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ABSTRACT 
-------------------------------------------------------------------------------------------------------

Biological production of hydrogen gas has received increasing interest from the 

international community during the last decade. Most studies on biological fermentative 

hydrogen production from carbohydrates using mixed cultures have been conducted in 

conventional continuous stirred tank reactors (CSTR) under mesophilic conditions. 

Investigations on hydrogen production in reactor systems with attached or self-

immobilized microbial growth have also appeared recently in the literature. These 

investigations on attached or self-immobilised bacteria involve hydrogen production in 

the mesophilic and thermophilic temperature range.  The present study investigated the 

design and operational features of anaerobic fluidized granular bed bioreactor (AFGB) 

system which would facilitate the simultaneous achievement of high productivities (HPs) 

and high hydrogen yields (HYs).Where high HPs is greater than 120 mmol H2 /(L.h) and 

HYs greater than 4 mol H2/mol glucose. Theoretical maximum yield for an exponentially 

growing non-granulated bacterial monoculture will always be less than the 

thermodynamic maximum of 4 mol H2 /mol glucose:  C6H12O6 +4H2O → 2CH3COO
-
 + 

4H2 + 4H
+
 + 2HCO3.  The design features included reducing the total non-working or 

dead volume of bioreactor system. The operational improvements included application of 

thermophilic temperatures and high rates of de-gassed effluent recycling through the 

fluidized granular bed. An example of an optimal ratio of effluent recycle rate (R) to 

bioreactor working volume (V) was (3.0 L/min)/(3.2 L/min)  = 0.94 minutes. Under 

conditions where temperatures were maximised and V/R were minimized the HPs 

increased to 21.58 L H2 /h. Also under these conditions the HYs increased above 3.0 mol 

H2/mol glucose. Specific hydrogen productivity for the fluidized granular bed increased 

from 0.25 L H2 / (g BM.h) or 8.83 mmol H2 / (g BM.h) at 45 
o
C to 0.525 L H2 / (g BM.h) 

or 18.03 mmol H2 / ( g BM.h) at 70 
o
C.  A 3.64 fold increase in hydrogen yield occurred 

with an increase in temperature from 45 
o
C to 70 

o
C.  
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When expressed in terms of glucose, this represents an increase from 1.34 mol H2 /mol 

glucose to 4.65 mol H2 /mol glucose.  Finally, an evaluation of the net energy production 

by the AFGB system revealed a positive energy balance, making thermophilic 

biohydrogen production energetically viable from a commercial perspective. 

 

Key words: Biohydrogen, fluidized bed, granules, hydrogen productivity, hydrogen 

yield, mesophilic, thermophilic. 
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