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Abstract 

This dissertation focuses on the determination of breakage parameters in order to 

describe the performances of mixtures of grinding media of different shapes.  

A series of batch grinding tests were carried out using the same mass of spherical 

balls, Eclipsoids
TM

 and cubes to break coarse, medium and fine sizes of quartz 

material. Then, mixtures of the same mass made of spherical balls and cubes, 

spherical balls and Eclipsoids
TM

 were successively considered. The breakage 

parameters were determined and used to evaluate the grinding performances of the 

mixtures of grinding media. 

It was found that mixtures of grinding media shapes can increase the breakage rate 

in a particular milling environment. But, spherical balls remain the most efficient 

grinding media. 

Finally, an optimal mixture made of grinding media of different shapes cheaper to 

manufacture can be used in the grinding process alternatively to 100 % balls. 
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Chapter 1 Introduction 

_______________________________________________________ 

1.1 Background 

Grinding media have a direct effect on the operation of industrial mills. The 

effect of grinding media on milling kinetics has been studied using different 

shapes of grinding media (Kelsall et al., 1973, Herbst and Lo, 1989, Shi, 2004, 

Lameck et al., 2006, Ipek, 2007, Cuhadaroglu et al., 2008).  

Spherical balls or spheres (here referred as “balls”) were found to be more 

efficient than other grinding media shapes. Balls produced the finest products 

and used the least power for constant batch grinding time (Norris, 1953). But, 

alternative shapes to balls have been suggested to reduce the grinding costs and 

increase the milling efficiency. These early works focused on one shape and, 

sometimes compared the performances of two or more different media shapes. 

From then on, the role of media shape on grinding performance gained some 

attention.  

However, very little work has been done on investigating mixtures of media of 

different shapes. The study of these mixtures could enlighten the behaviour of 

grinding media after breaking and wearing out as well as to improve the grinding 

efficiency of media shapes which are easy to manufacture and of poor grinding 

performance when used alone. 

Generally, the performance of the grinding process can be satisfactorily 

measured using the population balance model technique. In this model, milling 
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is expressed in terms of the selection function and the breakage function. For 

this study, the selection and breakage functions are determined by batch grinding 

tests performed on single particle sizes for grinding media charge consisting of a 

single size for each shape, and for charge of mixture made of grinding media of 

different shapes. The selection and breakage functions parameters obtained are 

compared, and the performances of the mixture of grinding media shapes are 

eventually evaluated. 

1.2 Statement of the problem 

The spherical balls which are predominantly used in ore grinding change shape 

through breakage and wear. They can even break during the grinding process. 

These balls constitute a section which moves slowly but does no effective 

grinding. Possible remedies are a lower ball charge, higher lifters or an increase 

in mill speed (Napier-Munn, et al., 1996). The movement of these irregularly 

shaped components through the mass of the charge is believed to differ 

significantly from the behaviour of initial grinding media shapes. Additionally 

these worn balls experience surface and linear contacts with each other, while 

spherical ones have only point contact interactions. The breakage is then done 

more with mixture of grinding media of different shapes than with a defined 

single shape of media.   

Also, the need to minimize the costs of the grinding process may lead to the use 

of an alternative grinding media shape to balls. The introduction of the new 

grinding media shape may be done gradually to avoid the regrading costs or may 

just be used in association with the balls. Moreover, the change in the entire size 
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distribution of balls charged in a grinding system is determined assuming that 

ball wear was equal to the loss in ball mass, ball wear was a function of ball size, 

and fresh balls replacing the worn balls had the same characteristics (Austin et 

al., 1985).   

An investigation of mixtures of grinding media of different shapes is worth it to 

understand how they affect the milling kinetics. Our hypothesis is that the 

volume of grinding zones can be increased when there is an optimal mixture of 

two grinding media with different shapes and, therefore the milling kinetics will 

be improved. 

1.3 Research objective 

The mean objective of this research is to investigate the Population Balance 

Model which requires a complete breakage characterization of the material being 

described in terms of selection and breakage functions. In order to achieve this, a 

series of laboratory tests was carried out on quartz material sample. 

In this dissertation the breakage parameters are estimated for mixture of grinding 

media of different shapes, and then compared to the parameters of individual 

grinding media shapes. The overall impact of the mixture of grinding media 

shapes is then evaluated in terms of their grinding performances. 

1.4 Layout of the dissertation 

This dissertation is organized into six chapters. The first chapter introduces the 

Research; the importance of grinding media shapes is discussed and the 
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motivation behind this study is stated. The organization of the dissertation is also 

covered in this chapter. 

The second chapter presents a literature review. The importance of grinding 

media in comminution is reviewed. The Population Balance Model (PBM) is 

discussed as well. 

The third chapter provides a detailed description of the laboratory work and 

equipment used to achieve the objective. Experimental procedures that were 

used are also presented. 

The fourth chapter characterizes the milling kinetics as a function of media 

shapes used for this study.  The specific rate of breakage and breakage 

distribution parameters of the feed material are estimated.  A comparison 

between these media shapes performances is done as well. 

The fifth chapter presents the effects of mixtures of grinding media of different 

shapes on milling kinetics. Their performances are respectively compared to 

those obtained with the different media shapes used in the previous chapter. 

The last chapter summarizes the conclusions drawn from this work and some 

recommendations for future investigation. 
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Chapter 2 Literature Review 

_______________________________________________________ 

2.1 Introduction 

The reduction of particle size of an ore material is usually achieved 

progressively, different methods being applied at different stages in the 

comminution process (Woollacott and Eric, 1994). Particularly, the tumbling 

grinding mill has been found to apply a small force to a large number of particles 

by using grinding media (Kelly, 1982). And grinding media have a significant 

impact on the performance of tumbling mills in terms of product size 

distribution, energy consumption and grinding costs (Mineral Processing 

Handbook, 2002).  

On the other hand, grinding media costs compared with overall grinding costs 

are usually high and need to be minimized. As a consequence, many surveys 

have been conducted to study the influence of different grinding media shapes 

on the grinding process (Kelsall et al., 1973, Cloos, 1989, Allen et al., 1993, 

Lameck et al., 2006).  

Despite the fact that balls were found to be the most efficient, the use of other 

grinding media shapes as an alternative to balls has often been suggested to 

reduce the specific energy consumption and grinding costs, to increase 

throughput and the milling efficiency. These early works focused on one shape 

without exploring possible advantages of the use of mixtures of media shapes. 

Thus, this research extends to the use of mixture of media shapes to enhance 

grinding. 
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A review of previous works is presented in this chapter. The population balance 

model, which satisfactorily describes the grinding process, is also discussed. 

2.2 Grinding media in comminution 

The grinding media do impact on the operation of industrial mills. They hence 

are a critical component of tumbling mills. Therefore, it is important to 

understand their contribution in the grinding process. Ideally, grinding media 

should have the largest possible surface area to provide suitable contact with the 

material being ground and they should be heavy enough to have sufficient 

energy required for breaking the ore particles. These requirements must be 

balanced, since the larger the individual grinding media, the less the specific 

surface. 

As the grinding proceeds, the grinding media become worn or break. As a result, 

fresh grinding media must be added in the mill. Grinding media form a 

significant part of the operating costs of the mill operation. To reduce grinding 

media consumption, several approaches were proposed: the use of higher-

quality, wear-resistant grinding media, the use of cheaper grinding media, or yet 

the use of large lumps of material being ground (Woollacott and Eric, 1994). 

2.2.1 Grinding media shape 

The role of grinding media shapes on grinding performance had recently gained 

attention. The manufactures of the grinding media have made conflicting claims 

regarding their milling performance. Many surveys on grinding media were then 

conducted in that regard. 
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In 1924, Fairchild made a comparison of spheres and cubes in two full-scale ball 

mills operating in parallel. Considering similar feed and product size 

distribution, he found that cubes were more efficient. The assessment was based 

on iron consumption and power drawn per ton of ore reduced (Kelsall et al, 

1973). 

In 1945, Taggart concluded that balls were the most effective and cheapest size 

reduction media for the particle size ranges normally ground by mills (Kelsall et 

al, op cit). 

Norris (1953) reported the results of a laboratory scale wet batch-grinding tests 

with mixed and uniformly sized spheres, cubes, discs, cylinders and more 

complex shapes, and of a plant test comparison of cubes and spheres (Kelsall et 

al, op cit). He concluded that for constant batch grinding time spheres produced 

the finest products and used the least power, while cubes and discs were the least 

efficient. However, each cube was approximately 34 % heavier than each ball in 

the uniform charges. Consequently, it was not possible to quantify the effects 

caused by a change in shape alone. 

Then, in 1970, Howard pointed out the controversy around grinding media. He 

recommended an understanding of autogenous grinding mechanisms since ore 

lumps were of varied shapes. 

Later, in 1973, Kelsall et al studied the influence of different grinding media 

shapes (steel spheres, cubes, long, short and equi-cylinders, and hexagonal 

“cylinders”) on grinding in a small continuous wet ball mill. They showed that 

grinding media shape had a significant effect on both the selection function S 
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and the breakage function B. These media shapes had a marked effect on the 

average residence time, but little effect on the type of flow through the mill. 

They also showed that spherical media handled the greatest throughput and 

produced the most correctly sized product. 

In 1988, Howat and Vermeulen experimentally investigated the fineness of 

grind, the consumption and wear rate of balls, cones, pebbles and cylpebs. The 

fineness of grind was determined by measurement of the harmonic mean size of 

the product and the fraction of material smaller than 75 microns. They concluded 

that for equal charge masses of balls and cones, conical media produced coarser 

grind at all feedrates. 

Cloos (1989) suggested the use of cylpebs as an alternative media to balls for 

fine grinding. He argued that the mill power is determined by the weight of the 

grinding charge and, for the same total weight of media charge, irrespective of 

size or shape, the mill would require the same power as such the specific energy 

consumption could be reduced as shapes and size can increase throughput. 

Herbst and Lo (1989) found that balls were more efficient than truncated cones 

with an energy advantage of 5-20 %. They attributed this difference to the 

probability of capture for cones because of their increased surface contact being 

higher than the point contact made between balls. The methodology they 

developed for comparison of the grinding efficiency of a tumbling mill using 

balls and truncated cones as grinding media showed no difference in breakage 

functions, but significant differences in specific selection functions.  
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In 1993, Allen et al., from Armco Mineral Processing, conducted industrial tests 

comparing grinding efficiency of forged balls and cylpebs at plant grinding 

silica. Their results indicated that spherical forged balls have advantages of 

lower wear rates, lower specific energy consumption and increased throughput. 

Shi (2004) conducted comparatives tests using balls and cylpebs in a laboratory 

Bond mill at various conditions such as same media mass, same size 

distribution, same surface area and same input specific energy. Single-stage 

batch grinding tests revealed that, depending on the conditions, one grinding 

media shape was advantageous than the other, the greater surface area of cylpebs 

being balanced by the line contact and area contact grinding action. The scale-up 

to predict cylpebs performance reached the same conclusion. His research 

concluded that, according to the simulations, fine generation rate is more 

dependent on the media size distribution than the media shape. 

In 2006, Lameck et al. compared spherical balls and worn balls. They found that 

spherical balls had slightly higher rates of breakage. And, considering the 

proportion of worn balls inside the balls charge (15-40 %), there were no benefit 

to justify the removal of worn balls from the mill. 

Lameck et al. (2006) also investigated the effects of cylpebs, spherical and worn 

balls on load behaviour and mill power drawn at various load filling and mill 

speeds. Toe and shoulder positions were used to account for the load behaviour 

and mill power. They found that the power drawn was sensitive to media shape 

and gave a valuable insight of the behaviour of the three grinding media shapes. 
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In 2007, Ipek also compared cylpebs and balls in a laboratory ball mill under the 

same conditions of mass and feed. The results showed faster breakage rates for 

the coarse fractions with cylpebs as charge, these differences being more 

significant for coarser fractions than for fine fractions. His results suggested also 

that cylpebs produced slightly finer size products than balls. In addition, the 

primary breakage distribution function proved to be dependent on the feed size, 

but independent of the grinding media shape. 

In 2008, Cuhadaroglu et al. investigated the effect of balls and cylinders on the 

breakage parameters of colemanite. They concluded that the use of cylinders has 

resulted in higher breakage rates compared to balls due to the fact that both rod 

mill and ball mill actions are provided in the same grinding system. In term of 

production of fines, they found that cylinders produce more fines at shorter 

grinding time while the amount of fines for ball grinding exceeds that of 

cylinders after progressive grinding. 

2.2.2 Grinding media action 

Grinding within the tumbling mill is influenced by the size, quantity, the type of 

motion, and the spaces between the individual pieces of medium in the mill 

(Wills and Napier-Munn, 2006). Also, the degree of grinding of a particle 

depends on the probability to enter the grinding zone between the media shapes 

and the probability of some breakage to occur in that grinding zone. Therefore, 

the grinding can be done by several mechanisms which distort the particles and 

change their shapes beyond their degree of elasticity, which causes them to 
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break. In a ball mill, particles break primarily by impact and attrition (King, 

2001).  

2.2.2.1 Impact breakage 

Breakage by impact, also referred as breakage by compression, occurs when 

forces are normally applied to the particle surface. This mechanism of fracture 

encompasses shatter and cleavage (King, 2001). Fracture by cleavage occurs 

when the energy applied is just sufficient to load comparatively few regions of 

the particle to the fracture point, and only a few particles result. The progeny 

size is comparatively close to the original particle size. This fracture occurs 

under conditions of slow compression where the fracture immediately relieves 

the loading on the particle.  

Chipping is a special case of cleavage whereby a relatively small piece is 

cleaved off the particle, leaving a particle of essentially the original size (Kelly 

and Spottiswood, 1990). 

On the other hand, fracture by shatter occurs when the applied energy is well in 

excess of that required for fracture. Under these conditions many areas in the 

particle are over-loaded and the result is a comparatively large number of 

particles with a wide spectrum of sizes. This occurs under conditions of rapid 

loading such as in a high velocity impact (Kelly and Spottiswood, 1982). 

2.2.2.2 Abrasion impact 

Abrasion fracture occurs when insufficient energy is applied to cause significant 

fracture of the particle. It is a surface phenomenon which takes place when two 

particles move parallel to their plane of contact. In this case, localized stressing 
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occurs and a small area is fractured to give a distribution of very fine particles 

(effectively localized shatter fracture) (Kelly and Spottiswood, 1982). 

2.2.2.3 Breakage by attrition 

Breakage by attrition is explained as the rubbing together of two media. This 

occurs between two similar mediums, such as quartz particles, or two separate 

media such as quartz and steel. Attrition is assumed to be largely responsible for 

the breaking of particles that have become smaller than the voids between the 

grinding media. Attrition can also be seen as the act of wearing or grinding down 

by friction. 

 

Figure 2.1 Breakage mechanisms in a ball mill: (a) impact, (b) abrasion, (c) 

attrition (Napier-Munn et al., 1996) 

2.2.3 Grinding media motion in a tumbling mill 

The relative motion of the media is determined by the tumbling action which in 

turn is strongly influenced by the lifters and liners. The tumbling mill rotates and 

the grinding media are lifted along the rising side of the mill until they cascade 

and cataract down to the toe of the mill charge. The speed at which the mill is 
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run is important, since it governs the nature of the product and the amount of 

wear on the shell liners. And, it is common to define the critical speed at which 

the grinding media will just hold against the shell for the full cycle. The 

following figure presents the motion of the charge in the tumbling mill. 

 

 

Figure 2.2 Motion of charge in a tumbling mill (Wills et al., 2006). 

The grinding media tumble relatively gently at low rotational speeds. They tend 

to be raised and to slip back as a locked mass. As the tumbling action increases 

with the increasing of the speed, grinding media emerge from the bed, roll down 

and reenter the mass. The bed is then expanded, allowing particles to penetrate 

between the grinding media. This series of collisions while the grinding media 

are tumbling down is called cascading. This cascading leads to finer grinding 

with increased slimes production and increased liner wear. Therefore, the 

dominant size-reduction mechanism in this case is attrition. 

On the other hand, at higher rotational speeds, grinding media are ejected from 

the shell and from the main body of the load and are thrown into free flight 

before impacting on the toe of the load or on the mill liners. This tumbling 
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action is called cataracting, and the dominant size-reduction mechanism is 

impact breakage. 

At higher speeds still, the load in the mill starts to centrifuge and the relative 

motion between the grinding media, particles and mill liners is insignificant. 

Consequently, the grinding rate is reduced drastically.  

The speed at which the load just starts to centrifuge is defined as the critical 

speed. The critical speed of the mill is expressed as (Austin et al., 1984): 

42.3
critical speed, rpm

D d



                                                                  (2.1) 

where D  is the internal mill diameter and d  is the maximum ball diameter, both 

in meters. 

The fraction of critical speed at which these processes occur depends on the 

filling conditions and the type of lifters (Austin et al., 1984). 

2.2.4 Media size 

The selection of media size is a compromise between two conflicting factors. On 

one hand, the surface area for grinding increases giving a higher capacity while 

the relative size of the media decreases. On the other hand, as the media size 

increases, the force between the grinding surfaces increases so that larger 

particles can be broken (Kelly and Spottiswood, 1982).  

The efficiency of grinding depends on the surface area of the grinding medium. 

The angle of nip is important and grinding media sizes must be carefully chosen 

in relation to the largest and hardest particles in the feed. Various formulae have 

been proposed for the required ratio of ball size to ore size, however, none of 
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which is entirely satisfactory; the practice of charging balls to a tumbling mill is 

a matter of experience as well (Concha et al, 1992). The capacity of a mill 

increases with decreasing ball diameter, due to the increase in grinding surface, 

to the point where the required angle of nip between contacting balls and 

particles is exceeded.  

During mill operation, grinding media are reduced in size because of wear. And, 

the grinding characteristics change. The extent of wear would depend on the 

characteristics of the rock present, such as density, composition and surface 

hardness. It is also affected  by the speed of mill rotation, the mill diameter, the 

specific gravity of the mineral and the work index of the mineral (Gupta and 

Yan, 2006). According to Austin et al, (1984), the variation of breakage function 

values for crystalline quartz changed slightly with ball diameter, with larger ball 

diameters giving proportionally more fines. A lower specific rate of breakage 

due to larger balls is partially compensated by the production of a bigger 

proportion of fines fragments per impact.   

Kotake et al, (2002) investigated the effect of feed size and ball diameter on the 

grinding rate constant of material being ground when the mass of balls, mass of 

feed and the rotational speed of the mill were kept constant. They found that the 

variation of the grinding rate constant with feed size was roughly similar, for all 

feed materials used. 
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2.3 Population balance model 

During mill operation, coarse feed enters the mill, undergoes breakage actions 

and exit the mill with a finer size distribution. The energy input is converted to 

mechanical breakage action to form the broken finer size particles (Yekeler, 

2007). The modelling of such a mechanism necessitates a detailed understanding 

of the grinding process itself. This process is apparently a combination of two 

actions taking place simultaneously inside the mill: a selection of the particle for 

breakage, and a breakage of the selected particle resulting in a particular 

distribution of fragment sizes (Gupta and Yan, 2006).  

The complexity of the breakage environment in a tumbling mill preludes the 

calculation of parameter values given in the models developed for this process.  

Parameter estimation techniques can be classified in three broad categories 

(Wills et al., 2006): 

 Graphical methods which are based mainly on the grinding of narrow 

size distributions. 

 Tracer methods which involve the introduction of a tracer into one of the 

size intervals of the feed and the analysis of the product for the tracer. 

 Non-linear regression methods, which allow all parameters to be 

computed from a minimum of experimental data. 

The Population Balance Model (PBM) which is a non-linear regression method 

has been used for our investigation. In this method, the grinding process is fully 

described using a size-mass balance inside the mill that takes into account the 
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two abovementioned actions. This population balance uses mass that is 

experimentally measured rather than numbers of particles (Yekeler, 2007).  

2.3.1 Selection function 

The Selection function or the rate of breakage is the fractional rate at which a 

given size of particle disappears, having been broken into smaller particles. It 

usually assumed that it obeys a first-order breakage pattern (Austin et al., 1973). 

For batch grinding of brittle material in various types of small laboratory mills, 

the rate of breakage can be expressed as: 

  ( )i iRate of breakage S w t W                                                                          (2.2) 

where iS  is a specific rate of breakage of particles of size i , ( )iw t is the mass 

fraction of the total charge and W is the total charge at time t  of grinding. 

Throughout batch grinding, the total charge is constant. Then, this equation can 

be rewritten for 1i   as: 

1
1 1

( )
 - ( )

dw t
S w t

dt
                                                                                              (2.3) 

which gives, after integration: 

1 1 1log[ ( )] = log[ (0)] - / 2.3w t w S t                                                                       (2.4) 

This is an integrated form of the batch grinding equation for the breakage of 

larger sizes prepared in narrow size fractions, where  1( )w t  is the weight fraction 

of the mill hold-up in class 1 at time t  (Austin et al, 1984). 
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The formula proposed for the variation of the specific rate of breakage iS  with 

particle size is: 

0

( ) ( ).[ ] . ( )i
i

x
S d a d Q x

x

 with
1

( ) ,     

1 [ ]
( )

i

Q x
x

d



   




                     (2.5)                                   

where ( )a d is a  parameter defining the breakage rate in a particular mill under 

defined operating conditions; 

   is dependent on the material ground; 

ix  is the particle size in mm;  

0x  is a reference size, usually 1 mm; 

  ( )d defines the particle size at which ( )Q x  is 0.5;  

           and   is an index of how rapidly the rate of breakage falls away.  

 is found to be primarily characteristic of the material, but ( )d varies with the 

mill condition (Austin et al.,1984). 

 

Figure 2.3  Graphical procedures for the determination of parameters in 

Austin‟s selection function (King, 2000). 
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2.3.2 Breakage function 

The breakage function describes the size distribution of the products of 

breakage. The primary breakage distribution function of a particle of size j  to 

size i  is defined as follows: 

brokenj  class of particles of mass

i  sizeto brokenj  class from particles of mass
b ji ,                                      (2.6) 

The values of the primary breakage distribution function are deduced from the 

size distributions at short grinding times. The general empirical fitting model of 

the breakage function, ,i jB , is given by: 

1 1
, [ ] (1 )[ ]i i

i j j j

j j

x x
B

x x

                                                 (2.7)                                     

Where  ,   and j  are all characteristic of the material being ground and are 

parameters which can be adjusted to ensure that ,i jB  represents the experimental 

data. The parameter   characterises the size distribution of fines produced from 

breakage of the top size material,   characterises the size distribution of coarse 

progeny  and j  indicates the fraction of fines produced, ix  is the top size and 

,i jB  is the weight fraction of the primary breakage products less than ix  when 

particles in class j  break (Austin et al., 1984). 
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Figure 2.4  The cumulative primary daughter fragment distribution of any 

material ground (Yekeler, 2007). 

The ,i jB  values are said to be normalizable when the fraction appearing at sizes 

less than the initial feed size is independent of the initial feed size. For non-

normalizable breakage, the distribution parameters are calculated using the 

nonlinear regression method. Equations (2.8) and (2.9) are then used (Austin et 

al., 1984). 

1 1
,

1 1

[ ] (1 )[ ] ,         0  1       i i
i j j j j

x x
B

x x

                    (2.8)               

1

1

[ ]i
j

x

x

                                                                                     (2.9)                                                                                              

where   characterizes the degree of non-normalization. 

If ,i jB  values are independent of the initial feed particle size, then   . 
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2.3.3 Abnormal breakage 

In laboratory mills, some materials are subjected to abnormal breakage which is 

defined as departure from first-order kinetics, and occurs particularly for the 

larger feed particle sizes (Austin et al., 1973).  

 

Figure 2.5 Characteristic deviations from the linear kinetic approach for 

breakage of monodisperse material (Toneva and Peukert, 2007). 

Several models were proposed to explain it. First, they assumed the material to 

consist of an initial material A that breaks to produce another material B. The 

two materials are different only on a breakage point of view. The component A 

is breaking to component B during the grinding. Thus, they found the following 

model: 
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                                                                (2.10) 
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where ii A
i

A B

b S

S S






; AS  is the selection function of component A of the material 

and BS  is the selection function of component B of the material. The system 

behaves as if the A material consists of a fraction  1 i  of soft material and a 

fraction i  of harder material.  

In general the effective mean value of the selection function is given by: 

Bi

ii
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i

S

b

S
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1

1
                                                                             (2.11) 

Austin et al. (1984) suggests that the mean effective specific rate can be defined 

by the time required to break 95% of the material when a particle size presents 

an abnormal behaviour. Alternatively Equation (2.11) can be used. 

If the non-first-order grinding batch grinding cannot be fitted with Equation 

(2.10), another more elaborated equation is proposed. They assumed the feed A 

is breaking into an intermediate material B which in turn breaks to a final 

material C. The corresponding model is as follows:  
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The effective mean value of the milling rate is given by 
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                                                                    (2.13) 
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The disappearance of larger sizes material from a given top size interval is often 

not first order. It can be modeled as consisting of a faster initial rate and a slower 

following rate.  

2.3.4 Beyond the first-order kinetics 

The population balance modeling is widely used to analyse, simulate, control 

and optimize grinding processes. Additionally, population balance models 

enable to elucidate the breakage mechanisms (Bilgili et al., 2004).  A 

formulation of the population balance model for a well-mixed batch grinding 

process is given by Bass (1954): 

0

( , )
( ) ( , ) ( , ) ( ) ( , )    with   ( ,0) ( ),

x

m x t
S x m x t b x y S y m y t dy m x m x

t




   
      (2.14) 

where the first term describes the first-order disappearance rate of particles of 

size x , the second term is the generation rate of particles of size x  due to first-

order breakage of all particles of size y x ,  ( , )m x t  is the mass fraction of 

particles within a differential size range x x  at time t .  

To account for discrete form in which experimental data for batch grinding is, 

the following size-discrete form of Equation (2.14) was introduced (Austin, 

1971): 

1

0

1

( )
( ) ( ),        with    (0)

i
i

i i ij j j i i

j

dM t
S M t b S M t N i j M M

dt





            (2.15) 

where i  and j  are the size-class indices running up to N , iM  is the mass 

fraction in class i , iS  is the specific breakage rate parameter and ijb  is the 
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breakage distribution parameter. Equations (2.14) and (2.15) are referred to as 

the linear, time-invariant population balance models because the specific 

breakage rate of particles of size x  depends only on size x  , but not on 

population density  and/or time. Austin (1971) stated that Equation (2.15) which 

recognizes the “apparent non-linearity” does not hold for long milling times. 

Austin and Bagga (1981) introduced a time-dependence to the specific breakage 

rate parameter iS : 

1

0

1

( )
( ) ( ) ( ) ( )   with    (0)

i
i

i i ij j j i i

j

dM t
S t M t b S t M t M M

dt





                          (2.16) 

This linear, time-variant model accounts for non-first-order kinetics that 

originates from truly time-dependent phenomena. Phenomenon such as the 

slowing-down of the specific breakage rate observed in dry grinding are not 

explained explicitly and thoroughly. The traditional population balance models 

neglect the effects of the temporally evolving materials properties and multi-

particle interactions (Bilgili et al., 2005).  

Consequently, the context of non-linear population balance models was 

introduced to explain the non-first-order breakage rates that originate from 

multi-particle interactions. Particularly, a non-linear model for batch grinding 

process was proposed by Bilgili et al. (2004): 

0 0

( , )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

x

m x t
k x t F P x z m z t dz m x t k y t F P y z m z t dz b x y m y t dy

t

         
         

 

0with   ( ,0) ( )m x m x                                                                                     (2.17) 
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where z  is a generic particle size surrounding particles of size x , z x . 

The general non-linear framework is then derived in four non-linear size-discrete 

population balance models A, B, C and D with varying complexity. This non-

linear framework reduces to the traditional models under certain limiting 

conditions. 

2.4 Summary 

In this chapter, the significant impact of grinding media on the performance of 

milling process in terms of product size distribution, energy consumption and 

grinding costs is underlined (Mineral Processing Handbook, 2002). A review of 

a wide range of research on grinding media is done. It is clear that very little 

work has been done to investigate mixtures of grinding media of different 

shapes.  

The population balance model, which satisfactorily describes the grinding 

process, is also discussed. The specific breakage rate and the breakage 

distribution are both defined.  

The specific breakage rate parameters are obtained using the following equation 

(Austin, 1984):  

 
0

( ) ( ).[ ] . ( )i
i

x
S d a d Q x

x

  

( )a d and ( )d which are dependent of the mill conditions are the main focus 

of this investigation. 
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The breakage distribution parameters which are less sensitive to the change on 

the operating conditions and the feed size distribution than the specific breakage 

rate parameters are given by: 

1 1
, [ ] (1 )[ ]i i

i j j j

j j

x x
B

x x

        

The breakage function parameters, which are assumed to be ore dependent, are 

considered the same for all the different grinding media shapes. 

The abnormal breakage which occurs particularly for the larger feed particle 

sizes in laboratory mills (Austin et al., 1973) is also explained.  

The linear, time invariant and time variant population balance models are 

reviewed. Eventually, the non-linear population balance framework is 

introduced in order to explain the physical or mechanical multi-particle 

interactions which the assumed first-order breakage rate cannot thoroughly 

explain (Bilgili, 2004).  

 

 

 

 

 

 



K.P. Simba  27 

 

Chapter 3 Experimental Equipment and 

Programme                        

_______________________________________________________ 

This chapter describes the laboratory grinding mill. Also, the grinding media and 

the feed samples used for the batch tests are presented. Additionally, the tests 

performed to generate the experimental data are explained and the method used 

to characterize the breakage properties of the quartz defining the milling kinetics 

of the grinding media shapes and the mixtures of these grinding media shapes is 

presented. 

3.1 Laboratory grinding mill  

The Wits small laboratory mill was used to carry out the batch grinding tests on 

the quartz sample. This mill was fitted with eight equally spaced lifters. The mill 

has 0.302 m diameter and 0.282 m length. And, it is driven by a 0.25 kW mono-

phased variable speed motor.  

This laboratory mill is equipped with safety switch which allows to monitor the 

correct use of this equipment. The speed controller is used to set the operational 

speed at which the mill is run. The motor is connected to a torque arm to enable 

measurement of forces exerted on the beam, allowing the mill power to be 

obtained. A series of known weights was hung to the load beam to calibrate the 

torque required to turn the mill. The load beam is mounted on the frame of the 

mill rig and connected to the mill axle. 
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Eventually, the maker signal and the voltage signal are recorded via the data 

acquisition card on the control room computer using the WaveView software. 

Figure 3.1 presents a photograph of the laboratory mill used for our 

investigation. 

Data acquisition card
Speed controller

Safety switch

Lifters

 

Figure 3.1 Snapshot of the Wits small laboratory mill. 

The basic mill power drawn equation described by Hogg and Fuerstaneu (1972) 

is given by: 

2

60

N
P

 
                                                                                                (3.1) 

where N  is the mill speed in rpm,  

           is the torque exerted by the mill charge minus friction in the bearings. 

 

The laboratory operating conditions used for our batch tests are presented in 

Table 3.1 below. 
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Table 3.1 Laboratory operating conditions. 

Mill dimensions 

Diameter 0.302 m 

Length 0.280 m 

Volume 0.0202 m
3
 

Lifters 

Number 8 

Material Mild steel 

Profile parallelepiped 

Height 10 mm 

width 20 mm 

Tests conditions 

Ball filling, J 
a
 20 % 

Powder filling, U 
b
 75 % 

Mill speed  75 % of critical speed 

 

(
a
)   /  1.0

 0.6

mass of balls ball density
J

mill volume

 
  
 

                                                                    (3.2) 

(
b
)   /  1.0

    where     
0.4  0.6

c
c

f mass of powder powder density
U f

J mill volume

 
   

 

                        (3.3) 

U is the fraction of the spaces between the grinding media at rest which is filled 

with powder. Efficient breakage in the mill is obtained with a powder grinding 

media ratio ranging from 0.6 to 1.1. 
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3.2 Grinding media and test materials 

3.2.1 Grinding media 

Balls, cubes and Eclipsoids made of cast iron were used for the batch tests. 

Eclipsoids are semi-prolate spheroid (stretched ellipsoid of revolution). Their 

shape is similar to that of a half rugby football (Figure 3.2). The pictures of 

grinding media shapes used in this study are presented in Figure 3.3. 

Eclipsoids Eclipsoids Eclipsoids

 

Figure 3.2 Scaw Metals Eclipsoids
TM

 used for the batch tests. 

Spherical balls Cubes Mixture of grinding

media shapes

 

Figure 3.3 Photographs of spherical balls, cubes and a mixture of grinding 

media shapes used in this study. 

40 mm balls, 40 × 40 mm Eclipsoids and 32 mm cubes were used. The total load 

mass was kept constant for all grinding media shapes, as well as for the mixtures 

of grinding media for an average porosity of 0.4 (Austin et al., 1984). However, 

the material properties such as coefficient of friction, size and shape affect media 
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packing (Zhou et al, 2002). Various mixtures of grinding media of different 

shapes constituted of percentage mass were used for our experiments. Table 3.2 

below gives the physical properties of the grinding media used. 

 

Table 3.2 Physical properties of the grinding media. 

Grinding media Balls Eclipsoids Cubes Mix B-E* Mix B-C 1* Mix B-C 2* 

Mass (kg) 0.256 0.256 0.260 - - - 

Specific gravity (g/cm
3
) 7.64 7.64 7.93 - - - 

Surface area (cm
2
) 50.27 62.84 61.44 - - - 

Volume (cm
3
) 33.51 33.51 32.77 - - - 

Grinding media number 72 72 71 36 - 36 36 - 35 54 – 18 

Mass charge (kg) 18.432 18.432 18.460 18.432 18.432 18.504 

Total surface area (cm
2
) 3619.58 4524.48 4362.24 4072.03 3987.60 3820.61 

Total Volume (cm
3
) 2413.06 2413.06 2326.53 2413.06 2368.03 2399.62 

(*): Mix B-E is the mixture made of 50% balls and 50% eclipsoids, Mix B-C 1 is the 

mixture  made of 50% balls and 50% cubes and Mix B-C 2 is the mixture made of 75% 

balls and 25 % cubes. 

The grinding media used present different contact mechanisms during grinding 

action. These contact mechanisms are function of their geometry.  

The following figures show these different contact mechanisms. Balls are 

subjected to point contact only between them, while cubes and Eclipsoids 

present point, line and flat facets contacts in grinding action. Eclipsoids are 

mostly subjected to line contact mechanisms whereas cubes are mostly subjected 

to flat facets contact in grinding action. 
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point contact

 

Figure 3.4 Point contact mechanism of balls. 

 

 

point contact

       

line contact

  

flat facets contact

 
 

Figure 3.5 Contact mechanisms of Eclipsoids. 

 

 

p o in t  c o n tac t

     

line contact

  

flat facets contact

 
 

Figure 3.6 Contact mechanisms of cubes. 
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3.2.2 Test materials 

Mono sized feed fractions of quartz with a specific density of 2.64 g/cm
3
 were 

used for all the batch tests done with each grinding media shape alone, and then 

with the mixtures of these grinding media shape. The size fractions chosen for 

the tests were ranging from -16000 to 300 µm. 

A total of 135 batch tests on 11 mono-sized feed class materials were carried out 

for the intended series of grinding tests (Table 3.3). 

After defining the laboratory conditions in Table 3.1, the mass of material 

necessary per test was calculated to be 1.920 kg. Then, the mono-size feed 

materials were prepared for the batch tests (Table 3.3). The quartz material was 

collected from bags of 40 kg approximately and screened using a standard Tyler 

series of screens. The retained quartz fractions of interest were labelled and 

stored.  

Another screening using nested screens in decreasing order in interval of 2  

was done for 20 minutes in order to get mono-sized fraction more carefully 

prepared.  

Eventually, 1.920 kg quartz feed samples were constituted from the screened 

material. 

Table 3.3 presents the experimental design including the feed size considered 

per grinding media shape used. 
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Table 3.3 Experimental design. 

Feed size (microns) Grinding media shape charge considered 

Upper Lower Balls Eclipsoids Cubes Mix B-E Mix B-C1 Mix B-C2 

16 000 13 200    × × × 

13 200 9 500 × × ×    

9 500 6 700    ×   

6 700 4 750     ×  

4 750 3 350 × × ×    

3 350 2 360 × ×  ×  × 

2 360 1 700 × ×   ×  

1 700 1 180 × × ×    

850 600 × ×     

600 425   ×   × 

425 300 × ×  × ×  

 

3.3 Experimental methods 

The one-size-fraction method (Austin et al., 1984) was used to perform our 

batch grinding tests. Four grinding times were considered: 0.5, 1, 2 and 4 min. 

For every test, a blank sieving test was done on the prepared feed material. After 

that, the quartz sample was placed in the mill with the grinding media. Then, the 

feed material was ground for 30 seconds to determine the primary breakage 

distribution function. After this grinding period, the mill contents were 

discharged.  

A full particle size distribution was done on the collected product using nested 

screens in decreasing order of size from the top screen down to the 75 microns 

screen in interval of 2 . Firstly, the product was screened down to 1700 
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microns for 20 minutes. Then, the undersize material was split to constitute 

approximately 100 g of representative sample. The 100 g sample was washed on 

a 75 microns screen to remove the slimes, and then dried in the oven. Finally the 

dried quartz was screened for about 20 minutes to complete the size analysis. 

For materials of size smaller than 1700 microns, a representative sample was 

directly prepared for wet screening, then dry screened after being dried in the 

oven. After all this, the screen fractions were then recombined for batch grinding 

for 30 seconds to reach a total time of 1 min, then for 1 min to reach 2 min, and 

finally for 2 min to reach 4 min. Each grinding process was followed by a full 

particle size analysis.  

The mass fraction retained on each screen was weighed on a scale. Same set of 

screens were used in order to be consistent throughout the experiments. The 

dried weight of the washed sample was checked against the starting mass sample 

before wet screening. The difference in mass was then added to the one in the 

pan to ensure that masses balance out. 

3.4 Data collection and processing 

The Wits small laboratory mill with a data acquisition system (WaveView) was 

used to collect the grinding data. The mill torque was recorded using the torque 

beam attached to the mill rig. Signals from the torque beam and marker probe 

were transferred to the computer through the WaveView interface. These data 

were used to calibrate the mill torque and the speed.  



K.P. Simba  36 

 

 

Figure 3.7 Typical signals of the voltage and the marker probe recorded using 

WaveView. 

Figure 3.8 presents one of the calibration curve obtained after manipulating 

torque informations of the laboratory mill. 

 

Figure 3.8 Torque calibration curve of the mill (23
th
 January 2009). 

The torque calibration of the mill was found to be reliable with coefficients of 

determination ranging between 0.9980 and 1. 
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 The grinding raw data were recorded and compiled. Then a spreadsheet 

programme was developed to generate different particle size distributions. The 

manipulated data obtained from the batch tests were then used to work out the 

grinding parameters of the different grinding media shapes. This detailed 

analysis aimed at bringing to light the effects of mixing grinding media of 

different shapes on the milling kinetics. 

Based on the estimated breakage parameters, the selection functions were 

estimated and compared to explain in much detail the milling performances of 

the grinding media. 

3.5 Summary 

The Wits small laboratory mill was regularly calibrated before running the batch 

tests. Four grinding times were used to monitor the selection function of feed 

size material, while 0.5 minutes were used for the breakage function. These 

grinding times were recorded at each step for future processing of data. The 

quartz was ground and screened to complete the particle size analysis. The 

compiled raw data was stored on a computer. Eventually, these data were 

manipulated and analyzed to determine the milling kinetics of the grinding 

media. 
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Chapter 4 Milling Kinetics of Grinding 

Media of Different Shapes 

_______________________________________________________ 

Austin et al. (1984) have shown that the breakage characteristics of any 

materials could be determined using single-size-fraction batch grinding tests. 

Basically, mono-size balls are used to batch-grind single size materials for 

several time periods to get an estimate of the grinding kinetics. 

In this chapter, raw data collected from laboratory batch tests performed using 

balls, Eclipsoids and cubes are processed to provide different breakage 

parameters necessary to the description of the selection function and the 

breakage function of the quartz material used. 

4.1 Introduction 

Comminution or size reduction of solids is one of the oldest and most widely 

used particulate unit operations in many industries. To know how fast each size 

breaks, and in what sizes the primary breakage products appear gives the 

concept of size-mass balance or population balance of the mill (Austin et al., 

1984). The Size reduction involves, mainly, two breakage mechanisms; impact 

and attrition which depend on grinding media and feed material characteristics 

such as size, shape, weight and composition. 

The specific breakage rate constant has been investigated widely using grinding 

mills under different conditions, and this is of great interest when considering 
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the grinding efficiency, the design of the circuit of grinding, and classification 

processes (Kanda, et al., 2007). Thus, the selection function is used to evaluate 

the effectiveness of a milling process.  

In this chapter all the breakage parameters are determined numerically starting 

with the milling rate values themselves up to the breakage parameters. This set 

of information is then interpreted in connection with milling of the grinding 

media shapes. 

4.2 Determination of selection function values 

Basically, a non-linear regression technique was used to find the best 

combination of fitting parameters to the model by minimizing the sum of 

squared errors (SSE) between the experimental values Pexpt(t) and the predicted 

ones Pmodel(t).  

All the runs to carry out a full batch test on a given particle size x were 

considered for all the grinding time, namely 0, 0.5, 1, 2 and 4 minutes 

successively. 

The first order plots for different feed sizes of quartz ground by balls, Eclipsoids 

and cubes were plotted using the weight fraction remaining on the top size. Data 

relative to mono-sized quartz material are in Tables A.1 to A.18 in Appendix A 

for the three grinding media shapes.  

The percentage weight remaining in the top size wi(t) are given in Tables B.1 to 

B.3  in Appendix B. Figures 4.1 to 4.3 present these first-order plots. 
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Figure 4.1 First order plots for dry grinding of quartz with 40 mm balls charge. 

 

 

Figure 4.2 First order plots for dry grinding of quartz with 40 mm Eclipsoids 

charge. 
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Figure 4.3 First order plots for dry grinding of quartz with 32 mm cubes charge. 

All these plots can be described by first-order grinding kinetics with coefficients 

of determination between 0.972 and 0.999. The incomplete-sieving error was 

taken into account for the point at zero time. It can be seen that the first-order 

law is a good approximation for smaller sizes used, but it does not apply for the 

largest size (-13200+9500 µm). The curves for these largest particles present 3 

regions: a rapid breakage region that occurs at first, a more or less first-order 

breakage region, and finally a slower first-order breakage region. This quartz 

material exhibits to abnormal breakage (see section 2.3.3) and is assumed to be 

constituted of two fractions: a fast-breaking fraction and a slow-breaking one. 

The reason for this abnormal breakage is that all the particles within a size 

fraction have a distribution of strengths which interacts with distribution of 

applied forces from the grinding media (Austin et al., 1977). 
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The variations in the specific rates of breakage at different feed particle sizes for 

balls, cubes and Eclipsoids are shown in Table 4.1. 

Table 4.1 Specific rate of breakage of balls, Eclipsoids and cubes for different 

particle sizes. 

Particle size, xi (µm) Si (min-1) Balls Si (min-1) Eclipsoids Si (min-1) Cubes 

-13200+9500 0.946 0.982 0.644 

-9500+6700 - - - 

-4750+3350 1.437 1.342 0.953 

-3350+2360 1.089 1.088 - 

-2360+1700 0.714 0.681 - 

-1700+1180 0.487 0.469 0.266 

-850+600 0.214 0.218 - 

-600+425 - - 0.079 

-425+300 0.107 0.094 - 

SSE 0.012445 0.009938 0.023280 

 

An analysis of the breakage rate of coarser (-13200+9500 µm), medium (-

4750+3350 µm) and finer (-1700+1180 µm) feed size particles revealed that 

cubes are the least efficient of the three grinding media shapes considered. 

Spherical balls are the most efficient, but Eclipsoids are breaking the coarser 

particles faster than balls. Figures 4.4, 4.5 and 4.6 below illustrate this analysis. 

It can be seen that cubes present the biggest weight % remaining in the top size 

for the all the size categories of particles considered. On the other hand, 

Eclipsoids have lesser weight % remaining in the top size than balls only for the 

coarser particles considered. 
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Figure 4.4 First order plots for dry grinding of -13200+9500 µm quartz feed 

sizes. 

 

 

Figure 4.5 First order plots for dry grinding of -4750+3350 µm quartz feed 

sizes. 
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Figure 4.6 First order plots for dry grinding of -1700+1180 µm quartz feed 

sizes. 

Additionally, for the grinding of coarser materials, the cubes results depart the 

most from the first-order law (see Figure 4.4). Their coefficients of 

determination R
2
 are 0.986, 0.984 and 0.974 for balls, Eclipsoids and cubes 

respectively. 

Undoubtedly, the rate of breakage varies with size. The specific rate of breakage 

increases up to a maximum feed size and decreases above this size fraction for 

all grinding charges.  

The graphs presenting the variation of the specific rate of breakage are given in 

Figures B.1, B.2 and B.3, respectively for balls, Eclipsoids and cubes, in 

Appendix B. The maximum sizes mx  were 7080, 7297 and 7626 µm for balls, 

Eclipsoids and cubes respectively. Accordingly, the change in the selection 

function with grinding media shapes is predicted for quartz. Figure 4.7 shows 
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the specific rate of breakage in function of the particle sizes for grinding of 

quartz using balls, Eclipsoids and cubes. 

 

Figure 4.7 Variation of the specific rate of breakage with size for balls, 

Eclipsoids and cubes as grinding media shapes. 

The specific rate of breakage parameters were estimated by using the non-linear 

regression technique fitting the Si to Equation (2.5) and are presented in Table 

4.2.  

Basically, this technique finds the best combination of fitting parameters of a 

model by minimizing the square of the differences between the experimental 

values and the predicted ones. 
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Table 4.2 Breakage rate parameters obtained from the laboratory tests. 

Grinding media a        

Balls 0.272 8.81 1.14 3.70 

Eclipsoids 0.258 9.08 1.14 3.70 

Cubes 0.151 9.49 1.14 3.70 

 

The parameter was fixed and kept constant because we do not have enough 

information to determine it accurately. We used the Austin‟s value for  (Austin 

et al., 1984).  

  which is characteristic of the material was satisfactorily determined using a 

regression technique and then, kept constant because we utilized the same quartz 

material for all our batch grinding tests. The parameter   is a positive number 

normally in the range 0.5 to 1.5. It is characteristic of the material and does not 

vary with rotational speed, ball load, ball size or mill hold-up over the normal 

recommended test ranges (Austin and Brame, 1983) for dry milling, but the 

value of a  will vary with mill conditions. The value of   that was found to 

satisfactorily characterize breakage rate is 1.14.  

Obviously, the breakage rate study focused mainly on the parameters a  and 

which vary with the mill conditions.  

The values of the parameter a  were determined, and balls present the highest 

value while cubes have the lowest one.  
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The values of xm at which the breakage is maximum for our material were found 

to be proportional to the values of   which are 8.81, 9.08 and 9.49 respectively 

for balls, Eclipsoids and cubes. These values are inversely proportional to the 

values of the parameter a  of the grinding media shapes investigated. 

The coefficient of variation is used as a measurement of the precision of the 

parameters obtained. The coefficient of variation (CV) is a dimensionless 

number and it represents the ratio of the standard deviation to the mean. 

standard deviation
coefficient of variation (CV)=

mean
                                         (4.1) 

For our investigation, the breakage parameters obtained for balls are considered 

as our means. 

Compared to balls, the coefficients of variation were found to be 3.64 % and 

31.46 % for Eclipsoids and cubes respectively, in terms of the parameter a , and 

2.17 % and 5.46 % for Eclipsoids and cubes respectively, in terms of the 

parameter  . 

4.3 Determination of breakage distribution function values 

Austin et al. (1984) showed that ,i jB  values can be estimated from size analysis 

of the product from grinding of size j materials as: 

   

   
,

1 1

log 1 (0) / 1 ( )

log 1 (0) / 1

i i

i j

j j

P P t
B

P P 

   
  
 

                                                                  (4.2) 

where Pi(t) is the weight fraction of the material less than size xi at time t. 
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Shorter grinding times resulting in 20 – 30% broken materials out of the top size 

in order were used to estimate accurately the breakage function parameters. 

These shorter times are meant to minimize re-breakage, and thereby get more 

accurate estimates. This method is known as Method B II. 

The ,i jB  values obtained using Equation (4.2) were then fitted to the empirical 

function given in Equation (2.6) to evaluate the breakage function parameters of 

the quartz used. This is called Method B III and it requires an estimate of the S  

values (Austin and Luckie, 1972). 

 The breakage distribution and the normalized breakage function are given in 

Tables C.1 to C.18 in Appendix C. 

The curves ,i jB of the quartz used were found to be falling on top of one another 

for the values of j .  This has proved to be true for all quartz particle size, except 

for the coarser material. This is referred to as the case of normalized breakage 

(Austin et al., 1984). Figure 4.8 illustrates this fact for balls. The others figures 

presenting the normalised breakage for all other grinding media are given in 

Appendix C (Figures C.1 to C.3). 

In addition, the ,i jB values are assumed to be normalizable (  =0). Therefore, the 

fraction appearing at sizes less than the initial feed size is independent of the 

initial feed size. The breakage function parameters found for all our grinding 

media shapes are given in the tables C.30 and C.31 in Appendix C.  
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Figure 4.8 Cumulative breakage distribution parameters for different sizes of 

quartz ground with balls. 

The normalised breakage function parameters were found to be:   is constant at 

5.80,   varies from 0.98 to 1.12 and   varies from 0.68 to 0.71. These 

parameters are presented in Table C.31 in Appendix C. 

However, it was found that the B  values are insensitive to the precise mill 

conditions, at least in the normal operating range of milling conditions (Austin, 

et al., 1979). Eventually, it has been decided to consider the average values as 

the actual breakage function parameters. The grinding is first-order and the ,i jB  

are assumed to be constant with time. In this case, it is assumed that there is no 

regrowth of particles, smaller or larger, occurring by cold welding. Furthermore, 

the fracture properties of a given size in the products of breakage are the same as 

in the raw feed. 
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Table 4.3 Normalised breakage function parameters for the quartz material 

used. 

Breakage function 

parameters 

      

5.80 1.01 0.71 

 

Austin et al. (1984) reported that the product size distribution is sensitive to the 

value of  .  

The parameters obtained worked for the model used as illustrated in Figures 4.9 

for balls, 4.10 for Eclipsoids and 4.11 for cubes. 
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Figure 4.9 Simulated size distributions from batch grinding -1700 +1180 µm 

feed with balls. 
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Figure 4.10 Simulated size distributions from batch grinding -3350 + 2360 µm 

feed with Eclipsoids. 
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Figure 4.11 Simulated size distributions from batch grinding -600 +425 µm feed 

with cubes. 
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4.4 Significance of the results 

Comparative batch tests based on the Size-Mass Balance using the three shapes 

of grinding media of the same mass were conducted with quartz at the same 

conditions. The fractional rate at which a given size of particle disappears 

(Selection function) and the primary breakage distribution were then determined 

and compared for all grinding media. 

The values of a  and   which are proportional respectively to the rate of 

breakage and the degree of cataracting in the mill were used to compare the 

grinding performances of the grinding media. These values are presented in 

Figure 4.12 below. 

 

Figure 4.12 a -values and  -values of balls, Eclipsoids and cubes. 

Balls present the highest a  value, i.e. 0.272 which gives a clear indication of 

their efficient breakage rate while cubes present the lowest one (0.151). These 

results show that the grinding media shape have a significant effect on the 
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breakage rate. This confirms the previous findings by Kelsall et al. (1973) and 

the fact that balls have the higher rate of breakage compared to Eclipsoids and 

cubes. In terms of  , balls have the relative smallest value (8.81) while cubes 

present the highest one (9.49) with a coefficient of variation of 5.46 %. This 

might be an indication that cubes cataract more than balls and Eclipsoids, 

probably because of their geometry. But this higher degree of cataracting does 

not give a higher breakage rate because the cubes flats facets are not offering 

sufficient energy impact for particles to be broken. Furthermore, the cataracting 

effect is also moving particles away from the efficient grinding zone reducing 

the probability of nipping a particle in a single collision, as well as the 

probability of grinding a nipped particle by the collision. 

The physical properties of these different grinding media are given in Table 3.2. 

Eclipsoids presents the largest surface area compared to balls and cubes. For the 

constant mass charge used for our batch grinding tests, the total surface area of 

Eclipsoids is 1.25 and 1.04 times bigger than the surface area of balls and cubes 

respectively. Consequently, Eclipsoids should have a reasonably higher 

breakage rate. In addition, they present point, line and surface contact 

mechanisms for the grinding action. The advantage of a larger surface area 

seems to impact on the abnormal region where there are bigger components of 

chipping and abrasion, leading to lower value of relatively more of the finest 

quartz material and hence, a lower value of  . In the abnormal region, i.e. -

13200+9500 µm, Eclipsoids have the highest value of Si (0.982 min
-1

) compared 

to balls and cubes. However, the   value (9.08) indicates a relative higher 
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degree of cataracting compared to balls which results in moving away particles 

from the grinding zones. 

The sizes at which the specific rate of breakage is maximum are 7080, 7297 and 

7626 µm for balls, Eclipsoids and cubes respectively. All these values fall in the 

-9500+6700 µm class. As a result, all these grinding media are competent to 

break particles within this class. 

Austin (1984) showed that the product size distribution is sensitive to the value 

of  . An analysis of the   values obtained in our investigation and presented in 

Table C.31 in Appendix C shows that cubes have the highest   value, i.e. 1.12, 

while balls and Eclipsoids present more or less the same value (0.99 and 0.98 

respectively). Thus, smaller   values of balls and Eclipsoids indicate higher 

amount of progeny fines produced from breakage. Undoubtedly, balls and 

Eclipsoids are more efficient for the grinding process than cubes. 

The relatively same values of   and  indicate that balls, Eclipsoids and cubes 

reduced fractions close to the feed size to a lower size at the same rate. 

4.5 Summary 

A comparative study is done using balls, Eclipsoids and cubes in order to 

determine their respective breakage parameters. The concept of size-mass 

balance or population balance of the mill (Austin et al., 1984) was used to 

quantify how fast each size breaks, and in what sizes the primary breakage 

products appears.  
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As far as the selection function equation is concerned, all the results are in good 

agreement with the first-order breakage law. It is entirely adequate to describe 

the specific rate of breakage for balls, cubes and Eclipsoids. Considering the a  

values, balls proved to have a higher rate of breakage. The   values give a 

possible explanation of the lower breakage rate of cubes. 

As for the breakage function, it has revealed the material to be acceptably 

normalizable. More importantly, an analysis of the   values shows balls and 

Eclipsoids are efficient for the grinding process, producing more fines from the 

breakage of the top size material.  

This knowledge of the grinding performances of these grinding media shapes 

lays the foundation of study of the grinding performances of the mixtures made 

of these different media shapes that will be evaluated in the next chapter. 
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Chapter 5 Effects of Mixtures of Grinding 

Media of Different Shapes on 

Milling Kinetics                             

_______________________________________________________ 

This chapter presents the manipulated raw data of the different mixtures made of 

balls, Eclipsoids and cubes. The selection function is described in terms of a ,   

and   , and the breakage function in terms of  ,   , and  .   

The different breakage parameters obtained are then used to determine the 

grinding performances of the different mixtures of grinding media. Eventually, 

these informations are used to compare their grinding performances to those of 

the single grinding media shapes and motivate the utilization of mixtures of 

grinding media of different shapes. 

5.1 Introduction 

The need to reduce the grinding costs and to increase the grinding and milling 

efficiency has opened the way to many investigations pertaining to grinding 

media shapes. As shown in chapter 4, balls were found to be more efficient than 

other grinding media shapes. But, spherical balls and the alternative grinding 

media to balls are altered by wear pattern and break during the grinding process. 

Consequently, the grinding process is thus done with mixtures of grinding media 

of different sizes and shapes. In addition, very little work has been done on 
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investigating mixtures of media shapes. That is why it is our intention to 

investigate mixtures of grinding media of different shapes. 

The selection and breakage functions are determined by batch grinding tests 

performed on single particle sizes for the mixtures of grinding media charge 

consisting of grinding media of the same total mass.  

These breakage parameters are compared to determine the grinding performance 

of the mixtures of grinding media, and finally compared to the individual 

grinding media shapes. 

5.2 Selection function values of the mixtures of grinding media 

shape 

The first order plots for different feed sizes of quartz ground by the mixture 

made of 50% balls and 50% Eclipsoids (Mix B-E), the mixture made of 50% 

balls and 50% cubes (Mix B-C 1) and the mixture made of 75% balls and 25% 

cubes (Mix B-C 2) were measured and plotted.   

The weight fraction remaining on the top size was plotted against different 

grinding times. Data relative to mono-sized quartz material are in Tables A.19 to 

A.29 in Appendix A for the different mixtures of grinding media shapes.  

The percentage weight remaining in the top size wi(t) are given in Tables B.4 to 

B.6 in Appendix B. The first-order plots are presented in Figures 5.1 to 5.3. 
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Figure 5.1 First order plots for dry grinding of quartz with the 50-50 mixture of 

balls and Eclipsoids. 

 

 

Figure 5.2 First order plots for dry grinding of quartz with the 50-50 mixture of 

balls and cubes. 
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Figure 5.3 First order plots for dry grinding of quartz with the 75-25 mixture of 

balls and cubes. 

It is found that the first-order law is only in agreement with medium and smaller 

particle sizes, namely particle sizes between -9500+6700 µm and -425+300 µm.  

These first-order plots are defined with coefficients of determination between 

0.991 and 0.999.  

Coarser particles (-16000+13200 µm) are subjected to abnormal breakage. The 

coefficients of determination are 0.940, 0.892 and 0.883 for the 50-50 mixture of 

balls and Eclipsoids, the 50-50 mixture of balls and cubes and the 75-25 mixture 

of balls and cubes respectively. All these coefficients are smaller than 0.950 

which indicates that the first-order law does not work for these coarser particles. 

Similarly, the variations in the specific rates of breakage at different feed particle 

sizes for these mixtures are shown in Table 5.1. 
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Table 5.1 Specific rate of breakage of the mixtures of grinding media for 

different particle sizes. 

Particle size, xi (µm) Si (min
-1

) Mix B-E* Si (min
-1

) Mix B-C1
# 

 Si (min
-1

) Mix B-C2
$
 

-16000+13200 0.950 0.409 0.729 

-13200+9500 - - - 

-9500+6700 - 0.913 - 

-6700+4750 1.620 - - 

-4750+3350 - - - 

-3350+2360 0.999 - 0.954 

-2360+1700 - 0.740 - 

-1700+1180 - - - 

-850+600 - - - 

-600+425 - - 0.141 

-425+300 0.086 0.093 - 

SSE 0.011180 0.035727 0.000371 

* Mixture of 50 % balls and 50 % Eclipsoids. 

#  
Mixture of 50 % balls and 50 % cubes. 

$  
Mixture of 75 % balls and 25 % cubes. 

The variations of the specific rate of breakage are given in Figures B.4, B.5 and 

B.6, respectively for the Mix B-E, the Mix B-C 1 and the Mix B-C 2, in 

Appendix B.  

The sizes where the specific rate of breakage was maximum are 8382, 6115 and 

7578 µm for the Mix B-E, the Mix B-C 1 and the Mix B-C 2 respectively. 

Figure 5.4 shows the specific rate of breakage in function of the particle sizes for 

all the mixtures used. 
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Figure 5.4 Variation of the specific rate of breakage for all the mixtures used as 

grinding media with size. 

These three mixtures have similar breakage rate behaviour in the medium and 

fine particle size region, but they behave differently in the coarser region. 

The breakage rate parameters obtained using these mixtures of grinding media of 

different shapes are presented in the Table 5.2. 

Table 5.2 Breakage rate parameters of the mixtures of grinding media shapes. 

Grinding media a        

Mix B-E 0.234 10.43 1.14 3.70 

Mix B-C 1 0.257 7.61 1.14 3.70 

Mix B-C 2 0.249 9.43 1.14 3.70 
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The values of the parameter  a  are close for the mixtures considered with a 

standard deviation of 0.0117 and a coefficient of variation of 4.73 %. Also, they 

are inversely proportional to the values of    for the mixture considered. But, 

the   values of the mixtures investigated are sensibly different with a coefficient 

of variation of 15.61 % among them. This indicates different behaviour in terms 

of grinding. 

The values of mx  at which the breakage is maximum for our material were found 

to be proportional to the values of   which are 10.43, 7.61 and 9.43 respectively 

for the Mix B-E, the Mix B-C 1 and the Mix B-C 2.  

5.3 Breakage function values of the mixtures of grinding media 

shape 

The ,i jB  values were obtained using Equation (4.2), and then fitted to the 

empirical function given in Equation (2.7) to evaluate the breakage function 

parameters of the quartz used. The breakage distribution and the normalized 

breakage function are given in Tables C.19 to C.29 in Appendix C. The 

breakage function parameters were found to be 5.79 and 5.80 for  , they vary 

from 0.95 to 1.09 for   and from 0.70 to 0.74 for  . 

The quartz material used was assumed to have a normalised breakage (  =0). 

The cumulative breakage parameters ,i jB were on top of one another for all feed 

sizes, except for coarser feeds. The cumulative breakage parameters are 

presented in Figures C.4 to C.5 in Appendix C. 
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 The breakage function parameters found for each of our mixtures are given in 

the tables C.30 and C.31 in Appendix C. The representative breakage function 

parameters for the quartz used were found to be:  =5.80, =1.01 and  =0.71 

(Table 4.3). 

The simulated size distributions found are presented in Figure 5.5 for the 

mixture of 50% balls and 50 % cubes, in Figure 5.6 for the mixture of 50 % balls 

and 50 % Eclipsoids and in Figure 5.7 for the mixture of 75 % balls and 25 % 

cubes. 
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Figure 5.5 Simulated size distributions from batch grinding -2360 + 1700 µm 

feed with the mixture of 50 % balls and 50 % cubes. 
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Figure 5.6 Simulated size distributions from batch grinding -425 + 300 µm feed 

with the mixture of 50 % balls and 50 % Eclipsoids. 
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Figure 5.7 Simulated size distributions from batch grinding -3350 +2360 µm 

feed with the mixture of 75 % balls and 25 % cubes. 

The simulated size distributions obtained using mixtures of grinding media are 

in good agreement with the experimental data down to 150 µm. Below this size, 
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there is a systematic bending of the experimental data, causing  a clear difference 

between the experimental and simulated data at fines sizes. The experimental 

particles distributions are less than the ones predicted by the model. This might 

be the result of the time-dependent and decelerating breakage rate. The 

production of fines may alter the mechanics of the milling action to give less 

tumbling. One possible raison of this slowing down may be the fact that air is 

trapped between particles and the slow movement of air through beds of fine 

particles might change the mechanics of the breakage action by blowing away 

particles or by absorbing impact like a hydraulic shock absorber. The 

accumulation of the fines reduce effective impacts to cause breakage, reducing 

the contribution of line and area contacts between grinding media. This 

abnormal breakage behaviour and the slowing-down effect observed are to be 

investigated. 

5.4 Interpretation of the results 

Considering the spherical balls the most efficient in terms of grinding 

performances, different mixtures were constituted adding balls to others grinding 

media shapes. The mixture of 50 % balls and 50 % Eclipsoids increases the total 

surface area by 12.50% compared to balls alone and the mixture of 50 % balls 

and 50 % cubes increases the total surface area by 10.17%. The mixture of 75 % 

balls and 25 % cubes only increases the total surface area by 5.55%. 

The values of a  and   are presented in Figure 5.8 below. 
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Figure 5.8 a -values and  -values of the mixtures of grinding media used. 

The value of a  of the 50-50 mixture of balls and cubes is the highest among the 

a -values of the mixtures used, meaning it has the higher rate of breakage. The 

mixture made of 50 % balls and 50 % Eclipsoids presents the biggest   values 

(i.e. 10.43) which mean the addition of Eclipsoids to balls has increased the 

degree of cataracting in the mill (Austin et al., 1984). This cataracting gives 

higher breakage rates of large sizes in the abnormal region. The highest Si value 

(0.950 min
-1

) for this mixture for the -16000+13200 µm support this fact.  

The Mix B-C 1 presents less cataracting compared to the Mix B-E, but a 

relatively higher value of a . Consequently, in an attempt to improve the value of 

a , the Mix B-C 2 was constituted, trying to find what would happen to the rate 

of breakage if the proportion of cubes is decreased in the mixture.  
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Figure 5.9 Expected evolution of the a -values in terms of percentage of cubes 

in the mixture. 

Contrary to our expectations, the Mix B-C 2 presented a relative low value of a  

compared to the Mix B-C 1, as shown in Figure 5.10 below. It has decreased 

from 0.257 to 0.249. These two values are pretty close with a standard deviation 

of 0.0056. This unexpected behaviour may be attributed to the smaller surface 

area available for grinding in the Mix B-C 2 compared to the one available in the 

Mix B-C 1 (see Table 3.2). 
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Figure 5.10 Obtained a -values in terms of the percentage of cubes in the 

mixture. 

As shown in Figure 5.4, Mix B-E has a greater breakage rate of large sizes in the 

abnormal region. This is confirmed by the highest values of   and mx . 

5.5 Effects of mixtures of grinding media on milling kinetics 

Batch grinding tests were performed for balls, Eclipsoids, cubes and their 

mixture in order to determine the breakage rate and breakage distribution 

parameters. After establishing the performances of these grinding media shapes, 

their mixtures were investigated. Our major point of interest is the a  and   

parameters. 

5.5.1 Mixture of balls and Eclipsoids 

The mixture of 50 % balls and 50 % Eclipsoids presented a rate of breakage 

lower than Eclipsoids alone. On the other hand, the mixture presented an 
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increase of the degree of cataracting, expressed by the   value. This makes this 

mixture capable of higher breakage rate of coarser particles in the abnormal 

region. In this region, the material is so much weaker in tension than in 

compression, and the fracture occurs predominantly by cleavage (Spottiswood 

and Kelly, 1990). Figure 5.11 illustrates this fact. 

 

Figure 5.11 Variation of the specific rate of breakage for balls, Eclipsoids and 

the mixture of balls and Eclipsoids respectively. 

Despite the fact that the total surface area was increased by 12.50%, the more 

surface available for breakage were not expressed in terms of an increase of the 

breakage rate. Also, the geometry of balls and Eclipsoids in presence offers 

point, line and area contacts. This causes the feed material to be firstly exposed 

to coarse grinding which is then used as a new feed for finer grinding 

(Cuhadaroglu et al., 2008). This causes as well an increase of the cataracting 

effect, but with lower impact forces to cause breakage. As a result, the load 
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behaviour is subjected to conflicting behaviour between the different grinding 

media shapes, though there are more surfaces available for contact mechanisms 

in grinding action.  

Compared to breakage parameters of balls, the values of a  present coefficients 

of variation of 3.64 % and 9.88 % for Eclipsoids and for the mixture of 50 % 

balls and 50 % Eclipsoids respectively. The coefficients of variation are 2.17 % 

and 9.88 % for   respectively for Eclipsoids and for the mixture of 50 % balls 

and 50 % Eclipsoids. Therefore, Eclispoids can be used as an alternative to balls 

while the mixture of 50 % balls and 50 % Eclipsoids cannot be recommended. 

Its coefficients of variations are greater than 5 % in terms of both a  and  . 

5.5.2 Mixture of balls and cubes 

The mixture of 50 % balls and 50 % cubes has significantly increased the rate of 

breakage, compared to cubes alone. The value of a  has been increased from 

0.151 to 0.257, a 41.24% increase. This is a clear indication that the mixture 

used is more efficient in term of the disappearance of the initial particle size 

considered for breakage. 

The value of   decreases from 9.49 for cubes alone to 7.61 for the mixture. This 

indicates that the higher impact forces of cataracting are reduced in this mixture. 

Hence, cubes seem to have a negative effect on the balls in the mixture in terms 

of breakage rate. 

The coefficients of variation are 31.46 % in terms of a  and 5.46 % in terms of 

  , compared to balls. Cubes alone are definitely not efficient for grinding. 
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The mixture of 50 % balls and 50 % cubes presents coefficients of variation of 

3.90 % and 9.63 % respectively for a  and   compared to balls. This mixture 

can be recommended as an alternative to balls. But, there is a need to account for 

the increase of   by either the use appropriate lifter designs or the reduction of 

the rotational speed to decrease the degree of cataracting. 

On the other hand, the mixture of 75 % balls and 25 % cubes presents an 

increase of a  from 0.151 to 0.249 and a similar   (9.43) compared to cubes 

alone. It presents coefficients of variation of 5.98 % and 4.98 % for a  and   

respectively when compared to balls. This mixture need to be investigated more 

because its coefficients of variation do not allow us to decide on its grinding 

performances. 

Figure 5.12 shows the variation of the specific rate of breakage with size for 

balls, cubes and for the mixtures of balls and cubes. 

 

Figure 5.12 Variation of the specific rate of breakage of balls, cubes and the 

mixtures of balls and cubes. 
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All the mixtures investigated presents reasonably good breakage rate for 

medium and fine particle sizes. This means they can as well be used as an 

alternative to balls for the grinding process.  

An overall view of the variation of the specific rate of breakage is illustrated in 

Figure 5.13. 

 

Figure 5.13 Variation of the specific rate of breakage for all the grinding media 

used. 

This Figure shows that the mixtures of grinding media of different shapes break 

finer and medium particle sizes at similar rate as balls. In the abnormal region, 

their grinding performances are different. Cubes are the less efficient. 

5.6 Power drawn 

The specific energy used in all our tests was assumed to be the same, as the mill 

power drawn by the mill is basically determined by the mass of the charge 
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(Bond, 1961). Similarly, Lameck (2005) found that the two different grinding 

media shapes he used drew the same amount of power at all charge levels 

studied in the speed range within which most mills are operated.  

Table 5.3 below presents the values of the average power drawn by the grinding 

media used. The power drawn is considered the same, their coefficients of 

variation being smaller than 3.46 %. 

Table 5.3 Power drawn by different grinding media shapes. 

 Balls Eclipsoids Cubes Mix B-E Mix B-C 1 Mix B-C 2 

Power [Watts] 78.89 80.36 77.66 82.48 78.95 80.01 

Coefficient of 

variation [%] 
1.05 0.80 2.59 3.46 0.97 0.36 

Mean×(1+2 CV) 80.54 81.64 81.68 88.18 80.48 80.58 

Mean×(1-2 CV) 77.24 79.08 73.64 76.78 77.42 79.44 

 

Since the mean power (79.73 W) falls within the range (Mean ± 2 Standard 

deviations) and the calculated chi-squared χ
2 

(0.16941) being smaller than the 

tabulated χ
2
 (1.145), we are 95 % confident that the powers measured for all the 

loads are identical. 

This „general agreement‟ that the power drawn is function of the mass of the 

charge has been confirmed to be true for all shapes, despite the fact that the 

grinding media shapes investigated are supposed to present different load 

behaviour during the grinding process due to their geometry. 
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5.7 Summary 

Mixtures of grinding media of different shapes were investigated. It was found 

that the increase of surface area available for breakage does not necessarily 

translate into an increase of the breakage rate. In addition, the geometry of the 

grinding media shapes may lead to conflicting behaviour during the grinding 

process, nullifying more or less the advantage of several contact mechanisms in 

grinding action.  

The mixtures of grinding media of different shapes present coefficients of 

variation smaller than 5 % in terms of a  and   when compared to balls and can 

be recommended as alternative to balls. 

The power drawn has been proven to be the same for all the grinding media 

used. It is function of the mass charge. 
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Chapter 6 Conclusion 

_______________________________________________________ 

6.1 Introduction 

Mixtures of grinding media of different shapes were characterized in the 

Minerals Processing Laboratory of the University of the Witwatersrand. The 

main objective was to characterize the material being described in terms of 

selection and breakage functions. In order to achieve this, a series of laboratory 

tests was carried out on quartz material.  

This chapter summarizes the outcomes of this investigation. The breakage 

parameters were estimated for mixtures of grinding media of different shapes, 

and then compared to the parameters for individual grinding media shapes. Their 

grinding performances were in this way evaluated.  

6.2 Summary of findings 

The breakage rate parameters were satisfactorily determined. The value for the 

  parameter proposed by Austin et al. (1984) was used because we do not have 

enough information at hand to characterise it correctly. The parameter   was 

then searched for and the value obtained was used for all the grinding media,   

being material dependent. The values of the parameter a  were found to be 

varying from 0.151 for cubes which are the least selective rate function to 0.272 

for balls the most selective. All the mixtures present the value for a  between 

these two extremes, but similar with a standard deviation of 0.0056.  
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The    parameter was ranging between 8.81 for balls to 10.43 for the mixture 

made of 50 % of balls and 50 % of Eclipsoids. 

The mixture made of 50 % of balls and 50 % of Eclipsoids which presents 

coefficients of variation greater than 5 % in terms of both breakage rate 

parameters a  and   is considered not recommendable as an alternative to balls. 

The mixture made of 50 % of balls and 50 % of cubes is a good alternative to 

balls and need to be used with lifters designed specifically and at rotational 

speed that account for the increase of the degree of cataracting. And, the mixture 

made of 75 % of balls and 25 % of cubes presents parameters a  and   with 

coefficients of variation of 5.98 % and 4.98 % when compared to balls. This 

calls for further investigation. 

The quartz material utilized was reasonably considered as having a normalizable 

breakage function. The breakage function parameters were found to be:  =5.80, 

=1.01 and  =0.71. 

Our investigation confirms the fact that balls are the most efficient grinding 

media in terms of breakage rate expressed by the highest a  value. It is showed 

that a mixture of grinding media of different shapes can increase significantly 

the rate of breakage (up to more than 40 % for the mixture made of 50 % balls 

and 50 % cubes, compared to cubes alone). In addition, for all the mixtures 

considered, the increase of a  value is inversely proportional to the increase of 

the   value. This is a clear indication that grinding media shapes are subjected 
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to conflicting effect within the mixture. The mixture of balls and Eclipsoids is a 

good illustration of this fact. 

6.3 Overall conclusion 

The breakage properties of quartz material were estimated and the effect of 

mixtures of grinding media of different shapes deduced. This study shows that 

the breakage rate of the least efficient grinding media shape can be increased 

when it is used in a mixture of grinding media shape. Obviously, this can be 

achieved when using an optimal mixture of different grinding media shapes 

alternatively to 100 % balls in the grinding process. The choice and the 

proportion of the grinding media shape within the mixture is of great importance 

in order to take advantage of the contact mechanisms in grinding action and the 

increase of the surface area available for breakage. Grinding media shapes that 

are cheaper to manufacture can be mixed with the balls in order to get an 

efficient mixture in terms of grinding performance per unit media cost. 

6.4 Recommendations 

Important conclusions were reached through this investigation. But, there is a 

need to further this study. Other media shapes have to be explored under various 

mill conditions. The determination of the optimal mixture of grinding media 

needs to be investigated as well. The load behaviour of the charge has to be 

studied in order to comprehend the conflicting effects which impact negatively 

on the performance of mixtures of grinding media of different shapes. 
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A Particle size analysis of batch grinding tests 

This section presents the particle size distributions of the quartz material as 

obtained after batch grinding tests. They refer to balls, Eclipsoids, cubes, the 

mixture of 50 % balls and 50 % Eclipsoids (referred as 50-50 mixture of balls 

and Eclipsoids or Mix B-E), the mixture of 50 % balls and 50 % cubes (referred 

as 50-50 mixture of balls and cubes or Mix B-C 1) and the mixture of 75 % balls 

and 25 % cubes (referred as 50-50 mixture of balls and cubes or Mix B-C 2) 

used as grinding media. 

A.1 Batch grinding tests with single grinding media shape 

A.1.1  Particle size distributions obtained using balls 

Table A.1 Size analysis results for –13200 + 9500 microns quartz ground with 

balls. 
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Table A.2 Size analysis results for – 4750 + 3350 microns quartz ground with 

balls. 

 

 

Table A.3 Size analysis results for – 3350 + 2360 microns quartz ground with 

balls. 
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Table A.4 Size analysis results for – 2360 + 1700 microns quartz ground with 

balls. 

 

 

Table A.5 Size analysis results for – 1700 + 1180 microns quartz ground with 

balls. 

%Retained %Passing %Retained %Passing %Retained %Passing %Retained %Passing %Retained %Passing

1700 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00

1180 98.96 1.04 78.18 21.82 67.35 32.65 41.32 58.68 14.15 85.85

850 1.04 0.00 7.52 14.30 11.84 20.80 17.11 41.57 15.91 69.94

600 0.00 0.00 5.33 8.97 6.66 14.15 12.25 29.32 16.16 53.79

425 0.00 0.00 2.48 6.49 3.96 10.19 7.74 21.58 12.38 41.41

300 0.00 0.00 2.02 4.47 3.19 7.00 6.58 15.00 11.41 29.99

212 0.00 0.00 1.39 3.08 1.95 5.05 4.05 10.95 7.50 22.50

150 0.00 0.00 1.01 2.07 1.47 3.58 2.93 8.03 5.95 16.55

106 0.00 0.00 0.58 1.49 0.87 2.72 1.85 6.17 4.38 12.18

75 0.00 0.00 0.26 1.23 0.62 2.09 1.10 5.07 3.21 8.96

Pan 0.00 1.23 2.09 5.07 8.96

Total 100.00 100.00 100.00 100.00 100.00

Screen 

size

 (µm)

Particle Size distribution

Feed 0,5 min 1 min 2 min 4 min
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Table A.6 Size analysis results for – 850 + 600 microns quartz ground with 

balls. 

 

 

Table A.7 Size analysis for – 425 + 300 microns quartz ground with balls. 
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A.1.2  Particle size distributions obtained using Eclipsoids 

Table A.8 Size analysis results for – 13200 + 9500 microns quartz ground with 

Eclipsoids. 

 

 

Table A.9 Size analysis results for – 4750 + 3350 microns quartz ground with 

Eclipsoids. 
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Table A.10 Size analysis results for – 3350 + 2360 microns quartz ground with 

Eclipsoids. 

 

 

Table A.11 Size analysis results for – 2360 + 1700 microns quartz ground with 

Eclipsoids. 
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Table A.12 Size analysis results for – 1700 + 1180 microns quartz ground with 

Eclipsoids. 

 

Table A.13 Size analysis results for – 850 + 600 microns quartz ground with 

Eclipsoids. 

 

Table A.14 Size analysis results for – 425 + 300 microns quartz ground with 

Eclipsoids. 
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A.1.3  Particle size distributions obtained using cubes 

Table A.15 Size analysis results for –13200 + 9500 microns quartz ground 

with cubes. 

 

 

Table A.16 Size analysis results for –4750 + 3350 microns quartz ground with 

cubes. 
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Table A.17 Size analysis results for –1700 + 1180 microns quartz ground with 

cubes. 

   

 

Table A.18 Size analysis results for –600 + 425 microns quartz ground with 

cubes. 
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A.2 Batch grinding tests with mixtures of grinding media shape 

A.2.1  Particle size distributions obtained using a 50-50 mixture of balls and 

Eclipsoids. 

Table A.19 Size analysis results for –16000 + 13200 microns quartz ground 

with a 50-50 mixture of balls and Eclipsoids. 
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Table A.20 Size analysis results for –6700 + 4750 microns quartz ground with 

a 50-50 mixture of balls and Eclipsoids. 

 

 

Table A.21 Size analysis results for –3350 + 2360 microns quartz ground with 

a 50-50 mixture of balls and Eclipsoids. 
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Table A.22 Size analysis results for –425 + 300 microns quartz ground with a 

50-50 mixture of balls and Eclipsoids. 

 

 

A.2.2  Particle size distributions obtained using a 50-50 mixture of balls and 

cubes 

Table A.23 Size analysis results for –16000 + 13200 microns quartz ground 

with a 50-50 mixture of balls and cubes. 
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Table A.24 Size analysis results for –9500 + 6700 microns quartz ground with 

a 50-50 mixture of balls and cubes. 

 

 

Table A.25 Size analysis results for –2360 + 1700 microns quartz ground with 

a 50-50 mixture of balls and cubes. 
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Table A.26 Size analysis results for –425 + 300 microns quartz ground with a 

50-50 mixture of balls and cubes. 

 

 

A.2.3  Particle size distributions obtained using a 75-25 mixture of balls and 

cubes 

Table A.27 Size analysis results for –16000 + 13200 microns quartz ground 

with a 75-25 mixture of balls and cubes. 
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Table A.28 Size analysis results for –3350 + 2360 microns quartz ground with 

a 75-25 mixture of balls and cubes. 

 

Table A.29 Size analysis results for –425 + 300 microns quartz ground with a 

75-25 mixture of balls and cubes. 
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B Selection functions for all batch grinding 

tests 

B.1. Weight percentage remaining in the top size wi(t) 

Table B.1 Weight percentage remaining in the top size wi(t) for balls. 

 

 

 

Table B.2 Weight percentage remaining in the top size wi(t) for Eclipsoids. 
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Table B.3 Weight percentage remaining in the top size wi(t) for cubes. 

 

 

 

 

 

Table B.4 Weight percentage remaining in the top size wi(t) for a 50-50 

mixture of balls and Eclipsoids. 

 

 

Table B.5 Weight percentage remaining in the top size wi(t) for a 50-50 

mixture of balls and cubes. 
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Table B.6 Weight percentage remaining in the top size wi(t) for a 75-25 

mixture of balls and cubes. 

 

 

B.2 Variation of the specific rate of breakage with size 

B.2.1 Variation of the specific rate of breakage for balls, cubes and 

Eclipsoids. 

 

Figure B.1 Variation of the specific rate of breakage with size for balls. 
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Figure B.2 Variation of the specific rate of breakage with size for Eclipsoids. 

 

 

Figure B.3 Variation of the specific rate of breakage with size for cubes. 
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B.2.2 Variation of the specific rate of breakage for the different mixtures of 

grinding media shapes used 

 

 

Figure B.4 Variation of the specific rate of breakage with size for a 50-50 

mixture of balls and Eclipsoids. 

 

Figure B.5 Variation of the specific rate of breakage with size for a 50-50 

mixture of balls and cubes. 
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Figure B.6 Variation of the specific rate of breakage with size for a 75-25 

mixture of balls and cubes. 

B.2.3 Comparison of the different variations of the specific rate of breakage 

 

 

 

Figure B.7 Variation of the specific rate of breakage with size for balls and 

Eclipsoids. 
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Figure B.8 Variation of the specific rate of breakage with size for balls, 

Eclipsoids and a 50-50 mixture of balls and Eclipsoids. 

 

 

Figure B.9 Variation of the specific rate of breakage with size for the three 

shapes used: balls, Eclipsoids and cubes as grinding media shapes. 
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Figure B.10 Variation of the specific rate of breakage with size for balls, a 50-

50 mixture of balls and Eclipsoids and a 50-50 mixture of balls and 

cubes. 

 

Figure B.11 Variation of the specific rate of breakage with size for balls, cubes 

and a 50-50 mixture of balls and cubes. 
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Figure B.12 Variation of the specific rate of breakage with size for balls, cubes, 

a 50-50 mixture and a 75-25 mixture of balls and cubes. 

 

 

Figure B.13 Variation of the specific rate of breakage with size for the different 

mixtures used. 
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Figure B.14 Variation of the specific rate of breakage with size for all the 

grinding media shapes. 
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C Breakage function tables and curves 

 

This section presents the tables and graphs of the reduced breakage functions 

plotted. The B-II method (Austin et al., 1984) was used to get estimates of the 

different values of Bij corresponding first to the tests carried out with different 

grinding media shapes, then with the mixtures of grinding media of different 

shapes. These calculations were done using short grinding times, i.e. 0.5 min. 

C.1 Breakage function obtained for the different grinding media 

shapes 

C.1.1 Breakage function obtained for balls 

 

Table C.1 Breakage function for –13200 + 9500 microns quartz ground with 

balls. 
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Table C.2 Breakage function for –4750 + 3350 microns quartz ground with 

balls. 

 

 

Table C.3 Breakage function for –3350 + 2360 microns quartz ground with 

balls. 
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Table C.4 Breakage function for –2360 + 1700 microns quartz ground with 

balls. 

 

Table C.5 Breakage function for –1700 + 1180 microns quartz ground with 

balls. 

 

Table C.6 Breakage function for –850 + 600 microns quartz ground with balls. 
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Table C.7 Breakage function for –425 + 300 microns quartz ground with balls. 

 

C.1.2 Breakage function obtained for Eclipsoids 

Table C.8 Breakage function for –13200 + 9500 microns quartz ground with 

Eclipsoids. 
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Table C.9 Breakage function for –4750 + 3350 microns quartz ground with 

Eclipsoids. 

 

Table C.10 Breakage function for –3350 + 2360 microns quartz ground with 

Eclipsoids. 
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Table C.11 Breakage function for –2360 + 1700 microns quartz ground with 

Eclipsoids. 

 

Table C.12 Breakage function for –1700 + 1180 microns quartz ground with 

Eclipsoids. 

 

Table C.13 Breakage function for –850 + 600 microns quartz ground with 

Eclipsoids. 
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Table C.14 Breakage function for –425 + 300 microns quartz ground with 

Eclipsoids. 

 

 

C.1.3 Breakage function obtained for cubes 

 

Table C.15 Breakage function for –13200 + 9500 microns quartz ground with 

cubes. 
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Table C.16 Breakage function for –4750 + 3550 microns quartz ground with 

cubes. 

 

Table C.17 Breakage function for –1700 + 1180 microns quartz ground with 

cubes. 

 

Table C.18 Breakage function for –600 + 425 microns quartz ground with 

cubes. 
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C.2 Breakage function obtained for the mixtures of grinding 

media of different shapes 

C.2.1 Breakage function obtained for a 50-50 mixture of balls and 

Eclipsoids 

Table C.19 Breakage function for –16000 + 13200 microns quartz ground with 

a 50-50 mixture of balls and Eclipsoids. 

 

Table C.20 Breakage function for –6700 + 4750 microns quartz ground with a 

50-50 mixture of balls and Eclipsoids. 
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Table C.21 Breakage function for –3350 + 2360 microns quartz ground with a 

50-50 mixture of balls and Eclipsoids. 

 

 

Table C.22 Breakage function for –425 + 300 microns quartz ground with a 

50-50 mixture of balls and Eclipsoids. 

 

 

 

 

 

 

 



K.P. Simba  120 

 

C.2.2 Breakage function obtained for a 50-50 mixture of balls and cubes 

Table C.23 Breakage function for –16000 + 13200 microns quartz ground with 

a 50-50 mixture of balls and cubes. 

 

 

Table C.24 Breakage function for –9500 + 6700 microns quartz ground with a 

50-50 mixture of balls and cubes. 
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Table C.25 Breakage function for –2360 + 1700 microns quartz ground with a 

50-50 mixture of balls and cubes. 

 

Table C.26 Breakage function for –425 + 300 microns quartz ground with a 

50-50 mixture of balls and cubes. 
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C.2.3 Breakage function obtained for a 75-25 mixture of balls and cubes 

 

Table C.27 Breakage function for –16000 + 13200 microns quartz ground with 

a 75-25 mixture of balls and cubes. 

 

Table C.28 Breakage function for –3350 + 2360 microns quartz ground with a 

75-25 mixture of balls and cubes. 
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Table C.29 Breakage function for –600 + 425 microns quartz ground with a 

75-25 mixture of balls and cubes. 

 

 

C.3 Breakage function parameters obtained for the grinding 

media shapes 

The ,i jB  values were obtained using the equation below: 

   

   
,

1 1

log 1 (0) / 1 ( )

log 1 (0) / 1

i i

i j

j j

P P t
B

P P 

   
  
 

                                                                 (C.1) 

Then, these ,i jB  values were fitted to the empirical function given by Austin 

(1984) to evaluate the breakage function parameters of the quartz used. 

1 1
, [ ] (1 )[ ]i i

i j j j

j j

x x
B

x x

                                                          (C.2) 

The breakage function parameters for all our grinding media shapes were found 

to be: 
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Table C.30: Breakage function parameters obtained with the grinding media 

shapes used. 

 

* Mixture of 50 % balls and 50 % Eclipsoids. 

#  
Mixture of 50 % balls and 50 % cubes. 

$  
Mixture of 75 % balls and 25 % cubes. 

 

The values of the parameter   were all found very closed to zero.  

The total deviation (from the mean) of the particular point (x,y) is the vertical 

distance y – y , which is the distance between the point (x, y) and the horizontal 

line passing through the sample mean y (Triola, 2005).The total deviation was 

found to be 0.006,i.e. 0.6%. 

The quartz material used was then assumed to be normalizable (  =0). 

Therefore, the fractions appearing at sizes less than the initial feed size were 

assumed independent of the initial feed size. 

As a result, another parameter search was implemented with  =0. The breakage 

function parameters considered for all our grinding media shapes were finally 

found to be: 
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Table C.31: Normalised breakage function parameters obtained with the 

grinding media shapes used. 

 

The standard variation values were found to be 0.0055, 0.0718 and 0.0253 for 

parameters  ,   and  respectively. Eventually, it has been decided to consider 

the average values as the actual breakage function parameters. 

Table C.32: Breakage function parameters obtained for the quartz material 

used. 

Breakage function 

parameters 

      

5.80 1.01 0.71 
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C.2.4 Cumulative breakage distribution parameters ,i jB  

 

Figure C.1 Cumulative breakage distribution parameters for different sizes of 

quartz ground with balls. 

 

Figure C.2 Cumulative breakage distribution parameters for different sizes of 

quartz ground with Eclipsoids. 
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Figure C.3 Cumulative breakage distribution parameters for different sizes of 

quartz ground with cubes. 

 

Figure C.4 Cumulative breakage distribution parameters for different sizes of 

quartz ground with mixture of 50 % balls and 50 % Eclipsoids. 
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Figure C.5 Cumulative breakage distribution parameters for different sizes of 

quartz ground with mixture of 50 % balls and 50 % cubes. 

 

Figure C.6 Cumulative breakage distribution parameters for different sizes of 

quartz ground with mixture of 75 % balls and 25 % cubes. 
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D Non-linear regression technique 

A non-linear regression technique was implemented on the data collected from 

the batch grinding tests performed. Basically, the goal of this technique is to find 

the best-fit values of the model (Motulsky and Christopoulos, 2003). More 

precisely, it aims at finding the best combination of fitting parameters of a model 

by minimizing the square of the differences between the experimental values 

Pexpt(t) and the predicted ones Pmodel(t). The first order breakage law was used as 

our model to estimate the selection function. Consequently, the parameters that 

are likely to be correct are those that minimize the sum of squares. This 

objective function is defined as 

    



R

r

l tPtPSSE
1

2

modeexpt                                                                         (D.1) 

where R is the number of runs considered to carry out a full batch test on a given 

particle size x.  

Pexpt(t) retained experimental mass fraction on the top size screen x at 

grinding time t 

Pmodel(t) predicted mass fraction retained on size screen xi+1 after grinding 

of single-sized quartz material of initial size xi for a total grinding time 

t. 

Knowing that the average amount of scatter is not the same all the way at all 

values of X, a weighting scheme need to be applied to account of the increase of 
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the average amount of scatter with increasing Y values. The sum of the squares 

with the appropriate weighting is given by ((Motulsky and Christopoulos, 2003) 

: 
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