive presses. As harvest time

arrived, his forecasts were true, so Thales was able to demand almost any price

from the olive farmers because he had leased all the presses from the areas.

The idea of paying in advance for the optionality in a contract is still the basic

idea in modern option trading.

During the 17th century options had acquired a bad reputation because of

the “Tulip Bulb Mania” in Holland. Tulips were popular among the Dutch

aristocracy as a status symbol when their popularity emerged into a worldwide

market, so the prices for tulips went up drastically. In case of a bad harvest,

tulip wholesalers began buying call options while tulip farmers bought put

options1. As the price of tulip bulbs increased, the value of existing option

contracts increased causing families to use their entire fortune to speculate on

1Call and put options are explained in Chapter 2

1

1.2. BRIEF INTRODUCTION TO FINANCIAL OPTIONS 2

the tulip bulb market. In 1638, chaos hit and the prices of tulips plummeted.

Despite the Dutch government’s efforts to force speculators to fulfil their obli-

gations on their options, most speculators were either unable or unwilling to

make good on their contracts.

1.2 Brief introduction to financial options

Options are financial contracts between two parties, the buyer and the seller,

and the price of options is dependent on the price of some other investment

instrument or commodity which is known as the “underlying”. The underlying

investment instrument can be a tangible object such as beans or it could be the

share of a company. The buyer or holder of an option has the right but not the

obligation to buy or sell a prespecified quantity of the underlying at a prespec-

ified price[17]. Two types of options are focused on in this research; exercising

allowed during the whole contract period (American style) and exercising is

only possible at the final expiration date (European style).

1.2.1 Desirability of options

The buyer of an option has bought the option so that he can either speculate

or hedge. In the former case the holder has an anticipation of the future

development of the market and takes on a risky position. In the latter case the

holder wants to cover his risky position against undesirable events. The hedger

is opposite to the speculator since he wants to mitigate the effect of losses and

abandon possible gains in his position. The seller of an option agrees to an

option contract because of the possibility to earn the premium of the option

that the buyer has to pay for his right. One can compare the motivation of

the olive press owners in the story of Thales to the basic idea that underlies

option contracts. When the option is not exercised by the buyer, the seller

earns the premium as final payoff.

1.2.2 Importance of the premium for an option

One of the most important factors in an option contract is the premium at

which the contract is settled. It represents the price the buyer has to pay for the

right to exercise the option. The problem is to compute a fair premium which

1.3. REVEALING THE RESEARCH PROBLEM 3

takes into consideration all the relevant factors. These include the current

price of the underlying asset, the underlying asset’s volatility, the strike price

of the option, the time to maturity and the risk free interest rate. An option’s

premium can be split into two main factors: the time value and the intrinsic

value of the option. The latter defines the actual value of the option without

considering the time value of money. The former defines the premium a rational

investor would pay based on the probability the value of the option will increase

before expiry.

1.3 Revealing the research problem

1.3.1 The problem

The main problem is to efficiently price options in a way that is both tractable

and plausible. Existing numerical solution procedures are time consuming be-

cause simulations need to be generated for each option that requires a price.

Pricing one hundred options is no problem, however pricing six thousand op-

tions is a huge problem. Risk numbers inform a trader on how risky his position

is in an option trade and multiple valuations of an option are needed to obtain

each risk number. Decisions need to be made based on these risk numbers on

whether to continue trading or to terminate his position in the trade. Making

the wrong decision can prove fatal in that the trader may incur a massive loss!

Therefore, the trader requires quick and accurate pricing models to mitigate

the risk of loss in option trading.

1.3.2 The solution

Existing numerical methods such as Monte Carlo simulation require the con-

struction of a model for each option. This thesis will use Kernel-Based Re-

inforcement methods, which are able to construct a global, reusable pricing

model. Kernel-Based Reinforcement Learning (KBRL) is able to learn a pric-

ing model from simulated or market data and can obtain a price for any new

option by using the model.

An initial KBRL method was investigated in pricing European options but

could not price American options. Improvements were made producing two

robust option pricing models. The results of these two models were compared

1.4. STRUCTURE OF THE DISSERTATION 4

to the closed-form solution in the case of European options and a numerical

approximation solution in the case of American options. The improved models

showed two significant benefits. The first benefit is the ability to price both

European and American options and the second is the ability to calibrate the

models to market prices using market data. By using the KBRL approach, the

time taken to obtain a price for an American option was reduced to a quarter

of the time of the commonly used numerical solutions. However, changes to

the parameters of these two models showed the limitations of each model.

1.4 Structure of the dissertation

Core concepts of the research are introduced in chapter two dealing with fi-

nance preliminaries, Markov Decision Processes and Reinforcement Learning.

The purpose of the finance preliminaries is to briefly describe options, the

mathematical models used in finance and the ways of pricing European and

American options. The rest of the chapter introduces the theory of Reinforce-

ment Learning.

Chapter three is dedicated to the formulation of progressive attempts in

solving the European option pricing problem. An essential theorem is proven

indicating that the problem can be solved theoretically within the research.

This chapter makes extensive use of the aspects described in chapter two.

Experiments of each of the models are shown illustrating the effectiveness of

each model.

Having established a theoretical framework for solving the European op-

tion pricing problem, chapter four describes how the American option pricing

problem can be solved by manipulating the existing European option pricing

framework. The execution times of the KBRL models were compared to the

Monte Carlo execution times. These results showed the former models per-

formed significantly better over the latter, time-consuming approach. Chapter

five explains how market data is used to calibrate the European and American

options to market prices.

The limitations of the models are provided in chapter six showing the lower

and upper bounds for the option prices. Chapter seven concludes the disser-

tation.

Chapter 2

Core Concepts

This chapter introduces the types of options traded in the market and various

mathematical models that can be used to obtain prices for exotic options (i.e.

options that do not have prices visible in the market). A basic introduction

to Markov Decision Processes (MDPs) is provided since the first objective

of the dissertation is to transform the option pricing problem into an MDP.

Reinforcement Learning is an area of Artificial Intelligence mainly focused on

solving real-world problems. In this research, Kernel-Based Reinforcement

Learning will be used to solve for the European and American option pricing

problem.

2.1 Finance Preliminaries

2.1.1 Options and Option Types

A derivative is a financial instrument whose value is derived from one or more

underlying assets, market securities or indices[17]. Essentially, a derivative

is a contract between two parties specifying certain conditions, such as the

date either party may receive or pay cash on, the resulting cash they may

receive or pay on that date, the definitions of the underlying variables, the

parties’ contractual obligations and the size of the contract (commonly called

the notional amount).

Options are one of the most common derivative types traded in the market.

There are two types of options: A call option is a contract that gives the holder

the right to buy an underlying asset at a predetermined price on or before a

5

2.1. FINANCE PRELIMINARIES 6

specified date in the future[17]. A put option is a contract that gives the holder

the right to sell an underlying asset at a predetermined price on or before a

specified date in the future[17]. The predetermined price in the option contract

is the exercise price or strike price. The intrinsic value (i.e. the payoff) of a

call option is calculated as the maximum between the difference in the current

stock price and the strike price and zero (i.e. f(Ut) = max{Ut−K, 0} where Ut

is the current stock price and K is the strike price). The date in the contract

is the maturity or expiration date and European options can only be exercised

on the expiration date, while American options can be exercised at any time

up to the expiration date.

For example, consider a European put option on XYZ stock: The European

put option gives the right to sell one share of XYZ stock for R1 in three months’

time. Suppose that today’s XYZ stock price is R1.10. The R1 is called the

strike price (K), the date in three months’ time is called maturity (T) and the

XYZ stock on which the option is based is called the underlying asset (U0 =

R1.10 is the initial stock price). The European put option would be exercised

at maturity if the stock price is below the strike price because the option is

worth

f(UT) = max{K − UT , 0}

at the maturity of the option. This function, f(Ut) for 0 ≤ t < T , is called the

payoff function and the max represents the optionality. The fair value of an

option in the risk-neutral world is the present value of the expected payoff at

maturity under a risk-neutral probability measure and is given by

Pt = exp(−rT)E [f(UT)]

where r is the riskless interest rate gathered from the market, T is the maturity

date of the contract and Pt is the price of the put option at time t. The

function E [·] defines the expectation (or mean value) of an unknown random

event. The payoff function is denoted by f (·) with UT denoting the stock price

at maturity, which is an unknown random event. The European option price

is nothing more than the expected, discounted payoff at maturity.

2.1.2 American Options

American options are contracts that may be exercised at any time prior to

maturity. The right to exercise at any time is clearly valuable and the price,

2.1. FINANCE PRELIMINARIES 7

or the fair value, of an American option cannot be less than the equivalent

European option[17]. Even though this grants more rights to the holder, the

problem is to know the optimal time to exercise the option. This makes Amer-

ican options much more interesting than its European counterparts because

the American option value is maximized by an optimal exercise strategy.

The American option pricing problem can be defined as follows

Pt = sup
τ∈[t,T]

EQ [exp (−r(τ − t)) f(Uτ)|Ut] (2.1)

where Q is an appropriate risk-neutral measure, (see [9, 17] for details on Q),

f(·) is the payoff function, and the supremum is achieved by all stopping times

τ ∈ [t, T] given that the option was not exercised prior to t. The concept of a

risk-neutral measure Q gives a theoretical risk of zero on the rate of return on

an investment.

However, Equation (2.1) is not easily computable on the infinite time hori-

zon because of the supremum function. Common practice is to discretize the

interval [t, T] into N equal intervals in which case Equation (2.1) becomes

Pt = max
τ∈[t,T]

EQ [exp (−r(τ − t)) f(Uτ)|Ut] (2.2)

thereby changing the complex supremum into a maximum that is more easily

computable over the discretized interval [t, T].

2.1.3 Black-Scholes

The Black-Scholes model is a mathematical model of a financial market which

contains a certain type of derivative instrument[4]. The Black-Scholes formula

is derived from the model to price European-style options.

The model’s dynamics are defined by the following stochastic process

dUt = rUtdt+ σUtdWt (2.3)

⇒ Ut = U0 exp

((
r − 1

2
σ2

)
t+ σWt

)
(2.4)

where r is the continuously compounded risk-free interest rate, σ is the annu-

alized volatility on the returns of the stock and Wt is a Brownian motion. The

stock price process is lognormally distributed while the daily returns are nor-

mally distributed. This provides a trajectory with non-negative stock prices.

There are a number of assumptions that the Black-Scholes model[4] makes

about the market:

2.1. FINANCE PRELIMINARIES 8

• there is no arbitrage (i.e. a trader cannot make a riskless profit);

• a risk-free interest rate is used for borrowing and lending cash;

• it is possible to buy and sell at any real-number amount (including frac-

tions), of a stock (including short-selling1);

• there are no fees or costs in the above transactions (i.e. the market is

frictionless);

• the stock price follows a geometric Brownian motion process with the

drift and volatility fixed as a constant; and

• the underlying security does not pay any dividends.

The analytic Black-Scholes price for a European option at time t with T − t
years to maturity is given by

P (S,K, r, t, T, α) = α
(
UtN (αd1)−Ke−r(T−t)N (αd2)

)
(2.5)

where

d1 =
ln(Ut

K
) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

,

d2 = d1 − σ
√
T − t

=
ln(Ut

K
) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

and α = 1 for a call option and α = −1 for a put option. r is the riskless

interest rate and N (·) is the standard normal cumulative distribution func-

tion. T − t denotes the time-to-maturity of the option and σ defines the

annualized volatility (i.e. standard deviation) on the returns of the stock. The

analytic Black-Scholes price matrices for both a European put and call will

be compared against the Kernel-Based Reinforcement Learning and Monte-

Carlo approaches. Figure 2.1 shows these price matrices for a strike price of

10 and an annualized volatility of 0.4 are used for every example. There is no

particular preference for using these two numbers because the shape would be

the same regardless of the values of the strike price and annualized volatility.

However, higher annualized volatility does cause higher option prices but for

a limited time-to-maturity of 10 days, this impact is hardly visible.

1Short selling is a concept used to describe selling of stock which a trader does not own.

2.1. FINANCE PRELIMINARIES 9

Figure 2.1: European put and call price matrices using analytic

Black-Scholes approach

2.1. FINANCE PRELIMINARIES 10

2.1.4 Monte Carlo Simulation

Simulation by pseudorandom numbers is a simplistic pricing model and various

techniques exist that can improve the effectiveness of the simple crude Monte

Carlo method.

Figure A.2 shows the generic Monte Carlo simulation algorithm that will be

used as a comparison to the Kernel-Based Reinforcement Learning model. The

algorithm uses the technique of backtracking from the maturity of the option

to the inception point taking the maximum between the current payoff and the

discounted expectation of the next time period’s price. For European options,

only the number of simulations needs to be increased leaving the number of

time steps as one.

This provides a model that is able to price any class of Equity derivative

which, by the law of large numbers, converges to the optimal (or fair price) of

the option by increasing the number of simulations.

Example: Pricing a European put

Note that a European put’s payoff at maturity is given by

PT = max{0, K − UT} (2.6)

and analytical price at any point t ∈ [0, T] is given by

Pt = Ke−r(T−t)N (−d2)− UtN (−d1) (2.7)

where

d1 =
ln(Ut

K
) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

and

d2 = d1 − σ
√
T − t

=
ln(Ut

K
) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

.

Simulation begins by using the algorithm described in Figure A.1 (Black-

Scholes) to calculate a stock price matrix. The resultant stock price matrix,

the riskless interest rate (r) and payoff function (Equation (2.6)) are passed

as parameters into the Monte Carlo Pricing model depicted in Figure A.2 to

obtain a single price for a single particular option.

2.1. FINANCE PRELIMINARIES 11

The result of this simulation approach (Black-Scholes) are tolerably ac-

curate in comparison to the analytic Black-Scholes European call on 16, 000

states with daily time-steps (Figure 2.2). Both in-the-money and out-the-

money regions are consistently bumpy and fluctuate either side of the analytic

Black-Scholes European put price. However, the in-the-money regions show

slightly higher inaccuracy than the out-the-money regions. By the law of large

numbers, increasing the number of simulations of stock prices using the Monte-

Carlo approach for pricing options will converge to the analytic Black-Scholes

price.

2.1. FINANCE PRELIMINARIES 12

(a) Monte-Carlo European put price matrix (Black-Scholes)

(b) Monte-Carlo European put approximation error (Black-

Scholes)

Figure 2.2: European put price matrix using Monte-Carlo Black-

Scholes approach with approximation error to the analytic Black-

Scholes price matrix

2.1. FINANCE PRELIMINARIES 13

Example: Pricing an American call

From Equation (2.2) in §2.1.2 (American Options) the value for an American

call option in the discrete case is

Ct = max
τ∈[t,T]

EQ [exp (−r(τ − t)) f(Uτ)|Ut] . (2.8)

where

f(Ut) = max{Ut −K, 0} (2.9)

for the American call option. The Monte Carlo Pricing model in Figure A.2

can be applied because the algorithm works by first applying the payoff at the

maturity of each simulated stock path. This then proceeds by progressively

working backwards one time-step at each iteration taking the maximum be-

tween the discounted value one time-step ahead and the current payoff. The

stock paths are generated from the Black-Scholes stock simulation algorithm

in Figure A.1.

The result of this simulation approach (Black-Scholes) is satisfactory in

comparison to the analytic Black-Scholes European call on 16, 000 states with

daily time-steps (Figures 2.3) because the price of an American option on an

underlying that pays no dividends should be equal to its European counterpart.

For both in-the-money and out-the-money regions, the American call price is

fluctuating either side of the analytic European call price.

2.1. FINANCE PRELIMINARIES 14

(a) Monte-Carlo American call price matrix (Black-Scholes)

(b) Monte-Carlo American call approximation error (Black-

Scholes)

Figure 2.3: American call price matrix using Monte-Carlo Black-

Scholes approach with approximation error to the analytic Black-

Scholes price matrix

2.2. MARKOV DECISION PROCESSES (MDPS) 15

2.2 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) were named after Andrey Markov[28]. An

MDP is a 5-tuple (S,A,A(·), T (·), R(·)) where

• S is a set, called the state space;

• A is a set, called the action space;

• for each s ∈ S, A(s) ⊆ A is the set of available actions at s;

• T : S × A × S → [0, 1] is a probability distribution for each s ∈ S

and a ∈ A. This function is called the transition probability function

and defines the probabilities of transitioning from state s to state s′ if

action a is chosen. The following must hold true for T to be a transition

probability function:
∑

s′∈S T (s, a, s′) = 1 if the MDP is finite,∫
s′∈S T (s, a, s′) = 1 if the MDP is infinite

for all s ∈ S and a ∈ A(s); and

• R : S × A(·) → R is the reward function that assigns a reward to the

agent when performing action a ∈ A(s) in state s ∈ S.

For every state s ∈ S, a decision (or action a) has to be made from the

set of actions A(s) available in state s. Once an action has been chosen, the

system moves into the next state according to a transition probability function

T (s, a, s′) and observes the one-step reward R(s, a). The transition probability

function and the reward function completely specify the most important parts

of the dynamics of a finite MDP.

2.2.1 Definitions

Definition 2.1. A trajectory is defined as a sequence of state-action-rewards

(i.e. (s0, a0, R(s0, a0), s1, a1, R(s1, a1), . . . , sj, aj, R(sj, aj), . . .)) obtained from

the MDP.

Definition 2.2. A policy π is a mapping π : S → A(·) where π(s) denotes

the action the policy dictates in state s ∈ S.

2.3. REINFORCEMENT LEARNING (RL) 16

Definition 2.3. The return along a trajectory is the sum of all rewards re-

ceived by the agent during the trajectory (in the case of an infinite trajectory,

a discount factor must be applied so that the return converges to a real number

whereas in the case of a finite trajectory, the return will always converge to a

real number).

Definition 2.4. The value function for a policy π is denoted by V π : S → R.

Given a policy π and state s ∈ S, V π(s) denotes the expected return the agent

would obtain across all trajectories from the current state s if the agent chooses

actions according to the policy π at every state (V π(s) = E [
∑n

i=0R(si, π(si))]).

Definition 2.5. An optimal policy π∗ : S → A is a policy such that V π∗(s) ≥
V π(s) for all policies π and states s. An optimal policy always exists (see

Sutton and Barto[32]) and may not be unique.

Definition 2.6. The optimal value function V ∗ : S → R is the value function

for an optimal policy π∗ (i.e. V ∗ = V π∗).

2.3 Reinforcement Learning (RL)

Reinforcement Learning is a machine learning paradigm concerned with the

problem of learning how to interact with an environment to maximize return.

The learner or decision maker is called the agent. The environment is an

MDP which comprises of everything outside of the agent’s control and the

agent interacts with the environment to seek an optimal policy. The agent

may be in only one of those states of the MDP and may be able to choose

from a set of actions it can make in that state. The policy an agent follows

provides the agent with exactly one action to choose in each state and the

value function for that policy provides the return for each state under that

policy.

Assume that the environment is a finite MDP (i.e. state and action sets,

S and A(s) for each s ∈ S, are finite) and that its dynamics are given by a

transition probability function T (s, a, s′) and reward function R(s, a) for all

s ∈ S, a ∈ A(s) and s′ ∈ S.

2.3. REINFORCEMENT LEARNING (RL) 17

2.3.1 Value Iteration

A Bellman optimality equation, named after Richard Bellman[2], is a neces-

sary condition for optimality. Optimal policies can easily be obtained once

the optimal value functions V ∗ have been found which satisfy the Bellman

optimality equations

V ∗(s) = max
a∈A(s)

E[R(s, a) + V ∗(s′)|st = s, at = a, st+1 = s′]

= max
a∈A(s)

∑
s′

T (s, a, s′) [R(s, a) + V ∗(s′)] (2.10)

for all s ∈ S. The optimal policy π∗ : S → A can be obtained from the optimal

value function V ∗ : S → R by

π∗(s) = arg max
a∈A(s)

∑
s′

T (s, a, s′) [R(s, a) + V ∗(s′)] (2.11)

for all s ∈ S.

Value iteration is an iterative dynamic programming algorithm for solving

the Bellman optimality equation of an MDP (2.10) and hence obtaining the

optimal value function V ∗.

Vk+1(s) = max
a∈A(s)

E[R(s, a) + Vk(s
′)]

= max
a∈A(s)

∑
s′

T (s, a, s′) [R(s, a) + Vk(s
′)] (2.12)

for all s ∈ S where k denotes the kth value update. For arbitrary V0, the

sequence {Vk} can be shown to converge to V ∗ under the same conditions that

guarantee the existence of V ∗[32].

Value iteration formally requires an infinite number of iterations to converge

exactly to V ∗. In practice, the procedure stops once the value function changes

by only a small amount in a sweep. Figure 2.4 gives a complete value iteration

algorithm with this kind of termination condition.

Although dynamic programming (DP) ideas such as value iteration can be

applied to problems with continuous state and action spaces, exact solutions

are possible only in special cases. A common way of obtaining approximate

solutions for tasks with continuous states and actions is to discretise the state

and action spaces and then apply finite-state DP methods.

2.3. REINFORCEMENT LEARNING (RL) 18

Value-Iteration(S,A,A, T, R)

S - set of market states

A - set of actions

A - a function mapping states to a set of available actions

in that state

T - transition probablity matrix of size |S| × |A| × |S|
R - reward function

1 V (s)← 0 for all s ∈ S
2 repeat

3 ∆← 0

4 for each s ∈ S do

5 v ← V (s)

6 V (s)← maxa∈A(s)

∑
s′ T (s, a, s′) [R(s, a) + V (s′)]

7 ∆← max (∆, |v − V (s)|)
8 until ∆ < ε (a small positive number)

9 return V

Figure 2.4: Value Iteration Algorithm via V-update

2.3.2 Kernel-Based Reinforcement Learning

Kernel-Based Reinforcement Learning (KBRL) is an approach introduced by

Ormoneit and Sen[26] and later enhanced by Jong and Stone[21] that accu-

rately handles stochastic environments with continuous state spaces. This

approach gives a finite MDP from the infinite state space enabling the appli-

cation of value iteration calculating the policy and value function for each of

those states in the discretised finite set of states.

Extracting samples from continuous state space S

Consider an MDP with a continuous state S. Since KBRL is commonly used

when the state space S is continuous, discretization is applied on the continu-

ous space by extracting a set of sample transitions (a transition is a trajectory

with only a single step). Extract n transitions (t1, . . . , tn) where each transition

is a 4-tuple ti = (si, ai, R(si, ai), s
′
i) denoting the current state si, an action

2.3. REINFORCEMENT LEARNING (RL) 19

ai that was chosen in state si, the reward R(si, ai) given by the environment

being in state si when a random action ai was chosen and the agent’s successor

state s′i. Let S̄ = {s′1, s′2, . . . , s′n} be the set of all sampled successor states.

Defining the transition probability function

For an action a in a given state s ∈ S, KBRL approximates the transition prob-

abilities and reward as a weighted average of previous outcomes of choosing

that action. That is, by observing the rewards obtained from the environment

on all sampled transitions which chose action ai = a for all 1 ≤ i ≤ n, the

weighted average of all those transitions approximates the reward for the cur-

rent state. The weights are calculated by a kernel function of the distances

between the current state s and all initial states si from each transition ti for

all 1 ≤ i ≤ n. The distance function d(·, ·) is used to calculate the distance

between potential successor’s predecessors and the current state. The closer

the successor’s predecessor state is to the current state, the higher the proba-

bility of getting to that successor state from the current state. The bandwidth

parameter b scales the distance function d(·, ·) in order to eliminate states

deemed to be too far away from the current state. The kernel function φ(·) is

a non-negative function
(
typically a Gaussian kernel is used, i.e. φ(x) = e−x

2)
that determines the relative weight of each transition and

Zs,a =


∑n

i=1 φ
(
d(si,s)
b

)
if ai = a,

0 if ai 6= a
(2.13)

normalizes the weights (see Jong and Stone[21]) - note that si is the state

retrieved from transition ti for all 1 ≤ i ≤ n. The transition probability

function T̂ : S × A× S̄ → [0, 1] over the continuous state space S is

T̂ (s, a, s′i) =


1

Zs,a
φ
(
d(si,s)
b

)
, if ai = a,

0, if ai 6= a
(2.14)

for all s ∈ S, a ∈ A, and s′i ∈ S̄ where si, ai and s′i are retrieved from transition

ti for all 1 ≤ i ≤ n. The transition probability function T̃ : S̄ ×A× S̄ → [0, 1]

over the finite state space S̄ is

T̃ (s, a, s′i) =


1

Zs,a
φ
(
d(si,s)
b

)
, if ai = a,

0, if ai 6= a
(2.15)

2.3. REINFORCEMENT LEARNING (RL) 20

for all s ∈ S̄, a ∈ A, and s′i ∈ S̄ where si, ai and s′i are retrieved from transition

ti for all 1 ≤ i ≤ n.

KBRL uses sampled transitions (t1, t2, . . . , tn) to define an approximate

MDP M̂ = (S,A,A(·), T̂ (·), R(·)). The Bellman optimality equation for M̂ is:

V̂ ∗(s) = max
a∈A(s)

n∑
i=1

T̂ (s, a, s′i)[R(si, ai) + V̂ (s′i)], (2.16)

for all s ∈ S where si, ai and s′i are retrieved from transition ti for all 1 ≤ i ≤ n.

The more sampled transitions that are extracted from the continuous state S,

the closer the optimal value function V̂ (·) in (2.16) is to the true optimal value

function. Note that V̂ (·) is a function over the continuous state space S. Since

the sampled successor state space S̄ is a finite subset of the continuous state

space S (S̄ ⊂ S), observe that the MDP

M̃ = (S̄, A,A(·), T̃ (·), R(·))

is a well-defined finite MDP. Therefore, the Bellman optimality equation for

M̃ is

Ṽ ∗(s) = max
a∈A(s)

∑
i|ai=a

T̃ (s, a, s′i)
(
R(si, ai) + Ṽ (s′i)

)
(2.17)

for all s ∈ S̄ which is equivalent to (2.10). Hence, Value Iteration can be

applied to solve for the optimal value function Ṽ ∗(s) for each state s ∈ S̄. The

optimal value for any state s ∈ S is approximated by

V̂ ∗(s) =

∑n
i=1 φ

(
d(si,s)
b

)
Ṽ ∗(s′i)∑n

i=1 φ
(
d(si,s)
b

) . (2.18)

The effect of using a Gaussian kernel to weight the calculated values is

illustrated in Figure 2.5. In this illustration, the states are Euclidean points

s = (x, y) and we use a Gaussian kernel on the Euclidean distance function.

The current state s = (1.3, 1.5) is at the center of Figure 2.5. The circles

indicate initial states that have equal probability of having their successor

state as the successor state of the current state. As the number of sampled

transitions increases, the bandwidth parameter b must decrease at a suitable

rate to balance the variance and bias of V̂ [26]. Table D.1 shows different classes

of basic kernel functions together with the extended kernels which are weighted

variants yielding kernel classes with significantly more hyperparameters.

2.4. SUMMARY 21

Figure 2.5: Illustration of transition probability function using

a Gaussian kernel on a Euclidean distance measure

2.4 Summary

This chapter has introduced the core concepts of financial options. European

and American options were described and the differences between them were

discussed. The Black-Scholes option pricing model was illustrated and the

assumptions of the model were described. Monte Carlo simulation was intro-

duced and applied to the Black-Scholes and Heston models to solve for the

European put and American call option prices.

An introduction to Markov Decision Processes (MDPs) was given with

a definition of what an MDP is in addition to definitions of important terms

relating to MDPs. Reinforcement Learning (RL) introduced the concept of how

a finite MDP can be solved via the Value Iteration algorithm. The RL section

extended into describing the Kernel-Based Reinforcement Learning (KBRL)

method which is able to use a continuous state-space MDP and transform

2.4. SUMMARY 22

that MDP into a finite MDP that can be solved via Value Iteration.

The following chapter shows how the European option pricing problem can

be formulated as an MDP. This MDP can then be solved via Kernel-Based

Reinforcement Learning.

Chapter 3

European options

The previous chapter introduced the core concepts of the type of options,

Markov Decision Processes (MDPs) and Reinforcement Learning. This chap-

ter is focused on creating an MDP for the European option pricing problem

and showing how this MDP can be solved via Kernel-Based Reinforcement

Learning. Experiments will be shown and explained with results being com-

pared to the analytic Black-Scholes prices. For all the following MDPs, let D

be a European derivative on a stock U .

3.1 Initial Trajectory model

This MDP is based on unpublished work by Grassl[13]. The unpublished work

makes the assumption that the optimal policy on a European option is to hold

the option to maturity. In this paper, proof will be given that indeed the

optimal policy for a European option will be to hold to maturity. A trader can

either sell D at time t at the current spot price Dt or decide to hold on to it.

If he still holds D at time T , both exercising and holding will have the same

outcome: the derivative’s payoff will be received, DT = f(UT). A complete

market state m for a stock option is the combination of the strike-relative stock

price and risk/time component which is equivalent to

m =

(
Ut
K
, σ
√
T − t

)
.

The strike price for every market state m is one. A state s is represented as a

combination of the trader’s position q (whether the trader has the derivative

23

3.1. INITIAL TRAJECTORY MODEL 24

or not) and the complete market state m. That is,

s = (m, q) . (3.1)

The possible actions for the trader at a state s are

a =

AS if D is being sold,

AH if D is being held.
(3.2)

Since a single trader’s actions has a negligible affect on the market, this re-

search assumes that neither action can affect the market’s behaviour (i.e. the

successor market state of m (m′) is independent of a). Only the trader’s succes-

sor position q′ depends on his actions and influences the subsequent rewards.

The reward function will be the trader’s monetary compensation future dated

to time T if sold before T .

R(s, a) =


DT = f(UT) if σ

√
T − t = 0,

er(T−t)Dt if a = AS and σ
√
T − t > 0,

0 if a = AH and σ
√
T − t > 0.

(3.3)

which is equivalent to the following reward structure taking into account that

the volatility σ is a positive non-zero value

R(s, a) =


DT = f(UT) if t = T,

er(T−t)Dt if a = AS and t < T,

0 if a = AH and t < T.

(3.4)

The state s is defined in (3.1), however q is not needed in the reward function

R(s, a) since the Value Iteration procedure only considers states where the

agent has the derivative (i.e. q = 1 for all states). If states where q = 0 were

considered also, those states would automatically be zero without any need

for calculation, hence those states are ignored. Using R(s, a) as defined above,

the value function of a given policy π can be written as

V π(s) = E

[
n∑
j=0

R(s(j), π(s(j)))

]
(3.5)

where V π is the value function defined in §2.3.1, π denotes the policy used

to retrieve the action ai in the state si and s = s(0), s(1), s(2), . . . , s(n) = sT

considers all trajectories to terminal states sT from the current state s. Note

that the value of V π(s) is future-valued to time T .

3.1. INITIAL TRAJECTORY MODEL 25

3.1.1 Constructing an approximate KBRL MDP

To apply KBRL to the MDP in the previous section, we require a set of

transitions of the form ti = (si, ai, R(si, ai), s
′
i). Each si is a tuple (mi, qi)

where mi is the market state and qi represents the trader’s position.

The market state transitions independently of the chosen action a. This

means that given market statesm1 = (U1

K1
, σ1

√
T − t1) andm2 = (U2

K2
, σ2

√
T − t2),

the probability of transitioning from m1 to m2 is defined by T̃ (m1,m2). This

independence allows us to separate the transition function into T̃m(m,m′) and

T̃ q(q, a, q′). Since T̃ q is known:

T̃ q(q, a, q′) =


1 if q = 1, a = AH , q′ = 1,

1 if q = 1, a = AS, q′ = 0,

0 otherwise

(3.6)

we need only generate sample transitions for T̃m, henceforth referred to as T̃ .

This yields the following simplified versions of (2.13) and (2.15):

Zm =
n∑
i=1

φ

(
d(mi,m)

b

)
(3.7)

T̃ (m,m′i) =
1

Zm
φ

(
d(mi,m)

b

)
(3.8)

where m is the market state, m′i are all the successor market states and mi are

the corresponding predecessor market states of m′i.

The transitions are obtained by first generating sample market trajecto-

ries using the Black-Scholes stock price process1 and extracting the one step

transitions from these trajectories2.

The starting market states of each of a set of n derivatives are sampled

(see Figure 3.1 for the pseudocode for generating n derivatives). Each of these

states is used as the initial state of a trajectory of a randomly assigned length.

The Derivatives procedure in Figure 3.1 creates random derivatives for use

in the sampling of market states in the Kernel-Based Reinforcement Learning

MDP. The procedure takes one argument as input: the number of derivatives n

1Any other stock price process could be used (such as Heston - which also provides the

volatility samples)
2Figures C.2, C.3 and C.4 show 10, 100 and 10, 000 sampled trajectories, respectively,

with approximately 110, 1, 100 and 110, 000 total market states

3.1. INITIAL TRAJECTORY MODEL 26

to create. A derivative holds five key values: the stock price s0, strike price K,

volatility of returns σ, inception of the derivative t and maturity of the deriva-

tive T . Stock prices are uniform random numbers generated on the interval

(0, 50] - the upper bound is picked at random and any number greater than 0

could potentially work but keep in mind about floating point arithmetic issues

on computers. The strike price is generated using the generated stock price by

applying s0(1−0.12×N (0, 1)) - the constant 0.12 guarantees that we will get a

strike price in close proximity of the stock price which is important when price

options. The volatilities are uniform random numbers generated over (0, 1] -

rarely (if ever) is volatility remotely close to one but allowing for volatility to

be sampled around one caters for extreme circumstances. Inceptions are al-

ways set to 0 since the maturity is uniformly sampled over (0, 1] - this interval

size can be increased or decreased depending on the time-to-maturity of the

options that are being priced.

Derivatives(n)

n← number of random options to generate

1 D ← initialize to zero matrix of n× 5

2 for i← 1 to n do

3 D(i, s0)← uniform random number on (0, 50]

4 D(i,K)← D(i, s0)× (1− 0.12×N (0, 1))

5 D(i, σ)← uniform random number on (0, 1]

6 D(i, t)← 0

7 D(i, T)← uniform random number on (0, 1]

8 return D

Figure 3.1: Derivative sampling

Successive market states are sampled using the Black-Scholes stock price

process using the previous market state on the trajectory (i.e. the second

market state is sampled from the starting market state, the third market state

is sampled from the second market state and so on until the transition size

limit is reached). The Market-States procedure in Figure 3.2 takes in

four arguments: the number of random derivatives to generate n, the risk-free

3.1. INITIAL TRAJECTORY MODEL 27

interest rate r, the minimum number of derivatives to have on a trajectory

lower and the maximum number of derivatives to have on a trajectory upper.

First, the n random derivatives are sampled. These derivatives are the starting

points for each trajectory, therfore, there will be n trajectories in total. Next,

the size of each trajectory is calculated by sampling a random integer over

[lower, upper]. The first market state of each trajectory is created for each

i = 1, 2, . . . , n:

Mi,1 =

(
si0
K
, σ
√
T − t

)
.

For each k = 2, 3, . . . ,mi (where mi + 1 is the size of the trajectory for each

i = 1, 2, . . . , n), the successive states in each trajectory are calculated using

the Black-Scholes stock price formula:

Mi,k =

(
sik
K
, σ
√
T − tik

)
where sik is the successive stock price of sik−1 (using the Black-Scholes stock

price formula) and tik is the successive time of tik.

The transition probability matrix is calculated for each sampled market

state m in the set of sampled market states by using (3.8) and (3.7). Pseu-

docode for this calculation is presented in Figure 3.3. A significant com-

putational obstacle is that the size of T̃ is quadratic in the number of ob-

served samples. Jong and Stone[21] suggest that very small entries of T̃

should be set to zero. Population of the rewards matrix is achieved by us-

ing Black-Scholes analytic prices for the sell action and applying the payoff

at maturity for the hold action. The Transition-Probabilities proce-

dure in Figure 3.3 calculates the transition probability matrix for each market

state. This procedure takes in four input arguments: the number of random

derivatives to generate n, the risk-free interest rate r, the minimum num-

ber of derivatives to have on a trajectory lower and the maximum number

of derivatives to have on a trajectory upper. First, the market states are

retrieved using (in this case) the Market-States procedure however the

Market-States-Separate-Features can be used instead to get seperated

features transition probabilities which is used in the improved models. Final

(or terminal) states cannot transition into another state and no non-final state

can transition to a start state. Therefore, the algorithm only considers non-

final states’ transitions to non-start states. The predecessor of the non-final

state is retrieved and is passed into the Phi procedure to calculate a potential.

3.1. INITIAL TRAJECTORY MODEL 28

Once all potentials have been calculated for a particular non-final state, the

sum of those potentials is calculated and used to transform the potentials into

transition probabilities.

3.1. INITIAL TRAJECTORY MODEL 29

Market-States(n, r, lower, upper)

n← number of random options to generate

r ← risk-free interest rate

[lower, upper]← range of transitions to generate from

1 D ← Derivatives(n)

2

3 transitions ← initialize to zero array of size n

4 m← n // m is the total number of market states

5 for i← 1 to n do

6 transitions(i) ← uniform random number on [lower, upper]

7 m = m+transitions(i)

8

9 M ← initialize market state matrix to zero matrix of size m× 3

10 k ← 0

11 for i← 1 to n do

12 strikeRelativeStock ← D(i, s0)/D(i,K) // s̄

13 riskTime ← D(i, σ)
√
D(i, T)−D(i, t) // σ̄

14

15 M(k, s̄)← strikeRelativeStock

16 M(k, σ̄)← riskTime

17 M(k, d̄)← D(i) // Places derivative in 3rd place holder

18

19 k ← k + 1

20 h← (D(i, T)−D(i, t)) / transitions(i)

21 for j ← 1 to transitions(i) do

22 t′ ← D(i, t) + j ∗ h
23 M(k, s̄)← BSFormula(M(k − 1, s̄), r,D(i, σ), h)

24 M(k, σ̄)← D(i, σ)
√
D(i, T)− t′

25

26 d′ = (s0, K, σ, t
′, T)

27 M(k, d̄)← d′ // Places derivative in 3rd place holder

28

29 k ← k + 1

Figure 3.2: Market State sampling

3.1. INITIAL TRAJECTORY MODEL 30

Transition-Probabilities(n, r, b, ν, lower, upper)

n← number of random options to generate

r ← risk-free interest rate

b← standard deviation of kernels

ν ← egg-shaped parameter

[lower, upper]← range of transitions to generate from

1 M ←Market-States(n, r, lower, upper)

2 m← length of M

3 T ← initialize to zero matrix of size m×m
4

5 for i← 1 to m do

6 Z ← 0

7 if M(i) is not a terminal state then

8 for j ← 1 to m do

9 if M(j) is not a start state then

10 k ← j’s predecessor

11 T (i, j)← Phi(M(i),M(k), b, ν)

12 Z ← Z + T (i, j)

13 for j ← 1 to m do

14 T (i, j)← T (i, j)/Z

15 return (T,M,m)

Figure 3.3: Transition Probability calculation

The Phi function in Figure 3.4 provides a potential value for current state

to a successor state. The function takes four input arguments: the current

market state m, the predecessor market state of a potential successor state

m(i), the standard deviation of the kernels parameter b and the egg-shaped

parameter ν. The potential value for m and m(i) is defined by

e−
d(m,m(i))

b2

where d is the distance function applicable to m and m(i).

This completes the description of the finite MDP obtained for the KBRL

method. Because of the separation of the transition function, the Bellman

3.1. INITIAL TRAJECTORY MODEL 31

Phi(m,m(i), b, ν)

m← current market state

m(i) ← a predecessor market state

b← standard deviation of kernels

ν ← egg-shaped conversion parameter

1 D1 ← m(s̄0)−m(i)(s̄0)

2 D2 ← m(σ̄)−m(i)(σ̄)

3 if D2 < 0 then

4 D2 ← D2 × ν
5 d← D2

1 +D2
2

6

7 return exp (−d/(b2))

Figure 3.4: Kernel function

optimality equation for the MDP is

Ṽ ∗(s) = max
a∈A(s)

(
n∑
i=1

T̃ (m,m′i)
[
R(si, a) + Ṽ (s′i)

])
. (3.9)

Solving (3.9) gives Ṽ ∗ which can be done by using value iteration shown in

section 2.3.1.

Once the MDP has been solved and an optimal value function received,

pricing an option that is not in the sampled state space needs to be calculated.

The KBRL method of retrieving values from a value function for unseen states

is to perform a variation of a weighted average on the sampled states. This

weighted average is done by using the transition probability function to deter-

mine the weights of each sampled state from the unseen state. For each state,

the value of sampled state from the value function is multiplied by the weight

(or probability of transitioning to that state from the current unseen state).

Summing up those values gives the fair value for being in the unseen state.

The value of state s = (m, q) is

V ∗(s) =

∑n
i=1 φ

(
d(mi,m)

b

)
Ṽ ∗(s′i)∑n

i=1 φ
(
d(mi,m)

b

) (3.10)

3.1. INITIAL TRAJECTORY MODEL 32

with q = 1, Ṽ ∗(s′i) are the values of the sampled states and mi are all the

sampled market states. When q = 0, V ∗(s) = 0.

3.1.2 Transition Probability refinement

The transition probabilities are not intuitive at first glance. This section should

aid the reader in understanding how these probabilities affect the potential

successors of any state. Recall from the previous section (§3.1.1) that the

transition probability from one market state m to a potential successor market

state m′i is defined as

T̃ (m,m′i) =
1

Zm
φ

(
d(mi,m)

b

)
where Zm is the normalizer defined in (3.7), d(·, ·) is the distance function and

b is the standard deviation of the kernel.

Using a Euclidean distance function within the Gaussian kernel is prob-

lematic in that T̃ (m1,m2) may be equal to T̃ (m2,m1) if m1 = (x1, x2) and

m2 = (x2, x1), for x1, x2 ∈ R+. That is, the Euclidean distance is unbiased

with regards to single components of a state. A Gaussian kernel
(
φ(x) = e−x

2
)

is a symmetric, bell-shaped curve (Figure 3.5a) with a maximum value of one

when x = 0. A Euclidean distance metric calculates the straight line distance

between two points (the two-dimensional case is shown in (3.11))

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 (3.11)

where p1 = (x1, y1) and p2 = (x2, y2) are two points in a two-dimensional

space. An unbiased Gaussian kernel (Figure 3.5a) is symmetric about the y-

axis since φ(x) = φ(−x) for all x ∈ R. A biased Gaussian kernel (Figure 3.5b)

is a modified Gaussian kernel which is neither symmetric nor bell-shaped.

Experiments suggest that it is a better idea to compare options with similar

strike-relative stock prices and different risk than to compare options with dif-

ferent strike-relative stock prices and similar risk[13]. Also, noticing that the

risk component (σ
√
T − t) is decreasing as t increases, the value function ap-

proximation should ideally look at states that only lie in the future. However,

this would impact states that have risk components very close to zero as these

states would suffer from a lack of data. A scheme needs to be devised whereby

transition probabilities are more forward looking than backward looking.

3.1. INITIAL TRAJECTORY MODEL 33

(a) Unbiased Gaussian kernel

(b) Biased Gaussian kernel

Figure 3.5: Unbiased and biased Gaussian kernels

The proposed suggestion moves away from a standard Euclidean distance mea-

sure and leads toward a weighted Euclidean distance measure. This weighted

measure is created in such a way that its contours are egg-shaped curves (as

3.1. INITIAL TRAJECTORY MODEL 34

Figure 3.6: Transition Probabilities from high risk

opposed to circular in the standard Euclidean distance measure) and the curves

are tilted towards smaller values of σ
√
T − t (i.e. transition probabilities are

more forward looking than backward looking - Figures 3.6 and 3.7). This

weighted Euclidean distance measure is defined by

dW (m1,m2) =

√(
U1

K1

− U2

K2

)2

+ ν
(
σ1

√
T1 − t1 − σ2

√
T2 − t2

)2

(3.12)

where m1 =
(
U1

K1
, σ1

√
T1 − t1

)
, m2 =

(
U2

K2
, σ2

√
T2 − t2

)
are market states and

ν =

1 if σ1

√
T1 − t1 > σ2

√
T2 − t2

3.6 if σ1

√
T1 − t1 ≤ σ2

√
T2 − t2.

(3.13)

The lines in Figures 3.6 and 3.7 represent the successor states accessible

from the current state (the point with which all lines connect is the current

state). The circle line in Figure 3.7 shows that states may transition to them-

selves depending on how far their predecessor is from the current state and

how many and how far potential successors’ predecessors are from the current

3.1. INITIAL TRAJECTORY MODEL 35

Figure 3.7: Transition Probabilities from low risk

state. Figure C.6a shows the original, unbiased Gaussian with respect to the

risk/time component that causes inaccurate prices. Figure C.6b shows the

modified, biased Gaussian for the risk/time component. The strike-relative

stock price component remains as an unbiased Gaussian.

3.1. INITIAL TRAJECTORY MODEL 36

3.1.3 Experiment (initial Trajectory model): Pricing a

European put option

This experiment considers pricing a European put using Grassl’s model[13].

The following parameter values are used in solving for the value function using

Kernel-Based Reinforcement Learning (KBRL):

• the number n of randomly sampled derivatives: n = 5, 000;

• the riskless interest r: r = 0.02;

• the standard deviation b of the kernel functions: b = 0.013;

• the egg-shaped parameter ν applied to the distance function is given by

(3.13);

• number of transitions per trajectory is an integer between 1 (inclusive)

and 19 (inclusive); and

• the actions to use are the hold and sell actions previously discussed.

In order to determine the accuracy of the method, the calculated values are

compared to the Black-Scholes price for each state. Due to the structure of the

reward function, the optimal value (V ∗(s)) of a state s is the future dated strike

relative price of the option. To compare with Black-Scholes, we must apply

a discount factor (e−r(T−t)) to obtain the present value of the strike relative

price. To obtain the absolute price of the option, we must multiply the strike

relative price by the strike price K. The option price at state s would then be

given by e−r(T−t)KV ∗(s).

Figure 3.8 plots the stock price, time-to-maturity and the price of a hy-

pothetical European put option with a strike price of K = 10, and time-to-

maturity of T = 10. These parameters will be used for all pricings throughout

this dissertation. The error shown refers to the difference to the Black-Scholes

analytic price. The result is promising because the accuracy of the KBRL

approach compared to that of Monte-Carlo is significantly better (Figure 2.2).

However, the problem still lies in the quadratic storage requirement for the

transition probability matrix. Being able to use the same number of market

states as the Monte-Carlo European put requires 75 gigabytes of memory to

store only the transition probability matrix. This is a significant disadvantage

3.1. INITIAL TRAJECTORY MODEL 37

of using the KBRL approach to price options. The main advantage of using

Monte-Carlo is the method requires only the final stock prices to be stored

which is linear in the amount of storage needed.

(a) European put price matrix (KBRL-derived

model with sell action)

(b) European put approximation error (KBRL-

derived model with sell action)

Figure 3.8: European put price matrix with approximation error to

the analytic Black-Scholes price matrix

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 38

3.2 Trajectory model using separated features

and only hold action

3.2.1 Removing sell action

The initial model used a sell action providing the agent with the analytic

Black-Scholes price as the reward for being in a particular state. The problem

with using the sell action is it requires us to provide the agent with the correct

price, when the purpose of the experiment is to calculate the correct price.

Theorem 3.1 proves that the optimal value of a state is equivalent to its fair

value or price. This allows us to solve the European option pricing problem

using our MDP. It also shows that the optimal policy for a European option

is to hold to maturity. This result allows us to remove the sell action as it is

always suboptimal3.

Theorem 3.1. Given the fair value of a European option on a stock U

DF
t = e−r(T−t)E

[
f(UT)

∣∣∣∣Ut] (3.14)

and a policy πH , which is the policy of holding the derivative to maturity

(πH(s) = AH for all s ∈ S), then V πH (s) = er(T−t)DF
t for all t ∈ [0, T]

and πH is the optimal policy (π∗ = πH).

Proof. From (3.5)

V πH (s) =E

[
n∑
j=0

R(s(j), AH)

]
=E [R(sT , AH)]

where sT is a terminal state because every non-terminal state gives a reward

of zero under πH . From the reward function R(s, a) in (3.4)

R(sT , AH) =f(UT)

⇒ E [R(sT , AH)] =E
[
f(UT)

∣∣∣∣Ut] . (3.15)

3This is consistent with binomial tree approach which proves the fair value of a European

option is the discounted expectation of the payoff at maturity (see [8]) meaning hold the

option to maturity.

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 39

Then (3.14) and (3.15) imply that

V πH (s) = er(T−t)DF
t . (3.16)

Now, suppose πH is not the optimal policy, i.e. there exists a state sj for

0 ≤ j < n where it is better to sell than to hold which implies

er(T−tj)Dtj > V πH (sj)

Dtj > e−r(T−tj) (V πH (sj))

= e−r(T−tj)
(
er(T−tj)DF

tj

)
= DF

tj
.

By no-arbitrage, Dtj = DF
tj

for all 0 ≤ j ≤ n, hence the state sj cannot exist,

and therefore πH is an optimal strategy.

This implies that V ∗(s) = er(T−t)DF
t for all states s which means that

learning the optimal value function, V ∗, is equivalent to learning the accrued

fair value function er(T−t)DF
t . Therefore, the fair value for the derivative is

calculated by discounting V ∗(s) with e−r(T−t).

3.2.2 Separating Risk/Time Component

Separating the risk/time component into a volatility feature and time-to-

maturity feature is done to capture states that truly lie in the future. Potential

successor states of current state should lie in the future of the current state

because time moves forward. Therefore, the probability of moving to a state

that lies in the past should be zero. In order to have transition probabilities to

successor states that lie strictly in the future of the current state, the risk/time

component needs to be separated. Previously, a complete market state of

mt =
(
Ut/K, σ

√
T − t

)
was used. Now, a market state of

mt = (Ut/K, σ, T − t)

is used. This allows for comparisons between the time components to deter-

mine future states.

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 40

The risk (or volatility) components are compared using a standard Gaussian

distribution while differences in time components uses a “forward-looking”

Gaussian distribution4. Negative differences in time have a probability of zero.

Differences in components are taken from the successor market state m′ to the

current market state m (i.e. m′(·) −m(·)). The weighted Euclidean distance

function is defined as

dW (m1,m2) =

√(
U1

K1

− U2

K2

)2

+ (σ1 − σ2)2 + ν (T1 − t1 − T2 + t2)2 (3.17)

where m1 =
(
U1

K1
, σ1, T1 − t1

)
, m2 =

(
U2

K2
, σ2, T2 − t2

)
are market states and

ν =

1 if T1 − t1 > T2 − t2,

∞ if T1 − t1 ≤ T2 − t2.
(3.18)

This now poses a problem for the maturity states where the time to maturity

component is zero (i.e. there are no states that strictly lie in the future from

the maturity state). Using the payoff function for the option allows for the

retrieval of the price for those maturity states.

The Market-States-Separate-Features procedure in Figure 3.9 per-

forms exactly the same function as the Market-States procedure (Figure

3.2) except that the second feature of the market states M is separated into

two features. Now, the initial market states for each i = 1, 2, . . . , n are

Mi,1 =

(
si0
K
, σ, T − t

)
and the successive markets for each k = 1, 2, . . . ,mi are

Mi,k =

(
sik
K
, σ, T − tik

)
.

4A forward-looking Gaussian distribution between two market states weights positive,

smaller differences in the time component higher than positive, larger differences in the time

component

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 41

Market-States-Separate-Features(n, r, lower, upper)

n← number of random options to generate

r ← risk-free interest rate

[lower, upper]← range of transitions to generate from

1 D ← Derivatives(n)

2

3 transitions ← initialize to zero array of size n

4 m← n // m is the total number of market states

5 for i← 1 to n do

6 transitions(i) ← uniform random number on [lower, upper]

7 m = m+transitions(i)

8

9 M ← initialize market state matrix to zero matrix of size m× 4

10 k ← 0

11 for i← 1 to n do

12 strikeRelativeStock ← D(i, s0)/D(i,K) // s̄

13 volatility ← D(i, σ) // σ̄

14 timeToMaturity ← D(i, T)−D(i, t) // T̄

15

16 M(k, s̄)← strikeRelativeStock

17 M(k, σ̄)← volatility

18 M(k, σ̄)← timeToMaturity

19 M(k, σ̄)← D(i) // Places derivative in 4th place holder

20

21 k ← k + 1

22 h← (D(i, T)−D(i, t)) / transitions(i)

23 for j ← 1 to transitions(i) do

24 t′ ← D(i, t) + j × h
25 M(k, s̄)← BSFormula(M(k − 1, s̄), r,D(i, σ), h)

26 M(k, σ̄)← D(i, σ)

27 M(k, T̄)D(i, T)− t′

28

29 d′ ← (s0, K, σ, t
′, T)

30 M(k, d̄)← d′ // Places derivative in 4th place holder

31

32 k ← k + 1

Figure 3.9: Market State sampling

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 42

3.2.3 Experiment (Trajectory model using separated

features and only hold action): Pricing a Euro-

pean call option

This experiment considers pricing a European call using Grassl’s model[13]

with the enhancements to this model discussed in the previous sections. The

purpose of this experiment is not to compare the approximation error of this

experiment to the previous experiment, the purpose is solely to show the results

of pricing a European call option to the analytic Black-Scholes price. The

following parameter values are used in solving for the value function using

Kernel-Based Reinforcement Learning (KBRL):

• the number n of randomly sampled derivatives: n = 1, 500;

• the riskless interest r: r = 0.02;

• the standard deviation b of the kernel functions: b = 0.026;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18);

• number of transitions per trajectory is an integer between 1 (inclusive)

and 19 (inclusive); and

• the action to use for this model in pricing a European call is only the

hold action (AH).

The results of this experiment are shown in Figure 3.10 which shows a plot

of the stock price, time-to-maturity and the price of a European call option

and the approximation error to the Black-Scholes analytic solution. From the

result, it can be observed that prices are being consistently overestimated for in

the-money regions with the approximation error increasing rapidly as the time-

to-maturity increases. The addition of more states will positively influence this

result since the standard deviation of the kernels may be decreased.

3.2. TRAJECTORY MODEL USING SEPARATED FEATURES AND
ONLY HOLD ACTION 43

(a) European call price matrix (KBRL-derived model)

(b) European call approximation error (KBRL-derived

model)

Figure 3.10: KBRL Price matrix for European call (no sell action)

with approximation error to analytic Black-Scholes price matrix

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 44

3.3 Mapped model using separated features

and only hold action

The method used for generating trajectories used in the previous experiments

generates samples that do not adequately cover the state space.

Figure 3.11 shows the mapping of the strike-relative stock to the risk/time

component of samples in the first experiment. This (together with Figures C.2,

C.3 and C.4) shows that as the number of trajectories increases, the samples

cluster increasingly around a strike relative stock price of 1.

Figure 3.11: Market States mapping on 1000 sampled trajectories

of strike-relative stock versus risk/time components

The potential problem with this model is that the space is not effectively

covered because 68% of the effective stock prices lie in the interval [0.8, 1.2],

another 15% lie in [0, 0.8) while the other 17% are above 1.2. This means

the pricing of an option that lies in either of the 15% or 17% regions will

suffer from a lack of close proximity states thereby either underestimating or

overestimating the fair price.

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 45

This problem is not alleviated by the separation of the risk and time com-

ponents, as these display the same characteristic, shown in Figures 3.12, 3.13,

3.14.

Figure 3.12: Stock vs Time to Maturity - separated risk/time com-

ponents

Figure 3.13: Stock vs Volatility - separated risk/time components

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 46

Figure 3.14: Volatility versus time-to-maturity - separated

risk/time components

3.3.1 Mapping the state space

To achieve better state space coverage, we will sample individual market states

instead of generating complete trajectories.

The generation of the market state space is achieved by generating n

uniformly-spaced stock prices on the interval [0, 2] and randomly sampling

volatility and time-to-maturity on the interval (0, 1] - see the procedure in

Figure 3.15.

The procedure constructs a strike-relative stock price array of size n over

the interval [0, 2] and the interval step size is uniform of size 2
n−1

(line 5).

The total number of market states m is calculated, in line 4, by multiplying n

by the mean of lower and upper (originally, lower and upper was the interval

used to sample the size of each trajectory in the state space). Each nth market

state has the same strike-relative stock price component (line 9) with randomly

sampled volatility (line 10) and time-to-maturity (line 11) on the interval [0, 1).

The first n market states are assigned a time-to-maturity of zero (line 12) to

guarantee at least n market states will receive an immediate reward.

Figures 3.16, 3.17 and 3.18 show the mapped state space across the three di-

mensions. This type of mapping is similar to the way market data is presented

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 47

Mapped-Market-States(n, r, lower, upper)

n← number of random options to generate

r ← risk-free interest rate

[lower, upper]← range of transitions to generate from

1 k ← d(upper + lower)/2e
2 m← n× (k + 1)

3

4 M ← initialize market state matrix to zero matrix of size m× 3

5 s← {0, 2
n−1

, 4
n−1

, . . . , 2n−4
n−1

, 2}
6 for i← 1 to n do

7 for j ← 1 to k + 1 do

8 index← (i− 1)× (k + 1) + j

9 M(index, 1)← s(i)

10 M(index, 2)← uniform random number on [0, 1)

11 M(index, 3)← uniform random number on [0, 1)

12 M(i, 3)← 0

Figure 3.15: Procedure to generate state space mapping

to traders whereby there is today’s stock price with potentially hundreds of dif-

ferent strike prices around the stock price and differing time-to-maturity dates

which tends to map very closely to these simulated mappings. In contrast to

Figures 3.12, 3.13, 3.14, Figures 3.16, 3.17 and 3.18 illustrate how effectively

the mapped model covers the state space. The key here is to avoid redundant

states in the sampled state space instead of clustering states around the strike

price.

3.3.2 Kernel function amendment

In order to calculate the transition probabilities between the uniformly dis-

tributed samples, we need to modify our kernel function. In this model, the

distribution of the stock changes to lognormal because this needs to remain

consistent with the Black-Scholes stock price process.

To achieve a lognormal distribution, the Brownian motion component needs

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 48

Figure 3.16: Stock vs Time-to-maturity - mapped model

Figure 3.17: Stock vs Volatility - mapped model

to be calculated for a transition of (m,m′). From (2.4), Z can be defined as

Z = ln

(
U ′

U
−
(
r − 1

2
σ2

)
t

)
(3.19)

where U ′ and U are the strike-relative stock price components of market states

m′ and m, respectively. The riskless interest rate is r, σ is the volatility

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 49

(a) Volatility vs. Time-to-maturity

Figure 3.18: Volatility versus Time-to-maturity - mapped model

component of market state m and the time lapse between market states m

and m′ is denoted by t where t > 0.

The standard Euclidean distance d(U,U ′) between the strike-relative stock

price components of the market states m and m′ is defined as

d(U,U ′) = |U − U ′|. (3.20)

A lognormal distribution (d̄(U,U ′)) may be obtained from d(U,U ′) by mul-

tiplying the exponential component of the Black-Scholes stock price formula

(from Equation (2.4)). More formally, d̄(U,U ′) is defined as

d̄(U,U ′) = |U − U ′| exp

((
r − 1

2
σ2

)
t+ σZ

√
t

)
(3.21)

where Z is calculated from (3.19). Figure 3.19 illustrates the nature of this

curve for constant volatility (σ = 0.4) which reflects the same distribution as

the standard Black-Scholes stock price distribution.

3.3.3 Generating Transition Probabilities

The transition probabilities are calculated (see Figure 3.20) from the current

market state to every market state using the amended kernel function (from

§3.3.2).

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 50

Figure 3.19: Shifted, lognormal Strike-Relative stock distribution

3.3.4 Experiment (Mapped model using separated fea-

tures and only hold action): Pricing a European

call

This experiment considers pricing a European call using the Mapped model

discussed in previous sections. The following parameter values are used in

solving for the value function using Kernel-Based Reinforcement Learning:

• sampled states using the procedure described in Figures 3.15 (results in

roughly 16, 000 market states);

• the number of sampled stock prices n: n = 1, 450;

• a riskless interest r: r = 0.02; and

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 51

Mapped-States-Transition-Probabilities(n, r, lower, upper)

n← number of random options to generate

r ← risk-free interest rate

[lower, upper]← range of transitions to generate from

1 M ←Mapped-Market-States(n, r, lower, upper)

2 m← length of M

3 T ← initialize to zero matrix of size m×m
4 for i← 1 to m do

5 Z ← 0

6 for j ← 1 to m do

7 T (i, j)← Phi(M(i),M(j), 0.07,∞)

8 Z ← Z + T (i, j)

9 for j ← 1 to m do

10 T (i, j)← T (i, j)/Z

11 return (T,M,m)

Figure 3.20: Mapped state space Transition Probability calculation

• the standard deviation b of the kernel functions: b = 0.05;

The results of the above experiment are shown in Figure 3.21 which shows the

European call price matrix is consistently lower than the analytic Black-Scholes

price matrix for in-the-money regions while the near-strike regions suffers from

a high approximation error. However, this model exhibits a maximum error

relative to the option price of approximately 1% which is significantly better

than the Monte-Carlo method.

3.3. MAPPED MODEL USING SEPARATED FEATURES AND ONLY
HOLD ACTION 52

(a) European call price matrix (KBRL-derived mapped

model)

(b) European call approximation error (KBRL-derived

mapped model)

Figure 3.21: European call price matrix with mapped state space

and approximation error to analytic Black-Scholes price matrix

3.4. VALUE ITERATION PROCEDURE TO OBTAIN THE VALUE
FUNCTION AND AN OPTIMAL POLICY FOR THE OPTION PRICING
KBRL MDP 53

3.4 Value Iteration procedure to obtain the

value function and an optimal policy for

the Option Pricing KBRL MDP

The Value-Iteration procedure in Figure 3.23 is used to obtain the value

function and an optimal policy for the KBRL MDP for each state and takes

in eight input arguments:

• the number of random derivatives n to sample;

• the risk-free interest rate r;

• the type of the derivative (i.e. ’american’ or ’european’);

• callPut flag indicating whether the option is a call or a put;

• a tolerance level ε for the value function;

• the minimum number of samples to have on a trajectory lower;

• the maximum number of samples to have on a trajectory upper; and

• set of actions available (only hold for ’european’ and both hold and

exercise for ’american’).

The algorithm makes use of the calculated transition probability matrix, re-

ward function, market states and actions to solve for an optimal value function.

For European options, this is achieved by awarding rewards for all terminal

states and progressing through each epoch assigning probabilistic returns for

each state until the value function changes by a small amount (less than ε).

The Reward function used in Value-Iteration is illustrated in Figure 3.22

and takes in two input arguments: the state s and the action a from the Kernel-

Based Reinforcement Learning MDP. This procedure handles every scenario

from initial Trajectory model to the improved models and also handles Euro-

pean and American options. The derivative d is extracted from the state s and

the time-to-maturity of d is calculated. The following rules dictate the value

returned to an agent:

• If the time-to-maturity is zero or the action a is to exercise, the (future)

payoff is returned.

3.4. VALUE ITERATION PROCEDURE TO OBTAIN THE VALUE
FUNCTION AND AN OPTIMAL POLICY FOR THE OPTION PRICING
KBRL MDP 54

• If the action a is to sell, the future anayltic Black-Scholes price for the

option is returned - this is the major reason for removing the sell action

for American options.

• Otherwise, the reward is zero since the agent either does not have the

derivative or the agent has decided to hold onto the derivative.

Reward(s, a)

s← a state from the set of sampled market states

a← the action chosen in state s

1 d← extract derivative from state s

2 T̄ ← d(T)− d(t) // Time to maturity for derivative d

3 if T̄ = 0 or a = AE then // At maturity or exercise chosen ⇒ get

// future payoff

4 return erT̄Payoff(d)

5 if a = AS then // sell action chosen ⇒ get future

// Black-Scholes price

6 return erT̄Black-Scholes-Price(d)

7 return 0

Figure 3.22: Reward function

3.4. VALUE ITERATION PROCEDURE TO OBTAIN THE VALUE
FUNCTION AND AN OPTIMAL POLICY FOR THE OPTION PRICING
KBRL MDP 55

Value-Iteration(n, r, b, ν, type, callPut, ε, lower, upper, actions)

n← number of random options to generate

r ← risk-free interest rate

b← standard deviation of kernels

ν ← egg-shaped parameter

tpye ∈ { ’american’, ’european’ }
callPut ∈ { ’call’, ’put’ }
ε← indicates the value iteration stopping condition

[lower, upper]← range of transitions to generate from

actionSet← if European optionType⇒ {AH},
if American optionType⇒ {AH , AE}

1 (T,M,m)← Transition-Probabilities(n, r, lower, upper, b, ν)

2 V ← initialize to zero array of size m // value function

3 Λ← initialize to empty array of size m // optimal policy

4 repeat

5 ∆ = 0

6 for i← 1 to m do

7 v ← V (i)

8 if M(i) is a terminal state then

9 V (i)← Reward(M(i), AH)

10 A(i)← AH

11 else

12 maxValue ← 0

13 for a ∈ actionSet do

14 if a 6= AH then

15 p←
∑m

j=1 T (i, j) Reward(M(j), a)

16 else

17 p←
∑m

j=1 T (i, j) V (j)

18 if p > maxValue then

19 Λ(i)← a

20 maxValue ← p

21 V (i)← maxValue

22 ∆← max{∆, |v − V (i)|}
23 until ∆ < ε

24 return (V,Λ)

Figure 3.23: Value Iteration

3.5. CALCULATING A PRICE FOR UNSEEN OPTION 56

3.5 Calculating a price for unseen option

The Price-Separate-Features function in Figure 3.24 is exactly the same

as Price function except in the way the market state for the derivative is

constructed. Since this is pricing a derivative using the separation of the risk

feature, the constructed market state of the derivative needs to reflect this.

Once the market state has been constructed, obtaining a price is the same

methodology as calculating transition probabilities and then calculating the

sum of those transition probabilities multiplied by the corresponding value

from the value function.

Price-Separate-Features(M,V, d)

M ← sampled states of the market

V ← resulting value function (for each market state) of Value

Iteration

d← the derivative to price

1 m← initialize to zero array of size 4

2 m(s̄0)← d(s0)/d(K)

3 m(σ̄)← d(σ)

4 m(T̄)← d(T)− d(t)

5 m(d̄)← d

6

7 P ← 0

8 Z ← 0

9 for i← 1 to m do

10 φ← Phi(m,M(i), 0.13, 3.6)

11 P ← P + φ× V (i)

12 Z ← Z + φ

13 T̄ ← d(T)− d(t)

14 return e−rT̄d(K)× P/Z

Figure 3.24: Determing price of previously unseen option

3.6. SUMMARY 57

3.6 Summary

This chapter has formalised the European option pricing problem as a Markov

Decision Process that is solvable via Kernel-Based Reinforcement Learning.

An initial method was investigated and possible improvements presented due

to the problem of the initial method requiring option prices for the sell action

- these option prices are what the model is trying to learn, therefore the model

should not have a sell action. The results from these improvements were closer

to the analytic Black-Scholes price matrix than the initial method. In the

following chapter, these methods form the basis of a solution to the American

option pricing problem.

Chapter 4

American options

American options are amongst the hardest options to price as traders could

exercise the option at any point during the life of the option. This makes

American options more expensive than their European counterparts. Due to

the complexity of American options there is no closed form solution available

for pricing the option and thus practitioners have to resort to numerical ap-

proximations. American options have the structure whereby the exercise action

receives a reward but no future return and the hold action receives no reward

but may receive a future return. As previously discussed, the hold action can

only benefit from future return because the trader only receives remuneration

upon exercising.

Monte Carlo simulation is frequently used to price American options. The

main problem with this approach is that for every option that needs to be

priced, Monte Carlo simulation needs to be re-run to obtain that option’s

price. Another problem is that simulated paths cannot be re-used even if there

are only slight changes to the volatility and time-to-maturity. Therefore new

paths have to be generated which makes Monte Carlo simulation an expensive

procedure.

This thesis will show that extending the KBRL-derived MDP used for

European option pricing produces a viable model for pricing American options.

This is attractive as once an optimal value function is obtained, the price for

any American option can be calculated by a weighted average of the obtained

value function by using the kernel function on the current option’s market

state and the existing market states. Essentially, this model allows us to reuse

the generated kernel to price unseen options.

58

4.1. CHANGES TO EUROPEAN OPTION MDP 59

4.1 Changes to European option MDP

In order to price American options, we will modify the MDP shown in sections

3.2 and 3.3. Because American options allow the option to be exercised at

any time before maturity, traders have one more action at their disposal. This

exercise action gives the trader the ability to receive the payoff at any point

on or before maturity. However, for the case where there are no dividends paid

on a stock, it is never optimal to exercise prior to maturity.

If we were to have a sell action, the reward for selling the American option

will be the true price of the American option (similar to that in the European

case). However, the sell action is redundant. Consider an infinite state space

for the American option MDP. The combination of the hold and exercise

actions will produce American option prices that are equivalent to the true

prices. The Monte Carlo procedure is based off the same principle of using

hold and exercise actions: at each back track of the Monte Carlo simulation,

either the discounted future value (i.e. holding) is higher than the exercising

value or vice versa[12]. After Monte Carlo procedure terminates (i.e. after

the complete back track from maturity to ‘today’), a price for ‘today’ will

be returned for a single American option[12]. Now, consider the finite state

space for the American option MDP. When using the combination of the hold

and exercise actions in the finite state space, the optimal value function will

contain an approximate price to the true price. This is similar to the European

option optimal value function which contains approximate prices to the true

prices when using only the hold action. Therefore, the action space needs

to include only the hold and exercise actions without any detriment to the

effectiveness of the algorithm. That is,

at =

AE if D is being exercised,

AH if D is being held.
(4.1)

With the addition of the exercise action, the corresponding reward has been

added to the reward structure (Equation (4.2))

R(s, a) =


DT = f(UT) if t = T,

er(T−t)f(Ut) if a = AE and t < T,

0 if a = AH and t < T.

(4.2)

4.2. TRAJECTORY MODEL USING SEPARATED FEATURES 60

4.2 Trajectory model using separated features

The improved trajectory model is discussed in §3.2. The only change here to

that MDP lies in the action space and reward function as discussed in the

previous section. The former has an extra action, namely exercise (AE), and

the latter includes the reward for choosing the exercise action in a state.

4.2.1 Experiment (Trajectory model using separated

features): Pricing an American call option

This experiment considers pricing an American call option using the improved

trajectory method discussed in §3.2 with the altered reward structure and ac-

tion space as mentioned in §4.1. The KBRL MDP is constructed by generating

samples in the manner outlined in §3.2.

The following parameter values are used in solving for the value function

using Kernel-Based Reinforcement Learning (KBRL):

• the number n of randomly sampled derivatives: n = 1, 500;

• the riskless interest r: r = 0.02;

• the standard deviation b of the kernel functions: b = 0.026;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18);

• number of transitions per trajectory is an integer between 1 (inclusive)

and 19 (inclusive); and

• the actions to use for this model in pricing an American call are the hold

(AH) and the exercise (AE) actions.

The results of the above experiment are shown in Figure 4.1 which shows

the American call price matrix is consistently higher than the Monte-Carlo

price matrix for in-the-money regions and the approximation error rapidly

increases the further from maturity the option is.

4.2. TRAJECTORY MODEL USING SEPARATED FEATURES 61

(a) American call price matrix (KBRL-derived model)

(b) American call approximation error (KBRL-derived

model)

Figure 4.1: American call price matrix using KBRL with approxi-

mation error to the European call price matrix using the Analytic

Black-Scholes approach

4.3. EXPERIMENT (MAPPED MODEL): PRICING AN AMERICAN
CALL 62

4.3 Experiment (Mapped model): Pricing an

American call

This experiment considers pricing an American call using the Mapped model

discussed in §3.3 with the altered reward structure and action space as men-

tioned in §4.1. The following parameter values are used in solving for the value

function using Kernel-Based Reinforcement Learning (KBRL):

• sampled states using the procedure described in Figure 3.15 (results in

roughly 16, 000 market states);

• the number of sampled stock prices n: n = 1, 450;

• a riskless interest r: r = 0.02;

• the standard deviation b of the kernel functions: b = 0.05;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18);

• the actions to use for this model in pricing an American call are the hold

(AH) and exercise AE actions.

The results of the above experiment are shown in Figure 4.2 which shows

the American call price matrix is consistently lower than the analytic Black-

Scholes price matrix for in-the-money regions, however the approximation error

relative to the option price is consistently below 1%.

4.3. EXPERIMENT (MAPPED MODEL): PRICING AN AMERICAN
CALL 63

(a) American call price matrix (KBRL-derived

mapped model)

(b) American call approximation error (KBRL-derived

mapped model)

Figure 4.2: American call price matrix using KBRL with mapped

state space and approximation error to the European call price

matrix using the Analytic Black-Scholes approach

4.4. ANALYSIS OF EXECUTION TIME 64

Number of Monte Carlo Improved Mapped Model

options priced simulation Trajectory model (on 105 states)

(on 105 paths) (on 105 states)

1 0.007196 0.000629 0.000644

10 0.065010 0.003947 0.003919

50 0.308740 0.015552 0.015611

100 0.622130 0.029282 0.027742

200 1.241843 0.055740 0.055961

500 3.092100 0.136024 0.136866

1000 6.175531 0.271860 0.271989

2000 12.341683 0.542383 0.544496

5000 30.878162 1.357726 1.363485

10000 61.861307 2.705847 2.728143

20000 123.862644 5.379056 5.507110

50000 310.130675 13.505553 13.732129

Table 4.1: Execution times (in seconds) of the Monte Carlo simulation

approach in comparison to the improved Trajectory model and Mapped

model

4.4 Analysis of execution time

One of the motivations for this research is Monte Carlo simulation is time

consuming. This section examines how effective the KBRL models are in re-

ducing the execution time and ultimately obtaining a similar American option

price to the price calculated using Monte Carlo. Table 4.1 and Figure 4.3 show

the execution times of the KBRL models in comparison to the Monte Carlo

approach. The former models show similar results with a reduction over the

latter approach. This reduction is significant because this means traders will

be able to obtain an American option price in 4% of the time of the Monte

Carlo approach and still obtain a similar price.

Therefore, the KBRL models are effective procedures for obtaining an ac-

curate American option price (i.e. similar to Monte Carlo simulation) because

these models are able to calculate the price in significantly less time.

4.5. PRICING AN AMERICAN CALL OPTION ON A
DIVIDEND-PAYING ASSET 65

Figure 4.3: Execution times (in seconds) of the Monte Carlo simulation

approach in comparison to the improved Trajectory model and Mapped

model

4.5 Pricing an American call option on a

dividend-paying asset

The previous sections have discussed American call options on non-dividend-

paying assets which have equivalent prices to their European call option coun-

terparts. American call options have a different price when the underlying

asset pays out dividends. The simplest case is a stock that pays out con-

tinuous dividends. However, dividends are paid out at discrete times and

generally dividend payouts are known in advance. Therefore, to convert the

non-dividend-paying American option pricing MDP into a dividend-paying

MDP, the present value of all dividends occurring from the value date to the

expiry date of the option must be subtracted from the stock price.

4.5.1 Experiment (Trajectory model using separated

features): Pricing an American call option on a

dividend-paying asset

This experiment considers pricing an American call option on a dividend-

paying asset using the improved trajectory method discussed in §3.2. The

4.5. PRICING AN AMERICAN CALL OPTION ON A
DIVIDEND-PAYING ASSET 66

KBRL MDP is constructed by generating samples in the manner outlined in

§3.2.

The following parameter values are used in solving for the value function

using Kernel-Based Reinforcement Learning (KBRL):

• the number n of randomly sampled derivatives: n = 1, 500;

• the riskless interest r: r = 0.02;

• a dividend yield q paid out quarterly: q = 0.03;

• the standard deviation b of the kernel functions: b = 0.026;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18);

• number of transitions per trajectory is an integer between 1 (inclusive)

and 19 (inclusive); and

• the actions to use for this model in pricing an American call are the hold

(AH) and the exercise (AE) actions.

The results of the above experiment are shown in Figure 4.4 which shows

the American call price matrix is consistently higher than the Monte-Carlo

price matrix for in-the-money regions and the approximation error rapidly

increases the further from maturity the option is.

4.5. PRICING AN AMERICAN CALL OPTION ON A
DIVIDEND-PAYING ASSET 67

(a) American call price matrix (KBRL-derived model)

(b) American call approximation error (KBRL-derived

model)

Figure 4.4: American call price matrix using KBRL with approxi-

mation error to the American call price matrix using Monte Carlo

simulation

4.5. PRICING AN AMERICAN CALL OPTION ON A
DIVIDEND-PAYING ASSET 68

4.5.2 Experiment (Mapped model): Pricing an Ameri-

can call option on a dividend-paying asset

This experiment considers pricing an American call option on a dividend-

paying asset using the Mapped model discussed in §3.3. The following pa-

rameter values are used in solving for the value function using Kernel-Based

Reinforcement Learning (KBRL):

• sampled states using the procedure described in Figure 3.15 (results in

roughly 16, 000 market states);

• the number of sampled stock prices n: n = 1, 450;

• a riskless interest r: r = 0.02;

• a dividend yield q paid out quarterly: q = 0.03;

• the standard deviation b of the kernel functions: b = 0.05;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18);

• the actions to use for this model in pricing an American call are the hold

(AH) and exercise AE actions.

The results of the above experiment are shown in Figure 4.5 which shows the

American call price matrix is consistently higher than the Monte-Carlo price

matrix for in-the-money regions, however the approximation error relative to

the option price is consistently below 1%.

4.5. PRICING AN AMERICAN CALL OPTION ON A
DIVIDEND-PAYING ASSET 69

(a) American call price matrix (KBRL-derived mapped

model)

(b) American call approximation error (KBRL-derived

mapped model)

Figure 4.5: American call price matrix using KBRL with mapped

state space and approximation error to the American call price

matrix using Monte-Carlo simulation

4.6. SUMMARY 70

4.6 Summary

This chapter has shown that a simple addition to the action space and reward

function transforms the European option pricing MDP into an American op-

tion pricing MDP. Experiments were performed on the improved trajectory

model and the mapped model illustrating desirable results when compared

to Monte Carlo simulation. Also, the execution times of these two models

were compared to the Monte Carlo simulation approach. Promising results

were found showing the KBRL models are effective procedures for reducing

the time needed to obtain a price for an American option. Furthermore, an

American call option price matrix on a dividend-paying asset was compared

to the equivalent Monte Carlo price matrix indicating the similarities in price

between the two models.

The following chapter investigates the use of inputting market data into

the models instead of generated market states and comparing the results to

the respective existing methods.

Chapter 5

Calibrating models

Calibration of a model in finance is a term used to describe the insertion

of market data into a financial model to “transform” the price the model

calculates into a market price. For both European and American options,

dividends need to be incorporated into the KBRL MDP to calculate a market

price. The market data used for the improved trajectory model is the daily

historical stock prices and the historical dividends for the list of companies in

Table 5.1. This market data was retrieved from Yahoo Finance who provide

adjusted daily close prices based on dividends from inception of the company

to 8-Jan-2013. For the mapped model, pricing a call option requires European

call option market data which was retrieved from Yahoo Finance for 8-Jan-

2013 for the list of companies in Table 5.1. The maturity dates of the European

call options is in Table 5.2.

5.1 Calibrating improved trajectory model

using underlying stock trajectories

To calibrate this model, existing stock price paths from the market need to

be extracted. The historical volatility on the returns of the stock can then be

calculated (Figure 5.1) allowing us to replace the trajectories generated by the

Black Scholes process with recorded market trajectories.

71

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 72

Companies Symbol

Apple Incorporated AAPL

Amazon.com Incorporated AMZN

Ford Motor Company F

Facebook Incorporated FB

Google Incorporated GOOG

Hewlett-Packard Company HPQ

JPMorgan Chase & Company JPM

McDonald’s Corporation MCD

Morgan Stanley MS

Microsoft Corporation MSFT

Starbucks Corporation SBUX

Yahoo! Incorporated YHOO

Table 5.1: List of companies for which market data was extracted from Yahoo

Finance

Maturity dates

10-Jan-2013

18-Jan-2013

24-Jan-2013

31-Jan-2013

15-Feb-2013

15-Mar-2013

17-Mar-2013

19-Apr-2013

21-Jun-2013

19-Jul-2013

16-Aug-2013

20-Sep-2013

18-Oct-2013

17-Jan-2014

16-Jan-2015

Table 5.2: Maturity dates of European call options from 8-Jan-2013

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 73

Historical-Volatility-On-Returns-Of-Stock(m,S)

S ← a stock price path

1 m← the number of stock prices in S

2 log-results← initialize to a vector of size m− 1

3 mean← 0

4 for i← 1 to m− 1 do

5 log-results(i)← ln
(
S(i+1)
S(i)

)
6 mean← mean+ log-results(i)

7 mean← mean/(m− 1)

8 σ ← 0

9 for i← 1 to m− 1 do

10 σ ← σ + (log-results(i)−mean)2

11

12 return
√

252σ
m−1

// there are 252 average

// number of business days a year

Figure 5.1: Procedure to calculate Historical Volatility

5.1.1 Replacing simulated Market State trajectories

Historical prices for the major stocks on the New York stock exchange were

used for constructing the trajectories. Each trajectory has sixteen daily stock

prices and historical volatility is calculated on each trajectory. The trajectory,

together with the differing time-to-maturities of each option on the trajec-

tory, including the historical volatility are merged together to form the market

states. The strike prices for the options generated from the underlying stocks

are chosen from a normal distribution centered around the stock price, as

shown in Section 5.1.2

The stock versus volatility graph (Figure 5.2(a)) indicates approximately

sixty percent of the volatility is close to zero whereas both the stock ver-

sus time-to-maturity graph (Figure 5.2(b)) and the volatility versus time-to-

maturity graph (Figure 5.3) show the uniformity that we would expect when

extracting daily stock price trajectories.

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 74

(a) Stock vs. Volatility

(b) Stock vs. Time-to-maturity

Figure 5.2: Market Data Stock state space mapping - separated

risk/time components

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 75

Figure 5.3: Volatility versus time-to-maturity state space mapping

- separated risk/time components

5.1.2 Experiment (calibrating the improved Trajectory

model): Pricing a European call and an American

call

The experiment considers calibrating the improved Trajectory model to exist-

ing historical market data for a European call and an American call using the

improved Trajectory model (§3.2). The following parameter values are used

in solving for the value function using Kernel-Based Reinforcement Learning

(KBRL):

• existing historical market data on stocks are used to get n = 3, 000 stock

price trajectories;

• interval used to determine number of transitions per trajectory: [1, 19]

(with n = 3000, results in roughly 36, 000 market states);

– number of time steps ts for each trajectory is ts = 19+1
2

+ 1 = 11;

– ts = 11 time steps means that there are m ≈ 12 stock prices on a

trajectory; and

– n×m ≈ 3, 000× 12 = 36, 000.

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 76

• the USD zero curve is used to calculate riskless interest rates r (see Figure

B.3 for the USD zero curve);

• the known and forecast dividend payouts for each stock can be found in

Figure B.4 and Figure B.5;

• volatility of each trajectory is calculated by using the procedure defined

in Figure 5.1;

• the strike price K : K = U0 × (1− 0.12×N (0, 1));

• the standard deviation b of the kernel functions: b = 0.013;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18); and

• the action to use for this model in pricing a European call is only the hold

(AH) action; the actions to use for this model in pricing an American

call is the hold (AH) and exercise AE actions.

The results of the above experiment are shown in Figure 5.4 for European

calls and Figure 5.5 for American calls. The maximum error relative to the

option price is approximately 5% due to the overestimated prices the further

the option is from maturity.

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 77

(a) Calibrated European call price matrix (KBRL-derived

model)

(b) Calibrated European call approximation error (KBRL-

derived model)

Figure 5.4: Calibrated European call price matrix using market

data trajectories and historical volatility with approximation error

to Analytic Black-Scholes European call

5.1. CALIBRATING IMPROVED TRAJECTORY MODEL
USING UNDERLYING STOCK TRAJECTORIES 78

(a) Calibrated American call price matrix (KBRL-derived

model)

(b) Calibrated American call price matrix (KBRL-derived

model)

Figure 5.5: Calibrated American call price matrix using market

data trajectories and historical volatility with approximation error

to Monte-Carlo Black-Scholes American call

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 79

5.2 Calibrating Mapped model using Option

data

To calibrate this model, current market prices for various options can be used

as input to the model. The market prices are not used directly in our kernel

as these prices are susceptible to mispricings. Instead, we use these prices to

calculate the implied volatility of the stock using the Black-Scoles formula,

and we use value iteration on the option to estimate its fair price.

Once the implied volatility has been calculated, parameters visible from the

market together with the calculated volatility can be used as a market state.

The collection of these market states makes up the state space. The model

requires no additional change to achieve calibration to the market. Figures

5.6(a), 5.6(b) and 5.7 illustrates the coverage of the European option price

market data.

5.2.1 Experiment (calibrating Mapped model): Pricing

a European call and an American call

The experiment considers calibrating the Mapped model (§3.3) to existing

European option prices for a European call and American call. The following

parameter values are used in solving for the value function using Kernel-Based

Reinforcement Learning (KBRL):

• existing market data on European options are used to map the state

space (the number of resultant market states is roughly n = 11, 000);

• the USD zero curve is used to calculate riskless interest rates r (see Figure

B.3 for the USD zero curve);

• the known and forecast dividend payouts for each stock can be found in

Figure B.4 and Figure B.5;

• volatility of each trajectory is calculated by using the procedure defined

in Figure 5.1;

• the standard deviation b of the kernel functions: b = 0.026;

• the egg-shaped parameter ν applied to the distance function is given by

(3.18); and

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 80

(a) Stock vs. Volatility

(b) Stock vs. Time-to-maturity

Figure 5.6: Market Data stock state space mapping - separated

risk/time components

• the action to use for this model in pricing a European call is only the hold

(AH) action; the actions to use for this model in pricing an American

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 81

Figure 5.7: Volatility versus time-to-maturity state space mapping

- separated risk/time components

call is the hold (AH) and exercise AE actions.

The results of the above experiment are shown in Figure 5.8 for European

calls and Figure 5.9 for American calls. The approximation error for the Eu-

ropean call price matrix remains below 1% for in-the-money regions, however

near-strike has an approximation error of around 5%. Whereas the approxi-

mation error for the American call price matrix is significantly better having

a maximum relative error of less than 1% across all regions.

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 82

(a) Calibrated European call price matrix (KBRL-derived

model)

(b) Calibrated European call approximation error (KBRL-

derived model)

Figure 5.8: Calibrated European call price matrix with approxima-

tion error to analytic Black-Scholes price

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 83

(a) Calibrated American call price matrix (KBRL-derived

model

(b) Calibrated American call approximation error (KBRL-

derived model

Figure 5.9: Calibrated American call price matrix with approxima-

tion error to Monte-Carlo Black-Scholes price

5.2. CALIBRATING MAPPED MODEL USING OPTION DATA 84

5.2.2 Comparison to market data prices

The market states used in the calibrated model are constructed directly from

market data. Absolute and relative errors, Equations (5.1) and (5.2), respec-

tively, may be calculated between the learned market states’ prices and their

market data prices to determine the effectiveness of the model. The absolute

and relative errors are defined by

ε = |v − vapprox| (5.1)

and

η =
ε

|v|
=
|v − vapprox|
|v|

, (5.2)

respectively. The market data prices exhibit a maximum absolute error of

13.93 and a maximum relative error of 21.47. Furthermore, statistical analysis

is applicable here to find the mean of the market data price differences to KBRL

prices and the standard deviation around the mean. The mean is defined by

µ =
1

n

n∑
i=1

|Pi − Vi| (5.3)

where n is the total number of market data option prices and |Pi − Vi| is the

absolute difference between the market data price and KBRL price of the ith

market data option. The standard deviation around the mean µ is given by

σ =

√√√√ 1

n

n∑
i=1

(|Pi − Vi| − µ)2. (5.4)

Given Equations (5.3) and (5.4), the mean of the absolute differences in prices

is 0.14 and the standard deviation around the mean is 8.2436 × 10−9. The

attributing factor to these numbers is the consistency of the gathered market

data (shown in Figure 5.10).

The solid line is the payoff function for a call option and also represents the

intrinsic value for any option with a strike price of one. Without considering

dividend payouts made out by the stocks, inconsistencies will arise in the

resultant date around intrinsic value versus fair value. That is, the intrinsic

value of a derivative may be higher than the option’s market price. This is

evident in certain pieces of market data such as the Apple stock option with

an unadjusted closing share price (i.e. not considering dividends) of $525.31

5.3. SUMMARY 85

Figure 5.10: Strike-relative market data prices illustrating the con-

sistency of the market data

for 8 January 2013, a strike price of $320, a time-to-maturity of 0.2767 years

and a call option price of $202.83. Here, the intrinsic value (i.e. payoff) at

this time is $205.31 which is $2.48 higher than the market’s price for the call

option. After taking dividends into consideration, the market is providing fair

values higher than the intrinsic value for all of the gathered options.

The use and construction of the market states from the market data is

just as easy as sampling the market data using random number generators.

This is more difficult to do in current numerical procedures as a least squares

approximation is used to minimise the error.

5.3 Summary

Calibration has been explained to be a technique used in finance to “trans-

form” a price calculated by a model into a market price by inserting market

data into the model. The improved Trajectory model and the Mapped model

5.3. SUMMARY 86

have been calibrated to solve for a European and American option market

price. Comparisons of European option prices were done to the existing mar-

ket prices illustrating prices accurate to within 1% of the actual value. This

was evident through statistical analysis by calculating the mean of the absolute

differences in the prices calculated by the Mapped model and the prices from

the market. The standard deviation around the mean was also calculated to

gain insight into the extent the prices deviate from the mean. The following

chapter investigates the limitations of all the models by changing the KBRL

parameters to examine the effect of these changes on the price matrix of an

option.

Chapter 6

Effect of changing KBRL

parameters

The KBRL approach to the option pricing problem has one significant pa-

rameter that may be adjusted to increase (or decrease) the effectiveness and

accuracy of the models. KBRL makes use of a kernel function, in this case

Gaussian, which has a standard deviation parameter b.

Section 6.1 describes and illustrates the impact of changing this parameter.

6.1 Standard deviation of kernels (b value)

This parameter is a constant number describing how quickly the weight of

a potential successor state decreases as its distance from the unseen state

increases. Intuitively, the higher the standard deviation, the wider the area of

effect of each state. The standard deviation of the kernel is a highly volatile

parameter in the KBRL model since a seemingly small change to this parameter

can potentially cause significantly inaccurate prices.

The irregular nature of the price matrix in Figure 6.1 is caused by a lower

than optimal standard deviation parameter. There are distinct regions in

Figure 6.1 where contours are not smooth. Since the parameter is lower than

optimal, too few neighbouring sampled states contribute to the value of the

unseen states thereby causing these irregularities to occur.

87

6.1. STANDARD DEVIATION OF KERNELS (B VALUE) 88

(a) European call price matrix (KBRL-derived model)

(b) European call approximation error (KBRL-derived

model)

Figure 6.1: European call price matrix with mapped state space

and approximation error to analytic Black-Scholes using b = 0.007

The price matrix is smoothened when this parameter is higher than the

optimal value. The price of an unseen stock will be affected by states that are

6.2. SUMMARY 89

very dissimilar to it, and will thus end up with an inaccurate value. Figure 6.2

illustrates how a higher b-value affects the overall price matrix for a European

call.

Setting the b value to infinity (equivalently, a large value) implies being able

to reach every state from the current state with the same probability leaving

the result as a flat non-zero surface (Figure 6.3). To the other extreme, setting

the b value to zero implies that the current state that is being priced must have

been seen before in order for a price to be obtained for the option. Therefore,

the price matrix surface for any option would be undefined for the majority of

the states.

6.2 Summary

This chapter has investigated the effects of changing the standard deviation

of the kernels (b) value. The results indicate three distinct price matrix sur-

faces that arise for differing levels of the b-value. For b-values close to zero,

the surface is irregular and bumpy in nature indicating that either more sam-

ples need to be generated or the b-value needs to be increased. The smooth

surface shows that the in-the-money option regions underestimated the fair

price and the out-the-money option regions overestimated the fair price. This

indicates that the b-value must be decreased without changing the state space

size. Finally, the flat surface resulted due to a large b-value being used which

illustrates the upper bound of the price matrix. That is, the out-the-money

option regions cannot have a higher price than the in-the-money regions and

the in-the-money regions cannot have a lower price than the out-the-money

regions.

6.2. SUMMARY 90

(a) European call price matrix (KBRL-derived model)

(b) European call approximation error (KBRL-derived

model)

Figure 6.2: European call price matrix with mapped state space

and approximation error to analytic Black-Scholes using b = 0.07

6.2. SUMMARY 91

(a) European call price matrix (KBRL-derived model)

(b) European call approximation error (KBRL-derived

model)

Figure 6.3: European call price matrix with mapped state space and

approximation error to analytic Black-Scholes using large b value

Chapter 7

Conclusion

This dissertation has investigated the application of Kernel-Based Reinforce-

ment Learning (KBRL) to solve the American option pricing problem. Exist-

ing numerical procedures are time consuming because simulations need to be

generated for each option that requires a price. In addition, a trader requires

accurate prices to mitigate the risk of loss in option trading.

7.1 Significance of research

The analytic Black-Scholes price for European options has been used since

1973 and has become the standard European option pricing formula. However,

there is no standard option pricing procedure for American options since no

closed-form solution exists for these types of options. Therefore, numerical

approximations are frequently used to price these options. However, existing

numerical procedures require running simulations to obtain a price for a single

option. For an additional option, more simulations need to be generated to

obtain the price for that option.

The significance of this research is that samples only need to be generated

once to learn the American option pricing model and to calculate the value

function. Following this, pricing any unseen American option requires the use

of that value function eliminating the need to relearn the entire model and

therefore drastically reducing the time it takes to obtain a price.

92

7.2. RESEARCH FINDINGS 93

7.2 Research Findings

The results of the two experiments were compared to the closed-form solution

in the case of European options and Monte Carlo simulation in the case of

American options. The methods showed two significant benefits. The first

benefit is the ability to price American options in 4% of the time of Monte

Carlo simulation and the second is the ability to calibrate the models to market

prices using market data.

7.3 Future Research

Only two option classes were investigated in this research, namely European

and American options. These option classes are well-defined for the KBRL

models shown in this research. Other option classes need to be analysed to

further improve on these KBRL models. For example, Bermudan options have

a prespecified number of dates on which the buyers of the option may exer-

cise their right to obtain the payoff for the option. Unlike American options,

Bermudan options are harder to price under the current KBRL models because

the exercise dates of the option must be taken into account when calculating

the price of unseen options.

In this research, a constant standard deviation parameter was used for the

kernel function. This parameter should decrease as the number of market

states increases. As was shown in chapter 6, the changes to this parameter

caused large differences when compared to the existing pricing models. The

standard deviation parameter determines how close a state needs to be in

order to influence the price. If this is set incorrectly, states that are too far

away could have an unwarranted impact. If it is set too low, we could have

too few states, resulting in statistical anomalies. This poses the problem of

determining what the correct value should be for any sampled state space size.

Further, the Matlab random number generator was used in all stock price

and state space samples. Previous contributions to option pricing using Monte

Carlo simulation have shown that the use of Sobol sequences drastically im-

proves the convergence rate over the crude Monte Carlo approach which uses

pseudo-random numbers[1, 3, 5, 10, 22]. An investigation into how Sobol

sequences can improve the KBRL models to obtain consistent and accurate

option prices would be worthwhile.

7.3. FUTURE RESEARCH 94

Another area of potential research is investigating the extension of the

coverage of market data. Market data extracted from Yahoo Finance was

limited to twelve large corporations from the United States of America which

had a vast amount of European options traded in the US market. Including

other corporations’ market information to increase the sample size may lead

to an increase in accuracy in the KBRL models.

In finance, pricing models must make financial sense (plausible) and must

be easy to control (tractable). Therefore, surveys can be done on how traders

interact with these models to assess whether these models are plausible and

tractable.

Bibliography

[1] P. Acworth, M. Broadie, and P. Glasserman, A comparison of some Monte
Carlo and quasi Monte Carlo methods for option pricing, 1st ed., Springer,
New York, 1998.

[2] R. Bellman, Dynamic Programming, 1st ed., Princeton University Press,
Princeton, NJ, USA, 1957.

[3] J.R. Birge, Quasi-Monte Carlo approaches to option pricing, Tech. re-
port, Department of Industrial and Operations Engineering, University of
Michigan, 1994.

[4] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities,
Journal of Political Economy 81 (1973), no. 3, 637 – 659.

[5] P. Bratley and B.L. Fox, Algorithm 659: Implementing Sobol’s quasiran-
dom sequence generator, ACM Transactions on Mathematical Software
14 (1988), 88–100.

[6] Aristotle (Translated by Jowett. B), Politics, 1st ed., 350 B.C.

[7] J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure
of interest rates, Econometrica 53 (1985), no. 2, 385–407.

[8] J. C. Cox, S. A. Ross, and M. Rubenstein, Option Pricing: A Simplified
Approach, Journal of Financial Economics 7 (1979), no. 3, 229–263.

[9] D. Duffie, Dynamic Asset Pricing Theory, 3rd ed., Princeton University
Press, Princeton, NJ, 2001.

[10] S. Galanti and A. Jung, Low-discrepancy sequences: Monte Carlo simu-
lation of option prices, Journal of Derivatives 5 (1997), 63–83.

[11] M. Gilli and E. Schumann, Calibrating Option Pricing Models with
Heuristics, University of Geneva, Department of Economics (2010).

[12] P. Glasserman, Monte Carlo Methods in Financial Engineering, New
York, NY: Springer, 2003.

95

BIBLIOGRAPHY 96

[13] T. Grassl, A reinforcement learning approach for pricing derivatives, 2010.

[14] P. S. Hagan and G. West, Interpolation Methods for Curve Construction,
Applied Mathematical Finance 13 (2006), no. 2, 89 – 129.

[15] S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatil-
ity with Applications to Bond and Currency Options, The Review of Fi-
nancial Studies 6 (1993), no. 2, 327–343.

[16] R. A. Howard, Dynamic Programming and Markov Decision Processes,
1st ed., MIT Press, 1960.

[17] J. C. Hull, Options, Futures and Other Derivatives, 7th ed., Prentice Hall,
2008.

[18] J. C. Hull and A. White, The Pricing of Options on Assets with Stochastic
Volatilities, Journal of Finance 42 (1987), no. 2, 281–300.

[19] , An analysis of the bias in option pricing caused by a stochastic
volatility, Advances in Futures and Options Research 3 (1988), 29–61.

[20] H. Johnson and D. Shanno, Option pricing when the variance is changing,
Journal of Financial and Quantitative Analysis 22 (1987), 143–151.

[21] N.K. Jong and P. Stone, Kernel-Based Models for Reinforcement Learn-
ing, ICML-06 Workshop on Kernel Methods and Reinforcement Learning
(2006).

[22] C. Joy, P.P. Boyle, and K.S. Tan, Quasi-Monte Carlo methods in numer-
ical finance, Management Science 42 (1996), 926–938.

[23] S. Junhua, Pricing Multi-Dimension American Options by Simulation,
Master’s thesis, MATHEMATICS, 2004.

[24] F.A. Longstaff and E.S. Schwartz, Valuing American Options by Simula-
tion: A Simple Least-Squares Approach, The Review of Financial Studies
14 (2001), no. 1, 113 – 147.

[25] N. Moodley, The Heston Model: A Practical Approach with Matlab Code,
Master’s thesis, Computational and Applied Mathematics, 2005.

[26] D. Ormoneit and S. Sen, Kernel-Based Reinforcement Learning, Machine
Learning 49 (2002), 161–179.

[27] E. Pashenkova, I. Rish, and R. Dechter, Value iteration and policy itera-
tion algorithms for Markov decision problem, Department of Information
and Computer Science, University of California at Irvine (1996).

BIBLIOGRAPHY 97

[28] M. L. Puterman, Markov decision processes: Discrete stochastic dynamic
programming, 1st ed., John Wiley and Sons, New York, NY, 1994.

[29] J. Reisinger, P. Stone, and R. Miikkulainen, Online Kernel Selection for
Bayesian Reinforcement Learning, Journal of Machine Learning, 2008.

[30] L. O. Scott, Option pricing when the variance changes randomly: Theory,
estimation, and an application, Journal of Financial and Quantitative
Analysis 22 (1987), no. 4, 419–438.

[31] E. M. Stein and J. C. Stein, Stock Price Distributions with Stochastic
Volatility: An Analytic Approach, The Review of Financial Studies 4
(1991), no. 4, 727–752.

[32] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning), The MIT Press (1998).

[33] J. B. Wiggins, Option values under stochastic volatilities, Journal of Fi-
nancial Economics 19 (1987), 351–372.

Appendix A

Pseudocode

The algorithm in Figure A.1 shows how to generate the stock price matrix using
the Black-Scholes model. This procedure takes four input arguments, namely,
the initial (or current) stock price U0, the drift term µ (the riskless interest rate
r is passed in for this value in a risk-neutral market), the volatility of returns
on the stock σ and the time in years T . First, initialization of the number of
stock price paths and number of timesteps in each path is done. Then, two
matrices are created to store generated standard normal random numbers Z
and the simulated stock prices U . The first column of U is initialized with
the initial stock price U0 to begin the simulation. Two loops are needed to
simulate the stock prices: the outer loop controls the simulation for each stock
price path while the inner loop controls the current time step. The Black-
Scholes stock price formula is used to calculate each time step’s simulated
stock price using the previous simulated stock price. Plotting Ui,j against tj
for each i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . ,m} will produce the result in
Figure C.1.

The Monte-Carlo-Pricing-Model algorithm in Figure A.2 is generic
enough that European and American option prices could be calculated by
simply calculating a stock price matrix U using Figure A.1. The algorithm
takes six input arguments, namely the stock price matrix U , the strike price of
the option K, the riskless interest rate r, the time-to-maturity of the option T ,
the payoff function Payoff and the optionType (i.e. American or European).
Calculation of a price begins by applying the Payoff function to the last
column in U . If the optionType is European, then the average of the values
in the last column in U is calculated and discounted back to time 0 using
e(− rT). This is the price for optionType = European. However, if the
optionType is American, the Payoff function is applied to every column in
U . The algorithm progressively backtracks one row and one column at a time
taking the maximum between the discounted payoff of one time-step ahead and
the current payoff value (each column represents an equal time-step between
the current time and the expiry of the option). Eventually, the algorithm gets

98

99

Black-Scoles-stock-simulation(U0, µ, σ, T)

U0 ← initial stock price
µ← drift of stock price process
σ ← volatility of returns on the stock
T ← maturity of the option

1 n← initialize the number of simulated stock price paths
2 m← initialize the number of time steps for each stock price path
3 Z ← generate a matrix (Zn×m) of standard normal random variables
4 U ← initialize a matrix (Un×(m+1)) to contain all zeros except for first

column which contains U0 - the initial stock price
5 h← T

m

6 for i← 0 to n− 1 do
7 for j ← 0 to m do

8 Ui,j+1 ← Ui,j exp
[(
µ− 1

2
σ2
)
h+ σZi,j

√
h
]

Figure A.1: Algorithm to generate Black-Scholes stock price paths

to first column in U and calculates the average of all values in that column
which is the price for the American option.

100

Monte-Carlo-Pricing-Model(U,K, r, T, payoff, optionType)

U - the stock price matrix with the first column being the
initial stock price

K - the strike price of the option
r - the term structure of NACC forward interest rates (i.e. an array

of forward interest rates)
T - the time-to-maturity of the option
payoff - the mathematical payoff function
optionType - European, Bermudan, American, etc.

1 m← row dimension of S
2 n← column dimension of S

3 t← {T, T (n−2)
n−1

, . . . , T
n−1

, 0}
4 for i← 1 to m do
5 Ui,T = Payoff(Ui,T , K)
6 if optionType is European then
7 return exp (−rT) mean(UT)
8 for j ← n− 1 to 1 do
9 for i← 1 to m do

10 Ui,tj ← max{exp(−r (tj+1 − tj))Ui,tj+1
, payoff(Ui,tj , K)}

11 return mean(Ut0)

Figure A.2: Monte Carlo Pricing model

Appendix B

Market Data

B.1 Stock options data

Table B.1 shows an altered excerpt of Market Data stock options on Microsoft1

shares taken from Yahoo Finance2 for close of market on 8-Jan-2013. The
table shows prices for European calls and puts at different expiration dates
and strike prices. Transforming this data into Market States can be done by
first calculating the implied volatility3 (σ

(i))
T) and then using

m
(i)
t =

(
Ut

K
(i)
T

, σ
(i))
T , T (i)

)

for the construction of each state.

B.2 Interest Rate Zero Curve (USD)

The zero curve (Table B.3) is stripped4 from USD swap rate raw inputs (Table
B.2). The deposits, futures and swaps data have the following characteristics:

Data Type Reference Rate Compounding Daycount Business Day Adjustment

Deposits NONE NONE ACT360 Modified Following

Futures LIBOR - ACT360 Following

Swaps LIBOR NONE 30/360 Modified Following

1MSFT stock price (Ut) was $26.55 on 8-Jan-2013 at close of market
2http://finance.yahoo.com - used since it is a free service (this dissertation shows the

simplicity of calibrating a model to market prices)
3Calculated by using the stock level, strike price, annualized interest rate, T (in years)

and the price for the option using a modified Black-Scholes pricing formula
4see [14] for stripping a curve and interpolation methods that can be used

101

B.2. INTEREST RATE ZERO CURVE (USD) 102

Expiration Strike Put Call

Date (T (i)) Price (K
(i)
T) Price (P

(i)
T) Price (C

(i)
T)

18-Jan-2013 25 1.65 0.04
18-Jan-2013 25.5 1.08 0.02
18-Jan-2013 26 0.67 0.13
18-Jan-2013 26.5 0.21 0.17
18-Jan-2013 27 0.15 0.59
18-Jan-2013 27.5 0.01 0.98
15-Feb-2013 24 2.67 0.11
15-Feb-2013 25 1.78 0.22
15-Feb-2013 26 1.07 0.49
15-Feb-2013 27 0.52 0.96
15-Feb-2013 28 0.22 1.63

Table B.1: Excerpt Market Data of MSFT stock options for 8-Jan-2013

Deposits Futures Swaps
Tenor Rate Product Price Tenor Rate

1D 0.0164 EDH3 99.7 3Y 0.005025
1M 0.002077 EDM3 99.68 4Y 0.00678
2M 0.00252 EDU3 99.655 5Y 0.008985
3M 0.00305 EDZ3 99.63 6Y 0.011345

EDH4 99.595 7Y 0.013585
EDM4 99.545 8Y 0.0156
EDU4 99.49 9Y 0.017375
EDZ4 99.42 10Y 0.018979

12Y 0.021665
15Y 0.02439
20Y 0.026655
30Y 0.02858
40Y 0.0289505

Table B.2: Market Data for USD swap rate raw data

B.2. INTEREST RATE ZERO CURVE (USD) 103

Curve Dates Days Rate Discount Factor
08-Jan-13 0 0.001641342 1
09-Jan-13 1 0.001641342 0.999995444
11-Feb-13 34 0.002053954 0.999806233
11-Mar-13 62 0.00249461 0.999571
10-Apr-13 92 0.003023042 0.999228908
19-Jun-13 162 0.002846259 0.99872182
18-Sep-13 253 0.002966648 0.997920358
18-Dec-13 344 0.003082847 0.997063022
19-Mar-14 435 0.00319556 0.996152276
18-Jun-14 526 0.003322347 0.995165452
17-Sep-14 617 0.003477802 0.994067442
17-Dec-14 708 0.003656138 0.992848402
18-Mar-15 799 0.003865626 0.991473556
11-Jan-16 1098 0.004964237 0.98501002
10-Jan-17 1463 0.00671298 0.973176666
10-Jan-18 1828 0.008937069 0.955826503
10-Jan-19 2193 0.011348337 0.933568472
10-Jan-20 2558 0.013670754 0.908027769
11-Jan-21 2925 0.015786488 0.880501791
10-Jan-22 3289 0.017683749 0.852016988
10-Jan-23 3654 0.019426024 0.822601468
10-Jan-25 4385 0.022407795 0.76343573
10-Jan-28 5480 0.025530515 0.681299658
10-Jan-33 7307 0.028155892 0.569162705
12-Jan-43 10961 0.030437789 0.401349804
10-Jan-53 14612 0.030579652 0.294465131

Table B.3: Market Data for stripped USD swap curve

B.2. INTEREST RATE ZERO CURVE (USD) 104

Symbol Date Dividend
AAPL 07-Feb-13 2.65
AAPL 09-May-13 3.05
AAPL 08-Aug-13 3.05
AAPL 06-Nov-13 3.05
AAPL 06-Feb-14 3.05
AAPL 06-May-14 3.05
AAPL 06-Aug-14 3.05
AAPL 06-Nov-14 3.05
AAPL 06-Feb-15 3.05
AAPL 06-May-15 3.05
AMZN 07-Feb-13 0

F 28-Jan-13 0.1
F 01-May-13 0.1
F 31-Jul-13 0.1
F 30-Oct-13 0.1
F 29-Jan-14 0.125
F 29-Apr-14 0.125
F 29-Jul-14 0.125
F 29-Oct-14 0.125
F 29-Jan-15 0.125
F 29-Apr-15 0.125

FB 07-Feb-13 0
GOOG 07-Feb-13 0
HPQ 11-Mar-13 0.132
HPQ 10-Jun-13 0.145
HPQ 09-Sep-13 0.145
HPQ 09-Dec-13 0.145
HPQ 10-Mar-14 0.145
HPQ 10-Jun-14 0.145
HPQ 10-Sep-14 0.145
HPQ 10-Dec-14 0.145
HPQ 10-Mar-15 0.145
JPM 03-Apr-13 0.3
JPM 02-Jul-13 0.38
JPM 02-Oct-13 0.38
JPM 02-Jan-14 0.38
JPM 02-Apr-14 0.38
JPM 02-Jul-14 0.38
JPM 02-Oct-14 0.38
JPM 02-Jan-15 0.38
JPM 02-Apr-15 0.38

Table B.4: Dividend payouts per stock

B.2. INTEREST RATE ZERO CURVE (USD) 105

MCD 27-Feb-13 0.77
MCD 30-May-13 0.77
MCD 29-Aug-13 0.77
MCD 27-Nov-13 0.81
MCD 27-Feb-14 0.81
MCD 27-May-14 0.81
MCD 27-Aug-14 0.81
MCD 27-Nov-14 0.81
MCD 27-Feb-15 0.81
MCD 27-May-15 0.81
MS 01-Feb-13 0.05
MS 26-Apr-13 0.05
MS 29-Jul-13 0.05
MS 29-Oct-13 0.05
MS 29-Jan-14 0.05
MS 29-Apr-14 0.05
MS 29-Jul-14 0.05
MS 29-Oct-14 0.05
MS 29-Jan-15 0.05
MS 29-Apr-15 0.05

MSFT 19-Feb-13 0.23
MSFT 14-May-13 0.23
MSFT 13-Aug-13 0.23
MSFT 19-Nov-13 0.28
MSFT 18-Feb-14 0.28
MSFT 18-May-14 0.28
MSFT 18-Aug-14 0.28
MSFT 18-Nov-14 0.28
MSFT 18-Feb-15 0.28
MSFT 18-May-15 0.28
SBUX 05-Feb-13 0.21
SBUX 07-May-13 0.21
SBUX 06-Aug-13 0.21
SBUX 12-Nov-13 0.26
SBUX 04-Feb-14 0.26
SBUX 04-May-14 0.26
SBUX 04-Aug-14 0.26
SBUX 04-Nov-14 0.26
SBUX 04-Feb-15 0.26
SBUX 04-May-15 0.26
YHOO 07-Feb-13 0

Table B.5: Dividend payouts per stock (continued)

Appendix C

Graphs

Figure C.1: Black-Scholes stock price paths

106

107

Figure C.2: Market States mapping on 10 sampled trajectories of
strike-relative stock versus risk/time components

108

Figure C.3: Market States mapping on 100 sampled trajectories of
strike-relative stock versus risk/time components

109

Figure C.4: Market States mapping on 10000 sampled trajectories
of strike-relative stock versus risk/time components

110

Figure C.5: Transition Probabilities reflecting unbiased Gaussian
for Strike-Relative stock prices

111

(a) Unbiased Gaussian distribution

(b) Biased Gaussian distribution

Figure C.6: Transition Probabilities reflecting biased/skewed Gaus-
sian for risk-time component

Appendix D

Tables

KERNEL BASIC EXTENDED

NORM k(x,x′) = 1− ||x−x
′||2

α k(x,x′) = 1−
∑
i wi(xi − x′i)2

GAUSSIAN k(x,x′) = exp
[
− ||x−x

′||2
σ2

]
k(x,x′) = exp

[
−
∑
i wi(xi − x′i)2

]
POLYNOMIAL k(x,x′) = (〈x,x′〉+ 1)d k(x,x′) = (

∑
i wixix

′
i + 1)

d

TANH NORM k(x,x′) = tanh(v||x− x′|| − c) k(x,x′) = tanh
(∑

i wi(xi − x′i)2 − 1
)

TANH DOT k(x,x′) = tanh(v〈x,x′〉 − c) k(x,x′) = tanh (
∑
i wixix

′
i − 1)

Table D.1: Basic kernel functions and the corresponding extended parameter-
izations

112

