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ABSTRACT 
Patients with respiratory failure secondary to acute asthma exacerbation (AAE) frequently 

present at emergency units. Some patients may develop respiratory muscle fatigue. Current 

guidelines for the treatment of an AAE center on pharmacological treatment and invasive 

mechanical ventilation. Noninvasive positive pressure ventilation (NPPV) has an 

established role in COPD exacerbations. The role it can play in an AAE remains 

unanswered although it is frequently used in the clinical setting. Aims: The present study 

proposed to investigate if the early use of NPPV in the forms of continuous positive airway 

pressure (CPAP) or bilevel positive pressure ventilation (BPPV) together with standard 

medical therapy in AAE can decrease time of response to therapy compared to standard 

medical therapy alone. We further tested the effect of BPPV against CPAP.  Methods: 

Asthmatic patients who presented with a severe AAE (PEFR % predicted < 60 %) at the 

emergency unit were randomized to either standard medical therapy (ST), ST and CPAP or 

ST and BPPV. Thirty patients fulfilled the inclusion criteria for the study. Groups 

presented similar baseline characteristics. The mean age for the group was 42.1 ± 12.6 

years. Mean baseline PEFR % predicted was 35.2 ± 10.7 % (ST), 30.5 ± 11.7 % (ST + 

CPAP) and 33.5 ±13.8 % (ST + BPPV). Results: Hourly improvement (Δ) in respiratory 

rate and sensation of breathlessness was significantly better in the BPPV intervention 

group. Improvement (Δ) from baseline to end of treatment in respiratory rate and sensation 

of breathlessness was significant for both CPAP and BPPV (p = 0.0463; p = 0.0132 

respectively) compared to ST alone. Lung function was significantly improved in the 

CPAP intervention group hourly and from baseline to end of treatment (p = 0.0403 for 

PEFR and p = 0.0293 for PEFR % predicted) compared to ST + BPPV and ST alone. The 

mean shift (Δ) in PEFR from baseline to 3 hours of treatment was 67.4, 123.5 and 86.8 

L/min (p = 0.0445) for ST, ST + CPAP and ST + BPPV respectively. This corresponded to 

a 38.1, 80.8 and 51.7 % improvement in lung function respectively. Discussion: The effect 

of BPPV on the reduction of respiratory rate and sensation of breathlessness could be 

related to the inspiratory assistance provided by BPPV. The significant improvement in 

lung function in the CPAP group could be related to its intrinsic effect on the airway 

smooth muscle and / or on the airway smooth muscle load. Conclusion: The present results 

suggest that adding NPPV to standard treatment for an AAE not only improves clinical 

signs faster but also improves lung function faster. CPAP seems to have an intrinsic effect 

on the airway smooth muscle so rendering it more effective in ameliorating lung function. 
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CHAPTER I 
 

INTRODUCTION 
 

 

1.1 BACKGROUND 
Acute asthma exacerbation is a major cause of respiratory failure that patients present 

with at emergency departments.  Lack of response or a delayed response to treatment 

can result in respiratory muscle fatigue and the need for ventilatory assistance.  

 

Clinical presentation of a patient with an acute exacerbation of asthma can range from 

a high respiratory rate, the presence of wheezes and use of accessory muscles to 

extreme agitation and hypercarbia.  Patients mainly complain of “shortness of breath”, 

“tight chest” and “can’t get air in”. This sensation of breathlessness is a consequence 

of respiratory muscles that are severely overloaded. Much of the inspiratory effort by 

these muscles is not rewarded with airflow and the excessive positive pressure in the 

lung places these muscles in a shortened position rendering them less efficient 

(Macklem, 1984; Decramer, 1997; De Troyer, 1997). Although asthma is a reversible 

airflow obstruction pathology, some of the patients will recover in a few hours while 

others will have to be admitted for longer and more intensive care and monitoring. 

 

The intensity of bronchospasm, the time since the exacerbation started and the degree 

of response to treatment will determine if these patients develop respiratory muscle 

fatigue or not. Although not many AAE patients need intubation, the intubation 

procedure can initially worsen the obstruction, hyperinflation and cause laryngospasm 

(Papiris et al., 2002; Phipps & Garrard, 2003). This is usually followed by a 

prolonged stay in the intensive care unit (ICU) with difficult ventilation and often the 

need to use paralytic agents.  Add to this the use of steroids and the perfect conditions 

are set for increased risk of ventilator acquired pneumonia and critical illness 

polyneuropathy with difficulty to wean from ventilation (Fagon, Chastre & Hance, 

1993; Papiris et al., 2002; Phipps & Garrard; 2003).  
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Predictors of good outcome in the management of AAE in the emergency unit have 

been shown to be a faster improvement in lung function in the first half an hour of 

treatment (Rodrigo & Rodrigo, 1998; Rodrigo, Rodrigo & Hall, 2004). One of the 

newer ways of providing patients in respiratory failure with ventilatory support is 

noninvasive positive pressure ventilation (NPPV). Noninvasive ventilation refers to 

the application of positive airway pressure to the lungs without the need for an 

artificial airway (Meyer & Hill, 1994; Meduri et al., 1996; Jasmer, Luce & Mathay, 

1997; Evans, 2001). This has the potential to avoid many complications associated 

with intubation like soft tissue trauma during intubation, sinusitis, increased risk of 

hospital acquired pneumonia, increased hospital stay and increased bronchospasm 

(Fagon, Chastre & Hance, 1993). Noninvasive ventilation has been extensively 

researched in chronic obstructive pulmonary disease (COPD) patients with its 

indication as first-line treatment in COPD exacerbations (Brochard et al., 1990; 

Brochard et al., 1995; Liesching, Kwok & Hill, 2003). Chronic obstructive pulmonary 

disease, although a chronic pathology, has some similarities with an acute asthma 

exacerbation namely, increased airway resistance and dynamic lung hyperinflation. 

Patients with COPD have an increased mortality if intubated. In the COPD population 

NPPV is used to bridge the exacerbation and not so much to improve lung function 

which is irreversibly compromised (Ram et al., 2004). NPPV has been shown to 

reduce hospital stay and mortality in the COPD population. 

 

1.2 SIGNIFICANCE OF RESEARCH 
A small number of studies have looked at the effect of NPPV in the asthma population 

with promising results (Martin et al., 1982; Shivaram et al., 1987; Shivaram et 

al.,1993; Lin et al.,1995; Lougheed et al., 1995; Pollack, Fleisch & Dowsey, 1995; 

Meduri et al., 1996; Wang et al., 1996; Fernandez et al., 2000; Gelbach et al., 2002; 

Soroksky et al., 2003). A limitation is that most of the studies use small sample sizes 

without a control group and the application of NPPV is done for short periods. Yet 

most of the studies have concluded that there is some benefit in adding NPPV to 

asthma treatment. Only one study has compared NPPV to standard asthma medical 

therapy in a clinical setting (Sorosky, Stav & Shpirer, 2003). The Cochrane Review 

on the use of NPPV in acute asthma states that no conclusion can be drawn on this 

single study (Ram, Wellington, Rowe, & Wedzicha, 2005). Yet NPPV is frequently 
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used in acute asthma exacerbations and in status asthmaticus patients (Fernandez et 

al., 2000; Gelbach et al., 2002). Status asthmaticus can be defined as an acute asthma 

exacerbation that is refractory to medical therapy (Scoggin et al., 1977). Guideliness 

on NPPV to date all agree that positive results exist but larger studies need to be 

performed to find conclusive results. A need exists for higher quality research like 

randomized controlled trials and studies that compare different modes of NPPV. 

Noninvasive positive pressure ventilation can be applied in different modes. The most 

used ones are one level of positive airway pressure (CPAP) and two levels of positive 

pressure or bilevel positive pressure ventilation (BPPV). In the COPD population it 

has been found that the application of bilevel positive pressure ventilation is superior 

to that of continuous positive airway pressure. In the asthma population, to our 

knowledge, no study has ever compared these two modes of NPPV. 

 

1.3 RESEARCH QUESTION 
The question therefore remains; does NPPV when added to standard medical therapy 

promote a faster improvement in patients presenting with an acute asthma 

exacerbation as compared to standard therapy alone? 

 

1.4 RESEARCH OBJECTIVES 
The aim of the present study was to evaluate the effectiveness of standard medical 

therapy combined with noninvasive ventilation against standard medical therapy alone 

in: 

-  ameliorating clinical, physiological and spirometric values in acute asthma 

exacerbation,  

-  response time to treatment in the emergency department, and 

-  outcomes such as length of time that NPPV was administered, intubation rate, 

mortality rate and length of hospital stay. 

 

1.5 HYPOTHESIS 
 a).Early use of noninvasive ventilation in the forms of CPAP and BPPV together with 

standard medical therapy in acute asthma exacerbation can decrease time of response 

to therapy compared to standard medical therapy alone.  
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b) Patient’s response to therapy is expected to be faster with the administration of 

BPPV together with standard therapy due to the inspiratory assistance provided to the 

positive end-expiratory pressure (PEEP). 

 

The following chapter consists of an in-depth discussion of the literature found on the 

management of acute asthma exacerbation. Noninvasive positive pressure ventilation 

and its potential role in asthma will also be discussed. 
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CHAPTER 2 

    LITERATURE REVIEW 
 

2.1 INTRODUCTION 
The present work has within its aims to look deeper into one of the adjunct therapies 

for the management of an acute asthma exacerbation (AAE). Although plenty 

research and guidelines exist as for the best pharmacological treatment to administer 

during an acute asthma attack (Hallstrand & Fahy, 2002; Marik, Varon & Fromm, 

2002; Papiris et al., 2002; Rodrigo, Rodrigo & Hall, 2004; Edmonds et al., 2005; 

Manser, Reid & Abramson, 2005), the role of therapies like noninvasive positive 

pressure ventilation, although recommended, still remains to be established by 

researched studies. 

 

The South African Pulmonology Society defines asthma as a chronic inflammatory 

condition of the airways which is usually allergic in origin and is characterised by 

hyperresponsive airways (South African Pulmonology Society Adult Asthma 

Working Group, 2000). The prevalence of asthma increased worldwide in the last 20 

years carrying with it a large cost burden to health-care systems (Rodrigo et al., 2004). 

Countries like Spain, Canada and Australia report that 1 to 12% of all adult visits to 

the emergency unit (EU) are due to acute asthma exacerbations. In the USA 14 

million are affected by asthma and nearly 2 million cases of acute asthma present at 

their emergency departments yearly costing around 6 billion US dollars per year 

(Rodrigo et al., 2004). Hospitalization and emergency department visits are the main 

contributors to the asthma cost burden in health-care (Rodrigo et al., 2004). In the 

International Study of Asthma and Allergies in Childhood (ISAAC) report on asthma 

symptoms in 13 to 14 year old children, one participating community assessed in 

Cape Town had a 16.1% presence of wheezing, 21.4% incidence of exercise induced 

wheezing, 31.1% “ever had asthma” incidence and a 5.2% presence of an episode of 

severe wheeze limiting speech. To the question of “has your child in the last 12 

months been disturbed by wheezing during sleep once or more times a week” South 

Africa ranked seventh among the 56 countries that participated (International Study of 

Asthma and Allergies in Childhood (ISAAC), 1998). In another study of 12 year old 
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children comparing asthma prevalence in four countries, South Africa reported 11.5% 

of children presenting with a history of asthma at any time (Burr et al., 1994). 

 

2.2 PATHOPHYSIOLOGY OF ASTHMA  
Asthma is a chronic inflammatory disease of the airways characterized by airway 

hyperresponsiveness, reversible airflow obstruction and inflammatory changes in the 

submucosa (National Heart, Lung and Blood Institute, 1992; Hallstrand & Fahy, 

2002; Marik et al., 2002; Rodrigo et al., 2004). An acute asthma exacerbation is 

characterized by respiratory symptoms such as cough, wheezing, chest tightness, 

shortness of breath and a decrease in expiratory airflow (Shim & Williams, 1983; 

Teeter & Bleecker, 1998; Rodrigo et al., 2004). These exacerbations are usually 

reversible but can sometimes be severe and even fatal. The main feature in an asthma 

exacerbation is progressive narrowing of the airways as a result of airway 

inflammation and/or increase in airway smooth muscle tone. This leads to an increase 

in flow resistance, hyperinflation and ventilation/perfusion mismatch (Rodrigo et al., 

2004). Authors seem to agree that two types of acute asthma present at emergency 

units (Hallstrand & Fahy, 2002). Type 1 or slow-onset acute asthma presents with a 

major inflammatory component which develops slowly over many hours, days or 

weeks. Upper respiratory tract infection seems to be the most common trigger and 

response to therapy is slow (Rodrigo & Rodrigo, 2000; Rodrigo et al., 2004).  Type 2 

or acute-onset asthma is usually triggered by respiratory allergens, exercise or 

psychological factors. The dominant feature here is bronchospasm. It develops fast yet 

shows a quicker response to therapy (Rodrigo & Rodrigo, 2000). Between 80 to 90 

percent of AAE presenting at emergency units are type one (Rodrigo et al., 2004). An 

acute asthma attack is usually classified according to the severity of the attack. 

Several guidelines exist that classify the severity of an attack using parameters like 

respiratory rate, use of accessory muscle, wheeze, heart rate, pulsus paradoxus and 

peak expiratory flow rate (PEFR). The Global Initiative for Asthma classifies an 

attack as mild when PEFR % of predicted is above 80%, moderate when PEFR % of 

predicted is 60 to 80 % and severe if PEFR % predicted is below 60 % (Global 

Strategy for Asthma Management and Prevention, Global Initiative for Asthma 

(GINA), 2006). 
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Similarities exist between patients that suffer an exacerbation of chronic obstructive 

pulmonary disease (COPD) and those that suffer an exacerbation of asthma. The most 

important similarities are: a) increase in expiratory flow resistance and b) dynamic 

hyperinflation. These two events have mechanical, sensory and physiologic 

consequences on the respiratory system. Interestingly the major mechanical 

consequence of this expiratory loading on the respiratory system is the loading of the 

inspiratory muscles (Martin, Shore & Engel, 1983; Chen & Yan, 1999). This effect is 

better understood under the consequences of dynamic lung hyperinflation (DH). 

 

2.2.1 Dynamic Lung Hyperinflation 
Macklem describes lung hyperinflation as one of the “commonest functional 

abnormalities in diseases leading to airways obstruction and loss of lung recoil” 

(Macklem, 1984).  Dynamic hyperinflation (DH) refers to the increase in end 

expiratory lung volume (EELV). At the end of a normal breathing cycle the lung 

volume that remains in the lung (functional residual capacity) is determined by the 

“static balance between the opposing elastic recoil of the lung and chest wall” (Tobin 

& Lodato, 1989). Hyperinflation occurs when due to the increase in expiratory 

resistance associated with increased breathing frequency the expiratory time becomes 

insufficient for lung volumes to reach functional residual capacity (FRC) before the 

next inspiratory effort begins.   

 

Dynamic hyperinflation was first seen as a passive event evolving as a consequence of 

increased expiratory resistance. Martin and colleagues examined the mechanism of 

hyperinflation in asthma patients.  They looked at the activity of the respiratory 

muscles during hyperinflation in induced asthma and found that persistent tonic 

activity of the inspiratory muscles during expiration substantially influenced the 

increase in functional residual capacity (Martin, Powel, Shore, Emrich & Engel, 

1980).  This showed that there is an active component to DH.  Wheatley and 

colleagues looked at the effects that DH in induced asthma had on respiratory muscle 

work.  They found that DH due to bronchoconstriction actually reduced the total 

positive respiratory muscle work just by decreasing the expiratory muscle component 

(Wheatley, West, Cala & Engel, 1990).  
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Although DH has an active component due to the contraction of the inspiratory 

muscles during expiration so reducing the expiratory muscle work, the loading on the 

inspiratory muscles during inspiration results in major negative mechanical and 

sensory consequences (Martin et al., 1983; O’Donnell, 1994).  Martin and colleagues 

(1983) studied the effects that lung hyperinflation had on inspiratory muscle action.  

They found that when forced expiratory volume in one second (FEV1) fell to 49.5 ± 

3.9 % the inspiratory work rate increased ten times.  The elastic component was found 

to be the biggest contributor towards inspiratory work. Since elastic recoil is a 

consequence of dynamic hyperinflation they concluded that hyperinflation was the 

main reason for increased inspiratory muscle work (Martin et al., 1983).   

 

Basically then we can say that dynamic hyperinflation has an active component due to 

the contraction of the inspiratory muscles during expiration. This is however obscured 

by the fact that DH overloads the inspiratory muscles. Since elastic recoil is at its 

strongest at end of inspiration, the more hyper inflated a lung becomes the more 

elastic recoil the inspiratory muscles will have to overcome during the inspiration. 

 

 

It is this increase in elastic loading on the inspiratory muscles that deserves further 

discussion. The effects that dynamic hyperinflation has on the respiratory system can 

be divided into its effect on the: 

 2.2.1.1 respiratory muscles;  

2.2.1.2 respiratory muscle energy spending;  

2.2.1.3 inspiratory threshold load created and  

2.2.1.4 the sensory effect of DH.   

 

 

 

2.2.1.1 Dynamic Hyperinflation and the respiratory muscles 

Looking at the effect DH has on the breathing muscles we start with the diaphragm.  

The diaphragm in its crural and costal parts has a parallel mechanical arrangement 

when lung volumes are normal.  This means that the force generated by the diaphragm 

will be a sum of the forces generated by each part (Macklem, 1984; Decramer, 1997; 

DeTroyer, 1997).  This enables the diaphragm to tolerate large loads.  Once 
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hyperinflation exists the arrangement of the diaphragm parts becomes one in series 

(Macklem, 1984).  In this arrangement the diaphragm is no longer capable of 

generating the same force as when in parallel thus becoming less able to handle large 

increases in workload (Macklem, 1984; Decramer, 1997; De Troyer, 1997).  The 

accessory muscles also suffer under the effect of DH.  The internal and external 

intercostals muscles’ function is to approximate the ribs so reducing the intercostal 

spaces.  Whether this will move the ribs up or down will depend on the rib cage 

impedance (Macklem, 1984).  The rib cage impedance is determined by the lung 

volumes.  At low volumes the scalene and sternomastoid muscles are in a stretched 

position while the abdominal muscles are shortened.  This favors inspiration as the 

impedance for the rib cage to move up is less.  On the contrary, at high lung volumes 

the abdominal muscles will be in a relatively stretched position while the scalene and 

sternomastoid muscles are shortened.  Again this favors rib movement downward 

(Macklem, 1984; Decramer, 1997; De Troyer, 1997). This is comfortable during 

normal expiration following inspiration but in the presence of DH there will be a 

permanent tendency of the rib cage to move downward even when inspiration is 

required imposing extra work on the inspiratory muscles (Macklem, 1984; Decramer, 

1997; De Troyer, 1997). 

 

2.2.1.2 Dynamic Hyperinflation and muscle energy spending 

The effect of dynamic hyperinflation on respiratory muscle energetics has two 

components. Firstly the muscles are placed in an inefficient part of their force length 

relationship. This comes as a consequence to the distortion of the thorax that occurs 

due to the increase in end-expiratory lung volumes. The rib cage position at end-

expiration is altered with the ribs displaced more horizontally (Decramer, 1997). This 

means that to produce the same results the respiratory muscles will have to increase 

their excitation. This was observed in a study done by Martin and colleagues. They 

found that after inducing bronchoconstriction in stable asthma patients the tension-

time product of the inspiratory muscles all together had increased fivefold (Martin et 

al., 1983). Since the tension-time index is an indicator of the metabolic cost for the 

respiratory muscles it clearly shows that hyperinflation increases the energy spent by 

the respiratory muscles.  The second component is related to the increased velocity of 

shortening by the respiratory muscles. This is a direct consequence of the increased 

ventilatory need as bronchospasm worsens and DH increases. The consequence of 
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these two factors is an increase in energy consumption together with a decrease in 

efficiency (Macklem, 1984). Another problem that can be added occurs when muscle 

contractions are strong enough to cause a reduction in the blood supply to the 

inspiratory muscles.  The reduction in blood/energy supply added to a constant 

increase in energy demand, further compromises muscle function (Macklem, 1984). 

 

 

2.2.1.3 Dynamic Hyperinflation and the inspiratory threshold load (ITL) 

While dynamic hyperinflation has a compromising effect on the pressure generating 

ability of the inspiratory muscles, it also leads to an increase in end expiratory lung 

volume (EELV) with a resultant auto or intrinsic positive end expiratory pressure 

(PEEPi).  In normal breathing airflow ceases when equilibrium is reached between the 

lung and chest wall elastic recoil.  In the presence of bronchoconstriction expiration is 

terminated before passive equilibrium is reached (Martin et al., 1980).  The PEEPi 

created by this then acts as an inspiratory threshold load for the inspiratory muscles. 

With the presence of PEEPi the “initial part of the inspiratory effort by the inspiratory 

muscle contraction does not produce any flow or volume change” (Yan, 1999).  This 

means that the inspiratory muscles are required to overcome this load before flow is 

initiated.   This increase in EELV means that the lung operates at a higher level of it’s 

pressure-volume curve resulting in an increase in elastic recoil and a reduction in 

compliance (Martin et al., 1983). Appendini and colleagues divided the inspiratory 

effort in the presence of PEEPi into two components. They described it as an initial 

isometric contraction by the inspiratory muscles with the function of counterbalancing 

the PEEPi. This was recorded by tracing the flow, pleural pressure, gastric pressure 

and transdiaphragmatic pressure curves of patients breathing with the presence of a 

PEEPi. While contraction of the inspiratory muscles was evident due to the fall in 

pleural pressure and increase in the transdiaphragmatic pressure at the start of 

inspiration, no inspiratory flow was recorded. This was followed by the second 

component, the isotonic contraction which then produced a recorded inspiratory flow 

curve. This clearly shows that the initial inspiratory effort in the presence of PEEPi is 

not compensated by change in flow as would be expected under normal breathing.  

(Appendini et al.,1994). In conclusion DH therefore overloads the inspiratory muscles 

due to the PEEPi. 
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2.2.1.4 Dynamic hyperinflation and sensation of breathlessness 

Finally DH has an important and many times overlooked effect on sensation of 

breathlessness experienced by asthmatic patients. There is a need for better 

understanding of the relationship between what is obtained from objective parameters 

like PEFR and FEV1 and a patient’s perception of breathlessness (Lougheed et al., 

1993). Burdon and colleagues found a close linear relationship between the decline in 

FEV1 and breathlessness.  Yet they found great inconsistency between the degree of 

obstruction and the severity of breathlessness related by patients (Burdon et al.,1982). 

Lougheed and colleagues defined breathlessness due to bronchoconstriction as a 

“complex sensory experience that is expressly linked to perceptions of heightened 

inspiratory-muscle contractile effort, unrewarded inspiratory effort, and reduced 

inspiratory capacity” (Lougheed, Webb & O’Donnell, 1995). Chen and colleagues 

studied the effects that the inspiratory threshold load (ITL) and increase in EELV had 

on subjects’ perception of inspiratory difficulty.  They used healthy subjects and 

induced increases in ITL by the application of external PEEP. Increase in EELV was 

achieved by external application of continuous positive airway pressure (CPAP).  

Their results suggest that both ITL and increased EELV independently and 

significantly increased the perception of inspiratory difficulty but ITL was found to 

contribute the strongest to this sensation (Chen & Yan, 1999).   Lougheed and 

colleagues also evaluated the effects of hyperinflation on breathlessness.  They 

induced bronchoconstriction in 21 stable asthma subjects with a consequent 

significant (p < 0.001) increase in EELV and asked each to grade their breathlessness 

on a modified Borg scale. Subjects were also asked to rate their inspiratory and 

expiratory difficulty in breathing at maximum bronchoconstriction. They concluded 

that at maximum bronchoconstriction their subjects’ breathlessness was significantly 

increased (p < 0.001) mainly due to the increase in the inspiratory difficulty 

(Lougheed et al., 1995). This was directly related to the increase in EELV. 

 

2.2.1.4.1 Neurophysiologic Basis for Breathlessness 

The thorax, lungs and airways are rich in sensory receptors. These afferent receptors 

are sensitive to changes in muscle tension and length, changes of air flow and volume 

and also changes in the chest wall position (O’Donnell, 1994).   During a normal 

breath the motor output i.e. contraction of the inspiratory muscles is compensated by 

sensory feedback of the respiratory mechanoreceptors. A complete understanding of 
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breathlessness is still not fully known. However two factors that seem to contribute to 

this uncomfortable sensation are the motor output or muscle effort and the sensory 

feedback (O’Donnell, 1994). When these two work harmoniously it is referred to as 

neuromechanical coupling of the respiratory pump (O’Donnell, 1994; Lougheed et al., 

1995). When airflow obstruction occurs there is a consequent disruption of this 

relationship. An imbalance between the level of effort done by the inspiratory muscles 

and the anticipated ventilatory consequence occurs. This disruption is then called 

neuromechanical dissociation of the ventilatory pump (O’Donnell, 1994; Lougheed et 

al., 1995). During an acute asthma exacerbation the dynamic hyperinflation and the 

functional inspiratory muscle weakness will lead to neuromechanical dissociation of 

the respiratory pump. 

 

It is clear therefore that DH carries with it real consequences to the respiratory 

mechanics. It overloads the inspiratory muscles due to the ITL increasing their energy 

spending and finally creating the unpleasant sensory experience of breathlessness. 

 

 

 

 

 

 

2.3 MEDICAL MANAGEMENT OF ACUTE ASTHMA 
Acute asthma exacerbation is a typical medical emergency that patients present with 

at emergency units. Authors of current guidelines for treatment of an acute 

exacerbation agree on supplemental oxygen to maintain adequate arterial oxygenation 

(SpO2 ≥ 92%), repetitive administration of rapid-acting inhaled bronchodilators like 

β-agonists and anticholinergics to relief airflow obstruction (Rodrigo, 2003) and the 

use of systemic corticosteroids (Manser et al., 2005) to reduce airway inflammation 

(Rodrigo et al., 2004; Global strategy for asthma management and prevention, Global 

initiative for asthma (GINA), 2006). Although symptoms and physical examination 

findings are widely used outcome measures to evaluate the patient’s response to 

treatment, the best objective measurement remains the improvement in peak 

expiratory flow rate (PEFR) or forced expiratory volume in one second (FEV1) over 
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time (Rodrigo & Rodrigo, 1993; Corbridge & Hall, 1995; Rodrigo et al., 2004). 

Teeter and Bleecker (1998) compared asthma symptoms to FEV1 and PEFR in 67 

chronic asthma patients and found that asthma symptoms correlated poorly with the 

level of obstruction as showed by FEV1 and PEFR. Time spent in the emergency unit 

during an acute attack can range from one to six hours until symptoms fully resolve. 

In many instances patients are discharged based on clinical criteria rather than on 

improvement of lung function as measured objectively by PEFR or FEV1 as 

recommended in the International Consensus Report on Diagnosis and Treatment of 

Asthma guidelines and the Advanced Cardiac Life Support recommendations for 

asthma (National Heart, Lung and Blood Institute, National Institutes of Health 

Bethesda (NHLBI), 1992; Cumins, 2003). Early response to therapy is seen as one of 

the best predictors of outcome. This refers to the improvement in PEFR % predicted 

or in PEFR in the first 30 minutes of intense treatment (Rodrigo & Rodrigo, 1998). 

Rodrigo and colleagues found that a variation of more than 50 L/min of the PEFR 

over baseline and a PEFR % predicted of above 40% after thirty minutes of treatment 

were predictors of good outcome (Rodrigo et al., 2004). 

 

Other therapies indicated and debated in recent reviews on the management AAE are 

theophylline, magnesium sulfate, leukotriene modifying agents, heliox, 

humidification, antibiotics and positive pressure ventilation whether invasive or 

noninvasive (Corbridge & Hall, 1995; Hallstrand & Fahy, 2002; Marik et al., 2002; 

Rodrigo et al., 2004;). Until recent years patients with AAE who failed to improve 

despite optimal therapy and developed respiratory muscle fatigue together with 

increased hypercapnia and hypoxia were intubated and admitted to an ICU. 

Endotracheal intubation remains a life saving intervention yet carries with it well 

known complications. These can range from damage to local tissue during the 

intubation procedure, sinusitis, pneumothorax, increased need for sedation and neuro-

muscular blocking agents to increased ICU stay and morbidity and increased 

incidence of nosocomial pneumonia (Stauffer, Olson & Petty, 1981; Fagon et al., 

1993). In asthmatic patients the intubation procedure leads to increase in airway 

narrowing, hyperresponsiveness and inflammation (Rodrigo et al., 2004). Marik et al 

states that the only real indication for endotracheal intubation in these patients is total 

respiratory muscle fatigue (Marik et al., 2002). The decision to intubate a patient with 
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an AAE remains a challenge since the clinical condition can worsen after the 

intubation procedure (Cumins, 2003).  

 

Despite the fact that research is aimed at a common and protocolized approach to 

asthma treatments (GINA, 2006), recent studies have started looking at factors like 

individual behaviour, environmental factors and individual genetic make-up which 

could affect response to therapy (Morrow, 2007). It is known that variation exists 

between patients in their response to different asthma therapies. Research has also 

found some genetic mutations linked to these different responses. Specific gene 

mutations have been linked to variability in response to beta 2-agonists, leukotrine 

response modifiers, glucocorticoids and theophylline. Yet these gene mutations have 

not been linked to huge population groups. As research into gene-based therapies 

continuous guidelines will continue to be used. The certainty exists though, that 

changes will occur that will improve treatment outcome but will also have significant 

social and economic effects. (Morrow, 2007). 

 

Presently the management of an AAE consists of supplemental oxygen, continuous 

administration of rapid-acting bronchodilators and systemic corticosteroids. Objective 

measurements of the improvement or not of lung function are essential for best 

management of these patients. One of the best predictors of outcome is an early 

response to therapy. Although endotracheal intubation remains a life saving 

intervention it can lead to complications like nosocomial pneumonia and increased 

morbidity. It should be very carefully considered. 

 

 

 

2.4 NONINVASIVE VENTILATION AND ASTHMA 

2.4.1 Overview of Noninvasive Ventilation 
Noninvasive positive pressure ventilation (NPPV) dates back to the 1930s when 

Alvan Barach used a device generating continuous positive airway pressure. He 

succesfully treated patients with acute pulmonary oedema (Mehta & Hill, 2001). After 

the advent of invasive ventilation together with endotracheal intubation, noninvasive 

ventilation became dormant only to resurface in the 1980s with its use in obstructive 
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sleep apnea (Mehta & Hill, 2001).  This was followed by a proliferation in the use of 

noninvasive positive pressure to treat different causes of acute and chronic respiratory 

failure. Research into the application of NPPV to these pathologies also increased. A 

Pubmed search done on the word “noninvasive positive pressure ventilation” revealed 

only one article published in 1970. The same search of the years 1990 and 2000 

revealed 8 and 32 articles respectively.  Using the same word a search of the last 40 

years revealed 487 articles of which 125 were reviews. This shows the increase in 

published research in this area. Presently noninvasive ventilation has a great variety of 

applications. It has been used in acute and chronic respiratory failure in settings 

varying from hospital to home use. Probably one of the big propellants of research 

into noninvasive ventilation has been the complications associated with the use of 

invasive ventilation (Stauffer et al., 1981; Fagon et al., 1993). Extensive research has 

been done on the use of noninvasive ventilation in acute respiratory failure due to 

hypercapnic and hypoxemic causes. One of the conclusions of the international 

consensus conference on NPPV held in 2000 was that “NPPV has the potential of 

reducing the morbidity and possibly mortality associated with hypercarbic or 

hypoxemic respiratory failure” if adequate alveolar ventilation and oxygenation can 

be safely delivered (Evans, 2001).  Chronic obstructive pulmonary disease has been 

extensively researched in relation to the use of NPPV in patients presenting with acute 

respiratory failure (Keenan et al., 2000; Keenan et al., 2003; Lightowler et al., 2003). 

Peter and colleagues in a recent meta-analysis of noninvasive ventilation in acute 

respiratory failure concluded that the use of NPPV led to a significant reduction in 

mortality, a reduction in the need for mechanical ventilation as well as in the hospital 

length of stay mainly in the COPD subgroup (Peter et al., 2002).  

 

2.4.2 Noninvasive Ventilation and its application in Asthma 
Noninvasive ventilation in AAE presents as an ideal option to avoid the side effects of 

intubation and alleviate the sensation of breathlessnesss. Although used more 

frequently in the clinical scenario, its role remains to be defined in the management of 

an AAE. Recent reviews and guidelines on the management of AAE mention 

noninvasive ventilation as a possibility (Corbridge & Hall, 1995; Hallstrand & Fahy, 

2002; Marik et al., 2002; Rodrigo et al., 2004). Rodrigo and colleagues (2004) stated 

that a trial of noninvasive ventilation is worthwhile in patients who are at risk of 
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developing respiratory failure or “as an alternative to intubation”. They recommend 

the early use of NPPV even in the emergency department. Marik and colleagues 

(2002) recommend a trial of noninvasive ventilation in alert and cooperative patients 

who did not respond to aggressive medical therapy alone.  They recommend that this 

should not be attempted in rapidly deteriorating patients or in somnolent or confused 

patients. Hallstrand and Fahy (2002) note that NPPV may decrease the work of 

breathing during an acute asthma attack but comment that controlled trials are 

necessary to provide statistically significant evidence. The advanced cardiac life 

support reference book also recommends the use of NPPV for AAE with strict 

indications and contraindications outlined (Cumins, 2003). In one of the most recent 

systematic reviews on NPPV the author suggests that despite the lower-level evidence 

NPPV should not be dismissed as a treatment in acute asthma exacerbation (Hess, 

2004). 

 

2.4.3 Definition of Noninvasive Ventilation 
Noninvasive ventilation refers to the application of positive pressure ventilatory 

support to the airways without the need for endotracheal intubation (Meyer & Hill, 

1994; Meduri et al., 1996; Jasmer et al., 1997; Evans, 2001; Baudouin et al., 2002; 

Diaz Lobato & Mayoralas Alises, 2003). Positive pressure is applied to the airways 

through various interfaces like full face or nasal masks, nasal prongs and helmets. 

Some of the advantages of NPPV are that it can be applied intermittently, there is no 

need for sedation, the airway protection mechanism is preserved and it allows for 

patients to communicate, eat and drink (Ram et al., 2005). The most important 

advantage of NPPV is the reduction in the incidence of ventilator associated 

pneumonia compared to endotracheal intubation (Guerin et al., 1997; Nourdine et al., 

1999).  

 

 For the present study the following modalities of noninvasive positive pressure were 

considered:  

- Continuous Positive Airway Pressure (CPAP) and  

- Bilevel Positive Pressure Ventilation (BPPV).  

CPAP is defined as the application of a constant positive airway pressure throughout 

the ventilatory cycle. This means that the “baseline pressure is elevated above the 
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atmospheric pressure in a spontaneously breathing patient” (Vines, 2003).With one 

level of positive pressure being provided during inspiration and expiration no 

inspiratory assistance is provided. (American Respiratory Care Foundation, 1997) The 

main difference between CPAP and other modes of noninvasive positive pressure is 

this lack of inspiratory assistance which leads to smaller tidal volumes. Debate exists 

as to whether CPAP should be included under the term of ventilation due to the lack 

of this inspiratory assistance, yet it was not the objective of this study to define 

nomenclature. In order to simplify terminology CPAP and BPPV have been included 

under the term “noninvasive positive pressure ventilation” (NPPV).  

 

Bilevel positive pressure ventilation on the other hand refers to the delivery of two 

levels of positive pressure, an inspiratory pressure and an expiratory pressure. The 

inspiratory assistance can be provided by volume- or pressure targeted ventilation 

depending on the device used. It can be referred to as pressure support or inspiratory 

positive airway pressure (IPAP). The expiratory pressure is provided by positive end-

expiratory pressure (PEEP). With BPPV the increase in airway pressure during 

inspiration provides for bigger tidal volumes than with CPAP (ARCF, 1997). 

 

2.4.4 Studies on NPPV and asthma 
Few studies exist to date on the use of noninvasive ventilation in the asthma 

population. In a literature search eleven clinical studies were found which 

investigated the effect of NPPV in patients presenting with an AAE (Martin et al., 

1982; Shivaram et al., 1987; Shivaram et al.,1993; Lin et al.,1995; Lougheed et 

al., 1995; Pollack, Fleisch & Dowsey, 1995; Meduri et al., 1996; Wang et al., 

1996; Fernandez et al., 2000; Gelbach et al., 2002; Soroksky et al., 2003). Seven 

of these studies used patients with AAE and the other four studies looked at 

patients with induced asthma. As for the location where NPPV was applied three 

were in an ICU setting, four were done in lung function laboratories, three were 

done in an emergency unit with only one being conducted on ward based patients. 

Only one out of the eleven studies randomly assigned patients to two treatment 

groups (Soroksky et al., 2003). This was also the only study included in a 

Cochrane Review to date (Ram et al., 2005). The studies are discussed according 

to their results on the effect of NPPV in relation to:  
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2.4.4.1 dynamic hyperinflation,  

2.4.4.2 the respiratory muscles and their work of breathing,  

2.4.4.3 the airway smooth muscle tone  

2.4.4.4 the inspiratory threshold load,  

2.4.4.5 lung function and    

2.4.4.6 patient’s sensation of breathlessness. 

 

 

 

 

2.4.4.1 NPPV and dynamic hyperinflation in acute asthma 

As previously discussed the increase in airflow resistance, dynamic hyperinflation and 

ventilation/perfusion mismatch, if not corrected can lead to increased work of 

breathing, gas exchange inefficiency and respiratory muscle fatigue (Macklem, 1980; 

Meduri et al., 1996; Rodrigo et al., 2004). The notion that the application of positive 

pressure to bronchoconstricted lungs could further increase hyperinflation is still 

existent.  This has been challenged by the findings of Appendini and colleagues. In 

their study the application of noninvasive CPAP and PEEP levels of 4.9 ± 1.6 cmH2O 

on acute COPD exacerbation did not significantly increase pulmonary hyperinflation 

(Appendini et al., 1994).  Smith and colleagues showed that in mechanically 

ventilated COPD patients PEEP levels of 5 and 10 cmH2O improved expiratory 

resistance without substantial increase in peak pressure or in the risk of barotrauma 

(Smith & Marini, 1988). Two studies on the asthma population have found similar 

results. Martin and colleagues (1982) found that the application of CPAP levels of 

12.0 ± 0.9 cm H2O caused end expiratory volume to change by 0.27 ± 0.12 litres 

which was considered to be small.  Lougheed and colleagues (1995) also measured 

the change in EELV in induced asthma before CPAP (3.47 ± 0.24 L) and with CPAP 

(3.58 ± 0.27 L). The change in these volumes was not significant with CPAP levels of 

5.3 ± 0.6 cmH2O. It is interesting to note that the levels of CPAP used by Martin et al 

(12 – 16 cm H2O) are much higher than usually used on asthma and COPD patients in 

general. Most studies use levels of 5 to 8 cmH2O (Shivaram et al., 1987; Shivaram et 

al., 1993; Lin et al., 1995;  Lougheed et al., 1995; Pollack et al.,1995; Wang et al., 

1996; Soroksky et al., 2003;). This higher CPAP level could be the cause of the small 

increase in EELV noted in their study. Shivaram and colleagues (1987) added another 
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aspect to this issue. They used CPAP levels of 5, 7, 10 and 12 cmH2O on acute 

asthma patients and noted their sensation of comfort at each level. The best sensation 

of comfort reported by the patients was on levels of 5.3 ± 2.8 cmH2O. The authors 

note that 71% of the patients complained that a CPAP level of 12 cmH2O caused 

increased discomfort.  In the Lougheed study similar outcome was observed. They 

induced bronchoconstriction until FEV1 fell by 54 ± 3% predicted. The PEEPi of their 

subjects was found to be 6.9 ± 1.0 cmH2O. Their patients were also encouraged to 

choose the level of optimal CPAP where they felt the greatest degree of symptom 

relief. The chosen levels were close to the levels of PEEPi, namely 5.3 ± 0.6 cmH2O. 

Any level above their optimal CPAP level caused increased sensation of 

breathlessness and increase in dynamic hyperinflation (Lougheed et al., 1995). It 

seems then that the application of these studied levels of CPAP to asthma patients 

does not cause further hyperinflation. It is also clear that levels of CPAP or PEEP 

higher than the PEEPi presented by the patient caused increased sensation of 

discomfort which is probably related to an increase in EELV. The patient’s input as to 

the level of CPAP seems a useful tool for situations where it is not possible to 

measure the intrinsic PEEP. 

 

 

2.4.4.2 NPPV and Work of Breathing of the Inspiratory Muscles 

The following studies have looked into the effect that CPAP could have on the 

inspiratory muscles during an asthma exacerbation. Shivaram and colleagues (1987) 

investigated the short term effect of CPAP on asthmatics presenting with peak 

expiratory flow rate below 200L/min. CPAP levels of 5, 7.5 and 10 cmH2O were 

applied for one to two minutes. They found that the fractional inspiratory time, that is, 

the ratio of inspiratory time to the duration of the total respiratory cycle (Ti/Ttot) was 

significantly reduced at all levels of CPAP. This indicated a reduction of the workload 

on the inspiratory muscle when CPAP was applied. Martin and colleagues (1982) also 

investigated the effect of short periods of CPAP on histamine induced asthma. They 

noted that CPAP levels of 12 ± 0.9 cmH2O significantly reduced the inspiratory 

pleural pressure that the inspiratory muscles generated as also the inspiratory swing of 

the diaphragmatic pressure generated by the diaphragm. This indicates that CPAP 

unloaded the inspiratory muscles and so decreased the energy cost of their action. In a 

study by Lougheed and colleagues (1995) in induced bronchoconstriction they found 
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that CPAP levels of 5.3 ± 0.6 cmH2O significantly reduced the total inspiratory effort 

which is expressed by the oesophageal pressure divided by the maximum inspiratory 

pressure (Pes/PImax). CPAP also significantly reduced the peak inspiratory 

oesophageal pressure by 27% and the inspiratory work rate per liter of ventilation by 

14%. This means that the application of CPAP in this study, bypassed the ITL so 

reducing the inspiratory work. These three studies show evidence that CPAP reduced 

the work load on the inspiratory muscles by unloading them. Unfortunately they 

applied CPAP for very short periods (one to ten minutes), so the prolonged treatment 

effect of CPAP could not be seen. Only one study used asthma exacerbation while the 

other two used induced asthma and it could be argued that they would not be a real 

reflection of an acute asthma attack. The Lougheed study induced bronchoconstriction 

to a change in FEV1 of 50% which can be considered to be an equivalent of a severe 

attack. They also note that after the application of CPAP a second maximal dose of 

methacoline was administered to maintain the level of bronchoconstriction that had 

been achieved (Lougheed et al., 1995). Martin and colleagues (1982) induced 

bronchospasm until the subjects judged it to be the equivalent of a moderate attack so 

this leaves room for queries as to what real level of bronchoconstriction was achieved. 

They did however note that during bronchoconstriction the lung resistance had 

increased from 4.2 ± 0.5 to 22.5 ± 3.0 cmH2O.L¯¹.s¯¹ and functional residual capacity 

had increased from 3.65 ± 0.19 to 5.76 ± 0.32 L.     

 

2.4.4.3 NPPV and its effect on the airway smooth muscles 

The increase in airway smooth muscle tone in asthmatics that results in an increase in 

airway resistance has also been evaluated in the presence of CPAP. Lin and 

colleagues (1995) investigated the effect that a CPAP level of 8 cmH2O had on airway 

smooth muscle in induced asthma subjects. They found that CPAP reduced bronchial 

reactivity and sensitivity. This indicates that CPAP reduced the level of 

bronchoconstriction of the airway smooth muscles resulting from different drug 

dosages and also affected the intrinsic properties of these muscles by reducing their 

sensitivity to the extrinsic stimuli acting on it.  Although these results mainly apply to 

methacholine-induced bronchospasm it cannot be overlooked that CPAP does seem to 

act directly on the properties of the airway smooth muscle. This evidence provides 

support for the use of CPAP as an adjunct therapy for patients presenting with AAE. 
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2.4.4.4 NPPV and its effect on lung function 

Four studies were found that investigated changes in lung function as measured by 

peak expiratory flow rate (PEFR) and forced expiratory volume in one second (FEV1) 

(Shivaram et al., 1987;  Shivaram et al., 1993; Pollack et al., 1995; Soroksky et al., 

2003). Two studies by Shivaram et al found no significant change in these parameters 

(Shivaram et al., 1987; Shivaram et al., 1993).  The first study used applications of 

CPAP levels of 5, 7.5 and 10 cmH2O for one or two minutes only and this might 

explain why no major change in lung function was found (Shivaram et al., 1987). In 

the second study by Shivaram (1993) CPAP levels of 5 and 7.5 cmH2O was applied 

for 30 minutes twice with a 20 minutes interval when no CPAP was applied. No 

bronchodilators were used during the study period and also 30 minutes prior to the 

study. Again no significant improvement in FEV1 was found. In a study done by 

Pollack and colleagues (1995), bi-level positive airway pressure (BiPAP®) was used 

to administer bronchodilators to 60 patients presenting at the emergency department 

with acute bronchospasm. Patients were randomly assigned to receive albuterol 

inhalations via a small volume nebulizer (n = 40) or via BiPAP® (n = 60) twenty 

minutes apart. No intra-venous medication was administered to these patients. The 

mean PEFR % predicted at beginning of treatment was 37.3% for the control group 

and 40.3% for the BiPAP® group which would classify these patients as severe 

exacerbations.  A significant increase in PEFR % predicted (p = 0.0013) was found 

compared to the control group from baseline to completion. The increase in the 

absolute peak expiratory flow rate was also more significant in the BiPAP® group (p 

= 0.0001). In a more recent study, Soroksky and colleagues (2003) compared 

BiPAP® and standard treatment with standard treatment alone as first line treatment 

for 30 patients presenting at their emergency department with a FEV1 below 60% 

predicted. Significance was found when percentage improvement was analysed for 

PEFR % predicted and FEV1 % predicted. This significance was found for values 

measured after three hours of treatment. In this study patients were randomly 

assigned, medical treatment was not standardized and statistical analysis of PEFR and 

FEV % predicted did not include analysis of variance which would correct for 

baseline values and would be indicated in such a study. Yet this is one of the best 

studies done to date using the early application of BPPV in this patient population.  

Some evidence exists for the improvement of lung functions when NPPV was applied 

to AAE but there remains a dearth of evidence. 
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2.4.4.5 NPPV and the inspiratory threshold load 

As previously described dynamic hyperinflation leads to an increase in EELV which 

in turn creates an intrinsic PEEP and this acts as an inspiratory threshold load to the 

inspiratory muscles. Understanding how NPPV bypasses the ITL and counteracts the 

PEEPi is key to the adequate indication and application of NPPV in patients with 

AAE. With the presence of the PEEPi the alveolar pressures will be above 

atmospheric pressures at the end of the breathing cycle. This means that at the 

beginning of the next inspiration the inspiratory muscles would have to generate a 

pressure equal and opposite to the PEEPi since airflow only occurs in the presence of 

a difference of pressure between alveolar and atmospheric pressures (Macklem, 1984; 

Gay, Rodarte & Hubmayr,s 1989; Appendini et al., 1994; Lougheed et al., 1995; 

Tobin & Lodato, 1989). This difference in pressure that has to be generated is equal to 

the ITL. It has been proposed that the external application of a positive pressure like 

CPAP or PEEP could reduce the work of breathing of the inspiratory muscles 

(O’Donnell, 1994; Fessler, Brower & Permutt, 1995). With external PEEP, ambient 

pressure would be elevated. Inspiration would then be easier to achieve since alveolar 

pressure would need to be decreased below the external PEEP/CPAP level rather than 

below atmospheric pressure. Tobin and Lodato (1989) refer to this as a paradox.  

While PEEP is usually used to treat atelectases, to recruit lung volume and treat 

hypoxemia, in the presence of hyperinflation it can be used to reduce the work of 

breathing. Tobin and Lodato (1989) use a waterfall analogy to explain this concept.  

The upstream river represents the hyperinflated lung with PEEPi, the waterfall 

represents the magnitude of the ITL and the downstream river represents atmospheric 

pressure. If the level of the downstream river is lifted up to that of the upstream river, 

the two levels equalize so bypassing the waterfall. Continuous positive airway 

pressure or PEEP would represent the elevated downstream river bypassing the 

waterfall / PEEPi. This was first researched in mechanically ventilated COPD 

patients. It was observed that in COPD patients with PEEPi the application of an 

external PEEP on the ventilator improved the patient’s triggering of the ventilator, 

reduced their work of breathing and did not cause further hyperinflation as long as the 

external PEEP did not pass the level of the PEEPi (Smith & Marini, 1988; Gay et al., 

1989; MacIntyre, Cheng & McConnell, 1997). 
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The effect of NPPV on respiratory mechanics in the COPD patient was studied by 

Appendini and colleagues (1994). They compared pressure support ventilation, CPAP 

and pressure support together with PEEP to spontaneous breathing in acute 

exacerbation of COPD.  There was a significant and progressive decrease in 

transdiaphragmatic pressure, that is, in the inspiratory muscle effort with all three 

modalities. The application of levels of mask CPAP or PEEP between 80 - 90 % of 

dynamic PEEPi significantly reduced inspiratory workload by replacing PEEPi.  The 

best results were seen when PEEP was applied together with pressure support 

ventilation.   With this combination, PEEP counterbalanced PEEPi and hence the 

amount of isometric contraction required to overcome the inspiratory threshold 

throughout inspiration, whereas pressure support ventilation assisted the isotonic 

contraction and improved ventilation and arterial blood gas.  Lougheed and colleagues 

(1995) looked at the effect that noninvasive CPAP would have compared to 

inspiratory pressure (IPAP) on induced asthma. While CPAP maintained one level of 

positive pressure throughout the breathing cycle the IPAP caused an increase in 

positive pressure during inspiration only. Once expiration started no additional 

positive pressure was kept in the airways.  A fall in FEV1 of 50 % was induced after 

which lung mechanics were measured. They found that while both CPAP and 

inspiratory positive airway pressure reduced the oesophageal pressure over maximal 

inspiratory pressure (Pes/Pimax) ratio as well as the elastic and resistive work only 

CPAP counterbalanced the effects of the ITL. CPAP significantly reduced the ITL 

and PEEPi. The measured ITL fell significantly with CPAP and continued to fall even 

after CPAP had been removed. The EELV also fell significantly after CPAP but not 

after IPAP. They used levels of CPAP just below the levels of the ITL. These studies 

support the “waterfall analogy” in the clinical settings. This study shows that the 

expiratory pressure (CPAP or PEEP) and not IPAP bypasses the ITL and reduces the 

sensation of breathlessness while both CPAP and IPAP favourably affected work of 

breathing.  

 

2.4.4.6 NPPV and its effect on breathlessness 

Breathlessness remains an important clinical feature in acute asthma attacks. 

Lougheed and colleagues (1993) found breathlessness in acute bronchoconstriction to 

be a complex sensory experience linked to perceptions of heightened inspiratory 

muscle contractile effort, "unrewarded" inspiratory effort and reduced inspiratory 
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capacity. They tested the effect of CPAP on 12 asthmatic patients. Methacholine 

bronchoprovocation was done until a fall of 54 ± 3 % of the FEV1 was achieved. 

CPAP was then started from two cmH20 and increased until patients experienced 

optimal reduction in breathlessness. Breathlessness was recorded on a modified Borg 

scale. They found that CPAP levels of 5.3 ± 0.6 cmH2O significantly reduced the 

patients’ breathlessness (p < 0.001). Shivaram and colleagues (1993) applied CPAP 

levels of 5 and 7.5 cmH20 to asthmatic patients presenting at the emergency room 

with PEFR of 80 to 200 L/min. Both levels of CPAP were applied to each patient for 

30 minutes with 20 minutes intervals. They also found a significant decrease in 

breathlessness (p < 0.05) as assessed by a breathlessness score and a reduction in the 

respiratory rate with CPAP. Shorter applications of CPAP in induced asthma also had 

similar effects as shown in a study by Wang and colleagues. They applied CPAP for 

ten minutes and also found a significant reduction in their subjects’ breathlessness (p< 

0.01) (Wang et al., 1996). Interestingly Lougheed and colleagues (1993) found that 

during bronchoconstriction, breathlessness was more strongly related to inspiratory 

capacity than to FEV1 or any other parameter. As inspiratory capacity reflects change 

in dynamic end-expiratory volume it would explain why CPAP or PEEP reduced 

sensation of dyspnoea as it bypasses PEEPi and with prolonged application has been 

found to reduce EELV (Lougheed et al., 1995). 

  

Most studies used NPPV on asthma patients for short periods. Meduri and colleagues 

(1996) applied NPPV in the form of pressure support and PEEP for longer periods to 

status asthmaticus patients who failed to improve with initial management. There was 

a significant reduction in PaCO2 and pH compared to a control group, as also 

reduction in dyspnea and respiratory rate. Of the 17 patients who received NPPV only 

two required intubation. Unfortunately the patients were not randomized and the 

control group consisted of only four patients who had to be intubated before reaching 

ICU. Presentation parameters were also much worse in the control group. Their study 

was a retrospective patient record review. A seven year retrospective observational 

study by Fernandez and colleagues (2000) identified 33 patients who would have been 

eligible for NPPV. Of these 22 (67 %) were treated with NPPV. Of those that received 

NPPV, three (14 %) needed to be intubated. They reported no difference in ICU and 

hospital stay or mortality between those who received NPPV and those who 

underwent invasive mechanical ventilation. The authors suggest that non-invasive 
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ventilation improves pulmonary function and is a safe treatment technique in status 

asthmaticus and hypercapnic patients who fail to improve with initial medical 

management.  

 

The International Consensus Conference in Intensive Care Medicine published a 

report on the use of noninvasive ventilation in acute respiratory failure (Evans, 2001).  

Under the recommendations given was the need for studies that would evaluate the 

clinical difference of using an inspiratory assistance like pressure support or 

inspiratory positive airway pressure and an end-expiratory pressure like PEEP or 

CPAP in diagnoses like asthma COPD and cardiogenic pulmonary oedema. They also 

suggested investigation into the different responses to NPPV between asthma and 

COPD patients. The present study addresses some of these issues as patients were 

randomized to receive either CPAP or BPPV (inspiratory pressure plus PEEP) and the 

patients’ response was compared between these groups.  The British Thoracic Society 

on the other hand in their guidelines on NPPV said that there was insufficient 

evidence to recommend its use in asthma patients (Baudouin et al., 2002). These 

guidelines where published in 2002 when no randomized control study had yet been 

published. Since then the Soroksky study was published with promising results 

(Soroksky et al., 2003).  In a more recent update on this topic done by Hess, the 

Soroksky study is mentioned. They noted that there is less evidence for the use of 

NPPV in the asthma population compared to the COPD population. They commented 

that lower-level of evidence research together with the Sorosky study suggested that 

the use of NPPV for asthma patients should not be dismissed. Additional studies with 

larger populations were recommended (Hess, 2004). 

 

Corbridge and Hall (1995) stated that by decreasing work of breathing, NPPV may 

lessen inspiratory muscle fatigue, buy time for concurrent pharmacological therapy to 

become effective and thereby avert the need for intubation in some. The literature 

above provides supportive evidence for the use of NPPV in acute asthma 

exacerbation.  A need for randomized studies on asthma and NPPV still exists for 

better support of its acceptance and institution as adjunct therapy for acute asthma 

exacerbations.  
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In light of the evidence presented, the methodology followed to investigate the use of 

NPPV in acute asthma exacerbation, will be discussed in the next chapter. 
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CHAPTER 3 

 MATERIALS AND METHODS 
 

 
An acute asthma exacerbation can severely distress patients as the respiratory muscles 

become overloaded. This can lead to muscle fatigue and exhaustion. Noninvasive 

positive pressure ventilation such as CPAP and BPPV has been used in a few studies 

on patients with an asthma exacerbation but a lack of more evidence to support its use 

still exists. To further investigate the effects that CPAP and BPPV can have on AAE 

this chapter will explain the methods and materials used to execute the present study.  

 

3.1 SAMPLE SELECTION 
Asthmatic patients who presented with an acute asthma exacerbation at the 

Emergency Unit, Kalafong Hospital between January 2004 and October 2006 were 

recruited for the study. Only severe exacerbations were included into the study. 

 

3.1.1 Sample Size:   

n Query 6.0 software was employed and computations were based on recovery time. 

For the standard treatment the assumption was made that recovery time was between 

2 and 6 hours (Kelsen et al, 1978; Fanta et al, 1982, McFadden et al, 1995; Rodrigo & 

Rodrigo, 1998) suggesting a standard deviation of 0.67 hours (range/6). A sample of 

10 patients per group provided an 85% power to detect a reduction of 1 hour in 

recovery time where mean recovery time for the standard treatment is 4 hours. 

 

3.1.2 Inclusion Criteria:  

a) Male and female patients between the ages of 18 to 70 years 

b) A previous diagnosis of asthma as defined by the South African Pulmonology 

Society  

c) An acute severe exacerbation of asthma. This classification was made according to 

the Global Initiative for Asthma guidelines (Global Strategy for Asthma Management 

and Prevention, Global Initiative for Asthma (GINA), 2006) for initial peak expiratory 
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flow rate percentage predicted (PEFR% pred). Patients were classified as severe if 

their PEFR% predicted was below 60 %. 

d) Patients who presented with the above at the emergency department between 07h00 

and 16h00. 

 

 

3.1.3 Exclusion Criteria: 

a) A systolic blood pressure < 90 mmHg or  

b) Use of vasopressors  

c) Electrocardiographic instability (evidence of ischaemia or arrhythmia)  

d) Neurologic disorder (coma, seizure or mental disorder)  

e) Cardiorespiratory arrest 

f) Evidence of pneumonia or tuberculosis 

g) An axillary temperature equal or above 38 degrees Celsius  

h) Previous established cardiac pathology 

i) Chronic obstructive pulmonary disease  

j) Moderate and mild exacerbations of asthma  

k) Pregnancy 

l) Inadequate peak flow technique 

 

 

3.1.4 Criteria for discontinuation of noninvasive positive pressure:  

If the patient demonstrated any one of the following criteria NPPV was discontinued; 

a) Inability to correct blood gas values (pH < 7.30, PaCO2 > 45 mmHg or PaO2 < 45 

mmHg) after one hour of treatment 

b) Inability to decrease dyspnoea after one hour of treatment,  

c) Inability of patient to protect his airways such as poor cough reflex, reduced 

consciousness  

d) Intolerance of CPAP or BiPAP® (patients who feel claustrophobic, patients who 

pull of their masks or refuse mask after a few attempts) 

e) Haemodynamic instability,  

f) Poorly fitting mask and  

g) Patient request. 
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3.1.5 Intubation Criteria:  

Major Criteria  

a) Respiratory arrest  

b) Respiratory pauses with loss of consciousness or gasping for air  

c) Psychomotor agitation making nursing care impossible and requiring sedation  

d) A heart rate < 50 beats per minute with loss of alertness  

e) Haemodynamic instability with systolic arterial blood pressure < 70 mmHg. 

   

Minor Criteria:  

a) Respiratory rate > 35/min or above the value of admission,  

b) Arterial pH < 7.30 or below value of admission,  

c) An arterial partial pressure of oxygen (PaO2)< 45 mmHg despite oxygen therapy   

d) An increase in the score of encephalopathy [1=mild asterixis (abnormal muscle 

tremor with involuntary jerking of the hands), 2=marked asterixis,mild confusion or 

sleepiness during the day, 3=major confusion with daytime sleepiness or agitation and 

4=obtundation or major agitation] 

The presence of one of the major criteria at any time was considered an indication for 

intubation. The presence of two of the minor criteria after one hour of treatment was 

also considered an indication of the need for intubation (Brochard, Mancebo & 

Wysocki,1995). 

  

 

 

3.2-PROCEDURES 
A three group randomized parallel open study (1:1:1) was conducted. Patients who 

presented at the Emergency Unit with symptoms of an acute asthma exacerbation 

immediately received an initial dose of bronchodilator inhalations. The dosage 

consisted of 1.25 mg of β2-agonist (Fenoterol) and 0.5 mg of anticholinergic 

(Ipatropium bromide). This was administered by the emergency unit nurse. They were 

then evaluated by the casualty officer and severity was determined according to the 

Global Initiative for Asthma guidelines from the PEFR% predicted reading (Global 
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Strategy for Asthma Management and Prevention, Global Initiative for Asthma 

(GINA), 2006). If the patient had a peak expiratory flow rate less than 60% of 

predicted the investigator was contacted through a pager. Nebulised bronchodilators 

were continued accordingly.  The researcher then proceeded to evaluate the patient to 

determine if they fitted the inclusion criteria. A short explanation of the study 

procedures was read to the patient (appendix A). It was made clear that participation 

was voluntarily and that the patient could withdraw from the study at any time with no 

detrimental effect to his health status as standard therapy would be continued. A 

consent form (appendix B) was then given to the patient to sign.  In the case of a 

patient being unable to deal with this, consent from family was obtained. In extreme 

situations were the patient's clinical condition was too severe a verbal consent was 

procured until patient stabilized and then the written consent was obtained from the 

patient.  Once consent had been given patients were randomized into one of three 

groups:  a) Standard medical Therapy (ST), b) Standard Therapy + Continuous 

Positive Airway Pressure or c) Standard Therapy + Bilevel Positive Pressure 

Ventilation.  Randomization was done by the sealed opaque envelope method. All 

envelopes were put inside a box and mixed frequently. At the time of randomization 

an envelope was retrieved from the box by either the medical officer present, one of 

the sisters or by the investigator. 

 

 

3.2.1 Standard Therapy  
For an acute exacerbation, standard therapy consisted of oxygen therapy (to maintain 

peripheral saturation ≥ 90%) together with β2-agonist (Fenoterol) and anticholinergic 

agent (Ipatropium bromide) nebulisation given continuously with a small volume 

nebulizer until the episode resolved. Beta 2-agonist was administered at 1.25 mg and 

anticholinergic was administerd at 0.5 mg. Both were given from unit dose vials 

which had 2 ml isotonic saline already mixed to the bronchodilator medication. 

Methylprednisone was administered at 125 mg (prescribed 6 hourly) via intra-venous 

infusion. Aminophylin was also administered intravenously at 250 mg bolus if the 

patient was not on oral theophylin. 

 

 

 30



3.2.2 Noninvasive Devices:   
In the study we made use of the Solo Plus Lx CPAP System for the CPAP 

applications and the BiPAP® Harmony S/T Ventilatory Support System for the 

BPPV application. Both are from Respironics Inc, Murraysville, Pa. USA .  The 

CPAP provided a continuous flow of at least 100 L/min and positive pressure levels 

from 4 to 15 cmH2O.  The BiPAP® provided a flow of 140 L/min and cycled between 

adjustable inspiratory (IPAP) and expiratory pressures (EPAP) utilizing the patient 

flow-triggered mode.  The inspiratory pressures ranged from 4 to 30 cmH2O and the 

EPAP from 4 to 15 cmH2O. Oxygen was added from a flow meter and connected to a 

small port on the mask. A full-face mask and headgear from Spectrum ® 

Disposable Full Face Mask, Respironics Inc, Murrysville, Pa. USA was used.  Masks 

were available in sizes small, medium and large and the patient's face was fitted for 

the right size.  These masks are designed for optimal patient comfort and minimal leak 

and were fitted to the patient's face with head straps.  In acute respiratory failure a 

full-face mask has been suggested as the best option. (Mehta & Hill, 2001) This type 

of mask had a quick release cord so that patients could remove it from the face in case 

of vomiting without the need to first loosen straps.  Another safety feature was an 

entrainment valve flapper, which allowed patients to breathe through an opening 

behind this valve in case of an electrical failure.   
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Figure 3-1 

  
Patient being ventilated on the BiPAP device 

 

 

 

 

 

3.2.3 Continuous and Bilevel Positive Airway Pressure protocol:  
A full-face mask was used. (figure 3-2)  The mask was connected to flexible 

tubing through a whisper swivel connection, which functions as an exhalation 

port.  A T-piece nebulizer was added to the circuit. (figure 3-3) before fixing 

the mask on the patient’s face the explanation in appendix A was read to the 

patient on how the pressure worked what sensation he/she would feel and that 

he/she were allowed to ask for it to be removed at any time. The mask was 

then fitted on the patient (figure 3-1) by the researcher with CPAP or BiPAP® 

on initial settings as described below.  
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Figure 3-2 

 
 Noninvasive full face mask and straps 

 

Figure 3-3 

 

 
T-piece inhalator connected in NPPV circuit 
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3.2.4 Initial settings:   
3.2.4.1 Continuous Positive Airway Pressure 

This was started at 5 cmH2O.  This level has already been studied on patients with 

asthma with good patient tolerance and reduction of dyspnoea and inspiratory effort 

(Shivaram et al., 1987; Wang et al., 1996) (figure 3-4). The CPAP settings were 

adjusted one cmH2O at a time. 

 

 

Figure 3-4 

 
 CPAP device 

 

 

3.2.4.2 Bilevel Positive Airway Pressure 

The BiPAP® (figure 3-4) was set on an inspiratory pressure (IPAP) of 10 cm H2O and 

an expiratory pressure (EPAP) of 5 cmH2O. These settings have also been previously 

used on patients with asthma (Pollack et al., 1995; Soroksky et al., 2003). The EPAP 

settings were adjusted one cmH2O at a time and IPAP at two cmH2O at a time. The 
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adjustments were done at the investigator’s discretion and according to the patient’s 

clinical condition. 

 

Figure 3-5 

  

 
BiPAP device 

 

3.2.4.3 Oxygen  

Oxygen was delivered via an entry port on the mask and started at 5 L/min. The 

decision to start oxygen on 5 L/min was taken based on the researcher’s personal 

experience. Both oxygen and pressures were titrated to achieve an oxygen saturation 

of ≥ 90% and a respiratory rate of < 30/min.  

 

3.2.5 Bronchodilator administration 
Bronchodilator medication (beta 2-agonist and anticholinergic agent) was 

administered through the T-piece nebulizer connected on the NPPV circuit when 

patients were on CPAP or BiPAP. For those patients who were randomized to the 

standard therapy group these drugs were administered through a small volume 

nebulizer.  
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3.2.6 Humidification   
The CPAP and BiPAP® generated high flows. This could dehydrate the airways 

easily which would not be recommended for asthma patients (Moloney et al., 2002). 

Therefore it was determined that in between the bronchodilators isotonic saline (0.9% 

NaCl) would be added into the T-piece nebulizer to make sure adequate 

humidification could be maintained. Administration of isotonic inhalations for the 

purpose of humidifying the airways of patients is standard protocol in the 

physiotherapy department when no other means of humidification is available. The 

same was done for the standard therapy group with the small volume nebulizer. This 

was only necessary after patients had reached a PEFR % predicted > 60 % as initially 

bronchodilators were administered continuously. 

 

3.2.7 Disconnection from NPPV 
Patients randomized to receive either CPAP or BiPAP® were kept continuously on 

the devices. Disconnection from these was only done for measurements of lung 

function. If patients wanted to drink water this was also done during this same 

disconnection period. Disconnection during this period was kept as briefly as possible 

so as to not loose the effect of the positive pressure. Since bronchodilators were 

administered on the circuit it was not necessary to disconnect patients for inhalations. 

 

3.2.8 Stabilizing Parameters 
These were considered to be an oxygen saturation ≥ 95%, a respiratory rate < 20 

breaths per minute, no accessory muscle use and a FEV1 ≥ 65 to 70% of predicted. 

After stabilizing parameters were achieved and maintained for at least 30 minutes a 

trial of 15 minutes on an oxygen mask was given.  If the patient maintained oxygen 

saturation ≥ 90% and respiratory rate < 24/min CPAP or BiPAP® was discontinued.  

If the patient showed an increase in respiratory rate > 30/min and use of accessory 

muscles the CPAP or BiPAP® protocol was reinstated. If a patient was still in need of 

noninvasive ventilation once he was to be transferred from the emergency department 

he was transferred with it. The decision to re-instate or continue NPPV in the ward 

was taken in consultation with the casualty officer. Patients were examined regularly 

for abdominal distention, ability to clear secretions and to protect their airways.  
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Patients were followed up until discharge, whether from the emergency department or 

from the ward if they were admitted. The investigator did not interfere in the 

admission or discharge decisions taken by the medical officer on duty. Data was 

collected until patients were discharged from the emergency department or transferred 

to the internal medicine ward. Data collection sheets were awarded serial numbers in 

order to maintain anonymity and these sheets were only handled by the investigator.  

All measures were taken to prevent any physical and psychological risks for the 

patient. As this is an emergency care setting there was a casualty doctor and nursing 

staff present permanently monitoring patient evolution.  The investigator was also 

permanently present.  All criteria were followed strictly and patient safety took 

prevalence above research outcomes.  

 

 

3.3 DATA COLLECTION 

 

3.3.1 Data collected: age, gender, weight, height, temperature, duration of attack 

in hours, asthma history in years, if patient was a smoker or non-smoker.  

 

3.3.2 Dependant variables:  
3.3.2.1 Clinical variables: patient’s sensation of breathlessness, accessory muscle 

use, evidence of muscle fatigue, heart rate, blood pressure, respiratory rate and lung 

sounds. 

3.3.2.2 Physiological variables: oxygen saturation, arterial blood gas values (pH, 

PaO2, PaCO2, HCO3). Arterial blood gases were done at attending casualty officer’s 

discretion. 

3.3.2.3 Spirometry: peak expiratory flow rate (PEFR)  

 

3.3.3 Independent variable was the allocation to one of the three treatment 

regimes, that is: standard therapy, standard therapy and CPAP or standard therapy and 

BiPAP®.   
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3.3.4 Secondary outcome measures  
a) Outcome after emergency department stay. The outcome could be one of the 

following: discharged from the emergency unit to go home, admitted to an overnight 

observation ward, general ward, high-care ward or intensive care unit with intubation 

and mechanical ventilation and finally discharged from the hospital. 

b) Total time of NPPV administration. This was calculated as the number of hours 

since the patient was put on the non-invasive ventilation until it was discontinued.   

c) Total length of hospital stay. This was calculated as the length of stay in hours in 

the emergency department. For those patients admitted to the hospital for further 

treatment the length of stay in each ward was noted in hours and summed up to get the 

total hours spend in the hospital.    

d) Mortality rate. 

 

3.3.5 Data collection methodology 
Once patients had been randomized to the different treatment regimes baseline data 

were collected (Appendix C).  After baseline data the following data were collected at 

30 and 60 minutes:  

3.3.5.1 Arterial blood gas obtained from blood drawn anaerobically from the radial 

or brachial artery into a heparinized syringe.  This was done only at the medical 

officer’s discretion for those patients that he felt it necessary. An ABL 500 or 700 

Radiometer, Radiometer A/S, Copenhagen, Denmark was used to analyze the arterial 

blood gas samples. 

3.3.5.2 Heart rate expressed in beats per minute,  

3.3.5.3 Oxygen saturation expressed in percentage,  

Peripheral oxygen saturation and heart rate were monitored by a pulse oxymeter 

model 515C, Novametrix Medical Systems Inc, Wallingford, CT, USA and more 

unstable patients had their electrocardiogram monitored on the defibrilator Diascope 

2, type 2011,  S&W Medico Teknik NS, Albertslund, Denmark. 

3.3.5.4 Respiratory rate in breaths per minute, counted over thirty seconds and 

multiplied by two,  

3.3.5.5 Blood pressure in mmHg. Blood pressure was measured by the Dinamap pro 

400, Critikon Company LLC, Tampa FL. In the case of this device not being available 

or being broken a sphygmomanometer was used. 
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3.3.5.6 Peak expiratory flow rate (L/min). The best of three efforts were taken 

according to American Thoracic Society recommendations (American Thoracic 

Society, 1987). Patients were in a seated position while doing the measurement. If a 

patient was unable to perform an initial maneuver due to the respiratory distress the 

number zero was noted at baseline. After 30 minutes of treatment the next peak flow 

maneuver was performed. Percentage of predicted values of the above was also used 

for analysis. The percentage of predicted values were calculated according to age, 

weight and length using the Gregg and Nunn reference table for predicted peak 

expiratory flow rate (Gregg & Nunn,1973).  Lung function was measured on the 

Asthma Monitor ® AM1, Jaeger, Hoechberg, Germany. The device allowed for three 

or more attempts to be made by the patient an then the best attempt was displayed. 

3.3.5.7 Sensation of breathlessness. This was measured using a visual analogue scale 

of 10 centimeters where zero was not breathless at all, and 10 equaled the maximal 

breathlessness the patient had ever felt. The patient encircled the number that most 

expressed his sensation of breathlessness. 

3.3.5.8 Accessory muscle use. This was defined as visible retraction of the 

sternomastoid muscles and graded as 0 = absent, 1 = mild, 2 = moderate, 3 = severe 

(Rodrigo, 1993).  

3.3.5.8 Evidence of muscle fatigue was defined as the inability to continue to 

develop or maintain a predetermined force. The clinical evidence was the 

development of rapid shallow breathing, alternation between rib cage and abdominal 

movement during inspiration, abdominal paradox and finally increase in the level of 

arterial carbon dioxide (PaCo2) (Macklem, 1980).  

3.3.5.9 Lung sounds were classified according to the following:  0 = no wheezes, 1 = 

expiratory wheezing, 2 = inspiratory and expiratory wheezing and 3 = "silent" lungs 

(Rodrigo, 1993). 

3.3.5.10 Body mass index was calculated at the end of the study for each patient 

using the weight in kilograms divided by the height multiplied by the height in meters. 

 

Data collection continued then on an hourly basis until one hour after discontinuation 

of CPAP or BiPAP® or until patient was transferred to another ward or discharged. 

The investigator collected all data in order to limit the amount of bias that could 

occur.  Arterial blood gases were collected by the medical officer on duty if deemed 

necessary according to sterile technique. 
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3.4 DATA MANAGEMENT AND ANALYSIS 
The data collected between January 2004 and October 2006 was analyzed using the 

Kruskal-Wallis test (parametric one way ANOVA). Software STATA 8 was used. All 

analysis of the variables were corrected for baseline values. Testing was done at the 

0.5 level of significance. Due to the fact that the ANOVA tells us only that there was 

a significant difference between the groups but does not identify which groups were 

significantly different from each other, post-hoc comparisons were done.  Data was 

summarized by group using descriptive statistics, mean, SD, minimum and maximum. 

The ANOVA for the primary outcomes (respiratory rate, sensation of breathlessness, 

accessory muscle use, lung sounds, PEFR and PEFR % predicted) was done analysing 

the actual mean shift between baseline and the next data collection time. For the rest 

of the data the ANOVA was done comparing the mean values at each data collection. 

This was done with the assistance of a statistician. 

 

 

 

3.5 ETHICAL CONSIDERATIONS 
Ethical clearance was obtained from the University of the Witwatersrand Ethics 

Committee [03-05-53 (appendix D)] and from the Kalafong Emergency Unit 

(appendix E) for the present study. Consent was obtained from each patient who 

agreed to participate in the study (appendix B). 

 

 

Having described the methods used to collect the data for the present study, we will 

proceed to describe the results obtained through these methods in the following 

chapter. 
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CHAPTER 4     

RESULTS 
 

 

4.1 INTRODUCTION 
 

A total of 85 patients with acute asthma exacerbation was admitted to the Emergency 

unite of Kalafong hospital during the day between January 2004 and October 2006. 

Thirty of these patients fulfilled the inclusion criteria for the study. For the purpose of 

this chapter the treatment groups were referred to in the following way: the standard 

therapy group was named Standard Therapy group; the standard therapy and CPAP 

group was referred to as CPAP group and the standard therapy and BiPAP® group 

was referred to as BPPV group. The ANOVA analyses of the three treatment groups 

was referred to as Group A (standard therapy group versus the CPAP group versus 

the BPPV group). We also analyzed the data by joining the CPAP and BPPV groups 

(noninvasive groups) and analyzing them against the Standard Therapy group. This 

was referred to as Group B. 

 

 

4.2 POPULATION CHARACTERISTICS 

 
The mean age for the group as a whole was 42 ± 12.5 years [standard therapy group 

(44.7 ± 15 years), CPAP group (43 ± 10.8 years) and BPPV group (38.6 ± 11.8 

years)]. Gender representation was as follows: the standard therapy group and CPAP 

group had 30% males and 70 % females while the BiPAP group had 20 % males and 

80% females. The mean hours lapsed between the onset of the asthma exacerbation 

and the arrival at the emergency unit was 10.11 ± 5.08 hours for the group as a whole 

[standard therapy group (11.35 ± 5.32 hours), CPAP group (10.6 ± 6.15 hours) and 

BPPV group (8.4 ± 3.47 hours)]. The body mass index was 26.76 ± 5.67 for the 

standard therapy group, 26.46 ± 3.69 for the CPAP group and 27.97 ± 5.37 for the 

BPPV group. The majority were non smokers. (Table 4-1) 
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Table 4-1 
Population characteristics 
 Groups 

(n=30) 
Standard 
Therapy 
group 
(n=10) 

CPAP 
group 
(n=10) 

BPPV 
group 
(n=10) 

p value 
Group A 

p value 
Group B 

Age  
(years) 
(mean ± SD) 

42.1 ± 
12.57 

44.7 ± 15.16 43  ± 
10.780 

38.6 ± 
11.87 

0.5505 0.4327 

Gender M/F 
(%) 
 

M= 26.67 
F= 73.33 

M = 30 
F = 70 

M = 30 
F = 70 

M = 20 
F = 80 

 
---------- 

 
-------- 

Hours of 
attack before 
arrival 
(hours) 

10.11 ± 
5.08 

11.35 ± 5.32 10.6  ± 6.14 8.4  ±  3.47 0.4177 0.3569 

BMI  
(mean ± SD) 
 

 26.76 ± 5.67 26.46 ± 
3.69 

27.97 ± 
5.37 

0.7780 0.8155 

Smoker 
(%) 
 

3.33  10   
--------- 

 
------- 

Non-smoker 
(%) 
 

90 80 90 100  
--------- 

 
------- 

Ex-smoker 
(%) 
 

6.67 20    
---------- 

 
------- 

 F = female, M = male, BMI = body mass index, ST group = standard therapy group, CPAP group = 
continuous positive airway pressure group with standard therapy, BPPV group = bilevel positive 
airway pressure with standard therapy; Group A = three group ANOVA, Group B = CPAP+ BPPV 
groups analyzed against the standard therapy group, 
 

 

 

 

4.3 BASELINE CHARACTERISTICS 

 
The following baseline data was collected: respiratory rate, heart rate, temperature, 

systolic and diastolic blood pressure, peripheral saturation, PEFR and PEFR % 

predicted. Baseline characteristics are listed in table 4-2. The respective mean values 

and standard deviations, minimal and maximum values are presented. None of these 

initial parameters showed statistically significant difference between the treatment 

groups with exception of the baseline systolic blood pressure in the Group B analysis. 
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Although the one-way ANOVA did not show significance among the systolic blood 

pressures the post-hoc analysis showed a marginal significance between the NPPV 

groups [CPAP (p=0.0538) and BPPV (p=0.0915)] and the standard therapy group. 

This means that patients in both NPPV groups had a slightly increased mean systolic 

blood pressure at the beginning of the study. 

 

 

 

4.3.1. Blood Pressure variation over time 
The systolic blood pressure was significantly different among the treatment groups at 

one and two hours of treatment (p=0.0494 and 0.0332 respectively) and marginally at 

three hours of treatment (p=0.918). The diastolic blood pressure showed a marginally 

significant difference among the groups from half an hour up to four hours of 

treatment when it was significantly different (p= 0.0288). The main contributor to this 

significance was the BPPV group. The BPPV group showed a decrease in both 

systolic and diastolic blood pressures as treatment time progressed (table 4-3, graphics 

4-1 and 4-2). 

 

 

4.3.2. Arterial Blood Gases 
Arterial blood gases (ABG) were done at the medical officer’s discretion. A total of 

seven patients had blood drawn for ABG. Three patients refused a second ABG. The 

pH, PaO2 and PaCO2 of the four patients who had a follow-up ABG after half an hour 

of treatment are in table 4-4. Two patients (patient 2 and 3) showed hyperventilation 

with lower PaCO2  

values while patient one and 18 were hypercapnic initially and had improved after 

half an hour of treatment. Patients oxygenated well except patient two whose baseline 

ABG was done on room air and not on 5 L/O2/min as was the case with the others. 

Some patients presented with hyperoxia after first half an hour of treatment but this 

was corrected by reducing supplied oxygen. 
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Table 4-2    
Baseline characteristics of population 
 Mean SD Min Max p value 

Group A 
p value 
Group B 

Respiratory rate (bpm) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
Groups  (n=30) 
 

 
24 
25.7 
28.9 
 
26.2 

 
6.75 
7.12 
5.86 
 
6.69 

 
14 
18 
20 
 
14 

 
38 
39 
36 
 
39 

 
 
 
 
 
0.2586 

 
 
 
 
 
0.2084 

Temperature (°C) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
Groups  (n=30 

 
36.7 
36.83 
36.83 
 
36.79 

 
0..52 
0.41 
0.41 
 
0.43 

 
36.0 
36.0 
36.0 
 
36 

 
37.8 
37.2 
37.6 
 
37.8 

 
 
 
 
 
0.7552 

 
 
 
 
 
0.4495 

Blood Pressure Systolic 
(mmHg) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
          Groups  (n=30) 

 
 
118.3 
135.7 
133.4 
 
129.13 

 
 
17.35 
18.67 
21.62 
 
20.20 

 
 
98 
110 
108 
 
98 

 
 
158 
167 
180 
 
180 

 
 
 
 
 
 
0.1098 

 
 
 
 
 
 
0.0353 

Blood Pressure Diastolic 
(mmHg) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
           Groups  (n=30) 

 
 
76.1 
83.5 
81.2 
 
80.27 

 
 
18.01 
14.41 
8.64 
 
14.07 

 
 
60 
62 
69 
 
58 

 
 
119 
106 
94 
 
119 

 
 
 
 
 
 
0.5009 

 
 
 
 
 
 
0.2587 

Heart rate (bpm) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
           Groups  (n=30) 

 
110.8 
119.8 
114 
 
114.87 

 
26.17 
24.92 
21.88 
 
23.84 

 
79 
78 
81 
 
78 

 
154 
155 
148 
 
155 

 
 
 
 
 
0.7079 

 
 
 
 
 
0.5183 

Saturation (%) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
          Groups  (n=30) 

 
97.2 
97.7 
95.1 
 
96.7 

 
1 
1 
5 
 
3.09 

 
95 
96 
84 
 
84 

 
99 
100 
99 
 
100 

 
 
 
 
 
0.1356 

 
 
 
 
 
0.5132 

PEFR (L/min) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
          Groups  (n=30) 

 
178.8 
150.8 
162.2 
 
163.9 

 
70.01 
50.31 
60.10 
 
59.71 

 
59 
50 
50 
 
50 

 
297 
240 
250 
 
297 

 
 
 
 
 
0.3426 

 
 
 
 
 
0.3426 

PEFR%pred (%) 
ST group (n=10) 
CPAP group (n=10) 
BPPV group (n=10) 
 
          Groups  (n=30) 

 
35.185 
30.552 
33.524 
 
33.09 

 
10.71 
11.70 
13.80 
 
11.87 

 
12.82 
10.86 
7.94 
 
7.94 

 
49.09 
48.97 
53.76 
 
53.76 

 
 
 
 
 
0.6915 

 
 
 
 
 
0.5034 

 PEFR= peak expiratory flow rate, PEFR% pred = peak expiratory flow rate percentage predicted, 
ST group = standard therapy group, CPAP group = continuous positive airway pressure group with 
standard therapy, BPPV group = bilevel positive pressure ventilation with standard therapy; Group A 
= three group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard therapy 
group, bpm = beats per minute for heart rate and breaths per minute for respiratory rate. mmHg = 
millimeters mercury, 
°C = degrees Celsius, L/min = liters per minute 
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Table 4-3 
Mean systolic and diastolic blood pressure analysis over time 
 Baseline 0.5 hr 1 hr 2 hr 3 hr 4 hr 
SYSTOLIC 
BLOOD 
PRESSURE 
ANOVA 
 
Post-hoc: 
-ST x CPAP 
-ST x BPPV 
-CPAP x BPPV 

 
 
 
0.1098 
 
 
0.0538 ‡ 
0.0915 ‡ 
0.7919 

 
 
 
0.2336 
 
 
0.2909 
0.5159 
0.0940 ‡ 

 
 
 
O.0494 † 
 
 
0.3456 
0.1193 
0.0161 † 

 
 
 
0.0332 † 
 
 
0.8516 
0.0189 † 
0.0288 † 

 
 
 
0.0918 ‡ 
 
 
0.8628 
0.0523 ‡ 
0.0673 ‡ 

 
 
 
0.1252 
 
 
0.9134 
0.0821 ‡ 
0.0766 ‡ 

DIASTOLIC 
BLOOD 
PRESSURE 
ANOVA 
 
Post-hoc: 
-ST x CPAP 
-ST x BPPV 
-CPAP x BPPV 

 
 
 
0.5009 
 
 
0.2547 
0.4295 
0.7204 
 
 
 

 
 
 
0.0608 ‡ 
 
 
0.0488 † 
0.8565 
0.0331 † 

 
 
 
0.0730 ‡ 
 
 
0.1058 
0.5165 
0.0275 † 

 
 
 
0.0846 ‡ 
 
 
0.4568 
0.1377 
0.0304 † 

 
 
 
0.0647 ‡ 
 
 
0.7231 
0.0701 ‡ 
0.0292 † 

 
 
 
0.0288 † 
 
 
0.3460 
0.0624 ‡ 
0.0103 † 

ST = standard therapy, CPAP = Continuous positive airway pressure, BPPV = bilevel positive 
pressure ventilation, post-hoc = post-hoc comparisons, † = significant, ‡ = marginally significant 
 
 
 
 
 

Graphic 4-1 
Mean systolic blood pressure variation over time 
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 ST = standard therapy, CPAP = Continuous positive airway pressure, BPPV = bilevel positive 
pressure ventilation, BP = blood pressure. 
 
It is clear that the systolic BP lowered mostly in the BPPV group. 
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Graphic 4-2 
Mean diastolic blood pressure variation over time 
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ST = standard therapy, CPAP = Continuous positive airway pressure, BPPV = bilevel positive 
pressure ventilation, BP = blood pressure 
 
It is clear that the diastolic BP lowered mostly in the BPPV group. 

 

 

Table 4-4 

Arterial blood gas results 
 Treatment group 

allocation 
ABG  Baseline After half an 

hour of 
treatment 

Patient 2 ST + BPPV pH  
PaO2  
PaCO2 

 7.42 
 54.6 
 35.7 

7.42 
79.1 
36.7 

Patient 3 ST + CPAP pH  
PaO2  
PaCO2 

 7.34 
 112.4 
 24.7 

7.42 
89.3 
30.0 

Patient 1 ST + CPAP pH  
PaO2  
PaCO2 

7.22 
197.9 
48.8 

7.32 
275.0 
35.6 

Patient 18 ST + BPPV pH  
PaO2  
PaCO2 

7.36 
105 
57.5 

7.33 
355 
42.4 

ST = standard therapy, CPA = continuous positive airway pressure, BPPV = bilevel positive pressure 
ventilation, pH = potential of hydrogen ion, PaO2 = partial pressure of arterial oxygen,  PaCO2 = 
partial pressure of carbon dioxide 
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4.4 TIME ANALYSIS 

 
The following times periods are expressed as means and standard deviation per 

treatment group in table 4-5:  

a) Time before intervention started: this meant time from arrival at the Emergency 

Unit        until the patient was enrolled in the study and baseline measurements 

were done. 

b) Time in Emergency Unit: this comprised the total time spend in the emergency 

unit, from arrival until transfer to another ward or discharge 

c) Time of intervention: this was calculated as the time from when baseline 

measurements were done until the last measurement was taken from the 

patients. 

 

No significant difference was found among the groups for these time periods. 

 

 

 
Table 4-5 
Time table 
TIME ST 

Group 
CPAP 
Group 

BPPV 
Group 

Groups 
   

p value 
GroupA 

p value 
GroupB

 n = 10 
 

n = 10 n = 10 n = 30   

Before 
intervention 
 

0.49 0.49 1.17 0.58 0.2612 
NS 

0.4264 
NS 

In emergency 
unit 
 

5.37 4.55 5.19 5.17 0.6048 
NS 

0.4069 
NS 

Of intervention 
 
 

4.06 4.06 4.12 4.08 0.9734 
NS 

0.9068 
NS 

Time = expressed in hours and minutes. Abbreviations:  ST group = standard therapy group, CPAP 
group = continuous positive airway pressure group with standard therapy, BPPV group = bilevel 
positive pressure ventilation with standard therapy; Group A = three group ANOVA, Group B = 
CPAP+ BPPV groups analyzed against the standard therapy group, NS = not significant 
 

 

 

 

 47



4.5 ANALYSIS OF PRIMARY OUTCOMES 

 
The following variables were analyzed as primary outcomes: respiratory rate (RR), 

patient’s sensation of breathlessness (SB), use of accessory muscles (AM), lung 

sounds (LS), peak expiratory flow rate (PEFR) and peak expiratory flow rate 

percentage of predicted value (PEFR % pred).  

 

The initial analyses of the variables at half an hour of treatment was done with 30 

patients, 10 in each treatment group. As treatment time progressed the patient 

numbers became less as their acute episode resolved or they were admitted to the 

hospital. Table 4-6 shows how many patients were used in the hourly analyses as 

treatment progressed. After 4 hours of treatment the sample size became too small for 

analysis as many patients recovered before that. End of treatment was defined as the 

stage where the investigator ended all measurements and was usually due to a patient 

reaching a PEFR % predicted ≥ 65 % or being admitted to the ward or being 

discharged from the emergency unit even if PEFR % predicted had not reached 65% 

of predicted value. The mean time from baseline to end of treatment for the group was 

a 4.08 hours. 

 
 
 
 
Table 4-6 
Patient numbers according to time elapsed 
 0.5 hr 

 
1 hr 2 hr 3 hr 4 hr 5 hr 6 hr End Rx

Total n =  30 30 30 29 20 13 3 30 
ST Group n= 10 

 
10 10 9 7 5 1 10 

CPAP Group n= 10 
 

10 10 
 

10 6 5 0 10 

BPPV Group n= 10 
 

10 10 10 7 3 2 10 

0.5 hr = first half an hour of treatment, End Rx = end treatment and corresponded to the point were al 
data collection was ceased due to patient being discharged or transferred to a ward. ST group = 
standard therapy group, CPAP group = continuous positive airway pressure group with standard 
therapy, BPPV group = bilevel positive pressure ventilation with standard therapy 
 
The above table shows the number of patients that was used in the statistical analyses 
per hour. As patients recovered the number reduced, so that it became impossible to 
do statistical analyses from 5 hours onwards 
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4.5.1. Respiratory Rate 

The one-way ANOVA of the shift in respiratory rate showed that there was significant 

difference between the groups at two hours of treatment and at the end of treatment. 

In the post-hoc comparisons BPPV significantly reduced the respiratory rate 

compared to the control group at one hour and two hours. Continuous positive airway 

pressure added to standard therapy reduced respiratory rate significantly at two hours. 

At the end of treatment both the CPAP and BPPV intervention groups showed 

significance when compared to the Standard Therapy group. The biggest contributor 

to the significant changes in respiratory rate was the BPPV group (graphic 4-3). The p 

values are presented on table 4-6. A   p-value < 0.05 was considered significant and a 

p-value > 0.05 < but ≤ 0.1 was considered moderately significant. When the two 

intervention groups were analyzed together in relation to the Standard Therapy group 

(Group B) they showed a significant shift in respiratory rate at two and three hours 

and at the end of treatment. 
 

 
 
 
 
Table 4-7  
Respiratory rate mean shift analysis – p-values  
 0.5 hr 1 hr 2 hr 3 hr 4 hr End Rx 
Total n =  30 30 30 29 20 30 
Δ RR 
Group A  
 
ST x CPAP  
ST x BPPV 
CPAPxBPPV 
 
Group B 
 

 
0.1615 
 
0.3850 
0.0591 ‡ 
0.2573 
 
0.1226 

 
0.0618 ‡ 
 
0.5173 
0.0236 † 
0.0795 ‡ 
 
0.1151 

 
0.0133 † 
 
0.0258 † 
0.0051 † 
0.4220 
 
0.0043 † 

 
0.1110 
 
0.0820 ‡ 
0.0569 ‡ 
0.8072  
 
0.0354 † 

 
0.1509 
 
0.0603 ‡ 
0.5980  
0.1554 
 
0.1853 
 

 
0.0328 † 
 
0.0463 † 
0.0132 † 
0.5078 
 
0.0107 † 

 Group A = three group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard 
therapy group. STxCPAP, STxBPPV, CPAPxBPPV are the post-hoc comparisons. RR = respiratory 
rate 
    † = p < 0.05,   ‡ = 0.05 < p ≤ 0.1 
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Graphic 4-3 
Mean respiratory rate per treatment group and improvement over time 
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 ST = standard therapy group, CPAP = CPAP intervention group and BPPV = BPPV intervention 
group. Respiratory rate is given in breaths per minute. RR_0,0.5,1,2,3,4,5,6,end = treatment time when 
data was collected where 0 is baseline and 0.5 is first half an hour of treatment and so forth. 
 
Graphic 4-4 
Mean sensation of breathlessness according to treatment time per group 
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SB_0=sensation of breathlessness at baseline,  SB_0.5=sensation of breathlessness after first half an 
hour of treatment SB_1,2,3,4,5,6=sensation of breathlessness after one,2,3,4,5,6 hour/s of 
treatment.SB_end=sensation of breathlessness at end of treatment, did not take into consideration 
time.Visual Analogue scale from zero to ten, zero = no breathlessness at all, 10 = most breathlessness 
everST = standard therapy group, CPAP = CPAP intervention group, BPPV = BPPV intervention 
group 
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4.5.2. Sensation of Breathlessness 
Patients graded their sensation of breathlessness on a visual analogue scale. Ten out of 

ten was the most “short of breath” that they had ever felt and zero out of ten was no 

shortness of breath at all. The Group A analyses showed significant difference 

between the treatment groups in the first half an hour, becoming marginally 

significant after one hour and significant again at three hours and at end of treatment. 

In the post-hoc comparisons the BPPV group showed significant contribution towards 

the reduction of breathlessness throughout the treatment compared to the Standard 

Therapy group (graphic 4-4). The CPAP group was also significant at three hours and 

at the end of treatment but not as much as the BPPV group when they were compared 

to the Standard Therapy group. The p values are described in table 4-8. When the 

CPAP and BPPV groups were compared to the Standard Therapy group (Group B) 

they significantly improved the patients’ sensation of breathlessness in the first half an 

hour, one hour, three and four hours and at end of treatment. 

 

 
Table 4-8 
Sensation of breathlessness mean shift analysis – p-values 
 0.5 hr 1 hr 2 hr 3 hr 4 hr End Rx 
Total n =  30 30 30 29 20 30 
Δ SB 
Group A 
 
ST x CPAP 
ST x BPPV 
CPAPxBPPV 
 
Group B 
 

 
0.0169 † 
 
0.3526 
0.0054 † 
0.0507 ‡ 
 
0.0369 † 

 
0.0595 
 
0.1394 
0.0197 † 
0.3591 
 
0.0271 † 

 
0.1257 
 
0.1773 
0.0477 † 
0.5094 
 
0.0519 

 
0.0300 † 
 
0.0311 † 
0.0142 † 
0.7560 
 
0.0079 † 

 
0.0696 
 
0.0575 ‡ 
0.0393 † 
0.9419 
 
0.0191 † 

 
0.0237 † 
 
0.0061 † 
0.0263 † 
0.0122 † 
 
0.0061 † 

 Group A = three group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard 
therapy group.  ST x CPAP, ST x BPPV and CPAP x BPPV are the post-hoc comparisons. SB = 
sensation of breathlessness 
† = p<0.05, ‡ = 0.05 < p ≤ 0.1 
 
 

4.5.3. Accessory Muscle Use 
Accessory muscle use was significantly improved between the treatment groups 

(Group A) from baseline to end of treatment. In the post-hoc comparisons the CPAP 

and BPPV groups contributed to this significance (graphic 4-5). The BPPV 

intervention group did not show significance in the hourly analyses while the CPAP 
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group showed significance at one hour of treatment and then marginally at two and 

three hours of treatment. In the Group B analyses the intervention groups 

significantly reduced the use of accessory muscle at two hours and at end of treatment 

compared to the Standard Therapy group. The p values are described in table 4-9. 

 
Table 4-9 
Accessory muscle use mean shift analysis- p-values 
 0.5 hr 1 hr 2 hr 3 hr 4 hr End Rx 
Total n =  30 30 30 29 20 30 
Δ AM 
Group A 
 
ST x CPAP 
ST x BPPV 
CPAPxBPPV 
 
Group B 
 

 
0.7785 
 
0.8897 
0.5033 
0.6016 
 
0.6335 

 
0.1324 
 
0.0475 † 
0.4242 
0.2244 
 
0.1077 

 
0.1221 
 
0.0586 ‡ 
0.1092 
0.7568 
 
0.0407 † 

- 
0.2084 
 
0.0991 ‡ 
0.1681 
0.7872 
 
0.0771 ‡ 

 
`0.4484 
 
0.2382 
0.3840 
0.8255 
 
0.2054 

 
0.0253 † 
 
0.0129 † 
0.0290 † 
0.7286 
 
0.0066 † 

 Group A = three group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard 
therapy group. ST x CPAP, ST x BPPV, CPAP x BPPV are the post-hoc comparisons. AM = 
accessory muscles 
† = p< 0.05, ‡ = 0.05 < p ≤ 0.1  
 
Graphic 4-5 
Mean accessory muscle use per treatment time for each group 

0

0.5

1

1.5

2

2.5

AM_0

AM_0
_5

AM_1
AM_2

AM_3
AM_4

AM_5
AM_6

AM_e
nd

treatment time (hours)

A
cc

es
so

ry
 M

us
cl

e 
sc

or
e

ST
CPAP
BPPV

 
Accessory muscle (AM)  scale :0 = absent, 1 = mild AM use, 2 = moderate AM use and 3 = severe AM 
use (Rodrigo and Rodrigo 1993), AM_0 = AM at baseline, AM_0.5 = AM after first half an hour of 
treatment, AM_1,2,3,4,5,6 = AM after one,2,3,4,5,6 hour/s of treatment, AM_end =  AM at end of 
treatment, did not take into consideration time, ST = standard therapy group, CPAP = CPAP 
intervention group, BPPV = BPPV intervention group 
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4.5.4. Lung Sounds 

Lung sounds only showed significant improvement at two hours of treatment. In the 

post-hoc comparisons the main difference was between the Standard Therapy group 

and the CPAP intervention group (graphic 4-6). This was significant at two hours of 

treatment and at end of treatment. The p values are noted on table 4-10. 

 

Table 4-10 
Lung sounds mean shift analysis – p-values  
 0.5 hr 1 hr 2 hr 3 hr 4 hr End Rx 
Total n =  30 30 30 29 20 30 
Δ LS 
Group A 
 
ST x CPAP 
ST x BPPV 
CPAPxBPPV 
 
Group B 

 
0.9381 
 
0.9366 
0.7336 
0.8027 
 
0.7983 

 
0.6151 
 
0.7682 
0.4982 
0.3447 
 
0.8018 

 
0.0309 † 
 
0.0352 † 
0.6564 
0.0133 † 
 
0.3963 

 
0.1690 
 
0.0737 ‡ 
0.1600 
0.6431 
 
0.0650 ‡ 

 
0.5511 
 
0.2875 
0.4601 
0.6940 
 
0.3025 

 
0.1023 
 
0.0345 † 
0.2645 
0.2695 
 
0.0659 ‡ 

 Group A = three group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard 
therapy group. ST x CPAP, ST x BPPV and CPAP x BPPV are the post-hoc comparisons. LS = the 
lung sounds 
† = p< 0.05, ‡ = 0.05 < p ≤ 0.1 
 
Graphic 4-6 

Mean lung sound score per treatment time for each group 
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Lung sounds score: 0 = no wheezes, 1 = expiratory wheezes, 2 = inspiratory and expiratory wheezes 
and 3 = silent lungs (Rodrigo and Rodrigo 1993), LS_0 = lung sounds at baseline, LS_0.5 = lung 
sounds after first half an hour of treatment, LS_1,2,3,4,5,6 lung sounds after one,2,3,4,5,6 hour/s of 
treatment, LS_end = lung sounds at end of treatment, did not take into consideration time, ST = 
standard therapy group, CPAP = CPAP intervention group, BPPV = BPPV intervention group 
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4.5.5. Lung Function 
 

The change in peak expiratory flow rate (PEFR) and peak expiratory flow rate % 

predicted (PEFR % predicted) was significant from the first half an hour of treatment 

to three hours of treatment between the groups (one-way ANOVA). From four hours 

to end of treatment PEFR lost significance between the groups and PEFR % predicted 

was marginally significant at end of treatment. Two patients (patient one and 18) who 

were so severely distressed at presentation to the emergency unit were unable to 

perform a peak flow maneuver. The noted value on their data sheets for baseline was 

zero. For statistical analyses this was not an accepted value so it was changed to the 

lowest value that we considered would be comparable to these patient’s lung function 

at that point. The value of a PEFR of 50 L/min was used for the statistical analyses of 

these two patients. The post-hoc comparison showed that the values for lung function 

in the CPAP intervention group were significantly different from that of the Standard 

Therapy group in these first three hours of treatment. The CPAP group was also the 

only intervention group that displayed significance in lung function at the end of 

treatment.  The p values are described in table 4-11. 

 
Table 4-11 
Peak expiratory flow rate and PEFR percentage of predicted mean shift analysis – 
 p- values  
 0.5 hr 1 hr 2 hr 3 hr 4 hr End Rx 
Total n =  30 30 30 29 20 30 
Δ PEFR 
Group A 
 
ST x CPAP 
ST x BPPV 
CPAPxBPPV 
 
Group B 

 
0.0030 † 
 
0.0007 † 
0.0643 ‡ 
0.0622 ‡ 
 
0.0041 † 

 
0.0264 † 
 
0.0092 † 
0.3999 
0.0558 ‡ 
 
0.0576 ‡ 

 
0.0428 † 
 
0.0190 † 
0.6411 
0.0486 † 
 
0.1225 

 
0.0445 † 
 
0.0154 † 
0.3738 
0.0912 ‡ 
 
0.0659 ‡ 

 
0.2024 
 
0.0792 ‡ 
0.5153 
0.2460 
 
0.1721 

 
0.1149 
 
0.0403 † 
0.3712 
0.2117 
 
0.0948 ‡ 

Δ PEFR% 
pred 
Group A 
 
ST x CPAP 
ST x BPPV 
CPAPxBPPV 
 
Group B 

 
0.0035 † 
 
0.0009 † 
0.0823  ‡ 
0.0566  ‡ 
 
0.0053 † 

 
0.0138 † 
 
0.0048 † 
0.3917 
0.0337 † 
 
0.0444 † 

 
0.0224 † 
 
0.0108 † 
0.6898 
0.0257 † 
 
0.1088 

 
0.0265 † 
 
0.0089 † 
0.3481 
0.0635 ‡ 
 
0.2715 

 
0.2715 
 
0.1120 
0.4605 
0.3480 
 
0.1854 

 
0.0877 
 
0.0293 † 
0.3294 
0.1938 
 
0.0732 ‡ 

 ST = standard therapy, CPAP = continuous positive airway pressure and BPPV = bilevel positive 
pressure ventilation. Group A = three group ANOVA, Group B = CPAP+ BPPV groups analyzed 
against the standard therapy group. ST x CPAP, ST x BPPV, CPAP x BPPV are the post-hoc 
comparisons for the one-way ANOVA,. PEFR = the peak expiratory flow rate, PEFR % pred = peak 
expiratory flow rate percentage of predicted 
† = p< 0.05, ‡ = 0.05 < p ≤ 0.1  
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Lung function improvement in the present study was calculated by the shift in liters 

per minute or in percentage points from baseline. This was different from the way the 

Sorosky study (2003) calculated their patients’ improvement in lung function. In their 

study they compared the means. We opted to compare the real shift in parameters 

between the groups as this would represent real improvement. Tables 4-12 and 4-13 

show the actual shift (Δ) in PEFR in liters per minute and the shift in PEFR % 

predicted in percentage points for each treatment group. Table 4-13 was illustrated in 

graphic 4-7 and it shows that both the CPAP and BPPV groups improved lung 

function faster and better than the standard therapy group. It is also easily seen that 

the CPAP group had a significantly greater improvement. The BPPV group also 

improved more than the standard therapy group even if significance was not reached. 

 

Table 4-12 
PEFR improvement (Δ) in L/min 
 0_5 hr 1 hr 2 hr 3 hr 4 hr end Rx 
ST 15.4899 36.9995 61.2357 67.4266 74.2513 86.3864 
CPAP 54.1417 87.5314 110.63 123.508 132.575 140.993 
BPPV 34.7683 52.1692 70.4339 86.8133 93.6123 109.121 

 ST = standard therapy, CPAP = continuous positive airway pressure and BPPV = bilevel positive 
pressure ventilation. 
 
 
 
 
 
Table 4-13 
PEFR % predicted improvement (Δ) in % points 
 0_5 hr 1 hr 2 hr 3 hr 4 hr end Rx 
ST 3.1465 7.4265 12.2037 13.4105 15.2043 17.1096 
CPAP 11.0085 17.4219 22.1571 24.6949 25.3574 28.0621 
BPPV 6.8759 10.2156 13.6492 17.1877 19.3272 21.7763 

 ST = standard therapy, CPAP = continuous positive airway pressure and BPPV = bilevel positive 
pressure ventilation. 
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Graphic 4-7 
Mean shift in the peak expiratory flow rate L/min as lung function improved over 
time 
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ST = standard therapy group, CPAP = CPAP intervention group, BPPV = BPPV intervention group, 
PEFR = peak expiratory flow rate, L/min = liters per minute 
 
The CPAP intervention group clearly stands out, yet the BPPV group also performed 
better than the standard therapy group. 
 
 
 
 
 
 

 
Table 4-14 
Percentage improvement in PEFR % predicted 
 0_5 hr 1 hr 2 hr 3 hr 4 hr end Rx 
ST 8.94 21.11 34.68 38.11 43.21 48.63 
CPAP 36.03 57.02 72.52 80.83 82.99 91.85 
BPPV 20.51 30.47 40.71 51.27 57.65 64.96 

ST = standard therapy, CPAP = continuous positive airway pressure and BPPV = bilevel positive 
pressure ventilation. PEFR % predicted = peak expiratory flow rate percentage predicted 
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Table 4-15 
Comparison of three studies 
 

Control = standard medical treatment, it did vary from study to study, n = sample size, NS = non 

  
n 

Baseline 
PEFR % 
predicted 

 
p 

3 hr PEFR 
% predicted 

p value 
for 
means 

Shift in 
percentag
e points 

% 
improvemen
t 

 
p  

p value 
for shift 

Sorosky 
Control 
 
BPPV 

 
15 
 
15 

 
34 ± 11.1 
 
38 ± 11.9 

 
NS 

 
41.9 ± 18.6 
 
57.9 ± 20 

 
0.03 

 
7.9 
 
19.9 

 
21.9 ± 32.3 
 
55.5 ± 43.9 

 
0.02 

 
not  
available 

Pollack 
Control 
 
BPPV 

 
40 
 
60 

 
37.3 ± 13 
 
40.3 ± 14 

 
NS 

 
57.2 ± 21 
 
68.8 ± 18.9 

 
0.0011 

 
20 
 
28 

 
53.61 
 
68.47 

 
not 
availa
-ble 

 
not 
available 

Hanekom 
Control 
 
 
CPAP 
 
 
BPPV 

 
10 
 
 
10 
 
 
10 

 
35.2 ± 10.7 
 
 
30.5 ± 11.7 
 
 
33.5 ± 13.8 
 

 
NS 

 
47.8±15.2 
 
 
54.8 ± 18.5 
 
 
50.8 ± 16.1 

 
 
 
 
 
 
 

 
13.6 ± 7.8 
 
 
24.2 ± 9.5 
 
 
17.3 ± 8.7 

 
38.11  
 
 
80.83 
 
 
51.27 

 
 
not 
availa
-ble 
 

ANOVA 
 p= 0.0265
 
 
CPAPxST  
p=0.0089 
 
BPPVxST 
p=NS 

significant, PEFR = peak expiratory flow rate, PEFR % predicted = peak expiratory flow rate 
percentage predicted, CPAP = continuous positive airway pressure, BPPV = bilevel positive pressure 
ventilation, ST = standard therapy 
 
For comparison with the Sorosky study (table 4-14) the percentage improvement 

according to the shift in PEFR % predicted was calculated. Table 4-15 further 

compares the Sorosky and Pollack studies with the present study. The Pollack study 

had a higher PEFR % predicted at baseline especially in their BPPV group. Our CPAP 

group showed the lowest mean PEFR % predicted at baseline (30.55 %).  

 
After three hours of treatment the mean PEFR % predicted was highest in the BPPV 

group of the Pollack study (68.8 %). The shifts in PEFR % predicted in percentage 

points and in percentage improvement were similar for the BPPV group in the 

Sorosky and present study while much higher in the Pollack study. Note that the 

Pollack study had a bigger sample size (n=100). The Sorosky study had the lowest 

improvement in PEFR % predicted in the control group. The CPAP group in the 

present study had the biggest percentage improvement in PEFR % predicted when 

compared to the BPPV groups of all three studies [80.83 % versus 55.5 % (Sorosky) 

and 68.47 % (Pollack)]. 
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4.5.6 Separate analyses of the CPAP group against the BPPV group 
In the separate covariance analyses of the CPAP group against the BPPV group what 

stood out were the results of lung function as shown by the PEFR. When compared to 

the BPPV group the CPAP group tended to improve lung function (PEFR and PEFR 

% predicted) faster over the four hour period (table 4-11 and graphic 4-7).  

  

 

 

4.5.7 Expiratory Positive Airway Pressure and Continuous Positive 

Airway Pressure 
The mean values and standard deviation of the level of expiratory positive airway 

pressure (EPAP) and continuous positive airway pressure (CPAP) are listed on table 

4-16. No significant difference between the mean levels of applied EPAP and CPAP 

was found among the two intervention groups. 

  

 
 
Table 4- 16 
Applied levels of EPAP and CPAP( mean ± SD) over time 
 Baseline 0.5 hr 1 hr 2 hr 3 hr 4 hr 
p value 
 

0.3306 1.0000 0.1456 0.6601 0.8297 0.4017 

CPAP 
cmH20 

5 ± 0 5.7 ± 0.21 6.2 ± 0.25 6.4 ± 0.27 6.6 ± 0.31 7.2 ± 0.54 

min 5 5 5 5 5 5 
max 5 7 7 7 8 8 
EPAP 
cmH20 

5.2 ± 0.63 5.7 ± 0.33 5.6 ± 0.31 6.2 ± 0.36 6.5 ± 0.34 6.6 ± 0.43 

min 5 5 5 5 5 5 
max 7 7 7 8 8 8 
EPAP = expiratory positive airway pressure; CPAP = continuous positive airway pressure; min = 
minimum; Max = maximum 
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4.5.8 Inspiratory Positive Airway Pressure 
The mean inspiratory positive airway pressure (IPAP) applied to the patients in the 

BPPV group is shown on table 4-17. The maximum IPAP level applied during the 

study was 15 cmH20. 

 
 
Table 4-17 
Mean levels of inspiratory positive airway pressures applied (mean ± SD) over time 
 Baseline 0.5 hr 1 hr 2 hr 3 hr 4 hr 
IPAP 
cmH20 
 

10.5 ± 1.58 10.9 ± 1.66 11.1 ± 1.91 11.2 ± 2.1 11.4 ± 2.1 11.4 ± 2.06 

Min 
 

10 10 10 10 10 10 

Max 
 

15 15 15 15 15 15 

IPAP = inspiratory positive airway pressure, min = minimum. Max = maximum 

 

 

 

 

 

 

 

 

 

 

4.6 ANALYSIS OF SECONDARY OUTCOMES 

 

 

4.6.1 Outcome from the emergency unit 
Patient recovery was observed to see if they were discharged after emergency unit 

treatment or admitted to one of the wards. There was a significant difference between 

the treatment groups in the number of patients who were discharged after the 

emergency unit treatment and those admitted to the hospital. (p = 0.02) In the 
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Standard Therapy group, 80% of the patients were discharged from the emergency 

unit and 20% were admitted. In the CPAP group, 20 % of the patients were 

discharged and 80 % admitted while in the BPPV group, 30 % was discharged and 70 

% admitted. From the total group (n = 30) 13 patients (43.33 %) were discharged 

from the emergency unit while 17 (56.67 %) were admitted to the hospital for further 

treatment (p = 0.020). See graphic 4-8 

 

 

 

 

 

 
Graphic 4-8 
Percentage of patients in each treatment group that were admitted after emergency 
unit treatment 
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ST = standard therapy group, CPAP = continuous positive airway pressure group, BPPV = bilevel 
positive pressure ventilation group 
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4.6.2 Time spent on Noninvasive Ventilation 
Patients in the CPAP group and those in the BPPV group spent a mean of 3.82 ± 

1.202 hours and 6.98 ± 7.092 hours respectively on noninvasive ventilation. Two 

patients in the BPPV group had to sleep on noninvasive ventilation. Patient two spent 

23.75 hours and patient 18 spend 16 hours on noninvasive ventilation respectively 

(graphic 4-9). 

 
 
 
Graphic 4-9 
Hours spent on noninvasive positive pressure ventilation 
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Numbering on the x-axis are a serious of numbers, not the codes allocated to each patient. Patients two 
and 18 are represented by number one and seven of the BPPV group (burgundy) in the x-axis. 
CPAP=continuous positive airway pressure group,BPPV=bilevel positive pressure ventilation group 
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4.6.3. Intubation Rate 
No patients were intubated in the Emergency Unit. Patient 11 was intubated five days 

later in ICU after having been put on non-invasive ventilation again in the High-care 

ward. 

 

 

4.6.4. Mortality Rate 
None of the patients enrolled in the study died in the emergency unit or in the wards. 

There was therefore a zero mortality rate. 

 

 

4.6.5. Length of Stay 
The length of stay was divided into emergency unit stay and hospital stay. The mean 

length of stay in the emergency unit for the group (n = 30) was 5.28 ± 1.52 hours. For 

those patients who were admitted to the hospital for further treatment (n = 17) the 

total length of stay in hospital was 5.53 ± 5.58 days. The length of stay in the 

emergency unit and the stay in hospital per treatment group is described in table 4-18. 

No significant difference (p = 0.1444) was found among the hospital length of stay 

between the treatment groups (Group A analyses). The Standard Therapy group with 

only two admissions shows clearly a longer mean length of stay in hospital compared 

to the CPAP and BPPV groups. This was mainly due to patient 11 who worsened 

once in the ward and had to be taken to the intensive care unit for intubation and 

ventilation. In the Group B analysis the Standard Therapy group had a significant 

longer hospital stay than the intervention groups (p = 0.0481). Patients were mostly 

admitted to the overnight and general wards (graphic 4-10). Only two patients were 

first sent to the high care ward. 
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Table 4-18 
Mean emergency unit stay and hospital length of stay (mean ± SD) 
 LOS in EU (hours) Number of patients 

admitted 
LOS in hospital 
(days) 

ST 5.61 ± 1.60 2 13.19 ± 13.17 
CPAP 4.91 ± 1.33 8 4.98 ± 5.68 
BPPV 5.31 ± 1.68 7 3.98 ± 2.08 
p value  
group A 

 
0.6048 

 
0.020 † 

 
0.1444 

p value  
group B 

 
0.4069 

  
0.0481 † 

ST = standard therapy group, CPAP = continuous positive airway pressure group, BPPV = bilevel 
positive pressure ventilation group, EU = emergency unit, LOS = length of stay, Group A = three 
group ANOVA, Group B = CPAP+ BPPV groups analyzed against the standard therapy group Time 
= was expressed in hours, † = p< 0.05, ‡ = 0.05 < p ≤ 0.1 
 
 
 
 
Graphic 4-10 
Hours spent in each ward by admitted patients 
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 Patients were named according to their treatment group for this graphic namely: s=standard therapy 
patient, c = continuous positive airway pressure patient and b= bilevel positive pressure ventilation  
patient. 
 OW = overnight stay ward, GW= general wards, HC= high care ward, ICU=intensive care unit 
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4.6.6. Patients that reached PEFR > 65 % predicted 

Out of the total group (n = 30) nineteen (63.33 %) failed to reach a PEFR of at least 

65% in the emergency unit. In the Standard Therapy group, two patients (20 %) 

reached a PEFR % predicted > 65 %. In the CPAP and BPPV groups there were 5 (50 

%) and 4 (40 %) patients respectively who reached a PEFR > 65 % predicted. There 

was no statistical difference between the group of patients who managed to reach a 

PEFR % predicted > 65 % in the emergency unit and those who did not (p = 

0.510).The clinical significance of these findings will be discussed in the following 

chapter. 

 
 
 
 
 
 
 
 
Graphic 4-11 
Percentage of patients who reached a peak expiratory flow rate > 65% in the 
emergency unit 
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ST = standard therapy group, CPAP = continuous positive airway pressure group, 
BPPV = bilevel positive pressure ventilation  
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4.7 CONCLUSION 
The results of the present investigation revealed that both CPAP and BPPV improved 

patients’ clinical signs faster than standard therapy alone. BPPV seemed to improve 

respiratory rate and sensation of breathlessness earlier in the course of treatment while 

the effect of CPAP was more evident in the reduction of accessory muscle use and 

disappearance of wheezes on auscultation in the lungs. Lung function was clearly and 

significantly improved by CPAP from the first half an hour of treatment. In the 

following chapter we will proceed to discuss these results in more details as well as 

their clinical relevance. 
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CHAPTER 5 

 DISCUSSION 

 
5.1 INTRODUCTION 

 
Asthma is a reversible airway obstruction disease characterized by airway 

hyperresponsiveness and inflammation. Acute asthma exacerbation (AAE) is a 

medical emergency that patients present with frequently at emergency units. While 

the main problem in an acute exacerbation is an increased expiratory resistance the 

main consequence is a loading of the inspiratory muscles. Symptoms like tachypnoea, 

dyspnoea and accessory muscle use always accompany an AAE. If treatment is 

delayed or ineffective to reduce the level of bronchoconstriction present, patients may 

develop respiratory muscle fatigue and they may need ventilatory support. 

Noninvasive positive pressure ventilation has an established role in acute 

exacerbations of COPD. Its role remains to be established in asthma.  

 

The present study was undertaken to investigate the use of two modes of noninvasive 

positive pressure ventilation in AAE. We hypothesized that the early use of CPAP or 

BPPV added to standard medical therapy would decrease time of response to therapy 

compared to standard therapy alone. We further hypothesized that BPPV would 

improve patients’ symptoms faster than CPAP due to the inspiratory assistance added 

to the PEEP in the bilevel positive pressure ventilation. 

 

In the population studied there was no significant difference among the three 

treatment groups in age and also in hours of attack prior to presenting at the 

emergency department for treatment. The mean age of the group was 42 ± 12.57 

years. The group was comprised mainly of females (80 % females) for n = 30. This 

was consistent with previous studies which have shown a higher prevalence of acute 

asthma exacerbations in the female population (Singh et al., 1999; Rodrigo et al., 

2004). The majority of the group (90 %) consisted of non smokers. There were similar 

findings for baseline characteristics namely heart rate, respiratory rate, temperature, 
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PEFR and PEFR % predicted, peripheral saturation and blood pressure among the 

three treatment groups. 

 

The results of the present investigation revealed that both CPAP and BPPV improved 

patients’ clinical signs faster than standard therapy alone. Lung function was clearly 

and significantly improved by CPAP from the first half an hour of treatment. This was 

an unexpected finding and proved our second hypotheses wrong. As far as secondary 

outcomes there were significantly more admissions to hospital wards in the two 

noninvasive groups but hospital length of stay was significantly longer in the standard 

therapy group. Mortality rate was zero for all three groups. 

 

The results will be discussed under two main themes namely: a) results on lung 

function tests and b) results on clinical signs. Under each theme we will discuss a) the 

results obtained between each intervention group and the control group (CPAP versus 

ST and BPPV versus ST) b) the results between the two intervention groups (CPAP 

versus BPPV) and c) the results between the noninvasive therapy groups (CPAP and 

BPPV) and the standard therapy group (NPPV versus ST). 

 

 

5.2 LUNG FUNCTION 

 

5.2.1 Continuous Positive Airway Pressure versus Standard Therapy 

in its effect on lung function 
 

The CPAP intervention group showed an outstanding improvement in lung function 

compared to the standard therapy group (tables 4-11, 4-12, 4-13 and graphic 4-7). It 

could be argued that this improvement was related to the administration of 

bronchodilator inhalations. In the first hours of treatment of an AAE the reduction in 

bronchospasm is mostly due to the continuous administration of nebulized β-agonists 

and anticholinergic drugs. The β-agonist has an onset action of 5 minutes with this 

action continuing for up to 6 hours (Rodrigo, 2003). The administration of intra-

venous steroids only initiates its action after 4 hours and can take 6 to 24 hours to 

improve lung function (Manser et al., 2005). Nebulised anticholinergics usually start 
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acting 20 minutes after administration. Studies on the use of inhaled anticholinergics 

have shown that the addition of ipatropium bromide together with β-agonists 

improved lung function, reduced hospital admission and reduced costs (Rodrigo, 

2003). Since all intervention groups received standardized nebulized ipatropium 

bromide together with β-agonists and intra-venous medication it seems evident that 

the improvement is due to the addition of noninvasive CPAP. Yet two studies have 

shown that administering bronchodilators with a noninvasive device improved lung 

function more in this group compared to those who received bronchodilators through 

small volume nebulizers. (Pollack et al., 1995; Lin et al., 1995) 

 

A number of studies have looked at the effect of CPAP on AAE (Martin et al.,1982; 

Shivaram et al., 1987; Shivaram et al., 1993; Lin et al., 1995; Lougheed et al., 1995; 

Wang et al., 1996). Two of these studies looked at lung function in induced 

bronchoconstriction and found a significant improvement in FEV1 between the control 

and CPAP groups (Lin et al., 1995; Wang et al., 1996). Of the above mentioned 

studies only two studies investigated CPAP in AAE in clinical conditions (Shivaram 

et al., 1987, Shivaram et al., 1993). In the first of these two studies (1987) patients 

received intra-venous aminophyline and no mention was made about nebulized 

bronchodilators. Patients were fitted with face mask CPAP after being selected for the 

study (n = 21). Nineteen patients were selected as a control group. The CPAP 

pressures used in this study were 5, 7.5 and 10 cmH2O. They concluded that the 

application of these levels of CPAP on acutely ill asthmatic patients reduced the 

workload on the inspiratory muscles. The second study (1993) selected all patients (n 

= 21) presenting at their emergency unit with a PEFR of 80 – 200 L/min and applied 

nasal mask CPAP of  5 and 7.5 cm H2O intermittently for 30 minutes. The control 

group consisted of six selected patients. They withheld bronchodilators and oxygen 30 

minutes prior to the study. They found that CPAP reduced the respiratory rate and 

dyspnoea of the asthma patients. It would seem that these studies tested the effect of 

CPAP alone in the intervention group. To our knowledge the present study is the first 

that has looked at the effect of CPAP when added to standard medical treatment (ST) 

(as suggested by present treatment guidelines) (Rodrigo, 2003; Global Strategy for 

Asthma Management and Prevention (GINA), 2006) for an AAE and compared it to 

ST alone. An asthma exacerbation is a serious and distressing situation for a patient. 

Changing or withholding treatment that has been shown to be effective does not make 
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sense to us. We preferred to investigate whether the addition of noninvasive positive 

pressure to the existing standard treatment could alleviate the distressing sensations 

experienced by patients with AAE faster than standard medical treatment alone.  

 

Ongoing investigation exists into the possible mechanisms of airway 

hyperresponsiveness (AHR) or excessive airway narrowing in asthma. Most authors 

seem to agree that the remodeling that occurs in the asthmatic airway due to the 

inflammatory response is a definite contributor to the AHR found in asthma. The 

mainframe of research to date suggests the following mechanisms as contributors to 

AHR: a) increase in airway smooth muscle (ASM) mass, b) a decrease of the load 

against which the ASM must shorten and c) an alteration or decrease of the 

fluctuating  load that would perturb the myosin bindings during breathing (Fredberg, 

2004). Alteration in the airway smooth muscle load in the asthmatic lung could be due 

to many factors like airway cartilage softening, decreased tethering effect of the lung 

parenchyma, increased ASM proportion in the circumference, increased airway wall 

thickness and increased secretions in the airway lumen (Brusasco & Pellegrino, 2003; 

Moreno, Hogg & Pare, 1986). Further research has also been done into the 

mechanisms that modulate AHR in non-asthmatic persons but seem to be absent or 

weakened in patients with asthma. The main mechanisms that are accepted today are 

the effects of deep inspiration and the effects of tidal stretching acting as 

bronchodilator and bronchoprotective mechanisms (Scichilone, Permutt & Togias, 

2001; Brusasco & Pellegrino, 2003). Deep inspiration has been shown to have a 

potent bronchodilator effect on normal lungs after these have undergone 

bronchoprovocation (Pellegrino et al., 1998; Scichilone, Permutt & Togias  2001; 

Brusasco & Pellegrino, 2003). On the other hand this effect seems to be absent or very 

reduced in moderate to severe asthma patients (Lim et al., 1989; Macklem, 1996; 

Pellegrino et al., 1998). Tidal stretching causing load fluctuations during spontaneous 

breathing was shown to be the most potent bronchodilator mechanism present in 

normal lungs (Brusasco & Pellegrino, 2003; Fredberg et al., 1997; Gump, Haughney 

& Fredberg, 2001). Again this mechanism seems to be altered in the asthmatic lung 

due to decreased loads altering the transmission of these tidal stretches to the level of 

the myosin bindings in the ASM cell (Pellegrino et al., 1998; Brusasco et al., 1999; 

Wang, McParland & Pare, 2003; Fredberg, 2004). It was based upon these findings 
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that we looked for an explanation for the unexpected improvement in lung function 

observed with the application of CPAP. 

 

Several reasons could be presented for this outstanding improvement in lung function 

with the addition of CPAP to the standard medical treatment. Firstly a few authors 

(Shivaram et al., 1993; Wang et al., 1996) have suggested that CPAP could 

pneumatically splint the airway lumen. If this theory were sustainable one would 

expect lung function to worsen once CPAP and the “splinting” effect had been 

removed. Martin and colleagues (1982) did notice an important increase in pulmonary 

resistance in his induced asthma subjects after the removal of the CPAP. It is however 

important to notice that CPAP in their study was applied for only one minute once off. 

Wang and colleagues (1996) on the other hand reported an improvement in lung 

function as measured by FEV1 at least up to 5 minutes after the removal of the CPAP. 

An interesting study that could support this effect of “splinting” was done by Collet 

and colleagues. They monitored cross-sectional glottic area in asthmatic subjects 

before and after induced bronchoconstriction. They found that after induced 

bronchoconstriction cross-sectional glottic area fell significantly at mid-expiration. 

Once a CPAP of 10 cmH2O was applied to these patients the expiratory constriction 

was abolished. The possible mechanism for this improvement in cross-sectional 

glottic area during expiration remains unanswered. The authors conjectured that 

mechanoreceptors located in the pharynx and larynx could be responsible for this 

phenomenon (Collet, Brancatisano & Engel, 1983). We suggest the possibility of 

CPAP “splinting” the glottic area during the expiratory phase. This suggestion could 

be supported by the widespread use of CPAP in obstructive sleep apnea (Wright & 

White, 2000). If the splinting effect exists, as CPAP raises the transpulmonary 

pressure, it could explain the improvement in lung mechanics and in the patient’s 

sensation of breathlessness found in our study. Yet the fact that Wang and colleagues 

and the present author observed continued improvement in lung function after the 

removal of CPAP could suggest that CPAP probably has a more intrinsic effect on the 

airways of asthmatic lungs. This intrinsic effect could lie in the contraction 

mechanisms of the ASM. 

 

A second explanation for the significant improvement in PEFR with the application of 

CPAP could be the effect of CPAP directly on the ASM. In a study done by Lin and 
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colleagues, they looked at the effect of CPAP on airway smooth muscle (ASM) by 

evaluating lung responses of subjects with asthma during methacholine-induced 

bronchoconstriction. They specifically looked at bronchial reactivity and sensitivity. 

Bronchial reactivity represents the level of bronchoconstriction reached in response to 

different drug doses. Bronchial sensitivity on the other hand reveals the intrinsic 

property of the ASM like the number of drug receptors that act on the ASM. In other 

words bronchial sensitivity shows how easily or how difficult airways narrow (Orehek 

et al., 1977; Woolcock, Salome & Yan, 1984; Lin et al., 1995). Two groups of 

asthmatic patients were used in this study. Continuous positive airway pressure of 8 

cmH2O was initiated in one group for 10 minutes while the control group received a 

mask without positive pressure. Methacoline challenge was then started in both 

groups until a decrease in FEV1 of 20% was achieved. The CPAP was only removed 

for inhalation of methacholine or performance of lung function in the intervention 

group. Their results showed that the use of CPAP reduced both the bronchial 

reactivity and sensitivity of the asthmatic subjects. This means that the level of 

bronchoconstriction reached at different drug doses was smaller with CPAP than 

without CPAP.  The CPAP also acted on the intrinsic properties of the ASM in 

response to stimuli reducing their sensitivity. Another important finding in their study 

was a fall in the cumulative dose of methacholine needed to cause a 20% fall in FEV1 

(PD20FEV1). The authors comment that this could be due to a protective effect of 

CPAP on the ASM against the spasmogen stimuli. Our results concur with the above 

results as the group that received CPAP in the present study had a very significant 

improvement in their lung function when compared to the standard therapy group. It 

could be suggested that CPAP in our study also reduced bronchial reactivity and 

sensitivity. However the mechanism by which this happens remains open to 

speculation. There is however a difference between these two studies. In the Lin study 

CPAP was applied before and during the exposure to spasmogen stimuli. In our study 

patients had already been exposed to whatever had irritated their airways and a 

relative level of bronchoconstriction was established and advanced before CPAP was 

applied. It could be that the CPAP in the Lin study acted through a different 

mechanism as it was applied prior to bronchoconstriction.  

 

A further mechanism to consider would be the contractile mechanisms of the ASM in 

itself. It could be argued that the ASM of the subject with asthma enters into such a 
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contraction state that exiting from this state is nearly impossible. MacParland and 

colleagues (2005) studied length change in bronchial smooth muscle in conditions that 

mimicked real bronchoconstriction. They found that ASM adapted to its shortened 

position and then regained the ability to generate maximal force. This is also referred 

to as ASM plasticity (Fredberg, 2004). A further explanation arises when we look at 

the tidal stretching theories. As airway smooth muscle contracts myosin-actin cycling 

commences. These form a number of interactions also called bridges. If nothing 

disrupts these bridges they will reach what is called an isometric steady state 

(Fredberg, 2004). Research into this phenomenon has revealed that the tidal stretches 

that occur with tidal breathing are transmitted to the myosin head detaching it from 

the actin filament and so disrupting the bridges formed by the isometric contraction. 

This has been named a “perturbed equilibrium of myosin binding” (Fredberg, 2004).  

However tidal stretches of smaller amplitudes than tidal stretching from tidal breaths 

actually worsen ASM narrowing (Fredberg et al., 1997). Gump and colleagues (2001) 

have observed in their study that the tidal stretches that occur during quiet tidal 

breathing in healthy lungs were the “first line of defense against bronchospasm”. They 

tested the effect of length fluctuations on bovine tracheal smooth muscle. They found 

that tidal fluctuations of length of amplitudes equal to those that are present during 

quiet tidal breathing had a potent inhibitory effect on the smooth muscle. It seems that 

in asthmatic lungs factors like inflammatory thickening of the lamina reticulosa, 

peribronchial adventitia thickening and loss of elastic recoil permits the myosin 

bindings to collapse in the isometric steady state so causing the bronchoconstriction 

seen in clinical conditions (Moreno et al., 1986; Fredberg, 2004; Postma & Timens, 

2006). Therefore we proposed in our study that since CPAP increases intraluminal 

pressures and also transpulmonary pressures, it could disrupt these bridge dynamics at 

ASM level owing to the constant applied pressure. The ASM would consequently 

return to the perturbed equilibrium of myosin binding state, similar to what happens 

when tidal stretches are transmitted to the ASM in healthy lungs. 

 

A further possible mechanism could lie in the load against which the airway smooth 

muscle contracts. Bronchoprovocation tests are used to draw a dose-response curve of 

the lung to a stimulus. The dose-response curve shows bronchial reactivity to stimuli 

like histamine or methacholine and they can further discriminate between bronchial 

reactivity and sensitivity as described above (Woolcock et al., 1984; Cockcroft, 
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Killian & Mellon, 1977; Orehek et al., 1977). In normal individuals and mild 

asthmatics the dose-response curve achieves a plateau while in moderate asthma this 

plateau is not existent. This means that in normal individuals and mild asthmatics 

maximal shortening of ASM can be achieved without asphyxia (Moreno, Hogg & 

Pare, 1986). Increasing stimulus from the plateau level causes no further constriction 

of the airways. This means that in these individuals a mechanism exists that inhibits 

any further constriction beyond a certain point. On the other hand patients with 

moderate and severe asthma seem to lack this mechanism that would inhibit the ASM 

shortening. The lack of this inhibitory factor is believed to lead to AHR. Macklem 

(1991) argued that to find this mechanism one would have to look at postjunctional 

events acting on the ASM rather than at prejunctional events. An important 

postjunctional factor is the load against which the ASM contracts. The smooth muscle 

structure is subject to the requirement of an antagonism. This means that every time a 

smooth muscle contracts an external force is required to lengthen it. The length of the 

ASM is determined by the balance between two static forces. On the one side would 

be the isometric force generated by the muscle. Balancing it would be the load against 

which this muscle shortens. This load would act as a passive reaction force (Fredberg 

et al., 1999). The interdependence between airways and parenchyma represent a load 

that regulates ASM contraction. The alteration of the function and structure of the 

airway epithelium could therefore increase AHR (Brusasco & Pellegrino, 2003). A 

decrease in the ASM load can occur due to a number of factors: a) the softening of 

airway cartilage due to the chronic inflammatory process that is present in asthma, b) 

a decreased reduction in transmission of lung elastic recoil through altered 

parenchyma, c) increased proportion of ASM in the airway circumference and finally 

d) increased airway wall thickness due to the inflammatory process (Moreno et al., 

1986). These factors lead to a loss in interdependence between the airways and the 

parenchyma (Macklem, 1991). If the hypothesis that CPAP pneumatically splints the 

airways were considered under the above mentioned factors we could speculate that 

as CPAP increases the intraluminal pressure this could serve to restore the load 

against which ASM contracts so limiting the level of constriction by the ASM. 

 

Another explanation for this improvement in lung function may be that CPAP could 

have an effect on the airway wall oedema and inflammation by reducing the vascular 

leak.  One of the characteristics of an asthma exacerbation is the consequent 
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inflammatory processes occurring in the airways. This inflammatory process is 

characterized by an increased vascularity, leaky capillaries, increased mucosal blood 

flow, exudates and oedema (Burns & Gibson, 2002). The equilibrium between the 

flow of intra- and extravascular fluid is directly affected by the changes in hydrostatic 

pressures. On the other hand dynamic hyperinflation leads to an increase in negative 

intrathoracic pressure swings. This could lead to a pressure gradient across the 

capillary walls.  Since the asthmatic airways have an increased vascularity, this 

increase in the pressure gradient could cause larger amounts of fluid to leak into the 

airway wall, so increasing its thickness.  Burns and Gibson (2002) have tested this 

hypothesis in normal and asthmatic lungs. They tested the effect of deep inspiration 

on specific airway conductance (sGaw). Deep inspiration was done from residual 

volume to total lung capacity with and without a resistance. The resistance was added 

to create the negative intrathoracic pressure effect. They found that in the asthmatic 

population the sGaw was significantly reduced when three consecutive deep 

inspirations were done through a resistance. This was not the case in the population 

with normal lungs. The authors argued that the increased negative intrathoracic 

pressure swings could have lead to increased fluid extravasation to the airway walls so 

reducing their lumen and thickening them and so reducing the sGaw. This could result 

in increased bronchoconstriction (Brown, Zerhouni & Mitzner, 1995). As described 

earlier anything that alters the ASM load leads to an imbalance between the ASM and 

this load thereby increasing AHR. Burns and Gibson (2002) suggested that an 

intervention that could manipulate this fall in intrathoracic pressure would have 

clinical benefits. They suggested that noninvasive positive pressure could reduce 

airway wall oedema. Two studies have shown that the application of CPAP to patients 

with asthma reduced the negative pleural and gastric pressure swings (Martin et al., 

1982; Lougheed et al., 1995). Based on this it could be argued that in the present 

study the application of CPAP to patients with AAE and dynamic hyperinflation, 

reduced the negative intrathoracic pressure swings and so reduced the airway wall 

oedema. This would then remove one of the stimuli for increased bronchoconstriction 

and so aid in the improvement in lung function observed in the CPAP group. 

 

The outstanding improvement in lung function in the present study with the 

application of CPAP pressures of 5-8 cmH2O together with standard therapy 

compared to standard therapy alone was unexpected. Several mechanisms could 
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explain this improvement. It could be due to a splinting effect of the increased 

intraluminal positive pressure or due to the fact that CPAP acted on the contracting 

mechanism of the ASM and / or finally due to CPAP increasing the load against 

which the ASM should contract so counterbalancing its excessive contraction.  

 

 

 

 

5.2.2 BPPV versus Standard Therapy in their effect on lung function 
 

The BPPV group did not show a significant improvement in lung function when 

compared to the standard therapy group. Patients had similar baseline characteristics 

and pharmacologic treatment was standardized, and therefore this could not have 

influenced these results. Despite the fact that in our study no significance was found 

in the shift in PEFR and PEFR % predicted, we did notice a clinical improvement 

when BPPV together with standard therapy was compared to the standard therapy 

group (graphic 4-7).  

 

In a similar study Soroksky and colleagues (2003) also compared BPPV and standard 

medical therapy with standard medical therapy alone in patients with acute asthma 

presenting at their emergency department. They had a sample size of 15 patients per 

group. Our findings differ from those of Soroksky and colleagues who found 

significant improvement at three hours in the PEFR % predicted and FEV1 % 

predicted in the BiPAP intervention group. In their study the mean PEFR % predicted 

at three hours of treatment was 41.9 ± 18.6 % in the control group and 57.9 ± 20 % in 

the BPPV group (p = 0.03). They calculated the percentage improvement from 

baseline to three hours of treatment and this was 21.9 ± 32.3 % and 55.5 ± 43.9 % for 

the control and BPPV groups respectively (p = 0.02). Their study compared the mean 

percentage improvements by t-test. In our study the mean PEFR % predicted at three 

hours of treatment for the standard therapy (ST) and standard therapy plus BPPV 

groups was 47.76 ± 15.22 and 50.79 ± 16.10 % respectively. We analyzed the shift 

(Δ) from baseline which would show the real improvement over time. The difference 

in statistical analysis makes it difficult to compare the two studies. If the percentage 
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improvement was calculated in our study as in the Soroksky study it would be 38.11 

% and 51.27 % for ST and ST + BPPV groups respectively (table 4-13). The 

percentage improvement in PEFR % predicted in our study (51.27 %) was quite 

similar to that in the Soroksky study (55.5 ± 43.9 %) for the BPPV intervention group. 

The control group in the Soroksky study showed very little improvement in PEFR % 

predicted (Δ = 7.9 % points) while in our study the control group had a much bigger 

improvement in PEFR % predicted (Δ = 13.61 ± 7.79 % points). This could be due to 

the fact that the control group in the Sorosky study only received hourly inhalations 

while in our study we followed the asthma guidelines (Rodrigo et al., 2004; NHLBI, 

1997) that recommend continuous bronchodilator inhalations for an AAE. In fact in 

their control group 6 out of the 15 patients received only two nebulizations and one 

received no intravenous methylprednisolone during the four hour intervention. So it 

could be argued that their control group did not receive optimal medical treatment. 

Although their BPPV group also had only hourly nebulizations, 11 patients received 

three nebulizations while four received only two during the four hour intervention. 

 

The Soroksky study protocol for the BiPAP® pressures were inspiratory pressures 

(IPAP) from 8 to 15 cmH20 and expiratory pressures (EPAP) of 3 to 5 cmH20. They 

stated that the maximum inspiratory pressure administered to patients was 14 cmH20. 

Their pressure values were chosen in an arbitrary manner. In the present study the 

BiPAP® pressures given to the patients were similar for the inspiratory pressures, that 

is, we started at 10 cmH20 and went up to 15 cmH20 according to the patient’s 

respiratory requirements. Our treatment did differ however on the level of the 

expiratory positive airway pressures. We started at 5 cmH20 and went up to a 

maximum of 8 cmH20. We decided on these levels because they have been previously 

used on asthma patients by other investigators without adverse effects (Shivaram et 

al., 1987; Pollack et al., 1995; Wang et al., 1996; Soroksky et al., 2003). It would 

seem to the author that the present study showed similar clinical improvements in 

lung function as the Soroksky study for the BPPV intervention group. The bigger 

sample size and the small improvement in the control group of the Soroksky study 

could have contributed to the differences in results. 

 

Pollack and colleagues (1995) also reported significant improvement in PEFR % 

predicted in their study. They did not use BiPAP® continuously but used it to 
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administer bronchodilator inhalations twice, 20 minutes apart for the intervention 

group. The control group received bronchodilator inhalations through a small volume 

nebulizer. They reported a significant improvement in PEFR in the intervention group 

after each BiPAP® period (p = 0.0011) and from baseline to completion (p = 0.0013). 

In the Pollack study the patient’s baseline PEFR % predicted was slightly higher than 

in the Soroksky and in the present study although their patients were still classified 

under severe attacks (table 4-15). This could be the reason why they had bigger 

percentage improvement in their PEFR % predicted. They also had a large sample 

size (n=100). 

 

 

5.2.3 CPAP versus BPPV in the improvement in lung function 
 

Continuous positive airway pressure improved lung function more as determined by 

PEFR than BPPV.  When the results on lung function improvement were compared 

for the CPAP and BPPV groups there was a marginal to significant difference. This 

was an unexpected finding. As explained earlier under point 5.2.2. BPPV had a 

clinically better improvement in lung function than standard therapy. Continuous 

positive airway pressure however showed significant improvement in lung function 

compared to standard therapy and it was nearly significantly different from the 

improvement shown in the BPPV group. This means that CPAP clearly stood out in 

its effect on lung function in an AAE for the population studied. 

 

The question to be asked is why? To our knowledge no study to date has compared 

CPAP with BPPV in patients with severe AAE. It is generally rationalized that BPPV 

offers with the PEEP/EPAP the same as CPAP and adds an inspiratory pressure which 

assists inspiratory muscles in their effort. But is this really the case? This seems 

logical and has been demonstrated in COPD patients. Appendini and colleagues 

(1994) studied the effect of CPAP, pressure support alone and PEEP plus pressure 

support against spontaneous breathing in COPD patients. They found that the 

inspiratory muscle effort reduced progressively with CPAP, pressure support and 

PEEP plus pressure support. The best effect in improvement of gas exchange and 

reduction in the breathing work load was obtained with PEEP and pressure support. It 
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is usually based on results like these that BPPV would seem a better option in asthma 

as it provides both pressure support in the forms of IPAP and PEEP in the form of 

EPAP. This was the reasoning of Soroksky and coworkers (2003) in their study that 

compared BPPV added to medical treatment with medical treatment alone in AAE. 

They did not consider using CPAP because they explained its use as only to improve 

oxygenation.  

 

This was the original use of CPAP in lungs without flow limitation. The use of CPAP 

in these cases was to increase functional residual capacity and so oxygenation (Boch 

& Alba 1990, Keenan, Sinuff, Cook & Hill, 2005). In flow limited lungs the 

application of CPAP becomes a mechanical indication where CPAP is used to elevate 

atmospheric pressure and so bypass or negate the PEEPi. This reduces the inspiratory 

threshold created by the PEEPi and so unloads the inspiratory muscles. It has been 

shown in numerous studies that CPAP and PEEP do not increase end expiratory lung 

volume in flow limited lungs, so their effect does not reach alveolar level (Appendini 

et al., 1994; Lougheed et al., 1995). It is interesting to note that before BPPV became 

available, CPAP was the main form of NPPV used. Most of the researchers who 

wanted to test the use of NPPV on asthma made use of CPAP. They all reported 

improvements in lung mechanics and also in respiratory rate, dyspnoea and some even 

in lung function (Martin et al., 1982; Shivaram et al., 1987; Shivaram et al., 1993; 

Lougheed et al., 1995; Wang et al., 1996). We suppose that it is acceptable to always 

want to use the best available technology to improve patient’s health but in this case is 

the best really the best for the condition of asthma? Our results seem to question this. 

One study in the asthma population has compared CPAP with inspiratory positive 

airway pressure (IPAP) which is the same as pressure support. Lougheed and 

colleagues (1995) found that IPAP reduced the elastic and resistive work of breathing 

and also improved the contractile force ratio (oesophageal pressure/ maximal 

inspiratory pressure ratio) of the inspiratory muscles. This was similar to the effects of 

CPAP. The main difference found was that CPAP counterbalanced the effects of the 

inspiratory threshold load but IPAP without a PEEP did not. In their study CPAP 

relieved patients’ perceived inspiratory difficulty more than IPAP. They did not test 

IPAP with PEEP like the Appendini study. What stands out in their study is that 

noninvasive positive pressure for patients with asthma must always include a PEEP or 

CPAP.  
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One factor that should be taken into consideration is the differences that exist between 

asthma and COPD pathologies. Although both present with expiratory airflow 

limitation, COPD is a chronic presentation of disease. Patients with COPD have 

proven muscle weakness that not only affects the limbs but also the respiratory 

muscles. Asthma presents with a reversible obstruction while COPD presents with an 

irreversible obstruction. Patients with COPD can become distressed by mild levels of 

exercise showing that their respiratory muscles which are chronically overloaded 

cannot cope with increased loads. It could be that during an acute exacerbation they 

would need the inspiratory assistance given by IPAP or pressure support more than 

patients with asthma. Furthermore the aims of using NPPV in asthma and COPD may 

vary. Although the main aim in both asthma and COPD exacerbation is to relief 

respiratory distress the aim in asthma also includes improvement in lung function 

which has deteriorated from the onset of the exacerbation. The aim in COPD is 

possibly more directed at resting overloaded and fatigued respiratory muscles. It could 

then be suggested that IPAP or pressure support is not as necessary in an AAE as in 

COPD exacerbation. Tobin and Lodato (1989) have commented that external PEEP 

(and for that matter CPAP also) would act more like a pressure support ventilation. 

This would be due to the fact that once it bypasses PEEPi it consequently augments 

inspiration. 

 

A further explanation as to the better improvement in lung function noticed in the 

CPAP group could lie in the different reactions of normal and asthma lungs to a deep 

inspiration. It has been established that deep inspiration after induced 

bronchoconstriction in normal subjects and mild asthmatics produces 

bronchodilatation (Pellegrino, Violante & Crimi, 1993; Brown et al., 2001; Brusasco 

& Pellegrino, 2003). The explanation for this bronchodilatory effect has been much 

researched. Airway caliber is determined by the balancing of two opposing forces. 

One tends to constrict the airways (airway smooth muscle) while the other prevents 

this narrowing (lung elastic recoil) (Pellegrino et al., 1998). Lung volume and volume 

history are the determinants of lung elastic recoil during normal tidal breathing. This 

means that lung volume generated by a breath creates the elastic recoil that 

counterbalances contraction of ASM. This happens due to the forces of 

interdependence between the airways and lung parenchyma. It is therefore important 
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that the structures where the forces of interdependence operate are maintained integral 

(Pellegrino et al., 1998). 

 

Based on this model then when bronchoconstriction is induced in normal lungs, the 

balance tips towards the constricting forces of the airways, the ASM. The consequent 

deep inspiration taken would increase the opposing mechanism, that is, the elastic 

load which then would be transmitted down to the lung parenchyma and so limit 

smooth muscle shortening. For deep inspiration to be effective the mechanism by 

which an inflation stimulus is transmitted from the pleura to the external wall of the 

airways needs to be integral. A further determinant of the success of a deep inspiration 

is the thickness of the airway wall. Pellegrino and colleagues have stated that “the 

elastic recoil pressure provided by lung parenchyma seems to be the strongest 

modulator of airway narrowing in humans in vivo” (Pellegrino et al., 1998). This 

mechanism is absent in spontaneous bronchoconstriction. Deep inspiration in 

spontaneous bronchoconstriction actually worsens bronchoconstriction (Lim et al., 

1989; Macklem, 1996; Pellegrino et al., 1998). Acute asthma exacerbation is 

associated with an inflammatory response which compromises the integrity of the 

structures where the forces of interdependence operate. This would not allow for 

normal transmission of increased elastic loading during a deep inspiration, so 

favouring further constriction. 

 

Based on these explanations of deep inspiration we speculated that the better 

improvement in lung function observed in the CPAP group could be due to the fact 

that CPAP could reestablish the balance between the forces of interdependence and so 

facilitate bronchodilation. On the other hand BPPV despite the improvement seen in 

clinical signs could be provoking a repeat of the imbalance created by the deep 

inspiration in spontaneous bronchoconstriction. We further suggest that the balance 

created by the CPAP could come from one or both sides of these opposing forces. 

Firstly as described under point 5.2.1 continuous positive airway pressure could act on 

the intrinsic properties of the ASM, breaking the steady-state isometric condition of 

the constricted ASM. On the other hand CPAP could act on the parenchyma by 

decreasing fluid extravasation from the inflammatory process as discussed earlier.   
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Continuous positive airway pressure outperformed BPPV in improving lung function. 

This could be due to the fact that although the PEEP in BPPV acted like CPAP 

bypassing the threshold load, the inspiratory pressure on the other hand created a 

similar effect to that done by a deep inspiration on asthmatic lungs and increased 

bronchoconstriction. This could have slowed down the possible improvement 

promoted by the PEEP.  

 

 

5.2.4. Noninvasive Ventilation versus standard therapy in the 

improvement in lung function 
 

Lung function was significantly improved in the first half an hour of treatment when 

the NPPV groups were compared to the standard therapy group (Analyses B). It then 

maintained a marginal significance until the end of treatment. This was similar to 

what Sorosky and colleagues (2003) found although they did not compare CPAP but 

only BPPV in their study. Pollack and colleagues also found similar improvement in 

lung function with the use of BPPV in AAE (Pollack et al., 1995). To our knowledge 

no study up to date has compared both CPAP and BPPV independently with standard 

medical therapy in AAE. Our results suggest that adding NPPV to standard medical 

treatment could improve patient’s lung function faster than standard medical 

treatment alone. 
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5.3 CLINICAL SIGNS 
 

5.3.1 BPPV versus standard therapy and their effect on the clinical 

signs 
 

The main finding in the BPPV intervention group was a significant reduction in 

clinical signs like respiratory rate, sensation of breathlessness and accessory muscle 

use over time compared to the standard therapy group. BPPV reduced accessory 

muscle use at what was called end of treatment while respiratory rate and sensation of 

breathlessness could be seen to improve significantly already from the first half an 

hour of treatment. Although end of treatment did not take into consideration time, the 

mean time for end of treatment was calculated to be 4.13 hours for the group. So we 

can postulate that up to 4 hours of treatment BPPV significantly reduced the use of 

accessory muscle compared to the standard therapy group alone. 

 

As described in the literature review chapter, during an asthma exacerbation the lungs 

develop dynamic hyperinflation. Dynamic hyperinflation is a consequence of air 

trapped in the lungs due to increased airway resistance and increased breathing 

frequency. Dynamic hyperinflation caries with it deleterious effects like placing the 

inspiratory muscles in a disadvantaged position, increasing their energy spending, 

creating an inspiratory threshold load due to the PEEPi and finally leading to the 

uncomfortable sensation of breathlessness or neuromechanical dissociation of the 

ventilatory pump. 

 

 Bi-level positive airway pressure has been suggested to counter act the effects of 

dynamic hyperinflation. The BPPV aids the inspiratory muscles, which are positioned 

at an unfavourable place of the length-tension relationship, by providing an 

inspiratory assistance with the increase in positive pressure during inspiration. This 

inspiratory help would also decrease their energy spending of the inspiratory muscles. 

On the other hand the PEEP applied by the BPPV at the end of expiration would 

counterbalance the inspiratory threshold load created by the DH and its consequent 

PEEPi. The externally applied PEEP would then lead to a neuromechanical coupling 
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of the respiratory pump and so reduce the sensation of breathlessness (O’Donnell, 

1994, Lougheed et al., 1995). 

 

Our results show that the patients who received BPPV as a method NPPV benefited 

from the inspiratory assistance in relation to their respiratory rate and accessory 

muscle use. These two are clear clinical signs of respiratory distress. Similar results 

were described by Sorosky and colleagues (2003). They reported a significant 

reduction in the respiratory rate of their BPPV intervention group at three hours of 

treatment but not at four hours of treatment.  Meduri and Cook (1996) also reported a 

significant reduction in respiratory rate on their status asthmaticus patients. They used 

a normal ventilator to administer noninvasive positive pressure with pressure support 

and PEEP. This has the same effect as BPPV. They reported a reduction in respiratory 

rate for up to 12 hours of treatment. In our study the reduction in respiratory rate was 

already marginally significant in the first half an hour of treatment and continued until 

three hours of treatment. At end of treatment it was significant and as mentioned 

above end of treatment was a mean of 4.13 hours for the group as a whole. In a study 

by Pollack and colleagues (1995) no significant improvement in respiratory rate was 

noted with the use of BPPV in acute asthma exacerbations. This could be due to the 

fact that they only used BPPV to administer bronchodilator inhalations twice, 20 

minutes apart. The continuous administration of NPPV probably has a cumulative 

effect where inspiratory muscles are supported and also rested. The effect that we 

noted on the accessory muscle use has to our knowledge not been described 

previously in a study where noninvasive ventilation was investigated in AAE. Since 

the use of accessory muscles are related to increased respiratory work, we believe that 

the reduction in their use could be related to the assistance provided by the inspiratory 

pressure of the BPPV. 

 

Furthermore BPPV significantly reduced the patients’ sensation of breathlessness. A 

visual analogue scale was given to the patients with numbers from zero to 10. 

Although breathlessness can be considered to be a subjective parameter, in asthma it 

seems to be related to an imbalance between the effort done by the inspiratory 

muscles and the mechanical consequence like change in flow/volume, that is expected 

(Lougheed et al., 1993). Breathlessness was defined by Lougheed and colleagues 

(1993) as a complex sensory experience related to the perception that the contractile 
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effort of the inspiratory muscles has increased while their capacity has been reduced. 

The main causative factor for breathlessness seems to be the ITL created by the 

PEEPi. Chen and colleague have studied the effect of ITL as well as EELV on 

breathlessness. They found that both ITL and EELV independently and significantly 

increased the perception of inspiratory difficulty but ITL was found to contribute the 

strongest to this sensation (Chen & Yan, 1999).  

 

Inspiratory threshold load is a mechanical consequence of the PEEPi created by DH. 

This basically means that as the inspiratory muscles contract at the beginning of an 

inspiration no flow or volume change is produced (Yan, 1999). The inspiratory 

muscles now have to bypass the increased elastic recoil of the chest wall that is 

directed inwards due to the hyperinflation (Tobin & Lodato, 1989). During a normal 

breath decreasing the pleural pressure takes minimal contraction of the inspiratory 

muscles. To create the difference between ambient and alveolar pressures, in the 

presence of PEEPi, the inspiratory muscle will be required to increase their contractile 

effort. To add to this overload is the fact that these muscles are working from a 

shortened position as described in point 2.2.1.1.rendering them less effective. 

 

The solution to this mechanical imbalance would be the elevation of ambient pressure 

to the level of the alveolar pressure or as close to it as possible (Tobin & Lodato, 

1989). This can be accomplished by the application of external positive airway 

pressure in the forms of PEEP or CPAP. By elevating the ambient pressure the 

negative pressure required to create a difference of pressure would be much less. 

Since breathlessness in airway obstruction has been linked to the imbalance between 

the muscle effort and the anticipated ventilatory changes the application of external 

PEEP or CPAP can serve to negate the inspiratory threshold load (O’Donnell, 1994). 

Lougheed and colleagues (1995) in a study on induced asthma patients found that 

CPAP reduced the total inspiratory effort. They also found that CPAP reduced the net 

tension-time index which is a reflection of the metabolic cost of breathing. 

Breathlessness was significantly (p<0.001) reduced in their study and mainly due to a 

reduction in the inspiratory effort. We have found similar results in our study with a 

reduction in the sensation of breathlessness from the first half an hour of treatment 

with the use of noninvasive BPPV. As described above BPPV provides an inspiratory 

pressure and also a PEEP at the end of expiration. We believe that the PEEP had the 
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effect of negating the PEEPi present in our patients with AAE and so relieved the 

sensation of breathlessness experienced by them. A few patients were seen to fall 

asleep while on the BPPV. Shivaram and colleagues (1987, 1993) reported similar 

findings in two studies done on patients with AAE. Both studies found that CPAP 

reduced the patients’ breathlessness. In the Shivaram studies CPAP was applied for 

short periods. In one study CPAP was applied for one to two minutes (1987) while in 

the second study (1993) it was applied for 30 minutes twice with a 20 minute break in 

between. Even these short applications revealed an improvement on breathlessness 

which probably suggests that the external elevation of ambient pressure immediately 

caused a coupling of the neuromechanical ventilatory pump. 

 

 
5.3.2 CPAP versus Standard Therapy and their effect on clinical 

signs 
 

The addition of CPAP to standard therapy showed significant improvement in the 

clinical signs of respiratory rate, sensation of breathlessness, accessory muscle use 

and lung sounds at the end of treatment. BPPV had an early effect on respiratory rate 

and sensation of breathlessness while CPAP significantly improved respiratory rate 

only at two hours, sensation of breathlessness at three hours and accessory muscle use 

at one hour of treatment and all of them at end of treatment. The small sample size 

could have influenced the hourly results. Since end of treatment was a mean of 4.13 

hours for the group as a whole, it seems that CPAP also improved the clinical signs 

faster than the standard therapy group, but it became apparent later in the treatment 

compared to BPPV.  

 

For lung sounds we observed that CPAP was the only intervention to show a 

significant reduction in wheezes at two hours and at the end of treatment. BPPV 

showed no significance at all. We believe this could be due to two reasons. Firstly it 

could be due to the improvement in lung function by CPAP as discussed later. A 

general relationship exists between the type of wheezes and the level of obstruction 

(Shim & Williams, 1983). Despite this it has been shown that asthma symptoms 
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cannot be directly related to the severity of an obstruction in asthma (Teeter & 

Bleecker, 1998). Secondly, wheezes occur due to air flowing through airways with 

narrowed airway lumen (Shim & Williams, 1983). Because CPAP applies a constant 

positive pressure continuously to the airways, patients breathe with much smaller tidal 

volumes compared to BPPV. It could be postulated that these smaller airflow 

dislocations inside the airways would then create less vibrations of an audible 

frequency. Authors have suggested that CPAP would “splint” the airways (Shivaram 

et al., 1993). This would also impede some of the airway narrowing that increases 

during expiration and so also causes less flow vibration which could lead to a 

reduction in wheezes on auscultation.  

 

The improvement in the respiratory rate, sensation of breathlessness and accessory 

muscle use can be explained by the same reasoning as for the PEEP in the BPPV 

intervention. Continuous positive airway pressure counterbalanced the effects of the 

ITL and so reduced the work of breathing. Tobin and Lodato (1989) have referred to 

the effect of CPAP as an external increase in positive pressure which would function 

like a pressure-support aiding inspiration. At expiration this PEEP would be 

functionally absent. 

 

Martin and coworkers in what was probably one of the first studies in this area 

evaluated the effects of CPAP on subjects with induced asthma. They measured lung 

function and chest wall and lung mechanics after bronchococonstriction, with CPAP 

and after CPAP removal. They found that CPAP unloaded the inspiratory muscles. 

This was seen by the reduction in the inspiratory pleural pressure generated by the 

inspiratory muscles and also by the reduction in the swing of the trans-diaphragmatic 

pressure. Furthermore CPAP reduced the energy utilization by the inspiratory 

muscles. This was evident by the significant reduction in the pressure-time product of 

the inspiratory muscles and of the diaphragm (p<0.05). Pressure-time product reflects 

the metabolic cost of breathing. Continuous positive airway pressure also improved 

the efficiency of contraction of the muscles reflected by a 50% increase in the 

inspiratory flow rate. Finally they found a significant fall in pulmonary resistance 

(p<0.02) with CPAP (Martin et al., 1982). 
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The present study did not measure lung mechanics yet the improvement in clinical 

symptoms matched what Martin and colleagues (1982) found in the laboratory setting. 

It could be argued against the Martin study that they used induced asthma and not 

spontaneous asthma exacerbations. Shivaram published two studies on acute asthma 

exacerbation. In both studies they applied CPAP for different periods and found a 

reduction in respiratory rate and dyspnea (Shivaram et al., 1987; Shivaram et al., 

1993). These results are similar to our study. Compared to the standard therapy group 

the clinical improvement in respiratory rate in the CPAP intervention group is much 

greater. 

 

 

5.3.3 CPAP versus BPPV in their action on clinical signs 
 

Respiratory rate and sensation of breathlessness improved faster in both CPAP and 

BPPV groups compared to the standard therapy group. Although BPPV seemed to 

make a bigger difference this was not statistically significant. Continuous positive 

airway pressure and BPPV both reduced the use of accessory muscles by the end of 

treatment compared to standard therapy alone.  

 

It would seem then that both noninvasive positive pressure methods used in this study 

helped patients’ symptoms to improve faster. This was due to the previously described 

effect of CPAP and PEEP in bypassing PEEPi and so unloading the inspiratory 

muscles. Although improved symptoms on their own cannot determine that the acute 

episode has been resolved, this has a major implication for the patient. The anxiety 

that respiratory distress causes to a patient is probably underestimated. Even if the 

present noninvasive interventions did not improve lung function, just the fact that they 

aided patients by reducing their respiratory rate and accessory muscle use as well as 

improving their sensation of breathlessness would have proven them worthy 

interventions.  
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5.3.4. Noninvasive Ventilation versus standard therapy 
 

When the CPAP and BPPV groups were grouped together and analyzed against the 

standard therapy group similar results were obtained. The noninvasive groups 

exhibited significantly ameliorated respiratory rates, sensation of breathlessness and 

accessory muscle use at the end of treatment. This is in line with the findings of 

several other authors (Martin et al., 1982; Shivaram et al., 1987; Lougheed et al., 

1995; Meduri et al., 1996; Pollack et al., 1995; Wang et al., 1996). Yet each of these 

authors’ studies tested only CPAP or BPPV individually in AAE. As far as lung 

sounds, the NPPV groups of the present study exhibited a marginal improvement at 

the end of treatment. 

  

 

 

5.4 NPPV AND ARTERIAL BLOOD GASES 

 
It was not possible to statistically analyze the arterial blood gases (ABG) done in the 

study as they were few and only four patients had a repeat ABG after the first half an 

hour of treatment. Of these two presented the classic hyperventilation – hypocapnic 

result. This is common at presentation of a patient with AAE at the emergency unit. 

These patients are in respiratory distress and so tachypneic (Rodrigo, 2004). The other 

two ABG were from patients who already started with respiratory muscle fatigue. 

They presented with hypercapnea which improved after the first half an hour of 

treatment. All these patients had been randomized either to CPAP or BPPV and the 

improvement noticed in the first half an hour of treatment was with the use of one of 

these devices. We can however not conclude that this was solely due to the action of 

NPPV as ABG were not taken for any of the patients in the standard therapy group.  
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5.5 HAEMODYNAMIC EFFECTS OF NPPV 

 
When the NPPV groups were analyzed together against the standard therapy group 

there was a difference in baseline systolic blood pressure (SBP). Patients in both the 

CPAP and BPPV groups had higher initial SBP. This difference was however not 

strong enough to show in the one-way ANOVA analyses. From two hours of 

treatment onwards it seemed that the SBP lowered more in the BPPV group compared 

to the CPAP and the standard therapy groups. The same occurred with the diastolic 

blood pressure (DBP).  

 

A few reasons could exist for these lower blood pressure values in the BPPV 

intervention group.  Beta adrenergics like fenoterol used for inhalations during an 

AAE are known to have the potential to lead to a reduction in peripheral vascular 

resistance (Zanoni & Palhares, 2002). The fact that only the BPPV group showed this 

significant reduction in blood pressure means that it could not be due to the effect of 

beta adrenergics only as all patients received the same inhalations. Blood pressure can 

be influenced by emotional factors like anxiety and stress. Patients in an AAE 

experience both these emotions as they try to breath with the severe bronchospasm. It 

could be that since BPPV relieved the sensation of breathlessness and reduced 

respiratory rate earlier in the treatment that this could have resulted in a relief of the 

distress experienced by the patients. This may have contributed to lower blood 

pressures in the BPPV group. A further reason could be that some of the patients 

could have become dehydrated during the treatment time. Most of the patients had 

started the exacerbation the previous night coming to the emergency unit only in the 

morning. They were all on a maintenance drip of saline (0.9 % NaCl). In children 

presenting with AAE it has been noted that they can present to the emergency unit 

with dehydration (Potter, Klein & Weinberg, 1991). Dehydration could have been 

present in some patients of the BPPV group. The mean SBP at four hours of treatment 

was 131.3, 132.3 and 114.4 mmHg for the standard therapy, CPAP and BPPV groups 

respectively. Mean DBP at end of treatment was 71.8, 78 and 59.7 mmHg 

respectively. While the SBP did not fall below acceptable values the DBP was quite 

low at four hours of treatment. A further possibility could be the effect of the increase 

in intrathoracic pressure (ITP) due to positive pressure ventilation. While ITP falls 
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during spontaneous breathing it increases when positive pressure ventilation is 

initiated. Hyperinflation is also known to increase pressure around the heart chambers. 

Pinsky (2005) has noted that it is the increase in lung volume more than the increase 

in pressure that affects the ITP. He has also noted that although hyperinflation 

increases pulmonary vascular resistance so impeding right ventricular filling, adding 

an external PEEP that does not surpass the PEEPi will cause no further 

haemodynamic effects. Having previously mentioned the differences between CPAP 

and BPPV we speculate that due to the larger lung volumes that patients could breathe 

with the BPPV, this could have had the effect of lowering these patients’ blood 

pressures due to a reduction in venous return and consequent reduction in cardiac 

output. 

 

These results differ from the Shivaram study. Shivaram and colleagues (1993) found 

that the application of CPAP levels of 5 and 7.5 cmH2O had no untoward effects on 

mean arterial pressures. In the Soroksky study (2003) no mention was made in their 

results about their patients’ blood pressure. We cannot determine the reason for the 

drop in blood pressures observed in the BPPV group as this was not the aim of the 

present study. We speculate that the possible dehydration and/or improvement in 

these patients’ sensation of breathlessness could have contributed to this phenomenon. 
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5.6 SECONDARY OUTCOMES 
 

5.6.1. Outcome from the emergency unit 
 

Significantly more patients were discharged after the emergency unit treatment from 

the standard therapy group (80%) than from the groups that received noninvasive 

ventilation (CPAP group = 80%, BPPV group = 70%). This result is very different 

from those obtained by Soroksky and colleagues (2003). In their study 37.5% of the 

control group were discharged compared to 82.4% of the BPPV intervention group. 

This was however calculated on an intention-to treat analysis including 3 patients who 

had actually withdrawn from the study. 

 

This finding could be explained by several factors. Firstly a discharge protocol did not 

form part of our study so most of the patients were discharged or admitted to hospital 

at the medical officer’s discretion. The emergency department had guidelines for the 

discharge of a patient after an AAE but again these were not strictly enforced. The 

researcher also did not contribute to the decision as to whether a patient should be 

discharged or not as this would create a bias. Patients were mostly discharged if they 

had achieved a PEFR % predicted above 65% and did not worsen once inhalations 

were stopped. Other factors that also contributed to the decision to discharge a patient 

were social conditions for example female patients who had children at home without 

anyone to look after them and patients who simply refused to be admitted. Another 

problem experienced included the availability of beds in the hospital (if no beds were 

available patients who seemed stable and might have been admitted overnight were 

rather discharged). Factors influencing admission of patients were again social factors 

for example patients who would not have transport overnight to return to the hospital 

in case of a new asthma attack, were admitted. It is important to know that Kalafong 

hospital is situated in a needy area and serves patients of low or no income. This had 

an important effect on the decision making process to admit or to discharge patients.  

 

Taking all the above into consideration our results showed more hospital admissions 

in the noninvasive groups yet this was severely influenced by social circumstances. 
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5.6.2. Time spent on noninvasive positive pressure ventilation 
 

Patients spent nearly double the amount of hours on the BPPV ventilation compared 

to CPAP. This was however due to two patients in the BPPV group that continued to 

make use of it after the emergency unit treatment. Time spent on the NPPV devices 

was calculated in total and not only in the emergency unit. If the patient needed to 

continue on NPPV after the emergency unit treatment NPPV was continued and 

included in the total NPPV time calculation. To our knowledge no study so far has 

compared CPAP with BPPV noninvasive ventilation. This means that we could not 

compare the results with existent research findings. In the Soroksky study it was 

stipulated that patients would receive maximal 4 hours of noninvasive ventilation 

(Soroksky et al., 2003). We continued NPPV until patients had reached a PEFR % 

predicted above 65% or until they were transferred to a ward in the hospital. This 

meant that our patients receiving BPPV spent a mean of 6.98 ± 7 hours on the NPPV 

while the CPAP group spent a mean of 3.84 ± 1 hour on NPPV.  Meduri and 

colleagues (1996) reported a mean of 16 ± 21 hours spent on noninvasive ventilation. 

It is important to note that they ventilated patients with status asthmaticus while in the 

present study we included AAE at presentation. The present study did however have 

one patient which evolved into a status asthmaticus and was later intubated. This is 

probably the reason why the present study showed shorter hours of NPPV when 

compared to the Meduri study. 

  

Therefore we can report that the number of hours that the patients spent on NPPV was 

a mean of 5.4 hours which was adequate to improve their lung function and clinical 

signs faster than the standard therapy alone. We therefore suggest that it would be 

worthwhile to make use of NPPV in the emergency unit as most patients spend an 

average three to four hours in the unit. 
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5.6.3. Intubation rate and mortality rate 
 

No patients needed to be intubated in any of the three treatment groups while still in 

the emergency unit. There was one intubation (patient 18) which was avoided in the 

emergency unit. Patient 11 from the standard therapy group was intubated five days 

after hospital admission after deteriorating in the ward. Noninvasive ventilation with 

the BiPAP® was initiated still in the ward and continued in the High-Care ward for 24 

hours intermittently due to the patient’s confused mental state. Nearly 48 hours later 

the decision was made in ICU to intubate the patient due to a PaCO2 of 60mmHg. The 

researcher did not agree with this decision as the patient had by then survived the 

worst part of her status asthmaticus condition. She was still mildly confused but 

improved whenever she was on the BPPV. Unfortunately an arterial blood gas was 

not taken the previous day when she was probably more hypercapnic. After being 

intubated mechanical ventilation was very difficult and by 12 hours into mechanical 

ventilation her PaCO2 remained above 60 mmHg.  The patient eventually spent 15 

days in ICU and had a tracheostomy performed on her in this period. The total length 

of hospital stay for this patient was 22.5 days. This patient presented a clear example 

of what complications can arise if an asthma patient is intubated. Ventilating an acute 

asthma patient requires fine tuning of the ventilator settings, especially of peak and 

mean airway pressures. If noninvasive positive pressure ventilation is applied 

correctly and successfully such complications could be avoided. It is also imperative 

that the whole team (doctors, nurses and physiotherapists) are familiar with 

indications for NPPV, its applications and advantages.  

 

Finally the intubation rate for the patients that were admitted to hospital was 3.3% 

(that is one patient) for the group as a whole. Mortality rate was zero. It is important 

to note that our treatment protocol applied only to the emergency unit. This meant that 

once in the wards patients were treated according to the discretion of the internal 

medicine doctor responsible for the patient which made any comparison among the 

initial treatment groups impossible.  
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5.6.4. Emergency unit and Hospital length of stay 
 

There was no difference in the hours that the patients spent in the emergency unit 

among the three treatment groups. Although the patients in all three groups spent 

more or less the same time in the emergency unit, we did notice faster improvement in 

lung function and clinical signs in the noninvasive treatment groups up to 4 hours of 

treatment as already discussed. Again the time spent in the emergency unit was 

influenced by factors such as the number of nursing staff and doctors available on that 

day and also the time it took for the casualty doctor to reevaluate the patient and refer 

the patient to internal medicine if necessary. Our data was similar to that of the 

Soroksky study. Their BPPV group spent a mean of 5.9 ± 1.3 hours in the emergency 

unit while their control group spent 5.6 ± 1.3 hours (Soroksky et al., 2003). 

Noninvasive positive pressure ventilation did not affect the length of stay in the 

emergency unit in the present study. If NPPV would become standard protocol in the 

emergency unit it might require an additional dedicated professional to initiate NPPV 

and monitor a patient’s response to therapy. 

 

As far as the hospital length of stay is concerned, the patients in the two NPPV groups 

spent significantly fewer days in hospital than the standard therapy group (p=0.0481). 

It is interesting to note that this was despite the fact that the standard therapy group 

had only 2 admissions. Our results differ from the Soroksky study. The mean hospital 

length of stay in their study was 4 ± 0 and 2.5 ± 1.4 days for the BPPV and control 

groups respectively. They did not test for significance (Soroksky et al., 2003). In their 

study the control group had significantly more admissions which also differed from 

our results. This could be explained by the difference in hospital setting. 

Unfortunately our admissions and discharges were influenced by social and hospital 

factors out of our control. We suspect that the Soroksky study might have been 

performed under more stable conditions. The fact that the present results on length of 

hospital stay were influenced by social and hospital factors made a direct conclusion 

on NPPV influencing hospital length of stay impossible. Yet the fact that NPPV was 

associated with shorter hospital length of stay could indicate a possibility of reduction 

in costs for the hospital. Future studies with larger samples could clarify this better. 
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In the present study therefore we have found that in the admitted patients the standard 

therapy group patients had a longer hospital length of stay. 

 

 

5.6.5. Patients that reached PEFR > 65% predicted 
 

A bigger percentage of patients in the CPAP (50 %) and BPPV (40 %) groups reached 

a PEFR > 65%. Although this was not statistically significant when compared to the 

20% of the standard therapy group who also reached a PEFR > 65% it had a clinical 

significance. This meant that double or more of the patients who received NPPV 

reached an acceptable lung function level while in the emergency department. Several 

investigators have shown that response to treatment in the emergency department is a 

predictor of outcome (Kelsen, Kelsen, Fleegler, Jone & Rodman, 1978; Fanta, 

Rossing & McFadden, 1982; Nowak, Tomlanovich, Sarkar et al., 1983; Rodrigo & 

Rodrigo, 1988; Rodrigo & Rodrigo, 1993). Although more patients in the NPPV 

treatment groups reached a PEFR > 65%, more of them were also admitted yet this 

could have been due to the factors out of our control described in the previous 

paragraph. 

 

 

 

 

5.7 CONCLUSION 
 

In conclusion we have found the following: a)noninvasive positive pressure 

ventilation in the form of CPAP or BPPV when added to standard medical treatment 

for an acute asthma exacerbation improved lung function and clinical signs like 

respiratory rate, sensation of breathlessness and accessory muscle use faster than 

standard therapy alone up to three and four hours of treatment, b) the effect of BPPV 

stood out in the improvement of  clinical signs and we believe that it could be due to 

the inspiratory assistance provided in this form of NPPV, c) CPAP improved lung 

function faster than BPPV and it could be due to the effect of CPAP on the load of the 

airway smooth muscle or its effect on the actin-myosin bridge cycling of the ASM.  
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As far as secondary outcomes a) the use of NPPV in the emergency unit did not 

reduce the number of patients admitted to the hospital, b)those admitted from the 

standard therapy group had a longer hospital length of stay but this should be 

interpreted in the light of patients’ social circumstances, hospital staffing and 

administration shortages, c) mortality rate and intubation rate were not influenced by 

the initial treatment received in the emergency unit c) mortality rate and intubation 

rate were zero for all the treatment groups d) NPPV assisted more patients to achieve 

a PEFR > 65% while still in the emergency unit. 

 

The results confirm our first hypothesis which stated that early use of noninvasive 

ventilation in the forms of CPAP and BPPV together with standard medical therapy in 

acute asthma exacerbation can decrease time of response to therapy compared to 

standard medical therapy alone. Our results further support part of the second 

hypothesis, that is, that BPPV acts faster than CPAP in improving clinical, 

physiological and spirometric values due to the inspiratory assistance added to the 

PEEP. Bilevel positive pressure ventilation did show a tendency to improve clinical 

signs like respiratory rate and sensation of breathlessness faster than CPAP with 

standard therapy and standard therapy alone. As far as lung function however our 

results contradict the second hypothesis. Continuous positive airway pressure clearly 

outperformed BPPV when it came to the improvement in lung function. Further on 

when time was not taken into consideration both CPAP and BPPV significantly 

improved patients’ clinical signs. 

 

 

The limitations of this study will be discussed in the following chapter. 
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CHAPTER 6   

LIMITATIONS and RECOMMENDATIONS  
 

 

6.1 LIMITATIONS 

 
The following limitations were observed in the present study: 

1-The main limitation to this study was the small sample size. A bigger sample size 

would have delivered better statistical results especially in the BPPV group which in 

some analysis like the improvement in PEFR was marginally significant. This was 

however not possible as the author was also the only data collector and patients were 

only enlisted during day time. We believe that a potential number of patients were lost 

due to their presentation at the emergency unit in the early hours of the morning. 

Another limitation was that the referring doctor from the emergency unit went on 

maternity leave for a few months during the data collection phase and during that 

period fewer patients with asthma were referred to the researcher. 

 

2- Another potential limitation was that the study was not blinded to the data collector 

or to the medical officers on duty. Knowledge of the group to which each patient was 

randomized as also the objective of the study is a cause for bias. A suggestion for less 

bias would be the use of independent data collectors and also that the medical officers 

of the emergency unit would not know the end points of the study. This was not 

possible in the present study as the researcher was the only available person at the 

hospital to collect data. Further on as this was a first study in cooperation between two 

departments it was necessary to explain the study to the medical officers for better 

cooperation and patient referral for the study. 

 

3-The hand held peak expiratory flow meter used in this study posed another 

limitation. In the Soroksky study spirometry was performed which allowed for better 

control of the technique and quality of measurement than the small hand held devices 

used in this study. At the start of the study a device for complete spirometry was not 

available at Kalafong 
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Hospital and patients who needed this were referred to another hospital. We did 

however explain to and monitor the technique of our patients and had two patients 

who were not enrolled due to poor technique. The hand held device used in the 

present study was however better than a Wrights Peak Flow meter as it electronically 

displayed the values performed by the patients and stored the best of three attempts 

for recording. With the Wrights Peak Flow meter the value is observed on a visual 

scale and the observer will estimate on the visual scale what the PEFR was thus 

rendering data collection less accurate.  

 

4-The fact that a single centre study was conducted limited the results to the specific 

population studied. A better study would have been a multiple center randomized 

study where patients with asthma from different socio-economic areas were included. 

The population serviced by the Kalafong hospital is mainly a low income population. 

This added many uncontrollable social-economic variables to the study as described 

in our discussion chapter. A multicenter trial would require a few experienced data 

collectors. Presently the researcher is the only experienced staff in NPPV in the 

region. 

 

5-The lack of a discharge/admission criteria in the present study protocol is a further 

limitation. This compromised the interpretation of the secondary results like treatment 

outcome (admitted or discharged). As described in the discussion chapter many 

patients were admitted or discharged due to factors other than clinical and objective 

parameters.  

 

6-The fact that there was not a uniform treatment protocol for patients admitted to the 

ward posed a further limitation to the study. This meant that the secondary outcomes 

had to be interpreted in light of this as treatment in the wards differed according to the 

admitting physician and also according to the nursing staff. This could have had a 

significant influence on the length of hospital stay. 
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6.2 RECOMMENDATIONS 
 

The following recommendations are made in relation to the present study: 

 

1. A study with a similar protocol but a larger sample size would be highly 

recommended. 

 

2. A multi-center randomized study with similar end-points would enhance the 

present results. 

3. We applied NPPV on AAE patients until they had reached a PEFR % predicted > 

65 % or were admitted. Future studies could determine to apply NPPV for a limited 

period (3 to 4 hours) as it seemed to be the mean time up to which a significant 

difference was detected among the intervention groups. 

 

4. The present study concentrated on severe AAE at presentation in the emergency 

unit. The results cannot be extrapolated to status asthmaticus. Further research would 

be necessary to compare the use of NPPV in the status asthmaticus population. 

 

5. A study that included hospital costing as one of the secondary outcomes would also 

be highly recommended. This was not possible in the present study as no reliable 

source for hospital costing could be found. 

 

6. An investigation into the role of the physiotherapist in the application of NPPV to 

patients with acute respiratory failure as also their role in the emergency department 

would be relevant. 
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CHAPTER 7 

 CONCLUSIONS 

 
The aim of the present study was to evaluate the effectiveness of noninvasive positive 

pressure ventilation when added to standard medical therapy against standard medical 

therapy alone in the management of acute asthma exacerbation. The following 

hypotheses were tested: a) early use of NPPV in the forms of CPAP or BPPV together 

with standard medical therapy in acute asthma exacerbation can decrease time of 

response to therapy compared to standard medical therapy alone. b) patient’s response 

to therapy is expected to be faster with the administration of BPPV together with 

standard therapy due to the inspiratory assistance provided to the positive end-

expiratory pressure (PEEP). 

 

The present results suggest that adding CPAP or BPPV to standard medical (ST) 

therapy in an AAE improves clinical signs and lung function faster than ST alone. 

This extends on previous research that showed that adding BPPV to ST in AAE 

improves lung function more than ST alone. As previously discussed the clinical signs 

like increased respiratory rate (RR) and sensation of breathlessness (SB) are a 

consequence of the dynamic hyperinflation (DH) present in an AAE. Both CPAP and 

the PEEP in BPPV bypass the DH so reducing the inspiratory load. This will reduce 

the SB and RR. The additional inspiratory assistance provided by the BPPV seems to 

support breathing thus reducing their inspiratory efforts. To our knowledge this is the 

first study to compare CPAP with BPPV in the management of AAE. Contrary to our 

hypothesis CPAP improved lung function more than BPPV. This seems to be related 

to two possibilities. Firstly CPAP could have an intrinsic effect on the airway smooth 

muscle (ASM) and it could replace the ASM load which is altered by the 

inflammatory changes. A second possibility is that BPPV with the inspiratory 

assistance provides for a bigger tidal volume, a larger stretching of lung tissue so 

mimicking the effect of a deep inspiration which is known to increase bronchospasm 

in patients with asthma. This could be a possible reason why CPAP had a better effect 

on lung function compared to BPPV. 
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As far as secondary outcomes are concerned the results showed that:  

a) The use of NPPV in the emergency unit did not reduce the number of patients 

admitted to the hospital,  

b) Admission to the hospital and discharge from the emergency unit were influenced 

by socio-economic factors, 

c) Patients admitted from the standard therapy group had a longer hospital length of 

stay  

d) Mortality rate was zero for the three groups 

e) Only one patient was intubated in the whole group 

f) More patients in the NPPV groups achieved a PEFR > 65% in the emergency unit. 

 
 

In the clinical setting would this mean that while BPPV is the first line of treatment 

indicated for a COPD exacerbation, the results of the present study suggest that CPAP 

might be a better option for respiratory assistance when it comes to an AAE. This 

could differ with a patient with status asthmaticus as they can develop severe muscle 

fatigue.  Further research is needed to compare the use of CPAP in an AAE with its 

use in status asthmaticus. Finally as a direct result of the present study CPAP has been 

added to the standard medical management of patients presenting with an AAE at the 

emergency unit at Kalafong hospital. 
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APPENDICES 
 
APPENDIX A 
 
 
SUBJECT INFORMATION SHEET 
 
Hi, I am Silmara G. Hanekom and I am doing a study with people who have asthma. 
 
This is how the study will be conducted: the asthma patients that want to be part of the 
study will continue to get their normal medication prescribed by the doctor. At 
casualty you always get oxygen through a mask as part of your normal treatment. In 
addition to this treatment we have three different masks and want to see how you feel 
when receiving treatment with one of the three masks. Each of the masks gives you 
oxygen and helps your breathing in different ways. The masks are connected to a pipe 
which is then connected to a machine or to the oxygen on the wall. I want to see how 
the mask that will be put on your face will help you to breath. 
 
If you agree to be part of the study you will be asked to sign a form. An envelope will 
then be drawn from a box and inside the envelope is written what kind of mask you 
will use. 
 
Before I put you on the mask, I will write down how your lungs are and you will tell 
me how you are breathing. You will also be asked to blow into a flow meter so I can 
measure your lung function. I will then hold the mask over your face so you can feel 
how it is. When you feel comfortable I will put the straps that keep the mask in place 
around your head. You will feel air coming through the mask and you must continue 
to breathe in and out. I will be next to you all the time seeing how you are doing. I 
will write down how your lungs are from time to time and you will help me by telling 
me how your breathing is feeling and by blowing into the flow meter. This will show 
me how your lungs are doing. It may be necessary for the doctor to draw blood from 
your artery in your arm and this can be painful. This will only be done if necessary. 
 
Your participation in the study is voluntary and you can decide at any time that you 
do not want to be part of it anymore. Your treatment will continue as usual. Please ask 
questions at any time that you feel you do not understand what is happening or if you 
want to know more. 
 
Contact person: Silmara Hanekom    Celular phone 084 – 461 8020 
     Hospital pager number 25 
     Physiotherapy department x 6765 
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APPENDIX B  
 
 
CONSENT FORM 
 
 
 
I fully understand this study that was explained to me by Silmara G. Hanekom 
 
I understand that if I refuse to take part in this study, I will not be penalized in any 
way and that I can decide to not be part of it at any time. 
 
 
 
 
 
 
Name_________________________ 
 
Relative_______________________ 
 
 
 
 
 
I agree to participate_________________________ 
 
 
 
 
 
 
Date___________________________ 
 
Place___________________________ 
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APPENDIX C 
 
DATA COLLECTION SHEET 
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   DATA COLLECTION SHEET 
SERIALNUMBER_________________ 

PATIENT NAME____________________HOSPITALNUMBER  _______________ 

DATE_____________________ 

AGE______________________ WEIGHT___________________________ 

GENDER__________________ HEIGHT___________________________ 

ADMISSION TIME____________ SMOKER__________________________ 

NONSMOKER_________________ 

DURATION OF ATTACK ________ hours  

DURATION OF SYMPTOMS ______ days/hours 

ASTHMA HISTORY 

_____________________________________________________________________

_____________________________________________________________________

______________________________________________ 

NUMBER OF HOSPITALIZATIONS 2002____2003____2004____2005_____ 

PRESENT EXACERBATION CLASSIFICATION GY GINA GUIDELINESS: 

MODERATE_______ 

SEVERE__________ 

RANDOMIZED TO:   STANDARD THERAPY_______ 

ST + CPAP    _________ 

ST + BiPAP  _________ 

TIME INITIATED NONINVASIVE VENTILATION______________ 

REASON FOR DISCONTINUATION OF NPPV _________________ 

TIME DISCONTINUED NPPV _______________________________ 

DESTINATION FROM THE EMERGENCY UNIT: 

 DISCHARGED_________________ 

 OVERNIGHT OBSERVATION WARD_______________ 

 GENERAL WARD___________________ 

 HIGH-CARE_____________________ 

 ICU, INTUBATION + VENTILATION________________ 
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DATA TABLE 
 ZERO 30’ 60’ 2hrs 3hrs 4hrs 5hrs 6hrs 
Heart rate         
Blood 

pressure 
        

Temp          
Resp rate          
ABG         
pH         
PaCO2         
PaO2         
HCO3         
BE         
Sats         
Dysp score         
Acc M use 

(0-3) 
        

Muscle 

fatigue (1-

4) 

        

Lung 

sounds (1-

3) 

        

PEF         
% pred         
FVC         
% pred         
FEV1         
% pred         
FEV1/FVC         
Sats         
Accessory muscle use : 0=absent, 1=mild, 2=moderate, 3=severe 

Evidence of muscle fatigue: 1=rapid shallow breathing, 2=alternation between rib cage and abdominal 

movement during inspiration, 3=abdominal paradox, 4= increase in PaCO2 

Lung sounds: 1=expiratory wheezes, 2=inspiratory and expiratory wheezes, 3=silent lungs 
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Reasons for intubation ____________________ 

Complications after intubation ___________________________ 

Reasons for patient exiting trial ____________________________________ 

LENGHT OF HOSPITAL STAY (hours) 

 OVERNIGHT OBS WARD __________________ 

 GENERAL WARD _________________________ 

 HIGH-CARE ______________________________ 

 ICU ______________________________________ 

 EMERGENCY UNIT ________________________ 

  TOTAL HOURS______________________ 

FINAL HOSPITAL OUTCOME : D/C __________ 

            DISSEASED _________ 

 
 Starting Adj 1 2 3 4 5 6 
Time of 

adj 
       

CPAP cm 

H2O 
       

O2 L/min        
FiO2        
BiPAP        
IPAP 

(cmH2O) 
       

EPAP 

(cmH2O) 
       

O2 L/min        
FiO2        
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VISUAL ANALOGUE SCALE FOR SHORTNESS OF BREATH 
      SERIAL NUMBER_____________ 
ZERO 

 
0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 

30’ 

 
0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 
 

60’ 

 
0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 

2 hrs 
 

 
0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 

3 hrs 

 
0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 

4 hrs 

 
 

0_____1_____2_____3____ 4_____5_____6_____7____8____9______10 
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APPENDIX D 
 
ETHICAL CLEARANCE UNIVERSITY OF THE WITWATERSRAND 
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APPENDIX E 
 
ETHICAL CLEARANCE KALAFONG HOSPITAL 
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