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Abstract 

Ribonucleotide reductases (RNRs) are a class of enzymes catalyzing the de novo 

reduction of ribonucleotides to deoxyribonucleotides essential for DNA replication and 

repair. In addition to the class Ib RNR encoding genes, nrdE and nrdF2, 

Mycobacterium tuberculosis and Mycobacterium smegmatis also contain a homologue 

of a Chlamydial class Ic small subunit-encoding gene, nrdB. M. tuberculosis also 

contains an alternate class Ib RNR small (R2) subunit, NrdF1. In M. smegmatis mc2155, 

the class Ib RNR genes are located on a large chromosomal duplication. M. tuberculosis 

nrdF2 has been previously demonstrated to be essential for in vitro growth. It was 

hypothesized that different class I RNR R2 subunits could be used by the tubercle 

bacilli to survive and persist in the host. To test this hypothesis, function and expression 

of the class I R2-encoding genes in M. tuberculosis and M. smegmatis was investigated. 

Arguing against a specialist role for the alternate R2 subunits was the finding that NrdB 

in both organisms and NrdF1 in M. tuberculosis are individually and collectively 

dispensable for growth and long-term survival in vitro, resistance to genotoxic stress, 

adaptation during RNR inhibition by hydroxyurea and virulence in mice. Further 

confirming the essentiality of NrdF2 in mycobacteria and that NrdB cannot substitute 

for NrdF2 function in vitro was the finding that nrdF2 is essential for growth of a strain 

of M. smegmatis mc2155 lacking the duplicated chromosomal region (∆DRKIN). 

∆DRKIN showed marked hypersensitivity to a wide range of compounds including 

hydroxyurea and mitomycin C, whereas deletion of only one copy of nrdF2 in M. 

smegmatis mc2155 resulted in a specific hypersensitivity to hydroxyurea. Through the 

construction of nrdR-deficient mutants of M. tuberculosis and M. smegmatis, the class 

Ib RNR genes were shown to be specifically regulated by an NrdR-type repressor, as 

evidenced by increase in nrdE and nrdF2 transcript levels in nrdR-deficient mutants of 

M. tuberculosis and M. smegmatis. Interestingly, however, upregulation of these genes 

did not affect M. smegmatis or M. tuberculosis in vitro growth, DNA damage survival 

or resistance to hydroxyurea. Together, these observations identify a potential 

vulnerability in dNTP provision in mycobacteria, and thereby offer a compelling 

rationale for pursuing the class Ib RNR as a target for drug discovery.   
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 1 

1. Introduction 

 
 
1.1 Tuberculosis 

Tuberculosis (TB) is one of the leading causes of death globally, with 9.2 million new 

cases and 1.7 million deaths occurring in 2006 alone (WHO, 2008). Despite the 

estimation that 2 billion people are infected with the causative agent, Mycobacterium 

tuberculosis, worldwide (Gomez and McKinney, 2004), only 10 % of these individuals 

will develop active disease whilst the majority will remain in an asymptomatic state of 

latent TB infection (LTBI), which significantly contributes to the future burden of TB 

(Cardona and Ruiz-Manzano, 2004). HIV co-infection further complicates the efforts to 

combat the TB pandemic, serving as a major factor contributing to the high mortality 

rates amongst those infected (Kaufmann, 2004; Sharma et al., 2005). Of the TB cases 

and deaths observed in 2006, 0.7 million cases and 0.2 million deaths were from HIV 

co-infected individuals (WHO, 2008). It is estimated that in high HIV/AIDS burden 

countries, TB prevalence will reach 609 per 100 000 population by 2015 (Dye et al., 

2005). 

  

1.1.1 TB prevention 

Currently, live attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is 

used as a vaccine for TB prevention, with nearly 100 million children estimated to 

receive BCG every year (Barreto et al., 2006). BCG was developed by in vitro 

passaging of an isolate of M. bovis 230 times from 1908 to 1921. However, from 1921 

to 1961 this isolate had been passaged 1173 times, resulting in a number of 

genotypically and phenotypically different daughter strains, collectively known as BCG 

(Behr and Small, 1999; Behr, 2001a, 2002). Despite its long-term use, BCG protective 

efficacy has been variable (ranging from 0 to 80 %), being more effective in protection 

against primary TB in children than adult pulmonary TB (Barreto et al., 2006; Behr, 

2002; Castillo-Rodal et al., 2006; Lagranderie et al., 1996; Wu et al., 2007). Currently, 

there is no global consensus as to which strain of BCG has optimal efficacy for general 
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use. These findings have stimulated considerable interest in investigating the reasons 

underlying the variability in protective efficacy of BCG. Genetic alterations which 

occurred during the evolution of different BCG strains resulted in different phenotypes 

and hence, in different protective efficacy (Behr, 2001b, 2002; Leung et al., 2008; 

Mostowy et al., 2003). Host factors, such as pre-exposure to other mycobacterial 

species (Brandt et al., 2002; Demangel et al., 2005; Young et al., 2007) and route of 

vaccination have also been found to affect BCG efficacy (Aldwell et al., 2006; Chen et 

al., 2004; Manabe et al., 2002; Wang et al., 2004). Most importantly, as a live vaccine, 

BCG also poses a health threat to immunocompromised individuals (Bustamante et al., 

2007).  

 

Considerable effort has been made to find a vaccine that is safe and more effective in 

preventing pulmonary TB (Brennan et al., 2007; Izzo et al., 2005). Several studies have 

explored the possibility of enhancing the efficacy of BCG, with recombinant BCG 

vaccine (rBCG) candidates conferring better protection than BCG having been 

described (Fattorini, 2007). They include rBCG30 [BCG expressing antigen (Ag) 85B] 

(Horwitz et al., 2000; Horwitz and Harth, 2003; Horwitz et al., 2006) and 

rBCG::∆ureC-ll  O (a urease-deficient BCG mutant expressing lysteriolysin O) (Grode 

et al., 2005). Several groups are also interested in finding a booster vaccine for 

individuals whose immune system has already been primed by mycobacterial infection 

or by BCG vaccination. Amongst the promising booster vaccine candidates identified is 

Mtb72F (subunit vaccine of a fusion molecule comprising the M. tuberculosis PPE 

family member, Rv1196, and a putative serine protease, Rv0125) (Brandt et al., 2004; 

Tsenova et al., 2006) and MVA-85A (a recombinant, replication-deficient vaccinia 

virus expressing Ag85A from M. tuberculosis) (Brookes et al., 2008; Fletcher et al., 

2008; Horwitz et al., 2005; McShane et al., 2004; Williams et al., 2005). Interest in 

eventually replacing BCG by a suitably attenuated strain of  M. tuberculosis or M. bovis 

have yielded several vaccine candidates, albeit with less or equal protective efficacy to 

BCG (Aguilar et al., 2007; Hotter et al., 2005; Pavelka et al., 2003; Sambandamurthy et 

al., 2005; Senaratne et al., 2007). 
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1.1.2 Diagnosis of M. tuberculosis infection 

Despite its limitations (Kang et al., 2005; Soysal et al., 2008; Winje et al., 2008), the 

tuberculin skin test, which involves intradermal injection of purified protein derivative 

(PPD) followed by measurement of delayed type hypersensitivity response, is still a 

commonly used diagnostic test for M. tuberculosis infection. Recently, PPD 

(QuantiFERON-TB) (Streeton et al., 1998; Taggart et al., 2004) or more specific M. 

tuberculosis stimulatory antigens ESAT-6 and CFP-10 proteins (QuantiFERON-TB 

Gold test) (Diel et al., 2006; Liu et al., 2004; Mori et al., 2004; Ulrichs et al., 2000; 

Weldingh and Andersen, 2008) have been used in whole blood assays as stimulatory 

antigens for IFN-γ release, whereby the IFN-γ is then quantified and used as an 

indication of M. tuberculosis infection. Application of more recently developed 

techniques for diagnosis of active TB infection and drug susceptibility testing (e.g. 

BACTEC, phage-based and various nucleic acid amplification assays) have provided 

more sensitive and rapid means of diagnosing active TB infection (Banaiee et al., 2001; 

Banaiee et al., 2003; Gali et al., 2006; Katoch, 2004; Nahid et al., 2006; Rodrigues et 

al., 2007; Rusch-Gerdes et al., 2006; Tevere et al., 1996). Using a mathematical model 

of the TB epidemic currently raging in South African adults, it was estimated that 

simultaneous execution of culture and drug susceptibility testing in 37 % of new cases 

and 85 % of failed treatment cases may reduce TB mortality by 17 %, reduce multi-drug 

resistant (MDR)-TB incidence by 14 % and prevent 47 % of MDR-TB deaths from 

2008 – 2017 (Dowdy et al., 2008). However, the high cost of these new diagnostic 

assays, combined with inadequate diagnostic laboratory infrastructure limits their use in 

most developing countries (Glassroth, 2005).  
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1.1.3. TB chemotherapy 

Following the 1993 declaration by the World Health Organization (WHO) that TB is a 

global health emergency, the directly observed therapy short-course (DOTS) program 

was implemented. Even though DOTS has improved the treatment and cure rates of TB 

significantly (Shargie and Lindtjorn, 2005), this disease still remains a massive global 

health challenge (Brewer and Heymann, 2004). More than five decades ago, the 

treatment of TB required 18-24 months’ administration of streptomycin (STR) and p-

aminosalicylic acid (PAS). The introduction of isoniazid (INH), followed by two 

sterilizing drugs, rifampicin (Rif) and pyrazinamide (PZA), shortened the duration TB 

chemotherapy to six months, leading to the development of “short-course” 

chemotherapy (Jasmer et al., 2002; Jawahar, 2004; Mitchison, 2005a; Narita et al., 

2002; Torres, 1998). The current regimen comprises two phases: an intensive phase, 

which targets mainly the actively replicating bacilli and continuation phase, which 

target those organisms that persisted through the intensive phase. A regimen, starting 

with 2 months’ intensive phase therapy with INH, Rif, STR and PZA, followed by 4 

months’ continuation phase treatment with INH and Rif, is used as the gold standard in 

first-line chemotherapy, although in some cases, STR is substituted with ethambutol 

(EMB) (Mitchison, 2005b). 

 

Drug resistance 

The current complicated and lengthy regimen for TB chemotherapy often result in 

noncompliance and inappropriate treatment (Jose et al., 2007; Meacci et al., 2005; 

Picon et al., 2007), which can lead to development of drug resistance. About 460 000 

new cases of MDR-TB, defined by the presence of disease causing strains that are 

resistant to two first-line drugs, INH and Rif (Ginsberg and Spigelman, 2007), are 

estimated to occur every year world wide (WHO, 2006), with 500 000 cases detected in 

2006 alone (WHO, 2008). Drug resistance poses the biggest threat and challenge to the 

current TB interventions. Treatment of MDR-TB is more difficult, requiring 18-24 

months of therapy with second-line drugs that have limited sterilizing capacity, are less 

effective and more toxic (Ginsberg and Spigelman, 2007; Kaufmann, 2004; Sharma and 
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Mohan, 2006). Most importantly, the high cost of MDR-TB treatment (Floyd and 

Pantoja, 2008; Resch et al., 2006) is exacerbating the severity of the TB epidemic in 

developing countries. The magnitude of the threat presented by drug-resistant TB is 

underscored by the recent emergence and spread of extensively drug resistant (XDR) 

strains of M. tuberculosis, which are defined as MDR strains that are also resistant to a 

fluoroquinolone and at least one of the injectable drugs (Blaas et al., 2008; Masjedi et 

al., 2006; Migliori et al., 2007; WHO, 2008). A devastating outbreak of XDR-TB in 

South Africa resulted in a rapid spread and high mortality rates in those co-infected with 

HIV (Gandhi et al., 2006). A recent study found the highest percentage of South 

African XDR-TB cases studied to be acquired (Mlambo et al., 2008), suggesting that 

most of the XDR-TB cases are a consequence of a failed therapy. These factors have 

emphasized the urgent need to develop new drugs that are active against both drug-

susceptible and drug-resistant strains of M. tuberculosis. 

 
The biological fitness of drug resistant strains and their impact on the epidemiology of 

MDR-TB is a topic that has attracted considerable attention (Billington et al., 1999; 

Cohen and Murray, 2004; Gagneux et al., 2006a; Pym et al., 2002). In vitro studies 

have shown that drug resistance mutations may compromise the competitive growth of 

M. tuberculosis in liquid cultures and in macrophage cell lines (Billington et al., 1999; 

Gagneux et al., 2006b; Mariam et al., 2004). Nonetheless, it has been suggested that 

even though the majority of the occurring MDR strains are less fit, a smaller proportion 

of highly fit MDR strains may outcompete less fit strains (Cohen and Murray, 2004; 

Gagneux et al., 2006a). Supporting this notion is the finding that certain clinical, drug-

resistant isolates from patients were found to have no significant fitness cost, which 

could be due to non-cost resistance mutations being favored (Pym et al., 2002) or due to 

the  emergence of compensatory mutations (Gagneux et al., 2006b).  

 

Mechanisms of drug resistance 

Even though the intrinsic drug resistance of mycobacteria is most commonly 

attributable to the low permeability of the their complex lipid rich cell wall (Camacho et 
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al., 2001; Philalay et al., 2004; Wang et al., 2000), efflux systems have also been 

implicated in intrinsic drug resistance. They act by extruding a wide range of antibiotics 

from the cell (Amaral et al., 2007; Danilchanka et al., 2008; Li et al., 2004; Pasca et al., 

2005; Ramon-Garcia et al., 2007). There are four families of drug resistance 

transmembrane efflux proteins (Sharma and Mohan, 2004). Members of all of these 

families can be identified in M. tuberculosis genome. About 2.5 % of the M. 

tuberculosis genome is predicted to encode ATP-dependent ABC multidrug resistance 

transporters (Braibant et al., 2000), including the fluoroquinolone resistance ABC pump 

encoded by the Rv2686c-Rv2687c-Rv2688c operon (Pasca et al., 2004). The genome of 

M. tuberculosis encodes 13 transmembrane proteins predicted to be of the resistance 

nodulation division of transporters. These are proposed to act in drug efflux, specific to 

mycobacteria, and are designated as “mycobacterial membrane proteins large” (MmpL) 

(Cole et al., 1998).  

 

Non-intrinsic drug resistance in M. tuberculosis can be either phenotypic or genetic. 

Phenotypic resistance is non-heritable and can be due to slow growth or non-replication 

of bacteria which results in tolerance to drugs (persisters). Phenotypically resistant 

bacilli can be eradicated following relapse after a successful treatment (Connolly et al., 

2007; Sacchettini et al., 2008). Genetic resistance is due exclusively to mutations which 

occur in the drug target or in the gene encoding a pro-drug activator, resulting in an 

irreversible loss of susceptibility to the drug. In M. tuberculosis, genetic resistance to 

antitubercular drugs is conferred exclusively by chromosomally borne mutations 

(Gillespie, 2002; Guo et al., 2008; Sekiguchi et al., 2007; Sharma and Mohan, 2004; 

Wang et al., 2007). There is no evidence in this organism for the acquisition of drug 

resistance through horizontal gene transfer. Over the past few years, the molecular 

mechanisms of resistance to almost all known antitubercular drugs, including the 

recently discovered compounds, have been elucidated (Bamaga et al., 2001; Ginsburg et 

al., 2005; Manjunatha et al., 2006a; Petrella et al., 2006; Shi et al., 2007). The 

frequency with which resistance arises in vitro differs depending on the specific 

antibiotic, with frequencies of resistance of M. tuberculosis to Rif and INH being 3.1 × 
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10-8 and 3.5 × 10-6, respectively. However the mutation frequency decreases to 9 × 10-14 

when both Rif and INH are used in combination (Gillespie, 2002; Johnson et al., 

2006c).  

 

Some of the characterized mutations conferring resistance of M. tuberculosis to 

antitubercular drugs are summarized in Table 1.1.  Rif inhibits RNA polymerase 

function by binding to its β subunit encoded by rpoB. Different mutations in the rpoB 

gene conferring Rif resistance have been identified, with the majority (95 %) occurring 

within a small region of <100 bp – the Rif-resistance determining region (RRDR). 

Three substitution mutations, namely Ser531Leu, His526Tyr and Asp516Val occur in 

>70 % of the Rif resistant isolates that have been characterised, with the Ser531Leu 

mutation occurring even more frequently than His526Tyr and Asp516Val (Billington et 

al., 1999; Guo et al., 2008; Johnson et al., 2006c; Telenti et al., 1993). INH is a pro-

drug which is activated by the katG-encoded catalase-peroxidase upon entry into the 

cell to produce toxic, reactive radicals including the isonicotinic acyl radical, which can 

damage several targets (DeVito and Morris, 2003; Timmins et al., 2004a, b). The 

principal cellular target of INH is the NADH-dependent enoyl acyl carrier reductase, 

InhA, which plays an essential role in mycolic acid synthesis (Slayden and Barry, 2002; 

Vilcheze et al., 2006). Although mutations in other genes can confer INH resistance 

(e.g., ndh), approximately 70-80 % of INH resistant strains are associated with 

mutations in the katG and inhA genes with the most common being a Ser315Thr 

substitution in KatG and a -15C�T substitution in the promoter region of inhA (Guo et 

al., 2006; Guo et al., 2008; Johnson et al., 2006c; Leung et al., 2006; Parsons et al., 

2005).  

 

PZA is a highly effective drug that does not have a specific target. After the conversion 

of this pro-drug into its active form, pyrazinoic acid (POA), through the action of the 

pyrazinamidase, PncA, this weak acid accumulates in the cell under acidic conditions, 

and acidifies the cytoplasm, so inhibiting cellular metabolism (Boshoff and Mizrahi, 

1998, 2000; Boshoff et al., 2002; Zhang et al., 1999; Zhang and Mitchison, 2003). An 
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interesting feature of PZA is its greater sterilizing effect on stationary phase than 

actively growing cultures (Mitchison, 2005b) and the enhancement of its activity under 

hypoxic conditions and by energy metabolism inhibition (Gu et al., 2008; Wade and 

Zhang, 2004). PZA resistance is mainly due to mutations in the pncA gene which 

abrogate the amidase activity of the PncA enzyme and thus preclude the production of 

POA (Bamaga et al., 2001; Boshoff and Mizrahi, 2000; Huang et al., 2003; Johnson et 

al., 2006c; Louw et al., 2006; Scorpio and Zhang, 1996).  

 

EMB acts by inhibiting the arabinosyl transferase (EmbB) which is required for cell 

wall synthesis (Belanger et al., 1996). The majority of EMB resistant mutants carry 

mutations in the embB gene. Mutations in the Met306 codon of EmbB resulting in 

substitution with Val, Leu or Ile account for resistance in 70-90 % of EMB resistant 

isolates, with Met306Leu and Met306Val conferring a higher level of resistance than 

Met306Ile (Johnson et al., 2006b; Parsons et al., 2005; Plinke et al., 2006; Telenti et al., 

1997). STR inhibits translation by interacting with the 16S rRNA and S12 ribosomal 

protein (encoded by rrs and rpsL, respectively). Mutations in both rrs and rpsL confer 

STR resistance, with rpsL mutations conferring a higher level of resistance (Honore and 

Cole, 1994; Honore et al., 1995; Johnson et al., 2006c).  
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1.2 M. tuberculosis as a human pathogen 

M. tuberculosis is an aerobic, acid fast, slow growing bacillus with doubling time of ac. 24 

hours (Hartmans et al., 2006). It has got a genome size of 4.4 mb with 65.6 % GC content 

(Cole et al. 1998). Is the most virulent intracellular human pathogen amongst the M. 

tuberculosis complex (MTBC), which includes M. bovis, M. microti, M. africanum, M. canetti 

and M. caprae (Brosch et al., 2002; Cole, 2002b; Smith et al., 2006). It is characterized by its 

unique thick lipid rich cell wall, which is commonly implicated in pathogenesis (Alderwick et 

al., 2007; Barry, 2001; Hotter et al., 2005; Karakousis et al., 2004a; Reed et al., 2004; Stokes 

et al., 2004; Zuber et al., 2008). Although there are many important molecules in the M. 

tuberculosis cell wall, mycolic acids are the most abundant and most extensively studied 

(Behr et al., 2000; Schroeder and Barry, 2001; Takayama et al., 2005; Wang et al., 2000; 

Yuan et al., 1998; Zuber et al., 2008). The most studied virulence-enhancing lipids produced 

by M. tuberculosis are the phthiocerol dimycocerosates (PDIMs). Since the identification of 

PDIMs as virulence factors, this class of lipids has attracted considerable interest in terms of 

its contribution to mycobacterial pathogenesis (Hotter et al., 2005; Pinto et al., 2004; 

Rousseau et al., 2004; Sirakova et al., 2003). A class of lipids structurally related to PDIMs – 

the phenolic glycolipids (PGLs) – has also been investigated and postulated to account for the 

virulence of the HN878 strain of M. tuberculosis in mice (Reed et al., 2004). M. tuberculosis 

is an airborne pathogen, extremely slow growing and requires Biosafety level 3 conditions, 

hence, Mycobacterium smegmatis, a fast-growing, non-pathogenic saprophyte is usually used 

as a model organism in mycobacteriology (Kana and Mizrahi, 2004).  

 
1.2.1 M. tuberculosis pathogenesis and immunity 

In most cases, the TB bacillus enters the host by inhalation of the M. tuberculosis-containing 

aerosol and engulfment by alveolar macrophages before dissemination to other parts of the 

body. Usually, it leads to a pulmonary infection, which can develop into chronic disease and 

severe tissue destruction (Raja, 2004). Phagocytosis by alveolar macrophages via surface 

receptors, including Toll-like receptors (TLRs), complement receptors and mannose 

receptors, represents the first line of cellular defense against microbial invasion (Alagarasu et 



 11 

al., 2007; Pieters, 2001; Smith, 2003; van Crevel et al., 2002). Upon ingestion, M. 

tuberculosis is contained in the phagosome, an endocytic vacuole formed after phagocytosis. 

After phagosome-lysosome fusion (to form the phagolysosome), the bacilli are subjected to 

degradation by lysosomal enzymes. Bacilli taken up by macrophages are also subjected to the 

bactericidal activities of antibacterial agents such as reactive oxygen intermediates (ROI), 

reactive nitrogen intermediates (RNIs) and toxic peptides (Pieters, 2001; Smith, 2003). The 

bactericidal activities of hydrogen peroxide (H2O2), a ROI generated by macrophages via the 

oxidative burst, has been demonstrated in mice (Adams et al., 1997; Nathan and Shiloh, 

2000). Several lines of evidence implicate RNIs as the most potent antimicrobial agents in 

mice macrophages (MacMicking et al., 1997; Olin et al., 2008). RNIs are believed to play a 

similar role in human macrophages (Firmani and Riley, 2002; Flynn et al., 1998; Nathan, 

2006; Nicholson et al., 1996). Supporting this notion is the findings that increase in 

expression of inducible NO synthase (iNOS), which catalyzes the production of NO (one of 

the RNIs), facilitated inhibition of M. tuberculosis growth in a human macrophage-like cell 

line (Liu et al., 2006). NO is a potent RNI that can react with O2 to yield a variety of 

antimycobacterial products, including NO2
- and NO3

-, and with O2
- free radical to produce 

peroxynitrite (ONOO-) (Nathan and Shiloh, 2000; Nathan, 2006). The central role of NO in 

restricting M. tuberculosis growth in mice was supported by the finding that knockout mice 

lacking iNOS, are markedly more susceptible to M. tuberculosis infection than wild-type mice 

(MacMicking et al., 1997).  

 

Mycobacteria that escape the first-line host defense mechanisms outlined above will multiply 

intracellularly, resulting in lysis of macrophages and concomitant recruitment of more 

phagocytes to the site of infection. The recruited phagocytes will ingest the invading 

mycobacteria, which grow exponentially in the intracellular environment. Two to three weeks 

after infection, further release of proinflamatory cytokines and chemokines (e.g. interleukin 

(IL)-12 and tumor necrosis factor (TNF)-α) by mycobacteria-harboring macrophages mediate 

the recruitment and activation of antigen-specific T cells. This results in the development of 

effective cellular immunity through a complicated series of events (Akahoshi et al., 2003; 
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Kaufmann, 2002; Long and Gardam, 2003). Briefly, presentation of mycobacterial antigens 

by antigen presenting cells (e.g. macrophages) to the recruited antigen-specific CD4+ and 

CD8+ T cells via the surface major-histocompatibility complex (MHC) class II or I, 

respectively, results in further recruitment, stimulation and proliferation of antigen specific T-

cells (Cowley and Elkins, 2003; Cowley et al., 2005; Lazarevic and Flynn, 2002; Raja, 2004). 

Then, the effective type-1 T cells (Th1, e.g. CD4+ cells) become the main source of the major 

immune effector molecules, IFN-γ and TNF-α. This leads to more production of cytokines, 

which feed back to phagocytic cells harboring replicative intracellular bacteria and increase 

their bacteriostatic and bactericidal functions. Mycobacterial growth is then arrested and the 

bacilli can be contained within the granuloma (lesions composed of macrophages in the center 

surrounded by T and B cells) (Ben-Ali et al., 2004; Botha and Ryffel, 2003; Cowley and 

Elkins, 2003; Lopez-Maderuelo et al., 2003; Ogus et al., 2004; Ottenhoff et al., 2005; Picard 

et al., 2002). Despite the host’s aggressive antimycobacterial activities, the bacilli may remain 

viable for extended periods of time within the granuloma to generate LTBI. The bacilli may 

later resuscitate when conditions are favorable, leading to cell necrosis and cavitation of the 

lung (Casanova and Abel, 2002; Raja, 2004; van Crevel et al., 2002). 

 

During mycobacterial pathogenesis, macrophages are the major antigen presenting partners 

for T-cells and a source of IL-12. However dendritic cells also represent the most professional 

antigen presenting cells for priming naïve T-cells and are an important source of IL-12. 

Dendritic cells can take up mycobacteria, they have bacteriostatic activity, they acquire 

antigen presenting capabilities for mycobacterial-derived antigens and hence, can trigger the 

adaptive immune response (Jiao et al., 2002; Tailleux et al., 2003a). Due to their migratory 

ability, they have also been shown to play a role in dissemination of M. tuberculosis 

(Humphreys et al., 2006). Finally, the humoral immune response has also been shown to play 

a protective role against M. tuberculosis infection (de Vallie`re, 2005; Hamasur et al., 2003; 

Maglione et al., 2007; Teitelbaum et al., 1998; Williams et al., 2004) and dissemination 

(Costello et al., 1992).  
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1.2.3 M. tuberculosis evasion of the immune defense  

The success of M. tuberculosis as a pathogen centers on its ability to manipulate or avoid the 

host defense mechanisms for its own survival. There has been a high level of interest in this 

area and a variety of mechanisms have been suggested to contribute to the survival and 

interference of M. tuberculosis with the immune response. These include inhibition of 

phagocytosis (Torrelles et al., 2008; Villeneuve et al., 2003), inhibition of phagosome-

lysosome fusion (Chua and Deretic, 2004; Hestvik, 2004; MacGurn and Cox, 2007; Malik et 

al., 2000; Malik et al., 2003), resistance to RNI (Davis et al., 2007; Miller et al., 2004) and 

inhibition of antimicrobial peptide synthesis (Rivera-Marrero et al., 2004). The ability of the 

tubercle bacilli to arrest phagosome maturation, as an intracellular survival strategy, has been 

well demonstrated (Hestvik et al., 2005; Pethe et al., 2004; Vergne et al., 2004a). Normally, 

phagosome maturation involves acquisition of the GTPase, Rab5, accumulation of the PI3P-

binding protein, early endosome autoantigen1 (EEA1) and phosphorylation of 

phosphatidylinositol (PI) to generate PI-3-phosphate (PI3P) by the PI kinase VPS34 (Fratti et 

al., 2001; Vieira et al., 2003). Recruitment of Rab7 to the phagosome facilitates fusion with 

lysosomes (Harrison et al., 2003; Hmama et al., 2004). Within phagosomes, there is increased 

acidification from pH 5.5 to 4.5 facilitated by the vacuolar ATPase, which results in activation 

of the lysosomal hydrolases (Singh et al., 2006b; Steinberg and Grinstein, 2008).  

 

In contrast, phagosomes containing live pathogenic mycobacteria retain the early endosomal 

GTPase Rab5 and do not acquire EEA1 (Brumell and Scidmore, 2007; Fratti et al., 2003a; 

Fratti et al., 2001; Hmama et al., 2004; Kelley and Schorey, 2003; Vergne et al., 2004b). 

They also do not accumulate vacuolar ATPase, and hence, do not acidify below pH 6.3 

(Vergne et al., 2004a). M. tuberculosis mutants defective in counter-immune mechanisms, 

most importantly arresting phagosome-lysosome fusion, mutants hypersensitive to 

intraphagosomal acid stress and hence, attenuated for intraphagosomal survival, have been 

isolated. They include mutants in membrane-associated proteins, and lipid synthesis and 

transport proteins. The variety of these mutants suggests that modulation of phagosome 
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maturation is likely to represent a complex multigenic process (Hisert et al., 2004; MacGurn 

and Cox, 2007; Pethe et al., 2004; Stewart et al., 2005; Vandal et al., 2008).   

 

The surface properties of the tubercle bacilli have been shown to have a significant influence 

on these processes, and several mycobacterial cell wall lipids and glycolipids have been 

implicated in altered phagosome biogenesis. The mycobacterial cell wall glycolipid, 

lipoarabinomannan (LAM), has been shown to inhibit EEA1 recruitment to the phagosomes 

(Fratti et al., 2001) and disrupt delivery of lysosomal hydrolases (Fratti et al., 2003b; 

Hayakawa et al., 2007). Another M. tuberculosis glycolipid that has been shown to interfere 

with phagosomal maturation is phosphatidylinositol mannoside (PIM), a phosphatidylinositol 

analogue and a precursor of LAM. Several studies have demonstrated that PIM specifically 

facilitates fusion of early endosomes, retaining Rab5 GTPase, blocking acquisition of 

lysosomal constituents and inhibiting phagosomal acidification (Briken et al., 2004; Brumell 

and Scidmore, 2007; Vergne et al., 2004b). The mycobacterial cell wall does not only 

interfere with immune signaling pathways but also confers resistance to killing due to its 

relatively impermeable physical barrier to the hydrolytic enzymes encountered within 

macrophages (Camacho et al., 2001). 

  

For efficient delivery of NO, bacteria-containing phagosomes have been demonstrated to 

recruit iNOS. Exclusion of iNOS by mycobacteria-containing phagocytes has been associated 

with high resistance of M. tuberculosis to RNIs (Miller et al., 2004, Davis et al., 2007). Ca2+ 

has also been shown to be required for subsequent effector mechanisms of innate immunity, 

including the respiratory burst that generates ROI and the maturation of phagosomes to 

phagolysosomes (Connolly and Kusner, 2007; Kusner, 2005). However, M. tuberculosis 

prevents the elevation of host cytosolic Ca2+ levels by inhibiting  sphingosine kinase, an 

enzyme required in the mediation of the increase of Ca2+ (Malik et al., 2003), thus 

contributing to reduced phagosome-lysosome fusion and enhanced survival within human 

macrophages (Connolly and Kusner, 2007; Malik et al., 2000).   
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To prevent activation of macrophages, M. tuberculosis interferes with antigen presentation 

and cytokine release following infection (Banaiee et al., 2006; Gehring et al., 2003; Kincaid 

and Ernst, 2003; Master et al., 2008). Multiple mechanisms have been suggested to account 

for inhibition of antigen presentation (Chang et al., 2005), including inhibition of antigen 

expression and processing (Pai et al., 2004), MHC-II (Noss et al., 2000; Noss et al., 2001; Pai 

et al., 2003), MHC-I expression (Tobian et al., 2003), transport of MHC-peptide complexes to 

the cell surface and loading of immunodominant peptides onto MHC-II molecules 

(Ramachandra et al., 2001). As described above, production of PGLs has been linked to 

virulence through downregulation of the host inflammatory response to M. tuberculosis 

infection (Reed et al., 2004; Sinsimer et al., 2008). It has been shown that M. tuberculosis-

infected monocyte derived macrophages do not synthesize IL-12, resulting in a reduced 

ability to induce T-cell proliferation (Mariotti et al., 2004). The ability of M. tuberculosis to 

induce a shift from an effective Th1 to an ineffective Th2 response has also been implicated 

in virulence (Manca et al., 2001; Rook et al., 2005). Mycobacterial LAM induces IL-12 and 

TNF-α production by macrophages in a TLR-2-dependent manner (Moller et al., 2001; 

Quesniaux et al., 2004), but it can also inhibit pro-inflammatory cytokines in a TLR-2- 

independent fashion (Briken et al., 2004; Gagliardi et al., 2005; Pathak et al., 2005; 

Quesniaux et al., 2004). LAM has also been shown to inhibit dendritic cell-mediated immune 

response (Geijtenbeek et al., 2003) by specifically interacting with dendritic cell-specific 

ICAM-3 grabbing non-integrin (DC-SIGN) (Pitarque et al., 2005; Tailleux et al., 2003b). 
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1.3 New TB drug discovery and development 

No new TB drugs have been introduced for more than 40 years, largely as a result of the 

lack of activity in the field of TB drug discovery and development. However, the 

situation has changed significantly in recent years with the establishment of new 

initiatives such as the Global Alliance for TB Drug Development (TB Alliance; 

www.tballiance.org). The top priority of the TB Alliance is to shorten the duration of 

chemotherapy from the current 6-9 months to two months or less (www.tballiance.org). 

A study done in South East Asia estimated that a two-month regimen introduced by 

2012 could prevent ~ 20 % of new cases and ~ 25 % of TB deaths (Salomon et al., 

2006). Because the extended chemotherapy is mainly believed to be attributable to the 

ability of the bacilli to enter into a non-replicating state, understanding the mechanisms 

used by the tubercle bacilli to enter this persistent state may contribute significantly in 

shortening TB chemotherapy (Connolly et al., 2007). In the past few years, significant 

efforts have been made to develop new TB drugs and, despite the difficulties and 

challenges faced, several promising candidates have emerged. The discussion here will 

be focused on those which have reached phase II and phase III clinical trials. 

 

1.3.1 Drugs in clinical trials 

The high potency of fluoroquinolones against replicating and nonreplicating 

mycobacteria has attracted considerable attention and has led to their use as second-and 

third-line drugs (Keshavjee et al., 2008; Moadebi et al., 2007). These drugs include 

moxifloxacin (Moxi) and gatifloxacin (Gati) which are amongst the first “new” 

antitubercular drugs to be tested in phase III clinical trials and with a potential to be 

used in first-line chemotherapy (Check, 2007). Their high antimycobacterial activity in 

vitro (Ruiz-Serrano et al., 2000), in the murine model of TB (Nuermberger et al., 

2004a; Nuermberger et al., 2004b) and in humans (Johnson et al., 2006a; Peloquin et 

al., 2008; Rustomjee et al., 2008b) has been demonstrated. In monotherapy, both drugs 

had high early bactericidal activity (EBA), greater than that of INH, and were well 

tolerated in pulmonary TB patients (Johnson et al., 2006a; Peloquin et al., 2008). A 

combination of either Moxi and Gati with INH+Rif+PZA in the first 2 months of 
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treatment improved the sterilizing activity in pulmonary TB patients (Rustomjee et al., 

2008b), underscoring the potential for using fluoroquinolones in first-line TB therapy.  

 

The nitroimidazole, PA-824, is one of the most promising novel antitubercular drug 

candidates identified to date. Its biological target has been proposed to be an enzyme 

involved in mycolate biosynthesis, whereby it inhibits the oxidation of 

hydroxymycolates, a known precursor to cell wall ketomycolates. PA-824 is a pro-drug 

which requires bacterial activation catalyzed a nitroimidazo-oxazine specific 

nitroreductase Rv3547, which may interact directly with the pro-drug (Manjunatha et 

al., 2006a; Manjunatha et al., 2006b, Bashiri et al., 2008; Stover et al., 2000). 

Reduction of PA-824 by Rv3547 results in the production of bactericidal RNIs 

(including NO) (Singh et al., 2008). It possesses high in vitro activity against replicating 

and nonreplicating organisms, and against MDR strains of M. tuberculosis. It showed 

impressive activity against oxygen-starved cultures with a minimum inhibitory 

concentration (MIC) of 0.015-0.25 µg/ml in vitro. It is most effective by oral 

administration in mice at 25 mg/kg and in guinea pigs at 40 mg/kg (Stover et al., 2000). 

The feasibility of including PA-824 in the current standard chemotherapy has been 

demonstrated in mice. PA-824 alone showed significant bactericidal activity during the 

first two months of treatment in mice similar to that of INH in human. When used in 

combination with INH, it inhibited the selection of INH resistant mutants (Tyagi et al., 

2005). Compared to mice treated with the standard regimen, which were culture 

positive after two months of treatment and relapsed after four months, substitution of 

INH by PA-824 resulted in culture negativity in mice lungs after two months of 

treatment and no relapse was observed after four months (Tasneen et al., 2008).  

 

The recent discovery of a diarylquinolone compound, R207910 (TMC207), which 

targets the M. tuberculosis ATP synthase proton pump, generated a lot of excitement 

(Andries et al., 2005; Huitric et al., 2007; Koul et al., 2007; Petrella et al., 2006). It has 

a high specific mycobactericidal activity with an MIC for M. tuberculosis of 0.03-0.12 

µg/ml in vitro. It also showed activity against drug-resistant strains with an MIC of 0.06 
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µg/ml and an effective half-life of over 24 hours. When used as monotherapy, the 

bactericidal activity of R207910 in mice was higher than that of INH and Rif by 1 log10. 

One month of combination oral treatment with R207910+INH+PZA and 

R207910+Rif+PZA gave bactericidal activities similar to that obtained with 

Rif+INH+PZA therapy after 2 months (Andries et al., 2005; Ballell et al., 2005; Huitric 

et al., 2007). Unlike INH, R207910 has the same killing efficiency against non-

replicating (dormant) bacilli as aerobically growing bacilli (Koul  et al., 2008). 

Combination therapy of R207910 with amikacin, PZA, Moxi and ethionamide gave 

culture negativity after 2 months of treatment in mice (Lounis et al., 2006). Most 

importantly, unlike INH which is effective only during the first week of treatment, the 

activity of R207910 increased from the 2nd week and continued in the last two weeks of 

therapy (Lounis et al., 2008). Similarly, in TB patients, the bactericidal activity of 

R207910 monotherapy resulted in delayed bacterial killing, with increased activity 

being observed from day four, unlike INH and Rif which showed significant activity 

from first day of treatment. On the basis of these findings, R207910 is considered a 

good drug to target persisters, having the potential to shorten TB chemotherapy. Most 

importantly, R207910 was well tolerated by patients (Rustomjee et al., 2008a).  

 

Matsumoto and colleagues reported another promising lead compound, OPC-67683, a 

nitro-dihydro-imidazooxazole derivative and mycolic acid biosynthesis inhibitor 

(Matsumoto et al., 2006). It is highly effective with an MIC of 0.006–0.024 µg/ml 

against both drug susceptible and resistant strains in vitro and at low doses in mice 

(0.625 mg/kg). OPC-67683 was shown to have high bactericidal activity against 

intracellular M. tuberculosis H37Rv at a concentration of 0.1 µg/ml, similar to that of 

Rif at 3 µg/ml. In combination therapy with Rif and PZA, mouse lungs were converted 

to culture negativity in four months as compared to the standard regimen of Rif, INH, 

EMB and PZA where Colony forming units (CFUs) could still be detected after six 

months of therapy (Matsumoto et al., 2006; Saliu et al., 2007). 
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1.3.2 Modeling the persistent M. tuberculosis infection  

In vitro models 

There has been considerable effort in trying to model the environment encountered by 

M. tuberculosis in human using in vitro models. It is believed that M. tuberculosis 

encounters nutrient starvation, hypoxia, nitrosative and oxidative stress during infection 

and it is this combination of conditions which drives the tubercle bacilli into a dormant, 

drug-tolerant state (Fenhalls et al., 2002; Rachman et al., 2006a; Timm et al., 2003). In 

vitro models that may reflect the persistent or the dormant state of M. tuberculosis have 

been defined. Phenotypic studies, transcriptomic and proteomic analyses of M. 

tuberculosis under these conditions have been used to investigate the metabolism and 

physiology of M. tuberculosis in the various models.  

 

Stationary phase cultures in which cells are characterised by high resistance to a variety 

of stresses, have been widely used as a simple and an inexpensive way to model M. 

tuberculosis persistence (Hampshire et al., 2004; Hu and Coates, 2001; Smeulders et 

al., 1999; Voskuil et al., 2004). An in vitro dormancy model developed by Wayne and 

Hayes demonstrated the usefulness of in vitro stationary cultures to model persistence. 

It is based on the generation of a dormancy-inducing oxygen gradient generated by 

gentle stirring of cultures. In this model, the first stage of nonreplicating persistence 

(NRP), designated as NRP1, induced by dissolved oxygen levels of ~ 1 % saturation is 

followed by NRP2 at oxygen levels below ~ 0.06 % saturation (Wayne and Hayes, 

1996). The dormant state of cells in this model is characterized by antibiotic tolerance 

and dramatic decrease in DNA, RNA, and protein synthesis (Gomez and McKinney, 

2004; Wayne and Hayes, 1996). Using this model in combination with transcriptional 

profiling, a range of genes essential for hypoxia survival were described (Hampshire et 

al., 2004; Muttucumaru et al., 2004; Voskuil et al., 2004). The Wayne model was 

recently extended to use in vivo by infecting mice with M. tuberculosis cells in NRP2, 

which were unable to replicate for the first three weeks post infection. This 

demonstrated the potential of the model to reflect some aspects of LTBI in the human 

host and as a tool for developing drugs against dormant bacilli (Woolhiser et al., 2007). 
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The usefulness of the Wayne model was demonstrated by the discovery of the 

dormancy regulon, which is highly induced during NRP2 and also by exposure to low 

levels of NO (Voskuil et al., 2003; Voskuil et al., 2004). This regulon is comprised of 

approximately 50 genes under the control of dosR/S/T two-component regulatory 

system (Kendall et al., 2004a; Roberts et al., 2004; Schnappinger et al., 2003). 

Intriguingly, several DosR-regulated genes were found to be constitutively upregulated 

in strains belonging to the Beijing lineage, consistent with the 50-fold higher level of 

DosR observed in these strains compared to non-Beijing controls (Reed et al., 2007).  

  

The nutrient starvation model, whereby cultures are grown under limited nutrient 

availability has also been employed to study mycobacterial persistence. The nutrient 

starvation model employed by Loebel et al. involves growth of cultures in phosphate-

buffered saline (PBS) for an extended period of time. Bacilli in this model are 

characterised by drug resistance, no or little replication and dramatic reduction in 

aerobic respiration. However, the bacilli are able to recover when later transferred to a 

nutrient-rich media (Betts et al., 2002; Loebel et al., 1933a, b). Recently, Betts et al. 

used this model to characterize the transcriptome and proteome changes during 

starvation, which provided evidence for slow-down of energy metabolism, transcription, 

lipid biosynthesis and cell replication by the bacilli under nutrient- limiting conditions. 

Another major finding was the induction of M. tuberculosis stringent response in this 

model (Betts et al., 2002). The stringent response is mediated by increased levels of 

hyperphosphorylated guanine nucleotides [(p)ppGpp], which bind to the β-subunit of 

the RNA polymerase to induce a specific pattern of bacterial gene expression in which 

most genes are switched off while a subset of genes are upregulated (Crosse et al., 

2000; Gong et al., 2002; Primm et al., 2000; Wendrich et al., 2002), affecting more than 

80 genes in E. coli (Block and Haseltine, 1975; Braedt and Gallant, 1977; Pao and 

Gallant, 1979). Unlike in Gram negative bacteria where two proteins (RelA and SpoT) 

are responsible for the synthesis of (p)ppGpp (Balzer and McLean, 2002; Gong et al., 

2002), mycobacteria possess only one stringent response regulator, Rel (Avarbock et 

al., 2005; Avarbock et al., 1999). Interestingly, a M. tuberculosis relMTb knockout 
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mutant was found to be impaired for normal growth in vitro, long-term survival under 

in vitro starvation, anaerobic conditions and establishment of chronic infection in mice 

(Dahl et al., 2003; Dahl et al., 2005; Primm et al., 2000).  

  

Animal models  

The mouse model of TB infection has contributed extensively to the current knowledge 

base regarding M. tuberculosis pathogenesis. This model is characterized by a 

progressive increase in organ bacterial loads in the lungs during the acute phase of 

infection followed by a stable number of CFUs during the chronic phase which occurs 

3-4 weeks after infection due to the onset of the acquired immune response (Flynn, 

2006). However, whether the stable number of bacteria in the chronic phase is static, 

with little or no replication, or is dynamic, where continuous bacterial division is 

balanced by bacterial death, remains a controversial question. An interesting study by 

Muñoz-Elías and colleagues defined viable counts as CFUs and total counts as 

chromosome equivalents by quantitative real-time PCR. Their data supported the 

hypothesis that the stable number of bacterial CFUs in the lungs during chronic 

infection represents a static equilibrium (Muñoz-Elías et al., 2005), however the bacilli 

are metabolically active (Talaat et al. 2007). Because of the availability of reagents, and 

of genetically modified, and inbred strains of mice, which are relatively easy to house, 

the mouse model is the most commonly used animal model in TB research although the 

differences in pathology in the mouse infection compared to humans are well 

recognised (Aly et al., 2006; Flynn, 2006; Muñoz-Elías et al., 2005; Smith, 2003; 

Ulrichs and Kaufmann, 2006; Via et al., 2008). The Cornell mouse model of latent TB, 

which is based on the artificial induction of latency by antibiotic treatment, has been 

used to model certain aspects of LTBI (McCune et al., 1956). This was followed by the 

development of two modified versions of this model: in the first, reactivation was 

induced by an immune suppressor (Flynn et al., 1998) and in the second, low-dose 

variant, very low number of bacilli are used to infect mice, such that latency is induced 

by the host control of the infection (Botha and Ryffel, 2002; Radaeva et al., 2005). 
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The use of other models which mimic human infection more closely has been limited by 

their difficulty to house animals under BSL3 conditions, high cost and reagent 

availability. The guinea pig model has been useful for studying dissemination and 

secondary granuloma formation and is commonly used as an important model for 

preclinical studies in new vaccines and drug interventions due to their intrinsically 

increased susceptibility to TB infection (Brandt et al., 2004; Hoff et al., 2008; Lenaerts 

et al., 2007; Lenaerts et al., 2008; Orme, 2005). Pulmonary TB in rabbits recapitulates 

all five stages in human infection and it has been commonly used as a model for 

meningeal TB (Tsenova et al., 2005; Tsenova et al., 2006). In non-human primates, the 

disease pathology is almost indistinguishable from humans, confirming that this is the 

best available for all aspects of human disease (Flynn, 2006; Gupta and Katoch, 2005; 

Via et al., 2008).  

 

1.3.3 Genetic tools for TB drug discovery 

One approach for TB drug discovery is to identify the compound with high bactericidal 

activity against M. tuberculosis by high-throughput screening of a compound library in 

a whole-cell assay, followed by identification of its target(s) and optimization of the 

active compound. Whole-genome sequencing of mutant strains resistant to the 

identified active compound has proven to be a useful method for target identification 

(Andries et al., 2005; Sacchettini et al., 2008). However, this is costly and not always 

successful as certain antitubercular compounds have no defined targets (Matsumoto et 

al., 2006; Stover et al., 2000). Also, whole-cell screens may yield highly toxic 

compounds and the lack of cellular target may negatively affect lead optimization 

(Sacchettini et al., 2008). An alternate approach to drug discovery, which was also the 

major focus of this study, is to describe the potential drug target using genetic and 

biochemical approaches and then identify an inhibiting agent. High-throughput screens 

can also be used in enzyme inhibition assays to identify agents with inhibiting activities 

against an identified target. However this approach also comes with its limitations; for 

example, the agent might not display whole-cell activity, possibly as a result of a lack of 

permeability (Sacchettini et al., 2008).  
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The development and application of powerful genetic tools, combined with the 

availability of whole-genome sequence data, has led to the identification of 

(conditionally) essential genes in M. tuberculosis and hence, to the identification of a 

large number of potential targets for drug discovery (Cole et al., 1998; Cole et al., 2001; 

Garnier et al., 2003; Machowski et al., 2005; Stinear et al., 2007). Discussed below are 

some of the currently available genetic approaches used for new drug target 

identification.  

 

Random mutagenesis 

Random mutagenesis using transposable elements represents a powerful tool for drug 

target identification. This forward genetic approach is based on the random insertion of 

a transposable element into a genome to create a library of mutants. By identifying the 

location of individual insertions within the library of mutants, gene essentiality under 

the conditions tested can be inferred from the absence of insertions in the gene 

(McAdam et al., 2002; Sassetti et al., 2003; Sassetti and Rubin, 2003). A powerful 

adaptation of this approach is in signature tagged mutagenesis (STM), which enabled 

the identification of genes crucial for virulence in macrophages and animal models of 

TB (Camacho et al., 1999; Collins et al., 2005; Cox et al., 1999; Hisert et al., 2004; 

Rosas-Magallanes et al., 2007). In this technique, pools of transposon mutants are 

generated in which each member of the pool is labeled with a unique genetic tag that 

can be detected using a combination of PCR, DNA hybridization and sequencing 

(Holden and Hensel, 1998). Pools recovered a few hours after infection are compared to 

those recovered several weeks post-infection in order to identify those mutants that are 

missing from the recovered pool, and are thus assumed to be defective for growth in the 

host (Collins et al., 2005; Murry and Rubin, 2005; Rosas-Magallanes et al., 2007; Ruley 

et al., 2004). Using STM, several genes involved in mycobacterial survival in vivo were 

identified by screening mutant libraries in vitro (Vandal et al., 2008), human 

macrophage (Rosas-Magallanes et al., 2007), goldfish (Ruley et al., 2004), mouse 
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(Camacho et al., 1999; Cox et al., 1999; Hisert et al., 2004) and guinea pig (Collins et 

al., 2005) model of infection. 

 

 Transposon pools can also be screened using more advanced and effective approaches 

based on microarray hybridization called designer arrays for defined mutant analysis 

(DeADMAn) and transposon site hybridization (TraSH). DeADMAn uses the same 

mutant pool size as STM, while in TraSH, the saturating levels of mutagenesis are 

reached (Murry and Rubin, 2005; Murry et al., 2008). Both TraSH and DeADMAn 

have been used to identify mutants attenuated for growth in mouse lungs (Lamichhane 

et al., 2005; Sassetti et al., 2003; Sassetti and Rubin, 2003) and in guinea pigs (Jain et 

al., 2007). Analysis of mutant pools allows identification of potential drug targets; 

however, gene functions that are complemented by the presence of other cells carrying 

wild-type alleles will not be identified. This necessitates the use of targeted gene 

mutations to validate the results from pooled mutants analysis (Murry and Rubin, 2005).  

 

Targeted gene knockout 

Targeted gene knockout by homologous recombination involves the delivery of the 

inactivated allele on a suitable vector, such as a suicide plasmid, conditionally 

replicating plasmid or conditionally replicating mycobacteriophage (Bardarov et al., 

2002; Guilhot et al., 1992; Machowski et al., 2005; Parish and Stoker, 2000). This study 

explored the use of suicide plasmid delivery of the mutant allele. In this case, single 

crossover (SCO) recombinants are first identified from which double crossover (DCO) 

are selected using appropriate selectable and counterselectable markers. The first 

homologous recombination event between a suicide vector and the chromosome 

occurring on either side of the mutation gives rise to a partial merodiploid SCO 

recombinant carrying the wild type allele, the mutant allele and the vector sequence. 

Depending on which side of the mutation the second crossover event occurs, the 

excision of the vector from the chromosome will result in the SCO recombinant strain 

either reverting to wild type or producing an allelic exchange (DCO) mutant 

(Machowski et al., 2005; Parish et al., 1999). For selection/counter selection of allelic 
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exchange recombinants, SCO clones are subcultured and incubated without selection 

before plating on selective media. If a mutant allele is marked with a drug resistance 

gene, the resistant recombinants obtained from the second recombination event are most 

likely to represent allelic exchange mutants. If the resistance cassette is placed on the 

suicide plasmid, it will be excised together with the suicide vector during the second 

recombination event, and the resulting clones may include both allelic exchange 

mutants and wild-type revertants (Kana and Mizrahi, 2004; Machowski et al., 2005; 

Parish et al., 1999; Parish and Stoker, 2000; Pavelka and Jacobs, 1999). 

 

Conditional gene knockout 

Genes that are essential for the growth of M. tuberculosis in vitro represent the most 

attractive drug targets. However, conditionally essential genes, such as those encoding 

proteins that are specifically required for growth in vivo or persistence during chronic 

infection, also represent attractive drug targets (Boshoff et al., 2003; Dahl et al., 2003; 

McKinney et al., 2000; Sambandamurthy et al., 2002). Most genetic tools are only 

useful for functional analyses of non-essential genes. Conditional gene silencing 

methods are required to validate (conditionally) essential targets. Construction of 

conditional mutants is normally achieved by using inducible promoters, which can be 

switched on and off under defined conditions, enabling analyses of essential 

mycobacterial genes. Antisense-based conditional gene knockout systems relied on the 

use of the inducible acetamidase gene from Mycobacterium smegmatis (Greendyke et 

al., 2002; Narayanan et al., 2000; Parish et al., 1997; Parish and Stoker, 1997). 

However this system does not allow a tight regulation of mycobacterial gene 

expression, thereby resulting in basal expression of the repressed gene. The recent 

description and utilization of tetracycline (Tet) responsive elements, which allow 

regulation of bacterial gene expression both in vitro and in vivo, have created a 

powerful set of tools for use in conditional gene silencing in mycobacteria (Blokpoel et 

al., 2005; Ehrt et al., 2005). Tet repressor (TetR) proteins regulate the expression of a 

family of tetracycline-exporting proteins. In the absence of Tet, TetR tightly binds to tet 

operators (tetO) in the promoter of the tetA gene encoding the Tet exporter and 
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suppresses transcription.  As Tet becomes available, it binds TetR and induces a 

conformational change that results in dissociation of TetR from tet operators and thus 

induces expression of TetR controlled genes (Berens and Hillen, 2003; Carroll et al., 

2005). The recent demonstration that M. tuberculosis proteasome is essential for in vitro 

growth and virulence in mice using the Tet system, further confirmed its utility in 

studying genes with (conditionally) essential functions (Gandotra et al., 2007). 

 

Gene expression profiling 

Transcriptional profiling of M. tuberculosis from the human host or under conditions 

that are believed to mimic the conditions encountered by the pathogen in the human 

host during the various stages of infection has been very widely applied as a tool for 

describing the physiology and metabolism of the organism and their adaptation to 

different environmental conditions (Boshoff and Manjunatha, 2006). Whole-genome 

expression profiling has been used as a tool to predict functions of differentially 

regulated genes (Kendall et al., 2004b; Murry and Rubin, 2005). There has been a 

considerable amount of work on transcriptome analysis of M. tuberculosis including 

studies in macrophages (Ehrt et al., 2001; Fontan et al., 2008; Schnappinger et al., 

2003; Tailleux et al., 2008), mice (Mollenkopf et al., 2006; Shi et al., 2005; Shi et al., 

2008) and humans (Rachman et al., 2006b). In vitro studies have focused on M. 

tuberculosis in stationary phase cultures (Hampshire et al., 2004; Voskuil et al., 2004) 

and acidic pH (Fisher et al., 2002), and following exposure to NO or hypoxia (Bacon et 

al., 2004; Muttucumaru et al., 2004; Voskuil et al., 2004) or inhibitors of metabolism 

(Boshoff et al., 2004; Waddell et al., 2004). M. tuberculosis expression patterns in wild 

type and NOS2-deficient macrophages were first examined by Schnappinger et al. 

(Schnappinger et al., 2003). Their data suggested a metabolic shift in M. tuberculosis as 

it adapts and persists in the intracellular environment (Schnappinger et al., 2003). To 

understand the host-pathogen interaction, Tailleux et al. analysed the transcription 

profiles of both M. tuberculosis and human macrophages or dendritic cells 

simultaneously. The finding that the gene expression profile of M. tuberculosis in 

macrophages reflected that of a growing organism whereas in dendritic cells, it reflected 
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that of a highly stressed cell, suggested that macrophages might be more permissive for 

mycobacterial growth (Tailleux et al., 2008). 

  

Talaat et al. compared changes in the transcription profile of M. tuberculosis during 

exponential growth in liquid culture to that in SCID and Balb/c mice, which allowed in-

vivo-specific responses to be identified (Talaat et al., 2004). When the same group 

studied the transcription profile of M. tuberculosis during chronic infection and 

reactivation following immune suppression in mice, they identified genes which may 

have an important role in the revival of the bacilli (Talaat et al., 2007). Genome-wide 

expression analysis of M. tuberculosis from human lung has also been reported. These 

studies revealed upregulation of lipid biosynthesis, DNA repair, transport of amino 

acids, anaerobic respiration, PE and PPE genes, indicating that M. tuberculosis does 

encounter DNA damage, nutrient starvation and hypoxia in human lungs and 

implicating changes in cell envelope as a mechanism of persistence (Rachman et al., 

2006a). Recently, transcriptional analysis was done on bacilli directly isolated from 

sputum samples. Contrary to the belief that mycobacteria in sputum samples are 

actively replicating, this study revealed a transcriptional profile consistent with a slow 

or non-growing bacillus (Garton et al., 2008). 

 

Although these studies have been highly informative, differential expression of a gene 

under a particular condition does not necessarily imply that the gene plays an essential 

role under that condition (Gordhan et al., 2006; Rengarajan et al., 2005). Another 

limitation of transcription profiling is that genes that are constitutively expressed and 

posttranscriptionally regulated genes are not identified, although these could be of 

greatest importance (Kendall et al., 2004b).  
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Protein expression and interaction studies 

Proteomic analysis directly identifies and measures levels of expressed proteins in 

response to a particular stimulus (Rosenkrands et al., 2002; Yuan et al., 1996). This 

method provides a powerful adjunct to transcriptome analysis for understanding the 

pathogen response to the stimulus (Betts et al., 2002; Rao et al., 2008a; Rosenkrands et 

al., 2002). Wang and colleagues studied the proteome of M. smegmatis in response to 

INH, EMB and 5-chloropyrazinamide (an analogue of PZA). By identifying pathways 

that are responsive to drug treatment, the possible target(s) for 5-chloropyrazinamide 

could be inferred, which included carboxylic acid, amino acid, organic acid and 

nitrogen compound metabolism (Wang and Marcotte, 2008). An interesting study used 

a biotin-switch enrichment method in combination with mass spectrometry to identify 

the S-nitroso proteome of M. tuberculosis which include the major targets for RNIs. 

Most S-nitroso proteins identified were enzymes involved in intermediary metabolism, 

lipid metabolism and antioxidant defense against RNIs (Rhee et al., 2005).  

 

Other studies have used global protein expression analysis and computational methods 

to construct response networks. These networks are then used to identify functionally 

related proteins that may work together in an organizational structure and to predict 

function of proteins based on those in the same network with known functions 

(Mawuenyega et al., 2005). Identifying interacting proteins also plays an important role 

in predicting protein function. A simple and robust system called mycobacterial protein 

fragment complementation (M-PFC), designed to identify protein-protein interactions in 

a mycobacterial host, was recently developed (Singh et al., 2006a). It is based on the 

gain of trimethoprim resistance by the functional reconstitution of two murine 

dihydrofolate reductase (DHFR) domains independently fused to two interacting 

proteins (Singh et al., 2006a).  
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Comparative Genomics  

Genome comparisons among different mycobacterial strains and between different 

strains of the same species have provided a wealth of information about the 

pathogenesis, physiology and biochemistry of mycobacteria, so opening new avenues 

for research in drug target and antigen discovery (Brosch et al., 2000; Cole, 2002a, b; 

Fleischmann et al., 2002; Murry and Rubin, 2005; Sharma and Tyagi, 2007; Stinear et 

al., 2008; Vishnoi et al., 2007). The identification of differences in several 

chromosomal regions [region of difference (RD)] between members of the MTBC has 

greatly accelerated the development of more specific diagnostic tests and new vaccine 

candidates (Brosch et al., 2002; Cockle et al., 2002; Cole, 2002b). It is been proposed 

that if the 3.27 Mb genome of M. leprae, which carries only 1605 protein-coding genes, 

was once similar in size and coding capacity to those of other mycobacteria (> 4.3 Mb), 

then the gene deletion and decay that occurred during the reductive evolution of this 

organism may have naturally defined the minimal gene set essential for intracellular 

growth and pathogenesis (Cole et al., 2001; Cole, 2002b). 

 

1.3.4 New targets/pathways for TB drug discovery  

As described above, the prolonged duration of TB chemotherapy is mainly attributable 

to the ability of M. tuberculosis to persist in a non-replicating, drug tolerant state 

(Gomez and McKinney, 2004; McKinney, 2000). As a result, most current new drug 

discovery and development programs are aimed at identifying drugs that have potential 

to shorten TB chemotherapy (Duncan and Barry, 2004; Sacchettini et al., 2008). As a 

result, considerable effort has been placed on identifying, validating and ranking such 

targets. In one study, a computational tool was developed and used to rank different M. 

tuberculosis proteins as drug targets based on a number of criteria (Hasan et al., 2006). 

Some of the targets/pathways that are being actively explored are discussed below. 
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Carbon metabolism 

The switch to using fatty acids as a carbon source was the first validated example of a 

persistence mechanism in M. tuberculosis (McKinney et al., 2000). Under glucose-

limiting conditions, M. tuberculosis decreases glycolysis and induces the glyoxylate 

shunt, which enables it to assimilate C2 compounds (acetate) produced via the 

breakdown of fatty acids (McKinney et al., 2000). Isocitrate lyase (Icl) is the first 

enzyme in the glyoxylate pathway required by M. tuberculosis to live on fatty acids as 

the major source of carbon. M. tuberculosis strains express either one or two Icl 

enzymes (Icl1 and Icl2) (Lorenz and Fink, 2002; Muñoz-Elías and McKinney, 2005). 

The icl1 gene is upregulated upon entry into stationary phase (Bacon et al., 2004; 

Voskuil et al., 2004), by hypoxic conditions (Bacon et al., 2004; Muttucumaru et al., 

2004; Voskuil et al., 2004) and in activated macrophages (Schnappinger et al., 2003). 

An icl1 mutant of M. tuberculosis Erdman grows normally during the acute phase of 

infection, but is unable to persist in the chronic phase (McKinney et al., 2000). A 

∆icl1∆icl2 double mutant of the Erdman strain is significantly impaired for intracellular 

replication in macrophages and growth in the mouse lung, suggesting that the two 

enzymes have a joint function in fatty acid metabolism (Muñoz-Elías and McKinney, 

2005). The second enzyme in the glyoxylate bypass is malate synthase. Antibodies 

against this enzyme have been detected in TB patients (Singh et al., 2005). The 

importance of the glyoxylate cycle for persistence of M. tuberculosis and the absence of 

this pathway in mammals has made Icl and malate synthase very attractive drug targets 

(Anstrom and Remington, 2006; Sharma et al., 2000; Smith et al., 2003). High-

throughput compound screens for inhibitors of both Icl (Sacchettini et al., 2008) and 

malate synthase have been conducted and which have led to the identification of 

promising malate synthase inhibitors (http://www.tballiance.org).   
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Energy metabolism 

The finding that de novo ATP synthesis is essential for M. tuberculosis survival under 

hypoxia and non replicating persistence makes the ATP synthase a very attractive target 

for drugs against persistent bacilli. ATP levels in hypoxic, non-replicating bacilli are 5-

6-fold lower than aerobic replicating M. tuberculosis, making the organism highly 

susceptible to a further reduction in levels of ATP (Rao et al., 2008b). This idea is 

supported by high activity of the ATP synthase inhibitor, R207910, against non-

replicating mycobacteria (Koul et al., 2008). The second major drug target in energy 

metabolism is NADH-menaquinone oxidoreductase II (Ndh2), which catalyzes the first 

step in the electron transport chain. M. tuberculosis Ndh2 is essential for growth in vitro 

(Teh et al., 2007; Weinstein et al., 2005; Yano et al., 2006) and has been shown to be 

the target for phenothiazine drugs (Yano et al., 2006), which have a high antitubercular 

activity in vitro and in mice (Weinstein et al., 2005). 

 

The proteasome  

Proteasomes are large multi-subunit proteases which facilitate several cellular processes 

including degradation of damaged (e.g. oxidized, nitrated or nitrosated) proteins 

(Bochtler et al., 1999). The M. tuberculosis proteasome core contains α and β subunits 

encoded by the operonic prcA and prcB genes, respectively. These genes are essential 

for growth in vivo, and in vitro and resistance to nitrosative, and oxidative stress 

(Darwin et al., 2003; Gandotra et al., 2007; Rhee et al., 2005; Sassetti et al., 2003). The 

essentiality of the M. tuberculosis proteasome was supported by the finding that two 

proteasome associated genes Rv2115c (mpa) and Rv2097c (pafA) are essential for M. 

tuberculosis growth in mice and resistance to nitrosative and oxidative stress (Darwin et 

al., 2003). The mpa gene encodes the ATPase, which may be required for substrate 

unfolding and transfer into the proteasome core (Darwin et al., 2005), whereas pafA 

may be important for the recognition of the target protein (Festa et al., 2007). Similar to 

eukaryotes, M. tuberculosis proteasome targets are modified by a prokaryotic ubiquitin-

like protein (Pup) encoded by Rv2111c, which is operonic with prcAB, as a signal for 

degradation (Pearce et al., 2008). The essentiality and the availability of M. tuberculosis 
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proteasome structures (Hu et al., 2006; Lin et al., 2006) make it a potential drug target 

(Gandotra et al., 2007). 

 

1.4 Ribonucleotide reductases (RNRs) 

Ribonucleotide reductases (RNRs) are a class of enzymes that play an essential role in 

nucleotide metabolism. They catalyze the reduction of all four ribonucleotides to their 

corresponding deoxyribonucleotides (dNTPs) by a radical-dependent redox reaction, 

whereby NADPH serves as a final reductant. Phosphorylation catalyzed by 

deoxynucleoside-diphosphate kinases and conversion of dUTP to dTTP catalyzed by 

thymidylate synthase comprise the final steps in the de novo biosynthetic pathway 

(Figure 1.1) (Eklund et al., 2001; Mathews and Van Holde, 1996). The essentiality of 

RNR function for growth and survival of all living organisms has led to a lot of interest 

in elucidating the structure, function, and regulation of RNRs. There are three main 

classes of RNR (class I, class II and class III), which differ in their subunit composition, 

co-factor use and oxygen requirements (Table 1.2). The catalytic mechanism of RNR 

involves a complex series of redox reactions, which is conserved among all the classes. 

All classes of enzyme share an essential cysteine residue at the active site (Kolberg et 

al., 2004; Nordlund and Reichard, 2006). Unlike the class II enzyme, the class I and 

class III RNRs cofactors cannot interact directly with the active site cysteine to produce 

a thiyl radical important for downstream reactions. In these cases, a radical is generated 

and transferred instead through a long radical transfer chain from the small subunit 

radical site to the large subunit active site (Katterle et al., 1997; Kolberg et al., 2004; 

Saleh and Bollinger, 2006).  

 

Class I enzymes reduce ribonucleoside 5’-diphosphates (NDPs) to deoxyribonucleoside 

5’-diphosphates (dNDPs) (Figure 1.1), while the majority of class II and all class III 

enzymes reduce ribonucleoside 5’-triphosphates (NTPs) to deoxyribonucleoside 5’-

triphosphates (dNTPs) (Kolberg et al., 2004). A class IV enzyme, in which the small 

subunit contains a manganese center instead of a diiron center, was postulated to exist 
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(Oehlmann and Auling, 1999), but was shown to be an artifact (Fieschi et al., 1998; 

Huque et al., 2000).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 De novo dNTP synthesis pathway catalised by class I RNR and its role in DNA 
metabolism. Class I RNR reduces NDP substrates to dNDPs, which are then phosphorylated by 
deoxynucleoside-diphosphate kinases (dRNK) to yield dNTP products. For the synthesis of 
dTTP, several steps are essential before the final kinase reaction to convert either dCDP or 
dUDP to dTDP. dCDP is dephosphorylated to form dCMP, which is then deaminated to form 
dUMP, while dUDP is first phosphorylated to produce dUTP as a substrate for 
dephosphorylation to generate dUMP. dUMP is then converted to dTMP by thymidylate 
synthase and phosphorylated twice to form dTTP (Eklund et al., 2001; Mathews and Van 
Holde, 1996). 
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1.4.1 Class I RNR 

Oxygen-dependent, class I enzymes constitute the most widely studied RNRs, and 

occur within the highest to the lowest living systems. The structure of class I RNR is 

a tetramer comprising two dimeric subunits with a quaternary α2β2 organization of 

the holoenzyme (Figure 1.2) (Nordlund and Reichard, 2006). However, the 

exception is the Saccharomyces cerevisiae heterodimeric enzyme, which has a 

unique subunit composition of αα’ββ’, where only one of the β subunits can bear a 

diiron center (Perlstein et al., 2005; Sommerhalter et al., 2004). Until recently, class 

I enzymes were subdivided into class Ia and class Ib based on allosteric regulation 

and utilization of different electron donors. The class Ia RNR large (R1/α) subunit 

consists of two allosteric sides, a redox site and a catalytic site, while the small 

(R2/β) subunit contains a tyrosyl radical and a diiron center per monomer, essential 

for enzyme activity (Figure 1.2) (Nordlund and Reichard, 2006). Class Ia enzymes 

are found in all eukaryotes except for the unicellular Euglena gracilis, which has a 

class II enzyme (Torrents et al., 2006a), in prokaryotes, viruses, and in 

bacteriophages. These enzymes are characterized by the fact that they possess two 

allosteric sites, with the E. coli and mouse enzyme being the prototype for 

prokaryotes and eukaryotes, respectively (Kolberg et al., 2004). 

 

The E. coli class Ia RNR-based mechanism of ribonucleotide reduction by RNRs is 

depicted in Figure 1.3. Upon substrate binding at the catalytic site, the tyrosyl 

radical from the R2 subunit abstracts a hydrogen atom from cysteine 439 (C439), so 

converting it to a thiyl radical, which then results in the reduction of the tyrosine 

(Step 1). The thiyl radical is then used to abstract the hydrogen atom from carbon 3 

(C-3’) of the substrate, producing a free radical at that position. The C-3’ substrate 

radical then facilitates the protonation of the hydroxyl at C-2 by C225 and its release 

as water (Steps 2 and 3). The C225 anion then forms a disulphide bond with C462, 

transferring a hydrogen atom to C-2’. The C-3’ radical then abstracts its original 

hydrogen from C439 (Step 4). The product is released and C439 abstracts its 

hydrogen atom from the tyrosine in the R2 subunit, so regenerating the tyrosine 

radical (Step 5).  
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Figure 1.2 Structure of a class Ia RNR. The structure is a tetramer with two dimeric 
subunits. Each monomer of the R1 subunit consist of two allosteric sides: activity and 
specificity sites, a redox site and a catalytic, while the R2 subunit monomer contains a 
tyrosyl radical and a diiron center (Kolberg et al., 2004; Mathews and Van Holde, 1996; 
Nordlund and Reichard, 2006). 
 

The external co-factor (glutaredoxin/thioredoxin) is used to reduce the disulfide 

bond formed, hence regenerating the active form of the enzyme for recycling (Step 

6). The oxidized glutaredoxin/thioredoxin is then reduced by the 

glutaredoxin/thioredoxin reductase which can then be reduced by NADPH (Eklund 

et al., 2001; Kolberg et al., 2004; Nordlund and Reichard, 2006).   
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Figure 1.3 Catalytic mechanism of class Ia RNR. The mechanism involves a series of free 
radical dependent redox reactions initiated by the tyrosine radical in the R2 subunit and 
facilitated mainly by three cysteine residues (C439, C225 and C462) in the catalytic site of 
the R1 subunit. Glutaredoxin (Grx)/thioredoxin serves as a final reductant of the enzyme for 
recycling (Kolberg et al., 2004; Mathews and Van Holde, 1996; Nordlund and Reichard, 
2006).  
 

In contrast to class Ia RNRs, class Ib enzymes have only one allosteric site (Eliasson 

et al., 1996), and lack the activity site (Figure 1.2) for ATP/dATP binding for 

allosteric, on/off switching of the enzyme. This form of the enzyme is only found in 

prokaryotes, with the RNR from Salmonella typhimurium being the most widely 

studied class Ib enzyme (Galander et al., 2006; Uppsten et al., 2003a; Uppsten et al., 

2003b). Unlike the class Ia enzyme which uses thioredoxin or glutaredoxin (Gon et 

al., 2006b; Koc et al., 2006; Ortenberg et al., 2004), class Ib RNR uses the NrdH 

protein as an electron donor (Jordan et al., 1997a).  
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In bacteria, the class Ia RNR large (R1) subunit is encoded by nrdA and the small 

(R2) subunit by nrdB, whereas the class Ib large subunit is encoded by nrdE and the 

small subunit by nrdF. Both the large and small subunits from the two subclasses 

show low (<30 %) protein sequence identity; however, the essential catalytic 

residues are conserved (Jordan et al., 1994). In E. coli, the operonic nrdEF genes are 

transcribed together with nrdI and nrdH, located immediately upstream of nrdEF 

(Monje-Casas et al., 2001), where nrdI encodes the NrdF di-iron cluster reductant 

(Cotruvo and Stubbe, 2008; Roca et al., 2008) and nrdH encodes the NrdE disulfide 

bond reductant (Jordan et al., 1997a).     

 

A third type of class I enzyme – the class Ic RNR – was recently identified in 

Chlamydia trachomatis (Högbom et al., 2004). The class Ic RNR is distinguished 

from class Ia and Ib enzymes by the unique structural and biochemical features of its 

small subunit, which has also been designated as NrdB. Its most interesting feature 

is that the tyrosine residue which is involved in the catalytic activity of class Ia and 

class Ib enzymes is substituted by phenylalanine, and yet the enzyme retains activity 

(Högbom et al., 2004; Roshick et al., 2000). In the classic class I RNR mechanism, 

a di-iron cofactor (FeII-FeII) reacts with oxygen to form FeIII -FeIV which oxidizes the 

tyrosyl residue to generate the stable tyrosine radical in the R2 subunit that oxidizes 

the cysteine residue in the R1 subunit to generate the cysteinyl radical (Fig. 1.3). 

The class Ic enzyme by-passes the need for the tyrosine residue by using FeIII -FeIV  

to directly oxidize a cysteine residue in the R1 subunit (Högbom et al., 2004; 

Voevodskaya et al., 2005; Voevodskaya et al., 2006; Voevodskaya et al., 2007a). 

Recently, an interesting study showed that in the presence of manganese, the 

enzyme uses a manganese-iron cofactor (MnIV- FeIII ) instead of FeIII -FeIV to generate 

the cysteinyl radical, which represents a more active form than a di-iron associated 

enzyme (Jiang et al., 2007a; Jiang et al., 2007c; Voevodskaya et al., 2007b).   
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1.4.2 Class II RNR 

Class II enzymes are oxygen independent, comprise a single polypeptide in a 

monomeric or dimeric form (α or α2), and use adenosylcobalamin as a radical 

generator (Gleason and Olszewski, 2002; Jordan et al., 1997b; Tauer and Benner, 

1997). Hemolytic cleavage of the adenosylcobalamin generates an adenosyl radical 

that interacts directly with an active site cysteine to form the reactive cysteinyl 

radical (Eklund et al., 2001). Like class I enzymes, class II RNRs use thioredoxin or 

glutaredoxin as electron donors. Furthermore, like class Ib RNRs, class II enzymes 

are not inhibited by dATP. They are found commonly in eubacteria, with the best 

studied example being the class II RNR of Lactobacillus leichmanni (Eliasson et al., 

1999; Sintchak et al., 2002), and were recently also identified in eukaryotes 

(Torrents et al., 2006a). In bacteria, class II RNRs are encoded by nrdJ (Borovok et 

al., 2002; Jordan et al., 1997b), which has been designated as nrdZ in M. 

tuberculosis (Cole et al., 1998) (Table 1.2).      

 

1.4.3 Class III RNR 

Class III enzymes are only found in strict or facultative anaerobic bacteria and some 

bacteriophages, with the T4 enzyme serving as the prototype (Andersson et al., 

2000; Logan et al., 2003). The large subunit is encoded by nrdD and the small 

subunit by nrdG (Nordlund and Reichard, 2006; Sun et al., 1995; Torrents et al., 

2001). Class III enzymes also adopt an α2β2 quaternary structure in which the large 

subunit dimer contains the glycyl radical and binding sites for the allosteric effectors 

(Torrents et al., 2001) and the small subunit contains an essential iron-sulfur cluster 

(Sun et al., 1995; Sun et al., 1996). Class III enzymes use a glycyl radical to 

generate a cysteinyl radical, produced in the large subunit by the hemolytic cleavage 

of S-adenosyl methionine, and facilitated by the small subunit/activase iron-sulfur 

cluster (Gambarelli et al., 2005; Kolberg et al., 2004; Ollagnier et al., 1997). Once 

the glycyl radical is formed, the R1 subunit catalyses the reaction independent of the 

R2 subunit, unlike the situation in class I RNR in which continuous interaction 

between the large and small subunits is required for catalysis (Nordlund and 

Reichard, 2006; Sun et al., 1995; Torrents et al., 2001). Whereas the bacterial class 

III enzyme is inhibited by dATP (Torrents et al., 2000), the viral enzyme is not 
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(Andersson et al., 2000). In contrast with class I and class II RNRs, class III 

enzymes use formate as a reductant (Mulliez et al., 1995; Mulliez et al., 2001; 

Padovani et al., 2001).  

 

1.4.4 RNR-encoding genes in mycobacteria 

The availability of whole-genome sequences of a number of mycobacterial species 

(Brosch et al., 2007; Cole et al., 1998; Cole et al., 2001; Fleischmann et al., 2002; 

Garnier et al., 2003; Stinear et al., 2007; Stinear et al., 2008) has allowed their 

complements of RNR-encoding genes to be identified (http://rnrdb.molbio.su.se). 

Most bacterial genomes, including mycobacteria, contain genes encoding more than 

one RNR class (Borovok et al., 2002; Dawes et al., 2003; Jordan et al., 1999), which 

are expressed in response to different environmental stimuli (Borovok et al., 2002; 

Garriga et al., 1996; Masalha et al., 2001; Monje-Casas et al., 2001). All 

mycobacteria possess a class Ib RNR encoded by nrdE and nrdF genes (designated 

herein as nrdF2). As observed in E. coli (Monje-Casas et al., 2001), the 

mycobacterial nrdE is operonic with nrdH and nrdI. Interestingly, nrdI is a 

pseudogene in M. smegmatis. Mycobacteria other than M. leprae and M. ulcerans 

also possess an R2 subunit-encoding gene homologous to that of the chlamydial 

class Ic RNR, designated as nrdB. However, nrdE is the only R1 subunit-encoding 

gene found in these organisms. The genomes of M. tuberculosis and M. bovis are 

distinguished from those of other mycobacteria by the presence of both an alternate 

class Ib R2 subunit-encoding gene, nrdF1, as well as a class II RNR-encoding gene, 

nrdZ.  M. smegmatis mc2155, on the other hand, is unusual in that the nrdH, nrdI, 

nrdE and nrdF2 genes are located on a duplicated region of the chromosome, and 

hence, are present in duplicate copies (Table 1.3) (Warner et al., 2006).  
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Table 1. 3 Mycobacterial RNR gene complements 

Class Ib Organism 

R1 R2 R2a R1 
reductase 

R2 
reductase 

Class 
Ic 

Class 
II 

M. 
tuberculosis 
H37Rv 

nrdE nrdF2 nrdF1 nrdH nrdI nrdB nrdZ 

M. 
tuberculosis 
CDC155 

nrdE nrdF2 nrdF1 nrdH nrdI nrdB nrdZ 

M. 
smegmatis 
mc2155 

nrdE c nrdF2 c - nrdH c nrdI bc nrdB - 

M. leprae nrdE nrdF2 - nrdH nrdI nrdB b nrdZ b 

M. bovis 
sups.bovis 

nrdE nrdF2 nrdF1 nrdH nrdI nrdB nrdZ 

M. bovis 
BCG 

nrdE nrdF2 nrdF1 nrdH nrdI nrdB nrdZ 

M. marinum nrdE nrdF2 - nrdH nrdI nrdB - 

M. ulcerans nrdE nrdF2 - nrdH nrdI N/A  

M. avium 
104 

nrdE nrdF2 
- 

nrdH nrdI nrdB - 

M. avium 
sups.paratub
-erculosis 

nrdE nrdF2 - nrdH nrdI nrdB - 

-, Absent  
a. Alternate class Ib RNR small subunit 
b. Pseudogene 
c. Two copies 
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M. tuberculosis and M. smegmatis RNR encoding genes and their function 

The mechanisms of DNA metabolism in M. tuberculosis are currently subjects of 

considerable interest. They have an impact on the understanding of genome 

evolution, acquisition of drug resistance by chromosomal mutagenesis and 

maintenance of genome integrity, which allows the dormant bacilli to reactivate in a 

viable form after prolonged periods of non-replicating persistence (Mizrahi et al., 

2000). Induction of M. tuberculosis RNR genes in the artificial granuloma model 

(Karakousis et al., 2004b) and in human lungs (Rachman et al., 2006b) provides 

evidence for the requirement of de novo dNTP synthesis for DNA replication and 

repair in these compartments.  

 

In addition to class Ib RNR genes nrdE (Rv3051c) and nrdF2 (Rv3048c), M. 

tuberculosis H37Rv genome also contains nrdF1 (Rv1981c) which encodes the 

alternate class Ib small subunit, NrdF1 (Cole et al., 1998; Yang et al., 1994; Yang et 

al., 1997). In this organism, both nrdF2 and nrdE are essential under in vitro growth 

conditions (Dawes et al., 2003). NrdF1 contains key catalytic residues (Yang et al., 

1997) and can form a complex with NrdE, albeit with a lower affinity than NrdF2 

(Uppsten et al., 2004). The NrdF1 and NrdF2 proteins have 71 % amino acid 

identity and both are expressed in vitro (Dawes et al., 2003; Yang et al., 1997). The 

residues essential for catalysis and structural organization are conserved in both 

proteins with the exception of substitutions of the Met189 and Phe258 residues in 

NrdF2 by Leu and Tyr, respectively, in NrdF1 (Uppsten et al., 2004). However, 

recombinant NrdEF2 displayed RNR activity in vitro, whereas NrdEF1 did not 

(Yang et al., 1997). Interestingly, translational inhibition and DNA damage in M. 

tuberculosis resulted in the upregulation of both nrdF1 and nrdF2 (Boshoff et al., 

2004). Dawes et al. also showed that the two genes are expressed at a similar level 

under the in vitro growth conditions tested (Dawes et al., 2003). Based on the above 

findings, it is conceivable that NrdF1 might play a role in dNTP supply under 

certain environmental conditions (Boshoff et al., 2004).  

 

A class II RNR encoded by nrdZ (Rv0570) in M. tuberculosis (Cole et al., 1998; 

Dawes et al., 2003) is part of the DosR/DevR regulon (Voskuil et al., 2004). M. 



 43

tuberculosis nrdZ expression was found to be 10-fold lower than nrdF2 and nrdF1 

under normal in vitro growth conditions, but upregulated 8-fold as the culture 

approached anaerobiosis (Dawes et al., 2003). However, unlike in Streptomyces 

(Borovok et al., 2004), the lack of phenotype of nrdZ knockout mutant in vitro 

under aerobic and microaerobic conditions and for growth and persistence in vivo 

suggests that nrdZ does not play a major role in dNTP supply, at least under the 

conditions tested (Dawes et al., 2003). 

 

In contrast to M. tuberculosis, the genome sequence of M. smegmatis mc2155 

(http://www.tigr.org) suggests that this organism possesses a much simpler 

complement of RNR-encoding genes than its pathogenic, slow-growing counterpart. 

M. smegmatis does not possess a class II RNR-encoding gene (nrdZ) or the alternate 

class Ib small subunit-encoding gene, nrdF1. Until recently, the only recognizable 

RNR-encoding genes in M. smegmatis were nrdE and nrdF2 

(http://www.tigr.org/tigr-scripts/CMR2/).  However, both of these genes are located 

on a 56 kb region of the chromosome of mc2155 that is duplicated and flanked by 

IS1096 elements (Galamba et al., 2001; Warner et al., 2006). Wild type M. 

smegmatis mc2155 therefore contains two identical copies of each of these genes 

(MSMEG2299 and MSMEG1019 for nrdE and MSMEG2313 and MSMEG1033 for 

nrdF2). Importantly, a mutant strain of M. smegmatis lacking the entire duplicated 

region was recently constructed (∆DRKIN) (Warner et al., 2006). This deletion 

mutant strain was found to be indistinguishable from mc2155 with respect to growth, 

transformation efficiency (ept phenotype) and cell surface characteristics and was 

thus proposed as an attractive alternative to mc2155 for use in studying M. 

smegmatis genes located in the duplicated region (Warner et al., 2006).  

 

Interestingly, a homologue of the chlamydial R2-encoding gene is also found in M. 

smegmatis (MSMEG0349) and M. tuberculosis (Rv0233) (Cole et al., 1998). This 

raises the possibility that these mycobacteria may use a class Ic RNR under certain 

environmental conditions for the provision and maintenance of adequate levels of 

dNTPs to serve the DNA synthesis and repair requirements of the organism. 
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1.4.5 Regulation of bacterial RNRs 

Even though there are different transcriptional or translational RNR regulatory 

mechanisms in different organisms, the allosteric regulation of the enzyme is 

conserved across all living systems (Nordlund and Reichard, 2006). By allosteric 

control of the enzyme, bound ATP or dATP at the activity site turns the enzyme on 

or off (Birgander et al., 2004; Birgander et al., 2005; Kasrayan et al., 2004). A 

recent study showed that binding of dATP at the active site inhibits the enzyme by 

inducing the formation of an α4β4 holocomplex (Rofougaran et al., 2008). Binding of 

ATP or dNTP at the specificity site determines the specificity for each of the four 

substrates (Kolberg et al., 2004; Nordlund and Reichard, 2006). ATP/dATP binding 

to the specificity site induces pyrimidine deoxynucleotide (dTTP and dCTP) 

synthesis. The resulting dTTP then binds, leading to the production of the purine 

deoxynucleotide dGTP, which will also bind to induce dATP synthesis (Andersson 

et al., 2000; Eliasson et al., 1996, 1999; Hofer et al., 1998; Larsson et al., 2004).  

 

While emphasis has been placed on understanding the allosteric regulation of the 

RNR enzymes (Reichard, 2002), relatively little is known about the transcriptional 

mechanisms that regulate expression of RNR-encoding genes. The reason behind the 

presence of more than one class of RNR in some organisms is still a question of 

considerable interest, with further complexity provided by the coexistence of more 

than one enzyme belonging to the same class or subclass (Monje-Casas et al., 2001) 

or more than one large or small subunits belonging to the same class (Bracchi-

Ricard et al., 2005; Huang and Elledge, 1997; Tanaka et al., 2000; Uppsten et al., 

2004). Regulation mechanisms of different RNRs under a variety of environmental 

conditions have therefore been used to probe the specific roles of these enzymes. 

The induction of RNR genes by DNA damage (Boshoff et al., 2004; Brooks et al., 

2001; Filatov et al., 1996; Hakansson et al., 2006; Mulder et al., 2005) and 

hydroxyurea [HU (Masalha et al., 2001)] has been well documented. 

 

There has been significant progress in studying RNR gene regulation systems in 

yeast compared to bacterial systems, with most information coming from studies in 

S. cerevisiae (Chabes et al., 1999; Fu and Xiao, 2006; Huang et al., 1998; Yao et al., 

2003; Zhao and Rothstein, 2002). The discussion here will focus on some of the 
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RNR gene regulation work done in bacterial systems. E. coli contains genes 

encoding class Ia, class Ib and class III enzymes (Fontecave et al., 1989; Kolberg et 

al., 2004). Transcription of the nrdHIEF operon is upregulated during early 

exponential phase and in response to oxidative stress. Under oxygen limitation, the 

anaerobic nrdDG is highly expressed to functionally substitute for the aerobic 

nrdAB. DNA damage induces only nrdAB, while HU induces both nrdAB and nrdEF 

(Monje-Casas et al., 2001; Nordlund and Reichard, 2006; Reichard, 1993). 

Recently, a regulatory mechanism in E. coli, which couples DNA synthesis and 

dNTP synthesis, was suggested. The authors proposed that ATP-bound DnaA, 

essential for DNA replication initiation, represses nrdAB transcription. Based on the 

fact that ATP-DnaA represses nrdAB transcription more strongly than ADP-DnaA, 

they suggested that conversion of ATP-DnaA to ADP-DnaA at the end of replication 

initiation increases nrdAB expression (Gon et al., 2006a). 

 

Corynebacterium ammoniagenes contains only a class Ib RNR, encoded by non-

operonic nrdE and nrdF genes. Both are highly expressed in early log phase and 

induced by HU and H2O2 (Torrents et al., 2003). Lactococcus lactis (Jordan et al., 

1996) and Staphylococcus aureus (Masalha et al., 2001) contain both class Ib and 

class III RNRs for aerobic and anaerobic growth, respectively. Upregulation of the 

L. lactis class Ib enzyme under microaerophilic conditions implicates this enzyme in 

dNTP provision under hypoxia where it may compensate for the inactivation of the 

class III enzyme by low levels of oxygen (Jordan et al., 1996; Torrents et al., 2000; 

Torrents et al., 2001). Pseudomonas aeruginosa contains all three different classes 

of RNR, with class Ia expressed highly in exponential phase and class II in 

stationary phase. P. aeruginosa nrdJ can support growth in the absence of the class I 

enzyme activity (Jordan et al., 1999; Torrents et al., 2005a). The only RNR in B. 

subtilis, encoded by nrdEF, was recently implicated in anaerobic growth. In this 

organism , anaerobic nrdEF expression was found to be dependent on the ResDE 

two-component redox regulatory system with two potential ResD binding sites 

identified upstream of the nrdEF transcriptional start site (Hartig et al., 2006).  

 

Borovok and colleagues have intensively studied RNR gene regulation in 

Streptomyces. Streptomyces spp. (Borovok et al., 2002), like M. tuberculosis 
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(Dawes et al., 2003), contain both class I and class II enzymes. However, unlike in 

M. tuberculosis where only class Ib can support aerobic growth (Dawes et al., 

2003), Streptomyces use either class of RNR for aerobic growth (Borovok et al., 

2004). In S. coelicolor, class Ia is regulated by adenosylcobalamin, whereby binding 

to a B12-riboswitch upstream of the untranslated region of nrdAB represses the 

expression. This was confirmed by the observation that deletion of a cobalamin 

(B12) biosynthetic gene cobN, results in high levels of nrdAB transcripts (Borovok et 

al., 2004; Borovok et al., 2006). A third gene (nrdS) belonging to the AraC family 

of transcription regulators was identified in Streptomyces coelicolor as part of an 

nrdABS operon (Borovok et al., 2004), but its function is unknown.  

 

A gene designated as nrdR, which is operonic with nrdJ in S.  coelicolor, was also 

identified and reported to be involved in the regulation of the transcription of nrdJ 

(Borovok et al., 2002; Borovok et al., 2004). Deletion of nrdR in S. coelicolor 

resulted in 20-fold increase in transcription of nrdJ and, to a lesser extent, nrdABS 

(Borovok et al., 2004). It was suggested that upon intracellular accumulation of 

dATP, NrdR complexes with dATP via its ATP cone domain, resulting in 

conformational changes, and binds to two 16-bp direct repeats (NrdR boxes) 

upstream of the nrdJ and nrdABS promoter by its zinc finger domain to repress gene 

expression (Borovok et al., 2004; Grinberg et al., 2006). This model implies that 

dATP can serve both as an allosteric and transcriptional regulator. Supporting this 

observation is the fact that mutations in the ATP cone decreased the DNA binding 

ability of NrdR (Grinberg et al., 2006, Grinberg et al., 2008). In several bacteria, 

nrdR genes are found to be mostly clustered with RNR genes or with genes involved 

in DNA replication, such as dnaB, dnaI and polA. The NrdR box consensus 

sequence in Actinobacteria was reported as ‘acaCwAtATaTwGtgt’. NrdR boxes are 

highly conserved across different bacterial species and found upstream of most 

operons encoding RNRs from all three classes (Rodionov and Gelfand, 2005). E. 

coli NrdR was recently characterized and found to directly repress all three classes 

of RNR with its deletion resulting in high transcription of class Ib and, to a lesser 

extent, class Ia and class III (Torrents et al., 2007).  
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RNR gene regulation in mycobacteria is poorly understood. NrdZ is part of the 

DosR regulon induced under microaerophilic conditions (Voskuil et al., 2004). M. 

tuberculosis nrdE, nrdF1 and nrdF2 were reported to be highly expressed in log 

phase (Dawes et al., 2003), and upregulated by genotoxic stress and translational 

inhibition (Boshoff et al., 2004). Interestingly, all sequenced mycobacterial genomes 

contain an nrdR homologue, although its role in regulating RNR-encoding gene 

expression has not been investigated.  

 

1.4.6 RNR as a druggable protein 

RNR has been investigated as a potential drug target for anticancer, antibacterial and 

antiviral agents (Cerqueira et al., 2007; Shao et al., 2006; Wakisaka et al., 2005). 

Iron chelators, substrates analogues and radical scavengers are potent RNR 

inhibitors, with radical scavengers such as HU and hydroxylamine being the most 

commonly used RNR inhibitors (Eklund et al., 2001; Shao et al., 2005; Torrents et 

al., 2005b). HU and its derivatives are classical RNR radical scavengers and have 

been commonly used for cancer treatment (Chou et al., 1977; van't Riet et al., 1979). 

Because the interaction between the small and large subunits of the enzyme subunit 

is critical for catalytic activity (Coves et al., 1995; Kasrayan et al., 2004; Uppsten et 

al., 2006), short peptides which interact with the C-terminus of the smaller subunit 

to prevent holoenzyme complex formation have been investigated as potential 

antiproliferative agents (Xu et al., 2006). Inhibitors which span the active site and 

the specificity site and compounds which bind at the interface of the subunits to 

disturb radical transfer also hold promise as potent RNR inhibitors (Coves et al., 

1996; Eklund et al., 2001). Structural studies suggest that structure-based design of 

compounds that specifically inhibit bacterial RNR without affecting the mammalian 

enzyme may be possible (Eklund et al., 2001; Kolberg et al., 2004; Strand et al., 

2004). The C-terminus residues of M. tuberculosis nrdF1 and nrdF2 differ from 

other R2s in that they are more hydrophilic and more negatively charged (Yang et 

al., 1997). Supporting the prioritization of M. tuberculosis NrdE as a druggable 

protein (Hasan et al., 2006) is the observation that short peptides derived from the 

C-terminus of M. tuberculosis R2 subunit potently inhibited NrdEF2 enzyme 

activity in an vitro enzyme assay (Nurbo et al., 2007). 
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1.5 Aims and Objectives 

The presence of three class I RNR small subunit-encoding genes in M. tuberculosis 

might be an indication of an inherent metabolic flexibility that allows the bacilli to 

adapt to grow and survive under the conditions exerted by the host defense 

mechanisms. It is evident from prior work that the NrdF2 subunit is indispensable 

for growth under standard, aerobic culture conditions in vitro (Dawes et al., 2003). 

However, the roles of the alternate small subunits are unknown. Even though no 

discernable enzymatic activity was observed for NrdEF1 (Yang et al., 1997), the 

finding that nrdF1 is transcriptionally responsive to genotoxic and translational 

stress (Boshoff et al., 2004) suggests that it may serve a specialized role in survival 

of the organism under such conditions. Similarly, the properties of the Chlamydial-

type R2 subunit, which may render the class Ic RNR resistant to RNIs (Högbom et 

al., 2004) suggests that nrdB may also serve a specialist role in dNTP provision in 

M. tuberculosis in vivo. Finally, the identification of nrdR in mycobacteria suggests 

that mycobacterial RNRs may also be regulated by NrdR. Against this background, 

the overall aim of this study was to elucidate the molecular mechanisms adopted by 

mycobacteria for the RNR-catalyzed provision of dNTPs under a variety of stressful 

conditions, with particular emphasis on the function and expression of the class I 

R2-encoding genes in M. tuberculosis and M. smegmatis.  To achieve this aim, the 

following objectives were set: 

 

1. To investigate the role of class 1c RNR in mycobacteria by constructing and 

phenotyping M. smegmatis and M. tuberculosis nrdB mutant in terms of 

virulence in mice and/or growth in vitro, nitrosative, and genotoxic stress 

survival and HU sensitivity. 

2. To evaluate the ability of class 1c RNR to functionally substitute for the 

class 1b NrdEF2 enzyme in M. smegmatis by knocking out the class Ib R2 

encoding gene, nrdF2. 

3.  To elucidate the role of NrdF1 in growth of M. tuberculosis in vitro and in 

vivo, adaptation during genotoxic stress, translation inhibition and survival 

in the presence of HU, by knocking out nrdF1 and assessing the mutant’s 

behavior under those conditions. 
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4. To determine if there is functional redundancy or interplay  between NrdF1 

and NrdB in M. tuberculosis by constructing a mutant with deletions in both 

nrdF1 and nrdB, followed by phenotypic characterization in terms of in vitro 

growth, sensitivity to DNA damage and HU. 

5. To study the role of NrdR in mycobacteria by constructing a knockout 

mutant of M. smegmatis and M. tuberculosis disrupted in the nrdR gene and 

assessing the effect of nrdR loss on expression of all the nrd genes, in vitro 

growth, sensitivity to HU, and DNA damaging agents and to mutagenesis. 
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2. Materials and Methods 

 

 

2.1 Bacterial strains and growth conditions  

All bacterial strains used in this study are described in Table 2.1 

 

Table 2.1 Bacterial strains used in this study 

Name Description Source 
E. coli   
DH5α supE44 ÄlacU169 (F80 lacZÄM15) 

hsdR17 recA1 endA1 yrA96 thi-1 relA1 
Promega 

M. tuberculosis   
H37Rv ATCC 25618, virulent laboratory strain Laboratory 

collection 
∆nrdB Derivative of H37Rv carrying an 

unmarked deletion in nrdB 
This work 

∆nrdF1 Derivative of H37Rv carrying an 
unmarked deletion in nrdF1 

This work 

∆nrdF1∆nrdB Derivative of H37Rv carrying an 
unmarked deletions in nrdF1 and nrdB 

This work 

∆nrdR Derivative of H37Rv carrying an 
unmarked deletion in nrdR 

This work 

M. smegmatis   
mc2155 ept-1, efficient plasmid transformation 

mutant of mc26 
(Snapper 
et al., 
1990) 

mc2155::pAINT mc2155 derivative carrying Km resistance 
plasmid vector (pAINT, Table 2.2) 
integrated at the attB locus 

This work 

∆DRKIN Derivative of mc2155 lacking the 56 kb 
chromosomal duplication      

(Warner et 
al., 2006) 

∆DRKIN::pAINT ∆DRKIN derivative carrying pAINT 
plasmid integrated at the attB locus 

This work 

∆nrdB::hyg Derivative of ∆DRKIN carrying a hyg 
marked deletion in nrdB      

This work 

∆nrdF2::hyg Derivative of mc2155 carrying a hyg 
marked deletion in nrdF2     

This work 

∆nrdF2::hyg::pNRDF2     Derivative  of ∆nrdF2::hyg carrying the 
nrdF2 gene from M. tuberculosis 
integrated at the attB locus 

This work 

∆DRKINSCO Single cross-over recombinant between 
∆DRKIN and p2∆SMF2KO (Table 2.2); 
HygR, KmR 

This work 

∆DRKINSCO::pNRDF2 Single cross-over integrant of ∆DRKIN 
carrying p2∆SMF2KO (Table 2.2) 
integrated at  the nrdF2 locus and the 
nrdF2 from  M. tuberculosis integrated at 

This work 
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the attB  locus 
∆DRKINnrdF2::hyg::pNRDF2 Derivative of ∆DRKIN carrying a hyg 

marked deletion in the remaining 
chromosomal copy of nrdF2 and 
pNRDF2 (Table 2.2); HygR, GmR 

This work 

∆nrdR::hyg Derivative of mc2155 carrying a hyg 
marked deletion in nrdR     

This work 

∆nrdR::hyg::pNRDR Derivative of ∆nrdR::hyg carrying M. 
smegmatis nrdR integrated at the attB 
locus (via pNRDR, Table 2.2); HygR, 
KmR 

This work 

dnaE2::aph M. smegmatis mc2155 dnaE2 deletion 
mutant hypersensitive to UV damage 

(Boshoff 
et al., 
2003) 

 

E. coli 

The growth of E. coli on solid and in liquid media was carried out according to 

standard protocols (Sambrook et al., 1989; Sambrook and Russell, 2001). All strains 

were grown in Luria Bertani broth (LB) or Luria Agar (LA) overnight at 37 oC 

supplemented with relevant antibiotics when necessary. Liquid cultures were shaken 

at 300 rpm in a New Brunswick Series 25 Shaker Incubator. Strains transformed 

with knockout constructs were incubated at 30 oC and, in the case of liquid cultures, 

shaken at 100 rpm to minimise plasmid rearrangement. Ampicillin (Amp), 

kanamycin (Km), hygromycin (Hyg) and gentamycin (Gm) were used at a final 

concentration 100, 50, 50 and 10 µg/ml, respectively. 

 

 M. smegmatis 

Liquid cultures were grown in LB or Middlebrook 7H9 broth (Difco) supplemented 

with 0.2 % glycerol (v/v), 0.05 % (v/v) Tween 80 and either 0.085 % NaCl (w/v) 

and 0.2 % glucose (w/v) (7H9-GS), 10 % Middlebrook albumin-dextrose-catalase 

(ADC, 7H9-ADC) or Middlebrook oleic acid-albumin-dextrose-catalase (OADC, 

7H9-OADC) at 37 oC and shaking at 300 rpm. Plating was performed on LA or 

Middlebrook 7H10 supplemented with 0.2 % glycerol, 0.085 % NaCl and 0.2 % 

glucose (7H10-GS) or 10 % Middlebrook OADC (7H10-OADC) and incubated at 

37 oC. All M. smegmatis strains were stored at -70 oC in 30 % glycerol (v/v). Km 

(25 µg/ml), Hyg (50 µg/ml), Gm (10 µg/ml) and Rif (200 µg/ml) were added to the 

media where necessary. 
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M. tuberculosis 

M. tuberculosis strains were cultured in a Biosafety Level III laboratory and all 

manipulations carried out in a BioFlow Class II biological safety cabinet at 180 kPa 

negative pressure. All strains were grown in 7H9-ADC or 7H9-OADC in roller 

bottles or stationary in tissue culture flasks. Strains were also grown on 7H10-

OADC. All cultures were incubated at 37 oC. Media was supplemented with Hyg 

(50 µg/ml) where necessary. 

 

2.2 Plasmid vectors 

Plasmid vectors used are described in Table 2.2.  

 

2.3 Bacterial transformation  

2.3.1 Chemical transformation of E. coli 

Preparation of competent cells 

An overnight culture was diluted one hundred fold in LB and left to grow to an 

OD600 of 0.6-0.7. The cells were then incubated on ice for 15-30 min, centrifuged in 

a Beckmann J2-21 centrifuge using a JA-20 rotor at 3000 rpm for 10 min at 4 oC and 

the supernatant discarded. The pellet was then re-suspended in 1/3 of the original 

volume with RF-1 buffer (30 mM potassium acetate, 100 mM rubidium chloride, 10 

mM calcium chloride, 50 mM manganese chloride, 15 % glycerol (v/v), pH 5.8) and 

incubated for 0.5-2 h on ice. The cells were then centrifuged, re-suspended in RF-2 

buffer (10 mM MOPS, 75 mM calcium chloride, 10 mM rubidium chloride, 15 % 

glycerol (v/v), pH 6.5) at 1/12 of the original culture volume and left on ice for 15-

30 min. Cells were then aliquoted into ice-cold microcentrifuge tubes, flash-frozen 

in ethanol and stored at -70 oC.  

  

Transformation  

Competent cells were thawed on ice and 100-200 µl of cells were added to pre-

chilled DNA in a microcentrifuge tube followed by incubation on ice for 10 min. 

The cells were heat shocked at 42 oC for 90 s followed by the addition of 1 ml of 

2×TY rescue media to the cells before incubation for 1 h at 37 oC to allow for the 
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expression of genes encoding for antibiotic resistance. Cells were then plated on LA 

supplemented with the relevant antibiotic and incubated overnight at 37 oC. 

 

2.3.2 Electroporation of mycobacteria 

Electroporations of M. smegmatis and M. tuberculosis were performed according to 

published protocols (Gordhan and Parish, 2001). 

 

M. smegmatis  

An overnight preculture was diluted 100-fold in 100 ml of 7H9-GS and grown 

overnight at 37 oC and 100 rpm orbital shaking. The culture was then centrifuged in 

a Beckmann J2-21 centrifuge using a JA-20 at 3000 rpm for 10 min at 4 oC and 

supernatant discarded. The cells were washed three times with ice-cold 10 % 

glycerol (v/v) and re-suspended in 2 ml of 10 % glycerol. Then 400 µl of freshly 

prepared cells were mixed with an ice-cold 1-3 µg plasmid DNA in microcentrifuge 

tubes and briefly incubated on ice. The cells were then transferred into pre-chilled 

electroporation cuvettes and pulsed at 2.5 kV, resistance 1000 W, capacitance 25 µF 

in a BioRad GenePulserTM. Immediately, 1 ml of 7H9-GS was added to the cells, 

transferred to a new microcentrifuge tube and incubated at 37 oC. After 3 h of 

incubation, electroporated cells were plated on 7H10-GS containing the appropriate 

supplements and incubated for 3-5 d at 37 oC.   
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M. tuberculosis  

A log-phase culture was diluted 100-fold in fresh 7H9-ADC or 7H9-OADC media 

and grown to an OD600 of 0.8-1.0. Glycine was added to the culture to a final 

concentration of 1.5 % (w/v) followed by overnight incubation at 37 ºC. The cells 

were then centrifuged at 3000 rpm for 10 min at room temperature and the 

supernatant discarded. The cells were washed twice in 10 % glycerol (v/v) and then 

re-suspended in 2-5 ml 10 % glycerol. Four hundred µl of re-suspended cells were 

mixed with 1-3 µg/ml of DNA in electroporation cuvettes at room temperature and 

pulsed at 2.5 kV, resistance 1000 W, capacitance 25 µF in a BioRad GenePulserTM. 

One ml of 7H9-ADC or 7H9-OADC was added to the cells, transferred to fresh 

microcentrifuge tubes and incubated overnight at 37 oC. Cells were then plated on 

7H10-OADC agar containing the appropriate supplements and incubated at 37 oC for 

3-4 weeks. 

 

2.4 DNA extraction and purification from bacteria 

All DNA extraction procedures were performed according to standard protocols 

(Sambrook et al., 1989; Sambrook and Russell, 2001).  

 

2.4.1 Small scale plasmid DNA isolation from E. coli 

Overnight cultures of E. coli grown in 1 ml of LB were transferred into 1.5 ml 

microcentrifuge tubes, centrifuged in an Eppendorf 5415D microcentrifuge at 13000 

rpm for 30 s at room temperature and the supernatant discarded. The cells were then 

re-suspended in 100 µl Solution I (0.5 M Glucose, 50 mM Tris·HCl pH 8.0, 10 mM 

EDTA), and lysed with the addition of 200 µl Solution II (0.2 M NaOH, 1 % (w/v) 

SDS) with gentle mixing. The lysates were incubated for 5 min at room temperature. 

Thereafter, 150 µl of Solution III (3 M potassium acetate, pH 5.5) was added to 

neutralize the solution and this was followed by centrifugation at 13000 rpm for 5 

min at 4 oC. The supernatants were then transferred to new microcentrifuge tubes, 

RNase A added to a final concentration of 50 µg/ml and incubated at 42 oC for 30 

min. To precipitate DNA, 350 µl of isopropanol was added followed by incubation 

at room temperature for 5 min and then centrifugation for 10 min at 13000 rpm at 

room temperature. The supernatants were discarded and the pellets washed once 
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with 1 ml of ice cold 70 % ethanol and dried in a SpeedVac (Savant, USA). The 

DNA was then re-suspended in 50-150 µl sterile distilled water.  

 

2.4.2 Bulk plasmid DNA preparation from E. coli 

Overnight cultures in 100 ml LB were harvested by centrifugation for 10 min at 

5000 rpm at 4 oC. Plasmid DNA was isolated similarly as described above for small 

scale purification, except that all volumes were increased by a factor of 10. Bulk 

plasmid DNA preparation and purification by an anion-exchange based Nucleobond 

kit was conducted as per manufacturer’s instructions (Macherey-Nagel, Germany).  

 

2.4.3 Extraction of chromosomal DNA from mycobacteria 

A modified method of CTAB (cetyltrimethylammonium bromide; ICN Biomedicals, 

Ohio) extraction of chromosomal DNA from M. tuberculosis and M. smegmatis was 

used throughout this study (Larsen, 2000). Cultures of mycobacteria were dispensed 

in microcentrifuge tubes, heat-killed for 30 min at 95 oC and centrifuged at 13000 

rpm for 30 s. The cells were re-suspended in 500 µl of TE buffer (10 mM Tris·HCl, 

10 mM EDTA, pH 8.0) containing 50 µl of a solution of lysozyme (10 mg/ml) and 

incubated at 37 oC for 2 h. Thereafter, 70 µl of 10 % SDS and 6 µl of proteinase K 

(10 mg/ml) were added and incubated for 2 h at 65 oC. This was followed by the 

addition of 100 µl of 5 M NaCl and 80 µl of 10 % pre-warmed CTAB/NaCl (10 % 

CTAB prepared in 0.7 M NaCl) and incubation for further 10 min. An equal volume 

of chloroform/isoamyl alcohol (24:1 v/v) was added to the mixture, followed by 

centrifugation at 13000 rpm for 5 min. The DNA containing aqueous phase was then 

transferred to fresh microcentrifuge tubes and equal volume of isopropanol was 

added to precipitate the DNA. The DNA was harvested by centrifugation at 13000 

rpm, washed with 70 % ice-cold ethanol, dried in a SpeedVac (Savant, USA) and 

finally re-suspended in sterile distilled water. 
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2.4.4 Small scale extraction of chromosomal DNA from E. coli and 

mycobacteria for PCR screening  

Colonies were picked from plates, re-suspended in 20 µl of distilled water followed 

by the addition of 40 µl of chloroform. The cells were then incubated for 20 min at 

100 oC and centrifuged for 5 min at 13000 rpm. The DNA containing aqueous phase 

was then directly used as a template for PCR. 

 

2.4.5 Phenol-chloroform extraction and salt-ethanol precipitation of DNA 

To remove excess salt or inhibitors from prepared DNA samples, the volume of 

DNA containing solution was made up to 300 µl with TE. Thereafter, 1/3 of the 

volume of TE-saturated phenol (10 g phenol, 10 ml TE) was added, followed by 

mixing and centrifugation for 5 min at 13000 rpm at room temperature. The aqueous 

phase was then transferred to a fresh sterile microcentrifuge tube and a 1/3 volume 

of chloroform/isoamyl alcohol (24:1 v/v) was added followed by room temperature 

centrifugation for 30 s at 13000 rpm. The aqueous phase was transferred to new 

tubes and DNA precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.3) 

and 2.5 volumes of 100 % ice-cold ethanol. After incubation for 30 min at -20 oC, 

precipitated DNA was harvested by centrifugation at 13000 rpm at 4 oC, washed 

with ice cold 70 % ethanol, dried in a SpeedVac and re-suspended in sterile distilled 

water. 

 

2.5 DNA manipulations 

All DNA manipulations procedures were performed according to standard protocols 

(Sambrook et al., 1989; Sambrook and Russell, 2001). 

 

2.5.1 Agarose gel electrophoresis 

Agarose gels were prepared by dissolving electrophoresis grade agarose powder 

(Sigma, USA), with boiling, in 30 ml 1 × TAE (40 mM Tris·HCl, 1 mM EDTA, pH 

8, 0.1 % glacial acetic acid) to a final concentration of 0.8-2 %. Thereafter 3 µl of 2 

% (w/v) ethidium bromide (Sigma, USA) was added for visualization of DNA, 

poured on to a gel casting tray (Hoeffer, Amersham Pharmacia, USA) and left to set. 

Low-melting agarose powder (SeaPlaque GTG) was used for purification of DNA 
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fragments. DNA samples and molecular weight markers (Roche Biochemicals, 

Germany) were mixed with loading dye (0.025 % bromophenol blue, 30 % glycerol) 

and loaded onto gels. Electrophoresis of gels was performed in gel tanks (Hoeffer, 

Amersham Pharmacia, USA) filled with 1 × TAE buffer connected to a power pack 

(BioRad, South Africa) at 80-100 V. Gels were visualized using a GelDoc 2000 

system (BioRad, South Africa). 

 

2.5.2 Purification of DNA fragments from agarose gels 

Agarase digestion of the gels 

Agarase digestions were performed according to the manufacturer’s instructions 

(Fermentas, Lithuania). Briefly, DNA fragments were cut from low-melting agarose 

gels and melted at 65 oC in microcentrifuge tubes. The molten agarose was then 

cooled to 45 oC, 1 unit of agarase enzyme per 100 µl was added and the mixture 

incubated for a further 1 h at 45 ºC. The tubes were then incubated on ice for 15 min 

and centrifuged at 13000 for 10 min at 4 oC to remove any undigested agarose. The 

supernatants were transferred to fresh tubes and DNA was precipitated by adding 

2.5 volumes of 100 % ice-cold ethanol and harvested by centrifugation. The pellets 

were dried under vacuum and re-suspended in sterile distilled water.   

 

Purification by GeneClean II glass milk  

Purification of DNA fragments using a salt concentration dependent procedure in 

which DNA binds to the silica matrix (glass milk) at high salt concentration was 

performed using the GeneCleanII Kit according to manufacturer’s instructions 

(Qbiogene, USA).  

 

Purification by NucleoSpin Extract II 

A NucleoSpin Extract II kit, which uses the same principle as above, was also used 

to purify DNA fragments following the manufacturer’s instructions (Macherey 

asdrtyyNagel, Germany).  
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2.5.3 Treatment of DNA with enzymes 

Restriction digests 

Restriction enzymes used in this study were obtained from Amersham Pharmacia 

Biotech (USA), Roche Biochemicals (Germany) or New England Biolabs, Inc 

(England).  Enzyme restriction reactions were performed according to the 

manufacturer’s specifications. Plasmid DNA digestions were performed in the 

appropriate buffer for 3 h at the specified temperature. Genomic DNA digestions 

were carried out overnight in the appropriate buffer. 

 

 De-phosphorylation  

To remove 5’ phosphate groups from DNA, digested DNA was treated with calf 

intestinal alkaline phosphatase according to the manufacturer’s instructions (Roche 

Biochemicals, Germany). The reactions were carried out for 30 min at 37 oC and 

DNA purified by phenol-chloroform extraction and ethanol precipitation (Section 

2.4.5). 

 

Blunting of 5’ and 3’ DNA overhangs  

The 5’ cohesive overhangs resulting from restriction digestion of DNA were filled in 

using the Klenow enzyme and dNTPs from Roche according to manufacturer’s 

instructions. Reactions were performed in the appropriate buffer for 30 min at 37 oC. 

Blunting of 3’ overhangs was carried out using T7 DNA polymerase following 

manufacturer’s instructions (Promega, USA). The reactions were incubated in the 

supplied buffer for 10 min at 37 oC. 

 

Ligation of DNA fragments 

The Fast-LinkTM ligation kit (Epicentre Technologies, USA) was used for ligations 

of DNA according to the manufacturer’s instructions. Ligations of vector and inserts 

were carried out in 10 µl reaction volumes with incubation at room temperature for 2 

h.  The total reaction volume was used to transform 100-200 µl of E. coli competent 

cells.  
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2.6 Polymerase chain reaction (PCR)  

Standard PCR reactions were performed using the Roche FastStart Taq DNA 

Polymerase kit as per manufacturer’s instructions (Roche Biochemicals, Germany). 

For amplification of fragments for use in homologous recombination, the Expand 

High Fidelity PCR System (Roche Biochemicals, Germany) or Phusion PCR system 

(New England Biolabs, England) was used. Amplifications from plasmid and 

genomic DNA were performed with 10-50 and 50-100 ng of template DNA, 

respectively, in 50 µl reaction volumes. Thermal cycler settings were: denaturation 

at 94 oC for 5 min followed by 40 cycles with each cycle consisting of denaturation 

at 94 oC for 30 s, annealing at 58-65 oC for 60 s, extension at 72 oC for 0.5-2 min, 

followed by a final extension at 72 oC for 10 min. All PCR reactions were performed 

using Eppendorf Mastercycler gradient (Eppendorf, Germany) or Hybaid PCR 

Express (Hybaid, UK) thermocyclers. 

   

2.7 DNA sequencing 

All sequencing was performed by Inqaba Biotech (South Africa) on a Spectrumedix 

2410 Capillary Electrophoresis automated DNA sequencer using Big Dye 

Terminator V3.1 software from ABI for sequence analysis. 

 

2.8 Southern blot analysis  

2.8.1 Synthesis and labelling of probes  

All DNA probes for Southern blotting were synthesised and labelled using the PCR 

DIG Probe synthesis kit (Roche Biochemicals, Germany) as described by the 

manufacturer. Briefly, PCR reactions were carried out in a final volume of 50 µl 

with 1× supplied PCR buffer containing MgCl2. 2.5 µl PCR DIG labelling mix, 2.5 

µl dNTP stock solution and 10-100 pg plasmid or 10-100 ng genomic DNA template 

were used during the labelling reaction. Thermal cycler parameters were as follows: 

denaturation at 95 oC for 2 min and 40 cycles with each cycle consisting of 

denaturation at 95 oC for 30 s, annealing at 60 oC for 30 s, extension at 72 oC for 40 

s, followed by a final extension at 72 oC for 7 min. Approximately 5 µl of the 

resulting PCR product was run on a 0.8 % gel without ethidium bromide and stained 

for 5 min in 20 ml 1× TAE buffer containing 20 µl of 2 % (w/v) ethidium bromide. 
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The products were used directly as probes or stored at - 20 oC for a maximum period 

of 1 year.   

 

2.8.2 Electroblotting 

Restriction enzyme digestions of 1-5 µg chromosomal DNA were carried out 

overnight and the reactions separated on 0.8 % agarose gel by electrophoresis 

(Section 2.5.1) and the gels were photographed with a ruler using a GelDoc system 

(BioRad, South Africa). The DNA was then de-purinated by immersing the gels in 

0.25 M HCl for 15 min followed by denaturation of DNA by incubation in 0.5 M 

NaOH/1.5 M NaCl solution for 15-20 min. The gels were then briefly equilibrated in 

1 × TBE buffer (0.178 mM Tris·HCl; 17.8 mM boric acid; 2 mM EDTA, pH 8.0) 

before they were overlaid with HybondTM-N nylon membranes (Roche 

Biochemicals, Germany) and sandwiched between two 3 MM Whatman filter papers 

and two sponges in a TE 22 Transphor cassette (Hoefer Scientific, USA). The 

cassettes were then inserted into a TE 22 Mini Transphor unit (Hoefer Scientific, 

USA) and DNA electroblotted in 1 × TBE at 4 º C for 2 h at 0.5 A. To cross-link the 

DNA to the nitrocellulose, membranes were UV irradiated in a UV Stratalinker 

1800 (Stratagene, USA) at 1200 mJ/cm2. Membranes were hybridised immediately 

or stored at room temperature. 

 

2.8.3 Probe hybridisation  

All probes used were synthesized using primers outlined in Table 2.3 and are 

described in Table 2.4. Probe hybridization was carried out in DIG-Easy-pre-

hybridisation buffer (10 ml) (Roche Biochemicals, Germany) which was added to 

roller bottles containing membranes and incubated by rolling in a Techne Hybridiser 

HB-1 at 42 oC for 30-120 min. The DIG-labelled probe was then denatured by 

incubation at 95 ºC for 10 min. The pre-hybridisation buffer was then substituted 

with a fresh 42 oC pre-warmed DIG-Easy-hybridisation buffer containing the 

denatured probe (1 µl of probe per 1 ml of buffer) and hybridization was then carried 

out overnight at 42 oC.   
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Table 2. 3 Oligonucleotide primers used for probe synthesis  

Name Sequence (5’→3’) Region Amplified 
M. smegmatis 
smnrdB-F2      TTCGGGAAGATCTGCAGCGCACGTGGGCGC 
smnrdB-R2     CGGTGCGGTACCGCAGTCCGTGACGGTCAA 

142 bp of the 3’ of nrdB and 
878 bp of downstream 
homologous sequence 

smnrdF2-F1     ATGATCGCGGCGGTGGCAAGCTTGATGGCG 
smnrdF2-R1     TCGGTGAGGGTGTGCCAGATCTGGATGTCG 

175 bp of the 5’ end of 
nrdF2 and 752 bp of 
upstream homologous 
sequence 

smnrdR-F1      CACAGGAGCGAATACGCCGGACGAAAGGC 
smnrdR-R1     CGAGCACCGAGATCTCGACCGTGGTGAAAC 

123 bp 5’ end of nrdR and 
758 bp of upstream 
homologous sequence 

M. tuberculosis 
tbnrdB-F1p     CGTCGAGATCGACGGTACCGTGTTGCCCAC 
tbnrdB-R1p     GTCGATGTCGGCCGGATGCCAGATCTT TGC 

114 bp of the 5’ of nrdB and 
813 bp of upstream 
homologous sequence  

tbnrdF1-F1p     CGACCACCGCACCAAGCTTGTCTAGCAGGG  
tbnrdF1-R1p     CGGTGCAGGGGGGATCCACGACTTTTTCTC  

96 bp of the 3’ of nrdF1 and 
916 bp of downstream 
homologous sequence 

tbnrdR-F2 CTACGGTGGTGGATCCTCGTCCACATTCGG 
tbnrdR-R2p     GTCTACCGTTTTGCGCGTGCGACACGCTTC 

123 bp of the 5’ end of nrdR 
and 770 bp of upstream 
homologous sequence 

 
 
2.8.4 Detection of bound probe 

Following overnight hybridisation of probe DNA to the target DNA, hybridisation 

buffer was discarded and membranes washed twice with 2 × SSC; 0.1 % SDS for 5 

min at room temperature, then twice with pre-warmed 0.5 × SSC; 0.1 % SDS for 15 

min at 68 oC. The membranes were then transferred to a container and briefly 

washed once with 1× Wash buffer [1× Maleic acid buffer (0.1M Maleic acid, 0.15M 

NaCl, pH7.5); 0.3 % Triton] at room temperature followed by incubation in 1× 

Blocking buffer (1 × Maleic acid buffer; 1 × Roche Blocking buffer) for 30 min at 

room temperature. Thereafter, the membranes were incubated for a further 30 min in 

fresh 1× Blocking buffer containing Anti-DIG-Alkaline phosphatase conjugate 

(Roche Biochemicals, Germany) and then washed twice with 1 × Wash buffer for 15 

min. The membranes were then equilibrated in detection buffer (50 mM MgCl2; 0.1 

M pH 9 Tris·HCl; 1 M NaCl), incubated at 37 oC with an alkaline phosphatase 

substrate, CSPD (Roche Biochemicals, Germany) for 15 min and exposed to 3MM 

medical X-ray film in a developing cassette at room temperature for 1-3 h.  X-Ray 

films were then developed in an XP400 developer (Peromac Medical Services, 

South Africa). 
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Table 2.4 Probes, enzymes used to digest genomic DNA and fragments detected in 

Southern blotting 

Name Description Enzyme Fragments size 
detected (kb)  

M. smegmatis Mutant 
allele 

Wild- type 
allele 

smnrdB-F2R2 1020 bp amplicon amplified using smnrdB-F2 
and  smnrdB-R2 (Table 2.3) used to probe for 
nrdB 

NruI 2.4 3.3  

smnrdF2-
F1R1  

927 bp amplicon amplified using smnrdF2-F1 
and smnrdF2-R1 (Table 2.3) used to probe for 
nrdF2 

NruI 0.8  2.1  

smnrdR-F1R1 881bp amplicon amplified using smnrdR-F1 
and smnrdR-R1 (Table 2.3) used to probe for 
nrdR 

BamHI 3.1  2.3  

M. tuberculosis  
tbnrdB-
F1pR1p 

927 bp amplicon amplified using tbnrdB-F1p 
and tbnrdB-R1p (Table 2.3) used to probe for 
nrdB 

SmaI 3.9 4.6 

tbnrdF1-
F1pR1p 

1120 bp amplicon amplified using tbnrdF1-
F1p and tbnrdF1-R1p (Table 2.3) used to 
probe for nrdF2 

SacI 3.4 4.3 

tbnrdR-F2R2p 893 bp amplicons amplified using tbnrdR-F2 
and tbnrdR-Rp (Table 2.3) used to probe for 
nrdR 

SalI 3.2 1.3 

 

2.9 Construction and genotypic characterization of nrd gene allelic 

exchange mutants and complemented counterparts in M. smegmatis and 

M. tuberculosis  

The sequences of the putative M. smegmatis and M. tuberculosis nrd genes under 

investigation in this study were obtained from the complete genome sequences at 

http://www.tigr.org/tigr-scripts/CMR2/ and http://www.pasteur.fr/Bio/TubercuList, 

respectively. Targeted gene knockout in mycobacteria was carried out by 

homologous recombination with two-step selection using the p2NIL/pGOAL-based 

suicide plasmid system, as previously described (Parish and Stoker, 2000). 

Upstream and downstream homologous fragments were obtained by PCR 

amplification using pairs of primers containing restriction sites (Table 2.5) for ease 

of cloning. In some cases of M. tuberculosis, fragments were cloned directly from 

the Bacterial Artificial Chromosome (BAC) library of strain H37Rv that was kindly 

provided by Prof. Stewart Cole (EPFL, Lausanne). To avoid inadvertent mutations, 

all PCR amplicons for deletion mutagenesis were first cloned into pGEM3Z(+)f, 

pGEM-T Easy or pCR2.1-TOPO (Table 2.2) and sequenced (Section 2.7) before 
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cloning into p2NIL (Table 2.2) (Parish and Stoker, 2000). All vectors, primers and 

probes used for targeted gene knockout are outlined on Table 2.2, Table 2.5 and 

Table 2.4 respectively. For blue-white selection of both E. coli and mycobacterial 

strains, solid media was supplemented with 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) to a final concentration of 50 µg/ml. To counter-select 

against clones carrying the sacB gene, sucrose (Suc) was added to solid media to a 

final concentration of 5 % (w/v) for E. coli or 2 % for mycobacterial strains.  

 

2.9.1 Targeted knockout of nrd genes in M. tuberculosis 

To construct the suicide vector for targeted knockout of the M. tuberculosis nrdB 

gene, a 1.997-kb fragment containing the 5-terminal 67 bp of the gene and upstream 

flanking sequence and a 1.96-kb fragment containing the 3’-terminal 156 bp of nrdB 

and flanking sequence were amplified using the tbnrdB-F1/ tbnrdB-R1 and tbnrdB-

F2/ tbnrdB-R2 primer pairs, respectively (Table 2.5). Both fragments were 

simultaneously cloned into the Asp718-HindIII-digested p2NIL, creating the 

p2∆TBB vector, which carries a 722 bp deletion within the nrdB gene.  

 

To create a suicide substrate for deletion mutagenesis of the nrdF1 gene in M. 

tuberculosis, a 8.4 kb BamHI BAC fragment containing the M. tuberculosis nrdF1 

gene and flanking sequences was cloned into the BamHI site of pGEM3Z(+)f  to 

produce pGEMTBF1. A 2.48 kb SnaBI-Asp718 fragment containing 47 bp of the 3’ 

end of nrdF1 and a 1.99 kb MfeI-BamHI fragment containing 39 bp of the 5’-end of 

nrdF1 were purified from this vector and subcloned into Asp718/BamHI-digested 

pGEM3Z(+)f to yield pGNRDF1. An EcoRI-BamHI fragment (4.48 kb) carrying the 

∆nrdF1 allele (883 bp deletion in the nrdF1 gene) from pGNRDF1 was then cloned 

into the ScaI/BamHI sites of p2NIL creating p2∆TBF1. Site-specific deletion of 

nrdR in M. tuberculosis was achieved by first amplifying a 1.89 kb fragment 

containing the 5’-terminal 123 bp of nrdR and flanking sequence and a 1.88 kb 

containing the 3’-terminal 127 bp of nrdR and flanking sequence using the tbnrdR-

F2/ tbnrdR-R2 and tbnrdR-F1/ tbnrdR-R1 primer pairs (Table 2.5), respectively. 

Both fragments were then cloned in p2NIL yielding p2∆TBR, so eliminating 215 bp 

within the nrdR gene.  
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Thereafter, a 7.94 kb hyg-lacZ-sacB PacI cassette from pGOAL19 (Parish and 

Stoker, 2000) was cloned into the PacI site of p2∆TBB, p2∆TBF1 and p2∆TBR 

generating the p2∆TBBKO, p2∆TBF1KO and p2∆TBRKO (Table 2.2) knockout 

vector respectively. All constructs were individually electroporated into M. 

tuberculosis H37Rv to generate the ∆nrdB, ∆nrdF1 and ∆nrdR mutants of M. 

tuberculosis, respectively. The p2∆TBBKO vector was subsequently electroporated 

into the ∆nrdF1 mutant strain to create the double ∆nrdF1∆nrdB mutant strain. 

Deletion mutants were phenotypically isolated by two-step selection using 

previously described methods (Gordhan and Parish, 2001; Parish and Stoker, 2000). 

SmaI, SacI and SalI were used to digest genomic DNA for nrdB, nrdF1 and nrdR 

(Table 2.4) mutant genotyping by Southern blot analysis using tbnrdB-F1pR1p, 

tbnrdF1-F1pR1p and tbnrdR-F2R2p (Table 2.4) as probes, respectively. 

 

2.9.2 Construction of M. smegmatis nrd genes deletion mutants 

To construct a knockout vector for deletion of the nrdB gene in M. smegmatis, a 

1006 bp fragment containing the 5’-terminal 249 bp of nrdB and flanking sequence 

was amplified using the smnrdB-F1 and smnrdB-R1 primers and a 1020 bp fragment 

containing the 3’-terminal 142 bp of nrdB and flanking sequence was amplified 

using smnrdB-F2 and smnrdB-R2 primers (Table 2.5). Both amplicons were 

simultaneously ligated into Asp718-HindIII-digested p2NIL generating p2∆SMB 

(Table 2.2) in which 571 bp of the coding sequence of nrdB was eliminated. A 

homologous recombination substrate for deletion of the nrdF2 gene in M. smegmatis 

was created by amplifying a 920 bp fragment containing the 5’-terminal 175 bp of 

nrdF2 and flanking sequence and a 1007 bp fragment containing the 3’-terminal 133 

bp of nrdF2 and flanking sequence using the primer pairs smnrdF2-F1/smnrdF2-R1 

and smnrdF2-F2/smnrdF2-R2, respectively. The fragments were cloned into p2NIL, 

so deleting a 678 bp internal segment of nrdF2 and yielding p2∆SMF2. To construct 

a vector for knockout of M. smegmatis nrdR, the primer pairs smnrdR-F1/ smnrdR-

R1 and smnrdR-F2/ smnrdR-R2 were used to amplify an 881 bp fragment carrying 

the 5’-terminal 123 bp of nrdR and an 808 bp fragment carrying the 3’terminal 113 

bp of nrdR and flanking sequences. Fragments were cloned in p2NIL yielding 

p2∆SMR, so eliminating 217 bp of the nrdR gene. 
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Thereafter, the 1738-bp hyg cassette from pIJ963 (Blondelet-Rouault et al., 1997) 

(Table 2.2) carried on a BglII fragment was cloned in the BglII site located at the 

junction of the upstream and downstream fragments giving rise to the plasmids 

p2∆SMB::hyg, p2∆SMF2::hyg and p2∆SMR::hyg (Table 2.2). A 6.36-kb lacZ-sacB 

PacI cassette from pGOAL17 (Parish and Stoker, 2000) was then cloned into the PacI 

site of each of these vectors to generate p2∆SMBKO, p2∆SMF2KO and p2∆SMRKO, 

the knockout vectors for M. smegmatis nrdB, nrdF2 and nrdR, respectively (Table 2.2).  

 

The p2∆SMBKO vector was electroporated into the ∆DRKIN mutant of M. smegmatis 

mc2155 (Warner et al., 2006), and p2∆SMRKO was electroporated in mc2155 to create 

∆nrdB::hyg and ∆nrdR::hyg respectively. p2∆SMF2KO was electroporated into mc2155 

to create ∆nrdF2::hyg and into ∆DRKIN strain to create 

∆DRKIN∆nrdF2::hyg::pNRDF2 following electroporation of a single crossover 

recombinant (∆DRKINSCO, Table 2.1) with  pNRDF2 (Table 2.2), so creating 

∆DRKINSCO::pNRDF2 (Table 2.1). Mutant strains were phenotypically isolated by 

two-step selection, as previously described (Gordhan and Parish, 2001; Parish and 

Stoker, 2000). Genomic DNA from single cross-over (SCO), double cross-over (DCO) 

and parental strains was digested with NruI for both nrdB and nrdF2 and with BamHI 

for nrdR mutant genotyping using smnrdB-F2R2, smnrdF2-F1R1 and smnrdR-F1R1 

(Table 2.4) as probes for Southern blot analysis.  

 

2.9.3 Complementation of M. smegmatis ∆nrdR::hyg and ∆nrdF2::hyg 

The primer pair, smnrdRC1/smnrdRC2 (Table 2.6), was designed to amplify a 967 bp 

fragment containing the putative M. smegmatis nrdR gene plus 311 bp upstream and 

203 bp downstream flanking sequence from wild-type mc2155 genomic DNA. The 

fragment was then sequenced and cloned into the Asp718 and HindIII sites of the 

integrative vector, pMV306K that was kindly provided by Dr. Helena Boshoff to create 

pNRDR (Table 2.2). ∆nrdF2::hyg was complemented using pNRDF2 (Dawes et al., 

2003). Both pNRDR and pNRDF2 vectors were electroporated into the ∆nrdR::hyg and 
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∆nrdF2::hyg strain respectively. Transformants were screened for site-specific 

integration at the attB chromosomal locus using a forward (attBS2) and reverse (attL4) 

PCR primer set to amplify a 320 bp fragment spanning the attL region, while a forward 

(attL2) and reverse (attBS1) PCR primer set was used to amplify a 282 bp fragment 

spanning the attR region (Barichievy, S., MSc dissertation, University of the 

Witwatersrand, 2005).   

 

Table 2. 6 PCR primers used to construct ∆nrdR::hyg complementation vector 

Gene Vector Oligonucleotide pairs used for vector construction 

M. smegmatis 
nrdR 

pNRDR Primer name Sequence (5’-3’)* Amplicon properties 

smmrdRC1 CAGTGAACTGGCC
GTCGTGCAGGTaCc
GTC 
 

 

smnrdRC2 CCCGCATGTTCGC
GACGAAgCTtGGC
ATCC 

967-bp amplicon 
containing M. smegmatis 
nrdR with 311 bp 5’ 
(upstream) and 203 bp 3’ 
 (downstream) sequence 

* Restriction sites used for cloning are underlined and bases changed to introduce restriction 
sites are in lower case  
 

2.10 Analysis of gene expression 

2.10.1 RNA isolation 

RNA was isolated as previously described (Downing et al., 2004). Briefly, cultures of 

mycobacteria were grown to an OD600 of 0.3 and the bacteria then harvested by 

centrifugation at 1000 rpm for 10 min and cells re-suspended in 1 ml of TRIzol (Sigma, 

USA). The cells were lysed with Lysing Matrix B (Qbiogene, USA) in a ribolyzer 

(Savant Fastprep FP120) for three cycles at speed setting of 6 for 20 s with cooling on 

ice for 2 min between pulses.  Lysates were then centrifuged at 13000 rpm for 45 s. The 

supernatants were then transferred to tubes containing Phase Lock gel (Merck, 

Germany) and 200 µl of chloroform followed by vigorous mixing for 15 s, and then 

periodically for 2 min. The resulting suspension was centrifuged at 13000 rpm for 5 min 

and the aqueous phase transferred to a fresh microcentrifuge tube. An equal volume of 

isopropanol was added and the samples were then centrifuged at 10000 rpm for 20 min 
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at 4 oC. Pellets were washed with 70 % ethanol, air-dried and re-suspended in DEPC-

treated H2O. Contaminating genomic DNA in the RNA preparation was then digested 

with DNase I (Ambion, USA) and samples purified using an RNeasy kit (Qiagen, 

Germany) according to the manufacturer’s instructions. RNA samples were then 

subjected to a second round of DNase treated using Turbo DNase according to 

manufacturer’s instructions (Ambion, USA). The quality of the RNA was assessed by 

electrophoresis on a 2 % agarose gel containing 0.1 % SDS and the purity gauged by 

the A260/A280 ratio, whereby a ratio of 1.9-2.1 indicated a pure RNA. 

 

2.10.2 Reverse Transcription (RT) 

Reverse transcription of RNA was carried out as previously described (Downing et al., 

2004). To anneal primers to RNA, 20 µl annealing reactions consisting of 1 µg RNA 

and 0.25 µM of each reverse primer were set up by first denaturing the RNA at 94 oC 

for 90 s before annealing at 65 oC for 3 min followed by 3 min at 57 oC. Thereafter 10 

µl of the annealing mixture was mixed with 10 µl of a master mix consisting of 1×RT 

Buffer (Sigma, USA), 200 µM each dNTP mix (Sigma, USA), 4 mM MgCl2 (Sigma, 

USA), 0.6 µl dimethyl sulphoxide (DMSO; Sigma) and 2 U Enhanced Avian 

Myeloblastoma Virus (AMV) RT (Sigma, USA). The RNA was then reverse 

transcribed using Eppendorf Mastercycler at the following parameters: reverse 

transcription at 60 oC for 30 min, then denaturation at 95 oC for 5 min and final cooling 

at 4 oC. To determine the amount of DNA contamination, control reactions that 

contained no RT were run in parallel. 

 

2.10.3 Quantitative RT-PCR Assay  

Real-Time, Quantitative RT-PCR Assay (qRT-PCR)  

Primers used for quantitative RT-PCR were designed using the Primer3 design 

programme (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and are detailed 

on Table 2.7. All primers were designed to amplify ~ 90-150 bp DNA fragments that 

were internal to the open reading frames of genes of interest. Primers used for the 

quantification of sigA in M. tuberculosis were the same as those described by Dawes et 
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al. (Dawes et al., 2003). qRT-PCR was performed using a Roche LightCycler system 

and a LightCycler Fast start DNA Master SYBR Green I kit (Roche Biochemicals, 

Germany) according to the manufacturer‘s instructions. For absolute quantification of 

mRNA levels, a linear or polynomial standard curve that was based on ten-fold serial 

dilutions of the wild-type genomic DNA was set up using the LightCycler software 

(version 4.0). Thereafter, the absolute amount of mRNA in test reactions were 

determined by extrapolation from standard curves and these absolute transcript numbers 

were normalized to the number of sigA transcripts in the same sample. The normalized 

data from mutant strains were compared to normalized transcript levels in the wild type 

control. These analyses were performed in triplicate biological samples, each in 

duplicate. 

 

Semi-quantitative RT-PCR 

cDNA was synthesized as above, using the primers described above. Two-fold serial 

dilutions of the cDNA were prepared and 2 µl from each dilution was used as the 

template in a 50 µl PCR reaction. The PCR reaction mixture contained 4 mM MgCl2, 

0.4 mM each of dATP, dCTP, dGTP and dTTP, 0.4 µM primers, 0.5 mg/ml BSA, 10 % 

DMSO, reaction buffer and 2.5 U of FastStart Taq polymerase (Roche Biochemicals, 

Germany). PCR reaction parameters were as follows: Denaturation at 94°C for 10 min 

was followed by cycling for 14 cycles of 94°C for 30 s, 65°C for 30 s, 72°C for 30 s and 

24 cycles of 94°C for 30 s, 57°C for 30 s and 72°C for 30 s. The PCR products were 

then analyzed on a 2 % agarose gel. 

 

2.11 Competitive in vitro growth and long-term survival assays 

To assess competitive growth of M. smegmatis strains deficient in particular nrd genes, 

equal amounts of Hyg-resistant mutant strains, and Km-resistant parental strains, 

generated by electroporating M. smegmatis mc2155 or ∆DRKIN with pAINT 

(mc2155::aph, ∆DRKIN::aph, Table 2.2) and selecting Km-resistant transformants, 

were co-cultured in a final volume of 100 ml without antibiotic. At each time point, 

aliquots were plated on solid 7H10-ADC containing Hyg (50 µg/ml) or Km (25 µg/ml) 
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for enumeration of mutant and parental strain CFUs, respectively. Competitive long-

term survival assays were set up and assessed similarly as for competitive growth, 

except that cultures were incubated at 30 oC with shaking at 100 rpm for at least 5 

months. To avoid early clumping of cultures, the concentration of Tween 80 in the 

media used for these experiments was increased to 0.1 % 

 

Table 2.7 Oligonucleotide primers used for RT-PCR 

Name  Sequence (5’- 3’) Region targeted  

RTtbnrdF2-F1 GGTCTGGCGTTGGTTGAC 

RTtbnrdF2-R1 CCACCTCGTTGTCGTAGAGC 
Position 631-718 in M. tuberculosis 
nrdF2  

RTtbnrdF1-F1 AGTTCCACCGAGCAGCAG 

RTtbnrdF1-R1 TCAGGACCGCCTCTTCGT     
Position 154-283 in M. tuberculosis  
nrdF1  

RTtbnrdB-F1 CGGACGACGAACGTGACTAC 

RTtbnrdB-R1 GCTGGATGTCCTCGGTCA 
Position 149-229 in M. tuberculosis 
nrdB 

RTtbnrdE-F1 GTTGCTGGAGGATGCGTTC 

RTtbnrdE-R1 CGGTAGATGTCGGGGTGATG 
Position 645-740 in M. tuberculosis 
nrdE  

RTtbnrdZ-F1 GGCTGGTGTTTCTCGACACG 

RTtbnrdZ-R1 TAAGGCAGCAGTGGGACCTC  
Position 1055-1154 in M. tuberculosis 
nrdZ 

RTsmnrdF2-F1 CGAGGAGAACCCGAACCT 

RTsmnrdF2-R1 GCCCGAGTAGAACAGGAAGC       
Position 402-522 in M. smegmatis 
nrdF2  

RTsmnrdE-F1 GAGCCCAAGACCGACAAG 

RTsmnrdE-R1 GCACCGACTCCTTCAACTG 
Position 1651-1744 M. smegmatis 
nrdE 

RTsmnrdB-F1 CTGTGCGCGGAGTTCATC 

RTsmnrdB-R1 CTGCGTCAGGTACATCTCGTC 
Position 178-288 in M. smegmatis 
nrdB 

RTsmSigA-F1 GGGCGTGATGTCCATCTCCT 
RTsmSigA-R1 GTATCCCGGTGCATGGTC 

Position 367-488 in M. smegmatis 
sigA 

 
 

2.12 Susceptibility testing of mycobacterial strains  

Sensitivity of strains to mitomycin C (MTC; 0.01–0.1 µg/ml), HU (1-80 mM) and STR 

(0.025–10) µg/ml were determined by plating, in duplicate, serial dilutions of stationary 

and log-phase cultures on media containing different concentrations of each compound. 

Plates were then incubated at 37 oC until visible CFUs could be enumerated. Sensitivity 

to novobiocin (Novo, 1-100 µg/ml), moxifloxacin (Moxi 0.1-2 µg/ml) and ciprofloxacin 

(Cipro, 1–20 µg/ml) was determined by spotting 10 µl of serial dilutions of stationary 
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and log-phase cultures in duplicate, on media containing different concentrations of 

each compound followed by Cfu enumeration. The minimum inhibitory concentrations 

(MICs) of MTC, HU, Novo, STR and ofloxacin (Oflox) were determined using the 

microbroth dilution technique in 96-well microtitre plates, as previously described (Lee 

et al., 2003). MTC and HU susceptibility testing in liquid cultures was determined by 

first diluting stationary-phase and log-phase M. smegmatis cultures in fresh media 

supplemented with different MTC or HU concentrations. Cultures were incubated and 

growth followed for at least 48 h. Survival in the presence of the MTC or HU was 

assessed by adding the compounds to the undiluted stationary-phase cultures to 

different final concentrations and CFUs assessed over 48 h post compound addition.  

 

2.13 Sensitivity to UV irradiation  

Assessment of bacterial viability after exposure to UV irradiation was conducted using 

previously described procedures (Boshoff et al., 2003). Briefly, serial dilutions of log-

phase cultures were plated in duplicate on 7H10-OADC media and the plates were then 

irradiated at UV fluences ranging from 0-40 mJ/cm2 in a Stratalinker 1800. CFUs were 

enumerated and the proportion of surviving bacteria was scored relative to untreated 

controls. 

 

2.14 Sensitivity to nitrosative stress  

Sensitivity to S-Nitrosoglutathione (GSNO, Sigma) as an NO donor was assessed by 

incubating liquid cultures (OD600 ~ 0.02) with increasing concentrations of GSNO 

ranging from 0-16 µg/ml for 24 h and CFUs were enumerated on solid media. Survival 

in the presence of acidified nitrite was determined according to Firmani and colleagues 

(Firmani and Riley, 2002). Briefly a ten fold dilution mid-log-phase (OD600 ~ 0.6) 

cultures were incubated in 7H9-OADC at pH 5.3 supplemented with NaNO2 at 

concentrations ranging from 0-48 mM for 24 h. Serial dilutions of cultures were then 

plated on solid media to enumerate CFUs  
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2.15 Assessment of UV-induced mutation frequencies 

UV-induced mutation frequencies were determined as previously described (Boshoff et 

al., 2003). Briefly, 40 ml of log-phase cultures were harvested and the bacterial cells 

were then re-suspended in 5 ml of fresh 7H9-OADC media, followed by UV irradiation 

at 25 mJ/cm2. Thereafter, the culture volume was adjusted back to the original volume 

before incubating at 37 oC to allow for recovery. Serial dilutions were then plated on 

7H10-OADC to determine viable cell counts post irradiation and 1 ml of undiluted 

culture was plated on media containing Rif 200 µg/ml at times ranging from 0-24 h post 

irradiation. Mutation frequencies were determined by dividing the number of Rif 

resistant mutants by total viable cell counts post irradiation. 

 

2.16 Luria-Delbrück fluctuation tests  

Spontaneous mutation rates were determined using the Luria-Delbrück fluctuation assay 

as previously described (Rosche and Foster, 2000). Briefly, 35 cultures each containing 

approximately 100 cells/ml in a final volume of 2.5 ml were set up and incubated in a 

37 oC rotary shaking incubator. After 7 d, the total volume from 30 cultures was 

individually plated on media containing Rif at 200 µg/ml to determine the number of 

resistant mutants arising. Serial dilutions from the 5 remaining cultures were plated to 

enumerate the total number of viable cells. The number of mutations per culture was 

calculated using P0 method of Luria and Delbrück or Lea-Coulson Method of the 

Median, from which the mutation rate was then calculated.  

 

2.17 Infection of mice and determination of bacterial load 

All mouse model experiments were done at the Public Health Research Institute 

(Newark NJ, USA) under the supervision of Prof. Gilla Kaplan (Laboratory of 

Mycobacterial Immunity and Pathogenesis). The protocol for these experiments was 

approved by the Institutional Animal Care and Use Committee at the University of 

Medicine and Dentistry of New Jersey (Newark, NJ, USA). Eight to ten week-old 

female B6D2/F1 mice from Jackson Laboratories (Bar Harbor, ME) were aerosol 
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infected with wild type or mutant strains of M. tuberculosis by exposure to aerosol 

particles in a nose-only infection apparatus as previously described (In Tox Products, 

Albuquerque, MN). This resulted in the seeding of ~ 2.3 log10 bacteria within the mouse 

lungs. Three mice were sacrificed per time point over a period of 126 d where the lungs, 

liver and spleens of infected animals were harvested, homogenized and serial dilutions 

plated to enumerated organ bacillary loads (Moreira et al., 1997; Tsenova et al., 1997).  

 

2.18 Statistical analysis 

The independent Student’s t test or paired t test was used to assess statistical 

significance of pair-wise comparisons using GraphPad Prism Software 

(http://www.graphpad.com/quickcalcs/ttest1.cfm).  
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3. Results 

 

 

3.1 The genomes of M. tuberculosis and M. smegmatis contain multiple RNR-

encoding genes  

Unlike eukaryotes, most bacteria contain genes encoding more than one class of RNR 

(Kolberg et al., 2004) and mycobacteria are not an exception. Similar to other 

mycobacteria (http://rnrdb.molbiol.su.se), in addition to the class Ib RNR encoding 

genes nrdE (downstream and operonic to nrdHI) and nrdF2, both M. tuberculosis (Cole 

et al., 1998) and M. smegmatis (http://www.tigr.org/tigr-scripts/CMR2/) possess a small 

subunit-encoding gene homologous to that of the Chlamydial class Ic RNR (Högbom et 

al., 2004), designated as nrdB (Figure 3.1A). M. smegmatis and M. tuberculosis NrdB 

have the essential residues of the Chlamydial protein, including the iron ligands, second 

coordination sphere ligands to histidines and the phenylalanine in place of the normal, 

radical-harboring tyrosine residue conserved (Figure 3.1B) (Högbom et al., 2004). Like 

in M. bovis (Brosch et al., 2007; Garnier et al., 2003), M. tuberculosis also contains an 

alternate class Ib R2 subunit-encoding gene, nrdF1 as well as the class II RNR-

encoding gene, nrdZ (Cole et al., 1998; Dawes et al., 2003), whereas M. smegmatis 

mc2155 has duplicate copies of the nrdHIE and nrdF2 genes, which reside on an 

IS1096-flanked 56 kb duplication (Warner et al., 2006) (Figure 3.1A).  

 

The deletion of nrdZ had no effect on growth or survival of M. tuberculosis under 

conditions of hypoxia in which expression of the gene is induced (Voskuil et al., 2003), 

or on virulence in mice (Dawes et al., 2003). The presence of multiple class I RNR 

small subunit encoding genes in these mycobacteria suggests that they may be able to 

modulate RNR subunit composition under various environmental conditions. Of these, 

only nrdF2 has been demonstrated to be essential for aerobic growth of M. tuberculosis 

H37Rv in vitro (Dawes et al., 2003).  
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                                ▼  
M. tuberculosis                 ---------MTRTRSGSLAAGGLNWASL------ ----PLKLFAGGNAKF 
M. smegmatis                    ---------MTRTHFDSIRAGGLNWSSL--- -------PLKLFAGGNAKF 
Chlamydia trachomatis           MQADILDGKQKRVNLNSKRLVNCNQVDVNQLVPIKYKWAW EHYLNGCANN 

              
M. tuberculosis                 WHPADIDFTRDRADWEK--LSDDERDYATRLCTQ FIAGEEAVTEDIQPFM 
M. smegmatis                    WDPADIDFSRDRADWEA--LTEREREYATRL CAEFIAGEEAVTKDIQPFM 
Chlamydia trachomatis           WLPTEIPMGKDIELWKSDRLSEDERRVILLNLGFFSTAES LVGNNIVLAI 

          ♦         
M. tuberculosis                 SAMRAEGRLADEMYLTQFAFEEAKHTQVFRMWLD AVGISEDLHR------ 
M. smegmatis                    SAMRAEGRLGDEMYLTQFAFEEAKHTQVFRM WLDAVGVTDDLHS------ 
Chlamydia trachomatis           FKHVTN--PEARQYLLRQAFEEAVHTHTFLYICESLGLDE KEIFNAYNER 
            
M. tuberculosis                 -YLDDLPAYRQIFYAELPECLNALSADPSPAAQV RASVTYNHIVEGMLAL 
M. smegmatis                    -LIEEVPAYVQIFCEELPAALEALTSDPSPA AQVRASVVYNHVVEGMLAL 
Chlamydia trachomatis           AAIKAKDDFQMEITGKVLDPNFRTDSVEGLQEFVKNLVGY YIIMEGIFFY 
                                                            
M. tuberculosis                 TGYYAWHKICVERAILPGMQELVRRIGDDERRHM AWGTFTCRRHVAADDA 
M. smegmatis                    TGYYAWHRICVDRGILPGMQELVRRIGDDER RHMAWGTFTCRRHVAADDA 
Chlamydia trachomatis           SGFVMILSFHRQ-NKMIGIGEQYQYILRDETIHLNFGIDL INGIKEENPG 

                      ▼ 
M. tuberculosis                 NWT-VFETRMNELIPLALRLIEEGFALYGDQPPF DLSKDDFLQYSTDKGM 
M. smegmatis                    NWA-VFETHMNELIPVALRLTQEGFALYGDD IPFGLEEGEFLQYSSDRGM 
Chlamydia trachomatis           IWTPELQQEIVELIKRAVDLEIEYAQDCLPRGILGLRASM FIDYVQHIAD 

        ♦ 
M. tuberculosis                 RRFGTISNARGRPVAEIDVDYSPAQLEDTFADED RRTLAAASA------- 
M. smegmatis                    RRFGTISSARGRPLAEIDVDYTPLQLEDTFA DEDERALTAVKAAAAAAN- 
Chlamydia trachomatis           RRLERIG-LKPIYHTKNPFPWMSETIDLNKEKNFFETRVI EYQHAASLTW 
 
Figure 3.1 Chromosomal context of RNR-encoding genes in M. tuberculosis H37Rv, M. 
smegmatis mc2155, and ∆DRKIN (A, not drawn to scale) and multiple protein sequence 
alignment of the NrdB from M. tuberculosis, M. smegmatis and Chlamydia trachomatis (B, 
http://align.genome.jp/sit-bin/clustalw). A: The genes are denoted by arrows, with same color 
denoting homologous genes. The gene annotations are taken from Tuberculist 
(http://genolist.pasteur.fr/Tuberculist/) and are shown above the genes. B: The position of the 
phenylalanine which substitutes for the radical-harboring tyrosine residue found in other class I 
(Nordlund and Reichard, 2006) small subunits is highlighted in red, iron ligands are highlighted 
in yellow and highlighted in pink are the second coordination sphere ligands to histidines 
(Högbom et al., 2004). The triangles indicate the positions of the deletion in the M. tuberculosis 
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∆nrdB mutant, whereas diamonds shows the positions of the deletion in the M. smegmatis 
∆nrdB::hyg mutant, as described in Section 3.2 below. 
 
An M. smegmatis mc2155 derivative lacking the entire duplicated region (∆DRKIN), 

hence containing only one copy of the class Ib RNR encoding genes (Figure 3.1A), had 

no in vitro growth defect (Warner et al., 2006). However, the effect of the 56 kb 

duplication in mc2155 and its loss on the growth and/or physiology of the ∆DRKIN 

mutant were not further investigated. Moreover, the function of nrdB and nrdF1 in 

mycobacterial DNA metabolism under diverse stressful conditions has never been 

studied. Understanding the regulation mechanisms of these genes might also facilitate 

understanding their specialized roles, if any, in mycobacterial DNA metabolism. 

Moreover, with the exception of M. tuberculosis nrdZ, which belongs to a group of 

“dormancy” genes under the control of the DosR/S/T two-component regulator system 

(Roberts et al., 2004; Voskuil et al., 2003), little is known of the mechanisms that 

regulate the transcription of the other nrd genes in mycobacteria. To investigate these 

issues, a genetic approach to analyze the function of the nrdF1 and nrdB genes and the 

regulation of all nrd genes in M. tuberculosis and M. smegmatis was adopted, as 

described below. 

 

3.2 The role of class Ic RNR in mycobacteria 

3.2.1 nrdB is dispensable for growth of M. smegmatis and M. tuberculosis in vitro 

Unlike in Chlamydia (Roshick et al., 2000), mycobacteria contain a gene encoding a 

classical class Ib R2, NrdF2, in addition to one encoding a Chlamydial-type class Ic R2, 

NrdB. The inability to delete the nrdF2 gene in M. tuberculosis in the absence of a 

second (complementing) copy of this gene (Dawes et al., 2003) suggested that nrdB 

cannot substitute for nrdF2 function in this organism under the conditions tested. 

During pathogenesis, M. tuberculosis encounters host antibacterial agents such as RNIs 

and ROIs, which may have a DNA damaging or bactericidal effects by inhibiting 

essential enzymes like RNR (Flynn et al., 1998; Fontecave, 1998). Given the 

biochemical characteristics of the Chlamydial class Ic RNR (Jiang et al., 2008b) and the 

lifestyle of M. tuberculosis as an intracellular pathogen, it is tempting to speculate that 
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NrdB may serve a specialized role in providing dNTPs under the particular conditions 

encountered in vivo, in particular, nitrosative stress. To test this possibility, nrdB was 

targeted for deletion in M. tuberculosis H37Rv by using the p2∆TBBKO suicide vector 

(Table 2.2) for two-step allelic exchange to replace the wild type nrdB allele with a 

deletion allele. Inactivation of this gene yielded an unmarked deletion mutant (∆nrdB) 

in which 722 bp of internal coding sequence was removed, resulting in elimination of 

the phenylalanine residue at the normal radical-harboring tyrosine position and all of the 

iron ligands residues essential for Chlamydial enzyme activity (Roshick et al., 2000; 

Voevodskaya et al., 2006) (Figure 3.1B). To eliminate any complication that the class 

Ib nrd gene duplication may have on determining the phenotypic effects of nrdB gene 

loss in M. smegmatis, a hyg-marked deletion-replacement mutant of M. smegmatis 

(∆nrdB::hyg) was constructed in the ∆DRKIN strain rather than in wild type mc2155 

using p2∆SMBKO (Table 2.2) as a substrate for homologous recombination. This 

mutation deleted a 571 bp internal segment of the gene, also bearing the phenylalanine 

residue at the normal radical harboring tyrosine position and all the iron ligand residues, 

and replaced this segment with a Hyg resistance marker (Figure 3.1B).  

 

Mutants were phenotypically selected by blue-white color selection followed by sucrose 

counter-selection (Parish and Stoker, 2000) and genotypically confirmed by Southern 

blot analysis. Genomic DNA from M. tuberculosis SCO (tbnrdBSCO) and DCO 

(∆nrdB) recombinants and the wild type strain produced 5.3 kb and 3.9 kb, 3.9 kb and 

4.6 kb cross-hybridizing bands, respectively, on a Southern blot (Figure 3.2A and 

Figure 3.2B), while the M. smegmatis SCO (snrdBSCO), DCO (∆nrdB::hyg) and 

parental strain (∆DRKIN) produced 5.7 kb and 2.4 kb, 2.4 kb and 3.3 kb fragments, 

respectively (Figure 3.2C and Figure 3.2D). Successful deletion of nrdB in both 

organisms confirms the dispensability of this gene for normal growth in both M. 

tuberculosis and M. smegmatis. The growth rates in liquid culture of the M. tuberculosis 

∆nrdB (Figures 3.2E) and M. smegmatis ∆nrdB::hyg (Figures 3.2F) mutants were 

indistinguishable from wild type.  
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Figure 3.2 Construction and growth kinetics of M. tuberculosis and M. smegmatis nrdB 

mutants. A and C: Schematic representation of parental and the mutant alleles showing the 
restriction enzyme sites and probes used for Southern blot analysis. B: Southern blot analysis of 

genomic DNA samples isolated from M. tuberculosis parental (H37Rv), SCO (tbnrdBSCO) and 
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DCO (∆nrdB) strains digested with SmaI and hybridized with tbnrdB-F1pR1p probe (Table 
2.4). D: Southern blot analysis of genomic DNA samples isolated from M. smegmatis parental 
(∆DRKIN), SCO (snrdBSCO) and DCO (∆nrdB::hyg) strains digested with NruI and hybridized 
with smnrdB-F2R2 probe (Table 2.4). E: Growth curve of ∆nrdB in comparison with H37Rv 
under standard in vitro growth conditions. F: Growth curve of ∆nrdB::hyg in comparison with 
∆DRKIN under standard in vitro growth conditions. For growth studies, low inoculum (OD600 
~0.02) cultures were prepared by diluting stationary phase (OD600 ~3) pre-cultures in fresh 
media and growth followed by determining viable cell counts (CFUs) over a period of 32 d (E) 
or 90 h (F). Data represent average CFUs from three biological replicates and error bars indicate 
standard deviations between the three cultures. 
 

3.2.2 nrdB is dispensable for competitive growth and long-term survival of M. 

smegmatis 

To determine the effect of nrdB loss on long-term survival of M. smegmatis, individual 

cultures of ∆nrdB::hyg and its parent, ∆DRKIN were set-up in triplicate and CFUs 

enumerated for a period of over 5 months. Both the mutant and the parental strain 

survived equally through 175 d (Figure 3.3A). Hence, no defect in long-term survival of 

∆nrdB::hyg in pure culture was observed. The contribution of nrdB to the fitness of M. 

smegmatis for competitive growth and long-term survival was then investigated by co-

culturing, in the absence of antibiotic selection, ∆nrdB::hyg and its parental strain that 

had been marked by integration of a Km resistance-encoding plasmid vector (pAINT, 

Table 2.2, Table 2.1, ∆DRKIN::pAINT) at the attB chromosomal locus. Aliquots were 

then plated on solid media supplemented with Hyg or Km for mutant and parental strain 

CFU enumeration, respectively. Both strains grew (Figure 3.3B) and survived (Fig 

3.3C) equally well in competition (Figure 3.3B and 3.3C). Therefore, nrdB loss did not 

result in any fitness cost for competitive growth and long-term survival of M. 

smegmatis. 
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Figure 3.3 Competitive growth and long-term survival of M. smegmatis ∆nrdB::hyg. A: 
∆nrdB::hyg and ∆DRKIN were cultured individually and CFUs assessed at different time points 
over a period of 175 d. B and C: Equal starting inoculum of ∆nrdB::hyg and ∆DRKIN::pAINT 
were co-cultured in 7H9-GS media and CFUs determined for over 90 h (B) or 175 (C) d. Each 
data point data represent an average of CFUs from three biological culture replicates. Error bars 
indicate standard deviations between the three cultures. 
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3.2.3 The role of nrdB in nitrosative stress survival  

A unique catalytic mechanism of NrdB (Voevodskaya et al., 2005) has been proposed 

to be responsible for the high tolerance to nitrosative stress in bacterial pathogens 

carrying the class Ic RNR (Högbom et al., 2004). To test this hypothesis in 

mycobacteria, the effects of NO on growth or survival of the M. tuberculosis ∆nrdB and 

M. smegmatis ∆nrdB::hyg mutants and their parental strains were assessed. To monitor 

mycobacterial growth in the presence of NO, log-phase cultures of M. smegmatis 

∆nrdB::hyg and ∆DRKIN were diluted in fresh 7H9-GS media supplemented with 

different concentrations of an NO donor, GSNO, and growth assessed after 24 h of 

incubation. Survival of ∆nrdB and ∆nrdB::hyg in the presence of acidified NaNO2 was 

assessed by incubating cultures in media containing increasing concentrations of 

acidified NaNO2 (Firmani and Riley, 2002). Growth inhibition for both ∆DRKIN and 

∆nrdB::hyg could be observed for GSNO concentrations of 2 µg/ml and higher, with 

2.7-3.2 log10 growth inhibition observed at a concentration of 12-16 µg/ml (Figure 

3.4A). However, no deferential growth in the presence of GSNO was observed between 

the two strains (Figure 3.4A).  

 
Both ∆DRKIN and ∆nrdB::hyg showed a similar trend in susceptibility to acidified 

nitrite with 52 % survival at 24 mM NaNO2 and 0.01 % survival at 48 mM NaNO2 

confirming that ∆nrdB::hyg was not impaired for survival during exposure to acidified 

nitrite (Figure 3.4B). The survival of H37Rv in the presence of acidified nitrite was 

similar to that reported previously, with 35 % survival observed at a concentration of 6 

mM (Firmani and Riley, 2002). Arguing further against a role for NrdB in nitrosative 

stress survival in M. tuberculosis is the similarity in the survival of H37Rv and the 

∆nrdB mutant over the range of acidified nitrite concentrations tested (Figure 3.4C).  
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Figure 3.4 Susceptibility of M. smegmatis ∆nrdB::hyg (A and B) and M. tuberculosis ∆nrdB 
(C) to nitrosative stress. Growth of ∆nrdB::hyg in GSNO was assessed by growing cultures in 
fresh 7H9-GS media supplemented with different concentrations of GSNO for 24 h before 
plating for CFU enumeration (A). Survival of ∆nrdB::hyg (B) and ∆nrdB (C) in acidified nitrite 
was assessed by incubating cultures for 24 h in 7H9-GS/7H9-OADC media at pH 5.3 
supplemented with different concentrations of NaNO2, followed by plating and CFU 
enumeration. Results represent an average from three biological culture replicates, with 
standard deviations indicated by error bars. 
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3.2.4 The role of nrdB in RNR inhibition survival 

HU inhibits class I R2 activity by scavenging the tyrosine radical in the R2 subunit 

(Akerblom et al., 1981) and inhibition of the class Ib RNR (NrdEF) by HU has been 

well documented (Torrents et al., 2005b; Yang et al., 1997). Even though the inhibition 

of the Chlamydial class Ic enzyme by HU has also been reported (Roshick et al., 2000), 

the lack of a tyrosine catalytic radical in NrdB (Högbom et al., 2004) makes the 

question of whether the class Ic RNR is less sensitive to HU as compared to class Ib 

enzyme an intriguing one. Hence, the role of NrdB in mycobacteria could potentially be 

to serve the demand for dNTPs under the conditions were NrdF2 activity is completely 

eliminated by tyrosine radical scavengers. To test this, the sensitivity of both the ∆nrdB 

and ∆nrdB::hyg mutants to HU was assessed by plating stationary-phase (not shown) 

and/or log-phase (Figure 3.5) cultures on solid media supplemented with increasing 

concentrations of HU, followed by CFU enumeration.  

 

When included in solid media at a concentration of 9 mM, HU resulted in a 5.6 log10 

CFU reduction of M. tuberculosis H37Rv (Figure 3.5A), whereas HU at 10 mM 

resulted in  3.5 log10 CFU reduction of ∆DRKIN (Figure 3.5B). In both mycobacterial 

species, deletion of nrdB had no effect on susceptibility to HU. Although the ∆DRKIN 

strain was subsequently shown to be hypersensitive to HU relative to mc2155 (see 

Figure 3.14A below), deletion of nrdB in the ∆DRKIN background had no effect on HU 

sensitivity (Figure 3.5B). nrdB was also found to be entirely dispensable for HU 

susceptibility in M. tuberculosis (Figure 3.5A). When MIC values for HU were 

determined by broth microdilution described by Lee et al. (Lee et al., 2003), values of 

760 µg/ml were observed for both ∆nrdB and H37Rv, compared to 190-380 µg/ml for 

∆nrdB::hyg and ∆DRKIN. These findings were further supported by the lack of 

differential HU sensitivity between ∆nrdB::hyg and ∆DRKIN strains when growth and 

survival in the presence of HU was assessed by CFU determination after 48 h 

incubation in liquid media supplemented with different concentrations of HU (Section 

2.12, not shown).  
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Figure 3.5 Susceptibility of M. tuberculosis ∆nrdB (A) and M. smegmatis ∆nrdB::hyg (B) to 
HU. Log-phase cultures of the mutant strains and their parental wild type strains were plated on 
solid media supplemented with different concentrations of HU and incubated until CFUs could 
be enumerated. The data represent an average from three biological replicates, with standard 
deviations between the cultures indicated by the error bars. 
 

3.2.5 Effect of nrdB loss on mycobacterial resistance to DNA damage 

The requirement of dNTPs for DNA synthesis during DNA repair makes RNR an 

essential enzyme to meet this demand. To investigate whether mycobacteria use a class 

Ic enzyme for the supply of dNTPs for DNA repair synthesis, the sensitivity of the M. 

tuberculosis ∆nrdB and M. smegmatis ∆nrdB::hyg mutants to MTC as a generalized 

DNA damaging agent and their survival after UV irradiation were assessed. 

Susceptibility testing to MTC was done by plating stationary-phase (not shown) and/or 

log-phase (Figure 3.6A and Figure 3.6B) cultures on solid media supplemented with 

different concentrations of MTC followed by CFU enumeration (Section 2.12). Survival 

following DNA damage induced by UV irradiation was assessed by irradiating plated 

serial dilutions of log-phase cultures at different UV fluencies and determination of the 

percentage survival of irradiated cells vs. untreated controls by CFU assessment. 

 

MTC treatment reduced the viability of both H37Rv and M. smegmatis strains by 

approximately 3.5 (Figure 3.6A) and 4.5 (Figure 3.6B) log10, respectively, at a 

concentration of 0.1 µg/ml. Similarly, when MIC values were determined using the 
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broth microdilution protocol, values of 0.06 and 0.004-0.015 µg/ml were obtained for 

wild type M. tuberculosis (H37Rv) and M. smegmatis ∆DRKIN. Although the parental 

strain of the M. smegmatis ∆nrdB::hyg mutant, ∆DRKIN, was subsequently shown to 

be hypersensitive to MTC relative to its parent, mc2155 (see Figure 3.14B below), 

deletion of nrdB in the ∆DRKIN background did not exaggerate the phenotype (Figure 

3.6B). 

 

Lack of differential susceptibility to MTC between mutants and parental strains 

observed by the plate sensitivity assay and by MIC determination was further 

corroborated by the observation that growth and survival of the ∆nrdB::hyg mutant in 

liquid media supplemented with different concentrations of MTC was comparable to 

that of the wild type, as measured by CFU assessment (not shown). The effect of loss of 

nrdB function on survival of M. smegmatis or M. tuberculosis strains following 

exposure to UV irradiation was then assessed (Figure 3.6C and 3.6D). Exposure of the 

parental and ∆nrdB::hyg mutant of M. smegmatis to UV irradiation at different fluencies 

resulted in a survival pattern similar to that of M. smegmatis mc2155 reported 

previously (Boshoff et al., 2003). However, unlike dnaE2::aph, which was significantly 

impaired for UV survival (Figure 3.6D), in agreement with previous findings (Boshoff 

et al., 2003), no significant difference in UV survival was observed for M. tuberculosis 

∆nrdB (Figure 3.6C) or M. smegmatis ∆nrdB::hyg (Figure 3.6D) when compared to 

their respective parental strains.  
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Figure 3.6 Sensitivity of M. tuberculosis ∆nrdB and M. smegmatis ∆nrdB::hyg to MTC (A and 
B) and UV irradiation (C and D). A and B: M. tuberculosis (A) and M. smegmatis (B) log-phase 
cultures were plated on solid media supplemented with different concentrations of MTC. C and 
D: Open plates on which serial dilutions of M. tuberculosis (C) and M. smegmatis (D) cultures 
were plated were UV irradiated in a Stratalinker (Stratagene) at increasing UV fluences up to 40 
mJ/cm2. The dnaE2::aph mutant was included in the M. smegmatis assay as a UV-
hypersensitive control (Boshoff et al., 2003). All plates were incubated until CFUs could be 
enumerated.  The data shown are from three biological culture replicates plated in duplicates. 
Error bars indicate standard deviations between the three cultures. 
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3.2.6 The role of nrdB in M. tuberculosis growth, dissemination and survival in 

mice 

Understanding the mechanisms of M. tuberculosis growth and survival in the host is of 

utmost importance. Because NO is a key mediator of bacterial killing in the mouse 

model of infection (MacMicking et al., 1997), a murine model of pulmonary 

tuberculosis was used to investigate whether nrdB contributes to the growth and 

survival of M. tuberculosis during the various stages of infection in vivo. After a group 

of immunocompetent B6D2/F1 mice were infected by the nose-only aerosol inhalation 

route with the wild type and ∆nrdB strains, bacillary loads were followed in the lungs, 

livers and spleens over a period of 126 d. From an initial lung bacillary count of ca. 2.3 

log10, the bacterial loads for both strains increased progressively to reach a steady-state 

level of ca. 6.0 log10 (Figure 3.7A). Dissemination to the spleen could be detected from 

14 d post infection, from which bacillary load increased from between 2-2.7 log10 to a 

maximum of ca. 4 log10 for both the wild-type and the mutant (Figure 3.7B). Both 

strains also showed dissemination to the liver from 14 d post-infection (Figure 3.7C). 

Therefore, no attenuation for colonization of the mouse lung, defects in chronic 

infection in the lungs (Figure 3.7A) or in dissemination to the spleen (Figure 3.7B) or 

liver (Figure 3.7C) was observed for the ∆nrdB mutant. In addition, no differences in 

gross pathology were observed between the lungs infected with the mutant and wild-

type strain (not shown). 
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Figure 3.7 Growth and dissemination of M. tuberculosis ∆nrdB in mice. Mice were infected 
with wild type M. tuberculosis H37Rv and the ∆nrdB by aerosol inhalation. Bacillary loads in 
the lungs (A), spleens (B) and livers (C) were determined over 126 d of infection period. Each 
time point represents average CFUs from three mice and error bars indicate standard deviations 
of bacillary count from three mice.  
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3.3 The function of the alternate small subunit of class Ib RNR in M. 

tuberculosis 

3.3.1 nrdF1 is dispensable for growth of M. tuberculosis in vitro  

In addition to the class Ib RNR small subunit, NrdF2 (Dawes et al., 2003), M. 

tuberculosis also contains an alternate small subunit, NrdF1 (Yang et al., 1997). It has 

been shown that the NrdF2 subunit is essential for growth in vitro, leading to the 

speculation that nrdF1 cannot substitute for nrdF2 function in M. tuberculosis (Dawes 

et al., 2003). However the requirement of nrdF1 under the various environmental 

conditions encountered by the bacilli during its pathogenesis has never been 

investigated. Even though no apparent biochemical activity of NrdF1 was observed 

(Yang et al., 1997), the finding that nrdF1 is expressed in vivo (Yang et al., 1997), is 

highly expressed during exponential growth (Dawes et al., 2003), and is induced by 

DNA damage and translational inhibition (Boshoff et al., 2004) suggested that NrdF1 

might play a role in RNR function under specific conditions. To elucidate the function 

of nrdF1 in M. tuberculosis, an nrdF1 null mutant with 883 bp sequence carrying the 

radical-bearing tyrosine and electron path residues deleted, was constructed by 

homologous recombination using p2∆TBF1KO knockout construct (Table 2.2). A 

genomic DNA digest from DCO (∆nrdF1) produced 3.4 kb and 1.5 kb fragments 

compared to H37Rv which produced 4.3 kb and 1.5 kb and the SCO (nrdF1SCO) with 

8 kb, 3.4 kb and 1.5 kb fragments on the Southern blot (Figure 3.8A and Figure 3.8B). 

Successful deletion of nrdF1 supports the prediction that it is not essential for growth in 

vitro (Dawes et al., 2003). Dispensability of nrdF1 for in vitro growth of M. 

tuberculosis was further validated by the indistinguishable growth kinetics of ∆nrdF1 

and H37Rv when the growth was followed by OD (not shown) and CFU enumeration 

over a period of 32 d (Figure 3.8C).  
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Figure 3.8 Construction and growth kinetics of M. tuberculosis ∆nrdF1. A: Schematic 
representation of parental and the mutated alleles showing the restriction enzyme sites and 
probe used for Southern blotting. B: Southern blot analysis of genomic DNA samples isolated 
from H37Rv, SCO (nrdF1SCO) and DCO (∆nrdF1) strains digested with SacI and hybridized 
with the tbnrdF1-F1pR1p probe (Table 2.4). C: Growth of ∆nrdF1 in vitro. The same wild-type 
data as on Figure 3.2E was used. Each time-point represents an average from three biological 
replicate cultures. Error bars indicate the standard deviations between three biological 
replicates. 
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3.3.2 Requirement of nrdF1 in DNA damage, RNR inhibition and translation 

inhibition survival 

Upregulation of nrdF1 in response to DNA damage (Boshoff et al., 2004) led to the 

speculation that NrdF1 may be used for dNTP provision during DNA repair in M. 

tuberculosis. To investigate this, ∆nrdF1 was tested for susceptibility to MTC and UV 

irradiation as compared to the wild type strain using previously described methods. In 

contrast, no significant differential susceptibility was observed between the mutant and 

the wild-type strain to either MTC (Figure 3.9A) or UV irradiation (Figure 3.9B) under 

all the concentrations or fluences tested. nrdF1 has also been demonstrated to be 

upregulated by treatment with fluoroquinolones (Boshoff et al., 2004). Therefore, 

sensitivity of ∆nrdF1 to Moxi, Cipro and Novo was determined by spotting assay, 

where serial dilutions of cultures were spotted on plates containing increasing 

concentrations of either compounds,  followed by incubation until the CFUs could be 

enumerated (Section 2.12). The experiment was performed at least twice for each 

compound. Similarly, no differential sensitivity to either Moxi, Cipro or Novo was 

observed between ∆nrdF1 and H37Rv (not shown). Confirming the lack of ∆nrdF1 

phenotype upon exposure to MTC and fluoroquinolones were the equivalent MIC 

values for MTC, oflox and Novo for the mutant and H37Rv strains, which were found 

to be 0.06, 1.25 and 3.12 µg/ml, respectively.  

 

Upregulation of nrdF1 in the presence of a translation inhibitor, STR (Boshoff et al., 

2004) was suggestive of an important function of NrdF1 in mycobacterial translation 

inhibition survival. Therefore, to determine if this is the case, ∆nrdF1 sensitivity to STR 

was determined by plating and the broth microdilution MIC assay (Section 2.12) 

compared to the wild type strain. However, after plating on different concentrations of 

STR and enumerating CFUs, no differential growth inhibition was observed between 

the mutant and the wild-type strain (Figure 3.9C). Similarly both the mutant and the 

wild-type had equivalent MIC values for STR (1.25 µg/ml). 

 

 



 94 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Susceptibility of M. tuberculosis ∆nrdF1 to MTC, UV irradiation, STR and HU. 
Serial dilutions of log-phase cultures were plated on solid media supplemented with different 
concentrations of MTC (A), STR (C) or HU (D). B: Sensitivity to UV damage. Open plates on 
which serial dilutions were plated were UV irradiated and incubated until CFUs could be 
enumerated. The wild-type data on A, B and D is the same data as on Figure 3.6A, Figure 3.6C 
and Figure 3.5A respectively. Data represent CFU averages from three biological replicate 
cultures plated in duplicate. Error bars indicate standard deviations. 
 

 

 

 

 

BA

0 10 20 30
UV fluence (mJ/cm2)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

%
 s

ur
vi

va
l

H37Rv

∆nrdF1

0 3 6 9
HU (mM)

1

2

3

4

5

6

7

8
lo

g 1
0C

F
U

/m
l

H37Rv

∆nrdF1

DC

3

4

5

6

7

8

9

0 0.01 0.02 0.04 0.06 0.08 0.1

MTC (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1

2

3

4

5

6

7

8

9

0 0.05 0.5 1
STR (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1

BA

0 10 20 30
UV fluence (mJ/cm2)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

%
 s

ur
vi

va
l

H37Rv

∆nrdF1

0 10 20 30
UV fluence (mJ/cm2)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

%
 s

ur
vi

va
l

H37Rv

∆nrdF1

0 3 6 9
HU (mM)

1

2

3

4

5

6

7

8
lo

g 1
0C

F
U

/m
l

H37Rv

∆nrdF1

0 3 6 9
HU (mM)

1

2

3

4

5

6

7

8
lo

g 1
0C

F
U

/m
l

H37Rv

∆nrdF1

DC

3

4

5

6

7

8

9

0 0.01 0.02 0.04 0.06 0.08 0.1

MTC (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1

3

4

5

6

7

8

9

0 0.01 0.02 0.04 0.06 0.08 0.1

MTC (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1

2

3

4

5

6

7

8

9

0 0.05 0.5 1
STR (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1

2

3

4

5

6

7

8

9

0 0.05 0.5 1
STR (µg/ml)

lo
g 1

0C
F

U
/m

l

H37Rv

∆nrdF1



 95 

To investigate whether nrdF1 plays any role in dNTP supply, the ability of ∆nrdF1 to 

grow under RNR inhibiting conditions was assessed by plating on HU-containing plates 

at different concentrations and by MIC determination. However, both the mutant and 

the wild-type strain showed no differential susceptibility to HU on the plating assay 

(Figure 3.9D) and MIC determination, with both having a HU MIC of 760 µg/ml. 

 

3.3.3 Effect of nrdF1 loss on M. tuberculosis growth, dissemination and survival in 

vivo  

The possibility of nrdF1 being used for adequate dNTP supply during the pathogenesis 

of M. tuberculosis in vivo remained to be unexplored. In this work, a mouse model of 

pulmonary tuberculosis using immunocompetent B6D2/F1 mice was used to address 

this question. Mice were infected through the respiratory route with the H37Rv and 

∆nrdF1 strains. Ability to initiate an infection, growth, survival and dissemination of 

the bacilli in the lungs, spleen and livers were monitored over a period of 126 d by CFU 

assessment. The bacterial load increased from an initial lung bacillary count of 

approximately 2.3 log10 to ca 6 log10 CFUs/lung (Figure 3.10A). CFUs in to the spleen 

could be detected from 14 d post infection, and increased from 2.7 to the maximum of 

ca 4 log10 CFUs/spleen (Figure 3.10B). Dissemination in to the liver was detected from 

14 and 28 d post infection for H37Rv and ∆nrdF1 respectively (Figure 3.10C). 

However, deletion of nrdF1 did not attenuate M. tuberculosis for initiation of infection, 

growth and survival in the lungs (Figure 3.10A) or in dissemination to the spleen 

(Figure 3.10B) or liver (Figure 3.10C). No differences in gross pathology were 

observed between the lungs infected with the mutant and wild-type strain (not shown). 
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Figure 3.10 Growth and dissemination of the ∆nrdF1 mutant of M. tuberculosis in mice. Mice 
were infected through the respiratory route with H37Rv or ∆nrdF1 and organ bacillary loads 
were determined over a period of 126 d. Each time point represents the average bacillary counts 
in the lungs (A), Spleen (B) and livers (C) from three mice. The same wildtype data as in Figure 
3.7 was used. Error bars indicate standard deviations between three mice.  
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3.4 Collective roles of nrdB and nrdF1 in M. tuberculosis 

3.4.1 Construction of a mutant strain of M. tuberculosis lacking both nrdF1 and 

nrdB  

The lack of phenotype of the ∆nrdB and ∆nrdF1 mutants under all the conditions tested 

led to the speculation that both genes could be fully substituting one another’s function 

in M. tuberculosis, and hence, obscuring the possible effects of individual disruption. In 

S. cerevisiae, the RNR small subunit is a heterodimer of two polypeptides, RNR4 and 

RNR2, which complex with one another to form a functional enzyme with the large 

subunit (Huang and Elledge, 1997; Perlstein et al., 2005). To investigate whether NrdF1 

and NrdB may be functionally redundant or functionally related, a mutant of M. 

tuberculosis with deletions in both nrdB and nrdF1 was constructed by electroporating 

p2∆TBBKO into the ∆nrdF1 mutant and isolating a ∆nrdF1∆nrdB double mutant by 

two-step selection, as previously described (Parish and Stoker, 2000). The nrdB allele 

was genotyped by Southern blot analysis (Figure 3.11A and Figure 3.11B), and deletion 

of nrdB confirmed by the presence of a 3.9 kb cross-hybridising band (as observed in 

the ∆nrdB single mutant, Figure 3.2D), as opposed to a 4.6 kb band, characteristic of 

the wild type nrdB allele. The disruption of nrdF1 in the ∆nrdF1∆nrdB double mutant 

was also re-confirmed by Southern blot analysis (not shown). As observed in the single 

mutants, disruption of both nrdF1 and nrdB did not have any effect on M. tuberculosis 

growth in vitro (Figure 3.11C).  
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Figure 3.11 Deletion of nrdB in the M. tuberculosis ∆nrdF1 background and growth of the 
∆nrdF1∆nrdB double mutant in vitro. A: Schematic representation of nrdB parental and deleted 
alleles showing the restriction enzyme sites and probes used for Southern blotting. B: Southern 
blot analysis of genomic DNA samples isolated from H37Rv, ∆nrdB and ∆nrdF1∆nrdB 
digested with SmaI and hybridized with the tbnrdB-F1pR1p probe (Table 2.4). C: A growth 
curve showing the growth kinetics of ∆nrdF1∆nrdB in comparison with H37Rv. The same 
wild-type data as on Figure 3.8C was used. CFU averages from three biological replicate 
cultures plated in duplicate were used to plot the graphs and error bars indicate standard 
deviations between the three cultures. 
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3.4.2 Comparative susceptibility of the ∆nrdF1∆nrdB mutant of M. tuberculosis to 

DNA damage and HU  

The question of whether the nrdF1 and nrdB genes have redundant roles in the survival 

of M. tuberculosis following DNA damage was a major focus of this study. 

Susceptibility of the ∆nrdF1∆nrdB mutant to DNA damage was assessed by monitoring 

its sensitivity to MTC and UV irradiation. However, disruption of both genes did not 

result in any defects in growth in the presence of mitomycin (Figure 3.12A) or survival 

post UV irradiation (Figure 3.12B). To further phenotype this double mutant, the 

redundancy of nrdF1 and nrdB function in M. tuberculosis survival under RNR 

inhibiting conditions was assessed by comparing the HU susceptibility of ∆nrdF1∆nrdB 

to that of the wild-type strain. However, no significant difference in CFUs between 

H37Rv and the mutant strain was observed over the range of drug concentrations tested 

(Figure 3.12C).  

 

The fact that individual or combined loss of both alternate class I small subunits, NrdB 

and NrdF1 (this study) or loss of the class II RNR, NrdZ (Dawes et al., 2003) did not 

impair M. tuberculosis for DNA damage survival, and/or RNR inhibition survival, in 

vitro and in vivo growth, argue against the hypothesis that the alternate RNRs play a 

significant role in dNTP supply under the conditions tested and suggest instead that the 

class Ib enzyme, NrdEF2, alone can serve this need.  
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Figure 3.12 Sensitivity of M. tuberculosis ∆nrdF1∆nrdB to MTC (A), UV irradiation (B) and 
HU (C). Serial dilutions of log-phase cultures were plated on solid media supplemented with 
different concentrations of MTC (A) or HU (C). B: Open plates on which serial dilutions were 
plated were UV irradiated and then incubated until CFUs could be enumerated. The wild-type 
data on A, B and C is the same as in Figure 3.9A, B and D respectively. The plots represent data 
from an average of three biological replicates with standard deviations indicated by the error 
bars. 
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3.5 The role of the duplication in class Ib RNR-encoding genes in the 

physiology of M. smegmatis mc2155 

3.5.1 The remaining copy of nrdF2 in the ∆DRKIN strain is essential for growth 

To investigate the role of nrdF2 in mc2155, we attempted to construct a hyg-marked 

knockout mutant in ∆DRKIN with an internal segment of 678 bp encoding the radical- 

bearing tyrosine and most of the electron path residues of the nrdF2 gene eliminated by 

allelic exchange mutagenesis using p2∆SMF2KO (Table 2.2) as a substrate. However, 

all 89 white colonies obtained from several selections on sucrose plus X-gal where 

found to be sacB-lacZ mutants. The fact that M. smegmatis mc2155 NrdF2 shares 93.4 

% sequence identity with the M. tuberculosis H37Rv homologue 

(http://cmr.tigr.org/cgi-bin/CMR/) suggests that they are likely to be functionally 

equivalent. To determine whether failure to obtain DCOs was due to the essentiality of 

the single nrdF2 gene remaining in the ∆DRKIN mutant background, a SCO 

recombinant (∆DRKINSCO, Table 2.1) was complemented with a copy of the M. 

tuberculosis nrdF2 gene with its promoter delivered on the integrating vector, pNRDF2 

(Table 2.2) (Dawes et al., 2003). This resulted in the construction of 

∆DRKINSCO::pNRDF2 strain (Table2.1), which was then grown in liquid culture 

without selection before selection for DCO mutants by plating on antibiotic-containing 

plates (Parish and Stoker, 2000).  

 

The DCO (∆DRKINnrdF2::hyg::pNRDF2, Table 2.1), ∆DRKIN and the 

∆DRKINSCO::pNRDF2 strains were analyzed by Southern blot analysis.  

∆DRKINnrdF2::hyg::pNRDF2 produced 1.4 kb and 0.8 kb cross-hybridising bands 

corresponding to the hyg-marked deletion allele, and a 4 kb band corresponding to the 

complementing gene compared to 2.1 kb and 1.4 kb bands in ∆DRKIN, which 

correspond to the wild-type allele, and 4.5, 4, 3.1, 1.4, and 0.8 kb bands in the 

complemented single crossover strain, ∆DRKINSCO::pNRDF2 (Figure 3.13A and 

Figure 3.13B). This analysis confirmed the deletion of the remaining chromosomal 

copy of nrdF2 in ∆DRKIN in the presence of functional nrdF2 gene located elsewhere 

on the chromosome. The fact that DCO mutants of ∆DRKIN could only be obtained in 
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the presence of a complementing nrdF2 allele are consistent with previous observations 

in M. tuberculosis H37Rv, in which complementation was used to demonstrate that 

nrdF2 is essential under normal in vitro growth conditions (Dawes et al., 2003). These 

findings also confirm that the alternate, class Ic R2-encoding gene, nrdB, is unable to 

substitute for nrdF2 function for growth of M. smegmatis.  

 

3.5.2 One copy of nrdF2 is dispensable for growth of M. smegmatis mc2155   

To investigate the effect, if any, of the duplication in class Ib-encoding RNR genes in 

M. smegmatis mc2155, a knockout mutant lacking only one copy of nrdF2 was 

constructed using p2∆SMF2KO as a substrate for homologous recombination. The 

presence of a hyg-marked deletion allele (∆nrdF2::hyg) represented by a 0.8 kb cross-

hybridising fragment in the Southern blot, in addition to bands of 2.1 kb and 1.4 kb in 

size (Figurer 3.13A and Figure 3.13C), which correspond to the wild type nrdF2 allele, 

confirmed the genotype of the ∆nrdF2::hyg mutant (Table 2.1). The genotype of this 

mutant was further confirmed by qRT-PCR analysis of the level of nrdF2 expression 

using RNA samples from three biological replicates of early log-phase (OD600 ~0.3) 

cultures. This analysis confirmed that, similar to ∆DRKIN, which showed a relative 

nrdF2 expression level of 0.6 (P < 0.1) normalized to sigA, ∆nrdF2::hyg showed a 

relative nrdF2 expression level of 0.5 (P < 0.1, Table 3.1). This level is approximately 

half of that observed in mc2155, which carries two functional copies of nrdF2. The 

successful disruption of one of the copies of nrdF2 in mc2155 suggests that the nrdF2 

duplication of class Ib RNR-encoding genes has no apparent effect on growth. This 

finding is consistent with the fact that loss of the entire 56-kb duplication (which 

resulted in the formation of the ∆DRKIN mutant from mc2155) had no effect on growth 

(Warner et al., 2006). 
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Figure 3.13 Deletion of nrdF2 in the ∆DRKIN and mc2155 strains of M. smegmatis. A: 
Schematic representation of parental and hyg-marked deleted alleles of nrdF2 showing the 
restriction enzyme sites and probes used for Southern blotting. B and C: Southern blot analysis 
of genomic DNA samples isolated from parental, SCO and DCO strains digested with NruI and 
hybridized with the smnrdF2-F1R1 probe (Table 2.4).  
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3.5.3 Loss of the duplicated region of M. smegmatis mc2155 affects susceptibility to 

DNA damage and HU 

It has been previously shown that the genome duplication in mc2155, which contains 50 

genes other than those for the class Ib RNR, does not play any significant role in growth 

of M. smegmatis under normal conditions (Warner et al., 2006). To further investigate 

the physiological effect of loss of the duplicated region, the ∆DRKIN strain was 

assessed in terms of sensitivity to RNR inhibition by HU and to DNA damage by MTC 

treatment and UV irradiation, as described previously. Treatment with MTC at 0.1 

µg/ml resulted in a 2.6 log10 kill of mc2155 (Figure 3.14B). Treatment of mc2155 with 

HU at 9 mM had no effect on viability, whereas 12 mM HU resulted in a ca. 0.4 log10 

kill (Figure 3.14A). Interestingly, in comparison with mc2155, the ∆DRKIN showed 

marked hypersensitivity both to HU and MTC, with a 2.8 log10 increase in killing by 9 

mM HU (Figure 3.14A, P<0.0001) and 2.2 log10 increase in killing by 0.1 µg/ml MTC 

(Figure 3.14B, P<0.01) being observed. This was supported by the reduction in the MIC 

values for HU and MTC of ∆DRKIN from the wild-type values of 760 to 190-380 

µg/ml (2-4 fold reduction) and 0.03-0.06 to 0.004-0.015 µg/ml (4-16 fold reduction), 

respectively. Unlike the UV-hypersensitive dnaE2::aph control (Boshoff et al., 2003), 

the ∆DRKIN strain displayed no hypersensitivity to the cytotoxic effects of UV 

irradiation compared to its parental wild type (Figure 3.14C). However, preliminary 

data have shown that the ∆DRKIN strain is also hypersensitive to other agents including 

Rif, oflox and Novo (data not shown). 
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Figure 3.14 Sensitivity of ∆DRKIN to HU (A), MTC (B) and UV irradiation C. For the HU 
and MTC sensitivity assays, CFUs were enumerated after plating dilutions of log-phase cultures 
on 7H10-GS supplemented with different concentrations of each compound. For UV survival, 
open plates on which serial dilutions were plated were irradiated at different UV fluences before 
CFU counts determination. The dnaE2::aph mutant was included in this assay as a UV-
hypersensitive control (Boshoff et al., 2003). Data represent average CFU counts from three 
biological culture replicates. Error bars indicate the standard deviations.  
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3.5.4 The role of nrdF2 duplication in M. smegmatis survival on exposure to HU 

and DNA damage  

To investigate whether the observed hypersensitivity of ∆DRKIN to HU could be 

explained by the loss of one set of class Ib RNR genes, the ∆nrdF2::hyg mutant was 

assessed for sensitivity to HU by the plating assay. Importantly, as observed for 

∆DRKIN (Figure 3.14A), the ∆nrdF2::hyg mutant showed hypersensitivity to HU with 

2.1 log10 increase in killing compared to mc2155 observed at a drug concentration of 9 

mM (Figure 3.15A, P<0.0001). As described above, previous work had confirmed that 

the M. tuberculosis nrdF2 expressed from its own promoter in pNRDF2 was able to 

complement nrdF2 gene function in M. smegmatis (Figure 3.13B). Therefore, to 

confirm whether the HU hypersensitivity of the ∆nrdF2::hyg mutant was due to 

insertional inactivation of the nrdF2 gene, a vector carrying M. tuberculosis H37Rv 

nrdF2 homologue (pNRDF2, Table 2.2, Dawes et al., 2003) was integrated at the attB 

locus of ∆nrdF2::hyg to produce ∆nrdF2::hyg::pNRDF2 (Table 2.1), which was 

assessed for HU susceptibility. Partial complementation of the HU hypersensitivity of 

∆nrdF2::hyg was observed (Figure 3.15A). In addition, the 2-4 fold reduction in the HU 

MIC for ∆nrdF2::hyg (190-380 µg/ml) compared to the wild type strain (760 µg/ml) 

was also partially reversed by genetic complementation with the M. tuberculosis nrdF2 

gene via pNRDF2 (MIC = 380 µg/ml). 

 

To investigate whether two copies of nrdF2 are important to meet the dNTP demand 

during DNA repair, the ∆nrdF2::hyg mutant was also tested for sensitivity to MTC and 

UV irradiation using the plating assay (Section 2.12 and Section 2.13). However, unlike 

∆DRKIN, which was also hypersensitive to MTC (Figure 3.14B), the susceptibility of 

∆nrdF2::hyg to MTC was indistinguishable from that of the wild-type strain (Figure 

3.15B). Therefore, the hypersensitivity of ∆DRKIN to MTC could not be linked 

specifically to loss of the second copy of nrdF2. However, like ∆DRKIN, no UV 

survival phenotype was observed with ∆nrdF2::hyg as compared to the wild type and 

dnaE2::aph controls (Figure 3.15C). 
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Figure 3.15 Sensitivity of M. smegmatis ∆nrdF2::hyg to HU (A), MTC (B) and UV irradiation 
(C). A and B: Log-phase cultures were plated on 7H10-GS media supplemented with different 
concentrations of either HU or MTC. C: Open plates on which serial dilutions were plated were 
UV irradiated and dnaE2::aph was used as a positive control. The dnaE2::aph and/or wild-type 
data on A and C is the same as on Figure 3.14A and C respectively. The plots represent data 
from average CFUs from three biological replicates with standard deviations between them 
indicated by the error bars. 
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3.6 Expression of nrd genes in M. tuberculosis and M. smegmatis strains 

In Streptomyces, nrdAB was upregulated 13-fold in response to nrdJ deletion, and was 

consequently proposed to compensate for nrdJ loss (Borovok et al., 2004). The lack of 

discernable growth phenotypes for the ∆nrdB::hyg, ∆nrdF2::hyg mutants of M. 

smegmatis and ∆nrdB, ∆nrdF1, and ∆nrdF1∆nrdB mutants of M. tuberculosis was 

suggestive of the presence of a regulatory response affecting the expression of the 

remaining R2-encoding genes. This was investigated by qRT-PCR analyses to 

determine the expression levels of nrdF2, nrdF1 and nrdB , normalized to sigA, in the 

various mutants under standard growth conditions. In contrast to the observation in 

Streptomyces, individual or combined deletion the RNR small subunit-encoding genes 

did not affect the expression of the remaining genes in M. tuberculosis (Table 3.1). 

Similarly, loss of nrdB or one copy of nrdF2 did not affect the expression of the 

remaining gene in M. smegmatis (Table 3.1). This observation nullifies the hypothesis 

that mycobacteria may obscure the effect of nrdB or nrdF1 loss by transcriptionally 

regulating the remaining small subunit encoding genes. 

 

Despite the occurrence of three distinct R2-encoding genes in M. tuberculosis, there is 

only one class I RNR large subunit encoding gene in this organism, namely, nrdE 

(http://rnrdb.molbiol.su.se). This suggests that all three R2s, NrdF2, NrdF1 and NrdB, 

must compete with one another for access to the large subunit, NrdE, to form different 

class I RNRs. To determine whether NrdE levels may be a limiting factor in this regard, 

comparative transcript levels of the various nrd mRNAs in wild type M. tuberculosis 

during early log-phase growth were determined by real-time qRT-PCR. The nrdE gene 

served as target sequence for the nrdHIE gene cluster which is likely to constitute an 

operon in this organism (Fig. 3.1A). As shown in Table 3.2, the nrdE and nrdF2 genes 

were expressed at comparable levels to one another during this phase of M. tuberculosis 

growth. In contrast, the levels of expression of nrdF1 and nrdB were considerably lower 

than nrdF2 (4- and 6-fold, respectively).  
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Table 3.1 Analysis of the remaining small subunit encoding nrd genes expression in        
mycobacterial mutant strains  

Normalized gene expression relative to wild type Strains 

nrdF1 nrdF2 nrdB 

M. tuberculosis 

H37Rv 1 1 1 

∆nrdF1 ND 1.6 ± 0.7 1.2 ± 0.6 

∆nrdB 1.2 ± 0.6 2.1 ± 0.7 ND 

∆nrdF1∆nrdB ND 1.1 ± 0.4 ND 

M. smegmatis 

mc2155 N/A 1 1 

∆nrdB::hyg N/A 0.5 ± 0.2* ND 

∆nrdF2::hyg N/A 0.5 ± 0.1* 1.0 ± 0.2 

*Significantly different (P<0.1). The statistical significance is based on a pair-wise 
comparison using the unpaired t-test, ND-Not done, N/A-Not applicable 
 

Table 3.2 Levels of nrd gene transcripts in M. tuberculosis H37Rv during early 
logarithmic-phase aerobic growth in 7H9-OADC medium 

Level of nrd gene transcript relative to sigAa  Organism 

nrdE nrdF2 nrdF1 nrdB 

M. tuberculosis 

H37Rv 

5.2 ± 0.9 5.1 ± 0.2 1.4 ± 0.1 0.91 ± 0.34 

aExpression levels were measured in cultures at OD600 = 0.3
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3.7 nrdR homologues and NrdR boxes are present in mycobacteria 

Since its identification in Streptomyces, homologues of nrdR have been identified in 

other organisms and the function of its encoded protein, NrdR, as a negative 

regulator of nrd gene expression demonstrated (Borovok et al., 2002; Rodionov and 

Gelfand, 2005; Torrents et al., 2007). To identify nrdR homologues in M. smegmatis 

and M. tuberculosis, S. coelicolor nrdR was used as a query sequence in a BLAST 

search against the M. smegmatis mc2155 and M. tuberculosis H37Rv genome 

sequences (http://tigrblast.tigr.org/cmr-blast/). NrdR homologues with 65.8 % and 

66.9 % amino acid sequence identity to S. coelicolor NrdR were found in M. 

smegmatis (MSMEG_2743) and M. tuberculosis (Rv2718c), respectively (Figure 

3.16A). Homologues were also identified in all sequenced mycobacterial genomes 

including M. leprae (http://cmr.tigr.org/cgi-bin/CMR). Multiple protein sequence 

alignment of the NrdRs from M. tuberculosis and M. smegmatis against the S. 

coelicolor NrdR reference clearly shows that both two essential streptomyces NrdR 

domains, namely, the Zn ribbon and ATP-cone are well conserved (Figure 3.16B) 

(http://align.genome.jp/sit-bin/clustalw). However, there are notable differences in 

the genomic context of nrdR between Streptomyces and mycobacteria. Unlike in S. 

coelicolor where nrdR is immediately adjacent to lexA, in M. tuberculosis and M. 

smegmatis, a LexA-regulated gene is located between lexA and nrdR (Rv2719c in 

M. tuberculosis and MSMEG_2742 in M. smegmatis). Another distinguishing 

feature of the mycobacterial homologues is that they are not proximal to other nrd 

genes, unlike the organization in Streptomyces, where nrdR is immediately upstream 

of the class II RNR-encoding nrdJ gene (Fig. 3.16A).  

 

Bioinformatic analyses (Rodionov and Gelfand, 2005) suggested that both the 

nrdHIE gene cluster and the nrdF2 gene in mycobacteria may be regulated by NrdR 

given the presence of canonical NrdR boxes upstream of nrdH and nrdF2, which are 

highly conserved among the mycobacteria. Interestingly, the mycobacterial NrdR 

boxes were specifically associated with class Ib-encoding RNR genes (Fig. 3.16C 

and 3.16D) and were not found upstream of nrdB, nrdF1 or nrdZ in any of the 

sequenced mycobacteria harboring one or more of these genes.  
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                                                              ♦ 
                                                              ▼ 
M.tuberculosis        MHCPFCRHPDSRVIDSRETDEGQAIRRRRSCPECGRRFTTVETAVLAVVK 
M.smegmatis           MHCPFCRHPDSRVVDSRETDEGQAIRRRRSCPECGRRFTTVETAVLAVVK 
S.coelicolor          MHCPFCRHPDSRVVDSRTTDDGTSIRRRRQCPDCSRRFTTVETCSLMVVK 
                                     
M.tuberculosis        RSGVTEPFSREKVISGVRRACQGRQVDDDALNLLAQQVEDSVRAAGSPEI 
M.smegmatis           RSGVSEPFSREKVIRGVRRACQGRDVDDDALNVLAQKVED AVRGLGTPEI 
S.coelicolor          RSGVTEPFSRTKVINGVRKACQGRPVTEDALAQLGQRVEEAVRATGSAEL 

                                  ♦  

                                 ▼ 
M.tuberculosis        PSHDVGLAILGPLRELDEVAYLRFASVYRSFSSADDFAREIEA LRAHRNL 
M.smegmatis           PSHEVGLAILGPLRELDEVAYLRFASVYRSFSSAEDFERE IEALRAHRGA 
S.coelicolor          TTHDVGLAILGPLQELDLVAYLRFASVYRAFDSLEDFEAAI AELRETTGH 
                                     
 
M.tuberculosis        SAHS---------------------------- 
M.smegmatis           -------------------------------- 
S.coelicolor          PGEEDDTGAGSQENDRGPTGAGQVPEPAGAAD 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

M. tuberculosis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCCACCCCCT 
M. bovis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCC -------
M. leprae CCAGGGAATTTCGTAACTGTTGTTCAGAACATCTTGTATCTATTCTCCTTGCC -------
M. ulcerans CCAGGGAATTTCAAAAATGTCGTTCCGAACATCTTGTATCTCTTCTCGTTGTC-------
M. marinum CCAGGGAATTTCAAAAATGTCATTCCGAACATCTTGTATCTCTTCTCGTTGTC -------
M. smegmatis CCTGGGAATTTCAGAAATGTTATTCAGAACATCTTGTATGGCTTCTTC-TGTGG------

** *********  ** ***  *** *************   ****   **          

M. tuberculosis AGGTGCCACCCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. bovis -------AC CCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. leprae -------AC CCACTAGGTGTAGTGT TTTAAGGTGCCGGCAGATCCCAGGTTCAC TA-CGC 
M. ulcerans -------AC CCCCTAGGTGTAGTGTGTCGAGG-ACCGACAGAACTCAGGTTCACCGGTTC 
M. marinum -------AC CCCCTAGGTGTAGTGT TTCGAGG-ACCGACAGAACCCAGGTTCACCGGTTC 
M. smegmatis -------GG CCACTAGGTGTAGTGTCTGAGAG-ACCGACAGGCCACC ACAGTTCGGGAGC 

** ************* *    *  *** ***  * *       *     *

M. tuberculosis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCCACCCCCT 
M. bovis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCC -------
M. leprae CCAGGGAATTTCGTAACTGTTGTTCAGAACATCTTGTATCTATTCTCCTTGCC -------
M. ulcerans CCAGGGAATTTCAAAAATGTCGTTCCGAACATCTTGTATCTCTTCTCGTTGTC-------
M. marinum CCAGGGAATTTCAAAAATGTCATTCCGAACATCTTGTATCTCTTCTCGTTGTC -------
M. smegmatis CCTGGGAATTTCAGAAATGTTATTCAGAACATCTTGTATGGCTTCTTC-TGTGG------

** *********  ** ***  *** *************   ****   **          

M. tuberculosis AGGTGCCACCCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. bovis -------AC CCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. leprae -------AC CCACTAGGTGTAGTGT TTTAAGGTGCCGGCAGATCCCAGGTTCAC TA-CGC 
M. ulcerans -------AC CCCCTAGGTGTAGTGTGTCGAGG-ACCGACAGAACTCAGGTTCACCGGTTC 
M. marinum -------AC CCCCTAGGTGTAGTGT TTCGAGG-ACCGACAGAACCCAGGTTCACCGGTTC 
M. smegmatis -------GG CCACTAGGTGTAGTGTCTGAGAG-ACCGACAGGCCACC ACAGTTCGGGAGC 

** ************* *    *  *** ***  * *       *     *

M. tuberculosis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCCACCCCCT 
M. bovis CCAGGGAATTTCGAAAATGTTATTCAGAACATCTTGTATCTCTTCTCCGTGCC -------
M. leprae CCAGGGAATTTCGTAACTGTTGTTCAGAACATCTTGTATCTATTCTCCTTGCC -------
M. ulcerans CCAGGGAATTTCAAAAATGTCGTTCCGAACATCTTGTATCTCTTCTCGTTGTC-------
M. marinum CCAGGGAATTTCAAAAATGTCATTCCGAACATCTTGTATCTCTTCTCGTTGTC -------
M. smegmatis CCTGGGAATTTCAGAAATGTTATTCAGAACATCTTGTATGGCTTCTTC-TGTGG------

** *********  ** ***  *** *************   ****   **          

M. tuberculosis AGGTGCCACCCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. bovis -------AC CCCCTAGGTGTAGTGT TTTCGAGTACCGGCAGATCCCAGGTTCACCAGGTC 
M. leprae -------AC CCACTAGGTGTAGTGT TTTAAGGTGCCGGCAGATCCCAGGTTCAC TA-CGC 
M. ulcerans -------AC CCCCTAGGTGTAGTGTGTCGAGG-ACCGACAGAACTCAGGTTCACCGGTTC 
M. marinum -------AC CCCCTAGGTGTAGTGT TTCGAGG-ACCGACAGAACCCAGGTTCACCGGTTC 
M. smegmatis -------GG CCACTAGGTGTAGTGTCTGAGAG-ACCGACAGGCCACC ACAGTTCGGGAGC 

** ************* *    *  *** ***  * *       *     *
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Figure 3.16 Genomic organization of nrdR in M. smegmatis and M. tuberculosis in 
comparison to S. coelicolor (A), multiple protein sequence alignment of M. tuberculosis and 
M. smegmatis against S. coelicolor NrdR (B) and putative NrdR boxes located upstream of 
mycobacterial nrdHIE (C) gene cluster and the nrdF2 gene (D). A: The genes are denoted 
by arrows and the annotation (http://tigrblast.tigr.org/cmr; 
http://genolist.pasteur.fr/Tuberculist/) is shown below the genes. The same fill colors 
indicate homologues in both organisms (http://tigrblast.tigr.org/cmr-blast/), with nrdR 
denoted by a solid black fill effect. B: Deletion positions in M. smegmatis (♦) and M. 
tuberculosis (▼) are shown. Highlighted in pink is the Zn ribbon domain with conserved 
two pairs of cystein and four consecutive arginine residues. Highlighted in red is the ATP 
cone. C and D: Putative NrdR boxes located upstream of mycobacterial nrdHIE (C) gene 
cluster and the nrdF2 (D) gene are bold and highlighted and were identified based on the 
consensus palindromic sequence, acaCwAtATaTwGtgt (Rodionov and Gelfand, 2005). 
 
 
3.7.1 nrdR function in growth and long-term survival of M. smegmatis and M. 

tuberculosis  

To date, nrdR homologues have been identified in several microbes, but nrdR gene 

function has only been well studied in Streptomyces (Borovok et al., 2004; Grinberg 

et al., 2006) and E. coli (Torrents et al., 2007). To determine NrdR function in 

mycobacteria, its encoding gene was targeted for deletion in M. smegmatis and M. 

tuberculosis using the p2∆SMRKO and p2∆TBRKO constructs, respectively (Table 

2.2). Southern blot analysis of the M. smegmatis knockout mutant (∆nrdR::hyg) 

revealed the presence of a 3.1 kb cross-hybridising band compared to a 2.3 kb band 

in the wild type and the 4.4 kb and 3.1 kb bands in the SCO (SnrdRSCO) (Figure 

3.17A and Figure 3.17B). This genotypic analysis confirms the deletion of 217 bp of 

the M. smegmatis gene, so eliminating most of the ATP cone domain residues 

(Figure 3.16B), and the insertion of a hyg resistance marker. Southern blot analysis 

of the nrdR mutant of M. tuberculosis (∆nrdR) revealed a 3.2 kb cross-hybridising 

band from the DCO in comparison to a 1.3 kb from wild-type and both 3.2 kb and 

1.3 kb bands from the SCO (tbnrdRSCO) (Figure 3.17C and 3.17D). These data 

M. tuberculosis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. bovis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. leprae GCCGC-TCACGGTGGCTAATTAGGTGGC----TGGGCTAGTCGACACGCAA------A AC
M. ulcerans CCTG--TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. marinum CCTGG-TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. smegmatis GGTGAAACGCCACGTCGCGCTTGCGGAG----TTCGCGTGTGAACGCGACACGCCCAACC

*     *   * *      *            **          *  *      * *

M. tuberculosis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC--
M. bovis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC—
M. leprae ACTACTTCTTGTGTTGCGGCGTTATGTCGGACCCCAAGGGTAGTGTTTAAGGTCTAAGTA 
M. ulcerans ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACTGGTAGTGTTTGTGGCCTAAGCA
M. marinum ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACGGGTAGTGTTTGTGGCCTAAGCA
M. smegmatis ACAACATCTCGGGGAGCGCCGCGAACTTTCCCACCAGTTGTAGTGTTGGTATCGTCGCCG                       

** ** *** * *  **         *    * * *   ********       * 

M. tuberculosis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. bovis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. leprae GCCGC-TCACGGTGGCTAATTAGGTGGC----TGGGCTAGTCGACACGCAA------A AC
M. ulcerans CCTG--TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. marinum CCTGG-TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. smegmatis GGTGAAACGCCACGTCGCGCTTGCGGAG----TTCGCGTGTGAACGCGACACGCCCAACC

*     *   * *      *            **          *  *      * *

M. tuberculosis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC--
M. bovis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC—
M. leprae ACTACTTCTTGTGTTGCGGCGTTATGTCGGACCCCAAGGGTAGTGTTTAAGGTCTAAGTA 
M. ulcerans ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACTGGTAGTGTTTGTGGCCTAAGCA
M. marinum ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACGGGTAGTGTTTGTGGCCTAAGCA
M. smegmatis ACAACATCTCGGGGAGCGCCGCGAACTTTCCCACCAGTTGTAGTGTTGGTATCGTCGCCG                       

** ** *** * *  **         *    * * *   ********       * 

M. tuberculosis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. bovis GACGG-TCGCTGCGGCGAACTAGCCGGCGAAACAGGCGAGCGGATTCGCGACACGCAAAC
M. leprae GCCGC-TCACGGTGGCTAATTAGGTGGC----TGGGCTAGTCGACACGCAA------A AC
M. ulcerans CCTG--TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. marinum CCTGG-TAGC-GCGGCTGCCCTGGATTC----CGGGCCGCTTGGTTGGCGACACGCAAAC
M. smegmatis GGTGAAACGCCACGTCGCGCTTGCGGAG----TTCGCGTGTGAACGCGACACGCCCAACC

*     *   * *      *            **          *  *      * *

M. tuberculosis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC--
M. bovis ACAACTTCTTGTGTTGCAGTACCTTGTCGGACCCCAGGGGTAGTGTTTGAGGCCTAGC—
M. leprae ACTACTTCTTGTGTTGCGGCGTTATGTCGGACCCCAAGGGTAGTGTTTAAGGTCTAAGTA 
M. ulcerans ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACTGGTAGTGTTTGTGGCCTAAGCA
M. marinum ACAACTTCTTGTGTTGCGCCGCCTTGTCGGCCCCTACGGGTAGTGTTTGTGGCCTAAGCA
M. smegmatis ACAACATCTCGGGGAGCGCCGCGAACTTTCCCACCAGTTGTAGTGTTGGTATCGTCGCCG                       

** ** *** * *  **         *    * * *   ********       * 

D 
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confirmed the deletion of a 215 bp segment of nrdR that encodes the ATP cone 

(Figure 3.16B). Successful deletion of nrdR in two mycobacterial species confirms 

its dispensability for growth under the conditions tested. Both mutant strains 

(∆nrdR::hyg and ∆nrdR) displayed growth indistinguishable from their parental wild 

type strains (Figure 3.17E and 3.17F). In addition, when ∆nrdR::hyg was co-cultured 

with mc2155 that had been marked with a Km-resistance gene delivered on the 

pAINT vector (mc2155:pAINT, Table 2.1), it did not show any competitive growth 

disadvantage (Figure 3.17G).  

 

To determine the role of nrdR in long-term survival, individual cultures of the 

∆nrdR::hyg and mc2155 or mixed cultures of ∆nrdR::hyg and mc2155::pAINT were 

grown and CFUs enumerated periodically over a period of ca. 5 months. Survival of 

the ∆nrdR::hyg was similar to that of mc2155 or mc2155::pAINT in pure culture 

(Figure 3.18A) and in competition (Figure 3.18B), suggesting that the mutant 

showed no long-term survival defect either in pure culture or in competition with the 

wild-type strain.  
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Figure 3.17 Deletion of nrdR in M. smegmatis, and M. tuberculosis and growth kinetics of 
the mutant strains. A and C: Schematic representation of parental alleles and the mutant 
allele in M. smegmatis and M. tuberculosis showing the restriction enzyme sites and probes 
used for Southern blotting. B: Southern blot analysis of genomic DNA samples isolated 
from mc2155, SCO (snrdRSCO) and DCO (∆nrdR::hyg) strains digested with BamHI and 
probed with smnrdR-F1R1(Table 2.4). D: Southern blot analysis of genomic DNA samples 
isolated from H37Rv, SCO (tbnrdRSCO) and DCO (∆nrdR) strains digested with SalI and 
hybridized with the tbnrdR-F2R2p (Table 2.4). E and F: In vitro growth of ∆nrdR::hyg (E) 
and ∆nrdR (F). G: Competitive growth of ∆nrdR::hyg with mc2155::pAINT.  
 
 
 
 
  

  
 
 
 
 
 
  
 
 
 
 
Figure 3.18 Long-term survival of the M. smegmatis ∆nrdR::hyg mutant in pure culture 
(A) or in competition with mc2155::pAINT (B). To determine the long term survival and 
competition fitness of the ∆nrdR::hyg mutant, this strain was grown in pure culture and in 
co-culture with mc2155::pAINT. Samples were withdrawn periodically over a 175 d and 
CFUs (differentially) enumerated. The data represent three biological culture replicates. 
Error bars indicate standard deviations between the three cultures. 
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3.7.2 Expression of nrd genes in the M. tuberculosis ∆nrdR and M. smegmatis 

∆nrdR::hyg mutants 

As described above, NrdR has been shown to serve as a negative transcriptional 

regulator of nrd gene expression in other bacterial species (Borovok et al., 2004; 

Grinberg et al., 2006; Torrents et al., 2007). To investigate its role in the 

transcriptional regulation of nrd genes in mycobacteria, the expression levels of all 

nrd genes in ∆nrdR::hyg and ∆nrdR strains were determined by real-time qRT-PCR. 

mRNA levels in  total RNA samples isolated from early log-phase (OD600 ~ 0.3) 

cultures were analyzed and normalized to sigA copy numbers. Loss of nrdR function 

in both M. tuberculosis and M. smegmatis resulted in a significant increase in the 

expression of nrdE (2.8 and 4.9 fold in M. tuberculosis and M. smegmatis, 

respectively) and nrdF2 (3.1 and 3.7 fold in M. tuberculosis and M. smegmatis, 

respectively). Increased expression levels of both nrdE and nrdF2 in the M. 

smegmatis ∆nrdR::hyg mutant could be reversed to approximately the same levels as 

observed in mc2155 by integration of the full length M. smegmatis nrdR gene 

expressed from its own promoter via pNRDR (Table 2.2, Figure 3.19) to generate 

∆nrdR::hyg::pNRDR (Table 2.1). Loss of nrdR function did not have any effect on 

nrdB expression in either mycobacterium, or on nrdF1 and nrdZ expression in M. 

tuberculosis (Table 3.3). This observation confirms the prediction based on 

bioinformatic analysis that NrdR is a transcriptional repressor of only nrdHIE and 

nrdF2 expression in these organisms. 
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 Table 3.3 qRT-PCR analysis of nrd gene expression in ∆nrdR::hyg and ∆nrdR 
relative to their parental wild-type strains 

Normalized gene expression relative to wild type Strain 

nrdF1 nrdF2 nrdE nrdB nrdZ 

M. tuberculosis 

H37Rv 1 1 1 1 1 

∆nrdR 1.00 ± 0.03 3.1 ± 0.3 ** 2.8 ± 0.4** 1.1 ± 0.2 1.2 ± 0.5 

M. smegmatis 

mc2155 N/A 1 1 1 N/A 

∆nrdR::hyg N/A 3.7 ± 0.7* 4.9 ± 0.8** 0.7 ± 0.2 N/A 

Statistically significant differences are denoted by asterisks. *:P < 0.01; ** - P < 
0.001. The statistical significance is based on the pair-wise comparison, by unpaired 
t-test, of the sigA-normalized expression level of the gene of interest in the mutant 
strain vs. its parental wild-type strain. 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.19 Semi-quantitative RT-PCR analysis of nrdF2 and nrdE expression in M. 
smegmatis ∆nrdR::hyg and ∆nrdR::hyg::pNRDR. cDNA for nrdF2 and nrdE quantification 
was diluted 32× and 512× respectively, and was used neat for sigA quantification. A 2-µl 
aliquot was used as the template in a 50 µl PCR reaction. Ten µl samples of the PCR 
products were then analyzed by electrophoresis on a 2 % agarose gel. Genomic DNA 
standards represent 10-fold serial dilutions of M. smegmatis mc2155 genomic DNA.    
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3.7.3 Impact of up-regulation of class Ib RNR gene expression on resistance to 

RNR inhibition and to DNA damage 

Increasing the expression of RNR-encoding genes in bacterial cells has been 

suggested to compensate for RNR inhibition, thereby rescuing the cells from dNTP 

starvation (Masalha et al., 2001; Torrents et al., 2003). As described above, loss of 

NrdR resulted in up-regulation of class Ib RNR gene expression in M. smegmatis 

and M. tuberculosis. To determine whether this conferred any advantage in terms of 

dNTP starvation survival, the HU susceptibilities of the ∆nrdR::hyg and ∆nrdR 

mutants were compared to their respective wild type strains. However, CFU counts 

from the surviving cells showed no significant differential sensitivities to HU 

(Figure 3.20A and Figure 3.20B). Moreover, all strains showed the same MIC for 

HU (760 µg/ml). The phenotypic effect of de-repression of class Ib RNR gene 

expression on sensitivity to genotoxic stress was then investigated by evaluating the 

sensitivity of the mutants to MTC and UV irradiation. However, no differential 

sensitivity to genotoxic stress was observed for the nrdR mutants (Figure 3.20C, D, 

E and F). 

 

3.8 Effects of altered class Ib RNR-encoding gene expression on 

mutagenesis  

Imbalances in dNTP pools have been shown to confer mutagenic effects in other 

organisms (Gon et al., 2006a; Wheeler et al., 2005). To investigate if altered levels 

of expression of class Ib RNR genes have any impact on mutagenesis in 

mycobacteria, the rates of spontaneous mutation and/or frequencies of UV-induced 

mutation to Rif resistance were determined in the M. smegmatis ∆nrdR::hyg, 

∆nrdF2::hyg and ∆DRKIN mutants and the M. tuberculosis ∆nrdR mutant and 

compared to those of their respective wild type strains. As shown in Table 3.4, 

mutation rates and/or mutation frequencies were very similar across all strains, with 

the exception of the dnaE2::aph control, which was defective in UV-induced 

mutation to Rif resistance, as expected (Boshoff et al., 2003). 
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Figure 3.20 Sensitivity of M. smegmatis ∆nrdR::hyg and M. tuberculosis ∆nrdR to HU (A 
and B), MTC (C and D) and UV irradiation (E and F). A-D: M. smegmatis (A and C) and M. 
tuberculosis (B and D) log-phase cultures were plated on solid media supplemented with 
different concentrations of HU or mitomycin. E-F: Open plates on which serial dilutions of 
M. smegmatis (E) and M. tuberculosis (D) strains were plated were UV irradiated. All plates 
were incubated until CFUs could be enumerated. The wild-type data on B, D and F is the 
same as on Figure 3.12C, A and B respectively. A: Data is from one representative of three 
experiments with averages and standard deviations between three technical replicates. The 
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data in panel B-F is a representation of an average of three biological replicates, with 
standard deviations between the cultures indicated by the error bars.  
 

Table 3.4 Spontaneous mutation rates and UV-induced mutation frequencies of M. 
tuberculosis and M. smegmatis strains 

Mutation frequency Strain Mutation rate 
(probability of 
mutations/cell/ 

generation) 

Untreated Measured 24 h post 
UV irradiation 

M. smegmatis  

mc2155 5.5×10
-9
 4.8×10

-7
 3.2×10

-6
 

∆DRKIN 6.3×10
-9
 1.7×10

-7
 3.3×10

-6
 

∆nrdF2::hyg 
4.4×10-9 2.8×10

-7
 2.3×10

-6
 

∆nrdR::hyg 
8.2×10-9 2.3×10

-7
 3.0×10

-6
 

dnaE2::aph 
ND 1.4×10

-7
 6.1×10

-7
 

M .tuberculosis 

H37RV 
ND 1.6×10

-8
 6.8×10

-6
 

∆nrdR 
ND 1.7×10

-8
 6.5×10

-6
 

ND - Not done 
Mutation rates are representatives from at least two experiments. Mutation 
frequencies are an average of one experiment done in three biological replicates. 
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4. Discussion 

 

 

The occurrence of multiple RNR encoding genes in a single organism has led to the 

speculation that different RNR isoenzymes are used to fine-tune the provision of 

dNTPs for DNA replication and repair under different environmental conditions 

(Borovok et al., 2002; Borovok et al., 2004; Jordan et al., 1999; Masalha et al., 

2001). This is clearly exemplified in other organisms such as E. coli where the 

nrdHIEF-encoded class Ib RNR has been speculated to operate under conditions of 

oxidative stress and iron starvation survival, while nrdDG-encoded class III RNR 

functionally substitutes for the essential, nrdAB-encoded class Ia RNR under oxygen 

limitation (Monje-Casas et al., 2001; Reichard, 1993). The Lactococcus lactis class 

Ib enzyme has similarly been suggested to substitute the class III enzyme under 

hypoxic conditions (Jordan et al., 1996; Torrents et al., 2000). Most intriguing is the 

RNR system of Pseudomonas aeruginosa, which contains genes encoding all three 

classes of RNR. Even though the class III enzyme did not show any evidence of 

activity (Jordan et al., 1999), the class Ia RNR has a demonstrated role in oxygen-

rich conditions and the class II enzyme operates under limiting oxygen and upon 

class I RNR inhibition (Jordan et al., 1999; Torrents et al., 2005a; Torrents et al., 

2006b). Another interesting finding was the discovery of nrdAB genes encoding an 

oxygen-dependent class I enzyme in the anaerobe, Bacteroides fragilis, which led to 

speculation that this form of RNR may be important for oxidative DNA damage 

survival (Smalley et al., 2002).  

 

The purpose of this study was to use a genetic approach to investigate the functional 

significance of the multiplicity of class I RNR small subunit-encoding genes in 

mycobacteria in terms of growth in vitro and in vivo, and in survival under a variety 

of different stress conditions. Furthermore, a mechanism of transcriptional 

regulation of RNR-encoding encoding genes by NrdR was studied in two 

mycobacterial species.  
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4.1 NrdB does not play a significant role in dNTP provision in 

mycobacteria 

As a first line of defense against pathogens, the host immune system produces 

several antibacterial agents including RNIs (MacMicking et al., 1997; Nathan and 

Shiloh, 2000; Nicholson et al., 1996; Shiloh and Nathan, 2000) and ROIs (Adams et 

al., 1997; Nathan and Shiloh, 2000) which serve to kill the invading pathogen. In 

addition to the 29 enzymes identified (Rhee et al., 2005), the bactericidal effects of 

RNIs include inhibition of M. tuberculosis class I RNR enzyme (by targeting the 

tyrosine radical in the small subunit) (Fontecave, 1998; Roy et al., 1995). M. 

tuberculosis also appears to sustain DNA damage in the human host (Rachman et 

al., 2006b), which could also be due to the action of RNIs (Darwin et al., 2003). 

Supporting this notion is the demonstration that a nucleotide excision repair gene 

uvrB is required for M. tuberculosis RNI resistance and DNA damage tolerance in 

vitro (Darwin et al., 2003; Darwin and Nathan, 2005). Most importantly, deletion of 

uvrB resulted in attenuation of M. tuberculosis for growth in mice and the phenotype 

was reversed in iNOS deficient mice (Darwin and Nathan, 2005). The base excision 

repair genes xthA, ung and end were also shown to be required for M. tuberculosis 

survival in mice (Sassetti and Rubin, 2003). Further evidence supporting the 

exposure of the tubercle bacilli to DNA damaging agents in vivo is the requirement 

of an SOS-regulated gene, dnaE2, which encodes a specialized DNA polymerase 

that is involved in DNA damage tolerance and persistent infection in mice (Boshoff 

et al., 2003). Together, these observations underscore the need for an adequate 

supply of dNTPs for DNA repair synthesis by M. tuberculosis in vivo. 

  

Identification and classification of the only RNR in Chlamydia as a new type of 

class I enzyme (class Ic RNR) based on its unique enzymatic features (Högbom et 

al., 2004; Roshick et al., 2000) added to the complexity of RNRs, and generated 

considerable interest in this sub-type of class I RNR (Jiang et al., 2007b; 

Voevodskaya et al., 2005; Voevodskaya et al., 2006; Voevodskaya et al., 2007a; 

Voevodskaya et al., 2007b). In the class Ic RNR, the catalytic radical-bearing 

tyrosine residue in the small subunit, NrdB, is substituted by phenylalanine. 

Moreover, unlike the normal setting in the class Ia and Ib enzymes whereby the 
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diiron cofactor (FeIII - FeIV) is used to oxidize the tyrosyl residue in the R2 subunit, 

which then oxidizes the cysteine residue in the R1 subunit, the class Ic R2, NrdB, 

uses FeIII - FeIV to directly oxidize a cysteine residue in the large subunit for the 

initiation of substrate reduction (Högbom et al., 2004; Voevodskaya et al., 2005; 

Voevodskaya et al., 2006; Voevodskaya et al., 2007a). More recently, the class Ic 

enzyme was reported to also use FeIII - MnIV as a cofactor, which is more effective 

than a diiron cluster (Jiang et al., 2007b; Jiang et al., 2008a; Voevodskaya et al., 

2007b). The unique mechanism employed by the Chlamydial class Ic RNR was 

hence suggestive of a potential survival strategy against host-mediated nitrosative 

stress in all organisms harboring a class Ic enzyme (Högbom et al., 2004).  

 

Unlike Chlamydia, which only possess a class Ic-type R2 subunit (Roshick et al., 

2000), mycobacteria with the exception of M. leprae possess a Chlamydial-like R2 

homologue encoded by the nrdB gene in addition to at least one classical, class Ib 

R2 subunit. The nrdB genes of M. tuberculosis and M. smegmatis encode proteins 

that contain all of the essential residues of a class Ic R2 and expression analysis 

confirmed that both are expressed albeit at a lower transcript abundance than the 

class Ib R2 subunits. Together, these findings suggested that nrdB might encode a 

functional R2 subunit that could associate with NrdE to form a class Ic RNR 

(NrdEB) in mycobacteria. When nrdB was targeted for deletion by homologous 

recombination, DCO mutants were successfully obtained in both M. smegmatis and 

M. tuberculosis. Both mutants grew equally well in comparison with their respective 

parental strains under normal in vitro growth conditions. Hence, these observations 

distinguish the mycobacterial NrdB from the essential Chlamydial protein (Roshick 

et al., 2000).  

 

Considerable efforts have been directed at trying to model conditions encountered 

by the bacilli in vivo, with the aim of understanding the persistence of pathogenic 

mycobacteria (Betts et al., 2002; Flynn, 2006; Gupta and Katoch, 2005; Hampshire 

et al., 2004; Wayne and Hayes, 1996). Several  adaptive mechanisms have been 

proposed, which include reduction of energy demand (Dahl et al., 2003; Kusner, 

2005; Primm et al., 2000; Shi et al., 2005) and a switch to the use of fatty acids as a 

sole source of carbon (Kusner, 2005; Muñoz-Elías and McKinney, 2005; 
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Schnappinger et al., 2003). The observation that loss of nrdB did not have any 

impact on the long-term survival of M. smegmatis suggests that NrdB does not play 

any role in stationary phase adaptation of M. smegmatis. When cell populations are 

exposed to unfavorable conditions, the most fit are likely to outcompete the unfit 

population (Cohen and Murray, 2004; Gagneux et al., 2006a; Gagneux et al., 

2006b). The fact that abrogation of NrdB function did not impair M. smegmatis for 

growth or long-term survival in competition with the wild type, argues against a 

significant role for NrdB in fitness for growth and long-term survival. 

 

In this study, the possibility of mycobacteria using class Ic enzyme to survive 

nitrosative stress exerted by the host was investigated in M. tuberculosis and M. 

smegmatis by assessing the effect of nrdB loss to mycobacterial sensitivity to NO. 

However, both ∆nrdB and ∆nrdB::hyg sensitivities to GSNO and/or acidified nitrite 

were indistinguishable from those of the parental strains. Similarly, determination of 

the effect of nrdB deficiency on M. smegmatis and M. tuberculosis susceptibility to 

genotoxic stress caused by MTC or UV irradiation resulted in no differential 

sensitivity between the mutant and the wild type strains. These findings argued 

against a significant role for the putative class Ic RNR in nitrosative and genotoxic 

stress tolerance in mycobacteria. HU is a classical class I RNR inhibitor, which acts 

by scavenging the enzyme’s catalytic tyrosine radical. The absence of the tyrosine 

radical in the class Ic RNR small subunit (Högbom et al., 2004; Voevodskaya et al., 

2005; Voevodskaya et al., 2006) raises a compelling question as to whether the 

intrinsic resistance of mycobacteria to HU may be influenced by the presence of a 

class Ic enzyme. However, the nrdB mutants showed no differential susceptibility to 

HU as compared to their respective wild-type strains arguing against a significant 

role for NrdB in dNTP supply under the conditions in which the class Ib enzyme is 

inhibited. 

  

Despite the hostile environment provided by the host immune system, M. 

tuberculosis is able to subvert the otherwise lethal effects of immune effector 

mechanisms to ensure its own survival (Hestvik et al., 2005; Rengarajan et al., 

2008; Vergne et al., 2004b). Studies investigating mechanisms involved in M. 

tuberculosis survival and persistence in vivo have provided crucial information on 
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M. tuberculosis pathogenesis (Downing et al., 2005; McKinney et al., 2000; Pandey 

and Sassetti, 2008; Stokes et al., 2004). Considering the difference between the class 

Ic and the essential class Ib RNR catalytic mechanism (Voevodskaya et al., 2005; 

Voevodskaya et al., 2006; Voevodskaya et al., 2007b), it was tempting to speculate 

that M. tuberculosis may utilise a class Ic RNR for dNTP provision when exposed to 

hostile host defense mechanisms, in particular,  nitrosative stress, which is generated 

after the onset of the acquired immune response (MacMicking et al., 1997; Nathan 

and Shiloh, 2000; Nicholson et al., 1996; Shiloh and Nathan, 2000). However, when 

an nrdB mutant of M. tuberculosis was used to infect immunocompetent mice and 

bacillary loads followed, the mutant did not show any defects in establishing acute 

or chronic infection in the lungs and dissemination to the spleen and liver. Because 

nitrosative or genotoxic stresses are expected to prevail in vivo, lack of a growth and 

survival phenotype of the M. tuberculosis nrdB mutant in mouse lung was consistent 

with the lack of phenotype under nitrosative stress and DNA damaging conditions in 

vitro. Together, these findings argue against a significant role for NrdB, and hence, 

for the putative class Ic RNR, NrdEB, in mycobacterial survival in vivo. These 

observations could be due to the fact that during the acute phase of infection there is 

little, if any, nitrosative stress (Nathan and Shiloh, 2000; Smith, 2003), so during 

this time NrdEF2 may be fully active to provide adequate dNTPs required for 

growth. Nitrosative stress becomes abundant after the onset of acquired immune 

response and thus, during the chronic phase of infection (Nathan and Shiloh, 2000; 

Smith, 2003). However, during this time there is little if any DNA replication 

(Muñoz-Elías et al., 2005). Therefore, even though NrdEF2 activity might be 

reduced by the effect of RNIs, the residual activity might be enough to serve the 

relatively limited dNTP requirement for DNA replication and repair synthesis during 

the chronic phase of infection. 

 

In E. coli, the class Ia and class Ib RNRs contain distinct large subunits, NrdA and 

NrdE, which associate with their respective small subunits to form a functional 

enzyme (Jordan and Reichard, 1998). Despite the multiple class I small subunit-

encoding genes in mycobacteria, there is only one detectable large subunit-encoding 

gene, nrdE. Whether the class Ic NrdB subunit can compete with the class Ib NrdF2 

for association with NrdE remains an intriguing question. To date, no functional 
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studies on NrdB to probe its interaction with NrdE and ability to form a functional 

class Ic enzyme have been performed in mycobacteria. The lack of phenotype of the 

nrdB mutant strains of M. smegmatis and M. tuberculosis under any of the 

conditions tested may be due to poor/inadequate association of NrdB with NrdE or a 

complete lack thereof. Despite the conservation of all of the essential residues of a 

class Ic R2, there is relatively weak homology and no chromosomal context 

similarity between the NrdB of Chlamydia trachomatis and that of M. smegmatis 

(23 % protein identity) and M. tuberculosis (31 % protein identity). Instead, the 

Chlamydial NrdB shows stronger homology to the mycobacterial NrdF2 with 46 and 

45 % identity with NrdF2 from M. smegmatis mc2155 and M. tuberculosis H37Rv, 

respectively. However, unlike M. tuberculosis NrdF1, which shares 71 % amino 

acid identity with NrdF2 (Yang et al., 1997), the mycobacterial NrdB proteins show 

little homology to the NrdF2 counterparts, raising further questions regarding the 

ability of the mycobacterial NrdB to associate or form a functional enzyme with 

NrdE. The finding that in M. tuberculosis, nrdE transcript levels were relatively 

similar to those of nrdF2 whereas the expression levels of nrdB were 6-fold lower 

than that of nrdF2, suggests that NrdB may be out-competed for interaction with 

NrdE by NrdF2, resulting in the NrdEF2 form of the enzyme predominating. 

Finally, the chlamydial class Ic RNR has been reported to use manganese as a more 

effective cofactor than iron (Jiang et al., 2007b; Jiang et al., 2007c; Voevodskaya et 

al., 2007b). Therefore, the lack of phenotype of the nrdB mutants could also be due 

to an insufficiency of manganese in the systems used.  

 

4.2 The alternate class Ib RNR (NrdEF1) does not play a significant role 

in dNTP supply in M. tuberculosis 

A distinguishing feature of M. tuberculosis is the presence in this organism of genes 

encoding two distinct class Ib R2 subunits, namely, NrdF1 and NrdF2 (Yang et al., 

1997). The transcriptional up-regulation of nrdF1 in response to treatment with 

DNA damaging agents and translational inhibitors (Boshoff et al., 2004) suggested 

that this alternate R2 subunit may serve a specialist role in dNTP provision, for 

example, for DNA repair synthesis. Precedent for this idea exists from recent studies 

in mammalian system, which identified a second mammalian R2 subunit (p53R2) as 
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a DNA damage inducible protein with 80-90 % identity to the normal R2 (Byun et 

al., 2002; Nakano et al., 2000) and showed that it is involved in DNA repair (Guittet 

et al., 2001; Kimura et al., 2003; Tanaka et al., 2000; Yamaguchi et al., 2001). The 

alternate R2 subunit, p53R2, can interact with the only R1 subunit at the same site as 

R2 to form a functional enzyme (R1p53R2) (Guittet et al., 2001; Qiu et al., 2006; 

Shao et al., 2004), albeit with less affinity and hence, less activity (Qiu et al., 2006; 

Yen et al., 2006).  

 

The successful deletion of nrdF1 from the genome of M. tuberculosis and lack of 

phenotype of the resulting ∆nrdF1 mutant for growth in vitro confirmed the 

dispensability of nrdF1 in M. tuberculosis, thus differentiating it from the essential 

nrdF2 gene (Dawes et al., 2003). However, unlike in mammalian cells where the 

disruption of p53R2 resulted in hypersensitivity to DNA damage (Zhou et al., 2003), 

and despite the upregulation of nrdF1 by DNA damage treatments (Boshoff et al., 

2004), the ∆nrdF1 did not show any defects in DNA damage survival. Mammalian 

R1p53R2 was reported to be less sensitive to HU than R1R2 (Shao et al., 2004; Yen 

et al., 2006). Whether NrdF1 could be used to compensate for inhibition of the 

essential NrdEF2 enzyme by HU was determined by assessing the effect of nrdF1 

gene loss on the susceptibility of M. tuberculosis HU. However, no differential 

sensitivities were observed between the mutant and the wild type strains. Similarly, 

infection of mice with the ∆nrdF1 mutant resulted in no differential virulence 

between the mutant and the wild-type strain arguing against a specialised role for 

NrdF1 in dNTP provision under the conditions prevailing in vivo. Finally, loss of 

nrdF1 had no effect on the sensitivity of M. tuberculosis to streptomycin despite its 

up-regulation in response to treatment with translational inhibitors (Boshoff et al., 

2004).  

 

Similar to mammalian p53R2 (Guittet et al., 2001; Qiu et al., 2006; Shao et al., 

2004; Yen et al., 2006), NrdF1 has been demonstrated to interact with NrdE in vitro, 

albeit with a weaker association than NrdF2 (Yang et al., 1997). However, unlike 

p53R2, which associates with R1 subunit to form a functional RNR enzyme (Guittet 

et al., 2001; Qiu et al., 2006), NrdEF1 did not exhibit any enzyme activity when 

tested (Yang et al., 1997). In addition to that, the lower level of nrdF1 expression in 



 128 

comparison to that of nrdF2 observed in this study may reduce the chances of an 

NrdEF1 enzyme predominating compared to the NrdEF2. Therefore, some or all of 

these observations may account for the lack of phenotype of ∆nrdF1 under the 

conditions tested.  

 

4.3 Effect of the 56-kb genomic duplication on the physiology of M. 

smegmatis mc2155 

The effect (if any) of the 56-kb genomic duplication on the physiology of M. 

smegmatis mc2155 is a subject of considerable interest, but has not been studied to 

any significant extent. In this study, the ∆DRKIN strain, which is an M. smegmatis 

mc2155 derivative lacking the entire duplicated region (Warner et al., 2006), and a 

knockout mutant lacking one copy of a single gene in the duplicated region, namely 

nrdF2, were used to investigate the effect of duplication of class Ib RNR-encoding 

genes on the physiology of M. smegmatis mc2155. Although one copy of nrdF2 

could be disrupted in M. smegmatis mc2155, the same was not true in the ∆DRKIN 

mutant. The inability to inactivate the single nrdF2 gene remaining in ∆DRKIN 

without a complementing copy of the M. tuberculosis nrdF2 gene suggested that 

nrdF2 is essential for growth in this background. Supporting this finding was the 

demonstrated essentiality of nrdF2 in M. tuberculosis (Dawes et al., 2003). 

Therefore, as in M. tuberculosis, the nrdB gene is unable to substitute for nrdF2 

function in M. smegmatis. 

 

The observation that deletion of the entire duplicated region rendered mc2155 

hypersensitive to a wide range of compounds including Rif and fluoroquinolones, 

implicated the duplication in enhanced survival of M. smegmatis mc2155 under 

diverse conditions of stress. The hypersensitivity of ∆DRKIN to HU and MTC 

triggered an investigation into the role of the duplication of class Ib RNR genes in 

this phenotype. Interestingly, insertional inactivation of only one copy of nrdF2 in 

mc2155 resulted in specific hypersensitivity to HU, suggesting that the duplication 

of class Ib RNR genes allows for increased survival under conditions of dNTP 

starvation resulting from HU-mediated inhibition of RNR. The incomplete reversion 

of HU hypersensitivity in nrdF2 mutant by the complementing copy could result 
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from the use of a heterologous gene which may not be equivalent to M. smegmatis 

nrdF2 in terms of expression and function. It could also be due to the fact that the 

complementing copy is out-of-chromosome context of expression at the attB locus, 

resulting in expression levels not restored to the parental levels. Although the nrdF2 

gene is induced in M. tuberculosis by MTC treatment (Boshoff et al., 2004; Rand et 

al., 2003), halving the nrdF2 gene dosage did not affect the sensitivity of M. 

smegmatis to this compound. Therefore, unlike HU, the hypersensitivity of 

∆DRKIN to MTC could not be attributed to a reduction in RNR expression/activity. 

It is possible that the hypersensitivity of ∆DRKIN to MTC is attributable to halving 

the dosage of another gene(s) carried on the duplicated region of the mc2155 

chromosome (Warner et al., 2006). One possible candidate in this regard is dinP as 

this gene encodes a putative PolIV (DinB)-type, Y-family DNA polymerase whose 

orthologues are involved in translesion synthesis (TLS) across replication-blocking 

lesions in other organisms (Jarosz et al., 2007).  

 

In Saccharomyces cerevisiae there are two RNR large subunit-encoding genes, 

RNR1 and RNR3 (encoding Y1 and Y3, respectively, sharing ~ 80 % amino acid 

identity) (Elledge and Davis, 1990) and two small subunit encoding genes, RNR2 

and RNR4 (encoding Y2 and Y4 respectively, with 56 % amino acid identity) 

(Huang and Elledge, 1997; Wang et al., 1997). RNR1 is essential and while RNR3 

is not, it is highly inducible by DNA damage and can complement RNR1 loss when 

over-expressed (Domkin et al., 2002; Elledge and Davis, 1990). The small subunit is 

a heterodimer of Y2 and Y4 (Perlstein et al., 2005; Sommerhalter et al., 2004). Y4 is 

50 amino acid shorter than Y2 and lacks 6 of 16 residues including three iron 

binding residues essential for catalysis and highly conserved in most R2 proteins 

(Huang and Elledge, 1997; Wang et al., 1997). However, Y4 is required for the 

assembly of the diiron-tyrosyl radical cofactor in Y2 (Nguyen et al., 1999; 

Sommerhalter et al., 2004; Wang et al., 1997). In a recent study, RNR4 was shown 

to be important for induced mutagenesis, corroborated by reduced mutation 

frequencies post UV irradiation in RNR4 null mutant and by HU treatment of the 

wild-type strain. This was suggested to be a consequence of reduced dNTP pools in 

the mutant (Lis et al., 2008; Strauss et al., 2007). Several other studies in viruses (Ji 

and Mathews, 1991; Sargent and Mathews, 1987) and eukaryotic cells (Dare et al., 
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1995; Hyodo et al., 1984; Song et al., 2003) have also showed that dNTP pool 

imbalances affect DNA mutagenesis. Most importantly, dramatic reduction of dNTP 

pools in eukaryotic cells results in DNA repair inhibition and hence increased levels 

of mutations (Snyder, 1988). In contrast to the findings in other organisms, halving 

the level of nrdF2 expression in ∆DRKIN and ∆nrdF2::hyg did not result in change 

in either spontaneous mutation rates or UV-induced mutation frequencies. This 

could be because the one NrdF2 remaining copy can adequately balance and 

maintain the dNTP pool essential for DNA repair. Corroborating this is the 

observation that the 56 kb duplicated region in mc2155 is dispensable for DNA 

replication during M. smegmatis growth (Warner et al., 2006), under which dNTP 

pools demand is expected to be higher than during DNA repair. 

 

4.4 M. tuberculosis dNTP supply is provided exclusively by NrdEF2 

activity 

In S. cerevisiae, loss of RNR4 results in the overexpression of the second small 

subunit encoding gene RNR2 and the formation of a homodimer (Y2)2 which 

interact with the large subunit homodimer (Y1)2 to form a less active (Y1)2(Y2)2 

(Perlstein et al., 2005). An analogous situation exists in Streptomyces whereby 

deletion of the class Ia enzyme results in the compensatory up-regulation of class II 

RNR-encoding gene expression (Borovok et al., 2002). Similarly, in mammalian 

cells, disruption of p53R2 results in the increase in R2 expression levels, which was 

suggested to substitute for p53R2 function in DNA repair (Lin et al., 2004; Zhou et 

al., 2003). In stark contrast to these findings, no differential expression of the 

remaining RNR genes was observed in the ∆nrdB, ∆nrdB::hyg, ∆nrdF2::hyg, 

∆nrdF1 or ∆nrdF1∆nrdB mycobacterial mutant strains. This observation argues 

against any regulatory cross-talk between the two or three R2-encoding genes in M. 

smegmatis and M. tuberculosis under normal in vitro growth respectively.  

 

The observation that S. coelicolor nrdJ mutant lacking a class II RNR, but not an 

nrdB mutant lacking the class Ia enzyme failed to grow on HU-containing media, 

led to the conclusion that under class I RNR inhibiting conditions, NrdJ is able to 

substitute for class Ia RNR function (Borovok et al., 2004). In contrast, an M. 
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tuberculosis nrdZ mutant lacking the putative vitamin B12-dependent class II RNR 

did not display hypersensitivity to HU relative to the wild type strain even in the 

presence of exogenous vitamin B12 supplement, arguing against a significant role for 

NrdZ in dNTP provision (Dawes et al., 2003). Recently, mutants of M. tuberculosis 

lacking nrdF1 and/or nrdB in the nrdZ background were constructed, confirming 

that the class II RNR-encoding gene (nrdZ) and the two alternate class I RNR R2-

encoding genes (nrdF1 and nrdB) are collectively dispensable for growth (data not 

shown). However, it remains to be determined whether, and to what extent, the 

combined loss of function of these genes (nrdB, nrdF1 and nrdZ) affects the HU 

susceptibility of M. tuberculosis. Based on the findings reported in this and a 

previous study (Dawes et al., 2003), it is tempting to speculate that M. tuberculosis 

may depend exclusively on NrdEF2 activity to supply dNTPs for DNA synthesis 

and repair.  

 

By arguing against specialized roles for NrdZ, NrdF1 and NrdB in the provision of 

dNTPs during DNA repair and replication in M. tuberculosis under the conditions of 

oxygen restriction, genotoxic and nitrosative stress encountered in vivo, these 

findings differentiate M. tuberculosis from organisms which utilize a multiplicity of 

RNRs to adapt to environmental conditions that may be variable and hostile. This 

study has thus revealed a potential vulnerability in dNTP provision in M. 

tuberculosis (Figure 4.1), which provide a compelling rationale for pursuing the 

NrdEF2 form of the RNR enzyme as a target for anti-tubercular drug discovery 

(Nurbo et al., 2007; Yang et al., 1997). However, it is worth noting that Bacillus 

mojavensis and Bacillus subtilis have been shown to use externally supplied 

deoxyribonucleosides for anaerobic growth (Folmsbee et al., 2004). Even though 

there is no evidence in support of this suggestion, it is possible that M. tuberculosis 

may scavenge deoxyribonucleosides from the host. This possibility will have to be 

addressed in order to further validate the NrdEF2 enzyme as a drug target. The 

availability of powerful new tools for conditional gene silencing in M. tuberculosis 

suggests that these could be used to address this question by investigating the effects 

of conditional knockdown of NrdEF2 on growth and persistence in the mouse model 

(Blokpoel et al., 2005; Ehrt et al., 2005; Gandotra et al., 2007).  
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4.5 NrdR is a negative regulator of class Ib RNR gene expression in 

mycobacteria 

Consistent with the presence of canonical NrdR boxes upstream of nrdHIE and 

nrdF2, disruption of nrdR in both M. tuberculosis and M. smegmatis resulted in a 

significant upregulation of both nrdF2 and nrdE. However, the specific signals that 

lead to de-repression of the nrdR-regulated nrdHIE and nrdF2 genes in 

mycobacteria are yet to be established. Consistent with the lack of identifiable NrdR 

boxes upstream of nrdB, nrdF1 and nrdZ, loss of nrdR did not affect the expression 

of these genes, implicating NrdR as a specific mycobacterial class Ib RNR negative 

regulator (Figure 4.1). This finding differentiates mycobacteria from other 

organisms in which the function of the NrdR regulator has been investigated. In E. 

coli, for example, NrdR negatively regulates the expression of all three classes of 

RNR, although deletion of the nrdR gene has a much greater effect on expression of 

the class Ib RNR genes (nrdHIEF) than the class Ia (nrdAB) or class III (nrdDG) 

genes (Torrents et al., 2007). In S. coelicolor, NrdR regulates both the class II RNR-

encoding nrdJ gene with which it is operonic, and the nrdABS operon, with nrdJ 

being more highly induced by loss of NrdR function than nrdABS (Borovok et al., 

2004).  
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Figure 4.1 The role and regulation of nrd genes in M. tuberculosis. NrdEF2 is essential for 
aerobic growth of M. tuberculosis in vitro (Dawes et al., 2003) and its encoding genes are 
upregulated in response to translational inhibition and genotoxic stress (Boshoff et al., 
2004). nrdHIE and nrdF2 are negatively regulated NrdR (this work). nrdF1 is also 
upregulated by translation inhibition or genotoxic stress (Boshoff et al., 2004) and NrdF1 
can interact with NrdE to form NrdEF1 (Yang et al., 1997). nrdB is expressed under normal 
in vitro growth conditions in M. tuberculosis (this work) but nothing is known about the 
regulatory mechanisms governing its expression and whether it can interact with NrdE to 
form a functional enzyme. The roles of nrdF1 and nrdB, if any, in dNTP provision have yet 
to be established. nrdZ is induced by hypoxia and low-dose NO (Roberts et al., 2004; 
Voskuil et al., 2003), but is dispensable for growth under hypoxia and for growth and 
survival in mice (Dawes et al., 2003).  
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4.6 Phenotypic effect of increased class Ib RNR encoding genes 

expression levels in mycobacteria 

Unlike in human cancer cells, where elevated levels of R2 lead to faster growth (Fan 

et al., 1996), increased expression of nrdE and nrdF2 caused by loss of NrdR 

function did not affect growth of M. tuberculosis and M. smegmatis in vitro. The HU 

hypersensitivity resulting from halving the expression levels of nrdF2 in M. 

smegmatis implicated the dosage of class Ib RNR-encoding genes in HU 

susceptibility, and thus confirmed that the class Ib RNR is the major target for HU in 

this organism. In bacterial (Roshick et al., 2000; Tipples and McClarty, 1991), 

mammalian (Akerblom et al., 1981; Choy et al., 1988; Yen et al., 1994; Zhou et al., 

1995), viral (Jiang et al., 2004) and insect (Gerenday et al., 2001; Shotkoski et al., 

1999) cells, increased expression of class I RNR-encoding genes leads to enhanced 

resistance to HU. Very similar to NrdR is Crt1, a negative regulator of yeast RNR 

gene expression. Increased levels of RNR genes due to deletion of CRT1 in S. 

cerevisiae conferred enhanced resistance to HU (Fu and Xiao, 2006; Huang et al., 

1998). In contrast to these findings, over-expression of nrdHIE and nrdF2 resulting 

from loss of NrdR function had no significant effect on HU sensitivity in both M. 

tuberculosis and M. smegmatis.  

 

Deletion of a yeast RNR inhibitor Sml1 (Chabes et al., 1999; Zhao et al., 1998; 

Zhao et al., 2000; Zhao et al., 2001), Crt1 (Fu and Xiao, 2006; Huang et al., 1998) 

and another nrd transcriptional repressor, Crt10 (Fu and Xiao, 2006), resulted in 

increased levels of dNTP pools and concomitant resistance to DNA damage. 

Similarly, disruption of the yeast large subunit allosteric site for dATP inhibition 

resulted in increased dNTP pools and enhanced DNA damage resistance (Chabes et 

al., 2003). However, constitutive increase in dNTP pools can also result in growth 

retardation and hypersensitivity to DNA damage (Chabes and Stillman, 2007). 

Contrary to these reported findings in other organisms, in this study, increased 

expression of nrdE and nrdF2, due to loss of regulation, did not have any effect on 

M. tuberculosis and M. smegmatis sensitivity to DNA damage. Like dNTP pool 

imbalances (Dare et al., 1995; Hyodo et al., 1984; Ji and Mathews, 1991; Sargent 

and Mathews, 1987; Song et al., 2003), proportional increases in dNTP levels may 
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also be mutagenic (Chabes et al., 2003; Wheeler et al., 2005). Nontheless, induction 

of the class Ib RNR by de-repression of the nrdHIE and nrdF2 genes did not confer 

hypermutabilty in M. smegmatis and M. tuberculosis.  

 

Due to the RNR’s fundamental importance in every living system, cells have 

evolved complex surveillance mechanisms to regulate RNR activity in both a cell 

cycle and environmental conditions dependant manor. This ensures adequate and 

balanced dNTP pools for high fidelity in DNA replication and repair. In addition to 

the allosteric regulation of the enzyme, both eukaryotic and prokaryotic RNRs are 

regulated by one or several mechanisms at more than one level of gene expression. 

The best studied example of a tightly regulated RNR system is that in S. cerevisiae. 

Crt1 represses transcription of S. cerevisiae RNR genes by binding on the promoter 

sequences (Huang et al., 1998) while Sml1 inhibit RNR enzyme activity by binding 

to the large subunit (Chabes et al., 1999; Zhao et al., 1998). In addition, S. 

cerevisiae RNR activity is regulated by subcellular localization of the small 

subunits, which are predominantly localized in the nucleus and translocate to the 

cytoplasm to co-localize with the bigger subunit upon DNA damage (An et al., 

2006; Yao et al., 2003; Zhang et al., 2006).  

 

Another example of a tightly controlled RNR activity is in S. coelicolor, where class 

Ia RNR activity is regulated transcriptionally and translationally and at the protein 

level by allosteric regulation. Depicted on Figure 4.2 are the three levels of S. 

coelicolor NrdAB regulation. Transcription of both class II and class I is inhibited 

by NrdR-dATP complex, which binds to the NrdR boxes upstream of the target 

genes (Borovok et al., 2004; Grinberg et al., 2006). In addition, the S. coelicolor 

class Ia enzyme is regulated by adenosylcobalamin, whereby binding to a B12-

riboswitch element in the upstream-untranslated region of nrdAB represses the 

translation of the mRNA (Borovok et al., 2004; Borovok et al., 2006).  
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Figure 4.2 Three levels of class Ia RNR regulation in Streptomyces. Transcription is 
negatively regulated by binding of ATP-NrdR complex to the NrdR boxes (■) upstream of 
nrdAB. During translational regulation by riboswitch mechanism, vitamin B12 bind to the 
B12-riboswitch element in the 5’-untranslated region (5’-UTR) of the nrdAB transcript, 
hence inhibiting translation  (Borovok et al., 2004; Borovok et al., 2006). Allosteric 
regulation of the enzyme involves binding of ATP or dATP to the activity site to activate or 
inactivate the enzyme respectively and binding of different dNTPs/ATP at the specificity 
site to regulate the specificity of the enzyme (Reichard, 2002).  
 

Prior to this study, the only known nrd regulatory mechanism in M. tuberculosis was 

the regulation of nrdZ by DosR/S/T regulatory system (Figure 4.1) (Roberts et al., 

2004; Voskuil et al., 2003). Although M. tuberculosis also contains a vitamin B12-

dependent RNR (NrdZ), no riboswitches were identified upstream of other RNR-

encoding genes (Warner et al., 2007) which suggests that regulation of RNR gene 

expression by vitamin B12 does not occur in this organism. The reasons underlying 

the lack of observable phenotypes in the nrdR mutants are unclear. However, 

considering the potentially deleterious effects associated with increased dNTP pools 

(Chabes and Stillman, 2007), there might be an existing post-transcriptional 

mechanisms that regulate RNR function to modulate dNTP pool increase in 

mycobacteria. Supporting this speculation is the work by Chabes and Thelander in 
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mammalian cells, which suggested that production of dNTPs is primarily regulated 

by relative levels of dATP/ATP (Chabes and Thelander, 2000).  

 

4.7 Future studies 

The questions concerning the roles of both NrdB and NrdF1 in mycobacterial dNTP 

provision still remains unanswered. The relationship between all RNR subunits in 

M. tuberculosis is poorly understood. Regulation mechanisms that govern the 

expression of nrdB and the effects of RNR genes expression level to dNTP pool 

levels in mycobacteria remains to be investigated. Based on the transcript level 

quantification data reported in this study, it was speculated that lack of phenotype in 

both the nrdB and nrdF1 mutants of M. tuberculosis may be due to restricted access 

of NrdB or NrdF1 to NrdE and/or an inability of NrdE to form functionally active 

RNRs by association with these alternate small subunits. Further biochemical 

studies are required to determine the ability of these additional small subunits in M. 

tuberculosis and M. smegmatis to access and interact with NrdE and to measure the 

strength of interaction. The availability of improved methods for directly 

determining nucleotide concentrations should allow variations in dNTP pools 

resulting from altered levels of mycobacterial RNR gene expression to be monitored 

and correlated with changes in the physiological state of these organisms. Finally, 

investigating the role of additional small subunits in the absence of the class II RNR 

enzyme by phenotypically characterizing M. tuberculosis mutants lacking the nrdF1 

and/or nrdB genes in ∆nrdZ background will clarify whether there is a redundancy 

between in nrdB or nrdF1 and nrdZ function. 
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5. Appendices 

 
 
Appendix 1: List of Abbreviations 

ADC   Albumin-dextrose complex supplement for Middlebrook 7H9 

OADC  ADC with oleic acid, supplement for Middlebrook 7H10 

Amp   Ampicillin 

aph   Gene encoding aminoglycoside phosphotransferase 

ATCC   American Type Culture Collection 

BER  Base excision repair 

BCG   Bacille Calmette-Guérin 

bp   Base pairs 

BSA   Bovine serum albumin 

CFU   Colony forming unit 

Cipro  Ciprofloxacin 

d  Days 

DCO   Double cross over 

DMSO  Dimethylsulphoxide 

DOTS   Directly observed therapy, short-course 

dRNK  Deoxynucleoside-diphosphate kinase 

EMB  Ethambutol 

GSNO  S-Nitroso glutathione 

h  Hours 

HIV   Human immunodeficiency virus 

Hyg   Hygromycin B 

hyg   Gene conferring resistance to hygromycin B 

HU  Hydroxyurea 

INH  Isoniazid 

kb   Kilo base pair(s) 

Km   Kanamycin 

LA   Luria-Bertani agar 

lacZ   Gene encoding β-galactosidase 

LB   Luria-Bertani broth 
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LTBI  Latent TB infection 

MDR  Multi-drug resistance 

MIC   Minimum inhibitory concentration 

min  Minutes 

Moxi  Moxifloxacin 

MTBC  M. tuberculosis complex 

MTC  Mitomycin C 

NER  Nucleotide excision repair 

NO  Nitric oxide 

Novo  Novobiocin 

OD600   Optical density at 600 nanometre wavelength 

Oflox  Ofloxacin 

ORF   Open reading frame 

PAS  P-aminosalicylic acid 

PCR   Polymerase chain reaction 

POA  Pyrazinoic acid 

PZA  Pyrazinamide 

r  Resistant/resistance 

rBCG  Recombinant BCG 

Rif   Rifampicin 

RNI   Reactive nitrogen intermediate 

ROI   Reactive oxygen intermediate 

RT   Reverse transcription/transcriptase 

s  Seconds 

sacB  Gene encoding levansucrase 

SCO   Single cross over 

SDS   Sodium dodecylsulphate 

STR  Streptomycin 

Suc   Sucrose 

TB   Tuberculosis 

Tris   Tris(hydroxymethyl)aminomethane 

Tween   Polyoxyethylene sorbitan monooleate 

XDR  Extensively drug resistant 
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X-gal   5-bromo-4-chloro-3-indolyl-α-D-thiogalactopyranoside 

 

Appendix 2: Culture media 

All media made up to a final volume of 1 liter with deionised water, and sterilised 

by autoclaving at 121 oC for 20 minutes, unless otherwise stated. 

 

2-TY Broth 

16 g tryptone powder; 

10 g yeast extract; 

5 g sodium chloride. 

 

Luria-Bertani broth 

10 g tryptone powder 

5 g yeast extract 

10 g sodium chloride. 

 

Luria-Bertani agar 

10 g tryptone powder 

5 g yeast extract 

10 g sodium chloride 

15 g DIFCO agar powder 

 

Middlebrook-Glucose-Salt (7H9-GS) 

4.7 g Middlebrook 7H9 broth base 

2 ml glycerol 

10 ml glucose-salt [0.085 % NaCl (w/v) and 0.2 % glucose (w/v)] supplement added 

after autoclaving 

 

Middlebrook-ADC (7H9-ADC) 

4.7 g Middlebrook 7H9 broth base 

2 ml glycerol 

100 ml ADC supplement added after autoclaving. 
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Middlebrook-Glucose-Salt plates (7H10-GS) 

19 g Middlebrook 7H10 agar powder 

2 ml glycerol 

10 ml glucose-salt [0.085 % NaCl (w/v) and 0.2 % glucose (w/v)] supplement added 

after autoclaving 

 

Middlebrook-OADC plates (7H10-OADC) 

19 g Middlebrook 7H10 agar powder 

2 ml glycerol 

100 ml OADC supplement added after autoclaving 
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