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ABSTRACT 

 

Biohydrometallurgy, an interdisciplinary field involving geomicrobiology, microbial 

ecology, microbial biochemistry, and hydrometallurgy, is a promising novel 

technology for recovering valuable minerals from traditionally difficult-to-process 

ores. In this study, the possibility to treat nickel laterites biohydrometallurgically 

using chemolithotrophic microorganisms was investigated. Nickel laterite contains 

metal values but is not capable of participating in the primary chemolithotrophic 

bacterial oxidation because it contains neither ferrous iron nor substantial amount of 

reduced sulphur. Its metal value can, however, be recovered by allowing the primary 

oxidation of pyrite, or similar iron/sulphur minerals to provide sulphuric acid 

solutions, which solubilise the metal content.   

 

In order to have an insight on the use of chemolithotrophic bacteria in this process, it 

was important to first understand the role and effects of sulphuric acid. Its effect was 

compared to citric acid and ferric sulphate. Results showed that sulphuric acid 

performed better, in terms of nickel recovery, than citric acid or ferric sulphate of the 

same initial concentration. However, citric acid performed better at the same initial 

pH. A synergic effect was observed in a mixture of sulphuric and citric acids. 

 

 In the bacterial leaching test works, sulphur substrate exhibited better effects in terms 

of acidification and nickel recovery than pyrite substrate. Using a statistically-based 

optimization strategy called response surface methodology, the theoretical optimum 

conditions for maximum nickel recovery (79.8%) within the range of conditions 

studied was found to be initial pH of 2.0, 63µm particle size and 2.6% pulp density. 

 

This work has shown that by the addition of a sulphur containing material, nickel 

laterites can be leached by chemolithotrophic microorganisms via the sulphuric acid 

produced.
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CHAPTER ONE 

 

 

INTRODUCTION 

____________________________________________________________________ 

 

“…to regard old problems from a new angle requires creative imagination and 

marks real advances in science...”. 

    

- Albert Einstein 
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1.1 Introduction 

 

Nickel is an important metal that significantly contributes to the vibrancy of the              

modern-day economy. It is primarily used in the manufacture of alloys because of its 

unique and special characteristic properties that are essential in the long-term strength 

and durability of alloys. The resultant characteristic properties of nickel-alloys 

include superior toughness, strength, corrosion resistance, special magnetic and 

electronic properties, and the ability to withstand extreme temperatures. These 

properties are critical for applications such as in the chemical, petrochemical, energy 

and aerospace industries. 

 

Presently, most of the nickel comes from sulphide deposits. Worldwide reserves of 

high grade nickel sulphide ores are diminishing due to the rapid demand for metal. 

The increasing cost of mining sulphide resources underground and increasing 

environmental compliance costs are also having a strong impact on the economics of 

mining these deposits.  On the other hand, nickel laterites which are formed as a 

result of prolonged processes of mechanical and chemical weathering, are in 

abundance contributing over 70% of land based nickel reserves, but accounting for 

only approximately 40% of the world annual nickel production (Elias, 2002; Gleeson 

et al., 2003; Dalvi et al., 2004).  

 

Laterites are easily mined by cheap open pit techniques because the ores occur close 

to the surface (Moskalyk and Alfantazi, 2002). Recovery of nickel laterites currently 

is through traditional methods – pyrometallurgically and hydrometallurgically. Some 

of the difficulties involved in the processing of nickel laterites using these traditional 

methods include poor nickel grades in the feed and high energy requirements 

(Gleason et al., 2003). The poor nickel grades are a result of lack of definite nickel 

bearing minerals to result in upgraded ores by conventional upgrading systems (Valix 

et al., 2001a).  
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Where low nickel grades exist and other techniques cannot be applied efficiently, 

bacterial leaching has shown to be of great potential. In general, bacterial leaching 

implies the solubilisation of metals due to the action of microorganisms. This process 

is normally applied for two purposes; (1) bioleaching which results in the 

solubilisation of target metals such as the solubilisation of copper in chalcopyrite, and 

(2) bioxidation which acts as a pretreatment process to open up the structure of 

minerals, thereby permitting other chemicals to penetrate the mineral better and 

solubilise the desired metal such as in the pretreatment of gold-bearing arsenopyrite 

(Rawlings, 2005). However, the commercial beneficiation of nickel laterites using 

microorganisms has not yet been fully developed. 

 

The recent previous research in an attempt to use microorganisms in the extraction of 

nickel from nickel laterites has focused mainly on the use of heterotrophic 

microorganisms. These microorganisms secrete organic acids such as citric, lactic, 

oxalic, acetic, formic, malic, succinic and glutaric acids (Bosecker, 1986; Alibhali et 

al., 1993; Valix et al., 2001a,b; Tang and Valix, 2006). However, the use of 

heterotrophic organisms poses a danger of possible contamination by undesirable 

organisms under commercial scale conditions. In addition, commercial mineral 

biooxidation processes using heterotrophic microorganisms are unlikely to be viable 

because of the vast amount of carbon sources; for example molasses, required 

(Rawlings, 2005).  As a result, this method has not been commercialized. 

 

The other types of microorganisms used in the mineral industries are classified as 

chemolithotrophs. The use of these chemolithotrophic microorganisms in the leaching 

of sulphide minerals is a well established phenomenon commercially used in the 

recovery of copper, cobalt, uranium, and refractory gold ores (Olson et al., 2003). 

These microorganisms obtain energy required for metabolism by oxidizing ferrous 

iron and reduced sulphur.  
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During the oxidation process of the sulphide ores, metal ions are released from the 

mineral ore matrix and sulphuric acid is produced. Sulphuric acid is the constituent 

component that can be utilized in the leaching process of nickel laterites. 

1.2 Research Problem 

 

Although the leaching of sulphidic minerals using chemolithotrophic bacteria is the 

most studied and commercially exploitable aspect of mineral biotechnology today, 

there is, however, very little information on the dissolution of nonsulphidic minerals 

such as nickel laterites using these bacteria. However, it is theorized that the metal 

value in the nickel laterites may be recovered by allowing the primary oxidation of 

pyrite, or similar iron/sulphur minerals to provide sulphuric acid solutions which 

solubilises the metal content.  This is the conceptual (fundamental) theory upon 

which this research is based. 

 

1.3 Objectives  

 

The central hypothesis of this study is the development of a process using 

chemolithotrophic microorganisms to leach nickel laterites. 

 

The overall goal is to investigate the possibility of using chemolithotrophic 

microorganisms with an external supply of sulphur containing material as an energy 

source in the bacterial leaching of nickel laterites. 

 

The specific objectives are:-  

 

(i) To investigate the influence of sulphuric acid, citric acid, and ferric sulphate 

so as to provide useful insights into the process of leaching nickel laterites. 
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(ii) To determine the specific parameters and conditions which are suitable for the 

favourable bacterial leaching of nickel laterites. 

 

(iii) To study the effect of pH and hence, the effect of substrate type (sulphur or 

pyrite) on pH in the bacterial leaching of nickel laterites. 

 

(iv)  To optimise the favourable parameters and conditions that will ultimately 

maximise the leaching process in terms of the output (nickel recovery). 

 

1.4 Research Methodology 

 

The research methodology for this study involved the following major tasks: 

literature review, experimental design, laboratory testing, laboratory test data 

analysis, conclusions, recommendations and documentation.  

 

1.5 Dissertation Layout 

 

This dissertation consists of eight chapters including this chapter (Chapter One) that 

provides the motivation for the research, the problem statement, and the overall 

objectives of this study. The layout is schematically summarized in a flowchart in            

Figure 1.1.  

 

Chapter Two is the literature review, which includes the general knowledge of nickel 

laterites mineralogy and occurrence; the current metallurgical processes and the 

general principles of the leaching of ores. Chapter Three (experimental design) 

describes the materials and methods used in the study. The subsequent chapters 

(Chapter Four through Seven) describe the laboratory tests, findings and conclusions. 

The dissertation concludes in Chapter Eight with a summary of the findings and 
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recommendations.  Appendices of detailed laboratory test results and other important 

data are also included. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

Figure 1.1. Dissertation layout 
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1.6 Summary 

 

In this introductory chapter, the background, problem statement, and study objectives 

were discussed. The research methodology was then briefly described, followed by 

the dissertation layout.  
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____________________________________________________________________ 

CHAPTER TWO 

 

 

LITERATURE REVIEW 

____________________________________________________________________ 

 

“For a research worker, the unforgotten moments of his (or her) life are the rare 

ones, which come after years of plodding work, when the veil over nature’s secret 

seems suddenly to lift, and when what was dark and chaotic appears in a clear and 

beautiful light and pattern”. 

 

   - Gerty Cori (One of first few women to win the Nobel 

Prize) 
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2.1 General Introduction 

 

Nickel is an important metal in human life and in the industry. In recent years, the 

world nickel demand has been driven by soaring steel production, particularly in  

China. With the rapid growing demand for nickel coupled with the depletion of high 

grade sulphide reserves, low grade nickel ores, which cannot be economically 

processed by conventional metallurgical processes, become increasingly important 

sources of nickel. Laterite ore, which is often considered as a low grade nickel ore, 

contains several kinds of metal elements including nickel, cobalt, iron, silicon, 

aluminium and chromium; and thus, constitutes an alternative source of nickel. 

 

The aim of this literature review is to obtain a general knowledge of nickel laterites 

mineralogy and occurrence including the current metallurgical processes and the 

associated difficulties in the beneficiation of nickel laterites. The uses of nickel as the 

ultimate product are highlighted and discussed in the subsequent sections of this 

chapter. The general principles of the leaching process of ores are also discussed and 

include presentation of some of the chemical formulations for oxidation/reduction 

reactions of the elemental compounds. The importance of chemolithotrophic 

microorganisms in the oxidation of sulphur and reduced sulphur compounds, and 

subsequent production of sulphuric acid which can dissolve nickel laterites through 

protonation is also accentuated. 

 

2.1.1 Nickel 

 

Nickel (Ni) is a lustrous, silvery-white metal with atomic number 28 and atomic mass 

of 58.6934. Its electronic configuration is [Ar] 3d84s2. It is both siderophile (i.e 

associates with iron) and chalcophile (i.e associates with sulphur). Some of its 

metallurgical advantages include high melting point of 1453°C, high resistance to 

corrosion and oxidation, good thermal and electrical conductivity, ferromagnetic 
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properties, catalytic behaviour, easy of electroplating and excellent strength and 

toughness at elevated temperatures.  

 

Nickel is extracted from both sulphide and laterite (oxide) ores. Its final products are 

available in the form of cathode, powder, briquettes and pellet. Other products are 

ferronickel and nickel chemicals. The main markets for nickel are stainless steel,          

non-ferrous alloys and alloys which are used in building industries, cutlery, aerospace 

and military applications. Nickel is also used in batteries, fuel cells and coins. 

Additionally, nickel-alloys are a significant raw material in the chemical, 

petrochemical, and energy industries. 

 

2.1.2 Nickel Laterites Mineralogy and Occurrence 

 

The bulk of the mined nickel comes from two types of ore deposits – lateritic ores 

and sulphidic ores. These two ores are both of economic importance. The other two 

deposits in which nickel occurs are hydrothermal deposits and seafloor manganese 

nodules. Laterites represent approximately 70% of the world’s onshore nickel 

resources (Elias, 2002; Gleeson et al., 2003; Dalvi et al., 2004; Watling, H. R., 2007) 

with the majority located in the tropical to subtropical climates. There are significant 

mineralogical differences with location (Krause et al., 1998). Lateritic deposits are 

often located very close to the surface (typically less than 50 m in depth depending on 

the age and degree of weathering), thus, they are easily mined by cheap open pit 

techniques.  

 

Nickel laterites are residual products of a prolonged mechanical and chemical 

weathering of ultramafic rocks at the surface of the earth. The various original 

minerals unstable in the presence of water dissolve or breakdown and new minerals 

are formed that are more stable to the environment (Elias, 2002; Golightly, 1981; 
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Krause et al., 1998). This process results in the concentration by a factor of 3 to 30 

times the nickel and cobalt content of the parent rock (Elias, 2002).  

Nickel laterite formation, including type and grade is controlled by geological 

structure, tectonism, climatic and weathering history, regolith landform setting and 

topography (Elias, 2002; Gleeson et al., 2003).  On the basis of mineralogy, nickel 

laterites are classified as oxide deposit, clay silicate deposit and hydrous silicate 

deposit (Brand et al., 1998; Elias, 2002). Nickeliferous limonite, 

((Fe,Ni)O(OH).nH2O,  is the oxide deposit consisting mainly of goethite with mean 

grades of 1.0-1.6% nickel. The hydrous silicate deposit is dominated by a mixed 

structure of hydrous magnesium-nickel silicates and is informally known as 

garnierite, ((Ni,Mg)SiO3.nH2O), with the highest global nickel grades averaging 1.8-

2.5% (Brand et al., 1998; Gleeson et al., 2003). The clay silicate deposit is nontronite 

(Camuti and Riel, 1996) with mean grades averaging 1.0-1.5% nickel (Brand et al., 

1998). The clay laterite is formed in less severe conditions when partially leached 

silica combines with iron, nickel and small amounts of aluminium (Elias, 2002). The 

mineralogical transformation involving the loss of magnesium and residual 

concentration of iron results in a familiar chemical trend in laterites; where 

magnesium decreases upwards and iron increases upwards through the laterite profile 

(Elias, 2002).  

   

Nickel grade of sulphide ores typically ranges from 1- 4%. A major difference 

between laterites and sulphides processing is that sulphides are amenable to 

beneficiation processes such as flotation and magnetic separation, producing high 

grade concentrates that can be smelted. This is because in sulphide ores, most of the 

nickel is concentrated in sulphide minerals unlike the laterites where the nickel is 

dispersed through out the minerals. The most common nickel sulphide species is 

pentadlite ((Fe, Ni)9S8), which accounts for about 75% of the nickel production 

(Giaveno and Donati, 2001). 
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2.1.3 Currently Existing Nickel Laterites Processing Methods 

 

Nickel laterites are mineralogically and chemically complex (unlike sulphides), 

which make their processing more complex and expensive. Nickel is present in the 

lateritic ores as a minor constituent of other minerals and, therefore, it is not 

amenable to concentration by any known conventional upgrading system (Valix et al., 

2001a). A large volume of ore is, therefore, required to be treated in order to produce 

nickel from laterite ores (Elias, 2002). Recovery of nickel laterites is currently 

through conventional methods of pyrometallurgy and hydrometallurgy. The 

difference in mineralogy is the major factor controlling the choice of the treatment 

process; thus all the three classes of nickel laterite ore vary in processing 

requirements and economic value (Gleeson et al., 2003).  

 

The concentration of iron, silica and magnesia which are the primary gangue 

elements define the most applicable treatment process. Smelting requires some 

magnesia for creating slag and, therefore, is not suitable for treating limonite with low 

magnesia and high iron while acid leaching cannot tolerate ores with high levels of 

magnesia due to the excessive high acid consumption (Taylor, 1997). In other words, 

in smelting, the silica to magnesium ratio in the feed is critical in controlling the melt 

temperatures and slag reactivity and viscosity (Elias, 2002). Table 2.1, gives an 

estimate of the global resources for nickel laterites, from the perspective of the 

processes employed to extract nickel (hydrometallurgical or pyrometallurgical), in 

millions of metric tonnes.  

 

Table 2.1.  Global resource for nickel laterites (Dalvi et al., 2004) 

Processing method Resource Mt Assay % Ni Ni content Mt Distribution % 
Pyrometallurgy 4,000 1.55 62 39 
Hydrometallurgy 8,600 1.15 99 61 
Total 12,600 1.28 161 100 
Mt = Metric Tonnes; Ni = Nickel 
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As shown in Table 2.1, there is almost twice as much laterite resource that is 

amenable to hydrometallurgical processing (e.g. limonite, nontronite/smectite) 

compared to that amenable to pyrometallurgical processing (e.g saprolite and 

garnierite) (Elias, 2002; Dalvi et al., 2004). The higher source of laterite ore with a 

low nickel content that is more amenable to hydrometallurgical processing means that 

future plants will have to focus more on cheaper and environmental friendly hydro-

processing routes. 

  

Pyrometallurgy 

This process treats the more nickel-rich silicate fraction (Elias, 2002). A minimum 

grade of 1.7% Ni (with low power cost) or 2.1% Ni (with high power cost) is required 

for an economic project (Dalvi et al., 2004). The two processes that are in practice are 

ferronickel smelting and matte smelting. The processes are very similar except that 

sulphur is added to the reduced ore in the kiln during matte smelting. Production of 

nickel matte is suited for low melting point slag in the range of 1.8 to 2.2 SiO2/MgO 

ratio; whereas ferronickel is suited for high melting point slag in the range of either 

<2 or >2.5 SiO2/MgO ratio (Dalvi et al., 2004). This process is an energy intensive 

process, which includes drying of the ore, calcination/reduction in a rotary kiln and 

smelting in electric furnaces in the presence of carbon and/or sulphur. The ferronickel 

(reduced Fe-Ni alloy) can be used directly for stainless steel production. The crude 

metal or matte can join the conventional sulphide route for further processing or 

refined to produce the final product (Dalvi et al., 2004). 

 

Hydrometallurgy 

There are a number of hydrometallurgical processes that are either in operation, are 

being piloted or evaluated. The two most common ones are discussed in the 

subsequent sections. 
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High Pressure Acid Leaching (HPAL): This process involves leaching ore at high 

pressure (4500 kPa) and elevated temperatures (≥250°C) in autoclaves. Pure oxide 

(limonitic laterite) is ideal for this process due to its lower magnesium and silica 

content and consequently, low acid consumption (Georgiou and Papangelakis, 1998; 

Elias, 2002). Magnesium and aluminium are strong acid consumers, and high levels 

of aluminium can cause the formation of alunite ((H3O)Al3(SO4)2(OH)6) scale in the 

autoclave. A minimum process plant grade of 1.3% Ni is required for an economic 

project (Dalvi et al., 2004). In clayish laterites, the presence of colloidal silica in 

slurries and solutions released by breakdown of the clay can cause problems with 

high pressure pumping and solid-liquid separation (Elias, 2002) if used in HPAL. 

HPAL process has proven to be successful in extracting high levels of nickel and 

cobalt whilst minimizing extraction of iron and aluminium (Keyle, 1996; Reid, 1996; 

Georgiou and Papangelakis, 1998). However, HPAL requires sophisticated 

equipment, high degree of process control and skilled expertise to work properly 

(Dalvi et al., 2004). HPAL has a complicated solution and solids chemistry (Dalvi et 

al., 2004) which can lead to problems with engineering aspects and materials of 

construction.  

 

Reduction roast-ammoniacal leach (Caron process): This can be used for 

processing high iron limonitic ores or a mixture of limonite and saprolite. However, 

excess silica decreases nickel recovery (Elias, 2002). The process involves drying and 

roasting in a reducing atmosphere followed by low pressure ammonia leaching (Elias, 

2002; Gleeson et al., 2003).  

 

This process has some disadvantages, which include lower nickel and cobalt recovery 

and, energy intensive pyrometallurgical steps at the front end of the processing cycle. 

The back-end, which is hydrometallurgical, requires various reagents (Dalvi et al., 

2004). 
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2.2 Bacterial Leaching 

 

2.2.1 Introduction 

 

Many high-grade and easily exploited deposits of nickel and other minerals are 

becoming scarcer. Using biotechnology to study and recover low grade metallic 

values presents new business opportunities and has a significant impact on the metal 

industry. Among the biotechnologies, bacterial leaching is one of the most significant 

in the mining and minerals industry. Bacterial leaching or bioleaching is the 

extraction of metals from their mineral sources by using microorganisms. Bacterial 

leaching is now being used as an alternative approach to the high energy, capital 

intensive and environmental unfriendly conventional hydrometallurgical and 

pyrometallurgical methods. It is an acceptable practice considered as a successful and 

expanding area of biotechnology (Rawlings and Johnson, 2007).   

 

2.2.2  Microorganisms Used in Leaching   

 

The microorganisms which are important in the biohydrometallurgical processes 

concerned with metal extraction may be divided into two groups on the basis of 

nutritional requirements, i.e., chemolithotrophic and heterotrophic microorganisms. A 

review of these microorganisms is given here because the knowledge of their 

characteristics is important in the selection of suitable conditions during the 

bioleaching processes. 

  

Chemolithotrophic microorganisms 

Amongst the chemolithotrophic bacteria involved in bacterial leaching, the 

acidophilic, iron- or sulphur- oxidizing chemolithotrophic microorganisms have been 

studied most intensively and are the most important in commercial operations to date 

(Rawlings, 2005). Current worldwide biooxidation and bioleaching research and 
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operations utilising these organisms are focused essentially on gold (Brierley and 

Brierley, 2001; Nestor et al., 2001; Iglesias and Carranza, 1994) and copper 

production (Cancho, et al., 2007; Waitling, 2007; Sadowski et al., 2003; Gericke and 

Pinches, 1999). Some commercial bacterial leaching plants include the gold 

processing plants in Fairview in South Africa and Ashanti in Ghana; and the copper 

processing plants  like Dos Amigos in Chile; Cerro Verde in Peru; and S & K Copper 

in Myanmar (Brierley and Brierley, 2001). 

 

This particular study focuses on the use of a mixed culture of Acidithiobacillus 

ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans in the 

bacterial leaching of nickel laterites. These typically are acidophilic microorganisms 

because they can grow optimally at pH < 3 (Norris and Johnson, 1998).  

 

Previous studies by Giaveno and Donati (2001) have shown that mixed cultures are 

more efficient than pure cultures because of the co-operation of the mechanisms 

involved in the mixed cultures. There is also a possibility of competition for oxygen 

by iron oxidising bacteria that could lead to reductive dissolution of ferric iron in 

nickel laterites, thus destabilizing the structure of the nickel literites (Bridge and 

Johnson, 1998). As indicated in the following equation, the reduction of soluble ferric 

iron by bacteria can result in the equilibrium between solid-phase iron (III) and 

soluble-phase iron (III) being shifted somewhat, accelerating the dissolution of the 

mineral: Fe3+
solid phase ↔Fe3+

soluble phase→ Fe2+ (by bacterial reduction). 

 

Acidithiobacillus ferrooxidans. This is a motile, non-sporulating, Gram-negative, 

rod-shaped 0.3-0.5x1.0-1.7µm (Karavaiko et al., 2006) and has a physiology ideally 

suited for growth in an inorganic mineral environment (Mason and Rice, 2002). It is 

motile by means of a single polar flagellum (Torma, 1977; Jensen and Webb, 1995). 

It was originally isolated and characterized as being autotrophic and 

chemolithotrophic by Temple and Colmer (1951). It was renamed from Thiobacillus 
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ferrooxidans by Kelly and Wood (2000). It grows using CO2 as the sole carbon 

source and obtains energy from the oxidation of sulphur and reduced sulphur 

compounds as well as that of the oxidation of ferrous ion. The bacterium thrives in an 

aerobic environment, though it is also able to grow anaerobically with ferric iron as 

terminal electron acceptor and reduced sulphur or metal sulphides or formate as 

electron donors (Pronk et al, 1991, 1992; Drobner et al., 1990).  

 

Leptospirillum ferrooxidans. These are strictly aerobic, obligately 

chemolithotrophic, Gram-negative, motile vibrios, spirals, or pseudococci, 0.2-

0.5x0.9-2.0µm. They are more acid resistant (Norris, 1983) and more tolerant of high 

temperatures (20-45°C) than Acidithiobacillus ferrooxidans (Rawlings et al., 1999). 

These microorganisms obtain the energy required for survival from the oxidation of 

reduced iron containing compounds (Rawlings et al., 1999).  

 

Acidithiobacillus caldus. They are moderately thermophilic, aerobic, Gram-negative 

motile rods, 0.7-0.8x1.2-1.8µm (Karavaiko et al., 2006), each with a single polar 

flangellum (Hallberg and Lindström, 1994). This bacterium is capable of oxidizing a 

wide range of reduced inorganic sulphur compounds but not metal sulphides 

(Hallberg et al., 1996). However, this bacterium may be found with others associated 

with leaching because of the presence of reduced inorganic sulphur compounds 

(elemental sulphur and tetrathionate) resulting from leaching of sulphides. 

Tetrathionate (S4O6
2-) which occurs as a metabolic intermediate in the oxidation of 

some reduced sulphur compounds can be used as the sole energy source for 

acidithiobacillus caldus (Bugaytsova and Lindstrom, 2004).  

 

Heterotrophic microorganisms 

Several heterotrophic microorganisms, including both bacteria and fungus species are 

known for their leaching ability, especially of oxidic, siliceous or carbonaceous 

material (Willscher and Bosecker, 2003). Heterotrophic microorganisms have also 
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been studied in a quest to recover nickel from low grade nickel laterites (Tzeferis, 

1994; Valix et al., 2001a, b; Tang and Valix, 2006). These microorganisms, in direct 

contrast to autotrophs, ingest biomass to obtain their energy and nutrition. The 

heterotrophs have an absolute dependence on the biological products of autotrophs. 

This is because they obtain their carbon for growth solely by feeding on the carbon 

produced by autotrophs (e.g., dead plants and dead organic matter).  Aspergillus and 

Penicillium are the two widely studied strains of heterotrophic microorganisms that 

can be used in the bacterial leaching. The effectiveness of these strains was found to 

depend on their ability to produce hydroxycarboxylic acids, especially citric acid 

(Tzeferis, 1994). The acids produced usually have dual effects of increasing metal 

dissolution by lowering the pH, and that of increasing the load of soluble metals by 

complexion/chelating into soluble organic-metallic complexes (Tzeferis, 1992). Apart 

from nickel laterites, the use of heterotrophic micro-organisms have been tested in the 

bioleaching of zinc ores (Dave et al., 1981), extraction of lithium from spodumene 

(Ilgar et al., 1993), treatment of quartz sands (Ehrlich, 1988), biobeneficiation of 

bauxite to remove calcium and iron (Vasan et al., 2001), and recovery of aluminium 

from low grade bauxite ore (Ghorbani et al., 2007). However, currently there is no 

known commercial application of these microorganisms in the mining industry. 

 

2.2.3 Bioleaching of Metal Sulphide Ores 

 

Many studies on the leaching action of microorganisms have involved mainly 

sulphide ores of copper and /or iron (Ross, 1990). The bacterial oxidation of sulphide 

minerals by Acidithiobacillus bacteria is a well established phenomenon in the 

commercial industry for the recovery of copper, uranium and in the biooxidation 

pretreatment of refractory sulphidic gold ores before cyanidation (Acevedo, 2000; 

Brierley and Brierley, 2001; Nestor et al., 2001 ; Kodali et al., 2004; Ndlovu, 2008 ). 

In this process, the microorganisms are used to oxidize pyrites and arsenopyrites to 

expose the gold occluded within the sulphide mineral matrix. 
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Sulphide ores containing nickel and many other elements can also be bioleached 

using iron- and /or sulphur- oxidising bacteria such as Acidithiobacillus ferrooxidans, 

Acidithiobacillus caldus and Leptospirillum ferrooxidans. The nickel sulphide ores 

that have been studied with commercial interest include millerite (NiS), nickeline 

(NiS), violarite ((Ni,Fe)3S4), bravolite ((Ni,Fe)S2) and Pentlandite ((Fe, Ni)9S8) 

(Giaveno and Donati, 2001). These ores are amenable to bacterial leaching because 

they contain ferrous iron and/or reduced sulphur which provide energy for the 

chemolithotrophic microorganisms. In particular, low grade nickel sulphide ores such 

as pyrrhotite ( 1-xFe S), where x=0-0.125, and the so-called Duluth Gabbro are suited 

for bioleaching (Watling, 2007). These ores cannot be subjected to the traditional 

high-temperature processing because they are considerably difficult to concentrate. 

Although bioleaching provides the possibility of recovering metals from low-grade 

deposits that would otherwise be considered waste, its application greatly depends on 

the value of the metal to be recovered. A major challenge is to find a suitable match 

between an ore body and bioleaching technology. For example although the 

bioleaching technology for nickel recovery using bacteria known as the the BioNICTM 

process has been thoroughly tested, no ore body of a suitable concentration and size 

has been identified as yet to allow economic recovery at current nickel prices.  There 

is thus, currently no known existing commercial application of the bioleaching of 

sulphide ores containing nickel in the mining industry. 

 

2.2.4 The Mechanisms of Bacterial Leaching of Metal Sulphide Ores 

 

The microbial effects of bacteria and fungi on minerals are based mainly on three 

principles, namely acidolysis, redoxolysis, and complexolysis (Tzeferis, 1992). 

Microorganisms are able to mobilize metals by the formation of organic or inorganic 

acids (protons); oxidation and reduction reactions; and the excretion of complexing 

agents. In particular, metal extraction from mineral ore by chemolithotrophic bacteria 
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is achieved through two main reactions: the oxidation of ferrous to ferric iron and that 

of sulphide/sulphur to sulfuric acid (Equation 2.1). 

 

 

bacteria2+ + 3+
2 2

bacteria
2 2 2 4

bacteria0
2 2 2 4

2Fe  + 0.5O  + 2H  2Fe  + H O

H S + 2O  H SO

S  + 1.5O + H O  H SO

→


→ 


→ 

   (2.1) 

 

Models of dissolution mechanisms of sulphur and iron bearing minerals 

Previously, the leaching mechanism of sulphide bearing minerals was thought of as 

comprising of two or three different mechanisms (Fowler, et al., 2001; Eligwe, 1988; 

Boon et al, 1995). Firstly, the direct mechanism which assumes that bacteria attach 

onto the mineral particle surfaces, and directly oxidize iron and sulphur moieties in 

the mineral by biological means to release metal ions in solution (Equation 2.2). The 

second mechanism, the indirect mechanism, is assumed to involve the bacteria in 

solution oxidizing ferrous ion to ferric ion and elemental sulphur to sulphate ions 

(Equations 2.4 and 2.5 respectively).  Ferric ion is a strong oxidizing agent and this in 

turn attacks the sulphide mineral producing metallic ions, ferrous ions in solution and 

elemental sulphur (Equation 2.3). 

 

MSx + (2X-0.5)O2 + H2O bacteria→  Mx+ + XSO4
2- + 2H+    (2.2)  

MSx + Fe3+  →Chemical  Mx+ + XS0 + Fe2+      (2.3)  

2Fe2+ + 0.5O2 + 2H+  →bacteria  2Fe3+ + H2O     (2.4) 

S0 + 1.5O2 + H2O  →bacteria  SO4
2- + 2H+                 (2.5) 

(where M is a metal) 

 

The third mechanism, indirect contact mechanism, assumes that the bacteria attach 

themselves onto the mineral particle surfaces and excrete polymers forming an 

exopolymeric layer. The bacteria subsequently oxidize ferrous iron to ferric iron 
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within this exopolymeric layer, and the generated ferric iron leaches the mineral 

within this compartment (Equation 2.3 and 2.4, respectively). 

 

The recent developments in the bioleaching of sulphide minerals have combined all 

facts about the ‘indirect’ and ‘direct’ leaching mechanisms with the following 

features (Sand et al., 2001):- cells have to be attached to the mineral and in physical 

contact with the surface; cells form and excrete exopolymers; these exopolymeric 

envelopes contain ferric iron compounds which are complexed to glucuronic acid 

residues. These are part of the primary attack mechanism; thiosulphate is formed as 

intermediate by-product during the oxidation of sulphur compounds; sulphur or 

polythionate granules are formed in the periplasmatic space or in the cell envelope.  

 

Currently, the two postulated ‘indirect’ mechanisms with no evidence for a ‘direct’ 

enzymatically mediated process are termed the thiosulphate mechanism and the 

polysulphide mechanism (Hanford and Vargas, 2001; Schippers and Sand, 1999; 

Sand et al., 2001). The mineralogy and electronic structural configuration of 

sulphides determines the type of leach mechanism (Hanford and Vargas, 2001; 

Schippers and Sand, 1999; Sand et al., 2001). Metal sulphides with valence bands 

that are derived only from orbitals of the metal atoms cannot be attacked by protons 

(acid-nonsoluble). In contrast, metal sulphides with valence bands derived from both 

the metal and sulphide orbitals, are more or less soluble in acid (acid-soluble).The 

influence of mineralogy, in particular crystal orientation, was also observed in the 

bacterial leaching of pyrite (Ndlovu and Monhemius, 2005).  

 

The thiosulphate mechanism involves solely the chemical reaction of ferric iron with 

acid-insoluble metal sulphides (FeS2, MoS2 and WS2) producing thiosulphate 

(Schippers and Sand, 1999). Thiosulphate which is unstable in acidic liquors, 

particularly in the presence of ferric iron, reacts further with ferric iron in a series of 
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reactions via tetrathionate (S4O6
2-), disulphane-monosulphonic acid (HSSSO3

-) and 

thionate with the final product being sulphate (Schippers et al., 1996).  

The polysulphide reaction mechanism involves the attack of acid soluble sulphides 

(ZnS, NiS, CoS, CuFeS2 and PbS) by ferric iron and protons.  The proton mediated 

dissolution forms free metal ions and hydrogen sulphide (Equation 2.6) and the 

hydrogen sulphide formed is microbially oxidized to sulphuric acid (Equation 2.7) 

(Johnson, 2003). 

 

MSx + 2XH+ chemical→  Mx+ + XH2S      (2.6)  

H2S + 2O2 
bacteria→  H2SO4        (2.7)  

(where X is a whole number). 

 

The metal attack by ferric iron forms ferrous iron and polysulphide (Equation 2.8). 

Polysulphides are a general class of compounds in which sulphur is polymerized and 

reduced, generally of the form M2Sn (n > 2) with typical value of n not being more 

than 6 (Klauber, 2008). The polysulphide is oxidised by ferric iron producing 

elemental sulphur (Equation 2.9). The sulphur produced is reasonably stable under 

experimental and environmental conditions and can only be degraded to sulphuric 

acid (Equation 2.10) by sulphur oxidizing microbes such as acidithiobacillus 

thiooxidans (Schippers and Sand, 1999). The sulphuric acid formed enhances the 

dissolution of sulphide metals by proton attack (Johnson, 2003).  

 

MSx + Fe3+ + 2H+   →Chemical  Mx+ + H2Sx+ Fe2+   (2.8) 

 H2Sx
 + 2Fe3+  →Chemical  0.125XS8 + 2Fe2++ 2H+   (2.9) 

 0.125S8 + 1.5O2 + H2O  →bacteria  SO4
2- + 2H+         (2.10)   
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The role of the bacteria in both the thiosulphate and polysulphide mechanisms is to 

regenerate the ferric iron and protons consumed by the leach reactions (Hanford and 

Vargas, 2001). 

In summary, the oxidation of biological relevant reduced sulphur compounds 

(sulphides, comprising aqueous (hydro) sulphide as well as insoluble metal sulphides, 

polysulphides, elemental sulphur, sulphite, thiosulphate and polythionates (such as 

tri-, tetra-, and pentathionates) and the subsequent acid generation can be of great 

importance for the bioleaching of nickel laterites. 

 

2.2.5 Bacterial Leaching of Nickel Laterite Ores 

 

Although several processes have been proposed for the treatment of nickel laterites 

by conventional pyrometallurgical and hydrometallurgical routes, none of the 

processes have gained general acceptance in the industry because of high capital cost 

and technological outlay. However, biohydrometallurgical processes such as 

bioleaching have been long since accepted as simple to use, of low capital cost and of 

minimum environmental impact. The possibility to employ heterotrophic organisms 

to treat non-sulphide ores such as nickel laterites has been described by several 

authors (Bosecker, 1986; Groudev, 1987; Tzeferis et al., 1991; Tzeferis and Agatzini-

Leonardou, 1994; Valix et al, 2001a,b). Heterotrophic microorganisms have the 

potential of producing organic acidic metabolites from carbohydrates that are able to 

solubilise oxide, hydroxide, silicate and carbonate minerals; thus yielding nickel as 

the required by-product. 

 

Organic acids produce protons which contribute to proton promoted mineral 

dissolution. Organic acids can also complex with metal ions in solution, lowering 

metal activity and increasing the apparent solubility of the mineral (McKenzie et al., 

1987). The major impact of organic acids may be that metal-organic complexes can 

form at the solid-solution interface, weakening cation-oxygen bonds, thus catalyzing 
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the dissolution reaction. Dissolution is in this case enabled by redox reactions in 

which the organic acid reduces the metal ion at the surface (McBride, 1989).  

 

The following are some of the possible reactions described above that can take place 

to finally produce nickel ions (Tzeferis, 1992):- 

 

Proton attack 

+ 2+
2

+ 2+
3 2 2

NiO + 2H   Ni  + H O                        

CaCO  + 2H   Ca  + H O + CO

→ 


→ 
   

(2.11) 

  

 

Reduction 

MnO2 + 2e- + 4H+ →  Mn2+ + 2H2O     (2.12) 

  

Complexation / Chelation 

 Ni2+ + C6H8O7 →  Ni (C6H5O7) + 3H+    (2.13) 

 

However, the use of these heterotrophic organisms poses a danger of possible 

contamination by undesirable organisms under commercial scale condition. In 

addition commercial mineral biooxidation processes using heterotrophic 

microorganisms are unlikely to be viable because of the vast amount of carbon 

sources, for example molasses, required for metabolism (Rawlings, 2005).  

 

The use of chemolithotrophic bacteria in the treatment of sulphide ores is a well 

established and commercial viable technology in the mineral processing industry. 

However, non-sulphide ores or minerals low in sulphur such as nickel laterites are 

difficult to effectively solubilise using chemolithotrophic microorganisms. This is 

because non-sulphide ores do not contain sufficient reduced sulphur to provide 

energy for the chemolithotrophic microorganisms. The oxidation of reduced sulphur 
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to sulphuric acid by chemolithotrophic microorganisms is essential in the 

solubilisation of non-sulphide ores. Alternatively, the metal value in the nickel 

laterites may be recovered by allowing the primary oxidation of pyrite, or similar 

iron/sulphur minerals to provide sulphuric acid solutions, which then solubilises the 

metal content. This can be made possible by employing chemolithotrophic bacteria 

such as Acidithiobacillus ferrooxidans, Acidithiobacillus caldus and Leptospirillum 

ferrooxidans. These microorganisms, unlike heterotrophs, use CO2 as their sole 

source of carbon and derive their energy from the oxidation of reduced sulphur and/or 

ferrous iron, ultimately producing sulphuric acid (Rossi, 1990; Hanford and Vargas, 

2001; Schippers and Sand, 1999) as shown in Equations 2.8 – 2.10.  

 

The sulphuric acid produced maintains the pH at levels favourable to the bacterial 

activities (Rossi, 1990) and can help in the effective leaching of nickel laterite ores. 

The hydrogen ions can displace metal cations (Equation 2.11) from the ore matrix, 

thus inducing the dissolution of the metals (Tzeferis, 1992).   

 

Chemical tests carried out on nickel laterites have indicated that sulphuric acid 

leached the metals more rapidly and extensively than the organic acids (Alibhai et al., 

1993). Sulphuric acid is also preferred in terms of cost, corrosion, wear and can easily 

be regenerated in solvent extraction and electrowinning plants (Davenport et al., 

2002); thus making it easy for the bacterial leaching to be retrofitted into the existing 

plants.  

 

 Due to the problems associated with high pressure acid leaching during operation 

and commissioning of nickel laterites plants (e.g, Murrin Murrin plant, Australia), 

sulphuric acid leaching at atmospheric pressure is now receiving more attention. 

Agitation and column tests have shown that the Greek serpentinic nickeliferrous ore 

could be leached with sulphuric acid at atmospheric pressure with recoveries of up to 

74% and 60%, respectively (Agatzini-Leonardou  and Zafiratos, 2004).  
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 In summary, the generation of sulphuric acid and its subsequent use can be of great 

importance for the leaching of nickel laterites. 

 

2.2.6 The Kinetics of Leaching Reactions  

 

Both the kinetics and the final metal recoveries depend on the mineralogical type of 

the ore (Tzeferis and Agatzini-Leonardou, 1994; Valix et al., 2001b). The difficulty 

in mobilizing metals, e.g. nickel, from various minerals phases is different and this 

difference is generally reflected on the leaching effectiveness (Tzeferis and Agatzini-

Leonardou, 1994).  

 

Thermodynamic data can only indicate the tendency of a reaction but not the rate of 

reaction or detailed mechanism. This is particularly so in the case of leaching 

reactions which are heterogeneous in nature and comprise several sequential stages 

(Jackson, 1986). For heterogeneous systems, the reaction kinetics are based on the 

shrinking core model (Levenspiel, 1972; Smith, 1981; Han, 2002). This is the most 

widespread and realistic model describing fluid-solid reaction kinetics of dense (non-

porous) particles. Examples of the fluid-solid reactions include, the oxidation of 

sulphide minerals to yield oxides by reducing gases, and the extraction of metals from 

ores using acids (Levenspiel, 1972).  

 

In hydrometallurgy, the uses of the shrinking core model for the solid-liquid systems 

have been extensively examined (Crundwell, 1995; Veglio et al., 2001). They are 

generally applied to describe the shrinkage of ore particles during mineral leaching 

reactions which are a central unit operation in the hydrometallurgical ore treatment. 

Although there is also literature data on the use of shrinking core model for modeling 

the bacterial leaching process (Brochot et al., 2004; Leahy, 2005), most of the data 

concern the bioleaching of sulphide ores. The bioleaching of sulphide ores also 

follow the same principles of the shrinking core model as described below (i.e., the 
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establishment of a link between the leaching kinetics and the changes in the particle 

sizes).   

Based on the shrinking core model, the mechanism of the non-catalysed 

heterogeneous reaction may take place as follows.  Initially the reactants diffuse from 

the bulk of the first phase to the interface between the phases.  

 

If an additional layer of solid products and inert material is present at the interface the 

reactants would have to overcome the resistance of this layer before reaching the 

surface of the second layer. Then, diffusion of reactants from the interface to the bulk 

of the second phase takes place. Furthermore, chemical reactions between the 

reactants in phase one and those in phase two occur. Finally, the products diffuse 

within the second phase and/or out of phase two into the bulk of phase one 

(Levenspiel, 1972; Smith, 1981; Han, 2002). 

 

It must be pointed out here that at times some of these steps do not exist. In addition, 

the resistances of the different steps usually vary greatly from one another. 

Depending on which step is the slowest, that step would consequently be limiting to 

the overall reaction; therefore, identifying this step is of utmost importance (Smith, 

1981).  

 

For spherical particles involving the quasi-steady state diffusion of the reactant 

through the previously reacted portion of the particle, followed by the chemical 

reaction at the surface of the unreacted core, it is useful to express the reaction rates 

in terms of fractions reacted (i.e., particle conversion). Derivation of equations 

governing these rate controlling regimes (Table 2.2) can be found in the literature 

(Levenspiel, 1972; Smith, 1981; Han, 2002).  

 

Tests of these model equations against the rate data are not convincing evidence of a 

particular mechanism (Prosser, 1996; Gbor and Jia., 2004). A review by Prosser 
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(1996) indicated a lot of variables and phenomenon that may affect the rate and 

reaction regime of a leaching process. Gbor and Jia (2004) indicated that some 

researchers have commented that the ash layer diffusion controlled equation of the 

shrinking core model may not be applied to liquid-solid reactions (e.g leaching) 

because it was derived using the pseudo-steady state approximation; that is, the rate 

of movement of the interface (between the un-reacted core and the ash/inert layer) is 

much slower than the rate of diffusion.   

 

Table 2.2. Shrinking core models 

Regime  Equation 

Film diffusion control X kt=  

Chemical  reaction control 1
31 (1 )X kt− − =  

Ash diffusion control 2
31 3(1 ) 2(1 )X X kt− − + − =  

X= fractional conversion; t = time (days); k = rate constant (day-1)   

 

One major factor that can affect the interpretation of the leaching data is the particle 

size distribution (PSD) of the solid material (Gbor and Jia, 2004). Neglecting the PSD 

would shift the kinetic control regime to the other reaction regime depending on the 

coefficient of variation (CV). CV is the ratio between the standard deviation of the 

particle size range and the mean of that particle size range. Gbor and Jia (2004) came 

up with the conclusions that, (1) neglecting PSD would shift control regime from 

chemical reaction to inert/ash layer diffusion when CV is between 0.7 and 1.2; (2) for 

systems controlled by liquid film diffusion, neglect of PSD would shift control 

regime to chemical reaction when CV is between 0.3 and 0.7 or to inert/ash when CV 

is greater (0.9-1.5); (3) an inert/ash layer diffusion controlled process was insensitive 

to neglect of PSD, and that when CV is less than 0.3, neglect of PSD would not cause 

any erroneous shift. Veglio et al (2001) also found significant differences between the 
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kinetic models that ignored the particle size effect and the one that incorporated the 

particle size effect.  

 

One of the convincing ways of finding out the mechanism controlling the shrinkage 

processes is the use of activation energies. In other words, the magnitude of the 

activation energy can provide a more positive evidence for the reaction and diffusion 

controlled regimes (Gbor and Jia, 2004). In the case of the reactant diffusion through 

the fluid surrounding the particle control, the activation energy is ≤ 25kJ/mol; if the 

process is controlled by ash diffusion, the activation energy is ≤ 25kJ/mol; for 

chemical reaction control, the activation energy is either high or low (Prosser, 1996). 

However, the most consistent and more acceptable argument is that chemical 

controlled reactions have very high activation energies in excess of 40kJ/mol (Gbor 

and Jia, 2004). It must be noted, though, that different parameters of the rate data 

have been used in Arrhenius plots. Two common versions are the slope of the line, k, 

drawn through equations like those in Table 2.2, and the initial rate; that is, the slope 

of the data locus at small values of time. The third version uses a parameter 

calculated by numerically fitting a polynomial equation (e.g., y = a + bt + ct2) to data, 

and calculating the slope at t = 0. The three versions yield different values for the 

activation energy (Dutrizac, 1981; Antonijevic et al., 1994). One disputed assumption 

when using the Arrhenius equation states that the pre-exponential factor, A, in the 

Arrhenius equation is independent of temperature. That implies that every variable 

which has an effect on the rate of reaction is unchanged when the temperature of the 

system is changed. There are some systems for which such assumption is clearly 

incorrect. 

 

2.3 Summary  

 

This study is aimed at establishing the potential for the bacterial leaching of nickel 

laterites using chemolithotrophic microorganisms with an external supply of sulphur 
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containing material for energy purposes. Bacterial leaching is a process in which 

microorganisms are utilised to help in the recovery of metals from their 

ores/concentrates. The literature review contained in this chapter has shown the 

difficulty involved in the processing of nickel laterites using conventional methods 

(section 2.1.3). Nickel laterite contains metal values, but is not capable of 

participating in the primary bacterial oxidation because it contains neither ferrous iron 

nor substantial amount of reduced sulphur. However, its metal value can be recovered 

by allowing the primary oxidation of pyrite, or similar iron/sulphur minerals to 

provide sulphuric acid solutions, which solubilise the metal content.  

The oxidation of the sulphur moiety and ferrous iron can be made possible by the use 

of chemolithotrophic bacteria. These chemolithotrophic bacteria require their 

substrates to contain ferrous iron or reduced sulphur (including sulphides, disulphides 

or arsenosulphides) or both, depending upon the bacterial species, in order to gain 

energy for cell maintenance and growth. It is also indicated that organic acids can act 

as chelating agents in complex formation with metal ions. In this review, therefore, 

the potential of elemental sulphur (S8) or pyrite (FeS2) addition and subsequent 

biological acid generation for the bioleaching of nickel from nickel laterites was 

investigated and postulated to be a possible nickel recovery process.   
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____________________________________________________________________ 

CHAPTER THREE 

 

 

MATERIALS AND METHODS 

____________________________________________________________________ 

 

“If you don’t learn from mistakes, there’s no need making them”. 

 

-Herbert V. Prochnow 
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3.1 Introduction 

 

This chapter discusses the preparation of the materials as well as the experimental and 

analytical methods employed in the study. Data analysis is also discussed. A 

summary is subsequently provided to wrap-up the chapter. 

 

3.2 Materials 

 

3.2.1 Nickel Laterite Ore 

 

The nickel laterite ore used throughout this study was provided by Mintek, South 

Africa. The ore was crushed and finely ground in a ball mill. The ground material was 

dry sieved using standard sieve plates and was classified into different size fractions 

depending on the nature of the experiment. Dry sieving was chosen over wet sieving 

because (i) dry sieving may reduce the disruption of physical structures of nickel 

laterite ore compared with wet sieving, (ii) water-soluble components of nickel 

laterites can be determined on aggregates separated from dry sieving which are not 

possible in wet sieving, (iii) aggregates separated by dry sieving may represent more 

closely those in the field during the absence of rain or irrigation, and (iv) very small 

samples could be utilised. 

  

Representative samples were prepared by coning and quartering. Prior to 

experimentation, the percent nickel composition in the laterite was calculated as a 

percentage of the total mass of the nickel laterite ore (see example in Appendix A). 

This % nickel composition in the laterite was determined using the Varian SpectrAA-

55B atomic absorption spectrophotometer after digestion of ore with aqua regia (3:1 

ratio of HCl and HNO3 mixture). The composition of nickel laterite ore is given in 

Appendix B. 

 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Three – Materials and Methods Page 33 
 

3.2.2 Reagents 

 

All reagents used in this study were of analytical grade obtained from Merck, South 

Africa (unless stated otherwise), and were used as obtained without further 

purification. The chemically pure elemental sulphur assayed 98.0-102.0%. Sulphur 

was used as obtained with the particle sizes of < 38 µm. 

 

3.2.3 Pyrite 

 

Pyrite used in this study was obtained from African Gems and Minerals, South 

Africa. Pyrite was chosen because it is the most widespread and represents the 

highest composition of sulphur over the other types of sulphide ores. It was crushed 

and finely ground to <38 µm (i.e same as that of sulphur substrate). The chemical 

composition of the pyrite as given by the supplier was: Fe = 45.9%, S = 53.7%, other 

elements = 0.4%.   

 

3.3 Bacterial Growth and Maintenance  

 

3.3.1 Standard 9K Medium (Silverman and Lundgren, 1959)  

 

The standard 9K  media composition used for the growth of the bacteria was as 

follows (in gpl):- (NH4)2SO4,3.0; K2HPO4,0.5; MgSO4,0.5; KCl, 0.1, Ca(NO3)2,0.01; 

FeSO4.7H2O,44.22; 0.5M H2SO4 for desired pH and distilled water for desired 

volume make up, appropriate energy sources (pyrite or elemental sulphur).   

 

3.3.2 Bacterial Growth   

 

The microorganisms used through out this study were a mixed culture of bacteria 

(Acidithiobacillus ferrooxidans, Acidithiobacillus caldus and Leptospirillum 
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ferrooxidans). The original bacteria were provided by Mintek, South Africa. The 

bacteria were grown in standard 9K medium with the composition specified in 

section 3.3.1. The medium was first adjusted to an appropriate pH (1.8-2.0) and then 

sterilised by autoclaving at 121°C for 20 minutes. An appropriate amount of sterilised 

energy source (pyrite or sulphur) was then added. The medium was then inoculated 

with 10% v/v of bacteria and incubated at 30-35°C at a pH of 1.8-2.0 on a platform 

shaker. Growth was monitored by monitoring the apparent bacterial population using 

the UV-Visible spectrophotometer shown in Figure 3.1.    

 

 

Figure 3.1. The UV-Visible spectrophotometer 

 

3.3.3 Bacterial Cell Harvesting 

 

After the bacteria have been grown in accordance with the procedure mentioned in 

section 3.3.2, the culture was harvested after five to seven days (Mason and Rice, 

2002; Mehta et al., 2003) according to the procedures described by Silverman and 

Lundgren (1959), and Nestor et al (2001). The bacterial culture was filtered to 

remove precipitates using Whatman filter # 1 and the filtrate was then centrifuged for 

60 minutes. The mixture was then transferred to acidified distilled water at pH of 1.8-

2.0 and shaken for about a minute and then put in a fridge and allowed to settle for 

6hrs.The turbid supernatant was then recovered. The cells were then removed from 

the supernatant by centrifuging and then washed with acidified distilled water until 
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the cells were clean. The cells were then suspended in acidified water at pH of 1.8-2.0 

and stored at 4˚C, and kept for use in the bioleaching experiments. 

 

3.3.4 Determination of Bacterial Population using UV-Visible Spectrophotometer 

 

The bacterial population was determined by measuring turbidity or optical density of 

the bacterial suspension using a UV-Visible double beam spectrophotometer (Model 

4802). Since turbidity is directly proportional to the number of cells, this property 

was used as an indicator for bacterial concentration. The cells suspended in the 

suspension interrupt the passage of light allowing less light to reach the photoelectric 

cell and the amount of light transmitted through the suspension was measured as 

percentage transmission (or %T). The turbidity for cell suspension was measured at 

550 nm (Plumb et al., 2008) against sterile 9K media as a reference. The wavelength 

of 550 nm is chosen because at this wavelength changes in both size of the cells as 

well as changes in the total nucleotide concentrations are reflected (Alupoaei and 

García-Rubio, 2004). 

 

Note that the relationships among absorbance (A), transmittance (T) and optical 

density (OD) are as follows; T = , where I is the light passing through the sample and 

I0 is the light hitting the sample. A = . Optical density is a measure of absorbance and 

is related to transmittance by the following expression; OD = 2 – log (%T). 

 

Other available methods based upon measurement of nitrogen or protein content or 

ammonia consumption, and that of using the phase contrast microscope were less 

convenient and slower than the UV-Visible double beam spectrophotometer. On the 

other hand, the UV-Visible spectrophotometer is a versatile, quantitative, rapid, and 

reliable analytical tool (Alupoaei and García-Rubio, 2004). It must be noted, 

however, that this method measures both the dead and active bacteria as it does not 

differentiate between the two states. However the results obtained used in conjunction 
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with pH and redox potential changes would reasonably outweigh the disadvantages of 

counting the dead bacteria. Prior to reading the samples were filtered through 

Whatman filter number 1 to remove any solid particles.  

 

3.4  Experimental Methods 

 

3.4.1  Design of Experiments  

 

Two of the aims of this study can be summarised as; (1) screening and identification 

of important factors, and (2) optimization of important factors. The design of 

experiments methodology (DOE) was employed in executing these two objectives. 

The greater advantage of DOE is that it provides an organized approach in which an 

appropriate experimental objective can be selected. Thus, by using DOE, one obtains 

more useful and more precise information about the studied system, because the joint 

influence of all factors is evaluated. 

 

Screening of factors (Chapter 5) was done at the beginning so as to explore some 

factors in order to reveal whether they have any influence on the response (nickel 

recovery), and to identify their appropriate ranges.  A quarter basic fractional factorial 

designs 2 25−
III

 with a fold-over were used in determining the influential factors. The 

experimental results were analysed statistically for the significance of the factors 

using the probability plots. 

 

Optimisation of factors (Chapter 7) was done after screening so as to predict the 

response values for all possible combination of factors within the experimental 

region, and to identify an optimal experimental point. The response surface 

methodology (RSM) was used in the optimisation of important factors. The design 

procedure for the RSM was as follows (Gunaraj and Murugan, 1999): (1) designing 

and performing a series of experiments for the adequate and reliable measurement of 
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the response (nickel recovery), (2) developing a mathematical model, (3) finding the 

optimal set of experimental parameters and, (4) representing the effects of process 

parameters through three dimensional (3-D) plots.  

 

The optimisation experiments were designed using central composite design, and the 

optimal set of parameters was determined using ridge analysis method (see Appendix 

H). In central composite designs, the factorial designs are augmented with axial 

designs. The term “central composite design” arises because the centres of the 

factorial and axial designs coincide (Öberg and Deming, 2000). A quadratic response 

surface model of the form, 

 

y  = 2
0

1 1 1 1

      
k k k k

i i ii i ij i j

i i i j i

X X X Xβ β β β
= = = = +

+ + +∑ ∑ ∑∑ + ε  (3.1) 

 

was fitted and solved using the method of least squares. In Equation 3.1, y  is the 

predicted response, 0β  is the coefficient for intercept, 
iβ  is the coefficient of linear 

effect, iiβ  is the coefficient of quadratic effect, 
ij

β  is the coefficient of interaction 

effect, k  is the number of variables, and iX  and
j

X  are coded independent variables. 

 

Following the program of experimentation and after the regression coefficients have 

been obtained, the adequacies of the models were checked using the analysis of 

variance (ANOVA) technique (Khuri and Cornell, 1987). Fisher’s variance ratio test 

(F-test), standard errors of model coefficients (t-test), the coefficient of determination 

(R2) and, the absolute average deviation (AAD) are the methods that were employed 

in the ANOVA. 

 

Appendix H gives details of the statistical and mathematical methods used. 
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3.4.2 Apparatus and Experimentation  

 

All leaching experiments were carried out in either 250-ml or 500-ml Erlenmeyer 

flasks placed in the Labcon shaking incubator (Model FSIM-SPO16) as shown in 

Figure 3.2 with speed and temperature adjustments made according to specific 

experiements. All tests and controls were duplicated. 

 

   

Figure 3.2. Agitation leaching test equipment (Labcon shaking incubator) 

 

3.4.3 Experimental Design  

 

Table 3.1 shows the experimental design indicating test conditions, materials and/or 

samples tested, and the number of replicates in each experimental test in this study. 
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Table 3.1. Experimental design 

Test type Test conditions Material/Samples tested Replicates 

Acidic and ferric 

leaching 

-lixiviant 

concentrations 

-pH 

-temperature 

-H2SO4 

-Citric acid 

- Fe2(SO4)3, 

-Acidified Fe2(SO4)3, 

-Nickel laterite 

 

 

2 

Identification of 

influential factors  

-pH 

-particle size 

-pulp density 

-substrate type 

-inoculum size 

-bacteria 

-pyrite/sulphur 

-standard 9K media 

-nickel laterite 

 

 

2 

Effects of initial 

pH on substrate 

type 

-pH 

-redox potential 

-substrate type 

 

-bacteria 

-pyrite/sulphur 

- standard 9K media 

-nickel laterites 

 

2 

Optimisation of 

influential factors 

-pH 

-particle size 

-pulp density 

-bacteria 

-sulphur 

- standard 9K media 

-nickel laterite 

 

 

2 

 

3.5  Analytical Techniques 

 

3.5.1    Nickel Concentration 

 

The Varian SpectrAA-55B atomic absorption spectrophotometer (AAS) with an 

air/acetylene flame was used to determine the nickel concentration of all samples 

using the conditions in Table 3.2 (Varian Techtron (Pty) Ltd., 1989). 
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Figure 3.3. The Varian SpectrAA-55B atomic absorption spectrophotometer 

 

Table 3.2. Operating conditions for nickel analysis by AAS 

Metal Wavelength (nm) Slit width (nm) Lamp current (mA) Range (ppm) 

Nickel 352.4 0.5 4 1-100 

 

The 352.4 nm line was preferred to the more sensitive 232 nm line for nickel because 

the calibration is less curved over the working range and the signal is less susceptible 

to non atomic absorbance (Varian Techtron (Pty) Ltd., 1989). Aqueous metal 

standards were 1000 ppm (from Associated Chemicals Enterprises Ltd, South Africa) 

and were diluted using distilled water to the required concentrations of 20, 40, 60 and 

80 ppm for calibration of the atomic absorption spectrophotometer (AAS). All 

samples were diluted to the correct concentration range and were measured in 

duplicate. The atomic absorption spectrophotomter was statistically validated for 

accuracy at 99% confidence level (see Appendix G). The AAS is shown in Figure 

3.3. 

 

3.5.2 pH and Oxidation Reduction Potential 

 

The pH profiles and redox potentials of the leach solution were measured using the 

744 pH meter Metrohm. The redox potentials readings were obtained using the 

Ag/AgCl/3M KCl reference electrode and subsequently converted to the standard 

hydrogen electrode (SHE) by adding 210 mV (Friis et al., 1998).  The measurements 
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were standardised with Metrohm buffer solutions at pH = 4 and 7. After use the 

electrode was washed with distilled water and then dried. The electrode was then 

stored in 3M KCl solution to prevent desiccation. The pH meter was statistically 

validated for accuracy at 99% confidence level (see Appendix G). 

 

3.6  Data Analysis 

 

The data was obtained as described in the previous sections of this chapter. The data 

collected was used to develop relationships between nickel recovery and the 

parameters tested (e.g., pH, temperature, substrate type, etc). These relationships and 

the observed results are discussed in the subsequent chapters of this dissertation. The 

recovery during the leaching of nickel laterites was calculated as a percentage of 

nickel in the liquid phase to that in the nickel laterite ore (see example in                   

Appendix A). Some data as in Chapter 5 and 7 were statistically analysed. 

 

3.7  Summary 

 

This chapter presented and discussed the materials and methods used in the study. In 

particular, the focus of the chapter was on the following activities that constitutes the 

laboratory testing aspect of the study: 

 

• Reagents preparations. 

• Sieving of nickel laterites into different sizes depending on the nature of test 

works. 

• Bacterial growth and harvesting. 

• The choice of designs for the DOE.  

• Agitation leach test works. 

• Determination of the concentration of nickel in the leach solution. 
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• Data analysis and interpretation. All results from the test works were recorded. 

Correlations between process variables and nickel recovery were determined 

graphically, analytically and empirically.  
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____________________________________________________________________ 

CHAPTER FOUR 

 

 

ACIDIC AND FERRIC LEACHING 

____________________________________________________________________ 

 

“It is a great nuisance that knowledge can only be acquired by hard work”. 

 

   - W. Somerset Maugham 
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4.1 Introduction 

 

The constant increase in demand for metals has motivated intensive studies into the 

recovery of metals from low grade ores. Recently, relatively great attention has been 

paid to the research connected with the recovery of nickel from nickel laterites using  

commercial acids (Bosecker, 1986; Valix et al., 2001a,b; Alibhali et al., 1993). This 

is so because an economical process for recovering nickel from large quantities of 

low grade laterite is needed.  

 

The possibility to employ microorganisms to treat non-sulphide ores such as nickel 

laterites has been described in Chapter 2 (Section 2.2.5). These microorganisms either 

produce organic acids such as citric acid (i.e., heterotrophic microorganisms) or 

inorganic acids such as sulphuric acid (i.e., chemolithotrophic microorganisms).  

 

In order to have an insight on the use of chemolithotrophic bacteria in this process, it 

is important to understand the role and effects of sulphuric acid. Its effect can be 

easily understood by comparing it to the previously well researched citric acid 

(Tzeferis and Agatzini-Leonardou, 1994; Tzeferis, 1994). On the other hand, the use 

of the ferric sulphate as one of the lixiviant will act as a basis for the provision of 

using ferrous iron or pyrite as a substrate in the bacterial leaching process. The 

oxidation of ferrous iron and/or pyrite produces ferric iron. Ferric cations hydrolyse 

in the presence of water generating acid, which can be consumed by nickel laterites; 

thus facilitating the leaching and nickel extraction processes.  

 

Determination of the acid conditions, i.e., concentration and pH required to maximize 

nickel extraction will lay a foundation for the subsequent bioleaching studies 

(Chapter Five through Seven).  In addition, in this experimental study of nickel 

laterites dissolution using sulphuric acid, citric acid and ferric ions, it is also                           
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attempted to fit the kinetic data into a shrinking core model so as to compare the 

reaction kinetic models for the lixiviants under the same experimental conditions. 

 

4.2 Materials and Methods 

 

This study deals with the effects of three parameters, concentration, pH and 

temperature, on nickel laterite dissolution using sulphuric acid, citric acid and ferric 

sulphate. Therefore, the study was divided into three parts dealing with varying the 

concentrations, pH and temperature.  

 

4.2.1 Ore Samples and Preparation 

 

The nickel ore was crushed and using standard sieve plates was classified into +63-

75µm size fraction. This size range was used because it represented most of the nickel 

laterite material in terms of mass (Table B3). The chemical composition of nickel was 

determined prior to chemical leaching experiments. The typical chemical composition 

of various oxides in the laterite ore used is given in Appendix B. 

 

4.2.2 Chemical Leach Tests at Different Concentrations 

 

Chemical leach tests were carried out using analytical grade citric acid (C6H8O7), 

sulphuric acid (H2SO4), ferric sulphate (Fe2(SO4)3) and acidified ferric sulphate. In 

each experiment, 5g of ore was added to 100mL of lixiviant having a specified 

concentration (Table 4.1) and a temperature of 30°C. A pulp density of 5% w/v was 

chosen because it had shown higher recoveries in previous microbial studies, and a 

temperature of 30°C is hypothetically optimum for chemolithotrophic bacteria used in 

this study (Karavaiko et al., 2006). To rule out the diffusion control of dissolution, the 

tests were stirred at a rate ≥ 200 rpm so as to ensure that particles are suspended in 

solution (Levenspiel, 1972). The solution was sampled every two days and the total 
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concentration of nickel was determined by the Varian SpectrAA-55B atomic 

absorption spectrophotometer. The pH profiles were measured but not controlled 

through out the leach period. Solution loss through sampling and evaporation was 

compensated by the addition of distilled water. However, the extent of solution loss 

through evaporation and sampling is negligible compared to the solution volume of 

100mLs for it to have a measurable effect on the concentration.The recovery during 

the leaching of nickel laterites was calculated as a percentage of nickel in the liquid 

phase to that in the nickel laterite ore (see example in Appendix A). All experiments 

were performed in a platform shaking incubator, and flasks were covered with pieces 

of aluminium foil to reduce evaporation.  

 

4.2.3. Chemical Leach Tests at Same Initial pH 

 

In each experiment, 5g of ore was added to 100mL of lixiviant having an initial pH of 

0.5, 1.0, 1.5 and 2.0, and a temperature of 30°C. These pH ranges (i.e. pH < 3) were 

chosen to simulate conditions in which acidophilic microorganisms can grow 

optimally (Norris and Johnson, 1998). The pH profiles were measured but not 

controlled through out the leach period. All other test conditions remained the same 

as in section 4.2.2 above. 

 

4.2.4. Chemical Leach Tests at Different Temperatures 

 

In each experiment, 5g of ore was added to 100mL of lixiviant having a concentration 

of 0.5M and temperatures of 30°C, 40°C, and 45°C, respectively. The highest 

temperature of 45°C was chosen to simulate the optimum temperature in which the 

more thermo-tolerant Acidithiobacillus caldus bacteria in the mixed culture can 

survive (Rawlings et al., 1999). Ferric sulphate was acidified with 0.5M sulphuric 

acid. This was done because acidified ferric sulphate performed better (Table 4.1) in 
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the tests performed in section 4.2.2. All other test conditions remained the same as in 

section 4.2.2 above. 

 

4.3 Results and Discussion  

 

4.3.1 Effect of Initial Lixiviant Concentration 

 

For the results discussed in this section, reference should be made to the experimental 

data in Appendix C (Tables C1-C3). The results discussed are an average of the runs 

conducted under similar experimental conditions. 

 

Table 4.1 shows the leaching conditions of various chemical tests and nickel recovery 

over a leaching period of 10 days. The dissolution rate of nickel laterite as shown in 

Table 4.1 depends on the leaching media (H2SO4, C6H8O7, Fe2(SO4)3, acidified 

Fe2(SO4)3).  

 
a
Table 4.1. Leaching conditions and solubilisation of nickel by H2SO4, C6H8O7, Fe2(SO4)3 

and acidified Fe2(SO4)3 at 30°C over a 10 day leaching period 

Leach media Initial  

pH 

Final 

pH 

Recovery 

(%) 

0.5 M [H2SO4, C6H8O7] 0.36 0.63 79.6 
0.5 M [C6H8O7, Fe2(SO4)3, H2SO4] 0.23 0.41 74.7 
0.5 M H2SO4 0.39 0.74 71.9 
1 M C6H8O7 1.29 1.70 57.4 
0.5 M Fe2(SO4)3, 0.5M H2SO4 0.33 0.57 50.3 
0.5 M C6H8O7 1.45 2.02 46.6 
0.5 M Fe2(SO4)3, 0.1 M H2SO4 0.74 0.96 37.4 
0.5 M Fe2(SO4)3 0.93 1.13 20.3 
Distilled water 5.88 8.39 0.5 

aAll values given here are the average of two separate runs carried out under the same experimental 
conditions (i.e. Tables C2 and C3). 
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The results shown in Table 4.1 indicated that H2SO4 was more effective in nickel 

dissolution than ferric sulphate and citric acid at the same starting concentration. 

Citric acid is a weaker acid than sulphuric acid, hence, the lower recoveries. The 

acidity constant of sulphuric acid is pK1 = -1.7; pK2 = 1.96 at 25°C (Perrin, 1982) and 

that of citric acid is pK1 = 3.14; pK2 = 4.77; pK3 = 6.39 at 20°C (Albert and Sergent, 

1962). The higher the acidity constant is, the weaker the acid. Nickel recovery with 

1M citric acid was still lower than that of 0.5M H2SO4. However, higher nickel 

recovery was obtained in a mixture of C6H8O7 and H2SO4, thus showing the positive 

synergic effect of sulphuric acid in the leaching process. These results also confirm 

the findings of other researchers (Alibhai et al., 1993) who noted, in chemical tests, 

that hydrogen ions concentration is the main factor affecting chemical leaching.  

 

The recoveries as shown in Table 4.1 suggest that leach rates are highly dependent on 

the initial pH of the solution and the type of lixiviant. The low initial pH (at same 

initial concentration) as seen from ferric sulphate (Table 4.1) is as a result of 

hydrolysis reactions (Equation 4.1).  

 

 

3+ 2+ +
2

3+ + +
2 2

3+ +
2 3

Fe  + H O  FeOH  + H

Fe  + 2H O  Fe(OH)  + 2H

Fe  + 3H O  Fe(OH)  + 3H

→


→ 


→ 

     (4.1) 

 

Furthermore, there is a reaction (Equation 4.2) in competition with the hydrolysis 

reactions giving products of basic ferric hydroxysulphate with the formula 

MFe3(SO4)2(OH)6, where M = H3O
+ or K+ or Na+.  These hydroxysulphates 

precipitates are known as jarosite. Jarosite is a member of the jarosite-alunite group 

of isostructural minerals described by the general formula AB3(SO4)2(OH)6, where 

the B site is occupied by Fe3+ (jarosite) or Al3+ (alunites) and the A site is occupied 
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most commonly by K+, Na+ and H3O
+ (hydronium). The following is a formula for 

jarosite precipitation: 

  

M+ + 3Fe3+ + 2HSO4
- + 6H2O →  MFe3(SO4)2(OH)6 ↓ + 8H+  (4.2) 

 

The acid produced in the hydrolysis and jarosite precipitation reacts with the metal 

values present in the ore. 

 

Jarosite formation is temperature, pH and electrode potential (Eh) dependent and 

characteristically, the rate of formation increases dramatically with temperature; the 

rate is very slow below 60°C; the rate is at maximum at pH ≅ 2; the formation of 

jarosite is increasingly decreased at pH < 1, pH > 3, i.e., outside of a narrow pH range 

(Klauber, 2008). Basic ferric hydroxysulphate formation is also favoured by high 

sulphate contents (Georgiou and Papangelakis, 1998).  

 

Table 4.1 also shows that ferric sulphate had a negligible effect on leaching. The 

negligible influence of ferric sulphate on leaching was attributed to the formation of 

the insoluble basic ferric hydroxysulphate layer (Equation 4.2). The insoluble layer 

causes a mass transfer barrier to mineral-H+ contact. Precipitated jarosite is also 

known to have the ability to scavenge elements from solutions (Dutrizac, 1983). The 

gradual increase in pH during leaching in all the tests was caused by the progressive 

acid dissolution of nickel laterite. 

 

Considerable variability in nickel recoveries can also be observed when leaching with 

different laterite ores due to their different mineralogical make-ups (Tzeferis and 

Agatzini-Leonardou, 1994; Valix et al., 2001b).  
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4.3.2  Effect of Initial Lixiviant pH 

 

For the figures discussed in this section reference should be made to the experimental 

data in Appendix C (Tables C4-C6). The results discussed are an average of the runs 

conducted under similar experimental conditions. 

Figure 4.1 shows the nickel recoveries with different lixiviants at the same initial pH 

of 0.5, 1.0, 1.5 and 2.0. As seen from the figure, citric acid had a higher recovery than 

sulphuric acid and ferric sulphate of the same initial pH of 1.0, 1.5 and 2.0. The 

higher recovery with citric acid than sulphuric acid can be attributed to the chelating 

of nickel ions by organic acid at these pHs while H+ ions in sulphuric acid do not act 

as chelators (McKenzie et al., 1987).  

 

Figure 4.1. Nickel laterite recoveries at same initial pH for different lixiviants 

 

It is also seen from the graph that at a starting pH of 0.5, sulphuric acid had a higher 

recovery than citric acid and ferric sulphate. This shows that chelation is not very 
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effective at a low pH of 0.5. This is because lowering pH protonates citrate anion 

converting it to citric acid according to Le Chaterlier’s principle (Equation 4.3 ).  

 

 3+ +
6 5 7 6 8 7(C H O ) 3H C H O+ �       (4.3) 

 

The figure also shows that there is very little step change in recoveries within the pH 

range studied for citric acid, whereas, there is a high step change in recovery for 

sulphuric acid and ferric sulphate. 

As can be seen from Figure 4.1, the recoveries were generally higher at low pHs 

irrespective of the leaching media. There is higher acid activity at lower pH values, 

which promotes the leaching process and, hence higher recoveries. 

 

4.3.3 Effect of Temperature 

 

For the figures discussed in this section reference should be made to the experimental 

data in Appendix C (Tables C7-C9). The results discussed are an average of the runs 

conducted under similar experimental conditions. 

 

The influence of temperature was studied at three different temperature values for 

each of the lixiviant. Figure 4.2 shows nickel recovery at different temperatures 

during the leaching period under study. The results show that the recoveries of nickel 

are high when the temperature is high irrespective of the lixiviant, i.e., temperature 

had a positive effect on leaching kinetics. Thus, it can be inferred that nickel recovery 

is proportionally related to temperature, within the range of 30 to 45°C. 
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Figure 4.2. Nickel laterite recovery at different temperatures for different lixiviants 

 

4.3.4 Kinetic Analysis  

 

Rate controlling regimes 

The dissolution rates of nickel laterites were analysed on the basis of the extraction 

type core model under the assumption that the ore consists of homogeneous spherical 

solid particles that react with the fluid isothermally. In addition, the concentration of 

the reacting fluid is assumed to be constant or in excess (Levenspiel, 1972). The 

essential premises of the shrinking core model are that, the rate is controlled by mass 

transport of a dissolved reactant or product from (or to) the bulk solution to (or from) 

the solid-solution interface via a boundary layer in which there is near laminar flow; 

the rate is controlled by some chemical reaction occurring at the solid-solution 

interface; the rate is controlled by mass transport of a dissolved reactant or product 

through the adhering layer of inert mineral or solid product formed during the 

reaction. 
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To determine the rate controlling regime, the experimental results at different 

temperatures were plotted in terms of the standard equations of the shrinking core 

model as shown in Figures 4.3, 4.4, 4.5 and 4.6 assuming a mono-sized particle size 

distribution.  

 

Figure 4.3. Plot of 1-3(1-X)
2/3

+2(1-X) versus time for sulphuric acid 

 

Figure 4.4. Plot of 1-3(1-X)
2/3

+2(1-X) versus time for citric acid 
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Figure 4.5. Plot of 1-3(1-X)
2/3

+2(1-X) versus time for acidified ferric sulphate 

 

Figure 4.6. Plot of 1-(1-X)
1/3

 versus time for acidified ferric sulphate at 45°C 

 

From Figures 4.3 and 4.4, the kinetic model for diffusion through the product layer 

was assumed to control the rate of reaction for the nickel laterite with sulphuric acid 

and citric acid in the range of temperatures studied. It followed the kinetic equation 

given below: 

 

2
31 3(1 ) 2(1 )X X kt− − + − =      (4.4) 

where X is the conversion, t is the time in days and k is the apparent reaction rate 

constant (day-1).  
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Examination of plots of other kinetic equations as functions of time did not give 

perfectly straight lines meaning that the dissolution reactions were not controlled by 

such regimes. From the analysis of the core-model, it was found that the dissolution 

rate at temperatures of 30°C and 40°C (Figure 4.5) were well expressed by the rate 

equation based on diffusion of the metal ions through a product layer of the ore for 

acidified ferric sulphate. Figure 4.5 also shows that the rate determining step changed 

at a temperature of 45°C after 4 days from that of diffusion through a product layer as 

can be seen from the change in slope (Figure 4.5). This was attributed to an increase 

in the activation energy of leaching perhaps as a result of the gradual built up of a 

passivating layer with time. The steeper the slope in Figure 4.5, the higher the 

activation energy required. Figure 4.6 shows that the rate determining step of the 

surface chemical reaction described by 1-(1-X)
1/3

 = kt, was controlling. That is to say, 

the diffusion through the product layer at 45°C became so fast that the dissolution 

rate was limited by surface chemical reaction. Figures 4.5 and 4.6 also show that in 

the first 4 days the rate control was mixed for acidified ferric sulphate at 45°C (i.e., 

diffusion through a product layer and surface chemical reaction). This was attributed 

to the effect of higher temperature on the passivating layer. These results are similar 

to the observed effect of temperature on the passivating layer formed during leaching 

of chalcopyrite (Hackl et al., 1995). 

 

Prosser (1996) and, Gbor and Jia (2004) have shown that plots such as figures 4.3-4.6 

offer less convincing evidence of a particular mechanism. Prosser (1996) mentions 

several uncertainties pertaining to the determination of mechanisms of mineral 

leaching reactions. One major factor that can affect the interpretation of the leaching 

data is the particle size distribution (Gbor and Jia, 2004). 

 

In the section below, it was also attempted to use activation energy to indicate the 

reaction control regimes. The magnitude of the activation energy can provide a more 
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positive evidence for the reaction and diffusion controlled regimes (Gbor and Jia, 

2004).  

 

Determination of activation energies 

The apparent rate constant, k, obtained from the slopes of the straight lines in Figures 

4.3, 4.4, 4.5 for sulphuric acid, citric acid and acidified ferric sulphate, respectively, 

at their respective temperatures was used to determine the activation energies. For 

acidified ferric sulphate, k was only determined for the first 4 days when the rate was 

assumed to be controlled by diffusion through the product layer. 

 

Using the Arrhenius equation, k = Ae
-Ea/RT, the natural logarithm of k (ln k) is then 

plotted against the inverse of their respective temperatures (1/T) as shown in Figure 

4.7. In the Arrhenius equation, k is the apparent reaction rate constant (day-1), A is the 

frequency factor (day-1), Ea is the activation energy (Jmol-1), R is the universal gas 

constant (8.314 JK-1mol-1) and T is the reaction temperature (K). The slopes of this 

plot give –Ea/R from which Ea is obtained. 

 

 

Figure 4.7.  Arrhenius plot for nickel laterite dissolution with various lixiviants 
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The calculated activation energies were 70.4 kJ mol-1 (16.8 kcal mol-1) for sulphuric 

acid, 54.1 kJ mol-1 (12.9 kcal mol-1) for citric acid and 78.8 kJ mol-1 (18.8 kcal mol-1)  

for acidified ferric sulphate. The activation energy for acidified ferric sulphate was 

only calculated for 30°C and 40°C (Figure 4.7) because acidified ferric sulphate 

indicated a reaction controlled at 45°C, and no further temperature was tested.  

These values (derived from Figure 4.7) for activation energy are clearly too high for 

product layer diffusion as reported in the literature. The activation energy for product 

layer diffusion controlled process can be between 1 to 6 kcal mol-1 (Habashi, 1969). 

The activation energy for chemically controlled processes is usually greater than 10 

kcal mol-1 (Habashi, 1969). The reactivity of the reacting substances is depended on 

the resulting activation energy.  

 

The inconsistence in reaction regimes can be attributed to the high coefficient of 

variation (CV) in particle size distribution (Gbor and Jia, 2004) resulting from poor 

separation during dry sieving. In other words, poor separation results in having a 

sample with various sizes (i.e., CV is high). For this study, CV was defined as the 

ratio between the standard deviation of the particle size range and the mean of that 

particle size range. When the particle size distribution of a sample is not consistent, 

but varies, it results in varying reaction rates thus deviating from the actual reaction 

regime. On the other hand, wet sieving can lower the coefficient of variation (CV) of 

particles and make the shrinking core model for monosized distribution applicable 

(Gbor and Jia, 2004). This is because wet sieving removes the finer fractions 

resulting in a consistent size range. For the reasons given in section 3.2.1, this study 

did not consider wet sieving. However, on the other hand, Peters (1991) and Cusslers 

(1997) associate high activation energy with solid state diffusion or surface diffusion 

through very fine pores.  
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4.4 Summary and Conclusions 

 

In order to provide useful insights into the process of leaching nickel laterites with 

chemolithotrophic microorganisms, chemical leach tests were initially instigated. In 

particular, this study looked at the leaching kinetics of nickel laterite in sulphuric 

acid, citric acid and ferric sulphate solutions. It has been deduced from this chapter 

that the dissolution rate of nickel laterite depends on the leaching media (H2SO4, 

C6H8O7, Fe2(SO4)3) and possibly the effect of chelation at certain pH ranges. 

Sulphuric acid leaching had a higher recovery (71.9%) than citric acid (46.6%) and 

ferric sulphate (20.3%), respectively, of the same concentration of 0.5M in two 

weeks. Although, an increase in the concentration of citric acid from 0.5M to 1M had 

a positive effect on the recovery of nickel, the recovery was still lower than that 

recorded for sulphuric acid alone at similar concentrations. However, combinations of 

sulphuric acid and citric acid gave a higher extraction (79.6%) than when citric acid 

was used alone indicating the positive effect of sulphuric acid on leaching. In the 

presence of ferric sulphate, dissolution was seen to increase with sulphuric acid 

concentration within the range 0.1 - 0.5 M studied.  

 

Citric acid had a higher recovery than sulphuric acid and ferric sulphate of the same 

initial pH of 1.0, 1.5 and 2.0. The higher recovery with citric acid than sulphuric acid 

was attributed to the chelating of nickel ions by the organic acid anions (McKenzie et 

al., 1987). At an initial lower pH of 0.5, sulphuric acid had a higher recovery than 

citric acid and ferric sulphate.  

 

The effect of temperature was modeled by the Arrhenius equation. The activation 

energies were calculated as 70.4 kJ mol-1 for sulphuric acid, 54.1 kJ mol-1 for citric 

acid and 78.8 kJ mol-1 for acidified ferric sulphate signifying lower reactivity between 

nickel laterites and the lixiviants. The higher activation energies are characteristic for 

processes controlled by chemical reactions on the surface.   
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In contrast, the shrinking core model indicated the diffusion through the product layer 

as rate controlling. Plots of various shrinking core model equations alone do not 

provide convincing evidence for the rate control regimes. This inconsistence is 

attributed to the large CV in particle size distribution resulting from poor separation 

during dry sieving.  

 

The next chapter focuses on identifying factors that are influential in the bacterial 

leaching of nickel laterites using chemolithotrophic microorganisms and external 

supply of sulphur containing material. 
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____________________________________________________________________ 

CHAPTER 5 

 

 

IDENTIFICATION OF INFLUENTIAL FACTORS 

____________________________________________________________________ 

 

“Theory is the general; experiments are the soldiers”. 

 

   - Leonardo Da Vinci 
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 5.1 Introduction 

 

One-factor-at-a-time experimental designs where a single factor is varied while others 

are kept constant are often expensive and time consuming, and do not often consider 

the interactive nature of various independent factors that would otherwise impact the 

results (Box et al, 1978; Montgomery, 2005). Factor interaction is a situation where 

the effect of one factor on the response depends upon the level of another factor. In 

fact, a different effect might be observed if one or more of the factors were held 

constant at another value. The objective of the study in this chapter was to investigate 

the factors that influence the dissolution of nickel laterites using a mixed culture of 

chemolithotrophic bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus caldus 

and Leptospirillum ferrooxidans). The significance of each factor and their interactive 

effects were evaluated using a statistical design of experiments by way of quarter 

fractional factorial designs (i.e., 2 25−
III

) and dissolved nickel was taken as the measured 

response. Knowing the significance that a factor has in influencing the measured 

response is paramount for process/product optimisation and cost control. The 

significant factors can be optimised while the insignificant ones can be set at levels 

where the least cost is incurred.  

 

5.2 Materials and Methods 

 

5.2.1. Ore Samples and Preparation 

 

Using standard sieve plates, the mineral was classified into three different size 

fractions (-38µm, +53-63µm and +100-150µm). The choice of particle size in the 

range of -38µm and 100-150µm for high and low level, respectively, was meant to 

give a relatively broader range so as to increase the chance of detecting its statistical 

significance. The centre point of +53-63µm was chosen as it was similar to what 
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some researchers used in previous similar studies (Valix et al., 2001b; Tang and 

Valix, 2006).   

 

Using the centre point (i.e., +53-63µm) as the reference bench mark and to optimize 

the statistical analysis; one standard fractional size (+100-150µm) was selected above 

this size and one below (-38µm); thus bringing the total fractional sizes evaluated to 

three.  The chemical composition and the particle size distribution of each fraction 

were determined prior to bioleaching experiments.  

 

The typical chemical composition of various oxides in the laterite ore, and the 

distribution of particle size for different fractions of nickel laterites used and their 

specific elemental composition are given in Appendix B.  

  

5.2.2. Microbes  

 

The bacteria and growth media used were described previously in sections 3.3.2 and 

3.3.1 of Chapter 3, respectively. 

 

5.2.3 Experimental Plan for Statistical Design of Experiments (DOE) 

 

Design of experiments is the simultaneous study of several process variables 

(Barrentine, 1999; Montgomery, 2005). A quarter basic fractional factorial designs 

2 25−
III  with a fold-over were used for this study to identify statistical significant factors. 

Previous researchers, though using heterotrophic microorganisms, did identify some 

factors that may be significant in the dissolution of nickel laterites (Tang and Valix, 

2006). Therefore, the choice of factors and levels was based on past experience of 

bacterial leaching.  
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This study was designed to determine the influence of some of the factors in the 

bacterial leaching of nickel laterites using chemolithotrophic bacteria and quantify 

them to ensure that the influence is measurable. In this study, the potential design 

factors were classified as controlled factors and held constant factors. The controlled 

factors were the factors that were actually selected for study (Table 5.1). The held 

constant factors (temperature at 30°C and 190 rpm agitation speed) were those which 

may exert some effect on the response, but for the purpose of this study were not of 

interest; so they were held constant at a specific level.   

 

Apart from substrate type that was a qualitative factor, the rest of the factors were 

quantitative factors because they were measured on a numerical scale. Different 

levels of qualitative factors are represented by indicator variables, for example, in this 

study, sulphur was arbitrarily represented as level 1 and pyrite as level 2                   

(Table 5.1). Sulphur was chosen as a centre point because of its ability to produce 

sulphuric acid directly upon oxidation.  

 

Table 5.1. Experimental factors and levels for controlled factors 

Controlled factors Level 1 Centre Point Level 2 

pH  1.5 2.0 2.5 

Particle size (µm) -38 -63+53 -150+100 

Pulp density (%w/v) 5 10 15 
a Substrate type  5% Sulphur  5% Sulphur              5% Pyrite   

Inoculum dosage (%v/v) 5 10 15 

 

At the screening stage, the use of two levels for each factor allows for simplification 

of the analysis and provides substantial reduction in the number of runs required 

(Montgomery, 2005). This is normally significant for most experimental work until 

the final refining or optimization stage (Montgomery, 2005).  
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To simplify the calculations and for uniform comparison, factors were studied with 

their codified values. The physical and coded levels are given in Table 5.2 and 5.3, 

respectively.  

 

In general, coded values were obtained as follows:   

 

Quantitative variables; coded value = [physical value – ½(highest value + lowest 

value)]/½(highest value-lowest value).  

Qualitative variables; coded variables were assigned at random.  

 

Table 5.2. Nickel recovery results for the 2
25−

III  fractional factorial design (basic) 

Standard 

run order 

Random 

run 

order 

c Control factors % Ni 

recovery 

(Average) 

A B C D E 

1 3 -1 -1 -1 +1 -1 24 

2 8 +1 -1 -1 +1 +1 20 

3 7 -1 +1 -1 -1 +1 30 

4 6 +1 +1 -1 -1 -1 26 

5 1 -1 -1 +1 -1 +1 17 

6 4 +1 -1 +1 -1 -1 14 

7 5 -1 +1 +1 +1 -1 30 

8 2 +1 +1 +1 +1 +1 26 
c The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 

 

Table 5.2 shows the experimental layout and standard runs for the 2 25−
III

 basic design. 

In general, the nth column consists of 2n-1 minus signs followed by 2n-1 plus signs 

(Box et al, 1978). However, in this 2 25−
III

fractional factorial design, the column for 
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substrate type was obtained by combining the particle size and pulp density columns, 

and the inoculum size column was obtained by combining the pH, particle size and 

pulp density columns. 

 

There is a confounding pattern of effects when using fractional factorial designs. This 

really means that (assuming that three-factor and higher interactions are insignificant) 

the estimated effect of a factor is a combination of the actual values of the effects of 

that factor and its two factor interactions (Barrentine, 1999). To separate the main 

effects and the two factor interactions, the fold over technique is used, and it is run 

with all the signs of the basic designs reversed (Montgomery, 2005; Barrentine, 

1999). This is given in Table 5.3. Refer to Appendix A for a sample example. 

 

Table 5.3. Nickel recovery results for the 2
25−

III  fractional factorial design (fold-over) 

Standard 

run order 

Random 

run 

order 

d Control factors % Ni 

recovery 

(Average) 

A B C D E 

1 6 +1 +1 +1 -1 +1 26 

2 1 -1 +1 +1 -1 -1 29 

3 8 +1 -1 +1 +1 -1 16 

4 4 -1 -1 +1 +1 +1 20 

5 3 +1 +1 -1 +1 -1 32 

6 2 -1 +1 -1 +1 +1 35 

7 5 +1 -1 -1 -1 +1 15 

8 7 -1 -1 -1 -1 -1 23 
d The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
 

 

 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Five – Identification of Influential Factors Page 66 
 

5.2.4 Methodology for Data Analysis 

 

Normal probability plots of effects 

When analyzing data from unreplicated factorials, occasionally high order 

interactions occur and as such normal probability plots are used (Daniel, 1959) to 

estimate the significant factors. This is the plot of the actual value of the effect 

estimates against their cumulative normal probabilities (Daniel, 1959). The effects 

that are negligible are normally distributed, with mean zero and variance (σ2) and will 

tend to fall along a straight line, whereas significant effects will have nonzero means 

and will not lie along the straight line. Effects in the statistical design are done by 

averaging the responses that are applicable to the level of each factor. The difference 

between the average responses at the two levels of each factor is an indication of the 

significance of that factor in influencing the response that is measured. Expressed 

mathematically, the single effects caused by the variation of the input parameters are 

calculated with the following formula: 

  

 Effect = 
2

m
i,observed

  1

(algebraic sign of contrast constant x R )
m

i =

∑  (5.1) 

 

where Ri,observed  is the ith observation (recovery) in the experimental data, m is 

the number of runs (experiments). 

  

In the probability plots, all effects have to be graded from low to high and numbered 

in this order. Afterwards, the numbered effects (i) get a value of percentage based on 

the following equation: 

 

 Value = 
 - 0.5

 x 100%
n

i
      (5.2) 
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where n is the number of values. 

 

Graphical residual analysis 

The normal plotting of residuals provides a diagnostic test for any tentatively 

entertained model (Montgomery, 2005; Box et al, 1978). The normal probability plots 

of the residuals for the data tests the hypothesis that the residuals have a normal 

distribution.  This should be a straight line if the residuals have a normal distribution. 

A plot of residuals versus the fits (fitted model values) is a test of the assumption or 

hypothesis that the variations are the same in each group. Because outliers may have 

undue influence, studentised ‘deleted’ residuals were calculated for each run, based 

on the predicted value when that run was excluded from the analysis (Miles and 

Shevlin, 2001). The residuals were then calculated from the following equation: 

 

 Residual = , ,

,

i observed i predicted

i residual

R R

σ

−
     (5.3) 

 

where σi,residual  is the standard deviation of all residuals from the regression 

analysis that deleted the ith observation, Ri,predicted is the predicted value of 

response from fitted model,  Ri,observed  is the ith observation (recovery) in the 

experimental data.  

 

Test for curvature using centre points 

Adding centre points (Table 5.4) to the design provide protection against curvature 

from second order effects as well as allowing an independent estimate of error to be 

obtained (Montgomery, 2005).  
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Table 5.4. Nickel recovery results for  the 2
25−

III  fractional factorial design (centre point 

replicates) 

Run e Control factors % Ni recovery 

(Average) A B C D E 

1 0 0 0 0 0 20 

2 0 0 0 0 0 21 

3 0 0 0 0 0 25 

4 0 0 0 0 0 22 
e The actual factor levels, coded as values of 0 in the table were as follows: for pH (A):2.0; particle size 
(B): -63+53µm; pulp density (C):10% w/v; substrate type (D): sulphur; inoculum size (E):10% v/v. 
 

 

The estimate of error, σ2, is calculated as, 

 

  σ
2 = 

2
,

centre-points

( )

1

c i c

c

Y Y

n

−

−

∑
     (5.4) 

 

where ,c i
Y  are the observations at the centre, 

C
Y  is the average of the 

observations of the cn  runs at the centre. 

 

The pure quadratic curvature,
1

k

ii

i

β
=

∑ , can be estimated from 
F C

Y Y− . The single-

degree-of-freedom sum of squares associate with the null hypothesis, 0H : 
1

k

ii

i

β
=

∑ = 0, 

is, 

 

SSpure quadratic =   
2( )F C F C

F C

n n Y Y

n n

−

+
     (5.5) 
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where 
F

Y  is the average of the observations at the factorial points under the 

study, Fn is the number of the factorial points, k is the number of factors.  

 

If the ratio of Equation (5.4) and Equation (5.3) is small, then the centre points lie on 

or near the plane passing through the factorial points and hence, there is no quadratic 

effect (curvature). On the other hand, if the ratio is large, then quadratic curvature is 

present. 

 

5.2.5 Experimentation 

 

All the bacterial leaching tests (runs) of the quarter fractional factorial design 2 25−
III  

were performed in 500-ml Erlenmeyer flasks (leaching vessel). A 200-ml mixture of 

sterilized standard 9K medium together with an appropriate amount of sterilised 

energy source, a predetermined amount of bacterial inoculum and an appropriate 

quantity of nickel laterite was added to the leaching vessel and maintained in a 

platform shaking incubator at 30°C and 190 rpm. The leaching vessels were covered 

with pieces of aluminium foil to reduce evaporation and prevent contamination; but 

allow free supply of air. An appropriate pH level was controlled and maintained using 

1M sulphuric acid and 1M sodium hydroxide. The experiment was monitored every 

two days and a sample was taken using a pipette (1.5-ml) while agitating and was 

immediately filtered. The liquid extract was compensated by the addition of distilled 

water (or the standard 9K medium). The filtrate was analysed for nickel using the 

Varian SpectrAA-55B atomic absorption spectrophotometer. All experiments were 

randomly run and were carried out until there was stability in the nickel recovery.   
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5.3 Results and Discussion 

 

5.3.1 Significant Factors 

 

For the results discussed in this section, reference should be made to the experimental 

data in Appendix D (Table D1-D6). 

 

The data given in Tables 5.2 and 5.3 were used to estimate the main and interaction 

effects as plotted in Figure 5.1.  

 

Figure 5.1. Normal plot of effects of main and two factor interactions (combined 

designs); A, B, C, D, E are factors (Table 5.2); AB, AC, AD, AE, BC, BD, BE, CE, CE are 
interaction of factors 
 

The recoveries during the bacterial leaching of nickel laterites given in Tables 5.2, 

5.3, and 5.4 were calculated as a percentage of nickel in the liquid phase to that in the 

original  nickel laterite ore (see example in Appendix A).  Table 5.3 is a fold- over 

design which was the exact opposite of the basic design (Table 5.2) in signs. The two 
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designs were combined to estimate all of the main effects clear of any statistically 

insignificant two factor interactions as shown in Figure 5.1. 

 

The determination of the significant effects as analysed by the probability plots are 

shown in Figure 5.1. In Figure 5.1, when the effects of individual factors were 

assessed using the combined design of the basic and fold-over designs, A (pH), B 

(particle size), C (pulp density) and D (type of substrate) showed that they were 

statistically significant factors since they have nonzero means. E (inoculum size) was 

not a statistically significant factor because it does not differ much from normal 

distribution (zero mean). There was a significant interaction effect between pulp 

density and type of substrate.  This means that the interactive nature of pulp density 

and substrate (sulphur and pyrite) has an effect on the nickel recovery process. 

 

Figure 5.2. Normal plot of effects of main and two factor interactions (basic design) 

 

When the effects of the main and two factor interactions of the basic design alone 

were plotted it was not possible to distinguish the main effects from the two factor 
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interactions in the confounding pattern (Figure 5.2). This can be seen, for example, an 

effect of factor ‘A’ was confounded by an effect of interaction between factors ‘D’ 

and ‘E’. A first order polynomial model (prediction or fitted model) between 

significant factors and response was developed to illustrate the dependence of 

response on the significant factors. This model is expressed below: 

 

R = 24.03 – 2.08Aa + 5.40Bb – 1.69Cc + 1.36Dd + 0.71CcDd (5.6) 

 
where R is the recovery, Aa, Bb, Cc and Dd  are the contrast constants (+1 and 
-1) for the factors A, B, C, D respectively. 

 

In Equation 5.6, the negative signs in some of the variables of the prediction model 

equation indicate that in order to maximize bioleaching of nickel laterites, these 

factors must be kept in low levels. The positive signs mean that the factors must be 

kept at high levels.  

 

The observed nickel recoveries at the four centre points were 20%, 21%, 25% and 

22% (Table 5.4). The average of these four centre points is 22%; with a coefficient of 

variation of 9.8%.  The average of the 8 runs for the base design (Table 5.2) and 8 

runs for the fold-over design (Table 5.3) is 24%.  Using the centre points, the error is 

estimated from Equation (5.4) as 5.0 and, the sum of squares for pure quadratic 

modeling from Equation (5.5) is 10.7. The ratio of the sum of pure quadratic (SSPE) 

and error (σ2) is 2.0. Since this ratio is large, it is suspected that there is a curvature 

present. The test for nonlinearity, however, does not tell which factor(s) contain the 

curvature, only that it exists (Barrentine, 1999). However, for the purpose of this 

study (screening of factors), it was assumed that the linearity assumption holds very 

approximately (Montgomery, 2005). In fact, since Equation (5.6) contains some 

interaction term, the model is, therefore, capable of representing some curvature in 

the response function (Montgomery, 2005).   



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Five – Identification of Influential Factors Page 73 
 

 

 

Figure 5. 3. Normal plot of residuals 

 

Figure 5.3 is a normal plot of residuals. As can be seen, all residuals lie on a straight 

line with a linear correlation coefficient of 97%, which shows that the residuals were 

distributed normally. A plot of residuals versus the fits (fitted model values or 

predicted recovery) is a test of the assumption or hypothesis that the variations are the 

same in each group (Figure 5.4) i.e., the random errors are distributed with mean zero 

and constant variance. All residuals were distributed between -2 and +1 without any 

systematic structure. Since, the residuals were distributed normally with constant 

variance, mean zero and independently (Figures 5.3 and 5.4), it can be concluded that 

Equation (5.5) was good to fit the experimental data. In other words, the underlying 

assumptions about the errors were satisfied.  
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Figure 5.4. Plot of residuals versus predicted recoveries 

 

5.3.2. Influence of Factors on Recovery 

 

Effects of pH 

The effect of pH is shown in Figure 5.5. The figure shows that higher recovery of 

nickel is obtained at lower pH under the conditions tested. A pH of the growth 

medium significantly affects the growth and activity of acidophilic microorganisms. 

Due to the high bacterial activity at lower pH, the concentration of acid (H+ ions) is 

also expected to be high (pH = -log10[H
+]) . It is the H+ ions that are assumed to 

induce nickel dissolution as indicated in Equation (2.11) of Chapter 2; and hence 

more nickel recovery at low pH levels. 
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Figure 5.5. Effect of pH on nickel recovery (combined designs) 

 

Effect of particle size 

The effect of particle size is shown in Figure 5.6. The figure shows that, in the range 

studied, particles of less than 38µm had a negative influence on nickel recovery. This 

is in contrast to the expectation that a greater exposed surface area (of the smaller 

particles) would reflect an increase of the nickel dissolution. It also contrasts the fact 

that smaller particle sizes were found to have higher nickel content compared to 

larger particles (Appendix B). It is likely that the rate of collision between nickel 

particles and, that between nickel particles and bacteria increases as nickel particle 

size reduces (Acevedo et al, 2004), such that bacterial attachment to the pyrite or 

sulphur substrate is constrained. The apparent physical attrition, due to the presence 

of small particles, could have disrupted the structure of the cells (Nemati et al, 2000), 

thus rendering them inactive to produce lixiviant through oxidation of the respective 

substrates.   
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Figure 5.6. Effect of particle size on nickel recovery (combined designs) 

 

The great complexity of the mineralogy of nickel laterites may have also enhanced 

the ionic and hydrogen bond interactions. These interactions are affected by the 

particles of smaller sizes where greater surface area leaves each particle exposed to a 

greater amount of different mineral species (Makita et al, 2004). The -38µm particle 

size was, therefore, taken to be the critical minimum particle size in the ranges 

studied. However, the actual effective size range for optimum nickel recovery was yet 

to be determined in subsequent optimisation test works (Chapter 7). 

 

Effect of pulp density 

The pulp density effect is shown in Figure 5.7. In the range of conditions tested, the 

figure shows that lower recovery of nickel is obtained at higher pulp density of 15%. 

The reduction in the rate of bacterial leaching at higher pulp density can be attributed 

to the ineffective homogeneous mixing of solids and liquids leading to gas transfer 

limitation (Ochoa et al, 1999; Gericke et al, 2001); because the liquid becomes too 

thick (high viscosity) for efficient gas transfer to the cells.   By contrast, the opposite 

is true at low pulp density, i.e., high nickel recovery at a pulp density of 5%. 
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On the other hand, agitation has a double purpose: to increase the rate of transfer 

operations, such as O2 and CO2 and heat transfer, and to mix the contents. The 

agitation speed was constant; so when the pulp density increased, the solids 

suspension and homogeneity for effective mass transfer was affected. 

 

Figure 5.7. Effect of pulp density on nickel recovery (combined designs) 

 

Effect of the type of substrate 

For the pH variance figures discussed in this section reference should be made to the 

experimental data in Appendix D (Table D7-D8).  

 

The effect of substrate is shown in Figure 5.8. The figure shows that higher recovery 

of nickel, though not very significant, is obtained with the use of sulphur as a 

substrate. This can be attributed to the higher production of acid with sulphur 

compared to pyrite as can be seen from the pH variation profiles (Figure 5.10). The 

higher rate of acidification (low pH values) can be considered as an indicator of the 

enhanced microbial activities in the leaching media (Rossi 1990; Hanford and 

Vargas, 2001; Schippers and Sand, 1999). Figure 5.5 already demonstrated that a low 

pH media optimizes nickel recovery than a high pH media. On the same basis, the 

postulated higher microbial activities with sulphur than pyrite substrate can be 

attributed to more energy gained from oxidation of sulphur compared to oxidation of 

pyrite (Rawlings et al., 1999; Yu et al., 2001).  
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Figure 5.8. Effect of the type of substrate on nickel recovery (combined designs) 

 

The bacterial population as determined by measuring turbidity or optical density of 

the bacterial suspension using UV-Visible double beam spectrophotometer also 

showed that there was higher bacterial concentration with sulphur substrate compared 

to pyrite (Figure 5.9). A detailed analysis of the effects of the type of substrate is 

given in Chapter 6. 

 

Figure 5.9. Optical density at 550 nm as a function of time at pH of 1.5 
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Figure 5.10 shows the degree of pH variance from the set point during bioleaching 

with sulphur and pyrite substrates for different runs in the basic design procedure. 

When sulphur was used as a substrate, irrespective of the initial pH (1.5 or 2.5), the 

pH decreased and stabilized at some limiting values. The limiting values were 

observed to be in the range of 1.9-2.0 for higher pH set points and in the range of 1.3-

1.4 for lower pH set points. When pyrite was used as the substrate, the pH increased 

and stabilized in the pH range of 1.5 -1.6 for lower set points. The pH was, however, 

observed to decrease and stabilize in the pH range of 2.3-2.4 for the higher set point.  

 

A similar pH variation trend (Figure 5.11) was observed during bioleaching in the 

fold-over design procedure. When sulphur was used as a substrate, the pH decreased 

and stabilized in the range 1.3-1.4 for the lower pH set point and stabilized in the 

range 1.9-2.0 for higher pH set points. The limiting values were observed to be in the 

range of 2.1-2.2 for higher pH set points and in the range of 1.5-1.6 for lower pH set 

points when pyrite was used as a substrate. 

 

Figure 5.10. pH variation profiles (basic design) 
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Figure 5.11. pH variation profiles (fold-over design) 

 

In conclusion, the potential of reduced inorganic sulphur compounds (elemental 

sulphur and pyrite inclusive) addition and subsequent biological acid generation to 

maintain the low pH during the bioleaching of nickel laterite has been demonstrated 

for the process viability. The results have clearly demonstrated that a lower pH media 

created through the induction of a substrate such as sulphur or pyrite accelerates the 

bioleaching process, and consequently, more nickel recovery. This bioleaching 

process has exhibited satisfactory efficiency with greater potential for further 

optimization. 

 

Effect of dosages of bacterial inoculum 

The initial amount of bacterial inoculum added did not seem to have any significance 

(Figure 5.1). This can be explained from the fact that bacteria is not ‘directly 

attacking’ a constituent of the ore itself, unlike in the sulphide minerals where sulphur 

or ferrous which forms part of the minerals is being oxidised – thus having a direct 

impact on mineral dissolution. It seems that the effect of bacteria on the mineral 
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dissolution depends mostly on the relationship between the bacteria and the substrate 

(sulphur or pyrite) added to the media. In this study, it can be summarized that the 

rate of acid production by the bacteria through reduced sulphur oxidation was higher 

than the rate of acid consumption (nickel dissolution), irrespective of the dosages of 

bacterial inoculum.  

 

Effect of factor interaction  

In the ranges studied, the interaction between the variables, apart from pulp density 

and type of substrate, were observed to be statistically insignificant. Their effects 

were normally distributed with mean zero and fell along a straight line on the plot 

(Figure 5.1). However, there seems to be no seen logical reason for any interaction 

between pulp density and substrate type. The statistical significance of the interaction 

effect was yet to be determined in the subsequent optimisation test works (Chapter 7). 

 

5.3.3 Leaching Profile 

 

Nickel laterites bioleaching results for the eight experimental runs of the basic design 

(Table D1) are shown in Figure 5.12. In this plot a great deal of scattered data among 

experimental runs is observed. This shows that there is still a great deal of variability 

that exists among the effects of factors considered in this study. The reduction in 

recoveries in some cases can be attributed to the precipitation of nickel ions. A 

similar leaching profile (Figure 5.13) was observed during bioleaching in the                

fold-over design (Table D2). 
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Figure 5.12. Plot of nickel recovery versus leaching time (basic design) 

 

Figure 5.13. Plot of nickel recovery versus leaching time (fold-over design) 
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5.4 Summary and Conclusions 

 

The purpose of the characterisation or diagnostic two-level quarter fractional design 

presented in this chapter was to obtain experimental data to serve as an initial 

approach to the final optimisation that is presented subsequently in Chapter 7; 

establishing which factors had significant effects on response (nickel recovery) and 

whether these effects were positive or negative. The factors investigated under this 

chapter included pulp density, particle size, pH, size of bacterial inoculum and 

substrate type. At this stage, factors were studied at their maximum and minimum 

levels. The experimental results were analysed statistically for the significance of the 

factors using the probability plots.  

 

The results obtained indicated the following:- 

• The statistical method and experimental design approach selected have been able 

to satisfactorily help in determining statistically significant and insignificant 

factors.  

• The fold-over design tests provided clarity of results on the main effects ensuring 

that the main factors were not confounded with statistically insignificant two              

factor-level interactions. 

• Inoculum size was not statistically significant while the rest of the factors were 

statistically significant, meaning that the initial inoculum size did not significantly 

influence or affect the nickel recovery process.  It also meant that pulp density, 

particle size, pH and substrate type had significant influence on the nickel 

recovery process. 

• Under the ranges studied, the interaction between most of the variables was found 

to be statistically insignificant, except that between pulp density and substrate 

type, which showed a marked influence on the nickel recovery process.  
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• The results also showed that nickel recovery was maximized at low pH and low 

pulp density values. Thus, low pH environments and low pulp density are desired 

for optimal nickel recovery. 

• In the range studied, particles of less than 38µm, although having a high content 

of nickel, had a negative influence on the nickel recovery process in terms of the 

final yield. Larger particles in the range of 100-150 µm, on the other hand, gave 

higher recovery.  

• Sulphur substrate exhibited better effects than pyrite in terms of acidification (H+ 

ions production) and nickel recovery processes. The low pH obtained with the 

sulphur substrate indicated a production of acid which enhanced the recovery of 

nickel as compared to the pyrite substrate. For the test conditions considered in 

this study and for this kind of nickel recovery process, this finding signifies that 

sulphur is ultimately a better substrate than pyrite. 

• Sulphur substrate gave higher optical density reading than pyrite substrate. This 

shows that there was a higher microbial activity in the presence of sulphur 

substrate than pyrite substrate.  

• The large ratio of the sum of pure quadratic (SSPE) and error (σ2) indicated that 

there was a possibility of curvature; so, to estimate not only linear effects but, also 

quadratic effects and to build response surfaces for maximal nickel recovery in 

the region defined by the characterisation or diagnostic tests, a new experimental 

design during the optimisation stage in Chapter 7 was carried out. 

 

The next chapter (Chapter 6) focuses on studying the effect of pH on substrate type 

(sulphur and/ or pyrite) in the bacterial leaching of nickel laterites. 
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_________________________________________________________________ 

CHAPTER 6 

 

 

EFFECT OF INITIAL pH ON SUBSTRATE TYPE 

_________________________________________________________________ 

 

“Theory guides, experiment decides”. 

 

- I. M. Kolthoff 
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6.1 Introduction 

 

pH is an important parameter that can be utilized to determine the extent to which 

nickel laterites dissolve. It also determines the diversity of the microorganisms in a 

colony. The solution pH in a given bioleaching operation is determined by the 

balance between the acid-producing and acid-consuming reactions. Reduced 

inorganic sulphur compounds that are exclusively oxidised by acidophilic 

chemolithotrophic microorganisms for their energy supply produce sulphuric acid 

(Rossi, 1990). The aim of this particular work contained in this chapter was to 

investigate the pH requirements for the bacterial leaching of nickel laterites using a 

mixed culture of chemolithotrophic microorganisms in the presence of externally 

added elemental sulphur and pyrite as substrates. 

 

6.2. Materials and methods 

 

6.2.1. Ore Samples and Preparation 

 

The nickel ore was crushed and was classified into +63-75µm size fractions using 

standard sieve plates. This size range was used because it represented most of the 

nickel laterite material in terms of mass (Table B3). The chemical composition of 

nickel was determined prior to chemical leaching experiments. The typical chemical 

composition of various oxides in the laterite ore used is given in Appendix B. 

 

6.2.2. Microbes  

 

The bacteria and growth media used were described previously in sections 3.3.2 and 

3.3.1 of Chapter 3, respectively. 
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6.2.3. Experimentation 

 

Bioleaching experiments were carried out in 250-ml Erlenmeyer flasks with 100mls 

of slurry (mixture of 5g nickel laterite ore and 100-mls of medium) together with an 

appropriate amount of sterilised energy sources (30% w/w elemental sulphur and 56 

% w/w pyrite to that of nickel laterite). These quantities of energy sources were 

chosen so as to have the same sulphur content in both elemental sulphur and pyrite. 

Initially, pyrite was crushed and finely ground (Chapter 3, Section 3.2.1). The slurries 

were inoculated with 10% (v/v) mixed bacterial culture. Following lack of statistical 

significance of the inoculum size (Chapter 5, Section 5.3.1), 10% was chosen as the 

average of the low and high levels tested (Chapter 5, Table 5.1).  The pH of the 

mixtures was adjusted to 1.0, 1.5, 2.0 and 2.5, respectively. These pH ranges (i.e. pH 

<3) were chosen because they are known to optimize the growth of acidophilic 

microorganisms (Norris and Johnson, 1998). Some experiments were also run at 

initial pH of 1.5 using fresh liquid medium with an appropriate amount of sterilised 

energy sources but without the inoculation of bacteria for comparison with inoculated 

experiments. Un-inoculated distilled water and nutrient media were run as sterile at 

an initial pH of 1.5.  

 

The flasks were covered with pieces of aluminium foil to reduce evaporation and 

prevent contamination but allow free supply of air, and then incubated in a platform 

shaking incubator at 30°C and 190 rpm. The pH profiles and redox potentials of the 

leach solution were measured but not controlled through out the leach period using 

744 pH meter Metrohm. Samples were drawn from flasks every three days to 

determine the concentration of metals dissolved using the Varian SpectrAA-55B 

atomic absorption spectrophotometer.  
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6.3. Results and Discussion 

 

6.3.1. Effect of pH and Reduction Oxidation Potential on the Bioleaching of Nickel 

Laterites 

 

For the results discussed in this section reference should be made to the experimental 

data in Appendix E (Tables E1-E4). The results discussed are an average of the runs 

conducted under similar experimental conditions. 

 

The dissolution of nickel laterites was dependent on the initial pH (Figures 6.1 and 

6.2). Higher recoveries were observed at lower pH; although there was a general 

increase in the rate of nickel dissolution with time for all pH levels.  

 

 

Figure 6.1.  Effect of pH on the leachability of nickel laterite with sulphur substrate 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Six – Effect Of Initial pH On Substrate Type Page 89 
 

 

Figure 6.2. Effect of pH on the leachability of nickel laterites with pyrite substrate 

 

The graphs also show that there was a high step change in the nickel recovery for the 

pH of 2.5. This was attributed to the higher rate of acidification at this pH level. 

Previous studies have shown that higher rates of acidification imply that there were 

higher microbial activities (Rossi 1990; Hanford and Vargas, 2001; Schippers and 

Sand, 1999). Acidification in this context means production of H+ ions. The 

production of H+ ions is depicted by the pH drop, and that pH is a measure of 

concentration of H+ ions (i.e. pH = -log10[H
+]). Higher recoveries were observed for 

sulphur substrate than for pyrite substrate at all pH levels after two weeks (Figures 

6.3-6.6). However, recoveries were higher for the pyrite substrate in the first two 

weeks.  



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Six – Effect Of Initial pH On Substrate Type Page 90 
 

 

Figure 6.3. Dissolution rates of nickel laterites as a function of substrate type at initial 

pH of 1.0  

  

 

Figure 6.4. Dissolution rates of nickel laterites as a function of substrate type at initial 

pH of 1.5 

 

In the initial stages, it is expected that the bacteria are not very active; so abiotic 

oxidation of the substrates is supposedly dominant. At acidic pH levels, elemental 

sulphur is inert to abiotic oxidation, although other species such as thiosulphate and 

tetrathionate are oxidised abiotically to sulphate (Schippers and Sand, 1999; 

Rohwerder et al., 2003).  
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Pyrite is oxidised by ferric ions via the thiosulphate route producing sulphuric acid 

(Schippers and Sand, 1999); thus pyrite had higher pH drops (Figure 6.9) and higher 

recoveries (Figures 6.3-6.6) initially. Figure 5.9 shows that bacterial concentration 

was higher for sulphur substrate than pyrite in the beginning. This shows that abiotic 

oxidation was more important than biotic oxidation in the beginning. These 

observations, therefore, have shown that a period of more than two weeks is an 

effective duration for the bacterial leaching of nickel laterites. 

 

 

Figure 6.5. Dissolution rates of nickel laterites as a function of substrate type at initial 

pH of 2.0 
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Figure 6.6. Dissolution rates of nickel laterites as a function of substrate type at initial 

pH of 2.5 

 

The inoculated slurry in all cases resulted in a decrease in pH (Figure 6.7 and 6.8). 

The low pH is attributed to the oxidation of elemental or reduced sulphur to sulphuric 

acid by the leaching bacteria (Equations 2.2-2.5 of Chapter 2). The results in Figure 

6.7 through 6.10 also show that the pH decreased rapidly at higher initial pH, 

2.5>2.0>1.5>1.0. This can be attributed to either; (1) the bacteria were naturally 

inactive at the low pH or, (2) metal toxicity due to higher metal recoveries (due to 

initial rapid chemical leaching) at low pH. Further more, at higher pH both elemental 

sulphur and ferrous iron are oxidised abiotically at significant rates (Rohwerder et al., 

2003). This trend in pH changes was also observed during the identification of 

influential factors (Chapter 5, Section 5.3.2). 
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Figure 6.7. Evolution of pH with time for sulphur substrate 

 

 

 

Figure 6.8. Evolution of pH with time for pyrite substrate 
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Apart from a pH of 2.5, an initial rise in pH in the first three to ten days was observed 

in all other cases (i.e. initial pH 1.0, 1.5, 2.0), implying that the bacterial activity was 

very low or completely absent during that time (Figure 6.7 and 6.8). The pH drop for 

all the pH tested (i.e. initial pH 1.0, 1.5, 2.0, 2.5) was initially higher for pyrite than 

sulphur (Figure 6.9).  

 

The subsequent pH drop was higher for sulphur substrate than pyrite at the same 

initial pH, implying higher rate of acidification with sulphur substrate (Figure 6.10). 

The results of the differences in pH drops can also be seen in the recoveries, being 

initially higher for pyrite and subsequently higher for sulphur (Figures 6.3-6.6). 

 

 

Figure 6.9. pH drop for sulphur and pyrite substrates in a week  
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Figure 6.10. pH drop for sulphur and pyrite substrates in a month 

 

The higher rate of acidification can be considered as an indicator of the higher 

microbial activities in the leaching media (Rossi 1990; Hanford and Vargas, 2001; 

Schippers and Sand, 1999).  A higher microbial activity with sulphur was also 

observed previously (Chapter 5, Figure 5.9) and was explained as being due to more 

energy gained from oxidation of sulphur compared to the oxidation of pyrite 

(Rawlings et al., 1999; Yu et al., 2001).  

 

The changes in oxidation reduction potential (ORP) during microbial leaching are 

shown in Figures 6.11 and 6.12. The opposite trends to that of pH were observed 

from these figures.  The observed ORP of the solution is highly dependent on a 

number of parallel reactions. The figures show that ORPs were higher at lower initial 

pHs, implying higher ionic activities at the lower pHs. The higher ionic activities 

were attributed to the higher recoveries at these pHs.  The figures also show that the 

rate of change of ORP was higher at an initial pH of 2.5. 
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Figure 6.11. Evolution of ORP with time for sulphur substrate 

 

 

 

Figure 6.12.  Evolution of ORP with time for pyrite substrate 
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6.3.2. Effect of Media Composition on the Changes in pH and Oxidation Reduction 

Potential 

 

For the results discussed in this section reference should be made to the experimental 

data in Appendix E (Tables E3-E4). The results discussed are an average of the runs 

conducted under similar experimental conditions. 

 

Figures 6.13 and 6.14 show the effects of different media composition on pH and 

ORP, respectively. It is observed in Figure 6.13 that for inoculated experiments, there 

was a slight increase of pH initially and a subsequent decrease of pH thereafter. This 

was most likely due to the predominance of abiotic oxidation process initially. Even 

though acid production took place in the long term through the subsequent 

bioxidation of sulphur and pyrite, the initial net leaching process was likely acid 

consuming and hence the initial pH rise.  

 

Figure 6.13. Evolution of pH with time at initial pH of 1.5 for different media 

compositions 
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Figure 6.14. Evolution of ORP with time at initial pH of 1.5 for different media 

composition 

 

In sterile controls (acidified distilled water and sterilised media with no cells), the pH 

decrease was not observed. An initial rise and final decrease in pH was observed in 

experiments where un-inoculated sulphur and pyrite media were used. However, the 

pH decrease for these un-inoculated media was still lower than the inoculated media. 

This shows the efficacy of the presence of bacteria in the production of acid leading 

to pH reduction. The pH drop observed with un-inoculated pyrite media can be 

attributed to the slow pyrite oxidation by oxygen in the presence of water forming 

ferrous iron and sulphate (Larsson et al., 1990) according to Equation (6.1) below. 

Sulphur was also assumed to be slowly oxidised by oxygen in the presence of water 

(Hanford and Vargas, 2001) according to Equation (6.2) below.  

 

2FeS2 + 7O2 + 2H2O  →  2Fe2++ 4SO4
2-+ 4H+   (6.1) 
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0.125S8 + 1.5O2 + H2O →   SO4
2- + 2H+          (6.2) 

 

Figure 6.14 shows that higher ORPs were obtained with inoculated media than sterile 

media. The metal ion recoveries are high with inoculated media than sterile media, 

thus implying higher ionic activities in the inoculated media. The ORP, which in the 

framework of this study, is a measure of the activities or strength of metal ions in 

relation to their concentration, is thus higher in the inoculated media. 

 

6.4. Summary and Conclusions 

 

This chapter investigated the pH requirements for the bacterial leaching of nickel 

laterites using a mixed culture of chemolithotrophic microorganisms in the presence 

of externally added sulphur containing material (elemental sulphur and pyrite). The 

bacterial oxidation of sulphur and pyrite produces sulphuric acid, which dissolves 

nickel laterite to yield the required nickel metal.  

 

The results presented in this chapter show that dissolution rates of nickel laterite were 

high in low pH and high ORP, and in the presence of bacteria. However, the study 

showed that microbial activities, depicted by acidification were lower at lower initial 

pH levels. Although un-inoculated media with energy sources appeared to induce 

acidification, this was less than that in active bacterial cultures. This shows that under 

similar conditions, an inoculated media is more effective than an un-inoculated 

media.  

 

This chapter has also shown the relationships between bacterial activities, depicted by 

acidification, and type of substrate. The recoveries were initially higher for pyrite and 

subsequently higher for sulphur at all the initial pH levels studied. The test results and 

the high nickel recovery yield demonstrated that sulphur was more effective as a 

substrate than pyrite.  
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Having found sulphur substrate to be more effective, the next chapter focuses on 

optimizing the pH, pulp density and particle sizes. The study in the next chapter will 

be undertaken using statistically-based optimization strategy called response surface 

methodology. 
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____________________________________________________________________ 

CHAPTER SEVEN 

 

 

OPTIMISATION OF INFLUENTIAL FACTORS   

____________________________________________________________________ 

 

“If your experiment needs statistics, then you ought to have done a better 

experiment”. 

 

-Ernest Rutherford (Nobel Prize for Chemistry 1908) 
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7.1. Introduction 

 

The purpose of many simulation tasks in engineering is to develop a predictive model 

that can be used to improve a process, and the improvement depends mainly on 

optimization strategies used in a specific process (Edgar and Himmelblau, 1988). 

Optimisation can be defined as a process of improving an existing situation, device, 

or system such as a metallurgical process. It consists of finding the best solution to 

the process within the given constraints. In fact, process optimisation is essential for 

gaining and maintaining a competitive edge in today’s world of intense financial 

competition. 

 

There are essentially two types of optimization that a metallurgical engineer needs to 

consider; the first which is termed topological optimization deals with the topology or 

the arrangement of the process equipment. The second type termed parametric 

optimization is concerned with the operating variables such as pH, temperature, 

pressure, particle sizes, and pulp density of streams for a given piece of equipment or 

process (Edgar and Himmelblau, 1988).  

 

Unfortunately several popular optimisation methods usually do not work very well 

(Öberg and Deming, 2000). They either rely on the classical one parameter at a time 

approach that ignores the combined interactions between physicochemical parameters 

or are theoretical in nature. In this particular study, parametric optimisation was 

considered using a statistically-based optimisation strategy called response surface 

methodology (RSM) to determine the optimum conditions of pH, pulp density and 

particle size for bacterial leaching of nickel laterites. RSM is the most popular 

technique used to find the optimal conditions by using quadratic polynomial model 

and is applied as a consequence of a screening or diagnostic experiment (Myers and 

Montgomery, 2002). The central composite rotatable design (CCRD) was used to 

collect the data for fitting the second order response. The CCRD requires much fewer 
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tests than the full factorial and has been shown to be sufficient to describe the 

majority of steady-state responses (Obeng et al., 2005). A CCRD consists of 2
k 

factorial or a fractional factorial points (coded ±1), augmented by 2k axial or star 

points [(±λ,0,0,…,0), (0,±λ,0,…,0)…,(0,0,…, ±λ)] and nc replicate points at the centre 

[(0,0,0,…,0)] (Oraon et al., 2006); where k is the number of factors studied, λ is 

distance of an axial point from the centre. To ensure a constant variance of the 

predicted response at all points equidistant from the design centre, the number of 

centre point replications, nc, for the three factors studied was calculated using the 

following equation (Khuri and Cornell, 1987), 

 

nc  ≈ ( )
2

20.8385 2   2   2   2
k

k
k+ − −    (7.1)  

 

The experimental results were analysed statistically by the analysis of variance 

(ANOVA) using Fisher’s variance ratio test (F-test); standard errors of model 

coefficient (t-test), the coefficient of determination (R2) and the absolute average 

deviation (AAD).  

 

7.2.  Materials and methods 

 

7.2.1.  Ore samples and Preparation 

 

The ore was crushed and sized using the screen sizes given in Tables 7.2 and 7.3. The 

typical chemical composition of various oxides in the laterite ore used is given in 

Appendix B.  
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7.2.2.  Microbes  

 

The bacteria and growth media used were described previously in sections 3.3.2 and 

3.3.1 of Chapter 3, respectively. Elemental sulphur was used as substrate for the 

bacteria because it gave better effects than pyrite as described in section 7.2.3.  

 

7.2.3. Experimental Design for the Response Surface Methodology and 

Central Composite Design 

 

In previous studies during the preliminary investigations into this research (Simate 

and Ndlovu, 2007; Simate and Ndlovu, 2008; Chapter 5 of this dissertation), it was 

identified that pH, particle size, pulp density and substrate type were statistically 

significant operating parameters, while bacterial inoculum size was not statistically 

significant. Follow up studies also showed that using sulphur substrate as an energy 

source for bacteria resulted in better nickel recoveries compared to using pyrite 

(Chapter 6).  Response surface methodology and central composite rotatable design 

have been used in this study in an attempt to determine the optimal conditions of pH, 

pulp density and particle size for bacterial leaching of nickel laterites.  

 

Table 7.1. Relationship between coded and actual values of the variable (Napier-Munn, 

2000) 
Code Actual value of a factor 
- λ 

minx  

-1 
max min max min(  + ) (  )

2 2

x x x x

λ

−
−  

0 
max min(  + )

2

x x
 

+1 
max min max min(  + ) (  )

2 2

x x x x

λ

−
+  

+ λ 
maxx  

maxx and minx  are the maximum and minimum values of the natural variables respectively, λ = 

(2k-q
)
1/4 for a CCRD, k = number of factors studied, -q = fraction of the number of factors (where q = 0 

for full factorial design). 
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To simplify the calculations and for uniform comparison, factors were studied with 

their codified values. The five levels of each factor shown in real and coded values 

calculated using the relationships in Table 7.1 are shown in Table 7.2.  

 

Sulphur substrate having been significant in the previous study was taken as a held-

constant qualitative factor. The major objective of the response surface methodology 

was to develop the optimum conditions so as to maximize the solubilisation of nickel 

laterites using a mixed culture of chemolithotrophic bacteria (Acidithiobacillus 

ferrooxidans, Acidithiobacillus caldus and Leptospirillum Ferrooxidans). Therefore, 

the recovery (conversion) of nickel was taken as the desired goal (response).  

 

Table 7.2. Experimental layout and runs for the central composite rotatable design 

Standard 
Runs 

Coded values of variables Actual levels of variables 
pH Pulp 

density 
Particle size pH Pulp 

density 
Particle size 

Factorial points 
1 -1 -1 -1 1.5 5 38-75µm 
2 +1 -1 -1 3.0 5 38-75µm 
3 -1 +1 -1 1.5 12 38-75µm 
4 +1 +1 -1 3.0 12 38-75µm 
5 -1 -1 +1 1.5 5 106-150µm 
6 +1 -1 +1 3.0 5 106-150µm 
7 -1 +1 +1 1.5 12 106-150µm 
8 +1 +1 +1 3.0 12 106-150µm 
Axial points       
9 - 1.682 0 0 1.0 9 75-106µm 
10 + 1.682 0 0 3.5 9 75-106µm 
11 0 - 1.682 0 2.3 2 75-106µm 
12 0 + 1.682 0 2.3 15 75-106µm 
13 0 0 - 1.682 2.3 9 <38µm 
14 0 0 + 1.682 2.3 9 150-212µm 
Centre points 
15 0 0 0 2.3 9 75-106µm 
16 0 0 0 2.3 9 75-106µm 
17 0 0 0 2.3 9 75-106µm 
18 0 0 0 2.3 9 75-106µm 
19 0 0 0 2.3 9 75-106µm 
20 0 0 0 2.3 9 75-106µm 
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 In Table 7.2, the experimental layout and standard runs for the central composite 

rotatable design are outlined. Six centre point replications were deduced from 

Equation (7.1). 

 

For the three variables under consideration, a second order polynomial regression 

model has been proposed as follows:- 

 

y = 
3 3 3 3

2
0

1 1 1 1

 +  +  + 
i i ii i ij i j

i i i j i

X X X Xβ β β β
= = = = +

∑ ∑ ∑∑  + ε   (7.2) 

where y  is the predicted response, 0β is the coefficient for intercept, 
iβ  is the 

coefficient of linear effect, 
iiβ  is the coefficient of quadratic effect, 

ij
β  is the 

coefficient of interaction effect, ε is the term that represents other sources of 
variability not accounted for by the response function, and iX  and

j
X  are 

coded independent variables. 
 

The coefficients of the regression model were estimated by fitting the experimental 

results in Table (7.3) using MATLAB R2006a software. 

 

7.2.4.  Experimentation 

 

In each experiment, an appropriate amount of nickel laterite ore was added to 100mL 

of medium to obtain the required pulp density. The slurries were inoculated with 10% 

(v/v) mixed bacterial culture and the pH of the mixtures were adjusted according to 

the experimental design (Table 7.2). 10% w/v elemental sulphur was used as a 

substrate in each experiment. The flasks were covered with pieces of aluminium foil 

to reduce evaporation and prevent contamination but allow free supply of air. The 

flasks were then incubated in a platform shaking incubator at 30°C and 200 rpm. The 

samples were drawn from flasks every three days to determine the concentration of 

nickel dissolved using the Varian SpectrAA-55B atomic absorption 

spectrophotometer (AAS). 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Chapter Seven – Optimisation Of Influential Factors Page 107 
 

7.3  Results and Discussion 

 

 

7.3.1.  Derivation of the Fitted Model 

 
For the results discussed in this section reference should be made to the experimental 
data in Appendix F (Tables F1-F2). The results discussed are an average of the runs 
conducted under similar experimental conditions. The detailed statistical and 
mathematical methods used in the analysis of data in this optimisation study are given 
in Appendix H. Matlab programs are also given in Appendix I. 
 
In matrix notation (Khuri and Cornell, 1987), the proposed model form (Equation 
7.2) is expressed over the N=20 actual observations in Table 7.3, as 
 

y   = X β  + ε 
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The normal equations are, 

 

                             XTX               β         XTY 

20.0     0       0        0      13.7   13.7   13.7    0     0      0

          13.7    0        0        0         0       0       0     0      0 

                   13.7     0        0         0       0       0     0      0

                             13.7     0         0       0       0     0      0

              (Symmetric)     24.0     8.0    8.0     0     0      0

                                                  24.0   8.0     0     0      0 

                                                            24.0   0     0      0

                                                                     8.0   0      0

                                                                            8.0    0

                                                                                   8.0

 















0

1

2

3

11

22

33

12

13

23

 =

β

β

β

β

β

β

β

β

β

β

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

1224.9

33.8

77.9

67.7

861.0
  

892.7

760.6

7.9

6.5

9.7

  
  −  
  −
  

−  
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  
  
  −  
  −  

 

 

 The solutions to the normal equation are: 

 

     β   =                         (XTX)-1                                             XTY 

61.0

2.5

5.7

4.9

1.6
=

3.5

4.7

1.0

0.8

1.2

 
 − 
 −
 
− 
 
 
 
 −
 
 
 −
 
 − 

0.166     0       0        0     -0.056   -0.056   -0.056    0       0      0

          0.073    0        0        0            0            0        0       0      0 

                   0.073     0        0            0            0        0       0      0

                             0.073     0            0            0        0       0      0

              (Symmetric)     0.069       0.007    0.007    0       0      0

                                                       0.069    0.007    0       0      0 

                                                                    0.069    0       0      0

                                                                               0.125  0      0

                                                                                      0.125   0
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Table 7.3. Observed values for the nickel recovery 

 

Standard 

Runs 

Actual levels of variables % Recoveries 

pH Pulp 

density 

Particle 

size 

Observed 

Factorial points    

1 1.5 5 38-75µm 71.7 

2 3.0 5 38-75µm 63.4 

3 1.5 12 38-75µm 63.1 

4 3.0 12 38-75µm 54.4 

5 1.5 5 106-150µm 68.3 

6 3.0 5 106-150µm 52.4 

7 1.5 12 106-150µm 50.5 

8 3.0 12 106-150µm 42.9 

Axial points    

9 1.0 9 75-106µm 67.7 

10 3.5 9 75-106µm 71.7 

11 2.3 2 75-106µm 85.1 

12 2.3 15 75-106µm 65.5 

13 2.3 9 <38µm 60.6 

14 2.3 9 150-212µm 43.3 

Centre points    

15 2.3 9 75-106µm 66.8 

16 2.3 9 75-106µm 68.3 

17 2.3 9 75-106µm 55.4 

18 2.3 9 75-106µm 59.5 

19 2.3 9 75-106µm 60.4 

20 2.3 9 75-106µm 53.9 
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The fitted second order model is: 

 

2 2
1 2 3 1 2

2
3 1 2 1 3 2 3

y = 61.0 2.5 5.7 4.9 1.6  3.5

      4.7 1.0 0.8 1.2  

x x x x x

x x x x x x x

− − − + + −

+ − −
    (7.3) 

 

within the limits:  - λ ≤ ix ≤ + λ; i  = 1, 2, 3; where ix  are the coded levels of process 

variables and λ = 1.682 is the distance of the star points from the centre of the CCRD 

that gives the limits of the valid region under experimentation. 

 

7.3.2  Checking the Adequacy of the Developed Model 

 

The adequacy of the fitted model was carried out using the Fisher’s variance ratio test 

known as the F-test and the Student t-tests. The ANOVA for the fitted model is given 

in Table 7.4.  

 

Table 7.4. ANOVA for the fitted model 

Variation Sum of 

squares 

Degree of 

freedom 

Mean sum of 

squares 

F-test 

Regression 1482.00 9 164.67 3.32 

Residual 495.36 10 49.54 - 

Lack of fit 325.58 5 65.12 1.92 

Pure error 169.78 5 33.96 - 

Total 1977.30 19 104.07 - 

 

The lack of fit was tested using the ratio of the mean sum of squares for lack of fit 

and pure error given as 1.92. This is smaller than the 0.05,5,5F value of 5.05; implying 

that the model does not present any evidence of lack of fit.  The significance of the 

regression model was tested using the ratio of the mean sum of squares for regression 
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and residual. The value of 3.32 is greater than the table 0.05,9,10F  value of 3.02; 

implying that the regression is significant at a confidence level of 95%.  

 

The effects and significance of the individual terms (both significant and 

insignificant) in the response surface model are shown in Table 7.5. 

 

Table 7.5. Regression coefficients for fitted model 

Term Coefficient est.se. ( iβ ) Degree of 

freedom 

t-test 

0β  61.0 2.870 10 21.240 

1x
β  -2.5 1.904 10 -1.899 

2x
β  -5.7 1.904 10 -2.994 

3x
β  -4.9 1.904 10 -2.599 

2
1x

β  1.6 1.854 10 1.847 

2
2x

β  3.5 1.854 10 1.914 

2
3x

β  -4.7 1.854 10 -2.538 

1 2x x
β  1.0 2.488 10 0.397 

1 3x x
β  -0.8 2.488 10 -0.327 

2 3x x
β  -1.2 2.488 10 -0.487 

 

Testing the null hypothesis, 0H : iβ  = 0, against the alternative hypothesis, aH : iβ  > or 

< 0, at a confidence level of 95% gives the table 0.05,10t value of 1.812. It can be 

deduced, therefore, from Table 7.5 that the constant term ( 0β ), all linear terms 

(
1x

β ,
2x

β ,
3x

β ) and the quadratic terms ( 2
1x

β , 2
2x

β , 2
3x

β ) are significant at 95% 

confidence level. It is also shown that the interaction terms (
1 2x x

β ,
1 3x x

β ,
2 3x x

β ) are 
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statistically insignificant. However, it must be stated here that significance in this 

context refers to the plausibility of the effect in the light of the data. In other words, a 

particular effect may be statistically insignificant but scientifically important and vice 

versa. 

 

To obtain a simple and yet realistic model, it was refitted using only the variable 

terms that are significant at greater or equal to 95% confidence level. Results of the 

refits are given in Table 7.6 and 7.7.   

 

The refitted second order model is: 

 

2 2 2
1 2 3 1 2 3y = 61.0 2.5 5.7  4.9 1.6  3.5 4.7  x x x x x x− − − + + −   (7.4) 

 

The lack of fit was tested using the ratio of the mean sum of squares for lack of fit 

and pure error given as 1.29. This is smaller than the table 0.05,8,5F value of 4.82; 

implying that the model does not present any evidence of lack of fit.  The significance 

of the refitted regression model was tested using the ratio of the mean sum of squares 

for regression and residual. The obtained value of 6.07 is greater than the table 

0.05,6,13F  value of 2.92; implying that the regression is significant at a confidence level 

of 95%.  

 

The coefficient of determination at 73.7% and the smaller value of absolute average 

deviation analysis at 7.4% show that the model is plausible, from a statistical point of 

view, to define the true behavior of the experimental system. This means that the 

nickel recovery values at any regime in the interval of the experimental design can be 

calculated from Equation 7.4.   
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The ANOVA for the refitted model is given in Table 7.6. The effects and significance 

of the individual terms in the refitted response surface model are shown in Table 7.7. 

 

 Table 7.6. ANOVA for the refitted model 

Variation Sum of squares Degree of 

freedom 

Mean sum of 

squares 

F-test 

Regression 1457.10 6 242.85 6.07 

Residual 520.20 13 40.02 - 

Lack of fit 350.43 8 43.80 1.29 

Pure error 169.78 5 33.96 - 

Total 1977.30 19 104.07 - 

 

 

Table 7.7. Regression coefficients for refitted model 

Term Coefficient est.se. ( iβ ) Degree of 

freedom 

t-test 

0β  61.0 2.580 13 23.652 

1x
β  -2.5 1.711 13 -2.004 

2x
β  -5.7 1.711 13 -3.331 

3x
β  -4.9 1.711 13 -2.892 

2
1x

β  1.6 1.666 13 1.842 

2
2x

β  3.5 1.666 13 2.130 

2
3x

β  -4.7 1.666 13 -2.824 

 

Testing the null hypothesis, 0H :
iβ  = 0, against the alternative hypothesis, ,

aH :
iβ  > 

or < 0, at a confidence level of 95% gives the table 0.05,13t value of 1.771. It can be 
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deduced, therefore, from Table 7.7 that the constant term ( 0β ), all linear terms 

(
1x

β ,
2x

β ,
3x

β ) and the quadratic terms ( 2
1x

β , 2
2x

β , 2
3x

β ) are significant at 95% 

confidence level. 

 

Experimental results and predicted values obtained using the refitted model are given 

in Table 7.8. As can be seen from Figure 7.1, the predicted values are plausibly 

comparable to the experimental values, with the linear correlation coefficient (R2) of 

0.74. Statistically, this means that 74% of the sample variation can be explained by 

the independent variables. 

 

 

Figure 7.1. Relationship between experimental and predicted nickel recovery 
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Table 7.8. Observed and predicted values for the nickel recovery 

Standard 

Runs 

Actual levels of variables % Recoveries 

pH Pulp 

density 

Particle size Observed Predicted 

Factorial points     

1 1.5 5 38-75µm 71.7 74.5 

2 3.0 5 38-75µm 63.4 69.6 

3 1.5 12 38-75µm 63.1 63.1 

4 3.0 12 38-75µm 54.4 58.2 

5 1.5 5 106-150µm 68.3 64.6 

6 3.0 5 106-150µm 52.4 59.7 

7 1.5 12 106-150µm 50.5 53.2 

8 3.0 12 106-150µm 42.9 48.3 

Axial points     

9 1.0 9 75-106µm 67.7 69.6 

10 3.5 9 75-106µm 71.7 61.2 

11 2.3 2 75-106µm 85.1 80.6 

12 2.3 15 75-106µm 65.5 61.4 

13 2.3 9 <38µm 60.6 56.0 

14 2.3 9 150-212µm 43.3 39.3 

Centre points     

15 2.3 9 75-106µm 66.8 61.0 

16 2.3 9 75-106µm 68.3 61.0 

17 2.3 9 75-106µm 55.4 61.0 

18 2.3 9 75-106µm 59.5 61.0 

19 2.3 9 75-106µm 60.4 61.0 

20 2.3 9 75-106µm 53.9 61.0 

 

7.3.3.   Response Surfaces 

  

Figures 7.2 through 7.4 show the three-dimensional surfaces as well as contour plots 

of the relationship between 2x  and 3x ; 1x  and 3x ; 1x  and 2x  when the values of 1x , 2x  
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and 3x , respectively, are held constant at the central level. This means that Equation 

7.4 becomes: 

   

2 2
2 3 2 3y = 61.0 5.7 4.9 +3.5 4.7  x x x x− − − ,when 1x =0, 2x  and 3x =-1.682, -1, 0, 1, 1.682 

2 2
1 3 1 3y = 61.0 2.5 4.9 +1.6 4.7  x x x x− − − ,when 2x =0, 1x  and 3x =-1.682, -1, 0, 1, 1.682 

2 2
1 2 1 2y = 61.0 2.5 5.7 +1.6 +3.5  x x x x− − ,when 3x =0, 1x  and 2x  = -1.682, -1, 0, 1, 1.682 
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Figure 7.2. Response surface and contour plots at constant pH 
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Figure 7.2 shows the effect of pulp density and particle size on nickel recovery at 

constant pH. The figure shows that with decrease in particle size, the nickel recovery 

increases with a decrease in pulp density. The effect of particle size can be explained 

by the fact that a decrease in particle size increases the surface area of the particles 

that helps in increasing the specific contact area with the lixiviant. At low pulp 

density there is effective homogeneous mixing of solids and liquid leading to good 

mass transfer hence increased nickel recoveries.   
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Figure 7.3. Response surface and contour plots at constant pulp size 
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Figure 7.3 shows the effect of pH and particle size on nickel recovery at centre level 

of pulp density. From Figure 7.3, it can be observed that the nickel recovery increases 

with reduction in both pH and particle size. At low pH, the concentration of acid (H+ 

ions) is also expected to be high (pH = -log10[H+]). It is the H+ ions that are assumed 

to induce the nickel dissolution (Simate and Ndlovu, 2008). Figures 7.2 and 7.3 also 

show that the nickel recovery depends more on the particle size than on pulp density 

and pH, respectively. This is because particle size affect both the percentage of nickel 

in the ore and survival of the microorganisms (Simate and Ndlovu, 2008; section 

5.2.2 of Chapter 5 in this dissertation). Smaller particles had higher nickel content 

compared to larger particles (Appendix A). In addition, particle sizes affect the 

physical structure of cells due to attrition (Nemati et al., 2000), and also affect the 

ability of the bacteria to attach to the substrates due to increased particle-to- bacteria 

collisions (Acevedo et al., 2004). These observations indicate that the choice of 

suitable particle size is paramount in the bacterial leaching of nickel laterite ore in 

this study.  

 

Figure 7.4 shows the effect of pH and pulp density on nickel recovery at a centre 

level of particle sizes. As the figure shows, nickel recovery increases with a decrease 

in both pH and pulp density.  
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Figure 7.4. Response surface plot and contour plots at constant particle size 

 

 

7.3.4.   Determination of Optimum Conditions 

 

As mentioned in Section 7.2.3, the objective of the study in this chapter was to 

determine the conditions that maximise the recovery of nickel. Therefore, after the 

fitted model was checked for adequacy of fit in the region defined by the coordinates 

of the design and was found to be adequate, the model was used to locate the 

coordinates of the stationary point (Khuri and Cornell, 1987). To obtain the 
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coordinates of the stationary point, the fitted second order model in k-variables was 

written in matrix notation (Khuri and Cornell, 1987; Myers and Montgomery, 2002; 

Montgomery, 2005). Therefore, in order to determine the conditions at the stationary 

point, Equation (H22) in appendix H was employed, i.e. sx  = -
1

2

bβ −

, where in this 

study,  

b  = 

2.5

5.7   

4.9

− 
 − 
 − 

and β  = 

1.6       0      0

0       3.5     0

0     0    4.7

 
 
 
 − 

 

 

The conditions in coded units are 1x  = 0.7813, 2x  = 0.8143 and 3x  = -0.5213 giving a 

recovery of 57.0 %. The stationary point lies within the limits of the region of interest 

in this study, - 1.682 ≤ ix ≤ + 1.682; i  = 1, 2, 3; where ix  are the coded levels of 

process variables.  

 

The canonical analysis was used to determine the nature of the stationary point of the 

objective function (Equation 7.4).   In Appendix H, the formulae for determining the 

canonical coefficients are outlined. In the case of this study, β =

1.6       0      0

0       3.5     0

0     0    4.7

 
 
 
 − 

, and 

the characteristic roots or eigenvalues of β , using MATLAB R2006a software are 

3.5, 1.6 and -4.7.  Therefore, the canonical equation is: 

 

 ŷ = 57.0 + 3.5 2
1W  + 1.6 2

2W  - 4.7 2
3W                                         (7.5)  

  

where 1W , 2W , 3W  are canonical axes. Since the canonical coefficients have the 

mixed signs, the stationary point is a saddle point (point of inflexion) or minimax. 

Therefore, the stationary point cannot be used as the optimal solution. The potential 
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optimum conditions were determined using the constrained optimization technique 

called ridge analysis (Myers and Montgomery, 2002) as outlined in Appendix H. 

 

As mentioned earlier, the objective of this study was to determine the conditions that 

maximise the recovery of nickel. Therefore, values of µ  greater than 3.5 (the largest 

of the eigenvalues or characteristic roots) are substituted into Equation H32 in 

Appendix H. It becomes necessary, then, to solve the following matrix equation: 

 

 

 
1

2

3

1.6          0                0 1.25

0                  3.5        0   2.85  

0                  0               -4.7 2.45  

x

x

x

µ

µ

µ

−     
    − =    
    −    

 

 

Thus 

 

 

1

1

2

3

1.6          0                0 1.25

  0                  3.5        0 2.85  

0                  0               -4.7 2.45  

x

x

x

µ

µ

µ

−
−     

     = −     
     −    

 

 

and  

 

 

1

2 3 2

3

(3.5 )(4.7 )         0                0 1.25
1

  0                  (1.6 )(4.7 )       0 2.85  
( 0.4 18.37 26.32)

0                  0               (1.6 )(3.5 ) 2. 

x

x

x

µ µ

µ µ
µ µ µ

µ µ

− − +   
   = − − +   − − − +
   − −   45 

 
 
 
  
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Therefore: 

 

1 3 2

1.25(3.5 )(4.7 )

( 0.4 18.37 26.32)
x

µ µ

µ µ µ

− +
=

− − +
 

  

 2 3 2

2.85(1.6 )(4.7 )

( 0.4 18.37 26.32)
x

µ µ

µ µ µ

− +
=

− − +
    (7.6) 

 

 3 3 2

2.45(1.6 )(3.5 )

( 0.4 18.37 26.32)
x

µ µ

µ µ µ

− − −
=

− − +
 

 

Refer to Appendix H for the detailed evaluation of the inverse of the matrix. 

 

In this study, since there are three factorial points, it is assumed that the perimeter of 

the experimental design is at radius of 3  units from the design centre point. The 

optimal values of the studied variables in coded units at a radius of 3  units were 

calculated as follows: 1x  = -0.331, 2x  = -1.515 and 3x  = -0.769. The predicted 

response at this point using Equation 7.4 is 79.8%. The coded units were converted to 

actual uncoded variables by using Equation H8 in Appendix H thus giving the 

following variables; pH = 2.0, pulp density = 2.6%, particle size = 63 µ m.  

 

7.3.5 Confirmatory Experiments 

 

For the results discussed in this section reference should be made to the experimental 

data in Appendix F (Table F3). The results discussed are an average of the runs 

conducted under similar experimental conditions. 
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In order to test the validity of the optimised conditions given by the model, an 

experiment was carried out with parameters suggested by the model. The conditions 

used in the confirmatory experiment were as follows: - pH (2.0), pulp density (2.6% 

w/v), and particle sizes 53-75µm.  

 

The nickel laterite recovery after a leaching period of 26 days was found to be 74.1% 

(Table 7.9), which is consistent with the model. The model can, therefore, be 

considered to fit the experimental data very well in these experimental conditions; 

with an error margin of only 7.7%. Therefore, the formulated model is acceptably 

valid. 

   

Table 7.9. Nickel recoveries at optimal conditions 

Parameter pH Pulp density Particle size % Nickel recovery 

Model 2.0 2.6 63 79.8 

Confirmation tests 2.0 2.6 53-75µm 74.1 

 

 

7.5 Summary and Conclusions 

 

The depletion of easily processed nickel sulphides and demand for the nickel metal 

poses a challenge of finding new effective methods of nickel recovery from low grade 

ores. Solving these problems successfully requires optimisation of the 

extraction/recovery processes. Optimisation itself can be a challenging scientific and 

engineering problem. In this chapter, the effect of pH, particle size and pulp density 

on nickel recovery from nickel laterite ore was investigated using response surface 

methodology and central composite rotatable design. A second order model 

representing the nickel recovery expressed as a function of these three variables was 

developed by computer simulation programming applying least squares method using 

MATLAB R2006a. A statistical analysis (ANOVA) was carried out to study the 
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effects of the individual variables as well as their combined interactive effects on 

nickel recovery. The results showed that the effects of the individual variables and 

their quadratic terms were statistically significant whilst all the interactions among 

the variables were statistically insignificant. To obtain a simple and yet realistic 

model, it was refitted using only the significant terms. The final model validation was 

accomplished using F-distribution tests, standard errors of model coefficient 

(Student’s t-test), the coefficient of determination (R2) and absolute average deviation 

(AAD); which  guaranteed that convergence at the actual optimum experimental 

conditions was achieved.  

 

The study has shown that low pH, finer particle sizes and low pulp density resulted in 

higher yields of nickel recoveries. Response surface plots drawn for spatial 

representation of the model showed that the nickel recovery depends more on the 

particle sizes than on pH and pulp density. This is because particle sizes affect both 

the percentage of nickel in the ore and survival of the microorganisms. Smaller 

particles had higher nickel content compared to larger particles. In addition, particle 

sizes affect the physical structure of cells due to attrition, and also affect the ability of 

the bacteria to attach to the substrates due to particle-to- bacteria collisions.            

 

Under the experimental conditions considered, the set of conditions that produce the 

optimum nickel recovery (79.8%) were found to be a pH of 2.0, 63µm particle size, 

and 2.6% pulp density. To verify this, a confirmatory run was carried out under these 

optimum conditions. The nickel recovery found experimentally was 74.1%, clearly 

showing that the model fits the experimental data reasonably well, within an error 

margin of less than 10%. 

 

The work contained in this chapter has, therefore, shown that the development of 

mathematical models for process simulation based on statistics can be useful for 
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predicting and understanding the effects of experimental factors. What must be noted 

here is that the response surface methodology does not explicate the mechanism of 

the processes studied, but only ascertains the effects of factors on response and 

interactions between the factors. This is very important, as can be seen in this study, 

for the optimisation of the operating conditions.  
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____________________________________________________________________ 

CHAPTER 8 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

____________________________________________________________________ 

 

“There are known knowns. These are things we know that we know. There are known 

unknowns. That is to say, there are things that we know we don’t know. But there are 

also unknown unknowns. These are things we do not know we don’t know”. 

    

- Donald Rumsfeld (former USA Secretary of 

Defence on the war against terrorism) 
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8.1  Conclusions 

 

8.1.1  Introduction 

 

The ability of microorganisms to leach and mobilize metals from sulphide minerals is 

based on the following three mechanisms: (1) redox reactions, (2) formation of 

inorganic acid, and (3) excretion of complexing agents (e.g., organic acids). The main 

objective of this work was to extend these principles in order to investigate the 

possibility of using chemolithotrophic microorganisms in the bacterial leaching of 

nickel laterites. Nickel laterite contains metal values, but is not capable of 

participating in the primary bacterial oxidation because it contains neither ferrous iron 

nor substantial amount of reduced sulphur. A review of the literature suggested that 

the metal value can be recovered by allowing the primary oxidation of pyrite, or 

similar iron/sulphur minerals to provide sulphuric acid solutions, which solubilise the 

metal content. 

 

In order to investigate this possibility, the aims of this study were defined as: 

 

(i) To investigate the influence of sulphuric acid, citric acid, and ferric sulphate 

so as to provide useful insights into the process of leaching nickel laterites. 

 

(ii) To determine the specific parameters and conditions that are suitable for the 

favourable bacterial leaching of nickel laterites. 

 

(iii) To study the effects of pH and hence, the effects of substrate type (sulphur or 

pyrite) on pH in the bacterial leaching of nickel laterites. 

 

(iv)  To optimise the favourable parameters and conditions that will ultimately 

maximise the leaching process in terms of the output (nickel recovery). 
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8.1.2  Acidic and Ferric Leach Tests 

 

The chemical leaching of nickel laterite ore with sulphuric acid, citric acid and ferric 

sulphate provided a better insight to the bioleaching process. The results presented in 

this study have shown that leach rates are highly dependant on the type of leaching 

media. Sulphuric acid was more effective (in terms of the nickel recovery) than citric 

acid and ferric sulphate at the same concentration. The recoveries obtained at a 

concentration of 0.5M and 5%w/v pulp density (at 30°C and 200 rpm) for sulphuric 

acid, citric acid and ferric sulphate were 71.9%, 46.6% and 20.3%, respectively. 

Citric acid, being a weaker acid, does not dissociate completely hence lower 

recoveries are obtained at the same concentration. This showed that the concentration 

of hydrogen ions has a significant influence in the chemical leaching process. A 

mixture of sulphuric acid and citric acid enhanced the nickel recovery (79.6%) 

indicating a synergic effect of the two acids. In the presence of ferric sulphate, 

dissolution was also seen to increase with sulphuric acid additions, e.g., 37.4% after 

addition of 0.1M sulphuric acid.  

 

Citric acid was more effective than both sulphuric acid and ferric sulphate at the same 

pH of 1.0, 1.5 and 2.0, i.e., it gave better recoveries. The higher recovery with citric 

acid than sulphuric acid was attributed to the chelating of nickel ions by the organic 

acid anions at these pHs. However, a lower recovery was obtained for citric acid than 

sulphuric acid at a pH of 0.5, i.e., 70% and 63% for sulphuric acid and citric acid 

respectively. This reduction in recoveries was attributed to the protonation of citrate 

anions at the low pH. 

 

8.1.3  Bacterial Leach Tests 

 

Bacterial leach tests were carried out in standard 9K media using sulphur and pyrite 

substrates. The study showed that a period of more than two weeks was an effective 
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duration for the bacterial leaching of nickel laterite ore used. For example, at a pH of 

2.0, recoveries increased from 26.1% at the end of two weeks to 40.0% at the end of 

32 days for sulphur substrate. This trend was also observed for pyrite substrate (i.e., 

25.9% to 32.6% for two weeks and 32 days respectively). The bioxidation of sulphur 

and pyrite produce sulphuric acid which ultimately leach nickel laterite ore. 

Comparisons of the effects of pH, particle size, pulp density, substrate type and 

bacterial inoculum, showed that inoculum size was not a statistically significant 

factor. The lack of influence by the bacterial inoculum is because bacteria was not 

‘directly attacking’ a constituent of the ore itself, but the externally added substrates. 

Over a longer period sulphur exhibited better effects in terms of acidification and 

nickel (recovery) yield than pyrite. For example, at a pH of 1.0, duration of 32 days 

gave recoveries of 61.0% and 42.8% for sulphur and pyrite respectively. This is 

because more energy is gained during the bioxidation of sulphur compared to 

bioxidation of pyrite. For the test conditions considered in this study and for this kind 

of nickel recovery process, this finding signifies that sulphur is ultimately a better 

substrate than pyrite.  

 

The results presented also showed that dissolution rates of nickel laterite are high in 

low pH and high oxidation reduction potential (ORP), and in the presence of bacteria. 

This is because at low pH the concentration of acid (H+ ions) is expected to be high. 

The high ORPs signify higher ionic activities at low pH. However, the study also 

demonstrated that microbial activities, depicted by acidification were reduced at 

lower initial pH levels. There was also a reduction in recoveries at higher pulp density 

(15% w/v). The reduction in the rate of bacterial leaching at higher pulp density was 

attributed to the ineffective homogeneous mixing of solids and liquids leading to gas 

transfer limitation because the liquid becomes too thick (high viscosity) for efficient 

gas transfer to the cells.   By contrast, the opposite was true at low pulp density, i.e., 

high nickel recovery at a pulp density of 5%.  
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8.1.4  Optimisation Tests 

A statistically-based optimization strategy called response surface methodology was 

used for parametric optimization (pH, particle size and pulp density) with 10% w/v 

sulphur as a substrate.  Sulphur was chosen since it showed better effects than pyrite. 

A statistical experimental design called central composite rotatable design was 

employed to reduce on the number of experiments, but being sufficient to describe 

the responses.  Experimental results were analysed and an appropriate predictive 

empirical second order model was developed. This second order model representing 

the nickel recovery process is expressed as a function of the three variables tested 

(pH, particle size, and pulp density). The model validation was accomplished using 

F-distribution tests, standard errors of model coefficient (student’s t-test), the 

coefficient of determination (R2) and the absolute average deviation (AAD); which  

guaranteed that convergence at the actual optimum experimental conditions was 

achieved.  

The effects of the individual variables and their quadratic terms were found to be 

statistically significant. The results, however, showed that all the interactions among 

the investigated variables were statistically insignificant. Nickel recovery was found 

to depend more on particle size than pH and pulp density. This is because particle 

size affects not only the percentage of nickel in the ore, but also the survival of the 

bioleaching microorganisms. Smaller particles had higher nickel content compared to 

larger particles. In addition, particle sizes affect the physical structure of cells due to 

attrition, and also affect bacteria ability to attach to the substrates due to particle-to- 

bacteria collisions.  These observations indicate that the choice of suitable particle 

size is paramount in the bacterial leaching of nickel laterite ore in this study.     

 

Within the range of conditions studied, the theoretical optimum conditions 

established from the statistically-based optimisation model at the projected maximum 
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nickel recovery of 79.8% were found to be an initial pH of 2.0, 63µm particle size 

and 2.6% pulp density. To verify the optimised results, a confirmatory run was 

carried out under optimised conditions. The nickel recovery found experimentally 

was 74.1%.  This shows that there is a good relationship between the predicted and 

experimental results with a relative error of less than 10%.  This study has, therefore, 

demonstrated that by adding sulphur containing material, nickel laterites can be 

leached by chemolithotrophic microorganisms through the production of sulphuric 

acid.  

 

8.1.5  Kinetic Studies 

 

In order to ascertain the reaction regime controlling the leaching of nickel laterite ore, 

the shrinking core model and activation energy studies were conducted. The accurate 

description of the dissolution phenomenon of the process is important in the scale-up 

from laboratory to industrial equipment. Activation energy analysis showed that the 

chemical reaction at the surface of the particles was the rate controlling process 

during the leaching for all the lixiviants used (i.e., sulphuric acid, citric acid and 

acidified ferric sulphate). This was in contrast to the shrinking core model which 

showed the diffusion through the product layer as rate controlling. This inconsistence 

was attributed to the samples having various sizes which resulted from poor 

separation during dry sieving. When the particle size distribution of a sample is not 

consistent, but varies, it results in varying reaction rates thus deviating from the 

actual reaction regime. Therefore, in order to determine the kinetics of the nickel 

recovery by the shrinking core model, the particle size range should be narrow in 

order to get homogeneous particles.  
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8.1.6  Potential Application in Industry  

 

This whole study has opened up a new era to the potential application of 

chemolithotrophic microorganisms for the commercial processing of the difficult-to-

process low grade nickel laterite ores. In regions where the nickel laterite ore body 

exist the sustainability of the process will depend on the supply of sulphur containing 

material (commercial sulphur or metal sulphide) for energy requirements of the 

bacteria. This is likely to form the dominant operating cost component of the bacterial 

leaching of nickel laterite ores using chemolithotrophic microorganisms. In addition 

this process is promising because sulphuric acid is produced in-situ whereas in 

processes such as high pressure acid leaching, sulphuric acid is produced in external 

facilities. With the addition of sulphur containing material the use of 

chemolithotrophic bacteria can be extended to the leaching of other low grade non-

sulphide containing ores. Some examples where this process may be applied include 

silicate ores, oxidic converter furnace slags and refractory oxides. 

 

8.2  Recommendations 

 

With the knowledge that has been gathered from this work, the following 

recommendations for further studies are proposed. 

 

Wet Screening of Nickel Laterite Ore 

Studies on wet and dry screened samples have more often shown different results 

regarding the shrinking core model. Wet sieving is believed to be able to make the 

shrinking core model applicable. This particular study has shown that there are some 

differences in the reaction control regimes, i.e., that derived from the shrinking core 

model and that obtained from the use of activation energies.  Further studies can 

compare the effects of wet and dry screening of nickel laterites on the shrinking core 

model and activation energies so as to ascertain the causes of such differences. 
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Column Leach Experiments 

This study followed a procedure that simulated stirred tank reactors. However, heap 

leaching operations are considered to be cheaper than stirred tank reactor operations 

and are commercially popular especially for low grade ores. The procedures followed 

in a stirred tank experiment differ greatly from those used in a heap leaching system. 

In heap leaching there is no careful preparation of the ore and the solid-liquid contact 

is not perfect because there is no stirring. The oxygen and carbon dioxide transfer can 

be low or even non-existent, and temperature profile can vary considerably between 

different zones of the heap. Thus the behavior of a heap will be much complex than a 

simple platform shaker experiment. Further studies in the bacterial leaching process 

can be carried out in percolation columns to simulate heap leaching. This would offer 

the possibility of checking the applicability of the results obtained in stirred tank 

experiments during this study. Since results obtained in the laboratory can be 

extrapolated to the real situation this would help to show whether bacterial leaching 

of nickel laterites using chemolithotrophic microorganisms is possible under heap 

leaching conditions. The further study should also consider the stage at which sulphur 

(or pyrite) should be added to the heap for optimisation purposes. 

 

Mixed Culture of Chemolithotrophic and Heterotrophic Microorganisms 

This work had shown that a mixture of sulphuric acid and citric acid enhanced the 

dissolution of nickel laterite ore. This work can be extended to study the effects of a 

mixture of chemolithotrophic and heterotrophic microorganisms on the dissolution of 

nickel laterite ores. Chemolithotrophic microorganisms with the addition of sulphur 

containing materials can produce sulphuric acid and heterotrophic microorganisms 

can produce organic acids with the addition of organic carbon material. These 

microorganisms are likely to exist together under similar conditions as a bacterial 

consortium. Some studies have shown that organic matter such as yeast enhances the 

survival of some chemolithotrophic microorganisms. Heterotrophic microorganisms 
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can also feed on organic matter generated by chemolithotrophic microorganisms to 

produce organic acids. 

 

Passivation During Leaching 

During the leaching of metal sulphides such as chalcopyrite, pyrite and sphalerite 

solid state changes normally occur leading to the formation of a passivating layer. It 

has also been observed in some cases that the leaching kinetics is a mixed 

diffusion/chemical reaction controlled. This particular study has shown the likelihood 

of mixed rate control when acidified ferric sulphate was used in the leaching of nickel 

laterites, and that a passivating layer was formed. This study did not examine the 

surface of leached material to ascertain the type of the passivating layer. Further 

studies can examine the nature of the passivating layer and the changes that occur 

with temperature.     
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“Experience does not ever err; it is only your judgement that errs in promising itself 

results which are not caused by your experiments”. 

 

-Leonard Da Vinci 
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“The thing that counts is not what we know but the ability to use what we know”. 

 

-Leo L. Spears 
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% Nickel composition (Nickel grade) 

 

The % nickel composition in nickel laterites was calculated as a percentage of the 
total mass of the nickel laterite ore. This % nickel composition in the laterite was 
determined using the Varian SpectrAA-55B atomic absorption spectrophotometer 
after digestion of ore with aqua regia (3:1 ratio of HCl and HNO3 mixture). 
 
Example 

 
Mass of nickel laterite ore weighed (g) = 1.0422  
Volume of aqua regia used (mls)  = 50 

Mass of ore per liter (gpl)   = 
1.0422

1000
50

x  = 20.84 gpl 

 

After leaching, 
 
Volume of sample pipetted out  = 2.5mls 
Volume after dilution    = 50mls 
Concentration of nickel (ppm) as recorded by AAS (replicates) = 15.97, 16.02 

Concentration of nickel metal = 
50 (15.97 16.09)

/1000
2.5 2

x
+

  = 0.32gpl 

Therefore, this is the maximum possible concentration assuming all nickel dissolved. 

% nickel composition (grade)      = 
maximum possible concentration

  100
mass of ore per litre

x  

              = 
0.32

  100
20.84

x  

         = 1.5%  
 

Nickel recovery 

 

The recovery during the leaching of nickel laterites was calculated as a percentage of 
nickel in the liquid phase to that in the nickel laterite ore. 
 
Example 

 

Run 1( Table D1)  

 
Volume of mixture  = 200 mls 

Mass of ore added  =  
% pulp density x volume used

100
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   = 
5 x 200

100
 

   = 10 g 
 

Mass of nickel in ore  = 
% Nickel composition x mass of ore

100
 

   = 
1.5 x 10

100
 

    =  0.15 g 
The maximum possible concentration of nickel is achieved when all the mass of 
nickel dissolves i.e  

 

Maximum concentration  = 
Mass of nickel x 100

volume used
 

   = 
0.15 x 1000

200
 

   = 0.75 gpl 
   = 750 ppm 

Recovery   = 
Cobalt in solution as recorded on AAS x 100

Maximum concentration of nickel

     = 
163 x 100

750
  = 21.7% 

 

 

Effect 

 

An effect in the statistical design is done by averaging the responses that are 
applicable to the level of each factor. The difference between the average responses at 
the two levels of each factor is an indication of the significance of that factor in 
influencing the response measured. 
 
Example  

 

Run 1 (Table D1)  

 
Therefore, factor A at level (+1) is given by averaging the results obtained by running 
experiments 2, 4, 6 and 8  and factor A at level (-1) by averaging the results obtained 
from running experiments 1, 3, 5 and 7.  
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Level (+1):   

Average recoveries  = 
Sum of recoveries for experiments 2, 4, 6, 8 

4
 

  = 
20.05+26.44+13.88+26.23

4  
 

  = 21.65 
 
Level (-1):   

Average recoveries  = 
Sum of recoveries for experiments 1, 3, 5, 7 

4
 

  = 
23.97+29.61+17.19+30.28

4
 

  = 25.26 
 

Difference  = 21.65 – 25.26 
  = -3.61 

Therefore, Effect = -3.61 
 

In fact the responses are multiplied by respective contrasts for each levels i.e +1 for 
level (+1) and -1 for level (-1) and the averages are added. 

 
 

Normal probability plots 

 
The scales for making normal probability plot of effects is such that, on the y-axis, Pi 
= 100 (i-1/2)/m for i = 1, 2, 3, 4, …, m, where m = the number of effects under 
consideration (main and or interactions), excluding the average. The plot requires that 
the effects are arranged in order of magnitude, before applying the y-axis scale 
formula, starting with the smallest and ending with the largest.   

 
Table A1.  Effects for normal probability plots 

  

Order No. i 1 2 3 4 5 
P= 100(i-1/2)/m (where m = 5) 10 30 50 70 90 
Effects -3.61 -3.12 -0.37 3.35 9.37 
Identity of the effects A C E D B 

 
 
Modeling the significant effects for recovery prediction 

 
The model or prediction equation is useful for predicting the outcome for the future 
validation experiments. A model is an equation that uses only the significant effects.  
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If an interaction effect is significant, the terms for the main effects are also included. 
This is due to the hierarchy rule for defining a model (Barrentine, 1999).  

 
From the normal probability plot, it is found that the significant factors are A, B, C 
and D. 
Therefore, 

Recovery, R, = 
( ) ( ) ( ) E(D)

 +      C + 
2 2 2 2

E A E B E C
R A B D
−

+ + , where R
−

 

represents the average of all the data for the runs (i.e average of all the recoveries) 
and A, B, C and D are the contrast constants (i.e +1 or -1), E(A), E(B), E(C) and E(D) 
are effects as indicated in part 3 of the appendix above.  

 
The coefficients that appear in the equations are half the calculated effects because a 
change from x = -1 to x = +1 is a change of two units along the x-axis. 

 
Therefore,  

Predicted recovery, R, = 
( 3.61) (9.37) ( 3.12) (3.35)

23.46 +  C+
2 2 2 2

A B D
− −

+ +  

  = 23.46 – 1.81A + 4.68B – 1.56C + 1.68D 
 

The predicted recovery is calculated by substituting an appropriate contrast constant 
in a particular run. 

 
Example  

 

Run 1 (Table D1)  

 
In run 1, the contrast constants  are A = -1, B = -1, C = -1, D = +1 

 
Predicted recovery  = 23.46 – 1.81(-1) + 4.68(-1) – 1.56(-1) + 1.68(1) 

  = 23.82% 
 

Note that the negative signs in some of the variables of the prediction model equation 
indicate that in order to maximize bioleaching of nickel laterites, these factors must 
be kept in low levels. The positive signs mean the factors must be kept in high levels. 

    
Residual 

 
This is the difference between the actual recovery and the predicted recovery for each 
run. 
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Example  

 

Run 1 (Table D1) 

 
Actual recovery = 23.97, Predicted recovery = 23.82 

 
Residual  =  23.97 – 23.82  

= 0.15 
 

Fold-over design 

A fold over is the exact opposite of the basic design in signs. It is achieved by 
replacing all plus signs with minus signs, and vice versa. The fold over design 
reverses the signs of the two factor interactions in the confounding pattern. 

 

Factor A 
 
When it is stated that the confounding is such that, A = DE, this means that the 
estimated effect of A is a combination of the actual values of A and DE in the 
relationship shown in the base design: E(A)est = E(A)act + E(DE)act.  
 
A fold over provides a confounding pattern opposite in sign such that the fold over 
design is E(A)est = E(A)act - E(DE)act 
 
If results of fold-over design are added to that of base design and the average 
calculated, the two equations show the interaction terms cancel, leaving an estimate 
of main effects free from confounded two factor interactions, i.e. 

 

   
1

2
[base E(A)est + foldover E(A)est] =  

1

2
{[E(A)act +E(DE)act ]+ [E(A)act – E(DE)act]} =  

1

2
{E(A)act + E(A)act} =  E(A)act 

 
This is a characteristic and purpose of fold-over (Barrentine, 1999, Montgomery, 
2005). 
 
 
 
 
 
 
 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Page 165 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

_________________________________________________________________ 

APPENDIX B  

 

 

NICKEL LATERITE ORE COMPOSITION AND PARTICLE SIZE 

ANALYSIS 

_________________________________________________________________ 

 

“The only way to learn mathematics is to do mathematics”. 

 

-Paul Halmos 
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Table B1 

 

Chemical composition of nickel laterite ore sample 

Mineral % Mass 

SiO2 52.8 

Fe2O3 21.9 

Cr2O3 1.0 

Al2O3 2.5 

MgO 7.5 

NiO 1.9 

CoO 0.3 

CaO 0.7 

MnO 1.3 

S <0.1 

P 0.1 

Total  ≅ 100 

 

 

Table B2 

 

Elemental composition of different nickel laterite particle sizes 

Size fraction (µm) <38 53-63 106-150 

Ni (mass %) 1.7 1.5 1.4 
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Table B3 

 

Particle size analysis of nickel laterite ore sample 

Sieve size (µm) Mass retained (kg) % Mass retained 

-212+150 0.12 4.8 

-150+106 0.09 3.7 

-106+75 0.27 10.9 

-75+63 0.98 39.3 

-63+53 0.55 22.1 

-53+45 0.32 12.6 

-45+38 0.14 5.4 

-38 0.03 1.2 

Total 2.50 100 
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_________________________________________________________________ 

APPENDIX C 

 

 

ACIDIC AND FERRIC LEACHING 

_________________________________________________________________ 

 

“If I were to prescribe one process in the training of men which is fundamental to 

success in any direction, it would be thoroughgoing training in the habit of accurate 

observation. It is a habit which every one of us should be seeking ever more to 

perfect”. 

 

-Eugene G. Grace 
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Table C1. Nickel concentration (ppm) 

 
Conditions for chemical leaching at different concentrations: temperature 30°C, 
pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 

Run 1 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0 352 407 458 526 604 
0.5M C6H8O7 0 236 271 293 327 347 
0.5MFe2(SO4)3 0 113 117 124 140 165 
0.1MH2SO4+0.5MFe2(SO4)3 0 151 185 186 208 322 
0.5MH2SO4+0.5MFe2(SO4)3 0 266 379 342 385 331 
0.5Mx(H2SO4+C6H8O7) 0 485 534 534 589 670 
0.5Mx(H2SO4+C6H8O7+Fe2(SO4)3) 0 407 483 474 566 635 
Distilled water 0 15 4 6 6 3 
1M C6H8O7 0 283 374 412 403 445 
 

 

 

Run 2 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0 372 510 540 501 490 
0.5M C6H8O7 0 254 345 371 372 363 
0.5MFe2(SO4)3 0 97 122 134 149 144 
0.1MH2SO4+0.5MFe2(SO4)3 0 145 209 235 273 248 
0.5MH2SO4+0.5MFe2(SO4)3 0 307 413 437 456 434 
0.5M (H2SO4+C6H8O7) 0 494 581 588 580 542 
0.5M(H2SO4+C6H8O7+Fe2(SO4)3) 0 432 504 534 564 503 
Distilled water 0 5 5 3 6 4 
1M C6H8O7 0 284 377 416 403 437 
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Table C2. Nickel recovery (%) 

 
Conditions for chemical leaching at different concentrations: temperature 30°C, 
pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 

Run 1 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0 46.3 53.5 60.1 69.1 79.4 
0.5M C6H8O7 0 30.9 35.6 38.5 42.9 45.5 
0.5MFe2(SO4)3 0 14.8 15.4 16.3 18.4 21.7 
0.1MH2SO4+0.5MFe2(SO4)3 0 19.8 24.2 24.4 27.3 42.3 
0.5MH2SO4+0.5MFe2(SO4)3 0 34.9 49.7 44.9 50.6 43.5 
0.5M (H2SO4+C6H8O7) 0 63.7 70.2 70.1 77.3 87.9 
0.5M(H2SO4+C6H8O7+Fe2(SO4)3) 0 53.5 63.4 62.2 74.4 83.5 
Distilled water 0 2.0 0.5 0.7 0.8 0.4 
1M C6H8O7 0 37.2 49.3 54.4 52.9 57.5 
 

 

 

 

 

Run 2 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0 48.8 66.9 70.9 65.8 64.4 
0.5M C6H8O7 0 33.3 45.3 48.7 48.9 47.6 
0.5MFe2(SO4)3 0 12.7 16.0 17.6 19.6 18.9 
0.1MH2SO4+0.5MFe2(SO4)3 0 19.0 27.5 30.9 35.9 32.5 
0.5MH2SO4+0.5MFe2(SO4)3 0 40.3 54.3 57.4 59.9 57.0 
0.5M (H2SO4+C6H8O7) 0 64.9 76.3 77.2 76.2 71.2 
0.5M(H2SO4+C6H8O7+Fe2(SO4)3) 0 56.7 66.2 70.2 74.0 66.0 
Distilled water 0 0.7 0.7 0.4 0.8 0.6 
1M C6H8O7 0 37.3 49.5 54.6 52.9 57.4 
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Table C3. pH changes 

 
Conditions for chemical leaching at different concentrations: temperature 30°C, 
pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 

Run 1 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0.34 0.42 0.48 0.55 0.66 0.72 
0.5M C6H8O7 1.40 1.80 1.83 1.84 1.88 1.98 
0.5MFe2(SO4)3 0.87 0.95 0.96 1.00 1.09 1.15 
0.1MH2SO4+0.5MFe2(SO4)3 0.70 0.75 0.77 0.83 0.93 0.95 
0.5MH2SO4+0.5MFe2(SO4)3 0.28 0.34 0.36 0.41 0.49 0.55 
0.5M (H2SO4+C6H8O7) 0.34 0.37 0.49 0.56 0.60 0.64 
0.5M(H2SO4+C6H8O7+Fe2(SO4)3) 0.20 0.24 0.24 0.32 0.37 0.40 
Distilled water 5.94 7.14 8.31 8.35 8.36 8.38 
1M C6H8O7 1.28 1.61 1.63 1.73 1.67 1.71 
 

 

 

 

 

Run 2 

Lixiviant Time (days) 

Concentration 0 2 4 6 8 10 
0.5M H2SO4 0.44 0.58 0.58 0.63 0.69 0.76 
0.5M C6H8O7 1.50 2.05 1.98 2.00 2.03 2.05 
0.5MFe2(SO4)3 0.98 1.12 1.06 1.07 1.12 1.11 
0.1MH2SO4+0.5MFe2(SO4)3 0.78 0.88 0.85 0.87 0.93 0.96 
0.5MH2SO4+0.5MFe2(SO4)3 0.37 0.46 0.41 0.48 0.51 0.58 
0.5M (H2SO4+C6H8O7) 0.38 0.46 0.54 0.58 0.61 0.62 
0.5M(H2SO4+C6H8O7+Fe2(SO4)3) 0.26 0.35 0.32 0.35 0.39 0.41 
Distilled water 5.82 7.11 8.25 8.28 8.38 8.39 
1M C6H8O7 1.29 1.65 1.61 1.75 1.70 1.70 
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Table C4. Nickel concentration (ppm) 

 
Conditions for chemical leaching at different initial pHs: pulp density 5% w/v, 
Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 
Initial pH: 0.5 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 390 413 186 385 415 179 
4 443 446 237 431 456 231 
6 488 468 246 490 473 245 
8 543 481 277 527 492 279 

 
 

Initial pH: 1.0 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 197 256 84 133 268 77 
4 262 351 96 180 401 81 
6 327 383 91 212 468 130 
8 361 470 141 242 499 157 

 

 

Initial pH: 1.5 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 120 295 37 122 286 34 
4 166 373 40 165 370 41 
6 198 413 61 205 409 57 
8 212 451 73 212 453 69 

 

 
Initial pH: 2.0 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 153 301 39 146 299 44 
4 174 361 50 174 366 52 
6 204 426 63 213 430 71 
8 219 462 63 233 475 73 
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Table C5. Nickel recovery (%) 

 
Conditions for chemical leaching at different initial pHs: pulp density 5% w/v, 
Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 
Initial pH: 0.5 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 50.7 53.7 24.1 50.0 54.0 23.2 
4 57.6 58.0 30.7 56.0 59.2 30.1 
6 63.4 60.9 31.9 63.7 61.5 31.9 
8 70.6 62.5 36.0 68.5 64.0 36.3 

 
 
Initial pH: 1.0 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 25.9 33.6 11.0 17.6 35.3 10.1 
4 34.4 46.2 12.7 23.7 52.8 10.7 
6 43.0 50.3 12.0 27.9 61.5 17.0 
8 47.5 61.9 18.6 31.8 65.6 20.6 

 

 

Initial pH: 1.5 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 20.1 39.6 5.1 19.1 39.3 5.7 
4 22.9 47.5 6.5 22.8 48.2 6.9 
6 26.8 56.0 8.2 28.0 56.5 9.3 
8 28.8 60.7 8.2 30.6 62.5 9.6 

 

 

Initial pH: 2.0 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 Fe2(SO4)3 H2SO4 C6H8O7 Fe2(SO4)3 

0 0 0 0 0 0 0 
2 15.7 38.8 4.8 16.0 37.6 4.5 
4 21.8 49.1 5.3 21.7 48.6 5.3 
6 26.1 54.3 8.0 27.0 53.8 7.4 
8 27.9 59.3 9.5 27.9 59.5 9.1 
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Table C6. pH changes 

 

Conditions for chemical leaching at different initial pHs: pulp density 5% w/v, 
Nickel content 1.5%, agitation speed ≥ 200 rpm. 
 
Initial pH: 0.5 

Time 
(days) 

Run 1 Run2 
H2SO4 Fe2(SO4)3 C6H8O7 H2SO4 Fe2(SO4)3 C6H8O7 

0 0.50 0.50 0.50 0.50 0.50 0.50 
2 0.64 0.64 0.82 0.68 0.65 0.82 
4 0.67 0.62 0.87 0.70 0.64 0.86 
6 0.71 0.61 0.88 0.67 0.63 0.89 
8 0.72 0.65 0.94 0.73 0.65 0.92 

 

 

Initial pH: 1.0 

Time 
(days) 

Run 1 Run2 
H2SO4 Fe2(SO4)3 C6H8O7 H2SO4 Fe2(SO4)3 C6H8O7 

0 1.00 1.00 1.00 1.00 1.00 1.00 
2 1.15 1.04 1.30 1.07 0.96 1.08 
4 1.13 0.97 1.30 1.16 1.02 1.13 
6 1.23 1.04 1.35 1.17 1.01 1.14 
8 1.21 1.01 1.34 1.20 1.00 1.10 

10 1.25 1.02 1.32 1.21 0.98 1.07 
12 1.27 0.98 1.37 1.25 1.06 0.91 

 
Initial pH: 1.5 

Time 
(days) 

Run 1 Run2 
H2SO4 Fe2(SO4)3 C6H8O7 H2SO4 Fe2(SO4)3 C6H8O7 

0 1.50 1.50 1.50 1.50 1.50 1.50 
2 1.79 1.78 1.73 1.78 1.77 1.73 
4 1.86 1.78 176 1.85 1.77 1.75 
6 1.81 1.86 1.82 1.77 1.84 1.81 
8 1.85 1.79 1.86 1.77 1.74 1.83 

 

 

Initial pH: 2.0 

Time 
(days) 

Run 1 Run2 
H2SO4 Fe2(SO4)3 C6H8O7 H2SO4 Fe2(SO4)3 C6H8O7 

0 2.00 2.00 2.00 2.00 2.00 2.00 
2 2.36 2.10 2.11 2.32 2.10 2.11 
4 2.40 2.03 2.14 2.37 2.02 2.13 
6 2.43 1.96 2.17 2.40 1.95 2.17 
8 2.63 1.83 2.20 2.62 1.81 2.17 
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Table C7. Nickel concentration (ppm) 

 
Conditions for chemical leaching at different temperatures: concentration of 
lixiviants 0.5M, pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 
rpm. 
 
Temperature: 30°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 255 185 206 249 182 215 
4 346 249 291 336 241 276 
6 400 283 357 400 288 361 
8 477 329 418 468 322 405 
10 504 365 434 521 361 424 
12 560 401 460 590 411 460 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 
 
Temperature: 40°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 423 257 350 399 257 342 
4 527 317 436 505 328 421 
6 623 426 527 572 369 554 
8 675 431 612 644 414 592 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 

 

 

Temperature: 45°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 469 298 361 449 294 378 
4 561 364 455 562 361 478 
6 651 449 594 683 446 664 
8 692 498 698 741 490 747 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 
 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Appendix C Page 176 
 

Table C8: Nickel recoveries (%) 

 
Conditions for chemical leaching at different temperatures: concentration of 
lixiviants 0.5M, pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 
rpm. 
 
Temperature: 30°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 33.6 23.4 27.1 32.8 23.9 28.2 
4 45.6 37.2 38.4 44.3 31.7 36.4 
6 52.7 37.2 47.0 52.7 37.9 47.5 
8 62.8 43.3 55.1 61.7 42.4 53.3 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 

 

Temperature: 40°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 55.7 33.8 46.1 52.5 33.8 44.9 
4 69.4 41.7 57.4 66.5 43.1 55.4 
6 82.0 56.1 69.4 75.3 48.6 72.8 
8 88.8 56.7 80.6 84.8 54.5 77.9 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 

 

Temperature: 45°C 

Time 
(days) 

Run 1 Run2 
H2SO4 C6H8O7 

aFe2(SO4)3 H2SO4 C6H8O7 
aFe2(SO4)3 

0 0 0 0 0 0 0 
2 61.7 39.2 47.5 59.1 38.6 49.7 
4 73.8 47.9 60.0 74.0 47.4 62.9 
6 85.7 59.1 78.2 89.9 58.7 87.3 
8 91.1 65.6 91.9 97.5 64.5 98.3 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
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Table C9. pH changes 

 

Conditions for chemical leaching at different temperatures: concentration of 
lixiviants 0.5M, pulp density 5% w/v, Nickel content 1.5%, agitation speed ≥ 200 
rpm. 
 
Temperature: 30°C 

Time 
(days) 

Run 1 Run2 
H2SO4 

aFe2(SO4)3 C6H8O7 H2SO4 
aFe2(SO4)3 C6H8O7 

0 0.50 0.39 1.59 0.49 0.38 1.61 
2 0.53 0.45 1.91 0.51 0.37 1.95 
4 0.49 0.32 1.92 0.47 0.32 1.96 
6 0.55 0.45 1.98 0.54 0.42 2.01 
8 0.59 0.43 1.94 0.58 0.41 2.01 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 

 

Temperature: 40°C 

Time 
(days) 

Run 1 Run2 
H2SO4 

aFe2(SO4)3 C6H8O7 H2SO4 
aFe2(SO4)3 C6H8O7 

0 0.41 0.33 1.53 0.41 0.34 1.52 
2 0.56 0.45 2.08 0.56 0.43 2.05 
4 0.63 0.52 2.09 0.62 0.48 2.09 
6 0.68 0.50 2.15 0.67 0.49 0.95 
8 0.69 0.50 2.18 0.68 0.49 2.04 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
 

 

Temperature: 45°C 

Time 
(days) 

Run 1 Run2 
H2SO4 

aFe2(SO4)3 C6H8O7 H2SO4 
aFe2(SO4)3 C6H8O7 

0 0.40 0.33 1.55 0.40 0.31 1.58 
2 0.61 0.40 2.04 0.57 0.37 2.05 
4 0.68 0.46 2.13 0.65 0.41 2.14 
6 0.77 0.49 2.19 0.71 0.44 2.19 
8 0.75 0.53 2.19 0.72 0.44 2.20 

a 0.5M Fe2(SO4)3 acidified with 0.5M H2SO4 
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_________________________________________________________________ 

APPENDIX D 

 

 

IDENTIFICATION OF INFLUENTIAL FACTORS 

_________________________________________________________________ 

 

“Think before you think”. 

 

-Stanislaw J. Lec 
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Table D1. Nickel recovery (%) for basic design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm. 
 
 1 2 3 4 5 6 7 8 Runs 
 
Time 
(days) 

-1 +1 -1 +1 -1 +1 -1 +1 A 
-1 -1 +1 +1 -1 -1 +1 +1 B 
-1 -1 -1 -1 +1 +1 +1 +1 C 
+1 +1 -1 -1 -1 -1 +1 +1 D 
-1 +1 +1 -1 +1 -1 -1 +1 E 

0 0 0 0 0 0 0 0 0  
2 21.7 21.3 27.3 25.2 17.7 15.1 28.8 24.5  
4 30.6 26.6 39.9 34.6 20.8 20.8 39.9 32.8  
6 26.6 18.6 37.2 29.3 17.7 12.4 35.5 28.4  
8 27.9 23.9 41.2 31.9 21.7 16.8 35.9 31.9  
10 26.6 22.6 29.3 26.6 17.7 15.1 30.6 30.1  
12 29.3 26.6 34.6 31.9 20.4 16.8 35.5 35.5  
14 26.6 21.3 29.3 23.9 18.6 12.0 39.5 25.0  
16 21.3 16.0 26.6 21.3 12.4 9.8 23.9 21.3  
18 21.3 17.3 23.9 23.9 14.2 11.1 25.7 21.3  
20 21.3 16.0 23.9 23.9 14.2 12.4 25.7 22.2  
22 21.3 18.6 26.6 23.9 16.0 12.4 26.6 24.6  
24 18.6 18.6 23.9 26.6 16.8 15.1 24.4 23.9  
26 18.6 13.3 21.3 20.6 15.1 10.6 21.7 19.5  
Average 24.0 20.1 29.6 26.4 17.2 13.9 30.3 26.2  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D2. Nickel recovery (%) for fold-over design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
 
Time 
(days) 

+1 -1 +1 -1 +1 -1 +1 -1 A 
+1 +1 -1 -1 +1 +1 -1 -1 B 
+1 +1 +1 +1 -1 -1 -1 -1 C 
-1 -1 +1 +1 +1 +1 -1 -1 D 
+1 -1 -1 +1 -1 +1 +1 -1 E 

0 0 0 0 0 0 0 0 0  
2 22.2 31.9 16.0 18.6 34.6 37.2 13.3 18.6  
4 31.0 37.2 22.6 22.6 42.6 42.6 18.6 26.6  
6 37.7 39.4 24.6 29.3 47.9 47.9 23.9 34.6  
8 33.6 32.6 16.4 23.5 36.5 37.9 18.6 19.2  
10 29.6 28.5 15.2 19.1 33.1 34.7 15.7 29.4  
12 26.0 27.9 14.4 18.6 31.6 32.4 14.6 21.2  
14 27.9 31.5 15.6 23.7 33.3 39.9 15.0 24.2  
16 29.3 32.6 18.0 21.3 34.6 35.3 15.0 26.8  
18 31.8 35.5 17.6 25.3 32.1 36.8 16.9 34.7  
20 19.4 21.7 11.6 14.6 25.7 29.5 12.8 18.2  
22 18.6 23.1 10.4 14.5 22.7 27.9 11.0 19.5  
24 19.1 23.1 10.7 15.0 24.0 27.1 11.0 18.2  
26 15.0 18.0 8.8 12.8 20.4 24.9 9.0 14.2  
Average 26.2 29.5 15.5 19.9 32.2 34.9 15.0 23.5  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D3.  Nickel concentration (ppm) for basic design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
 
Time 
(days) 

-1 +1 -1 +1 -1 +1 -1 +1 A 
-1 -1 +1 +1 -1 -1 +1 +1 B 
-1 -1 -1 -1 +1 +1 +1 +1 C 
+1 +1 -1 -1 -1 -1 +1 +1 D 
-1 +1 +1 -1 +1 -1 -1 +1 E 

0 0 0 0 0 0 0 0 0  
2 163 160 205 167 400 340 650 552  
4 230 200 300 260 470 470 900 740  
6 200 140 280 220 400 280 800 640  
8 210 180 310 240 490 380 810 720  
10 200 170 220 200 400 340 690 680  
12 220 200 260 240 460 380 800 800  
14 200 160 220 180 420 270 890 790  
16 160 120 200 160 280 220 540 480  
18 160 130 180 180 320 250 580 480  
20 160 120 180 180 320 280 580 500  
22 160 140 200 180 360 280 600 556  
24 140 140 180 200 380 340 550 540  
26 140 100 160 140 340 240 490 440  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D4.  Nickel concentration (ppm) for fold-over design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time +1 -1 +1 -1 +1 -1 +1 -1 A 
(days) +1 +1 -1 -1 +1 +1 -1 -1 B 
 +1 +1 +1 +1 -1 -1 -1 -1 C 
 -1 -1 +1 +1 +1 +1 -1 -1 D 
 +1 -1 -1 +1 -1 +1 +1 -1 E 
0 0 0 0 0 0 0 0 0  
2 500 720 360 420 260 280 100 140  
4 700 840 510 510 320 320 140 200  
6 850 980 556 660 360 360 180 260  
8 758 938 371 530 274 285 140 144  
10 667 644 344 432 249 261 118 221  
12 587 629 326 421 238 243 110 159  
14 628 710 352 534 250 300 113 182  
16 662 758 406 481 260 265 113 201  
18 716 933 397 570 241 277 127 261  
20 438 490 261 330 194 222 96 137  
22 420 522 236 326 171 210 83 147  
24 431 521 241 338 180 204 83 137  
26 338 405 199 288 154 188 68 107  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D5. Nickel concentration (ppm) for centre points design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time 0 0 0 0 A 
(days) 0 0 0 0 B 
 0 0 0 0 C 
 0 0 0 0 D 
 0 0 0 0 E 
0 0 0 0 0  
2 270 320 340 320  
4 400 420 460 440  
6 320 320 600 540  
8 390 380 513 431  
10 340 320 374 350  
12 420 380 325 269  
14 320 320 410 336  
16 240 240 421 378  
18 260 260 618 427  
20 260 260 247 246  
22 280 280 223 234  
24 260 300 223 225  
26 240 240 191 183  
Average 20.5 20.7 25.3 22.4  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):2.0 (0); 
particle size (B): 75-63µm (0); pulp density (C):10% w/v(0); substrate type (D): sulphur (0); inoculum 
size (E):10% v/v (0) 
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Table D6.   Nickel recovery (%) for centre points design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time 0 0 0 0 A 
(days) 0 0 0 0 B 
 0 0 0 0 C 
 0 0 0 0 D 
 0 0 0 0 E 
0 0 0 0 0  
2 18.0 21.3 22.6 21.3  
4 26.6 27.7 30.6 29.3  
6 21.3 21.3 39.9 35.9  
8 25.9 25.3 34.1 28.7  
10 22.6 21.3 24.9 23.3  
12 27.9 25.3 21.6 17.9  
14 21.3 21.3 27.3 22.3  
16 16.0 16.0 28.0 25.1  
18 17.3 17.3 41.1 28.4  
20 17.3 17.3 16.4 16.4  
22 18.6 18.6 14.8 15.5  
24 17.3 19.9 14.6 15.0  
26 16.0 16.0 12.7 12.2  
Average 20.5 20.7 25.3 22.4  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):2.0 (0); 
particle size (B): 75-63µm (0); pulp density (C):10% w/v(0); substrate type (D): sulphur (0); inoculum 
size (E):10% v/v (0) 
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Table D7. pH changes for basic design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time +1 -1 +1 -1 +1 -1 +1 -1 A 
(days) +1 +1 -1 -1 +1 +1 -1 -1 B 
 +1 +1 +1 +1 -1 -1 -1 -1 C 
 -1 -1 +1 +1 +1 +1 -1 -1 D 
 +1 -1 -1 +1 -1 +1 +1 -1 E 
0 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5  
2 1.62 2.45 1.61 2.46 1.68 2.45 1.62 2.43  
4 1.61 2.41 1.60 2.46 1.67 2.44 1.62 2.41  
6 1.40 2.27 1.34 2.11 1.33 2.00 1.40 2.27  
8 1.63 2.38 1.50 2.15 1.46 1.96 1.62 2.31  
10 1.56 2.38 1.42 1.98 1.38 1.80 1.55 2.38  
12 1.51 2.36 1.38 2.05 1.32 1.92 1.50 2.35  
14 1.55 2.38 1.38 1.97 1.31 1.90 1.54 2.36  
16 1.58 2.38 1.39 1.94 1.31 1.93 1.57 2.38  
18 1.50 2.38 1.31 1.85 1.31 1.81 1.51 2.37  
20 1.54 2.39 1.31 1.90 1.30 1.90 1.54 2.38  
22 1.57 2.39 1.36 1.89 1.33 1.83 1.57 2.40  
24          
26          
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D8. pH changes for fold-over design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time +1 -1 +1 -1 +1 -1 +1 -1 A 
(days) +1 +1 -1 -1 +1 +1 -1 -1 B 
 +1 +1 +1 +1 -1 -1 -1 -1 C 
 -1 -1 +1 +1 +1 +1 -1 -1 D 
 +1 -1 -1 +1 -1 +1 +1 -1 E 
0 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5  
2 2.40 1.80 2.29 1.69 2.29 1.61 2.40 1.69  
4 2.32 1.52 2.29 1.58 2.26 1.55 2.18 1.47  
6 2.23 1.45 2.28 1.54 2.25 1.51 1.84 1.35  
8 1.98 1.34 2.25 1.52 2.22 1.51 1.71 1.24  
10 1.96 1.40 2.20 1.53 2.21 1.52 1.85 1.37  
12 1.96 1.40 2.16 1.52 2.18 1.50 1.95 1.40  
14 1.87 1.32 2.17 1.51 2.18 1.49 1.95 1.33  
16 1.77 1.27 2.16 1.47 2.13 1.46 1.91 1.20  
18 1.88 1.36 2.20 1.54 2.16 1.54 1.94 1.26  
20 1.84 1.19 2.20 1.51 2.19 1.49 1.79 1.22  
22 1.96 1.32 2.22 1.50 2.22 1.51 1.90 1.32  
24 2.01 1.35 2.23 1.49 2.19 1.50 1.91 1.31  
26 1.99 1.36 2.26 1.57 2.03 1.54 1.98 1.35  
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):1.5 (-1) 
and 2.5 (+1); particle size (B): -38µm (-1) and -150+100µm (+1); pulp density (C):5% w/v(-1) and 
15% w/v(+1); substrate type (D): sulphur (-1) and pyrite (+1); inoculum size (E):5% v/v (-1) and 15% 
v/v (+1). 
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Table D9. pH changes for centre points design 

 
Bacterial leaching conditions: Nickel content 1.5%, mixed culture inoculum, pure 
9K nutrient media, temperature 30°C, agitation speed 190 rpm.  
 
Time 0 0 0 0 A 
(days) 0 0 0 0 B 
 0 0 0 0 C 
 0 0 0 0 D 
 0 0 0 0 E 
0 2.0 2.0 2.0 2.0  
2 2.10 2.10 2.10 2.05  
4 2.09 2.10 1.87 1.79  
6 1.84 1.74 1.60 1.66  
8 1.83 1.86 1.46 1.52  
10 1.72 1.73 1.57 1.61  
12 1.73 1.73 1.66 1.64  
14 1.70 1.70 1.63 1.60  
16 1.75 1.69 1.55 1.55  
18 1.73 1.63 1.60 1.63  
20 1.71 1.63 1.58 1.59  
22 1.74 1.68 1.68 1.66  
24   1.70 1.70  
26   1.73 1.70  
Average      
The actual factor levels, coded as values of -1 and +1 in the table were as follows: for pH (A):2.0 (0); 
particle size (B): 75-63µm (0); pulp density (C):10% w/v(0); substrate type (D): sulphur (0); inoculum 
size (E):10% v/v (0) 
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_________________________________________________________________ 

APPENDIX E 

 

 

 EFFECTS OF INITIAL pH ON SUBSTRATE TYPE 

_________________________________________________________________ 

 

“Sixty minutes of thinking of any kind is bound to lead to confusion and 

unhappiness”. 

 

-James Thurber 
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Table E1. Nickel recovery 

 
Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture 
inoculum, pure 9K nutrient media, temperature 30°C, agitation speed 190 rpm. 
  
Run 1 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 0 0 0 0 0 0 0 0 0 0 0 0  
3 35.5 21.2 15.7 12.4 38.1 23.8 17.8 16.7 23.8 24.2 20.1 20.1  
6 37.6 23.1 16.9 15.0 40.6 25.7 19.1 17.3 24.4 26.0 22.6 22.6  
9 42.8 25.6 20.8 19.1 46.8 28.3 22.2 19.5 28.8 32.3 28.3 28.3  
12 49.8 27.4 23.9 24.6 49.6 31.8 25.1 21.9 34.4 36.2 34.7 34.7  
15 51.9 31.7 31.5 35.4 53.9 29.6 29.5 25.0 34.1 32.9 33.3 33.3  
18 57.8 33.5 34.8 39.6 53.6 27.3 30.9 21.9 35.6 29.6 32.7 32.7  
21 60.1 40.3 30.5 54.5 49.9 30.6 31.2 28.2 40.2 30.9 32.8 32.8  
24 64.7 45.9 38.1 63.7 52.0 35.2 36.4 32.7 46.1 34.4 32.9 32.9  
27 61.2 46.7 40.9 59.0 44.4 35.4 32.4 34.7 44.1 22.4 30.3 30.3  
32 67.8 56.0 46.8 64.3 44.9 42.9 38.0 38.9 55.9 29.4 30.2 30.2  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate with no bacteria; (D):pyrite substrate with no bacteria; (E):distilled 
water only; (F):9K media with no substrate or bacteria. 
 

 
 
Run 2 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 0 0 0 0 0 0 0 0 0 0 0 0  
3 27.2 21.1 15.2 10.7 33.1 21.8 16.5 14.1 23.0 27.7 20.4 22.0  
6 36.8 23.5 15.6 11.5 36.7 24.5 17.4 15.1 25.0 25.4 22.0 23.5  
9 39.0 23.6 16.0 12.2 41.3 24.4 16.9 16.0 25.6 26.4 20.3 21.8  
12 47.9 29.2 22.5 19.1 49.7 29.6 21.2 21.8 30.3 31.7 23.6 25.7  
15 50.5 31.2 20.8 16.8 51.9 30.7 22.3 24.2 36.8 33.9 25.6 28.6  
18 45.8 29.0 19.1 17.0 44.8 27.1 19.9 20.8 32.5 28.0 23.4 24.1  
21 41.1 26.8 17.5 17.3 37.6 23.5 17.6 17.3 28.1 22.0 21.1 19.5  
24 49.7 36.9 23.7 26.4 43.6 28.0 22.3 23.5 35.9 26.8 25.2 23.6  
27 49.8 38.5 26.7 26.1 39.7 26.7 21.8 26.1 35.1 24.6 22.7 21.1  
32 54.3 45.8 33.1 34.3 40.8 30.2 27.2 30.1 39.6 26.0 24.4 21.5  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite 
substrate with bacteria; (C):sulphur substrate with no bacteria; (D):pyrite substrate with no 
bacteria; (E):distilled water only; (F):9K media with no substrate or bacteria. 
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Table E2. Nickel concentrations (ppm) 

 
Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture 
inoculum, pure 9K nutrient media, temperature 30°C, agitation speed 190 rpm. 
  
Run 1 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 0 0 0 0 0 0 0 0 0 0 0 0  
3 271 162 120 95 291 182 136 128 182 185 153 153  
6 287 177 129 115 310 197 146 132 186 199 173 173  
9 327 195 158 146 357 216 169 149 220 246 216 216  
12 380 209 183 188 379 243 192 167 263 276 265 265  
15 396 242 241 270 411 226 225 191 261 251 254 254  
18 441 256 265 302 410 209 236 168 272 226 250 250  
21 459 308 233 416 381 234 238 215 307 236 250 250  
24 494 350 290 486 397 269 278 250 352 262 251 251  
27 467 356 312 451 339 271 247 265 337 171 231 231  
32 518 428 357 491 343 328 290 297 426 225 230 230  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without bacteria; (E):distilled 
water only; (F):9K media with neither substrate nor bacteria. 
 
 

 
Run 2 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 0 0 0 0 0 0 0 0 0 0 0 0  
3 208 161 116 81 253 166 126 108 176 174 167 168  
6 281 179 119 88 280 187 133 115 191 194 181 179  
9 298 180 122 94 315 186 129 122 195 202 167 167  
12 366 223 171 146 379 226 162 166 231 242 194 196  
15 385 238 159 128 396 235 170 185 281 259 216 219  
18 350 221 146 130 342 207 152 158 248 214 185 184  
21 314 204 134 132 287 180 135 132 215 168 147 149  
24 379 281 181 202 333 214 171 179 274 204 180 180  
27 380 293 204 199 303 204 167 199 268 187 163 161  
32 414 350 253 262 311 231 208 230 302 198 164 164  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without bacteria; (E):distilled 
water only; (F):9K media with neither substrate nor bacteria. 
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Table E3. pH changes 

 
Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture 
inoculum, pure 9K nutrient media, temperature 30°C, agitation speed 190 rpm. 
  
Run 1 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5  
3 1.16 1.65 2.14 2.35 1.17 1.68 2.14 2.15 1.66 1.71 1.72 1.68  
6 1.16 1.63 2.03 1.97 1.17 1.70 1.88 2.00 1.56 1.68 1.74 1.71  
9 1.20 1.58 1.86 1.68 1.20 1.64 1.89 1.91 1.73 1.66 1.80 1.76  
12 1.06 1.30 1.56 1.25 1.16 1.34 1.81 1.61 1.52 1.54 1.80 1.78  
15 0.89 1.03 1.21 0.97 1.16 1.19 1.39 1.26 1.26 1.45 1.84 1.82  
18 0.86 1.00 1.16 0.94 1.30 1.22 1.32 1.22 1.18 1.54 1.94 1.91  
21 0.80 0.90 1.05 0.84 1.22 1.07 1.22 1.08 1.02 1.55 1.96 1.92  
24 0.70 0.79 0.93 0.76 1.12 0.91 1.14 0.98 0.92 1.64 1.97 1.94  
27 0.82 0.84 0.99 0.85 1.16 0.95 1.19 1.03 0.98 1.49 2.07 2.07  
32 0.69 0.76 0.89 0.75 0.96 0.78 1.09 0.93 0.85 1.28 2.07 1.84  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without bacteria; (E):distilled 
water only; (F):9K media with neither substrate nor bacteria. 
 

 
 
Run 2 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5  
3 1.12 1.60 2.05 2.54 1.10 1.60 1.99 2.27 1.58 1.63 1.81 1.62  
6 1.11 1.63 2.07 2.38 1.11 1.63 1.97 2.16 1.57 1.60 1.86 1.70  
9 1.18 1.74 2.03 2.25 1.13 1.68 1.94 2.13 1.59 1.64 1.96 1.75  
12 1.17 1.69 1.92 2.05 1.15 1.65 1.91 2.12 1.61 1.61 1.98 1.78  
15 1.15 1.42 1.96 1.84 1.19 1.53 1.93 1.83 1.78 1.64 2.05 1.84  
18 1.08 1.26 1.75 1.67 1.28 1.42 1.81 1.66 1.64 1.68 2.09 1.89  
21 1.00 1.10 1.53 1.49 1.37 1.31 1.69 1.48 1.50 1.72 2.12 1.93  
24 0.91 0.96 1.32 1.33 1.34 1.20 1.45 1.37 1.33 1.98 2.15 1.95  
27 0.82 0.85 1.23 1.21 1.24 1.12 1.33 1.25 1.21 1.78 2.12 1.88  
32 0.80 0.84 1.11 1.12 1.13 1.01 1.24 1.23 1.15 1.37 2.20 1.82  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without bacteria; (E):distilled 
water only; (F):9K media with neither substrate nor bacteria. 
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Table E4. Redox potential changes (mV vs SHE) 

 
Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture 
inoculum, pure 9K nutrient media, temperature 30°C, agitation speed 190 rpm. 
  
Run 1 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 607 577 548 518 607 577 547 518 577 576 578 576  
3 600 571 542 529 598 569 541 540 569 565 565 567  
6 591 563 539 542 588 557 547 540 565 558 555 557  
9 594 571 554 563 589 565 548 547 557 561 554 557  
12 594 579 565 582 587 576 550 561 566 565 550 551  
15 605 599 585 598 586 586 573 580 580 568 547 548  
18 606 597 588 600 578 583 576 582 584 564 541 543  
21 612 605 595 606 584 593 584 592 596 565 541 543  
24 617 612 603 612 592 604 590 600 604 561 542 544  
27 616 614 605 611 593 605 592 601 607 574 539 540  
32 619 615 608 615 602 613 595 604 608 583 537 551  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite substrate with 
bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without bacteria; (E):distilled 
water only; (F):9K media with neither substrate nor bacteria. 
 
 
 
Run 2 
Time 
(days) 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

aMedia 
Composition 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.5 1.5 1.5 1.5 Initial pH 
0 604 576 549 517 603 574 549 516 575 574 575 573  
3 590 561 535 504 588 559 536 520 560 557 546 557  
6 593 562 546 517 591 560 540 530 564 562 547 556  
9 591 557 540 529 590 559 543 533 564 561 542 554  
12 591 560 546 540 593 562 547 533 564 564 542 554  
15 594 576 544 551 589 569 546 553 554 562 538 551  
18 598 586 557 562 584 576 554 563 563 561 537 549  
21 601 595 570 573 579 583 561 573 572 559 535 546  
24 609 604 583 584 583 589 575 582 583 543 532 544  
27 611 608 586 588 586 592 580 586 587 553 533 548  
32 614 611 596 596 595 601 587 589 593 580 531 555  
aThe media composition is as follows: (A):sulphur substrate with bacteria;  (B): pyrite 
substrate with bacteria; (C):sulphur substrate without bacteria; (D):pyrite substrate without 
bacteria; (E):distilled water only; (F):9K media with neither substrate nor bacteria. 
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_________________________________________________________________ 

APPENDIX F  

 

 

OPTIMISATION OF INFLUENTIAL FACTORS 

_________________________________________________________________ 

 
 
“The million, million, million ... to one chance happens once in a million, million ... 

times no matter how surprised we may be that it results”. 

 

-R. A. Fisher 
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Table F1. Nickel concentrations (ppm) 
 

Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture inoculum, pure 9K 
nutrient media  with sulphur substrate, temperature 30°C and agitation speed ≥200 rpm. The actual 
factor levels, coded as values of -λ, -1,0,+1,+λ were as follows: for pH (X1): 1.0 (-λ), 1.5 (-1), 2.3 (0), 

3.0 (+1), 3.5 (+λ); pulp density, % w/v (X2): 2 (-λ), 5 (-1), 9 (0), 12 (+1), 15 (+λ); particle size, µm 
(X1):<38 (-λ), 38-75 (-1), 75-106 (0), 106-150 (+1), 150-212 (+λ), λ=1.682 
 
 
Run Factors Time (days) 

X1 X2 X3 0 3 6 11 16 21 26 
1 -1 -1 -1 0 145 160 214 319 427 551 

2 +1 -1 -1 0 92 132 184 268 376 487 

3 -1 +1 -1 0 302 334 449 677 894 1149 

4 +1 +1 -1 0 221 252 377 569 797 990 

5 -1 -1 +1 0 195 218 254 315 412 525 

6 +1 -1 +1 0 137 181 232 248 306 403 

7 -1 +1 +1 0 417 453 564 610 782 921 

8 +1 +1 +1 0 234 315 465 540 606 782 

9 - λ 0 0 0 380 444 553 666 801 928 

10 + λ 0 0 0 156 227 310 491 722 983 

11 0 - λ 0 0 55 72 106 162 226 270 

12 0 + λ 0 0 321 382 470 709 1069 1488 

13 0 0 - λ 0 153 181 329 491 700 829 

14 0 0 + λ 0 194 229 277 318 423 593 

15 0 0 0 0 207 250 330 511 717 915 

16 0 0 0 0 205 233 344 506 699 936 

17 0 0 0 0 207 234 327 471 600 759 

18 0 0 0 0 210 235 308 474 639 816 

19 0 0 0 0 202 231 345 512 671 827 

20 0 0 0 0 199 229 302 411 562 739 
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Table F2. Nickel recoveries (%) 
 

Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture inoculum, pure 9K 
nutrient media  with sulphur substrate, temperature 30°C and agitation speed ≥200 rpm. The actual 
factor levels, coded as values of -λ, -1,0,+1,+λ were as follows: for pH (X1): 1.0 (-λ), 1.5 (-1), 2.3 (0), 

3.0 (+1), 3.5 (+λ); pulp density, % w/v (X2): 2 (-λ), 5 (-1), 9 (0), 12 (+1), 15 (+λ); particle size, µm 
(X1):<38 (-λ), 38-75 (-1), 75-106 (0), 106-150 (+1), 150-212 (+λ), λ=1.682 
 
 
Run Factors Time (days) 

X1 X2 X3 0 3 6 11 16 21 26 
1 -1 -1 -1 0 18.9 20.8 27.8 41.6 55.6 71.7 

2 +1 -1 -1 0 12.0 17.2 23.9 34.9 48.9 63.4 

3 -1 +1 -1 0 16.6 18.4 24.7 37.2 49.1 63.1 

4 +1 +1 -1 0 12.2 13.8 20.7 31.2 43.8 54.4 

5 -1 -1 +1 0 25.4 28.4 33.1 40.9 53.6 68.3 

6 +1 -1 +1 0 17.8 23.6 30.2 32.2 39.8 52.4 

7 -1 +1 +1 0 22.9 24.9 31.0 33.5 42.9 50.5 

8 +1 +1 +1 0 12.9 17.3 25.5 29.6 33.3 42.9 

9 - λ 0 0 0 27.7 32.4 40.4 48.6 58.4 67.7 

10 + λ 0 0 0 11.4 16.6 22.6 35.8 52.7 71.7 

11 0 - λ 0 0 17.5 22.8 33.3 51.0 71.2 85.1 

12 0 + λ 0 0 14.1 16.8 20.7 31.2 47.0 65.5 

13 0 0 - λ 0 11.2 13.2 24.0 35.9 51.1 60.6 

14 0 0 + λ 0 14.1 16.7 20.2 23.2 30.9 43.3 

15 0 0 0 0 15.1 18.3 24.1 37.3 52.4 66.8 

16 0 0 0 0 15.0 17.0 25.1 36.9 51.1 68.3 

17 0 0 0 0 15.1 17.1 23.9 34.4 43.8 55.4 

18 0 0 0 0 15.4 17.1 22.5 34.6 46.7 59.5 

19 0 0 0 0 14.8 16.9 25.2 37.4 49.0 60.4 

20 0 0 0 0 14.6 16.7 22.0 30.0 41.0 53.9 
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Table F3. Confirmatory tests 
 

Bacterial leaching conditions: Nickel content 1.5%, 10% v/v mixed culture inoculum, pure 9K 
nutrient media  with sulphur substrate, temperature 30°C and agitation speed ≥200 rpm. The actual 

factor levels were as follows: pH = 2.0; pulp density = 2.6; particle size, µm = 53-75 
 

Nickel concentrations (ppm) 

 
Run Time (days) 

0 3 6 11 16 21 26 
1 0 56 72 106 162 246 295 
2 0 56 71 106 161 243 289 
3 0 55 70 105 160 245 291 
4 0 54 70 104 159 260 310 

 
 
 

Nickel recoveries (%) 

 
Run Time (days) 

0 3 6 11 16 21 26 
1 0 14.1 18.4 26.6 41.9 62.4 74.9 
2 0 14.0 18.3 26.8 40.9 61.5 73.2 
3 0 13.8 18.0 26.4 40.3 61.0 72.6 
4 0 13.5 17.7 25.8 39.5 63.5 75.7 
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_________________________________________________________________ 

APPENDIX G 

 

 

STATISTICAL ANALYSIS 

_________________________________________________________________ 

 

“A human being is the best computer available to place in a space ... It is also the 

only one that can be mass produced with unskilled labour”. 

 

-Werner von Braun 
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Determination of the accuracy of Varian SpectrAA-55B atomic absorption 

spectrophotometer analysis   

 
The accuracy of the Varian SpectrAA-55B atomic absorption spectrophotometer for 
estimating nickel concentration was tested by comparing the mean of the ten samples 
with the known concentration of 2.000 ppm. 
 
Table G1. Determination of the accuracy of the AAS 

 
Sample number Measured concentration of nickel (ppm) 
1 2.091 
2 2.007 
4 2.016 
5 1.995 
6 2.012 
7 2.005 
8 1.948 
9 1.973 
10 2.002 
 

calculatedt is computed from equation G1 and compared with  tablet . If calculatedt is greater 

than tablet at the 99% confidence level, then the two results are considered to be 

different. 
 

known value
calculated

x
t n

s

−
=       (G1) 

 
Known concentration    2.000 
Mean,  x      2.001 
Standard deviation, s    0.014 
Number of observations, n   10 
Degree of freedom, n-1   9 
  

2.001 2.000
10 0.232

0.013638calculatedt
−

= =   

 
For α =0.001, the 

tablet = 4.781.  

 
The

calculatedt is smaller than the
tablet , therefore, the mean is a good estimate of the Ni 

concentration. At 99% confidence level, therefore, the Varian SpectrAA-55B atomic 
absorption spectrophotometer can be used to measure the nickel concentration of the 
samples with minimum error. 
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Determination of the accuracy of 744 Metrohm model pH meter analysis   

 
The accuracy of the 744 Metrohm model pH meter for estimating pH was tested by 
comparing the mean of the ten standards having the same known pH of 4.00. 
 

Table G2. Determination of the accuracy of the pH meter 

 
Sample number Measured pH 
1 4.01 
2 4.01 
4 4.00 
5 3.99 
6 4.01 
7 4.00 
8 3.99 
9 3.99 
10 4.00 
 

calculatedt is computed from equation G1 and compared with  tablet . If calculatedt is greater 

than tablet at the 99% confidence level, then the two results are considered to be 

different. 
 

known value
calculated

x
t n

s

−
=       (G1) 

 
Known pH   4.00 
Mean,  x      4.00 
Standard deviation, s    0.009 
Number of observations, n   10 
Degree of freedom, n-1   9 
  

4.00 4.00
10 0.00

0.008660calculatedt
−

= =   

 
For α =0.001, the tablet = 4.781.  

 
The calculatedt is smaller than the tablet , therefore, the mean is a good estimate of the pH. 

At 99% confidence level, therefore, the 744 Metrohm model pH meter can be used to 
measure the pH of the samples with minimum error. 
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__________________________________________________________________ 

APPENDIX H 

 

 

STATISTICAL AND MATHEMATICAL METHODS 

__________________________________________________________________ 

 

“One cannot escape the feeling that these mathematical formulae have an 

independent existence and an intelligence of their own, that they are wiser than we 

are, wiser even than their discoverers, that we get more out of them than we 

originally put into them”. 

 

-Henrich Hertz 
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Response Surface Methodology (RSM) 

 
RSM is a mathematical and statistical technique which is useful for the modeling and 
analysis of problems in which a response of interest is influenced by several 
significant variables and the objective is to optimise this response (Myers and 
Montgomery, 2002; Montgomery, 2005; Baş and Boyaci, 2007). RSM attempts to 
analyse the effect of the independent variables, alone or in combination, on a specific 
dependent variable (response). Furthermore, RSM also generates a mathematical 
model (Myers and Montgomery, 2002). The graphical representation of the model has 
led to the coined term Response Surface Methodology (Myers and Montgomery, 
2002). The independent variables are presumed to be measurable and continuous, and 
can be controlled with negligible error, where as the response is postulated to be a 
random variable (Oraon et al., 2006).  
 
In general, the relationship between the response and the independent variables is 

  
 η = ƒ(x1, x2, …, xk) + ε,      (H1) 
 

where, η is the response; ƒ is the unknown function of the true response function (or 
response surface); x1, x2, …, xk represent experimental variables, also called natural 
variables because they are expressed in the natural units of measurement, such as 
degrees Celsius, pounds per square inch, etc (Carley et al., 2004); k is the number of 
independent variables; ε is the term that represents other sources of variability not 
accounted for by ƒ. Usually ε includes effects such as measurement error on the 
response, background noise, the effects of other variables, and so on. ε is treated as a 
statistical error, often assumed to have normal distribution with mean zero and 
common variance (Carley et al., 2004; Baş and Boyaci, 2007). 
 
For most of the response surfaces, the functions for the approximations are 
polynomials because of simplicity, though the functions are not limited to the 
polynomials (Hu et al., 2008). For the case of quadratic polynomials (second order 
models), the response surface can be represented as follows (Hu et al., 2008):  

 

y  = 2
0

1 1 1 1

      
k k k k

i i ii i ij i j

i i i j i

X X X Xβ β β β
= = = = +

+ + +∑ ∑ ∑∑ + ε  (H2) 

 
where y  is the predicted response, 0β is the coefficient for intercept, iβ  is the 

coefficient of linear effect, iiβ  is the coefficient of quadratic effect, 
ij

β  is the 

coefficient of interaction effect, k  is the number of variables, and iX  and
j

X  are 

coded independent variables. 
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The quadratic model has a constant term, k -first order terms, k -quadratic terms, and 
k ( k -1)/2 interaction terms and thus, has a total of p = ( k +1)( k +2)/2 terms (Draper 
and Lin, 1990). 
 
In the case where the total number of experiments is N, the response surface can be 
expressed as follows using the matrix notation (Khuri and Cornell, 1987): 

  
y  = X β  + ε 

 

1

2

.
  

.

.

n

y

y

y

 
 
 
 
 
 
 
 
  

= 

11 12 1k

21 22 2k

n1 n2 nk

1  x   x   .  .  .  x

1  x   x   .  .  .  x

.    .      .     .  .  .  . 
  

.    .      .     .  .  .  . 

.    .      .     .  .  .  .

1  x   x   .  .  .  x

 
 
 
 
 
 
 
 
  

0

1

.
  

.

.

k

β

β

β

 
 
 
 
 
 
 
 
  

+ 

1

2

.
  

.

.

n

ε

ε

ε

 
 
 
 
 
 
 
 
  

  (H3) 

  y        X             β  ε  

 
where y  is an N x 1 vector of the observations; X  is an N x (k+1) matrix of the 

levels of the independent variables; β  is a (k+1) x 1 vector of the estimates of the  

regression coefficients; ε  is an N x 1 vector of random errors. 
 
The equations given above are solved using the method of least squares which is a 
multiple regression technique. The difference between the observed and the fitted 
values for the ith observation ,exp ,   -  

i i i cal
y yε =  is called the residual and is an 

estimate of the corresponding iε , where iε  is the residual, ,expi
y  is the observed 

values, ,i cal
y is the predicted values. 

 
The criterion for choosing the regression coefficient estimates (

iβ ) is that they should 

minimize the sum of the squares of the residuals, which is often called the sum of 
squares of the errors denoted as SSE. Thus (Baş and Boyaci, 2007),  

 

 SSE = 2

1

N

i

i

ε
=

∑  = 2
,exp ,

1

( - y )
N

i i cal

i

y
=

∑      (H4) 

 
The residuals may be written as ε= y –Xβ (refer to Equation H3). Therefore, the least 

squares estimates of the elements of β  in Equation H3 are given as (Baş and Boyaci, 

2007): 
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  1  ( )T TX X X yβ −=       (H5) 
 

where T
X is the transpose of X ; 1( )TX X −  is the inverse of ( )TX X . 

 
After the regression coefficients have been obtained, the estimated response can then 
be easily calculated by substitution into the second order model Equation (H2). 
   

Central Composite Rotatable Design (CCRD) 

 

The experimental design techniques commonly used for the process analysis and 
modeling of response surfaces for second order designs are the full factorial, partial 
factorial and central composite rotatable designs (Obeng et al., 2005).  If the design is 
rotatable as in the case of the CCRD, the variance of the predicted response, y , 
remains constant at all points, which are equidistant from the design centre and is not 
a function of direction (Khuri and Cornell, 1987; Montgomery, 2005). The CCRD is 
an effective second order design which was pioneered in 1951 by Box and Wilson 
and later improved upon in 1957 by Box and Hunter. It is useful than the full factorial 
designs, since it requires much fewer tests, but is shown to be sufficient to describe 
the responses (Obeng et al., 2005).  
 
The CCRD involves the use of three portions, (i) 2

k factorial (or a 2
(k-q) fractional 

factorial with resolution V) portion with its origin at the centre (conventionally called 
a cube with ±1 being the factorial levels) allowing estimates of first order effects or 
first order + two factor interactions; (ii) 2k axial or star points fixed axially at a 
distance λ from the origin representing a one factor-at-a-time portion designed to 
generate the pure quadratic terms, 2

ii i
xβ , in Equation (H2) (Myers et al., 1989);                   

(iii) and nc replicate points at the centre to provide information about the existence of 
the curvature in the system and stabilizes, the variance of the predicted response 
(Myers and Montgomery, 2002; Montgomery, 2005; Draper and Lin, 1990), and 
provide an independent estimate of experimental error (Myers and Montgomery, 
2002; Montgomery, 2005; Obeng et al., 2005). Thus, there is a total of 2k (or 2(k-q)) + 
2k + nc points in the design; where k is the number of factors to be studied.  
 
The axial points are chosen so that they allow rotatability (Box and Hunter, 1957) 
which ensures that the variance of the model prediction is constant at all points 
equidistant from the design centre. A value of λ = (2

k-q
)
1/4 guarantees rotatability 

despite the number of centre points (Myers et al., 1989; Myers and Montgomery, 
2002); where 2k-q specifies a two level design on k factors and the -q represents the 
fraction of the number of factors (where q = 0 for full factorial design).  
 
The number of centre point replications, nc, can also be chosen to cause a CCRD to 
have the variance of the predicted response, y , remaining constant at all points which 
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are equidistant from the design centre, such that for three factors (Khuri and Cornell, 
1987), 

 

nc  ≈ ( )
2

20.8385 2   2   2   2
k

k
k+ − −    (H6)  

 
The number of centre points should never be less than 5; in fact replication of centre 
points must be two times the number of factors (2k), but capping the number at ten 
(Anderson and Whitcomb, 2005). 
 
The units of the independent variables differ from one another. Since parameters have 
different units and/or ranges in the experimental domain, the regression analysis 
should only be performed once the parameters have been normalized. Once the 
desired ranges of values of the variables are defined, they are then coded. Coding 
ensures that all the variables affect the response more evenly, and so, the units of the 
parameters are irrelevant (Montgomery, 2002). In general, the factorial points are 
designed such that the nth column consists of 2n-1 minus signs followed by 2n-1 plus 
signs (Box et al, 1978). The nc centre points are defined as (0, 0, 0, … 0). The axial or 
star points with their levels are designed as follows (Myers and Montgomery, 2002): 
 
 

X1 X2 … Xk  
- λ 0 … 0  
+ λ 0 … 0  
0 - λ … 0 (H7) 
0 + λ … 0  
. . … .  
0 0 … - λ  
0 0 … + λ  

 
 
Relationships between coded and actual values of the variables in a CCRD are 
calculated as given in Table 7.1 (i.e in Chapter 7) in accordance with Napier-Munn 
(2000). A convenient formula derived through interpolation for converting the coded 
variable, ix , is given as, follows: 

  

iX  = 
( )( )

( )
iH iL iH i

iH

iH iL

X X x x
X

x x

− −
−

−
 , i = 1, 2, 3   (H8) 
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where iLX and iHX  are the actual low and high levels of iX , respectively, iLx  and 

iHx  are the coded low and high levels of iX , respectively, and ix  is the coded 

variable that is being converted. 
  
Model validation 

 

Following the program of experimentation and after the regression coefficients have 
been obtained, the adequacies of the models are checked using the analysis of 
variance (ANOVA) technique (Khuri and Cornell, 1987). ANOVA is a statistical 
method that can be used to quantify the significant differences between factors and 
levels. It compares the magnitude of the estimated effects of factors with the 
magnitude of experimental error (Keller, 2001). If the magnitude of a factor effect is 
large when compared with the experimental error, it is decided that the changes in the 
selected response can not occur by chance and, therefore, those changes in the 
response can be considered to be the effects of the factors. The factors causing a 
variation in the response are called significant. The results of the analysis are 
displayed in a tabular format. 
 

Total Sum of Squares 

The total variation in a set of data is called the Total Sum of Squares. It is computed 
by summing the squares of the deviations of the observed ,expi

y ’s about their average 

value, 1 2  ( ... ) /Ny y y y N= + + +  (Khuri and Cornel, 1987), 

 

SST = ( )
2

,exp
1

N

i

i

y y
=

−∑       (H9) 

 
The quantity SST is associated with 1N − degrees of freedom. 
 

The square term is used as a means of factoring out whether the sample is below or 
above the mean. If the square is not taken, variations below the mean may cancel 
variation above the mean to make it seem as if there is no variation (Keller, 2001). 
 
The total sum of squares can be partitioned into two parts; the sum of squares due to 
regression (sum of squares explained by the fitted model) and the sum of squares 
unaccounted for by the fitted model. 
 

Sum of Squares of Regression 

The formula for calculating the sum of squares due to regression (SSR) is 
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 SSR = ( )
2

,
1

N

i cal

i

y y
=

−∑       (H10) 

 
The deviation ,i cal

y y−  is the difference between the value predicted by the model for 

the i
th observation and the overall average of the observed, i,expy ’s. If the model 

contains p-parameters, then the degree of freedom associated with SSR is p-1. 
 

Sum of Squares of Errors 

Khuri and Cornell (1987) give the sum of squares unaccounted for by the fitted model 
or sum of squares of residuals or errors (SSE) as 
  

 SSE = 2
,exp ,

1

( - y )
N

i i cal

i

y
=

∑      (H11) 

 
The deviation ,exp ,- y

i i cal
y  is the difference between the observed value and value 

predicted by the model for the ith observation. The number of degrees of freedom of 
SSE is N-p. 
 
Determination of SST, SSR, and SSE using matrices 

Using matrix notation and letting O  be a 1 x N vector of ones, the quickest methods 
for calculating SST, SSR, and SSE are given as (Khuri and Cornell, 1987),  
 

 SST = 
2( )

  T Oy
y y

N
−  

SSR = 
2( )

  T T Oy
X y

N
β −      (H12) 

 SSE =   T T Ty y X yβ−  

  
where y  is an N x 1 vector of the observations; X  is an N x (k+1) matrix of the 

levels of the independent variables; β  is a (k+1) x 1 vector of the estimates of the  

regression coefficients; Ty , T
X and Tβ refers to the transpose of y , X and β , 

respectively. 
 

 

Test of lack of fit of the fitted model 

A procedure for checking the adequacy of the fitted model is called testing lack of fit 
of the fitted model (Khuri and Cornell, 1987). The fitted model is inadequate or is 
lacking in fit when it does not contain sufficient number of terms due to the omission 
of factors (other than those in the proposed model) that affect the response, and/or, 
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omission of higher-order terms involving the factors in the proposed model. The 
inability of the fitted model (Equation H2) to adequately account for the variation in 
the observed response values is reflected in the portion of the total variation that is 
called residual variation or the variation unaccounted for by the fitted model (Khuri 
and Cornell, 1987; Myers and Montgomery, 2002; Montgomery, 2005).  
 
Isolating the portion of the residual variation that is directly attributed to underfitting 
the true surface with the fitted model is necessary in order to test for adequacy of the 
fitted model. The residual sum of squares, SSE, can be partitioned into two sources of 
variation; (1) the variation among the replicates at the design points where replicates 
have been collected, and (2) variations arising from lack of fit of the fitted model.  
The sum of squares due to replicate observations is called the sum of squares due to 
pure error (SSPE). In other words, it is the sum of squares of differences between all 
the individual experimental values and the average of the experimental values at the 
same level. Once SSPE is calculated, it is then subtracted from the SSE to produce the 
sum of squares due to lack of fit (SSLOF).  
 
SSPE can also be calculated from the replicated centre points of the experiments 
(Myers and Montgomery, 2002; Montgomery, 2005) as given below: 

 
SSPE   = 2

,
int

( )c i c

centre po s

Y Y
−

−∑       (H13) 

 
where ,c i

Y  are the observations of the centre points, 
C

Y  is the average of the 

observations of the cn  runs at the centre. 

 
The number of degrees of freedom associated with SSPE in this case is cn -1. By 

subtraction, the sum of squares due to lack of fit is then calculated as: 
 
SSLOF  = SSE - SSPE      (H14) 

 
The test of the null hypothesis of adequacy of fit (or lack of fit is zero) involves 
calculating the value of the Fisher’s variance ratio test (F-test): 
 

 F = LOF

PE

SS /(N - - +1)

SS /( -1)
c

c

p n

n
     (H15) 

 
where Cn  is the number of replicates of centre points, p is the number of terms in the 

fitted model, N is the number of observations. N - - +1cp n  is the degree of freedom 

for LOFSS . 
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The calculated value is then compared with the standard table value of F ratio for the 
desired level of confidence; α. Lack of fit exists at α level of significance if the 
calculated value of F exceeds the standard table value, , 1, 1F

c cN p n nα − − + −  (Khuri and 

Cornell, 1987). If not, the model can be accepted at the desired confidence level as 
providing an adequate representation of the data. 
 
Test for significance of regression 

The test for significance of regression is a test to determine whether a linear 
relationship exists between the response variable, y, and the regression coefficients, 

iβ  (Montgomery, 2005). The usual test of the significance of the fitted regression 

equation is a test of the null hypothesis, 0H : all values of
iβ  (excluding 0β  ) are zero. 

The alternative hypothesis is, 
aH : at least one value of 

iβ  (excluding 0β ) is not zero. 

Assuming normality of the errors, the test of 0H  involves first calculating the value 

of the F-statistic, 
 

 F = 
Mean Square Regresssion

Mean Square Residual
  = 

/(   1)

/(   )
R

E

SS p

SS N p

−

−
    (H16) 

 
If the null hypothesis is true, then the F-statistic Equation (H16) follows an                          
F-distribution with p-1 and N-p degrees of freedom under the 1ν  (numerator ) and 2ν  

(denominator) F-distribution, respectively, where p is the number of terms in the 
fitted model, N is the number of observations. The second step of the test of 0H  is to 

compare the calculated values of F to the standard table value, , 1,F
p N pα − − , for the 

desired level of confidence, α, with p-1 and N-p degrees of freedom for upper and 
lower, respectively. If the calculated value of F exceeds the standard table value, 

, 1,F
p N pα − − , then the null hypothesis is rejected at α level of significance and it is 

therefore inferred that the variation accounted for by the model (through the values 
of iβ , i ≠ 0) is significantly greater than the unexplained variation. In other words, the 

regression is significant if the calculated F-value is greater than the value obtained 
from standard table. A confidence level is typically set at α = 0.05. This signifies that 
the criterion is (1-α) or 95% accurate. 
 
It must be noted, however, that this F-test is only valid for models for which there is 
no evidence of lack of fit.  
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Coefficient of determination and Absolute Average Deviation 

An accompanying statistic to the F-test of Equation (H16) is the coefficient of 
determination: 
 

 2R  = R

T

SS

SS
       (H17) 

 
The value of 2R is a measure of the proportion of the total variation of the values of 

i,expy  about the mean y explained by the fitted model (Khuri and Cornel, 1987). 

Although this coefficient is a measure of how close the model fits the data, it can not 
be used to judge model lack of fit because it does not take into account the number of 
degrees of freedom for model determination. In fact, a large value of R

2
 does not 

necessarily mean that the regression model is a good one since addition of a variable 
to the model will always increase R2 regardless of whether the additional variable is 
statistically significant or not. Thus, it is possible for models that have large values of 
R

2 to yield poor predictions of new observations or estimates of the new response 
(Montgomery, 2005).  
 
These types of errors can be eliminated by using the absolute average deviation 
(AAD) analysis, which is a direct method for describing the deviations (Baș and 
Boyaci, 2007). The AAD is calculated by the following equation: 
 

 AAD = [{
1

(
N

i=

∑ ׀ ,exp , - 
i i cal

y y ׀ },exp/  )  / N   100
i

y x   (H18) 

 
where ,expi

y and ,i cal
y are the experimental and calculated responses, respectively, and 

N is the number of experimental runs.  
 
Evaluation of R2 and AAD together is a better way of checking the adequacy of the 
model. R2 must be close to 1.0 and AAD between the predicted and the observed data 
must be as small as possible. The acceptable values of R2 and AAD values mean that 
the model equation defines the true behaviour of the system and it can be used for 
interpolation in the experimental domain, but, care must be taken about extrapolating 
beyond the region containing the original observations (Baș and Boyaci, 2007). 
 
Test of hypothesis concerning individual parameters in the model 

This test looks at the specific effects of the factors used in an experiment. The test of 
hypothesis concerning individual parameters in the model is performed by comparing 
the parameter estimates in the fitted model to their respective estimated standard 
errors (Khuri and Cornell, 1987). The test of the null hypothesis, 0H :

iβ  = 0,  is 
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performed by calculating the value of the test statistic and comparing the value of t in 
Equation (H19) against a standard table value, tα , from the t-tables: 

  

 t = 
est.s.e ( )

i

i

β

β
      (H19) 

 
where 

iβ  is the least squares estimate of coefficients, est.s.e. (
iβ ) is the estimated 

standard errors of coefficient
iβ .  

 
The estimated standard errors are the positive square roots of the products of the 

diagonal elements of T 1(X )X −  and the mean sum of squares for residuals (errors), 
MSE (Khuri and Cornell, 1987). 

 
The choice of table value, tα , depends on the alternative hypothesis, aH , the level of 

significance, α, and the degree of freedom for t in Equation (H19). If the alternative 
hypothesis is, aH : iβ  ≠ 0, the test is called two-sided test, and the value of tα is taken 

from the column corresponding to 2tα  in the standard table.  

 
If, on the other hand, the alternative hypothesis is aH : iβ  > 0 or aH : iβ  < 0, the test is 

a one sided, and the value of tα is taken from the column for tα in the table. The 

degree of freedom for t in Equation (H19) is the degree of freedom of SSE used in 
Equation (H11).   
 

If the absolute value of t, t , in Equation (H19) exceeds the standard table value, 

,N p
tα − , then the null hypothesis, 0H , is rejected in favour of the alternative, aH , 

(Khuri and Cornell, 1987; Montgomery, 2005); meaning the model coefficient is 
statistically significant. 
 
Determining the Coordinates of the Stationary Point  

 
After the fitted model is checked for adequacy of fit in the region defined by the 
coordinates of the design and is found to be adequate, the model is then used to locate 
the coordinates of the stationary point (Khuri and Cornell, 1987). To obtain the 
coordinates of the stationary point, the fitted second order model in k -variables is 
written in matrix notation (Khuri and Cornell, 1987; Myers and Montgomery, 2002; 
Montgomery, 2005) as: 
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 ˆ( )y x  =  0  +  + x b x xβ β′ ′       (H20) 

where 
 

 x  = 

1

2

.
  

.

.

k

x

x

x

 
 
 
 
 
 
 
 
  

 b  = 

1

2

.
  

.

.

k

β

β

β

 
 
 
 
 
 
 
 
  

and β  = 

112
11

2
22

1,

           . . .    
2 2

                . . .      
2

                      .           . 

                        .         .

                            .     .

  
 (symmetric)          

k

k

k

ββ
β

β
β

β −

  

 
2

                                  

k

kkβ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The elements of the  x 1k  vector b  are the estimated coefficients of the first order 
terms of Equation (H20), and the elements of the  x k k  symmetric matrix β  are the 

estimated coefficients of the second order terms in Equation (H20). The partial 
derivatives of ˆ( )y x  with respect to 1x , 2x , … and kx  are 

 

 

 

1 11 1 1
21

2 22 2 2
22

1

2

ˆ( )
 =  + 2  + 

ˆ( )
 =  + 2  + 

 + 2  .

  .

  .

ˆ( )
 =  + 2  + 

k

i i

i

k

i i

i

k

k kk k ki i

ik

y x
x x

x

y x
x x

x

b Bx

y x
x x

x

β β β

β β β

β β β

=

≠

−

=

∂ 
∂

∂


∂ 


=





∂ 
∂ 

∑

∑

∑

    (H21) 

 
Setting each of the k derivatives equal to zero and solving for the values of

ix , the 

coordinates of the stationary point are the values of the elements of the  x 1k  vector 

sx  given by:   
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 sx  =  -
1

2

bβ −

        (H22) 

 

where 1β −  is the inverse of the matrix β  in equation H20. 

 
The predicted response at the stationary point is given as  
 
 ˆ

sy  = 0  +  + s s sx b x xβ β′ ′  

  =  0

1
 + 

2
sx bβ ′        (H23)  

 
Nature of the Stationary Point (Canonical analysis) 

 
The nature of the response surface system or stationary point (maximum, minimum, 
or saddle point) depends on the signs and magnitudes of the coefficients in the model 
of Equation (H2) (Myers and Montgomery, 2002).  The second order coefficients 
(interaction and pure quadratic terms) play a vital role. The nature of the stationary 
point is determined from the signs of the eigenvalues of the matrix β  (Myers and 

Montgomery, 2002). The eigenvalues, 
iγ , represent the coefficients of the 2

i
W terms 

in the canonical equation: 
 

 ŷ = ˆ
sy + 2

1

k

i i

i

Wγ
=
∑        (H24) 

where ŷ is the predicted response, ˆ
sy is the estimate of the response at the stationary 

point, ˆ
sy , iW  are the principal axes of the response system.  

 
Derivation of the Canonical Equation.  

The first step in developing the canonical equation for a k -variable system is to 
translate the origin of the system from the centre of the design to the stationary point, 
that is, to move ( 1x , 2x , …, 

kx ) = (0,0,…, 0) to 
sx (Khuri and Cornell, 1987). This is 

done by defining the intermediate variables ( 1z , 2z , …,
kz )′  = ( 1x - 1sx , 2x - 2sx , …, 

kx -

ksx )′  or z = x -
sx . Then, the second order response equation (H20) is expressed in 

terms of the values of 
iz  as  

 
 ˆ( )y z  =  0  + (z+ )  + (z+ ) (z+ )s s sx b x xβ β′ ′   

  =  [ ]0  + z  + z z+2 zs s s sx b x x b xβ β β β′′ ′ ′ ′+ + ,  

  = ˆ
sy + z′ B z        (H25) 

 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Appendix H Page 213 
 

where 2 z
s

x β′ =  z b′−  from equation (H22). 

 
Equation (H25) shows that in the intermediate variables, the predicted response is a 
linear function of the estimate of the response at the stationary point, ˆ

sy , plus a 

quadratic form in the values of iz . The axes of the values of iz  are aligned with the 

corresponding axes of ix . 

 
Now, to obtain the canonical form of the predicted response, let a set of 
variables 1W , 2W , …, kW  defined such that ( 1W , 2W , …, kW )′ is given by 

 
  W = M ′ z        (H26) 
 
where M is a  x k k orthogonal matrix whose columns are the normalized 
eigenvectors associated with eigenvalues of matrix β  . 
 
The matrix M has the effect of diagonalising β , that is, M Mβ′ = diag( 1γ , 2γ , …, 

kγ ), where 1γ , 2γ , …, kγ are the corresponding eigenvalues of β . The axes 

associated with 1W , 2W , …, kW are the principal axes of the response system. The 

transformation in Equation (H26) is a rotation of the iz  axes to form the iW  axes.  

 
To express Equation (H25) in the iW  variables, the quadratic form z′ β z is written 

as:  
 
  z′ β z  = W M MWβ′ ′  

  = 2
1 1Wγ + 2

2 2Wγ +…+ 2
k k
Wγ       (H27) 

 
The eigenvalues iγ  represent the coefficients of the 2

i
W terms in the canonical 

equation: 
 

 ŷ = ˆ
sy + 2

1

k

i i

i

Wγ
=
∑        (H28) 

 
In the MATLAB R2006a software, the code for calculating the eigenvalues of β  is, 

eig( β ) (Griffiths, 2005). 

 
The signs of the eigenvalues ( iγ ) determine the nature of the stationary point ( sx ). 

If 1γ , 2γ , …, kγ  are all negative, the stationary point is a point of maximum response. 
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If 1γ , 2γ , …, kγ  are all positive, the stationary point is a point of minimum response. 

If 1γ , 2γ , …, kγ  are mixed in signs, the stationary point is a saddle point of the fitted 

surface. 
 
Sometimes it is also necessary to use constrained optimization (Ridge analysis) to 
arrive at the potential operating conditions when the stationary point is a saddle point 
or point of maximum or minimum response that resides well outside the experimental 
region, or where several response variables must be considered (Myers and 
Montgomery, 2002).   
 

Ridge Analysis 

 
This section briefly sets forth the strategy of the ridge analysis, the term that was first 
used by Hoerl in 1959. When the location of a stationary point is a saddle or is 
outside the experimental region, a search for the optimal value ŷ is possible by the 

method of ridge analysis (Myers, 1971; Khuri and Cornell, 1987; Myers and 
Montgomery, 2002). In general, this method is used to finding the absolute maximum 
or minimum of ŷ on concentric spheres of varying radii, iR  ( i =1,2, …) which are 

centred at  ( 1x , 2x , …, kx ) = (0, 0, …, 0) and are contained within the experimental 

region (Khuri and Cornell, 1987).   
 
Given the fitted second order response surface model of Equation (H20) over the 
region of the k - coded variables ( 1x , 2x , …, 

kx ) as, 

 
 ŷ  =  0  +  + x b x xβ β′ ′       

  
If the coordinates of the variables that maximize ŷ are restricted to the point lying on 

the boundary of a sphere of radius R , then the constraint becomes, 
 

  2 2

1

 = 
k

i

i

x R
=
∑        (H29) 

      
To maximize ŷ in Equation (H20) subject to the constraint of Equation (H29), the 

function below is considered in accordance with the theorem by Kaplan (1952), 
 

  2ˆ = ( )F y x x Rµ ′− −             (H30) 

 or  2
0 =  +  + ( )F x b x x x x Rβ β µ′ ′ ′− −       

   
where µ is the Lagrangian multiplier and x′ = ( 1x , 2x , …, kx ). 
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Differentiating Equation (H30) with respect to ix , gives 

 

   =  + 2 2
F

b x x
x

β µ
∂

−
∂

              (H31) 

 
Equating Equation (H31) to zero, and solving for x gives, 
 

  ( )  = 
2

k

b
I xβ µ− −       (H32) 

  or  ( )
1

 = 
2

k

b
x Iβ µ

−  
− −  

 
 

  
where I is the identity matrix. 
 
Predetermined values of µ can be inserted into Equation (H32), then solve for 1x , 2x , 

…, 
kx , compute R from Equation (H29), and ŷ from Equation (H20). However, it 

must be noted that the nature of the stationary point depends on the value of µ chosen 
(Myers, 1971; Khuri and Cornell, 1987).  
 
The choice of the value of µ  for generating a particular type of stationary point 
 
To help in the development of the properties of the stationary points, a well known 
mathematical theorem (Kaplan, 1952) is given here by considering the stationary 
points of a function 1 2( , ,..., )kf x x x  of k - variables, subject to the n constraints. 

  
 1 2( , ,..., ) 0

j k
h x x x =     ( 1, 2,...,j n= )     (H33) 

 
The function, F, is first formed as follows, 
  

1 2 1 2
1

( , ,..., ) ( , ,..., )
n

k j j k

j

F f x x x h x x xµ
=

= −∑     (H34) 

where the 
j

µ are Lagrange multipliers.  

 
Differentiating Equation (H34) partially with respect to

ix  and setting the results 

equal to zero produces the k equations as, 
 

 1 21 2

1

( , ,..., )( , ,..., )
0

n
j kk

j

ji i i

h x x xf x x xF

x x x
µ

=

∂∂∂
= − =

∂ ∂ ∂
∑    ( i =1,2, …, k )   (H35) 
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Equations (H33) and (H35) represent n k+ equations in a like number of unknowns. 
These equations can be solved for the values of 1x , 2x , …, kx  and  1µ , 2µ ,…, nµ . 

However, the values of 1µ , 2µ ,…, nµ  are not of interest except to use them for 

calculating the values of 1x , 2x , …, kx . Therefore, these equations can be solved for 

the ix  by first eliminating the values of 
j

µ  rather than calculate values for
j

µ  . If x′ = 

a′ = ( 1a , 2a , …, ka ) is the solution of equations (H33) and (H35) after the elimination 

of
j

µ , then the properties of the symmetric matrix 

 

 ( )M x = 

2 2 2 2
1 1 2 1

2 2 2
2 2

2 2

     ... 

                       ...  

                                      ...        ...

                                                   

k

k

k

F x F x x F x x

F x F x x

F x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 
 

 ∂ ∂ 




= 2( )kIβ µ−  (H36) 

    
evaluated at 1x = 1a , 2x = 2a , …, kx =, determine the nature of the stationary point 

1a , 2a , …, ka  . In particular, 

 
1. If ( )M a is positive definite, that is, if d ′ ( )M a d  > 0, for all d  where d  is 

any none zero  x 1k real vector, then the solution is a local minimum 
for 1 2( , ,..., )kf x x x .  

2. If ( )M a is negative definite, that is, if d ′ ( )M a d  < 0, for all d ≠0, then the 

solution is a local minimum for 1 2( , ,..., )kf x x x .  

3. If ( )M a is indefinite, further investigations of the mean response near the 

point ix = ia is required to determine what sort of stationary point has been 

obtained.  
 

Several results regarding the value of µ  and the corresponding values of 1x , 2x , …, 

kx , of R and ŷ are stated below (Myers, 1971) and some of the proofs to the 

theorems are outlined in Myers (1971). 
 
Result 1. If one considers two solutions of equation (H32), 1x′ = ( 1a , 2a , …, ka ) for µ  

= 1µ  and 2x′ = ( 1c , 2c , …, kc ) for µ  = 2µ  resulting in estimates 1ŷ  and 2ŷ on the 

spheres of radii 1R  and 2R , respectively. Then if 1R = 2R and 1µ > 2µ , then 1ŷ > 2ŷ . 

The results essentially says for two stationary points that are the same distance from 
the design centre, the response estimate will be larger for that stationary point 
corresponding to the larger value of µ . 
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Result 2. If 1R = 2R , and 1( )M x is positive definite but 2( )M x is indefinite, then 1ŷ <

 2ŷ . 

 
Result 3. If 1µ is the chosen value of µ  in equation (H32) with 1x being the resulting 

solution, and 1R  the corresponding radius, then if 1µ > iγ  (all i ), where iγ  is the i
th 

eigenvalues of β , then 1x is a point at which ŷ attains a local maximum on 1R . On the 

other hand, when 1µ < iγ  (all i ), then 1x is a point at which ŷ attains a local minimum 

on 1R . 

 

It must be noted also that the radii of the solution to equation (H32) should fall in the 
interval 0, bR , where bR is the radius approximately representing the boundary of the 

experimental region (Myers and Montgomery, 2002).  
 

Evaluation of the inverse matrix, 1
A

−  

 
Essentially in finding the inverse of a matrix, the evaluation 1AA I− = must be solved 
where I is the unit matrix. In order to examine the procedure two other forms of 
matrix must be looked at. 
 

Cofactor matrix, c
A  

 
This matrix is formed by replacing every element of the original matrix by its 
corresponding cofactor. The cofactor of a particular term in a determinant is simply 
the respective minor given a positive or negative sign. The rule for obtaining the sign 
is such that, if the sum of the column and the row of the element considered is even 
the sign of the cofactor is positive and, if the sum of the column and the row of the 
element considered is odd the sign of the cofactor is negative. A minor is the 
determinant obtained by ignoring the row and column in which an element appears. 
 

Adjoint matrix, a
A  

 
The adjoint matrix is the transpose of the cofactor matrix.  
 
The inverse of a matrix is equal to its adjoint matrix divided by its determinant 
(Smith, 1971), 

  1
aA

A
A

− =        (H37) 

    

 where A  is the determinant of matrix A . 
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Definitions 

 

1. A diagonal matrix is a square matrix whose off diagonal elements,
ij

m ,i≠j, are 

zero. 
2. An identity matrix I is a diagonal matrix with ones on the diagonal. 
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__________________________________________________________________ 

APPENDIX I 

 

 

MATLAB PROGRAMS 

__________________________________________________________________ 

 

“A mathematician is a machine for turning coffee into theorems”. 

 

-Paul Erdös 

 



Bacterial Leaching of Nickel Laterites                                                                 Geoffrey Simate Simate 

Appendix I Page 220 
 

Program for determining the regression coefficients in a fitted model 
 

X=[1 -1 -1 -1 1 1 1 1 1 1; 
    1 1 -1 -1 1 1 1 -1 -1 1; 
    1 -1 1 -1 1 1 1 -1 1 -1; 
    1 1 1 -1 1 1 1 1 -1 -1; 
    1 -1 -1 1 1 1 1 1 -1 -1; 
    1 1 -1 1 1 1 1 -1 1 -1; 
    1 -1 1 1 1 1 1 -1 -1 1; 
    1 1 1 1 1 1 1 1 1 1; 
    1 -2^(3/4) 0 0 2^(3/2) 0 0 0 0 0; 
    1 2^(3/4) 0 0 2^(3/2) 0 0 0 0 0; 
    1 0 -2^(3/4) 0 0 2^(3/2) 0 0 0 0; 
    1 0 2^(3/4) 0 0 2^(3/2) 0 0 0 0; 
    1 0 0 -2^(3/4) 0 0 2^(3/2) 0 0 0; 
    1 0 0 2^(3/4) 0 0 2^(3/2) 0 0 0; 
    1 0 0 0 0 0 0 0 0 0; 
    1 0 0 0 0 0 0 0 0 0; 
    1 0 0 0 0 0 0 0 0 0; 
    1 0 0 0 0 0 0 0 0 0; 
    1 0 0 0 0 0 0 0 0 0; 
    1 0 0 0 0 0 0 0 0 0]; 
O=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
I=eye(10); 
Y=[71.7;63.4;63.1;54.4;68.3;52.4;50.5;42.9;67.7;71.7;85.1;65.5;60.6;43.3;66.8;68.3;
55.4;59.5;60.4;53.9]; 
N=20;p=10;n=6; 
T=X'*X 
U=X'*Y 
V=inv(X'*X) 
B=(X'*X)\(X'*Y) 
SST=(Y'*Y)-(((O*Y).^2)./N) 
SSR=(B'*X'*Y)-(((O*Y).^2)./N) 
SSE=(Y'*Y)-(B'*X'*Y) 
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Program for determining the regression coefficients in a refitted model 

 
X=[1 -1 -1 -1 1 1 1; 
    1 1 -1 -1 1 1 1; 
    1 -1 1 -1 1 1 1; 
    1 1 1 -1 1 1 1; 
    1 -1 -1 1 1 1 1; 
    1 1 -1 1 1 1 1; 
    1 -1 1 1 1 1 1; 
    1 1 1 1 1 1 1; 
    1 -2^(3/4) 0 0 2^(3/2) 0 0; 
    1 2^(3/4) 0 0 2^(3/2) 0 0; 
    1 0 -2^(3/4) 0 0 2^(3/2) 0; 
    1 0 2^(3/4) 0 0 2^(3/2) 0; 
    1 0 0 -2^(3/4) 0 0 2^(3/2); 
    1 0 0 2^(3/4) 0 0 2^(3/2); 
    1 0 0 0 0 0 0; 
    1 0 0 0 0 0 0; 
    1 0 0 0 0 0 0; 
    1 0 0 0 0 0 0; 
    1 0 0 0 0 0 0; 
    1 0 0 0 0 0 0]; 
O=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
I=eye(7); 
Y=[71.7;63.4;63.1;54.4;68.3;52.4;50.5;42.9;67.9;71.7;85.1;65.5;60.6;43.3;666.8;68.3
;55.4;59.5;60.4;53.9]; 
N=20;p=10;n=6; 
T=X'*X 
U=X'*Y 
V=inv(X'*X) 
B=(X'*X)\(X'*Y) 
SST=(Y'*Y)-(((O*Y).^2)./N) 
SSR=(B'*X'*Y)-(((O*Y).^2)./N) 
SSE=(Y'*Y)-(B'*X'*Y) 
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Program for plotting response surfaces and contours  

 
Response surface and contour at constant pulp density 

 
RESPONSE SURFACE 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-2.5*x-4.9*y+1.6*(x.^2)-4.7*(y.^2); 
mesh(x,y,z) 
xlabel('pH'),ylabel('particle size') 
 
CONTOUR PLOT 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-2.5*x-4.9*y+1.6*(x.^2)-4.7*(y.^2); 
contour(x,y,z) 
xlabel('pH'),ylabel('particle size') 
 

Response surface and contour at constant particle size 

 
RESPONSE SURFACE 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-2.5*x-5.7*y+1.6*(x.^2)+3.5*(y.^2); 
mesh(x,y,z) 
xlabel('pH'),ylabel('pulp density') 
 
CONTOUR PLOT 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-2.5*x-5.7*y+1.6*(x.^2)+3.5*(y.^2); 
contour(x,y,z) 
xlabel('pH'),ylabel('pulp density') 
 

Response surface and contour at constant pH 

 
RESPONSE SURFACE 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-5.7*x-4.9*y+3.5*(x.^2)-4.7*(y.^2); 
mesh(x,y,z) 
xlabel('pulp density'),ylabel('particle size') 
  
CONTOUR PLOT 
[x,y]=meshgrid(-1.682:1:1.682,-1.682:1:1.682); 
z=61.0-5.7*x-4.9*y+3.5*(x.^2)-4.7*(y.^2); 
contour(x,y,z) 
xlabel('pulp density'),ylabel('particle size') 
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Program for determining the stationery point and optimum recovery 

 
b=[-2.5;-5.7;-4.9]; 
B=[1.6 0/2 0/2 
    0/2 3.5 0/2 
    0/2 0/2 -4.7]; 
S=-0.5*inv(B)*b; 
a=61.0; 
y=a+S'*b 
 


