

Biohydrogen Production by Facultative and Obligate Anaerobic Bacterial Consortia in Fluidized Bioreactor

A thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

BY

LUBANZA NGOMA

0413449к

SUPERVISOR: PROF V.M.GRAY

SCHOOL OF

MOLECULAR AND CELL BIOLOGY

UNIVERSITY OF THE WITWATERSRAND

OCTOBER 2011

DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the degree of doctor of philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination at any other university.

Lubanza Ngoma

Date

ACKNOWLEDGEMENTS

First, I would like to thank God for bringing me this far and for giving me the wisdom, the courage and the strength to go on. I thank my supervisor Professor Vince Gray for his academic and technical guidance and the time he sacrificed with discussions, improvements and draft readings. I am very grateful and I appreciated his enthusiasm and interest in my work. Further thanks are given to my advisor Dr Togo for his advice. Three year PhD bursary Hyvolution made this work possible, for which I am extremely grateful. My appreciation goes to the School of Molecular and Cell Biology for their financial support and for providing me with the much needed facilities used during this project. I thank all my family, friends and colleagues: Franklin Obazu and Phumlani Masilela, for their interest in me as a person as well as in this project. To my wife, Susan Thiame, I send out unlimited heartfelt gratitude for her encouragement throughout the past two years, in times of frustration and excitement and for believing in whatever I wanted to do. Without her support and love this dissertation would never have seen the light. I love you, now and forever.

DEDICATION

This thesis is dedicated to my daughter Divine Lubuya, Emmanuel Tshimanga and my wife Susan Tshiame. They have been my inspiration and motivation throughout this work. I love you.

LIST OF OUTPUTS

During my PhD programme I have generated outstanding results which resulted provisional patent that was filed by Wits Enterprise Ltd.

The following articles from the research outlined in this thesis has been published or presented in scientific journals and/or conferences.

- L. Ngoma, P. Masilela, F. Obazu, V.M. Gray (2011). The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules. *Bioresource Technology*. 102: 8986–8991. Published.
- L. Ngoma, Franklin O Obazu, V.M. Gray (2011). The influence increasing temperatures on hydrogen productivities and hydrogen yield. Elsevier Editorial System(tm) for *International Journal of Hydrogen Energy*. Submitted.
- Franklin O Obazu, L. Ngoma, V.M. Gray (2011). Interrelationships between bioreactor volumes, effluent recycle rate, temperature, pH, %H2, hydrogen productivity and hydrogen yield with undefined bacterial cultures. Elsevier Editorial System(tm) for *International Journal of Hydrogen Energy*. Submitted.
- Franklin O Obazu, L. Ngoma, V.M. Gray (2011). Stability of biohydrogen production at extreme thermophilic (70°C) temperatures by an undefined bacterial culture. Elsevier Editorial System(tm) for *International Journal of Hydrogen Energy*. Submitted.

TABLE OF CONTENTS

DECLARATION	II
ACKNOWLEDGEMENTS	III
DEDICATION	IV
LIST OF OUTPUTS	V
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF ABBREVIATIONS	XVII
ABSTRACT	XX
Chapter 1: Literature Review	1
Chapter 1: Literature Review 1.1 Introduction	1 1
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels	1 1 1
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels 1.1.2 Fossil fuels dilemma	1 1 1 2
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels 1.1.2 Fossil fuels dilemma 1.1.3 Impact of global warming	1 1 1 2 3
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels 1.1.2 Fossil fuels dilemma 1.1.3 Impact of global warming 1.1.3.1 Health	1 1 1 2 3 3
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels 1.1.2 Fossil fuels dilemma 1.1.3 Impact of global warming 1.1.3.1 Health 1.1.3.2 Agriculture and food supply	1 1 1 2 3 3 3 3
Chapter 1: Literature Review 1.1 Introduction 1.1.1 Fossil fuels 1.1.2 Fossil fuels dilemma 1.1.3 Impact of global warming 1.1.3.1 Health 1.1.3.2 Agriculture and food supply 1.1.3.3 Ecosystems and biodiversity	 1 1 2 3 3 3 4

1.1.3.4 Coastal Zones and Sea Level Rise	4
1.1.3.5 Polar region	4
1.1.3.6 Global renewable energy sources	5
1.1.3.7 Solar energy	5
1.1.3.8 Wind energy	6
1.1.3.9 Hydropower	6
1.1.3.10 Geothermal power	6
1.1.3.11 Energy from biomass	7
1.1.3.12 Types of biofuel from biomass	9
 Biodiesel 	9
 Bioalcohols 	9
 Biogas 	9
 Solid biofuel 	10
 Biohydrogen 	10
1.1.4 H ₂ properties and applications	10
1.1.5 Biohydrogen as renewable energy	11
1.1.6 Biological hydrogen production processes	12
1.1.7 Microbiology of biohydrogen production	12
1.1.8 Substrates	13

Chapter 2 Production of Hydrogen by Dark fermentation:Mechanisms for reductant disposal15

2.1 Dark fermentation	15
2.1.1 Hydrolysis	16
2.1.2 Acidogenesis	16
2.1.3 Acetogenesis	17
2.1.4 Methanogenesis	17
2.2 Parameters influencing dark fermentative hydrogen production	18
2.2.1 H_2 partial pressures	18
2.2.2 Effect of temperature	19
2.2.3 Effect of pH	20
2.3 Anaerobic bioreactor revolution	21
2.3.1 Bacterial granulation	22
2.3.1.1 Mechanism of granular sludge	22
2.3.1.2 Factors influencing granulation formation	23
2.3.1.3 Carrier matrix for cell immobilisation	23
2.4 Current state of production	24
2.5 Problem statement	24
2.6 Research objectives and aims	25

Chapter 3 Effect of temperature and effluent recycle rate on hydrogen production by a sewage-derived, undefined bacterial culture 26

3.1 Introduction	26
	20

VIII

3.2 Materials and Methods	27
3.2.1 Nutrient medium	27
3.2.2 Inoculum preparation	27
3.2.3 Bioreactor design and set-up	27
3.2.4 Bacterial granule induction	29
3.2.5 Analytical techniques	30
3.2.5 1 Sucrose analysis	31
3.2.5 2 Chemical oxygen demand (COD)	31
3.2.6 Effluents recycle rate and effluent gas disengagement	32
3.2.7 Experimental design	33
3.3 Results and Discussion	33
3.3.1 Granule growth	33
3.3.2 Influence of temperature and effluent recycle rate on H_2 product	ivity 34
3.3.3 Influence of temperature and effluent recycle rate on % H_2 contended to the second	ent 34
3.3.4 Influence of temperature and effluent recycle rate on hydrogen y	vield 35
• Assessment of gas disengagement	36
3.3.5 Sucrose consumption at high organic loading rates	37
3.4 Conclusion	41

Chapter 4 Influence of increasing temperatures and thebioreactor volume to effluent recycle rate ratio on hydrogenproductivities and hydrogen yield42

4.1 Introduction	42
4.2 Materials and Methods	44
4.2.1 Inoculum preparation	44
4.2.2 Bioreactor design and set-up	44
4.2.3 Effluent gas disengagement	46
4.2.4 Bacterial granule induction	47
4.2.5 Analytical techniques	47
4.2.5.1 VFA and ethanol analysis	48
4.2.5.2 Sucrose analysis	48
4.2.5.3 Experimental design	49
4.3 Results and Discussion	49
4.3.1 Temperature acclimatisation	49
4.3.2 Total bioreactor H ₂ generation	49
4.3.3 Volumetric hydrogen productivity	52
4.3.4 Hydrogen yield	52
4.3.5 Specific hydrogen productivity	53
4.3.6 Percentage hydrogen content	53
4.3.7 VFAs and ethanol	53
4.3.8 Lactate, Succinate and Ethanol	55
	Х

Chapter 5 Denaturing gradient gel electrophoresis (DGGE) investigation of bacterial community composition dynamic 59

5.1	Introduction	59
5.2	Materials and Methods	60
5.2.1	Molecular approach	60
5.2.1.1	DNA Extraction	60
5.2.1.2	2 PCR amplification	61
5.2.1.3	3 Agarose gel electrophoresis	62
5.2.1.4	4 DGGE analysis	62
5.2.1.5	5 Phylogenetic analysis	63
5.2.2 \$	Scanning electron microscopy	63
5.3	Results and Discussion	63
•	Physico characteristics of the granules	69
5.4 Co	onclusion	70
Chap anaei	oter 6 Thermodynamic analysis of constraints on robic hydrogen production	dark 72
6.1 Int	roduction	72
•	Theoretical considerations	74
6.2 Re	sults of the modified fluidized bed bioreactor	76

Appendices	108
Chapter 8 References	92
Chapter 7 Conclusion	89
6.3 Conclusion	88
6.2.5 Biohydrogen risk assessment	88
6.2.4 Heat exchange and heat recovery possibilities	87
6.2.3 The second analysis of the BEB hypothesis	81
6.2.2 Analysis of the BEB Hypothesis	79
6.2.1 Analysis of the bioreactor energy balance	77

LIST OF TABLES

- **Table1.1:** Overview of currently known biological hydrogen production process (Beneman, 1996).
- **Table 3.1:** COD mass balance on day 11 for an influent rate of 13.5 L/h and effluentrecycle rate of 4.5 L/min. All values are the means of 3 replicates.
- **Table 4.1:** The influence of pH, temperature, HRT and substrate loading rate on %H₂, HP, HY, VFAs, lactate and ethanol in various fluidized granular bed bioreactors. s sucrose, g glucose.
- **Table 5.1:** shows the highest percentage and closest related species for each DGGE from the NCBI database using BLAST.
- **Table 6.1:** Biohydrogen bioreactor energy balance for a mesophilic and thermophilic
bioreactor. Total bioreactor volume was 5.0 L and total system volume was
7.5L.
- **Table 6.2:** Energy balance for a scaled-up model thermophilic bioreactor.

LIST OF FIGURES

- **Figure 1.1:** A schematic illustration of the greenhouse effect (Source Okanagan University college in Canada, Department of Geography; University of Oxford, School of Geography; United states Protection Agency (EPA) Washington, Intergovernmental Panel on Climate Change (IPCC) 1996).
- Figure 1.2: World primary energy consumption (IEA, 2009).
- Figure 1.3: Synthetic view of the wide variety of bioenergy routes (IEA, 2009).
- **Figure 2.1:** Degradation steps of anaerobic digestion process (Valdez-Vazquez and Poggi-Varaldo, 2009).
- Figure 3.1: Bioreactor prototype for the simultaneous achievement of high HPs and high HYs. Diagram labels: 1 inlets manifold; 2 influent inlets; 3 water jacket inlets for heat exchanger; 4 water jacket outlets for heat exchanger; 5 bed of glass bed (5 mm) in effluent/influent diffusion and cavitations generation; 6 activated carbon for inducing granulation; 7 fluidized bacterial granular bed; 8 water jacket for heater exchanger; 9 effluent decanter; 10 effluent connecting pipe to gas disengager; 11 gas disengager tube; 12 effluent outlet overflow pipe; 13 gas flow pipe; effluent recycle outlet pipe; 14 effluent gas disengagement, 15 effluent recycle pump; 16 effluent recycle inlets.
- **Figure 3.2:** (A) Image of the AFGB column with activated carbon carrier (CAC) coated with bacterial flocs (biofilm), (B) shows the full bed granulated AFGB during fermentative biohydrogen production.
- **Figure 3.3:** The influence of effluent recycle rates (L/min) on total hydrogen production at 45°C at increasing nutrient supply rates during granular bed growth.
- **Figure 3.4:** The influence of effluent recycle rates (L/min) on total hydrogen production at 70°C at increasing nutrient supply rates (L/h) during granular bed growth.
- **Figure 3.5:** The influence of increasing effluent recycle rates on % H2 content at 45°C at increasing nutrient supply rates during granular bed growth.

- **Figure 3.6:** The influence of increasing effluent recycle rates on % H₂ content at 70°C at increasing nutrient supply rates during granular bed growth.
- **Figure 3.7:** The influence of increasing effluent recycle rate on hydrogen yield at increasing nutrient supply rates during granular bed growth at 45°C.
- **Figure 3.8:** The influence of increasing effluent recycle rates on hydrogen yield at increasing nutrient supply rates during granular bed growth at 70°C.
- Figure 4.1: Bioreactor prototype for the simultaneous achievement of high HPs and high HYs. Diagram labels: 1 inlets manifold; 2 influent inlets; 3 water jacket inlets for heat exchanger; 4 water jacket outlets for heat exchanger; 5 bed of glass bed (5 mm) in effluent/influent diffusion and cavitations generation; 6 activated carbon for inducing granulation; 7 fluidized bacterial granular bed; 8 water jacket for heater exchanger; 9 effluent decanter; 10 effluent connecting pipe to gas disengager; 11 gas disengager tube; 12 effluent outlet overflow pipe; 13 gas flow pipe; effluent recycle outlet pipe; 14 effluent gas disengagement, 15 effluent recycle pump; 16 effluent recycle inlets.
- Figure 4.2: The influence of temperature on total HP.
- Figure 4.3: The influence of temperature on total HP and HY.
- **Figure 4.4:** The influence of temperature on SHP (specific H₂ production rate per gram BM).
- Figure 4.5: The influence of temperature on % H₂ and pH.
- Figure 4.6: The influence of temperature on acetate, propionate and butyrate production.
- Figure 4.7: The influence of temperature on lactate, succinate and ethanol production.
- **Figure 5.1:** DGGE profiles of 16S rDNA fragments obtained from the hydrogenproducing reactor operated at 45°C: Lane A₂, B₂, C₄, D₇, E₂, F₃ G₂, I₂, and J₃.
- **Figure 5.2:** DGGE profiles of 16S rDNA fragments obtained from the hydrogenproducing reactor operated at 70°C. Lane D₆, E₆, I₆ and J₂.

- **Figure 5.3:** Neighbour-joining phylogenetic tree based on partial 16S rDNA sequences derived from mesophilic and thermophilic AFGB DGGE bands. The tree was constructed by using DNAMAN software. Bootstrap values indicate areas of stable tree topology based on 1000 bootstrap resamplings. Nucleotide sequence accession numbers or strain names and similarity (%) are indicated.
- **Figure 5.4:** SEM images for (A and B) showing interior porous structure. C and D predominant bacterial morphology of the H₂ producing granules. The arrow shows extracellular polymers for bacterial attachment.
- **Figure 5.5** Granules formation during anaerobic biohydrogen, using a light dissecting Microscope. A) Starting: Bacterial flocs B, C, D) matured granules.
- Figure 6.1: Gibb's free energy balance corresponding to bioreactor's Hydrogen Yields.
- Figure 6.2: Bioreactor energy input-output balances.
- **Figure 6.3:** Heat exchange and heat flow in the scaled up model biohydrogen system based on a scale-up version the bioreactor prototype developed in this study (Equation 6.10).

LIST OF ABBREVIATIONS

ACIA: Arctic Climate Impact Assessment.

AFGB: Anaerobic fluidized granular bed bioreactor.

BEB: Bioreactor Energy Balance Hypothesis.

BM: bacterial biomass

BMD: Bacterial biomass densities.

CAC: Cylindrical activated carbon:

CFCs: Chlorofluorocarbons.

CH4: Methane.

CIGSB: Carrier-induced granular sludge bed reactor.

CO: Carbon monoxide.

CO₂: Carbon dioxide.

COD: Chemical oxygen demand.

CSTR: Continuous starred tank reactor.

CSTR: Granule-based continuous stirred tank reactor.

DGGE: Denaturing gradient gel electrophoresis.

DNA: Deoxyribonucleic acid.

ECP: Extracellular products.

EJ: Exajoule.

EPSs: Extracellular polymeric substances

FCM: Fuel cell - bioreactor volumetric.

GC: Gas chromatography.

H₂: Hydrogen.

H₂O: Water vapours.

H₂**S:** Hydrogen sulphides.

HCl: Hydrochloric acid.

HP: Hydrogen productivity.

HPLC: High-performance liquid chromatography

HRT: Hydraulic retention time

HYs: Hydrogen yields.

IASC: International Arctic Science Committee.

IPCC: Intergovernmental panel on climate change.

KJ: Kilo-joule.

L/h: Litre per hour.

Mmol: miles mole.

N₂: Nitrogen gas

N₂O: Nitrous oxide.

NCBI: National centre for biotechnology information.

OLR: Substrate loading rates.

Pa: Pascal

PCR: Polymerase chain reaction.

PHP: Potassium hydrogen phthalate.

PVC: Polyvinyl chloride

rRNA: Ribosomal ribonucleic acid.

SBRs: Sequencing batch reactors.

SCFAs: Short chain fatty acids.

SEM: Scanning electron microscopy.

 SF_6 : Sulfur hexafluoride

SHP: Specific hydrogen production rate

STYs: Space/time yields.

UASB: Upflow anaerobic sludge bed.

UV: Ultraviolet.

VFAs: Volatile fatty acids.

VSS: volatile suspended solids

ABSTRACT

Biological production of hydrogen gas has received increasing interest from the international community during the last decade. Most studies on biological fermentative hydrogen production from carbohydrates using mixed cultures have been conducted in conventional continuous stirred tank reactors (CSTR) under mesophilic conditions. Investigations on hydrogen production in reactor systems with attached or selfimmobilized microbial growth have also appeared recently in the literature. These investigations on attached or self-immobilised bacteria involve hydrogen production in the mesophilic and thermophilic temperature range. The present study investigated the design and operational features of anaerobic fluidized granular bed bioreactor (AFGB) system which would facilitate the simultaneous achievement of high productivities (HPs) and high hydrogen yields (HYs). Where high HPs is greater than 120 mmol H_2 /(L.h) and HYs greater than 4 mol H_2 /mol glucose. Theoretical maximum yield for an exponentially growing non-granulated bacterial monoculture will always be less than the thermodynamic maximum of 4 mol H₂ /mol glucose: $C_6H_{12}O_6 + 4H_2O \rightarrow 2CH_3COO^2 +$ $4H_2 + 4H^+ + 2HCO_3$. The design features included reducing the total non-working or dead volume of bioreactor system. The operational improvements included application of thermophilic temperatures and high rates of de-gassed effluent recycling through the fluidized granular bed. An example of an optimal ratio of effluent recycle rate (R) to bioreactor working volume (V) was (3.0 L/min)/(3.2 L/min) = 0.94 minutes. Under conditions where temperatures were maximised and V/R were minimized the HPs increased to 21.58 L H₂ /h. Also under these conditions the HYs increased above 3.0 mol H₂/mol glucose. Specific hydrogen productivity for the fluidized granular bed increased from 0.25 L H₂ / (g BM.h) or 8.83 mmol H₂ / (g BM.h) at 45 $^{\circ}$ C to 0.525 L H₂ / (g BM.h) or 18.03 mmol H_2 / (g BM.h) at 70 °C. A 3.64 fold increase in hydrogen yield occurred with an increase in temperature from 45 °C to 70 °C.

When expressed in terms of glucose, this represents an increase from 1.34 mol H_2 /mol glucose to 4.65 mol H_2 /mol glucose. Finally, an evaluation of the net energy production by the AFGB system revealed a positive energy balance, making thermophilic biohydrogen production energetically viable from a commercial perspective.

Key words: Biohydrogen, fluidized bed, granules, hydrogen productivity, hydrogen yield, mesophilic, thermophilic.