
On the Analysis and Design of

Genetic Fuzzy Controllers

An Application to Automatic Generation Control of

Large Interconnected Power Systems

Using Genetic Fuzzy Rule Based Systems

Craig D. Boesack

A thesis submitted to the Faculty of Engineering and the Built Environment,

University of the Witswaterand, Johannesburg, in ful�llment

of the requirements for the degree of

Doctor of Philosophy

School of Electrical and Information Engineering

Johannesburg 2012



I declare that this thesis is my own unaided work. It is being submitted to the

Degree of Doctor of Philosophy to the University of the Witwatersrand,

Johannesburg. It has not been submitted before for any degree or examination

to any other University.

Signature :

Student : Craig D. Boesack

Date :

Supervisor : Prof. Tshilidzi Marwala

Co-Supervisor: Prof. Fulufhelo V. Nelwamondo

ii



Dedicated to my father Charles and to the memory of my mother Eva for their

love.

iii



Abstract

Frequency Control of large interconnected power systems is governed by means

of Automatic Generation Control (AGC), which regulates the system frequency

and tie line power interchange at its nominal parameter set points. Conventional

approaches to AGC controller design is centered around the Proportional, In-

tegral and Derivative (PID) controller structures, which have found widespread

application within industry.

However, the dynamic changes experienced throughout the life cycle of power

systems have many contributing factors, in part attributed to unknown knowl-

edge of system behavior, neglected process dynamics and a limited knowledge of

system interactions, which makes modeling for AGC systems particularly trying

for conventional AGC controller design approaches.

Therefore, in this study, Genetic - Fuzzy controllers (GA - Fuzzy) are applied as

plausible candidates for Automatic Generation Controller design and application.

In GA - Fuzzy controllers, genetic algorithms which are based on the foundation

of evolutionary heuristics are used as a global search method for FLC design.

This is particularly motivated by the fact that Fuzzy controllers, especially where

there are large data sets, unknown process knowledge and insu�cient expert data

available, FLC controller design proves to be a daunting task.

iv



Therefore, this thesis explores the automatic design of FLC controllers through

evolutionary heuristics and applies the designed controller to the AGC problem

of large interconnected power systems. The design methodology followed is to

understand power system interactions through power plant modeling and the

simulation power plant models for the basis for AGC controller design.

It is shown in this study that the performance of the GA - Fuzzy controller

have favourable characteristics in terms of robust performance, robustness prop-

erties and compares favorably with conventional AGC controller techniques. The

analysis of the GA - Fuzzy controller shows that problem formulation and chro-

mosome encoding of the problem search space forms an important prerequisite

for controller design by evolutionary methods.

Therefore the study concludes by stating that GA - Fuzzy controllers are plau-

sible for application within the power industry because of its desirable attributes

and that future work would include extending this research into areas of renewable

energy for study and application.
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Chapter 1

Introduction

Automatic Generation Control (AGC) plays an important role in the control of

frequency within Interconnected Power Systems (IPS) and has been employed as

an energy regulator since the inception of power generation. For this reason, AGC

has found widespread application as a secondary frequency control regulator to

�rstly control the frequency following random load disturbances and secondly to

modulate inter area power exchanges.

One of the network conditions which makes the AGC control problem challeng-

ing is that the electrical network is constantly changing, loads are connected and

disconnected at will, the size and complexity of the national grid is continuously

increasing thereby changing the dynamic behavior of the electrical network over

time. Therefore, from an AGC perspective these conditions place strict perfor-

mance demands upon the AGC controller to yield good controller robustness in

the presence of unknown and unmodeled dynamics.

In this regard, conventional PI controller strategies as applied to the AGC con-

trol problem has been predominately implemented within modern power utilities

1
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today and have found widespread industrial success. However, as the network

grows in size and complexity, routine controller retuning is often required. This

ensures that the control performance is maintained within the stated control ob-

jectives and it also guarantees the integrity of the electrical grid.

Therefore the premise of this work is to show that network frequency control

performance can be improved by the application of more advanced controller de-

sign techniques, with attributes which inherently consider unknown and unmod-

eled dynamics. Furthermore, advances in hardware technology and soft comput-

ing techniques has made it possible for the application of more advanced control

design methodologies to be implemented for use within AGC. In particular, the

proposed AGC controller is based on the principles of Genetic - Fuzzy Rule Based

Systems (GFRBS).

Characteristically GFRBS compensates for imprecision and vagueness where

there is limited knowledge of the process under control and it provides for a mech-

anism by which systems can learn and adapt its inherent control characteristics

with the explicit objective of improving on closed loop performance.

1.1 Background

The Automatic Generation Control problem of large Interconnected Power Plants

have a long history and date back to the inception of power systems, where the

control of frequency have been achieved through mechanical means such as the

�ywheel governor of the synchronous machine (Kumar and Kothari, 2005).

Although the �ywheel governor has been proven to be a very practical means

of regulating speed, it su�ers from its inability to regulate frequency after a

disturbance without supplementary control action. This is also true of modern
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digital governing systems where supplementary control action is required for good

disturbance rejection properties following a frequency incident. This has lead to

a �eld of study known as Automatic Generation Control, which emphatically

deals with Frequency Control and power regulation on electrical networks and

the control of their respective generating units.

Traditionally, power utilities have been structured around Control Areas, where

each control area is responsible for the regulation of frequency within it's own

area, and also to maintain Tie-Line power �ows within prescribed speci�cations.

Because each Control Area operates as an independent business unit, there exists

an economic objective within AGC control and thus strict regulation of generat-

ing units are required to obtain this objective. It is also noted that in order to

meet this objective, a compromise between strict and tight regulation and long

term equipment life cycle management needs to be achieved. This function is

typically granted to the judgment of the power utility.

In order to meet this objective within a changing power industry, and as net-

work complexity grows, new control methods and new techniques for frequency

regulation are required to maintain the integrity of supply and to ensure supply

quality, reliability and security amidst an unknown dynamic system.

It is for this reason that extensive AGC research is needed, to validate control

techniques, to analyze system behavior within a changing power system environ-

ment, and to study the impact of alternative forms of energy such as renewable

energy on AGC performance, which has fast become a topic of note.

In this research, we focus speci�cally on AGC controller design, to de�ne a

control system to meet the objective, of a robust AGC design via GA-Fuzzy and

soft computing techniques. It is shown that this will contribute to the plight of

AGC controller design rationale, to meet the challenges of a world in an energy
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crisis and to contribute to the body of knowledge at large.

1.2 Motivation for GA-Fuzzy Controller Design

Techniques

The design and optimization of feedback controllers consist of the parametric

selection of control variables to enhance the performance of the closed loop control

system. By so doing, the inherent characteristics of the closed loop control system

are manipulated in favor of the desired performance objectives. Therefore, with

this in mind, classical control theory describes a plethora of design tools and

methods speci�cally tailored for the purpose of controller design, Figure 1.1.

..

Feedback

.

Controller

.

K(s)

..

Controlled

.

Plant

.

G(s)

.

Feedback

.

F(s)

.

Output

.

Y(s)

.

Reference
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Figure 1.1: A Conventional Feedback Control Loop

This process can be broadly described by two fundamental procedures for con-

troller design. Firstly, controller selection in terms of structure and speci�cation

and secondly controller optimization to achieve the stated speci�cation criteria.

The former process is concerned with the merits of controller design, its structure

and its interactions to best achieve the control objective. The latter process of

controller optimization tends to be an acquired skill, requiring careful analysis,

assessment of performance and controller redesign.

The next question is, how far should we go in the design analysis to obtain

optimal or near optimal control? This is a frequently asked question within
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control system design circles, and with no all round best application, but the

designed solution is speci�cally dedicated to the problem at hand (Cordón et al.,

1996; Tavakoli et al., 2007). Therefore, we would use a performance measure

either intuitively in manual design to indicate the success with which the designed

controller adheres to the speci�ed control objectives.

This in a Soft Computing context is known as a Performance Index, or Fitness

Function within an Evolutionary Computational context (De Jong, 1988). In

Genetic Fuzzy control systems, one of the main functions in its application is

the selection of an appropriate performance measure and the translation of the

control problem into an encoded representation for Genetic application. This in

some cases may be a non-trivial function, but it has to su�ciently encapsulate

all possible performance regimes.

When all these aspects are put together, a mechanism exists for automatic

controller design by Computational Intelligence methods. This is especially ad-

vantageous in instances where there are limited information, unknown or unmod-

eled system dynamics and also the lack of a complete process model. In a similar

manner to cognitive design of control systems, Computational Intelligence meth-

ods such as GA-Fuzzy design applies heuristic techniques for design, emulating

human intelligence.

One added advantage of using GA-Fuzzy approaches to design is that stability

of the control systems are inherently considered by the selection of the �tness

function, when appropriately chosen. Although, a speci�c stability criterion can

be incorporated into the �tness function, this would inherently penalize weaker

solutions and encourage stronger individuals.

It is with this in mind that we explore GA-Fuzzy techniques of AGC controller

design, with the expectation that plausible control of the network can be achieved
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through its application.

1.3 Conventional AGC Control

The methods for designing Automatic Generation Controller for large intercon-

nected power systems have traditionally followed the Proportional Integral (PI)

and Proportional, Integral and Derivative (PID) control law strategies.

However, these controllers do not perform adequately in the presence of un-

certainty and su�ers from poor transient performance in the presence of non -

linearity. It is because of this inherent weakness in conventional methods that

GA - Fuzzy controller design is explored as an AGC solution.

1.4 Summary of Contributions

This section brie�y highlights certain contributions made to the international

literary community of papers accepted for publication.

1.4.1 Application of GA-Fuzzy Controller Design to Automatic

Generation Control

Portions of Chapters 1, 2, 4, 5, 6 and 7 have appeared in the following paper:

Application of GA-Fuzzy Controller Design to Automatic Generation

Control, Craig D. Boesack, Tshilidzi Marwala and Fulufhelo V. Nelwa-

mondo, Third International Workshop On Advanced Computational

Intelligence (IWACI2010).
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1.4.2 A GA-Fuzzy Automatic Generation Controller for Interconnected

Power Systems

Large portions of Chapters 2, 6 and 7 have appeared in the following paper:

�A GA-Fuzzy Automatic Generation Controller for Interconnected

Power Systems�, Craig D. Boesack, Tshilidzi Marwala and Fulufh-

elo V. Nelwamondo, Fourth International Workshop On Advanced

Computational Intelligence (IWACI2011).

1.4.3 On the application of Bezier Surfaces for GA - Fuzzy controller

design for use in Automatic Generation Control

Large portions of Chapters 2, 6 and 7 have appeared in the following paper:

�On the application of Bezier Surfaces for GA - Fuzzy controller design

for use in Automatic Generation Control�, Craig D. Boesack, Tshilidzi

Marwala and Fulufhelo V. Nelwamondo, 2nd International Conference

on Advances in Energy Engineering (ICAEE2011).

1.4.4 Dynamic governor model development for grid code compliance in

South Africa

Portions of Chapter 3 is found in the following paper:

�Dynamic governor model development for grid code compliance in

South Africa�, Graeme Chown, Craig Lucas, Mike Coker and Rahul

Desai - PPA Energy, Jean vd Merwe and Christelle - MTech, Bunty

Kiremire, Craig Boesack, Preshen Moodley and Albert Smit - Eskom.
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To be submitted to Energize 2012.

1.5 The Taxonomy of the Thesis

This section discusses the taxonomy of the thesis and provides a description of the

content of each section, its peculiar attributes and its main points of discussion.
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Figure 1.2: Flow chart of the structure of the thesis
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Chapter 1, Introduction

The Introduction provides an overview of the thesis by describing the relevant

background of this work. It focuses on giving a general introduction to Automatic

Generation Control, it expounds on a few limitations within existing structures

of control and proposes the application of GA-Fuzzy Rule Based System design

as a plausible AGC controller to meet stated multi-objective criteria.

It continues by summarizing literary contributions of this work, and concludes

be describing the taxonomy of the thesis.

Chapter 2, Literature Review

In this chapter a review of current literature is performed. It presents a foundation

for the rest of the thesis and gives a detailed overview of Automatic Generation

Control and associated modeling of interconnected power systems. It starts by

giving and exposition of Tie-Line Bias control and how it is applied to the AGC

control problem of modern power utilities.

Further, it reviews AGC controller design approaches, culminating in discus-

sion on the modeling of interconnected power plants.

Chapter 3, Power Plant Modeling and Control

Chapter 3 addresses aspects of power plant modeling and control, especially from

a model parameter estimation perspective, highlighting techniques for obtain-

ing power plant mechanical characteristics through dedicated power plant tests.

This section is aimed at providing a comprehensive understanding of power plant

control, its processes and how the behavior of both boiler and turbine control

systems play a role in appreciating its in�uence on network frequency incidents
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and analysis.

This chapter also illustrates that fairly accurate results for turbine and boiler

systems can be obtained from experimental testing of power plants. In particular

it illustrates that the boiler plant and its control system play a signi�cant role in

frequency response dynamics of interconnected power systems, for e�ective load

disturbance rejection properties and sustained responses.

Chapter 4, Genetic Algorithms and Its Applications

The chapter on Genetic Algorithms and Its Applications present an introduction

to Heuristic search and expounds on the rudiments of Genetic Algorithms. It

establishes that GA's are good global search methods, which can be accurately

applied to many industrial optimization and learning problems.

It further reviews the fact that GA's are rather sensitive to �tness function

selection and care should be taken in its appropriate selection for the problem at

hand. This chapter forms the foundation of how the amalgamation of GA's and

Fuzzy systems can be combined to produce GA-Fuzzy Rule Base Systems.

Chapter 5, Fuzzy Logic Control

This chapter is a fundamental review of Fuzzy Logic Control Systems and Rule

Base Systems. Its particular application in GA-Fuzzy design is to establish the

tunable parameters, control structure and rule base mechanisms for heuristic

learning.

In addition, this chapter shows that FLC design is intuitive, however it could

be a challenging task to design an optimal FLC controller when limited knowledge

is available.
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Chapter 6, Genetic Fuzzy Rule Based Systems

This section combines Chapters 4 and 5 to form a discussion on Genetic Fuzzy

Rule Based Systems. In particular it studies various approaches to Genetic Fuzzy

Design. In particular, mention is made of the Michigan and Pittsburgh ap-

proaches to Genetic Fuzzy Rule Base design (GFRBS).

It establishes that the two GFRBS's methods are fundamentally di�erent in

it encoding of the chromosome, and on the application of the GA population.

In the Michigan approach, the entire population represents a prospective solu-

tion whereas in the Pittsburgh approach, each chromosome represents an entire

solution to the problem.

It concludes by stating that the Michigan approach is best suited for online

adaptation and learning, and the Pittsburgh for o�ine approaches, each with

their peculiar attributes for control.

Chapter 7, On the Design and Analysis of a Genetic Fuzzy AGC

Controller

In chapter 7 AGC controllers are designed and weighed upon how well they

meet the stated performance measures. It illustrates GA-Fuzzy genetic tuning

of the Knowledge Bases and Rule Bases and contrast AGC performance with

conventional design approaches.

Key contributions illustrate that the encoding of the search space parame-

ters plays an important role in �nal controller performance. It also shows that

favourable characteristics are obtained of the �nal GA-Fuzzy controller.

It further continues by discussing the performance of the GA, and that under

certain circumstances dynamic GA parameter updates are required to improve
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algorithm performance and convergence properties.

Chapter 8, Conclusions and Future Work

In this section a conclusion is presented and a few recommendations are made.

It also discusses future work and highlights potential improvements in the GA -

Fuzzy design methodology. It is concluded that evolutionary methods for con-

troller design is a plausible method of learning and adapting controller behavior

to meet the demands and objectives of the stated design problem, provided that

suitable chromosome representation is made.

Chapter A, Previously Published Work

This chapter details published work and the contribution made to the body of

engineering knowledge. Large portions of the chapters contained within this thesis

have formed the foundations of the published work.

The �rst paper provides a very general introduction to the concepts of Ge-

netic - Fuzzy Control and its application to the Automatic Generation Control

problem.

The second paper is an extension of the �rst highlighting additional aspects of

chromosome encoding and its in�uence on the evolved AGC controller.

The third paper looks at how Bezier Surfaces can be used an a mechanism by

which encoding can be realized and shows that any appropriate encoding method

of the problem search space can be used for GA - Fuzzy design.

Lastly, the fourth paper presents topics of power plant modeling and experi-

ences.
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1.6 Summary of Chapter 1

The Introduction presented the motivation and overview of the thesis. Its chief

aim is to introduce GA-Fuzzy AGC control as a viable approach to control system

design, especially where system information is uncertain. It also highlights the

literary contributions of the thesis and its value added.

The next chapter (Literature Review) presents a detailed review of current

techniques used within AGC controller design.



Chapter 2

Literature Review

This literature review discusses the importance of Frequency Control (FC) and

the function of Automatic Generation Control (AGC) within large Interconnected

Power Systems (IPS). In addition, it establishes the importance of dynamic fre-

quency control and its role within the control of active power by maintaining a

balance between load demand and generated power.

It is paramount that strict control of the network frequency is maintained amidst

system disturbances and that the frequency is returned to its nominal value within

certain boundary conditions. The manner by which this function is achieved is

through Automatic Generation Control (AGC), also commonly known as Load

Frequency Control (LFC) .

2.1 Frequency Control of Interconnected Power Systems

Frequency Control of large Interconnected Power Systems form an important

function for modern power utilities and thus the quality of frequency forms a

14
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basic performance measure. In order to achieve satisfactory FC performance,

closed loop control of all power generators forming part of AGC is warranted,

but not only to maintain performance, FC ensures that synchronous machines

operate e�ciently within operational boundaries.

In addition, frequency also indicates the health of the electrical network in

terms of over generation and under generation. Any excess of frequency above

its nominal value would indicate a surplus of energy and likewise any de�ciency

of frequency below is nominal value would indicate a de�cit of energy. Therefore,

to minimize frequency deviations, AGC control is needed.

However, at �rst during a frequency incident, mandatory turbine governor

responses (Primary Frequency Control) take e�ect and thereafter, the integral

component of AGC (or Secondary Frequency Control) ramps each generating

unit according to the magnitude of the frequency deviation. This is graphically

illustrated in Figure 2.1 below.
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Figure 2.1: Illustration of frequency response due to load disturbance of 0.01 p.u.
MW and mandatory governor response and AGC action.
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As seen from Figure 2.1 AGC provides an e�ective mechanism for regulating

total power generation in order to minimize the system frequency deviation△f(t).

In addition, AGC also regulates the total Tie - Line
N∑
i=1

∆PTiei(t) power �ows. In

practice, AGC sends raise or lower commands to each generating unit for the

control of real power.

The dynamic behavior of large interconnected power systems is dependent

upon system disturbances, uncertainties due to loading requirements and upon

the need to supply electricity of good quality in terms frequency control (Kumar

and Kothari, 2005).

Therefore, within an interconnected power system, the network frequency is an

important indication of the power mismatch between energy demand and supply.

This inherently places strict performance demands upon the AGC controller, not

only to maintain good disturbance rejection properties, but also to be robust in

terms of controller design and also to exhibit good regulatory performance (Tan

and Xu, 2009).

2.1.1 Impact of Frequency on Synchronous Machines and Generators

This section highlights the need for FC and the impact of frequency variations on

synchronous machines and generating units. A permanent deviation in frequency

has a direct in�uence on the operation of the power system. It not only a�ects

the quality of control on the frequency but it also in�uences the performance and

e�ciency of synchronous machines.

Operating synchronous machines beyond its frequency and voltage boundaries

shorten the life of the equipment and can lead to equipment failure. For this rea-

son most equipment manufactures of synchronous machines design equipment,



2.1. Frequency Control of Interconnected Power Systems 17

including both motors and generators, to operate within certain boundary con-

ditions. Exceeding these boundary conditions would result in thermal stress to

the electrical windings, overheating of windings and consequential failure of the

synchronous machine.

According to the International Standard IEC 60034-1, rotating electrical ma-

chines should operate at its nominal value (see Figure 2.2, rating point) and should

allow for continuous operation in Zone A. Exceeding both frequency and voltage

limits (Zone B) is not recommended, however the synchronous machine should

be able operate within this area for a limited period of time. This inadvertently

places strict frequency and voltage demands upon the electrical grid.

Figure 2.2: Illustration of the Voltage and Frequency Limits of Synchronous Ma-
chines (source, IEC 60034-1 Eleventh Edition 2004-04)

In addition to a�ecting synchronous machines and generators, frequency vari-

ation on the electrical grid could also have a substantial impact on steam tur-
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bine blades. Operating the frequency outside its boundary conditions could lead

to turbine blade failures, increased blade resonance, and causing fatigue of the

blades.

In addition, blades could also be susceptible to resonance near the operational

speed of the turbine such as when system run-up and shut-down procedures are

initiated. This is also true in situations of low and high grid frequency. Thus

it is critical to operate the grid frequency fairly tightly to minimize such e�ects.

In summary the operational characteristics of the grid should enable the turbo-

generator to function e�ectively within its performance pro�le.

2.1.2 Impact of Frequency Variations on System Load

Electrical load can either be resistive, capacitive or inductive. Pure resistive loads

are insensitive to frequency variations, while capacitive and inductive loads are

frequency dependent. Within industry a large amount of inductive loads are

synchronous machines fed directly from the electrical grid. In certain instances

use is made of Variable Speed Drives (VSD) which can tolerate a certain amount of

frequency variation, however, if the frequency deviation is extreme, deteriorating

performance and e�ciency of the synchronous machine would result. Table 2.1

highlights the implications of frequency variations on system load.

2.1.3 Impact on Time Correction

Time Error Correction (TEC) forms one of the functions of the Automatic Gen-

eration Controller. During the operation of AGC, there are periods of time when

there is either over or under generation. This tends to cause the average frequency
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Table 2.1: The E�ects of Frequency Variations on Di�erent Types of Loads

Load Type Examples
E�ects of
Frequency
Variations

Discussion

Resistive
Loads

Heaters, Lamps
Frequency
insensitive.

Although resistive loads are
insensitive to frequency
variations, a large load
disturbance results in a
proportionally equivalent
frequency deviations.

Inductive
Loads

Generating Sets,
Motors,

Transformers

Loss of
perfor-

mance and
overheat-

ing

In generating sets, over
�uxing is a condition which
is aggravated by system

frequency variations, which
could have detrimental

e�ects on the synchronous
machine. In all cases
overheating due to

frequency a�ects operates
the machines close to their
respective physical limits.

Capacitive
Loads

Capacitor Banks
Loss of
perfor-
mance

Capacitor banks play a
vital role in the control of
reactive power on the

electrical grid and as such
frequency variations would

negatively impact on
reactive power control.

to either be high or low and consequently leading to a time error.

The time error on average needs to be corrected over time. If the time error is

positive it indicates that in the past there has been over generation and similarly,

when the time error is negative it indicates that there has been a period of time

in the past when the system was under generating.

In order to correct this, TEC compensates by adjusting the Area Control Error

(ACE) over time in such a manner as to bring the time error to zero. This TEC

controller is a slow acting controller.
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The network frequency of interconnected power systems is a primary indication

of the health of the electrical grid. It's not only a measure of network stability, but

also provides a mechanism by which the generating supply and demand energy

balance is assessed. An increase in frequency indicates an energy surplus while

a decrease in frequency is indicative of under generation. Therefore, control of

network frequency by means of increasing or decreasing generation is known as

Automatic Generation Control (AGC).

2.2 Automatic Generation Control

Conventional Proportional and Integral (PI) Controllers as applied to Automatic

Generation Control (AGC) have been studied extensively as contained within the

literature and have been successfully applied to many large scale interconnected

power systems (Kumar and Kothari, 2005; Bevrani and Hiyama, 2007).

In this section, the design of Automatic Generation Controllers are studied

and evaluated, in particular the control methodology employed is that of Genetic

- Fuzzy Control as contained within this research. The reliability and availability

of large interconnected power systems are crucial to national infrastructure, both

in terms of meeting quality of supply demands and on ensuring that the load

demand balance is maintained at all times.

Especially when considering that quality of electrical supply, which is viewed

primarily by the stability of system frequency and by maintaining electrical power,

it is paramount, that power utilities achieve good control of their generating

units. Although network stability is also viewed from a voltage perspective,

the relationship between network frequency and voltage is closely related. This

multi-objective control function is achieved by AGC, which forms a supervisory
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controller on all generating units contained within the power utility, and volt-

age control is achieved by the Automatic Voltage Regulator (AVR) (Kumar and

Kothari, 2005).

In this research, we take a deeper look into AGC and the application of Genetic

- Fuzzy Control system technology as a viable control strategy for large intercon-

nected power systems. The attraction of Genetic - Fuzzy Control technology for

this application stems from the fact that Genetic based adaptation and robust-

ness properties, which is an inherent characteristic of this method, may prove

bene�cial for generation control purposes.

2.3 AGC Objectives

Modern power systems are typically controlled by a proportional and integral

type control law, which aims at minimizing the Area Control Error (ACE) of

the power system, thereby maintaining system frequency and tie - line power

exchanges. Recent research e�ort have focused on the application of fuzzy logic

control (Talaq and Al-Basri, 1999; Du and Li, 2006; Anower et al., 2006; Shayeghi

et al., 2009; Anand and Jeyakumar, 2009a), hybrid arti�cial neural network (Liu

and Zhang, 2009; Panda et al., 2009a,b) control strategies for the application of

AGC, in which, improvements in control strategy and control system performance

is reported.

Therefore, the present study focuses on applying GA-Fuzzy controller design

techniques as applied to modern AGC of large interconnected power systems.

The main contribution of this work is to review current literature and to analyze

the performance of the designed controller by means of simulation.

In this section, a review of the current literature is performed. It focuses
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primarily on AGC and the application of Genetic - Fuzzy Controller design tech-

niques as contained within the literature. The primary research methodology

employed is that of answering the following questions which forms part of the key

design objectives for the design rationale.

• What is AGC and why is it an important function for large interconnected

power systems?

• What are the key associated problems with AGC as found within industry?

• What are the design objectives for AGC?

• In terms of controller design, it is proposed to apply Genetic - Fuzzy con-

troller design methodologies as a proposed solution to the AGC problem.

• Fundamental questions are as follows.

� How are Genetic - Fuzzy controllers designed and what are the key

design considerations?

� Since Genetic Algorithms are based on random selection and proba-

bilistic search methods, how is the stability of the system guaranteed

especially when Genetic - Fuzzy controllers are applied?

� How does Genetic Fuzzy controllers compare with conventional con-

troller techniques in terms of performance and robustness, what is its

advantages and limitations when applied to AGC?

These questions forms the basis of the literature review section and is aimed at

establishing the required theoretical and practical knowledge for applying Genetic

- Fuzzy controllers to AGC. Therefore, the discussion begins by describing AGC,

followed by an account of fuzzy logic controllers and the operation of Genetic
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Algorithms.

2.3.1 AGC and Tie-Line Bias Control

Conventional approaches to the AGC control problem have been based on Tie-

Line Bias control, where a proportional and integral type control strategy is em-

ployed (Skaar and Nilssen, 2004; Alrifai and Zribi, 2005; Shayeghi et al., 2009).

Since during normal electrical load variations, AGC provides a convenient means

by which frequency deviations are returned to nominal parameters. This main-

tains frequency deviations and tie line power exchanges at zero steady state error

values.

However, Tie-Line Bias control does not lead to optimal closed loop control

performance, which tend to be more oscillatory in nature, especially when consid-

ering modeling uncertainties, unknown non-linear plant characteristics and the

complex behavioral interactions of large interconnected power systems (Ha, 2000;

Venkat et al., 2008) and inter area oscillating modes.

For this reason, much research e�ect have been focused on the development of

AGC controller design methodologies for good robustness performance objectives

as well as maintaining good load disturbance rejection properties (Bevrani et al.,

2004; Shayeghi and Shayanfar, 2005; Bevrani and Hiyama, 2007; Shayeghi et al.,

2007; Taher et al., 2008; Venkata Prasanth and Jayaram Kumar, 2008; Khod-

abakhshian and Edrisi, 2008; Taher and Hematti, 2008; Tan and Xu, 2009), to

produce robust AGC controllers.

Contained within the literature, various AGC controller design methodologies

have been proposed in response to unknown process dynamics, with improvements

in performance being cited when compared to established AGC techniques. These



2.3. AGC Objectives 24

can be summarized as follows. Conventional PID approaches are considered in

(Malik and Kumar, 1988; Khodabakhshian and Edrisi, 2008; Sinha et al., 2008;

Tan, 2009), where a new design approach to PID tuning is detailed based on

maximum peak resonance speci�cation (MPRS), citing improvements in control

system performance and improved robustness properties (Tan, 2009). MPRS is

a frequency domain loop shaping controller design method.

In addition to conventional I, PI and PID controller design strategies (Nanda

et al., 2006), the application of optimal control (Yuksel et al., 2008), variable

structure control, model predictive control (Venkat et al., 2008) and the applica-

tion of linear matrix inequalities (Rerkpreedapong and Hasanovic, 2003; Bevrani

et al., 2004; Raj and Raja, 2009) to the AGC control problem of interconnected

power systems have found widespread research interest and application (Shayeghi

and Ali, 2004; Shayeghi and Shayanfar, 2005; Shayeghi et al., 2007, 2009).

This is particularly motivated by the fact that the aforementioned controller

design strategies are inherently robust to model uncertainty, and when applied

to AGC yield desirable closed loop characteristics. This would include robust-

ness against network growth and complexity, unknown non-linear dynamics and

complicated network interactions.

However, the former controller design techniques are model dependent and may

prove to be a challenge to obtain especially when dynamics are not well known

nor accurately modeled or when system identi�cation is not readily available,

limiting the performance of the controller.

This inadvertently led to the application of more intelligent design methods,

including fuzzy logic control (Anand and Jeyakumar, 2008; Cam, 2007), fuzzy

gain scheduling (Talaq and Al-Basri, 1999; Jianhong et al., 2002; Juang and Lu,

2005; Anower et al., 2006), arti�cial neural networks (Shayeghi and Ali, 2004)
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and fuzzy neural networks (Liu and Zhang, 2009) to name but a few. These

techniques are founded upon expert knowledge and human reasoning, taking into

account system unknowns from a linguistic perspective.

In view of this, one of the main aspects which makes intelligent control methods

such as fuzzy logic control (FLC) and arti�cial neural networks (ANN) a non-

trivial task is that of rationalization and neural network training. Fuzzy systems

depend upon expert knowledge, however, an expert may not always be available

(Castro and Camargo, 2004), making the fuzzy logic controller design and rule

base generation non trivial.

In addition, when considering multiple input and multiple output systems and

their respective interactions, large numbers of fuzzy rules are involved and the

parametrization of the membership functions including its scaling gains, FLC

design can become overwhelming. In the case of ANN, especially large networks,

training and optimization can become an issue. For this reason, it is proposed to

use genetic algorithms for the optimization of fuzzy controllers.

With application to control systems and power systems, genetic algorithms

have found universal application (Chang et al., 1996; Cordón et al., 1996; Wang

and Spronck, 2003; Dalci et al., 2004; Ghoshal, 2005; Du and Li, 2006). Their

heuristic search characteristics makes genetic algorithms suitable for �nding ap-

propriate solutions to complex control problems via optimization methods. In

this research, we apply genetic algorithms to the optimization of a fuzzy logic

controller, applying them to the Automatic Generation Control problem of inter-

connected power systems.

Automatic Generation Control (AGC) can be considered as a supervisory con-

trol strategy for large interconnected power systems, with the express aim to

regulate system frequency and tie-line interchange power (Kumar and Kothari,
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2005). This forms an important function within modern power utilities and forms

a primary business objective, especially when viewed from a power regulatory

perspective.

Interconnected power systems can be divided in sections known as control

areas which represents a coherent group of electrical Generating Units operating

under synchronized frequency conditions.

In each control area, the AGC controller strives to meet its scheduled demand

by regulating each Generating Unit up or down (controlled by raise or lower

pulses) according to its scheduled load demand. The load demand depends upon

the system frequency ∆f(t) and its relative power exchange deviations ∆PTie(t)

with its neighboring control areas (Rerkpreedapong and Hasanovic, 2003).

This is graphically illustrated in Figure 2.3.
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-ACEi

AGC -
∆PCi

Figure 2.3: Conventional Tie - Line Bias Control for Automatic Generation
Control

The dynamic behavior of large interconnected power systems is dependent

upon system disturbances, uncertainties due to loading requirements and upon

the need to supply electricity of good quality in terms frequency control (Kumar

and Kothari, 2005).

Therefore, within an interconnected power system, the network frequency is an

important indication of the power mismatch between energy demand and supply.
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This inherently places strict performance demands upon the AGC controller, not

only to maintain good disturbance rejection properties, but also to be robust in

terms of controller design and also to exhibit good regulatory performance (Tan

and Xu, 2009).

2.3.2 Generating Unit Governing and Control

By considering typical Generating Units which are controlled by turbine governing

systems upon load disturbances does not yield a zero steady state error for system

frequency. In fact, as the loading on the electrical network increases, the frequency

tends to decrease, due to the increased energy demand and vice versa (as the

loading decreases the frequency tends to increase)(Shayeghi et al., 2009). This

implies that there needs to be a continuous energy balance in terms electrical

demand and supply.

Therefore, due to governor action there is an immediate governing response to

frequency deviations, however, this does not return the system frequency to its

nominal value. This is known as primary frequency control. However, in order to

return the frequency to its nominal value, secondary frequency control is required

or AGC.

2.3.2.1 Conventional AGC Control

Conventional control approaches to solving the AGC problem has been based on

tie-line bias control (Kumar and Kothari, 2005) and by making use of the classical

PI controller strategy. In this approach, corrections due to frequency deviations

∆f are made via the area frequency response characteristic β. This is in turn

used to form the the Area Control Error (ACE) as described by the equation 2.1
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below, where ∆PTie represents the tie-line interchange power. The subscript i

denotes the ith control area within the interconnected power system.

The equation (2.1),

ACEi = ∆PTiei + βi ∗∆fi (2.1)

is the Area Control Error (ACE), where i is the ith control area with i ∈

(1 · · ·N) and N representative of the total number of control areas, ∆PTiei =

PTiei − PTie0 is the inadvertent Tie-Line power exchange deviation and ∆fi =

fi − f0 is the frequency deviation from its nominal value.

E�ectively the ACE manages the power frequency balance in order to maintain

system frequency by manipulating system power. The Frequency Bias factor

−10B depends upon the system capacity and size of the generating electrical

network, and is synonymous to the area frequency response characteristic β.

In conventional Tie-Line Bias Control it is recommended that −10B = β

(Bakken and Grande, 1998; Egido et al., 2004; Kumar and Kothari, 2005), in

that it would tend to reject internal area disturbances more e�ectively. This is

an important criteria for system stability as well.

The term ∆PCi
represents the power demand required by all Generating Units

participating within AGC control. This signal is proportioned accordingly by

means of the capabilities of the Units in terms of power generation limits and are

proportioned by means of participation factors.
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2.3.2.2 AGC Controller Design Approaches

Contained within the literature there are many controller design methodologies

which have been applied to the Automatic Generation Control problem (Kumar

and Kothari, 2005). The studies presented have focused on classical approaches

such as the PI controller design methods to the application of more robust con-

troller design theories, such as H∞ Optimal Control. The present study will

therefore highlight a few of these design methods and will expound on their ap-

plication to AGC.

The conventional AGC controller is based on the classical Proportional and

Integral (PI) controller structure. This can be written as follows, where KP and

KI represent the Proportional and Integral controller gains respectively (Kumar

and Kothari, 2005; Khodabakhshian and Edrisi, 2008; Tan, 2009).

∆PCi
= KP ∗ ACEi +KI ∗

ˆ
ACEidt (2.2)

Typically, the controller parameters (KP and KI) are designed conservatively

to meet the stated performance objectives in terms of robustness and system

stability. This is of importance to the interconnected power system since it ensures

good quality of frequency and power supply to the grid.

More recently, fuzzy logic controller design techniques have been applied (Du

and Li, 2006; Cam, 2007; Anand and Jeyakumar, 2008, 2009a,b) and various

hybrid approaches (Ferrari-Trecate et al., 2004; Khan and Iravani, 2007; Panda

et al., 2009b,a). These techniques provides superior performance as stated within

the literature in terms of robust performance, particularly because the nature of

these techniques considers design uncertainty.
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Moreover, robust controller design techniques have also been applied to the

AGC control problem. These include Variable Structure Control (Ha, 2000; Al-

Hamouz et al., 2005, 2007; Huddar and Kulkarni, 2008), Genetic Fuzzy Gain

Scheduling (Talaq and Al-Basri, 1999; Jianhong et al., 2002; Juang and Lu, 2005;

Anower et al., 2006) , techniques based on evolutionary optimization and hybrid

approaches (Grantner and Fodor, 2002; Ting and Rao, 2006; Xianbo and Jingqi,

2007; Kim et al., 2008a; Panda et al., 2009b,a).

Apart from the conventional controller design criteria (such as robust perfor-

mance and stability), the AGC controller design aims at maintaining adequate

load rejection regulation, as well as minimizing the Generating Units movement

to the control demand. This minimizes production costs, by optimally control-

ling the unit for regulating performance . In addition, the importance of this to

power utilities is that it guarantees substantial production cost savings, reducing

routine maintenance due to wear and tear (caused by Unit cycling) but more

importantly it aims at meeting the business objectives of the power utility.

In general, frequency control of power systems are governed by what is known

as primary speed (or frequency) governing, secondary frequency control (or Auto-

matic Generation Control) and should the frequency continue to deviate beyond

operational limits, tertiary control (or load shedding) becomes e�ective. Each of

these control mechanisms has a stabilizing e�ect on the frequency.

2.3.3 Primary Governing Of Turbo-Generators

Turbine Governing control systems forms a critical component for modern rotat-

ing machinery, such as turbo-generating systems. This is necessary to perform

fast turbine speed regulation and once the turbo-generator is synchronized to the

national electrical grid, it provides a means by which the loading on the generator
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is varied. Opening or closing of the main steam admission control valves to the

turbine (water gate valves in the case of a hydro turbine), leads to an increase

in generated energy. However, it should be noted that primary governing on its

own does not lead to zero steady state error.

2.3.4 Automatic Generation Control

Electrical power systems ful�lls a vital role within society today, amid national

growth in electrical demand and the need for reliable electrical networks have

placed strict demands upon Power Utilities to provide sustainable energy as well

as to adhere to the performance standards of the National Grid.

In order to achieve this, Power Utilities have implemented various controlling

strategies aimed at providing network stability, assurance in terms of meeting

energy demand versus energy supply and on enabling that systems are in place

for the recovery of system frequency upon any external network disturbances.

This regulatory process is known as Automatic Generation Control.

Therefore, to drive the network frequency to zero steady state error, AGC is

employed. It forms a load reference input to the turbine governor control system

of generating units. Its primary objectives are to (Bakken and Grande, 1998;

Egido et al., 2004; Shayeghi et al., 2009),

• Maintain frequency deviations ∆f(t) at zero in the presence of electrical

load disturbances.

• Maintain Tie-Line power ∆PTie(t) exchange deviations at zero with all
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neighboring control areas contracted for AGC.

• Maintain the Area Control Error (ACE) ACE(t) at zero. Both the fre-

quency and the ACE can be considered as a health measure for the inter-

connected power system.

2.4 Modeling Of Interconnected Power Systems

Modeling of systems and subsystems are fundamental to control system design

and analysis (Changliang et al., 2001; Cordero-Cruz et al., 2002; Egido et al.,

2004; Ferrari-Trecate et al., 2004; Barbieri and Lastra, 2007). This is particularly

true in power plant design for controller development, where a good knowledge

of the process is required for e�ective control operations.

This section therefore introduces modeling of interconnected power systems,

especially from a dynamic frequency response perspective, and describes the im-

portance of understanding the dynamic behavior of power systems, its dynamic

interactions and paves the way for e�ective control system design.

The presence of a good validated model enables system analysts, electrical

network operators and utility engineers to perform e�ective network planning,

fault analysis and system diagnostic exercises (Egido et al., 2004). This forms

an important function for Systems Operations and National Control Dispatch,

where the planning for e�cient energy regulation is performed on a day by day

basis. In addition, e�ective model development ensures that su�cient conditions

are met to ensure the robustness of the controller design.

However, unit modeling can be a daunting task, since modern power plants are
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large complex interacting systems (Peet and Leung, 1995; Flynn and O'Malley,

1999; Hain et al., 2000). The only way to compensate for this is to divide the

modeling task into manageable sections representing the major system dynamics

of the power plant.

This is well achieved within the TGOV series of power plant models, for single

and multi-area interconnected networks (see Appendix B), which is a simpli�ed

turbine governor model and can also model the e�ects of boiler dynamics and

associated control systems for use within dynamic power plant frequency studies

(Hain et al., 2000; Barbieri and Lastra, 2007; Aºubalis et al., 2009).

Developed as part of an international working group, the TGOV model is a

representative unit model used to model various unit control modes of opera-

tion when enabled by appropriate parameter selection (Hannett and Khan, 1993;

Flynn and O'Malley, 1999; Hain et al., 2000). However, �nding appropriate

parameters may prove to be a demanding task, since a large portion of these

parameters represents the dynamic physical behavior of the turbine and boiler

respectively.

2.4.1 Model Validation Tests

Model validation tests are aimed at establishing good input output correlations

of model response to test data characteristics. In this process, tests are based

on the normal mode of operation of the Generating Unit and coincide with daily

unit operational practices. Table 2.2 describes a selection of model validation

tests which can be performed on a generating unit.

As an example, where the unit is controlled in Coordinated Boiler follow Mode,

the model will be parametrized for this case, and tests will be aligned for this
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particular outcome. Therefore, based on appropriate model parameter selection,

certain key operational features can be modeled within the TGOV model.

Interconnected Power Systems (IPS) consist of a number of generating units

operating in synchronization, supplying electrical energy to various resistive, in-

ductive or capacitive loads connected to the electrical grid via transmission lines.

Invariably, any variation in loading has a direct impact on the frequency of the

electrical system. This places strict demands upon the properties of the AGC

controller to maintain frequency stability throughout a wide operating region,

given increasing electrical network size and complexity.

Table 2.2: Model Validation Test Procedures

# Test

Description

Comments

1 Gathering of

Steady State

Data

Gather steady state data from at least four (4) load conditions

over the normal operating range. This will guide in model steady

state behavior.

2 Ramp Tests Ramp the Unit (up and down) from minimum loading to maxi-

mum loading according to certi�ed ramp rates, allowing for steady

state conditions and su�cient settling times. Intermediate load

hold conditions may be applicable. Repeat at di�erent ramp rates.

3 Boiler Control

Parameters

Initial testing conditions include stable steady state conditions, at

a loading of about 90% of MCR. Place the boiler control to manual

and step the controller set-point, observe the pressure deviation.

4 Frequency

Response

Characteristics

Perform simulated frequency (∆f(t)) injection test. Observe re-

sponse within governor dead-band and outside the dead-band.

5 Governor Valve

Testing

Allow for small step changes in governor valve (gate) position.

This will guide in terms of governor response time constants.

6 Turbine Model

Tests

Can be calculated by means of heat balance data, and can also be

calculated based on dynamic turbine response data.

7 Load Rejection

Test

Full or partial load rejection, depending upon the capability of

the unit. This test guides in terms of the electrical behavior of

the unit, and also assists in providing more information in terms

of governor response.
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2.4.2 Governor Dead Band

In practice, governor Deadband (DB) forms part of the Turbine Governor and by

de�nition, DB is de�ned as the continuous magnitude change in turbine speed

for which there is no governor valve movement. In e�ect Deadband eliminates

governor movement over the dead-band range but could also contribute to low

frequency oscillation of the system (Anand and Jeyakumar, 2009a).

y(x, ẋ) = y0 +N1 ∗ x+
N2

ω0

∗ ẋ+ · · · (2.3)

In e�ect as well, DB operates about the operational frequency ω0. Equation 2.3

represents the Fourier Series approximation, with terms N1 and N2 representing

its respective coe�cients, higher order terms are typically neglected, y(x, ẋ) is

a describing function used to approximate nonlinearities (such as friction and

backlash).

Sine Wave
Scope

N2

−0.2/pi

N1

0.8

Derivative

du/dt
Add

Figure 2.4: Governor Deadband Model

From an AGC perspective, governor deadband in�uences the performance of

the system to a large extent. Inherently governor valve friction and backlash,

which are non-linear elements in�uencing control further contributes to deterio-

rating closed loop performance.
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Figure 2.5: Graphical Illustration of Governor Deadband with Response Limits

2.4.3 Governor Droop

The active agent in parallel control of Generating Units of interconnected power

systems is the Droop characteristic. Typically this parameter is set to 4% within

the South African Power Pool and is de�ned as the percentage frequency change

∆f(t) which will result in a 100% change in governor valve opening, and hence

Power (see illustration in Figure 2.6).
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Figure 2.6: Droop Characteristic of Interconnected Power Systems

In addition, Droop also enables Generating Units to share electrical load pro-

portional to their respective load sharing capabilities, for parallel operation on an

electrical grid. It is also noted that the application of Droop encourages the use of

Secondary Frequency Control, since governing systems are incapable of restoring

Frequency deviations after a load disturbance to zero steady state error, without

the application of a sustained and modulating Load Reference signal (Figure 2.7

illustrates the in�uence of Droop on the Governor).
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Figure 2.7: Illustration of Governor Droop Characteristic
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2.4.4 Generation Rate Constraints

Generation Rate Constraints (GRC) are imposed on real power systems, limiting

the rate of change of generation ( ˙∆Pg). GRC is dependent upon the mechanical

ramp limits (lower and upper limits) of generation and upon the physical proper-

ties of the unit, but also ensures that the unit responds within the con�nes of unit

operational margins. In this study, GRC of 0.1 p.u. per minute is considered,

as shown in equation (2.4), which is a typical GRC constraint for interconnected

power systems.

˙∆Pg 6 δ = 0.0017 p.u. MW/s (2.4)

Figure 2.8 illustrates the implementation and operation of GRC on a generating

unit, where rate limits in the form of upper and lower bounds ±δ are implemented

within the Turbine Controller.
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Figure 2.8: Illustration of Generation Rate Constraint

2.4.5 The Turbine Model

Parts of the turbine components can be represented as a vessel under pressure

(Figure 2.9). By means of a mass balance analysis and the laws of the conservation

of mass �ow, the rate of change of weight of steam contained within the vessel
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can be represent by equation 2.5....
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.

Volume of Vessel
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.

Rated Flow (Q0)

Figure 2.9: A Vessel Under Pressure

dW
dt

= V ∗ dρ
dt

= Qin −Qout

(2.5)

In equation 2.5, W is the weight of steam within the vessel (where mass is in

kg = V ∗ ρ), V is the volume of the vessel in m3 and ρ is the steam density in

kg/m3.

With the assumption that �ow out of the vessel is proportional to the pressure

contained within the vessel, equation 2.6 is a function of the rated vessel pressures

and �ow.

Qout =
Q0

P0
∗ P

=⇒ P = Qout∗P
Q0

(2.6)

Temperature within the vessel is assumed to be constant (Equation 2.7), where

the rate of density change within the vessel is given as Equation 2.7 for a given

temperature as obtained from thermodynamic steam tables.
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dρ

dt
=

dP

dt
∗ ∂ρ

∂P
(2.7)

Therefore, using equations 2.5, 2.6 and 2.7 the following composite relation is

obtained (2.8).

Qin −Qout = V ∗ dP
dt

∗ ∂ρ
∂P

= V ∗ ∂ρ
∂P

∗ P0

Q0
∗ dQout

dt

(2.8)

Let V ∗ P0

Q0
∗ ∂ρ

∂P
= Tvessel, which is the time constant of the vessel dependent

upon the physical properties of vessel and its rated pressure and rate of change

of density as a function of pressure change within the vessel. Equation 2.8 them

becomes,

Qin −Qout = Tvessel ∗
dQout

dt
(2.9)

Taking the Laplace transform of equation 2.9 yields equation 2.10, with s

being the Laplace s operator. It illustrates that for a vessel under pressure, it can

simply be represented by a �rst order Laplace model where the time constant is

dependent upon the physical properties of the vessel.

Qin −Qout = Tvessel ∗ s ∗Qout

=⇒ Qout

Qin
= 1

Tvessels+1

(2.10)

This can therefore be applied to turbine mechanical components such as the

steam chest and crossover pipework for the calculation of their respective time

constants (see Figure 2.10).
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2.4.5.1 Calculation of the Power Fractions

The steam turbine plays an important role in the process of power generation and

for dynamic frequency studies of generating units. It is therefore paramount that

accurate turbine models be developed for transient analysis and controller design.

Figure 2.10 illustrates a simple turbine model for a small tandem compound

turbine.

Admission steam enters the High Pressure (HP) turbine at rated temperature

and pressure in the steam chest, which is a vessel under pressure. Since the steam

chest is a steam vessel and contains steam volume, it has an associated steam time

constant which forms part of the turbine model. Its respective time constant is

denoted by TSC (or T4) and is a function of the physical dimensions of the steam

chest, it rated pressure and temperature parameters, which contributes to a small

delay from the time steam enters the steam chest to when mechanical power is

generated by the HP turbine, with power factor K1.

Similarly, as steam enters the crossover pipework an associated time constant

exists namely, TCO (or T5) and enters the LP turbine where mechanical Work is

performed with an associated power factor K3.
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Figure 2.10: A Typical Small Tandem Compound Turbine Model
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Contained within the literature, there are many methods of developing turbine

models, either through experimental testing or by means of Heat Balance analysis

and considering the physical structure of the machine. (Hannett and Khan, 1993;

Hain et al., 2000; Stefopoulos et al., 2005; Aºubalis et al., 2009). Table 2.3 shows

the unit conversion factors used to illustrate a calculated example of how turbine

model parameters can be approximated from heat balance data (Vahidi et al.,

2007).

Table 2.3: Table of Conversion Factors

Original Units Conversion Factors Metric Unit

Pressure (P ) ata 101.325 kPa
Enthalpy (H) kcal/Kg 4.186 kJ/kg

Temperature (T ) ◦C 1 ◦C
Mass Flow (Q) kg/h 2.78E − 04 kg/sec

Typical heat balance data for both the HP and LP turbines are listed in tables

2.4 (2.5) and 2.6 (2.7) for a typical 200MW tandem compound turbine. Using

these tables, an illustration is given of how equations 2.5 through to 2.10 are

applied to real turbine data for the calculation of the respective power fractions

and vessel time constants for turbine model parameter determination.

Table 2.4: Typical Heat Balance Data for 200MW HP Turbine (Original Units)

HP Turbine Data Pressure (ata) Enthalpy (kcal/kg) Mass Flow (kg/h) Temperature (◦C)

Inlet Conditions 106.50 828.00 731020.00 538.00
Extraction 1 26.20 743.10 37802.00 344.40
Extraction 2 16.00 716.20 44193.00 283.40
Extraction 3 8.00 682.80 42865.00 207.20
Extraction 4 3.00 641.70 55219.00 129.00
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Table 2.5: Converted Data To Metric Units of HP Turbine Heat Balance Data
(Metric Units)

HP Turbine Data Pressure (kPa) Enthalpy (kJ/kg) Mass Flow (kg/sec) Temperature (◦C)

Inlet Conditions 10791.11 3466.01 203.06 538.00
Extraction 1 2654.72 3110.62 10.50 344.40
Extraction 2 1621.20 2998.01 12.28 283.40
Extraction 3 810.60 2858.20 11.91 207.20
Extraction 4 303.98 2686.16 15.34 129.00

Figure 2.6 tabulates typical heat balance data for the LP turbine, based on

OEM design data.

Table 2.6: Typical Heat Balance Data for 200MW LP Turbine (Original Units)

LP Turbine Data Pressure (ata) Enthalpy (kcal/kg) Mass Flow (kg/h) Temperature (◦C)

Inlet Conditions 3.00 641.70 550941.00 130.00
Extraction 1 1.17 609.00 34261.00 93.45
Extraction 2 0.37 576.00 29522.00 63.08
Extraction 3 0.20 543.00 486758.00 35.00

Table 2.7: Converted Data To Metric Units of LP Turbine Heat Balance Data
(Metric Units)

LP Turbine Data Pressure (kPa) Enthalpy (kJ/kg) Mass Flow (kg/sec) Temperature (◦C)

Inlet Conditions 303.98 2686.16 153.04 130.00
Extraction 1 118.55 2549.27 9.52 93.45
Extraction 2 37.49 2411.14 8.20 63.08
Extraction 3 20.27 2273.00 135.21 35.00

From Table 2.5, the HP Turbine inlet mass �ow is Q = 203.06 kg/sec and the

change in Enthalpy ∆HK=1 = 3466.01 − 3110.62 = 355.39 kJ/Kg. Therefore

tabulated in Table 2.8 is the calculation of Work Done by each of the turbine

stages, from Inlet to Extraction 1 (K = 1), Extraction 1 to Extraction 2 (K =

2), Extraction 2 to Extraction 3 (K = 3) and Extraction 3 to Extraction 4

(K = 4), the change in Enthalpy across turbine stages and hence work done by

each stage can be calculated, by using equation W = (HIn − HOut) ∗ Qsectioned,

W = ∆HK=1 ∗Qsectioned, as illustrated by Table 2.8.
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Table 2.8: Calculation of HP Turbine Power Fractions

K Sectioned Vessel Mass Flow Change in Enthalpy Work Done

1 203.06 355.39 72166.17
2 192.56 112.60 21682.97
3 180.28 139.81 25206.04
4 168.38 172.04 28968.49

Total Work Done (WorkHP ) 148023.67 (kJ/sec)

Similarly, calculation of the LP turbine power fractions is given as tabulated

in Table 2.9 and follows a similar calculation process of energy mass balances and

where the conservation of mass is applicable for Work performed according to

the aforementioned calculation method.

Table 2.9: Calculation of LP Turbine Power Fractions

K Sectioned Vessel Mass Flow Change in Enthalpy Work Done

1 153.04 136.88 20948.34
2 143.52 138.14 19825.87
3 135.32 138.14 18693.06

Total Work Done (WorkLP ) 59467.27 (kJ/sec)

By de�nition the ratio (A1) of HP power to LP power is given by equation

2.11.

A1 =
WorkHP

WorkLP
(2.11)

Therefore the power fractions

K1 =
1

1 + A1

= 0.71 (2.12)

and

K3 = A1 ∗K1 = 0.29 (2.13)

. This illustrates that approximately 70% of the mechanical power of the turbine

is contributed by the HP turbine and approximately 30% of the total mechanical
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power is created by the LP turbine respectively. Now in boiler systems with a

reheater and turbine systems with an intermediate pressure turbine (IP), similar

discussions would be applicable.

2.4.5.2 Calculation of the Time Constants

From equation 2.8, V ∗ P0

Q0
∗ ∂ρ

∂P
= Tvessel which relates the physical properties of

the vessel to the time constant of the vessel. Let K = ∂ρ
∂P

=
1
v2

− 1
v1

P2−P1
, where v is the

speci�c volumes of the steam in the vessel at rated maximum pressure P2 and

rate minimum operating pressure P1 at average operating temperatures, P is in

Pa. P0 and Q0 are initial input conditions to the vessel, namely pressure and

mass �ow according to the heat balance data for the vessel under consideration.

Table 2.10 illustrates the calculation of the vessel time constants for both the

steam chest and the crossover pipework.

Table 2.10: Calculation of the Turbine Time Constants TSCor and TCO

Steam Chest Crossover

Operating Pressure Range Operating Pressure Range

P1 (kPa) 8000 P1 (kPa) 7.09275

P2 (kPa) 12000 P2 (kPa) 303.975

Taverage (
◦C) 538 Taverage (

◦C) 150

Speci�c Volume (from Steam Tables) Speci�c Volume (from Steam Tables)

v1 (m
3/kg) 0.044367286 v1 (m

3/kg) 27.51852372

v2 (m
3/kg) 0.0287243 v2 (m

3/kg) 0.625504453

KSC Constant KCO Constant

Ksc (s
2/m2) 3.06865E − 06 Kco (s

2/m2) 5.26259E − 06

Volume of the Steam Chest (VSC = π ∗ r2) Volume of the Steam Chest (VCO = π ∗ r2)
Height_average (m) 1.5 Height_average (m) 10.045

Radius_average (m) 0.125 Radius_average (m) 0.5

VSC (m3) 0.073631078 VCO (m3) 7.889324551

Time Constant (Tsc) Time Constant (Tco)

Tsc (s) 0.012007372 Tco (s) 0.082465993
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2.5 Summary of Chapter 2

Chapter 2 presented a Literature review on the importance of frequency control

and the role which Automatic Generation Control plays in power generation. It

also highlighted the objectives of AGC and certain aspects of modeling for large

interconnected power systems. This chapter also establishes the foundation for

the rest of the thesis.



Chapter 3

Power Plant Modeling and Control

The previous sections, namely sections 2.1 through to 2.4 have discussed the

importance of Automatic Generation Control and have formed the foundation

for understanding the importance of frequency control of large Interconnected

Power Systems.

The discussion which follows, highlights in detail the control system approaches

to AGC and forms a comprehensive analysis of AGC modeling, control laws and

strategies, especially from a power plant modeling, analysis and testing perspec-

tive.

It is therefore intended by this discussion to understand the dynamic behavior

of power systems, the response of both boiler and turbine controllers on the load

following ability of generating units and also its frequency response characteris-

tics.

47
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3.1 Power Plant Modeling and Control

Power plant modeling forms an important part of power system control and anal-

ysis. It not only gives an indication of power plant performance, but also provides

a mechanism through which system faults and electrical network disturbances are

analyzed. This is especially applicable for dynamic frequency response studies of

electrical power systems and their related interconnections.

Understanding network interactions and the relationship which frequency have

on the performance of the generating unit and to the power grid is a continual

�eld of study and forms an important monitoring criterion for power utilities. To

this end, power utilities and independent power producers function and operate

within the boundaries of the South African Grid Code (SAGC).

Therefore, in accordance with these ideals and in compliance to the Grid Code,

modeling of all generating units connected to the electrical power grid is required.

It is the intent of this section to provide a methodology of how modeling of power

plants can be performed as seen from a Grid Code perspective, detailing minimal

system modeling requirements and also a to describe the process of testing and

model parameter estimation.

3.2 The Need for System Modeling

Classical control theory provides the framework for the design and analysis of

closed loop power plant control systems for good regulatory behavior and for

good disturbance rejection properties. However, one of the more fundamental

requirements to these approaches is the development of a validated power plant

model for e�ective controller design and analysis.
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Therefore with reference to power utilities, the national power grid is depen-

dent upon dynamic control systems for the operation and control of power plants.

It is a requirement that these control systems be adequately optimized for good

regulatory and good disturbance rejection properties. In order to achieve pre-

de�ned controller properties, modeling of the process plant is required. Thus to

model and simulate the behavior of large interconnected power systems and to

provide for an e�ective framework for system frequency response studies, power

plant modeling forms an important component of power utility operation.

It is crucial that the models and parameters of these dynamic control systems

be as accurate as possible to ensure that simulation results are representative

of the real world power system behavior. Therefore, as a prerequisite to model

development, a series of tests needs to be performed on the generating unit in

order to validate the control system parameters and to adequately model the

plant within a given boundary of operation.

3.3 Boiler Dynamics and Control

The in�uence of boiler control and boiler dynamics on frequency control of power

systems have typically been neglected in AGC studies, however boiler dynamics

play a substantial role in the performance of closed loop AGC control systems.

The performance of frequency regulation on the national electrical grid depends

upon many variables. Random load variations in�uence the controllers ability to

adequately control the network frequency, while the performance of generating

units also share a large contingent of network performance responsibility.

This is clearly seen by the generating units' ability to follow the required MW

load demand and to satisfactorily minimize frequency deviation. In addition, it is
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required that performance be maintained for rejecting both internal and external

load disturbances. This is clearly seen by the performance of AGC and on its

ability to regulate frequency and to maintain Tie - Line power exchanges. In

particular, the time taken to respond to frequency deviations forms an important

performance criteria.

However, the speed of response of the generating unit depends upon many

variables, especially on the performance of the steam generator (Boiler). In turn

the boiler performance is strongly dependent upon the performance of the milling

plant. As pressure of the system decreases; the performance of AGC is conse-

quently a�ected. Therefore, this section brie�y highlights a few important points

in the analysis of AGC systems and the in�uence which boiler dynamics have on

frequency control.

This document describes certain fundamental modeling requirements for ap-

plication within Eskom power plants, and every generator connected to the power

grid. It is speci�cally tailored for application on coal �red generating units. The

model used for development and analysis is the TGOV05 power plant model,

with associated boiler control systems. The TGOV05 model is a simpli�ed unit

model, which makes use of the TGOV01 governing control system and also mod-

els boiler dynamics and control. Therefore the following sections of the model

form the scope of this document.

1. Turbine modeling, preference is given to compound tandem turbines.

2. Turbine controller modeling, the speed / governing controller and the gov-

erning valve controls.

3. Fuel dynamics and boiler storage modeling.
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4. Main steam pressure drop modeling.

5. Boiler controller.

6. Model parameter estimation and validation.

3.4 Modeling Methodology

There is an acquired skill in the optimization and tuning of boiler controls sys-

tems, which fundamentally stems from a thorough understanding of the process

and its interacting systems, but the knowledge and experience of the optimiza-

tion specialist have a strong bearing on the success of the optimization process.

Figure 3.1 illustrates the optimization process for model parameter estimation

which play an important role in identifying the open loop dynamic behavior of

the process.

Figure 3.1: Typical Optimization Flow for Model Parameter Estimation of a typ-
ical Generating Unit

In order to separate the process interactions, a number of dedicated open loop

tests are necessary to identify the inherent mechanical characteristics of the plant,
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its characteristic time constants and the open loop process gains (see Table 2.2).

As shown in Figure 3.1, the parameter estimation process is an iterative process

in which the model response to a set of input test procedures are compared

with actual plant response for the same set of input test procedures. Thus the

estimation of parameters can be classi�ed as a minimization problem.

By placing process controllers in open loop or manual control, the process

dynamical responses can be obtained through testing in the form of either ramp

or step tests. Each of these tests extracts certain dynamical behavior of the

process which enables the development of Laplace transfer function models based

upon �rst principles.

3.4.1 Turbine Model Parameter Estimation

In Chapter 2, section 2.4.5 a description of the turbine model is given. It focuses

primarily on understanding the operation of the turbine by means of heat balance

data and analysis. This section models the turbine purely based on experimental

data via turbine model parameter estimation, using the Non Linear Least Squares

(NLLS) technique as part of the Matlab / Simulink optimization toolbox.

Figure 3.2 illustrates the parameter estimation methodology for modeling of

the turbine. As can be seen, inputs to the turbine model is the governor valve

position (%) and the turbine inlet pressure (MPa). These two quantities are

multiplied to form the steam �ow entering the turbine. As the steam �ows, it

passes through the steam chest also known as the valve chest (with time constant

T4), the steam then passes through the HP turbine, assuming adiabatic steam

expansion, where Work is performed and this is illustrated by gain K1, which is

known as the HP turbine power factor.
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Similarly, for reheater based boilers, where the reheater is a vessel under pres-

sure (as described by section 2.4.5), steam �ows through with time constant T5,

where it emerges and passes through the IP turbine and performs Work, via

power factor K3. Therefore, likewise for gains Ki where i = 1 to 8 a description

of each parameter can be given. The crossover pipework is also a vessel under

pressure and contributes to steam volumes.

Figure 3.2: Methodology for Turbine Model Parameter Estimation, illustrating
the concept of step and ramp test procedures

Figure 3.3 illustrates the turbine response to a step change in governor valve

position. As the governor valve is throttled, steam �ow increases and performs

Work on both the HP and LP turbines to produce mechanical power. This

increase in steam �ow decreases the turbine inlet pressure accordingly, however,

the boiler controller returns the boiler pressure back to it nominal set-point. With

the increase in steam �ow, the mechanical power increases and allows for the

estimation of the turbine parameters via experimental data as shown in Figure

3.3 which show a good correlation between experimental data and simulated

responses.
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Figure 3.3: Turbine Power Response for 5% Governor Valve Step Test with Boiler
on Automatic Control

Shown in Figure 3.4 is the trajectory of the turbine parameters as the esti-

mation of the turbine model converges towards a solution. It is interesting to

contrast the performance of the turbine model parameter estimation method via

heat balance data and that via experimental testing. Section 2.4.5.1 illustrated

the turbine model parameter estimation method via heat balance data and showed

for the unit under test, that K1 = 0.71 (equation 2.12) and K3 = 0.29 (equation

2.13). This compares favorably with the data shown in Table 3.1.
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Figure 3.4: Trajectory of Turbine Parameters towards convergence of solution

However, observation of parameters T4 and T5 di�ers from the theoretically

calculated values, TSC (or T4) and TCO (or T5) as shown in Table 2.10, which are

attributed mainly to inaccuracies in mathematical assumptions made in perform-

ing the calculation, and also in model uncertainties. Nonetheless, good correlation

between observable and simulated results in both cases are realized.
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Table 3.1: Optimal Turbine Parameters, showing the normalization parameters

Trial
Normalization Parameters Turbine Model Parameters

Valve
Position
(%)

Pressure
(MPa)

Power
(MW)

Steam
Flow
(Kg/s)

K1 K3 T4 T5

Trial # 1 96.726 8.465 119.635 62.042 0.700 0.300 0.300 1.000

Trial # 2 97.329 8.405 119.523 61.984 0.700 0.300 0.300 1.000

Trial # 3 114.831 7.759 130.181 67.511 0.696 0.304 0.201 0.861

Trial # 4 107.570 8.403 132.074 68.492 0.698 0.302 0.200 0.860

Trial # 5 104.215 8.438 128.480 66.629 0.699 0.301 0.200 0.860

Trial # 6 102.445 8.592 128.602 66.692 0.699 0.301 0.200 0.860

Trial # 7 94.237 8.615 118.624 61.518 0.698 0.302 0.101 0.900

Trial # 8 93.263 9.371 127.687 66.218 0.698 0.302 0.101 0.900

Trial # 9 87.668 8.420 107.846 55.928 0.698 0.302 0.101 0.900

Trial # 10 88.150 9.404 121.123 62.813 0.698 0.302 0.101 0.900

Minimum 87.668 7.759 107.846 55.928 0.696 0.304 0.101 0.860

Average 98.643 8.587 123.377 63.983 0.699 0.301 0.180 0.904

Maximum 114.831 9.404 132.074 68.492 0.700 0.300 0.300 1.000

Std Deviation 8.072 0.477 7.707 3.997 0.001 0.999 0.072 0.048

3.4.2 Main Steam Pressure Drop Modeling

There exists a pressure drop from the boiler outlet pressure through to the turbine

inlet pressure, which is a natural pressure decay because of losses within the main

steam pipework. This has a bearing on the boiler control system, especially on

how the boiler pressure is controlled and needs to be accommodated within the

boiler model for e�ective pressure control. This function is incorporated within

the model by means of the pressure drop model (Flynn and O'Malley (1999);

Hain et al. (2000)), and is represented by equation 3.1, where PT (t) represents

the turbine inlet throttle pressure, PD(t) is the drum pressure,
·

m(t) is the the

main steam �ow, K9 is related to pressure variation, or sliding pressure and C1

represents the pressure loss, the variable t is time.

PT (t) = PD(t)−
·

m(t)2 ∗ (K9 ∗ PD(t)− C1) (3.1)
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Since steam is the medium by which heat is transferred from the boiler to the

turbine, Work is performed on the turbine blades as the enthalpy of the steam

changes through the turbine. The quality of the steam is dependent upon pres-

sure, since as pressure changes, the steam temperature pro�le also changes.

Therefore steam temperature can also be changed by controlling the pressure.

This from a steam generating perspective is well controlled, however, as the length

of main steam pipework increases, an adverse e�ect on steam temperature and

pressure occurs. These e�ects and the drop in pressure needs to adequately con-

trolled, by the pressure and temperature controllers of the boiler.

Figure 3.5 illustrates a typical load ramping pro�le for a generating unit of

200MW. As can be seen, the boiler outlet pressure PD(t) and the turbine inlet

pressure PT (t) are related according to a constant error, which represents the

main steam pressure drop. This is typically the pro�le for �xed pressure units

where the boiler pressure does not change according to the load demand, hence

the parameter K9 is set to zero. However, K9 would be applicable to variable

sliding pressure units.

Also shown in Figure 3.5(c) is the correlation between the simulated pressure

drop and that of the actual pressure drop, where it is clearly seen that there exists

a good match between experimental and simulated data. Table 3.2 tabulates

the parameter estimation of K9 and C1 for a number of di�erent load ramping

scenarios and shows good correlation between parameters, with an average value

of C1 = 0.035 for a typical 200MW drum unit.
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Figure 3.5: Main Steam Pressure Drop Modeling, (a) Typical load ramp, (b) Typ-
ical boiler outlet pressure PD(t) and turbine inlet pressure PT (t) and
(c) Parameter Estimation of Pressure Drop Model.

Table 3.2: Table showing calculation of K9 and C1 parameters for the main steam
pressure drop

# Test K9 C1

1 Ramp 150MW to 190MW 0 0.039
2 Ramp 180MW to 150MW 0 0.031
3 Ramp 190MW to 200MW 0 0.031
4 Ramp 200MW to 160MW to 180MW 0 0.037
5 Ramp 160MW to 180MW 0 0.037
6 Min 0 0.031
7 Mean 0 0.035
8 Max 0 0.039
9 Std Deviation 0 0.003
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3.4.3 The In�uence of Boiler Controls on AGC Systems

Steam generating boilers are complex interacting mechanical systems requiring

advanced control strategies for optimal control and for safe operation during a

wide range of normal operating conditions. However, poorly tuned boiler control

systems can have a signi�cant e�ect on the performance of AGC control sys-

tems, especially during rapid load variations and during low and high frequency

incidents.

There are typically two types of boilers used within the power industry, namely

Drum type and Bension type boilers. Drum type boilers typically are sub crit-

ical boilers, whereas Bension boilers can operate on a wider operating pressure

such as critical to super critical pressures and temperatures. The di�erences in

mechanical construction of these boilers contributes signi�cantly to the mode of

operation and performance of the unit.

Within AGC studies, the performance of the unit is dependent upon di�erent

modes of boiler operation. In Drum type boilers, which typically have large energy

storage time constants, inherently leads to large energy reserve margins and thus

leads to good sustained AGC performance following a frequency incident.

Bension boilers in contrast typically does not have large energy storage capacity

as does equivalent Drum type boilers, thus it cannot maintain a good sustained

AGC response. This is important during frequency incidents where a large boiler

energy storage capacity and large system inertia is needed to minimize frequency

excursions.

However, these limitations can be overcome by appropriate advanced coor-

dinated control of the boiler and turbine to yield an e�ective generating unit

performance response to AGC loading demands. By operating within the super
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critical pressure ranges, improves the performance of the system substantially

and is applied to modern super critical power plants.

It is for this reason that modern boiler implementation is in favor of Bension

type boilers and coordinated control system strategies to yield superior AGC

response characteristics. In AGC, the speed of response resulting from a frequency

incident it is vital to the control the power on the electrical network to maintain

a stable supply. If boiler control of especially turbine throttle pressure is slow

to recover to within nominal parameters, there is typically an equivalent slow

response in electrical energy in response to frequency incidents.

Figure 3.6 illustrates the boiler pressure response and power response to a

governor valve step demand with boiler control on manual. It illustrates �rstly the

turbine response characteristic but is also highlights the boiler response following

a load demand, showing a decay in pressure for valve position increases.

The rate at which this decay drops and the �nal steady state value is indicative

of boiler storage (Cb). The more boiler storage there is, the slower the pressure

decay and better the AGC performance against network frequency variation.

This also means that there is reserve energy available in the system.It is for this

reason that boiler storage (Cb) plays an important role in the initial frequency

response.

With a large boiler storage value, the generating unit is much more capable

of resisting and responding to frequency incidents in a more e�ective manner.

The immediate opening of the governing valves, especially due to low frequency

incidents, would drain the energy storage and cause a drop in boiler pressure.

This drop in pressure would be controlled by the boiler pressure controller to

increase the rate of �ring to the boiler by increasing fuel and air respectively.
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However, the boiler control response is slow and its takes time for the pressure to

build and to normalize to set-point pressure. Although this is largely a process

limitation and a relating safety requirement, the delay in pressure increase has a

negative e�ect on the frequency response.
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Figure 3.6: Governor valve step response of 2.5% showing megawatt response with
Boiler Control on manual, (a) 2.5% Step in Valve position with trend
of turbine inlet pressure, (b) Experimental megawatt response and
simulated megawatt response

Figure 3.7 shows the boiler controller response for a setpoint change. It illus-

trates the e�ectiveness of the boiler controller for regulatory behavior. Predomi-

nately, the control strategy is that of the conventional Proportional, Integral and

Derivative (PID) type control law, with a strong derivative component. This test

models the boiler controller for application in frequency response studies. As can
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be seen, simulated data compares well with experimental data.
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Figure 3.7: Boiler Controller Response to Setpoint Step Change, (a) Boiler pres-
sure setpoint step change with the boiler controller on automatic, (b)
Boiler controller response to pressure setpoint change.

3.5 Modeling of Fuel Dynamics and Boiler Storage

Boiler dynamics form an important part of the operation and control of boiler

control systems. From a frequency response perspective, boiler dynamics have a

signi�cant impact on the performance of generating units, in its loading ability

and on its response to electrical load disturbances.

Figure 3.8 shows a Matlab/Simulink model of the fuel dynamics, it illustrates
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the fuel dynamics model as used within the TGOV05. The model consists of

inputs and outputs, approximately scaled (or normalized), and tunable parame-

ters. In the forward path, fuel dynamics is represented by second order transfer

functions in Tf and Tw with delay time (TD), where Tf is representative of the

fuel dynamics and Tw is representative of the water dynamics.
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Figure 3.8: Fuel Dynamics Model

Table 3.3 tabulates the optimization results, showing ten (10) individual trials

of optimizations. The Matlab optimization toolbox, function fminimax was used.

For each trial, di�erent initialization values have been used to ensure that each

resultant solution is unique. It is also expected that at convergence, the average

of all solutions should lie within close proximity of each other.
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Table 3.3: Optimization of the Fuel Dynamics Model, using Matlab / Simulink
(using the fminimax optimization routine)

Trial
Recommended Scaling Gains (Normalization) Optimal Parameters

MegaWatt
(MW)

Fuel
Setpoint
(MJ/s)

Steam
Flow
(Kg/s)

Drum
Pressure
(MPa)

Tf Tw TD Cb Error

1 121.47 394.36 60.65 9.94 1.48 1.48 22.08 101.09 0.0023
2 129.25 427.18 65.67 10.56 4.10 4.01 26.12 97.82 0.0031
3 139.40 453.88 69.80 11.39 1.38 1.35 24.51 78.47 0.0055
4 143.04 467.65 71.91 11.69 1.63 1.61 24.43 93.59 0.0023
5 130.93 412.15 63.34 10.81 2.12 2.06 27.53 274.13 0.0078
6 123.11 399.20 61.33 10.14 4.59 4.59 28.05 270.31 0.0091
7 131.36 409.08 62.88 10.85 3.67 3.67 23.59 270.07 0.0077
8 117.07 405.91 62.34 9.57 4.10 4.10 17.85 270.28 0.0096
9 119.76 414.67 63.40 9.78 19.91 19.91 39.81 272.14 0.0168
10 127.59 437.63 66.54 10.44 47.52 47.52 60.11 270.86 0.0224

Parameter observations

1. Tf and Tw are closely related, especially when seen from a block diagram

perspective. Tf is representative of the fuel time constant and Tw is rep-

resentative of the water time constant and their respective correlation to

steam generation. Since the model structure does not allow for their sepa-

ration, identifying each parameter uniquely is not presently possible. How-

ever, weve assumed that the response to fuel and water are relative fast,

namely of the order of 1 5 seconds. In the optimization routine, Tf = 1.48

(1.5) and Tw = 1.48 (1.5) seconds respectively.

2. TDis known as dead time and represents the delay in response due to a fuel

demand. Manual review of the data indicates that TD is of the order of

23 seconds, considering the fastest response time. This is also con�rmed

via optimization where the best average value ranges from about 22s to

29s. This is graphically indicated in Figure 3.9. It is clearly seen from

the transient response that TD ranges from [23s 29s 76s] for each of the

respective fuel demand step tests (up step, down step and then the up step
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again).

3. The parameter Cb represents the boiler storage time constant and is syn-

onymous with inertia of the systems, in a pressure sense and is the stored

energy contained within the boiler. A large value of Cb is indicative of large

energy reserves in the boiler and depends upon the volume of steam within

the boiler tubes. The larger the volume under pressure, the larger the stor-

age time constant. In its relation to Tf and Tw, Cb is the dominant time

constant, and thus it is expected that Cb will contribute very strongly to

the transient response characteristic.
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Figure 3.9: Calculation of fuel delay TD by manual observation of transient re-
sponse data

A comparison of simulated data and experimental data is shown in Figure 3.10.

It is clearly seen that the fuel dynamics and the boiler storage dynamics is an

integral process. This type of process is an interesting process, since conventional

PI has di�culty in controlling such a process. This is in part due to the double
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integrator within the open transfer function making the system unstable in closed

loop con�guration. Therefore, most boiler controller have a strong derivative

action, with either no, or very small integral action to stabilize the closed loop

process. Thus most boiler control system are typically of PD type. This is

con�rmed via controller structure and the closed loop process response as shown

in Figure 3.10.
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Figure 3.10: Boiler pressure response due to fuel demand step change.

3.6 Summary of Chapter 3

Chapter 3 present an overview of power plant modeling and analysis, focusing

of understanding the major dynamics of generating units in relation to boiler

control and turbine control. It highlighted the importance of diligent preparation

for power plant testing and listed the main phases to unit model testing.



Chapter 4

Genetic Algorithms and Its Applications

Genetic Algorithms are heuristic search techniques based on the principles of

natural selection and on natures survival of the �ttest rule. In the late 1800's,

Darwin observed the micro evolutionary principles of �nches and their ability to

adapt to their peculiar environments, in order to perpetuate life and to have the

best chance of survival (De Jong, 1988; Bodenhofer, 2004), amidst constrained

resources.

Typically within nature, it is the battle for obtaining resources, competing

for a mate, or the hunt for prey which singles out the weakest member of the

population and ensures that the �ttest individual survives and who then is able

to procreate for the next generation. This is known as reproduction, and plays

a signi�cant role within the population not only by adding population diversity

but also strengthening the genetic bond. The premise here is that by mating of

the �ttest individuals, it would lead to a �t population.

With this in mind, Genetic Algorithms emulate the genetic process which forms

part of the evolutionary process of �nding solutions to problems heuristically
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rather than relying on strict mathematical modeling techniques. This in many

instances is advantageous, since the genetic process embraces two main properties

as found within nature, namely Exploration and Exploitation. These concepts

will be discussed further within this thesis (see section 7.4.3.4).

The past few decades have seen a gradual deviation from strict mathematical

modeling techniques in favor of more computer based soft computing paradigms

and naturally inspired optimization techniques, such as;

1. Arti�cial Neural Networks (ANN) (Nguyen and Widrow (1990); Curley

(2002); Bishop (2008); Marwala (2012)).

2. Fuzzy Logic Control (FLC) (Jantzen (1999); Grantner and Fodor (2002);

Cordon et al. (2004)).

3. Simulated Annealing (SA) (Castro and Camargo (2004); Xianbo and Jingqi

(2007); Marwala (2009)).

4. Genetic Algorithms (GA) and other heuristically based optimization rou-

tines (De Jong (1988); Goldberg (1989); Bodenhofer (2004); Eksin (2008)).

5. Hybridized approaches, such as Neural Fuzzy (NF) Liu (2002) for modeling

and control and Genetic Fuzzy (GF) and Cordón et al. (1996); Wang et al.

(1998); Cordon et al. (2004); Mucientes et al. (2007); Sharkawy and Others

(2010) controller design approaches).

The former soft computing techniques (items 1 to 4) models natural behavior to

problem solving while the latter (item 5) combines the advantages of the afore-

mentioned techniques to yield prospectively better optimization results.
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4.1 An Overview of Genetic Algorithms

Genetic Algorithms are based on Darwin's theory of natural selection and sur-

vival of the �ttest. Primarily a heuristic optimization technique, it has found

application within a wide area of industry, namely;

1. Flight control (Chang et al. (1996)).

2. Process control (Cordón et al. (1996)).

3. Learning (De Jong (1988); Brownlee (2000); del Jesus et al. (2004); Bacardit

(2008); Bennett et al. (2008)).

4. Self tuning systems (Dalci et al. (2004); Adriansyah and Amin (2005);

Bouserhane et al. (2008); Casillas et al. (2005); Gri�n (2003)).

5. Power Systems (Bodenhofer (2004); Ghoshal (2005); Hermawan (2006);

Eksin (2008)).

6. Finite element analysis (Marwala (2010)).

7. Genetic Fuzzy Systems (Herrera (2005); Ishibuchi (2007)).

This is in part due to the fact that genetic algorithms search for the most optimal

solution (�ttest individual) from a global perspective but more importantly, it

provides a mechanism by which solutions can be found to complex optimization

problems robustly, fairly quickly and reliably. It is for this reason that GA's have

found widespread industrial application.

Shown in Figure 4.1 is a �ow chart of a typical Genetic Algorithm. As can be

seen, the Genetic Algorithm is an iterative process whereby the �ttest individuals

are selected from the population, sacri�cing the weaker individuals. This process



4.1. An Overview of Genetic Algorithms 70

attempts to emulate the natural environment where only the strongest individuals

survive and is propagated through to the next population via reproduction.
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Figure 4.1: Flow chart of the Simple Genetic Algorithm (SGA), showing Genetic
Operators for reproduction and the Elitist strategy for the survival of
the �ttest individuals.
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The genetic algorithm starts by initializing a population of candidate solutions

to the optimization problem, these are typically initialized randomly. It then

follows by evaluating the �tness of the population, which is equivalent to the

objective function within standard optimization routines. This is then followed by

individual selection, reproduction by means of genetic crossover and mutation.

Within the natural reproduction process, genetic information is transferred

from the parent individuals to the o�spring via a process known as crossover.

Under certain conditions, the o�spring undergoes a genetic mutation which in-

�uences the phenotype characteristic of the individual. It is this adaptation

behavior which ensures the versatility of the Genetic Algorithm. Each of these

processes are described below (Louis and Rawlins (1992); Miller and Goldberg

(1995); Wang and Spronck (2003); Valdes (2003); Teng et al. (2003); Skaar and

Nilssen (2004); Tavakoli et al. (2007); Marwala and Lagazio (2011)).

4.1.1 Individual Selection

The reproduction process as found within nature occurs between two individuals

composed of the same genetic make-up (i.e. the same species). Thus the process

of reproduction leads to a strong competitive drive to �nding a suitable mate,

and often nature competes with itself and only the strongest individual would

survive. This genetic process of �nding a mate and reproducing is initiated by

means of individual selection.

Within the context of Genetic Algorithms, individual selection is performed

by means the Roulette Wheel method, which most often is the commonly ap-

plied method of selection. There are other means of selection as well, such as

Stochastic Sampling, Stochastic Universal Sampling and Remainder Stochastic

Sampling with Replacement. However, the Roulette wheel method is the most
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commonly method applied due to its simplicity and has found widespread appli-

cation (Goldberg (1989)).

Figure 4.2 illustrates the Roulette wheel selection method. It is a probabilistic

approach, where each individual is selected based on its �tness strength. The

�tter the individual the greater the chance of being selected.
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Figure 4.2: Illustration of Roulette Wheel Selection

4.1.2 Chromosome Reproduction and Crossover

In nature, during reproduction the genetic material of the parents are transferred

to the o�spring, with inherited characteristics. Each genotype of the chromosome

relates to an associated characteristic in the phenotype.

Therefore, the genetic algorithm emulates this process by crossover. During

crossover, a random position within the chromosome is selected. The bits of the

parents between the crossover position are exchanged to form two new o�spring.
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Figure 4.3 illustrates the crossover principle. Two �t parents are selected by

means of Roulette wheel selection, and their respective genetic material are ex-

changed through reproduction. Although shown in Figure 4.3, a bit wise crossover

is performed, assuming that the individual chromosome is represented by a bit

string, there are other methods of crossover available and particularly depends

upon the encoding mechanism of the search variables.
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Figure 4.3: The Functioning Of Genetic Operators, (a) Genetic Crossover and (b)
Genetic Mutation

The pairs of individuals selected for crossover are selected with a probability Pc.

A random number Rc is generated between 0 and 1, where the parent individual

undergo crossover only if the random number Rc ≤ Pc. Natural processes for

crossover includes multiple points for crossover, which can also be emulated by

the algorithm.

Figure 4.4 illustrates the in�uence of PC variation on the crossover process.

Given enough generation, each PC converges to a common solution over a number

of genetic generations. Since the performance of the system depends upon random

selection, the convergence of the population occurs at di�erent generation points
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and is stochastic in nature. Typically a value of 0.7 is used for PC .
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Figure 4.4: In�uence of Crossover Probability (Pc) during Genetic Operations

In addition, Figure 4.5 shows the in�uence of three types of crossover mech-

anisms, namely, Single Point, Two Point and Scattered crossover on the perfor-

mance of the optimal solutions. The transient response curves illustrates the

performance of the system on the Tie - Line power exchange signals, where it can

be clearly seen that the type of crossover mechanism employed during a genetic

run results in very similar results, given enough generations to converge to a �nal

solution.
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4.1.3 Chromosome Mutation and Adaptation

The natural world has processes in place for the adaptation of systems to meet

the demands of present survival situations over time. As more constraints are

experienced by the organism, a method for ensuring survival is to adapt to changes

quickly and robustly. Within the genotype of the individuals genetic breakdown,

variations within the genetic code are activated, with characteristic attributes for

ensuring organism survival. This process is classi�ed as Mutation and forms the

active means of introducing new genetic material within the population.

In Figure 4.6 the operation of mutation is illustrated, by changing the mutation

probability Pm. It is noted that variations in PM in�uences the rate of convergence
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and also prevents premature convergence of the population.
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Figure 4.6: In�uence of Mutation Probability (Pm) during Genetic Operations

It should be noted as well, that not all mutation have a positive impact on the

organism, typically, mutation is destructive in its e�ects on the phenotype and

occurs seldom within nature. However, since the genetic code contained within

the chromosome allows for a wide spectrum of attributes, Mutation is vital to the

survival of the individual.

Therefore, with the genetic algorithms ability to mutate its individuals, that it

is possible to �nd solutions heuristically. The mutation function is performed by

means of the appropriate selection of the mutation probability Pm. In this process,

a random bit within the chromosome length is chosen and bit wise inverted.
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Typically, this probability value is chosen very small, typically of the order 0.001

or thereabouts.

It is important to note that Mutation increases the population diversity of

each generation as time progresses, and its e�ectiveness to solving the problem

at hand depends upon the following factors.

1. The Problem Type - Problem complexity plays an important role in the

selection and performance of the mutation operator. The more complex the

problem, the more robust the mutation method needs to be, this guarantees

that adequate levels of algorithm convergence takes place.

2. Size of the Population - There is a distinct relation between Population

size and the convergence properties of Genetic Algorithms. The larger the

Population, individual diversity increases and hence convergence properties

and time to convergence improves. However, in order to achieve satisfactory

performance, the rate at which mutation takes place and the associated

Mutation mechanism, is more conducive to larger Population sizes.

3. The Method of Mutation - Without Mutation, the Population would be

limited to individuals contained within the initial population. Therefore,

Mutation introduces more possibilities for new genetic material to enter the

Population Genotype and increases its diversity. Therefore, the method of

how this diversity is created, depends upon the selected method of Mu-

tation. One of the more widely used methods is Binary Mutation (Figure

4.3b), however, advantages can be obtained by using alternative methods of

problem encoding (such as Real Valued Encoding). This a�ords the oppor-

tunity to de�ne more mutation possibilities, such as as Uniform Mutation

(Goldberg (1989)) and Gaussian Mutation (Bodenhofer (2004); Skaar and

Nilssen (2004)).
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4.1.4 Elitism

Within each generation of the population, superior genetic material and the �ttest

individual may be lost due the functions of selections (where �t individuals are not

chosen) crossover and mutation may lead to the deterioration of �ttest individuals.

Therefore, to preserve the good character traits of the population, good genetic

material needs to be preserved within the algorithm. This function is known as

Elitism.

4.2 Summary of Chapter 4

This chapter brie�y laid the foundation for heuristic search by Genetic Algo-

rithm's. Genetic algorithms are global search methods and forms a good means

of �nding near optimal solutions. It is an established fact as noted within this

chapter that the performance of the Genetic Algorithm depends upon many fac-

tors, including the Population size, mechanisms for Crossover and Mutation and

more speci�cally upon the encoding of the search space. In this research, focus is

speci�cally given to single point Crossover and Binary Mutation, based upon its

ease of implementation and that satisfactory results are obtained based on these

methods.



Chapter 5

Fuzzy Logic Control

First introduced by Lot� A. Zadeh in 1965 (Zadeh (1965)), Fuzzy Logic is based

on human cognitive ability and reasoning. The operational principle of Fuzzy

Logic as based on fuzzy set theory is to describe precise information of system

dynamical responses by a set of rules described colloquially.

Instead of presenting information in a crisp or strongly mathematical manner,

information is presented imprecisely by linguistic terms of notation, such as Hot

or Cold (Reznik (1997)), where the distinction between what is Hot or Cold is a

relative concept with no concrete mathematical separation boundary.

Figure 5.1 illustrates the relation between Crisp relationships and Fuzzy rela-

tionships. As show be equation 5.1, the variable A represents a clear boundary

between what is Cold and Hot, namely the value of A in degrees centigrade.

Alternatively, in a fuzzy relation the distinction between Cold and Hot is

relative and depends upon its respective Degree of Membership µ(x), where x

is the independent variable within the Universe of Discourse (UoD). This is also
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mathematically expressed by equation 5.2, where the measure of temperature can

be expressed as a relative Cold value and a relative Hot value.

Fuzzy systems have been applied successfully to areas such as con�ict modeling

(Tettey and Marwala (2006)), �nance (Patel and Marwala (2006)) and biomedical

engineering (Perez et al. (2010)) and have found a general acceptance as a robust

method of controller design as well.
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Figure 5.1: A Comparison between a Crisp relation and a Fuzzy Relation

µ(x) =


0, x < A, Cold

1, x ≥ A, Hot

(5.1)

µ(x) =


−x+ 1, x ∈ {0, 1} Cold

x, x ∈ {0, 1} Hot

(5.2)

Now, the principles of presenting information cognitively has many advan-

tages.

1. Firstly, information is processed easier and places the operational platform

within a human paradigm of understanding, making process control intu-
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itive to the plant operator.

2. Secondly, expert knowledge of process control operations can be constructed

linguistically and incorporated within the structure of control systems for

primary and supervisory control functions.

Therefore, this chapter reviews Fuzzy Logic Control with the intention of form-

ing a foundation for subsequent chapters for Genetic Fuzzy Rule Based Systems

(GFRBS). As noted previously, determining a set of linguistic rules for Fuzzy

Rule Base Systems (FRBS) may be di�cult under certain circumstances such as

a lack of expert knowledge, large input output systems and unknown or unmod-

eled system dynamics.

It is therefore the subject of this chapter to focus on manual FLC design

based on expert knowledge and tuning, it further highlights manual optimization

mechanisms within FLC which can later be used for automatic optimization and

learning of rule bases.

5.1 Basic Fuzzy Set Theory

Fuzzy Logic utilizes simple �If and Then� rules as an approach to solving problems

of complexity rather than mathematical models in modeling and control applica-

tions. These fuzzy models are based on Fuzzy Set Theory (Nagai and de Arruda

(2002); Golden (2003)), representing the internal operations of the controller in

solving problems.

This section therefore brie�y examines the fundamental concepts of fuzzy set

theory and its application to the design of Fuzzy Logic Controllers.
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5.1.1 A Fuzzy Set

A fuzzy set forms the foundation of Fuzzy Set Theory by extending conventional

sets of information into degrees of membership. If x is an independent variable,

forming part of the Universe of Discourse, in range x ∈ {0, 1}, then a fuzzy set

A is de�ned as a set of ordered pairs (x, µA(x)) as shown below in equation 5.3.

µA(x) represents the Membership Function (MF) of A.

A = {x, µA(x), where 0 ≤ µA(x) ≤ 1} (5.3)

In contrast to logical theory, where a membership variable can only represent

one of two variables, either true (µA(x) = 1) or false (µA(x) = 0), fuzzy theory

introduces the concept of membership degree (0 ≤ µA(x) ≤ 1). Thus it forms

an e�ective mechanism by which information can be classi�ed, based on human

judgment it provides a way of making decisions in a �soft� manner rather than

�hard�, precise and crisp presentations of information. Figure 5.2 illustrates the

concept of a Fuzzy Set...
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Traditionally, triangular membership functions are chosen, this is due in part

to their simplicity and ease of implementation (Wang et al. (1998); Kaya and

Alhajj (2006)). However, more complicated functions can be used during the

design stages of FLC such as quadratic and exponential membership functions.

More higher order fuzzy sets does not necessarily re�ect signi�cant changes in

control e�ort.

5.1.2 A Few Fuzzy Set Operations

Membership functions form the primary mechanism by which fuzzy set theory

is applied. In order for this to be e�ective a few basic fuzzy set operations

are de�ned. For a deeper analysis of fuzzy set operations and its performance

in�uence on FLC controllers, a detailed review is given in (Reznik (1997); Herrera

and Peregrin (1997); Jantzen (1999)) .

5.1.2.1 The Complement of a Fuzzy Set

In a similar manner to the logical NOT operation, the complement of a fuzzy set

is de�ned as a membership function as shown in equation 5.4.

µA(x) = 1− µA(x) (5.4)

5.1.2.2 Union of Two Fuzzy Sets (Disjunction)

The Disjunction of two fuzzy sets is also known as the S-Norm, and represents

the union of two fuzzy sets on a mutual universe of discourse. By de�nition, it
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is the algebraic sum of the two fuzzy sets less its algebraic product of µA(x) and

µB(x) as shown in equation 5.5.

µA∪B(x) = µA(x) + µB(x)− µA(x) ∗ µB(x) (5.5)

5.1.2.3 Intersection of Two Fuzzy Sets (Conjunction)

The Conjunction of two fuzzy sets is also known as the T-Norm, and represents

the intersection of the two fuzzy sets on a mutual universe of discourse. By

de�nition, it is the algebraic product of µA(x) and µB(x) as shown in equation

5.6.

µA∩B(x) = µA(x) ∗ µB(x) (5.6)
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Figure 5.3: Basic Fuzzy Set Operations
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5.2 The Fuzzy Logic Controller

Since its inception, Fuzzy Logic Control has developed progressively and has

seen many industrial successes. It has been shown that FLC controller design

and application have yielded superior closed loop performance, especially amidst

parametric model uncertainty or unknown system dynamics (Battle et al. (1999);

Foran (2002); Giron-Sierra and Ortega (2002); Anand and Jeyakumar (2008);

Hagras (2008)).

In contrast to linear control theory, which conventionally accepts a linear pro-

cess model for closed loop controller design, FLC is inherently nonlinear by nature

and also functions well when nonlinear process dynamics are present.

Figure 5.4 illustrates the basic architecture of the Fuzzy Logic Controller. As

can be seen, the FLC controller consists of the following sections, namely;

1. Fuzzi�cation.

2. Defuzzi�cation.

3. A portion including their respective scaling gains, this is known as the

Knowledge Base.

4. A section dedicated to the implementation of If and Then rules which is

known as the Rule Base.

Conventionally controller derivation is established via process modeling of the

controlled process, however, in FLC design the controller is directly obtained from

process experts or plant operators, who have a detailed knowledge (Knowledge

Base) of manual plant operation, its process interactions and dynamic process

response. These rules are collated to form a comprehensive Rule Base.
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Figure 5.4: Basic Architecture of a Fuzzy Logic Controller

5.2.1 Fuzzi�cation

One of the more critical functions in FLC design is the conversion of real process

information into linguistic language. Imprecise language constructs of human

cognitive processing is expressed as linguistic terms. This process occurs through

fuzzi�cation, see Figure 5.5 where the linguistic terms for fuzzi�cation are Nega-

tive Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZZ), Positive

Small (PS), Positive Medium (PM) and Positive Big (PB). The following impor-

tant characteristics of the membership functions contained within fuzzi�cation

are as follows.

1. Since membership functions divide the Universe of Discourse (UoD) into

sections, it is important that the membership functions cover the entire

Universe of Discourse. This ensures that every possible crisp input has

an associated linguistic term which can be used for processing within the

Inference Engine.
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2. Linguistic terms should be clear, descriptive of its function and distinct.

This typically re�ects the plant operators analysis of the input output space

and describes for a range of values the Universe of Discourse.

3. Typically a normalized Universe of Discourse is used, with scaling gains

used for adjustments according to the required performance criteria. The

UoD can also be expressed in engineering units.

4. The Degree of Membership µ(x) is representative of the grade of a variable

within the Universe of Discourse where 0 ≤ µA(x) ≤ 1.
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Figure 5.5: Typical Triangular Membership Functions

5.2.2 The Fuzzy Rule Base

The foundation of fuzzy rule based systems are the IF and Then rules. These

rules encapsulate the dynamic performance data of the fuzzy model or controller

being designed, and bear with it the imprint of system dynamical responses. The
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size and number of the rules used within the fuzzy controller are typically problem

speci�c, but depends to a large extent on the number of inputs and outputs of the

system. As the problem input output space increases, the relating rule base size

increases exponentially thereby increasing the complexity of the fuzzy system.

If e(t) is Ei and ˙e(t) is CEj Then u(t) is URij (5.7)

In equation 5.7 e(t) is the input error and ˙e(t) is the change in error ( d
dt
e(t)) as

a function of time (t), u(t) is the output signal and URij is the fuzzy rules matrix,

with the indices i and j representing the number of membership functions of E

and CE.

Increasing fuzzy system complexity can be a challenging problem when con-

ventional FLC design is considered. To the human operator, analyzing and pro-

cessing large volumes of data can be a daunting task, especially when appropriate

expert knowledge is unavailable. To this end methods of optimizing FLC rules

bases are contained within the literature. One technique for optimizing rule bases

is by applying Genetic Algorithm.

5.2.3 Defuzzi�cation

The process of converting fuzzy information into crisp information is known as

Defuzzi�cation. Defuzzi�cation therefore forms the primary actuating mechanism

by which fuzzy models and fuzzy controllers interact with the process, environ-

ment or plant under control. It is by this means that linguistic information is

transformed into action, interpreted as the controlled variable within control the-

ory and applied to solved the speci�c problem at hand.
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By means of the fuzzy inference engine, a set of control rules URij are ��red�

and their respective control actions are combined through Defuzzi�cation for an

aggregate control action according to the prescribed information as contained

within the Rule Base and Knowledge Base respectively.

There are a number of Defuzzi�cation techniques (Saade and Diab (2004)),

namely, Center of Area or Gravity (COG), Bisector of Area (BOA), Mean of

Maximum (MOM), Smallest of Maximum (SOM), Largest of Maximum (LOM)

and Weighted Average Formula (WAF) to name but a few. Of these the more

commonly used Defuzzi�cation methods applied within industry is COG and

MOM, these are brie�y described below.
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Figure 5.6: Illustration of Di�erent Methods of Defuzzi�cation

5.2.3.1 Center of Gravity (COG)

The Center of Gravity (COG) method for Defuzzi�cation is described by equation

5.8. As can be seen, the COGmethod �nds the centroid of the output membership

function µB(z), where z is the output Universe of Discourse.
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ucrisp(z) =

´
µB(z) ∗ zdz´
µB(z)dz

(5.8)

In its discrete form, the COG method can be approximated by equation 5.9,

where the Universe of Discourse is sampled by a number of samples N , and the

output result is obtained by taking the union of all the ��red� consequent parts

of each rule.

ucrisp(zi) =

N∑
i=1

µB(zi) ∗ zi
N∑
i=1

µB(zi)

(5.9)

5.2.3.2 Mean of Maximum (MOM)

The Mean of Maximum (MOM) method of Defuzzi�cation is given by equation

5.10, e�ectively the average of the maximum values over the Universe of Discourse

is taken, and in the discrete case, a few samples over the maximum is averaged.

ucrisp(z) =

´ b

a
zdz´ b

a
dz

=
(a+ b)

2
(5.10)

5.3 Summary of Chapter 5

Chapter 5 introduced Fuzzy Logic Control (FLC), its design and certain key

aspects of implementation which forms the foundation of GA Fuzzy Control. It

highlights the design rationale for FLC control and the parameters required for

tuning and optimization of the controller.
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It is concluded that because there are many parameters and functions required

for optimization, manual design in its own poses a signi�cant challenge when de-

tailed knowledge of the process is lacking and also especially when the design

space is large, with multiple inputs and outputs to the system, which exponen-

tially increase the problem search space considerably.

Therefore, Chapter 6 discusses the role of Genetic Fuzzy Rule Based System

and how it can be applied to solve this problem as applied through the means of

Evolutionary Strategies.



Chapter 6

Genetic Fuzzy Rule Based Systems

In Chapter (2) a review of current literature was performed. It focused speci�cally

on frequency control and on the techniques used in the design of Automatic Gener-

ation Controllers for interconnected power systems. It highlighted the importance

of frequency control and identi�ed the need for robust AGC controllers.

In addition, it further described de�ciencies with conventional AGC control

techniques, especially when considering increasing plant complexity and uncer-

tainty. Therefore, this chapter expounds on Genetic Fuzzy Rule Based Systems

and its applications, focusing speci�cally on it design rationale, and its application

as a viable AGC controller design tool.

6.1 Soft Computing

Soft Computing (SC) methodologies, which is the integration of Arti�cial Neural

Networks (ANN), Fuzzy Logic Control (FLC) and Genetic Algorithms (GA) have

found wide-spread application within the process industry today. This is partic-

92
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ularly motivated by the increased computational power of modern Distributed

Control Systems (DCS) but also by the e�ectiveness with which SC techniques

have been used to solve real world problems.

Becoming increasing more favourable are solutions which can be found more

easily, e�ectively and robustly amidst various unknowns, and Soft Computing

techniques a�ords this opportunity. The mechanism of modeling and controlling

based on classical methods can be expensive and time consuming, but SC provides

very promising results for such situations. See Figure 6.1 for an illustration of

Soft Computing.

In essence, Soft Computing includes techniques for solving real world problems

by means of computer algorithms modeling natural processes such as;

1. Expert Systems and Fuzzy Models (Nagai and de Arruda (2002); Pedrycz

(2008); Marwala and Lagazio (2011)).

2. Arti�cial Neural Networks (Nguyen and Widrow (1990); Patel and Marwala

(2006)).

3. Probabilistic Models (Prandini (2005)).

4. Search Heuristics (Abraham (2005)).

Each of the aforementioned methods models the physical world and imitates

the characteristic behavior of these systems to �nd solutions to stated problems.

Hence their �eld of application is vast. This is the strength of soft computing, in

that it is versatile and robust, adaptable to any particular problem.
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Figure 6.1: Soft Computing Models and Hybridization

In contrast to more empirical mathematical models, which require strict math-

ematical formalization, SC's have typically been applied to problems that embrace

model uncertainty, to systems in which there is a lack of a priori knowledge of

the process under control and to problems which lends themselves to high com-

plexity.

Therefore, in �nding solutions to these problems, SC's sacri�ce exact preci-

sion in favour of abstraction to remove complexity, with the expectation that

sound solutions will be found to complicated problems. The solutions obtained

adequately solve stated problems, although it may not be absolute, it provides a

mechanism by which problems are solved quickly, reliably and robustly.

In contrast, Hard Computing (HC) techniques such as Proportional, Integral

and Derivative (PID) controllers, Optimal Controllers (H2 or H∞) and other

parametric type controllers are largely dependent on detailed process models,

which if ill tuned, could lead to poor performance, overshoot and oscillation.

Table 6.1 illustrates a few examples of Hard and Soft Computing techniques

used within industry today. Although the listing is not exhaustive, it highlights
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the major trends between the two methods. One is highly model-based and the

other is based primarily on computational intelligence. The former has been

extensively used within the realms of classical control over the past few decades

and the latter is a relatively new branch of control, which is gaining extensively

more acceptance within industry (Marwala (2004)).

Table 6.1: Various Examples of Hard and Soft Computing

Hard Computing Soft Computing

PID Controllers (PID) Fuzzy Logic Control (FLC)
Optimal Control (H2 or H∞) Expert Systems (ES)

Model Predictive Control (MPC) Arti�cial Neural Networks (ANN)
Quantitative Feedback Theory (QFT) Evolutionary Computing (EC)

Other Parametric Controllers Genetic - Fuzzy Systems (GFS)

It is thus the aim of Soft Computing techniques to improve on system per-

formance where conventional controller methodologies fail, and especially by hy-

bridization of these methods, the bene�ts of each method could be transferred to

the �nal controller.

The next section brie�y discusses Heuristic Search methods followed by a re-

view of Genetic Fuzzy System design and the factors which should be considered

in the design of the GA-Fuzzy Controller. The latter, highlights the approaches

to Genetic Fuzzy design, the mechanisms by which the Fuzzy Controller and its

contained Rule Base are optimized as well and how learning of fuzzy rules take

place within the optimization process.

6.2 Heuristic Search Methods

Heuristic search algorithms falls into the category of Soft Computing as optimiza-

tion routines emulating natural behavior. This would include,
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1. Genetic Algorithms (GA) (Wang and Spronck (2003); Bodenhofer (2004);

Herrera (2005); Eksin (2008)).

2. Particle Swarm Optimization (PSO) (Marwala (2005); Ko and Wu (2008);

del Valle et al. (2008); AlRashidi and El-Hawary (2009); Blondin (2009)).

3. Ant Colony Optimization (ACO) (Abadeh et al. (2008); Xing et al. (2010)).

4. And other meta heuristic approaches such as Tabu Search (Al-Hamouz et al.

(2005, 2007)) and Simulated Annealing (SA) (Falk et al. (2007)).

In these techniques, a control problem is solved iteratively by applying candidate

solutions to the problem and analyzing its performance until the appropriate

performance measure is obtained. Each method typically follows a �ow path and

a mechanism by which existing solutions are modi�ed to yield better solutions.

This has de�nite advantages above conventional derivative based search methods

and lends itself to near optimal solutions.

In equation 6.1, f(x) is the objective function, x is a vector representing the

search parameters and χ is the search space. It represents the typical optimization

problem of �nding solutions (x) over a certain search space.

max
x∈χ

f(x) (6.1)

Generally, heuristic search approaches to optimization cover a wide spectrum

of application, since they are based on natural observation, and have been proven

to be near global optimization routines.

Although heuristic search methods in some cases are not deterministic, they

do not always guarantee plausible solutions and need to be iteratively evaluated
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for best performance. Nonetheless, they provide solutions to problems, where the

knowledge of the problem is minimal or unknown, the search space is large with

many global modals and provide advantages over classical gradient methods.

6.3 Genetic Fuzzy Systems

The relationship between classi�cation problems and those employed within the

realms of control theory is closely related. Classi�cation problems consists of

the identi�cation of patterns, structures and the assessment of system behaviour

based on the principles of Genetic - Fuzzy classi�cation techniques (Ishibuchi

(2007)).

These techniques endeavour to �nd solutions to problems where human knowl-

edge of system dynamics fall short and where the problem search space is of a

high dimension. This to the human expert or plant operator, especially when

control tasks are numerous, the decision making process for e�ective classi�ca-

tion and control is large and poses a real demand upon the skills and abilities of

the expert to solve the problem.

Similarly, in control systems and control related problems the key objectives

are for e�cient, accurate and robust control over the entire operating region of

function. This inevitably requires robust controller tuning and demands strict

closed loop performance amidst uncertainty and disturbances. In response to

this there has been a great deal of interest in the development of autonomous

control systems, with the ability for learning and continual closed loop control

performance, based on past behavioral experiences.

In the light of this, there has been a general trend of combining the human

cognitive ability for decision making with the e�ectiveness of heuristic search
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techniques to problem solving. This is graphically illustrated by Figure 6.2, which

shows an expert system optimized by a Genetic Algorithm. In this application,

Fuzzy Logic encapsulates the cognitive processing of human thinking, while the

heuristics of Genetic Algorithms e�ectively explores the search space for plausible

solutions for the problem at hand. This forms Genetic - Fuzzy Rule Base Systems

(GFRBS) .

Figure 6.2: Illustration of a Genetic - Fuzzy Rule Base System (GFRBS).

Thus in response to GFRBS, contained within the literature there are three

main areas of active research, namely (?Herrera (2005); Czekalski (2006));

1. The Michigan Approach (Pipe and Carse (2001); Casillas et al. (2007)),

2. The Pittsburgh Approach (Abraham (2005); Preen and Bull (2009)),

3. The Iterative Learning Approach (del Jesus et al. (2004)).

6.3.1 The Michigan Approach

One approach to problem classi�cation, which can be extended to control systems,

is that of the Michigan Classi�er. The Michigan Classi�er is a robust GFRBS

system which uses a Genetic Algorithm as the mechanism of rule learning and
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discovery (De Jong (1988)). In this work we particularly review the XCS type

Michigan Classi�er which was introduced by Wilson (Wilson (1994); Butz and

Wilson (2001)).

In its most fundamental form, it is based on the principle of Reinforcement

Learning (RL) and system payo� for e�ective rule discovery (Grefenstette (1988);

Lin and Jou (2000); Bacardit (2008)). In addition, the Michigan classi�er encodes

individual chromosomes as a fuzzy rule and thus the entire population of the GA

as a whole represents the entire Fuzzy Rule Base.

In Figure 6.3 a graphical representation of the Michigan Classi�er is shown

(Casillas et al. (2005, 2007)). As can be seen, the Michigan type GFRBS is based

on message passing, whereby messages are sent to and from the environment,

describing the state of the environment at any given point in time (Casillas et al.

(2007); Bishop (2008)).

6.3.1.1 Detectors

In GFRBS, especially as applied to Fuzzy XCS systems, the terms for Fuzzi�ca-

tion (5.2.1) and Defuzzi�cation (5.2.3) are Detectors and E�ectors respectively

(see Figure 6.3) and forms the interface boundaries of the XCS system and the

Environment (Casillas et al. (2007)).

In conventional Fuzzy Rule Base systems, the Fuzzi�cation and Defuzzi�cation

process converts crisp process information into a unitary value of membership

degree µA(x), this is categorically based upon the de�nition of the membership

functions. In contrast Detectors and E�ectors makes use of a binary encoding

scheme based upon the linguistic terms of the membership functions as de�ned
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Figure 6.3: Illustration of the Michigan Type Classi�er (Source, Casillas et al.
(2007))

by the Fuzzy Rule (5.7).

By means of illustration, in equation 6.2, the binary encoding for the E�ector

is given as shown in Table 6.2.

If e(t) is (NS or ZZ) and ˙e(t) is (ZZ or PS) Then u(t) is PS (6.2)

For each of the inputs forming part of the Universe of Discourse (UoD), a num-

ber of Fuzzy Rules are ��red�. These ��red� rules are evaluated by the Detector
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Table 6.2: Typical Encoding of the Detectors for use in Fuzzy XCS Systems

Description e(t) ˙e(t) u(t)

MF's NS ZZ PS NS ZZ PS (NS = 1, ZZ = 2, PS = 3)

Binary Encoding 1 1 0 0 1 1 3

and a message in the form of a binary encoded signal is placed on the Message

List (Brownlee (2000)). The encoded signal is the binary concatenation of input

variables, according to whether the respective variable forms part of the ��red�

membership function.

In addition to binary encoding methods of inputs to Detectors, recent research

have focused on real encoding mechanisms (Stone and Bull (2003)). These meth-

ods provides for a more general approach to real world problems, and forms a

more intuitive representation of real data.

6.3.1.2 Matching

The learning ability of conventional population based search heuristics such as

Genetic Algorithms, makes it a valuable tool for �nding new solutions, by tak-

ing advantage of population dynamics. In the Michigan approach to Rule Base

systems and GA learning, an additional step in the processing of the encoded

signal as contained within the Message List is required, namely the Matching of

the Detected binary encoded signal with that of the Population individuals (Bull

(2004); Casillas et al. (2007)).

Initially, the XCS system is initialized with randomly determined individuals

to form a Population set P . De�ned randomly, certain individuals are initialized

with �Don't Cares - #�. In the matching process, the Population and the Detected

signals are compared for similarity and in instances where the �Don't Cares�

match with the detection, a match is also recorded as part of the Matched Set M
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which are then used for further processing by the XCS (see Figure 6.3) (Casillas

et al. (2005, 2007)).

The Population set P is initialized with a set of attributes, keeping track of the

performance of each classi�er or fuzzy rule, and is also utilized within the XCS

algorithm for its e�ective functioning. In Matching, an attribute by attribute

comparison is performed, new individuals are introduced by GA operation and

are initialized to nominal attributes.

Throughout the operation of the XCS system, attributes are updated according

to its own classi�er performance and the system reward payo� (Bacardit (2008)).

This is comparable to the Fitness Function in Genetic Algorithms.

6.3.1.3 The Prediction Array

Based upon the contents of the Matched Set and the respective properties of

each classi�er attribute, a Prediction Array PA is generated. By considering

past experiences of classi�er performance and based upon the principles of Rein-

forcement Learning (RL), a prediction is made on which classi�er will yield the

greatest reward.

The Prediction Array also guides in terms of de�ning an Action Set AS, for

use within the E�ectors.

6.3.1.4 E�ectors

As in Defuzzi�cation, E�ectors in XCS systems interacts with the Environment to

perform a given Action A. The values as contained within the Prediction Array

PA, forms the basis by which actions are made. Typically there are two ap-
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proaches to selecting an action, either by pure Exploitation or by Exploration.

In Exploitation, the best classi�er with the maximum Prediction is selected

and sent via the Message List to the E�ectors for actuation of the environment.

Exploration on the other hand, randomly selects an action as contained within

the PA. By means of the E�ectors regulation of the environments is obtained.

The success of this actuation is rewarded by the environment in the form of Payo�

or Reward.

6.3.2 The Pittsburgh Approach

The Michigan approach for GFRBS is based upon an online approach to learning

of the appropriate classi�ers for problem solving. In contrast, the Pittsburgh

approach is more suitable for o�ine adaptation and learning of classi�ers and

utilizes more directly the standard implementation of Genetic Algorithms (Pipe

and Carse (2001); Cervantes et al. (2007); Bacardit (2008)). This invites a more

natural appeal for the application of the Pittsburgh approach to many industrial

processes for problem solving.

Similar to the the Michigan approach, the Pittsburgh classi�cation system

maintains a population of individuals which represents plausible solutions to the

problem at hand. However, the encoding structure of the genetic chromosomes

di�ers in its application and function. In the Michigan type classi�cation system

the entire population of individuals represents a solution and hence the evolution

of solutions occurs in a more iterative manner, while the Pittsburgh classi�er

represents the entire solution as an individual chromosome and is more conducive

to parallelism of implementation.

Figure 6.4 illustrates the Pittsburgh Fuzzy Rule Base System. As can be seen,
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the Genetic Algorithm is used as a rule discovery and learning mechanism by

which new solutions are evolved.
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Figure 6.4: Illustration of the Pittsburgh Approach to Fuzzy Rule Based Systems

6.3.3 The Iterative Rule Learning Approach

Another method of GFRBS is the Iterative Rule Learning (IRL) approach. In

this method, a multifaceted approach to rule learning is employed and consists

of the following constituent sections, namely, a Genetic Generation Stage, a Post

Processing Stage and a Genetic Tuning Stage (Bodenhofer and Herrera (1997)).

Each of these stages are brie�y described below.

IRL combines the advantages of both the Michigan and the Pittsburgh classi�-

cation methods and thus also inherits the peculiar attributes of both GFRBS's. In

particular, IRL borrows its iterative nature from the Michigan approach, as well

as its encoding mechanism where the entire population of individuals contributes

to the full solution. The commonality which the IRL method have with the Pitts-

burgh approach is that it inherits the �tness evaluation mechanism of where the

entire chromosome of solutions needs to work together to reach a common goal.
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6.3.3.1 The Genetic Generation Stage

The Genetic Generation Stage closely mimics the Michigan approach for rules

generation. Individual chromosomes forming part of the Population is repre-

sentative of the fuzzy rule or classi�er. With each successive genetic iteration,

rules are updated and �tness evaluations are performed to identify the best set

of classi�cation rules for solving the problem.

6.3.3.2 The Post Processing Stage

After the Genetic Generation Stage, a Post Processing Stage is required. Since

the rules generated does not consider their respective peer chromosomes, a process

of rede�ning and improving the quality of the generated Population is needed.

This tend to improve the performance of the classi�er system.

6.3.3.3 The Genetic Tuning Stage

The �nal stage in the Iterative Learning Approach is the Genetic Tuning Stage. In

the stage, membership functions are optimized and the Knowledge Base adjusted

to yield better overall system performance.

6.4 Summary of Chapter 6

Chapter 6 focused on providing an introduction to Soft Computing and its appli-

cation to Genetic Fuzzy Rule Base Systems. It showed how evolutionary search

heuristics such as Genetic Algorithms can be used for Rule Discovery and Learn-

ing. The chapter then concluded by describing three of the more widely ap-
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plied Genetic Fuzzy systems, namely, the Michigan Approach, the Pittsburgh

Approach and the Iterative Rule Learning Approach.

The next chapter (7), focuses particularly on the Pittsburgh type GFRBS and

discusses certain key aspects of how it can be applied to AGC controller design

for large interconnected power systems.



Chapter 7

On the Design and Analysis of a Genetic Fuzzy

AGC Controller

The Automatic Generation Control (AGC) problem as highlighted in the previous

chapters (1, 2) is one of the main functions of modern power utilities, especially

for power system design and operation. The complexity of power systems and

its dynamic nature makes it di�cult to realize an AGC controller capable of

minimizing a global performance criteria over all operating regimes. This would

include exhibiting good disturbance rejection properties, minimizing inter area

dynamic frequency oscillations and adequately responding to varying electrical

load characteristics. These character traits and AGC controller properties are

necessary for good power system frequency control performance.

In the light of these considerations, this chapter focuses on the design of a GA

- Fuzzy AGC controller, based on the Pittsburgh GFRBS approach. Typically in

practice, the well known PI control strategy is used for AGC control. However,

because the PI controller parameters are selected based on trial and error meth-

ods, this method of control su�ers from poor dynamic performance especially as

107



7.1. Elements of GA - Fuzzy Control 108

power system complexity and network size varies according to network growth.

This would inevitably require additional PI control law tuning and optimization

routines throughout the operational life of the controller.

Therefore, there has been substantial research e�ort in the design of AGC con-

trollers for improved dynamical performance (Kumar and Kothari (2005); Patel

(2007); Tan and Xu (2009); Monga et al. (2010)). It is therefore envisaged that as

network complexity increases, the relating control strategies needs to be adapted

for optimum control. The GA - Fuzzy AGC controller is therefore designed as

an o�ine heuristic controller with the bene�t of yielding improved dynamical

performance for online closed loop control of interconnected power systems. This

in part guarantees that the controller performance can be assessed o�ine and

validated for best performance before it is implemented as part of any real time

control strategy (Hagras et al. (2001); Sijak et al. (2002); Bevrani and Hiyama

(2007); Alrifai and Zribi (2005)).

7.1 Elements of GA - Fuzzy Control

The modeling of biological systems has played a dominant role in creating control

strategies with near cognitive ability (Bouchon-Meunier et al. (2008)). This is

clearly seen within Fuzzy Logic Controller design, where the controller is com-

prised of a set of expert rules dictating a desired control action given a speci�c

set of inputs from the plant under control. Figure 7.1 illustrates how biologi-

cal systems have inspired development of Cognitive Systems culminating in the

engineering �eld of Soft Computing.

By so doing, the controller exhibits human behavior and decision making abil-

ity with the expectation of improving closed loop control performance. However,
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in many practical control problems it is di�cult to formulate expert rules for pro-

cess operation and control. Although experienced plant operators are in charge

of process control, their regulating actions are intuitively stimulated based on

experience and knowledge of the plant.
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Figure 7.1: Illustration of Biologically inspired Cognitive Systems as applied to
Soft Computing.

On the other hand natural processes within biological ecosystems dominate

the drive for survival of the �ttest individual to propagate to the next generation.

The enabling mechanism of how this is achieved within biological ecosystems is

through reproduction, namely genetic crossover and gene mutation. This pro-

cess is encapsulated under the umbrella of Evolutionary Computational Systems

(ECS) of which Genetic Algorithms forms but one such technique.

Therefore, the amalgamation of ECS systems such as Genetic Algorithms and

Fuzzy Logic Controller design leads to a branch of Soft Computing known as

Genetic Fuzzy Systems. This is graphically illustrated by Figure 7.1. The central

idea behind Genetic Fuzzy Systems is to use the Genetic Algorithm for the auto-
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matic learning and adaptation for the fuzzy rule base and to ensure the optimal

utilization of the respective membership functions and scaling parameters.

7.2 Evolution and Adaptation of Fuzzy Systems

Real complex systems enforce the realization that not all processes can be modeled

or controlled by a set of exact di�erential equations such as Laplace transfer

function models. This stems from their parametric nature of where unknown or

neglected system dynamics prove to be a challenge for ensuring robust controller

performance. Thus, Fuzzy Systems provide a convenient mechanism by which

unknown or neglected dynamics can be modeled.

Within large interconnected power systems it is not possible to model all sys-

tem dynamics because the network is just too large and due to its dynamic

nature the AGC controller is required to provide adequate regulating perfor-

mance.Therefore advances in controller design techniques encourages the follow-

ing desirable controller attributes (Kaya and Tan (2005)).

1. E�ectively modeling unknown or neglected system dynamics.

2. Robust performance amidst parameter variations.

3. Optimal control throughout all possible operating regimes, within minimal

structural or parametric changes.

4. Encouraging adaptation and learning of the controller through performance

evaluation.

5. Modifying the internal structure of the controller to yield improved con-

troller performance.
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Each of the aforementioned attributes are achieved by applying genetic crossover

and gene mutation as the evolutionary processes to modify the internal structure

of the Fuzzy System. This section describes how this is achieved, through Genetic

Algorithms and describes some of pivotal aspects of Genetic Fuzzy controller

design.

7.2.1 Genetic Tuning and Learning of Fuzzy Systems

Chapter 5 examined both the theoretical and practical aspects of Fuzzy Logic

Controllers (FLC), where FLC design was based on expert knowledge of both

the Knowledge Base (KB) and the Rule Base (RB). The design of the KB, is

examined within this subsection while the RB is described in the subsequent

subsection.

The KB is typically designed by expert knowledge of the process, where the

expert has a detailed knowledge of the operational and control aspects of the

plant. Within the KB, the control and manipulated variable search spaces are

classi�ed according to linguistic terms. These are selected based on expert design

experience and the speci�c control objectives of the problem.

With reference to AGC, the control objectives are to improve the frequency

control performance of the electrical network, thereby minimizing the ACE error

of the respective control area and its interconnections. Therefore, the tuning of

the FLC-AGC controller is to e�ectively manage the real power output of all

generating units within the control area, maintaining total Generation (Figure

7.2).

Figure 7.2 illustrates the mechanism of KB tuning and optimization by means

of expert analysis. To a large extent, this mechanism of tuning is by trial and error



7.2. Evolution and Adaptation of Fuzzy Systems 112

techniques, in which the performance of the overall closed loop system is assessed

and minor adjustments are made to the input - output scaling parameters, and

similarly to the membership functions. By repeated analytical observation and

parameter adjustment, the performance of the controller is improved for optimum

controller response over all operating regimes.
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Figure 7.2: Illustration of Expert Tuning of the Knowledge Base

7.2.2 On Using the Genetic Algorithm for Tuning Fuzzy Systems

Fuzzy Systems are typically designed and optimized manually by an iterative

process by the control designer. This typically takes the form of adjusting the

controller PI gains (assuming that a PI controller structure is chosen) to yield

optimal closed loop performance. The tuning of the controller can be made via

the adjustment of input and output scaling gains, the tuning of input and output

membership functions and the optimization of the Fuzzy Rule Base.

In contrast to tuning by trial and error methods, learning is a cognitive process

by which experience of system behaviors are incorporated into the design process.
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For the expert plant operator, this is an intuitive mechanism of learning and builds

on established operational experiences. In order for learning to be encapsulated

within FLC design, a mechanism of introducing novel control operation within

the controller is required, and is typically performed by GA. The next section

highlights this idea (Figure 7.3).
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Figure 7.3: Illustration of Genetic Algorithm Tuning of the Knowledge Base

Therefore, fundamental to the design of FLC controllers by means of evolu-

tionary strategies is the encoding of the design problem into genetically tunable

parameters. Conventional FLC design uses expert knowledge for designing both

the KB and the RB as described in Section 7.2.1. Thus both the KB and the RB

need to be formulated as genetic chromosomes.

Each of the FLC tunable parameters as shown in Figure 7.3, namely the scal-

able input error proportional gain Kp, the scalable input rate of change gain Kd

and the scalable output integral gain Ki as well as each of the respective mem-
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bership functions are encoded as binary chromosomes. This ensures that genetic

operators such as crossover and mutation can be performed on the parent chro-

mosomes, yielding a prospectively enhanced o�spring with improved performance

attributes.

7.2.3 Membership Function Adjustment

Chapter 5 described Fuzzy Logic Control and discussed the role of Fuzzi�cation

and membership function selection for e�ective closed loop control. This section

looks at how membership functions can be appropriately encoded for optimization

by GA.

Two important factors in GA - Fuzzy design is the encoding of the chromosome

and the de�nition of the �tness function. Encoding of the solution space is one

of the more critical aspects of formulating the problem as a Genetic optimization

problem.

In this application, symmetrical encoding of triangular membership functions

are chosen, since this considerably reduces the GA search space and the number

of parametric variables for optimization. As the number of parametric variables

increase to de�ne the membership function, the search space increases as well.

In addition, selection of more mathematically complicated encoding schemes

for membership functions does not necessarily yield better performance attributes,

and is left to the control system designer for appropriate selection.



7.2. Evolution and Adaptation of Fuzzy Systems 115

Triangular µ(x, a, b, c) =



0 x ≤ a

(x−a)
(b−a)

a ≤ x ≤ b

(c−x)
(c−b)

b ≤ x ≤ c

0 x ≥ c

(7.1)

Trapezoidal µ(x, a, b, c, d) =



0 x ≤ a

(x−a)
(b−a)

a ≤ x ≤ b

1 b ≤ x ≤ c

(d−x)
(d−c)

c ≤ x ≤ d

0 x ≥ d

(7.2)

Gaussian µ(x, a, b) = e
−1∗(x−a)2

2∗b2 (7.3)

Bell µ(x, a, b, c) =
1

1+ ∥ (x−c)
a

∥2∗b
(7.4)

Figure 7.4 illustrates the encoding of the membership function. As can be

seen symmetrical triangular membership functions are selected. Parameters a

and b represent the tunable parameters over the Universe of Discourse (UoD).

Therefore for use within GA, the tunable parameters are encoded as either binary

chromosomes or as real valued encoding schemes and then concatenated to form

one coherent chromosome string to allow for genetic operations.

As genetic operators through GA evolve the membership function sets, the
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Figure 7.4: Chromosome Encoding of the Membership Function

Knowledge Base is improved to meet the stated performance criteria, requiring

limited or no domain expert intervention during the design process. In some

contexts, it may be required that the length of the chromosome be changed dy-

namically in response to the GA process (i.e. variable length chromosome string),

however, this increases the size of the GA search space. For this reason, we have

applied �xed chromosome length according to the design variables and the char-

acteristic properties of the problem to be solved.

It should be noted that the tuning of the Scaling Gains, Membership Functions

and the Rule Base cannot be performed independently of each other, since to a

certain extent, each in�uences the other in measure. Therefore, due to complexity

and size of the problem (number of input and output membership functions, size

of input output variables and the size of the rules), it is important to appropri-

ately select the methods of interactions during encoding in such a manner that

adjustment in�uences does not counter the e�ect of the other variables.
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Table 7.1: Linguistic term encoding and representation within the chromosome

# Linguistic Term Abbreviation Binary Encoding Integer Representation

1 Negative Big NB 001 1
2 Negative Medium NM 010 2
3 Negative Small NS 011 3
4 Zero ZZ 100 4
5 Positive Small PS 101 5
6 Positive Medium PM 110 6
7 Positive Big PB 111 7

As an example, the selection of the membership functions are closely related

to the fuzzy rules. A change in membership function de�nition would character-

istically also change the response of the rule base and similarly changes in the

rule base de�nition would change the interpretation of the membership functions

(see Figures 7.5 and 7.6). However, this to the GA process is trivial, but it does

increase the computational time of the Genetic run since complexity increases as

more parameters become available for optimization.
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Figure 7.5: In�uence of Tunable Parameter Variation of Membership Functions
on Rule Surface (a = 0.1, b = 0.2)

As can be seen (Figures 7.5 and 7.6) , with only a few parameters available,

in this case two for tuning, namely a and b, many permutation possibilities for

solutions exist. The �gures show a �xed Rule Base. Each of these variations
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would lead to di�erent dynamical closed loop responses.
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Therefore, any classical membership function can be used, given that an appro-

priate encoding strategy can be formulated as part of the optimization routine.

7.2.4 Fuzzy Rule Base Generation by Genetic Algorithms

Fuzzy Rule Based Systems (FRBS) have been increasingly applied to automatic

control systems, especially in power systems engineering, and in this context, to

Automatic Generation Control (AGC). Recently there have been developments

in the automatic adaptation of FRBS and Fuzzy Logic Controllers to account for

unknown system dynamics due to dynamic process variation over time.

With present uncertainty, the performance of the controller deteriorates which

is an inherently undesirable characteristic. Within the power system context,

there is continual power system growth, increasing load conditions, increasing in-

terconnections within neighboring control areas and also new electrical generators

being connected to the power grid. All of these factors have a profound e�ect on

the performance of the AGC controller. It is for this reason that FRBS, because
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of their inherent ability to embrace uncertainty, has found an attractive appeal

for power system application.

However, one of the di�culties in FRBS design is the development of the fuzzy

system to account for these dynamic variations. Genetic Algorithms have been

successfully applied as a search algorithm for Fuzzy Rule Base design. Thus evo-

lutionary genetics provide a convenient mechanism for adaptation and learning.

This is particularly achieved by means of genetic operators such as crossover and

mutation, in which new genetic material is created with the intent of creating

better o�spring.

This evolutionary process can be used as a means for providing population

diversity and can be employed as a rule discovery mechanism for FLC's (Figure

6.2). This approach to FLC controller design has proved valuable in instances

where expert knowledge of the process under control is not well known, in Multiple

Input Multiple Output (MIMO) FLC controller design where it is di�cult to

formulate control rules and in instances where complex dynamical systems are

applicable.

In addition, in instances where detailed process models are not available or

proves di�cult to obtain, evolutionary optimization is plausible. This is especially

relevant in situations where it is di�cult to obtain process models, either due

to the restrictions in plant testing for model parameter estimation. It is often

the case that testing of certain process plants cannot be implemented due to

the inherent risks associated with such testing. If this is the case, alternative

methods based on online process data and correlating the input and output data

characteristics may be required. In this manner, evolutionary optimization is one

method of obtaining process models for complex dynamical systems.
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Figure 7.7: Genetic Tuning of the Rule Base and the Knowledge Base

Therefore, fundamental to the design of Fuzzy Logic Controllers by means evo-

lutionary strategies is the encoding of the design problem into genetically tunable

parameters. Conventional FLC design uses expert knowledge for designing the

knowledge base (KB) and the rule base (RB).

Therefore, the application of genetic algorithms to FLC design, both the KB

and RB needs to be formulated as genetic chromosomes where genetic operators

such as crossover and mutation can be applied. The chromosomes are either

formulated as a binary string or as a real valued chromosome depending upon

the nature of the problem to be solved. This is graphically illustrated in Figure

7.2.

Depending upon the nature of the control problem, its complexity and respec-

tive encoding mechanisms for the Knowledge Base (KB), the selection between

binary string and real valued chromosome encoding is dependent upon the desired
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convergence properties of the GA. For certain problems, binary string encoding

provides limitations in that its mutation characteristics being the binary comple-

ment of the respective Bit, potentially slows down convergence rates. Alterna-

tively, real valued chromosome encoding provides alternative more methods for

achieving chromosome mutation and thus improves the convergence properties of

the Genetic Algorithm.

Table 7.2: Encoding of the Rule Base as a Genetic Chromosome

Rij : If ˙e(t) is CEi and e(t) is Ej Then u(t) is Rij (7.5)

In (7.5) CEi is the input linguistic membership function for the change in input

error (de(t)
dt

). Ej is the input linguistic membership function for the input error

(e(t)). Rij is the output linguistic membership function for the output (u(t)).

i & j are integer indices (i, j ∈ 1, 2, 3, 4, 5, 6, 7).

A static structure of the FLC RB is chosen in which the length of the chromo-

some is �xed and each entry is a binary representation of n = 3 bits, representing

a linguistic term (i.e. NB = 1, NM = 2, NS = 3, ZZ = 4, PS = 5, PM = 6

and PB = 7). The n = 3 bits represents an integer. The length of the rule base

chromosome is 147 bits long. Additional bits are added to represent the scal-
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ing gains on the FLC controller and the input and output membership functions

respectively.

7.3 On the Selection of the Fitness Function for Controller

Design

Assessing the performance of the control loop and the e�ectiveness with which the

control strategy regulates the process forms an important design consideration.

This is particularly important in the design of the GA - Fuzzy controller, since the

evaluation of system performance in the form of the �tness function de�nes and

directs the success of the genetic algorithm. In some cases, this may prove to be

a non-trivial task and careful selection of the �tness function may be needed.

Automatic generation of fuzzy logic controllers by means of genetic algorithms

is largely dependent upon the choice of the �tness function. Improper selection

of the �tness function would mean that the performance of the system would not

lead to optimal results. It should also be noted that the �tness function is problem

dependent and is chosen in line with the objectives of the design criteria.

Fitnessmin =
ITAE

ITAE + 1

where, ITAE =
N∑

IC=1

T∑
t=0

t|ACE1|+ t|ACE2|
(7.6)

In (7.6), IC is the Initial Conditions chosen for the design, where N = 8 is the

number of initial conditions and IC ∈ (-0.01, -0.01) (-0.01, 0) (-0.01, 0.01) (0, -

0.01) (0, 0.01) (0.01, -0.01) (0.01, 0) (0.01, 0.01) are symmetrical load disturbances
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in each control area of the interconnected power system (See Figure (7.8)). ACE

is the Area Control Error.

In conventional GA optimization routines, the GA algorithm maximizes the

�tness function as to propagate the survival of the �ttest individual, therefore

in equation (7.6) the minimization of the cost function ITAE is chosen. In

control theory we are interested in the minimization of control system errors, to

maintain good set-point regulation and good disturbances rejection properties.

This is achieved by the former construction of the �tness function.
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7.4 AGC Controller Design

Automatic Generation Control is described in section 2.2 as a closed loop real

time controller where the aim is to ensure that the control area's generation

matches the demand for load. In addition, it also endeavors to maintain Tie -
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Line power �ow and system frequency at its nominal value, while also minimizing

a cost objective, known as Economic Dispatch (ED).

Not only limited to this, AGC regulates all power generators to minimize

frequency changes, �rstly by Primary Frequency Control or speed governing and

then by Secondary Frequency Control (or AGC). The latter is comparably slower

than Primary Frequency Control, which operates on the order of seconds while

AGC only responds to persistent frequency deviations over a period of minutes.

Figure 7.9 illustrates the operation of Primary Frequency Control and Sec-

ondary Frequency Control. As can be seen the Speed Controller performs the

speed regulation function of the turbine during run ups.
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Therefore, the AGC performance is dependent upon how fast the generating

units can respond to AGC commands, in terms of Raise and Lower commands

from Central Dispatch, and also upon the health of the particular generating unit.

This would include, coal quality for coal powered stations, type of unit, whether

it is a Drum or Bension type boiler, the respective control strategy used for
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coordinated control of boiler and turbine control system and also on the general

health state of the unit.

At synchronized speed, the Load Controller becomes the active control agent

of the control system. It accepts a load reference signal ∆Pc(t) from the AGC

controller, to control the ramping ability of the machine according to frequency

deviations ∆f(t) and power deviations ∆P (t).

The load reference ∆Pc(t) signal is sent from National Dispatch, who monitors

the control areas inter area power �ows and network frequency, these quantities

are collated to form the Area Control Error (ACE) as described by Section 2.3.2.1,

Equation 2.1. It is the ACE error which gives an indication of the energy balance

contained within the electrical network. A positive ACE indicates over genera-

tion, while a negative ACE indicates under generation.

7.4.1 Conventional PI and PID AGC Control

Within an AGC context, PI and PID AGC controllers are typically tuned by

either classical design approaches or more generally by trial and error techniques

(Khodabakhshian and Edrisi (2008); Sinha et al. (2008); Tan (2009)), and thus

closed loop performance deteriorates when nonlinearities are present and does

not o�er good dynamic performance over all operating regimes and loading con-

ditions.

Therefore, PI and PID type AGC controllers require continual tuning and

optimization throughout the operational life of the controller. This is primar-

ily due to variations in network conditions over time, increasing load demands,

additional generators being connected to the electrical grid, deteriorating perfor-

mance of generating units and other unknown dynamic in�uences which a�ect
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the performance of the control system.

Nonetheless, amidst these shortcomings, PI and PID type AGC control laws

are the more frequently applied AGC controllers used within industry today (Ra-

makrishna and Bhatti (2008); Anand and Jeyakumar (2009a)). This stems pri-

marily from its ease of implementation, it is well understood and it provides a

platform for nominal performance.

Tables 7.3, 7.4 and 7.5 clearly illustrate the design of the PI and PID type con-

troller as applied to the AGC control problem for various closed loop performance

criteria.

Table 7.3: Nominal PI Controller Gains Optimized by GA

IAE ISE ITAE ITSE
KP 0.2218 0.1221 0.0812 0.0194

KI 0.0548 0.0567 0.0711 0.0881

It is seen that the controller performs well amidst nonlinearities such as gov-

ernor Deadband (DB) and Generation Rate Constraint (GRC), see sections 2.4.2

and 2.4.4 respectively.

Table 7.4: Nominal PID Controller Gains Optimized by GA

IAE ISE ITAE ITSE
KP 1.1353 0.1226 1.1333 0.2755

KI 0.0740 0.1124 0.1196 0.0748

KD 1.3787 1.4758 1.3525 1.3688

Observation of the performance values (Table 7.5) and comparison of the tran-

sient responses (Figure 7.10) con�rms that the selection of the performance cri-

teria plays an important role in the optimal transient response characteristic

for AGC control of Interconnected Power Systems (Sinha et al. (2008); Patel

(2007)).
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It is also noted that in the presence of GRC, the performance of the system

tends to be oscillatory in nature. From a practical perspective this is also con-

�rmed by the fact that the rate of change limits on Generation (especially by the

Generating Unit) has a signi�cant impact on network performance. Therefore

Generation rate limits imposes a limit on response and because the AGC con-

troller over compensates, a slightly oscillatory response is seen. This is mitigated

by slightly de-tuning the AGC controller be a certain margin.

Table 7.5: Performance Indices for PI and PID type Control Laws

IAE ISE ITAE ITSE
PI 0.2208 0.9370 0.0319 0.5950

PID 0.2208 0.9370 0.0319 0.7646
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Figure 7.10: PI/PID Controller Response For Various Performance Indices With
Nonlinearities, such as Deadband and Generation Rate Constraint
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7.4.2 GA Fuzzy Controller Design

Chapter 5 introduced FLC controller design, highlighting certain fundamental

aspects of controller design and optimization by expert knowledge. This section

expounds further on FLC design and presents GA-Fuzzy controller design, by

means of a multi - objective optimization problem where evolutionary strategies

are employed within the design.

Equation 7.7 illustrates the optimization problem as an objective (�tness) func-

tion (f(x)) minimization problem subjected to optimization constraints (g(x)).

The decision for Minimization or Maximization is dependent upon the nature

and attributes of the problem, however within a Genetic sense, the objective is

to maximize the �tness function (Bodenhofer (2004); Ji-lin et al. (2006)).

Minimize (or Maximize)

f(x) = {f1(x), f2(x), · · · fi(x), · · · fN(x)} (7.7)

Subject to Constraints

A(x) ≤ g(x) = {g1(x), g2(x), · · · gi(x), · · · gN(x)} ≤ B(x)

In equation 7.7, f(x) is the objective function, x is representative of the search

variables, g(x) is the set of objective constraints, i is the sequential objective

function index and N is the total number of objectives present in the problem.

A(x) and B(x) is lower and upper bounds respectively, and is problem speci�c

according to the nature of the problem being solved.

Typically within control system design, there exists a con�ict between ob-

jective functions and their respective constraints and as such a compromise in
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performance is usually deemed necessary. This inherently implies that there ex-

ists invariably many solutions to the problem as the search space increases and

thus the solution is not unique. However, analysis of the solutions would indi-

cate that acceptable solutions would lie within certain boundaries of performance

and robustness characteristics, this typically provides for su�cient engineering

decision ability to select the most appropriate solution.

By its application, GA's are well suited for multi - optimization control prob-

lems and several approaches to control and AGC design alike by GA have been

proposed in the literature (Golden (2003); Garduno-Ramirez and Lee (2002);

Ghoshal (2005); Du and Li (2006); Chen and Cartmell (2007); Ishibuchi (2007);

Eksin (2008)).

Firstly from an AGC perspective, generating units are required to respond

to random load �uctuations and to cycle from minimum generation through to

maximum generation as the demand for energy dictates according to strict time

schedules. Although most generating units are designed for a base load type oper-

ation, cycling of generating units imposes rigorous wear and tear on the mechani-

cal components of the unit, and thus as part of the AGC performance objectives,

it is required to maximize equipment operational life cycle expectations.

There may also be objectives for the minimizing of fuel consumption, envi-

ronmental objectives such as emissions control, reducing thermal stress on the

machine due to cycling and for the life extension of metal components by e�ec-

tive AGC regulation and control. In order to meet these objectives, AGC typically

is tuned very conservatively to meet all the operational objectives throughout a

wide range of operating modes.

Secondly, GA's operates on a population of solutions and thus they are well

suited for multi - objective search problems. Hence this is conveniently encoded
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within the Pittsburgh approach to GA-Fuzzy design, where the entire solution is

encapsulated within the encoding framework (Ishibuchi (2007)).

7.4.2.1 Chromosome Encoding and Problem Formulation

For the application of GA's in the design of GA-Fuzzy controller design, an ef-

fective mechanism of representing knowledge is required. In traditional FLC

methods, experience and operating control knowledge is formulated as a set of

rules. However, this may be a time consuming and an expensive exercise (Park

and Lee-Kwang (2000); Kim et al. (2008b)) and much of the controller tuning

depends on trial and error methods. Therefore automatic methods of designing

FLC controllers, in their Knowledge Base and Rules Bases are required and have

seen increasingly more research interest (Makrehchi (1995); Peng et al. (2001);

Surmann et al. (2002); Castro and Camargo (2004); Li et al. (2005); Li and Du

(2006); Czekalski (2006); Sánchez et al. (2009)).

Figure 7.4 and Table 7.2 illustrated the encoding mechanisms for the mem-

bership functions and the rule base respectively. In fact there is no globally

prescribed mechanisms of encoding, su�ce to say that it adequately represents

the problem to be solved and that each of the tunable parameters are represented

within the encoding process.

Shown in Table 7.6 is a representation of the encoding scheme used in the

AGC design process, where the chromosome length increases with the magni-

tude of the problem and hence the encoding process varies. In some contexts,

a variable chromosome length could also be used (Park and Lee-Kwang (2000)),

which dynamically changes as the GA process continues, however, we have used

a �xed total chromosome length in response to the dictates of the problem re-
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Table 7.6: GA-Fuzzy Controller Encoding as applied to AGC Design

No. Description of
Encoding

Parameters Encoding Bits Total Bits

1. FLC Scaling
Gains

(KP , KI , KD)

3 Binary 24X3 72

2. Membership
Functions
(ai, bi)

i = 3 Binary 24X6 144

3. Rule Base
(e(t), d

dt
e(t))

7X7 Binary 3X49 147

4. Chromosome
Length

(ChromoLength)

1 Binary 363 363

quirements.

7.4.2.2 Genetic Parameters for Optimization

One of the problems associated with genetic algorithms is of early convergence

where the Genetic process �stalls� in �nding solutions, and prematurely returns a

result. This may be overcome by dynamically changing the Genetic Parameters

(Table 7.7) as the genetic generation continues (Adriansyah and Amin (2005);

Kaya and Alhajj (2006)).

Increasing the Mutation Probability (Pm) would reduce the optimization rou-

tine to a random search. This is important to realize since it provides information

into the selection of the Pm. Typically, Pm is selected relatively small and con-

tributes to maintaining adequate genetic material within the Population. This

provides guidelines into dynamically changing the genetic parameters. In addi-

tion, by observing the rate of convergence, additional guidelines are provided for

genetic parameter selection.
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Table 7.7: Genetic Optimization Parameters for GA-Fuzzy Controller Design as
applied to AGC

No. Parameter Value

1. Number of Generations (nGen) 50
2. Population Size (nPop) 60
3. Mutation Probability (Pm) 0.02
4. Crossover Probability (Pc) 0.75
5. Number of Bit for Reals (nBits) 24
6. Elitism True
7. Chromosome Length (in Bits) 363

This is achieved by modifying either the Mutation Probability (Pm) or the

Crossover Probability (Pc) or both according to a prescribed path. Increasing Pm

increases population diversity, while Pc adds genetic material through reproduc-

tion.

7.4.3 Discussion

The dynamic frequency response model for a two area interconnected power sys-

tem is studied and is shown in Figure 7.11 below.

Each of the major components of the model is de�ned in section 2.4, where

the major non linear components such as Deadband (DB) and Generation Rate

Constraint (GRC) is described.

Each interconnected control area contributes to the control of system fre-

quency, in response to its own random load variations. The ACEi error of the

area is used as a performance measure where the objective is to maintain the

ACEi error at zero (i.e. ACEi = 0).

ACE and Frequency Control (FC) of Interconnected Power Systems is closely
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related to the regulation of power, and within a multiarea power system it is

important to control Tie - Line power exchanges, Power Scheduling and Load

Following ability of the power utility. In order to achieve these performance

demands, Frequency Control as has been noted in Chapter 2 responds to load

variations on the order of a few seconds to about a few minutes in response time,

while load following is of the order of a few minutes to about an hour.

Therefore initial control a�ect is realized by governor control within the �rst

few seconds, AGC control within the �rst few minutes and models for economic

dispatch and scheduling over minutes through to hours. Thus within multiarea

systems, the control of Tie - Line power �ows is of paramount importance, since

it has an encapsulated �nancial objective associated with it in terms of bilateral

trade agreements with neighboring control areas.

Therefore, with this in mind, the GA-Fuzzy AGC controller is to be robust to

parametric changes, representative of actual power system uncertainties.

7.4.3.1 GA Tuning and Optimization for AGC Systems

Power system operation and control as applied to AGC systems play an important

role in the regulation of real power, for frequency control and for the maintenance

of AGC systems within optimal performance criteria. This has played a dominant

role in the control of interconnected power systems by controlling Tie - Line Power

�ow and the control of system frequency (see section 2), both from a primary and

tertiary frequency control perspective.

This is important since it lends itself to the support of neighboring control

areas in the event of any load variations. Thus the goal of electrical power sys-

tems is to match system generation to the instantaneous load requirement of the
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interconnected electrical grid. In addition, any ill tuned control areas, in terms

of AGC performance, adversely a�ects the performance of large interconnected

power systems.

Thus, within AGC systems the health of network frequency is the primary

indicator of network performance and forms the measure by which system gen-

eration performance is analyzed. Since frequency is the major common factor

within the interconnection, any frequency deviation from its designated nominal

operating frequency is a measure of network health. Typically the integral of

frequency over time is a measure of performance.

Figure 7.12 illustrates typical performance measures as the integral of fre-

quency and its variants evolves over a number of genetic generations. Although

the performance measure is problem speci�c, its selection is often by design where

the one main requirement for e�ective performance measure selection is that it

uniquely represents the problem by ensuring a clear distinction between solutions,

re�ecting the relative strengths and weaknesses of each possible solution. By us-

ing GA for tuning, optimization and learning, the objective in AGC studies is

to �nd a plausible AGC controller for maintaining frequency deviations close to

zero as is practically possible.

Therefore this section presents results on GA tuning of AGC systems and its

optimization by means of GA heuristics as applied to Fuzzy rule based systems.

7.4.3.2 AGC Simulation of GA Fuzzy Controller

Due to the heuristic nature of genetic algorithms, a feasible solution cannot al-

ways be guaranteed. This in part is motivated by the convergence properties of
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Figure 7.12: Typical Genetic Comparison of Performance Indices

the genetic algorithm, whereby a particular solution dominates the population,

contributing to premature convergence and in most cases does not yield the best

solution.

Therefore, in order to minimize this e�ect, a number of genetic runs are per-

formed in the design of the GA - Fuzzy controller, where, in essence a number of

multiple populations are maintained, and facilitates a semi parallel population of

solutions (Pulido and Coello Coello (2003); Herrera (2005)). This ensures that

the designed GA - Fuzzy controller performs robustly and that the �nal solution

adequately controls the AGC process. This is illustrated in Figure 7.13, where

a number of GA - Fuzzy controllers have been designed and compared to the

conventional AGC controller.
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Figure 7.13: A comparison of a number of GA - Fuzzy Controllers showing the
frequency response characteristic due to a load disturbance in Area
1 without DB and GRC.

It is clearly seen that favourable performances are obtained when compared

with conventional PI AGC methodologies. It is immediately evident from Figure

7.13 that the performance of the GA - Fuzzy controller to load disturbances

(0.01 p.u.MW) yield satisfactory transient response performance. GA - Fuzzy

# 5 compares favorably in that it provides for faster zero steady state error

when compared with the PI and adequately maintains good disturbance rejection

properties.

Dynamic frequency response curves are shown in Figure 7.14 due to a load

disturbance in control area 1 of (0.01, 0) p.u. MW, with frequency deadband.

As can be seen from the transient response curves, comparing the PI controller

response to that of the GA Fuzzy controller, both controllers respond in a sim-

ilar fashion, ensuring that the ACE error is zero, with the GA Fuzzy controller

performing favorably.
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Figure 7.14: A comparison of a number of GA Fuzzy Controller showing the fre-
quency response characteristic due to a load disturbance in Area 1,
and considering governor deadband.

It is important that the response tends towards zero as quickly as possible,

being robust against random load disturbances and growing power system com-

plexity. As the complexity of the electrical network grows over time, the perfor-

mance of the AGC controller deteriorates and requires continual optimization and

tuning for best performance. However, the important attributes of the controller

is to guarantee robust performance within the operating region of Secondary Fre-

quency Control.

Table 7.8 tabulates the designed GA - Fuzzy controller rules (GA - Fuzzy # 5),

where each row and column entry is representative of the linguistic term forming

part of the encoding strategy (i.e. NB = 1, NM = 2, NS = 3, ZZ = 4, PS =

5, PM = 6 and PB = 7). The method of how the Rule Base is encoded forms

an important part of how the optimized Rule Base is structured. Therefore, it

is proposed to �rst design the rule base, then to tune the respective membership

functions and then the respective scaling gains. Encoding strategies which include
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all components of the Rule Base system, namely the Rule Base and the Knowledge

Base also exist.

Table 7.8: Optimized GA Fuzzy Rules Table (GA - Fuzzy # 5)

PPPPPPPPP
d
dt
e(t)

e(t)
NB NM NS ZZ PS PM PB

NB 6 3 6 7 2 1 1

NM 3 7 1 6 2 1 3

NS 4 1 3 6 7 3 4

ZZ 1 2 4 4 4 7 4

PS 1 4 1 2 5 2 2

PM 4 3 5 7 6 6 5

PB 1 4 3 5 3 7 7

It is clearly seen from the transient response curves (Figure 7.15) that GRC

has a destabilizing e�ect on the AGC control system (Panda et al. (2009b)). In

practice, AGC controllers are typically detuned with lower overall process gain

to manage GRC, however this sacri�ces AGC speed of response, which forms an

important component for good load disturbance rejection properties.
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Figure 7.15: A comparison of a number of GA Fuzzy controller showing the fre-
quency response characteristic due to a load disturbance in Area 1,
and considering Generation Rate Constraint.

In addition, Figure 7.15 illustrates the performance of a number of GA - Fuzzy

controllers and their in�uence in the presence of GRC. It is seen that the GA -

Fuzzy controller consistently regulates the system frequency with zero steady

state error and compares favorably with the conventional PI controller strategy.

Since all GA - Fuzzy controllers (GA - Fuzzy # 1 through to 7), although di�erent

in KB and DB, their transient performances are similar, thus making them all

plausible solutions. It is interesting to note, that if the GA problem is formulated

correctly with an appropriate encoding strategy, the GA consistently provides

plausible solutions.
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7.4.3.3 GA - Fuzzy Controller Robustness and Parametric Model

Variation

Over the past few decades, continual research has been focused on robust AGC

control methodologies (Shayeghi et al. (2009); Bevrani (2011)) and has been ap-

plied to various technical areas for power plant control and operation. In conven-

tional AGC controller design techniques, a model based approach has typically

been the industrial norm and is based on human experience and mathematical

modeling techniques (Peet and Leung (1995); Egido et al. (2004); Barbieri and

Lastra (2007)).

However, AGC controllers based emphatically on mathematical modeling does

not provide adequate solutions for real world application, where power systems

and electrical networks are continuously increasing in size and where the complex-

ity of electrical interconnections are changing (Taher and Hematti (2008); Taher

et al. (2008)). This is particularly motivated by insu�cient technical information

of process dynamics, limited or simpli�ed process models and unknown or ne-

glected system modes (Tan and Xu (2009)). Hence the performance of the AGC

controller is evaluated in the presence of parametric uncertainty as a measure to

contrast controller performance.

Figures 7.16 and 7.18 shows the performance of the GA - Fuzzy controller

for parametric model variations, where it is immediately apparent that the GA

- Fuzzy controller is more robust to model uncertainty. This is inline with the

expectation of advanced techniques such as GA - Fuzzy AGC control methodolo-

gies, where evolutionary methods of optimization proves bene�cial for controller

design. Conventional PI methods are unstable as the uncertainty grows and re-

quires continual controller tuning to maintain performance requirements.
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Figure 7.16: Nominal performance due to Model Parametric Variation for various
uncertainty values, (a) GA - Fuzzy Controller response, (b) Conven-
tional PI Controller response.
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Figure 7.17: Frequency response comparison due to Model Parametric Variation
for various uncertainty values considering deadband, (a) GA - Fuzzy
Controller response, (b) Conventional PI Controller response.
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Figure 7.18 shows the GA - Fuzzy controller's performance due to an electri-

cal load disturbance in presence of generation rate constraint. Generation rate

constraint is one of the important limiting factors in the transient response of

the generating unit and have a signi�cant impact on AGC controller performance

and for frequency response studies. The �gure (7.18) illustrates that GRC has a

destabilizing e�ect on the system, and both AGC controllers, namely PI and GA

- Fuzzy controller are sensitive to GRC variations (Panda et al. (2009b); Anand

and Jeyakumar (2009a)).
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Figure 7.18: Frequency response comparison due to Model Parametric Variation
for various uncertainty values considering Generation Rate Con-
straint, (a) GA Fuzzy Controller response, (b) Conventional PI Con-
troller response.

7.4.3.4 Exploration versus Exploitation of Search Space

Exploration and Exploitation are two of the main focus areas of GFRBS. In

Exploration, the adaptation and learning abilities of the genetic algorithm are
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e�ectively harnessed in the pursuit of �nding new solutions to the problem (Ng

and Lim (2002)). This is typically achieved by adjustment of the mutation genetic

operator in the GA.

Exploitation on the other hand refers to the ability of the heuristic algorithm to

improved on genetic o�spring through reproduction primarily and selection of the

strongest individual, to dominate the direction of the search results. Both meth-

ods, namely Exploration and Exploitation are fundamental concepts in GRBS

(Lin and Jou (2000); Ji-lin et al. (2006)).

This has invariably lead to modi�cations to the typical implementations of

evolutionary algorithms (GA's), to enhance the characteristic traits of the GA

in �nding solutions. In order to achieve these enhancements, there are primarily

two areas of greatest in�uence of where this can be achieved.

7.5 On Using Bezier Surface Encoding for GFRBS

One of the most fundamental functions in GA-Fuzzy controller design is the ra-

tionalization of the chromosome encoding. This typically has followed a structure

where each fuzzy rule is coded sequentially as a binary string, where genetic op-

erators such as crossover and mutation would perform its reproductive functions

(Janabi-Shari� (2002); Adriansyah and Amin (2005); Bousserhane et al. (2006);

Cai and Rad (2007)).

However, one of the drawbacks of this technique is that it is dependent upon

the number of rules, which when there is a substantial number of rules, the

genetic search space would increase accordingly (Magdalena (1997); Sharkawy

and Others (2010)). In addition the size of the binary chromosome would also

increase requiring increased computational time and encoding complexity.
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Therefore, this work focuses on applying Bezier Surfaces as a means of repre-

senting the fuzzy control surface directly. This is particularly motivated by the

ease by which Bezier Surfaces are represented and secondly by the relatively small

number of control points used to represent the Bezier Surface in contrast to the

number of fuzzy rules (Zhuang and Wongsoontorn (2006)).

By means of illustration, a fuzzy controller with 49 fuzzy rules would require a

binary string representation of the 49 rules, whereas a Bezier Surface represented

by 16 control points would require a binary string representative of these 16

control points. The Bezier Surface and the Fuzzy Control Surface is synonymous

in that the Bezier Surface is the representation of the control surface.

7.5.1 Chromosome Encoding by means of the Bezier Surface

Parametric curves or surfaces such as Bezier Surfaces is an extension of Bezier

Curves which was invented speci�cally for the car manufacturing industry by

Pierre Bezier in the early 1960s for the development of curves for shape design

(Zhuang and Wongsoontorn (2006)). These curves are intuitive and lend itself to

a large variety of curves or surface shapes based on the manipulation of only a

few control points. In addition, these curves are smooth and have an aesthetic

appeal which may be of bene�t to Fuzzy Logic controller design from a surface

perspective, ensuring that control functions are not erratic. By de�nition a Bezier

Surface S(u, v) is as shown in Equation 7.8.

S(u, v) =
m∑
i=0

n∑
j=0

Pij ∗Bm
i (u) ∗Bn

j (v) (7.8)

Where Bm
i (u) and Bn

j (v) represent the Bernstein polynomials with degree m

and n in the variables of u and v respectively. Pij is an m by n matrix of control
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points Pij ∈ ℜ3 with i = 0, 1, ,m and j = 0, 1, , n. As can be seen, the Bezier

Surface is a combination of the control points and the product of the Bernstein

polynomials; this creates the terms of the surface. Thus the Bezier Surface is a

parametric surface based on the control points.

The Bernstein polynomials are de�ned as is shown in Equation 7.9. Figure 7.19

illustrates the encoding of the FLC including is scaling gains and fuzzy control

surface. Each allele is represented a binary string.

Bm
i (u) =

m

i

 (1− u)(m−i) ∗ ui (7.9)

In Equation 7.9,

m

i

 = m!
i!(m−i)!

.

Figure 7.19: Illustration of the Chromosome Encoding of the Bezier Polynomial
Coe�cients, Control Points and Scaling Gains

The optimal control points matrix Pij is shown below (Equation 7.10), manip-

ulating the control points would adjust the fuzzy control surface accordingly, this

indirectly modi�es the Rule Base as well.
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Pij =



0.8571 0.4386 −1.1868 −0.8933

1.3188 0.1876 −0.1465 −0.4923

0.7555 0.0411 0.1055 −0.6919

0.0154 −1.2106 0.1221 0.7656


(7.10)

As can be seen from the transient response curves (Figure 7.20), comparing the

PI controller response to that the GA Fuzzy controller, both controllers perform

similarly, however, the GA Fuzzy controller is more robust in the presence of

Generation Rate Constraint (GRC).

Figure 7.20: Transient Response Curves for Optimized GA-Fuzzy Controller with
Encoding by a Bezier Surface, showing Area frequency response to
load disturbance.

It is an important characteristic for controllers to be robust in the presence of

parametric variation and model uncertainty. In the case of AGC, power system

dynamics are constantly changing, loads are changed randomly, requiring robust

AGC performance. With GRC, each generating unit forming part of the network
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has physical rate limits and thus the ramping of the machine is limited.

Figure 7.21: Area Control Error response to load disturbance using Bezier Surface
Encoding

7.6 Summary of Chapter 7

Chapter 7 focused on the design and analysis of a GA - Fuzzy AGC controller for

a large interconnected power system. The chapter described the genetic tuning

and learning of Fuzzy Rule Based systems by means of Genetic Algorithms, and

how GA's can be used as a good global near minimum optimization and learning

tool.

The chapter highlighted the importance of chromosome encoding and empha-

sized the need for e�ective �tness function selection. This plays a signi�cant role

in GA - Fuzzy controller design.

The chapter concludes by illustrating transient response curves and shows

that comparably favourable results are obtained, when compared to conventional

AGC controller design strategies. The chapter �nally discusses concepts such as

Exploration and Exploitation and how these can be of bene�t to GA - Fuzzy
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Controller design.

This chapter has also illustrated the application of Bezier Surfaces as an encod-

ing mechanism for GA - Fuzzy Controller design. Results show that fuzzy con-

trol rules can be considerably reduced by this encoding mechanism, and hence

simpli�es the search space for controller optimization. Transient performance

characteristics are favourable.



Chapter 8

Conclusions and Future Work

The Automatic Generation Control (AGC) problem of large Interconnected Power

Systems is discussed in this thesis, especially the design of AGC controllers and

how Soft Computing as applied under the auspices of GA Fuzzy Controller design

techniques can be applied as a viable AGC control strategy.

Therefore, in this research, emphasis has been placed on understanding the

interactions of GFRBS, their speci�c methods for encoding a problem and on how

these techniques can be e�ectively applied to the study of Secondary Frequency

Control for dynamic frequency response studies.

Although AGC has a relatively long history of application and have been

part of power system technology since the design of centrally controlled power

systems, there is a continual need for improved AGC performance, especially when

conventional methods fail or deteriorating performance is observed by prevailing

control strategies. It is for this reason that modern controller design techniques

are relevant and applicable for the closed loop design of AGC systems.
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It was noted in Chapter 1 that AGC control is a challenging problem for

modern power utilities, �rstly from a performance perspective to guarantee a

reliable supply and quality of electrical energy but more importantly as well to

ensure robustness of performance amidst the changing dynamic environment of

electrical power networks and systems.

The dynamic changes experienced throughout the life cycle of power systems

have many contributing factors, in part attributed to unknown knowledge of

system behavior, neglected process dynamics and a limited knowledge of system

interactions, which makes modeling for AGC systems particularly trying.

This invariably introduces the notion of vagueness and imprecision and how

best these concepts can be modeled within modern AGC design. Although mod-

ern practice for AGC control rests strongly upon the shoulders of the classical PI

or PID type control law, modern techniques for AGC design which encapsulates

imprecision and uncertainty is gaining continual support.

One technique as contained and described within this thesis is GFRBS and

is hereafter described with key observations and how best it can be applied for

AGC.

8.1 General Discussion on GFRBS

In order to appreciate GFRBS, an in depth knowledge of Rule Based Systems

is needed, in particular the merits of Heuristic Search methods and its variants

are investigated in Chapter 4, while Fuzzy Logic Control and knowledge based

systems are examined in Chapter 5. These Chapters have formed the foundation

for discussions on Soft Computing and Genetic Fuzzy Systems as contained within

Chapter 6.
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8.1.1 Genetic Algorithms

From within an engineering context and a systems design application perspec-

tive, Genetic Algorithms have been proven to be a reliable and robust method of

Heuristic Search (Chapter 4) for �nding solutions based on population dynam-

ics.

In particular the learning ability of Genetic Algorithms and applied to GFRBS

is marked by great success and widespread application. However, one attribute

as described in Chapter 4 and rea�rmed by Chapter 7 which decreases the al-

gorithm's convergence to a global optimal solution, is that GAs does not always

guarantee an appropriate solution.

This invariably then requires problem re-formulation and adjustment, either

by changing Crossover and Mutation probabilities PC and PM respectively or

modifying the �tness function to represent the problem performance criteria more

holistically. In some cases it may be necessary to rerun the algorithm until an

acceptable solution is found.

In addition, GAs utilize huge amounts of computational resources, especially

by the calculation of the �tness function. However, modern computational sys-

tems with embedded multiprocessor platforms substantially reduce computational

time for algorithm execution. This may warrant more e�ective methods of �tness

function evaluation, especially when the problem under investigation is complex,

requiring rigorous mathematical calculation or simulation.

Nonetheless, Genetic Algorithms in the form of the Simple Genetic Algorithm

(SGA) has performed very well in �nding solutions for the GA - Fuzzy AGC

controller.
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8.1.2 Strengths and Weaknesses of GFRBS

As described by Chapter 6, especially Section 6.3, there are conventionally three

approaches to GFRBS, namely the Michigan, the Pittsburgh and the Iterative

Approaches to Genetic Fuzzy Rule Base Systems. All other GFRBS are either

variants of the three main categories, or employ di�erent encoding mechanisms

for improved performance.

The strength of the Michigan Approach is that it is iterative (similar to the

Iterative GFRBS) and lends itself to online or real time application for control

or problem solving. However, the coding of the Michigan Approach can be a

daunting task when started from the beginning, and is prone to error, without

substantial debugging. Therefore, for the application of the Michigan Approach

application use of commercial implementations of the algorithm would be bene-

�cial in order to save programming time.

In addition to this, because the Michigan Approach is online and because of

genetic evolution and learning, stricter control of the E�ector control actions are

warranted, especially for real time control of AGC systems. Although there are

control strategies which mitigates this e�ect, additional control algorithms may be

required for this to be e�ectively realized in practice. This stems primarily from

the fact that learning occurs over time, where weaker individuals are penalized

and receive an equivalent reward.

Therefore, being an o�ine learning method, the Pittsburgh GFRBS approach

is more attractive and allows for designed intervention in �nding and validation

of controller actions. This is particularly important in AGC controller design,

where it is mandatory to ensure that all control actions distributed to generating

units under control of AGC are well within operational boundaries.
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Furthermore, the Pittsburgh Approach more directly employs the standard

SGA algorithm structure, making the algorithm very versatile with minimal mod-

i�cation, and can be applied to a wide spectrum of control problems, where the

problem is appropriately formulated according to the dictates of the design ob-

jective.

8.1.3 GA - Fuzzy AGC Controller Design

The premise of the thesis as described by Section 1.2 and further detailed in

Chapter 7 is to show the plausibility of GA - Fuzzy Controller design for AGC

control systems. Because the process of control optimization and tuning is iter-

ative and continual evaluation of closed performance is required, the application

of GFRBS is an attractive method for controller design.

When considering Fuzzy Logic Controllers, human knowledge of the process is

tabulated as a set of Rules which governs a set of control actions, however �nding

the speci�c control rules which globally optimizes closed loop performance can

be di�cult to obtain. This is especially di�cult when expert knowledge of the

system is not known.

Therefore GA - Fuzzy AGC systems have been investigated. It is found that

GA - Fuzzy AGC systems are comparable to conventional controller methods,

both in terms of robust performance and nominally returning the Area Control

Error to zero following signi�cant load variations. However, it is also found that

the GA - Fuzzy AGC controller is more robust to nonlinearities such as Generation

Rate Constraint (GRC).

This is an important �nding, since Generation Rate Constraint tends to desta-

bilize frequency performance and has a negative e�ect on network performance
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as a whole, both in terms of scheduled power exchanges and generating unit

response.

Problem formulation and chromosome encoding is probably one of the most

important factors to be considered in any GA - Fuzzy Controller design exercise,

since this to a large extent de�nes the measure of success of the design. Various

encoding methods can be used, with no prescribed directive of how the encoding

should be performed, su�ce to say that it needs to be representative of the

controller structure, its internal functioning and and that it su�ciently describes

the control problem.

The extension and application of Genetic Fuzzy Rule Based Systems (GFRBS)

to all spheres of engineering analysis and design can be accomplished fairly readily

by appropriate problem formulation and design of the problem speci�c objective

function. The methods and techniques discussed within this document outlines

minimal processes for GFRBS design and future work will be focused on more

generalized formulations for more global application.

8.2 Summary of Contributions

This work made contributions to the international literary community by the

acceptance of three (3) technical papers accepted for publication, as summarized

below. Each of the papers contain certain aspects of the contents of this thesis and

have contributed to the body knowledge on GFRBS, speci�cally applied to the

Automatic Generation Control problem of large interconnected power systems.
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8.2.1 Application of GA-Fuzzy Controller Design to Automatic

Generation Control

Portions of Chapters 1, 2, 4, 5, 6 and 7 have appeared in the following paper:

Application of GA-Fuzzy Controller Design to Automatic Generation

Control, Craig D. Boesack, Tshilidzi Marwala and Fulufhelo V. Nelwa-

mondo, Third International Workshop On Advanced Computational

Intelligence (IWACI2010).

8.2.2 A GA-Fuzzy Automatic Generation Controller for Interconnected

Power Systems

Large portions of Chapters 2, 6 and 7 have appeared in the following paper:

�A GA-Fuzzy Automatic Generation Controller for Interconnected

Power Systems�, Craig D. Boesack, Tshilidzi Marwala and Fulufh-

elo V. Nelwamondo, Fourth International Workshop On Advanced

Computational Intelligence (IWACI2011).

8.2.3 On the application of Bezier Surfaces for GA - Fuzzy controller

design for use in Automatic Generation Control

Large portions of Chapters 2, 6 and 7 have appeared in the following paper:

�On the application of Bezier Surfaces for GA - Fuzzy controller design

for use in Automatic Generation Control�, Craig D. Boesack, Tshilidzi

Marwala and Fulufhelo V. Nelwamondo, 2nd International Conference

on Advances in Energy Engineering (ICAEE2011).
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8.2.4 Dynamic governor model development for grid code compliance in

South Africa

�Dynamic governor model development for grid code compliance in

South Africa�, Graeme Chown, Craig Lucas, Mike Coker and Rahul

Desai - PPA Energy, Jean vd Merwe and Christelle - MTech, Bunty

Kiremire, Craig Boesack, Preshen Moodley and Albert Smit - Eskom.

To be submitted to Energize 2012.

8.3 Future Work

The �eld of GFRBS, its methods and application is of relevance to modern power

systems today, both from a regulation perspective of generating units and for

supervisory control and monitoring of secondary control loops. Its application

is widespread and continues to grow through the application of new technology.

However, there are areas of research which have not matured and would form an

area for future work and basis for further study.

8.3.1 Exploring Alternative Methods of Chromosome Encoding

Di�erent methods of chromosome encoding for Genetic Algorithms have a di-

rect impact on the performance of the GA - Fuzzy system. A problem that is

poorly encoded, or does not adequately re�ect the controller structure would

lead to a poorly designed controller. Therefore, a comparative analysis of di�er-

ent techniques for chromosome encoding could lead to a more generally accepted

guideline for GFRBS system design. It would highlight the advantages and dis-

advantages of each encoding method and its respective impact on overall system
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performance.

8.3.2 Evaluate Alternative Heuristic Search Methods

There are a number heuristic search methods which could be employed as a

learning and adaptation tool for GFRBS, each with their peculiar strengths and

weakness. Since Genetic Algorithms perform well in general, it does su�er from

premature convergence in certain instances and on occasion does not yield satis-

factory results. This motivates the need for more advanced GA algorithms, such

Niching GAs which could be applied to multi-modal problems. In addition, a

comparative analysis of other heuristic search methods, such as Particle Swarm

Optimization, Ant Colony Optimization and Simulated Annealing as applied to

GFRBS may be of interest.

8.3.3 In�uences of Renewable Energy Sources on AGC Performance

Although this thesis focused speci�cally on a two area interconnection, it ne-

glected the in�uence of renewable energy sources such as Solar and Wind energy

on AGC Systems. Since the electrical network is constrained and because there

is an ever increasing requirement for more energy e�cient systems, Renewable

Energy Sources play a more dominate role in power regulation, since more renew-

able energy sources are being connected to the electrical grid. However, this form

of energy is highly dependent upon natural elements such as sunlight and wind,

which varies randomly throughout the day and hence have a signi�cant e�ect on

AGC controller performance.

It would therefore be bene�cial to analyze this performance and to determine

what the new guidelines for AGC controller design in such cases would be.
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Appendix A

Previously Published Work

A.1 Application of GA-Fuzzy Controller Design to

Automatic Generation Control

This is the Citations section of the document. Large portions of Chapters 1 and

2 have appeared in the following papers:

Application of GA-Fuzzy Controller Design to Automatic Generation

Control, Craig D. Boesack, Tshilidzi Marwala and Fulufhelo V. Nelwa-

mondo, Third International Workshop On Advanced Computational

Intelligence (IWACI2010).
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Application of GA-Fuzzy Controller Design to

Automatic Generation Control

Craig D. Boesack, Tshilidzi Marwala and Fulufhelo V. Nelwamondo

Abstract— The design of fuzzy logic controllers involves
the rationalization of the Fuzzy Inferencing Rules and the
appropriate selection of the input and output membership
functions. This typically have been achieved by the application
of expert knowledge of plant operation and by the appropriate
selection of weighting gains. This paper presents the fuzzy logic
controller with certain parameters which can be optimized to
suite the specific application under control. Traditionally, this
has been performed manually by design. However, contained
within this study, Genetic Algorithms are applied as a plausible
fuzzy logic controller optimizer (Genetic - Fuzzy Controller),
and is applied to the Automatic Generation Control problem
of large interconnected power systems.

I. INTRODUCTION

C
ONVENTIONAL Proportional and Integral (PI) con-

trollers as applied to Automatic Generation Control

(AGC) have been studied extensively as contained within

the literature and have been successfully applied to many

large scale interconnected power systems [1], [2], [3]. In this

paper, the design of Automatic Generation Controllers are

studied and evaluated, in particular the control methodology

employed is that of Genetic - Fuzzy Control.

The reliability and availability of large interconnected

power systems are crucial to national infrastructure, both in

terms of meeting quality of supply demands and on ensuring

that the load demand balance is maintained at all times.

Especially when considering that quality of electrical supply,

which is viewed primarily by the stability of system fre-

quency and by maintaining electrical power, it is paramount,

that power utilities achieve good control of their generating

units. This multi-objective control function is achieved by

AGC, which forms a supervisory controller on all generating

units contained within the power utility.

In this research, we take a deeper look into AGC and the

application of Genetic - Fuzzy Control system technology

as a viable control strategy for large interconnected power

systems. The attraction of Genetic - Fuzzy Control technol-

ogy for this application stems from the fact that Genetic

based adaptation and robustness properties, which is an

inherent characteristic of this method, may prove beneficial

for generation control purposes.

Modern power systems are typically controlled by a

proportional and integral type control law, which aims at

minimizing the Area Control Error (ACE) of the power

system, thereby maintaining system frequency and tie - line

Craig D. Boesack is with the School of Electrical & Information
Engineering, University of the Witwatersrand, Johannesburg, South Africa
(email: craig.boesack@tiscali.co.za).

Tshilidzi Marwala is with the School of Electrical Engineering, University
of Johannesburg, Johannesburg, South Africa (email: tmarwala@uj.co.za).

Fulufhelo V. Nelwamondo is with the CSIR Modelling and Digi-
tal Science Department, CSIR, Pretoria, South Africa (email: fnelwa-
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power exchanges. Recent research effort have focused on the

application of fuzzy logic control [4], hybrid artificial neural

network control strategies [5] for the application of AGC, in

which, improvements in control strategy and control system

performance is reported.

Therefore, the present study focuses on applying GA-

Fuzzy controller design techniques as applied to modern

AGC of large interconnected power systems. The main

contribution of this work is to review current literature and

to analyze the performance of the designed controller by

means of simulation. Section 2 presents the literature review,

followed by a discussion on GA-Fuzzy design (Section 3).

In Section 4 simulation results are presented.

II. A LITERATURE REVIEW

In this section, a review of the current literature is per-

formed. It focuses primarily on AGC and the application of

Genetic - Fuzzy Controller design techniques as contained

within the literature. The primary research methodology

employed is that of answering the following questions which

forms part of the key design objectives for the design

rationale.

1) What is AGC and why is it an important function for

large interconnected power systems?

2) What are the key associated problems with AGC as

found within industry?

3) What are the design objectives for AGC?

4) In terms of controller design, it is proposed to apply

Genetic - Fuzzy controller design methodologies as a

proposed solution to the AGC problem. Fundamental

questions are as follows.

a) How are Genetic - Fuzzy controllers designed and

what are the key design considerations?

b) Since Genetic Algorithms are based on random

selection and probabilistic search methods, how is

the stability of the system guaranteed especially

when Genetic - Fuzzy controllers are applied?

5) How does Genetic Fuzzy controllers compare with

conventional controller techniques in terms of per-

formance and robustness, what is its advantages and

limitations when applied to AGC?

These questions forms the basis of the literature review

section and is aimed at establishing the required theoreti-

cal and practical knowledge for applying Genetic - Fuzzy

controllers to AGC. Therefore, the discussion begins by

describing AGC, followed by an account of fuzzy logic

controllers and the operation of Genetic Algorithms.

A. Automatic Generation Control

Automatic Generation Control (AGC) can be considered as

a supervisory control strategy for large interconnected power

A.1. Application of GA-Fuzzy Controller Design to Automatic Generation
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systems, with the express aim to regulate system frequency

and tie-line interchange power [1]. This forms an important

function within modern power utilities and forms a primary

business objective, especially when viewed from a power

regulatory perspective.

Interconnected power systems can be divided in sections

known as control areas which represents a coherent group

of electrical Generating Units operating under synchronized

frequency conditions. In each control area, the AGC con-

troller strives to meet its scheduled demand by regulating

each Generating Unit up or down (controlled by raise or

lower pulses) according to its scheduled load demand. The

load demand depends upon the system frequency ∆f and its

relative power exchange deviations ∆PTie with its neighbor-

ing control areas [6]. This is graphically illustrated in figure

1.

The dynamic behavior of large interconnected power sys-

tems is dependent upon system disturbances, uncertainties

due to loading requirements and upon the need to supply

electricity of good quality in terms frequency control [1].

Therefore, within an interconnected power system, the net-

work frequency is an important indication of the power mis-

match between energy demand and supply. This inherently

places strict performance demands upon the AGC controller,

not only to maintain good disturbance rejection properties,

but also to be robust in terms of controller design and also

to exhibit good regulatory performance [7].

1) Generating Unit Governing and Control: By consider-

ing typical Generating Units which are controlled by turbine

governing systems upon load disturbances does not yield a

zero steady state error for system frequency. In fact, as the

loading on the electrical network increases, the frequency

tends to decrease, due to the increased energy demand and

vice versa (as the loading decreases the frequency tends to

increase). This implies that there needs to be a continuous

energy balance in terms electrical demand and supply.

Therefore, due to governor action there is an immediate

governing response to frequency deviations, however, this

does not return the system frequency to its nominal value.

This is known as primary frequency control. However, in

order to return the frequency to its nominal value, secondary

frequency control is required or AGC.

2) Conventional AGC Control: Conventional control ap-

proaches to solving the AGC problem has been based on tie-

line bias control [8], [1] and by making use of the classical

PI controller strategy. In this approach, corrections due to

frequency deviations ∆f are made via the area frequency

response characteristic β. This is in turn used to form the

the Area Control Error (ACE) as described by the equation

1 below, where ∆PTie represents the tie-line interchange

power. The subscript i denotes the ith control area within

the interconnected power system.

The equation,

ACEi = ∆PTiei + βi ∗∆fi (1)

is the Area Control Error (ACE) where, ∆PTiei = PTiei −

PTie0 and ∆fi = fi − f0.

Effectively the ACE manages the power frequency balance

in order to maintain system frequency by manipulating

f0 -− e

fi

?+ -∆fi
βi

-+ e

PTie0
-− e PTiei

�
+

6
∆PTiei

+

-ACEi
AGC -

∆PCi

Fig. 1. Conventional Tie-Line Bias Control for AGC

system power. The Frequency Bias factor −10B depends

upon the system capacity and size of the generating electrical

network, and is synonymous to the area frequency response

characteristic β. In conventional Tie-Line Bias Control it is

recommended that −10B = β [8], in that it would tend to

reject internal area disturbances.

The term ∆PCi
represents the power demand required

by all Generating Units participating within AGC control.

This signal is proportioned accordingly by means of the

capabilities of the Units in terms of power generation limits

and are proportioned by means of participation factors.

3) AGC Controller Design Approaches: Contained within

the literature there are many controller design methodolo-

gies which have been applied to the Automatic Generation

Control problem [1]. The studies presented have focused

on classical approaches such as the PI controller design

methods to the application of more robust controller design

theories, such as Hinf Optimal Control. The present study

will therefore highlight a few of these design methods and

will expound on their application to AGC.

The conventional AGC controller is based on the classical

Proportional and Integral (PI) controller structure. This can

be written as follows, where KP and KI represent the

Proportional and Integral controller gains respectively.

∆PCi
= KP ∗ACEi +KI ∗

∫
ACEidt (2)

Typically, the controller parameters (KP and KI ) are

designed conservatively to meet the stated performance ob-

jectives in terms of robustness and system stability. This is

of importance to the interconnected power system since it

ensures good quality of frequency and power supply to the

grid.

More recently, fuzzy logic controller design techniques

have been applied [9] and [10]. These techniques provides

superior performance as stated within the literature in terms

of robust performance, particularly because the nature of

these techniques considers design uncertainty.

Moreover, robust controller design techniques have also

been applied to the AGC control problem. These include

Variable Structure Control [2], [11], Genetic Fuzzy Gain

Scheduling [6], [9], techniques based on evolutionary op-

timization [11], [12].

Apart from the conventional controller design criteria

(such as robust performance and stability), the AGC con-

troller design aims at maintaining adequate load rejection

regulation, as well as minimizing the Generating Units move-

ment to the control demand.This minimizes production costs.

In addition, the importance of this to power utilities is that

it guarantees substantial production cost savings, reducing

A.1. Application of GA-Fuzzy Controller Design to Automatic Generation
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routine maintenance due to wear and tear (caused by Unit

cycling) but more importantly it aims at meeting the business

objectives of the power utility.

B. The Design of Fuzzy Logic Controllers

The design of feedback controllers are aimed at controlling

a plant process at its nominal process parameters. Typically

these controllers are in the form of a mathematical equation

which categorically depends upon a known process plant

model, which calculates the desired control action.

Fuzzy logic controllers on the contrary apply expert

knowledge of the plant dynamics and formulates control

action in the form of linguistic terms. This technique of

control was first introduced by Lofti A. Zadeh [13] and have

found wide spread industrial application. Figure 2 shows the

structure of the fuzzy logic controller.

Output

1

Integrator

1

s

G_Output

−K−

G_Error_Dot

−K−

G_Error

−K−

Fuzzy Logic 

Controller

Derivative

du/dt
Input

1

Fig. 2. Fuzzy Logic Controller

Fuzzy logic controllers (FLC) are based on the following

elements:

• Fuzzification, fuzzification is the process of converting

crisp process variables into linguistic variables.

• Rule Base & Inference Engine, the rule base (a set of

if and then statements) and the inference engine is the

processing engine for interpreting expert knowledge and

is thus the decision making mechanism.

• Defuzzification, defuzzification is the process of con-

verting linguistic variables into crisp process variables.

It is interesting to note that FLC controller design tries

to express human behavior and human knowledge of the

plant, transcribing it into a control signal for process control.

This provides a design methodology available to the control

engineer for design versatility, bringing about robustness of

control.

1) On the Design of Fuzzy Logic Controllers: The process

of fuzzy logic controller design involves the following basic

procedural steps. These steps typically are iterated a few

times in order to optimize the performance of the controller,

for stated performance criteria.

2) Input Membership Functions and Fuzzification: The

translation of crisp process variables into linguistic terms is

known as Fuzzification. In this process, Input Membership

functions are used to convert the crisp variable into a

parameter over the range 0 to 1 which is known as the

universe of discourse. Typically, the functions are described

as triangular functions, in part due to its simplicity of design.

However, more complex functions can also be chosen.

3) Fuzzy Inferencing Rules and Engine: The Fuzzy in-

ferencing rules and engine is the decision making engine

of the fuzzy logic controller. The operation of the fuzzy

inference engine is well documented within the literature

[14], [15]. However, the description given below focuses on

the basic principles of the fuzzy logic controller. The fuzzy

decision making process typically involves expressing the

control problem in the form IF and Then statements. This is

illustrated by expressing the Rule as,

IF Error is Zero And Change In Error is Zero Then

Output Is Zero.

Typically there would be a number of Rules each describ-

ing the required control action for given set of input (process)

conditions. In addition, there are also Fuzzy operators such as

Or and And functions, Min and Max functions for enhancing

the control operation.

4) Output Membership Functions and Defuzzification:

The process of Defuzzification is the process of converting

the required control as determined by the inferencing engine

into crisp controller outputs. Defuzzification could therefore

be described as a translation from a Fuzzy description of the

process control into a crisp representation for control.

C. The Theory of Genetic Algorithms

Genetic Algorithms are based on Darwins theory of natural

selection and survival of the fittest. Primarily a heuristic

optimization technique, it has found application within a

wide area of industry [16], [17]. This is in part due to the fact

that Genetic Algorithms search for the most optimal solution

(fittest individual) from a global perspective but more impor-

tantly, it provides a mechanism by which solutions can be

found to complex optimization problems fairly quickly and

reliably.

Shown in Figure 3 is a flow chart of a typical Genetic

Algorithm. As can be seen, the Genetic Algorithm is an

iterative process whereby the fittest individuals are selected

from the population, sacrificing the weaker individuals. This

process attempts to emulate the natural environment where

only the fittest individuals survive and is propagated through

to the next population via Reproduction.

The genetic algorithm starts by initializing a population

of candidate solutions to the optimization problem, these are

typically initialized randomly. It then follows by evaluating

the fitness of the population, which is equivalent to the

objective function within standard optimization routines.

This is then followed by individual selection, reproduction

by means of genetic crossover and mutation.

Within the natural reproduction process, genetic infor-

mation is transferred from the parent individuals to the

offspring via a process known as Crossover. Under certain

conditions, the offspring undergoes a genetic mutation which

influences the phenotype characteristic of the individual. It

is this adaptation behavior which ensures the versatility of

the Genetic Algorithm. Each of these processes are described

below [6], [18], [12].

1) Individual Selection: The reproduction process as

found within nature occurs between two individuals com-

posed of the same genetic make-up (i.e. the same species).

There can be found a strong competitive drive to find a

suitable mate, and often nature competes with itself and only

the strongest survive. This process of finding a mate and

reproducing is initiated by means of individual selection.

Within the context of Genetic Algorithms, individual se-

lection is performed by means the Roulette Wheel method,

which most often is the commonly applied method of se-

lection. There are other means of selection as well, such
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Fig. 3. Flow Chart for a Typical Genetic Algorithm

as Stochastic Sampling, Stochastic Universal Sampling and

Remainder Stochastic Sampling with Replacement. However,

the Roulette wheel method is the common.

2) Chromosome Reproduction and Crossover: In nature,

during reproduction the genetic material of the parents are

transferred to the offspring, with inherited characteristics.

Each genotype of the chromosome relates to an associated

characteristic in the phenotype.

Therefore, the genetic algorithm emulates this process by

Crossover. During Crossover, a random position within the

chromosome is selected. The bits of the parents between the

crossover position are exchanged to form two offspring. The

figure illustrates the crossover principle.

The pairs of individual selected for crossover are selected

with a probability Pc. A random number Rc is generated

between 0 - 1, where the parent individual undergo crossover

only if the random number Rc ≤ Pc. Natural processes for

crossover includes multiple points for crossover, which can

also be emulated by the algorithm.

3) Chromosome Mutation and Adaptation: The natural

world has processes in place for the adaptation of systems

to meet the demands of present survival situations over time.

As more constraints are experienced by the organism, a

method for ensuring survival is to adapt to changes quickly

and robustly. Within the genotype of the individuals genetic

breakdown, variations within the genetic code are activated,

with characteristic attributes for ensuring organism survival.

This is classified as Mutation.

It should be noted as well, that not all mutation has

a positive impact on the organism, typically, mutation is

destructive in its effects on the phenotype and occurs seldom

within nature. However, since the genetic code contained

within the chromosome allows for a wide spectrum of

attributes, Mutation is vital to the survival of the individual.

Therefore, within the genetic algorithm it is the algorithms

ability to mutate its individuals that leads to the finding of

solutions heuristically. The mutation function is performed

by means of probability Pm. A random bit within the

chromosome length is chosen and bitwise inverted. Typically,

this probability value is chosen very small, typically of the

order 0.001 or thereabouts.

4) Elitism: Within each generation of the population,

superior genetic material and the fittest individual may be

lost due the functions of Selections (where fit individuals

are not chosen) Crossover and Mutation may lead to the

deterioration of fittest individuals. Therefore, to preserve the

good character traits of the population, good genetic material

needs to be preserved within the algorithm. This function is

known as Elitism.

Fuzzy logic controllers are typically designed and opti-

mized manually by an iterative process from the control

designer. This typically takes the form of adjusting the

controller PI gains (assuming that a PI controller structure is

chosen) to yield optimal closed loop performance. The tuning

of the controller can be made via the adjustment of input

and output gains, the tuning of input and output membership

functions and the optimization of the Fuzzy Rule Base. These

techniques are expounded upon as described below.

D. Tuning Methods

In order for the controller to meet stated performance

requirements for closed loop regulatory and disturbance

performance demands, optimization of the controller to the

plant process needs to be performed. This process is typically

performed iteratively by trial and error methods, or in the

form of analytical design and via control system simulation.

1) Tuning the FLC via Input and Output Scaling: Scaling

of the inputs and outputs of the fuzzy logic controller are

added to the controller structure to improve on its perfor-

mance dynamics and to allow for a method of controller

tuning.

2) Tuning the FLC via Membership Functions: The tun-

ing of the Fuzzy Set membership functions can be performed

by the application of Genetic Algorithm optimizations. The

Fuzzy Set is defined by parametrized membership functions.

The optimization of fuzzy logic controllers be means of GA’s

have found widespread application within industry [9], [1].

III. AGC CONTROLLER DESIGN

Automatic Generation Control (also called Load Fre-

quency Control - LFC) is paramount to meeting the energy

balance between electrical demand and supply. The perfor-

mance requirement for the Automatic Generation Controller

is to,

• Minimize the frequency deviations ∆f(t) within an

electrical control area due to load disturbances.

• To ensure that Tie-Line power ∆PTie(t) exchanges are

maintained according to their scheduled demand.

• To maintain zero steady state error of the controlled

variables (∆f(t) and ∆PTie(t)).

Typically, the Automatic Generation Controller takes the

form of the standard PI controller structure. This is in part

motivated by the its ease of implementation and by the fact

that conventional AGC techniques have been based on this

approach (Tie-Line Bias Control).

Therefore, in order to assess the performance of the de-

signed controller, simulation studies are required to optimize
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and to obtain an in depth appreciation of the dynamic

behavior of the controller and its impact on the plant under

control

A. AGC Model Description

The system model which forms the focus of this present

study is the two area control model for interconnected power

systems. The model is a linearized model, encapsulating the

plant dynamics sufficiently well to enable control system

design studies as well as analyzing the transient performance

of the power system. (Nominal parameters are R1 = 3; R2

= 2.4; Tg = 0.08; Tr = 10; Kr = 0.5; Tt = 0.3; Kp = 120;

Tp = 20; T12 = 0.0867 or 2*pi()*T12 = 0.545 p.u.MW).
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Fig. 4. A Two Area Interconnected Power System Model

The model consists of a governor, turbine and an electrical

power system, interconnected by means of the synchronising

coefficient.

B. GA-Fuzzy Controller Design

Two important factors in GA-design is the coding of the

chromosome and the definition of the fitness function. Cod-

ing of the solution space is one of the more critical aspects of

formulating the problem as a Genetic Optimization problem,

in which it is paramount to encode the binary chromosomes

accordingly [17]. In this application, symmetric coding of

the membership function is chosen, since this considerably

reduces the GA search space (shown in figure 5).

The fitness function (Integral Time Squared Error - ITSE)

chosen for the system is shown in equation 3. The attrac-

tiveness of using this function is that it minimizes the ACE

error as a function of time (t), which adheres to the ACE and

AGC objectives. It is noted as well, that there are additional

performance indices for closed loop control systems (ISE,

IAE and ITAE), which are not discussed presently.

Fitness =
1∫

t.ACE1(t)2 +
∫
t.ACE2(t)2 + 1

(3)

Figure 5 also illustrates the Fuzzification process. The

linguistic terms Negative Big (NB), Negative Small (NS),

Zero (ZZ), Positive Small (PS) and Positive Big (PB) are

used to describe the input over its input range. This allows for

human thinking to express the physical process in a manner

relating to human thinking, and thus provides a means for

the subject control expert to rationalize the control decision

process.
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Fig. 5. Symmetric Coding of the Membership Functions

In addition, each of the fuzzy logic controller tunable

parameters as shown in figure 6 (scalable input error gain

Kp, scalable input change in error gain Kd, output gain Kout

as well as each of the input and output membership functions

according to figure 5) are coded as a binary chromosome of

length 108 bits, with each parameter represented by a 12 bit

string. Each 12 bit string is then decoded into an equivalent

integer and then scaled to a real valued parameter used during

optimization and design.
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Fig. 6. Fuzzy Logic Tunable Parameters

The performance of the genetic algorithm is shown in

figure 7. As can be seen, the algorithm converges toward an

optimal solution acceptably for all the tunable parameters.
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Fig. 7. Performance of the Genetic Optimization

In the GA-Fuzzy controller design, the fuzzy logic con-

troller rules are given as shown in Table 1. Typically, the

rules are designed symmetrically, converging toward zero to

ensure control system stability. These rules are designed by

expert knowledge, however, it should also be noted that the

fuzzy rules could be optimized by means of GA.

IV. SIMULATION RESULTS

The chosen system for study is that of a two-area intercon-

nected power system, motivated by the fact that before we

can progress to multi-area systems, we have to understand the

dynamics of a two-area system. For this reason, simulation

results are shown below (Table 2 shows the optimized

controller parameters).
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TABLE I

FUZZY LOGIC CONTROLLER RULES.

e(t)

NB NM NS ZZ PS PM PB

˙e(t)

NB NB NB NB NM NM NS ZZ
NM NB NB NM NM NS ZZ PS
NS NB NM NM NS ZZ PS PM
ZZ NM NM NS ZZ PS PM PM
PS NM NS ZZ PS PM PM PB
PM NS ZZ PS PM PM PB PB
PB ZZ PS PM PM PB PB PB
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Fig. 8. Comparison between GA-Fuzzy AGC and Conventional PI ACE

It is observed via the transient response curves (Figure

8) that the GA-Fuzzy controller performs favorably with

conventional Tie-Line Bias control methods and PI based

AGC controllers. The PI controller was optimized by genetic

algorithm based on the performance index shown in equation

3. It is noted that the transient responses for the GA-

Fuzzy controller is less oscillatory, converging to its set

point more quickly, thus an improvement in power system

quality and reliability is achieved. Not considered within this

simulation study are the effects of boiler dynamics and non-

linear effects such as governor dead-band and generating

ramp limits, which are of relevance to industrial applications.

These properties are studied in a subsequent analysis, and is

therefore not presented in this study.

TABLE II

GA-OPTIMIZED MEMBERSHIP FUNCTIONS AND GAINS.

MF Parameters

e(t) ˙e(t) u(t)

Optim

a 0.4973 0.2453 0.2779
b 0.5761 0.9032 0.7803
k 1.0043 0.4087 0.2860

V. CONCLUSION

In this paper the application of GA-Fuzzy controller design

is presented and applied to the Automatic Generation Control

problem of large interconnected power systems. It is shown

via simulation results that the controller compares favourably

with conventional AGC approaches, not only in terms of

transient performances, but also by ensuring and maintaining

system stability during load disturbances.

It is additionally shown that the multi-control objective of

AGC is obtained by the optimization of the controller by ge-

netic algorithms. Although conventional genetic algorithms

are applied to off-line optimization, future research would

investigate its on-line application and its learning ability in

the presence of dynamic power system uncertainty.

REFERENCES

[1] A. Ibraheem, P. Kumar, and D. P. Kothari, “Recent philosophies
of automatic generation control strategies in power systems,” IEEE

Transactions on Power Systems, vol. 20, no. 1, pp. 346–357, 2005.
[2] G. D. Ray, S. Dey, and T. K. Bhattacharyya, “Design of variable

structure controller using fuzzy pi type sliding surface: An application
to load-frequency control problem,” International Journal of Emerging

Electric Power Systems, vol. 7, no. 4, pp. 1–19, 2006.
[3] H. Bevrani and T. Hiyama, “Robust load-frequency regulation: A

real-time laboratory experiment,” Optimal Control Applications and

Methods, vol. 28, no. 6, pp. 419–433, 2007.
[4] J. Talaq and F. Al-Basri, “Adaptive fuzzy gain scheduling for load

frequency control,” IEEE Transactions on Power Systems, vol. 14,
no. 1, pp. 145–150, 1999.

[5] G. Zeng, Y. Su, M. Ke, and J. Zhang, “Hybrid fuzzy and
pid control method for static var compensation,” Diangong Jishu

Xuebao/Transactions of China Electrotechnical Society, vol. 21, no. 6,
pp. 40–44, 2006.

[6] D. Rerkpreedaping, A. Hasanovic, and A. Feliachi, “Robust load
frequency control using genetic algorithms and linear matrix
inequalities,” IEEE Transactions on Power Systems, vol. 18, no. 2,
pp. 855–861, 2003.

[7] W. Tan and Z. Xu, “Robust analysis and design of load frequency
controller for power systems,” Electric Power Systems Research,
vol. 79, no. 5, pp. 846–853, 2009.

[8] L. R. Chang Chien, N. B. Hoonchareon, C. M. Ong, and
R. A. Kramer, “Estimation of β; for adaptive frequency bias setting
in load frequency control,” IEEE Transactions on Power Systems,
vol. 18, no. 2, pp. 904–911, 2003.

[9] C. F. Juang and C. F. Lu, “Power system load frequency control by ge-
netic fuzzy gain scheduling controller,” Journal of the Chinese Institute

of Engineers, Transactions of the Chinese Institute of Engineers,Series

A/Chung-kuo Kung Ch’eng Hsuch K’an, vol. 28, no. 6, pp. 1013–1018,
2005.

[10] C. F. Juang and C. F. Lu, “Load-frequency control by hybrid
evolutionary fuzzy pi controller,” IEE Proceedings: Generation,

Transmission and Distribution, vol. 153, no. 2, pp. 196–204, 2006.
[11] A. Huddar and P. S. Kulkarni, “A robust method of tuning the

feedback gains of a variable structure load frequency controller using
genetic algorithm optimization,” Electric Power Components and

Systems, vol. 36, no. 12, pp. 1351–1368, 2008.
[12] M. S. Alam and M. O. Tokhi, “Hybrid fuzzy logic control

with genetic optimisation for a single-link flexible manipulator,”
Engineering Applications of Artificial Intelligence, vol. 21, no. 6, pp.
858–873, 2008.

[13] L. A. Zadeh, “Is there a need for fuzzy logic?” Information Sciences,
vol. 178, no. 13, pp. 2751–2779, 2008.

[14] D. Ruan, “Implementation of adaptive fuzzy control for a real-time
control demo-model,” Real-Time Systems, vol. 21, no. 3, pp. 219–239,
2001.

[15] J. Li, S. Zhou, and S. Xu, “Fuzzy control system design via
fuzzy lyapunov functions,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 38, no. 6, pp. 1657–1661,
2008.

[16] Y. C. Chiu, L. C. Chang, and F. J. Chang, “Using a hybrid genetic
algorithm-simulated annealing algorithm for fuzzy programming of
reservoir operation,” Hydrological Processes, vol. 21, no. 23, pp.
3162–3172, 2007.

[17] R. J. Streifel, R. J. I. Marks, R. Reed, J. J. Choi, and M. Healy,
“Dynamic fuzzy control of genetic algorithm parameter coding,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 29, no. 3, pp. 426–433, 1999.
[18] X. Yu and K. Tomsovic, “Application of linear matrix inequalities

for load frequency control with communication delays,” IEEE

Transactions on Power Systems, vol. 19, no. 3, pp. 1508–1515, 2004.

A.1. Application of GA-Fuzzy Controller Design to Automatic Generation
Control 166



A.2. A GA-Fuzzy Automatic Generation Controller for Interconnected Power
Systems 167

A.2 A GA-Fuzzy Automatic Generation Controller for

Interconnected Power Systems

This is the Citations section of the document. Large portions of Chapters 1 and

2have appeared in the following papers:

�A GA-Fuzzy Automatic Generation Controller for Interconnected

Power Systems�, Craig D. Boesack, Tshilidzi Marwala and Fulufh-

elo V. Nelwamondo, Fourth International Workshop On Advanced

Computational Intelligence (IWACI2011).



A GA-Fuzzy Automatic Generation Controller
for Interconnected Power Systems

Craig D. Boesack, Tshilidzi Marwala and Fulufhelo V. Nelwamondo

Abstract—This paper presents a GA-Fuzzy Automatic Gen-
eration Controller for large interconnected power systems.
The design of Fuzzy Logic Controllers by means of expert
knowledge have typically been the traditional design norm,
however, this may not yield optimal performance. Therefore,
genetic algorithms are used to design and optimize the fuzzy
controller as applied to the Automatic Generation Control
problem of large power systems.

Index Terms—Automatic generation control, interconnected
power systems, genetic algorithms.

I. INTRODUCTION

THE network frequency of interconnected power systems
is a primary indication of the health of the electrical

grid. It’s not only a measure of network stability, but also
provides a mechanism by which the generating supply and
demand energy balance is assessed. An increase in frequency
indicates an energy surplus while a decrease in frequency is
indicative of under generation. Therefore, control of network
frequency by means of increasing or decreasing generation
is known as Automatic Generation Control (AGC).

Conventional approaches to the AGC control problem have
been based on Tie-Line Bias control, where a proportional
and integral type control strategy is employed [1]. Since
during normal electrical load variations, AGC provides a
convenient means by which frequency deviations are returned
to nominal parameters. This maintains frequency deviations
and tie line power exchanges at zero steady state error values.

However, Tie-Line Bias control does not lead to optimal
closed loop control performance, which tend to be more
oscillatory in nature, especially when considering modeling
uncertainties, unknown non-linear plant characteristics and
the complex behavioral interactions of large interconnected
power systems [1]. For this reason, much research effect have
been focused on the development of AGC controller design
methodologies for good robustness performance objectives
as well as maintaining good load disturbance rejection prop-
erties.

Contained within the literature, various AGC controller
design methodologies have been proposed in response to un-
known process dynamics, with improvements in performance
being cited when compared to established AGC techniques.
These can be summarized as follows. Conventional PID ap-
proaches are considered in [2], where a new design approach
to PID tuning is detailed based on maximum peak resonance
specification (MPRS), citing improvements in control system
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performance and improved robustness properties [3]. MPRS
is a frequency domain loop shaping controller design method.

In addition to conventional I, PI and PID controller de-
sign strategies [4], the application of optimal control [5],
variable structure control, model predictive control [6] and
the application of linear matrix inequalities [7]–[9] to the
AGC control problem of interconnected power systems have
found widespread research interest and application [10]. This
is particularly motivated by the fact that the aforementioned
controller design strategies are inherently robust to model
uncertainty, and when applied to AGC yield desirable closed
loop characteristics. This would include robustness against
network growth and complexity, unknown non-linear dynam-
ics and complicated network interactions.

However, the former controller design techniques are
model dependent and may prove to be a challenge to
obtain especially when dynamics are not well known nor
accurately modeled or when system identification is not
readily available, limiting the performance of the controller.
This inadvertently led to the application of more intelligent
design methods, including fuzzy logic control [11], [12],
fuzzy gain scheduling [13], [14], artificial neural networks
[15] and fuzzy neural networks [16] to name by a few.
These techniques are founded upon expert knowledge and
human reasoning, taking into account system unknowns from
a linguistic perspective.

In view of this, one of the main aspects which makes
intelligent control methods such as fuzzy logic control (FLC)
and artificial neural networks (ANN) a non trivial task is
that of rationalization and neural network training. Fuzzy
systems depend upon expert knowledge, however, an expert
may not always be available [17], making the fuzzy logic
controller design and rule base generation non trivial. In
addition, when considering multiple input or output systems
and their respective interactions, large number of fuzzy rules
are involved and the parametrization of the membership
functions including its scaling gains, FLC design can be-
come overwhelming. In the case of ANN, especially large
networks, training and optimization can become an issue.
For this reason, it is proposed to use genetic algorithms for
the optimization of fuzzy controllers.

With application to control systems and power systems,
genetic algorithms have found universal application [18],
[19]. Their heuristic search characteristics makes genetic
algorithms suitable for finding appropriate solutions to com-
plex control problems via optimization methods. In this
research, we apply genetic algorithms to the optimization
of a fuzzy logic controller, applying them to the Automatic
Generation Control problem of interconnected power sys-
tems.
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II. AUTOMATIC GENERATION CONTROL

Electric power systems constitutes a vital role within
society today, amid national growth in electrical demand
and the need for reliable electrical networks have placed
strict demands upon Power Utilities to provide sustainable
energy as well as to adhere to the performance standards of
the National Grid. In order to achieve this, Power Utilities
have implemented various controlling strategies aimed at
providing network stability, assurance in terms of meeting
energy demand versus energy supply and on enabling that
systems are in place for the recovery of system frequency
upon any external network disturbances. This regulatory
process is known as Automatic Generation Control.

In general, frequency control of power systems are gov-
erned by what is known as primary speed (or frequency)
governing, secondary frequency control (or Automatic Gen-
eration Control) and should the frequency continue deviate to
beyond operational limits, tertiary control (or load shedding)
becomes effective. Each of these control mechanisms has a
stabilizing effect on the frequency.

A. Primary Governing Of Turbo-Generators

Turbine Governing control systems forms a critical com-
ponent for modern rotating machinery, such as turbo-
generating systems. This is necessary to perform fast turbine
speed regulation and once the turbo-generator is synchro-
nized to the national electrical grid, it provides a means by
which the loading on the generator is varied. Opening or
closing of the main steam admission control valves to the
turbine (water gate valves in the case of a hydro turbine),
leads to an increase in generated energy. However, it should
be noted the primary governing on its own does not lead to
zero steady state error.

B. Automatic Generation Control

Therefore, to drive the network frequency to zero steady
state error, AGC is employed. It forms a load reference
input to the turbine governor control system of Generation
Units. Its primary objectives are to,

• Maintain frequency deviations ∆f(t) at zero in the
presence of electrical load disturbances.

• Maintain Tie-Line power ∆PTie(t) exchange deviations
at zero with all neighboring control areas contracted
for AGC.

• Maintain the Area Control Error (ACE) ACE(t) at zero.
Both the frequency and the ACE can be considered as
a health measure for the interconnected power system.

III. MODELING OF INTERCONNECTED POWER SYSTEMS

Interconnected Power Systems (IPS) consists of a number
of generating units operating in synchronization, supplying
electrical energy to various resistive, inductive or capacitive
loads connected to the electrical grid via transmission lines.
Invariably, any variation in loading has a direct impact on the
frequency of the electrical system. This places strict demands
upon the properties of the AGC controller to maintain

frequency stability throughout a wide operating region, given
increasing electrical network size and complexity.

Fig. 1. An Interconnected Power System

Figure 1 shows a two area interconnected power system,
with governor dead band and generation rate constraint. The
system is controlled by a Fuzzy Logic AGC controller.

A. Governor Dead Band

In practice, governor dead-band forms part of the Turbine
Governor. In effect dead-band eliminates governor movement
over the dead-band range but could also contribute to low
frequency oscillation of the system.

B. Generation Rate Constraints

Generation Rate Constraints (GRC) is imposed on real
power systems, limiting the rate of change of generation.
In this study, GRC of 0.1 p.u. per minute is considered, as
shown in equation (1).

˙∆Pg 6 δ = 0.0017 p.u. MW/s (1)

IV. GENETIC FUZZY CONTROLLER DESIGN

The application of genetic algorithms to Fuzzy Logic
Controller (FLC) design has seen widespread application
and interest. This stems primarily from the fact that as
process complexity increases and as knowledge of the system
decreases it becomes increasingly more difficult to formulate
fuzzy rule bases for optimal FLC design.

Traditional expert systems (FLCs) are formulated by
knowledge engineers (or plant operators) who are responsible
for the compilation and design of the fuzzy rules of the
controller. However, in GA Fuzzy systems genetic algorithms
are used as a means of learning the rules for optimal
control. It is the aim of the learning facet of the controller
design to change the inherent characteristics of the system
to improve on performance. Figure 2 below illustrates the
genetic evolutionary process of the FLC.

Fig. 2. Genetic Fuzzy Controller
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V. EVOLUTION OF FUZZY SYSTEMS

Evolutionary genetics provides a convenient mechanism
for adaptation and learning. This is particularly achieved by
means of genetic operators such as crossover and mutation,
in which new genetic material is created with the intent of
creating better offspring.

This evolutionary process can be used as a means for
providing population diversity and can be employed as a rule
discovery mechanism for FLC’s (Figure 2). This approach
to FLC controller design has proved valuable in instances
where expert knowledge of the process under control is not
well known, in Multiple Input Multiple Output (MIMO) FLC
controller design where it is difficult to formulate control
rules and in instances where complex dynamical systems are
applicable. In addition, in instances where detailed process
models are not available or proves difficult to obtain, evolu-
tionary optimization is plausible.

A. GA Encoding of the FLC

Fundamental to the design of Fuzzy Logic Controllers by
means evolutionary strategies is the encoding of the design
problem into genetically tunable parameters. Conventional
FLC design uses expert knowledge for designing the knowl-
edge base (KB) and the rule base (RB).

Therefore, the application of genetic algorithms to FLC
design, both the KB and RB needs to be formulated
as genetic chromosomes where genetic operators such as
crossover and mutation can be applied. The chromosomes
are either formulated as a binary string or as a real valued
chromosome depending upon the nature of the problem to
be solved. This is graphically illustrated in Figure 3.

Fig. 3. Illustration of Coding the Rule Base

In (2) CEi is the input linguistic membership function for
the change in input error (de(t)

dt ). Ej is the input linguistic
membership function for the input error (e(t)). Rij is the
output linguistic membership function for the output (u(t)).
i & j are integer indices (i, j ∈ 1, 2, 3, 4, 5, 6, 7).

Rij : If ˙e(t) is CEi and e(t) is Ej Then u(t) is Rij (2)

A static structure of the FLC RB is chosen in which the
length of the chromosome is fixed and each entry is a binary
representation of n = 3 bits, representing a linguistic term
(i.e. NB = 1, NM = 2, NS = 3, ZZ = 4, PS = 5, PM = 6 and
PB = 7). The n = 3 bits represents an integer. The length of
the rule base chromosome is 147 bits long. Additional bits
are added to represent the scaling gains on the FLC controller
and the input and output membership functions respectively.

B. Selection of the Fitness Function

Automatic generation of fuzzy logic controllers by means
of genetic algorithms is largely dependent upon the choice of
the fitness function. Improper selection of the fitness function
would mean that the performance of the system would not
lead to optimal results. It should also be noted the fitness
function is problem dependent and is chosen in line with the
objectives of the design criteria.

Fitnessmin =
ITAE

ITAE + 1

ITAE =
N∑

IC=1

T∑
t=0

t|ACE1| + t|ACE2|
(3)

In (3), IC is the Initial Conditions chosen for the design,
where N = 8 is the number of initial conditions and IC ∈ (-
0.01, -0.01) (-0.01, 0) (-0.01, 0.01) (0, -0.01) (0, 0.01) (0.01,
-0.01) (0.01, 0) (0.01, 0.01) are symetrical load disctubances
in each control area of the interconnected power system.
ACE is the Area Control Error.

C. Generation of the Fuzzy Rule Base

The Genetic Algorithm (GA) used during the discovery of
the FLC scaling gains, membership functions and rule base
was the Simple Genetic Algorithm (SGA), using the Elitist
strategy, two point crossover and a mutation rate of Pm =
0.2. The Population size is 60 and the total Generations are
150. Figure 4 shows the evolution of the fitness score.

Fig. 4. Evolution Of The Fitness Score

VI. SIMULATION RESULTS AND DISCUSSION

Dynamic frequency response curves are shown in 5 due to
a load disturbance in both control areas of (0.01, 0,01) p.u.
MW.

As can be seen from the transient response curves, com-
paring the PI controller response to that of the GA Fuzzy
controller, both controllers respond in a similar fashion, with
the GA Fuzzy controller being slightly more robust in the
presence of GRC.
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Fig. 5. Frequency Response Due To A Load Disturbance ∆PLoad =
0.01p.u.MW. in both areas

Figures 6, 7, 8 and 9 shows the evolved Rule Based and
the final optimized input and output membership functions
respectively.

Fig. 6. GA Fuzzy Rules Table

VII. CONCLUSION

This paper illustrated the design of a Genetic Fuzzy
controller as applied to the Automatic Generation Control
problem of large interconnected power plants. It illustrated
that the automatic FLC design by GA is greatly dependent

Fig. 7. Error Membership Function

Fig. 8. Change In Error Membership Function

Fig. 9. Output Membership Function

upon the selection of the fitness function and on the ob-
jectives of the design problem. In addition, similar transient
response curves between the conventional PI AGC controller
and the GA Fuzzy controller is observed, with the GA Fuzzy
being slightly more robust in the presence of Generation Rate
Constraint.
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Abstract 

Automatic Generation Control (AGC) of large interconnected power systems are typically controlled by a PI or PID 
type control law. Recently intelligent control techniques such as GA-Fuzzy controllers have been widely applied 
within the power industry. This work presents a comparative study of conventional AGC control with that of a GA-
Fuzzy controller. In particular this work focuses on the application of Bezier Surfaces in encoding the genetic 
problem for the Rule Base (RB) representing the fuzzy control surface. It is shown that favorable performance is 
obtained in the presence of power plant nonlinearities and Generation Rate Constraint (GRC).   
 
© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICAEE 2011 
 
Keywords: Automatic Generation Control; GA-Fuzzy Control System; Rule Based Systems.  

1. Introduction 

Automatic Generation Control of large Interconnected Power Systems (IPS) form an important 
function for modern power utilities and thus the quality of frequency control forms a basic performance 
measure. In order to achieve satisfactory frequency control performance, closed loop control of all power 
generators forming part of AGC is warranted. This closed loop control function is realized by Automatic 
Generation Control [1]. 

In addition, frequency also indicates the health of the electrical network in terms of over generation and 
under generation. Any excess of frequency above its nominal value would indicate a surplus of energy 
and likewise any deficiency of frequency below is nominal value would indicate an energy demand.  

The dynamic behavior of large Interconnected Power Systems is dependent upon system disturbances, 
uncertainties due to loading requirements and upon the need to supply electricity of good quality in terms 
of frequency control. Therefore, within an IPS the network frequency is an important indication of the 
power mismatch between energy demand and supply. This inherently places strict performance demands 
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upon the AGC controller, not only to maintain good disturbance rejection properties, but also to be robust 
and to exhibit good regulatory performance [2]. 

Conventional AGC control laws are of the Proportional and Integral (PI) type control strategy. 
However, more recently, intelligent controller strategies such Artificial Neural Networks (ANN) [3], 
Neural Fuzzy (NF) approaches [4], Fuzzy Logic Controllers (FLC) [5], [6] and the use of Genetic 
Algorithms (GA) [7] have found application within the power industry and also within AGC controller 
design. 

The successes of the aforementioned control strategies are that they provide performance robustness in 
the presence of parametric model uncertainties when compared with conventional AGC design techniques.  
The objectives of the AGC controller are threefold:  
• To maintain the frequency deviations ∆f(t) at zero in the presence of electrical load disturbances. 
• To minimize Tie-Line power ∆PTie(t) exchange deviations with all neighboring control areas 

contracted for AGC. 
• To maintain the Area Control Error (ACE) ACE(t) at zero. 

These objectives form the main criteria for assessing the control performance of the AGC controller 
and are combined in the form as illustrated by equations (1) and (2) respectively to form conventional 
Tie-Line bias control, 

 

∆ACEi(t)= ∆PTie i(t)+βi*∆fi(t)  (1) 

 
where the subscript i denotes the ith control area within the IPS and βi is synonymous to the area 

frequency response characteristic. Kp and Ki represent the proportional and integral gains of the AGC 
controller respectively. ∆ ஼ܲ௜(ݐ) is the load reference. 

   

∆PCi(t)= Kp*ACEi(t)+KI*∫ACEi(t)dt  (2) 

 
In this work a GA – Fuzzy controller is designed by means of Genetic Algorithms. In particular during 

the encoding of the chromosome the control points of the Bezier Surface are used as alleles. In applying 
this control strategy to the Automatic Generation Control problem of large interconnected power systems, 
favorable results are obtained in comparison with conventional AGC approaches. Key observation points 
are that for successful GA – Fuzzy approaches the selection of the fitness function is vital for control 
strategy formulation. In addition, the selection initial conditions for evaluating the fitness functions are 
also pivotal.    

 

2. GA – Fuzzy Control Systems 

Fuzzy Logic Control (FLC) systems have found widespread industrial application [8], [9], [8]. This is 
particularly motivated by the fact that FLC controllers can intuitively represent expert knowledge for 
solving complex control problems. However, if expert knowledge of processes are not fully known, or if 
there are situations where the number of control rules are large, conventional FLC controller design 
methods by expert knowledge could be limiting. 

Therefore, in order to optimize and learn the fuzzy control rules, automatic generation of fuzzy rules 
by Genetic Algorithms have been proposed [10]. This is known as GA – Fuzzy Control Systems 
(GAFCS). Figure 1 illustrates the GA – Fuzzy Controller. As shown, the genetic algorithm is used to 
optimize the knowledge base consisting of the scaling gains and the membership functions and secondly 
to learn the fuzzy logic control rules. 

In review of Genetic Algorithms (GA), these are heuristic search techniques based on the principles of 
natural selection and survival of the fittest. GA’s forms the guiding mechanism in GA – Fuzzy controllers 
to finding optimal solutions.      
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One of the most fundamental functions in GA-Fuzzy controller design is the rationalization of the 
chromosome encoding. This typically has followed a structure where each fuzzy rule is coded 
sequentially as a binary string, where genetic operators such as crossover and mutation would perform its 
reproductive functions. However, one of the drawbacks of this technique is that it is dependent upon the 
number of rules, which when there is a substantial number of rules, the genetic search space would 
increase accordingly. In addition the size of the binary chromosome would also increase requiring 
increased computational time and encoding complexity. 

Therefore, this work focuses on applying Bezier Surfaces as a means of representing the fuzzy control 
surface. This is particularly motivated by the ease by which Bezier Surfaces are represented and secondly 
by the relatively small number of control points used to represent the Bezier Surface in contrast to the 
number of fuzzy rules. By means of illustration, a fuzzy controller with 49 fuzzy rules would require a 
binary string representation of the 49 rules, whereas a Bezier Surface represented by 16 control points 
would require a binary string representative of these 16 control points. The Bezier Surface and the Fuzzy 
Control Surface is synonymous in that the Bezier Surface is the representation of the control surface. 

 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Genetic Fuzzy Controller. 

2.1. Chromosome Encoding by means of the Bezier Surface 

Parametric curves or surfaces such as Bezier Surfaces is an extension of Bezier Curves which was 
invented specifically for the car manufacturing industry by Pierre Bezier in the early 1960’s for the 
development of curves for shape design [11]. These curves are intuitive and lend itself to a large variety 
of curves or surface shapes based on the manipulation of only a few control points. In addition, these 
curves are smooth and have an aesthetic appeal which may be of benefit to Fuzzy Logic controller design 
from a surface perspective, ensuring that control functions are not erratic. 

By definition a Bezier Surface ܵ(ݑ,  .is as shown in equation (3) (ݒ
,ݑ)ܵ  (ݒ = 	∑ ∑ ௜ܲ௝ ∗ (ݑ)௜௠ܤ ∗ ௡௝ୀ଴௠௜ୀ଴(ݒ)௝௡ܤ   (3) 

 
Where ܤ௜௠(ݑ) and ܤ௝௡(ݒ) represent the Bernstein polynomials with degree m and n in the variables of 

u and v respectively. ௜ܲ௝  is an m by n matrix of control points ( ௜ܲ௝ ∈ ܴଷ) with ݅ = 0, 1, … ,݉ and ݆ =0,1, … , ݊. As can be seen, the Bezier Surface is a combination of the control points and the product of the 
Bernstein polynomials; this creates the terms of the surface. Thus the Bezier Surface is a parametric 
surface based on the control points. 

The Bernstein polynomials are defined as is shown in equation 4. Figure 2 illustrates the encoding of 
the FLC including is scaling gains and fuzzy control surface. Each allele is represented a binary string. 

݉݅ܤ  (ݑ) = ൫݉݅൯(1 − ൫݉݅൯	݁ݎℎ݁ݓ	݅ݑ(݅−݉)(ݑ = 	 ݉!݅!(݉−݅)! (4) 
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Standard symmetrical triangular membership functions are used for both the input and output member 
functions of the FLC controller (Fig. 2). 

  

Fig. 2. Illustration of the Chromosome encoding showing the control points and the scaling gains. 
 

2.2. Fitness Function Selection and its Importance 

One of the main decisions to be made in applying Genetic Algorithms to problem solving is the 
selection of the fitness function. It forms the criteria by which the suitability of the solutions are accessed 
and evaluated for the specific problem at hand [12], [13]. Improper selection of the fitness function would 
lead to deteriorating controller performance. It should be noted that the fitness function is problem 
dependant and should be chosen in line with the objectives of the control system design. Equation 5 
illustrates the fitness function selection consider in this study, namely the Integral of the Absolute Error 
(IAE) as defined by (5). 

ݏݏ݁݊ݐ݅ܨ  = ூ஺ாூ஺ாାଵ  	ܧܣܫ = 	෍ ቆන |∆f1(t)|+T
0 |∆f2(t)|+|∆PTie(t)|dtቇN

IC=0 																																																																																			(5) 
ܥܫ ∈ (−0.01,−0.01)	(−0.01, 0)	(−0.01, 0.01)	(0,−0.01)	(0, 0.01)	(0.01,−0.01)	(0.01, 0)	(0.01, 0.01) 

 
In (5), IC is the initial conditions chosen for the design and represents the load disturbances for each 

control area, where N = 8 is the number of initial conditions considered. Symmetrical load disturbances 
are chosen for each of the initial conditions. It is paramount that the IC’s consider every possible load 
disturbance scenario for effective GA design to ensure that the dynamic performance of the controller 
meets the stated design criteria. 

The genetic algorithm used for the discovery of the Rule and its respective scaling gains is the Simple 
Genetic Algorithm (SGA), using the Elitist strategy with two point crossover. A mutation rate of Pm = 
0.2 and a population size of 100 chromosomes. A total Generation of 130 is chosen.  

3. Simulation Results and Discussion 

This section presents simulation results of the dynamic frequency responses and illustrates the 
performance of the design GA – Fuzzy controller. Although not illustrated in this work, the power system 
model analyzed is a two area AGC problem as contained within the literature, using governor dead band 
and considering Generation Rate Constraint (GRC) [4], [14].  

Shown in Fig. 3 is the optimized Bezier Surface representing the control surface. From the Bezier 
Surface an equivalent Rule Base is generated as shown.  
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Fig. 3. Optimized Bezier Surface represents Fuzzy Control Surface by GA, also showing 16 control points and Rules. 

 

The optimal control points matrix ௜ܲ௝ is shown below (6), manipulating the control points would 
adjust the surface accordingly. 

 

௜ܲ௝ = ൦0.8571 0.4386 −1.1868 −0.89331.3188 0.1876 −0.1465 −0.49230.7555 0.0411 0.1055 −0.69190.0154 −1.2106 0.1221 0.7656 ൪ (6) 

 
As can be seen from the transient response curves (Fig. 4), comparing the PI controller response to that 

the GA – Fuzzy controller, both controllers perform similarly, however, the GA – Fuzzy controller is 
more robust in the presence of Generation Rate Constraint (GRC). It is an important characteristic for 
controllers to be robust in the presence of parametric variation and model uncertainty. In the case of 
AGC, power system dynamics are constantly changing, loads are changed randomly, requiring robust 
AGC performance. With GRC, each generating unit forming part of the network has physical rate limits 
and thus the ramping of the machine is limited. 

4. Conclusion 

This paper illustrated the design of a Genetic Fuzzy controller, based on encoding the problem as a 
Bezier Surface to represent the Rule Base as applied to the Automatic Generation Control problem of 
large interconnected power systems. It is illustrated that the solution compares favorably with 
conventional AGC approaches, amidst Generation Rate Constraint.   
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Fig. 4. Area Control Error response for a load disturbance of 0.01 p.u.MW in Area 1. 
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Abstract 
This paper describes the process followed for the 
development of governor models for 4 Eskom coal 
fired power stations.  A seven step process was 
developed to ensure models were developed in 
the quickest, safest and most accurate manner.  
This paper describes the process steps. 

Introduction 
The South African Grid Code requires that 
accurate models of the power station response to 
network frequency changes are provided to the 
Eskom System Operator.  These models are 
required to determine operating reserve 
requirements and ensure that the balance 
between supply and demand can be maintained.  
The ability to balance supply and demand will 
become more critical as more intermittent 
generation is added such as wind and solar power.  
The governor models are further required to 
study system stability during disturbances, such as 
loss of one or more generators, and used to 
determine defence schemes to prevent system 
blackout such as automatic under frequency load 
shedding schemes.   

The seven step process 
A seven step process was developed to ensure 
that the project is successful as follows: 

• Defining the need and explaining need to 
staff, 

• Data Collection, 
• Test Planning, 
• Testing, 
• Modelling,  
• System Operator approval, and 
• Training 

Each of these steps is described further in this 
paper. 

Defining the need and explaining 
need to staff 
Meetings were held at each power station with 
key stakeholders to describe the need for the 
models, and outline the information required 
from the power station and the tests to be 
performed. 

This is vital to ensure that a team of highly skilled 
staff is developed and is made aware of the tests 
to be performed and to keep everybody briefed 
on progress. 

Data gathering 
Data gathering is a significant step in the process 
as this identifies the key characteristics of the 
power station that is to be modelled. 

This phase identifies the control system strategy, 
mechanical plant design and limitations. 

A good information gathering exercise reduces 
the number of tests required to be performed to 
determine the characteristics. 

The data gathering also identifies all the 
measuring points required. 

Test plan 
A test plan is developed that will test the unit for 
the key characteristics required for the 
development of the governor model.  The test 
plan identifies all the key players, measuring 
points, and test sequence. 

The test plan is refined to ensure that all tests do 
not stress the unit in any way. 
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Appendix B

The TGOV05 Unit Model

The TGOV05 unit model as part of the PSS/E c⃝ model documentation (PSS/E

(2004)) is a simpli�ed boiler and turbine model with associated control systems.

It consists of the a turbine model, which can model various turbine con�gurations

including tandem compound and cross compound type turbines. In addition, the

turbine model also includes mechanisms for modeling reheater based systems

depending upon appropriate selection of modeling parameters.

The boiler model includes the e�ective fuel and water dynamics, boiler storage

as well as the main steam pressure drop model. The boiler controller is a PID

type control law with a series lead lag component for pressure error processing.

Depending upon the selection of the model parameters, a number of unit control

modes, such as boiler follows turbine, �xed pressure and turbine follows boiler

control modes can be selected. The model also includes a pressure limiting func-

tion and a unit coordinator for e�ective boiler and turbine control. In addition,

the model includes a megawatt set-point formulation function, with associated

feed forward components to provide anticipatory control behavior.
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For detailed description of all model functions, see PSS/E (2004).

Figure B.1: A Simpli�ed Unit Model (PSS/E c⃝), showing steam turbine con�gu-
rations and associated boiler model and controls, the TGOV05 model
(PSS/E (2004))



Appendix C

Matlab Source Code for GA - Fuzzy

This section presents Matlab code for implementing GA - Fuzzy design. The code

listed is applied for experimental studies.

1. GeneticAlgorithm - The main loop for the Genetic Algorithm.

2. InitPop - Generates the initial population of binary strings.

3. CalculateReals - Calculates the real values from the binary string.

4. CalculateFitness - Calculates the �tness of the population.

5. RSelection - Performs Roulette wheel selection.

6. Mutation - Performs binary mutation on the population.

7. Crossover - Performs single point crossover.

8. CheckElite - Perform the Elitist strategy.

9. GAModelRun - GA designed FLC controller from the binary string.

10. GenFuzzy - Generates the Fuzzy Controller.
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11. PerformIndices - The �tness function.
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1 f unc t i on [ Data , S t r i ng_Popu la t i on , F i t n e s s ] = Gene t i cA l go r i t hm ( )
2 %% A Simple Gene t i c A lgo r i thm Imp l ementa t i on (SGA) .
3 % By Cra i g D. Boesack .
4 %
5 % Gene t i c A l go r i t hms a r e h e u r i s t i c s e a r c h methods based on the p r i n c i p l e s
6 % of n a t u r a l s e l e c t i o n and on the s u r v i a l o f the f i t t e s t . These a l g o r i t hm s
7 % have found wide sp r ead a p p l i c a t i o n w i t h i n i n d u s t r y today . I t p r o v i d e s f o r
8 % a v e r s a t i l e mechanism o f f i n d s o l u t i o n s to prob lems and i s a f a i r l y
9 % robu s t s e a r c h method .

10 %
11 % Output V a r i a b l e s
12 % Data − Holds v a r i o u s data f o r s t a t i s t i c s .
13 % St r i ng_Popu l a t i on − A b i n a r y s t r i n g o f the f i n a l s o l u t i o n .
14 % F i t n e s s − the f i n a l p opu l a t i o n f i t n e s s .
15

16 % Dec l a r a t i o n o f a l g o r i t hm v a r i a b l e s .
17 nGen = 50 ; % Number o f Gen e r a t i o n s
18 nPop = 100 ; % Def i n e the popu l a t i o n s i z e .
19 nVar = 2 ; % Number o f v a r i a b l e s .
20 nB i t s = 12 ; % Number o f b i t s used pe r v a r i a b l e .
21 Pm = 0 . 0 2 ; % Mutat ion P r o b a b i l i t y .
22 Pc = 0 . 7 5 ; % Cro s s o v e r P r o b a b i l i t y .
23 E l i t i sm = 1 ; % E l i t i sm t r u s .
24

25 % De f i n i n g the Upper and Lower Bounds f o r the problem .
26 UBound = [2 2 ] ;
27 LBound = [ 0 . 0 1 0 . 0 1 ] ;
28 Data = zeros ( nPop , 4 ) ;
29 PerformanceType = 1 ;
30 %% Genera te the i n i t i a l p o pu l a t i o n and Eva l ua t e Popu l a t i on F i t n e s s .
31 St r i ng_Popu l a t i on = In i tPop ( nPop ) ;
32 [ F i t n e s s ] = C a l c u l a t e F i t n e s s ( S t r i ng_Popu la t i on , nPop , nVar , PerformanceType ) ;
33

34 %% Main GA Loop
35

36 f o r Run = 1 : nGen
37

38 %% Perform Se l e c t i o n , C r o s s o v e r and Mutat ion .
39 % Perform Rou l e t t e Wheel S e l e c t i o n .
40 [ Se l e c t ed_Popu la t i on , S e l e c t e d_F i t n e s s ] = RSe l e c t i o n ( St r i ng_Popu la t i on ,

F i t n e s s , nPop ) ;
41

42 % Perform S i n g l e Po in t C r o s s o v e r .
43 [ C ros sed_Popu la t ion ] = CrossOver ( Se l e c t ed_Popu la t i on , Pc ) ;
44

45 % Perform Mutat ion .
46 [ Mutated_Populat ion , M, Mcount ] = Mutat ion ( Crossed_Popu lat ion ,Pm) ;
47

48 %% Ca l c u l a t e F i t n e s s o f Reproduced Popu l a t i on .
49 [ MFitness ] = C a l c u l a t e F i t n e s s ( Mutated_Populat ion , nPop , nVar , PerformanceType ) ;
50

51 %% Perform E l i s t i m .
52 i f E l i t i sm
53 [ S t r i ng_Popu la t i on , F i t n e s s ,MPmax, OldMax ] = Che ckE l i t e ( Mutated_Populat ion

, MFitness , S t r i ng_Popu la t i on , F i t n e s s ) ;
54 e l s e
55 St r i ng_Popu l a t i on = Mutated_Populat ion ;
56 F i t n e s s = MFitness ;
57 end
58

59 % Simply d i s p l a y s t a t i s t i c s .
60 d i sp ( [ Run max( F i t n e s s ) mean( F i t n e s s ) min ( F i t n e s s ) ] ) ;
61 Data (Run , : ) = [ Run max( F i t n e s s ) mean( F i t n e s s ) min ( F i t n e s s ) ] ;
62

63 end
64

65 end
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1 f unc t i on i P o p u l a t i o n = In i tPop (nPop , I n i tPop )
2 % iPopu l a t i o n = In i tPop (nPop , nVar )
3 %
4 % In i tPop (nPop , nVar ) p roduces an random i n i t i a l p o pu l a t i o n o f nPop , where nPop

i s the
5 % s i z e o f the Popu l a t i on . Chromosome r e p r e s e n t a t i o n i s a b i n a r y s t r i n g o f 5
6 % B i t s X nVar , where nVar i s the number o f v a r i a b l e s , 4 B i t s i s the n i b b l e
7 % r e s p r e s e n t a t i o n o f the number ( Example nVar o f 3 , t h e r e f o r e chromosome
8 % leng t h i s 4∗3 = 12) .
9 % iPopu l a t i o n = mat r i x o f i n i t i a l chromosomes ( nPop By 4∗nVar mat r i x ) .

10 %
11 sw i t ch narg in
12

13 ca se 1
14

15 ChromeSize = 363 ;
16 i P o p u l a t i o n = rand ( nPop , ChromeSize ) >0.5;
17

18 ca se 2
19

20 i P o p u l a t i o n = In i tPop ;
21

22 o t h e rw i s e
23

24 ChromeSize = 363 ;
25 i P o p u l a t i o n = rand ( nPop , ChromeSize ) >0.5;
26 end
27

28 end

1 f unc t i on [ I n t e g e r s , Rea l s ] = Ca l c u l a t eR e a l s (Pop , nPop , nVar , nB i t s , LB ,UB)
2 % Ca l c u l a t e s the f i t n e s s o f the Popu l a t i on .
3 % ( This pa r t o f the a l g i r i t hm i s t y p i c a l l y problem dependant ) .
4 %
5 % F i r s t we need to decode the popu l a t i o n o f b i n a r y s t r i n g s to r e a l and
6 % i n t e g e r v a l u e s .
7 %
8

9 %% Conve r t i ng from Bina ry S t r i n g to I n t e g e r s
10 % Conve r s i on Vec to r s .
11 Pow = ( nB i t s − 1) : −1 :0 ;
12 Bin = 2∗ ones (1 , nB i t s ) ;
13 Conver t = Bin .^Pow ;
14 MaxCon = ones (1 , nB i t s ) ∗Convert ' ;
15

16 I n t e g e r s = zeros ( nPop , nVar ) ;
17 Rea l s = zeros ( nPop , nVar ) ;
18 f o r coun t e r = 1 : nPop
19

20 i n d e x = 1 ;
21 f o r count = 1 : nVar
22

23 % Now c a l c u l a t i n g the I n t e g e r v a l u e s o f the popu l a t i o n .
24 I n t e g e r s ( counte r , count ) = Pop ( counte r , i nd ex : i nd ex + nB i t s − 1) ∗Convert ' ;
25

26 % Conve r t i ng from I n t e g e r s to Rea l ( u s i n g l i n e a r t r a n s f o rma t i o n ) .
27 m = (UB( count ) − LB( count ) ) /MaxCon ;
28 c = UB( count ) − m∗MaxCon ;
29 Rea l s ( counte r , count ) = m∗ I n t e g e r s ( counte r , count ) + c ;
30

31 i n d e x = index + nB i t s ;
32 end
33

34 end
35

36 end
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1 f unc t i on F i t n e s s = C a l c u l a t e F i t n e s s ( Rea l s_Popu la t i ons , nPop , nVars , PerformanceType )
2 % Ca l c u l a t e F i t n e s s c a l c u l a t e s the f i t n e s s o f the p o pu l s a t i o n .
3 % Rea l s_Popu la t i on = Popu l a t i on o f r e a l numbers .
4 % nPop = s i z e o f the popu l a t i o n .
5 % nVar = number o f v a r i a b l e s .
6

7 F i t n e s s = zeros ( nPop , 1 ) ;
8 f o r ccount = 1 : nPop
9

10 F i t n e s s ( ccount , : ) = R a s t r i g i n ( Rea l s_Popu l a t i on s ( ccount , : ) , nVars , 1 0 ) ;
11 % F i t n e s s ( ccount , : ) = RunModel ( Rea l s_Popu l a t i on s ( ccount , : ) , 0 , PerformanceType ) ;
12 end
13

14 %F i t n e s s = GAModelRunPP( Rea l s_Popu la t i ons , PerformanceType ) ;
15

16 % Test f u n c t i o n s .
17 f unc t i on y = R a s t r i g i n ( x , nVars ,A) %#ok<INUSL>
18 %
19 % Ra s t r i g i n f u n c t i o n .
20 % Forms a good t e s t f u n c t i o n f o r e v a l u a t i n g the GA.
21

22 temp = 0 ;
23 f o r count = 1 : nVars
24 temp = temp + ( x ( count )^2 − A∗ cos (2∗ p i ( )∗ x ( count ) ) ) ;
25 end
26 y = 1/(A∗nVars + temp + 1 ) ;
27

28 end
29

30 end

1 f unc t i on [ Se l e c t ed_Popu la t i on , S e l e c t e d_F i t n e s s ] = RSe l e c t i o n ( Popu la t i on , F i t n e s s , nPop )
2 % Imp lementa t i on o f Rou l e t t e Wheel S e l e c t i o n .
3 %
4 %
5 Se l e c t ed_Popu l a t i on = zeros ( s i z e ( Popu l a t i on ) ) ;
6 Fi tness_Prob = F i t n e s s . / ( sum( F i t n e s s ) ) ;
7

8 f o r coun t e r = 1 : nPop
9

10 Prob = rand ( ) ;
11 i n d e x = f i n d (cumsum( F i tness_Prob ) >= Prob , 1 , ' f i r s t ' ) ;
12 Se l e c t ed_Popu l a t i on ( counte r , : ) = Popu l a t i on ( index , : ) ;
13 Se l e c t e d_F i t n e s s ( counte r , : ) = F i t n e s s ( i nd e x ) ; %#ok<AGROW>
14

15 end
16

17 end
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1 f unc t i on [ Mutated_Populat ion ,M, Mcount ] = Mutat ion ( Popu la t i on ,Pm)
2 %[ Mutated_Populat ion ,M, Mcount ] = Mutat ion ( Popu la t i on ,Pm)
3 % where ,
4 % Popu l a t i on = the popu l a t i o n .
5 % Pm = the Mutat ion p r o b a b i l i t y .
6 %
7 % Mutated_Populat ion = the mutated popu l a t i o n .
8 % M = a mat r i x i n d i c a t i n g where the muta t i ons take p l a c e .
9 % Mcount = i s a count o f the number o f muta t i ons f o r t h i s g e n e r a t i o n .

10 Mcount = 0 ;
11 [ nPop ChromLen ] = s i z e ( Popu l a t i on ) ;
12 Mutated_Populat ion = zeros ( nPop , ChromLen ) ;
13 M = zeros ( nPop , ChromLen ) ;
14

15 f o r count = 1 : nPop
16

17 f o r coun t e r = 1 : ChromLen
18

19

20 i f rand ( ) <= Pm
21

22 Mutated_Populat ion ( count , : ) = Popu l a t i on ( count , : ) ;
23

24 i f Mutated_Populat ion ( count , coun t e r ) == 1
25

26 Mutated_Populat ion ( count , coun t e r ) = 0 ;
27 e l s e
28

29 Mutated_Populat ion ( count , coun t e r ) = 1 ;
30 end
31

32 M( count , coun t e r ) = 1 ;
33 Mcount = Mcount + 1 ;
34

35 e l s e
36

37 Mutated_Populat ion ( count , : ) = Popu l a t i on ( count , : ) ;
38 M( count , coun t e r ) = 0 ;
39 end
40

41 end
42 end
43

44

45 end

1 f unc t i on [ C ros sed_Popu la t ion ] = CrossOver ( Se l e c t ed_Popu la t i on , Pc )
2

3 [ nPop ChromLen ] = s i z e ( Se l e c t ed_Popu l a t i on ) ;
4 Crossed_Popu la t ion = zeros ( nPop , ChromLen ) ;
5

6 f o r count = 1 : 2 : nPop
7

8 i f rand ( ) <= Pc
9 CBit = r a nd i ( [ 1 , ChromLen − 1 ] ) ;

10 Crossed_Popu la t ion ( count , : ) = [ Se l e c t ed_Popu l a t i on ( count , 1 : CBit )
Se l e c t ed_Popu l a t i on ( count + 1 , CBit + 1 : ChromLen ) ] ;

11 Crossed_Popu la t ion ( count + 1 , : ) = [ Se l e c t ed_Popu l a t i on ( count + 1 , 1 : CBit )
Se l e c t ed_Popu l a t i on ( count , CBit + 1 : ChromLen ) ] ;

12 e l s e
13 Crossed_Popu la t ion ( count , : ) = Se l e c t ed_Popu l a t i on ( count , : ) ;
14 Crossed_Popu la t ion ( count + 1 , : ) = Se l e c t ed_Popu l a t i on ( count + 1 , : ) ;
15 end
16

17

18 end
19 end
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1 f unc t i on [ NPopulat ion , F i t n e s s ,MPmax, OldMax ] = Che ckE l i t e ( Mutated_Populat ion ,
MFitness , Old_Populat ion , O l dF i t n e s s )

2

3 [MPmax, Mindex ] = max( MFitness ) ;
4 [ OldMax , O ld index ] = max( O l dF i t n e s s ) ;
5

6 NPopu lat ion = Mutated_Populat ion ;
7 F i t n e s s = MFitness ;
8

9 i f (MPmax < OldMax )
10

11 NPopu lat ion ( 1 , : ) = Old_Populat ion ( Old index , : ) ;
12 F i t n e s s ( 1 , : ) = OldMax ;
13 NPopu lat ion ( 2 , : ) = Mutated_Populat ion (Mindex , : ) ;
14 F i t n e s s ( 2 , : ) = MPmax;
15

16 e l s e
17

18

19 end
20

21

22 f unc t i on CP = CoverConvergence ( Popu la t i on , F i t n e s s )
23

24 [ F i t_Sorted , IX ] = so r t ( F i t n e s s , ' a scend ' ) ;
25 Pop_Sorted = Popu l a t i on ( IX , : ) ;
26

27 nPop = 20 ; % s e l e c t number o f r ep l a c emen t s .
28 St r i ng_Popu l a t i on = In i tPop ( nPop ) ;
29

30 CP = Pop_Sorted ;
31 CP( 1 : nPop , : ) = St r i ng_Popu l a t i on ; % Simply r e p l a c e the weakest and add

d i v e r s i t y i n t o popu l a t i o n .
32

33 end
34

35

36

37 end
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1 f u n c t i o n F i t n e s s = GAModelRun ( Inpu tMat r i x , PerformanceType , P l o t t i n g )
2 % Inpu tMat r i x = i s the chromosome , p a r t i t i o n e d i n t o the f o l l o w i n g
3 % FLC_chromosome then f o l l ow e d by the Rea l s Chromosome .
4 % [ . . . . FLC ( I n t e g e rMa t r i x ) . . . . / . . . . Rea l s ( Rea l s ) . . . . ]
5 % The FLC po r t i o n o f the chromosome ( I npu tMa t r i x ) i s c onve r t ed to i n t e g e r s
6 % from 1 to 0 , r e p r e s e n t i n g l i n g u i s t i c te rms (NB(0 , 1 ) ,NM(2) ,NS(3) ,ZZ(4 ) ,PS(5 ) ,PM(6) ,PB(7) ) .
7 % nRea l s = i s the number o f r e a l v a l u e s ( i . e . the Database (DB) , membership f u n c t i o n s and s c a l i n g

g a i n s .
8

9 nCount = 1 ;
10 nRea l s = 9 ; % 9 Rea l s pa ramete r s .
11 nB i t = 3 ; % i s the v a l u e o f the b i t n i b b l e ( f o r FLC c o n t r o l l e r ) .
12 nB i tRea l s = 8 ;
13 I n t e g e rMa t r i x = z e r o s (1 , 49 ) ; % where 49 i s the number o f r u l e s . (7 X 7) .
14

15 ChromoLength = l e n g t h ( I npu tMa t r i x ) ; % shou ld be mu l t i p l e s o f 3 ( s i n c e 3 b i t s r e p r e s e n t a v a l u e .
16 ChromoLengthFLC = ChromoLength − nB i tRea l s ∗( nRea ls −3) ; % l e s s nB i t∗nRea l s s i n c e nRea l s a r e

r e s e r v e d f o r
17 % Rea l s ( coded i n the r e a r o f the chromosome .
18

19 % Gene r a t i ng the I n t e rMa t r i x ( f o r Fuzzy C o n t r o l l e r ) .
20 f o r Count = 1 : nB i t : ChromoLengthFLC
21

22 Nibb l e = Inpu tMa t r i x ( Count : Count + nBi t − 1) ;
23 a = ChromosomeToIntegers ( N ibb l e ) ;
24

25 % We do not c o n s i d e r don ' t c a r e s .
26 i f a == 0
27 I n t e g e rMa t r i x ( nCount ) = 1 ;
28 e l s e
29 I n t e g e rMa t r i x ( nCount ) = a ;
30 end
31

32 nCount = nCount + 1 ;
33 end
34

35 % Gene r a t i ng the Rea l s .
36 nCount = 1 ;
37 %nBi t = 24 ; % f o r Rea l s ( f i n e r d e t a i l s ) .
38 Rea l s = z e r o s (1 , nRea l s ) ;
39 Bounds = [ 0 . 0 1 2 ] ; % Bounds on the S c a l i n g Ga ins .
40

41 f o r Count = ChromoLengthFLC+1: nB i tRea l s : ChromoLength
42

43 i f nCount >= 4
44 Bounds = [ 0 . 1 1 ] ; % chang ing the Bounds f o r the membership f u n c t i o n s .
45

46 Nibb l e = Inpu tMa t r i x ( Count : Count + nB i tRea l s − 1) ;
47 Rea l s ( nCount ) = In t e g e rToRea l s ( ChromosomeToIntegers ( N ibb l e ) , Bounds , nB i tRea l s ) ;
48

49 Bounds = [ Rea l s ( nCount ) 1 ] ;
50 Rea l s ( nCount+1) = In t e g e rToRea l s ( ChromosomeToIntegers ( N i bb l e ) , Bounds , nB i tRea l s ) ;
51 nCount = nCount + 2 ;
52

53 e l s e
54

55 Nibb l e = Inpu tMa t r i x ( Count : Count + nB i tRea l s − 1) ;
56 Rea l s ( nCount ) = In t e g e rToRea l s ( ChromosomeToIntegers ( N ibb l e ) , Bounds , nB i tRea l s ) ;
57 nCount = nCount + 1 ;
58

59 end
60 end
61

62 I n i t i a l i s eMod e l P a r am ; % I n i t i a l i s e the model pa ramete r s .
63 s gRea l s = Rea l s ( 1 : 3 ) ; % sgRea l s a r e the r e a l s f o r the S c a l i n g g a i n s .
64 mmReals = Rea l s ( 4 : l e n g t h ( Rea l s ) ) ; % mmReals a r e the r e a l s f o r the memebership f u n c t i o n s .
65 [ r u l e L i s t , Ma] = GenRu l e I n t e g e r s ( I n t e g e rMa t r i x ) ;
66 FLC = GenFuzzy ( r u l e L i s t , mmReals ) ;
67 ModelName = 'TwoAreaLFCModel ' ;
68 F i t n e s s = RunModel (ModelName , FLC , sgRea l s , P l o t t i n g , PerformanceType ,Ma) ;
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1 f unc t i on FLC = GenFuzzy ( r u l e L i s t , mmReals )
2

3 % Gene ra t e s the i n pu t and output membership f u n c t i o n s .
4 % paramete r s d e f i n e s the membership t r i a n g u l a r f u n c t i o n s pa ramte r s .
5 % Genera te FLC ove r no rma l i s e d v a l u e s .
6

7 % mmReals
8 % 3 membership f u n c t i o n s ( Er ro r , dEr ro r , Output ) .
9

10 aE r r o r = mmReals (1 ) ;
11 bE r r o r = mmReals (2 ) ;
12

13 adE r r o r = mmReals (3 ) ;
14 bdEr ro r = mmReals (4 ) ;
15

16 aOutput = mmReals (5 ) ;
17 bOutput = mmReals (6 ) ;
18

19 %% Se t t i n g up the FIS .
20 a = new f i s ( 'FLC ' ) ;
21

22 %% Crea t i n g the i n pu t membership f u n c t i o n ( E r r o r ) .
23 a = addvar ( a , ' i n pu t ' , ' E r r o r ' ,[−1 1 ] ) ;
24 a = addmf ( a , ' i n pu t ' , 1 , 'NB ' , ' t r im f ' , [−1.333 −1 −bE r r o r ] ) ;
25 a = addmf ( a , ' i n pu t ' , 1 , 'NM' , ' t r im f ' , [−1 −bE r r o r −aE r r o r ] ) ;
26 a = addmf ( a , ' i n pu t ' , 1 , 'NS ' , ' t r im f ' , [− bE r r o r −aE r r o r 0 ] ) ;
27 a = addmf ( a , ' i n pu t ' , 1 , 'ZZ ' , ' t r im f ' , [− aE r r o r 0 aE r r o r ] ) ;
28 a = addmf ( a , ' i n pu t ' , 1 , 'PS ' , ' t r im f ' , [ 0 aE r r o r bE r r o r ] ) ;
29 a = addmf ( a , ' i n pu t ' , 1 , 'PM' , ' t r im f ' , [ aE r r o r bE r r o r 1 ] ) ;
30 a = addmf ( a , ' i n pu t ' , 1 , 'PB ' , ' t r im f ' , [ bE r r o r 1 1 . 3 3 4 ] ) ;
31 % f i g u r e (1 ) ;
32 % plo tmf ( a , ' i nput ' , 1 ) ;
33

34 %% Crea t i n g the i n pu t membership f u n c t i o n ( Error_dot ) .
35

36 a = addvar ( a , ' i n pu t ' , ' Change i n  E r r o r ' ,[−1 1 ] ) ;
37 a = addmf ( a , ' i n pu t ' , 2 , 'NB ' , ' t r im f ' , [−1.333 −1 −bdEr ro r ] ) ;
38 a = addmf ( a , ' i n pu t ' , 2 , 'NM' , ' t r im f ' , [−1 −bdEr ro r −adE r r o r ] ) ;
39 a = addmf ( a , ' i n pu t ' , 2 , 'NS ' , ' t r im f ' , [− bdEr ro r −adE r r o r 0 ] ) ;
40 a = addmf ( a , ' i n pu t ' , 2 , 'ZZ ' , ' t r im f ' , [− adE r r o r 0 adE r r o r ] ) ;
41 a = addmf ( a , ' i n pu t ' , 2 , 'PS ' , ' t r im f ' , [ 0 adE r r o r bdEr ro r ] ) ;
42 a = addmf ( a , ' i n pu t ' , 2 , 'PM' , ' t r im f ' , [ adE r r o r bdEr ro r 1 ] ) ;
43 a = addmf ( a , ' i n pu t ' , 2 , 'PB ' , ' t r im f ' , [ bdEr ro r 1 1 . 3 3 4 ] ) ;
44 % f i g u r e (2 ) ;
45 % plo tmf ( a , ' i nput ' , 2 ) ;
46

47 %% Crea t i n g the output membership f u n c t i o n ( Output ) .
48

49 a = addvar ( a , ' output ' , ' Output ' ,[−1 1 ] ) ;
50 a = addmf ( a , ' output ' , 1 , 'NB ' , ' t r im f ' , [−1.333 −1 −bOutput ] ) ;
51 a = addmf ( a , ' output ' , 1 , 'NM' , ' t r im f ' , [−1 −bOutput −aOutput ] ) ;
52 a = addmf ( a , ' output ' , 1 , 'NS ' , ' t r im f ' , [−bOutput −aOutput 0 ] ) ;
53 a = addmf ( a , ' output ' , 1 , 'ZZ ' , ' t r im f ' , [−aOutput 0 aOutput ] ) ;
54 a = addmf ( a , ' output ' , 1 , 'PS ' , ' t r im f ' , [ 0 aOutput bOutput ] ) ;
55 a = addmf ( a , ' output ' , 1 , 'PM' , ' t r im f ' , [ aOutput bOutput 1 ] ) ;
56 a = addmf ( a , ' output ' , 1 , 'PB ' , ' t r im f ' , [ bOutput 1 1 . 3 3 4 ] ) ;
57 a = add r u l e ( a , r u l e L i s t ) ;
58

59 % GA de s i gn ed FLC C o n t r o l l e r .
60 FLC = a ;
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1 f unc t i on I = Pe r f o rm I nd i c e s (Time , Er ro r , Alpha , Beta , Cont ro l , Type )
2 % Performance i n d i c e s f u n c t i o n
3 %I = Pe r f o rm I nd i c e s (Time , Er ro r , a lpha , beta , Cont ro l , Type )
4 % Time i s a t ime v e c t o r .
5 % Er r o r i s the E r r o r ( e ( t ) o r u ( t ) ) .
6 % Alpha used i n 6 or IGSE .
7 % Beta used i n 7 or ISECE .
8 % Type i s the type o f pe r fo rmance i ndex used .
9 % Type = 1 or ITE − I n t e g r a l o f t o t a l e r r o r .

10 % 2 or IAE − I n t e g r a l o f a b o s u l t e e r r o r .
11 % 3 or ISE − I n t e g r a l o f squa r e e r r o r .
12 % 4 or ITAE − I n t e g r a l o f t ime mu l t i p l i e d by a b s o l u t e e r r o r .
13 % 5 or ITSE − I n t e g r a l o f t ime mu l t i p l i e d squa r e e r r o r .
14 % 6 or IGSE − I n t e g r a l g e n e r a l i z e d squa r e e r r o r .
15 % 7 or ISECE − I n t e g r a l o f squa r e e r r o r and c o n t r o l e f f o r t .
16

17 sw i t ch Type
18

19 ca se { ' ITE ' ,1}
20 I = t rapz (Time , E r r o r ) ;
21 ca se { ' IAE ' ,2}
22 E r r o r = abs ( E r r o r ) ;
23 I = t rapz (Time , E r r o r ) ;
24 ca se { ' ISE ' ,3}
25 E r r o r = E r r o r . ^2 ;
26 I = t rapz (Time , E r r o r ) ;
27 ca se { ' ITAE ' ,4}
28 E r r o r = abs ( E r r o r ) ;
29 E r r o r = E r r o r .∗Time ;
30 I = t rapz (Time , E r r o r ) ;
31 ca se { ' ITSE ' ,5}
32 E r r o r = E r r o r . ^2 ;
33 E r r o r = E r r o r .∗Time ;
34 I = t rapz (Time , E r r o r ) ;
35 ca se { ' IGSE ' ,6}
36 a = E r r o r . ^ 2 ;
37 a = a ( 2 : l ength ( a ) ) ;
38 b = d i f f ( E r r o r ) . / d i f f (Time ) ;
39 b = b .^2 ;
40 I = a + Alpha .∗ b ;
41 Time = Time ( 1 : l ength (Time ) − 1) ;
42 I = t rapz (Time , I ) ;
43 ca se { ' ISECE ' ,7}
44 a = E r r o r . ^ 2 ;
45 b = Con t r o l . ^ 2 ;
46 I = a + Beta .∗ b ;
47 I = t rapz (Time , I ) ;
48 end
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