LEARNERS’ MATHEMATICAL REASONING WHEN GENERALIZING FROM NUMBER PATTERNS IN THE GENERAL EDUCATION AND TRAINING PHASE

By

WILLIAMS CHAPASUKA NDLOVU
STUDENT NUMBER: 0616576G

SUPERVISOR:
PROFESSOR MARGOT BERGER

A research report submitted to the Wits School of Education, Faculty of Science, University of the Witwatersrand in partial fulfilment of the requirements for the degree of Master of Science by combination of coursework and research.

Johannesburg, South Africa
June 2011
Copyright Notice

The copyright of this research report vests in the University of the Witwatersrand, Johannesburg, South Africa, in accordance with the University’s Intellectual Property Policy.

No portion of the text may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including analogue and digital media, without prior written permission from the author and the University. Extracts of or quotations from this report may, however, be made in terms of Sections 12 and 13 of the South African Copyright Act No. 98 of 1978 (as amended), for non-commercial or educational purposes. Full acknowledgement must be made to the author and the University.
ABSTRACT

This study aims to explore GET learners’ mathematical (algebraic) reasoning when generalizing from number patterns. Data was collected in a former model C school in greater Johannesburg area by means of a questionnaire based task involving number patterns. The mathematical reasoning of the grade 9 participants when generalizing from number patterns was examined within a commognitive framework. According to this perspective, thinking is a special activity of communication in which a participant of a discourse engages. The participants’ responses to questions in the questionnaire based task were classified according to particular aspects of the discourse they used, specifically routines (strategies) and visual mediators. The participants’ generalization routines were further classified into one of the three main categories; numeric, figural and pragmatic generalizations. The analysis focused on how the learners’ derived rules for the \(n \)th term and their justifications for their responses.

The results of this study strongly support the notion that students’ algebraic reasoning when generalizing in number patterns is intertwined with their choices of routines and mediators. Most learners used recursive routines while a few used explicit routines (classified and categorized as numeric routines) and number-mediators. Also, most participants found it easier to informally verbalize their generalizations. However participants’ spoken justifications of their written and spoken responses often did not match their use of routines and visual mediators. As such, an awareness and appreciation (by teachers) of students’ diverse use of routines and mediators when generalizing from number patterns could have direct pedagogical implications in the mathematics classrooms.

KEYWORDS

Algebra, Generalization, Commognition, Thinking, Communication and Reasoning
DECLARATION

I declare that this research report is my own unaided work. It is being submitted for the degree of Master of Science at the University of the Witwatersrand, Johannesburg South Africa. It has not been submitted before for any degree or examination at any other University.

__
(Signature of Candidate)

7th day of June in the year 2011
DEDICATION

In loving memory of my late Parents: Enala & Chapasuka
ACKNOWLEDGEMENTS

First and foremost I thank the Almighty GOD for giving me life and a good health. And also, I would like to thank the following people for their contributions towards my work:

My supervisor, Professor Margot Berger, for many hours of advice and encouragement, often under difficult circumstances, in which she helped me to develop and maintain the focus and yet enabled me to take ownership of this work. I am most privileged to have worked with such an understanding and exceptional person.

My former lecturers; Professor Jill Adler from University of Witwatersrand and Dr. Mercy Kazima from the University of Malawi – Chancellor College for encouraging me that I can do it. Your efforts and intellect to see the potential in others have not gone unnoticed. Thanks. Ngiyabonga.

I wish to pass my special thanks to the Principal of the school involved in this study, the 29 Grade 9 learners, who willingly agreed to participate in my study, spending so much time with them in their classroom. I am particularly grateful to L5, L9, L15, L17, L23 and L28, who willingly gave of their time to further participate in the interviews.

I am grateful to the National Research Foundation, the Department of Education and the University of the Witwatersrand for the financial assistance provided for my study.

Last but not least, I wish to express my sincere gratitude to my wife Jean Pemphero, for her love, patience and understanding throughout this academic journey. And also to our lovely daughter, Faith Dinna, for continuously asking when are you going to finish studying and become a Doctor or Professor? Such kinds of questions always bring a new projectile into my life. My brothers, sisters and friends thank you for the support and encouragement. I am proud of you all. God Bless.
TABLE OF CONTENTS

Research title .. i
Copyright notice ... ii
Abstract and keywords .. iii
Declaration .. iv
Dedication ... v
Acknowledgements .. vi
Table of contents .. vii
References .. x
Appendices .. xi
List of tables .. xii
List of figure .. xiii
Abbreviation ... xiv

CHAPTER 1: INTRODUCTION

1.1. Introduction .. 1
1.2. Background to the study .. 1
1.3. Research Problem .. 3
 1.3.1. Statement of Purpose .. 3
 1.3.2. Research Questions .. 3
 1.3.3. Number patterns .. 4
 1.3.4. Limitations of the study .. 4
1.4. Rationale of the study ... 4
 1.4.1. Algebra in the School Curriculum 5
 1.4.2. Curriculum Reforms and Personal Experience 6
1.5. The structure of the report .. 6
 1.5.1. Chapter 1 ... 6
 1.5.2. Chapter 2 ... 7
 1.5.3. Chapter 3 ... 7
 1.5.4. Chapter 4 ... 7
 1.5.5. Chapter 5 ... 7
 1.5.6. Chapter 6 ... 8
 1.5.7. Chapter 7 ... 8

CHAPTER 2: THEORETICAL FRAMEWORK

2.1. Theoretical Framework .. 9
 2.1.1 Commognitive Perspective .. 9
 2.1.2 Definition of Commognition ... 10
 2.1.3 Description of Commognitive tenets 10
 2.1.4 Mathematics as a Discourse ... 12
 2.1.5 Summary of Commognitive Theory 15
4.3.2.3. Figural Generalization 48
4.3.2.4. Pragmatic Generalization 49

4.4. Aspects of Generalization 50
4.4.1. Globalizing 51
4.4.2. Local (Extending) 51

4.5. Indicators of Generalization Categories 51
4.5.1. Numerical Generalization 51
4.5.2. Figural Generalization 52
4.5.3. Pragmatic Generalization 53

4.6. Mathematical Visualization 53
4.6.1. Visual Mediators. 54
4.6.2. Description of the Visual Mediators 54
4.6.3. Indicators of Mediators 55

4.7. Conclusion 56

CHAPTER 5: ANALYSIS AND INTERPRETATION OF DATA

5.1. Quantitative Analysis 57
5.1.1. Learners’ Generalization Approaches 57
5.1.2. Learners’ Written Responses 58
5.1.2.1. Level Descriptors. 58
5.1.2.2. Learners’ Choices of Routines and Mediators 59
5.1.3. Learners use of Mediators 63
5.1.4. Summary of the Previous Discussion 68

5.2. Qualitative Analysis 68
5.2.1. Interview Approach. 71
5.2.2. The Interviewed Participants 71
5.2.3. Learners’ Generalization Routines 73
5.2.4. Learner Interview Analysis 75
5.2.4.1. Low Ability Learners 75
5.2.4.1.i) Researcher Comments (L5) 78
5.2.4.1.ii) Researcher Comments (L9) 82
5.2.4.2. Medium Ability Learners 83
5.2.4.2.i) Researcher Comments (L15) 85
5.2.4.2.ii) Researcher Comments (L17) 89
5.2.4.3. High ability Learners 90
5.2.4.3.i) Researcher Comments (L23) 93
5.2.4.3.ii) Researcher Comments (L28) 97
5.2.5. Discussion of the Interviews (episodes of the transcriptions) 98

5.3. Summary of analysis and findings 99
CHAPTER 6: RESULTS AND DISCUSSION

6.1. Participants’ Common Routines 101
6.2. Participants’ Common Mediators 102
6.3. Learners’ Algebraic Reasoning 105
6.4. Learners’ Difficulties 107
6.5. Learners’ Mathematical Communication 111
6.6. Comparison of the Interviewed Learners 113
6.7. Summary and Conclusion 116

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.1. Introduction 117
7.2. Detailed findings 118
7.3. Reflections of the study 122
7.4. Limitations of the study 123
7.5. Implications of the study 124
7.6. Recommendations 125
7.7. Conclusions 125

REFERENCES 127
APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Questionnaire-based task</td>
<td>134</td>
</tr>
<tr>
<td>A2</td>
<td>Ethics documentation</td>
<td>138</td>
</tr>
<tr>
<td>B</td>
<td>Question 1 QRASS</td>
<td>145</td>
</tr>
<tr>
<td>C</td>
<td>Question 2 QRASS</td>
<td>146</td>
</tr>
<tr>
<td>D</td>
<td>Question 3 QRASS</td>
<td>147</td>
</tr>
<tr>
<td>E</td>
<td>Question 4 QRASS</td>
<td>148</td>
</tr>
<tr>
<td>F</td>
<td>Interview Transcriptions</td>
<td>150</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1 ... Linking the GET and FET Mathematics LO’s 3
2 ... Definitions of generalization 19
3 ... Aspects of generalizations 22
4 ... Research Questions and Instruments 39
5 ... Classification of routine categories 44
6 ... Summary of Learners’ Mediators (LVM) 55
7 ... Overall routine utilization in the study 60
8 ... Overall numerical generalization routines 61
9 ... Summary of Mediators 63
10 ... Questions 1 – 4 Responses 66
11 ... Examples of Learners’ solutions 67
12 ... Summary of the Interviewees’ responses 70
13 ... Routines versus Mediators in generalization 73
14 ... Examples of Learners’ Mediators 74
15 ... Learners’ generalization routines 119
16 ... Choice of generalization routines by learner ability 120
LIST OF FIGURES

1 ... Tiles Groups 12
2 .. Example of Growing Patterns 18
3 ... Tabular Mediation (Representation) 50
4 ... Diagrammatic-Tabular Representations (Mediation) 53
ABBREVIATIONS

GET Education and Training
GD Gauteng Department of Education
FET Further Education and Training
OBE Outcome Based Education
RNCS Revised National Curriculum Statement
C2005 Curriculum 2005
NCS National Curriculum Statement
DoE Department of Education
LR Learners’ Routines
LVM (LM) Learners’ Visual Mediators
QRASS Question Response and Summary Sheet
LD Level Descriptors
TLA Task Level of Attainment
MALATI Mathematics Learning and Teaching Initiative
SO Specific Outcomes
AS Assessment Standards
LO Learning Outcomes
AF Analytical Framework
NCTM National Council for Teachers Mathematics