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Abstract

Vehicle accidents are one of the major causes of deaths in South African un-
derground mines. A computer vision-based pedestrian detection and track-
ing system is presented in this research that will assist locomotive drivers
in operating their vehicles safer. The detection and tracking system uses a
combination of thermal and three-dimensional (3D) imagery for the detec-
tion and tracking of people. The developed system uses a segment-classify-
track methodology which eliminates computationally expensive multi-scale
classification. A minimum error thresholding algorithm for segmentation is
shown to be effective in a wide range of environments with temperature up to
26 ◦C and in a 1000 m deep mine. The classifier uses a principle component
analysis and support vector classifier to achieve a 95% accuracy and 97%
specificity in classifying the segmented images. It is shown that each detec-
tion is not independent of the previous but the probability of missing two
detections in a row is 0.6%, which is considered acceptably low. The tracker
uses the Kinect’s structured-light 3D sensor for tracking the identified peo-
ple. It is shown that the useful range of the Kinect is insufficient to provide
timeous warning of a collision. The error in the Kinect depth, measurements
increases quadratically with depth resulting in very noisy velocity estimates
at longer ranges. The use of the Kinect for the tracker demonstrates the
principle of the tracker but due to budgetary constraints the replacement of
the Kinect with a long range sensor remains future work.
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Chapter 1

Introduction

Transportation machinery is responsible for a large portion of mine deaths
in South Africa. Being run over or crushed by transportation equipment is
the second largest cause of mine deaths after rock-fall-related incidents. A
reliable system for detecting people near mining vehicles is needed to pre-
vent collisions between vehicles and personnel. This research develops a
thermal imaging-based pedestrian detection and tracking system for under-
ground mine vehicles.

1.1 Problem Statement

The South African mining industry has committed itself to reducing the vast
majority of serious mine accidents by 2013 to be in line with global standards
and to continue to strive for zero harm [1, 2]. Apart from the obvious societal
impacts of the death of a miner, mining deaths support the perception of
mining as very dangerous. In addition to negative industry perception and
social impact, mine deaths also cost the industry a significant amount. It is
estimated that each death costs R12-million [1] in lost productivity, training
costs, insurance and the cost of looking after the deceased’s family. So taking
the number of deaths for 2011 (112) into account, fatalities cost the mining
industry R1.3-billion in 2011. The reduction in mine fatalities is essential
for the South African mining industry; however, given that the number of
mining fatalities up to November 2011 was 112 [3], the goal of zero harm
is not going to be achieved without significant improvements in mine safety
systems.

Figure 1.1 shows that after falls of ground, which are rock falls occurring
in a mine, vehicles are the second leading cause of mining fatalities. In order
to reduce the number of vehicle-related fatalities a system that can detect
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people near a mine vehicle is needed. Proximity detection systems currently
exist but the level of adoption of the technology is low. The low acceptance of
current systems is believed to be in part due to fears of nuisance alarms and
non-compliance with alarms. Current proximity detection systems are purely
proximity-based; they will alarm if someone is within a certain distance of
the vehicle whether they are in danger or not, which will most likely result
in decreased compliance with alarms.

Falls of ground

Vehicle related

Other

Fall from a
height

Explosion

Machinery
related 1

Inundated
by material

Unspecified

Figure 1.1: A comparison of causes of mine deaths between May 2005 and
March 2010 (compiled from DMR fatality reports for both underground and
surface mines)

Based on data compiled from the Department of Mineral Resources’
(DMR) provisional fatality reports, vehicle-related fatalities account for ap-
proximately 18% of mine fatalities. There were 837 fatalities between May
2005 and March 2010, equating to an average of 157 fatalities per year (see
Appendix A). A pedestrian detection system that can just detect people in
front of a vehicle has the potential to significantly reduce the number of
vehicle-related fatalities. Such a detection system could reduce frontal col-
lisions with workers, accidents involving two vehicles and accidents where a
vehicle hits an object or traps a worker against an object.

1Machinery is all mining equipment that is stationary or not self-propelled, such as
scrapers, conventional drills, crushers etc.

2



A number of mine locomotives have the driver sitting behind a fairly small
window which restricts the drivers field of view. This may be a contributing
factor to some locomotive related fatalities. Figure 1.2 shows an example
of an underground battery locomotive with an off-centre cabin, it is easy to
see from the image that the driver would have a restricted view to the left of
the vehicle. The thermal imaging-based pedestrian detection system would
be mounted on the from on the locomotive in a position that would allow it
to see where the driver could not.

Driver’s cabin

possible
sensor
mounting
point

Figure 1.2: An example of an underground locomotive with limited visibility
for the driver and a possible mounting point for the thermal imaging-based
pedestrian detection system (Adapted from [4])

Underground mines, in particular gold mines, are responsible for the ma-
jority of South Africa’s mine fatalities and are therefore the nominated envi-
ronment for the collision avoidance system. A division of fatalities by mining
sector is shown in Figure 1.3 and it is evident that the majority of fatalities
occur in gold mines. The miner detection system will be aimed at gold mines
due to the high proportion of deaths in this sector; however the system will
be able to operate in other underground mines as well.
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Figure 1.3: A comparison of the percentage of deaths occurring in each
mining sector between May 2005 and March 2010

1.2 Background

There are a number of systems that detect the presence of personnel and other
vehicles in the vicinity of mining vehicles. These systems have a number
of limitations and a thermal imaging-based pedestrian detection system is
proposed in this work that is believed to address the limitations of the current
systems.

The following sections will discuss the current proximity detection sys-
tems and then provide some background on thermal imaging and the use of
machine vision for proximity detection. The background will focus on the
dark, Global Positioning Systems (GPS) deprived underground environment
and more specifically the environment of South African hard-rock (gold and
platinum) mines.

1.2.1 Proximity Detection

Existing proximity detection systems use radar, GPS, Radio Frequency Iden-
tification (RFID) tags, ultrasonics, lasers, cameras or some combination of
these technologies to detect workers near mine vehicles.

Radar-based proximity detection has been used for surface mining equip-
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ment as an aid to surface dump truck drivers for detecting people and small
vehicles behind the truck. The system is fairly effective, with only occasional
false alarms [5]. The close proximity of mine walls in an underground set-
ting provides a challenge for radar implementation, with false alarms being
frequent [6].

A GPS-based proximity warning system requires all surface personnel,
and vehicles, to carry a GPS receiver and a radio for communication with
nearby vehicles. Each vehicle and pedestrian broadcasts its position to ve-
hicles in the area and a display in the vehicle shows the position of nearby
vehicles and stationary objects. The system alarms if there is an obstacle
within a predetermined range [5, 7]. The reliance of the system on satellite
signals precludes it from operating in a GPS-deprived underground environ-
ment.

RFID tags are popular for collision avoidance systems and a number of
systems operating at various frequencies are commercially available. There
are a number of commercial collision avoidance systems, most of which use
some form of RFID system.

The Becker NCS Collision Avoidance System (CAS) uses a combination
of three proximity detection systems concurrently for improved reliability [8].
They use ultra high frequency (UHF) RFID for long-range detection of up to
100 m, a time-of-flight (TOF) RFID for distances of up to 50 m and an un-
specified close proximity electromagnetic detection system that is unaffected
by metallic objects (most likely a low frequency magnetic field). Figure 1.4
shows a vehicle equipped with four detectors; a vehicle with multiple detec-
tors can tell the operator the approximate direction the detected person is
approaching from. The critical zone, in Figure 1.4, would sound a high level
alarm or apply the vehicle brakes. In a surface mine it is easy to keep ve-
hicles and pedestrians more than 5 m apart. This is also possible in certain
underground mines where the mined-out voids are large, for example coal
mines. In hard-rock mines it is typical to have pedestrian travelling ways
next to haulage rails in one tunnel; in a case such as this any person that a
haulage locomotive passes would set off a high level alarm.

The HazardAvertr proximity detection system and the Nautilus Inter-
national Buddy system use low frequency fields [9, 10]. The HazardAvertr

system uses a number of zones surrounding the vehicle. The simplest set-up
has a single stop zone around the vehicle (Figure 1.5); any workers within
the zone cause the machine to stop. Around the stop zone is a warning zone
that can alert the operator and slow the vehicle; a typical warning zone range
is between 16 m and 23 m. The system can dynamically adjust the size of
the zones surrounding the vehicle based on its speed. The HazardAvertr

system also allows silent zones to be created which allow, for example, the
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Safe zone

Caution zone

Warning zone

Critical zone

Detectors

front
right

left

back

100 m

12.5 m

5 m

Figure 1.4: The proximity detection zones of the Becker CAS (after [8])

vehicle operator to be within the stop zone without the vehicle stopping.
Minecom’s Dynamic Anti Collision System (DACS600) uses RFID tags

operating in the 400 MHz frequency range [9, 11]. The DACS600 searches
for tags within range and an alarm is set off when a tag is detected. The
system has a display that indicates the number of people and vehicles within
a single predefined proximity limit.

The Jannatec Advanced Warning System (JAWS) uses radio transceivers
fitted to a vehicle to detect the presence of another transceiver carried by a
miner, or fitted to another vehicle or fixed hazard [12]. When a hazard is
identified within range the system indicates what type of hazard has been
detected so appropriate action can be taken, such as giving way to haulage
vehicles.

All the RFID systems require some form of transceiver to be carried by
personnel, adding to the cost of the systems. The use of tags also raises
maintenance issues. A typical gold mine can have 25 000 workers [13], which
means that there may be as many receivers that need to be checked and main-
tained. The actual number of tags may be lower due to the fact that some
there are multiple shifts and some of the workers may work in surface plants,
however the number of tags is still may thousands. The reliance of RFID-
based systems on the tag means that anyone wearing the wrong equipment
or whose tag is faulty will be invisible to the system, which is a potentially
very dangerous situation. Some tag-based systems only detect the presence
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Stop zone

Warning zone

Continuous miner

Silent zone for
operator

Figure 1.5: The proximity detection zones of the HazardAvertr system

of a tag and not the distance to it and none provide the exact location of the
personnel, only how close they are and possibly an approximate direction.
It would be advantageous to know where the danger is so that an operator
can take appropriate action. It would also be advantageous if the detection
system could be integrated into an autonomous system. Automation has the
potential to increase safety and productivity [14–16], as well as allow the
mining of resources that could otherwise not be mined [17]. An automated
system requires knowledge of actual positions of people and obstacles so that
it can plan an appropriate response.

1.2.2 Machine Vision

Machine vision provides an accurate way of detecting people and determining
exactly where they are in relation to machinery or vehicles [5, 18]. However,
visible detection systems can be sensitive to changes in illumination or being
obscured by dust or smoke. In a badly lit underground mine, a system using
visible-light imaging would require its own light source in order to operate
reliably. Using a light source with the camera also creates changing illumi-
nation since the illumination intensity increases closer to the light source.
Changing illumination is a problem for a number of computer vision algo-
rithms. An additional disadvantage of visible-light imaging is that if a miner
points their cap-lamp directly at the camera the intense, focussed beam is

7



sufficient to saturate a visible-light camera. Thermal-infrared is, however,
not significantly affected by these problems because the illumination is ra-
diated by people and the long wavelength (7-14 µm) allows it to penetrate
dust and smoke [19]. These advantages make thermal imaging-based ma-
chine vision an attractive alternative for detecting people near underground
mine vehicles.

1.2.3 Thermal Imaging

Every object with a temperature above absolute zero emits infrared (IR)
radiation. Thermal imaging systems create images of a scene based on the
thermal radiation received from the scene. The radiation received is due to
the thermal radiation emitted by objects in the scene, as well as radiation
from other sources reflected off objects. Humans generate heat and have
an emissivity close to one. An object with an emissivity of close to one
will reflect very little radiation and the radiation emitted by the object will
mostly be due to its temperature.

The IR spectrum is a large section of the electromagnetic spectrum with
a wide variety of uses depending on the part of the IR spectrum being
used. The IR spectrum can be sub-divided into five main regions. These
are near-infrared, short-wavelength, mid-wavelength, long-wavelength and
far-infrared [20]. Near-infrared (0.7 to 1.4 µm) is commonly used for de-
vices like IR remote controls. Near-infrared illumination is also often used
for commercial night-vision surveillance since it can be detected using the
same imaging sensor used for visible-light. Near-infrared is also used by
TOF cameras because it can still be detected with standard complementary
metaloxidesemiconductor (CMOS) or charge-coupled device (CCD) sensors
but there is less ambient near-infrared than visible light. Short-wavelength
IR (1.4 to 3 µm) is used for various process monitoring and inspection tasks
such as hot furnace monitoring [21]. Mid-wavelength IR (3 to 8 µm) is used
for gas spectroscopy [20]. Long-wavelength infrared (LWIR) (8 to 14 µm)
is the region of interest for this research and is used for thermal imaging.
The far infrared spectrum extends beyond 14 µm but the definition of where
it ends varies between 50 µm and 1000 µm, depending on the application
[22, 23].

Thermal-infrared cameras find a number of military and commercial ap-
plications, including surveillance, process automation and printed circuit
board (PCB) testing [24, 25]. For particles that are significantly smaller
than the wavelength of the radiation, scattering is proportional to 1/λ4, so
for particles less than 2 µm in size LWIR is hardly scattered [22, p. 93]. The
lack of scattering by smaller particles allows LWIR to penetrate small parti-
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Figure 1.6: A section of the electromagnetic spectrum showing the divisions
of the infrared spectrum

cle size dust, smoke and light fog [19]. For large particle sizes such as rain,
heavy fog and large particle dust LWIR is scattered similarly to visible-light.
The improved dust penetration of LWIR, in comparison to near-IR and visi-
ble light imaging, makes it a good choice for the dusty mining environment.
LWIR imaging does not require external illumination, which gives it a range
advantage over illuminated imaging such as visible or near-infrared systems
[19, 26].

The two types of thermal-infrared imaging systems are cooled quantum
detectors and uncooled detectors. Owing to the need for cryogenic cool-
ing, quantum detectors are bulky, costly and mostly restricted to military
applications [26]. Uncooled detectors are used in the majority of commer-
cial applications. There are two types of uncooled detectors, ferroelectric
detectors and microbolometers.

Ferroelectric sensors (a subclass of pyroelectric sensors) make use of the
pyroelectric properties of certain materials. Substances that exhibit the pyro-
electric effect have an electric polarisation that changes with changing tem-
perature. The changing polarisation will create a changing voltage across
the material that can be detected. If a pyroelectric element is exposed to
a source of long-wave IR radiation its temperature will rise, which can be
detected as a changing voltage across the material. Since pyroelectric sensors
can only detect a change in temperature (a change in incoming radiation),
the radiation must be chopped [24]. In pyroelectric IR imaging systems the
chopping of the radiation is achieved using a rotating chopper. Image capture
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starts with the chopper closed and the measurement of the potential of each
pixel. The chopper rotates to expose the Focal Plane Array (FPA), the open
chopper admits IR radiation from the scene. The IR radiation is absorbed
by the pixels of the FPA, causing their temperature to change. The change
in temperature of each pixel causes a change in the potential across each
pyroelectric element. The electronics will measure the new potential across
the pyroelectric pixels and subtract the value when the shutter was closed.
The change in the potential is proportional to the change in temperature
of the detecting element, which is proportional to the amount of incoming
radiation.

One of the issues with pyroelectric sensors is that the shutter is not a
perfect thermal insulator and this causes the halo effect identified as a prob-
lem with thermal imaging [27–29]. If there is a hot object in the scene the
chopper heats up and some of the energy gets to the sensor. Since the en-
ergy leaking through the chopper is not focused a region larger than the
warm object is imprinted on the FPA. Since the FPA is warmed when the
shutter is closed the increase in temperature due to the illumination from
the scene is reduced; this creates a dark halo around warm objects. Most
thermal imaging systems operate at 30 Hz so a typical chopper would rotate
at 30 Hz (thermal cameras made in the U.S. are export controlled and a
license is required for 30 Hz cameras outside the U.S.).

Microbolometer FPAs do not suffer from haloing and represent the vast
majority of modern thermal imaging sensors. While in the past ferroelec-
tric barium strontium titanate (BST) represented the majority of thermal
imaging sensors [29], ferroelectric FPAs are now rarely used. For a num-
ber of reasons BST sensors have almost universally been replaced with mi-
crobolometers. Production of the last commercial camera using a BST sensor
ended in 2009 [30].

A microbolometer consists of an infrared-absorbing material and a neg-
ative temperature coefficient resistive element thermally insulated in a vac-
uum [26, 31]. The housing in which the microbolometer is insulated has an
infrared-transparent window that allows radiation from the scene to strike the
infrared-absorbent material. The temperature change of the microbolometer,
due to infrared energy absorption, is determined by measuring the resistance
change of the resistive element. The temperature of the object being im-
aged can be calculated using the Stefan-Boltzmann law, assuming a certain
emissivity.

IR image interpretation poses a number of challenges. Thermal cameras
have relatively low resolution, contrast and signal to noise ratio [32, 33]. Typ-
ically the resolution of thermal cameras is 320×240 but 640×480 resolution
cameras are available at significantly higher cost. An original equipment
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manufacturer (OEM) thermal camera core with a 320× 240 resolution costs
approximately R30 000 while a similar camera with a 640 × 480 resolution
costs approximately R80 000. Even high resolution thermal cameras do not
come close to the multiple mega-pixel resolutions easily available from visible
light cameras. Since objects at similar temperatures have similar thermal ra-
diance, the contrast and therefore the number of identifiable image features
is relatively small.

1.2.4 Mining

Various mining methods and associated mine layouts are used to exploit
different minerals. The pedestrian detection system is designed for hard-
rock mines such as gold and platinum, with a focus on gold mines, so the
layout of a typical gold mine will be introduced.

To begin the discussion on underground mines, some basic mining termi-
nology is outlined below [34, 35].

• Ore: a mineral deposit that has sufficient value to be mined profitably

• Waste: material associated with an ore deposit that must be mined to
get to the ore and is then discarded

• Stope: the working area in an underground mine from which the ore is
extracted

• Reef: a body of rock containing the ore

• Haulage: The horizontal transport of ore, supplies, and waste, or the
passageway for such transport

• Cross-cut: a horizontal tunnel going from haulage tunnels to intersect
the reef

• Raise: excavations that follow the angle of the reef, from which mining
of the reef proceeds

• Dip: a direction parallel to the incline of a reef

• Strike: a direction perpendicular to the incline of the reef

• Hanging-wall: the ‘roof’ of a tunnel or stope

• Foot-wall: the ‘floor’ of a tunnel or stope
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• Pillar: a section of rock left to support the hanging-wall of a mined-out
void

• Bar-down: To prise down a loose rock from the hanging-wall

A shaft is sunk vertically from the surface and horizontal haulage tunnels
are excavated at various levels. The levels are between 60 m and 200 m
apart; on each level cross-cuts are excavated horizontally from the haulage
tunnels to intersect the reef. When the cross-cut meets the reef a raise is
tunnelled that follows the angle of the reef (Figure 1.7).

shaft

haulage

cross-cuts

area to be
mined

raises

reef plane

Dip piller - left
for support

Figure 1.7: A figure showing a typical gold mine layout, adapted from [36]

Mining proceeds from two raises inwards along the strike in stoping pan-
els, as shown in Figure 1.8. Mining usually stops just before the panels meet
in the middle, leaving a dip pillar to support the hanging-wall.

Mining in hard-rock mines is predominately cyclical, consisting of a drill-
blast-clean cycle. The cycle starts with drilling of blast holes in the stope
face. After all the blast holes are drilled and filled with explosives, all the
workers exit the mine and the explosives are detonated. After the explosives’
fumes dissipate and seismicity decreases back to background levels, the mine
workers re-enter and begin the process of entry inspection and support in-
stallation. Entry inspection involves checking the hanging-wall of the stope
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stoping panels

cross-cuts raises

mining along the strike mining complete

Figure 1.8: The progression of mining operations, after [36]

for loose rocks and either supporting or barring-down those rocks that are
found to be unstable. After entry inspection the broken ore from the last
blast is removed from the stopes using scrapers and then loaded into haulage
equipment. In gold mines the haulage equipment is usually rail-bound and
the haulage locomotive transports the ore to a tip point where it falls to the
bottom level of the mine and is then hoisted to the surface for processing.

The underground environmental conditions are an important considera-
tion for this research. The thermal conditions in a mine are central to the
operation of a thermal imaging-based system. The virgin rock temperatures
of deep South African gold mines can be up to approximately 60 ◦C ; however
ventilation and other cooling (eg. evaporative cooling) reduces the tempera-
ture within working areas to below 30 ◦C [37]. Work conducted to model the
heat flow from advancing stopes shows that the rock surface temperature can
be assumed to be equal to the ventilation air wet-bulb temperature (Twb) [38].
Significant work has been performed to design ventilation systems to ensure
that the air Twb remains below 28 ◦C (heat stress management programmes
are required for Twb > 27.5 ◦C ) [39, 40].

The human body surface temperature will always be higher than the am-
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bient air wet-bulb temperature. The air wet-bulb temperature takes into
account evaporative cooling; therefore in order for a person to dissipate
metabolic heat their surface temperature (on average) must be higher than
the ambient air wet-bulb temperature. Knowing that the tunnel walls have
a surface temperature equal to the wet-bulb temperature of the air, and that
people will have a temperature higher than the air wet-bulb temperature, we
can infer that people will have an average surface temperature that is higher
than the surroundings. This fact will be used for detecting people in the
thermal images.

1.3 Research Objective

The objective of this research is the design, testing and evaluation of a pedes-
trian detection system for underground mining vehicles. The collision avoid-
ance system is designed to detect people using a combination of a thermal-
infrared camera and a depth sensor. The identified people are tracked over a
number of frames and using the position measurements from the depth sen-
sor their current trajectories are estimated. The trajectories of the people
relative to the vehicle are used to determine whether a collision is likely to
occur and if so when.

This research evaluates whether thermal imaging-based human detection
can detect workers in an underground mine with sufficient accuracy to pre-
vent collisions with a vehicle. The system is tested in an indoor environment
as well as in an actual underground mine, albeit not mounted on a mine
vehicle.

Obviously 100% detection is the goal; however this is very unlikely to be
achieved by any system. To decide on the required accuracy the detection
system will be compared to detection systems representing the current best
practice. The most popular systems for underground pedestrian detection are
RFID-based systems. The actual detection rates of RFID systems for pedes-
trian detection have not been adequately determined. Research on RFID
systems for other applications has shown that the detection rates depend on
a number of factors and may not be as high as claimed by manufacturers
[41].

Work on predicting detection rates of RFID tags on vehicles shows that
the detection rates depend significantly on the speed of the vehicle, angle
of the receiver and the position of the tag on the vehicle window [42]. A
study performed by Clarke et al. [41] on RFID detection rate on shipping
containers showed that detection rates depended on the tag orientation and
the contents of the package. The work by Clarke et al. showed that even

14



under ideal conditions the highest detection rate was approximately 99%.
In the abscence of any information on proximity warning RFID systems, a
specificity of 99% or higher will be considered sufficient.

In order to prevent a collision the system will need to provide sufficient
time to stop the vehicle or warn the pedestrian. The average reaction time
of locomotive drivers has been found to be approximately 2 s [43]; therefore
sufficient warning will be assumed to be greater than 2 s.

1.4 Scope and Limitations

This research looks at the design and evaluation of a pedestrian detection
system that can detect people in the path of a forward-moving underground
mine locomotive. The scope is limited to underground locomotives because
it is believed that a machine vision detection system would be most useful
on a locomotive. Since a locomotive cannot turn around sharp corners, it
cannot turn into an area that is not visible to the camera. The tracks of a
locomotive ensure that its trajectory remains smooth, which is necessary to
predict a collision.

There are a number of causes of vehicle-related accidents in mines, as
shown in Appendix A. A large portion of these causes of vehicle-related
deaths is unknown. Of the known causes the main cause is a vehicle driving
into someone or something.

While it would be advantageous if the detection system could be inter-
faced with autonomous mine vehicles in the future, the system is intended to
assist a human vehicle operator. The research is restricted to the design of
the system software and testing using a prototype hardware set-up. Specific
hardware considerations, such as the design of an intrinsically safe system
for use in a mine containing flammable gases, are excluded.

Only limited range 3D sensors (5 m) are available for this system; the
ranges are insufficient to provide adequate warning to the pedestrian or driver
but the principles remain the same. The addition of a longer-range sensor will
remain as future work. The underground speed limit is generally 16 km/h
(4.4 m/s), with faster speed requiring special arrangement. In order to pro-
vide the required 2 s warning the system will need to be able to determine the
trajectory of a person up to 9 m from the vehicle. The available hardware
is constrained to a thermal camera and a Kinect or SR4000 time-of-flight
camera.

The available mines to test the system were less than 1000 m deep with
ambient air temperatures below 26 ◦C . A number of South African go
significantly deeper (deeper than 3000 m, [44]) but for the purpose of this

15



research the scope will be limited to shallower, cooler mines. The system will
be limited to operate in environments with air temperatures up to 26 ◦C .

1.5 Assumptions

It is assumed that the temperature of the mine walls will always be measur-
ably different to human body surface temperature. As discussed in Section
1.2.4 the average body temperature is greater than the air temperature; how-
ever in the presence of high velocity ventilation air this difference may be
small, due to the increased cooling effect of the fast moving air. It is as-
sumed that the system will be used in areas with moderate ventilation.

1.6 Overview

Chapter 2 discusses some of the relevant methods for thermal image segmen-
tation, classification and camera-based object tracking. This is followed, in
Chapter 3, by a discussion of the preliminary system design and the methods
evaluated for use in the system. The final system is described in Chapter
4 and the results of the system testing are outlined in Chapter 5. The im-
portant conclusions are summarised in Chapter 6 and possible future work
is suggested.

Parts of this work was published at three conferences. The three confer-
ence papers:

• J. S. Dickens, J. J. Green and M. A. van Wyk, “Human Detection
for Underground Autonomous Mine Vehicles Using Thermal Imaging,”
26th International Conference of CAD/CAM, Robotics and Factories
of the Future, Kuala Lumpur, Malaysia, July 2011.

• J. S. Dickens, J. J. Green and M. A. van Wyk,“Pedestrian detection
for underground mine vehicles using thermal images,” IEEE Africon,
Livingston, Zambia, September 2011.

• J. S. Dickens and J. J. Green, “Segmentation techniques for extracting
humans from thermal images,” 4th Robotics and Mechatronics Confer-
ence of South Africa, Pretoria, South Africa, November 2011.

Copies of the papers are attached as Appendix D.
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Chapter 2

Literature Survey

The system will be required to detect, classify and track humans in thermal
images. It will need to determine how far away from the vehicle the people
are and track them to determine whether they are on a collision course with
the vehicle. There are a number of actions that will need to be performed
for the collision avoidance system to function.

A commonly used paradigm for object detection and tracking in video is
first to extract regions of interest and then classify or validate them [32, 45–
50]. This is the approach that has been used for this system for the reasons
described in Section 2.1. So the first stage is segmentation of the image into
candidate regions that are then classified.

The second stage is to classify the extracted segments to remove regions
that do not represent humans. Regions that are of interest (humans) are
tracked over a number of frames and a trajectory for each object is estimated.
The true 3D trajectory of the objects is calculated using a 3D sensor which is
calibrated to the thermal camera. Using the calibration, the human identified
in the thermal image will correspond to a certain region of the point cloud
produced by the 3D sensor.

2.1 Thermal Image Segmentation

Extracting candidate regions for later classification reduces the computation
required for the classification step. Without a region of interest the classifier
would need to divide the image into regions and determine whether each re-
gion contains the object of interest. For objects at various distances from the
camera the classifier would need to repeat the process using many different
sized blocks.

There are a number of ways of extracting candidate regions for later
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classification. Segmentation algorithms can basically be divided into two
types, static and motion-based. Static algorithms use a single frame and
information about the foreground and background objects to segment the
image. The information used to segment the image may be intensity, colour,
edges etc. This type of segmentation is usually used when there is a specific
attribute of the object that can be easily segmented such as tracking a blue
ball, or someone wearing a red shirt. Motion-based segmentation makes use
of the motion of foreground objects to identify them. Image differencing is
the most basic motion-based segmentation method. Two subsequent images
are subtracted from each other; the difference will be close to zero everywhere
except where objects have moved.

2.1.1 Motion-based Segmentation

Motion-based segmentation for thermal images is used by Dai, Zheng and Li
[32] and Fernández-Caballero et al. [25]. Dai, Zheng and Li use a segmenta-
tion algorithm that separates the image into a background or still layer and a
foreground or moving layer. Once the foreground objects are extracted, they
are classified to separate the pedestrians from other foreground objects. The
extraction algorithm cannot run in real time since it operates on a number of
images. The images are registered and adaptively averaged. The foreground
objects are removed from the images based on the estimated background and
then the background is re-estimated until convergence.

Fernández-Caballero et al. use an intensity-threshold and motion-based
segmentation to detect people in infrared images from a mobile robot. The
first segmentation is a static threshold where warmer zones are extracted.
The motion-based segmentation uses optical flow or image subtraction. When
the robot is stationary, image subtraction is used to segment moving people.
When the platform is moving an optical flow-based segmentation is used.
A histogram of magnitudes of the optical flow vectors is created. The flow
magnitude is thresholded to create an image containing fast-moving objects.
While the optical flow method allows the extraction of moving objects with a
moving camera, it assumes that the optical flow due to the platform moving
is less than due to the moving people.

Motion-based algorithms will only detect moving objects (and usually
require a stationary camera) which does not make them useful for detecting
people who may be stationary in the path of a moving vehicle.
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2.1.2 Static Segmentation

Static segmentation algorithms are used by a number of researchers for seg-
menting thermal images, some of whose works are described below. Bertozzi
et al. [45] use the fact that pedestrians have a high degree of vertical symme-
try. They produce a histogram of the symmetry of grey-levels in the image,
the symmetry of vertical edges and the density of vertical edges. Regions
with high symmetry are determined by thresholding the overall histogram.
Since pedestrians are hotter than the background the symmetry is only cal-
culated for hot regions, instead of performing an exhaustive search on the
entire image. This also reduces the number of false positives. In small mine
tunnels people are unlikely to be walking upright reducing their vertical sym-
metry. The system is required to detect people in a variety of poses so using
symmetry is fairly restrictive.

To account for the changing dynamic range of images, Xu, Liu and Fu-
jimura [50] use a threshold that is a balance between the mean and highest
intensity in an image. The threshold (T ) chosen by Xu et al. is shown in
Equation 2.1. If the pixels are uniformly distributed between zero and IH
then the threshold in Equation 2.1 will extract the brightest 10% of pixels.
Xu et al. perform the thresholding on a histogram-equalised thermal image
which provides some basis for the assumption of uniform pixel distribution

T = 0.2IM + 0.8IH (2.1)

Where IM is the mean intensity of the image and IH is the maximum
intensity in the image.

Thornton, Hoffelder and Morris [49] use a normalised intensity deviation
and edge information to determine the regions of interest. The normalised
intensity deviation is defined as

N (x, y) =
I (x, y)−m

σ
. (2.2)

Where I (x, y) is the intensity of the pixel (x, y), m is the mean and σ is the
standard deviation. The mean and standard deviation are calculated both
locally and globally. The edge information is obtained using the gradient
magnitude. Using an empirically determined threshold, binary images are
created from the local and global deviation images, as well as the edge map.

Nanda and Davis [48] extract regions of interest by thresholding thermal
images using a threshold determined from training images. The means and
standard deviations of pixels belonging to pedestrians and non-pedestrians
are determined. Using Bayes’ classification, assuming equal priors for pedes-
trians and non-pedestrians and a Gaussian distribution, the threshold (T ) is
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given by

T =
σpσn
σp + σn

ln

(
σp
σn

)
+
σpµn + σnµp

σp + σn
(2.3)

where
σp is standard deviation of pixels belonging to pedestrians
µp is mean of pixels belonging to pedestrians
σn is standard deviation of pixels belonging to non-pedestrians
µn is mean of pixels belonging to non-pedestrians.

Pixels with intensities of greater than the threshold calculated in Equation
2.3 are target pixels. Nanda and Davis use the threshold to remove the back-
ground pixels but foreground pixels retain their value. Background pixels
(pixels with a value of less than the threshold) are equated to zero while
foreground pixels are left unchanged.

The segmentation method used by Haritaoglu, Harwood and Davis [47]
falls somewhere between a motion-based and static segmentation algorithm.
It has features of both methods; Haritaoglu et al. statistically model the
background in order to extract foreground objects. Since the background is
modelled the camera must remain stationary or the background must be re-
modelled every time the camera moves. Having a background model allows
the segmentation to detect people even if they are stationary and therefore
this method is considered a static method. The maximum and minimum
intensity, as well as the maximum intensity deviation of each pixel in a scene
containing no people, is recorded. The pixel at (x, y) in image I is considered
a foreground pixel if

|M (x, y)− I (x, y)| > D (x, y) or |N (x, y)− I (x, y)| > D (x, y) (2.4)

where
M (x, y) is the background maximum of pixel (x, y)
N (x, y) is the background minimum of pixel (x, y)
D (x, y) is the inter-frame difference for pixel (x, y).

After thresholding, a morphological erosion operation is applied to the
image to eliminate single pixel noise. A binary connected component opera-
tion is applied and small regions are eliminated and then a dilation operation
is used to restore the objects to their original size (after the erosion).

A number of methods for segmenting standard grey-scale images exist;
one of the most popular is Otsu’s method [51]. Otsu’s method is based
on the assumption that the optimal threshold is the one that maximises
the separation between the grey-scale histograms, i.e. it is the threshold
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that maximises the between-class variance. The derivation of the optimal
threshold is shown in Appendix B to be

kopt = argmax
k

σ2
b (k) (2.5)

Where kopt is the optimal threshold and σ2
b (k) is between-class variance

as a function of the threshold.
A good survey of other grey-scale thresholding methods performed by

Sezgin and Sankur [52] identified a number of thresholding techniques which
perform well on various grey-scale images. The most effective methods iden-
tified by Sezgin and Sankur are those of Kittler and Illingworth [53], Kapur,
Sahoo and Wong [54] and Sauvola and Pietikäinen [55].

Let us assume that a picture has a total of N pixels that fall into a total
of L grey-levels. The number of pixels that fall into each grey-level (i) of the
image histogram is denoted by ni. The normalised grey-scale histogram can
be considered an estimate of the probability distribution of pixel intensities,
i.e.

pi = ni/N (2.6)

Where N is the total number of pixels in the image and pi is the proba-
bility that a pixel belongs to the ith grey-level.

The cumulative probability function for the kth grey-level is defined as

P (k) =
k∑

i=1

pi . (2.7)

Kittler and Illingworth [53] view the probability density function as an
estimate of a mixture population of grey-levels from the foreground and back-
ground. For each possible threshold they calculated the value of a criterion
function which produces an indirect estimate of the overlap of two Gaussian
distributions. The criterion function provides a less computationally complex
method of estimating the overlap of the distributions than fitting distribu-
tions to the probability density functions. The derivation of the criterion
function can be found in [53], giving the final function

J(k) = 1 + 2 [P (k) ln (σ1(k)) + (1− P (k)) ln (σ2(k))]

−2 [P (k) ln (P (k)) + (1− P (k)) ln (1− P (k))] (2.8)

Where σ1(k) is the standard deviation of the background up to grey-level
k and σ2(k) is the standard deviation of the foreground, from k to L.

The minimum of the criterion function corresponds indirectly to the min-
imum overlap of the two distributions and therefore the optimal threshold is
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the one that corresponds to the minimum of the criterion function. As the
level of the threshold (k) is varied, the models of the two populations change.
The better the fit between the models and the data, the smaller the over-
lap between the density functions and therefore the smaller the classification
error. Using Equation 2.8 the optimal threshold can be determined using

Topt = argmin
k

J(k) . (2.9)

The entropic thresholding method described by Kapur et al. [54] ex-
ploits the entropy of the foreground and background of the image that is
thresholded. Maximising the entropy of the thresholded image maximises
the information between the foreground and background distributions in the
image [52, 54]. It makes sense that the best threshold would be the one
where the segmenting into foreground and background retains the most in-
formation. For a threshold at grey-level k the entropy of the background up
to grey-level k is

Hb = −
k∑

i=1

pi
P (k)

ln
pi

P (k)
(2.10)

and the entropy of the foreground is

Hf = −
L∑

i=k+1

pi
(1− P (k))

ln
pi

(1− P (k))
. (2.11)

Defining the sum of the two entropies as ψ(k) we get

ψ(k) = −
k∑

i=1

pi
P (k)

ln
pi

P (k)
−

L∑

i=k+1

pi
(1− P (k))

ln
pi

(1− P (k))
. (2.12)

Maximising ψ(k) gives the maximum total information between the two
distributions. So the optimal threshold is

Topt = argmax
k

ψ(k) . (2.13)

Sauvola and Pietikäinen [55] propose a thresholding method for binarising
text documents. Their method uses an adaptive threshold; instead of having
one threshold (T ) which is applied to the entire image, the threshold is a
matrix the same size as the image (T (x, y)). Sauvola and Pietikäinen adapt
their threshold-based on the mean and standard deviation of the pixels in
a window around each pixel. The threshold is calculated according to the
formula

T (x, y) = m(x, y) ·
[
1 + k

(
s(x, y)

R
− 1

)]
(2.14)
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where
m(x, y) is the mean of the window centred on pixel xy
s(x, y) is the standard deviation of the window centred on pixel xy
R is the range of the standard deviation
k is a user-defined constant.

The purpose of the adaptive threshold is to correct for non-uniform il-
lumination and stains on the paper. In badly illuminated regions the mean
pixel value in the region will be lower and the threshold will be lowered. In
regions with a high standard deviation the threshold will be increased (closer
to the mean pixel value), while in uniform regions the threshold will approach
(1− k) times the mean. So in noisy regions the threshold is raised to reduce
the thresholding of noisy pixels. At first it would appear that this method
should work well for thermal images; changes in the background tempera-
ture will change the mean, which will change the threshold. So the threshold
adapts itself to a changing background temperature. However, the fact that
the people that we are trying to segment are larger than the window used
for calculating the mean adversely affects the method. As the window gets
towards the centre of a warm person, the mean increases and likewise the
threshold and therefore it is only the edges of people that are segmented
successfully.

2.2 Classification

Once candidate regions have been segmented, the regions must be verified as
human or not. There are a large number of classification methods that could
be used for pedestrian detection. Some of the popular methods, especially
those used for thermal imaging, are discussed below.

2.2.1 Template Classifiers

Template classification involves the classification of candidates using a tem-
plate that represents the structure of the object to be classified.

Bertozzi et al. [45] first filter candidates by removing regions that do not
meet certain criteria, such as aspect ratio and size constraints and restrictions
on a histogram of vertical edges. An example of the filtering constraint is
that the histogram of vertical edges of a region cannot be empty in the
centre. A region with strong edge and grey-level symmetry but no edges in
the centre is likely to be a smooth vertical object such as a pole. Once a
candidate has passed all the filtering it is validated through a match with
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a simple morphological model. The morphological model encodes the shape
and average temperature characteristics of the pedestrian. While Bertozzi et
al. only use a single model, for a standing pedestrian; multiple models could
be used to match humans in a variety of poses.

Nanda and Davis [48] use a probabilistic template to classify pedestrians
in thermal infrared videos. A template is created from training images of
humans in various orientations but having the same height. Eachm×n (128×
48) pixel training image is thresholded and a probabilistic template is created
based on the frequency with which each pixel is extracted as a foreground
pixel. The probability of a pixel belonging to a pedestrian is calculated using
the frequency that it appears as foreground. The ‘probability’ (pc(x, y)) that
the m × n region around the pixel (x, y) contains a pedestrian is defined to
be

pc (x, y) =
m∑

i=1

n∑

j=1

(txy (i, j)− 127) · (p (i, j)− 0.5) (2.15)

Where txy is a m × n window around pixel (x, y) in the thresholded
image and p is the probability that the pixel is from the foreground (i.e. a
pedestrian) of the templates. The 127 is due to the thresholded image being
an 8 bit image with values of 0 and 255. The value pc(x, y) is not a probability,
despite its definition as such by Nanda and Davis, but is a correlation value
proportional to the likelihood that there is a pedestrian in the m× n region
around the pixel.

The whole image is tested using Equation 2.15 for three different scales to
identify pedestrians at various distances from the camera. The ‘probability’
map is thresholded to find the pedestrians in the image.

Another template-based classification method for identifying pedestrians
in thermal imaging is used by Olmeda et al. [56]. Olmeda et al. start with a
similar method to Bertozzi et al. They start by identifying warm regions with
high vertical symmetry; these regions are thresholded and these candidates
are validated using a template similar to Nanda and Davis’. Instead of using
a single template, Olmeda et al. use four templates representing people in
various stages of a stride, from closed legs to open legs.

2.2.2 Statistical Classifiers

Fehlman and Hinders [27] use three different classifiers to determine the best
features to use to classify non-heat-generating objects in unstructured envi-
ronments. Fehlman and Hinders use a large number of features for classifi-
cation, such as ambient temperature, emissivity, entropy, energy and homo-
geneity. One of the classifiers used by Fehlman and Hinders is the Parzen
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classifier, which is similar to a Bayesian classifier except that it uses a Parzen
density estimate to estimate the likelihood function instead of a K nearest
neighbour approach. The Parzen density estimate approximates the condi-
tional probability of getting a given feature vector (D) given that the image
is of class j (Oj) [27], i.e.

P (D|Oj) =
1

Njhd

Nj∑

q=1

H

(
D−Dqj

h

)
. (2.16)

H is the Parzen window function

H (u) =

{
1 |up| ≤ 1

2
p = 1, ..., d

0 otherwise
(2.17)

and
|up| is the magnitude of the pth dimension of u
Dqj is the qth training feature of class j
Nj is the number of feature vectors belonging to class j
d is the dimensionality of the feature space
h is the length of one side of a d dimensional hypercube.

The Parzen classifier uses Bayes’ theorem and the Parzen density estima-
tion in Equation 2.16 to determine the probability that the image belongs to
a certain class given the observed feature vector. The posterior probability
given by the Parzen classifier is

P (Oj|D) =
P (D|Oj)P (Oj)

P (D)
(2.18)

=


 1

Njhd

Nj∑

q=1

H

(
D−Dqj

h

)
 P (Oj)

P (D)
(2.19)

where P (Oj) is the prior probability of getting an object of class j and
P (D) is called the evidence and normalises the posterior probabilities so that
they sum to one.

2.2.3 Support Vector Classifiers

Support vector classifiers are classifiers that determine a classification func-
tion that separates two linearly separable classes with a plane that has the
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greatest margin. The margin is the distance between the closest points on
either side of the decision plane. Maximising the margin intuitively should
maximise the generalisation of the classifier, if the decision boundary is max-
imally separated from both classes. New data points can be perturbed about
the training data and will still remain on the correct side of the classification
boundary.

Let us assume we have m training points; each point, xi, is a point in d
dimensional space. Each point belongs to one of two classes and has a label
yi = ±1. We will therefore have a training dataset in the form

{xi, yi} where xi ∈ <d, yi ∈ {−1, 1} , i = 1 . . .m . (2.20)

Assuming the two classes are linearly separable; there will be a hyper-
plane, w · xi − b = 0, that will separate the two classes. The classes are
separated such that the class with yi = 1 will fall in the space w · xi− b > 0,
and the class yi = −1 will fall in the space w · xi − b < 0. Let the smallest
value of |w · xi − b| be δ, i.e. the point closest to the hyperplane is a distance
δ from it. The training data can now be described by

w · xi − b ≥ δ for yi = 1 , (2.21)

w · xi − b ≤ −δ for yi = −1 . (2.22)

For simplicity we rescale these equations to get

ws · xi − bs ≥ 1 for yi = 1 , (2.23)

ws · xi − bs ≤ −1 for yi = −1 . (2.24)

It can be seen that the distance between the two planes, the margin,
is equal to 2/ ‖ws‖. The problem is then to find the values of ws and bs
that maximise the margin while still satisfying Equations 2.23 and 2.24.
Maximising the margin is equivalent to minimising ‖ws‖2 /2 and Equations
2.23 and 2.24 can be combined into a single constraint, so we need to find

min
ws,bs

1

2
‖ws‖2 s. t. yi (ws · xi − bs)− 1 ≥ 0 ∀i . (2.25)

Using a Lagrange multiplier αi for each inequality constraint yields the
Lagrangian equation

Lp =
1

2
‖ws‖2 −

m∑

i=1

αiyi (ws · xi − bs) +
m∑

i=1

αi . (2.26)
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By the Wolfe dual [57], minimising Equation 2.26 is equivalent to max-
imising

Ld =
m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

yiyjαiαjxi · xj s. t.

m∑

i=1

yiαi = 0, αi ≥ 0 ∀ i .
(2.27)

Representing the optimisation as in Equation 2.27 allows it to be solved
using robust quadratic programming methods. It also allows the easy exten-
sion to the use of non-linear discriminant functions. To create a non-linear
classifier the dot product in Equation 2.27 is replaced by a non-linear kernel
function to yield

Ld =
m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

yiyjαiαjK (xi,xj) s. t.

m∑

i=1

yiαi = 0, αi ≥ 0 ∀ i
(2.28)

where K is the kernel function, for example the radial basis function kernel

K (u,v) = e−
‖u−v‖2

2σ . (2.29)

Support vector classifiers have been successfully used for a number of ap-
plications in computer vision and many other fields. Some of the applications
involving thermal image classification are discussed below.

Xu et al. [50] use a support vector machine for pedestrian classification.
They evaluate the performance of a single classifier for various pedestrian
subtypes (including cyclists) or multiple classifiers in cascade. They also
evaluate the difference between classifying grey-scale images and classifying
binary images. Xu et al. found that the single classifier performed better
than multiple classifiers; however, this comes with a speed penalty. It was
also shown that due to the sensitivity of the binary image to the threshold,
better classification was achieved with the grey-scale image.

In a recent paper, Navarro-Serment et al. [58] use two Support Vector
Machines (SVMs) for classifying whether objects in a 3D point cloud are
pedestrians or not. They use the unique elements from the covariance and
normalised moment of inertia matrices as some of the features for the classi-
fiers. A Principal Component Analysis (PCA) is performed; the pedestrians
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are assumed to be upright so the principal component is expected to be ver-
tically aligned with the person’s body. The second-largest component would
be horizontal across the width of the person. The principal components are
used to create planes that divide the object into an upper half, and two lower
halves which correspond to the trunk and legs of the pedestrian respectively.
The covariance matrix (2D) for each planar region is calculated and provides
three features for each region. The remaining features are from histograms
for each of the two principal planes (the width-height and depth-height planes
or the first-second and first-third principal components).

2.2.4 Neural Network Classifiers

Neural networks have been used for a number of visual classification prob-
lems such as handwritten digit recognition [59], face detection [60, 61] and
pedestrian detection [62].

Artificial Neural Networks (ANNs) are designed to mimic biological neu-
rons. An ANN consists of layers of interconnected artificial neurons. Each
neuron takes multiple input values, multiplies each by a weight and sums
them. The sum of the weighted inputs is the input to a non-linear activation
function, as shown in Figure 2.1. The output of a neuron with n inputs can
be expressed mathematically as

O = f

(
n∑

i=1

wixi

)
. (2.30)

A commonly used activation function is the sigmoid (Equation 2.31),
which is smooth and easily differentiable

f (x) =
1

1 + e−x
. (2.31)

Another choice is the hyperbolic tangent function, which has a shape
similar to the sigmoid except that it has an output range of O ∈ (−1, 1)
while a sigmoid has a range of O ∈ (0, 1)

tanh (x) =
1− e−2x

1 + e−2x
. (2.32)

There are a wide variety of ANN structures but the most popular is
the Multi Layer Perceptron (MLP). The MLP consists of an input layer of
neurons, one or more hidden layers and an output layer, as shown in Figure
2.2. The input layer in Figure 2.2 is passive; it simply distributes the inputs
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Figure 2.1: A single artificial neuron

to all of the hidden neurons. Each neuron in the hidden layer takes all the
inputs and produces an output that is fed into all of the neurons in the
next layer. In this case the layer after the hidden layer is the output layer;
however, it is possible to have multiple layers of hidden neurons. In Figure
2.2 the network only has a single output; however, it is possible to have
multiple outputs from a single network for multiple classifications.

Inputs

x4

x3

x2

x1

Input nodes Hidden layer Output layer

Figure 2.2: An artificial neural network with a single hidden layer

There are a number of parameters that can be tuned when designing
an ANN classifier: these include the type of preprocessing of the data, the
number of hidden nodes, the number of layers and the activation function.

Zhao and Thorpe [62] use a neural network to classify pedestrians. They
produce a gradient magnitude image from segmented stereo images. The
segmented images are scaled to (30×65) pixel images and the image gradient
magnitude is calculated. The gradient magnitude has the advantage of being
robust to illumination changes. The whole gradient image is then used,
unprocessed, as the input to a neural network classifier.
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Rowley, Baluja and Kanade [60] produce an image pyramid by sub-
sampling an image multiple times. Windows of 20 × 20 pixel are extracted
from each image in the pyramid. Each window is processed to correct the
lighting and then histogram-equalised. The hidden neurons used by Rowley
et al. are not fully connected, like the ones shown in Figure 2.2, but each
one has a receptive field of pixels that form its input. The receptive fields
are: four which look at 10× 10 pixel subregions, 16 which look at 5× 5 pixel
subregions and six which look at 20× 5 pixel overlapping horizontal stripes.

Le Cun et al. [59] use a neural network to classify handwritten digits.
They skeletonise 32× 32 pixel images of handwritten digits and then extract
a number of features. The features extracted represent lines, line ends and
arcs. After some processing, 18 3× 5 feature maps are produced; these give
270 inputs to the neural network chip used by Le Cun et al. The network
used by Le Cun et al. has 40 hidden neurons, fully connected to the input,
and 10 output nodes, one corresponding to each digit.

2.3 Object Tracking

Once pedestrians have been detected in each image, they need to be tracked
through an image sequence and their trajectory determined. There are a
number of tracking methods that can be used to track people in video se-
quences. When pedestrians are well separated in the image, geometric prox-
imity is usually sufficient for determining the correspondence between objects
and therefore determining their paths [32].

Dai et al. [32] use a combination of geometric proximity and shape simi-
larity for tracking. Dai et al. scale all pedestrians to the same scale and then
projects them onto eigenvectors. The similarity is defined as the L2 norm cal-
culated in the space spanned by the eigenvectors. A graph-matching frame-
work is used where the graph G has two sets of nodes for the detected pedes-
trians, one for each of the two frames that are being used for detection. Dai
et al. assume that the same number of pedestrians (Q) are detected in both
frames; the graph therefore has 2Q nodes denoting the detected pedestrians,
where U = {u1, ..., UQ} are the nodes from image k and V = {v1, ..., vQ} from
image k + 1. For any u ∈ U and v ∈ V there is an edge between them that
has a weight

w (u, v) = αdsa + (1− α) deu (2.33)

where
dsa is the shape similarity between two pedestrians
deu is the Euclidean distance between two pedestrians
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α is the overlapping ratio of u and v.

The overlapping ratio, α, is the ratio of the area of overlap between
pedestrians and the pedestrian window size. From Equation 2.33 it is evident
that for well-separated pedestrians only the Euclidean distance is used while
when they overlap the appearance term becomes significant.

Haritaoglu et al.[47] use a second order motion model to predict the lo-
cation of a tracked region in subsequent frames. The position of foreground
object is compared to the predicted position of the object and used as an
initial estimate of the object’s position. Haritaoglu et al. use the median co-
ordinate of the object and state that it is a more robust estimate of a person’s
position and is not affected by large movement of the extremities. The initial
estimated position is used to narrow the search space for a silhouette correla-
tion which is used to compute the actual position of the person. To deal with
the case of two people meeting and then reappearing separately Haritaoglu et
al.’s system creates a textural template during tracking for each object. The
template is a weighted sum of foreground pixel intensities weighted according
to the frequency with which they are detected as foreground pixels.

Navarro-Serment et al. [63] use object overlap and a Kalman filter for
tracking objects. They define a bounding box around each object. The po-
sitions of the objects are fed into a Kalman filter that estimates the object
velocity. Using the velocity estimate the position of the bounding box in
the current frame is determined and the object that falls within this box
is assumed to be the tracked object. The robustness of the measurements
is increased by validating the velocity estimates. Velocity estimates are re-
quired to stay consistent for a minimum amount of time and have a standard
deviation below a certain threshold.

2.4 Distance Determination

There are a number of ways that can be used to determine the distance to
objects that are being tracked by the thermal camera. Depth can be de-
termined from an image using stereo cameras, structure from motion, depth
from focus or defocus or by fusing the thermal image with depth information
from a separate sensor. The options for depth determination are discussed
below.
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2.4.1 Stereo Imaging

Stereo imaging uses the disparity between two images captured simultane-
ously by two cameras. In order to determine the disparity between two
images the image requires sufficient texture to determine correspondences.
Using two thermal cameras in order to get the depth is currently not a viable
option due to the high cost of thermal cameras. Even if the cost was not a
problem, the lack of texture in thermal images would make accurate depth
determination difficult.

2.4.2 Depth from Focus and Defocus

Depth from focus is a technique where the focus of a camera is actively
searched in order to maximise sharpness. The camera focus is adjusted until
an object of interest reaches maximum sharpness; at this point the distance
to the object is simply determined using the focal length of the lens and the
distance to the image plane. Depth from focus is an active search method
that involves having to change the focus of the camera to get maximum
sharpness. Having to adjust the camera focus for each object of interest
makes depth from focus too slow for use on a moving platform [64].

Depth from defocus uses a number of images taken with different camera
geometries to determine depth. When a point in the scene is not in focus,
its image is spread over some blur circle. If the radius of the blur circle can
be estimated then the distance to the image point can be calculated. At
least two different images of the same scene are usually used to determine
the defocus [65]. This can be done by taking an image with multiple cameras
simultaneously, or by taking multiple images with a single camera. Pentland
[66] uses two optically co-aligned cameras with different apertures to calculate
distance. Pentland uses a pinhole camera with a camera having a finite
aperture. The radius of the blur circle is estimated and then used to calculate
the distance to the point using

d =
fv

v − f − σF (2.34)

where
f is the focal length of the lens
v is the distance from the lens to the image plane
F is the f-number of the lens
σ is the radius of the blur circle.

Using a depth from defocus method with two cameras would also require
two cameras, with the associated cost. Using co-aligned cameras has the
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advantage that the pixels are the same in both images and therefore the
correspondence problem faced with stereo cameras is eliminated. Using two
cameras with different apertures, however, creates difficulties with differing
illumination. Using a single camera and taking multiple images has similar
disadvantages to depth from focus. It is slow due to the need to acquire
multiple images for a single depth calculation.

2.4.3 Structure from Motion

To determine the depth of points in a scene, two images of a matched point
are needed. Then given knowledge of the translation and rotation between
the camera poses, the depth can be estimated [67]. Stereo vision acquires two
images simultaneously from two cameras a known distance apart. Structure
from motion takes two images at different times from a moving camera to
get two views of the scene. If the displacement of the camera between two
images is known then the distance to the objects in the scene is fairly simple
to calculate. If the displacement of the camera is not known then structure
from motion involves determining the movement of the camera and then
using that to calculate the depth of objects in the image. Without additional
information, structure from motion can only determine the depth of objects
up to a global scaling factor [67, 68]. Further information is required for
absolute depth, such as the size of the object of interest, additional knowledge
of the camera motion, or the distance to one point on the object [68, 69].

2.4.4 Active Distance Sensors

In addition to the above-mentioned passive distance sensors there are a num-
ber of active sensors that can be fused with the thermal camera to provide
position information. Active sensors are the most popular sensors for obsta-
cle detection and avoidance owing to the simplicity of reading out position
information [64]. Active ranging sensors therefore provide a computationally
simple method of determining the 3D information about a scene. The two
main types of active range sensors are TOF-based sensors and triangulation-
based sensors.

Time-of-flight Distance Sensors

There are a number of ranging sensors that all measure distance using the
round-trip time of a signal reflected off the object being measured. These
systems include laser scanners, ultrasonic rangers, radar, TOF cameras and
range-gated cameras.
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Ultrasonic sensors use the speed of sound to determine the distance to an
object that reflects a transmitted sound wave. Using the round-trip time t,
the distance to the object being measured is

d =
ct

2
. (2.35)

The speed of sound c in air is given by

c =
√
γRT (2.36)

where
γ is the adiabatic ratio of specific heats of air
R is the specific gas constant
T is the temperature in Kelvin.

There are a number of characteristics of ultrasonic distance sensors that
limit their use to very simple ranging tasks. One of the major problems
is that the sound propagates in a fairly wide cone-shape with an opening
angle of between 20◦ and 40◦ . The wide beam width produces distance
measurements that are the distance to a region of constant depth instead
of a point depth measurement. Narrower beams can be produced; however,
they require a physically large transducer; for example, a transducer with
a 2◦ beam-width which is 335 mm in diameter [22, pp. 176-179]. Another
limitation is the speed of sound, which limits the cycle time of ultrasonic
sensors. Using Equation 2.36 and assuming a temperature of 20◦C then the
speed of sound in air can be shown to be 343 m/s; so for an object 5 m from
the sensor the round-trip time is about 29 ms. The round-trip time will limit
the maximum measurement frequency to about 30 Hz, which is acceptable
for a single sensor but is too slow to allow for any form of scanning to produce
a depth image.

It has been shown that the attenuation of millimetre-wave radar signals
by mine dust and thick fog is negligible [70]. This makes radar a promising
sensor for distance sensing underground. Radar systems usually consist of
a single beam which is scanned to produce a two-dimensional (2D) or 3D
range image. Millimetre-wave radar has a small enough aperture and narrow
enough beam width to allow it to be scanned using mirrors. The wavelength
of millimetre-wave radar requires mirrors that are large in size compared to
those of laser scanners. The large size of the scanning system makes the
use of radar problematic in a confined underground environment. Single
beam radar systems similar to those being added to high-end cars provide
a compact alternative; however, the close proximity of tunnel walls causes a
high number of false positives [6].
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Range gated cameras are another TOF-based distance sensor, even though
they are frequently not used as a ranging sensor. Range gated cameras are
usually used for enhanced visibility through smoke, dust and bad weather
conditions [71–73]. Gated cameras operate by transmitting a very short
laser pulse which is reflected off the scene and captured by a camera with
a very short exposure time. By varying the time delay between when the
laser pulse is transmitted and when the camera begins its exposure a section
of the scene at a certain distance from the camera can be imaged. Since
the camera only receives the light from objects at the desired distance the
backscatter from obscurants is significantly reduced. Light scattered off par-
ticles between the camera and the target is not imaged because it will arrive
at the camera before the gate is open. Owing to the very short exposure
time the amount of light received by the camera is very low, so the camera is
usually a photo-cathode image intensifier [74]. The exposure of the camera
is controlled by switching the high voltage supply to the image intensifier on
and off. In order to produce 3D images the delay between the laser pulse and
the camera exposure is incrementally increased. This is equivalent to taking
slices of the scene at increasing distances from the camera. The range to each
pixel is measured by determining at which range setting a particular pixel is
lit up. The rise time of intensifier tubes is typically of the order of 10 ns [74]
which limits the application of gated cameras to very long distances (in the
order of kilometres) with low resolution (metres).

Laser scanners and TOF cameras operate on the same basic principle.
Both have of an emitter that emits a pulse of light and a receiver that mea-
sures the round-trip time of the light. For typical measurement distances of
a few metres the round-trip time is in the order of picoseconds and therefore
the electronics required to directly measure the elapsed time are expensive.
A lower-cost method of determining the distance is to measure the phase
shift between the transmitted and reflected light. TOF cameras measure
the phase shift for all pixels simultaneously. Laser scanners have a single
receiver that is mechanically scanned and can use pulse travel time or phase
shift measurement methods. Laser scanners sweep a single beam in one or
two planes using rotating mirrors.

Commercial TOF cameras use a modulated near-infrared light source and
measure the phase shift between the transmitted and received light [75, 76].
The maximum unambiguous distance (Dunamb) to a target would be

Dunamb =
c

2f
=
λ

2
(2.37)

where f and λ are the modulation frequency and wavelength respectively.
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Any distance less than Dunamb is calculated by measuring the ratio of the
phase shift (φ) to a full cycle and multiplying it by the maximum distance

d =
φ

2π
Dunamb

=
λ

4π
φ .

(2.38)

One of the problems with TOF cameras is the phase shift ambiguity. A
phase shift of slightly over 2π would be measured as a shift of just greater than
zero and according to Equation 2.38 the calculated distance would be small.
There are a number of methods to correct for the phase ambiguity; however,
each has its own challenges. One method is to ignore any measurement
with a low intensity (because it is likely to be from a distant object); this
method is very simple but it results in the loss of information and can still
produce errors with distant, highly reflective objects. There are also methods
that can unwrap the ambiguous measurements [77]; however, these methods
are computationally expensive and/or require multiple frames captured with
different modulation frequencies.

Geometric Distance Sensors

The simplest geometric distance sensors are triangulation-based sensors. The
principle of a triangulation-based distance sensor is simple. A collimated
beam of light is directed towards a target; the reflected light is focussed
by a lens on a position sensitive device (PSD) or linear camera. From the
geometry shown in Figure 2.3, it is easy to see that

d = f
b

x
. (2.39)

Single spot triangulation-based distance sensors provide a low-cost, high
bandwidth alternative to ultrasonics.

Triangulation-based sensors that use a 2D camera instead of the linear
camera or PSD are known as structured light sensors. Structured light sen-
sors project a known pattern onto a surface and record the deformation of
the pattern using a camera a certain distance from the projector. The most
common pattern for a structured light scanner is a single laser stripe that is
swept across the object [78]. Figure 2.4 shows the principle used to calculate
the distance by triangulation. It can be shown using similarity of triangles
that the x and z coordinates of the target are

x =
bu

f cotα− u (2.40)
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Figure 2.3: Geometry of a triangulation-based distance sensor

and

z =
bf

f cotα− u . (2.41)
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Figure 2.4: Schematic showing the principle of structured light triangulation
(adapted from [64])

The disadvantage of using a single line and scanning it across the scene
is that it is slow, having to acquire an image each time the laser moves.
Another major disadvantage of using a single line is that it can only be used
for static objects due to the scanning time. One approach to circumvent these
disadvantages is to project a 2D pattern onto the entire scene and reconstruct
the depth values from a single image. There are a number of patterns, such
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as parallel stripes, a grid of lines or blocks and a matrix of dots. Using a
2D pattern requires a method of uniquely identifying which reflected point
corresponds to which projected point. In order to solve the correspondence
problem a coded pattern is projected onto the scene. There are many different
coding schemes such as spatial coding, colour coding and grey-level coding
[79]. A binary spatial coding scheme will be described because it is the
method used by the Kinect sensor [80] that has been used for this work. The
pattern used by the Kinect is an uncorrelated pattern of dots which is such
that its auto correlation for any shift less than the maximum shift that would
occur over the range of depths is negligible. Therefore the correlation of the
received pattern with the projected pattern will only return a result when
the patterns correspond. Correlating the projected and received patterns
allows the shift in the pattern to be determined for each position and thus
the depth.

2.5 Camera Calibration

Camera calibration basically involves the recovery of the parameters that
map 3D points in the world reference frame to 2D points in the camera’s
reference frame. A pinhole camera model is shown in Figure 2.5. From the
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World
point

Image
plane

Principle point

Figure 2.5: A pinhole camera model
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figure it can be seen that

u

f
=
x

z

∴ u =
fx

z
(2.42)

and

v =
fy

z
. (2.43)

We can combine Equations 2.42 and 2.43 to get




u
v
w


 =




f 0 0
0 f 0
0 0 1






x
y
z


 (2.44)

in homogeneous coordinates.
To get the actual 2D image points from the 3D homogeneous coordinates

we divide through by w, which gives the point expected from Equations 2.42
and 2.43. The points in an image are not measured relative to the principle
point but instead relative to a corner. The translation between the corner
and principle point of an image is (tu, tv); therefore, Equations 2.42 and 2.43
become

u =
fx

z
+ tu (2.45)

v =
fy

z
+ ty . (2.46)

Therefore we can rewrite Equation 2.44 as




u
v
w


 =




f 0 tu
0 f tv
0 0 1






x
y
z


 . (2.47)

Equation 2.47 projects a 3D world point into the camera’s reference
frame. The projected point is still, however, in the same distance units
as the world point (e.g. m). The camera image provides image point posi-
tions in pixels and not as a true distance; therefore, we need to know the
camera resolution in pixels per metre. If the pixel resolutions in the u and v
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directions are mu and mv respectively then the projection matrix becomes




u
v
w


 =




muf 0 mutu
0 mvf mvtv
0 0 1






x
y
z




=




αx 0 u0
0 αy v0
0 0 1






x
y
z




= K




x
y
z


 . (2.48)

The matrix K defines the intrinsic properties of the camera, such as its
focal length and principle point. In cases where the image axes are not
perpendicular an additional parameter, the skew parameter (s), is added to
the intrinsic parameter matrix (K)

K =




αx s u0
0 αy v0
0 0 1


 . (2.49)

In the case where the camera is not at the origin, facing in the z-direction
of the world reference frame, then a reference frame transform is required to
align the reference frames. A rotation is applied to align the z-axis of the
world reference to the principle axis of the camera and then the frame is
translated to move the origin to coincide with the focal point of the cam-
era. This can be represented by a generic coordinate transform as shown in
Equation 2.50.




xt
yt
zt
1


 =




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1







x
y
z
1


 (2.50)

The 3D rotation (direction cosine) matrix is defined as R and the 3 × 1
translation matrix is the matrix T . If we define a n×m zero matrix as 0nm,
then Equation 2.50 can be written as




xt
yt
zt
1


 =

(
R T
013 1

)



x
y
z
1


 . (2.51)
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The final calibration matrix going from four-dimensional (4D) homoge-
neous coordinates to 3D homogeneous coordinates of the camera is




u
v
w


 =

(
K 031

)( R T
013 1

)



x
y
z
1


 (2.52)




u
v
w


 =




αx s u0 0
0 αy v0 0
0 0 1 0







r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1







x
y
z
1


 . (2.53)
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Chapter 3

Preliminary Design

This chapter outlines the design of the pedestrian detection system created
for this study. A block diagram indicating the major subsystems of the
detection system is shown in Figure 3.1. There are a large number of seg-
mentation and classification methods used for thermal image processing. The
choices of segmentation and classification methods appear to be largely ad
hoc; therefore, a preliminary system was designed to test various algorithms
and determine which are most appropriate for detecting people underground,
with thermal imaging.

Segment image Classify sub-images

Estimate time
to collision

Determine trajectories of
people based on previous
positions

Extract 3D positions
of people

Depth-thermal
calibration
matrix

Thermal image

Depth image

Figure 3.1: A block diagram of the pedestrian detection system
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3.1 Segmentation

As discussed in Section 1.2.4, we know that people will be hot spots in the
thermal images. The process of segmentation involves the determination of
a threshold that optimally extracts people from the background.

Motion-based segmentation methods were not considered for the prelim-
inary evaluation because the camera is mounted on a moving vehicle so the
background is constantly in motion. Additionally since the vehicle is moving
a person who is stationary may still be in danger; however, a motion-based
segmentation method would not extract stationary people.

Using a thresholding method that determines a single threshold is not de-
sirable because the threshold would need to be modified each time the vehicle
moved into a new area with a slightly different background temperature. For
this reason the thresholding methods that were evaluated for segmenting the
thermal images were those which adapted the threshold based on each image.

The static segmentation methods of Xu et al. [50], and Thornton et
al. [49] are designed for thermal images that vary their threshold based on
each image. There are also a number of thresholding methods, shown to be
effective on grey-scale images, that were modified and evaluated on thermal
images. The grey-scale segmentation methods use statistical information
about the images to segment them, so whether the underlying signal is a
grey-scale intensity or a temperature signal does not matter.

3.1.1 Qualitative Comparison

Xu’s Thresholding

Xu et al. [50] use a threshold that is based on the mean and standard
deviation of a histogram-equalised image. They determine a threshold using
Equation 2.1, which extracts the brightest 10% of the pixels in an image.
Segmenting the warmest 10% of the pixels works fairly well for the images
where the people are far from the camera because they are the warmest
objects in the image. As the people come closer the difference in temperature
between exposed skin and clothing becomes evident. With people close to
the camera the warmest 10% of the pixels are only parts of each person. This
is evident in Figure 3.2, image h shows a fragmented segmentation result
because the warmest 10% of pixels represent the exposed skin of the people
in the image.
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Thornton’s Normalised Intensity Thresholding

Thornton’s method [49] can be shown to be equivalent to thresholding the im-
age at a number of standard deviations above the mean. Thornton’s thresh-
old is based on a normalised intensity deviation image (nij). If the segmented
image is nij > T then using Equation 2.2 the thresholding is equivalent to

xij > m+ Tσ . (3.1)

From Equation 3.1 it is evident that there is an implicit assumption about
the relative number of pixels belonging to people versus those of the back-
ground. If it is assumed that the number of pixels belonging to foreground
objects is small then the mean and standard deviation of the image can be
assumed to be approximately equal to those of the background. If this is
the case then the threshold selects pixels that have a probability below some
threshold of belonging to the background.

The thresholding results shown in Figure 3.3 indicate that Thornton’s
method is effective on the first three images; however, investigating the under-
lying assumption reveals the underlying disadvantage of the method. Figure
3.3, h shows the thresholding result where the number of background pixels
is not very much larger than the number of foreground pixels. As the pro-
portion of foreground pixels increases the image mean increases because the
foreground is warmer than the background. In addition the standard devi-
ation of the image also increases. Both of these effects combine to increase
the threshold, causing the foreground to be severely fragmented.

Thornton’s method creates a local and global threshold and then fuses the
two. The local threshold is calculated using a mean and standard deviation
which is calculated in some region around each pixel. The local threshold
only works well when the foreground objects are smaller than the window,
otherwise the centre of the person is segmented as background because the
mean is now the mean of the foreground. It may seem that using a large
window would improve the results; however, there is no window size that
will always be larger than the person because as a person moves closer to the
camera their size in the image increases. Sauvola’s method (Section 3.1.1)
also uses a local window and suffers from similar problems to Thornton’s
local threshold.

Sauvola’s Locally Adaptive Thresholding

The locally adaptive thresholding method does not improve the results when
compared to a global threshold but actually performs worse. The method ex-
tracts the edges of people and a fair amount of noise from the background, as
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seen in Figure 3.4. In the work of Sauvola and Pietikäinen [55], the authors
segmented printed characters which were smaller than the size of the window
used to calculate the local mean and standard deviation. Unlike text, the
foreground objects in the thermal images are large. In the images in Figure
3.4 the people (foreground objects) are larger than the window so the mean
increases near the centre of the object where the window encloses the whole
object. The increasing mean towards the centre of the foreground objects
causes a commensurate increase in the threshold and hence the tendency of
this method to extract edges only. Thornton’s method also suffers from a
similar problem when using a local threshold.

Otsu’s Method

Otsu’s method [51] produces acceptable results for images where the numbers
of foreground and background pixels are approximately equal [52]. This is not
the case in the thermal images that are typically segmented by the system.
Having approximately the same number of foreground and background pixels
would mean that people would take up half of the image. This would only
happen when there were people very near the camera. When there is a
significantly larger number of pixels in one class than the other, then Otsu’s
method tends to split the larger mode in half [53]. This is exactly what is
seen in Figure 3.5: the threshold is dividing the background distribution
and extracting the higher intensity background pixels as foreground pixels.

Kapur’s Entropic Thresholding

The entropy-based threshold performs well on all of the images except im-
age g (see Figure 3.6). The poor performance on image g is most likely due
to the high variance in the foreground.

Kittler’s Minimum Error Thresholding

The results of Kittler and Illingworth’s minimum error thresholding [53] al-
gorithm, shown in Figure 3.7, indicate that the minimum error thresholding
technique performs well on all of the input images, even image g which was
a problem for the previous algorithms. It is evident that the minimum error
thresholding method is the most robust of the methods tested. It performs
well on all the images and is the only method that effectively segments image
g.

Looking at all the results it is evident that none of the methods completely
extract the people in image e. While this is unfortunate it is not possible for
a global thresholding method to perform better. Parts of the people (their
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hard-hats, gum-boots and cap-lamp batteries) are at the same temperature
as the background and therefore cannot be segmented from the background
unless the threshold is locally adapted.

3.1.2 Quantitative Comparison

The thresholding methods are evaluated qualitatively in the preceding sec-
tions and it appears that Kittler’s minimum error thresholding performs the
best on a selection of images. To verify this result quantitatively, the per-
formance of the thresholding methods is evaluated using 40 ground-truth
images. The performance of each method is tested using the misclassifica-
tion error (ME), region non-uniformity (RN), the relative foreground area
error (RF ) and modified Hausdorff distance (MH) metrics [52].

TheME metric reflects the proportion of pixels that are wrongly classified:
foreground as background and vice versa. The ME varies from zero, for a
perfectly segmented image, to one and can be expressed as

ME = 1− card |BG ∩BT |+ card |FG ∩ FT |
card |BG|+ card |FG|

(3.2)

where
BG and FG are the background and foreground pixels of the ground-truth
image, respectively
BT and FT are the background and foreground pixels of the thresholded im-
age, respectively
card |·| denotes the cardinality of the set.

The RN measures the difference in variance between an image and its
foreground

RN =
card |FT |

card |FT |+ card |BT |
σ2
f

σ2
(3.3)

where
σ2
f is the variance of the foreground
σ2 is the variance of the whole image.

A well-segmented image should have a non-uniformity measure that is
low, approaching zero. The worst case would be a RN of one, corresponding
to indistinguishable foreground and background.

The RF is based on the ultimate measurement accuracy defined by Zhang
[81], using the foreground area as the object feature. Using Zhang’s definition
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of the ultimate measurement accuracy (UA) with the foreground area as the
feature of interest gives

UA =
|AG − AT |

AG

(3.4)

where
AG is the foreground area of the ground-truth image
AT is the foreground area of the thresholded image
|·| denotes the absolute value.

With a slight change we get the RF as defined by Sezgin and Sankur [52],
which is now bounded within the interval [0, 1]. The RF is defined as

RF =

{
AG−AT

AG
if AT < AG

AT−AG
AT

if AT ≥ AG .
(3.5)

An ideally segmented image will have the same foreground area as the
ground truth, and therefore a RF of zero.

The modified Hausdorff distance (MHD) measures the difference in the
shape of the foreground of the segmented and ground-truth images. The
Hausdorff distance measures how far two subsets of a metric space are from
each other, or expressed formally

DH(X, Y ) = max {d (X, Y ) , d (Y,X)} (3.6)

where

d (X, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖ (3.7)

and
‖·‖ is the underlying norm on the points in X and Y .

The function d (X, Y ) is known as the directed Hausdorff distance (DHD)
and if the sets X and Y are finite, as is the case for sets of image pixels, the
DHD is equal to

d (X, Y ) = max
x∈X

min
y∈Y

‖x− y‖ . (3.8)

The DHD defined in Equation 3.8 is, however, sensitive to outliers due
to the max. Dubuisson and Jain [82] tested various modifications to the
Hausdorff distance and showed that replacing the max in the DHD with
a mean performs best for shape matching. The MH metric used for the
evaluation of the segmentation methods is, therefore, defined as

MH(X, Y ) = max {d (X, Y ) , d (Y,X)} (3.9)
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where

d (X, Y ) =
1

card |X|
∑

x∈X

min
y∈Y

‖x− y‖ . (3.10)

Unlike the previous metrics the MHD is not bounded within the interval
[0, 1]; therefore, the MH metric is normalised by dividing each MHD by the
maximum obtained for all the tests.

The average performance of the segmentation algorithms, in Figure 3.8,
shows that Kittler and Illingworth’s minimum error thresholding out-performs
the other algorithms in all but one of the tests. Minimum error thresholding
performs best overall using the four performance metrics on all 40 ground-
truth images.

3.1.3 Summary

Both the qualitative and quantitative comparisons of the thresholding tech-
niques support the conclusion that minimum error thresholding is the best
performing thresholding technique for segmenting people in thermal images;
consequently, a modified version of minimum error thresholding is used for
the segmentation system.

All the tests performed in this section segmented images that contain
people but the segmentation system needs to handle images that may or
may not contain people. A modification to Kittler and Illingworth’s method
allows it to detect when image that does not contain a person and not segment
it. The modification will be discussed in Section 4.1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Thresholding results using Xu et al.’s method [50] - input images
in the left column and thresholding results on the right
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3: Thresholding results using Thornton’s method [49] with a global
threshold - input images in the left column and thresholding results on the
right
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Thresholding results using Sauvola and Pietikäinen’s method [55]
- input images in the left column and thresholding results on the right
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Thresholding results using Otsu’s method [51] - input images in
the left column and thresholding results on the right
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Thresholding results using Kapur et al.’s entropy-based threshold
[54] - input images in the left column and thresholding results on the right

53



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Thresholding results using Kittler and Illingworth’s minimum
error thresholding [53] - Input images in the left column and thresholding
results on the right
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Figure 3.8: Average performance scores for the segmentation algorithms. a)
misclassification error, b) region non-uniformity, c) relative foreground area
error and d) the normalised modified Hausdorff distance
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3.2 Classification

After segmentation the regions of interest undergo a validation stage to clas-
sify the regions that are actually pedestrians. Many image classification
techniques exist; however, due to the wide range of image-processing ap-
plications, an objective comparison is difficult. To provide a more rigorous
basis for the choice of classifier than a personal preference, some popular
classification algorithms were compared.

3.2.1 Template Classifier

The first classifier that was tested was a template-based classifier, chosen
because of its simplicity. The template method uses the total absolute dif-
ference between the template and the candidate image as the similarity mea-
sure. The template-based classification methods of Nanda and Davis [48],
and Olmeda et al. [56] use templates that are based on the frequency with
which each pixel is extracted as a foreground pixel. It was decided not to use
a method based on the segmented images because there is a large amount of
information that is lost, for example the fact that a person’s face is warmer
than the rest of their body, and arms and legs are cooler. The images of
humans in the training data are rescaled to form an M ×N image (30× 12).
A template is created by calculating the mean of the scaled images. The
candidate regions are rescaled to the same dimensions as the template and
the two are compared using an absolute difference, D, i.e.

D =
M∑

i=1

N∑

j=1

|Tij − Iij| (3.11)

where
T is the template image
I is the image to be classified
|·| denotes the absolute value.

If the difference, D, is less than a threshold, then the candidate image is
classified as human.

3.2.2 Parzen Classifier

The second classifier tested was a Parzen classifier, using a small number of
image features. The features used with the Parzen classifier are the mean,
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standard deviation, aspect ratio, the entropy and fill ratio (the ratio of fore-
ground pixels to the total) of the images. It was decided to keep the number
of features fairly small to reduce the computational requirements of the clas-
sifier. Normally a decision is made based purely on the posterior probability:
an image is classified as human if the probability that it is human is greater
than the probability that it is not. The consequences of false positives and
false negatives are very different: a false positive will add an object that will
need to be tracked, while a false negative may result in the system missing a
potential collision. In order to adjust the sensitivity and false positive rates,
an offset in the range of -1 to 1 exclusive is added. A negative offset will
increase the probability that an image is classified as a human, i.e. it will re-
sult in an increased number of true positives but also increase the number of
false positives. A positive offset has the opposite effect, biasing the classifier
towards returning fewer false positives, as well as fewer true positives.

3.2.3 Principle Component Analysis

Most classification methods require the extraction of features from an image
that are then classified. The Parzen classifier discussed above uses a number
of high level features but finding sufficient, suitable features can be difficult
and calculating them can be computationally expensive. In order to create an
effective classifier the input images need to be mapped to a suitable feature
space. The work by Turk and Pentland [83] shows that a face image can
be classified and indeed uniquely identified by using principle component
analysis (PCA). For the neural network and support vector classifiers, PCA
is used to reduce the dimensionality of the feature space. Once the mapping
has been determined using the training data, the feature can be determined
from the test image using a single matrix subtraction and a single matrix
multiplication. PCA was chosen above other feature extraction methods due
to its computational simplicity since the detection system is required to run
in real-time.

Figure 3.9 shows a plot of the magnitude of the eigenvalues calculated
as part of the PCA. It is evident from the figure that the magnitude of the
eigenvalues has decayed to an insignificant value by approximately the 80th

component. Since the magnitude of the eigenvalue represents the signifi-
cance of the corresponding eigenvector to the data [84], the majority of the
significant information in the data is represented by the first 80 components.
For this reason the neural network and support vector classifiers were tested
using 80 features.
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Figure 3.9: Plot of the magnitudes of the first 200 eigenvalues of the covari-
ance matrix of the test data

3.2.4 Neural Network Classifier

The third classifier was a single hidden layer neural network. The input
images are rescaled to produce a 48× 20 pixel image which is then reduced
to a 80-feature vector using the mapping obtained from the PCA.

The neural network that was tested is a single hidden layer perceptron
with 12 hidden nodes and sigmoidal activation functions. The network has a
single output node which outputs values in the range of (0,1) and is trained
using simple back-propagation training. The mapping to the reduced dimen-
sion feature space that was determined from the training data is applied to
the rescaled test image. The training data is also used to determine the
mean and standard deviation of the feature vector. These values are used
to normalise the training and test features before they are entered into the
neural network.
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3.2.5 Support Vector Classifier

The final classifier that was tested was a support vector (SV) classifier with
the same data preparation as for the neural network. The input images
are scaled and then their dimensionality is reduced and the feature vector is
normalised. The support vector classifier implementation used is the popular
support vector machine library LIBSVM [85] using the matlab interface.
The linear, radial basis function and the hyperbolic tangent kernel functions
were tested and it was found that the radial basis function kernel performed
the best. The performance was optimised for the cost (the cost of a data
point being on the wrong side of the decision hyperplane) and then the class
weights were modified to produce a receiver operating characteristic (ROC)
curve. The class weights scale the cost for each class, which means that the
cost of misclassifying a class would be the cost multiplied by the weight for
that class. Modifying the cost of making a false positive misclassification
versus a false negative classification creates a ROC curve for various values
of the class weight.

3.2.6 Comparison

The four initial classifiers were tested using a dataset consisting of 2800
images. The dataset consists of 677 isolated people, 372 partial people, 95
groups and 1656 non-human objects. Of the images 1988 were captured in
a corridor and 812 in an underground mine. The classifiers were tested by
randomly dividing the dataset into two sets of frames, a training set used
to train the classifier and a test set used to evaluate its performance. As
discussed in Chapter 5, simply dividing the dataset randomly produces a
biased classification performance but all of the classifiers should be equally
biased.

The ROC curves for the four classifiers are shown in Figure 3.10. The
ROC curves provide two pieces of information about the classifiers. Firstly
it is easy to see in Figure 3.10 that the SV classifier performs best, being
on the upper left of the other classifiers at all points. The second thing that
the curves are useful for is determining what value of the weight, threshold
or probability offset will give the desired performance.

It is obvious that the classifier that should be chosen for the system is
the SV classifier. The SV classifier achieves greater than 99% true positives
at approximately 8% false positives on the initial dataset.
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Figure 3.10: The ROCs of the four tested classifiers: (a) template classifier,
(b) Parzen classifier, (c) neural network classifier and (d) SV classifier

3.3 Position Sensing

The initial prototype sensor contained a FLIR A300 thermal camera and
two depth sensors, a SwissRanger SR4000 from Mesa Imaging and an Xbox
Kinect, as shown in Figure 3.11.

Figure 3.11: The prototype sensor showing the Kinect at the top, the SR4000
on the bottom right and the FLIR A300 in the centre

The SR4000 is a TOF camera that uses modulated near-infrared light to
determine the distance to each point in its image. TOF cameras transmit
modulated infrared light and measure the light reflected off the object. The
camera measures the phase shift between the transmitted and reflected light
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using a specialised imaging sensor. The phase shift of the returning light
allows the distance to be calculated using Equation 2.38. One of the ad-
vantages of the TOF camera is that it produces depth measurements with
a bounded error (for the SR4000 the accuracy is ±10 mm). However, since
each pixel is effectively independent of the others, the depth image tends
to be spatially noisy. An advantage of a TOF camera is that it produces
a complete depth image; each pixel will have an associated depth value. In
an environment where there is the possibility of aliased depth measurements
it is no longer true that the camera will produce a full depth image since a
number of the readings can be invalid and need to be discarded (algorithms
do exist to unwrap aliased measurements but they generally require multiple
frames and are computationally very intensive).

Some work was performed to unwrap TOF images using a combination of
an adaptive integration method with a reflectance estimation method. The
adaptive integration method proposed by Strand and Taxt [86] estimates the
phase shift that minimises discontinuities in the depth image. This method
unfortunately attempts to ‘unwrap’ portions of the image that have large
discontinuities but are not the result of phase wrapping. The intensity of
light that returns from an object falls off proportionally to the square of the
distance to the object; this can be used to determine whether a portion of a
TOF image has experienced a phase wrapping. If phase wrapping occurred
an object that is in fact far from the camera would be measured as being
close to the camera; however, the intensity of the reflected light would be
lower than expected from an object at that distance. This conflict between
measured distance and amplitude can be used to unwrap a TOF image. For
this research it was originally intended to integrate the two methods but this
was not completed because it became evident that the Kinect was a better
sensor with which to continue development.

The major disadvantage of TOF cameras is the fact that each phase
measurement requires four separate measurements, which means that the ef-
fective integration time for each depth image is long. The long integration
time produces blurred images with even slight movement, making it inappro-
priate for a moving vehicle. The blurring can be reduced by shortening the
integration time of each exposure; however, this reduces the already limited
5 m range of the SR4000 further. Another disadvantage of the TOF camera
is its susceptibility to airborne obscurants. This effect is discussed in more
detail in Appendix C. The presence of reflective particles in the air causes a
change in the net phase shift of the received light and hence a change in the
measured distance.

The Kinect is a 3D imager with a built-in colour camera which is used
as a controller for the Xbox 360 gaming console. The Kinect is built around
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PrimeSense’s PS1080 system on a chip [87]. The Kinect uses a triangulation
technique to determine distance. A near-infrared light projector projects a
pattern that is measured by a near-infrared camera. The distance to an
object that reflects the light can be calculated using the angle that the light
hits the camera and the distance between the camera and projector. One of
the disadvantages of the structured light depth measurement method used
by the Kinect is the fact that the accuracy decreases with distance. Since
the camera is separated from the projector by some distance the Kinect also
suffers from occlusion; parts of the scene illuminated by the pattern projector
are not visible to the camera and near objects shadow further objects. The
Kinect is a very low-cost sensor with a similar range to the SR4000; over a
short range (up to about 2.5 m) the Kinect has a very high accuracy and
good precision. The accuracy of a properly calibrated Kinect over this range
is ±1 mm and the precision is approximately 15 mm (60th percentile) [88].

Owing to the low cost and good performance of the Kinect, and the results
of some initial tests on the TOF camera, it was decided to use the Kinect as
the depth sensor for the system. The range of both cameras is too short for
the final system since the system will not provide sufficient time to warn the
vehicle driver. Owing to hardware cost constraints the inclusion of a longer
range sensor will remain future work.

3.4 Sensor Heads

Three sensor heads were used in this research for data capture. The first
sensor consisted of three cameras, a FLIR A300 thermal camera, the Kinect
and the SR4000 TOF camera. The three cameras shown in Figure 3.12 a
were bolted together such that the SR4000 and FLIR A300 were back-to-back
and they were perpendicular to the Kinect.

The initial tests using the SR4000 showed it to be unsuitable for use on
a moving system so the SR4000 was removed. The A300 was rotated for the
second sensor (Figure 3.12 b) so that it was parallel to the Kinect, ensuring
the best overlap between the 3D and thermal images.

The first two sensors use custom capture software for capturing the 3D
and thermal video to a separate notebook computer [89]. The software cap-
tures both image streams at maximum speed and the synchronised frames are
extracted from the saved data. The high data output rate from the Kinect
could not be saved to the hard-drive of the capture laptop fast enough to
ensure that no frames where missed. For this reason the capture software
buffers the video in RAM and then saves it when the buffer is full.

The third sensor was designed as a stand-alone sensor for capturing ther-
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(a) (b)

Figure 3.12: The first two iterations of the sensor head: a) with the SR4000
TOF camera and b) without the TOF camera

Kinect Thermal camera

WiFi
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Figure 3.13: A block diagram of the third sensor version

mally textured 3D models of mine stopes, to assist in the assessment of
hanging-wall stability. The stand-alone sensor includes co-aligned thermal
and Kinect cameras and was used due to problems with the second sen-
sor. For still unexplained reasons, the A300 of the sensor stopped streaming
images and had to be returned for repairs. The repairs involved reloading
the camera’s firmware by the manufacturer. On the camera’s return it was
discovered that a frame-rate of 1.5 Hz was the highest achievable. Time con-
straints did not allow this problem to be resolved and it was decided instead
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to use the stand-alone sensor for the final tests. The third sensor version is
a self-contained sensor system, a block diagram of which is shown in Figure
3.13.

Figure 3.14: The third version of the sensor head

The new sensor is shown in Figure 3.14, with the three Kinect lenses
visible at the top of the enclosure and the thermal camera, a FLIR TAU320
camera core, in the centre. The SR4000 on the left is currently unused.

The Kinect and the thermal camera both stream images to the capture
computer, which stores them on-board for later retrieval and processing. The
sensor is self-contained, running all the capture software on-board while being
controlled by a remote machine over WiFi.

The capture computer runs software using the same buffer-then-save
method of capturing images as the previous sensors. The computer has half
the RAM of the notebook used to capture the thermal and depth data from
the first two sensors. In order to reduce the size of the required video buffer
the capture software was modified to add only synchronised frames to the
buffer. Since both cameras are streaming and do not allow triggering (with
current hardware) perfect synchronisation between the thermal and depth
images is not possible. In order to capture the best synchronised frames the
capture software records the most recent depth image when each thermal
image is received. This ensures that the time difference between the frames
is at most equal to the period of the Kinect capture (33 ms). It is possible
to check the time stamp of the depth frames received before and after the
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thermal frame. This ensures that the time difference between the frames is at
most half of the Kinect period. This method is, however, more complex and
since we only know when a frame is received by the computer, not when it is
captured, there is no guarantee that the synchronisation will be any better.

The ultra-low power Fit-PC does not have the processing power to effec-
tively run the capture software through its matlab interface with a suffi-
ciently low latency. This caused the third sensor to miss some Kinect frames,
resulting in some time differences being greater than 33 ms.
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Chapter 4

Final System

This chapter describes the final methods chosen for testing the pedestrian
detection and tracking system.

4.1 Segmentation

The pedestrian detection and tracking system uses a modified version of
Kittler and Illingworth’s segmentation method for the segmentation of the
thermal images. The modification to original algorithm allows the algorithm
to handle images that do not contain people and return an image with no
foreground objects, instead of trying to optimally segment the background.

The criterion function gives an estimate of the binarisation error if the
image histogram consists of two normally distributed populations. The dif-
ference in value between the maximum and minimum of the function gives
an indication of the difference in error between the best and worst thresh-
olds. For an image that consists of fairly uniformly distributed intensities
the range of the criterion function values will be small, while for an image
with two well-defined distributions the criterion will have a deep minimum
corresponding to the optimal threshold.

Figure 4.1 shows an image that does not contain any people, and has a
unimodal histogram. The criterion function shown in Figure 4.1 illustrates
that for an image with a unimodal distribution the criterion function does
not have a true minimum. There are images that consist of a well-separated
bimodal distribution but still do not contain any people; an example is shown
in Figure 4.2. The minimum error criterion function in Figure 4.2 does have
a well-defined, deep minimum. We know that a criterion function that does
not have a deep minimum is unimodal and most likely does not have a person
in it; the converse, however, is not necessarily true.
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Figure 4.1: a) An image with a unimodal distribution, b) The image his-
togram and criterion function

Since it is possible to have an image that does not contain any people
but still has two well-separated distributions some additional information is
required to determine whether the image should be segmented or whether
it is empty. From the data it was found that the difference in the mean
temperature of the background and people is at least 1.5 ◦C . In the pro-
cess of determining the minimum error criterion function, estimates of the
foreground and background means are calculated. To determine whether an
image may contain a person and should be segmented, a combination of the
depth of the criterion function’s minimum and the difference in the means is
used.

After segmenting the image, a connected component analysis is performed
and each individual region is numbered. Small regions of less than 160 pixels
are ignored and the others are classified to verify which are actually human.
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Figure 4.2: a) An image with a bimodal distribution but no people, b) The
image histogram and criterion function

4.2 Classification

As discussed in Chapter 3 the initial tests indicated that a SV classifier is
the best classifier for identifying people in thermal images. It was initially
expected that a cascade of classifiers, each trained to classify a specific pose,
would provide better performance than a single classifier. This was tested
and the indication was that there was common misclassification of the poses;
groups of people were classified as single or partial people etc. This indicated
that the features of the various poses were fairly similar and it was decided
to try a single classifier for all poses in the training data. It was found that
a single classifier performed better that the cascade classifier.

The final classifier was trained using 17 video sequences which were seg-
mented and manually classified to produce a dataset of 3300 training images.
The training images consist of: 834 images of isolated people, 412 of partially
occluded people, 178 of groups of people and 1876 images of non-human ob-
jects.
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Initially three classifiers in a cascade were used, one for each sub-class of
pedestrian; single standing people, groups of people and partially occluded
people.It was believed that using three classifiers would produce better results
because each classifier would be classifying objects that had a higher degree
of similarity.

The cascade was set up such that the classification was returned as soon
as the corresponding classifier returned an affirmative. It was found that
the classifiers commonly classified one sub-class as another; for example,
a partial person was classified as a full person. This indicated that there
was a significant degree of similarity between the sub-classes, so the three
classifiers were combined. The combined classifier is computationally simpler
and produced better results than the cascade.

Training the classifier on the full 3300 image training set indicated that
reducing the number of components used for the PCA from 80 to 45 provided
the best classification results.

Using this method each input image is scaled to 48× 20 pixels and then
transformed into a feature vector using the PCA feature vector calculated
using the training data. Since the images are rescaled the original size of the
image is lost; the aspect ratio, height and width of the image are, therefore,
added to the feature vector with the PCA features. The feature vector is
then normalised using the mean and standard deviation of the features in
the training data.

4.3 Tracking

Tracking of the people detected in the images begins by determining the 3D
positions of the people relative to the vehicle, using the information from the
3D camera. Determining the 3D positions of the people in the thermal image
requires the projection of the 3D image into the 2D thermal image. Once the
3D image is projected into thermal image coordinates, finding the position of
each object involves finding the 3D pixel that projected closest to the pixel
of interest. The projection of the 3D points into the thermal image frame
requires a calibration to determine the intrinsic parameters of the thermal
camera and the relative transform from the Kinect reference frame to that of
the thermal camera. The Kinect which is used for the 3D imaging produces
a depth map which requires a further transform to calculate the 3D points.
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4.3.1 Calibration

Kinect Calibration

The depth map produced by the Kinect is a map of the perpendicular distance
(z-distance) from the Kinect to the point and not the distance along the ray
like a TOF camera. From Equations 2.45 and 2.46 we have

x =
z (u− tu)

fx
and y =

z (v − tv)
fy

. (4.1)

The focal length is different for the x and y axes to take into account
the possibility that the pixels are not square. The calibration does not con-
tain any distortion parameters because the addition of distortion correction
was shown by [90] not to improve the re-projection error of the Kinect depth
camera. The OpenNI API (www.openni.org) works together with the Prime-
Sense driver for the Kinect and calculates the depth from the disparity images
produced by the Kinect, so the actual z distance can be used.

Kinect to FLIR Calibration

Once the Kinect has been calibrated it provides 3D positions for each pixel
relative to its focal point. If the focal point of the Kinect is defined as a world
reference frame then each 3D point can be projected into the thermal image
using Equation 2.53. The calibration requires the identification of points in
both the thermal and 3D images, which means that the standard checker-
board calibration cannot be used. The initial calibration used a heated ball,
as shown in Figure 4.3, which could be identified in both the thermal and
depth images. A sphere always projects to a circle in an image so the ball can
be identified by identifying circles in the images from the two cameras. The
identification of the circles was achieved using a random sample consensus
(RANSAC) circle fitting code developed by Price [91].

It was found that finding the ball in all images was difficult and required
the tuning of the circle detector to accurately identify the ball. Owing to the
difficulties associated with automatically detecting the ball’s position it was
decided to manually identify points that could be identified in both cameras.
For the calibration the tips of a person’s fingers were used because they are
easily identified in both images, as shown in Figure 4.4.

A future improvement may be to produce a checker-board with squares
that have significantly different emissivities in the long-wavelength IR band.
The different emissivities would allow the corners of the blocks to be identi-
fied. Using the knowledge of the positions of the corners and the fact that the
points all lie on the same plane allows the intrinsic and extrinsic calibration
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(a) (b)

Figure 4.3: The initial spherical calibration object

(a) (b)

Figure 4.4: An example of a set of calibration images, a) the depth image
and b) the thermal image. The corresponding points are indicated by crosses

parameters to be calculated as performed by Herrera, Kannala and Heikkila
[90] for a depth and colour camera.

4.3.2 Trajectory Estimation

For the prediction of a collision the velocity of the person relative to the
vehicle is sufficient. The problem of calculating the velocities of the people
in the video sequence is a matter of associating each person in the current
frame with the correct person in previous frames. The association is achieved
using a nearest neighbour search based on the estimated positions of where
the people should be in the current frame.
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The estimation starts by identifying all the people in the current frame
and determining their coordinates relative to the camera. For the first frame
the velocity of all the people is set to zero, otherwise the velocity is calcu-
lated as follows. The position and the velocity of the previously detected
people are used to estimate where they would be in the current frame. The
distances between each current and previous position are calculated. The
current person that is closest to the estimated position of the previous per-
son is accepted as corresponding. The actual distance the person has moved
between frames is used to estimate their instantaneous velocity.

If the distance between the current person and all of the previous people
is greater than a threshold (1.5 m) then the person is assumed to be new in
the scene and their velocity is initialised to zero.

A running buffer of previous velocities is filled and when sufficient esti-
mates have been collected the estimate of the time to collision based on the
average velocity is calculated. This is achieved by estimating the time to a
collision (using the z-component of the distance and velocity) and determin-
ing the position of the person at the time when they would be in line with the
vehicle. Two example cases are shown in Figures 4.5 and 4.6. The first case
is someone crossing the tracks slowly, such that they will be in the path of
the vehicle when it gets to their position. The second case is where someone
is crossing the tracks and will be safely across by the time the train gets to
them.

Locomotive
Vehicle velocity

Pedestrian velocity
Relative velocity

Figure 4.5: Figure showing a collision trajectories of a locomotive and a
pedestrian

A difficulty arises in predicting a collision when the vehicle is on a curved
trajectory; a simple collision estimate based on the relative velocity will not
work in general because it is based on the instantaneous velocity of the
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Locomotive Vehicle velocity

Pedestrian velocity
Relative velocity

Figure 4.6: Figure showing safe locomotive and pedestrian trajectories

vehicle, which changes along the curve.
Figure 4.7 shows the problem with the locomotive travelling on a curved

track. The instantaneous velocities of the locomotive and the pedestrian are
shown; these will produce the relative velocity which the system will measure.
According to the relative velocity the person will pass the vehicle well to its
left; however, it is evident that the person will in fact end up on the tracks
in the vehicle’s path.

Vehicle velocity

Pedestrian velocityRelative velocity

Locomotive

Figure 4.7: Figure showing the problem with using instantaneous velocities
to predict collisions when the vehicle is on a curved track

Figure 4.8 shows that the error in the estimated x position at the time
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θ

x

y

Figure 4.8: Geometry of a locomotive following a curved path

of impact will be incorrect by an amount that depends on the track radius
of curvature and the distance between the locomotive and the person. It is
evident from the diagram that

θ = arcsin (y/r) (4.2)

and

x = r (1− cos(θ)) . (4.3)

Therefore the error in the estimated x position of an object is

x = r (1− cos(arcsin (y/r))) . (4.4)

As the distance between the vehicle and the pedestrian decreases it is
evident that the error will decrease. According to Vermaak et al. [43], the
minimum radius of curvature for underground rails is 15 m. This will give
an error due to the curved path as shown in Figure 4.9.

In order to improve the estimate of the trajectory of the vehicle and get
a better estimate of the time to a collision, it is necessary to determine when
the locomotive is on a curved trajectory. This could be achieved by detecting
the tracks or by determining the angular velocity of the locomotive.

74



012345678910
0

0.5

1

1.5

2

2.5

3

3.5

4

Perpendicular distance (m)

P
os

it
io

n
es

ti
m

at
e

er
ro

r
(m

)

Figure 4.9: Plot of the x error versus the distance between vehicle and person,
for a 15 m radius of curvature

Detecting the tracks is non-trivial using thermal or 3D imaging. The
locomotive tracks are in thermal equilibrium with the rest of the tunnel foot-
wall; therefore, the only detectable difference in a thermal image would be
due to differences in emissivity of the rails and surroundings. Using the 3D
image and extracting the tracks that are raised above the ground plane may
work in some cases; however, it is common to have locomotive rails embedded
in concrete in underground tunnels.

A simpler method would be to use the angular velocity of the locomotive
to determine the curvature of the rails. It can be shown that for a vehicle
travelling at a speed of V along a curved path, the radius of curvature of the
path (r) is

r =
V

ω
. (4.5)

So if the locomotive is equipped with speed and yaw-rate sensors, the
radius of curvature of its path can be determined and hence the error due to
the curved path can be corrected.

The problem is that there is no way to determine the future trajectory of
a person exactly. If, for example, the person is moving along the inside of a
curved track at the same speed as a train on the track, their instantaneous
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velocity will project their path as crossing the tracks at some future time.
So if we correct for the curvature of the track using the vehicle’s velocity
and angular speed the vehicle’s trajectory will cross that of the person and
a collision will be predicted.

If the vehicle moves much faster than the pedestrian, then correcting the
path of the vehicle such as in [92] will work. The speed of underground loco-
motives typically ranges from 5 km/h to 16 km/h, which is not significantly
faster than the average human walking speed of 5 km/h.

For a 15 m radius curve the locomotive speed should be less than 5 km/h
(1.4 m/s) [43], so Figure 4.9 can be replotted, as shown in Figure 4.10, in
terms of the time to collision.
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Figure 4.10: Plot of the x error versus the time to collision, for locomotive
travelling at 1.4 m/s on a 15 m radius of curvature track

It can be seen from Figure 4.10 that the error due to a curved path when
the time to collision is 2 s is about 26 cm, which is less than the width of
a person and therefore negligible. At the distance that would provide 2 s of
warning of a collision the error due to a curved track is negligible. Only the
instantaneous velocity is used for predicting a collision because correcting
for the curvature of the tracks will not help without a better model of the
pedestrians’ trajectories. Additionally the curvature of the tracks becomes
negligible when a collision is imminent.
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Chapter 5

Results

5.1 Datasets

The data used for the training of the classifiers consists of datasets captured
in an indoor passage environment, not unlike a mine tunnel, as well as in
a tunnel of an out-of-service mine. The Kinect and the FLIR A300 are
both streaming cameras; they cannot be synchronously triggered. Since the
cameras cannot be triggered both are streamed at their maximum rate and
a time stamp is saved with each frame when it is received by the capture
computer. The Kinect frame that corresponds closest to each thermal image
frame is used; since we do not know which Kinect frame will be closest to
the FLIR frame we record every Kinect frame even though only one in 10
is actually used (the Kinect runs at 30 fps while the FLIR runs at 3 fps).
The bandwidth of the Kinect data is immense. It streams 640× 480, 16 bit
images at 30 fps, which equates to a bandwidth of 147 Mb/s which is too
high to capture directly to a laptop hard-drive without introducing delays
that result in skipped frames. To handle the data bandwidth the images are
cached in RAM and then written to a file when the capture is complete. The
available RAM of the capture computer (a Dell Latitude 2110 notebook with
2 GB RAM) limited the capture duration to 40 s.

The final dataset was captured with the third sensor version. The new
sensor consists of the Kinect mounted above a FLIR TAU320 thermal imaging
core.

To test the robustness of the classifier two unseen datasets were used to
test the classification. The first was captured in the tunnel of the mine at
Gold Reef City (GRC), at a depth of 220 m, with an air temperature of
approximately 16 ◦C . The dataset was taken using the second sensor with
the A300 thermal camera. The dataset consists of 12 video sequences, with
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a total of 570 images.
The final dataset was captured using the third sensor version in First

Uranium’s Ezulwini gold and uranium mine. The dataset was captured in a
small side tunnel on the 38th level, at a depth of approximately 1000 m, with
an air temperature of approximately 20 ◦C . The data was captured using
the third sensor with the FLIR TAU320 thermal camera.

5.2 Segmentation Algorithm

The segmentation algorithm was used to extract the images for the training
and test datasets. For all of the images the threshold was never such that
a person in the image was not extracted. The minimum error thresholding
does not always extract the entire person and does segment objects that are
not people, hence the need for classification of the sub-images. The problem
comes in when a person is in proximity with a background object. In cases
such as this, the person and the background object are extracted as a single
extended object. Having a single extended object consisting of foreground
and background objects affects the classification results negatively.

Figure 5.1 shows an example of an image in which a person is segmented
along with the background.

Figure 5.1: An example of a problematic segmentation containing both a
person and background
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Six out of the 13 missed detections for the GRC and Ezulwini datasets
were images similar to Figure 5.1, which indicates that an improvement in
the classification performance is possible with improved segmentation.

5.3 Classifier

The classifier was tested using four-fold cross-validation on a dataset of 3300
manually classified images. The training images consist of: 834 images of
isolated people, 412 of partially occluded people, 178 of groups of people
and 1876 images of non-human objects. The data was produced from 17 se-
quences containing a number of people with and without personal protective
equipment. The background temperature varies from 11 ◦C to 26 ◦C , in the
different sequences. All the people in the dataset were aware that they were
being videoed and gave verbal consent.

The classifier was validated using a four-fold cross-validation. K-fold
cross-validation is performed by dividing the data into k equal (or approxi-
mately equal) sized subsets. For each of the subsets the classifier is trained
on the k − 1 other sets. The classifier is then tested on the chosen subset.
The classifier is tested on all of the k subsets; the performance for each test
is averaged to determine the overall performance of the classifier.

As discussed previously the training data consists of a number of video se-
quences recorded in different environments with varying temperatures. Sim-
ply dividing the sequence into four equal sized subsets, consisting of images
1-825, 826-1650, 1651-2475 and 2476-3300, would not be acceptable. This is
because there would be a high probability that the test datasets could come
from a different environment to all of the training datasets and therefore bias
the cross-validation results. In order to get a good spread of images from
all of the environments, it was decided to select test and training images
randomly. After further thought it was realised that randomly selecting the
subsets would also introduce a bias.

Adjacent frames in a video sequence are correlated; there is a significant
similarity between adjacent frames. Randomly selecting training frames from
the data would result in a test subset that contained images that were very
similar to those in the training subset.

To balance the requirements of separating the data into training and
testing sets that are not too similar but still have training data from all the
environments, the data set is divided into sets of 100 images. This is achieved
by extracting 100 images from the data and then randomly assigning them
to a subset. Cross-validation is then performed on the four subsets.

The performance of the classification algorithm is evaluated using its

79



sensitivity, specificity and accuracy. The sensitivity (Sn) is the proportion of
the human images in the training set that the classifier correctly identifies as
human, i.e.

Sn =
NTP

NP

(5.1)

where NTP is the number of images correctly classified as people and NP is
the total number of images of people in the dataset.

The specificity (Sp) indicates the ability of the classifier to correctly iden-
tify background objects as not being human

Sp =
NTN

NN

(5.2)

where NTN is the number of correctly classified non-human images and NN

is the number of images of non-human objects.
The accuracy (A) is simply the fraction of images correctly classified

A =
NTN +NTP

NN +NP

. (5.3)

As discussed in Section 4.2, a feature vector is created from each thresh-
olded sub-image by performing a PCA and retaining the 45 most important
components. The SV classifier is trained with a range of cost values and class
weights. The cost applied to a positive feature point that is on the negative
side of the decision plane is equal to the cost multiplied by the positive class
weight. To reduce the number of variables that need to be optimised, the
negative class weight is equated to the reciprocal of the positive class weight.
The cross-validation results for the various class weights and cost values are
shown in Figures 5.2 and 5.3.

The highest accuracy classification is achieved when the weights are 1.7
and 1 for the class weight and cost respectively; however, this corresponds to
a dip in the sensitivity. The consequence of a false negative is significantly
worse than the consequence of a false positive, so a high sensitivity is consid-
ered more important than a high specificity. Figure 5.2 shows the point that
is considered the optimum, the point with weights that achieve the highest
sensitivity without sacrificing too much accuracy.

The results of running a four-fold cross-validation on the classifier with
a cost value of 5, a positive class weight of 9 and a negative class weight of
0.11 show the classifier achieves a good true positive rate and a fairly low
rate of false positives (Table 5.1). A summary of the average performance of
the classifier for the five tests is shown in Table 5.2. The figure shows that
the classifier achieves a sensitivity (true positive percentage) of 97% and an
overall accuracy of 95%.
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Figure 5.2: SV classifier sensitivity versus parameters

To test the robustness of the classifier, a further test was performed on a
smaller unseen test dataset. The testing dataset consists of two datasets, the
first from the GRC mine and the second from the Ezulwini mine. The two
datasets contained examples of people who were crouching or lying down.
These types of examples did not exist in the training dataset and were ex-
cluded from the classifier test, so only 937 of the 1030 images were used.
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Figure 5.3: SV classifier accuracy versus parameters
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Table 5.1: cross-validation results

Test Humans Non-human
objects

True
Positives

True
Negatives

1 1424 1876 1390 1775
2 1424 1876 1387 1759
3 1424 1876 1388 1760
4 1424 1876 1388 1758
5 1424 1876 1394 1732

Table 5.2: Summary of the classifier’s accuracy

Sensitivity Specificity Accuracy
0.976 0.937 0.953

The classifier that was trained using the training dataset was tested on the
unseen dataset and the results are shown in Table 5.3.

Table 5.3: Unseen dataset test

Test Humans Non-human
objects

True
Positives

True
Negatives

GRC 299 212 295 112
Ezulwini 126 300 117 207
Combined 425 512 412 319

It is evident from Table 5.4 that the performance of the classifier is re-
duced on the unseen dataset. It is interesting to note that the sensitivity is
almost unaffected, only decreasing marginally, but the false positive rate has
increased significantly. This result would indicate that the features of peo-
ple do not change much in varying environments but the non-human objects
vary with the environment. This is not unexpected since different environ-
ments have different types of warm background objects, such as lights, warm
equipment, reflection off smooth surfaces etc.

The high specificity that can be achieved by the classifier both for the
cross-validation results and the unseen data indicates that the chosen clas-
sifier can be used to classify pedestrians in thermal imagery effectively. The
classifier maintains a good specificity even on the Ezulwini data, which is
not only captured in a different environment but also with a different sensor.
The reduced specificity of the classifier on the unseen data indicates that the
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Table 5.4: Summary of the classifier’s accuracy on the unseen dataset

Test Sensitivity Specificity Accuracy
GRC 0.987 0.528 0.795
Ezulwini 0.929 0.690 0.761
Combined 0.969 0.623 0.780

background objects vary in various environments and therefore the classifier
will need to be trained on data from the environment in which it will actually
operate.

The system will operate on video data so it is necessary to determine
the correlation between images and what the actual performance will be
like on real video. If the classification of each image was independent the
probability of missing multiple detections in a row would rapidly decrease.
Unfortunately each video image is similar to those that are temporally close.
What we would like to know is: what is the probability of missing a detection
given that the classifier missed the previous one. If the classifications were
independent this would be equal to the false positive rate of the classifier,
approximately 3%. Looking at the missed detection, it is easy to see that
the classifications are definitely not independent.

Appendix E contains tables showing the result of repeating the cross-
validation three times and determining which of the misclassified images are
consecutive. It can be seen from the tables in Appendix E that there are
29 false negatives where the previous image, in the video, was also a false
negative. Given that the previous image was misclassified, the probability
of misclassifying this image is approximately 0.26, so the probability of mis-
classifying two consecutive images is 0.6%. The worst observed case consists
of nine consecutive misclassified images and occured once in the tests. The
number of false negatives is too small to conclude much other than it is very
unlikely that the classifier will miss more than nine or 10 images in a row.
Using the TAU camera running at 8 fps it is, therefore, very unlikely that a
person will not be detected within 1 s.

5.4 Tracker

For obvious safety reasons it is not possible to test the tracking system on
an actual mine locomotive; therefore, the tracker was tested by mounting
the sensor on an ERA-MOBI mobile robot. The robot was driven towards a
stationary person and its velocity, angular velocity and position were recorded
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together with a time stamp. The velocity of the robot is used as a ground
truth to test the accuracy of the tracker.

The distance between the person and the sensor, where the robot was
approaching the person, is shown in Figure 5.4. The distance when the
robot was retreating (a positive relative velocity) from the person is shown
in Figure 5.5. It is evident from Figures 5.4 and 5.5 that there is significant
variance in the measured distance for distances over approximately 5 m.
This does make sense since the random error of structured light stereo is
quadratically related to the distance and the Kinect is only designed to work
up to a range of approximately 5 m. In Figure 5.5, the variation in the close
measurements is due to the fact that the person is only partially visible in
the image and is, therefore, missed by the classifier.
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Figure 5.4: Plot of the measured distance to the pedestrian over time

The tracker estimates the relative velocity of the person from the vehicle
using a moving average of the instantaneous measured velocities. The size of
the filter can be adjusted based on the speed of the vehicle and the camera
frame-rate. The filter for these tests averages approximately 2 s worth of
measurements (16 frames). The calculated and measured velocities for the
approaching and receding cases are shown in Figures 5.6 and 5.7 respectively.

Figures 5.6 and 5.7 show that even with a significant amount of filtering
there is still a large amount of variation in the calculated velocity. It has
been shown that the random error in the Kinect depth measurement increases
quadratically with increasing depth [93]. The standard deviation of the depth
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Figure 5.5: Plot of the measured distance to the pedestrian over time

measurements reaches approximately 4 cm at 5 m range. The quadratic
relationship means that this would increase to over 14 cm at the maximum
measured distance of 9.5 m. The high variance in the depth measurements
is a significant component of the error in the estimated velocity, but it is not
the whole story.

Let us look at the calculation of the velocity and the associated uncer-
tainty. The velocity calculated before the running average filter is calculated
using the distance between two positions of the person (∆x) at two different
times (∆t), i.e.

V =
∆x

∆t
. (5.4)

Using the propagation of uncertainty, the standard deviation in the ve-
locity is

σV =

√(
1

∆t

)2

σ2
x +

(
∆x
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)2

σ2
t

=

√(
1
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Figure 5.6: Plot of the measured and calculated velocities for the robot
approaching the person
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Figure 5.7: Plot of the measured and calculated velocities for the robot
reversing
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where σx is the standard deviation of ∆x and σt is the standard deviation of
∆t.

From Equation 5.5 it is evident that the faster the vehicle travels the
more significant the variation in the capture frequency (or period) becomes.
The current hardware has a large variance in the measured distance due to
the accuracy of the Kinect and vibrations of the sensor.

The Kinect capture software runs a thread that constantly checks for new
Kinect frames, and a second thread that waits for thermal images. When a
new thermal image is received, it is saved to the frame buffer, along with the
most recently captured Kinect frame. When each frame is received a time
stamp is recorded. The time between when a Kinect frame is captured and
when it is received by the computer depends on a number of factors such as
the Kinect hardware and the load on the capture computer’s processor. If
we assume that the Kinect captures frames at a very well-defined rate, then
the variance in the period calculated using the time stamps is equal to the
variance of ∆t. If we assume that the errors in the frame-rate and measured
distance are independent of the velocity of the vehicle, then the standard
deviation of the calculated velocity changes with the mean velocity of the
vehicle as shown in Figure 5.8.
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Figure 5.8: A plot showing the variance in the velocity estimate versus the
mean velocity of the vehicle (assuming σt = 60 ms and σx = 0.13 m)

From Figure 5.8 it is evident that the variance will increase with increas-
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ing velocity; however, as a proportion of the actual velocity the error in the
measured velocity will decrease. A ten-fold increase in velocity only produces
a 20% increase in the error.

The Kinect sensor is not acceptable for a final collision avoidance system
because the useful range is less than 5 m, which is insufficient for anything
but the slowest locomotive. Also it is not possible to know the exact time
when the Kinect captures an image, which adds to the velocity estimate
error. The two sources of error, being the error in the sampling frequency
and the distance measurement, affect the velocity estimate. The effect of the
sources of error is an important consideration for the replacement sensor for
the Kinect. From Equation 5.5, it is obvious that the error in the distance
measurement is important; what is interesting is that as the velocity to be
estimated increases the error in the time-period becomes more significant. To
ensure the best velocity estimate the Kinect replacement will need to provide
an accurate time stamp of when the depth image was captured and produce
depth values with a small error.

Another interesting observation from Equation 5.5 is that the error in
the velocity estimate is proportional to the frame-rate that is used for track-
ing. This is not entirely unexpected. However, further consideration does
produce a fairly counter-intuitive result. Consider two sensors that capture
at different frequencies but are otherwise identical. Let us say the first sen-
sor captures at a frequency of f and the second x times faster (xf). From
Equation 5.5 we can see that the standard deviation of the measured velocity
will be

σV f = xf
√
σ2
x + V 2σ2

t

= xσV s (5.6)

where σV f is the standard deviation of velocity calculated using the fast
sensor and σV s is the standard deviation of velocity calculated using the slow
sensor.

Now let us consider taking x velocity measurements from the fast sensor
and averaging them so that they produce an average velocity measurement
at the same rate as the slow sensor. It can be shown that the error of the
averaged velocity measurements is

σV a =
1√
x
σV f (5.7)

=
√
xσV s (5.8)

where σV a is the standard deviation of velocity calculated by averaging x
measurements from the fast sensor.
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Equation 5.8 shows that even taking multiple samples with the faster
sensor and averaging them produces a worse result than the slow sensor
would. For this result to hold the velocity needs to be constant for the
period being used to calculate the velocity; therefore, we need to estimate
the velocity as slowly as possible without the velocity changing in the period.

It was thought that tracking people using the full 30 Hz frame-rate of the
Kinect would improve the tracking results. The thermal image could be used
to identify people and then they would be tracked using the Kinect until the
next thermal image was received. Based on Equation 5.8 it can be seen that
it is actually unlikely that tracking with a higher frame-rate will improve the
results.

5.5 Processing Time

All the processing times are for the algorithms running in matlab 2010b
on a 3.4 GHz Core i7-2600 desktop PC, with 4 Gb of RAM and running
Windows 7, 64 bit. Table 5.5 shows the system takes an average of 43 ms to
process each frame, so even with the current implementation it is capable of
operating at a frame-rate of 23 frames per second (fps) (without displaying
the images). This speed is more than sufficient for the system to operate in
real-time with the current hardware, which runs at 8 fps.

Subsystem Average time per frame (ms)
Segmentation 13.6
Connected component 14.3
Classification 0.9
Calibration 10.1
Tracking 0.6
Other 3.5
Total 43

Table 5.5: Subsystem timing for the pedestrian detection system

The computer used for testing the algorithm processing times does not
represent the processing power that would be available on a mobile platform;
however, it is believed that the speed increase that would be gained by using
a low-level programming language such as C or C++ would allow the same
algorithms to be implemented on less powerful systems and still run at the
same or higher speeds. A C implementation of the thresholding algorithm
takes approximately 15 ms on a single board PC running an Intel Atom Z530,
ultra-low power 1.6 GHz processor. The classification time is very short due
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to the efficient C/C++ implementation of the SVM library and it is believed
that the processing times of the other subsystems can also be significantly
reduced by implementing them in a language like C or C++.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

Underground mine vehicles are responsible for a significant percentage of
mine fatalities. There is a need for a system that can warn a driver whether
his vehicle is on a collision course with a pedestrian. A computer vision-
based pedestrian detection system is proposed for pedestrian detection in
underground mines because it allows the exact position of the people, near
the vehicle, to be determined without the need for special equipment to be
worn by workers.

The proposed system uses the fusion of thermal and 3D sensor data to
detect and track people in the vicinity of rail-bound mine vehicles. The
system uses a three-stage approach for detecting and tracking personnel.
Initially the thermal image is segmented to produce regions of interest. The
regions of interest are then classified to determine those that are actually
people and should be tracked. The third step is to project the 3D image into
the thermal image and determine the actual position of the person. Using
multiple position estimates, the current relative velocity of the person with
respect to the vehicle can be estimated.

It is shown that in a mine of up to 1000 m deep, there is still sufficient
thermal difference between people and the surroundings to segment them.
The segmentation algorithm performs acceptably to provide regions of in-
terest for the classifier. The segmentation algorithm is shown to be able to
segment people in environments where the background temperatures vary
from 11 ◦C to 26 ◦C coupled with typical airflow. Environments with a high
background temperature coupled with high velocity ventilation result in poor
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segmentation. This is because the high velocity ventilation reduces the tem-
perature difference between people and the environment. The segmentation
does not entirely miss people in the thermal image, but the regions of interest
are fragmented. The air velocity is not expected to be high enough in an
operating mine for this to be a significant issue (the problem was noticed in
an underground training area of a mine).

The thresholding does not completely miss any people in the manually
classified images but it does over segment regions, which causes the occasional
missed detection of a person.

The classifier achieves an accuracy of over 95% and specificity of over 97%.
The correlation between sequential video frames results in the chance of a
false negative (missed detection) given that a previous one is higher than the
overall 3% false negative rate. The chance of missing two consecutive frames
is approximately 0.6% and the chance of missing someone for more than 1 s
(8 frames) is very remote. The pedestrian detection system has a 99.4%
chance of detecting a person within two frames (0.25 s), which compares
favourably with the 99% detection rate shown for certain RFID tag systems.

A sensor built with currently available hardware has indicated that in
principle a thermal imaging and 3D system can be used to detect and track
people in an underground mine. The accuracy of the Kinect depth sensor is
shown to be unacceptably low for effectively predicting a collision between
a vehicle and pedestrian. The short range and poor accuracy of the current
depth sensor does not allow the pedestrian detection system to provide an
acceptable early warning of a collision trajectory.

The current implementation runs in real-time on an Intel i7 desktop PC.
The conversion of the segmentation algorithm from matlab to C shows that
the performance gained by implementation in a more efficient programming
language will allow the system to also run in real-time on a mobile platform
with limited computing resources.

6.2 Future Work

The most important future work is obviously the replacement of the Kinect
with an accurate 3D imager. A multi-beam laser scanner, such as the Velo-
dyne HDL-32E, may work well. The Velodyne, however, scans a full 360◦ ,
which is unnecessary and it is expensive (approximately R250 000). A 3D
imager with a field of view similar to the Kinect but with a longer range is
desired but a sensor with the desired characteristics at a feasible price has
not been found. An alternative to a 3D imaging system could be to use a
point laser distance sensor which is scanned to measure the distance to the
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objects of interest in the scene, i.e. the people. Such a system would be
required to take far fewer measurements and would likely be more cost ef-
fective. A commercial system that could take spot distance measurements is
not available and the design effort required means that this is not currently
a viable option.

Future work may involve the incorporation of position information from
the 3D imager to aid in the segmentation and classification of people. Cur-
rently the segmentation and classification are carried out entirely on the
thermal image and then the depth image is used to track the objects iden-
tified as pedestrians. The addition of 3D information for segmentation will
be a significant advantage for segmentation. One of the current limitations
of the system is that if there is a person some distance in front of another
group, the entire group will be segmented as a single entity. The addition
of 3D information for segmentation would allow people that are close in the
thermal image but are physically separated to be segmented separately. A
similar problem also occurs with background objects that are segmented as
part of a person, which results in images of people that contain a person
and background, negatively affecting the classification results. Adding the
3D information for classification is also likely to improve the classification
results because the classifier will be able to take into account the actual size
of the object in the image.

Another possible improvement would be to use the vehicle’s velocity and
the measured relative velocity to predict the position where the pedestrian
and the vehicle will meet. The width of the tunnel at the collision point can
then be determined to check that there will be enough clearance on either
side of the locomotive for the person to move out of the way without being
crushed against the side wall.

A further improvement would be to use a more advanced state estimation
technique for determining the velocity of the detected pedestrians. A popular
option would be to use a Kalman filter which allows the unobservable states
in a system to be estimated using noisy measurements. The performance of
a Kalman filter is, however, dependent on the accuracy of the system model
and modelling the dynamics of a moving person is very challenging.

Future work could include a warning based on a proximity alone, as a
final safety warning. The system needs a number of frames to determine
the trajectory of the person, so if someone suddenly moves out in front of
the vehicle it would be useful to sound a warning immediately without first
calculating the velocity.

The implementation of the system in a lower-level programming language,
such as C or C++, will be required for the system to run in real-time on a
mobile system.
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Designing a calibration object that can be detected in both the 3D and
thermal images to make automated calibration should be investigated. Auto-
matically calibrating the cameras will simplify the calibration and probably
improve the results.

Another future improvement could be implementing a motion model for
the pedestrians that can predict if they are on a curved trajectory. If we
can predict whether a pedestrian is on a curved trajectory, then correcting
for the curved trajectory of the vehicle would improve the accuracy of the
collision prediction.
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Appendix A

Mining Fatalities

Table A.1 shows a breakdown of the major causes of mining fatalities in South
African mines between May 2005 and March 2010. For the division between
vehicle-related and machinery-related fatalities: machinery is equipment that
is stationary or not self-propelled. Falls of ground and rock bursts involve
the hazardous displacement of material from an in situ position.

Table A.1: A breakdown of the causes of mining fatalities for May 2005 to
March 2010

Cause Number Percentage
Fall of ground / Rock burst 323 38.6
Vehicle related 152 18.2
Other 79 9.4
Fall from a height 57 6.8
Struck by machinery 50 6.0
Caught in machinery 38 4.5
Inundated by material 28 3.3
Explosion 27 3.2
Unspecified 23 2.7
Gassing 21 2.5
Struck by material 19 2.3
Electrocuted 18 2.2
Fall into machinery 2 0.2
Total 837 100

It is evident from Table A.2 that the cause of the majority of vehicle
related fatalities is unknown or undocumented. Table A.3 shows the average
number of workers killed annually in the various vehicle related accidents in
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mines.

Table A.2: Causes of vehicle related fatalities (May 2005 to March 2010)

Cause Number Percentage
Unknown 38 25
Frontal impact 27 17.7
Other 21 13.8
Two vehicles involved 19 12.5
Worker caught between vehicle and side
wall

16 10.5

Worker caught between vehicle and obsta-
cle

11 7.2

Vehicle rolled 11 7.2
Vehicle hit an obstacle 5 3.3
Reverse impact 4 2.6
Total 152 100

Table A.3: The average number of people killed annually in various vehicle
related accidents (during May 2005 to March 2010)

Cause Average annual fatalities
Unknown 7.1
Frontal impact 5.1
Other 3.9
Two vehicles involved 3.6
Worker caught between ve-
hicle and side wall

3

Worker caught between ve-
hicle and obstacle

2.1

Vehicle rolled 2.1
Vehicle hit an obstacle 0.9
Reverse impact 0.8
Total 28.5

Table A.4 shows the division of fatalities by mining sector. It is evident
the the majority of mine deaths occur in gold mines, there are probably a
number of factors that cause gold mine to have a high proportion of fatalities.
Some of these reasons may be the depth at which gold is mined and the fact
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that gold mining relies mostly on manual labour meaning there is a large
workforce being exposed to risk.

Table A.4: A table showing the number of deaths per mining sector between
May 2005 to March 2010

Mining Sector Number Percentage
Gold 448 53.5
Platinum 185 22.1
Coal 81 9.7
Diamond 19 2.3
Iron ore 17 2.0
Chrome 14 1.7
Other 73 8.7
Total 837 100
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Appendix B

Otsu’s Threshold Selection

Let there be L grey-levels and the number of pixels at each grey-level, i, is ni.
The normalised grey-scale histogram is considered a probability distribution,
such that

pi = ni/N (B.1)

Where:
pi is the probability that a pixel belongs to the ith grey level
N is the total number of pixels

The zeroth- and first-order cumulative moments of the image histogram
up to the kth grey-level are:

ω(k) =
k∑

i=1

pi (B.2)

and

µ(k) =
k∑

i=1

ipi (B.3)

The total mean level of the original picture is:

µT = µ(L) =
L∑

i=1

ipi (B.4)

It can be shown that the between-class variance, σ2
b , is:

σ2
b =

(µTω(k)− µ(k))2

ω(k) (1− ω(k))
(B.5)
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Otsu’s method selects the optimal threshold kopt in order to maximise the
between-class variance. The optimal threshold is the value of k that max-
imises Equation B.5, ie.

kopt = argmax
k

σ2
b (k) (B.6)
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Appendix C

Time-of-flight Cameras

Initial tests performed underground show some significant disadvantages of
using TOF cameras on a moving platform underground.

The first problem with the TOF camera is that a single depth measure-
ment requires the camera to take four samples. The four images are used to
determine the phase shift of the return signal and hence the depth. Since all
four samples are need for a single depth measurement, an accurate measure-
ment can only be achieved if the camera does not move during the acquisition.
The actual integration time depends on the actual camera (the intensity of
the modulated light). For the SR4000 camera, using a reasonable integration
time of 12 ms (the range is 0.3 ms to 25.8 ms for the SR4000), the camera
was found to produce blurred images for all but the slowest movements. For
rotation it can be shown that the rotation speed must be below 5 ◦/s.

Another problem with the TOF camera is that its accuracy is severely
affected by aerosol obscurants. The drilling of blast holes in a mine gives off
a fine water spray; coupled with high humidity this causes a mist in active
areas of the mine. The TOF camera’s amplitude image, in Figure C.1, shows
the water mist near the base of the support in the centre of the image. The
distance image, shown in Figure C.2, shows a significant jump in measured
distances near the base of the support due to the mist there.

Investigating the operation of the TOF camera makes the reasons for
this performance obvious. The modulated signal returning to the camera
after reflection off an object will have the form of sin(ωt + φ) where φ is
the phase shift due to the time-of-flight to the object and back. If there are
partially transmissive objects in the scene then the returning light is the sum
of the light reflected off all the objects in the scene. So, assuming no phase
wrapping, the returning light is

R =

∫ lmax

0

ρ (l) sin (ωt+ 2ωl/c) dl (C.1)

109



Figure C.1: TOF camera amplitude image through mist

where ρ (l) is the reflectivity as a function of the distance from the camera
(l). If we have an object with a reflectivity of ρ0 at a distance of (l0) then
the returning light is

R =

∫ lmax

0

ρ0δ (l − l0) sin (ωt+ 2ωl/c) dl (C.2)

= ρ0 sin (ωt+ 2ωl0/c) . (C.3)

So the measured phase shift is 2ωl0/c and therefore the measured distance
is l0 as expected. Now if in addition to the above reflector at l0, we have a
dispersed reflector with a uniform per meter reflectivity of ρd dispersed from
l1 to l2 then the reflectivity function (ignoring the attenuation through l1 to
l2) is

ρ (l) = ρ0δ (l − l0) + ρd (u (l − l1)− u (l − l2)) (C.4)

where u(x) is the unit step function.
Substituting Equation C.4 into Equation C.1 and simplifying a slightly
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Distance: 1.004 m

Distance: 0.7552 m

Figure C.2: TOF camera distance image through mist

gives

R = ρ0 sin (ωt+ 2ωl0/c) +

∫ l2

l1

ρd sin (ωt+ 2ωl/c) dl

= ρ0 sin (ωt+ 2ωl0/c) + ρd

∫ l2

l1

sin (ωt) cos (2ωl/c) + cos (ωt) sin (2ωl/c) dl

= ρ0 sin (ωt+ 2ωl0/c) + ρd sin (ωt) c/2ω [sin (2ωl2/c)− sin (2ωl1/c)]

+ ρd cos (ωt) c/2ω [cos (2ωl1/c)− cos (2ωl2/c)]

= ρ0 sin (ωt+ 2ωl0/c) + ρdc/2ω [cos(ωt+ 2ωl1/c)− cos(ωt+ 2ωl2/c)]

= ρ0 sin (ωt+ 2ωl0/c)

− ρdc/ω sin (2ωl1/c− 2ωl2/c) sin

(
ωt+

2ωl1/c+ 2ωl2/c

2

)
.

(C.5)

Substituting ρ1 = ρdc/ω sin (2ωl1/c− 2ωl2/c), α = 2ωl0/c and β = 2ωl1/c+2ωl2/c
2
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into Equation C.5 gives

R = ρ0 sin (ωt+ α)− ρ1 sin (ωt+ β)

= ρ0 [sinωt cosα + cosωt sinα]− ρ1 [sinωt cos β + cosωt sin β]

= [ρ0 cosα− ρ1 cos β] sinωt+ [ρ0 sinα− ρ1 sin β] cosωt .

(C.6)

Defining

A cos θ = ρ0 cosα− ρ1 cos β (C.7)

and

A sin θ = ρ0 sinα− ρ1 sin β (C.8)

then Equation C.6 becomes

R = A cos θ sinωt+ A sin θ cosωt

= A sin(ωt+ θ) .
(C.9)

From Equation C.9 the net resulting phase shift is θ. Using the definitions
above we know

tan θ =
A sin θ

A cos θ

=
ρ0 sinα− ρ1 sin β

ρ0 cosα− ρ1 cos β

∴ θ = arctan

(
ρ0 sinα− ρ1 sin β

ρ0 cosα− ρ1 cos β

)
.

(C.10)

Instead of having a phase shift that depends on the distance to the object,
we now have an equation that is a complex function of the distance to the
object of interest, the thickness of the dispersed reflector, the reflectivity of
the object and the dispersed reflectance. All these interactions make it im-
possible to correct the error introduced by the obscurants without additional
information which cannot be measured.
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Appendix D

Conference Publications

Below are conference papers presented as part of this work. The first was
presented at IEEE Africon 2011 and the second was presented at the 4th

Robotics and Mechatronics Conference of South Africa and the final paper
was presented at the 26th International Conference on CAD/CAM, Robotics
and Factories of the Future.
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Abstract—Mine vehicles are a leading cause of mining fa-
talities. A reliable anti-collision system is needed to prevent
vehicle-personnel collisions. The proposed collision detection
system uses the fusion of a three-dimensional (3D) sensor and
thermal infrared camera for human detection and tracking. In
addition to a thermal camera, a distance sensor will provide
depth information and allow the calculation of the vehicle and
pedestrian velocities. The results of subsystem tests show that
a simple temperature range is sufficient for segmentation and
a neural network shows the best classification results in terms
of speed and accuracy. Results of initial tests performed on two
different 3D sensors show a significant disadvantage to the use
of time of flight cameras in a mine environment.

Index Terms—mining, obstacle detection, human tracking,
segmentation, thermal imaging, classification

I. INTRODUCTION

Transportation machinery is responsible for a large portion
of mine deaths in South Africa. After rock falls, vehicles
are the second leading cause of mining fatalities. A reliable
system for detecting people near mining vehicles is needed to
prevent collisions between vehicles and personnel. The South
African mining industry has committed itself to reducing the
vast majority of serious of mine accidents and striving for
zero fatalities by 2013 [1]. Given that the number of mining
fatalities for 2010 was over one hundred, zero fatalities by
2013 is going to require significant improvements in mine
safety systems.

The pedestrian detection system described in this paper
is intended to assist mine vehicle operators by detecting a
possible collision with a pedestrian and alerting the operator.

There are a number of existing of proximity warning
systems for mining vehicles, using a number of detection
technologies such as ultrasonic, laser, radar, global positioning
systems (GPS), radio-frequency identification (RFID) tags,
cameras or some combination of these [2–5].

Radar-based proximity detection is used for surface mining
equipment as an aid drivers of dump trucks to detect people
and small vehicles behind the truck. The system is fairly
effective for surface mining equipment with only occasional
false alarms [5]. The close proximity of tunnel walls in an
underground mine makes the use of radar problematic owing
to frequent false alarms [3].

GPS proximity detection has been proposed for surface
mining operations. Each vehicle and worker broadcasts its
position to nearby vehicles. A display in the vehicle shows
the position of nearby people, vehicles and stationary objects
and alarms if they are within a predetermined range [5]. The
reliance on GPS signals precludes its use in a GPS-deprived
underground environment.

RFID tags are popular for collision avoidance systems
owing to their very low false alarm rates. RFID tag-based
systems operating at various frequencies are used for a number
of collision avoidance systems. The Becker NCS Collision
Avoidance System and the Dynamic Anti Collision System
(DACS600) use RFID tags operating in the 400 MHz fre-
quency range while the HazardAvert Proximity Detection
System and the Nautilus International Buddy system use low
frequency magnetic fields [2, 4]. These RFID systems all
operate on the same basic principle; each miner has an RFID
tag (usually active) embedded in their cap-lamp. A transmitter
mounted on the vehicle determines whether the tag is within
a certain range of the vehicle and alarms or stops the vehicle
if so. Some of the systems such as the HazardAvert system
provide multiple zones, which provides a discrete distance
measure. None of the systems provide the exact location of
the personnel, merely how close they are.

A machine vision based pedestrian tracking system can
address some of the shortcomings of current systems. Vision
provides a way of detecting people and determining exactly
where they are in relation to a vehicle. Machine vision has
been investigated as a method for detecting people who are
dangerously close to vehicles [5]. Thermal infrared (IR) imag-
ing provides the advantages of vision based detection without
the problems of sensitivity to illumination and obscuring dust.
The illumination for thermal images is radiated by people and
the long wavelength (7-14 µm) allows it to penetrate dust and
smoke [6].

The IR spectrum can be divided into four main regions.
The main regions are near-infrared, short-wavelength, mid-
wavelength and long-wavelength IR [7]. Near-infrared (0.7 to
1.4 µm) is commonly used for light-based distance sensors
such as laser scanners and Time Of Flight (TOF) cameras.
Near-infrared illumination is also often used for night-vision



surveillance since it can be detected using the same imaging
sensor used for visible light. Short-wavelength IR is used for
various process monitoring and inspection tasks such as hot
furnace monitoring [8]. Mid-wavelength IR can be used for
gas spectroscopy [7]. Long-wavelength IR (or thermal IR) is
the region of interest for this paper and is used for thermal
imaging.

In Section II of this paper the basic architecture of the
proposed pedestrian detection system and the major sub-
systems is described. The results of tests to evaluate the
segmentation and classification algorithms and the distance
sensors are presented in Section III. Finally the results are
discussed and conclusions are drawn.

II. SYSTEM ARCHITECTURE

The detection system first extracts regions of interest
(ROIs); these are regions that have a temperature that would
possibly allow them to be human. The ROIs are then classified
as being human or background objects. A distance sensor pro-
vides the three-dimensional (3D) position of the person for the
tracking system. The tracking system provides the trajectory
of the people in the camera’s field of view. A sensor head
consisting of a FLIR A300 thermal camera, a SwissRanger
SR4000 TOF camera and an Xbox Kinect was used for data
gathering. The background excluding pedestrians is assumed
to be stationary and is used to determine the trajectory of
the vehicle. The vehicle trajectory will be estimated using the
established iterative closest point surface matching algorithm.
Using the trajectory of the vehicle and the pedestrians the
system calculates whether a collision will occur.

A. Thermal Image Segmentation

The system first extracts Regions Of Interest (ROIs) that
could be human which are then classified. The thermometric
image provided by the A300 allows segmentation of the image
based on an empirically determined temperature threshold. As
discussed in Section III-A the temperature based segmentation
outperforms more complex algorithms on the indoor data.

Virgin rock temperatures of deep South African gold mines
are in the region of 60 ◦C however ventilation and other
cooling brings the temperature within working areas down to
below 30 ◦C to allow work to be done [9]. Work conducted
to model the heat flow from advancing stopes shows that the
rock surface temperature can be assumed to be equal to the
ventilation air wet-bulb temperature (Twb) [10]. Significant
work has been performed to design ventilation systems to
ensure the air Twb remains below 28 ◦C (heat stress manage-
ment programmes are required for Twb > 27.5 ◦C ) [11, 12].
Therefore, it is assumed that the rock temperature within the
mine tunnels will be below 28 ◦C .

B. Classification

There are a number of methods used to classify humans in
thermal images. To the authors’ knowledge, there has not been
a quantitative comparison of methods for human classification
in thermal imaging. In the absence of a clear choice, it was

decided to compare three different classification modalities.
The three classification methods are: 1) an appearance-based
classifier using a template match. 2) A feature-based classifier
which uses a number of features extracted from the image
which are classified using a Parzen classifier and 3) a neural
network classifier. Each of these are discussed in turn below.

1) Template classifier: Template-based classification has
been used for human detection in thermal images from moving
vehicles [13, 14] Nanda and Davis [13] use a probabilistic
template created from training images while Bertozzi et al.
[14] use a greyscale morphological template. It was decided
to use a method similar to Bertozzi et al.’s except to use a
template created from training images. The images of humans
in the training data are rescaled to form a M ×N image (in
this case 30×12). A template is created by taking the mean of
the scaled images. The candidate regions are rescaled to the
same dimensions as the template and the two are compared
using an absolute difference distance measure, ie.

Difference =
M∑

i=1

N∑

j=1

abs(Tij − Iij) (1)

Where:
T is the template image.
I is the image to be classified.

If the difference between the image and the template is less
than a threshold value then the candidate image is classified
as human.

2) Parzen classifier: The second method tested is a Parzen
classifier, using some simple statistical features. The features
used with the Parzen classifier are the mean, standard de-
viation, aspect ratio, the entropy and fill ratio (the ratio of
foreground pixels to the total) of the images. Fehlman and
Hinders [15] use 15 features and a committee of classifiers
for the classification of non-heat generating objects in thermal
images. To reduce the computational requirements, a smaller
number of features was chosen to test the Parzen classifier.
A Parzen classifier is a statistical classifier that uses a Parzen
density estimate. The Parzen density estimate estimates the
conditional probability of getting a given feature vector (D)
given the image is of class j (Oj) [15], ie:

P (D|Oj) =
1

Njhd

Nj∑

q=1

H

(
D −Dqj

h

)
(2)

Where:
h is the length of one side of a d dimensional hypercube
d is the dimensionality of the feature space.
Dqj is the qth training feature of class j.
Nj is the number of feature vectors belonging to class j.

H is the Parzen window function:

H (u) =

{
1 |up| ≤ 1

2 p = 1, ..., d

0 otherwise
(3)



Where:
|up| is the magnitude of the pth component of u.

The Parzen classifier uses Bayes’ theorem and the Parzen
density estimation in Equation 2 to determine the probability
that the image belongs to a certain class given the observed
feature vector. The posterior probability given by the Parzen
classifier is

P (Oj |D) =
P (D|Oj)P (Oj)

P (D)
(4)

=


 1

Njhd

Nj∑

q=1

H

(
D −Dqj

h

)
 P (Oj)

P (D)
(5)

Where:
P (Oj) is the prior probability of getting an object of class j.
P (D) is called the evidence and normalises the posterior
probabilities so that they sum to one.

Normally a decision is made based purely on the posterior
probability: an image is classified as human if the probability
that it is human is greater than the probability that it is not. For
this work an offset is added which allows the adjustment of
the sensitivity and false positive rates. An offset, in the range
of -1 to 1 exclusive, is added to the probability of not being
human. A negative offset will increase the probability that an
image is classified as a human, i.e. it will result in an increased
number of true positives but also increase the number of false
positives. A positive offset has the opposite effect, biasing the
classifier towards returning fewer false positives.

3) Neural network classifier: The third classifier investi-
gated is a neural network classifier. Neural networks have
been used for a wide variety of computer vision applications,
including: vision-based vehicle driving [16], face detection
[17] and pedestrian detection [18].

The network chosen for evaluation is a single hidden layer
perceptron with a sigmoidal activation function. The network
has 80 input nodes, 12 hidden nodes and a single output. The
network is trained three times using back propagation and the
weights giving the smallest error out of the three runs are
saved.

The input images from the segmentation algorithm are
resampled to produce 20× 48 pixel images. The high dimen-
sionality of the input is reduced using a principal component
analysis. Using the magnitude of the eigenvalues, it can be
shown that the first 80 components capture the majority of the
significant information about the images. For classification, the
rescaled input image is projected onto the lower dimensional
space using the 80 chosen components. The 80 resulting
features are then classified by a network with 80 input nodes.
Initial tests showed that a network with 12 hidden nodes gave
good results.

C. Distance Sensors

In order to predict the trajectory of the people identified by
the classification step correctly, the distance from the camera

to the people needs to be determined. There are a number of
ways of determining the distance to objects of interest. Some
of the common ways of determining distances are: structure
from motion, depth from focus or defocus, stereo vision, scene
geometry and fusion of the thermal camera with a separate
3D camera. It was decided that a 3D camera is necessary
in addition to the thermal camera owing to limitations of
using a single camera for depth estimation. Monocular depth
estimation methods such as depth from focus require a number
of images to determine distance and are too slow for collision
avoidance. The high cost of thermal cameras does not make
stereo IR a viable option so fusion of the thermal and distance
images is required

There are a number of possible depth sensors that could be
used, such as TOF cameras, laser scanners or structured light
cameras. For this work a TOF camera and structured light
camera have been used.

TOF cameras measure the phase shift of light returning
from a scene to calculate the distance to each point. Unlike a
laser scanner which scans a single beam across a scene a TOF
camera has an array of receiving elements and measures the
distance to all points simultaneously. Commercial TOF cam-
eras use a modulated near-infrared light source and measure
the phase shift between the transmitted and received light [19].
The maximum unambiguous distance (Dunamb) to a target
would be:

Dunamb = c/2f (6)
Dunamb = λ/2 (7)

Where:
f is the modulation frequency.
λ is the modulation wavelength.
c is the speed of light.

Any distance less than Dunamb is calculated by measuring
the ratio of the phase shift (φ) to a full cycle and multiplying
it by the maximum distance.

d = (φ/2π)Dunamb (8)
d = (λ/4π)φ (9)

One of the problems with TOF cameras is caused by the phase
shift ambiguity. A phase shift of slightly over 2π would be
measured as a shift of just greater than zero and according to
Equation 9 the calculated distance would be close to zero.

Structured light sensors project a known pattern onto a
surface and record the pattern using a camera a certain distance
from the projector. The projected pattern can be a series of
lines, a grid of lines or matrix or dots. Fig. 1 shows the
principle used to calculate the distance by triangulation. It
can be shown using similarity of triangles that the x and z
coordinates of the target are:

x = bu/(fcotα− u) (10)

and
z = bf/(fcotα− u) (11)
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Fig. 1. Schematic showing the principle of structured light triangulation
(Adapted from Siegwart and Nourbakhsh [20])

III. RESULTS

This section describes the results of subsystem testing using
preliminary indoor data. A dataset was taken in a corridor
environment using a FLIR A300 thermal camera. The thermal
images from the A300 camera were segmented to extract ROIs
that could possibly be humans. The ROIs were classified by
hand to provide ground truth data. The regions were classified
as containing a single standing person, multiple overlapping
people, a partial image of a person or as not containing a
person. The classification resulted in a training set containing
sub-images of 332 people, 55 groups of people, 126 sub-
images of partially occluded people and 1287 sub-images not
containing any people. This ground truth data was used for
the training and verification of the classification algorithms.

The SR4000 TOF camera and a Microsoft Xbox Kinect
structured light 3D sensor have been tested in a working mine
and the results are discussed.

A. Segmentation

Fig. 2 shows an image from the A300. Ideally the ROIs
should only be the two people in the image. It is shown
in Fig. 2 that a simple temperature threshold ROI extraction
performs better than two more complex algorithms.

The first ROI extraction algorithm uses a combination of in-
tensity and edge information. The algorithm extracted regions
with a certain intensity surrounded by strong edges. The addi-
tion of edge information reduced the number of noise regions,
however it was found that objects in the thermal images are
invariably surrounded by edges that are incomplete. A robust
integration was used that could highlight regions surrounded
by incomplete edges but it is computationally intensive and
does not improve the segmentation results significantly. As
people get closer to the camera additional edges are detected
across their bodies due to, for example, clothing. This causes

(a) (b)

(c) (d)

Fig. 2. Results of segmentation tests: (a) is the input image; (b) shows
the result of edge and intensity segmentation; (c) is the result using Otsu’s
method; and, (d) is the result using temperature threshold-based segmentation

the addition of edge information to degrade the segmentation
performance at shorter ranges.

A histogram-based segmentation algorithm, using Otsu’s
threshold selection method [21], was also tested for segmen-
tation. Otsu’s method is commonly used for grayscale image
thresholding. Otsu’s method assumes a bimodal distribution of
intensities and attempts to optimally divide the distribution into
two. Otsu’s threshold selection does not work on the thermal
images. This is because the temperature distribution is uni-
modal due to the uniformity of the background temperature.

It was found that a simple temperature threshold-based
segmentation performed better than the two above mentioned
thresholding algorithms. The temperature threshold extracts
regions that have a temperature of between 26.8 ◦C and
37 ◦C and then performs a morphological opening, on the
binary image created, to remove small noise regions. The ROIs
extracted using the temperature threshold are shown in Fig. 2.

B. Classification

For testing the classifiers only a binary classification was
considered, whether the region contains a single person or not.
The 1800 manually classified regions are randomly divided
into training and evaluation data sets, each of approximately
the same size (a random division with equal chance of being
in each set). Each classifier is trained and then run three times,
the first time it is run using the data from the evaluation data.
The two subsequent tests are run using a new randomly chosen
dataset. Each classifier is evaluated in terms of classification
accuracy and speed.

The classification rates are for the classifiers run in MAT-
LAB R2010b on a 2.8 GHz Pentium 4 PC. The number of
classifications per second for each classifier is averaged over
the three tests and the results are shown in Table I.



TABLE I
COMPARISON OF CLASSIFIER SPEEDS. (RUNNING IN MATLAB R2010B)

Classifier Speed (classifications/s)
Template 4830
Parzen 552
Neural Network 1227
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Fig. 3. The Receiver Operating Characteristics for a) the Template classifier,
b) Parzen classifier and c) Neural Network

Fig. 3 shows typical Receiver Operating Characteristic
(ROC) curves for each of the classifiers.

The performance of the template classifier is significantly
poorer than the other two and does not warrant further con-
sideration despite its speed.

The neural network achieves very similar classification per-
formance to the Parzen classifier. The main difference between
the two is that the Parzen classifier achieves a maximum true
positive rate of 98% while the neural network can detect 100%
of the targets (albeit with a high false positive rate). The reason
the Parzen does not reach 100% true positive is the finite extent
of the Parzen window. So if all the features fall just outside the
window, the classifier will return a zero probability of being
human.

The classifier is required to detect people without missing
any, ie. the true positive rate needs to be as close to 100%
as possible. The effect of false positives is less severe, simply
adding to the number of objects that need to be tracked.

The neural network classifier achieves slightly better detec-
tion performance and significantly faster classification than the
Parzen and is therefore the classifier chosen for development
as part of the human detection system.

C. Distance Sensors

Testing of the two 3D sensors underground has shown a
significant disadvantage of using TOF camera technology in
a harsh underground environment. The drilling of blast holes
in a mine gives off a fine water spray; coupled with high
humidity this causes a mist in active areas of the mine. The

Fig. 4. Time of flight camera amplitude image through mist

Distance: 1.004 m

Distance: 0.7552 m

Fig. 5. Time of flight camera distance image through mist

TOF camera’s amplitude image, in Fig. 4, shows the water
mist near the base of the support in the centre of the image.
The distance image, shown in Fig. 5, shows a significant jump
in measured distances near the base of the support due to the
mist there.

The reason for the poor performance of the TOF camera
is that the camera is receiving a reflection off the object
of interest as well as multiple reflections off the intervening
water droplets. The reflection off the mist causes the received
phase shift to be less than the true value and therefore the
measured distance is shortened. It is expected that dust, which
will be more of a problem in the tunnels where the pedestrian
detection system will operate, will have a similar effect to the
mist.

The TOF camera was also found to suffer from significant
motion blurring due to the fact that a single range image
is measured using four phase measurements. Decreasing the
integration time will reduce the blurring but will decrease the
accuracy and range of the camera.

The structured light Kinect sensor seems unaffected by the
mist but without a known ground truth distance the effect of



the mist on the accuracy of the Kinect is not known.

IV. CONCLUSION

The current state of the development of a pedestrian detec-
tion system for underground mine vehicles is described in this
paper. Some current pedestrian detection systems are listed
and their limitations described. The system architecture and
major subsystems are outlined. It is shown that as a result
of the thermometric nature of the IR images, a temperature
range based segmentation is superior to other more complex
segmentation methods. It is shown that a neural network clas-
sifier outperforms a template classifier and a Parzen classifier.
An evaluation of two distance sensors shows that a TOF
cameras suffer from motion blurring and inaccuracies due
to obscuring mist. Future work involves the acquisition of a
large underground dataset from a moving platform to test the
velocity estimation methods. Further work is also required to
verify whether the effect of dust on the TOF camera is similar
to the effect of the mist. Work is also required to determine
the quantitative effect of dust on the accuracy of the time of
flight and structured light 3D sensors.
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Abstract—A pedestrian detection system for underground mine
vehicles is being developed that requires the segmentation of peo-
ple from thermal images in underground mine tunnels. A number
of thresholding techniques are outlined and their performance
on a number of thermal images is investigated. The thresholding
techniques are evaluated on images in various ambient conditions
and it is shown that a minimum error thresholding technique is
the most effective.

I. INTRODUCTION

A pedestrian detection system for underground mine vehi-
cles is being developed to address the high number of fatalities
caused by mine vehicles [1]. The system makes use of a
combination of thermal and 3D imaging to identify and track
people near the mine vehicle. The system will help improve
drivers’ awareness of people near their vehicles and also allow
for the safe operation of autonomous mine vehicles in the
presence of humans.

The system detects, classifies and tracks humans in the
thermal images and then combines the thermal images with
3D images to provide actual position information. It will need
to determine how far away from the vehicle the people are
and track them to determine whether they are on a collision
course with the vehicle. A commonly used paradigm for object
detection and tracking in video is to first extract regions of
interest and then classify or validate them [2–7], which is
the methods that is being used for the pedestrian detection
system, as shown in the system diagram, Fig. 1. This paper
deals with the segmentation subsystem, the regions that have
been segmented by this system will be further processed to
remove small noise regions and then the remaining regions
will be classified. Various methods for segmenting people from
thermal images will be reviewed and compared.

Image thresholding takes in a multi-valued input image and
outputs a binary image where one of the states represents fore-
ground objects and the other represents the background. Image
thresholding is used for a wide variety of applications from
extracting printed characters for optical character recognition
through identification of defects in automated inspection tasks,
to segmenting computed tomography x-ray images.

At first glance segmenting humans from thermal images
may seem trivial because we know that human core body

Thermal image Segment image Classify subimages

Estimate time to collision
Determine trajectories of people 
based on previous positions

Depth image Extract 3D positions of people Depth-thermal calibration 
matrix

Fig. 1. A block diagram showing the subsystems making up the pedestrian
detection system.

temperature remains in a very narrow range. However human
surface temperatures vary significantly depending on a number
of factors such as the clothes worn and the naturally lower
temperature of the extremities (arms and legs).

It is assumed that the temperature of people within a mine
tunnel will always exceed the temperature of the tunnel itself.
In deep South African gold mines the virgin rock temperatures
can be as high as 60 ◦C however ventilation and other cooling
brings the temperature within working areas (stopes) down to
below 30 ◦C to allow work to be done [8]. Work conducted
to model the heat flow from advancing stopes shows that the
rock surface temperature can be assumed to be equal to the
ventilation air wet-bulb temperature (Twb) [9]. The wet-bulb
temperature takes into account the relative humidity of the air
and therefore the effects of evaporative cooling. Since the wet-
bulb temperature takes into account the effect of evaporative
cooling there will always be a positive temperature gradient
between people and the environment to allow the dissipation
of metabolic heat.

Since the people in the thermal images will always be
warmer than the background the segmentation of the thermal
images involves determining an optimal threshold to extract
only the people as foreground objects. The camera used
to capture the images used for evaluating the thresholding
methods is a FLIR A300 providing a thermometric image.

II. THRESHOLDING METHODS

There are a very large number of thresholding algorithms
belonging to a number of categories, a good survey of a



large number of them is provided by Sezgin and Sankur
[10]. The methods evaluated here will be those identified
as the best performing by Sezgin and Sankur as well as a
number of other techniques chosen for certain characteristics.
Thresholding methods falling into the following categories;
clustering-based thresholding, entropy-based thresholding, lo-
cally adaptive thresholding and model-based thresholding will
now be discussed.

For all of the following discussions the following notation
will be used. Each picture has a total of N pixels that fall
into L grey-levels. The number of pixels that fall into each
grey-level (i) of the image histogram is denoted by ni. The
normalised grey-scale histogram can be considered an estimate
of the probability distribution of pixel intensities i.e.

pi = ni/N (1)

Where:
pi is the probability that a pixel belongs to the ith grey level
N is the total number of pixels

The cumulative probability function for the kth grey-level
is defined as

P (k) =
k∑

i=1

pi (2)

A. Clustering-Based Thresholding
1) Otsu’s Method: The first thresholding method that is

evaluated is Otsu’s threshold selection method [11]. Otsu’s
method is evaluated due to its popularity as a thresholding
method, being one of the most cited thresholding methods
[10]. Otsu’s method finds a threshold that minimises the
within-class variances of the foreground and background
classes. Minimising the within class variance is equivalent to
maximising the between class variance.

The zeroth- and first-order cumulative moments of the
image histogram up to the kth grey-level are:

ω(k) =
k∑

i=1

pi (3)

and

µ(k) =

k∑

i=1

ipi (4)

The total mean level of the original picture is:

µT = µ(L) =
L∑

i=1

ipi (5)

It can be shown that the between class variance, σ2
b , is:

σ2
b =

(µTω(k)− µ(k))
2

ω(k) (1− ω(k))
(6)

Otsu’s method selects the optimal threshold Topt in order to
maximise the between class variance. The optimal threshold
is the value of k that maximises Equation 6, ie.

Topt = argmax
k

σ2
b (k) (7)

2) Iterative Clustering: Iterative clustering assumes that the
intensity histogram has two peaks, one for the foreground
objects and another for the background objects. The algorithm
starts with the threshold set to the centre intensity level, the
peak of the histogram on either side of the threshold is then
determined. The threshold value is moved to the midpoint of
the two peaks and the peaks are found again. The process is
repeated until the change in the threshold is sufficiently small.

3) Minimum Error Thresholding: Minimum error thresh-
olding assumes that the image is made up of foreground and
background objects with normally distributed intensities. The
method of minimum error thresholding is that of Kittler and
Illingworth [12], their method minimises a criterion function
which gives the approximate minimum error threshold. The
criterion function derived by Kittler is

J(k) = 1 + 2 [P (k)ln (σ1(k)) + (1− P (k)) ln (σ2(k))]

−2 [P (k)ln (P (k)) + (1− P (k)) ln (1− P (k))]

(8)

Where:
σ1(k) is the standard deviation of the background up to grey
level k
σ2(k) is the standard deviation of the foreground, from k to
L

The criterion function shown in Equation 8 gives a measure
of the overlap of the two distributions, so the method estimates
the parameters of the two normal distributions on either side
of the threshold and then calculates the overlap of the two
estimated distributions. Using Equation 8 the optimal threshold
is easily determined.

Topt = argmin
k

J(k) (9)

Since the distributions overlap, the estimation of the parame-
ters will contain a bias, however this is assumed to be small.
The bias does indeed appear to have little effect of the result.
Another advantage of the minimum error thresholding tech-
nique is that the criterion function will not have a minimum
for a unimodal distribution, so an image that does not contain
any people can be detected and not segmented.

B. Entropy-Based Thresholding

Entropic thresholding methods exploit the entropy distribu-
tion of the grey-levels in the scene. Maximising the entropy of
the thresholded image maximises the information between the
foreground and background distributions in the image [10, 13].
For a threshold at grey-level k the entropy of the background
up to grey-level k is

Hb = −
k∑

i=1

pi
P (k)

ln
pi
P (k)

(10)

and the entropy of the foreground is

Hf = −
L∑

i=k+1

pi
(1− P (k))

ln
pi

(1− P (k))
(11)



Defining the sum of the two entropies as φ(k) we get

φ(k) = −
k∑

i=1

pi
P (k)

ln
pi
P (k)

−
L∑

i=k+1

pi
(1− P (k))

ln
pi

(1− P (k))

(12)
Maximising φ(k) gives the maximum information between

the two distributions. So the optimal threshold is

Topt = argmax
k

φ(k) (13)

C. Locally Adaptive Thresholding

Locally adaptive thresholding adapts the threshold for each
pixel in the image, instead of having one threshold (T ) the
threshold is an matrix the same size as the image (T (x, y)).
The adaptive thresholding method is that of Sauvola and
Pietikäinen [14] which is adapted based on the mean and
standard deviation of the pixels in a window around each pixel.
The threshold is calculated according to the formula

T (x, y) = m(x, y) ·
[
1 + k

(
s(x, y)

R
− 1

)]
(14)

Where:
m(x, y) is the mean of the window centred on pixel xy
s(x, y) is the standard deviation of the window centred on
pixel xy
R is the range of the standard deviation
k is a user defined constant

In our experiments the value of k was chosen to be k =
−0.02 and the window for calculating the mean and standard
deviation is 15×15 pixels. The value of k is negative because
we are attempting to extract higher intensity (warmer) objects
from a darker background while Sauvola was attempting to
extract dark text from a light background.

III. THRESHOLDING RESULTS

The methods were evaluated on thermal images containing
people in a variety of conditions. The background temperature
of the images varies from about 11 ◦C to 25 ◦C . Due
to the difficulty in establishing ground truth for testing the
thresholding, the methods are tested qualitatively. Qualitative
testing is sufficient due to the fact that the results are very
sensitive to the threshold chosen so mostly the results are
binary, the method provides an acceptable threshold or not.
The test images used for the testing of the thresholding
methods are shown in Fig. 2 below.

The images in Fig. 2 represent typical images from three
datasets. The corridor provided a good dataset to test the clas-
sification algorithm because of the presence of warm objects
that were not people (the lights and reflections off doors). The
mine in b provides one end of the spectrum, it is a shallow
mine with a cold air temperature. The tunnel in c shows an
example of a problem case, the air temperature was fairly
high but there was a very high ventilation air velocity, this
high velocity air reduces the temperature difference between
the people and surroundings. The area in image c was part of

(a)

(b) (c)

Fig. 2. Test images for the thresholding algorithms: (a) a corridor at 25 ◦C ;
(b) a mine tunnel at 11 ◦C and (c) a tunnel at 21 ◦C .

the training area of the mine and does not represent the typical
conditions that would be present in the mine.

A. Clustering-Based Thresholding

All the clustering based thresholding methods suffer from
a similar problem, they assume that the foreground and
background objects have intensity distributions that are well
separated which is not the case in the thermal images in this
work.

1) Otsu’s Method: Otsu’s method produces acceptable re-
sults for images where the number of foreground and back-
ground pixels are approximately equal [10]. This is not the
case in the thermal images investigated where the number
of background pixels is significantly larger than the number
of foreground pixels. When there are a significantly larger
number of pixels in one class than the other, then Otsu’s
method tends to split the larger mode in half [12], which is
exactly what is seen in Fig. 3, the background has been split
by a threshold dividing the background mode of the histogram.

2) Iterative Clustering: The results of the iterative cluster-
ing method test are shown in Fig. 4, the results for image a are
acceptable and the results on image b are good but the result
on image c is unacceptable. The reasons for the difference in
the performance between the different images can be seen by
looking at the image histograms shown in Fig. 5 and Fig. 6.



(a)

(b) (c)

Fig. 3. Thresholding results using Otsu’s method

It is evident in Fig. 5 that the histogram consists of two
distributions that are fairly well separated, while in Fig. 6 the
distribution appears to simply taper off to the right of the main
peak. Without a well separated second peak, this method will
obviously not work.

3) Minimum Error Thresholding: The results of the mini-
mum error thresholding algorithm, shown in Fig. 7, indicate
that the minimum error thresholding technique performs well
on all of the input images. The result on image c shows in-
complete segmentation of the two people close to the camera.
While unfortunate it is not possible for a single threshold
method to perform better since parts of the people (their
hard-hats, gum-boots and cap-lamp batteries) are at the same
temperature as the background.

B. Entropy-Based Thresholding

The entropy based threshold performs well on all of the
images with only a small amount of noise, see Fig. 8. This
makes sense since the entropy-based method is segmenting the
images without making any assumptions about the underlying
distributions of the foreground and background objects.

C. Locally Adaptive Thresholding

The locally adaptive thresholding method produces some
interesting results. The method extracts part of the people and
a fair amount of noise from the background. The reason for the
poor performance of the adaptive thresholding method is that

(a)

(b) (c)

Fig. 4. Thresholding results using iterative clustering method
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Fig. 5. Histogram for image in the cold mine tunnel (image b)

unlike text which the algorithm was originally intended for, the
foreground objects in the thermal images are large in extent.
In Sauvola’s work each character being thresholded is smaller
than the window used to calculate the mean. In the images
used for these experiments the people (foreground objects)
are larger than the window so the mean value is increased
near the center of the object where the window encloses
the whole object. The increasing mean towards the center
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Fig. 6. Histogram for image in the warm mine tunnel (image c)

(a)

(b) (c)

Fig. 7. Thresholding results using minimum error clustering method

of the foreground objects causes a commensurate increase in
the threshold, which explains the tendency of the adaptive
thresholding to extract only the edges of people.

D. Background-only Images

The two best performing segmentation methods have an
additional advantage over the other methods presented, they
provide a measure of the certainty of the threshold. This
measure can be used to prevent the segmentation of an image

(a)

(b) (c)

Fig. 8. Thresholding results using Entropy-based thresholding method

that does not contain any people. The entropic thresholding
gives a measure of the information retained for each threshold
value. For a uniform distribution of pixels the information
content will remain unchanged for any threshold, while for an
image containing two very different distributions the difference
in the information content between the optimal threshold and
the others will be significant. Fig. 10 shows a plot of the
entropy versus the threshold, notice the difference in scale
between the background-only image and the image containing
people.

The criterion function for minimum error thresholding
shows a similar effect where the scale can be used to determine
whether the image contains only background. Minimum error
thresholding also estimates the mean and standard deviation
of foreground and background at each threshold value. A
combination of the range of the criterion function and the
difference between the means is currently being used to
prevent the segmentation of the background.

IV. CONCLUSION

Thresholding techniques that have been shown to perform
well on text and non-destructive testing (including thermal
images) images have been evaluated for segmenting people in
thermal images. Segmenting people from thermal images in
mine tunnels is challenging due to a significant overlap in the
distributions of the foreground and background and the relative
difference in the number of foreground and background pixels.



(a)

(b) (c)

Fig. 9. Thresholding results using locally adaptive thresholding method

(a) (b)

Fig. 10. Plots of the entropy versus threshold for: (a) an image containing
only background, (b) an image containing people

The results show that the minimum error thresholding tech-
nique performs the best followed by the entropy based method.
The other methods tested produced unacceptable results and
the reasons for their performance is explored. Future work
may involve the addition of 3D information to improve the
segmentation by allowing parts of a single person, identified
by the thermal segmentation, to be combined.
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ABSTRACT 

Underground mine automation has the potential to increase safety, productivity and allow 
the mining of lower-grade resources. In a mining environment with both autonomous robots 
and humans, it is essential that the robots are able to detect and avoid people. Current 
pedestrian detection systems and the reasons that they are inadequate for mining robots are 
discussed. A system for human detection in underground mines, using a fusion of three-
dimensional (3D) information with thermal imaging, is proposed. The system extracts regions 
of interest and classifies them as human or background. The scene excluding the pedestrians 
is assumed to be static and is intended to be used to determine the ego motion of the vehicle. 
In addition to the thermal camera, a distance sensor will provide depth information and 
allow the calculation of the vehicle and pedestrian velocities. Various classification methods 
are compared and it is shown that a neural network provides the best results in terms of 
speed and accuracy. The results of tests on two 3D sensors indicate that further work is 
required to determine the effect of the harsh environment on the accuracy of the sensors. 
 
Keywords: underground, mining, autonomous robots, obstacle detection, human tracking, 
thermal imaging, classification.  
 

1 INTRODUCTION 

Transportation machinery is responsible for a large portion of mine deaths in South Africa. 
After rock falls, vehicles are the second leading cause of mining fatalities. A reliable 
system for detecting people near mining vehicles is needed to prevent collisions between 
vehicles and personnel. The South African mining industry has committed itself to strive 
for zero fatalities by 2013 [1]. Given that the number of mining fatalities in 2010 was 128 
[1], achieving zero fatalities by 2013 is unlikely to be possible without a fundamental 
change in mining methods. Automation in mines has the ability to improve human safety 
[2] and potentially enable the mining of resources that cannot be mined in the traditional 
way [3]. An autonomous mine vehicle operates in an area with people must be able to 
detect humans in order to operate without posing a threat to nearby personnel. As a step 
towards an underground autonomous mine vehicle, a pedestrian detection system is 
proposed that will assist vehicle operators by predicting collisions. 
  
It is desirable that the detection system can be used in future to provide automated mine 
machines with the ability to operate safely in conjunction with humans. The system should 
be able to detect and localise people near an underground mine vehicle, which allows the 
system to be used for the planning of a safe path around people in an underground mine. 
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There are a number of existing proximity warning systems for mining vehicles, using 
technologies such as ultrasonic, laser, radar, GPS, Radio Frequency Identification (RFID) 
tags, cameras or some combination of these. Some of the strengths and weaknesses of 
these warning systems are outlined below.  
 
 
Radar-based proximity detection is used for surface mining equipment as an aid to drivers 
of dump trucks for detecting people and small vehicles behind the truck. The system is 
fairly effective with only occasional false alarms [4]. The close proximity of tunnel walls 
in an underground mine causes frequent false alarms, making the use of radar problematic 
underground [5]. 
 
GPS proximity detection has been proposed for surface mining operations. Each vehicle 
and worker broadcasts its position to nearby vehicles. A display in the vehicle shows the 
position of nearby people, vehicles and stationary objects and alarms if they are within a 
predetermined range. The reliance on GPS signals precludes its use in a GPS deprived 
underground environment. 
 
RFID tags are popular for collision avoidance systems owing to their very low false alarm 
rates. Each miner has an RFID tag embedded in their cap-lamp. A transmitter mounted on 
the vehicle determines the distance to each tag. RFID systems do not provide the exact 
location of the personnel, merely how close they are. RFID do not provide sufficient 
information for an autonomous vehicle. The fact that RFID cannot provide direction 
information implies that it cannot be used to plan a path around a pedestrian. 
 
A machine vision based pedestrian tracking system can address some of the shortcomings 
of current systems. Vision provides a way of detecting people and determining exactly 
where they are in relation to a vehicle. Thermal infrared (IR) imaging provides the 
advantages of vision based detection without the problems of sensitivity to illumination 
and obscuring dust. Unlike visible range imaging, the illumination for thermal images is 
radiated by the objects being imaged, in this case people. The long wavelength (7-14 µm) 
of thermal IR allows it to penetrate dust and smoke [6]. 
 
The IR spectrum can be divided into four main regions. The main regions are near-
infrared, short-wavelength, mid-wavelength and long-wavelength IR. Near-infrared (0.7 to 
1.4 µm) is commonly used for light-based distance sensors such as laser scanners and 
Time of Flight (TOF) cameras. Near-infrared illumination is also often used for night-
vision surveillance since this wavelength can be detected using the same imaging sensor 
used for visible light. Short-wavelength IR is used for various process monitoring and 
inspection tasks such as hot furnace monitoring. Mid-wavelength IR can be used for gas 
spectroscopy. Long-wavelength IR (or thermal IR) is the region of interest for this paper 
and is used for thermal imaging. It can be shown using, Wien’s displacement law, that 
objects at room temperature, around 300 K, emit IR radiation in the long wavelength IR 
region (peak wavelength of 9.7 µm). 
 
In Section 2 of this paper the basic architecture of the proposed pedestrian detection 
system and the major sub-systems is described. The results of tests to evaluate the 
segmentation and classification algorithms and the distance sensors are presented in 
Section 3. The results are discussed and then conclusions are drawn and recommendations 
presented.  
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2 SYSTEM ARCHITECTURE

The proposed detection system uses the fusion of thermal imaging and a three
(3D) image for pedestrian detection. The sensor head co
camera, a SwissRanger SR4000 TOF camera and an Xbox Kinect, as shown 

Figure 

A region that the sensor identifies as having a temperature that indicates the region could 
be human is defined as a Region of Interest (ROI). The detection system first extracts 
ROIs which are then classified as being human or backgro
the depth camera will be projected into the FLIR’s thermal image. The humans identified 
in the thermal image can be extracted from the 3D image by determining which 3D points 
project the human regions of the thermal image. 
 
The 3D position of the people will be used by the tracking system. The tracking system 
estimates the trajectory of the people in the camera's field of view. The background, 
excluding pedestrians, is assumed to be stationary and is used to determine the tr
of the vehicle. The vehicle trajectory estimation will be done using the established 
iterative closest point surface matching algorithm. Using the trajectory of the vehicle and 
the pedestrians the system calculates whether a collision is likely to
 
In order for the system to extract ROIs and classify them as human or background, thermal 
image segmentation and classification of the images take place. These steps are outlined 
and various classification methods compared below.
 
2.1 Thermal Image Segmentation

The system first extracts the ROIs and those confirmed as human by a classification step 
are tracked.  The thermometric image provided by the FLIR camera allows segmentation 
of the image on the basis of an empirically determined temperature thre
performed show that the temperature based segmentation outperformed two more complex 
segmentation algorithms. 
 
2.2 Classification 

There are a number of methods for classifying humans in thermal images. To the authors’ 
knowledge, there has not been
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SYSTEM ARCHITECTURE 

The proposed detection system uses the fusion of thermal imaging and a three
(3D) image for pedestrian detection. The sensor head consists of a FLIR A300 thermal 
camera, a SwissRanger SR4000 TOF camera and an Xbox Kinect, as shown 

Figure 1: The sensor used for the detection system 

A region that the sensor identifies as having a temperature that indicates the region could 
be human is defined as a Region of Interest (ROI). The detection system first extracts 
ROIs which are then classified as being human or background objects. The 3D points from 
the depth camera will be projected into the FLIR’s thermal image. The humans identified 
in the thermal image can be extracted from the 3D image by determining which 3D points 
project the human regions of the thermal image.  

The 3D position of the people will be used by the tracking system. The tracking system 
estimates the trajectory of the people in the camera's field of view. The background, 
excluding pedestrians, is assumed to be stationary and is used to determine the tr
of the vehicle. The vehicle trajectory estimation will be done using the established 
iterative closest point surface matching algorithm. Using the trajectory of the vehicle and 
the pedestrians the system calculates whether a collision is likely to occur.

In order for the system to extract ROIs and classify them as human or background, thermal 
image segmentation and classification of the images take place. These steps are outlined 
and various classification methods compared below. 
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are tracked.  The thermometric image provided by the FLIR camera allows segmentation 
of the image on the basis of an empirically determined temperature thre
performed show that the temperature based segmentation outperformed two more complex 

There are a number of methods for classifying humans in thermal images. To the authors’ 
knowledge, there has not been a quantitative comparison of methods for human 
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be human is defined as a Region of Interest (ROI). The detection system first extracts 

und objects. The 3D points from 
the depth camera will be projected into the FLIR’s thermal image. The humans identified 
in the thermal image can be extracted from the 3D image by determining which 3D points 

The 3D position of the people will be used by the tracking system. The tracking system 
estimates the trajectory of the people in the camera's field of view. The background, 
excluding pedestrians, is assumed to be stationary and is used to determine the trajectory 
of the vehicle. The vehicle trajectory estimation will be done using the established 
iterative closest point surface matching algorithm. Using the trajectory of the vehicle and 

occur. 

In order for the system to extract ROIs and classify them as human or background, thermal 
image segmentation and classification of the images take place. These steps are outlined 

The system first extracts the ROIs and those confirmed as human by a classification step 
are tracked.  The thermometric image provided by the FLIR camera allows segmentation 
of the image on the basis of an empirically determined temperature threshold. Tests 
performed show that the temperature based segmentation outperformed two more complex 

There are a number of methods for classifying humans in thermal images. To the authors’ 
a quantitative comparison of methods for human 
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classification in thermal imaging. In the absence of a clear choice, it was decided to 
compare four different classification modalities. The classification methods compared are:  

 . An appearance based classifier using the difference between the candidate and 
a template.  

a. A feature based classifier which uses a number of features extracted from the 
image which are classified using a Parzen classifier.  

b. A neural network classifier. 
c. A radial basis function support vector classifier. 

A single binary classification was chosen for evaluation of the classifiers. The classifiers 
all indicate whether a sub-image is of a single standing pedestrian or not. The final system 
is intended to involve multiple classifiers to identify groups of pedestrians, occluded 
pedestrians and people in poses other than standing.  
 
2.2.1 Template classifier 

The first method tested was a template classifier. Template-based classification has been 
used for human detection in thermal images from moving vehicles. For example Nanda 
and Davis [7] use a probabilistic template created from training images. It was decided to 
create a template that represents the average appearance of a person, similar to the idea 
used by Nanda and Davis. The images of humans in the training data are rescaled to form 
an M×N pixel image. The template is the mean of the scaled images. The candidate 
regions are rescaled to the same dimensions as the template and the two are compared 
using an absolute difference distance measure, i.e.:  
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= =
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1j
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where T is the template image and I is the image to be classified. If the difference between 
the image and the template is less than a threshold value then the candidate image is 
classified as human. 
 
2.2.2 Parzen classifier 

The second method tested was a Parzen classifier with image features. Fehlman and 
Hinders [8] use 15 features and a committee of classifiers for classification of non-heat 
generating objects in thermal images. A smaller number of features were chosen to test the 
Parzen classifier. The feature vectors used for classification are the mean, standard 
deviation, aspect ratio, the entropy and fill ratio of the images. The fill ratio is the ratio of 
the number of pixels extracted as foreground pixels to the total number of pixels in an 
enclosing rectangle. A Parzen classifier is a statistical classifier that uses Bayes’ theorem 
and a Parzen density estimate. The Parzen density estimate, estimates the conditional 
probability of getting a given feature vector (D) given that the image is of class j (Oj), i.e.: 
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where Dqj is the qth training feature of class j, Nj is the number of feature vectors belonging 
to class j, h is the length of the sides of a hypercube with the dimensionality of the feature 
space (d) and H is the Parzen window function i.e.: 
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The Parzen classifier uses Bayes’ theorem and the Parzen density estimate, in Equation 2, 
to determine the posterior probability that the image belongs to a certain class given the 
observed feature vector i.e. P(Oj|D). 
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P(Oj) is the prior probability of getting an object of class j, which can be estimated from 
the frequency with which class j is observed. P(D) is called the evidence and normalises 
the posterior probabilities so they sum to one. 
 
The image is classified as human if the probability that it is human is greater than the 
probability that it is not plus some offset. The offset allows the adjustment of the 
sensitivity and false positive rates. 
 
2.2.3 Neural network classifier 

The third classifier investigated was a neural network classifier. Neural networks have 
been used for a wide variety of computer vision applications including: vision based 
vehicle driving, handwritten digit recognition, face detection and pedestrian detection. 
 
The network chosen for evaluation is a single hidden layer network with a sigmoidal 
activation function. The input images from the segmentation algorithm are re-sampled to 
produce 20×48 pixel images. The high dimensionality of the input is reduced using a 
principal component analysis. Using the magnitude of the eigenvalues, it can be shown 
that the first 80 components capture the majority of the significant information about the 
images. For classification the input image is scaled to 20×48 pixels and then projected 
onto the lower dimensional space using the 80 chosen components. The 80 resulting 
features are then classified by a neural network with 80 input nodes. Initial tests showed 
that a network with 12 hidden nodes gave good results. The neural network is trained three 
times using back propagation and the weights that give the smallest error are saved. 
 
2.2.4 Support vector classifier 

 Support vector classification is a popular method for pedestrian detection. A support 
vector classifier was tested for classifying the test images. A support vector classifier finds 
a hyperplane in feature space that separates the two classes of objects with the maximum 
margin. The MATLAB SVM toolbox was used for the implementation of the support 
vector classifier [9]. 
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A number of kernels were tested and it was found 
kernel performed the best. As with the neural network the input images are scaled and then 
a principal component analysis is performed to produce 80 features that are used for 
classification. A soft margin (C value of 1
small number of training errors. Allowing a small number of errors enables the classifier 
to generalise better by not over fitting the data. The receiver operating characteristic curve 
for the classifier was obtained by adjusting the bias of the hyperplane and evaluating the 
performance for each value of the bias. 
 
2.3 Distance Sensors 

In order to predict the trajectory of the people identified by the classification step, the 
distance from the vehicle to the p
camera is necessary in addition to the thermal camera owing to the limitations of using a 
single camera for depth estimation. Monocular depth estimation methods such as depth 
from focus require a numbe
avoidance. The high cost of thermal cameras does not make stereo IR a viable option so a 
fusion of the thermal and distance images is required
 
There are a number of possible depth sensors th
laser scanners and structured light cameras.
 
Structured light sensors project a known pattern onto a surface and record the pattern 
using a camera a certain distance from the projector. The projected pattern can be a
of lines, a grid of lines or matrix or dots. 
distance by triangulation. It can be shown using similarity of 
coordinates of the target are:

x =

z =

Figure 2: Schematic showing the principle of structured light triangulation (adapted from 
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A number of kernels were tested and it was found that the Radial Basis Function (RBF) 
kernel performed the best. As with the neural network the input images are scaled and then 
a principal component analysis is performed to produce 80 features that are used for 
classification. A soft margin (C value of 10) was used that allows the classifier to accept a 
small number of training errors. Allowing a small number of errors enables the classifier 
to generalise better by not over fitting the data. The receiver operating characteristic curve 

as obtained by adjusting the bias of the hyperplane and evaluating the 
performance for each value of the bias.  

In order to predict the trajectory of the people identified by the classification step, the 
distance from the vehicle to the people needs to be determined. It was decided that a 3D 
camera is necessary in addition to the thermal camera owing to the limitations of using a 
single camera for depth estimation. Monocular depth estimation methods such as depth 
from focus require a number of images to determine distance and are too slow for collision 
avoidance. The high cost of thermal cameras does not make stereo IR a viable option so a 
fusion of the thermal and distance images is required 

There are a number of possible depth sensors that could be used, such as TOF cameras, 
laser scanners and structured light cameras. 

Structured light sensors project a known pattern onto a surface and record the pattern 
using a camera a certain distance from the projector. The projected pattern can be a
of lines, a grid of lines or matrix or dots. Figure 2 shows the principle used to calculate the 
distance by triangulation. It can be shown using similarity of triangles that the x and z 
coordinates of the target are: 

uf

bu

−θcot     (6) 

uf

bf

−θcot     (7) 
 

 

: Schematic showing the principle of structured light triangulation (adapted from 
[11]) 
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Laser scanners and TOF cameras operate on similar principles to each other. Both have of 
an emitter that emits a pulse of light and a receiver that measures the round trip time of the 
light. For typical measurement distances the round trip time is in the order of picoseconds 
and therefore the electronics required to measure the time directly are expensive. TOF 
cameras measure the phase shift of modulated light reflected off a target to calculate the 
distance for a grid of pixels simultaneously. Laser scanners have a single receiver that is 
mechanically scanned and uses pulse travel time or phase shift to measure distance.  
 
Commercial TOF cameras use a modulated near-infrared light source and measure the 
phase shift between the transmitted and received light [10]. The maximum unambiguous 
distance (Dunamb) to a target would be: 

f

c
Dunamb 2

=    (8) 

where f is the modulation frequency of the light source. Any distance less than Dunamb is 
calculated by measuring the ratio of the phase shift (φ) to a full cycle and multiplying it by 
the maximum distance. 

unambDd
π
ϕ
2

=    (9) 

 
One of the problems with TOF cameras is due to phase shift ambiguity. A phase shift of 
slightly over 2π would be measured as a shift of just greater than zero and according to 
Equation 9 the calculated distance would be close to zero. 

3 RESULTS 

This section describes the results of subsystem testing using preliminary indoor data. A 
dataset was taken in a corridor environment using the FLIR A300 thermal camera. The 
thermal images from the FLIR were segmented to extract ROIs that could possibly be 
humans. The ROIs were classified by hand to provide a ground truth dataset. The regions 
were classified as containing: a single standing person, multiple overlapping people, a 
partial image of a person or no person. The classification resulted in a training set 
containing sub-images of 332 people, 55 groups of people, 126 partially occluded people 
and 1287 sub-images not containing a person. This ground-truth data was used for the 
training and verification of the classification algorithms. 
 
The SwissRanger SR4000 TOF camera and a Microsoft Kinect structured light 3D sensor 
were tested in an operational mine and the results are discussed in Section 3.3. 
 
3.1 Segmentation 

Figure 3 shows an image from the FLIR camera. Ideally the ROIs should only be the two 
people in the image. It is shown that a simple temperature threshold-based ROI extraction 
performs better than two more complex algorithms. 
 
The first ROI extraction algorithm uses a combination of intensity and edge information.  
The algorithm extracts regions with a certain intensity surrounded by strong edges. It was 
found that objects in the thermal images are invariably surrounded by edges that are 
incomplete. A robust integration was used that could highlight regions surrounded by 
incomplete edges but it is computationally intensive. 
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A histogram based segmentation algorithm, using Otsu's threshold selection method, was 
also tested for segmentation. Otsu's method is commonly used for greyscale image 
thresholding [12]. Otsu's method assumes a bimodal distribution of intensities and 
attempts to optimally divide the distribution into two. Otsu's threshold selection does not 
work on the thermal images. This is because the temperature distribution is uni
to the uniformity of the background temperature.
 

Figure 

It was found that a simple temperature threshold based segmentation performed better than 
the two above-mentioned algorithms. The temperature threshold extracts regions that have 
a temperature of between 26.8 and 37
the binary image created, to remove small noise regions. The ROIs extracted using the 
temperature threshold are shown in 
 
Following thresholding, each region in the binary image is numbered using a connected 
component labelling method so that the regions can be classified separately.
  

Figure 4: ROIs extracted with the temperature range threshold
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histogram based segmentation algorithm, using Otsu's threshold selection method, was 
also tested for segmentation. Otsu's method is commonly used for greyscale image 

. Otsu's method assumes a bimodal distribution of intensities and 
ts to optimally divide the distribution into two. Otsu's threshold selection does not 

work on the thermal images. This is because the temperature distribution is uni
to the uniformity of the background temperature. 

Figure 3: An example image for ROI extraction 

It was found that a simple temperature threshold based segmentation performed better than 
mentioned algorithms. The temperature threshold extracts regions that have 

a temperature of between 26.8 and 37 °C and then performs a morphological ope
the binary image created, to remove small noise regions. The ROIs extracted using the 
temperature threshold are shown in Figure 4.  

each region in the binary image is numbered using a connected 
component labelling method so that the regions can be classified separately.

: ROIs extracted with the temperature range threshold
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3.2 Classification 

Each classifier classifies the ROIs as a single standing person or something else. The 
dataset of 1800 manually classified regions is randomly divided into training and 
evaluation datasets, each of approximately the same size (a random division with equal 
chance of being in each set). Each classifier is trained and then run three times, the first 
time it is run using the data from the evaluation set. The two subsequent tests are run using 
a new randomly chosen sub
classification accuracy and speed.
 
The classifiers are all run in 
each classifier is averaged over the three tests and the results are shown in 
  

Table 1: A comparison of classifier speeds. (running in 

Classifier
Template
Parzen 
Neural Network
Support Vector

 
Figure 5 shows typical Receiver Operating Characteristic (ROC) curves for each of the 
classifiers. 
 

Figure 5: The Receiver Operating Charac
Parzen classifier, c) the neural network and d) the support vector classifier

The performance of the template classifier is significantly poorer than the other two and 
does not warrant further consideration d
 
The support vector classifier shows intermediate classification results but performs 
significantly worse than the Parzen and neural network classifiers. The support vector 
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fier classifies the ROIs as a single standing person or something else. The 
dataset of 1800 manually classified regions is randomly divided into training and 
evaluation datasets, each of approximately the same size (a random division with equal 

eing in each set). Each classifier is trained and then run three times, the first 
time it is run using the data from the evaluation set. The two subsequent tests are run using 
a new randomly chosen sub-set of the data. Each classifier is evaluated in terms
classification accuracy and speed. 

The classifiers are all run in MATLAB R2010b on a 2.8 GHz Pentium 4 PC. The speed of 
each classifier is averaged over the three tests and the results are shown in 

: A comparison of classifier speeds. (running in MATLAB

Classifier Speed (classifications/s) 
Template 4830 

  552 
Neural Network 1227 
Support Vector 1677 

shows typical Receiver Operating Characteristic (ROC) curves for each of the 

: The Receiver Operating Characteristics of a) the template classifier, b) the 
Parzen classifier, c) the neural network and d) the support vector classifier

The performance of the template classifier is significantly poorer than the other two and 
does not warrant further consideration despite being the fastest. 

The support vector classifier shows intermediate classification results but performs 
significantly worse than the Parzen and neural network classifiers. The support vector 
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classifier is the second fastest because classification i
multiplication, an addition and a sign check. 
 
The neural network achieves very similar classification performance to the Parzen 
classifier. The main difference between the two is that the Parzen classifier achieves a 
maximum true positive rate of 98% while the neural network can detect 100% of the 
targets (albeit with a high false positive rate). The classifier is required to detect people 
without missing any, i.e. the true positive rate needs to be close to 100%. The effect of 
false positives is less severe simply adding to the number of objects that need to be 
tracked. Consequently achieving a 100% detection rate is an important characteristic of a 
classifier for pedestrian detection. 
 
The neural network classifier achieves sligh
significantly faster classification than the Parzen classifier. The neural network classifier 
also achieves a significantly lower number of false positives compared to the support 
vector classifier. The higher speed o
compensate for inferior performance. The neural network classifier is therefore the 
classifier of choice for the proposed human detection system.
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Testing of the two 3D sensors undergrou
TOF camera technology in a harsh underground environment.
 

The drilling of blast holes in a mine gives off a fine water spray; coupled with high 
humidity this creates a fine mist in active areas of the mine. Th
image in Figure 6 shows the water mist near the base of the support in the centre of the 
image. The distance image shown in
distances near the base of the support due to the mist there.
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classifier is the second fastest because classification involves a single matrix 
multiplication, an addition and a sign check.  

The neural network achieves very similar classification performance to the Parzen 
classifier. The main difference between the two is that the Parzen classifier achieves a 

positive rate of 98% while the neural network can detect 100% of the 
targets (albeit with a high false positive rate). The classifier is required to detect people 
without missing any, i.e. the true positive rate needs to be close to 100%. The effect of 

se positives is less severe simply adding to the number of objects that need to be 
tracked. Consequently achieving a 100% detection rate is an important characteristic of a 
classifier for pedestrian detection.  

The neural network classifier achieves slightly better detection performance and a 
significantly faster classification than the Parzen classifier. The neural network classifier 
also achieves a significantly lower number of false positives compared to the support 
vector classifier. The higher speed of the support vector classifier is not sufficient to 
compensate for inferior performance. The neural network classifier is therefore the 
classifier of choice for the proposed human detection system. 

Testing of the two 3D sensors underground showed a significant disadvantage of using 
TOF camera technology in a harsh underground environment. 

The drilling of blast holes in a mine gives off a fine water spray; coupled with high 
humidity this creates a fine mist in active areas of the mine. The TOF camera's amplitude 

shows the water mist near the base of the support in the centre of the 
image. The distance image shown in Figure 7 shows a significant jump in measured 
distances near the base of the support due to the mist there. 

: Time of Flight camera amplitude image through mist
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 Figure 7: Time of Flight camera distance image through mist

The reason for the poor performance of the TOF camera is that the camera is receiving a 
reflection off the object of interest as well a
droplets. The reflection off the mist causes the received phase shift to be less than the true 
value and therefore the measured distance is shortened. It is expected that dust, which will 
be more of a problem in the tunnels where the pedestrian detection system will operate, 
will have a similar effect as the mist.
 
The TOF camera was also found to suffer from significant motion blurring due to the fact 
that a single range image is calculated using four phase 
integration time of the camera would reduce the blurring but would decrease the range of 
the camera. 
 
The structured light Kinect sensor seems unaffected by the mist. This is probably because 
the processing hardware calculates the distance on the basis of the most intense reflection. 
Without a known ground-truth distance the effect of the mist on the accur
remains undetermined.   

4 CONCLUSION 

This paper examines a proposed pedestrian detection 
fusion of 3D information with thermal imaging
high number of fatalities 
machinery and the fact that current pedestrian detection systems are limited. The 
architecture of the proposed system is outlined and the steps of segmenting images and 
classifying them described
temperature range-based segmentation is superior to other more complex segmentation 
methods. A neural network classifier is chosen for the detection system because of its 
superior performance on the test dataset. It is shown that a neural network classifier 
outperforms a Parzen classifier slightly in accuracy and significantly in speed. The neural 
network is slightly slower than a support vector classifier but achieves similar detection 
rates with far fewer false positives. An evaluation of two 3D cameras shows that TOF 
cameras suffer from inaccuracies due to obscuring mist. The structure light camera 
appears unaffected by the same obscuring mist but further work is needed to confirm this.
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The reason for the poor performance of the TOF camera is that the camera is receiving a 
reflection off the object of interest as well as multiple reflections off the intervening water 
droplets. The reflection off the mist causes the received phase shift to be less than the true 
value and therefore the measured distance is shortened. It is expected that dust, which will 

m in the tunnels where the pedestrian detection system will operate, 
will have a similar effect as the mist. 

The TOF camera was also found to suffer from significant motion blurring due to the fact 
that a single range image is calculated using four phase measurements. Reducing the 
integration time of the camera would reduce the blurring but would decrease the range of 

The structured light Kinect sensor seems unaffected by the mist. This is probably because 
the processing hardware calculates the distance on the basis of the most intense reflection. 

truth distance the effect of the mist on the accur

This paper examines a proposed pedestrian detection system in underground mines using a 
fusion of 3D information with thermal imaging. This system is proposed in response to the 

 in the mining industry caused by underground transportation 
machinery and the fact that current pedestrian detection systems are limited. The 
architecture of the proposed system is outlined and the steps of segmenting images and 
classifying them described. It is shown that due to the thermometric nature of the images, 

based segmentation is superior to other more complex segmentation 
methods. A neural network classifier is chosen for the detection system because of its 

on the test dataset. It is shown that a neural network classifier 
outperforms a Parzen classifier slightly in accuracy and significantly in speed. The neural 
network is slightly slower than a support vector classifier but achieves similar detection 

with far fewer false positives. An evaluation of two 3D cameras shows that TOF 
cameras suffer from inaccuracies due to obscuring mist. The structure light camera 
appears unaffected by the same obscuring mist but further work is needed to confirm this.
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5 RECOMMENDATIONS 

Further work required involves the acquisition of a large underground dataset for testing, 
including a dataset from a moving platform in order to test the calculation of vehicle 
velocity from the 3D data. The acquisition of a large dataset will enable the classifier to be 
tested and optimised for the mine environment. 
 
Work is also required to determine whether the effect of dust on the TOF camera is similar 
to the effect of mist, as suspected. A quantitative analysis of the effect of dust on the 
accuracy of the TOF and structured light 3D sensors is also required. 
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Appendix E

Consecutive Missed Detections

Tables E.1 to E.3 shows which misclassified images, from the cross-validation
tests, are consecutive. Knowing how many of the misclassification are con-
secutive is essential to determine the probability of making multiple consecu-
tive misclassifications (since consecutive classification errors are not indepen-
dent). It can be seen from the tables that subsequent detections are definitely
not independent, this is not unexpected since the change in appearance of a
person between consecutive frames is relatively small.

Table E.1: A table indicating which false negatives are
consecutive for the first test

Test 1
Image Consecutive with previous

1 no
2 no
3 no
4 no
5 no
6 no
7 no
8 no
9 no

10 yes
11 yes
12 yes
13 yes
14 yes

Continued on next page
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Table E.1 – continued from previous page
Test 1

15 yes
16 yes
17 yes
18 no
19 yes
20 no
21 no
22 no
23 no
24 no
25 no
26 no
27 no
28 no
29 no
30 no
31 no
32 yes
33 no
34 no
35 no
36 no
37 no
38 no
39 no
40 yes
41 yes
42 yes
43 yes
44 yes
45 no
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Table E.2: A table indicating which false negatives are consecutive for the
second test

Test 2

Image Consecutive with previous
1 no
2 no
3 no
4 yes
5 no
6 no
7 no
8 yes
9 yes

10 no
11 no
12 no
13 no
14 no
15 no
16 no
17 no
18 no
19 no
20 no
21 no
22 no
23 no
24 yes
25 yes
26 yes
27 yes
28 no
29 no
30 no
31 no
32 yes
33 no
34 no
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Table E.3: A table indicating which false negatives are consecutive for the
third test

Test 3

Image Consecutive with previous
1 no
2 no
3 no
4 no
5 no
6 no
7 no
8 no
9 no

10 yes
11 no
12 yes
13 yes
14 yes
15 yes
16 no
17 no
18 yes
19 no
20 no
21 no
22 no
23 no
24 no
25 no
26 no
27 no
28 no
29 no
30 no
31 no
32 no
33 no
34 no
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